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PREFACE

As a basis for scientific engineering, mechanical as well as mining,
the theory of plasticity is at least as important as the theory of
elasticity, and a book on this branch of applied mechanics will further
its more general use.

This is my excuse for writing a small textbook on plasticity.

The theory of elasticity reveals the occurrence of excessive stresses
at re-entrant dihedral angles, especially at cracks in parts of struc-
tures, but the ductility of the steel lessens the danger of rupture, at
least under static loading. It is often accepted without proof that the
metal gives way at points where the yield stress is reached. The theory
of plasticity for plane problems shows us that the siress must be as
much as 2-57 times this value at a crack.

Experiments were needed to test the theory of plasticity both on
notched bars and on thick-walled cylinders with a square boring.
The laboratory of the State Mines and the High-Pressure Laboratory
of the University of Amsterdam contributed to these costly investi-
gations, which clarified the behaviour of mild steel, especially when
rupturing at the strain limit. Soon it became clear that the axial
principal stress plays a part in cases of two-dimensional strain, but
the determination of its magnitude was not easy. New difficulties
arose on the formulation of the laws of three-dimensional plastic
flow. It became clear that these could not be solved in the study
without the aid of laboratory investigation. Experiments made on
the flow of clay at the pottery ““De Sphinx ” works at Maastricht
brought forth a new conception of the plastic state of matter, which
I was bold enough to call the fourth state of aggregation. It is situated
between the solid and liquid states. Indeed, when the flow in one prin-
cipal direction is impeded, two principal stresses become equal, not all
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three as in the liquid state. In this condition the material flows in the
direction in which it can escape, but solidifies> as soon as the
principal stress difference drops.

To stimulate criticism I discussed my ideas in scientific and tech-
nical circles. This proved very helpful in moulding definite concep-

tions. Some mistakes pointed out by friends have been corrected.
v. L

Tre Hacug, HoLLAND,
1947,
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CHAPTER I

The Equilibrium of Internal Stresses and
Plasticity. Two-dimensional or Plane
Problems

1. To understand the behaviour of loaded structures or machine
parts, the engineer must take into account the deformation of the
material at incisions, holes, pores and other danger spots where the
limit of elasticity is exceeded. He must be familiar with the stresses
existing under the conditions of plastic flow involved in wire-drawing,
rolling, cutting, forging and pressing metals, in the manufacture of
pipes or profiles by extrusion, in ball indentation and other ways of
deforming or moulding plastic matter.

This textbook deals especially with three-dimensional strains, but
to facilitate the study, we start with two-dimensional problems dealing
with plastic bodies of uniform section enclosed between parallel end-
planes, e.g. a clay dam between abutments. The special feature of
plane problems is that there is no displacement normal to the section
considered.

When a structural part is loaded till permanently deformed, flow
will in general only have occurred at certain spots. In the cross-sections
of plane problems, regions of plastic and elastic strain adjoin. We
shall find that the boundaries are determined by the plastic flow.
Stress and strain in parts of the section loaded below the elastic limit
are less than in the regions of plastic deformation.

To solve problems on plasticity, we use the same equations of
internal equilibrium of stresses as in problems on elasticity, but instead
of the linear relation between strain and stress, we only use the so-
called condition of plasticity which simplifies the theory.

Although most readers may pass on, for the sake of completeness
we deduce the conditions for internal equilibrium.

At each point of the material under tension two perpendicular
planes can be chosen, subject to normal tensions only. We call these
planes principal planes, the normals to these planes the principal

directions, and the normal stresses themselves the principal stresses,
1
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which we indicate by s, and s,. The equilibrium of the forces on the
sides of an elementary prism (fig. 1) in the direction of the normal on
a plane which makes an augle « with the first principal plane gives
the normal stress

$p = 8 cos®a 4 s, sin®a,

and the equilibrium of the forces in the tangential direction gives the
tangential stress

8y = §; cosa 8ino — s, sina cosa.

Fig. 1.—Stresses on the sides Fig. 2.—Mohr’s stress circle
of an elementary prism, two sides
being principal planes.

When we express these stresses in terms of the double angle 2«,

S48, | 85—,
8p = 1t 242 2cos2a;

8 — 8y .
8, =2 %gin2a.
2

Representing these results graphically by plotting s, as abscisse
and s, as ordinates (fig. 2), it may be shown that the points form a
circle, Mohr’s stress circle.

The distance from the point (s, ) to the origin gives the resultant
stress p for the plane «. These formulz and this mode of representation
will be frequently used. Some properties of the stresses which must
be constantly kept in mind are enumerated.

1. In two-dimensional problems of plasticity two perpendlcular
planes may be assigned at every point where no tangentlal stress occurs.
On one of these planes the normal stress is a maximum and on the
other it is a minimum.
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2. The tangential or shear stresses on normal planes are equal and
are directed either to or from the common line.

3. The maximum shear stresses occur on planes making angles of

5° with the principal planes.

4. The normal stress s, as well as the total stress'p, are equal for
the planes of maximum shear stress.

5. When the normal stresses s,,, $,;, and the shear stress s, are
known for two perpendicular planes, the principal stresses are calcu-
lated from the formula

1 snl + snz + J(snl > + s’

6. The maximum shear stress is calculated from the formula

(52hmae = i;/ (o ) s,

The attentive reader will have already thought of the influence on
plastic flow of the third principal stress, acting in the direction of the
axis of the prismatic solid which we are to consider deformed over its
cross-sectional profile only. At first

he would be inclined to believe that, v } Sy
like the axial strains, the axial stresses o *
are everywhere zero, and when s; and 2o RCRLOPN
s, have equal signs (which generally > o=
is the case) the greatest shear stress d s
would occur in planes making angles S I y.:x_, Setamdx
of 45° with the axis. This would make syl
plane problems complicated. We there- v g—l
fore now mention that in dealing with ¥ Sy «

X

three-dimensional plastic flow, we shall

prove that in the two-dimensional cases . ; M. 3~ The differential stress.
of plastic flow the axial stress adjusts are in equilibrium.

itself either to the maximum or to the ,
minimum principal stress. We can draw another stress circle for the
axial stress and the axial principal stress. But this stress circle is iden-
tical with that under consideration, and displacements in directions for
which it is drawn do not occur. Axial stress need not then be considered.

2. If we consider the equilibrium of an element of the material
dzdy with unit length in the direction normal to our plane (fig. 3),
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and compute the forces acting in the directions X and Y, neglecting
the weight of the element, we can write down the relations ‘
, 23.«;== + as,

’

83,, _|_ Bs,

The exact calculation of these stresses requires the solution of the
differential equations. In general, there is an infinite number of solu-
tions. We have to find that one which agrees with the imposed forces
and complies internally with a condition which is different in the case
of elastic and of plastic deformation. For plastic deformation in plane
problems ‘this condition can be expressed simply. But before proceed-
ing to it, we must mention that instead of trying to find a solution of
these equations which suits the external forces and fulfils the con-
dition of plasticity for a simple case, we may attempt to guess the so-
called Aury’s stress function. This is a function F of z and y, so built
up that the stresses are obtained from it by double differentiation:

o°F o°F _@F

33_872‘, sv‘“'@" Ss = W

This is only a different way of expressing the equations of equilibrium
as is readily ascertained by substitution.
The stresses s, s, and s, must also fulfil the condition of plasticity
which may be written
(52 — 8,)% + 452 = 4k?,

in which % is a constant, as will be explained in the next paragraph.
Although the computation of Airy’s function throws no more light
on the problem it may be useful as a kind of mathematical control.

8. What is the test for plasticity? This is a physical question. We
confine ourselves to the principal engineering material, mild steel
with 0-1 per cent carbon, normalized at about 900° C. so that it is as
ductile as possible. All other malleable metals and, in general, all
plastic materials, behave more or less similarly. Let us consider the
elongation curve for a test bar (fig. 4). The elastic elongatjon €, may
be neglected as it does not even amount to 35 * of the plastic elongation

* Fritsche: “ Die Tragfahigkeit von Balken aus Stahl mit Berﬁcksxchtlgungdel
plaetischen Verformungsvermogens *’, Der Bauingenieur, 1930, p. 852.
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¢,- In considering the total extension the coefficient of elasticity may
be taken as E = «.* Moreover, in the problems we have to solve, the
elastic deformations are not considered.

Can we explain the fluctuations in the stress-strain diagram, drawn
in ordinary and extended scale in fig. 4, after the upper yield lLimit
has been attained? We shall say more about this in the last chapters,
but here we give an incomplete explanation.

In cooling after annealing, innumerable ferrite crystals grow from
nuclei differently orientated. The variation of some constants of the
steel, such as resistance to shearing in different directions with respect

Sn
5.
S, R
Re
S,
g g
£ ¢,
(a) )

Fig. 4.—Stress-strain curve for a tensile test on mild steel, the stress
s, referred to the initial cross-section. In () the horizontal scale is
increased to 7 times that in (a).

to the crystal axis, plays a part, but we think that the small jumps
in the curve are principally due to the gradual breakdown of the brittle
skeleton of either cementite or ferrous oxide of iron which binds the
crystallites. The great ductility and small resistance to displacement
of the atoms in the crystals ceases to hold after a certain elongation.
By further deformation the metal becomes.stronger. Fig. 5, in which
stress is calculated for the actual contracted cross-section, shows to
what degree iron can be strengthened by stretching.t

In our theory of plasticity we accept that considerable change of
form occurs at constant stress. For red-hot iron, some modern plastics,

*F. Korber and A. Eischinger: * Forminderungswiderstand kaltgerechten
?;:3111& ”, Mitt K. Wilkelm Inst. Evsenforschung, Bd. 26, Lfg. 3, fig. 450, Diisseldorf,

This is an experimental proof of the validity of our assumptions. It is also shown
that the resistance to shearing in metals is not influenced by the normal stresses.

t P. Ludwik: “Die Bedeutung des Gleit- und Reiswiderstandes fiir die Werkstoff-
prifung ”, Zeitschr. der Ver. d. Ing., 1927, p. 1532.
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and doughy or unguinous matter, this is a good basis for computation,
and in the case of annealed mild steel it may be applied for moderate
deformation. We thus build our theory of plasticity on the idealized
stress-strain diagram represented by fig. 6. The criterion for plasticity
in two-dimensional problems can then be formulated by saying that -
during plastic flow the difference between the two principal stresses remains
constant. According to the stress circle (fig. 2) this difference is equal
to the limit of elasticity or yield limit, and twice the maximum shear-

ing stress, which we call tangential
S yield stress.

We shall find that for three-
dimensional stress, the criterion of
plasticity is slightly different, but
for plane problems we may simply
write s; — s, = o, in which s, is the
yield limit, or, formulated other-
wise, the maximum shearing stress
k = s,/2, in which the constant k&
represents the yield tangential stress.
This is the criterion given by H.
Tresca as the result of his famous
experimental work * and accepted
by B. cde. St. Venant{ for the
mathematical solution of problems

Strain  of plasticity. Neglecting the elastic

Fig. 5.—Stress-strain curve fora tensile  strain e, we only use the horizontal

e e sress s, referred 10 bart of fig. 6. A clearer condition
of plastlclty is inconceivable. -

The s1mplest problem of plasticity is shown in fig. 7. The plastic
materia] is compressed between perfectly lubricated parallel planes.

One must appreciate, that at any point s, =0, s, =8;, §,=0 (s, =yield

stress), the condition of plasticity is satisfied and that Airy’s function is

F == 80%2.

During plastic flow the volume is constant. Each element becomes
shorter in the direction of the smallest principal stress (when pressure
is called negative stress) and longer in the direction of the greatest
principal stress. In fig. 7 lines of maximum shearing stress are indi-

* “ Mémoires sur P’écoulement des corps solides”, Mémoires de I'Académie des
Sciences, XX, 1872, p. 281.

t Comptes rendues, 1870-1.
: (6266)
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cated. Often these lines are confused with slip lines. The inclination of
these lines comes within 10° of that of the lines or planes which some-
times appear on the surface of cold-drawn mild steel, and may be
observed as dull lines on a polished surface, or as flaws in the scale or
in specially brittle lacquers or varnishes covering the metal. These
lines, however, are due to a sudden drop from upper to lower yielding
stress and are distinct from the theoretical lines of maximum shearing
stress. We shall devote a special chapter (XVIII) to their meaning.
It will be of little use going on with the study of this manual if the
reader has no opportunity of making some simple tests on plastic
materials. By etching (after heat treatment) of polished sections of

S
i
|
i
|
H _
! £ AR
Fig. 6.—Idealized stress-strain Fig. 7.—Plastic mass com-
curve for plastic material. The pressed between perfectly lub-
horizontal line replaces the curve ricated parallel planes. The
of the former diagrams. trajectories of maximum shear

stress are drawn.

cold-strained mild steel test pieces with Fry’s liquid (a solution of
"copper chloride and ammonium chloride) the regions of plastic flow
become visible. .

In the crystal lattice the iron atoms are bound by atomic forces.
Much smaller cohesive forces have to be overcome for an internal
change in the ranks of atoms in the crystallites than for their separa-
tion. Indeed, in our study of theoretical plasticity, we consider the
cohesive forces as invincible and only take into account the shear
stresses. As soon as these attain their critical value the particles leave
their former ranks and take up new positions. All the energy accumu-
lated to overcome the atomic forces of cohesion is available as energy
of oscillation when the atom has jumped to its new position and is
dissipated as heat.

4. It has become a practice to calculate the dimensions of steel
‘beams according to the theory of plasticity, and there is usually no
objection to this custom. '

2 (G 255)
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If we adhere to Navier’s hypothesis and assume that plane sections
normal to the neutral axis remain plane after bending (which is generally
acce pt.ed), the bending stress in all parts of the section where the yield
strain is exceeded will be s, =s,. The distribution of the stress as
a function of the distance to the neutral layer may be represented by a
broken line identical to the stress-strain line of the tensile test (fig. 8).
If we call the width of an element of the section b, and z the distance to

Fig. 8.—Plastic yield in a bent beam

the neutral line, the equilibrium of the moment of normal stresses and
the bending moment gives, as the yield limit is attained on the whole
section,

M =s, [ beds + sof_oebzdz = 5(S 4 Sy)s

where S; and S, represent the static moments of the parts of the sec-
tion above and below the neutral line, whose thicknesses are ¢, and e,
respectively. This is the bending moment which the beam withstands,
without taking into account any reinforcement by cold-bending. By
adopting a factor of safety, the beam is actually loaded to a fraction
of the critical bending moment.

Formerly beams were computed by the formula M = s, %, in which

I represents the moment of inertia of the section for the neutral line,

and a safety factor was taken for the stress in the outer fibres. For -

the rectangular section the difference betwee: g = b% nd 8; 48, = !’-’—‘-
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is 50 per cent. For rolled I-beams the difference is at the most 16 per
cent, and for a reason to be mentioned in Chap. XXI, the former method
of computation was too safe.*

. In fig. 8 we have also drawn the lines of maximum shearing stress,
which make angles of 45° with the direction in which the fibres are
stressed.

The application of this part of the theory of plasticity has become
a special branch in the calculation of steel structures. We shall not
treat it in this book. The reader is referred to other sources.}

* To understand the validity of this method of calculation of beams, see L’Hermite,
L’Expérience et les Théories Nouvelles en Résistance des Matériauz, p. 97, &c. (Flexion).

+ Fritsche: “‘ Arbeitsgesetze bei elastischer Balkenbiegung ”, Zeitschr. f. Angew,
Math. und. Mech., 1931-2.

Kist: “ La deformation en palier de l’acier substitué & la loi de Hooke comme
base de calcul de la résistance des ponts et charpentes métalliques ”, L’Oss. Métallique,
1933, pp. 176-88.

F. Bleich: “ La ductibilité de l’acier, son application au dimensionnement des
systémes hyperstatiques ’, L’0ss. Métallique, 1934.

Colonnetti: ‘“Les deformations plastiques et le dimensionnement des systémes
hyperstatiques *, L'Oss. Metall., 7 (1938), 331-5, 483-8; 8 (1939), 147-50.

Maier-Leibniz: “ Versuche zur weiteren Klirung der Frage der tatsichlichen
Tragfihigkeit durchlaufender Triiger aus Baustahl ”, Stahlbau (1939), pp. 153-60.

Swift: ‘ Plastic flow in metals; a survey of the present position ”, The Metal
Industry, Vol. LVI (1940), pp. 127-30, 149-52, 173-5.



CHAPTER II
The Thick-walled Cylinder

1. A good example of a problem in plasticity is the computation
of the strength of thick hollow cylinders under internal pressure. The
solution has been known for more than thirty years.*

The equilibrium of the wall between the radii @ and 7 indicated in
fig. 9 is expressed by

T
PI — 8,1 -I-I sydr = 0,
a
and after differentiation

Fig. 9.—Stress equilibrium in the wall of a cylinder

For reasons of symmetry, the radial and tangential stresses are prin-
cipal stresses, and their difference is 2k = s,, in which % is the critical
shearing stress and s, the yield stress.
—-
o
and s, = 2k log,r 4+ C.

=2k

*F. van Iterson: “The strength of thick hollow cylinders”, Engineering, 5th
Jan., 1912, p. 22,
C. A, Smith: Engineering, 5th March, 1909 P. 327, was verynearthesame solution.
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When there is no tension at the outer surface of the cylinder and the
wall is plastified throughout, the constant C may be determined and
the stresses in the wall at 7 are
r
zo
The internal pressure which makes the wall flow throughout its thick-
ness is

s, = 2k log,

b
= —2k log, -.
P 2 og, -

We must make an important comment on the behaviour of mild-
steel cylinders. When the pressure is increased to the point where the
yield limit is exceeded throughout the whole wall, the cylinder expands
and the steel becomes stronger. -Along the line where the cylinder
will burst, the wall contracts, and if the ratio b/a is not too great the
wall behaves like a tensile bar of the same material. It may be expected
that the formula will hold right up to the bursting pressure

b
= Rlog, >
P log, p

in which R is the tensile strength of the steel.

The question as to whether determinations of strength based on the
condition of plasticity are confirmed by experiment is so important
that a table of the results of very careful tests is inserted here.*

BURSTING PRESSURE OF THICK CYLINDERS

Tensile strength of .
Ratio of external the il salouned o oot pbioned
toai'l:f::naixmsxl‘l:s Bursting pressure from formula from ordinary
bla pinkgjom® | p_p:log,® | " test bars.
in kg./em.? ¢ £ in kg.fem.*
1-35 1187 3950 3820
153 1628 3830 3820
1-58 1745 3825 3820
1-67 1910 3725 4140
1-67 1920 3750 4140
1471 2120 3950 4140
177 2165 3790 3820
1-79 2140 3680 3820
1-79 2280 3920 3820
Average — 3820 3936

* Cook and Robertson: * The strength of thick hollow cylinders under internal

pressure ”’, Engineering, 16th Dec., 1911, p. 786.
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When calculating the dimensions of cylinders with this formula we
may employ the same factor of safety as is used in applying the theory

of elasticity.
In polar co-ordinates the stresses derived from Airy’s stress function
Fir, ) are 12F | 12F
R ¥ vy
8‘ = a_z_F._,
or®

s__i(la!
T or\rog/

Fig. 10.~Maximum shear-stress trajectories in a
partly plastified cylinder wall

In our case, as the stresses only depend on 7, the stress function

2 72
Fr)=2k({Z10g, T —T).
() 2k(2 log, 3 4)

is

‘When the pressure in the cylinder is gradually increased the steel
gives way at the inner side when

2 — a? 2 — a?
c? Xk=— 2c2
Here a and ¢ are the inner and outer radii of the cylinder (fig. 10).

p=— Xso-
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The negative sign indicates that we are dealing with pressure. We
can calculate for a given pressure the circle limiting the plastified and
elastically strained regions in the wall. To understand the last and the
following formula we must combine the stress calculation according
to the theory of elasticity given by Lamé with that according to the
theory of plasticity. The elastic limit lies where the difference between
the two principal stresses as given by Lamé’s theory is

85— 8, =2k =1,
in which s, is the yield limit found by a tensile test. When the pressure
is increased, the plastic region extends. It reaches the radius b when

b 2 — b2
p———2klog,‘—1—k ot

The trajectories giving the directions of the principal stresses form
a network of radii and circles. The trajectories for the maximum shear
stresses form a network of logarithmic spirals crossing the ‘trajectories
of principal stress at angles of 45°, and this is true both in the region
of elastic deformation and in the region of plastic deformation. These
lines have the peculiarity that the shearing stress is constant along a
trajectory and attains the value s, = k, the yield shear stress. We
shall see that in the plastic region these lines are of special significance
and therefore are drawn in our figure.

But to avoid misunderstanding we emphasize that these trajec-
tories, here logarithmic spirals, must not be confounded with slip
lines. The material of the wall is extended tangentially, and compressed
radially. When the wall is stretched the constituent particles change
neighbours, and take up new positions. In plastic flow there is no
question of slip lines or slip planes.

2. The technical applications of plastic flow in cylinder walls are
numerous. We mention the construction of guns by shrinking tubes
on each other; the assembling of engine parts such as crankshafts;
the fixing of rail wagon wheels on their axles, drilled 1g5s of the
diameter too small, either by pressure or shrinking, An interesting
instance is the sinking of mine shafts by congelation of the soil, on
which subject many experiments have been made and much has been
written.*

* Les Cuvelages, par Lucien Deno&l (Paris, 1915), p. 165, &c., “ Le procédé de
fongage par congélation .
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In fig. 11 we give a photograph of a cylinder of annealed mild steel,
burst by internal pressure. This figure really belongs to a subsequent
chapter, but may also serve as an illus-
tration here. The ends of the tube are
reinforced. We may assume that in the
thinner part flat sections remain flat after
plastification. This certainly is true for
the middle section.

The question arises whether it makes
a difference in the bursting pressure if
the flanges are kept at a constant dis-
" tance apart, whether the oil pressure is
exerted by a well-fitting plunger so that
the mean axial tension is zero, or whether
the oil enters through a side hole in the
flanges in such a way that the wall is
submitted to axial tension. We must
defer the examination of these problems
until the criterion of three-dimensional
plasticity is treated. Here we can only
assert that it makes no difference to the
bursting pressure. The axial tension is
cither equal to the greatest or to the
smallest principal stress, s, =s; or
sy =8, and is distributed in such a way
that the axial force is kept in equili-
brium by the axial tensions. It will be

Fig. 11—Ruptured thick-wallea  difticult for the reader to believe that

cylinder (bore of square section)  in a closed cy]inder the axial tension at

a certain radius ]umps from pressure to

tension. Such things only happen in plastified regions and it is hard
to depart from conceptions ingrained by the study of elasticity.




CHAPTER III

The Theorem of Hencky and the
Plastic Sector

1. The solution of plane or two-dimensional problems of plasticity
is often facilitated by the application of Hencky’s theorem, which
may be formulated :

Proceeding along a trajectory of yield shearing stress, both principal
stresses s, and sy, and the normal stress s,, increase with 2k, where k =
yield shearing stress and ¢ the angle in radians through which the tangent
and the normal to the trajectory have turned.

gk
) 'ss= % E
<—Sn 4 ‘
k—"— S'-__»i

Fig. 12.~Inference of Hencky’s theorem for the
plastic sector

Before proving this theorem in the general case we shall take it
for the plastic sector. In the problems of plasticity with which the
engineer has to deal in his daily practice, the plastic sector so often
plays the essential part that the next chapter will be devoted wholly
to its applications.

Keeping in mind that in many instances a plastic sector occurs,
it is often possible to guess the shear-stress trajectories. The next
thing to do is to calculate the stresses along the contours of the plastic
region and to test if these can be brought into agreement with the
pressure exerted ou the free surface. The problems in the next chapter
are all treated in this way.

" A part of the plastic sector is shown in fig. 12. The radii and circles.

15
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are lines of maximum or yield shearing stress s, = k. It is easy to
give in polar co-ordinates the normal stress s,,, and the principal stresses
8, and s, satisfying the conditions of internal equilibrium. The element
rdgdr indicated in the figure must be in equilibrium. We take the
moments of the stresses acting on the sides about the centre of the

sector:
. o(sr2dd) 0s,,
— dr = 7 derdr.
0s
n — 92s. = 2k,
Thus % S, 3
and Sp = C + 2k,

which proves the theorem.
The stress circle shows

=8, +k =C+ 2k +k,
s,=8,—k =C+ 2k —k,
8 — 8y =2k =3,.

It is clear that the planes of maximum shearing stress are perpendicular
to each other. The yield shearing-stress lines form a net of orthogonal
trajectories. In the plastic sector they are radii and circles. The tra-
jectories of principal stresses form the net of logarithmic spirals indi-
cated by dotted lines.

When both systems of shear-stress trajectories consist of curved
lines, the proof of Hencky’s theorem is more complicated. We know
that the shearing stress s, for the four sides of the element indicated
in fig. 13 reaches the yield stress s, =k, and that the accompanying
normal stress on the conjugate perpendicular planes is the same. The
components of the forces on the sides acting in the direction of 7,
balance, hence

0
3 (8a71dP) dry — $ydrydif — 5,7, dipdd — s,ridddif = 0,
1

o
d .. s(rdpdp + dryd) = s,(dr,dp — rydipdd) + 37 ryd dr,,
The figure shows  r,df = dry, and dry, = r,d¢.

Therefore 2sr dpdy = ?fl‘ r1d¢dr1

or ds, = 2kd¢,
8,, = 01 + 2k¢o
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In the same way we find
¢ 8,, = 02 + 2k¢.

Let us apply Hencky’s theorem to calculate the stresses in the
wall of the thick cylinder, assuming that the logarithmic spirals at 45°
to the radii and circles are the shearing-stress trajectories. They are
given by :

r=ae® or ¢ = log,g.

Hencky’s theorem prescribes for the point 7

8y = C -+ 24,
r
hence 8, = C + 2klog, -.
a
S,j
S,
s,‘.f‘g%d"l’ =
s &
EX
° 5r5¢ e |
5 I\
> ot
b s
g UL 1 Tl 13,
Fig. 13.—The equilibrium of an Fig. 14.—~The paradox of the plastic
element enclosed between four trajec- - sector )
tories of maximum shear stress illus-
trates the theory of Hencky.

The solution of our problem then is

s, =0C+ 2klog,£»—]— k,

s,=0+2klog,£—k,

8 — 8, = 2F.

2. Often the engineer has to deal with plane problems in which
the plastic sector extends right up to the centre, and he is then con-
fronted with an absurdity.

In fig. 14 we have indicated that along the trajectories, radii and
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circles, the shear stress invariably is s, = k; that the' corresponding
normal stress s, remains constant along each radius but increases
with 2k when we proceed along a circle. But near the centre we en-
counter first the absurdity, that on one of two perpendicular planes,
the shearing stress s, is directed both towards and away from the line
of intersection. (See Chap. I, § 1, 1 and 2.) Next we are puzzled by the
absurdity that, although s, as shown by the stress circle must be
equal on the two sides, here the difference of s, on these two planes
amounts to 2kd.

We often find such paradoxes at singular points where the solution
no longer holds. The difficulty is overcome by imagining a small
cylinder with a perfectly rough surface at the centre, as indicated in
fig. 14. When it is clear that then any paradox has disappeared, we
may let the edge shrink to less than a hair’s thickness. But still the
situation in the centre remains unstable. It sometimes happens that
starting from the singular point the regime of plastic flow suddenly
changes. This occurs when by such a transition the material may flow
under less pressure.

Airy’s stress function for the plastic sector is

F=h%+0;



CHAPTER IV

The Solution of Plasticity Problems
by means of the Plastic Sector

1. In general, problems on plasticity are easier to solve than
the corresponding problems on elasticity and they are different in
this respect, that the stress trajectories need not be continuous.
Several patterns or networks of shear stress trajectories may be fitted
together, provided that along the boundaries of the different patterns
the tangents to the lines coincide.

As networks of trajectories in different regions the simplest solu-
tions, e.g. straight lines, radii and circles, logarithmic spirals and
cycloids, have to be tried first. The different patterns must join like the
pieces of a jigsaw puzzle. This difference compared with stress trajec-
tories in problems of elasticity results from the fact that the condition
of plasticity only prescribes that along the trajectories s, =%. No
continuity in deformation is needed. Plasticity gives much freedom in
displacement, as we shall see when dealing with three-dimensional
stress. For the solution of plane stress problems the equations of
internal equilibrium and the condition of plasticity are adequate.

We start with the classical problem solved by Prandtl * from which
the theory of plasticity has been evolved.

The resistance to yielding under a pressure p exerted on the blunt
edge of the wedge of indefinite length represented in fig. 15 is to be
determined. The plastified part of the section, when the critical pres-

“sure p has been reached, may be divided into five regions. One isosceles
triangle ABC under the loaded portion, which is pressed downward
into the plastic mass, two similar triangles ADE pressed out of flanks
connected to the middle region by two plastic sectors ACD.

The reader must be well aware that wherever a flat surface is
evenly loaded until there is subsidence of the underlying material, a
plastic region of right-angled triangular section originates. This is the
only figure which may be filled by orthogonal trajectories inclined at 45°

* ¢ Ueber die Eindringungsfestigkeit (Harte) plastischer Baustoffe und die Festig-

keit von Scheiben ”, Zeitschr. angew. Meck., 1921, p. 15.
19
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to the direction of loading. It also holds true for the unloaded flanks.

The lines of demarcation AC, BC, AD and DE are also lines of
yield shearing stress. Within the right-angled triangles, in the regions
filled with straight lines, the stresses are the same at all the points, as
is the case in fig. 7, which indeed may be developed from fig. 15 by
taking the plastic sectors « = 0. Only in the plastic sectors do the
stresses increase. Along the flanks AE they are s, =2k and s, =0
at the moment of plastic yielding. This time we omit the negative
sign, as we are dealing with pressure.

WAL

Fig. 15.—Yield pressure on the upper side of a blunt
wedge: at the right maximum shear-stress trajectories,
at the left principal stress trajectories.

By drawing the stress circle for the points of ADE, it is clear that
along the line AD we have the normal stress s, = & and the shearing
stress s, = k. In the plastic sectors s, increases and reaches

8, =k + 2k
along the line AC. On the upper surface we get the pressure
p =8 =21+ a),
and the other principal stress in the region ABC is
8y = 2ko.

We repeat, the resistance to plastic flow of the blunt wedge with
angle 2« is
: ©p=2k(1 4 a) = so(1 + a).
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Mild steel is made stronger by cold deformation. Supposing that the
theory of plasticity holds true up to breakdown, then the ultimate
resistance is v

p=R(l+a),

where R is the resistance to compression. This decreases to p = R
in the case represented in fig. 7.

2. When the angle of the plastic sector becomes « = /2, we have
to deal with the problem of the loaded strip on the flat surface of a
plastic body, for instance, a plate of lead or mild steel of sufficient
thickness (at least 4/2a, if a is half the width of the loaded strip).

|

Fig. 16.—Penetration of a triangular prism under constant
pressure along a strip of the surface of plastic material

The maximum load to be applied to a strip on the surface of a
plastic body is, as may be calculated with the formula given in § 1, for
fig. 16,

p= (14 w/2)2k = (1 + =/2)sy, where s, = yielding stress,

or p=(1+=/2)R

if the strengthening by cold-working is taken into account.

The applicability of the formula has been proved experimentally
by A. Nadai.* But the examination of the exteut of the plastic region
by Fry’s method has shown an apparent inconsistency.

Before the plastic matter bulges on the surface at both sides of the
loaded strip the triangular wedge is pushed down into the underlying
layers which give way partly by elastic and partly by plastic defor-
mation, until they offer a resistance

P = 2:57s,.
* ¢ Versuche iiber die plastischen Forminderungen von keilférmigen Kérpern aus

Flusseisen ”, A. Nadai, Zeitschr. fir angewandte Mathematik und Mechanik, 1921,
p. 15. ’
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A region with rootlike spurs is visible on the etched section, but these
supplementary plastified streaks do not affect the ultimate resistance
to plastic flow. The outer lines of demarcation at 45° agree exactly
with the boundaries indicated in fig. 16. -

3. The appearance of the plastic sector will often suffice to give
an insight into the shape and extent of the regions of plastic defor-
mation, but some practice is needed in plotting the isosceles right-
angled triangles and the plastic sectors. We shall give some examples.

HAHHP

Fig. 17.—Plastic flow at the sides of a perfectly
lubricated knife-blade

Fig. 17 represents the regions of plastic flow at both sides of the
indentation made by a perfectly lubricated knife-blade. The pattern
can be completed by analogy with fig. 16 and the pressure at yielding

must be P = 2k(1 + a) = so(1 + ).

WHILP

Fig. 18.—Plastic flow at the sides of.a knife-blade whose
surfaces are as rough as those of a file

If, as shown in fig. 18, the wedge surfaces are perfectly rough, so that
-we have to deal with yield shearing stresses, then k& = so/2 along the

surfaces and the angle of the plastic sector becomes 45° + «. The

pressure needed to push the knife into the plastic mass amounts to

p=k1+ 7/2 4 2« + cotx).
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4. The processes of cutting metal, turning, planing, milling, drilling,
acquire a physical basis by application of the plastic sector. In
fig. 19 the plastic region is indicated for the edge of a block of iron
uniformly loaded to the yield point. Perhaps it
might be expected that the edge would be pushed
off as a whole at an angle of 45° but a glance
at fig. 4 makes it clear that the strengthening
of the steel causes the plastification of the entire
edge.

As an exercise the student may draw the tra-
jectories for maximum shear in the case where
the corner angle is larger or smaller than 90°.
The latter case needs practice with beut bars of g, 10— rage of a
decreasing section as shown in fig. 8.* For the  blockof metal uniformly

. loaded until yield occurs.
case represented in fig. 19 the pressure needed to  The maximum shear-

. t: trajectori
remove the metal is vy, | yectories are

p=25=R,

where ¢, is the shearing strength and R the hypothetical crushing
strength.
The simplest representation of metal-cutting is obtained by

Fig. 20.—~Metal-cutting with tool friction. The stress circle and resultant pressure
are indicated for the surface of the tool

imagining the pressure p to be exerted by a perfectly lubricated tool.
The chips then creep along the front surface of the tool. But an instance
in better agreement with practice is shown in fig. 20 for a cutting edge
* of 15° and sufficient friction between chip and tool. The angle AOB

* As this problem may be too difficult for some readers we give the solution in § 8
of the penultimate chapter. - :
3 (G 256)
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of the plastic section as shown in the figure is 30°. On the pushing
plane of the tool act '

(i) the tangential stress s, = F,
(i) the normal stress s, = k(1 4 2. =/6) = 2-05k.
(iii) and the principal stress s, = 3-05k.

We have drawn the stress circle, so that the resultant stress p on the
tool may also be read iu the figure. It will be clear that by roughing
with high-speed tools the angle B remains less than the angle of fric-
tion. The force exerted by the tool may be resolved into a component
in the forward direction and another in the direction of the feed. If
we calculate these components with 2k = R, the tensile strength, we
find no agreement with test results; but if we take into account that,
at the blue tempering-colour of the chips, the resistance is 30 per cent
higher than at normal temperature, and that work-hardening to which
the steel is subjected further raises the resistance, we may be very
satisfied with the agreement.* In fact, computing backwards, we find
R =5 kg./mm.? for steel of a tensile strength of 3740 kg./mm.2

Once more we look at the isosceles right-angled triangle of fig. 20.
The vertical principal stress is zero, and the horizontal s = 2k = R.
The material is compressed to such a prodigious extent that it flows
along the tool.

The theory suggests some remarks that may be of practical use.

1. With blunt tools frictional energy is converted into heat, in
addition to the energy needed for plastic deformation.

2. The resistance of steel is a maximum at about 220° C. By cool-
ing and lubricating the working face of the tool, the energy used in
cutting metals is somewhat reduced. If the lubrication could be made
perfect an appreciable decrease in energy consumption might be
attained.

;5Werkstoﬁbﬁcher 61 K. Krekeler: Die Zerspanbarkeit der Werkstoffe; see graph,
P We see that the forward component is H = 2700 kg. for a chip of 30 mm.? section.
This gives a pressure component of 90 kg./mm.? Our fig. 20 shows that this pressure
is 24 k. Hence R = 2k = 75 kg./mm.2 for mild steel of 37-40 kg./mm.? tensile strength.
But according to Herbert and Kronenberg, Die Hirte der Werkstoffe Maschinenbau,
1927, p. 993, fig. 6, who measured the increase of hardness near the edge of the tool by
the Brinell test, we see that by work-hardening the hardness increases 70 per cent-
e
szc:l}u% 5 o ,(1931). rspanbildung im Eisen ’, Verein - 1 .mmeurc
2 ) ryndlagen}a % Zdemu’n%;tig’ grg;stof und ScW , DBerichte Wber
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3. If the cutting angle 6, which we took as 15° is taken larger,
the force and energy for cutting steel decreases, but we only recom-
mend this practice for soft materials.

4. At the same cutting angle, coefficient of friction and temper-
ature, the energy consumption per em.3 of chips will be the same for
turning, drilling and milling. But if cooling and lubricating are best
in milling, then this method of cutting metals has some advantages.

The energy consumed in the deformation of plastic materials is
converted into heat. The first determination of the mechanical equiva-
lent of heat was made by Count Rumford in the eighteenth century
in a test on drilling guns,* and not long ago Professor N. N. Saurin
of the Skoda Works carried out a similar experiment on turning steel.t

* Phil. Transactions, Vol. XVIII, p. 283.
+ Machinery, Vol. 53, 23rd March, 1939, p. 802,



CHAPTER V

Plastic Deformation at Sharp Grooves

In a subsequent chapter we shall deal with cylindrical test pieces
provided with a circumferential groove. This chapter is confined to
two-dimensional problems. By this we do not mean notched strips or
bars. If these are submitted to a tensile test, constriction soon becomes
visible near the notches.*

Plane problems in the theory of plasticity contrast with those in
the theory of elasticity in this respect, that it is essential that any
deformation in the third dimension be prevented. For instance, the
strips under examination must be grooved on the broad side.

1. We now consider a cylinder with a square boring, submitted to
internal pressure. The calculation of the stresses according to the theory
of elasticity reveals excessive stresses near the sharp corners, but the
ductility of the steel prevents any extreme increase of stresses.

It has been accepted generally that the stresses are confined to the
tensile yield limit. We shall see that this limit may be far surpassed.

For solving the problem of plasticity with the notation indicated
in fig. 21 at the right, we have to find the solution of two simultaneous
partial differential equations
, 83,, + as,

)

0s, , 0s,
ERi

which fulfil the condition of plasticity,

8, — __
( 9 )+8,— )

in which & stands for the yield shear stress. In polar co-ordinates the
equations are (fig. 21 at the left),

08,
o

* Soe the fine photograph (fig. 12), “Auftreten der ersten Fliesslinien bei Flachstdben
lgxt Spitzkerben ”, Thum und Wunderlich, Forochuny, Vol. 3 (1932), p. 267.

PP Bt o —a) =0,
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Bs, os,
8 + 2
o6

—_ 2
(8,_—2—33) + §2 = kz.

For an infinitely long cylinder we have to accept that the stresses
along any radius remain constant and are a function of ¢ only. It is
a difficult task to find a simple continuous distribution of stress for the
whole region round the corner, resisting the pressure on the sides and
providing constant normal stress in the line of symmetry. But as
soon as the condition of continuity is given up and it is accepted that

+r

1 sl
2
3
)7 P N
/ \
Fig. 21.—Stresses near the Fig. 22.—Maximum shear-stress
re-entrant angle m plastic trajectories near the corners of a

material. hole with square section.

the plastic region may be divided into contiguous zones, the problem is
easily solved, not only for the square hole but for any re-entrant corner.

Just as in the last chapter, we look for a plastic sector and imme-
diately find the shear-stress lines drawn in fig. 22. We note three
zones. In 1 and 3 the strésses are the same at all points. In 2 they
remain constant along a radius and the principal and normal stresses
increase proportionally with ¢. :

In the line of symmetry the main principal stress is

8 = k(1 + m/4) —
when the internal pressure is p, and
8 = + 2k(1 + w/4)

when the body (of any shape) with a square bormg is oompressed or
drawn at the periphery.
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The main stress in the plastified region in this case is independent
of the forces on the surface and amounts to

which is 78} per cent more

& = 1'78580,
than the yield stress s,.

" When a structure with a square hole is lightly loaded, plastic flow

S
N

Fig. 23.—Beginning of plas-
tification at the corners of a
square hole,

occurs in minute regions near the corners.
These regions extend as the load is in-
creased.

At the left bottom corner of fig. 23 we
have shown the shear-stress lines for a
rounded corner. These trajectories are
orthogonal logarithmic spirals with the
centre of the circle as origin. If the ex-
ternal or internal pressure be raised until
the plastic zones are fully developed, the
pattern shown in fig. 24 should be obtained.
Looking at a sector between two diagonals,

we recognize the resemblance to fig. 15 for « = 45°. The difference in
the pressure p on the side AB and the principal stress normal to AE
is responsible for the plastification. The plastic regions are bounded

Fig. 24.~—Fully developed plastic regions
around a square hole

by the line CDE. Beyond these, incalculable elastic deformations
occur, due to the known pressures exerted along these lines. :
An extension of the problem requiring some advanced lmowledge

isygiven in Chap. XXIII 4. .
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2. We must now calculate the bursting pressure for a thick-walled
cylinder with a square hole (fig. 25).

If the stress distribution which we have just computed holds up

to the end, i.e. if

: 8 = 1-7853) —

a cylinder with a square boring would withstand a much higher pres-
sure than a cylinder with a round boring with the same smallest wall

Fig. 25—Regions of plastification in the wall of a thick
cylinder with a boring of square section
Above: shear-stress traj ies leading to rup
Below: beginning of plastification.

thickness. (Note the final remark of Chap. III.) Plastic regions as
indicated at the lower side of the figure start as soon as some pressure
is put on the test cylinder. (They may be made visible by sawing the
cylinder, polishing and etching the section.) But as the pressure becomes
greater there comes a time when another solution of the plasticity-
problem makes the metal yield to smaller pressures. Nature chooses
this solution. It is the solution indicated in the upper half of the
figure, that of the logarithmic spirals, starting from the outer wall
with the centre as their origin, which at length prevails. With the
notation of fig. 25, cylinder diameter d, diagonal of the boring a, the
burstmg pressure will be

Pe= 2Iclog,— = Rlog. e
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in which k is the radius of the stress circle, the maximum shear stress
after work-hardening, and R the tensile strength.

In this way we find the same formula for the ultimate strength as
with the cylinder with a round hole and the same least wall thickness.
Some tests were made, in order to test this formula.* The agreement
was not so good as found for the cylinders with a cylindrical boring for
which the test results are given in the table in Chap. II (p. 11).

Here are the results of our tests made with very homogeneous
mild steel of R = 40 kg./mm.? tensile strength.

RESULTS OF TESTS ON THICK-WALLED CYLINDERS
WITH A BORING OF SQUARE SECTION

External diameter d, Bussti tTtl!lr;illle .
diagonal of square ursting pres- . stre; of
hole a and their ratio Bursting | sure p calcu- thl:a;:gs;fre the steel cal-
(mm.) pressure p, lated from found by test culated from
in kg. per | the formnla(.l and by com- the formulz:i
4 . d 8q. cm. p=R log, 2 putation Pe!P R~ pe,’loge 2
a in kg./mm.2
20 14 | 143 1450 1440 1 40 -
40 14 | 286 4700 4200 1-12 45
55 14 | 393 7900 5473 1-44 57-5
70 14 | 5 8750 6438 1-25 50

Fig. 11 is a photograph of the cylinder with 55 mm. outer diameter.

The divergence between theory and experiment is instructive and
must be discussed.

1. In Chap. II, § 1, we have already mentioned that the wall be-
haves like a test bar provided the ratio b/a is not too large. The tests
of Cook and Robertson gave perfect agreement with theory because
they bave not exceeded the value 1-79. Prof. Michels of the High
Pressure Laboratory at Amsterdam repeated these tests and found
that with a larger value of b/a the bursting pressure rose above that
given by the formula. For the same values of d/a as were investigated
by Cook and Robertson, the agreement of experiment with theory was
perfect.

2. The disagreement between formula and experiment for b/a and

* We are much indebted to Ir. Tummers of the Central Research Station of the .

State Mines and to Prof. Michels of the Van der Waals’ Laboratories at Amsterdam for
theje assistance in making these difficult tests.
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dfa>1-79 is due to prevention of contraction. Although even at
small ratio values the contraction is somewhat less than for test bars,
cylinders with a not very thick wall bulge considerably before they
burst. The pressure then acts on a larger diameter which has a com-
pensating effect.

3. An elementary square in the plastic mass orientated according
to the principal stresses with sides @ extends Aa in the direction of
the largest stress and becomes Aa shorter in the direction of the
smallest stress. We call

the specific deformation. If we investigate the value of the specific
deformation near the centre of the plastic sector, excessive values for
o are found, which iron at normal ,
temperature cannot stand. The wall WAL

is torn in a corner, and the thicker o
the wall the sooner does the tear = b—»E
occur. The oil pressure then acts in =] —
the cleft, and this explains why at the = =
greater value of d/a, as given by the —P E
last line of the table, the bursting =J o
pressure again drops to the value given :—-E E
by the formula. = pa

le—

2\

8. In the lower half of fig. 26 we H”HH“”””H'
have drawn the beginning of Plastic i s ofs e ot s oo
flow for a tube of square section whose ;i":ge"q“"'e boring placed as in the
square boring is placed athwart, and Below: initial plastification.
in the upper half we have indicated Above: ultimate plastification.
the flow-region which soon predomi-
nates and is maintained until rupture occurs. The bursting pressure

is calculated from the formula
Pe=—1— R,

because in plastic deformation stress concentration remains out of
question. The plastic zone extends throughout the wall when

b—a

Sos

p:
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no matter whether the pressure p is exerted inside or outside the tube.

In order to assist the reader inexperienced in the use of the plastic
sector we give some other instances of its application. In a tube of
square section with a symmetrical boring, plastification starts at the
corners as indicated in fig. 27. But when the internal pressure is in-
creased, the regime of plastic deformation changes, and another system
of stress distribution offering less resistance to plastic flow throughout

v
> % S

g
<

LD /N ~
t ‘

Fig. 27.—Tube of square section Fig. 28.—Tube of square section
with idi boring, loaded by loaded by internal pressure until
internal pressure to the point of advanced plastic flow occurs.
plastification.

the wall sets in, which holds until rupture occurs. This regime is indi-
cated in fig. 28 and leads to the formula for bursting pressure

t—s
.= R.
P 8

. The wall begins to give way at the inner or outer pressure

t—s
8

P= So»
but the pressure rises due to work-hardening.

We may imagine a string of clay enclosed in the indicated manner
and externally compressed until plasticity occurs. The principal
stress in the plane of symmetry at the top of the triangular boring
shown in fig. 29 is ’ .

8= 2K(L + 7/3).

This is not the only solution which fulfils the mathematical equations
of,our problem. If we have a cylinder with a triangular boring, we
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may draw at each corner a region enclosed between two logarithmic
spirals and filled with identical spirals all having the centre as their
origin. :

As another exercise we look at the plastic regions around a rect-
angular boring in a structural member of any shape under even or

N
Fig. 29.—Shear-stress trajectories around a Fig. 30.—Above: trajectories of maxi-
trihedral boring in a block of plastic matter mum shear stress around a duct of
under pressure or tension. rectangular section in plastic matter.

Below: trajectories of principal stress.

uneven surrounding compression (fig. 30). The shear-stress lines be-
tween the triangular and rectangular zones are axes centred on the
corners and radii swinging through 45°. In the lower half we have
drawn the principal stress trajectories which make angles of 45° with
the shearing-stress trajectories.

4. In a test bar with a hair-line crack across a small part of the
section, plastic regions start at the ends of the crack at the slightest

S

SSIRED

RRIAKK
YmP,

Fig. 3:.—Phcﬁcreginmattl;ae ends of an internal crack

load. - As shown in fig. 31, each region consists of 5 zones, two isosceles
right-angled triangles, two sectors of 90° and one square. If the bar
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is strained a little more, some zones unite as indicated in fig. 32.
The main principal stress in the square is
8 = 8o(1 + 7[2) = 2:57s,.

At the ends of a crack the plastic mass flows under a stress about
2} times the yield stress. This is a remarkable fact, contrary to what

Fig. 32.—Plastic regi d a fully developed crack

occurs at the ends of a crack in brittle material where the crack rips
further at the slightest load. A reinforcement by an incision of more
than 2} times cannot be obtained, because the angle of the plastic
sector never exceeds m/2.

If we compare fig. 32 with fig. 16, we see that we only added a sym-
metrical upper half. The mathematical solution is the same.

5. Let us consider another plane problem. Fig. 33 gives the profile
of a grooved strip of infinite extent in the sense normal to the drawing.

T

Fig. 33.—Initial plastification near the bottom of the
grooves on the broad sides of strips

Plastification begins at the bottom of the grooves as soon as the
bar is pulled.
#If 0 denotes the angle of the plastic sector, b the thickness at the
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bottom of the grooves, P the pull on the strip per unit of breadth that _
produces plastic flow throughout, then .
P = 2k(1 + 6)b.
\— P /
N 1

A Ip N

Fig. 34.—Plastified regions in grooved bars—fully developed

Fig. 34 is analogous to fig. 15 representing the wedge with a blunt
edge, dealt with in Chap. IV, § 1.

When we pull a strip, grooved as indicated in
fig. 35, two plastic regions are developed. What
happens when the load is increased depends on the
depths of the grooves and the angle. We know
that grooves increase the resistance to traction in

the adjacent material. If in

----- i—-—- fig. 36 a > b(1 + 0), the plastic
region represented in the centre

part of the figure becomes appa-
rent. If, however, a < b(1 + 6),
% @ the straight parts of the
bar- are plastically strained at

" a lower load, and the regime

shown at the top and bottom
___‘___l_____ of the ﬁgure will prevail. The Fig. 36.— Plastified

ﬁgul:b hasdbeoen drznz forla =f Pegions mad trajectaries
Fig:as—Swipwith  1-785b an =[4 (angle of  stress in a tensile bar
gro0 . with equal resistance

e i groove 90°). In this case the fullmdzroooed:ectioz

yield limit is reached at the
same load in the whole grooved section as in those parts of the bar
which are unaffected by the grooves. Both regions may exist simul-
taneously.  They are separated by regions which are dotted in the figure.
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. We cannot be sure that these regions are exactly bounded as indicated -
in fig. 36. This is true only when the plastic mass is incompressible—
a condition fulfilled when plastic flow occurs.

As Nadai proved experimentally (Chap. IV, § 2) the boundaries
and the yield load only agree at advanced plastification; at this stage
Prandtl’s regime prevails. Spurs in the regions of elastic deformation
develop first when elastic deformation is considerable, then they cease
and take no part in further plastic flow.

In the metallographic laboratory of the State Mines extensive
tests on grooved strips and cylindrical bars have been made. We
shall mention these tests later.

Another two-dimensional problem is that of the test bar represented
by fig. 37. We consider only sections normal
to the broad side.

An autographic stress-strain diagram taken s
during the test gave the yield at a load of 9-2 |+ 40—
tons (46 kg./mm.%), and this value was con-
firmed by the Amsler test machine. Plastic
flow through the whole grooved section took ]
place at this loading. From the formula .

bar e v check th theory
to €O
8; = o1 + 0) = (1 + 7/3) = 2-05s, of grooved | m;’?::govz
we find for the yield stress s, = 22+5 kg./mm.?

Ordinary test bars of the same material had given upper yield stress
24-2 kg./mm 2, lower yield stress 22-5 kg./mm.2 The curvature at the
bottom of the groove was 013 mm., which, as we shall find in Chap.
XXTII, § 3, has no influence.

. The specific deformation at the bottom of the groove is very large.
In Chap. XVI we shall show that grooved bars rip along the bottom
of the grooves as square holes do in the corners when subjected to
tension. There is a great difference in the behaviour of tensed and
compressed grooved bars. In compressed bars the curvature in the
bottom of the groove disappears at a light pressure and the groove
becomes perfectly sharp.

We now proceed to the examination of the bar with a hair line
crack at both sides, angle of groove zero and angle of the plastic sector
90° (fig. 38).

Plastification only occurs just beside the crack in the reduced
section when the main principal stress amounts to

’ 7 8 = 8y(1 + =/2) = 2-57s,.
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‘But this stress is reached at the slightest pull. When the load is suffi-

ciently increased the plastic region is identical to that represented in
fig. 16. For further increase of load the cracks extend inward. We shall-
deal with the rupture of plastic matter in Chap. XX,

8. Fig. 39 represents the small side of a broad strip in which dn
athwart-placed square hole is made through the whole breadth. At
the left side the plastic region is indicated which sets in at a slight
pull, and at the right side is shown the regime that suddenly pre-
dominates when the pull is increased and leads to rupture. The ulti-
mate yield limit is therefore calculated in the elementary way. The

e < — e

f

l

S S — 4 L §
Fig. 38.—Bar in Fig. 39.—Bar in Fig. 40.—Bar in
tension, with rent- tension, with a square tension, with up-
like incisions at the hole extending right right square hole
* broad sides. through it whose dia- through full width.
gonal is parallel to the
length of the bar.

sharp corner gives no reinforcement. The reason why such broad
strips may be dealt with as plane problems is that the large area above
and below the hole prevents displacement in the broad direction.

Imagine a wide strip as before with a square hole which now has
its edges parallel to those of the strip. When slightly pulled, four small
regions of plastic flow develop at the corners as shown in figs. 23, 25,
26, and 27. This is rather curious for pull in one direction, but shows
that when the material has found a satisfactory pattern of shear-stress
lines it keeps to it as long as it can. We now leave this stage of defor-
mation. It will suffice for the designer to keep in mind fig. 40, and then
he will understand why the strength of a perforated bar of ductile
matter is calculated in the ordinary way.

When the hole is round instead of square, plastification starts in
two small zones beside the hole enclosed between logarithmic spirals,
filled with identical spirals which all have the centre of the hole as
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their origin. This is explained by the fact that families of these curves
alone form orthogonal trajectories issuing at 45° from the wall of the
hole. But this regime of deformation indicated at the left side of
fig. 41 is only a transitory one. When the load on the bar is increased
the regime drawn at the right-hand side prevails.
-r ————— [ In order to avoid misunderstanding we repeat
that these two-dimensional solutions do not apply
to notched strips. If incisions are made at the small
sides, no special calculation needs to be made. The
p lines or planes of maximum shearing stress are at
angles of 45° with the broad surfaces and the con-
striction takes place in the thickness only, although
somewhat more near the incisions than farther off.
- -~ But all these conclusions must be verified. No real
wﬂ;ﬁ;,f;,;;‘i;’.,,,‘:.‘ insight is obtained without experiments.
hole through width. It may be mentioned that figs. 31 to 41 also help
to describe the regions of plastic stress distribution
for grooved, cracked, and perforated strips bent at the weakened
section. We leave it to the reader to calculate the resistance to
bending when the plastic regions are fully developed.

7. Is a section of a bar always reinforced by small grooves, sharp
incisions, internal holes or cracks? Yes, but only under statical load-
ing. Reloading and especially reversal of the load has a devastating
effect. We know that under the smallest load the metal flows at the
ends of cracks and at the points of sharp corners, and that the region
of plastic flow is limited in extent, contrary to what happens in elastic
deformation, where the influence of stress concentration spreads over
the whole structural member.

When the plastically strained structure is unloaded the metal in
the minute deformed regions is pushed back to its former site. The
orientation of the crystals is now different, thus these deformations
require a considerable rearrangement of atoms at each movement.
In the long run the worst treated crystals give it up. Intercrystalline
cracks occur which may unite to form larger cracks when loading and
unloading is repeated. In this way a groove, an incision, a split or a
crack may easily lead to rupture even in plastic matter.

The surface tension of molten iron is very great (950 dynes per
- em. compared with 72 for water). At red heat iron is an ideal plastic
materlal whose extensibility and contractility are almost unlimited.
*The atoms move freely. A small crack heals. Due to surface tension,
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fissures close; sharp corners become rounded. Normalizing of mild
steel (heating at 900° to 950° C.), which induces recrystallization, or
even annealing at a lower temperature which effaces working stresses,
must be carried out in order to restore plasticity.

The thermal movement of the atoms allows rearrangement. Even
at normal temperature the loss of ductility by work-hardening is in
time more or less restored, but, when the melting-point of metals is
approached, the damaged internal structure is rapidly cured. Silver,
copper, and lead heal more easily than steel after ill-treatment.

(6 256)



CHAPTER VI

The Plastic Mass Compressed between
Parallel Planes

1. The solution of the problem of the flattening of a plastic mass
opens the road to solving many problems of technical interest. It
must therefore be treated in full detail.

In this chapter we restrict ourselves to the two-dimensional
problem, and first we will calculate the shape of the surface curves of the
mass squeezed out from the press. Experiment confirms the conclusion
that as soon as the mass leaves the press and is no longer stressed or
strained, it moves in pure translation.

Fig. 42.—Plastic mass compressed between parallel plane surfaces

. We proceed to calculate the surface curve relative to the axes X,
Y moving with the mass outside the press (fig. 42).
If the upper plane descends dy, a volume bdy leaves the press per
unit of length which is equal to ydz. Thus

dy_ _ (ﬂ)
y  \/
s log,y —log,c = — %,

To-%

or : y=acs ,
)
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The problem is to find the stresses at any point of the compressed

plastic mass. The solution was given by L. Prandtl,* and is, with the
notation shown in fig. 13,

s,=—k(c+§—2Jl—§ ,

8y = -—k(c + f),
a
ky

8‘ = ]

where ¢ is a constant of integration.

o
-2

==

T

P

Fig. 43.—Notation for the problem of the plastic mass b
parallel planes

The reader must verify whether the two partial differential equa-
tions given in Chap. I, § 2, are fulfilled so that flow takes place under
internal equilibrium, and whether the condition of plasticity is satis-

fied, namely, o — s \2
(&s)mu 2= (___a ) 1{) + 832 = kﬁ’

¥ being the yield shearing stress.

We must now prove that the trajectories of maximum shearing
stress, which show the direction of (S;)mas by the direction of their
tangents at each point, are two sets of cycloids. It is useful to intro-
duce the parameter f, the angle turned through by the revolving
circle. The co-ordinates expressed in terms of ¢ (fig. 43) are

z = xy + a(t |+ sin¢) and y = acos?,
dy _ —sint
whence E == m—o?t .

* Zeitschr. f. angew. Mathematik und Mechanik, 1923, III, p. 401; Hiitte, I, 1936,
Mechanik der bildsamen Korper, p. 347; A. Nadai, Plasticity, 1931, p. 221. :
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The stresses at the point

(, y) are found by substitution to be

8a = —k(c + %p/a + ¢ — sint),
8, = —k(c + zy/a + t + sint),

s, = k cost.

In fig. 44 we have drawn the stress circle for an arbitrary point

— S, —]
SY - >

Fig. 44.—Stress circle for plastic
flow at a point in the mass com-
P d between 11 .

(x, y) of the plastic mass. The angles
between the principal stresses and the
axes are called «. However, we are not
interested in « (see 2 in fig. 44), but in
the direction of the maximum shearing
stress (S,)maz =¥, which occurs on two
perpendicular planes making angles of 45°
with the principal directions, 8=45°—a.
In the stress circle we read 28 =90° — 2a,
double the angle which the shear-stress
trajectories make with the X- and Y-axes.
We have to calculate B from these data,
and the excuse for this long treatment is,
that in each case in which the pattern of

the shearing-stress lines must be computed, we have to proceed in a

similar way.
From fig. 44 we see

— Sy sint

tan28 =¥ "2 _ """ — —tant.
= 2.9, cost

Apply tan2ﬂ— 2 tan B

and | tanf=— +

Remembering that

— tan? 8

Thus tan?f — ——= —

or tan2,8+§ia;—£— =0.

we have tanf =
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The first expression, as we have seen when determining dy/dz,
gives the direction of the tangent to the cycloid at the point ¢.

We have still to prove that the two sets of cycloids form a network
of orthogonal trajectories. _

The first set is z = %y + a(t + sing),

Y = a cost,
dy sint
hence A= =
whene dx 1 4 cost anfy
The second set is z =, — a(t — sin),
Y = a cosl,
dy sing
whence <= =tanp,.
dr 1 — cost Py

It is evident that tan g, tanB, = —1, which had to be proved. We
have only to keep in mind that the shear-stress lines are cycloids, and
it will always be easy to go back to the stress formula.

2. For this problem as well as for the subsequent ones we suppose
that the pressing surfaces are rough like a file, and that a layer of
thickness equal to the height of the teeth is retained so that the plastic
mass slides over itself. The resistance is then independent of pressure
and equal to the yield shearing stress %k over the whole surface.
Even with a smooth surface this assumption holds true except for the
actual ends. In fact, the pressure increases so rapidly towards the
interior that, due to Admonton’s law R = fP, where R = resistance
to friction, f = coefficient of friction, P = normal force, at a short
distance from the edges, R surpasses k. The yield shearing stress is
the limit of friction. As soon as this is attained, the internal pressures
increase in proportion to #. The farther we move to the right in fig.
43 the greater is the total shearing force we must overcome. Let us
denote by (s, and ,s, the normal pressures near the sides of the press.
These pressures are equal and increase proportionally to z, but in inverse
proportion to a because, for a given pushing force acting to the left,
the pressure must be less when the distance is larger. By this simple
reasoning, we get ‘ m
' . 0% = oy = —ki c+;o)

and o’z _ —k(c -l--z! + 1).
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Aocording to Hencky’s theorem the normal and the principal
stresses s, and s, increase with 2k X 3¢ as the tangent to the trajec-
tories turns through 3¢. So we find for point ¢ (fig. 45) the principal
stresses

ek c+?9+ti1).
31 a

Fig. 45.—Computation of the stresses at a point on a
cycloid by application of Hencky’s theorem

It must be mentioned that because P is the pole of the revolving
circle the tangent turns through an angle 4t as the circle rolls through
angle ¢. The figure also indicates that

tan? = cot 2a,

in which & means the angle which the stress s, makes with the prin-
cipal direction I, so we obtain »

3v=31+32_—*_31‘"‘szcos2a
Sz 2
=81+82.T_81_823int
2 2

=—k c+‘_22+tisint),

8 — 8 . 8 — 8,
8 =1 2sln2a=1—2—-%ost=lccost.

3. In solving problems on rlasticity suggested by engineering
practice, special attention must be paid to the boundaries of adjacent
plastic zgnes. Not only do zones with different methods of shearing-
stress trajectories alternate, but non-plastified zones may be inserted
between them. These will be dotted in our figures.
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We must now deal with the bung-like plastic mass which is squeezed
out when the pressing planes approach each other.

In the formuls for the stresses we meet a constant ¢, which still
has to be determined. The mass outside the space filled with trajec-
tories in fig. 42 must be in static equilibrium when accelerations remain
out of question. We can express the stresses and co-ordinates at the
boundary in terms of the parameter ¢.

8, = —k(c + t — sini),
8y, = —k{c + t + sin),
8, = k cost.
z = a(t + sint), Y = a cost.
dr == a(l + cost)dt, dy = —asintdt.

Fig. 46.—Equilibrium of the extruded band outside
the two bounding cycloids
\

From the equilibrium of the elementary prism indicated in fig. 46
we see that half the force pulling the bung to the right is

[ sy dm = o [ cosi(1 + cost)ds = Ra(l + /),
t

=0

and that half the force which pushes the bung to the left is
[ sy = ko [ (e + ¢ — sint) sintdt = ka(o + 1 — /A).
t=0 0

The equilibrium of both forces requires ¢ = /2, and this gives
the solution of the problem. But we still have to examine whether for

t = 0 the plastic mass can carry the pressure gk at the edge of the

pressure planes. This is one of the most instructive problems of the
theory of plasticity. -
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4. In fig. 47 the network of shearing-stress trajectories and the
boundary of the plastified region are shown for the case where the
plastic mass is pressed between perfectly lubricated planes. Along the
outer lines of maximum shear stress abc we have the normal stress
8p = —k and the shearing stress s, = —%. This makes it possible that
at the edge of the rough plates a pressure jumping from s, = 0 to
sy = —1-57p may be supported. That ac also satisfies as a boundary
line does not matter. For the slightest friction near the centre of
the press the boundary abc is chosen.

We now return to the press with rough plates and consider the
plastic mass as slightly compressible.

020407
IR
%0 200020 % %%
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Fig. 47.—Plastic mass compressed between Fig. 48.—Math ically possible maximum
frictionl llel pl shear-stress trajectories for the mass between
rough planes in the initial stage of plastification.

P

In this case before the mass starts to move, two plastic sectors will
develop, as indicated in fig. 48, and the pressure at the edges must
increase to -
8p = 8y = k + 2kz = 2'57k.

* This would be even greater than with perfectly smooth pressing plates
But in applied mechanics the principle holds that a deformation
_such as a displacement takes place in the way demanding the least
external force. So before the stage of fig. 48 is reached the mass moves
as shown in fig. 46, because this only requires a pressure s, = 1.57k
in place of s, = 2-57k as needed for the development of plastic sectors.
It must be added that any other boundary line than the cycloid
will give a solution for which the conditions of equilibrium are ful-
filled. But the solution we have adopted is that for which the total
pressure is lowest.

5. We still have to examine the almost-triangular non-plastified
regions near the line of symmetry in fig. 42. The shearing stress along
the plands just beside the centre line and along the centre line itself
must be zero. But along the bases of the triangular sections shearing
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stresses gradually develop, and sliding of the mass occurs when s, = —£k.
The central zones stick to the sides of the press. It may easily be
proved that the dotted zones are-in equilibrium under the stresses
along the borders and that nowhere is the critical stress s, = k reached.

When the pressing planes approach, the four dotted zones shrink.
The plastic zones predominate and swallow the elastic zones. The
resulting force exerted by the press to squeeze out the plastic mass as
a function of @ may now be calculated by the reader. The pressure to
which lead, copper or Armco-iron gaskets must be subjected are de-
termined in this way. We come back to the subject at the end of
Chap. XIV.

6. For a question of plastic flow dealt with in a later chapter we
need the solution of another problem, namely, that of a mass pulled
by two parallel plates (fig. 49). Perhaps this case may only be realized
when sufficient surrounding pressure is superposed. But as only
differences of principal stresses are taken into account, we can calcu-
late just as well with tensional stresses.

A curious point in this problem is that when reversing the forces,
the boundaries between plastic and elastic regions change. This is a
warning not to assume analogies between the solutions of problems in
elasticity and plasticity.

With the notation of fig. 43 we now obtain for the cycloids

#; = 7y + a(t —sint), y, = —acost,
z, =z, — a(t + sint), y, = —a cost;
and for the stresses at point ¢:
8y = k(—1-87 4 x,/a + t - sing),
8, = k(—1:57 + zy/a 4 t — sint),
s, = —k cost;

and at point (z, y):

Y G h_ ¥

s,_k( R RENL! a’)’
L @

8ﬂ_k(_§+;)) »,

)
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It is not astonishing that fig. 49 has a different appearance from
fig. 42. The thrust and the sliding along the planes is reversed; the
right side of fig. 42 has become the left side of fig. 49. It may be proved

Fig. 49.—The plastic mass drawn between rough parallel planes

that the dotted regions are in equilibrium under the stresses acting
on the boundaries. Fig. 49 is only a snapshot of what happens. When
the plates are withdrawn the cycloids grow, the material is drawn in
and plastified, the cup-like zones grow in size.

We continue the investigation of this problem in Chap. VIII,



CHAPTER VII

The Plastic Mass Compressed between
Inclined Planes

Since Prandt] treated the problem of the plastic mass squeezed
between parallel planes, others have solved more complicated cases of
plastic flow. We owe to Nadai the solution of the problem of the stress
distribution in a wedge-shaped plastic mass.*

Fig. 50.—The plastic mass compressed between the sides
of a widening dihedral angle

As the displacements of the particles are a function of their position
with respect to the rough walls, the shear-stress trajectories must be
a set of curves growing as their distance to the line of intersection of
the planes increases. The simplest solution will be in polar co-ordinates
(fig. 50), and must satisfy the equations of internal equilibrium

Pt b=
0s; , 0s, _
' a—¢+’§+2sa—0:

* Zeitsche. far Physik., 1924, p. 125; Handbuch det Physik, Vol. VI, 1028, p. 475, 23 d.
: 49
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and the condition of plasticity

(sr—s, LI

2

This condition may be expressed in terms of a parameter 6 as was
done when dealing with the problem of parallel planes,

8y — 8

s, =k cosd, = —ksind.

By drawing the stress circle it is clear that the parameter is double
the angle which the tangent to the trajectory makes with the radius.
The solution of the differential equations gives

s, = —kelog, ['z‘c_ai“lf] + ksind,

8 = —Fke log, [’i_%:‘_“o)] — ksind,

8, = kcos#,

when the parameter satisfies the condition
sin6

dp = —} ey de.

By substituting we find that the equations for internal equili-
brium and the condition for plasticity are satisfied.

In these expressions for the stresses, ¢ is a constant which depends
on the dihedral angle 2«, and a2 is the integration constant, which
must be determined by a condition of the problem. In general we
know where the pressure is zero.

The calculation of the co-ordinates ¢ and r expressed in terms of
the parameter 6 is as follows:

We calculate ¢ by integration of the last given expression,* and r-
by taking into account that the maximum shearing stresses make
angles of 45° with the principal stresses.

The angles between the tangents to the trajectories and the radii
therefore are

tan g, = c:f: 0+ 1 and tanf, = c————-ozion;- 1.

* Compere Hiitte, 1026, p. 94, formalm 33 and 30,
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The result of the integrations is |

S—0
" c+1t (1r 0)
\/(_:_2_:__31‘0 an{\/c_l an e

c—1 +1 c+1 (w 0)}]
= tan{ =~ — _)! |.
r=>b c—sm0 p[\/cz—lamtan{N/ —1 a 1 2/}

Let us comment on this result:

1. For the line of symmetry ¢ = 0, § = #/2 and s, = 0.

2. From the expression s, = kcos@ it is clear that we touch the
walls for 6 =0 and for § =, because along the walls we find

= +*k.

3. We call the angles which the bisector makes with the planes,
half the dihedral angle + «.

This allows us to compute ¢ for several dihedral angles, noting that
at the wall the expression for ¢ becomes

¢=’—r-— . uctanJ6+l.

¢ =

4 /-1 c—1
This gives:
c=1 c= 11922 c=2 c=25
ks 7] o ’
a=7 a=§ a=24°17 a=6°15

The extreme case we shall consider in detail will be ¢ = 1:1922
which means that the dihedral angle will be 180°, and the planes unite.
Figs. 50 and 51 are drawn for ¢ = 2, « = 24° 17",

2. Our solutions are for statical problems, and the pictures of
shear-stress trajectories must be considered as snapshots. The lines
are identical in the case where the angle opens on its hinge (the plastic
mass being pressed into the wedge-shaped space), and in the case where
the plastic mass is pressed through a narrowing mouthpiece in order
to extrude it as a strip. In both cases the mass moves along the walls
in the same direction. _

We assume that only the walls of the nozzle are rough. Then the
axial component of the speed is the same for each point of extreme
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trajectory, as may be seen from fig. 51. This is true both at the en-
trance to and at the exit from the plastic zone, because in front of and
behind this zone the mass behaves like a block of solid matter. As
it moves the compressed mass suddenly enters the region of plasti-
fication, where it is thoroughly kneaded.

The axial velocity increases as the nozzle narrows. After extrusion
the mass behaves like a solid strip and moves with a much higher
translation speed than when entering the nozzle. The energy spent in
transforming block to strip is removed as heat. .

/Z

Fig. s1.—Extrusion of a plastic mass through a rough moutl;piece

We only mention the case in which the mass becomes steadily
thicker as it proceeds through the nozzle. This case leads to the re-
versal of some signs in our formul®, but the picture of stress lines
changes a good deal.

3. When the angle between the planes increases the theory remains
valid. For a« = 7/2 and ¢ = 1-1922, the planes unite.

The shear-stress trajectories change into a family of spirals starting
tangentially to the plane at the origin, and ending normal to the plane,
as shown in fig. 52.

As a variation to fig. 51 we have shown in fig. 53 how a block of
plastic material might be pressed to a strip through a slot in the wall
by hydraulic pressure. Rough walls are indicated by double shading,
smooth by ordinary shading.

As*o the trajectories, it makes no difference whether the force is
obtained by a plunger as indicated in fig. 50 or by hydraulic pressure
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as shown in fig. 53. Here the dotted part of the block is elastically
deformed in an incalculable manner, but this does not affect the cor-
rectness of our solution for the region of plastic flow.

Fig. 52.—One of the trajectories of maximum shear stress in the
plastic mass extruded through a slot in the wall

Cold-rolled or extruded profiles are subject to manufacturing
stresses which may approach the yield limit. This may be visualized
by grinding or filing away the outer fibres at one side. The bar then

////////////////////////////44
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Fig. 53.—Plastic mass forced through a slot in a rough wall by
" hydraulic pressure

bends. Metals such asﬁ lead, copper, brass and light alloys are shaped
to profiles or tubes by means of the extruding press. Iron is rolled,
but as the block is red-hot, and the atoms in this state move freely,

- the manufacturing stresses occur when: cooling.
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4. The problem of the paste-spout is so important in manufac-
turing artificial silk, cellophane, thermoplastics, ceramics, macaroni
and in other industries, that we give in fig. 54 another instance of a

mouthpiece. We note:
1. If all the walls are rough, two triangular regions remain un-

plastified and do not move.

2620220200000

]
% =

Fig. 54.—~The paste-spout

2. Other unplastified regions stick to the piston and move on with it.

8. Non-plastified zones may occur between plastified, of which the
shear-stress lines belong to different sets of curves, as shown in the
middle of fig. 54.

Numerous experiments have been made on the flow of a plastic
mass through an opening.* The best and most instructive are those

* The most recent experiments are enumerated st the end of the article of H.
Unckel, Zeitschr. f. techn. Physik, 22, 1941, No. 10, p. 34. ) :
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of H. Tresca,* who, nearly half a century ago, showed that these ex-
periments may be made with red-hot iron, as well as with lead or clay.
The agreement of theory and practice is sufficiently good when we take
into account the condition of the walls.

The reader should draw the boundary of the plastic region for the
case of fig. 54, where the mouthpiece is made less acute, and observe
that here the walls are nowhere the envelopes of the trajectories, as
they always are when the plastic mass slides along them.

Another exercise is to check that the lines of maximum shearing
stress are logarithmic spirals when the nozzle is perfectly smooth.
The solution of this problem is given in Chap. II.

5. The rolling of sheets is a combination of the problems treated
in both this and the former chapter. At the left of fig. 55, where the
sheet is thin, the plastic region is enclosed between two parallel tan-
gents to the rollers, and at the right,
where the sheet is thick, the plas-
tic region is enclosed between two
tangents to the rollers which form
a dihedral angle. These regions
join at the point where the limiting
members of both families of curves
meet at angles of 45° with the axis
of symmetry. At the left side of the
figure these curves are the cycloids
studied in the former chapter, at
the right they are the curves dealt
with in this chapter.

Neither the thin parb of the Fig. 55.—The rolling of sheet metal between
sheet nor the thick part suffers rollers-or of grease between wheel teeth
any deformation at the moment
shown on this snapshot, and we may see two dotted, nearly tnangu]m-
reglons which stick to the rollers. The steel is only kneaded in- the
regions filled with tra]ecbonea

When the metal is cold-rolled, hsbmg rolling stresses' may be
detected. Compressive stresses occur in the surface hyers Sueh steel
lsveryatrong formomwoshslldxmsslsteron

‘“Hémﬁm l‘éwnhmntduowploﬁdu” xmauma«m
XX, 1872, p. ».

s “(e285) .



CHAPTER VIII

The Outer Regions of Plastic Deformation
in the Mass Compressed between
Parallel Planes

1. We may now go on with the further examination of the problem
treated in Chap. VI. We have first to investigate the deformation of
the outer regions, which we called the bungs, in the case where these
bungs remain between the pressing planes, so that they are also com-
pressed (fig. 56).

Fig. 56.—Plastic zones in the outer regions of the mass
compressed between parallel planes

A simple test with putty, dough or clay compressed between two
boards, or still better a piece of hot iron under the pressing hammer,
shows that the ends are bounded by quadrants of circles.

The principal stresses at the surface are s, = s, and s, = 0. We know
from the theory given in Chap. II, that the shearing-stress trajectories
are logarithmic spirals. In the true cylindrical shape of the surface
we detect the principle of self-adjusting. Indeed, if the surface had
somewhere a smaller radius. of curvature, the pressure towards the
interior would rise more rapidly, and the material would have greater
strength. A larger radius of curvature would act oppositely.

In the interior of the bung the material is compressed as in a closing
beak. The jaws hinge at the line of symmetry in the throat. -

A . 5 :
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The trajectories in the dihedral angle comply with all the con-
ditions of this problem. The extreme trajectories of this family meet
the extreme logarithmic spirals at an angle of 45° with the line of
symmetry.

In the former chapter we dealt with the open wedge-shaped space.
We drew attention to the difference in pattern of the shear-stress lines
shown in this instance. The bung divided into two plastic and two
non-plastic regions, and was in equilibrium under the same shearing
and normal stresses at its boundaries as the uncompressed bung shown
in fig. 46 and dealt with in § 3, Chap. VI.

: a&hﬂ-zﬂa—-l

Fig. 57.—The plastic mass compressed between parallel
planes without development of plastified zones

2. In order to improve our understanding of the flow of matter-
with cycloidal trajectories in the plastic zones between the bungs and
cup-like central region, we now suppress these zones which were essen-
tial in figs. 42 and 43, so that the dotted outer and inner regions be-
come adjacent (fig. 57). We suppose that the ends are properly rounded
off beforechand. This is an instance among many others of a single
shear-stress trajectory. Another such line may be seen in the middle
of fig. 117.

Generally the plastm region is absent only a single moment. As
soon as_the pressing planes approach so that the breadth of the test
piece becomes more than 9-57 times its thickness, plastic regions arise.

3. In fig. 58 we show the case where the block is pressed over a
breadth equal to its thickness by rough pressing planes. There is no
plastic region. We can at most say that only along two planes at 45°
to the principal directions is the critical shearmg stress attamed
Even when the planes approach no plastic regions develop.-
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At a breadth between one and 2-57 times the thickness of the block,
we have the case shown in fig. 59. Instead of the well-known_ plastic

Fig. 58.—The plastic mass Fig. 59.—The plastic mass
with slip planes at an angle of with curved slip planes tan-

45° to the pressing planes. gent to the dihedral angle.

regions, we have only two curved surfaces to which the dihedral angles
dealt with in Chap. VII are tangential.



CHAPTER IX

Plastification in the Annular Space between
Two Concentric Cylinders, caused by
Relative Translation. Clay-cutting
with a Wire

1. The space between two concentric cylinders is filled with a
plastic mass, such as an unguent or butter. The problem is to find the
stress distribution and lines of maximum
shear stress when, as indicated by the
arrow in fig. 60, one cylinder moves with
respect to the other. The construction of
the trajectories, originating tangentially
at one cylinder wall and striking the other
normally, is due to two mathematicians.®
The problem is analogous with that
treated in Chap. VI. At the top we must
have a non-plastic zone resembling the
central part of fig. 42, and at the bottom Fig. 60.—Trajectories of maxi-
one that is similar to the cup-like central ~ mum shear stress in the annular

pace concentric cylin
part of fig. 49. The reader may NOW  derscaused by relative translation.
guess the form of the trajectories.

We may assume that the plastic mass is compressed at the top and
pulled at the bottom. And, indeed, if the interspace between flat press-
ing planes is curved to a ring, the trajectories become two sets of
epicycloids and hypocycloids intersecting orthogonally, which provide
the exact solution. The mathematical expressions for the radial and
tangential tensions are complicated. The expression in polar co-
ordinates for the shearing stress at any point of the mass in plastic
flow is simpler and of more interest (fig. 60). It is

S |

v,

A
\u/

2
,.‘2 + "i’ —2 %‘—
8 = - k.
* r,’—r,;’ .

*C. Caratheodory and E. Schmidt, Zeitschr. far angewandte Mathematik und
Mech,, Vol. 8 (1923), p. 468. - = - C S
. 59
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If in this formula for r we substitute r; or r, we find s, = +%.
Along the rough cylinder walls the yield shearing stress prevails. For
_ 2r
N ',-‘2 +r?2

we have s, = 0.

The trajectories cut this circle at angles of 45°. The points of the
non-plastified polar caps sticking to the cylinders are also situated on
this cylinder.

The simplest way for the engineer to get an exact insight into the
stress distribution is the application of Hencky’s theorem. Along the
walls and the neutral circle the pressure increases in proportion to the
centre angle. We recommend the graphical treatment.

If we have to deal with the most common practical problem, that
of a shaft at rest supported in a bush by a cylindrical layer of lubri-
cating grease, and we want to calculate at what pressure it begins to
shift, it is easier to apply the formule given in Chap. VI by means of
approximation. These give the limit for the stress distribution where
the interspace is very thin.

2. If we increase the radius of the rolling circle describing the
epicycloids and hypocycloids, the upper non-plastified zone sticking
to the outer cylinders grows quickly and for r, = 2-83r, (fig. 60) unites
with the lower zone. From this diameter on, the phenomenon is inde-
pendent of the distance to the outer wall. The neutral wall with regard

to shearing stresses, where s, = 0, is given by r = g 74, and facilitates

the construction of fig. 61. Here we have a snapshot of the trans-
lation of a cylinder through a solid block of plastic matter. We often
see the polar caps still sticking to the wires used for cutting clay.

It must be clearly understood that our theory does not exactly
correspond to practice. We imagined a superposed encompassing
pressure of sufficient magnitude to close the cut behind the wire.”
Non-deaerated clay is compressible. The flow of the material agrees
fairly well with theory for the case of a round stem ploughing through
clay. Experience with brick-making machinery and briquetting of
patent fuel improves our insight into plasticity.

3. The simplest plasticity problem is the stress distribution in the
layer of grease between two parallel planes slldmg over each other.
We think of the mixture of tallow, stearine, engine oil and soap between
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the standing and sliding ways for ship-launching, or of grease between
crosshead and guide in a sliding mechanism. In fig. 62 the shear-stress
trajectories are drawn. The principal stress trajectories are not indi-

Fig. 61.—Clay-cutting with a wire

cated; they make angles of 45° with the greased surfaces. The resis-
tance to friction is independent of the superposed encompassing pres-
sure ¢ and of the thickness of the layer of oil. The principal stresses are
8y =c+2kand s, =c.

Ei:.f. Sp= c+f ss
L7777 A A/ A A /A4 "
[}
oL o’ ) <
T 7770700770077 7 e sme—- "
Sk Smc+k spesh—
s fe———— sz-cnk

Fig. 62.—Lubrication of two parallel plane surfaces with grease

It might be of some use to observe that if the surfaces are curved,
so that we have to deal with concentric cylinders turning in each
other as indicated in fig. 63, the shear picture alters completely. There
we have indicated that the plastic mass sticks to-the outer cylinder.
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The same takes place when the inner cylinder slides axially. When
grease in a tube is driven forward under pressure, the mass moves as
a whole. This is the case of central lubrication, so much in vogue in
modern machinery, where the longer tubes must be dimensioned accord-
ing to this theory.

The behaviour of unctuous lubricants is quite different from that
of viscous lubricants.

Fig. 63.—Grease between axle and bush
rotating in opposite directions

We deal in this book with statical problems only. The speed of
flow which dominates the stress distribution in viscous liquids is not
considered.

The law of friction at surfaces lubricated with grease differs also
from ‘that for dry friction, where according to the law of Admonton
W = fK, the resistance W is proportional to the normal force K.

The phenomena described in this treatise are sometimes affected
by the property of some materials of being reinforced by work-harden-
ing or influenced by a drop in yield stress, which eventually might
occur. These properties are not taken into account. Our formulwm.
hold true not only for materials like butter or dough, but also for mild
steel undergoing moderate deformation. In other cases they may be
considered a8 a first approximation. :



CHAPTER X

Three-dimensional Plasticity

1. For the transition from the elastic to the plastic state, the three
principal stresses, or more accurately their three differences, are equally
responsible. To understand the plasticity criterion a good beginning
is to study the equilibrium of a tetrahedron formed by a Cartesian
trihedral angle on the principal directions and an arbitrary plane of
reference. The stresses are represented by Mohr’s device, and it may
be proved that the stress on any plane is represented by the co-
ordinates s, and s, this point being situated in the sickle-shaped
space between the three circles drawn on the principal stresses. We
recommend the reader to compare the following exposition with the
classic theory of three-dimensional stress.

We imagine an elementary cube in the plastic mass with its edges
along the principal directions, so that the faces are submitted only to
the principal normal stresses s,, s, and s, and we cut this cube by a
plane normal to a diagonal. Now we compute the stresses on the
triangle which forms the base of the cut-off tetrahedron (fig. 64) and find

. _ 8t st
“———E—,

8y = %V(ﬁ — &) + (82— 85)* + (s — &)™

It is easier for the reader to calculate this himself than to follow a
direct computation which we might give. By s,, we indicate that this
shearing stress is characteristic for the plasticity problem. By per-
mutation of the suffixes we see that the stresses on the eight sides of
the inscribed octahedron (fig. 65) are all the same. On four sides the
shearing stress has, for instance, the direction indicated in fig. 64
(bottom right), and on four other sides the shearing stress is sym-
metrical. In general s,, is not perpendicular to an edge of the octa-
hedron. This is only so in the very important case when two principal
stresses are equal. When one of the principal stresses is the mean of the
extreme stresses, thena,,mpamllelto an edge. . In Chap. XXIII, § 12,
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a graphical construction for s,, (this is 3sy1/2) is given which may be

useful in checking the principles here stated.

/N

Y

Fig. 64.—The principal stresses on the sidés of an elementary cube and the
computation of the stresses on the inscribed octahedron

The characteristic shearing stress is not the greatest. This occurs
on con]ugate planes which have the mean principal direction as line of

Fig. 65.—The stresseson
all sides of the octahedron
with its diagonals along
the principal directions are
the same.

intersection and make angles of 45° with the
extreme principal stresses.

For rupture the greatest specific elonga-
tion is the criterion, but plastic yield depends,
as we shall see, on a somewhat complicated
specific distortion for which this characteristic .
shearing stress is responsible. Modern physics
made it possible to calculate the cohesion of
simple substances, but the computed strength
is about ten thousand times that which is
revealed by a tensile test.

The reason for this we leave aside, but we

take it for granted that in.plastic material the stresses needed to shift
the atoms in the crystal lattice are small compared to those which



X} THREE-DIMENSIONAL PLASTICITY 65

break the cohesion. We consider the cohesive forces between the
particles as invincible, and in the following calculations we superpose

the general pressure _stats

—s,
3

so as to keep the volume of the element considered constant. On our
octahedron we have only left the shearing stresses, and we may now
examine the distortion due to these stresses alone.

It has been proved by experiment that plastic yield is provoked
by shearing stresses independent of general tension or compression.
The subject in hand requires some mental exertion. In order to ease
this, we begin with two simple cases, that of pure tensional stress and
that of pure shearing stress as met in a bar subjected to pure torsion.

% 50_
R S“ ———
] ' P—
pa— -
] i
= S —

Fig. 66.—Cube in a tensile bar with its diagonal along the
axis of the bar

2. The four diagonals of the cube make angles of ¢ = 54° 44’ 8"
with the principal direction (cos*¢ = }). These diagonals are normal to
the sides of the octahedron. Beside these four planes subjected to the
characteristic pure shearing stress

8 = §V/(8 — 8:)* + (8, — 8)* + (53 — 8%

there are in general innumerable other planes subjected to the same
shearing stress but accompanied by normal stresses of different mag-
nitude.

We now consider the case of pure tensional stress and imagine a
cube placed with one diagonal in the tensional direction (fig. 66). For
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reasons of symmetry in space the edges make angles of 54° 44’ with the
main principal direction. The normal stress on all the sides is s, == 5,/3
and the shearing stress s,, = 4s51/2. The values are the same for this
cube as for the octahedron placed with a diagonal along the same line,
and indeed for all the planes whose normal makes an angle of 54° 44’
with that direction. When we superpose a general pressure s, = —s,/3
the normal stress disappears. The cube or octahedron remains subjected
to the same shearing stresses on the sides directed to both opposite
vertices. This causes a curious deformation, a sharpening of the vertices
and an elongation of the diagonal, but the volume remains constant.
We shall calculate the distortion of the cube, the change of angles, the
specific elongation of the diagonal and the energy of deformation.

Seq. Se
/ /5\/—
&

Fig. 67.—Distortion of & cube in a ile bar in qr
of the shear stresses on the sides

The edges of the cube have unit length. We calculate first the
obliquity of the cube with the aid of fig. 67 and then the elongation
of the diagonal. The horizontal displacement of the top right corner
with relation to the lower corner is y =s,/G, in consequence of
the shearing stress s,, on the top and bottom surfaces. The hori-
zontal components of the shearing stress on the sides are 3s,/2.
Add to this a relative displacement of the extreme vertical ribs

3l \/2 X 2= , so that the total relative horizontal displace- -
ment of the ends of the diagonal in consequence of the shearing stresses
on the eight sides of the octahedron is oy 3% From this we find that the

26
specific elongation of the diagonal d for the cube shown in fig. 68

al.'ll()unts to . 8ge ! 800 a
C=vixgvi=igy2=2
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This is not the total elongation. To find that we have to add the specific
elongation due to the change in volume.

We are in search of the physical principle which underlies the con-
dition of plastic yield in space. It is most important to remember that
the deviation from the right angle which the perpendmulars between
top and bottom surface make is

]

=% _15%
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Fig. 68.—Specific elongation in a tensile test, due to shear stresses only

We now calculate the deviation which another right angle in the
plane of symmetry undergoes in consequence of the components
$s,//2 on the sides of the cube (fig. 68), and we find this s,./(1/2G),
which being less than s,,/G is not characteristic.

The Criterion of Plasticity.
When the tension bar is loaded to the yield limit s,,

8y = ;‘80\/2 = '}\/(81 — 8)* 4 (8 — 83 + (s3 — )%

We call this value s,, on the sides of the octahedron the critical shear-
ing stress or the criterion of plasticity.

The physical meaning, as we shall find later on, is that plastic yield
occurs when the deviation of the former perpendiculars uniting top
and bottom surfaces of the cube from the right angle reaches '

__oo %
:‘"a’ %«/2

“We must bear in. mm& the foxmnla y—s../G a8 the gntenon -of
plasticity. - o s
The relative shifé of four nehofsxdas ‘of the «
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taken in the direction of s,,. At pure tension the material yields when
8 =8,. Then the yield shear stress is

o = 350V2 =3V (51 — 8)* + (3 — 8> + (85 — )%,
or 250" = (83 — 33)* + (8, — 3)® + (85 — 1) = constant,

or 80> =82 + 8,2 + 832 — 5,85 — 858, — §,8, = constant.

This function of the principal stresses alone is decisive for plastic
yield. The expression was first formulated by Maxwell * and much
later again proposed by Huber, Hencky and Von Mises. ‘

Much experimental work has been done to test the agreement
with the actual behaviour of plastic material. The results are rather
confused, as we shall see later on. But one fact has been ascertained.
The first yield for each combination of principal stresses occurs when

g% = 8% - 8,2 - 532 — 8,85 — 8,5, — 8,5,

This has been proved by the classical tests of Ross and Eichinger }
and those of Stromeyer.f It has been confirmed by Kist,§ who made

* See Origin of Clerk Mazwell’s electric ideas, as described in familiar letters to William
Thomson, edited by Sir Joseph Larmor, Cambridge, 1937, pp. 32-3.

Extract from letter dated 129 Union Street, Aberdeen, 18th Dec., 1856 (we use our
own notation). ‘‘ Here is my present notion about plasticity of homogeneous amorphous
solids: Let ¢;, ¢, and €; be the 3 principal strains at any point, s, 8, and s, the prin-
cipal stresses connected with ¢, ¢, and ¢, by symmetrical linear equations, the same
for all axes. Then the whole work done by s,, s,, 8; in developing ¢, €, ¢ may be
written: A = a(3,® + 8,® + 87) + b(5;8 + 8,8, + 8,8,), where a and b are coefficients,
the nature of which is foreign to our inquiry. Now we may put: A =4+ 4",
where A4’ is due to a symmetrical compression (¢,” = €’ = ¢’) and 4” to distortion
without compression (€, + € + ¢ =0) and ¢ = ¢ + ¢”, € = ¢ + &,
& = ¢ + &. It follows that

. A’ = }(a + b)(e + & + €)?

2 - b "
A7 = 3 (61’ + Gg’ + g,’ - (6’6‘ + €3€; + ‘1‘!))'

“Now my opinion is that these two parts may be considered as independent, 4’
being the work done in condensation and A” that done in distortion. Now I would
use the old word ° resilience ’ to denote the work to be done ona body to overcome
its elastic forces.

“The cubical resilience R is a measure of the work necessary to be expended in .
eom n in order to increase the density permanently. This must increase rapidly,

body is condensed, whether it is wood or lead or iron. The resilience of rigidity

R, (which is the converse of plasticity) is the work required to be expended in pure

distortion in order to produce a pemmnent clmnge of form in the element. I have

reasons for believing that when 8,2 + 8,2 + 8,3 — 8,8; — 8,8, — 8,8, reaches a
certain limit (5,3), then the element will begin to give way.”

t Benchfo No. 14 and 28 der Eidgen. Material-Priifungsanstalt, Ziirich, 1926 and 1928.

experimental comparison of mmple and “ compound ” stresses, Ewmg
Sept. 419816, p. 268.

i“l‘héomtuc proeventerbepuhngmdedmghmhtm

gelaschté constructies *, De“mm, , B, 172.
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use of other measurements, and very remarkable was the agreement
with the results of the specially devised expenments of Bijlaard.*
Our own expenments which we shall mention in the next chapter,
were most convincing.

Let us now calculate the energy of distortion of the cube shown in
fig. 67, loaded to the yield shearing stress on its six sides. Assume that
the cube is fixed at the left corner, then the work done by the force on
the top side is
Ss _ S

A 1” —
1 ;‘ssc X G 2G

and by the horizontal components of s,, on the lateral sides

" %8,0\/2 _ 85
= 8¢ 2 e
4, = }s,e/2 X 22X =i
In general it is not allowed to add energy of distortion, but it is
allowed in this case where the forces do no work due to the displace-
ment of their working point by other forces. The total energy of dis-
tortion is therefore

2
A":&%,

" -—7'1—2% {(s: — %2* + (52— % + (8 — )%}

This is the expression for the emergy of distortion obtained by
removing the energy of change of density from the total energy of
deformation, as was done by Maxwell. The material yields at the
moment the expression reaches the critical value. We may say it
yields when s,, = 4s,1/2 or when the distortion of all the opposite sides
of the oetahedron reaches a value y = s,,/@. The reader may choose
the criterion he prefers. Each leads to the same expression:

(8, — 89)% + (s, — 85)* + (853 — ;)% = 25,2 = constant,
or 82 + 82 + 552 — 8,85 — 838 — 5,5 = constant,
8. We now carry out a smular calculation for another extreme

case, that of :pure shear stress. as realized in a -twisted cylindrical
bar. The prmc:pal stresses & = 3, 8 = =0, 8§ = —s, are indicated in

‘Delwmm, 1933,3,129 “Wmdmmmmktedomdemeen
getrokken plaat, berekend volgens do hypothese van Huber-Hencky.”
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fig. 69, which also shows the elementary cube for which we examine
the deformation. The normal to the upper side of the cube makes an
angle of 54° 44’ with the mean principal stress (cos? 54° 44’ = }) and
by reason of symmetry the angles with both other principal stresses are
the same; therefore these also make angles of 54° 44’ with the normal.

The shear tension on the upper side is the characbenstlc shear tension
and the material yields when

= ‘}\/(31 — 8,)? + (sa — 85)* + (s5 — 8,)* = ¥sv/6.

T T
MOMENT MOMENT

s

|

35°16" N
YY)
54°44/] S,= 0
—_l

Fig. 69.—Elementary cube in a twisted bar

We know from the tension test described in § 2 that

=%
Sge = 3 V2,
hence 8= % = 9‘57880
In the case of pure shear s, = —s8; = (s,)w.
We ﬁnd thns | (8.),,,,lx = V—é =0 57830

in agreement thh the plastlclty-cntenon of Mai:well Huber, Heneky
and Von Mises, and somewhat different from that of Qoulomb-Guest

who had sccepted Ce
(80 )uas == 0Bty
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Let us for the moment adhere to Maxwell, whose criterion is so
well proved by experiment.

Now we calculate the stresses on the six sides of our cube in the
classical way, and therefore we start by computing the angles which
the normals to these sides make with the principal directions. The
squares of the cosines are:

cos? oy = 0-6222 cos? oty = 0-3333 cos? oy = 0-0445
cos? B, = 0-3333 cos? B, = 0-3333 cos? B, = 0-3333
cos?y, = 0-0445 cos?y, = 0-3333 cos?y; = 0-6222.

=

Fig. 70.—Elastic deformation of an el

With the well-known formulse *

8 = 8; cos?a + 8, cos? B + s3 cos?y

8,2 = (3, — )% cos®a cos? B + (8, — 85)° cos? ﬁ cos?y

+ (33 — ;)% cos?y cos®a,
taking into account
8 =38 8=0 8=—s
we find for the top and bottom, for which the middle column holds,
8 =0, s,=}s/6,

and for the lateral surfaces the values shown in fig. 70. As mdlcated
in the upper corner of fig. 70 on the nght in this case as well as in the

‘Klopper Whrwxmmmp 198;“)
6 (e
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former the deviation of the angles of the perpendiculars between top
and bottom is simply

but now this is =

Fig. 71.—General case of three-dimensional stress

In order to investigate the problem thoroughly, in search for more
analogies, we calculate the deviation which the originally right angle,
indicated at the bottom right of fig. 70, undergoes in consequence of

2 8y
Ve &
_ which is less than y and different from wha.t we found in the former

case (§ 2).

When we calculate the specific elongation of the diagonal of the
cube, we find

the normal stresses on the sides s, = + > \/5. We find ' =

& 18”\/2 2.90

A}t.l:xough the relative sliding of upper and lower sides is the same,
the specific elongation of the diagonal is only % of what we found in
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the former case. We can also calculate the greatest specific elongation
and shortening in any direction at the point under consideration. We
find that these occur along the axes of the octahedron correspondmg
to the extreme principal stresses. They are € = s,/4@, which is § of
what we found before.

Every deformation except the deviation of the right angles by
y = 8,/ is different in these extreme cases, and the general case is
situated between them.

Fig. 72.—The elementary cube serving to compute the distortion
of the elementary octahedron

4. We now come to the general case, that of three different arbi-
trary principal stresses shown in fig. 71. We know that the material
yields when the sides of the octahedron are subjected to normal stress

s =% + sy + 53

n T . 2
3A

and shearing stress

i\/(sl — 8+ (8 — 85)2 + (83— 8y)° = %30\/2

This shearmg stress in general is neither normal, nor pa.rallel to a
side of the equilateral triangle.

Imagine a cube cut from the plastlc mass at the spot under examina-
tion that has two opposite sides coinciding with opposite sides of the
octahedron. This cube (fig. 72) is turned until the shearing stress on
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top and bottom s,, is directed towards a corner. For these two sides
we have the above-mentioned normal stress and shear stress. On the
vertical sides the stresses are different although we may remark that
the component of a shearing stress on the vertical sides, directed
towards an edge common with the top or bottom, is §s,,4/2. But thisis
somewhat away from the point.

Again we have the deviation of the perpendiculars given by

= f—”——\/"

We can show this for four directions of perpendiculars as we can
take cubes on four different orientations which fulfil the condition of
having two sides coinciding with opposite sides of the octahedron.

y is not the greatest deviation of any perpendicular at the spot.
The greatest deviation of a perpendicular is (s, — s3)/2G, and is not met
with along four orientations of perpendiculars but only occurs for two
pairs of planes at 45° with two principal planes belonging to the ex-
‘treme stresses. It seems that a distortion by which four perpendiculars
become inclined is more dangerous than distortion in which only two
are inclined, although in the latter case the inclination is a little more.

5. The physical meaning of the criterion of plasticity is that yield

sets in when the four normals to the sides of the elementary octahedron
.deviate by the angle y = s,,/@ from the usual position.

It is easiest to picture this rather complicated distortion by means
of an octahedron held in the hand.

For pure shear stress, when s,, is directed along a common edge,
we find that one of the diagonals of the octahedron is lengthened,
another is shortened, and the third remains unaffected. This is the
state most susceptible to plastic distortion.

When two principal stresses are equal which means that by super-
posing a general pressure of opposite sign we have to deal with linear
stress, then the shearing stresses are directed towards opposite vertices
of the octahedron. It will be proved later on that in this case the
critical value s,, is 'reached with the smallest stress difference, let us
say at the least constraint. With pure shear stress the difference of the
extreme principal stresses at the moment the y1eld starts is a maximum
8 — 3 = 1-1568,, while for linear stress it is g — 83 =8, only, this
being the stable state of plastic flow.
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When by arbitrary three-dimensional stress the yield point is at-
tained, the octahedron turns, not bodily but mathematically; its
position becomes stabilized as soon as linear stress is attained (the
first case treated in this chapter, § 2). We shall explain this in a subse-
quent chapter, and recommend the reader when he comes to the end
of the book to return to this paragraph and check it by means of the
graphical method given in Chap. XXIII, § 12.



CHAPTER XI

The Ideal Yield Stress

‘1. Usually one of the principal stresses, the mean stress which is
normal to the surface of our structural part is zero. For instance, the
stress computation for bars and shafts gives the normal stress s, and
the shear stress s,.

We can formulate an expression for the ideal principal stress s;,
L.e an imaginary tension stress which gives the same safety factor for
plastic yield as s, and s, combined.

Mohr’s stress circle shows that the extreme principal stresses are

s n ER .
s::% + -Z+s,3, while s,=0.
Let us first introduce the idea of an ideal shear stress. This is

5 =3V(8 — %P + (55— 8o + (55— 8,
The safety factor is the same as with the ideal stress s; when

In our case 8; = §1/2(s,% + 3s,2), hence s; = 4/s,2 + 352
We remember that when the Coulomb-Guest criterion for plastic
flow is retained (and as we shall see there are strong reasons to do so),

we have 8 =V8,2+ 452

And when we take the greatest specific elongation as responsible
for plastic flow (which is certainly wrong, being a criterion for rupture),
we reckon with

8 = m2:’—n 1 Sn + m2-; 1 »\/8”2 + 4802,

where 1 /m stands for Poisson’s ratio.
The difference in dimensions of the construction calculated according
to Coulomb and according to Maxwell’s premise is almost negligible,

and in using Coulomb’s criterion We are on the safe side.
7 :
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2. The best experiments made to test the criterion for yield now
generally adopted, are mentioned in Chap. X, § 2. We now give some
test methods used by the author which are cheap to carry out and
yet convincing.

In every section of the thin cylindrical part of the test bar shown
in fig. 73 we find the same maximum shear stress in the neutral layer
(fig. 74), viz:

4D
(ss)mx =3

32

708

1747
e

/4

174

Fig. 74.—Yield shear-
ing stress is reached
simultaneously in the
neutral layer and at the
whole periphery of the
normal section at a dis-
Fig. 73.—Shear test tance of 0-5787 from the

on mild steel middle section.

At the periphery of the circle for the fibre corresponding to the
angle ¢ the tangential shear stress is

8 =3 2t
and the normal stress Sy = 4 1—: % cos ¢,
ardr

where z is the distance to the middle.
The ideal stress at the periphery of the section at distance z there-

fore is
,—-—— 4”( cos¢) +3( sm¢)




78 PLASTICITY IN ENGINEERING [Crap,

At the section z = -‘-/% = 0-578r,
the ideal principal stress attains the same value as in the whole neutral
layer, and we may expect a marked yield when -

8; = 30, 833 = 0'57880.

And indeed the upper yield stress determined with this test and
with the tensile bar agreed perfectly. We took an autographic record
in which yield occurred at 2190 kg./cm.? It was marked by a vertical
drop to 1855 kg./cm.2, and then the line slowly rose. The result on
first appearance seemed in perfect agreement with the formula
8; = V8, + 3s2. But the lower yield point was a few kg./cm.2 lower
than was revealed by the tensile test. This might be due to the commor.
dispersion of such tests, but most observers present got the impression
that the first yield really set in according to the theory of Maxwell,
known as Huber-Hencky’s hypothesis, but the load dropped imme-
diately to the value calculated with the lower yield stress and then
was in better agreement with the ideal tension calculated according
to Guest’s law.

We note that at the transition from cylindrical to conical neck the
cones must be tangent to the beam of equal resistance to bending.

The reader well versed in applied mechanics, might make the
objection that we based our calculation on the elementary theory which
assumes that in the neutral layer the shear stress is evenly distributed
over the width and is AP

34

where P is the shearing force and 4 the area of the surface of the
section. Itis known that the complete theory, which takes into account
the cambering of the section, shows that the shearing stress also depends
on y, the distance to the centre line.

For the neutral layer
P
=2 {8 — HubP)
. 4P
Th 1 = - —
e mean value is 8 34

but the shear stress increases from P/4 at the sides to 1-5P/4 at the
centre line. Nevertheless, the less accurate result is confirmed by
experiment. '
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It is interesting to note that the smallest plastic yield effaces such
subtle differences in stress distribution. The theory of plasticity helps
a good deal in forming an opinion as to the necessity for using the
higher theories of applied mechanics
in strength calculations on steel struc-
tures.

8. In plasticity questions experiment 122
is the mother of truth. The test repre-
sented in fig. 75 is arranged to let nature
decide which criterion of plasticity is
right. The test bar is bent and twisted.
According to Coulomb-Guest, the ideal
bending moment is M, = v/ M2 T2,
wherein M is the bending moment and

T the twisting moment. From this
formula the bar must yield at the thin _g . 10
end, where the diameter is 10 mm. If
the criterion of Huber-Hencky were
exact, yielding must set in at the sec-

tion where, according to the formula
M;=+/M? -+ $T? the highest tension
is reached. This must be at the thick
end, where the diameter is 13-2 mm.
On blank test bars a careful obser-
ver sees where yield starts first. In
former years, for checking theories of
elastic breakdown, we used bars which
the smith had kept red-hot for some
minutes, and we noticed where the scale
first flawed. Nowadays we use special
brittle lacquers prepared to demonstrate

200

the zones where the yield stresses are YpP

first reached. Fig. 75.—This test was in-
Experiments of this type on pol- tended to make nature decide

ished test bars do not confirm Huber- plasticity of Maxwell-Huber-

Hencky’s hypothesis. The bar twists =~ comy o tof Covlomb-

suddenly at the thin end where the

diameter is 10 mm. The result is in agreement with the criterion of
Guest-Coulomb. For the calculation of solid shafts the first formula
for the ideal bending moment must be applied.
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4. The result is not new. It had been ascertained by many careful
tests. We only refer here to those of Smith (Engineering, 12th March,
1909, p. 351) for solid bars submitted to torque and compression.
At East London College of the University of London, he found a dif-
ference of only 2+6 per cent between the highest and lowest ideal tension.
If the hypothesis of Huber-Hencky had held, we should have read
in the upper line either s, = 1500 kg./cm.? or s; = 2245 kg./cm.2

The contradictions will clear up when we are sufficiently advanced
in plasticity to understand somewhat better the stress distribution
in a slightly twisted solid bar. This problem will be discussed in Chap.
XXIII, § 11, which will give more experimental evidence on the validity

of Guest’s law.

8n 8g 8
0 1295 2590
—1000 1260 2610
—1660 1075 2540
—2600 0 2600
All in kg./cm.2




CHAPTER XII

The Thick-walled Sphere and Wire-
drawing

1. The first application of the theory of plasticity in a case of three-
dimensional stress will be very easy. In the thick-walled sphere we have
only to deal with one differential equation as there is only one un-
known. We use fig. 9, which now represents the section of a sphere.

The vertical equilibrium of half the sphere with radius  provides

wr2s, — malp = [2mrs,dr

or ' 2rs, + 12 éff = 218,
dr
ie. ds, = 2(s, — s,) d-—:

In the direction normal to the plane of the drawing, the tension is
s; as well. For reasons of symmetry s, and s, are principal stresses.
When two principal stresses are equal, the difference between these
principal stresses and the third is limited to the yield stress, as is the
case in the tensile test. So we have s; —s, =s,. Our differential
equation therefore becomes ds, = 2sydr/r, and the solution is

8, = 28, log,r + C.

The constant is determined for the ball bulging under internal
pressure by the condition that at the external surface, i.e. for r =5,
the tension is s, =0. So the result is s, = —s, log,(b/r)?, and the
pressure p = —s, log, (b/a)?.

Cut in any meridian section the tra.]ectones for shear stress are the -
well-known logarithmic spirals crossing the radii and circles at angles
of 45°. In cases of three-dimensional stress Hencky’s theorem fails.
The method by which it has been deduced only applies to two-dimen-
sional or plane problems. ) o

Fig. 10 represents the plastification around a spherical cavity in
the zone occupied by logarithmic spirals.

81
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When our formula given above is combined with the stress formula
mentioned in textbooks on elasticity for the tensions in thick-walled
spheres, the extent of the region around a cavity in a plastic mass
subjected to pressure or tension from all sides may be calculated.

2. We now refer briefly to wire-drawing. When the die is perfectly
lubricated (fig. 76) it can exert a normal pressure only.
‘The theory of wire-drawing is reduced to the consideration of a
solid angle of the thick-walled sphere. It is instructive to verify that
counterpull in wire-drawing decreases the pressure on the wall of the

Fig. 76.—Wire-drawing through a frictionless die

die. By this means friction and wear are lessened. But disregarding
friction, the work done in wire-drawing remains the same. Its equiva-
lent is spent in heat.

A complicated subject in the theory of plasticity is the question of
residual stress set up by cold-working. It may be supposed that when -
the pull ceases, a wire drawn through a well-lubricated die is free- of
tension, But in dry wire-drawing we approach the plasticity problem
represented in section in fig. 51, and it may be proved that, when the
wire leaves the die and solidifies, the tension stress at the surface is
lower than at the interior, and after manufacture when the pull is
taken off we have a wire with compression stress in the exterior fibres.
This is a different quality from work-hardening, and it is also an im-
provement. Both qualities disappear when the wire is annealed. It
then behaves as if it were made of a different material.



CHAPTER XIII

On the Tendency of the Mean Principal
Stress to be Equal to either the Greatest
Principal Stress or the Smallest

1. Although a problem of three-dimensional stress, the foregoing
question, the stress distribution in the hollow sphere, was reduced to
a single equation with only one unknown. But in all other problems
of axial symmetry, we have to deal with unknown axial and radial
stresses in the meridian plane, an accompanying shear stress and the
third principal stress, the tangential stress normal to the meridian
plane.

There are thus four unknowns, and for the solution we have avail-
able only the conditions that an element is in equilibrium in the axial
and the radial directions, and also the condition of plasticity. We want
one more equation, for which we must have recourse to experiment.
In this case the natural law which helps us out of the difficulty is'often
used in applied mechanics. Although never proved, it may be granted
on general grounds that, when free to choose, nature shows a pre-
ference for the solution which makes the structure give way at the
least load.

The condition of plasticity is

= 5\/(31 — 8P+ (s5— *"s)a + (53— &) =352
or (8 — ) + (33 — 83 + (83— &)* = 255%,

ie. ‘ —s2
Le. 8%+ 8, + 3% — 8,8 — 838 — 8,5 = &

We have now to answer the question: if s, cannot be determined
by the conditions of internal equilibrium and the condition of plas-
ticity, what value will it take in order to reduce the stresses s; and s,
(or rather their difference and in consequence of this the exterior
forces) as much as possible? Let us assume for a moment that s, and
83 are given for a certain point in the plastic.mass and s, is variable
but bound to sl and sy by the above relatlon Now let us represent the
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shear stress s, on the octahedron as a function of s, as drawn in fig. 77,
the curve being a hyperbola.

As soon as the mass yields s, has the fixed magnitude s,, = 380 V2,
s, and s; are not constant but s,, is

The figure shrinks as much as possible, s, and s; (or rather their
difference) become as small as possible when s, = s;, or when s, = s;.
Since s, must reach the value s,, with the least effort, it must take an
extreme position either to the right or to the left so that s, — s
becomes least.

We may ask what is the distance to the origin from which we
measure the magnitude of the three principal stresses. But this dis-

\_/

!

S,.v

S,

S,

Fig. 77.—The characteristic shear stress s, as a func-
tion of the medium principal stress s;, when the extreme
principal stresses s, and s, are fixed.

tance must remain unknown. The condition of plasticity only speaks
of stress differences. A superposed surrounding pressure or tension
does not affect the phenomenon. Also in the state of plane stress,
when the axis of revolution wanders to infinity, s, becomes equal to one
of the extreme principal stresses for the same reason. Matter cannot
abstain from obeying this law, which has important and remarkable
consequences. For instance, the magnitudes of the deformations in
plastic flow no longer depend on the principal stresses; they increase
as long as there is room to flow. From now on we must look on the
state of plastic flow as a new state of aggregation which is situated
between the solid and the liquid state.

Everyone knows that when the yield point is passed matter is
lengthened in the direction of s, and shortened in the direction of s,.
What everyone does not know is that it flows freely in the direction of
8,, and .that the deformation takes place without increase of stress.
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It is to this quality that the word “ plastic ” is due, meaning “ able
to be formed or moulded ”.

As soon as s; becomes equal to s, or to s; the plastic matter flows
unrestrictedly. In mild steel the flow only ceases when, by work-
hardening, the yield limit is so much raised that the exterior forces
no longer overcome the resistance.

But as generally there is a considerable drop in the resistance of
our steel when s, jumps to s, or drops to s;, a good deal of deformation
may be observed before an increase of external force is needed for further
deformation. With butter, dough or clay, some extra deformation does
not affect the yield point. These are ideal substances for demon-
strating plastic flow and for observing the drop in resistance when two
principal stresses equal.

Sometimes s, jumps from the one extreme value to the other at
adjacent spots in our structural part. The reader will meet this par-
ticularity in later applications. He is invited to check that when
Sy =8§; OF 8, = 83, the criteria of Maxwell and of Coulomb become
identical. The applicability of Coulomb’s hypothesis, which De Saint
Venant had accepted on account of Tresca’s experiments, is now
explained. The laws of Maxwell and Coulomb are not in contrast but
agree. The material yields as soon as Maxwell’s law is fulfilled and then
the resistance drops and plastic flow occurs according to the maximum
shear theory. Maxwell’s law always holds.

We shall find further experimental evidence of this aphorism in
Chap. XXIII, § 11, dealing with the torque on a solid bar. By
actually carrying out Meldahl’s graphical construction for s, or s;
when the principal stresses are given, as shown in Chap. XXIII, § 12,
the reader will soon realize that matter ﬂows most readily when s,
takes an extreme value.



CHAPTER XIV

The Disc Plastometer

1. In fig. 78 is shown the compression test on a disc of clay. Prior
to the test the diameter was 100 mm., thickness 15 mm. The clay
was de-aerated. The arrangement resembles Scott’s plastometer on
which an extensive literature exists.*

We expect a likeness to the two-dimensional problem (figs. 42, 43,
&c.). Indeed, if we increase the diameter, the stress distribution at

. 107 '

Fig.78—Discp used for determining the yield
shunnx stress of clay

the periphery must tend to identity. With the notation shown in fig.
79 equilibrium in the radial and vertical directions glves rise to the

equations
B(s,r) +r 88, —5=0

and as, + 8(73,)

When we draw the stress circle we see that the principal stresses are

8 sr+sg+J(8.—8, Yo and 8 —=s,

83

e

‘J R. Scott:” Trans. Inst. Rubber 7(1931), 169; R. L. Peck: J. Rheol., 3(1932)
345; H. L. v. Nonhnys Reouedva C'lmn duPayaBaa, 61 (1942),2F6vmr )

1
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is the yield shear stress. We know from the previous chapter that in
plastic flow the mean principal stress is equal to one of the extreme
principal stresses, so that

3‘=8——’;srik.

Now because s; may jump from one extreme to the other at ad-
jacent points, and as a matter of fact adjusts itself in the mean to
what is wanted for flow at the least pressure, the first differential
equation containing s, is of no use.

Fig. 79.—Notation for the case of
rotational symmetry

We rewrite the second equation
0s, Os,
e + s+ i

and make use of two hints towards the solution. The. first is that
probably the simplest solution will be right; the second, that the
farther we go from the centre, the more the solution must approach
that of Chap. VII for the plane problem.

8, = T kz/a is the simplest solution that fulfils the conditions, as
for 2 =0, 8, = 0, and for z = +a, s, = Fk as in the two-dimensional
problem. .

Our differential equation simplifies to

' 9s, k=
| e
which gives the solution

bl 2
=G o

9 ’ . ) ' (c 2558)
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because we prescribed that when 7, is large compared with ¢ and z
our formula must be identical with that found for the two-dimen-
sional case.

Combined with the condition of plasticity, which may be written
s, = 8, — 2V/k® — 3,2, we find the radial tension

Y N Sk 2J _f)
5 L(2+ a 2m+ 1 a?)

With this kind of plastometer the total force P is measured as a
function of the radius 7, to which the disc is extended. We thus have

to calculate P as a function of 7,.
At the surfaces we have

=5, =—k(Z 40”7 2
=4 (2+ a 2r
and P=— j; s 2nrdr
12 ar
=2ﬂk(%r°2+6la—?°).

This calculation is not quite exact for the centre part where cup-
shaped non-plastified material sticks to the pressing planes. We shall
apply a correction, but first we draw attention to the remarkable fact
that if we consider the difference s, — s, and the shearing stress s,, the
expressions are identical to those found in the two-dimensional prob-
lem. Hence the trajectories of maximum shear stress are again ordinary
cycloids. :

The reader may ascertain for himself that for horizontal sections,
the trajectories of maximum shear stress are logarithmic spirals.

2. We now consider the disc (fig. 80) of radius 7, = (7/2 + 1)a.
In this case only the descriptive lines of the cup-shaped mass are left
-out of the sets of cycloids. We calculate the force P for this mass by
integrating the vertical stress and the shearing stress along its surface.

P = —f27rr(s,dr — s,dz).

We express  and z as functions of the parameter of the cycloid:

r = (2:57 —t —sint)a, 2z=acost,
and we find ' -
' P =2 x 7-85nka® = 49-5ka?.
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Without taking into account the existence of a non-plastified
centre core we should have found P = 42ka?. The difference 7-5ka?
is unimportant for a disc with a diameter greater than 5-14¢ and
negligible for a disc of the diameter we have shown in fig. 78. But we
can add 7-5ka® to the apprommate formula and make the result
correct.

Looking again at fig. 80, we may put the question as to what the
difference might be if the pressing planes were perfectly lubricated
instead of perfectly rough. In the first case the yielding pressure
would be s, = 2% at any point, hence

Py = 2rkr? = 41-5ka?, as r, = 2-57a.

P

N N

7:,—-)-‘

Fig. 80.—Disc compressed to plastic yield for
the case 7, = 2°'57a

The difference compared with the critical force on the rough press-
ing planes P = 49-6ka® is unimportant, but increases very rapidly
as the diameter of the plastic disc increases.

In actual practice the pressing planes are neither rough nor per-
fectly lubricated, so that there is always some friction. It is easy to
see that in view of the increase of pressure towards the interior, the
pressure generally will be large enough to make s,f > k, where f is
the coefficient of friction. This means that even with rather smooth
surfaces, our formula holds true.

Clay is subject to work-hardening as some water is squeezed out.
Nevertheless, or perhaps for this reason, our experiments were in good
agreement with tests made on the same clay by ball indentation.

An experimental proof of the soundness of our theoretical investi-
gation is found in the literature for a disc with a dlamet.er of 2-57
times the thickness.* -

* Zeitschrift fiir technische Physik, 1924 No 9, “Ueber die unter einer Belastung
sich bildenden Gleitflichen ”, p. 376, fig. 56
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8. In this paragraph we may insert a remark on the behaviour of
plastic packing; for instance, a gasket of lead or of copper wire
flattened between the flanges, as indicated in fig. 81.

The pressure at a distancez from the edge (Chap. VI) is

T,
0w=k(5+2)

The linear inerease is shown in the figure. As a matter of fact the dis-
tribution of pressure near the centre is slightly different, but this may
be neglected.

t"— ~\\
i h
2a TR
y
\. ,’
2X—>
b—5t ¢

Fig. 81.—Distribution of stress on a band of plastic packing
flattened from an originally round cross-section

The force on the packing-ring per unit of length is

P=2kj(§+§)dx=k(ﬂb+§),

and the mean pressure for which the bolts must be calculated,

7, b
p—("+2';)k,

where b is half the width of the ‘flattened gasket a half the thickness,
and  half its yielding pressure.

It is evident that when the bolts are tightened b increases and a
decreases, so that the resistance to pressure rapidly increases, even at
constant yield pressure 2%, and more so when the packing is subject to
work-hardemng But other qualities than plasticity are essential in

packing, e.g. the coefficient of thermal expansion must be the same as
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that of the flanges. The theory of plasticity explains why soft packing
enclosed in a groove is very suitable.

It is important to note that deformation stops as soon as equili-
brium between stresses and imposed pressure is reached. Unfortu-
nately, in many materials, especially metals, the atoms may continue
to alter their relative positions under pressure, the more so as we
approach the melting-point. This phenomenon, called creep, although
a subdivision of plasticity, is beyond the scope of this treatise.

4. At some distance from the edge, the pressure on the pressing
planes increases no matter how good the lubrication.
Although a drop in yield pressure marks the upper
yield point (and a compression test on a steel prop
is instructive), we wish to examine also the yield
under compression independent of the influence of the
tangential surface stress dealt with in this chapter.
The author made some successful experiments on the
upper and lower yield points of mild steel under com-
pression with round test pieces as shown in fig. 82,
and found about the same values as in tension tests,
although the figures seemed to be somewhat lower. Fig. 82—Shear-

The trajectories of maximum shear stress are STessfmaiectoricsin
traced under the assumption of perfect friction be- compression test.
tween hardened cone and mild steel cup. This
friction was obtained by painting the surfaces with a suspension of
fine carborundum powder in glue.

The reader can only understand such a problem if he is well
acquainted with the stress circle for this kind of stress distribution.




CHAPTER XV

The Brinell Hardness Test

1. The simplest plastometer, of vast application, is the hardened
steel ball by which an indentation is made in the surface of the plastic
material by a known load.

The stress problem and the delimitation of the plastic zones for the
two-dimensional case have been solved by Prandtl* The result is
given in fig. 16. We found that the pressure, needed to make an inden-

tation, is
= <1 + g) 50 = 2575,

where s, stands for the yield stress. Plastic deformation extends over
a width of 3b if the width of the punch is b.

Fig. 83.—Ball indentation

When the ball test is made on the polished surface of a mild-steel
test piece, it may be observed that the surface becomes dull over a
circle of diameter about D = 3d, d being the diameter of the inden-
tation. Outside the indentation the material rises slightly, but on the
average by not more than § of the crater’s mean depth. Near the brim
the emergence is greatest as is shown in fig. 83.

Before going farther, let us examine the plastic zone under an
annular part of the surface with uniform loading (fig. 84). At the

* Proceedings of the First International Congress for Applied Mechamcs, Delft, 1924,
“ Spannungsverteilung in plastischen K6rpem ”, p. 50.
2
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moment of plastic yield the vertical pressure p is the main principal
stress and in the ring described by the revolution of the isosceles right-
angled triangle the trajectories of maximum shear stress must be the
straight lines indicated in fig. 84. :

When a pressure is exerted outside and inside the annular surface

Fig. 84.—Shear-stress trajectories under an
annular surface loaded to yield of the under-
lying material.

with diameters D and d until the free surface emerges, the shearing
stresses in the solid will be symmetrical. We can guess that fig. 85
represents a section through the plastic zones with shear-stress trajec-
tories for the ball indentation, but only the calculation can give a
decisive answer. It is certain that under the ball a central cone is

Fig. 85.—Plastified region for the Brinell ball test

pushed downward with a vertical angle of 90° and that in the plastic
ring of triangular section, the vertical and horizontal principal stresses
are s, = 0, s = —2Fk, and the tangential stress s, = s, = 0.

But the difficulty is to find the stress distribution in the ring de-
scribed by the revolution of the plastic sector. This calculation seems
to be simple in annular co-ordinates, and the ball test is of such impor-
tance in engineering that we must check our assumptions. -
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On the élement of the nng represented in section and in plan view
" in fig. 86, four forces act in the radial sense:

a 1. 5 {s,.(a + rsin¢)dard¢}.dr,

6¢ {s,(a + rsmq&)dad/r} dg,

3. —sn(a + r sinc_ﬁ)docdrdq&,
) 4. —s,rdpdrdasing.

And in the tangential direction four other
forces act:

do S 1. %{sm(a -Frsin‘l’)d“‘h}dq‘:

S,

0 .
Fig. 86.—Notation for the 2 PW ‘s,(a + rsing)dardd }dr
9omput§tian 9f the stresses .
o e ord 3. sa + r sing)dadrdg,
- 4. —s, 7 ddpdrdacose.

Equilibrium in the radial and tangential directions provides us
with two differential equations: }

s (ar + 28ing) + s.(@ + 2r sing) — s,(a + rsm¢) + % (a + rsing)
=+ 8,7 cosd — syrsingg =0,

(@ + rsing) + s,r cosé + Os, (ar 4 r2sind)
. or + 5,(2a + 37 sing) — 8, cosd = 0.

We also have available the condition of plasticity, but in general
it is not possible to solve these equations. We can only test if the dis--
position of the lines of maximum shear stress, radii and circles, is
exact (fig. 85).

Along these lines s, = & must fulfil all the conditions, and this will
enable us to calculate s, and s,.

The stress circle shows that also s,, = 3, = s,,.

If what we have drawn is correct, then we have only to determme
one unknown 8, a8 & function of r and §. The tangential stress s, can
be expressed in terms of s, as s, =3y, + &, for we know from Chap. XIII
that the mean principal stress must be equal to one of the other prin-

08

o4
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cipal stresses. By these simplifications the differential equations become
08y __ — cos¢ + sing

or a4 rsing
Osm __ 2(a + rsing) + rcos¢ +r squ
and
3 a4 rsing

The solutions are
= —okp— x4 L ;m"‘ log, 27508 . g,
and s, — —2k — k(¢—j 4+ klog, 2 T0¢ | ¢
14- sm¢ @

Now, if the assumed disposition of stresses were exact, then the
expressions ought to be identical. Our test has shown that the lines of
maximum shear stress must be situated otherwise. But some hope
remains that the representation is an acceptable approximation.

At any rate, for » = 0, both expressions are identical as they ought
to be, because at this point we must have the same expressmn as in
the two-dimensional case. We simply find the expression of Hencky’s
law s, = s, = —2k¢ + C.

But we find everything in order also for ¢ = 0, for the cylindricai
section and for the horizontal tangential plane to the ring and

8y =8, =8, =C.

For any other point of the ring the solution is wrong, as we find
some difference between s, and s, and this difference increases with
r and §. We now proceed to calculate this difference for the point
where it is greatest and in the first place we calculate s, and s,, for the

point ¢ = — = 45°, r =a+/2 and the sign .
We start with the awkward integral
nl4
N : —+8m¢+J< ) —1.cos¢
__';di__. log‘

f°”,1+£sin¢ «/() —1 1+;sm¢ ‘of
R 5+W2H‘/2t(2)2”1}_
\/(:;)'—1 ’ | 1-1::;%\/2 ‘
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By this calculation we see that for the point where the difference
between s, and s, is greatest

8 = C — 2kp = C — 1-571k.

= C — 2k — k(%—log,z)Jr klog,/2,

=C — 2 — k(g — 210g,v2>,
= C — 2k¢ — 0-092F,

= C — 1-571k — 0-092%,

= (C — 1-663k.

We can find the integration constant C.
~In the two-dimensional case C = 0-571k, and as for r =0 the

: -‘—stresses must be the same, the constant must also be the same.

We thus know that in fig. 85 where the divergence between s, and
S reaches a maximum we have s, = —Fk, and s, = —1-092%, ie. a
discrepancy of 9 per cent, and that only for an unimportant corner
of our figure.

We took s, equal to the smallest principal compressive stress
8y = Sy + k for the octant ¢ = 0.to ¢ = 45°. When we make the
calculation for the other octant ¢ = 0 to ¢ = —45°, s, must be taken as
sm —k; that is to say, s, is equal to the maximum compressive
stress, We then find for the most remote corner the same absolute
difference between s, and s,,, namely 0-092k, but here the fault is
negligible because s, = —2-571% and s,, = —2-479%.

We must note the sudden jump of the tangential stress s, from
8; to s; when passing through ¢ = 0, for which we have the cylinder
of radius a. This curious behaviour becomes intelligible when we
realize that at one side the material is compressed ta.ngentlally and at
the other side it is stretched. :

The reason for going through this long calculation is to show that
the assumption of identical lines of maximum shearing stress as-found
in the two-dimensional problem is a reasonable approximation and
that for plastic yield the pressure exerted by the ball is-exactly

p = 2%k(1 + 1-571) = 2 X 2571 = 2:571s

We must note that the pressure under a cylmdrﬁal punch just as
under a ball, 1s equallyn d.lstnbuted and as shown )ﬁﬁg 87. The most
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interesting property of plastic flow is that a small displacement has
. no effect on the stress distribution. Even without calculation we
might verify that the difference in pressure inside and outside the
circle of radius a (fig. 86) is p = 2-57s,. This is the correct formula for
the ball test. In the zones corresponding to the triangular section, the

4

Fig. 87.—Shear-stress trajectories in plastic matter loaded by
hydraulic pressure on a circular part of the surface

stresses cannot depart from the magnitude adopted at one point
(fig. 87). And we know the difference at the circle d. We also know
that the assumption of a circular quadrant as revolving area has failed,
as we found some difference between s, and s,,. To try to obtain a
correct insight into the problem, we have recourse to experiment and
measure the diameters of the indentation and of the dull circle made
by a 10 mm. Brinell ball on the surface of polished test blocks by

different loads.

Diameter of Diameter of
Load in kg. indentation dull spot D Djd
d in mm. in mm,
1000 4-93 14 2-85
2000 56 15-2 272
3000 6-3 17-3 275
4000 69 189 274
5000 7-25 20 276
Average 276

This is somewhat less than 3, as found for the two-dimensional
prablem.

_2.The most instructiveAway for the engineer to account for the
stress distribution in plastic flow is the graphical treatment. As there
is no doubt as to the distribution in the parts with a trigngular cross-
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section, we restrict ourselves in fig. 88 to the treatment of the ring
described by the revolution. of the plastic sector for the case d =10
cm., D = 27-6 cm. This sector is not a quadrant of a circle but re-
sembles a quadrant of an ellipse in which the curved radii normal to
the curves are also drawn.

i

. . ,',F
&

2:5

Fig. 88.—Graphical treatment of the yield-stress problem for a ball indentation

We approximate to the under-surface of the ring by six surfaces
of truncated cones for which we calculate the normal force and the
shearing force with the slide rule.  Only the vertical compohents play

shearing stress along the trajectories is & everywhere = ,

Actual trial yielded the values shown in the figure. ~ The re-
sultant of all the forces is in equilibrium with the load 5-14% = 2-57s,
on the loaded circle, which gives a force of 202k. There is also equili-
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brium of the solid of revolution obtained by cufting the plastified
mass by the dotted cylinder. This is indicated in the figure, with 66k
inscribed as the vertical force to the bottom surface, and (202 — 66)k
as the shearing force on the cylindrical surface. In the left-hand poly-
gon the construction is repeated for the solid of revolution with about
half the radius. We also tested other sections.

Anyone repeating the construction will find that the pressure on
the bottom of the solid of revolution is less than in the case of the two-
dimensional problem. There is no question of identity, but the impor-
tant thing is that the main inference p = 2-57s, as found by reasoning
(and identical to the result of the two-dimensional problem) has been
confirmed.

The horizontal components of the forces exerted on the outer sur- -
face of the plastic ring of quadrantal section, which might also be
read in the polygon of forces, are left out. They are in equilibrium-
with the tangential forces s, = s, which jump from s, to s; or adjust
themselves automatically to ensure equilibrium. (See Chap. XIII, last
paragraph.)

' 8. We must now explain why the yield point determined by this
simple plastometer does not agree with the result found in a tensile test.
About thirty years ago, the publications on the Brinell test were
numerous and extensive. We avail ourselves of the following results
of indentation tests made by Mayer with great care.* The tensile
test on the steel gave these figures:

- Elongation 30 per cent measured on the length [ = 11-3 cm.
Reduction of area (A) 59 per cent. '
Elastic limit under tension 26 kg./mm.?

Elastic limit under compression 31-5 kg./mm.2
Tensile strength 46-5 kg. /mm.2

On examining the indentation and deformation, it is clear that this
surpasses the limit to which the shear stress remains constant and
equal to k. '

In the ball test, work-hardening must be taken into account. In
the tensile test with an area-reduction of ¢ = 59 per cent, work-

100
ard 0 oo
hardening goes '100—59

. “Untamuohungen itber Hnrteprufung und Harte”, ~Zeitschr. des Vereines
deMerIngme.%thAplﬂ,lgo&pp 646—8 Forodmngaarbutea,v d.I.Heft,% .

X 46-5 =113kg./mm.2, and in a compression
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REsuLTs oF INDENTATION TESTS WITH BALL OF 10 MM. DIAMETER

. Yield point
Load P on the | Dismeter of the Mean prgure computed from
ball inoll:lg indentation d P-—% formula

in mm. in kg. per mm.3 2—’577 kg./mm.?

520 2-317 . 1230 48-0
800 2-829 127-3 495
1500 3-785 133-4 - 52-0
2000 4-285 138:5 54-0
2500 4-730 142-3 55-5

test (with which the ball test may be directly compared) it may go
further. Fig. 89 shows the effect. As deformation to indentation sur-
passes the constant shear-stress limit, we understand that the figures
in the last column are higher than the elastic limit of 31-5 kg./mm.2,
which for our purpose is the same as the yield limit.

Sn #3 ¥fmm*

315 Mmm2

&

Fig. 89.—Resistance to plastic flow (s,) as a function
of the specific deformation € for mild steel. In order to
calculate s,, the load is divided by the surface area of
the deformed cross-section. The yield limit or hardness
i by work-hardeni:

We would expect an increase in hardness with further deformation,
and this is also confirmed. It is interesting to note and explain that
an increase in hardness has no influence on the extent of the plastified
zone, which remains limited to a diameter of 2-76 times the inden-
tation. : . )

The:Brinell hardness is found by dividing the load P by the area
of the segment of the sphere (which is, of course, greater than the
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area of the projection of the segment) In this way, the work-hardening
is to some extent compensated and an empmc relation between Brinell
hardness and tensile strength may be given. This relation is distinct
for different materials.

4. Many tests have been made to investigate the behaviour of
indented metals.* The author made ball-hardness tests on clay. It
became clear that most experimenters used too small test blocks.
Sawn, polished and etched blocks of steel show a dark spot and a root-
like region under the indentation; and, in addition, both boundary
lines are at 45°. We see that the relief around the indentation is pre-
ceded by compression under the ball or by penetration of material in
the underlying layers until the resistance to elastic deformation exceeds
the pressure of 2:-57s,. From fig. 85 it becomes clear that the thlckness
of the test blocks must be at least 3d+/2.

On the photographs illustrating the publications* we can verify by
measurement that the diameter D of the plastic region is about 3d,
and on the surface in plan view we see in the region 3d the logarithmic
spirals cutting circles and radii at angles of about 45°.

Fig. 90.—Cone indentation

5. Fig. 90 shows the cone hardness test. On the right we see the
relief of the crater-rim which is somewhat similar to that for the ball
test, at least when friction is sufficient.

Surface friction at the slightly lubricated point of the comical
punch is the questionable part of the cone test, but the friction of a
smooth punch seems to be sufficient to produce an indentation like
that of a perfectly rough punch. If this is so, it is all the same whether
the indentation is due to the point of the cone or to the cap of metal
adhering to the underside of the ball.

*G. Mesmer: ‘ Vergleichende apmnungsoptxsche Untersuchungen und Fliess-

versuche unter konzentrietem Druck,” Technische Mechanik und Thermodynamik, Vol. I
1930), No. 2, p. 85; Nadai, Plasticity, * Penetration of cylindrical punches ", PpP. 235-8;
iitte, 26th and 26th adatlona, Mechanik der bildsamen Korper.



CHAPTER XVI

The Grooved Cylindrical Test Bar

1. We now take up again the problem of fig. 34, Chap. V, and
consider first an experimental investigation of the analogous three-
dimensional case. Cylindrical test bars grooved and well annealed were
‘submitted, some to a slight extension, others to a slight compression.
Then they were sawn, heat-treated and etched to make the plastified
regions visible. The result agreed fairly well with fig. 34. Fig. 91 is a
drawing of a compression test piece. From the many samples ex-

- amined, we reproduce as fig. 92 a photograph showing two etched
test pieces of steel with a tensile strength after normalizing at 950° C.
of 37 kg./mm.? and upper yield limit of 25 kg./mm.?

Number of test .. . . .. 1 2
Diameter in the groove before test (mm ) .. 101 10
Grooved area before test (mm.2) . .. .. 801 785
Compressing load (kg.) .. .. . .. 4000 7000
Compression stress on original area (kg. /mm 2) 50 89-2

Diameter in the groove after the test (mm.) .. 104 11

Everybody will admit that in the first test (fig. 92, No. 1) the steel
yielded over the whole area, and the plastic regions were fully de-
veloped. If, as in the ball test, we may assume the same formula as
was deduced for the two-dimensional problem, then we have the fol-
lowing relation between compressive stress in the grooved cross-section
and the yield limit at the moment of plastic flow through the whole
area:

8 = (1 + m/4)sy = 1-7858,.

We conclude from this formula that % =i% =28 kg./mm.2

The yield limit was a little lower, viz. 25 kg./mm.2, but the load of
4000 kg. was somewhat too high, as is shown by the increase in dia-
meter) If this is-taken into account, the result is in agreement with
the formula. -

102
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On the etched cut of test piece No. 2 (fig. 92) two small black spots
are visible indicating the original diameter. We draw the attention
of the student to these points and invite him to reflect on the specific
deformation (Chap. V, § 7). The groove is partly closed and work-
hardening raised the yielding stress about 60 per cent. If he is reluc-
tant to acknowledge the demonstrative power of etchings with such
stripes and feathers, he must study the illustrated articles of Nadai.*
For the analogous two-dimensional problem, where the same formula
P = so(1 4 w/4) is generally accepted, the photographs are no better.

T'—'—‘T‘— -T Test No. 1 Test No. 2
3

- 90°
33N
IR N
N S
Fig. g1.—Cylindrical " Fig. 92.—Test pieces of fig. 91 loaded with
compression test piece, 4000 kg. (left) and 7000 kg. (right)
circularly grooved. .

Another confirmation of the validity of fig. 91 for solids of revolu-
tion may be obtained by studying figs. 64, 65 and 66 in Nadai’s publi-
cation. They show truncated cones of paraffin pressed into each other
at the points.

2. Much information has been published on grooved round bars.
We start with the best confirmation of our theory that we know.
A series of tests on a ductile aluminium alloy, called Lautal, was -
carried out, and the yield stress s, determined.f According to our
- assuymption the same formula must be applied as in the two-dimen-
sional case, i.e. p = (1 + ¢)sy, in which ¢ represents the angle of the
plastic sector.  is a linear function of ¢, and we can draw the line be-

* Zeitachrift f m»m Ployadc 1924, p. 1369, &o., © Ueber die unter einer Belas-
tung sich b: tflichen der festen Korper *. :
1 “ Mitteilungen der dsntsohnn Materialpriifungsanstalten ”, Sondarheft, X.X,
1932, Kohiuomfeehg i © oasb)
. G
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cause we know that for ¢ = 0, we have the yield stress of a cylindrical
bar, and for ¢ = 90° =-72—r radians, p = 2-57s,, the yield stress of a

sharp incision such as a round hair ecrack. We can draw the line if
only we know the ordinary tensile yield stress.

The results of the experiments are shown in fig. 93, where the yield
stress is given as a function of the angle of the groove (the supplement
of twice the angle ¢).

Another important investigation on this subject has been carried
out by Thum and Wunderlich.* In order to prevent their results

kgfmet
80

NS

y o

o/

0 20° 0° 60° 80° 100° 120° 190° 160° 180° -

Fig. 93.—Apparent yield limit as a function of the
groove angle for the light alloy Lautal

being used to dispute our theory we must discuss their experiment.
They wrote, “ The grooved area flows at all points when s, = 35-2
kg./mm.2 (tensile test on straight bars, upper yield stress 285 kg./mm.2,
lower yield stress 23-9 kg./mm.2, tensile strength 34-3 kg./mm.2).”
Calculated with our formula the grooved bar would have flowed at

8p = (1 + 17/4)30 = 1'78530-

- The experiment has given

35:2
= =] 53
s,,. 339 §o = 1-47bs,
~ if the lower yield point is taken into account, as we think it must.
The bar flowed earlier than according to theory. But if we compare

‘the test piece examined under compression by Thum and Wunderlich,

% Forchung, Band 3 (1932), p. 267, 5. Das Fliessen bei gokerbten Rundstaben .
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as drawn in fig. 94, with ours shown in fig. 91, we see that the plastic
region as assumed by us could not develop completely owing to the
lack of depth of the groove. In the grooved area we want a tension of
1-785s,. The shaft flows at a tension s,. If the diameter is not reduced
to less than 75 per cent, the shaft has a greater resistance to through-
yielding than the grooved section. Although a nice square becomes
visible on the etched meridian section, we cannot

expect agreement with our formula. The dis- T‘" —tT
crepancy is instructive.

0.
3. It would take too much space to discuss . P—’L
fully the elaborate publication on grooved bars W
by W. Kuntze, to which we have several objec- vid
tions.* We only point to one property of solid
matter of which Kuntze was unaware, although
it influences his results considerably. -
In a tensile test we have not only to overcome
the yield stress but also the surface tension,
which for ordinary mild steel is about 16 kg./mm. Fig. g4 Test bar,

with groove depth in-

We refer to figs. 12 and 13 of Kuntze, where he  sufficient for com-

. . . plete plastification of
was very near discovering this effect; but he  reduced cross-section.
did not draw the conclusion.}

Yet from these his own experiments, we see that tests with bars
grooved to less than 8 mm. diameter are unreliable. Kuntze went to
about 2 mm., and by extrapolating on these erroneous results, he built
his theory.

Just as with the experiments of Thum and Wunderlich who .
worked with bars grooved to insufficient depth, no agreement with our
formula is obtained when the bars are grooved too deeply. But when
both extremes are excluded, the mass of experimental material pro-
cured by Kuntze provides a striking confirmation of the formula

= so(1 + ¢).

To show this we give another of Kuntze’s tests ] taken under good

* Kohadionsfestigheit, 1932.

t Lueger Lexikon der gesamien Technik, III, p. 16. Tensile strength of annealed
iron wire, k; = 28-7 + %4 kg./mm.2 Hence surface tension, y = % = 16 kg./mm.

The general formula for the tensile strength of wires is k; = b+ Z It follows from
‘bothﬁguresofKuntze,-y=187a.ndy=‘=l43 Mean value, 16-5 kg./mm,

{ « Einfluss ungleichférmig verteilter Spannungen auf die Festigkeit von Werk-
stoffen ** (Aus dem staatlichen Matermlprﬂfungaam Berlin-Dahlem. Maschinenelemente
Tagung, Achen, 1936).



10.6 PLASTICITY IN ENGINEERING [Crar.

conditions. One of the test bars is drawn in fig. 95. In the descnptlon
of the test, we read:

Lower yield stress, 18-8 kg./mm.2
Upper yield stress, 23 kg./mm.?

The bar began to lengthen when the mean tension in the grooved
section approached the yield stress. At 42-2 kg./mm.2 yield became so
‘obvious that it was clear that plastic flow occurred all over the section.
The bar broke at 50 kg./mm.2 If we take the mean yield stress

18-8 + 23
- —l—--—— 9
i J section should occur when p = s(1 + 7/3) =
2-056s, = 42-2 kg./mm.? in perfect agreement with
experiment.

In Chap. XXIII we shall show that the small
curvature of the bottom of the groove has no
i | influence.

‘l__ At the State Mines, too, we made many ex-
| —L.  periments to investigate the etchings at different

Fig. 05.— Grooved  stages of elongation. With round bars of 22 mm.
'i,?‘ii?;::;‘i_‘ estbarused diameter, incised by a rectangular groove to a
diameter of 10 mm., the inner square became just

visible on the etchings when the mean tension at the reduced dia-
meter was 40-6 kg./mm.2 The upper yield stress, the mean of two
tests, was 30-1 kg./mm.2, so that it has been proved that indications
of plastification become visible long before the whole area plastifies.
Even at a load of 48-8 kg./mm.2 in the critical section plastic flow did
not occur throughout. But this was certainly the case at 576 kg./mm.2

The theoretical calculation gives

8, = (1 + ¢) = 17055, = 1-705 X 30-1 = 53-7 kg./mm.?

= 20-5 kg./mm.2, flow over the whole

The numerous experiments described in Chap. XX, § 2, also con-
firm the applicability of this formula.

4. The fact that the stresses in the cemtral double cone (fig. 95)
under plastic flow can be calculated by the above formula (the same as
for the two-dimensional case) is not only proved by experiment but
may also be checked by the reasoninghused for the ball and for the
punch indentation. But no more can be asserted than that at corre-
sponding pomts of the solid of revoluﬁon and of the strlp of the same
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cross-section the stresses are the same. This holds true near the bottom
of the groove and in the double cone. The stress distribution in the
other zones of the plastified region can best be determined by a semi-
graphical method.

In fig. 96 are drawn on a large scale the tra]ectones of maximum
shear stress. At the periphery of the plastic region is marked the
normal stress where this can be calculated. Along the plastic sector
we draw to scale the normal pressure, which is obtained by trying
values until vertical equilibrium is assured not only for the whole
plastic ring but also for the parts of it.

That the section of the plastic ring with curved trajectories is an
octant may be considered as a fact sanctioned by experiment.

]

S;=2k(1+ 1) =2k x 1785

Sn
()

Sn=0885k |
3/1\- 074k <X
Sn =\055 k

.

- NN
= ¥
B
N
o
>
&

Fig. 96.—Stress dlstnbutwn in a grooved tensile test bar at the moment of plastic
flow on the entire reduced cmss-sectxon

For the plastic sector with a small tip angle, the circle as
_boundary line is quite in order. If the angle approaches 90°, we arrive
at the elliptical curve dealt with in the preceding chapter whose axes
differ by about 8 per cent. In our case the difference is only a few per
cent, too small to be taken into account in the drawing. It follows
from a simple integration that the normal pressure under the base of
the ring described by the isosceles rectangular triangle in fig. 96 is
expressed by '
_a+4ay/2—2z A
" eayi—z

in which & represents the yield shearing stress and a and zare indi-
cated in the figure. Equilibrium in the tangential direction is assured
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by the peculiarity of s, to adapt itself to circumstances. s, can jump
in adjacent fibres from s, to s;. Generally speaking, s, =s, + k.
It is easy to prove that the mean value of s, lies between these two
extremes. But instead of imagining this stress to jump backward and
forward we may think of it adjusting itself according to circumstances
and remaining between these extreme values, so that the theorem of
Coulomb-Guest holds.
In the central cone the principal stresses are everywhere

81 = —1'57k, 82 = —1'57k, 83 = '—3'57’0

under the assumption that we are dealing with pressure.

5. The reason why the grooved bar has been the subject of so many
investigations is that it is rightly considered the most comprehensive
instance of three-dimensional stress. The three principal stresses are
greatest when the groove becomes a sharp round incision. We then
find with tension in the central cone,

8y = 8o(1 + 7/2) = 2-57s,, 8, = 1-57s, and 83 = 1-57s,,.

If we increase the load to the breaking-point, the area of rupture
shows a crystalline structure and only a very small rim has a fibrous
appearance. If follows that a brittle rupture occurs in the region of
three-dimensional tension. We shall deal with this kind of rupture in
Chap. XX.



CHAPTER XVII

Plastic Torsion

" 1. The best book on this subject is Plasticity, by Nadai* We
refer to this famous textbook for the masterly treatment of stress-
distribution in bars of different section, subjected to torsional over-
strain. It contains much useful information and experimental data
and may be strongly recommended. The reader will soon detect, how-.
ever, that our conception of plastic flow is at a variance with that of
Nadai, but as to the chapters on plastic torsion we can only recognize
his classical treatment.}

In order to make this book complete we include a concise account
of torsional stress in ductile matter and start with the simplest case—
the cylindrical bar subjected to pure torsion. The yield shear stress is
first reached at the circumference, and when the torque is increased
the annular region of plastic flow spreads to the interior.

It is generally accepted that in this region of plastic flow, the three
principal stresses are s; =k, s, =0 and s; = —k. In Chap. XXIII,
§ 11, we shall see that, although this is not exact, the stress differences
and the shearing stresses are correct. With these principal stresses
we should have s, = s5/4/3, but an imposing amount of experimental
data proves that s, =k = sy/2. It is also a question as to whether
the material flows according to the hypothesis of Huber-Hencky or
to that of Coulomb-Guest, or whether both hypotheses accord. At
any rate (and this is important) the shearing stress is constant in the
region of plastic flow.

Let R denote the radius of the cylindrical bar and'r, the radius
of the circle delimiting the regions of elastic and plastic deformation.

Then the torque is 7'= k(?Rs - % which the reader may readlly

verify. Following Prandtl, the torsional stresses in a bar may be
represented by a heap or hill erected on the section of the ba.r The

* McGraw-Hill Book Company, New York and London, 1931.

1 The well-illustrated article of Bader and Nadai: “ Die Vorgénge nach Ueber-
schreitung der Fliessgrenze in verdrehten Eisenstdben”, Zeitschr. der Fer. deutach,
Ingenieure, 71 (1927), pp. 317-23.

109



110 PLASTICITY IN ENGINEERING [Caaer.

slope, taken to an appropriate scale, is a measure of the torsional or
shearing stress. This analogy is based on the following argument:

The axial equilibrium of an element dzdy of unit length, sub-
jected to torsional stress s, with components s, and s,, gives

0s, , Os,
'é;‘l‘-a‘y——o:

because the shearing stresses in the axial sense are likewise s, and s,.
Now this expression is equivalent to the simultaneous expressions

/ 5, = % and s, a—h;

° oy L4

where %, & function of & and y, is the height of the heap. This holds
true for the case of elastic as well as for plastic deformation. For
elastic torsion the surface of the heap is analogous to a soap-film or
an elastic membrane placed over the circumference of the bar slightly
inflated. For plastic torsion the heap has the shape of a roof with
equal slope to the circumference, erected over the section because

sy =Vs2+s2=k.
This shearing stress is parallel to the circumference, but the lines

of maximum slope representing the torsional stress are in projection
perpendicular to the torsional stress. So are also their components

A oh oh
RN — = —8, and 5= Sz
4‘1 \\ ox Y
o N Rain-water flows along the lines of steepest
bz slope of the hill.
bR - If the contour of the cross-section is cut out
of stiff paper, or if the bar itself is placed with

Fig,q.,.__-l;hetmimd the cross-section horizontal and covered with as
stress heap for a cylin-

e e iaved o yietd much dry sand as it can carry, tI}ere results a
* over the annular part of  heap whose natural slope at any point represents

Ronaeysectionbetween  the torsional stress in overstrain. Its form is
independent of the amount of twist. .

In fig. 97 the torsional stress heap is shown for the twéted cylin-
drical bar. Up to the delimiting circle with radius r, between plastic
and ela)stic torsion the slope is constant. In the elastic zone the heap
isa parabolmd The slope, indicating the tangentlal or bﬁmonal shear-
ing stress in the centre, is, of course, zero.
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2. What is the distribution of torsional stress in a bar of rectangular
cross-section, having sides 2a and 2b (fig. 98) when twisted to the com-
pletely plastic state?

In the section four zones may be distinguished in each of which
the shear stress s, = £ is parallel to a side of the rectangle. The calcu-
lation of the torque gives

T = (4ab? — 859k

8. In fig. 99 we have shown a roof with constant slope to the edge
having an elliptical cross-section. This form of roof is obtained by
pouring fine dry sand on the elliptic section. The horizontal projec-
tions of the lines of constant slope are the normals to the ellipse.

The sand heap on a cross-section which is a regular polygon is a
pyramid.

For the cross-section of a shaft with a semicircular keyway a cone
is obtained from which a part is cut away by another cone.

%
S5 %
|| s
i
i
Ss
| J. 2.
[ S—

Fig. 98.—Shear-stress Fig. 99.—The construction of Fig. 100.—Lines of equal
roof with constant slope, a roof with constant slope above level of a sand heap on the
representing the stress an elliptical cross-section. The cross-section of a shaft with
function for complete normals to the circumference -a keyway.
plastic yield in a bar with bisect the angles between the
rectangular cross-section. lines to the foci.

4. In fig. 100 we show, in plan, the sand heap representing the tor-
sional stress-function for the cross-section of a shaft with a square
keyway. . .

The heap is represented by the horizontal lines or contours around
the surface of the heap at equidistant levels, as in a geodetic survey.
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The strength of the shaft under plastic torsion is much reduced by
the keyway, but this is insignificant compared to the weakening under
elastic stress distribution. The membrane analogy shows an infinite
stress at the sharp corners of the keyway in this case as at the vertices
of the re-entrant angles the inflated membrane rises vertically.

The plasticity of matter limits the torsional stress to the yield
shear stress.

An extension of the sand-heap analogy for perfect plastic torsion
of sections with one or more openings is given by M. A. Sadowski.*

* Journal of Applied Mechanics, Trans. A.S.M.E., Vol. 63, Dec. 1941, p. A. 166.



CHAPTER XVIII

Do Slip Planes Occur in Plastic Flow?

1. In order to improve our understanding of plastic flow a chapter
must be devoted to the relative displacement of the particles in matter
strained beyond the elastic limit. Let us imagine a test block uniformly
compressed between perfectly lubricated endplanes. The greatest
shear stress occurs on all planes which make an angle of 45° with the
axis. When the elastic limit is passed and all the elements shorten and
widen, there can be no question of slip planes. Particles in one hori-
zontal layer penetrate an underlying layer. Many particles get new
neighbours. Ranks may be doubled.

In the plastic state the material resembles a liquid, with this dif-
ference, that in a liquid the three principal stresses are alike, and in
solid matter they may be all different. For plastic flow the mean
principal stress becomes equal to one of the extremes (Chap. XIII),
and then the similarity to a liquid becomes obvious. The material flows
to the sides of less resistance and any conception of slip planes is mis-
leading.

In order to assist the reader to form a picture of what happens in
plastic flow, we give here the simplest scheme for the displacement of
the particles when the mass is compressed to two-thirds of its original
thickness. The particles are indicated by the letters of the alphabet.

a b ¢ d
e f g h a e b ¢ g d
i j k 1 1 i f k 1 h
m n o P g m =n s o P
q r© 8 t u r v w ¢ b4
un v w X
Before compression After compression to two-thirds

of the original thickness

We have inade particles of the second and fifth layers move into the
layers situated above and below. The particles move in space without
any regularity. Even whole lumps may intrude between other masses

of the material. But one thing is certain—slip planes do not occur.
118
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"And yet, when a test piece of mild steel is compressed, or suffers
any other slight deformation, the belief in slip planes is reinforced by
observation. Fig. 101 shows a few lines marking the so-called slip
planes on two sides of a square test piece. The figure is drawn from

a good photograph.*

These quasi-slip planes manifest themselves in the following way:

1. On the polished surfaces of mild steel or annealed iron, dull
lines appear when the yield stress is reached, indicating planes coin-
ciding approximately with the planes of maximum shear stress. But
seldom are the observers aware of the real difference. Often angles of
72° and 108° are seen between the planes as indicated in fig. 101, while
the planes of maximum shearing stress make angles of 90°.F

| W\\

@\W

Fig. ro1.—Lines indicating plastic
layers observed on the sides of a test
block of mild steel.

\

2. By etching with Fry’s liquor
(copper chloride in hydrochloric
acid) after heat treatment of the
polished sections of slightly bent or
strained test pieces of mild steel,
lines and regions of deformation
become visible, which are often
interpreted as slip lines.

3. When test pieces or steel
structural parts have been annealed
in air or are covered with a coating
of rust or scale before being de-

formed beyond the elastic hmlt the scale flakes off along the lines
where the so-called slip planes intersect the surface. This looks very

impressive.

4. In a similar way these lines can be made visible by covering the
surface with special brittle lacquers or varnishes. The detection by
means of these lacquers of the spots in steel structures where the yield
stress is first reached has become quite an art, and has proved very
useful for arriving at the most economical form of standardized struc- .

ture.

The occurrence of plastified layers, which are not the same as slip
layers, must be attributed to the important property of annealed

* Fig. 34, Handbuch der Physik, VI, pp. 4568-9. Compare also figs §‘0—36 or Hiitte,
1, 25th or 26th Edition, p. 342, Slip lines or Liiders hnes Fine plctums may be found

in Nadai, Plasticity, pp. 86-119.

. tIn France the lines which become visible on the polished surface of mild steel
when the‘limit of pla.stlclty is reached are called * Hartmann lines<’ after the famous

/' publication of an artillery officer: Distribution des déformations dans les mélaux soumis
& des efforts, Paris, 1896.  This is recommended. In Nadai, Pladwdy, p. 86, and i in
Lexikon der gesamien TwhmkN P 91 many references are given.
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mild steel, that the yield limit suddenly drops when plastic deforma-
tion of the steel starts. Although this explanation is not very convinc-
ing, we get a good idea of what happens at that moment if we imagine
that the ferrite crystals are cemented by strong but brittle ferrous oxide
or by a skeleton of cementite. When this rigid skeleton breaks down
at the higher yield point, the ferrite crystals are free to deform plasti-
cally, and the yield point drops by the amount shown in figs. 4 and 89.
If the reader is convinced that a drop in resistance occurs when the
elastic limit is passed, then he must accept the presence of plastic layers.
At the spot where the skeleton first breaks down (similarly to what
occurs at the end of a crack) we have to deal with a concentration of
stresses and a plastified layer jumps through the test piece, being made
visible by a fall in the autographic tensile diagram. But no slip occurs..
In the plastic layer the atoms of the ferrite crystals rearrange them-
selves. As soon as the material is strengthened by cold-working, the
elongation or compression in this layer stops and another layer is plas-
tified. A net of Liider or Hartmann lines appears
on the surface and becomes denser with further HI l”
PV

L7
&
(%]

deformation. When all the material is reinforced,
neither Fry’s liquor nor any varnish will produce
a line network. The etching shows a dark region
and the polished surface becomes evenly dull.

2. We are now confronted with the problem:
how are these thin layers along which plastifica-
tion originates orientated with respect to the
principal directions? At first it is tempting to
suppose that they are in accord with the planes M1
of maximum shear stress, especially if we believe l I l 1 l l l
in slip planes. But these planes do not exist, . .. pigic laers
and, moreover, the inclination of 45° to the main in a tensile bar
principal stress is not confirmed by observation.

We start with the calculation for the simplest case, that of the
‘angle « between the plastified layer and the cross-section of a bar in -
~ tension or compression as shown in fig. 102. The basis of our calcu-
lation is that plastification depends only on shear stress. To eliminate
all influence of change in volume, we superpose a general pressure —s/3
on the test bar. We then deal with the principal stresses

o
(%]

L L
TR

sl’=%§; s,f‘-—-—% and 8’ =—

s
3 3
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At every point of the layer indicated in fig. 102 occur the tensions

4 ’

r_ 81 t 8 _I_sl"'sz

Su == 3 cos2a = % (% 4 cos2a) = s(cos?a — 1),
r_ 8 s s —s 9 =S %) = 2
S = — = cos2e = (3 — cos2a) = $(3 — cos?a),

’ ’
s — s . s . .
1 2 §in 20 = 5 sin 2o = s cos « Sin .

-

8=

The reader is invited to check these expressions by drawing the
stress circle for pure tension.
By the accents in s,,’, s,,', &c., we indicate that we consider the
distortion only, and have eliminated the change of volume which,
moreover, may be supposed to be the same for the substance in both
the elastic and plastic states. This we leave aside for the moment.
The following conditions are fulfilled:

’ ’ ’ ’ = ’ ’ ’ ’ ’
81 +32 +33=0, s,,l —!—-8,,2 +83=0, S,,l +33 =—3”2-

Let us now calculate the specific elongation ¢, in the direction of
the layer. The whole calculation is made for this purpose. The elonga-
tion is

5 (2 oos
py 2G(§ cos?ar).

When cos’a = %, o =35°15' 52",
or cos2a = %, 20 = T0° 31" 44",
then & =0.

What is the physical meaning of €’ = 0? In general, a thin plastic
layer compressed or drawn between parallel planes, with or without a
tangential force, will exert an enormous resistance as soon as it begins
to move (fig. 42). We have studied this effect in Chap. VI. But here
the situation is quite different. We found the exceptional layer for
which the plastic substance does not expand, and we not only note
this fact, but also by calculating s, see that the stress in the
direction of this layer (« = 35° 15’ 52") is zero.

But we may ask in which direction the material is pushed, and
whence,is it drawn, when the test piece is loaded in compression or in
tension. Of course the answer is: in the direction of s;"; and, indeed,
as Hartmann has already observed, we detect at the sides of the test
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piece a low ridge in the case of compression and a shallow groove in
the case of tension. If we touch the polished surfaces with sandpaper
when the test pieces have previously been annealed so as to obtain
a blue colour, we find in these slight extrusions or intrusions the best
way of detecting the Hartmann lines. The method is due to Hartmann.

It is easy to imagine by a glance at fig. 42 that plastification in a
layer ceases as soon as it has started. There is no great preference for
the layers at 54° 44’ 8" with the axis to be plastified, but at any rate
plasticity does occur somewhat more easily in these than in other
layers.

Although of minor importance, we calculate s,,’ =s/3. This is
half the value of s," and

Of somewhat more importance may be the remark that the sudden
change in m, E and @, which -occurs at the moment of plastification,
does not influence our calculation, nor our conclusion. The plastified
layer fits in, only now at an inclination
of about 35°. In all other layers the ts_ggs,‘s, ,
substance in plastic flow would grip by ?
the difference in E and G' as soon as it
was set in motion. In oyr extraordinary
layer and above and below it €,’ =0
whatever E and G might be.

8. We now proceed with the general

case and calculate the inclination of the
Hartmann lines, or more properly ex- l
pressed, the inclination of the layers Fig. 103.—The inclination of

of incipient plastification when we have  Hartmann or Liders lites in mid
to deal with three different principal stress to the upper yield point.
stresses 8, s, and s;.

This case is represented by fig. 103. For reasons of symmetry we
can imagine that plastic layers must occur as conjugate planes per-

pendicular to the plane s,, s, but it is probable that o is a function of
8y, 83 and s;. We superpose — "_1-—-*:—8;_'-—83 and deal with
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In Mohr’s circle we see that the stress s,,’ in the direction of the
layer at the angle « with the plane s,, s; and normal to the plane s;, s, is

’ ’
81 +83 _81 —33

Spo = cos 20
n2 9 9

_atsh_ & s—s %8 cos 2
6 3

For the layer orientated at such an angle that s,,’ = 0and ¢’ =0
we find

% sl+83_232

§1— $3

cos2a =

If s, =0, s3=0, s, = s, we have the expression for the case dealt
with in § 2. We shall now prove that this value (cos2a =%, « =35° 16’)
is the greatest possible deviation that plastic layers can show from
the planes of maximum shear stress for which the angle is 45°. We
ask: what is the least value of «, or the greatest for cos2a?

To show that « depends only on stress differences we write

1 (51— 83) — (52 — 33)

$— 83

cos2a =

Varying s,, the numerator of the fraction becomes as great as
possible when s, = 0, and then cos2x =1} . 518 When 8, 18 zero,
31 - 83
s, the smallest principal stress, is negative. In general, it is only the
difference of the principal stresses which matters. The maximum of
cos 2 occurs when s, = s;. If, then, s; =0 the greatest value of
cos2¢ = %. Thus o = 35° 16 is the minimum inclination.

4. And what is the greatest inclination the layer can reach? «
becomes a maximum when the numerator of the fraction is zero, i.e.
8, + 83 = 2s,. The mean principal stress must just be the mean of the
~ extreme stresses.

In this case alone, for instance under pure shear or torslon, the
layers in which plastification starts, with which the workers in plas-
ticity are so much concerned, coincidé with the planes of maximum
shearing stress. In all other cases the angle between the Hartmann
lings may vary from 70° 31’ to 90°. In fig. 104 we give a construction
for the extreme values of a. No wonder that it was long before proper
attention was paid to the difference. It is to the credlt of Professor
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P. P. Bylaard at Bandoeng * that attention was drawn to this pheno-
menon. He has confirmed the formula for « by well-chosen tests.

As the angle between conjugate plastic layers depends on the stress
differences, we can draw conclusions as to these stresses when we
measure the angle. On the first photograph (fig. 49), Handbuch der
Physik, VI, p. 474 (Plasticity), we find for the angles between the sets
of spirals surrounding the deep indentation of a punch in mild steel,
values decreasing from 90° for the diameter d to 71° 30’ for the dia-
meter 3d. From this we may deduce that at the boundary of the plasti-
fied zone the principal stresses were s, = ), 8, = 0 and s; = 0, and at
the inner circle where the punch made a deep indentation s, = s,/2,
s, =0 and s3 = —3,/2.

Fig. 104.—Greatest deviation between maximum
shear stress and plastified layers. A construction
for the angle of 35° is given at the left.

We repeat that the occurrence of plastified layers is due to a drop
in the yield stress. Work-hardening stops their development. But
before disruption, when the total tension falls, a similar phenomenon
becomes apparent. This only ceases at the moment of breakdown
when it shows at the surfaces of fibrous rupture, the angles we should
expect from our formula. Indeed, in an actual measurement the in-
clination of the indentation of a broken tensile strip to the normal
cross-section was found to be about 36°. For the angle between the
wall of cone and cup and the outside surface of a broken round test
bar, we found an average value of just 54° (fig. 108). Angles of 35°
and 55° are met with in practice for Hartmann lines and angles of
rupture, because often two principal stresses are equal. Then the
formula for the tensile bar gives cos2a = }, « = 35°, and for the steel
sheet evenly stressed in its plane as s, = s, =35, s3 =0, We obtain
a = 55°, which also means an angle of 35° with the surfaces.

* De Ingenieur, 1931, p. B. 249, and 1933, p. B. 129. One also may study the re-
markable application of this relation; F. A. Vening Meinesz, ““ Stresses in the Earth’s
crust in consequence of polar displacements”, Académie Néerlandaise des Sciences,

Vol 111, No. 5, 1943, p. 185.
9 (G 255)
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5. When in the examination of stress-strain phenomena we meet
with occurrences for which at first sight we see no explanation, we
must have recourse to the theory of plasticity. Much controversy has
taken place because many authors found a higher limit of elasticity
or yield point in bending tests than in tensile tests with bars of square -
cross-section of the same mild steel.* The key to the solution of this
mysterious contradiction is found when we know that the phenomenon
is most marked for these materials which show the greatest drop from
upper to lower yield point.

Different experimenters have found these results:

Difference in yield
point found by
Authors Year bending and
tensile tests
(per cent)
A. Thum and F. Wunderlich 1932 35 to 45
H. Moller and J. Barbers 1934 40
E. Siebel and F. H. Vieregge 1934 28
H. Moller and J. Barbers 1935 13
F. Rinagl 1936 0
F. Bollenrath and J. Schmied 1938 0

The more precisely the first indication of plastic yield could be
observed, the smaller the difference became. When we adhere to the
conception that the crystallites are cemented together by a strong
but brittle skeleton, the phenomenon is explained. In the tensile test
we have a sudden drop in stress when the upper yield stress is reached,
because the skeleton, equally strained, breaks throughout. In the
" bending test, the skeleton only breaks at the surface. As it is less

strained in the deeper regions it resists fracture there. We see from

etchings of polished sections that plastified layers occur throughout

the tensile bar. In bending tests, however, short black lines start at
_ regular intervals from the surface and very soon die out.

* A documentated study on this subject is found in Zeitschr. der Ver. deutscher
Ingenieure, 1938, p. 1094, in an article by Bollenrath and Schmied.

More recently an important-study of this subject with a list of literature has
been published by F. K. G. Odguist and C. Schaub of the Royal Technical Institute
of Sv_(,eden at Stockholm (1947). - ]



CHAPTER XIX

The Strengthening of Mild Steel by
Work-hardening ‘

1. The theory of plasticity is based on Coulomb’s assumption
according to which the maximum shear stress is constant during
plastic flow. In later years experiments have shown that plastic yield
sets in ‘when the shearing stress on the octahedral planes reaches’
8, = 45¢1/2, in which s, is the upper yield limit. But we have seen in
the former chapter that for a small deformation, when the skeleton
cementing the ferrite crystals is ruptured, the yield limit drops below
this value of s,,. And now we shall deal with another property of mild
steel which becomes prominent when the deformation is pushed so far
that the steel becomes reinforced. The reinforcement by cold-working
may be very important. Work-hardening, moreover, makes the steel
somewhat brittle. If the hypothesis of Coulomb holds till rupture
occurs, the steel ought to be stretched like syrup or heated glass, and,
when we leave surface tension out of consideration, the pull should
decrease in inverse proportion to the extension. In fact, the pull in a
tensile test increases until the tensile strength is reached. The true
stress at the cross-section where necking occurs and work-hardening
is most pronounced, may even reach three times the yield stress.
Application of the law that maximum shear stress = k at plastic flow
in materials subjected to work-hardening would be erroneous.

Physicists have found by tensile tests on bars consisting of a single
crystal, that the strengthening depends on the magnitude of the sliding
of the lamellae in the crystal. For this reason the reinforcement of
steel is the same, whether the deformation is obtained by extension,
compression or by a combination of these forms of strain. But we are
of opinion that when extended, the material subject to plastic flow
breaks more easily in consequence of internal rupture occurring over
flaws (compare Chap. XXII).

A mathematical treatment of the breakdown during plastic flow
beyond the strain at which work-hardening sets in, implies the for-
mulation of the law relating reinforcement to deformation. This is not
the law expressed by fig. b of § 3, Chap. I. We now deal with the ulti-

’ 121 :
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mate true tensile stress which can be obtained by cold-working. In
the next chapter we shall see that this stress has a real physical mean-
ing although the cone-and-cup rupture shows two different zones.

In 1944, under the supervision of W. J. D. Fokkinga, a series of
accurate tensile tests was made at the author’s request in the metallo-
graphic laboratories of the State Mines, on similar cylindrical test bars
of different length and diameter. The bars were of the same material
normalized at 900° C. for 20 minutes, and then slightly polished. The
steel was very even in composition, but somewhat hard. The average
tensile strength was 43-3 kg./mm.2; lower yield limit 28-5 kg./mm.2;
extension for ! = 5d, average 32-5 per cent.

It is well known, and confirmed by these experiments, that the
tensile strength of bars of different size is the same, unless we go to
bars of a few mm. diameter, in which case the superficial tension
becomes appreciable. But it was a revelation that a very marked
influence of size of test bar on contraction and true breaking strength
could be detected. The tensile strength, calculated on the original
cross-section, depends only on the load at which necking of the bar
begins. There is no question of work-hardening until we have a good
deal of necking.

If we call the original cross-section 4,, and the neck section A4,,
the maximum load on the test bar, i.e. the load on incipient necking, P
and the load at the moment of rupture P,, then we have the following
definitions:

R =P/4, = tensile strength;
R, = P,/A, = rupture stress;

R, == P,/4, = true rupture stress.

In the table we given the results of our tests in so far as they are
of interest for this investigation.

Diameter d | Contraction Teniﬂ% in Tml ° m}%’ tuul;e Rupture stress R, in
in mm. per cent stakgemg. /mmb.' kg. /mn:.’ kg./mm.?

20 59-5 435 716 0405 X 775 = 314
156 60 42-8 75-0 04 x 7560 =30

10 64-3 435 85:5 0-357 X 855 = 306
-7 68 40 97:5 032 x 976 =312

Average 433 ~ Average 30-8
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_ The rupture stress R, was 70-5 per cent of the tensile strength R,
which is noteworthy. From the last column it follows that between the
limits of these tests the reinforcement by cold-working is proportional
to the contraction and local elongation, i.e. to the specific defarmation.

The skin effect on contraction was a remarkable discovery. But
years ago another series of tests showed that even with a wider range
the true rupture stress was raised in exact proportion to the specific
deformation. These tests were repeated with great care, in 1935, by
W. G. E. Tummers, a physical engineer of the State Mines.

Differences in contraction were obtained by varying the ratio of .
breadth to width of tensile bars with rectangular cross-section. The
contraction decreased from 71-8 per cent for square bars to only 38-7
per cent for flat strips with a breadth to width ratio of 40/1. The
tensile strength was always the same, but the true rupture stress in-
creased in proportion to the contraction.

But we see the most striking confirmation of our hypothesis that
reinforcement by cold-working is proportional to deformation at
rupture, in the control of brittle rupture under three-dimensional
stress as will be given in the next chapter, § 2. And with this increase
of the true stress of rupture of the steel to more than double we are not
even at the limit of possible reinforcement. If annealed soft iron is
drawn to wire through a well-lubricated die in small steps so that the
diameter is reduced in the proportion 3 to 1, the tensile strength is
~ raised from 40 kg./mm.2 to 120 kg./mm?, and the true stress of rupture
in the same proportion. It is well known that the tensile strength of
metals may be much raised by cold-working.*

Excessive deformation can only be obtained by pressure. The thin
sheets of cold-rolled Siemens-Martin steel used for the manufacture of
tin-plate in the United States are as hard as spring steel. Normalized
at 900° C. they are almost as supple as paper and must be lightly cold-
rolled again to be serviceable. It is useful for the engineer to know
that under excessive pressure, plastic metals may be deep-drawn or
moulded to a large extent.

~ 2. The moulds for the manufacture of objects of Bakelite or other
plastics are mostly made by the following procedure:

First a model of the object is made from the best obtainable tool
steel and hardened.. Thereupon this model is pressed into the block
of steel which may be cold or red-hot. If it be cold-pressed, then a
tough quality of tool steel is used with a tensile strength of 80 to 90

: . 2;P Lzudka “Festlgkextnnd Materialpriifung », Zeitachr. der Ver. deutacherlng
924, p. 212



124 PLASTICITY IN ENGINEERING [CraP. XIX

kg./mm.2 when annealed and about 140 kg./mm.2 when hardened:

* In Chap. XV, § 1, we calculated for fig. 87 that at an average pres-
sure p = 2-57s, the punch enters the steel, and we showed that the
shape of the underside was unimportant.

Practice has shown that a good impression is obtained at about
15,000 kg./cm.2* If we calculate the yield stress from this figure we
find 15,000/2-57 = 5850 kg./em.2, which is very good for this kind of
steel when annealed. It must be kept in mind that in pressing the
model into the block, its dimensions are somewhat altered.

The cold-pressing or drawing of metals is a question of limiting
tensile stresses and raising compressive stresses. If this is realized
almost every deformation may be obtained.

Under tension alone rupture occurs at relatively small deformation.
In a tensile test on strip iron, rupture (at angles of 35°, not 45° to the
cross-section) occurs first in the central portion because the matter can
only flow to that part of the cross-section from both sides, while at
the edges it flows from three sides, which permits a greater elongation.

When we have to deal with grooved bars for which the contraction
is much impeded, the steel is little reinforced, and the true stress of
rupture falls to a value near the tensile strength.

8. This is the place to mention :that for materials which harden
considerably on cold-working, our law of plastic flow, stating that two
principal stresses are equal, fails.

The theory evolved in Chap. XIII only holds true when by the de-
formation which accompanies the equalization of two stresses s; — s5 or
the maximum shearing stress drops. This drop is at most in the ratio
1/4/3 to % or from 1-157 to 1 when we keep to fig. 6, and more if the
difference between upper and lower yield point is taken into account.

If the strain-hardening exceeds 15-7 per cent, the law of flow is
different from that on which this treatise is based. For that law we
refer to the work of Hilda Geiringer and Willy Prager,} that of W.
Prager,{ of M. A. Sadowski § and H. W. Swift.|| But for most materials,
‘pottery-clay, ductile metals, &c., our law holds true.

* 500-ton Mould-Hobbing Press, Engineering, 20th Oct., 1939, p. 453.

1 Ergebnisse der exakten Naturwissenschaften, 13, pp. 310—83, 1934.

} ¢ Strain Hardening under Combined Stresses”’, Journal of Applied Physics,
Vol. 16, Dec. 1935, pp. 837-40.

§“ A Principle of Maximum Plastic Resistance ”, Joumal of Applied Mechanics,

at the Annua.l Meeting of the American Socmty of Mechanical Engineers,

Nov. 30-Dec. 4, 1945,

||  Plastic Stmm in Isotropm Strain-hardening Material ”, Engineering, 18th Oct.,
1946, pp. 381-4.



CHAPTER XX

The Occurrence of so-called Brittle
Rupture in Plastic Material

1. In the area of rupture of mild-steel structural parts two different
regions may be discerned; one of fibrous appearance which looks as if
it is torn and deformed, and the other rather granulated with glittering
facets, suggesting that separation
takes place along the boundaries
of the crystallites.

An examination was made of
broken tensile bars, previously
grooved in a similar manner to
the compression pieces shown in
figs. 91 and 92, Chap. XVI. (Dia-
meter of cylindrical bar 20 mm.,
diameter at groove bottom 10
mm.) Six bars were sawn from
the length after different degrees
of elongation (the sixth after rup-
ture) and etched. Here are some
of the experimental results.*

1. The test bars underwent
considerable deformation at the
groove. As shown in fig. 105,

which was taken just before rup-
tar, thosharp butond goovo e 0T 20 Y

2. Near ‘the rupturing load, cracks became visible in the groove.
bottom. Perhaps the quasi-cylindrical appearance must be explained
by excessive elongation causing laceration of the steel.

*W. Kuntze: * Kohesionsfestigkeit ’, Sonderheft XX Staatl. Materialpriffungsams,
Berlin, 1932; A. Thum und F. Wunderlich:  Fliessgrenze bei behinderter Formin-
derung ”, Forschung auf dem Gebiete des Ingenieurswesens,” Band 3, 1932, Heft 6.
The best and most convincing experiments have been made by Dr. P. Schoenmaker
in the laboratories of Transformatorenfabriek Smit, Nijmegen.

126 -
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3. After the bottom of the groove begins to tear the load may still
be increased, and then the bar suddenly breaks with a loud report.

4. The granular central region of the area of rupture (fig. 106)
had an average radius 7, = 3-68 mm., and was surrounded by a greyish
annular zone with an outer radius 7, = 4-47 mm. By contraction, the
outer radius in the bottom of the groove, which was r; = 4:-85 mm.
before the test was reduced to 7, = 4-47 mm., measured on the broken
parts of the test piece.

5. In the above-cited publication of Thum and Wunderlich, which
contains illustrations bearing out the
results of our investigation, we read
about the etchings:

“ First, two small, dark, lance-shaped
marks appear near the bottom of the
groove. At the last moment before the
weakened section breaks down, two lines
jump up from these spots at an inclina-
tion of 45°.” In fig. 106 we have drawn
these lines according to the photograph
of Thum and Wunderlich, although our
own lines were more regular and straight
These lines are neither lines of rupture
nor slip lines. They are only black
streaks showing thin layers of plastifica-
tion in the sound steel before rupture.

Fig. 106.—Deformation and :
et T e e 6. All the groqved test pieces and
of a grooved bar. also several cylindrical ones were turned

from the same bar and heated for 15

minutes at 900° C. The steel was uniform in quality.

Tensile strength (highest point in fig. 4) calculated from the original
cross-section, R = 44-55 kg./mm.2

Rupture stress calculated from the original cross-section (end-point
in fig. 4), R, = 33-6 kg./mm.?

Limit of elasticity or yield stress s, = 30-15 kg. /mm 2

Contraction 66 per cent.

Load for rupture of grooved bar P = 4775 kg.

Area of grooved cross-section before test = 73-8 mm.2

Area of grooved cross-section after test Fy = 62-8 mm.?

Area of coarse-grained part of section of rupture = 42-5 kg./mm.2

Average tensile strength P/Fy = R, = 7 6-1 kg. /mm 2

~
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2. With the knowledge of the theory of plasticity we have acquired,
we ought to try to calculate the ratio of the area of granular appearance
to the total area of rupture, and the breaking strength.

This might be done in the following way:

When the cracks in the bottom of the groove grow deeper, the
arrow-like marks enlarge, the material is reinforced by work-hardening,
and at the same time, as we shall see, the axial tension in the central
portion of the section increases. But as the crack becomes deeper, the
resisting area decreases. Rupture occurs with almost explosion-like
violence when the maximum load is attained. The explanation of the .
phenomenon of rupture is mainly to be sought in the considerable
increase in axial tension in the central part during the development of
the arrow-like flow regions. As we are unable to establish the increase
of axial tension with the deepening of the cracks, we cannot fix this
maximum, but must confine ourselves to the calculation of the stresses
at the moment of rupture.

The mean radius between 7, and r, (see fig. 106 and § 1, section 4)
is r = 4-075 mm. Hence the area of the resisting part of the annular
section is 7(4:075% — 3-68%) = 9-65 mm.2

The increase in strength by work-hardening is considerable. The
section shrunk by about one-third, and as, according to the preceding
chapter, the increase in strength is proportional to the deformation,
the average stress of rupture was 1-5 X 33-6 = 50-5 kg./mm2 We
have shown in Chap. XVI that the principal stress in the resisting part
of the annular area beside the crack is obtained by multiplying by

+ 7/2). Thus the principal stress is 2-57 X 50-5 = 130 kg./mm.?

W'hat might be the axial principal stress s, in the granular central
part of the reduced section at the moment of rupture? The author
has made many experiments to test the theories of rupture and also
tried out the experiments described in literature. This subject will
be dealt with in Chap. XXI. At first we infer that brittle rupture occurs
according to the hypothesis of Mariotte, better known as that of
Poncelet, namely, that the greatest specific elongation is the criterion
of rupture. '

In the biconical central pa.rt we have to deal with three-dimen-
sional stress. We know the radial stress at the periphery. This is
exerted by the tension s, = 1-57R, in the arrow-like part of the longi-
tudinal section (R, denoting the stress in the steel due to work-harden-
ing). Now this work-hardening is not equally distributed. The specific
deformation on which it depends is a maximum at the bottom of the
‘groove and at the region of the arrow-like marks it is least. For deter--
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mining the tensions in the double central cone, the value of R, in the
annular space near the points of the arrow-like marks is decisive. In-
stead of taking R, = 1-6R, as was done for the average tension in the
annular ring, we now take R, = 1-2R,, whence R, = 1-2 X 33-6 = 40-3
kg. /mm.?

For a radially-stressed body, the radial and tangential stresses are
the same. Therefore we know in the double cone that

83 = 83 = 1-67 X 40-3 = 63-3 kg./mm.?

Considering the stresses originating in the biconical core from the
radial pull of the annular plastified region, it seems that these stresses
are only of great magnitude when the plastic ring is well developed.
This explains the occurrence of & maximum.

According to Poncelet’s hypothesis of rupture with 1/m = 0-3,
steel of a tensile strength of 44-55 kg./mm.2 only breaks in this case of
three-dimensional stress when s, reaches the value

44:55 4 03 X 2 X 63-5 = 8265 kg./mm.?

It is noteworthy that the stress of rupture in the core is almost
doubled when radial and tangential stress are fully developed.

The aggregate axial load on the grooved bar which leads to rupture
for the outer plastified annular region and the brittle central core
amounts to

P =965 X 130 + 425 X 8265 = 4760 kg.,

which agrees closely with the test result.

At a later date our own tests were fully confirmed by a series of
carefully made tests by Dr. P. Schoenmaker and his collaborators at
N. V. Willem Smit’s Transformatorenfabrieck at Nijmegen and by
some fine tests of Dr. v. d. Willigen of Philips at Eindhoven.

For sufficiently deep round grooves of 60° vertical angle the values
of B, were always between 1-6 and 1-65R (notation given at the end
of §1). -

For the central core which broke like a brittle material under three-
dimensional stress, Mariotte-Poncelet’s criterion of rupture was con-
firmed in all these experiments. We recall thxs statement in Chap.
XXT, §§ 4 and 5. :

3) The fibrous torn conical outer region and the granular brittle
flat inner region may be seen more clearly in the cone-and-cup rupture
- of cylindrical tegt bars of mild steel than for the grooved bar. For this-
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_typical appearance of rupture the theory of plasticity must also pro-
vide the explanation. In the tensile test the steel flows at least at the
periphery until rupture occurs. In this case we may apply the theory
of plastic flow provided we introduce the tensile strength-R instead
of the yield stress s,. In order to keep the problem simple, we neglect
the difference between R and R, (fig. 4). When the
load is increased necking proceeds umtil rupture
occurs with a loud report.

What happens at that moment?

Later we shall introduce necking and work-
hardening, but first we refer to fig. 107, and calculate @_@
the distribution of stresses assuming that the section
of rupture is not reduced. At the sides of failures in
steel, pores, slag-inclusions and stress concentrations
are met. In the interior, under three-dimensional - Fia, m._',rﬁ -
stress conditions, in consequence of these stress con-  rupture of a test
centrations brittle rupture occurs along the boun- e meseal
daries of the crystallites according to the hypothesis
of Poncelet. Local fissures unite in a central rent. But around this
transverse crack we still must apply Poncelet’s formula. At the edge
the ideal principal stress therefore is (Chap. V, fig. 31)

]

s‘=31—-§3;;n-—83; 8 = 2:BTR, s, =83=151R.

']—. - 0’3, 8‘ = 81(1 - 2 X 0'3 X lﬁ?‘ = 0'63381, 8‘ = R,
m 2-57
hence s, = 1-58R.

Beside the central crack the steel shows an apparent tensile stress
of 1-568R.
In the layers at some distance below and above the cross-section of
future rupture, the steel still flows under the tension R. We therefore
have the equality '

md2 wd? nd 2
e ——*)1-58R=—=R.
(4 )R ="

From this we obtain d; = 0-6d,, which agrees fairly well with the
ratio found for the cup-and-cone rupture shown in fig. 108 for a bar of
40 mm. diameter where d; = 0-56d,. The photograph and the dimen-
sions were taken at the Institut du Génie Civil of the University of -
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Liége. But we have many other records which bear out that the ratio
is 0-6. '

If the contraction had been taken into account the result would
be the same, because work-hardening is the same at the section of
rupture and also at nearby sections.

’ Fig. 108.—Cup-and-cone rupture as a result of a tensile test on’ mild steel

But why must the iron be torn like a truncated cone at an angle of
55° with the wall?

At the end of § 4, Chap. XVIII, we have shown that this is the
inclination for which the planes of rupture show a preference under
pla.stlc conditions.

It is essential for the explanation of the cup -and-cone rupture that,
till the last moment, the material shows little preference for plastic
flow or brittle rupture both calculated by the same tensile strength
RorR,. ,



CHAPTER XXI

The Theory of Rupture

1. In this treatise no more will be said about rupture than is dic-
tated by the principles of plasticity. We shall omit the theory of the
rupture of brittle materials, which break under compression by tensile
stresses at flaws in the structure, and shall deal only with the rupture
of ductile matter which occurs when plastic flow ceases. This kind of
fracture, which may also occur in so-called brittle material under
unequal pressure, can be explained by a hypothesis of rupture which
is confirmed by experiment. The formulation is due to the seventeenth-
century French physicist Mariotte. In the beginning of last century
attention was drawn to it by the French mathematician and engineer
Poncelet, and it was generally adopted on the Continent.

We express this law of rupture as follows:

At a given temperature, the greatest elongation in the material in
consequence of three-dimensional stress is the criterion for britile rupture.

It is impossible to verify this law by tests on brittle materials, at
any rate in the customary manner. Many experimenters have
measured the stresses at the surface of bars under tension by means
of X-rays* but the results were mostly confused. Although these
experiments were made with ductile metals it is known that the stress
conditions at the surface of the material are quite different from those
at a small depth. We have already mentioned surface tension, but a
slight polish may give rise to compression. Moreover, the surface shows
numerous faults in structure as is revealed by examination with the
electron microscope. The stress concentrations resulting from these
flaws or faults may be estimated to amount to two or three times the -
calculated stresses. Not only the inter- and intra-crystalline surface
failures but also many defects and irregularities within the material,
make it impossible to test the law of Mariotte-Poncelet-De St. Venan
by tensile or bending tests on brittle material.

* Bollenrath and collaborators: Zeitschr. der Ver. deutscher Ingenieure, 1939,
p. 129, and 1940, p. 539. Much better results have been obtained by A. Schaar,
¢ Kristallitverformung an der Oberfliche bei statischer Zug und Druckbeansprug-
‘hung *, Zeitschr. fiir Metallkunde, 1944, p. 70. :
. : 131
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The reader ought to make some simple tests on glass bars or
to read the famous communications of Griffith * on this subject to
be convinced that this law does not apply to the rupture of brittle
matter. It is also very instructive to investigate experimentally the
existence of stresses of a different nature at the surface of bars of an-
nealed mild steel. We mention some curious facts.

(a) In a compression test on polished cylinders, the Hartmann
lines appear long before the yield stress is reached and form screw-
lines on the surface sloping at 35°. The interior is not affected.

(6) In a tension test on similar bars plastic layers occur through-
out, marked as ellipses on the surface of the cylinders. Their inclina-
tion to the normal cross-section is 35°.

(c) When an annealed tensile bar, which ought not to be polished,
is loaded to about three-quarters of the yield stress, then sawn longi-
tudinally and etched, short small black streaks, originating at the
wall, become visible at regular intervals, showing that the yield limit
in the wall is attained at an early stage.

(d) As already stated in Chap. XVI, § 3, the superficial tension at
rupture must be taken into account. This tension can be calculated
when two or more tensile tests on wires of different diameter are made.
Textbooks, for instance Hiitte I, 1936, pp. 700-1, mention that the
tensile strength of wires is represented by the formula

—R 46
R °+d’

d being the diameter of the wire.
When we express the values in kg. and cm. we find for annealed
steel wire 38
R—5730+‘ kg./cm.2;

for tungsten wire R = 19,000 + 673 kg./em.2

For the latter metal this gives a tensile strength of 65,000.kg. /cm.2
for a diameter of 0-015 mm.

For wires of quartz and glass this phenomenon has been especially
well studied.} The special conditions prevailing at the surface of rock

* A."A. Griffith: “ The theory of rupture ”, Proc. of the 1st International Congress
Jor Applied Mechanics, p. 55, Delit, 1925; Handbuch der Phyik, Vol. VI, p: 455.

1 8. Shurkow: Physikalische Zeitschr. der Sowjetunion, Vol. 1, p. 123 Charkow,
1932; Griffith: Phil. Trans. Roy. Soc., 221, III, p. 164 (1923).
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salt lead to rupture in a tensile test, long before the breaking strength
within is reached. This has been proved by Jofié,* and explains why
tensile tests without a high surrounding pressure are unsuitable for
investigations on the laws of rupture. But it will be shown that Ponce-
let’s law of rupture (the maximum strain theory) may be tested by
eliminating the influence of surface tension, and of external and internal
faults, and making the experiments under a surrounding pressure of
sufficient magnitude. The details of many experiments of this kind
have been published.

2. We avail ourselves of some famous and reliable tests t; in the
first place the classical experiments made by von Kdrman, with marble,
for which material m was found to be 3-7. We express the stresses in
kg./cm.? and calculate the ideal stress

S, S.
8 =8 — _2_._{____3
m
No. 8 8y 85 8;

1 — 235 — 235 —2300 4450
2 — 500 — 500 —3150 1485
3 — 685 — 685 —3485 +440
4 — 845 — 845 —3910 +440
5 —1650 —1650 —6090 +440

All in kg./cm.2

Furthér, we use the results of experiments on cement 1]101‘13&1‘ made
in the laboratory for testing materials at.Ziirich for which m = 4-2.
This high value of m is due to 11 per cent porosity.

No. i 8 8 83 8;
1 —100 —100 — 935 147
2 —350 —350 —1700 140
3 —510 .—b10 —2240 145

- All in kg./cm.2

-* A, Joffé: The Physics of Crystals, New York, 1928.

t Versuche dur Klarung der Frage der Bruchgefahr, von Ros und Ewlnnger I]’
* Nichtmetallische Stoffe. Eidgendssische Materialpriifungsanstalt zu der E. T. H.
Ziirich , 1928, p. lOmdﬁg 32, then p. 20 and fig. 47, and p. 18 and fig. 43.
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And lastly, we have experiments with pure cement for which
m = 4-4, caused by 28 per cent porosity.

No. 8 8y 8 8;
1 — 45 — 45 — 555 91
2 —355 —355 —1525 73
3 —635 —635 —2485 75

All in kg./cm.2

The first of each series of tests was generally made with insufficient
surrounding pressure. If this is omitted Poncelet’s law is fully con-
firmed. But this law may also be tested for brittle materials which are
somewhat plastic, so that small faults at the surface or within are
eliminated. Perfect agreement must not be expected in this case.
Take, for instance, cast iron, for which Bach * found that the rupture
stress at compression, tension and torsion are in proportion:

Ry:R,:R;=4:1:0-8 with m=4.

He pointed out that the formula

s+ s
$§ =8 — 2173 + 3
m

gives for compression

81=0, 82=0, 33=—R3 8‘=§—2=R:

for tension s, =R,, 8 =0, s;=0, s;=R, =R;

for torsion
s] = R3, 89 = 0, 83 = —Ra, 8; = 1'25.R3 = R.

More evidence is provided by later investigations.f Ros and
Eichinger mention at the beginning of p. 14 that m increased from
3-7 to 7-4 and from 3-3 to 6-5. We take m = 6 and calculate s; accord-
ing to a series of tests given in Table IV.

Tests 3, 4 and 5 were made on hollow tubes, 6, 7 and 8 are torsion
tests, . '

* Bach: Elastizitdt und Festigkeit, 1911, p. 166 and p. 324,
1 Ros und Eichinger: Versuche zur Klirung der Bruchgefakr, ITI, ¢ Metalle **, 1929,
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No. 8 8 8y 8¢
1 1740 —175 —3890 | 1740 4 4__065 = 2420
2 | 1700 —170 —3900 | 1700 + 4179 = 2380
3 1700-- —170 —3770 | 1700 + 3_91‘_0 = 2360
4 2025 —205 —2360 | 2025 + 20 — 85 _ 2465
5 2025 —205 —2240 | 2025 - 2_4_45 = 2430
6 2140 0 —2140 | (1+3) 2140 2500
7 2120 0 —2120 | 1-167 X 2120 = 2470
8 2110 0 —2120 | 1-167 X 2110 = 2460
All in kg.jom.?

If all the 20 tests are checked with the law of Mariotte-Poncelet
the agreement is at least as good. That the average tensile strength
2215 kg./cm.? and the average compressive strength 8495 kg./cm.? are
somewhat less in accordance to this law may be explained by the facts:

1°. The porosity has a greater influence on strength in a tensile test
than in a test with compound stresses.

2°. The bulging in the compressive test causes extra stresses which
are not taken into account. Cast iron in tension always breaks at
pores, slag inclusions or flaws.

The author has carried out many experiments on bars of the shape
shown in fig. 75 and other shapes, made from an alloy consisting of
75 per cent Pb, 23 per cent Sb and 2 per cent Sn (elongation 0 per
cent) and obtained m =4, a good confirmation of Poncelet’s law.
We attach much importance to the statement at the end of § 2 of the
previous chapter, that ductile materials breaking with a brittle rupture
under three-dimensional stress also confirm Poncelet’s law.

8. Some confusion exists on the condition of plastic flow and the
condition of rupture. We therefore repeat that for all materials,
brittle as well as ductile, plastic flow sets in when the cntenon of
H&xwell is fnlﬂlled ie. -

, sl’+8,’+s, —s,s,—s,sl——sls,-—-s,,’, .
10 (G 255)
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and that in brittle and ductile material, rupture always occurs according
to the criterion of Poncelet, i.e. when

si—s———z_'—ss-——-R.

m
This applies to static tests.

It may be asked whether a constant relation exists between the
rupture stress for tension or bending and for torsion in fatigue tests.
The investigation of this subject by the National Physical Laboratory *
gave a perfect confirmation of Maxwell’s formula for mild steel with
0-1 per cent of carbon. A

The repeated stress tests gave R; = 0-58R,.

The same result has been obtained by many experimenters in
different countries } for several ductile metals. [t ¢s now a well-estab-
lished fact that the criterion of Maxwell for the beginning of plastic yield
also holds true for the breakdown under fatigue of ductile metals. Repeated
plastic yield destroys the material.

For brittle materials undergoing fatigue tests it seems that the
criterion of Mariotte-Poncelet must be applied. On the Continent as well
as in England and America RB; = 0-93R has been found for cast iron.
For m = 4 this relation ought to have been B; = 0-8R, but m generally
is greater than 4 due to the porosity of cast iron and also because
irregularities in the structure seem to have more influence in repeated
bending than in repeated twisting. :

4. We have now to deduce the law according to which materials,
considered as brittle, become plastic at normal temperature. But first
we calculate when annealed mild steel breaks like a brittle material.

In order to simplify the calculation we assume (fig. 4) that the yield
stress is half the tensile strength, i.e. sy = 0-5R. And dealing only
with common applications we take two principal stresses equal, here
8, == 83. For steel, m = 10/3.

According to Poncelet, rupture occurs when
8ts_p-

o

8 —

“According to MaxWell plastic yield occurs when
‘E’ngmwmg, 12th July, 1935, p. 44.

t La fatigue des Métaux par Cazauz et Persoz (Paris, 1943), pp. 88-9. A long list of
literature on this subject is published in Metallwirtschaft, XX, No. 38 (1941), pp. 931-7.
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The material hesitates and rupture and yield limit coincide when
both equations are fulfilled at the same time, i.e. when

8 —06s3=R, s, —s3=05R or s =11T5R, s,=s;,=125R.

Mild steel with a tensile strength of R = 40 kg./mm.2 breaks under
three-dimensional tension when -

8, =70 kg./mm.2, 8y = 83 = 50 kg./mm.2

or expressed more exactly, it is then at the margin of plastic deforma-
tion and elastic rupture. It certainly behaves like a brittle matenal

when , s2 = 83 > 50 kg./mm.2

5. By work hardenmg the yield limit may be raised. When a bar
is cold-strained above the yield point and the load removed, the yield
limit becomes s, = oR. For work-hardened mild steel ¢ may be situated
between 0-5 and 1(0-5 < o << 1).

Now we repeat the calculation of the former paragraph for s, = oR
and find 9

81—-7-;;83=R; 8y — 83 = oR;

m — 20 —_
R; =5 ="M p
m — 2 =8B m—2

8§ =

If ¢ = 1, when by work-hardening the ductility has been exhausted,
these relations become
81=R, 82=83=0.

To obtain a brittle rupture in a tensile test on mild steel the speci-
men should be first drawn and hammered to maximum elongation.

6. The so-called brittle materials differ from the ductile in the
property of breaking without preliminary plastic deformation in a
tensile, bending or twisting test under atmospheric pressure. But this
is only an apparent difference. Tested under sufficient surrounding
pressure all materials become plastic. Mathematically expressed, a
material is brittle when S ‘

>R or s,=oR for 0 >1.
The author made some interesting tests demonstrating that con-

crete and hardened cement mortar may be plastically deformed
When do these materials become ductile?
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Let us call the lateral pressure s;, which is equal to s,. This-is the
greatest principal stress, and the axial pressure on the test piece (of
greater magnitude s,) is, in an absolute sense, the smallest pressure,
as all tensions are negative. Rupture occurs according to Poncelet when
Sth_p

m

3;=31-"'

Plastic deformation occurs when 8, — 83 =8, =oR.
We are at the limit of brittle rupture and plastic deformation when
both equations are fulfilled at the same moment, that is, when

m—a c—(c—1)m
81=32=;n:—-R; 83=-———"Lb_—2)—-R.

For cement mortar (see § 2), m ='42, R=145 kg./em.2, and we
can add ¢ =8. So we find that the cement mortar becomes plastic
when the lateral pressure exceeds

8 = 8, = —250 kg/cm.?

A pressure on the end of the test block of less than
83 = —1160 kg./em.?

will then start plastic flow.

Rock salt and slate become plastic at about the same pressure,
For other materials like marble with m = 3-7, R =440 kg./em.2,
o =1, we need higher pressures, but it is certain that in the earth’s
crust-at relatively small depths every kind of rock is perfectly plastlc

The theories of elasticity and plasticity belong to the basis of scien-
tific mining* but are unable to explain the current effects of earth
pressure. The theory of stress distribution in incoherent masses is
much more in accordance with reality. However, the first-named
theories must be mastered before this more intricate subd1v1swn of
apphed mechamcs can be studied.

* #“ Leg tensions autour de cavités d’aprés la théorie de Pélasticité. La pression du
toit sur le charbon ”, Revue Universelle des Mines, 1941; Proceedings Royal Netherlands
Aoademy ¢>wa’mma, 1939 and 1940, -



CHAPTER XXII

Rupture at Sharp Incisions

All material can rupture in two ways:

1. Through plastic flow, according to the law of Maxwell amended
by the author, i.e. with perfect plasticity, flowing and contracting like
heated glass while the difference between two pnncxpal stresses re-
mains equal to the yield stress.

2. With a sudden rupture, according to the law of Manotte-
Poncelet, when the greatest strain (extension) reaches
the breaking strain. What happens when the load on
our structural part is gradually increased depends on
which of the criteria is first fulfilled.

At the free surface of a mild-steel beam one of
the principal stresses, called s;, is zero.

When s,, another principal stress, is also zero, the
material flows when the only principal stress s is equal
to the yield stress. If another principal stress exists,
the greatest strain is even less and the danger of
sudden rupture is still smaller. Hence we come to
the peculiar conclusion that a breakdown in plastic .
material, for instance in mild steel, will never start a
at the surface. But a brittle rupture—a sudden _Fie. 109—Beam
laceration—may occur in the interior of such material  high tension.

at a spot where three-dimensional tension prevails.

Tmagine a hot-rolled steel beam rapidly cooled (fig. 109). It may be
that the thin rib first solidifies and then the tips of the flanges. These
parts cool down further while cores at @ of the section are still red-hot.
When these cores also become solid they fit in under a negligible ten-
sion. Let us suppose that the cores are only 100° C. hotter than the
‘material farther off which is already blue-warm; and then the tem-
perature equalizes. The core tends to shrink and with the modulus of

elasticity £ = 2,000,000 kg./cm.?, Poissons modulus m=%’, and

the coefficient of expansion a= 0-00001, the tension in all directions
would be 5000 kg./cm.2 This is not so harmful as it looks because
K 189 ' o
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the ideal tension according to Mariotte-Poncelet would only be
5000(1 — %) — 2000 kg./om.? But this high tension in all directions

22722

’l

Fig. 110.—Rents which occurred when a beam was cut by an oxy-acetylene torch

makes the mild-steel beam liable to brittle fracture. By superposing a
load on the structure there is a chance that the breaking strain may be
reached before plastic flow sets in, and in fact this often happens. The
author has seen sixteen ruptures when the flanges of four beams were
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Fig. 111.—Bar under tension with grooves of hyperbolic shape

cut at both ends by the oxy-acetylene torch (represented in fig. 110).
The rents in the rib starting from the danger spot were due to the
expansion of the flanges when they were heated.

But swhy does a brittle rupture often spread in a plastic material?
The question is-so important in engineering that it must be amply
discussed. :
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Brittle fracture in mild steel indicates tension stress in every direc-
tion. We therefore have to infer the occurrence of three-dimensional
stress near the ends of cracks. In order to prove the existence of such
stresses we start from the stress distribution accbrding to the laws of
elastic deformation and tensions near the bottom of incisions. Since
Inglis solved the problem by means of elliptic co-ordinates we may
refer to the literature.*

Let fig. 111 represent a stretched bar of great length in the direc-
tion of the X-axis. The grooves at both sides are hyperbolic, according
to the formula

If we consider a section of this bar of length ¢ and suppose the pull to be

P, then the average tension in the weakened section is p = %—t

2
The radius of curvature in the bottom of the groove is p = %.

Transformed from elliptic co-ordinates to orthogonal co-ordinates,
the principal tensions in the danger section are

(@ + 2ap — 9 (a* + ap)

" (@® + ap — y2)t {(a + parc tanJE—l— \/&;} P
P
(@ — ) (@ + ap)
3y= = - p’
(@ + ap — y?)} {(a -+ p) arc th%+ \/ap}
a? —I-Aap
s, = 06

_ 2
(@® + ap — )} {(a +p) arctanJ—E + 1/;;3}

This last tension s, in the direction of the X-axis is derived from s, .
and s,, assuming that the width w and the breadth ¢ of the bar and the
incision are so great that a contraction in the length w of the en-

dangered section may be neglected. Then s, = S Sy s". For steel
10

* H. Neuber, Kerbspannungslehre, Berlin, 1937, p. 33: Die beiderseitige Aussenkerbe.
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p = o'25a. Max. s, = 2:65p
b=o0's5a. Max.s, = o'5p
ylat — 22 [b* =1

Fig. 112.—Principal stresses in a grooved bar (p = a/4)

In figs. 1124 the distribution of the three principal stresses is
shown for half the section of the incised bar having hyperbolic grooves
with curvatures at the vertex respectively

_0 0 de=0
pP= 7 p= 16 pP= 100°

We see from these figures that three-dimensional tensile stress occurs
in grooved bars below the bottom of the notch and that the tensions
tend to infinity when p decreases. This was to be proved.

Now we return to the theory of plasticity.

At the bottom of the groove s, = 0 and, as in plastic flow two ten-
sions become equal, s, = 0.

i s13p
p = al16. Max.s, = 513p

L b= o0-25a. Max.s, = o97p

y*a* — z2*b* = 1 s,

P

= Sx

Yigy

Fig. xxa.—-:?rincip.l stresses in a grooved bar (p = a/16)
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Sz=1276 p

p = oo1a. Max. s, = 12-76p
b=o01a. Max.s, = 2:46p
ylat — 2 [b* = 1

Fig. 114.—Principal stresses in a grooved bar (p = a/100)

But all three tensions rapidly increase when we enter the material.
For cylindrical grooves of curvature To (ﬁg 115) this increase of ten-

Fig. 115.—Plastic flow in a grooved bar
sions takes place according to the law s, = % (1 + log, ;),
- . 0.

8y = 8y log, ; and s, = s;log, :-
0

‘o



Fig. 116.—This bridge girder had stood up to heavy traffic and was of excellent mild steel, yet
" rupture occurred without any deformation when the bridge was blown up. The
fracture has a brittle appearance
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s, is double the elastic limit for = 2-832r,. This is very near the
bottom of the groove when 7, is small.

The differences in tension are s, — s, = sp, and 8, — s, = s,, where
s, represents the elastic limit or yield stress.

The steel flows at the bottom of a rounded notch, but at some d18~
tance the three-dimensional tensions become so large that the material
no longer flows but breaks in a brittle manner. For sharp rents this
rupture occurs very near the end of the rent. Often the rupture is
explosmn—hke and spreads far into the material.

Fig. 116 is a photograph of a rent in a blown-up bridge girder.

The theory of brittle rupture has become of the utmost import-
ance since it has been recognized as the basis for the study of
welding. We strongly recommend the study of “ Recherches, Etudes
et Considérations sur les Constructions Soudées ”’,* which contains a
wealth of facts on this subject and is complementary to this treatise.

* Par F. Campus, Professeur & 'Université de Liége, Sciences et Letires, Liége, 1947.



CHAPTER XXIII

Applications

1. Indentation of Curved Surfaces.

With our acquired knowledge we have been able to solve many
problems on plastic deformation and stress distribution. It may be
profitable to give some more examples. We start with the analogy of
the problem of fig. 16, and deal first with a cylinder of plastic material
compressed on two quadrants
and drawn over two others
(fig. 117). As soon as the com-
pression —p and the tension p
at the surface attain the value
p=Fk (in which £=sy/2, half
the yield stress) the cylinder
‘becomes plastified in the re-
gions filled with lines of maxi-
mum shearing stress. The yield
shearing stress is not reached
in the dotted regions except
along the diagonals. Every
zone is in equilibrium under the

. Fie. 117—Cylinder of ductile material subjected stresses along its borders. The
over two opposite quas ts to . .
mnol.\ over the other two until plastic yield occurs. curved Sheﬂﬂng'sm tra]ec-

tories are logarithmic spirals.
In fig. 118 we show the case where the cylinder is compressed over
three sectors of 60° and drawn over three others. The reader must
begin with the investigation of the hexagonal prism, for which he will
find that pressures and tensions p = +(1 + #/6)k on successive sides
start plastification. The same stresses must be exerted on the six
sectors of the cylindrical surface and lead to the trajectories shown
of critical shearing stress k. When the number of sectors, alternately
drawn and compressed is increased, we at last come to the limit

= +(1 + /2.

Ifa sun'ound.mg pressure —p, is superposed, we have the case of
ue 4
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a cylinder with sectors alternately loaded and unloaded. Omitting the
load on all sectors except one, we have the analogy to fig. 16.

Fig. 118.—Plastic yield for a cylinder divided into six
sections over three of which, symmetrically situated,
compression occurs and over the other three, tension.

2. Parallel Cylinders forced together.
When two cylinders of equal diameter are forced together until

plastic deformation occurs, planes of contact are formed.
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F1g119 shows a number of cylindérs pressed  together until the
pléne surfaces of contact subtend a right angle at the axes of the cylin-

ders. It can be proved that the convex parts remain cylindrical. - _»
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We suggest that the reader construct figures for the case of cylin-
ders whose surface of contact is less developed, and that he prove
that, if the diameters of the cylinders be different, the greater cylinder
remains undented due to work-hardening.

Uy
TP
NER KB
HERERO
AL A
Ematie vaRTTus

Fig. 120.—Plastic regions at the bottom of a ded groove subjected to i

8. Rounding of the Bottom of the Notch.
The calculations relative to fig. 120 are lengthy. The result obtained

is that when
l= ¢ Te= ¢ 8”7",
1+4 1+¢
test pieces with rounded or sharp notches, having O as vertex, are
equivalent. . ,

We note that the effect of rounding on the resistance of a bar of
plast® material is least when the:radius is not very great. It is a prob-
lem of analysis to prove that, when ! has the calculated value, O is
situated on the produced generating line of the notch. -
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- 4. Square Hole in a Plastic Mass (fig. 121).

Now we venture to give the solution for plastic flow about a hole
of square section in plastic material subjected to external or internal
pressure. (See Chap. V, § 2.)

Fig. 121.—Plastification around a square hole in material subjected to
external or internal pressure

We must not omit to insert non-plastlﬁed areas between plastified
regions with different patterns.

Fig. 122.—Special tool attacking tangentially the sm-face
of plastic matter

6. The Resistance of Plastic Material to Tangentwl and Oblaque
Forces acting on the Surface.
The force needed to move the tool shown in ﬁg 122 to the left
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supposing the start of the operation is in the position indicated with
all the teeth biting the plastic material, is

K=ka(1+’§r>+lab.

When only the surface is indented, i.e. when a becomes negligible,
K = kb. Of more interest is the case of the cylinder shown in fig. 123,

Fig. 123.—Special tool attacking a
cylindrical surface

where the force per unit length is K = ke, ¢ being the length of the
chord.

A good exercise is to construct the angles in fig. 124, representing
the case where the pressure of a punch is inclined to the vertical.
Compared to fig. 16, it becomes clear that symmetry, as shown in that

. Fig. 124.—Indentation of a flat surface by
inclined forces

figure, is exceptional. Fig. 16 is not really exact. For materials not
subjected to work-hardening the material is mclmed to be pressed up
at one side only.

- 8, The Thick-walled Cylmder under Internal Presgure.

- Now that. we are near the end of this treatise it is worth returning
_ to Chap. II to discuss the axial tension s, for the thick-walled cylinder,
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the data for which are indicated in fig. 125. We know from Chap. XIIT-
that s, will either take the same value as s, or 5,. The condition for
plasticity is then reduced to Coulomb’s law

St — 8, = 8,,

and the wall is plastified throughout at the internal Ppressure
b
P =8 log, -.
a
Ss
“b | ’ Plastic régime See

:;—,_i 5, = 2klog, x/b
s, = 2k (1—log, x/b),

5, =5 0rs, :
" Sn

r | Sr=-05825, 5¢=0418S,
i Sz=-05625,

Ss

' §S I Elastic régime

sC

e s=rpta(1-5

ai b!
A R
s, = O or a given value
Sn

(o]
Sr=-0-391S0 St = 0-746 So
T 3‘2 =0
Fig. 125.—Thick-walled cylinder yielding to internal pressure. Below:

stress circle at the start of plastic deformation at the inside of the cylinder.
Above: stress circle for total plastification.

But at what radius does s, jump from s, to 5,2 This depends on the
axial force in the wall.

When the pressure p is exerted by a ground plunger then the axial
force is zero, and the radius is calculated from the condition that the
region under compression is in equilibrium with the region under
tension. When the wall is axially pulled, when, for instance, the ends
of the cylinders are closed and oil is pressed in through a small hole

11 (e 256)
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in the flanges, then the circle dividing the zones of axial tension and
compression is a different one, but also easy to compute.

The agreement of theory and test results, evident from the table
given in Chap. II, § 1, on experiments with axial pull confirms the
statement about the mean principal stress.

7. The Rotating Drum,

It is a good exercise to calculate the stresses in the plastified region
for a thick-walled cylinder rotating on its axis at an angular speed w.

We call the specific weight v, b the external, and a the internal
diameter, g gravitational acceleration.

The stresses are, at radius 7,

8 = ‘;—gy( —1%) — 2k log,

?IG"

2 b
8 = %gl’ (62 — 1) 4 2k (1 — log, ;>.

At the critical speed given by
Wl 49k b

=__9" log,—
y(bz _ ag) Ogd a’

the cylinder yields plastically over the whole wall and it will burst
unless it be saved by considerable strengthening of the steel, which
is improbable.
For the thin-walled cylinder of radius s the formula for critical
speed reduces to
w? = 2_g£2

This is both the critical speed and the speed at which the yield
limit is reached at the circumference of a rotating disc. But this-does
not imply that the problem of the rotating disc and of the.rotating
thick-walled cylinder with the same internal and external diameter
are dealt with in the same way, as is done in the similar elasticity
problems. According to the theory of elasticity plain stress and plain
strain problems are identical. As may be understood from the pre-
liminary remarks in Chap. V, the rotating disc is not a two-dimensional
problem because dimensional change normal to its plane is not im-

peded.
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8. Wedge of Plastic Material loaded on One Side.

‘We revert to the problem proposed in Chap. IV, § 4, and shown here
in fig. 126. This is one of the exercises in the theory of plasticity. One
flank of the wedge is evenly loaded by the pressure p per unit length.

Fig 126.—Wedge loaded till plastic flow sets in

To solve the problem, it is simplified by superposing a tension
-p/2 in all directions, which makes no change in the distribution of the
shearing stresses, and we have to deal with the case presented in

fig. 127.

Fig. 127.~—Trajectories of maximum shear stress for a wedge bent by
side-pressure evenly applied

The maximum shearing stresses always occur at angles of 45° with -
the principal stresses whose direction on the surfaces is known. The
instantaneous picture shown in fig. 127 gives the stress distribution
just before the edge succumbs.
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Attention is drawn to the law of similarity holding in the plasti-
fied region. _

When both plastified regions touch, the trajectories meet at an
angle which is contrary to the rule, and this indicates a hazardous
peculiarity. This is the chief point of this paragraph.

The reader is invited to ascertain the whole stress distribution for
the resistance to bending.

9. The Plastic Mass extruded by a Contracting Cylinder.

For the generating line of the extruded mass we find with the
notation of fig. 128

=1y

s

Plastic flow occurs with the least pressure when two principal stresses
are equal, e.g. if 5, =3s,.

]

—  —

FADS A
RS

: ! k

1
1
)
[}
1
1

Fig. 128.—The plastic mass in a contracting cylinder
The condition of equilibrium for an element in the radial direction is
0s, 05,
r—+s8—8——r=0;
or + r ¢ o ’

POy %,

in the axial direction
or ox

The condition of plasticity is

(S,. _ sz)z + saz — 702,

4
and the solutions s, = s, = —2k %,
T 72
8,—-'—'2’0(‘—R+,J1—? N
8, =k 1_13. :
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. The trajectories of maximum shear stress are the well-known
cycloids. In the bung the material does not flow; it is extruded as one
mass. But it is curious to note that inside the cylinder the yield limit
is everywhere attained in the bung.

10. A Simple Appliance for feeling the Drop in Shearing Stress at
Plastic Flow.

The only way to become familiar with the property of matter
called plasticity is to experiment with really plastic matter.

One of the most appropriate materials is pottery clay prepared
for moulding.

+ Ssc °
Sd
S3 - 10 S 0
) Ssc K‘Sﬁ
Sz =[2Ssd

Fig. 130.—Stress circles for initial and complete plastification

We now describe a simple but convincing test to ascertain the drop
in resistance at the moment that the fourth state of aggregation
(plastic flow) sets in.

A chase is made of four small planks 100 X 100 mm. connected
by piano-hinges as shown in fig. 129. Pressing along one diagonal and
pulling along the other, the clay is subjected to simple shearing stresses
as indicated at the right in the figure. It is not necessary to cover the
inner faces of the chase with sandpaper to obtain pureshearing stresses.
When first we apply the pure shearing stresses we have (for reasons of
symmetry) the stress diagram shown at the left side of fig. 130.

Under any conditions p]astnﬁcatlon is characterized by the criterion
of Maxwell.

8 =3V/(8y — &) + (8 — 85 + (85 — &)~
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The tension on the hands reveals when plastification starts. We
call the shearing stress (fig. 129) needed for starting plastification s,
then the principal stresses (fig. 130 left) are

8 =8g, S,=0, and §;= —s,.
So the critical. characteristic shearing stress is

V6

Sop _TS” OF Sg = —= Sgp.

V6

But immediately plastic flow sets in, two principal stresses become
equal and zero, and we get the stress circle represented at the right
side of fig. 130.

Only one principal stress survives, and for this case we call the
maximum shearing stress s,q. This is the final stage, and now.we have
8, =0, 3, =0, and s3 = 2s;;. Substituting in the criterion of Max-
- well, we find -

=\/834 Oor 8= i_s .
8 8 v 8 SC!

The relation between s,;, the maximum shearing stress at plastic

flow, and s,,, the maximum shearing stress at which plastification starts,

18 Ssd - Sss = ’\/g H '\/é = 1-157.

We feel the moment at which plastic flow sets in by a drop in the
resistance of the clay. Therefore we call that stress the drop s}warmg
Sstress.

This experiment is so impressive that it compels one to seek the
explanation.

If we try to compress the clay further, the two free surfaces of the
cube begin to bulge, the force exercised on the planks increases con-
siderably and soon stops any movement. This phenomenon can be
easily explained.

11. The Torsion of the Solid Cylindrical Bar.

In Chap. XVII, § 1, we accepted the usual assumption that i inasolid ’
cylindrical bar twisted until plastic yield occurs s, = s, s, = 0, and
83 = —8.

This assumes that the axial tension s, = 0 throughout the bar.
But how can we confirm that the axial tension is zero? In plastidity -
it is better to distrust any analogy with elasticity and to suppose that
axial stresses exist, which must be partlyof tension and partly com-
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pression, making equilibrium with the axial load. In this way it be-
comes possible to bring the stress distribution into agreement with the
condition that at plastic flow two principal stresses are equal. We
want §; = 2s, s, =0, and s; = 0.

This gives the same stress differences and the same shear stress
in normal and axial section as the assumption s, =s, s, =0, and
83 = —s.

We can now calculate at what radius the axial normal stress jumps
from tension to compression and find that outside

r= .154;,«/2, s =k,
and inside this radius sy = —k,

where r, is the outer radius of the bar.

We see to our astonishment that in plastic flow the shearing stress
in cross-sections is accompanied at the outer fibres by a normal tension
stress. This may be demonstrated by wringing a towel till it tears.
It also explains a fact observed by Swift for mild steel *: ‘ under
static torsion rupture always occurs across a transverse plane and not
along a longitudinal plane through the axis, although these sets of
planes are subject to equal shear stress.”

The case of pure torsional stress can be approximately realized by
. torsion of thin-walled tubes, although this kind of experiment has
several inconveniences. In this way it was found that the first plastic
yield occurred at s,, = 0-578s, in agreement with the law of Maxwell-
Huber-Hencky. Torsion tests on solid bars, on the other hand, give
no well-determined upper yield shearing stress. But a sharp drop in
load occurs at the moment of pronounced plastic flow and it is certain
that yielding goes on at s,, = 0-5s, in agreement with the law of
Coulomb-Guest.

As this is the novelty of this treatise we set out the facts on which
it is based without apology.

The author found the experiments described in Chap. X1, §§ 2 and 3,
quite convincing, but other elaborate tests may be cited.

Smith t found tubes inappropriate for verification of the laws of
yielding. His tests on solid bars under tension, compression, torsion
and combinations of these types of loading provide a most striking

* “ Tensional effects on torsional overstrain in mild steel ”, Engineering, 20th
October, 1439, p. 454, first column. .

. 1C. A. M. Smith; “ Compotmd Stress Experiments », Engomermq, 24th Dec.,
1909, p. 849,
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confirmation of the law of Coulomb-Guest, which is an indirect proof
that at plastic flow two principal stresses become equal.

The most extended investigation on the plastic breakdown of solid
cylindrical bars was made in England in 1916 by a large committee
composed of the most competent specialists.* What we call the first
yield, which for tubes is more or less in agreement with Maxwell’s law,
is called the elastic limit by this committee. They write: “ The con-
clusion may be drawn that Guest’s law does not apply to elastic limits
as at present defined only to the drop stresses.”

The ““ drop stresses ”” or “ plastic limits ” for torsion and tension,
as they are termed by this committee, we call s,, and s,. They
came to the conclusion that s, = 0-5s,, although the average of their
experiments was s,, = 0-52s,,. _

We now know why the Guest law does not hold true when the
principal stresses are different at the elastic limit. This limit is reached
in torsion when s, = 0-578s,, but then it drops to s, = 0-5s,, and
plastic flow becomes evident as soon as two principal stresses become
equal.

Good evidence of the correctness of our thesis is also provided by
the tests of Dr. Stanton, described in the first column of p. 286 of the
same volume of Engineering.

Bailey 1 discusses the sudden yield of solid shafts and gives these
values of the yield stresses:

Greatest shearing stress for pure bending £ = 12,500 Ib. /sq. in.

Greatest shearing stress for pure torque & = 12,600 lb./sq. in.

More recently we read in the valuable investigation by Swift {
in the comment on his fig. 5:

“The shear relationship obtained in this way under tensile con-
ditions invites direct comparison with the shear stress/strain relation-
ship obtained under torsion, and such a comparison is made in fig. 5.

‘“ Without pursuing this comparison into greater detail than is
justified, it is clear that although the two curves lie together in a general
way, they reveal certain systematic differences. Since similar dif-
ferences have been shown by tests on another mild steel from which
_ torsion specimens were bored out to tubular form, the results are con-
sidered as representative. The most significant points of difference are:
The principal shear stresses at initial yield are not the same. Accord-

ing to the shear-strain emergy hypothesis of elastic breakdown the

¢ Engineering, 15th Sept., 1916, p. 268.
t Engineering, 27th July, 1917, p. 81.
1 Engineering, 20th Oct., 1939, p. 454, last column.
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yield stress in simple shear should exceed the semi-yield stress in
tension in the ratio 4/(4/3). Actually, the ratio appears to be greater,
but since small departures in linearity of the torque-twist curve would
affect the figure for shear stress at torsional yield to a considerable
extent, no great significance is attached to the discrepancy.”

With his accurate instruments Prof. Smith has demonstrated in
this test that also for solid bars the elastic breakdown occurs accord-
ing to the law of Maxwell, and for further strain a good agreement
‘between half of the true tensile stress and torsional shear stress is
obtained, in agreement with Coulomb’s law, and this is essential.

We now refer to the outstanding tests made.in the Swiss labora-
tories of the Technical High School of Ziirich by Ros and Eichinger.*
If we take the average of the first whole set of 16 comparative tests we
find with the notation used above, s,/sy = 06, 8y,/s, = 0-52.

But if we omit the first row of tests which everybody will consider
as out of range, then we find almost exactly s,./s, = 0-58, confirming
Maxwell’s law, and s,,/s, = 0-5, confirming Coulomb’s law.

Recently P. W. Bridgeman } published a brilliant experimental
investigation of the law for plastic flow enunciated in Chap. XIII.

The author had chosen an expensive, though not very accurate
arrangement, yet his conclusion expressed in the summary before the
article, and at the end, is not far amiss as he writes:

“ Within the strain limits of this paper it is found that both the
maximum shearing-stress criterion and the °significant’ stress-strain
criterion apply with errors of the order of 10 per cent, the maximum
shearing-stress criterion being on the whole perhaps somewhat better.”

We found that both criteria are fulfilled in their turn.

. It 'would be unfair if we kept silent over some tests often quoted
to deny the validity of Coulomb-Guest’s law. There is no contradiction
in the tests of Lode }; on the contrary, there is a confirmation of our
conception since many points are situated on the ordinate p = —1.
This is not the case with the results of Taylor and Quinney,§ who
repeated Lode’s tests. Our explanation of the fact that their diagram -
does not show these exceptional points is, that they probably rejected
the results of tests which were too much out of the line they expected.

. Versuche zur Klam der Bruchgefahr, II1, “ Metalle, Table I”° ¢ Essais de
Traction et de Compresmon *, * Essai de Torsion *, Rapport.

1 Studies of plastic flow of steel especially in two- dxmensxonaioompremon. Journal
of Applied Phyawc Vol. 17, April, 1946, pp. 23543,

1 “ Dey Einfluss der mittleren Hauptepannung auf das Fliessen der Matallen
"Forschung ”, Heft 303, 1928. .

§ Phil. Tram Rog. Soc., Vol. 230, 1932, p. 323,
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12. The Graphical Construction of the Ideal Stress according to Maz-
well’s Law of Elastic Breakdown.
In Chap. X, § 2, we found
Va2 + 5,2 + 85+ 8985 — 838 — 8,8 = &,

When the function of the principal stresses expressed in the first
member of this equation remains below the yield limit s,, we call

8= V8% + 8,2 + 857 — 8,85 — 538, — 5,53

the ideal stress. This is a tension stress possessing the same safety
margin to yield as the combined principal stresses,

S .

S

Sz Si
\ N
lsa

Sz S
.15
Fig. 131.—Construction of the ideal plastic stress
according to Meldahl

The graphical construction of s; is the simplest imaginable as it
consists of the vectorial addition at angles of 120° of the three prin-
cipal stresses, as indicated at the top left of fig. 131.* There are several
ways of provmg the exactness of the construction. The proof by the
following reasoning we consider most instructive.

"To the left in the lower part of fig. 131 we have drawn the trihedral
angle formed by half sides of the elementary cube (Chap. X, fig. 64)
belonging to the three principal stresses. The plane of the drawing is
a side of the octahedron. The problem is to construct a simple normal
stress on a cube’s side that gives the same shear stress on the sides

# A. Meldahl: Brown Boveri Mitteilungen, July-Aug., 1943, p. 204.
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of the octahedron. As we have only to deal with the projections on
the plane of the paper, the ideal stress obviously is s;, and the tri-
hedral angle shown at the right side of the figure indicates with its
edges the principal directions belonging to this ideal stress. We invite
the reader to apply the construction to test the validity of Maxwell’s
law for Palmer’s test results,* and to explain why the agreement is
unsatisfactory. By drawing three lines it can be proved that when the
mean principal stress becomes equal to one of the extreme stresses, Max-
well’s law and Coulomb’s law concur.

.This construction may also be used to illustrate clearly that for a
given ideal stress the difference between the extreme principal stresses
is smallest when the mean principal stress becomes equal to one of the
extremes. If the stresses adjust themselves according to this con-
dition, the material flows with the least effort.

* < Stresses in welded pipes with internal pressure and thrust or tension , En-
gineering, 2nd Sept., 1938, p. 289.



CHAPTER XXIV

Plastic Flexure

The most striking experiment to show the reliability of the theory
of elasticity for engineering practice, is the demonstration of the
buckling load of flexure for a bar hinged at both ends, proving the
exactness of Euler s formula P = %:E’I , in which I = length of bar,
E = Young’s modulus of elasticity, I = moment of inertia of the
section, P = buckling load.

The agreement of calculated critical load with the experimental
result is so good * that this laboratory test for which the author de-
signed a simple apparatus, provides a good means to determine the
modulus of elasticity for steel.

If we put I = Ak? A representing the area of the section and
k the radius of gyration, and divide by 4, we obtain the average buck-
ling stress

P o K2

p=y="gk

We shall only discuss the flexure of bars of annealed mild steel.
The yield pressure of this steel as delivered is very uncertain. By
cold-straightening of the bars the yield point is raised. It also depends
on the carbon content. For structural steel we shall take the yield
point, i.e. the tension for plastic flow under compression, at s, = 2020
kg./em.2 and the modulus of elasticity £ = 2,000,000 kg./cm.2, then
if [/k = 100, we obtain p = s,. We took these figures in order to obtain
1 = 100%, a ratio easily remembered for the limit of validity of Euler’s
formula of elastic flexure.

We repeat that the highest pressure consistent with elastic flexure
is 2020 kg./em.2 If we take shorter bars (I <100 k) Euler’s formula
would give a buckling stress exceeding the pressure for plastic flow.
It is clear that such a load could not be carried and that the bar would

*Th. von Kirmédn: * Untersuchungen iiber Knickfestigkeit ’, Disseriation Got-
tingen, 1909; Mitt. iber Forschungsarb. a.d. Geb. des Ingenieurswesens, Heft, 81, 1910.
168
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collapse at an earlier stage. It is worth while to examine by experi-
ment what happens when the compressed bars are shorter than 100%
so that plastic flow occurs.

We shall not deny that the theoretical investigations made on this
subject * are correct. But our tests were so arranged that the effect
of the plasticity of the mild steel should be as pronounced as possible
and we obtained results which will be a surprise to most students of
applied mechanics. The reason for the difference from other people’s
experimental results { will be first explained. Other investigators tried
columns made of cold-straightened material and obtained scattered
results. We, however, followed the suggestion of Professor C. A. M.
Smith of London University,} who wrote, ‘“ It is probable that the
yield point of the material should be taken into account. It would,
of course, be an advantage to use annealed specimens in all tests.”
We compared flexure and tension bars made of the same piece of iron,
normalized at 900° C. for eight hours, and left to cool slowly in the
oven. By this treatment we obtained material showing a distinct drop
in resistance when the yield point was reached in the tension test.
The results of the tests were as simple as possible. Our bars collapsed
at the moment that the yield point was reached, and the deformation
was permanent.

We now shall describe some of the tests made by M. . Driessen, §
chief of the well-equipped mechanical research laboratories of the
Netherlands State Mines.

The tests had to serve a practical purpose. For reasons of economy
in the actual design of built-up columns, the material is concentrated
at the periphery of the section. The tests were made with tubes, angle
iron 30 X 30 X 4 mm., and with turned rods of 17 mm. diameter.
For each series of three identical flexure tests, one test bar was drawn
in order to determine the yield point of the material. The shape of
the flexure as well as of the tension test bars is shown in fig. 132, and
the bent strut in fig. 133.

The tests were made with different lengths {. But in order to secure"
plastic flexure, the slenderness A = I/k for the built-up section as well
as for the section of each separate bar was made smaller than 100.

* Th. von Kérmén, see above.

t Sm'l‘l];?:henko, Theory of Elastic Stability, 1935; p. 45, * Bending beyond pro-
wmo ”»

IEngmeenng, 1908, 21st Aug., p. 254, “ The bending of columns under load .

§Ir. M. G. Driessen, Knikproeven van condmmea van samengestelde daor.medc mel
geringe slankheid; De Ingenieur, 1934, No. 18, p. A 160. B
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Fig. 132.—Arrangement for, testing the flexural strength of built-up
columns and tension test bars
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Fig. 133.—Test No. 10, three annealed rods flexed in Amsler testing machine
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PLASTIC FLEXURE

The results are given in the following table:

167

FLEXURE TESTS WITH SECTIONS BUILT UP FROM

THREE ANGLE IRONS 30 x 30 x 4 mm.

Tension test bar of same material

. Buckling | Buckli "
Tt [Fnan 1) Soction | Paad | Vvt |
. . 3 a | Section
kg. kg. /em. cm.2 Load Stress
kg | kelom?
8 | 340 | 679 | 15320 | 2200 | o061 1300 | 2130
o | 340 | 681 | 15850 | 2330 | o1 1340 | 2200
10 | 349 | 68 | 15100 | 2225 | 059 1300 | 2355
11 | 349 | 681 | 15500 | 2275 | o604 | 1400 | 2320
{12 349 | 656 | 15000 | 2425 | 060 1380 | 2300
13¢ | 127 | 655 | 16200 | 2475
13 | 127 | 654 | 16400 | 2505 | 960 1415 | 2360
{14 349 | 655 | 16600 | 2535 | 0587 | 1460 | 2485
15¢ | 127 | 659 | 16500 | 2500
el B oz | 16000 } 0603 | 1430 | 2370
{16 349 | 649 | 15500 | 2390 | o614 | 1460 | 2380
17¢ | 127 | 653 | 16600 | 2540\ |
17 | 126 | 652 | 16150 2480} 0617 | 1460 | 2365
FLEXURE TESTS WITH TURNED RODS 17 mm. DIA.
8 | 349 | 677 | 16200 | 2390 | o777 | 1820 | 2340
9a | 126 | 679 | 16400 | 2410
o6 | 126 | 676 | 16400 | 2425) | 777 | 1780 | 2200
0| 340 | 680 | 15600 | 2205 | o785 | 1980 | 2520

Some of these are represented graphically in figs. 134 and 135.

The bars for tests 8, 9, 10 and 11 were taken from one piece of
angle iron, also the bars for tests 12, 134 and 13b, for 14, 15a and 155,
and for 16, 17a and 17b. All the tests with round turned bars were
made with round iron taken from the same rod.

If from these tests the conclusion could be drawn that for columns
built up from-angle iron the buckling stress is a few per cent higher
than the yield point, the contrary might be concluded for columns
composed of round bars. On the average the tests provide a perfect

confirmation of the law for plastic flexure:

12

2

buekling stress = yield point.

(o 25§)
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For columns or struts built up from bars of annealed mild steel
with a definite drop in resistance when the yield point is reached and

] | loch | et ] | 253 los | ds00] rL»ﬁ_h&Ig
feeea 1
K

20001~ %,,,x 7,

~
®
N
N

w349 || | | €127 f=349 Cl=127] | |€=127 |

| "

o .
x x| X X k)l xlxfr J. KL""“’FE‘ AL
1 IL ITq» | 1 L -q

B

Test N° 12 Ba | 136 - " 1 15 1o |
Fig. 134.-—-Bucklmc stress and yleld point for annealed bars of different lencths composed
of three angle irons. K d € test, T ion test, ! length shown in fig. 132

with a slenderness A < 100, the buckling stress is independent of the
slenderness. .

J
2520
2390 2410 | 2425 § I
2340 22 2295
X6,
2000|-*77
=349 =126 C=126 £=349
o
1 7] r 1 X A
| > | - o | —2 ©
Test N° 8 9a [ [

Fig. 135.—As fig. 134 but for three round rods (see fig. 335)

This conclusion is in disagreement with the general assumption
which le;l to the empirical formulm for column design.* - But under

*8S. '1‘1moshenko Theory of Blastic Stability, 1936, p. 183,
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the conditions in which our tests were made the columns decldedly
collapsed at the moment the yield point was reached. This is clearly
indicated in fig. 136, showing the load diagrams for our experiments.

When we published this law for plastic flexure it gave rise to sharp
controversy, and M. G. Driessen made a new series of tests.* The
average of 31 tests was a manifest confirmation of the rule p = buckling
stress = yield point = s,. The greatest deviations being p/s, = 1-07
and 0-92, but generally p/s, was very near 1.

10—

O —

— 12000

10000

8000

6000

4000

2000

(<]

THREE ROUND BARS

<+——THREE ANGLE [|RONS —> >
OF 17M/m DIAM.

Fig. 136.—Compression diagrams for bars built up from three angle irons or
three round rods

- Driessen also experimented on the flexure of thin-walled tubes, and
again found the law confirmed. Only when the very short tubes did not
bend, but bulged, was there some deviation from the law.

The most conclusive confirmation of the law is-supplied by large-
scale tests usmg a’very elaborate construction for the end supports of
the columns in the Berlin-Dahlem Material- Testing Laboratory.t
" Further information on the significance of the yield point in column
tests may be obtained in Timoshenko’s famous handbook.}

. “‘Conhnmhonofﬂexnrslteahmthbudt—upoolumnsofm&ﬂdmdemeu
De Ingenieur, 1934, No. 32, p. A 207.

4+ W.. Rein: Vamkmlrmﬂuwdakmhpammﬂrwxhdmm
gidhle (J. Springer, Berlin, 1930). _

" $ Chapter ITI, “ Experiments and Design Formule™,
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