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ABSTRACT 

The object of this thesis was to investigate the effect of Non-Structural Components 

(NSCs) on the dynamic behavior of a primary structure (PS) under harmonic and 

earthquake excitations. In this thesis, the NSCs were classified into two types, namely, 

hanging NSCs, and multiple sliding NSCs. Again, multiple sliding NSCs were divided 

into the multiple bodies resting side-by-side and one over the other in the form of stacks. 

An analytical model of the hanging NSC and the single-degree-of-freedom (SDOF) 

structure was used to demonstrate the structure’s performance under harmonic and 

earthquake excitations. In this study, hanging NSC was termed as flexibly attached 

secondary system (FSS). An FSS affects the main structure during ground excitation 

differently than a secondary system that is rigidly attached to it. The equations of 

motion describing the behavior of the PS and the FSS were derived by considering 

small displacements in the FSS. Mass ratio, tuning frequency ratio, and excitation 

frequency ratio were considered to study their effect on the dynamic behavior of the 

PS. The dynamic response of the structure was found to be independent of the mass 

ratio at a low tuning frequency ratio of FSS. A methodology was presented to estimate 

the spectral acceleration of the primary structure with FSS. Using statistical non-linear 

regression (NLR) and artificial neural network (ANN), an expression was developed to 

calculate the spectral acceleration of such a structure.  

The seismic behavior of the SDOF structure with multiple sliding NSCs was also 

investigated in this thesis. Sliding NSCs were termed as secondary bodies (SBs). 

Governing equations of motion were derived for the structure and multiple SBs that 

were side-by-side and one over the other (in the form of stacks) by considering the 

Coulomb’s friction model. The analysis was limited to a linear elastic SDOF structure 

with two sliding SBs. The model developed in this study of the SDOF structure with 

the sliding SBs was validated with a Finite Element (FE) model. Two Indian seismic 

hazard levels were considered consistent with the medium (Zone III) and highest (Zone 

V) conditions. A parametric study was performed to analyze the variation in the 

displacement of the structure by varying the structural period, the mass ratio, and 

coefficients of friction. The results demonstrate that multiple sliding bodies resting 

side-by-side on the structure with the same coefficients of friction were shown to 

behave identically to a single body with their combined mass. In the case of a structure 

with stacked sliding secondary bodies, the displacement estimates of the structure were 

found to be conservative if the energy dissipation due to friction within the stack was 

neglected. A novel methodology was proposed to calculate the modified structural 

period (𝑇𝑛𝑒𝑤) with such secondary bodies. Finally, design equations were proposed to 

determine the 𝑇𝑛𝑒𝑤 as a function of structural period, mass ratios, and coefficients of 

friction by means of an NLR and ANN. Further study on the performance of NSCs on 

the dynamic response of multi-degree-of-freedom structures is required before the 

implementation of design expressions for actual structures. 
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CHAPTER 1: INTRODUCTION 

1.1 Background of the Work 

Seismic design of a structure requires a good understanding of its dynamic behavior. It 

involves the calculation of various loads to be included in the seismic analysis and design. 

Various masses such as heavy machinery, chandeliers, and unrestrained components on the 

floor etc., are usually not considered in the study of this dynamic behavior. When 

considered, they are usually lumped as a part of the main structure, which is conservative 

for design. These masses are called secondary structures or non-structural components 

(NSCs).   

Sometimes these components are not fully attached to the main structure. In such cases, 

they move out of phase with respect to the building motion. Few examples of such 

components are lead blankets draped on the scaffolding in the nuclear industry, suspended 

coal buckets in coal power industry, heavy chandeliers and cranes inside the industrial 

buildings with heavy hoist masses. Furthermore, some components which are not at all 

attached to the main structure and simply rest on the floor levels and are called unrestrained 

components. Heavy machinery, power generators, heavy storage containers on pile 

supported structures are few examples of such unrestrained components. When the mass of 

such a secondary mass comparable to the supporting structure, their effect cannot be 

ignored.  

Such flexible and unrestrained components do not add extra stiffness to the structure 

whereas rigid secondary components like infills and cladding panels alter the stiffness of 

the structure. Hence, a structure with rigid NSCs can be modelled as a single structure by 

taking the complete mass of the NSCs into consideration. A structure with flexible NSCs 

can be modelled as a multi-degree of freedom (MDOF) system. Structural design becomes 
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conservative if the mass of components is fully considered in the structural design. The 

design can be unsafe if these components are completely ignored. Hence, proper 

quantification is required for the economic seismic design of the main structure with such 

secondary structures. Therefore, this study made a preliminary attempt to incorporate the 

effect of the secondary structure and its dynamic parameters in the seismic analysis of the 

structure under harmonic and real earthquake ground motions. 

A building structure consists of a primary structural system that is designed to resist a 

variety of loads. Structural Elements (SEs) in buildings carry all earthquake-induced inertia 

forces generated in the building down to its foundations. There are many components of 

buildings supported by SEs, which only generate inertia forces, but are not directly 

connected to the foundations, e.g., in-fill walls, contents of buildings, appendages to 

buildings, and services & utilities. Their inertia forces are also carried down to foundations 

by structural elements. Such items are generally referred to as Non-structural elements 

(NSEs) (Murty et al. 2012). In existing literature, NSEs are referred to by various names, 

such as “non-structural components”, “secondary systems”, and “secondary structures”. 

From herein NSEs are termed as Non-Structural Components (NSCs) in this study. 

Generally, these NSCs are classified into three categories: architectural components, 

mechanical and electrical equipment, and building contents (Villaverde 1997a). 

Architectural components include stairways, walls, parapets, penthouses, appendages and 

ornamentations, veneer, cladding systems, suspended ceiling, and sign boards. Cranes, 

boilers, storage tanks, piping systems, fire protection systems, ducts, escalators, antennas, 

generators, and engines are considered mechanical and electrical components. Building 

contents include components such as bookshelves, storage racks, furniture, and file 

cabinets. 
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During severe earthquakes, secondary systems attached to primary structures are also 

subjected to earthquake forces. In standard design practice, non-structural components are 

not modelled due to a perception that they do not carry any load. The seismic behavior of 

the secondary structures has been studied extensively for many decades under harmonic 

and real earthquake excitations. Although mostly these NSCs are ignored in the current 

seismic design methodology of the supporting structures, they constitute a major part of 

failure of the structure in the event of major earthquake (Myrtle et al. 2005; Perrone 2012). 

About 60-70% of the total cost of the buildings being built in urban India is of NSCs (Murty 

et al. 2012). Percentage of economic losses due to non-structural damage is greater to the 

percentage of the construction cost (Taghavi and Miranda 2004). Fig. 1.1 below shows the 

relative costs of contents, structural, and non-structural components for three common 

construction types (Whittaker and Soong 2003) . 
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Fig. 1.1 Investments for three common construction types (Whittaker and Soong 2003). 

Based on their types of failure, NSCs can be classified as acceleration sensitive 

components and displacement sensitive components (Pardalopoulos and Pantazopoulou 

2015).  The deformation failure is due to excessive inter-story building drift. They can also 

be caused by the improper detailing between the structure and the component. The 
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acceleration failure is due to the inertial forces produced in the component or 

rocking/sliding due to unanchored or marginally anchored conditions. Non-structural 

components can also be classified as rigid and flexible NSCs. Rigid component is attached 

to the building such that it is in phase with the structural movement and does not vibrate 

independently of the supporting structure. Flexibly mounted NSCs are the components 

which can displace independently from its point of attachment to the building (Kehoe 

2014). ASCE 7-10 (Committee 2010) provides a definition for determining whether an 

NSC is rigid or flexible based on the vibrational period of the component. If the period of 

the component is less than or equal to 0.06 sec (16.7 Hz), it is termed as a rigid NSC. 

Flexible NSCs are those with a vibrational period greater than 0.06 sec.  

The seismic response of secondary structures has been studied extensively for the last 

five decades. Engineers widely use floor response spectra to design secondary structures.  

They assumed that the primary and secondary structures do not affect each other. But the 

study (Kelly and Sackman 1978) concluded that secondary-primary interaction cannot be 

neglected in some cases. When a structure vibrates during an earthquake, the unrestrained 

or marginally restrained (flexible) components connected to that structure may slide, swing, 

roll, or overturn. File cabinets, generators, suspended items, office equipment, free-

standing bookshelves are the few examples to experience such failure modes. Fig. 1.2 and 

Fig. 1.3 show the sliding, overturning, and swinging of the unrestrained and marginally 

restrained components connected to the structure. 

In the seismic analysis of structures with NSCs, it is necessary to consider the flexibility 

of the component. In the case of rigid component, their accelerations are the same as the 

supporting structure’s acceleration on which they are installed, while in the case of flexible 

components, the components’ accelerations do not depend on the acceleration of structure. 
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The flexibility of the structure affects these accelerations. Some researchers have identified 

the effect of the non-structural components 

 

Fig. 1.2 Structure with (a) Sliding; (b) Overturning components under horizontal motion. 

 

Fig. 1.3 Structure with hanging (flexible) components under horizontal motion. 

on the overall structural performance (Li et al. 2009, 2011). The dynamic interaction 

between the structure and rigid NSCs like infills and cladding panels have been reported in 

past studies (Dolšek and Fajfar 2008; Li et al. 2010; Morfidis and Kostinakis 2016; Palermo 

2012). There are some studies conducted on the effect of the hanging/suspended mass on 

the overall performance of the structure (Belleri et al. 2017; Wang et al. 2009; Wei et al. 

2016). The dynamic interaction between the supporting structure and unanchored contents 
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(sliding failure mode) is proved to be significant under earthquake excitations for higher 

mass ratios (Chandrasekaran and Saini 1969; Smith-Pardo et al. 2014).   

Consideration of damping and calculation of the damping coefficient gives a crucial 

insight into the dynamic behavior of structure. Especially in the cases where NSCs are 

present such studies are critical. If the damping ratio of the primary structure or the NSC 

were over-estimated, this would produce the unconservative response for both the PS and 

NSC. The damping of the combined primary-secondary structure system has to be carefully 

considered if the dynamic interaction is deemed significant in the analysis. When the 

damping characteristics of the primary and secondary structures are different, then the 

combined system is non-classically damped (Gupta and Bose 2017). The damping 

characteristics of the primary structure were improved due to dissipation in energy by NSCs 

attached to the structure at single/multiple points (Lu et al. 2018; Welch et al. 2014).  

In view of the importance of the dynamic interaction between the primary and secondary 

structures, there is a need to carry out additional research on the seismic response of the 

primary/supporting structure with secondary structures. This study contributes to the 

aforementioned purpose by developing design expressions for evaluating the seismic 

response of the primary structure as a function of the primary and secondary structural 

parameters. The present study also deals with the quantifying of energy dissipation by the 

NSCs attached to the primary structure at a single point. The focus is on primary building 

structure with the unrestrained and hanging components shown in Figs 1.2(a) and 1.3 

respectively. 

1.2 Objectives of the Study 

The global objective of this study is to arrive at a methodology for the estimation of the 

effect of flexibly attached secondary structures on the seismic design of the primary 
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structure. This will involve studying such a structure under real earthquake excitations. 

Development of such a methodology requires an understanding of the governing dynamic 

equations of motion of the structure and the secondary components. Although vast amounts 

of information are available for estimating the seismic demands on the secondary structure 

by considering the primary-secondary structure dynamic interaction, only few studies had 

attempted to estimate the demands on the primary structure. Hence, the approach in the 

study is geared towards establishing an equation to estimate the seismic response of the 

structure with hanging and sliding live load objects. The specific objectives of the study are 

summarized as follows: 

 Investigation on the effect of flexibly attached secondary systems on the seismic 

behavior of the primary structures by an analytical study. 

 Development of a numerical model to corroborate the above study. 

 To examine the damping effect of secondary systems on the primary structures. 

 Development of mathematical expressions for economical seismic design of 

primary structures attached with flexible secondary systems. 

1.3 Methodology adopted for the Study 

The methodology adopted in the present research work is shown as a flow chart in Fig. 1.4. 

As shown in the below figure, the following study tasks were successfully completed to 

achieve the objectives of the present study 

1. Primary structure (PS) is considered as a single-degree of freedom (SDOF) 

structure. The PS with a hanging component and sliding live load objects with 

their mass comparable to the mass of the PS was considered. The combined 
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structure (PS+NSC) was modelled as a multi-degree of freedom (MDOF) 

system.  

 

Fig. 1.4 Research methodology. 

2. Governing equations of motion for the PS and corresponding non-structural 

component were derived by considering the dynamic interaction between PS and 

NSCs. 

3. The developed governing equations of motion were solved by numerical 

integration technique. The equations of motion of the structure with hanging 

NSC and sliding live load objects were solved by Duhamel integral and Runge-

Kutta 4th order method respectively.  

4. The seismic response of the structure was investigated by varying the secondary 

structure parameters for a given seismic hazard level.  
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5. The numerical model and the proposed design methodology was corroborated 

with the existing literature or simulations. 

6. An extensive parametric study has been conducted on the numerical model by 

varying the primary and secondary structure dynamic properties and the seismic 

hazard levels. 

7. Design expressions have been developed to estimate the seismic response of the 

primary structure as a function of its dynamic properties, secondary structure 

dynamic parameters for a given seismic hazard level.   

1.4 Scope of the Study 

In this study the effect of hanging and sliding NSCs on the dynamic behavior of a structure 

under earthquake excitations is investigated. Hanging NSCs were modelled as simple 

pendulums. Sliding NSCs were modelled as rigid blocks. The present study is limited to a 

single hanging NSC with small displacements and rigid blocks which show only sliding 

mode of vibration. The primary structure was limited to a linear elastic model. The natural 

frequency of the hanging secondary mass was adjusted by changing the length of the simple 

pendulum similar to a tuned mass damper. The sliding live load objects were considered to 

be resting side-by-side or stacked one over the other. While the equations developed in this 

study are for any number of such masses, the results and analyses performed are for two 

masses at a time. 

The combined structure (PS+NSCs) was subjected to spectrum compatible earthquake 

excitations. Design methodologies were developed to determine the dynamic properties of 

one-story structures with secondary masses sliding on and hanging from it. The design 

methodology developed in this study is suitable for evaluation of the influence of NSCs on 

the dynamic behavior of actual complex multi-degree of freedom (MDOF) structures in the 
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non-linear range. Accordingly, the proposed design equations can be modified. These 

equations can be used to design such structures seismically. 

1.5 Organization of the Thesis 

The description of the work carried out is listed below. 

Chapter 1. An introduction of the research is explained in this chapter by highlighting the 

background, and motivation to carry out this research. The research objectives, 

methodology to carry out the research and scope of the study are also listed out in this 

chapter.  

Chapter 2: An extensive review of literature by emphasizing on the seismic response of the 

secondary structures. Dynamic interaction between primary structure and the NSCs is 

presented. The limitations and the research gaps on the dynamic interaction of the primary 

and flexible secondary system bring out the objectives of the present study. 

Chapter 3: The analytical modelling of the primary structure with hanging non-structural 

component is presented. Seismic analysis results of the primary structure are reported in 

this chapter. The validation of the model and the proposed design methodology are also 

presented. 

Chapter 4: The analytical modelling of the primary structure with sliding non-structural 

component is presented. Seismic analysis results of the primary structure are reported in 

this chapter. The validation of the model with the Finite Element (FE) study is presented. 

Chapter 5: In this chapter, the damping effect of sliding non-structural components on the 

primary structure’s response is investigated.  
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Chapter 6: Summary and the relevant conclusions of the study from chapter 1 to 5 and the 

scope for further research are presented in this chapter. 

The next chapter presents the extensive review of literature on the seismic response of 

the secondary structures. Dynamic interaction between the primary structure and the NSCs 

relevant to present research work is also presented. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Introduction 

Significant research has been done in an effort into investigate the seismic response of the 

non-structural components over many decades. Much of the research has focused on the 

understanding of seismic demands on the secondary structures under seismic events. Such 

understanding can be utilized in the seismic design of NSCs to overcome the huge 

economic loss created by them. Recently, researchers have studied the dynamic interaction 

between the primary and secondary structures to understand their seismic behavior. When 

the mass of a secondary structure is comparable to the mass of the primary structure, the 

seismic behavior of the primary structure is affected considerably. Therefore, this chapter 

presents a thorough review of the existing research on the seismic response of the non-

structural components. Since the focus of the present study is on hanging and unrestrained 

NSCs, this chapter presents a review of their seismic demands under harmonic and real 

earthquake excitations. This chapter also discusses the dynamic interaction between the 

hanging and unrestrained NSCs and the supporting structure. 

2.2 Non-Structural Components 

Significant progress has been made over decades in the seismic analysis and performance 

of secondary systems anchored or attached to primary structural systems under seismic 

excitations (Filiatrault et al. 2018; Miranda et al. 2018; Zhai et al. 2016; Magliulo et al. 

2012; Martinelli and Faella 2012). Secondary systems are not commonly designed to resist 

external loads such as earthquakes or impact loads. Hence, these systems are vulnerable to 

damage even during minor earthquakes. Therefore, seismic analysis and design of 

secondary structures is important to withstand external loads. State-of-the-art reviews on 

the seismic response of secondary structures have been presented by the studies (Chen and 
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Soong 1988; Villaverde 1997a). Initial studies on the response of the NSCs were focused 

on the safety of critical secondary components in nuclear power plants (Biggs and Rosset 

1970; Villaverde 1997a). These studies were used to develop the US Nuclear Regulatory 

Guide 1.22 (Commission 1976). In current practice, two basic approaches exist which 

provide the seismic demands on secondary structure. They are, floor response spectrum 

approach and combined primary-secondary system approach (Chen and Soong 1988). In 

practice, the floor response spectrum is often adopted for the estimation of the seismic 

demands on the secondary structure (Biggs and Rosset 1970; Sackman and Kelly 1979; 

Singh et al. 1986; Medina et al. 2006).  

In the floor response spectrum approach, primary and secondary structures are 

decoupled and analyzed individually. The response of the primary structure at the support 

points of the secondary structure is determined. In this process, the effect of the secondary 

structures is neglected. The response spectra at the support points or floor response spectra 

are then applied to the secondary structure as an input from which response of the secondary 

mass is determined. The use of this method results in inaccurate prediction of the response 

of secondary structure, since it neglects the primary- secondary structure interaction. This 

deficiency in this method can be overcome by performing a coupled analysis by combined 

primary-secondary system (PS-system) approach suggested in the study (Chen and Soong 

1988). 

The response of a secondary structure depends not only on the characteristics of the 

ground motion, but also on the dynamic properties of the supporting structure. Also, there 

exists a significant amount of interaction between the primary and secondary structure, 

which alters the response of both of them (Villaverde 1997a). Matta and Stefano (Matta 

and De Stefano 2015) classified non-structural components (NSCs) as “in-parallel” (P-

NSCs) and “in series” (S-NSCs) according as they work with the main structure. Few 
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examples of P-NSCs mentioned in their study are masonry infills, pavements in bridges. 

Suspended ceilings, piping systems, chimneys, storage tanks and antennas are few S-NSCs 

listed out in the study. They reported that S-NSCs significantly modify the overall modal 

behavior of the structure if accidentally tuned to the structural mode. 

 

                                (a)                                (b)                                (c) 

Fig. 2.1 NSCs on a SDOF structure: (a) PS; (b) PS with P-NSC; (c) PS with S-NSC 

(Matta and De Stefano, 2015) 

Currently, the effect of P-NSCs on the dynamic behavior of the main structure appears 

to be well documented (Chandel and Yamini Sreevalli 2019; Morfidis and Kostinakis 2016; 

Paper et al. 2006; Perrone 2012; Pokhrel et al. 2019; Sofi et al. 2017; Uva et al. 2012). The 

studies on the effects of S-NSCs on the overall behavior of the primary structure are yet to 

be explored. On the other hand, some research has dealt with the dynamic interaction 

between S-NSCs and primary structure to assess the dynamic response or seismic 

vulnerability of the non-structural elements (Lim and Chouw 2018; Martinelli and Faella 

2012; Salman et al. 2019; Villaverde 1991; Wang et al. 2009; Wang and Liu 2008; Zhai et 

al. 2016).  

Another important class of non-structural components include building contents and 

mechanical/electrical equipment. Most of these components are free standing or 

unrestrained. The seismic response of this class of components is very complex and shows 

non-linear characteristics. Generally, these components are modelled as a rigid bodies 

under external excitations (Kafali 2006). When free standing structures are subjected to 
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base excitation, they may undergo a number of failure modes. They may slide, rock or 

shows combined slide-rock failure modes (Lopez Garcia and Soong 2003; Shao and Tung 

1999). Heating, ventilation and air-conditioning (HVAC) units, spent nuclear fuel storage 

casks, critical and laboratory equipment, heavy lead blankets draped on scaffolding 

structures are few examples of such free standing structures (Challagulla et al. 2020; Lin 

et al. 2015; Shie et al. 2007). The sliding displacement of the rigid bodies under base 

excitation is investigated by many studies (Choi and Tung 2002; Demosthenous and Manos 

2005; Lopez Garcia and Soong 2003; Westermo and Udwadia 1983; Younis and 

Tadjbakhsh 1984). 

In conventional design of structural systems, the sliding response during earthquake 

excitations, either at the foundation level or at the various structural components, is 

generally ignored. However, there are structural systems where sliding at the interface of 

different structural components is significant of their earthquake response and overall 

stability. Several research shows that the sliding-friction devices can be used for protecting 

the structures from a developing undesirable performance during earthquake excitations 

(Etedali et al. 2020; Mohammadi 2017; Mohammadi et al. 2011; Mostaghel and 

Tanbakuchi 1983; Swain et al. 2016; Vafai et al. 2001). 

The following sections discuss the response of the hanging and sliding secondary 

structures under harmonic and earthquake excitations. Dynamic interaction between the 

primary and secondary structure is also discussed. Extensive literature on the effect of these 

secondary structures on the seismic response of the structure under harmonic and seismic 

ground excitations is presented. 
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2.2.1 Hanging Non-Structural Components 

NSCs can be classified as rigid, flexible and hanging type components based on how they 

contribute to the dynamics of the structure. The research in this sub-section primarily is 

focused on the hanging type NSC, which is connected to the primary structure at single 

point as shown in Fig. 3. Such non-structural components are connected to their supporting 

structure (i.e., hung from above) with a hinge. They may be modelled as a simple pendulum. 

Examples of such NSCs are lighting systems, cable trays and heavy chandeliers. The 

problem in this study is motivated by the heavy hanging lead blankets from the supporting 

scaffolding structure in the nuclear power industry. Few NSCs which are connected at 

single point or at multiple points and hung from the supporting structure are widely used 

as a pendulum tuned mass dampers (PTMDs) by adjusting their frequency equal to the 

fundamental frequency of the supporting structure to reduce the unwanted vibrations. 

Suspended structural system (SSS) can be considered as a pendulum tuned mass damper 

(PTMD) and the equations of motion of the structure and the suspended system can be 

developed similar to the equations of structure with PTMD. Under small oscillations of the 

PTMD, it can be considered equivalent to a translational tuned mass damper (TTMD). The 

suspended systems are intended to design in a way that ensures that the suspended system 

move within a small range. Therefore, they can be analyzed as a TTMD system instead of 

a PTMD system (Chulahwat 2013). 

Yao (2000) investigated the vibrational characteristics and capacity of direct hung 

suspended (DHS) ceiling system analytically and experimentally in an earthquake 

environment. This study concluded that the natural frequency of the DHS system could be 

estimated using the pendulum formula. Analytically obtained natural frequencies and mode 

shapes of the combined structural system were verified by modal experiments (Yao 2000).  
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       Wang and Liu (2008) studies the dynamic response of the suspended structures. 

They found out that the dynamic response of the suspended structures is very complex and 

there is no opportunity to derive the nonlinear behavior of the dynamic responses if only 

linear restoring force is considered. They also reported that the substructures can play an 

important role in the mitigation of the dynamic response of the mega structure. The 

dynamic response of the suspended structure is hypersensitive to the length of the 

suspenders (Wang and Liu 2008).  

 

Fig. 2.2 Suspended structure on Mega structure (Wang and Liu 2008) 

Coal buckets suspended on the higher levels of the structure in coal-fired power plant 

serve as equivalent pendulum tuned mass dampers. A large mass ratio of the coal buckets 

leads to bigger coal bucket displacements under external excitations. By increasing the 

supplementary damping to the suspended buckets, the inert-story drifts increase and the 

buckets displacements decrease (Shu et al. 2017). The seismic response of the coal-fired 

power plant with multiple suspended coal buckets as PTMDs is investigated. The use of 

multiple coal buckets as a PTMDs in improving the seismic performance of the coal-fired 

power plant structures was confirmed by the study (Peng et al. 2018).   
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 In this section, studies about seismic response of suspended secondary structures under 

external excitations are presented. The following section explains the studies about the 

effect of such secondary structures on the dynamic response of primary structure under 

seismic excitations. 

2.2.2 Influence of hanging NSCs on the structural seismic response 

In this section, the literature that studied the effect of suspended/hanging NSCs, which are 

un-tuned to the structural frequency on the seismic response of the supporting structure is 

presented. In order to study the effect of a secondary mass on a structure, understanding the 

dynamic interaction between the secondary and primary masses needs to be examined.  

The input load to the secondary structure is calculated using floor response spectrum. 

This method is also known as the cascade approach. This method assumes that the primary 

and secondary structure do not affect each other. When the secondary structure has 

comparable mass to the primary structure, this assumption does not hold good. In such 

cases, combined system has to be considered in the analysis since primary and secondary 

structures may affect the response of each other (Kelly and Sackman 1978). Amin et al. 

(1971) also indicated that the interaction between the primary and secondary structure is 

not significant when the mass ratio is less than 1% (Amin et al. 1971).  

Murty et al. (2012) reported that when the mass of the NSCs is less than the 1% of the 

supporting building, the dynamic oscillation of the NSC does not alter the response of the 

building. In such cases, the dynamic interaction can be neglected. The interaction between 

the response of the NSC and the building increases when the mass of the NSC increases. 

The seismic demands of the NSCs computed are too conservative in some cases and even 

un-conservative in others when the dynamic interaction is neglected (Murty et al. 2012). 
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Ignoring the interaction between the secondary masses and the primary structure leads to 

overestimation of demands on the systems (Taghavi and Miranda 2008). 

Understanding of the characteristics of ground motion and dynamic properties of the 

primary and secondary structures is essential for dynamic interaction studies. Proper design 

of the secondary structure can be done only if dynamic interaction effects are considered. 

During the excitations, the response of the primary structure is greatly reduced due to the 

presence of a secondary structure. Under different excitation frequencies, secondary 

structure can affect the primary structure differently (Lim and Chouw 2014). Seismic 

behavior of the primary structure can be altered by the presence of secondary structure if 

dynamic interaction effects are considered in the analysis (Meersschaert and Chouw 2016). 

Lim and Chouw (2015), in their study concluded that primary-secondary structure 

interaction (PSSI) is more pronounced in the response of the secondary structures. They 

also pointed out that the floor response spectrum method for the analysis of secondary 

structures is only applicable for the secondary structures with difference in natural 

frequencies, and with masses much smaller than those of the supporting structures. They 

considered primary and secondary structures as a combined system i.e., the secondary 

structure is considered as an additional degree-of-freedom to the primary structure (Lim 

and Chouw 2015).  

Lim and Chouw (2018) provided an empirical formula to predict the displacement of 

the secondary structure by incorporating the dynamic interaction effects in their analysis. 

They concluded that the formulae can predict the displacement more accurately, in 

comparison with the conventional floor response spectrum method (Lim and Chouw 2018). 

The above studies have highlighted the importance of dynamic interaction between the 

primary and secondary structures. From these studies, we can infer that the response of the 
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primary structure is significantly affected due to the presence of a secondary structure. The 

following studies exclusively explain the effect of hanging masses on the seismic response 

of the primary structure. 

When a primary structure is attached with the suspended mass, the effect of such mass 

on the response of the structure is significant. Wei et al. (2016) investigated the seismic 

response of structures with a suspended mass subjected to combined horizontal and tilting 

(CHT) ground motions by both shake table tests and theoretical analyses. In the 

experimental model, the secondary mass was suspended by four steel cables or four steel 

springs. An earthquake excitation was applied to the primary structural frame. Frames 

without and with a suspended mass were used as the test models for comparison. They 

found that due to the titling component in ground motion, the suspended mass has 

significant effect on the seismic response of the structures. They also reported that seismic 

response of the structures may also be affected by the vibration parameters of the suspended 

mass and need further investigation (Wei et al. 2016). 

Belleri et al. (2017) studied the influence of hoist load on the seismic response of the 

industrial building under earthquake loading. The results of the parametric analyses showed 

that the hoist mass is significant under some conditions, particularly on the type of ground 

motions and type of the buildings. They also proposed a simple design methodology to 

account for the hoist load in response spectrum analysis (Belleri et al. 2017).  

Huang et al. (2018) performed an analysis on the control performance of a suspended 

mass pendulum (SMP) on the displacement response of the structure under earthquakes. In 

order to verify the effectiveness of an SMP on the vibrational control of a structure, a 

transmission tower was chosen as the primary structure. The suspended mass pendulum 

was considered as a spatial model in the study. The SMP model was connected to the 

structure through a massless rope. From the numerical results conducted under eight 
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earthquakes, the study concluded that the spatial model can predict the dynamic response 

of the structure more accurately than a planar model. From the results of this study, authors 

concluded that the SMP has a significant mitigation effect on the seismic response of the 

tower (Huang et al. 2018). 

Tian et al. (2012) conducted a study on the mitigation of vibration of a transmission 

tower using suspended mass pendulum under earthquakes using the finite element 

computer program SAP 2000. A parameter called, vibration decreasing ratio is defined to 

quantify the effect of the pendulum on the response of the tower. Seismic response of the 

tower with and without pendulum on different site soils were obtained from the numerical 

analysis. The analysis results revealed that the suspended mass can mitigate the response 

of the structure under seismic excitations (Tian et al. 2012).  

Saudy et al. (1994) proposed stochastic analysis by including the dynamic interaction 

between primary and secondary structures. They concluded that dynamic interaction shows 

two effects and they are, effect of the interaction forces at the attachment points and the 

changes in the primary structure properties due to the attachment of the secondary structure. 

When the secondary structure is rigidly attached to the primary structure, the effect of the 

dynamic interaction is associated with the change in primary structure properties. The effect 

of interaction forces is more significant when the secondary structure is connected through 

flexible supports to the primary structure (Saudy et al. 1994).  

Few works examined the percent of critical damping in the combined primary and 

secondary structure system. Villaverde assumed very low damping ratios (0% and 0.1%) 

for non-structural components (Villaverde 1997a). If the light NSC is tuned with a 

dominant mode of the supporting structure and has the damping values lower than those of 

the supporting structure, neglecting non-classical damping effect would result in non-

conservative results (Singh and Suarez 1987). If the fundamental frequency of the NSC is 
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away from that of the primary structure, then the system is classically damped. If the system 

is tuned, and interaction must be considered, then the system is non-classically damped 

(Igusa and Kiureghian 1985). Rayleigh damping can cause significant error in the 

calculation of the damping matrix if the damping ratios of the primary structure and NSC 

differ by orders of magnitude (Villaverde 1997b).  

The vibration effects of the non-classically damped building-piping system subjected to 

ground motions were studied (Gupta and Bose 2017; Ryu et al. 2016). In their studies, 

SDOF primary-SDOF secondary systems were considered. From the analysis results, they 

concluded that the vibration effects of non-classical damping are significant when the 

natural frequencies of the two systems were nearly tuned. If the structural system consists 

of two or more systems with different levels of damping, e.g., a soil-building system or a 

structure with energy dissipating devices or equipment, the system damping is non-

proportional (non-classical) (Chopra 2011). 

Singh and Suarez (1987) studied the effect of dynamic interaction and non-classicality 

of the damping in evaluating the equipment response. The authors concluded that large 

errors in the equipment response might occur when the non-classical damping effects are 

ignored. They also observed that this effect is considerable for tuned structures and light 

equipment. This was more pronounced when there were varying damping ratios (Singh and 

Suarez 1987).  

 Qin and Lou (2000) investigated the effects of non-proportional damping on the seismic 

response of suspension bridges. Modern suspension bridges exhibit non-classical damping 

because different members such as steel decks, steel cables, concrete towers have different 

damping properties. They concluded that classical damping is not sufficient to capture the 

response of such bridges. A non-classical damping model was found to be more appropriate 

in this case (Qin and Lou 2000).  
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Raheem (2016, 2014) explored the dynamic response of non-classically damped hybrid 

structures. In a hybrid structure, the upper and lower part of the structure comprise of 

different materials like steel and concrete. When the dynamic interaction between the tower 

and supporting footing structure is considered, then the damping in the combined system 

needs to be non-classical. Rayleigh’s damping exhibits significant error in constructing the 

damping matrix if the combined structure has different damping ratios (Abdel Raheem 

2016; Raheem 2014). 

Ryu et al. (2016) studied the vibration effects of non-classically damped building-piping 

system under extreme loads. They considered SDOF primary structure and SDOF 

secondary system and employed finite element analysis to evaluate the response of the 

combined system. The effect of non-classical damping model on the combined system was 

insignificant when the modal mass ratios are small (Ryu et al. 2016). 

Gupta and Bose (2017) discussed the significance of non-classical damping in the 

coupled primary-secondary structural system. The authors utilized a simple primary-

secondary structural system. The analysis concluded that, in nearly tuned primary-

secondary structural systems, classical damping could give conservative results. The 

classical damping underestimates the response in perfectly tuned primary-secondary 

systems (Gupta and Bose 2017).  

 A structural system is classically damped when it has uniform damping properties. The 

system is said to be non-classically damped when it is attached with secondary equipment, 

supplemental damping devices, or base isolation (De Domenico and Ricciardi 2019). 

In this section, few studies about the effect of suspended secondary structures on the 

seismic response of primary structure under external excitations are presented. Classical 

and non-classical damping are also reviewed in this section. The following section explains 

the studies about the seismic response of sliding secondary structures.  
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2.2.3 Sliding Non-Structural Components 

Various loads need to be considered in the seismic design of a structure. Determination of 

the self-weight of the structure is easy but the calculation of live loads is a difficult task 

(Smith-Pardo et al. 2014). Among various live loads on the structure, the unanchored or 

free standing structures have received some attention from researchers over the past few 

decades. Past observations from seismic events have shown that sliding of contents caused 

injuries and damage even though primary structure suffered little damage (Dhakal 2010). 

Generally, in many structures, equipment and systems are not anchored to the base. For 

example, building contents, sensitive laboratory equipment and the spent nuclear fuel 

storage casks, are not fixed to the base. In the case of a base excitation, these equipment or 

systems are prone to different failure modes. Hence, it is important to study the behavior 

of freestanding structures subjected to base excitations. The following studies explain the 

seismic response of the unanchored or free-standing structures under harmonic and 

earthquake excitations.  

An unanchored body can move in any of the three modes of motion. It may remain at 

rest, slide or rock. It may also slide and rock at the same time if the vertical motion of the 

base is large. Non-structural components such as utility based equipment, freestanding and 

unanchored building contents can be modelled as rigid blocks in the analysis (Kafali 2006; 

Lopez Garcia and Soong 2003). Shenton presented graphs that enable one to determine the 

mode of response (Shenton 1996). When a freestanding object is subjected to sliding mode 

of response, the extent of sliding can be obtained by solving the equation of motion 

numerically (Aslam et al. 1975). 

Kaneko et al. (1999) proposed a new formula to estimate the sliding displacement of 

furniture during earthquakes. By using this formula, they evaluated the sliding 

displacement of the furniture for various conditions. The formula indicates that the sliding 
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displacements are inversely proportional to the coefficients of friction. Finally, from the 

analysis results, they concluded that the sliding displacements are significantly influenced 

by coefficients of friction and soil conditions (Kaneko et al. 1999). 

Lopez and Soong (2003) developed the fragility curves for the sliding block-type non-

structural components under seismic excitations. They concluded that fragility estimates 

obtained without taking into account vertical base accelerations can be significantly non-

conservative. They classified fragility curves according to the friction coefficient and peak 

horizontal ground acceleration (Lopez Garcia and Soong 2003). Newmark (1965) proposed 

a formula for estimating the distance the body slides when the structure is subjected to a 

rectangular acceleration pulse (Newmark 1965). 

Shao and Tung (1999) presented a chart in their study which enabled to determine the 

maximum sliding distance of an unanchored body (Shao and Tung 1999). The sliding 

displacement of a freestanding rigid block can be estimated by the Newmark’s formula if 

an adjustment factor to the friction coefficient and horizontal base acceleration was applied 

(Choi and Tung 2002). Taniguchi and Miwa proposed the use of horizontal sinusoidal 

acceleration to find the slip displacement of a freestanding body. They proposed 

modification factors for determining the design slip displacements from the basic slip 

displacements (Taniguchi and Miwa 2007). 

Lin et al. (2013, 2015) proposed a simple mechanics based method to determine the 

sliding displacement of contents on a structure subject to an impulse ground motion. The 

sliding displacement of the contents as a function of the normalized friction coefficient was 

obtained. The authors concluded that sliding displacement for elastically responding SDOF 

structures from a suite of earthquakes was found to be similar to that of from the impulse 

ground motion for the same normalized coefficient (Lin et al. 2013, 2015).  
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Yeow et al. (2014) conducted an experimental study on the sliding behavior of the 

building contents. They conducted experiments on the sliding behavior of a desk on carpet 

flooring under sinusoidal floor excitations using a shake table. The analysis results showed 

that the peak floor acceleration is not a consistent parameter to correlate against the 

maximum sliding displacement. They derived a parameter called the modified peak total 

floor velocity which had a strong correlation with the sliding displacement for the 

sinusoidal loading considered (Yeow et al. 2014).   

Saraswat et al. (2016) investigated the effect of the excitation frequency on the stability 

of a freestanding rigid block. Sliding motion of the rigid block is analyzed for the harmonic 

base excitation for a given coefficient of friction and amplitude of ground acceleration. 

Their analysis showed that the sliding displacement of the block decreased with an increase 

in the excitation frequency. They found a relation between the excitation frequency and the 

stability of a rigid block (Saraswat et al. 2016).  

Taniguchi (2002) analyzed the non-linear response of the rectangular rigid bodies 

subjected to horizontal and vertical ground motions. The governing equations of motion of 

the rigid block were derived for the lift off, slip and lift off-slip interaction. The time history 

responses of the rigid body show that the body is sensitive to small changes in the 

coefficients of friction and intensity of ground motions. The study concluded that the 

overturning is not significant on the low-grip foundation even at the high intensity base 

excitations, while the slip displacement is high. Rigid body subjected to large sliding 

displacement and overturn failure when it is subjected to long-period earthquake 

(Taniguchi 2002).  

Chaudhuri and Hutchinson (2005) characterized the frictional behavior for the 

prediction of seismic response of the unattached equipment. In their study, small and 

sensitive equipment found in biological and chemical science laboratories were considered. 
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Static and kinetic coefficients of friction were experimentally measured. They concluded 

that the response can be reasonably estimated analytically by using the average frictional 

resistance values (Chaudhuri and Hutchinson 2005).  

Konstantinidis and Makris (2010) have conducted experimental and analytical studies 

on response of the freestanding objects subjected to strong earthquake motion. A numerical 

model was first validated by experimental results conduced on the ¼-scale models. The 

model was then used for analytical analysis on the full-scale free standing equipment under 

strong earthquakes. Their analysis results showed that the sliding mode is dominant and the 

sliding displacement reaches up to 70 cm. Finally, they developed the ready-to-use fragility 

curves (Konstantinidis and Makris 2010).  

In nuclear power plants, spent fuel storage facility is unanchored to the base and show 

sliding or overturning when subjected to external loading like earthquakes. If it slides too 

far, it may collide with other fixed or freestanding equipment. Therefore, understanding the 

sliding phenomena of the spent fuel storage facility is important to the design of such 

freestanding equipment (Furuta et al. 2008; Ito et al. 2018; Iwasaki et al. 2012; Shie et al. 

2007). A large coefficient of friction will retard the sliding of the cask. The sliding 

displacement of a freestanding body is greatly affected by the intensity of the earthquake 

loading and the frictional resistance. Sliding distance increases when the acceleration of the 

earthquake increases and/or the coefficient of friction is small (Shie et al. 2007). These 

studies focused on the dynamic response of the sliding bodies under base excitations. Such 

studies are required to design suitable fixing mechanisms for freestanding structures. Very 

few studies have looked into the behavior of structures on which freestanding bodies rest.  

Younis and Tadjbakhsh (1984) found significant slippage for smaller frequency ratios 

and resonance bands of frequencies. It is also deduced that this phenomenon was amplified 

when the mass of the sliding body is comparable to that of the structure. Also in their study, 
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they found that a limiting frequency ratio exists which when exceeded the response will be 

the stick-mode (Younis and Tadjbakhsh 1984).  

Matsui. et al. (1991) presented a study to understand the dynamic behavior of a rigid 

block resting on a footing supported by a spring and a dashpot. The response of the rigid 

block is studied carefully by exciting base with a harmonic force. They concluded that 

periodic motion can be possible in three forms: stick-stick, stick-slip and slip-slip. The 

conditions that initiate the stick-stick and stick-slip modes are derived in explicit forms. 

The main findings in this study include that the condition for the slippage is independent 

of the mass ratio. Slippage of the rigid block is minimum when the external frequency ratio 

increases beyond one (Matsui et al. 1991). The initiation times for stick and slip behaviors 

for the rigid mass resting on the SDOF oscillator are analytically obtained (Larson and 

Fafitis 1995).  

Lin. et al. (2013, 2015) investigated the seismic demands of the building contents in 

elastically responding structures subjected to ground motion excitation as shown in Fig. 

2.3. In their study, elastic SDOF structure was considered. Response spectra due to sliding 

were developed as functions of normalized friction coefficients. From the analysis results, 

they concluded that, as structural period increases, the sliding displacement of the contents 

decreases as result of lower floor accelerations (Lin et al. 2013, 2015).  

 

Fig. 2.3 Idealization and model of structure-contents sliding system (Lin et al. 2013) 
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The seismic response of sliding equipment and contents in base-isolated buildings 

subjected to ground motions was studied (Konstantinidis and Nikfar 2015; Nikfar and 

Konstantinidis 2013). For the analysis, they considered a SDOF superstructure. The 

response was investigated by varying the frictional coefficients and the isolation system 

properties. This study found the isolation to be effective in reducing seismic demands on 

the sliding equipment. The study also showed that the demand on the equipment increased 

for low coefficient of friction and high earthquake intensities.  

Nikfar and Konstantinidis (2017) examined the seismic demands of the unanchored 

equipment in the base-isolated buildings under pulse excitation. They idealized the 

unanchored equipment as freestanding rigid bodies by considering the Stribeck friction 

model between the floor and the equipment. The analysis results concluded that the simple 

Coulomb friction model with the single coefficient of friction value is adequate for 

estimating the peak sliding displacements. The sliding response of the equipment is high 

for certain combinations of the isolation design parameters, compared to the fixed-base 

building (Nikfar and Konstantinidis 2017).  

In this section, studies about seismic response of sliding secondary structures under 

external excitations are presented. The following section explains the studies about the 

effect of such secondary structures on the dynamic response of primary structure under 

seismic excitations. 

2.2.4 Influence of sliding NSCs on the structural seismic response 

In the previous section, the studies about the seismic response of the freestanding rigid 

bodies/equipment or building contents subjected to harmonic and earthquake excitations 

are presented. Few studies about the response of the rigid bodies resting on the supporting 

structures are also presented. In all these studies, mass of the equipment is very less 
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compared to the mass of the supporting structure and hence dynamic interaction between 

them is neglected. But, the dynamic interaction should not be neglected if heavy bodies are 

resting on the structure, since they affect the structural response (Konstantinidis and Nikfar 

2015; Lin et al. 2013, 2015; Nikfar and Konstantinidis 2017; Yeow et al. 2015). Depending 

on the coefficient of friction and the mass ratio, the building content may affect the dynamic 

response of the building. Heavy content with high coefficient of friction increased the 

period of the building. Equipment with the low coefficients of friction increased the 

damping of the structure by dissipating the input seismic energy through friction (Nikfar 

and Konstantinidis 2017). Therefore, it can be postulated that structural response can be 

altered due to the presence of heavy sliding non-structural components. 

Chandrasekaran and Saini (1969) studied the dynamic response of a SDOF structure due 

to live load. From the results of their analyses, they concluded that the increase in mass 

ratio decreases the response of the rigid block. For design purposes, average values of the 

response based on seven ground motions could be adopted (Chandrasekaran and Saini 

1969). The resonance response of steel structure with sliding floor loads is investigated 

under harmonic and earthquake excitations (Okada and Takanashi 1992). They concluded 

that the response of an oscillator with a sliding load system is influenced by the mass ratio 

and coefficient of friction. For a heavy load and small value of the coefficient of friction, a 

reduced structural displacement and acceleration were observed.  

Takanashi and Xiaohang (1989) conducted experimental studies on a single story and 

three story frame models supporting sliding floor loads using a shake table. Numerical and 

theoretical analysis are verified using these experimental results. From the analysis results, 

they concluded that the response of the frame reduces when the floor loads slide during 

vibration. They suggested that the live loads can be estimated to be lower than the actual 

values in seismic design of the frames (Xiaohang 1989).  
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Ardila-Giraldo et al. (2013) developed a finite element model to depict the interaction 

between a sliding block and a structure. They found that the finite element (FE) model 

estimated the displacement response of the supporting structure within 2% on average of 

the values obtained through the numerical integration of the equations of motion. Finally, 

they concluded that the FE model will serve to conduct parametric studies to develop the 

design recommendations in regards to the fraction of sliding mass that should be added to 

the dynamic mass in structures supporting sliding rigid blocks (Ardila-Giraldo et al. 2013). 

Smith-Pardo et al. (2014) made an attempt to develop a model to depict the interaction 

between a sliding block and the structure. Two levels of seismic risk were studied. They 

introduced a new parameter called Drift Demand Ratio (𝐷𝐷𝑅) for quantification of the 

effect on the behavior of the structure. A parametric study was presented to show the 

variation of 𝐷𝐷𝑅 by varying the structural period (𝑇𝑝), mass ratio (𝛼), and coefficients of 

friction (𝜇𝑠 and 𝜇𝑘) for a given seismic hazard level. Their analysis results show that the 

portion of live load that should be included as inertia in the primary structure 

design/analysis depends upon the properties of the structure, magnitude of earthquake and 

the coefficient of friction (Smith-Pardo et al. 2014).  

 

Fig. 2.4 Structure with sliding live load object (Pile-supported container terminal) 

(Smith-Pardo et al. 2015) 
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The effect of live load on the seismic design of a single-story storage structures (Fig. 

2.4) under horizontal ground motions was studied (Smith-Pardo et al. 2015). An algorithm 

was developed to determine the fraction of sliding load as dynamic mass (𝜆) under 

operational and contingency seismic hazard levels. A thorough study was conducted to find 

the change in 𝜆 by varying the structural period, mass ratio and coefficient of friction. 

Parametric study results show that the 𝜆 increases significantly with 𝑇𝑝, 𝛼, and 𝜇 for both 

the seismic hazard levels. A simple design expression was developed to estimate the 𝜆 as a 

function of the maximum acceleration of the structure, 𝛼, and 𝜇. A design expression was 

developed and verified by an experimental study (Reyes et al. 2016).  

The studies (Reyes et al. 2016; Smith-Pardo et al. 2015) were conducted on SDOF 

primary structures supporting rigid sliding blocks. The methodology proposed in these 

studies was to estimate the fraction of sliding load as dynamic mass. This was extended to 

the multi-degree of freedom (MDOF) systems. A design expression was proposed to 

estimate the 𝜆 and tested through the seimsic analysis of two-story and four-story three 

dimensional models (Reyes et al. 2018).  

In the present study, Artificial Neural Networks (ANNs) were used for the generation 

of design expressions. ANNs have been used extensively in various fields to relate the input 

and output data (Briki and Lahbari 2018; Wang et al. 2011). 

In this section, few studies about sliding secondary structures and their effect on the 

seismic response of a primary structure under external excitations are presented. The 

following section explains the summary of the literature review and limitations of existing 

research.  
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2.3  Summary from literature review and limitations of existing research 

After a thorough study of available literature, it is understood that the dynamic interaction 

between the primary and the heavy secondary structures is significant to the both primary 

and secondary structural dynamic analysis under external excitations. Based on the review 

of literature summarized in the preceding sections, the following limitations were identified 

for this study: 

1. Limited research has been reported on the effect of suspended mass on the seismic 

response of the primary structure under harmonic and seismic excitations. None of 

the studies have incorporated the vibrational and interactional properties of 

suspended NSCs and their effects on the overall dynamic response of primary 

structures. 

2. Research on the effect of sliding NSCs on the primary structure has been limited to 

single sliding live load objects. But in reality, multiple sliding live load objects exist 

in the form of stacks. The effect of such multiple sliding live load objects and their 

interaction properties on the dynamic behavior of primary structure has not been 

reported yet.  

3. None of the studies from the review of literature study the effect of vibrational and 

interactional properties of NSCs on the structural damping.  

4. Relevant design expressions for the seismic design of primary structure with flexible 

attached secondary systems and multiple sliding NSCs are not developed. This study 

is to be carried out since present codal provisions have not given any guidelines 

covering these NSCs especially in an Indian scenario. 
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2.4 Research Significance  

Non-structural components like suspended/hanging NSCs and the multiple sliding live load 

objects change the dynamic response of the structure. This change in dynamic response 

will be analyzed and quantified in this study. This research will show the importance of the 

dynamic interaction between the primary and secondary structure in the primary structural 

design. Moreover, this research will provide design methodologies on how to incorporate 

the vibrational and interactional properties of the secondary structure in the primary 

structure equations of motion. This study will also be beneficial to design the simple elastic 

primary structure in more economical way. Since there are no existing design standards for 

the design of the structure with such secondary structures, the outcomes of this study can 

be a first step towards the formulation of the standard code of practice especially for Indian 

scenario. It should be noted that this research will be especially helpful for industrial 

structures with heavy secondary loads and light primary structures such as scaffolding 

frames. 

2.5 Summary  

In this chapter, the research on the dynamic behavior of non-structural components and the 

effect of such components on the dynamic behavior of the primary structure have been 

discussed. The following chapters will describe the analytical models of the structure with 

various types of NSCs (hanging and sliding). 

 

 

 

 

 

 



35 
 

CHAPTER 3: HANGING NON-STRUCTURAL 

COMPONENTS 

The analytical model to be presented is an idealized version of the structure with a hanging 

NSCs. The motivation is to describe the effect of a hanging NSC on the motion of a 

structure under external excitations. Additionally, the implementation of the analytical 

model will demonstrate the results of the parametric study for a given vibrational and 

dynamic properties of the NSC and the primary structure, respectively. 

3.1 Analytical Model of Hanging NSC and SDOF Structure  

3.1.1 The SDOF Structure  

The particular problem studied here is based on the lead-shielding application in nuclear 

power plants. Lead-shielding in power plants is primarily provided by lead blankets 

hanging from and laid on lightweight scaffolding. Due to the high risk associated with the 

interior of the nuclear power plants, these scaffolding structures need to be designed for 

seismic loads. Since the lead blankets are considerable in weight with respect to the light 

frame and are hanging from the scaffolding structure, it is a good example of the problem 

statement. For simplicity, the scaffolding is assumed to be on the ground and single-storied. 

The structure is modelled as a single-degree-of-freedom (SDOF) scaffolding structure 

with a lumped mass (𝑚𝑝). The motion of the mass is defined by the displacement relative 

to the ground, 𝑢𝑝(𝑡). The lateral stiffness of the structure is modelled as a linear spring with 

constant stiffness 𝑘𝑝. The energy contained in the system is dissipated with a viscous 

damper having a damping coefficient 𝑐𝑝. The structure is excited by a harmonic and real 

earthquake type ground motions. The ground acceleration is represented by �̈�𝑔(𝑡). A 

schematic of the model is shown in Fig. 3.1. 
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Fig. 3.1 SDOF structure model 

D’Alembert’s principle of dynamic equilibrium is employed to formulate the equations 

of motion for the system. A free-body diagram of the structure is shown in Fig. 3.2.  

 

Fig. 3.2 Free-body diagram of SDOF structure  

The dynamic equation of motion for the structure model is given by Eq. (3.1). 

𝑚𝑝�̈�𝑝(𝑡) + 𝑐𝑝�̇�𝑝(𝑡) + 𝑘𝑝𝑢𝑝(𝑡) = −𝑚𝑝�̈�𝑔(𝑡) (3.1) 

The undamped natural frequency and the damping ratio of the structure are denoted by 𝜔𝑝 

and 𝜉𝑝 respectively. They are defined as follows: 

𝜔𝑝 = √
𝑘𝑝

𝑚𝑝
 (3.2) 

𝜉𝑝 =
𝑐𝑝

2√𝑘𝑝𝑚𝑝

 
(3.3) 

3.1.2 Hanging NSC 

The lead blankets are considerable in weight with respect to the light frame and are hanging 

from the scaffolding structure. The hanging lead blankets can be modelled as a simple 

pendulum with a point mass 𝑚𝑠 supported by a massless rod of length 𝐿𝑠. The rod pivots 

about a single point. The hanging mass is restricted to move horizontally. The differential 

equation of motion of a simple pendulum is derived by assuming the pendulum with a single 
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degree of freedom. The variables used in deriving the equation are time (𝑡) measured in 

seconds and angle (𝜃) measured in radians. The length of the pendulum (𝐿𝑠) is measured in 

meters and mass of the pendulum (𝑚𝑠) measured in kilograms. A force diagram of the 

simple pendulum is shown in Fig. 3.3.  From Fig. 3.3, it can be seen that the driving force 

of the pendulum is: 

 

Fig. 3.3 The simple pendulum 

𝐹 = −𝑚𝑠𝑔𝑠𝑖𝑛𝜃 (3.4) 

Remember that the acceleration 𝑔 is moving downwards, hence the negative sign. If we 

take the displacement of the pendulum mass from its equilibrium state to be 𝑠, then the 

acceleration of the mass is �̈�. 

Newton’s second law of motions states that: 

𝐹 = 𝑚𝑠𝑎 (3.5) 

Where 𝐹 denotes a force, 𝑚 denotes a mass and 𝑎 denotes acceleration. So, therefore: 

−𝑚𝑠𝑔𝑠𝑖𝑛𝜃 = 𝑚𝑠�̈� (3.6) 

−𝑔𝑠𝑖𝑛𝜃 = �̈� (3.7) 
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When the massless rod makes an angle 𝜃 with the vertical, then the displacement 𝑠 of the 

bob is given by: 

𝑠 = 𝐿𝑠𝜃 (3.8) 

Differentiating Eq. (8) twice with respect to time 𝑡 gives us: 

�̈� = 𝐿𝑠�̈� (3.9) 

Substituting Eq. (9) into Eq. (7) and rearranging: 

𝐿𝑠�̈� = −𝑔𝑠𝑖𝑛𝜃 (3.10) 

Thus: 

�̈� +
𝑔

𝐿𝑠
𝑠𝑖𝑛𝜃 = 0 

(3.11) 

For small angles of 𝜃, the differential equation of simple pendulum motion can be obtained 

from Eq. (11) as: 

�̈� +
𝑔

𝐿𝑠
𝜃 = 0 

(3.12) 

3.1.3 Combined Model for Structure and Hanging NSC  

In this chapter, the two systems from the previous two sub-sections are coupled. This is the 

next step to arrive at the final analytical model. In this model, the interaction between the 

two systems will be studied. One system is the SDOF structure with a damper and a spring, 

and another system is a pendulum with its massless rod. As the combined system has two 

different motions, two equations are obtained.  

Before deriving the differential equations, the following critical assumptions are 

mentioned in order to establish the analytical model. 

1. The length of the pendulum rod is not variable. 
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2. The mass of the SDOF system is only moved in one direction, i.e., in horizontal 

direction. 

In this study, the structure model is considered as an undamped SDOF system. Flexibly 

connected hanging loads on the supporting structure during seismic events, as shown in Fig. 

3.4, are considered in the current study. A typical scaffold frame with hanging lead blankets 

through carabiners is shown in Fig. 3.4a. A typical frame with hanging lead blankets 

subjected to ground acceleration is shown in Fig. 3.4b. The system is idealized, as shown in 

Fig. 3.4c. The hanging lead blankets are assumed as simple pendulums. The mechanical 

model for the simplified system is shown in Fig. 3.4d. In this study, a lead blanket hanging 

from the center of the frame through carabiners is considered. A simple primary structure 

and the pendulum attached to it is a problem statement considered in this study. Since the 

original problem that we tried to study was of such a simple structure (single story 

scaffolding), such assumptions are adequate for the structure and the hanging mass. The 

scaffolding is considered as a 2D steel frame of a column height of 2.74 m with a circular 

pipe section of 48.26 mm diameter and a thickness of 3.04mm. Each hanging lead blanket 

is 1.05 m long and 0.3 m wide with a weight of 80 kg/m2. These measurements are taken 

from actual scaffolding structures that were installed in real power plants. This mass is 

modelled as a simple pendulum with smaller angular displacements.  

The chosen degrees of freedom are the horizontal displacement of the structure relative 

to the ground and the rotational displacement of the flexibly connected secondary structure 

(FSS). The free-body diagram of the considered 2DOF combined system is represented in 

Fig. 3.5.  

The hanging mass is connected to the structure by a massless member. The resisting force 

(𝐹𝑟𝑒𝑠) acting on the primary structure (PS) by the pendulum can be expressed as follows: 
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Fig. 3.4 Scaffolding with hanging lead blankets 

 

Fig. 3.5 Free-body diagram of the considered 2-DOF system 

𝐹𝑟𝑒𝑠 = 𝑚𝑠𝑔𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 (3.13) 

From Fig. 3.5, the horizontal equilibrium of the primary structure gives the governing 

equation of motion of the PS when coupled with the FSS: 
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𝑚𝑝(�̈�𝑝 + �̈�𝑔) + 𝑘𝑝𝑢𝑝 - 𝐹𝑟𝑒𝑠  = 0 (3.14) 

The differential equation governing the motion of the pendulum (FSS) is given by 

𝑚𝑠(�̈�𝑝 + �̈�𝑔)𝐿𝑠𝑐𝑜𝑠𝜃 + 𝑚𝑠�̈�𝐿𝑠
2 + 𝑚𝑠𝑔𝐿𝑠𝑠𝑖𝑛𝜃 = 0  (3.15) 

The Eq. (3.15) can be rewritten as: 

𝑚𝑠(�̈�𝑝 + �̈�𝑔)𝑐𝑜𝑠𝜃 + 𝑚𝑠�̈�𝐿𝑠 + 𝑚𝑠𝑔𝑠𝑖𝑛𝜃 = 0  (3.16) 

If the amplitude of the external excitation is small, the response of the system will be 

small. Hence, in this study, small displacements are assumed for the pendulum to simplify 

the mathematical model by removing the non-linear terms in the differential equations. By 

assuming the small displacements of the pendulum (𝑠𝑖𝑛𝜃 = 𝜃, 𝑐𝑜𝑠𝜃 = 1), the resisting 

force/control force by the pendulum given by Eq. (3.13) reduces to: 

𝐹𝑟𝑒𝑠 = 𝑚𝑠𝑔𝜃 (3.17) 

 Eqs. (3.14), (3.16) and (3.17) reduce to: 

[
𝑚𝑝 0
𝑚𝑠 𝑚𝑠

] {
�̈�𝑝

�̈�𝐿𝑠

}+ [
𝑘𝑝 −

𝑚𝑠𝑔

𝐿𝑠

0
𝑚𝑠𝑔

𝐿𝑠

]  {
𝑢𝑝

𝜃𝐿𝑠
} = -�̈�𝑔 {

𝑚𝑝

𝑚𝑠
}         (3.18) 

The above system of equations (Eqs. (3.18)) looks very similar to the equations of motion 

governing the classical 2DOF system given by: 

[
𝑚𝑝 0
𝑚𝑠 𝑚𝑠

] {
�̈�𝑝

�̈�𝑠𝑠
}+ [

𝑘𝑝 −𝑘𝑠

0 𝑘𝑠
]  {

𝑢𝑝

𝑢𝑠𝑠
} = -�̈�𝑔 {

𝑚𝑝

𝑚𝑠
}         (3.19) 

The similarity is attained from replacing 𝑢𝑠𝑠 and 𝑘𝑠 (in Eq. (3.19)) with 𝜃𝐿𝑠 and 
𝑚𝑠𝑔

𝐿𝑠
 

respectively (to obtain Eq. (3.18)). Hence, the hanging mass/secondary mass can be 

accounted for by means of a horizontal spring with stiffness 
𝑚𝑠𝑔

𝐿𝑠
 connected to a mass 
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corresponding to the secondary mass (𝑖. 𝑒. , 𝑚𝑠). The motions of the system are analyzed in 

the time domain. Duhamel’s Integral is used to solve the differential equations in MATLAB. 

3.1.4 Validation of the Model  

The validation of the analytical model was performed using finite element analysis software 

SAP 2000. An SDOF frame 2.74 m high and 2 m wide span was considered. The floor 

beam was considered to be infinitely rigid. The column sections were taken from the actual 

scaffolding structure with moment of inertia (𝐼 = 11 × 10−8 𝑚4). The columns total 

stiffness was calculated to be 25924 N/m. The frame mass is assumed to be lumped at the 

beam level and the mass is assigned to the special node defined at that level. The ends of 

the columns are fixed at the base level. With this data, the time period of the primary frame 

is calculated as 0.263 s. Now, a 2D lumped frame model with a flexibly attached secondary 

structure is considered in the simulation. The flexibly attached secondary structure is 

modeled as a simple pendulum. One end of the pendulum is connected to the single story 

frame mass. The secondary mass (𝑚𝑠) is lumped at the other end (free end) of the 

pendulum. A flexible connection between PS and secondary system is achieved by 

releasing the end moment at the connected end of the pendulum to the frame mass.  

Dynamic analysis is performed with a fixed step size of 0.01 sec. The harmonic base 

motion of acceleration 0.05g with a forcing frequency of 2 Hz is the input given to the 

support of the primary structure. A representative comparison of displacement time 

histories by the proposed model and the SAP model is shown in Fig. 3.6.  
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Fig. 3.6 Comparison of displacement of PS with Finite Element model  

3.2 Dynamic response of a SDOF structure coupled with a hanging 

NSC under Harmonic Excitations 

In this chapter, the primary structure is coupled with an FSS and is studied for harmonic 

ground motion. The harmonic ground excitation with the excitation frequency of 4 Hz and 

amplitude of acceleration as 0.05g is considered. Unless stated otherwise, the dynamic 

parameters of the PS and FSS used in this section are based on actual values of the lead 

shielding application from Sec. 3.1.3 and are listed in Table 3.1.  

Table 3.1 Dynamic parameters of the coupled SDOF-Hanging NSC system 

Parameter Value 

SDOF mass, 𝑚𝑝 (kg) 45.668 

FSS mass, 𝑚𝑠 (kg) 25 

Lateral stiffness of the structure, 𝑘𝑝 (N/m) 25924 

Length of the FSS, 𝐿𝑠 (m) 0.5 

Mass ratio (µ𝑆𝑆) 0.547 

A set of equations shown in Eq. (3.19) are used in the simulation in MATLAB. In the 

first simulation, the displacement time history response of the PS with and without FSS is 
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plotted, as shown in Fig. 3.7. It can be seen that the relative displacement response of the PS 

with FSS is different from the PS alone. Thus, flexible secondary systems show a significant 

effect on the response of the primary structures and cannot be ignored in the design of light 

structures. 

 

Fig. 3.7 Displacement response of the PS with and without FSS 

 

Fig. 3.8 Displacement response of the PS for different lengths of FSS 

To further confirm the effect of FSS on the response of the structure, a resonating 

frequency (forcing frequency equal to the natural frequency of the primary structure) is 

given to the combined system for two different lengths of FSS say 0.5m and 10m as shown 

in Fig. 3.8. It can be seen that for length 0.5m, the response of the PS without FSS is more. 

The response of PS with FSS is subdued since the addition of the FSS creates an extra DOF 
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on the system, thus changing the vibrating frequencies. For a longer length say 10m, the 

response of the PS with and without FSS is nearly equal. This is due to the low-frequency 

pendulums and their non-participation in the vibration of the PS. An extensive parametric 

study was conducted on the response of the primary structure by varying the excitation 

frequency, the natural frequency of the FSS and, the mass of the FSS. New parameters called 

excitation frequency ratio (𝑓𝑟), tuning frequency ratio (𝛽), and the mass ratio (𝜇𝑆𝑆) are 

introduced in this section. The excitation frequency ratio is defined as the ratio of excitation 

frequency (𝜔𝑓) to the natural frequency of the PS (𝜔𝑝). Tuning frequency ratio is defined as 

the ratio of the natural frequency of the FSS (𝜔𝑠) to the natural frequency of the PS (𝜔𝑝). 

The mass ratio is the ratio of the mass of the FSS (𝑚𝑠) to the mass of PS (𝑚𝑝). In the 

parametric study, the dynamic properties of the PS are kept constant. The dynamic properties 

of the FSS and the excitation frequency are varied. 

3.2.1 Effect of excitation frequency ratio  

To study the effect of the forcing frequency, the value of 𝜔𝑝 is kept constant, and the value 

of 𝜔𝑓  is varied. Fig. 3.9 depicts the comparison of peak displacement of the PS with and 

without FSS for different values of 𝛽. The results show that the PS with FSS behaves almost 

as a PS without FSS for a very small tuning frequency ratio (𝛽=0.1). Thus, the response of 

the PS with FSS is similar to the response of a PS without FSS, and hence only one peak of 

the response occurs at 𝑓𝑟=1. This is because a very long length of FSS leads to very small 

tuning frequency ratios. Similarly, in the case of a combined system with a very high tuning 

frequency ratio (𝛽=2), only one peak is observed at lower resonant frequency (𝑓𝑟=0.8). 

Thus, FSS acts as an additional mass which modifies the SDOF system. Similarly, in the 

case of tuning frequency ratios (𝛽=0.5 and 𝛽=1), the response curve of the system shows 

two peaks. The system behaves as a two-degree of freedom system. For certain frequencies, 
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the system behaves as a single-degree of freedom system, and response is higher than the 

two-degree of freedom system. Therefore, it can be deduced that the response of the PS with 

FSS can be controlled by the modified SDOF structure at some excitation frequencies range. 

For all other cases it acts as a two-degree of freedom system. 
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Fig. 3.9 Comparison of peak structural displacement with and without FSS for different 

excitation frequencies 

3.2.2 Effect of tuning frequency ratio  

To study the effect of frequency of the secondary system, the value of 𝜔𝑝 is kept constant, 

and the value of 𝜔𝑠 is varied. The effect of 𝛽 on the structure is shown in Fig. 3.10. For a 

given excitation, it is observed that at very small tuning frequency ratios, the response of the 

structure is independent of the mass of the pendulum. This can be attributed to the fact that 

a longer length of pendulum causes a lower tuning frequency ratio. The response of the 

structure increases with an increase in tuning frequency ratio to some point and then 

gradually decreases with a further increase in the tuning frequency ratio. It can be deduced 

that, when the frequency of the FSS is in the neighborhood of the primary structural 

frequency, irrespective of mass ratio, the peak structural response reduces considerably. For 
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all the mass ratios considered, the range of optimal tuning frequency ratio found out to be 

0.8-1, as observed from Fig. 3.10. Thus, for certain tuning frequency ratio, the response 

reduces significantly. 
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Fig. 3.10 Variation of peak structural displacement for different tuning frequency ratios 

3.2.3 Effect of mass ratio 

This study is primarily for secondary structures that have a comparable mass to the primary 

structure. In this section, the effect of mass ratio on the peak displacement response of the 

PS is studied. The response of the structure is plotted versus the mass ratio (𝜇𝑆𝑆) as shown 

in Fig. 3.11. Resonance is observed for 𝛽=1 and 𝜇𝑆𝑆=0.7 if the excitation frequency is equal 

to either of the natural frequencies of the combined system (Fig. 3.11c). At a higher tuning 

frequency ratio (𝛽=2), the variation in the response of the PS with mass ratio depends upon 

the 𝑓𝑟 . For 𝑓𝑟=0.5, the response of the PS increases with an increase in 𝜇, whereas the 

opposite behavior can be observed for 𝑓𝑟=1. At a lower tuning frequency ratio (𝛽=0.1), the 

response of the PS is not affected by the mass ratio of the FSS for a given excitation 

frequency ratio (𝑓𝑟). Therefore, it can be concluded that the response of the PS varies 

significantly with a mass ratio for a given excitation frequency ratio and tuning frequency 

ratio. 
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              (c) 

Fig. 3.11 Variation of peak structural displacement for different mass ratios 

3.2.4 Mass effect ratio 

To understand the participation of secondary mass in the dynamic behavior of the primary 

structure, the inertial forces on the primary structure need to be looked at. A parameter 𝜀 is 

defined to quantify this participation. The mass effect ratio (𝜖) compares the effect of 

hanging mass on the structure to a structure without a pendulum. It is defined as follows: 

𝜖 =  
𝑚𝑝�̈�𝑝 (𝑚𝑝, 𝑚𝑠)

𝑚𝑝�̈�𝑝 (𝑚𝑝, 0)
 (3.20) 
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where, �̈�𝑝 (𝑚𝑝, 𝑚𝑠) is the acceleration of the primary mass as a function of the primary 

mass (𝑚𝑝) and secondary mass (𝑚𝑠). 

Considerable values of 𝜖 gives a clear indication of the significance of this study. 

When 𝜖 > 1, the mass participation of the hanging mass cannot be ignored. In the same 

breath, when 𝜖 < 1, the hanging mass can be ignored in the design as the effect is less than 

its actual mass. Fig. 3.12 shows the variation of 𝜖 with forcing frequency (𝜔𝑓) for a 

particular mass ratio (𝜇𝑆𝑆 = 0.547) and length of FSS, 𝐿𝑠 = 0.5𝑚 which corresponds to 

tuning frequency ratio (𝛽) as 0.185.  

 

Fig. 3.12 Variation of mass effect ratio (𝜖) with forcing frequency (𝜔𝑓) 

The behavior of 𝜖 as a function of 𝜔𝑓  is observed to fall into 5 regions, as shown in Fig. 

3.12. Regions 4 and 5 show resonance and hence spikes in the value of 𝜖. These regions 

are noted to be in the proximity of natural frequencies of the pendulum and the primary 

structure, respectively. Since coupled frequencies of the system are close to the individual 

components frequencies, this behavior is observed. It is also noted that 𝜖 > 1 in region 1, 

where 𝜔𝑓 < 𝜔1. The average 𝜖 in this region is defined as 𝜖+. 𝜖 is found to be less than 

unity when the forcing frequency falls between 𝜔1 and 𝜔2. Let the average 𝜖 in this region 

be 𝜖−. When the forcing frequency is greater than 𝜔2, the value of 𝜖 tends to 1. In region 

1, since the frequency is very low, secondary mass participates in the vibration and hence 
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𝜖+ > 1. In region 2, since 𝜔1 < 𝜔𝑓 < 𝜔2, out of phase motion between the components 

causes the pendulum to damp the response of the primary structure (𝜖− < 1). For 𝜔𝑓 > 𝜔2 

(region 3) the pendulum stops participating in the structural vibration (𝜖 = 1). The 

pendulum, in this case, will stay at rest and not participate in the motion. These observations 

are in consistent with the plots shown in Fig. 3.11. 

The variation of 𝜖+ and 𝜖− against different masses and lengths of the FSS is shown in 

Fig. 3.13. From Fig. 3.13a, it can be seen that for smaller lengths, as the mass of the FSS 

increases, the inertial forces on the structure increase. As the length of pendulum increases, 

the effect of FSS on the PS is considerably reduced and 𝜖+ tends to unity. The pendulum 

starts damping the response of the PS when the system is vibrating with a forcing frequency 

in between 𝜔1 and 𝜔2. This effect can be clearly observed from Fig. 3.13b. At smaller 

lengths, the mitigation in the response of the PS is more as mass increases. As the length 

of FSS increases, the mitigation effect on the response of the PS decreases and 𝜖− tends to 

unity. 

 

               (a) 
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                  (b) 

Fig. 3.13 Average Mass effect ratio (𝜖+ and 𝜖−) against 𝜇𝑆𝑆 for different 𝛽 

3.3 Dynamic response of a SDOF structure coupled with a hanging 

NSC under Earthquake Excitations 

While applying harmonic ground motions to the problem gives us insights in to its behavior, 

real earthquake motion should be applied before formulating a design methodology for 

such structures. This gives us a better understanding of the dynamic behavior of the 

structure. To study the effect of a flexible secondary system on the response of the primary 

structure, a set of recorded earthquake ground motions are considered. These motions are 

characterized by their differing frequencies and intensity levels. The details of earthquake 

motions that are studied here, their time histories and Fast Fourier Transforms are shown 

in Table 3.2, Fig. 3.14, and Fig. 3.15, respectively.  

In this section, a primary structure with and without the secondary mass is subjected to 

the excitations shown in Fig. 3.14. The characteristics such as mass and tuning frequency 

ratios are presented here. While the characteristics of the primary structure are not varied, 

the properties of the secondary system are changed. 
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Table 3.2. Details of earthquakes considered  

Earthquake Station name Component PGA 
(g) 

Duration 
(s) 

El Centro(1940) 

Imperial valley, 

Southern 

California, USA. 

N-S 0.348 53.74 

Kobe(1995) 
Nishi-Akashi, 

Japan 
0∘ 0.509 41 

Chi-Chi(1999) Taichung, Taiwan 0∘ 0.537 93 
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Fig. 3.14 Ground acceleration time histories of selected earthquakes  
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Fig. 3.15 FFT amplitudes of selected earthquakes 
 

3.3.1 Effect of tuning frequency ratio 

Fig. 3.16 shows the peak displacement response of the PS when the tuning frequency ratio 

varies. For this purpose, 𝜔𝑝 is kept constant and 𝜔𝑠 is varied. It is observed that the response 

of the PS with FSS depends upon the excitation frequency. As earthquakes have random 

forcing frequencies and the selected earthquakes differ by frequency content, widely 

varying behavior is seen for each earthquake. It was found in Fig. 3.16 that the response of 

the structure varies significantly with the tuning frequency ratio for a given mass ratio. The 

large masses resulted in optimum tuning frequency ratios deviating from the resonance 

condition (𝛽=1). For lower mass ratios of FSS, the optimum tuning frequency ratio is in 

the vicinity of the 1.0 but not certainly in the resonance condition.  
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Fig. 3.16 Peak structural response versus tuning frequency (a) El Centro (1940); (b) Kobe 

(1995); (c) Chi-Chi (1999) 

The response of the system with and without FSS under each earthquake is shown in 

Table 3.3 for better understanding. Optimal tuning frequency ratio is the ratio at which the 

structural response is minimum. For El Centro and Kobe earthquakes, the percentage 

reduction in the response of the PS with FSS is more when the 𝛽 is in the vicinity of the 

resonance condition. The reduction in response is significant when the tuning frequency 

ratio is not in the vicinity of the resonance condition at larger mass ratios of FSS. For the 

Chi-Chi earthquake, the reduction in the response of the structure is high for a larger mass 
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ratio. This reveals that at larger mass ratios of FSS, the structural response reduces 

significantly when the tuning frequency ratio is not within the vicinity of the resonance 

condition. It can also be deduced that the optimal tuning frequency ratio range of the FSS 

depends upon the excitation frequency and mass ratio of the FSS for a given structure. 

Table 3.3 Response reduction at optimal tuning frequency ratios  

Earthquake Peak displacement of the PS, 𝑢𝑝 (m) 

El Centro 

(1940) 

without FSS with FSS % reduction 

0.0405 

𝛽 1.2 
0.0228 43.7 

𝜇𝑆𝑆   0.5 

𝛽 0.2 
0.0253 37.5 

𝜇𝑆𝑆   1 

Kobe  

(1995) 
0.0767 

𝛽 0.8 
0.0315 58.9 

𝜇𝑆𝑆   0.5 

𝛽 0.2 
0.0456 40.5 

𝜇𝑆𝑆   1 

Chi-Chi 

(1999) 
0.0927 

𝛽 0.4 
0.0479 48.3 

𝜇𝑆𝑆   0.5 

𝛽 0.6 
0.0458 50.5 

𝜇𝑆𝑆   1 

 

3.3.2 Effect of mass ratio 

The structural response is plotted against the mass ratio, 𝜇𝑆𝑆  for different tuning frequency 

ratios (𝛽). The effect of mass ratio on the peak displacement response of the PS is shown 

in Fig. 3.17. It is observed that, at lower 𝛽 (=0.1) or low-frequency (long) pendulums, the 

variation in peak displacement response of the PS does not vary much with an increase in 

the mass ratio for all the three earthquakes. At higher tuning frequency ratios (𝛽=2), the 

combined system (PS with FSS) behaves as a modified SDOF structure with an additional 

mass. Due to this, the structural time period of the modified system increases, and the 

displacement of the PS varies significantly with the mass ratio. At intermediate tuning 

frequency ratios, the peak displacement response of the PS varies significantly as mass ratio 

increases and heavily depends on the type of earthquake excitations. Therefore, it can be 
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concluded that the mass ratio of the FSS has a significant effect on the response of a PS for 

all frequencies. 
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                                                                            (c) 

Fig. 3.17 Peak structural response versus mass ratio (a) El Centro (1940); (b) Kobe 

(1995); (c) Chi-Chi (1999) 

3.4 Effect of a hanging NSC on the design response spectrum 

From the analysis results above it can be concluded that the effect of suspended/hanging 

NSC on the seismic response of the primary structure is significant. Therefore, this section 

tries to incorporate that effect in the design of the structure. The design of the supporting 

or primary structure is done using the response spectrum method in this study. The 

calculations of the spectral acceleration of the structure is required for this design. Three 



57 
 

different earthquake excitations have been chosen based upon the shear wave velocity to 

represent the excitation for hard, medium, and soft soil types from PEER Ground Motion 

Database (Center 2013). These excitations are made compatible with the design spectra 

associated with 0% damping. A multiplying factor of 3.2 given in table 3 of IS 1893:2002 

(Code 2002) was used to obtain design spectra corresponding to 0% damping from 5% 

damping design spectra. The design spectra for two seismic zones Zone III and Zone V 

with respect to different soil types were used in this study. Spectral matching method in the 

time domain is utilized to generate spectrum compatible earthquake excitations. For this 

study, the structure is assumed to be fixed on rigid ground. Consideration of soil-structure 

interaction affects the seismic response and structural period (Ghanbari and Ghanbari 

2016). In this study, such soil-structure interaction is neglected. Thus, different excitations 

with respect to different soil types are considered to represent the different dominant 

frequencies of the earthquake. The details of the three excitations are shown in Table 3.4. 

The frequency content for each earthquake excitation can be determined by conducting Fast 

Fourier Transform (FFT) to each excitation. Table 3.5 summarizes the dominant frequency 

of each excitation. Fig. 3.18 shows the target IS 1893:2002 spectra for hard, medium, and 

soft soil conditions for Indian seismic zone III. The corresponding response spectra of the 

spectrum compatible ground motions are also presented. The target spectra of seismic zone 

V and corresponding response spectra for the ground motions of different soil types are 

shown in Fig. 3.19. 

Table 3.4 Details of earthquakes 

Event Station name Year 
Magnitude 

(Mw) 

Shear Wave Velocity,  

Vs 

(m/s) 

Kern County Taft Lincoln School 1952 7.36 385.43 

Northern Calif-03 Ferndale City Hall 1954 6.5 219.31 

Imperial Valley-06 El Centro Array #3 1979 6.53 162.94 
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Table 3.5 Dominant frequencies of the excitations 

Event Soil type Dominant frequency (Hz) 

Kern County Hard Soil 2.27 

Northern Calif-03 Medium Soil 0.63 

Imperial Valley-06 Soft Soil 0.41 
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Fig. 3.18 IS 1893:2002 Zone III design spectra and response spectra of the ground 

motions 
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Fig. 3.19 IS 1893:2002 Zone V design spectra and response spectra of the ground 

motions 

Spectrum compatible ground motions in seismic zones III and V for different soil 

conditions are applied to the combined model to verify the effect of the seismic zone and 

soil type on the dynamic behavior of a structure with a hanging load. Figs. 3.20, 3.21, and 

3.22 display the acceleration response of the PS with and without FSS by solving the system 

of equations of motion of PS for different earthquake excitations in seismic zones III and 

V. The structural period of the PS is chosen as 0.8 s. The length of FSS and mass ratio are 

0.1 m and 1, respectively.  
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                                             (a)                                                                   (b) 

Fig. 3.20 Acceleration response of PS with and without FSS for hard soil excitation (a) 

Zone III; (b) Zone V 
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                                             (a)                                                                   (b) 

Fig. 3.21 Acceleration response of PS with and without FSS for medium soil excitation 

(a) Zone III; (b) Zone V 
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                                             (a)                                                                   (b) 

Fig. 3.22 Acceleration response of PS with and without FSS for soft soil excitation (a) 

Zone III; (b) Zone V 
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The acceleration response of the PS with FSS on hard soil shows maximum reduction 

throughout the excitation, as shown in Figs. 3.20a and 3.20b. For medium soil, a reduction 

in the acceleration of the PS with FSS can be observed. The reduction is not as much as the 

hard soil condition (Figs. 3.21a and 3.21b). For soft soil, there is a reduction in the 

acceleration of PS accompanied by amplification at some range acceleration, as shown in 

Figs. 3.22a and 3.22b. A parameter called Response Acceleration Reduction Ratio (RARR) 

is defined in this study to quantify the effect of FSS as follows: 

𝑅𝐴𝑅𝑅 =
𝑎0 − 𝑎1

𝑎0
× 100 (3.21) 

where, 𝑎0 is the maximum acceleration of PS without FSS, and 𝑎1 is the maximum 

acceleration of PS with FSS. 

The response of the PS with and without FSS along with 𝑅𝐴𝑅𝑅 is shown in Table 3.6. 

It can be seen that the FSS affects the dynamic response of PS differently under different 

soil and seismic zone conditions. In all the three soil types, FSS decreases the acceleration 

response of the PS in both the seismic zones. The maximum value of 𝑅𝐴𝑅𝑅 is about 49% 

on hard soil for both Zone III and V. The minimum value of 𝑅𝐴𝑅𝑅 is 35% on soft soil for 

both Zone III and Zone V. From this preliminary investigation, it can be concluded that the 

while dynamic response of the PS with FSS depends upon the soil type, dominant frequency 

of the excitation it is independent of the seismic zone. Hence in this study methodology is 

developed for the estimation of spectral acceleration of the PS with FSS by incorporating 

the soil type and seismic zone by varying the vibrational parameters of the FSS. 
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Table 3.6 Response of PS with and without FSS, and RARR 

Soil 

Type 

Maximum acceleration of PS (m/sec2) 

Zone III Zone V 

Without 

FSS 

With 

FSS 

RARR 

(%) 

Without 

FSS 
With FSS 

RARR 

(%) 

A 22.95 11.68 49.00 55.13 27.95 49.30 

B 28.22 18.15 35.60 67.78 42.75 36.90 

C 17.91 11.56 35.45 40.10 25.78 35.70 

3.4.1 Methodology to determine the modified spectral acceleration for 

the structure 

In this section, a methodology was developed to calculate the spectral acceleration of the 

PS given the vibrational parameters of the FSS, such as mass ratio (µ𝑆𝑆), length of FSS 

(𝐿𝑠),  and design spectrum. The design spectra in the seismic design code of India, IS 

1893:2002, as shown in Fig. 3.23 are chosen to demonstrate this methodology.  
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                                   (a)                                                                   (b) 

Fig. 3.23 Target design spectra for different soil conditions (a) Zone III; (b) Zone V 

It should be noted that this methodology is for any generalized case.  The spectral 

acceleration of the PS with FSS can be calculated through the following steps: 

 Consider a PS with an FSS. 

 Perform Eigenvalue analysis for the coupled system (PS with FSS i.e.  Eqs. (3.19)) 

and determine modal frequencies. 
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 Calculate the spectral accelerations (𝑆𝑎1 and 𝑆𝑎2) from the given spectrum for 

modal time periods 𝑇1 and 𝑇2 obtained from the above step. 

 Find out the inertial forces on PS in two modes and get the total inertial force using 

Quadratic Combination (QC) method. 

 Calculate the new spectral acceleration of PS from the inertial force (obtained in the 

above step) by dividing it by the mass of the PS. 

 Repeat the procedure for different structural periods of PS and construct a new 

design spectrum. 
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                                                         (a)                                                                                                   (b)   

Fig. 3.24 Effect of a smaller length and a higher mass ratio of an FSS on the design 

spectrum (a) Zone III; (b) Zone V 
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Fig. 3.25 Effect of a longer length and a smaller mass ratio of an FSS on the design 

spectrum (a) Zone III; (b) Zone V 
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Design spectra thus produced are compared to existing spectra, as shown in Figs. 3.24 

and 3.25. From the figures, it can be observed that the effect of FSS on the design response 

spectrum is negligible for very long pendulums, while the opposite is true for very short 

pendulums. In order to quantify the effect of vibrational parameters on the spectral 

acceleration of PS, a parameter called Design Acceleration Ratio (DAR) is defined in this 

study as follows: 

𝐷𝐴𝑅 =  
𝑆𝑎 (𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑)

𝑆𝑎 (𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙)
 (3.22) 

where, 𝑆𝑎 (𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙) is the spectral acceleration of the PS from the original spectrum (IS 

1893:2002 in this case). 𝑆𝑎 (𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑) is the spectral acceleration of the PS from the 

modified spectrum (after incorporating the effect of the FSS). The effects of various 

parameters like µ𝑆𝑆, β, and 𝑇𝑝 on DAR are studied in the following section. This study is 

performed on hard soil conditions at seismic zones III and V.  

3.4.2 Effect of the mass ratio and tuning frequency ratio on the response 

In this section, the effect of mass ratio (µ𝑆𝑆) and tuning frequency ratio (β) on DAR are 

examined. The mass ratio (µ𝑆𝑆) is varied from 0.1 to 1. It should be noted that the mass of 

the secondary mass is considerable in all these cases. Namely, varying between 10% and 

100% of the primary structure. This is only possible for very heavy secondary masses or 

very light primary structures. The structural periods of the PS are chosen to be 0.5s, 1s, 

1.5s, and 2s in line with the most common one-story structures including the scaffolding 

from Section 3.1.3. Fig. 3.26 shows the DAR values in seismic zones III and V with varying 

mass ratio (µ𝑆𝑆) for different structural periods.  
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Fig. 3.26 Variation of DAR with mass ratio (µ𝑆𝑆) for different structural periods (𝑇𝑝)  

For a small mass ratio (µ𝑆𝑆 = 0.1), the response of the structure reduces by 6-17% with 

the addition of an FSS. This reduction increases to 30-40% when the mass ratio is high 

(µ𝑆𝑆 = 1). It is important to note that the DAR is not site-specific for a given mass ratio and 

structural period (Fig. 3.26). While DAR is not site-specific for Indian conditions, it is 

important to understand independence also for conditions from around the world. In order 

to understand the variation of DAR in such cases, the values are compared using IS 

1893:2016 and ASCE 41-13 (Pekelnicky et al., 2012) for hard soil for 5% damping. Table 

3.7 shows the DAR for a given µ𝑆𝑆 and 𝐿𝑠 as per IS 1893:2016 and ASCE 41-13 codes. It 

can be observed that DAR is constant with a negligible variation for both the response 

spectra. This shows that a design expression for DAR can be developed independent of the 

spectra. In the next section, such a design expression for DAR is developed. 
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The length of the FSS (𝐿𝑠) on the modified design spectrum is studied by defining the 

tuning frequency ratio (β). Tuning frequency ratio (β) is defined as the ratio of secondary 

system frequency (𝜔𝑠) to the primary structure frequency (𝜔𝑝). The pendulum frequency 

(√
𝑔

𝐿𝑠
) depends upon the suspension length and is independent of the mass ratio. The time 

period of the structure is set as 0.7 sec. The values of various lengths of FSS and 

corresponding frequency ratios are shown in Table 3.8. 

Fig. 3.27 illustrates the variation of DAR with a variation in mass ratio and frequency 

ratio. The lowest DAR value is obtained at the bottom point on the 3D contour plot. In 

addition to the 3D contour surface, five different lengths of FSS are sampled to better 

demonstrate the trend in the variation of DAR with a mass ratio, as shown in Fig. 3.28. 

From Fig. 3.28, it can be observed that the DAR varies from 0.55 to 0.99, depending on the 

length and mass of the FSS. It can also be seen that for shorter lengths of FSS and larger 

mass ratios, the response of the structure reduces with the addition of a secondary system. 

This variation of response as the length (and hence β) of the secondary system changes can 

be further explained by performing a Fourier response analysis of these systems with real 

earthquake ground motions. 

For this case, ground motion compatible with Seismic Zone III hard soil excitation is 

considered, and the structural period (𝑇𝑝) of the PS is chosen as 0.7 sec (1.42 Hz). The 

mass ratio (µ𝑆𝑆) is about 0.5. Fig. 3.29 illustrates the effect of the frequency ratio on the 

acceleration response of the PS with and without FSS. There is only one peak in the Fourier 

spectra of the acceleration response of the PS without FSS, which is at 1.42 Hz, 

corresponding to its natural frequency. When the PS is attached with FSS, there exist two 

peaks in the Fourier response spectra at tuning frequency (β = 1.1) and un-tuning frequency 

(β = 1.3) case. Two peaks are located at both sides of 1.42 Hz, corresponding to the natural 
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Table 3.7 Variation of DAR as per IS 1893:2016 and ASCE 41-13 response spectra (5% 

damping) 

𝑇𝑝(sec) 

DAR 

µ𝑆𝑆 = 0.5, 𝐿𝑠 = 0.1 m µ𝑆𝑆 = 0.5, 𝐿𝑠 = 0.5 m 

IS 1893:2016 ASCE 41-13 IS 1893:2016 ASCE 41-13 

0.1 0.94 0.98 0.94 0.99 

0.5 0.70 0.67 0.95 0.93 

1 0.72 0.71 0.76 0.77 

1.5 0.77 0.77 0.66 0.67 

2 0.79 0.80 0.70 0.71 

 

Table 3.8 Correlations between the length of the FSS and tuning frequency ratio 

Ls (m) 0.01 0.05 0.1 0.2 0.3 0.4 0.5 1 2 

β 3.49 1.56 1.1 0.78 0.63 0.55 0.49 0.34 0.24 

 

 

 

 

 

 

 

  

Fig. 3.27 Variation of DAR with mass ratio (µ𝑆𝑆) and tuning frequency ratio (β) 
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Fig. 3.28 Variation of DAR with mass ratio (µ𝑆𝑆) for a selected tuning frequency ratio (β) 
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frequencies of the PS and FSS, separately. There is also only one peak at 1.42 Hz, at un-

tuning frequency (β = 0.25) case (Fig. 3.29d). For a very high-frequency ratio (β = 2.49), 

only one peak is observed at 1.14 Hz, which is the frequency of the PS when the secondary 

system is rigidly attached. At the tuning frequency case (β = 1.1), the magnitude of the 

second peak is greater than the first peak, which shows that response of the FSS is larger 

than the PS (Fig. 3.29c). Thus, the primary structure’s response is transferred to the FSS 

and resulting in a good reduction effect. In the case of β = 1.3, the first peak is greater than  
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Fig. 3.29 Variation of Fourier amplitude response of PS for different tuning frequency 

ratios (β) 
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the second peak, which means that the PS response is more than the response of the FSS. 

Even though the response of the PS with FSS is less than the PS without FSS, the damping 

effect of the FSS on the response of the PS is not as good as the former one. For a very low-

frequency ratio, β = 0.25, the moving mode of the FSS is not excited and shows an 

insignificant effect on the response of the PS. From this, it can also be deduced to the fact 

that since longer suspension lengths of the FSS leads to low-frequency ratios for a given 

structural period, such longer length secondary systems show a negligible effect on the PS. 

Hence, response of the PS with FSS is equal to the response of the PS without FSS at the 

same structural frequency. Very small suspension lengths of the FSS lead to very high-

frequency ratios for a given structural period. Due to small suspension lengths, the stiffness 

parameter of the FSS becomes very high such that FSS acts as a rigidly attached secondary 

system. Due to this rigid attachment, a full mass of the FSS participates in the dynamic 

motion along with PS. This results in an increase of the structural mass, leading to a lower 

frequency of 1.14 Hz, as shown in Fig. 3.29a. 

3.4.3 Validation of the proposed design methodology 

To examine the accuracy of the proposed design methodology, the optimum tuning 

frequency ratios (𝛽𝑜𝑝𝑡) of the FSS for a given primary structure are calculated by changing 

the mass ratio (𝜇𝑆𝑆). The obtained 𝛽𝑜𝑝𝑡 from the current study is compared with the 

optimum value obtained by the polynomial equation suggested in the reference study 

(Yucel et al. 2019). For this purpose, the time period of the undamped primary structure is 

chosen as 0.1 sec. The mass ratios are 0.01, 0.05, 0.1, 0.2 and 0.4. 𝐷𝐴𝑅 values are 

calculated for each case.  

Optimum tuning frequency ratio (𝛽𝑜𝑝𝑡) is a tuning frequency ratio where 𝐷𝐴𝑅 is 

minimum for a given mass ratio. Table 3.9 presents the optimum tuning frequency ratios 
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of the FSS obtained by using the proposed design methodology in this study and the 

equations proposed in the reference study. It can be seen that the optimum tuning frequency 

ratios in both the studies are very close. Therefore, the proposed methodology in this study 

is validated and can be used to estimate the spectral accelerations of the primary structure 

with the flexibly attached secondary system. 

Table 3.9 Optimal tuning frequency ratios of FSS 

𝜇𝑆𝑆 
𝛽𝑜𝑝𝑡 

Current study  Study (Yucel et al. 2019) 

0.01 1.00 1.03 

0.05 0.99 0.95 

0.1 0.92 0.92 

0.2 0.90 0.89 

0.4 0.80 0.87 

3.4.4 Design expressions to determine the spectral acceleration of the 

structure by Non-Linear Regression (NLR) and Artificial Neural 

Networks (ANN) 

In order to design a PS with a given FSS, an expression for DAR needs to be developed. In 

order to develop a design expression, a database has been generated first for the spectral 

acceleration of PS with FSS for different cases by changing the input parameters mass 

ratio, length of the FSS, and structural period. The generated database has been used to 

develop a non-linear regression model and a design expression. For some of the cases, DAR 

can be obtained from Figs. 3.27 and 3.28. In other cases, a design expression will be 

developed through a parametric study by considering a large number of discrete points 

correspond to variables 𝑇𝑝, µ𝑆𝑆 and 𝐿𝑠. A Non-linear Regression (NLR) analysis of these 

results produced the following design equation:    

𝐷𝐴𝑅 = (1.554 ∗ 𝜇𝑆𝑆 − 2.666 ∗ 𝐿𝑠 + 3.091) ∗ 𝑒(0.629∗𝜇𝑆𝑆−0.257∗𝐿𝑠−7.697)∗𝑇𝑝 + 

              (−0.458 ∗ 𝜇𝑆𝑆 + 1.891 ∗ 𝐿𝑠 + 2.753) ∗ 𝑒(1.268∗𝜇𝑆𝑆−0.499∗𝐿𝑠−2.885)∗𝑇𝑝 + 

          𝐿𝑁(0.125 ∗ 𝑇𝑝
2) +   4.336 ∗ 𝑒(−0.313∗𝑇𝑝−0.235∗𝜇𝑆𝑆+0.005∗𝐿𝑠−0.083∗𝑇𝑝

2) 

 (3.23) 
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Fig. 3.30 shows the correlation between actual and predicted DAR values. The actual 

DAR values are obtained by a parametric study using the analytical model, whereas the 

predicted DAR values are obtained by the non-linear regression equation. The Eq. (3.23) 

best established the dependency among the variables with 𝑹𝟐 of 0.898.  In using Eq. (3.23), 

it must be emphasized that the expression is derived under the following conditions and 

assumptions: (i) Small displacements of the secondary system, (ii) Length of the FSS from 

0.01 m to 2 m, (iii) Mass ratio (µ𝑺𝑺) from 0.1 to 1, (iv) Time period of the PS from 0.1 sec 

to 4 sec. The proposed design expression can be used for the calculation of spectral 

acceleration of the PS when it is attached with a flexible secondary system. 
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Fig. 3.30 Actual DAR vs. Predicted DAR by Non-linear Regression 

As the design expression obtained by the nonlinear regression is found to be not 

adequate (𝑅2=0.898), an Artificial Neural Network (ANN) model has been used effectively 

in this study to predict the spectral acceleration of the PS with FSS, since the output can be 

obtained from the ANN-based model using simple hand calculations (Shahin et al. 2002). 

The advantages of modelling of ANN over that of statistical linear and nonlinear regression 

are: i) the functional design expression or its form need not be assumed a priori as in the 

case of nonlinear regression, ii) the degree of nonlinearity of independent parameters also 

need not be assumed a priori, iii) flexibility of varying the network architecture easily for 
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accurate modelling and prediction which is independent of functional approximation, and 

iv) the ease of coming up with generalized design expression for the chosen, most accurate 

simulation and prediction. 

A two-layer feed-forward neural network with the tan-sigmoid transfer function for both 

hidden and output layers has been created in MATLAB R2015a environment to predict the 

Design Acceleration Ratio (DAR). The network has been trained with Bayesian 

Regularization (BR) backpropagation learning algorithm. DAR values are simulated for 

540 cases with input parameters as a mass ratio (µ𝑺𝑺), structural period (𝑻𝒑), and length of 

FSS (𝑳𝒔) for a given seismic design spectrum. The mass ratio varies from 0.1 to 1, with 0.2 

intervals. Structural period (𝑻𝒑) varies from 0.1 sec to 4 sec with 0.5-sec intervals. The 

length of FSS (𝑳𝒔) ranges from 0.01 m to 2 m. For a given range of 𝑳𝒔 and  𝑻𝒑, the tuning 

frequency ratio (𝜷) varies in the range of 0.5 to 1.4. Among the whole data, 70% of the 

data (378 cases) has been allocated to the Training Set, and the remaining 30% of the whole 

database (162 cases) has been allocated to the Testing Set. Before presenting the input and 

output variables to the ANN model training, they were normalized between -1.0 and 1.0 to 

eliminate their dimension and to ensure that all the variables receive equal attention during 

training (Shahin et al., 2002). The normalized value for each variable 𝒙 with minimum and 

maximum values of 𝒙𝒎𝒊𝒏 and 𝒙𝒎𝒂𝒙, respectively, is calculated as follows: 

𝑥𝑛 =
2(𝑥 − 𝑥𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)
− 1 (3.24) 

An optimum number of hidden nodes is necessary to ensure the optimal performance of 

the ANN model. The optimal number of hidden nodes may be taken as the one giving 

lowest mean squared error (MSE) between 1 to (2i+1), where 𝑖 is the number of input 

parameters (Hecht-Nielsen 1992). Since we have three input parameters, ANN models with 

hidden nodes starting from 1 to 7 have been created and the model having the lowest MSE 
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has been considered, and the corresponding number of hidden nodes is chosen as an 

optimum number of hidden nodes which is six in this case as shown in Fig. 3.31. 

Alternatively, a trial and error method can be used to determine the number of hidden 

nodes, which is a tedious task. Thus the best performing and optimum ANN model has 

been obtained by considering six hidden nodes, and the ANN model has been designated 

as ANN 3-6-1 in this study. An architecture diagram of the model has been shown in Fig. 

3.32 for better understanding. 
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Fig. 3.31 MSE against Number of hidden nodes 

 

 

Fig. 3.32 Architecture of the ANN 3-6-1 model 

The prediction capability of the ANN model is evaluated by defining the performance 

measuring functions. In this study, the Coefficient of Correlation (R), Mean Squared Error 

(MSE), and Mean Absolute Error (MAE) are used as performance measuring functions. 
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The performance of the model is summarized in Table 3.10. The performance measuring 

functions are defined as follows: 

𝑅 =  √
∑ 𝑌𝑚

2 − ∑(𝑌𝑚 − 𝑌𝑝)2

∑ 𝑌𝑚
2

 (3.25) 

𝑀𝑆𝐸 =  
∑(𝑌𝑚 − 𝑌𝑝)2

𝑁
 

(3.26) 

𝑀𝐴𝐸 =  
∑|𝑌𝑚 − 𝑌𝑝|

𝑁
 

(3.27) 

where, 𝑌𝑚 and 𝑌𝑝 are the actual target value and predicted output value. 

 

Table 3.10 Performance of ANN-3-6-1 model 

Dataset R2 R MSE            MAE 

Training Data 0.978 0.989 0.0068 0.0612 

Testing Data 0.974 0.987 0.0059 0.0613 

 

R-value gives relative correlation and goodness of fit between the actual and predicted 

values. Therefore, R-value should be as high as possible. MSE and MAE measure errors 

should be as low as possible (Debnath and Sultana 2019). A strong correlation exists 

between actual and predicted values if R > 0.8 (Smith 1986). Fig. 3.33 shows the 

correlation between predicted and actual DAR in the training and testing phase. The overall 

correlation between the predicted and actual DAR is shown in Fig. 3.33c with R as 0.989. 

Thus strong correlation achieved between the predicted and actual values using ANN. Fig. 

3.34 shows the plot of predicted DAR by ANN and Nonlinear Regression against the actual 

DAR values. The results show that ANN model predictions are closer to the line of perfect 

prediction (zero error line) than those of the nonlinear regression model. In other words, 

the ANN model has better prediction accuracy than the Nonlinear regression model. 
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Since the prediction accuracy of the ANN is higher than the non-linear regression 

model, an attempt has been made in this study to get the model equation for DAR from the 

ANN-3-6-1 model. By using the connection weights of a trained network, a mathematical 

equation can be developed by relating the input parameters and the output parameter using 

the following equation (Goh et al. 2005): 
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Fig. 3.33 Predicted DAR and Actual DAR of (a)Training set; (b) Testing set; (c) 

Complete database 
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Fig. 3.34 Values of DAR predicted by ANN and Non-linear Regression versus the 

actual DAR value 

𝑌𝑛 =  𝑓𝑜 {𝑏𝑜 +  ∑ [𝑤𝑘 ∗  𝑓ℎ (𝑏ℎ𝑘 + ∑ 𝑤𝑖𝑘𝑋𝑛𝑖

𝑚

𝑖=1

)]

ℎ

𝑘=1

} (3.28) 

Where, 𝑏𝑜 = output layer bias; 𝑤𝑘 = weight connection between neuron k of the hidden 

layer and single output neuron; 𝑏ℎ𝑘 = bias at the kth hidden neuron; 𝑤𝑖𝑘 = weight 

connection between the input parameter and neuron k of the hidden layer; 𝑋𝑛𝑖 = input 

parameter; 𝑓ℎ =transfer function of the hidden layer (Tan-sigmoid function in this case); 

and 𝑓𝑜 = transfer function of the output layer (Tan-sigmoid function in this case). By 

substituting the values of weights and biases shown in Table 3.11 in the Eq. (3.28) the 

model equation for the prediction of the DAR has been developed. The bias weights, as 

shown in Table 3.11, make the ANN model more general and robust. 

Table 3.11 Weights and biases of ANN-3-6-1 model 

Hidden 

Node 

Input-Hidden weight 

Hidden 

output 

weight 

Bias 

µ𝑆𝑆  𝑇𝑝 𝐿𝑠 DAR Hidden Output 

1 -0.18646 -10.7564 0.28478 2.1987 -8.0831 
 

9.7269 

2 0.02614 -11.2887 -14.2434 1.6868 11.7805 

3 -0.06059 19.75239 -27.8321 -1.6673 7.8449 

4 0.65939 4.93809 0.03036 1.2847 -4.5174 

5 0.01072 54.37749 -13.007 1.7257 27.6945 

6 0.45692 -0.01439 -0.00562 -8.7663 1.5647 
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The following steps can be followed to calculate the DAR: 

1. Normalize the input parameters µ𝑆𝑆, 𝑇𝑝, and 𝐿𝑠 linearly in the range [-1, 1]. 

2. Calculate the normalized DAR using the following expressions: 

 

 

  

 

 

 

 

 

 

 

3. The Eq. (36) has been de-normalized to get the DAR value. 

 

 

The Eq. (3.37) developed for the prediction of the DAR should only be applied in the 

range of dataset for which neural network was trained. The limits for the input parameters 

with maximum and minimum are given in Table 3.12. 

Table 3.12 Limits of Input and Output Parameters of the ANN 3-6-1 Model
 

 

Limits of Input Parameters 

Limits of 

Output 

Parameter 

 µ𝑆𝑆 𝑇𝑝 (s) 𝐿𝑠 (m) 𝛽 DAR 

Max 1 4 2 1.4 1 

Min 0.1 0.1 0.01 0.5 0.603 

 

𝑎 =  −0.18646 ∗ µ𝑆𝑆 − 10.7564 ∗ 𝑇𝑝 + 0.28478 ∗ 𝐿𝑠 − 8.0831 (3.29) 

𝑏 =  0.02614 ∗ µ𝑆𝑆 − 11.2887 ∗ 𝑇𝑝 − 14.24345 ∗ 𝐿𝑠 + 11.7805 (3.30) 

 

𝑐 =  −0.06059 ∗ µ𝑆𝑆 + 19.75239 ∗ 𝑇𝑝 − 27.8321 ∗ 𝐿𝑠 + 7.8449 (3.31) 

𝑑 =  0.659397 ∗ µ𝑆𝑆 + 4.938094 ∗ 𝑇𝑝 + 0.03036 ∗ 𝐿𝑠 − 4.5174 (3.32) 

𝑒 =  0.01072 ∗ µ𝑆𝑆 + 54.37749 ∗ 𝑇𝑝 − 13.0071 ∗ 𝐿𝑠 + 27.6945 (3.33) 

𝑓 =  0.456921 ∗ µ𝑆𝑆 − 0.01439 ∗ 𝑇𝑝 − 0.005621 ∗ 𝐿𝑠 + 1.5647 (3.34) 

𝑥 =  2.198 ∗ 𝑡𝑎𝑛ℎ(𝑎) + 1.686 ∗ 𝑡𝑎𝑛ℎ(𝑏) − 1.667 ∗ 𝑡𝑎𝑛ℎ(𝑐)
+ 1.284 ∗ 𝑡𝑎𝑛ℎ(𝑑) + 1.725 ∗ 𝑡𝑎𝑛ℎ(𝑒) − 8.766
∗ 𝑡𝑎𝑛ℎ(𝑓)  +  9.726 

(3.35) 

    Design Acceleration ratio, DAR (Normalized) =  𝑡𝑎𝑛ℎ(𝑥) (3.36) 

𝐷𝐴𝑅 = 0.1985 ∗ 𝑡𝑎𝑛ℎ(𝑥) + 0.8015 (3.37) 



77 
 

3.5 Summary 

This chapter explores the effect of the hanging or suspended non-structural components on 

the dynamic response of the supporting SDOF primary structure under harmonic and real 

earthquake excitations. An extensive parametric study has been conducted on the response 

of the structure by varying the dynamic properties of the structure and the vibrational 

parameters of the NSC. The results from the parametric analysis show that the mass ratio 

and the tuning frequency ratio of the FSS has a significant effect on the response of the 

structure. A design methodology is proposed to determine the spectral acceleration of the 

structure with the flexible secondary system by means of the response spectrum method. 

Finally, design expressions are proposed to calculate the modified spectral acceleration for 

the structure as a function of the structural period, mass ratio, and length of the FSS by 

Non-Linear Regression and Artificial Neural Network models. The next chapter 

investigates the dynamic response of the structure with the sliding NSCs. 
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CHAPTER 4: SLIDING NON-STRUCTURAL 

COMPONENTS 

This chapter describes the effect of multiple sliding NSCs on the seismic behavior of the 

structure under earthquake excitations. The analytical model with multiple sliding NSCs is 

developed, and the implementation of the analytical model will demonstrate the results of 

the parametric study for a given vibrational and dynamic properties of the NSC and the 

primary structure, respectively. The effect of the single sliding live load on the dynamic 

behavior of the supporting structure for a given seismic hazard level was studied in the past 

literature. The design equation for calculating the portion of the live load that participates 

in the primary structure inertia was proposed. But in reality, the live load objects can be 

multiple bodies resting side by side and also one over the other in the form of stacks. The 

effect of such multiple objects on the dynamics of a PS is still a research gap. Therefore, 

this chapter explores the effect of such multiple side-by-side and stacked live load objects 

on the dynamic behavior of the primary structure under earthquake excitations for a given 

seismic hazard level.  

Containers used in pile-supported structures, heavy leads blankets draped on scaffolding 

structure in the nuclear industry, critical and sensitive laboratory equipment, spent nuclear 

fuel storage casks, etc., are few examples of such live load objects. These objects can 

exhibit different modes of motion, such as sliding, rocking, or a combination of sliding and 

rocking when the supporting structure is subjected to dynamic excitations. 

4.1 Mathematical Formulation of Sliding Side-by-Side NSC and SDOF 

Structure 

In this section, the dynamic interaction between a structure and multiple sliding NSCs will 

be studied. An SDOF structure model shown in Fig. 3.1 is considered as a primary structure 
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for this problem. Assume there are 𝑛 number of NSCs resting on the PS. Static (𝜇𝑠𝑖) and 

kinetic (𝜇𝑘𝑖) friction coefficients between the structure (𝑚𝑝) and the 𝑖𝑡ℎ secondary body 

(𝑚𝑏𝑖) are assumed as equal and denoted as 𝜇𝑖. The displacements of the primary structure, 

𝑖𝑡ℎ secondary body, and the ground are denoted as 𝑢𝑝, 𝑢𝑏𝑖  and 𝑢𝑔, respectively. Sliding 

secondary bodies are far enough for each other and other obstructions as to not cause 

impact collision between them. Coulomb's friction model is assumed for deriving the 

governing equations of motion for primary and secondary masses. Due to the variation in 

the governing equations depending on the direction of the relative motion between the 

surfaces, a numerical method is required to solve these equations. Hence, a numerical 

method, 4th order Runge-Kutta (RK4) is utilized for solving these equations of motion.  

 

Fig. 4.1 Flow chart showing research methodology 

In the RK4 method, all the parameters were considered at (𝑖 − 1)𝑡ℎ time step to predict the 

value at 𝑖𝑡ℎ time step. In order to check the stick and slip conditions, the difference between 
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velocities of the structure and sliding bodies was calculated for every time step. A tolerance 

parameter called epsilon was defined in the MATLAB platform, set to a relatively very 

small value (e.g., epsilon=0.0001 m/sec) to check the equality of the velocities of the PS 

and NSCs. The research methodology is seen in Fig. 4.1. The dynamic equations of motion 

for the system can be written as follows: 

The stick/slip behavior between the bodies is verified by defining a function, 𝒔𝒕𝒊𝒄𝒌 

𝒔𝒕𝒊𝒄𝒌(𝑢𝑔,𝑢𝑝,𝑢𝑏,𝜇𝑠) = (|�̈�𝑝 + �̈�𝑔| < 𝜇𝑠𝑔) & (�̇�𝑝 = �̇�𝑏) (4.1) 

 

If 𝒔𝒕𝒊𝒄𝒌 = 1 (True), then the secondary body sticks to the primary structure. 

              = 0 (False), the body slides (𝜇𝑘  is active) 

Note that 𝒔𝒕𝒊𝒄𝒌′is defined as the slip condition. Let 𝑛 be the number of secondary bodies 

placed on the primary structure. The dynamic equations of motion are as follows: 

For the primary structure: 

 

[{(𝑚𝑝 + ∑ 𝑚𝑏𝑗  𝒔𝒕𝒊𝒄𝒌(𝑢𝑔, 𝑢𝑝, 𝑢𝑏𝑗 , 𝜇𝑠𝑗)

𝑛

𝑗=1

) (�̈�𝑝 + �̈�𝑔)} + 𝑐�̇�𝑝 + 𝑘𝑢𝑝]

= ∑  𝒔𝒕𝒊𝒄𝒌′(𝑢𝑔, 𝑢𝑝, 𝑢𝑏𝑖 , 𝜇𝑠𝑖)

𝑛

𝑖=1

𝜇𝑘𝑖 𝑚𝑏𝑖𝑔. 𝑠𝑖𝑔𝑛(�̇�𝑏𝑖 − �̇�𝑝) 

(4.2) 

𝑠𝑖𝑔𝑛 is the signum function. 𝑠𝑖𝑔𝑛 equals to +1, -1, and 0 if the relative velocity between 

the sliding objects and the structure is positive, negative, and zero respectively. 

For all the sliding secondary bodies (only when 𝒔𝒕𝒊𝒄𝒌(𝑢𝑔, 𝑢𝑝, 𝑢𝑏𝑖, 𝜇 𝑠𝑖) = 0) 

 

𝑚𝑏𝑖(�̈�𝑏𝑖 + �̈�𝑔) + µ𝑘𝑖𝑚𝑏𝑖𝑔 𝑠𝑖𝑔𝑛(�̇�𝑏𝑖 − �̇�𝑝) = 0 (4.3) 

 

Say, I number of bodies are sliding at a given time step. Then, it should be noted that 

the total number of equations to be solved is I+1 (Eqs. (4.2) and (4.3)). In subsequent 

discussions, mass ratio 𝛼𝑖  and original structural period (𝑇𝑝) are defined as follows: 
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𝛼𝑖 =
𝑚𝑏𝑖

𝑚𝑝
 (4.4) 

  

𝑇𝑝 = 2𝜋√
𝑚𝑝

𝑘
 (4.5) 

A mass ratio 𝛼 is defined as the ratio between the total mass of the secondary bodies to 

the mass of the primary structure and is given by, 

𝛼 =  ∑ 𝛼𝑖

𝑛

𝑖=1

 (4.6) 

The governing dynamic equations of motion of the PS and SBs in stick and sliding/slip 

mode are solved by the 4th order Runge-Kutta method. For this study, only two secondary 

bodies are considered (𝑚𝑏1 and 𝑚𝑏2), as shown in Fig. 4.2. 

 

Fig. 4.2 Idealization of primary structure with two sliding SBs 

 

The above formulation is then subjected to spectrum compatible earthquake excitations. 

Eleven ground motions were selected from the PEER NGA ground motion database 

(Center 2013), which is the minimum required the number of ground motions as per ASCE 

7-16 (ASCE 2016). The moment magnitude (Mw) of the selected excitations is greater than 
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6. Excitations are made compatible with the design spectrum associated with the two Indian 

seismic zones III and V, hard soil with 5% damping by the spectral matching method in the 

time domain. The details of the excitations are shown in Table 4.1. In Fig. 4.3, the 5%-

damping mean spectrum of the 11 spectrum compatible earthquake excitations and their 

target spectra are shown. The average spectrum or mean spectrum does not fall below 90% 

of the target spectrum in the entire period range as per ASCE 7-16. 

Table 4.1 Specifications of the strong ground motions used in the current study
 

No. Event Year Station PGA (g) 
Magnitude 

(Mw) 

1 
Kern 

County 
1952 Taft Lincoln School 

0.18 
7.36 

2 Loma Prieta 1989 
Fremont-Mission San 

Jose 
0.12 6.93 

3 Landers 1992 Barstow 0.13 7.28 

4 
Duzce-

Turkey 
1999 Lamont 1059 0.15 7.14 

5 Chi-Chi 1999 TCU075 0.22 6.21 

6 Chi-Chi 1999 CHY028 0.20 6.20 

7 Chi-Chi 1999 CHY046 0.12 6.22 

8 San Simeon 2003 San Luis Obispo 0.16 6.52 

9 Parkfield 1966 
Cholame-Shandon 

Array #12 
0.06 6.19 

10 Iwate 2008 Semine Kurihara city 0.16 6.91 

11 Parkfield 1966 Temblor pre-1969 0.35 6.19 
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Fig. 4.3 Target and mean acceleration spectra 



83 
 

4.1.1 Validation of Model 

The developed model should be validated before it can be used in further analysis. The 

validation of the model can be done by comparing the response of the structure with the 

existing study results and also with the results from the Finite Element (FE) study. The 

following sub-sections show the validation results. 

4.1.1.1 Comparison with the existing study 

The validation of the model is done by comparing the velocity responses of the PS and rigid 

block obtained in this study with the velocity responses of the supporting structure and rigid 

block obtained by the Nigam-Jennings method based on the exact solutions given in the 

reference study (Matsui et al. 1991). Hence, the primary structure (𝑚𝑝) with a single sliding 

rigid block (𝑚𝑏1) is considered. In the reference study, velocity responses of the structure 

and rigid block are plotted for stick-stick, stick-slip, and slip-slip conditions. The results 

for all input conditions were found to qualitatively match with the reference study. For 

validating the analytical model, the slip-slip condition is arbitrarily chosen. The dynamic 

structural properties, rigid block parameters, and forcing function parameters used for the 

slip-slip mode in the reference study are given as input parameters to the model in this 

study. Fig. 4.4 shows an acceptable correspondence between this study and the velocity 

responses given in the reference study for slip-slip mode.  

 

(a) 
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            (b) 

Fig. 4.4 Velocity responses (a) primary structure; (b) rigid block 

 

4.1.1.2 Comparison with the Finite Element (FE) study 

In this section, the displacement response of the PS with multiple sliding SBs is compared 

with the results of a Finite Element (FE) model. The basic FE model developed consists of 

a multiple rigid blocks resting directly on a rectangular body that simulates the primary 

structure. The developed FE model is used to model the response of an SDOF oscillator 

subjected to base excitation with sliding rigid blocks resting on it. To do so, a horizontal 

spring element with stiffness and dashpot was attached to this body to simulate the 

oscillator as shown in Fig. 4.5. Reference point RP1 is created to simulate the ground point 

such that one end of the spring element is attached to it and all degrees of freedom (DOF’s) 

of RP1 are restrained to simulate a fixed point. The other end of the spring element is 

attached to the rectangular body to simulate the SDOF oscillator.  

The motion of the rigid bodies is defined by reference node (REF NODE) assigned to 

them. A rigid body reference node has both translational and rotational degrees of freedom. 

In this particular study, RP2, RP3, and RP4 are the reference nodes assigned to the structure 

and rigid blocks, respectively. Masses of the structure (𝑚𝑝) and rigid blocks (𝑚𝑏1, 𝑚𝑏2) 

are assigned to these nodes as inertia. Coulomb friction model is used to capture friction 
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and sliding at the contact interface. It is a common friction model used to describe the 

interaction of contacting surfaces. The model characterizes the frictional behaviour 

between the surfaces using a coefficient of friction. The DOF’s of the reference nodes RP2, 

RP3, and RP4 are constrained in the x-direction and restrained in all other directions.    

To capture the sliding of the blocks under base excitation, the contact interface that 

exists between the blocks and the SDOF oscillator is modelled via an interaction module 

in ABAQUS. The contact interaction between these bodies is generated by the Surface-to-

Surface contact (Explicit) method. The Explicit method is chosen over the implicit method 

because explicit platform will not encounter convergence problems (Zhang et al. 2017). 

The ‘Hard’ contact option is used to define normal behaviour of the contact interaction, 

while the tangential behaviour used ‘Penalty frictional formulation’ with a given 

coefficient of friction to ensure relative horizontal motion between the surfaces. Penalty 

contact algorithm is used for mechanical constraint formulation (Dassault Systèmes 2016). 

The finite-sliding formulation, which is the most common and allows for sliding of the 

surfaces in contact is adopted since small sliding formulation cannot be used for contact 

pairs using the penalty contact algorithm.  

 

Fig. 4.5 ABAQUS model of a PS with two sliding SBs 
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Fig. 4.6 Acceleration time history used for validation of PS with two SBs Model 

Horizontal acceleration is applied to the ground point (RP1) to simulate an earthquake 

excitation at the base of the SDOF oscillator. The masses of the SDOF structure and rigid 

blocks were assigned to the reference nodes as inertia. The coefficients of friction values 

were defined between the structure-rigid blocks interface. A structure with multiple SBs is 

subjected to a medium seismic hazard level spectrum compatible Parkfield (1966) 

earthquake recorded at Temblor pre-1969 station. The acceleration time history of the 

earthquake used in this validation is shown in Fig. 4.6. Fig. 4.7 shows the calculated 

acceleration response of the PS for selected mass ratios, coefficients of friction, and time 

period of the structure. It can be observed that the calculated acceleration responses of the 

PS by utilizing the Runge-Kutta method are identical to those obtained from the FE model.  
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              (b) 

Fig. 4.7 Comparative response of Runge-Kutta Method and FE model for 𝛼1 =  𝛼2 = 0.5: 

(a) 𝑇𝑝 = 0.39 sec, 𝜇1 = 0.2, 𝜇2 = 0.3; (b) 𝑇𝑝 = 0.5 sec, 𝜇1 = 0.2, 𝜇2 = 0.2. 

4.2 Dynamic response of a SDOF structure with sliding side-by-side 

NSCs 

This section investigates the dynamic behavior of the supporting structure with multiple 

sliding NSCs or secondary bodies (SBs) for a given seismic hazard level. This section 

evaluated the displacement response of the PS with two sliding NSCs and compared against 

the response of the PS with single sliding NSC for a given seismic hazard level. It also 

contains an extensive parametric study on the displacement response by varying the 

dynamic properties of the PS and the interactional properties of the sliding SBs. 

4.2.1 Displacement response 

The variation in the behavior of a structure with a single secondary mass versus a structure 

with multiple masses first needs to be looked at. For this study, the structural period of the 

PS is chosen as 0.5 sec. In the case of PS with multiple SBs, the mass ratios (𝛼1 and 𝛼2) 

are 0.5 and 0.5. The coefficients of friction (𝜇1 and 𝜇2) are 0.3 and 0.1. The mass ratio and 

coefficient of friction in the case of PS with single SB are 1 and 0.3, respectively. 
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Earthquake excitation-#11 from Table 4.1 is applied to the base of the PS with single and 

two SBs. 

 

             (a) 

 

              (b) 

Fig. 4.8 Displacement of PS with single and two SBs (a) Zone III; (b) Zone V 

Fig. 4.8 shows the displacement time histories of the PS with single and multiple SBs. 

Since the maximum displacement of the PS is of great concern for the design of the 

structures, maximum displacements of the PS with single and two SBs for a given 

excitation corresponds to seismic zone III are 0.028 m and 0.021 m respectively. For 

seismic zone V, those values are 0.044 m and 0.039 m. The maximum displacement of the 

PS with two SBs is reduced by 25% in zone III, and 11.36 % in zone V compared to PS 

with single SB, respectively. Hence, seismic behavior of the PS with multiple sliding rigid 

blocks with different coefficients if friction is not same as structure with a single sliding 

rigid block. 
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             (a) 

 

               (b) 

Fig. 4.9 Displacement of the PS for same coefficients of friction (a) Zone III; (b) Zone V 

Similarly, Fig. 4.9 shows the displacement time history of the PS with a single (𝜇 = 0.1) 

and multiple SBs with the same coefficients of friction (𝜇1 =  𝜇2 = 0.1) between the 

structure-SBs interfaces. From Fig. 4.9, it should be noted when the coefficients of friction 

are equal between all the contact surfaces of the model (Fig. 4.2); the secondary bodies act 

as a single body with combined mass. This conclusion leads to a further discussion on the 

response of the PS with multiple sliding rigid blocks. In order to verify the effect of seismic 

hazard level on the response of the structure with multiple SBs, the effect of two rigid 

sliding blocks (𝑚𝑏1 and 𝑚𝑏2) on the displacement response of the primary structure in two 

seismic zones III and V are studied. One ground motion from each seismic hazard level is 

applied to the PS with SBs. The structural period of the PS is arbitrarily chosen as 0.8 sec. 
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Mass ratios (𝛼1 and 𝛼2) are chosen 0.5. Coefficients of friction (𝜇1 and 𝜇2) are chosen as 

0.2 and 0.1 between the blocks and structure interface. 

The displacement response of the structure with sliding loads ((𝑢𝑝)
𝑠𝑙𝑖𝑑𝑖𝑛𝑔

)  is compared 

against the response of the same structure with rigidly fixed SBs ((𝑢𝑝)
𝑟𝑖𝑔𝑖𝑑

). Spectrum 

compatible earthquake excitation-#11 from Table 4.1 is applied to the base of the PS. From 

Fig. 4.10, it can be deduced that sliding live loads can mitigate the seismic response of the 

primary structure. The reduction in displacement is more in zone V (31.4%) compared to 

zone III (17.3%). Acceleration experienced by the structure is more in zone V, which 

overcome the static friction between block-structure interface, and hence sliding of the SBs 

is higher. Due to more sliding of SBs, more energy is dissipated in the highest seismic 

hazard level when compared to the medium seismic hazard level.  

 

         (a) 

 

             (b) 

Fig. 4.10 Displacement of primary structure (a) Zone III; (b) Zone V 



91 
 

4.2.2 Parametric Study 

The displacement response of a structure with multiple sliding bodies on it is different from 

the response with a single sliding rigid block. This significant-conclusion leads to the 

following parametric study. The parameters to be varied in this study are: (a) the structural 

period 𝑇𝑝; (b) the mass ratios 𝛼1 and 𝛼2; (c) the coefficient friction at the interface of SBs. 

𝜇1 = 𝜇𝑠1 =  𝜇𝑘1 and 𝜇2 = 𝜇𝑠2 =  𝜇𝑘2 are assumed for this study. For each seismic damage 

risk zone, various problems were analyzed. The parameter selected to quantify the effect 

of SBs on the response of the primary structure in this study is the Displacement Ratio 

(DR). It is defined as follows: 

𝐷𝑅 =  
(𝑢𝑝)

𝑠𝑙𝑖𝑑𝑖𝑛𝑔
− (𝑢𝑝)𝑓𝑟𝑒𝑒

(𝑢𝑝)
𝑟𝑖𝑔𝑖𝑑

− (𝑢𝑝)𝑓𝑟𝑒𝑒

 (4.7) 

Where, (𝑢𝑝)
𝑠𝑙𝑖𝑑𝑖𝑛𝑔

 is the displacement of the PS with sliding rigid blocks. (𝑢𝑝)
𝑟𝑖𝑔𝑖𝑑

 

and (𝑢𝑝)
𝑓𝑟𝑒𝑒

 are the displacements of the same structure with rigidly fixed SBs and with 

no SBs, respectively. SBs behave as rigidly attached bodies to the PS when the 𝐷𝑅 equals 

to one. The sliding bodies have negligible effect on the structures response when the DR is 

close to zero. Sliding rigid blocks reduce the response of the primary structure if the 𝐷𝑅 is 

negative. If the DR varies between 0 and 1, then only a fraction of the mass of SBs should 

be taken into consideration in the analysis and design of the PS. In each run, displacement 

of the PS was taken as the average value of the maximum displacement resulting from 

eleven scaled ground motions. 

The results for the displacement Ratio (𝐷𝑅) for the medium seismic hazard level (zone 

III) are shown in Fig. 4.11. It can be observed that 𝐷𝑅 has a strong correlation with the 

structural period, coefficients of friction, and mass ratios. From Fig. 4.11, it can be inferred 
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that rigid sliding blocks behave as rigidly attached to the structures with 𝑇𝑝 > 1.25 sec 

regardless of the given mass ratios and coefficients of friction. The 𝐷𝑅 decreases for 

structures with periods less than or equal to 0.4 sec for lower mass ratios as observed from 

Fig. 4.11a. This can possibly be attributed to the increase in acceleration with 𝑇𝑝 when 

𝑇𝑝 < 0.4 sec. in the given spectrum (Fig. 4.3). For higher mass ratios, the decrease in 𝐷𝑅 

is very low and increases significantly with the structural period and coefficients of friction. 

Even for small coefficients of friction, the 𝐷𝑅 is positive for higher mass ratios. This makes 

sense since, at higher mass ratios, the limiting static frictional force between the interfaces 

of PS and SBs is more. Therefore, an effective period of the structure-SBs system increases, 

which results in the lower absolute accelerations. Such accelerations are not enough to 

counteract the static friction between the structure and the SBs. 

The 𝐷𝑅 significantly decreases for structures with periods less than or equal to 0.4 sec 

for lower mass ratios in the highest seismic hazard zone also, as shown in Fig. 4.12. The 

𝐷𝑅 increases significantly with the structural period and coefficients of friction for higher 

mass ratios. From Figs. 4.11 and 4.12, it can be observed that the 𝐷𝑅 values in Zone V for 

given  
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Fig. 4.11 Displacement Ratio (DR) for zone III (a)  𝜇1= 0.1; (b) 𝜇1= 0.3 

 

mass ratios and coefficients of friction are lower than those in Zone III. Zone V is the 

highest seismic hazard zone, where the accelerations experienced by the structure are high, 

which increases the sliding of the SBs and thus dissipates more input energy. From Fig. 

4.12, it can be inferred that sliding rigid blocks on structures with 𝑇𝑝 > 0.9 sec behave as 

rigidly attached to the PS for higher coefficients of friction regardless of the mass ratios. 
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Fig. 4.12 Displacement Ratio (DR) for zone V (a)  𝜇1= 0.1; (b) 𝜇1= 0.3 

Due to sliding secondary blocks, some portion of the mass of secondary blocks 

participates in the primary structural inertia (Reyes et al. 2016; Smith-Pardo et al. 2015), 

which in turn modifies the modal characteristics of the primary structure. Hence, an attempt 

has been made to determine the structural period of the PS when it interacts with multiple 

sliding rigid blocks.    

4.2.3 Modified Structural period due to sliding NSCs 

This section explains a methodology to determine the structural period when the SBs 

are sliding over the PS. This structural period (𝑇𝑛𝑒𝑤) can be used for the design of a 

structure by using the corresponding response spectrum. When the SBs are rigidly attached 

to the PS, the structural period of the PS is given as: 

𝑇𝑟𝑖𝑔𝑖𝑑 = 2𝜋√
𝑚𝑝 + ∑ 𝑚𝑏𝑖

𝑛
𝑖=1

𝑘
 (4.8) 

Where, 𝑛 is the number of sliding bodies which equals to 2 in the present study. 

Replacing 𝑚𝑏𝑖 with 𝛼𝑖𝑚𝑝 in the Eq. (4.8), then it becomes 
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𝑇𝑟𝑖𝑔𝑖𝑑 = 2𝜋√
𝑚𝑝 + ∑ 𝛼𝑖𝑚𝑝

𝑛
𝑖=1

𝑘
 (4.9) 

The Eq. (4.9) can be rearranged as follows: 

 

𝑇𝑟𝑖𝑔𝑖𝑑 = 2𝜋√
𝑚𝑝

𝑘
 √(1 + ∑ 𝛼𝑖

𝑛

𝑖=1

) (4.10) 

Replace 2𝜋√
𝑚𝑝

𝑘
 in the above expression with 𝑇𝑝 and hence Eq. (4.10) becomes 

𝑇𝑟𝑖𝑔𝑖𝑑 =  𝑇𝑝√(1 + ∑ 𝛼𝑖

𝑛

𝑖=1

) (4.11) 

Thus, Eq. (4.11) gives the structural period of the PS when the SBs are rigidly attached 

to the structure. The following section explains a procedure to determine the structural 

period of the PS when the SBs are in the sliding phase with the PS. In this study 𝑇𝑛𝑒𝑤 is 

termed as the modified structural period of the PS when it is interacted with sliding SBs. 

 𝑇𝑛𝑒𝑤 =  𝑇𝑟𝑖𝑔𝑖𝑑, when SBs are rigidly attached to the structure. 

4.2.3.1    Algorithm for determination of modified structural period  

The procedure to determine the 𝑇𝑛𝑒𝑤 is outlined below for a given set of values of 𝑇𝑝 , 𝜇1,

𝜇2, 𝛼1 and 𝛼2 for the defined ground motions. 

1. Calculate the absolute maximum structural acceleration (𝐴𝑚𝑎𝑥) for the ground 

motions.  

2. Check if 𝜇1𝑔,  𝜇2𝑔 > 𝐴𝑚𝑎𝑥. If yes, conclude  𝑇𝑛𝑒𝑤 =  𝑇𝑟𝑖𝑔𝑖𝑑. Go to step 3, if no. 

3. Calculate the 5%-damping mean displacement spectrum of PS for the ground 

motions. 
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4. Calculate the mean of the maximum displacement of the PS with given SBs for 

the scaled eleven ground motions. 

5. Determine the structural period from the 5%-damping mean displacement 

spectrum (obtained in Step (3)) for the calculated mean displacement (obtained 

in Step (4)) by linear interpolation. 

Fig. 4.13 shows the determination of the structural period of the PS with SBs under 

scaled eleven ground motions for 𝑇𝑝 = 1 sec, 𝛼1 =  𝛼2 = 0.5, 𝜇1 = 0.2 and 𝜇2 = 0.05. The 

modified structural period of the PS due to the interaction of SBs in this particular case is 

1.12 sec. 
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Fig. 4.13 Determination of the modified structural period by proposed algorithm 

4.2.3.2    Validation of the proposed algorithm  

The proposed algorithm for the calculation of the modified structural period needs to be 

validated before conducting a parametric study. For such validation, the target spectrum 

for operating level (OLE) seismic hazard is taken from the report (Earth Mechanics Inc. 

2006). Ground motion scenario mentioned in the study (Smith-Pardo et al. 2014) is used 

for the validation. Since the reference study (Smith-Pardo et al. 2015) is for the structure 
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with a single live load object, put 𝑚𝑏2 = 0 in the present study to convert the structure with 

multiple SBs to structure with a single sliding body. Thus,  Eq. (4.11) becomes: 

𝑇𝑟𝑖𝑔𝑖𝑑 =  𝑇𝑝√(1 + 𝛼1) (4.12) 

The structural period of the PS due to the live load object interaction is given as (Smith-

Pardo et al. 2015): 

𝑇 =  𝑇𝑝√(1 + 𝛼1) (4.13) 

Where,  is the portion of live load object participates as inertia in the primary structure. 

From the example calculation of the live load as inertia for OLE seismic hazard in the 

reference study, the structural period of the PS for given input parameters is 0.86 sec. In 

the example calculation, reference study assumed linear range of response. The same input 

parameters are used (since the present study also deals with the linear analysis), and the 

structural period is calculated by the algorithm proposed in Section 4.2.3.1 by considering 

the OLE level mean spectrum as a design spectrum. Thus, the 𝑇𝑛𝑒𝑤= 0.858 sec obtained 

from Fig. 4.14, by using the proposed algorithm, is in agreement with the structural period 

obtained through a portion of the live load () in the reference study.  
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Fig. 4.14 Determination of the modified structural period for OLE hazard level 
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Fig. 4.15 Validation of the proposed algorithm 

Fig. 4.15 shows the comparison of the structural period of PS with SBs (𝑇𝑛𝑒𝑤) obtained 

by the proposed algorithm with a reference study for input parameters of µ1 = 0.1, µ2 = 

1E-08, 𝛼1 = 0.75, 𝛼2 = 1E-08. From Fig. 4.15, it can be observed that 𝑇𝑛𝑒𝑤 obtained by the 

proposed algorithm agrees with the algorithm proposed in the reference study.  

4.2.4    Parametric study on modified structural period  

A parametric study of 𝑇𝑛𝑒𝑤 with the following variables and ranges of values is performed: 

(a) the structural period 𝑇𝑝 (from 0.1 sec to 2.0 sec, increments of 0.1 sec); (b) the mass 

ratios 𝛼1 and 𝛼2 (0.1, 0.5, 1.0); (c) the coefficients of friction (from 0.05, 0.1 to 0.5 with 

increments of 0.1). A total of 4980 analysis runs are tabulated for this study.  

Figs. 4.16 and 4.17 show a subset of results from the parametric study for a given set of 

mass ratios and coefficients of friction. Fig. 4.16 shows that under medium seismic hazard 

zone, SBs behave as rigidly attached bodies to the structures with a period larger than 1.25 

sec regardless of the mass ratios and coefficients of friction corresponding to the plots of 

displacement ratio (𝐷𝑅) introduced in Section 4.2.2. It can also be observed that 𝑇𝑛𝑒𝑤 

significantly increases with the original structural period, coefficients of friction, and mass 

ratios. For small coefficients of friction, 𝑇𝑛𝑒𝑤 is nearly equal to 𝑇𝑟𝑖𝑔𝑖𝑑 as seen before. 
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Fig. 4.16 Modified structural period (𝑇𝑛𝑒𝑤) for zone III (a)  𝜇1= 0.1; (b) 𝜇1= 0.3 

Fig. 4.17 shows the variation of 𝑇𝑛𝑒𝑤 in the highest seismic hazard zone. It shows that 

also for the highest seismic hazard zone, the 𝑇𝑛𝑒𝑤 significantly increases with the original 

structural period, coefficients of friction, and mass ratios. The amount of mass participation 

of SBs in the inertia of the structure is less in this seismic hazard zone compared to the 

medium seismic hazard zone even for higher coefficients of friction. From Fig. 4.17, it can 

be inferred that when the coefficients of friction between the PS and two masses interfaces 

are high, SBs could behave as rigidly attached bodies to the structures with periods larger 

than 0.9 sec regardless of the mass ratios. 
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Fig. 4.17 Modified structural period (𝑇𝑛𝑒𝑤) for zone V (a)  𝜇1= 0.1; (b) 𝜇1= 0.3 

4.2.5    Design expressions for modified structural period by Non-Linear 

Regression and Artificial Neural Network  

To design a structure with multiple sliding SBs by response spectrum method, an equation 

for 𝑇𝑛𝑒𝑤 needs to be developed. For some of the cases, 𝑇𝑛𝑒𝑤 can be obtained from Figs. 

4.16 and 4.17. In other cases, a design equation will be developed through a parametric 

study by considering a large number of discrete points correspond to various variables. 

This study comprised of the variables and ranges of values, as mentioned in Section 4.2.4. 
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Non-Linear Regression (NLR) analysis yield the following design equations to calculate 

𝑇𝑛𝑒𝑤 for each seismic hazard zone:  

For Medium Seismic Hazard Zone: 

𝑇𝑛𝑒𝑤 = ((−3.613 ∗ 𝑇𝑝) − (0.876𝑠 ∗ 𝜇1) + (0.041𝑠 ∗ 𝜇2) − (4.241𝑠 ∗ 𝛼1) −

(4.188𝑠 ∗ 𝛼2)) + 0.782𝑠 ∗ 𝑒
(

(
0.053

𝑠
∗𝑇𝑝)+(0.014∗𝜇1)+(0.002∗𝜇2)

+(0.053∗𝛼1)+(0.052∗𝛼2)+4.588
)

− 76.889𝑠  

(4.14) 

  

For Highest Seismic Hazard Zone: 

𝑇𝑛𝑒𝑤 = ((−6.388 ∗ 𝑇𝑝) − (7.589𝑠 ∗ 𝜇1) − (5.236𝑠 ∗ 𝜇2) − (5.965𝑠 ∗ 𝛼1) −

(5.309𝑠 ∗ 𝛼2)) + 6.365𝑠 ∗ 𝑒
(

(
0.0443

𝑠
∗𝑇𝑝)+(0.047∗𝜇1)+(0.033∗𝜇2)

+(0.036∗𝛼1)+(0.032∗𝛼2)+3.21
)

− 157.67𝑠  

(4.15) 

The prediction capability of the regression models for both the seismic zones are 

evaluated by defining the various statistical performance functions like Co-efficient of 

Determination (R2), Correlation Coefficient (R), Root Mean Square Error (RMSE), Mean 

Square Error (MSE) and Mean Absolute Error (MAE). The performance of the models is 

summarized in Table. 4.2.  

Table 4.2 Performance of the regression models
 

Seismic Zone R2 R MSE MAE 

 III 0.987 0.993 0.013 0.091 

 V 0.953 0.976 0.015 0.151 

An alternate approach, such as machine learning, has been utilized in this study, along 

with NLR, to derive the design expression for each seismic hazard zone. The machine 

learning technique (ANN), is used.  𝑇𝑛𝑒𝑤 values are simulated for 4980 cases. Of all the 

data, 70% of the data (3486 cases) were assigned to the training set and the remaining 30% 
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(1494 cases) to the testing set. The type of the neural network with a learning algorithm 

and the transfer function for the hidden and output layers were considered the same as the 

neural network used in Section 3.4.3. The MSE for the nodes 6 to 11 is almost constant for 

both the seismic hazard zones, as shown in Fig. 4.18, and hence the optimum number of 

nodes is chosen as six. An architecture diagram of the model has been shown in Fig. 4.19 

and is designated as ANN 5-6-1 model.  
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Fig. 4.18 MSE against Number of hidden nodes for both the zones 

 

 

 

Fig. 4.19 Architecture of the ANN 5-6-1 model. 



103 
 

Using the connection weights of a trained network, a mathematical equation can be 

developed by relating the input and the output parameters using the Eq.(3.28). Performance 

measuring functions defined in Section 3.4.3 are used here to assess the capability of the 

developed ANN model. The performance of the model is summarized in Table 4.3. 

Table 4.3 Performance of the ANN-5-6-1 model
 

Dataset 
MAE R MSE 

Zone III Zone V Zone III Zone V Zone III Zone V 

Training Data 0.0321          0.0407 0.998        0.997 0.0016        0.0027 

Testing Data 0.0375          0.0477 0.998        0.997 0.0029        0.0043 

Table 4.4 Weights and biases of ANN-5-6-1 model for Zone III
 

Hidden 

Node 

Input-Hidden weight 

Hidden 

output 

weight 

Bias 

𝑇𝑝  𝜇1   𝜇2  𝛼1 𝛼2  𝑇𝑛𝑒𝑤 Hidden Output 

1 -0.0876 -0.2312 2.91433 -0.1091 -0.2362 -0.9377 2.725 

 

0.1745 

2 -0.5937 -0.004 -0.0076 -0.1253 -0.1249 -12.4309 2.106 

3 1.1576 0.0196 0.0198 0.0224 0.0229 11.16713 2.438 

4 0.0083 0.2111 -2.9388 0.0896 0.2148 -1.2210 -2.899 

5 -0.1411 2.6219 -0.1769 -0.2569 -0.1852 -0.9648 2.642 

6 0.0615 -2.650 0.1590 0.2227 0.1450 -1.4075 -2.866 

Table 4.5 Weights and biases of ANN-5-6-1 model for Zone V
 

Hidden 

Node 

Input-Hidden weight 

Hidden 

output 

weight 

Bias 

𝑇𝑝  𝜇1   𝜇2  𝛼1 𝛼2  𝑇𝑛𝑒𝑤 Hidden Output 

1 1.1480 -0.0779 -0.0055 0.1209 0.1939 1.1675 -1.324 

 

-4.590 

2 0.3129 -2.1858 0.04617 0.2288 -0.0023 -2.3117 -3.625 

3 0.0129 0.3806 -0.0291 0.5551 0.0510 -5.406 2.102 

4 -0.1629 0.3417 -0.019 0.5361 0.0968 1.4368 1.199 

5 -0.9235 -0.0365 -0.0311 -0.0307 -0.0217 -7.0198 -1.813 

6 0.4089 0.1318 -3.2302 -0.1108 0.4204 -0.4825 -3.918 
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By substituting the values of weights and biases shown in Tables 4.4 and 4.5 in the Eq. 

(3.28), the model equations for the prediction of 𝑇𝑛𝑒𝑤 for Zone III and Zone V can be 

developed. For such design expressions, the procedure used for the development of the 

DAR equation by ANN in Section 3.4.3 is followed. The resultant design equations are as 

follows: 

For Medium Seismic Hazard Zone: 

𝑇𝑛𝑒𝑤 = 1.6606 ∗ tanh(𝑥) + 1.7564 (4.16) 

For Highest Seismic Hazard Zone: 

 𝑇𝑛𝑒𝑤 = 1.6795 ∗ tanh(𝑥) + 1.7705 (4.17) 

The Eqs. (4.16) and (4.17) developed for the prediction of 𝑇𝑛𝑒𝑤 should only be applied 

in the range of the dataset for which the neural network was trained. The limits for the input 

parameters with maximum and minimum are given in Table 4.6. 

Table 4.6 Limits of Input and Output Parameters for the ANN 5-6-1 Model 

 
Limits of Input Parameters 

Limits of 

Output 

Parameter 

𝑇𝑝(s)  𝜇1 & 𝜇2 𝛼1 & 𝛼2 𝑇𝑛𝑒𝑤 (s) 

Seismic 
Hazard 

Zone 

III  

Zone 

V 

Zone 

III 

Zone 

V 

Zone 

III 
Zone V 

Zone 
III 

Zone 
V 

Max 2 2 0.5 0.5 1 1 3.417 3.45 

Min 0.1 0.1 0.05 0.05 0.1 0.1 0.095 0.091 

4.3    Mathematical Formulation of Sliding Stacked NSCs and SDOF 

Structure 

Heavy components resting on a structure are usually considered to be part of live loads in 

the design of a structure. Guidelines suggest different percentages of the live loads as 

masses in the main structure inertia. A close look at these guidelines is required to 
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understand these inertial masses better. Assuming these components to be rigidly attached 

to the main structure, the design of the structure becomes too conservative since energy 

dissipation due to friction between their interfaces is neglected. On the other hand, the 

design can be unsafe if these components are completely neglected in horizontal excitation. 

The complexity of the problem arises when the live loads are due to stacked objects. Such 

stacks are widely seen in docks and storage structures. In these cases, energy dissipation 

by friction will be seen between various layers of the stack and also between the main 

structure and the live load objects. While some work has been done on the seismic behavior 

of main structure with a single live load object, studies on stacked live load objects are 

needed. By considering the stacks as a single object by neglecting the energy dissipation 

due to friction between the layers, the response of the structure can be overestimated 

(Smith-Pardo et al. 2015). This is the main concern of the present study. Therefore, this 

section presents an analytical model of the structure with stacked sliding live load objects. 

The live load objects may undergo sliding, rocking, and combined sliding–rocking under 

external excitations. In the present study, squat container stack (one on the top of the other) 

of two rigid bodies which show only sliding mode of vibration is considered. 

In this study, a combined model is developed by considering the nonlinearity due to the 

sliding of the blocks. The nonlinearity due to the yielding of the structure is not considered. 

Static and Kinetic coefficients are equal to each other at each surface of the system. Live 

load objects considered in this study are sufficiently squat. Squat rigid bodies (𝜇 < 𝐵 𝐻⁄ ), 

where 𝜇 is the coefficient of friction at the rigid block-structure interface, 𝐵 and 𝐻 are the 

width and height of the rigid body, respectively are slip dominant. Because of this 

condition, rocking mode and slide-rock mode of the rigid blocks cannot occur (Sideris et 

al. 2014). In this particular study, the width (𝐵) of the rigid body is termed as contact width. 
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The minimum contact width required for the rigid bodies at the bottom most and within the 

stack to not occur rocking is given as: 

𝐵𝑖 >  𝜇𝑖 ∑ 𝐻𝑗

𝑛

𝑗=𝑖

 (4.18) 

where, 𝑛 equals to number of secondary bodies. 

The mathematical formulation involves the derivation of the dynamic equations of 

motion of the single-degree primary structure (PS) with 𝑛 number of secondary bodies 

(SBs) as a stack counting them bottom to top (1st body is at the bottom of the stack). The 

following methodology is formulated to derive the equations of motion of the PS and 

sliding SBs: 

1. Start from the top most mass in the stack, i.e., 𝑛𝑡ℎ body (𝑚𝑛). 

2. Check sliding condition (Eq. (4.19)) at every interface in the stack moving 

downwards. 

3. While moving downwards, find the clusters sticking to each other. 

4. Consider each cluster as an individual body, and all such clusters as sliding 

w.r.t. each other. 

5. Derive the dynamic equations of motion for the clusters (Eqs. (4.20) and 

(4.21)) and solve them. 

For the above steps 1 and 2, a sliding condition is to be defined. Note that as the 

calculation moves from the topmost body downwards, the sliding conditions provide the 

clusters. Let the 𝑞𝑡ℎ body be the topmost body of the cluster that the 𝑖𝑡ℎ body belongs to. 

Hence there would be (𝑞 − 𝑖) bodies stuck to the 𝑖𝑡ℎ body above it. 

A function 𝒔𝒍𝒊𝒑𝒊 is defined to check the sliding behavior between the 𝑖𝑡ℎand 

(𝑖 − 1)𝑡ℎ  bodies. 
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𝒔𝒍𝒊𝒑𝒊 = [(�̈�𝑖−1 + �̈�𝑔) ∑ 𝑚𝑗 + 𝜇𝑘𝑞+1
𝑔. 𝑠𝑖𝑔𝑛(�̇�𝑞+1 − �̇�𝑞) ∑ 𝑚𝑗

𝑛
𝑗=𝑞+1

𝑞
𝑗=𝑖 ] ≥

𝜇𝑠𝑖
𝑔 ∑ 𝑚𝑗

𝑛
𝑗=𝑖  

(4.19) 

If 𝒔𝒍𝒊𝒑𝒊 = 1 (True), then 𝑖𝑡ℎ body slides with respect to (𝑖 − 1)𝑡ℎ body. 

              = 0 (False), the 𝑖𝑡ℎ body sticks to the (𝑖 − 1)𝑡ℎ  body 

It should be noted that 𝒔𝒍𝒊𝒑𝒊 is also used to check the sliding between the bottom-most 

body of a stack (𝑚𝑏1) and the primary structure (𝑚𝑝). 

Fig. 4.20a shows the primary structure with a 𝑛 number of SBs in the various levels of 

the stack. By using the condition for sliding 𝒔𝒍𝒊𝒑𝒊, relative motion between the different 

levels of the stack is verified, and corresponding clusters are defined as shown in Fig. 4.20b. 

The dynamic equations of motion can be written as follows: 

Assume PS is part of the 1𝑠𝑡 cluster, and there are 𝐶 clusters above it. 

𝑀0(�̈�𝑝 + �̈�𝑔) + 𝑐�̇�𝑝 + 𝑘𝑈𝑝 =  𝜇𝑘1
(∑ 𝑀𝑗𝑔

𝐶

𝑗=1

) 𝑔. 𝑠𝑖𝑔𝑛(�̇�2 − �̇�𝑝) (4.20) 

where, 𝑀0 is the mass of the 1𝑠𝑡cluster. 𝜇𝑘1
 is the kinetic coefficient of friction between 

the interfaces of the 1𝑠𝑡 cluster and the above cluster. 𝑈𝑝 , 𝑈2, are the displacements of the 

1𝑠𝑡 and above clusters, respectively. 

The dynamic equation of motion for the 𝑙𝑡ℎ cluster: 

𝑀𝑙(�̈�𝑙 + �̈�𝑔) =  −𝜇𝑘 𝑙
(∑ 𝑀𝑗

𝐶

𝑗=𝑙

) 𝑔. 𝑠𝑖𝑔𝑛(�̇�𝑙 − �̇�𝑙−1)

+  𝜇𝑘 𝑙+1
( ∑ 𝑀𝑗

𝐶

𝑗=𝑙+1

) 𝑔. 𝑠𝑖𝑔𝑛(�̇�𝑙+1 − �̇�𝑙) 

(4.21) 

where, 𝑀𝑙 is the mass of the 𝑙𝑡ℎ cluster. 𝜇𝑘𝑙
 is the kinetic coefficient of friction between 

the interfaces of the 𝑙𝑡ℎ cluster and the (𝑙 − 1)𝑡ℎ  cluster, whereas 𝜇𝑘𝑙+1
 is friction 
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coefficient between the (𝑙 + 1)𝑡ℎ cluster and the 𝑙𝑡ℎ cluster, respectively. 𝑈𝑙−1, 𝑈𝑙 , 𝑈𝑙+1 are 

the displacements of the (𝑙 − 1)𝑡ℎ, 𝑙𝑡ℎ and (𝑙 + 1)𝑡ℎ clusters respectively. 

 

                              (a)                                                                             (b) 

Fig. 4.20 Clusters formation 

The numerical analysis procedure is shown as the flow chart in Fig. 4.21. The present 

study examines the effect of a two-level stack of SBs on the seismic behavior of the 

structure. The idealization of a single-degree primary structure (PS) with a mass 𝑚𝑝, lateral 

stiffness k, and viscous damping c with such a stack on it is shown in Fig. 4.22. The mass 

of the secondary bodies is represented as 𝑚𝑏1, and 𝑚𝑏2. The bottom secondary body (SB1) 

in the stack is considered to interact with the structure with Coulomb friction. Such friction 

is also present between the bodies (SB1 and SB2) in the stack. The static (𝜇𝑠) and kinetic 

(µ𝑘) coefficients of friction are assumed to be equal and denoted as µ in this study. Let 𝑢𝑝, 

𝑢𝑏1 and 𝑢𝑏2 be the displacements of PS and SBs, respectively with respect to ground. The 

combined system is subjected to a ground acceleration of �̈�𝑔.  
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    Fig. 4.21 The flowchart of the numerical analysis procedure 

 

Fig. 4.22 Idealization of single-degree primary structure with two level stack of SBs. 
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The governing dynamic equations of motion (Eqs. (4.20) and (4.21)) for the structure 

and the stack in stick and sliding/slip mode are solved by the 4th order Runge-Kutta 

method. In the subsequent discussion, mass ratios (𝛼𝑖) of the stack of live load objects, 

original structural period (𝑇𝑝), and the mass ratio (𝛼) of single sliding live load objects are 

introduced and defined by the Eqs. (4.4), (4.5), and (4.6), respectively. The seismic hazard 

levels and the ground motions used in this section are shown in Fig. 4.3 and Table 4.1 of 

Section 4.1. 

4.3.1    Validation of the Model 

A Finite Element (FE) model was developed to validate the above method. In this section, 

the main features of a FE model developed using ABAQUS/CAE release 6.14 (academic 

version) are described. The basic FE model developed consists of a rectangular body that 

simulates the primary structure with sliding rigid blocks resting on it. The rigid blocks and 

primary structures are modelled as discrete rigid bodies. The developed FE model is used 

to calculate the response of a single-degree oscillator with sliding rigid blocks resting on 

it. To do so, a horizontal spring element and dashpot were attached to the rectangular body 

to simulate the oscillator, as shown in Fig. 4.23. 

 

Fig. 4.23 ABAQUS model of a structure with a two-level stack of SBs 
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The motion of the rigid bodies is defined by reference nodes assigned to them. A rigid 

body reference node has both translational and rotational degrees of freedom. Reference 

node (RP1) is created to simulate the ground point such that one end of the spring is attached 

to it, and all degrees of freedom of RP1 restrained to simulate a fixed point. The other end 

of the spring element is attached to the primary structure to simulate the SDOF oscillator. 

Masses of the structure (𝑚𝑝) and rigid blocks (𝑚𝑏1, 𝑚𝑏2) are assigned to the reference 

nodes as inertia. In this particular study, RP2, RP3, and RP4 are the reference nodes assigned 

to the primary structure and the rigid sliding blocks, respectively.  

The Coulomb friction model is used to capture the friction and to slide at the contact 

surface. The model characterizes the frictional behavior between the surfaces using a 

coefficient of friction, 𝜇. To capture the sliding of the blocks under base excitation, the 

contact interface that exists between the blocks and the SDOF oscillator is modelled via an 

interaction module in ABAQUS. This is defined by two surfaces designated as master and 

slave surfaces. Generally, if a smaller surface contacts a larger surface, it is best to choose 

the smaller surface as the slave surface (Dassault Systèmes 2016). The contact interaction 

between these bodies is generated by the Surface-to-Surface contact (Explicit) method. 

Explicit method is chosen over the implicit method as the explicit platform converges better 

(Zhang et al. 2017). The normal interaction of the contact is formulated as hard contact, 

and the tangential interaction is modelled as penalty formulation. The Penalty contact 

algorithm is used for mechanical constraint formulation. The finite-sliding formulation, 

which is the most common and allows for sliding of the surfaces in contact, is adopted 

since small sliding formulation cannot be used for contact pairs using the penalty contact 

algorithm. 
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A horizontal acceleration based on earthquake data is applied to the ground point to 

simulate an excitation at the base of the SDOF oscillator. The structure with a stack of SBs 

is subjected to a medium hazard spectrum compatible Duzce-Turkey (1999) earthquake 

recorded at Lamont #1059 station. The acceleration time history of the earthquake used in 

this validation is shown in Fig. 4.24. 

 

Fig. 4.24 Acceleration time history used for validation 

Fig. 4.25 shows the calculated displacement response for selected values of the mass 

ratios, coefficients of friction, and period of the structure. It can be observed that SB1 and 

the structure behave as one since relative sliding displacement between them is zero. The 

relative sliding displacement of SB2 w.r.t SB1 is more in short period structures since the 

structure accelerates more. Displacement estimates from the developed numerical model 

match the FE model. 

4.4    Dynamic response of a SDOF structure with stacked sliding NSCs  

This section investigates the effect of a stack of live load objects on the dynamic response 

of the structure in comparison to the response of the structure with a single sliding rigid 

block.  
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                                        (a)                                                                      (b) 

Fig. 4.25 Comparative response of Runge-Kutta method and FE model for 𝛼1 =  𝛼2 =

 0.5, 𝜇1 = 0.3, 𝜇2 = 0.1, and: (a) 𝑇𝑝 = 0.5 s; (b) 𝑇𝑝 = 1 s. 

4.4.1   Displacement Response 

A typical structure of natural period 0.5 sec is chosen. A mass ratio of 0.5 is used for both 𝛼1 

and 𝛼2. Coefficients of friction (𝜇1 and 𝜇2) are 0.3 and 0.1, respectively are chosen to 

capture the difference in sliding behavior. For the case where the stack is taken as a single 

mass, the frictional coefficient between the structure and the sliding mass is kept the same 

(0.3). Spectra compatible earthquake excitation #11 from Table 4.1 is applied to the base of 

the PS with SBs. The displacement response time histories are shown in Fig. 4.26. Since 

the maximum displacement of the structure is of great concern for the design of the 

structures, it is tabulated, as shown in Table 4.7, for both the seismic hazard levels. It should 

be noted from Fig. 64 and Table. 4.7 that there is considerable dissipation of energy due to 

sliding within the stack in both the seismic zones. 
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              (a) 

 

             (b) 

Fig. 4.26 Displacement response of the PS with stacked SBs (a) Zone III; (b) Zone V. 

 

Table 4.7 Maximum displacement of the PS with and without stack
 

Maximum displacement of the PS, 𝑢𝑝 (m) 

Seismic Zone 
PS with a 

Single SB 

PS with a 

Stack of SBs 
% reduction 

III 0.028 0.021 25 

V 0.046 0.035 23.91 

4.4.2   Parametric Study 

The displacement response of a structure with a stack of SBs is different from that of a 

structure with a single sliding rigid block, as seen in the previous section. Hence, a 

parametric study was performed with the following variables: (a) the structural period 𝑇𝑝; 
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(b) the mass ratios 𝛼1 and 𝛼2; (c) the frictional coefficients within the stack and between 

the stack and the PS i.e., 𝜇2 and 𝜇1 respectively. Different problems were analyzed for each 

seismic damage risk zone. For each the mean of the maximum displacement response of 

the system for scaled eleven ground motions were calculated. A set of parameters is defined 

to quantify the effect of a stack of SBs on the response of the primary structure and are 

called Displacement Response Ratios (DRRs).  

𝐷𝑅𝑅1 =  
(𝑢𝑝)𝑠𝑡𝑎𝑐𝑘

(𝑢𝑝)𝑟𝑖𝑔𝑖𝑑
 (4.22) 

  

𝐷𝑅𝑅2 =  
(𝑢𝑝)𝑠𝑖𝑛𝑔𝑙𝑒

(𝑢𝑝)𝑟𝑖𝑔𝑖𝑑
 (4.23) 

Where (𝑢𝑝)𝑠𝑡𝑎𝑐𝑘  is the displacement of a structure supporting a stack of SBs and 

(𝑢𝑝)𝑠𝑖𝑛𝑔𝑙𝑒  is the displacement of the same structure but supporting a single sliding block 

of the same as whole stack. (𝑢𝑝)𝑟𝑖𝑔𝑖𝑑  is the displacement of the structure supporting an 

equivalent rigidly attached block (with the same mass as the stack). 𝐷𝑅𝑅1 or 𝐷𝑅𝑅2 

approaching one indicates minimal slippage. If the ratio of 𝐷𝑅𝑅1 to 𝐷𝑅𝑅2 approaches one, 

it indicates that slippage within the stack is not significant. 

Increase in structural period and coefficients of friction shows significant increase in 

the value of DRR as shown in Fig. 4.27 for medium damage risk zone. From Fig. 4.27, it 

can be inferred that if 𝜇2 ≤ 𝜇1, input energy is dissipated by the relative movement between 

blocks since 𝐷𝑅𝑅1 <  𝐷𝑅𝑅2. For 𝜇2 > 𝜇1, no energy dissipation is observed within the 

stack (𝐷𝑅𝑅1 = 𝐷𝑅𝑅2). This is due to the fact that when the lower block (SB1) in a stack is 

sliding, and upper block (SB2) is at rest with respect to SB1, then the resistant force acting 

on SB2 is given as 𝑚𝑏2(�̈�𝑏1 + �̈�𝑔) =  𝑓1. The resistant force 𝑓1 can be obtained from the 

Eq. (4.21) and is as follows: 
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𝑓1 =  −𝑚𝑏2𝜇𝑘1𝑔𝑠𝑖𝑔𝑛(�̇�𝑏1 − �̇�𝑝) (4.24) 

 

Fig. 4.27 Displacement Response Ratio (𝐷𝑅𝑅) for primary structure under medium 

seismic damage risk zone (Zone III) 

The rigid block on the top 𝑚𝑏2, starts sliding only when 𝑓1 exceeds the limiting static 

frictional force between 𝑚𝑏1 and 𝑚𝑏2 i.e.,𝑚𝑏2𝜇𝑠2𝑔 =  𝑓2.   Since 𝜇𝑘1 <  𝜇𝑘2,  𝑓1 will never 

reach the value of the limiting frictional force 𝑓2 and hence 𝑚𝑏2 will not slide when the 
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lower block (SB1) slides with respect to the structure. Hence, in this case, the energy 

dissipation due to friction within the stack is negligible, and the two rigid blocks in the 

stack behave as a single block (𝑚𝑏1 + 𝑚𝑏2). 

From Fig. 4.28, it is observed that 𝐷𝑅𝑅 increases significantly with an increase in the 

natural time period of the structure and the coefficients of friction as expected. The same 

trend is seen for 𝐷𝑅𝑅 in the highest damage risk zone also. Energy dissipation due to 

friction between the stack of blocks is negligible when 𝜇2 > 𝜇1 similar to medium damage 

zone. Hence from Figs. 4.27 and 4.28, it can be concluded that regardless of seismic 

damage risk zone, mass ratios and friction coefficients if 𝜇2 > 𝜇1, stack of rigid blocks can 

be considered as a single sliding rigid block. 

Due to the sliding of the stack of blocks and within the stack, only a portion of the total 

mass of the stack participates in the primary structural inertia. This affects the modal 

characteristics of the primary structure. In this study, an equivalent time period for the 

structure is evaluated for understanding this behavior.  

4.4.3 Modified Structural period due to stacked sliding NSCs 

This section explains a methodology to determine the structural period of the primary 

structure with stacked sliding SBs. The modified structural period is designated as 𝑇𝑛𝑒𝑤 

and it can be used for the design of a structure by using the corresponding response 

spectrum. When the SBs are rigidly attached to the PS, the modified structural period of 

the PS can be calculated using Eq. (4.11). The following proposed algorithm allows 

determining the modified structural period when the stacked sliding SBs are present on the 

PS. 
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Fig. 4.28 Displacement Response Ratio (𝐷𝑅𝑅) for primary structure under highest 

seismic damage risk zone (Zone V). 

4.4.3.1   Algorithm for the determination of modified structural period 

The algorithm proposed in Section 4.2.3.1 for the determination of the 𝑇𝑛𝑒𝑤 in the case of 

multiple sliding SBs resting on the PS side-by-side can be slightly modified to use the same 



119 
 

algorithm in this case too. A slight modification is required to the step (1) of the proposed 

algorithm (Section 4.2.3.1). The steps (2), (3), and (4) remain unchanged. 

1. Calculate the absolute maximum accelerations of the structure (𝑚𝑝) and 

lower body in the stack (𝑚𝑏1) for the eleven scaled ground motions for a 

given seismic hazard level. If accelerations of 𝑚𝑝 and 𝑚𝑏1 are less than 

𝜇1𝑔 and 𝜇2𝑔 respectively, then the blocks will not slide and,  

therefore 𝑇𝑛𝑒𝑤 =  𝑇𝑟𝑖𝑔𝑖𝑑. Otherwise, the sliding will be seen within the 

stack and below the stack.  

2. Calculate the 5%-damping mean displacement spectrum for the set of 

scaled ground motions. 

3. Calculate the mean of the maximum displacement of the PS with a stack 

of sliding SBs for a given set of scaled eleven ground motions using the 

numerical procedure shown in Fig. 4.21. 

4. Determine the structural period from the 5%-damping mean displacement 

spectrum (obtained in Step (2)) for the calculated mean displacement 

(obtained in Step (3)) by linear interpolation. 

The process is illustrated in Fig. 4.29. The structural period of the PS with a stack of 

SBs is evaluated under scaled eleven ground motions for 𝑇𝑝 = 1 sec, 𝛼1 =  𝛼2 = 0.5, 𝜇1 =

0.2 and 𝜇2 = 0.1 in this case. The mean displacement of the PS is found out to be 0.0549 

m. The corresponding modified structural period of the structure using the above 

methodology is 1.38 sec. 
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Fig. 4.29 Determination of the 𝑇𝑛𝑒𝑤 of a PS with a stack of sliding SBs. 

The validation of the proposed algorithm is done with the single live load object from 

the previous studies. The procedure for validating the algorithm proposed for the structure 

with the side-by-side SBs (Section 4.2.3.2) was used for this case too. For such validation, 

the coefficient of friction is considered as very high between the SBs in the stack. The 

calculated modified structural period of the primary structure with a stack of SBs by the 

proposed algorithm is successfully validated with the structure with a single sliding live 

load object. 

4.4.4   Parametric study on modified structural period 

A parametric study was performed with: (a) the structural period 𝑇𝑝 (from 0.1 s to 2 s, 

increments of 0.1 s); (b) the mass ratios 𝛼1 and 𝛼2 (0.1, 0.5, 1.0); (c) the coefficient of 

friction within the stack and between the stack and the PS. 𝜇1 = 0.05, 0.1 to 0.6 (with 

increments of 0.1) and 𝜇2 = 0.05, 0.1 to 0.7 (with increments of 0.1). These 
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Fig. 4.30 𝑇𝑛𝑒𝑤 against 𝑇𝑝 for medium seismic hazard level (Zone III). 

ranges are selected based on the most common structural properties. It should be noted that 

the mass ratios are corresponding to light structures and heavy secondary masses. 6300 

runs were analyzed with various permutations for each seismic damage risk zone. Each run 

involves the calculation of the modified structural period ( 𝑇𝑛𝑒𝑤). 
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Fig. 4.31 𝑇𝑛𝑒𝑤 against 𝑇𝑝 for highest seismic hazard level (Zone V). 

Fig. 4.30 shows a subset of results from the parametric study for a given mass ratio and 

coefficients of friction. It is observed that the structural period of the PS with a stack of 

SBs (𝑇𝑛𝑒𝑤) increases with the coefficients of friction and structural period. The increase in 

structural period (𝑇𝑛𝑒𝑤) is significant at higher mass ratios. The structural period of the PS 

with a stack of SBs is equal to the structural period of the PS with a single sliding rigid 
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block when 𝜇2 > 𝜇1. This is the same as in the case of DRR mentioned in Section 4.4.2. It 

is also observed from Fig. 4.30 that the modified structural period of the PS with a stack of 

SBs is almost equal to the modified structural period of the PS with single sliding rigid 

block even for smaller 𝜇2 values when 𝜇1 is larger regardless of mass ratios. The structure 

experiences small total accelerations (since the seismic hazard level is medium), which are 

not enough to counteract the friction. 

The modified structural period (𝑇𝑛𝑒𝑤) increases with the structural period and 

coefficients of friction, especially for larger values of mass ratios, as shown in Fig. 4.31 

under the highest seismic hazard level also. Energy dissipation associated with the relative 

movement between blocks can be neglected when 𝜇2 > 𝜇1. From Figs. 4.30 and 4.31, it 

can be observed that energy dissipation due to friction between the blocks is more in the 

highest seismic hazard level compared to the medium seismic hazard level.  

4.4.5   Design expressions for modified structural period by Non-Linear 

Regression  

In order to design a structure with a given stack of sliding bodies by the response spectrum 

method, an equation for 𝑇𝑛𝑒𝑤 needs to be developed. For some of the cases, 𝑇𝑛𝑒𝑤 can be 

obtained from Figs. 4.30 and 4.31. In other cases, a design equation will be developed 

through a parametric study by considering a large data set corresponding to large number 

of variables. Non-Linear Regression (NLR) analyses yield the following design equations 

to calculate 𝑇𝑛𝑒𝑤 for each seismic damage risk zone:  

For Medium seismic hazard zone: 

𝑇𝑛𝑒𝑤 = ((−4.284 ∗ 𝑇𝑝) − (0.173𝑠 ∗ 𝜇1) + (0.015𝑠 ∗ 𝜇2) − (4.365𝑠 ∗ 𝛼1) −

(4.567𝑠 ∗ 𝛼2)) + 2.022𝑠 ∗ 𝑒
(

(
0.053

𝑠
∗𝑇𝑝)+(0.003∗𝜇1)+(0.002∗𝜇2)

+(0.044∗𝛼1)+(0.045∗𝛼2)+3.873
)

− 97.3𝑠  

(4.25) 
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For Highest seismic hazard zone: 

𝑇𝑛𝑒𝑤 = ((−5.464 ∗ 𝑇𝑝) − (2.268𝑠 ∗ 𝜇1) − (4.451𝑠 ∗ 𝜇2) − (5.064𝑠 ∗ 𝛼1) −

(4.693𝑠 ∗ 𝛼2)) + 2.197𝑠 ∗ 𝑒
(

(
0.052

𝑠
∗𝑇𝑝)+(0.02∗𝜇1)+(0.038∗𝜇2)

+(0.041∗𝛼1)+(0.038∗𝛼2)+3.97
)

− 116.3𝑠  

(4.26) 

The prediction capability of the regression models for both the seismic zones are 

evaluated by defining the various statistical performance functions like Co-efficient of 

Determination (R2), Correlation Coefficient (R), Root Mean Square Error (RMSE), Mean 

Square Error (MSE) and Mean Absolute Error (MAE). The performance of the models is 

summarized in Table. 4.8.  

Table 4.8 Performance of the models
 

Seismic 

Zone 
R2 R RMSE MSE MAE 

 III 0.985 0.992 0.094 0.009 0.082 

 V 0.969 0.985 0.1 0.01 0.09 

The R-value of the model should be as high as possible since it gives the relative 

correlation and goodness of the fit between the measured and predicted values. RMSE, 

MSE, and MAE are errors, and they should be as low as possible. Therefore, from Table. 

4.8, it can be observed that the strong correlation exists between the measured and 

predicted values with minimum errors. 

4.5    Summary  

This chapter explores the effect of the multiple sliding NSCs on the dynamic response of 

the supporting SDOF primary structure under spectrum compatible real earthquake 

excitations. An extensive parametric study has been conducted on the response of the 

structure by varying the dynamic properties of the structure and the interactional properties 

(mass ratios and coefficients of friction) of the NSCs. The results from the parametric 
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analysis show that the mass ratios and the coefficients of friction have a significant effect 

on the response of the structure. A generalized design methodology is proposed to 

determine the modified structural period of the primary structure. Finally, design 

expressions are proposed to calculate the modified structural period of the structure as a 

function of the structural period, mass ratios, and coefficients of friction by Non-Linear 

Regression and Artificial Neural Network models. The next chapter investigates the 

damping effect of NSCs on the structures.  
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CHAPTER 5: DAMPING EFFECT OF NSCs ON THE 

RESPONSE OF THE STRUCTURE 

5.1 General 

From the above chapters (3 and 4), it can be seen that the hanging and multiple sliding 

NSCs significantly affecting the structural response. The seismic response of the structure 

is usually reduced due to the dissipation of the energy. This dissipation is caused due to the 

variable forces between the structure and the NSC. In the analysis and design of damped 

structures, the energy dissipation technology is proved to be an effective tool to resist 

earthquakes (Ghaedi et al. 2017). A number of research studies and engineering procedures 

have found that the mitigation effects of the seismic response resulting from the installation 

of the dampers can be measured on the basis of an additional equivalent damping ratio 

(Ramirez et al. 2003; Sadek et al. 2000). The modal-strain-energy approach was used to 

determine the equivalent damping ratio of structures with viscoelastic dampers (Chang et 

al. 1993). Lee et al. (2004) proposed a new method for evaluating the equivalent damping 

ratio in the structure with added damping devices. A closed form solution was proposed to 

obtain an equivalent damping ratio without carrying out numerical analysis (Lee et al. 

2004). Diotallevi et al. (2012) proposed a new dimensionless parameter called damping 

index. Based on this dimensionless parameter, they proposed a simplified method for the 

direct assessment of the additional damping ratio of the structure with dampers. The 

proposed method is verified using a single-degree-of-freedom (SDOF) system (Diotallevi 

et al. 2012). Park (2013) investigated the seismic response of SDOF systems through 

nonlinear time history analysis with added damper. Additional equivalent damping ratio 

was estimated using the damping correction factors and regression equations (Park 2013). 

Very recently, Hu et al. (2019) proposed a simplified method to estimate the additional 

damping ratio based on energy dissipation. From their analysis, they concluded that the 



127 
 

additional damping ratio varies with the time. The proposed method is verified by using a 

SDOF system (Hu et al. 2019).  

The above researcher shows the use of additional equivalent damping ratio of the 

structure with added dampers. To the author’s knowledge, no studies were reported on the 

additional damping ratio of the structure with flexible NSCs in the literature. Therefore, in 

this chapter this particular problem is investigated. An additional equivalent damping ratio 

added to the structure due to these NSCs is evaluated.  

The seismic response of a structure with a hanging mass was varied considerably by 

external excitations (harmonic and earthquake excitations) and the vibrational properties 

(mass ratio and length of the pendulum) of the hanging mass. From the analysis results 

(Chapter 3), the amplitude of the structure’s response tends to reduce when the tuning 

frequency ratio of the hanging mass is nearly equals to one. To understand the energy 

dissipation of a structure, a SDOF primary structure with a hanging mass and a single 

sliding secondary body is considered. A free vibration test has been taken on the undamped 

structure with and without such NSCs. For the analysis, the structural period (𝑇𝑝) is chosen 

as 0.5 sec. In the case of sliding SB, the coefficient of friction and mass ratio values are 

chosen as 0.1 and 0.75, respectively. The tuning frequency ratio and mass ratio in the case 

of hanging mass are chosen as 0.95 and 0.75, respectively. 

Fig. 5.1 shows the displacement response of a structure with a sliding body and a 

hanging mass. From Fig. 5.1a, energy dissipation in the structure can be seen due to the 

sliding secondary body. After some duration of the free vibration, the sliding of the 

secondary body cannot be seen, and the pure steady-state response can be observed. The 

energy dissipation in the structure with hanging mass is not seen with the hanging mass, 

even though the response amplitude is observed to be reduced when compared to the 

structure without a hanging mass (Fig. 5.1b). Therefore, in this study, an attempt has been 
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made to determine the additional damping ratio added to the structure due to the slide effect 

as energy dissipation is clearly seen. 

 

          (a) 

 

            (b) 

Fig. 5.1 Displacement of a structure (a) with and without sliding SB; (b) with and without 

FSS 

5.2 Damping effect of the sliding NSCs 

Sliding between layers of the secondary mass and the structure will dissipate energy. This 

energy dissipation can be termed as damping. As observed from Chapter 4, the sliding 

NSCs can reduce the seismic response of the structure by dissipating the seismic energy 

due to the slide effect. This energy dissipation can be quantified by the change in equivalent 
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damping ratio of the structure. Therefore, in this section an attempt is made to determine 

the additional damping due to the slide effect under earthquake excitations.  

For this purpose, the structure with a single sliding live load object is considered. The 

methodology to determine the additional equivalent damping ratio added to the structure is 

defined with respect to the rigidly fixed condition (i.e., the additional damping ratio added 

to the structure due to slide effect is zero when the live load object is rigidly fixed to the 

structure). The following subsection discusses the methodology implemented to determine 

the additional damping ratio of the structure. Parametric study results are also presented 

for a few cases. 

5.2.1 Methodology to determine the additional equivalent damping ratio 

(𝝃𝒂) due to the slide effect  

The additional equivalent damping ratio (𝜉𝑎) can be calculated through the following steps:  

1. Generate the displacement spectra for an SDOF system for various damping 

ratios (say, 2%, 5%, 7%, 10%, and 20%) for a given set of spectrum 

compatible ground motions.  

2. Let 𝜉𝑒𝑞𝑓  be the equivalent damping ratio of the structure when the live load 

object is rigidly fixed to the structure and 𝜉𝑒𝑞𝑠  be the equivalent damping ratio 

of the structure when the live load object slides.  

3. Calculate the mean spectral displacement (𝑆𝐷) of a given structure (for a 

given structural period and damping ratio) with a live load object under real 

earthquake excitations.  

4. By using the spectral displacement (𝑆𝐷) obtained from the above step, and 

the structural period when the live load object is rigidly fixed (𝑇𝑟𝑖𝑔𝑖𝑑), 𝜉𝑒𝑞𝑠   

can be obtained at the closest intersection point on the displacement spectra 
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(obtained in Step 1) corresponding to the 𝑇𝑟𝑖𝑔𝑖𝑑  on the x-axis and 𝑆𝐷  on the 

y-axis.  

5. Finally, additional equivalent damping ratio (𝜉𝑎) due to slide effect can be 

calculated using the following equation:  

𝜉𝑎 =  𝜉𝑒𝑞𝑠 − 𝜉𝑒𝑞𝑓  (5.1) 

For the generation of displacement spectra (Step 1), spectrum compatible ground 

motions are used in this study. The seismic hazard level chosen for this purpose is Indian 

Seismic Zone V (Hard soil). The response spectrum curve given in the IS 1893 (2016) is 

for 5% damping ratio. To generate the spectrum compatible ground motions for the 

damping ratios other than 5% damping ratio, response spectrum curves are needed. Such 

response spectrum curves for other damping ratios were generated in this study by utilizing 

the damping modification factors (DMF). The empirical relationship defined in the study 

(Surana et al. 2019) was used to describe the DMF. The 50th percentile estimated 

coefficients for the computation of DMFs were used. The resultant displacement spectra 

are shown in Fig. 5.2. 

 

Fig. 5.2 Displacement spectra for various damping ratios. 
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The methodology is explained through an example. Say, the structural period (𝑇𝑝) is 0.7 

sec and the damping ratio in the structure is 5%. The coefficient of friction (𝜇) and the 

mass ratio (𝛼) are chosen as 0.3 and 0.75, respectively. The equivalent damping ratio of 

the structure is 7%, as shown in Fig. 5.3. The additional equivalent damping ratio can be 

calculated using Eq. (5.1) and it is 2%. In the  following section, a parametric study was 

conducted for a few cases by choosing the different structural periods, mass ratios, and the 

different coefficient of frictions to observe the variation in the 𝜉𝑎. 

 

Fig. 5.3 Estimation of additional equivalent damping ratio (𝜉𝑎) 

5.2.2 Parametric Study  

In the parametric study, the structural periods are chosen as 0.5 sec, and 1 sec to represent 

the relatively stiff and flexible structures. The mass ratios are chosen as 0.5, 1, 1.5, and 2. 

The coefficients of friction are varied from 0.1 to 0.6 with 0.1 increments. The variation in 

the additional damping ratio (𝜉𝑎) with the coefficient of friction for a given mass ratio is 

shown in Fig. 5.4 for both the stiff and flexible structures. 
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From Fig. 5.4, it can be observed that the additional damping ratio reduces with the 

increase in the coefficient of friction irrespective of mass ratio in both the stiff and flexible 

structures. For the stiff structures (Fig. 5.4a), the energy dissipation in the structure is more, 

and hence high 𝜉𝑎 is observed at low coefficient of friction and large mass ratio. At high 

coefficient of friction, small mass ratios add high 𝜉𝑎 to the structure. At high coefficient of 

frictions, the participation of sliding live loads with large mass ratios in the primary 

structure inertia is more and hence slide effect is less. 

    

                                     (a)                                                                        (b) 

Fig. 5.4 Variation of 𝜉𝑎 with coefficient of friction for different mass ratios (a) 𝑇𝑝 = 0.5 s; 

(b) 𝑇𝑝 = 1 s  

From a given flexible structure (Fig. 5.4b), no energy dissipation in the structure is 

observed due to the slide effect for 𝜇 ≥ 0.3 for all the mass ratios considered. Energy 

dissipation in the structure is high at a lower coefficient of friction for larger mass ratios, 

and hence high 𝜉𝑎 was observed in this case similar to stiff structures. Finally, it can be 

concluded from Fig. 5.4 that for a given coefficient of friction and mass ratio, the additional 

damping ratio added to the structure due to slide effect is more in stiff structures than that 

of the flexible structures. The absolute accelerations experienced by the stiff structure are 
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more compared to the ones experienced by flexible structure, and hence the sliding effect 

will be high in stiff structures.  

The effect of the original structural damping ratio on the additional damping ratio is also 

studied and shown in Fig. 5.5. Damping ratios (𝜉) of 2%, 5%, 7%, 10%, and 20% are 

chosen. From Fig. 5.5, it can be observed that the additional damping ratio added to the 

structure due to slide effect decreases with an increase in the damping ratio of the structure 

for both the stiff and flexible structures. This behavior is expected since the increase in 

structural damping ratio reduces the absolute accelerations produced in the structure. As 

shown in Fig. 5.5, the additional damping ratio of the given flexible structure varies 

between 4% and 0% for a given mass ratio and coefficient of friction. In a stiff structure, 

additional damping ratio (𝜉𝑎 = 0.6%) due to slide effect can be observed even for a high 

damping ratio (𝜉 = 20%).   

The additional equivalent damping ratio due to slide effect can also be determined from 

the proposed design equations for a modified structural period for the multiple sliding 

bodies. For this, the displacement spectra shown in Fig. 5.2 is utilized. 𝜉𝑎 for the structure 

with a single sliding live load object and with stacked live loads is calculated and compared. 

 

Fig. 5.5 Variation of 𝜉𝑎 with the damping ratio for 𝜇 = 0.2 and 𝛼 = 0.75 
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This is done so as to qualify the dissipation due to sliding between layers of the live 

loads. The structural period (𝑇𝑝) is chosen as 0.5 sec. The damping ratio of the structure is 

taken as 5%. The mass ratio and the coefficient of friction in the single sliding live load 

object are 1, and 0.4, respectively. Mass ratios (𝛼1 and 𝛼2), and coefficients of friction (𝜇1 

and 𝜇2) are chosen as 0.5, 0.5, 0.4, and 0.2, respectively for the stacked case. The structural 

period (𝑇𝑟𝑖𝑔𝑖𝑑) when the load is rigidly attached to it is 0.71 sec. The  𝜉𝑎 for the structure 

with a single sliding live load object can be determined by the methodology shown in 

Section 5.2.1. For the same structure with stacked live load objects, the modified structural 

period (𝑇𝑛𝑒𝑤) was determined using the Eq. (4.26) for a given structural period, mass ratios, 

and coefficients of friction. The 𝑇𝑛𝑒𝑤 is calculated to be 0.53 sec. By using the obtained 

𝑇𝑛𝑒𝑤 and the 5% mean displacement response spectrum generated from the spectrum 

compatible ground motions, determine the spectral displacement (𝑆𝐷). Using this 𝑆𝐷 , 𝑇𝑟𝑖𝑔𝑖𝑑 

and the methodology (Section 5.2.1), the 𝜉𝑎 can be calculated due to the stacked loads slide 

effect. Table 5.1 shows the values of  𝜉𝑎 for both cases.  The seismic energy dissipation in 

the structure is more under stacked sliding loads case than that of the single sliding live 

load case. And also, from the section 4.5.2, it was concluded that when the 𝜇2 > 𝜇1 for a 

given seismic hazard level, the energy dissipation due to friction within the stack is 

negligible and the bodies act as a single sliding live load object. The 𝜉𝑎 was calculated for 

this case also and shown in Table 5.1. The 𝜉𝑎 value when the 𝜇2 > 𝜇1 is approximately 

equal to that of the structure with a single sliding live load object. 

Table 5.1 Additional damping ratio (𝜉𝑎) added to the structure
 

𝜉𝑎 (%) 

with single sliding live 

load 
with stacked sliding live loads 

2 
𝜇1 = 0.4, 𝜇2 = 0.2 8.05 

𝜇1 = 0.4, 𝜇2 = 0.5 1.78 
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CHAPTER 6: SUMMARY AND CONCLUSIONS 

In this chapter, the summary and conclusions of the study are presented. This is followed 

by a further scope of work.  

6.1 Summary 

The major objective of the study presented in this dissertation was to develop a design 

methodology considering the effect of flexibly attached secondary systems in structural 

design. Quantification of this effect is first needed for this study. Also, an understanding 

of the seismic behavior of a structure with such secondary systems was necessary before 

such an attempt could be made. Hence, the first part of this study focused on assessing the 

effect of the dynamic and interactional properties of the secondary systems on the seismic 

behavior of the structure. The second part was focused on developing a design 

methodology to estimate the design parameters of the elastic structure with such secondary 

structures. Hanging bodies and sliding secondary systems were considered in this study. 

6.1.1 Combined Model for Structure and Hanging NSC 

Lead-shielding application in nuclear power plants is the motivation for investigating the 

effect of the hanging non-structural components on the seismic behavior of a primary 

structure. Lead-shielding in power plants is primarily provided by lead blankets hanging 

from or laid on lightweight scaffolding. Due to the high risk associated with the interior of 

the nuclear power plants, these scaffolding structures need to be designed for seismic loads. 

Since the lead blankets are considerable in weight with respect to the light frame and are 

hanging from the scaffolding structure, it is a good example of the problem statement in 

this study. For simplicity, the scaffolding is assumed to be on the ground and single-storied. 

Lead shielding of many piping systems in power plants are one-storied.  
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The governing equations of motion are derived for primary structure and flexible 

secondary structure by considering small displacements in secondary structure. The 

analysis was conducted for harmonic and real earthquake excitations. The numerical model 

of the combined system (primary structure with hanging mass) was validated with an 

existing study, and seismic response from the model was compared with that of the 

response from a finite element (FE) model.  

The influence of the excitation frequency ratio, tuning frequency ratio, and the mass 

ratio on the seismic response of the structure was investigated. The excitation frequency 

ratio is defined as the ratio between the excitation frequency and the natural frequency of 

the primary structure. The tuning frequency ratio is defined as the ratio between the natural 

frequency of the hanging mass and the primary structure. The mass ratio is the ratio of the 

mass of the hanging body to the mass of the primary structure. The inertial forces on the 

primary structure were considered to understand the secondary mass participation in the 

seismic behavior of the primary structure under harmonic excitations. A parameter called 

Mass Effect Ratio was defined to quantify such participation. 

The effect of the tuning frequency ratio and the mass ratio on the seismic response of 

the primary structure was investigated under real earthquake excitations. An attempt has 

been made in this study to assess the effect of the hanging mass on the structure for a given 

seismic hazard level. Spectrum compatible ground motions were considered. Indian 

seismic hazard levels, Zone III and Zone V for different soil types were considered. To 

quantify the effect of the vibrational parameters (length and mass) of the hanging mass on 

the acceleration response of the structure, a parameter called Response Acceleration 

Reduction Ratio was defined. Finally, a design methodology was developed to determine 

the spectral acceleration of the structure with a hanging mass. A parameter called, Design 

Acceleration Ratio was defined to quantify the effect of the hanging mass on the spectral 
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acceleration of the primary structure. The effect of the mass ratio and the tuning frequency 

ratio on the Design Acceleration Ratio was conducted. An expression for the Design 

Acceleration Ratio was developed to determine the spectral acceleration of the structure 

with hanging mass. Design expressions were developed by means of a Non-Linear 

Regression and Artificial Neural Networks. 

6.1.2 Combined Model for Structure and Sliding NSC 

The effect of the multiple sliding non-structural components on the seismic behavior of the 

primary structure was also investigated in this study. Sliding non-structural components 

were modelled as a rigid body. In existing literature, the studies were limited to the effect 

of a single sliding body on the dynamic behavior of the supporting structure. Hence, in this 

study the effect of the multiple sliding rigid blocks on the seismic behavior of the structure 

under real earthquake excitations was studied. Multiple sliding bodies resting side by side 

and also one over the other in the form of stacks were considered. 

In this study, the single-story primary structure is assumed to be linear elastic. Sliding 

secondary bodies are considered to be far enough from each other and other obstructions 

as to not cause impact collision. A two-level stack of sliding bodies was considered in the 

case of stacked sliding bodies. Coulomb's friction model was assumed for deriving the 

governing equations of motion for primary and secondary masses. The 4th order Runge-

Kutta method was utilized for solving the equations of motion. The combined system 

(structure with sliding secondary bodies) were subjected to spectrum compatible 

earthquake excitations. Two Indian seismic hazard levels (Zone III and Zone V for hard 

soil condition) corresponds to 5% damping were considered in the analysis. The analysis 

results from the numerical model were compared against that of the finite element model 

for validation. 
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Parameters called Displacement Ratio and Displacement Response Ratio were defined 

for both the side by side and stacked cases, for both the seismic hazard levels to study the 

effect of the interactional parameters (mass and the coefficients of friction) on the seismic 

response of the structure. An extensive parametric study was conducted on the 

displacement response of the structure by varying the dynamic properties of the structure 

and the interactional properties of the sliding bodies. An attempt was made to develop 

design expressions to determine the dynamic design parameters of the structure with such 

sliding masses by Non-Linear Regression and machine learning methods for a given 

seismic hazard level.  

6.2 Conclusions 

The conclusions for this study were derived from various parametric studies involving 

structures with hanging masses and multiple sliding rigid bodies subjected to various 

ground motions.  

6.2.1 Combined Model for Structure and Hanging NSC 

In this study, for simplicity, the scaffolding is assumed to be on the ground and single 

storied. The mass is assumed to be lumped at the slab level. The hanging lead blankets are 

assumed and modeled as a simple pendulum. To simplify the proposed model, small 

displacements are assumed for the pendulum. Assuming that the primary structure remains 

in the linear range of response. From this analyses, it was concluded that the effect of a 

hanging secondary structure on the seismic response of a structure is significant. Hence 

this mass needs to be considered in the seismic analysis of a structure. Based on the trends 

and analysis results obtained, the following conclusions were drawn: 

 The solution to the analytical model proposed in this study is validated with an 

existing study and a finite element model. Therefore, this model can predict the 
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structural response well for such a simple structure and serves as a basic model for 

further studies. 

 As the length of the pendulum is decreased to a very small value, the structure 

behaves as an SDOF where the mass of the system acts together at all times. For 

very large lengths the hanging mass is seen not to participate in the vibration and 

hence not affecting the structure at all. This is in line with earlier studies and design 

codes. The peak structural response is seen to reduce when the frequency of the 

secondary mass was in the vicinity of primary structural frequency (similar to 

PTMDs). 

 Under harmonic excitations, if the mass effect ratio 𝜖 > 1, the effect of the pendulum 

on the structural response cannot be neglected and conversely this effect can be 

ignored if 𝜖 < 1. 

 An increase in mass ratio doesn’t affect the response of the structure at lower tuning 

frequency ratios (larger lengths of pendulums) for both harmonic and earthquake 

excitations. 

 The displacement response of a structure was observed to reduce significantly due 

to the presence of such secondary masses in hard soil conditions. On the contrary, 

for soft soil conditions, the reduction in response was least, with amplification at 

several peak acceleration points. The effect of the secondary body on the structure 

was constant in both the seismic Zones III and V for a given soil condition and 

vibrational properties of secondary mass. 

 For a frequency ratio between 0.8 and 1.1, response of the structure was remarkably 

lower. A hanging mass shows a negligible effect on the structural response when 

the frequency ratio is less than 0.8 at lower mass ratios (μ). For higher frequency 

ratios like 𝛽 > 1.56, the flexible secondary mass acts as a rigidly attached secondary 
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mass to the structure. For 𝛽 between 1.1 and 1.56, the hanging mass shows a 

reduction in response at higher mass ratios but not as much as the case, when 0.8 ≤ 

𝛽 ≤ 1.1. This behavior is in line with tuned mass dampers. 

 Large values of mass ratio (μ) show a significant effect on the dynamic response of 

the structure, whether the secondary mass is tuned or un-tuned to the structural 

frequency. 

Based on the above conclusions a design methodology for such structures was formulated. 

The highlights of this design methodology and the effect of various parameters on the 

design are as follows: 

 The seismic design of such a structure was found out to be independent of the 

response spectrum for a given damping level. 

 If the value of Design Acceleration Ratio (DAR) is nearly one, it implies that there 

is no effect of the secondary body on the design of the primary structure. 

 For a small tuning frequency ratios, the design was independent of the mass ratio 

(μ). 

 For a smaller mass ratio (μ = 0.1), the structural mass in the seismic design can be 

reduced by 6-17%. For a higher mass ratio (μ = 1), it can be reduced by 30-40%. 

 A design expression was developed which allows estimating the seismic response 

of the structure as a function of 𝑇𝑝, 𝜇 and 𝐿𝑠 by Non-Linear Regression and 

Artificial Neural Networks. Neural Networks was proved to be a more effective and 

powerful tool for predicting the seismic response of the structure with a given 

secondary system when compared to the regression model. 

The limitations of the proposed approach are as follows: 
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 This particular study is limited to a linear elastic SDOF primary structure. The 

design methodology proposed in this study can apply to a simple and light structure 

like a scaffolding structure, as discussed in the introduction section.  

 The hanging NSC is modeled as a simple pendulum and limits to a smaller angular 

displacement. 

 The design methodology can be a primary framework for the study of real-life 

behavior of more complicated structures. 

6.2.2 Combined Model for Structure and Sliding NSCs 

In this study, the primary structure is assumed to be a single story and linearly elastic. Static 

and kinetic coefficients of friction between the structure and secondary body are assumed 

as equal. But in reality, those values are slightly different. In the case of multiple side-by-

side condition, sliding secondary bodies are far enough from each other and other 

obstructions to not cause impact collisions between them. Collisions between them induce 

forces on the secondary bodies, which are highly non-linear. In stacked bodies, two-level 

stack is considered with static and kinetic friction values to be the same at each surface. 

Sliding bodies are assumed as sufficiently squat so they can slide but do not show any 

rocking failure. The following section shows the conclusions drawn from the structure with 

side-by-side sliding NSCs and stacked NSCs under earthquake excitations. It also discusses 

the conclusions drawn from the damping effect of NSCs on the seismic behavior of the 

structure with such secondary masses.  

6.2.2.1   Combined Model for Structure and Side-by-Side Sliding NSCs 

 The seismic behavior of a structure is greatly affected by multiple live load objects 

under real earthquake excitations. Multiple bodies with the same coefficients of 

friction were shown to behave identical to a single body with their combined mass. 
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 The seismic behavior of a structure with multiple sliding rigid blocks was found to 

be different from its behavior with a single sliding rigid block. For a given set of 

mass ratios and coefficients of friction, the maximum displacement response of the 

structure was reduced by 25% and 11.36% compared to that of the structure with a 

single sliding rigid block in the seismic Zones III and V, respectively. 

 The displacement response of the structure with multiple sliding rigid bodies was 

compared with that of the structure with rigidly fixed bodies and found that the 

reduction in displacement response was more in Zone V (31.4%) compared to Zone 

III (17.3%) for a given set of mass ratios and coefficients of friction. 

 A dimensionless parameter called Displacement Ratio (DR) was defined to quantify 

the effect of the multiple sliding rigid bodies on the seismic response of the structure 

under earthquake excitations. Under medium seismic hazard level, sliding rigid 

blocks behave as rigidly attached bodies to the structure if the structural period 𝑇𝑝 

> 1.25 s regardless of the blocks-to-structure mass ratios and coefficients of friction.  

 Sliding rigid blocks behave as a set of rigidly attached bodies to the structure if the 

structural period 𝑇𝑝 > 0.9 s for higher coefficients of friction regardless of the mass 

ratios under the highest seismic hazard level.  

 A novel methodology has been developed to determine the modified structural 

period (𝑇𝑛𝑒𝑤) due to the interaction of secondary bodies. Under both medium and 

high seismic hazard levels, 𝑇𝑛𝑒𝑤 increases significantly with the structural period, 

coefficients of friction, and mass ratios.  

 Design expressions were developed to determine the 𝑇𝑛𝑒𝑤  as a function of 𝑇𝑝, 

coefficients of friction and mass ratios by Artificial Neural Network (ANN) and 

Non-Linear Regression for both the seismic hazard levels. 
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6.2.2.2   Combined Model for Structure and Stacked Sliding NSCs 

 The seismic response of a structure with a stack of live load objects was found to 

be different from the response of the same structure with a single sliding live load 

object with the same combined mass under real earthquake excitations.  

 Displacement estimates of the structure were found out to be conservative by 

neglecting energy dissipation associated with the relative movement of rigid blocks 

in the stack. Energy dissipation within the stack depends upon the coefficients of 

friction, mass ratios, and levels of excitation. 

 Energy dissipation associated with the relative movement between rigid blocks was 

more in the highest damage risk zone than the medium damage zone for a given 

problem. 

 For both medium and highest damage risk zones, the displacement response of the 

structure increases significantly with an increase in the structural period, mass 

ratios, and coefficients of friction. 

 If the surface between the structure and the bottom mass is smoother than the 

surface between the two bodies in the stack, the energy dissipation within the stack 

can be neglected regardless of other parameters. 

 For structures with 𝑇𝑝 ≥ 2 s, sliding loads would completely stick to the structure 

regardless of the mass ratios and coefficients of friction under medium seismic 

hazard zone, except for a very small coefficient of friction between the stacked 

masses.  

 For structures with 𝑇𝑝 ≥ 1.25 s, sliding loads would completely stick to the primary 

structure for: (i) structure-live load objects with 𝜇1 ≥ 0.1, 𝜇2 ≥ 0.1 under medium 

seismic hazard zone; (ii) structure-live load objects with 𝜇1 ≥ 0.3, 𝜇2  ≥ 0.2 under 

highest seismic hazard zone.  
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 A novel methodology was developed to determine the modified structural period 

(𝑇𝑛𝑒𝑤) of the primary structure due to the interaction of a stack of sliding rigid 

blocks. 𝑇𝑛𝑒𝑤 increases significantly with the structural period and coefficients of 

friction, especially for larger mass ratios. 

 Design equations were developed to determine the 𝑇𝑛𝑒𝑤 as a function of structural 

period, coefficients of friction, and mass ratios for a given seismic hazard level by 

Non-Linear Regression (NLR). Since, 𝑇𝑛𝑒𝑤  generally, is less than 𝑇𝑟𝑖𝑔𝑖𝑑  and more 

than 𝑇𝑝, the calculation of 𝑇𝑛𝑒𝑤  is essential for the design of structures. 

The limitations of the proposed approach are as follows: 

 This particular study is limited to a linear elastic SDOF primary structure. The 

proposed design equations can be applied to a simple structure within the elastic 

range. For the real-life response, the proposed model can be modified by 

incorporating the yielding in the primary structure. 

 The sliding NSCs are limited to squat blocks so that they show only sliding 

phenomena without any rocking failure. 

 The multiple side-by-side sliding NSCs were considered with no collision between 

them. However, in reality, there might be a chance of collision of multiple blocks. 

 The effect of the stack of sliding NSCs on the response of the structure is limited 

to a two-level stack. It should be noted that, the mathematical formulation is for a 

stack of n bodies. 

6.2.2.3   Damping Effect of Sliding NSCs 

The amount of seismic energy dissipation in the structure decides the damping associated 

with that structure. The sliding NSCs can reduce the seismic response of the structure by 

dissipating the seismic energy due to the slide effect. This energy dissipation due to the 
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slide effect adds an additional equivalent damping ratio to the structure. In this study, an 

attempt has been made to determine the additional damping ratio added to the structure by 

the sliding live load objects. Based on the trends of analysis results obtained, the following 

conclusions were drawn: 

 The additional damping ratio of a structure due to the slide effect was reduced with 

an increase in the coefficient of friction irrespective of the mass ratio in both stiff 

and flexible structures. 

 The additional damping ratio added to the structure due to slide effect was more for 

lower coefficients of friction and higher mass ratios for both stiff and flexible 

structures. For a flexible structure considered in this study, the additional damping 

ratio was negligible for 𝜇 ≥ 0.3. For a given coefficient of friction and mass ratio, 

the additional damping ratio was more in stiff structures compared to flexible 

structures. 

 Additional damping ratio in the structure due to slide effect was observed to 

decrease with an increase in the damping ratio of the structure for both the stiff and 

flexible structures for a given mass ratio and coefficient of friction.  

 The additional damping ratio in the structure due to slide effect was more in the 

case of stacked sliding rigid bodies compared to that of the single sliding rigid body 

if 𝜇2 < 𝜇1. The energy dissipation in the structure is approximately the same when 

the 𝜇2 > 𝜇1 and hence nearly the same additional damping ratio was obtained. 

 

 

 

 



146 
 

6.3 Further Scope of Work 

6.3.1 Combined Model for Structure and Hanging NSC 

 Further study could investigate the seismic behavior of the structure when the non-

linearity of the hanging mass is taken into consideration if it experiences large 

displacements. 

 The proposed design methodology is a step in the direction of developing more 

generalized design equations for actual complex structures. 

 Complex pendulums and their effect on the structure they are attached to is a very 

complex and interesting problem that can be looked at. 

6.3.2 Combined Model for Structure and Multiple Sliding NSCs 

 Further studies can include the non-linearity due to yielding of the structure in the 

developed numerical model. 

 More generalized conclusions can be drawn by looking at the actual complex multi-

story structures behavior with multiple sliding loads (side-by-side and stacks) at 

various story levels. 

 The present study can be a preliminary study for future studies in this aspect, and 

the design equations can be modified for multi-story structures whose seismic 

behavior is affected by the higher modes. 
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Appendices 

Appendix 1: Summary of Design Methodology 

Structure with a Hanging Mass 

To design a structure with a hanging mass, a design equation was developed to determine 

the spectral acceleration of a structure as a function of the structural period (𝑇𝑝), length of 

the attachment of hanging mass (𝐿𝑠), and mass ratio (𝜇𝑆𝑆) in the form of Design 

Acceleration Ratio (DAR). Artificial Neural Network (ANN) produced the following 

design equation:    

 

 

Where,  

 

 

 

 

 

 

 

For given 𝑇𝑝, 𝐿𝑠, and 𝜇𝑆𝑆, 𝐷𝐴𝑅 can be obtained from the above equation (Eq. (A-2)) 

and the modified spectral acceleration (𝑆𝑎 (𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑)) of the structure can be obtained from 

the Eq. (A-10). 

    Design Acceleration ratio, DAR (Normalized) =  𝑡𝑎𝑛ℎ(𝑥) (A-1) 

𝐷𝐴𝑅 = 0.1985 ∗ 𝑡𝑎𝑛ℎ(𝑥) + 0.8015 (A-2) 

𝑥 =  2.198 ∗ 𝑡𝑎𝑛ℎ(𝑎) + 1.686 ∗ 𝑡𝑎𝑛ℎ(𝑏) − 1.667 ∗ 𝑡𝑎𝑛ℎ(𝑐)
+ 1.284 ∗ 𝑡𝑎𝑛ℎ(𝑑) + 1.725 ∗ 𝑡𝑎𝑛ℎ(𝑒) − 8.766
∗ 𝑡𝑎𝑛ℎ(𝑓)  +  9.726 

(A-3) 

𝑎 =  −0.18646 ∗ µ𝑆𝑆 − 10.7564 ∗ 𝑇𝑝 + 0.28478 ∗ 𝐿𝑠 − 8.0831 (A-4) 

𝑏 =  0.02614 ∗ µ𝑆𝑆 − 11.2887 ∗ 𝑇𝑝 − 14.24345 ∗ 𝐿𝑠 + 11.7805 (A-5) 

 

𝑐 =  −0.06059 ∗ µ𝑆𝑆 + 19.75239 ∗ 𝑇𝑝 − 27.8321 ∗ 𝐿𝑠 + 7.8449 (A-6) 

𝑑 =  0.659397 ∗ µ𝑆𝑆 + 4.938094 ∗ 𝑇𝑝 + 0.03036 ∗ 𝐿𝑠 − 4.5174 (A-7) 

𝑒 =  0.01072 ∗ µ𝑆𝑆 + 54.37749 ∗ 𝑇𝑝 − 13.0071 ∗ 𝐿𝑠 + 27.6945 (A-8) 

𝑓 =  0.456921 ∗ µ𝑆𝑆 − 0.01439 ∗ 𝑇𝑝 − 0.005621 ∗ 𝐿𝑠 + 1.5647 (A-9) 
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𝑆𝑎 (𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑) =  𝐷𝐴𝑅 ∗ 𝑆𝑎 (𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙) (A-10) 

Example design problem 

A simple example calculation has been provided to explain the process of Design 

Acceleration Ratio (DAR) calculation using the developed equations. A simple one-story 

primary structure with a flexible secondary system (as shown in Fig. 3.4) is to be designed 

for the Zone III and V hard soil design spectra shown in Fig. 3.23. The structural period 

(𝑇𝑝) of the primary structure is chosen as 0.5 sec. The mass ratio (µ𝑆𝑆) of a secondary 

system is chosen as 0.5. The effective length of the attachment (𝐿𝑠) is taken as 0.5 m. 

Predict the spectral acceleration of the PS with an FSS using ANN and NLR based design 

equations. 

Solution: 

Given data: 𝑇𝑝 = 0.5 sec; µ𝑆𝑆 = 0.5; 𝐿𝑠 = 0.5 m and the design spectra. 

Spectral acceleration by ANN: 

Step 1: Normalize the given input parameters in the range of [-1, 1] using Eq. 3.24 and 

limits of the input parameters given in Table 3.12. 

Step 2: Substitute the normalized data into Eqs. (A-4)-(A-9) and solve for a, b, c, d, e 

and f. 

Step 3: Calculate the value of 𝑥 from Eq. (A-3) using the values of a, b, c, d, e and f 

obtained in Step 2. 

Step 4: Now, calculate the normalized DAR from Eq. (A-1) by substituting the value 

of 𝑥 obtained in Step 3. 

Step 5: Calculate the de-normalized value of DAR from obtained normalized value 

(Step 4) from Eq. (A-2). 
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Thus, Design Acceleration Ratio (DAR) calculated by ANN is 0.71. By using the obtained 

DAR value, the spectral acceleration of the PS with FSS can be calculated by using Eq. 

(A-10).  

Structure with Multiple Sliding Bodies 

The modified structural period (𝑇𝑛𝑒𝑤) of the primary structure with multiple sliding bodies 

was determined for the two Indian seismic hazard levels consistent with the medium (Zone 

III) and highest (Zone V) conditions. The multiple sliding bodies can be side-by-side 

resting and one over the other in the form of stacks. 

Side-by-Side resting sliding bodies: 

For Medium Seismic Hazard Zone: 

𝑇𝑛𝑒𝑤 = ((−3.613 ∗ 𝑇𝑝) − (0.876𝑠 ∗ 𝜇1) + (0.041𝑠 ∗ 𝜇2) − (4.241𝑠 ∗ 𝛼1) −

(4.188𝑠 ∗ 𝛼2)) + 0.782𝑠 ∗ 𝑒
(

(
0.053

𝑠
∗𝑇𝑝)+(0.014∗𝜇1)+(0.002∗𝜇2)

+(0.053∗𝛼1)+(0.052∗𝛼2)+4.588
)

− 76.889𝑠  

(A-11) 

  

For Highest Seismic Hazard Zone: 

𝑇𝑛𝑒𝑤 = ((−6.388 ∗ 𝑇𝑝) − (7.589𝑠 ∗ 𝜇1) − (5.236𝑠 ∗ 𝜇2) − (5.965𝑠 ∗ 𝛼1) −

(5.309𝑠 ∗ 𝛼2)) + 6.365𝑠 ∗ 𝑒
(

(
0.0443

𝑠
∗𝑇𝑝)+(0.047∗𝜇1)+(0.033∗𝜇2)

+(0.036∗𝛼1)+(0.032∗𝛼2)+3.21
)

− 157.67𝑠  

(A-12) 

Where, 𝜇1 and 𝜇2 are the coefficients of friction at the sliding bodies-structure interface, 

𝛼1 and 𝛼2 are the mass ratios of the sliding bodies. 

 Design Problem  

An example design calculation has been shown using the equations A-11 and A-12. A 

single degree of freedom system (SDOF) as a primary structure (PS) supports sliding 

secondary blocks (SBs), as shown in Fig. 40. The original structural period and mass of the 
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PS are chosen as 0.7 s and 200 kg, respectively. The coefficient of friction between PS and 

SB1 is assumed as 0.4. The frictional coefficient between PS and SB2 is taken as 0.2. The 

mass ratios of SBs (𝛼1 and 𝛼2) are chosen as 1 and 0.4, respectively.  Ground excitations 

are applied to the PS with SBs that are spectrum compatible with Zone III, and Zone V hard 

soil IS 1893:2016 spectrum. Assuming that there is no collision between the SBs. Predict 

the modified structural period of the PS with sliding SBs. 

Solution: 

Given data: 𝑚𝑝 = 200 kg; 𝑇𝑝 = 0.7 sec; 𝜇1 = 0.4; 𝜇2 = 0.2; 𝛼1 = 1;  𝛼2 = 0.4 

The values of the new structural period of the PS (𝑇𝑛𝑒𝑤) obtained from Eq. (A-11) and Eq. 

(A-12) for Seismic zones, III and V are 1.02 sec and 0.86 sec, respectively. The design 

spectral accelerations of the PS without SBs in Zones III and V for a given 𝑇𝑝 can be 

obtained from Fig. 4.3 and are 0.22g and 0.52g, respectively. Due to the interaction of SBs, 

the structural period increases to 1.02 sec and 0.86 sec in Zones III and V, respectively. 

Thus, the design spectral accelerations of the PS corresponds to 𝑇𝑛𝑒𝑤 in medium, and the 

highest seismic hazard levels are 0.159g and 0.44g, respectively. Therefore, the effective 

mass of the system is 424.65 kg in Zone III and 301.87 kg in Zone V. These parameters 

should be used in the seismic analysis/design of the PS in the respective zone. 

Stacked sliding bodies: 

For Medium seismic hazard zone: 

  𝑇𝑛𝑒𝑤 = ((−4.284 ∗ 𝑇𝑝) − (0.173𝑠 ∗ 𝜇1) + (0.015𝑠 ∗ 𝜇2) − (4.365𝑠 ∗ 𝛼1) −

(4.567𝑠 ∗ 𝛼2)) + 2.022𝑠 ∗ 𝑒
(

(
0.053

𝑠
∗𝑇𝑝)+(0.003∗𝜇1)+(0.002∗𝜇2)

+(0.044∗𝛼1)+(0.045∗𝛼2)+3.873
)

− 97.3𝑠  

(A-13) 

For Highest seismic hazard zone: 
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𝑇𝑛𝑒𝑤 = ((−5.464 ∗ 𝑇𝑝) − (2.268𝑠 ∗ 𝜇1) − (4.451𝑠 ∗ 𝜇2) − (5.064𝑠 ∗ 𝛼1) −

(4.693𝑠 ∗ 𝛼2)) + 2.197𝑠 ∗ 𝑒
(

(
0.052

𝑠
∗𝑇𝑝)+(0.02∗𝜇1)+(0.038∗𝜇2)

+(0.041∗𝛼1)+(0.038∗𝛼2)+3.97
)

− 116.3𝑠  

(A-14) 

Where, 𝜇1 and 𝜇2 are the coefficients of friction at the bottom sliding body-structure 

interface and sliding bodies interface within the stack, respectively. 𝛼1 and 𝛼2 are the mass 

ratios of the sliding bodies. 

Design Problem  

A numerical example has been provided to explain the process of the structural period 

calculation using the developed equations.  

Problem Statement : Find the modified time period (𝑇𝑛𝑒𝑤) for a structure with a natural 

time period of 0.7 sec. and coefficients of friction 𝜇1 = 0.3 and 𝜇2 = 0.1 with mass ratios of 

SBs 𝛼1= 𝛼2 = 1 for Zone III and Zone V seismic hazard levels. The mass of the primary 

structure (𝑚𝑝) is chosen as 200 kg.  

Solution: 

Given data: 𝑚𝑝 = 200 kg;  𝑇𝑝 = 0.7 sec; 𝜇1 = 0.3; 𝜇2 = 0.1; 𝛼1 = 1;  𝛼2 = 1.  

The values of the modified structural period of the PS (𝑇𝑛𝑒𝑤) obtained from Eq. (A-13) and 

Eq. (A-14) for Seismic zones, III and V are 1.14 sec and 0.92 sec, respectively. 

The design spectral accelerations (Sa) of the PS without SBs in Zones III and V for a 

given 𝑇𝑝 can be obtained from Fig. 4.3 and are 0.22g and 0.52g, respectively. Due to the 

interaction of the stack of SBs, the structural period increases to 1.14 sec and 0.92 sec in 

Zones III and V, respectively. Thus, the design spectral accelerations of the PS in medium 

and highest seismic hazard levels are 0.14g and 0.31g, respectively. Therefore, the effective 

mass of the system is 530.44 kg in Zone III and 345.46 kg in Zone V. These parameters 

should be used in the seismic analysis and design of the PS. 
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Appendix 2: Structure with Hanging NSC (SAP 2000 Model) 

 

SDOF structure with Hanging NSC 

 

SDOF structure  
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