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Preface

There has been a great impetus given during the last few years to
the application of mathematical analysis for the solution of technical
problems. This interest in the use of mathematics by the technologist
is a result of the remarkable developments that have appeared in the
various branches of engineering and physics as a result of close col-
laboration of theory and experiment in the research laboratories of
industrial plants and elsewhere.

A half a century ago, engineers regarded the differential and
integral calculus as a mystery beyond the reach of the majority.
However, at present, the engineering student takes the calculus in his
stride. The use of complex quantities in the solution of electrical and
mechanical problems has brought the engineer to at least a superficial
study of the rudiments of the complex variable. Other studies of the
behavior of systems of technical importance have ushered in matrix
algebra, operational methods, the study of orthogonal functions,
partial differential _quations, and other mathematical techniques into
the required mathematical equipment of a person who uses mathe-
matics to solve technical problems of various kinds, such as acoustical,
electrical, aeronautical, mechanical, thermal, etec.

During the past five years, the author has given a course in applied
mathematics at the Graduate School of Engineering of Harvard Uni-
versity. This course is designed to acquaint graduate students in
engineering and physics with the mathematical methods used in solving
technical problems.

By its nature, this course appeals to a group of students of very
diversified interests, and it was found that although many excellent
texts exist, nevertheless most of them are not directly concerned with
actual applications of mathematics to technical problems, or if they
are, they are somewhat too specialized in different fields. Accord-
ingly, the author found it necessary to prepare some mimeographed
lecture notes from which this book has been developed.

Since this text is intended tu illustrate the use of mathematical
analysis in the solution of technical problems, it must be remembered
that lack of space does not permit the inclusion of rigorous proofs for
all the mathematical statements discussed. However, the bibliog-
raphies at the end of each chapter contain references to treatises on
pure mathematics where the reader who desires more rigorous discus-

sions of certain theorems and statements will readily find them.
v
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APPLIED MATHEMATICS FOR ENGINEERS
AND PHYSICISTS

CHAPTER 1
INFINITE SERIES

1. Introduction. This chapter will be devoted to the exposition of
some of the properties of infinite series. Particular attention will
be given to power series. The subject of infinite serics is of extreme
importance in applied mathematics. Infinite scries make possible
the numerical solution of many important physical problems. The
solutions of certain differential equations that occur frequently in
the mathematicat solution of many physical problems are expressed
in terms of infinite series, and a study of the properties of these solu-
tions requires a ! aowledge of the manner in which infinite series may
be manipulated. Hencc it is essential that students of applied science

equire an intelligent understanding of the subject.

In this chapter some of the fundamental notions and concepts of
infinite series will be discussed. The algebra and calculus of series
will be developed, and some of the practical uses of series will be used
as illustrations of .the general principles.

2. Definitions. In this section we shall consider some fundamental
definitions of te subject of infinite series.

Sequence. A sequence is a succession of terms formed according
to some fixed rule or law. For example,

(2.1) 1, 4,9, 16, 25
and
1‘3 x:i
2 ==
(2.2) 7,2 {5 77273

are sequences.
Series. A series is the indicated sum of the terms of a sequence.
That is, from the foregoing sequences we obtain the series

(2.3) 1+4+9+16+25
1
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and
3 4
(2.4) T+ + 15+ a3

If the number of terms is limited, the sequence or series is said to
be finite. If the number of terms is unlimited, the sequence or series
is said to be an infinite sequence or series.

The general term, or nth term, is the expression that indicates the
law of formation of the terms of the series. For example, in the
preceding illustrations the general terms are

nz®
n? and -
n!

where n! is the factorial number given by

(2.5) nl=1:23-...-n—-1)-n
3. The Geometric Series. Consider the series of n terms
3.1) S,=a+a+a24 -+ 4+ ar!?

This series is called the geometric series. A simple expression for
S. may be obtained for the sum S, of the geometric series in the
following manner.

Multiply (3.1) by r. We thus obtain

(3.2) ™Sa = (ar + ar* +ar* 4 - - - + ar)
Let us now subtract (3.1) from (3.2). This gives

3.3) 1Sy — Sa = (ar® — a)

Hence A

(3.4) "qn _ a(l =) a ar®

I=n " aO-=-n (0-=-7n

Now if [r| < 1, then r* decreases in numerical value as n increases

and we write
(3.5) lim =0

n— 0

From (3.4) we then have
(3.6) lim 8, = —

n~— o (1 - T) -

Hence, if [r| < 1, the sum S, of a geometric series approaches a

limit as the number of terms is increased indefinitely. In this case
the series is said to be convergent.

A\



Skc. 5] INFINITE SERIES 3

If |r] > 1, then r will become infinite as n increases indefinitely.
Hence, from (3.4) the sum S, v:ill become infinite. In this case the
series is said to be divergent.

If »r = —1, we encounter an unusual situation. In that case the
geometric series becomes
3.7 “—-a+a—a---

In this case if n is even, the sum is zero. If nis odd, the sumisa. As
n increases indefinitely, the sum does not increase indefinitely and
it does not approach alimit. A series of this sort is called an oscillating
series.

If we place a = 1 and r = } in the general geometric series, we
obtain

(3.8) &=1+%+%+...+ig
and we have
(3.9) lim S, = —y =2

n— 0 1 a3

4. Convergrut and Divergent Series. Let us consider the series
(4.1) Sa=ur+us+us+ - + us

The variable S, denoting the sum of the series is a function of .
If we now allow the number of terms, n, to increase without limit, one
of two things may happen.

Case 1. 8, approaches a limit S indicated by
(4.2) lim S, =8

: n— oo

In this case the infinite series is said to be convergent and to con-
verge to the value S or to have the value S.

Case 1I. In this case S, approaches no limit. The infinite series
is then said to be dive.gent.

For e.ample, the series

14+2+3+4+5+ -
2-2+2—2+4 -

are said to be di rergent.

In applied nathematics, convergent series are of utmost impor-
tance; it is thus necessary to have a means of testing a series for
convergence or divergence.

b. General Theorems. The following theorems whose proofs are
omitted are of importance in the study of the convergence of series.
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TrroreEM I. If 8, is a variable that always increases as n increases
but never exceeds some definite fixed number A, then as n increases
without limit S, will approach a limit S which is not greater than A.

This statement may be illustrated by Fig. 5.1.

The points determined by the values Sy, S,, Ss, ete., approach the

point S where

! !
T T T |

§ & & 8 6 lim S, = 8

n— o
F16. 5.1, -
and 8 is less than or equal to A.

This theorem enables us to establish the convergence of certain
series. For example, let us consider the series

1 1 1
62) It ldggtyggt ot

If we neglect the first term, we may write

1 1 1
(5.3) Sn=1+l*‘j“2"+‘l"_—2“j§+"'+m+"‘

Now let us consider the series defined by

1 1 1
(5.4) U"=l+§+m+."+§;;i+".

Now since the corresponding terms of the series S, are less than
the corresponding terms of the series U, with the exception of the first
two terms, it is obvious that

(5.5) S, < U,

Now the series U, is a geometric series with a = 1 and r = }.
Hence, U, < 2 no matter how large n may be.

It follows therefore that U, is a variable that always increases as
n increases but remains less than 2.  Hence S, approaches a limit as n
becomes infinite, and this limit is less than 2. It is thus apparent
that the series (5.2) is convergent and that its value is less than 3.
It will be shown later that the value of the infinite series (5.2) is the
constant e = 2.71828 . . . the base of the natural logarithm system.

Another fundamental theorem of great importance in testing for
convergence will now be stated.

TaeoreM II. If S, is a variable that always decreases as =
increases but is never less than a certain number B, then as n increases
without limit 8, will approach a limit which is not less than B.

Let us consider the convergent series

(5.6) Sp=wrtustus+ - Fu.+ .-
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for which
(5.7) lim S8, =8

n—r -
Now consider that the points determined by the values S,, S,, S,
ete., are plotted on a directed line. Then these points as n increases
will approach the point determined by S. It is thus evident that
(5.8) lim u, =0
n— w
That is, in & convergen* series, the terms must approach zero as a
limit. If, however, the nth term of a series does not approach zero as n
becomes infinite, we know at once that the series is divergent.
Although (5.8) is a necessary condition for convergence, it is not
sufficient. That is, even if the nth term does approach zero we cannot
state that the series is convergent. Consider the series

1 1 1
(5.9) S,,_1+§+.3.+...+H+...
Here we have
(5.10) lim u, = lim 1o
n—r © n—w N

Therefore (5.8) " : fulfilled. However, we shall prove later that this
series is divergent.

Although the use of the preceding theorems in determining the
convergence or divergence of series is fundamental, we shall now turn
to the development of special tests that are, as a rule, easier to apply
than these theorems.

6. The Comparison Test. In many cases, the question of the con-
vergence or divergence of a given series may be answered by comparing
the given seriev with onc whose character is known.

Let it be required to test the series

(6-1) U=wu +its+us+ - + s 4+

where all tne terms of (6.1) are positive.
Now if a series of positive terms
(6.2) V=o+tstos+ - - Fv,.+ -

already known t> be converg. nt can be found whose terms are never
less than the corresponding terms in the series (6.1), then (6.1) is a
convergent series and its sum does not exceed that of (6.2).

To prov- this statement, let

(6.3) Up=u+us+us+ -+ + + ta
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and

(6.4) Vea=v1i4+0v2s+0v34+ -+ 41,
Since by hypothesis (6.4) is convergent, we have

(6.5) nl_l_)n:o Vo=V

Now since
(6.6) Vo<V and Upn <V,
it follows that
(6.7) U, <V

Therefore by Theorem T of Art. 5, U7, approaches a limit and the

series (6.1) is convergent.
As an example of this test, consider the series

1 1 1
(6.8) U=1+§‘“—’+:§—3+I4+"'
This series can be comparcd with the series
1 1 1 1
(6.9) V—l+§+§§+§+.2_4+ ..

The latter series is a geometric series that is known to be con-
vergent. Now the terms of (6.9) are never less than the corresponding
terms of (6.8). Hence it follows that the series (6.8) is convergent.

Test for Divergence. By the use of the comparison principle, it is
also possible to test a series for divergence. Let
(6.10) U=wtuntust -

be a series of positive terms to be tested which are never less than the
corresponding terms of a series of positive terms

(6.11) W=w +we 4+ w3+ - - -
which is known to be divergent. Then (6.10) is a divergent series.
By the use of this principle, we may prove that the harmonie series
1,1,1 1
(6.12) U-—1+§+§+z+"‘+;"+"
is divergent. This may be done by rewriting (6.12) in the form

613) U=1+4+G+D+G+3+3+D+
G4 )
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Let us now compare this series with the series

(614) W=4+4++G+d '+ G+E+++3)+
(Bat -+

Now the terms of (6.13) are never less than the terms of (6.14).
But the series (6.14) is divergent since the sum of the terms in each
parenthesis is 4; hence the sum of these terms increases without limit
as the number of terms becomes infinite. Hence the series (6.13) is
divergent.

7. Cauchy’s Integral Test. The comparison test requires that at
least a few types of convergent series be known. For the establish-
ment of such types and for the test of many series of positive terms,
Cauchy’s integral test is uscful. This test may be stated in the
following manner. Let

©

(7.1) u1+u2+ua+’-~=2u,.

n=1

be a series of positive terms such that
t

(7.2) Unpr < Un

Now if there exists a positive decreasing function f(n), for n > 1,
such that f(n) = u,, then the

Neer given series converges if the
. integral
F . @3) I=["jm)dn

exists; the series diverges if the
: integral does not exist.

o u—;Luz e S'\ The proof of this test is de-
‘ duced simply from Fig. 7.1. We

may think of each term u, of the

series as representing the urea of a rectangle of base unity and height

f(n). The sum of the arcas of the first n inscribed rectangles is less than

the integral

7.4) jl " () dn
Hence
n+41
(7.5) s an b unt < M fm) dn

Now since f(z) is positive, we have

(7.6) [ ) dn < [y dn =1
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Hence we have

ne o

(1.7) 22 U < ]1 ®fn)ydn = I

And if the integral T exists, the series converges. We also have from
the figure, the relation

(7.8) 513“"> fl”f(n) dn

Hence if the integral does not. exist, the series diverges. As an example
of the application of this test, consider the series

1 1 1 1 1
(7.9) F’+§7’+§7’+ '+m,+"‘—2;;,
n=1
To apply Cauchy’s integral test we let
1
(7.10) Jn) = —
Now we have
1 ) N
© . ni-p ifp=#1
(7.11) 1=/ dn _ (1—p ! P
L log nl:n ifp=1

It is thus seen that I cxists if p > 1 and does not exist if p = 1.
Hence the scries converges if p > 1 and divergesif p = 1. This series
is a very useful one to use in comparison with others.

8. Cauchy’s Ratio Test. In the infinite geometric series

(8.1) S=a+ar+arz+-..+arn+...

the ratio of the consecutive general terms ar” and ar™*! is the common
ratio . We have seen that this series is convergent when |r| < 1 and
divergent for other values. We shall now consider a ratio test that
may be applied to any series. Let

(82) S=u1+uz+u3+~"+u»+un+1+"'

be an infinite series of positive terms.
Consider consecutive general terms u, and wa41, and form the test
ratio.

(8.3) (%f-‘) = test ratio
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Now find the limit of this test ratio when n becomes infinite. Let this
be

(8.4) p = lim

it— o0 n
We then have
I. When p < 1, the series is convergent.
II. When p > 1, the scries is divergent.

1II. When p = 1, the test gives no information.

Proof. 1. When p <1. By the definition of a limit we can
choose n so large, say n = m, that when n = m the ratio (¥ny1/un)
will differ from p by as little as we please and therefore be less than a
proper fraction. Hence

un+1

Umip1 < UnT
(8.5) um+2 < umT2
Um+3 < Umra

1t therefore follows that after the term u. each term of the series
(8.2) is less than the corresponding term of the geometric series

(8.6° (L +r74+724 - - )
But since r < ¢, the series (8.6) and therefore also the series (8.2) is
convergent.

I1. If p > 1, the same line of reasoning as in I shows that the series
is divergent.

II1. Tf p == 1, the test fails. For example, consider the p series
given by (7.9) above. In this case, we have

Y L4 - u"i,l _ _A.ni.___,‘ P _ . _L ?
8.7 Test 1atio = (7" ) = (n T ]) = (1 - +__1.)

and we have

1 »
8.8 = lim (Il ——-~ = (1) =1
(8.8) P n__m( n-—i»l) (€Y)

Hence we have p = | no matter what value p may have. But in
Sec. 7 it was demonstrated that when p > 1 the series converges and
when p < 1 the series diverges. It is thus evident that p can equal

ity both for convergent and divergent series.

We note that for convergence it is not enough that the test ratio
is less than unitv for all values of n. The test requires that the limit
of the test ratio : hall be less tnan unity. For example, in the series

1 1,1 1
(8~9) 1+'2'+§+Z+.=2_ﬁ

n=1
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the test ratio is always less than unity. The limit, however, equals

unity.
9. Alternating Series. A series whose terms are alternately posi-
tive and negative is called an alternating series. Consider the alter-

nating series
9.1) S=wu —us+ us — us + + -+
If each term of the series is numerically less than the one it precedes
and if '
(9.2) lim u, =0

n—

then the series is convergent.
Proof. When n is even, S, may be written in the form

(9.3)  Su= (ur— ug) + (s —wa) + -+ (Un1 — Un)

(9.4) Se=uy — (Uz — u3) — * * * — (Up—g — Un—1) — Un

Each expression in parenthesis is positive. Therefore, when n
increases through even values, (9.3) shows that S, increases and (9.4)
shows that S, is always less than w,. Therefore S, approaches a limit
L. But S,41 also approaches this limit L, since

(9~5) Sﬂ+l = Sn + un-i»l

and

(9.6) Iim %p =0
Nn—> 0

Hence when 7 increases through all integral values, S, — L and the
series is convergent. An important conscquence of this proof is given
in the following statement:

The error made by terminating a convergent alternating serics at
any term does not exceed numerically the value of the first of the
terms discarded.

For example, it will be shown in a later section that the sum of th.
series

9.7 S=1—-%+4—-%4+%+— -+ =In2=.693

to three decimal places. Now the sum of the first 10 terms of the
series (9.7) is .646, and the value of the series differs from this by less
than one-eleventh. .

10. Absolute Convergence. A series is said to be absolutely or
unconditionally convergent when the series formed from it by making
all its terms positive is convergent. Other convergent series are said
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to be conditionally convergent. For example, the series

1 I 1 1
(10.1) R R R
is absolutely convergent since the series
N 1 1 1
(10.2) I+ gitgetgitmt

is ~onvergent. The alternating serics
(10.3) l—d+4—%+4— - =In2

is conditionally convergent since the harmonic series is divergent.

In a conditionally convergent series, it is not always allowable to
change the order of the terms or to group the terms together in paren-
theses in an arbitrary manner. These operations may alter the sum
of such a series, or may change a convergent scries irto a divergent
series, or vice versa. As an example, let us again consider the con-
vergent series

1.1 1 1 1
Wb L=g+3—3+t " *Tamrn @Iy T

The sum of wnis series is equal to the limit of the expression

n= o

. ~ 11
(10.5) 8 = 2‘(2n+1 2n+2)

n=0

Let us write the terms of this series in another way putting two
negative terras after each positive term in the following manner:

1 1 1 1 1 1
(106) Sl=1—*§—z+§—6“g+"‘+m—

1 1
¥z @t

This series converges, and its sum is given by

n= o

1 1 1
(10.7) S=E(2n+1'4n+2"‘4n+4)

n=0

Now from the identity

1 1 1 1 1 1
(10'8) 2n+1—4n+2_4n+4_§(2’n+1 2”‘]"2)
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it is evident that the sum of the series (10.6) is half of the sum of the
series (10.4).

In general, given a scries that is convergent but not absolutely
convergent, it is possible to arrange the terms in such a way that the
new series converges toward any preassigned number 4 whatsoever.

A series with some positive and some negative terms is convergent
if the series deduced from it by making all the signs positive is con-
vergent. The proof of this statement is omitted.

11. Power Series. A series of the form
(11.1) S=a +ax+ax:4+ - +aa*+ - -
where the coeflicients ao, ai, a;, - - - are independent of z, is called
a power series in . A power series in z may converge for all values
of z or for no value of x except z = 0; or it may converge for some
values of z different from 0 and be divergent for other values.

Interval of Convergence. l.et us take the ratio of the (n 4+ 1)th
to the nth term of the power series (11.1). We thus obtain

(11.2) (‘.’refrl_x’i‘) = (1),
: a, ™ a,

Let us consider the case where the coefficients of the series are such
that
(11.3) lim & =

n— « n

where L is a definite number. We thus sce that the test ratio of
Sec. 8 is given by
(11.4) p = zL
By Cauchy'’s ratio test we have two cases.

I. If L = 0, the series (11.1) converges for all values of z since
in this case p = 0.

II. If L is not zero, the series will converge when xL is numerically
less than 1, that is, when z lies in the interval

1
(11.5) ILI <z <

and will diverge for values of = outside this interval. This interval is
called the interval of convergence. The end points of this interval
must be examined separately.

As an example, consider the power series

3 4
(11.6) L L+
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We then have

(12.12)  Sy(x)Ss(x) = sinh z cosh x

T Lo
$+'§I1+T51:5+ .

ploe+ Gy

% sinh 2z

il

I

ll

Sinee the original series converges for all values of i so does the produet
series.
Tuworkm HI.  The Quotient of Two Convergent Series. 1f

=

(12.13) Six) = Y, auz
nw=0

and

(12.14; Sa(a) = Y, bz
n=0

both converge for lr] < r, and if by 5 0.
Then the quotient is represented by the series

S](.Z'v) ((hb" - (lob])
SAZ—G) bo - I 3 Tt
( 'b — @by + @bt — aobobz)
M 5
obtained by dividing the series for Si() by that for Sy(x). 1In this
case no conclusion can he drawn concerning the region of convergence
of the quotient sevies from a knowledge of the regions of convergence of
the series S1(z) and S.ir).
This may be illustrated by considcring the two series

(12.15)

+

. b 1 n—12n—1 .
(12.16) Sy(z) =sinr = x — 3, + I c ((272)_':)! + -
(12.17)  8a(x) = ¢ =1- :’_+_ R Gl Y
A7) Sila) =eosw =1 -5+ 7 2n = 2!
If we now divide 5,(z) by Sz(.E), we have
Si(z) _ sinz _ 2z° C =
(12.18) Six) = cosz " + + 15 + - tan r

Now although the series for sin 2 and cos x converge for all values
of z, the series for tan x is convergent only for x| < x/2.
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TreorkM 1V. Substitution of One Series into Another. Let the
series

(12.19) z=ataytay:+ - tayt+ -
converge for |y| < ry, and let the series
(1220)  y=Dbo+bir+bu+ - - + b+ - -

converge for |x] < r.

Now if |by| < 7y, then we may substitute for y in the first series its
value in terms of x from the second series and thus obtain z as a power
series in z.  This will converge if » is sufficiently small. '

In the special case that the given series for z converges for all
values of y, the series for z in terms of  may then always be found, and
this series will converge for all values of |z] < r..

As an example, let us consider the cxpansion of ¢ as a power
series in z. In this case we have

(12.21) z——c”—1+ + +...+_:/l'+
and

2 4 6
(12.22) y=cusx=1-——g_z+‘_ii_.(li,!+...

In this case, the series (12.21) and (12.22) converge for all values
of r.  We now form the various powers of y and substitute into (12.21).

=l —attdat— )
(12.23) =1 — 24 Frt— - - )
y4=(1__21.2+§_134__ .. )
Hence,
y 22 i )
(12.24) e=1+0—§+ﬂ—~--+
—%(l—x"+£— .. .)_{_
1 ‘3::'2
(o)
;‘;(l-—2x”+ .
U+1+%+"s+u+ D -
GthtEtant -+
Fr+st+as++ )+
Hence,

(12.25) ¥ = ™ = 2H — g + et — - - -
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It should be noted that the coefficients in this series are really
infinite series and the final values twre given are only the approximate
values found by taking the first fow terms of cach series.  This will be
the case if bo 72 0 in (12.20). However, it is sometimes possible 1o
make a preliminary change that simplifies the final result. In the
above case we could write

(12.26) PONT o pleeaz o1t o p(resz=1),
[Ty— { . 'LL: l“,? L
soe=ottutg gt )
where
2 Tt r6
(i2.27) u=(cosx—l)=_é_!+:l_!__m+,”

Raising « to the various required powers and substituting the
result into (12.26), we have

0N T . _'Ef ﬁ”_f__:_sls v e e
(12.28) e —((l 5 + 6 " 70" + )

The coefficients are now exact, and the computation of the suceces-
sive terms is much simpler than by the previous method.
Turonem V. . [ferentiation of a Power Series. 1f

(1229) Six) =a+axr+ax*+ - faa>+ - -
converges for |z| < r, the derivatives of Si(x) may be obtained by

term-by-term: differentiation of the series (12.29) in the form

(12.30) (—I%S'l(x) = a4+ 2ax + © - + nay™ A4 - -

and the series (12.40) is also convergent for jx| < r,
As an example, consider

r 2n--1

. r*, 1f —
(]2.3]) smx:r—g—!-{-:‘s—!— "'+(“1) ](—g’h-":~i-)'+

We ave

d . ‘1'2 z‘
(]2.32) %sxnx-—- ‘~§—'+Z-' - 4+

(_ l)n—-l _(_27,‘ — 2)_.! + .« . e
.= cos T

- Tn this case hoth series converge for all values of r.
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TurorEM VI. Integration of a Power Series. 1f

(12.33) Si@) = Y auan

n={
converges for k| < r, the integral of Si(2) may be found by integrating
the series (12.33) term by term and we have

(12.34) /Sl(,r) dr = 2 @ (:"]“) 7 4 (!

n=0
where C is an arbitrary constant. The new series converges for

lz| < r.
For example, we have

(12_35) ,_1____;]_'_,;2 P 1 — x2 +$4 — e s + (_.,l)n—l:tﬁw—i' + PR
and therefore,
dx PR L
(12‘36) /-i—_-*_—F—T—'?:""E_' +
e xZn—l
(=D =T
= tan~! r

Since the series (12.35) is convergent for |z| < 1, the series for
tan™! r is also convergent in this interval.
TaeoreMm VII. Equality of Power Series. 1f we have

(12.37) ni‘” auzh = "i: baz®
n=() o=

for x < r, then the coefficients of like powers of the two series must be
equal. That is, we must have
(12.38) a, = b, §=0,1,2 3,

It then follows that if a function is expanded in a certain interval
by different methods the series obtained must be identical.

13. Series of Functions and Uniform Convergence. Consider a
series of the form
(13.1) S(z) = uo(z) + ui(z) + -+ + + ua(z) + -

whose terms are continuous functions of a variable z in an interval
(a,b) and which converges for every value of z inside that interval.
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This series does not necessarily represent a continuous function as
one might be tempted to believe. For example, let us consider the
series

(13.2) 8@) =2 + —— b

R
a+ + x’) 1+
Now if z # 0, this series is a geometric progression whose ratio

is 1/(1 4 z?%), and hence the sum of the series is

2 21 2
(13.3) 8@) = — St 1 2)

1_1—1-752

If we call S.(zx) the sum of the first n terms of the series, then we
have

=142

(13.4) S.(0) =0
sirce every term of the series is zero. However, we also have
(13.5) S(0) =

In this example, the function approaches a definite limit as z
approaches zero, but that limit is different from the value of the func-
tion for z = 0.

Since a large number of ‘he functions that occur in mathematics
are defined by series, it has been found necessary to study the properties
of the functions given in the form of a series. The first question
which arises is that of determining whether or not the sum of a given
series is a continuous function of the variable. This has led to the
development of the very important notion of uniform convergence.

A series of the type (13.1) each of whose terms is a function of z
which is defined in an interval (a,b) is said to be uniformly convergent
in that interval if it converges for every value of z between a and b,
and if, corresponding to any arbitrarily preassigned positive mumber
9, a positive integer N, independent of z, can be found such that the
absolute value of the remainder R, of the given series

(13.6) Rn = tny1(t) + Unsa(z) + -

is less than & for every value of n > N and for every value of z that
Hes in the interval (a,b).

The Weiersirass M_Tcst for Uniform Convergence. It would seem
at first very difficult to determine whether or not a given series is
uniformly convergent in a given interval. The following theorem
due to the German mathematician Weierstrass enables us to show
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in many cases that a given series converges uniformly. Let
(13.7) uo(x) + ur(z) + - - -+ ul(x) + - - -

be a series each of whose terms is a continuous function of z in an
interval (a,b), and let

(13.8) My+Mi+Me+ -+ +Ma+ - - -
be a convergent series whose terms are positive constants. Then if
(13.9) |unl < Mo _~

for all values of z in the interval (a,b) and for all values of n, the series
(13.7) converges uniformly in the interval (a,b).
Proof. 1t is evident from (13.9) that

(13.10) ,lu,.+1 + Unt2 + c ot I __<_ Mn+l + Mn+2 + ot

for all values of z between a and b. If n is chosen so large that the
remainder R, of the series (13.8) is less than & for all values of n
greater than N, we shall also have

(1311) lu,‘+1 + Uni2 + st | <

whenever 7 is greater than N for all values of z in the interval (a,b).
As an example, let it be required to examine the series

(13.12) nzysnle ... g
for uniform convergence.
In this case since
(13.13) [sin nz] < 1 for all values of z
we may take
(13.14) I gttt

for the M series. Since the series (13.14) converges, it follows that
the series (13.12) converges uniformly in any interval.

14. Integration and Differentiation of Series. Two theorems con-
cerning the integration and differentiation of uniformly convergent
series will now be stated without proof.

I. Any series of continuous functions that converges uniformly
in an interval (a,b) may be integrated term by term, provided the
limits of integration are finite and lie in the interval (a,b).

II. Any convergent series may be differentiated term by term if
the resulting series converges uniformly.
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For example, the series

sinz |, sin 2r | sin 3z sin nx

(14 8@ =T +FE B T B,

has been shown to be uniformly convergent in any interval and, hence,
defines a continuous function of x, S(x), in that interval.
The term-by-term derivative of (14.1) gives

cos 2r | cos 3 cos nx

3 +___3 +...+_‘_AT+..

In this case wo cannot find the proper M serics to fés (14%) &
uniform convergence since the scries

(14.2) cosz +

4

1 1 1
1+§+§+...+_7_1+...

is divergent. The series (14.2) converges in the interval (0,x). How-
ever, we have no assurance that it converges to the derivative of S(z).
16. Taylor’s Series. We now o=tk t)- o= e o f e -
consider a method by which we may | T
expand a given function f(z) into * x (xo+h)
a power series. This scction will - Fra. 15.1.
be devoted to a derivation of Taylor’s formula and a discussion of
Taylor’s series.
Let us consider

(15.1) L f"““‘ J'@) dz = f(xo + ) — f(z0)

Let us now change the variable of integration from z to ¢ by means
of the equation

(15.2) z=(xo+h) —t
The relation between h and ¢ is made clear by Fig. 15.1.
Introducing this new variable of integration into (15.1), we have

(15.3)

z::o+hf,(z) de = — Aoj.,(xo +h— t) dt = [)"f’(xo + h — l) dt.

We now apply the formula of integration by parts

(15.4) Judy = ur — [vdu,
to (15.3).
We here have
(15.5) u=f(Zo+h—1) dv =dt

du = —f"(xo+ h — t) dt v=1
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Hence,
A , by
(15.6) L Faa+h—Ddt =4 @+h -1 +
[ 1" (zo + h — 1) dt = hf’(xe) + j 4" (zo + h — 1) dt.
Integratmg by parts again, we obtain
Ll 7! 44 b t2 244

after n integrations by parts, we have
270+h h2 ha

(15.8) / J'(@) dz = hf’(wo) + 511" (z0) + §,f"'(:co) + -+
To . .

hn h PAd
T @) + ﬁ Do+ b - 1) du
= f(zo + h) — f(z0)
We may write the last integral of (15.8) in the form

b g 1 [*
(15.9) A - o(t) dt = ?—2-1/0 o) dt = I

Now the integral I may be regarded as representing the area of
the curve t"¢(?) from the point £ = Otot = hy,. If ¢(t) is a continuous
function of ¢, there will be some point such that 0 < ¢, < h for which
we shall have

A h
(15.10) =21 / () dt = ﬂ—‘,?l / dt
n! 0
hn+l
(nh+ 1)!f< (g0 + 6h) 0<o<1
oh t
== |

t=0 t="h

to= Gh

Hence we may write (15.8) in the form

(15.11) (o + b) = f(ze) + —"—,f'(xo) o)+ +

h"f(")( o) + o D (2 4 BR) 0 < 8 < 1
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This is known as Taylor’s formula with the Lagrangian form of the

remainder.
In this derivation of Taylor's formula, it was assumed that f(x)
possesses a continuous nth derivative. The term

(15.12) Rnj1 = (" L “‘“7’ f("+l)(ﬂ"u + 6h)

is called the remainder after (n + 1) terms. It may happen that
f(z) possesses derivatives of all orders and that

(15.13) im Ray =0

n— oo
In that case, we have the convergent infinite series

hf’ (xo) I il €2

n!

(15.14) f(zo + k) = f(x0) +

If we place zo = 0 and & = z in (15.14), we obtain
(15.15) f@ =f0) + TP + 2O 4 21O

This series is called Maclaurir’s series.
As an example, let us obtain the Maclaurin series expansion of the

function f(z) = €.
In this case, we have

(15.16) fO) =1, f@O) =1, ---, [f™0) =1
Hence

. 2 3
(15.17) e==1+1£!+g_!+;7!+. + +

This series is seen to converge for all values of z.
As another example, let it be required to expand the function of
f(z) = cos z into a Maclaurin series. In this case we have

(15.18) f(z) = cos z, fi(z) = — sin z, f'(x) = —cosz
F™(z) = cos (x + %15)

Substituting this into (15.15) we have
z2  z* 28
(15.19) cosx:l—.z_i{-:ﬂ...gi.'...

This series is seen to converge for all values of z.
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The Binomial Series. If we consider the function
(15.20) J@) =1+ )
and expand it in a Maclaurin series in powers of z, we have

f@=n0+2~", @) =nrm-—-1DA+ )"
(15.21) (@) =nn — H(n - 2)( + x)=3
{f"’(ﬂ") =nn—1)n—-2) - (n—r+HA+2)"

On substituting this into (15.15), we have
n(n l)an2 + n(n — ])3(‘n — )zt +

(1522) A +2)"=14nz+

—1 —2 C(n—r 4 D
n(n )n )r! (n—r+ ):r+

This series is convergent if |x| < 1 and divergent when |z| > 1 as
may be seen by applying the ratio test. Fquation (15.22) expresses
the binomial theorem. If n is a positive integer, the series is finite.
We may also write

b
(15.23) (a + b)» = an(1 + 2) iz = (;)
= q* + na™'b + _(.__—1) a™h? 4 - -+
n!an—-rbr

e valid for b] < |qj

16. Symbolic Form of Taylor’s Series. Taylor’s Serics Expansion
of Functions of Two or More Variables. A very useful and convenient
form of Taylor’s expansion may be obtained by the use of the symbolic
operator D defined by

d i o
(16.1) Dz—--d-a-:: D§=d'-;c-2’ o DE=an

By the use of the derivative operator D,, defined by (16.1), we may
write Taylor’s expansion in the form

(16:2) S+ 1) = fzo) + 5 Dofleo) + 5y Do) + - - - +
Y Dafa) + - - -

where

(16.3) DiF(zo) = [g';, F(z)] abz = 70
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We may write (16.2) in the form

_ WD hnD?
(16.4) f(zo+ h) = (l-i— Tt Tt o R )f(xo)
However, if we p]ace z = hD, in (15.17), we obtain
VoDn
(165) e = (1 S )

Hence we may write (16.4) in the symbolic form
(16.6) J@o + B) = <f(z0) .

This form of Taylor’s expansion is compact and easy to remember.
By the use of (16.6) we may deduce the form of Taylor’s expansion
for a function of two or more variables.

Let F(z,y) be a function of the two independent variables z and
¥, and let it have continuous partial derivatives of all orders. Now
if we hold y constant, we have by (16.6)

(16.7) F(z + hy) = F(z,y)
where in this case D7 has the significance
ar

(16.8) fz = oz
since we are holding ¥ constnt.

In the same way, if we hold = constant, we have

(16.9) w‘l" k) == evaIv'(I, y)

where
re 9
(16.10) . - D; = 5
If we operﬁ%‘on (16.7) with ¢*P», we obtain
(16.11) e"”vF(z 4+hy) =Fx+hy+k

= ¢kDveD=F (1)
= Dk (3 3)
We thu-s hatie the important result that
(16.12) F(z + h, y + k) = eWP=HDIF (z,y)
- [1+(hD’f!’“D") L DR

(hD. + kpy) _ ] Fleg)

n'

= oF oF a aI‘
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Equation (16.12) is Taylor’s expansion of a function of two vari-
ables. The symbolic derivation given above is based on the fact
that the operators D. and D, commute with constants and satisfy the
laws of algebra and hence may be treated as if they were algebraic
quantities. This matter will be discussed in greater detail in Chaps.
VI and X.

By the same reasoning, if we have a function F(z,2s,23, * * * T,)
of the n variables (x),%s, - - - z.) that has continuous partial deriva-
tives of all orders, we have

(16.13) F(z1 + hy, 2+ hsy * * * Tn + ha)

= g(hiD1thDyt - - - '“‘“"")I"(x;,a:g, [N $,|)
where
or ar-}—l
r = r D8 —
(16.14) Dz, Fra D D: 3%, 975 ete.

This is Taylor’s expansion of a function of n variables.

17. Evaluation of Integrals by Means of Power Series. In applied
mathematics we frequently encounter definite integrals in which the
indefinite integral cannot be found in closed form. Such integrals as,
for example,

1, 1
ﬁ) sin z2 dz, ﬁ) e dx

and many others are frequently encountered in the investigation of
physical problems. By the use of the power series expansions of the
integrand, we may find the value of these integrals to any desired
accuracy. For example, let us consider the integral

(17.1) . ];1 sin 22dz = I
If we let 2? = u, we have the Maclaurin expansion for u
. ud | ub
(17.2) sxnusu—m.l_m_.
Hence we have
mzt=gr - L8 L
(17.3) sin 2* = 2* — 25 + =7

Hence we have
1 . 1 z8 210
(174) I = /; sin 2?2 dx = /; (x’ =37 + —5-!—)dx APProx.

28 x7 21t \!
= (’3‘ —nt r?:é“o)
= 0,3103

0" 0.3333 — 0,0238 4- 0.0008
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In certain investigations, we encounter the integral
4 du
17.5 F k = TR S 0 < ’O < 1
(17.5) (k) / =
This integral is called an elliptic integral of the first kind.

The integrand of this integral may be expanded by the binomial
theorem in the form

g g k% . 3kt .
(17.6) (1 — k?sin u)‘*=1+—2—sm2u+Tsm4u+ SR

this series is convergent for k¥ < 1 and for any value of u. If we place
u = 7/2, we get the convergent series

(17.7) 1+ E
’ 8 16

Since |sin u| < 1, the terms of the series (17.6) are less than the
corresponding terms of the series (17.7). It follows, therefore, by
Weierstrass’s M test that the series (17.0) is uniformly convergent in
any interval of [sin ] < 1. We may therefore integrate term by
term. The integration is facilitated by the recursion formula

inn—1 —
(17.8) / sin*udy = — 28 :: gos w4 (n - 1) f sin"2 u du

given by No. 263, of Peirce’s tables of integrals. If, in particular,
¢ = 7/2, we have

) /2 du
(17.9) K(k) = L VI—_—W 0 <k<l)

This is the complete elliptic integral of the first kind. The integra-
tion may then be facilitated by Wallis’s formula

*/2
. 1:83:5-...:-(n—Dr
(17.10) Lsm udu = 246 ... ) 2

if » is an even integer (Peirce No. 483).
We then have

(17.11) K——[H—() k4 1 3 k""(;-i 5) kS 4 - ]

This series may be used to compute K for various values of k. If,
for example, k = sin 10°, we have

(17.12) = 7 (1 4 0.00754 + 0.00009 + - - -) = 1.5828
2
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We may sometimes obtain the power series expansion of a function
most readily by the evaluation of an integral.
For example, we have

d 1
17.13 — in—! V) = T
( ) e (sin~! x) Vi
Hence
1714 N /z _du
(17.14) sin~tz = | AT

Now by the binomial theorom, we have

17.15) (@ —wyt =1+ %5+ 2 30 20 ey

This series converges when Iul <1
If we now substitute this into (17.14) and integrate term by term,

we have

_ 1.825  1:3:-527 |
(17.16) smlx—:t+23+2 i5 T g7t

This series converges when [z] < 1.
If we let z = 3, we have

. 1 T _ 1 1-1 }__3_“]
(17.17) 5‘“'(‘2‘) 63t (2)“"2-4-5
or
(17.18) 7 =31415 - - -

18. Approximate Formulas Derived from Maclaurin’s Series. It
frequently happens in applied mathematics that by using a few terms
of the power series by which a function is represented we obtain an
approximate formula that has some degree of accuracy. Such
approximate formulas are of great utility.

For example, by the use of the binomial series we may write down
at once the following approximate formulas valid for small values of z:
(18.1) QA4+2*=0+nr) =14 nx 4 §(n — 1)z2

First approx. Second approx.

I

where the symbol = means approximately equal to. Also we have
(18.2) A+z)"=1—-nx=1—nz+ inmn— 1)z

From the Maclaurin series for the sine, we have
xz

(18.3) sinz =z — '
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We might inquire for what value of z we may use the approximation
(18.4) sinx =z

such that the result is accurate to three decimal places. Since the
Maclaurin series for the sine is an alternating series, we know that if
only the first term is retained the value of the remaining series is
numerically less than the term z3/6. Hence we must have

Ix

(18.5) < 0.0005

so that the result of the approximation shall be valid to three decimal
places. Hence,

(18.6) |z] < /0.003 < 0.1443 radian
This corresponds to
(18.7) lz] < 8.2°

19. Use of Series for the Computation of Functions. In many
cases the series expansion of a function gives a direct means for the
computation of the numerical value of a function for a certain given
value of the argur-ent. In this way, tables of functions may be
computed.

For example, let it be required to compute the value of sin (10°).
This may be done by the use of the Maclaurin series expansion of the
sine.

. 1-5 7
(19.1) s;nx—x 3'+5' 7!+

In this case, £ = 10° = /18 radian.
Hence we have

(19.2) =T (X 3_1_+ _"'_)5._1..__ _71_)7_1_
2) sin 18 =18 ~\ig/ 317 \1g/ 51 “\ig) 71
= 0.1735

Since this is an alternating series, we know that the error introduced
by stopping at this term is less than

T\ 1
18) 9i

As another example, let us consider a series useful in the computa-
tion of logarithms.
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The Maclaurin series expansion of the function In (1 4 z) is
easily shown to be

. 1.2 173 x4
(19.3) ml+a)=s—g+F3—F+ "
If welet x = —z in (19.3), we have
2 @
(19.4) ln(l-—x)——x—?—_g__z__.

Now we have

(19.5) 1n%;3=mu+@-ma—@

=2<x+%x2+%x5+£;+ .« .)

This series converges when |z] < 1.
Now if we let

1
(19.6) z = (m) n>0
we have

1+2z\_(n+1
(19.7) (1 — x) = ( o )
Then |z] < 1 for all values of n % 0. If we substitute this into

(19.5), we have
(19.8) In(n+1) =Ilnn +

1 11 11
2((2n+1)+§(2n+1)3+5(2n+1)5+ ' )

This series converges for all positive values of n and is well adapted
to computation. For example, if we let n = 1, we have

1 1-1 1-1
(19.9) m2_2G+§jﬁ+gjv+“.>
= 0.69315

If we let n = 2, we have

_ 1 1-1 1-1
(19.10) ln3—ln2+2<—5+3_58+m3+ )

= 1.09861

In this way we may compute the natural logarithms of any number.
If we wish the Briggs or common logarithms of numbers written
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log n, we have

_Inn _ Inn
(19.11) log ™ = 151, = 230288
For example,
_In2 069315 _
(19.12) log 2 = 5 10 = 330258 — 0-3010

© 20. Evaluation of a Function Taking on an Indeterminate Form.
a. The Form (0/0). It somectimes happens that we encounter func-
tions of the form (sin z)/z, (1 — cos x)/z?% etc., and we wish to
investigate the limiting value of these functions as the variable takes
on the critical value of the variable. That is, we are given a function
of the form, f(z)/¢(x) such that f(a) = 0 and ¢(a) = 0. The function
is indeterminate when z = a. It is then required to find

(20.1) lim 255

Now we have

/4 77 b2
@02 Y@+ T b?
6(@) + ¢'@b + ¢"(a) 5y + + - -
by Taylor’s series expansion for f(a + b) and ¢(a + b). Now

f(=) fa +b)
(20.3) c m S T i @ T b)

But since by hypothesis f(a) = 0 and ¢(a) = 0, we have from
(20.2) and (20.3)

. f@) _ f'(a)
(20.4) il—-vlnam = ¢ a)

This is known as I.’Hospital’s rule. If f/(a)/¢’(a) is again indeter-
minate, we apply the rulc again. For example,

. sz inz . _1
(20.5) hn:)—————-———- = lim -~ = hmT =3

This form could have also been evaluated by the use of the first
few terms of the Maclaurin expansion for the cosinc, that is, if z is
small, we have

2
(20.8) cosz =1— %
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hence
x2
(20.7) l1—cosz = 5
and we therefore have
. 1 —cosz .x22/2 1
20.8) e

b. The Form (= /x). The indeterminate form (»/®) may be
brought under the form (0/0) by the device of writing the quotient
in the form

0. N CO N V2 1C))
209) 2 0@~ o /M)

Now since by hypothesis ¢(a) = « and f(a) = «, we again have
the form (0/0) and we may then apply L'Hospital’s rule.
For example, consider

. sec3r _ .. 1/secbr
(20.10) zk,r:l/z sec bz x}_,,, /2 1/sec 3z
cos 5z _ .. —5sin 5z

z.l,x,?/z cos 31 ,_i,, /2 —3 sin 3z
= —%

It may be shown that indeterminate forms of the form (« /») may
be brought under the same rule as I’Hospital’s rule for the form
(0/0). The proof of this statement is rather lengthy, but it may be
made plausible by the following heuristic process. Consider

J(=)
(20.11) ;1_121 3G

where f(a) = « and ¢(a) = «. Then we may write the quotient in
the form

i@ 1)
(20.12) lm 5@ = I 175

where this is now of the form (0/0), and hence we may apply L’Hos-
pital’s rule to it. On carrying out the differentiation, we have

@) _ . —¢@)/e%@)
(20.13) Im 5@ ~im —F)Fe)

- {50 7o
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vNow since the limit of a product is equal to the product of the
limits, we have

z—a ¢(x) :c—-»a ¢2\x) z—-»a f'(x) .

And hence,

20.15 tim 23 = fim L&)
(20.15) 200 $@) gy ¢ @)

This is the same rule as that for the evaluation of indeterminate
forms of the form (0/0).

As an example of this rule, consider

(20.16)  lim 22 _ iy 1%
z—0C8€ T 5,0 —csexctnz
— sIn2 — 2
=lim —™% _im =% -0

z—0 TCOST L .0 T

¢. Form0- . 1If afunction f(z) - ¢(x) takes on the indeterminate
form 0+ « for z = a, we may write the given function in the form
J@) _ @)
@011 1@ 9@ = 375@) = Vs
This causes it to take on one of the forms (0/0) or (/) which
we may evaluate by the methods of part a or b above.
For example, consider

In 1z
(20.18) 11:1_13(1} zlnz = il_r_’l}) i / ;_}0 e
=0

d. Form (o — «). It is possible in general to transform the
expression into a fraction that will assume the torm (0/0) or (» /)
for the critical value of the argument.

For example,

(20.19) lim (sec z — tan z) = 1—singz
z—n/2 z—r/2 COST

— lim %087 _
T g2 — SIDT
e. Forms (1=, 0% «?), In general it is possible to transform these
forms to the cases discussed in parts a and b.
Ezample 1
(20.20) lim (cos r)1/=* = 1%
—0

&
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Let
(20.21) u = (cos r)1/*
(20.22)  lim Inu = lim 12(6082) _ y;,, —sin/cose
+ z—0 z—0 x 2—0 2x
= lim = sec’z = -1
z—0 2
Hence
(20.23) lm v = e
z—0
Ezample 2
(20.24) lim z%% = QO
z—0
(20.25) lim 2#°% = lim z*
z—0 z—0
Let
(20.26) U = 2°
(20.27) limInu = lim zlnz = Lim 2%
z—0 z—0 z—0 1/%
= lim /% _
e Vi
Hence
(20.28) lin}) u=e =1
T
Ezample 3
(20.29) lim (1) = o
z—0 \T
Let
1 sin z
(20.30) u = (5)
Hence
(031)  Jim Inu = lim sin < In (%) - im LA
T z z -
Hence
(20.32) lim u =ed =1
z—0
Ezxample 4
(20.33) im (14 21) =1e
% © n

[Crap. I
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Let

(20.34) u = (1 + ;) : ;L =2
(20.35) lim lnw=lim 20 +2)
n—w z—0 z
= lim QA + /A +2) _
:c-»O
Hence
(20.36) lim vu=limu=¢e =¢
n— z—0

The above examples are typical of indeterminate forms that may be
brought under cases a and b by the use of logarithmic transformations.

PROBLEMS
Test the following secries for convergence or divergence:
1 1 1
1. N — ¢ t
\/2: + — f + + T + (convergent)
‘ 1 .
2. I +—\,7§ % + -0+ "_\,‘“/'—, + - (divergent)
1 1 1 1 .
N T2 E SO S . S T (divergent
RV RS V3 gent)
A 1 1 PR ive
A smetams Tama ™t (divergent)
e 11 1 1
Bttt tyEmt (convergent)
For what values of the variable x are the following series convergent?
6. 1l+z+224+224+ - - Ans. -1 <z <1
\7;,;_._4.”3 EATNN Ans. -1 <z <1
2 4
8z = Ans. =1 <z <1
\/_ \ﬁs
9.1+z+§1+§—!+'-° Ans. All values of 2
2 3
%”)0-1—24-;;-2;4"" Ans. -1 <z <1
atz? arz™ 1 1
AL+ 3 + 5 + 10 +... +m+--- a >0, Ans. as:csa

Using the binomial series, find approximately the values of the following
numbers,

12. /88 13. /35 14 16. /630
/30
Verify the following expansions of functions by Maclaurin’s series and deter-
mine for what values of the variable they are convergent:
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16 z* il all val
.ez=1+$+i—!+"'+(;{‘-:—l)‘!+"' ( values)
2 oz !
17.ln(1+a:)-—z—-—2-+—3~——4-+-'- -1<z<1

. _ 1-28 1.3-z5
18. sin 13:——:0:-!—-?—:—5 +-§T5— 4 oo
Verify the following expansions:

rd , 2x6 | 17x7
19. tanx=z+~3~ +T§ +‘§1~g+ L

1 _ L I B ]
20. cosh:c=§(e=+e’)=1+§~!+;1—!+g—!+ cee

2 ! z°
21.]ncos:c-——~2——]—-2-—4.5...

Compute the values of the following functions by substituting directly in their

power series expansion:

22. ¢ = 2.7182
28. tan—1 } = 0.1973
24. cos 10° = 0.9848
26. /¢ = 1.6487
Obtain the following expansions:
26. crcosx=1—2a 4 3z — lzt 4 - - -
cos X 1 1 3 | 49zt
27. VT’j_‘_;:l—'z'z—‘gxz—iz; *-3—8—4- ..

In(+2) 3, 11, 2, ..
B T g Tt T Tt
Using series, find approximately the values of the following integrals:
teoszdr | ,
29. b T +a) 3914
30. /: e*In (1 4 2) dr = 0.0628
—2z2
81. [1 79 o415

0 /1 = 22
32. / ! el dx
0
33. ‘/:) ! e~ cos \Vz dz

84. How many terms of the Maclaurin's series for sin 2 must be taken to give

sin 45° correct to five decimal places?

86. How many terms of the series In (1 4 z) must be taken to give In (1.2)

correct to five decimals?

86. Verify the approximate formula In (10 + z) = 2.303 4 i%

Evaluate each of the following indeterminate forms:

87. lim 2.2 Ans. 0
r—r 0 2I"
. tan 36
88. o—l:?}z tan 6 Ans.
89. lim (.1 _1 Ans. §

z—0 \8In? z -1'5—’
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40. lim zt+lnz
> ® zlnz

i (5t -4 e =3
42. lun 4 tan. = 4
48. lim 1 !

z—0 \8in® z 28
Test the following series for uniform convergence:
cos T cos 3:c cos 5z

'/'“. + + 52 + *
/45, 22 +“m3’”+?“‘55’+ x
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CHAPTER II
COMPLEX NUMBERS

1. Introduction. In this chapter some of the fundamental defini-
tions and operations involving complex numbers will be discussed.
The study of the complex variable will be taken up in Chap. XIX in
detail. Complex numbers are of great importance in applied mathe-
matics. The calculation of the distribution of alternating currents in
electrical circuits, the study of the forced vibrations of a dynamical
system, the study of the variation of temperature in solids, and a host
of other problems of applied mathematics are most easily solved by
the use of complex numbers. Accordingly, the basic definitions and
operations involving complex quantities must be clearly understood.

2. Complex Numbers. A complex number is a quantity of the
form

(2.1) z=uz-+jy

Here z and y are real numbers and j is a unit defined by the equation

(2.2) i=+=1

The number z is called the real part of the complex number, and
the number y is the imaginary part. It is seen that when y = 0, the
complex number becomes a real number, so that the real numbers form
a subclass of the complex numbers. If z = 0, the complex number
becomes a pure imaginary number.

3. Rules for the Manipulation of Complex Numbers. Having
defined complex numbers, it is necessary to state rules for their
manipulation. These two fundamental rules are

a. A complex number z = z + jy is zero when, and only when,
z=0andy = 0.

b. Complex numbers obey the ordinary laws of algebrs with the
addition that j2 = —1,

From these two rules follow the formulas for addition, subtraction,
and multiplication. That is, we have

B.1) 21tz = (214 4y1) £ (Z2+ Jy2) = (@1 £ 22) T (1 £ )
(8.2) 2122 = (21 + jy1) (23 + jya) 3= (2123 — yuy2) + J(@12 + Tay)
8
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The quotient of two numbers, such as

& _ o+

22 T3+ Y

may be most conveniently found by multiplying the dividend and
divisor by 2z — jy;. We thus have

3.3)

21 _ (@1 + Jy) (@ = Jys) _ 2172 + yuya +j (Y1 — z1y2)
22 (32 +gy)(z2 —Jy)) (2 + 4d) (=3 + v3)

It thus appears that the sum, difference, and quotient of two
complex numbers are themselves complex numbers. If two complex
numbers are equal, we have

(3.4)

(3.5) z1 + Jy1 = x3 + jya

then from (3.1), we have

(3.6) (@1 —2) +iy1—y2) =0
Now by postulate a

3.7 1 — x2 = 0, Zy = Ty

N—y2=0, Y=y

We therefore sec that two complex numbers are equal when, and
only when, the real part of one is equal to the real part of the other
and the imaginary part of one is equal to the imaginary part of the

other. .
Two complex numbers that differ only in the sign of their imaginary

parts are called conjugate imaginary. That is,

(3.8) 2=z +jy
and
3.9) 2e9=2x —Jy

are conjugate imaginary. This relation is expressed symbolically
by the notation

(3.10) 6 =2

4. Graphical Representation and Trigonometric Form. Although
complex numbers are essentially algebraic quantities, they may be
given a conveniert geometric interpretation. Let us consider the
point P of the zy plane given by Fig. 4.1.

To the point P corresponds a definite pair of values of z and y, the
coordinates of the point. Therefore to P there may be made to
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correspond the complex number z where
(4.1) z2=2z+jy

In this diagram, the = axis is called the axis of reals since real
numbers are represented by points on it. The y axis is called the
axis of imaginaries. If we introduce polar coor-
dinates, we have

(4.2) Z = r cos 0, y =rsin 0
Then from (4.1), we have
Fia. 4.1. 4.3) z = r(cos 8 + j sin 6)

This is called the polar form of the complex number. The number
7, which is always taken positive, is called the modulus, or the absolute
value of the complex number 2, and is equal to the length of the line
OP. Then

(4.4 ' l2] =r = Vz* + y?

The angle 6 is called the angle or argument of z. Then
.z S
Ve +y? Vi +y?

In Chap. I, it was demonstrated that cos 6 and sin 8 have the follow-
ing Maclaurin expansions:

y sin 0 =

(4.5) cos § =

6* 64 M
(4.6) COS0=1—§T+_T—6—!+..
6t 67

sin 0 =0 = 31“'51 it
"u=1+'ﬁ+§§+§'1+”°

Hence we have

2
4.7 (coso+jsi110)=(1“g‘1+%' )+

J( 31+5!"‘)

6* 36 .
21~ + 7T 5

1+(]9)+£10)+(30)’+(10)‘+_,,
= ¢t

=1+ 40—
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where we have made use of the fact that j2 = —1,j° = —j, j* = 1,
etc. In the same manner, we obtsuin

(4.8) e = cog 6 — jsin §
From (4.7) and (4.8) it follows immediately that
¢ 4 gt . 0i0 — =it
4. = S sing=500
(4.9) cos 0 5 sin 6 %

These formulas show a remarkable relation between the exponential
and trigonometric functions. By the law of multiplication of scries,
it is easy to show that

(4.10) enigm = glrrtad
Hence we have

(4.11) e=tit = g%t = e*(cos y + j sin y)
From (4.10), we also have

(4.12) (c®)n = ¢ind

Hence by (4.7), we cktain

(4.13) (cos 6 + j sin 0)" = (cos n8 + j sin nf)

Equation (4.7) makes it nossible to write a complex number in the
convenient form
(4.14) z = (z + jy) = r(cos 6 + j sin ) = re®

This form of writing complex numbers is very convenicnt when
complex numbers are to be multiplied or
divided. For example,
(4.15) 2122 = (i107) (ree?®)

= 7'17"297.( 61+02)

That is, to multiply vwo complex
numbers, we multiply their moduli to get I, 4.9,
the modulus of the product and add their
angles to get the angle of the product. Division is performed as

follows:

701
21 _TN€7 T ieen

(4.16) = = e T

In this case the moduli are divided and the angles subtracted.
Let us take two complex numbers z; and 2» represented by the
points P, and P,, respectively, as shown in Fig. 4.2.
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It is easy to see from the principle of addition of two complex
numbers that their sum (z; + 2,) is represented by the point P3 found
by constructing a parallelogram on the sides OP; and OP;. From
the figure, it follows that

(417) lzl + Zzl = [zll + lzzl

The equality sign holds when OP, and OP; are in the same straight

line and have equal angles.
b. Powers and Roots. The value of 2" where 7 is a positive integer
may be found by successive multiplication of z by itself. Since

(6.1) z=2z+jy

we can find (z + jy)" by applying the binomial theorem. That is, we
have

9 2= (z+4y)? =2 —y* + zy
2) 2 = (o +u)* = 28 — 3ay* + j(3z% — oY)
A simpler method of raising a complex number to a power is to

use the polar form of 2. We then have

(5.3) 2* = (re’)» = rrein?
If r = 1, we have de Moivre’s theorem
(5.4) (e?®)* = (cos 0 + j sin 6)* = (cos n8 -+ j sin nb)

It must be noted that any multiple of 2r may be added to the
angle 6 without altering z since

(5.5) = r(cos 6 + j sin 8)
= r[cos (8 4 2kr) + j sin (6 + 2kw)]

E— rel'( 0+2kx)

where k is any integer. This is the general form of the complex

number 2.
+ The root z'/», where n is a positive integer, is & number which
raised to the nth power gives z. From the general form of z given by

(5.5), we have - 0420
(5.6) 2\ = rmd(527) = yim [cos (0 +n2k') + j sin (0 * %r)]

n

We obtain n distinct values of z'/* by giving % the values 0, 1,
2, + * + (n — 1) successively. Here r/*is to be taken as the numerical
positive root of the real positive number r. This enables us to solve
the equation

6.7) ‘e = 1
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Here we have

(5.8) © = |Vn

If we write 1 in the general polar form, we have
(5.9) 1 = ¢i(0+2kn)

Hence

[ 2kx
(5.10) 1 = ej(_"_) = cos (2—@) + j sin (Z@’)
n n

wherek = 0,1,2, - - - (n — 1).

It is thus seen that the n roots of unity are spaced around a unit
circle in the complex plane in a symmetric fashion.

6. Exponential and Trigonometric Functions. We define the trigo-
nometric and exponential function for complex values of the argument
z by the Maclaurin series expansions.

2 3
(6.1) e‘=1+Tz_!+%.!+§_!+...
3 5
(6.2) sinz=z-—%-!+?5_!_
22 2t
(6.3) cosz =1~y + 75—

When 2 is real, these become the clementary functions. From
(6.1), we have

(6.4) " =1
(65) . efpnr = elatan)

These are the fundamental properties of the exponential function.
From (6.1), (6.2), and (6.3), we also get

(6.6) e* = cosz + jsinz
(6.7) e = (cos z — j sin 2)
From (6.6) and (6.7), we have
. el — i _ et e
(6.8) sin z = 5 cos 2 = —5——

with the aid of (6.5), we have

sin (21 + 22) = sin 2; cos 23 + c0s 2; 8in 23

(6.9) cos (2, -+ 22) = cos 2; cos 2; — sin 2; sin 23
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If we place z; = z, 22 = jy in the equations, we obtain
(6.10) sin (z 4 jy) = sin z cos jy + cos z sin jy

. eV + eV eV — gV
=sm:c( 5 )+cos:c(ye o) )

= sin z cosh y + j cos z sinh y

. e+ vy eV — ¢V
cosx( 5 ) smz(y 5 )

= ¢o8 « cosh ¥y — j sin z sinh y

In the same way,

(6.11)  cos (z + jy)

We know from elementary trigonometry that
(6.12) sin (z + 2k7) = sin z
cos (z + 2kr) = cos x
where z is a real number and k is an integer. Hence
(6.13) c*tokri = ezl = ¢*cos (2kw) + 7 sin (2kw)] = e
From (6.10) and (6.11), we have
(6.14) sin (z + 2kr) = sin 2z, cos (z + 2kw) = cos 2z

It is thus evident that the exponential function is a periodic func-
tion with the imaginary period 2xj. The sine and cosine are periodic
functions with the real period 2r.

7. The Hyperbolic Functions. The hyperbolic sine and the hyper-
bolic cosine are defined for complex values of their argument by the
equation

(7.1) sinh z = & _2 ¢, coshz=% —;e—‘
From these definitions, we have

12 e p—i2
(7.2) sinh (jz) = "—2ii = jsinz

72 jz
(7.3) cosh (jz) = e—jz—q-_-’- = Cos 2
Also

. €=l — i) c
(7.4) sinh (2) = —g——— = —jsin (52)
) j(is)

(7.5) cosh (2) = e xer ;_ 7 — cos (32)

It is thus apparent that hyperbolic functions are essentially
trigonometric functions. Relations between trigonometric functions
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therefore give rise to relations between hyperbolic functions with
certain differences arising from the presence of the factor j.
For example, since we have

(7.6) sin? jz 4+ cos? jz = 1
we have from (7.4) and (7.5)
(7.7) cosh?z — sinh?z = 1

From the above definitions it is easy to show that

(7.8) ‘ sinh (21 + 22) = sinh 2, cosh 2, + cosh 2, sinh 2,
) cosh (21 + 22) = cosh 2; cosh 2z; + sinh 2, sinh 2,

As a special case of these equations, we have

sinh (z 4+ jy) = sinh z cos y + j cosh z sin y

@9 l cosh (z + jy) = cosh z cos y + j sinh z sin y

These equations enable one to separate the hyperbolic functions
into their real and imaginary parts.
It may be seen from (7.8) that

[ sinh (z + 2krj) = sinh (2)
{ cosh (z + 2kxj) = cos (2)

That is, the hyperbolic sine and the hyperbolic cosine are periodic
functions with the imaginary period 2nj.
8. The Logarithmic Function. By definition, if

(7.10)

8.1) z=¢
then '
8.2) w=1Inz

From this definition, we deduce the following fundamental proper-
ties of the logarithmic function:

(8.3) In (21 22) =Ilnz, 4+ In 2,

(8.4) In (?) =Inz —Inz
2

(8.5) Inzr =7lnz

(8.6) Inl1=0

The logarithm of a complex number may be separated into its real
and imaginary parts in the following manner:

8.7 2 =2+ jy = r(cos 6 + jsin 8) = re®
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Then
(8.8) Inz=In (re®) =Inr+Ine® =Inr 4 50

= —;—ln (z* + y?) + J tan™? (%)

In Eq. (8.8), In 7 is the real logarithm of the positive number 7,
which is found in the usual tables. The logarithm of a real negative
number may now be found. For example, we may find the logarithm
of (—5) as follows:

(8.9) —5 = beir

Hence,

(8.10) In (—=5) =1n 5 + jr = 1.6094 + jr
In particular,

(8.11) In (—1) = jr

It must be noted that the logarithm of a number has an infinite
number of values differing by multiples of 2xj. This may easily be
seen since

(8.12) 2 = ref+2m k=0, +1, +2
Hence,
(8.13) Inz=Inr4+40+2kr) k=0, £1, £2, +3

9. The Inverse Hyperbolic and Trigonometric Functions. The
inverse hyperbolic and trigonometric functions are closely connected
with the logarithmic function.

By definition, if

(9.1) z=sinho = 207

9.2) = sinh~1 2z
From (9.1) we have

9.3) 22 = (v — ¢™)

or

(9.4) e — 2z — 1 =0
If we let

(9.5) Yy = e

Eq. (9.4) becomes
(9.6) y2*=—2zy—-1=0
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and, therefore,

9.7) y=ztVi ¥1=

Hence,

9.8) w=sinh"'z =In (z + V2% + 1)
By definition we have, if

(9.9) z=coshw="1% -;e’w

then

(9.10) w = cosh™'z = In (z £ V2% — 1)

The hyperbolic tangent is defined by

sinhw e — ¢

(9.11) c=tanho = e @ e
and by definition
9.12) o =tanh~1z = S ln G Tz z)

The foregoing equations are true for any complex quantity 2.

The inverse trigonometric functions sin-! 2z, cos™! z, and tan—!z
may also be expressed in terms of logarithms. This may be done in
the same manner as that used above for the hyperbolic functions, we
have, if

(9.13) z=snw= Gl 5_7 )

then '

(9.14) @ = sin~lz = %.ln Gz + VI =7
If

(9.15) z=cosw= ﬁf’—“;-—“f’i)

then

(9.16) w=coslz = %ln (z + V2zF = 1)
If o .

©.17) z=teno = 202 LT

then

@ +jz)]

NP S B o )]
(9.18) w = tan lz_'ﬂln[(l——jz)
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These equations are true for any complex quantity z. The
detailed study of functions of a complex variable in general will be
postponed until Chap. XIX.

PROBLEMS

1. Show that the sum of two conjugate imaginary quantities is real and that
their difference is a pure imaginary. Prove that their product is recal. When will
their quotient be real?

2. Determine all the roots of the equation z* = 2 + 45 and plot them.

8. Find the cube roots of —1 and plot them.

4. Write the polynomial 24 + a* as the product of its linear factors and as the
product of its quadratic factors.

6. Show that ¢® = —1 and ¢™/? = j.

6. Compute ¢+ in the form a + jb, and determine a and b to four places
of decimals.

7. Show that |et| = ¢ and that |¢/% = 1 where z = z + 7 and 6 is real.

8. Find all the possible values of (j)i.

9. Determine all the values of ™.

10. Find all the values of In (2 — j3).
11. Express e in terms of tan z.
12. Find the sum of the geometric progression

re=n
2 eire

re=1

From this sum and the result obtained when z is replaced by (—z), deduce that

r=n
) cosg—cos(n-{—%)z
Sin 1z = — 2
2 sin 3
r=1 2
and
ron . 1 .z
sin (n+§)z —sm§
cos rz = Z
2 sin £
r=] 2
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CHAPTER III

MATHEMATICAL REPRESENTATION OF PERIODIC
PHENOMENA, FOURIER SERIES AND
THE FOURIER INTEGRAL

1. Introduction. In this chapter the mathematical representation
of periodic phenomena will be considered. The use of complex
numbers to represent periodic phenomena will be developed. This
leads naturally to a consideration of the complex form of the Fourier
representation of periodic functions. This form of Fourier series is
extensively used by physicists but not generally used by engineers.-
From the standpoint of utility, the complex form of Fourier series has
marked advantages over the more cumbersome form involving sines
and cosines, It is widely used in the modern literature in studying
the response of electiical circuits and mechanical vibrating systems
to the action of periodic potentials and forces. A brief discussion
of the Fourier integra- is given. The treatment of the Fourier series
and the Fourier integral is heuristic; an account of the rigorous investi-
gations of Dirichlet on the subject belongs in a book on analysis.

2. Simple Harmonic Vibrations. The simplest periodic process
that occurs in nature is described mathemnatically by the sine or the
cosine function. Such processes as the oscillations of a pendulum
through small amplitudes, the vibrations of a tuning fork, and other
similar physical phenomena are of this type. If the process repeats
itself f times a second the function representing the simple oscillation
is either

2.1) u = A sin 2xft or u = A cos 2rft

A is called the amplitude and f the frequency of the vibration. Besides
the frequency f, it is customary to speak of the angular frequency
of the vibration « defined by

2.2) o= 2]

A phenomenon described by a simple sine or cosine function is
called a simple harmonic vibration.
We may simplify the computations involving these functions con-

siderably by using imaginary exponentials instead of trigonometrie
49
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functions. We have from the Euler formula of Chap. II

(2.3) . et = cos wt + j sin wt i=v-1
If we let
(2.4) 7 = Aeivt

then Z represents a complex number whose representative point in the
complex plane describes a circle of radius A with angular velocity w.
The projections on the real and imaginary axes are, respectively,

{x=ReZ=Acoswt’

(2.5) y=ImZ = A sin wt

where the symbol Re means ‘‘the real part of” and Im means the
“imaginary part of.” Since physical calculations deal with real
quantities, the final results of a computation using complex numbers
must be translated into real magnitudes. This may be done simply,
since an equation involving complex numbers means that the real
as well as the imaginary parts satisfy the equation.

It sometimes happens that the square of the amplitude of the
"oscillation is of importance. This may be readily obtained from its
complex representation by multiplying it by its conjugate. That is,
since

(2.6) Z = Ae'—"ot
then
(2.7) Z7 = Aeiwtdeivt = A2

Consider two vibrations of the same frequency but of different
phase § of the form

(2.8) { Uy = Ay cos wt = Re (A,6)

) Uz = A cos (wt + §) = Re (Aqeilettd)
Hence,
2.9 Uy + uz = Re (et + Aqeittd)

We also have

(2.10) Ajeiot + Ageittd) = glat(4; + Agei)
and
(211) (A1 + Azeﬁ) = (A:, -+ A; cos 5) + ]Ai sin &

= Mei
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where
(2.12) M = V/(4; + Az coe 8) + A} sin? &
and
(2.13) ¢ = tan™! (I%&%i—;%)
Hence we have from (2.9)
(2.14) u; + u2 = Re Meitot+d

= M cos (vt + ¢)

The amplitude M of the resulting vibration is given as a third side
of the triangle having the amplitudes 4, and A, as adjacent sides and
0 as exterior angle, as shown in Fig. 2.1.

The difference in phase ¢ between the
A, resultant vibration and wu, is the angle
between the sides M and A; of this tri-

‘

A, angle. It is noted that the construction

Fra. 2.1, in Fig. 2.1 corresponds exactly with the

addition of two complex numbers in the

complex plane. From this consideration, we obtain the following rule:

To obtain the reswuant of two vibrations having equal frequencies
but differing in phase, add the corresponding complex numbers. The
amplitude and phase of the resultant are given by the length and
direction, respectively, of the complex number representing this sum.

This method is most frequently used in electrical engineering and
is sometimes referred to as ‘‘the vector diagram’ because of the
marner in which the quantities are combined. This diagram may be
drawn for any instant of time, but since the phase difference is con-
stant, the entire triungle rotates as a rigid figure with the angular
speed w as time advances. It is therefore possible to choose any
position such as the real axis, for example, for the line of the first
vibration.

If more than two vibrations of the same frequency but of different
phases are to be compounded, we obtain the magnitude and phase
resultant by plotting the individual complex numbers representing
the several vibrations and adding them. ]

3. Representation of More Complicated Periodic Phenomena,
Fourier Series. Let us consider an arbitrary process that is repeated
every T sec. Let this process be represented by

3.1) u = F(f) / |
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Since, by hypothesis, the process repeats itself every T' sec, we have
(3.2) F¢+T)=FQ@

Let us make the proviso that F(¢) is single-valued and finite and
has a finite number of discontinuities and a finite number of maxima
and minima in the interval of one oscillation, 7. Under these condi-
tions, which in the mathematical literature are known as Dirichlet
conditions, the function F({) may be represented over a complete
period and hence from ¢{ = —c to { = + », except at the discon-
tinuities, by a series of simple harmonic functions, the frequencies of
which are integral multiples of the fundamental frequency. Such
series are called Fourier series after their discoverer. For a proof
of the possibility of developing F(t) in a Fourier series under these
very general conditions, the reader is referred to the references at the
end of this chapter. Dirichlet’s treatment of the subject is long and
difficult and has no place in a book on applied mathematics. In his
treatment, the sum of »n terms of the series is taken and it is shown
that when n becomes infinitely great the sum approaches F(t) provided
the above conditions are satisfied. At a discontinuity in F(f), the
value of the series is the mean of the values of F(t) on both sides of the
discontinuity.

The method of determining the coefficients will now be given. It
is most convenient to start from the complex representation and write

(3.3) F(t) = qq + aleiwt + achimt + . e + ancjnwl + e +

a_xe""'" + a_ze—ﬁwt + . . + a_”g'-frwt + PR
_ n—i o0 a”e’.ﬂw‘
Nn=—c0
where w
(3.4) 0=

Since the left member of (3.3) is real, the coefficients of the series
on the right must be such that no imaginary terms occur. To deter-
mine a,, we integrate both sides over one complete period, that is, from
OtoT = 2r/w. We thus obtain

(3.5) L’” “F() dt = /0 ol (-2+ i a,.e"'m) dt

N — ®
ne=te 2n,
= ) an ﬁ) 7 ginot g

where we have assumed term by term integration permissible.
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The integral of the general term is

2'/’9;

1 .
= e (@ = 1) =0

/ 2‘!’/‘0 d 1
K Inwt t = - Inwt
(3.6) 0 ¢ Jnw ¢ 0

if n #% 0.
if n = 0, we have
2r/w

@3.7) fM=&=T

0 w
Hence (3.5) reduces to
(3.8) [T F® dt = arT
or

1 [7
3.9 @ = 7 L F(t)dt = F()

where F(1) denotes the mean value of F({).

To determine the other coefficients, we multiply both sides of (3.3)
by e=™* and integrate as before from ¢ = 0to¢ = T = 2r/w. Again
all terms on the right are equal to zero because of the periodicity
of the imaginary expcuentials except the a, term which contains no
exponential factor. This gives the value T on integration. ‘We then
have

(3.10) ﬁ) T F)e=inet dt = a,T
or
. 1 T
—_— — inwt
(3.11) = /0 F(t)eine de

Equation (3.11) | gives' the coefficient of the general term in the
expression (3.3). The coefficient a, is a special case of (3.11). We
have also from (3.11) the relation

1 T
(3.12) @ = f | F(f)eimt gt
0

We thus see that a, and a_, are conjugate imaginaries, and we have
(3.13) Ay = Gy

The usual real form of the Fourier series may be obtained in the
following manner. Equation (3.3) may be written in the following
form: '
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ne—1 ne= o
(3.14) F@) = 2 aze™t + ay + E aneint
- - -1
”u-l ﬂ" = ®
= Y, G ™ 4 ag+ D, anen
n= o n=1
n= o
=ao+ D, (@™ + a_pe™)
n=1

By using Euler’s relation, this may be written in the form

ne= o

(3.15) F() =ao+ Y, (an+ a_n) cos nwi +
nw=l
ni” jla, — a_,) sin nwt
n=1

If we now let
A
2

(316) An = (an + a——»); Bn = j(a'n - a'—ﬁ)y = Qo
we obtain
ne= n=
3.17) F@) = %q + Z A, cos not + 2 B, sin nwt
n=1 n=1

This"is the usual real form of the Fourier series. By using (3.16)
and (3.11), we obtain the coefficients A, and B, directly in terms of
F(t). We thus obtain

1 [T
(3.18) An = (@ +a-,) = T [) F (1) (¢inut 4 ginat)

= 72; L TF(t) cos (nwt) dt

We also have
[
3.19)  Ba=j(a. —a-.) = 71, ﬁ F()j(eint —. eit) g

- % L " P) sin (not) dt

The Ao/2 term is introduced in the series (3.17) so that Eq. (3.18)
giving the general term A, will be applicable for A, as well. In
either the complex or the real form of Fourier series, the constant term
is always equal to the mean value of the function.

A third form of the Fourier series involving phase angles may be
obtained from (3.17) by letting
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(3.20) A, cos nwt + B, sin nwt = C, cos (nwt — ¢,)
= C, cos nwt cos ¢, +
Ch sin nwt sin ¢,

Equating the coefficients of like cosine and sine terms, we have

(3.21) An = C, cos ¢y, B, = C, sin ¢,

and hence '

(3.22) Co=VIEFE, ¢ = tan‘l%

In this case, the series takes the form
(3.23) Fa) =30+ 2 Co cos (nt — )
nel
or
' Ao . ™

(3.24) F@) = 5 + 2 C, sin (nwt + 5= qb,.)

nm=]

The complex form of the Fourier series has many advantages over
the real form involving sines and cosines. It is much simpler to
perform processes of differentiation and integration with the form
(3.3) than with the rcal forms, and also no harmonic phase angles
appear explicitly in the complex form but are contained in the complex
character of the coefficients.

.~ 4. Examples of Fourier Expansions of Functions. Let it be
required to obtain the Fourier ex- Fo
pansion of the function of Fig. 4.1.

This function is assumed to con- A
tinue in the same fashion in both
directions. The origin of the time Lot -
is arbitrarily chosen as indicated. Fre. 4.1.

The coefficients of the complex Fourier series are given by Eq.
(3.11). We thus have

4.1) a, = E/TF(t)‘f""‘dt =4 g—inut i — 4 ! e—inot g
’ T Jo T T Jr/2

(1]
/@ 2r/w
= %( /; g—inet gt — [ y ginot dt)
A 0

2x/w
il 67-;‘0-_53 e—-imat
TJ”“’( x/w + x/w )
(0 ifn =0, or nis even
==

1A

<
NI~

T

T/2

24 o isodd
nx
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The complex Fourier series expansion of this function is therefore

ne 4
24 ginwt
4.2) FO) =2 2 - n odd
The coefficients of the real Fourier series are given by (3.18).
We thus have
A= (an+ a) =%‘GL"%)=°
(4.3)

. 24 (1 . 1 44
Bn —](an"a—n) =—1l'— '71,+”I;>
Hence the real Fourier series expansion of this function is
Nne= o
(4.4) Py = 2 Y S led n odd .
T n
n=1
It is interesting to determine the character of the Fourier series
expansion of the function of Fig. 4.1 if we had taken the origin of time
at a point ¢ to the right of the origin in Fig. 4.1 where
0
(4.5) to = -
We may obtain the required result from (4.2) if we introduce the
change of variable ‘

(4.6) t=v+ 2
w

where ¢’ is the time measured from the new origin. Substituting this
into (4.2). we obtain

ne= 4 o
S -2_—4 einaeiwt’
@7 F() = 2 2 -z n odd
The coefficient of the general term is now
(4.8) = 1—?}% eind n odd

If 8 = x/2 the origin of time is chosen at the center of the positive
half cycle. In that case we have

(4.9 U = 1%% é"2 n odd
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Hence, in this case we have

(4.10) Ap = (an +ay) = ,%% @5 — o~

= _2_14_ 27 si nw ] = 4_4 1 ZL_E
= mjn IS\ )| T P\
nr

et _24 i -z, _ 44 -
(4.11) B, = j(an — G-n) = v 24e 2 = - cos (—2-) 0

Hence in this we have
ne ©
(4.12) F@) = %_4— 2 -S—IP—%’ﬁ) cos (nwt) n odd
n=1
for the real form of the Fourier expansion of the function of Fig. 4.1.

As a more complicated example of the Fourier series expansion of
a function, let us consider the function defined by Fig. 4.2.

Fid
A| a+ 3 e- @ »4
| 1 1 1{- L 1
[3 z
f‘ '% [, A %
a
t

Fia. 4.2.

This function consists essentially of a series of positive and negative
pulses that have a fundamental period of 7' sec. The time origin has
been chosen so that each pulse comes in the center of a half period.
This choice of origin makes the Fourier series simpler. The duration
of each pulse is denoted by a.

To obtain the general coefficient of the complex Fourier series of
this function, we use the general equation (3.11). We then have

7.8 3r,a
Al [ ity
(4.13) O =75 eimt gf — . e—inwt gt
s T2
where
2r
(4.14) T==

We notice tha,\t'the second integral is identical with the first except
for the limits of integration which are advanced by T/2 = n/w. We
may therefore combine the above integral into a single integral and
obtain
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wd 5T
(4.15) Ap = -§w—— (1 — e‘fﬂ‘l‘) e._,m‘ dt

¥l
wis

Evaluating the integral, we obtain

= w4 (1 _2_7‘;;':')6_1”5 (ejn%a _ e-j"%a)

(4.16)

The factor (1 — e=#*) vanishes for n = 0 and for even values of
n. For odd integral values of n, it is equal to 2. For these values, we

also have

—~jnX ntl
(4.17) e "% =j(—1) 2 n odd
If we let
2a _ wa
(4.18) s=m ==

The parameter § is the ratio of the duration of the pulse a to the
fundamental half period. & is a real number that varies from zero to
unity depending on the relative width of the pulse as compared with
the fundamental half period. If & = 1, we have the funetion of
Fig. 4.1.

With this notation, (4.16) becomes

nt1 .
(4.19) an = j(—1) 7 2ASR0H/D g o4

It is easy to show that if § = 1 this reduces to
24

(4.20) =

as it should.

b. Some Remarks About Convergence of Fourier Series. It
remains to say something about the convergence of Fourier series.
To do this, it is convenient to examine the coefficients of the real form
of the Fourier series. These are given by (3.18) and (3.19) in the
form

(5.1) A, = 52- L " P() cos (net) dt

and
. 2 [T
(5.2) B, = 7 ‘/; F(t) sin (nwt) dt
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From these equations it is evident that the coefficients A, and B,
must diminish indefinitely as n increases because of the more and more
rapid fluctuation in sign of cos (nwi) and sin (nwt) and the consequent
more complete canceling of the various elements of the definite integrals
(5.1) and (5.2).

Stokes has formulated more definite results. The following state-
ment must be understood to refer to a function that satisfies the
Dirichlet conditions, but care is necessary in particular cases to
determine whether discontinuities of F(f) or its derivatives are intro-
duced at the terminal points of the various segments.

a. If F(¢) has a finite number of isolated discontinuities in a period,
the coefficients converge ultimately toward zero like the members
of the sequence

(5.3) Li+t -

b. If F(t) is everywhere continuous while its first derivative F'(f)
has a finite number of isolated discontinuities, the convergence is
ultimately that of the sequence

111
(54) 1, ?9 3—2-7 -4—27 cte

c. If F(t) and F'(t) are continuous while F’/(f) is discontinuous at

isolated points, the sequence of comparison is

111
,§§7§”4—"

d. In general, if F(t) and its derivatives up to the order (n — 1)
are continuous while the nth derivative (in a period) has a finite
number of isolated discontinuities, the convergence is ultimately as

1 1 1
(56) 1, -2-”-:1} ‘3;*_-’_—1) 217-171’

(5.5) 1

The nature of the proof of these statements, wlnch is simple, may
be briefly indicated for the sine series.
If we integrate by parts, we have

(5.7) Ba= / F(¢) sin (nwt) dt
- ~{E@—°— (nwt)] + 1 /TF'(t) cos (nwt) dt
% I (1] ™ Jo

The integrated term is to be calculated separately for each of the
segments lying between the points of discontinuity of F(¢), if there



60 MATHEMATICS FOR ENGINEERS AND PHYSICISTS [Cmae. III

are any that lie in the range extending from ¢ =0 to ¢t = 7. If
there is no discontinuity of F(f) even at the points ¢ = 0 and ¢ = T,
the first term vanishes. If there is a discontinuity, then there is for
all values of n an upper limit to the coefficient of 1/ in the first part
of (5.7). Let us denote this limit by M. The definite integral in the
second term tends ultimately to zero as n increases because of the
fluctuations in the sign of cos (nwt). Hence B, is comparable with
M/n.
If there is no discontinuity in F(f), we have

I
(5.8) B, = s j; F'(t) cos (nwt) dt
If we again integrate by parts, we obtain

(59) B.= [F () sin (’“”)]T S ﬁ " Pty sin (nat) de

W o wwn?

In the integrated term of (5.9) we must take into account the dis-
continuities of F’({) in the interval if there are any. If F'(¢) has
discontinuities, denote by M the upper limit of the coefficient of
1/n2, we then see that B, is ultimately comparable to M /n? since the
second term of (5.9) vanishes because of the fluctuation of sin (nwt).
This outlines the method of proof, and the course of the argument is
apparent.

The preceding statements concerning the convergence of Fourier
series are very useful. We thus know beforehand how well or how
poorly the series will converge. We also have a partial check on the
numerical work in some problems,

Differentiating a Fourier series makes the convergence poorer,
while integrating the series increases its convergence. When a
Fourier series has been differentiated until it converges as 1/n, it
cannot be further differentiated.

6. Effective Values and the Average of a Product. The determi-
nation of the root-mean-square or the effective value of a periodic
function is a common problem in electric-circuit theory and in the
theory of mechanical vibrations. The manner in which this may be
done by the use of the complex Fourier series expansion of the function
will be demonstrated.

Suppose that we have a period function F(f) whose Fourier series
expansion is given by ‘

nm 4

(6.1) Fity = 3, anei

n=—~c
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By definition the root-mean-square or effective value of the func-
tion Fy over a period T is given by

1 [T %r
2 2= [
(6.2) Fi T /; F2(t) dt T -
To obtain F?*(t) we use the series expansion (6.1) and obtain
n=+w» re= -4 o
(6.3) FY) = ( > a»ei”u¢) ( > are"'”‘)

n= 4 0 re + ©
2 anarej(n-}'r)wt

ne=s— ® ra= — w0

]

It is necessary to use two different indices in the multiplication
to avoid confusion. Substituting (6.3) into (6.2), we obtain

n=4 o r=4 0

1 (7 .
6.4) Fi = T / 2 2 Aaayef et gy
0

Nem— 0 r=—on

Carrying out term by term integration, we obtain

nm+t o r=d 0

1 2r/w )
(6.5) Fi=7 Z 2 ana, / gitmirat gy
0

fNwm— 0 F=— 0

However, we have

/21/0} P gimot 2x/w 0 if
6.6 jmat Jf = —— =0 ifmis inte,
(6.6) . e T o if m is any integer
=—=1T fm=0
w

It follows, therefore, that all the integrals in (6.5) vanish except
those for which

(6.7) r= —n

and we have

6.8) Fi=1 ji nan T = “E‘aﬁa_,.

This result may be put into a different form by recognizing that
a_, is the conjugate of a.; hence the quantity in the summation sign
is the square of the magnitude of a.. - Since summation over negative
values of n gives the same result as the summation over positive values
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of n, we have
(6.9) F =23 la.* +a}

ne=l
Another problem that occurs frequently in electric-circuit theory
and the theory of mechanical vibrations is the problem of determining
the average value over a period of the product of two periodic func-
tions having the same period. Suppose we have the two periodic func-
tions, having the period T.

F1(t) = 2+ Qneinet 9
(6.10) i T = _w’_r
Fo(t) = 3, beeimt
ro— o
We wish to compute
1 [T
(6.11) P = T ,/o Fi(t)Fy(t) dt

Substituting (6.10) into (6.11) and interchanging the order of sum-
mation and integration, we have

N4 o r-+ue

T
(6.12) P =-;-, 2 E Gnbs / gitnniot gy
0

N — 0 rm—o

This is the same integral that we evaluated in (6.5). The result is:

nm 4 o

(6.13) P= 3% ab.

This is a very concise form for the average of the product.

7. Modulated Vibrations and Beats. A very interesting type of
oscillation occurs in radio telephony. There we encounter ‘‘modu-
lated vibrations.” These are oscillations in which the maximum
amplitude itself is a periodic function of the time. The amplitude
changes slowly compared with the frequency of the actual vibration.
The latter vibration is called the * carrier wave’’ and has a frequency
of the order of 10® cycles/sec., while the frequency of modulation is
the frequency of the radiated tone and is of the order of 1000 cycles/sec.
This type of oscillation may be represented by the equation

(7.1) u = A (1 + K 5in wyt) sin wqt wg > > wy
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- By a familiar trigonometric formula, this may be written in the
form

(7.2) u = Asinwgt — 425 cos (w2 + wy)t + »Aéﬁ cos (w2 — )t

This signifies the combination of two vibrations of equal amplitude
and having frequencies of (w: + w:) and (w2 — w;) which are very
close together. In practice, this type of vibration may be produced
in either of two ways. One method is to modulate a carrier frequency,
and another is to combine two oscillations that differ very little in
frequency. This latter case is known in the theory of sound as
“beats.” The angular frequency of the beats is (w2 — w;).

Equation (7.1) represents the simplest case of a class of functions
called “almost-periodic.” If, for example, w; and w; are not com-
mensurable, then the function » has no definite period, that is, no
fixed interval T exists such that the value of u is repeated at a time
(T +9).

8. The Propagation of Periodic Disturbances in the Form of Waves.
Let us consider a process that varies as either the real or imaginary
part of the function ’ ‘

8.1) w(ng) = 4¢3

In this case as ¢ (the time) increases the argument of the function
changes. If, however, the coordinate z increases in such a way that
the argument of the exponential function remains constant, that is, if

(8.2) . Q—9=mm.

then the phase of the function u(z,t) is unaltered. We thus see that
(8.1) represents a disturbance that travels along the z axis with a

phase velocity of
dz
(83) zl—t- =7
Now let us consider a given instant of time #. For this value of
" t, we have

z
v,

(8.4) muo=A$@‘)
The value of the function at a given point z, is given at this instant

by ,

(8.5) o u(zyte) = Aei"(" -'; )
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If we now move along the z axis to a new point z; such that the
function at z, resumes its value at z, we have

(8.6) e’"“("’"%!) = J"’("’"?)
or

®8.7) e =

and hence

(8.8) Ry

or

(8.9) gm-w=%
and hence

(8.10) @z —z) =\ = ? =T

The distance A that gives the separation of the successive points of
equal phase is called the “wave length.” 1If f is the frequency of the
oscillation, we have from (8.10)

(8.11) =N =0

that is,

(8.12) Wave length X frequency = velocity of propagation of phase
A process that varies in the form (8.1) is called a ‘“plane wave’’

since u is constant in any plane perpendicular to the direction of

propagation z. The simple plane wave (8.1) is a particular integral

of a partial differential equation that is easily deduced. If u is

differentiated twice with respect to ¢ and twice with respect to z, we

obtain

2 il 1—2%
(8.13) %’-j = —w?4é’ CH)
%u w? | jo(e-Z
Eriali ¢
and hence
% 1 6%

This is called the wave equation in one dimension. It is funda-
mental in the study of many important physical phenomena. A
detailed discussion of the wave equation is given in Chap. XVI.
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9. The Fourier Integral. In this section, we shall consider the
limiting form of the Fourier series as the fundamental period T is
made infinite. We shall see that when this is done the series passes
into an integral. A rigorous derivation of the Fourier integral is
beyond the scope of this discussion and will be found in the works
quoted in the references at the end of this chapter. However, the
heuristic derivation given here shows the general trend of the argu-
ment. We start with the complex Fourier series expansion of the
periodic function F(f)

nwm - o
) 2r
— nwt = a—
9.1) F(t) n_z_ i A’ T »
where the coefficients a, are given by
T
9.2) an = —%/ F(u)emv du
0

Now because of the assumed periodicity of F(f) we can take the
range of integration in (9.2) from —7/2 to +7'/2 instead of from
O toT. We thus have

1 [T . 2r
(9.3) Un = 75 ,/—T/z F(u)e—imeu dy © =75
Substituting this into (9.1), we obtain
T~ 1 [+T72 2rnd ()
(9.4) F() = 2 1 Pae " du
T J-rs
nm— 0

Let us now place ’

1
(95) 'T —4A8
This gives
nem4 o
(9.6) . F(t) = Z As /_-:;';2 F(u)ezni(t—u) As du

ne — o

Now the definite integral ﬁ," #(s) ds is defined as the limit, for
As infinitely small, of the sum

9.7 ‘ Y, é(n As) As
. nwQ
Also, we have .

nw | o

©8) [T e@ds= [° s ds+ ["o(yds= 3, o(nds)as

ne— 0
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From this it follows that as T’ grows beyond all bound the expression
(9.6) passes over into the I'eurier mtegra.l i

(9.9) F() = / +e _Mm(:-u) du /
= / T geint g f F(u)e‘""“ du

The second form of the identity (9.9) shows that the function
F(t) may be expressed by a continuous series of harmonics.

The possibility of such a representation is of great importance
in the analytical treatment of functions that are otherwise not express-
ible by a unified mathematical expression.

The limitations on F(¢) that allow the above formal procedure to
be valid will now be given:

a. F(t) must be a single-valued function of the real variable ¢
throughout the range — o <t < «. It may, however, have a finite
number of finite discontinuities.

b. At a point of discontinuity £, the function will be given the
mean value

F(to) = ${F(to + 0) + F(to — 0)]
¢. The integral f |F(t)] dt must exist.

We noted that when we expand a function into a Fourier series in
a certain range then the function is defined

Fo by the series outside this range in a peri-
_‘—IA odic manner. However, by the Fourier

~a Ta integral, we obtain analytical expressions
Fm_.-—Q.;.‘ for discontinuous functions that represent

the function throughout the infinite range
—® <t < 4+ ». The following example will make this clear. Let
us suppose that F'(t) is the single pulse given by Fig. 9.1.

The pulse has a height equal to 4 and begins at { = —a and ends
at{ = a. Hence we have

0 t< —a
(9.10) Ft)y=30  t> a
A —a<t<a ,
Substituting this value of F(f) into (9.9), we obtain §
te .. +a wiew . i
(9.11) . F@O = [17 ewinds [T Agreimdu |
If we let

(0.12) s =y
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we have ‘
A [T (eptho — givt-0) gy
A9.13) FO) =50z [ -

This is the Fourier integral representation of the function (9.10).
Another form of the Fourier integral may be obtained from (9.9) by
using Euler’s relation on the complex exponentials and the fact that
the cosine is an even function and the sine is an odd function of its
argument. We thus obtain the real form of the Fourier integral

(9.14) F() = 2 ﬁ) " ds j_”: F(u) cos 2ms(t — u) du

The Fourier integral is of great importance in the field of electrical
communication and forms the basis of a powerful method for-the
solution of partial differential equations due to Cauchy.

PROBLEMS

1. Show that if F(¢) is an even function, that is, F({) = F(—1), then its real
Fourier series expansion contains no sine terms. .

2. Show that if F(t) is an odd function so that F(—t) = —F(t) then its real
Fourier series expansion contains no cosine terms and no constant term.

8. Expand the fuuction F({) = ki on the interval —T/2 <t < T/2 in a
complex Fourier series. Plot the function defined by the series outside this range.

4. Expand #2in the interval 0 < ¢ < T in a complex and a real Fourier series.

6. Expand the function e¢* in a complex and a real Fourier series in the
interval 0 < ¢t < T.

8. Show that if A is a constant, then in the range 0 <t < T

A=§4-—4(sint+8in3t+8in5t+~--)
T 3 5

7. Show that if F(f) = ¢(~i) for —T/2 <t <0 and F(t) = ¢(f) for
0 <t < T/2 then the real Fourier series for F () contains no sine terms.

8. Show that if F(t) = —¢(—t) for —T/2 <t <0 and F(t) = ¢(t) for
0 <t < T/2 then the real Fourier series for F(f) contains no cosine terms.

9. Show by using the results of Probs. 7 and 8 that a function F(f) may be
expanded in the range 0 < ¢ < T'/2 either in terms of sines alone or in terms of
cosines alone.

10. Expand the function of period 12 defined by the following equations in the
interval —6 <t < 6:

F@¢) =0 for ~-62¢t2 -3
F@) =t +3 for -3 <t20
F{) =3 ~t¢ for0 <tz 3
F{t) =0 for3<i26

Plot the function. '

11. Prove that the numerical value of sin ¢, |sin ¢|, is an even function of
period «, and find the Fourier series that represents it.

12, Find the Fourier series that represents |cos 1.
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18. Show that

sinaa:=25inar sin ¢ __2sin2:c+3sin3z_”.
7 \P—a " 2 _qg T FT— g

14. Show that *

2a sinh ar (_1__ _cosz + cos 2z cos 3z .
- %W T ra T o Fe FgaT

cosh ax =
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CHAPTER IV

LINEAR ALGEY RAIC ¥QUATIONS, DETERMINANTS
AND MATRICES

1. Introduction. This chapter will be devoted to the discussion
of the solution of linear algebraic equations and the related topics
determinants and matrices. These subjects are of extreme importance
in applied mathematics, since a great many physical phenomensa are
expressed in terms of linear differential equations. By appropriate
transformations the solution of a set of linear differential equations
with constant coefficients may be reduced to the solution of a set of
algebraic equations. Such problems as the determination of the
transient behavior of an electrical circuit or the determination of the
amplitudes and modes of oscillation of a dynamical system leads
to the solution of a set of algebraic equations.

It is therefore important that the algebraic processes useful in the
solution and manipuiation of these equations should be known and
clearly understood by the student.

2. Simple Determinants. Before considering the properties of
determinants in general, let us consider the solution of the following
two linear equations:

[ anty + apz, =k

(2'1) a0y + Gz = ke

If we multiply the first equation by a2, and the second by —a;» and
add, we obtain
2.2) . (11822 — @n@12)T1 = k1ass — k2012

The expression (@1162; — @21012) may be represented by the symbol
(35 3T
Q21 (127}

This symbol is called a determinant of the second order. The
solution of (2.2) is

(2.3)

= (Guan - azlau)

I'A Q12

- (k1@as = Koa1s) - I Q22
(311020 — a210p2 au Q12

G 21 Qg

(2.4) z

69
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Similarly, if we multiply the first equa’.on of (2.1) by as; and the
second one by —a; and add, we obtain

‘au ks
_ l@21 ks
(25) Ty = -———-———au e
(23} Q22| N

The convenient expression for the solution of the Eqs. (2.1) in
terms of the determinants is very convenient and may be generalized
to a set of linear equations in » unknowns. We must first consider
the fundamental definitions and rules of operation of determinants
and matrices.

3. Fundamental Definitions. Consider the square array of n?
quantities a;;, where the subscripts 7 and j run from 1 to n, and written
in the form

11 Q2 Q13 Q10|
21 Q22 Q23 Q2|
(3.1) IaI = |31 a3z azz ° ° ° Qgzp
An1 Qn2 Qn3 Qnn

This square array of quantities is a symbolical representation of a
certain homogeneous polynomial of the nth order in the quantities
a;; to be defined later and constructed from the rows and columns
of |a| in a certain manner. This symbolical representation is called
a determinant. The n? quantities a;; are called the “elements” of the
determinant.

In this brief treatment we cannot go into a detailed exposition
of the fundamental theorems concerning the homogeneous polynomial
that the determinant represents; only the essential theorems that
are important to the solution of sets of linear equations will be con-
sidered. Before giving explicit rules concerning the construction of
the homogeneous polynomial from the symbolic array of rows and
columns, it will be necessary to define some terms that are of para-
mount importance in the theory of determinants.

a. Minors. If in the determinant |a| of (3.1) we delete the 7th row
and the jth column and form a determinant from all the elements
remaining, we shall have a new determinant of (n — 1) rows and
columns. This new determinant is defined to be the minor of the
element a;. For example, if |a| is a determinant of the fourth order
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a11 Qiz° Qi Q14

(3 2) I a| = Q21 gy Qag Qo4
31 asg; (2] (27}

(78] ¢ 7] [L7H] Q44

the minor of the element as, is denoted by M, and is given by

a11 a3 Q14
(3.3) Ms; = |on Q23 Q24
41 Q43 Q44

b. Cofactors. The cofactor of an element of a determinant ay is
the minor of that element with a sign attached to it determined by the
numbers ¢ and j which fix the position of a; in the determinant |a].
The sign is chosen by the equation

(3.4) Ay = (=DM

where A;; is the cofactor of the element a; and M;; is the minor of the
element a;.

4. The Laplace Expansion. We come now to a consideration of
what may be regarded as the definition of the homogencous polynomial
of the nth order that the symbolical array of elements of the deter-
minant represents. Let us, for simplicity, first consider the second-
order determinant

@11 238
21 [223]
¢

1) la] =

By definition, this symbolical array represents the second-order
homogeneous polynomial

(4.2) la| = (@11a22 — @21012)

The third-order determinant

211 (3] a3
(4.3) la] = |aa Q22 Q33
@31 A3z Qsg

represents the third-order homogeneous polynomial defined by

.3 3
(4.4) lal = 3, aydy or . Y aydy
' S i=1
where the elements a,; in (4.4) must be taken from a single row or a
single column of a. The A;’s are the cofactors of the corresponding
elements a;; as defined in Sec. 3. As an example of this definition, we
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see that the third-order determinant may be expanded into the proper

third-order homogeneous polynomial that it represents, in the following

manner:;

(121} Q23 @21 Q23 (2231 21

@5)  lal = au a3z Q33 *lan ass Yaa ass

(4.6) |a| = 011(822055 — @32028) — @12(A21033 — Aapaas) +
013(021032 — @31023)

This expansion was obtained by applying the fundamental rule (4.4)
and expanding in terms of the first row. Since one has the alternative
of using any row or any column, it may be seen that (4.3) could be
expanded in six different ways by the fundamental rule (4.4).

It is easy to show that all six ways lead to the same third-order
homogeneous polynomial (4.6). The definition (4.4) may be general-
ized to the nth order determinant (3.1), and this symbol is defined to
represent the nth order homogeneous polynomial given by

n
4.7 la| = 21 a;Ady  or -21 asdy
=
where the a; quantities must be taken from a single row or a single
column. In this case, the cofactors A;; are determinants of the
(n — 1)th order, but they may in turn be expanded by the rule (4.7)
and so on until the result is a homogeneous polynomial ofthe nth
order.
It is easy to demonstrate that, in general,

{m| ifi=k

(4.8) 2oali =10 i<k

i=1

5. Fundamental Properties of Determinants. From the basic
definition (4.7), the following properties of determinants may be
deduced: '

a. If all the elements in a row or in a column are zero, the deter-
minant is equal to zero. This may be seen by expanding in terms of
that row or column, in which case each term of the expansion contains
a factor of zero.

b. If all elements but one in & row or column are zero, the deter-
minant is equal to the product of that element and its cofactor.

- ¢. The value of a determinant is not altered when the rows are
changed to columns and the columns to rows. This may be proved
by developing the determinant by (4.7).

d. The interchange of any two columns or two rows of a deter-
minant changes the sign of the determinant.



Szc. 6] LINEAR ALGEBRAIC EQUATIONS 73

e. If two columns or two rows of a determinant are identical, the
determinant is equal to zero.

f. If all the elements in any column are multiplied by any factor,
the determinant is multiplied by that factor.

g. If each element in any column or any row of a determinant is
expressed as the sum of two quantities, the determinant can be
expressed as the sum of two determinants of the same order.

h. 1t is possible, without changing the value of a determinant to
multiply the elements of any row or any column by the same constant
and add the products to any other row or column. For example,
consider the third-order determinant,

a1y (231 Qa13
(5.1) la] = |a= Q22 Q23

031 Q32 Q33|
Let

Q11 A1z Qig
G21 Q23 Q23
A31 A3z Q3g

Q13 Q12 Q13
Q23 Q22 Qa2
sy Q32 O3

(a11 + mays) a1z ass
(ag1 + mass) a2 asx
(as1 + mass) as1 acs

Since the second determinant is zero because the first and third
columns are identical, we have

(5.3) la| = A

6. The Evaluation of Numerical Determinants. The evaluation of
determinants whose elements are numbers is a task of frequent
occurrence in applied mathematics. This evaluation may be carried
out by a direct application of the fundamental Laplacian expansion
(4.7). 'This process, however, is most laborious for high-order deter-
minants, and the expansion may be more easily effected by the
application of the fundamental properties outlined in Sec. 5 and by
the use of two theorems that will be mentioned in this section.

As an example, let it be required to evaluate the numerical deter-
minant

6.2 A= +m

-1

4

(6.1) o=l
1

s = o
(RS E-W
O 00—

This determinant may be transformed by the use of principle b of
Sec. 5. The procedure is t6 make all elements but one in some row or
column equal to zero. The i:reaence of the factor —1 in the second
column suggests that we multiply the first row by 4 and add it to the
second row, then we multiply the first row by 2 and add it to the third
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row, and finally we add the first row to the fourth row. By h of
Sec. 5, these operations do not change the value of the determinant.

Hence we have

2 —1 1
o o 2 7 [P 2 7

(6.2) la] = =8 17 6
I T N [
5 0 7 6

If we now subtract the elements of the last column from the first
column, we have

2 26 7
(6.3) la|=| 2 17 6
-1 7 6

We now add two times the third row to the first row, and two times
the third row to the second row and obtain

0 40 19
6.4) lal=| 0 31 18 =-— g‘l) ;g
-1 7 6
Now we may subtract the second row from the first row and obtain
9 1
(6.5) lal = =17 gl = —(162 = 31) = —131

This procedure is much shorter than a direct application of the
Laplacian expansion rule.

A Useful Theorem. We now turn to a consideration of a theorem
of great power for evaluating numerical determinants. The method
of evaluation, based on the theorem to be considered, was found most
guccessful at the Mathematical Laboratory of the University of
Edinburgh and was due originally to F. Chio.

To deduce the theorem in question, consider the fourth-order
determinant o

bin b1z bz by
Dot bDaz  bas  ba
by bae  bas  bu
b1 [ bas b

We now notice whether any element is equal to unity. If not, we
prepare the determinant in such a manner that one of the elements is
anity. This may be done by dividing some row or column by a
proper number, say m, that will make one of the elements equal to

(6.6) lo| =
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unity and then placing the number m as a factor outside the deter-
minant. For simplicity, we shall suppose that this has been done and
that, in this case, the element by; is equal to unity.

Now let us divide the various columns of the determinant b by b,
bas, bas, and bas, respectively; then in view of the fact that the element
b2; has been made unity, we kave

by b, b
bar  ba A
S | 1 1 1

6.7 [b] = baibaabasbasbsy bss b bag ™
o1 D82 .
ba1  bas bas
bu  be . bu
bas bag 4 bay

Now if we subtract the elements of the third column from those of the
other columns, we obtain

(6.8)

where

|b| = bnbzzbzabulal

by b1z _ bu
(5; - bm) (b—” bu) (b24 bu)

bs: bss _ bas
(I—);—l - baa) (i)_; baa) (b“ ba;)

by _ b _ b’
(b_zi b“) (bzz b“) (bu b“)
Substituting this value of |a| into (6.8) and multiplying the various
columns by the factors outside, we finally obtain

(11 — bysber) (b12 — bysbas)
(6.10) [b] = (—1)2*%(bsy — baibss) (bss — basbss)
(bsr — bsbas) (baz — basbas)

(6.9) [af = (—1)**

(by — babs))
(bas — baibss)
(?u — basbas)
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The theorem may be formulated by means of the following rule: The
element that has been made unity at the start of the process is called
the pivotal clement. In this case it is the element bs;.  The rule says:

The row and column intersecting in the pivotal element of the
original determinant, say the rth row and the sth column, are deleted;
then every element w is diminished by the product of the elements
which stand where the eliminated row and column are met by per-
pendiculars from » and the whole determinant is multiplied by
(_1)7’4’1'

By the application of this theorem, we reduce the order of the
determinant by one unit. Repeated application of this theorem
reduces the determinant to that of the second order, and then its value
is immediately written down.

Before turning to a consideration of linear algebraic equations and
to the application of the theory of determinants to their solution, a
brief discussion of matrix algebra and the fundamental operations
involving matrices is necessary. In this chapter, the fundamental
definitions and the most important properties of matrices will be
outlined.

7. Definition of a Matrix. By a square matrix a of order n is
meant a system of elements that may be real or complex numbers
arranged in a square formation of n rows and columns. That is,
the symbol [a] stands for the array

an Q12 Qin

Q. a a
(7. 1) [a] = 21 22 2n

a..i“ 2 7%] Qun

where a;; denotes the element standing in the 7th row and jth column.
The determinant having the same elements as the matrix [a] is denoted
by |a| and is called the determinant of the matrix.

Besides square arrays like (7.1), we shall have occasion to use
rectangular arrays or matrices of m rows and n columns. Such arrays
will be called matrices of order (m.n). Where there is only one row
so that m = 1, the matrix will be termed a vector of the first kind or a
prime. As an example, we have

(72) [a] = [auan R a;,,]

On the other hand, a matrix of a single column of n elements will be
termed a vector of the second kind or a point. To save space it will
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be printed horizontally and not vertically and denoted by a parenthesis
thus:

(7.3) {b} = (bubes + - - ba)

Transposition of Matrices. The accented matrix [a]’ = [a;] ob-
tained by a complete interchange of rows and columns in [a] is
called the transposed matrix of [a]. The 7th row of [a] is identical
with the ¢th column of<[a]’. For vectors, we have

(7.4) [l = {u}  {v} =[], arow

8. Special Matrices. a. Square Mairiz. If the number of rows
and of columns of a matrix are equal to n, then such a matrix is said
to be a square matrix of order n, or simply a matrix of order n.

b. Diagonal Matriz. If all the elements other than those in the
principal diagonal are zero, then the matrix is called a diagonal matrix.

¢. The Unit Matriz. The unit matrix of order n is defined to be the
diagonal matrix of order n which has units for all its diagonal elements.
It is denoted by U, or simply by U when its order is apparent.

d. Symmetricel Matrices. 1If a;; = ay, the matrix [a] is said to be
symmetrical and it is identical to its transposed matrix. That is, if
[a] is symmetrical, then [a]’ = [a].

e. Skew-symmetric Matriz. If a; = —aj;, but the elements ay
are not all zero, then the matrix is called a ‘“‘skew’’ matrix.

If a;; = —aj; and ai; = 0, the matrix is called a ‘““‘skew-symmetric”’
matrix. It may be noted that both symmetrical and skew matrices
are necessarily square.

f. Null Matrices. If a matrix has all its elements equal to zero, it
is called a “‘null”’ matrix and is represented by [0].

9. Equality of Matrices, Addition and Subtraction. It is apparent
from what has been said concerning matrices that a matrix is entirely
different from a determinant. A determinant is a symbolic representa-
tion of a certain homogeneous polynomial formed from the elements
of the determinant as desecribed in Sec. 4. A matrix, on the other
hand, is merely a square or rectangular array of quantities. By
defining certain rules of operation that prescribe the manner in which
these arrays are to be manipulated, a certain algebra may be developed
that has a formal similarity to ordinary algebra but involves certain
operations that are performed on the elements of the matrices, It
is to a consideration of these fundamental rules of operation and
definitions that we now turn.

a. Equality of Matrices. The concept of equality is fundamental
in algebra and is likewise of fundamental importance in matrix algebra.
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In matrix algebra, two matrices [a] and [b] of the same order are
defined to be equal if their corresponding elements are identical, that
is, we have

9.1) [a] = [b]
provided that
(9.2) ai; = by

b. Addition and Subtraction. If [a] and [b] are matrices of the same
order, then the sum of [a] and [b] is defined to be a matrix [c], the
typical element of whichisc; = ai;; 4+ bi;. In other words, by definition

(9.3) [e] = [a] + [b]

provided

(9.4) i = @i + by
In a similar manner we have

(9.5) [a] = [a] — [B]

provided that

(9.6) © gy =0y — Dby

10. Multiplication of Matrices. a. Scalar Multiplication. By defi-
nition, multiplication of a matrix [a] by an ordinary number or scalar
k results in a new matrix b defined by

(10.1) kla] = [0]
where
(10.2) by = kay;

That is, by definition, the multiplication of a matrix by a scalar
quantity yields a new matrix whose elements are obtained by multi-
plying the elements of the original matrix by the scalar multiplier.

- b. Matriz Multiplication. The definition of the operation of
multiplication of matrices by matrices differs in important respects
from ordinary scalar of algebraic multiplication. The rule of multi-
plication is such that two matrices can be multiplied only when the
number of columns of the first is equal to the number of rows of the
second. Matrices that satisfy this condition are termed conformable
matrices. .

Definstion. The product of a matrix [a] by a matrix [b] is defined
by the equation

(10.3) C [alp] =[]
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where
kwp
(10.4) Cij = 2, @iibij
k=1

and the orders of the matrices [a], [b], and [c] are (m.p), (p.n), and
(m.n), respectively. As an example of this definition, let us consider
the multiplication of the matrix

@11 Q12 a3
(10.5) : [a] = |an Q2 Gz
[+ 231 Qas2 G3s

by

b b1a
(10.6) [b] = | bar bas
bs1 bs2

By applying the definition, we obtain

(10.7)
(a1bis + @1zbay + alsbsl) (Gubu + @152z + @15bss)
[al[b] = (@21b11 + @asba1 + @asbar) (@21b12 + @22b22 + @asbsa)
(asibiy + aszbar + a33bs1) (aslblz + aszbaz + @3sbs2)

If the matrices are square and each of order n, then the correspond-
ing relation [a][b] = [c] is true for the determinants of the matrices
la], [b], and [c].

Since matrices are regarded as equal only when they are element
for element identical, it follows that since a row by column rule will, in
general, give different elements from a column by row rule the product
[blla], when it exists, is usually different from [a][b]. Therefore it is
necessary to distinguish between *premultiplication’’ as when [b] is
premultiplied by [a] to yield the product [a][b] and *postmultiplica-
tion”’ as when [b] is postmultiplied by [a] to yield the product [b][a].
If we have the equality

(10.8) [a](b] = [b][a]

the matrices a and b are said to “commute” or to be “permutable.”
The unit matrix U, it may be noted, commutes with any square matrix
of the same order. That is, we have

(10.9) [a]U = Ula] = [q]

¢. Continued Products of Matrices. Except for the noncommuta-
tive law of multiplication (and therefore of division, which is defined
as the inverse operation), all the ordinary laws of algebra apply to
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matrices. Of particular importance is the associative law of continued
products

(10.10) ([al(Bllc]) = [al([b)(c])

which allows one to dispense with brackets and to write [a][b][c]
without ambiguity, since the double summation

) 22 airbrici;
k1

can be carried out in either of the orders indicated.

1t must be noted, however, that the product of a chain of matrices
will only have meaning if the adjacent matrices of the chain are
conformable.

d. Positive Powers of a Square Mairiz. If a square matrix is
multiplied by itself » times, the resultant matrix is defined as [a]".
That is,

(10.11) [a]* =[a] - [a]- - - - - [a] to n factors

11. Matrix Division, the Inverse Matrix. If the determinant |a| of
a square matrix [a] does not vanish, [a] is said to be ‘nonsingular’’ and
possesses a ‘‘reciprocal”’ or inverse matrix [R] such that
(1L1) [al[R]= U
where U is the unit matrix of the same order as [a].

a. The Adjornt Matriz of a Matriz. Let A, denote the cofactor
of the element a,; in the determinant |a| of the matrix [a]. Then the
matrix [A;] is called the “adjoint’’ of the matrix [a]. This matrix
exists whether [a] is singular or not. Now by (i.’g) we have

(11.2) [a)[44] = |a|U

It is thus seen that the product of [a] and its adjoint is a special type
of diagonal matrix called a ‘“scalar matrix.”” Each diagonal element
(= j) is equal to the determinant |a|, and the other elements are
zero,

If |a| # 0, we may divide through by the scalar |a] and hence
obtain at once the required form of [R], the inverse of [a]. From
(11.2) we thus have

(11.3) @%—] =0

Therefore, comparing this with (11.1) we see that

(11.4) (R] = [_]f-%ﬁrl = [g!
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The notation [a]~' is introduced to denote the inverse of [a]. By
actual multiplication, it may be proved that
(11.5) [alla]™* = [a]"*a] = U

so that the name reciprocal and the notation [a]™! is justified.

If a square matrix is nonsingular, it possesses a reciprocal, and
multiplication by the reciprocai is in many ways analogous to division
in ordinary algebra. As an illustration, let it be required to obtain
the inverse of the matrix

@11 ayz Q13
(11.6) [a] = {ax (129 Qg
(1231 221 QA33

Let |a| denote the determinant of [a]. The next step in the process is
to form the transpose of a.

a1 Q21 a3
(11.7) [a] = | @12 az; a3z
@13 Q23 G33

We now replace the elements of [a)’ by their corresponding cofactors
and obtain

(11.8)
(a22a33 — G23032) (1332 — @12033) (@12028 — a13G22)
[4;] = | (a2sa31 — az1ass) (anass — a13as) (@13a21 — @11023)
(a21032 — az9a31) (120351 — @11032) (@n1G22 — @12021)

This inverse [a]! is therefore

(4]

(11.9) i

As has been mentioned, the inverse matrix plays the same role in
matrix algebra that division plays in ordinary algebra. That is, if
we have

(11.10) [a][b] = [c]ld]

where [a] is a nonsingular matrix. Then on premultiplying by [a]~?,
the inverse of [a], we obtain

(1L11) [al"{al[b] = [a]~"[c][d]
or

(11.12) [B] = [a]~*{c]ld]
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b. Negative Powers of a Square Matriz. If [a] is a nonsingular
matrix, then negatjve powers of [a] are defined by raising the inverse
matrix of [a], [a]~? to positive powers. That is

(11.13) [a]™ = ([a] )"

- 12. The Reversal Law in Transposed and Reciprocated Products.
One of the fundamental consequences of the noncommutative law of
matrix multiplication is the ‘“reversal law’’ exemplified in transposing
and reciprocating a continued product of matrices.

a. Transposition. Let [a] be & (p.n) matrix that is, one having
p rows and n columns, and let [b] be an (m.p) matrix. Then the
product [c] = [b][a] is an (m.n) matrix of which the typical element is

»
(12.1) c; = Z biraty;

r=1
When transposed, [a]' and [b]’ become (n.p) and (p.m) matrices; they
are now conformable when multiplied in the order [a)’[b]’. This
product is an (n.m) matrix, which may be readily seen to be the
transposed of [c] since its typical element is

?
(12-2) Cjii = 2 a,,-bjr
ran]

It thus follows that when a matrix product is transposed the order
of the matrices forming the product must be reversed. That is,

(12.3) ([allb])’ = [b)'[a)’
and, similarly,
(12.4) ([al(blle])’ = [c]'[b)'[al, ete.

b. Rectprocation. Let us suppose that in the equation [¢] = [b][a]
the matrices are square and nonsingular. If we premultiply both
sides of the equation by [a]~![b]-! and postmultiply by [c]~?, then we
obtain [a]~1[b]~! = [c]"!. We thus get the rule that

(12.5) [a]=[o]=* = ([b][a])~
or
(12.6) ([a]{B)[eD? = [e]-*[b]"[a]*

. 18. Properties of Diagonal and Unit Matrices. Suppose that [a] is
a square matrix of order.n and [b] is a diagonal matrix, that is, 8 matrix
that has all its elements zero with the exception of the elements in the



Sec. 14] LINEAR ALGEBRAIC EQUATIONS 83

main diagonal, and is of the same order as [a]. Then if [c] = [b][a],
we have

n
(13.1) i = 21 birttej = bisaj
-
since b;, = O unless r = 7.

It is thus seen that premultiplication by a diagonal matrix has the
effect of multiplying every element in any row of a matrix by a con-
stant. It can be similarly shown that postmultiplication by a diagonal
matrix results in the multlphcatlon of every element in any column
of a matrix by a constant. The unit matrix plays the same role in
matrix algebra that the number one does in ordinary scalar algebra.

14. Matrices Partitioned into Submatrices. It is sometimes con-
venient to extend the use of the fundamental laws of combinations
of matrices to the case where a matrix is regarded as constructed from
elements that are submatrices or minor matrices of elements. As an
example, consider

1 9 3
(14.1) la] = 8 [ 4
6 2 7
This can be written in the form
' P
(14.2) © [a] = [ R g]

where:
w=[; 3] @=-[i] ®m-s 2 w-m

In this case, the diagonal submatrices [P] and [S] are square, and the
partitioning is diagonally symmetrical. Let [b] be & square matrix
of the third order that is similarly partitioned

2 9 4

(14.3) '[bl; 3 6:8 ”[Zi gi]

--------
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Then, by addition and multiplication, we have

P+P
(14.4) [a] +[¥] = [ER i R‘,)) §§ 1- 23]
(PP: + QRy) (PQ: + Q8y)
(14.5) [allb] = [(RPI + SRy) (RQi + ssl)]

as may be easily verified.

In each case the resulting matrix is of the same order and is parti-
tioned in the same way as the original matrix factors. As has been
stated in Sec. 10. a rectangular matrix [b] may be premultiplied by
another rectangular matrix [a] provided the two matrices are ‘‘con-
formable,” that is, the number of rows of [b] are equal to the number
of columns of [a]. Now if [a] and [b] are both partitioned into sub-
matrices such that grouping of columns in [a] agreed with the grouping
of rows in [b], it can be shown that the product [a][b] may be obtained
by treating the submatrices as elements and proceeding according
to the multiplication rule.

16. Matrices of Special Types. a. Conjugate Matrices. To the
operations [a]’ and [a]~?, defined by transposition and inversion, may
be added another one. This operation is denoted by [d] and implies
that if the elements of [a] are complex numbers the corresponding
elements of [d] are their respective complex conjugates. The matrix
[a] is called the conjugate of [a].

b. The Associate of [a]l. The transposed conjugate of [a], [d]’ is
called the associate of [a].

c. Symmetric Matriz. If [a] = [a], the matrix [a] is symmetric.

d. Involutory Matriz. If [a] = [a]~!, the matrix [a] is involutory.

e. If [a] = [d], [a] is & real matrix.

f. Orthogonal Matriz. If [a] = ([a])~!, [a] is an orthogonal
matrix.

g. Hermitean Matriz. If [a] = [a]’, [a] is & Hermitean matrix.

h. Unitary Matriz. If [a] = ([a]')~, [a] is unitary.

1. Skew-symmetric Matriz. If [a] = —[a], [a] is skew symmetric.

J- Pure Imaginary. If [a] = —[d], [a] is pure imaginary.

k. Skew Hermitean. 1If [a] = —[d], [a] is skew Hermitean.

16. The Solution of n Linear Equations in n Unknowns. In later
chapters, the methods of the operational calculus and matrix algebra
will be applied to the solution of sets of linear algebraic and operational
equations. The operations involved in the solution of these equations
may be expressed most concisely and elegantly by means of matrix

algebra,
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Suppose we have the set of n linear algebraic equations in n
unknowns:

ev = Zut + Ziyis + + + + 4 Zraln
e = Zaty + Zasis + * + + + Zouta

€n = wit1 + Zuziﬁ + -0+ mein

The quantities ¢;, Z;;, and 7; may be real or complex numbers. If
the relation (16.1) exists between the variables ¢; and 7;, then the set
of variables e; is said to be derived from the set ¢; by a ““linear trans-
formation.” The whole set of Eqs. (16.1) may be represented by the
single matrix equation

(16.2) {e} = [Z]{s}

where {e} and {7} are column matrices whose elements are the variables
¢; and 7;. The square matrix [Z] is called the matrix of the trans-
formation. When [Z] is nonsingular, Eq. (16.2) may be premultiplied
by [Z]! and we obtain

(16.3) [Z]M e} = [Z]72){s} = {3}

We thus have a very convenient explicit solution for the unknowns
(1122 + * * ©,). The elements of the matrix [Z]~! may be calculated
by Eq. (11.4). As a simple example, let us solve the system of Egs.

"(2.1) by using matrix notation. If we introduce the matrices

(16.4) [a] = [Z: Z”] e} = {ZQ} k) = [7’;:}

(16.1)

then Eq. (2.1) may be written in the form
(16.5) lal{z} = {k}

and if [a] is nonsingular, the solution is

R
T2 az1 (223 ks
But by (11.4) we have

(16.7) [““ ‘m]—l ____l_____[ as -an]

123} Q22 (anaza - G21012) | — 021 ai

Hence carrying out the matrix multiplication expressed in (16.6)
we obtain
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= (ksasn = kats)
! (@11022 — @21012)
- (kzan - kldzl)
? (211022 — @21012)

Although the solution of a set of linear equations is very elegantly
and concisely expressed in terms of the inverse matrix of the coeffi-
cients, it frequently happens in practice that it is necessary to solve
for only one or two of the unknowns.

In this case it is frequently more convenient to use Cramer’s rule
to obtain the solution. The proof of Cramer’s rule follows from the
properties of the determinant expressed by Eq. (4.8) and will not
be given. Let us consider the set of n equations in the unknowns

(-’L‘lxz PP x,.)

z
(16.8)

anZy + Q12Zs + ¢ ¢+ G1aZa = Ky
an®i + G223 + ¢ ¢ 4 Gonn = k2

(16.9)
An1Z1 + QnaZz + ¢ 0 0+ GanZn = Ky

Then if the determinant of the system

(16.10) la| =

..........

the system of Egs. (16.9) has a unique solution given by

=D =D = D»
(16.11) z = Tl Z; = al Tn = Ta]

where D, is the determinant formed by replacing the elements
QirQ2r * * * Qnr

of the rth column of |a] by (kiks * + * k), respectively.
For example, let us solve the system

{ x1—2x3+3x;=2

(1612) 2.’81 - 3233 = |
Zit T2t T3 =
We have
1 -2 3
(16.13) . a] = |2 0 -3 =19
1 1 1
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Hence
2 -2 3
3 0 -3
6 1 1 '
Ty = 19 =3
1 2 3
2 3 -3
(16.14) . 1 6 o .y
19
1 -2 2
2 0 3
2y = 1 1. 6 =1
s 19

If it happens that the determinant of the coefficients |a| is zero,
then the investigation of the solutions is more complicated. In such
& case it is of great use to use the notion of rank of a determinant.

If |a| is a determinant of the nth order and it is not zero, then it is
said to be of order n.

If |a| is zero and also every (r 4+ 1) rowed minor formed from |a]
is zero but there exists at least one r-rowed minor that is not zero, then
the determinant |a| is said to be of rank r.

The idea of rank is impurtant in stating the properties of the solu-
tion of » nonhomogeneous linear equations in n» unknowns. The
following various possibilities may arise:

a. If the determinant |a] # 0, there exists a unique solution that is
given by Cramer’s rule, that is, Eq. (16.11).

b. If |a|is ot rank # < mand any of the determinants Dy, Dy, + « - D,
of Eq. (16.11) are of rank greater than r, there is no solution of the
system (16.9).

c. If |a| is of rank r < n and the rank of Dy\D, - - - D, does not
exceed r, then there exists infinitely many sets of solution of the system.

Homogeneous Linear Equations Let us consider the followmg
system of n linear equations in 7 unknowns:

auz1 -+ @1s%2 + 1323 + ¢ ¢ ¢ 4 Q1aTa = 0
(16.18) .ot e e e e e e e
Gn1%1 + Gz + a»ﬂw + Gz =0
This set of equations has the trivial solution
(16.16) 31=33=$;=‘"‘=xn=0

A necessary and sufficient condition that the system (16.15) have a
solution other than the trivial solution (16.16) is that the determinant
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la| of the coefficients must vanish. That is, we must have
(16.17) la] =0

This condition is of extreme importance in obtaining the frequency

equation of oscillating systems.
17. Linear Transformations. Let us suppose that

Y1 = UnTi + U1sTs + * *© * + UiaZn
(17.1) Y2 = UnZi + U2l + ¢ ¢ 4 UzaTa
Yn = UniT1 + UnaZz + * © * + UnaTq

Then the set of variables y is said to be derived from the set z by a
linear transformation. The set of equations may be conveniently
expressed in matrix notation by

(17.2) {y} = [ul{=z}

where {y} and {z} are column matrixed and [u] is a square matrix of
the coefficients (called the transformation matrix). Now let us
suppose that a third set of variables {Z} is derived from the set {y}
by the equation

(17.3) {2} = [l{y}

where [v] is the matrix of the transformation. Substituting the
expression for {y} into (17.3), we obtain

(17.4) {2} = [ollul{=}

Thus the transformation of {z} into {z} may be performed directly
by Eq. (17.4). If {»} and [u] are nonsingular matrices, we may
obtain {z} in terms of {2} by premultiplying (17.4) first by »~! and
then by 4~!. We thus obtain

(17.5) {z} = [u]"[v] {2}

Linear transformations are frequently used in applied mathematics
and may be most conveniently carried out by using matrix algebra.
For example, in electrical engineering when analyzing three-phase
circuits we encounter the set of equations

Ey =7l + Z1oIy + Z1sls
(17.6) Ez = Zz1I1 + Z22I2 + ZZSIJ

Ey = Zyly + Zsoly + Zssls

where the E, quantities are the complex potentials and the I, quantities
are the complex currents of the system while the Z,. and Z,, quantities
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are the complex self- and mutual impedances of the system. We can
write this set of equations in the form

(17.7) (£} = [2]{1}

by introducing suitable matrices.
let the potential and current matrices {E} and {I} be related to
transformed potential and current matrices by the equations

{E} = [Al{E} {E} = [A]"'{E}
(L} = [BI{It  or  {I} = [BI{L}

where [A] and [B] are nonsingular matrices. Substituting this into
(17.7), we obtain

(17.8)

(]

(17.9) {E:} = [AlIZ][BI{I.}
If we let

(17.10) (2] = [Al[Z][B]

then Eq. (17.9) may be written in the form

(17.11) (B = [Z]- {1}

This equation has the same form as (17.7). It frequently happens
that the matrix [Z] has certain symmetry and that it is possible to
choose the matrices [A] and [B] in such a manner that [Z;] will have the

diagonal form

Z1u 0 0
(17.12) [Z]=1{o0 Zoy 0
, . 0 0 Zss

in that case, the set of Eqgs. (17.11) reduces to the set of three inde-
pendent equations

(17-13) Ey = Zgge - I

Ese = Zase ‘ Izt

Symmetrical Components. 1f in, particular, we choose

{Elt = lel'Iu

l1 11 J
(17.14) [Bl=1|1 a? a where @ = ¢?*ir3
1 a a?

= [A]"! = [S§]

We obtain what are known in the electrical engineering literature as
symmetrical components of the potentials-and the currents, respec-
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tively, by the equations

(17.15) {L} = [SI7{I}
{Z:} = [S]"{E}
where
(17.16) [SI-* = 48]
The transformed impedance matrix is given by
(17.17) [2.] = ¥81Z][S]
If the three-phase network is symmetrical, we have
Zy Z Z
(17.18) [Z) =z Z, Z
Z Z Zy
then [Z,] is diagonalized by the transformation in the form
(Zo + 22) 0 0
(17.19)  [Z]=]0 (Zy — Z) 0
0 0 (Zo - 2)
a;nd the various sequence currents and potentials are independent.
PROBLEMS
1. Solve the system of equations
z/2 + y/3 + 2/4 = 12.5 Ans. z =7
2/2 4+ y/4 + 2/5 = 18.5 - y =12
z+y+2z=239 z =20

2. Prove Cramer’s rule for the general case of a system of n equations.
Hint: use the Eq. (4.8).
8. Given the nonsingular matrix [s] defined by

[a] = [s]

where
8rg = a"'(r"l)(l-l) a=e 2_.;.7
n

show that
[s]™* = }[4]

the matrix [S] of (17.14) i is a special case of the above matrix when n = 3. This
matrix is fundamental in the theory of symmetrical oomponents of n-phase
networks,
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4. Show that
1Zo+(n—137] 0 ... 0
sz = 0 @20
0---(Zy—2)

Z ifm=n
where Zn, = { Z, ifm=n
B. Evaluate the determinant.

1 1 1 1

1 2 3 4
A=l 3 6 10~!

1 4 10 20,

8. Prove that if
cosh (a) Z, sinh (a)
[u] = | sinh (a) cosh (a)
[

then

sinh (an)
Z,

for n a negative or positive integer.

cosh (an)

cosh (an) Zy sinh (an)
[ul* =
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CHAPTER V

THE SOLUTION OF TRANSCENDENTAL
AND POLYNOMIAL EQUATIONS

1. Introduction. In applied mathematics the need frequently arises
for solving numerically transcendental or higher degree algebraic
equations; for example, in determining the natural frequencies of
oscillation of a uniform prismatic bar built in at one end and the other
end supported, it is necessary to solve the transcendental equation

(1.1) tan 6 = tanh ¢

Transcendental equations occur very frequently in determining the
natural frequencies and modes of oscillation of electrical and mechan-
ical systems. Higher degree polynomial equations also arise fre-
quently in practice. Algebraic formulas exist for the solution of the
general quadratic, cubic, and quartic equations with literal coefficients.
However, no formulas exist for the solution of a general algebraic
equation with literal coefficients if it is of higher degree than the
fourth. The formulas for the cubic and quartic equations are some-
times laborious to apply to given cases. The importance of being able
to solve numerically equations of this type is very great, and this
chapter will be devoted to a brief discussion of possible methods of
solution.

2. Graphical Solution of Transcendental Equations. As an exam-
ple, let us solve the transcendental equation

(2.1) coszcoshz+1=0

This equation occurs in determining the natural frequencies of
oscillation of a clamped cantilever beam.

Equation (2.1) is satisfied by an infinite number of values of z.
Let us write the equation (2.1) in the form

1
(2.2) C8 T = — —o—
If we plot the curves
' 1
(2.3) V1= " Cosh z
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and
2.4) Y2 = CO8 T

The roots of (2.1) are given by the abscissa of the points of inter-
section of these two curves as shown in Fig. 2.1.

Fia. 2.1.
From the figure, we find the first three roots to be approximately

(2-5) T = 1.87, Tg = -3—2E, s = 5%'
Since

Z— 0 COSh Z

the higher roots are given with satisfactory accuracy by the equation
2.7 2= (r — )7 r=223,4, "
This example illustrates the general principle involved in the

graphical solution of transcendental equations. That is, if we wish
to solve the equation-

(2.8) Fi)=0
we write it in the form
(2.9) F 1(2) =F z(x)
This may usually be done in many ways. We then draw the curves
(2.10) ! 1 = Fi(z)
Y2 = Fa(2)

The real roots of F(z) = 0 are evidently the abscissas of the points
of intersection of these curves. The larger the scale of the graph
and the more carefully the drawing is performed, the greater the
accuracy of the roots. Having once found the approximate location
of the roots, the accuracy may be improved by an iterative process
called the “Newton-Raphson method.”
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8. The Newton-Raphson Method. ILet us consider the function
(3.1 y = F(2)

P
Let us draw this curve as in Fig. 3.1.
A » The point z = A is a root of the
\ N .
/l/ = equation
Q 3.2) F(z) =0
Fia. 3.1.

Let us draw the tangent to the curve
of the point . This tangent will intersect the z axis at a point z,.
From the figure, we have

_ @) _ o

(3.3) tan ¢ = G — = F'(x)
Hence,

= 2, — F(z0)
3.4) T1=To g (o)

If we now set up the sequence

_ . _ F(=z)

(3.5) xr+l = Z, F'(SL‘,-)

it is apparent from the figure that this sequence tends to the root A.
If we start on the other side of A where the arc of the curve is convex
to the x axis, the first step carries us to the other side of A where the
arc is convex to the z axis, after this the sequence tends to the root
as before.

This discussion is based on the following two assumptions:

a. That the slope of the curve does not become zero along the
arc Q, P.

b. That the curve has no inflection point along Q, P.

More precisely, we can say that if F(r) has only one root between
two bounds z; and z, while F'(xr) and F'’(x) are never zero between
these two bounds, then the Newton-Raphson process will succeed
if we begin it at one of the bounds for which F(z) and F*/(z) have the

same sign.
It is sometimes more convenient to use the formula
_ F(z,)
(3.6) Try1 = T F(zo)

instead of (3.5).

This means that in the successive steps of the process we replace
the tangents calculated at zi, z,, ete., by lines parallel to the tangent
at P. This saves the trouble of calculating F’(z,) at each stage.
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As an example of the method, let it be required to determine the
solution of the equation

3.7 T = sin x +§
To obtain a rough estimate of the root we draw the curves
(3.8) Y sin x
T .
n=z-3 and Yo = 8in x
{
as in Fig. 3.2. z % 7T —
From the graph, we obtain 'z
(x~3)
(3.9) zo= 2.3 radians -
as a rough estimate of the root. With Fre. 3.2.
this value for zo, we begin the iterative process. Here we have
(3.10) F@@) =z —sinX -7
3.11) Fi(x) =1 —coszx
The first approximation is
_ . _F@) _ _ (xo—sinz—/2)
3.12) =0T gy T T (1 — cos zo)
Now
(3.13) z9 = 2.3 radians = 132°
(3.14) sin zy = 0.7431, cos xy = —0.669
Hence

(2.3 — 0.743 — 1.57)
(1 + .669)

This is a very good approximation to the root. If more significant
figures are desired, the iterative process of (3.6) may be repeated.

4. Solution of Cubic Equations. In the study of the natural fre-
quencies of undamped electricai and mechanical systcms with three
degrees of freedom, we have to detc rmine the solution of the equation
(4.1) Z3+A2Z2+A12+Ao=0

We may eliminate the Z? term by the substitution
(4.2) 7= (x -~ 1437’)

(3.15) 7 =23 — = 2.308
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we then obtain

A, |, 2
(4.3) x=+(A1—‘—4—) +(A., A§”+27 g)=o

This may be written in the form
(4.4) =g —r=0
There are two principal cases to consider
a. The Case Where 27r* > 4¢®. In this case the cubic has one real

root and two complex roots. Then if ¢ and r are both positive, we
find ¢ such that

3\!r
(4.5) cosh ¢ = (—q-) 3
then the real root is given by the equation
(4.6) = % ¢t cosh g
Dividing (4.4) by (z — z,) we reduce the equation to a quadratic

and obtain the pair of complex roots by solving the resulting quadratic.
If g is negative and r is positive, we find ¢ such that

. 3\r
4.7 sinh ¢ = (:E) 3

then the real root is given by the equation
2 .

=2 (=) ki

(4.8) z 73 (—¢)! sinh 3

It may be noted that we may always suppose that r is positive
since if we change the sign of » we merely change the sign of the roots.

b. The Case Where 27r* < 4¢%. In this case the cubic equation
has three real roots. We now find the smallest positive angle ¢ such
that

3\'r
(49) ‘ cos ¢ = (Z) §
then the real roots are given by
(4.10) cos 93
\/_ ¢

xz-—v_q*cos-——%—?

2= — 2 goos T

Vil
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For example, let it be required to solve

(4.11) ZP+922 42372 +14 =0
In this case we remove the Z? term by writing
(4.12) Z=(z-3)

and the equation becomes

(4.13) 2 —4r—-1=0

We now have

(4.14) 27.1? < 4.4%

hence this equation comes under case B and the roots are all real. We
now compute

(4.15) g = 23°41/
and substituting into (4.10) we obtain
1 = 211
(4.16) z; = —1.86
T3 = —0.254
Hence the roots of (4.11) are
Z, = —0.89
4.17) Z, = —4.86
Z3 = —3.254

5. Graeffe’s Root-squaring Method. In the last section we con-
sidered some algebraic formulas for the solution of the cubic equation.
There also exists a formula solution for the quartic equation.! These
formulas are, in general, laborious to use in numerical computations.
No formulas exist for the solution of a general algebraic equation with
literal coefficients if it is of higher degree than the fourth.

In this section we shall discuss a method for the numerical solution
of an algebraic equation of any degree. Before considering this
method, it is well to recall the following properties concerning the
nature of algebraic equations:

a. The equation

(5.1) 2+ az Fartd o daa=0

1 8ee, for example, Dickson, ‘Elementary Theory of Equations,” p. 31, John
Wiley & Sons, Inc., New York, 1922,
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where the coefficients a, are real numbers has n roots. Some of the
roots may be repeated roots.

b. If n is a positive odd integer, the equation always has one real
root.

¢. The number of positive roots is either equal to the number of
variations of signs of the a’s or is less than this number of variations
by an even integer (Descartes’ rule of signs).

d. The complex roots occur in conjugate complex pairs.

The method we shall consider was suggested by Dandelin in 1826
and independently by Graeffe in 1837. It is of great use especially
in the case of equations possessing complex roots. The fundamental
principle of the method is to form a new equation whose roots are some
high power of the roots of the given equation. That is, if the roots
of the original equation are z;, s, * + * Z., the roots of the new
equation are x§, 23, - - - 2. If s is large, then the high powers of
the roots will be widely separated. If the roots are very widely
separated, they may be obtained by a simple process.

Let the roots of the Eq. (5.1) be (—r1), (—72), * * + (—7,). These
values are the roots of the equation with the signs reversed and are
called the Encke roots. (We shall assume at present that they are
real and unequal.) Since the r quantities are the roots of the equation
with the signs reversed, it may be factored in the form

62  @+rmG@+r)@tr) @+ =0
If we use the convenient notation

[rd = (r1+ 72+ + -+ + 1) = sum of the Encke roots

Hirl = (rire + 7075 + - -+ ) = sum of the products of the
Encke roots taken two at a

(5.3) time
’ [rarire] = (rarers + rarers + - - - ) = sum of the products of

the Encke roots taken
three at & time
rlare + + * ra] = product of all the roots

then on multiplying the various factors of (5.2) we obtain
(5.4) ar+IrlartH[raa24 - - - F e -] =0

Squaring the Roots. A simple device by which a new equation
whose Encke roots are the squares of the Encke roots of the original
equation will now be explained. Let us write

(5.5) Fa)=(@+r)(z+r) - (z+rm=0
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Then

(56) F(—z)=(—z+r)(—z+r) - (—2+7r)=0

and

(5.7) F@F(=2) = (1= e — )} — 29 - - - (3 —a) = 0
If in (5.7) we let

(5.8) y= —a
we obtain
(5.9) F@)F(—2)=@+mMy+rd) - - @w+r)=0
Now the roots of (5.9) are —r}, —r}, - - - —r2 and hence the
Encke roots are 7}, r3, - - - r3, and hence they are the squares of the

Encke roots of (5.5). If we now write F(z) in the form
(5.6a) Fiz)=z+a" ' +aw"?+ -+ +a.=0
then

(5.70) F(@)F(—z) = [z* + ayz™ + - - - a)l[(—2)* +
a(—=2)" 1+ - +a] =0

carrying out the multiplication and writing

(5.8@) =gl = Yy
we obtain
(5.90) y" + (a2 — 2a2)y™! + (af — 2a105 + 2a)y™2 4 - - - =0
This may be written in the form
(5.10)
. 2 a?
2 2 —
] aga et + {720 g 2
—2a. +2a1a5
+2a4 _2a6

We notice that the coefficients of (5.9a) are found from the coeffi-
cients of the original Eq. (5.6) by the following simple rule:

The coefficient of any power of y is formed by adding to the square
of the corresponding coefficient in the original equation the doubled
product of every pair of coefficients which stand equally far from it on
either side. These products are taken with signs alternately negative
and positive.

If a power of x is absent, then it is taken with a coeficient equal to
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zero. To facilitate the process, a table is constructed in the following
manner:

F@)=a"+ax" ' +ax?+ - +a,=0

1 a as as Qy as
ai a3 a3 a
-—2(12 —-2alaa —'20204 —2“:05 ete.
+2a4 +2a.as +2azas
- 2(10 —2a 107
+2as
1 b by bs be bs

where the b’s are the coefficients of the equation whose Encke roots
are the squares of the Encke roots of the original equation.

If we now repeat this process several times, we finally arrive at an
equation whose Encke roots are the mth powers of the Encke roots
of the original equation. This equation has the form

(5.11) z* + [Pzt + [rPrler2 4 - - - =0
If now

(5.12) TL>re>Trs> >0,
then

(5.13) PSSIPE>S>rr s >> e

That is, if the roots differ in magnitude in the manner (5.12), then
the mth power of the roots where m is a large number are widely
separated. Hence,

(5.14) Ml=0r+mp+ - +m) =
for a sufficiently large m. We also have
(5.15) [rpe] = (P + 1718 + - - ) =07

Hence from (5.14) we obtain

1
(5.16) log r1 = - log [r]
and from (5.15) we have

1 . 1
(5.17) log r2 = _—log [rr]"] — — log [r7]
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Equation (5.16) determines the absolute value of the largest root
ry, and Eq. (5.17) determines the absolute value of the second largest
root r2, and so on.

In the solution of equations by this method it is very necessary to
know when to stop the root-squaring process. The time to stop is
when another doubling of m produces new coefficients [ri™], [rZmri™]
that are practically the squares of the corresponding coefficients
(re], [r?r?] in the equation already obtained. To illustrate the general
theory, let us consider the solution of the equation

(5.18) Fx) =224+ 9224+232 4+ 14 =0

We construct the following table:

8 z? x c

P 1 9 23 14

p? 1 35 277 196

pt 1 671 63,009 38,416

Pt 1 324,223 3.9185 X 10? 1.4757 X 10°
pe 1 9.728 X 101 1.535 X 102t 2.177 X 108
% 1 9.433 X 102 2.357 X 10 (2.177 X 1018)2
peé 1 8.898 X 1043 (2.357 X 10%)2 | (2.177 X 108)4

In this table p? denotes the equation whose Encke roots are the
squares of the Encke roots of p, ete.
If we stop at this stage, we have

(5.19) log ¥ = log (8.898 X 10%%) = 43.9493
(5.20) log r; = 0.68670

and hence

(56.21) r; = 1+4.860

This is the magnitude of the numerically greatest root. We also
have

(5.22) log (rirs)® = 2 log (2.357 X 103%%)
= 76.74492
Hence
(5.23) log 72 = #:(76.74492 — 43.94932)
= (0.51243
Therefore

(5.24) re = 13.254
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Finally, we have
(5.25) log (ryrers)® = 4 log (2.177 X 10'%)
= 73.352
and
(5.26) log rs = #c(73.352 — 76.7449)
= 0.94698
and therefore
(5.27) ry = +0.885

It is not possible to determine the signs of the roots by this process.
A rough graph of the function F(z) = 0 shows that all the roots are
negative, and they are, therefore,

2, = —4.860
(5.28) 2 = —3.254
75 = —0.885

Complez Roots. We shall now discuss briefly the modifications
mtroduced in the above procedure in case the equation under con-
sideration has complex roots. To illustrate the general procedure
let the equation under consideration be of the fifth degree and let it
have the following Encke roots:

T, Zx, Zl, Te, T3
where

(5.29) Iral > |1Z] > [ra] > |r4

We carry out the root-squaring process as before and obtain an
equation whose Encke roots are the mth powers of the Encke roots
of the original equation. For a sufficiently large m, we have

(5.30) [rr] =7

as before, since by hypothesis r, is the dominant root numerically.
Hence this root may be determined as before. We now have

(6:31) eyl = (72" + 1727)
= rp(Z~ + Z)
If we let

(5.32) Z = Rei*
we then have , )
(5.33) [rPry] = 2rPR™ cos (m¢)
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This shows that the coefficient of the 23 term will fluctuate in sign
as the number m takes in succession a set of increasing values because
of the cosine term. We also have

(5.34) [rPrprp] = rpZn2m = rPR™

Proceeding in this manner, we see that when m is large enough so
that only the dominant part of the coefficient of each power of z is
retained the equation whose Encke roots are the mth powers of the
roots of the original equation is
(5.35) =z + rrxt + 2rPR™ cos (m¢)x® + rPR2™x2 + rPRI™rox +

rPR*™rers = 0
From this we may find (7, s, 75, and R). To obtain the angle of the
complex root, we write

(5.36) Z = Rei* = u + jv = R(cos ¢ + j sin ¢)

But we know that the sum of the Encke roots of the original
equation are given by

(5.37) a=r+Z+2+r+r;
=r+2ut+ri+rs

Hence,

(5.38) w=lom ; rn=r) _p cos ¢
or

(5.39) ¢ = cos™! {%]

In the above example we saw that the fluctuation of the coefficient
of the z8 term indicated the presence of a complex root. If two
coefficients fluctuate in sign, the presence of two complex roots may
be inferred and the analysis modified accordingly. Rather than to
consider any fixed rules, it is well to consider the general nature of the
root-squaring process when solving equations by this method.

The Case of Repeated Roots. The nature of the process in case the
equation has repeated roots may be illustrated by the consideration
of a special case. "As before, let the Encke roots of the equation be
denoted by 7y, 75, 73, * + * Tm. Let the root r; be equal to the root 7,.
That is, let

(5.40) Ta =13
That is, the equation has the repeated root r;, In this case again the
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equation whose Encke roots are the mth powers of those of the given
equation is

(5.41) 2"+ [rrlemt + [rPrPlent 4 [rrrrplen Pt 4+ —2 =0

If m is sufficiently large so that we may retain only the dominant
term in each coefficient we have

(5.42) z* + 1z + 2Pt P - - - =0

We notice that the coefficient of the term 22 does not follow the
usual law that when m is doubled the coefficient is approximately
squared. In this case, when m is doubled, the new coefficient is
approximately half the square of the old one. This is an indication
of a repeated root. To compute 74, let

b1 = 7‘71"
(5.43) by = 2rPrP
bs = rprim

If we divide b3 by b, we obtain

(5.44) by _ yam

1
and hence

2m b8
(5.45) = aJg
1

The rest of the roots are computed as before. The foregoing
discussion is the general theory of Graeffe’s root-squaring method.
In general, it is better to keep the basic concept of the method of root
squaring in mind rather than to formulate elaborate rules for special
cases.

PROBLEMS

. Determine the roots of the equation tanh z = tan z.

. Determine the roots of the equation tan z = z.

. Find the roots of ¢# = 5z.

Solve the equation 23 — 2z — 1 = 0.

Solve the equation 23 — 97z — 202 = 0. *

. By using Graeffe’s method, solve the equation 22 — 22 + 2 = 0,

. Solve the equation 28 + 22 4z 4+ 1 = 0.

. Find the roots of the equation z? — 522 + 6z — 1 = Q. '
. By the formula for the solution of a cubic equation.

. By Graeffe’s method.

9. Solve tan 7 = -l;q

SR O P oW
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CHAPTER VI

LINEAR DIFFERENTIAL EQUATIONS WITH
CONSTANT COEFFICIENTS

1. Introduction. Linear Differential Equations of the First Order.
In applied mathematics, the most important and frequently occurring
differential equations are linear differential equations. A linear
differential equation of order = is one of the form

W) e ta@PE 4t aa@ Yt gy = 1)

where ao, a1, * * * a. and f are functions of the independent variable
z and ao # 0.

If n =1, we have the linear equation of the first order; this is
written in the form

(12 L+ Py = Q@)
If Q(z) = 0, we have
(1.3) % + P(z)y =0

This equation is called a homogeneous linear differential equation
of the first order. It may be put in the form

(1.4) %’! = —P(z) dz

In this form the variables are said to be separated, and we may
therefore integrate both members and obtain

(1.5) Iny = —[P(z)dz +¢
where ¢ is an arbitrary constant of integration. Therefore, we have
(1.6) y = [P dzte] = o—[P(2) dzgo

but since e is an arbitrary constant, we may denote it by K. Hence
the solution of (1.3) is

L |y = Ke[res
106
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To solve the more general differential equation (1.2), let us place
(1.8) y = u(riv(z)

where u and v are functions of z to be determined. Placing this form
for y in (1.2), we obtain

d d
(1.9) 3'—; v+ u ?z% + P(2)wr = Q(z)
This may be written in the form
du dv
(1.10) o[ 2+ P |+ = o

Since u and v are at our disposal, let us place the term in parenthesis
equal to zero. We then obtain

(1.11) g‘-; +P@)u =0
ard
(1.12) v 2 = Q)

However, (1.11) is of the same form as (1.3), and therefore its
solution is

(1.13) u = Ke[P@dz
If we substitute this value of « into (1.12), we obtain

(1.14) v = %eﬂ”(” 4=Q(z) dz

Since the right member is a function of z, also we may integrate
both sides and thus obtain

(1.15) v = %/ et[¥@dzQ(x) dx + C,

where C, is an arbitrary constant.
Substituting these values of  and v into (1.8), we obtain

(1.16) y = Ke-fr@ s [1-15 / *@ #Q(z) dz + c,]

This may be written in the form
(1.17) y = CeJrie 4 g~[ris j efP® 45Q(z) dz

where C is an arbitrary constant,
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We thus see that the solution of Eq. (1.2) consists of two parts.
One part is the solution of the homogeneous equation with the right
member equal to zero. This is called the complementary function;
it contains an arbitrary constant. The other part involves an integral
of the right member Q(z). This is called the particular integral.
The general solution is the sum of these two parts and is given by
(1.17).

2. The Reduced Equation, the Complementary Function. In the
last section, the solution of the general linear differential equation
with variable coefficients of the first order was obtained. Equation
(1.17) gives a formula by means of which the solution may be obtained,
provided the indicated integrations may be performed.

If the linear differential equation with variable coefficients is of
order higher than the first, it is not possible to obtain an explicit
solution in closed form in the general case. In general, a series solution
must be resorted to in this case. Fortunately, a great many of the
problems of applied mathematics such as the study of small amplitude
mechanical oscillations and the analysis of electrical networks lead
to the solution of linear differential equations with constant coeffi-
cients. Accordingly, in this chapter we shall study methods of
solution of this type of equation.

If the various coefficients a.(z), r =0, 1, 2, - + - n of (1.1) are
constants, we may write this equation in the form

n—14,.
2.1) g—;!-Fm%ﬁ\a‘l' coee +%—1%+%!]=F(x)
provided a, = 1.
It is convenient to introduce the symbol of operation

§2.2) D'=(Z; r=12+:-+n

We may then write (2.1) in the form

(2.3) Dy 4+ aiD™y 4 ¢+« 4 any = F(z)
This may also be written in the form

(2.4) (D" +aiD*t + - -« + auuD + an)y = F(z)

where the significance of the term in parenthesis of the left member
is that it constitutes an operator that when operating on y(z) leads
to the left member of (2.3).

To save writing, we may condense our notation further by letting

(2.5) Lu(D) = (D* + a:D*' + asD* 2 + - + + + @u1D + an)
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We may then write (2.4) concisely in the form

(2.6) Lu(D)y = F(z)
If F(z) in (2.6) is placed equal to zero, we obtain the equation
2.7 L.Dy =0

This is called the reduced equation.

It will now be shown that the general solution of (2.6) consists of
the sum of two parts y, and ys. y. is the solution of the reduced
equation and is called the complementary function. It then satisfies

(2.8) L.D)yy. =0

The particular integral yp satisfies the equation
(2.9) L.(D)yr = F(x)

If we add (2.8) and (2.9), we obtain
(2.10) L.(D)y. + L.(D)y» = F(z)
But this may be written in the form
(2.11) L.(D)(y. + yr) = F(z)

If we now let .
(2.12) Y=+ yr

we thus obtain
(2.13) . La(D)y = F(x)

This proves the proposition.

It thus follows that the general solution of a linear differential
equation with constant coefficient is the sum of a particular integral
y» and the complementary function y., the latter being the solution
of the equation obtained by substituting zero for the function F(zx).

3. Properties of the Operator L,(D). General Solution of the Linear
Differential Equation. We have seen that the general linear differ-
ential equation with constant coefficient may be written in the form

The expression L.(D) is known as a linear differential operator of
order n. It is not an algebraic expression multiplied by y but a
symbol that expresses the fact that certain operations of differentiation
are to be performed on the function y.
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Consider the particular linear opera.tor .

3.2) LDy = 2 + 5 + 2y
= (2D2 + 5D + 2)y
We shall also write this in the factorized form
(3.3) L(D)y = (2D + 1)(D + 2)y

factorizing the expression in D as if it were an ordinary algebraic
quantity. Is this justifiable?
The operations performed in ordinary algebra are based upon

three laws:
I. The distributive law.

m(a + b) = ma + mb
II. The commutative law.
ab = ba
II1. The index law.

arg™ = gmtn

Now D satisfies the first and third of these laws, for

(3.4) D +v) = Du+ Dv
3.5) - D™Dry = D™ty
As for the second law,
(3.6) D(cu) = eD(u)
is true if ¢ is a constant, but not if ¢ is a variable. We also have
3.7 D™(D*u) = D™(D™u)

if m and n are positive intergers.

Thus D satisfies the fundamental laws of algebra except in that
it is not commutative with variables. It follows that we are justified
in performing any operations depending on the fundamental laws of

algebra on the linear operator.
(3.8) L,(D) = (D*+a: D"+ + « » + GaaD + Aa)

In view of this, the solution of the general linear differential equa-
tion with constant coefficients may be written symbolically in the
form
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We must now investigate the interpretation of the symbol 1/L.(D)
when operating of F(z).
Let us consider the case n = 1. That is,

1
This is the solution of the equation
(3.11) (% + (11?/) = F(z)

This is a special casc of the general linear equation of the first
order (1.2) with P(x) = a;, Q(z) = F(z). Accordingly, the solution
of this equation is given by (1.17) with the above values for P(z) and
Q(z). The solution is
3.12) y = Ce® 4 e fen=F(x) dx

We see that the solution consists of two parts. One part is the

solution of the Eq. (3.11) if F(z) = 0. This is the complementary
function, so that using the notation of Sec. 2, we have

(3.13) Yo = Ce=

This part contairs the arbitary constant C. The second part,
which involves F(z), is the particuiar integral, so we have

(3.14) yr = e [eswF (z) dr

Decomposition of L(D) into Partial Fractions (Distinet Roots of
L.(D) = 0).

(3.15) F(x) Cez 4 ¢z / e*F(z) dx

(D a)
for the operator 1/(D — a) operating on F(z).

Let us return to the general problem of interpreting I (ID) F(z)

where L,(D) is a linear operator of the nth order.
Consider the equation

(3.16) L.D)yy=D*+aiD**+ - - 4+aD+a)y=0

regarding L,(D) as a polynomial in D. Now if this equation has n
distinct roots (my, me, * * © my), it is known from the theory of partial
fractions that we may decompose 1/L.(D) into the simple factors

1 ' Al‘ A A,
G =~ B-m T O-m T T O
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This is an algebraic identity, and the A,(r = 1, 2, - - - n) quan-
tities are constant, given by
1 _ 1
d - Li(m)
2 L.(D)

In this case the solution of the equation becomes

(3.18) 4, =

D =m,

re=n

(3.19) y =

But by (3.15) we have

1
(D — m,)

Hence the complete solution is

(3.20) F(z) = Cem= + em= / e ™=F(z) dz

r=n r=n

321) y= -L—;%—) F(z) = z K,em= + 2 Apemre [ e~k (1) dz

r=1 r=1

where the K, quantities are arbitrary constants and the A, quantities
are given by (3.18).

The Case of Repeated Roots of L,(D) = 0. IftheequationL,(D) = 0
has repeated roots, then the above partial fraction expansion of
1/L.(D) is no longer possible. Let us first consider the case in which
all the roots of L,(D) are repeated. ILet the multiple root be equal
to m. In that case, the equation to be solved is

(3.22) L.,(D)y = (D — m)*y = F(z)
To solve this equation, let us assume a solution of the form
(3.23) y = e™y(x)

where v(z) is a function of z to be determined. Let us consider the
effect of operating with the operator (D — m) on e"¥(z). We have

(3.24) (D — m)emy(z) = mem=w(zx) + em*Dy — me™y
= ¢m=Dy
If we operate again with (D — m), we obtain
(3.25) (D — m)*mv(z) = (D — m)em=Dy = em=D%

If we repeat this procedure n times, we obtain
(3.26) (D — mremy = emeDmy
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In view of this, we see that the solution of Eq. (3.22) because of
the assumption (3.23) becomes

(3.27) emDmy = F(zx)
In order to satisfy this, we must have
(3.28) D™y = ¢—m=F ()

If we integrate the equation (3.28) n times, we obtain

3.29) v = // Ce f/e—maF(x)dx. - dz 4
' Ci+Cxx+ + + « + Coz™)

when the factor e=F(x) must be integrated n times and the quantities
C.(r=1,2, - - - n) are arbilrary constants.

We thus see from (3.22) that the result of the operator 1/ (D m)®
operating on F(z) may be written in the form

(3.30) (I) F(:r) = e’"”/f // e F(z) dx + - - dr +

e (Cy + Cox + + -+ Caz™?)

Here the term involving the integrals is the particular integral
of the Eq. (3.22), and the term involving the arbitrary constants
is the complementary function.

Let us consider the case in which the operator L,(D) is such that
(D — m) is a factor of L.(D) and that (D — m,), (D — my), ete., are
simple factors of L.(D).

To solve the equation L.(D)y = F(z), we must expand

1 1
B3) T By = D=y D —m)®D —ma) (D —m)

where s = n — r into partial fractions. In this case the partial
fraction expansion is of the formn

1 . Al A2 Ar
B3 "D -—mr T D= m)r—1 Tttt
Bl B2 . e . + Ba
(D — my) (D - mz) (D = m,)
The coefficients A p‘(P =1 -+ - 7)are given by
(3.33) 4, = F71m)

T -1
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where
_ (D =m)
and
dl’—-!
(3:35) #7im) = 9D,
The coefficients B, (r = 1, 2, -+ - - §) are given by
1
By= o
(3.36) T d
aD L.(D) .

We thus see that the solution of the equation
1

(3.37) y= Z:(‘D‘)‘F ()

when the equation

(3.38) L.D) =0

has multiple roots, it contains terms of the form

(3.39) -(—g'—f(—% = C,e™* + B,e™* / e ™*F(z) dz

as in the solution of (3.21).

The term involving the repeated roots gives rise to terms of the
form given by (3.30).

We thus have an explicit solution for the general linear differential
equation of the nth order with constant coefficients. The difficulties
that arise in using the general formulas are due to the difficulties in
evaluating the integrals involved in various special cases.

As an example of the general theory, consider the equation

g—g - % + 2y = z¢*
or
(D?* — 3D + 2)y = ze*
Here
Ly(D) = (D* — 3D + 2)
={D-2)(D-1)

Accordingly, the two roots are

my = 2 d
m =1 aplD) =(@D—3)
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By (3.18), we have

A1=i'=1
A2=£T=—1

1 1
y’(D-2‘D—1)“’

By (3.21), we then have
y = K% + Kqe* + e**[e¢~%ze* dz + efe>ze* dx
2
y = Kie* + Koer = (1 + 2)e* — S e*

= Kie* + Kue* — (1 +z +’—§>ez
As another example, consider

d*y dy _
sz+2dz+y—z
or

D+ DD + Dy ==
”‘w+w
This is a special case of (3.30), for
m= —1 and n=2

We therefore have

y = e=fferx (dx)? + e=(C1 + Caz)
y=(—2)+ e*Cy+ Cor)

4. The Method of Undetermined Coefficients. The labor involved
in performing the integrations in the general method to obtain the
particular integral may sometimes be avoided by the use of a method
known as the method of undetermined coefficients.

This may be illustrated by an example. Consider the differential
equation

4.1) d”+s +o% = to

To obtain the particular integral, let us assume a general poly-
nomial of the third degree of the form

4.2) y=az®+bxt+cx+d
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Substituting this into (4.1), we obtain
(4.3) (6ax + 2b) + 3(3az? + 2bx + ¢) + 2(az® + bx? + cx + d)

=2+
Equating coefficients of like powers of z, we obtain
2a =1
9a+2b =0
(44 6a + 6b 4+ 2c = 1
206 +3c+2d=0
Solving these equations, we obtain
a=4%
b=—%
(4.5) oo
d= — %

Substituting these values into (4.2), we obtain the particular
integral

(4.6) y = 34z — 1822 + 46z — 51)

The substitution (4.2) was successful because it did not give in the
first member of (4.1) any new type of terms. Both members are
linear combinations of the functions z3, z?, z, and 1; hence we could
equate coefficients of like powers of z.

The method of undetermined coefficients of obtaining the particular
integral is particularly well-adapted when the function F(z) is a sum
of terms such as sines, cosines, exponentials, powers of z, and their
products whose derivatives are combinations of a finite number of
functions. In that case, we assume for y a linear combination of all
terms entering with undetermined coefficient and then substitute it
into the equation and equate coefficients of like terms.

As another example, consider the equation

diy

4.7 A P + y = ¢** cos 3z

In this case, we assume
(4.8) y = ae?* cos 3z + be?* sin 3z
Substituting this into the equation, we obtain

(4.9) (9b — 45a)e?* cos 3z — (9a + 45b)e* sin 3z = €?* cos 3z



Suc. 4] LINEAR DIFFERENTIAL EQUATIONS 117

We equate coefficients of like terms and obtain

(4.10) 9b — 46a = 1
9a + 45h = 0
Solving for a and b and substituting them into (4.8), we obtain
e¥
(4.11) = 2331 (sin 3x — 5 cos 3z)

The Use of Complex Numbers to Find the Particular Integral. In
the analysis of electrical networks or mechanical oscillations, we are
usually interested in finding the particular integral of an equation
of the type

(4.12) L,(D)y = By sin wx or By cos wx

We can obtain the particular solution in this case by replacing
the right member by a complex exponential. The success of the
method depends on the following theorem.

Consider the equation

(4.13) L.(D)y = Fi(x) + jF(x)

where Fi(r) and Fy(zx) are real functions of z and j = v/ —1. Then
the particular integral of (4.13) is of the form

(4.14) Yy =y+jy
where ¥, satisfies

(4.15) L.(D)y, = Fy(z)
and y, satisfies ]

(4.16) La(D)y: = Fs(x)

To prove this it is only necessary to substitute (4.14) into (4.13),
and on equating the real and imaginary coefficients, we obtain (4.15)
and (4.16). To illustrate the method, let us solve (4.7) by making
the substitution

(4.17) e’ cos 3z = Re e(2+id)z

where Re denotes the ‘“‘real part of.”” We thus replace the right
member of (4.7) by e*¥73= and take the real part of the solution; that
is, we have

diy

(4.18) g + y = e@+idz

instead of (4.7).
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To solve this, assume
(4.19) y = Aettive

where A is a complex constant to be determined. Substituting this
into (4.18) and dividing both members by the common factor e(?+/3=
we obtain

(4.20 Al + 33+ 1] =

We therefore have

_ 1 —45-9 _—5—3j
(4.21) Ad=—p1g= 2,106 234
Substituting this into (4.19), we have
(4.22) (——%71— e?*(cos 3z + j sin 3z)

If we take the real part of this expression, we have
(4.23) Y = 23 534 (sm 3z — 5 cos 3x)

This is the required particular integral.
To solve the equation

(4.24) L.(D)y = By sin (wz)
we replace sin (wz) by ¢ and consider
(4.25) L.(D)y = Byei*
We now assume a solution of the form
(4.26) y = Aev®
We note that if we operate on Ae™= with D, we have the result
(4.27) DAeis = A(jw)ew=
and '
(4.28) DrAeios = A(jw)'eie®

We therefore note that the result of these operafions merely
replaces D by (jw); accordingly we have

(4.29) L.(D)Aei*® = L,(jw)Ael®
Hence on substituting (4.26) into (4.25) we have
(4.30) L.(juw)Ae® = By
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and hence

(4.31) A =B

La(Gw)

provided L.(jw) # 0.
Now L,(jw) is in general a complex number and may be written
in the form

(4.32) L.(jw) = Rei*
where
(4.33) R = |La(jw)|

= tan—1 1 La(jo)
(4.34) ¢ = tan™? Re L, (jw)

where Im denotes the “imaginary part of.” Hence A may be written
in the form

(4.35) =D

Substituting this into (4.26), we have
—_ Bo f (wz—e@)
(4.36) y=7 el

The solution of (4.24) is obtained by taking the imaginary part of
(4.36) to correspond to By sin (wz). Hence

(4.37) Y2 = % sin (wz — ¢)
is the required particular integral.
If we had taken the real part, we would obtain the solution of the

equation :
(4.38) L.(D)y = By cos (wz)

This method is of extreme importance in the field of electrical
engineering and mechanical oscillations and forms the basis of the use
of complex numbers in the field of alternating currents. These
matters will be discussed more fully in Chaps. VII and VIII.

6. The Simple Direct Laplace Transform or Operational Method of
Solving Linear Differential Equations with Constant Coefficients. The
method for solving differential equations mentioned in the heading
of this section is essentially the same as that known under the name
of Heaviside’s operational calculus. The modern approach to this
method is based on the Laplacian transformation. This method
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provides a most convenient means for solving the differential equations
of electrical networks and mechanical oscillations.

The chief advantage of this method is that it is very direct and
does away with tedious evaluations of arbitrary constants. The
procedure in a sense reduces the solution of a differential equation to a
mafter of looking up a particular transformation in a table of trans-
forms. In a sense, this procedure is much like consulting a table of
integrals in the process of performing integrations.

Only a brief account of the theory of the Laplacian transformation
will be given in this section. A fuller account will be found in Chap.
XXI.

Consider the functional rclation betwecen a function g(p) and
another function A(t) expressed in the form

(5.1) g(p) = p ﬁ) * ePh(l) dt Rep >0

where p is a complex number whose real part is greater than zero and
k() is such a function that the infinite integral of (5.1) converges and
satisfies the condition that

(5.2) h(t) =0 fort <0

In most of the modern literature on operational or Laplacian
transform methods, the functional relation expressed between g(p)
and h(f) is written in the following form:

(53) 9(p) = Lh(t)

The L denotes the “Laplacian transform of” and greatly shortens the
writing. The relation between h(t) and g(p) is also written in the form

(5.4) h(t) = L~g(p)
In this case we speak of h(t) as being the inverse Laplacian transform
of h(?).

The Transforms of Derivatives. Let us suppose that we have the
functional relation

(5.5) ~ y@) = p [|" ez dt
or, symbolically,
(5.6) y(p) = La()

Let us now determine L(dz/dt) in terms of y(p). To do this, we
have

5.7) L (%";) - /o - (%) at
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But integrating by parts, we obtain

(5.8) P / -t (@ dt = periz| + p? / e~?'z dt
0 dt 0 0
Now if we assume that
(5.9) lim (e~?z) = 0
{—

and that the ﬁ) * ¢z dt exists when p is greater than some fixed

positive number, then (5.8) becomes

(5.10) L (%) = —pxo + py
where
(5.11) zo = z(0)

Equation (5.10) gives the value of the Laplace transform of dz/dt
in terms of the transform of x and the value of z at { = 0.
In order to compute the Laplacian transform of d%*z/d¢? let

dz
(5.12) u=_

Then in view of (5.10) we have

@ d d
(5.13) L (‘&?f) =L (_dit‘) S (73)

. = —pz1 — pre + P

where z, is the value of dz/dt at ¢ = 0.
Repeating the process, we obtain

d'z
dit

d4
(5.15) L Zit% = pYY — plze — Piz1 — Ps — PTs

(5.14) L = piy — pizg — P’z — P22

and

(5.16) L Z% =py — Pz +pz1 +p %2+ - ¢ PTua)

where

(5.17) Z, = g-%?) evaluated at z = 0
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The above formulas for the transforms of derivatives are of great
importance in the solution of linear differential equations with con-
stant coefficients.

To illustrate the general theory, let it be required to solve the
simple differential equation

(5.18) ;ﬁ +az =0
subject to the initial condition that
(5.19) T =1z att=0
To solve this by the Laplace transform method, we let
(5.20) y = Lz
and use (5.10); then in terms of y, the equation becomes
(6.21) Py — pro+ay =0
or
z
(5.22) = (p”+°a) = L(z)

The solution of one equation could be written symbolically in the
form

5.23 = -1 _P%o__
(65.28) N TR
Consulting the table of transforms, we find that transform 7 gives
.24 L1 P = g
(5.24) w+a ¢

Accordingly, we have
(5.25) T = roe~%
as the solution of the differential equation (5.19) subject to the given

initial conditions.
As another example, let us solve the equation

d*x

(5.26) ' P + w?r = cos wt t>0
subject to the initial conditions that
T = T
(5.27) dz att=0
@

As before, we let y = Lz and replace every member of (5.20) by
its transform. Consulting the table of transforms, we find from
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No. 10 that

(5.28) L(cos wt) D)
Using (5.13), Eq. (5.20) is transformed to
2
(5.29) (p*y — pixo — pr1) + 0¥ = G;rf:"&;j
or
P2y PTy p’
(5.30) "t T+ T e

Consulting the table of transforms, we find that Nos. 10, 11, and 21
give the required information, and we have

sin wit

(5.31) T = 9 cos wl + 71 + 2—% sin wi

as the required solution.
The general case. To solve the general equation with constant

coeﬂicients
dr1z dr
(532) dt” + ay ——— Pt + -+ a,._la—t + a.xz = F(t)

we introduce y = Lz and ¢:(p) = LF(t) and replace the various
derivatives of z by their transforms given by (5.16). We then obtain

(5.33) (@ + ap™' + -+ + an)y = 61(p) + ¢2(p)
where
(5.34) $2(p) = (PTn—1 + PTaz+ * + - + P z0) +

0\(PTnez + P Tas + - ¢+ + p*lze) +
‘@2(PTa-s + P + * * - + p* %) +
an-1(PZ0)
If we write
(6.35) L.p) = (p"+ap™' + + + + +a)
Eq. (5.27) may be written concisely in the form
4’1(?) ¢2(p)
(5.36) y(p) = Z.(p) + = L) = Lz(t) *

To obtain the solution of the differential equation (5.26), we must
obtain in some manner the inverse transform of y(p), and we would
then have

(5.37) z(t) = Ly(p)
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If F(1) is zero, a constant, e*, cos wt, sin wt, #*, where s is a positive
interger, e sin wf, e* cos wt, #’e*, * cos wi, I* sin wf, then ¢i(p) is a
polynomial in p. The procedure is to decompose the expressions
¢1(p)/La(p) and ¢:(p)/La(p) into partial fractions and examine the
table of transforms and obtain the appropriate inverse transforms.

6. The Direct Computation of Transforms. A brief discussion of
the manner in which the transforms given in the table are obtained
will be given in this section. A more complete discussion using the
theory of contour integration will be given in Chap. X:XI.

By the fundamental definition, the notation

(6.1) 9(p) = LA(t)
signifies that g(p) and k() are related in the following manner:
(6.2) 0@) = p [|" enh() dt

where the integral exists when p is greater than some fixed positive
number. If we are given a definite function A({) and can perform the
integration, we immediately obtain the Laplace transform of h(f).
Transforms of the ““Unit Function.” As a simple example of the
computation of a direct transform, consider the function

. _J1 t>0
6.3) h(t) = [ .
Let us denote this function by the symbol 1(f). We then have
© —nt\ | ©
6.4 = —pt = —€ 1’) =
(6.4) L1it) =p /(; ePdi=1p ( » 1

We thus see that the transform of the unit function is unity. This
is the transform pair No. 1 of the table of transforms.

As another example, let us consider the transform of the function
e, In this case, we have

- —ptp—ot Jf = — P
(6.5) Le"“—-p/; et dl = R

This gives us transform pair No. 7.
If in (6.5) we let

(6.6) a = jw where j = v/ =1
we obtain ’
(6.7) L(e"""') = L(COS (d.t - j sin wt) = -(-p—_il_)'m

_ P’ — pjo

D)
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if we now equate real coeflicients, we obtain
== —-——-—-—p ’

(6.8) L(cos wt) B oD

Equating imaginary coefficients, we have

(6.9) L(sin wt) = er?i B

These are transform pairs 10 and 11. -4,’ | l

In the same manner, other transform 4 tg ——
pairs are computed. Fia, 6.1. ¢
Impulse Functions. Consider the
transform of the function given by Fig. 6.1.
In this case we have

(6.10) Li(t) = Ap L” emdt = (e — ) A
If t; = 0, this becomes
(6.11) Lh(t) = (1 — e?)A
Now let ¢; tend to zero in such a manner that
(6.12) lim Af; =1
=0

That is, we shrink the rectangle represented by h(f) in such a manner
that its area tends to unily as its height tends to infinity. Now
(6.13 lim (1 —e?)A = lim (1 —1+p+ - )4

t,;—0 t,—0

Ao A—w
=p = Lh(?)
We thus see that p is the transform of a function that is zero every-
where except at £ = zero, where it is infinite; we denote this function
by &(f) and we have

(6.14) “ L) =p
where

(6.15) . = { o> f ;X___g
and | . ’ .
(6.16) /_*: 5(t) dt = 1

This is the transform pair given by No. 2 of the table. A more
thorough account of these Laplacian transforms will be given in

Chap. XXL.
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7. Systems of Linear Differential Equations with Constant Coeffi-
clents. In the study of dynamical systems, whether electrical or
mechanical, the analysis usually leads to the solution of a system of
linear differential equations with constant coefficients. The Laplace
transform method is well adjusted to solve systems of equations of this
type. The method will be made clear by an example. Consider the
system of linear differential equations with constant coefficients given
by

"Z‘ + 20, + & Ti‘t‘ =1 t>0
@1 dx dz
1 + 4 2 + 3z =

Let us solve these equations subject to the initial conditions

(7.2) a:1=0} ati=0
Ty =
To solve these equations by the Laplacian transform method, let
Lz, =y
(73) {imzy

Then in view of (6.10) and the fact that the Laplace transform of
unity is one, the equations transform to

(7 4) (31) + 2)1/1 + pyz =
) py1+ (4p+3)y: =0

Solving these two simultaneous equations for y1, we obtain

(4p +3)
(r+ 1)(1lp + 6)
Using the transform pair No. 36 of the table, we obtain

(7.5) = = Lz,

—6t
(7.6) Ty = -} — %g"‘ —_ Iau.e'_l-l—.
Solving for y,, we have

- p E—
@7 = FoeT+D -~
By the use of the transform pair No. 14, we obtain
—6t
(7.8) zy = $(et —eTl)

« This example illustrates the general procedure. In Chaps. VII
and VIII the systems of differential equations arising in the study of
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electrical networks and mechanical oscillations are considered in

detail.
PROBLEMS

Solve the equations
1. gl; +y=2z"
dy _ 2
2. a—z (z * 1) (2 -+ I)L
3.z Z——Z — 2y = 2z,
.d_y = 2
4. az +y =242 ;
5. Show that the equation a—: + Py = Qy» is reduced to a linear equation
by the substitution v = y—™,
6. Solvezz—g — 2y =423 /.
4
7. Solve the equation % 4+ ky = 0 subject to the initial conditions that
y = yoat = 0 and that the first three derivatives of y are zeroat z = 0.
8. Find the general solution of (D — a)"y = sin bz, where D = gz’ nis a

positive integer, and a and b are real and unequal.
Find the solution of the following equations which satisfy the given conditions:

z=0
d3z dz -
z=a
10.%% Ltz w0 dr =0
dt’ a—ﬂo
14
T =y
11.3—:—?+9z,-t+% dz _ 1 ]t=0
d 9
‘ diz z=1
12, o= + 9z = 5co82t dz t=0
dis d.?_s .

z=0
diz dz
18. ,+4¢—E+4z-4e“ dz_o}t-o

a )
2.
14. Solvez—;—f-l—:—t? = Bi3 + 4.
15. Find the general solution of the equation (D1 — 1)y = 0 where n is a
positive integer.
diz g
16. Solve ar + 42 = gin 22 subject to the conditions dz _ % t=0
dt

dr z=0
17. Solve == + b%z = k cos be, if dz t=20
S at--o
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LAPLACIAN TRANSFORMS OF USE IN THE SOLUTION OF
DIFFERENTIAL EQUATIONS

Introduction. The modern theory of the operational calculus, a mathematical
technique that has proved to be such a powerful mathematical tool in the solution
of the differential equations of applied mathematics, is based on the Laplacian
transformation. This transformation is usually written in the form

) 0®) = p [," emho) a Rep >0

In the usual applications of the theory, h(t) is a function for which the definite
integral (1) exists and satisfies the condition

(2) h(t) =0 fort <0

A rigorous discussion of the restrictions that must be imposed on a function A(t)
in order that it may have a Laplacian transformation will be found in the following
books: .

a. McLacuLAN, N. W.: “Complex Variable and Operational Calculus,” Cam-
bridge University Press, London, 1939.

b. GARDNER, M. F. and J. L. BArNEs: “Transients in Linear Systems,” John
Wiley & Sons, Inc., New York, 1942.

It may be said, however, that the functions encountered in the various physical
problems where the transform method is applicable satisfy the required conditions.
A concise survey of the various applications of the Laplace transform or operational
method will be found in the following paper:

c. Prees, L. A.: The Operational Calculus, Journal Applied Physics, vol. 10,
Nos. 3-5, 1939.

The utility of the method in the solution of differential equations with constant
coefficients, whether ordinary or partial, follows from the fact that by the intro-
duction of a Laplacian transformation an ordinary differential equation becomes
an algebraic equation of the transform, while the number of independent variables
18 reduced in the case of partial differential equations.
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Notation. In most of the modern literature on operational or Laplacian
transform methods, the functional relation expressed between g(p) and h(t) is
written in the following form:

@ 9(p) = Lh()

The L denotes the Laplacian transform and greatly shortens the writing. The
relation between h(t) and g(p) is also written in the form

(4) k(@) = L™'g(p)

in such a case we say that k(t) is the inverse Laplacian transform of h(t).
Some writers, notably van der Pol, express the relation (1) in the form

(5) h(t) = g(p)

However, notation (3) and (4) is becoming more standard.

Basic Theorems. The utility of the Laplacian transformation is based on
some important relations which follow as a consequence of the fundamental
equation (1). The most important of these theorems will be listed here for
reference. They are established in the references (a), (b), and (c) above.

If Lh(t) = g(p), then

I Lh(st) = g(p/s)

where s is a constant s > 0

II. L dh/dt = pg(p) — ph(0)
where h(0) is the value of h(t) at £ = 0

dzh . , .
II1. L?i_t_’ = p?g — ph'(0) — p?h(0)
where h''\)) is dh/dt evaluated at t = 0
Ldh !
IV. 22 = pg(p) — 3, A0S
k=0
where l:)[’“l(O) denotes the value of the kth derivative of h(f) evaluated
att = 0.

V.L f_‘ _ k() dt = gip”—). + /_on h(t) dt

VI Le-sth(t) = %@
t<a

0
~1g—a; =
VIL L=%e™og(p) { h(t — a) t>a a is a positive constant
VIII. Lte%?g(p) = h(t + a) ifr(@) =0 0<t<a
IX. lim g(p) = lim h(f) an ordinary equality

|(@)|—0 t—> ®
X. lllin |g(p) = lim h(t) an ordinary equality
p)|—> »
XI. If L7g:(p) = hl(t) and L7ga(p) = ha()

then
Lg\(p)g 22 (”) L ! haha(t — ) du

ﬁ) ! ha(Wha(t — u) du

Many more theorems may be established. The above set of theorems is of
great utility in the solution of differential equations by the Laplacian transforma-
tion. The method will be illustrated by some worked examples appended at the
end of this table.
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TABLE OF LAPLACE TRANSFORMS
0
o®) = p [ eh() ds

No. 9(p) ()
111 1(8) Heaviside unit function
r 1) =1 ¢ >0, 1) =0 t <O
2 1|p 5(t) Dirac impulse function
3(t) = o t =0, 8t =0 t =0
3 |1/ n a positive integer | i#/n!
4 |p" except for n a positive | ((—*/T'(1 — n))
integer Tl —n) iq the Gamma function
5 | ot 1/V/xt
6 |p? 2ViVx
7 |p/(p +a) e~*  valid for a complex
8 (1/(p +0) (I —e)/a
9 |1/p(p + a) t/a — 1/a* + e~*/a?
10 | p*/(p?* +a®) . cos (at)
11 |ap/(p* + a?) sin (a)
12 | p3/(p* — a?) cosh (at)
13 |ap/(p* — a?) sinh (at)
14 | p/(p + a)(p + D) (™ —e)/(a —b)
15 p’ (ae= — be¥)
(»+a)p+0) (@-b)
16 ——-—————-(p :_(_pb; :_) pr e~% cos at at >0
17 (7;—:—)‘;—;-;, e¥sin (af) @ >0
18 G—_f-;)-, e~
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TABLE OF LAPLACE TrRANsSFORMS.—(Coniinued)

No. g(p) k(1)
19 P L_’f':i n 8 positive integer
(p +a) (n — 1! P g
p -
20 | ———— ¢(1 — at)
(p + a)?
»’ AW
21 " + ant (Za) sin (af)
22 pa® 1 (sin at — at cos at)
(®* + a?)? 2a '
23 P L ¢t | gat/2 cos1 \/Eat -
(»* + a?) 3a? 2
Visin v t)]
._.p..’_._. .}_ ~—~at at/2 l
24 7 + o) 3a[e + e cosz\/ﬁat+
‘\/é sin % \/é at)]
p* i 1 >
— — | g—at — Qpat/2 - 3at
% (p* + a¥) 3(« %2 Vs
26 —P L (sin at cosh at — cos at sinh at)
(p* + 4a¥) 4a®
P 1. .
27 ' + 4a9 2 sin af sinh af
28 P -—l—(sina!coshal-l-cosatsinhat)
(p* + 4a9) 2a
29 -——R‘——— cos af cosh at
(p* + 4a%)
4 | .
80 m ﬂ;(smhat — sin at)
r 1
81 o (cosh at — cos af)
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TasLE oF Larrace Transrorms.—(Continued)
No. 9(p) h(t)
32 | P L (sinh at + sin at)
o = ab % sinh af 4+ sin a
33 pt $(cosh at
P cosh at + cos at)
34 p? + aop (ap — a)e™ — (ag — b)e™™
(p + a)(p + b) b —a)
35 P 1 be — ae™
p(p +a)(p +b) ab ab(a — b)
p? + cp c (c — a) (c — b)
36 | ———— o e S e et . T T b
PP La)p + ) b a0 " Tio_—a®
37 (p* + e1p® + cop) o (@ —cate) (B2 — e + co) M
p(p +a)(p +b) ab a(a — b) bla — b)
P c—at (,—bl
38
®+a@+0m +9 b-aC-o @-be-b T
ect
(@ =) —c)
p* + cop l 2y} o3
39 m(p* T > (co + b2)? sin (bl + 6)
8 = tan~! —}1
Co
1 1
40 -(;)T:b—’) X (1 — cos bt)
p? + cop o (g + bt
1 | 2 ae T
4 2" £ b9 B b cos (bt + 6)
b
0 = tan™! —
Co
(p* + c1p* + cop) o [(co — b)? + cfbrt
42 | ——— LS Ml A AL h
p(p? + b?) B B cos (bt + 6)
- -1 61b
8 = tan ————-(c“ — 59

Nors: Let N@) = i, NO) = ips

Then if a 6 b, N@N®) = 2 N@) + g5 N®)
2

This enables transforms of the type PTG T b’;(p oo =3 eto., to be decomposed
into simpler ones.
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TABLE oF LaPLACE TrANsForMms.—(Conlinued)

g(p)

h(?)

43

p!

@ + ) @* + a?)

(cos bt ~ cos at)
(a? — b%)

p? 1. .
—_ 15
P o + 6 — a7 [2a 5080 O
1 1 1
—_— — p—at g1 —
45 (a5 I -+ bobe sin (bt — 6)
# = tan™—! <:§’—-)
bl = a? + b2
46 P gt e~ot sin (bt — @)
@+ ol(p + a)? + b7 (¢ — a2+ " bl(c —a) + b2
g = tan™1 *(‘;—_:‘-(—z“)*
1 1 1 .
47 m Z;t - ﬁ sin bt
1 1 . 1
48 m E;SIH (bt) — bzt
p’ —wn —at o .

49 mm - e~ sin (wt — @) if w? > a2
where w? = w} — a2, tan ¢ = E
e~ot(l — at) if a? = )

(ne™™ — me—mt) if a2 > o}
(n — m)
where (—m)(—n) are the roots of
p?+2ap +wi =0
P e—a! . .
—_— wt f wl 2
50 @+ 2ap + oD - sin if wj > a

w? = wj — a?

—— (emt — g~nt) a® > )

m and 7 defined above

test if 0 = o

133
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TasLe oF Larrace Transrorums.—(Continued)

No. g(p) h(t)

—————-———1—--—— _!_ 1 L0 at g t 25 g2
@ + 2ap + ) 5 - we sin (wf 4+ ¢) wg > a

Wy

51

w
w? = wp — a% tan ¢ = —
a

1 [ 2 ~mt —~nt
R 1 — _9_"__ e___. — f._ a? > w:
wy L mn—m)\ m n
m, n, defined in No. 49

1—2 [1 —eot(1 + at)] at = wl
wy

52 | N(p) where N(p) and D(p) Heaviside Expansion Formula
D(p) are polynomials in p, r=n
and the degree of the poly- | N(0) N (pr)errt
nomial 1)(p) is at least as high | D(0) D' (p,)
as the degree of the poly- r=1 iD
nomiaI']Y(p), and D(p) = 0| where D (p,) = — P =7
has n distinct roots p1 - + - pa dp
and p =0 is not a root of Note: This formula enables one to
D(p) =0 evaluate inverse transforms not found in
this table
(p?* + 207 .
53 @ T 4a%) cos? (wl)
afe sin (at)
54 |p tan (p -
p+b (e7ot — ¢™™)
55 | p log (p +a) ;

Notes on Partial Fractions: In some cases, it is simpler to decompose the ratio of the two poly-
nomials in p into partial fractions and then to use transforms found in this table. In doing this,
the following identities are helpful:

@ 1 - 1 [ b _ by
(a + dp¥) (a1 + bip?) (a1 — ab1) L(a + bp?) (a1 + bip?)
) (m + np) - 1 [t(m: - nk)
(k + sp)(a + bp + cp?)  as? + ck* — bks L (k + ep)
. + (e)(nk — ma)p + (asn + ckm — bm)]
(@ + bp + ep?)
© (& + mp) - 1 (bs — am) + (aim — bis)
(@ +bp) (a1 + bip™) (@b ~ abr) L (@ +bp") (a1 + bip")
@ : oAty t e
@+a)ep+d@t+te @+a) @+ @+
where
A 1 1 1

“@=ve=9 P @ga906-a °‘~"G-ae-w
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TABLE OF LArLAcE TrANsrorms.—(Continued)

No. g(p) h@)
56 4 Jo(at) Bessel function of the first kind,
\/zm zeroth order
57 Ld -I;Jﬂ(az) forn=0123, ---
Vo +at (V! +at - p) @
Bessel function of first kind, nth order
58 ! ! tJ' d f 01,23
Vi +a(Vp +a—p)rla Jo n(at) dt orn =0,1,23, ---
50 P lJ;(at)
-\/pz +a+p a ¢
P 7 Ja(at) e
Ve retor wp MThEE
1 t J.(at) dt
61 s — " = .
(Vp* +a* + p)» a* Jo ¢ n=bLA3,
62 |eo/r Jo(2 Vat)
63 | cos l Ber (2 \/;)
P Ber is the DBesscl real function of Lord
Kelvin
64 |sin —l- Bei (2 \/Z)
P
65 p-ne—llp tu/an(2 \/Z)
Ren > —1
Ca
66 e—a'\/z—) a>0 e—aV/4u
P 2\ xt?
67 |ple=9V? 5 >0 e—a4
wt
68 [e—*V? a>0

1 —erf _2__)

where erf (y) is the error function deﬁned

v
by erf (y) = e du

v
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TaBLE oF LarLacE TraNsForMs.—(Continued)
No. 9(») k(@)
—av7p
80 |-2X—©r  a>0 ebrad [1 — erf (b Vit + ——“—)]
p+bVp 2V
70 | pKola ‘\/;) 1 g—a¥/4t
where Ko(y) is the modified | 2t
Bessel function of the second
kind of order zero a>0
‘71 | pKo(ap) 0 0<t<a
Vi —a? t>a
72 P To(t)
\/p’_—_l the modified Bessel function of the first
kind and zeroth order
pp — Vp? — )» 1.(0)
73 ——'——2—;"’— the modified Bessel function of the first
P = kind and nth order
pe—oaVPi+b? 0 when 0 < ¢ <a
v \/pz T b2 @ > Jol(b \/t’ — a?) when t > a
pe—eVPi-b? ] when 0 <t <a
75 e >0
Vpt — b2 . ILibVtt—a?) t>a
76 ! f (Vi
€ 11
Vite )
pon | - ZVETI o
77 v 0 t<z/v
V(p +8)t — o2 elooc V12 — 22/v%) &> z/v
78 | (e7o? — e7V7) h®
1
a b
79 g (1 — %) — mae—or ho
Slope=m
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TaBLE oF LaPuacE TraNsrorMs.—(Continued)

S

No 9(p) h(t)
ap Meander function
i —
0 [;
a 22 3a 4a
Saw-tooth function
g1 |™ m;(coth w _ 1) aooth fune
P B
a 2a t
1 ap R
82 2(1 + coth 2)
1 Stepped function
1 1 1 1
a 2a 8 4a 11
1
83 | ————— h®
sinh (ap)
2 . . \
a 3a ba Ta t
84 Lu(at)

drf in
= g~at — | — p—at
T (nl ¢
= Laguerre polynomial of nth order

More complicated transforms will be found in the following references:

1. CampBELL, G. A, and R. M. FosTER: Fourier Integrals for Practical Applica-

tions, Bell System, Technical Journal, September, 1931.

2. Prees, L. A.: The Transient Behaviour of Four-terminal Networks, Philosophical

Magazine, Ser. 7., vol. 33, p. 174, March, 1942,

3. GArDNER, M. F., and J. L. BarNEs: “Transients in Linear Systems,” John

Wiley & Sons, Inc., New York, 1942.

4. McLacHLAN, N. W.: “Complex Variable and Operational Calculus,” Cambridge

University Press, London, 1939,
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Illustrative Examples. To illustrate the use of thesc tables in the solution of
differential equations, the following examples are appended.
1. Suppose it is required to solve the equation

' %—y,-*-a‘yace"“

subject to the initial conditions

y=0
att =0 dy

"‘“yl

dt
" solve the equation, we let
Ly = Y(p)

lic basic Theorem III, we have

d2
L ;i—t’é =pY —pn
and by No. 7
: 1) =P __
Llee™) @ +0b)
The equation to be solved is thus transformed to
1y 1y =P
P py1 + a?Y ® 4+

Therefore

- °p PY1
YO =i o T e +an

Using Nos. 46 and 11, we have the inverse transform of Y (p)
= ___c__._._ bt ,11 3 §/_1 3
y(0) @F (e cos at + — sin at) + 5 sin (a)

This is the required solution.

2. A constant electromotive force E is applied at ¢ = 0 to an electric circuit
consisting of an inductance L, resistance R, and capacity ¢ in series. The initial
values of the current ¢ and the charge on the condenser g are zero. It is required
to find the current.

The current is given by the equation

di ., q
where % = 1,
Let £4(t) = I(p), £4(t) = Q(p) by III, the equations are transformed to
Nore: The seript £ is used to denote the Laplacian transforms in order not to
confuse it with the inductance parameter L.
I +RI+9 -
Q=1
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Therefore we have
I
LpI + BRI + 2= E

Therefore
pE pE

= R’ 1\ L+ + o
L (”’ +is +Lc)

I

where
R _1 R?
a = — w? = —L—c ——
By No. 17, we have

i= wﬂL est gin (wf) if ot >0
or by No. 18
i= 7 e if =0

T = k—EEe‘“‘ sinh (k) ifw?<0 k? = —w?

8. Resonance of a Pendulum. A simple pendulum, originally hanging in equi-
librium, is disturbed by a force varying harmonically. It is required to determine
the motion.

The differential equation is

£ 4 w} = Fysin nt
Let the pendulum start from rest at its position equilibrium. In such a case,
we have the initial conditions

z =0

att-O{:b_o

Let Lz = y, then by III, L& = p?y.
Using No. 12, the differential equation of motion is transformed to

@ + w)y = (5&’”,,—,)
or

- Fopn - Fon [ P _ P ]
VR @ e @ —m) LG ) T @+

By No. 11, we obtain

Fom gin (nt)  sin (wol) .
x-(w:—n’)[ - T ] if wf # n?
if wi = nt
= Fopn
V= + 7
and by No. 22

T - %—:j (sin nt — nt cos nt) the case of resonance
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4. Lincar flow of heat in a semi-infinite solid, z > 0; the boundary z = 0 kept
at constant temperature oy; the initial temperature of the solid zero.
In this problem we have to solve

&) (12
) T 2>0, t>0

withy = powhenz =01 >0
v =0whenz >0, 6 =10
Let Lo(e ) = Vig.p
ar

By Theorem 11, L i ph.
at
The equation (1) is transformed to

V. p

(2) ' a Tk Vo= 0 r>0
with :
'(3) Vo=, when 2 = 0

The solution of (2) which satisfies (3) and remains finite at 2 — o is
V = v"(,m.x:\/[)/R

By No. 68, the inverse transform of 1 is

x
v(x,t) = o (] — erf 2"\/7\1)

The above examples are typical of the manner in which linear differential
equations with constant coeflicients may be solved by the use of these tables,



CHAPTER VII
OSCILLATIONS OF LINEAR, LUMPED ELECTRICAL CIRCUITS

1. Introduction. A large part of the analysis in engineering and
physics is concerned with the study of vibrating systems. The elec-
trical circuit is the most common example of a vibrating system. By
analogy, the electrical circuit serves as a model for the study of
mechanical and acoustical vibrating systems. Historically, the
equations of motion of mechanical systems were developed a long time
before any attention was given to the equations for electrical circuits.
Tt was because of this reason that in the early days of electrical circuit
theory it was natural to explain the action in terms of mechanical
phenomena. At the present time, electrical circuit theory has been
developed to a inuch higher state than the theory of corresponding
mechanical systems. Mathematically, the elements in an electrical
network are the coefficients in the differential equations describing
the network. In the same way, the coefficients in the differential
equations of a mechanical or acoustical system may be looked upon
as mechanical or acoustical elements. Kirchhoff’s electromotive force
law plays the same role in setting up the clectrical equations as
d’Alembert’s principle does in setting up the mechanical and acoustical
equations. Therefore, a mechanical or acoustical system may be
reduced to an electrical network and the problem may be solved by
electric-circuit theory.

2. Electric Circuit Principles. The differential equations for elec-
tric circuits with lumped parameters are of the same form as the
equations for mechanical systems. Kirchhoff’s first law is the applica-
tion of the conservation of electricity to the circuit and may be stated
in the following form:

a. The algebraic sum of all the currents into the junction point of a
network is zero.

Kirchhoff’s second law is a statement concerning the conservation
of energy in the circuit and is usually stated in the following form:

b. The algebraic sum of the electromotive forces around a closed
circuit is zero.

Let us apply the above Kirchhoff laws to the simple series eircuit
of Fig. 2.1.

141
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The parameters R, L, and S of the circuit are expressed sym-
bolically in the above diagram and are called the resistance, inductance,
and elastance coefficients, respectively. From basic principles, we
have

E, = iR = electromotive force drop of resistance
(2.1) E, = L?l% = electromotive force drop of inductance
E; = Sq = electromotive force drop of elastance

R L Where ¢ is the charge on the

i o00’ condenser whose elastance is 8, it
= ’ E D L is related to the current ¢ by the
T ""‘: i | equation

s 2.2) i=%

Ta. 2.1. dt
The capacitance of the condenser C is related to S by the equation

1w 4

1

K

Applying Kirchhoff’s second law to the circuit, we have
(2.4) L%lt' + Ri + 8¢ = e(?)

or in terms of g, it is written in the form
(2.5) Li + Rg + Sq = e(?)

. _dqg
where § = T

If R = 0 and S = 0, the above equation reduces to
(2.6) L = e(t)

This equation has the same form as that governing the displace-

ment z of a mass M when it is acted upon by a
force F' as shown in Fig. 2.2. M —
In the mechanical case, we have by Newton’s F
= ; T
law (F = Ma) the equation —
(2.7 Mz =F "Fra. 2.2,

If the mass is attached to a linear spring as shown in Fig. 2.3, we
have by Newton’s law

(2.8) Mi A kx=F
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where k is the spring constant of the spring. This is analogous to
Eq. (2.5) if we place R = 0. If in addition to the spring the mass of
Fig. 2.3 were retarded by a force proportional to its velocity of the
form Bi, then its equation of motion is

given by X
M | F
(2.9) Mi+ Bi+ke=f
This equation has exactly the same x
form as Eq. (2.5), we therefore see that we Fra. 2.3.

have the following equivalence between electrical and mechanical
quantities:

e—F
L-M
R—B
S—k
gz
t—oE =79

(2.10)

This correspondence between electrical and mechanical quantities
is the basis of the electrical and mechanical analogies.

3. Energy Considerations. The energy of an oscillating electrical
or mechanical system is of importance in studying the behavior of a
system. The potential energy stored in the spring of Fig. 2.3 when
the mass has been displaced by a distance z is given by

3.1 Vi = Fdzr = krdz = ~5
0 0
In the electrical case, the energy involved in charging the condenser
plays the same role as the elastic energy in the mechanical case. This

is given by
(3.2) v . ¢ e Sq?
. z=[)ezdt=LSmdt=Sﬁqdq=T
The kinetic energy of motion of the mass is given by
3.3 Tu==dez=/:M£dx=ﬁ'Mvdv=y-2!’f

where v = % is the velocity of the mass.
In the electrical case, we have

3.4) | Ty = }L4
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The power dissipated in friction in the mechanical case is given by

(3.5) Py =B
and the power dissipated in the electrical circuit is
(3.6) Py = i’R

4. Analysis of General Series Circuit. We have seen in Sec. 2 that
the equation governing the current of the general series circuit of
Fig. 2.1 is given by

.1) L% 4 Ri+ 8q = o)
where
(4.2) i=g

This is a linear differential equation with constant coefficients, and
we may solve it by the methods discussed in Chap. VI. The Laplace
transform method is particularly well suited to solve this equation.

To do this, we let .
Nore: In order to avoid confusion with the inductance parameter,
the Laplacian transforms will be denoted by a seript £.

(4.3) Li=1I) (Lg=4Q)
We therefore have from Eq. (5.10), Chap. VI,

di .
(4.4) £ (Et) = pl — pi,
From (4.2) we have
(4.5) £l =L¢=1=pQ — pqg
where 1, is the initial current flowing in the circuit and g, is the initial
charge on the condenser. From (4.5) we obtain

_I
(4.6) Q-—p+%

Equation (4.1) is transformed to
4.7) L(pI — pio) + RI 4 SQ = Le(t)
Eliminating @, we obtain

4.7a) (Lp + R+ %) I 4+ (Sqo — Lpiy) = Le(?)
Solving for I, we obtain
48  I= ! (P‘“e(‘) + Lg% - SWO)

R S
(P2 +-ZP +E)
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The Case of Free Oscillations. T.et us first consider the case when
there is no external electromotive force applied to the system. In
this case, e(?f) is equal to zero. To simplify the equation, let

(4.9) a =

S / 1
(4.10) wy = \/}, = A\ LC

In this case, we have

=1 (Ep = Spg
(4.11) I=GimpT+a ( L )

To obtain the inverse transform of this expression we use equations
Nos. 49 and 50 of our table of transforms. There are three cases to
consider

(a) w} > a?
) wi = a?
(¢) wi<a®

Case a is called the oscillatory case. For this case, we obtain from
the table

() = w0 g _ _ Qo €7 sin w,t
(4.12) @) = L, ¢ sin (it — ) = 50, —
where
(4°13) W = \/a;% - a—2, tan ¢ = (i;f

We thus see that the current is given as a damped oscillation, where
%o and go are the initial current and charge of the system. If wy = a,
we have case b. 'This is called the critically damped case. We then
obtain

(4.14) i) = deeo(1 — at) — I‘fg] te—et

In this case there are no oscillations and the current dies down in an
exponential manner. The case ¢ is the overdamped case, and the
solution for this case may be easily obtained from Nos. 49 and 50
of the table. ) ‘

If there is no resistance present in the circuit, then a = 0 and our
transform becomes '

_ 1 Lp2’l:o - SPQO
(4.15) I = T +w2)( T )
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We may compute the inverse transform of this equation by the use
of transforms Nos. 10 and 11 of the table of transforms. We then have

(4.16) 1(f) = 7o co8 (wol) — wogo Sin (wof)
where now
1
4.17 = e———
( ) wo ‘\/LC

The foregoing equations give the velocity of the mass of the
analogous mechanical system. In this case, go corresponds to the
initial displacement z, and 7, corresponds to the initial velocity of
the mass of the mechanical system. The quantity wo = 1/4/LC
in the case where we have no resistance is called the natural angular
frequency of the electrical system. This corresponds to

(418) Wy = &

for the mechanical system. Here k is the spring constant and M is the
mass of the system,

Forced Oscillations. If e(f) is not equal to zero, we must add to
the preceding expressions the transform of

Le(l)
: I= P

(.19 LG + Zop F o)

The inverse transform of (4.12) gives the current in a general series
circuit that hasnoinitial current and no initial charge but has impressed

on it an electromotive force e(t) at £ = 0. Let us compute this for the
case in which e(?) is an alternating potential of the form

(4.20) e(t) = Eysin (wt)
By No. 11, of the tables, we obtain

_ _ Ewp
(4.21) Le(t) = D)
Substituting this into (4.12), we obtain
(4.22) 1=%e P

The inverse transform of this expression may be most simply
computed by the use of No. 52 of the table of transforms. For this
case, we have

, N(p) = p*

*.28) D(p) = @* + &))(p* + 20p + o)
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The roots of D(p) are

P1= —a + ju,
P: = —a4 — jo, whenw, =Vl — a?
(4.24) Ps = +jw
Ps = —jw
N(0)
We also have == Do) 0, and

(4.25) DY (P) = 2p(p* + 2ap + ) + (P* + &) (2p + 24)
Hence substituting into No. 52 of the table, we obtain

B piet pse”* ]
(4.26) ¢ [(p + a)(p + «?) (pz + a)(p: + w?)

E‘j [ glat n e—iwt
2L | v} + 20j0 — @?) ' (0} — 2aj0 — w?)

Since the roots p; and p; have a negative real part, the expression
in the first bracket vanishes ultimately as time increases. The second
expression may be denoted by 7, It may be easily transformed

E sin (wt — 6)

to the form
1
wL — —-)
427) i, = , g——-—-ﬁg-
1
'\/Rz + (wL - —-)
wC

This term persists with the passage of time and is called the steady-
state term. If R is zero so that the circuit is devoid of resistance, this

becomes
E sin (f»t + ’-25)

(4.28) i = ( — _)

w

If @ = 1/A/IC = w,1 the denominator of (4.28) vanishes and the
steady-state current amplitude becomes indefinitely great. This
is the phenomenon of resonance and occurs when the impressed
electromatic force has a frequency equal to that of the natural fre-
quency of the circuit. If the circuit has resistance, then the denomi-
nator of (4.27) does not vanish and we do not have true resonance.

It may be noted that the steady-state current may be obtained
more simply directly from the differential equation of the circuit

(4.29) Lg—:+Ri+g=Esin(wt)
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by the method of undetermined coefficients explained in Sec. 4 of
Chap. VI. The steady-state current is the particular integral of this
equation. We replace the right member of (4.29) by Im E - e/, “Im”
means the “‘imaginary part of.”

We let

(4.30) 1 = Im Aeit

where 4 is a complex number to be determined by (4.22). Suppressing
the “Im’’ symbol and realizing that

(4.31) qg= /zdt /Aef“‘dt Ae“

substitution into (4.29) gives

. 1
(4.32) (JwL + R+ 3—56') A=E
where we have divided both sides by the common factor e¢#t. Hence
we have

(4.33) A= )

[R +j(wL - ‘-}C)]

It is convenient to introduce the notation

. 1

This complex number is called the complex impedance of the circuit.
It may be written in the polar form

(4.35) Z = |Z]ei®
where

1\ (“’ - EIC')
(4.36) |Z| = \/h?2 + (wL - E) and tan 4 = —

We thus have
(4.37) I—Zl e—7t

The steady-state current is now given by (4.30) in the form

(4.38) i=Im Eoe—ie{i' T2y i (ot = 6)
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This is the steady-state current given in (4.27) obtained more
directly. The solution (4.26), however, contains both the steady-
state solution and the transient response of the system produced
by the sudden application of the potential E, sin wt on the system
att = 0.

6. Discharge and Charge of a Condenser. An interesting appli-
cation of the differential equations
governing the distribution of charges ~—— T —}—rvwiA—r
and currents in electrical networks is c
thefollowingone. Considertheelec- | e
trical circuit of Fig. 5.1.

Let a charge go be placed on the
condenser, and let the switch S be closed at ¢ = 0. Let it be required
to determine the charge on the condenser at any instant later.

When the switch is closed, we have, by Kirchhoff’s law, the
equation

Fia. 5.1,

1. %%
(5.1) dt=+R +Z=0
To solve this, let us introduce the transform
(5.2) Lg = Q
The initial conditions of the problem are
192= Q
(5.3) att=0 . _dg _
== 0
Hence we have
43 b pQ — Po
(5.4) 3‘
£ %{ = p’Q — P’q
Hence the Eq. (5.1) transforms to
(5.5) L@ — pa) + B — pa0) + G =
or
(5.6) (p’L + pR + %,) Q = Lp%g + Rpge

As before, let

6.7 o= 21%, o = o /E’lc
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We, therefore, have

Q= P’ + 2apq
(p* + 2ap + f)  (P* + 2ap + o})

By the use of transforms Nos. 49 and 50, we obtain

(5.8)

(5.9) g = qe™ (cosh ot + fé sinh w,t) if a > wo
g = goe™*(1 + at) if a = wo
q = qe ™ (cos .t + w-(i sin w.t) ifa < wo
where w, = Vol — a%
The Charging of a Condenser. Let us consider the circuit of
Fig. 5.2
’Tﬂﬁfb“ In this case, at ¢t = 0, the switch

1 . is closed and the potential E of the

T TC' battery is impressed on the circuit.

R It is required to determine the man-

F16. 5.2. ner in which the charge on the con-
denser behaves.

The equation satisfied by the charge is now

[

+
E

(5.10) §+ 200+ uig = £

To solve this equation, we again let
(5.11) L£g=0Q

and since E is a constant, we have

E E
(5.12) £ =7
The initial conditions are now
(5.13) ' a.tt=0lq,=0
g=0
Hence we have
5.14 ‘Wf =p'Q
G146 £4 = pQ

The Eq. (5.10) transforms to

(5.15) @ 200+ abQ =
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and hence
E

(6.1 “reTmTa -

To obtain the inverse transform of (5.16), we use transform No. 51
of the table of transforms and thus obtain

anE[l—e""(coshw.t+£-sinhw.t)] ifa > wo
(5.17) {(g=CE[l — e*(1 + at)] ifa = w
q=CE[I—-e“"(cosw.t-f-g—sinw,t)] if a < w

In each case, the charging current is given by ¢ = ¢. The analo-
gous mechanical problem is that of
determining the motion of a mass Ly
when it has been given an initial ES—
displacement and is acted upon by R % D Ly Ly J Ry
a spring and retarded by viscous % h ha
friction or if the mass has a sudden Fia. 6.1.
force applied to it.

6. Circuit with Mutual Inductance. Let us consider the circuits
of Fig. 6.1.

In this case we have two circuits coupled magnetically. The
coefficient Lj, is termed the mutual inductance coefficient. It is
positive if the magnetic fields of ¢ and ¢; add. If they are opposed,
then the coefficient L, is negative. In any case, the equations
governing the currents in the two circuits are given by applying
Kirchhoff’s laws to the two loops and are

' Lu%‘l'Lu%'i‘Ruix =E
(6.1) . .
L2 4 1% 4 Rusia = 0

We wish to determine the currents ¢, and ¢; on the supposition
that at ¢ = 0 the switch, s is closed and the initial currents are zero.
Let us introduce the transforms

l.ei; =1,

(6.2) iy = I

Now since at ¢ = 0 we have

= 1:1=0
(6.3) at ¢ O{igao
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and also E is a constant. Hence Eq. (6.1) transforms to
. { pLyly + pLyels + Ruly = E
pLaels + pLiaoly + Raoly =

We now solve these two algebraic equations by using Cramer’s
rule and obtain

(6.4)

E pL1s
I, = 0 (pLaz + Ra2)
(PLyy + Ray) pL1y|
(6.5) pL1s (PL2s + Ra)|
(PLy1 + Ru) E
I, = pLy, 0

(PLu+ Ru) Py
PLis (PL2; + R:3)

Hence we have

I, = E(pLs2 + Ris)
) (L11Lse — L3p) p* + (Rulaz + Rooln)p + RuKae
12 - —Elez

(L1iLa2 — L})p*(Bules + Reela)p + R1uRae

If we let

(6.6)

_ (RuLsgy + RyeLyy)

6.7 @= 2(Ly1Lae — L3,)
and
R11R22
9 . finflas
(6.8) Wy (L11L22 — ng)
we then have
1, = E (pLaz + Ra2)
(6.9) (LuLss — L},) (p* + 2ap + i)
12 - "‘E an
(LuLss — L},) (p* + 2ap + wi)
In this case,
(6.10) a2>ul, V@ —w) =8

Using the transforms Nos. 50 and 51 of the table, we obtain after
some algebraic reductions

(ll.2 - ﬁz)Lm - aRn
BRa2s

i1=£[1—e"“‘coshﬁt+ e“‘sinhﬁt]
(6.11) f(’z;l L

;= - 1 .

13 -——-—-—-———-BR“R” ¢ ginh St
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For the transforms of I; and I.. We see that as time elapses, 71
approaches its final value E/Ry;. If we set diz/dt = 0 and solve for ¢,
we find that %, rises to a maximum value when

1 (B
(6.12) ¢ =1 tamh 1(;)

and then approaches zero asymptotically. An interesting special case
is the symmetrical one. In this case the resistances of each mesh are
equal and the self-inductances are equal. We then have

Ryt = Res = R, Ly =Lyp=0L
L1z = M

The Eqgs. (6.4) then become

{ pL11 + pMIz + RI1 = E
pLIz + pMIl +RIz =0

If we add the two equations, we obtain
(6.15) pL(Iy + I:) + pM(I1 + I;) + R(I,+ I,) = E

If we subtract the second equation from the first one, we have
(6.16) pL(I, = 13) + pM(I, — I;) + R(I, — I;) = E

If we now let

(6.13)

(6.14)

(6.17) zy = (I + I,) T2 = (Iy — Iy)
we have
(6.18) p(L + M)z, + Rz, = E

p(L - M):vz + sz =K
Hence

E _ E
©19)  m=@FmFR " TIC - TR
If we let
R R

(6-20) ay = m, Qs = m
we obtain
621) =z E 1 ) 1

TTFMN Gty CTT-Mmta
Using the transform No. 8 of the tables, we have

(6.22) Llzy = g (1 — ), Ligy = % (1 — eot)
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Hence

(2 + i) = B (1~ o)
(6.23) 0
(i1 = 0g) = 5 (1 — )
and adding the two equations we obtain

. E (1 — gt — e—-a:t)
(624) 1 = -R- 3

Subtracting the second equation from the first equation, we obtain

(6.25) ’[:2 = % (G—azl — e—all)

These are the currents in the symmetrical case.
7. Circuits Coupled by a Condenser. Let us consider the circuit

of Fig. 7.1.
5. R, L ¢ lﬁLz R, c,l
= D
T

‘.)i, Tc" i

Fia. 7.1.

s
+
E

In this case, we have two coupled circuits. The coupling element
is now a condenser. Let the switch S be closed at ¢t = 0, and let it be
required to determine the current in the system. We write Kirch-
hoff’s law for both meshes, we then obtain

dz!+R1'll+ql+(—'-———'C )=E
12

(7.1)
dis g (g2—¢q1) _
L — i +R’1"+Cg+ Cn =0
where
i d . di
Y

Let us introduce the transforms

{£i1=11 £Q1=Q1

(7.3) L1y = I, £g2 = Qs

If at £ = 0, we have

’ = t1=0 q;=0
(7.4) ¢ 0{i.=0 1 =0
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The Eqgs. (7.1) transform into
o (=T _
pLydy 4 Rydy A - C + ~ 0

(7.5) T — 1
2 — Iy)
Loy + Rols + — pC + 20

=0

We now solve these equations algebraically for the transforms
I, and I.. We thus obtain

z e
. gPLz Rt +1p012)
(le + R PCI p_C’—H) - (Z’Clz)
7.6) - (péu) (pI” R+ e pC * pCu)
(pL1 + R+ = pC + an) E
I, = B (Péw> 0
1 1 1
(le + R ot 1—9?7—1) a (an)
G (ermrg)

Expanding the determinants, we obtain the transforms I; and I,
as the ratios of polynomials in p. The inverse transforms of I, and I,
give the currents in the system. In this case, the determinant the
denominator of (7.6) of the system is a polynomial of the fourth degree
in p. The inverse transforms may now be calculated by the use of
No. 52 in the table. This entails the solution of a quartic equation
in p. If numerical values are given, this may be done by the Graeffe
root-squaring method described in Chap. V. The trend of the general
solution may be determined by solving the symmetrical case in which
we have

[R1=R3=R 01=C2=0

(1.7 Li=1L =L
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In this case, the Eqgs. (7.5) reduces to

Lo L L

(7 8) pLII + RII + pC + pcm pcm =
. I
pLI, + RI, + + pC’u m‘z =

If we add the two equatlons, we obtain
(@9 LU+ I) +RU+I) + o6 1+ 1) = B
If we subtract the second equation from the first, we have
(1.10) pL(TIs — Is) + R(Ix — 12) +o =1+
Iy — 2)+—~' (11—12)"1‘7

pC
If we let
= (Il + Iz)
(7.11) { — (s — I
we obtain
pLxy + Rz + '%'xl =F
(7.12) ﬁ’ -
pLzy + Rxo + ;)((7 + U;) r2=E
If we let
B _ . 1 , _1(1 2
(@18)  gp=m ei=pm  ei= L(@ + 01;)

the two equations become

(»* + 2ap + )11 = p%

(7.14) F
®* + 2ap + o)z = pp

The inverse transforms of x; and z; may now be calculated by
No. 50. In the case

(7.15) ot >al o} >a
we have

£r, = L(Eu ~9 Sin wel) we = Vol — @
(7.16) ’

E . -
£z = T (e sin wpt) o = V. wi — a?
400h
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Hence, adding the two equations (7.16), we have

Eeat (sin w.d | sin w;,t)

N = —(g+ ——
(7.17) 2L\ a @

ip = L g (B @b _ sin ant

2 2L Waq Wh

If there is no resistance in the circuit, then @ = 0 and the currents
oscillate without loss of amplitude with the angular frequencies w;
and wa.

8. The Effect of Finite Potential Pulses. It frequently happens
that the response of an electrical circuit is desired when a potential
pulse is applied to it. The general procedure may be illustrated by
the following example. Consider the circuit of Fig. 8.1.

et
R .
K- [ 1
() O, . ra—
Fic. 8.1. Fie. 8.2,

Let e(t) be an impulse function of the form given by Fig. 8.2.

It is required to find the current in the cireuit. For generality,
let us assume that the condenser has an initial charge go, at t = 0.
The current satisfies the cquation

19 )
8.1 R: + c= e(?), i=
We introduce the fransforms
Li=1 .
8.2) L9 =Q
Le =F
We now have
aq _  n_ . _
(8.3) G; = P — P =
Hence
(8.4) e=1+a

The transform of the potential e(f) is given by

(8.5) E=p ﬁ ;h By dt = Eo(e™ — ¢)
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Accordingly, Eq. (8.1) is transformed

(8-6) ! RI + C( + qo) = Eo(e—l’tl — e—Ph)
If we let
1
8.7 = 70
we obtain

= Eop (e70 — et P
&8 =% "G%+0 )
To obtain the inverse transform of I, we use No. 7 and Theorem
VII of the table of transforms. We thus obtain

’I:=—IZQQ6 at 0<t<ty
o ) Eo
[ —at =Y o—a(t—~t1)
(8.9) 2 agoe™® + 7 e h<it<it
, E E
7 = —aqoe"ﬂ‘ + ...9 e“a(t'—tl) —-— .I_é’ e“a(‘—h\ t > tz

This example illustrates the general procedure.

9. Analysis of the General Network. In this section the analysis
of a general n-mesh network will be considered. Given a network, we
can draw 7 independent circulating currents so that they permit a
different current in each branch of the network. We shall use the
following notation:

a. The Resistance Coefficients. R,, is the resistance common to the
tr and 7, circuits. R,, is the total resistance in the 7, circuit.

b. The Inductance Coefficients. The inductance notation is com-
plicated by the possibility of mutual inductance. If L}, is the total
self-inductance common to 7, and 7, and M,, is the mutual inductance
between the 7, and 7, circuits, then we define L,, to be

(9'1) LT‘ = L}. i Mrc

The negative sign is used if M,, opposes L},. We define L,, as the
total self-inductance in the 7, circuit.

¢. The Elastance Coefficients. In the circuits that we are con-
sidering, every condenser will be traversed by one or more circulating
currents. For a given current, condensers appear in series but not in
parallel. It is convenient if we write the equations in terms of the
elastance coefficients rather than in terms of the capacitance coeffi-
cients. The elastance coefficients are the reciprocals of the capacltance
coefficients and are denoted by the symbol S.
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Let us denote by 8., the elastance common to the 7, and 1, circuits.
We shall denote by S.. the sum of the elastances in the 7, circuit.

The Reciprocity Relations. With the notations defined above, we
have

(9.2) ch = Rnr, Lru = Lar, Su = Sn

These coeflicients are called the mutual parameters of the network,
and S, Ly, and R,, are called the mesh parameters.

The General Equations. The set of differential equations describing
the behavior of the general n-mesh networks may be written con-
veniently if we introduce the operators

t
(9.3) Z(D) = L +R,, + 8. / ( Hadt
= LD + R + 5
If now (ey, €3, * * - ¢,) denote the potentials impressed on the con-
tours of the meshes 1, 2, - - - n, and (41, %2, * * - %s) are the mesh

currents of the corresponding n meshes, we have

Zn(DYyiy + Z12(D)is + - - - + Z1a(D)in = es(t)
Z21(D)7:1 + Zzz(D)’iz + -+ Z2n(D)7:n = ez(t)

Za(D)e + Zuo(D)e + - - - + Zn(D)i = e,(t)

(9.4)

A concise form of these equations may be obtained by the use of
matrix notation as explained in Chap. IV. To do this, we introduce
the following square matrices:

(L1 Lz - -+ L] R Riz * * * Ria
[L] = L21 ' L22 st L2Yl [R] R21 R22 t R2n
(9.5) | Lo R Ly, | Ry Ruz * * * Ron

(81 Sizv - S
[S] = Szl Szz vt Sz»
Snl Su2 ct e Svm

In terms of these matrices,we construct the square matrix [Z(D)] by

(9.6) [2(D)] = LD + (] +



160 MATHEMATICS FOR ENGINEERS AND PHYSICISTS [Crap. VII

‘We also introduce the column matrices

€y '&.1

(2] ?:2
9.7) fe} = ¢ {1} =

€y in

The set of differential equations (9.4) may then be written con-
cisely in the form
(9.8) [Z(D)]{d} = {e}

In the usual network problem we are given the various mesh
charges and mesh currents of the system at ¢ = 0, and the various
mesh potentials (eic2 - - - e,) are assumed impressed on the system
at t = 0. We desire to find the subsequent distribution of currents
in the system.

Let us introduce a column matrix {E(p)} whose elements are the
transforms of the elements of the matrix {¢}. That is,

(9.9 £fe} = {E(p)}
In the same way, introduce the column matrix {I(p)}.
(9.10) {I(p)} = £{d}
If we now introduce the column matrices
0\
. ¢
2> o
zg q2
(9.11) {2} = <. {¢° =
1:.3 qn

where (2}, 43, - + - 1) are the initial currents of the corresponding
meshes of the system at ¢ = 0, and (g}, ¢3, - - * ¢0) are the correspond-
ing initial mesh charges of the system at ¢ = 0. Then the set of
differential equations (9.8) transforms into

(9.12) ZWHI) = {E(p)} + plL}{%°} — [Sl{¢"}

If we now premultiply both sides of this equation by the inverse
matrix [Z(p)]~!, we obtain

(9.13) I =[Z@I™E®)} + plZ(p)LI{°) — [Z(0)][Sl{¢"}
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We now obtain the various mesh currents from the equation
(9.14) {i} = I-{I}

This formally comptetes the solution of the problem. In general,
the above algebraic procedure will give the elements of the matrix I
as the ratios of polynomials in p. The inverse transforms of these
elements must be evaluated by using transform No. 52 of the table
of transforms. The procedure involves the computation of the roots
of the polynomial
(9.15) 1Z(p)| =0

In the general case this polynomial cannot be factored and it is
of the 2nth degree. The roots may be determined by the Graecffe-
root-squaring method of Chap. V.

If there are no initial mesh charges and mesh currents in the
system, we have

(9.16) {2} = {¢°} = {0}
and we have
(9.17) {I} = [ZP)]{ED)}

The solution in this case is that of a system initially at rest that
has the potentials {e; impressed on it at ¢ = 0.

10. The Steady-state Solution (Allernating Currents). The equa-
tions of the last section give the complete solution of a system having
initial charges and potentials and also impressed electromotive forces
of arbitrary form at ¢t = 0.

There is one case of extreme practical importance in electrical
engineering. This is the case where it is desired to find the so-called
steady-state current distribution when the various mesh electromotive
forces have the form

E, sin (ot + ¢1) E it
E, sin (wf + ¢2) Eeit
(10.1) {e} = (Essin (wf + ¢3) § = Im (Eseifs | eiot

..........

E, sin (wt + ¢n1) B peitn

This is the case that occurs in alternating-current theory. For
generality, we shall assume that the various mesh potentials have the
same frequency but differ in phase. To determine the steady-state
mesh currents, it is necessary to determine the particular integral
of the set, of equations

(10.1a) [Z(D)l{s} = {e}
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It is convenient to write

(10.2) {e} = Im {e},.eit
where Im denotes ‘‘the imaginary part of”” and
Eie,
(10.3) fela = {5
.E':.e;'¢;
(10.4) {¢} = Im {I}.e™t

where {I}, is a column matrix whose elements are the unknown com-
plex amplitudes of the steady-state currents to be determined by the
Eq. (10.1). Substituting (10.4) into (10.1) and suppressing the Im
symbol, we obtain

(10.5) [Z(Gw)]{I}a = {ed}
Hence we have
(10.6) {I1a = [Z(jw)] {e}a

The steady-state currents are now given by (10.4). The elements
of the column matrix {I}, are called the complex currents of the
system. The above procedure is a generalization of the method of
Sec. 4 for the single-mesh case. We have

(10.7) (2Ge)] = jolL] + [R] + 2]

This is called the impedance matrix. The terms
. Srr

(10.8) Zﬂ- = JwL" + Rrr ‘j—‘;

are called the mesh impedances, and the terms
(10.9) Zra = jaLos + Ruu + % rs

are called the mutual impedances.

PROBLEMS

1, What is the analogous electrical circuit for a mechanical pendulum that is
subjected to very small displacements?
2. A circuit consisting of an inductance L in series with a capacitance C has

impressed on it at ¢ = 0 a potential e(t) = Ej—,:-t- 0<t<To)ande(®) =0,t>0.

Find the current in the system.

8. Two circuits are coupled with a mutual inductance M. One contains an
impressed potential E,, R, L, and a switch in series, the other circuit has Ls and C
in series, For what value of the circuit constants are oscillations possible?
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4. Each side of an equilateral triangular circuit contains a capacitance C, and
each vertex i1s connected to a common central point by an inductance L. Show
that the possible oscillations of this circuit have the period T = 2x 4/3LC.

5. Two points are connected by three branches, two of which contain both a
capacitance C and an inductance L, and the third only a capacitance C. Show
that the angular frequencies of oscillation of the network are 1/4/LC and 4/3/LC.

6. Two circuits L,, R, and L,, K; are coupled by a mutual inductance M,
where M? = L L;. A constant electromotive force E is applied at ¢ = 0 in the
primary circuit. The initial currents are zero. Determine the currents in the
circuits.

7. An electromotive force E cos (wt + z) is applied at ¢ = 0 to a circuit con-
sisting of capacity C and inductance L in series. The initial charge and current
are zero. Find the current at time ¢.

8. An electromotive force E sin wt, where w = 1/4/LC is applied at ¢ = 0 to
a circuit consisting of capacity C and inductance L in series. The initial current
and charge are zero. Find the current. (This is the case of resonance.)

9. Show that a combination of capacity C shunted by resistance R, in series
with a combination of inductance L shunted by resistance R behaves as a pure
resistance for all forms of applied electromotive force if L = CR2,

10. Two resistanceless circuits L, C; and Ly, C; are coupled by mutual induet-
ance M. If att¢ = 0, when the currents and charges are zero, a battery of electro-
motive force E, is applied in the primary, find the current in the secondary.

11. A circuit consists of a resistance, an inductance and a capacitance in series.
An electromotive force e = E; cos wit + E; cos wst is impressed on the circuit.
Find the steady-state cuirent.

12. A series circuit consisting of an inductance capacitance and resistance has
an electromotive force e(t) of the ““meander type,” as shown in the figure, impressed
on it. Find the steady-state current.

e(t)y

1B,

f T

ProB. Fia. 12.
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CHAPTER VIII

ELASTIC VIBRATIONS OF SYSTEMS WITH A FINITE
NUMBER OF DEGREES OF FREEDOM

1. Introduction. One of the most important and interesting sub-
jects of applied mathematics is the theory of small oscillations of
mechanical systems in the neighborhood of an equilibrium position
or a state of uniform motion. In the last chapter we considered the
oscillations of a very important vibrating system, the electrical
circuit. By the analogy between electrical and mechanical systems,
all the methods discussed in the last chapter may be used in the
analysis of mechanical systems. In the mechanical system, we are
usually concerned with the determination of the natural frequencies
and modes of oscillation rather than the complete solution for the
amplitudes subject to the initial conditions of the system. In this
chapter, we shall use the classical method of solution rather than the
Laplace transform method. By comparing the analysis of the equiva-
lent electric circuits of the last chapter which were analyzed by the
Laplacian transformation method and the classical analysis of the
mechanical systems in this chapter, a proper perspective of the utility
of the two methods will be apparent.

2. Oscillating Systems with One Degree of Freedom. ILet us
consider the vibrating systems of Fig. 2.1.

Fig. 2.1,

System a represents a mass that is constrained to move in a linear
path. It is attached to a spring of spring constant k and is acted
upon by a dashpot mechanism that introduces a frictional constraint
proportional to the velocity of the mass. The mass has exerted upon
it an external force P, sin wt. By Newton’s law we have

164
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. dr

xr = (—iT
2.1) Mi = —Kz — Ri + Py sin wi &z
where K is the spring constant and R is the friction coefficient of the
dashpot.

System b represents a system undergoing torsional oscillations. It
consists of a massive disk of moment of inertia J attached by means
of a shaft of torsional stiffness K. The disk undergoes torsional
damping proportional to its angular velocity 6. The disk has
exerted upon it an oscillatory torque 7'y sin wf. By Newton’s law we
have
(2.2) Ji§ = —K6 — R6 + T, sin wt

System c is a series electrical circuit having inductance, resistance,
and elastance. By Kirchhoff’s law, the equation satisfied by the
mesh charge ¢ is

(2.3) G+ Rg + Sq = E, sin wit

By comparing these three equations, we obtain the following table
of analogues:

Linear Torsional Electrical
Mass M | Moment of inertia J | Inductance L
Stiffness K | Torsional stiffness K | Elastance S =1/C
Damping R | Torsional damping R | Resistance R
Impressed force Impressed torque Impressed potential
Fysin wt Ty sin wt E, sin wt
Displacement z | Angular displacement 6 | Condenser charge q
Velocity & = v | Angular velocity 6 = «| Current 1t =4

We see from this table of analogies that it is only necessary for
us to analyze one system and then by means of the table we may
obtain the corresponding solution for the others.

Free Vibrations. Let us consider the system a when no impressed
force is present. In this case, Eq. (2.1) reduces to

2.4) Mi+ Rz + Kz =0

This equation describes the free vibrations of the mass of Fig.
2.1. To find the general solution of (2.4), we find two nontrivial
solutions. An arbitrary linear combination of the two particular
solutions will then be the desired solution.
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Since Eq. (2.4) is linear and homogeneous, we know from the
general theory of Chap. VI that we can obtain a particular solution
of the form e** where s is a constant to be determined. If we sub-
stitute e* for z in (2.4) and divide out the factor e*, we obtain the
quadratic equation

(2.5) Ms?*+ Rs+K =0

This equation determined the quantity s. Let us denote the two
roots of the quadratic equation (2.5) by s; and s;. We then have

(26) T = cre’ + cqe

for the general solution of (2.5), where ¢, and ¢, are arbitrary constants.
The nature of the solution depends on the nature of the roots. There
are three cases to consider.

a. The Case (R? — 4Mk) > 0. In this case s, and s, are real and
unequal. The general solution is

(27) : T = c1e* + cqe’*

Both roots are negative, and (2.7) represents a disturbance that
vanishes as ¢.

b. The Case (R* — 4MK) = 0. In this case the quadratic equa-
tion (2.5) has a double root
(2.8) 81 = 8§ = W‘I;

fuud

Thus ¢;¢2¥ " is the only solution obtainable from (2.5). However,

the general theory of repeated roots as discussed in Chap. VI shows

-R
that there exists a second solution of the form z = te¥ . The general
solution is, therefore

-R
(29) r = (01 + cgt)eﬁt

In both these cases we have the so-called aperiodic motion. As
time increases, the displacement of the mass approaches zero asymp-
totically without oscillating about z = 0. This means that the effect
of damping is so great that it prevents the elastic force from setting up
oscillatory motions.

¢. The Case (R* — 4MK) < 0. In this case, the roots s; and s,
are complex conjugates. If we let

K R?
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we may write the general solution in the form

-B
(2.11) T = c1*" 4 coe®™ = e”f(cle"“‘ + coeiut)
By using the Euler relation, this becomes

B
(2.12) z=¢ M (c} cos wet + ¢} sin w,t)
where ¢] and ¢} are two new arbitrary constants. If we let
(2.13) ci = A cos w,é and c; = A sin w,d

where A and § are two new arbitrary constants, then (2.12) becomes

R
(2.14) z = Ae I cog w,(t — 8)

The constant A4 is called the amplitude of the motion, and w, is
called the phase. '

K R?
(2.15) ws = \/ﬁ ~ I

is called the angular frequency of the motion. The motion represented
by (2.14) is quite different from the aperiodic motion discussed in
cases ¢ and b. In this case the damping is small compared with the
elastic force, and the motion of the mass is oscillatory. The damping
is not so small as to be considered negligible. The motion is one of
damped harmonic oscillations. The oscillations behave like cosine
waves with an angular frequency of w, except that the maximum value
of the displacement attained with each oscillation is not constant.

) R
The amplitude is given by the expression Ae ¥ gnd decreases
exponentially as ¢ increases.

The quantity R/2M is called the logarithmic decrement. It indi-
cates that the logarithm of the maximum displacement decreases at
the rate R/2M. 1If there is no damping present (R = 0), we obtain
harmonic oscillations with natural angular frequency.

(2.16) wy = \/-g

The amplitude A and the phase w8 must be determined from the
initial state of the system.
If, for example,

- u=0
(2.17) at ¢ 0{%‘@ - u
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then
Rt

(2.18) u = 2 ¢ gin o,
is the particular solution.

Forced Oscillations. If an external force F(t) is impressed upon
the physical system a above, the equation governing the displacement
z of the mass is given by

(2.19) Mi + Ri + Kz = F(1)

From the general theory of Chap. VI, we know that the general
solution of (2.19) is the superposition of the general solution of the
homogeneous equation (2.4) and the particular solution of (2.19).
Let the force F(¢) be a periodic force of the form

(2.20) Foeit = Fy cos wt + jFo sin wt
= F(t)

Accordingly, we have
(2.21) Mi + Ri + Kx = Foeiet

Since this equation is linear, we attempt to find a solution of the
form
(2.22) z = Aet

We realize that the real part of the solution corresponds to the
force function F, cos wt and the imaginary part, to the force function

Fosin wt. Substituting the assumed form of the solution in Eq. (2.21),
we obtain

(2.23) —MwA + jRoA + KA = Fo
or
(2.24) 4 Fo

T (K = Mo + jRo

The complex number

(2.25) , Z = (K — Mao?) + jRw
may be written in the polar form
(2.26) Z = |Z|e"
where
(2.27) 1Z2] = VK — Mo?)? F Rio?
8 = tan—1 1Y
= tan

& = Mo
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We then have
. F
2.28 =
(2.28) i

Substituting this into Eq. (2.22), we have

6"“ wt—8)

(2.29) z = i%“—le"(w—v>

The physical meaning of this solution is that if a force of the form
Fy cos wt is impressed on the vibrating system the resulting steady-
state motion is given by

(2.30) z = ]FZQI cos (wt — 6)

If a force F, sin wt is impressed on the system, then the steady-
state response is

Fy .
(2.31) x = izl sin (ot — 6)

The complex number Z is called the mechanical impedance of the
system. It is a generalization of the spring constant to the case of
oscillatory motion.

It is convenient to introduce the quantity u, defined by

1
2.32 =

u is called the distortion factor. The angle 6 is the phase displace-
ment. The solution (2.29) may be written in the form

(2.33) z = Fopei@—9

We see that the resulting steady-state motion is given by a function
of the same type ds that of the impressed force. However, it differs
from it in amplitude by the factor x and in phase by the angle . The
solution (2.33) represents the steady-state asymptotic motion after
the superimposed free vibrations which are damped have disappeared.

The general solution is of the form

- B
(2.34) z = Ae 2M cos w,({ — &) + Fouei«t—0

If the initial conditions at ¢ = 0 are given, the arbitrary con-
stands A and § may be determined.

The Case of General Periodic External Forces. A very important
case in practice is the one in which the impressed external force is
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periodic of fundamental period 7. That is,

2.35) . Ft+4+T)=F()
In this case, we may express F(f) in the complex Fourier series
nm 4w . -
(2.36) F@t) = ”22 ) Cneimat w =

as explained in Chap. III.
The coefficients c, are given by

1 [T .
(2.37) =7 A F(t)eint dt

To determine the response in this case, we assume a solution of
the form
nwm -4 o
(2.38) z = 2 aneinet
N — o0
On substituting this assumed form of solution and equating the
coefficients of the term ¢!, we obtain

(2.39) =7
where
(2.40) Z, = (K — Mn%?* + jRnw
This may be written in the polar form
(2.41) Zy = |Z,|ei*
where
_ Rn
(2.42) IZnI = \/(K - anwz)g + R2n2w2 0,; = tan 1 (K—-_-——ﬁﬁ;{)'
If we write
1
(2'43) Bn = Zn
then we have
(2.44) Gn = Copin€™"
Substituting this into (2.38), we obtain
nem+w
(2.45) T = E Clin @ (h0t—00)
nowm-—®

This represents the steady-state response to the general external
periodic force F(¢). In this case, the general harmonic n is magnified
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by the distortion factor u.. Equation (2.45) is of extreme importance
in the theory of recording instruments. If the parameters M, K, and
R are adjusted so that the u,’s are s large as possible, then the appa-
ratus is as sensitive as possible. If for the various frequencies (nw)
the u.’s have approximately the same value, then there is a minimum
amount of distortion. The phase displacements 6, are of secondary
importance in acoustical instruments since they are imperceptible
to the human ear.

Resonance Phenomena. If we study the distortion factor u of
Eq. (2.32) as a function of the frequency w, that is, if we write

1
(2.46) L=171= u(w)
we notice that
(2.47) lim plw) =0
wW=—> N0

. 1
2.48 lim = =
(2.48) Jim. ro) = &

That is, if we impress on the system a force of very high frequency,
the amplitude of vibration tends to zero. If we apply a steady
force, the motion is of constant magnitude Fo/K.

Between @ = 0 and w = « there is a value where u(w) has a
maximum value. If we place

d
(2.49) 7 uwlw) =0
we obtain
(2.50) 2Muw? = 2MK — R?
If we let w, be the value of w that satisfies this equation, we have
K RY
(2.51) ©“r =AW T 2

This value of w, makes u(w) a maximum. If there is no friction,
R = 0, and the above analysis fails. In this case the equation of
motion is

(2.52) Mz + Kz = Foeiot
If

(2.53) = \/%. = wp
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this equation has the particular solution

_ Fotetot _ F oteiet
@59 ? 7 %o 3 /KM

We then see that in this case if the impressed force coincides with
the natural frequency of the system, wo, then the amplitude increases
without limit as ¢ increases. If friction is present, p(w) is always
finite and has its maximum value when v = w,. In the literature, the
frequency o, is called the resonance frequency of the system.

3. Two Degrees of Freedom. The system considered in the above
section consisted of a mass restrained to move in a linear manner, and
its position at any instant was specified by the parameter z measured
from the position of equilibrium.

Let us now consider the motion of the system of Fig. 3.1.

This system is analogous to the electrical circuit of Fig. 3.2.

L L

my

T R AT

Fia. 3.1. Fia, 3.2.

The state of both of these systems is determined by two quantities.
These are the linear displacements of the two masses of the mechanical
system (z1,Z2) or the mesh-charges of the electrical system (g,q2).
We speak of a system whose motion and position are characterized by
two independent quantities as a system having two degrees of freedom.
If the position and motion of a system are characterized by n inde-
pendent quantities, then the system is said to be one of n degrees of
freedom.

The equations of motion of the systems of Figs. 3.1 and 3.2 may
be obtained by d’Alembert’s principle in the mechanical case or
Kirchhoff’'s laws for the electrical case. We may pass from one
system to the other one by means of the table of analogues of Sec. 2.
It is usually simpler to write Kirchhoff’s laws for the system and then
translate the electrical quantities to mechanical ones.

Writing Kirchhoff’s law for the fall of potential in the two meshes
of the circuit, we have

@3.1) Ligs + S1g1 + 8(g1 — ¢2) = 0
) LaGs + Sag2 +S(gz — ¢1) =0
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Translated to mechanical quantities, we have

{ Myiy 4+ Ky + K(zy — 20) = 0

3.2) Mgy + Koo + K(zg — 21) = 0

These equations are linear and homogeneous of the second order of
the type discussed in Chap. VI. Their solutions are of the exponential
type. To solve them, let us place

Ty = A
(33) (o
where A;, Az, and @ may be real or complex.

Substituting this into (3.2) and dividing out the factor e, we
obtain
3.4 Ai(Mwo?+ K+ K) — A K =0
3-4) l—A1K+A2(M2a'~’+K2+K)=O

These are two homogeneous linear equations of the type discussed
in Chap. IV. This system of equations has a solution other than the
trivial one 4; = 4, = 0, if

(@) = M2+ K1+ K) —-K _
—K (]llza2 + Kz + K)

Expanding the determinant, we have

(8.6) Ale) = M+ K1+ K)((M3a?2+ K, +K) — K2=0

This is called the characteristic equation of the system. This
equation may be written in the form

K 4+ K K, + K K:
3.7) (a’ + =47 (a"‘ +=5=) = 35ar, = ©

(3.5) A 0

It is convenient to introduce the notation

Ki+K , K. +K

(3.8) o} = L, wa = Tap—
w? K
12 = Ml ]‘l2

We may then write the characteristic equation in the form
3.9) (@ + wh)(a® + wf) — ol =0
or

(3.10) ot + a*(w}; + w,",) + (“’%l"’gi —wh) =0
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‘We therefore have
(3.11) a? = — §(w} + wh) £V (0h — w)? + dob,

The expression under the radical is positive, and the absolute
value of the second term is less then that of the first term. Hence
a? is real and negative. Accordingly, let us write

(3.12) a? = —w? or a= tjo

Hence

2 2
(3.13) = (“’——i;-‘L) £ 2N/l — ) T Aty

Equation (3.13) gives two values for w?; let us call them w; and ws.
From (3.12) we obtain four values for o, jwi, —jwi, jws, and —jws.
We find from our original assumption (3.3) that the solutions for
z; and z, are of an exponential form, we obtained four values of a.
The general solution may be written in the form

(3.14) 7 = Ayeit + 4116""”“ + Aot + x‘;ue""‘"
' Ty = Anet + Ane v + Apeit + Agyd—iot

Since z; and z; are real, A;; must be the conjugate of Ay and
similarly for A1, and A, ete. If we write

1167 T cueih
Ay = ’ Ay =
2 ! 2
cuciﬂa 6126"'”’

A =~ Ap =
(3.15) 2 2

C107" - Ca1e~N

Ag = o’ Ay = -5 3

Ca067 - Cooe— 102

Agp = ) ’ A22=—"§——

where ¢13, €13, €21, €22, 01, and §; are new arbitrary constants. We may
then write the solution in the form

{ Iy = C11 CO8 (wlt + 01) + Ci12 COS (wzl + 92)

3.16
( ) Ta = Cg3 COS (th 4+ 91) + ¢a2 cos (wzt + 92)

The ratios cii/cy1 and c1a/cs; are determined by Eqgs. (3.4), since
for each value of a the ratios of the quantities A1u/A2; and A13/A s
are determined by these equations. It appears that in Eqs. (3.16)
there are four independent arbitrary constants. We may take them
to be cu, €13, 61, and ;. Equation (3.16) shows that the most general
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solution of the system is made up of the superposition of two pure
harmonic oscillations. In each of these oscillations the two masses
oscillate with the same frequency and in the same phase. The
amplitudes of oscillation are in a definite ratio given by Eqgs. (3.4).

The pure harmonic oscillations are called the principal oscillatiorns
or the principal modes of oscillation of the system.

Special Case (M, = My, = M), (Ky = K, = K,). A very interest-
ing and illuminating special case of the above general theory occurs
when the two masses of the system are equal, that is,

(3.17) My=M,=M
and
(3.18) K], = Kz = Ko

This is a very symmetric case. Rather than to apply the above
general theory, it is more convenient to begin with the differential
equations of the system. The general equations (3.2) reduce in this
case to

(3.19) { Miy + (Ko + K)zs — Kz, = 0
Mis + (Ko + K)z2 — Kz, =0

If we add the two equations, we have

(3.20) M(E + £5) + Ko(#1 + £2) =0

Let us introduce the new coordinate y; defined by

(3.21) y1 = (21 + z2)

We then have )

(3.22) M+ Koy1 = 0

Hence the coordinate y; performs simple harmonic oscillations of the
form

(3.23) y1 = A, 8in wit + B; cos wit
where ‘
(324) wy = .\/%9

This represents a motion where the two masses swing to the left
and right with equal amplitudes in such a manper that the coupling
spring is not stressed. If we now subtract the second equation from
the first one and let

(3.25) Y2 = (2 — 23)
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we obtain

(3.26) My: + (Ko + 2K)y, = 0
This equation has a solution

3.27) y2 = A, 8in wol + B2 cos wal

where

(3.28) vz = \/f(“ +2K

This case represents the one in which the two masses move in
opposite directions with the same amplitude. We may write the
transformation from the z coordinates to the y coordinates in the
matrix form

(3.29) {z;} = [i —}] {;;l

and also

Ti| _ 1 171 Y| _ 1 1 Y1
T 4 R R I 4 R A
In this very simple case, we see that by a linear transformation
of the coordinates (zi,z.) to the coordinates (y1,y:) we have effected
a separation of the variables so that the motions of the y; and y,
coordinates are uncoupled.
These new coordinates y; and y. are called normal coordinates.

They will be considered in greater detail in a later section.
The general solution of the system may be written in the form

(3.31) z1 = §(A1 sin wit + By cos wit 4 A, sin wst + B cos wst)
) zs = $(A; sin wit + By cos wit — Az sin wat — Bs cos wat)

Let us suppose that the motion begins in such a manner, that

X1 = 2o

_ X2 =0

(3.32) ate=00 "
:i)g =

That is, the system is initially at rest, but at { = 0 the mass 1 is
displaced a distance z,. In this case, the general solution (3.31)
reduces to

T = %—’ (cos wit + cos wsl)

(3.33) -
Ty = -2—° (cos wit — cos wat)
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This solution may also be written in the form

= 1, cos €L @: w1 — 0
z :cocos( 5 )tcos( 5 )t

(3.34)
Zy = Zo sin (c.u _; wz) { sin (9-1-%9—2) t
If the coupling spring k is weak, then k is small and we may write
(3.35) w2 = wy + 28

where 8 is small compared with «; and we have

l (w1 + w2) = 2w
(wz - wl) = 23

We may then write (3.34) in the form
{ 21 = o cos (wil) cos (&f)

(3.36)

(3.37) Ty = —xo sin (wil) sin (8¢)

The motions of the two masses in this casc execute a phenomenon
called “beats.”” Each mass executes a rapid vibration of angular
frequency w; with an amplitude that changes slowly with an angular
frequency of 8. The two masses move in opposite phases so that the
amplitude of vibration reaches its maximum when the other is at rest.

4. Lagrange’s Equations. In this section a simple exposition of
Lagrange’s equations for conservative systems will be given. For a
more complete and detailed treatment, the
reader is referred to the standard treatises on

/,

mechanies. k m
Let us consider the simple mass and spring

system of Fig. 4.1. e
z is a linear coordinate measured from the o 41 "

position of equilibrium of the mass. If the
mass is moving with a velocity » = %, its kinetic energy T is given by
(4.1) ' T = §Mv* = §M(i)?

When the spring is stretched a distance z from its position of
equilibrium, then the elastic or potential energy stored in the spring
is

4.2) V-—-/ Fdx=/ Kzdz = B2
0 0 2

By Newton’s second law of motion, the differential equation
governing the motion of the mass is

(4.3) Ma = —F
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where a = 7 is the acceleration of the mass and F is the restoring force
of the spring. The minus sign is introduced because the restoring
force F acts in the opposite direction from z, since z is measured from
the position of equilibrium. We may also write the equation (4.3) in
the more fundamental form

4.4) ’gi (Mv) = —F

If we differentiate the kinetic energy T of (4.1) with respect to
v = &, we obtain
7]
9% T= 6:1: 2

If we differentiate the potential energy V of (4.2) with respect to
z, we have

(4.6)

(4.5) M(:lt:)2 = Mz = Mv

oz 2 =Ke=F
Hence in terms of the energy functions, the equation of motion may
be written in the form

u my —4)%'6‘—1 m, X d aV
. l 4.7 ﬁ +
Y 1 )

This form of the equation of
motion is called Lagrange’s equa~
tion of motion and is simply a convenient way of writing Newton’s
second law of motion. )

Let us now consider the system of Fig. (4.2).

This is the system analyzed in Sec. 3. In this case the kinetic
energy is given by

6V Kz?
6x

Fia. 4.2.

(4.8) T = §M.3} + $Mo33
The potential energy stored in the springs V is
(4.9) -V = §Kaat + $K(21 — 22)* + $Kozd

In this case the kinetic and potential energies are quadratic func-
tions of the linear displacements z; and 2;. In this case, if we form
the partial derivative

aT

(4.10) Fr i Mgy = M

we obtain the momentum of the first mass.
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The derivative

(411) g%': = Kll‘l + K(:cl - .'Ig)

is exactly the restoring force acting on the mass M;. We thus see that
the first of the equations (3.2) may be written in the form

d (oT 14
(4.12) a (:9_.:;1) =+ Fre 0

In the same manner the second equation of motion may be written

in the form
d (8T aV
(4.13) di (51—:2) + —6_12; =0

In this case the motion of the system is given by the two Lagrange
equations (4.12) and (4.13).

The importance of Lagrange’s equations is that they hold in any
sort of coordinates not merely the linear coordinates which we have
used above. For example, in the symmetric case of Sec. 3 the kinetic
and potential energies are given by

(4.14) {T=1}M(x%+¢§)
’ V = §Ko(z} + 2§) + $K(z1 — 72)*

We saw that the analysis was vastly simplified by introducing the
new coordinates y; and y; by the linear transformation .
(¢15) {ponts

) Y2 =21 — T3
or
21 = ¥(y1 + y2)
(4.16) . I z2 = ¥(y1 — y2)

In terms of these new coordinates, the kinetic and potential energies
become
@17 [ T = ¥M(y} + 93)
V = }Ko(1i + 9i) + 4Ky}
It was asserted that Lagrange’s equations would hold in the y, and
y2 coordinates. We therefore have

d (T 14
(4.18) 7 3?/}) + e
or

(4.19) %l-ﬂl'i'%-oy: =0
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and

dfoT oV _
(4.20) ;ﬂ(@) + = 0
or
(4.21) % g2 + —;’ Kwy: + Kyz =

Hence the equations of motion are

(422) Myl + K0y1 =0
and
(4.23) Mijs + (Ko + 2K)y = 0

These were the equations of motion of the symmetric system
obtained directly.

In this simple example we see
that the introduction of the two
. new coordinates y, and ¥, reduce
| \« the potential and kinetic energy
| m, expressions to sums of squares.
! This is a general property of

normal coordinates. Each nor-
mal coordinate executes simple harmonic oscillations independently of
the others. .

As another example, let us consider the motion of three pendulums
of equal masses M and length | connected by springs at a distance h
from the suspension points A, B, and C as shown in Fig. 4.3.

The masses of the springs and the bars of the pendulums are
assumed so small that they can be neglected. The motion of the
pendulums may be expressed in terms of the angles 6y, 6;, and 6; of
the pendulums measured from the vertical in a clockwise direction.
The kinetic energy of the system is

(4.24) ’ T = $MI*(6; + 65)

o]

Fra. 4.3.

The potential energy of the system consists of two parts: the
energy due to the gravitational force and the strain energy of the
springs. If we limit ourselves to a consideration of small oscilla-
tions, then 6,, 65, and 6; are small quantities. The energy due to
gravity is

(4.25) V, = Mgi(1 — cos 8y) + Mgl(1 — cos 8;) + Mgl(1 — cos 8s)
= §Mgl(6i + 63 + 63)
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For small oscillations the springs may be assumed to.rema.in always
horizontal.
The elongation of the springs is then given by

(4.26) h(SiD. 02 — sin 01) = h(oa - 01)

and
h(Sill 03 — sin 02) = h(03 - 02)

respectively.
The strain energy of the springs is accordingly
(4.27) V.= -Izghz[(oz — 61)* + (6: — 62)7]
The total potential energy of the system is
(4.28) V= 2 M6 + 6 + 6) + 0 [0 — 07 + (6 — 07

This mechanical system is analogous to the electrical circuit of
Fig. 4.4.
S L S L S L
i‘) S= ) S== ‘@

Fic. 4.4.

The magnetic energy of the electrical circuit is
(4.29) Ty = 3L(¢t + ¢ + ¢3)

Where ¢, = 1., the mesh currents of the system and the electric energy
of the system are

(4.30) Ve = 3S(q} + ¢ + a3) -+ $80(qz — ¢1)® + $So(gs — ¢2)?

These expressions are completely analogous to the kinetic and
potential energies of the mechanical system. In this case we have

Mgl — 8§, Kh?— 8,

(4.31) BM —L  6—q

for the analogous electrical and mechanical quantities. The currents
are analogous to the angular velocities of the pendulums. In this
case, there are three Lagrangian equations of motion of the system.

dfeT 14
(4.32) a‘t(é‘a“r) + 5‘07' =0 r=1, 2, 3
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Performing the differentiation, we obtain

I’Mﬁl + Mglel + Kh2(01 - 02) = 0
(4.33) { 1:Md, + Mgle; + Kh*(8; — 6,) + Kh*(8; — 65) =0
12Mbs + Mglos + Kh*(6 — 6;) = 0

We may find the normal coordinates in this case rather simply. If
we add the three equations, we obtain

(4.34) M8y + 62 + 65) + Mgl(6, + 62+ 65) = 0
If we let

(4.35) Y1 = (614 0z + 65)

equation (4.34) becomes

(4.36) g+ % y1=0

The solution of this equation is

(4.37) y1 = A;sin \/‘;:It + Bi cos \/gt

and represents an oscillation of all threec pendulums in synchronism
with an angular frequency of

(4.38) wy = ,\/‘l:]

If we subtract the last equation (4.33) from the first one and let

(4.39) Y2 = (61 — 63)

we obtain

(4.40) MiYj, + (Mgl + Kh®)y, = 0
The solution of this equation is

(4.41) Y2 = A; sin wol + Bj cos wal

where

(4.42) oy = \/él +2

If we now add the first and last equations (4.33) and subtract
twice the second equation and let

(4.43) Ys = (61 — 26, -+ 85)
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we obtain

(4.44) MiYjs + (Mgl + 3Kh?)y; = 0
This equation has the solution

(4.45) ys = Aj;sin wst + B; cos wst

where

_ [Mgl ¥ 3K
(4.46) m—,F~Mz

We have thus succeeded in obtaining the three normal coordinates
y1, Y2, and ys. The three angular frequencies of the system are
w1, wz, and ws. If we know the initial displacement and angular
velocities of the pendulums, we may determine the six arbitrary
constants A,, B, r = 1,2, 3. Then the 6, coordinates are given by

on=%+24+8

3

Y _ Yy

(4.47) 02—3 3
Y1 Y2, Ys
bi=3-27T%

These equations are obtained by solving the 6, coordinates in
terms of the ¥, coordinates. It may be shown that the kinetic and
potential energies (4.25) and (4.29) are reduced to sums of squares in
the ¥, coordinates.

6. Proof of Lagrange’s Equations. In the last section we con-
sidered a method of writing the equation of motion of oscillating
systems in terms of the expressions for the kinetic and potential
energy of the systems. We saw that the state of motion of the system
could be expressed in terms of different parameters or coordinates.

In this section & proof of Lagrange’s equations will be given for a
particle, the proof may be easily generalized to a system of particles
and to rigid bodies.

Let us consider a particle of mass m. According to Newton’s
second law, the equations of free motion of this particle referred to a
set of rectangular coordinates are given by

(5.1) Mi =F,, My = F,, M: =F,
where (F., F,, F,) represent the components of the effective force

acting on the particle in the z, y, and 2 directions. Suppose we desire
to express these equations of motion in terms of another set of coordi-
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nates (q1, ¢z, ¢s) related functionally to the rectangular coordinates
(z,5,2). We may then express the coordinates (x,y,2) in terms of the
coordinates (¢, g2, ¢3) by

z =Filgy, g2, q3), Yy = Falqy, 3, ¢3)
(52) { z = Fi(qy, ¢», ¢5)

With this notation, on differentiation with respect to time, the
expression for the component velocities of the particle (#,7,¢) may
be expressed in the form

. ar . 0
_“3;‘91+-£42+-£
a
(5.3) Q1+ 7/ 92+
éam-i-b‘a%‘l”ba;ih

where in general &, ¥, 2 are explicit functions of (¢1, ¢z, g3, ¢1, G2, ¢3)-
Now since

(5.4) z = Figy, g2, g3)
then
ox
(5.5) 5 = ¢1(q1, g2 93)
Hence
d [ iz 6431 31 1
(5.6) i (@1') 6q g1 552‘ q2 ;9; qs
9% . 9% 9%
0@ T ogoq T agion &
Differentiating the first equatlon (5 3) with respect to ¢ we obtain
9t _ 9% | %
5.7 -67(—1 2Q1 + ag 8q gz + a0 ags gs
If we now compare (5.6) and (5.7), we obtain
d oz z
(5.8) dt (691) e

with similar relations for y and 2.
It is also evident by differentiating the first equation (5.3) with
respect to ¢, that

9z ax
(5.9) 3%~ o

with similar relations for y and 2.
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Let us now assume that we hold the coordinates ¢. and g; fixed and
give the coordinate ¢; an infinitesimui increment 8g;.  If oz, 8y, and 8z
are the increments that this produced in z, y, and 2, then if we let
6W be the work done by the effective forces when the particle under-
goes this infinitesimal increment, we have

(5.10) oW,=F,éx +F, 8y + Fz 8z
= M(& éx + ¢ oy + 2 6z2)

as a consecquence of Iqs. (5.1).
We also have

oz _ Sy _ bz
(5.11) oz = 30 8qs, oy = 5: 841, 8z = 50 5q1
Hence we may write (5.10) in the form
. ax
The rule for the differentiation of a product yields
df.ox\ _ .0z , .dfox
(5.13) L&) =2 42 2(E)
or
.0z _df.ox .dfa
514 s =a(ed) -+ ()

. oz dfox\ .
If we substitute the values of 3 and T (55) given by (5.9) and
(5.8), we obtain

or _df, o\ . o

(5.15) S ro Et("’ am) o
4
di

0 (47 _ 8 (&
6q;2 6ql2

and similar relations for ¥ and 2. However, the kinetic energy of the
particle is given by

(5.16) =@+t

Hence as a consequence of (5.15) and (5.16) the expression (5.12) may
be written in the form

d 8T aT) .

(5.17) 5W1 = —d—tb—&_}, - -5&—1
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Now if Q; 8¢, is the work done in the specified displacement of the
particle, then it is convenient to regard @ as a sort of generalized
force. We may write

(5.18) Wi = Qs éq
and we have

d (3T orT
419 a(G) -5 -

By the same reasoning, if ¢; and ¢; had been held constant and ¢,
given an increment 8¢z, we obtain the equation

d (eT aT
(5.20) a—i('-';‘) - 'a—q"z = @
and in the same manner, holding ¢; and ¢, constant and giving ¢; an
increment d¢s;, we obtain

d (T ar
G20 AR EL)

We see that there are as many equations as there are degrees of
freedom. The Q, quantities are called generalized forces. The ¢,
quantities are the generalized coordinates.

Conservative Systems. If there is no loss of energy in the dynamical
system under consideration, the generalized forces may be derived
from the potetial energy of the system V in the form
:14 v

y Q==

(522) Q1 = Qz = - aq2 aqa

8q1
In this case the free motion of the particle is given by the three
Lagrangian equations

d foT oT |, oV
(523) -‘ﬁ(-é-q-;)—b—q-;-f'—a—q:-—o T—1,2,3

By an extension of the above argument, it may be shown that in
the case of a conservative system having n degrees of freedom its
Lagrangian equations are of the form (5.23). In this case there are
n generalized coordinates (g1, g2, * - * ¢.) and there are n equations.

We notice that in the simple examples of Lagrange’s equations
discussed in Sec. 4 we had .

aT

(5.24) 5 =

0 r=12 -+ -n
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The reason for this was that the kinetic energy in the systems
discussed in that section was not a function of the coordinates but
only of the velocities of the system. As an example of a system where
the kinetic energy is a function of the generalized coordinates g¢. as
well as the generalized velocities ¢,, consider

the two dimensional motion of a particle in the 7
zy plane as shown in Fig. (5.1). m
In this case we have
(5.25) T = M (& + %) \é ,
Let us assume that the particle is attracted I Feo. 51
IG. 0.1,

to the origin by aforce proportional to the dis-
tance so that the particle has a radial force F, directed toward the
origin given by

(5.26) F, = Kr
In this case the potential energy is given by

2

(5.27) v =%

To describe the motion of the particle it is convenient to use the
polar coordinates r; and 6; as the generalized coordinates. These
coordinates are related to the Cartesian coordinates z; and y; by the
equations

(5.28) z =rcos b, y =rsin
In terms of these coordinates, the kinetic energy becomes
(5.29) 7 = 6 4 v
The Lagrangian equations of motion are
o d (T aT | oV
(6.30) a‘z(ﬂ) ~ar e =0
or
(5.31) M — Mré*+ Kr =0
and
d /o aT | oV
. —_ — — = 0
(5.32) - ( ;) Lz
or

(5.33) dit (Mr%6) = 0
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Equations (5.31) and (5.33) are the equations of motion of the
system. Equation (5.33) expresses the conservation of angular

momentum of the system. The term %—%-'_is seen to give rise to the

centrifugal force term. Terms of the form gz which are absent in

r

rectangular coordinates may be regarded as a sort of fictitious force
introduced by using generalized coordinates.

~ 6. Small Oscillations of Conservative Systems. A very important
class of problems in the theory of vibrations is that in which a dynam-
ical system is performing free or forced oscillations without friction.
The determination of the natural frequencies and modes of oscillations
of the torsional vibrations of an engine, the oscillations of spring-
mounted machinery, the oscillations of electrical networks whose
resistance is so small as to be neglected, etc., are problems that come
under this category.

The Lagrangian equations of motion of a general conservative

system of n degrees of freedom oscillating in the neighborhood of a
position of equilibrium may be written in the form

MyGi+ +« -+ Mugo +Kugi + * - - + Kingn =0
(6.1) Maugs 4+ -« = 4+ Monga + Kagi + * -+ + Kougn =0

Mnlq'l"l" ¢ +M1mq‘n+Kﬂlq1+ c T +K1an =0

where (g1 * * - ¢») are generalized coordinates, M,, are inertia coeffi-
cients, K, are stiffness coefficients. These are the equations governing
the motion of the most general conservative system performing free
oscillations in the neighborhood of a position of equilibrium. The
examples discussed in Secs. 3 and 4 of this chapter are special cases
of this general system. The analysis of these equations is greatly
facilitated by writing them in matrix notation. If we let

M 1m -t M 1n
(6.2) Ml =] -+::c0on. = the inertia matrix
M a1 ° " M nn
K ) 5 R K in
(6.3) [Kl=]+:voeonn = the stiffness matrix
Knl v Kvm
Q1
(6.4) {¢} = {.\ = the coordinate matrix
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The set of equations (6.1) may then be written in the convenient
form

(6.5) [M]{g} + [K]{q} = {0}
The coefficients M,, and K,, have the important property that
(6.6) Krc = Ko Mrc = Mcr

Hence the matrices [M] and [K] are symmetric. The kinetic and
potential energies of the system may be written in the convenient
matrix form
(6.7) T = 3{¢}'[Ml{g}, V = #{q}'[Kl{g}
where {¢}’ and {q}’ are the transposed matrices of the column matrices
{d} and {¢} and are hence row matrices. This is the notation used
in Chap. IV,

Let us consider solutions of Eq. (6.5) corresponding to pure har-
monic motion of the form
(6.8) {g} = {4} sin (wt + 6)

where {A} is a column matrix of amplitude constants,  is the angular
frequency of the oscillation, and 6 is an arbitrary phase angle. Sub-
stituting this into Eq. (6.5), we obtain

(6.9) (K] — o’ [M]){4} = {0}

This represents a set of homogeneous algebraic equations in the
arbitrary amplitude constants {A}.

It is convenient to premultiply both sides of Eq. (6.9) by [K]~, the
inverse of K. We then obtain

(6.10) (I — K [MD {4} = {0}

where I is the unit matrix of the nth order. The matrix [K]-[M] is
usually called the dynamical matriz. That is, we have

(6.11) [U] = [K]"'[M] = the dynamical matrix

In terms of the dynamical matrix, the set of equations (6.10) may
be written in the forra

(6.12) (I — UD{4} = {0}
If we now write

(6.13) z=§

Then (6.12) may be written in the form
(6.14) (ZI - [UD{A} = {0}
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This set of equations will have solutions other than the trivial
one zero if the determinant of the system vanishes. That is,

(6.15) |ZI — U
(Z - Uu) — Uy —Up— -+ —Usn
= [—Un (Z"'Uzz) “‘Uas— c vt —Usn =0
—'Unl _Unz i (Z - Uma)

This is an equation of the nth degree in Z. It may be proved that all
the roots are real and positive. In general, this equation will have n

roots (Zi, Zs, Zs, - - * Z.). To each root Z, there corresponds a
value of w, w, given by
(6.16) a»=J% r=1,2"-"n

These are the natural angular frequencies of the system. We thus
see that our original assumed solution (6.8) has led us to n values of
w. Each value of w, w, gives a solution of the form

6.17) {A®} sin (ot + 6;)

Since the original set of equations is linear, we may write the
general solution by summing solutions of the form (6.17). We then
have the general solution

ren

(6.18) la} = 3, (A} sin (ot +6)

The column matrices {A®} are called the modal columns. Every
oscillation represented by each modal column is called a principal
mode of oscillation of the system. The number of principal oscillations
is equal to the number of degrees of freedom of the system. -

Every principal oscillation is a pure harmonic motion. The most
general form of oscillation of a system of » degrees of freedom consists
of the superposition of n pure harmonic motions. The frequencies
of the principal oscillations are called the natural frequencies of the
system. The lowest frequency is called the fundamental frequency.

Orthogonality of the Principal Oscillations. The modal columns
satisfy Eq. (6.9) with the proper value of w. For example, the rth
modal column satisfies the equation

(6.19) M{A®} = [K{A®}

This equation fixes the ratios of the numbers of the rth modal
column. If, for example, the first number A{” is chosen arbitrarily,
then by Eq. (6.19) the numbers A{", A", - + - A® may be expressed
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in terms of A{”. We thus see that the general solution (6.18) contains
only 2n arbitrary constants, since any number in any modal column
may be specified arbitrarily and the phase angles 6, are arbitrary.

The modal columns possess a very interesting and important
property that will now be derived. Let us write the equation satisfied
by the mode {A®}. This equation is

(6.20) W[ M{A®} = [K]{A®)}

Let us premultiply Eq. (6.19) by {A®}’ and Eq. (6.20 by {A®}’.
We then obtain

(6.21) WwHAOY[MI{AD} = {A@V[K]{A}
(6.22) WH{ACVIMI{A®} = {AO}[K]{A®]}

Now by a fundamental theorem of matrix algebra, if we have the
product of three conformable matrices [a] - [b] - [¢], then the transpose
of the product is given by

(6.23) (la] - [0] - [e])" = [e)'[b)'[a)

(see Chap. IV). If we then take the transpose of Egs. (6.21) and
use the reversal law of transposed products (6.23), we obtain

(6.24) WHADYV[MH{A®} = {ADY[K]{A®]

in view of the fact that the matrices [M] and [K] are symmetric, and
hence [M]' = M and [K] = [K].
If we now subtract Eq. (6.24) from Eq. (6.22), we obtain

(6.25) (wi — D {AOV[M]{A®} =0

Now by hypothesis;, w, and w, are two different natural frequencies
of the system; hence w, 5 w,. It follows that

(6.26) (AOVIM]{A®} =0

This relation is known as the orthogonality relation for the principal
modes of oscillation.

7. Solution of the Frequency Equation and Calculation of the
Normal Modes by the Use of Matrices. A very useful and important
method for the determination of the roots of the frequency equation
(6.15) and the determination of the normal modes of a conservative
system has been presented by W. J. Duncan and A. R. Collar in their
paper A Method for the Solution of Oscillation Problems by Matrices,
Philosophical Magazine, Ser. 7, vol. 17 (1934), p. 865. This method
is most convenient in that it avoids the expansion of the determinantal
equation (6.15) and the solution of the resulting high-degree equation.
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The modal columns {A®} are also most simply obtained. Because
of its great utility and increasing usefulness, a brief treatment of the
method will be given in this section.

We see from Eq. (6.14) that the rth modal column satisfies the
equation
(7.1) (U){A®} = Z,{A"}

where Z, is the rth root of the frequency or determinantal equation
(6.15). [U]is the dynamical matrix of the system. If we premultiply
Eq. (7.1) by U, we obtain

(7.2) [UP{A®} = Z,[U{A®} = Z{A®}
If we premultiply (7.1) by [U] s times, we obtain
(7.3) (UF{A®} = Z:{A®} r=1,2,---n

We have n equations of this type, one for each modal column
{A®]} and its associated root Z,. Let us now construct a square
matrix [A] from the various modal columns {A®} in the following
manner:

.4) [4] = [ADA® - - - A®] = [4.]
The set of equations (7.3) may be conveniently written in the form

zZ: 0 0 c++ 0
0 Zy 0 s 0

(7.5) [UT[A] = [A]] O 0 8 0---0
) o Z:_
Postmultiplying (7.5) by [4]}, we obtain
Z; 0 0---0
0 Zz 0---0
(7.6) [U = [4]] O 0 Zi---0 |[A]l™

For convenience let
(7.7) [B] = [4]*

Now let the roots Z, of the determinantal equation be arranged in
descending order of magnitude, that is, let Z; be the largest root of the
determinantal equation, Z, the next largest, etc. That is, let

(7.8) Zy>Zy>Zs - >17a
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assuming that the roots are all distinct. Now let us assume that s in
Eq. (7.6) is so great that

(7.9) Z5 > > Z3, ete.

If this is true, then only the terms corresponding to the dominant
root Z, may be retained. By direct multiplication, we have for s
sufficiently large

(AllBll) (AllBl2) e (Aan)
(7.10) lim [U} = Zj| (AuBuy) (A2Byg) -« - - (AnuBui,)

§= o0

......................

(AmB1) (AniBra) - « + + (AniBia)

As a consequence of this property of the dynamical matrix [U}, we
may perform the following procedure that will yield the dominant
root Z; of the system as well as the modal column associated with
this root.

Let us select an arbitrary column matrix z, and form the following
sequence:

o N

i1 = 2y 0= Xi2

@10 [Ul{z}s = [UP{z}s = {2}s
[0){z} e = [U{z}o = {x},

In view of Eq. (7.10), we have for a sufficiently large s

T10
. Z20
(7.12) {z}. = [Ul{z}o = [U]-
x;o
AuR,
= Zi AZIRI
AuR:
where
(7.13) Ry = By + BieZao + * * © + Biafno

That is, by repeated multiplication of the dynamical matrix [U]
by the arbitrary column matrix {z}, we eventually reach a stage
where further multiplication by [U] merely multiplies every element
of the column matrix {z},_1 by a common factor. This common



194 MATHEMATICS FOR ENGINEERS AND PHYSICISTS [Cuar. VIII

factor is Z,, the dominant root of the determinantal equation. By
(6.16), the fundamental angular frequency w, is given by

1
(7.14) wy = \/Z

We also see that the elements of the column matrix {z}, are pro-
portional to those of the modal matrix {A®}.

We now turn to a procedure by which we may obtain the next
largest root Z, and its appropriate mode.

To do this, let us place s = 1 in Eq. (7.6) and premultiply both
sides by [A]"1. We then obtain, since A—! = B,

Z, 0 0---0

0 Zy, 0---0
(7.15) [BJIU]l = |0 0 Zs -+ -0 |[B]

6. 0 ....... Zﬁ

The matrix B is given by

By B2 By ¢+ B
(7.16) [B] = B, B,, By - - - B,

.................

We thus see that if we take a typical row [B,] of the square matrix
[B] in the form

(7°17) [Br] = [B;1By:B;s - * * Byl
then as a consequence of Eq. (7.15) we have
(7.18) (BJIU] = Z,(B)]

We also have, by (7.1), the relation
(7.19) (U4} = Z,{A®}

a relation satisfied by the modal column {A®}. Now since the
dynamical matrix [U] is equal to [K]~[M], we may write (7.19) in
the form

(7.20) (KT MI{A®} = Z,{A®}

If we premultiply both sides of this equation by M, take the
transpose of both sides, and use the reversal law of transposed products,
we obtain

(7.21) {AC)V[M]-[U] = Z,{AO}[M]
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Comparing Eqs. (7.21) and (7.18) we see that they are identical
in form; hence we have

(7.22) [B,] = a,{A"}[M]

where a, is an arbitrary quantity. Equation (7.22) is of great impor-
tance in determining the higher roots of the determinantal equation
as well as the modal columns corresponding to these roots.

We notice that since [B] = [4]~! we have

(7.23) [BllA] =1

where I is the unit matrix of the nth order. Hence the row matrices
[B,] and the modal column matrices {A®} have the property that

0 frss

(7.24) [B]{4®} = {1 fr=s

The general solution of the problem under consideration is given
in terms of the natural angular frequencies w, and the modal columns
{A®] in the form :

r=n

(7.25) {¢} = 21 C.{A®) sin (vt + 6,)

where 0, are the arbitrary phase angles determined from the initial
conditions of the system at t = 0. The C, are arbitrary constants
also determined from the initial conditions of the system.

This equation may also be written in the convenient matrix form

sin (wit + 6) 0---0
(7'26) {Q} = [A] 0 sin ((c)gt + 02) 0---0 {C}
6 . .. .. .. ..... Sm (,w;t + on)

Normal Coordinates. If we premultiply both sides of (7.26) by
[B] = [A]"}, we obtain

sin (w;t+01) 0---0
7.27) (y) = [Blig} = [0 st H 80 g

.................

0:--- sin (wal + 6n)
Hence we have
Y = C), sin (wlt + 91)
(7.28) Yo = Cysin (wot + 62)
Yn = C, sin (‘l’nt + 0»)

The y. quantities are the normal coordinates of the system.
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Continuing the Solution. By Eq. (7.12) we have seen how the
fundamental frequency w; and the fundamental mode {A®"} may be
obtained. We shall now develop a procedure by which the higher
angular frequencies and the corresponding modal columns may be
obtained.

If we premultiply (7.25) by the row matrix [B;], we have in view
of (7.24)

(7.29) [B]]{q} = C] sin (w1t+ 91)
If now, the fundamental mode is absent, we have
(7.30) [Bil{g} =0
Hence expanding this equation, we obtain
(7.31) Bugi 4+ Bige+ ¢ -+ + Bign =0
or
- —Buw,  _Bs _ . .. _Bu
#= 7Bt T BLY By
2= q
(7.32) g = g
dn = Qn

This set of equations may be written in the matrix form

a1

@) [o_Bu_Bu. . . _Bul|"
A By Bu Bul )’
(7.33) (=lo 1t o0--- o
. [ 1 q
I "
Or if we call the square matrix above [S], we have
(7.34) {g} =[8]" {d}

This constrains the coordinates in such a manner that the funda-
mental mode is absent. The original differential equations of the
system (6.5) may be written in terms of the dynamical matriz in the
form

(7.35) [U]- {4} + I{q} = {0}

where I is the unit matrix of the nth order. If we now differentiate
Eq. (7.34) twice with respect to time, we have

(7.36) {g} = [SH{g}
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Substituting this into (7.35), we obtain

(7.37) [U1-18]- {¢} + I{q} =0
If we let

(7.38) [U18] = [ULs

Eq. (7.37) becomes

(7.39) [ULi{¢} + I{q} = {0}

This set of equations has the same form as the original set (7.35).
It represents a system whose dynamical matrix is [U], and whose
natural frequencies and modes are the same as those of the original
system, but since we have used the constraint (7.34), the fundamental
frequency and mode is now absent.

By carrying out the same procedure with the matrix [U], that was
performed with the matrix [U], we obtain the root Z, and hence the
next highest natural frequency w, together with the corresponding
mode. We then obtain a new row matrix [B;] by Eq. (7.22) and
repeat the procedure until all the angular frequencies and all the modal
columns of the system have been found. An example of the general
procedure will now be given.

8. Numerical Example, The Triple Pen-
dulum. As a simple numerical example of the
above theory, let us consider the oscillations of
a triple pendulum under gravity in a vertical
plane. This example is given by Duncan and
Collar in their fundamental paper referred to
in Sec. 7. The dynamical system under con-
sideration is given by (Fig. 8.1).

We shall consider the case of small oscillations, and for the coordi-
nates of the system we shall take the small horizontal displacements
of the masses M, M, M, respectively, from the equilibrium position.
The first step in the procedure is to compute the dynamical matyix [U].

The Flexibility Matriz. 1If we apply a set of static forces F,, Fq, F;
in the direction of the coordinates g1, ¢z, and ¢s, we may write the rela-
tion between the displacements ¢, g2, and ¢; and the forces F, Fs, Fs
in the form

F, Ky Ky K3 (g1
(8.1) Fi} = | Kn K K5 {q:
Fs K3 K. Kz | \gs

where the square matrix [K] is the stiffness matrix. We may pre-

Fia. 8.1,
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multiply by [K]~! and obtain the displacements in terms of the forces
in the form

Q1 o P12 d15] (F1
(8.2) g2 = | ¢n ¢22 ¢ | {Fs
qs b31 (-39} sz | | Fs

where the matrix[¢] = [K]~!is the flexibility matrix. Since K,, = K,;,
we have

(8-3) ¢n = 4’"

That is, the flexibility matrix is a symmetric matrix.
In terms of the flexibility matrix, the dynamical matrix is given by

(8.4) (U] = [K]7'[M] = [¢][M]

To determine the elements of the flexibility matrix, it is only -
necessary to impose a unit force ¥, on the system and compute or
measure the corresponding deflections (gigags). This gives the
elements of the first column of [¢]. Applying a unit force F; and
obtaining the corresponding deflections yields the second column of
[¢], ete.

If a static unit force is applied horizontally to mass M;, then the
three masses will each be displaced a distance a given by

—_— ll
&= 90f; + M, + M)

Hence the first column of the flexibility matrix is given by
(8.6) a = ¢11 = ¢u= ¢a1

When a unit force is applied horizontally to M., M; will again be
displaced a distance a, but M, and M will each be displaced a distance
(a + b) where

(8.5)

- b
®7) ‘ b= g(My + M,)
Hence the second column of the matrix [¢] is given by
(8.8) pr2=a, ¢u=2¢0n=(+Db)

Applying a unit horizontal force to M; displaced M, a distance ~,
M, a distance (a + b + ¢) where
ls

(8.9 ' = 2
) ¢ gM;
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the third column of the flexibility matrix is

(8.10) - ¢s=a, du=(+Db), du=(@+b+ec)

Hence the flexibility matrix is given by

a a a
(8.11) [¢]=|a (@+d) (a+b)
a (a +b) (a+b+c¢)
This mass matrix, in this case, has the diagonal form
M, 0 0
(8.12) M] =10 M, O
0 0 M,

Hence the dynamical matrix is given by

(813) (U] = [¢]-[M]
M1a Mza M;a
= [Mla My(a + b) Ms(a + b) ]
Mia M,(a + b) Mia+b+c)

As a numerical example, let us take the case where all the masses
are equal and the lengtlss of the pendulums are equal. In that case we
have

(814) M1=M2=M3=M, l1=‘l2=l3=l
D T S
&= 3y = oy = My
Hence the dynamical matrix in this case becomes
I 2 5 2 ;
8.15 =12 5 5 =
(8.15) lo 5 11| [u]
Equation (6.12) reduces in this case to
8.16) 1-22) (4) = (o)
8. &
If we let '
6.1 _
(8.17) (T w,) =2

then Eq. (6.14) becomes
(8.18) (21 - [u)){A} = {0}
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where [u] is the numerical part of the dynamical matrix, [U] and the
factor 6g/1 has been absorbed into Z.
The angular frequencies are given by

- /@
(8.19) o = \l75

To find the roots Z,, we begin the iterative procedure of Eq. (7.11).
If we choose for our arbitrary column {z},, the column

1
(8.20) {z}o = [1}
1

We begin the sequence

2 2 2| (1
(8.21) [u}{z}o = [2 5 5] {1}
2 5 11j\1

6 0.3
=112, = 1810.6
18 1

It is unnecessary to carry the common factor 18 in the further
operations since it is the ratios of the successive elements in the
multiplications that are important. Dropping the factor 18 and
continuing, we have

2 2 2](os3 4 0.26
(8.22) 2 5 5|{06f=1 9t=15{06
2 5 11]l1 15 1

2 2 2110.26 0.25688
2 5 5110.6 ¢ = 14.53 10.58716
2 5 111 1

After nine multiplications, we have
2 2 21 10.254885 0.254885
(8.23) 2 5 5110.584225; = 14.4309 {0.584225
2 5 11])1{1 1

Repeating the process merely multiplies the column matrix by the
factor 14.4309; we therefore have

(8.24) Z, = 14.4309
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The fundamental frequency of the oscillation is given by

_o_ 1 [6 \/51
(8.25) F, = o~ 2Nz 0.102624 i
0.254885
The modal column {4} is proportional to the column 10.584225 ;-
1

To obtain the higher harmonies, we first make use of Eq. (7.22) to
obtain the row B;. In this case we have

M 0 0
(8.26) [Bi] = a,[0.254885, 0.584225, 1] | 0 M 0
0 0 M

since a, is an arbitrary factor and we are interested only in a row pro-
portional to [Bi], we may take B; equal to [0.254885, 0.584225, 1].
The matrix [S] of (7.34) is now given by

0 —2.29211 -—3.92334
0 1 0
0 0 1

(8.27) [8] =

We then obtain

0 —2.58422 —5.84668
(8.28) [ul = [ullS] = |0 041578 —2.84668
0 041578  3.15332

This is the dynamical matrix that has the fundamental mode
absent. We now repeat the iterative procedure by again choosing an
arbitrary column matrix z6; we thus find

1 e ce
[ul; {17 = { —2.4309; = 3.5691 {—0.68110
1 3.5691 1

[u]1 4 —0.68110; = {——3.1299 = 2.8701 { —1.09049
1 2.8701 1
After 15 multiplications, the column repeats itself, the multiple
factor is
(8.30) Z, = 2.6152

The modal column {A®} for this approximation may be taken
to be

(8.29)
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—0.95670
(8.31) {A®} = 1 —1.29429
1
Hence the first overtone has this mode and a frequency given by
_or_ [60 _ g
(8.32) Fy =5 o 0.24107\6

Again by Eq. (7.22) we may take the row {B.} equal to {A® }'
The condition for the absence of the second overtone is

(8.33) [Bal{q} = 0 = [—0.95670,—1.29429, 1] - {q}
Solving this for ¢;, we have

(8.34) g1 = —1.35287¢, + 1.04526q;
We may eliminate ¢, between this equation and the equation
(8.35) [Bil{g} = 0.254885¢;, + 0.584225¢, + g3
We thus obtain
(8.36) g2 = —5.2900¢s

This ensures that both the fundamental and first overtone modes
are absent from the oscillation. Equation (8.36) may be written in
the convenient matrix form

(/3% 1 0 0 q1
(8.37) @ =]0 0 —52900]1g:
qs 0 0 1 qs

= [S]: - {q}

We now construct a new dynamical matrix [u]. that has the funda-
mental and overtone modes absent; this new matrix is given by

0 0 7.8238]

(8.38) [uls = [ulfS]: = |0 0 —5.0461
0 0 0.9539

We again repeat the iterative process and obtain

0 o0 782338 (1
(8.39) [’u]g{x}o =10 0 -—5.0461 1
0 0 09539] (1

7.8238 8.2019
= { —5.0461} = 0.9539 { —5.2900
| 0.9539 1
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Repeating the process merely repeats the factor 0.9539 so it is
unnecessary to go further. We thus have

(8.40) Z; = 0.9539
The highest frequency is given by
=1 /% _ g

(8.41) F3 = mNZd 0.39916\/;

The mode {A®} corresponding to this frequency may be taken to be
8.2019

(8.42) {A®} = ! —5.2900
1

to a factor of proportionality. The modal matrix may be taken to be

(0.254885)  (—0.95670) (8.2019)
(8.43) [A] = | (0.584225) (—1.29429) (—0.52900)
1 1 1

In this case because of the simplicity of the mass matrix [M], we
may take

(8.44) [B] = [4Y

the transpose of matrix [A].
The normal coordinates arc then given by

(8.45) {y} = [Bl{g}

9. Nonconservative Systems. Free Oscillations. In the last few
sections, we have considered in some detail the general theory of con-
servative systems. Conservative systems are characterized completely
by their kinetic and potential energies. Conservative systems are of
tremendous practical importance. In many practical problems arising
in practice, the frictional forces are so small that they may be dis-
regarded and the system treated as a conservative one. If we consider
a general system with viscous damping so that the retarding effect
of the frictional forces are proportional to the generalized velocities,
then the differential equations governing the free small oscillations
of the system about a position of equilibrium may be written in the
convenient matrix form

(9.1) (M]{g} + [Rl{¢} + [K]{q} = {0}

where the matrices [M], [K], and {¢} have the same significance as in
Eq. (6.56) and [R] is a square matrix having n rows and » columns
called the damping matrix. The elements of the damping matrix have
the property that R, = R,,; hence [R] is symmetric.
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To solve this set of equations, we assume a solution of the expo-
nential form

9.2) {a} = {A}ex

where a is a number to he determined and {A} is a column of con-
stants. Substituting this assumed form of solution into Eq. (9.1), we
obtain

9.3) (IM)at + [Rle + [K]){A}e= {0}

On dividing the factor ¢, this represents a set of linear homogencous
equations in the column of constants {A}. Yor this set of equations
to have a nontrivial solution, we must have the determinant of the
coeflicients vanish; hence we must have

(9.4) AMa) = |[M]a? + [Rle + [K]| = 0

This is called Lagrange’s determinantal equation for @.  In general
it is of degrec 2n. The following properties concerning the roots of
A(e) may be proved.!

1. None of the roots are real and positive.

2. If [R] = 0 so that there is no dissipation of energy, we have a
conservative system. In this case the roots are all pure imaginaries.

3. If [M] = [0] or [K] = [0] s0 the system is devoid of inertia or of
stiffness and [R] # 0, the roots are real and negative so that the
motion dies away exponentially.

4. If the elements of the damping matrix [R] are not too large, all
the roots are conjugate complex numbers with a negative real part.
This is the most frequent case in practice.

Let us now suppose that Lq. (9.4) has 2n distinet roots (ay,
ag, * * * az). Then in view of (9.3) there are 2n equations of the
type
(9.5) ((Mlo? + [Rlor + [KD){4,} = {0} r=1,23,--"n

where {A,} represents a column of constants associated with the root
Oy,
Each column {A4,} has the form

Alr
Azr

A'M‘
18ee A. G. Webster, “The Dynamics of Particles and of Rigid, Elastic, and
Fluid Bodies,” B, G. Teubner, Leipzig, 1925.
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Equation (9.5) fixes the ratios
(9.7) AerAzr!AarZ ¢ :AM

The theory of linear differential equations shows that for the
general solution we must take the sum of the particular solutions
{A,}e>t for all the roots a,. We thus obtain the general solution

r=2n

9.8) g= Y (Afem
r=1

It must be noted that the ratios of the A’s in any one column are
determined by the linear equations (9.5); therefore there is a factor
that is still arbitrary for each column and hence 2n in all. We there-
fore have only 2n arbitrary constants in the general solution (9.8) as
we should.

If the a,’s are complex, they occur in conjugate complex pairs.
In the general solution (9.8) tl_lere appear terms of the type

9.9) {A}et + {A,}cot = ert{B,}*cos (w,d + 6,)

where {B,} represents another column of constants and 6, are phase
angles. In this case the general solution may be written in the form

r=n

(9.10) qg= E {B.,}e*t cos (wet + 6,)

re=1

It may easily be shown that the {B,} columns satisfy Eq. (9.5)
in the same manner as do the {A,} columns. Hence the ratios of the
B’sin each column are fixed. Each column then contains an arbitrary
constant in the phase angle 6, belonging to the column. The following
results may be stated.

If the roots of the determinantal equation are distinet and con-
jugate complex quantities, then the motion of a dynamical system
having n degrees of freedom slightly displaced from a position of stable
equilibrium may be described as follows:

Each coordinate performs the resultant of n damped harmonic
oscillations of different periods. The phase and damping factors of
any simple oscillation of a particular period are the same for all the
coordinates. The absolute value of the amplitude for any particular
coordinate is arbitrary, but the ratios of the amplitudes for a particular
period for the different coordinates are determined solely by the
nature of the system. The 2n arbitrary constants determining the
n amplitudes and phases are found from the values of the n coordinates
¢ and velocities ¢ for a particular instant of time.
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The classical method of solution for the general nonconservative
system consists of setting up the determinantal Eq. (9.4), expanding
the determinant, then solving the resulting equation of the 2n degree
in a by the Graeffe method of Chap. V. We then determine the ratios
of the columns {B,} from Eq. (9.5). We then determine the arbitrary
constants from a knowledge of the initial conditions of the system.

The matrix iterative method discussed in Sec. 7 above, has been
extended to the nonconservative system.!

10. Forced Oscillations of a Nonconservative System. Let us sup-
pose that on each coordinate of the general nonconservative system
there is impressed a harmonically varying force

(10.1) F. cos wt r=12---n
In this case the differential equations (9.1) become
(10.2) [M1{g} + [Rl{g} + [Kllg} = {F} cos wt

where {F} is a column matrix whose elements are the amplitudes of the
impressed forces F,. We, replace cos wt by Re ¢ and solve the
equation

(10.3) [M]{g} + [Rl{g} + [Kl{g} = {F}ei
retaining only the real part of the particular solution. To do this, let
us assume

(10.4) {g} = {Q}e

where {Q} is a column of amplitude constants to be determined.
Substituting this assumed solution into (10.4) and dividing the com-
mon factor ¢, we have

(10.5) (K] — «*[M] + jo[R]){Q} = {F}
If we let
(10.6) (2] = (K] — »*[M] + ju[R]) = [Y]™
then on premultiplying both sides of (10.6) by [Z]~* = [Y] we have
(10.7) ‘ {Q} = [YI{F}
- The steady-state solution of the forced oscillation is now given by
(10.8) {g} = Re ([Y]{F}e)

where Re signifies ‘““the real part of.” The matrix [Z] is sometimes
termed in the literature the mechanical impedance matrix and [Y], the

1 DuNcan, W. J, and' A. R, CoLrar: Matrices Applied to the Motions of
Damped 8ystems. Philosophical Magazine, Ser. 7, vol. 17, p. 865, 1934.
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mechanical admittance matrix. Equation (10.8) represents the
forced oscillations after the damped free oscillations have vanished.

It must be noted that if [R] = [0] and the system is conservative,
then if w happens to coincide with one of the natural frequencies
of the system, then [Z] as given by Eq. (10.7) vanishes, and we have
the case of resonance.

PROBLEMS

1. Obtain the flexibility matrix of the three pendulums system of Flg 4.3.
Write the dynamical matrix of the system.

2. An electric train is made up of three units: a locomotive and two passenger
cars. Each unit has a mass M, the spring constants of the coupling connecting
them are equal to K. Write the Lagrangian equation of motion of the system.
Draw the equivalent electrical circuit, and determine the natural frequencies of
the system.

8. If in the system of Prob. 2 identical shock absorbers that act by viscous
friction are placed between the three units, determine the smallest value of the
damping factor R so that the relative motion of the locomotive and cars is not
oscillatory.

4. A long train of » identical units of mass M coupled by springs of spring
constants all equal to K is oscillating. Draw the equivalent electrieal circuit, and
write the frequency equation of the system.

6. A uniform shaft free to rotate in bearings carries five equidistant disks.
The moments of inertia of four disks are equal to J, while the moment of inertia
of one of the end disks is equal to 2J. Sct up the dynamical matrix and obtain the
lowest natural frequency by the iterative matrix method of Sec. 7. Draw the
equivalent electrical circuit.

6. A particle of mass M is attracted to a center by a force proportional to the

distance, or F; = —ax, Fy = —ay. Write the equations of motion of the particle.
Show that z and y execute independent simple harmonic vibrations of the same
frequency.

7. Solve Prob. 6 by using polar coordinates.

8. Two balls, each of mass M, and three weightless springs, one of length 2d
and the others of length d, are connected together in the arrangement spring
d—ball—spring 2d—ball spring d, and the whole thing is stretched in a straight line
between two points, with a given tension in the spring. Gravity is neglected.

Investigate the small vibrations of the balls at right angles to the straight line,
assuming motion only in one plane. Set up the equations of motion. Determine
the natural frequencies and the normal modes. What are the normal coordinates?

9. One simple pendulum is hung from another; that is, the string of the lower
pendulum is tied to the bob of the upper one. Discuss the small oscillations of
the resulting system assuming arbitrary lengths and masses. Determine the
natural frequencies and obtain the normal coordinates in the case of equal masses
and equal lengths of strings.

10. Consider the case of the three coupled pendulums of Fig. 4.3. In this
case that each pendulum is retarded by a viscous force proportional to its angular
velocity. Consider an equal retarding force on each pendulum. Draw the
equivalent electrical circuit, and obtain the general solution of the equations of
motion, Assume that the damping is so small that oscillations are possible.
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11. A particle subject to a linear restoring force and a viscous damping is
acted on by a periodic force whose frequency differs from the natural frequency of
the system by a small quantity.

The particle starts from rest at ¢ = 0 and builds up the motion. Discuss the
whole problem including initial conditions. Consider what happens when the
frequency gets nearer and nearer the natural frequency and the damping gets
smaller and smaller.

12. Show that for a particle subject to a linear restoring force and viscous
damping the maximum amplitude occurs when the applied frequency is less than
the natural frequency. Find this resonance frequency. Show that maximum
enerky is attained when the applied frequency is equal to the natural frequency.
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CHAPTER IX

THE DIFFERENTIAL EQUATIONS OF THE THEORY
OF STRUCTURES

1. Introduction. This chapter is devoted to the solution of ‘the
differential equations encountered in the determination of the deflec-
tion of loaded cords and beams and in the study of the transverse
oscillations of beams subject to different boundary conditions. Since
the differential equations encountered in these studies are linear, they
may be solved simply by the use of the Laplace transform or opera-
tional method.

2. The Deflection of a Loaded Cord. Perhaps the simplest prob-
lem encountered in the theory of structures is the determination

6,

T
—"}—\----dx -

| x
y @ 1w (x)ldx
__.;:_ o,

TG, 2.1,

of the deflection of a cord stretched between supports under various
conditions of loading.

Consider a section ds of a perfectly flexible cord as shown in
Fig. 2.1.

Let y(z) be the deflection curve of the cord, w(z) be the load per
unit length, and 7' be the tension of the cord. Then the equilibrium
condition obtained by equating the net force on the segment in the
y direction is

2.1) T sin 8, — T sin 6, = w(z) dz
Equating the forces in the z direction, we have
(2.2) Tcos 6y =1Tcos 8 =H

where H is the horizontal component of the tension T and is constant
for the span. Dividing (2.1) by (2.2), we have

(2.3) tan 0y — tan 6, = zﬁ%ﬂ
209
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But we have

= (% = (%
(2.4) tan 6, ( dx), tan 6, = (%)zm

Hence by Taylor’s expansion, we have

(2.5) tan 6, = ( ) ( azt), dz + (higher order terms in dx)

Substituting this into (2.3), we obtain

d’y w(z)
(2.6) i

This is the fundamental differential equation governing the
deflection of a cord under the influence of a load w(z) per unit length
and a horizontal component of tension H.

Equation (1.6) may be solved most conveniently by the Laplace
transform or operational method. To do this, let us introduce the
transforms

Ly(z) = Y(p)
2.7
@7 Frtegeits
We then have

d¥y ,
(28) L (,E—) = p*Y = piyo — pys
where

d

(2.9) =90 = (a-g .
Hence Eq. (1.6) is transformed into
(2.10) P’Y — p’yo — py1 = — Kg_’l

a. Uniform Load. Let us first consider the case of a uniform load
wo per unit length.

Wy
) ceg (2.11) w(z) = wo
Fie.2.2. Let the cord be suspended from the

points x = 0 and z = s that are at equal heights as shown in Fig, 2.2.
In this case we have

W(p) =w
(2.12) { Yo = 0 and y(s) =0
Hence (2.10) becomes

(2.13) Y =¥5 H-'—”— Ly(z)
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To determine y(x) we use the table of transforms in the Appendix
and we have

= LY (p) = g — 02
(2-14’) Y(@) = LY (p) = yiz — 55
To determine y, we use the condition y(s) = 0 and obtain
= Wos
(2.15) Y= 355

Substituting this into (2.14), we obtain
= Lo — g2
(2.16) e (sz — z?)

for the deflection of the uniformly loaded cord.
b. Uniform Load Extending over Part of the Span. The power of the
operational method is demonstrated in the solution of the case of

Fig. 2.3.
—

X X2

LRENNNN\\\

0 x=8
Fra. 2.3.

x

In this case we have
@.17) W) =p [ " ermwg dz = wole — )

for the transform of the unit load w, extending from z; to z;. In this
case, Eq. (2.10) becomes

=Y _ WP — emmry
(2.18) Y(p) = p @ ( e ) Ly(z)
By the use of the table of transforms and the rule that if
(2.19) L-'g(p) = h(x)
then
1k - 0 <k
(2.20) e = |, 0, IS

where k > 0, it is seen that we have
Y] O0<z<m

— o e
(221) y@@) = {(¥* " 32H (@ — ) n<zr<mn

hlx-%%(z-xx)’+%;(w—xa)’ T <z<s



212 MATHEMATICS FOR ENGINEERS AND PHYSICISTS [Caar. IX

To determine y;, we use y(s) = 0, and we find from (2.21) that
(2.22) 9 = g7 18 — 2)? — (s — 29)7

Substituting this into (2.21), we obtain the deflection curve. We
thus see that the deflection curve has discontinuities at ¢ = z, and
z = 12. The advantage of the operational method over the classical
method is that we are able to write one equation for the entire span,
while in the classical procedure it is necessary to write several equations
depending on the discontinuous nature of the load and then evaluate
the constants by using the condition that the deflection is continuous.

¢. The Effect of a Concentrated Load. Let us compute the deflection
of a flexible cord fixed at both ends and supporting a concentrated
load P, as shown in Fig. 2.4.

P,
‘ £ [ ]

| b
1 x=a v 1 a a+é 17
x=0 X=g x=0 Xx=mg
Fia. 24. Fra. 2.5,

The concentrated load is located at the point z = a.

In order to solve this problem operationally, we must compute
the transform of the concentrated load. This may be done by con.
sidering the concentrated load P, as the limit of a distributed load w
distributed over a very small region as shown in Fig. 2.5.

The transform of such a load is

(2.23) Wp) = p [ *+ e dz = wo(ere — e-PHD)
= wee (1 — e
Now we take the limit § — 0 and wy — « in such a way that
(2.24) lim wed = Py
Wo—> ®

§—0

The exponential function e~#* may be expanded in the form

252 858
P o= 1 — po” _po
(2.25) e 1-—p6+ o 37 +

Substituting this into (2.23), we have
2.26 lim W(p) = lim e ?ap, ép = pPosre
(2.26) m Wp) = lm cwop = p

We—> ® Wo—> 0
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This is the transform of the concentrated load situated at the
point £ = a. Substituting this into Eq. (2.10), we have

@2.27) Yip) =L -0 _ 1)

Computing the inverse transform of this expression by the table
of transforms, we obtain

N 0<z<a
(2.28) y(@) = Y — Po(xH— 9 Lcz<s

The constant 1 may be determined by the condition y(s) = 0, and
it is
— PO ——
(229) U= —ﬂ:—s- (8 a)

Substituting this value of y; into (2.28), we obtain the following
equation for the deflection y(z):

Po a
Fx(l -8-) 0<z<a

(2.30) y(@) =
P 0 xr
Te ( 1- -‘;) a<<z<s

d. The Effect of an Arbitrary Load. A useful relation may be easily
obtained giving the deflection of an arbitrary load by the use of the
Faltung theorem established in Chap. XXI. The theorem states
that if

[ Lgu(p) = huz)

(2:31) Lgs(p) = ha(z)
then
(2:32) L—l%‘l; = A " ha(w)ha(z ~ ) du

= [ Mz — v du
Returning to Eq. (2.10) with the initial deflection yo = 0, we have

= _VWO _
(2.33) Y(p) » ~ Hp Ly(x)
Now since

(2.34) . L—t% =z  LW(p) = w()
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we have by the Faltung theorem

LB o WO _ [ e — ) du
@35) Lol =10 gt ﬁ -

Hence from (2.33), we have

(2.36) y(x) = yiz — —Il? / w(u)(z — w) du
0
To determine y; we again use y(s) = 0 and we have
237) yi= I_i_ w(u)(s — u) du — 7] w(u)(x — u) du

This gives the deﬂectlon of the cord in the span fromz =0 tor = s
due to the influence of a general load w(z).

3. Stretched Cord with Elastic Support. Let us assume that the
vertical deflection of the cord is restrained by a large number of springs
such that their effect can be considered as a distributed restoring force
per unit length equal to ky, where k is a measure of the ‘““spring con-
stant’’ of the support and y is the deflection. In this case we must
add the amount —ky to the vertical load of Eq. (2.6), and we obtam
the differential equation

3.1) Hd:ﬁ ky = —w(x)

for the deflection y(x). To solve this equation operationally, we
again introduce the transforms

(3.2) Ly(z) = Y(p)
(3.3) Lw(z) = W(p)
and Eq. (3.1) transforms to
3.4) (@* = )Y = plyo + py1 — -W—}%ﬂ
where
R k
j----a---= (3.5) et = Vi
a & a. Cord Fized at Its Ends,
x=0 X=8

Concentrated Load. Let us con-
sider the case shown in Fig. 3.1.

In this case the transform of the concentrated load is by (2.25)
pe=*?Po.  Since yo = 0, Eq. (3.4) becomes

Fia. 3.1,

66 ¥@) = s - P P — L)
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Consulting the table of transforms, we find the inverse transform
to be

n smhc(c“:g)_ 0<z<a
@7 y@) = sinh (cx) Po .
yl__g-_——pzsmhc(x—a) a<zr<s

. If we use the boundary condition y(s) = 0, we obtain

_ Pysinh [¢(s — a)]
3:8) V1= " smh (@)

Substituting this value of y; into (3.7), we obtain the following
deflection of the cord

Py sinh [c(s — a)] sinh (cx)

(3.9) ¥@) = 5¢ sinh (sc) 0<z<a
(3.10) y(a@) = ot Sl = Dy (o)

sinh (cs)

II;—E,sinhc(x—a) a<z<s

b. Infinite Cord Elastically Supported, Concentrated Load. The
deflection of an infinitely long elasti-

cally supported cord under the 2 I l i v
influence of a concentrated load P, 4 x=a x=0

. . xX= x=8
may be obtained as a special case of Fre. 3.2,
(3.10).

In order to obtain the deflection in this case, let

Do ©»

(3.11) Z = (z — a) and a=
Making these substitutions in (3.10), we obtain

3.12) y(2) = If}c sinhfzig sinh (ng + cz) - II;——Z gsinhez 2>0
Now

Py

H _ —08 — P° —cz
(3.13) ,li.nl y@) = 5, = IV z2>0

This is the required deflection where z is measured from the point
of application of the load.

¢. Elastically Supported Cord with Uniform Load. Let us consider
the case of Fig. 3.2.
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In this case the cord is loaded with a uniform load we per unit
length. The load extends from z = q,toz = b.
For this case we have

(3.14) Lw(z) = wo(e™? — e~??)

In this case the general equation (3.4) becomes

_ P _Wele—en
(3.15) Y(p) =y r—cb H [ @ =) ] = Ly(z)
Consulting the table of transforms, we obtain
y(z) = w 0<z<a
y(x) = y1 Smh < _ °2 [coshe(xr —a)—1] a<z<d
(3.16) smh cx
y(x) = 1 H % cosh ¢(z — a) +

Hzcoshc(x—b) b<z<s
Using the boundary condition y(s) = 0, we obtain the followmg
value for the constant y;: )

(3.17) Y1 [cosh ¢(s — @) — cosh c(s — b)]

= Hec sinh cs smh cs8

Substituting this value of y; into (3.16) gives the required deflection.

d. Elastically Supported Cord, General Loading. The transform
of the deflection of an elastically supported cord under the influence
of a general load w(z) is given by Eq. (3.4) in the form

1w
618) YO = o2 - 5 o = L)
where
(8.19) Lw(z) = W(p)
Now by the Faltung theorem, we have
@320 I~ (pW(_”)c,) =1 A " w(u) sinh [c(z — w)] du

Hence the inverse transform of (3.18) is given by

@I i) =TT [0t s oz — w1
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Using the boundary condition y(s) = 0, we find the following
value of y;:

(3.22) % = Tl—silnl_x_c_s /; wiw) sinh [¢(s — u)] du

Substituting this value of u; into (3.21) gives the required deflection
produced by the general loading
w(z).

4, The Deflection of Beams —_—
by Transverse Forces. Consider | ly(x)
a uniform straight beam supported
as shown in Fig. 4.1.

Let us measure the deflection y(z) of the beam at any point z
downward. Then it is shown in works on elasticity® that y(z) satisfies
the following differential equation:

@“.1) EIZ—;—’{ = w(z)

-w (x)

Fia. 4.1.

where E is the Young’s modulus of elasticity of the material of the
beam, I is the moment of inertia of the cross section of the beam with
respect to a line passing through the center of gravity of the cross
section and perper.dicular to the z axis and to the vertical direction
y. The quantity EI is called the flexural rigidity of the beam. w(z)
is the load per unit length of the beam.

There also exist the two following relations:

- —Epr%Y
(4.2) Fz) = ~EI 3%
and '

- —g1 %Y
(4.3) M) = ~EI %Y

where F(z) is the shear force and M(xz) is the bending moment. The
deflection y(z) is measured positive downward, the load per unit
length w(z) is measured positive downward, the shear force F(z) is
measured positive upward, and the bending moment M(z) positive
clockwise.

To solve Eq. (4.1), let us introduce the transforms

(4.4) Ly(z) = Y(p)
(4.5) Lw(z) = W(p)

1 8outHwELL, R. V.: “An Introduction to the Theory of Elasticity for Engi-
neers and Physicists,” Oxford University Press, New York, 1936.
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Hence since
dy .

(4.6) L gzi = p'Y = p'Yo — PPy1 — p%ya — pys
where
@7 Yo = (g;?{)- evaluated at z = 0
Eq. (4.1) transforms into

_ W(p) 1/1 Y le
4.8) Y(p) = Flph + yo + = + +

a. Uniform Beam Clamped Horizontally at Both Ends under the

Influence of a Uniformly Distributed Load. Consider the deflection
) of the beam of Fig. 4.2.

4 g In this case, the deflection and slope

% at x = 0 are both equal to zero; hence

x=0 x=8

Fic. 4.2. (4.9) Yo=1y1 =0
The transform of the uniform load wy is given by
(4.10) W(p) = wo
Hence in this case, (4.8) reduces to
w Y
(4.11) Y®) = gra+ 0+ 23 = Ly(z)

The inverse transform of this gives

(4-12) y(z) EI4' + y2 21 + ya 3'

The constants y, and y; are determined by the conditions

(4.13) y—-gg— atz=s
These conditions give
= — L8 = _ W
(4.14) = "TET VT T 12m

Substituting these values into (4.12) we obtain the following equation
for the deflection:

' . wez?(s — z)?2
(4.15) y()= Y
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b. Uniform Bcam Clamped Horizontally at Both Ends and Carrying
a Concentrated Load. Consider the problem of determining the deflec-
tion of the beam shown in Fig. 4.3.

In this case the transform of the concentrated load is

416)  W(p) = peorPs o R
Y 4
Since the deflection and slope arc 7 ¥,
zero at ¢ = 0, Eq. (4.8) in this case x=0 x=8
reduces to Fie. 4.3.
Poe oy ys

The inverse transform of this is

2 3
il y(‘”)"!/z%'?‘?/a% 0<z<a
(4.18) P s, 2,
y(z)zﬁET(x_a) +?/2—2—+y3§ a<z<s

The conditions that the deflection and slope must vanish at z + s
enables y; and y» to be determined. Inserting these values of y; and
y3 into (4.18), we obtain the following equations for the deflection:

)
y(x) = (72'105_3 (s —a)3as — (s +2a)r] O0<z<a
(4.19) :
y(@) = 6%‘%3 (@— 0@ — 20) —as] a<z<s

¢. Uniform Beam Clapped Horizontally at One End and Free at the
Cther Carrying a Concentrated Load. Let us determine the deflection
of the beam shown in Fig. 4.4.

P K, .
1. ______ mmeee ,l ’ In this case, Eq. (4.8) becomes
7 _ P Y2 s
Fie. 4.4. The inverse transform of Y (p) is
3
Y@ =G Fny . 0<z<a

(4.21)
P 2
y(x) =6~—£I(x—a)’+yz§~!+ya§ a<z<s

In this case, since the end z = s is free, it follows that the bending
moment and shear force at that point must vanish. We therefore
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have by (4.2) and (4.3)

dly _dly _ -
(4.22) e Rl atz =8
Inserting these conditions in (4.21), we obtain
Ys = aPo
~ EI
(4.23) P
Ys = T EI

Substituting these values into (4.21), we obtain the following
equations for the deflection:

2
y@) == (22 0<z<a
EI \2 6
(4.24) s
Loa’fzr a

5. Deflection of Beams on an Elastic Foundation. Let us assume
that a uniform beam is attached to a rigid base by means of a uniform
elastic medium as shown in Fig. 5.1.
> The action of the elastic medium
B may be taken into account by

Fia. 5.1. introducing a restoring force —ky
acting in a direction opposite to
that of the load w(z). In this case Eq. (4.1) becomes

4,
.1) EIZ—;{ + by = w(z)

the constant k is called the modulus of the foundation.
Let us divide Eq. (6.1) by EI. We then obtain

5.2) & T EIY < Er
If we now let
k t

Eq. (5.2) may be written in the form

: d'y _ w(z)
(5.4) » p + 4a'y = Sid

To solve this equation operationally, we write

(5.5) Ly(z) = Y(p)

(5.6) Lw(z) = W(p)
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Equation (5.4) is then transformed to
6.7 (@ +4eYY = W(”) + Do + 21 + P2 + DUs

a. Beam on Elastic Foundation Clamped Horizontally at Both Ends
under the Influence of a Concenirated Load. Let us consider the deflec-
tion of the beam shown in Fig. 5.2. P,

In this case, the conditions 4 ____,___,
%‘ E

that the slope and deflection at
z = 0 must vanish lead to

2=0 x=8

(5.8) 1=y =0 ¥la. 5.2.

The transform of the concentrated load P acting at z = b is
(5.9) W(p) = pPoe?
Hence in this case, Eq. (5.7) becomes

Po pG b

p? P
(6.10) Y(p) = E1 (p* + 449 + ¥z (p* + 4a%) + ¥s @' + 449

The transform of d—z is given by

d
(5.11) L ( dy) = pY¥(p)
~ P ple P’ 4
“FI G+ TV ae TV it 4an

We have the following inverse transforms:

5.12) L' —rt—er o+ 529 + rrTy 4}13 (sin ar cosh az — cos az sinh ax)
4’1(37)

. ,
(5.13) L-! (—‘—i 19 2 ; (sin az sinh az) = ¢,(z)

8
(6.14) L' ——— PPy + rrd = '2—a (sin az cosh az + cos az sinh az) = ¢s(x)

(5.15) L m = COoS az cosh.ax = ¢4(2)
In terms of these functions, the inverse of Y (p) in equation (5.10) is

{y = y2¢2(z) + ysd1(2) 0<z<b

P
(5.16) y = E—} $1(z — b) + y202(2) + ysu(z) b<z <8
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The constants 5, and ys may be found from the condition that the
deflection and slope must vanish at £ = s. From (5.16) we thus
obtain

(5.17) 0 = % $1(s — b) + ya2(s) + ysi(s)
From the transform of (5.11), we obtain
P
(5.18) 0= E% $2(s — b) + y20a(s) + yaa(s)

These two equations may be solved for the constants y, and ys.
This gives

(5.19) yo = Lo 92(8)¢a(s = ) — ¢x(9)d1(s — b)

* T EI 3(s) — ¢3(s)pa(s)
_ Py gs(8)als — b) — ds(s)a(s — D)
(5.20) Vs = @1 ¢1(s) pa(s) "3¢§(3)1

The deflection is obtained by substituting thesc values of y. and ys
into (5.16).

b. Beam on Elastic Foundation Clamped Horizontally at Both Ends
under the Influence of a General Load. In this case, since the deflection
and slope vanish at x = 0, Eq. (5.7) becomes

___ W P’y2 PYs
(5.21) Y0) = grpi + 40y T o+ 40t T p7 + dat
The inverse transform of the slope is given by

dy\ _  »W(p) P*ye P*ys
5.22) L (dx) = Flpi+ 4a) T pit dar T p* + 4a*

Now by the Faltung theorem, we have

5.28) L PZF@&“* - ﬁ " ww) (e — ) du
(5.24) I~ 5-’;’—‘%_-(»% - ﬁ w(u) oz — u) du

Hence the inverses of (5.21) and (5.22) give the following equations
for the deflection and slope:

(5.25) = 'E'lf : w(u)dp1(z — u) du + yada(z) + yadu(x)

dy 1

(6.26) - =37 _A zw(u)¢z(z — ) du + yY2¢3(x) + Ysd2(2)
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Now if we let

(5.27) A= 'E'l'f ] w(u)pi(s — u) du
(5.28) B = _EJ'-I' /; w(u)p2(s — u) du

and make use of the fact that the slope and deflection both vanish at
z = s, we obtain the following values for the constants y. and ys:

— Begi(s) — Aa(s)

$3(s) — ¢1(s)#s(s)

_ Béu(s) — Aéals)

(5.30) B 5066 — B
If these values of ¥, and y; are substituted into (5.25), the value of the
deflection is obtained.

6. Buckling of a Uniform Column under Axial Load. Consider a
column hinged at the point z = s and supported at

(5.29) Y2

z = 01in such a way that lateral deflection is prevented lP

but free rotation is allowed as shown in Fig. 6.1. —~ ] ~F x=0
The column is under the influence of an axial load

considered positive when acting in a downward direc-

tion to cause a compression. Iet y(x) be the deflec- 1’

tion of the column. The bending moment at any
point z is given by

(6.1) EI@ = —-M Wm%zx-'

2
dx Fia. 6.1,

—.y

The bending moment at any point M due to the force P is given by
(6.2) M =Py

Hence substituting this into (6.1), we have

* 72

(6.3) EI %ﬁ +Py=0
If we let
P

(64) . a? = EI
we obtain

2
(6.5) ?f:;:z +a¥y =0

The geperal solution of this equation is
(6.6) y = A cos (az) + B sin (az)
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where A and B are arbitrary constants. In order to satisfy the
boundary condition y(0) = 0, we must have

(6.7) A=0

80 that the solution reduces to

(6.8) y = B sin (ax)
To satisfy the condition y(s) = 0, we must have

(6.9) sin (as) = 0

or

(6.10) as= kr k=0123, - "
To each value of k, there corresponds a solution

6.11) ye = By sin (’%‘

where the B;’s are arbitrary constants. These deflections are called
the modes of buckling. To each mode, there corresponds a load

(6.12) A B

These loads are called the critical loads. For each of these loads, the
corresponding mode of buckling represents an equilibrium position
with an arbitrary amplitude. The first critical load is obtained by
placing k = 1, in (6.12), so that we have
(6.13) po=rd

This equation is known as Euler’s formula. It gives the upper
limit for the stability of the undeflected equilibrium position of the
column.

7. The Vibration of Beams. To find the equation of motion for
the free vibrations of a uniform beam, we use d’Alembert’s principle
that states that any dynamical problem may be treated as a static
problem by the addition of appropriate inertia forces. The equation
giving the static deflection of a beam y(z) under the influence of a
static load w(z) is

d4
(7.1) Ezax—?{ = w(z)

The equation of the free vibra,tion of a beam may be obtained from

%y

a2 08 the load, where m is the mass

this equation by considering —m —=
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per unit length. Accordingly, letting

(7.2) w(z) = —~ng2§-’
in (7.1), we obtain

N _ %%
(7.3) . EI 9k = Mo

where partial differentiation symbols must be used because the deflec-
tion y is now a function of the two independent variables z and ¢.

Let us investigate oscillations of the harmonic type. To do this,
we let

(7.4) y(z,t) = v(z) sin wt

If we substitute (7.4) into (7.3), we obtain the following ordinary
differential equation for the variable v(x):

(7.5) EI g% p—
If we let
m‘o2
(7.6) k= BT
Eq. (7.5) may be written in the form
dt
(7.7) prialla

This equation has solutions of the exponential type
(7.8) v = ceb*

where c is an arbitrary constant. Substituting this into (7.7), we find
the possible values of 6 are given by

(7.9 0t = Kkt

or

(7.10) 62 = +k?

and hence

(7.11) 6= +kor +jk i=+v—=1
Therefore, the general solution of (7.7) is given by

(7.12) v = c16*® + c2e7** + caeftt 4 cyo— ke

where the c, quantities are arbiirary constants.
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It is convenient to express the solution of (7.7) in terms of hype:-
bolic and trigonometric functions instead of exponential functions
in the form

ﬁ‘““““’ -“""’l_ (7.13) v(xr) = A cos kx +

a x=8 B sinh z + C cosh kx + D sinh I

x=0 where A, B, C, D, are arbitrary constants.
Fia. 7.1,

a. Natural Frequencies of a Cantilever.
Iet us determine the natural frequencies and modes of oscillation of
the cantilever beam shown in Fig. 7.1,

To determine the natural frequencies of the cantilever beam, we
have the boundary conditions

(@) v=0
dv
i 0 z =0 (fixed cnd)
d% .
(b) = 0 atx =35 (bending moment = ()
ddv
©) g = 0 ataz =g (shear force = 0)

Imposing these conditions on the gencral solution (7.13), we have

(7.14) A+C=0 B+D=0
Hence we have
(7.15) A= —-C B=-D

(7.16) C(cosh ks + cos ks) + D(sinh ks + sin ks) = 0
(7.17) C(sinh ks — sin ks) + D(cosh ks + cos ks) = 0

In order that these homogeneous lincar equations in C and D may
have a nontrivial solution, it.is necessary that

(cosh ks + cos ks) (sinh ks + sin ks)| _

(7.18) (sinh ks — sin ks) (cosh ks + cos ks)|
or
(7.19) 1+ cosh ks cos ks = 0
Therefore

1
(7.20) cos ks = — coch s

This equation may be solved graphically by letting ks = Z and
plotting cos Z and —(1/cosh Z) as shown in Fig. 7.2.

If Z. are the abscissas of the points of intersection of these curves,
then they are the solutions of the Eq. (7.20). The first few roots of
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(7.20) are given by

Z, = 1.8751 Z, = 4.694 Zy = 7.854
Z, = 10.996 Zs = 14.13 etc.

Fach root Z, fixes a value of k, k, by the equation

(7.21)

By (7.6) each value of k, k,, fixes a value of the possible natural
frequency w by the equation

] 2 inT
oz o =i - () 2
m 8 m

The lowest natural angular frequency is given by

2
(7.24) o = (1'8875) \/Eg

b. Natural Frequencies of a Hinged Beam. Let us consider the
determination of the natural frequencies of oscillation of a beam

sl
IS

Fia. 7.2.

hinged at both ends £ = 0 and # = s. The boundary conditions for
this case are

(a) v=0, v=20
z=0 r=Ss8
d¥ dx
z=0 T=s

Imposing these conditions on Eq. (7.13), we obtain the following
equations

0=—-4+C
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Hence

(7.26) A=C=0

and

20 (o2 2 D s,
Now Eqs. (7.27) show that either

(7.28) Bsinks =0

or

(7.29) D sinh ks = 0

Now since sinh ks cannot be zero for real values of its argument, it
follows that D = 0. Then for a nontrivial solution B » 0, we must
have

(7.30) sin ks = 0
Hence
(7.31) ks = rrx r=20123, - -

and to each value of r there corresponds a value of , k, given by

rm
8

(7.32) k. =

By (7.6) the natural frequencies are given by
. (7.33)

* [E
s w,=(%'),/—ﬁ r=1,2345 -
m

The natural modes are given by
(7.34)
v(z) = B,sin(’l;f) r=1,23, -

Fia. 7.3.

c. Beam Clamped at One End and Carrying a Mass at the Free End.
As a more complicated example of the general method, let us consider
the system of Fig. 7.3.

This represents a cantilever beam supporting a mass M at its frec
end. In this case we must adjust the general solution (7.13) to the
boundary conditions
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(a) v=20
dy z =0 (clamped end)
o= 0

® d%

—— =0 atz =28 (zero bending moment)

The fourth condition is that at the free end the shearing force
is the force due to the inertia of the mass M. Now the shearing force
F is given by

- —g1 %Y
(7.35) F=—EI 328
in terms of the deflection y(z,f). The inertia force of the mass is

-M oy . Hence we have
0t2) o4

%y _ 9%y
(7.36) Er 5;:)“. =M (072)’_'

To obtain the boundary condition in terms of the variable v(z),
we use the fact that

(7.37) y(z,t) = v(z) sin wi
Hence, substituting this into (7.36) and dividing both sides by the
common factor sin wi, we obtain

© EI (g-;-';)m = — (Mo®)os

This is the required boundary condition.
We now impose these boundary conditions on the general solution
(7.13). Condition (a) gives

(7.38) {0=A+C’

0=B+D

Therefore we may write

(7.39) »(z) = A(cos kz — cosh kz) + B(sin kxz — sinh kz)
Condition (b) gives

(7.40) —A (cos ks + cosh ks) — B(sin ks + sinh ks) = 0

and condition (¢) gives

(7.41) —kA(sinh ks — sin ks) + B(cosh ks + cos ks)]

= + Y 14 (cosh s — cos ke) + B(sinh ks — sin ks)]
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In order that Eqgs. (7.40) and (7.41) may have nontrivial solution
A = B = 0, the determinant of their coefficients must vanish. If

we let
(7.42) o= _ N

ms B
so that ¢ is the ratio of the mass M to the mass of the beam M and
also let
(7.43) Z = ks
we obtain, after some reductions, the equation

1+ cosh Z cos Z

cosh Z sin Z — sinh Z cos Z 2

(7.44)

This equation can be solved by plotting the curve

_ 1+ cosh Z cos Z
(7.45) Y1 = Cosh Z sin Z — sinh Z cos Z

o008 % + sech 2

" sin Z — cos Z tanh Z

and the straight line
(7.46) Y2 = ¢Z

and finding the values of Z at the intersections.
If ¢ = 1, the graph gives the following approximate values of Z
for the intersection of y; and y»:

(7.47) Z = 1.238, 4.045, %’, Br, .o

If we call the rth root of (7.45) Z,, then we have

2
(7.48) wr = (%) »J'E—Z{

for the natural angular frequencies of the oscillations of the system.

If M >> M; so that the supported mass is much larger than the
mass of the beam, then ¢ > > 1. In this case the angular frequency
_is very small and Z is small. Now when Z is small, we can use the
following approximations:

cosZél—-ng coshZ=‘=1+—Z:?—2
(7.49)
Z VA

3
st-=Z—-—6— sth=..-z+_6_
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Using these approximations, Eq. (7.44) becomes

@50 1+ (1 - Zz) = 92 [(‘ + %‘2) - (1 - %f)]

or
zZ4 2
(7.51) 2 — 3°3 7+ |
Neglecting Z4/4 in comparison with 2, we have
t

(7.52) Z, = (%)
In this case we have from (7.48)

1 [BEI 1 [BEIM, _ [3EI
(7.53) 0= G\mg = #N il = \ol

for the fundamental frequency in the case that the supported mass is
much greater than the mass of the beam. This result may be com-
puted more simply by computing the ‘“effective spring constant”
of the beam by impressing a unit force at the free end and computing
the resulting deflection.

8. Rayleigh’s Metnod of Calculating Natural Frequencies. Lord
Rayleigh! has given an approximate method for finding the lowest
natural frequency of a vibrating system. The method depends upon
the energy considerations of the oscillating system.

From mechanics it is known that if a conservative system (one that

does not undergo loss of energy throughoutits .. ”
oscillation) is vibrating freely then when the
system is at its maximum displacement the X

kinetic energy is instantaneously zero since

the system is at rest at this instant. At this

same instant, the potential of the system is at

its maximum value. This is evident since the *
potential energy is the work done against the
elastic restoring forces, and this is clearly a maximum at the maximum
displacement.

In the same manner, when the system passes through its mean
position, the kinetic energy is a maximum and the potential energy is
zero. By realizing these facts, it is possible to compute the natural
frequencies of conservative systems.

1 “Theory of Sound,” 2d ed., Vol. I, pp. 111 and 287, Dover Publications,
New York, 1945. .

Fia. 8.1.



232 MATHEMATICS FOR ENGINEERS AND PHYSICISTS [Caar. IX

To illustrate the general procedure, consider the simple mass and
spring system shown in Fig. 8.1.

Let V be the potential energy and T be the kinetic energy of the
system at any instant. We then have

2

since the spring force is gif/en by kz, where k is the spring constant.
The kinetic energy is

z z 2
{8.1) V=[) Fd:p=/; Krdr = KX

2

8.2) T=gM (%f)

Let the system be executing free harmonic vibrations of the type
(8.3) z = asin wt

Now at the maximum displacement
(8.4) sin wf = +1 cos wt = 0
Hence from (8.1) and (8.2), we have
(8.5) Vu = 3Ka?

where Vx denotes the maximum potential energy.
Now when the system is passing through its equilibrium position,
we have

(8.6) sin wt = 0 coswt = +1
Hence we have
(8.7) Ty = §Ma%w?

Now ‘the total energy in the system is the sum of the kinetic and
potential energies. In the absence of damping forces, this total
remains constant (conservative system). It is thus evident that the
maximum kinetic energy is equal to the maximum potential energy,
and hence

(8.8) Tu="Vu

or

(8.9) . "$Ka? = §Ma%w?
We thus find

(8.10) ‘ w=

ER

I
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for the natural frequency of the harmonic oscillations. The above
illustrative example shows the essence of Rayleigh’s method of com-
puting natural frequencies. The method is particularly useful in
determining the lowest natural frequency of continuous systems in the
absence of frictional forces.

The method will now be applied to determine the natural fre-
quencies of uniform bearns.

Kinetic Energy of an Oscillating Beam. Consider a section of
length dz of a uniform beam having a mass m per unit length. The
kinetic energy of this element of beam is given by

(8.11) aT = —m( ) dz

gince g—;—/ is the velocity of the element and m dx is its mass. The

entire kinetic energy is given by

. _ 1 8 a_y 2
(8.12) T —Em/(; (8t) dz

where s is the length of the beam.
The Potential Energy of an Oscillating Beam. Consider an element
of beam of length dz as shown in Fig. (8.2).

If the left-hand end of the section is fixed, the u
bending moment M turns the right-hand end My~ y M
through the angle ¢ and the bending moment is \ o/
proportional to ¢, that is, we have \"/

\'
(8.13) M(¢) = ko Fro. 8.2.

where k is a constant of proportionality. If now the section is bent
so that the right-hand end is turned through an angle 8, the amount of
work done is given by

=0
(8.14) dV = / M(¢) dp = / " ke de = l“l _M(zo)o

Now the slope of the displacement curve at the left end of the

section is g%: and the slope at the right-hand end is

o (@)@

by Taylor’s expansion in the neighborhood of z.
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Hence neglecting higher order terms, we have

2
(8.16) - - g.gz dz
Substituting this into (8.14), we have
= My
(8.17) dv = 5 (8:::2) dz
for the potential energy of the section of the beam. However, we have
- g1 (%
(8.18) = —EI ( 6:52)
Hence substituting this into (8.17), we obtain
_EIlfo% 2
The potential energy of the whole beam is
_EI [*{aw\
(8.20) V= 7/, (52) dz
If now the beam is executing harmonic vibrations of the type
(8.21) y(z,t) = v(x) sin wi

we have on substituting this into (8.12)
(8.22) Ty = gme? /; * v2(z) dz

for the mazimum kinetic energy, and substituting into (8.20), we
obtain

EI [*(dw\®
(8.23) Vu = —2— 0 (-d-;’) dz

for the mazimum potential energy.
The natural angular frequency » can be found if the deformation
curve v(z) is known by equating the two expressions (8.22) and (8.23).
The procedure is to guess a certain func-

20 M 22 tion v(z) that satisfies the boundary con-
I ditions at the ends of the beam and then
Fro. 8.3 equate expressions (8.22) and (8.23) to

T determine w.

As an example of the general procedure, consider the system of
Fig. (8.3).
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This system consists of a heavy uniform beam simply suppdrted at
each end and carrying a concentrated mass M at the center of the
span. The boundary conditions at the ends are

(8.24) y=0 y=0
2 = 2 =
% _ (% 0 By _og(==S*

dx? dx?

This expresses the fact that the displacement and bending moments
at each end are zero. To determine the fundamental frequency, let
us assume the curve

(8.25) »(z) = A sin ("—:)

where A4 is the maximum deflection at the center. This assumed curve
satisfies the boundary conditions and approximates the first mode of
oscillation.

From (8.22) the maximum kinetic energy of the beam is
me? [° . (wx) de = mw?d?s _ Mpw?A?

= MW" 2 in2 (7Y = =
(8.26) Tx J, A%sin . 4

where M is
(8.27) My = ms

the mass of the beam.
The maximum kinctic energy of the central load is

(8.28) T = $Mw?A?

Hence for the whole system, the total maximum kinetic energy is

(8.29) 2 Ty = —éw”/ﬂ (]‘—gi’ + M)

From (8.23), the maximum potential energy of the system is

8 /- 2 4 8
(8.30) Vu= —E—J-I f <_d2v) dr = —-———EI4A :ﬂ 2 sin? ™% gz
0 8 0 £}

2 972
We have
(8.31) f 2 sin? (”—:) dz = s
V]
Hence
EIA%r*
(832) Vu= '—‘4—8'8‘—"
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Equating expressions (8.29) and (8.32), we obtain
48.7E1

s (%3 + M)

This gives the fundamental angular frequency w. There are two
interesting special cases:

a. If the central load is zero, M = 0, and we have

97.4E1
(8.34) w2 = W

This turns out to be the exact expression obtained by the use of the

differential equations of Sec. 7.
b. If the beam is light compared with the central load, then

Mp << M and we have

(8.33) w? =

48.7E1
(8.35) W = 55

Rayleigh’s method is very useful in the computation of the lowest
natural frequencies of systems having distributed mass and elasticity.
The success of the method depends on the fact that a large error in the
assumed mode »(z) produces a small error in the frequency w. If it
happens that we choose v(z) to be one of the.true modes, then Ray-
leigh’s method will give the exact value for w. In general, it may be
shown that Rayleigh’s method gives values of the fundamental
frequency w that are somewhat greater than the true values.

PROBLEMS

1. A flexible string is held under a horizontal component of tension, H, and
extends between £ = Oand z = s. It isloaded by a uniformly distributed load w,
per unit length, extending from z = ato z = b. Find the location and magnitude
of the maximum deflection.

2. Find the deflection of the string of Prob. 1, if two concentrated loads P,
and P,actonit at ¢ = aand z = b.

8. A string extending from z = 0 to £ = s is under a horizontal component
of tension, H, and rests on an elastic foundation of spring constant k. A load P,
at £ = a and a load P, at z = b act on the string. Determine the deflection of
the string.

4. Determine the deflection of a cantilever beam of flexural rigidity EI under
the influence of a uniform load w, per unit length extending from z = a to z = b.
The beam is clamped at = 0 and extends to z = s.

5. An infinite beam of flexural rigidity EI rests on an elastic foundation.
The modulus of the foundation is k. The beam extends from z = — » to
& = + w, and at z = O there is applied a concentrated load P,. Determine the
deflection of the beam.
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6. Consider a beam of length s clamped at = 0 and z = 5. Let vi(z) be
a mode of oscillation corresponding to an angular frequency w;: and let v,wﬁbe a
mode corresponding to an angular frequency w;. Show that e

j; * 0i(@)v;(z) dz = 0 4 j

7. Determine the natural frequencies of oscillation of a uniform beam with
free ends.

8. Determine the natural frequencies of oscillation of a uniform beam with a
built in end at z = 0 and simply supported at z = s.

9. Derive the equation giving the natural frequencies of a beam clamped at
z = 0 and z = s resting on an elastic foundation of modulus equal to k.

10. A string of length s under a tension ¢ carries a mass M at its mid-point.
Using Rayleigh’s method, determine the fundamental frequency of oscillation.
(Hint: Obtain the total potential and kinetic energies, etc.)

11. A uniform beam is built in at one end and carries a mass M at its other
end. Use Rayleigh's method to determine the fundamental angular frequency
of oscillation.

12. A uniform beam is hinged at z = 0 and is elastically supported at z = s
by a spring whose constant is k. Find the natural frequencies of oscillation.
Discuss the limiting cases £ = 0and k = «.

18. Apply Rayleigh’s method to determine the fundamental frequency of the
system of Prob. 12,
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CHAPTER X

THE CALCULUS OF FINITE DIFFERENCES AND LINEAR
DIFFERENCE EQUATIONS WITH CONSTANT COEFFICIENTS

1. Introduction. A great many clectrical and mechanical systems
encountered in practice consist of many identical component parts.
Such problems as the determination of the potential and current
distribution along an clectrical network of the ladder type or the
determination of the natural frequencies of the torsional oscillations
of systems consisting of identical disks attached to each other by
identical length of shafting may be most simply solved by the use of
difference cquations.

The calculus of finite difference is of extreme importance in the
theory of interpolation and numerical integration and differentiation.
In this chapter some of the elementary procedures of the calculus of
finite differences will be considered, and methods for the solution of
linear difference equations will be developed.

2. The Fundamental Operators of the Calculus of Finite Differ-
ences. The calculus of finite differences is greatly facilitated by the
use of certain operators. An operator may be defined as a symbol
placed before a function to indicate the application of some process to

the function to produce a new function. The symbol D = a—d:; is an

example, we have

(2.1) D) = ¥ = yay

In the calculus of finite differences, it is convenient to use the
operators E, A, D, and k, any constant. These operators indicate the
following processes:

EF(z) = F(z + h)

AF(z) = F(z + h) — F(z)
DF(x) = F'(z)
kF(z) = kF(z)

(2.2)

The operator E when applied to a function means that the function
is to be replaced by its value h units to the right, D indicates differen-
238
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tiation, and the constant operator k¥ merely multiplies the function
by a given constant,.

If now an operator is applied to a function and a second operator is
applied to the resulting function, etc., the several operators are
written as a product. Each new operator is written to the left of
those preceding it. It may be shown that the order in which the
operators are applicd is immaterial. TFor example,

2.3) ADF(z) = I (z) = F'(x + h) — F'(z) = D AF(x)

If an operator is repeated n times, this is indicated by an exponent.
For example,

(2.4) E-E-E-F(z) = E* ()

In this manner all positive and integral powers of operators may
be defined. An operator with power zero produces no change in the
function, for example,

(2.5) D% (z) = F(x)

Products of powers of operators combine according to the law of

exponents, that is,
(2.6) D2D¥(z) = D% (x)
At present we shall restrict the powers of D and A to be integral

and nonnegative numbers. However all real powers of E may be
admitted. The general power of E is defined by the equation

2.7 E"F(z) = F(x + nh)
These powers combine according to the law of exponents
(2.8) E™E*F(z) = F(x + nh 4+ mh) = E™+F(z)

The sum or difference of two operators applied to a function is
defined to be the sum or difference of the functions resulting from the
application of each operator, that is,

(29) (B + D)F(z) = EF(z) + DF(z) = F(z + k) + F'(2)

3. The Algebra of Operators. In the above section the definitions
of the operators E, A, D, and k were given. The meaning of all
operators found from E, A, D, and k by addition, subtraction, and
multiplication was given. The question of separating these operators
from the functions to which they apply and working with them as if
they were algebraic quantities will now be considered.
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Two operators are said to be equal if, when applied to an arbitrary
function, they produce the same results. For example,

(3.1) A=(E-1)

These operators which we may call A, B, C, etc., may be combined
as if they were algebraic quantities provided they conform to the
following five laws of algebra:

(@ A+B=B+ A4

A+ B+C)=A+B)+C
(c) AB = BA

(d) A(BC) = (AB)C ,

(e) A(B+ C) = AB + AC

It is easy to show that the operators satisfy these fundamental
laws of algebra. For example, to prove that

(3.2) E*D = DE*
we have
(3.3) E"DF(z) = E*F'(z) = F'(z 4+ nh)

= DF(z + nh) = DE"F(z)

Since the operators satisfy the laws of algebra, operators can be
combined according to the usual algebraic rules. For example,

(E*A — D)(E*A 4 D) = EA* — D2
3.4) (D — A)(D — A) = D? — 2DA + A?
ete.
4. Fundamental Equations Satisfied by the Operators. As a

consequence of the definition of the operators E and A, we have
(4.1) E = (1+4A4)

The connection between the operator E and the derivative operator
D may be obtained by means of the symbolic form of Taylor’s series
given in Sec. 16 of Chap. I. We there saw that Taylor’s expansion
could be written in the form

42)  EF@) =Fz + )
-=(1+hD+'—"—;?+'i'£—' . -)F(a:)
= ¢"PF(x) ' ’

provided that F(z) is such a function that F(z) is valid. If F(x) is a
polynomial, the series converges to the function, in this case the
number of terms is finite.
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Comparing both members of Eq. (4.2), we see that we may write
symbolically

(4.3) E = ?
We also have from (4.1)

(4.4) (1 4 A) = e»
or

(4.5) A= (e —1)

6. Difference Tables. If a function is known for equally spaced
values of the argument, the differences of the various entries may be
obtained by subtraction. It is very convenient to write these differ-
ences in tabular form. For example, let us consider the function
F(z) = z® and let the tabulfr difference be h = 1, we then construct
the following table of differences:

F(z) = 3

F(z) AF (z) A%F (z) A%F (z) AYF (z)
1 1 7 12 6 0
2 8 19 18 6 0
3 27 37 24 6
4 64 61 30
5 125 91
6 216

We see that the third differences of this function are constant and
the fourth differences are zero. This is a special case of the following
theorem:

The nth differences of a polynomial of nth degree are constant,
and all higher differences are zero. The proof of this theorem is not
difficult and is left as an exercise for the reader.

Difference tables are of extreme importance in the theory of inter-
polation. Interpolation in its most elementary aspects is sometimes
described as the science of “reading between the lines of a mathe-
matical table.”” However, by the use of the theory of interpolation,
it is possible to find the derivative and the integral of a function
specified by a table takén between any limits. The utility of a
difference table depends on the fact that in the case of practically all
tabular functions the differences of a certain order are all zero.

8. The Gregory-Newton Interpolation Formula. Let us consider
a function F(z) whose values at t=a, 2 =a+h, z = a + 2h,
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z = a + 3h, etc., are given. Suppose that from these given values
of F(x) we construct a difference table and that the differences of
order m are constant. We desire to compute the value of the function
at some intermediate value of the argument (a + nh). By the use
of the operator E of Sec. 2, we have

6.1) ErF(a) = F(a + nh)
By Eq. (4.1), we have
(6.2) E*=(1+ A)
But by the binomial theorem, we obtain
n(n — 1)

(6.3) Er=(1+Aa)r=1+na+ 20" Az .

Hence we have from Eq. (6.1)
(64) F(a+nh) = F(@) +n aF(@) + 2D papia) 4 - - -

Now in order to compute the value of F(z) corresponding to any
intermediate value of the argument such as (@ + %h) we simply sub-
stitute the value of n = % in Kq. (6.4). Equation (6.4) is often
referred to as Newton’s formula of interpolation. 1t was discovered
by James Gregory in 1670.

7. The Derivative of a Tabulated Function. From the equation
(4.5) giving the relation between the derivative operator D and the
difference operator A, we have

(7.1) e = (1 + 4)
Hence we have
7.2) D =1ln(l+a)

If we expand In (1 4+ A) into a Maclaurin series in powers of A, we
have

oo iyt
We thus have
(74) DF(a) = F'(a) = %AF(a) - -};A’F(a) + %A'F(a) -

for the derivative of the function F(z) at z = a.
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To obtain higher derivatives we have from (7.2),
Y
(7.5) D=1l +4}F r=12---

The second member is expanded and applied to F(a).

8. The Integral of a Tabulated Function. It is sometimes required
to obtain the integral of a tabulated function over a certain range
of the variable. To do this, it is convenient to introduce the operator
D~ or 1/D. This operator is defined as the operator which when
followed by D leaves the function unchanged, that is, we have

(8.1) D-F(z) = [F(z)dz + ¢
Since if we operate on (8.1) with D, we obtain

82 DDW@——/M@M+—rW@

We also have the definite integral
a+h

a+h
8.3) .L Fuwx=%m@a

= SIF@+h) — F@)]
= 1 AF(a)

If we use Eq. (7.2) for D, we may write (8.3) in the form

a+h
(8.4) L m@u=ﬁ$%§m@
hA

= F(a)
A? Al Als
By division, the right member of (8.4) may be written in the form
a+h
3 A AT AV 19
(8.5) [‘ F)de =h (l + 513 + ~ 720 se At 4 - )F(a)

By similar reasoning, we have

a+nh 1
(8.6) -/; F(z)dz = = [F(a + nh) — F(a)] = D (E» — 1)F(a)

h[(l + A — 1] F(a)
In (14 4)

[1+ A_l_'n(2n

6n® — 46m® + 110n — 90
n(6n "72‘; )A‘+ . ’]F(a)
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If n = 2, we have

(87)/ F(x)dx—-h<2+2A+ §$+---)F(a)

If F(z) is such that its fourth and higher differences may be
neglected, we have

a+2h
(8.8) / Flx)de =h (2 + 2A + )F(a)
= h[2 + 2(E — 1) + 3(E — 1)*F(a)
=t 4 am 4 Bor@
This is known as Simpson’s rule for approximate integration. If
F(z) is a polynomial of degree less than four, formula (8.8) is exact.

If we place n = 3 in (8.6) and neglect fourth and higher differences,
we obtain

a+3h 3h
(8.9) f F(@)ds = % (1 + 3E + 3B + E9F(a)
= § [F(a) + 3F(a + k) + 3F(a + 2h) +
F(a + 3h)]

This is known as the *“three-eights’’ rule of Cotes.

9. A Summation Formula. A formula of great utility for the
summation of polynomials may be easily obtained by the use of the
finite difference operators. Consider the sum of the n terms.

91)  S.=F(@) +Fa+h) + - +Fla+ (n— 1)k
=Q+E+E+ -+ E-)F(a)

The geometric progression in E may be summed, and we have

_ (Br—1)
9.2 Sx E=T) F(a)

= [Q._t%).”___!] F(a)

Expanding (1 4+ A)" by the binomial theorem and dividing by A,
we obtain

03 8= [n 20 Day 2= DE=D 0y p

[N

As an application of this equation, let it be required to find the
sum of the first n cubes. To do this, we let F(z) = z% h = 1, and
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we use the difference table of Sec. 5. We then have

(94) 1P4+22 43+ - - - +n“=n+—*——‘(n)(n2_ .7y

nn — 1)(n — (n -~ 1)(1»—2)(11,—3).6
6 24

2 124+™
2
=T+

The summation formula is exact if F(x) is a polynomial.
10. Difference Equation with Constant Coefficients. An equation
relating an unknown function «(z) and its first » differences of the form

(10.1) ao A™u(z) + a1 A" Ww(x) + « * * + @p1 Aulx) +
anu(z) = ¢(z)

where the a,’s are constants is called a linear difference equation of
order n with constant cocfficients.

This type of equation is of frequent occurrence in technical appli-
cations. It has many striking analogies with the linear differential
equations discussed in Chap. VI. If ¢(z) = 0, the equation is said
to be homogencous. By the use of the relation (3.1), the equation
(10.1) may be written in terms of the operator £ in the form

(10.2)  (boE™ + biE~t + boE™2 + -+ - 4 ba)u(z) = ¢(z)

where the b’s are constants. This is the form in which difference
equations occur in practice.

The Complementary Function. As in the case of linear differential
equations, the solution of the difference equation (10.2) consists of the
sum of the particular integral and the complementary function. The
complementary function is the solution of the homogeneous equation

(10.3) (boE* + b1E* 1 4 - - - 4+ bu(z) =0
In the usual applications of difference equations i = 1, that is,
(10.4) Eu(z) = u(x + 1), ete.

To solve the homogeneous difference equation (10.3), we assume a
solution of the exponential form

(10.5) " u(r) = cem

where ¢ is an arbitrary constant and m is a number to be determined.
If we operate on Eq. (10.5) with E, we obtain

(10.6) Eu(z) = Ecems = cem=tD) = cemoem
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In the same manner, we have

(10.7) E*u(z) = Ece™®e™ = cemze?™
and in general
(10.8) E*u(z) = cemse'm

We therefore see that if we substitute the assumed solution (10.5)
into the homogeneous difference equation (10.3) we obtain

(10.9) ce™*(boe™™ + bie™>Vm + - - - 4+ b,) =0
If we let
(10.10) g=c¢n
Eq. (10.9) may be written in the form
(10.11) cg®(bog™ + big™* + + -+ +bs) =0
If we exclude the trivial solution u(x) = 0, then
(10.12) cg® # 0
Hence the term in parenthesis of (10.11) must vanish, and we have
(10.13) (bog™ +big™ 1+ - - - b)) =0

This is an algebraic equation that determines the possible values
of g. There are three cases to be considered.

a. The Case of Distinct Real Roots. If the algebraic equation
(10.13) has n distinct roots (gigz . . . ¢.), then the general solution
of the homogeneous difference equation (10.3) is

(1014) u(x) = ¢19% + c20% L CngZ

where the ¢’s are arbitrary constants.
For example, let it be required to solve the equation

(10.15) (2E2 + 5E + 2)u(z) =0

In this case the algebraic equation determining the possible values

of g are

(10.16) , 2¢2+5¢+2)=0
The two roots of this equation are

(10.17) au=—% q=-2

Hence the solution of (10.15) is

(10.18) u(z) = ex(—2)" + co( — ¥)*

where ¢; and c; are arbitrary constants.
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b. The Case of Complex Roots. Let us suppose that the algebraic

equation (10.13) has pairs of conjugate complex roots. Let

(10.19) g1 = Re'*, g2 = Re—¢

be a pair of complex roots. The solutions of the difference equation
corresponding to these terms are of the form

(10.20) c1(q1)® + ca(g2)® = c1R=e#= + coR7e74=
= R*(A cos ¢x + B sin ¢z)

where A and B are two new arbitrary constants. As an example,
consider the equation

(10.21) (E* — 2E + 4)u(z) =0
The roots in this case are

(10.22) q1 = 2¢™/? and gz = 2¢7/3

Hence the solution of (10.21) is

(10.23) u = 274 cos (’—;'5) + B sin (’%’)

where A and B are arbitrary constants.
¢. The Case of Rcpeated Rools. Suppose we have the difference
equation

(10.24) (E — a)u(z) =0

In this case the algebraic equation has repeated roots equal to a.
To solve this equation, assume the solution

(10.25) ’ u(z) = a*v(x)
We now have
(10.26) (B — a)u(z) = (E — a)a*v(x)

= a**w(z + 1) — a*+'v(z)
= o>t (E — 1)v(x)

Similarly,
(10.27) (E — a)u(z) = a2 (E — 1)(x)

Hence the function v(z) satisfies the difference equation
(10.28) (B* —2E + 1)v(z) =0

This equation is obviously satisfied by
(10.29) (z) = (A 4 Bzx)
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where A and B are arbitrary constants. Hence the solution of (10.24)
is given by

(10.30) u(z) = a*(A + Brz)

In the same manner it may be demonstrated that if the algebraic
equation (10.13) has a root a that is repeated r times then the part
of the solution due to this root has the form

(10.31) u(x) = (cl + cox + T crxr—-l)az

where the ¢’s are arbitrary constants.

The Particular Inlegral. The difference equations most frequently
encountered in practice are of the linear homogencous type. The
methods used for obtaining the particular integrals of linear differential
equations with constant coefficients have their counterpart in the
theory of difference equations. To illustrate the general procedure
of determining the particular integral, let us write the linear inhomo-
geneous difference equation (10.2) in the form

(10.32) L(E)u(z) = ¢(x)

where £(F) denotes the linear operator involving the various powers
of E expressed in Eq. (10.2).

a. ¢(x) Is of the Exponential Form e™*. In this case to obtain the
particular integral, assume the solution

(10.33) w(z) = Aem

where A is to be determined. On substituting this into (10.32), we
have

(10.34) Aem=g(em) = em

Hence provided that

(10.35) £(e™) = 0
we have ‘
1

This case enables one to determine the solution when ¢(z) is
sin (mx) or cos (mz) by the use of Euler’s relation.

b. ¢(z) Is of the Form a®. In this case we assume a solution of the
form

(10.37) ' u = Aa*
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On substituting this into (10.32), we obtain

(10.38) Aa*£(a) = a*
hence

1
(10.39) A= )

provided that £(a) # 0.
c. Decomposition of 1/£(E) into Partial Fractions. Tt is sometimes

convenient to decompose the operator 1/£(E) into partial fractions.
For example, consider the difference equation

(10.40) (E? — 5E + 6)u(z) = 5*

In this case the operator £(E) has the factored form
(10.41) L(E) =(E —-3)(E -2

We may write

5 1 1 .
(10.42) u(zx) = 5 [(E =3 T = 2)] 5
__:_5;_'_0133_%3_'_6223
5::

=35 + €137 + ¢:2°

The decomposition of the operator 1/€(E) into partial fractions
frequently facilitates the determination of the particular integral.
Methods for the determination of the particular integral when ¢(z)
contains functions of special form will be found in the references
quoted at the end of this chapter.

11. Oscillations of a Chain of Particles Connected by Strings. The
calculus of finite differences may be applied to the solution of dynamical
problems whether electrical or mechanical. This calculus has great
power when the system under consideration has a great many com-
ponent parts arranged in some order. It may be that there are so
many component parts that to write down all their equations of
motion would be impossible. If there exists a certain amount of
similarity between the successive component parts of the system, it
may be possible to write down a few difference equations and in this
manner include all the equations of motion. This may be illustrated
by the following problem.

Consider a string of length (n 4+ 1)a whose mass may beneglected
that is stretched between two fixed points with a force 7, and is loaded
at intervals a with n» equal masses M not under the influence of gravity
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and is slightly disturbed. ILet it be reqhired to determine the natural
frequencies of the system and the modes of oscillation.
Let (A,B) Fig. (11.1) be the fixed points and (y1, ¥, - - . ¥a) be
the ordinates at time ¢ of the n particles.
m
T % Y
1 3
A a a a B
Fia. 111,

Consider small displacements only and hence the tensions of all
the strings as equal to 7.
The force on the kth mass is given by

(11.1) Fi = 2 [@er = o) + (@ — )]

This is a restoring force acting in the negative direction. By
Newton’s second law, the equation of motion of the kth particle is
given by

2
(11.2) Md(jzyk + g (Y1 + 206 — Y1) = 0
Since each particle is vibrating, let us place
(11.3) yr = Ap cos (wt + ¢)

Substituting this into (11.2) and dividing out the common cosine
term, we obtain

(11.4) —wMA; + 5 (—Ai1 + 245 — Appr) = 0
If we let ‘
2
(11.5) cm (2 _e JT”“)
we may write (11.4) in the convenient form
(11.6) —Appr+ cAr — A1 =0

This is a homogeneous difference equation of the second order with
constant coefficients in the unknown amplitude 4;. To solve it, we
use the method of Sec. 10 and assume a solution of the form

117 Ay = Be*

where B is an arbitrary constant and 6 is to be determined. If we
substitute this assumed form of the solution into (11.6), we obtain

(11.8) Be*(—¢? 4 ¢c — %) =0
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Therefore, for a nontrivial solution we must have

c_e +e?
(11.9) 3= 3

This equation determines two values of 8 since cosh (8) is an even
function and we also have

== cosh (6)

(11.10) cosh (—6) = -g = cosh (6)

Hence, B¢ and Bie % are solutions of the difference equation
(11.6), and the general solution is the sum of these two solutions. It
is convenient to write the general solution in terms of hyperbolic
functions rather than in terms of exponential functions. We thus
write

(11.11) Ax = P sinh (6k) 4+ Q cosh (6k)

where P and @ are arbitrary constants. Equation (11.2) represents
the amplitude of the motion of every particle except the first and last.
In order that it may represent these also, it is necessary to suppose
that yo and y.,1 are both zero, although there are no particles corre-
sponding to the values of k equal to 0 and (n + 1). With this under-~
standing, the solution (11.11) represents the amplitude of the oscillation
of every particle from k = 1tok = n.
Now since 4, = 0, we have from (11.11)

(11.12) P:=0
" The fact that A,.1 = 0 gives
(11.13) sinh 6(n + 1) = 0

This equation fixes the.possible values of 6, they are
(11.14) ”=7{%’“1 r=123 - -n

Having determined the possible values of 8, we now turn to Eq.
(11.9) to determine the possible values of w. We thus obtain

(11.15) c=2~ w’il/!a = 2 cosh nT i
= 2 cos ” r_: i
Hence,
(11.16) w? = —]‘2—;—;&{[1 -~ CO8 (nr_: 1)]
= -A%_z sin 2(nrf}- e
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It is convenient to write w, to denote the value of w that corresponds
to the number r. We thus write

(11.17) —2\/ sm2( +1) r=123 - -n

'The amplitude of the motion of each particle is given by Eq. (11.11)
in the form

(11.18) A = P sinh (6k)
The amplitude of the motion of the first particle is given by
(11.19) A; = P sinh 6

if, now, the value r = 0 were admitted, this would preclude the motion
of the first particle. Similarly the value r = (n + 1) is not admitted.
The values of w given by Eq. (11.17) are the n natural angular fre-
quencies of the system. Giving r other values not multiples of
(n + 1), we merely repeat these frequencies. To each value of 6, 6,
there corresponds a term of the amplitude of the kth particle. This
may be written in the form
(11.20) Ay, = P, sinh 6,k = P, sin ﬁ%ki
where P, is an arbitrary constant.

By (11.3), the coordinate of the kth particle corresponding to the
value of 9, 6, is given by

(11.21) = P, sin ——— cos (w,t + ¢:)

+ 1
"The general solution is then of the form

ren

(11.22) ' Y = E P, sin %F-Fk—l cos (wt + ¢r)

r=]

The 2n arbitrary constants P, and ¢, are determined by the initial
displacements and velocities of the particles.

The problem of the loaded string is of historical interest. It is
discussed by Lagrange in his ‘Mécanique analytique.” He deduced
the solution from his own equations of motion. By means of an
extension of the above analysis, Pupin has treated the problem of the
vibration of a heavy string loaded with beads both for free and forced
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vibrations and by an electrical application solved a very important
telephonic problem.!

12. An Electrical Line with Discontinuous Leaks. The following
interesting electrical problem may be solved by the use of difference
equations.

Let us suppose that the current for a load of resistance R is carried
from the generator to the load by a single wirc with an earth return.
The wire is supported by n equally spaced identical insulators, as
shown in Fig. 12.1.

Fra. 12.1.

The resistance of the sections of wire between insulators is 7o, The
resistance of the earth return is negligible. ILet us suppose that in dry
weather when the insulators are perfect the current supplied by the
generator is I; but in wet weather it is necessary to supply a current
I, in order to receive a current I, at the load B. Assuming that the
leakage of all the iusulators is the same, let it be required to find

the resistance r of each.
If we write Kirchhoff’s second law for the sth loop, we obtain the

difference equation.
(121) 1:.7' - 7:._11‘ + 1:.7’0 + 'i.?' - 1:,4.11‘ =0
This may be written in the form

(12.2) foy1 — (2 + ?) oAty =0

If we assume a solution of the form
(12.3) 1, = ce®

where c is an arbitrary constant and substitute this into the difference
equation, we find that

, = To
(12.4) cosh 6 = (1 + 2r)

The general solution of (12.2) may be written in the form
(12.5) 2. = A cosh 86 + B sinh s6

1 M. PuriN, Wave Propagation over Non-uniform Electrical Conductors, Trans-
actions of the American Mathematical Society, vol, 1, p. 259, 1900,

.
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To determine the arbitrary constants A and B we have for the
current in the first loop

(12.6) I, =1, = A cosh 6 + B sinh 6
Also in the (n 4+ 1)th loop we have
(12.7) I;= A cosh (n + 1) + B sinh (n + 1)8

If we solve these two simultaneous equations for A and B, we
obtain

' A =L,,sinh(n+1)0—Idsinh0

sinh ng
(12.8) B —1, cosh (n + 1)8 4 I cosh 6
= sinh 76

Substituting these values for A and B into (12.5), we obtain

_ I, sinh (n — s 4 1)8 4 I, sinh (s — 1)6
- sinh nf

(12.9) %

If we write Kirchhoff’s second law around the last loop, we obtain

(12.10) I (1 + 1"—1‘—”3) =i,

If we solve Eq. (12.4) for r, we obtain

To To

(12.11) r= — =
2(cosh 68 — 1) 4 sinh? _g

Substituting this value of r and i, from (12.9) into (12.10), we
obtain after some reductions

(12.12) 2L.R sinh sinh% + rolscosh [52—”—2"'—1—)3] ~ rol, cosh § = 0

This equation may be solved graphically for 6 by the methods of
Chap. V. Substituting the value of ¢ determined by this equation
into Eq. (12.11) gives the desired value of . If as is usually the case,
the line resistance 7, is small in comparison with the insulator resist-
ance, that is, if
(12.13) 233!
then we have m

(12.14) 4 sinh’% <<1
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and we may make the approximation

(12.15) 4 lsmh2 = §2

realizing that if z is small we have

(12.16) sinh z = =, coshz =1 +:§

Using these approximations in Eq. (12.12) ard solving for 6, we
obtain

Sro(l, — 1) ro
(12.17) 0 = SoRT, F ril@n + ) =1
Hence
8nRI; + rofla(2n + 1)2 — 1]
(12.18) r= e

for the required value of r.

13. Filter Circuits. In Chap. VII the mathematical technique for
the determination of the steady-state behavior of alternating-current
networks was explained. A very important type of network is one in
which numbers of similar impedance elements are assembled to form
a recurrent structure. Networks of this type are called filters because
they pass certain frequencies freely and stop others. Various forms
of structure may be employed. A very common structure is the
so-called ladder structure. This is shown in Fig. 13.1.

EETIEET

Fia. 138.1.

This structure consists of a number of identical series elements of
complex impedance 2z, and a number of shunt elements of complex
impedance z;. The input and output impedances are 2z, and z,,
respectively, and there is a complex applied electromotive force

(13.1) e(f) = Eoeit i=v-=1

applied to the first mesh. The real and imaginary parts of this com-
plex electromotive force correspond to actual electromotive forces of
the type E, cos wt or Eysin wf. We assume that the instantaneous
currents in the various meshes, have the form

(13.2) ' 4(t) = Lot
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where I, are the ordinary complex currents of steady-state alternating-
current theory. The real or imaginary parts
of (13.2) correspond to an applied potential
of the form E, cos wt or E, sin wt, respec-
tively, with proper phase.

The circuit of IFig. 13.1 is composed of
n T sections of the type shown in Fig.
13.2.

As shown, the filter ends with half-series elements and is said to
have mid-series terminations. It is sometimes more convenient to
arrange the filter circuit as shown in Fig. 13.3. This circuit is said

Fia. 13.2.

I1G. 13.3.

to have mid-shunt terminations. In this case we regard the filter
as made up of (n — 1) so-called sections as shown in Fig. 13.4.

The type of tcrmination affects the values of the currents in the
different sections of the filter for
given input and output impedances. [ 2 |
However, it does not affect the
frequency characteristics of the filter. EA | 22
It is, therefore, only necessary to
analyze one case, and we shall choose
the case of the mid-series termination. If we apply Kirchhoff’s second
law to the various meshes of I'ig. 13.1, we obtain the following set of
equations:

Fia, 13.4.

zodo + 2L 4 2.0, - 1) = B,
—Zdy + (Zy + 2Z)]s — Zaly = 0

(13.3) —~Zoly 1+ (Z1 4 2Z)I, — ZoI,11 = 0

—ZzIn—l + (Zz +Z" + _Zz_l)I" =0

The equation for the sth mesh may be written in the form

(13.4) . (_Z_l:ztzzé) IL—Ia=0
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This difference equation has a general solution of the form

(13.5) I, = Aes* + Be
where A and B are arbitrary constants. The number a is given by
(13.6) cosha = Z_l_-g_222

2

The quantity o is, in general, complex and is called the propagation
constant of the filter. Since a is complex, let us write

(13.7) a= —a—j¢

The act;ual instantaneous current z,(t) is obtained by multiplying
the complex amplitude I, by ¢#* in the form

(13.8) 4() = I = (Aeo + Beos)eiot
—_ Ae—aaci(wt—-¢n) + Be+aaei(wt+¢a)

We thus see that there is an attenuation factor e~ introduced
into the amplitude of the first term by each section of the filter as
we move away from the input end. Similarly, for the second term of
(13.8) there is an attenuation for each section of the same amount as
we move toward the input end. It is thus apparent that if « differs
from zero for any frequency and the filter has an appreciable number
of sections the current transmitted by the filter is effectively zero.
On the other hand, a current whose frequency is such that « = 0 is
freely transmitted. The quantity « is called the attenuation constant.

In the same manner, ¢ is called the phase constant since it gives the
change of phase per section (measured as a lag) in the currents as we
move along the filter.

The physical significance of Eq. (13.8) is now clear. The first
term represents a space wave of current traveling away from the input
end, attenuated from section to section much as the time waves of the
free oscillations of a circuit are attenuated from instant to instant.
The second term represents a similar wave traveling back toward the
input end, arising from reflection at the output end.

From Eq. (13.8) we see that there are two separate points of
interest to be considered:

a. The dependence of the frequency characteristics upon the filter
construction, that is, on the nature of Z, and Z,.

b. The dependence of the transmission characteristics upon the
terminating impedances Z, and Z,.

The first matter involves only Eqs. (13.6) and (13.7), while the
second matter involves the determination of the arbitrary constants
A and B. )
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Frequency Characteristics. If the resistances of the elements of
the filter, Z, and Z, are so small that they may be neglected, then
Z, and Z, are pure imaginary quantities. It follows, therefore, that

(13.9) cosh a = (2 + 7‘)
2
is real.
If we now express cosh a in terms of a and ¢, we have
(13.10) cosh a = cosh (— a) = cosh (a + jo)
= cosh a cos ¢ + j sinh « sin ¢ .

Now since cosh a is real, either « must be zero or ¢ must be an
integral multiple of =. Hence since cosh « is never less than unity
and cos ¢ is never greater than unity, we have three cases to consider.

(a) —1<cosha<1 a =0, a= —jé
(b) cosha >1 ¢ =0, a=—«a
(c) cosha < —1 ¢ = xm, a=—atjr

In the frequency range corresponding to case a, currents are
transmitted freely without attenuation. The range of frequencies
for which this is the case is called a pass band. Frequency ranges
corresponding to the other two cases are called stop bands.

In terms of Z, and Z,, the pass bands are given by

1Dt 2y

(13.11) o7

or

Z,
(13.12) 0< (" Z—) <4

2,

Stop bands are given by all other ranges of values.
The simplest filters of the types we are considering are given by
Figs. 13.5 and 13.6.

IS

Fia. 13.5. Fia. 13.6.

For the arrangement of Fig. 13.5, we have

(13.13) 2y =juLy, Z3= %‘Z
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The pass band is given by
(13.14) 0<LCx*< 4

or
2

13.15 0<w<u =
(13.15) Y T

Since all frequencies from 0 to a critical or culoff frequency given by

are passed without attenuation, we have a low-pass filter.
In the arrangement of Fig. 13.6, we have

(13.16) Z]_ = “Ctl—z'? Zz = ijz
The pass band is now determined by
(13.17) 0= +—5— LzC] ; < 4
or
1
13.18 (3 S S 0 e = T
( ) Q= “ T VL:Cy

Here all frequencies above a critical frequency are passed without
attenuation. This arrangement is called a high-pass filter. More
complicated arrangements may be treated in a similar manner.

Transmisston Characteristics. The values of the arbitrary con-
stants, A and B of the solution of the difference equation 13.5 are most
mmply expressed in terms of the characteristic impedance Zy, of the
given filter.

By definition, the characteristic impedance of a filter of the type
we are considering is the input impedence of the filter when it has an
tnfinite number of sections. It is evident that in this case, the wave
due to reflection at the output end, which is represented by the second
term of (13.5), vanishes. The current in each section is now independ-
ent of the terminal impedance Z, and the general solution (13.5)
reduces to

If s = 0, we have
(13.20) In=A

hence we may write
(1321 I, = I
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The first of the equations (13.3) now becomes

(13.22) [—Zz(e“ - 1) + % + Zo] I, = E,

But by definition, since Z; is the impedance at the sending end
of the entire filter that has an infinite number of sections, we have

(1323) (Zk + Zo)Io = Eo
"Comparing Eqs. (13.22) and (13.23), we have

(1324) Zk = —Zz(ea — 1) + _sz = Z, (e“ -—2 e—a)

If we square this equation and use Eq. (13.6), we obtain

AN éx_;nz_z_g)’_ A4

Hence, finally,
T s
(13.26) Z = \/zlzz +4
We see that when we neglect the resistance parts of Z, and Z,
then Zj is real in the pass bands and smaginary in the stop bands.
To determine the constants A and B for the actual filter with a

finite number of sections, we substitute (13.5) in the first and last
of the equations of (13.3). We then obtain

(13.27) [—Zg(e“ P ?23 + zo] A+
[—Zz<e-a -n+2+ Zo]B - B,
e«»[—z,(e-« -n+24 Z,.]A +
e‘“”[——Zz(e“ -n+2 +zo']B -0
However, from Eq. (13.23) we have

(13.28) Z, = -Zz—‘ — Za(es — 1)
and, similarly,

(13.29) 7 = %1 — Za(e — 1) 3
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Hence the equations (13.26) may be written in the convenient
form
(Zv+ Z)A — (Zv + Zy)B = E,
—e(Zy — Z)A + e (Zi + Z,)B =0

Solving these simultaneous equations for A and B and substituting
the result into (13.5), we obtain

Eo((,‘(n—a)a —_— rke—(u——a)a)

(13.30) {

(1331) 1= @ Ty = )
where

_Zo— 12, = Ln= 2y
(13.32) s = 7 X7 TR =g

The quantities r, and rr are called the sending-end and receiving-end
reflection coefficients, respectively.

If the output impedance matches the line characteristic impedance
of the line, then
(13.33) Z, = Zy

Under this condition, the filter with its terminating impedance
behaves like an infinite filter. The reflection coefficient r, = 0, and
reflection is absent. In this case all the energy delivered to the
filter at the input ¢nd is transmitted to Z,, and the filter operates at
maximum efficiency. In this case, Eq. (13.31) reduces to

= B
(Zo + Zi)
In practice one is more interested in the input and output currents

than in the intermediate currents. The completeness of filtering is
measured by the ratio

(13.34) I,

(13.35) Lo _ gon

14. Four Terminal Networks Connection with Matrix Algebra. In
this section it will be shown that there
exists an intimate connection between
difference equations and matrix multiplica- Ext
tion. To fix the ideas, we shall consider
an application to electric-circuit theory,
and we shall see that in certain cases matrix multiplication has certain
advantages over the method of difference equations in that we need
not solve for the arbitrary constants that appear in the solutions of
the difference equations.

Consider the electrical circuit of Fig. 14.1.

h— 71 —h
L=
=

Fia. 14.1.
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This circuit consists of a series impedance and a perfect conductor
return path. We suppose that an electromotive force

(14.1) ei(t) = E,e
is impressed on one end of the circuit and that an electromotive force
(14.2) es(t) = Eeiet

is impressed on the other end of the circuit.
This gives rise to a current

(14.3) 1) = Ievt = et
Since we are interested in steady-state values, we may suppress
the factor e* as is customary in electric-circuit theory. We then

concern ourselves only with the complex amplitudes E,, Eq, I, and I,.
By Kirchhoff’s laws, we have the relations

E,=E,+ ZI,
4.4
(14.4) (LT
This may be written in the convenient matrix form
E,) TJ1 ZY (E.
awo 7)=[o i]{7)

This matrix equation expresscs a relation between the input
quantities £, and I, and the output quantities E; and I,. We notice
that the determinant of the square matrix of (14.5) is equal to unity.

Let us now consider the circuit of Fig. 14.2.

- By Kirchhoff’s laws, we now have
f I the relations
| I

El = Ez
14.6
Fi1a. 14.2. ( ) I, =YE, + Ig

where Y is the admittance of the circuit and is hence the reciprocal
of the impedance. This relation may be written in the matrix form

wo B0 B e me

We notice that in this case also, the
determinant of the square matrix is equal E‘t 1E’
to unity.

Let us now consider the network of ¥1e. 14.3.
Fig. 14.3.

We may regard this circuit as being formed by a circuit of the
type of Fig. 14.1 in series with a circuit of the type of Fig. 14.2 and
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another circuit of the type of Fig. 14.1. Since the output currents
and voltage of one circuit are the input currents and voltages of the
next network, we obtain

oo [T 50 o H10
_ [+ ZV)(Z: + 22 + Z,)] (s
[ Yy (1 + Z.Y) ]{12’

We thus may obtain the input and output quantities directly.
The elements of the square masrix are functions of the impedances and
admittances of the component parts of the network. Since the square
matrix of (14.8) is the product of three matrices whose determinants
are each equal to unity, therefore, its determinant also is equal to
unity. The square matrix of the equation (14.8) is called the asso-
ciated matrix of the network.

Let us consider a box with four accessible terminals as shown in
Fig. 14.4.

Let us assume that within the box there exist various impedance

and admittance elements joined together I I
1 2

in a general manner. Let us also assume . —
that there are no potential sources Eq} i b T E,
within the box. It may then be shown - o
by a repeated multiplication of the asso- Tro 144,

ciated matrices of the individual elements
within the box that the input and output potentials and currents are
related by the equation

[E _[4 B E,l
(14.9) l 11} [c D] { I,

Where in general A, B, C, D are complex numbers and the deter-
minant of the square matrix of (14.9) satisfies the relation

(14.10) AD — BC =1 .
. -1
If we premultiply both sides of the Eq. (14.9) by [gg] , We
obtain

E)| _[4 B! {El} _ [ D —-B] {E,l
(14.11) 12] [c D] nj~l-c  alln
If the network within the box is symmetrical so that it-appears the

same when viewed from the right as when viewed from the left, we
have '

(14.12) A=D
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Cascade Connection of Symmetrical Networks. Let us suppose that
we have a chain of n symmetrical networks connected as shown in
Fig. (14.5).

Ig— —_—
s LS SR o o—t— Iy

[ T — l—o 1ER

2
Fia. 14.5.

Since the networks are identical and symmetrical, we have the
relation

E A B|"|E
14.13 i E ’
(1419) =16 417
There exists a very convenient manner of writing the matrix
[gf] to enable one to raise it to a positive or negative integral power.
To do this, we let
(14.14) A = cosh a
(14.15) ¢ ="5zhe
Zo
Now since the determinant of [25] equals unity, we have
(14.16) A? — BC =
or
2 2 —
417y B=2 - 1_ (“°Shsi:h - DZs _ 7. sinh a
Hence with these substitutions we write
A B] _[cosha Zy sinh a
(14.18) [C A] = | sinh
g cosh a

We now have

A Bl* [cosha Z, sinh a7 [ cosh a Z, sinh a
(14.19) [0 A] sinh a sinh a

- | Z, " Z,
_ [(cosh? a + sinh? a)2Zo(cosh a sinh a) ]

cosh a cosh a

-ZEO cosh a sinh a (cosh? @ + sinh? a)

sinh 2a

7 cosh 2a

" cosh 2a Z, sinh 2a]
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By mathematical induction it may be shown that
A B]" [cosh an  Z,sinh an}

(14.20) [
¢ A — - cosh an

0
The result (14.20) holds for n a positive or negative integer.
We therefore have

E,)| _[coshan  Z,sinhan] (g,
(14.21) {I,} ~ | sinh an [‘j;
A cosh an

This gives the relation between the receiving-end quantities and the
sending-end quantities. If we premultiply Eq. (14.13) by { ‘gf} -

we obtain

’ I. —_—— cosh an I,

Expressions (14.21) and (14.22) are extremely useful in the field
of electrical circuit theory, and by the electrical and mechanical
analogues, they are of use in the ficld of mechanical oscillations.

16. Natural Frequencies of the Longitudinal Motions of Trains.
As a simple mechanical example of the above general theory, let us

x,...} x2<..4' xsq_l x,,._{
Ty 1 Py 2 W 3 -y n Lo
Q0 00 00 Q0
Fia. 15.1.
L L L L
T < Ptk Tt Bt Fh T8

Fia. 15.2.

consider the longitudinal motions of a train of n equal units as shown
in Fig. 15.1.

For simplicity, we shall assume that the mass of each unit is m
and that the units are coupled together by coupling whose spring con~
stant equals k. Friction will be neglected.

By the principles explained in Chap. VIII, the mechanical system
of Fig. 15.1 is analogous to the electrical system of Fig. 15.2.
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This is a ladder network having n meshes. By the electrical-
mechanical analogy principle, we have the following analogous
quantities:

(15.1) ML
(15.2) K—8= %
(15.3) by — &y = 0,
(15.4) gr — T,

where L is the inductance parameter of each mesh of the ladder net-
L work, S is the elastance of each condenser
IO of the network, 7, is the mesh current of the
_L _L c rth mesh, and ¢, is the mesh charge, z, is the
§ T dinate of the rth unit of the train, and
j‘ T coordinate of 0! s
v, is the velocity of the rth unit.
The electrical circuit may be regarded
as being composed of n units of the = type as shown in Fig. 15.3.
The associated matrix of the circuit of Fig. 15.3 is

[ 1 0 . 1 0
A B . . 1 ]wL .
(15.5) [C A] = [C 1] [0 1 ][’“;g 1]

Fiu. 15.3.

We now let
(15.6) cosh a = (1 - ‘3%_’@)
(15.7) Z, = sinh a

in accordance with Eqs. (14.14) and (14.15).
We may then write the associated matrix of the circuit (15.5) in
the form

A B cosh a Zg sinh a
(15.8) [C’ A] = 311‘1Zh a cosh a
0

To obtain the natural frequencies of the dynamical system of Fig.
15.1, we realize that when the train is oscillating freely there are no
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external forces exerted upon it at either end. Hence, in the equivalent
electrical circuit, the sending-end and receiving-end potentials must
be equal to zero. We thus have

Ex cf)sh an Z, sinh an
(15.9) I Irl - sm; ¥ cosh an ‘ }
bl

Since E, = 0, we have
(15.10) Er = I,Zysinh an = 0
for I, is arbitrary. The frequency equation of the system is given by
(15.11) Zysinh an =0

If in Eq. (15.6), we let
(15.12) a=jb j=+/—1
and solve for w, we find
(15.13) w = ;?,fc sin (g)

If we now substitute this into (15.7), we have

___ sinb
0™ &C cos? b/2

The frequency equation (15.11) then becomes

(15.14) z

j sin b sin bn

(15.15) “Coosibz = ©
This equation is satisfied if
(15.16) ' sin bn = 0
or
(15.17) b-_-"—: r=012 - (n—1)

Substituting this into (15.13), we obtain the n natural angular
frequencies w,

(15.18) ,.sm( ) r=0,1,2 (n—1)

Translating this result into mechanical language, we obtain

(15.19) w = 2\/§sin(§r%) r=0,12 - (n—1)

for the natural angular frequencies of oscillation of the train of n units.
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PROBLEMS

1. Find the successive differences of F(z) = i, the interval k& being unity.

- 1
2. Evaluate i~ /(; a -F—;ﬁ; by integrating numerically.

8. A curve expressed by F(x) has for z = 0, 1, 2, 3, 4, 5, 6 the ordinates 0,
1.17, 2.13, 2.68, 2.62, 1.77, —0.07, respectively.  Find the slope of the curve at
each of the seven points, and find the area under the curve from z = 0 to z = 6.

4. Show that 14 +2¢ 434 4 . . . 4 nt = ((m‘ + 1573 4 10n2 — 1).

B. Derive the formula
] ot b @) do = 3'3 (7 -+ 32E + 122 + 325° + TEYF(a)
a

6. Sum to m terms, the series
(348 + G2+ 11) + (72 +14) + (92 +17) + - -«

Solve the following differcnce equations:
T. u(x 4+ 2) — 3u(z + 1) — 4u(x) = m?
8. uz+2)+4uz+1)+4==x
9. Au(z) + Atu(x) = sin ¢
10. u(z 4+ 2) + n2u(x) = cos mx
11. A seed is planted. When it is one year old it produces tenfold, and when
two years old and upward it produces cightecnfold. Xvery seed js planted as
soon as produced. Find the number of graing at the end of the xth year.

Ans. __'/ [<|1+3\/17) (11—3\/‘7)]
317

12. A low-pass filter with mid-series termination is constructed of elements

L, = }r henry, C: = % microfarad. Find the cutoff frequency.

Ans. w. = 1,200 cycles

13. Dra.w the equivalent electrical cireuit for the loaded string. Use the
matrix method to compute the natural frequencies of the system.

14. Consider an infinitely extended string under tension ¥. The string carries
equal equidistant masses m and is immersed in a viscous fluid. Draw the equiva-
lent electrical circuit, and discuss the nature of wave propagation when a harmonic
transverse force is impressed on the first mass.

15. A shaft of constant cross section carries n identical disks spaced at equal
intervals of length @. The moment of inertia of each disk is denoted by J. The
torsional stiffness of each section of shaft between two disks is determined by the
constant ¢ such that if the relative angular displacement of two neighboring disks
is equal to 8 the torque transmitted by the section is equal to ¢8. Determine the
natural frequencies of the torsional oscillations of the system. If an oscillatory
torque is applied to the first disk, determine the motion of the last disk.

16. A transmission-line conductor carries an alternating current of angular
frequency . It is supported by a string insulator of n identical units attached
to a metallic transmission-line tower that is at zero potential. Assume that the
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metallic conductors between two insulators forms an electrical condenser of
capacitance ¢;; also each metallic conductor and the tower form a condenser of
capacitance cs.

Determine the potential distribution slong the chain of insulators.

17. A light elastic string of length ns and coeflicient of clasticity E is loaded
with n particles each of mass m ranged at intervals s along it, beginning at one
extremity. If it is suspended by the other end, prove that the periods of its
vertical oscillations are given by the formula

sm 2r 4+ 1
s V—E— cosec [ o 1 12'] whenr =0,1,2, - - - (n — 1)

18. A railway enginc is drawing a train of equal carriages connected by spring
couplings of strength x, and the driving power is adjusted so that the velocity is
(A + Bsin gt). Show that if ¢*[(M 4 4m)b? + 4mk?] is nearly equal to 2ub? the
couplings will probably break. M is the mass of a carriage that is supported on
four equal wheels of mass m, radius b, and radius of gyration k. Are there any
other values of ¢ for which the couplings will probably break?

19. A regular polygon A;, A, - - - A, is formed of n pieces of uniform wire,
each of resistance r, and the center 0 is joined to each angular point by a straight
piece of the same wire. Show that, if the point 0 is maintained at zero potential
and the point A, at potential V, the current that flows in the conductor 4,, 4,418

- 2V sinh @ sinh (n — 2s 4+ 1)8
r cosh né

I

where 6 is given by the aquation
‘cosh 20 = 1 + sin (;—:)
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CHAPTER XI
PARTIAL DIFFERENTIATION

1. Introduction. A great many of the fundamental laws of the
various branches of science are expressed most simply in terms of
differential equations. For example, the motion of a particle of
mass M, when acted upon by a force whose components along the
three axes of a Cartesian reference frame are F,, F,, and F,, is given
by the three differential equations

a2 a2 &
(1.1) Ma%=F,, Ma—tg=F,,, Ma.t.f.=p~,

where z, y, z is the position of the particle at any time {. In this
case, the motion is given by a system of ordinary differential equations.

The physical laws governing the distribution of temperature in
solids, the propagation of electricity in cables, and the distribution of
velocities in moving fluids are expressed in terms of partial differential
equations. It is therefore necessary that the student of applied
mathematics should have a clear idea of the fundamental definitions
and operations involving partial differentiation.

2. Partial Derivatives. A quantity F(z,y,2) is said to be a function
of the three variables z, y, z if the value of ¥ is determined by the
values of z, y, and z. If, for example, z, y, and z are the Cartesian
coordinates of a certain point in space, then F(z,y,z) may be the tem-
perature at that point, and as z, y, and z take on other values, F(z,y,2)
will give the temperature in the region under consideration.

Continuity. The function F(z,y,2) is continuous at a point.(a,b,c)
for which it is defined if

(2.1) lim F(z,y,2) = F(a,b,c)
=
z2—¢

independently of the manner in which z approaches a, y approaches b,
and z approaches c.

Now, given F(z,y,2), it is possible to hold ¥ and z constant and
allow z to vary; this reduces F to a function of z only which may have
a derivative defined and computed in the usual way. This derivative

270
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is called the partial derivative of F with respect to z. Therefore, by
definition,

9_F_'_ : F(z+h: Y, z)—F(z,y,z)
(2.2) oz ;}1_130[ h ]

The symbol —g’; denotes the partial derivative. Sometimes the alterna-

tive notation is used

aF d
(2.3) 3z = F= = (gg)”.'

Again, if we hold z and z constant, we make F a function of y alone
whose derivative is the partial derivative of F with respect to y; this
is written

oF d o F(z,y + k, z) F(z,y,2)
w0 £n(8), - 1| |

In the same manner, we define the partial denvatwe with respect
to z.

(2.5) §E=F = (9F = Km F(z,y, 2+ q) — F(z,y,2)
) 0z £ dz - q_)o q

If F(z,y,2) has partial derivatives at each point of a domain, then
those derivatives are themselves functions of z, y, and z and may have
partial derivatives which are called the second partial derivatives
of the function 7. For example,

a fa F
‘a;(:'g)*a?“”

3 (gf) _9F _,
(2.6) dy\oz)  oyox **
' _«1(911) -9 _p
- , dy\oz) ayoz
etc.

2
oF denotes the derivative of QE with
oz 9 dy
respect to z, while —— y denote@ the derivative of — w1th respect to

Order of Diﬁerentiation.

y. It may be shown that if F(z,y) and its derivatives g; a.nd @ are
continuous then the order of differentiation is immaterial, and we have
&F _ IF

@7 | 53y = o a ot
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+
In general aa?p ;Eq signifies the result of differentiating F(z,y,2)

p times with respect to z, and ¢ times with respect to y, the order of
differentiation being immaterial. The extension to any number of
variables is obvious.

3. The Symbolic Form of Taylor’s Expansion. In-Sec. 16 of
Chap. I, we wrote Taylor’s expansion of a function of one variable
in the form

3.1) e+f(z) = f(z + h)
where
3.2) D, =2
: ¥ dr
and

e is the base of the natural logarithms. The symbolic expansion of a
function F(x,y) of two variables written in the form

(3.3) Pt (zy) = F(z + h, y + k)
where

_29 -9
(3.4:) Dz - (‘9}) D1l - ay

is to be interpreted by substituting
(8.5) u = (hD, + kD,)

in the Maclaurin expansion
(3.6) v=14 +2,+ + +

and operating with the result on F(z,y). Terms of the type D; and
DiDs, etc., are interpreted by

or ort+s

a .TC' D”D v axr ayl

The justification of (3.1) depends on the fact that the operators
D, and D, satisfy the laws of algebra and commute with constants as
discussed in Chap. X. This form of Taylor’s expansion is of great
usefulness in applied mathematics.

4. Differentiation of Composite Functions. As a simple case of
composite functions, let us consider

(4.1) F = F(z,y)

3.7 D; =
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where z and y are both functions of the independent variable ¢, that is,

(4.2) z=2z(), y=yW
Now if ¢ is given an increment Af, then z and y receive increments
Az, Ay, and F receives an increment AF given by

(4.3) AF =F(z + Az, y + Ay) — F(z,y)
Now by Taylor’s expansion, we have
(44) F(z 4+ Az, y + Ay) = e“"*“""d"(x y)
= F(z,y) + Aa’ + Ay + 6, Az 4 6 Ay

where
(4.5) lim §; = lim &, =
Az—0 Az—0
Ay—0 Ay—0
Hence
(4.6) AF=%%A + Ay+61Ax+62Ay
Dividing this by At and takmg the limit as At — 0, we have
oF Ax oF Ay Ax Ay
(4.7) AI,‘E’O ‘A_t At—-»O (6.15 al Toga Tha T Zt)

Now as At — 0, Az — 0, and Ay — 0, and if ¢ is the only independent
variable, we have

AF _ dF dx
(4.8) Altl—r-)n() VEalrTL lx_}o —A~t a0 ete.

Therefore (4.7) becomes

dF _oF dx | oF dy

(4.9) 4" erd Tt

If there are other independent variables besides ¢, then we must
use the notation

' . AF oF . Az oz
(4.10) Altlfl,o—&t— =30 Altlilo T etc.
and we have .
(4.11) oF _ oF 3z 4 OF oF ay

B 9z 9t T oy at

This formula may be extended to the case where F is a function of
any number of variables =, y, z, - + - and =, y, 2, - - -, etc., are
functions of the variables ¢, r, s, p, - - - , ete.
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The results may be stated in the following form:

If F is a function of the n variables z,, z2, -+ - - 2. 80 that
(4.12) F = F(xy, 23, T3, * * * Ta)
and each variable z is a function of the single variable ¢ so that
(4.13) z. = z.() r=123 - -n
then
CONEE 3% it~ RARES -+

If however each variable z is a function of the p variables ¢,,
ts, - - - 1, 80 that

(4.15) Ty =21y bey - - - t,) r=123, ---n
then
OF _OF om  oF oz . OF du,
@19 G5 oF om , o om oF o,
+ -0 4 —— o ete.

3.~ 9z, Of,  Ozy Of, oz, ot,

Second and Higher Derivatives. As an illustration of the manner
in which higher derivatives may be computed from these fundamental
formulas, let us differentiate (4.9) on the assumption that z and y are
functions of the single variable t. We therefore have

d’F _d (aF) dz  Fdx | d (ap) dy | oF d%

@ GE=a\a)ataa ta\s)a tya

' Now since (g) and (%g) are functions of z and y, we apply

(4.9) to (6F) and (QE) instead of to F and obtain

. dy
d (9F\ _9Fdz | &F dy
(4.18) dt (35) T ar*dt ' oraydt
and .
d(oF\ _ 3F dz , aFdy
(4.19) di (5?) T 9z oydt ' dytdi

Substituting this in (4.17), we have

d'F _oF (dz)’ OF dzdy , OF dy)’ oF d*z , oF dy

@20) Fa=oi\@) Vumaa Taw\a) Taatya
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Expressions for the third and higher derivatives may be found in
a similar manner.

6. Change of Variables. An important application of Eq. (4.11)
is its use in changing variables; for example, let
(5.1) F = F(z,y)
and it is desired to replace z and y by the polar coordinates r and ¢
given by
(5.2) T = r cos 9§, y=rsind
Then F becomes a function of i- and 6, and we have by (4.11)

OF _dFox  oF 3y _ oF

(5.3) ar oz or dy or T s 0 + sm o
. ?E=§E§E+9—E@ 9£(—rsm0)+ Fr ]
36 ~ oz 90 ' 9y a6 7
. . oF oF
Solving these equations for — Frs and F we have
oF _ BF cos 0 — oF sin 6
(5.4) or  or a0 r
) oF _ oF . no+ 28 aF cos @
oy  or T

The second derivative may be computed by Eq. (4.15).

6. The First Differential. For simplicity, let us consider
(6.1) F = F(z,y)
a function of two variables £ and y. Now let us give z an increment
Az and y an increment Ay. Then as was shown in (4.6), F takes an
increment AF, where

oF oF

In general the third term is an infinitesimal of higher order than the
first term, and the fourth term is in general a higher order infinitesimal

than the second.
We take the first two terms of (6.2) and call them the differential

of F and write
(6.3) =T T
The definition is completed by saying that if £ and y are inde-
pendent variables
6.4) dz = Az, dy =4y
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then (6.3) takes the form
oF oF
(6.5) dF = F dz + e dy

This expression is called the total differential of F(z,y). This
definition may be extended where F is a function of the n independent
variable 1, T3, * * - Zq to obta.in

(6.6) ar =% d 1 + d:ve + o+ da

This definition (6.5) has been based on the assumption that z and y
are independent variables. Let us now examine the case where this
is not true. Let us suppose that z and y are functions of the three
independent variables u, v, w, so that

z = z(u,0,w)
(67 (2ot

Now since u, v, and w are independent we have

dz —-—du+ dv+

(6.8)
=% ?2 3_y

dy —audu-l- 6vdv+awdw

And since F is a function of u, v, and w, we have

(6.9) dF—g-Ed + d +——d

But by Eq. (4.16), we have

OF _oF 3z , oF dy
ou_ 9z ou ' dydu
OF 9F oz , oF 3y
d  orov ' oy ov
oF _ oF oz | oF dy
dw  dzow ' oy ow

(6.10)

Substituting these equations into (6.9), we have

(6.11) dF = "F( du + & dv+——dw)+
"F("yd +aydv+aydw)
oy

=35dx+"5"ydy



Sec. 7] PARTIAL DIFFERENTIATION 277

This is the same as (6.5). It thus follows that the differential of a
function F of the variables zi, x5, + + - z, has the form (6.6) whether
the variables zi, 22, - + - z,. are tndependent or not.

Let us now consider the case where

(6.12) F(zy, 2o, * * - 2,) = C

where C is a constant. This relation cannot exist when z1, 25, « + * 2,
are independent variables. l.et us suppose that z,, z,, *+ *+ * 2, are

functions of tndependent variables uy, us, * * - u,. Hence F may be
regarded as a function of the variables uy, us, + + * u, and we write
(6.13) F(uy, ug, =« * us) = C
Hence
(6.14) dF-—- qu1+ -d z+ * +~Q-F—'du,.
Uy
Now since ui, g, - * * u. are independent variables, u; may be

changed without changing the value of the other variables or the
value of F. Therefore,

(6.15) F(u, + Aul, Ug, U3, * ° ° un) =C
Hence
(616) 2]5 = lim 1*'(%1 + Auy, Uz, * * " u,.) - F(u;, Uz, * " u,.)
U Au—0 Auy
=0
In the same manner, we may prove that
oF
6.17) . 574—r=0 r=23 --°n

Hence as a consequence of (6.14), we have

(6.18) dF =0
and by (6.6) we have
6.19)  dF = F 2 iz, + & dx, o+ =0

oz,
7. Differentiation of Imphclt Functions. If we have the relation
(7.1) Flz,y) =0

we are accustomed to say that this equation defines y as an tmplicit
function of z and is equivalent to the equation

(7.2) Y = ¢(z)
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If the functional relation (7.1) is simple, then we can actually
solve (7.1) to obtain y in the form (7.2). For example, consider

(7.3) 224y —a? =
This equation may be solved for y to give
(7.4) y=+Va -zt

However, if Eq. (7.1) is complicated, it is in general not possible
tosolveit for y. It may be shown that y in (7.1) satisfies the definition
of a function of z in the sense that when z is given (7.1) determines a
value of y. It is convenient to be able to differentiate (7.1) with
respect to either z or y without solving the equation explicitly for
z ory.

To differentiate (6.1), let us take its first differential. As a special
case of (6.19), we have

oF oF
and hence
oF
dy _ _ 9z _ ,
(7.6) d_.’E = @ =Y
9y
This may be written in the form
oF  oF ,
(7.7) Tt w? = 0
To obtain the second derivative, let
oF | oF
(7.8) ¢ = (5; + F y’)
Applying (7.7) to ¢, we have
9% L 3¢, _
(7.9) 3z T ¥ =0
Now -
o8 _oF  OF , oF
(7';0) = o Tz ay Y + ay Y
an
o , _ OF ,  dF

Substituting in (7.9), we obtain

FF . OF , oF ., oF
(7.12) 6_55+25z_8_&y'+6?(y)2+5yl =0
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rr
, ete.,

Repeating this process, we hxay find the derivatives '/, y
provided the partial derivatives of F(z,y) exist.

One Equation, More Than Two Variables. The equation
(7.13) Flz,yz) =0

defines any one of the variables, for example, z, in terms of the other
two. If we take the differental of (7.13), we have

oF oF oF
(7.14) dF—é-idx+;3—?7dy+é;dz=0
If we place y = const., then dy = 0, and we have
oF
dz oz
9z

where the subscript denotes that y is held constant. This is less

ambiguous than the notation %

If x = const., we have

oF
dyy _ 9z
(7.16) (EE .= T
9y
If z = const., we obtain
oF
dr _ 9y
@10 w).- %
ox
Multiplying Egs. (7.15), (7.16), and (7.17) together, we have

o (@@

This is sometimes written in the form

w EEE--

The absurdity of using 9z, dy, 9z as symbols for differentials which
may be canceled is apparent from Eq. (7.19).

8. Maximums and Minimums. Quite frequently in the appli-
cation of mathematics to science, it is necessary to determine the
maximum or minimum values of a function of one or more variables,
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Let us consider a function ¥ of the single variable z, so that
(8.1) F = F(x)

A mazimum of F(z) is a value of F(z) which is greater than those
immediately preceding or immediately following, while a minimum of
F(z) is a value of F(z) which is less than those immediately preceding
or following. In defining and discussing maximums and minimums of
F(z), it is assumed that z increases continuously and that F(z) is a
continuous and single-valued function of z.

In order to determine whether the function F(z) has a maximum or
a minimum at a point z = a, we may use Taylor’s expansion of a
function of one variable in the form

(82) Fi+h) =F(2)+ F "(z) + F "(x) + F'"(z) + -
Let z = a be the critical point under consideration, and write
(83) A(h) =F(@@a+h) —F(a) = 1@, F'(a) + ;LjF”(a) +
h® _,,
37 F'"(a) + -

A(h) is thus the change in the value of the function when the argument
of the function is increased by h. This is illustrated graphically
in the case that F(a) is a maximum, by
Fig. 8.1.

Now if £ = a is a point at which
F(z) has either & maximum or a mini-
mum, we shall obviously have

(84) lim A(h) = lim A(—h) l
h—0 h—0

F@)

Fia. 8.1.

since for a maximum, if we move to the

left of the critical point or to the right of the critical point, the func-
tion will decrease and for a minimum point the function will increase.
Now if

(8.5) F'(z) #0

then

(8.6) lim A(k) = lim hF'(a)
h—0 h—0

since the higher order terms in (8.3) may be neglected. In the same
way,
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8.7) lim A(—h) = lim —hF'(a)
h—0 h—0

Hence in order for (8.4) to be satisfied, we must have
(8.8) F ’ (a) == 0
at either a mazimum or a minimum. Now at a maximum A(h) must
be negative and at a minimum A(k) must be positive for either positive
or negative values of h.

Hence if (8.8) is satisfied,

2

(8.9) lim A(h) = %F”(a)
h—0

Since h? is always positive, then it is evident that at a mazimum
we must have

(8.10) ‘ F'"() <0 .
and at a minimum
(8.11) F'(a) >0

Let us suppose that
(8.12) F'"(g) =0 and F'"(a) #0
then
(8.13) Jim a(k) = gF”'(a)

Since if F'”'(a) # 0, the expression (8.13) changes sign with A, we
cannot have a maximum or a minimum.
If, however,

(8.14) F'(@)=0, F’a) =0 F"@) =0
then
. h¢

(8.15) Hm A(R) = Z—'F””(a)

h—0 !

Hence F(a) will be a mazimum if

(8.16) F'"(@) <0
and a minimum if
(8.17) F'""(a) > 0, ete.

Mazimums and Minitmums of Functions of Two Variables. We
define the maximum and minimum values of a function of two variables
z, y, F(z,y) in the following manner:
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f’(a,b) is a mazimum of F(z,y) when, for all small positive or
negative values of h, and k.
(8 18) A(hk) = F(a+h, b+ k) — F(abd) <0

" F(a,b) is a minimum of F(z,y) when for all small positive or nega-
tive values of h and &k

(8.19) A(h,k) = F(a + h, b + k) — F(a,b) > 0
By Taylor’s expansion of a function of two variables, we have

(8.20) F(z+hy+k) = F(z,y)+h-—-+k +

21( Wk ” +E aF)"'

oz 3y 3yt
oF oF
Let F, = -a-:—ch,, = -6—5
%F *F *F
(8:21) A= Bomay (-

evaluated at the point £ = a,y = b. Then
14
(8.22) A(hk) = hF.(a,b) + kF,(a,b) + 21! (h*A + 2hkB + K°C) + - - -

It is thus evident that if for small values of A and %, in order for
A(h,k) to have the same sign independently of the signs of h and k, it
is necessary for the coefficients of & and k in (8.22) to vanish. This
gives

(8.23) aF oF

=% 3 =?

evalﬁabed atz = a,y = b as a required condition for erther & maximum
or a minimum. If the conditions (8.23) are satisfied, then A(h,k)
reduces to

(8.24) A(hE) = 5, (1A + 2hkB + KIC) + - - -

To facilitate the discussion, we make use of the identity
(Ah + Bk)? + (AC — B2)k?
A

(8.25) (Ah? + 2Bhk + Ck?) =

We may then write (8.24) in the form

(Ah + Bk)* + (AC — B2)k?
A21

(8.26) A(hk) =
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The sign of A(h,k) given by (8.26) is independent of the signs of
h and k provided that

(8.27) (4C—-B) >0
or
(8.28) AC—-B*=0

This may be seen since (Ah + Bk)? is always positive; therefore,
if (AC — B?) is negative, the numerator of (8.26)will be positive
when & = 0 and negative when (Ah 4 Bk) = 0.

Therefore a second condition for a maximum or a minimum of
F(z,y) is that

3F 3°F oF \
2 —— i,
(8.29) AC > B 3z oy (a:c ay)

An investigation of the exceptional cases when (8.28) is satisfied
or when
(8.30) A=B=(C=0

is beyond the scope of this discussion.! When condition (8.29) is
satisfied at z = a, y = b, we see that F(a,b) will have a mazimum when

F 8°F
(831) -55:*2‘ < 0, W <0

evaluated at £ = a, y = b. F(a,b) will have a minimum when

F F
(8.32) e 0, Fe >0
evaluated at £ = a, y = b.
If
(8.33) AC - B2 <0

then F(z,y) has neither a maximum or a minimum. By a similar
course of reasoning, we obtain the conditions for maximums and
minimums of functions of three or more variables. As an example
of the above theory, let it be required to examine

(8.34) F(zy) = 2% + zy* — azy

1 The reader is referred to E. Goursat and E. Hedrick, ‘‘Mathematical
Analysis,” Ginn and Company, Boston, 1904.
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for maximum and minimum values. Here
oF or

(8.35) 2z = @ty —ay W =@2y+z—a)
(8.36) o 2y % -2
The conditions (8.23) are
(8.37) 2r—y—a)y =0, Qu+z—ax=0
Condition (8.29) is
(8.38) dry > 2z + 2y — a)?

The system of equations (8.35) has the four-solutions

r=0 T=a z =0 T
(8.39)

wia wie

y=0 y=0 y=a y

Only the last values satisfy (8.38), and a maximum or a minimum
of F(z,y) is located at

(8.40) r = - y =

2
If a is positive, %}: is positive when y = a/3; therefore,

aa a?
(8.41) F (§’ 3—) = -5
. . . . . 9, .
is a minimum. If a is negative, 37 negative when y = a/3; hence
—a?/27 is a maximum.

9. Differentiation of a Definite Integral It is frequently required
to differentiate a definite integral with respect to its limits or with
respect to some parameter. Let F(z) be a continuous function of z,
and consider

(9.1) o(u) =

where u is a parameter a.ppea.ring in the integrand and we assume that
the limits ¢ and b of the definite integral are continuous functions
of the parameter u, so that

9.2) "a = a(u), b= bw

o) ) F(z,u) d
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The integral thercfore defines a function of the parameter u, ¢(u).
We shall now show that differentiation of the function ¢(u) yields the
important equation

d¢ b oF db da

(9.3) T = /; F dr + F(b,u) v F(a,u) ™
To establish this equation, let 4 be given an increment Au in

9.1). Hence

9.4 o(u + Au) = [;:-_:ib F(z, u + Au) dz

where Aa and Ab arc the increments that @ and b take when u is
increased by Au. Then
(9.5) A¢p = ¢(u + Au) — ¢(u)

= /+A F(z,u 4+ Au) dz + f [F(x,w + Au) — F(z,u)] dz +

fHM F(z, u + Au) dz

Now by the concept of the definite integral of a continuous function,
between the limits z; and z., we have

(9.6) j.i " F(2) dr = F(zo) (2 — 22)

where z, is some intermediate point between z, and 2, given by
(97) 1 < xp < T2

This may be seen intuitively by the concept of the integral (9.6)
giving the area under.the curve F(x) between the points z; and z,.
In this case F(zo) is a mean ordinate such that when it is multiplied
by the length (zs — z;) it gives the same area as that given by the
integral. We may apply Eq. (9.6) to the first integral of (9.5) and
obtain

(9.8) j * WP ut Aw) de = P, u + Auw)la — (a + Ad)]

= —F(t, u + Au) Aa
where

9.9) at+Aa<ti<a

In the same way, the last integral of (9.5) may be expressed in
the form

(9.10) f "2 e, u + M) dr = - ADF (i3, u + bu)
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where

(9.11) b<ts<b+ Ab

Now

(9.12) lim [F(z, u + Au) — Fzu)ldz _ /” oF 4n
au—0 Jao Au a OU

Hence if we divide (9.5) by Au, using the results (9.8), (9.10), and
(9.12) and realizing that

(9.13) lim ¢ = g, lim =10
Au—0 Au—0
we have
do _ oF da
(9.14) u / — dz + F(b, ) d — F(a,u) Tu

This is the required result.
In the special case that a and b are fixed, we have

“9.15) g ﬁbg%’d
If F(z) does not contain the parameter u, and
(9.16) b=wu a = const.
we have
(9.17) F(x) dz = F(b)

Ob

in the same way, differentlatmg with respect to the lower limit gives

(9.18) 3% / " Ple) dz = —F(a)

These equations are useful in evaluating certain definite integrals.

10. Integration under the Integral Sign. The possibility of differ-
entiating under the integral sign leads to the converse possibility of
integration.

Let

(10.1) o(u) = [ * Fz) dx

where a and b are constants. Multiply by du and integrate with
respect to u between uo and u. We then have

(10.2) [: o(u) du = L " du L *F(z,u) dz = Q(x)
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The integrations are to be carried out first with respect to z and
then with respect to u. Now let us consider

(10.3) P(u) = f * dx ﬁ * F(z,u) du
We wish to show that
(10.4) Pu) = Q(u)

Let us differentiate (10.3) with respect to . By the results of the
last section, we can carry out the differentiation on the right under the
integral sign, so that

(10.5) % / F(zu) du = F(z,0)

where the differentiation has been carried out with respect to the
upper limit. Hence

b
(10.6) gg - f Flzu) de = é(u)
Therefore
(10.7) / ’ %— du = / * 6(u) du = P(u) — P(uo)
But from (10.3), we have
(10.8) P(uo) =0
Hence
(10.9) Pw) = [" ¢(w) du = Q)
or
(10.10) / * dz L “ F(z,u) du = L " du / * F(z,u) dz

as was to be proved. This shows the possibility of interchanging the
order of multiple integrations. As an example of the use of the con-
cept of integrating under the integral sign, consider

(10.11) F(zu) = z¢ where u > —1
Now
1 1 1
(10.12) - ‘[) F(z,u) dx = /(; v dr = P

Now multiply by du and integrate between a and b, then

b v ® du (b+1)
(10.13) /;duﬁzdz— am=ln ZI_:i"—-i
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But
b 1 1 b

w Iy e o g b+1
(10.14) /; du/; ¢ dxr = /‘; de z* du —1n(a~—~+ 1)
Now

b It — go

(10.15) ﬁ aedu = 5=
Hence

Lgp — o b+1
(10.16) [) 2oy (P ]

11. Evaluation of Certain Definite Integrals. The evaluation of
various definite integrals will illustrate some of the general principles
discussed in Sec. 10.

Let us consider the integral

(11.1) I=/ §in bz ;0
0 X

If we change the sign of b, then the sign of the integral is changed.
Placing b = 0 causes the integral to vanish. However, if we let
(11.2) bx =y

then we obtain

(11.3) I- / SN Y gy
0 Yy

This shows that the integral does not depend on b but is & con-
stant. Considered as a function of b, it has a discontinuity at b = 0.
Let us consider the integral

® i | .

(11.4) ‘ ﬁ etrdy = — o =% ifk>0
If we let k& be the complex number
(11.5) k=a+3b
then we have
- . 1 a—jb

(a+3jb)z - -

(11.6) /; e~ (atidz gy Sl gy a>0
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Separating the real and imaginary parts, we obtain the two integrals

: —aT o y == ____g...._.
(11..7) /; €% ¢cos bx dx = FTI

T b
(11.8) [) €7 sin bxdx—m

Let us integrate (11.7) with respect to b and obtain

b
(11.9) / dbf *“cosbxd*——/ c““d:cﬁ cos bz db
i sin bz v = a b_db
0 x - 0 a? + b2
tan—! (—I-)->
a

Placing ¢ = 0 in (11.9), we obtain the result

]

sin bz T
(11.10) j; ———x—d =3 b>0
The integral
(11.11) I = ﬁ)“ = dz

occurs very frequently in many branches of applied mathematics
particularly in the theory of probability. This integral represents
the area of the so-called probability curve

(11.12) u =

Since the indefinite integral cannot be found except by a develop-
ment in series, we are led to employ a certain device to evaluate the
definite integral.

Since the variable of integration in a definite integral is of no
importance, we have

(11.13) I, = [) “erdy, I= ﬁ) " e dy
Multiplying these integrals together, we obtain
(11.14) n= f” e‘“"dxl v dy

/ / e~ dz dy

It is permissible to introduce ¢** under the sign of integration
since z and y are to be considered as independent variables. If we
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consider z and y as the coordinates of a Cartesian reference frame, and
let z be a vertical coordinate, then the double integral (11.4) will
represent the volume of a solid of revolution bounded by the surface
(11.15) z = gy

We may find this volume by introducing polar coordinates. Then
the element of area in the zy plane is
(11.16) ds = rdrdo where 22 + y? = r?

There may be some question concerning the validity of this
process since the double integral (11.14) is the
limit

R (L1n) I1f= lim L # A F e gz dy

BB I which represents the volume over a square

= ~ in the zy plane of sides equal to R (see Fig.
R * 110).

Fre. 111, It is easy to see that this volume is greater

than that of the figure of revolution over the circle of radius R and less

than that over the circle of radius v/2 R. Hence if the integral
(11.18) S [Ferraras

approaches a limit for B = «, we have
(11.19) ;= ﬁ)'/z ﬁ’& e dr do

The integration with respect to 6 merely multiplies by 7/2, while
in the integral

(11.20) _LR erdr = — v}e"’\:

the fact that we have an exact differential makes integration possible.
Passing to the limit, we have

B
2 = Jim ~ —r3 =Ty —_—h) =T
(11.21) I3 lm; 2[) errdr 3 hn1°° 1 — e ®) i

We therefore have the desired result.

(11.22) T = ﬁ T erdz - ‘g—; /1 /

If in this integral we make the change in variable
(11.23) z=vau
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then we obtain

(11.24) I, = ﬁ" e Vadu = —‘g-’—'

or

° g 1 /=
(11.25) /; € du=§,\/;

To illustrate a slightly different device, let us consider the integral

.20) 1= [ ) g
This integral may be aifferentiated with respect to a to obtain
dl _ “a - (z’+:—:)
A 1.27) E 2 / 57‘, € dz
If we now change the variable of integration by putting
a ad x?
(11.28) $=-y‘l dz = —'?g= —;dy
then (11.27) becomes
dI - (z/ +2 _
(11.29) Ta = / v dy = —21

This is a linear differential equation with constant coefficients for
I. Its general solution is

(11.30) I =Ce?

where C is an arbitrary constant to be determined.
Placing a = 0, I reduces to

(11.31) f iy = YT
0 2
Therefore
(11.32) - %
Hence we have finally
(11.33) f -(=+5) 4, _\;—_,, e

The above examples illustrate typical procedures by which certain
definite integrals may be evaluated.
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12. The Elements of the Calculus of Variations. We have seen
that a necessary condition for a function F(z) to have a maximum
or a minimum at a certain point is that the first derivative of the
function shall vanish at that point; also a necessary condition for a
maximum or & minimum of a function of several variables is that all
its partial derivatives of the first order should vanish.

We now consider the following question: Given a definite integral

whose integrand is a function of z, y, and of the first derivative y’ = %,

(12.1) I=["Fayy) ds

for what function y(z) is the value of this integral a maximum or a
minimum? In contrast to the simple maximum or minimum problem
of the differential calculus, the function y(z) is not known here but
is to be determined in such a way that the integral is a maximum or
a minimum. In applied mathematics we meet problems of this type
very frequently. A very simple example is given by the question,
“What is the shortest curve that can be drawn between two given
points?”’ In a plane, the answer is obviously a straight line. How-
ever, if the two points and their connecting curve are to lie on a given
arbitrary surface, then the analytic equation of this curve which is
called a geodesic may be found only by
y b A the solution of the above problem which
y@ is called the fundamental problem of the

calculus of variations.
R It will now be shown that the maxi-
mum ‘or minimum problem of the cal-

I culus of variations may be reduced to the
determination of the extreme value of a
known function. To show this, consider functions 7 of z that are
“neighboring’’ functions to the required function y(x).

The function § is obtained as follows:

Let e be a small quantity and let n(z) be an arbitrary function of z
that is continuous and whose first two derivatives are continuous
in the range of integration. We then introduce into the integral
(12.1) in place of ¥ and y’ the neighboring functions

(12.2) J=y+en
(12.3) J =y +en'

We stipulate, however, that these functions 7 coincide with the
function y(z) at the end points of the range of integration as shown
in Fig. 12.1,

Fia. 12.1.
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It must therefore be required that the arbitrary function n(z)
vanish at the end points of the interval.

If we substitute the function 7 into the integral, then the integral
becomes a function of e.  'We then require that y(z) should make the
integral a maximum or a minimum, that is, the function I(¢) must
have a maximum or minimum value for ¢ = 0.

That is,

(12.4) I(e) = [ “F@,y+en,y + o) de

should be a maximum or minimum for ¢ = 0.
This gives us a simple method of determining the extreme value
of a given integral. The condition is

(12.5) (Eldé).-o =0

We expand the integrand function F in a Taylor’s series in the form

(126) FG,y -+ +a) = Fogy) + e Hrar s

terms in e2 €, - -
Therefore

= , oF , oF
(127) I(E) = /;o [F(x,y;?/) + en 31; + en 6y’ +
terms in €2, €, - - - ]d:c

If we differentiate (12.7) inside the integral sign with respect to ¢,
we obtain

I
(12.8) 1_11_/ [nQE+n’g§+termsine,ez,---]d:c

de . oy
This expression must vanish for ¢ = 0. Since the terms in e,
€%, - - - vanish for ¢ = 0, we have the condition

(12.9) /( ——+n-‘?f)dz—o

The second term of (12.9) may be transformed by integration by

parts in the form
1 1 z1

(12.10) f w gy = OE" f d (aF)dz
x (2o dx

. oy oy’
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The first term vanishes since n(z) must be zero at the limits.
Hence substituting back into (12.9), we obtain

* (oF d oF

Now since n(z) is arbitrary, the only way that the integral (12.11)
can vanish is for the term in parenthesis to vanish; hence we have

F(yy) _ a4 Fyy) _

oy dz 9y

This equation must be satisfied by y if y is to make the integral
(12.1) either a maximum or a minimum. It is known in the literature
as the Euler-Lagrange differential equation.

The investigation whether this equation leads to a maximum or a
minimum is difficult and seldom arises in applied mathematics.

As an example of the application of Eq. (12.12), consider the
problem of determining the curve between two given points A and B
which by revolution about the z axis generates the surface of least
area.

The area of the surface s is given by the equation

(12.12)

(12.13) s=2w[fyds=2w [y vVTF v
Here we have
(12.14) F=yV1+y?
Therefore the equation (12.12) becomes
al__wy ]
% | __Y¥Y | =
(12.15) Vi+y e [ Tt 7o 0
This reduces to
(12.16) 14+9y2—yy" =0
To integrate this equation, let
. ' =‘ QE
(12.17) v=pr V' =pg
The equation then becomes
dp - dy
2.1 pap -_ %Y
(12.18) 1+p* y
and finally we have

(12.19) *'y = ¢ cosh (‘” - °’)
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This is the equation of the catenary curve, The constants ¢, and ¢;
must now be determined so that the curve (12.19) will pass through
the points A and B as shown in Fig. 12.2.

This is the shape that a soap film assumes when stretched between
two concentric parallel circular frames. y
It is obvious that, in this case, the sur-

. . . B
face s is & minimum.
The case where the function F is a A
function of several independent variables

. . . o . a

yx and their derivatives is of great impor- l b *
tance. In this case we proceed as in the Fra. 12.2.

case of one variable and introduce as neighboring functions

(12.20) §1=y1+ ey, . P2 = Yz + €amy, o Te=Yt am

where the functions n.(z) again vanish at the limits of the integral.
The integral then becomes a function of the variables €;, €, * * * .
The condition for a maximum or a minimum is

al = oF d oF
(12.21) 5—6:—,/; n,(ﬁ—ﬁgy—:)—o r=1,2 k

whereel=ez= T == =ek=0

It follows, therefore, that as before, the coefficient of each of the
functions n within the integral sign must vanish so that we have
doF _oF
dz ay. oy,
We thus see that the Euler-Lagrange equations hold for each of the

independent variables.
In literature, the notation

(12.23) ol =I(e) —I(0) = e

(12.22) =0 r=12- -k

for e small is frequently used. &1 is termed the var<ation of the integral.
The condition that the integral have a maximum or a minimum is
then expressed in the form

(12.24) 5 j " Fayy) dz = f * F(z,y,y) dz = 0

OF is called the variation of F.

The Brachistochrone between Two Points. Perhaps the earliest
problem in the calculus of variations was proposed in 1696 by the
Swiss mathematician John Bernoulli, He proposed the following
problem of the brachistochrone,
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It is required to determine the equation of the plane curve down
which a particle acted upon by gravity alone would descend from one
fixed point to another in the shortest possible time.

Let A be the upper point and B the lower one. Assume the z axis
of a Cartesian reference frame to be measured vertically downward,

and let A be the origin of coordinates as
y shown in Fig. 12.3.

3 Let s be the length of the required
B(;:Jk) curve at any point measured from'a.
Let » be the velocity of the particle at
the same point and ¢ its time of descent
from‘a to that point. We wish to de-
termine the curve that will make 7 a minimum, where T is the total

time of descent from 4 to B. Now from mechanics, we have

A .

Fia. 12.3.

(12.25) dt = %§
where
(12.26) ds = \/dx? -+ dy2 — .\/] + ylz dz

We know that the particle loses no velocity in passing from one
point to another of a smooth curve, since the loss of gravitational
potential energy is transformed into kinetic energy; hence

(12.27) v = V2zx

where it is assumed that the particle starts from rest and g is the
acceleration due to gravity.
Therefore (12.25) becomes

VI+y~?

(1228) dt = ———\-/-‘2—3—2;— dx

and the total time T is

1 [ V/IF g0
12.29 T=—"= = dz
( ) A Y/ 2g _/;_o ‘\/IE
We must therefore minimize the integral
x=1zp \/ 1 + y'z
= etz
(12.30) I /; - e

Hence we have

(12.31) F=Yits”

,, | vz
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In this case the Euler-Lagrange equation becomes

doF _d ¥y
(12.32) woy T dENEd £y
Hence

(]233) m= [

where ¢ is an arbitrary constant.
For simplicity, let

0

1
12.34 C ==
(1234 Va
Squaring, clearing fractions, and transposing, we have
n_ W _ T
(12.35) Yy a %
Solving for y’, we obtain
1
Vz dy
12.36 b YO = 2d
( ) y e = ds
Hence
Vzdz
12.37 dy = —%-
(12.37) Y
Therefore
'z dx
12.38 = —_—
( ) \/a —z + 2
Integrating, we obtain
(12.39) Yy = %sin"1 2 —Var — 2t ¢

The arbitrary constant c. is zero since we have z =0 at y = 0.
Hence the equation of the curve is

(12.40) y = -gsin—l J% — Vazx — z?

This is the equation of a cycloid where a is the diameter of the
generating circle. The constant a is determined by the condition
that the cycloid must pass through the point zo, yo.

A more extended discussion of the calculus of variations is beyond
the scope of this book. In recent years the application of the calculus
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of variations to problems of engineering and physics has proved of
great value. Those interested will find the works listed in the refer-

ences of value.

.

PROBLEMS -
1. Find the first and second partial derivatives of the function tan—1 z/y.
3. Show that if u = In (a* +3*) + tan1 ¥ then 24 4 2 ay, = 0.

az’
8. Show that if u = tan (y + a2) + v/§ — az, then 24 = a1 2% g;’:.

‘4 Ifu = Fy(z + jy) + Fa(z — jy) wherej = 4/ —1, show that
ot
373 + Oy’

6. If F is a function of z and y and
z4+y=2"¢cos¢, z—y=26sing

where j = +/ —1, prove that
oF L OF_ L F
262 o2 dz 9y

8. Change the independent variable from z to z in z’ 2y s + az o~ dy + by =
where z = ¢* and show that the equation is transformed to

2,
- F Ty

- 7. Find the maximum value of V = zyz subject to the condition that
2 g _ abe
+ b + & 1 AM 14 é* \75.

What is the geometric interpretation of this problem ?
8. Divide 24 into three parts such that the continued product of the first, the
square of the second, and the cube of the third may be a maximum.
Ans. 4 8, 12.

- 9. Find the points on the surface zyz = a3 which are nearest the origin.

10. Show that the necessary conditions for the maximum and minimum values
" of ¢(z,y) where z and y are connected by an equation F(z,y) = 0 are that zand y
should satisfy the two equations

F(z,y) =0
and
20 9F _399F _
dx oy Ay oz

~11. Determine the equation of the shortest curve between two points in the
zy plane.
. .= 18. Find the equation of the shortest line on the surface of a sphere, and prove
that it is a great circle,
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*18. Show that the shortest lines on a right circular cylinder are helices.

-14. Find the equation of the shortest line on a cone of revolution.

‘18. Find the curve of given length betwacn two fixed points which generates
the minimum surface of revolution.
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CHAPTER XII
THE GAMMA, BETA, AND ERROR FUNCTIONS

1. Introduction. In this chapter certain functions that arise in the
solution of physical problems and are also of great importance in
various branches of mathematical analysis will be considered.

It is, of course, impossible to give an extensive mathematical
treatment of these functions in this limited space, and only the more
important and fundamental properties will be developed.

2. The Gamma Function. The Gamma function I'(n) has been
defined by Euler to be the definite integral

2.1 I'(n) = j‘;” v le* dx n>0

This definite integral converges when n is positive and therefore
defines a function of n for positive value of n. By direct integration
it is evident that -

22 - r() = ["erde =1

By an int&r’ation by parts, the following identity may be established:

(23) T'(n+1) = [) ® grerdr = n L " gt do + (—zve)|”
=n L ® avler g

Comparing the result, (with 2.1) we have

(2.4) T'(n 4+ 1) = nI'(n)

This is the fundamental recursion relation satisfied by the Gamma
function. From this relation it is evident that if the value of I'(n) is
known for n between any two successive integers the value of I'(n)
for any positive value of n may be found by successive applications of
(2.4). Equation (2.4) may be used to define I'(n) for value of n for
which the definition (2.1) fails. We may write (2.4) in the form

@.5) | T(n) = 5-(1‘7—“) /
Then if )
(2.6) —-1<n<0

300
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formula (2.5) gives us I'(n) since (n + 1) is positive. We may then
find I'(n) where —2 < n < —1 since now (n + 1) in the right of (2.5)
is known, and so on indefinitely. We then have in (2.1) and (2.5) the
complete definition of I'(n) for all values of =.

3. The Factorial, Gauss’s Pi Function. From Eq. (2.2) we have

3.1) ) =1
Now by the use of (2.4), we obtain
3.2) r)=1-r1) =1

) =2-I@2) =2-
rd) =3-r@3) =3-

DN
—

...............

T'(n+1) =n!

provided n is a positive interger. From this it is convenient to
define 0! in the form

3.3) 0!=T() =1

Gauss’s pi function is defined in terms of the Gamma function by
the equation

(3.4) II(n) =T'(n + 1)
We thus see that if n is a positive interger
(3.5) I(n) = n!
If we place n = 0 in Eq. (2.5), we have

' T _1_
(3.6) .T(0) = o =0=®

By repeated application of (2.5), it is seen that the Gamma function
becomes infinite when n is zero or a negative integer.

4. The Value of I'(}), Graph of the Gamma Factor. If in the
fundamental integral (2.1) we make the substitution

4.1) z = y?
we obtain
42 T(n) =2 [[" gt dy

if now n. =3

“3) "’%% @) =2 [)‘ v dy

eshave



302 MATHEMATI&'S FOR ENGINEERS AND PHYSICISTS [CHar. XII
By making use of (11.22). Chap. XI, we obtain

(1 V'
(4.4) r(i)_z-l_\/“ V4
From this result and (2.5) we obtain
45 r-h =" - 2vz
(46) r-p="E0 - 2evn -1
ete.
Figure 4.1 represents the graph of I'(n).
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6. The Beta Function. The Beta functlon B(m n) is defined by the
definite integral
m > 0
n>0

This integral converges and thus defines a function of m and n
provided that m and n are positive.

(5.1) B(mmn) = Al (1 — z)*ldz

If we let
(5.2) r=1-— Y
in (5.1), we obtain
(53) Bmm) = [ (1 = =iy~ dy = pn,m)

Other Forms of the Beta Function. If in (5.1) we let z = sin? ¢, we
obtain

(5.4) Blmn) = 2 [ (sin ¢)t1(cos )1 do
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The substitution z = y/a in (5.1) gives

(5.5) B(m,n) = a,,.—,l;:q A y*Ya — y)*tdy
If z = y/(1 4+ y) in (5.1), we obtain
_ ®° yn—1 dy
(5.6) ﬁ(myn) - 0 (1 + y)m+n

These are the more common forms of the integral definition of the
beta function.
6. The Connection of the Beta Function and the Gamma Function.
“Consider the Gamma function as given by (4.2)

(6.1) ' T(n) = 2 ﬁ) " yonvergy
We may also write

(6.2) I'(m) = 2 j‘; ® pem—Dg—at gy
and hence

(6.3) T(m)['(n) = 4 ( J,” aemve= dx) ( J,” yervew dy)
=4 jl(;” L” gim=lyin—lg—G) gy dy

If we now consider this integral as a surface integral in the first
quadrant of the zy plane and introduce the polar coordinates

T =rcosé
64) ‘ y=rsin @
and introduce the surface element ds in the form
(6.5) ds=rdrdd = ",z"y

then (6.3) becomes
(6.6) T(mT(n) = 4 [ /2 L ® p2mn=1(cog §)m—1(sin §)™~1¢—'r df dr
=4 /2 (cos 8)*1(sin )™ 4 [)" pAmim—1g—rt gy
Now from (5.4) we have
(6.7) Bln,m) = 2 ﬁ)’” (cos 6)*1(sin g)™ dg

= ﬁ(myn)
and from. (6.2) we have

(6.8) T(m +n) = 2 |7 raowtm=tg— dr
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Hence (6.6) may be written in the form

(6.9) . IT(mT(n) = (mn)I(m + n)
o rmr)

g m)I'(n)
(6.10) Bmn) = Fim + )

This formula is very useful for the evaluation of certain classes of
definite integrals. For example, from (6.7) and (6.10) we obtain

x/2
(e I'(m)I'(n) m >0
2m—1 2n—1 -_— N
(6.11) [) (cos 6)>™(sin 6) dé FmEn n>0
If in (6.11) we let
_ _r+1
(6.12) {2m-—1—-r o m=—y
we obtain
/2 - T (r__+___1
(6.13) / (cos 8)" df = -——-?—-—‘gi
0 T (% + 1)
where r > —1.
In a similar manner we obtain
/2 r + 1
. T\ ) \Vr
(6.14) (sin 6)" df = ——L 5 r> —1
0 r (-g + 1)

In a similar manner, many other integrals may be evaluated in
terms of the Gamma functions. If a table of Gamma functions is
available, then the computation of these integrals is considerably
simplified.

7. An Important Relation Involving Gamma Functions. Substi-
tuting (5.6) into the relation (6.10), we obtain :

A}

1) / * _yldy ' T(m)I(n) m >0
o 1+y™ TI'(m+n) n>0
If we now let
(72) m = (1 —n) 0<n<l1
in (7.1), we obtain
= yrid 'l — n)I'(n
@) I R G
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Now in Chap. XIX, it is shown that

® yn—-l dy _ T
(7.4) /; AT +y) ~ sin () 0<n<l1

Hence, since

(7.5) r{1) =

we have from (7.3) the importaut relation
™

8. The Error Function or Probability Integral. Another very
important function that occurs very frequently in various branches of
applied mathematics is the “error function,” erf (z), or the probability
integral defined by

(8.1) erf (z) = -——% [)z e dn

This integral occupies a central position in the theory of probability
and arises in the solution of certain partial differential equations of
physical interest.

From the definition of erf (z), we have

(8.2) erf (—z) = — erf (z)
(8.3) erf (0) =0
- 2 Vr
8.5) orf (Jy) -2 / Yetdn  j=+/—1
\/1; 0
PROBLEMS
1. Show that
(2k + 1) s (2k - 1) i
where k is a positive integer.
2. Show that
1 _onde _1:3.5.-....(a—Dx
0 /1 —2z° 2:4-6-...-n 2
if » is an even integer.
3. Show that
/1 zndr . _2-4-6- n—1)
o V=g 1-3-5 n

if n is an odd integer.
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1 dz r()

o VT—z nr(l 2)

4. Show that

6. Evaluate the following definite integrals:

@ ﬁ) * e dz
®) f * zte' dz
/2 \/ 8in%s
-t d
© 0 +/cosz v
8. Show that

7. Show that
4T (y) = / " or-tes(log y)" dz
dy" 0

8. Show that by a suitable change in variable we have
1 1\nr»1
I'(n) = /; (log 5) dy

9. Evaluate the integral ﬁ) * = dn by expanding the integral in series, and
show that

z e z? z° z’ z°
feman =gt - rmteta -k

10. Show by integrating by parts that

T s Vet N e""dn
ﬁ)’ dn =3~ — 3 (1 2z= 2=z4) + 2'

Show how this expression may be used to compute the value of erf (z) for
large value of z.
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CHAPTER XIII
BESSEL FUNCTIONS

1. Introduction. In the solution of a great many types of prob-
lems in applied mathematics, we are led to the solution of linear
differential equations or sets of linear differential equations. Usually
these equations are ejuations having constant coefficients. In that
case we are led to solutions of the exponential type which include
trigonometric and hyperbolic functions. This is the case in the study
of small oscillations of dynamical systems or in the analysis of linear
electrical circuits.

Next to the exponential, trigonometrie, or hyperbolic functions the
so-called Bessel functions or solutions of Bessel’s differential equation
are perhaps most frequently encountered.

In this chapter we shall consider the fundamental properties of
these functions in view of their practical importance.

2. Bessel's Differential Equation. As a starting point of the dis-
cussion, let us consider the linear differential equation

d? d
—g+x3%+(xz-—n2)y=0

1) 21 2

where 7 is & constant.

This equation is known in the literature as Bessel’s differential
equation. Since it is a linear differential equation of the second order,
it must have two linearly independent solutions. The standard form
of the general solution of (2.1) is

2.2) ¥ = CuJa(z) + CaoYa(2)

where C; and C, are arbitrary constants and the function J.(z) is
called the Bessel function of order n of the first kind and Y,.(z) is the
Bessel function of order # of the second kind. These functions have
been tabulated and behave somewhat like trigonometric functions of
damped amplitude. To see this qualitatively, let us transform the
independent variable by the transformation

2.3) y = ——\‘}—;

307
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This transformation transforms (2.1) into
d’u _ (= %)] _

In the special case in which
(2.5) n=+%

this becomes

(2.6) e u=0
Hence

2.7 u=Cysinz+ Cycosz
and .

(2.8) y = 01% +Cs ‘ii’—;f

where C, and C; are arbitrary constants. Also we see that as r — =
in (2.4), and = is finite, we would expect the solution of (2.1) to behave
qualitatively as (2.8) to a first approximation.

3. Series Solution of Bessel’s Differential Equation. If we intro-

duce the operator

d
(31) 0 = :va:-t

then Bessel’s differential equation (2.1) may be written in the form
3.2) 0y + (x2 — n%)y =0

In order to solve this equation, let us assume an infinite series
solution in the form

8= o 8=

(3.3) y = xr 2 C’xl = E C'xr+a
8=0 8m0
Now
(3.4) bz = z (—i%x"‘ = zmz™! = mam
(3.5) 02z™ = f(ma™) = mbz™ = m(ma™) = m=x™

Hence on substituting (3.3) into (3.2), we have

a= ®

36) 0y + (@ —ny = 3 [(r+ 9+ (2 — n)]Crt = 0

8m=0

If we now equate the coefficients of the various powers of z, z7,
zr+1 272 ete., to zero in (3.6), we obtain the set of equations

3.7) Clir +8)2 — 23] + Cog = 0
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This is valid for s = 0, 1, 2, - - - in view of the fact that

!C_1=0

(38) C-z =0

since the leading coefficient in the expansion (3.3) is C,.
Letting s = 0, in (3.7) we obtain

3.9) Co(r2 —=n?) =0
This equation is known as the indicial equation, and since
(3.10) Co#0
it follows that
(3.11) r=+n
and from the equation
(3.12) Ci(r+1)2—n?] =0
it follows that
(3.13) Ci=0

The relation between C, and C,_, now shows, taking s = 3, 5, - - -
in succession, that all coefficients of odd rank vanish.
Taking first of all » = n, we may write (3.7) in the form

_ Cn-—?

s(2n + s)
From (3.13) we see that the coefficients C,, Cy, Cs, etec., are all deter-
mined in terms of Co. Inserting these values of the coefficient into the
assumed form of solution (3.3), we obtain the solution

(3.14) C, = §=24,6 -

$”+2 xn—l~4
@15) ¥ =0Co [’”” BE RS R ey o)) R
(= Dyame . ]
2%(n+1) - -+ (n + 8)s!
The coefficients are finite except when n is a negative integer.
Excluding this case, we standardize the solution by taking

1 1
(3.16) Co= 5t 71 ~ 0w

+

in general and

1

3.17) Co = Sl
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where 7 is a positive integer. Inserting this value of C, into (3.15)
and generalizing the factorial numbers when # is not an integer by
writing

(3.18) (n+3s)! =0n+ s)
we obtain

by (_1), z n+2s
(3.19) Ja(z) = 2 TONCE) (-2-)

This series converges for any finite value of z and represents a function
of z, Ja(s) that is known as the Bessel function of the first kind of
order n. When 7 is not an integer, the second solution may be
obtained by replacing n by —n in accordance with (3.11). It is
therefore

_S ey (B
320 T@) = Om('é)

The leading terms of J.(z) and J_.(z) are, respectively, finite
(nonzero) multiples of z* and z™; the two functions are not mere
multiples of each other, and hence the general solution of the Bessel
differential equation may be expressed in the form

(8.21) y = AJa(z) + BJ-a(2)
where A and B are arbitrary constants provided that » is not an
integer.

However, when 7 is an integer, and since n appears in the differ-
ential equation only as n? there is no loss of generality in taking it to
be a positive integer, J_n(7) is not distinct from J.(z). In this case,
the denominators of the first n terms of the series for J_.(z) contain
the factors

1
(3.22) m =0
fors =0,1,2, - - - (n — 1). Hence these terms vanish. Therefore
by ( 1), z 28—n
#29) @) = Z o (3)

If we now let
(3.24) r=(s—n)
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then

= (_1)r+n r B = (—1)n
(325) J_“(Z) = / mw "2- = ( 1) Jn(I)
forn=1,2,3, - - - . In this case we no longer have two linearly

independent solutions of the differential equation, and an independent
second solution must be found.

4. The Bessel Function of Order n of the Second Kind. In the
preceding article, we have seen that if n is not an integer, a general
solution of the Bessel differential equationyof order n is given by
(8.21). If, however, n is an integer, then in view of (3.25) we have

(4.1) y = AJa(z) + B(—1)"Ja(2)
= [A + B(—1)"J.(z)
= CJ,.(x)

where C is an arbitrary constant. We therefore do not have the
general solution of Bessel’s differential equation, since such a solution
must consist of two linearly independent functions multiplied by
arbitrary constants. Consider the function

L

S [cos nwd .(z) — J_;,.(x)]

4.2) Ya(z) =

Now if n is not an integer, the function Y.(z) is dependent on
J.(z), and since it is a linear combination of J.(z) and J_.(z) it is a
solution of Bessel’s differential equation of order n. If now » is an
integer, because of the relation (3.25), we have

43) Yau(z) = g e

That is, when n is an integer, we define Y.(z) to be

44 Ya(@) = lim [-’ /() cos rm — J—r(ﬂ] v
r—n sin rr

With this definition of Y.(z) we have on carrying out the limiting
process

@ 5¥oe) = Jute) 108 (3) . ]+ (E) - b
(3D
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where v is Euler’s constant defined by

(4.6) v = lim (1+ + + - +_1—-logn)=.5772157-
n

n—r 0

Also when n is any positive integer, we have

4.7 #Y.(z) = 2J.(z) [log( ) + 'y]

© ntr
. (z/2)+ z -1 z 1) —
2( "Amra\Z ™ T
re0 m-l
2 E wn+‘2r(n_r__1)!
2 r!
r=0
n+r 1_¢‘
where, for r = 0, instead of E m~* 4 S‘ m~! we write Z m=L,
m=1 m= 1 m=1

The presence of the logarithmic term in the function Y,(x) shows
that these functions are infinite at « = 0. The general solution of
Bessel’s differential equation may now be written in the form

(4.8) y = CiJa(x) + C2Ya(z)

where C; and C; are arbitrary constants.
6. Values of J,(r) and Y ,(x) for Large and Small Values of z. In
Sec. 2 we saw that the transformation

(]

5.1 =
(6.1) V=
transformed Bessel’s differential equation into the form
d*u R ) _
(5.2) Eﬁl—:—z + [1 ’—————*‘xL, ] u=0
We would suspect qualitatively that for large values of z the Bessel

functions would behave as the solutions of the equation obtained from
(5.2) by neglecting the 1/22 term, that is, as solutions of the equation

(6.3) x* +u=0
and hence as
(5 4) y - Cl Slll x cOoS ¥

v: 7O
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More precise analysis shows that

cm(,_z_@g
(5.5) lim Ju() = — 12
e L
2
sin (ac T _ ﬁ’.")
(5.6) lim Ya(z) = 4 2
T—r 0 E
2

That is, for large values of the argument x, the Bessel functions behave
like trigonometric functions of decreasing amplitude.

From the series expansions of the functions J.(z) and Ya.(z), we
also have the following behavior for small values of z.

5.7 lim J.(z) = .. %
6D 2—0 =) 2"11(n)
The value of Y.(z) is always infinite at x = 0. For small values of z,
this function is of the order 1/z» if » % 0 and of the order log z if
n = 0.

6. Recurrence Formulas for J.(z). Some important recurrence
relations involving the function J.(z) may be obtained directly from
the series expansion for the function. From (3.19), we have

_ (__1), P n+2s
©D P = 2 o T 9 G
If we write
(6.2) A%
we have
, ey (___])n(n + 28) z n+-2s

68 2= 2 Heue+ e (z)

_ . (_1)5 z nt28—1

=nlota 21 is = Di(n +9) (§>

If in the last summation, we place
(6.4) s=r+4+1
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¥ we obtain
— 1) n+1+2r
(6.5) aJ = nJs — & R ((n -il-)l — (g)
= nd — 2l

In the same manner, we can prove that
(6.6) 2J, + ndn = xJ

If we add (6.5) to (6.6), we have
6.7) 2J! = Ju1 — Japa

If we place n = 0 and use Eq. (3.25), we have
(6.8) Jy = —J,

If we multiply (6.5) by z7"~}, we obtain
(6.9) ) =z g, — e e
Hence
(6.10) L @l = —zTun

Similarly, we may prove that
d N — uJ
(611) 671—6 (Z J,.) =T J,....l
If we subtract (6.6) from (6.5), we obtain
(6.12) '2£Jn = o1 + Jata

Many other recurrence formulas may be obtained.

7. Expressions for J,(x) When n Is Half an Odd Integer. The
case when n is half an odd integer is of importance because these
particular Bessel functions can be expressed in finite form by ele-
mentary functions.

If we place n = } in the general series for J.(z) given by (3.19), we
obtain

8=

—1) 20}
@D h@ = zgn"“(‘si(n" )
Now since ”
(7.2) I(r) = O(r - 1)
and

(7.3) ‘ H(s) =8 ifs=123, -
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we have
zt x? ozt
(7.4) J)(x)—m(l—ﬁ—!-{-g—!—-..)
However, we have
1\ _Vr

(7.5) I (ﬁ) L

and

' sin = z: |z
(7.6) T=<1—-3—!+:5_i—...)

Hence from (7.4), we have

(7.7 Ji(x) = \/:-% sin z

If we place n = — § in the general series for J.(x), we may also
show that

(7.8) J_i(x) = \/;zx coS T

If in the recurrence formula (6.12) we place n = %, we obtain

7.9 B = I 4@ + D@
Hence
(7.10) 7@ = 3@ = I@

2 (sin z
= | — cos x
T\ T

If in (6.12) we let n = §, we obtain

(.11) Sh=d+dy

or
@12 S =35-5= 2 ‘i-;—ffsinx-—-gcosz)

In the same way we may show that

(2 . cos z
(7.13) J_! = ;5("‘ smxe — T
2 (3 . 3 — z?
(7.14) Jo1 = 4 ’;:E (5 §in z — ——— cos x)' ete.
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8. The Bessel Functions of Order 7 of the Third Kind or Hankel
Functions of Order n. In some physical investigations, we encounter
complex combinations of Bessel functions of the first and second kinds
so frequently that it has been found convenient to tabulate these
combinations and thus define new functions.

These new functions are defined by the equations

8.1 HP(z) = Ja(z) + jYa(2)
(8.2) HP(z) = Ja(z) — jYa(2) i=v-1

and are called Bessel functions of order n of the third kind, or Hankel
functions of order n. These functions are complex quantities.

9. Some Equivalent Forms of Bessel’s Differential Equation. In
practice we frequently encounter the differential equation

ldy
(9'1) dx2+xd$+( _“)y—
If we let
9.2) z =kx

this substitution transforms the equation into
9.3) dz’ Y+ z + @F—n)y=0

This is the standard form of Bessel’s differential equation, and hence
its solution is

(9.4) y = AJa(2) + BY.(2)
where A and B are arbitrary constants. Hence we have
(9.5) y = AJn(kz) + BY .(kz)

as the solution of (9.1). There are several differential equations that
oceur in practice that have Bessel functions for their solutions.

For example, it may be shown by a suitable change in variable
that the equation

0.6) N

a:d:c+by=0

has the solution

9.7 y = AJu(z V/D) + BY.(z V)
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where

_(1~-a
(9.8) n =g

and A and B are arbitrary constants.!
10. Modified Bessel Functions. Let us consider the differential
equation

2 2
(10.1) (‘3—;1+1d—y+(—1—1) -0

zdz z?

This equation is of the form (9.1) with

(10.2) k=j

Hence, J.(jz) is a solution of this equation. The function
(10.3) In(z) = j™Ja(jz)

is taken as the standard form for one of the fundamental solutions of
(10.1). The function I.(z) defined in this manner is a real function
and is known as the modified Bessel function of the first kind of order
n. Another fundamental solution of Eq. (10.1) is known as the
modified Bessel funciion of the second kind and is defined by

/2
sin nw

(10.4) K. (z) = [I-n(z) — Ia(2)]

The general solution of Eq. (10.1) may be written in the form
(10.5) ~y = Al.(z) + BKa(z)

where A and B are arbitrary constants.

Contrasted to the Bessel function J.(z) and Y.(z), the functions
I.(z) and K,(z) are not of the oscillating type, but their behavior is
similar to the exponential functions. For large values of z, we have

. __€
(106) o, 1@ = T
. LA
(10.7) zh—lvl:o Ko(z) = 4 ’é} e

1 A list of differential equations that have Bessel functions for their solutions
is found in E. Jahnke and F. Emde, “Tables of Functions,” Dover Publications,
New York, pp. 146-147, 1943,
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For small values of z, we have

(10.8) lim To(z) = 1
z—0
(10.9) lim Ky(s) = — log (g)

11. The Ber and Bei Functions. In determining the distribution
of alternating currents in wires of circular cross section, the following
differential equation is encountered:

w  ldy . L
Pl _jy—0  j=vTi

Ly dz?  zdr
This equation is a special case of Eq. (9.1) with
(11.2) n=0
and
(11.3) k2= —j
Hence
(11.4) k=+=j=jVi=4j

The general solution of Eq. (11.1) may therefore be written in the
form

(11.5) y = AJo(jiz) + BKo(jr)

where A and B are arbitrary constants. The functions Jo(jiz) and
Yo(jix) are complex functions. Decomposing them into their real
and imaginary parts, we obtain

(11.6) Jo(jiz) = ber (x) + j bei (x)

and

(11.7) Ko(j*z) = ker (z) + j kei (z)

. '{l;ese equations define the functions ber (z), bei (z) and ker (z),
ei ().

12. Expansion in Series of Bessel Functions. In Chap. III, it
was pointed out that the expansion of an arbitrary function into a
Fourier series is only a special case of the expansion of an arbitrary
function in a series of orthogonal functions under certain restrictions.
It will now be shown that it is possible to expand an arbitrary function
in & series of Bessel functions, If in Eq. (2.4) we place az instead of z,
we obtain
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(12.1) dx- Yy [ (”’xj )] =0

this equation has the solution

(12.2) u = Vz Ja(ax)
In the same manner,
(12.3) v = Vz J.(bz)
satisfies the equation
d* (-1
(12.4) dzt + [ —7—] v=20

If we multiply (12.1) by v and (12.4) by u and subtract the second
produect from the first, we obtain

(12.5) ® — a®uw = u'’v — v"'u

Let us now integrate both members of (12.5) with respect to z
from 0 to z. We thus obtain

(12.6) b2 — a?) ﬁ: wdr = [)z W'y — v''u) dz
However, we have

_4. L AN My — !
(12.7) P u — w') = W' — v
Hence
(12.8) - a”)/ w dz = /(; (v’ — w') dz

= (o —w)]

That is,

(12.9) (* — a?) L * 2 (az2)Jn(bz) dz =
rlad u(b2)J"(az) — b n(az)J"(b2)]

If we now differentiate the last equation with respect to b and
then set

(12.10) b=a
we obtain '
(12.11) 2a L 2J2(az) dz = zlazd?(az) — J(az)J (az) —

axd o(az)J! (az))
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From (12.9) we have

(12.12) (b% — a?) j; ! zJ n(az)Ja(bz) dz = aJ . (b)Js(a) — b u(a)J,(b)
Now the second member vanishes if ¢ and b are roots of the equation
(12.13) In(a) =0

That is, if a and b are distinet positive roots of J.(a), we have

(12.14) ®° — a9 [ 2Ja(a2)Ja(b2) dz = O
and since

(12.15) a#b

we have

(12.16) L ! 2T w(az)Ja(bz) dz = 0

We are now in a position to expand an arbitrary function F(z) in the
interval from £ = 0 to z = 1 in a series of the form

(12.17) Fz) = Y, CuJa(auz)

se=1

where «a, are the successive positive roots of (12.13). To obtain the
general coefficient C; of this expansion, we multiply both members of
(12.17) by xJa(asx) dz and integrate from z = 0 to z = 1, we have by
virtue of (12.16)

(12.18) [, ! 2T n(eaz)F (z) dz = Cy L ! 22 (auz) dz

The last integral, which is independent of z, may be evaluated by
means of (12.11). Its valueis

(12.19) J aT3ea) dz = $734(e)

Hence the typical coefficient of the series expansion (12.17) is given
by

2 1
(12.20) C. = m /; zJ ,.(a.Z)F (.'c) dz
This expansion is analogous to the expansion of an arbitrary function

in a Fourier series. In later chapters we shall have occasion to use this
type of expansion in problems of physical interest.
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PROBLEMS

-
1. Show that e%(t_l‘) = i 2 i Jn(@)e™.

ne= — o

2. Placing ¢ = ¢i¥, j = 4/ —1, in the above series expansion, show that

cos (z 8in ¢) = Jo(z) + 2J2(z) cos 2¢ + 2J4(z) cos 4¢ + - - -+
and sin (z sin ¢) = 2J:(z) sin ¢ + 2J3(zx) sin 3¢ + 2J5(z) sin 5¢ + - -

8. From these results, show that
Tu(@) = 1 [ oos (n — zsin ) do

wheren =0,1,2, - . - .
4. Show that Jo(z) = }r /‘; " cos (z cos ¢) de.
1

8. From Prob. (4) show that j;" e~=Jy(bz) dz = Vo

£(t_l) _f(,_l)
\6/.Ptove by multiplying the expansionsfor e2\ ¢/ ande 2\ ¢/ that
Wo@)1? + 2[J1(2))2 + 2[J2(@)2 4+ - -+ =1
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CHAPTER XIV

LEGENDRE'S DIFFERENTIAL EQUATION
AND LEGENDRE POLYNOMIALS

1. Introduction. In the last chapter, we discussed the solutions
of Bessel’s differential equation or Bessel functions. Another differen-
tial equation that arises very frequently in various branches of applied
mathematics is Legendre’s differential equation. This equation arises
in the process of obtaining solutions of Laplace’s equation in spherical
coordinates and hence is of great importance in mathematical applica-
tions to physics and engineering. This chapter is devoted to the study
of the solutions of Legendre’s differential equations and to a discussion
of their most important properties.

2. Legendre’s Differential Equation. The differential equation

LD a- z’)% — 23% F a4 1)y =0

is known in the literature as Legendre’s differential equation of degree
n. We shall consider here only the important special case in which
the parameter 7 is zero or a positive integer. As in the case of Bessel’s
differential equation, let us assume an infinite series solution of this
differential equation in the form

(2.2) y = :c"'ri: ez = ’-2: azmn

In order for (2.2) to be a solution of (2.1), it is necessary that when
(2.2) is substituted into (2.1) the coefficient of every power of £ must
vanish. Equating the coefficient of the power £™+™~2 to zero, we obtain

23) (m+r)(m+r— Da, +
m—m—-—r+2(n+m+r—1a_,=0

Since the leading coefficient in the series (2.2) is a,, we have

(2.4) ay =0, a_ =0
in (2.3).

With this stipulation, placing r = 0 in (2.3), we have
(2.5) m(m — 1)ao = 0

322
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Placing r = 1, in (2.3), we obtain
(2.6) (m+ ma; =0

Equation (2.5) gives m = 0 or m = 1, with a, arbitrary in any
case. Let us take m = 0, then a, is arbitrary. Placing the value of
m in (2.3), we have

. (r=r+2n4+r—1)
(2.7) Ay = — T(T — 1) Ar—2

This enables us to determine any coefficient from the one which
precedes it by two terms. We therefore have

(2.8)

y=ao[1

St D 2= D DAY ]+
al[.’c— (n — 1:)3(!n+2)z3+
m—nm-mm+mm+@ﬁ_.“]

5!

It may be shown by the ratio test that each of these series con-
verges in the interval (—1, +1). Had we taken the possibility
m = —1in (2.6), we would have not obtained anything new but only
the second series in (2.8).

Since a,and a; are arbitrary, this is the general solution of Legendre’s
equation. We notice that the first series reduces to a polynomial
when 7 is an even integer and the second series reduces to a poly-
nomial when 7 is an odd integer. Now if we give the arbitrary
coefficients a, or a as the case may be, such a numerical value that
the polynomial becomes equal to unity when z is unity, we obtain the
following system of polynomials:

?gg = ; Pu(x) = $(35c* — 30 + 3)
@9) {pr _3apr—1) Ds@ = 46325 — 702 + 153)
= 6 4 Br2 —
Py(z) = $(52° — 32) Py(z) = ¥5(231z 315z* + 105z% — 5)
These are called Legendre polynomials. Each satisfies a Legendre
differential equation in which » has the value indicated by the subscript.
The general polynomial P,(z) is given by the series

N
. (2n - 27‘); n—2s
(2.10) Pu(z) = 2 (=D 25 l(n — 1r)I(n — 27')!1:

re=0

where N = n/2 for n even and N = (n — 1)/2 for n odd,
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It is thus seen that the Legendre polynomial P,(z) is even or odd
according as its degree n is even or odd. Since

we conclude that
(2.12) P,(=1) = (=D

3. Rodrigues’ Formula for the Legendre Polynomials. An impor-
tant formula for P.(z) may be deduced directly from Legendre’s
differential equation. Let

3.1) v = (g2 — 1)»
then
v —
3.2) == 2nx(z? — 1)n?
Hence
(3.3) (l—a:z)d—v+2nzv=0
' dx

If we differentiate (3.3) with respect to z, we obtain

d% dv
(3.4) 1-—12? i + 2(n — 1)z e + 2n0 =0
If we now differentiate this equation r times in succession, we have
d%, dv,

3.5 (1 — 2% e +2(n —r — l)x% + @+ D20 — 1. =0
where

dv
(3.6) Uy = %;

In particular, if » = n, (3.5) reduces to

dv,

d*v,
(3.7) (1 - x’) E;:g - 2Z—d‘5

+ (n+ Dnv, =0
This is Legendre’s equation (2.1). Hence v, satisfies Legendre’s
. equation. But since v, is

dm

(3.8) =20

ar n
=37 @ =1

vn is & polynomial of degree n, and since Legendre’s equation has one
and only one distinet solution of that form, P,(z), it follows that P,(z)
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is a constant multiple of v,. Hence we have

— dn 2 n
3.9) P.(z) = CEI?‘ (z 1)

To determine the constant C we merely consider the highest power
of z on each side of the equation, that is,

@n)! , ., dr

(3.10) 2—”'(———”‘)237 = C‘—i;;.:c”"

!

- C (2n')
n!
Hence
1
(3.11) C =5y
Substituting this value of C into (3.8), we obtain
1 dr

(3.12) Pﬂ(x) = Wa_x_“ (xz — l)ﬂ

This is Rodrigues’ formula for the Legendre polynomials.

4. Legendre’s Function of the Second Kind. The general solution
of Legendre’s equation is written in the form
4.1) Y = AP.(z) + BQ.(x)
where A and B are arbitrary constants and @.(z) is called Legendre’s
function of the second kind. This function is obtained by methods

that are beyond the scope of this discussion. It is defined by the
following series when [z] < 1:

(u)@w=mpf@:%$i2ﬁ+

(=D =N +D+4 , _ .. ]
5!
if n is even.
(4_3) Q,.(-’L’) = by [1 —_ @_(ii—'t_.llx? -+
nm—mw+nm+m4_..q
ry ¥
if n is odd; where
n 2:4-...'n
L Gt Y T PRy gy )
(44) . n+1
bo=(_1)T2'4’ « e e '(n_l)

1-3-5 "
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If, however, |z| > 1, the above series do not converge. In this case
the following series in descending powers of « is taken as the definition
of Qu(z):

_ *n+nln+20) .
(4.5) Qu(z) = M@n e+t 2

r=0

~ Both P,(z) and Q.(z) are special cases of a function known as the
hypergeometric function. The function P,(z) is the more important
and occurs more frequently in the literature of applied mathematics.
6. The Generating Function for P.(x). The Legendre polynomial
P.(z) is the coefficient of Z* in the expansion of

(5.1) ¢ = (1 — 22Z + 224
=1 + (2% — 222)°

in ascending powers of Z. This may be verified for the lower powers
of n by expanding (5.1) by the binomial theorem. To prove it for the
general term, we write

n= o

(5.2) b= Y A"
n=0
Now it is obvious from the nature of the binomial expansion that
A, is a polynomial in z of degree n. Also, if we place z = 1 in (5.1),
we obtain

. — — 2)\—% — 1
(5.3) $= (=2 +2)% = g

=1+4+Z+22+25+ - + 2~

Hence A, is equal to 1, when z = 1. Now if we can show that 4,
satisfies Legendre’s equation, it will be identical with P,(z) since these
are the only polynomials of degree n that satisfy the equation and have
the value 1 when z = 1. From (5.1) we obtain by differentiation

(5.4) (1 — 22z + 27 gg = (- 2)¢
and

3 _ ., 00
(5.5) Zy7=@—-2)5

If we now substitute from (5.2) into (5.4) and equate the coefficients
of Z*! on both sides of the equation, we obtain '

(5.6) nhn— (20 — Dzdps+ (n — 1)Auyg =0
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Substituting into (5.5) from (5.2) and equating the coefficients of
the power Z*—! on both sides, we obtain

dAw—-l — dA n—2

4z ar - T DA

(5.7)

If in (5.7) we replace n by (n + 1), we obtain

dA, dA., _
(5.8) x _(I;- - '-lz‘:t— =nd,

Now if we differentiate (5.6) with respect to z and eliminate
dA,_o/dz by (5.7), we have

dAn _ dAny _
(59) —J; T dr . nAn

We now multiply (5.8) by —z and add it to (5.9) and obtain

(5.10) (1 — 2% dd‘i" = (At — 74,)

Differentiating (5.10) with respect to x and simplifying the result
by means of (5.8), we finally obtain

P4, dA. _
(5.11) (=29 55 — 28522 + n(n + Dda = 0

This shows that A, is a solution of Legendre’s equation. Hence
for the reasons stated above it is the same as P,(z), we therefore have

(5.12) - An=P.(2)

The above formulas for the A,’s are therefore valid for P,(z) and
give important relations connecting Legendre polynomials of different
orders. From (5.1) and (5.2), we have the important relation

1 ) _
5.13 = ——— e =W Pm ] Zn -
(5.13) R 20 @z |~
This equation is valid in the ranges
(5.14) -1<z<1 and |Z[<1

because of the region of convergence of the binomial expansion (5.2).
The function ¢ is called the generating function for Pa(z). This_ result
is of great importance in potential theory.
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6. The Legendre Coefficients. If we let

0 1 it
(6.1) :v=coso=—64—+2——?—,- i=v-1

and substitute this into (5.13), we have

(6.2) [1 — Z(e?® + e %) + Z2]% = ”-Ea P,Zn»
nm=0
Now we have
6.3) [1L— Z(e?® + ) + Z%t = (1 — Ze®)¥(1 — Ze—i9)—4

Now by the binomial theorem, we obtain

6.4) (1 — Zeit)yd =1+ @ + %:—'3; Zeno 4 - 4

1:83- .. .-@—=1,
1. @y 2t
and
6.5 (1 — Ze-19)— =1+?E22’+;_% Zie0 4« -«

1-3 -+ 2(n — 1)Zne"inf
2-4-...-(2n)
Multiplying (6.4) and (6.5) and picking out the coefficient of Z=,
we have

1-3-...-@2n—-1)
g 4. .. o0 Zemni+t
1-1-3-...°(2n - 3)
2°2°4-...-2n—2)
Every coefficient is positive so that P, is numerically greatest when
each cosine is equal to unity, that is, when § = 0. But since

(6.6) P.(cos 8) =

2cos(n—2)8+ - - -

(6.7) Pa(cos 0) = P,(1) = 1
it follows that
(6.8) |Pacos ) S1 n=0,1,2 -
The first few functions P,(cos 6) are
Po(cos 6) = 1
Py(cos 6) = cos 8
(6.9) Ps(cos 6) = 1(3 cos 20 + 1)

P3(cos 6) = %(5 cos 39 + 3 cos 6)
Py(cos 6) = #1(35 cos 46 4 20 cos 20 + 9)
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\» T. The Orthogonality of P,(x). Like the trigonometric functions
cos mz and sin mx, the Legendre polynomials P,(z) are orthogonal
functions. Because of this property, it is possible to expand an
arbitrary function in a series of Legendre polynomials.

We shall now establish the orthogonality property

(7.1) [_‘:‘ Po(2)Pa(z) dz = 0 if m = n

To do this, we know that P,(r) satisfies the Legendre differential
equation (2.1). This equation may be written in the form

(7.2) L 11~ 2)PL@)] + n(n + DPye) = 0

If we now multiply this by P.(z) and integrate between the limits
—1 and +1, we obtain

+1 d
(7.3) /-1 Pu(z) - [(1 — 2?)Py(2)] dz +
n(n + 1) /_-:1 P (x)P.(x) dz = 0

Now we may integrate the first term by parts in the form

+1 +1
(7.4) / . Pn(z) ;g; [(1 — z?)Pp(x)]dz = le(x)[(l - x?)P{,(x)]} T

+1
[ a - or@pie a

The first term of (7.4) vanishes at both limits because of the factor
(1 — z?); hence (7.3) reduces to

@8 = [1 (= P@PL@) dz +
n(n +1) [ Pa@Pa) dz = 0
If in (7.5) we interchange n and m, we obtain
@6 — [T - PL@P.w) dz +-
m(m + 1) [_’:‘ Po(2)Pm(z) dz = 0
Subtrp,cting (7.6) from (7.5), we get

(1.7 (n—m)(n+m+1) /_*;‘ Pu(z)Pa(z) dz = 0
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This establishes (7.1).
If n = m, Eq. (7.1) fails to hold. We shall now show that

(78) /——l [Pn(.’B)] dr = (—m"—i—)' n = 0, 1, 2, .
To do this, we square both sides of (5.13) and obtain
(7.9) (1 — 22Z + 20! = [ 3 P..(x)Z"]2

n=0

We now integrate both sides of this equation with respect to = over the
interval (—1, 1) and observe that the product terms on the right vanish
in view of the orthogonality property (7.1).

We thus obtain

n=

(7.10) /:11 — 2xZ+ 7i = 2 zzn/ [Pa(2)]? dx

n=0
if |Z] < 1.
But the integral on the left has the value

+ 1+2
7.11) / 1—2x7+z2 2} i=2
Z4

(1+—3“+3‘+"‘+

Z2n
)

® 4

+1
- Zzzn /_1 P.(@)ldr Z<1

n=0
Equating the coefficient of the power Z?* on both sides of (7.11),
we have

+1 2
2 - — - o o
(7.12) A/_l [Pa(z)]2 dz = @n ¥ D) n =012,

8. Expansion of an Arbitrary Function in a Series of Legendre
Polynomials. If F(z) is sectionally continuous in the interval (~1,1)
and if its derivative F(z) is sectionally continuous in every interval
interior to (—1,1), it may be shown that F(z) may be expanded in a
series of the form

8.1) F@) = Y, auPa(a)

n=0
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To obtain the general coefficient a.., we multiply both sides of (8.1)
by Pn(z) and integrate over the interval (—1,1). We then obtain

(8.2) f_‘l F(z)Pn(z) dz = am [_‘1 [Po(@)]? dz

— __20m
T @m+1)

in view of (7.1) and (7.8). The general coefficient of the expansion
(8.1) is given by

+1
(8.3) Gn = (l"—;'—l) f _ F@Pu(z) do

The expansion (8.1) is similar to an expansion of an arbitrary
function into a Fourier series.

9. Associated Legendre Polynomials. In the solution of certain
potential problems, it is convenient to use certain polynomials closely
related to the Legendre polynomials. We shall discuss them briefly
in this section.

If we differentiate Legendre’s equation

' axy dy
— ) YY _ 9, % =
9.1) 1 -2z? P 2z e +nn+y=0
m times with respect to z and write
=y
(9.2) V=
we obtain

(9.3) (1—x’)%—2z(m+l)%+(n—m)(n+m+l)v=0

Since P, is a solution of Legendre’s equation (9.1), the equation is
satisfied by

dam
(9.4) v = F"P"(x)
If now in (9.3) we let
(9.5) w = v(l — z2)™2
we obtain
d*w d 2
(9.6) (1 —z’)w—2z£+[n(n+l) _?1—1'—337)]"’ =0

This equation differs from Legendre’s equation in an added term
involving m. It is called the associated Legendre equation. By Eq.
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(9.5) we see that it is satisfied by
dm
- —_— p\m/2
9.7) w = (1 — z? prpe P,(x)

This value of w is the associaled Legendre polynomial, and it is
denoted by Pr(zx). We therefore have

0.8) Pr(e) = (1= a2 0 p o)

We notice that if m > n, we have -
9.9) Pr(z) =0
PROBLEMS

1. Show that
1
/_11’"(x)dx=0 n=123.-.
2. Establish the orthogonality property of the Legendre polynomials (7.1) by

using Rodrigues’ formula for P.(z) and successive integration by parts.
8. Show that

2t = 1P.(@) + 3Po(a)
z¢ = §P(z) + P (z)
4. Show that
1 o - 2n
/-—l ZPu(x)Po_i(x) dz = Ant =)
6. Prove that

= (2n + )P,

APy _ P
dz dzx

8. Using Rodrigues’ formula, integrate by parts to show that
1
/_1 zmP,(z) dz = 0 ifm<n
7. Show that if Rm(z) is a polynomial of degree m less than n, we have

[ Pu@Rat@) dz = 0
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CHAPTER XV
VECTOR ANALYSIS

1. Introduction. The equations of applied mathematics express
relations between quantities that are capable of measurement in terms
of certain defined units. The simplest types of physical quantities
are completely defined by a certain simple number. Examples of
such quantities are mass, temperature, length. Such quantities are
called scalars.

There are, however, other physical quantitics that are not scalars.
Such quantities as the displacement of a point, the velocity of a par-
ticle, 8 mechanical force require three numbers to specify them com-
pletely. The three numbers that are required to specify the quantities
are scalars and could be, for example, the components of the displace-
ment of the particle with respect to an arbitrary Cartesian coordinate
reference frame.

We could carry ouv the various mathematical operations with these
scalar quantities, but we would be neglecting the fact that from a
physical point of view a displacement, for example, is one entity and
also we are introducing a foreign element into the question, that is, the
coordinate system. Accordingly it has been found convenient to
introduce a mathematical discipline that enables us to study quantities
of this type without recourse to a definite coordinate system.

It is only when we come to evaluate formulas numerically that it
will be necessary to introduce a definite coordinate system. The
mathematical technique that enables us to do this is ““vector analysis.”

2. The Concept of a Vector. A physical quantity possessing both
magnitude and direction is called a vector. Typical examples are
force, velocity, acceleration, momentum. It is customary to represent
vectors by letters in bold-face type and sealars in bold-face italics.

A vector may be indicated graphically by an arrow drawn between
two points. It is thus evident that rectilinear displacements of a
point and all physical quantities that can be represented by such
displacements in the same manner that a scalar can be represented
by the points of a straight line are vectors.

3. Addition and Subtraction of Vectors. Multiplication of a Vector
by a Scalar. A vector having been defined as an entity that behaves

333
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in the same manner as the rectilinear displacement of a point, vector
addition is reduced to a composition of linear displacements.
Consider two vectors A and B as shown in
Fig. 3.1.
B The vector C, which is obtained by moving
a point along A and then along B, is called the
4 resultant or sum of the vectors A and B, and
Fia. 3.1. we write

3.1) C=A+B

From the nature of the definition of vector addition, it is apparent
that

(3.2 B+A=A+4+B

and that therefore vector addition is commutative. If the vectors
A and B are situated as shown in Fig. 3.2,

then the resultant vector C is obtained by

completing the parallelogram formed by the A

two vectors.
In general, the sum of the vectors A and B
B is obtained by placing the origin of B at Fia. 3.2.

the terminus of A. Then the vector C
extending from the origin of A to the terminus of B is defined as the
sum, or resultant, of A and B.

To add several vectors A, B, and C, first find the sum of A and B
and the sum of (A + B) and C. To subtract
B from A, add —B to A as shown in Fig. 3.3.

Equality of Vectors. Two vectors are said
to be equal if they have the same magnitude
and the same direction.

Multiplication of a Vector by a Scalar. By
the product of a vector a by a scalar n we understand a vector whose
magnitude is equal to the magnitude of the products of the magni-
tudes of a and n and has the same direction as a or the opposite
direction, depending on whether the scalar n is positive or negative.
We thus write

(3.3) . A=na

to denote this new vector.
Unit Vectors. A vector having unit magnitude is called a unit
vector. The most common unit vectors are those that have the direc-
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tions of a right-handed Cartesian coordinate system as shown in
Fig. 3.4. The vector i is a unit vector having the z direction of the
coordinate system; the unit vector j has the
y direction and the unit vector k& has the 2z
direction.

The Components of a Vector. The compo-
nents of a vector A are any vectors whose sum
is A. The components most frequently used
are those parallel to the axis z, y, and =z.
These are called the rectangular components Fra. 8.4
of the vector. If A, A, and A, are the
projections of A on the axes z, y, 2, respectively, we may write

(3.4) A =1iA. + jA, + kA,

If a vector A is given in magnitude and direction, then its com-
ponents along the three axes of a Cartesian reference frame are given by

{A, = |A| cos (A,z)

(3.5) Ay = |A] cos (Ay)

A, = |A] cos (Az)

where |A| denotes the magnitude of the vector. If, conversely, the
three components of vhe vector are assigned, the vector A is uniquely
specified as the diagonal of the rectangular parallelepiped whose edges
are the vectors id,, jA,, and kA,. Its magnitude is

(3.6) Al = VAZ+ AJ + A2

and its direction is given by the three cosines which can be found from
(3.5) and (3.6).

4. The Scalar Product of Two Vectors. The scalar, or dot product,
of two vectors is defined as a scalar quantity equal in magnitude to the
product of the magnitudes of the two given vectors and the cosine
of the angle between them. The scalar product of the two vectors
A and B is thus given by the equation

(4.1) A:.B = |A| |B| cos (A,B)

The cosine of the angle between the directions of the two vectors
becomes +1 when the directions are the same, —1 when they are
opposite, and 0 when they are perpendicular.

It is clear from the definition of the dot product that the commuta-
tive law of multiplication holds, that is,

(4.2) : A-B=B-A
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The fact that the distribution law of multiplication holds, can be
seen with the aid of Fig. 4.1.
We have from the figure
(4.3) P-R+Q-R = (OA)R 4 (AB)R
= (OB)R = (P+Q)‘R
From the fundamental unit vectors we
can form the following scalar products:

ici=jj=k-k=1
(44 icj=j-kh=kei=0

As a consequence of these results, we obtain

(4.5)  A-B = (i, + jA, + kA.) - (iB. + jB, + kB.)
= A.B, + A,B, + A.B,

We may also write
(4.6) A2 = A-A = A?+ A2+ A2

6. The Vector Product of Two Vectors. The vector or cross prod-
uct of two vectors is defined to be a vector perpendicular
to the plane of the two given vectors in the sense of {4*B
advance of a right-handed screw rotated from the first
to the second of the given veectors through the smaller
angle between their positive directions. B

The meaning of this definition is made clear in -
Fig. 5.1.

The magnitude of this vector is equal to the product A
of the magnitudes of the two given vectors times the
gine of the angle between them. {BxA

The vector or cross product is denoted by (A X B). Fia. 5.1.
As is clear from the definition and the figure, the
commutative law does not hold for this type of multiplication, instead
we have

(5.1) AXB=—-BXA
Also we have
(5.2) AxA'=0

It follows from the definition that if the vector product of two
vectors vanishes the vectors are parallel.

Vector Representation of Surfaces. Let us consider a plane surface
such as shown in Fig. 5.2

Since this surface has a magnitude represented by its area and a
direction specified by its normal it is a vector quantity. A certain
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ambiguity exists as to the positive sense of the normal. In order to
remove this ambiguity, the following conventions are adopted:

a. If the surface is part of a closed surface, the outward drawn
normal is taken as positive.

b. If the surface is not part of a closed surface, the positive sense in
describing the periphery is connected with the 8
positive direction of the normal by the rule
that a right-handed screw rotated in the plane
of the surface in the positive sense of deseribing 4
the periphery advances along the positive B
normal. For example, in Fig. 5.2, if the Fra. 5.2,
periphery of the surface is described in the sense ABC, the positive
sense of the normal and therefore the direction of the vector S
representing the surface is upward.

If a surface is not plane, it may be divided into a number of ele-
mentary surfaces cach of which is plane to any desired degree of
approximation. Tn this case, the vector representative of the entire
surface is the sum of the vectors representing its elements. Two
surfaces, considered as vectors, are equal if the representative vectors
are equal. Therefore, two plane surfaces are equal if they have equal

areas and are normal in the same direction
F even if they have different shapes.

A curved surface may be replaced by a
plane surface perpendicular to its repre-
sentative vector having an area equal to the
magnitude of this vector. The vector
representing a closed surface is zero be-
cause the projection of the entire surface on
any plane is zero; since as much of the

projected area is negative as positive, it therefore follows that the
vector representing the entire surface has zero components along the
three axes z, ¥, 2, and consequently it equals zero.

The Distributive Law of Vector Mulliplication. To prove that the
distributive law of multiplication holds for the vector product, consider
the prism of Fig. 5.3. The edges of this prism are the vectors P, Q,
(P+Q),andR.

The vectors representing the faces of the closed prism are

ABED =R x P
BCFE =R x Q
ACFD = P+ Q) xR
ABC =3QxP)

DEF =}PxQ)
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Therefore the representative vector representing the entire polyhe-
dral surface is
(53) RXP+RXQ+(P+Q) XR+
QXP)+#PxQ) =0

or
(5.4) P+Q)XR=PXR+QxR

By the definition of the vector product, we have the following
relations for the unit vectors:

(5.5) {1X1=k, JX k=i kRXi=j

iXi=jXj=kXk=0

If we write the vectors P and Q in terms of their rectangular
components,

P = iP, + jPy, + kP,
Q = iQ.c +JQ11 ’+' kQ;

and realize that the distributive law holds for a vector product, we
obtain

(57) P X Q = (iPc +JPy + sz) X (le +JQV + in)
= i(Pst - P:Qv) +j(P-Qz - PsQ#) +
k(PzQu - Psz)

in view of the properties of the unit vectors expressed by (5.5).
This expression can be represented in a compact fashion by the
determinant

(5.6)

i j k
p. P, P,
Q @& Q.

6. Multiple Products. There are several types of multiple prod-
ucts used in vector analysis, and in this section the most important
types will be considered.

a. The Product of a Vector and the Scalar Product of Two Other
Vectors, A(BB+ C). Here B C is a scalar so that A(B- C) is a vector
parallel to A and is of course an entirely different vector from (A - B)C.

b. Scalar Product of a Vector and the Vector Product of Two Other
Vectors. Consider A-B X C. In this case we have the important
relation

6.1) A-BXC)=B-(CxA) =C-(AXB)

(5.8) PxQ=
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The proof of this relation follows from the fact that each of these
expressions represents the volume of the parallelepiped whose edges
are A, B, C. Furthermore, all three expressions give this volume with
the positive sign provided the vectors A, B, C, in that order, form a
right-handed system.

¢. Vector Product of a Vector and the Vector Product of Two Other
Vectors. Consider the product

(6.2) qg=aXx (b Xc)

By the definition of a cross product, q is perpendicular to the
vector a and also to the vector (b X c). Accordingly, the vector q
lies in the plane of b and ¢ and may be expressed in the form

(6.3) q = ub + nc

where u and v are scalar multipliers.
Now we have

(6.4) q-a=ub-a)+ovc-a) =0
or
_ _ulb-a)
(6.5) v = )
Hence
_ v u(b-a)
(6.6) q=ub an
i ey a) [b(a-c) — c(a-Db)]
Now let
U

where 7 is some scalar. To find the magnitude of n, consider a set of
Cartesian coordinate axes oriented so that the vectors a, b, and ¢ have
the following components in terms of these axes:

a = ia; + jay + ka,
(6.8) b = ib,
¢ = ic; + jey
In this case, we have

6.9) (b X c) = kb.cy

(6.10) a X (b X ¢) = (ias + ja, + ka.) X (kb.c,)
= —j(asbscy) + i(a,b.c,)
= fbz(ayey) + 1h:0:c. — bsa.c. — j(asbaty)
= ibs(a.c + aye,) — (ics + jeu)(azbs)
= b(a-c) —c(a-b)
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Hence comparing (6.9) and (6.10) it is seen that the constant n is
equal to 1.

7. Differentiation of a Vector with Respect to Time. The
differential coefficient or derivative of a vector A with respect to a
scalar variable ¢, say the time, is defined as a limit by the equation

dA _ ;o Al+a) - AQ
dt A= At

Since division by a scalar does not alter vectorial properties, the
derivative of a vector with respect to a
scalar variable is itself a vector.

As an example of differentiation of a
vector with respect to a scalar, consider a
particle » moving along a curve ¢ as shown
in Fig. 7.1.

Let the position of the particle with
respect to the origin of a Cartesian reference
frame be denoted by r. In that case, the velocity of the particle is
given by

(7.1)

Fi6. 7.1,

(7.2) V== = —

where ds is a differential of arc measured along the curve as shown in
Fig. 7.2.
Now /& de
'R}
(7.3) — = lim — = redr dr
ds  ps—0As Fa. 7.2.

where £ is a unit vector tangent to the curve defining the path of the
particle.
Hence we have

dr ds
(7-4) V= a} = taz

The quantity ds/dt is the speed of the particle. The acceleration
of the particle is defined as the time derivative of the velocity. We

thus have

dv _d,ds dtds , ,d%
(7.5) “=7i?=ﬁt7i‘t=7ta"t+‘aii
Now
(7.6) dt dt ds

di " dsdi
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Consider Fig. 7.3.
We may write

at _ dt do
7 G~ deds
(7.8) 3; n = the unit inward normal to the curve
d¢ _1 1
(7.9) ds ; radius of curvature of path
P ¢ .
° b <KQ‘”
t+dt d 1
Fia. 7.3

Substituting these expressions into (7.6) we obtain

dt _ nds
(7.10) G- pdl
Substituting this into (7.5), we finally obtain
d?*s | n{ds\*

We thus see that the acceleration of the particle consists of two
terms. The first term depends upon the rate of change of speed
of the particle and is directed along the tangent to the particle; the
second term is the centripetal acceleration of the particle and depends
on the radius of curvature p of the particle and the square of the speed.
This acceleration is directed in a direction normal to the curve and
toward the center of curvature.

Since the derivatives of vectors with respect to a scalar variable
are deduced by a limiting process from subtraction of vectors and
division by scalars, which are operations subject to the rules of ordinary
algebra, it follows that the rules of the differential calculus can be
extended at once to the differentiation of a sum of vectors

dAdB

(7.12) (A + B) = dt

or the product of a scalar and a vector

d _ . du a
(7‘13) a‘t(ua) = a-a-t-'{'ua?
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And, similarly,
dA

(7.14) i A-B)=B-Z 44

(7.15) (AXB) dAxB+A><‘?t3

dB

8. The Gradient. Let ¢(z,y,2) be a scalar function of position in
space; that is, of the coordinates z, y, z. If the coordinates z, y, z are
increased by dz, dy, dz, respectively, we have

8.1) d¢ = 2 az + "’dy+"“’dz

If we denote by dr the vector representing the displacement
specified by dz, dy, dz, then
(8.2) dr = idzx + jdy + kdz

In vector analysis, a certain vector differential operator V (read del)
defined by

(8.3) V—1—+Jay+k

plays a very prominent role. The gradient of a scalar function
#(z,y,2) is defined by

(8.4) Gradient ¢ = z + ] 9¢ + k ¢

Operating with V on the scalar function ¢(z,y,2), we get

.00 6¢+k6¢

(8.5) Vo = 1— +J a vector

This is just the expression (8.4) defined as the gradient of ¢.
Now from (8.1) and (8.2), we have

86) do = ( 98 4 ; + k"¢) (de +jdy + k dz)
(V¢) dr
The equation
(8.7 ¢(z,,2) = const.

represents a certain surface, and as we change the value of the constant
we obtain a family of surfaces.
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Consider the surfaces of Tig. 8.1.
If dn denotes the distance along the normal from the point p to the
surface sy, we may write

(8.8) dn =n-dr - :.
where 7 is the unit normal to the surface 81 dn
N %Ve have e
¢=const. @+d@=const.
89) d¢p = o2dn=32n. ot = (vg) - ar Fre. 81.
and, in partlcular, if dr lies in the surface S;, we have
(8.10) dep = (V¢) -dr =0

showing that the vector V¢ is normal to the surface ¢ = const. Since
the vector dr is arbitrary, we have from (8.9)

8.11) Vo = (gz) n

Hence V¢ is a vector whose magnitude is equal to the maximum rate
of change of ¢ with respect to the space variables and has the direction
of that change.

9. The Divergence and Gauss’s Theorem. The scalar product of
the vector operator V and a vector A gives a scalar that is called the
divergence of A; that is,

(9.1) V.A= aA’

84, , 9A. _ ..
+ By + 5 = divergence of A

This quantity has an important application in hydrodynamics.
Consider a fluid of density p(z,¥,2,%) and velocity v = v(z,y,2,), and let
9.2) V=vwp

If S is the representative vector of the area of a plane surface, then
V - S is the mass of fluid flowing through the surface S in a unit time.

Consider a small fixed rectangular parallelepiped of dimensions
dz, dy, dz as shown in Fig. 9.1.

The mass of fluid flowing in through face F; per unit time is

(9.3) Vydz dz = (pv), dx dz
and that flowing out through face F, is

(9.4) (VM) dzdz = (V, +% dy) dz dz
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Hence the net increase of mass of fluid inside the parallelepiped per
unit time is

©9.5)  V,dzdz — (V, + %ﬂdy)dxd - - %%!'dxdzdy
2 F;\\ ‘,'dz .
v LA- '[E"de»
(x,y,2)
/// ”
X
Fia. 9.1.

Considering the net increase of mass of fluid per unit time entering
through the other two pairs of faces, we obtain

av. [ 3V, , V. _ )
9.6) -— (T’fx— +—5; + a—z)dxdydz = —(V-V)dzdydz
as the total increase in mass in the parallelepiped per unit time.

But by the principle of conservation of matter, this must be equal
to the time rate of increase of density multiplied by the volume of the
parallelepiped. Hence

9.7) —(V-V)dedydz = (‘;—’t’) dz dy dz
or

= _9
9.8) v.y=-2

This is known in hydrodynamics as the equation of continuity. If
the fluid is incompressible, then

_%_
(9.9) VeV=—-22=0

The name divergence originated in this interpretation of V. V.
For since —V + V represents the excess of the inward over the outward
flow, or the convergence of the fluid, so V - V represents the excess of
the outward over the inward flow, or the divergence of the fluid.
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Surface Integral. Consider a surface s as shown in Fig. 9.2.

Divide the surface into the representative vectors ds;, dss, « - - ete.
Let V; be the value of the vector
function of position V.(z,y,z) at ds..
Then

9.10 1 V. ds; = V-d
010 Jim 3 Vi-dsi= [ [V-as
n— 0

is known as the surface integral of Fia. 9.2.

V over the surface s. The sign of

the integral depends on which face of the surface is taken as posi-

tive. If the surface is closed, the outward normal is taken as positive.
Since

9.11) ds = ids; + jds, + kds.

we have

(9.12) [[ V.ds = // (Vaodss + Vydsy + Vadss)

The surface integral of a vector V is called the flux of V throughout the
surface.

Gauss’s Theorem. This is one of the most important theorems of
vector analysis. It states that the volume integral of the divergence
of a vector field A taken over any volume V is equal to the surface
integral of A taken over the closed surface surrounding the volume V;
that is,

(9.13) f//;(V-A)dv=[‘/A-ds

To prove Gauss’s theorem, let us expand the left side of Eq. (9.13).
We then have

010 [[ [ wnan [[ ] (st ) o
/[[agdxdym//ﬁ«%dxdm//ﬁ aag-dxd,,dz

Let us consider the first integral on the right. Integrate with
respect to z, that is, doing a strip of cross section dy dz extending from
P, to P; of Fig. 9.3.

We thus obtain

(9.15) / / j; 6541; 2dz dy dz = f f [Ae(Z2,y,2) — As(21,9,2)] dy d2




346 MATHEMATICS FOR ENGINEERS AND PHYSICISTS [Cuar. XV

Here (z1,y,2) are the coordinates of P, and (z.,y,2) are the coordi-
nates of P;. Now at P; we have

(9.16) dydz = — ds,
y g Py " At P, we have
s, (9.17) dydz = ds,
8, Therefore
3 94,
/ (9.18) /ff' 2 dody dz
£ 4
Fia. 9.3. = _/_/ A, ds,

where the surface integral on the right is evaluated over the entire
surface. In the same manner we obtain

9.19) f// aA"d:cdydz= // A, ds,
(9.20) ///%d:cdydz—/‘/A,ds.

If we now add (9.18), (9.19), and (9.20) we obtain Gauss’s theorem,
(9.21) ][/ (V-A)do = j[ (A.ds, + Ay ds, + A, ds,)

=ﬂ/A-ds

Green’s Theorem. By the use of Gauss’s theorem we are able to
make some important transformations. Consider

(9.22) A=uVw

that is, let the vector field A be the product of a scalar function » and
the gradient of another scalar function w. Consider

04, L 4, _ o ( aw) o[ aw
(9.23) V.A—»__—*‘ + 9z ‘az("ax)"'ay(“ay)"'

2, (2
a9z 0z
0w |, %w |, w Judw , dJudw , duodw
(w+w+3?)+5;55+35'@+5;3;
=y Vw4 Vu.Vu
If we place this value of V+ A in the left side of Gauss 8 theorem
(9.21), we obtain
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(9.24) [fﬁ (u V2w + Vi - Vo) dv = ]/ (V) - ds

This transformation is referred to as the first form of Green's
theorem.
In (9.24) if we interchange the functions » and w, we obtain

(9.25) //ﬁ (wV + Vu-Vw) dy = L[ (w V’u) . ds
If we now subtract Eq. (9.25) from Eq. (9.24) we obtain
(9.26) [//; (quw—wvzu)dv=/'/ (wVw — wVu) - ds

This transformation is referred to as the second form of Green’s
theorem. The transformations (9.24) and (9.26) are of extreme impor-
tance in the fields of eclectrodynamics

and hydrodynamics. z Ar
0. The Curl of a Vector Field and : i, -]

Stokes’s Theorem. The Line Integral. 4, A
Let A be a vector field in space and AB A
(Fig. 10.1) a curve described in the sense A ;
A to B.

Let the curve be divided into vector /
elements dl,, dl, - - - dls, etec., and take Fie. 10.1.

the scalar product A, -dl; of A at the

point A, and dl; of A, - dl; of A at the point C, and dl;, Az - dl; of A
at the point D and dl;, and so on. The sum of these scalar produects,
that is,

B
(10.1) : LBA-dl=§,A,.d1,

summed up along the entire length of the curve is known as the line
integral of A along the curve AB. It is obvious that the line integral
from B to A is the negative of that from 4 to B.

In terms of Cartesian components, we can write

(10.2) L A dl= L P (Adz + Aydy + Adz)

IfF represents the force on a moving particle, then the line integral
of F over the path described by the particle is the work done by the
force.

Let A be the gradient V¢ of a scalar function of position; that is,

(10.3) A=Yy
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Then

(10.4) fA = f(v:p) dl = /( dy+"“’dz)

But we have

(10.5) 90 4y + 90 2 ay +24; = ag
the total derivative of ¢. We thus have

(10.6) LBA-d1=LB(1¢=¢B—-¢A

where ¢z and ¢, are the values of ¢ at the points B and A, respec-
tively. It follows from this that the line integral

c B of the gradient of any scalar function of position
¢ around a closed curve vanishes, because if the
4 D curve is closed, the points 4 and B are coincident

Fic. 10.2. and the line integral is equal to ¢. — ¢4 which
is zero. The line integral around a closed curve
is denoted by a integral sign with a circle around it, as follows:

S A-d

Let us suppose that the line integral of A vanishes about every
closed path in space. If we denote the path of integration by a sub-
seript under the integral sign (Fig. 10.2),

(10.7) LCBA-dl—LDBA-dl= (s Ardl+ [ Acdl=0
and therefore
(10.8) s Adl= [ A-dl

This shows that the line integral of A from A to B is independent
of the path followed. It is apparent, therefore that it can depend
only upon the initial point A and the final point B of the path, that is,

(10.9) [lA@=6s— o

Now if we take the two points A and B very close together, wehave
(10.10) Acdl =d¢ = (Vo) - dl
or

(10.11) ' (A—-V¢)-dl=0
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As this is true for all dircetions, the vector (A — V¢) can have no
component in any direction, and hence it must vanish. Therefore

(10.12) A="Y¢

That is, if the line integral of A vanishes about cvery closed path, A
must be the gradient of some scalar function ¢.

The Curl of a Vector Field. If A is a vector field, the curl or rotation
of A is defined as the vector function of space obtained by taking the
vector product of the operator V and A. That is,

(10.13) CurlA =V X A
_ :[94. _ 984, (04, 84, 84, _ 94.
=iy )+ =) G- %)
This may be written conveniently in the following determinantal
form:

i j ok
9 ) ]
(10.14) VXA=|-— 9y 98z
4. A, A,
_ _if2e _
(10.15) VXA =V X (V¢) = '(ay 9z 0z ay) +

(32 0% 3%¢ AN
J(a—z“ai - mz) + k(a;az, - ayox) =0
It thus follows that if A is the gradient of a scalar the curl of A
vanishes.
Line Integral in a Plane. To show the connection between the line
integral and the curl of a vector Eyiny) -
field, let us compute the lineintegral ¥ ’f, A Clx+Ax, y+0Y)
of a vector field A around an infini-
tesimal rectangle of side Az and Ay
lying in the xy plane as shown in A Blx+Ax,y)
Fig. 10.3. That is, we shall com- | %2 .
pute FA - dl around this rectangle. *
We may write down the various
contributions to this integral as follows:

Fiq. 10.3.

Along AB: 4; Az
Along BC: (A, + %‘»1—” Ax) Ay
* Along CD: - (A, + %’ Ay) Az

Along DA: —-4,4y .



350 MATHEMATICS FOR ENGINEERS AND PHYSICISTS [CHar. XV

where we have made use of the fact that Az and Ay are infinitesimals.
Adding the various contributions, we obtain .

94 94,
(10.16) ¢ABCDA -dl = (3—2‘3! - 33]) Az Ay

In view of (10.13), this may be written in the form

(10.17) D pop A dl = (V X A). dssy

y — where (V X A); is the z component of the
/ <= ‘:" curl of A and ds., is the area of the
{ ) rectangle ABCD.
A = Consider now a closed curve in the zy

plane as shown in Fig. 10.4. Divide the
x space inside C' by a network of lines join-

ing a network of infinitesimal rectangles.
If we take the sum of the line integrals around the various meshes,

we obtain

(10.18) 3 ¢ A-d= Y (7 x A dswy

re] r=1

Fia. 10.4,

Now it is easily seen that the contributions to the line integrals
of adjoining meshes neutralize each other because they are traversed
in opposite directions; the only contributions which are not neutralized
are those on the periphery of the surface. Hence,

(10.19) ) ¢ A= ¢CA-’dl

re=]

where the line integral on the right is taken along the boundary curve
C in the positive sense.

Now the sum on the right of (10.18) reduces to the following
integral:
(10.20) Y, (7 X A)dsey = [ [ (VX A).dsay
Hence substituting this into (10.18) we obtain

(10.21) %A-dn - f f (V X A), dsy
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That is, the line integral of a vector field A about the contour C of a
plane surface S is equal to the surface integral of the normal component
of the curl of A to the surface throughout
the surface s.

Consider now the triangular surface of
Fig. 10.5.

It is easy to see that

(10.22) 9SABOA v dl = 9SOBCA dl+

¢OCAA.dl+¢OABA.dl

since the contribution along the lines 04,
OB, and OC cancel each other. However, as a consequence of
(10.21), we have

F1a. 10.5.

(e dl= [ [ ¥ xA).dyde
(10.23) fOCAA-dl = LCA/ (V X A), dz dzx
frup At = ﬁmf (V X A). dz dy
If we add these equations and make use of (10.22), we obtain
(1024) ¢ A-di= Jose] 7 % A.dydz +
Joea | @ x ), dzdz + fwf (V X A), dz dy

Now we may write
(10.25) ds

ids, + jds, + kds,
idydz +jdxdz + kRdxdy

for the projections of the representative surface vector s of the plane
ABC to the yz, 2, and zy planes.
Using this notation, (10.24) becomes

f\,. ,,’; (1026) 95430 A.dl = LBC’/ (V X A) - ds

y Consider now the open surface of Fig.
10.6.
] ‘We can regard the surface s of this open
Fra. 10.6. surface as being made up of an infinite number
of elementary triangular surfaces. If we label r the typical triangle,
we have from (10.26)

(10.27) ShAa-a=%[[@xa-ds

:C
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Now the sum of the line integrals of the elementary triangles
reduces to a line integration about the periphery C of the closed
surface S since the line integrations along adjacent triangles are
described in opposite senses and hence cancel. We therefore have

(10.28) ZgﬁrA.dl=[JA-d1

In the limit, the summator on the right of (10.27) reduces to an
integral and we have

(10.29) 2¢T(VXA)-ds=/;/ (VX A)-ds
As a consequence of (10.19), we then have
(10.30) p a-d=[[(vxa-ds

This relation is known as Stokes’s thecorem. It states that the
surface integral of the curl of a vector field A taken over any surface
S is equal to the linc integral of A around the periphery of the surface.

If the surface to which Stokes’s theorem is applied is a closed
surface, the length of the periphery is zero and then

(10.31) # (VXA)-ds=0

By the use of Stokes’s theorem we see that if V X A = 0 every-
where, A is the gradient of a scalar junction. Because if VX A = 0
then the line integral of A around any closed curve vanishes. This is
just the condition that A should be the gradient of a scalar junction.

11. Successive Applications of the Operator V. It frequently
happens in various applications of vector analysis that we must
operate successively with the operator V. For example, since the curl
of a vector field A, V X A is a veetor, B field it is possible to take the
curl of B, that is,

(11.1) VXB=VX(VXA)

If we expand this equation in terms of the Cartesian coordinates
of A, we obtain

94, 94,
(1L.2) Vx(VXA)—z[ay(ax” ay)_

3 (0A. a4,
a‘é(az ax)] + ete.

=i 924, . %4, 94. o4, T et
oy ax 920z  Jy? 922 » €36
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[6z (a;.i o y '“)

92 d2 92
(ot o é&) ac] et

=V(V-A) — VA

In the same manner, the following vector identities may be estab-
lished by expanding V and the other vectors concerned in terms of
their components:

(11.3) V- (uA) =u(V-A) + A- (Vu)
(11.4) VX (uA) = u(V X A)+ (Vu) X A
(11.5) V-(AXB)=B:-(VXA) —A-(VXB)
(116) VA-B)=AX (VXB)+ (A-V)B+B X (VXA)+
' (B-V)A
(11.7) VX (AXB) = (B-V)A— (A-V)B — B(V-A) + A(V-B)
(11.8) VX (Vu) =0
(11.9) V-(VXA) =0

In the above set of equations, the vector (A - V)B stands for the
vector

(11.10)  (A- V)B_:(A, s 44, ay+AaB)+
f( "B"+A"B"+A )+

The above formulas are very useful in applications of vector
analysis to various branches of engineering and physics.

12. Orthogonal Curvilinear Coordinates. Many calculations in
applied mathematics can be simplified by choosing instead of a Car-
tesian coordinate system another kind of system that takes advantage
of the relations of symmetry involved in the particular problem under
consideration.

Let these new coordinates be denoted by ui, us, us. These are
defined by specifying the Cartesian coordinates z, y, z as functions of
Uy, Us, Us, as follows:

(12.1) Y = y(u1,us,us)

2 = 2(uy,Ua,us)

{ z = z(U1,U2,U3)
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We shall confine ourselves to the case when the three families of
surfaces u; = const., wz = const., 3 = const. are orthogonal to one
another. In that case the line element ds is given by
(12.2) ds? = h%dul + h3 dui 4+ h}du}
where hy, hs, hs may be functions of uy, us, ;. We shall also adopt the
convention that the new coordinate system shall be right-handed like
the old.

Consider now the infinitesimal parallelepiped whose diagonal is

G the live element ds and whose faces coincide with

the planes u, or u; or u; = const. (see Fig. 12.1).

H Q J The lengths of its edges are then h; duy, hy dus, hs
B Qf Ah,du, dus, and its volume is hihohs duy dus dus. Further-
hadity L more let ¢(uiusus) be a scalar function and A be a

O ™ vector field with components A,, A, A; in the
Fre. 12.1. three directions in which the coordinates ui,us,us

increase. The u; component of the gradient of ¢ we can compute at
once since by definition

_ i #4) = 9(0)
(12.3) (grad ¢)1 = d’ltllr_lio oy d

- 194

" hiou,

we have also similar relations for the directions 2 and 3.
In order to calculate the divergence of a vector field A we use
Gauss’s theorem,

(12.4) [[/(V-A)dV=ﬁ[A-ds

The contribution to the integral [fA . ds through the area OBHC,
taken in the direction of the outward normal is — A1hohs dus dus, while
that through the area AFGJ is

[Alh,ha dus dus + Eaui (A shohs) dus dus du,]

From these and the corresponding expressions for the other two
pairs of surfaces, we have by (12.4)

(12.5) lim [[[(V-A)dy = (V- A)hihohs dus dus dus
V=0

= [[fA-ds
we thus obtain

1

[;,—f;; (hahady) + -‘,1;—2 (hshids) + E?Ta (hlh,A.)]

-
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if A =V,

1 9 [hshs 09 9 (hshy 09
2dy = e | —— | 2T —_——
(12.7) v ¢ hlhzha [aul( hl aul) + auz( hz 0“2) +
9 Mzi?_)]
aus ha aua
The components of the curl of A may be found by Stokes’s theorem,
(12.8) [[@xa ds=¢a-a

For example, the component 1 of the curl of A is obtained by
applying Stokes’s theorem to the surface OBHC. We calculate

B H C [
129) ¢, A-d=[CA-a+ [Ja-a+ [Fa-a+ [Pa.a
= (A 2he duz) -+ [A‘xhs dus +é—z’; (Aaha) duaduz] —
[A,h, dus + 5%; (Ashs) dus du,] — (Ashs dus)
- [5%.2 (Ashs) — aiua (Azhz)] dus dug

By Stokes’s thevrem, this equals the 1 component of the curl of
A, (V X A)y, multiplied by the area of the face OBHC. That is,

(12.10) (VX A)ihohs dus dus = [ai (Ashy) — (Azh,)] dus dug
(72 3143
Hence
1211 (7 X Ay = o | (Adhs) — 2 (4aha)
hzhs _auz aua
By a cyclic change of the indices, we obtain

(12.12) (VX A), =

1 [o 3 ]
i s (149 = 1 )|
(1213) (X A = o | o (ads) = 5o ()

If we introduce unit vectors along the direction 1, 2, and 3, iy,
ia, 13, we may write symbolically

hﬂ'l hal': haia
1 a a d
az1y)  xA=gmlee . w

h;A1 h;Ag hsAy
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In the case of Cartesian coordinates, we
ha.veu; =X,Us = Y, Us =2,h1 = hz = h; = 1,
and iy = i,1, = j, i3 = k. In this case, (12.14)
reduces to (10.14).

We shall now apply these general formu-
las to two special cases that are particularly

Fra. 12.2. important in applications.

a. Cylindrical Coordinates. The position
of a point in space may be determined by the cylindrical coordinate
system of Fig. 12.2.

In this case we have

(12.15) x =rcosd
y =rsin 6
2=z
(12.16) dst = dr? + r? d6? + dz?
We have, therefore, in this case
Uy =r hl =1
(12.17) Uz = 0 and hy =1
Uy = 2 ha =1
By (12.3) we obtain
_9¢ _1d¢ _0¢
(12.18) grad, ¢ = . grads ¢ = =39’ grad, ¢ = 3.
By (12.6) we have
104, , 94,
(12.19) A—-—(A,)+r 30 + —— 32

The Laplacian operator as given by (12.7) gives

3¢\ , 10% , 3%
2
(12.20) Ve =3 ar 61‘) t5ae T o

We obtain the components of the curl of A by (12.11), (12.12), and
(12.13).

__ l aA. - 6Ao

(12.21) (V X &), = 5 — =
3A' aA’
(12.22) (VX A= -2

(12.23) (V X A), = % [i (rAy) — a—A’]
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9%" Spherical Polar Coordinates. Another very important coordi-
nate system is that of spherical polar coor-
dinates as shown in Fig. 12.3.

In this case, we have

(12.24) z = rsin 6 cos ¢
y = rsin 0 sin ¢

z=rcosf
ds? = dr? 4 r?sin? 0 d¢? 4 r2 d6?
We have therefore
Uy =T hl =1
(12.25) up=6 and  hy=r
U = ¢ hs = rsin 6
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