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ABSTRACT

Analysis of the vibrations of the rotor supported by rolling element bearings is becoming
important with the increasing demands on running accuracy. Recently, a lot of research is being
directed towards rolling element bearings, which act not only as structural elements but also as
source of vibrations. This work attempts to study the vibration response of high-speed rotor
supported by rolling element bearings and both the balanced and unbalanced rotor conditions
have been selected for the present study. A mathematical model has been proposed which takes
into account the sources of non-linearity such as Hertzian contact, radial internal clearance,
distributed defects and sources of parametric excitation, which are the varying compliance of
rolling element bearings.

The analytical formulation accounts for tangential and radial motions of rolling elements, as
well as for the rotor, the inner and the outer races. The contacts between the rolling elements and
races are treated as nonlinear springs whose stiffnesses are obtained on the basis of the Hertzian
elastic contact deformation theory. The application of Lagrange equation leads to a system of
nonlinear ordinary differential equations governing the motion of the rotor bearing system. The
system equations of motion have non-analytic stiffness terms, which are found to be numerically
stiff. The implicit type numerical integration technique Newmark- B with Newton-Raphson
method has been used for the solution of these equations. Various techniques like higher order
Poincaré maps, phase trajectories, non-autonomous shooting technique and Fast Fourier
Transformations are used for studying the nature of the response. Theoretical analysis for the
balanced and the unbalanced rotor over a wide range of rotor speed has revealed several regions
of instability and deterministic chaotic response. An important finding from the present analysis
is the existence of unstable and chaotic response region at very high speeds, primarily due to the
bearing clearance.

The model also predicts discrete spectrum with specific frequency components for each order
of waviness. For outer race waviness, the spectrum has components at outer race defect
frequency (fbp) and its harmonics. In case of inner race waviness, the waviness order to number
of rolling elements and its multiples give rise to spectral components at the inner race defect
frequency (fp) and its multiples. Other orders of waviness generate side band at multiples of

rotor frequency about these peaks. In the case of off-size rolling element, the model predicts
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discrete spectra having significant components at multiples of cage frequency. The effects of the
parameters like the rotor speed, the radial internal clearance, the unbalanced rotor force and the
surface imperfections on dynamic response are analyzed theoretically and these results are found

to match fairly well with the published results.
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Chapter 1

INTRODUCTION

1.1 BACKGROUND

Rolling element bearing is one of the essential elements of rotating machinery
ranging from conventional power driven machines to the present sophisticated
information storage devices. One of the important issues in rolling element-bearing
application is the reduction of noise and vibrations originating from these bearings. These
bearings generate vibrations during operation even if they are geometrically and
elastically perfect. This is an inherent feature of the type of bearing and is due to the use
of a finite number of rolling elements to carry the external loads. The other possible
sources of rolling element-bearing vibrations are the unbalanced rotor force and the
distributed defects of the rolling elements. The importance of a clear understanding of
vibrations associated with rolling element bearings is therefore obvious.

Recent advances in materials and production techniques have enabled the
development of bearings for very high speeds. One such application is the gas turbine,
which operates at very high speeds resulting in considerable increase in stress levels in
bearings. The dynamics of bearing for such an application becomes difficult because of
centrifugal forces acting on the rolling elements and the slipping of the rolling elements
as they roll on the race. Despite such difficulty, it is very important to model the dynamic
behavior of the bearing for high-speed and high performance applications. The dynamic
modeling of the bearing for such high performance applications enters the domain of
nonlinear systems. This is not surprising, since the nonlinear modeling of the system has
proved to be more realistic under stringent conditions. During the last 30 years
researchers have documented irregular and unpredictable dynamic behavior of rigid rotor
supported by rolling element bearings under external excitation. Nonlinear phenomena
occurring in these systems are responsible for these irregular and unpredictable effects
that lead to chaos. The possible output of linear and nonlinear system is shown in Fig. 1.1
(Thomson and Stewart, 1986).

Rolling element bearings can be used for diverse applications compared to various
kinds of bearings such as film bearings, foil bearings and magnetic bearings that are
suitable for specialized applications.
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For example, rolling element bearings can be used as miniature ball bearings for
sensitive and precise components such as inertial guidance gyroscope as well as for very
large bearings (about 1.5 m diameter) used for rolling mills. Several advantages make the
rolling element bearings desirable where noise is not the consideration. The frictional loss
is considerably reduced, which in turn results in less heat generation. The stiffness of the
rolling element bearing is very high as compared to the conventional hydrodynamic
bearing and therefore bearing deflection is less sensitive to load fluctuation. One major
advantage is that very simple lubrication system is needed which is generally a self-
supply system requiring negligible maintenance. The other advantage is less requirement
of space for rolling element bearing. Moreover the rolling element bearing can take up
both radial and axial loads for most of the applications. The disadvantage of the rolling
element bearing is generation of noise and their failure due to fatigue of races / rolling

elements.

1.2 OBJECTIVE OF THE STUDY

The objective of this study is to analyze the nonlinear effects introduced by rolling
element bearings in a rigid horizontal rotor. The sources of non-linearity are due to
Hertzian contact, radial internal clearance and source of parametric excitation, which is
the varying compliance of a rolling element bearing. Radial internal clearance, which is
provided in the design of bearing to compensate for the thermal expansion, introduces the
non-linearity in dynamic behavior. Finite number of rolling elements rotating with
different velocities with respect to the inner race generate a time varying stiffness
component. These rolling element effects introduce a high degree of non-linearity in the
bearings, which results in a nonlinear dynamic behavior of the system.

The work reported in the literature till now on this particular problem has taken only

self excited vibrations into account i. e. parametric effect. There is very little work
reported in the literature on the effect of nonlinear and parametric stiffness variation on
the dynamic response of rolling element bearing except some experimental work done by
Sunnersjo (1985). Hence, in this investigation, a theoretical analysis could be performed
to study the dynamic response of a rigid rotor supported by rolling bearing. However, the
analysis will be carried out within certain constraints for simplifying the analysis i.e. the
deformation will be assumed elastic, sinusoidal surface waviness and constant damping.
In the present research work an attempt could be made also to study the effects of

inclusion of unbalanced rotor force and distributed defects on dynamic response.
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1.3 ORGANIZATION OF THE THESIS

Chapter 1 gives an introduction to sources of non-linear vibrations in rotor bearing
system.

Chapter 2 deals with a critical review of the published literature on clearance non-
linearity, surface imperfections non-linearity, modeling of bearings and solution
techniques for nonlinear system dynamic analysis with theoretical and experimental
studies on nonlinear rotor dynamics including chaotic response.

Chapter 3 focuses especially on the sources of vibration generation and their physical
descriptions. The important sources of vibration generation considered are the nonlinear
stiffnesses, the unbalanced rotor force and the surface imperfections of the contacting
surfaces.

Chapter 4 covers the dynamic analysis of rolling element bearing due to parametric
and unbalanced rotor effects. The analytical formulation accounts for the tangential and
the radial motions of the rolling elements, the rotor, the inner and the outer races.
Application of Lagrange equation leads to a system of nonlinear ordinary differential
equations governing the motion of the bearing system. The numerical integration
technique Newmark- B with Newton-Raphson method has been used for solution of the
system equations. The various parameters of study for point and line contact are rotor
speed, radial internal clearance and unbalanced rotor force. Techniques for studying
nonlinear systems such as FFT, phase plots, Poincaré¢ maps and non-autonomous
shooting method are used to study the nature of dynamic response. An analysis of the
regions of periodic, sub-harmonic, quasi-periodic and chaotic response of an existing
rotor bearing system is also included in this chapter.

The dynamic analysis of rolling element bearing due to surface imperfections has
been presented in Chapter 5. The surface imperfections considered are: the waviness of
outer race, inner race and rolling elements and off-size rolling element. Surface
imperfections existing in the rolling elements of a rolling element bearing have been
regarded as excitation sources in the form of bearing frequencies, i.e. principal
frequencies, their harmonics and side band frequencies. In addition, the regions of
instability and stability are found out and a detailed study on the nature of response is
also included. The predicted resonance and vibrations generated by the rotor bearing
system are compared with the experimental and theoretical results of the various authors
available in the literature.

Chapter 6 presents a comprehensive discussion and conclusions arising out of the

present work. The scope for future work is also incorporated in this Chapter.



Chapter 2

~_ LITERATURE REVIEW

The vibration analysis of rotor bearing system is becoming more important as demand

on running accuracy is increasing. Increasing interest is being devoted to rolling element
bearings, not only as structural elements but also as sources of vibration. Development in
rotor dynamics has been driven by the objective of high speed and low weight of rotors
(Lalanne, 1990 and Rao, 1996). The combination of high speed and low weight has made
higher order effects such as non-linearity significant. It is essential that these effects be
taken into account at design stage, as at high speed the failure can be very dangerous. The
study of nonlinear rotor dynamics and phenomena of chaos in rotor dynamics has been
reviewed extensively by Ishida (1994). As Ishida has traced, research in nonlinear rotor
dynamics started in 1950s. A rotor system with a circular shaft cross-section and with a
circular disc, which is also called a symmetrical rotor, was first system to be studied
experimentally by Yamamoto (1957) and theoretically by Mitropolskii’ (1960) using
asymptotic method.

2.1 CLEARANCE NON-LINEARITY

Clearance in mechanical components introduces very strong non-linearity. Clearance,
provided in the design of bearing to compensate for the thermal expansion, is also a
source of vibration and introduces the non-linearity in the dynamic behaviour. The study
of the effect of clearance non-linearity on the response of rotors has attracted a lot of
attention lately because of the development of high-speed rotors such as space shuttle
main engine turbo-pump rotor. Clearance non-linearity is different from most of the other
non-linearities because it cannot be approximated by a mathematical series. Yamamoto
(1955) has analytically investigated the vibratory behavior of a vertical rotor supported
on ball bearings with radial clearance. He has concluded that the maximum amplitude of
vibration at critical speed decreases with increasing radial clearance.

The dynamic response of rotors in bearing clearance has been studied by Ehrich

(1966, 1967, 1988, 1991). These studies have shown the appearance of subharmonic and



chaotic response in rotors. Ehrich (1972) has attempted to explain theoretically the
appearance of linear combination of two frequencies during a test run of gas turbine.
These frequencies are first the rotational frequency and second the asynchronous
frequency because of possible trapping of fluid in the rotor. He has attributed the
appearance of these frequencies to the truncation of basic “beat frequency” waveform
occurring due to clearance in the rotor bearing system. Bentley (1974) and Muszynska
(1984) studied the effect of bearing clearances at sub-critical speed. They reported the
presence of 2™ and 3 order sub-harmonic vibration based on their experiments.
Computer simulations of varying compliance vibrations in rolling bearings were first
presented by Sunnersjo (1978). Hertzian theory gives a quasi-linear relation of force to
local displacement but, as he noticed, another cause of non-linearity is the varying
number of rolling elements in the load zone. Childs (1982) has presented an explanation
for the subharmonic response of rotors in presence of bearing clearances using
perturbation techniques assuming small non-linearity. Dynamic effects of varying
compliance have been studied for the special case of plane motion of a rigid rotor under
pure radial load by Gad et al. (1984a). They showed that resonance occurs when varying
compliance frequency coincides with frequency of the system. They also pointed out that
for certain speeds, varying compliance could exhibit its sub and super-harmonic
vibrations for rotor bearing systems.

Saito (1985) has reported the study of nonlinear unbalance response of horizontal
Jeffcott rotor supported on ball bearings with radial clearance. He observed that the
amplitude of vibration suddenly becomes large on exceeding the critical unbalance. The
study of excessive vibrations of the liquid oxygen pumps in the space shuttle main engine
pump by Childs and Moyer (1985) and Beatty and Hine (1989) during hot firing ground
testing has shown that the clearance non-linearity by itself generates frequency
component incommensurate with rotational frequency. Day (1987) carried out an
analytical study of a rotor supported on bearings with clearance. A special frequency
named nonlinear natural frequency is defined by Day (1987) and is used to develop the
solution of the non-linear Jeffcott rotor as singular asymptotic expansions. This nonlinear
frequency, which is the ratio of cross stiffness and damping, is incommensurate with

respect to the rotational frequency. Choi and Noah (1987) have studied the nonlinear



steady state response of a rotor support system using harmonic balance method with FFT.
Kim and Noah (1990) have studied a horizontal Jeffcott rotor supported on bearing with
clearance. Stability analysis of the steady state motion was performed by Kim and Noah
(1990) and their work also deals with characterization of bifurcations. Quasi-periodic
motion is shown to occur as a result of secondary Hopf bifurcation owing to increase of
destabilizing cross coupling stiffness coefficient in their model.

Ehrich (1992) has theoretically analyzed the model of a Jeffcott rotor system
operating eccentrically with a clearance and in local contact with stator possessing the
characteristics of a bilinear oscillator. Sub-critical super-harmonic and super-critical sub-
harmonic responses have been reported, which are shown to be the mirror images of each
other. The response of the theoretical model compares well with the test data of an Aero-
engine Gas Turbine. Goldman and Muszynska (1994) have studied the orderly and
chaotic dynamic responses of simple mechanical structures with clearance and impact. In
the first part of their work experimental results from a simulator of a rotating machine
with one loose pedestal are presented with a summary of analytical results. The second
part discusses the existence of main and higher order resonance in structures with
clearances and impact, which are excited by external periodic forces. The dynamic
behavior of externally excited rotor / stator systems with occasional, partly rubbing
conditions has been studied by Goldman and Muszynska (1994 (a)). The only source of
non-linearity was found due to impacting. The results of this model compare well with
the experimental results obtained previously by other researchers. The results of
numerical simulation are presented in form of bifurcation diagrams, rotor lateral
vibration, time-base waves and orbits. |

The dynamics of a shaft disc arrangement with a bearing clearance non-linearity has
been analyzed by Flowers and Wu (1996). Numerical simulation and limit cycle analysis
have been performed by Flowers and Wu (1996). The authors have shown the generation
of super-harmonic response, multi-valued response and periodic behavior. They have also
conducted experiments to study the effect of bearing clearance on shaft disc lateral
vibration response and observed the presence of super-harmonics. The appearance of
super harmonics is attributed to bearing clearance and non-symmetrical stiffness. Kim

and Noah (1996) have studied the theoretical model of Jeffcott rotor with bearing
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clearance. They have used a modified HBM/AFT method to obtain quasi-periodic
response.

In the present work, the radial internal clearance has been taken as an important
parameter for theoretical study of rolling element bearing. This study has been carried out
for both balanced and unbalanced rotor conditions having point and line contact of rolling
element bearing. The case of a balanced rotor has been studied by Choi and Noah (1987)
and Kim and Noah (1996). However, they have not analyzed the case of an unbalanced
rotor for point and line contact with nonlinear contact stiffness. Therefore, an effort has

been made to analyze this in the present study.

2.2 DISTRIBUTED DEFECTS NON-LINEARITY

It is generally known that a rolling element bearing may generate vibrations due to
varying compliance (Sunnersjo, 1978), or time varying contact forces, which exist
between the various components of the bearing (Meyer et al., 1980). The nature of
response to vibration, changes with the presence of defect in bearing components. One
large class of bearing defects may be categorized as point or local defects. This includes
cracks, pits and spalls in the running surface, as well as particle contamination of the
bearing lubricant. Defects of this kind manifest themselves in the bearing’s vibration
signal as vibratory transients, which result from discontinuities in the contact forces as
the defect undergoes rolling contact.

The other important class of bearing defects can be characterized as distributed
defects, which involve the entire structure of the bearing. Distributed defects include
misaligned races, surface waviness of the bearing components and off-size rolling
element (Meyer et al., 1980). These defects give rise to excessive contact forces, which in
turn result in premature surface fatigue and ultimate failure. These defects may result
either from manufacturing error or from abrasive wear. Hence, study of vibrations
generated by these defects is important for quality inspection as well as for condition
monitoring. Several researchers have investigated the correlation between the bearing
vibration and the surface quality with an aim to evolve a vibration test procedure and

quality limits for use within the bearing industry.



It is generally accepted that it is not possible to produce a perfect surface or contour
even with the best machine tools and this applies to ball bearing manufacturing as well.
Surface waviness is a manufacturing imperfection. An imperfection is called waviness if
wavelength of the waviness profile is much longer than the Hertzian contact width
(Wardle and Poon, 1983). It may be caused by different manufacturing malfunctions such
as uneven wear of the grinding wheel, variable interactions between the tool and work
piece, vibrations of machine elements or movements of the work piece in the fixture. The
importance of running surface waviness from the point of view of vibration has been
known for a long time but no study has been conducted due to the difficulty in
measurement of surface waviness. Research on the contribution of waviness to the rotor-
bearing vibrations received a thrust in 1960s, with the availability of vibration testing
machines, which could measure the surface waviness too (SKF, 1961). Systematic
studies, both analytical as well as experimental, of vibrations caused by geometrical
imperfections were first made by Tallian and Gustafsson (1963, 1965). They investigated
the vibrations of the stationary outer race of a bearing under axial load. They also studied
the effect of waviness and pointed out that lower order race waviness affects the
amplitude of the vibrations at the Ball Passage Frequency (BPF).

Yhland (1967) examined the relationship between waviness and the resulting
vibration spectrum. According to Yhland (1967) for a bearing with Ns rolling elements, if
p and g are integers equal to or greater than 1 and 0 respectively, vibration in the radial
direction measured at a point on the outer diameter of outer race. The bearing outer race
moves as a rigid body when p = 1. For p > 1, vibrations are of the flexural type where p is
the number of lobes per circumference of the outer race deflection curve. Cena and
Hobbs (1972) concluded that the effect of ball waviness on the vibration of ball bearing
systems is more significant than the effect of race waviness.

The distributed defects are likely to increase the repetitive surface and subsurface
stresses to which the bearing races are subjected, causing eventually their fatigue failure.
Therefore, a study of the vibratory response of bearing races due to distributed defects
assumes importance. Meyer et al. (1980) proposed a model to predict the vibratory
displacement of races due to distributed defects on the moving races or on the rolling

clements under axial load. Mayer et al. (1980) derived expressions for radial



displacement of the stationary bearing race. They studied the race waviness, theoretically
and concluded that the vibration spectrum of a ball bearing with wavy surface would
have peaks at (i) Np@inners (i1) @cage, (iii) ball passage frequency (BPF) and its super-
harmonics and (iv) around the wave passage frequency (WPF) and its super-harmonics at
+ N,@inner, Where N, is the number of waves. Thomas (1982) pointed out that waviness
contributes to low frequency noise, so at relatively low speeds, it causes few problems
with precision bearings. It becomes a serious problem only when components posses
relatively large amplitude of waviness or at high speeds.

Wardle and Poon (1983) and Sayles and Poon (1981) found that the problem of the
severe vibrations and noise problem in bearings can be attributed to the waviness. They
reported that the waviness produces vibrations at frequencies up to approximately 300
times the rotational speed but the phenomenon is more predominant at frequencies below
about 60 times the rotational speeds. Wardle and Poon (1983) also found the relation
between the number of balls and number of waves for severe vibrations to occur. When
the number of balls and waves are equal, seve're vibrations occur because in such case
there is symmetry of loading and all balls vibrate in same phase. Sunnersjo (1985)
studied the vibration of a radially loaded bearing due to inner race waviness and varying
roller diameter. However, he did not consider the elastic deformation of bearing elements
in his study. Rahnejat and Gohar (1985) studied squeeze film damping for the rolling
motion of a rigid rotor supported by two identical bearings. They showed that even in the
presence of an elstohydrodynamic lubricating film between the balls and the races, a peak
at the BPF appears in the spectrum. As expected, resonance occurs when the BPF
coincides with a natural frequency.

Wardle (1988a, 1988b) showed theoretically as well as experimentally that outer race
waviness produces vibrations at the harmonics of outer race ball passage frequency.
Similar observations have also been reported by Gustafsson et al. (1963). Rahnejat and
Gohar (1985) and Franco et al. (1992) indicated that inner race waviness is somewhat
more complicated than what Gustafsson et al. (1963) and Meyer et al. (1980) have
predicted. Wardle (1988a) showed that in case of inner race waviness, the axial vibrations
take place at frequencies harmonic with the ball to inner race passage rate

N (@cage -@Dinner), Whereas radial vibrations occur at frequencies Ny (@cage -@inner) + @inner-
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Wardle (1998a) also argued that only specific orders of waviness generate vibrations.
Axial vibrations are produced when the number of waves per circumference is an integral
multiple of the number of balls, whereas radial vibrations are produced by waviness of
the order of N,, = iN,, 1. Some of Wardle’s arguments were later proved by Franco et al.
(1992). Wardle (1988a) also pointed out that ball waviness produces vibrations in the
axial direction at frequencies given by 2iay.y, while radial vibrations occur at frequencies
given by 2i@yan + Weqge- He also indicated that only even orders of ball waviness produce
vibrations. This was also pointed out by Yhland (1967). Su et al. (1992, 1993)
investigated the effect of surface irregularities on the demodulated spectra of a bearing.

Choudhury and Tandon (1998) proposed a theoretical model to predict the vibration
response of rolling bearing due to distributed defects under radial load. They discussed
about race mode or flexural vibration of races due to various types of distributed defects
in rolling bearings. Aktiirk (1999) investigated the effect of bearing surface waviness on
the rotor vibrations. He predicted the discrete spectrum with specific frequency
components for each order of waviness for outer race, inner race and ball waviness. A
nonlinear model to analyze the ball bearing vibration due to the waviness in a rigid rotor
supported by two or more ball bearings has also been proposed by Jang and Jeong (2002).
They investigated the vibration frequencies and their harmonics resulting from the
various kinds of waviness in rolling elements.

It is not possible to produce a set of identical balls even with the best machine tools.
There is always some difference between ball diameters (less than the machine
tolerance). This is known as off-sized ball effect. The presence of off-sized balls in a
bearing introduces further untoward vibrations in the rotor bearing system. As a result of
experiments, a specific relationship has been found to exist between the internal
dimensions of bearings and the vibration factors for the different components. The rolling
elements being more important than the outer and inner race (SKF, 1961). Tamura (1968)
showed experimentally that the axial stiffness of ball bearing varies with the cage
position, since the number of loaded balls at any instant gets changed by the balls’
diameter difference. The appearance of rotor axial resonance was also reported by
Tamura (1968) as a multiple of angular velocity of the cage, when it was operating close

to the natural frequency of the system. Barish (1969) studied the effect of an off-sized

11



ball on the ball speed variation. He reported that if one ball is bigger than the rest of balls
in a bearing, it would lag continuously since it will have a smaller contact angle and
lower speed, resulting in particular vibrations. Meyer et al. (1980) investigated the off-
sized ball problem analytically and came to the same conclusion as Tamura (1968).
Yamamoto et al. (1981) also observed experimentally a peak at the cage rotational speed
and another one at twice the cage speed due to off-sized ball.

Gupta (1988) showed that an increase in the size of an off-sized ball results in some
performance deterioration. He reported that the shape of the cage whirl orbit changes
from circular to somewhat polygonal with increasing difference in ball size. Similar
findings have also been reported by Barish (1969). The problem of an off-sized ball using
angular contact ball bearings was studied by Aktiirk et al. (1992). They reported that
vibrations occur due to off-sized balls at the cage speed only. Franco et al. (1992)
observed vibrations due to off-sized balls at the cage speed with the random distribution
of off-sized balls within the bearing. They showed that when there is one oversized ball
in a bearing the most dominant vibration occurs at the cage speed. Aktiirk and Gohar
(1998) studied the effect of ball size variation in the bearings on the rotor vibrations.
They showed that off-sized balls in the bearing cause vibration at a particular cage speed
and its harmonics, depending on the arrangement within the bearing.

In the present work, a theoretical model is proposed to predict the vibration response
of rolling element bearings due to distributed defects under radial load. The distributed
defects considered are the surface waviness of inner race, outer race and rolling element

and off-sized rolling element.

2.3 MODELING OF THE ROLLING ELEMENT BEARING

The modeling and study of rolling element bearings considering the radial internal
clearance, finite number of rolling elements and Hertzian contact has been done
theoretically by Perret (1950) and Meldau (1951). Tamura and Taniguchi (1960) have
experimentally studied the motion of a horizontal shaft supported on a ball bearing. The
balls were moved in small steps for one ball passage. The results of their study matched
with the findings of Perret (1950) and Meldau (1951).
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Sunnersjo (1978) reported theoretical and experimental work on a non-linear model
of rolling element bearings supporting a horizontally balanced rotor with a constant
vertical radial load. The non-linearity introduced was due to Hertzian contact, radial
internal clearance and parametric effect owing to varying compliance. This work was an
improvement on previous work by Perret (1950) and Meldau (1951) based on their
experimental investigation and also due to inclusion of inertia and damping force. White
(1979) has derived an expression relating non-linear stiffness and frequency response
functions for the bearings commonly used in machines. The stiffness of a rolling element
bearing was derived considering the restoring force provided by the individual elements
arising out of the radial force acting on the bearing.

Tamura and Tsuda (1980) theoretically studied the radial stiffness characteristics of a
ball bearing including the effect of fluctuations in stiffness due to ball revolutions. The
Newton Raphson method applied to solve the static running accuracy problem (first
examined by Perret, 1950 and Meldau, 1951). The fluctuations of the linearized stiffness
and the motion of inner race have been analyzed in detail by Tamura and Tsuda (1980).
Gargiulo (1980) has developed a new set of equations for providing an initial estimate of
the stiffness of rolling element bearings. '

Igarashi and Hamada (1982) published their experimental study on the vibrations
produced by rolling bearings with only one defect. They derived theoretical expressions
for the recurrence frequency and main frequency of the vibration pulses. The pulse
intervals were found to be fixed regardless of the dent size and the pulse recurrence
frequency was in agreement with the derived equations. In yet another paper, Igarashi
and Yabe (1983) deals with the sound characteristics of a rolling bearing with one defect
in either race or ball. They observed that the vibration and sound had the same recurrence
frequency although former had sharper waveform. Igarashi and Kato (1985) further
analyzed the characteristics of vibrations produced by bearings having multiple defects.
The characteristics established help in detecting the defects in ball bearings and find their
location, number and size. Sunnersjo (1985) has investigated the character of defect
generated frequencies and varying compliance frequencies in rolling element bearings.

Lim and Singh (1990) have developed a mathematical model for a rolling element

bearing. A comprehensive bearing stiffness matrix has been proposed by them and it
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demonstrates a coupling between the shaft bending motion and the flexural motion on the
casing plate. Rahnejat and Gohar (1990) have investigated theoretically, the vibration
response of a rotating shaft supported by two radial deep groove ball bearings. The m.odel
includes the effects of elasto-hydrodynamic lubrication, waviness on bearing race surface
and a constant radial vertical load. The equations of motion are solved by constant
average acceleration method using the principle of trapezoidal rule. Frequency spectra
and phase plane plots have been presented which help in understanding the non-linear
dynamics of the system.

Mevel and Guyader (1993) have developed a theoretical model of ball bearing
supporting a balanced horizontal rigid rotor with a constant vertical radial force. This is
similar to the work done by Fukata et al. (1985) but more results have been reported for
parametric studies undertaken and routes to chaos traced out. Chaos in this model of
bearing has been reported to result from sub-harmonic route and quasi-periodic period
route. The paper reported the appearance of period doubling and tripling, alternately.
Mode locking appears intermittently when quasi-periodic nature results in the two
frequencies becoming commensurate. Mevel and Guyader (1993) have reported that
reduction of load on ball bearings is such that it leads to the loss of contact between the
ball and the race and that seems to be the source of chaotic behavior.

Sankarvelu et al. (1994) have used arc length continuation technique for obtaining
dynamic characteristics of ball bearing. The ball bearings selected for study support a
constant vertical load on a horizontal rotor. They reported that the arc length continuation
method takes less computation time as compared to the direct integration method. The
steady state response and stability analysis simultaneously can be obtained using this
method. The eigen values of the Floquet matrix are obtained with shooting technique,
which give the bifurcation points. Sankarvelu et al. (1994) have taken similar system for
their study as used by Fukata et al. (1985). This work reports the appearance of chaotic
response due to intermittency. Padmanabhan and Singh (1995) have investigated the
multiplicative effect in non-linear time varying systems. This work has shown that
multiplicative effect causes sub-harmonic response as well as extended non-linear

regimes when compared to the additive case.
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Tiwari and Vyas (1995) have estimated the non-linear stiffness parameter of rolling
element bearings in rotor systems. The theoretical results are compared with experimental
findings. The rotor bearing system is modeled by Fokker Plank equations and the
resulting vibrations are due to the random imperfections of the bearing surfaces and
assembly. Tiwari and Vyas (1997) have further extended their earlier work on a balanced
rotor to estimate bearing parameters in a non-linear rotor bearing system experiencing
small residual imbalance forces along with random forces. Various examples are modeled
as an approximate Markovian process and a Fokker Plank equation is derived to describe
it. Marsh and Yantek (1997) have attempted to overcome the problem of stiffness
measurement of rolling element bearing under static conditions, which arises primarily
because of the stiffness of the bearing pedestal and text fixtures. They measured the
frequency response functions by carrying out dynamic tests on a test fixture. Chu and
Holmes (1998) have investigated theoretically and experimentally the dynamic response
of a flexible rotor supported by a squeeze film damper. A fast numerical integration
technique has been used to speed up the computation time when investigating non-linear
behavior of the system. Datta and Farhang (1997) have developed a theoretical model to
investigate the structural vibrations of a rolling element bearing. They investigated the
effect of stiffness nonlinearity for ball and roller bearing in their study. '

A detailed study of rolling element bearing considering the parametric effects because
of varying compliance, non-linear effects and distributed defects has been carried out in
the present work. Theoretical expressions have been formulated for a balanced as well as
unbalanced rotor. The case of a balanced rotor has been studied in the works by Fukata
(1985), Mevel and Guyader (1987), Sankaravelu et al. (1994) and Datta and Farhang
(1999). None of the above works has taken the case of an unbalanced rotor for point and
line contact, which has been analyzed in the present investigation. The effects of

distributed defects are also analyzed and discussed in the present study.
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Chapter 3

GENERATION OF VIBRATIONS IN
ROLLING ELEMENT BEARINGS

3.1INTRODUCTION

Even if the geometry of a rolling element bearing is perfect, it will still produce
vibrations. The vibrations are caused by the rotation of a finite number of loaded rolling
contacts between the rollers and the guiding races. Since these contacts are elastic, the
bearing stiffness becomes explicitly dependent on time. In general, a time varying
stiffness causes vibrations, even in absence of external loads. Since the stiffness can be
regarded as a system parameter, the variable stiffness is known as parametric excitation.
It is one of the major sources of vibration in rolling element bearings. The first systematic
research on this topic was conducted by Perret (1950) and Meldau (1951).

In general, it is not possible to produce a perfect surface or contour even with best
machine tools, which is also applicable to bearing manufacturing. Due to irregularities in
grinding and honing processes, the contacting surfaces of the rollers and the guiding races
always deviate from their perfect shape. The surface features are considered in terms of
wavelength of the order of Hertzian contact width. The surface features are termed as
“roughness” if their wavelength is less than the contact width, whereas longer wavelength
features are termed as waviness (Sunnersjo, 1985). Waviness may be caused by different
manufacturing malfunctions such as uneven wear of the wheel in various operations,
variable interactions between the tool and work piece and vibrations of machine elements
or movements of the work in the fixture. Waviness consists of sinusoidal shaped defects
on the outer surface of the components. The number of waves per unit circumference is
called the wave number. Waviness defects cause variations in the contact loads when the
bearing is running. The magnitude of variation depends on the amplitude of the defect
and the nonlinear stiffness. Due to the variations in contact loads, vibrations are
generated in the bearing. Defects with different wave numbers cause vibrations at distinct

frequencies, each with a characteristic vibration mode. The importance of running surface
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waviness from the point of view of vibration has been known for a long time. One of the

first investigations in this field was made by Tallian and Gustafsson (1965).

3.2 SOURCES OF VIBRATIONS

The sources of vibrations in a rolling element bearing are described with their
physical descriptions. The sources considered are nonlinear spring stiffness and the
distributed defects of the contacting surfaces.

3.2.1 Parametric Excitation

The flexibility of the rolling contact in a rolling element bearing can be represented
by nonlinear springs (Hertz, 1881). When the mass of the rolling elements is neglected,
the contacts at inner and outer races may be assumed to act like springs as shown in Fig.
3.1. Often, rolling element bearings are subjected to an externally applied load to preload
the Hertzian contacts. When the rolling element set and the cage rotates with a constant

angular velocity (@eage), @ parametrically excited vibration is generated and transmitted

through the outer race. The characteristic frequency of this vibration equals N, x @, /27

and is called the varying compliance frequency (VC). This is the frequency at which the
rolling elements pass an observation point fixed on the outer race. In case of rotation,
peak amplitude of vibrations is generated at the varying compliance frequency and its
harmonics. Since the contact behaviour is nonlinear, the effect of an asymmetric stiffness
distribution in the application is enhanced by the introduction of a radial or misaligned
external load. In the extreme case, the rolling elements lose contact with the races and the
system becomes strongly nonlinear.

The area where the rolling elements are still in contact with the races is generally
referred to és the loaded zone as shown in Fig. 3.2. A phenomenon closely related to
parametric excitations is parametric resonance. These excitations are unstable or large
amplitude solutions that are not directly related to the natural frequencies of the system
(Nayfeh and Mook, 1979). In a nonlinear system, parametric resonance can change the
system response dramatically. Under extreme loading conditions, it might even lead to a
chaotic behavior (Mevel and Guyader, 1993).
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Fig. 3.1 The flexibility of the rolling contacts in a rolling element bearing is represented

by nonlinear springs

Loaded zone

Fig. 3.2 In the presence of a radial load, some of the rolling elements can lose contact

with the races leading to severe parametric excitations
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3.2.1 Distributed Defects
3.2.1.1 Description of Waviness

An important source of vibration in rolling element bearings is waviness. Waviness is
normally realized in the form of peaks and valleys of varying height and width. This
causes problem in mathematical modeling of waviness effect. A statistical approach is
needed in order to formulate a mathematical model. If the races are assumed to bend due
to roller loads then the flexural vibrations of the races as well as of the rigid body motion
have to be considered. To avoid these problems, the inner and outer races are assumed to
have negligible bending under the roller loads. A sinusoidal wavy surface on bearing
components is assumed as shown in Fig. 3.3. Moreover, the wavelength is assumed to be
much longer than the roller to race footprint width. The wave geometry is assumed to be
unaffected by contact distortion. Waviness causes variation in the contact loads when the
bearing is running (Aktiirk, 1999). The magnitude of variation depends on the amplitude
of the waviness and the stiffness in the contact. Due to variation in the contact loads,
vibrations are generated in the bearing. The resulting vibration modes of the races can
either be of extensional, flexural or rigid body, depending on the number of rolling
elements and the wavenumber of the defect. Waves are described in terms of two
important parameters: the wave length (1), which is the distance taken up by a single
cycle of a wave and its amplitude (/7). For an imperfect surface the wavelength (1) is
inversely proportional to the number of waves (V). Waviness exists on the both races of
a bearing as shown in Fig. 3.4.

3.2.1.2 Excitation Frequencies
The rotational speeds of the inner and outer races, the cage and the rolling elements

are different. As a result the inner race, outer race and rolling element waviness generate
vibrations of distinct frequencies. The excitation frequencies are proportional to the
rotational speed of the rotor. The ratio between the excitation frequency and the rotor
frequency is referred to as excitation order. The excitation orders generated by the
bearing are rational numbers so that they can easily be detected in the vibration spectrum.
A comprehensive overview of the vibrations generated in rolling element bearings has
been provided by Wardle (1988) and Yhland (1992).
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Fig. 3.3 Waviness at inner and outer race
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In the present work, Symbols @, ,®cg and @,y have been used to denote the
angular speeds of the inner race, the cage and the rolling elements respectively. An
integer ¢ >0is introduced to indicate the harmonics of the varying compliance frequency.
Another integer & >0is also introduced, which is associated with the vibration mode of

inner and outer races of bearing.

A. Inner Race Waviness

When the rolling element is moving round the inner race, it follows the rolling
surface contour continuously. It is assumed that there exists no slip condition i.e. rolling
element is always in contact with inner race and also it is assumed that the inner race
surface has a circumferential sinusoidal wavy feature. The amplitude of wavy surface is
often measured with respect to the central point at a certain angle from the reference axis.

Hence the amplitude of sinusoidal wave is given by,
H=Hpsin(27r§-) 3.1)

The inner race has circumference sinusoidal wavy surface and therefore the radial
clearance consist of a constant part and a variable part. Hence, the amplitude of the wave

of inner race may be written as,
(), = @)+ 1, )sin 21 %) (32)

Where 7, is the maximum amplitude of wave and [T, is original wave amplitude (or

constant clearance) as shown in Fig. 3.5.

The arc length (L) of the wave of inner race at the contact angle is,
L=ro, (3.3)
For an imperfect surface with N,, waves, the wavelength (1) is inversely proportional to

the number of waves N,, i.e.,

Ao —— (3.4)
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For the inner race the wavelength (4) is ratio of length of the inner race circumference to
the number of waves on circumference, which is given by,

2rw )
A=
N (3.9)

w

Where r is radius of inner race.
The amplitude of the waves of inner race at the contact angle is given by following
equation: .

(M), =(M,)+(1, )sin(n,6;) (3.6)
Where 6 is the contact angle of ;™ rolling element. As the inner race is moving at the

speed of rotor and roller center is moving at the speed of the cage, the contact angle may

be written as:
2 .
aj =1—V— (.1 _1)+(a)cage—a)ilmer))<t ' 3.7)
b
1 Pj 1 Pj
where Deage = E winner[l —’ﬁj:| +—2' woztler[l +—R_:,-:| (3 . 8)

where R, is the pitch radius.
At the initial time and initial position, point @ and point b are assumed at the
circumference of the inner race and at the roller center respectively from a reference axis

as shown in Fig. 3.4. After ‘¢’ time taken, the cage will lag the rotor and a result of this,

the ;" roller will be at the angle of —(@mer X!~ @cege x1), 50 ball centre will lag the inner

race. Hence the instantaneous amplitude of waviness at the contact angle may be given

by:

Where N, is the number of rolling element, £ is the time coordinate.

For an observer at a fixed location on the outer race, the vibrations generated by the
inner race waviness are modulated at the varying compliance frequency, resulting in
combination harmonics. The frequency of the vibrations due to inner race waviness
depends on the waviness order (») and is given as (Yhland, 1992):

n=gqN, £k (3.10)
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The angular excitation frequencies caused by inner race waviness are given as (Yhland,
1992): |
@ =GNy (@inmer = Dcage )EKDaner (3.11)
B. Outer Race Waviness
The outer race waviness is usually of the same order of magnitude as inner race
waviness. The outer race surface also has circumferential sinusoidal wavy surface. If one
assumes the outer race to be stationary and the rolling element to be rotating at the speed

of cage, the amplitude of sinusoidal wave of outer race may be written as,

. L
n=I1, su{ZfrT) (3.12)
The arc length (L') of the wave of outer race at the contact angle is,
L'=R0, (3.13)
For the outer race, the wavelength is ratio of length of the outer race circumference to the

number of waves on circumference and is given by,

_2R=n

A N, (3.14)
Where R is radius of outer race.
Hence, the amplitude of the wave of outer race may be written as,

(1), = @)+ (11, Jsin(V,,6; ) (3.15)
The contact angle (§) is given by,

27 ‘
6; =F(/—1)+a>cagext (3.16)
b

From Equations (3.15) and (3:16) one may write,
2z ¢,
(H)ou! = (HO )+ (H p )Sin|:Nw L?v”: (j - 1)+ w‘-’“ge X t]:| (3. 1 7) :

For a rolling element at an angular position 8;, the inner race contact point will be at
[ +(T1),,] and for this rolling element the outer race contact point will be at [R- (I'I)o,,,].

From bearing geometry one may write,
[R—(H)aut]—[r +(n)in] = 2(pr) (3.18)

Where p; is the radius of rolling element.
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For an observer fixed on the outer race, the vibrations generated by outer race
waviness are not modulated. As a consequence, the individual wavenumbers do not
generate vibrations with unique frequencies, which make the detection of outer race
waviness more difficult than that of inner race. With outer race waviness, the effect of
several wavenumbers can be observed at the varying compliance frequency and its
harmonics. The frequency of the vibrations due to outer race waviness depends on the
waviness order (n) and is given as (Yhland, 1992):

n=gN, tk (3.19)
The angular excitation frequencies are given as (Yhland, 1992):

@ =qNy@cage (3.20)

In terms of the response, outer race waviness behaves in a similar manner as parametric
excitations.

C. Ball Waviness

The waviness on the rolling elements is usually several times less than the waviness
on the inner and outer race. For low rotational speeds, the defects with only even
wavenumbers generate vibrations (Al‘ctﬁrk, 1999). Balls are free to spin about any axis
and the axis may even change during the rotation. In order to calculate the waviness of -
balls, a simple case is considered where a ball with a perfectly sinusoidal wavy surface

rotates about an axis as shown in Fig. 3.6. The amplitude of the ball waviness is,

a;j=a, sin(NWGj) (3.21)
This will cause a change in the ball diameter (4dp) through inner and outer contacts,
which is given by,

Ad, =2(11, ) sin (V,,6;) (3.22)
where N, =2, 4, 6, ...
The effect of ball waviness on the general clearance can be expressed as,

(), =2{T1,,) sin (W0, 1) | (3.23)

The vibrations generated by ball waviness are always the cumulative effect of all the

rolling elements. The vibrations are modulated with the cage frequency. Hence, for each

wavenumber of the rolling element, vibrations are generated at multiple frequencies
(Aktiirk, 1999).
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For wavenumber n=2g, the angular excitation frequencies due to ball waviness are
given as (Yhland, 1992):
0= 2q@y £k cqge (3.24)
D. Ball Size Variations
Ball size variations can be regarded as a special case of ball waviness by making
g=0in Eq. (3.24). Hence, the angular frequency of the vibration generated by ball size
variations may be given as (Yhland, 1992):
W=1k Qg (3.25)
Due to the different ball sizes, which move with the rotational speed of the cage, the race

is deformed into a complex shape as shown in Fig. 3.7.

3.4 SUMMARY OF EXCITATION FREQUENCIES

The main excitation frequencies in a rolling element bearing together with the
corresponding angular frequencies are summarized in Table 3.1. Also, the corresponding
vibration modes of the inner and outer races are listed. The integer g refers to harmonics
of the varying compliance frequency, N, denotes the number of rolling elements and

and w,,, denote, the angular frequency of the inner race, the cage and the

Djnner » a)mge
rolling elements respectively.

Table 3.1 The Excitation Frequencies of Different Sources in Rolling Bearing

Vibration source Wavenumber o (rad / sec)
Parametric excitations N.A. GN 4@ coge
Inner race waviness n=gN, * k gN, (mt'nner = @O cage ) T k®jnner
Outer race waviness n=qN,tk gN @ coge
Ball waviness n=2q 2qN@ypop Lk coge,  m#GN, £1
Ball size variations N.4. ko> cqge

(N. A.: Not Applicable)
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Fig. 3.7 Presence of an off-sized ball in a set of balls
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Chapter 4
DYNAMIC ANALYSIS OF ROLLING
ELEMENT BEARINGS WITH
PARAMETRIC EFFECTS

In this chapter the vibration response of a rotor bearing system due to parametric
excitations is dealt. The self-excited vibrations in perfectly balanced rotor are due to
varying compliance of the bearing, which arises because of the geometric and the elastic
characteristics of the bearing assembly varying according to the cage position.
Unbalanced forces in a rotor are unavoidable. Howsoever good the balancing may be for
a rotor, the unbalanced forces cannot be completely neglected (Rao, 1996). The inclusion
of the unbalanced forces make the system bi-periodically excited. The two exciting
frequencies are the rotational frequency of the rotor and the varying compliance
frequency. The studies undertaken by Day (1987), Kim and Noah (1990, 1996) have
taken the effect of unbalanced force without considering the varying compliance effect.
Also in their work, the bearing is considered to have only the clearance non-linearity.
Hence, effectively their work is about single frequency excited systems. In the present -
investigation, the effects like radial internal clearance, varying compliance and

unbalanced rotor have been considered and analyzed in detail for a rotor bearing system.

4.1 INTRODUCTION

Parametrically excited vibrations, which occur in a bearing irrespective\of its quality
and accuracy, are called varying compliance vibrations. The varying compliance effect
was theoretically studied by Perret (1950) for a deep groove ball bearing having ten balls
subjected to a constant external load. Perret has calculated the elastic deformation
between the race and balls on the basis of the Hertzian contact theory, which gives a
nonlinear force-deformation relationship. Other causes of stiffness variation are the
positive radial internal clearance and the finite number of balls, the positions of which
change periodically. These cause periodic changes in the stiffness of bearing assembly.

Taking into account these sources of stiffness variation, the stiffness of the complete ball
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bearing system becomes a function of the ball race contact stiffness, the radial internal
clearance, the external load and the angular position of the cage.

Sunnersjo (1978) studied the varying compliance vibration theoretically and
experimentally, taking inertia and damping forces into account. His analysis was part of a
study of vibrations due to form errors of bearings and was performed for roller bearings.
Gad et al. (1984b) derived the spring properties of ball bearings in order to solve the
vibration problem by computer simulation. The radial and axial forces versus
displacement plots showed the spring property of the ball bearing in the radial and axial
directions respectively. Fukata et al. (1985) were the first to take up the study of varying
compliance vibrations and the nonlinear dynamic response for the ball bearings
supporting a horizontal rotor. Rahnejat and Gohar (1985) analyzed the vibrations of
radial ball bearings. The bearings and the oil films were considered as nonlinear springs
and dampers rotating round the spindle. Structural vibrations of ball bearings, according
to Balmount’ et al. (1987) are governed by two factors. One of these is the contact load
from which the ball deforms into a polyhedral shape, rotation of which transmits the
deformation to other parts of the machine. The other factor is the motion of balls relative
to the line of action of the radial load, which causes fluctuations in the rigidity of the
bearing. Mevel and Guyader (1994) have further studied the bearing model used by
Fukata et al. (1985) through an improved nonlinear analysis of the ball bearing model.
Datta and Farhang (1997) presented a nonlinear model for structural vibrations in rolling
element bearings, considering the stiffness as nonlinear spring. They observed the
vibration response due to stiffness variations. Zheng and Hasebe (2000) analyzed the
non-linear dynamic behavior of a complex rotor bearing system with multi degrees of
freedom and non-closed form of bearing forces. They showed that the Newmark time
integration technique produces accurate results for the nonlinear systems.

This chapter deals with the structural dynamic response of a rotor supported by
rolling element bearings. The mathematical model takes into account the sources of non-
linearity such as Hertzian contact force, varying compliance and radial internal clearance
resulting in transition from no-contact to contact state between rolling elements and
races. The parameters of study are rotational speed of rotor, radial internal clearance and

unbalanced rotor force for point and line contact.
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4.2 PROBLEM FORMULATION

In this section, a mathematical model for analyzing the structural vibrations in rolling
element bearings has been developed. Initially the expressions for kinetic and potential
energies are formulated for all the components of rolling element bearing. The equations
of motion that have been derived by using these energy expressions and the Lagrange
equation, describe the dynamic behavior of complex model. A schematic diagram of
rolling element bearing is shown in Fig. 4.1. For investigating the characteristics of
structural vibrations of a rolling element bearing, the bearing assembly is modelled as a
spring mass system, in which the outer race of the bearing is fixed in a rigid support and
the inner race is fixed rigidly with the rotor. A constant radial force assumed to be acting
on the system.

In the mathematical modeling, the rolling element bearing is considered as a spring
mass system in which the rolling elements are assumed to act as nonlinear contact springs
as shown in Fig. 4.2. Since the Hertzian forces arise only when there is contact
deformation, the springs are required to act only during compression. In other words, the
respective spring forces come into play when the instantaneous spring length is shorter
than its unstressed length. Otherwise a separation between rolling element and the races
takes place and the resultant force becomes zero. A real rotor-bearing system is generally
very complicated and difficult to model. So for simplifying the mathematical model, the
following assumptions have been made:

1. Deformations occur according to the Hertzian theory of elastic contact. Small
elastic deformations of the rolling elements and the races have been taken into
account, but plastic deformations have been neglected.

2. The rolling elements, the inner and outer races and the rotor have motions in the
plane of bearing only.

3. The angular velocity of the cage remains constant.

4. The rollers in a rolling element bearing have no angular rotation about their axes,
i.e., there is no skewing. Hence, there is no interaction of the corners of the rollers
with the cage and the flanges of the races.

5. All the bearing components and the rotor are rigid, i.e. there is no bending.
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Fig. 4.1 Schematic diagram of a rolling element bearing
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Fig. 4.2 Mass-spring model of the rolling element bearing
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6. The bearings operate under isothermal conditions. Hence, all thermal effects that
may arise due to the rise in temperature, such as change of lubricant viscosity,
expansion of the rolling elements and the races and reduction of endurance limit
of the material, are absent.

7. There is no slipping of balls as they roll on the surface of the races. Since there is
perfect rolling of the balls on the surface of the races and the two points of a ball
touching the races have different linear velocities, the centre of the ball has a
resultant translational velocity.

8. The damping of a ball bearing is very small. This damping is present because of
friction and small amount of lubrication. The estimation of damping of ball
bearing is very difficult because of the dominant extraneous damping which
swamps the damping of the bearing.

9. The cage ensures the constant angular separation () between rolling elements.
Hence, there is no interaction between rolling elements. In addition, at any given

instant, some of the rolling elements will be in contact with both races. Therefore,

2r
B = Tv'b- 4.1)

As pointed out above, the presence of the cage ensures constant angular separation
between the adjacent rolling elements. Therefore, the azimuth angles of rolling elements i

(i=2, 3,.., N) are related to that of the first rolling element by the following relations.

0,=6,+p

03 - el +2ﬁ ---------------

......... 8y =6, +(N-1)8 (4.2)
Therefore,

8,6, =0, = .....=0) =0 (4.22)

The equations of motion that describe the dynamic behavior of the complete model
can be derived by using Lagrange equation for a set of independent generalized
coordinates, as:

d_or_ _or oV g

a 5{}"}-6{p}+6{;}

(4.3)
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where T, V, p and f are the kinetic energy, the potential energy, the vector with
generalized degree-of-freedom (DOF) coordinate and the vector with generalized contact
forces respectively.

The kinetic and potential energies can be subdivided into contributions from the
various components i.e. from the rolling elements, the inner race, the outer race and the
rotor.

The total kinetic energy (7) of the rotor-bearing system is the sum of the rolling

elements, inner and outer races and the rotor. That is,
I=T,+ T::_race'*' To_race+ Lotor 4.4

The subscripts i_race, o_race and rotor refer to the inner race, the outer race and the
rotor respectively. The subscript r. e. indicates the rolling elements.

" The potential energy is provided by deformations of the balls within the races and
deformations occur according to Hertzian contact theory of elasticity. Potential energy
formulation is done taking the horizontal plane as datum through the global origin. The
total potential energy (¥) of the bearing system is the sum of the potential energies of the

balls, inner and outer races, springs and the rotor. That is,
V= Vr.e. + I/;'_race + I/Z)_race + V.;prings"' Vrotor 4.5)

where Ve, Vi races Vo_race and V.- are the potential energies due to elevation of the
rolling element, inner and outer races and the rotor, respectively. Vprings is potential

energy due to nonlinear spring contacts between rollers and the races.

A. Contribution of the inner race
Apart from local deformations in the contacts, the inner race is considered as a rigid

body as shown in Fig. 4.3. The kinetic energy of the inner race about its center of mass is

evaluated in the x, y-frame. The position of the origin of the moving frame relative to the
reference frame is represented by transitional DOF xi»and y,, .
The expression for the kinetic energy of the inner race is written as,

35 2

1 |
Ti__race =Em£n Tin® Tin +§'Il‘n ¢in (46)
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Fig. 4.3 Rigid body structure of inner race

Fig. 4.4 Rolling elements with its degree of freedom

34



The position of the inner race centre (xin, yin) is defined with respect to the fixed outer

race center.

The displacement vector showing the location of inner race center with respect to that

of outer race center is given by,

> - -
Yin =YourtTin_out 4.7
- > Y. (= =)\
or, Tin =| XinTXour [ 1¥| YintVour |J (4.8)

Differentiation of r;, with respect to time (t) gives,
] [ ] —:) [ ] —')
tin =(xin 1+Yin J (4.9)

wherex,, and y,, have been set to zero, because the outer race is assumed to be

stationary.
l ® 2 [ ] 2 1 L] 2
Hence, Ti_race= Emm XintYin +'£I inPin (4.10)

Since the position of the inner race is defined with respect to the outer race centre, the

potential energy for the inner race is,

Vi__race = ming(yin_out +youl) (4_11)

B. Contribution of the outer race
The outer race is also considered as a rigid body and is assumed to be stationary.

Hence, rou =0and ¢,,, =0.
The kinetic energy expression for the outer race is,

[ ] . 2

-> - 1 *
my, | Vous- 1 +EI out ¢out =0 (4-12)

out

1
7;_race = E ut*

The potential energy of the outer race is,

Vo race =Mout & out (4.13)
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C. Contribution of the rolling elements

The rolling elements are also considered as rigid bodies. For the determination of
their contribution to the kinetic energy, the position of the j™-rolling element is described
by two transitional degree of freedom as shown in Fig. 4.4 on page number 34.

The kinetic energy due to the rolling elements may be estimated by summing up the

energy due to individual elements as,
Ny
Tr.e. = Z Tj (414)
j=1

The position of the centre of the roller is defined with respect to the outer race centre.

Hence, the kinetic energy of the j™-rolling element may be written as,

.. .. )
1 - - - - 1 .
Tj=Em,'(pj+rwl]°[pj+rwl]+§'Ij ¢j (4.15)
The displacement vector showing the location of j"-rolling elements is:
,;j=(/7; cosaj)f+(pjsin0j)}‘ (4.16)

and for the outer race centre, it is:

- A A

¥ out =Xy i+youtj (417)

The summation of equations (4.16) and (4,17) after differentiation with respect to time (7)

leads to the following expression:
5 3)(5 5] % ., g, 2 . .
P+ Tout (9] Py +Fout |= P 008" 6+ pjsin” 6,-6,-2p° ;8 cosd; sinb;

2 . . . * . ® . .
+xout+2xour[Pj cosﬂj -p; sinBj .ej]-:-pf. sin? t9j +p12~ cos> t9j -9}+2pj-pj -9,- cosej sinej (4.18)
2 L]

The outer race is assumed to be stationary, hence xau =0 and y,,=0. Therefore Eq.

(4.18) becomes,

2 . .

g R Badindl Y 29 26n20 .0+ 0%sin 0. + o2 cos 2
P+ ¥ou |®| Pjtou =P COS jtP;s j 0+ pysin®0; +pjcos” ;07 (4.19)
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L]
- - - -

or, | P+ Tout |8 P+ Tou =(P§+pf- -0; ) (4.20)

From the equation (4.15), one may get,

1 (2 5 2) 1 2

It is assumed that there is no slip, hence the relative transitional velocity of outer race
and rolling element must be equal and opposite in direction. Therefore, the contact

equation for j'” —rolling element and the outer race may be written as,
R(¢aul ‘9;') = _pr(¢j_9.i) (4.22)
Since the outer race is stationary, hence

fou =0 (4.23)

The rotation of /* rolling element about its centre of mass is,

[} . R
¢; =6’,(1+—) (4.24)
Pr
Now the kinetic energy of the rolling elements can be written as,
Nb . ° . 2 2
1 2. 2,52/, 1 R
Te. =Z‘2"”f[Pj +p;-9; )*511 7 (1+p—} (4.25)
= "

For the rolling elements, the potential energy due to elevation is,

Ny
Vr.e. = ijg(pj Sinej +yout) (4.26)
J=1
Ny
of, Vre =mgNyyou + Y (m;80;5n6)) (4.27)
F=

D. Contribution of the rotor
The kinetic energy of the rotor is estimated by assuming that its centre remains

coincident with the inner race. Hence, the kinetic energy of the rotor is:
1 2,2 o2
Lotor = 5 Myoro(Xint Yy in )+ '5' Lotor Brotor (4.28)
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Since the rotor centre coincides with the inner race center and position of the inner
race centre is defined with respect to outer race center. Hence, the potential energy of the

rotor may is expressed as,

Vrotor = Mrotor & (yin_out +Y out) (4.29)

E. Contribution of the contact deformation
The contacts between rolling elements and races are treated as nonlinear springs,
whose stiffnesses are obtained by Hertzian theory of elasticity. The expression of

potential energy due to the contact deformation of the springs is written as,

spnngs Z km 53: Z k ,502,” (4.30)
j—l

Where k;, and k. are the nonlinear stiffnesses due to Hertzian contact effects (please see

Appendix C).

The deformation at contact points between the j"-rolling element and inner race s,
u=lr+po}-1, 431)

In this expression, if {r+p,} > z,, compression takes place and restoring force acts.

If {r+p,} < z,,there is no compression and restoring force is equal to zero.
Similarly, at the outer race the deformation at the contact points is,

S =|R-10; + | | (4.32)
In this expression, if R < o i+ o, §, compression takes place and restoring force acts.

IfR > {p; + p, }, there is no compression and restoring force is equal to zero.

The bearing is assumed to be free from local and distributed defects. The distributed
defects are surface waviness of the components, misaligned races and off sized rolling
elements. Local defects are because of cracks, pits and spalls on the rolling surfaces.
Some of the frequency components generated because of these defects are same as
varying compliance frequency as reported by Sunnersjo (1985), Tandon and Nakra
(1993) and Aktiirk (1999).

We have considered the bearing as a whole. For that the rolling elements are arranged
equi-spaced around the bearing. They also move around the races with equal velocity,

which is physically possible because of the cage. The radial internal clearance (vo) is the
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clearance between the imaginary circles, which circumscribe the rolling elements and the
outer race. For a horizontal rotor the radial internal clearance reduces as the rotor settles

down due to the radial constant force. Hence, with the consideration of radial internal

clearance (7o), the contact deformations at the inner and outer races are,
8 =lr+p, +70}-2, (4.33)
Sou =|R-1p; +p, +7o ] (4.34)

F. Equations of motion

The kinetic energy and potential energy contributed by the inner race, outer race,

balls, rotor and springs, can be differentiated with respect to the generalized coordinates

o (G=12... , Ny), xin, and yin to obtain the equations of motion. For the generalized
coordinates g, where j = 1,2, ... ..., Ns, the equations are:
ox; 1 ok;
m; pj+mjgsm¢9 +m;p (,,,)[ ] — (our)[ ut] m[ m]2
1 % ' (4.35)
o 0"'[ Spul =0 j=12......N,

For the generalized coordinate x;, the equation is:

(m +Myo101) xx'n Z m[5m aC_—F sin( @ 1) (4.36)
j= in

For the generalized coordinate yi, the equation is:

(mm+mrotor)ym (mm +mralor)g ka[ ut] _-W"'F cos(@?) (4.37)

This is a system of (M + 2) second order, non-linear differential equations. No
external radial force is allowed to act on the bearing system and no external mass is
attached to the outer race. The “+” sign as subscript in these equations indicates that if the
expression inside the bracket is greater than zero, then the rolling element at angular

location @, is loaded giving rise to restoring force. If the expression inside the bracket is

negative or zero, then the rolling element is not in the load zone and restoring force is set

to zero. For the balanced rotor condition, the unbalance rotor force (F,) is set to be zero.
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The deformation of spring at inner race y; (Fig. 4.2), can be obtained as,
Xin +Xj cos 0,\' = Xowu +pj cos gj (438)
Yin+ X SN, = Yo, +p; SN (4.39)

From these two equations, the expression for y;is,

. A

zj = [(xoul _'xin)2 +p_f +2pj (xoul _xin)cosej +2pj(youl —yin)SIngj +(yout —yin)z] 2 (440)
Now the partial derivatives of y; with respect to g;, xi, and yi, are:

a,l’ g P, j +(xom —xin)c°£j +(yout _yin)Sinej 4

= 41

apj X ( )

0, _ (ou = %)= P, 089, (4.42)

axin Zj

aX' out ~Vin -p-sino.

1 oumru)opysnd, (4.43)

ayin X j
4.3 METHODS OF SOLUTION

The two coupled non-linear second order differential equations (4.35 — 4.37) are
solved by numerical integration technique (please see Appendix D) to obtain the radial
displacement and velocitybof the rolling elements. This integration technique is a time
domain approach. The non-analytic nature of the stiffness term renders the system
equations difficult for analytical solution. A numerical integration algorithm models the
real system, whlch is continuous time, by a discrete time system. Numerical mtegrahon is
the solution of difference equations rather than the continuous time differential equations.
The state of the system at an initial time is known from the assumed initial conditions.
The state variables are calculated from the difference equations at an increment of At time
and the procedure is continued for the desired length of time. As the time step At for the
numerical integration is made smaller, the model comes closer to a realistic stream. The
size of time step At is determined very easily for a linear system so as to accurately track
the highest frequency. For nonlinear systems, the size of time step is determined by
taking into account the error introduced and also to avoid generation of “spurious”

results, all of which can lead to unstable solutions (Tongue, 1984). The longer the time to
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reach steady state vibrations, the longer computational time needed and hence the more

expensive will be the computation.

4.3.1 Choice of step size and initial condition
For the numerical technique used, the initial conditions and step size are very
important for good and computationally inexpensive solution. Particularly for nonlinear
systems, different initial conditions mean a totally different‘system and hence different
solutions. The larger the time step, At, the faster is the computation. On the other hand the
time step should be small enough to achieve accuracy. However, very small time steps
can increase the truncation errors. The Newmark-B method has a provision for estimating
local truncation error. For various speeds and W = 6 N, the system is numerically
integrated on a Silicon Graphics workstation for a number of time step sizes. The local
truncation error and CPU time are plotted against the time step as shown in Fig. 4.5. One
can see that region A-A' gives the best results. Therefore an optimization should be made
between them. The time step for the investigation taken to be At = 107 sec. At time
¢ = 0 the following assumptions are made:
i.  The rotor is held at the center of the bearing and all balls are assumed to
have equal axial preload.
ii. The rotor is given initial displacements and velocities. For fast
convergence the initial displacements are set to the following values:

%, =10°m and y, =10"m. The initial velocities are assumed to be zero:

xo =0 and y.o =0.
iii., When t>Atthe initial conditions have already passed and the normal
procedure commences.
Rolling elements are radially preloaded in order to ensure the continuous contact of all

the rolling elements and the raceways, otherwise a chaotic behavior might be observed.

4.4 METHODS OF ANALYSIS
Several methods used to analyze the results obtained by numerical integration are

described below.
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4.4.1 Poincaré Map

Poincaré map is a classical technique for analyzing dynamical systems (Nayfeh and
Balanchandran, 1994). It replaces the flow of an n™ order continuous time system with a
(n-1)" order discrete time system called the Poincaré map.

The usefulness of Poincaré maps lies in the reduction of order and the fact that it
bridges the gap between continuous and discrete’ time systems. A periodic n"™ order non-
autonomous system with minimum period T can be transformed into an (n+1)™ order

autonomous system in the cylindrical state space IRxS', (Fig. 4.6 (a, b)). Considering the

n-dimensional hyper plane ) =iRxS" defined by,

Y ={x6)eR"xs':0=0,] (4.44)
Every T seconds, the trajectory or the solution of (Eq. 4.35-4.37) intersects Z The

resulting map Py :Z—)Z(IR" - IR")deﬁned by Py is called the Poincaré map for the

non-autonomous system.

PX(x)=®, . kr(x, ) K =0,L,.... . (4.45)
This is similar to the action of flashing a stroboscope with period 7. d)x(x‘,ta)is a

periodic solution of a non-autonomous system if for all ¢,

@, 1o )= Orur e 1) (4.46)

For minimum period 7 >0, if T is some integer multiple K bf the forcing period T}, the

solution q>,(x‘,to)is called a period-K solution. Period-one solution is called a

fundamental solution and if K>1, a period-K solution is referred to as a K™ subharmonic.

A period-one solution of a continuous-time system corresponds to a fixed point x* of

the Poincaré map Py. A K™ order subharmonic corresponds to a period-K closed orbit

the solution that is commensurate with the forcing frequency. The spectrum consists of a
spike at frequency zero and spikes at integer multiples of 1/ T The spectrum of a X' h
order subharmonic contains spike of frequency zero and spike at integer multiples of
1/ KT;. The Poincaré map of a period-one (or period-K) solution is a single point (or K

points).
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A. Quasi-periodic solution

A quasi-periodic solution is a sum of periodic waveforms each of whose frequency is
one of the various sums and differences of a finite set of base frequencies. If there are p
base frequencies then it is a p-periodic solution (different from a period-p periodic

solution).

The spectrum of a quasi-periodic waveform consists of spikes at frequencies f,
(which are the frequencies of waveforms adding to give the solution) and KXf;
(K=1,2,...... ). Some of these components may have zero amplitude. The time response of
the quasi-periodic solution shows amplitude modulation where there is a carrier
frequency (f;) and a modulation frequency (f,). In the spectrum, the spikes are at
frequencies [f,+K f,]. If the base frequency lock onto some common time period
solution, it is called phase locked or mode locked or frequency locked solution (Nayfeh
and Balanchandran, 1994) as shown in Fig. 4.6 (c). The Poincaré map of a quasi-period
solution is either a dense collection of points on a closed curve or a finite number of
points when there is phase locking (Fig. 4.6 (9, d)). In general, Poincaré limit is a set of

K-periodic trajectory having one or more embedded (X-1) tori.
B. Chaotic solution

A solution, which is a bounded and steady state solution, but neither an equilibrium
point (not periodic) nor quasi-periodic, is a chaotic solution (Parker and Chua, 1989). The
frequency spectra are broadband which may have spikes at identifiable frequencies. The
Poincaré map of a chaotic solution has a fractal structure, which repeats itself as the map

is magnified.
C. High order Poincaré maps
For a dynamical system where the solution trajectory flows in a n-dimensional hyper

space, the behavior of the system can be understood by generating higher order Poincaré
maps. The sampling action of the Poincaré map reduces the dimensions of a limit set by
one i. €., a limit cycle becomes a point, a torus becomes a circle and a K-torus becomes a
(K-I)-torus. Another sampling may further reduce the dimensions of the limit set. This

idea leads to higher order Poincaré maps.
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4.4.2 The Non-autonomous Shooting Method

The non-autonomous shooting method is used for finding out the fixed point of the
steady state solution. The fixed point used as the initial condition for numerical
integration results in a steady state solution with no transient. When some arbitrary initial
conditions are taken, transients are formed, which take some time to die down. For non-
linear system the transients may lead to instability. On taking fixed point as initial
conditions, the transients are not formed resulting in saving of a considerable
computational time.

Let Py be the Poincaré map associated with a non-autonomous system with minimum

period T where,

Py (x)=6,,.r(x.1) (4.47)
Here ¢,is the solution of the variational equation and is integrated simultaneously with
¢, (please see Appendix C). The Newton Raphson algorithm is applied to Eq. 4.47 and

this is called non-autonomous shooting method. The characteristic multipliers are the

eigen values of ¢, ,r(x.t,) and can be found using the QR algorithm (Press et. al. 1992).

The eigen values of the monodromy matrix, called Floquet or characteristic
multipliers, provide a measure of local orbital divergence or convergence along a
particular direction over one period of the closed orbit. Particularly, the following
informations about the stability of the system and the nature of bifurcation can be
derived.

If all the multipliers are located within the unit circle, the system is stable.

b. If one of the multipliers leaves the unit circle through —1, this indicates period

multiplying bifurcation.

c. If one of multipliers leaves the circle through +1, this would indicate bifurcation

possibly including a saddle point. ’

d. If a pair of complex conjugate multipliers leaves the unit circle, a Hopf, or a

secondary Hopf bifurcation could occur.
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4.5 RESULTS AND DISCUSSION
Theoretical results are obtained for a rotor supported by rolling element bearing

using the techniques discussed in sections 4.3 and 4.4. The results are discussed below.

4.5.1 Static Bearing Stiffness

The dimensions of the rolling element bearing considered in the present study are
given in Appendix A. The stiffness of the rolling element bearing has been estimated for
point/line contact with the vertical force of 6N by using Hertzian contact theory (please
see Appendix B). From Fig.4.7, it can be seen that the stiffness remains practically
constant till a radial clearance of 9 pum for ball bearing (point contact) while for rolling
bearing (line contact) stiffness remains practically constant till a radial clearance of 0.5

pm. For theoretical simulation the values of radial internal clearance are taken to be 20

pm and 12 pum (for point contact) and 1pm and 0.5 pm (for line contact).

4.5.2 Results of Theoretical Simulation

The system equations (4.35-4.37) have been solved for different combinations of
parameters for the rolling element bearing. The parameters of study are: .
i.  Speed of rotor
ii.  Radial internal clearance (Yo)
iii.  Unbalanced rotor force (Fu)

Fukata et al. (1985), Mevel and Guyader (1993), Sankarvelu et al. (1994) ha\’le all
taken the same bearing, which is used in the present study. These studies have focused
more on parametric effect involving change in speed and constant vertical force for ball
bearings. Radial internal clearance as a parameter has not been considered for study. In
the present report, besides speed as a parameter of study, effect of radial internal
clearance has also been considered. Radial intérnal clearance is an important parameter of
study because even if the clearance is inevitable, it can be controlled to some extent.

Time response plots are obtained for the combination of above parameters under this
study. These plots are generated by numerical integration to reach steady state when
peak-to-peak value of x and y displacements are obtained. For reaching steady state for

the first speed, the initial conditions are taken as the fixed-point solution. For successive
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speeds, the initial conditions are taken as the steady state solution obtained for the
preceding speed. For a non-linear system the response plots have regions of multi-valued

solution, which are generally the high amplitude regions (Thompson and Stewart, 1986).
The generation of the response curve such that the i" steady state speed solution is near
the (i-1) " steady state speed solution and it is ensured that the entire response curve is
plotted throughout otherwise there is a danger of the solution jumping from one response

curve to another.

4.5.2.1 Response for point contact aty,=20 pm, W=6Nand F, = 0

The overall response plot of rolling element bearing for point contact with radial
internal clearance of 20 um and radial load of 6N is shown in Fig. 48 The peak-to-peak
(pp) vertical response is less than the peak-to-peak horizontal response in regions of high
amplitude. The overall response plot has a very rough appearance. Three regions can be
identified which have high pp response. These regions are shown in Fig. 4.8 bounded by
lines A-A’, B-B’and C-C".

Three regions of period-one unstable response are shown on Fig. 4.8. The first region
from 955 to 5950 rpm has period doubling bifurcations. This is also a region of multi-
valued region. The eigen values of the monodromy matrix go out through —1. Figure 4.9
shows the nature of the solution at 1500 rpm. The VC and its harmonic (super-harmonic)
character of the frequency spectra is also brought-out by the Poincar¢ map with the
closed orbit. One region of chaotic behavior is seen in this region. For the first chaotic
region, 1920 to 2640 rpm, the loss of stability is seen to be due to the eigen values
crossing +1. In this region, the period doubling bifurcations give way to chaos at about
1920 rpm and this chaotic region extends up to 2650 rpm. The chaotic solutions at 1950,
2100 and 2400 rpm are shown in Fig. 4.10 to 4.12, respectively. The frequency spectrum
has a band structure as seen in-between spikes of varying compliance (VC) and its
multiples. The Poincaré maps of chaotic solutions have fractal structures that repeat as
the map is magnified. The time responses also show beat and chaos like behavior. It is

clear that loss of periodicity is one characteristic of chaotic solution.
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The route to chaos by sudden loss of stability through a limit point has been shown by
Sankarvelu et al. (1994). From speeds of 2680 rpm onwards, stability returns and there
are period doubling bifurcations. At 2700 rpm, the 4™ subharmonic appears as shown in
Fig. 4.13. As speed further increases, stability returns by a torus solution between 2900 to
4120 rpm. Figure 4.14 shows the response at 4000 rpm and it is clear from the response
that the 2-T (2" sub-harmonic) nature of solution is obtained. Below 5940 rpm the
response is “period-one” unstable. Further increase in speed returns the stability in the
speed range between 5955 to 6985 rpm. The response at 6000 rpm shows 1T stable
behavior as shown in Fig. 4.15.

Fukata et al. (1985) and Mevel and Guyader (1993) have reported period-one
unstable behavior or chaos around the vertical and horizontal critical speeds. In their
study one observes that the large clearance results in very wide unstable regions, which
are not necessarily around the critical speeds. Second region from 6995 to 8110 rpm has
period doubling bifurcations. Period doubling bifurcation gives way to chaos at 7250 rpm
as shown in Fig. 4.16. The chaotic behavior in this region seems to be very strong as
compared to the previous region and the peak (P’) also develops in this region. The
chaotic attractor is spread out and the band of frequency in the spectrum formed is also
quite prominent. The chaotic region extends up to 7560 rpm after which the solution has
a 8" subharmonic at 7600 rpm. The vertical displacement response has a very strong
nature of 8" subharmonic as shown in Fig. 4.17. A number of frequency components
appears between VC / 8 and VC, which give the orbits of a fairly dense structure at 7600
rpm. The time response plot for horizontal displacement clearly shows amplitude
modulation with the frequency components 50 Hz (0.0197 s) and 405 Hz (0.00247 s)
interacting with each other.

From 8460 to 9910 rpm again there is period-one unstable behavior. This (third)
region C-C' is not reported by Fukata et al. (1985), Mevel and Guyader (1983),
Sankarvelu et al. (1994), Datta and Farhang (1997) and Zheng and Hasebe (2000). Since
they have not taken clearance as a parameter of study, so they could not get this region.
Rotor bearing systems with clearance non-linearity at the support have been found to

have amplitude modulated response (Day 1987, Kim and Noah, 1996).
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It is seen from the solutions of the rotor bearing system by numerical integration that
under certain conditions, the response has amplitude modulation. This amplitude
modulation is the result of the presence of a frequency, which is incommensurate with
respect to the basic input excitation frequency. This is a result of the system undergoing
Hopf bifurcation. At 8900 rpm, by way of Hopf bifurcation, the solution becomes
unstable. It is seen that the frequency generated due to Hopf bifurcation changes with
speed. The phase plot and Poincaré map shown in Fig. 4.18 give an indication of a quasi-
periodic response because of ‘net’ structure. The time response of the horizontal
displacement has more amplitude modulations because of the Hopf bifurcation. As speed
is increased to 9900 rpm 4™ subharmonic behavior predominates as shown in Fig. 4.19,
which gives way to 1T stable behavior upto10895 rpm and onwards. No indication of

chaos is observed here. The nature of response for various speeds is given in Table 4.1.

4.5.2.2 Response for point contact aty,= 12 yum,W=6NandF,=0

The overall response plot of a rolling element bearing for point contact with radial
internal clearance of 12 pm and radial load of 6N is shown in Fig. 4.20. The overall
response plot has a low rough appearance. Two regions can be identified which have high
pp response. Two regions are shown in Fig. 4.20 bounded by lines A-A'and B-B'.

From Fig. 4.6 (a) of stiffness estimation in vertical and horizontal directions, it is seen
that for radial internal clearance (yo) of 12 pm and 20 pm, the stiffness value practically
remains same. On analyzing the response plot for peak-to-peak amplitude against speed
for the cases of radial internal clearance (yo) of 12 pm and 20 pm (Fig. 4.8 and Fig. 4.20),
it is observed that the peak (shown by P’ in the Fig. 4.8) develops at a lower speed at
higher radial clearance. For 12 pm radial clearance (in Fig. 4.20), the peak (P") is at 9000
rpm and for 20 pm radial clearance, it occurs at 7150 rpm. This shift in peak indicates an
increase in the value of stiffness as clearance decreases. On comparing Fig. 4.8 with Fig.
4.20, it can be seen that the period-one unstable regions shift towards lower speed as

clearance is increased.
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Table 4.1 Nature of solutions for yo=20um, W=6 N

Speed (RPM) Nature of Response
Upto 915 1T stable low amplitude
955 - 1800 Period-one unstable (at VC and
harmonics)
1920 — 2640 Chaotic
2700 4T
2900 - 5940 2T
5955 — 6985 1T
7195 — 7560 Chaotic
7600 8T
7715 — 8400 5T
8460 — 9100 Hopf (Quasi-periodic)
9900 4T
10895 IT
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Two regions of period-one unstable response are shown in Fig. 4.20. Period-one
solution becomes unstable from 1245 to 3580 rpm, because of period doubling
bifurcations. The solution undergoes pitchfork bifurcations till 2400 rpm after which at
2470 rpm the chaotic solution is obtained. Figure 4.21 shows the nature of solution at
2400 rpm. The VC and its harmonics (super-harmonic) character of the frequency spectra
is also brought-out by the Poincaré map with the closed orbit. The first chaotic region is
observed in speed range 2470-2730 rpm. The chaotic solution at 2500 rpm is shown in
Fig. 4.22. The frequency spectrum has a band structure as seen in-between spikes of VC
and its multiples. The fine-layered structure of the strange attractor is also clear from the
Poincaré map. From 2755 to 2820 rpm, the period-one solution is again unstable. Fig.
4.23 shows the 3™ subharmonic nature of solution at 2800 rpm.

As speed increases, the second chaotic region appears between 2880 to 3425 rpm, the
loss of stability is seen to be by the eigen values crossing +1. In this region, the period
doubling bifurcations give way to chaos at about 2880 rpm and this region extends up to
3425 rpm. The chaotic solutions at 2900 rpm and at 3100 rpm are shown in Figs. 4.24
and 4.25 respectively. The chdotic attractor is spread out and the band of frequency in the
spectrum formed is also quite prominent. As speed increases, the period-one solution
becomes unstable in the speed range from 3580 to 8925 rpm as shown in Fig. 4.20. Also
the peak-to-peak response goes down (Fig. 4.20), which is an indication of the end of
multi-valued region of response. The response in Fig. 4.26 at 8900 rpm shows 1T stable
behavior.

At the end of 8950 rpm a Hopf bifurcation occurs and again the peak-to-peak
response goes up. At 8950 rpm (Fig. 4.27), the response is mode locked with the ratio
between the varying compliance frequency (477 Hz) and the newly generated frequency
(79.5) becomes 6 (i.e. p = 6). It is seen that the frequency generated due to Hopf
bifurcation changes with speed. As speed increases, the value of p decreases acquiring
values 5 and 4 at 9200 rpm (Fig. 4.28) and 10,000 rpm (Fig. 4.29) respectively. From
Figures 4.28 to 4.30, the quasi-periodic nature of response can be seen from the

frequency spectrum and the phase plots.
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The structure of orbit plots from Figs. 4.28 to 4.30 shows relatively short time period
at 9200 rpm, which goes up at 10,000 rpm and again goes down at 10900 rpm. This
region of bifurcation extends upto 10925 rpm. No chaos is found in this region because of
lower radial clearance (12 pm). The torus solution becomes 1T stable solution at 10950

rpm (Fig. 4.31). The nature of response for various speeds is given in Table 4.2.
4.5.2.3 Response for point contact at yo=20 um, W=6 N and F, = 15%W

A rolling element bearing with point contact supporting a rigid horizontal rotor with
an unbalanced force (F,) is taken for theoretical simulation as shown in Fig. 4.32.

Speed response plots have been generated for combination of radial internal clearance
and unbalanced force. The frequency components corresponding to %2 X, X (rotational
frequency), 2X, 3X, 4X have also been filtered from the overall response plot and plotted
against speed. Even the most precise rotor balancing exercises are not able to eliminate
the unbalance in rotors. Therefore, any study of rotors supported on rolling element
bearing without consideration of unbalance force is rather incomplete and unrealistic. To
simplify the study, constant unbalanced force is assumed in the entire speed range. The
unbalance force and radial internal clearance value have been taken as 15% of W and
20um respectively. |

The overall response plot of rolling element bearing for point contact with radial
internal clearance of 20 pum, unbalanced force (F,) = 15% of W and radial load (W) of 6N
is shown in Fig. 4.33. The overall response plot has a highly rough appearance. Two
regions are shown in Fig. 4.33 bounded by lines A-A’and B-B".

From Fig. 4.33, it is observed that the value of vertical displacement is less than the
value of horizontal displacement in entire speed range. The response plot (Fig. 4.33) is a
combination of responses that are due to varying compliance and other peaks as a result
of unbalanced force. The high amplitude region starting from 525 rpm has stable periodic
orbit unlike the balanced case (Fig. 4.8).
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Table 4.2 Nature of solutions for yo=12um, W=6 N

Speed (RPM) Nature of Response
upto 1215 1T stable low amplitude
1245 — 2400 Period-one unstable (at VC and
harmonics)

2470 - 2730 Chaotic

2755 - 2820 3T

2880 — 3425 Chaotic

3450 - 3575 2T

3580 - 8925 1T
8950 Hopf (VC=477.3 Hz, FH=79.5 Hz)
9200 Hopf (VC=490.6 Hz, FH=98.2 Hz)
10000 Hopf (VC=533.3 Hz, FH=133.3 Hz)
10900 Hopf (VC=581.3 Hz, FH=290.6 Hz)

10950 and onwards 1T
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Fig. 4.32 Unbalance force (F,) acting on rolling element bearing
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Fig. 4.33 Response plot for yp =20 pm, W =6 N and F, = 15%W
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Period-one solution becomes unstable from 740 to 5300 rpm because of period
doubling bifurcations. The solution undergoes pitchfork bifurcations till 1900 rpm after
which chaotic solution is obtained at 1970 rpm. At this speed chaos just begins to
develop. Figure 4.34 shows the nature of solution at 2000 rpm. The dense band of
frequency spectrum shows the presence of both the rotational frequency (X) and the
varying compliance (VC) frequency. The presence of dense regions in the orbit is
indicative of the onset of chaos. It cannot be considered perfectly periodic, since the two
spectra are not exactly line spectra. The orbit is complicated because of the mixed nature
of the response as shown in Fig. 4.34. For the first chaotic region occurring between
1970-3940 rpm, the loss of stability is seen to be due to the eigen values crossing +1. The
chaotic solution at 3500 rpm is shown in Fig. 4.35. The frequency spectrum has a band
structure as seen in-between spikes of VC, X and their multiples. Also, both the
frequency components interact to produce sum and difference combination frequencies.
The fine-layered structure of the strange attractor is also clear from Poincaré maps. The
orbit at this speed does not repeat itself. The Poincaré maps of chaotic solutions have
fractal structures that repeat as the map is magnified. The time responses also show beat

and chaos like behavior. It is clear that loss of periodicity is one characteristic of chaotic

solution.
At 4000 rpm, the response shown in Fig. 4.36 can be considered neither perfectly

chaotic nor perfectly periodic. It is not perfectly or predominantly chaotic because the
two spectra for horizontal and vertical displacements have only a slightly banded
structure in comparison to spectra at 3500 rpm (Fig. 4.35). It cannot be considered
perfectly periodic, since the two are not exactly line spectra. The orbit is complicated
because of the mixed nature of the response. The presence of sub-synchronous frequency
of X/3 (22.3 Hz) along with the weak varying compliance component in the vertical
'displacement spectrum and that of sub-synchronous at X/3 ((22.3 Hz) with strong varying
compliance components in the horizontal displacement spectrum is intersecting. The
system again goes into period doubling bifurcations as speed increases upto 5300 rpm.

Further increase in speed, returns stability in the speed range from 5345 to 6780 rpm.
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The high amplitude region of unstable period solution starts from 6890 rpm and
extends upto 10200 rpm. At 7000 rpm, the response becomes periodic as shown in Fig.
4.37. The peaks appear in the frequency spectra at X/3 (39 HZ), VC (374 Hz), VC + X/2
(431 Hz) and at VC — X/2 (314.5 Hz). The multi-loop orbit also shows periodic nature.
Two regions of chaotic behavior are seen in this region. For the first chaotic region 8100
to 9050 rpm, the loss of stability is seen to be due to eigen values crossing +1. In Figures
4.38 and 4.39, the chaotic response at 8700 rpm and 9000 rpm is shown by band structure
of frequency spectra. This band structure develops around X/2 in the vertical
displacement response and in the entire speed range for the horizontal displacement
response. The fine-layered structure of the strange attractor is also clear from Poincare
maps. The presence of dense regions in the orbit is indicative of chaos.

Period-one solution becomes unstable from 9080 to 9750 rpm, because of period

- doubling bifurcations. As speed increases, the second chaotic region appears between

9750 to 10040 rpm, the loss of stability is seen to be due to the eigen values crossing +1.
In this region, the period doubling bifurcations give way to chaos at about 9750 rpm and
this region extends upto 10100 rpm. The chaotic solution at 10000 rpm is shown in Fig.
4.40. The peaks appear in frequency spectrum at X/2 (81 Hz) and VC - 3X/4 (396 Hz).
The chaotic attractor is spread out and the band of frequency in the spectrum formed is
also quite prominent. Further increase in speed, brings the system to perfect stability at
10180 rpm. The peak-to-peak response at this speed also goes down (Fig. 4.33), which is

an indication of the end of multi-valued region of response. The nature of response for

various speeds is given in Table 4.3.

4.5.2.4 Response for line contact at yo = 1Tum,W=6NandF,=0

The overall response plot of rolling element bearing for /ine contact with radial
clearance 1 pm and radial load of 6N is shown in Fig. 4.41. The peak-to-peak vertical
response is less than the peak-to-peak horizontal response in regions of high amplitude as
shown in Fig. 4.41. The overall response plot has a very rough appearance. Two regions
can be identified which have high pp response. These regions are shown to be bounded

by lines A-A'and B-B’in Fig. 4.41.
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Table 4.3 Nature of solutions for yo=20um, W = 6N and Fu = 15%W

Speed (RPM) Nature of Response
Upto 710 1T stable low amplitude
740 — 1900 Period-one unstable (at vC and
harmonics)
1970 — 3940 Chaotic
4000 - 5300 2T
5345 - 6780 1T
7000 X/3 (Period doubling)
8100 - 9050 Chaotic
9080 — 9700 Period-one unstable
9750 — 10040 Chaotic
10180 1T
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Two regions of period-one unstable response are shown in Fig. 4.41. The first region
from 780 to 5615 rpm has period doubling bifurcations. This is also a multi-valued
region. The eigen values of the monodromy matrix go out through —1. Fig. 4.42 shows
the nature of solution at 1500 rpm. The VC and its harmonics (super-harmonic) character
of the frequency spectra is also brought-out by the Poincare¢ map.

The chaos is at the developing stage from 1950 rpm. Fig. 4.43 shows the nature of
solution at 2200 rpm. In the frequency spectrum a band structure is seen in-between
spikes of VC and its multiples. The fine-layered structure of the strange attractor is also
clear from Poincaré map. For the chaotic region 2350 to 5640 rpm, the loss of stability is
seen to be by the eigen values crossing +1. In this region, the period doubling
bifurcations give way to chaos at about 2400 rpm and this chaotic region extends upto
5640 rpm. The chaotic solutions at 2500 rpm, 3800 rpm, 4000 rpm, 4050 rpm, 5100 rpm,
5200 rpm and 5500 rpm are shown in Figs. 4.44 to 4.50 respectively. The frequency
spectrum has a dense band structure as shown in-between spikes of VC and its multiples.
The orbits at this speed range do not repeat itself. The Poincaré maps of chaotic solutions
have fractal structures that repeat as the maps are magnified. The time responses also
show beat and chaos like behavior. It is clear that loss of periodicity is one characteristic
feature of chaotic solution. The route to chaos by sudden loss of stability through a limit
point has been shown by Sankarvelu (1994). Further increase in speed, causes the system
return to stability in the speed range from 5700 to 6885 rpm. '

The second region from 6915 to 10350 rpm has period doubling bifurcations as
shown in Fig. 4.41. This is also a multi-valued region. Period-one solution becomes
unstable from 6915 to 10350 rpm, because of period doubling bifurcations. The solution
undergoes pitchfork bifurcations till 6950 rpm after which the chaotic solution is obtained
at 6990 rpm. Figure 4.51 shows the nature of solution at 7000 rpm. In the frequency
spectrum a band structure appears is seen in-between spikes of VC and its multiples. The

dense structure of the strange attractor is also clear from Poincaré maps.
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For the first chaotic region 7000 to 8270 rpm, the loss of stability is seen to be due to
the eigen values crossing +1. In this region, the period doubling bifurcations give way to
chaos at about 7000 rpm and this chaotic region extends upto 8270 rpm. The chaotic
solutions at 7100, 7500 and 8000 rpm are shown in Figs. 4.52 to 4.54 respectively. The
frequency spectrum has a dense band structure as seen in-between spikes of VC and its
multiples. The fine-layered structure of the strange attractor is also clear from Poincaré
maps. The orbit at this speed does not repeat itself. The Poincar¢ maps of chaotic
solutions have fractal structures that repeat as the map is magnified. The time responses
also show beat and chaés like behavior. It is clear that loss of periodicity is one
characteristic feature of chaotic solution. The response characteristics at 8200 rpm are
shown in Fig. 4.55. The horizontal and vertical displacement spectra (Fig. 4.55) have
banded structure and there are closed orbit with dense and not so dense regions. Analysis
shows that the chaotic character becomes weaker from 8270 rpm onwards. At 8500 rpm,
the response shown in Fig. 4.56 can be considered neither perfectly chaotic nor perfectly
periodic. It is not perfectly or predominantly chaotic because the two spectra for
horizontal and vertical displacements have only a slightly banded structure. The orbits in
Poincaré maps are complicated because of this mixed nature of the response.

At 10000 rpm, the response explodes into an intermittent behavior. The eigen values
of monodromy matrix pass through +1, so this becomes an intermittent behavior of type I
(Nayfeh and Mook, 1979). In Fig. 4.57, the frequency spectra show the band structure
and the orbit shows a small dense region surrounded by a less dense structure. As speed
increases, the second chaotic region appears between 10030 to 10300 rpm, the loss of
stability is seen to be by the eigen values crossing +1. In this region, the period doubling
bifurcations give way to chaos at about 10030 rpm and this region extends upto 10300
rpm. The chaotic solution at 10200 rpm is shown in Fig. 4.58. The chaotic attractor is
spread out and the band of frequency in the spectrum formed is also quite prominent.
Further increase in speed, brings the system back to stability beyond a speed of 10350
rpm. Also the peak-to-peak (pp) response goes down (Fig..4.41), which is an indication

of the end of multi-valued region of response. The nature of response for various speeds

- is given in Table 4.4.
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Table 4.4 Nature of solutions for yo= 1um, W = 6N

Speed (RPM) Nature of Response
Upto 775 1T stable low amplitude
780 — 1900 Period-one unstable (at VC and
harmonics)
1950 - 2200 Chaos developing
2350 — 5640 Chaotic
5700 - 6885 Periodic
6990 — 8170 Chaotic
8200 Chaotic natures decreasing
8500 - 9700 Period-one unstable (mixed nature)
9750 - 10020 Intermittent Chaotic
10030 - 10300 Chaotic
10350 Periodic
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4.5.2.5 Response for line contact at {,=0.5um,W=6Nand F, =0

The overall response plot of rolling element bearing for line contact with radial
internal clearance of 0.5 pm and radial load of 6N is shown in Fig. 4.59. The overall
response plot has a less rough appearance. Two regions can be identified which have high
peak-to-peak (pp) response. These regions are shown in Fig. 4.59 bounded by lines A-A’
and B-B".

From Fig. 4.6 (b) of stiffness estimation in vertical and horizontal directions, it is seen
that for radial internal clearance (yo) of 0.5 pm and 1 um, the stiffness values practically
remain same. On analyzing the response plot for peak-to-peak amplitude against speed
for the cases of radial internal clearance (yp) of 0.5 pm and 1 pm (Fig. 4.41 and Fig.
4.59), it is seen that the peak (shown by P’ in the Fig. 4.41) develops at a lower speed of
3050 rpm, for increased radial clearance (1 pm). For 0.5 um radial clearance (Fig. 4.59),
the peak develops at 9300 rpm. This shift in peak points to an increase in the value of
stiffness as clearance decreases. A comparison of Figs. 4.41 and 4.59 shows that the
period-one unstable regions shift towards lower speed as the clearance is increases.

Two regions of period-one unstable response are shown in Fig. 4.59. Three regions of
chaotic behavior are seen in the first region of unstable response. Period-one solution
becomes unstable from 945 to 5500 rpm, because of period doubling bifurcations. The
solution undergoes pitchfork bifurcations till 2015 rpm after which the chaotic solution is
obtained at 2050 rpm. Figure 4.60 shows the nature of solution at 1800 rpm. The VC and
its harmonic (super-harmonic) character of the frequency spectra is also brought-out by
the Poincaré map with the closed orbits. The presence of dense regions in the orbit is

indicative of the onset of chaos.

For the first chaotic region 2050 to 3600 rpm, the loss of stability is seen to be by the
eigen values crossing +1. In this region, the period doubling bifurcations give way to
chaos at about 2050 rpm and this chaotic region extends upto 3600 rpm. The chaotic
solutions at 2800 rpm and 3500 rpm are shown in Figs. 4.61 and 4.62, respectively. The
frequency spectrum has a dense band structure as seen in-between spikes of VC and its
multiples. The fine-layered structure of the strange attractor is also clear from Poincaré

maps.
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Further increase in speed causes a return of stability in the speed range from 3660
rpm to 3850 rpm. At 3800 rpm, the response becomes periodic as shown by the spectra of
Fig. 4.63. The VC and its harmonic (super-harmonic) character of the frequency spectra
is also brought-out by the Poincaré map with the multiloop orbit. The multiloop orbit also
shows a periodic nature. The solution undergoes pitchfork bifurcations (1T) till 3850 rpm
after which the second chaotic solution is obtained at 3915 rpm. Below 4000 rpm the
response is period-one stable. Period doubling bifurcation gives way to chaos at 4000
rpm (Fig. 4.64). The chaotic attractor is spread out and the band of frequency in the
spectrum formed is also quite prominent. This chaotic region extends upto 4350 rpm.

As speed increases, stability returns via a torus solution, which is clear from the
multiloop orbit of Poincaré map at 4900 rpm as shown in Fig. 4.65. From 4920 rpm,
again pitchfork bifurcation takes place leading to the occurrence of a third chaotic region
from 4950 rpm to 5400 rpm. In this region, the period doubling bifurcations give way to
chaos at about 5000 rpm as shown in Fig. 4.66 and this chaotic region extends upto 5400
rpm. Figure 4.67 shows the chaotic solution at 5100 rpm.

From 5450 rpm to 6850 rpm there is period-one stable response as shown earlier in
Fig. 4.59. From 6900 rpm, pitchfork bifurcation takes place and again that leads to the
first chaotic region from 6980 rpm to 7050 rpm. In this region, the period doubling
bifurcations give way to chaos at about 7000 rpm as shown in Fig. 4.68. The chaotic
nature is shown by the band structure of frequencies and also the layered structure of the
Poincaré map at 7000 rpm. The presence of dense regions in the orbit is indicative of the
onset of chaos. The chaotic region extends upto 7050 rpm after which the solution has a
2-T periodic response obtained at 7100 rpm as shown in Fig. 4.69.

The second chaotic region starts from 7215 rpm and extends upto 8620 rpm. The
chaotic solutions at 7300, 7600 and 8500 rpm are shown in Figs. 4.70 to 4.72
respectively. The frequency spectrum has a dense band structure as seen in-between
spikes of VC and its multiples. The fine-layered structure of the strange attractor is also
clear from Poincaré maps. The orbit at this speed does not repeat itself. The Poincaré
maps of chaotic solutions have fractal structures that repeat as the map is magnified. The
time responses also show beat and chaos like behavior. It is clear that loss of periodicity

is the characteristic feature of chaotic solution.
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The response characteristics at 8700 rpm and at 9300 rpm are shown in Figures 4.73
and 4.74 respectively. The horizontal and vertical displacement spectra have band
structure and closed orbits with dense and not so dense regions. Analysis has shown that
the chaotic character becomes weaker from 8650 rpm to 9500 rpm. The responses shown
in Figs. 4.73 and 4.74 can be considered neither perfectly chaotic nor perfectly periodic.
It is not perfectly or predominantly chaotic because the two spectra for horizontal and
vertical displacements have only a slightly banded structure. The orbits in Poincaré maps
are complicated because of this mixed nature of the response. From 10500 rpm to 10800
pm, the response explodes into an intermittent behavior. The eigen values of
monodromy matrix cross +1, so this becomes an intermittent behavior of type I (Nayfeh
and Mook, 1979). In Figures 4.75 and 4.76, the frequency spectra show the band
structure and the orbit shows a small dense region surrounded by a not so dense structure.
The phase plots also show dense and not so dense regions. As speed increases, the
stability returns and system shows periodic nature from 11000 rpm onwards as shown in

Fig. 4.77. The nature of solutions for various speeds is given in Table 4.5.

4.5.2.6 Response for line contact at yo=1 um, W=6 N and F, = 15%W

Any study of rotors supported on rolling element bearing without consideration of
unbalanced force is rather incomplete and unrealistic. To simplify the study, unbalance
force is assumed to be constant in the entire speed range. The level of unbalanced force
has been considered as 15% of W and radial internal clearance is taken as 1um. The
frequency components corresponding to 2 X, X (rotational frequency), 2X, 3X, 4X have
been filtered from the overall response plot-and plotted against speed. As is well known,
even the most precise rotor balancing exercises are not able to totally eliminate the
unbalance in a rotor.

Rolling element bearing supporting a rigid horizontal rotor with an unbalance force
(F.) is taken for theoretical simulation as shown in Fig. 4.32. Speed response plots have

been generated for the combination of radial internal clearance and unbalanced force. The
overall response plot of rolling element bearing for line contact with radial internal
clearance of 1 um, F, = 15% of W and radial load of 6 N is shown in Fig. 4.78. The
overall response plot has a very rough appearance in the entire speed range. Two regions
bounded by lines A-A’ and B-B' are shown in Fig. 4.78.
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Table 4.5 Nature of solutions for yo= 0.5 pm, W = 6N

Speed (RPM) Nature of Response
Upto 925 1T stable low amplitude
Period-one unstable (at VC and
945 - 2015
harmonics)
2050 - 3600 Chaotic
3660 — 3850 Period-one unstable
3915 -4350 Chaotic
4400 — 4920 Period-one unstable
4950 — 5400 Chaotic
5450 — 6850 Periodic
6980 — 7050 Chaotic
7100 2T
7215 - 8620 Chaotic
8700 — 9500 Period-one unstable (Mixed
nature)
10500 — 10800 Intermittent Chaotic
11000 Periodic
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From Fig. 4.78, it is observed that the value of vertical displacement is less than that
of horizontal displacement in the entire speed range. The response plot (Fig. 4.78) has a
combination of the response due to varying compliance and other peaks (due to rotational
speed) as a result of unbalanced force. The high amplitude region starting from 450 rpm
has stable periodic orbit unlike the balanced case (as has been shown earlier in Fig. 4.41)
where high amplitude region provides unstable period-one response. Due to unbalance
rotor effect at 1200 rpm, the peak amplitude (P') appears in the response plot.

Period-one solution becomes unstable from 850 to 5950 rpm because of period
doubling bifurcations. The solution undergoes pitchfork bifurcations till 1170 rpm after
which the chaotic solution is obtained at 1200 rpm. At this speed chaos is at a developing
stage. Figure 4.79 shows the nature of solution at 1200 rpm. The dense band of frequency
spectrum shows the presence of both the rotational frequency (X = 20 Hz) and the
varying compliance frequency (VC = 65 Hz). The presence of dense regions in the orbit
is indicative of the onset of chaos. It cannot be considered perfectly periodic, since the
two are not exactly line spectra. The orbit is complicated because of this mixed nature of
the response as shown in Fig. 4.79.

For the first chaotic region 1700 to 6150 rpm, the loss of stability is seen to be by the
eigen values crossing +1. The chaotic solutions at 3500, 3700, 4500 and 5500 rpm are
shown in Figs. 4.80 to 4.83 respectively. The frequency spectrum has a band structure as
seen in-between spikes of VC, X/2 and their multiples. Also, both the frequency
components interact to produce sum and difference combination frequencies. The dense
structures of the orbit are also clear from phase plots. The orbit at this speed does not
repeat itself. The time responses also show beat and chaos like behavior. It is clear that
loss of periodicity is a characteristic feature of chaotic solution.

The low amplitude region of unstable period solution starts from 6910 rpm and
extends upto 10850 rpm. The large region of chaotic behavior is seen here. For the
chaotic region between 7600 to 10750 rpm, the loss of stability is seen to be by eigen
values crossing +1. In Figures 4.84 to 4.86, the chaotic responses at 8000, 9000 and
10700 rpm are shown by band structure of frequencies of frequency spectra. These band
structures develop around X/2 in the vertical and in the entire speed range for the

horizontal displacement. The fine-layered structure of the strange attractor is also clear
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from Poincaré maps. The presence of dense regions in the orbit is indicative of chaos.

From 10900 rpm onwards the stability returns and system shows a periodic nature. The

nature of response for various speeds is given in Table 4.6.

4.6 CONCLUSIONS

The theoretical study of the balanced and unbalanced rotor supported by rolling

element bearings for two levels of radial internal clearance of 20pm and 12pm (for point

contact) and 1pm and 0.5pum (for line contact) and a level of unbalance force (15% of

radial load (W)) has lead to the following conclusions:

1.

The rotor bearing system has two high amplitude regions. The first region is one of
period doubling response where the period-one response is unstable. This region also
has bifurcations leading to 3 T, 5 T and 7 T responses. Chaotic response appears in
this region, which has a weak attractor as compared to the chaotic behavior in other
region. As Fukata et al. (1985) have shown this high amplitude region forms around
critical speeds.

The second region appears for high~ fadial internal clearance, which has not been
predicted by previous studies. This region has unstable response due to Hopf
bifurcation generating amplitude modulation and quasi-periodic response. The ratio
of the carrier frequency (VC) to the modulating frequency decreases with the increase
in speed. This leads to quasi-periodic and mode locked behavior.

Radial internal clearance is an important parameter for determining the dynamic
response as it is observed that with increase in clearance, the regions of unstable aﬁd
chaotic response become wider.

The peaks of amplitude shift down with increase in radial internal clearance, which
points to decrease in the dynamic stiffness of the bearing with increasing clearance.
This is not predicted in the stiffness estimates provided by Tamura (1985) and Datta
and Farhang (1997).

Decrease in clearance, increases the linear characteristics of the rotor bearing system.
There are no sub-harmonics formed or chaos as clearance decreases. The regions of

unstable behavior decrease with decrease in magnitude of unbalanced rotor force.
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Table 4.6 Nature of solutions for yo=1 um, W = 6N and F, = 15%W

Speed (RPM) Nature of Response
Upto 450 1T stable low amplitude
850-1170 Period-one unstable (at VC and
harmonics)
1200 Chaos developing
1700 - 5850 Chaotic
5900 - 6300 Low amplitude region of unstable
period
7600 - 10750 Chaotic
10900 Periodic
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. Due to the larger contact area, roller bearings are seen to have higher stiffness than

ball bearings and the regions of unstable response are wider as shown by the speed
response plots. The frequency of vibration for roller bearing is higher than that for

ball bearing.

. For unbalanced rotor condition, the study shows that the interaction of varying

compliance and unbalanced force results in a response, which has regions of
instability and chaos. The high amplitude regions are not necessarily regions of
instability. The frequency spectrum displays multiples of rotational frequency (X) as
well as varying compliance (VC) frequency and the linear combination of the two
frequencies. This is an important result and similar results have also been reported by
Ehrich (1988), who has shown the presence of sum and difference frequencies in the

spectra.

. The effect of unbalanced rotor results in larger unstable region in roller bearing as

compared to ball bearing. The second region of unstable response also shows the
occurrence of chaos for unbalanced rotor. Invariably, the route to chaos is seen to be

intermittency mechanism by period doubling behavior.

. Based on the characteristics of the dynamic behavior of the system, the responses

may be put in three categories. (i) The system responses are periodic and are not
sensitive to initial conditions or small variations of system parameters. This is a well-
behaved region, which helps the designer to predict the trends accurately and without
ambiguity. (ii) The system responses are chaotic but near quasi-periodic or sub-
harmonic nature and are not sensitive to initial conditions but extremely sensitive to
small vaﬁations of system parameters and operating conditions. For these responses,
the hidden danger is the periodicity. The periodic response may lead designers to
overlook its large sensitivity to small variations of system parameters or operating
conditions. (iii) The responses are unpredictable, either periodic or chaotic and
extremely sensitive to both the initial conditions and small variations in the system

parameters.
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Chapter 5

DYNAMIC ANALYSIS OF ROLLING
ELEMENT BEARINGS WITH
DISTRIBUTED DEFECTS

In this chapter, the vibration response of rolling element bearing in a rotor bearing
system due to distributed defects under radial load is investigated. The distributed defects
considered are, the waviness of outer race, inner race and rolling elements and off-sized
rolling element. Distributed defects existing in the rolling elements of a rolling element
bearing have been regarded as excitation sources in the form of bearing frequencies, i.e.
principal frequencies, their harmonics and side band frequencies. The excitation
frequencies are proportional to the rotational speed of the shaft. The ratio between the
excitation frequency and the shaft frequency is defined as excitation order. Most order
numbers of excitations generated by the bearing are rational numbers so that they can
easily be detected in the vibration spectrum. A comprehensive overview of the vibrations
generated in rolling element bearings was given by Wardle (1988) and Yhland (1992).

However, these defects introduce the time varying components of the stiffness
coefficients to change the natural vibration characteristics of the rotating system as well
as response. Therefore, it is important to investigate the stability due to distributed
defects in order to achieve their sound operation. The variation in contact force between
rolling element and raceways due to the distributed defects causes an increase in the
vibration level, which in turn results in premature surface fatigue leading to failure. The
study of vibration response due to this category of defects is, therefore, important for
quality inspection as well as for condition monitoring. These defects may result from
manufacturing error and abrasive wear. Aktiirk (1999), Tandon and Choudhury (2000)
and Jang and Jeong (2002) have considered ball bearing waviness in their model.
However, in their investigation, they did not apply these effects to the whole operating
range, due to the inherent instability.

In the present investigation, the stability of rotor bearing systems due to distributed
defects has been analyzed in detail. The present study also characterizes the vibration

frequencies resulting from the distributed defects existing in rolling elements, the
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harmonic fréquencies resulting from the nonlinear load-deflection characteristics of the
rolling element bearing and the sideband frequencies resulting from the defects

interactions of the rolling element bearing.

5.1 INTRODUCTION

Rolling element bearing is one of the essential elements in the spindle system of the
rotating machinery from the conventional power driven machines to the present
sophisticated information storage devices. One important issue in rotor bearing
application is the reduction of noise and vibration originating from the ball bearings. The
rolling element bearing is composed of rolling elements, inner race, outer race and cages.
One possible source of rolling element bearing vibration is the unbalance of the bearing
force or the geometrical imperfections of the rolling elements. These geometrical
imperfections are often called as ‘‘waviness,”” and many researchers have investigated
the vibration of a ball bearing resulting from the waviness.

Some researchers have investigated the vibration forces and frequencies originating
from the waviness of the ball bearing. Yhland (1967) reported the axial and radial
vibration frequencies due to the variation of waviness order through experiments. Wardle
and Poon (1983) investigated the relation between the ball number and waviness order
and they advocated that the ball bearing generates severe vibrations when the former
matches with the latter. Wardle (1988) also predicted vibration frequencies resulting from
the nonlinear load-deflection characteristics through his analytical model of the ball
bearing to explain the relation between waviness and exciting forces. However, his model
could not predict the vibration frequencies in the case where multiple waviness exists
simultaneously in several components of the rolling elements of the ball bearing.
However, the above studies did not include the dynamics of the rotor, so they could not
explain the quantitative and qualitative characteristics of ball bearing vibration. Yhland
(1992) used a linear theory to calculate the stiffness matrix of the ball bearing with
waviness and investigated the effect of waviness through his rotor dynamic model.
Yhland (1992) model however, could not explain the nonlinear load-deflection effect
because it did not include the change of the relative positions of the rolling elements

during rotation. Aktiirk et al. (1997) proposed a vibration model of a ball bearing with
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waviness considering three degrees of freedom, but they did not explain ball bearing
vibration due to the effects of angular motion. Present study proposes a nonlinear model
to analyze the ball bearing vibration resulting from the distributed defects in the rigid

rotor supported by two or more ball bearings.

5.2 PROBLEM FORMULATION

For investigating the vibration characteristics of ball bearings, a model of a rotor-
bearing assembly can be considered as a spring mass system, in which the outer race of
the bearing is fixed in a rigid support and the inner race is fixed rigidly with the shaft.
Elastic deformation between races and rollers gives a nonlinear force deformation
relation, which is obtained by Hertzian theory. Other sources of stiffness variation are
positive internal radial clearance, existence of a finite number of balls whose positions
change periodically, the inner and outer race waviness and off-size rolling element. These
cause periodic changes in stiffness of bearing assembly. Thus, the system undergoes
nonlinear vibration under dynamic conditions.

In the mathematical modeling, the rolling element bearing is considered as a spring
mass system and rolling elements act as nonlinear contact spring. Since, the Hertzian
forces arise only when there is contact deformation, the springs are required to act only in
compression. In other words, the respective spring force comes into play when the
instantaneous spring length is shorter than its unstressed length, otherwise the separation
between rolling element and the races takes place and the resultant force is set to zero.
When there is an imperfection in a bearing, it causes additional deflection difference.
This difference should also be considered in modeling. A detailed description about
geometrical imperfections of bearing has already been given earlier in Chapter 3.
Imperfection like ‘waviness’ may be caused by different manufacturing malfunctions
such as uneven wear of the grinding wheel in various operations, variable interactions
between the tool and work piece and vibrations of machine elements or movements of the
work in the fixture. Waviness consists of sinusoidal shaped imperfections on the outer
surface of the components. Furthermore, the wavelength is assumed to be much greater
than the roller to race footprint width and the wave geometry itself, is assumed to be

unaffected by contact distortion.
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Some of the frequency components generated because of these defects are same as
varying compliance frequency as reported by Sunnersjo et al. (1985), Tandon and Nakra
(1993), Aktiirk (1999) and Jang and Jeong (2002). In this study, we have considered the
bearing as a whole. The balls are arranged equi-spaced within the bearing. They also
move around the races with equal velocity, which is physically possible because of the

cage. The waviness (IT) exists at the outer surface of the bearing components. Hence,

with the consideration of waviness (IT), the contact deformations &, and &, at the inner

and outer races respectively, may be estimated as,

Sn=llr+p, +1}-2,] (5.1)
8ou =[R-{p; +p, +11] (5.2)
In Eq. (5.1), if {r+p, +11} > x; , compression takes place and a restoring force acts.

If {r+p, +I1} < x;, there is no compression and restoring force is set to zero

Likewise in Eq. (5.2), if R < {o; +p, +I1f, compression takes place and restoring force acts.
IfR > {p i P, +I1}, there is no compression and restoring force is set to zero.

After considering the distributed defects, the system equations of motion for the

generalized coordinates gj, may be written as,

[ o2 ax .
m; p;+m;gsing; +m;p; 0 —(ki,,)[(r+p, +H)—;(jL Ep_j-“'-(ko"')R—(pj +p, +1‘[)L
J
5.3
4 Oy [(r+p +10)- 7 ']2 +l-a£%[R-(p, +p, +H)]2, =0, j=12iN 3
2 9p; " 72 9p;
For the generalized coordinate x;, the equation is:
o & oK, .
(min +mrolor)xin— Zkin [(r +p" +H)—ZJ']4 &CJ = E‘ Sln(w t) (54)
Jj=l in

For the generalized coordinate y;, the equation is:

o N, 5Z ,
(7, + )yt +1, g~ Tl +2 +H)—76;Lgyf"=W+FL cos@?) (s.5)

Jj=l in
This is a system of (N, + 2) second order, non-linear differential equations. No
external radial force is allowed to act on the bearing system and no external mass is

attached to the outer race. The “+” sign as subscript in these equations signifies that if the
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expression inside the bracket is greater than zero, the rolling element at angular location

0, is loaded, giving rise to a restoring force. If the expression inside bracket is negative

or zero, the rolling element is not in the load zone and restoring force is set to zero. For

the balanced rotor condition, the unbalance rotor force (F,) is set to be zero.

5.3 RESULTS AND DISCUSSION

Theoretical results are obtained for a rotor supported by rolling element bearing
using the techniques already discussed in sections 4.3 and 4.4 of chapter 4. The results of
the present work are presented and discussed in the subsequent paragraph

5.3.1 Results of Theoretical Simulation
In order to study the effect of distributed defects in more detail, the rolling element

bearing employed in this study is reduced to a radial ball bearing for this particular
investigation is modeled as was shown earlier in Fig. 4.1. Balls are radially preloaded in
order to ensure the continuous contact of all balls and the raceways, otherwise a chaotic
behavior might be observed (Gad et al., 1984 (a)). In the simulation model, the rotor is
assumed to be uniform, perfectly rigid and supported by radially loaded ball bearings. In
order to see whether the predicted vibrations would occur in the mathematical model,
surface waviness of the bearing components are considered separately. The outer races of ‘
all bearings are assumed to be wavy by the equal amount, so that the rotor would move in
a cylindrical mode. The vibrations responses of a rotor, which is supported by bearings
with 8 balls and rotating at a speed of 5000 rpm, are obtained. The waviness amplitude is

set to 0.2 pm and the number of waves around the circumference of races is allowed to

vary for a bearing.

5.3.1.1 Outer race waviness
In order to see whether the predicted vibrations would occur in the simulation model,

a set of results were obtained for selected number of waves. When the number of waves
is 7, the peak amplitude of vibration appears in vibration spectra at the varying
compliance frequency (VC = 266.7 Hz) as shown in Fig. 5.1. The amplitude of peak is 4
pum for horizontal and 5.5 pum for vertical displacement response. Another peak appears at
the super-harmonic (2¥C=533.3 Hz) in the spectrum. The ¥C and its harmonic character

of the frequency spectra is also brought-out by Poincaré map with the closed orbits.
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When the number of waves is 8, the dominant peak amplitude of vibration appears in
the frequency spectra at the varying compliance frequency (¥C= 266.7 Hz) with the first
super-harmonic at twice the varying compliance frequency (2 ¥C= 533.3 Hz) for vertical
displacement as shown in Fig. 5.2. In the frequency spectra for horizontal displacement,
the peak amplitude of vibration appears at 2 ¥C= 533.3 Hz and the sub-harmonic appears
at VC= 266.7 Hz. The amplitude of the peak is 3.7 pm for horizontal and 0.9 pm for
vertical displacement response. The other peaks appear in the frequency spectra at 3VC=
800 Hz and at 4¥C= 1066.7 Hz. Figure 5.2 shows that the amplitude of the peak at the
dominant frequency for N, = 8 is less than that observed for Nj = 7 for the simulation
model. Wardle (1988 (b)) has pointed out that severe vibrations occur for outer race
waviness when the number of waves and balls are equal. Hence, severe vibration occurs
when the waviness order (n) equals N,. Wardle (1988(a)) has also concluded from his
linear model that the radial vibrations have larger amplitudes when n=gN, £1. The
response obtained in the present study matches partially with his work.

When the number of waves is 12, peak amplitude of vibrations at twice of the varying
compliance frequency (2 vc= 533.3 Hz) with first subharmonic at the varying compliance
frequency (VC=266.7 Hz) as shown in Fig. 5.3. The amplitude of the peak is 0.75 pm for
horizontal and 0.6 pm for vertical displacement response. Hence for N, = 12, the
vibrations are very small as also predicted by Aktiirk (1999). The ¥C and its harmonics

character of the frequency spectra is also brought-out by Poincar¢ map with the two

closed orbits. The time displacement response also shows the sub-harmonic nature of the

system.
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When the number of waves is 16, the peak amplitude of vibrations appears at twice
the varying compliance frequency (2 ¥C= 533.3 Hz) as shown in Fig. 5.4. The amplitude
of peak is 9 pm for horizontal and 7 um for vertical displacement response. A change of
dominant vibration frequency from varying compliance frequency to twice the varying
compliance frequency (2 ¥C) is of particular interest. A clear transformation from q = 1
to q = 2 can be observed in the resulting vibration spectrum. When the number of waves
is 17, high amplitude of peak appears at twice the varying compliance frequency (2vC=
533.3 Hz) as shown in Fig. 5.5. The amplitude of the peak is 9 pm for horizontal and 2
pm for vertical displacement response.

When the number of waves is 21, the peak amplitude of vibration appears in the
spectrum at thrice the varying compliance frequency (3 ¥C= 800.5 Hz) as shown in Fig.
5.6. The amplitude of the peak is 3 um for horizontal and 1.2 um for vertical
displacement response. In this case a change of dominant vibration frequency from twice
the varying compliance frequency (2 ¥C) to thrice the varying compliance frequency (3
vC) is of particular interest. A clear transformation from g = 2 to ¢ = 3 can be observed
in the resulting vibration spectrum. |

When the number of waves is 31, the peak amplitude of vibration appears in the
spectrum at four times the varying compliance frequency (47C= 1066.67 Hz) as shown
in Fig. 5.7. The amplitude of the peak is 1.2 pm for horizontal and 0.55 pm for vertical
displacement response. One can observed a clear transformation from ¢ = 3to ¢ =4 in
the resulting vibration spectrum.

From the obtained results for outer race waviness it can be inferred the severe
vibrations occur when the number of balls and waves are equal. The waviness order for

severe vibration is n=N,. It is also observed from the obtained responses that small
amplitude of waviness on the stationary outer race of a radial loaded bearing produces
vibration, only at those frequencies that are harmonic of the ball to outer pass rate

(Nbxa)

cage ) *
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Table 5.1 Summary of outer race waviness

Waviness Order (lobes / Peak Amplitude at Harmonic in Vibration
circumference) Spectrum at
7 vC 21C
8 vc 2VC,3VC,4VC
12 ya4e VC,3ve
16 2vC vC 4VC
17 2VC Vvc,4vC
21 3vC vc,2ve
31 4vC vC,2ve,3ve
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A clear transformation fromg =I/tog=2,g=2tog=3and g = 3toqg =4 can be
observed in the vibration spectrum as the 'number of waves increases. The amplitude of
peak deceases also with increasing number of waves (Ny). This has been theoretically
proved by Wardle (1988(a)) and Aktiirk (1999). The radial vibrations are produced when
the number of waves per circumference is an integral multiple of the number of balls in
the bearing. This has also been observed by Wardle (1988b) experimentally and by
Yhland (1992) theoretically. Table 5.1 summarizes the relevant waviness orders, their

peak amplitudes and harmonics in the bearing spectrum, (N, x@,,, ). The waviness order

and vibration frequency for the outer race waviness are found to follow the relations

given below.
‘Waviness order Vibration caused by waviness
n= qNb +k qwawge (5.6)

5.3.1.2 Inner race waviness

The vibrations produced by waviness on the rotating inner race exhibit a more
complex spectrum than that produced by outer race waviness. In order to study the inner
race waviness, the bearings of the simulation model are assumed to have waviness of the
same order and magnitude. The amplitude of the waviness is 0.2 pm, number of balls is 8
and rotor speed is 5000 rpm. As the inner races of the bearings are fitted to the rotor, they
rotate at the rotor speed. Axial vibration occurs at frequencies that are harmonics of the

ball to inner pass rate |- Ny (@ege ~®ime- )] The response has been obtained for different

orders of waviness at inner race. For relatively low orders (in this case waviness is also
called out of roundness), the vibration spectrum due to waviness was first experimentally
studied in detail by Gustafsson et al. (1963). They reported that the number of waves
times the inner race rotational speed dominates the vibration spectrum. The same
conclusion has also been reported by Yhland (1967). |

The predicted vibrations are clearly observed in case of 2 waves, as shown in Fig.

5.8. A dominant peak appears at 2w, =166.67 Hz with the other peaks at super

harmonics of the rotor speed 4 a,,,,, = 333.5 Hz, 6 ®,,,,= 500 Hz and at the wave passage

inner

frequency (WPF)@,;, = N, (@yr — o) = 400.3 Hz. Other Peaks also appear which are
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= 233.5 Hz and at w,, +2w;,, = 567 Hz. The major

2a)imler wp inner

more complicated at o,, -

peaks of the frequency spectra are also brought-out by phase plot with the appearance of
dense closed orbits. However, a more complicated response is observed for 3 waves. A

dominant peak of relatively smaller amplitude is observed at 3 w;,,, =250 Hz, implying a

change of shape in the vibration spectrum. While the other peaks are observed at
Oy =20 jaer = 233.6 Hz, 6 ,,,,,, = 498 Hz, 0, + s, = 483.6 Hz, 20, — 0, = 717 Hz

wp

and at 9 w,,,, = 750 Hz as shown in Fig. 5.9.

inner

For 4 waves, the peak amplitude appears in the spectrum at wave passage frequency

(0,,) = 400.3 Hz and a relatively small peak appears at 4o, = 333.3 Hz. The

vibrations due to waviness for vertical displacement are relatively small (0.5 pum). The

other peak amplitude appears at super-harmonic of the rotor speed 2 w,,, = 800.6 Hz and

this is confirmed by the presence of two dense closed orbits in phase plots as shown in
Fig. 5.10.

For 6 waves, the frequency spectrum has a closer match with the given equation and
from this waviness order onwards, the vibration spectrum is in better agreement with this
equation. The waviness order and vibration frequency for inner race waviness follow the
following relations,

Waviness order Vibration caused by waviness
n=qN, £k N (@inner ~ W cqge )£k ipner (5.7)
For 6 waves, the peak amplitude (2.5 pum) appears in the vibration spéctrum at

@, —20;pme = 233.5 Hz, where ¢ = 1 and & = 2 in the Equation (5.7). However, there are

wp

other peaks also at 1) 0, ~ @, =117 Hz, Y, 0., + 20,4, = 367 Hz (Where g = % and p =
2), @, +Ojpre =484 Hz and at w,,, +6 45, = 596 Hz as shown in Fig. 5.11.

Wardle (1988(a)) has predicted from his linear equations of motion that the vibrations

would take place only at waviness of order n=gN, £1. However, the vibrations for non-

linear systems are relatively more complicated. Vibrations at the predicted speeds are the
most severe ones and the equation given above matches with the simulation model for

these values of waviness order.
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For example, for 7 waves, there is a peak of high amplitude (11 pm) at o, -~ @, =

316 Hz, where ¢ = 1 and & = 1 in the Eq. (5.7). The other peak appears in the vibration

spectrum at super-harmonic 2 w,,, -®;,,, = 632 Hz as shown in Fig. 5.12. For 9 waves,
there is a peak of high amplitude (13 pm) at ,,, +@;,,, =483 Hz, whereg=1and k=1

in the Eq. (5.7). The other peak of small amplitude appears in the vibration spectrum at

super-harmonic 2 w,, +®;,,., = 966 Hz as given in Fig. 5.14. From the relationship given

in Eq. (5.7) for 8 waves, the vibrations are predicted at wave passage frequency (w,,) =
400.3 Hz, where g = 1 and k = 0 in the above equation and its super-harmonics at 2 w,,, =
800.6 Hz as shown in Fig. 5.13. The amplitude of peak is 0.7 um. When the number of
waves is 10, the peak amplitude of vibration appears in the spectrum at o, + 2wy, =

566 Hz where g = 1 and k = 2 in the Eq. (5.7) as shown in Fig.5.15. The amplitude of
peak is 2 pm. The other major peak is at %2 (@, +20;,,,, ) = 283 Hz. The amplitude of

peak is 5.5 pm.
For 11 waves, the peak amplitude of vibration appears in the spectrum at

20, —50imer = 389 Hz where g =2 and k = 5 in the above equation as shown in Fig.5.16.
The amplitude of peak is 0.4 pm. The other major peak is at 2 (@,, +3®jpe ) = 325 Hz.

The amplitude of peak is 4 um. For waviness of order 12, the predicted peak is either at

O\ +40yner OT 3t 200, ~ 4, depending on the parameter ¢ and k chosen in the Eq. 5.7.

The peak for 12 waves are at 20,, —40;,,, = 467 Hz where g =2 and k = 4 in the above

wp
equation as shown in Fig. 5.17. Vibration amplitudes in the spectrum for 12 waves
become negligible (< 1.5 um). However, there is another peak at w,,, +4w;,,, = 733.5 Hz,
where ¢ = 1 and k& = 4 in Eq. (5.7). A clear transformation from ¢ =1 to ¢ = 2 can be
observed in the vibration spectrum obtained for the waviness of order 12. When the
number of waves is 13, the major peaks appear in the spectrum at 2w,,, -3w,,,, =550 Hz

and at % (20,, ~30;,,, ) = 275 Hz where ¢ = 2 and k£ = 3 in the Eq. (5.7) as shown in

Fig.5.18. Similar pattern is observed to appear in the vibration spectrum for 14 waves.
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For 14 waves, the major peak amplitude of vibrations appears in the spectrum at

200, =20y, = 633.5 Hz and at 2 (20,,, -2, ) = 316.5 Hz where ¢ =2 and k=2 in the

Eq. (5.7) as shown in Fig.5.19. For 15 waves, severe vibration exists as predicted by

Wardle (1988(a)). The peak amplitude of dense vibration appears at 2w, -y, = 717

Hz, where ¢ =2 and k=1 in the Eq. (5.7) as shown in Fig.5.20. The nature of solution for
15 waves is chaotic. The frequency spectrum has a band structure in between spikes of

(20,, =@, ) and its multiples. The amplitude of peak is 2.5 um. The fine-layered

wp
structure of the strange attractor is also clear from Poincaré maps. The orbit does not
repeat itself at this speed. The Poincaré maps of chaotic solutions have fractal structures
that repeat as the map is magnified. It is clear that loss of periodicity is the characteristic
feature of chaotic solution.

When the number of waves is 16, the stability returns and the peak amplitude of
vibration appears at 20,, = 800.5 Hz where ¢ = 2 and &k = 0 in Eq. (5.7) as shown in

Fig.5.21. The amplitude of peak is 1.4 pm. For waviness order of 17, the peaks are at
20,y + Oy = 884 Hz, 2 (20,, + i) = 442 Hz, 20,, -60.,,,= 598 Hz and at

20,, — Ojme» = 117 Hz as shown in Fig. 5.22. The amplitude of peak is 7 pm. The system

shows high non-linearity for 15 and 17 waves, while for 16 waves a periodic nature is
observed. Hence, severe vibrations would take place only at waviness of order n=gN, %1
as also predicted by Wardle (1988(a)), where g = 2 in this equation.

In the present results, four different stages are observed. From N, =2 to N,, = 5, small
amplitude of peak in vibration spectrum exists. From N,, = 7 to N,, = 9, the predicted
vibrations are for g = 1in the Eq. (5 .7). From N,, = 11 to N,,= 13, there is a transformation
from g = 1 to g = 2 in Eq. (5.7) and from N, = 14 to N,, = 17 the predicted vibrations are
again for ¢ = 2. A similar trend is also expected for larger orders of waviness. Table 5.2

shows the summary of the inner race waviness.

5.3.1.3 Ball waviness

In order to study the effect of ball waviness, the ball is assumed to have wavy surface.
The case is further simplified by assuming that the ball rotates about an axis passing

through its center and parallel to the bearing axis.
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Fig. 5.22 Response plot for inner race waviness at N, = 17
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Table 5.2 Summary of inner race waviness

Waviness Order (lobes / Peak Amplitude at Harmeonic in Vibration
circumference) Spectrum at
2 2 Djnner 4 Dinner » 6 Dinner » wnp ’
Dy = 20nner 5 Oy + 2a)imler
3 3 Dinner 6 Dinner » 9 Djpner » D wp 2a)ilmer >
Dy + Djyper 5 za)up ~ Ojpper
4 4 Dinner 2 wup
6 2w,
Dup 20inner 2 Dyp ~ Dinner » ] 2 Dyp + 2@ jpner »
wup + @ipyer » w\vp +6wcage
7 WDy ~ Oinper 2 Dyp ~ Dipner
8 Oyp 20,,
9 o wp + Dipper 2 wup +@pper
10 wup + 2a)imu:r Ve ( wwp + 2winmzr )
11 2a’wp - 5a’inner %( Dyp + 3winner )
12 @y +4W;ppe, OF Oyp +4@;ner
2a)wp - 4wimrer
13 ZwW =3®;uner % ( 2(0"7, —3@jpner )
14 2wwp - 2wirmer 2! (20),,7, - 2a’inmzr )
15 260“1, = ®Dipner %( anp ~ Dipner )
16 20,, Oy
17 2(0“7, + Dipper & (2(0“7, + Ojpper ) 2a)wp - 6wcage ’

2wup ~Diper
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The amplitude of the waviness is 0.2 um, number of balls is 8 and rotor speed is 5000
rpm. In the case of ball waviness, there are two important frequencies. The ball set rotates

at the cage speed around the inner race and the ball with wavy surface acts like an
oversized ball. Since the ball set comes to the same position after one cage rotation, the
system undergoes vibrations at the cage speed (w“,ge). Other important frequency is ball

rotation frequency (or, wave passage frequency) occurring at ball rotation speed

(a)“,, =N,y ). When the ball rotates, the position of the balls will repeat itself after each

%V , where N, is the number of waves per circumference of the ball. Therefore, the

vibration due to ball waviness will take place at the speed of N, w,,, .

Figure 5.23 shows the vibrations for bearing with a ball having waviness of order 2.
The rotor rotates at a speed of 5000 rpm. The wave passage frequency (N, o,,,) for N, =

2 is 166.7 Hz. A dominant peak appears in the vibration spectrum at 2w,,, =,, = 166.7

wp
Hz with the other peaks occurring at 2w,y - 20, = 100.5 Hz, 20, +30.,, = 266.6 Hz,
20,4 +80 e = 433 Hz and at 2w, +13w,, = 600 Hz. The high amplitude of peak

appears in the frequency spectra for horizontal displacement only at the wave passage
frequency. The vertical displacement response shows a fairly dense structure with small

amplitudes of peaks. The phase plane plot in Fig. 5.23, gives an indication of a quasi-

static response because of the ‘net’ structure.
For 4 waves, the peak appears at 4w,,; =o,, = 333.3 Hz in horizontal displacement
response as shown in Fig. 5.24. Other peaks are at %“’w = 83.3 Hz, 40,4y — 2005, =

266.5 Hz, 40,4y +20 4,5, = 400 Hz and at 4w,y +8w e = 600 Hz. The quasi-periodic nature

of the system is seen to be continuing with this waviness order also. Figure 5.25 shows
the vibrations for bearing with a ball having waviness of order 6. A dominant peak

appears in the vibration spectrum at 6@,,; = @,, = 500 Hz with the other peaks occurring
at 60, ~80,, = 234 Hz, 60,y ~T00pge = 260.6 Hz, 60, -0, = 466.7 Hz and at
60,5y +8®e= 767 Hz. For 8 waves, the peak appears at 8w, =w,,= 666.7 Hz in
horizontal displacement response as shown in Fig. 5.26. Other peak is at % o,, = 333.3

Hz. The system shows periodic nature for 8 waves.

181



Amplitude (pm)

Amplitude (pm)

% L Oup = 20rq1 Horizontal Displacement |
5 | .
4 o -
3 | o
2 b !
1 o -
% 100 200 300 400 500 600 700 800 900 1000
Frequency (Hz)
0.6 - - : T T : T : :
2Wron T3 Weay Vertical Displacement
0.5 ° e Zmroll+8mcage ]
0.4 - -
0.3k~ 2m!0|l+13mcagc |
0.2 k- 2Cl)roll '20)cagc a
0.1+ —
%0 100 200 300 400 500 500 700 800 900 1000
Frequency (Hz)
0.2 4—

0.15 -
i 0.1 -
£ 0.05 -
E
5]
k! o
&
E -0.05 +
3
8 -0.1
=

-0.15 4

-0.2 7 . v

-2.5 -2 -1.5 -1 -0.5
Horizontal Displacement (pm)
Fig. 5.23 Response plot for ball waviness at Ny, =2

182




Amplitude (pm)

Amplitude (pm)

10 T T T - :
Horizontal Displacement
o r (-Uwp=4mrull
8 -
7 F -
6 -
S | -
4 [
3 r =}
2 r =
1 ol
0 ) 1 : el A e i :
0 100 200 300 400 500 600 700 800 900 1000
Frequency (Hz)
03 T T T T T T T T T
Vertical Displacement
0.25F =)
4Wyo)) - 20y
roll cage 4mmll+6wcagc
0.2 Al
s (Oyp)
013 40+ 2mcage 3
0.1 -
0.05F =
0 L h 1 ‘M‘L-A_A
0 100 200 300 400 500 600 700 800 900 1000
Frequency (Hz)
.09
.06 -
§ 0.04 4
E 0.02
E
(=9
0w
A -0.02 4
8 -0.04
5
> -0.06 A
-0.08 4
-0.1 T T

Horizontal Displacement (um)

Fig. 5.24 Response plot for ball waviness at N, = 4

183



3 : : : : : : : :
_ Horizontal Displacement
m\vp - 6mroll e
2.5 =
oz 2} i
3
4 S 1.5 -
=
£ gl )
0.5 —
0 1 L i 1 Il 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
Frequency (Hz)
0.6 T T T T T T u
60rol -7 Ocage Vertical Displacement
0.5 -
. Gﬂ)rufl - chugc Wyp = 6mm]|
—~ 0.4r .
:"":, 6(l-"roll ~Weape
3
= 0.3 -
=
£ 6,0+ S
> 02} roll cage N
\
0.1 .
0 1 1 J 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
Frequency (Hz)
0.6 4 :
E 0.4
=
g 0.2 -
E
k5
a
& ®
Z
Gl -0.2 4
2
S
- 0.4
-0.6 r T T
-5 -3 -1 1 b
Horizontal Displacement (um)

Fig. 5.25 Response plot for ball waviness at N, = 6

184




Amplitude (pm)

Amplitude (um)

Owp = 8O0 Horizontal Displacement

5 -
4 .
3 -
2 -
1 =

0 100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)
0.9
Vertical Displacement

0.8 % (wwp) P
0.7 -
0.6 .
0.5 -
0.4 -
0.3 -
0.2 .
0.1 1

0 100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)
1-5 .

E 1-

2

E 0.5 4

Q

]

B o 4

B

Q

w

o -0.5 4

|

>

-1 4
-1.5 . T r
-2 -1.5 -1 -0.5 o

Horizontal Displacement (um)

Fig. 5.26 Response plot for ball waviness at N,, = 8

185




For 10 waves, the peak amplitude of vibration appears at 10w,,; = o,, = 833 Hz and at

Y w,, =417 Hz as shown in Fig. 5.27. The periodic nature of the system continues with
10 waves also. Figure 5.28 shows the vibrations for bearing with a ball having waviness

of order 12. A dominant peak appears in the vibration spectrum at %2 (120, = @,,) = 500
Hz with the other peaks are at w,, = 1000 Hz. For 14 waves, the peak amplitude of

vibration appears at 140,,; =w,,= 1166 Hz and at 8 w,, =267 Hz as shown in Fig. 5.29.

Hence, it is observed from the vibration spectrum that the peak amplitude of
vibrations due to ball waviness appear at the wave passage frequency (N,o,).

Increasing the number of waves means making the ball smoother with a larger diameter.

When the N,w,, ko, coincides with the natural frequency of the system severe

vibrations take place. Increasing the order of waviness will diminish the vibrations at the

N @ oy % k@ qq, and only vibrations at the wave passage frequency and at cage speed will

remain in the spectrum. The axial vibrations are produced when the number of waves per
circumference is an integral multiple of the ball rotation frequency in the bearing, which
was proved experimentally by Wardle (1988b) and Yhland (1972).

5.3.1.4 Ball size variation
Due to the different ball diameters, the race is deformed into a complex shape that

turns with the rotational speed of the cage. The off-sized balls were located
symmetrically in bearings such that they moved in the same direction simultaneously (i.e.
the balls are assumed to be in phase). Firstly, two balls are assumed to be 0.2 pm
oversized. The responses are obtained for the bearing with varying ball size and for
different number of balls. The rotor rotates at 5000 rpm. The ball set rotates at the cage
speed around the inner race and the oversized ball. Since the ball set comes to the same
position after one cage rotation, the system undergoes vibrations at a frequency that is

equal to the number of balls times the cage speed (Nyocyq ) i.e. at the system excitation
frequency (varying compliance frequency (Ny@coe =VC)). Table 5.3 shows the summary

of the ball waviness.
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Table 5.3 Summary of ball waviness

Waviness Order (lobes / Peak Amplitude at Harmonic in Bearing Spectrum at
circumference)

2 20,0 = Dyp 20,0 - chage s 20,0y + 3mcagc >
2wroll + chage > 2a)roll + 13wmge

4 40 o = Dy % Dyp » 4w, oy - zwcnge ’
4a’roll + chagc ’ 4wroll +8wcnge

6 6(0,0” = (0“7, 6a)roll - 8w(:age ’ 6wroll - 7wcage ]
6a)roll ~@cage 5 6wmll +8wcage ]

8 8a’roll = a)Wp ) (wwp )

10 100,5 = @, 72 (w,,)

1 -
12 /2 (lzwroll -Cl)“p) wwp
14 14(0,0” = ww 8 mcagc
190




A
3

Table 5.3 Summary of ball waviness

Waviness Order (lobes / Peak Amplitude at Harmonic in Bearing Spectrum at
circumference)
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When the number of balls is 3, the peak amplitude of vibration appears in the

spectrum at the varying compliance frequency VC =3w,,,.= 100.5 Hz as shown in Fig.

5.30. Other major peaks at super harmonics of vibration appear at integral multiples of
the varying compliance frequency, i.e. at 2¥C= 201 Hz, 3¥C= 301.5 Hz and 4vC= 402
Hz. The peak amplitude of vibration is 1.5 um. The »¥C and its harmonics (super-
harmonic) character of the frequency spectra is also brought out by the Poincaré Maps

with the closed orbits.

When the number of balls is 4, the peak amplitude of vibration appears in the

spectrum at the varying compliance frequency VC= 4w, = 133.3 Hz as shown in Fig.

5.31. Other major peaks at super harmonics of vibration appear at integral multiples of
the varying compliance frequency, i.e., at 2¥C= 266.5 Hz and 3¥C= 399.6 Hz. The vC
and its harmonics (super-harmonic) character of the frequency spectra is also brought out
by the Poincaré Maps with the closed orbits.

For 5 balls, the peak amplitude of vibration appears in the spectrum at ¥VC =50, ,,, =

cage
166.5 Hz as shown in Fig. 5.32. The system shows its periodic nature for 5 balls. One
major peak at super harmonics of vibration appears at an integral multiple of the varying
compliance frequency i.e. at 2vC= 333 Hz. When the number of balls is 6, the peak
amplitude of vibration appears in the spectrum at the varying compliance frequency

VC = 61,5, = 200 Hz as shown in Fig. 5.33. Other major peak at super harmonics of

vibration appears at integral multiples of the varying compliance frequency, i.e., at 2vC=
400 Hz and 3 ¥C= 600 Hz. The ¥C and its harmonics (super-harmonic) character of the
frequency spectra is also brought out by the Poincaré Maps with the closed orbits.

For 7 balls, the peak amplitude of vibration appears in the spectrum at VC =10 g =

233.1 Hz as shown in Fig. 5.34. Other major peaks at super harmonics of vibration
appear at an integral multiple of the varying compliance frequency i.e. at 2 ¥C= 466.2 Hz

and at 2VC+a,,,= 500 Hz. For 8 balls, the peak amplitude of vibration appears in the

cage

spectrum at VC=8aw,,,= 266.4 Hz as shown in Fig. 5.35. Other major peak at super

cage
harmonics of vibration appears at an integral multiple of the varying compliance

frequency i.e. at 2¥C= 532.8 Hz.
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Fig. 5.35 Response plot for ball size variation at N, = 8
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For 9 balls, the peak amplitude of vibration appears in the spectrum at VC =90, =

300 Hz as shown in Fig. 5.36. The system shows a periodic nature for 9 balls. One major
peak at super harmonics of vibration appears at an integral multiple of the varying
compliance frequency i.e. at 2VC-w,, = 566 Hz. For 10 balls, the peak amplitude of

vibration appears in the spectrum at ¥C =10w,,, = 333 Hz as shown in Fig. 5.37. The ¥C

and its harmonics (super-harmonic) character of the frequency spectra is also brought out
by the Poincaré Maps with the closed orbits. Other major peaks at super harmonics of
vibration appear at an integral multiple of the varying compliance frequency i.e. at 2/VC=

666 Hz and at 2 /C -3w,,,, = 566 Hz. For 11 balls, the peak amplitude of vibration appears
in the spectrum at ¥C=11lw,,,= 366 Hz as shown in Fig. 5.38. The system shows its

periodic nature for 11 balls. One major peak at super harmonics of vibration appears at an

integral multiple of the varying compliance frequency i.e. at 2 VC -4,z = 600 Hz.
For 13 balls, the peak amplitude of vibration appears in the spectrum at VC =130, =

433 Hz for vertical displacement response as shown in Fig. 5.39. While for horizontal

displacement response, the major peak appears at 2 VC-7w,,, = 633 Hz. For 16 balls, the
peak amplitude of vibration appears in the spectrum at VC = 16w, = 533 Hz for vertical
displacement response as shown in Fig. 5.40. While for horizontal displacement

response, the major peak appears at 2/C-12w,,,, = 666 Hz. Table 5.4 shows the Summary

of variation due to number of off-sized balls.
All the results show that off-sized balls in the bearing cause vibrations at the varying
compliance frequency and its harmonics, depending on their arrangement within the

bearing. The other vibrations due to ball size variation also occur at VC ke, , Where k

1S a constant.
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Fig. 5.36 Response plot for ball size variation at N, = 9
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Fig. 5.37 Response plot for ball size variation at Ny, = 10
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Fig. 5.38 Response plot for ball size variation at Ny, = 11
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Fig. 5.39 Response plot for ball size variation at N, = 13
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Fig. 5.40 Response plot for ball size variation at N, = 16
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Table 5.4 Summary of variation due to number of off-sized balls

Number of Balls Peak Amplitude at Harmonic in Vibration Spectrum
3 VC =30 4pe 2vc,3vc,4ve
4 VC = 4w 4, 2vc,3 ve
5 VC = 5004, 2ve
6 VC = 60 aqe 2vc,3 ve
7 VC =10 1gge 2VC, 2VC +@ oge
8 VC =8w,4q, 2vc
9 VC =900, 2VC - o,

10 VC =100 g, 2VC,VC -3y
11 VC =110, 2VC-40,44,
13 - VC =13w,4, 2VC =704,
16 VC =16 4q 2VC -120 4,
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5.4 CONCLUSIONS

In the present investigation, theoretical model of a rotor bearing system has been

developed to obtain the vibration response due to distributed defects in various bearing

elements. The model predicts discrete spectrum with specific frequency components for

each order of waviness. From the theoretical study of the dynamic response of a rotor

bearing system due to distributed defects the following conclusions may be drawn.

A

a.

c.

Outer race waviness
The frequency of the vibrations due to outer race waviness depends on the waviness

order and can be given as

Waviness orders Frequency of vibration caused by waviness

n=gN, tk @ =Ny 40, (5.6)
However, this equation is applicable to major peaks and because of the load
deflection relation for the balls is non-linear, hence for some cases this equation is not
satisfy.
A clear transformation fromg =Itog=2,g=2tog=3andgq = 3to g =4 canbe
observed in the vibration spectrum as the number of waves increases and the
amplitude of peak deceases with increasing number of waves (Ny), which has also
been proved by Wardle (1988b) and Aktiirk (1999).

For outer race waviness, the spectrum has components at varying compliance
frequency (VC=N, X @4, ) and its harmonics.
Severe vibrations are observed for an order of waviness n=gN, +land n=N,. For

some order of waviness, the vibrations produced due to waviness are negligible.

Inner race waviness
The frequency of the vibrations due to inner race waviness depends on the waviness

order and can be given as

Waviness order Frequency of vibration caused by waviness
n=gN, tk @=gN, (wimrer ~®@cage )i ko, per (5 '7)
However, this equation is applicable to major peaks only.

For the transformations, the peaks can be at:

i wup tJ Dinper or i (60 inner — wcage ) £ J wcage
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a.

b.

The prediction methods are useful to detect peaks at major frequencies due to inner
race waviness while peaks at other frequencies are also present.

The most severe vibrations (chaotic) occur for waviness order n=gN, *1.
For the inner race waviness order (n), the peaks or its super-harmonics are observed

at wave passage frequency (WPF) o, =N, (winner _wcage)‘

Ball waviness

A ball with wavy surface in the set will cause vibrations at two frequencies i.e. at the
@ and at the wave passage frequency of the ball(N,w,,;), which has also been
proved experimentally by Wardle (1988b) and theoretically (for low speeds) by
Yhland (1992).

Peaks at N, @,y ko are also found to appear in the vibration spectrum.

When N, £kt OF @ coincides with the natural frequency of the system

severe (chaotic) vibrations take place.
Relatively higher peaks appear at N, @,y t@ g -
For bearing with odd number of waves (1, 3, 5, 7, 11,...... ), the deformation of ball is

zero because of the inertia of the ball but the rotor is excited. Hence, the rotor

vibrations corresponding to odd wave numbers of ball waviness often appear at the

cage speed @ g, -

Ball size variation
The off-sized balls in the bearing cause vibration peaks at the varying compliance

frequency N, =VC and its harmonics, depending on their arrangement within the
bearing.
The other major peaks of the vibrations due to ball size variation are observed at

VCtikw

cage *
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Chapter 6

CONCLUSIONS AND SCOPE
FOR FUTURE WORK

In the present study, the non-linear dynamic behavior of a horizontal rigid rotor
supported by rolling element bearing is analyzed theoretically. The two important effects
considered are the non-linear support characteristics and the parametric excitation of the
rolling element bearing. The non-linearity in the bearing support is due to the nonlinear
load deflection characteristics as given by the elastic Hertzian contact between the rolling
element and inner and outer races. The radial internal clearance and distributed defects
such as surface waviness of the bearing components and off-size rolling element also
makes the load deflection characteristics discontinuous. Clearance in the bearing also
determines the contact zone between the races and rolling elements, thereby affecting the
stiffness of the bearing. Parametric effect is primarily due to the variation of bearing
stiffness as the position of rolling elements changes in the load zone. Analysis shows that
the parametric excitation introduces a varying compliance (VC) frequency, which for the
rolling bearing is about to 3.2 times the rotational speed.

The effects of parameters such as the radial internal clearance, rotor speed and the
unbalanced rotor force for point and line contact with the distributed defects have been
studied in detail.

Theoretical analysis for balanced and unbalanced rotor over a wide range of rotor
speed reveals several regions of instability as well as deterministic chaotic response. An
important finding from the present analysis is the existence of unstable and chaotic
response regions at a high speed primarily due to bearing clearance, which has not been
reported in previous literature. There is very little work reported in the published
literature on non-linear dynamic response of an unbalanced rotor. The results of the
present analysis also show the several operating regions through the intermittence
mechanism, in which the response characteristics continuously change from periodic to
chaotic and vice versa. Spectral analysis of response at various speeds and combination

of parameters of study has revealed the presence of sub-synchronous harmonic and super-
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synchronous components, varying compliance (VC) and its harmonics and linear
combination of synchronous and varying compliance frequencies. Even the periodic
orbits acquired a complicated multi-loop character because of the presence of large
number of frequency components in the response spectra. When the response is periodic,
a perfect line spectrum is obtained. For chaotic response the spectra has a banded
structure. Poincaré maps and phase trajectories also verified the chaotic response.

In this study, the vibration response of a rotor bearing system due to distributed
defects has been analyzed. The distributed defects considered are the waviness of outer
race, inner race and rolling element, and off-size rolling element. The discrete spectrums
are obtained with specific frequency components for each order of waviness. The
theoretical / experimental studies of other researchers using distributed defects have been
confirmed by the simulation model presented in this thesis. For outer race waviness, the
severe vibrations occur when varying compliance frequency and its harmonics coincide
" with the natural frequency. For inner race waviness, the chaotic vibrations occur for

waviness of order n=gN,+1. For ball waviness, the vibration occurs at the two
frequencies i.e. at the cage speed o, and at the wave passage frequency of the ball

(N,@,.). For the off-size rolling element, the model predicts discrete spectra having
significant components at multiples of varying compliance frequency.

Following important conclusions as regards the effects of various parameters on
dynamic response from the present study can be made:

Effect of Clearance: Large clearance introduces strong non-linearity and presence of
chaotic and unstable region grow wide.

Effect of Unbalance: The unbalance results in wide regions of high amplitude and
chaotic response, which is by way of period doubling and intermittency.

Effect of Waviness: Each order of waviness affects the stability of a rotor bearing
system. Available prediction methods are useful to detect peaks at major frequencies due
to waviness.

The knowledge base generated from the analysis is expected to help a maintenance
engineer in detecting the cause of instability and its preventive measures resulting in

improvement of rotor bearing system life.
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Scope of future work

The first and foremost is to be able to observe and record the chaotic response
experimentally in a rotor bearing system. Once this is made possible, the next obvious
step should be to vary various parameters like clearance, pre-load, unbalance level and
distributed defects. Also to establish the regions of operating speed and combination of
above parameters, in which the response becomes unstable and chaotic.

Since many rotors in practical use are flexible rotors, such laboratory tests need to be
conducted on flexible rotors too in order to establish the regimes for unstable and chaotic
response. Clearance will be more dominant in vertical rotors, so control tests need to be
performed to establish the conditions, which will render the rotor response unstable and

chaotic.
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Appendix A

PROPERTIES OF ROLLING
ELEMENT BEARINGS

From the manufacturers catalogs, a standard ball bearing and a roller bearing are chosen

(Fig. A.1). The geometrical and physical properties of the bearing, required for the

calculations are listed in Table A.1.

o
kA

DN\

‘—'—'—l-' .
e ————————
S ] ——

20 mm
23 mm -
31 mm
34 mm

7

AN

0

Fig. A.1 Dimensions of rolling element bearing
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Table A.1 Geometric and physical properties used for the ball and roller bearings

Mass of rolling element (m;) 0.009 kg
Mass of the inner race (m;,) 0.06 kg
Mass of the outer race (m,,,) 0.065 kg
Mass of the rotor (m,) 55kg
Radius of inner race with point of contact with the rolling element (+) | 23 mm
Radius of outer race with point of contact with the rolling element (R) | 31mm
Radius of each rolling element (o,) 3.98 mm
Radial load (W) 6N
Pitch radius of ball set 2.7 mm
Maximum amplitude of waviness (/1) 2 pm
Initial amplitude of waviness (7/o) 1 um
Initial radial position of j* Rolling Element (o) 27 mm
Outside diameter 68 mm
Mass of bearing 0.22 kg

Moment of inertia of each rolling element (7)

7.2x 10° kg.m*

Moment of inertia of the inner race (Zjyner)

2.7x 10 kg.m*

Moment of inertia of the outer race (Zouzr)

6.9 x 10° kg.m*

Moment of inertia of the rotor (Zoor)

3.7x 10" kg.m*

Number of rolling elements (N5) 8
Angular separation between elements (8= 27/ Ny) 45 deg
11 mm

Length of roller over which it rolls (/)
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Appendix B

ROLLING ELEMENT
BEARING STIFEFNESS

1. Ball Bearing

Hertz considered the stress and deformation in the perfectly smooth, ellipsoidal,
contacting elastic solids. The application of the classical theory of elasticity to the
problem forms the basis of stress calculation for machine elements as ball and roller
bearings. Therefore, the point contact between the race and ball develop into an area
contact, which has the shape of an ellipse with a and b as the semi major and semi minor
axes respectively. The curvature sum and difference are needed in order to obtain the

contact force of the ball. The curvature sum Z p is obtained as from (Harris, 1991) is

expressed as:
1 1 1 1

ZP=P/|+P12 PP = At (B.1)
'm T Tm Tmn

The curvature difference F(p) is expressed as:

F(p) = (pn —Pr2 )Z"': ‘(me ~= Puz) (B.2)

The parameters #,,,%15%m>tu2> P> Pras Pin» Puz 3T€ gIVeN dependent upon calculations

referring to the inner and outer races as shown in Fig.B.1. If the inner race is considered,

n =D2,"12 =D/,’m =‘ys"nz =r and (B.3)

o =%,p/z =%,p”, =2vauz =—%

If outer race is considered, they are given as:

r“=D/2,r12=D2,r”l=D2,r”2=R and
Pn =%»Plz =%’Pm =‘%):Pllz ='%e

As per the sign convention followed, negative radius denotes a concave surface. Using

B.4)

Table — B.1 calculation of all the parameters including curvature difference at inner and
outer race can be done. For the contacting bodies being made of steel, the relative

approach between two contacting and deforming surface is given by:
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approach between two contacting and deforming surface is given by:
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5=2787x10°0% (Z p)%é" (B.5)
Where 8" is a function of F(p).

Hence, the contact force (Q) is:

0= {(3.587x 1072 (Z p)'y2 (6° )% }5% (N) (B.6)
The elastic modulus for the contact of a ball with the inner race is:

K; = -5% - (35872107 J2(S" o, ) 12 (57 ) 255 (%) (B.7)
And for the contact of a ball with the outer race is:

K, = ai’ =(.587x10"V2(S o, )2 (6: )72 (5% (7:%) (B.8)

Then the effective elastic modulus K for the bearing system is written as:

1
[%c/" *%c,/")

In the equation (B.7) and (B.8), the parameters §; and &, can be attained from Table

K= (B.9)

A.1, if the values of F(p), and F(p), are available with using of Table — B.1. The

o

effective elastic modulus (K) for bearing system with using geometrical and physical

parameters is written as:
N
K =7.055 x10° /& — (B.10)

The nonlinear stiffness associated with point contact of spring for the inner and outer

races is calculated by using Equation (B.10) is:

(k,)=7.055 x10 5[{r +p,}- x,-]% (B.11)
(k,, )=7.055 x10° [R - {p,. + p,}]% (B.12)
M_ - 5 _ Y 0% ,

5o 3575 x10 [+ 0.3 2,1 >y ®.13)
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(fa;‘—°“2=3.5725 x10°[R -{po, + p, | # (B.14)
Pj
2. Roller Bearing

Hertz equation for elastic deformation involving line contact between rollers and
races is given by (Eschmann et al., 1985): ‘

4.05 Q9%
0= (mm)
5 7085
10° 1 off

(B.15)

Where Q is the contact force (N) and lesr is the length over which the rollers are actually
in contact. From this equation, the contact force is,

Q = 56065 .703 x1325'%® (N) (B.16)

Hence the nonlinear stiffness associated with line contact is given by

k = 56065.703x137%5°% (%) (B.17)
(ki )= 56065.703x15725,% (;n]Lm] (B.18)

(ke ) = 56065.703x 152 538 (%) (B.19)

©kin) _ 4ag5 256 x [s O (152 )La—"i (B.20)
op; op; ’

%"-0{'—) = 4485 .256 x [s 3% (15 ) (B21)

J
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Plane 2

Fig. B.1 Geometry of Contacting Bodies
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Appendix C

~._ THE VARIATIONAL EQUATIONS

The vibrational equation is integrated to find out Dy,, ¢ (x,, to0), the derivative of a
trajectory with respect to the initial condition (Parker and Chua, 1993), considering the

n'- order system

x=flut)  xt,)=x, (C.1)

with solution ¢,(x,,?,), that is,

¢;I (xo’to )= f[¢l (x’ t)’ tl ¢IO (xo’to)= xo - (C’Z)
Differentiating (C.2) with respect to x,, we get
Do 6/ (50s10)= Do S (5 ) 10108, (5,18,) (C3)

DX0¢I (xa ? to )= 1

Define ¢,(x,.t,)= D,, #,(x,.t,), Eq. (C.3) becomes,

®,(t010)= D S8 (W10, (500t ) @0(5001,)=1 (C.4)
Which is the Variational equation.

Following may be noted
1. The Variational equation is a matrix-valued time varying linear equation. It is the

linearization of the vector field along the trajectory ¢,(x,.?,)and is a function of
the trajectory.
2. Since the initial condition is the identity matrix, ®,(x,,t,)is the state transition

matrix of the linear system (C.4). It follows that perturbation § x, of x, evolves as,

Sx=,(x,,t,)5x, (C.5)

‘The perturbation & may be interpreted in two ways: as an infinitesimal perturbation
of the original system (C.1) or as a (finite) vector-valued solution of the linearized system
(C.4). The Variational equation depends on both ¢; and @;. They are usually calculated at -
the same time. To perform this simulation integration, the Variational equation is

appended to the original system to obtain the combined system,
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x s (%)
(i) "\ bxf (x,t)d)
which is integrated from the initial conditions

{3522,))}={7°}
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Appendix D |
\MODIFIED NEWMARK- B METHOD

Newmark-3 method is a numerical procedure to calculate dynamic response because
it accommodates the calculation of nonlinear response more conveniently. Also it
represents an elegant example of effective unconventional thinking in structural analysis.
The nonlinear equations of motion are integrated with the Newmark method (see Bathe,
1982). The method is based on a constant-average acceleration scheme and is also

referred to as the trapezoid rule. The following assumption are employed:

{c}}'w ={Ez}' +[(1_a){ii}' +5{U},+~ :|At ®.1)
Uy = Uy + {(:I}I x At +[(—;—— 5){b}r +a{£; }”N }At 2 | (D.2)

Where o and & are parameters that can be determined to obtained integration
accuracy and stability. When o =1/ 6 and 6 =1/ 2, relations (D.1) and (D.2) correspond
to the linear stability. The constant-average acceleration method is unconditionally stable
for linear problems. Newmark originally proposed as an unconditionally stable scheme
the constant-average acceleration method, in which case oo =1/4 and 6 = 1/ 2 used (see
Fig. D.1). For most nonlinear problems in structural dynamics this also applies. An
accuracy analysis shows that the method does not suffer from amplitude decay. With
respect to the choice of the time step At one must be aware that the method may suffer
from period elongation. In addition to (D.1) and (D.2), for solution of the displacements,
velocities and accelerations at time t + At, the equilibrium equations at this time are also

considered:

t+AL oo +At o

ol el e / (D.3)

LAPYY 1+AL o

U v U

t t+ A4t

= {5

Fig. D.1 Newmark constant-average acceleration scheme
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1441 4 1+A1

Solving from (D.2) for Uin terms of “*U and then substituting for U into
g g

441 o t+AL

(D.1), we obtain equations for U and Ueach in terms of the unknown

t1+4r 144l o4
displacements "**U only. These two relations for =~ U and U are substituted into

1+4r 1+A1 oo

(D.3) to solve for U, after which, using (D.1) and (D.2), U and U can be
calculated also. The complete algorithm is as follows:
Initial calculations

Step I: Select mass (m) and damping (c)

0..

09
Step 2: Initialize °U, Uand U.
Step 3: Select time step (At) and parameters o and 6 and calculate the integration
constants as: §20.50; @ >0250.5+5)

1 5 1 1 ) At S :
=—— g =—, @y =—, a3 =—-1, a, =—-1, ag =—| —-1], ag =At(l-5)and a, =5 At
a, o a Pl Rt R 4=, T s Z[a )’ 6 ( ) 7

For each time step

1. Put he values of acceleration and velocity at time (t) in (D.3).

1401 o t ! oo

U=ao(“'°'U— 'U)—a2 (.J-a3 U

1Al 4t ! e 1+ o,

U=U+ag U+a, U
2. Solve the equation for displacement at time t + At.

3. Calculate accelerations and velocities at time t + At.

Solving the equations of motion by Newmark method, two simultaneous nonlinear

equations with two variables x and y.
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