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( PREFACE

TaE foundations of the Building Industry were laid many hundreds
and even thousands of years ago in the earliest civilizations known
to man. In Egypt, two thousand years before Christ, there were
craftsmen with a tradition of fine building producing not only fine
architecture but works of art, and the achievements of the Greek
and Roman civilizations are still a source of inspiration to us,
but, just as in other old-established industries, the traditional
methods, although ensuring a certain standard of craftsmanship,
unfortunately also had the effect of limiting the development of
new methods. There has been much opposition to the use of
scientific methods in Building and it is only of recent years that a
scientific approach to the problems of the industry has been
accepted and that an attempt has been made to develop the funda-
mental theory underlying Building technique. Many of the tradi-
tional methods have been found to be scientifically correct, but
others have been shown to be obstructive and wasteful ; but perhaps
the most important result of the new scientific approach has been
the production of new non-traditional methods of building which
allow full scope to the special properties of the new materials which
Science has made available. The work of the Building Research
Station is particularly noteworthy and the reader is recommended
to study the excellent pamphlets and bulletins issued by this body
which, it should be added, are both interesting and clearly
written.

To obtain the best results from the new methods of building a
higher degree of knowledge of applied science is desirable among
those now entering the industry. The Technical Schools and
Colleges of this country are attempting to ensure this by the pro-
vigion of full-time Building courses and by part-time classes for
the National Certificates and by Craft apprentices courses. It is
the purpose of this book to provide the elementary science necessary
as a bagis for the study of the various technical subjects forming
part of these courses. Inevitably we have had to present our
material, drawn from many branches of science, in an abridged
form and have included only that which seemed to form the
minimum requirement for the basis of a technical education for the
building student. To those who, having read this book, wish
to learn more of any particular subject, we recommend the
comprehensive standard works on the various branches of science.

JOHN F. DOUGLAS
LINTOTT KENT
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CHAPTER I
SCIENCE AND THE BUILDER

RieHT from the beginning of his history Man has had to build to
protect himself from the elements and from his enemies. His early
efforts were crude and often unsuccessful but he learnt from his
failures and, in time, the craft of the builder gradually evolved.
This craft was based on the methods which had been found to be
successful in practice. Man had no understanding of the poten-
tialities of his materials and was still unable to predict what would

ILL7

Fig. 1. TeEmprLe oF HATHOR, DENDERAH

happen if he departed from the accepted rules of construction.
But the demand grew for larger and more ambitious buildings.
With increased size came new structural problems, needing new
solutions. Design by trial and error alone became impossible because
the waste of labour and material and the possible loss of life entailed
in the collapse of these structures could not be tolerated. To meet
the ever-increasing demands on his skill the builder had to turn
scientist, study his materials and improve them, use new materials
such as cast iron, steel, and concrete, and devise methods of design
which would enable him to solve, safely and economically, those
problems which the old craftsmen could only tackle by the long
and expensive method of trial and error.

2—(T.479) 1



2 MANUAL OF BUILDING SCIENCE

The gradual evolution of building science is recorded in the
history of architecture. The earliest dwellings were probably the
rock caves of the hillsides and the natural arbours formed from the
overhanging branches of trees. These probably inspired the huts
of timber and stone of prehistoric times. Few records exist of the
development of building before 3900 B.c., but by that time the
rule of the Pharaohs had begun in Egypt and the art of architecture
was well developed. Construction was carried out with massive
stone columns and lintels, some impression of which can be obtained

Fig. 2. THr PARTHENON, ATHENS

from the temple of Hathor, Denderah, shown in Fig. 1. This
trabeated construction was brought to perfection by the Greeks, cul-
minating in masterpieces such as the Parthenon, Fig. 2. A notable
step forward in structural science was marked by the use of the
arch by the Romans and the development of the vaulted roof
and of such fine domes as that of the Pantheon, Fig. 3, which exceeds
140 ft in diameter. The Romans also developed the science of
bridge building to such a pitch that one bridge, over the Danube,
had individual spans of 170 ft and was 150 ft high and 60 ft wide.
In the years following the fall of the Roman empire experiments
were made on the balancing of arch thrusts and the concentration
of loads on isolated piers rather than on the wall structure. Eventu-
ally a scientific framework of piers, arches, and flying buttresses was
evolved giving to Gothic architecture a lightness which can hardly
be surpassed, and a good example of this is shown in Fig. 4. With
the Victorian era came new materials and methods. Cast iron made
possible that amazing building, the original Crystal Palace, Fig. 5,
with its standardized prefabricated units, and with the twentieth
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century has come the use of steel and concrete with possibilities

which are not yet exhausted.
The great complexity of our modern civilization has brought new
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problems to the builder. It is no longer sufficient that a building
should have four walls and a roof; it must be heated, properly
lighted and provided with services such as water, electncmy, and
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all manner of mechanical plant. All these matters lie in the field
of applied science, and so it is the purpose of this book to give the

reader an understanding of fundamental scientific principles and to
explain their application to building.
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REQUIREMENTS FOR A BUILDING

Before proceeding it will be of value to make a review of the
function of a modern building and the requirements which it has
to satisfy.

Protection. The primary function of a building is to provide a
place where the routine of daily life can be carried on secure from
wind and weather and, where necessary, with privacy. There must
be walls and a roof to keep out rain and snow in winter and sun and

e e e e e

Fi1c. 5. CrysTAL PALACE

dust in summer. The complete exclusion of moisture still remains
a problem, although much ingenuity has been shown in the develop-
ment of cavity walls and damp-proof courses. In this respect the
scientific study of permeability and capillarity has been of great
assistance,

Heating and Heat Insulation. For comfort the interior must be
maintained at a temperature which is neither too high nor too low.
In cold weather some method of heating must be provided, and it
must be confessed that the satisfactory solution of this problem has
not yet been reached, although much progress has been made since
the days when the sole source of heat was an open fire burning in
the middle of the room, with a hole in the roo? for the smoke to
escape.

To the problem of heating must be added that of heat insulation,
a subject which has been much neglected until recently. It is of
little use attempting to warm a room if all the time the heat supplied
is escaping through the walls and ceiling. This is clearly wasteful,
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and scientific knowledge of heat insulation has been applied to
prevent it. Insulation is also required to keep the interior cool in
hot weather by preventing the inflow of heat from outside. In the
past thick walls provided this insulation to a certain extent, but
new methods and new materials now allow a more economical
solution.

Structural Strength. It is most important that a building should
be soundly constructed and have adequate strength so that there
may be no danger of collapse. In small buildings this can be ensured
by using excessive amounts of material although such a solution
is wasteful. In larger structures the extra material is not only
uneconomical, but is also an added liability because the structure
has to support its own weight in addition to the loads it is designed
to carry. Thus in the case of the Golden Gate Bridge or the Sydney
Harbour Bridge the traffic passing over the bridge forms but a
small proportion of the total load to be carried. Much of the strength
of the structure is needed to carry its own dead weight.

The object of the builder must be to provide the lightest possible
structure that will carry the load with safety. The study of such
subjects as the Theory of Structures and Strength of Materials has
helped to achieve this aim. The former enables the effects of the
applied loads to be found at all parts of the structure, and the latter
deals with the ability of the material to resist these effects. To-
gether they allow an estimate to be made of the size and shape of
the component members of a structure necessary to ensure that it
has adequate strength.

Water Supply and Drainage. Our ancestors were content to take
their water supply from the nearest stream or from the village pump.
The presence of an adequate natural water supply largely controlled
the siting of their towns and villages. Nowadays there is a universal
demand for a piped supply of pure water. Indeed it is essential in
towns, where the concentration of population makes the local water
supply inadequate and liable to contamination from the refuse of
town life. The need is equally great in the country, both for the
convenience of the housewife and the use of the farmer. An ade-
quate supply of water for live stock and for farm purposes is a
prime need of efficient agriculture.

The actual provision of the main water supply is the business of
the water engineer, but the builder is concerned with the proper
design and construction of the pipework within the building, and
for this work an elementary knowledge of the science of Hydraulics
is necessary. An adequate system of drainage must also be pro-
vided to remove waste water and sewage. Where a main sewage
system is available the work is restricted to the choice of suitable
pipe sizes and gradients and the proper arrangement of drains. In
isolated areas the builder may be called on to construct small sewage
disposal plants, and here again acquaintance with elementary
scientific ideas will be helpful.
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Mechanical and Electrical Services. The growing complexity of
modern civilization has brought with it the use of many mechanical
and electrical appliances. Electrical wiring systems for light, heat,
power, and telephones are needed in modern buildings. Provision
must also be made for gas supply, central heating, and ventilation.
Most large blocks of buildings have lifts and some large department
stores employ escalators. Although these services are usually
designed and supplied by specialist firms the building technician,
both in the drawing office and on the site, must make provision for
their installation and should have a general knowledge of the way
in which they function. Considerable delay and expense can be
caused by failure to provide adequate ducts for cables, while
mechanical plant can be rendered inefficient by incorrect installation.

Sound Insulation. The development of motor and air traffic and
the use of loud-speakers has created a noise problem which has been
aggravated by the trend in structural design towards the use of
lighter construction, having poor sound insulation properties. The
position is so serious that new methods of construction are being
sought, and sound insulation promises to be a major factor in the
planning and design of urban buildings. Under these conditions
a study of sound and its behaviour is of value.

Lighting. Too little consideration has been given in the past
to the proper siting of buildings and the provision of adequate
window space so that sufficient daylight and sunlight should enter
each room. Design has been based largely on empirical rules and
on consideration of architectural effect, frequently resulting in
parts of the building being cold and dark. It is now possible to
treat daylighting and sunlighting scientifically and so obtain more
satisfactory solutions.

LIMITATIONS OF SCIENCE APPLIED TO BUILDING

An attempt has been made in this chapter to show that a know-
ledge of scientific principles can assist the builder, but it is necessary
to point out that the results obtained by applying these principles
must sometimes be treated with caution. The conditions of actual
building operations are so variable that they can only be treated
scientifically by making assumptions about materials and circum-
stances which may not be true. As a result, calculations based on
these assumptions cannot yield an answer that is correct, although
it may be very nearly so. Thus in using such an answer the agsump-
tions upon which it is based should always be borne in mind, and,
from a numerical point of view, it will usually be sufficient to work
to three significant figures.



SECTION I—MATTER

CHAPTER II
PHYSICAL FORMS OF MATTER

AvLL the substances used in building, such as bricks, mortar, wood,
and glass, are forms of matter. The characteristics of matter are
that it has mass and that it occupies space, and is thus distinguished
from such things as heat or light, which are forms of energy.

Solids, Liquids and Gases. As there are many kinds of matter,
it is convenient to distinguish between them according to their
physical and chemical properties. Most materials may be classified
as belonging, under normal conditions, to one of three main physical
groups, the solids, liquids, or gases, although some substances have
properties which are intermediate between solid and liquid; for
example, pitch, and others, which are finely divided solids, may
behave on occasion like liquids. This latter fact supports the theory
(page 12) that all matter is composed of small particles, and that
the difference between solid, liquid and gas lies in the strength or
weakness of the forces holding the particles together.

In a solid these particles are bound together closely in a compact
mass, giving the material a rigid form which retains its shape and,
in some cases, e.g. steel, will only deform slightly under substantial
forces. If the deforming force is not too great, many solids will
resume their original shape when the force is removed and are said
to be elastic; but, if the force is sufficiently large, the material
may be permanently deformed. Some materials, such as lead,
show little elasticity; they are plastic, and readily take a perma-
nent set or deformation. Other solids, such as cast iron, do not
become plastic even under heavy loads, but are brittle and crack
suddenly.

The particles in a liguid are less closely knit, but the forces
between them are still sufficient to bind them together into one
continuous mass. Liquids lack rigidity and flow under their own
weight, but, unlike gases, a given amount of liquid occupies a
fixed volume, which alters very little even when great pressure
is applied ; indeed, for most purposes liquids may be regarded as
incompressible.

A gas is composed of particles which are so loosely associated
that they flow easily in all directions, expanding to fill any vessel,
even though it contains another gas, in which case the two gases
mingle or diffuse to produce a uniform mixture. Even when one
gas is much heavier than the other, they will not separate into
distinct layers, but will diffuse in this way.

Changes of State. Under given physical conditions a substance
will fall into one of the above categories, but it is possible to make

7
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it assume a different state by varying its temperature or pressure,
and so altering the forces linking the particles of the material
together. To take a well-known example, water is a liquid at
ordinary temperatures under atmospheric pressure, but by lower-
ing the temperature it can be converted into ice, which is a solid.
If, however, the temperature is raised or the pressure reduced
sufficiently, the water will be turned into steam, a gaseous vapour.
In either case the composition of the material remains the same,
only its physical state being changed. This change is purely tem-
porary, since, on restoring the original conditions, the water resumes
its liquid form. Heat plays a great part
in these changes of state, a large amount
of heat being absorbed in converting water
to steam, or given out in turning water to
ice. (See page 145.)

Crystalline and Non-crystalline Solids.
Many solids exist in crystalline form, the
particles composing them being arranged
in an orderly manner, thus giving to
pieces of the material definite geometrical

forms varying according to the nature of
the substance. Granite, a well-known
building stone, is composed of an inter-

locked mass of such crystals, those of
each of its component materials—quartz,

SMALL FELSPARS

DARTMOOR GRANITE

FELSPAR QUARTZ . N .
felspar and mica—having their own
regular shape, as shown in Fig. 6. Metals

@ also have crystalline structure, and break

E=S with a crystalline fracture in which the
Mica individual crystals can be seen with a

CONSTITUENT CRysTALs  lens.
Fre. 6. Granmre anp 1rs  Substances which do not crystallize are
Cowsmiruent Crysrars called amorphous and may be either
powders or solids. Powdered charcoal
and magnesium oxide are examples of amorphous powders while
glass is an amorphous solid and is in what is known as a vitreous
state. Vitreous solids may sometimes flow if subjected to a load
for a long period, behaving like liquids of very high viscosity, and
they are often regarded as super-cooled liquids. Thus, glass in its
clear state is a super-cooled liquid, but it will sometimes crystal-
lize to form an opaque solid. Recently, crystalline glass has been
used commercially as a building material under the name of
vitreolite. The fracture of vitreous solids is conchoidal, revealing
a smooth and glassy curved surface.

Pure Substances, Mixtures and Compounds. Materials, such as
granite, are composed of a number of substances and will show
different properties in different parts. A pure substance exhibits
the same properties throughout and is said to be homogeneous.
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All parts of a sheet of glass have the same properties and so do all
the particles in a bowl of water.

Granite is a mizture, since its properties vary from point to point,
and it is said to be heferogeneous. In a mixture the constituent
substances can be present in any desired proportions, and it is
usually possible to see the separate particles of the individual
substances either by eye or with a lens. Each component retains
its own properties and can be separated from the mixture by
mechanical means. If iron filings and sulphur are mixed, they can
be separated either by collecting the filings with a magnet or by
shaking with water and allowing the heavier iron to sink to the
bottom.

Mixtures must be distinguished from compounds that are formed
by the chemical union of their components. If iron filings and
sulphur are heated together in a test tube they glow brightly and
react to form a dark grey compound. No trace of the individual
particles of the original substances can be seen, the material is
non-magnetic, and the components cannot be separated out. A new
homogeneous substance, iron sulphide, has been formed. The
difference between the mixture and the compound of iron and
sulphur may be emphasized by adding dilute hydrochloric acid
first to the mixture and then to the compound. The iron in the
mixture will react with the acid to produce hydrogen, which is
odourless, but with the iron sulphide sulphuretted hydrogen will
be produced, which has a very characteristic “bad eggs’ smell.

Solutions. A special kind of mixture is a solution of one substance
in another. The dissolved substance, or solute, is intimately mixed
with the solvent in such a finely divided form that there is no tend-
ency for it to settle out. The result is homogeneous, the individual
particles not being distinguishable even under a powerful lens.
Yet the solution is not a compound since it retains some of the
individual properties of its components and can be split up by
physical means without resort to chemical action. If a solution of
salt in water is heated the water can be evaporated away and
condensed as pure water, leaving a residue of salt. Also, up to a
certain limit, the substances can be dissolved in any proportions,
again indicating that the solution is a mixture. When, however,
the solution has reached a certain strength, no more of the solute
will dissolve and the solution is said to be saturated. The amount
of solute dissolved is dependent on the temperature and the
strength of a solution at saturation point can often be increased
by heating.

The best known solutions are those of solids in liquids. Water
is an extremely good solvent for many substances, and for this
reason it is difficult to obtain really pure water. Its solvent action
on lead is of importance in plumbing, as certain types of
water may become poisonous as a result of standing in lead pipes.
For those solids which are insoluble in water many other liquid
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solvents are in use, such as oil and alcohol, which are used in the
manufacture of paints and varnishes.

Solutions of gases in liquids are also frequent. Rainwater in
industrial areas dissolves carbon dioxide and sulphur dioxide present
in the smoky air, thus becoming acid and causing serious decay to
building stones, especially limestone.

Less common are solutions of solids in solids, which obviously
do not occur under normal conditions. Mutual solution can occur
if the solids are mixed together in molten form, as, for example,
in the case of brass, which is a solidified solution of copper and zine.
Bronze is similarly formed from copper and tin, while solder is a
solid solution of lead and tin. Solid solutions of metals are called
alloys and often exhibit properties quite unlike the properties of
the component metals.

EXERCISES

1. Explain the difference between a solid, a liquid and a gas, giving an
example of each.

2. A solid may be elastic, plastic, or brittle. What is meant by these
terms? Give an example of each type of solid.

3. What is the difference betwoen a crystalline and an amorphous solid ?
Illustrate your answer by references to common building materials.

4. If a sample of sand is suspectod of containing clay, how could you
separate the sand and the clay from the mixture ?

5. How does a mixture differ from a compound ?

6. Explain the meaning of the term solution. Give examples of solvents
commonly used in the building industry.

7. What is meant by the strength of a solution? Is there any limit to the
strength of the solution that can be made from a given substance in a given
solvent ?

8. How can solutions of solids in solids be made? Give examples of such
solutions.



CHAPTER III
STRUCTURE OF MATTER

A LARGE number of materials are used in the construction of even
a small building and, in the larger field of Nature as a whole, the
variety of substances is overwhelming.

Elements. To bring order to this chaotic abundance attempts
have been made from the earliest times to find a small number of
simple substances which can be combined together to form this
great variety. The first expression of this idea appears in Greek
philosophy with the theory that all things were compounded from
four elements, fire, air, water and earth, but little progress was made
until the development of chemical analysis enabled compound
substances to be broken up and the simple substances from which
they are made were identified. By chemical and other methods
about ninety of these elements have been discovered and eighty-six
of them are listed in Table I. These substances cannot be decom-
posed by chemical action and from their combination all forms of
matter can be built up. Many elements are extremely rare; only
twenty (marked with an asterisk in Table I) are of common occur-
rence in building materials. Estimates show that about 98 per
cent of the crust of the earth, to a depth of 10 miles, consists of
compounds of only eight elements, nearly 50 per cent of the material
in these compounds being oxygen.

Molecules and Atoms. The theory that substances are made up
of a large number of small particles has already been mentioned,
and it may be understood more clearly by taking an example. A
brick might be broken and crushed in a mortar, then each grain
crushed into still finer particles, and the process continued until,
in imagination, the particles were so small that they could not be
further divided without losing their identity. These final particles,
invisible to the eye even under the most powerful microscope, are
called molecules, and are the smallest mass of a substance capable
of independent physical existence.

Now the material of the brick taken as an example is a compound
and is composed of several different elements, and each of these
elements must be present in the molecule in its proper proportion
if the molecule is to be recognized as a particle of brick. Thus
molecules must be built up of other smaller particles or afoms of
the elements. These atoms are the smallest particles of matter and
they remain undivided in all chemical actions, but the molecule
remains the smallest particle normally capable of independent
existence. The molecule of an element is not necessarily a single
atom and is, in fact, usually a group of atoms, all of the same kind.
For example, argon, a rare gas, is monatomic having only one atom

11
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in each molecule, but oxygen is diatomic with two atoms to the
molecule.

TABLE 1
THE ELEMENTS: THEIR CHEMICAL SyMBOLS AND AToMic WEIGHTS
Atomic ‘ Atomic
Element Symbol Weight Element Symbol Woeight
*Aluminium Al 26-97 Neodymium Nd 144-27
Antimony Sb 121-76 Neon Ne 20-18
Argon A 39-94 *Nickel Ni 58-69
Arsenic As 74-91 Niobium Nb 92-91
Barium Ba 137-36 *Nitrogen N 14-01
Beryllium Be 9-02 Osmium’ Os 190-2
Bismuth Bi 209-00 *Oxygen (0] 16-:00
Boron B 10-82 Palladium d 106-7
Bromine Br 79-92 *Phosphorus P 30-98
Cadmium Cd 112-41 Platinum Pt 195-23
Caesium Cs 132-91 *Potassium K 39-09
*Calcium Ca 40-08 Praseodymium Pr 140-92
*Carbon C 12-01 Protoactinium Pa 231
Cerium Go 140-13 Radium Ra 226-06
*Chlorine Cl 35-46 Radon Rn 222
*Chromium Cr 52-01 Rhenium Re 186-31
Cobalt Co 58-94 Rhodium Rh 102-91
*Copper Cu 63-57 Rubidium Rb 85-48
Dysprosium Dy 162-46 Ruthenium Ru 101-7
Erbium Er 167-2 Samarium Sm 150-43
Europium Eu 162-0 Scandium Sc 45-10
Fluorine ¥ 19-00 Selenium Se 78-96
Gadolinium Gd 156-9 *Silicon Si 28-06
Gallium Ga 69-72 Silver Ag 107-88
Germanium Ge 72-60 *Sodium Na 22-99
Gold Au 197-2 Strontium Sr 87-63
Hafnium Hf 178-6 *Sulphur 8 32:08
Helium He 4-00 Tantalum Ta 180-88
Holmium Ho 164-94 Tellurium Te 127-61
*Hydrogen H 1-008 Terbium Tb 159-2
Indium In 114-76 Thallium Tl 204-39
Jodine I 126-92 Thorium Th 232-12
Iridium Ir 193-1 Thulium Tm 169-4
*Iron Fe 55-85 *Tin Sn 118-70
Krypton Kr 837 Titanium Ti 47-90
Lanthanum La 138-92 Tungsten w 183-92
*Lead Pb 207-21 Uranium U 238:07
Lithium Li 6-94 Vanadium v 50-95
Lutecium Lu 174-99 Xenon Xe 131-3
*Magnesium Mg 24-32 Ytterbium Yb 173-04
Manganese Mn 54-93 Yttrium Y 88-92
Mercury Hg 200-61 *Zinc Zn 65-38
Molybdenum Mo 95-95 Zirconium Zr 91-22

* Of common occurrence in building materials

The atomic theory of the structure of matter was given definite
form by John Dalton about 1802, who asserted that—

1. Chemical elements are composed of very minute particles,
or atoms, which remain undivided in all chemical changes.

2. Each kind of atom has a definite weight. Different elements
have atoms of different weights.
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3. Chemical combination occurs by union of the atoms of the
elements in simple numerical proportions.

These simple assumptions explain the laws of chemical combina-
tion satisfactorily. Since atoms are indestructible in chemical
changes the total number of atoms present remains constant, and
the total quantity of matter must also remain constant. This is
in accordance with the chemical Law of Indestructibility of Matter,
which states that matter cannot be destroyed.

Again, the molecules of a compound are made up of numbers
of atoms of two or more elements, but the molecules are all alike
and therefore each must contain the same proportion of atoms of
each element. Thus in forming a given compound the proportions
in which the elements combine will not vary from molecule to
molecule, but will always be constant. This is the Law of Constant
Proportions.

Atomic Weights. Different elements have atoms of different
weights but the weight of a single atom is extremely small, that of a
hydrogen atom being 1-66 x 10—t g (11b = 453-6 g). Dalton,
realizing this difficulty, investigated the relative weights of the
atoms, taking the weight of hydrogen, the lightest atom, as unity.
In the modern system of atomic weights the weight of an oxygen atom
is taken as 16, and the atomic weight of an element is » if the ratio
of the weight of an atom of the element to an atom of oxygen is
n: 16. On this scale the atomic weight of hydrogen is 1-008. Other
atomic weights are listed in Table I.

Molecular Weights. Using the above scale of relative weights
in which the weight of an oxygen atom is 16, the relative weight
of a molecule of a substance will be the sum of the atomic weights
of its component atoms. There are two atoms in a molecule of
oxygen, therefore the molecular weight of oxygen is 2 x 16 = 32.
Again, two atoms of hydrogen (atomic weight = 1, approximately)
combine with one atom of oxygen (atomic weight = 16) to form one
molecule of water, which will therefore have a molecular weight of
(2 X 1) 4+ 16 = 18. Note that the scale of molecular weights is
based upon a weight of 16 for the atom, not the molecule, of oxygen.

Chemical Symbols. For chemical formulae and calculations the
names of the elements are abbreviated to the symbols listed in
Table I. In this system, due to Berzelius, each element is repre-
sented by the initial letter, sometimes with another letter, of its
Latin name. Thus copper is represented by the symbol Cu, derived
from the first two letters of its Latin name, cuprum. The symbol
of an element has, also, a quantitative meaning, representing one
atom, or one atomic weight, of the element. Thus O represents
one atom, or 16 parts by weight, of oxygen. To represent more than
one atom of an element combined in a molecule a small subscript
figure is added; O, means two atoms of oxygen combined to form
one molecule, O, represents three atoms of oxygen forming one
molecule of ozone.
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Chemical Formulae. The molecule of a compound is symbolized
by a formula in which the symbols of its constituent elements are
written down side by side with a subscript number after each symbol,
indicating the number of atoms of that element present in the
molecule. Thus a molecule of chalk contains one atom of calcium
(Ca), one atom of carbon (C), and three atoms of oxygen (0), and
will be represented by the formula CaCO,. To represent more than
one molecule a whole number is placed in front of the formula;
two molecules of chalk being indicated by 2CaCO,. Sometimes
certain atoms are associated in groups within the molecule and,
where a number of such groups are present in the molecule of a
compound, the atoms forming the group are enclosed in a bracket
and the number of groups present is indicated by a small subscript
number placed after the closing bracket. One molecule of slaked
lime (calcium hydroxide) is composed of one atom of calcium, two
of oxygen, and two of hydrogen, but the oxygen and hydrogen are
combined in hydroxyl (OH) groups making the formula of calcium
hydroxide Ca(OH),.

Certain substances, in forming crystals, require to be intimately
associated with water. Each molecule of sodium carbonate, in its
crystalline form, has ten molecules of such water of crystalliza-
tion associated with it and this is indicated by the formula
Na,CO, . 10H,0, the full stop in the formula indicating that the
water is not chemically combined but only loosely associated with the
sodium carbonate. This can be shown by heating the crystals and
driving off the water of crystallization leaving dry, or anhydrous,
sodium carbonate in the form of a white powder.

The molecular formula of a vapour or a gas may be taken as
representing one part by volume, since by Avogadro’s hypothesis,
equal volumes of all gases and vapours under the same conditions
of temperature and pressure contain the same number of molecules.

Chemical Equations. Chemical changes or reactions may be
represented by equations in which each of the substances taking
part is represented by its formula on the left-hand side and the
products of the reaction are shown on the right-hand side. Such
an equation not only represents the reaction, but is quantitative,
showing the number of molecules of each substance involved and
therefore the relative weights present. To comply with the law of
indestructibility of matter the equation must balance, every atom
shown on the left-hand side reappearing on the right. For example,
hydrogen and oxygen combine to form water, the equation repre-
senting this being—

2H, 4+ O, = 2H,0

2 molecul 1 mc 1 2
of hydrogen of oxygen of water

Although there are different numbers of molecules on each side,
this equation is balanced, since there are four hydrogen and two
oxygen atoms on each side.



STRUCTURE OF MATTER 15

Even if it balances an equation is not necessarily correct unless
the reaction shown is possible. The equation—

Pb + Sn = PbSn

Lead Tin
is not correct because, although lead and tin may be melted to-
gether to form solder, no chemical action takes place, solder being
a mixture and not a compound. Again the equation—

H, + 0 =H,0

balances and represents an actual chemical reaction, but it is still
incorrect because, under normal circumstances, oxygen atoms do
not exist singly, but are combined in pairs to form an oxygen
molecule O,.

Chemical Calculations. Since chemical equations are quanti-
tative, the relative weight of substances involved in a reaction can
be found. Taking the equation 2H, 4+ O, = 2H,0, the relative
weight of a hydrogen molecule H, == 2 X 1 = 2, of an oxygen
molecule O, -= 2 x 16 := 32, and of a water molecule H,0 = (2 X 1)
+ 16 = 18. Rewriting the equation to give the relative weights—

°H, + 0, = 2H0
2«2 32 2 x 18

or, in terms of parts by weight—

4 parts of hydrogen -|- 32 parts of oxygen = 36 parts of water.
Thus, to make 36 Ib of water, 41b of hydrogen must combine with
32 1b of oxygen.

ExampLE. The burning of limestone to form quicklime is represented by
the equation—

CuCOyq = CaO + CO,
Limestone Quicklime Carbon
(calcium carbonate) (calcium oxide) dioxide

Find the weights of quicklime and carbon dioxide produced from 50 t of
limestone.

Writing the molecular weights down for each substance—

CaCO, = Ca0 + CO,
(40 + 12 4+ 3 x 16) (40 + 16) (12 + 2 x 16)
= 100 = 56 =44

*. 100 parts by weight of CaCO,; produce 56 parts of CaO and
44 parts of CO,
and 50 t of limestone will produce 28 t of quicklime and 22t of
carbon dioxide.
EXERCISES

1. What is an element? Name eight important elements found in the
earth’s crust.

2. What is the smallest mass of a substance normally capable of independent
existence and what is the smallest particle taking part in a chemical reaction ?

3. Outline Dalton’s atomic theory, explaining the implications of his
assumptions.
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4. Explain the meaning of (2) atomic weight, (b) molecular weight. Cal-

culate the molecular weight of copper sulphate, CuSO,. .
5. What requirements must be satisfied before a chemical equation can be

said to be correct ?
6. When hydrochloric acid acts on marble, carbon dioxide is formed accord-

ing to the equation—
CaCO; 4 2HCI = CaCl, + H,0 + CO,
What weight of carbon dioxide is produced if 2 Ib of marble are converted

to CaCl,?
7. Calcium sulphate, which causes permanent hardness in water, can be

removed by adding sodium carbonate (washing soda)—

CaSO, - Na,CO, = CaCO, + Na,S0,
Calcium Sodium carbonate Chalk Sodium
sulphate (washing soda) (precipitated) sulphate

How much soda is required to remove 10 Ib of calcium sulphate ?

8. Calculate the molecular weight and percentage composition of crystalline
sodium carbonate if its formula 1s Na,CO,.10H,0.

9. A paraffin candle weighs 100 g and is composed of 82 per cent carbon
and 18 per cent hydrogen. Find the weight of the products formed when the

candle is completely burnt.



CHAPTER 1V
CHEMICAL REACTIONS

COMBUSTION IN AIR

AIr is one of the commonest and most important substances on
the earth, entering into many of the natural chemical reactions
which make life possible. One of these important chemical reactions

is burning, or combustion.

Combustion. It is common knowledge that if the air supply to a
domestic fire is restricted by closing the air inlet and damping the
fire down with coal dust, combustion will be slowed down and the

S

|~ CAS JAR

CANDLE

WATER

J

Fie. 7. BURNING A CANDLE

fire may even go out. If additional
air is pumped into the fire with a
bellows, as is done in a black-
smith’s forge, burning will be
fiercer and more rapid. These
facts show that air is essential to
combustion. Now air is not an
element, but is a mixture of a
number of gases. To find which
of these gases assists combustion
we may perform the following

IN Alr

experiment.

Fix a short candle or a nightlight on a piece of wood and float
it in a trough containing water, Fig. 7. Light it and cover it with an

inverted gas jar, immediately marking
the water level on the side of the jar.
The light will burn for a short time
and then go out, and the water level
will be found to have risen about one-
fifth of the way up the jar. Clearly
one-fifth of the air has taken part in
the reaction, but the other four-fifths
are incapable of supporting combustion.
The active one-fifth of the air is oxygen,
and the remaining four-fifths are com-
posed of mitrogen. Thus air at the
earth’s surface is a mixture of oxygen
and nitrogen in the proportions of one
to four by volume and in addition there
will usually be traces of other gases
present as impurities.

Law of Indestructibility of Matter.

During combustion, as for instance in
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the case of the burning of the candle in the last experiment, it
may seem as if destruction of matter has occurred. The following
experiment will show that this is not the case.

Fix a small candle in a cork, with holes on either side to admit
air, and insert it into a glass tube, Fig. 8, on the top of which a
piece of wire gauze is supported containing sticks of caustic soda
and a few pieces of quicklime. Counterpoise the whole apparatus
on the arm of a balance and light the candle. In a short time the
balance arm carrying the candle will sink, showing that the weight
of the products of combustion, absorbed by the soda and lime,
is greater than the loss of weight of the candle. This increase in
weight is due to oxygen being taken from the air during the process
of combustion.

To test the actual changes of weight caused by a chemical change
the reaction must be carried out in a closed space, so that none of
the materials taking part, nor any of the products of the reaction,
can escape.

Put a small piece of white phosphorus in a round-bottomed
flask, tightly closed with a rubber stopper, and weigh the whole.
Warm the flask gently until the phosphorus ignites and, when
combustion has ceased, allow the flask to cool and then reweigh it.
The weight will be unchanged and the experiment shows that,
although a very evident chemical reaction has occurred, the total
weight of matter in the flask has remained constant.

From experiments such as these a general conclusion has been
drawn which is known as the law of indestructibility of matter. It
states that ‘“in a chemical reaction, matter cannot be produced or
destroyed, but only changed from one form to another.”

Fire-resisting Construction. Since air is essential to combustion,
outbreaks of fire can, to a certain extent, be controlled by preventing
the free access of air to the section of the building which is burning.
This may be done by dividing the premises up into compartments
separated from each other by self-closing, fire-resisting doors, and,
where possible, using fire-resisting glazing such as wired glass in
metal frames, which will not shatter under heat and so will not
admit air from outside. Staircases and lift-shafts should be separated
from the rest of the building by doors because they provide an easy
path for fire to spread from floor to floor and, acting as chimneys,
set up a draught which intensifies the fire. Suitable building
materials should be used in construction, and in this respect fire-
resisting materials are not necessarily those which are incombustible.
Timber, although itself inflammable, may have a high degree of
fire resistance if it is of sufficient thickness and has no sharp corners
exposed to the flames. Large-section wooden beams will char on
the surface, but this charring prevents the free access of air to the
wood beneath and either reduces or prevents further combustion.
On the other hand steelwork, which is incombustible, requires
careful protection from fire by encasement with concrete or other
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insulating materials because the large expansions which can occur
when steel is heated may cause the steelwork to buckle or the
joints to fail, resulting in a collapse of the structure.

OXIDATION AND OXIDES

Oxidation. In combustion, substances combine with oxygen
rapidly with the production of considerable heat and light, but
for many materials the reaction occurs more slowly, without burning
and the production of flame. The rusting of iron is an example of
this slower process of oridation and the following experiment will
serve to show its similarity (on a less violent scale) to the process of
combustion.

Wet the inside of a large test-tube and pour some iron filings into
it, so that they adhere to its sides. Support the tube upside down
in a beaker of water and mark the level of the water inside the tube.
After leaving the apparatus for a week, the iron will be found to
have rusted and the water level will have risen in the tube. Mark
the new level on the tube. It will be found that about one-fifth of
the air has been used up. Close the mouth of the tube with the
thumb and remove it from the water. Test the residual air by
introducing a lighted taper into the tube; the taper will be extin-
guished, showing that rusting of the iron has removed the oxygen
from the air.

Oxides. Oxygen combines readily with many substances to form
oxtdes, which are compounds of single elements with oxygen.
Several oxides may be formed by the same element according to
the conditions under which the reaction occurs. To distinguish
between them the oxide containing less oxygen is given the ter-
mination -ous and that containing more oxygen -ic. Thus the oxides
of iron are ferrous oxide (FeO), ferric oxide (Fe,0,), which is used as
a pigment (Venetian red) and for polishing (jewellers’ rouge), and
tri-ferric tetroxide (Fe,O,) often called magnetic oxide. Another
method used for distinguishing different oxides of the same element
is to add a prefix to the word oxide showing the number of oxygen
atoms present. Thus sulphur forms sulphur dioxide (SO;) and
sulphur trioxide (SO,).

ALRALIS, ACIDS AND SALTS

Basic Oxides, Bases, and Alkalis. The oxides of metals are known
as basic oxides and when combined with water they form bases or
hydroxides.—

Na,O + H,0 = 2Na(OH)

Sodium oxide Water Sodium hydroxide
(caustic soda)

Hydroxides of sodium, potassium, and other metals are sometimes
called alkalis. One of the alkalis must be mentioned specially because
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it differs from the others in not being produced from a metal
Ammonia (NH,) is formed from nitrogen and hydrogen, but it
behaves as a base and reacts with acids to form salts, which all
contain the ammonium group or radical (NH,).

Properties of Alkalis. The presence of an alkali is easily detected
because it will turn red litmus blue. Alkaline solutions feel soapy
when rubbed between the fingers, the effect being more pronounced
in the case of the stronger alkalis. The strength of an alkali refers
to its properties and the readiness with which it takes part in a
reaction rather than to its dilution with water. Ammonia is a com-
paratively weak alkali, but caustic soda is very strong and can
cause severe burns to the skin by its corrosive action on the tissues.
An important characteristic property is that all alkalis react with
acids to form chemical salts, water also being formed during the
process.

Acidic Oxides and Acids. When non-metals are oxidized they
form acidic oxides or acid anhydrides, which combine with water
to form acids. Here again the suffixes -ous and -ic are used to differ-
entiate between acids formed from the same non-metal, but which
contain less or more oxygen. Thus sulphur forms two oxides—

S + 0, = S0,
Sulphur Oxygen Sulphurous anhydride
28 + 30, = 250,
Sulphur Oxygen Sulphuric anhydride
and these will yield two acids—

SO, + HO0 = H,S0,
Sulphurous Water Sulphurous
anhydride acid

S0, 4 H,0 = H,80,
Sulphuric Water Sulphuric
anhydride acid

All acids contain hydrogen and nearly all contain oxygen, but
one important exception is hydrochloric acid (HCl) which is com-
posed of hydrogen and chlorine only.

Properties of Acids. Acids have a sharp, sour taste, and should
not be tasted indiscriminately since the stronger acids, such as
sulphuric acid, nitric acid, and hydrochloric acid, are corrosive
and will “burn” both skin and tissues. The weaker acids are re-
sponsible for the sharpness of fruit, citric acid being present in
lemon juice and another weak acid, acetic acid, giving the sour
taste to vinegar. The terms “weak” and ‘‘strong’’ applied to acids
refer to their properties, a strong acid being more active than a
weak one, and this classification is independent of the amount of
water with which the acid may be diluted. Acid solutions containing
little water are called concentrated while those containing a large
proportion of water are said to be dilute.

All acids, whether weak or strong, concentrated or dilute, will
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turn blue litmus red. With alkalis they react to oiv

being formed in the process. y give salts, water
Salts. When acids and bases react together a salt is formod

water also being produced, e.g.— ’

2NaOH ~+ H,80, = Na80, + 2H,0
Sodium hydroxide Sulphurid acid Sodium sulphate Water
It is impossible to lay down any general properties for such salts.
Some are soluble, others are insoluble, their colours vary and their
tastes differ, but one classification may be made according to the
acids from which they are formed. Just as the acids containing less
or more oxygen were distinguished by the terminations -ous and
-ic, so the corresponding salts of these acids are given the suffixes
-ite and -ate. Sulphur forms both sulphurous and sulphuric acids and
the corresponding salts which would be formed with sodium hydrox-
ide are sodium sulphite and sodium sulphate.

The process of formation of a salt consists of the replacement
of the hydrogen in the acid by a metal or radical. This replacement
may be observed experimentally, as certain salts can be formed
directly by the action of the acid on a metal, free hydrogen heing
given off in the process, e.g.—

Zn + H,S0, = ZnS0, + H,
Zinc Sulphuric Zine Hydrogen
acid sulphate

When an acid contains only one atom of hydrogen in its molecule
it can form only one class of salt and the acid is said to be mono-basic.
Hydrochloric acid is an example, forming only one set of salts,
the chlorides, in which all the hydrogen is replaced by a metal,

e.g.—

NaOH + HCl = NaCl + H,0
Sodium Hydrochloric Sodium Water
hydroxide acid chloride

1f an acid has in its molecule two atoms of hydrogen which can be
replaced, it is di-basic and can form two classes of salts. Either all
the hydrogen may be replaced to form a normal salt or only one
atom may be replaced giving an acid salt, e.g.—

9NaOH + H,0, =  Na,C0, + 2H,0
Sodium Carbonic Sodium carbonate Water

hydroxide acid (normal salt)’

NaOH + H,00, = NaHCO, + H0
‘Bodium Carbonic Sodium bicarbonate Water

hydroxide acid (acid salt)

Sometimes the acid salt is known as sodium kydrogen carbonate.

EXERCISES

1. Are the products of combustion, resulting from the burning of a candle
in air, lighter or heavier than the original candle? How can your answer be
reconciled with the law of indestructibility of matter?
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2. How can a knowledge of the process of combustion be applied to the
construction of fire-resisting buildings ? L L.
3. Compare the processes of combustion and slow oxidation, giving illus-

trations. .
4. Define the terms: basic oxide, base, alkali. Describe the properties of

alkalis.

5. Explain the use of the terms: weak, strong, dilute and concentrated,
in connection with acids and their solutions.

6. How are acids formed and what are their general properties?

7. What are salts? Give three examples of these substances.

8. How may salts be classified ? How does an acid salt differ from a normal

salt?

22



CHAPTER V
PHYSICAL PROPERTIES OF MATTER

THAT which occupies space is matter, and the quantity of space
occupied is the volume of the matter present. The unit of measure-
ment in the British system of units is the cubic foot or, for fluids,
the gallon, which is defined as the volume of 10 1b of water weighed
in air at 60° F. There are approximately 6} gal to the cubic foot.
In the Metric system the unit of volume is the cubic metre or, for
fluids, the litre.

The weight of any volume of matter is the force, due to gravitation,
with which the earth attracts that body towards its centre. The
mass of any volume of a substance is the amount of matter in that
volume and is, therefore, proportional to the number of molecules
in the body. At any given distance from the centre of the earth,
the weight of a body is also proportional to the number of mole-
cules, so that, at any one place, the weight of a body is proportional
to its mass. On the other hand, the gravitational force on, and
therefore the weight of, a body is inversely proportional to the square
of its distance from the centre of the earth, so that as a body is
lifted from the surface of the earth its weight decreases, but its
mass remains constant. This could be verified by weighing a bag of
nails on a spring balance in an aeroplane just before taking off and
again at a height of, say, 10,000 ft. The second weight would be
found to be less than the first, although the bag would still contain
the same number of nails and therefore its mass would be unaltered.
In performing this experiment a pair of scales could not be used
since the gravitational pull would diminish equally on the bag and
the weights and the bag of nails would therefore appear to weigh
the same as before.

Weight and mass are thus essentially different. Mass is the
amount of matter in a body; weight is the force exerted by the
gravitational pull of the earth. The units employed to measure
mass are the pound in the British system and the gramme in the
metric system. In scientific work the corresponding units of force
are the poundal and the dyne. The poundal is a very small unit
and in commercial and building practice the pound is also employed
as the unit of force.

Density. To compare the relative lightness or heaviness of
different materials, or of the same material under different condi-
tions, it is necessary to determine the weights of equal volumes of
the specimens. This is most conveniently done by measuring the
weight per unit volume, or density of each specimen. Thus—

Density = weight
volume

23
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The units adopted in building practice will be 1b/fts, the corre.
sponding metric units being g/em?. ) o

Specific Gravity. Since the units in which densxtzy is stated vary,
it is sometimes more convenient to know the ratio of the density
of a material to that of a standard substance. The standard sub-
stance used throughout the world is pure water and the relative
density or specific gravity of any substance is the ratio of the density
of that substance to the density of pure water at 4° C. This value
is just a ratio and is independent of the system of units used. The
specific gravity of pure water is unity. If the specific gravity of a
substance is known, then the density of that substance in any
required system of units is equal to the product of its specific
gravity and the density of water in the required units.

ExampLE. The specific gravity of limestone is 2-75, find its density in
pounds per ft? and in grammes per cm?, if the density of water is 62-4 1b/ft?
in British units or 1 g/em? in metric units.

Density = specific gravity x density of water
= 275 X 624 = 172 Ib/ft?
or = 275 x 1 = 275 g/cm?®

Relative densities can be used conveniently to compare the
relative weights of fitments of the same type made from different
materials. For example the specific gravities of aluminium alloy
and steel are 3-4 and 7-8 respectively, so that the relative density

of alloy to steel is 34 _ 0-44. Hence the same fitting made in
aluminium alloy would have only 0-44 of the weight it would have
if made of steel. The specific gravities of common materials are
given in Table 1I.

Relative Densities of Gases. Relative densities with respect to
air or hydrogen are used in work with gases. In studying certain
questions of ventilation it is useful to know that the relative density
of carbon dioxide to air is 1-53 and that of water vapour is 0-62.

Applications to Building. The following examples show the
importance of the determination of densities and specific gravities
in building work—

1. The determination of the weights of structures such as walls
or floors.

2. The determination of the strength of solutions, such as the
magnesium chloride solution used in magnesium oxychloride cement
(magnesite). The success of this material depends on careful control
of the specific gravity of the solution.

3. The determination of the porosity of building materials.

4. The testing of materials for purity. If the density found experi-
mentally does not agree with the known value for the pure substance
then adulteration is suspected. If the impurity is known and its
density determined, then the amount present in the material can
be calculated.
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TABLE 11

Material

Meta.ls——
Aluminium R
Copper . . .
Lead . . .
Steel
Tin .

Zinc

Stones—
Granite
Limestone
Marble .
Sandstone. . .

Woods—
Beech
Fir .
Oak . . .
Pine. . . .

Miscellaneous:—

Asphalt

Brick, common
pressed
soft

Brickwork

Cement

Chalk

Clay .

(Joncrete, coke breeze

plain .
reinforced

Cork

Glass

Gravel

Ice . .

Linseed oil

Sand, dry

Turpentine

Water, fresh

sea
White lead

Spemﬁc (;ravxty
and Densxty g/cm3
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Density
b3

169
5566
707
487
456
449

166
125-170
170
140-150

46
30-38
46-60
27-34

88
125
150
100
115

90

112-162
135

90
140
150

16
160
110

57

58-6
100

54:3

62-4

64-0
197
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DETERMINATION OF DENSITIES AND SPECIFIC GRAVITIES

(1) By Direct Measurement.
always be determined by direct measurement to a reasonable
degree of accuracy, and if the volume of the specimen can be found
then the density is given by—

Density =

The weight of a specimen can

weight
volume
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For regular shaped solids, volume can be determined by measure-
ment and calculation. If the solid is irregular, its volume may be
found by measuring the volume of water displaced when it is totally
immersed. This may be done in a displacement can, Fig. 9, which

Fia. 9. DISPLACE-
MENT CAN FOR
MEASURING THE

VoLuME oF SoLins

immersed in water

is filled with water up to the level of the over-
flow. A measuring cylinder is placed under the
outlet and the specimen is then carefully lowered
into the can, the displaced water being col-
lected in the measuring cylinder and its volume
read off directly or determined by weighing
and dividing the weight of water collected by
the density of water.

(2) By Applying Archimedes’s Principle.
When a body is suspended in a liquid an up-
ward thrust is exerted upon it by the surround-
ing liquid. According to Archimedes, this
upthrust is equal to the weight of liquid displaced
by the body, that is to say, the weight of an
equal volume of liquid if the body is completely
immersed. A body weighed when immersed in
a liquid will thus suffer an apparent loss of
weight.

If w, = weight of body weighed in air

w, = weight of body weighed when totally

Then, w; — w, = weight of water displaced

= weight of an equal volume of water

——

SCALE PAN

Fi1c. 10. MEASUREMENT OF SPECIFIC GRAVITY BY THE PRINCIPLE

But, Specific gravity =

OF ARCHIMEDES

weight of body
weight of an equal volume of water
w,
w, — w,
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In order to use an ordinary balance to measure w, a wooden bridge
is fitted over the left-hand scale pan, as shown in Fig. 10. A beaker
full of water is placed on the bridge and the body is suspended from
the hook of the balance.

For materials lighter than water a sinker is used to immerse the
specimen completely, and the results must be corrected for the
weight of water displaced by the sinker. For materials soluble in
water, other liquids of known specific gravity may be used, thus

E 2
[+~ STEM
]
11
CAPILLARY =
Zi7 -
A A
A I
A
(210! —
%1% -
ol =l AR
Zig — |1 cHAMBER
=
[~ 1~ MERCURY
[ —] OR LEAD
F— o SHOT
—— —
| =
Fic. 11. Sprcivic Fia. 12. Froar
GraviTy BorTLE HYDROMETER

enabling the weight of liquid displaced to be converted to the
weight of an equal volume of water.

(3) By Specific Gravity Bottle. One of the most widely used
methods of determining the density of a liquid is the specific gravity
bottle illustrated in Fig. 11. It is fitted with a carefully ground
glass stopper through which passes a fine bore. To find the
specific gravity of a liquid, the clean dry bottle, with stopper, is
weighed. It is then filled with the given liquid and the stopper
inserted, allowing any surplus liquid to be expelled through the
capillary. The outside of the bottle is carefully dried and the whole
is reweighed. After all traces of the liquid have been thoroughly
washed out, the last step is repeated using water instead of the
liquid. By subtracting the weight of the empty bottle and stopper,
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the weights of equal volumes of liquid and water can be found and
the specific gravity of the liquid is then obtained by dividing the
weight of the liquid by the weight of the equal volume of water.
The accuracy of this method, even for a fairly viscous liquid, depends
upon that of the balance, and should therefore be of a high order.

(4) By Hydrometer. In industry, the usual method of deter-
mining the specific gravity of a liquid is to employ a hydrometer,
which is simply a graduated float. A common hydrometer is illus-
trated in Fig. 12, but in many manufacturing processes special
modifications, especially methods of graduation, have been intro-
duced. The hydrometer used by milk inspectors is called a lacto-
meter and has the density of milk containing the minimum legal
amount of cream very prominently marked on its scale. Similarly,
the brewer still uses the Twaddell scale, as originally used by the
inventor of the hydrometer, to check the alcoholic content of the
liquor.

The instrument consists of three parts: a stem (usually graduated)
a floating chamber, and a loaded keel. The purpose of the latter is
not only to keep the instrument vertical, but to control its weight,
which can be done by varying the amount of mercury or small lead
shot used. Applying the principle of Archimedes, there will be an
upthrust U on the instrument which will be equal to the weight of
liquid which it displaces, but since the instrument floats in the
liquid—

Weight of instrument w = upthrust U

In all forms of common hydrometer, w is constant and hence the
value of U is also constant.

Now, Density = weight
volume
Or, Volume of liquid displaced = X;ii;(gfli%it

As the weight of liquid displaced is equal to U and therefore con-
stant, the volume of the displaced liquid must vary inversely as
its density, so that the instrument will displace a smaller volume
of a heavier liquid than of a less dense one. The distance to which
the instrument sinks into the liquid is therefore an indication of the
density of the liquid and the stem may be calibrated so that the
density may be read off a scale against the level of the surface of
the liquid. Common hydrometers used for general work in labora-
tories are arranged in nests of a number of instruments covering
the full range of specific gravities over which this type of instrument
will give accurate results. After taking a reading it is advisable to
tap the hydrometer further into the liquid and let it come to rest
again so that the first reading may be checked. This is particularly
important with more viscous liquids, since the surface tension of
the liquid may be great enough to “hold” the stem and cause the
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instrument to come to rest over a range of positions. For such
liquids the specific gravity bottle is a more satisfactory instrument.

SurFACE TENSION
Molecular Forces at the Surface of a Liquid. The force of attrac-

tion between two molecules varies inversely as the square of
their distance apart and therefore decreases rapidly as the distance
between them increases, becoming negligible when this distance
exceeds a certain value. This limit is reached in the case of gases.
The molecules of a liquid are close together and attract each other
with equal forces in all directions so that the resultant force on a
molecule within the liquid is zero. In the case of a molecule on the
surface of a liquid, there will be a force of attraction pulling it into
the liquid, but no balancing force 2

pulling it out of the surface. The
unbalanced resultant of such forces
produces in the surface a tendency
to become as small as possible. It
behaves as though there were an
elastic skin separating the liquid
from the air, the force exerted in
this surface skin being known as the
surface tension. . .

The realism of this analogy of an }‘“S‘,’ 13. NeupLe Froaring,

. . . SUPPORTED BY SURFACE
elastic skin can be illustrated by an TENSION
experiment in which a steel needle is
“floated” on the surface of water. Put the needle on a piece of
blotting paper and place the paper on the surface of some water
contained in a beaker. The paper quickly absorbs water and
sinks, leaving the steel supported by the “skin’’ or surface tension
of the water. As the specific gravity of the steel is 7-8 its weight is
very much greater than the upward thrust of the water on it, so
that the needle is kept afloat by the pull exerted by the surface
tension, as shown in Fig. 13. If the surface of the water is even

.momentarily broken by a slight disturbance the surface tension
will no longer balance the other forces and the needle will sink
immediately.

A further example of the action of surface tension is that a cup
of tea may be overfilled to the extent of about one-eighth of an inch
without its spilling over.

Meniscus. Difficulty is found in reading liquid gauges of all
kinds because of the curved surface of the liquid in the gauge glass.
With most liquids this forms a concave meniscus, but with a few
heavy liquids, notably mercury, the meniscus is convex. The
correct gauge reading in these cases is taken as shown in Figs.
14 and 15.

The concave meniscus is formed when the glass of the containing
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vessel attracts the molecules at the surface of the liquid with a
greater force than the latter are attracted by the liquid molecules
beneath them. The convex meniscus is formed when the molecular
attraction of the liquid on the molecules at its surface is greater
than the attraction of the walls of the vessel. This explains why
mercury cannot ‘‘wet’’ the walls of a glass vessel while water will
do so unless the surface has been greased to decrease its attraction.

Capillary Action. Fig. 14 also illustrates that when a fine bore
tube (called a capillary tube) is dipped into water, the surface tension
pulls the water up the tube beyond the level of that in the containing
vessel. The water wets the inner surface of the tube and there will
be an upward pull due to surface tension which draws the water
up the tube until the weight of the column of liquid above the

ol
'

?Fs 4 % A
9 %
AV eme = ——
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N d ? MERCURY ?h- h
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READING ?
S B 7 I 7 — = 7
a | WATER /J' s V)
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Fia. 14. CAPILLARY F1¢. 15. DEPRESSION OF
AcTION MERCURY IN A CAPILLARY TUBE

general surface level outside counterbalances the surface tension.
If d is the diameter of the bore and A the height of the column
supported, p the density of the liquid and y the surface tension,
then—

Weight of column of liquid = upward pull due to surface tension

Volume of density of _ y X circumference of tube

column liquid
Therefore 7—T4i2 X hXp=yXmnd.
_4mdy 4y
Therefore h = i — od

Hence the smaller the diameter of the capillary the higher the
liquid will rise. This upward movement against gravity is called
capillarity, and is of very great importance to the builder in his
use of porous materials and when fine channels are formed in over-
lapping or butting materials.
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Fig. 15 shows the opposite effect of mercury in a capillary tube
where the attraction of glass for mercury is less than that of mercury
for itself, so that the surface tension pushes down the level of the
mercury in the tube below that in the vessel outside.

Capillary action in building materials can be demonstrated by
means of the apparatus shown in Fig. 16. The specimen is supported
on a glass cup 4 which can be filled with water from a reservoir R
through a tee-piece 7. The other arm of the tee-piece is connected
to a horizontal glass capillary tube C level with the top of the cup.
The tap S is opened to allow water to fill cup A and capillary tube C
completely and is then closed. Water passcs by capillary action

R RESERVOIR
- FOR WATER
-

BRICK UNDER
TEST

GLASS CAPILLARY
AND SCALE

C

NS

.A\tl ’I

2TNS\J
\

METAL TRAY GLASS CUP

Fig. 16. CAPILLARITY TN BUILDING MATERIALS

into the specimen from the cup 4 and is replaced by water drawn
from the capillary tube, so that the thread of water in the capillary
tube is seen to move slowly along the tube.

LABORATORY WORK
IXPERIMENT 1. Determination of density by direct measurement

Determine the density of a specimen of stone or concrete by direct measure-
ment, using a displacement can to determine the volume as explained on
page 26.

EXPERIMENT 2. Determination of specific gravity by applying the principle

of Archivmedes

Using the same specimen as in Expt. 1 determino its specific gravity by
the method explained on page 26. Taking the density of water as 62-4 1b/ft®
compare your result with that obtained in the previous experiment.

EXPERIMENT 3. Determination of specific gravity by specific gravity bottle

Use a specific gravity bottle to determine the specific gravity of paraffin,
carrying out the experiment as described on page 27.



32 MANUAL OF BUILDING SCIENCE

ExpERIMENT 4. Use of the float hydrometer

Check the value obtained for the specific gravity of paraffin in Expt. 3
by using a suitable form of float hydrometer.

EXERCISES
1. Estimate the weight of a 12in. X 12in. pine timber 16 ft long, if its
specific gravity is 0-56.
2. Calculate the specific gravity of powdered brick from the following
results—

Weight of specific gravity bottle = 3060 g
Weight of bottle + powder = 5477 g
Weight of bottle + powder + water = 10217 g
Weight of bottle filled with water only = 8849 g

3. Applying Archimedes’ Principle, find the volume and density of a piece
of the same brick as was used in Question 2, given alter saturating it with
water the following results—

Weight of saturated piece of brick in air = 3435 g
Weight of saturated piece of brick in water = 1995 g

4. Explain how to make up a solution of magnesium chloride from crystals
of the salt so that its strength is such that its specific gravity is 1-54.

5. What is surface tension? Explain how it affects the readings of liquid
gauges.

6. Explain the action of a hydrometer. On what principle is it based ?

7. What is capillarity and what is capillary action? Explain how it arises.

8. Give examples of precautions taken in building construction to prevent
the passage of water by capillary action.



CHAPTER VI
POROUS MATERIALS

MaNY building materials absorb water or water vapour, while
others are impervious, and it is necessary for the builder to have a
knowledge of the mechanism and extent of this absorption. If
dry specimens of the first group, such as timber, brick, concrete,
mortar, and some natural stones, are examined under a microscope,
the solid material will be seen to be permeated by small pockets
of air. In timber these pores are geometrical in shape and are more

Fie. 17. Porous STRUCTURE OF BRICK

or less evenly arranged, but in brick and concrete they are very
irregular in size and shape. Some are linked together by narrow
channels, or capillaries, which continue right through the material,
while others form isolated pockets surrounded by the solid. If the
solid js itself impervious, water cannot enter these latter cavities,
but will only penetrate through the capillaries to fill some of the
pockets. Fig, 17 represents the cross-section of a specimen of brick
in which both types of porosity—linked cavities and isolated pockets
—exist.
Flow of water through the material may be caused by—
1. Force of gravity
2. Capillary action
3. Pressure—
(@) Due to driving rain
(b) Due to a head of water
(¢) Due to thermal expansion of water already absorbed at a
lower temperature.

It is very important that in building science a clear distinction
is drawn between porosity or the total pore space in the material,
water absorption, permeability, and capillarity.

4—(T.479) 33
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Porosity. The porosity of a material is the ratio between the
total volume of pore space in a given specimen of the material and
the actual volume of the specimen. It is usually expressed as a
percentage.

Method of Measuring Porosity. To determine the porosity of a
London Stock brick, for example, select a typical specimen and
break off two lumps each about the size of a brazil nut. Powder
one very finely with a pestle and mortar and dry the other in an
oven. To ensure that all moisture is expelled, the latter specimen
should first be weighed and then reweighed after drying and the
heating and reweighing continued until the weight remains constant.
This final weight is recorded. The dried specimen is now placed in
water and thoroughly saturated, a process which is assisted by
boiling it in water for about half an hour and then cooling it quickly.
It is then reweighed totally immersed in water and weighed again
in a saturated condition in air. From these readings the apparent
loss of weight in water can be determined and the volume of water
displaced calculated, using the principle of Archimedes. Let—

Weight of dried lump of brick = 1369 g

Weight of saturated lump in air =a = 14-50 g
Weight of saturated lump in water =14 = 723g
Weight of water displaced =a-0b = T27g
Volume of water displaced = 7-27 cm?
Volume of lump of brick = 7-27 cm3

The specific gravity or density of the powdered brick is determined
by using the specific gravity bottle which is first weighed clean and
dry and then about one-third filled with the powder and weighed
again. The bottle is then carefully filled with water so that no
powder is washed out and shaken to expel the air from between the
particles. The air bubbles collect as a foam below the stopper and
can be removed by filling up with water and pushing out the surplus
by replacing the stopper. The bottle, together with the powder
and water, is now weighed and, finally, the powder is thoroughly
washed out and the bottle refilled with water and weighed again.

Weight of specific gravity bottle =a =3057g
Weight of bottle plus powder =0 =238T4g
Weight of powder =b—a =c¢ = 817

Weight of bottle plus powder and water =d =09356g

Weight of water to fill bottle containing
powder =d—10

Il

e
Weight of bottle plus water f =18852¢g
Weight of water to fill empty
bottle =f—a =g =0579¢g
Weight of water equal in volume
to powder =g—e =h = 313g
Density of powder = % = 2-61 g/cm®
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The porosity can now be determined from the measurements made
on the first lump of brick—

Volume of solid matter in first __ weight of dried lump
lump, excluding pore space " density of powder
13-69
= “2'—61 em? = 5:25 cm3
volume of voll.ulme of
Volume of pore space in first lump = { whole — {80UC
lump matter
only

= 727 — 525 == 2:02 ecm?3

volume of pore space

Percentage porosity of sample = Yolume of solid matter < 100

2-02 o
= g7 X 100 = 27-89,

Porosity in Building Materials. The thermal conductivity of any
material is largely dependent on its percentage porosity so that if
it is sufficiently strong a very porous material is preferred because
it is a better heat insulator. Where there is a possibility of con-
densation of water vapour, a porous material will absorb the mois-
ture rapidly so that water will not form drops and run on the surface.
There are, however, other considerations which have to be taken
into account in the choice of a material as, apart from the question
of cost, the circumstances under which the material is to be used
decide whether certain properties are advantageous or otherwise,

Measurement of Water Absorption. There is no simple relation-
ship between porosity and water absorption, for we have already
seen that there may be some pores which cannot absorb water. To
measure the water absorption of a material, a sample should be
taken and dried until its weight remains constant. Now boil the
sample in water for about an hour and then place it immediately
in cold water. Wipe the specimen and reweigh it. The increase in
weight must be the weight of water absorbed and can be expressed
as a percentage of the weight when dry, this percentage indicating
the water absorption of the material.

Water Absorption and Weathering. Research carried out at the
Building Research Station shows that when water first comes into
contact with a dry porous material, it is very rapidly absorbed by
capillary action. The rate of absorption decreases considerably,
until after two or three hours the material is saturated. There is
then a fairly constant flow of water through the material. The
rapid absorption by the dry material is referred to as suction.

Rain falling upon the dry surface of clay roof tiles or brick walling
is absorbed by suction into the pores of the material, but is quickly
removed again by evaporation as soon as the humidity (see page 147)
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of the air decreases. The material will act efficiently as a barrier
against moisture as long as it does not become saturated. Thus,
in spite of their porous nature, materials with a high suction will
weather well against frost and rain, since the water will not be
retained for long in the pores. The actual amount of water absorbed
is apparently of minor importance. Where suction is slow, evapora-
tion is slow and, if frost should follow rain, there is a greater danger
that disintegration, flaking, or splitting will take place when the
water expands on freezing.

Permeability. The permeability of a substance is a measure of
the rate of flow of water through the saturated material and depends
more upon the pore structure than upon the pore space, see Fig. 17.
Thus sandy, wire-cut bricks and Fleitons have fairly high porosities
and permeabilities but London Stocks, which have about the same
porosity as wire cuts, are more than twice as permeable. Engineering
bricks have both low porosity and low permeability, but hard
yellow bricks also have a low permeability although they have a
porosity of about 40 per cent.

Measurement of Permeability. A standard test for the mcasure-
ment of the permeability of clay or marl plain roofing tiles (see
B.S.S. No. 402—1930) and of concrete plain roofing tiles (see B.S.S.
No. 473—1932) is recommended by the British Standards Insti-
tution, and it can be adapted for use with other materials. The
standard test is as follows—

“From every batch of 10,000 tiles (or part thereof) three tiles
shall be tested in the following manner: Each tile to be tested shall
be dried at a temperature of approximately 194° F. (90°C.) to
212° F. (100° C.) to constant weight, then waxed on to a special
metal cover with Faraday wax, as shown in Fig. 18. The upper
surface and the sides of the tiles shall be coated with wax as far as
the four sides of the metal cover, to which an air cock is fitted.
Tubing connecting the interior of the metal cover to a head of
water, R, and to the calibrated capillary tube, C, is also attached.
The rate of flow into the specimen at any time after the commence-
ment of the test is deduced from the rate at which the water travels
along the calibrated capillary tube, C. Whilst this rate of flow is
being observed with a stop-watch the tap, 7, is closed. In the
interval between readings this tap is opened and water supplied to
the specimen from the reservoir, E.

“The rate of flow through the specimen at the end of 24 hr shall
not exceed that indicated by a rate of flow of 4in. per minute
along a capillary tube of 1 mm bore under a head of 20 cm (approx.
8in.). The average of three tiles tested shall be taken. Should this
test fail a further three tiles shall be selected and the test repeated.
Should the second test fail, then the batch of tiles may be rejected.”

If it is desired only to obtain relative values of the permeabilities
of different materials, the above specification need not be rigidly
adhered to. The authors have found that, for tests on cement



POROUS MATERIALS 37

mortar specimens of very low permeability, a pressure greater than
that due to 20 em of water was desirable. The standard value of
20 cm was chosen in the standard test because it is approximately
equal to the pressure set up during a heavy storm.

RESERVOIR
FOR WATER

GLASS CAPILLARY
AND SCALE C

METAL CAP SECURED
WITH FARADAY WAX\

TEST SUPPORTED
ON TRIPOD

Fic. 18. APPARATUS FOR PERMEABILITY TEST

Permeability of Walls. The permeability of a wall is not neces-
sarily the same as that of the bricks and mortar from which it is
built. Even a rich cement mortar may allow considerable passage
of water through capillaries due to lack of adhesion between the
mortar and the brick or stone. The Building Research Station
recommends that the properties of the mortar should correspond
to those of the units forming the wall, and that, for all except the
most dense and impervious materials, a cement-lime mortar not
richer than 1:1:6 (cement: lime: sand) is to be preferred.

LABORATORY WORK
ExPERrRIMENT 1.  Measurement of porosity of a Fletton brick
Select a specimen of Fletton brick and determine its porosity, using the
mothod described on page 34.
ExPERIMENT 2. Dctermination of water absorption

Take a specimen of the samo brick and find its percentage water absorption
as described on page 35.
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ExPERIMENT 3. Measur t of per bility

Carry out the standard test described on page 36 to determine the per-
meability of & plain clay roofing tile.

EXERCISES

1. Distinguish clearly between porosity, water absorption, permeability
and capillarity.

2. What is the importance of porosity in building materials ?

3. What is meant by ‘“‘suction”? How does it affect weathering and water-
proofness of materials ?

4. What is permeability ? How is it related to porosity ?

5. Why is the permeability of a brick wall not necessarily the same as that
of the bricks and mortar of which it is composed ?

6. Give an example from normal building construction of the precautions
which must be taken against capillarity.



SECTION II—STRESS ANALYSIS AND
DESIGN OF STRUCTURES

CHAPTER VI1
CONCURRENT AND NON-CONCURRENT FORCES

O~E of the most important preliminaries in building is the estima-
tion of the strength required of the various parts of a structure
and the direction in which that strength is required.

Forces

Definition, Units of Force. A force is defined as “that which
changes, or tends to change, a body’s state of rest or of uniform
motion in a straight line.” Every body is subjected to a force,
known as its weight, caused by the

vertical gravitational pull of the o
earth upon it. In Britain the unit
employed for measuring weight is
the pound, abbreviated to 1b, which
is defined as the weight of a standard x

cylinder of platinum kept by the . o
Standards Dept. of the Board of ¢ !9+ DESCRIFTION oF a
Trade. The gramme (g) is the metric

unit and is the weight of one-thousandth of a litre of pure water at
a temperature of 4° C. (Table III shows the relation between English
and metric units.) Not all forces are vertical, but these same units
are used whatever the direction of the force may be.

TABLE III
RervaTioN BETwWEEN ENcLISHE AND METRIC UNITS
linch = 2-540 centimetres 1litre = 61-03 cubic inches
1 foot = 0-3048 metres 1 ounce = 28-35 grammes
1 yard == 0-9144 metres 1 pound = 453-6 grammes
1 mile = 1-609 kilometres 1 ton == 1016 kilogrammes

Description of a Force. To describe a force completely four things
must be known—

(a) Its size or magnitude

(b) The point at which it acts

(c) The line along which it acts

(d) Its sense, whether it exerts a push or a pull at its point of

application.
Thus the force in Fig. 19 would be fully described as ‘‘a force of

6 Ib acting at 4, along a line 4B inclined at 30° to 4X, and exerting
a pull at 4.”
39
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Since, mathematically, a point is infinitely small it would be
impossible to apply a force at a point. In practice the point of
application is taken as the place at which the force may be con-
sidered to be concentrated without altering its effect on the body
to which it is applied, as a whole.

Graphical Representation. A mathcmatical quantity can be
represented graphically in magnitude by the length of a line and in
direction by the inclination of that line to a base line. Certain
quantities, such as volume or time, do not involve the idea of
direction and are known as scalar quantities, while forces, velocities,
and similar quantities that do involve direction are called wector
quantities. Referring again to Fig. 19, if 4B is drawn of length, say,

P
R
\
(a) (b) s
X
41b
21b Z
6lb
sIb 31b
Q (c)

Fia. 20. REsuLTANT OF FORCES IN THE SAME STRAIGHT LINE

3 in. at a given angle to the base line 4X, then AB represents the
pull of 6 1b in direction and magnitude to a scale of $ in. to 1 1b,
the sense being indicated by the arrowhead. AB is referred to as
a vector.

Equilibrium of Forces. If a number of forces act on a body in
such a way that they balance and do not affect the state of motion
of the body these forces are said to be in equiltbrium. If they do
not balance, they will tend to move the body in some direction.
The single force which could be substituted for the original system
of forces without altering the effect is known as the resultant of that
system. The force required to keep such a system in equilibrium
is called the equilibrant and will be equal and opposite to the
resultant.

CoNCURRENT FORCES

Resultant of Forces Acting in the Same Straight Line. If a number
of forces act at a point, and in the same straight line, their resultant
will be the algebraic sum of the forces, that is the sum taking into
account the direction in which the forces act. Thus, in Fig. 20 (a),
if the force P acts in the positive direction @ will be acting in the
negative.
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.. Resultant of P and @ = algebraic sum of P and Q
':,:P —_ Q
But, in Fig. 20 (b), R and § are acting in the same direction at ¥
.. Resultant of Rand § = R + S

And, in Fig. 20 (c), if forces of 21b, 4 Ib, 6 1b, 51b, and 3 1b, act
as shown at Z.
Then resultant force = — 2 +4 -6 +5—31b
=101b

In each case the equilibrant will be equal and opposite to the
resultant.

2tons

////////,T I
R=P

Fic. 21. ReEAcTioN BETWEEN Fic. 22. REACTIONS IN A BumLpine
A SUrrFace AND A Bobpy

One special form of equilibrant must be mentioned. In Fig. 21
a force P acts on a body supported by a surface. Since the body
remains at rest the surface must exert some force R on the body
such that, whatever the value of P, the resultant of R and P is
zero for if this were not so there would be an unbalanced force
which would set the body in motion. The name ~eaction is given
to R and, since the resultant of P and R is zero—

R=P

Since all structures remain at rest, both as a whole and with respect
to their individual parts, the loads which they carry must be
balanced by reactions at their points of support. Thus in Fig. 22
there will be reactions at 4 and B exerted by the walls on the roof
truss and also at C' and D between the ground and the footings.
These reactions must never be forgotten when deciding the forces
acting on a given structure.

Resultant of Two Intersecting Forces. When two intersccting
forces act at a point O, Fig. 23, they tend to move the point partly
in the direction of P and partly in that of ¢. The same effect could
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be produced by a single force R acting in a direction between that
of P and Q. Such a force would be the resultant of P and @.

The magnitude and direction of R can be found graphically by
a construction known as the parallelogram of forces. Choose a suit-
able scale and mark off 04 along OP to represent P and OB along
0Q to represent @. Draw AC parallel to OB and BC parallel to 04
to form the parallelogram OACB. Then the diagonal OC represents

Fia. 23. REsuLTaNT OF Two INTERSECTING FORCES

the resultant R in magnitude and direction to the same scale as
was used for P and . Care must be taken in selecting the correct
diagonal. The parallelogram must be constructed so that P, @,
and R all pass through O and act either all towards O or all away
from O. 1f the equilibrium is required it will be equal and opposite
to the resultant R.

Resolution of a Force into Components. It is sometimes con-
venient to split a single force into components. Thus any force P,

B e - A
' \
d 0. | I
v e
10 H H ONE=_ g JE

(a) (b)
Fia. 24. ResoLuTiON OF FOorces INTO Two COMPONENTS

Fig. 24 (a), can be split into horizontal and vertical components
H and V by drawing O4 to represent the force P to scale and com-
pleting the parallelogram OBAC. Then OC represents the hori-
zontal component H and OB the vertical component V. Alter-
natively the values of H and V can be calculated, for if angle A0C
=0

Then V =Psin( and H = P cos 6.
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A single force can be split into two components in any required
directions; thus in Fig. 24 (b) the force S could be split into com-
ponents OC and OB or OD and OF or components in any other
two directions desired.

Triangle of Forces. It is not necessary to draw the whole paral-
lelogram to find the resultant of two forces. Thus, in Fig, 23, it is
sufficient to draw the triangle OBC, making the sides OB and BC
represent the forces in magnitude and direction. The third side
OC will represent the resultant in magnitude and direction. Again,
referring to Fig 25. (a), to find the equilibrant of forces P and Q,

C

E P
P a 3 b
R ¥ Q
P (b) TRIANGLE OF FORCES FOR
EQUILIBRANT

~

7~
&~ E

(a) sPACE DIAGRAM

(c) TRIANGLE OF FORCES FOR
RESULTANT R

Fra. 25. RESULTANT AND EQUILIBRANT BY TRIANGLE oF Fomrckes

draw the triangle of forces abc making ab parallel to @ and repre-
senting it to scale and be parallel and proportional to P. Then ca
represents the requircd equilibrant £, or—
Q :P:E=uab:bc:ca

Note that the sides of the triangle have been written down to show
the sense in which the forces act, ca meaning that £ acts from ¢ to a.
It should also be noticed that, when finding the equilibrant, the
arrows representing the directions of action of the forces follow
consecutively round the triangle, Fig. 25 (b), whilst if the resultant
of P and ) were required, Fig. 25 (c), its sense would be opposite
to that of £ and would act the opposite way round the triangle
to P and Q.

Stating the principle of the triangle of forces in words: “If
two concurrent forces are kept in equilibrium by a third force,
the three forces can be represented, completely, by the sides of a
triangle taken in order and drawn parallel to their directions.”

The converse of this is also true, namely that: “If three forces
can be represented in magnitude, direction and sense by the sides
of a triangle taken in order, the forces are in equilibrium.”
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This latter statement is useful in determining whether three
given forces meeting at a point are in equilibrium. Thus in Fig. 26
draw ab representing the 8 Ib force, bc representing the 6 1b force,
and cd the 71b force. It will be seen that the triangle of forces
does not close and the forces arc not in equilibrium. To balance the

61b
8ib
71ib
SPACE DIAGRAM FORCE DIAGRAM

Fic. 26. TesTiNG TOE EQUILIBRIUM OF THREE CONCURRENT FORCES

61b and 81b forces the 71b force must be replaced by a force
represented by ca, in this case 7-4 1b, acting at O parallel to ca, its
sense being from ¢ to a.

Bow’s Notation. A convenient method of notation in this type
of problem is Bow’s notation. The spaces between the forces are
lettered 4, B, and C, Fig. 27, and the force P is described as ab

b

SPACE DIAGRAM TRIANGLE OF FORCES
Fia. 27. Usk or Bow’s NOTATION

since it lies between space 4 and space B, and it will be represented
by side @b in the triangle of forces. Similarly @ is called bc and E
is called ca. The lettering of the spaces may be carried out either
clockwise or anti-clockwise.

Resultant of more than Two Concurrent Forces. A solution of
this problem could be obtained by application of the parallelogram
of forces. Select two of the forces L and M, Fig. 28, and draw a
parallelogram to find their resultant R,. The system of three forces
is thus reduced to two, R, and N, and their resultant R, can be
found by drawing a second parallelogram as shown. R, will then be
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the resultant of the original forces, L, M, and N. The method can
be applied to any number of forces, but is rather clumsy.

Polygon of Forces. A neater solution is given by a method
developed from the repeated application of the triangle of forces.

Fia. 28. Resunrant oF Morr THAN Two CoNCURRENT FORCES

The space diagram, Fig. 29, shows four concurrent forces, S, T, U,
and V acting at O. Select two forces, S and 7', and draw ab in the
force diagram parallel to S and bc parallel to 7', representing them
in magnitude, direction, and scnse. Then ac, the closing side of the
triangle abc, represents the resultant R, of § and 7. Now find the
resultant of R, and U by drawing cd, to the same scale, representing
U and parallel to it. Then ad, the closing side of triangle acd repre-

SPACFE DIAGRAM FCRCE DIAGRAM
Fra. 29. PorLvcoN or Foreks

sents the resultant R, of S, 7', and U. Finally draw de parallel and
proportional to V and complete the triangle ade. Then ae is pro-
portional and parallel to the resultant B of R, and V, that is to
say that R is the resultant of 8, 7', U, and V. The resultant R can
now be shown on the space diagram acting through O and parallel
to ae.

The polygon abcde is known as the polygon of forces and can be
constructed directly by taking the forces S, 7', U, and V in order
and drawing ab, be, cd, de parallel and proportional to them with
the arrows denoting the sense of the forces following round in the
same direction. The closing side ae is then drawn to give the
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magnitude and direction of the resultant and the arrow denoting its
sense will act the opposite way round the polygon to S, 7', U, and V.

Note that, if the original forces had been in equilibrium, the
resultant would be zero and the vectors representing the forces
would form a closed polygon, as shown in Fig. 30, which also demon-
strates the use of Bow’s notation. It can therefore be stated that

51b b

SPACE DIAGRAM FORCE DIAGRAM
Fia. 30. PorvaoN ror KForcms iNn KEQUILIBRIUM

“If a number of concurrent forces in the same plane can be repre-
sented by a polygon whose sides are parallel and proportional to
the given forces, then the system of forces is in equilibrium.”

NoN-CONCURRENT FoORCES

If the lines of action of a number of forces do not meet at a
common point they are said to form a mon-concurrent system of
forces. Such a system is shown in Fig. 31, and the equilibrant can

SPACE DIAGRAM FORCE DIAGRAM
Fiae. 31. NoN-CONCURRENT FORCES

be found in magnitude, direction and sense by drawing the force
polygon, as shown, in the same way as for concurrent forces, but,
as there is no common meeting point for the forces, the point of
action of ¥ is not known.

Link Polygon. To find the point of action of the equilibrant of
several non-concurrent forces a construction, known as the link
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polygon or funicular polygon, is used. Referring to Fig. 32, select
any point O inside or outside the force polygon and join Oa, Ob,
Oc, Od, and Oe. Then Oba forms a triangle of forces and Ob and Oa
represent the forces p; and p, required to balance the force 8.
Such forces can be provided by links or ties AE and AB, shown on
the space diagram drawn through A parallel to Oa and Ob respec-
tively. Similarly force 7' can be balanced by the force p, exerted
by the link B4 and a force p; proportional and parallel to Oc in
the force polygon, supplied by the link BC. Force U is balanced
by p, in the link CB and p, in the link CD drawn parallel to Od and
V is balanced by p, in link DC and p, in link DE drawn parallel to

SPACE DIAGRAM FORCE POLYGON
Fra. 32. Link Pornveow

Oe. The only unbalanced forces in the system are now p, and p;
the original forces being held in equilibrium by the links. Referring
to the force polygon, Oae is a triangle of forces the sides being pro-
portional to p,, p;, and R, which are therefore three concurrent
forces. The force R is the equilibrant of p, and p;, and therefore
of the whole system, and since it is concurrent with p, and p; it
must pass through the intersection of their lines of action, which
will be at E, where links DE and AE meet. The figure ABCDE is
called the link polygon.

Thus to find the equilibrant of a system of non-concurrent forces
it is necessary—

(a) To draw the force polygon to find the magnitude, direction,
and sense of the equilibrant.

(b) To draw the link polygon to find a point on the line of action
of the equilibrant.

The resultant of such a system will be equal and opposite to the
equilibrant.

It can also be stated that: For a non-concurrent system of
forces to be in equilibrium, both the force polygon and the link
polygon must close.
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LABORATORY WORK
ExperIMENT 1. Verification of the parallelogram of forces

Use the apparatus shown in Fig. 33 consisting of a drawing board fixed
to the wall and three pulleys, 4, B and C, which can be fastened in any re-
quired position on the edge of the board. A piece of paper is fixed on the

F1a. 33. VERIFICATION OF PARALLELOGRAM OF FoRCES

board and three strings are tied together und their other ends are passed
over the pulleys to carry known weights P, ) and R. The strings will take
up a position such that the forces P and @ are held in equilibrium by the force
R. Mark the position of the strings on the paper and remove it from the

F1a. 34. VERiFicaTION OF PoryGoN oF FoRcCEs

board. Choose a suitable scale and mark off OX and OY to represent P and Q.
Complete the parallelogram OXZY and measure the diagonal OZ. This will
be found to represent the force R to the chosen scale and to be in line with
the line of action of £.
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ExPERIMENT 2. The polygon of forces

Use t}}e same apparatus as in Expt. 1, but with additional pulleys as shown.
Five strings are joined together and their other ends are passed over pulleys
to carry the known weights P, Q. R, S, T, Fig. 34. The strings take up posi-
tions such that the system is in equilibrium. Mark these positions on the paper,
remove the paper, and, choosing & suitable scale, draw the polygon of forces.
As the forces are in equilibrium the polygon will be found to close.

ExpERIMENT 3. Wall crane

A model wall crane, similar to those used in warehouses, is shown in Fig.
35 (a). For laboratory purposes spring balances are fitted in the jib BC and

A

SPRING BALANCE

SPRING BALANCE

B (a) APPARATUS

PaW P s

(b) SPACE DIAGRAM (¢) FORCE POLYGON

F1g. 35. LABORATORY MopEL WALL CRANE

the tie AC and the cord supporting the load W is secured to the wall at D
instead of being connected to a winch. When the load W is applied the forces
Sin AC and 7T in BC can be read on the balances.

To check these values measure up the model and draw a line diagram show-
ing the direction of tho forces acting at C, Fig. 35 (b). The measurements
must be made while the model is loaded as its shape will alter due to the
compression or extension of the spring balances. Now draw the force polygon,
F;gS 35 (c), first compounding W and P to give R and from it check the values
of § and T'.

5—(T.479
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ExPERIMENT 4. Sheer legs.

A laboratory model of a pair of sheer legs is shown in Fig. 36. A spring
balance forms part of each leg and another is connected in the backstay.
Measure the forces in the legs and backstay when the load W is applied,
measure up the model and check the results by drawing.

ssmmc\—-‘

BALANCES

Fia. 36. LABORATORY MoprkL SHEER LEgs

EXERCISES

1. Two pulls are applied at a point, one of 61b and the other of 10 Ib.
Find, graphically, the magnitude and direction of tho resultant when the
forces are inclined at (a) 90°, (b) 45°, (c) 30° to each other.

2. Two horizontal wires are attached to the top of a pole, the angle between
the wires being 120°. Find the resultant force on the pole, in magnitude and
direction, if the pulls in the wires are 100 1b and 120 Ib respectively.

3. In Fig. 29, § = 121b, T = 201b, U = 151b, V = 171b, angle SOT =
60°, angle TOU = 100°, and angle UOV = 80°. Find the magnitude and
direction of the resultant force.

4. A uniform plank, 4B, is 6 ft long, weighs 80 Ib and is inclined at 40°
to the vertical. Its lower end A is hinged to a support, while a light chain
is fastened to a ring 4 ft vertically above 4 and to a point on the plank 1 ft
from B. Find the tension in the chain and the magnitude and direction of the
reaction of the hinge at A4.

5. A truck is pulled along a track by a rope inclined at 30° to its line of
motion. If the pull in the rope is 240 lb what will be the force exerted (a)
along the track, (b) at right angles to the track?

6. A square plate, of 2 ft side, ABCD, has forces of 41b, 51b, 31b, and
6 1b acting on the edges 4B, BC, CD, and DA respectively. If all the forces
act in the same direction round the plate, find the magnitude, direction and
point of action of the resultant.

7. A vertical post, 12 ft high, is subjected to pulls from four wires all lying
in the same vertical plane and on the same side of the post. These pulls are
50 lb acting horizontally at the top, 80 Ib acting at 60° to the vertical and
downwards at a point 10 ft from the ground, 75 lb acting at 45° to the vertical
and downwards at a point 8 ft from the ground, and 40 lb acting downwards
at 30° to the vertical at a point 6 ft from the ground. Find the magnitude,
inclination to the vertical, and point of action of the resultant.

8. The jib, BC, Fig. 35, of a wall crane is 21 ft long, the length of the tie
AC is 12 ft, the distance 4B is 15 {t and BD is 7 ft. Find the forces in the
tie and the jib if a load of 6 cwt is suspended from the crane.



CHAPTER VIIL
PARALLEL FORCES, MOMENTS AND COUPLES

PArRALLEL FORCEs

A sPECIAL case of a non-concurrent system of forces is that in which
all the forces are parallel. With a little ingenuity the resultant of
such a system can be found by repeated application of the paral-
lelogram of forces.

Resultant by Parallelogram of Forces. The method is demon-
strated for the case of two parallel forces P and @ in Fig. 37. It

R A
"c___d
‘f\ B8 S
s OASC \ ©
1
~ \i

~
FORCES OF UNLIKE SENSE N
]

\R
-\«

F1e. 37. RESULTANT OF PARALLEL FORCES BY PARALLELOGRAM
oF FoRrces

-7
;
_,Z

two equal and opposite forces S acting in the same straight line 4B
are applied at 4 and B, they will balance out and not affect the final
result. Now at A there are forces P and S acting, the resultant R,

51
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of which can be found by constructing the parallelogram of forces
Abed. Similarly, R,, the resultant of @ and S acting at B, can be
found by constructing the parallelogram Befg. Thus two concurrent
forces R, and R, can be substituted for P and @. The resultant
B of R, and R, can be found by drawing the parallelogram of forces

41b 51 36 elb
a
Tb
-
§ c [o]
4
& d
e
SPACE. DIAGRAM & LINK POLYGON FORCE POLYGON
Fic. 38. RESULTANT oF LIKE PArALLEL ForceEs BY THE PoLvyGoN

oF Forces

Ohjk and R will also be the resultant of P and . It will be found
that R is equal to the sum of P and ), if these forces are of like
sense, or the difference if P and () are of unlike sense, and it also
acts parallel to them.

Polygon of Forces. A simple solution for a number of parallel
forces may be obtained by drawing the polygon of forces, as shown
in Fig. 38.

Bow’s notation has been adopted and the forces shown are

Sib 61b 41b Tib

_fu a a
b
Eh b
S4 o 4
3
K
I =
€ e e
SPACE DIAGRAM & LINK POLYCON FORCE POLYGON VECTORS

Fia. 39. REsULTANT oF UNLIKE PaArALLEL ForoES BY THE PorvGow
or ForoEs
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AB =41b, BC =51b, CD =31b, and DE = 61b. On drawing
the force polygon it will be found to be a straight line and the mag-
nitude and direction of the resultant will be given by ea = 18 1b.
Now choose any pole O, join Oa, 0Ob, Oc, Od, Oe, and construct the
link polygon by drawing pg, gr, rs, st, tp parallel to Oa, 0b, Oc,
0d, Oe respectively. Then the resultant will act through p. A
straight line vector diagram is sometimes called a load line. Al-
though only a single line is drawn the vector ae should be considered
as lying side by side with the other vectors. Fig. 39 shows the case
when all the forces do not act with the same sense. Note that the
load line doubles back on itself where the

force CD occurs. The actual vectors in P
their relative positions are shown to the

right of the force polygon. '

MoMENTS
Moment of a Force. Consideration has

been given, so far, to the tendency of a
force to move a body as a whole along
its line of action. Now if a force P, Fig.
40, acts at a point X on a body pivoted
at O, the body will tend to rotate about O. P is then said to have a
moment about O. This moment depends on the magnitude of P
and the distance of O from its linc of action, and is measured by
multiplying the size of the force by the perpendicular distance of O
from its line of action—

Moment of P about O = P x 0OY

The units of measurement will be the product of the units of P and
of 0. Thusif P = 51b and OY = 10in.

Moment of I about O = 5 x 10 = 50 lb-in.

In referring to the moment of a force it is necessary to state the
point about which the moment is taken, in this case O, since the
force will have a moment about any point which does not lie in its
line of action. If the point does lie in its line of action, the perpen-
dicular distance OY is zero and there is no moment about that
point.

The sense of a moment can be given by the direction in which
it tends to cause rotation. If this is, to the observer, in the same
direction as the hands of a clock, the moment is said to be clockwise
and is usually called positive ; if in the reverse direction, the moment
is anti-clockwise or megative.

Principle of Moments. If several forces all tend to rotate a body
in the same direction the resultant moment about a given point
will be the sum of the moments of each individual force about that
point. If some forces exert clockwise moments and others anti-
clockwise moments, the resultant moment will be the difference
of the sum of the clockwise moments and that of the anti-clockwise

Fic. 40. MOMENT OF
A Force
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moments, that is to say the resultant moment will be the algebraic
sum of the moments of each separate force.

If the resultant is zero, the body will be in equilibrium from the
point of view of rotation. This fact forms the Principle of Moments
which states that: “If a body is in equilibrium with regard to rota-
tion, the algebraic sum of the moments of the forces acting on that
body about any point must be zero.”

Resultant of Two Parallel Forces by Principle of Moments. In
Fig. 41 (a) two parallel forces P and @, of like sense, act on a body
and the perpendicular distance between their lines of action is L.

— | e [ —>
P <-a-+—b—>q P Q |
‘r/__-—_\' le-b
A c B Al B c
‘H—-——a.—vi
YR R

(a) FORCES OF LIKE SEMSE (b) FORCES OF UNLIKE SENSE

Fie. 41. ResurtanT oF Two UNkQuAL FORCES BY THE PRINCIPLE
oF MOMENTS

As there are no horizontal forces the resultant R must act verti-
cally. Suppose it to act through some point C at a distance a from
P and b from . Then if the action of R is to represent that of P
and @ correctly—
Moment of B about any point = sum of the moments of P and @
about the same point.
Take moments about C, the point about which R has no moment—

Then 0= @b— Pa
a_@
or 5—-—1—3 . . . . . (1)

Hence the resultant lies nearer to the bigger force, and from this
equation the position of C can be found.
Also, taking moments about B
Rb = PL = P (a + b)

R=PY+P
But, from equation (1),
a
Q = PE
L R=Q+P

or Resultant = sum of the forces acting.
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Now consider the case where P and @ are of opposite sense,
Fig. 41 (b). As before, assume R to act through some point C at a
distance a from P and b from . Again the sum of the moments
of P and @ about ' must be zero. This can only occur if C does not
lie between P and @, for if P and @ arc on opposite sides of €' their
moments will be of the same sense and therefore the sum of these
moments cannot be zero.

Taking moments about C—

Pa— Qb =
.a_ @
b P

Thus in this case also the resultant acts nearer to the larger
force.
Also taking moments about B—

Rb == P (a—b)
a
—Q—P

i.e. Resultant = difference of the forces acting.

We may summarize these results as follows—

1. The resultant is equal to the sum of the given forces, if they
are of like sense; or their difference, if they are of unlike sense.

2. The resultant is parallel to the given forces and lies between
them, if they are of like sense, and outside them if they are of
unlike sense.

3. The resultant acts through a point nearer to the larger force
and so placed that the perpendicular distances between the lines of
the resultant and the given forces are inversely proportional to the
magnitude of the given forces.

CouPLES
Couples. The resultant of two equal and opposite parallel forces,
Fig. 42, cannot be found by the method given above. In this case
@ = P and, referring to Fig. 41 (b)—
R=Q—P=P—P=0

also = =

8 o8
Sl Ea)
Sl

Clearly these results are not applicable and therefore it may be
concluded that there is no single force which can be the resultant
of two equal and opposite parallel forces. Such a system will
produce rotation only and the two forces are said to form a couple.
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Moment of a Couple. The moment of a couple about any point
will be the algebraic sum of the moments of the individual forces.
In Fig. 42, P and P are the parallel forces and d is the perpendicular
distance between them, referred to as the arm of the couple.

Taking moments about A and calling clockwise moments positive

Moment of couple about 4 = 0 + Pd = Pd

Again taking moments about B—
Moment of couple about B = Pd + 0 = Pd

Now take any point C lying between the forces—
Moment of couple about C = Pa + P(d — a) = Pd

And take any point D lying outside the forces—
Moment of couple about D = P (d + z) — Px = Pd

)
A c,d A=) hd
-a-.'«—d-a. x :{
Y ?

F1g. 42. Tae MoMENT oF A COUPLE

In each case the moment of the couple is Pd, hence: “The moment
of a couple is the same about any point in its plane and is the product
of one of the forces and the arm of the couple.”

Equilibrant of a Couple. Since no single force can be the resultant
of a couple, no single force can be its equilibrant. A couple can only
be balanced by an equal and opposite couple acting in the same
plane as, or in a plane parallel to, that of the original couple. This
is evident from the Principle of Moments which requires that, for
equilibrium the sum of the moments in all directions shall be zero.

Magnitude of Forces Forming a Couple. Since the moment of
a couple is the product of one force and the arm of the couple, it is
clear that the forces representing a couple of a given moment can be
chosen at will, provided that a suitable value is given to the arm
of the couple.

ExampLE. A couple has a moment of 80 lb-in. If the forces constituting

the couple are each 10 1b, what is the lever arm of the couple? If the lever
arm were 6 in., what is the value of each force?

Let d be the arm of the couple: then

Pd = 80 Ib-in.

Putting P=101lb
10d = 80 lb-in.

d = 8in.
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Again, Pd = 80 1b-in.
Putting d=6in.
6P = 80 lb-in.
P=13%1b

Given Force Replaced by a Force and a Couple. When a force acts
on a body it is sometimes convenient to consider it to be applied
at another point and to add a couple to keep the system in equil-
ibrium. Thus, in Fig. 43, the force P acts at a point 4 but it is
desired to treat it as acting at B. At B apply equal and opposite
forces P and P’. Since these forces balance the resultant of the
whole system is still P acting at 4. Now P acting at 4 and P’

+601b
P P }_‘ 10" N
d ——
A B
e | (@& O
P=P |
Fie. 43. REPLACEMENT OF A Fia¢. 44. TURNING MOMENT ON A
Force BY A FORCE AND A CraNK HANDLE
CoOUPLE

acting at B form a couple, since P = P’ and, if d is the perpendicular
distance between them, the moment of the couple is Pd. Thus the
system can be represented by a couple of moment Pd and a force P
equal to the original force acting at the new position.

ExampLi. A force of 60 1b is applied to the crank-handle of a car, as shown
in Fig. 44. Find the turning moment on the crankshaft and the upward force
exerted on the bearing.

Transferring the 60 1b force from 4 to B
Force exerted on the bearing = 60 lb

Turning moment = 60 X 10 = 600 lb-in.

Resultant of Parallel Forces by Moments. The resultant of a
number of parallel forces can be found conveniently by taking
moments. In Fig. 45, forces w;, w,, w;, w,, and w; act perpendicular
to the line 4 B at distances x,, ,, 5, ¥, and x; from 4. The resultant
R of these forces must act so that its moment about any point will
be equal to that due to the system of forces. Also the resultant
force due to R must equal the algebraic sum of the forces wy, w,,
Wy, Wy, Wy

S R=w 4w, — wy + w,— w,
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Taking moments about 4, let R act at a distance d from 4.

Then Rd = wyzr; + wyxy — wsks + Wiy — W55
From these two equations the value and position of B can be found.
w w, Wy
-
x, I
P 3~
A i [ [ B
d A |
: Py " +
YA R Ws

Ki1G. 45. RESULTANT oF PARALLEL FOrCES BY THE PRINCIPLE
oF MOMENTS

ExamrLe. Forces of 101b, 8 Ib, 15 Ib and 12 1b act perpendicular to the
line AB in the positions shown in Fig. 46. ¥ind the position and magnitude of
the resultant of the system.

Let R be the resultant force.
Then R =10 4+ 8 — 15 + 12 = 15 1b.

If R acts at a distance z from 4, then, taking moments
about A—
Rer =8 x 2—15 X 54 12 x 9lb-ft
= 16 — 75 + 108 lb-ft

= 49 1b-ft
Putting R=151b
152 = 49
X == 3]‘_s’—ft/
toib 81b 1216
‘_z‘l. o"__’ l al- o" I ‘ 40- oll
2RI ] y
A B

R=vsu>+ 1516

Fia. 46. ResurTaANT OF FOUR PARALLEL FORCES

GENERAL CONDITIONS OF EQUILIBRIUM OF A SYSTEM OF
Forces
The findings of Chapters VII and VIII can now be combined
together to lay down general conditions which must be fulfilled
if & gystem of forces acting on a body is to remain in equilibrium.
Stated very briefly these are—
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1. There must be no resultant force acting in any direction.

2. The algebraic sum of the moments of the forces about any
point must be zero, i.e. the clockwise and anti-clockwise moments
must balance.

These conditions are self-evident, for if condition (1) is not
fulfilled the body will move in the direction of the resultant force,
and if condition (2) is not obeyed the body will start to rotate
under the influence of the unbalanced moment.

Equilibrium for a Uniplanar System of Forces. Four uniplanar
forces which are to be tested for equilibrium are shown in Fig. 47.

Fia. 47. EqQuiLisrRiuM o¥F UNIPLANAR FORCES

Applying condition (1) there must be no resultant force in any
direction. To find the resultant select two directions, V and H,
at right angles and split the forces P;, P,, P;, and P, into compon-
ents V,, H,; V,, Hy: V,, Hy; V,, H, in these directions. Then
H,, H,, H,, H, are a series of parallel forces and their resultant will
be the component of the resultant of the whole system in the H
direction.

Resultant of the H components = H, — H, — H; + H,. This
may be written X H, read as sigma H, meaning the algebraic sum
of all the forces acting in the H direction.

For equilibrium the resultant of the whole system is zero and
therefore there can be no component in the H direction.

S ZH=0

Similarly there must be no component of the resultant in the ¥
direction
L EZV=0

Again, take any point O and let the perpendicular distances from
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the lines of action of Py, P,, P, P, to O be d,, dy, d3, and dy. Then,
applying condition (2)
Pyd, — Pydy— Pyd, + Pdy =0

This may be written
IM =0

where ¥ M means the algebraic sum of the moments of the forces

about any point.
Any number of uniplanar forces can be dealt with in the same

way and will be in equilibrium if the three conditions,
YH =0, 2V =0, XM =0,
are fulfilled.

LABORATORY WORK
ExreriMENT 1. Principle of moments

A wooden disc is pivoted at its contre O, Fig. 48, so that it will rotate freely
in u vertical plane. 1t has a number of holes on its fauce into which pins can be
fixed. Attach cords to the pins and lead
the cords over pulleys to carry weights W,
W, W, and W,. Allow the disc to come to
its position of equilibrium under these forces.
Measure the distances d,, d,, dy and d, from
O to the lines of action of the forces. Cal-
culate the moment of each force and verifly
that the sum of the clockwise moments is
equal to the sum of the anticlockwise moments.

Fic. 48. VERIFICATION OF THE PRINCIPLE Fi1c. 49. EQUILIBRIUM OF
oF MOMENTS EquaL aAxDp OrrosiTE COUPLES

ExpERIMENT 2. Hquilibrium of equal and opposite couples

Suspend a light rod, 4B, Fig. 49, by a string. Apply, by cords, pulleys
and weights, two equal and opposite forces, P and P, at points C and D
and a second pair, @ and @, at points &/ and F. Adjust these forces so that—

P X CD=Q X EF
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The rod is now under two equal opposing couples. Check that it remains at
rest in its original vertical position.
ExPERIMENT 3. Equilibrant of a number of parallel forccs

Support a metre rule by means of u spring balance, Fig. 50, and adjust
a number of loads W, W,, W;, W,, until the rule is in equilibrium. The pull

Fig. 50. EQUILIBRANT OF A NUMBER OF PARALLEL IForCrs BY
EXPERIMENT

of the spring balance is now acting as the equilibrant of the loads. Note the
values and positions of the loads and check the results by calculation using
the principle of moments.

EXERCISES

1. A beam of 32 ft span carries vertical loads of 14, 2, 3, and 44 cwt at
distances of 4, 8, 16, and 24 ft from its end 4. Find, by using the link polygon,
the magnitude and point of action of the resultant of these forces.

2. In Fig. 45, W, = 5001b, W, = 3501b, W; — 6001b, W, -~ 5501b, and
Ws;=17001b. If z;, = 2ft, =, = 5ft, 2, = 9ft, ¢, = 11{t, and =z, = 14 ft,
find the resultant of the system of forces in magnitude and also its point of
action.

3. Find the magnitude and position of the resultant of two unlike parallel
forces of 5t and 3 t if the perpendicular distance between them is 8 ft.

4. What is meant by the following terms: couple, moment, arm of a couple ?

If the moment of a couple is 650 1b-ft and its arm is 15 ft, find the magnitude
of the forces causing it.

5. A gate is supported by hinges which are 2 ft apart vertically and which
share the vertical reaction supporting the gate equally between them. If the
weight of the gate is 150 Ib which may be taken as acting vertically at a dist-
ance of 21 in. from the axis of the hinges, calculate the magnitude and direc-
tion of the reaction at each hinge.

6. In Fig. 49, the value of the forces P is 151b and the distance CD is
7 in. Calculate the valuo of the forces @ if £F is 5 in.

7. A light rod, 2 ft long, is hinged at one end and supported horizontally
by a string attached to the other end and inclined at 45° to the horizontal.
If loads of 3 Ib, 4 1b and 2 1b are placed on the rod at distances of 6 in., 11 in.,
and 18 in., from the hinge respectfully, calculate the magnitude and direction
of the reaction at the hinge and the pull in the string.

8. A force of 45 1b is applied to a spanner and produces a turning moment
of 405 Ib-in. on a nut. What is the length of the spanner and what force will
be exerted on the nut?



CHAPTER IX
CENTRE OF GRAVITY AND CENTRE OF AREA

Centre of Parallel Forces. If forces P and @, Fig. 51, act on a rod
AB, the point of action €' of their resultant E can be found as
explained in Chapter VIII and

P:Q=BC:4C . . . .

Now if the lines of action of P and @ are inclined, as at P’ and (',
the resultant R’ will act at some point X on DE such that—

P:Q=EX: DX
P R Q
X ¢ \&
7~
A\ x> c ' B
\
D\f/

Fia. 51. CeNTRE OF PARALLEL FORCES

therefore, from equation (1)—
BC : AC=EX : DX . . . . (2)

Now triangles ACD and ECB are similar
;. BC: AC=EC : CD
hence, from equation (2)—
EC : CD=EX : DX

Thus points ' and X must coincide and R’ passes through ¢
showing that the point of action of the resultant has not been altered
by the inclination of the forces. The point C is called the cenire
of the parallel forces P and Q.

Centre of Gravity. A body can be considered to consist of a large
number of particles, each of which is subjected to a vertical gravi-
tational pull, and the total weight of the body will be the resultant
of all these parallel pulls. Now if the body is rotated the direction
of the gravitational forces, relative to a fixed line on the body, will
be altered, but, as shown above, there will be one point on the
line of action of the resultant which will be common to both posi-
tions. This point is known as the centre of gravity (abbreviated to

62
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c.g.) of the body and, whatever the position of the body, it will be
through this point that the resultant weight will act. Also, since
this point is on the line of action of their resultant, the algebraic
sum of the moments of the weights of the particles constituting the

body, taken about the centre of gravity,
will be zero.

Centre of Gravity of a Lamina, by
Experiment. If a thin sheet, or lamina,
Fig. 52, is suspended by a cord at A4,
the only forces acting on it will be the
pull of the string acting up and the
weight acting down through the centre
of gravity. Since the lamina hangs in
equilibrium these forces must act in
the same straight line, the centre of
gravity lying vertically below the point
of suspension. Using a plumb-bob the
line AB can be drawn on the surface
of the lamina and the centre of gravity
must lie on this line. Now suspend
the lamina from a point C' and repeat
the process, drawing the line C). The
point G at the intersection of AB and
CD is the centre of gravity of the

Fig. 52. CENTRE OF GRAVITY
oF A l.aAMINA

lamina. This can be checked by hanging the lamina from another
point E and verifying that EF also passes through .

Centre of Gravity of a Number of Particles. The principle of
moments may be used to find the centre of gravity of a number of

Y

f

(o]

F1a. 53. CENTRE OF GRAVITY OF A NUMBER OF PARTICLES

particles, of weight w,, w,, w;, w;, etc. Take co-ordinate axes OX
and OY, Fig. 53, and suppose the co-ordinates of w,, w,, ete. to'be
(@1, ¥1), (5, ¥3), ete., as shown. The centre of gravity of the system
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will be at some point @, having co-ordinates (£, ) such that the
moment of the total weight, acting at G, about any axis will be equal
to the sum of the moments, about the same axis, of each particle
taken separately.

Total weight = w, +w, +w; +w, + . ... =3Zw
therefore, taking moments about O Y—
E X 2w = w2, + Wy + wyy + Wy + . . . . = Jwz
5o Zwe
T 3w
Similarly, taking moments about OX—
J X Zw = wy, + WYYy + WelYyy + Wy, + . . . . = Zwy
j— =y
Y= sw
Y o
€-0 -———x 12 1b
Le— 2" o",f 101b _le
x
,I o
9 ©
in [Eg)
e Slb
- 4-0—7
°
i
o ' X

Fia. 54. CENTRE OF GRAVITY OF THREE Loapns

IExampre. Find the centre of gravity of the three loads, shown in Fig. 54
relative to the axes OX and OY.

Total load Zw =10+ 12-+51b
=271b
Let @ be £ feet from OY and 7 feet from OX.

Taking moments about O0Y—
2T F==10x2-+12 x 6+ 5 x 41b-ft
== 20 + 72 + 20 = 112 Ib-ft
T = .1217;2_ — 43’47 ft
Taking moments about OX—
27§ =10 x 5 + 12 X 6 + 5 X 2 1b-ft
= 50 + 72 + 10 = 132 lb-ft
g="1x =431t
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Position of centre of gravity is:
4 ft from OY
4% ft from OX
Centre of Gravity of a Lamina. The above method can be applied
to find the centre of gravity of a uniform lamina. Suppose that the
lamina in Fig. 656 weighs w pounds per square foot. Take any small

element of area a, the co-ordinates of the centre of which are (z, y)
relative to the OY and OX axes.

Weight of element = weight per unit area X area
= wa

Taking moments about OY—
Moment of element = wax

Y

LT

i

o X

Fi1a. 55. CeENTRE OF GRAVITY OF A LAMINA

Now the sum of the moments of all such small elements making up
the lamina must equal the moment of the total weight acting at
the centre of gravity G whose co-ordinates are (£, ). Thus if
A = total area of lamina

weight of lamina = w4

and therefore, Swar = wAZ
. Zwax
= A

or, since w is a constant—

s S
T4
Similarly— s
_ a;
y= _;4}/

6—(T.479)
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Note that the weight per unit area of the lamina does not affect
the position of the centre of gravity relative to the 0X and OY axes.

Centroid, Centre of Area. If the lamina is made very thin it
becomes, in fact, a geometrical figure. The results obtained above
are still applicable, since they involve neither the thickness nor
the weight per unit area of the lamina. Thus the co-ordinates of
the point G for such a figure are still given by

Zaz o _ Zay
4 YT
As a plane figure has no mass, and therefore cannot be acted upon

by gravity, the term centroid or centre of area is used for this point
instead of centre of gravity. Thus just as, for a body, the c.g. is

=

Y c
A -3
D ¢
[ 3 F
X X D,
(4]
7 —\
c H L2277 ’ —\
K b3 LLL 2L 7 M\
A LLZZZ 7 ) B8
E
Y
Fra. 56. CENTRE OF Fig. 57. CENTROID OF A TRIANGLE

AREA OF A RECTANGLE

the point at which the resultant weight acts and about which the
algebraic sum of the moments of the weights of the particles com-
posing the body is zero, so, for a geometrical area, the centroid is
that point at which the area may be considered to be concentrated.

The terms ax and ay are the product of distance and area and are
known as moments of area. The name first moment of area is given
to the terms Xax and Zay, and, since as before, taking moments
about G,

Zax = 0 and Xay =0

the first moment of area of a figure about an axis through its
centroid is zero.

Centroid of a Rectangle. The centroid of a rectangle lies at the
intersection of the lines joining the mid-points of its sides. Thus,
in Fig. 56, the centroid lies at the intersection of XX and Y'¥.

To verify this divide the rectangle into an even number of strips
of uniform depth parallel to XX. Calling distances above XX posi-
tive and below XX negative, the moments of those strips above
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will be positive and of those below negative. Strips 4ABCD and
JKLM are of equal area and equidistant from XX, therefore they
have equal and opposite moments of area and so Zay for these two
strips is zero. This will be the case with all other pairs of strips;
therefore the first moment of area about XX, the line joining the
mid-points of the sides AL and BM, is zero and the centroid lies
on XX. Similarly, by taking strips parallel to Y Y, it can be shown
that the centroid lies on YY. Hence the centroid lies at the inter-
gection of XX and YY. In practice this point is found more easily
by finding the point of intersection of the diagonals.
Centroid of a Circular Area. It is evident that the centroid both

of a circular area and of the circumference of a circle will lie at their

E D C

< \ 7H

7 \
F A B G
Fiae. 58. CENTROID OF A TRAPEZIUM

geometrical centres. A proof for this, on the same lines as that for
the rectangle given above, may be derived as a useful exercise for
the reader.

Centroid of a Triangle. Imagine the triangle to be divided into
strips parallel to AC, Fig. 57. The centroid of each strip will lie
at the centre of its length and all these centres will lie on the line
BD which is the median bisecting 4C. Therefore the centroid lies
somewhere in BD. Similarly, taking strips parallel to AB, the
centroid must lie somewhere in the median CE bisecting AB.
Thus the centroid of a triangle lies at the point of intersection of
the medians. By geometry it can be shown that EQ is one-third
of EC, and that the perpendicular height from the base to the
centroid is one-third of the perpendicular height of the triangle.

Centroid of a Trapezium. To find the centroid of a trapezium
ABCD, Fig. 58, of which 4B and CD are the parallel sides, produce
CD and AB as shown, making DE and CH equal to AB and AF
and BG equal to CD. Join EG and FH so that they intersect at G
which will be the centroid of the original trapezium.

Centroid of a Built-up Figure, by Moments. The centroid of an
area built up from simple geometrical figures can be determined
by taking moments of area of the component figures about two axes
at right angles. The method employed can be best understood by
studying the following examples.
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Examrere 1. Find the distance of the centroid of the area ABCDEIJER,
Fig. 59, from the sides 4B and AK.

Let the centroid @ be a distance & from AB and 7 from AK,
Divide the figure into three rectangles AHJ K, E’FHI and BCDF.
Area of whole figure = sum of areas of three rectangles

=3 x1)+ (4 x1}) + 4 X 2)in.2
—3+46+8=17in?

[USO,
Area of whole figure X sum of moments of area of
distance of centroid from } = { the three rectangles about
8 given axis that axis.

c

><

P = D
1%
116
x
A B

x
'
[}
g -
)
z"—+__— 4!'——'14-1'-»!

A

W

lq—-—— 4" —-———l
F1a. 69. CENTROID OF A Fi1e. 60. CENTROID OF A FIGURE
BuiLt-up FIGURE wITHE A PART REMOVED

Now, for the purpose of taking moments, the area of each rectangle

can be considered to act at its centroid which will be, respectively,
Gy, Gy, or G,.

Thus, taking moments about 48—
ME=383x1) X1} + 4 X1 xi+ 4 x2)x2
=43 +43+16=25
T=4%$=1%in
Similarly, taking moments about 4 K—

1"=383x1)x6}+(d X1} x4+ (4 XxX2)x1
=194 + 24 + 8
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xAMPLE 2. A circular area, centre 4, 8 in. diameter, Fig.
cirE:le centre B, 2 in. diameter, removed. Find the c?;trf lgf gg’eal.l?f :h?:elf
mainder if 4B = 1}in.

Tt is evident from the symmetry of the figure that the centroid
@ of the remainder will lie on OX, the diameter passing through
A4 and B. It now remains to locate @ on this diameter.

Let OY be the tangent to the circle at O; then, taking moments
about OY.

Area of remainder X GO = moment of area of original circle
about OY — moment of area of
small circle.

(le 82——:—;—*4 22) > GO =(Z—>< 82> X 4—<%>< 22> X 2%
(82— 2%) X GO = 8 x 4— 2® X 2}
60 GO = 256 — 10 = 246
60 = 4% — 41 in.
or AG = GO — 4 = 0-1in.

1

(o) X
Fic. 61. CENTROID OF AN IRREGULAR PLANE FI1GURE

Note that if an area is symmetrical about an axis the centroid will
lie on that axis. This fact can often be used, as above, to save
unnecessary labour.

Centroid of an Irregular Plane Figure. To find the distance of the
centroid of an irregular plane figure, ABCEFD, Fig. 61, from co-
ordinate axes OX and OY, consider a thin strip 4BCD, parallel
to OY, of area a, whose centroid is at a distance z from OY.

First moment of area of strip about OY = az
Now if y is the average width, parallel to OY, of the strip and b is
its breadth ; a=by

.. First moment of area of strip about OY = byx.
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And, if the whole area is divided into a number of such strips;

First moment of whole area about 0Y = sum of first moments of
all the strips.
= Zbyx

If the strips are small, y can be taken as the mean width of the strip
and x can be taken as the distance from OY to the centre of the
strip. Thus b, y, and z can all be measured and byx can be found
for each strip and summed to give the first moment of area of the
whole figure. The work is best tabulated as follows—

Strip | Breadth of | Mean width Area z ax
Number strip = b =y a=by
Za Loz

The position of the centroid from OY is then given by—

Zax .
& = “G—, since a = area of whole figure.

T Za
The process is then repeated taking strips parallel to OX to find the
value of i the distance of the centroid from OX.

LABORATORY WORK
ExPERIMENT. To find the centroid of a figure experimentally.

Draw the figure on stiff cardboard or sheet metal and cut it out. Hang
the sheet up, as shown in Fig. 52, and find its centroid by the method des-
cribed above (page 63) for determining the centre of gravity of a lamina.

Check your results graphically by the method given on page 69.

EXERCISES

1. Weights of 101b, 121b, 81b, and 91b are situated respectively at the
corners 4, B, C and D of a square. Find the position of the centre of gravity
of these loads with respect to the sides 4B and 4D.

2. An L-shaped lamina is 4 in. high, 3 in. wide, and each leg is 4 in. thick.
Find its centre of gravity.

3. A circular lamina, 9 in. in diameter, has a square hole of 2 in. side cut
out of it. If the resulting area is symmetrical about a diameter and one side
of the square passes through the centre of the circle, find the position of its
centre of gravity.
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4. The arm of & T-section is 6 in. wide X } in. thick and the overall depth
of the T is 8in. If the thickness of the stem is { in., find the position of the
centre of area of the section.

5. The base 4B of a trapezium, Fig. 58, is 8 in. long, the perpendicular
distance between AB and CD is 5 in. and angles DAB and ABC are 80° and
70° respectively. Find the position of the centre of area of the figure by the
construction (page 67) and check your result by dividing the figure into
strips.

6. A cast-iron beam has an overall depth of 12 in. The top flange is 6 in
wide X 1in. thick, the bottom flange is 10 in. wide X 14 in. thick, and the
thickness of the web is 1 in. ¥ind the position of the centre of area of a cross-
section of this beam.

7. Three weights of 41b, 81b and 121b respectively, act at the corners
A, B and C of an equilateral triangle. Find the position of their centre of

avity.
gl‘s' Ay!‘od carries loads of 101b, 121b, 91b and 51b at distances of 3 in.,
12 in., 20 in., and 30 in. from one end. Find the point at which the rod will
balance. Neglect the weight of the rod.



CHAPTER X

LOAD BEARING STRUCTURES AND THEIR
EQUILIBRIUM

TaE previous chapters have been devoted to the study of forces
without special thought as to the things to which these forces
may be applied.

Load Bearing Structures. The particular aspect which must now
be considered is the effect of such forces upon load bearing struc-
tures, by which is meant any assemblage of bars, blocks or other

materials capable of withstanding

——=—=—  a system of loads. Such structures

T fall, roughly, into two main
groups—

1. Mass structures which depend
upon their weight for their stability.

2. Stress structures, depending
partly upon the strength and
arrangement of the materials from
which they are made, and partly
upon the distribution of the internal
forces which are set up in these
materials to resist the applied loads.
0 Mass Structures. Since the sta-

I___,‘_q bility of a mass structure depends
Yw upon its weight it will usually be
a solid mass of heavy material.
The masonry dam, shown in Fig.
62, is a typical example and the
conditions for its stability can be determined readily by the applica-
tion of the principle of moments with which the reader is already
familiar. The thrust P of the water retained by the dam creates a
moment which tends to overturn it about its toe O, the value of
this moment depending upon the height % above the base at which
the thrust acts. The weight w of the structure, acting downwards
through its centre of gravity, will cause an opposing moment wx,
where z is the perpendicular distance from the line of action of
w to 0. For the limiting condition when the dam is about to over-
turn,

lli

e—
R

Fic. 62. EQUILIBRIUM OF A
MasoNRY Dam

Ph = wx

For design purposes the value of Ph must be made less than wz
in order to provide a margin of safety.

Stress Structures. Frames, trusses and lattice girders, beams
and plate girders, portals and arches are all relatively light-weight

72
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structures which depend for their strength upon the way in which
the internal forces, or stresses, in the structure are distributed and
upon the ability of the materials from which they are made to
withstand these stresses. There is no single way of dealing with
these structures, but the reader will find some of the above types
dealt with in detail in later chapters.

Reactions. The purpose of any load bearing member of a struc-
ture is to transmit the loads which act upon it to certain fixed
points. Thus the loads acting upon the roof truss, Fig. 63 (a), are

(@) LOADED TRUSS

41 A by B
( REACTIONS
R/ VA VD

Fic. 63. Reacrions or A Roor Truss

transmitted to the supporting piers at 4 and B. Since the truss
remains at rest, the horizontal and vertical components of the loads
must be balanced by forces, known as reactions, exerted between
the piers and the truss at 4 and B. The general conditions of
equilibrium, found in Chapter VIII, are—

Algebraic sum of horizontal forces = 0
Algebraic sum of vertical forces =0

Algebraic sum of the moments of
all forces about any point =0

and these may be applied to the equilibrium of the truss, the
reactions being the unknown quantities and the applied loads the
known. Since three algebraic equations can only yield solutions
for three unknowns, only three reactions are required to maintain
the truss in equilibrium. These reactions are shown in Fig. 63 (b),
and comprise horizontal and vertical reactions at 4 and a single
vertical reaction at B, which might be provided by a pin point
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at A and frictionless rollers at B. Note that the horizontal and
vertical reactions at 4 may be considered as components of an
inclined reaction R shown dotted.

Redundant Reactions. The bridge girder, shown in Fig. 64, is
pinned at the left-hand abutment 4 and runs on rollers at B, but
it is also supported on a pier in mid-stream at C. Four reactive
forces are acting, namely vertical and horizontal components,
V ,and H 4, at 4, a vertical reaction V at B and a vertical reaction
Vo at C. Thus there are four unknown forces, but only three equa-
tions which can be written down from consideration of the statical
equilibrium of the girder. As four equations are required to give
solutions for four unknowns, the reactions cannot be determined

H
Va Ye V,

Fig. 64. BRIDGE GIRDER WITH REDUNDANT REAOTION

by statics alone, and the problem is said to be statically indeter-
minate. If, however, one of the vertical reactions were to be omitted,
for instance V if the pier were removed, the problem could be
solved statically; therefore V. is called a redundant reaction.
Even if H , is zero the girder will still have a redundant reaction,
for one of the equations, XH = 0, deals only with horizontal
forces, and there will still be three vertical reactions and only two
equations to determine them, namely ZV =0 and M = 0.
In the work which follows only statically determinate problems will
be dealt with, but it is desirable to know that there are cases which
cannot be solved by statics alone.

Determination of Reactions by Calculation. A beam of length L,
Fig. 65, is supported on knife edges at its ends 4 and B, in which
state it is said to be simply supported. A vertical load w is applied
at a point C, a distance a from 4 and b from B, and for simplicity
the weight of the beam will be considered to be negligible compared
to w. Vertical reactions R, and Ry will be produced at 4 and B
and, since w has no horizontal component, there will be no horizontal
reaction.

For equilibrium—

Sum of moments about any point = 0
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Taking moments about B,

RAXLZU)Xb
Rdmeb
w
- a b >
j ¢ l

‘E —
|

- a
o we

F1a. 65. Reacrions Dur 1o A SiNGLE Point Loap

To find Ry, either take moments about 4 giving,
Ry XL =wXa

a
RB = W Z
or apply the condition,
Sum of vertical forces = 0
.'. RA + RB =w
ey wb
substituting B , = I wh Lt
By=w—p=w{—1
but, L—b=a
a
RB =z wz
101b 251b 121b.
pt~ 4'- 0"—>ft— €'- 0" 7' 0" 3 0"0,
Y
A F 18
— 20-0" >
R, Ry

Fia. 66. Reacrions Dur 1o THREE PoINT LoOADS

This method can be extended to deal with any number of loads as
can be seen in the following example.

ExampLE. A beam 20 ft long, Fig. 66, carries loads of 101b, 25 Ib and 12 Ib
as shown, and is simply supported at its ends 4 and B. Neglecting the weight
of the beam, calculate the reactions at 4 and B.
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Taking moments about B—

Sum of clockwise moments — sum of
anti-clockwise moments = 0

(Ry X 20)— (10 x 16 +25 x 10 +12 X 3) =0
20 R , == 160 + 250 + 36 = 446 Ib-ft
R, = ¢ =22:31b

also, Algebraic sum of vertical forces = 0
R,+Rp—10—25—-12=0
R, =47—R,
= 47— 223 =2471b

———

Reactions for Uniformly Distributed Loads. So far the loads have
been considered to be concentrated at individual points but in many
cases the load is uniformly distributed along the beam. Thus, in

A W PER UNIT LENGTH B

Rl Rg

Fic. 67. Reacrions Dur To A UNIFORMLY DISTRIBUTED Loap

Fig. 67 a uniformly distributed load of w per unit length is carried
by a beam of length L.

Total load on beam = wL
This may be considered to be acting at the centre of gravity of the
load, i.e. at mid-span. The determination of R 4, and Ry now pro-

ceeds as before.
Taking moments about B—

RAxL=wLx£

2
wL
. RA = ‘*2"
Also R, 4+ Rp= wL
wlL
*“Rp= 5

The following numerical examples show the method of dealing with
distributed loads which do not cover the whole span and with
combinations of distributed and point loads. Uniformly distri-
buted loads are of common occurrence in practice since all struc-
tures have to carry their own weight, which is usually a load of this
type, in addition to the other superimposed loads.



LOAD BEARING STRUCTURES AND THEIR EQUILIBRIUM 11

. ExamprE 1. A beam 18 ft long, Fig. 68, weighing 40 Ib per foot run, is
simply supported at its ends 4 and B and carries a further distributed load
of 60 lb per foot run over a length of 6 ft from A4. Find the reactions
R, and R,.

Centre of gravity of 40 Ib/ft load is at 9 ft from A4.
Centre of gravity of 60 1b/ft load is at 3 ft from 4.

fe—6-0—n{
‘ 60 LB/FT RUN l

40 LB/FT RUN

18-0" >~

A R |

F1a. 68. REACTIONS FOR A COMBINATION OF UNIFORMLY
DisTR1BUTED LOADS

Taking moments about B—
R, x 18 = (40 x 18) X 9 4 (60 x 6) X 15 lb-ft
= 6480 + 5400 = 11,880 lb-ft
R, = 6601b

Also
R, + Rp = sum of loads

40 X 18 +60 X 61b
= 720 -}- 360 = 1080 1b
Rp = 1080 — 660 = 420 1b

I

ExampLE 2. A%beam 20 ft long, Fig. 69, is supported at 4 and B, 17 ft
apart, and overhangs 3 ft at the left-hand end. It carries a uniformly dis-

10016 2001b

40 LB/FT RUN

A ]

Fic. 69. Reactions DUE To A CoMBINATION OF PoiNT LOADS AND
UNIFrorRMLY DISTRIBUTED LOADS

tributed load of 40 Ib per foot run over a distance of 8 ft from the left-hand
end and loads of 1001b and 2001b at 9 ft and 3 ft from the right-hand end.
Find the reactions at 4 and B.
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Centre of gravity of the distributed load is 4 ft from the left-
hand end or 1 ft to the right of 4.
Taking moments about B—
R, x 17 = (40 x 8) x 16 4 100 x 9 + 200 X 3 Ib-ft
== 5120 + 900 -+ 600 == 6620 lb-ft
R, =3891b

Also
R, + Rp =40 x 8+ 100 + 200 1b
Ry = 620— R, — 620 — 389 1b
= 2311b

Reactions Determined by Link Polygon. When a truss or girder
carries a number of loads, as in Fig. 70 (), the reactions can be
determined by using the link polygon described in Chapter VII,

(b)

a‘n-—_ —

(@) SPACE DIAGRAM & LINK POLYGON (b) FORCE POLYGON
Fia. 70. REAcTIONS DETERMINED BY LINK PoLYGON

since the loads and reactions form a system of non-concurrent
forces which are in equilibrium. Adopting Bow’s notation, draw
the force diagram, Fig. 70 (), which will be the straight line dcdef.
Choose any pole O and draw 0b, Oc, Od, Oe, Of. Going back to Fig.
70 (a) project the lines of action of the forces and reactions down-
wards and, starting from p on the line of R ,, construct the link
polygon pgrstu, drawing pg parallel to Ob, gr parallel to Oc, and
so on. Complete the link polygon by joining pu, then, by drawing
Oa parallel to pu, the position of a can be located in the force diagram
and ab and af represent B , and Ry to the scale chosen.
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7
LABORATORY WORK
ExPERIMENT 1.  Experimental measurement of beam reactions.

A light wooden beam, Fig. 71, is supported on two spring balances set a
known distance apart. Loads w,, w,, etc., are hung at various positions on

o T

1

SPRING
BALANCE

Fic. 71. EXPERIMENTAL DETERMINATION OF REACTIONS

the beam. Record the reactions as measured on the spring balances and check
the results by calculation.

EXERCISES

1. A uniform beam, 20 ft long, weighs 14 t and is supported at its ends
A and B. A uniformly distributed load of } t/ft run extends over a length of
9 ft from A4 and a concentrated load of 3 t is applied at a point 5 ft from B.
Calculate the reactions at 4 and B.

2. A beam, 12 ft long, carries loads of 2t, 8t and 4t at distances of 3 ft,
6 ft and 9 ft, respectively, from its left-hand end. Calculate the reactions if
the beam is supported at its ends.

3. A beam AB, 30 ft long, is supported at two points, C and D, 20 ft apart,
and has an overhang AC of 6 ft. The beam carries a load of 9cwt at 4, a
uniformly distributed load of 2 cwt per foot run between ' and D, and a
point load of 12 ewt at B. Determine the value of the reactions at C and D.

4. A horizontal platform is supported on three piers, 4, B and C, forming
a triangle in plan. 4B == 6 ft, AC = 8 ft, BC = 8 ft. The centre of gravity
of the platform and the load carried by it is 5 ft from A and 4 ft from B.
Find the proportion of the load carried by each of the three piers. Show that
if there were four piers instead of three, the reactions could not be determined
without further information.

5. In Fig. 70 (a), the truss carries the following loads: BC = 30001b;
CD = 60001b; DE = 75001b; EF = 50001b. Determine the reactions
R, and R, if the truss has a span of 32 ft and the inclined members are at an
angle of 60° to the horizontal.

6. A beam, 18 ft span, carries loads of 3t, 5t and 7t at distances of 3 ft,
7 ft and 12 ft, respectively, from one support. Find the reactions at the
supports by & graphical method, neglecting the weight of the beam.

7. A roof truss ABC is supported by a pin-joint at 4 and rests on a flat
plate at B. The rafters AC and BC are inclined at 30° to the horizontal and
the span AB of the truss is 30 ft. A load of 4000 Ib is uniformly distributed
along AC and acts at right angles to the rafter. Determine the reactions at
A and B.

8. A flat equilateral triangular plate, of 4 ft side, is supported horizontally
bf three legs, one at each corner. A vertical force of 150 Ib is applied to the
plate at a point which is 3 ft from one leg and 2 ft from another. Find the
force in each leg.



CHAPTER XI
STRESS AND STRAIN

So far only external forces have been dealt with, that is the loads
and reactions which act upon a structure; but it is clearly not
enough that the structure should be in equilibrium under these
forces, it must also be strong enough to resist them.

Stress. The tie bar, shown in Fig. 72, has a force P applied at
one end and is fixed securely to the wall at the other end. As the
bar cannot move the reaction B at the wall must be equal and
opposite to P. Now suppose that the bar is cut into two portions
A and B at section XX. Portion 4 would immediately move away

|X

x

Fig. 72. Stress 1N A Tie Bar

unless a force P were applied at its right-hand end. Thus, in the
uncut bar, portion B must exert a pull on portion 4 equal and
opposite to the external force P. This internal force exerted by one
part of the bar on the other is called a stress. The pull P is said to
cause a stress in the bar which is withstood by the cohesion of the
material.

If the area of cross-section at XX is 4 the stress per unit area

will be f—; . This is known as the intensity of stress or unit stress at
XX and is usually denoted by f.

. 1
Intensity of stress — O?Jd
cross-sectional area
P
f=
or Y

The units used for measuring intensity of stress will be those of
force per unit area such as Ib/in.2, tons/ft?, kg/em?, according to the
system of units employed.

Although the term stress means, properly, the total internal
force transmitted across a section of a body, it is frequently used
as an abbreviation for intensity of stress. This practice should
only be adopted where there is no likelihood of confusion and the

80
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appropriate units, e.g. 1b for stress and 1b/in.2 for intensity of stress,
should be given to ensure clarity.

Direct Stresses. If a member of a structure is subjected to forces
acting axially along it, as in Fig. 73, it is said to be under direct

—O=——0

(a) TENSION

z O] - —O z

(b} COMPRESSION

Fia. 73. DiRECT STRESSES

stress. If the applied force P tends to stretch the member, as in
Fig. 73 (a), it causes a tensile stress which has an intensity ¢ = £

A
where A4 is the cross-sectional area of the member taken at right

angles to its axis.

4 \z—
7:“"—'_5&\\\\\\\ N\ RIVET IN SHEAR

S
?__-m ;\ MODE OF'FAILURE

Fia. 74. SHEAR STRESS

If the applied force tends to crush the member, as in Fig. 73 (b),

it causes a compressive stress which will also have an intensity

C = g. '
Tangential or Shear Stress. Shearing stress occurs when a material

is subjected to opposing forces which are not co-axial. TFig. 74

7—(T.479)
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shows two plates riveted together and subjected to equal and oppo-
site forces P which do not act in the same straight line. The right-
hand plate exerts a pull equal to P on the left-hand plate, which
is transmitted across section 4B by the material of the rivet.
Failure would occur by sliding of the two parts of the rivet along
the section 4B as indicated in the lower sketch. The material of
the rivet is said to be in shear along AB and the intensity of shear

stress ¢ =§ where A is the cross-sectional area of the rivet at

section AB.

Ultimate Stress, Working Stress and Factor of Safety. There is
a limit to the intensity of stress which a given material can with-
stand. When this ultimate stress is exceeded the material fails or
breaks; thus the greatest load which a member of a structure can
withstand will be equal to the product of the ultimate stress and the
cross-sectional area. In practice it is not desirable to stress any
material to the limit as provision should be made for unforeseen
load. For this reason a lower intensity of stress, known as the

working stress, is adopted as a maximum for design purposes. The
ultimate stress .
working stress is known as the factor of safety, and may have
a value of from 2 to 4. Thus if a material fails at a stress intensity
of 27 t/in.2 and a factor of safety of 3 is adopted, the working stress
must not exceed %’ = 9 tfin.?

ratio

ExaMPLE 1. A tie-bar, of rectangular section, 2 in. wide, carries a pull of
12 t. If the permissible working stress is not to exceed 8 t/in.?, what must
be the thickness of the bar?

load

permissible stress
= 2 = 1}in?

Sectional area required =

. __area 13 .
Thickness = width =2 = $in.

ExampLE 2. A hollow cast-iron column is of 3 in. internal and 4 in. external
diameter and carries a load of 60 t. Calculate the intensity of stress in the
material and the factor of safety if cast iron fails in compression at 45 t/in.®

Cross-sectional area = i—r (4% — 3?) in.2

.. Intensity of stress = load
area

- 6—‘; = 10-45 t/in.2

5 .
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ultimate stress
Factor of safety = working stress

45
= = 448
1045 ==
ExampLi 3. Two } in. thick mild-steel plates are riveted together, as shown
in Fig. 74. The load transmitted across tho joint is 10 t. Assuming that the
joint fails by shearing of the rivets, how many } in. diameter rivets are re-
quired if the working stress in the rivets is not to exceed 5 t/in.2?

Cross-sectional area of § in. rivet = 0-44 in.?
Load transmitted by one rivet = stress X area
=5X0441¢
=22t
. . 10 .
.. No. of rivets required = 55 = 5 rivets.
Strain. Whenever a body is loaded or subjected to stress it will
become deformed, although in some cases this may not be detected
by the eye. This alteration of form and dimensions is called strain

and each of the stresses described above produces its own special
type of strain.

Longitudinal Strain. When a member is subjected to a direct
tension or compression it undergoes a tensile or compressive longi-
tudinal strain which is measured as the change in length of the
member per unit length; or
final length - original length

original length

Strain =

Since it is measured as a ratio, strain has no units or dimensions
but is a pure number.

ExampLE. Under load a member 3 ft long shortens by 1} in., what com-
pressive strain has occurred ?

Strain — °hange in length

original length
-t _1
T3 x 12772

Note that both change in length and original length must be
expressed in the same units, in this case inches.

Transverse Strain. When a material is in tension or compression
not only is its length altered, but also its transverse dimensions,
i.e. width and thickness. A bar in tension becomes thinner and one
in compression grows thicker. These changes are called transverse
strains and are measured in a similar way to longitudinal strains.

. change in width
Transverse strain = —-——2————=—
original width
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It has been found that, for a given material, the ratio of tran_slvers’e
strain to longitudinal strain is a fixed quantity, known as Poisson’s

. 1
ratio, denoted by pout
1 transverse strain

Thus, m ~ longitudinal strain

For common metals m has a value of from 3 to 4.

Volumetric Strain. If a body is subjected to a uniform pressure
over its whole surface, as in the case of a submarine lying at the
bottom of the ocean, its volume will change slightly and it will

suffer volumetric strain.
If, V, = original volume of the body.

V, = new volume of the body.
V2 - Vl

1

Volumetrie strain =

Shear 8train. The action of a shear stress differs from that of a
direct stress in that it causes a change in the shape of the body.

P A A B___#®
/ ,’
/ /
/ /
/ /
/ /
/ /
/ /
o}/ /e

Fic. 75. SAEAR STRAIN

Thus if a shearing force P is applied to the face 4B of the rectangu-
lar block ABCD, Fig. 75, it will deform the rectangle to a rhombus
A'B’'CD., The shear strain is measured as the angle 6 in radians
through which 4D rotates in deforming to A'D. Note that a radian
is the angle subtended at the centre of a circle by an arc of length
equal to the radius: 2 m radians are equal to 360°. For metalg
6 is very small and it is sufficiently accurate to take 6 = tan ¢
giving b . AA’

Shear strain = D

Elasticity. When a body is loaded and becomes strained, mechan-
ical work is expended since the point of application of the load will
have moved. When the load is removed the body tries to return
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to its original form and the work done in deforming it may be
recovered. A material is said to have perfect elasticity if, when a
straining force is removed, it returns completely to its original
shape and dimensions and if the energy given out during recovery
is equal to that used in straining it.

Many materials are nearly perfectly elastic provided that they
are not stressed beyond a certain limit depending on the nature
of the material and the type of stress applied. This limiting stress
is known as the elastic limit, and if it is exceeded the material will
not recover its original form and dimensions completely butis said
to have suffered a permanent set.

Hooke’s Law, Modulus of Elasticity. Experiments have led to
the formulation of a law which states: “Strains are proportional
to the stresses producing them, provided that the elastic limit
is not exceeded.” Known as Hooke’s law, after its discoverer, it is
very closely obeyed by most metals. It may be stated as—

Strain oc stress

Stress

Strain = constant

or

This constant is called the modulus of elasticity and is known by
various names according to the type of stress involved. The units
in which it is measured will be the same as those used for stress
since strain is a pure number.

For direct stresses, tensile or compressive, this constant is Young’s
modulus, denoted by E, and is given by—

__ direct stress
" longitudinal strain

The name bulk modulus is given to the constant if the material
suffers volumetric strain.
Bulk modulus K =

pressure stress
volumetric strain

For shear stress the constant is known as the modulus of rigidity
and,
g shear stress
d = e
Modulus of rigidity N <hear strain
These elastic moduli are of great importance for, if the value of
the appropriate modulus is known, the strain produced by a given

stress, or the stress required to cause a given strain, can be
calculated. :



86 MANUAL OF BUILDING SCIENCE

Exameie 1. A mild-steel rod, 14 in. in diameter, is subjected to a tension
of 15t. What strain will occur and what will be its extension if ite length is
10 ft? Young’s modulus E for mild steel - 13,000 t/in.

Cross-sectional area of rod =—£ (1-5)2 = 1-77 in.2
Tension in rod = 15t
. 15 .
Tensile stress intensity = 177 = 8:5 t/in.?
. stress 856
Strain = -—Pj— = m = 0-00065

Extension of 10 ft length = length X strain
=10 x 12 x 0-00065 = mS_EA_

ExampLeE 2. A tie bar, 2in. wide X #in. thick X 12ft long, is 4 in.
too short. What stress will be induced in the bar if it is forced into position
and what force will be required? Take E for the material of the bar as
27 x 10°1b/in.?

To force the tie into position it must be stretched 4 in.

5 1
12 x 12 7 16 X 144

.. Strain ==
Stress = E X strain
27 X 100
16 x 144
Force required to strain tic = stress x area
= 11,700 x 2 x $1b

.. Stress in tie = == 11,700 1b/in.?

This example serves to show that all parts of a structure must
be made accurately to size and that attempts to force ill-fitting
members into position may set up high stresses in them which will
reduce the load which they can carry safely. Similar large stresses
may be set up if structures are not able to expand or contract
freely under changes of temperature, as may be seen from the
following simple example.

ExaMPLE. A brass bar is heated to 160° F. and has its ends clamped rigidly.
It is now cooled to 50° F. What stress will be set up in the bar if no change
of length occurs? For brass E = 5700 t/in.? and coefficient of expansion
= 0-00001 per ° F.

Fall in temperature = 160 — 50 = 110° F. If bar were free to
contract—

Change in length per unit length = 110 x 0-0000]
= 0-0011



STRESS AND STRAIN 87

Since bar cannot contract—
Tensile strain due to stress in bar = 0-0011
.. Stress = E X strain = 5700 x 0-0011 t/in.2
Tensile stress in bar = 6-27 t/in.2

fure

RIGID/
SUPPORT

REFERENCE TEST
wiRE | f WIRE

BUBBLE
TUBE

ICROMETER
CREW

93

STRAINING
WEIGHT

Fie. 76. SEARLE'S APPARATUS FOR DETERMINING YoUNG'S MoburLus
FOR A WIRE

LABORATORY WORK

ExPERIMENT 1. Determination of Young’s modulus for a wire using Searle’s
apparatus

The apparatus used is shown in Fig. 76. Two wires about 6 ft long support
a bubble tube. The left-hand wire is kept taut by a straining weight and
forms a standard against which the extension of the wire under test can be
measured. One end of a bubble tube is pivoted at the centre of a ring suspended
from the standard wire and the other end is supported on the point of a
micrometer screw carried by the test wire.
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Adjust the micrometer until the bubble is at the centre of its run and read
the micrometer. On applying a load, the test wire will extend and the bubble
will cease to be central. Bring it back to its original position by turning the
micrometer screw. The distance moved by the point of the screw will be the
extension of the wire under the given load and is given by the difference in
the two readings of the micrometer.

Take a series of readings of load and extension in this way for increasing
and decreasing loads. Measure the original length and diameter of the test
wire, and calculate the tensile stress and strain in the wire for each reading.
Plot a graph of stress against strain, drawing a mean straight line through

the points. The slope of this line will give the mean value of Z—:::—:, i.e. of

Young’s modulus.

ExPERIMENT 2. Tensile test to destruction

The test piece used may be either rectangular or circular in cross-section
and is about 14 in. long, having a parallel-sided centre section 9 in. long and
enlarged ends which enable it to be held in the grips of the testing machine,
Fig. 77. By turning the loading handle the lower grip can be moved down-

COUNTERPOISE

HANOLE
CONTROLLING
COUNTERPOISE L1 GRIP

HAND
LOADING
GEAR

Fia. 77. TensiLe TesTING MACHINE

wards. The pull so exerted is measured by moving the counterpoise along the
beam of the machine until the beam just floats free of the stops. The pull
on the specimen can then be read off on the scale.

Determine the dimensions of the test piece at four or five points and from
these calculate the average area of cross-section. Centre punch two marks
8 in. apart on the specimen and then fix the specimen in the testing machine.
Apply the load gradually and for each load measure the extension on the 8 in.
gauge length using callipers and a steel rule. This extension will be small
until the yield point is reached. Continue the process until the maximum
load is developed after which the specimen will be found to continue to extend
rapidly, the beam of the testing machine falling, indicating a reduction of
load. By running the counterpoise back try to keep the beam level until
fracture occurs. This will give a rough value of the breaking load.

From the values so obtained plot a curve of tensile stress against strain
and determine the yield stress, ultimate stress and breaking stress. A typical
curve for mild steel is shown in Fig. 78.
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EXERCISES

1. A round tie bar carries a pull of 14 t. Calculate the diameter of the bar

if the safe stress is 8 t/in.2
/ If the bar is 12 ft long, how much will it extend under this load ? E = 13,000
t/in.?

2. A steel bar, 4 in. wide, % in. thick, and 20 ft long, carries a pull of 12 t.
Find its extension in length and contraction in width and thickness under
this load. E = 13,500 t/in.2; m = 3-5.

3. A 1} in. diameter tie bar, 20 ft long, lengthens 4 in. under a pull of 7 t.

ULTIMATE
2 STRENGTH

YIELD POINT
<~ ELASTIC LIMIT

TENSILE STRESS

TENSILE STRAIN

Fig. 78. STRESS-STRAIN CURVE FOR A TEnsiLe TeST TO
DESTRUCTION

Find the intensity of tensile stress in the bar and the value of Young’s modulus
for the material.

4. A brass rod, 3 ft long and 4 in. diameter, is cooled from a temperature
of 180° F to 70° F. What force is required to prevent any change of length ?
5 = 5700 t/in.?; coefficient of expansion = 0-00001 per ° F.

5. A short concrete column, 12 in.2, is reinforced with four 1 in. diameter
steel bars. Find the load which the column can carry if the stress in the
concrete is not to exceed 600 lb/in.?! What will be the stress in the steel?
Ratio of Young’s modulus for steel to that for concrete is 18.

6. A load of 2500 1b is supported by three long parallel wires, equal in
length and in the same vertical plane. The middle wire is of steel and the
outer wires are of brass, each wire having a cross-sectional area of }in.?
The wires are adjusted so that each carries one-third of the load and then a
further load of 7500 Ib is added. Calculate the stress in each wire.

E for steel = 30 x 10°lb/in.?;

E for brass = 12 x 108 lb/in.2.

7. A column is carried on a square base slab which transmits a load of
66 t to the ground beneath it. If the safe bearing pressure on the ground is
3 t/ft?, find the minimum size of the slab on plan.

8. Determine Young’s modulus from the following results of a tensile
test—

Diameter of specimen = § in.

Gauge length over which extension is measured = 4 in.

Extension under load = 0-002 in.

Load causing extension = 2-9 t.



CHAPTER XII

PLANE FRAMES, TRUSSES AND
LATTICE GIRDERS

AN arrangement of bars connected together constitutes a framework
and is able to resist loads partly by virtue of the strength of the
individual members and partly as a result of their arrangement.
Frames. Examples found in building work are the trusses used
for carrying roofs having large clear spans and also the lattice
girders often employed for bridges. In design it is necessary to

T °
I
II /
]
1
/ 1
) l
, |
AGF oD A Q — D
(a) MECHANISM (b) FRAME

Fia. 79. A MEcHANISM AND A FrRAME

calculate the loads carried by the frame and the internal forces or
stresses in each member. Members of suitable cross-section can
then be chosen so that the intensity of stress does not exceed that
which the material can withstand safely, and these members must
be connected together by joints of sufficient strength to transmit
the stresses from one member to another.

Plane Frames, Space Frames. If all the bars of a frame lie in the
same plane, as for example in a roof truss, the resulting structure
is known as a plane frame, and can resist only those forces acting in
its own plane. If the bars lie in more than one plane, they form a
space frame and are able to resist loads acting in all directions—a
typical example of such a space frame is the lattice work pylon
used to carry electrical transmission lines.

Number of Bars Required in a Plane Frame. The arrangement of
four bars, shown in Fig. 79 (a), pinned together at 4, B, C, and D,
does not form a framework. If a load is applied at B the bars will
move freely and the whole assembly is, in fact, a mechanism, and
requires a fifth bar AC, Fig. 79 (b), to convert it into a frame capable
of withstanding loads.

90
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To ensure that, in designing a frame, the correct number of bars
is provided to fix each joint in its proper position, it is useful to
have a rule connecting the number of joints and the number of
bars. The simplest frame is a triangle which has three joints and
three bars, Fig. 80. To brace another joint D to the frame 4BC

Fiag. 80. NuMBER OF BArRs REQUIRED TO ForM A FrAME

two more bars will be required and for each additional joint an
extra two bars will be needed. Thus, in a plane frame having n
joints—

Number of bars required for first three joints =3
Number of bars required for remaining (n — 3)
joints at 2 per joint = 2(n— 3)

Number of bars required for a frame having » joints = 2n — 3

Not only must there be the correct number of bars in the frame,
but they must be properly arranged. Thus if a frame has 8 nodes

1 2 3 4 1 2 3 4+
8 7 3 s ) L]
(@) CORRECT ARRANGEMENT (b) INCORRECT ARRANGEMENT

¥F1g. 81. CORRECT AND INCORRECT ARRANGEMENT OF DBARS

or joints, 13 bars are required to brace them together. In Fig.
81 (a) these bars are satisfactorily arranged, but in Fig. 81 (b),
although the correct number of bars is provided, they are incorrectly
disposed and the two right-hand joints are not properly braced.
From inspection of these two cases it can be seen that the frame is
properly braced when the bars form a continuous series of triangles.
The frame is then said to be triangulated.

Frames Connected to Fixed Points. When a frame is connected
to fixed points, such as 4 and B, Fig. 82, the process is equivalent
to bracing extra nodes to an existing frame. Thus if a plane frame
has n joints excluding the points of attachment, only 2n bars are
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required. In Fig. 82 there are five joints excluding 4 and B and
ten bars are required.

Stress Determination in Frame Members. As will be shown later,
the stresses in the members of a frame which is just stiff, i.e. has the
correct number of bars correctly disposed, can be determined by
applying the ordinary laws of statics. Such a frame is therefore said
to be statically determinate. A frame such as that shown in Fig. 83
has a greater number of members than is required to make it just
stiff since the structure would still be adequately braced if one
of the diagonals was omitted. In this case the stresses in the members
cannot be determined by statics but will depend upon their elastic

Fie. 82. FrRaME BRACED TO Fia. 83. StaTICALLY
Fixep PoiNTs INDETERMINATE FRAME

properties. The frame is therefore called statically indeterminate
and is said to have a redundant member. In this book only statically
determinate frames will be dealt with.

STRESS ANALYSIS

Basic Assumptions. To simplify the calculation of the stresses
set up in the members of a frame certain assumptions are made,
although they are not necessarily carried out in practice. These
assumptions are—

1. That the frame is statically determinate, having no redundant
members or reactions.

2. That the frame has the correct number of members, calculated
as described above, and that it is properly triangulated.

3. That the members are connected by pin-joints and that each
member extends only from one joint to the next.

4. That the centre-lines through the centroids of the members
pass through the centre of the pin-joints.

5. That the external loads act only at the joints and that their
lines of action pass through the centres of the joints.

Calculation of Loads. In practice the loads carried by a truss or
girder rarely act only at the joints or panel points but, in accordance
with assumption (5), for design purposes the total load is calculated
and then split up and allocated to the various joints. The method
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can be explained by considering a roof carried by a number of
trusses, Fig. 84. The truss 4 BC may be assumed to carry the load
from half of the bay in front of it and half of the bay beyond it,
as shown shaded. If the roof load is equivalent to 50 lb/ft? for the
horizontal area it covers—

Total load carried by the truss = 20 x (5 4 6) x 591b
= 11,000 Ib

27501b 27501b

1375 1b 13751b

A =)

TRA=5500I5 R,=55001b T

Fra. 84. Loap CarriEDp BY Roor TRrRuss

This vertical load will be applied to the joints 4, D, C, F, and B,
each joint taking a proportion of the load according to the length
of the member on either side of it. Thus the loads at 4 and B will
be half those at D, C, and F as shown in the lower diagram.
Graphical Stress Analysis. It has alrcady been shown that for
a structure to be stable the external loads and reactions must be
in equilibrium, and that this fact may be employed to calculate
the values of the reactions. Similarly any part of the structure
must also be in equilibrium under the action of the external forces
and the internal stresses acting in that part. Thus the joint at 4
in Fig. 84 must be in equilibrium under the external loads and
reactions at 4 and the stresses in 4D and AE. Thus if a polygon
of forces were drawn for the joint 4 the value of the stresses in
AD and AE could be found and, by applying the process to each
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joint in turn, the stresses in every member could be fqund. In
practice the work can be carried out in a single stress diagram in
the manner explained in the examples below.

ExampLe 1. Find the stresses in each member of the roof truss shown in
Fig. 85.

Bow’s notation may be used for both external and internal
forces, the spaces being lettered as shown.

20001b

a
b

9
e

f
[

R,=10001b R,=10001Ib STRESS

FRAME DIAGRAM DIAGRAM “

Member | BF cG EG EF FG
Tension —_ -_— 1200 | 1200 | 390
(1b)

Comp 1370 | 1370 | — — —
(Ib)

Fia. 85. StrEss Diagram rFor A Roor Truss

Since all loads are vertical and are symmetrically disposed the
polygon for the external forces is a straight line a b cd e and the
reactions ae and de are equal, thus fixing the position of e.

Taking the joint at the left-hand support, of the four forces
acting the two external forces are completely known and the
direction of the internal forces in BF and FE is also known. The
polygon of forces a b f e can now be completed by drawing bf parallel
to BF and ef parallel to EF thus enabling the magnitude of the
forces in BF and EF to be found by measuring bf and ef. To deter-
mine whether these forces are pushes or pulls note the way in which
the forces follow round the polygon; thus, since ab acts downwards,
bf acts downwards and to the left and fe acts upwards and to the
right, hence member BF exerts a push on the joint and is in com-
pression and FE exerts a pull on the joint and is in tension.

Now take the top joint of the truss and complete the polygon
begf to find the values of the forces in F'G and GC. Finally complete
the polygon for the right-hand joint to find the force in GE. The
points g and e in this polgyon have already been fixed in the diagram
and therefore form a check on the accuracy of the work for, if the
line joining e to g is not parallel to the member GE, some error of
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drawing has occurred. This fact that the diagrams are self-checking

is the principal advantage of the graphical method of stress analysis.

If the loading is symmetrical labour can be saved by constructing

only half the diagram, for the load in corresponding members in
10 70rss. 12 70Ns Trors

o e ]
2 4 €

1 3 5 7
G F E
R‘ 3TONS YA LTS Rg

FRAME DIAGRAM

/ |
J b
/\ -WL___,
k +
\ /‘ hél'r 3
t c
STRESS
DIAGRAM
d.
Member | AH BJ CL DM | EM FK GH HJ JK KL | LM
Tension — — —_ — 9-2 | 182 | 10-6 9-4 —_ —_ 10-2
(tons)
Comp. | 212 | 153 | 142 | 184 | — — — — 6-8 80 | —
(tons) i

Fi1a. 86. STrRESS DIAGRAM FOR A WARREN GIRDER

each half of the truss will be the same. Thus in Fig. 85 the loads
in EF and EQ@ are identical and so are those in BF and GC.

Exampre 2. Find the stresses in each member of the Warren girder shown
in Fig. 86.
As the loads are not symmetrical the reactions R, and R, must be

calculated, or the position of the point f in the polygon for the
external loads must be found by drawing the link polygon.
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Taking moments about the right-hand support—

3R =10x30+3x24+12x18+2x1247 x6
= 300 + 72 4+ 216 + 24 -+ 42 t-ft

= 654 t-ft
R, =182t
And R, = (10 + 3 + 12 + 2 + 7) — 18:2
=158 t.

Bow’s notation may be used, lettering the spaces as shown.
Take the loads and reactions in order, clockwise, round the truss
and draw to scale the polygon, or load line, for the external forces
abcdefg. Start at joint (1) and draw ak and gk parallel to members
AH and GH, thus fixing % in the stress diagram.

Now take joint (2) and locate j in the same way and continue
the process taking joints (4), (5), and (6) in turn.

Check that the final line dm is parallel to DM in the frame diagram.

L VU b

%
2 00016 \ 2 00016

——————— J Hzl
fe— 11
4500 Ib

Fia. 87. STRESSING BY THE METHOD OF SECTIONS

By scaling off the stress diagram determine the stress in each
member and, by inspection of the polygon for each joint, determine
which members are in tension and which in compression. Note
that normally the members forming the top chord of the girder,
AH, BJ, CL, and DM, are in compression, while those forming
the bottom chord, GH, FK, and EM, are in tension.

Stressing by the Method of Sections. Stresses in the members of
a frame can be determined by calculation, using the method of
sections. To find the stresses in the members CD, DE, and EF in
Fig. 87, first calculate the reactions at 4 and B in the normal way.
Now assume that the truss is cut along a line XX passing through
the members in which the stress is to be found. The two parts
of the truss can be maintained in equilibrium by applying external
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forces P, @, and § to replace the internal forces previously exerted
on the joints by the cut members. The value of these forces can be
found by taking moments about suitable points.

To find the value of P take moments about E, the point at which
@ and S meet and about which they have no moment. Then, con-
sidering the equilibrium of the left-hand side of the truss—

Pd; = 4500 x 11 — 2000 x 4 lb-ft
= 41,500 1b-ft
where d, = perpendicular distance from line of action of
Pto K.
=9ft

P = 4-1-195—0—0 — 4611 1b

The value of § can be found by considering the right-hand part
and taking moments about D, the point at which P and @ meet.
Similarly for @ take moments about G the point at which P and S
meet. The lengths of the perpendiculars d;, d,, and d, are easily
measured from the drawing of the frame.

This method is very convenient if it is desired to find the stress
in a few members only since it avoids the necessity of drawing a
complete stress diagram. It can also be applied to the stressing of
the whole frame by taking a number of different sections, but in
that case a stress diagram would probably be simpler.

DrsigNn or FrRAMES

Choice of Members. The intensity of stress in the members of a
frame must not exceed the safe working value for the material
used, and so, once the stresses in the members have been found,
the required cross-sectional area of each member can be calculated.
Thus if the stress in a given member is 20 t and the allowable work-
ing stress intensity is 8 {/in.2 then the cross-sectional area of that
member must not be less than 2% in.2, and may be provided in a
number of different ways depending upon whether the member is
a strut or a tie and upon practical considerations of manufacture.
In steelwork it is desirable to use channels or angles for compression
members because their stiffness helps to prevent buckling; flats,
rods or light angles may be used for tension members.

Riveted Joints. In steelwork, riveted joints may be used for
making permanent connections between plates or rolled sections.
In the lap joint, Fig. 88, the two plates are overlapped and are
connected by rows of rivets, more than one row being used if
necessary. In the butf joint, Fig. 89, the plates are butted together,
edge to edge, and a cover plate is riveted to both plates on one or
both sides. In making riveted joints the holes are either punched
or drilled in the plates to a slightly larger diameter than that of the

8—(T.479)
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rivet. The red-hot rivet is put in position and the head formed by
hand or pneumatic hammer or by a hydraulic riveting machine,
during which process the rivet is expanded to fill the hole.

Failure of a riveted joint may occur in one of four ways—

(a) By the rivet being placed too near the edge of the plate so
that it tears out when the load is applied. To prevent this the

)

N
NN

1IN
! 2z 2NN | NS
1 L/
SINGLE COVER PLATE

Fia. 88. RIVETED Lap Fi1a. 89. SINGLE- AND DOUBLE-
JOINT CovER Burr JoIiNTs

centre of the rivet hole should be not less than one and a half times
the rivet diameter from the edge of the plate.

(b) By the material of the plate failing in compression as it bears
against the rivet.

Strength of rivet and plate in bearing

= allowable intensity of bearing stress X projected area of
hole

= allowable intensity of bearing stress x thickness of
plate x diameter of rivet.

(c) By shearing of the rivet. In the lap joint, Fig. 88, shearing
will occur along the section AB. The rivet is said to be in single
shear and—

Strength of rivet in single shear

= allowable intensity of shear stress x cross-sectional area
of rivet.

In the single-covered butt joint, in tension, the rivets are also in
single shear; in the double-covered butt joint, however, the rivets
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are in double shear, since the stress is transmitted across both sec-
tions AB and CD. Thus—

Strength of rivet in double shear
= 2 X strength in single shear

= 2 X cross-sectional area of rivet X allowable intensity of
shear stress.

For a butt joint in compression the stress will be transmitted across
the edges of the plate in contact, provided they fit, and the rivets
will not be under shear stress at all.

(d) By tearing of one of the plates along the line XX, Fig. 88,
where the plate has been weakened by the rivet holes. For this
reason the area of the rivet hole must be deducted from the gross
cross-sectional area of the plate when calculating its strength in
tension. In compression no deduction need be made since the stress
is assumed to be transmitted by the edge of the holes bearing upon
the rivets.

In design the working strength of a riveted joint will be the
lowest value given under the above four conditions. The ratio
of the strength of the joint to the strength of the full section of the
member is known as the efficiency of the joint and is usually ex-
pressed as a percentage.

ExamprLeE. Design a double-covered butt joint to transmit an axial tension
of 39 t. The thickness of the plates to be joined is § in., rivet diameter § in.,

and allowable working stresses are: in shear, f, = 6 t/in.?; in bearing,
fo = 12 t/in.2; in tension, f, = 8 t/in.2. Find also the efficiency of the joint.

To find the number of rivets required—

2
Double shear value of one rivet = 2 . 14? S

= 12_qu4+(%_)2 —"9¢

Bearing value of one rivet =f,.t.d
=12 X §gX§ =656t
.". Strength of rivet = 6-56 t
Number of rivets required on each side of joint

Total pull 39

~ Rivet strength ~ 656 6

These rivets will be arranged in the leading rivet formation shown
in Fig. 90.

To find the width of the plates to be joined—

The plates must be wide enough to prevent failure in tension at
either of sections (1), (2), or (3).
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At section (1)
Pull transmitted = 39 t
Strength of plate = ¢(B — d) . f,
$(B— ) x8=239
(B— $) =18
B = 8}in.
At section (2)
Pull transmitted = 39 — 6-56 = 3244 t
Strength of plate = (B — 2d) . f,
§(B—13}) x 8 = 3244

(B— 1) — 649
B = sg in.
4 I '
39 tons ( E * D .f) —3-9;"::
elei - |
FreFrr oo
_d\ PasN N N N N %.comnnr:

Fia. 90. DesigN ¥or A DousBLE-coviEnr Burr JoINT

At section (3)
Pull transmitted = 39 — 3 X 6-56 = 1932 ¢
Strength of plate = ¢ (B — 3d) . f;
§(B—28) x 8=1932
(B— 28) = 386
B = 6} in.
Necessary width of plate = 8% in.

To find thickness of cover plates—
Weakest section of cover plates is section (3).
If T = thickness of single cover plate
(B—3d).2T.f, =39
(84— 248).27.8 =39
T = 4, say F in.
The full details of the joint will now be as shown in Fig. 90.
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To find the efficiency of the joint—
Rivet strength of joint = 6 X 6-56 = 39-36 t
Tearing strength, section (1) = § (83 — 13) X 8 = 3906 t
Cover plate strength, section (3)
= (83— 28) X 2 X f X 8 =41-56¢

LAP JOINT

N
Y | N

//A:\\\\ \\\\\\\\"

SINGLE COVER BUTTJOINT

Fi1a. 91. BeNDING AOTION AT A LaAp JoiNT
AND A SINGLE-COVER BUTT JOINT

Therefore

Strength of joint = 39-06 t (The least of the above values.)

Strength of solid plate = 83 X § X 8¢
=433t

. - __ strength of joint
Efficiency of joint = Srength of solid plate X 100 per cent
39-06

= 375 = 89-5 per cent.

Riveted joints should never be so designed that the rivets are
in tension, for their heads are not necessarily reliable. Loading
should always be a push or a pull along the axes of the plates and
should put the rivets in shear. Lap joints and single-cover butt
joints suffer from a bending action, Fig. 91, since the forces acting
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are parallel and not in the same straight line. For this reason double-
cover butt joints are preferable for both tension and compression
members since they do not suffer from this defect.

Riveted Connection for Roof Truss. A typical connection for a
roof truss member is shown in Fig. 92. A steel gusset plate has been

CENTROID
OF RAFTER

GUSSET PLATE

SECTION OF
RAFTER

’F: L CENTROID
I LINES

Fic. 92. ConNNECTION FOR Roor TrUsSs MEMBERS

riveted to the rafter and the other members are secured to the
plate. Note that the lines through the centroids of each member
and the line of action of the load intersect at a common point (see
page 92).

EXERCISES

1. In the truss shown in Fig. 93, AB = BC = CD = 5ft; DE = 1{t 6in.;
CF =2ft 6in.; BG = 4ft; AH = 6f{t. If a load of 1t is applied at D
calculate the stresses in all parts of the truss.

/ 2. Calculate the forces in all the
AA e c o members of the truss shown in Fig. 94
' ' under the given loading.

3. Calculate the forces in all the

€ members of the truss shown in Fig. 95.
F 4. Find the stresses in all the members

G of the roof truss shown in Fig. 96.

5. Find by the method of sections the
stresses in the members BC, BF, and
F@ in the cantilever, Fig. 93, if a load

F1g. 93. CANTILEVER TRUSS og 2tis eg')plied at D together with a load

of1tatC.

6. Calculate the strength of a § in. rivet in double shear, if the allowable
shear stress is 5 t/in.? and compare this value with the strength of the same
rivet in bearing in & § in. plate, if the allowable bearing stress is 12 t/in.2
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Fia. 94. NON-PARALLEL TyPE GIRDER
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20001Ib 2000 1b
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Fia. 96. THirTY-FOOT SPAN Roor Truss
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7. Two %in. plates are to be connected by a double-covered butt joint,
which is to transmit a load of 20 t. The rivets used are to be § in. diameter
and will require {} in. holes. If the allowable stresses are: shear stress
fs = 6 t/in.%; bearing stress f, = 12 t/in.?; tensile stressf, = 8 t/in.?, calcu-
late the number of rivets required, the necessary width of the plates and the
thickness of the cover plates. Determine the efficiency of the joint.

8. For the roof truss in Fig. 96, choose suitable sizes for all the members
if the intensity of stress in compression members is not to exceed 5 t/in.?
and that in tension members 8 t/in.?

Design also a suitable riveted joint for the four members meeting at C.



CHAPTER XIII
BENDING OF BEAMS
A MEMBER, usually greater in length than in other dimensions,
which is acted upon by loads applied transversely to its length, is
called a beamn. When loaded a beam suffers strain, known as flexure

or bending; if initially straight it becomes curved, or, if curved
originally, its curvature will be altered. The term joist is often used

4 LOAD ‘
lt f
(a) SIMPLY SUPPORTED BEAM

&LOAD} ‘ ]
1 1

(b) CONTINUOUS BEAM

LOAj

J

AN

(c) CANTILEVER

l Loao l Z
%

(d) BUILT-IN OR ENCASTRE BEAM
F16. 97. CLASSIFICATION OF Brams

NN

to describe a beam of moderate size made from one piece of material
while beams of larger size, built up of several parts, are known as
girders.

Beams are also classified according to their mode of support.
If a beam rests on two supports, Fig. 97 (a), but is not fixed to them,
it is said to be simply supported. If an intermediate support is
provided, Fig. 97 (b), it is called a continuous beam. A beam

105
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supported at one end only, Fig. 97 (c), is known as a cantilever, but if
built-in at both ends, Fig. 97 (d), it is said to be encastré or buslt-in.
In this chapter only simply supported beams and cantilevers will
be dealt with and the work will also be confined to cases of pure
bending where there are no components of the external forces
which act along the beam and all forces are applied in the plane
in which the beam bends.

SueAR ForcE aAxD BEnNDING MOMENT

Nature of the Stresses in a Beam. Before inquiring into the stresses
set up inside a beam it is necessary to complete the knowledge of
the external forces acting by determining the values of the reactions.
This is done by the method described in Chapter X, and the follow-
ing example will serve to remind the reader.

ExamMprLe. A beam 4B of 15 ft span, Fig. 98, is simply supported at its
ends and carries loads of 2 t and 3 t at distances of 5 ft from A and 4 ft from
B respoctively. Calculato the reactions B, and Ry.

2 Tons B ToNS
}-—- 5'-0" 6-0" 4'- Q"
4 Y
A B
3 \
- 15-o" :
R, Ry

Fia. 98. CarncuraTioN oF BEaM REACTIONS

For the beam to be in equilibrium—
Algebraic sum of the moments about any point = 0. Taking
moments about B
15<xR,;,—2%x10—-3Xx4=0
15R, = 32
R, =213t

Also, algebraic sum of vertical forces = 0

R,4+RBRp—2—3=0

Ry=5—R,=5—213

Ry =287t

In Fig. 99 (a), a beam of span L carries a central point load w.
The reactions at the supports will be g To find what internal

forces are acting in the beam at a section XX a distance z from the
left-hand end, imagine the beam to be cut through at that section.
To maintain the left-hand portion in equilibrium a force F, Fig.
99 (b), would have to be applied to prevent vertical motion and,
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clearly, F = 121) Thus, in the uncut beam, the right-hand portion

must exert a force F on the left-hand portion. Similarly the left-
hand portion exerts a force F' on the right-hand and since there
can be no unbalanced internal force F’ = F. This can also be seen
by considering the equilibrium of the right-hand portion—

F’—{-?——w:O

©)

y 3

% Y.

Fic. 99. INTERNAL EQUILIBRIUM OF A BEAM

These internal stresses are set up by a tendency for the beam to
shear as indicated in Fig. 99 (¢). There is, therefore, said to be a
shearing force F at this section. The magnitude of this shearing
force is given by the rule—

“The shearing force at any section is equal to the algebraic sum
of the forces acting to one side of that section.”

Referring again to Fig. 99 (b), it will be seen that although the
left-hand portion is in equilibrium with regard to vertical forces,
it is not so from the point of view of moments. The reaction and
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the force F form a clockwise couple so that, to maintain eqyﬂibﬁum,
a moment M is required. Thus in the uncut beam the right-hand
portion must exert a moment M on the left-hand portion such that

M= wg Similarly the left-hand portion exerts an equal and

opposite moment M’ on the right-hand. This internal resisting
moment is known as the moment of resistance of the beam and its
numerical value can be found by considering either one or other
part of the beam. Thus—

For the left-hand M = & .«

For the right hand M = M’ =g(L—— x)——w(%—-x)

Note that the right-hand side of the equation is, in cach case, the
algebraic sum of the moments, about section XX, of the forces
acting to one side of the section. This sum is called the applied
bending moment at XX. From the above comes the following rule—

“The bending moment at any section across a beam is the alge-
braic sum of the moments, about that section, of all the forces
acting to one side of that section.”

Sign Convention for Shear Force and Bending Moment. It has
already been seen that numerically it does not matter whether the
left-hand or the right-hand side of the section is considered when
calculating either shear force or bending moment; but, although
F and F’' are numerically equal, they act in opposite directions.
Similarly the moments M and M’ are also equal and opposite.
But both F and F' produce the same effect since they both tend to
resist the external loads which are pushing the left-hand side of
the beam up and the right-hand side down. Again, M and M’ are
both tending to resist the applied bending moment which is causing
the beam to sag. New sign conventions are therefore necessary.
That for shearing force is based upon the direction in which the
external loads tend to move the two parts of the beam and is shown
in Fig. 100. For bending the convention is shown in Fig. 101. If
the applied bending moment makes the beam sag it is positive;
if it makes the beam hog, or become convex upwards, the moment
is negative.

Shear Force and Bending Moment Diagrams. A correctly designed
beam must be strong enough to withstand the shear force and
bending moment occurring at every section. As an aid to this work
it is often convenient to write down equations or draw graphs
giving the values of these quantities for any distance from one end
of the beam. Such graphs are called shear force diagrams (S.F.
diagrams) and bending moment diagrams (B.M. diagrams) and can
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be drawn by calculating values at a number of sections of the beam
and plotting these as ordinates on a base line representing the
length of the beam. The points so obtained are joined up with
curves or straight lines as applicable. In many cases it is possible
to express the shear force or bending moment in terms of equations
applicable over part or all of the span thus simplifying the work

POSITIVE SHEAR FORCE POSITIVE BENDINC MOMENT
; l
NEGATIVE SHEAR FORCE NEGATIVE BENDING MOMENT
Fia. 100. SieNn CONVENTION Fic. 101. SigN CONVENTION
FOR SHEAR FORCE FOrR BENDING MOMENT

of plotting. The S.F. and B.M. diagrams worked out in the following
paragraphs for several important cases will serve to demonstrate
the method.

Cantilever with Point Load at the End. A cantilever of length L
carries a point load w at its free end, Fig. 102. Take any section
at a distance x from the free end, then the shear force at this section
F . will be the sum of the loads to one side of the section. Choosing
the right-hand side this gives: F, = + w. This will apply wherever
the section is taken and the S.F. diagram will be as shown in
Fig. 102.

The bending moment M, at this section will be the moment of
the forces acting to one side and, again choosing the right-hand
side: M, = — wz, the negative sign indicating that the canti-
lever is bent so that it is convex on its upper side. This equation
will apply all along the cantilever and the B.M. diagram will be a
straight line, Fig. 102, such that M, = 0 at the free end where
z =0 and M, = — w L at the support where x = L.

Cantilever with Uniformly Distributed Load. Fig. 103 shows a
cantilever of length L carrying a uniformly distributed load of
w per unit length (for example 2 t per ft run). Again take any sec-
tion at a distance x from the free end. Shear force F, = sum of
loads to one side of the section.

Load on right-hand side = Load per unit length X length from

free end to section
= wx
S Fo=we
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Thus the shear force diagram will be a straight line, Fig. 103,
running from F, = 0 at the free end where x =0 to F,=w L
at the support where z = L.

Similarly the bending moment M, is equal to the moment of all
the load to one side of the section.

Moment about section of all load to the right

= Total load on length » x distance of c.g. of this load from
the section.

% — 4 ,
/ po—x—n{
x /| W PERUNIT LENCTH
| LOADING LOADING
Z pp— g Da— !
1 /] 1

7

T SHEAR FORCE
' SHEAR FORCE DIAGRAM
ow DIAGRAM *+wi (AR

i fsw i

1 BENDING 1

BENDING

"y MOMENT NMRAM. o MOMENT DIAGRAM
—*— M3 -Wx Z Mx"”fl

Fi1a. 102. CANTILEVER F1e. 103. CANTILEVER CARRYING
CARRYING A PoiNT LoaD A UntrorMLY DiSTRIBUTED LOAD

Since the load is uniform the centre of gravity of the portion of
the load to the right of the section will be at a distance g from it.

Moment about section of all load to the right
x

=wx.§

This bending moment is negative since the cantilever tends to
become convex on its upper side. This equation gives a parabolic
curve for the B.M. diagram, Fig. 103, running from M, = 0
2

at the free end where z = 0 to M, = — % at the support.

Simply Supported Beam, with Central Point Load. Fig. 104 (a)
shows a beam of length L simply supported at 4 and B and
carrying a load w at its mid-point C. The reactions at 4 and B

will each be —219
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Take any section X at a distance « from 4, then if X lies between
A and C the only load acting to the left of X is the reaction at A4.
Thus, between 4 and C—

F,.=+ g, and is constant from 4 to C, as shown in Fig. 104(b)
and,
M, =+ zzi’x, giving a straight line rising from M, = 0 at 4,
wl L
to M, = e when z = 3

o

} LOADING

at C, as shown in Fig. 104 (¢).

C4
LOAD W

| [» |
: [t '
SHEAR Fe 13
.:g ! m:c.u‘:: ' Ve
|
i
I
t*
1 X
‘ G 3!' \
BENDING
| MOMENT ! -’{
LS |DIAGRANM K
{ ! SHEAR FORCE DIAGRAM

Fic. 104. BraM, SIMPLY SUPFORTED, Fic. 105. APPLICATION OF A
wiTH CeENTRAL PoinT LoaD PoiNT 1L.OAD 1N PRACTICE

[
L
|
|
!
!

I
1
]
|
!
|

Between C and B the point load w has to be taken into account
and a discontinuity is thus formed in the diagram. For this portion—
Fo=—3
in Figs. 104 (b, ¢). Note that in moving from one side of the load

to the other the shearing force has changed from —+ gﬂ to — g, or

and M, = 12_0 (L — z) completing the diagrams as shown

by an amount equal to the point load. The occurrence of both
positive and negative values of shear force at ¢ may trouble the
reader, but it should be remembered that a point load cannot be
applied in practice, the actual situation being nearer to that shown
in Fig. 105.

Simply Supported Beam, Load Uniformly Distributed. A beam
of length L, Fig. 106, is simply supported at 4 and B, and carries
a uniformly distributed load of w per unit length.

Total load carried = wL

wL wL

R.A:? and RB=~2——
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Take any section X at a distance x from A.
Then, Load on length AX = wx
and the c.g. of this load will be at the mid-point of AX or at

x
Efrom X.

Considering shearing force—

F, =RA——wx=1££—wx

2
=Wz —2
2

i w PER UNIT LENGTH ]
| — ]
A X ABP LOADING
4
e *
@«
R % Re=%

]
|
T '
+ ?- w(g-x) | SHEAR FORCE
{ PIAGRAM
\l x

DIAGRAM

M= §¥(L-x)

Fia. 106. BraM, SiMPLY SUPPORTED, WITH UNIFORMLY DISTRIBUTED
Loap

1

I

I BENDING MOMENT
|

1

Thus the S.F. diagram, Fig. 106, runs from + 1%13 at 4 when
x-—:Oto——l—Uz—La,thhenx=Lande:Oatmid-span.
For bending moment—
M,:RAx—wz.;-=%-z(L~—z)
Thus the B.M. diagram is a parabola, Fig. 106, and M, = 0 at
A, when z = 0, and at B, when x = L, with a maximum value of
wlL?

M, = < at mid-span when z = —21—'
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Beam Carrying Several Loads. The shear force diagram for such a
cage may be obtained either by plotting the S.F. diagram for each
load taken separately and then adding the ordinates to make the
complete diagram, or the combined diagram may be found directly
by applying the rule that the shear force at a given section is equal

3 ToNs 4 TONs

-0 8-0"—
A A

r
J LOADING

ANt NN

4 SHEAR FORCE DIAGRAM
TONS I DUE TO 4 TON LOAD
1
3 ' SHEAR FORCE DIAGRAM
TONST | DUE TO 3 TON LOAD
1 !
3ToNs ] I
7 ———-——t - COMBINED SHEAR
TONS 4qTons| | FORCE DIAGRAM
1
|
i

e | ,  BENDING MOMENT
TorET. | \ DUE TO 4 TON LOAD

18 BENDING MOMENT
TON.FT. DUE TO 3 TON LOAD
COMBINED BENDING
74 MOMENT DIAGRAM
TONFYL.

Fig. 107. Beam CARRYING A NUMBER OF PoINT LoaDs

to the algebraic sum of the loads to one side of the section. Sim-
ilarly the bending moment diagram can be built up by adding the
ordinates of the B.M. diagrams for each load taken separately or
may be found directly by applying the rule that the bending moment
at a given section is equal to the algebraic sum of the moments of
the loads to one side of the section.

ExaMrLE. A cantilever 14 ft long carries a load of 4 t at its free end and a
load of 3 t, 6 ft from its support. Draw the S.F. and B.M. diagrams.

Fig. 107 shows the method of building up the diagrams. Usually
it is not necessary to draw the individual diagrams separately,
9—(T.479)
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the combined diagram being built up by plotting one part on top
of another instead. Note that in moving from one side of the load
to the other the S.F. diagram changes by an amount equal to the
load and the B.M. diagram also has a discontinuity at this point.

Position of Maximum Bending Moment. Referring to Figs. 104
and 106, it can be seen that the point at which the bending moment
is a maximum is also the point at which the shear force is zero.
Therefore when looking for the position of maximum bending
moment for design purposes, find the point at which the shear
force is zero, or, in the case of point loads, where it changes from
positive to negative.

LABORATORY WORK
ExpERIMENT 1. Experimental determination of bending noments

The apparatus, Fig. 108, consists of a 6 ft wooden beam, 1 in. wide by
3 in. deep, with a hinge at a distance of 2 ft from one end. To prevent the beam

~HINGE SLOTTED WEIGHT

LT ‘ 1 J

SPRING BALANCE

Fia. 108. EXPERIMENTAL DETERMINATION OF BENDING MOMENTS

from collapsing, the bending moment at the hinge is balanced by the moment
exerted by the pull of a spring balance on arms attached to each part. The
perpendicular distance froin the hinge to the balance is 1 ft, so that the reading
of the balance in pounds gives the value of the bending moment at the hinge
in pound-feet. Loads, in the form of slotted weights, can be applied to give
any desired loading, and if the experiments are performed for spans of 4 ft
or less the position of the hinge can be arranged to come at any desired position
between the support and mid-span.

With the aid of this apparatus determine the bending moments at several
points along the span for a given system of loads and check the results by
calculation.

EXPERIMENT 2, Kxperimental determination of shear force

The apparatus for this experiment, Fig. 109, consists of a wooden beam
similar to that used in Expt. (1) but with the arm supporting the spring
balance so arranged that the balance measures the shear force at the point
at which the beam is cut.

Using this apparatus determine the shear force at several points along the
span for a given system of loads and check the results by calculation.

EXERCISES

1. A beam, 20 ft in span, simply supported at its ends, carries a load of
5 t at its centre, a load of 4t at 5 ft from one end and a load of 8t at 6 ft
from the other end. Draw the shear force and bending moment diagrams.
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2. A beam, 18 ft long, is supported at two points 8 ft apart and overhangs
4 ft at each end. If the beam carries a uniformly distributed load of 2 owt
per ft run, draw the shear force and bending moment diagrams and deter-
mine the greatest value of the bending moment.

3. A beam 4B, 28 ft long, is supported at points C and D, 6 ft from the
left-hand and right-hand ends. It carries a central point load of 18 t together
with a uniform load of 1t per ft run over the lengths A4C and DB. Draw the
shear force and bending moment diagrams.

4. A beam, 20 ft long, is supported at its ends and carries a uniformly
distributed load of 3000 lb per ft run over its whole length together with a

SPRING BALANCE

I n ROLLER ——-Fq - I |
r ADJUSTABLE 'l'l!E

~ }
Fic. 109. EXPERIMENTAL DETERMINATION OF SHEARING FORCE

uniform load of 5000 lb per ft run over a distance of 6 ft starting at the left-
hand end. Draw shear force and bending moment disgrams and determine
the value of the bending moment (a) at the centre, (b) at its maximum value.

5. A wall 8 ft high has to resist a wind pressure of 30 Ib/ft? on the upper
half of its height. Taking a length of wall 1 ft long, draw the bending moment
and shear force diagrams.

6. A beam, 30 ft long, overhangs its supports by 5 ft at each end and carries
a load of 3 t at each end. Draw the shear force and bending moment diagrams
and comment on the results.

7. A beam, 35 ft long, overhangs its supports by 5 ft at the left-hand end
and 10 ft at the right-hand end. If it carries a uniformly distributed load of
500 Ib per ft run, determine the value and position of the maximum bending
moment.

8. A beam of 10 {t span carries a length of wall, triangular in elevation,
increasing in height from zero at the left-hand end to 5 ft at the right-hand
end. If the wall weighs 144 Ib/ft? and is 9 in. thick, determine the position
and value of the maximum bending moment.



CHAPTER XIV
STRESS DUE TO BENDING

A BEAM or cantilever must, at each section along its length, be
strong enough to resist the shear force and bending moment at that
section, and so it is necessary to calculate the stresses set up, and
to see that the allowable intensity of stress for the material is not
exceeded at any point of the cross-section.

Nature of Stresses Caused by Bending. The stresses are of two
kinds: shear stresses due to the shear force and longitudinal stresses
due to the bending moment. The problem is complicated by the

FTTRILTTTT T

AWCUTS

NEN4ANERNNREERE
A

BEFORE BENDING

AFTER BENDING

F1a. 110. LonNgITupINAL COMPRESSION AND TENSION CAUSED BY
BENDING

fact that the intensity of stress is not the same for all points of a
given cross-section. This may be shown experimentally by making
a number of saw-cuts in the top and bottom of a timber beam,
Fig. 110. When the beam is loaded the saw-cuts on top will be
found to close, indicating that the material is in compression, while
those on the bottom will open showing that there is tension.

Thus there is a variation from compressive strain to tensile
strain, and therefore from compression to tension in the intensity
of longitudinal stress. The intensity of shear stress is also found to
vary, though in a different manner.

Longitudinal Stresses in a Beam. It has already been seen that
stresses are set up along the length of a beam and that they are of
opposite kinds at the top and bottom surfaces. Since the external
loads are applied at right angles to the length of the beam they can
have no components along the beam, it is therefore the bending
moment which is resisted by the longitudinal stresses at any section.
Also, since the stress changes from tension to compression in the
depth of the beam, there must be some horizontal plane in the

116
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beam where the changeover occurs and the stress is zero. This
plane is called the neutral plane, Fig. 111, and it intersects each
cross-section in a line known as the neutral axis (N.A.). Before
investigating the relation between the longitudinal stresses and
the bending moment at a given section the following assumptions

must be made—
1. That the beam is not stressed beyond the elastic limit and that

Hooke’s law is obeyed, i.e. stress is A c
proportional to strain. 4 . "
2. Young’s modulus of elasticity is - e -
the same in tension and compression. t
3. A plane cross-section before S S

bending remains plane after bending

and does not warp.
4. That there is no resultant axial
force acting at any cross-section.

NEUTRAL
PLANE

\
NEUTRAL m! \Vy
AXIS \o
< ¥,
o
Fig. 111. NEUTRAL PLANE AND Fia. 112. CALCULATION OF
NEUTRAL AXIS OF A BEaM StrESS DUE TO BENDING

5. The cross-section of the beam is symmetrical about an axis
through its centroid in the plane of bending.

In Fig. 112 AB and CD are two adjacent cross-sections in a beam
at the ends of which two equal and opposite couples M are applied.
This bending moment will stretch the fibres above the neutral axis
and compress those below it causing the sections 4B and CD to
take up the positions 4’B’ and C'D’. They will no longer be parallel
but will be inclined to each other at a small angle 6 and will meet
at 0. The neutral plane EF will remain unchanged in length but
will form an arc of a circle of radius R as at E'F"'.

Take any layer of fibres GH at a distance y from EF. After
bending it will form an arc G'H’ of radius R + y.

. R G'H — GH

Strain in layer GH' = e = Of

Length of arc G'H’ = radius X angle G’OH’ in radians.
= (R +y)
and E'F' = RO
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but GH—EF = E'F’
_ B+ yb—RO_y
RO R

But longitudinal stress intensity fin G'H’
= E X strain in G'H’

f=E.e=E. % ¢ )
Jf _E
or v R constant for a given beam and B.M. . (2

e — Hence the longitudinal stress

intensity f in a fibre is directly

proportional to the distance y of
K28 the fibre from the neutral axis and
will be tensile on one side of the
neutral axis and compressive on
the other. This variation is shown
N A in Fig. 113, in the form of a stress
diagram.

Position of the Neutral Axis.
Before proceeding to find the rela-
tion between the intensity of stress
"|.,.,m,,,,w| and the applied bending moment

sTacss the position of the neutral axis
must be found. Since the longi-
tudinal stresses to one side of the
section form a couple, the neutral
axis must be so placed that the total tensile stress is equal to the
total compressive stress. Fig. 114 shows the cross-section of a beam,
which may be of any shape symmetrical about an axis Y'Y through
the centroid in the plane of bending. Let CD be any thin strip of
area a parallel to the neutral axis N.A. and
at a distance y from it.

If the strip is very thin the intensity of
stress on CD may be taken as constant and
equal to f.

Total force on C'D = stress intensity x
area = f a but, from equation (1)—

- ¥
f=E.%

MODE OF BENDING

CROSS SECTION 3TRESS DIAGRAM

Fie. 113. VARIATION Or STRESS
INTENSITY THROUGH A Bram

. Force on CD = % . ay

. s . .. Fic. 114. LocaTion
If the whole area is divided into similar or NmurraL AxIs

strips, those on one side of the neutral axis
will be in compression and those on the other side in tension and,
since there can be no resultant thrust—
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Total tension = total compression

or Algebraic sum of the forces in all strips = 0
This may be written—
~ E

or since E and R are constants for any given case,
E
yi Zay =0

Now E and R will not be zero;
therefore, Zay =0

It has already been shown, in Chapter IX, that Xay = 0 when
y is measured from an axis through the centroid of the section.

.". The neutral axis passes through the centroid of the section.

Moment of Resistance. It remains to find the relation between
the applied bending moment and the stress set up in the beam.
For equilibrium—

Applied bending moment M = moment of resistance. Considering
the strip CD again—

Moment about N.A. of force on OD = <% . ay) .Y

=%.ay2

F¥or any other such strip a similar expression holds and all such
moments will be positive whether the strip is above or below the
neutral axis since y?2 is positive irrespective of the sign of y. The sum
of all these moments will give the moment of resistance of the
section. E
Moment of resistance = v Zay?

The term Xay? is the second moment of area of the section but is
often called the moment of inertia and is usually denoted by I

=l =

.". Moment of resistance = 7 I = applied bending moment M

=

Il

but, from equation (2),

I

- = QR Iy,
<~ b N
=il e!

I
l
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ExampLE. A beam, symmetrical about its neutral axis, has a second
moment of area, or moment of inertia, of 200 inch units and is 10 in. deep.
If the maximum stress intensity is not to exceed 8 t/in.?, find the greatest
bending moment that the beam can resist.

Maximum stress occurs at the outside fibres, 5in. from the
neutral axis. ', y = §in.

Maximum allowable stress intensity = f = 8 t/in.2

Second moment of area =— I = 200 inch units.

Applying the formula
M_7s
Iy
M =T _8X200_ a0hiin.

PROPERTIES OF BEAM SECTIONS

Modulus of Section. The greatest stress intensity will occur in
the fibres furthest away from the neutral axis and this will control
the design of the beam. If the stress intensity is not to exceed a
value p, the moment of resistance will be given by—

I
M =
p ymam
where ¥,,,.. is the distance to the furthest fibre. Both I and y,,,,

is known

are constants of the beam section and the term
maxr

as the section modulus, denoted by Z.
Thus, M=pZ
In the example just given, I = 200 inch units.
Ymaz = O in.
therefore, Z = ?§9 = 40 inch units.

Radius of Gyration. Just as, in dealing with first moments of
area, an area may be considered to be concentrated at its centroid,
so, for second moments of area, an area 4 may be supposed to act
at some radius k from its centroid such that A 4? = Second moment
of the area A about its centroid. This distance k& is known as the
radius of gyration of the area.

Properties of Common Sections. Table IV gives the values of the
second moment of area, radius of gyration and section modulus
for geometrical sections which occur frequently.

Properties of Rolled Steel Sections. Rolled-steel sections are
used extensively in building construction and are manufactured
in a range of standard sizes to the forms shown in Fig. 115. The
properties of these sections are tabulated for convenience, as shown
in Tables Va, b, and c.
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TABLE IV
PROPERTIES OF COMMON SECTIONS
Depth to
Section Area N.A. Ina k'wa Z
from top
j~b—
d bd® d* bd?
Rectangle N é A o bd 3 T T 5
Z
88—+
Hollow b l D |(BD'_ b\ BD'—bd |BD' - bl
tectangle | MM _JHA q |BD - 3 12 12) 12BD—bd)| oD
31
N A art 7t ar®
Circle mrt r T T T
Hollow m R+ | mR—1Y
circle (Rt — 1) R TE-7 I3 4R
bdl dl bd?*
Triangle 4 bd id 56- 18 o4
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Flange drilling
— R
Flange | Centres
TABLE V (a) width | of holes S
PROPERTIES OF |
s 4 I
< Xt BRITISH STANDARD ;1} i
. . 63 3
BEAMS 6 33 H
5 24
4% 23
4 23
3 3 1 ¥
. . . . 13 % i
All dimensions in inch units 1% H
| i
! Standard Moment of secti
Weight | thickness | Inertia Section modulus
Size lbl/“fbl Arca | _. i - - ] ._
A X B ‘un in. ! | i
rur Web ¢ , Flange Almut | bout About | About
| ! | t | X=X I X-X Y-Y
24 x 7} 95 27-94 0-57 | 1011 2533-04 ; 62-64 | 211-09 16-68
22 x 7 76 | 22:08 050 | 0-834 1676-30 41-07 | 102-44 11-73
20 x 74 89 26-19 0-60 1-010 1672-85 62:4 | 107-29 16-68
20 x 6% 66 19-12 0-40 0-820 1226:17 3266 | 122-62 1002
18 x 8 80 23563 0-50 0-950 1292-07 6943 | 143-56 17-36
18 x 7 75 22:09 | 0-5h 0-928 1151-18 46:56 | 127-91 13-30
18 x 6 b5 16:18 0-42 0-757 841-76 23-64 9353 7-88
16 x 8 75 22-06 0-48 0-938 973-91 68-30 | 121-74 17-08
16 x 6 62 18-21 0-65 0-847 72506 27-14 90-63 9:05
18 x 6 50 1471 0-40 0-726 618-09 22-47 77-26 7-49
16 x 6 45 13-24 0-38 0-655 491-91 19-87 6559 6-62
16 x b 42 12-36 0-42 0-647 428-49 11:81 57-13 4-72
14 x 8 70 20-59 0-46 0-920 705-58 66-67 | 100-80 16-67
14 x 6 57 16-78 0-560 0-873 533-34 27-94 7619 9-31
14 x 6 46 1359 0-40 0-698 442-57 21-45 63-22 7-16
13 x5 35 10-30 0-35 0-604 283-51 10-82 43-62 4:33
12 x 8 656 1912 0-43 0-904 487-77 65-18 81-30 16-30
12 x 6 b4 1589 0-50 0883 37577 28-28 62-63 9:43
12 x 6 44 13-00 0-40 0717 316-76 22-12 52-79 7-37
12 x 5 32 945 0-35 0:550 221-07 9-69 36-84 .
10 x 8 56 16-18 0-40 0-783 288-69 54-74 57:74 13-69
10 x 6 40 11-77 0-36 0-709 204-80 21-76 40-96 7-26
10 X 5 30 8-8b 0-36 0-552 146-23 973 2925 3-80
10 x 4% 26 7-356 0-30 0-505 122-34 6-49 24-47 2-88
9 x 7 50 1471 040 0-826 20813 40-17 46-256 11:48
9 % 4 21 618 0-30 0457 81-13 4-15 18-03 2:07
8 x6 35 10-30 0-36 0-648 116-06 19-54 28-76 651
8 x5 28 82 0-35 0-5675 89-69 10-19 22:42 408
8 x 4 18 5:30 0-28 0-398 5563 3:51 18-91 1-76
7% 4 16 475 0256 0-387 39-51 3-37 11-29 1-69
6 x5 25 7-37 0-41 0-520 43-69 910 14-56 3-64
6 x 4% 20 589 0-37 0-431 3471 b 11-57 2-40
6 x 3 12 358 0-23 0-877 20-99 1:46 7-00 0-97
5 x 4% 20 5-88 0-29 0-518 2503 6-59 10-01 2:08
5x8 11 3-26 0-22 0-376 18-68 1-45 547 0-97
43 x 1% 65 1-91 018 0-326 6-73 0-26 288 0-80
4 x3 10 2:94 0-24 0-347 779 1-33 3-89 0-88
4 x 1% 5 1-47 017 0-239 3-66 019 1-83 0-21
3x8 85 2:52 0-20 0-332 881 1-25 2:54 0-83
3 x 14 4 1-18 0-16 0-249 1-66 013 111 017

(By cm:rmy of Messrs. I)omum Lona & Co., Ltd. )
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TABLE V (b)

Dimensions

PROPERTIES OF
BRITISH STANDARD
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All dimensions in inch units
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Spacing of holes
Leg | a b c
TABLE V (c) 7 2} 3 4
of | 8| & |3t
PROPERTIES OF 54 g* ?} g H
BRITISH STANDARD | 5, | 2 | 2 24
4 - — 2.
iU EQUAL ANGLES g — | =3
AR Cec'nfrg of 23 — | — | 14
P4 ravity 2 — — 1
X )K__-x %} — — }
K 13 — - 1
" <~J 1% - - i
U Y VvV All dimensions in inch units 1% — -
!
st Weight ’ Moment of Inertia
ze and 3 i i
Thickness Area ity | Dimension
4 xBxt ’ run About About About
X-X U-U v-v
8 x8 x1 15-00 51-01 2-35 87-85 139-40 36-31
X 13-24 45-00 230 78-44 124-656 82:28
X 11-44 38-89 2-25 6858 109-11 28-08
X 9-61 32:68 2-20 5826 02-756 23-78
7 x7 x 13-00 44-20 2:10 57-46 90-97 23-06
X 11:48 39-05 2:08 51-45 81-64 21-27
X 994 33-79 201 45-12 71-72 18-53
X 8:36 28-42 1-96 38-4b5 61-19 15-72
X 6-75 22+95 1-01 31-42 50-02 12-82
6 x6 X 9-73 31-10 1-81 81-51 49-86 1316
X 844 28-69 1-76 27-74 44-01 1147
X 7-11 24-17 171 23-73 87-73 0-74
X 575 19-566 1-66 19-48 30-99 7-96
X 4-36 14-82 1-61 1495 23-79 11
5 xb6 X 6-94 23-59 1-61 16-54 24-57 6-50
X 586 19-93 147 13-87 21-21 663
X 475 16-16 1-42 11-04 17-56 4:53
X 361 12-28 1-37 8:58 18-57 8-49
43 X 4} x 6-19 21-04 1-39 11-08 1747 4-68
x 524 17-80 1-34 9:56 1516 8-98
X 4-26 1446 1-29 7-92 1269 826
X 324 11-00 1-24 6-15 9- 2-62
4 x4 X 5-44 18-49 1-26 7-67 11-89 3-25
X 461 15-68 1-22 6-56 10-87 2:76
X 876 12:75 117 5-46 8-66 2:26
X 2-86 973 112 4:26 6-77 1-76
3% x 3% X 3:99 18556 1-09 4:27 6-72 1-82
X 3-25 11-056 1-06 8:57 565 1-49
X 2:49 8:45 1-00 2-80 4-45 116
X 1-69 574 0-95 1-94 8-09 0-80
3 x8 x 2:76 9-36 0-92 2:18 3-44 0-92
X 211 7:17 0-88 1.72 2-78 071
X 1-44 4-89 0-83 1-20 1-01 0-49
2§ x 2¢ x 2:25 7-65 0-80 1-21 1-89 0-52
X 1-73 590 0-76 0-06 1-62 0-40
X 1-19 4-04 0:70 0-68 1-08 028
2 x2 x 1-36 4-62 0-63 0-47 0-74 0-20
X 0-94 319 0-58 0-34 0-53 014
14 x 1} x 0-69 2:34 0-46 0-13 0-21 0-08
1} % 1} % 0-30 101 0-34 0-04 0-06 0-02

(By courtesy of Messrs. Dorman Long & Co., Ltd.)
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Parallel Axes Rule for Second Moments of Area. The formulae in
Table IV give the second moments of area of the sections about an
axis through their centroids, but it is often necessary to find their
value about some other axis. Thus in Fig. 116 let Iy be the second

Ll

alu‘nsn aTANDARD BRITISH STANDARD
ANGLE

LT

BRITISH STANDARD BRITISN 3‘TANDAR D
CHANNEL

Fia. 115. RoLLED STEEL
SEcTIONS

moment of area of the figure about an
axis XX, and suppose that it is desired
to find the second moment of area I,
about an axis ZZ parallel to XX at a
distance d from it.

Consider a small area a at a perpen-
dicular distance y from XX—

Second moment of this area about
XX = ay?

.. Second moment of whole area
about XX = Xay?
Also taking moments about ZZ—

Second moment of small area about
ZZ = aly + d)?

= ay® + 2ayd + ad?

Summing for the whole area—

Second moment of whole area

about ZZ = I,, = Zay? + 2d Zay + d*Za
d and d? being taken outside the summation sign since d is a constant.

T

centroDS §

B,

T

%

x | BRF

/ i
z %

4

Fic. 117. SECcOND

Fi1e. 116. PARALLEL AXES
RULE FOR SECOND
MOMENTS OF AREA

MOMENT OF AREA
oF A RECTANGLE
—ABsovuT 118 EDGE

Zay = first moment of figure about an axis through

But, Zoy =Ixx
and
its centroid = 0
Also Za = area of whole figure = 4

Izz =Ixx + Ad*
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Exampre. If the second moment of area of a rectangle, Fig. 117, is
3
B;ll% about an axis XX through its centroid, find its value about an edge PQ.

Ipo = Ixx + Ad?

3
But, Ixxqué)—-,A:BD and d=§
BD? D\? BD?
lre = g + 5P (5) =73

Built-up Sections. Where steel beams of great size are required,
plates and rolled steel sections are often riveted or welded together.
The second moment of area of the compound section can be found
by using the parallel axes rule.

ExamprLe 1. A compound beam consists of a 12in. x 5in. X 32 lb rolled-
steel joist (Iyy = 221-07 in. units), with an 8 in x 1in. plate riveted to each
flange. What is the second moment of area of the built-up section? Neglect
rivet holes.

Since the section is symmetrical the centroid of the built-up
gection will lie on the X X axis of the joist.

Iy 5 of whole section = Iy of joist + 2 (Ixx of one plate).
Area of one plate = 8 x 1 = 8in.2
Distance of centroid of plate from XX axis = 6-5in.

Second moment of area of plate about an axis  bd® 8 x 13
through its own centroid parallel to XX 12T 12

= 0-67 inch units
.. Ixx of one plate = 0-67 4 8 X (6-5)% inch units
= 0-67 4 338 inch units
= 338-67 inch units
Iy of whole section = 221-07 + 2 X 338-67
= 288-4 inch units.

ExampLe 2. Find the second moment of area of the section in Fig. 118
about an axis XX through its centroid.

Since the section is symmetrical the XX axis will be 7 in. from
the top.
The second moment of area can be found in either of two ways.

(@) Igxx of whole section
= Iy x rectangle ABGH — I x rectangle MLKJ
— I x rectangle DEFG.



STRESS DUE TO BENDING 127

or, since rectangle MLKJ = rectangle DEFG
Ixx of whole section = Iy rectangle ABGH
— 2 (Ix x rectangle DEF@)
_ 6 x 143 2 x 2 x 13
12 12
= 1372 — 960-4 inch units
= 411-6 inch units.

(b) Ixy of whole section
= 1z y rectangle LDEK - 2(I1x x of one flange)

%><133+2{6><() 13 % (63

= 1376 + 2 (0-06 + 136:95)
= 1376 + 274 = 4116 inch units.

DesiGN oF Brams _ J ° |a__L
Method of Design. The process of | ]

designing a beam can now be
summarized— =%

(a) Calculate the maximum values of « x
bending moment and shearing force.

() Knowing the maximum bending
moment M, calculate the section modulus
Z required to keep the bending stress s J L . 4
within the allowable intensity f, using I ] =
the formula M -= f Z. " T

(c) Select a suitable section having a N
value of Z equal to, or greater than, .. Apma or an 1.SKCTION
that required. For rectangular sections

inch units

14"

2
Z = b—Z- and suitable values of b and d must be chosen. For rolled-

steel joists a section having a suitable value of Z can be looked up
in the tables.

(d) Check the shear stress intensity. For rolled steel sections the
shear stress distribution is such that the whole shear force may be
assumed to be resisted by the web area only.

ExamrLe 1. A beam, 12 ft long, carries a uniformly distributed load of

1 t/ft run. Find a suitable rolled-steel joist if the allowable bending stress is
not to exceed 8 t/in.? and the shear stress 5 t/in.?

2
Max. bending moment = wsL 1 X8144 = 18 t-ft
= 216 t-in.
. Z required = M = 216 = 27 inch units.

778
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Referring to tables, possible suitable sections are—
8in. X 6in. X 351b joist, Z = 28-76 inch units.
10in. X §in. X 301b joist, Z = 29-25 inch units.

The 10 in. X 5 in. joist is deeper and will therefore deflect less than
the 8in. X 6 in. joist, also, since the cost depends upon the weight
per foot the 10 in. X 5 in. joist will be cheaper. Therefore, if there
is sufficient room, the 10in. X 5 in. joist should be chosen.

Checking for shear—

Max. shear force = 1_02{/ =6t

Web area of 10 in. X 5 in. joist = 0-36 X 89 = 3-2in.?

.". Intensity of shear stress = :—3% = 1-9 t/in.2

This is satisfactory.
Selected section: 10in. X 5in. x 30 Ib joist.

Exampre 2. If a timber joist was used instead of the steel joist in the pre-
vious example, what would be a suitable section if the bending stress must
not exceed $ t/in.?2?

As before: Max. bending moment = 216 t-in.

. Z required = % = —2—? = 432 inch units.
. bd?
For a rectangular section Z == s
where b = breadth of beam
d = depth of beam.
. bd?
L= 432
bd? = 2592

A value of either b or d must be chosen which will suit the par-
ticular circumstances.

Take, say, b=121in.
Then 12d? = 2592
d? = 216
d = 146 in.

Timber section required = 15 in. X 12 in.

EXERCISES

1. Calculate the safe central point load that a timber beam 6 in. deep by
2 in. wide could carry over a span of 8 ft if the allowable stress due to bending
must not exceed 900 1b/in.?
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2. A cantilever 4 ft long is made from timber 12 in. deep and 6 in. wide
with a density of 40 Ib/ft3. It carries a concentrated load of 1500 Ib at its
mid-point and a uniform load of 40 1b per ft run. If the working stress in the
timber is not to exceed 900 Ib/in.2, what additional load could be carried ?

3. A timber joist, 9 in. deep by 3 in. wide, carries a uniformly distributed
load across a span of 10 ft. If the stress intensity in the timber is not to exceed
700 1b/in.%, calculate the load in pounds per foot run which the beam can carry.

4. A built up beam consists of a 10in. X 6in. X 40 Ib rolled-steel joist
(Ixy = 204-8 in. units) with an 8in. X }in. plate riveted to each flange.
Calculate the second moment of arca, or moment of inertia, of this section,
neglecting rivet holes.

5. A cast-iron beam has an I-section with a top flange 3 in. broad, bottom
flange 9 in. broad and an overall depth of 12 in. If the thickness of metal at
all points is #in., calculate the position of the neutral axis and the second
moment of area of the section.

6. Select a suitable rolled-steel joist for a simply supported beam carrying
a uniformly distributed load of 3 cwt per foot run and a central point load of
4 t over a span of 12 ft if the maximum stress due to bending is not to exceed
8 t/in.?

7. A timber beam of rectangular section is required to carry & uniformly
distributed load of 112 1b per foot run over a span of 10 ft. Select suitable
dimensions for this beam if the stress due to bending is not to exceed 900 lb/in.?

8. Calculate the safe central point load which a 24in. X 7}in. X 951b
rolled-steel joist can carry over a span of 20 ft, (@) if the weight of the joist
is neglected, (b) taking the weight of the joist into account.
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CHAPTER XV
LINEAR MOTION, WORK AND ENERGY

WaILE primarily concerned with the stability of stationary struc-
tures, the building technician requires an elementary knowledge
of dynamics (the study of moving bodies) to enable him to under-
stand the mechanical plant which he employs and to employ it
to the best advantage.

Linear Morion

Distance-Time Diagram. A body travelling in a straight line is
said to have a linear motion which can be represented by drawing

EA 8 e — — — — 3

8 | Xl A

| 8 N

2ls, I '\\\{

= N
Jitz DI}\B\EC

]‘x

TIME t TIME t
Fig. 119. DISTANCE-TIME Fia. 120. VELOCITY-TIME
Dragram ror A Moving Curvi FOR A MovING
Booy Boovy

a graph showing the distance, s, from a fixed point at any given
time ¢, since it left that point. This graph is called a distance-time
diagram, Fig. 119.

Velocity. Velocity is the rate at which a body is changing its
position. Thus, if its distance from a fixed point at time ¢; is s;
and at time £, is 85—

Velocity of body = p
t2 - tl
It is possible that the velocity may vary over the interval ¢, — ¢

so that -2 —°! is only the average velocity over this interval.

2 1 .
From Fig. 119 it can be seen that this term represents the slope of
the line 4B. If B approaches 4 and finally coincides with it, the
slope of AB will become the slope of the tangent to the distance-
time curve at 4 and will represent the instantaneous velocity at 4.
If the velocity is variable, a velocity-time curve, such as that shown

130
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in Fig. 120, can be drawn to represent this variation. Velocity is
measured in feet per second and similar units.

Acceleration. Acceleration is the rate of change of velocity with
respect to time. The average acceleration in the interval between
t, and t,, Fig. 120, will be ’;2 :’1
2
at A will be equal to the slope of the tangent to the velocity-time
curve at 4. Acceleration is measured in feet per second per second
or ft/sec.? The acceleration due to gravity is denoted by 7 and is
equal to 322 ft/sec.2

Area under Velocity-Time Curve. The distance moved by a body
is the product of its velocity and the time during which it moves.
If the velocity is variable, as in Fig. 120, the
distance moved in the time interval from ¢, to
f, can be found by meesuring the area 4 BCD
under the velocity-time curve between the

and the instantaneous acceleration

ordinates ¢, and ?,. :
Uniform Velocity. If a body having lincar &
motion travels for a time, {, with uniform 3
velocity, v, the distance, s, will be given by— >
g = Q)f, o TIME t
Fia. 121. Vgwulociry-

. . . . TiME  Courve — Bobpy
Uniform Acceleration. The velocity-time MovinG WiTH UNIFORM

diagram for a body moving with uniform ACCHLERATION
acceleration is shown in Fig. 121. If u is the

initial velocity, then after time, ¢, the velocity will have increased
by an amount f x ¢ where f is the acceleration.

Final velocity: v=u +f X t . . . (1)
Again, to determine the distance, s, travelled in time t—

s = Area under velocity-time diagram
= Area OABC + Area ABD

= ut 4+ }(v — u)t
Or, substituting for v from equation (1)
s=ut + }fi* .. . . . (2)

Again, in equation (2), substituting for ¢ from equation (1)

(v—u) (v—u)?
s=1u 7 + 3f 7
2w — 2u? 4 v*— 2up 4 u®
= 5
Or v2— u? = 2fs . . . . (3)

Composition and Resolution of Velocities. Velocity has both
magnitude and direction, i.e. it is a vector quantity. As such,
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velocities can be compounded and resolved by means of triangles
and polygons of velocities, just as triangles and polygons of forces
are used for the composition and resolution of forces (page 43).
ExamprLE. A ball is thrown upwards from the foot of a building 40 ft high
and reaches a height of 12 ft above the level of its flat roof. If the ball finally
falls on to the roof, find its total time of flight and its initial velocity. Accelera-
tion due to gravity = 32-2 ft/sec?.
If, t; = Time of upward flight in seconds
ty = Time of downward flight in seconds
u = Initial velocity in feet per second.
For upward flight, applying the equation v2 — u? = 2fs and putting
= —32-2 ft/sec.?, since gravity exerts a decelerating force, s = 52 ft
the total upward flight and v = 0, since the ball has no velocity
at the top of its flight—
u? =2 X 32-2 X 52 = 3350

.". Initial velocity u = 57-8 ft/sec.

To find the time of upward flight, apply the equation » = u + f¢
putting v = 0, u = 57-8 ft/sec, and f = — 322 ft/sec?—

0— 578
tl = __3-2—.—2— = 1-8 sec

To find the time of downward flight use the equation s = ut -+ ¢
putting & = 12 ft, v = 0, and f = 4 32-2 ft/sec?, since gravity has
an accelerating effect. Then,

12=O+3Z—.2Xt22
2x12

2__ 2222 _ 0.

=T = 074

t, = 0-86 sec

Total time of flight = ¢, + ¢, = 2-66 sec

Newton’s Laws of Motion. Three fundamental laws, due to Sir
Isaac Newton, whose name they bear, form the basis of the study
of dynamies—

1. Every body continues in 1its state of rest or of uniform motion
n a straight line except in so far as it is compelled by forces to change
that state.

2. The rate of change of momentum of a body produced by a force
18 proportional to the applied force and takes place in the direction in
which the force acts.

The momentum of a body is the product of its mass and velocity
8o that the rate of change of momentum will be the product of its
mass and the rate of change of velocity (i.e. acceleration). Thus
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this second law gives the relation between the impressed force and
the acceleration which it produces—

Force =— mass X acceleration

3. To every action there is always an equal and opposite reaction.
This law shows that it is impossible for a single force to act by
;tseéf. ‘Iil“or example, to exert a pull on a string its other end must

e fixed.

WoRrk, PowER AND ENERGY

Work. Work is done when the application of a force causes its
point of action to move in the direction in which the force is acting.
If a body remains at rest under a system of forces, no work is done.
Work is measured as the product of the force and the distance
through which it moves in the direction of its line of action; the
units employed are of the form force X distance, the British unit
being the foot-pound.

Power. Power is the work done in unit time or the rate of doing
work. The British unit is the horse-power, which is a rate of working of
33,000 ft-1b/min or 550 ft-1b/sec. Thus the horse-power in any given
case can be found by dividing the work done per minute by 33,000.

The metric unit is the Watt, known to most people as the unit
of electrical power, being the rate of working when one ampere
flows under a potential difference of one volt. The product of
current in amperes and the voltage will give the power in watts.
One horse-power is equivalent to 746 W.

Energy. The energy of a body is its capacity for doing work and
is measured in terms of the work which could be performed thus
having the same units. There are many different forms of energy
such as heat energy, electrical energy, sound energy, and chemical
energy. Dynamics is concerned with mechanical energy which may
be of two forms: potential energy and kinetic energy.

Potential Energy. In so far as a body can do work by falling,
it can have potential energy by virtue of its weight and its position
above any standard reference level. If a body weighing wlb is
situated A feet above datum, then

Potential energy = wh ft-lb

Kinetic Energy. A moving body has kinetic energy by virtue of
its motion, which is measured in terms of the amount of work which
must be done to bring it to rest. Supposing that a body of weight

w { i.e. mass %, where g = acceleration due to gravity } is brought to

rest by a force P, then the retardation f produced can be calculated
from Newton’s second law—

Force = mass X retardation

L p=2
gf
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If the force brings the body to rest in a distance z, then, since the
initial velocity is v and the final velocity zero

v2— 0 = 2fx
or fx = }o?

But work done by force = Pz = g‘fx

Kinetic energy of body = % fr=1% ;’ 2

This value will be in practical units.

Principle of Conservation of Energy. The following general law
is found to be true for all forms of energy—

“Energy cannot be created or destroyed, but can only be converted
from one form to another.”

There is, however, no guarantee that all of a given quantity of
one kind of energy can be converted into the equivalent amount
of another particular type of energy. For example, in mechanical
plant it is desired to convert the chemical energy of the fuel into
mechanical energy. The process is only partially successful, but
the remainder of the chemical energy is not destroyed since it
appears in other forms, principally as heat.

EXERCISES

1. A train travelling from one station to another 1-6 miles away starts by
accelerating at the rate of 25 m.p.h. in 0-5 min until it reaches a speed of
30 m.p.h. This speed is maintained until on approaching the second station
the brakes are applied to produce a retardation of 3 ft/sec? to bring the train
to rest in the station. What is the time taken for the journey ?

2. A body, falling freely, passes two points 30 ft apart in one-fifth of a
second. From what height above the upper point did it start and how long
had it been travelling?

3. A boat starts to cross a river 90 yd wide in a direction at 90° to its banks,
but is swept down stream by the current to a point 40 yd further down than
the point it should have reached. If the boat takes 3 min to cross, what is the
speed of the current ?

4. A pump raises 45t of water per hour to a height of 50 ft. How much
work does the pump do in one minute? What is its horse-power ?

5. A barge was towed 100 ft by a rope inclined at an angle of 30° to its
direction of motion. If the pull in the rope was 215 lb, how much work was
done ?

8. A truck of weight 20 t moving at 6 ft/sec was brought to rest by buffers
in a distance of 8 in. What was the original kinetic energy of the truck and
what average force was exerted by the buffers ?

7. A car, in which the resistance to motion on the level may be considered
to be the same at all speeds, runs steadily on the level at 20 m.p.h. It now
commences to climb a rise of 1 in 12. If the energy supplied by the engine
is still the same, how far will the car travel along the rising road ?

8. A vessel weighing 10,000 t having a speed of 30 ft/sec is slowed down
to a speed of 10 ft/sec in a distance of 4000 ft. What is the average resistance
to motion?



CHAPTER XVI
SIMPLE MACHINES

A MACHINE i8 a device which takes in energy in one form and
delivers it in another form more suited for the purpose in view.
Many lifting machines, such as cranes, pulley blocks and hoists,
are used in building practice to enable large loads to be handled
by means of comparatively weak forces.

Mechanical Advantage. This advantage (the handling of large
loads by small forces) is termed the mechanical advantage of the
machine, If a given load can be lifted by applying a certain force
or effort—

load overcome

Mechanical advantage = ~sfort applied

Velocity Ratio. In using a set of pulley blocks it will be seen
that the rope pulled by the operator moves very much faster than
the load which is being raised. The velocity ratio of the machine
velocity of effort
velocity of load *
to the distances moved in a given time by the load and effort
respectively, so that—

is equal to These velocities will be proportional

distance moved by effort

Velocity ratio = distance moved by the load

Efficiency. It has already been seen that, although a small effort
can be made to overcome a large load, the distance moved by the
effort will be much greater than that moved by the load. According
to the Law of Conservation of Energy, the energy supplied by the
effort must be at least equal to the work done on the load. In prac-
tice a certain amount of the energy supplied will be dissipated
through friction in the machine in the form of heat so that the
total energy put into the machine will be greater than the work
done by the machine.

Work given to machine = effort X distance moved by effort

Work done by machine = load X distance moved by load
work done by machine
work given to machine

__ load x distance moved by load
" effort x distance moved by effort

Efficiency =

mechanical advantage
velocity ratio
135
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The efficiency cannot be greater than unity. It is sometimes ex-
pressed as a percentage. The efficiency of a machine is not necessarily
constant but may vary with the load.

Ideal Effort. In an ideal machine, completely free from friction,
all the work supplied would be usefully employed. The effort
which would be required under these conditions of 100 per cent
efficiency is called the ideal effort—

Work supplied = work done by machine
.. Ideal effort x distance moved by effort
= load X distance moved by load
distance moved by load
distance moved by effort
Load
velocity ratio

Ideal effort = load X

A practical machine is not 100 per cent efficient. The difference
between the ideal effort and the actual effort required is used in
overcoming friction and is called the friction effort.

ExampLE. A load of 200 1b is raised 2 in. vertically with the help of lifting
tackle by exerting a force of 151Ib through a distance of 6 ft. What is the

mechanical advantage, velocity ratio, and efficiency of the tackle, and what
is the force used in overcoming friction ?

load raised 200

Mechanical advantage = T Effort . — 15 = 13-3

. . distance moved by effort 6 x 12
Velocity ratio = - it e moved by load ~ 2 36
Efficiency — mechanical advantage _ 13-3

velocity ratio 3
= 0-37 or 37 per cent

load 200
= Yelocity ratio — 36 — 2201
Friction effort = actual effort — ideal effort

=15—555 =9451b

Ideal effort

Characteristic Curves for a Machine. Although the velocity
ratio of a machine is always constant, the mechanical advantage,
efficiency, ideal effort and friction effort will vary according to the
load. If the values of effort for a range of loads are determined
experimentally, curves can be plotted for mechanical advantage,
efficiency, ideal effort, and friction effort on a base representing
load from which the values of these quantities can be found for
any given load. A typical set of results is shown in Fig. 122.
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Loadlb . .| 30 | 50 | 75 | 100 | 125 | 150 | 175 | 200 | 225 | 250
Effortlb . .| 50 | 62| 77 | 91 | 105 | 121 | 186 | 150 | 16-5 | 180
Mech. Adv. .| 60 | 81 | 97 | 110 | 119 | 124 | 129 | 133 | 136 | 189
Idealeffort .| 08 | 1.2 | 19 | 25 | 81| 38 | 44 | 50| 56 | 62
Frictioneffort . | 42 | 50 | 58 | 66 | 74 | 88 | 92 | 100 | 109 | 11-8
Efficlency . .| 16 | 20 | 24 | 28 | 80 | 31 | 82 | 33 | 3¢ | 35
18 36
16 32
14 wit]28
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LOAD IN POUNDS
Fie. 122. CHARACTERISTIC CURVES FOR A SIMPLE MACHINE

Studying these curves it will be seen that the load-effort, load-
ideal effort and load-friction effort graphs are straight lines show-
ing that effort, ideal effort, and friction effort are directly pro-
portional to the load. The load-mechanical advantage and load-
efficiency curves are similar in form, the curves rising steeply at
first, but becoming flatter as the load increases. Maximum
mechanical advantage and maximum efficiency are obtained at
maximum load, because at low loads a large proportion of the
effort is spent in overcoming internal friction in the machme,
while at higher loads, although the friction effort has increased, it
forms a smaller proportion of the total effort.

Pulley Blocks. Fig. 123 shows a common form of lifting tackle
consisting of a two-sheave and a three-sheave pulley block. The
effort is exerted on the “fall”’ at P and the load is suspended at w.
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If the effort moves through a distance d, each rope in the system
shortens by the same amount, in this case g, and the load will also
rise by a distance -‘g

5
. . distance moved by effort
Velocity ratio = 4 tance moved by load

== 5 = number of supporting ropes

[S{RSHE Y

The mechanical advantage will depend upon the internal friction
in the system and will be equal to %)

Weston Differential Pulley Block. This type of block is shown
in Fig. 124 and consists of a single lower pulley carrying the load w

Fia. 123. Fi1a. 124. WEsTON
PuLLEY DIFFERENTIAL
Brocks Purrey Brock

which is supported by an endless chain from an upper pulley which
has two sections of slightly different diameter. The links of the
chain passing round these pulleys engage in recesses which prevent
slipping. The effort P is applied to one side of a loop in the chain
as shown. The weight w is supported equally by the two vertical
sections of chain which will therefore carry loads of }w each.

For one revolution of the upper pulley,

Distance moved by effort P = 27R
Loss of chain between top and bottom blocks = 27 (R — r)
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Distance moved by load = 7 (R — r)
2nE 2R
a(R—7r)  (R—r)
As before, the mechanical advantage will depend upon the friction.

Velocity ratio =

LABORATORY WORK
ExPERIMENT. Lifting Machines

Students should carry out experiments on simple machines available in the
laboratory and draw characteristic curves. This work should include test on—

1. Pulley blocks.
2. Screw jack.
3. Simple crane or winch.

It is often difficult to decide what the exact effort required for a given load
should be. The correct value will be that which, when set in motion, will
travel with uniform velocity either up or down.

EXERCISES

1. Explain the terms: Mechanical advantage, velocity ratio, efficiency,
and ideal effort.

A wheel and axle have radii 12 in. and 3} in. respectively. If a force of
12 1b applied to a rope wound round the wheel is sufficient to raise a weight
of 28 Ib suspended from a rope wound round the axle, calculate the value
of the above quantities.

2. Given a pair of four- and five-sheave blocks, it is found that a pull of
120 1b will raise a load of 800 lb. Calculate the value of the velocity ratio,
mechanical advantage, and efficiency at this load.

3. A screw jack is used to raise a load of one ton. The screw rises 4 in. per
revolution and a force of 20 lb, exerted at the end of a tommy bar 30 in.
long, is required to turn the screw. Find the efficiency of the jack at this
oad.

4. In a Weston differential pulley block the two diameters of the top sheave
are 9 in. and 9} in. respectively. What is the velocity ratio?

If a pull of 71 Ib is required to raise a load of 15 cwt find the mechanical
advantage and efficiency at this load.

5. A load of 5t is placed on a smooth plane inclined at an angle of 3°
to the horizontal. Calculate the force which must be applied parallel to the
plane to keep the load in position and find the mechanical advantage of this
arrangement.

6. A lifting machine has a velocity ratio of 15. A test gave the following
results—

Load (1b) 30 40 50 60 70 80 90 100
Effort (Ib) 70 86 10-1 1146 13-2 147 161 176
Draw curves, to a base of load, for: Mechanical advantage, ideal effort,

friction effort, and efficiency.

7. An effort of 10 b is sufficient to raise a load of 15 Ib using & wheel and
axle. If the radius of the axle is 6 in. and the efficiency of the machine is
90 per cent, what is the radius of the wheel ?

8. A load of 288 1b can be raised by a pull of 60 1b using & pair of three- and
four-sheave pulley blocks. Calculate the velocity ratio, mechanical advantage,
and efficiency at this load.



SECTION IV—HEAT AND HEAT
TRANSMISSION

CHAPTER XVII
HEAT

A KNOWLEDGE of the fundamental principles and theories of heat
is essential for the proper study of the heating and, to a certain
extent, the ventilation of buildings.

Nature of Heat. Heat is a form of energy and can be produced
by a change from other forms, as in the following cases—

1. From chemical energy—when a fuel burns.

2. From mechanical energy—the spark produced by a lighter
flint when the wheel is turned.

3. From electrical energy—when the heater of an electric radiator
glows.

As a form of energy heat has the capacity to do work by causing
the circulation of water in water heating systems and the rising
of warm air currents within a room or twisting and buckling large
steel joists with ease when a building takes fire.

Temperature. It is necessary to distinguish between the words
heat and temperature. If two identical heaters were placed in the
centres of two rooms, one small, the other large, but in all other
respects identical, then after a given time both rooms would have
received equal amounts of heat energy, but the smaller room would
be found to be at a higher temperature than the larger. The word
temperature is used to indicate the concentration of heat.

Again, although a cup full of boiling water will have a tempera-
ture far greater than that of a bath full of cold water, the latter may
contain considerably more heat. The water in the bath would melt
a greater weight of ice than the boiling water in the cup. The water
in the cup is at a higher temperature than that in the bath because
the smaller amount of heat in the former is more concentrated than
that in the latter.

Absolute Zero of Temperature. When heat energy is given to a
body it is converted into kinetic energy, increasing the speed of
vibration of the molecules and usually causing a rise of tempera-
ture. Conversely, as heat leaves a body it loses internal energy,
the molecules vibrate more slowly and the temperature drops.
These changes are accompanied by changes in size, normally the
body tends to expand as its temperature rises and to contract as
it falls. If a body could lose all its heat its molecules would come
to rest, there would be no concentration of heat energy and the
temperature would have reached an absolute zero. It will be seen
later (page 157) that this absolute zero of temperature, though it
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has never been reached, lies 273 degrees below the zero on the
centigrade scale (i.e. at — 273°C). In building practice, it is the
amount of heat gained or lost by a body, rather than the total
amount of heat contained, which is important.

MEASUREMENT OF TEMPERATURE

Temperature is commonly measured by means of thermometers,
which depend for their action upon the expansion or contraction
of their constituent materials in taking up the temperature of the
substance under investigation. For determining the temperature
of ovens or small kilns, rods of brass or other material with a high
coefficient of expansion may be used, being
arranged so that the changes in length of the HEE e ol jog%c
rod are magnified mechanically and control the
movement of a pointer over a graduated scale.
Liquid thermometers are used for lower tem-
peratures, the changes in volume of the liquid
in a thin-walled bulb at the end of a thick-
walled capillary tube causing a thread of liquid
to move along a scale engraved on the capillary
tube. Mercury and alcohol are suitable liquids szeffi 1 _fllccr
since they expand regularly, but as the freezing
and boiling points of mercury are respectively
—39° C and 356° C and those of alcohol are
—130° C and 78°C the rangeof each type of
thermometer is limited. F HIF"IG- 1‘121{5-

Temperature Scales. Two scales of tempera- _ “7R="HEM 20
ture are in use in the building industry, the L., urz Scarzs
Fahrenheit and the centigrade. Both scales
are based on the same two fixed points—the imaginary or real
position of the expanding material at the freezing and boiling
points of water. On the Fahrenheit scale these correspond to 32°
and 212° respectively and on the centigrade scale to 0° and 100°.
The diagram, Fig. 125, shows that the degree Fahrenheit is smaller
than the degree centigrade—

180°F = 100°C or 1°F = §°C

To convert a reading on one scale to the corresponding reading
on the other the difference in zero readings must be taken into
account—

(@) To convert a reading of ¢° F to the centigrade scale. No. of
Fahrenheit degrees above freezing point = ¢ — 32.

*. No. of centigrade degrees above freezing point = § (¢ — 32)
Reading on centigrade scale = § (t — 32)

180°F
100°C

N
z|
o
9
p
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(b) To convert a reading of 7° C to the Fahrenheit scale. No.
of centigrade degrees above freezing point = 7T'.

.. No. of Fahrenheit degrees above freezing point = § 7

Reading on Fahrenheit scale = § 7' + 32.

Pyrometers. These are instruments used for the measurement of
very high temperatures. Electrical pyrometers depend either on
the fact that the resistance of a metallic
| capiLLARY wire (platinum or a platinum alloy in
iy TUBE many cases) changes with temperature
or in the case of thermo-electric pyro-
; meters upon the electromotive force set
il THREAD oF up when the junction of two dissimilar
metals is heated. The magnitude of the
effect depends upon the temperature.
Pairs of metals used inthis way consti-
tute thermo-couples. Suitable pairs of
metals are—

Platinum in contact with alloys of
platinum and rhodium or iridium.
THIN-WALLED Nickel in contact with an alloy of
FLASK nickel and chromium.

It is a great advantage if the pyro-
meter is not directly subjected to the
temperature to be measured. In one,

Fra. 126. Amr devised by Féry, heat rays are concen-

THERMOMETER trated on the thermo-couple by means of

a concave mirror. Where the pyrometer

is placed directly in the furnace it is protected by a thin fireclay

tube or thermo-couple cover. The change of temperature is read

from the movement of the needle of a galvanometer (page 163)

which may be placed in a convenient position remote from the
actual furnace.

Air Thermometer. Small differences of temperature can be
measured with an air thermometer, Fig. 126. Air has a high co-
efficient of expansion and as its volume changes with temperature
the thread of mercury in the capillary tube moves up or down.
As with liquid thermometers, the sensitivity of the instrument will
depend partly upon the fineness of the bore of the capillary.

Maximum and Minimum Temperatures. In testing the effective-
ness of a heating installation records of maximum and minimum
temperatures are required. These are automatically registered on
a special ma and minim thermometer, one type of which
is illustrated in Fig. 127.

MEASUREMENT oF HEAT

The amount of heat energy gained or lost by a body is propor-
tional both to its mass and to its gain or loss of temperature—

Homxt
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Thus if a gas geyser requires a certain quantity of gas to raise the
temperature of a given quantity of water by a certain amount,
it will require twice that amount of gas to raise the temperature
of twice that mass of water by the same amount, or, alternatively,
to raise the temperature of the same mass of
water by twice that amount.

Specific Heat. Another factor to be taken
into account is the nature of the material itself.
Equal masses of different materials require
different amounts of heat to raise their tempera-
ture by the same amount. They are said to
have different thermal capacities. The thermal
capacity of a substance at any temperature is
the quantity of heat required to raise the tem-
perature of the substance by one degree. It is
more convenient to compare the amount of heat
required to cause a given temperature rise in a
material with the amount of heat required to
produce the same temperature rise in the same
mass of a standard substance. The ratio of
these two figures is called the specific heat of the
material. Pure water is the standard chosen | 3
and water thus has a specific heat of unity. It meRcuRY
is a convenient standard because it can be [e}f
obtained in a reasonably pure state by distilla-
tion and also has a higher specific heat than
most substances. Table VI gives values for
the specific heats of commong substances. It FIC:{ng 7M£fyﬁ§ﬁUM
is the high specific heat of water which makes  TaErMomrTER
it so suitable for conveying heat within build-
ings, since for a given fall of temperature it will give out a very
large quantity of heat.

TABLE VI
Seeciric HeaTs
Aluminium . . . 0212 | Asbestos 0-20
Brass . . . . 0:09 | Ebonite . . 040
Copper. . . . 0-094 Glass . . . 019
Lead . . . . 0-031 Ice . . . 0-50
Steel . . . . 0-115 Marble . . . 021
Zinc . . . . 0-094 Quartz . . . 017
Firebrick . . . 020 Wood . 0-42

Units of Heat. A convenient unit of heat is the amount required
to raise unit mass of water through unit rise of temperature. In
the metric system, used in laboratory work, the unit is the calorie
which is the amount of heat required to raise one gramme of water
through one degree centigrade. In the British system the practical
unit is the British thermal unit (B.Th.U.) which is defined as the
amount of heat required to raise one pound of pure water through
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one degree Fahrenheit. In gas production the unit employed is the
Therm, whuich is a measure of the heating value of the gas and is
equal to 100,000 B.Th.U.

To calculate the amount of heat gained or lost by a body find the
product of its weight, specific heat, and its gain or loss of tem-
perature—

Exampre. Calculate the heat required to raise the temperature of a length

of steel pipe, weighing 1t, by 160° F if the specific heat of the material is
0-12.

Amount of heat required = 2240 X 0-12 x 160 B.Th.U.
= 47,000 B.Th.U.

Determination of Specific Heat. The simplest method of deter-
mining the specific heat of a substance is that known as the method
of mixtures. A specimen of the material is
broken into pieces small enough to slide
into a boiling tube. The tube is heated in
a water bath until the temperature of the
material throughout its whole volume is
that of the boiling water. A plug of cotton
wool should be placed in the end of the
tube to prevent steam wetting the specimen.

Meanwhile a clean dry calorimeter (a
simple cylindrical copper vessel) is weighed.
It is partially filled with water and reweighed

. to determine the weight of water added.
F‘G'Cﬁ%mﬁ‘::;fm” The calorimeter and its contents are sur-
rounded with an insulating shield, Fig. 128.
When the material in the boiling tube has been thoroughly heated
its temperature and the temperature of the water in the calorimeter
are noted and the specimen is transferred quickly from the boiling
tube to the calorimeter. The mixture is then stirred carefully with
the thermometer until it registers a constant temperature, which
should be noted. When the calorimeter is sufficiently cool it is
reweighed, with its contents. The following readings and results
are for a test on asbestos sheeting—

Weight of calorimeter = m, = 52-40 g

Weight of calorimeter + cold water = 92-97 g

Weight of cold water = m,,, = 40-57 ¢

Temperature of cold water and calorimeter = 16-8° C
Temperature of heated specimen = 99° C

Temperature of mixture = 23-4° C

Rise of temperature of water and calorimeter = ¢, = 6-6° C
Fall of temperature of specimen = £, = 75-6° C

Weight of calorimeter -+ mixture = 108:58 g

Weight of specimen = m, = 15-61 g
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Assuming that no heat is lost during the experiment—

Heat gained heat lost
/ -
By cold water By calorimeter ~ By specimen
Moy X Coyp X B + M X €, X 1y my X ¢ X Iy

where, c.,, ¢., and c; are the specific heats of cold water, calori-
meter, and specimen respectively. Taking ¢, = 0-1

tl (mcw + 0-1 m’c) =my X ¢ X t2

_ (mey + 01 m)ty
mgl,

S
_ (4057 + 01 x 52:40) x 6-6
o 15-61 x 756
.". Specific heat of specimen = 0-26

The above heat equation is a corollary of the Law of Conservation
of Energy. Any radiation or other heat loss from the calorimeter
will, of course, constitute an error, but, with properly designed
apparatus this should be small.

Most calorimeters are made of copper because this material is a
good conductor of heat and the whole calorimeter will rapidly
assume the temperature of its contents, so that ¢, will be the rise
of temperature of both. The product of the weight of the calori-
meter and the specific heat of the material of which it is made will
be a constant for cach particular calorimeter and is referred to as
its water equivalent.

Latent Heat. Normally, when addition of heat energy increases
the molecular energy of a material, its temperature rises, but if
the material is at its melting point or boiling point its temperature
will remain constant and the additional encergy will cause it to
change its state from solid to liquid or from liquid to gas or vapour.
No matter at what rate the heat is supplied the temperature will
not rise until the whole of the material has changed from one state
to the other. Thus under normal conditions of pressure the tem-
perature of a mixture of ice and water will always be 32° F and
the temperature of steam in the presence of boiling water will be
212° F irrespective of the amount of heat being supplied. The
heat used to cause the change of state is said to be latent in the
liquid or gas formed and is given out again when the liquid freezes
or the steam is condensed. The latent heat of fusion (or solidifica-
tion) and the latent heat of vaporization (or condensation) is mea-
sured in calories per gramme or B.Th.U. per pound. Under normal
conditions the latent heat of ice is 80 g.cal/g and that of steam is
536 g.cal/g (966 B.Th.U./lIb). Hence at 100° C, 536 cal are required
to convert 1 g of water into steam at the same temperature.

11-—(T.479)
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The total heat of a substance is made up therefore of the sensible
heat, which causes rise of temperature, and the latent heat, which
has been expended in causing change of state.

LABORATORY WORK
ExpErRIMENT 1. Ligquid thermometers
Make a mercury thermometer by blowing a bulb at the end of a fine capillary
tube. Fill with mercury and seal the end. Calibrate the thermometer by
means of ice and steam.

EXPERIMENT 2. Air thermomcter

Make an air thermometer similar to that shown in Fig. 126. Calibrate it
against a mercury thermometer.

EXPERIMENT 3. Specific heat

Carry out an experiment to determine the specific heat of a solid using the
method of mixtures described on page 144.

ExPERIMENT 4. Latent heat

Determine the latent heat of steam experimentally, using the method of
mixtures.

EXERCISES

1. Convert the following temperatures on the centigrade scale to the corre-
sponding readings on the Fahrenheit scale: 1450° C, 71°C, — 273° C.

2. Convert the following temperatures on the Fahrenheit scale to the
corresponding readings on the centigrade scale: 65° F, 98-4°F, 0° F.

3. Draw a graph to show the relationship between Fahrenheit scale readings
and centigrade scale readings, and from it dotermine the temperature at which
both scales agree.

4. Find the relationship between the units of heat by calculating the number
of calories that are equivalent to one British thermal unit. 11b = 4536 g.

5. How much heat is required per minute from an immersion heater to
raise the temperature of 50 gal of water at 40° F to 80° F in 10 min. How
much would be lost in heating its containing tank made of galvanized steel
(sp. heat 0-11) weighing 120 1b. Assume that the tank is sufficiently insulated
to make radiation losses negligible.

6. Calculate the specific heat of a specimen for which the following readings
were obtained experimentally—

Weight of copper calorimeter = 4886 g
Weight of calorimeter + cold water = 69-33 g
Temperature of cold water = 16-8°C
Temperature of mixture = 47-5°C
Temperature of specimen = 100°C
Weight of calorimeter + water

+ specimen = 12636 g

7. Explain fully how you would find the specific heat of a liquid.

150 g of oil heated to 95° C are dropped into 100 g of water, contained in a
copper calorimeter weighing 150 g, at a temperature of 17° C. If the resulting
temperature is 39-6° C and the specific heat of copper is 0-1, find the specific
heat of the oil.

8. A copper calorimeter weighing 130 g contains 240 g of water at 25° C.
After adding a piece of dry ice the temperature becomes steady at 8° C. If
the latent heat of fusion of ice is 80 g.cal/g and the specific heat of copper is
0-1, what was the weight of ice added ?



CHAPTER XVIII

EVAPORATION, HUMIDITY AND MELTING
POINT

EvEN at temperatures just above freezing point the molecules of a
liquid are in a state of agitation and may, on reaching the surface,
pass out into the air above.

Evaporation and Boiling. This explains the phenomenon of
evaporation by which a liquid may be converted to vapour at a
temperature below boiling point. In the process of boiling, the
molecules vaporize inside the liquid forming bubbles, the vapour
being produced more rapidly. In either case the latent heat is the
same, but, in evaporation there need be no external source of heat
energy, the heat being drawn from the remainder of the liquid
which will, in turn, draw heat from its surroundings.

The foregoing explains why damp walls make a room cold, for the
heat necessary to evaporate the moisture will be drawn from the
room itself or alternatively a large amount of fuel must be wasted in
supplying it. Dampness also increases the humidity of the air (see
below) making the room uncomfortable. On the other hand, a loggia
can be cooled down in hot weather by liberally watering the floor.

Water Vapour in the Atmosphere. Although the amount of
water vapour in the atmosphere is only about 1 per cent, variations
above or below the normal amount at any given temperature are
of great importance, controlling to a large extent the comfort of a
room and the condensation of moisture on walls or other surfaces.
Timber, unless painted or otherwise waterproofed, is also affected
both during seasoning and in actual use since it readily absorbs or
loses moisture according to atmospheric conditions.

The mass of water vapour in unit volume of air is referred to as
the humidity of the atmosphere from which the sample is drawn,
and is usually measured in grammes per cubic metre. At any given
temperature and pressure there is a maximum amount of water
vapour that can diffuse or mix with the air. When this is present
the air is said to be saturated. If it is then cooled, it tends to become
supersaturated and tiny particles of liquid water may be deposited
in the form of a mist or dew.

Relative Humidity. The relative humidity of air is the ratio of
the amount of water vapour present to the amount required to
saturate the same volume of air at the same temperature. In Eng-
land the relative humidity out-of-doors is never less than 30 per
cent and this value may reach 100 per cent in damp, ‘“‘muggy”
weather even though no rain falls. Rooms should be kept at a
humidity of 50 to 60 per cent by adequate ventilation to ensure
comfortable conditions.

147
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Dew Point. When air is gradually cooled, the temperature at
which particles of liquid water first form is called the dew point,
its value depending upon the relative humidity of the air at its
original temperature. In nature this gradual cooling often occurs
after sunset as the ground and the air immediately above it is
cooled by radiation. The first appearance of dew takes place when
the temperature has fallen to the dew point.

Hygrometers. Instruments used for the measurement of the
relative humidity of air are called hygrometers and operate on one
of the following principles—

1. The measurement of the dew point.

2. The rate of evaporation from the bulb of a thermometer
surrounded by a wet muslin bag.

3. The change in length of a human hair which alters with relative
humidity.

Daniell’s gold-leaf hygrometer is described in most Physics
textbooks but is of little use to the builder as it is difficult to read
and liable to error. Regnault’s hygrometer is more satisfactory
but is still essentially a laboratory instrument and not suitable
for industrial use. The dew-point hygrometer designed by Griffiths
for use in cold-storage plants consists of a nickel-plated block of
copper cooled by a flow of brine from the refrigerating system of
the plant. A thermometer is placed with its bulb close to the surface
of the block and temperatures are taken at the instant of the first
formation of dew on the nickel surface and its disappearance when
the flow of brine is stopped. The mean of these two values is taken
as the dew point.

Wet-and-Dry Bulb Hygrometers. For most applied work instru-
ments of the form shown in Fig. 129 are used. Thermometer 4
records the temperature of the air in the usual way. The bulb of
thermometer B is enclosed in a muslin bag kept wet by the water
reservoir C, and will show the temperature to which its bulb is
reduced by the evaporation of water from the muslin bag. The
rate of evaporation and therefore the resultant temperature of
B depends upon the relative humidity of the air so that the
difference in readings of the dry and wet bulb thermometers is a
measure of the relative humidity. Table VII gives the values of rela-
tive humidity for degree differences between the wet and dry bulb
temperatures over a practical range of air temperatures. These
values are obtained by using a Regnault hygrometer as a standard.
If both thermometers register the same temperature the air must
be saturated and the relative humidity will be 100 per cent.

ExamprLE. Find the relative humidity of the air in a room if the wet bulb
of a hygrometer reads 50° F when the dry bulb records 56:56° F.

Difference between wet and dry bulb temperatures = 6-5° F

=3 X 65=236°C
Wet bulb temperature = 50° F = 10° C
Dry bulb temperature = 56-5° F = 13:6° C
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From table—
Relative humidity at 13-6° C for a difference of 3° C = 829
Relative humidity at 13-6° C for a difference of 4° C = 779,
Relative humidity for a difference of 3:6° C
— 82— % (82— 177)
=82—3
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Psychrometers. For the readings of wet-and-dry bulb hygrometers
to be reliable the air should circulate freely round the bulbs with
a velocity of not less than 10 ft/sec. Such ventilated hygrometers
are called psychrometers, a practical form being the sling psychro-
meter (Fig. 130) in which the two thermometers are mounted on a
frame so that they can be rotated by whirling in the hand. In use
the instrument is whirled for 30 sec and the temperature of the wet
bulb is read immediately after stopping. The average of several
such readings should be taken. To check the air speed the number
of turns per minute can be counted and the radius of whirl measured,
thus enabling the speed of the bulbs to be calculated.

Hair Hygrometer. A clean human hair, free from grease, is
mounted so that its change of length under varying conditions of
humidity may be magnified and used to move a pointer over a
scale. The graduations are calibrated against a standard hygro-
meter to give direct readings of relative humidity but require
periodical checking, since if the tensile stress in the hair becomes
too great it may be permanently deformed thus causing error in
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TABLE VII

PERCENTAGE RELATIVE HuMIDITIES FROM READINGS OF WET-AND-DRY
BuLs HYGROMETERS

Difference between wet-and-dry bulb temperatures (° C)

Dry Bulb T .
Temperature
° 1 2 3 4 5 6 7 8 9 10
— . - | R

2 92 87

4 93 87 80 75

6 93 87 81 76 70 | 66

8 93 87 81 76 71 66 61 58
10 93 87 82 76 71 66 62 58 53 50
12 93 88 82 76 71 66 62 58 54 50
14 93 88 82 77 72 67 63 58 54 51
16 93 88 82 77 72 68 63 59 55 51
18 94 88 83 77 72 68 63 59 b5 52
20 94 89 83 78 73 69 64 60 56 53
25 94 89 84 79 74 70 66 63 60 56
30 95 90 85 80 76 72 68 64 61 58
356 95 90 85 81 77 73 70 66 63 60

the readings. This instrument has the advantage of giving direct
readings and, unlike the wet and dry bulb hygrometer, can be used
at temperatures below freezing point.

Condensation in Buildings. The amount of water vapour required
to saturate air increases considerably as the temperature rises.
If the air in a room is saturated, or nearly so, and is at a higher
temperature than the surfaces of walls and windows, condensation
will take place. In a dwelling-house these conditions most fre-
quently occur in kitchens, sculleries, and bathrooms, but the effect
of condensation can be minimized by preventing the air becoming
too hot by correct ventilation and by using materials of low thermal
conductivity wherever possible.

If the material of a surface is absorbent, condensation may not
become visible until it is saturated. Steel window frames are usually
the first surfaces to show droplets of water and glass soon becomes
misted, the steel being at a lower temperature than the air of the
room because of its good conductivity and the low temperature
outside. Steel is also non-absorbent, and all condensed water
remains on the inner surface and eventually runs down to the sill.
Painted or varnished surfaces are also non-absorbent, but plasters
and certain types of distempers will absorb moisture and are
therefore slow to show condensation.

FrEEzZING PoINTS AND MELTING POINTS

The Freezing of Water. Water belongs to a comparatively small
group of substances that expand on solidifying, ice having a volume
9 per cent greater than that of the water from which it is formed.
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If this increase in volume is resisted, large forces are set up, tending
to burst the containing vessel or pipe, equal in magnitude to the
force which would have to be exerted in a testing machine to cause
the same strain. With lead, copper, cast iron, and steel the failing
stress may be reached if the whole of the water in a pipe freezes.
On the other hand, it should be remembered that the specific heat
of water is very high, and a large amount of heat must be abstracted
from the water in a pipe before ice is formed. Thus if builders would
protect all water pipes from cold winds by lagging them with a heat
insulating material, the rate of loss of heat could be made so slow
that burst pipes would be of rare occurrence.
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Fia. 131. TEMPERATURE-TIME ('URVES FOR DETERMINING MEBELTING-
POINTS

Melting Points. The melting point of a chemically simple sub-
stance, such as ice, lead or tin, is a very definite temperature which
can be determined with accuracy, but other substances such as
alloys, bitumen, glass, or clay, pass through a viscous or plastic
stage.

To Find the Melting Point of a Pure Metal or Alloy. The pure
metal or alloy is melted in a fireclay crucible (a cast-iron crucible
may be used for many metals, e.g. lead or tin). When properly
melted, the material is allowed to cool and temperature readings
are taken every minute. A mercury thermometer reading to 350° C
is suitable for experiments with lead or solder but should be pro-
tected by a fireclay sheath or thermo-couple cover. For higher
temperatures a pyrometer is required.

Graphs of temperature against time are drawn for each sample,
the results being similar to those shown in Fig. 131 (2 and ). In
Fig. 131 (a) the melting point or solidification temperature of lead
is seen to be t° (327° C), for, over a period of minutes, the lead loses
heat to the surrounding air, but its temperature remains constant.
Fig. 131 (b) shows that the alloy (plumber’s solder) begins to solidify
at ¢,° (about 250° C) since at this point the graph shows the tem-
perature to be constant for a short period during which some
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latent heat is evidently given up. The alloy now becomes plastic,
consisting of an increasing number of solid particles mixed with
the liquid, and finally solidifies completely at £,° (183° C). Since
the melting point of tin is 232°C, this particular lead-tin alloy
could not be used as tinman’s solder as it begins to solidify at
a higher temperature than the melting point of tin. During the
plastic stage it is in the right physical condition to enable a plumber
to “wipe his joint.”

Slight differences in the percentage composition of an alloy may
cause considerable changes in its physical properties. In the case
of lead and tin, an alloy containing 60 per cent of tin begins to
solidify at about 188° C and finishes at 183° C, while a change in
the tin content to 40 per cent gives an alloy which starts to solidify
at 245° C. The former would be suitable for tinman’s solder which
must set quickly and be at a temperature below the melting point
of tin. All tin-lead alloys finish solidifying at 183° C but vary con-
siderably in the temperatures at which they commence to solidify
(from 327° C to 183°C). A solder containing 63 per cent of tin
behaves exactly like a pure metal in that it has a definite melting
point of 183° C.

LABORATORY WORK
ExXPERIMENT 1. Wet-and-dry bulb hygrometer

The student should use a wet-and-dry bulb hygrometer to determine the
humidity of the atmosphere.

EXPERIMENT 2. Determination of melting points

Determine the melting point of a pure metal using the method described
on page 151. Repeat the experiment using an alloy instead of a pure metal
and note the difference in the results.

EXERCISES

1. What is meant by the relative humidity of the air? Describe how it
may be measured.

2. What is meant by the term dew point? Describe a method of deter-
mining the dew point.

3. Why is the temperature indicated by a thermometer usually lowered
when a piece of damp muslin is wrapped round the bulb? On what does the
extent by which the temperature is lowered depend ? Is it possible for such
a wet bulb not to show a fall in temperature ?

4. Explain what happens when water freezes. What is the importance of
this action in building ?

5. Describe how you would find the melting point of a solid. How would
your results vary if the solid was an alloy and not a pure metal ?

6. What is the difference between boiling and evaporation? How is the
boiling point affected by changing the pressure on the surface of a liquid ?



CHAPTER XIX

THERMAL EXPANSION OF SOLIDS, LIQUIDS
AND GASES

As heat energy is given to a material, the kinetic energy of its
molecules increases and the body as a whole tends to expand.
Conversely, on cooling the material it will tend to contract. Water
is an important exception because, although it obeys the general
rule above 4° C, it tends to contract when heated from 0° C to
4° C. Water has its maximum density at 4° C so that colder water
will be found nearer the surface if the temperature falls below this
point. This phenomenon helps to prevent volumes of water, large
or small, from freezing solid, since a crust of ice will first form on
the surface and, being a bad conductor of heat, will help to
prevent further solidification, the crust increasing in thickness
only slowly.

Expansion of Solids. The expansion of solids can be demon-
strated in the laboratory with the aid of a brass sphere of such a
diameter that it will just pass through a brass ring when both are
at the same temperature. If the ball is heated sufficiently it will
expand so that it will rest supported by the ring but, as the ball
cools, its own contraction and the expansion of the ring due to the
heat it receives will soon allow the ball to pass through again.

In engineering structures special expansion joints must be
designed to allow for such changes in dimensions. The steel can-
tilever sections of the Forth Bridge, for example, have rocking
posts placed between them which can move slightly out of the
vertical to allow for temperature changes and roller bearings are
provided at each end of the bridge to allow freedom for expansion
in the end sections.

Similarly, in reinforced concrete construction special expansion
joints are required and, in fact, the method of reinforcing concrete
is only possible because the two materials, concrete and steel, have
approximately equal coefficients of expansion (see Table VIII).

Linear Coefficients of Expansion. The amount of expansion or
contraction of a material due to a change of temperature is pro-
portional to its dimensions and to the change of temperature. The
coefficient of expansion of the material is defined as the change of
unit dimension due to unit difference of temperature. Where
expansion must be considered in building work most of the struc-
tural units concerned have one dimension much greater than the
other two (e.g. a beam) so that only change of length need be calcu-
lated, change of sectional area being negligible. For such a case
the coefficient of expansion required will be the coefficient of linear
expansion, «, of the material which is defined as the increase in
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unit length of that material for a temperature rise of one degree.
Providing that both the change in length and the original length
are measured in the same units, the value of the coefficient will not
be affected by the units used. The value per degree Fahrenheit
will be five-ninths of that per degree centigrade. Typical values
are given in Table VIII.

TABLE V111
COEFFICIENTS OF THERMAL EXPANSION PER DEGREE CENTIGRADI

I
|
Material Coefficient. i | Material Coefficient
- [ —— P S - E— 'E’ B SEDU S —— N ——
Metals (linear)-— !l Stones (linear)-— |
Aluminium 2-4 x 10-® ' Marbles 0-15 x 10-8
Brass 19 x 10-5 | ] to s
Copper 17 x 105 y 00 x 10
Invar 0-09 % 10-5 i Sandstones 0-7 x 10-5
to
Lead 2.9 x 10°8 1-2 x 10-8
Solder 2:5 x 108 Woods (linear)—
Steel 1-2 x 10-% Beech (along the
Steel (stainless) 1-0 x 10-5 ||  grain) 0-54 x 10-8
Zinc 2.6 x 10-5 || Beech (across the
1 . -5
Silica (quartz) 0-04 x 10-5% | grain) 6:0 x 10
I Ouk (ulong the
Liquids (volume)— ’ grain) 0-25 >t 1078
Alcohol 122 x 10-3 Oak (ncross tho
Ether 163 x 10-5 grain) 54 x 107
Ice 15-3 x 105 Pine (along the
1 grain) 0-54 x 105~
Mercury 18 x 10~
Water see Table IX Miscellanocous
(linear)—
Gases (volume)— o . Bakelito 2.8 x 108
Air 866 x 10 Brick 095 x 10-
Stones (linear)— Concrete 1-4 x 10-%
Granite 0-8 x 10-5 Ebonite 70 x 107
. -5
Limestones 0-25 x 10-% Glass 0-81 x 10
to Glass (Pyrex) 0-3 x 10-8
0-85 x 10~ Rubber 200 X 10-®

Superficial and Cubical Coefficients. If it is necessary to calculate
the change in area of a body with relatively small thickness, such
a8 a roof surface, the superficial coefficient of expansion, which is
the change in unit area per degree, will be approximately twice
the linear coefficient of expansion. For changes in volume, the
change of volume per degree is the cubical coefficient of expansion
and is equal to three times the linear value (approximately).



THERMAL EXPANSION OF SOLIDS, LIQUIDS AND GASES 155

Materials with Low Coefficients. From Table VIII, it can be seen
that Invar (a special nickel steel) and gquartz (Silica, Si0,) have
coefficients of expansion which are, for practical purposes, zero.
Invar is used for the manufacture of standard measuring rods and
tapes while quartz is employed for vessels that are subjected to
sudden extremes of heat or cold. If a quartz
crucible is hcated and plunged into cold water it
will not break, as would cne made of glass, because
there is practically no contraction. Borosilicate
glass marketed under the name of ‘“‘Pyrex” also
has a very low coefficient of expansion and is used
for heat-resisting glassware in the laboratory and
kitchen.

Creep in Lead Roofs. The creep of lead on
pitched roofs is due to alternating expansion and
contraction between day and night temperatures.
Owing to the weight of the lead, expansion will
take place down the slope and when the sheet
contracts on cooling its weight will again act to
prevent the sheet from returning to its original
position. To minimize the tendency to creep the
roof area must be broken up by expansion joints
of the form shown in Fig. 132.

TABLE IX

CokFFICIENTS OF ('UBIC KXPANSION OF
WATER PER DEGREE CENTIGRADE

Temperature Range Coetticient of
°C Cubic expansion

5% to 10° 53 x 10-%
10° to 20” 15 x 10-5 N
20° to 40° 30 x 108 . .
40° to 60° 46 % 10-5 E]:IG. 132.
60° to 80" 59 s 10~ XPANSION
80° to 100° 70 x 10-8 JoiNT

| IN Leap
' SHEETING

Expansion of Liquids. Expansions of liquids are always expressed
in cubical or volume coefficients, their values being much higher
than those of solids and, with the exception of mercury, varying
considerably with changes of temperature. Water is a special
example of such irregularity as Table IX shows, especially since
below 4° C it expands with decrease of temperature.

Circulation Due to Change of Density. Owing to increase of
volume due to thermal expansion, the density of a liquid when hot
will be less than that when cold. This is made use of for the purpose
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of obtaining circulation of water in domestic heating systems and
can be demonstrated by the following simple experiment.

Water is heated in the boiler 4 (the glass flask), Fig. 133, and a
supply tube runs from the top of the water
to the top of the hot water cistern B (glass
bottle). The return pipe C leaves near the
bottom of B and returns by a circuitous
route, as in a domestic system, to the bottom
of the boiler. Some potassium permanganate
crystals are introduced into B to show the
! flow of the current set up. The bottom layers
J\\\IIIW of water in the boiler expand on receiving
i heat energy, become lighter and rise to the
] top of the boiler, whence they rise by the
supply pipe D to the top of the cistern B.
Colder water from the bottom of cistern B
sinks down the pipe C and enters the bottom
of the boiler. This movement can be seen
by watching the stream of water dyed by the
permanganate crystals. The cold water enter-
ing the boiler becomes heated in its turn and
a steady circulation is set up, called a con-
vection current, gradually heating the water
"\ \. in B. . . s
Fra. 133. Cmooramron . Force Causing Circulation. It is interest-

oF Warkr Dur 1o 1Ng to take an example and calculate the

CONVECTION force causing circulation in such a system—
Vertical height from bottom of boiler

to top of cistern = 20 ft = 610 cm
Sectional area of each pipe = 1-55 in.2 = 10 cm?
Temperature of water in down pipe = 10°C
Temperature of water in up pipe = 60°C
Density of water at 10° C = 0-9997 g/cm3
Density of water at 60° C = 0-9832 g/cm?
.. Weight of water in cold pipe =610 x 10 x 0-9997 g
.". Weight of water in hot pipe =610 x 10 x 09832 g
Difference of weight of water in the two

pipes causing flow = 6100 x 0-0165 g

=100g =0-221b

Thus a force of nearly } 1b is formed by the expansion of the water
and this is sufficient to cause a good circulation, as water flows
readily under the action of small pressure differences. Since most
available tables of densities give values in metric units it is often
convenient to carry out calculations in such metric units and convert
to the British system as required.

Expansion of Gases. The simple air thermometer, illustrated in
Fig. 126, page 142, shows that the coefficient of cubical expansion
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for air is very much higher than that of any liquid. For all permanent
gases, or mixtures of such gases (e.g. the atmosphere) this coefficient
has the same value, namely 366 X 10-% or 4 per ° C of the volume
at 0°C. Thus— )

Volume of air at 0°C = ¥V cm?
Volume of air at — 1° C = V — 415 V cm?

It is interesting to carry this to the limiting case by reducing the
temperature to — 273° C. Then, theoretically,
Volume of air at — 273° C ==V — 314 V = 0 cm3

In practice the gas will liquefy before reaching this temperature.

Similarly if the above volume of air were to be heated to + 273° C
its volume would be doubled. Thus the density of air or any gas
decreases very rapidly as its temperature rises so that convection
currents and draughts of relatively high speeds are set up wherever
temperature differences occur. Quite a small change of temperature
may cause a high wind. Convection currents are of importance to
the architect in the design of all systems of ventilation, both natural
and artificial.

EXERCISES

1. A steel roof truss with a span of 40 ft is placed in position on a day when
the temperature is 50° F. What would be the expansion of its main tie (in
inches) on a day when its temperature is 100° F ? Does this amount of expan-
sion make it necessary to leave one end of the truss free?

2. A steel railway track was laid when the temperature was at freezing
point. What should the sum of the gaps between the rail lengths be in 100
miles of track if the gaps would just close when the temperature rose to
122° F? (Assume that the ends of the track are fixed.)

3. A steel member of a structure with its ends fixed has its temperature
increased by 45° F. Calculate the value of the stress set up in this member,
which is 20 ft long, if the coefficient of linear expansion of steel is 0-000007
per ° F and the value of Young’s modulus is 13,000 t/in.2

4. Give four illustrations in building work where attention has to be given
to thermal expansion or contraction, and two examples where this property
may be usefully applied.

5. Prove that the superficial coefficient of oxpansion is approximately
twice, and the cubical coefficient three times, the linear coefficient of expansion
for any material.

6. Road engineers limit the length of each concrete bay to 50 ft. What is
the total range of movement in this length for a range of temperature between
0°F and 120°F? What would be the superficial expansion over the same
range of temperature for a road 30 ft wide ?



CHAPTER XX
TRANSMISSION OF HEAT

UNTIL quite recently very little attention has been given to the
proper control of temperature within a building. English architects
and builders have been particularly remiss in this respect, partly
because of our equable climate, partly because of our traditional
building materials and methods, and partly from a prejudice against
the application of pure science to practical work. Experience in
other countries has convinced many people that it is unnecessary
to suffer rooms which are hot and oppressive, or cold and draughty,
and the introduction of new materials—concrete, steel, fibre board,
and slag wool—has made it necessary for the builder to review the
whole of his knowledge of heat transmission. Thus in a steel frame
structure the walls carry no load and can therefore be designed with
special attention to the provision of heat insulation rather than
structural strength. To deal with the problems of heating and heat
insulation it is essential to understand the methods of transmission
of heat and, at least, to be able to compare the rates at which differ-
ent building materials can conduct heat. It is also necessary to
determine the speeds at which convection currents will circulate
and to calculate the ability of any surface to radiate or absorb
heat waves.

Nature of Heat. It was long assumed that heat was a material
body which passed from places at higher temperature to those at
a lower temperature, either by contact or through some intervening
medium. This theory was disproved by Count Rumford at the
close of the eighteenth century in his explanation of the generation
of heat by friction, which he suggested could only be accounted for
by regarding heat as a mode of motion. This theory endorses the
molecular theory of the construction of matter and leads to satis-
factory explanations of the transmission of heat by conduction and
convection. Radiation, the third method of conveying heat, is ex-
plained by the wave theory of transmission of energy through the
ether.

CONDUCTION

Heat is transmitted through a body by conduction, each molecule
passing some of its energy to a neighbouring molecule possessing
less, thus raising the latter’s temperature, the heat passing through
the body from parts at a higher temperature to those at a lower
until some condition of equilibrium is set up. The ability to pass
on heat energy in this way varies considerably with different
materials—silver and copper conducting heat very rapidly and
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therefore being known as good conductors, while air is a poor con-
ductor (or good insulator).

Conductors and Insulators. There is a marked similarity between
the ability of materials to conduct (or insulate) both heat and
electricity, although unfortunately there are no non-conductors of
heat. There are some exceptions to this rule; water, for instance,
is a fair conductor of electricity but a very poor conductor of heat.
This can be shown by holding in the hand the bottom of a test
tube holding about two inches of water and heating the top half
inch with the flame of a bunsen burner. The water will svon boil
at the top but may not even reach blood heat at the bottom.

All metals are good conductors of heat and all materials contain-
ing a large proportion, by volume, of air are good insulators. Ex-
amples of the latter of interest to the builder are—

(@) Fibrous substances—glass wool, asbestos.

(b) Powders—sawdust, cork granules.

(¢) Materials of high porosity—clay bricks, foamed slag.

The heat insulation value of a wall will therefore be increased
by designing it with a cavity or by using hollow blocks. Although
water is a bad conductor in comparison with many structural
materials it is thirty times as good as air (see Table X), so that a
damp wall will conduct heat away far more rapidly than the same
wall when dry.

TABLE X

THERMAL CONDUCTIVITIES (k) OF COoMMON MATERIALS IN
CALORIhq/CM"/SEL/C‘Vl THICKNESS,”

Matoerial k | ! Material k
S T e
Aluminium . . .| 050 | Air . . . .| 000005
Copper . . . 0-92 | Ebonite . . .| 0-0004
Zinc . . . . 0-26 | Firebrick . . .| 0-0012
Lead . . . . 0-08 Glass . .1 0-002
Steel . . . . 0-16 Ice . . . | 0:005
Marble. . . . 0-007 | Soil . . . . | 00004
Quartz . . . 0-024 ! Slag wool . . . 1 0-0001
Sandstone . . . 0-025 ; Cork . . .| 0:0001
Water . . . . 0-0015 l Cork powder . . | 0000086

Thermal Conductivity. The factors controlling the amount of
heat conducted through a material are—

(@) The cross-sectional area through which the heat can pass, A.

(b) The thickness of the material, d.

(c¢) The bempera,ture difference between the inner and outer
surfaces (0, — 0,).

(d) The conductivity of the given material.

(¢) The time for which the heat passes, .
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The total amount of heat passing, Q, is directly proportional to
the area A, the temperature difference (6, — 6,) and the time ¢ and
inversely proportional to the distance d; thus—

Qoch =0y

or Q= é_QLdT__oj)_ ! < k

where k is a constant called the coefficient of thermal conductivity.
The metric system of units is usually employed and the coefficient of
thermal conductivity is then given as the quantity of heat, in calories,
that would have to pass per second through a thickness of one centi-
metre of a given substance over an area of one square centimetre
to cause a temperature difference of one degree centigrade between
the two outer surfaces. Coefficients of Thermal Conductivity for
various materials are given in Table X (metric units), and Table XI
(British units), the latter giving values of k& for various building
materials.
TABLE XI

THERMAL CONDUCTIVITIES OF BUILDING MATERIALS IN
B.TH.U./FT?/HR/INCH THICENESS/° F

Material k ; Material k
. e oo o .
Concrete— Plaster—
Gravel 1: 2: 4 . 7-0 Light 2-0
Clinker 1: 2: 4. 2:8 || Medium . 50
Foamed slag 1:2: 4 22 Very dense 8-0
Pumice 1: 2: 4 . 14 Fibre boards 0-4
Solid brick walls— Plaster boards 1-1
Flettons . 6-3 Asbestos coment . 2-0
London Stocks . 6-0 Cork . . 0-3
Sand lime . 9-0 Soft wood 1-0

ExampLe 1. Determine the quantity of heat conducted per hour through
the windows of a one-room building if the total area of glass is 3-8 m.? The
thickness of the glass is 3 mm, the temperature of the room is 18° C, and the
outside temperature is 5° C.

_ 38 > 10,000 x 13 x 3600 x 0:002
= 03 &
= 12,000,000 g. cal. (approx.)

or converting from the metric system to the British system

12,000,000
Q = 5 = 47,000 BTh.U.

cal.
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In building work British units generally replace the scientific metric
system and the thermal conductivity of a material is the quantity
of heat in B.Th.U. passing through a slab of material one inch
thick, per hour, over an area of one square foot due to a temperature
difference of one degree Fahrenheit between the two outer surfaces.
By converting each unit involved, it can be shown that the value
of k in British units is, approximately, 2900 times the value of k
in metric units.

Thus, from Table X, the metric value of % for glass is 0-002 and
therefore the corresponding value in British units is 0-002 > 2900 --.
5-8 B.Th.U./ft?/hr/in./° F.

ExamMPLE 2. Assuming that the total area of wall in the room mentioned
in Example 1 is 126 ft? and that the walls are of London Stock bricks, 9 in.,
thick; determine the quantity of heat conducted through them per hour.
The value of k£ in British units for London Stock bricks is 6-1 if the bricks
are dry.

Q=1rFkx f&(el'__ 02lt

d
_ 91__33_1_26 x {(18 — 5) x 2} x 1 B.Th.U.

= 2000 B.Th.U.

The temperature difference has been converted from degrees
centigrade to degrees Fahrenheit and has been assumed to be the
same for all four walls.

Air-to-Air Coefficients of Heat Transmission. Comparing the
results of these two examples, it is interesting to note that, con-
sidering conduction losses only, 96 per cent of the total heat loss
will occur through the glass of the windows, according to calcula-
tion. In practice it has been found that the calculated loss through
the glass is far too great, the reason being that the flow of heat from
the warmed air inside the building to the cold air outside is governed
not only by the conductivity of the material, but also by the rate
at which the warm air transfers heat to the inner surface and the
cold air takes up heat from the outside. This latter factor involves
the absorption and emission of heat at the surfaces by radiation
or by convection currents. To avoid introducing these complexities
into the calculation of heat lost by conductivity, the heating engineer
measures the air-to-air coefficients of heat transmission, U, the
values of which are fixed by experiment and experience.

Total loss of heat through a wall or window
= U A (6, — 6,) BTh.U./hr
where U = air-to-air coefficient of heat transfer through a
given thickness of the material.
A = area of wall or window in square feet.
(6, — 0;) = temperature difference in degrees Fahrenheit.
12—(T.479)
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A method of fixing the values of U for various building materials
and structures is explained, with the necessary charts and tables,
in Principles of Modern Building, Vol. I, published by H.M.
Stationery Office.

In the case of glass and of thin roof sheetings, the air-to-air
coefficient U depends less on the value of & than on the ability of
the material to absorb or radiate heat at its surface.

CONVECTION

Heat energy can be transmitted through a fluid (a liquid or a
gas) by the flow of warmer streams of molecules through the remain-
ing volume of the fluid, thus setting up convection currents. Pro-
fessor Clerk-Maxwell defined convection as ‘“‘the motion of the hot
body carrying its heat with it.” Heat cannot be convected through
a solid because the particles of the solid cannot circulate. An
explanation of the circulation of convection currents has already
been given on page 155 in the section dealing with thermal expansion
of liquids.

RADIATION

Radiant Heat. Heat may travel from a hot body to a colder one
by radiation, in the form of a transverse wave of very short wave-

1
length of the order of 30,000

which can pass through an intervening medium without heating
it. Temperature is only increased when radiation is absorbed by
a material; if it is reflected at the surface of a medium or is
transmitted through it there is no increase of temperature. Whereas
conduction and convection pass on heat by changes of molecular
motion, radiation travels as an ether wave and is only apparent
as heat when it has been absorbed. Radiant heat, or infra-red rays,
behaves in the same way as light waves (except that it is not visible
to the eye) travelling with the same speed and obeying the same
laws of reflection and refraction.

To demonstrate that radiant heat does not require air for its
transmission, place a screen in front of an electric fire and suspend
a thermometer behind it. When the screen is removed the ther-
mometer reading will rise very rapidly as it absorbs the radiant
heat falling upon it. Now place the thermometer in the receiver of
an air pump, exhaust the air and repeat the experiment. Again
it will be found that when the screen is removed the thermometer
reading will rise just as rapidly as before. This shows that the
radiant heat passes as easily through a vacuum as it does through

air.
Radiation from Various Surfaces. As radiation takes place from
the surface of one body and is incident on the surface of another,

in., of the same nature as a light wave,
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it is important to study the effects of different kinds of surfaces on
their ability to emit and absorb radiant heat. The emission of heat
can be studied by means of a thermopile (which is a battery of
thermocouples), the heat rays incident on an absorbent surface in
the instrument being converted into electrical energy which is
measured by means of a galvanometer.

The emissive efficiency of different surfaces can be compared by
using Leslie cubes. These are hollow tinplate cubes in which water

LESLIE
CUBE

THERMOPILE

ASBESTOS
SHEET

GALVANOMETER

&

VARIABLE
RESISTANCE

Fia. 134. DETERMINATION OF EMIissive ErrIciENCY BY LESLIE CUBE
AND THERMOPILE

is kept boiling throughout the experiment so that all surfaces of
the cube are at the same temperature. The different surfaces can
be treated with different coloured paints, lamp-black, or left as
polished tinplate. The heat radiated is compared by means of a
thermopile placed at a standard distance from each face in turn.
It will be found that for equal degrees of polish a black surface
gives the greatest heat emission. A rough matt surface, given by
lamp-black, is the most efficient radiating surface of all. Fig. 134
shows the lay-out of the apparatus used. Note that an asbestos
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sheet is so placed as to prevent radiant heat from the burner affecting
the thermopile.

Coefficients of Emission. If the emissive value of lamp-black is
fixed at unity the relative emissive values of other types of surface
will be found by dividing the galvanometer reading for lamp-black
into each of the other readings. Some values of coefficients of emission
are given below—

Lamp-black 1-00
White lead 0-15
Metals 0-13
Polished silver 0-02

The values given in this table could equally well have becn headed
coefficients of absorption as the absorptive power of any body is
equal to its emissive power. In other words a good radiator is an
equally good absorber and conversely a bad radiator, which is
usually a good reflector, will absorb very little heat.

Materials which Transmit Radiant Heat. Just as a lamp-black
surface will absorb most of the heat received and a polished silver
surface will reflect practically all incident heat rays, so a few
materials, notably rock salt and quartz, will transmit most of the
radiation received. Glass transmits a high percentage of the heat
rays received from a source at a high temperature, such as the sun
or a red fire, but will not transmit radiations from a source of low
temperature. This is probably due to differences in wavelength
of infra-red heat waves. This “discriminating’’ effect explains why
glass houses trap the heat of the sun’s rays. The radiant heat from
the sun passes through the glass and is absorbed by the various
bodies inside the glass house, but the radiation from these low
temperature surfaces is either reflected back or absorbed at the
inner surface of the glass. Thus during the day the heat from the
sun is stored up, raising the internal temperature above that of
the outside air. At night this heat gradually leaks away by con-
duction through the glass and then by radiation from its outer
surface. This effect should be considered when a fireplace is posi-
tioned opposite a window.

Insulation Against Heat from the Sun. The values for coefficients
of emission given on this page were obtained from a Leslie cube
and the radiations were therefore from a low temperature source. It
is important that the builder should not assume the same relative
values for heat emitted from the sun. Experiments have shown that
a white painted surface absorbs the least heat, when exposed to the
sun, being even better in this respect than polished metal. Thus for a
thin roof, the best insulation against the sun’s radiant heat would
be obtained by painting the outer surface white and having an
under surface of polished metal or a metallic paint.

Central Heating ‘Radiators.” Hot water or steam radiators
would be more appropriately named ‘convection heaters,” since
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of the total heat which they pass into the room not more than
30 per cent is transmitted by radiation. Most of the heat is used
to warm the air in contact with the warm surfaces by conduction.
Convection currents are thus set up which circulate the heat
throughout the room. Thus, although black surfaces have the
highest coefficient of emission, the type or colour of the surface of
a hot water or steam radiator will make but little difference to its
efficiency as a heater.

EXERCISES

1. Name and explain the three ways in which heat energy can be trans-
mitted. Give examples of each method that occurs in a domestic hot-water
radiator system.

2. Discuss the advantages and disadvantages of lagging the hot-water
storage tank in a domestic hot water system.

3. Show that the value of k in British units for any given material is 2900
times the value of & in metric units.

4. Calculate the quantity of heat conducted through a concrete (1:2: 4)
wall 121t x 8 ft x 5in. thick over a period of 12 hr if the thermal conduc-
tivity of the concrete is 7 B.Th.U./ft?/hr/° ¥, and the difference in temperature
between the two surfaces of the wall is 30° F.

5. Compare, over equal times and for the same differences of temperature,
the quantity of heat conducted through the 9 in. solid brick walls of a single
room building 20 ft X 15ft X 10 ft high with that conducted through the
window, which is 8 ft x 6 ft if the thickness of the glass is } in.

6. What do you understand by convection? What is the importance of
convection currents in nature and what use is made of them in heating
systems ?



SECTION V—LIGHT AND OPTICS

CHAPTER XXI
LIGHT AND THE LAWS OF REFLECTION

Licur is a form of energy consisting of disturbances in the ether
which travel with a velocity of 186,000 miles/sec, and since these
disturbances travel in straight lines through any given medium,
light is said to be propagated rectilinearly. Light waves can pass
freely through such substances as air, glass or water which are
termed transparent, but cannot pass through metals, wood or other
opaque substances (unless these are reduced to extremely thin
slices, as, for example, in the preparation of slides for microscopic
examination). Certain other substances, while not passing light
freely, transmit a certain proportion and are said to be translucent,
but the light is diffused and objects cannot be seen clearly; ground
glass, some papers, and milky liquids belong to this class.

Light waves which pass through transparent substances are
said to be transmitted, those striking opaque objects are reflected,
while those falling on translucent materials are partly transmitted,
partly reflected, and partly absorbed. A beam of light falling, or
sncident on an object with an irregular surface, will be scattered in
all directions. Such irregular or diffuse reflection will occur from
distempered walls and ceiling surfaces. A surface which is smooth
and polished will reflect the beam regularly without diffusion so
that an object viewed in a flat or plane mirror can be seen clearly
without distortion. Even a good mirror will, however, produce a
small amount of scattering through irregular reflection.

Reflection Factors. When light is reflected at any surface, a
certain percentage will be absorbed. This will apply even to the
best mirror, which cannot be made a perfect reflector although
the amount of light absorbed will be small compared with the
amount reflected. With other substances the proportion reflected
will be smaller. The percentage of incident light reflected from a
surface is called the reflection factor. Values from some common
surfaces are given in Table XII.

Shadows. Because light is propagated in straight lines, any
opaque body placed between a light source and a screen will form
a shadow, the nature of which will depend upon the size of the
source of light. If the source is so small that the rays of light appear
to radiate from a point, the shadow will be uniformly dark, of the
same shape as the object and will possess sharp edges, but its size
will depend upon the relative positions of source, object, and screen,
Fig. 135 (a).

If the source is smaller than the object, yet of comparable size,
Fig. 135 (b), the shadow produced on a screen will be composed of

166
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TABLE XII

REFLECTION FACTORS INDICATING PERCENTAGE OF LigET REFLECTED
FROM THE SURFACE

Material l % “ Material %
White drawing paper 82 Good white reflector for a
Good white paint 75 lamp (scatters 659,, re-
Yellow wall-paper .l 45 flects regularly 159%,) .| 80
Dark brown wall-paper . 14 Silver behind glass . . 85
Black cloth . . . 1 Mercury behind glass . . 73
Silver in front of glass . . 92 Stainless steel . . . 60

POINT

SOURCE OBJTEC
NOTE: SIZE OF SHADOW
INCREASES WHENSCREEN  SCREEN IN
1S MOVED TO POSITION 2 POSITION {

(@) POINT SOURCE

SOURCE

UMBRA &
PENUMBRA

OBJELCT

SOURCE

SCREEN AT, SCREEN AT
POSITIONA POSITION'®'

(¢) SOURCE LARGER THAN OBJECT

It ')3) OBJECT

\

PARALLEL BEAM SCREE|

(d) SOURCE GIVING PARALLEL BEAM
Fi1e. 135. PRODUCTION OF SHADOWS
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two parts. No light from the source can reach the portion lying
between £ and F and a dense black shadow, called the umbra, will
be produced, having the same shape as the object and increasing in
size as the screen is moved away from the object. Joining BC and AD
and producing these rays to meet the screen at @ and H, all points
lying outside the circle GH will receive light from all parts of the
source, but points lying inside the circle GH will only receive light
from a portion of the light source and will be in a zone of partial
shadow, called the penumbra. The density of this shadow will
graduate from full darkness at E to full light at G.

A similar state of affairs exists when the light source is larger
than the object, Fig. 135 (c), but in this case the umbral cone con-
| verges and the umbra becomes
H o smaller as the screen is moved
& away from the object. Thus
> when the screen is at 4 both
umbra and penumbra are visible,
MIRROR but when it is placed at B the
bezer 77777 umbra vanishes.

Fig. 136. REFLECTION AT A Finally, if the source of light is

Praxe Mirror made to produce a beam of

parallel rays, Fig. 135 (d), an

object intercepting the beam will form a shadow with clearly

defined edges, of the same size as the object, irrespective of the
position of the screen.

NCIDENCE |REFLECTI0

REFLECTION

Laws of Reflection. When a ray of light strikes a mirror it is
reflected. If the incident ray strikes the mirror normally, i.e. at
right angles to the surface, the reflected ray will return along the
same path. If the incident ray strikes the mirror at an angle, Fig.
136, it will be so reflected that the angle of incidence between the
incident ray and the normal will be equal to the angle of reflection
between the reflected ray and the normal. The reflected ray will lie
on the opposite side of the normal to the incident ray.

The laws of regular reflection are—

1. The incident ray and the reflected ray make equal angles
with the normal at the point of contact.

2. The reflected ray lies in the same plane as the incident ray
and the normal, but is on the opposite side of the normal to the
incident ray.

Reflection at a Plane Mirror. When an object is held in front of
a plane mirror an image appears to be formed somewhere behind
the surface of the mirror. To find out how this image is formed
and where it is situated, consider an object O, Fig. 137, in front of
a plane mirror X Y. Rays of light 04 and OB will be reflected along
the paths AC and BD respectively and since for each ray—
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Angle of incidence = Angle of reflection
L OAF = L FAC
and / OB@ = /GBD
where AF and BG are the normals to the surface of the mirror at
A and B respectively.
If the lines CA and DB are produced they will converge to the
point I behind the mirror. Thus to the eye, light originating at O

IMAGE I

OBRTECT O F G C D
Fic. 137. FoRMATION OF AN IMAGE BY A Praxg MIRROR

appears to come from a point I behind the mirror and I will be the
image of O.
To determine the position of I join OI and let it cut the
mirror plane XY at E.
Now L OAF = /FAC
and L/ EAF = /FAB = 90°
.. L EAO = /CAB = vert. opp. /L EAI
similarly, since the angle of incidence / OBG is equal to the angle
of reflection /GBD: /ABO = /ABI.
Thus in the triangles O4AB and IAB
AB is common
/L ABO = / ABI
/OAB = 180°— /EAO = 180°— L EAIl = /IAB
Therefore triangles OAB and IAB are congruent.
.04 =14
Also in triangles OAE and IAE
L EBAO = /EAI
04 = 1IA
AE is common
.. triangles OAE and IAE are congruent.
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.. OF =1E
and /OEA = /IEA = 90° since Ol is a straight line

Thus the image I is situated as far behind the mirror, perpendicu-
larly, as the object is in front.

Nature of the Image in a Plane Mirror. Since the image lies behind
the mirror, no light can actually come from it, it only appears to
do so. The image is said to be a virtual image to distinguish it from
a real image from which light can actually come. A real image is
one which can be formed upon a screen, a virtual image cannot
be so formed.

The image observed in a plane mirror will be found to be erect
vertically, that is to say points at the top of the object will be at the
top of the image, but it will be laterally inverted so that a point
observed to be on the right-hand side when facing the object will
appear to be on the left-hand side of the image. This is best under-
stood by looking at the reflection of a printed page in a mirror.
The letters will be found to be the right way up, but will run from
right to left in the image instead of from left to right.

Since lines joining each point on the image to the corresponding
point on the object are perpendicular to the surface of the mirror
the dimensions of image and object will be the same. Summarizing
the above—

1. A plane mirror forms a virtual image.

2. The image is situated at the same distance perpendicularly,
behind the mirror, as the object is in front.

3. The image is erect but laterally inverted.

4. The image is the same size as the object.

Deviation of Light by Reflection. A ray of light 4B, Fig. 138,
striking an inclined mirror P¢ will be deviated and leave in the
direction BC, the angle of deviation being / DBC.

If, Angle of incidence = 0
then, since angle of incidence = angle of reflection
LABC = 26.
.. angle of deviation = 180° — 20
= 2(90°— 0)
= 2/ ABP

i.e. a ray of light reflected from the surface of a plane mirror will be
deviated through an angle equal to twice the angle between the
incident ray and the mirror.

Deviation by Reflection at Two Mirrors. If the ray of light strikes
a second mirror RS, Fig. 139, it will be deviated again and will
leave along the path CD. Applying the above rule at each mirror—

Deviation at mirror PQ = 2/ ABP
or,since / ABP = /CBO
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Deviation at mirror PQ = 2 / CBO
Deviation at mirror RS = 2 / BCO
Total deviation = 2 (/CBO + / BCO)
= 2 (180° — / BOC)
= 360° — 2/ BOC
i.e. Deviation due to successive reflection from two inclined mirrors
will be equal to 360° minus twice the angles between the mirrors.

Fig. 138. DrviATIiON Fia. 139. DgviaTioNn oF LigGHT BY
oF LigHT BY REFLECTION REFLECTION AT Two PLANE MIRRORS

If the two mirrors are at right angles, then—
Angle of deviation = 360° — 2 x 90° = 180°

and the ray is reflected parallel to its original path but in the
opposite direction.

If, on the other hand, the two mirrors are parallel, the angle
between them is 180° and—

Angle of deviation = 360° — 2 X 180° = 0°
go that the ray is then reflected parallel to, and in the same direc-
tion as, the original path. This is made use of in the periscope,

used for seeing over obstacles, the action of which can be seen
from Fig. 140.

Deviation of the Reflected Ray Due to Rotation of a Plane Mirror.
A ray of light AB, Fig. 141, striking a mirror PQ, will be reflected
along BC so that, if BN is normal to PQ—

Angle of incidence /ABN = angle of reflection /NBC.

[f the mirror is rotated through an angle o to the position P'Q)
the new normal will be BN’ and /N'BN = /PBP' = a.
The ray 4B will now be reflected along the path BD such that—

Angle of incidence / ABN' = angle of reflection / N'BD
Deviation of reflected ray due to rotation of mirror = /CBD
= /ABC— /[ ABD
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But, LABC = fABN 4 /NBC =2/ ABN
/ABD = fABN' + /N'BD = 2/ ABN'
S LABC— fABD =2 (/ABN— /ABN’)
=2/ N'BN = 2a
.. Deviation of reflected ray due to angular rotation o = 2«
or, Deviation of reflected ray = twice angle of rotation of mirror.

_—I}mmaon
FROM OBJECT X
— o Pran. _W._.

|
|
|
R - q
|
|
I
|

-
MIRROR S : TO EYE \
— P -
A N' N D c

Fra. 140. SimMpLE F1a. 141. DEvIATION o¥ RAY DUE
PERISCOPE 170 ROTATION OF A PLANE MIRROR

This result is made use of for the measurement of angular rotation
in many scientific instruments. A ray of light is focused on to a
small mirror, fixed to the axis of the rotating portion, and reflected
on to a distant scale. From the motion on the scale and the known
distance from the scale to the mirror, the angular rotation of the
moving part can be calculated.

LABORATORY WORK
ExpeRIMENT 1. Location of images

(a) Sighting method. The position I, Fig. 142, of the image of an object O
can be determined by inserting two pins P, and P, and lining in two other pins
P, and P, to form sight lines on the image. The lines PyP; and PP, are pro-
duced until they intersect at a point which must then be the position of the
image.

(bg) Parallax method. Two things which coincide will always appear to be
together irrespective of the angle or distance from which they are viewed.
If two objects in the same straight line from the observer do not coincide,
they will appear to move relative to one another if the observer moves out
of the straight line, this being called parallax motion. In the first case, where
the objects coincide, there is no parallax. The position of a point on an image
can be located with the aid of a pin, taller than the mirror, which is moved
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about behind the mirror until there is no parallax between the part of the
pin seen over the top of the mirror and the point on the image viewed in the
mirror. The position of the image will then coincide with that of the pin.

Using the above methods locate the position of the image in a plane mirror
and verify the rules given above (pages 168, 170).

ExperIMENT 2. Deviation of light by reflection

For experiments on deviation a smoke box or an optical disc is desirable.
Using such apparatus, verify the rules for deviation of light rays by a single
mirror, by two mirrors, and by a rotating
mirror. L \IMAGE

|

EXERCISES \\

1. State the laws of reflection of light and |
explain how images are formed in a plane
mirror. IHow can it be shown (a) theoret-
ically, (b) experimentally, that the distances
of object and image from a plane mirror are
equal ?

2. Distinguish betwecn a real and virtual
image. How could you arrange two plane
mirrors to enable you to see the back of
your head? Show by a diagrain the path of
the light rays.

3. A man, whose eye is 51t 10in. above
ground level, walks towards a lake with the ] \ \
moon, which is 30° above the horizon, p
directly in front of him. If tho ground lovel o | osrECcT Ps\ 4\
is 12in. above the level of the water, how
far from the lake will the man be when he
first sees the reflection of the moon in the
water ?

4. A boy 4 ft 3 in. in height is standing at a distance of 3 ft from a vertical
mirror 2 ft in length, the upper edge of which is 5 ft from tho floor. Taking
the boy’s eye level to be 4 ft above the floor, show by a diagram how much
of his height he can see in the mirror and how much of the mirror is useful
to him.

5. Two mirrors are placed 12 in. apart with their reflecting surfaces facing
each other and a point source of light is placed 3 in. from the first mirror
and 9 in. from the second. Show on a diagram drawn to scale the positions
of some of the images formed in the mirrors and draw a cone of rays from the
object to an eye, placed between the mirrors, which is viewing the third image
behind the first mirror.

6. A horizontal beam of light 4B falls normally on the centre B of a plane
mirror placed in a vertical position. It is required to produce & reflected beam
BC such that BA = BC = 1m and AC = 2-5cm. Find approximately
the angle through which the mirror must be rotated.

7. A horizontal beam of light falls on a mirror and is reflected at right
angles horizontally, forming a spot of light on a screen 1 m distant from the
mirror. Sketch the arrangement and calculate through what angle the mirror
must be rotated to make the spot move a distance of 10 cm horizontally on
the screen.

8. An object is held 4 in. from one of a pair of parallel mirrors. If the dis-
tance between the second nearest image in one mirror and the second nearest
image seen in the other mirror is 60 in., what is the distance between the two
mirrors ?

Fia. 142, LOCATION OF AN
IMAGE BY SIGHTING



CHAPTER XXII
REFLECTION OF LIGHT AT CURVED SURFACES

MirrORs with curved surfaces are in frequent use; for example,
as reflectors to headlamps or searchlights. In their simplest form
the reflecting surface forms part of a sphere and such spherical
mirrors may be either concave or convex. In a concave mirror the
interior of the curve acts as a reflector while in the convex mirror
reflection occurs from the outside surface of the sphere. The centre
of the sphere is called the centre of curvature of the mirror and a
section through the mirror passing through
this point is a principal section of the
\ mirror.
Fig. 143 is a principal section of a con-
\ }  cave spherical mirror, the centre of curva-
ture being at C. The midpoint P of the
\ reflecting surface is called the pole of the
\ mirror and the line CP the principal axts.
The extreme width of the mirror is called
\ the aperture.
Reflection of a Ray at a Curved Surface.
\ ® A ray of light 4B, Fig. 143, striking the
° curved surface at B will be reflected along
APERTURE some path BF. Considering a very small
element of the mirror surface at B it may
Fie. 143. PrincrpaL  be regarded as a very small plane mirror in-
g”CTION TrrRoUGH A clined to the incident ray AB at the same
ONCAVE SPHERICAL
MIRROR angle as the tangent to the curved surface
at B. Thus the incident and reflected rays
AB and BF will make equal angles with the normal to the tangent
at B. For a spherical mirror the normal to the tangent is the line
joining B to the centre of curvature and referring to Fig. 143
/. ABC = /CBF.

>
O

CONCAVE MIRRORS
Focus of a Concave Mirror. If the ray A B, Fig. 143, is parallel
to the principal axis PC of a concave spherical mirror—
/ ABC = s BCF
but /ABC = /CBF
hence /CBF = /BCF and FC = FB
If the aperture of the mirror is small, B will be so near to P that
FB can be considered equal to FP;
therefore, FC = FP
or F is the midpoint of CP.
174
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Similarly any other ray parallel to AB will be reflected through
the midpoint F of CP, which is called the principal focus of the
mirror.

Thus: All rays parallel to the principal axis of a concave spherical
marror of small aperture will be reflected through the principal focus.

Conversely: Rays of light emanating from a point source at the
principal focus of such a mirror will be reflected as a parallel beam
travelling parallel to the principal axis.

The distance FP from the principal focus to the pole is the focal
length of the mirror, denoted by f, and if r is the radius of curvature
of the mirror, then, since CP =r, f = }r or, focal length = }
radius of curvature.

Fia. 144. ConJucaTE Foclr oF A CoNcAVE SPHERICAL MIRROR

Conjugate Foci. If O, Fig. 144, is a point source of light on the
principal axis CP of a concave mirror, on the opposite side of C
to P, any ray O4 incident on the mirror at 4 will be reflected along
AI so that—

/OAC = 4 CAI
Now, in triangle AIC—
exterior angle AIP = /ICA + /CAI . . (1)
and, in triangle COA—
exterior angle IC4 = /COA + /OAC
= /004 + /CAI . . (2)
subtracting (1) from (2)
L AIP — /ICA = £1ICA — /(004
or LAIP + /COA =2,1IC4 . . . . (3

If the aperture of the mirror is small, these angles will be small
and equation (3) can be written—
tan / AIP + tan /COA = 2tan /ICA

AD A AD 24D

or 0 T 0D = Cb
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Again, if the aperture is small, D and P coincide (approximately,
therefore
AD  AD 24D

P T oP = op
1 1 2
tor=cp

Substituting the conventional symbols: v = IP, u = OP and
r = CP = radius of curvature—
1+1_2

T u T

or, since r = 2f where f is the focal length—
1 1 1
v + w  f
Now f is a constant, so, for any fixed position of O, the value of v
will be constant and all rays leaving O will pass through I. A real
image of O will be formed at I and could be observed on a screen
held there. Conversely a source of light at I would produce a real
image at O.

The points O and I are called conjugate foci.

Image Formed by a Spherical Mirror. The position and size of
an image can be determined diagrammatically by drawing two
rays from each point on the object and finding the point where
the reflected paths of each pair intersect. The work is simplified
by remembering the following rules—

1. Rays parallel to the principal axis will be reflected through
the principal focus.

2. Rays through the principal focus will be reflected parallel to
the principal axis.

3. Rays through the centre of curvature will strike the mirror
normally and be reflected back along their own path.

Images Formed by a Concave Mirror. The image formed by a
concave mirror will change according to the position of the object.
The diagrams, Fig. 145, drawn by the method explained above,
show the various types of image which may be produced.

(a) Object beyond the centre of curvature on the side remote
from the mirror—a real, inverted, diminished image is formed
between the centre of curvature and the principal focus.

(b) Object at the centre of curvature—a real, inverted image,
of the same size as the object is formed at the centre of curvature.

{(c) Object between centre of curvature and principal focus—
a real, inverted, magnified image is formed beyond the centre of
curvature.

(d) Object between principal focus and mirror—a virtual, erect,
magnified image is formed behind the mirror.
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ey . . height of image .
Magnification of a Concave Mirror. The ratio height of object is

called the magnification of the image. If the ray APA’, Fig. 145,

is drawn for any case, triangles ABP and A'B’P will be similar,

since / APB = / A'PB’ and /PBA = /PB'A’; therefore,
Height of image _ 4'B’  PB’ _ image distance

Height of object 4B ~ PB _ object distance

v
u
. . . v
.". Magnification = "

ConvEx MIRRORS
Focus of a Convex Mirror. Reflection at the surface of a convex
spherical mirror occurs in the same way as at a concave mirror,
NP

A

F1c. 146. PriNorpAL SEcTioN THROUGH A CONVEX
SPHERICAL MIRROR

the incident and reflected rays, AB and BD, Fig. 146, making
equal angles with the line CB produced, C' being the centre of
curvature, but parallel rays are not converged to a focus, being
reflected as a diverging beam instead.

If AB is a ray parallel to the principal axis, then—

/ABN = / DBN = vert. opp. /FBC
Also, since 4B and PC are parallel—
/ABN = /FCB
;. LFCB = /FBC and FB = FC
or, if the mirror is of small aperture—
FP = FC so that F lies midway between P and C,

and since FBD is a straight line, the reflected ray BD appears to
come from F. Similarly all other rays parallel to the principal axis
will appear to come from F. Thus the principal focus F of a convex
mirror lies behind the mirror midway between the pole and the centre
of curvature,
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Conjugate Foci. A ray from an object at O, Fig. 147, striking
the mirror at 4 will be reflected along the path AE as if it came
from some point I; that is to say that a virtual image of O will be
formed at I. If C is the centre of curvature, join C4 and produce
it to N.

Then— /OAN = / NAE = vert. opp. /L CAI
In triangle AIC—
ext. angle /AIP = /ICA + /CAI . . (L)

and in triangle OAC
LICA = /OAN — £ 40C
= /CAI — fAO0C . . . (2)

Fig. 147. ConsugaTE Foct oF A CoNVEX MIRROR

Subtracting equation (2) from equation (1)—
LAIP— /ICA = £ICA 4+ LA0C
LAIP— s AO0C =2 /ICA
If the aperture of the mirror is small, these angles will be small,
and the equation may be written—
tan / AIP — tan / AOC = 2 tan / ICA
AD AD 24D

or ID 0D~ ¢CD
or, since P and D coincide approximately—
1 1 2
P OP=0P - . . . (3)

If the distance of object and image from the mirror are » and v
respectively and distances behind the mirror are considered to be
negative, then—
IP = — v, OP = u,
CP = radius of curvature = — r
= — 2f where f = focal length FP
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Equation (3) now becomes—

This equation is identical with that obtained for a concave mirror.
As before I and O are conjugate foci.

Image Formed by a
Convex Mirror. Asshown
in Fig. 148, the image
produced by a convex
mirror will always be
virtual, erect, and dimin-
ished and, as before—

s VIRTUAL Magpnification =
-~ IMAGE 4B PB v

AB T PB  u

LABORATORY WORK

Using an optical disc or a

F1¢. 148. Imace FoORMED BY A smoke box, the student

ConvEx MIRROR should study the reflection

of light at curved surfaces.

This work can also be carried out on a drawing board using part-cylindrical
mirrors (which can be stood on the board) and using pins as objects.

EXERCISES

1. Define the centre of curvature and the principal focus of a concave
mirror, and show that tho radius of curvature is equal to twice the focal
length.

2. What is meant by («) a real image, (b) a virtual image? An object is
placed 1-6 cm in front of a concave mirror of focal length 4-0 cm, find the
position and magnification of the image formed.

3. An object is (a) 40 in., (b) 20 in. (¢) 5 in. in front of a convex mirror of
20 in. radius of curvature. What is the position and magnification of the
image in each case ?

4. State the laws of reflection of light and show by diagrams how these
laws account for the formation of images by plane and spherical mirrors.
An object placed 10 in. from a spherical mirror produces a virtual image
15 in. from the mirror. Find the radius of curvature and determine whether
the mirror is concave or convex.

5. A concave mirror of 306 ¢ radius gives a real image of an object, en-
larged three times. Through what distance and in what direction must the
object be moved in order to form a virtual image enlarged three times ?

6. An object is set up 20 in. from a concave mirror and a real image is also
produced at 20 in. from the mirror. When the object is moved 5 in. farther
away from the mirror what happens to the image? Find its position, nature,
and size if the object is 2 in. tall. Where must the object be placed to produce
a virtual image 4 in. tall? Illustrate your answers with diagrams.



CHAPTER XXIII
REFRACTION OF LIGHT

WHEN light travels from one transparent medium into another,
say from air into glass, it will be reflected to a small extent at the
surface of separation, but most of it will pass on from the air into
the glass. If the light strikes the air-glass surface normally, it will
continue to travel through the glass undeviated, but if it strikes
obliquely, Fig. 149, the rays will be bent, or refracted, in this case

22
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INCIDENCE s AIR
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REFRACTION
<
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o
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Fia. 149. RerracrioN or A Licar RAY

toward the normal so that the angle of incidence ¢ is greater than
the angle of refraction ». When the ray travels out of the glass into
the air, there will again be a small amount of reflection, but most
of the light will emerge and be bent this time in the reverse direc-
tion. If the faces of the glass block are parallel, the emergent ray
will issue parallel to the original incident ray but will be laterally
displaced.

Whether the light is bent towards or away from the normal at
each surface will depend upon the optical properties of the two
media. When light entering asecond medium is bent towards the
normal, the second medium is said to be optically denser than the
first; but if the light is bent away from the normal, the second
medium is said to be optically rarer. Optical density is usually,
but not always, related to the physical density of a substance.

Laws of Refraction. The process of refraction obeys certain
laws, the first of which states that the refracted ray lies in the same
plane as the incident ray and the normal to the surface but is on
the opposite side of the normal to the incident ray.

181
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The second law, discovered by Snell in 1621, states that, for
any value of the angle of incidence, the ratio

sine of angle of incidence , sin ¢
- — 18 a constant, or — = u
sine of angle of refraction sin r

where u is a constant, called the refractive index, dependent on the
nature of the two media; typical values for some common media
are given below—

Air to water . . 133 Air to canada balsam . . 1-53
,»  window glass 1-53 ,,  methylated spirit . . 1-36
,» crown glass . 1-63 to 1-61 ,»  paraftin . . . 1-44
,» flint glass 1-62 to 179

Fia. 150. APPARENT BENDING OF Frg. 151. ArpareNT DrPTE DUE
A Rop IMMERSED IN WATER To REFrACTION

Apparent Depth due to Refraction. As a result of refraction the
bottom of a pool of water will appear to be nearer to the surface
than it really is, a fact which can easily be demonstrated by immers-
ing a straight rod in the water, Fig. 150; the rod will appear to be
bent upwards below the water as shown.

Referring to Fig. 151, a ray OA, from a point O at a depth OB
below the surface of the water, will be bent away from the normal
NAN' at A as it passes from the denser medium, water, to the
optically rarer medium, air, and will follow the path AC. To an
eye at C the ray from O appears to come from a point I on CA pro-
duced and the observer sees an image of O at an apparent depth BI.
sin / NAC,

By the laws of refraction sin / OAN' = air 4 water

But, since N4 is parallel to OB,
/NAC = £ AIB and /OAN' = /BOA

4B
_sin LAIB _I_é_ 0OA

. oair U water = /. BOA _éf_ﬁ
04
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If 4 is close to B, then, approximately, 04 = OB and I4 = IB
OB _ realdepth
IB "~ apparent depth
Since air M water =
Apparent depth in water = $ real depth.

As the obliquity of the line of sight increases, 74 and OA cease to
be nearly equal to IB and OB, with the result that the object appears
to be still nearer the surface than it really is, and an eye placed at
D will see the object as if it were at I,. This effect can be seen when
looking towards the deep end of a swimming bath. The bottom
will appear to curve upwards although it is actually sloping down-
wards.

Critical Angle and Total Reflection. If a ray of light 40, Fig.
152, passes from an optically denser medium (e.g. glass) to an opti-

N A
/

Jooair M water =

OPTICALLY RARER
MEDIUM

OPTICALLY
DENSER
MEDIUM »

¢ 8/ /A

Fic. 152. CRITICAL ANGLE AND ToTAn INTERNAL REFLECTION

cally rarer medium (e.g. air) it will be bent away from the normal
along the path OA’, the angle / NOA’ being greater than the angle
/. AON’. If the angle of incidence is gradually increased a position
will be reached when the incident ray BO is refracted along a path
OB’ coincident with the surface of separation. For this condition
the angle of incidence /BON’ is known as the critical angle. If
the angle of incidence is increased beyond the critical angle, the
rays of light, such as CO, cannot be refracted into the rarer medium
and so must be reflected at the surface along the path OC’. Such
rays are said to undergo tofal internal refection. Refraction from
one medium into another, which is optically rarer, can only occur
if the angle of incidence is less than the critical angle.

Calculation of the Critical Angle. To calculate the critical angle
for two given media, say glass and air—

sine of angle of incidence / BON'

sine of angle of refraction / NOB’
For the critical angle; /NOB' = 90°
and ; angle of incidence / BON' = critical angle

sine of critical angle
‘e sin 90° = glass U alr

glass U alr —
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and since sin 90° =1

. - 1
sine of critical angle = g5 gt ar = ——
air [ glass
Takmg air M glass = 1'0 approx.
sine of critical angle = i lr — 0-667
*J

critical angle = 42° approx.

Prisms

A prism is a portion of a transparent medium, usually glass,
which is bounded by two faces which are not parallel. Fig. 153
shows an ordinary triangular refracting prism. The angle between
the faces is known as the refracting angle.

REFRACTING
ANGLE

BASE
F1a. 153. TRIANGULAR Fra. 154. REFRACTION OF
REFRACTING PRiSM LicHT BY A Prism

A ray of light striking the face of a prism obliquely, Fig. 154,
will be refracted towards the normal as it enters the glass. It will
travel on through the glass and on leaving will be refracted away
from the normal, and, as a result of its passage through the prism,
the ray will become deviated from its original path. This deviation
varies with the position of the incident ray relative to the prism
and will be found to be a minimum when the refracted ray BC,
within the prism, is parallel to the base. For this
2 position of minimum deviation the angles / N,BA
45° 903\. and / N,CD are equal. For any other position

of the prism the deviation will be increased.

Total Reflection Prisms. Since the critical
45° angle for glass is about 42°, rays travelling in
glass which strike a glass-air surface at an

Fio. 155. Riamr angle of incidence of more than 42° undergo
ancLED Prism vssn total internal reflection. A prism with a refract-
ror Rmriecrron ing angle of 90° and other angles of 45° can
be used for reflection, as shown in Fig. 155, a
ray entering one of the faces normally is undeviated and will strike
the inclined face at an angle of incidence of 45°, which is greater
than the critical angle. It will be reflected and turned through 90°
so that it meets the other face normally and passes out without
further deviation,

A
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Fig. 156 shows the use of a right-angled prism for inverting a
beam of light by total internal reflection.

Fie. 156. RIGHT-ANGLED PRISM USED FOR INVERTING A BEAM

LABORATORY WORK
ExperIMENT 1. To determine the refractive index from air to glass

For this experiment a slab of glass, about 4in. x 3in. x lin. high, is
placed on a piece of drawing paper. Draw the outline of the block, 4 BCD,
P N Fig. 157, on the paper and insert

1 two pins P; and I, on the far side.
Looking through the glass slab from
the side OD, insert two pins P,
and P, so that they appear to be
in line with P; and P, viewed
through the glass. Draw the line
A E B PP, to cut le in ¥ and PP, to
cut CD in F. Join EF and draw

NEN’normal to AB. Then /P, EN
is the angle of incidence and
| GLASS
-
I —— =1 S
N’ ——
LIQUID
D F Cc
-Py
APPARENT DEPTHOF A | PINB ‘
PIN A
P a4 \__ P/
F1a. 157. DETERMINATION OF THE Fia. 158. DETERMINATION OF THE
REFRACTIVE INDEX OF (GLASS RerracTive INDEX oF A LiQuIiD

LN’EF is the angle of refraction at E.
sin / PLEN
air [t glass = sin / N'EF
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Verify also that the line P, P, is parallel to PP, and that
1

air U glags = —
glass U air

ExperIMENT 2. To determine the refractive index of a transparent liquid

Place a pin 4, Fig. 158, at the bottom of a beaker filled with the liquid.
Looking down on this pin, move a second pin B up or down the outside of the
beaker until it appears to touch the image of A seen through the liquid.
Then—

real depth SA

" apparent depth =SB

air M liquid =

ExPERIMENT 3. Refraction through a prism

By means of a smoke box or optical disc, study the refraction of a beam
of light through a prism and verify that the minimum deviation of the beam
occurs whon the refracted ray inside the prism makes equal angles with its
sides.

Study also the uso of a prism for total reflection.

EXERCISES

1. A lamp is placed on the bottom of a rectangular swimming bath, 4 ft
deep, which is filled to the brim with water. The lamp is 3 ft from one end
of the bath and the shadow of that end is 6 ft high on a vertical wall which
is 8 ft from the same edge. Calculate the refractive index of the water.

2. Describe how you would measure the refractive index of water contained
in a beaker.

3. A ray of light, travelling in glass, strikes its surface, making an angle
with the normal of (a) 30°, (b) 60°. Show by diagrams the subsequent path in
each case. Refractive index of glass is 1-5.

4. Define refractive index and critical angle.

Construct the path of a ray of light through a rectangular block of glass
3 in. thick, when the angle of incidence is 50° and the refractive index from
glass to air is 2/3.

5. A cylindrical measuring jar, 38 cm high and 5 cm in diameter, is filled
with water to a depth of 36 cm. Explain why, to an observer looking over
the side, the depth of water appears to be less than 36 cm and calculate the
apparent depth if the refractive index is 4/3.

Account for the fact that the lower part of the glass under the water appears
to be silvered.

6. A ray of light in air is incident obliquely on the surface of a plate of
glass. Indicate on a diagram the paths of the reflected and refracted rays
and mark the a,ngles of incidence, reflection, and refraction.

Explain the meaning of total internal reflection and show the use of a
prism to invert the image of an object.

7. ABC is a principal section of an isosceles right-angled prism, the right
angle being at B. A ray of light EF, parallel to AC, falls on the side AB at &
point midway between 4 and B. Trace, graph:ca,lly, the path of the ray
through the prism. Refractive index from air to glass is 3/2.

8. A man is standing 8 ft away from the edge of a bath which is full to the
brim with water (1 = 4/3) and which is 6 ft deep. The eye of the man is
6 ft above water level. As he looks into the water at the rows of tiles running
transversely across the bottom of the bath, several rows near the edge are
mvuu?ble to him. If the tiles are 6 in. wide, how many rows of tiles are out of
view



CHAPTER XXIV
LENSES

A LENS is made of a transparent refracting medium, such as glass
or certain plastics, and is bounded by two surfaces, both of which
may be curved or one may be curved and the other plane.

All lenses fall into one of two classes: convex or converging
lenses which are thicker in the centre, and concave or diverging
lenses which are thinner in the centre than at their edges. Various

%oa

DOUBLE PLANO- CONCAVO-CONVEX OR
CONVEX CONVEX CONVERGING MENISCUS

DOUBLE PLANO- CONVEXO~CONCAVE OR
CONCAVE CONCAVE DIVERGING MENISCUS

Fia. 159. CLASSIFICATION OF LENSES

types of lenses are shown in Fig. 159. The lens surfaces are usually
parts of spheres although they may sometimes be cylindrical or
aspherical. For spherical lenses the line joining the<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>