
Design and Development of a Smart Framework
for Proactive Defense Against Distributed

Reflection Denial of Service Attacks in Software
Defined Networking Environment

THESIS

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

SHAIL SAHARAN
2017PHXF0404P

Under the Supervision of

Prof. Vishal Gupta
Associate Professor

Department of Computer Science and Information Systems
Birla Institute of Technology & Science, Pilani – 333 031(Rajasthan)

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE
PILANI - 333031 (RAJASTHAN) INDIA

2024

i

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE

PILANI - 333031 (RAJASTHAN) INDIA

CERTIFICATE

This is to certify that the thesis entitled “Design and Development of a Smart

Framework for Proactive Defense Against Distributed Reflection Denial of

Service Attacks in Software Defined Networking Environment” submitted by

Shail Saharan ID. No. 2017PHXF0404P for the award of Ph.D. of the Institute

embodies original work done by her under my supervision.

Signature of the Supervisor
Name in capital letters : Prof. Vishal Gupta
Designation : Associate Professor,

Department of CSIS
Birla Institute of Technology & Science
PILANI - 333031(Rajasthan)

Date: _______________________

ii

Acknowledgments

I want to express my gratitude to Professor V Ramgopal Rao, Vice Chancellor, BITS Pilani,

for providing all the necessary facilities to successfully complete the study. I am highly grateful

to Prof. Sudhir Kumar Barai, Director, BITS Pilani, Pilani campus, for his inspiration. I

sincerely thank Prof. Shamik Chakraborty, Associate Dean, Academic Graduate Studies and

Research Division (AGSRD), and Prof. Navneet Goyal (Head, Department of CSIS) for

providing me with all the research facilities. I gratefully acknowledge the support received

from Dr. Shashank Gupta, DRC Convenor, in completing all the formalities smoothly.

I sincerely thank my supervisor Prof. Vishal Gupta, Associate Professor, Department

of CSIS, for his valuable guidance and support in my research work. His patience, cooperation,

and suggestions helped me in every step of the accomplishment of the study. His skillful

supervision enriched this study higher than my expectations.

I am incredibly thankful to Prof. K. Haribabu and Dr. Shashank Gupta for providing

valuable inputs as Doctoral Advisory Committee members and helping me improvise my

research throughout the process. I am also grateful to all the department's faculty members and

research scholars for their support and encouragement.

 I want to express my profound gratitude to my parents, Mr. Bhagat Singh Saharan and

Mrs. Madhu Choudhary, for providing me with unfailing support, patience, and continuous

encouragement throughout my academic life. I am grateful to my sisters and brother, Dr.

Anushansa Singh, Ms. Lisa Sagrohe, and Mr. Nikhil Choudhary, for their love, affection, and

constant support. I thank my husband, Dr. Chinmay Choudhary, for always being there through

iii

thick and thin. I am thankful to all my family members for always being a significant source

of support.

Getting through my thesis required more than academic support, and I feel indebted to

Arshveer Kaur, Stuti Chug, and Pratibha Saini for listening to me and, at times, having to

tolerate me over the past four and a half years. I cannot begin to express my gratitude and

appreciation for their friendship and unwavering personal support while I was at the

University.

Finally, my greatest gratitude to God for letting me through all the difficulties and

making me a humble and compassionate human.

 SHAIL SAHARAN

iv

Abstract

With the proliferation of Internet activities in one’s personal and professional life,

network security has become one of the most important topics for discussion. It deals with

protecting the integrity, confidentiality, and accessibility of computer networks and data.

Countless security breaches attempting to steal user data and hack into private spaces have

made this topic even more critical. One such category of a breach is the Distributed Denial of

Service (DDoS) attack. It aims at disrupting the flow of genuine traffic by overwhelming the

resources of the targeted network. Attackers send a huge amount of network traffic in a

distributed fashion to (mainly) a single victim. Its primary goal is to overwhelm the resources

of the targeted network, thus making it and its provisioned services (if any) unusable for

genuine users.

Distributed Reflection-based Amplification Denial of Service Attacks (DRDoS) is a

type of DDoS attack. It exploits the client-server communication model wherein a client sends

a request packet to the server and receives a response packet. The response packets in this

attack are much larger in size in comparison to the request packets. The attacker spoofs the

source Internet Protocol (IP) address to that of the victim in the request packet. Since the

underlying Internet architecture does not validate the source IP address while forwarding the

packets, as a result, all responses go to the victim. One such protocol often exploited for

DRDoS attacks is a Domain Name System (DNS) protocol. The attacker uses various zombie

computers to send massive DNS query packets to DNS servers. The packets’ inscribed source

address is set to the victim’s address so that when the DNS server responds to the queries, the

victim receives many respective response packets, and, in turn, the system crashes. This type

of attack is amplification-based because DNS response packets are generally exponentially

larger than DNS request packets. Thus, amplification in the packet’s size consumes the victim’s

v

bandwidth and, in the worst-case scenario, crashes the system by overwhelming it with the

packets. This study deals with providing defense against DRDoS attacks.

Because of the legitimate character of the traffic, detecting and mitigating DRDoS

attacks becomes more challenging. Distinguishing between attack traffic and legitimate traffic

is a formidable task. Even, if possible, the victim’s resources are overwhelmed during attack

detection and mitigation. Therefore, attack prevention is considered a better defense approach.

In the thesis, we have provided prevention techniques against DRDoS attacks in the Software

Defined Networking (SDN) environment. Utilizing the flexibility and programmability aspects

of SDN, via this study, we intend to make the underlying network smart enough to prevent

attacks. More specifically, we have designed, developed, and validated an SDN-based

framework that will introduce “appropriate intelligence” to enhance the functionality of

OpenFlow-enabled L2/L3 switches so that the underlying network itself can prevent DDoS

attacks. This thesis proposes eight different techniques to prevent/detect DRDoS attacks.

SYMSDN, IP-Switching, PortMergeIP, and Port-Mapping techniques focus on

modifying reverse forwarding rules. In these techniques, the response from the server goes

back to the attacker even when the attacker spoofs the source IP of the victim; hence, the

attacker is penalized for the attack. SYMSDN and Port-Mapping use symmetric routing as the

underlying approach, thus requiring modification in the entire core network. PortMergeIP and

IP-Switching depend on the Internet Service Provider (ISP) to modify the IP address of the

request packet; hence, they require changes in only the edge networks.

RDPID, again a prevention approach, uses Path Identifiers (PIDs) which are primarily

used in Information-Centric Networks (ICN) to forward response packets on PIDs. As against

static PIDs, we use Reliable Dynamic PIDs (RDPIDs) to refrain the attackers from learning

vi

these PIDs and launching the attack. These PIDs are proposed to be stored within the packet

so that the response packet can follow the same path as the respective request packet.

PoDIBC, another proposed prevention technique, does source authentication to prevent

IP spoofing. It is achieved by using signatures to authenticate the sender’s identity. PoDIBC

uses the Barreto, Libert, McCullagh, Quisquater (BLMQ) signature scheme of Identity-Based

Cryptography (IBC) to prevent the targeted victim from the attack packets. Since IBC uses the

packet identity as a public key (which in PoDIBC is the source-IP address), it eliminates the

infrastructure required for public key certificate distribution.

RF-SDN is a Machine Learning (ML) approach used in the SDN environment to

prevent DDoS attacks. With the advancement of artificial intelligence (AI), (ML) algorithms

have become sophisticated enough to classify traffic as malicious or benign based on

distributional differences between malicious and benign packets. We use random Forest model

in the SDN environment to detect DDoS attacks, primarily focusing on Portmap, DNS, UDP,

UDP-lag, and SYN datasets available in the CICDDoS 2019 attack dataset. Through the

prediction made by the model as either attack traffic or legitimate traffic, the attack is detected

and blocked. The approach is validated to detect a DDoS attack in near real-time and prevent

the attack traffic from reaching the victim.

Finally, we propose DDoS detection using entropy. Entropy is used to measure

randomness or uncertainty in a network’s traffic. As this randomness decreases, i.e., one type

of traffic dominates the network, the entropy value declines. This abbreviation leads to the

possibility of an attack on the network. The proposed approach employs a dynamic threshold

mechanism to distinguish between regular and attack traffic effectively.

All the prevention approaches are validated through detailed experimentation by

creating topologies involving attackers, victims, and a server to generate amplification attacks.

vii

The results show that because of the proposed approaches, none of the attack traffic reaches

the victim, or approximately 1 % (in the case of RF-SDN).

viii

Table of Contents

Acknowledgments.. ii

Abstract ... iv

Table of Contents ... viii

List of Tables ... xii

List of Figures .. xiii

List of Abbreviation ... xv

CHAPTER 1- Introduction .. 1

1.1 DDoS Attacks ... 1

1.1.1 DDoS Attacks a Significant Threat ... 2

1.1.2 Defense against DDoS Attacks .. 5

1.1.2.1 DDoS Attack Detection - ... 5

1.1.2.2 DDoS Attack Mitigation - .. 5

1.1.2.3 DDoS Attack Prevention - ... 6

1.2 Contribution of Thesis .. 6

1.2.1 Research Objectives .. 8

1.2.2 Organization of Thesis ... 10

CHAPTER 2- Literature Survey .. 12

2.1 Introduction ... 12

2.1.1 DDoS Defense Taxonomy ... 12

2.1.1.1 Reactive Techniques .. 12

2.1.1.2 Proactive Techniques ... 13

2.2 DDoS Prevention: Proactive techniques ... 15

2.2.1 Ideal Prevention ... 19

2.2.2 Partial Prevention .. 22

2.2.3 True Prevention ... 31

2.3 Limitations of Prevention Techniques .. 38

2.3.1 Research Gaps ... 44

CHAPTER 3- Related Theory ... 46

3.1 Introduction ... 46

3.2 Classification of DDoS Attacks .. 46

3.2.1 Types of DDoS Attacks ... 46

3.3 Software Defined Networking (SDN) .. 46

ix

3.3.1 OpenFlow Protocol .. 51

3.4 Techniques Used for Prevention ... 52

3.4.1 Identity-Based Cryptography (IBC) .. 52

3.4.2 Random Forest ... 53

3.4.2.1 Decision Trees ... 53

3.4.2.2 Ensemble Methods ... 54

3.4.2.3 The Random Forest Algorithm .. 54

3.4.3 Symmetrical Routing ... 55

CHAPTER 4- Prevention of DRDoS Amplification Attacks by Penalizing the Attackers in a
Software-Defined Networking Environment ... 56

4.1 Introduction ... 56

4.2 Related Work .. 59

4.3 Modifying Switch Flow Table- SymSDN (Symmetric SDN) 60

4.3.1 Experimental Setup and Result Analysis... 64

4.3.1.1 Experimental Setup .. 64

4.3.1.2 Results and Analysis .. 65

4.4 Packet Modification to Enforce Reverse Routing .. 69

4.4.1 IP-Switching .. 72

4.4.2 Port-Mapping ... 73

4.4.3 PortMergeIP... 74

4.4.4 Results and Discussion .. 76

4.4.4.1 Experimental Setup .. 76

4.4.4.2 Result and analysis ... 77

4.4.4.3 Attack mitigation ... 83

4.5 Summary of the Chapter ... 85

CHAPTER 5- Prevention Of DRDoS Attacks with Reliable-Dynamic Path Identifiers......... 87

5.1 Introduction ... 87

5.2 Related Work .. 88

5.3 Proposed Methodology ... 89

5.3.1 Reliable-Dynamic PID (RDPID) Generation .. 91

5.3.2 Request Routing .. 93

5.3.3 Response Routing .. 94

5.4 RDPID v/s DPID... 95

5.5 Simulation and Results ... 96

5.6 Summary of the Chapter ... 100

x

CHAPTER 6- PODIBC: Prevention of DRDoS Attacks using Identity -Based Cryptography
in Software-Defined Networking Environment ... 101

6.1 Introduction ... 101

6.2 Related Work .. 102

6.3 BLMQ Signature Scheme using SDN Controller ... 105

6.3.1 Generation Of Master Secret and Public Parameters Group 107

6.3.2 Private Key Generation ... 109

6.3.3 Signing the Message .. 109

6.3.4 Verification by the Server .. 110

6.4 Proof against IP Spoofing and Replay Attacks ... 110

6.4.1 Proof of Prevention against IP Spoofing ... 110

6.4.2 Proof of Protection against Replay Attacks ... 113

6.5 Simulation and Results ... 114

6.5.1 Experimental Setup.. 115

6.5.2 Results and Discussion .. 117

6.5.3 Comparison and Discussion .. 122

6.6 Summary of the Chapter ... 123

CHAPTER 7- Near Real-Time Detection and Mitigation of DDoS Attacks through Feature
Optimization in a Software-Defined Networking Environment .. 125

7.1 Introduction ... 125

7.2 Related Work .. 127

7.3 Proposed Methodology ... 130

7.3.1 Machine learning Architecture .. 132

7.3.2 Model Selection ... 132

7.3.3 Preprocessing ... 132

7.3.4 Feature Selection ... 133

7.3.5 Hyper-Paramter Tuning ... 139

7.4 The SDN Barrier ... 141

7.4.1 Handling False Positives- .. 144

7.5 Result And Analysis ... 144

7.5.1 Experimental Setup.. 144

7.5.2 Results and Observations... 146

7.6 Summary of the Chapter ... 148

CHAPTER 8- Detection of Distributed Denial of Service Attacks using Entropy on Sliding
Window with Dynamic Threshol ... 150

xi

8.1 Introduction ... 150

8.2 Related Work .. 151

8.3 Proposed Methodology ... 154

8.3.1 Dynamic Threshold Algorithm and Attack Detection ... 155

8.4 Results and Discussion ... 158

8.5 Summary of the Chapter ... 160

CHAPTER 9- Conclusions and Future Research Directions ... 162

9.1 Conclusions ... 162

9.2 Future Research Directions ... 164

REFERENCES .. 166

APPENDICES ... 177

Appendix A .. 177

Appendix B .. 179

Appendix C .. 184

List of Publications and Working Papers... 206

Brief Biography of Supervisor ... 208

Brief Biography of Candidate .. 209

xii

List of Tables

Table No. Title Page No.
2.1 Classification of prevention techniques 15
2.2 Advantages and limitations of existing prevention techniques 38
3.1 Different classifications of DDoS attacks 48
4.1 Notations used in the packet modification algorithms 71
6.1 Notations used in the PoDIBC scheme. 108
7.1 Selected feature values and their description 138
7.2 Optimal values of the chosen hyper-parameters 141
7.3 Traffic at the victim with varying attack rates 146
8.1 Notations used in the proposed approach 155
8.2 Analysis of F1 score in prediction by varying S and ΔT for

DNS_DRDoS
158

9.1 Prevention techniques 163

xiii

List of Figures

Figure No. Title Page No.
1.1 Prevention techniques 7
1.2 SDN barrier 9
2.1 DDoS defense mechanisms 24
2.2 Partial Prevention 24
2.3 True Prevention 33
3.1 Taxonomy of DDoS attacks 49
3.2 Various DDoS attacks 49
4.1 The architecture of SymSDN 61
4.2 The internal functioning of the SDN switch 62
4.3 Working of the SDN controller 63
4.4 Experimental topology: SymSDN 64
4.5 Throughput w.r.t. time (without SymSDN) 65
4.6 Throughput w.r.t. time (with SymSDN routing) 66
4.7 Packet loss % w.r.t. time (without SymSDN) 67
4.8 Packet loss % w.r.t. time (with SymSDN routing) 67
4.9 DNS request-response delay 68
4.10 Number of flow-rules w.r.t. time 69
4.11 Generalized network topology 70
4.12 Throughput without any prevention technique 78
4.13 Throughput (with IP-Switching) 78
4.14 Throughput (with PortMergeIP) 79
4.15 Throughput (with PortMapping) 79
4.16 Packet loss (without any prevention technique in place) 80
4.17 Packet loss w.r.t IP-Switching 81
4.18 Packet loss w.r.t (PortMergeIP) 81
4.19 Packet loss w.r.t (PortMapping) 82
4.20 DNS request-response delay due to prevention algorithms 83
4.21 Congestion in victim’s network when no prevention algorithm 84
4.22 Congestion in attacker’s network when prevention algorithm in

place.
84

5.1 Network setup showing Domains, Bord Routers, and Resource
Managers.

90

5.2 Reserved and Open PIDs. 91
5.3 Request packet routing. 93
5.4 Response packet routing. 94
5.5 Advantages of using RDPID over DPID 95
5.6 Prevention of DDoS attacks 98
5.7 Loss of packets due to PID update 99
5.8 Time taken to update PIDs 99
6.1 Communication between host and controller to receive private

key and Public Parameter Group
106

6.2 Signing and verifying the packet 107

xiv

6.3 Network architecture for PoDIBC 115
6.4 Available intermediate bandwidth between the victim and test

server with PoDIBC in place.
117

6.5 Available intermediate bandwidth between the victim and test
server without PoDIBC in place.

118

6.6 RTT for first request packet 119
6.7 Overhead in packet creation due to sign generation 120
6.8 Overhead due to sign verification 121
6.9 RTT overhead because of BLMQ signature scheme for DDoS

prevention
121

7.1 Proposed ML architecture 131
7.2 Precision, F1 score and recall for correlation and MI score of

DNS attack dataset
136

7.3 Precision, F1 score and recall for correlation and MI score of
Portmap attack dataset

136

7.4 Precision, F1 score and recall for correlation and MI score of
SYN attack dataset

136

7.5 Precision, F1 score and recall for correlation and MI score of
UDP attack dataset

137

7.6 Precision, F1 score and recall for correlation and MI score of
UDPLag attack dataset

137

7.7 Accuracy and OOB_score of hyper-tuned parameters 140
7.8 Proposed Architecture of SDN barrier 142
7.9 Experimental setup 145
7.10 Total attack sent and reaching the victim 147
7.11 Benign traffic sent and reaching the victim 148
8.1 Flow of the dynamic threshold algorithm 157
8.2 Precision, recall, and F1 score by varying intervals for

DNS_DRDoS dataset
159

8.3 Precision, recall, and F1 score by varying S for DNS_DRDoS
dataset

159

8.4 Precision, Recall, and F1 score by varying intervals for Portmap
dataset

160

8.5 Precision, Recall, and F1 score by varying S for Portmap dataset 160

xv

List of Abbreviation

S. No. Abbreviation Definition
1. DoS Denial of Service
2. DDoS Distributed Denial of Service Attacks
3. DRDoS Distributed Reflection Denial of Service
4. MITM Man In The Middle
5. RTT Round-Trip Time
6. IP Internet Protocol
7. MAC Media Access Control
8. TCP Transmission Control Protocol
9. TTL Time To Live
10. UDP User Datagram Protocol
11. BDP Bandwidth Delay Product
12. ISP Internet Service Provider
13. NAT Network Address Translation
14. OS Operating System
15. AS Autonomous System
16. AD Accountability Domains
17. BR Border Router
18. RM Resource Manager
19. NM Network Manager
20. DNS Domain Name System
21. ARP Address Resolution Protocol
22. HTTP Hypertext Transfer Protocol
23. SMTP Simple Mail Transfer Protocol
24. NTP Network Time Protocol
25. BGP Border Gateway Protocol
26. AIP Accountable Internet Protocol
27. CLDAP Connection-less Lightweight Directory Access

Protocol
28. CSP Cloud Service Provider
29. IoT Internet of Things
30. ICN Information-Centric Network
31. ML Machine Learning
32. DL Deep Learning
33. AI Artificial Intelligence
34. ONF Open Networking Foundation
35. SDN Software Defined Networking
36. NFV Network Function Virtualization
37. VM Virtual Machine
38. PID Path Identifier
39. DPID Dynamic Path Identifier
40. RDPID Reliable Dynamic Path Identifier
41. NID Network Identity
42. IBC Identity-based Cryptography
43. IBS Identity-Based Signature

xvi

44. IBE Identity-Based Encryption
45. BLMQ Barreto, Libert, McCullagh, Quisquater
46. OOB Out Of Bag
47. IPS Intrusion Prevention System
48. IDS Intrusion Detection System
49. NIDS Network Intrusion Detection System
50. HIDS Host Intrusion Detection System
51. IPDS Intrusion Prevention Detection System
52. CSP Cloud Service Provider
53. RSU Road Side Unit
54. WSN Wireless Sensor Network
55. VANET Vehicular Ad-hoc Networks
56. MANET Mobile Ad-hoc Networks
57. MAEC Multi-Access Edge Computing
58. OS Operating System
59. MPLS Multi-Protocol Label Switching
60. LAN Local Area Network
61. WLAN Wireless Local Area Network
62. VLAN Virtual Local Area Network
63. LISP Location/ID separation protocol
64. TR Tunnel Routers
65. RPF Reverse Path Forwarding
66. FIB Forwarding Information Base
67. M-Boxes Middle Boxes
68. SVM Support Vector Machine
69. SOM Self-Organised Map
70. PCA Principal Component Analysis
71. LDA Linear Discriminant Analysis
72. ANN Artificial Neural Network
73. TPA Third-Party Auditor
74. VRF Virtual Router Firewall
75. SAVI Source Address Validation Improvement
76. SAVA Source Address Validation Architecture
77. SAVE Source Address Validity Enforcement
78. FCFS First Come First Served
79. DHCP Dynamic Host Configuration Protocol
80. SEND Secure Neighbor Discovery
81. MAAM Mixed Address Assignment Methods
82. WIDIP Wireless Distributed IPS
83. PKES Public Key Exchange Server
84. IDEA International Data Encryption Algorithm
85. RDPF Route-based Distributed Packet Filtering
86. SOS Secure Overlay Service
87. API Application Programming Interface
88. TOS Time Of Service
89. DTLS Datagram Transport Layer Security
90. CGA Cryptographically Generated Address
91. CA Certifying Authority
92. MI Mutual Info

xvii

93. GE General Entropy
94. SPRT Sequential Probability Ratio Test

1

CHAPTER 1- Introduction

1.1 DDoS Attacks

With the abundance of computers in our day-to-day activities and their need to interface

with the Internet, many organizations, directly or indirectly, depend upon Internet

infrastructure for proper and reliable functioning. The services provided by various

organizations primarily depend upon two aspects—first, the correct functioning of their

respective applications, and second, the underlying Internet itself. If the organization’s

application is faulty, the individual organization will only be blamed. But whom to blame if

the organization’s service model is disrupted due to the vulnerabilities of the underlying

Internet architecture? For example, it would be chaos, hassle, and revenue loss if any ticket

booking (flight, train, movie, etc.) website could be made inaccessible using the vulnerabilities

of the underlying Internet architecture. Attackers are always looking for such vulnerabilities to

launch different cyber-attacks. Distributed Denial of Service (DDoS) attack is one type where

an attacker uses multiple zombie machines and generates enormous traffic to attack the victim.

For example, one such attack was observed in 2016 when a series of DDoS attacks targeted a

Domain Name System (DNS) provider organization named DYN (2016 Dyn Cyberattack,

2021). As a result, it caused significant Internet platforms and services unavailable to a large

part of Europe and North America.

DDoS attacks are launched for many different reasons. These are business rivalry,

political mileage, taking revenge, monetary gain, etc. In such attacks, by generating an

enormous number of network packets, the perpetrator seeks to make a machine or network

resource unavailable to its intended users by temporarily or indefinitely disrupting the services

of a host connected to the Internet. The attackers target and make inaccessible the services of

2

a website or any online service directly or through that service’s dependencies. The attacker

often chokes the available bandwidth, making resources unavailable to legitimate users.

1.1.1 DDoS Attacks a Significant Threat

A report by Amazon suggests that a 100-millisecond delay in response time can

potentially drop their overall sales by approximately 1% (Greg, 2006). The various security

reports generated by Arbor Networks (Netscout, 2019), Cloudflare (Famous DDoS Attacks |

The Largest DDoS Attacks of All Time, 2021), and Secure List (B. Kupreev Oleg et al., 2021)

suggest that DDoS attacks are a significant threat. According to Cloudflare, five of the most

impressive DDoS attacks are (a) the attack on Github, (b) the attack on DYN servers, (c) the

Spamhaus attack, (d) the attack on Google, and (e) the 2020 AWS attack (Famous DDoS

Attacks | The Largest DDoS Attacks of All Time, 2021). A10 Networks classified the attacks

based on amplitude (Paul, 2020). The top five among these are (a) The Google attack (2.5

Tbps), (b) The AWS DDoS attack in 2020 (2.3 Tbps), (c) The DYN attack (1.5 Tbps), (d) The

attack on GitHub (1.35 Tbps), and (e) attack on Occupy Central (500 Gbps). Many DDoS-for-

hire services are available as paid services that take the responsibility of attacking on the

attacker’s behalf (Booters, Stressers and DDoSers, 2021). As they have a whole infrastructure

on their side, they are more capable of making a full-fledged attack. According to the Q3 report

of 2019 (B. E. Kupreev Oleg & Alexander, 2019) by Secure List, even when the FBI took down

many DDoS-for-Hire sites, new ones sprung up in their place, and the number of attacks using

these services increased by 400% from the previous quarter. As highlighted, following is a

brief about some of the deadliest DDoS attacks to understand more about the threat and the

methodology associated with DDoS attacks.

a) The attack on Google- The DDoS attack on Google peaked at 2.5 Tbps in September

2017 and took place over six months (Menscher, 2020). The attack was a reflection

3

attack that used about 180,000 servers, such as Connection-less Lightweight Directory

Access Protocol (CLDAP), DNS, and Simple Mail Transfer Protocol (SMTP), to send

amplified responses to Google servers (Cimpanu, 2020b). The spoofed requests were

167 Mbps and are said to be originated from several Chinese Internet Service Providers

(ISPs). After three years, Google disclosed this deadliest attack to raise awareness about

this huge threat, i.e., DDoS attacks. It also stated that these attacks would intensify with

increased bandwidth in the coming years.

b) The AWS 2020 attack- Amazon Web Services (AWS) is a primary Cloud Service

Provider (CSP). In the first quarter of 2020, AWS reported a DDoS attack that was 44

% larger than any other volumetric attack detected by AWS Shield (Threat Landscape

Report – Q1 2020, 2020). The attack peaked at 2.3 Tbps. It was also a reflection attack

that used CLDAP servers to launch the attack. AWS did not disclose the customers to

whom the attack was targeted but only said that it was an “elevated threat” for three

days for AWS Shield staff (Cimpanu, 2020a).

c) The attack on GitHub- According to the Institute for Research on Internet Society, this

attack was launched in March 2018 (DDOS Attacks and the GitHub Case, 2018). It

used Memcache, an open-source, simple, and robust distributed memory caching

system. Memcache reduces database load through caching, which helps to increase the

speed of dynamic web applications. It works in the form of a client-server application.

The list of Memcached servers is made available through the client software. The

client’s requested object is first checked in Memcache; if it is there, the value is

returned; otherwise, a request to the database is made. Various institutions own about

100,000 Memcache servers (Newman, 2018). Anyone can use them to send special

request commands to which these servers respond with a much larger reply. The attack

was launched on GitHub using this feature. It was also a reflection attack (Ghoshal,

4

2018). The attacker just requested the data from Memcache servers and spoofed their

source IP addresses to that of GitHub, resulting in an attack of 1.35 Tbps.

d) DYN attack- The attack occurred on October 21, 2016, and was on American and

European Internet infrastructure (Famous DDoS Attacks | The Largest DDoS Attacks

of All Time, 2021). A total of 85 major sites suffered as the main target was DYN, a

DNS service provider company. The major sites affected were Airbnb, Netflix, PayPal,

Visa, Amazon, The New York Times, Reddit, and GitHub, as they all used services

from DYN (2016 Dyn Cyberattack, 2021). The attack was launched by producing a

large number of DNS requests for DYN servers through an army of bots. The unique

feature of this attack was that the bots were created from tens of millions of

compromised Internet of Things (IoT) devices, such as cameras, radios, etc., using

malware named Mirai. It took about one day to mitigate the attack.

e) Spamhaus attack- Spamhaus, a nonprofit organization, works in threat intelligence. Its

services protect about three billion users’ mailboxes from spam messages, malware,

phishing, etc. As Spamhaus works against Internet abusers, it is on the target list of

many cybercriminals. Among many attacks on Spamhaus, the biggest one occurred on

March 18, 2013. It was a DNS amplification attack. Generated by open DNS resolvers,

the attack started from 10 Gbps and reached 90 Gbps on March 19, 2013. On March

22, the attack reached 120 Gbps, as reported by Cloudflare, which finally mitigated the

attack (Prince, 2013a). In this attack, the attackers generated requests for DNS zone

files for ripe.net (Prince, 2013b) to open DNS resolvers. The request packet size was

36 bytes, and the response packet size was estimated to be 3000 bytes in size. Thus,

approximately 100 times amplification factor. Furthermore, the source IP address of the

request packets was spoofed with Spamhaus; hence, all the responses from over 30,000

5

unique DNS resolvers went to Spamhaus, creating such massive traffic on Spamhaus

servers.

1.1.2 Defense against DDoS Attacks

From all the attack statistics mentioned in section 1.1.1, DRDoS attacks were among

the deadliest attacks. Due to their legitimate nature, it is tough to differentiate whether the

traffic is a legitimate one or an attack; hence, they are harder to detect. These attacks generally

exploit the client-server architecture. In DRDoS attacks, the attacker spoofs the source IP

address of request packets to that of the victim, resulting in all the server response packets

going to the victim instead of the attacker. Many techniques in the literature claim to protect

from DDoS attacks. The defense against DDoS attacks can be classified as attack detection,

mitigation, and prevention. These are formally defined as follows-

1.1.2.1 DDoS Attack Detection -

Strategies falling under this realm are equipped for detecting the attack with probability

P, where P depends upon the particular detection mechanism. In pure detection techniques, the

host/network is allowed to be susceptible to DDoS attacks. Once an attack has started, the

primary focus is to maximize the probability of detection based on different heuristics. These

heuristics vary from network traffic analysis, entropy, anomalous behavior of data traffic, etc.

(J. Singh & Behal, 2020). Once an attack is detected, remedial measures can be taken.

1.1.2.2 DDoS Attack Mitigation -

Once an attack is detected, strategies falling under this realm can mitigate it with

probability P1 and within time T. Again, the value of P1 and T depends upon the particular

mitigation mechanism. Once the attack is detected, DDoS mitigation techniques or tools are

used to mitigate the impact of such an attack. These techniques are primarily based on rate-

limitation (J. Singh & Behal, 2020), tracing the attacker, blocking it, etc.

6

1.1.2.3 DDoS Attack Prevention -

In general, prevention means not permitting something from occurring in the first place.

Thus, in the context of DDoS attacks, strategies falling under this realm should not allow DDoS

attacks from happening. Prevention means strategizing defense so that DDoS attacks can be

prevented from happening in the first place, and even if they occur, the victim should remain

as unaffected as possible by the attack.

1.2 Contribution of Thesis

The primary focus of activities aimed at countering DDoS attacks revolves around two

main aspects: detecting the attacks, followed by mitigating the attack. With this approach, the

defense strategies are reactive, leaving the underlying network vulnerable to DDoS attacks

until they occur. Once an attack takes place and exhausts the victim's bandwidth and resources,

only then do the detection and mitigation measures come into play.

Rather, a more promising strategy involves a shift toward attack prevention. This

proactive approach aims to either prevent the attacks from being generated in the first place or,

if they are generated, ensure that the attack traffic is unable to reach the victim. In contrast, the

detection and mitigation methods always involve the attack traffic reaching the victim, thus

disrupting its normal functioning.

Considering the benefits of prevention and its proactive nature, it is regarded as the

primary defense technique in this study against DDoS attacks.

Limiting the scope to the Internet architecture, we have identified three distinct

categories of DDoS prevention techniques based on their effectiveness in safeguarding the

victim. These categories are named Ideal Prevention, True Prevention, and Partial Prevention,

as illustrated in Figure 1.1.

7

Figure 1.1 : Prevention techniques

a) Ideal Prevention- This prevention technique completely prevents the attack traffic

from entering the core network. In this case, the attack traffic generated by an attacker

(or botnets in control of the attacker) cannot leave their respective access network.

b) True Prevention- This prevention technique allows the attack traffic to leave the

attacker’s network and enter the core network but is wholly prevented from reaching

the victim’s network.

c) Partial Prevention- This prevention technique initially allows the attack traffic to leave

the attacker’s network, enter the core network, and even reach the victim’s network.

However, the attack traffic is stopped from reaching the victim upon successful

detection of an attack. Generally, an additional prevention layer between the attacker

and the victim is responsible for this detection or diversion. The exact location of this

prevention layer varies and may be anywhere in between the gateway router of the

attacker’s network and that of the victim’s network.

Implementing the prevention technique mentioned in section 1.2 requires certain

changes in the Internet architecture. These changes can be achieved in two ways: first, by

8

enforcing predefined policies in all edge networks (access networks) to prevent attackers from

launching attacks. Second, by enhancing the intelligence of the underlying core network

responsible for traffic forwarding to minimize the probability of attack traffic reaching the

victim. While it may be impractical to entirely stop attackers from launching attacks due to the

need for widespread restrictions and upgrades across access networks, preventing attack traffic

from reaching the victim's network is achievable by enhancing the intelligence of the

underlying core network. This could involve introducing additional functionalities in core

routers, incorporating extra layers in the core network, or having ISPs provide add-on

functionalities to offer protection against DDoS attacks.

In this study, we have utilized Software Defined Network (SDN) as the underlying

network architecture to demonstrate the necessary intelligence and changes required for

effective DDoS prevention and detection techniques. SDN is a promising network paradigm

that decouples the forwarding and control planes, enabling a programmable network

architecture. Leveraging the flexibility and programmability of SDN, the study aims to enhance

the intelligence of OpenFlow-enabled L2/L3 switches within an SDN-based framework to

enable the underlying network itself to prevent, detect, and mitigate DDoS attacks.

Furthermore, among all the attacks discussed in section 1.1.1, DRDoS attacks were

identified as the most severe. Due to their legitimate nature, distinguishing between legitimate

traffic and an attack is challenging, making them harder to detect. Therefore, this study's main

focus is prevention against DRDoS attacks.

1.2.1 Research Objectives

Based on the above discussion and literature review, the following objectives have been

formulated for the study:

9

a) To study and analyse existing techniques in literature to defend against DDoS attacks

and keep the primary focus on prevention.

b) Design a framework to introduce appropriate intelligence in underlying SDN-enabled

network switches/controllers and assess its security against DRDoS attacks. Such

switches may be a part of the core network or a separate barrier network through which

the traffic will pass. The following two hypotheses are researched –

Figure 1.2 : SDN barrier

 Assuming that the entire network is SDN-enabled

In this scenario, we assume the entire network, including the core and edge

networks, is SDN-enabled. It means that all the L2/L3 switches between the client

and the server must be SDN-enabled. Hence, we propose modified routing

algorithms for the SDN environment, which are capable of preventing/mitigating

DRDoS attacks.

 Assuming that the Internet core network is not SDN-enabled

A separate SDN-based barrier is proposed in this scenario, as shown in Figure 1.2.

It is called a barrier, as all the traffic to an organization will pass through it. It can

10

be implemented in two ways: either by a separate module connected through an

SDN-enabled switch or by making only the edge network SDN-enabled (not the

entire core network). It will be capable of preventing, detecting, and mitigating

DRDoS attacks.

c) Implement and validate the proposed framework in SDN lab setup and measure its

effectiveness to prevent DDoS attacks against various network metrics.

1.2.2 Organization of Thesis

The thesis comprises nine chapters, each serving a specific purpose.

Chapter 1 presents the introduction to the thesis, covering an overview of DDoS attacks

and the significant threats they pose. The chapter also delves into DDoS defense techniques,

emphasizing the importance of prevention against DDoS attacks. Furthermore, the contribution

and research objectives of the thesis are highlighted.

Chapter 2 entails an extensive literature survey of existing prevention techniques,

categorizing them into three approaches: Ideal Prevention, True Prevention, and Partial

Prevention. These techniques form the basis for proactive defense against DRDoS attacks,

which are the main focus of this research.

Chapter 3 briefly summarizes related theory, aiming to offer a comprehensive

understanding of all proposed prevention techniques. The chapter briefly covers SDN and

discusses the foundational techniques utilized in the prevention approaches: Identity-based

Cryptography (IBC), random forest classifier, and symmetrical routing.

Chapters 4 and 5 elaborate on the proposed prevention techniques, categorized based

on their underlying approach. These chapters center around modifying reverse forwarding rules

such that the attacker attacks itself. Chapter 4 details four prevention techniques: SymSDN, IP-

Switching, PortMergeIP, and Port-Mapping. While SymSDN and Port-Mapping approaches

11

assume SDN-enabled Internet Core and edge networks, PortMergeIP and IP-Switching assume

only the edge network to be SDN-enabled. Chapter 5 introduces a prevention approach using

Path identifiers (PIDs), predominantly used in Information-Centric Networks (ICNs), enabling

response packets to follow the same path as request packets.

In Chapter 6, the proposed prevention technique utilizes an Identity-Based Signature

(IBS) scheme named Barreto, Libert, McCullagh, Quisquater (BLMQ), referred to as PoDIBC.

This scheme employs source authentication to prevent IP spoofing by using signatures for

sender identity authentication. PoDIBC employs the BLMQ signature scheme of IBC to protect

the targeted victim from attack packets, eliminating the need for public key certificate

distribution.

Chapter 7 incorporates the use of the Machine Learning (ML) algorithm, random forest,

in the SDN environment for real-time DDoS attack detection and prevention. This defensive

approach leverages the differences between malicious and legitimate traffic to identify and

block attacks. With the advancement of Artificial Intelligence (AI), ML algorithms can

effectively classify traffic as either malicious or benign based on distributional differences,

enabling accurate predictions and timely action against attacks.

Chapter 8 focuses on the detection of DDoS attacks using entropy. Entropy is used to

measure randomness or uncertainty in a network’s traffic. As soon as this randomness

decreases, i.e., one type of traffic dominates the network, the entropy value decreases. This

abbreviation leads to the possibility of an attack on the network. The proposed approach

employs a dynamic threshold mechanism to effectively distinguish between normal and attack

traffic. Finally, Chapter 9 lists the conclusions of the thesis.

********** End of Chapter **********

12

CHAPTER 2- Literature Survey

2.1 Introduction

DDoS defense mechanisms are techniques or tools primarily used to defend networks

or hosts attached to the Internet against DDoS attacks. These defense mechanisms are based

on multiple different techniques such as traffic monitoring, various types of traffic analysis,

traceback techniques, packet characterization techniques, etc. (Bhatia, S., Behal, 2018). We

can classify any defense mechanism as prevention, detection, and mitigation. As mentioned in

the previous chapter, prevention is a better defense technique than detection and mitigation to

keep the victim from harm as much as possible. Hence, this chapter has a detailed literature

survey of all the existing prevention techniques.

2.1.1 DDoS Defense Taxonomy

DDoS defense mechanisms can be looked upon from the perspective of their

applicability, i.e., whether the mechanism is applied before the attack takes place (i.e.,

proactive defense mechanisms) or after the attack takes place (i.e., reactive defense

mechanisms). Correspondingly, a taxonomy for DDoS defense is highlighted in Figure 2.1.

2.1.1.1 Reactive Techniques

Reactive techniques react to the DDoS attack, i.e., it allows the attack to happen, and

then the detection or mitigation is done. In such a case, the victim starts detecting the attack

when it is under attack. As soon as the victim detects the attack, an appropriate mitigation

technique is applied. Here, the attack traffic constantly consumes the victim's network

resources.

13

2.1.1.2 Proactive Techniques

Prevention means the act of stopping something from happening (Prevent). In general,

a technique or a set of techniques that claims to “prevent an event” should not allow the same

event to happen in the first place. For example, deadlock prevention methods do not allow

deadlocks to happen (Deadlocks). Proactive techniques are primarily DDoS prevention

techniques. Rather than reacting to a DDoS attack, techniques falling under this realm focus on

preventing the DDoS attack traffic from reaching the targeted victim.

Figure 2.1: DDoS defense mechanisms

Depending upon the scope and meanings associated with various "Prevention"

techniques, proactive techniques can further be classified into Ideal Prevention, True

Prevention, and Partial Prevention. These further classifications can also be explained with the

help of Figure 1.1, which shows an attacker, a victim, and a third-party layer responsible for

mitigating the attack connected across the Internet. Figure 1.1 illustrates that in Ideal

Prevention an attack packet cannot leave the attacker’s network, and in True Prevention, attack

traffic can leave the attacker’s network but will be mitigated in the network; hence, it cannot

reach the victim network. In Partial Prevention, the attack will be mitigated by a prevention

layer from reaching the victim, but some percentage of attack reaches the victim.

14

a) Ideal Prevention

These types of prevention techniques prevent the attack traffic from entering the core

network of the Internet. In this case, the attack traffic generated by an attacker (or botnets in

control of the attacker) cannot leave their respective access networks. More formally, as

defined by (Gupta et al., 2010), Ideal Prevention can be considered as “Attack prevention

methods which try to stop all well-known signature-based, and broadcast-based DDoS attacks

from being launched in the first place or edge routers keep all the machines over Internet up to

date with patches and fix security holes.” Later, the authors argue that DDoS attacks are always

vulnerable to attack types for which signatures and patches do not exist in the database with

this definition of prevention. By this definition, Ideal Prevention includes attack prevention

methods that try to stop a type of DDoS attack (well-known signature-based attacks, broadcast-

based DDoS attacks, reflection-based attacks, etc.) from being launched in the first place. We

call it “Ideal Prevention” because such methods are ideal solutions if feasible and applied

across the network.

b) True Prevention

These types of prevention techniques entirely prevent the victim from attacking traffic.

As formally described by (Saharan & Gupta, 2021), the attack traffic can leave an attacker’s

access network and enter the core network of the Internet but can never reach the target victim’s

network. These types of techniques are attack prevention methods that introduce sufficient

“intelligence” within the network and make the network self-sufficient. Here, self-sufficiency

means that the network itself is capable of stopping/diverting the attack and does not allow the

attack traffic to reach the victim’s network. The attacker can attack, but the victim will not be

affected in any manner.

15

c) Partial Prevention

These types of prevention techniques partially prevent the victim from the attack traffic.

In this case, the attack traffic initially reaches the victim but the attack traffic is stopped from

reaching the victim upon successful detection of an attack. A third-party prevention layer is

placed between the attacker’s and victim’s networks. The job of this third party is to detect the

attack that is taking place and stop it from reaching the victim’s network as soon as possible.

It may also be responsible for mitigating the attack. The exact location of this intermediate

prevention layer varies and may be anywhere between the gateway router (which connects an

attacker to the core network) and the victim’s network. Partial Prevention is called partial

because some of the attack reaches the victim’s network.

2.2 DDoS Prevention: Proactive techniques

This section shows a detailed literature survey of DDoS prevention techniques, which

fall under the realm of Ideal Prevention, Partial Prevention, and True Prevention. Also, DDoS

prevention techniques in the literature are not just limited to Internet architecture. Instead, such

techniques are also available for network architectures like Mobile Ad-hoc Networks

(MANETS), Vehicular Ad-hoc Networks (VANETS), etc. However, we have classified all the

prevention techniques in Table 2.1 for completeness.

Table 2.1 : Classification of prevention techniques

Author DDoS defense technique Type

(Freiling et al., 2005) Botnet Tracking Ideal Prevention

(Shafi & Basit, 2019) Preventing botnet creation Ideal Prevention

(H. Luo et al., 2013) Identifier/locator separation Ideal Prevention

(Baker & Savola, 2004) Ingress filtering Ideal Prevention

16

(Ndibwile et al., 2015) Protection using ML and traffic
authentication

Partial Prevention

(Zhuotao Liu et al., 2018) M-boxes between client and server, as
prevention layer

Partial Prevention

(Subbulakshmi et al., 2013) Network monitors as prevention
layers

Partial Prevention

(Lad et al., 2014) DDoS Prevention Module between
client and server

Partial Prevention

(Dhanapal & Nithyanandam,
2019)

A prevention layer in cloud,
classifying request messages into
different zones

Partial Prevention

(Jaber et al., 2018) Swarm intelligence to be used in an
Intrusion Prevention System (IPS)
before the cloud server

Partial Prevention

(Saxena & Dey, 2015) Third-party auditor acts as a shield
before the victim cloud

Partial Prevention

(Sahi et al., 2017) A third party, known as CS_DDoS, is
a classifier method between cloud and
the user

Partial Prevention

(Shridhar & Gautam, 2014) The idea of a honeypot, as a
prevention layer, between the client
and server

Partial Prevention

(Navaz et al., 2013) Cloud Service Provider (CSP)
maintains a third party to monitor the
network.

Partial Prevention

(Somasundaram &
Meenakshi, 2021)

A 3-layer filtering mechanism
between attacker and cloud

True Prevention

(Huong & Thanh, 2017) An SDN gateway to filter network
traffic

Partial Prevention

(Z. Ahmed et al., 2019) SDN controllers use blockchain to
share information about the attack

Partial Prevention

(A. K. Singh et al., 2020) NFV and SDN to develop a defense
model against DDoS attacks

Partial prevention

17

(Harikrishna & Amuthan,
2021)

Use of Self Organised Maps (SOMs)
for accurate detection of DDoS
attacks

Partial Prevention

(François et al., 2012) IPSs form virtual protection rings
around the hosts to defend.

Partial Prevention

(Z. Liu et al., 2018) ISP-based service with three layers to
defend against DDoS attacks

Partial Prevention

(Y. Kim et al., 2006) The network keeps a score of packets Partial Prevention

(Kalkan & Alagöz, 2016) The network keeps the score of
Packets

Partial Prevention

(Mirković et al., 2003) Traffic monitoring by gateway routers Partial Prevention

(Poongodi et al., 2019) ReCAPTCHA controller, to prevent
large botnets-based attacks

Partial Prevention

(Malhi & Batra, 2016) Road Side Units (RSUs) as prevention
layer

Partial Prevention

(Islam et al., 2018) Both RSUs and controllers for
prevention against DDoS attacks

Partial Prevention

(Grover & Mittal, 2016) Both RSUs and controllers for
prevention against DDoS attacks

Partial Prevention

(Timcenko, 2014) Separate Intrusion Detection System
(IDS) nodes for prevention

Partial Prevention

(Nagar et al., 2017) Dedicated IPS nodes to detect and
block the attack

Partial Prevention

(Kaushal & Sahni, 2016) Attack prevention nodes to control the
transmission of each node in Wireless
Sensor Network (WSN)

Partial prevention

(Jingle & Rajsingh, 2014) Intrusion Prevention Detection
System (IPDS) nodes in the network

Partial Prevention

(Dao et al., 2018) Multi-access edge computing
controller (MAEC)

Partial Prevention

(Bhardwaj et al., 2018) Edge computing in IoT Partial Prevention

18

(Misra et al., 2011) Middleware between application level
and technological infrastructure to
detect and prevent an attack

Partial Prevention

(X. Chen et al., 2021) Packet sampling at multiple control
points

Partial Prevention

(Dao et al., 2021) Fog-shield, the endpoint defender and
Orchestrator

Partial Prevention

(Wu et al., 2013) Source validation True Prevention

(H. Luo et al., 2017) Dynamic PIDs (DPIDs) True Prevention

(Al-Duwairi et al., 2020) DPID with Get message logging True Prevention

(X. Liu et al., 2008) A new encrypted header field in the IP
header

True Prevention

(Hu et al., 2017) Sender’s encrypted ID in the IPv6
extension header

True Prevention

(Nadeem et al., 2021) Intermediate routers perform two
levels of verification

True Prevention

(Andersen et al., 2008) Accountability of Autonomous
Systems (Ass)

True Prevention

(Pappas et al., 2016) Forwarding accountability between
Ass

True Prevention

(Y. Liu et al., 2015) Encrypted network identities to nodes True Prevention

(Park & Lee, 2001) Allowed IP packets on a link True Prevention

(J. Li et al., 2002) Source periodically informing
neighboring nodes

True Prevention

(Duan et al., 2018) Route mutation to protect critical
links from attack

True Prevention

(Keromytis et al., 2004) Secure overlay points and secret
servlets

True Prevention

(Osanaiye, 2015) Operating System (OS) fingerprinting True Prevention

(Goncalves et al., 2017) Information about blacklisted nodes is
propagated through wireless routers.

True Prevention

19

2.2.1 Ideal Prevention

An attacker generally carries out a chain of processes to launch an attack. Ideal

Prevention techniques target and prevent such processes from being executed, preventing an

attacker from launching an attack. Therefore, such techniques do not allow the attack traffic to

enter the network. One of the prominent ways to launch a DDoS attack requires multiple hosts

acting in a coordinated fashion. These attack hosts are called bots (or zombies); they belong to

networks called botnets of compromised hosts and are remotely controlled by an attacker. The

preventive approach proposed by (Freiling et al., 2005) identifies and infiltrates this remote-

control network mechanism and aims at shutting it down. It is done by deploying honeypots

that attract the traffic of malicious actions of the botnet maintainers and facilitates forensic

analysis of this traffic. It helps in the detection of malware which is responsible for remote-

control mechanism and prevent botnets from being activated.

Qaisar Shafi et al. prevent botnets creation in the Internet of Things (IoT) networks

(Shafi & Basit, 2019). The proposed scheme uses SDN and blockchain to detect botnets among

IoT networks in a distributed fashion. This detection is claimed to be automatic without the

need for manual intervention. Thus, if an attacker is prevented from creating and controlling

the botnets, DDoS attacks cannot be launched. Along similar lines, the technique proposed by

(H. Luo et al., 2017) uses identifier/locator separation and thwarts DDoS attacks by preventing

bot creation. As against the current Internet architecture, which uses only an IP address to

represent both identity and location of a network node, the identifier/location separation

technique separates the two. It was initially proposed to address the Internet’s routing

scalability problem. Location/ID separation protocol (LISP) is one of many routing protocols

which uses location/identifier separation. Using the modified DNS request/response mapping,

a set of mapping servers for each provider network, and tunnel routers (TRs), the proposed

technique makes it very difficult for attackers to find vulnerable hosts to act as zombies (or

20

bots). As through this approach, TRs only provide locators of hosts that provide a service. For

the hosts that do not provide any service, the TRs cannot find locators. Hence the attackers

cannot find vulnerable hosts to create bots. It also creates a hindrance in sending attack

commands to these zombies, even if somehow, they are created.

Although it seems feasible, identifying and infiltrating the botnets is always impossible.

With many botnets present across the Internet, automating the infiltrating and analysis process

is far from practical. Also, the attack is still possible through booter services (Booters, Stressers

and DDoSers, 2021).

Ingress filtering is yet another effective way to implement Ideal Prevention. Ingress

filtering is implemented at the ISP level, and it prevents DDoS attacks by not allowing spoofed

addresses to access the network. It also helps in tracking the source of the attack. Attacks can

be somewhat prevented if the traffic leaving an edge network and entering an ISP can be limited

to the traffic it is legitimately sending. There are at least five ways to implement ingress

filtering, with varying impacts (Baker & Savola, 2004).

 Ingress Access Lists

 Strict Reverse Path Forwarding (RPF)

 Feasible Path RPF

 Loose RPF

 Loose RPF ignoring default routes

Ingress Access Lists check every message’s source address against a list of acceptable

prefixes before the packet enters the network and drops the packet whose source IP is not in

the list. Strict RPF is similar to access lists; the only difference is that the access list is dynamic.

Forwarding Information Base (FIB) is used to check source addresses. The technique states

that if the packet is forwarded on the same interface the packet is coming upon, that packet will

21

be accepted. A better version than Strict RPF is Feasible Path RPF. In this, alternative paths

are also looked upon; if any alternative path is matched, it is accepted; otherwise, the packet is

dropped. The mechanisms in Feasible RPF need to be defined more clearly, like where it will

work and where it will not. The packet is checked against FIB in Loose RPF mode and is

dropped when it will not match any incoming interface. The term used for this is the existence

of the path on that router. However, this is useless because, like Loose RPF sacrifices

directionality, it loses the ability to limit an edge network’s traffic to send legitimate traffic

sourced from that network. The fifth technique, Loose RPF ignoring default routes, is like

Loose RPF; the only difference is that the source check-list default routes are excluded.

All the methods mentioned above prevent DDoS attacks by preventing IP Spoofing and

allowing acceptable prefixes of IP addresses to pass through the network interface. But these

techniques have some issues. To further elaborate, two terms, multihoming and symmetrical

routing, must be understood. Symmetrical routing is a routing protocol that forces the request

and corresponding response packets to follow the same path. It is not feasible to enforce

symmetrical routing for entire internet traffic. Strict RPF requires a path to be symmetrical; it

cannot work for an asymmetrical path. Multihoming means making multiple connections in an

organization for better reliability and connection to the Internet. It has two types -classical

multihoming and multihoming with multiple addresses. In classical multihoming, the

organization that uses multiple network providers for reliability has its range of IP addresses,

which it will announce to all network providers. The organization has an address for each

provider in multihoming, with multiple addresses. Ingress filtering does not work correctly for

multihoming networks. As the range of addresses belonging to a particular network or source

increases, the range of acceptable addresses becomes more complex and dynamic. It becomes

harder for ingress filtering to deal with this, and there is always a risk that legitimate packets

can be dropped if the access lists are not up to date.

22

To apply ingress filtering against multihoming networks, the ways are as follows-

 Applying an appropriate form of Loose RPF.

 Ensure that each ingress filter at each ISP is complete in terms of information about

change and interfaces so that legitimate packets are not dropped.

Even if these changes are made, modifications will be needed in complex networks

containing too many uplinks and peers. An approach where IP spoofing can be prevented and

validation of source IP can be done without dropping the packets is needed.

2.2.2 Partial Prevention

This section reviews DDoS prevention techniques that initially may allow the attack

traffic to reach the victim. Later, this traffic is detected with the help of an additional prevention

layer between an attacker and the victim.

Once detected, the attack traffic is stopped from reaching the victim. Figure 2.2

provides a general architecture of the partial prevention layer in the network. The prevention

layer can either be situated near the source of the attack, in the edge routers of the ISP, or near

the victim of the attack. The purpose of the prevention layer is to detect and mitigate the attack

as soon as possible. This prevention layer generally classifies the traffic as an attack or

legitimate and blocks it. Due to some false positives from the classification, legitimate traffic

can be deemed attack traffic and blocked.

Various authors have proposed adding this prevention layer at different points within

the network and using different technologies. (Ndibwile et al., 2015) have proposed using

decoy servers and bait servers as prevention layers to protect web servers from DDoS attacks.

All the regular traffic first passes through the bait server. From this, authenticated traffic is

allowed to pass to the actual web server, and the unauthenticated traffic passes to the decoy

server, which uses an additional layer of authentication to remove the number of false positives.

23

The decoy and bait web servers use the same IP address, so the attacker does not know where

the traffic is going.

(Zhuotao Liu et al., 2018) have proposed a concept of middle-policing between the

client and server as a prevention layer. It can be deployed in the existing Internet architecture.

This task is performed by Middle-Boxes (M-Boxes), which are placed between the victim and

the network. These M-Boxes work as a prevention layer. Regardless of how sophisticated a

DDoS attack is, as long as middle-police can effectively enforce victim-defined traffic control

policies to forward victim-preferred traffic, the impact the DDoS attack imposes on a victim is

minimized. (Subbulakshmi et al., 2013) have proposed using network monitors to detect and

prevent attacks. First, non-spoofed IPs are detected using enhanced Support Vector Machine

(SVM), and spoofed IPs are detected using hop-count filtering. After this, appropriate

mitigation approaches, such as rate-limiting, dropping the packets, etc., are applied based on

attack strength.

(Lad et al., 2014) proposed an approach for REST-based web services. The DDoS

prevention module does the prevention against DDoS attacks. Every request packet from the

client will go through this module to the server. The server tries to validate the client through

a token; if it has a valid token, the request is checked for valid IP; otherwise, the registration

module is called to generate the token. If the IP of the request packet is valid, it is accepted;

otherwise, it is dropped.

Numerous web applications use cloud platforms for more flexibility, additional

security, reduced operating cost, etc. These web applications hosted on cloud servers are also

prone to DDoS attacks. Various techniques which filter out attack traffic are proposed to

prevent DDoS attacks on cloud platforms. Often, these techniques can be considered a third-

party prevention layer responsible for detecting and mitigating the attack traffic. The technique

24

proposed by (Dhanapal & Nithyanandam, 2019) uses a prevention layer within the cloud

infrastructure to safeguard web servers against internal and external slow Hypertext Transfer

Protocol (HTTP) DDoS attacks. This prevention layer classifies client request messages into

different zones. These zones are monitoring orange, red, and green state zones. The monitoring

state zone is responsible for monitoring all the HTTP requests and, based on different

heuristics, classifies them into the orange, green, or red zone. If the request is classified within

the red zone, it is blocked. The prevention layer thus monitors and blocks the packets from

reaching the web server after the attack has started.

Figure 2.2 : Partial Prevention

(Jaber et al., 2018) proposed a host-based IPDS in the hypervisor before the cloud

server. The packets are captured in this hypervisor before it reaches the cloud. Swarm

intelligence and data analysis are used for better detection of DDoS attacks. There are two

phases inside the hypervisor, i.e., IDS and IPS. IDS uses Principal Component Analysis (PCA)

25

and Linear Discriminant Analysis (LDA); IPS uses the Artifical Neural Network (ANN)

classifier to classify attack traffic and regular traffic. These are both used to filter the attack

traffic. Using a Third-Party Auditor (TPA) between a victim cloud and an attacker is proposed

by (Saxena & Dey, 2015). This TPA, known as Cloud-Shield, is responsible for detecting and

preventing DDoS attacks. All legitimate and malicious packet information is logged into the

Cloud-Shield on behalf of cloud servers. After analyzing all the packets, Cloud-Shield can trace

back the attacks’ source based on Dempster Shafer Theory (Siaterlis & Maglaris, 2003). (Sahi

et al., 2017) have also proposed using a third party known as CS_DDoS, a classifier method,

between cloud and the user. The detection phase stores the records of the incoming packets and

classifies them as malicious or legitimate based on classification results. The malicious

detected packets are stopped using the cloud service, and the source IP is blacklisted for further

communication. The approach proposed by (Shridhar & Gautam, 2014) discusses the idea of

a honeypot as a prevention layer between the client and server. The approach assumes that the

attack packets should be known and forwarded to the honeypot, and the normal packets will

go to the server. Honeypots should be created to resemble the original server for this to work,

and attack packets should be known before the attack. In the approach proposed by (Navaz et

al., 2013), entropy is used to detect the attack. A third party is maintained by CSP, which

monitors the network and generates alerts for a user if an attack is detected. The router placed

at the cloud server calculates entropy; if it is less than a certain threshold, it is considered an

attack. The entropy is calculated using a port number, IP address, and flow size as inputs. A

three-layer filtering layer between the attacker and cloud to prevent DDoS attacks is proposed

by (Somasundaram & Meenakshi, 2021). The first layer filters out unauthenticated requests,

the second layer prevents users from accessive use of resources, and the third layer removes

spoofed requests finally only legitimate requests reach the cloud servers. So, with this only

26

authenticated user can connect to the cloud and the malicious users also cannot demand for

resources more than their limit.

Various authors have used SDN switches and controllers as a prevention layer to

prevent the attack traffic from reaching the victim during an attack. (Huong & Thanh, 2017)

proposed an SDN-based gateway to protect application servers against DDoS attacks. This

gateway filters the network traffic to a security analyzer that sends traffic indicator results to

the SDN controller. This security analyzer is capable of detecting attacks on the fly. The

controller then decides whether the indicator results correspond to an attack. In case of an

attack, appropriate flow entries are pushed in the SDN gateway to drop corresponding single

packet flows. This way, the proposed technique claims to save the application servers against

DDoS attacks. (Z. Ahmed et al., 2019) have used blockchain and SDN to prevent the victim

from DDoS attacks. The SDN controller oversees the detection and mitigation of the attack.

All the communication takes place through the Ethereum blockchain. Based on a threshold

calculated from incoming packets, the controller decides if a source is legitimate or an attacker.

The controller shares this information with other controllers using blockchain. (A. K. Singh et

al., 2020) have used the functionality of Network Function Virtualization (NFV) and SDN to

develop a defense model against DDoS attacks. NFV helps to manage network functions on-

demand, and SDN for redirecting the flows and managing the rules. The proposed technique

monitors the network traffic periodically. Due to an attack when the server is overloaded with

traffic, its traffic is directed to another Virtual Machine (VM) which analyses the attack traffic

to know the source of the attack. Also, the users connected to that server are connected to a

different server whose IP addresses are also spoofed. (Harikrishna & Amuthan, 2021) have

proposed a partial prevention scheme for SDN-based clouds. A prevention layer in the form of

a Virtual Router Firewall (VRF), which connects the internet with the SDN-based clouds’

physical infrastructure, is proposed. It has the benefit of rival penalized SOMs and constant

27

learning rate which results in rapid and accurate detection of DDoS attacks. It categorizes data

flows into normal or malicious based on weights of neuron whose weight vector is very close

to euclidian distance of considered IP vector (deviation in actual data traffic from expected

traffic).

A prevention layer can also be added within the ISP’s network. (François et al., 2012)

have proposed creating a prevention layer in an IPS at the ISP level. The IPSs form virtual

protection rings around the hosts to defend and collaborate by exchanging selected traffic

information. This service is provided as close to the attack source as possible and as far as

possible from the victim. Belief scores on potential attacks are computed and shared among

networks to detect DDoS attacks.

Similarly, (Z. Liu et al., 2018) proposed an ISP-based service to defend against DDoS

attacks on the victim side. This defense architecture has three layers. First is the flood throttling

layer- which handles large application-layer attacks such as Network Time Protocol (NTP).

This layer minimizes the effect of amplification flooding attacks, which exploits specific

network service protocols for launching an attack. It uses a weighted fair queuing technique

for the same. The second layer is the congestion-resolving layer, and it is used to stop more

subtle and sophisticated attacks. It also punishes attackers by blocking them. Therefore, users

who overlook packet losses and continuously inject packets are held accountable for the

enduring congestion during DDoS attacks. The third layer is user-specific, and the goal of

adding this user-specific defense layer is to provide the flexibility for the victim to enforce self-

interested traffic control policies that are most suitable for their business logic. (Y. Kim et al.,

2006) (Kalkan & Alagöz, 2016) have proposed using a scoring mechanism of packets to

differentiate between regular and attack packets. The approach proposed by (Kalkan & Alagöz,

2016) is collaborative and proactive. According to the authors, “attack prevention efficiency

28

measures how early the network can get rid of the attack packets.” It generates a score for

network packets, called PacketScore, to distinguish between attack packets and legitimate ones.

The following attributes are considered for scoring the packets: IP address, port number,

protocol type, packet size, Time To Live (TTL) value, and TCP flag. This packet-based

analysis starts when congestion is detected within the network. Finally, upon detecting the

attack packets, the network drops these, thus preventing the attack. (Y. Kim et al., 2006) have

given an approach in which a packet score is kept for each packet, and a packet is called a

legitimate packet if its value is below a threshold. Otherwise, the packets are blocked. The

attributes used for scoring are packet size, TTL values, protocol-type values, source IP prefixes,

TCP flags, and server port numbers. This approach can’t filter low-volume traffic, and the

attacker can mimic the characteristics of a legitimate packet. It is partial Prevention.

 D-WARD, a DDoS defense mechanism proposed by (Mirković et al., 2003), is

deployed at source-end networks and automatically detects and stops attacks originating from

it. The gateway router between the source network and the rest of the Internet monitors the

behavior of each peer with which the hosts communicate. Periodically, the traffic statistics are

compared to that of regular traffic. In case of substantial deviation crossing certain pre-defined

thresholds, the traffic is rate limited in proportion to their aggressiveness.

In addition to the Internet architecture, Partial Prevention techniques are also proposed

for different types of networks, i.e., VANETS, WSNs, wireless mesh networks, 5G, and IoT

networks. VANETS, a subclass of MANETS, has two types of communication nodes (i.e.,

Vehicles and Road Side Units (RSU’s) and three types of communication links among nodes,

i.e., Vehicles to Vehicles, Vehicles to RSUs, and RSUs to RSUs. A DDoS prevention layer is

generally added within RSUs or as an additional controller operating between the

communicating nodes. (Poongodi et al., 2019) proposed an additional controller, called

29

reCAPTCHA controller, to prevent large botnets-based attacks. This reCAPTCHA controller

filters specific IP addresses or ports through source integrity checks. It uses a challenge-

response mechanism to calculate the entropy associated with the data from the covariance

matrix. If it crosses the threshold, the node is blocked. (Malhi & Batra, 2016) proposed that the

framework for DDoS Prevention uses a prevention module within RSUs as a prevention layer.

These RSUs periodically calculate the fitness of every connecting node using a genetic

algorithm. The fittest nodes are allowed to communicate, and the worse nodes are discarded by

ending their communication with other nodes. (Islam et al., 2018) and (Grover & Mittal, 2016)

have proposed using both RSUs and controllers for prevention against DDoS attacks. (Islam et

al., 2018) leverage edge-computing, SDN, and NFV for their prevention architecture. RSUs

are extended with micro-boxes to act as security gateways. They capture the traffic and provide

analysis capabilities to the controller, which is located in the cloud. This controller is

responsible for identifying threats and controlling all the micro-boxes. (Grover & Mittal, 2016)

have proposed grouping nodes to detect the attack. RSUs first monitor and make a group of

nodes based on a few select parameters. Once a group is formed, a group leader is selected,

who will work as a group controller. This controller will now help to detect and block the

malicious node. (Timcenko, 2014) have proposed prevention in MANETS using IDS nodes.

These nodes, different from the communicating nodes, manage the MANET infrastructure. An

attack profile is created based on the forensic analysis of log files of packets in the detection

phase. In the prevention phase, all nodes are updated about the attacker’s profile, and attackers

are blacklisted.

In a WSN, sensor nodes are deployed in primarily hostile areas to monitor various

network parameters for inspecting the traffic. (Nagar et al., 2017) proposed a methodology to

detect and block the malicious nodes in a WSN to prevent them from generating DDoS attack

traffic. Dedicated IPS nodes work as the third-party layer and scan the neighbors regularly,

30

detect and find a node involved in frequent message passing, block it, and inform the honest

nodes in its vicinity to change the routes. (Kaushal & Sahni, 2016) proposed an approach for

preventing DDoS flooding attacks in the WSN. The methodology includes limiting the number

of transmissions of each node. This limit is based on the number of neighboring nodes

(transmission is hop by hop). Each node will decide and tell its neighbor count to an examiner

node, set a threshold based on that, and work as an attack-prevention node. If any node sends

more packets than a threshold, it is compared with the packet delivery ratio of the neighboring

nodes. An attacker involved in the attack will have an abnormal packet delivery ratio. Hence it

will be detected. But normal packets can also suffer due to a limit in transmission. Similarly,

(Jingle & Rajsingh, 2014) proposed a DDoS detection and mitigation technique for wireless

mesh networks by proposing an IPDS. These IPDS nodes work collaboratively at various

strategic points within the network. This IPDS system admits a node and keeps track of the

traffic generated by it to detect any IP spoofed flooding attack in a mesh network. There are

four components of the IPDS in this technique. First is the admission controller responsible for

bandwidth allocation. The second is the traffic analyzer, which consists of a timer monitor and

bandwidth monitor, and finally, the mitigation manager is responsible for attack mitigation. A

single IPDS cannot handle all nodes; hence, the use of multiple IPDS is promoted. In all these

techniques an IPS node or controller is used as a prevention layer.

The technique proposed by (Dao et al., 2018) proposes a MAEC controller to prevent

attacks. It helps in the detection of attacks in an early stage. MAEC is an emerging 5-G

technology. It is helpful against DDoS attacks as it is implemented near clients. Whenever the

first edge nodes detect malicious activity, they inform the central MAEC-X controller,

generating policies for the edge nodes to handle this suspicious traffic, but before this, some

percentage of the attack reaches the victim.

31

DDoS attacks also threaten IoT infrastructure due to their open nature. (Bhardwaj et al.,

2018) have proposed Shadownet, a prevention layer to detect DDoS attacks in IoT

infrastructure. It uses edge computing and a shadow net web service. Edge computing works

as the first line of defense, where edge functions will sketch IoT traffic profiles. After this, it

sends shadow packets to the shadow web service. Shadow packets contain locally-driven info

about the IoT traffic. The attack detection and appropriate mitigation actions will be decided

at the shadow web service. (Misra et al., 2011) have proposed a service oriented architecture,

which works as a prevention layer against DDoS attacks in the form of middleware between

the application level and technological infrastructure. The detection and prevention phases use

learning automata to optimize the utilization of all its resources. In the detection phase, a

threshold value for each layer is defined based on the resources available at each layer. A DDoS

attack is detected if a request for these resources at any layer exceeds the threshold limit. In the

defense phase, packets from an identified attacker are discarded. (X. Chen et al., 2021) also

propose a partial prevention scheme with multiple control points to defend against IoT-based

DDoS attacks. Packet sampling is done at these control points, and based on that, the attacker’s

and defender’s costs for attack will be calculated, and control strategies will be made to stop

the attack. To secure heterogeneous IoT, (Dao et al., 2021) proposed a prevention layer in the

form of a fog-shield endpoint defender and orchestrator. Multiple endpoint defenders are

located at the border of each homogeneous IoT system. These endpoint defenders contain

SOMs to classify traffic, and they send a report to the centralized orchestrator. The main task

of the orchestrator is to cooperate with training results and policies among endpoint defenders.

It is also responsible for analyzing and generating a policy for endpoint defenders.

2.2.3 True Prevention

Based on the literature, True Prevention can be categorized into techniques involving

Source Validation, PIDs, Route Mutation, Route-based Packet Filtering, Secure Overlay

32

Points, Encryption, and OS Fingerprinting, as shown in Figure 2.3. Validating the source IP

address is one of the promising ways to prevent DDoS attacks. Source Address Validation

Improvement (SAVI) (Wu et al., 2013) is a promising way to implement this in the Internet

architecture. Source validation protects from IP Spoofing, thus preventing DRDoS attacks. It

is purely a network-based technique and has no dependency on end hosts. Following is a three-

step model followed by SAVI instances:

 Using specialized packets (monitoring packets), legitimate and valid source IP

addresses are identified for a host.

 Bind the legitimate source IP address and a link-layer property of the host’s network

attachment. The link-layer property is chosen such that this binding, called a binding

anchor, is harder to spoof and is verifiable in every packet. The binding anchor varies

from IEEE unique identification, security association between host and base station for

wireless links, or Ethernet port of a switch to which the host attaches (Wu et al., 2013)

 Validate the source IP using the binding anchor.

The SAVI instances should be positioned as close as possible to the host. Ideally, it

should be located in the host’s default router. The issues with SAVI instances may be that they

can face reliability issues due to the loss of bindings in SAVI devices through the restart of

SAVI devices or binding information for a new link not reaching the SAVI device. If the SAVI

device’s physical location is known, the attacker can change or surpass it by connecting through

a non-SAVI device. SAVI devices can also be attacked, e.g., a DDoS attack on them. Several

SAVI documents have been standardized based on the different address assignment techniques

e.g., First Come Fist Served (FCFS) SAVI (Nordmark et al., 2012), Dynamic Host

Configuration Protocol (DHCP) SAVI (Bi et al., 2015), Secure Neighbor Discovery (SEND)

33

SAVI (Bagnulo & Garcia-Martinez, 2014), and Mixed Address Assignment Methods

(MAAM) SAVI (Bi et al., 2017).

Figure 2.3 : True Prevention

Jessica et al. (Goncalves et al., 2017) have proposed a Wireless Distributed IPS

(WIDIP), and its main focus is to protect the internal network from attacks. The attackers are

identified and blacklisted in this work using IP and Media Access Control (MAC) addresses.

If there is more than one IP address for a MAC, that address is blacklisted, and this information

is propagated to other wireless routers. Hence, the attacker is detected at the source and thus

prevented from making the attack. The problem with this technique is that innocent machines

controlled by bots are also blacklisted for a very long time and won’t avail of any service as

they are blacklisted.

Instead of using IP addresses as routing parameters, PIDs are used in the content-centric

network to enforce prevention. PIDs are identifiers that identify the path between network

34

entities as inter-domain routing objects. (H. Luo et al., 2017) have proposed prevention against

DDoS attacks with DPIDs. In DPIDs, two adjacent domains periodically update and install

new PIDs into the data plane for packet forwarding. Even if the attacker obtains the PIDs to its

target and sends the malicious packets successfully, they will become invalid after a particular

configurable time. Therefore, the network will discard the subsequent attack packets. (Al-

Duwairi et al., 2020) have also used the concept of DPID with Get-message logging. This

approach is mainly for ICNs where users request information using Get messaging. The reason

for logging Get-messages for DDoS attack detection is that normal users correspond to a Get

message while an attacker does not. Here, the ICN routers log Get-request messages using

bloom filters. Bloom filters will help in comprehensive logging; they don’t even take up much

space. This approach is claimed to give better results against DDoS prevention than DPID. The

limitations of this technique are modification of underlying Internet architecture is required for

its implementation, and if a link breaks between the communication, the response packet is

lost.

One way to provide prevention is by authenticating the source IP address using different

encryption techniques. Many authors have used encrypting the packet header to authenticate

the source address. (X. Liu et al., 2008) proposed a new field (captioned as Passport) with an

IP header in their proposed approach. When the packet leaves its originating AS, the

border/egress router will attach message authentication code to the passport header of the

packet. A secret key is shared in advance between source AS and each AS between the source

and destination. With the help of this message authentication code, the inter-between ASs can

verify whether the incoming packet belongs to that particular source address. The limitation of

this technique is that Diffie-Hellman is used for exchanging the keys, which in itself is not

secure. (Hu et al., 2017) proposed to store the sender’s undeniable and reliable identity using

the IPv6 extension header. A slight change in legacy networks is proposed by implementing

35

this technique in two steps. For inter-domain accountability, SAVI is used, and before the

packet leaves the network, the gateway router/switch embeds users’ credibility information in

the packet. This L3 switch is named a SuperFlow switch, which can be an SDN/OpenFlow;

hence, different granularities of the flow can be controlled. The user’s private keys will be

stored in the extension header of the IPv6 protocol. The public keys of users will be stored in

a Public Key Exchange Server (PKES). The receiver can verify the sender’s signature through

its local PKES. The limitation in this technique is SAVI devices and also PKES on which

Denial of Service (DoS) attacks can be made. User identification as a mode of verification for

the cloud is also proposed by (Nadeem et al., 2021). The authors propose intermediate routers

do attack prevention by using two levels of verification. The first is a user ID and password;

the second consists of port numbers assigned to different countries. Routers work as Network

IDS (NIDS) and Host IDS (HIDS) to prevent attackers from generating the attack. If somehow

the attacker comes in possession of a username and password, the attack can be launched. This

technique also causes an accessive delay for a legitimate user to access the cloud. The

Accountable Internet Protocol (AIP) proposed by (Andersen et al., 2008) provides self-certify

addresses without depending on a third party. This technique proposes Accountability Domains

(ADs) (like ASs), and each host in that AD is given a unique End-point Identifier (EID) for

authentication so that each host will have a combination of AD: EID. The problem with this

technique is the deployability and refurbishment of Internet protocol. (Pappas et al., 2016)

proposed the approach, named Forwarding Accountability, for Internet reputability. It works

by incentivizing ISPs and ASs. The idea is forwarding accountability, in which the receiver in

the communication decides security policies that the sender must follow. The inter-between

ASs are also responsible for sending the traffic as they mark the packets that pass through them.

These transit ASs insert cryptographic markings. The limitation of this technique is open

recursive resolvers like that in DNS amplification attacks. A new IPv6 address generation

36

algorithm is proposed by (Y. Liu et al., 2015). The basis of this algorithm is time and Network

Identity (NID). The authenticity of source addresses is achieved with the help of Source

Address Validation Architecture (SAVA) . Still, dependency on SAVI devices can be a hurdle

because a DOS attack can be made on SAVI devices. The proposed approach has three steps

after SAVI. First, a scalable structure of NID is designed. After this, the second step involves

the address generation algorithm for IPv6. The concatenation of NID and time is encrypted

using the International Data Encryption Algorithm (IDEA) algorithm (Daemen et al., 1994),

(Lai & Massey, 1991), generating an address assigned to the host. The final step is the

implementation of the algorithm and traceback.

In the approach proposed by (Park & Lee, 2001) and (J. Li et al., 2002), the packets

allowed on a particular link are controlled. It is Route-based Packet Filtering. The approach

Route-based Distributed Packet Filtering (RDPF) by (Park & Lee, 2001) ensures True

Prevention, followed by traceback. Prevention is based on a pre-defined range of IP packets

allowed on a link. This range is based on the source-destination IP address pair. The packets

on a particular link are allowed if they belong to the allowed pair. The corresponding router of

that AS link will block the packet for every other packet. This technique can’t prevent

intelligently spoofed IP addresses and doesn’t support dynamic changes in the topologies. If

Border Gateway Protocol (BGP) is used for configuration, then hijacking in a BGP session can

mislead routers. In the method proposed by (J. Li et al., 2002), called Source Address Validity

Enforcement (SAVE), a dynamic routing problem is resolved. In this proposed approach, the

source address periodically informs about itself by sending messages to all destination nodes

and solves the RDPF dynamic routing problem. Each router will know valid IP addresses that

can arrive on it through this approach. Routers receive valid addresses from incoming tables

(sent previously). Hence, it prevents attacks from invalid IP addresses. Still, this technique

37

cannot stop attacks from valid IP addresses and causes an increase in memory and

computational costs in routers.

Focusing mainly on DDoS attacks that exploit network infrastructure design, (Duan et

al., 2018) proposed a proactive Routing Mutation technique. Analysis reveals that many public

servers have only a few critical links, and congesting these critical links can cause 60-90%

service degradation in most cases (Duan et al., 2018). Once such links are known, the attacker

selects links with the highest flow density to the victim servers as target critical links. The

proposed approach includes developing a susceptibility metric to quantify the potential

bandwidth degradation ratio and severity level of attack. Based on these metrics, the proposed

solution provides proactive route mutation to reduce susceptibility and improve the availability

and resilience of critical servers. This methodology targets a victim directly, not links, so even

if the flow is switched to non-critical links, it won’t matter as the victim will still be affected.

(Keromytis et al., 2004) proposed an excellent method for preventing DOS attacks, known as

Secure Overlay Services (SOSs). Authentication of the packets is done at secure overlay points,

which forward the packets through overlay nodes to beacon nodes. Beacon nodes forward these

packets to a secret servlet (remote node). These secret servlets send the packets to destination

nodes. Scalability is a big issue with this proposed solution because the state for each target

must be maintained at the secret servlets, beacons, and access points. (Osanaiye, 2015)

proposed OS Fingerprinting for DDoS prevention against IP spoofing. It is implemented to

detect spoofed packets and not forward them. The detection scheme is based on matching the

OS of the spoofed IP packet with the OS of the trustworthy Source. The fingerprinting can be

passive or active. It only works if the spoofed source and actual source have different OSs and

have extra communication overhead to check for OS.

38

2.3 Limitations of Prevention Techniques

The benefits and limitations of all the prevention techniques, i.e., Ideal, Partial, and

True Prevention, are listed in Table 2.2

Table 2.2 : Advantages and limitations of existing prevention techniques

Author Benefits Limitations
(Freiling et al.,
2005)

Prevents activation of botnets by
infiltrating the remote-control
network mechanism.

DDoS attacks can still happen with
booter services (Booters, Stressers
and DDoSers, 2021).

(Shafi & Basit,
2019)

The attacker is prevented from
creating and controlling the
botnets; therefore, DDoS attacks
cannot be launched.

DDoS attacks can still happen with
booter services. (Booters, Stressers
and DDoSers, 2021).

(H. Luo et al.,
2013)

This technique makes it difficult
for attackers to find vulnerable
hosts to create bots by separating
identity from a location.

DDoS attacks can still happen with
booter services. (Booters, Stressers
and DDoSers, 2021).

(Baker & Savola,
2004)

Ingress filtering stops DDoS
attacks by not allowing spoof
packets to enter the network;
hence the victim will remain
unaffected.

 Problematic to implement in
complex networks containing too
many uplinks and peers.

 The ingress filter at each ISP
should be complete in terms of
information about change and
interfaces so that legitimate
packets are not dropped.

(Ndibwile et al.,
2015)

Bait servers and decoy servers
are used before the actual web
servers so that only the validated
traffic reaches the actual web
servers.

 Due to false positives, legitimate
traffic also gets blocked

 The new type of DDoS attacks,
whose characteristics are
unknown, will be hard to stop.

(Zhuotao Liu et
al., 2018)

Middle-police allows only
victim-preferred traffic to pass,
and these M-boxes can be
implemented in the existing
Internet infrastructure.

Victim-preferred traffic, e.g., DNS
amplification attacks, can reach the
victim.

(Subbulakshmi et
al., 2013)

Network monitors detect the
attack traffic in the network itself
so it cannot reach the victim.

 Due to false positives (from
SVM), legitimate traffic also gets
blocked

39

 Legitimate packets may use
asymmetrical paths, which result
in different hop counts causing
false detection.

(Lad et al., 2014) A DDoS prevention token only

allows packets with valid tokens
to reach the server.

If the prevention model’s bandwidth
is choked from all the packets needing
validation, then legitimate packets
will be dropped.

(Dhanapal &
Nithyanandam,
2019)

The monitoring zones block the
attack traffic from reaching the
server. Four different zones are
used for better classification.

Attacks that have no signature or
mimic legitimate traffic will be hard
to stop.

(Jaber et al., 2018) The prevention module detects
and stops the DDoS attack from
reaching the server. For
detection, it uses swarm
intelligence.

 The DDoS attack can be made on
the prevention module. Because of
this, legitimate traffic will also
suffer.

(Saxena & Dey,
2015)

Cloud-Shield logs all packets,
and after analyzing them, attack
traffic is prevented from reaching
the cloud servers.

 All packets pass through the
Cloud-Shield, the delay
introduced due to this is not
shown.

 This approach can be classified as
Partial Prevention, hence some
percentage of attack traffic can
reach the victim before it is
detected. The exact percentage of
this occurrence has not been
quantified.

(Sahi et al., 2017) A third party classifies and
blocks the attack packets from
cloud servers. The IP address of
attackers is also blocked.

Detection is done using classification,
which can result in blocking
legitimate IP addresses due to false
positives.

(Shridhar &
Gautam, 2014)

The honeypot used between the
client and server will act as a
decoy, and all the attack packets
will go toward the honeypot, and
the server will remain unaffected.

The approach assumes that the attack
packets should be known and
forwarded to the honeypot.

(Navaz et al.,
2013)

Using entropy, a third party
detects the attack and prevents it
from reaching the server.

The DDoS attack can reach the victim
if the threshold for detection is not

40

crossed, for example, low-rate DDoS
attacks.

(Somasundaram
& Meenakshi,
2021).

A 3-layer filtering mechanism
between attacker and cloud,
allowing only legitimate requests
to reach the cloud.

 Legitimate users can also suffer
because of the number of requests
allowed to access the server.

 Low-rate DDoS attacks are still
possible.

(Huong & Thanh,
2017)

A security analyzer detects the
attack on the fly and provides a
fast response for attack
mitigation.

 The security analyzer cannot
detect low-rate DDoS attacks,
resulting in no attack detection.

 To detect different DDoS attacks,
the number of parameters used for
attack detection is not sufficient.

(Z. Ahmed et al.,
2019)

Multiple controllers
communicate through blockchain
to provide attack information to
all networks to stop the attack
from reaching the victim.

Due to delays in information
exchange among controllers, some
parts of attack traffic can reach the
victim.

(A. K. Singh et al.,
2020)

After an attack happens and the
server is overloaded, all users
connected to it are transferred to
another server.

With the increase in the number of
users and servers, the processing
delay in removing users and changing
their IP addresses increases, causing a
delay in preventing DDoS attacks.

(Harikrishna &
Amuthan, 2021)

Use of SOMs for accurate
detection of DDoS attacks.

 The delay caused in normal traffic
by applying ML techniques on
routers.

 The percentage of regular traffic
reaching the cloud server is also
uncertain.

(François et al.,
2012)

Virtual protection rings are
created near the attack source and
as far as possible from the victim.

 Some part of the attack reaches the
victim before these rings detect the
attack, and attack information is
shared among these rings. This
percentage of attack traffic
reaching victims is not shown.

 Due to false positives, legitimated
IPs can be blacklisted and
blocked, and no approach to
unblock these IPs is proposed.

(Z. Liu et al.,
2018)

It punishes the attackers
responsible for the congestion by
blocking them.

Delay is introduced for regular traffic
to reach the victim because of three

41

prevention layers placed by ISP in the
network.

(Y. Kim et al.,
2006)

A scoring mechanism to
differentiate between attack
packets and normal traffic

 This approach can’t filter low-
volume traffics, and the attacker
can mimic the characteristics of a
legitimate packet.

 Attributes to decide the score of
packets can take up too much
storage.

(Kalkan &
Alagöz, 2016)

A scoring mechanism to
differentiate between attack
packets and normal traffic

 This approach can’t filter low-
volume traffics, and the attacker
can mimic the characteristics of a
legitimate packet.

 Hard to decide the correct attribute
pairs to be used for scoring to
detect an ongoing attack.

(Mirković et al.,
2003)

The proposed technique is
applied near the source of the
attack to be prevented at the
source only.

 The authors themselves say that
detection can be unreliable, hence
proposed a rate-limiting
mitigation technique, but due to
this, legitimate traffic also suffers,
as that is prone to rate-limiting
also.

(Poongodi et al.,
2019)

Its reCAPTCHA controller is
capable of detecting low-rate
DDoS attacks also.

Normal traffic frequency and entropy
will also be checked by the
reCAPTCHA controller, causing
unnecessary delay.

(Malhi & Batra,
2016)

The detection accuracy of attack
packets increased due to the use
of a genetic algorithm.

Increased processing overhead on
RSUs to implement a genetic
framework for the detection of DDoS
attacks.

(Islam et al.,
2018)

Both controllers and RSUs are
used for the prevention

The DDoS attack can be made on the
controller located in the cloud.

(Grover & Mittal,
2016)

Both controllers and RSUs are
used for the prevention

The DDoS attack can be made on the
group leader, which is responsible for
controlling other nodes.

(Timcenko, 2014) Separate IDS nodes are created to
prevent attacks so that overhead
on normal nodes can be avoided.

Legitimate nodes used by attackers
for spoofing attacks will also be
blacklisted.

(Nagar et al.,
2017)

Dedicated IPS nodes for
continuous scanning of the
network to detect attacks

The DDoS attack can be made on the
IPS nodes so that attacks on WSN
nodes cannot be prevented.

42

(Kaushal & Sahni,
2016)

Examiner nodes detect the
attacker based on the information
provided by WSN nodes. These
sensor nodes inform about their
neighbors and the amount of
traffic they should receive.

Normal packets can also suffer due to
a limit in transmission by the nodes.

(Jingle &
Rajsingh, 2014)

Various IPDS nodes located
strategically work
collaboratively to detect attacks.

Communication overhead in the
network due to collaborative
information sharing among IPDS
nodes.

(Dao et al., 2018) MAEC is implemented very near
to clients to detect DDoS attacks.

The DDoS attack can be made on
MAEC-X central controller.

(Bhardwaj et al.,
2018)

Edge computing is used as the
first line of defense, leading to
attack detection as near the
source as possible.

Deployment of Shadownet in
multiple networks for effective
detection compromises the fast-path
assumptions and is not feasible.

(Misra et al.,
2011)

Learning automata is used for
intelligent sampling of packets to
categorize them into attack or
legitimate ones.

This technique does not guarantee
that all the attack packets can be
dismissed.

(X. Chen et al.,
2021)

Packet sampling at multiple
control points

For mitigation and control strategies
to be implemented, classifying what
bots and normal users are, is unclear.

(Dao et al., 2021) Multiple endpoint defenders
classify traffic, and centralized
endpoint defenders analyze this
traffic and generate policies.

 The channel between the endpoint
and the centralized orchestrator
must be secure; otherwise,
detection might not be possible.

 Extra functionalities for attack
detection must be added at each
homogeneous system’s border.

(Wu et al., 2013) Detects attack as near to the
source as possible.

 Entirely network-based, with
no dependency on end hosts.

 DDoS attacks on SAVI devices
can be made.

 Can have reliability issues due to
the loss of bindings in SAVI
devices

(H. Luo et al.,
2017)

 DPIDs are introduced that can
prevent flooding attacks also.

 Attack packets cannot reach
the victim.

 It is limited to ICNs.
 The DPID sharing and updation

time can be improved.

43

(Al-Duwairi et al.,
2020)

 Bloom filters are used for the
effective logging of GET
messages.

 Attack packets cannot reach
the victim.

It only works for ICNs where a Get
request is used.

(X. Liu et al.,
2008)

Using encryption inter-between
ASs can verify that the packet
belongs to a source and prevents
the packet from reaching the
victim.

Diffie-Hellman is used for key
exchange, which itself is not secure.

(Hu et al., 2017) The sender’s identity is stored
inside the IPv6 extension header
only.

 Separate PKES needs to be
maintained

 DOS attacks can be made on
PKES and SAVI devices

(Nadeem et al.,
2021)

Intermediate routers perform
authentication before the cloud
can be accessed.

 Internal users can launch an attack
on the cloud

 Accessive delay is caused for a
legitimate user accessing the
cloud.

(Andersen et al.,
2008)

This technique uses self-
certifying addresses without any
dependency on a third party.

Deployability and refurbishment of IP

(Pappas et al.,
2016)

ISPs and ASs are incentivized so
that security policies can be
enforced to prevent DDoS
attacks.

The attack can happen from open
recursive resolvers like that in DNS
amplification attacks.

(Y. Liu et al.,
2015)

To prevent spoofing, the user is
identified with two more
identities, NID and time identity.

Dependency on SAVI devices can be
a hurdle because a DOS attack can be
made on SAVI devices.

(Park & Lee,
2001)

The router of a link blocks the
packet if that packet’s source-
destination IP pair doesn’t belong
on that link.

It doesn’t support dynamic changes in
the topologies.

(J. Li et al., 2002) The source address periodically
shares information with
neighbors to self-validate.

 This technique can’t stop the
attack from valid IP addresses.

 Increase in memory and
computational costs in routers.

44

(Duan et al., 2018) Critical links are identified
proactively, and attack is
prevented by route mutation.

 For attacks targeting a victim
directly, not links, even if the flow
is switched to non-critical links, it
won’t matter as the victim will be
affected.

(Keromytis et al.,
2004)

With the help of secret servlets,
the attack is prevented from
reaching the victim.

Scalability is a big issue with this
proposed solution because the state
for each target must be maintained at
the secret servlets, beacons, and
access points.

(Osanaiye, 2015) Prevent IP spoofing of packets. It only works if the spoofed and
actual sources have different OSs.

 Extra communication overhead to
check every time for OS.

(Goncalves et al.,
2017)

The attacker is detected at the
source and prevented from
making the attack.

 Innocent machines controlled by
bots are also blacklisted for a very
long time and won’t be able to
avail of any service as they are
blacklisted.

2.3.1 Research Gaps

Based on the literature survey following are the identified research gaps which require further

research:

a) The dependability of applying prevention techniques should be minimized for the end-

users. Ideally, the end-users should have no role in DDoS prevention. The underlying

forwarding network should be made self-sufficient. It should not allow attack traffic to

be generated; if attack traffic generation cannot be stopped, it should not allow this

traffic to reach the victim.

b) The ideal technique for prevention is Ideal Prevention. The primary issues with

achieving Ideal Prevention are-

45

i) It includes methods that try to stop all well-known signature-based and broadcast-

based DDoS attacks from being launched in the first place, or edge routers keep all

the machines over the Internet updated with patches and fix security holes. But with

this, networks are always vulnerable to attack types for which signatures and

patches do not exist in the database.

ii) Ideal Prevention includes methods to prevent botnet creation and causing hindrance

in remote-control mechanisms. But DDoS attacks are always possible from DDoS

for hire services (Booters, Stressers and DDoSers, 2021).

iii) Ingress filtering a source validation scheme is difficult to apply for multihomed

networks. To apply ingress filtering against multihoming networks, the ways are-

 Applying an appropriate form of Loose RPF.

 Ensure that each ingress filter at each ISP is complete in terms of information

about change and interfaces so that legitimate packets are not dropped.

Even if these changes are made, modifications will be needed in complex networks

containing too many uplinks and peers.

c) Partial Prevention defines a prevention layer between the victim and the attacker,

preventing the victim from attack traffic.

i) This layer collects traffic statistics from the network and classifies the traffic as

legitimate or attack based on some parameters. Due to some false positives from

the classification, legitimate traffic can be deemed attack traffic and blocked.

ii) In some techniques, the prevention layer itself is vulnerable to DDoS attacks.

The limitations found in individual techniques are listed in Table 2.2.

********** End of Chapter **********

46

CHAPTER 3- Related Theory

3.1 Introduction

To provide proactive defense against DRDoS attacks, the prevention techniques

proposed in this research work use some existing paradigms and techniques. To better

understand all the proposed prevention techniques, this chapter describes all behind-the-scenes

techniques. As mentioned in Chapter 1, we will implement our strategies using SDN. So, first,

we give a detailed description of SDN. After this, we describe the base techniques used in our

prevention approaches, i.e., IBC, random forest classifier, and symmetrical routing.

But before providing defense against DDoS attacks, we first need to understand DDoS

attacks. What are the different types of DDoS attacks, and how do they work? So, before

dwelling on prevention, let us first understand the types of DDoS attacks.

3.2 Classification of DDoS Attacks

Different taxonomies for classifying DDoS attacks have been proposed in the literature,

which helps to understand the problem and its solution space. Among the various ways, one

way to classify DDoS attacks is the process through which the attack is generated. Accordingly,

a taxonomy is proposed in section 3.2.1.

3.2.1 Types of DDoS Attacks

Different authors in the literature have proposed different classifications/types of DDoS

attacks. As shown in Table 3.1, the categorizations are as follows-

 A two-dimensional view of DDoS attacks is discussed by (Bhatia, S., Behal, 2018).

One is the high-rate flooding attacks generated from the high number of requests

targeting a victim by various bots. The other is semantic attacks that exploit an

application or protocol’s implementation or design flows.

47

 (Bawany et al., 2017) characterized prevalent DDoS attacks into three categories:

reflection-based, protocol exploitation flooding, and reflection and amplification-

based. Reflection-based DDoS attacks include Smurf attacks and Fraggle attacks.

Protocol exploitation flooding attacks include SYN flooding attacks and UDP

fragmentation attacks. Finally, reflection and amplification-based DDoS attacks have

DNS and NTP amplification attacks.

 Similarly (Swami et al., 2019) divided DDoS attacks into volumetric attacks and

application layer attacks. Volumetric attacks were further classified into flooding

attacks and amplification attacks.

 The classification done by (Yan et al., 2015) is based on TCP/IP protocol stack, i.e.,

Application, Transport, and Internet layer.

 (Mirkovic & Reiher, 2004) presented two taxonomies to classify DDoS attacks and

defenses based on the essential features of attack strategies and design decisions of

DDoS defense mechanisms. It also states how DDoS attacks take place on the global

Internet.

 (Zeebaree et al., 2018) state that DDoS attacks are of two types: application layer and

network/transport layer attacks. Application layer attacks can be further divided into

resource-exhausting and bandwidth-consumption attacks.

 According to US-Cert, layer-3 (Network layer) and layer-4 (Transport Layer) DDoS

attacks are volumetric attacks, and layer-1 (Application layer) attacks are semantic-

based attacks (DDoS Quick Guide, 2020).

Table 3.1 shows the above-listed DDoS attack classifications.

48

Table 3.1 : Different classifications of DDoS attacks

Author Classification
 (Bhatia, S., Behal, 2018) Flooding attacks

Semantic attacks
(Bawany et al., 2017) Reflection attacks

Protocol exploitation attacks
Reflection and amplification attacks

 (Swami et al., 2019) Volumetric attacks (flooding, amplification),
Application layer attacks

(Yan et al., 2015) Application layer attacks,
Transport layer attacks,
Internet layer attacks

(Mirkovic & Reiher,
2004)

Source address vulnerability
Exploiting vulnerability
Attack rates dynamics
Based on the impact of the attack and the recovery of the victim

(Zeebaree et al., 2018) Application layer attacks (resource exhausting, bandwidth
consumption attacks)
Network/Transport layer attacks

US-CERT (DDoS Quick
Guide, 2020)

Volumetric attacks (Transport layer, Network layer)
Semantic attacks (Application layer attacks)

Based on the above classifications, a general taxonomy for types of DDoS attacks is

depicted in Figure 3.1; mainly, the attacks are categorized as volumetric, semantic, and

reflection attacks. As shown in Figure 3.2, volumetric attacks are generated from the high

number of requests targeting a victim, while semantic attacks are the ones that exploit the

implementation or design flows of an application or protocol.

For reflection attacks, the attacker spoofs the source IP address of request packets to

that of the victim, resulting in all the server response packets going to the victim instead of the

attacker. When these responses are amplified, like DNS amplification attacks, they become

reflection amplification attacks. This generalized taxonomy can cover all the attack types

mentioned in Table 3.1. Some attacks can also overlap in multiple categories, e.g., a flooding

attack is mainly a volumetric attack, but the HTTP flood attack is also a layer 7 attack.

49

Figure 3.1 : Taxonomy of DDoS attacks

Figure 3.2 : Various DDoS attacks

50

3.3 Software Defined Networking (SDN)

Due to the dawn of technologies such as Cloud Computing, Big Data, Virtualization,

and the increase in the use of mobile devices, a need for high network capacity and network

scaling became necessary (Rowshanrad et al., 2014). The network devices became more

complex to support changing traffic patterns, and it was difficult for network administrators to

configure each device individually. Because of this reason, the idea of programmable networks

was introduced, and SDN came into existence. SDN is a promising network paradigm in which

the forwarding and control planes are decoupled. It is a network architecture that breaks vertical

integration by separating the data plane, i.e., the network devices that forward traffic, from the

control plane, i.e., the software logic that controls how traffic will be forwarded through the

network (Kreutz et al., 2015). This decoupling feature facilitates many innovations by making

the network programmable and logically centralized.

SDN infrastructure has two parts:

a) Software control plane

 It is the network’s brain

 It can be run separately from devices

 It computes the logic of how traffic will be forwarded.

b) Programmable data plane

 Typically, programmable hardware

 Controlled by the control plane.

The advantages of SDN over conventional-network are-

 SDNs are easier to coordinate, i.e., the network operator can easily write a program that

helps coordinate different network devices.

 Easier to evolve because of network automation.

51

 Apply programming languages as conventional computer science approaches, as the

controller can give new flow rules based on the type of functionality needed.

 SDN is logically centralized but not physically; hence there can be more than one

controller distributed across the globe to balance the load.

3.3.1 OpenFlow Protocol

OpenFlow protocol is responsible for interaction/communication between the SDN

architecture’s control plane and data plane (“Software-Defined Networking: The New Norm

for Networks,” 2012). There is a non-profit industry known as Open Networking Foundation

(ONF), which is prominent in normalizing the critical elements of SDN architecture like

OpenFlow Protocol and also in the development of SDN. In an SDN architecture, OpenFlow

is the first standard communications interface defined between the forwarding layer and the

control layer. (“OpenFlow Switch Specification Version 1.5.1 (Protocol Version 0x06),”

2015) OpenFlow 1.0 got released on December 31, 2009, and formally introduced how control

and data plane can be separated. It introduced flow tables as forwarding structures in a network

switch and allowed 12 different fields on which incoming packets can be matched against flow

entries. OpenFlow 1.1 added new features in the form of multiple flow tables, group tables,

Multi-Protocol Label Switching (MPLS) tags, Virtual Local Area Network (VLAN) tags, and

virtual ports. OpenFlow 1.2 added generic and extensible packet matching capability via

OpenFlow extensible match descriptors. It allowed any header fields used in matching for

Ethernet, VLAN, MPLS, IPv4, and IPv6 to be used in flow tables. Then came the significant

milestone, i.e., OpenFlow 1.3. Today, many of the commercially available networks have

switched to support this version. It extended the features by now allowing per-flow meters,

cookies, and auxiliary connections, which helps in entries. Experimentor modes permitted

within OpenFlow allow experimenting with application layer flow definitions. OpenFlow 1.3.1

52

was released on September 06, 2012, and the main change was to add a bitmap of version

numbers for hello messages during negotiation. OpenFlow 1.3.2 was released on April 25,

2013. OpenFlow 1.3.3 on September 27, 2013, OpenFlow version 1.3.4 on March 27, 2014,

and OpenFlow version 1.3.5 was released on March 26, 2015, with many major changes, and

few of them are defining oxm_len for OpenFlow extensible match IDs in table features to have

payload length, IPv6 flow label was made maskable, control channel maintenance section was

added, and some new modification to MPLS. OpenFlow version 1.4.0, released on August 5,

2013, modified many other parts of protocols with tag, length and value structures, improving

extensibility. This additional extensibility will also help in easily extending the Experimenter

extension Application Programming Interface (API). Likewise, with new modifications,

OpenFlow version 1.4.1 was released on March 26, 2015, and OpenFlow version 1.5.0 on

December 2014. Then came OpenFlow version 1.5.1 on March 26, 2015, which added a new

error OFPBAC_BAD_METER for the wrong meter in flow-mod, clarifications for spelling,

grammar, and other types were given, and a few other changes were also made. On December

2016, a new version of 1.6 came, but it is only accessible to ONF members.

3.4 Techniques Used for Prevention

In this section, the techniques used for Prevention against DDoS attacks are explained.

These include IBC, RF, and symmetrical routing

3.4.1 Identity-Based Cryptography (IBC)

It is a kind of public-key cryptography in which an identity unique to the participating

entity is used as a public key with a corresponding private key. It eliminates the need for

separate servers (e.g., PKES servers) to distribute public key certificates. IBC incorporates both

IBS and Identity-Based Encryption (IBE) (Long & Xiong, 2020). (Boneh & Franklin, 2001),

(Cocks, 2001), and (Sakai, R., Ohgishi, K., and Kasahara,) introduced their respective works

on IBE. The work of (Boneh & Franklin, 2001), and (Sakai, R., Ohgishi, K., and Kasahara) is

53

primarily based on bilinear mapping on elliptic curves, and bilinear Diffie-Hellman is the

underlying principle for the security of their proposed schemes. Since crafted by Boneh et al.

(Boneh & Franklin, 2001) and Sakai et al. (Sakai, R., Ohgishi, K., and Kasahara), the pairing-

based IBC is proven to be very efficient with a proven security model. Since its inception, IBC

has been applied in various areas (Anggorojati & Prasad, 2018),(Salman et al., 2016), (Drias

et al., 2017), (Suganthi, S.D., Anitha, R., and Thanalakshmi). To further promote its

application, IEEE has also specified a standard based on pairing-based IBC (“IEEE Standard

for Identity-Based Cryptographic Techniques Using Pairings,”). In this, a pairing-based

signature scheme is specified, named BLMQ (Barreto et al., 2005) (named after the surnames

of its proposers, i.e., Paulo S.L.M. Barreto, Benoit Libert, Noel McCullagh, and Jean-Jacques

Quisquater). BLMQ is based on the work of Sakai and Kasahara (SAKAI & KASAHARA,

2003).

3.4.2 Random Forest

Random forest, trademarked by Leo Breiman (BREIMAN, 2001) and Adele Cutler, is

a standard ML Algorithm (Yiu, 2019). Random forest algorithm can be used as both a classifier

and a regressor. This technique consists of multiple decision trees to output a single result of

prediction. To understand random forests, we first need to understand decision trees.

3.4.2.1 Decision Trees

The basis of the random forest model is decision trees. As the name suggests, decision

tree is a tree in which a node splits into different nodes based on a condition. For example, the

condition can be that the Sun rises in the east, so that this node will be split into two depending

on the answer yes or no. Following this principle, a prediction is made when we reach the final

leaf node.

54

3.4.2.2 Ensemble Methods

A number of algorithms, such as decision trees, are combinedly used in ensemble

learning techniques, and their predictions are combined to determine the most common

outcome (Random Forest). The ensemble technique bagging (Breiman, 1996) is used in

random forest. Bagging is also known as bootstrap aggregation. This method selects a random

sample of data from a training set with substitution, which allows for multiple selections of the

individual data points. Following the generation of several data samples, these models are

individually trained to result in more accurate predictions.

3.4.2.3 The Random Forest Algorithm

The random forest algorithm is created using a group of decision trees. Ensemble

learning is a popular technique that improves the accuracy of predictive models by combining

multiple individual models. One such ensemble method is the decision tree ensemble, which

comprises several decision trees, each trained on a bootstrap sample of the data with

replacement.

To further enhance the diversity and reduce correlation across decision trees, feature

bagging is applied, introducing another randomization instance.

To evaluate the performance of the decision tree ensemble, an Out Of Bag (OOB)

sample, consisting of one-third of the training data not used in building each tree, is used as a

test set. For classification tasks, the predicted class is determined by taking the majority vote

on the individual trees’ outputs, while for regression tasks, the individual trees’ outputs are

averaged.

Finally, the OOB sample is used for cross-validation to estimate the accuracy of the

model and to finalize the prediction. This approach helps to ensure that the model generalizes

well to unseen data.

55

3.4.3 Symmetrical Routing

In computer networking, symmetric routing is a configuration in which traffic between

two hosts follows the same path in both directions. It means that the network traffic from Host

A to Host B takes the same path as that from Host B to Host A.

Symmetric routing is important because it ensures that the network traffic flows

efficiently and with the same level of security in both directions. If the routing is asymmetric,

i.e., traffic follows different paths in each direction, it can cause issues with performance and

security. Additionally, asymmetric routing can make it difficult to apply security policies

consistently to both directions of traffic. In summary, symmetric routing is essential for

ensuring efficient and secure network traffic flow between hosts.

********** End of Chapter **********

56

CHAPTER 4- Prevention of DRDoS Amplification Attacks by Penalizing the Attackers

in a Software-Defined Networking Environment

4.1 Introduction

In this chapter, we present four mechanisms to defend against DRDoS attacks. The

proposed techniques are based on the philosophy of attack prevention, which conforms to the

definition of True Prevention. To the best of our knowledge, no technique can completely

prevent any attack traffic from entering the Internet’s core network in the first place. It would

require controlling the attacker’s network infrastructure itself. Instead, we argue that the

responsibility of prevention should lie within the underlying network infrastructure, i.e., the

underlying network functionality should be amended and should be equipped with enough rules

to prevent such attacks. Presently, Internet architecture adheres to the following design

principles:

a) Destination IP-based routing: Routing algorithms populate the router’s forwarding

tables, which forward each network packet. This forwarding decision is solely based on

the destination IP address.

b) No source-IP validation: The primary design goal of the Internet was reliability,

distributed management, cost-effectiveness, and support for multiple varieties of

networks and different types of communication services. Security was not the primary

design principle. Accordingly, source IP validation is not done by the network. In the

client-server model, the source IP and destination IP fields are swapped in the

corresponding response packet when the packet reaches the destination. This packet is

again routed using the forwarding tables of different routers.

57

Considering the above network properties, the True Prevention algorithm should conform to

the following:

a) Attack traffic can enter the network but should be mitigated away automatically within

some constant time. This time can vary and depends upon the network bandwidth of

the attacker.

b) Even in the presence of attack traffic, the victim’s network should always be safe. In

other words, such attack traffic should never reach the victim.

One of the promising philosophies of prevention is to direct all the reflected traffic by

the server toward the attacker’s network itself or to the individual systems that were part of the

attack in case of DDoS. It would require no change in underlying forwarding techniques (i.e.,

from client to server or the request packet). But it requires modifying reverse forwarding rules

(i.e., from server to client or the response packet. The underlying network should forward the

packet to where it originated, even if the source IP address is spoofed. We achieve this reverse

forwarding by proposing four techniques- IP-Switching, Port-Mapping, PortMergeIP, and

SymSDN. We categorize these approaches into two categories based on the underlying

modification.

a) The basis of the first category is to modify the switch’s flow table, not the packet header.

SymSDN lies in this category. SymSDN’s mechanism is based on symmetric routing.

In symmetric routing, the response packet follows the same path (in the reverse

direction) as the corresponding request packet, irrespective of the source IP address of

the request packet. It will prevent DRDoS attacks, even if IP spoofing is done, as the

response packet will go to the attacker rather than the victim, completely bypassing the

IP spoofing.

b) The basis of the second category is to modify the packet header. We ensure that the

attacker’s identity or the request packet’s path is somehow embedded within the request

58

packet itself so that the response packet reaches the source of the attack using that

information. IP-Switching, Port-Mapping, and PortMergeIP lie in this category.

i. Port-Mapping: In this proposed method, the request packet's path is stored in the

options and padding field of the IP header of the packet so that the response packet

can follow the same path.

ii. IP-Switching: In this method, we propose to change the source IP address in the

request packet with another legitimate one within the network.

iii. PortMergeIP: Above two techniques have a few limitations (as explained in section

4.4.3). PortMergeIP focuses on the removal of these limitations by merging the two

techniques.

All the methods are proven to prevent the victim from the attacks altogether. These

techniques also cause the attack to divert back to the attacker, saving the client from the attack

and hampering the attacker’s ability to launch further attacks. For the techniques presented in

this paper, we conform to the following definition of prevention (called True Prevention) as

provided in (Saharan & Gupta, 2021): Let,

o B be the network bandwidth of the network in which an attacker, or a bot in control of

an attacker, resides.

o V be the victim of a DDoS attack.

o IV be the IP address of victim V, and IA be the IP address of attacker A

True Prevention is defined as a set of techniques embedded into the network routers

which prevents the attack traffic from reaching V, even though the destination IP address of

network packets belonging to the DDoS attack is IV, and automatically mitigates the attack for

some constant time T where T is directly proportional to B.

Because of the flexibility and programmability aspects provided by SDN in terms of

controllers, it is used to show and validate the required network intelligence to be induced in

59

the underlying network infrastructure to prevent DRDoS attacks. Also, DNS based DRDoS

attack is used to show the effectiveness of the proposed techniques as, attackers still choose

DNS architecture to launch DNS amplification attacks, e.g., the attack on Google (Cimpanu,

2020b) and the Spamhaus attack (Prince, 2013b). Such traffic can easily be recognized using

the source port number in the IP packet. Henceforth, the discussion is based only on the

prevention of DNS amplification attacks. Of course, the proposed prevention algorithms can

be applied to other types of DRDoS attacks and traditional network infrastructure.

4.2 Related Work

This section primarily shows the DDoS defense mechanisms close to the definition of

True Prevention. (Duan et al., 2018) proposed a defense technique against infrastructure DDoS

attacks on specific flows. This technique works for critical links to a server by a proactive

routing mutation. The problem with this approach is that the victim can still be affected when

the attack traffic is switched to non-critical links. (Keromytis et al., 2004) proposed secure

overlay services as a prevention technique. Here, authentication of the packets is done at secure

overlay points known as SOAPs, which forward the packets through overlay nodes to beacon

nodes. The primary issue with this approach is additional infrastructure requirements, thus

making it difficult to scale. (Wu et al., 2013) proposed SAVI, and it complements ingress

filtering by adding IP address validity to an individual source. SAVI is defined as network-

based so that there is no dependency on a host. SAVI instances may face reliability issues due

to a loss of bindings in SAVI devices through a restart of SAVI devices or binding information

for a new link not reaching the SAVI device. A new IPv6 address generation algorithm was

proposed by (Ying Liu et al., 2015). Firstly, SAVA (Wu et al., 2008) is used to authenticate

source addresses. After this, an address is generated using NID (network identity) and time,

and this address is assigned to the host. This newly generated IP address will be used for

60

communication. The absence of a built-in security module in the ONOS SDN Controller leaves

it vulnerable to DDoS attacks. To address this issue, (Ohri et al.,2024) leverages the widely

adopted Suricata (IPS). The proposed structured approach comprises of reconnaissance,

detection, and mitigation phases. During reconnaissance, all incoming network packets

undergo thorough analysis. In the subsequent detection phase, the system identifies potentially

malicious IP packets. Finally, in the mitigation phase, any identified malicious packets are

promptly discarded. (S. Kim et al., 2017)have proposed a framework using SDN. A DNS

response is only accepted on the client-side when there is a request; otherwise, the packet is

dropped. The DNS request information is stored in the switch or the memory of the SDN

controller. The problem with this approach is that the attack traffic still reaches the victim’s

network. (Sahri & Okamura, 2016) have proposed an authentication approach to prevent DNS

amplification attacks in SDN as an underlying architecture. In their authentication approach,

the DNS server, before sending the response, sends a query back to the client, asking whether

the query was sent or not, and if the client responds, only then is the response provided to the

client. Because of this, a delay of one extra Round-Trip Time (RTT) is introduced in the

response packet. The authentication approach is the algorithm we use to compare our

techniques by focusing mainly on the additional RTT needed to get the final DNS response.

4.3 Modifying Switch Flow Table- SymSDN (Symmetric SDN)

In the existing Internet architecture, whenever a router receives a packet, it consults its

routing table and forwards the packet. A routing table can be created statically or dynamically

using a routing algorithm. In SDN, this process is slightly modified. The control plane of all

the routers is placed in a single machine called a controller that controls the data plane of all

the routers in the network (Kreutz et al., 2015), (ONF). The router has a local table called the

61

flow table, which the controller usually populates. On encountering a packet, the SDN switch

consults its flow table. If there is a match, the router forwards the packet accordingly.

Figure 4.1 : The architecture of SymSDN

The controller analyzes the packet and decides to forward or drop it based on certain

conditions. It also pushes appropriate flow rules in the flow table of the router to match future

62

packets of the same. We push reverse flow rules along with forward flow rules in the SDN

switch to implement symmetric routing for DNS packets. (Le Pennec et al., 2014) have

proposed a way to implement symmetrical routing in the existing internet architecture. We

extend their work to provide defense against DRDoS attacks, by modifying this architecture in

SDN.

Figures 4.1 and 4.2 illustrates that two flow tables are used to implement the proposed

methodology, i.e., SymSDN. Flow table 0 is responsible for legacy routing, and flow table 1

for symmetric routing.

Figure 4.2 : The internal functioning of the SDN switch

As shown in Figure 4.2, flow table 0 is pipelined to table 1 for DNS packets. When the

packet first arrives at the SDN switch, it is forwarded to flow table 0 and checked if it is a DNS

packet or not (Figure 4.1). If it is a DNS packet, the action is GOTO table 1; otherwise, forward

it according to the flow rules. If a flow rule for that packet does not exist in table 1, it is

forwarded to the controller, which will push both the forward flow rules and reverse flow rules.

The controller pushes a flow rule (matching a DNS request from the same host to the

same server) in the forward direction (i.e., from host to server) and another reverse flow rule

in the table (matching the corresponding DNS response sent by the same server to the same

63

host) in the reverse direction (the input interface becomes the output interface). It forces the

DNS response packet to take the same path as the DNS request but in the reverse direction,

ensuring that the DNS responses go to the same physical machine that placed the corresponding

DNS request. This process completely bypasses the IP spoofing and defends against the DNS

reflection attack.

Figure 4.3 : Working of the SDN controller

As shown in Figure 4.3, when the controller encounters a DNS request packet arriving

on R1 that originated from A and is bound for B, it pushes a flow rule on R1 to send all DNS

request packets originating from A and bound for B to B (through the interface eth2). In our

mechanism, however, the controller also pushes a reverse flow rule on R1 to send all DNS

response packets of this request packet(A->B) in the reverse direction (B->A), i.e., from

interface eth1.

Generally, a flow is defined as a sequence of packets exchanged between a specific

source and destination. We discovered that if we use the main parameters defined for a flow

rule in SDN, especially the source and destination port numbers, overflow can occur in the

flow tables due to DRDoS attacks. At first, we considered five parameters - source IP address,

destination IP address, source port, destination port, and protocol for rules entry. However,

considering the source ports to define flow rules has a risk. An attacker commencing a DRDoS

attack can instruct all its bots to use a different source port for every packet. It leads to an

64

exponential increase in the number of flow rules that need to be pushed to the SDN switch.

Eventually, this leads to the flow tables getting over-filled. Hence, this type of attack is called

a “Flow Table Overflow Attack.” To make our mechanism resistant to these attacks, we opted

not to use the parameter source port for defining the flow rules. Our extensive experimentation

proved that this is highly effective in reducing the number of flow rules being pushed to the

SDN switch without affecting the mechanism's efficiency.

Another line of defense we have adopted against flow table overflow attacks: is "Flow

Table Pipelining.” We keep the primary flow table for general-purpose use and create a new

secondary flow table for handling DNS flow rules. It ensures that even if a large number of

DNS flow rules are getting pushed to the SDN switch, the switch’s primary flow table is

unaffected, and only the secondary flow table will overflow, even in the worst-case scenarios.

4.3.1 Experimental Setup and Result Analysis

In this section the experimental setup done to validate SymSDN is explained. To

validate SymSDN various parameters such as throughput, packet loss are calculated.

4.3.1.1 Experimental Setup

For experimental purpose, we created a virtual network through mininet (Mininet,

2022), whose topology is represented by Figure 4.4.

Figure 4.4 : Experimental topology: SymSDN

65

It consists of 10 hosts and seven routers (SDN switches). Out of the ten hosts, H1 represents

the attacker, H2 represents the victim, HS1 and HS2 represent HTTP servers, and DS1 through

DS6 represent DNS servers. To simulate a DDoS attack with many attacker hosts, a large

number of spoofed requests have been generated by host h1 and amplified response by DNS

servers. This topology simulates 4 Local Area Networks (LANs): the attacker’s LAN, the

victim’s LAN, the DNS servers’ LAN, and HTTP servers’ LAN. All these LANs are connected

via intermediate core routers. The DRDoS attack is generated using scapy (Introduction: About

Scapy, 2023).

4.3.1.2 Results and Analysis

The topology mentioned in Figure 4.4 is connected to the Ryu controller (RYU A, 2013),

and based on this setup, the following three experiments are performed to validate our

prevention approach.

Figure 4.5 : Throughput w.r.t. time (without SymSDN)

a) Throughput is calculated on the victim’s and attacker’s sides from HTTP servers during

an attack of 1 Gbps (by DNS servers) on a link bandwidth of 1 Gbps. Wget is used for

the calculation of throughput. Figure 4.5 shows throughput for the time at the attacker’s

20

40

60

80

100

120

0 - 3 3 - 6 6 - 9 9 - 1 2 1 2 - 1 5 1 5 - 1 8 1 8 - 2 1 2 1 - 2 4 2 4 - 2 7 2 7 - 3 0 3 0 - 3 3 3 3 - 3 6 3 6 - 3 9

T
hr

ou
gh

pu
t (

 M
B

ps
)

Time (Seconds)

Throughput (without SymSDN)

#1-A #2-A #3-A #4-A #5-A #6-A #7-A
#8-A #9-A #10-A #11-A #12-A #13-A #14-A
#15-A #16-A #17-A #18-A #19-A #20-A A-Avg
#1-V #2-V #3-V #4-V #5-V #6-V #7-V
#8-V #9-V #10-V #11-V #12-V #13-V #14-V
#15-V #16-V #17-V #18-V #19-V #20-V V-Avg

66

and victim’s sides when SymSDN is not in place, and Figure 4.6, shows when SymSDN

is in place. Twenty iterations are done for throughput calculation, so #1-A represents

throughput at the attacker in the first iteration, #1-V represents throughput at the victim

in the first iteration, and so on. The graph’s dots represent individual iterations, and the

line represents the average at attacker’s (A-Avg) and victim’s n/w (V-Avg). It is clear

from the graphs that when SymSDN is not in place, throughput drops at the victim as

soon as the attack starts at the 15th second, and when SymSDN is in pla ce, throughput

drops at the attacker, not at the victim. It is because, with SymSDN, the response goes

to the originator of the attack (the attacker), irrespective of the spoofed IP address.

Hence proving that the proposed approach prevents the attack. The respective data

values are also shown in Appendix A.

Figure 4.6 : Throughput w.r.t. time (with SymSDN routing)

b) Packet loss due to a DRDoS attack on the victim side without SymSDN (Figure 4.7)

and with SymSDN(Figure 4.8) in place is calculated. The link bandwidths of H1-R1

and H2-R2 are set at 500 Mbps with a delay of 1 ms. Ping is started between H1 & HS1

and H2 & HS2 to calculate Packet loss. As soon as the attack starts, packet loss occurs

at the victim, while no packet loss occurs at the attacker (Figure 4.7). But when our

20

40

60

80

100

120

0 - 3 3 - 6 6 - 9 9 - 1 2 1 2 - 1 5 1 5 - 1 8 1 8 - 2 1 2 1 - 2 4 2 4 - 2 7 2 7 - 3 0 3 0 - 3 3 3 3 - 3 6 3 6 - 3 9

T
hr

ou
gh

pu
t (

M
B

ps
)

Time (Seconds)

Throughput (with SymSDN)

#1-A #2-A #3-A #4-A #5-A #6-A #7-A
#8-A #9-A #10-A #11-A #12-A #13-A #14-A
#15-A #16-A #17-A #18-A #19-A #20-A A-Avg
#1-V #2-V #3-V #4-V #5-V #6-V #7-V
#8-V #9-V #10-V #11-V #12-V #13-V #14-V
#15-V #16-V #17-V #18-V #19-V #20-V V-Avg

67

proposed app roach is in place, the victim remains unaffected, and packet loss occurs

at the attacker (Figure 4.8). This experiment is also performed for twenty iterations.

The respective data values are also shown in Appendix A

Figure 4.7 : Packet loss % w.r.t. time (without SymSDN)

Figure 4.8 : Packet loss % w.r.t. time (with SymSDN routing)

0

20

40

60

80

100

1 2 3 4 5 6 7 8

Pa
ck

et
lo

ss
 (%

)

Time (Intervals)

Packetloss (without SymSDN)

#1-A #2-A #3-A #4-A #5-A #6-A #7-A
#8-A #9-A #10-A #11-A #12-A #13-A #14-A
#15-A #16-A #17-A #18-A #19-A #20-A A-Avg
#1-V #2-V #3-V #4-V #5-V #6-V #7-V
#8-V #9-V #10-V #11-V #12-V #13-V #14-V
#15-V #16-V #17-V #18-V #19-V #20-V V-Avg

0

20

40

60

80

100

1 2 3 4 5 6 7 8

Pa
ck

et
lo

ss
 (%

)

Time (Intervals)

Packetloss (with SymSDN)

#1-A #2-A #3-A #4-A #5-A #6-A #7-A
#8-A #9-A #10-A #11-A #12-A #13-A #14-A
#15-A #16-A #17-A #18-A #19-A #20-A A-Avg
#1-V #2-V #3-V #4-V #5-V #6-V #7-V
#8-V #9-V #10-V #11-V #12-V #13-V #14-V
#15-V #16-V #17-V #18-V #19-V #20-V V-Avg

68

c) We measure the delay caused by DNS request-response due to the SymSDN prevention

approach. We calculate this delay and compare it with the authentication approach

(Sahri & Okamura, 2016) and the baseline. Figure 4.9 shows this delay. Baseline delay

indicates the average delay without any prevention algorithm, which is nearly 0.09

seconds. SymSDN also shows a similar delay of .093 seconds. The authentication

algorithm shows the highest delay of .15 seconds as it needs one additional RTT before

the server receives the DNS response.

Figure 4.9 : DNS request-response delay

d) As explained in section 4.3, “Flow Table Overflow Attack” causes an overflow of flow

entries in the flow tables at the time of the attack. The prevention is to optimize flow

entries by opting out source port numbers. Figure 4.10 showcases this scenario. The

attacker (H1) placed many DNS requests with dynamic source ports. The number of

flow rules existing inside the flow table is periodically measured at 10-second intervals.

The count of flow rules being pushed by the controller is also recorded. The process

was repeated three times by setting the flow table capacity as 20000, 30000, and 40000

entries, respectively. Figure 4.10 shows the number of flow entries w.r.t time. When

the source port is considered to create the flow rule, the number of flow rules being

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Baseline Symmetric Authentication

D
el

ay
 in

 se
co

nd
s

DNS Request-Response Delay

69

pushed is observed to be proportional to the number of DNS requests. The actual

number of flow rules in the flow table increased along with the number of flow rules

pushed by the controller but became constant after reaching the predefined limit,

indicating flow-table overflow. When the source port is not considered to create the

flow rules, the number of flow entries remain very low (proportional to the number of

DNS servers). Hence, Figure 4.10 proves Prevention against the Flow Table Overflow

Attack.

Figure 4.10 : Number of flow-rules w.r.t. time

4.4 Packet Modification to Enforce Reverse Routing

As outlined in section 4.1 above, for True Prevention of DRDoS attacks, the underlying

network functionality should be amended. We suggest implementing the change for client-

server communication, historically the main culprit for DRDoS attacks. For example, attackers

still choose DNS architecture to launch DNS amplification attacks, e.g., the attack on Google

(Cimpanu, 2020b) and the Spamhaus attack (Prince, 2013b). Such traffic can easily be

recognized using the source port number in the IP packet. Henceforth, the discussion is based

only on the prevention of DNS amplification attacks. Of course, the proposed techniques can

70

be extended further for any specific type of amplification attack which exploits the client-server

model to launch the attack.

Figure 4.11 : Generalized network topology

Any access network (whether an individual or an organization) gets connected to the

Internet using the Internet Service Provider (ISP) services. Consider Figure 4.11, which shows

how an organization’s network gets connected to the Internet. It shows the access network of

four organizations (Org1, Org2, Org3, and Org4). Access network 1 belongs to the victim’s

organization, and the attacker controls access networks 2, 3, and 4. In access network-1, there

are three hosts: one is the victim, i.e., V1, and two end-hosts, i.e., h2 and h3. A1, A2, and A3

are attackers in access networks-2,3, and 4, respectively. We have used the terms organization

and access network interchangeably in this work. For launching the attack, the attacker will

71

spoof the source IP address field of the packets to that of a host in the victim’s network. Each

access network is connected to the ISP’s first-hop router through its gateway router. These

first-hop routers will be responsible for switching IP addresses in the IP-Switching algorithm

and PortMergeIP algorithm. DNS servers to generate a DRDoS attack and HTTP servers to

generate legitimate traffic and calculate throughput are also connected to the network. We have

used three DNS servers to launch the attack.

The algorithms 4.1-4.3, respectively show the proposed algorithms for IP-Switching,

Port-Mapping, and PortMergeIP. The notations used by these algorithms are defined in table

4.1.

Table 4.1 : Notations used in the packet modification algorithms

Notation Definition
n number of routers in-between source and destination
ri ith router (0 <i <= n)
M total number of organizations
P switches or routers between the host machine and ISP’s first hop router
T number of interfaces a router has
rj

q jth organization’s qth switch or router between host and ISP’s first-hop router
(0 <j≤ m, 0 < q ≤ p)

rj
h ISP’s jth organization’s hth first hop router (0 <h≤ m)

rj
hk ISP’s jth organization’s hth first hop router’s kth incoming interface(0 <k ≤ t)

rj
qk jth organization’s qth router’s kth incoming interface

rj
ql qth router’s lth outgoing interface (0< l≤ t)

ipv4-src,
ipv4-dst

source IP address,
destination IP address

src-port,
dst-port,

source protocol number, destination protocol number

Option options field of the packet
rtr-id ID of router
in-port The interface of router where the packet arrives
out-port The outgoing interface
SRC-IP-
ADDR

Source IP address of the downstream network known by ISP

72

4.4.1 IP-Switching

In IP-Switching, the source IP address of every DNS request packet (i.e., an IP packet

with destination port number 53) is switched after it leaves the organization’s network with the

organization’s downstream address, as shown in algorithm 4.1. ISPs’ first-hop routers do this

switching. For example, when the packet leaves access network 1, the ISP’s first-hop router

for access network 1 will do this switching. We assumed that the ISP’s network should be

SDN-enabled for implementation and testing purposes. Otherwise, a change in the router’s

functionality would be required. The DNS response traffic would be directed toward the

attacker’s organization even if the source IP is spoofed. It results in congestion of the traffic in

the attacker’s organization and will slow down and eventually stop the attack for some time

because routers would not be able to handle such a massive surge simultaneously. It would

result in the True Prevention of the attack with negligible overhead regarding memory usage

and computation. Of course, the time to prevent depends upon the amplification factor,

resultant DNS response traffic, and the bandwidth of an attacker. Formally, the algorithm is

explained in the IP switching algorithm to prevent DNS-based amplification attacks.

Algorithm 4.1: IP-Switching

IP-SWITCHING Algorithm- Rule set to be added in switches by controller

Assumption: There is no intermediate router between the organization’s gateway
router and ISP’s first hop router.

INPUT- Packet coming at ri

for i= 1 to n do

 while rtr.id = rj
h and in-port = rj

hk do

if packet is udp and dst-port==53 then

 ipv4-src = SRC-IP-ADDR
 Forward the packet to out-port
 end while
 Forward the packet to out-port
 end for

73

4.4.2 Port-Mapping

In Port-Mapping, the forward path of the request packet is stored in the packet itself to

enable the corresponding response packet to use the same path to return to the source.

According to CAIDA’s skitter Map, the average-path length of any packet lies between 10 to

30 hops (CAIDA’s Skitter MAP). This means storing a path of about 30 hops within the packet

is required. Also, the fields that can be used to store path information in an IP packet are

(Ehrenkranz & Li, 2009): Identification field (16 bits), Time Of Service (TOS) field (8 bits),

Flags field (3 bits), Option and padding field. We propose the options and padding field

(hereafter called options field) in the IP packet as it is typically not used in a DNS query and

can be up to 40 bytes long. The Port-Mapping technique assumes that (a) an intermediate router

has 8 to 48 interfaces or physical ports; thus, a router would require 3 to 6 bits to uniquely

identify such ports (b) The underlying network is SDN-enabled.

As shown in algorithm 4.2, when a DNS request packet passes through a router, it

forwards the packet to the SDN controller. The SDN controller inscribes the packet with the

input interface (the in-port of the router) in the options field. Later, it pushes flow entry in the

SDN switch to forward the packet through the out-port (outgoing interface) as per IP

forwarding rules. When a DNS Response packet arrives at SDN switch, it again is forwarded

to the controller. The controller removes the corresponding in-port number engraved earlier

and routes the packet to that port. Rather, if the packet is not the DNS packet (i.e., packet.dest-

port != 53 or packet.source-port != 53), it is treated as per normal IP forwarding rules. The

options field is considered stack memory. So for all UDP packets with a destination port of 53,

the incoming interface of the router will be pushed on the options field. Rather, if the source

port is 53, the top element will pop out, and the packet will be forwarded to that interface. The

steps to be taken by an SDN switch to implement Port-Mapping are explained in the Port-

Mapping algorithm.

74

Algorithm 4.2 : Port-Mapping

4.4.3 PortMergeIP

 This technique combines the strength of the Port-Mapping and IP-Switching

techniques. The first-hop router of the ISP does IP switching. The information about the path

from an end host to the organization’s gateway router is stored in the options field of the IP

packet in terms of physical port numbers, as proposed in Port-Mapping. Formally, the

technique is explained in the PortMergeIP algorithm 4.3. By doing this, the packet does not

require to go to the controller every time it hops; thus, the delay is reduced. The packet also

reaches the attacker’s network without getting lost.

Port-Mapping Algorithm (Switch-Side Processing)
INPUT- Packet coming at ri
for i= 1 to n do

 if packet is udp and dst-port==53 then
 Send the packet to controller

 else if packet is udp and src-port==53 then
 Send the packet to controller
 else Forward the packet to out-port
 end if

end for
Port-Mapping Algorithm (Controller-Side Processing)
for each packet-in from switch do

if packet is udp and dst-port==53 then
 if option==none then
 new-option=in-port
 else
 new-option=new-option + in-port
 end if
 // Create a packet with new-option field
 packet=create-new-packet (new-option)
 Forward the packet to out-port
 else if packet is udp and src-port==53 then
 // remove last field from option and put it in outgoing port
 out-port= option [-1]
 // create new option by removing last field
 new-option = option -1
 packet =create-new-packet (new-option)
 Forward the packet to new out-port
 end if
end for

75

Algorithm 4.3 : PortMergeIP

The advantages of the IP-Switching technique are (a) It prevents DRDoS attacks and

completely saves the victim from attack traffic, as proven in section 4.4.4.2. As proven in

section 4.4.4.2(c), it implements True Prevention at a little extra cost concerning the time

required to resolve the legitimate query; the only change required in the underlying network

infrastructure is in the functionality of the first-hop router of the ISP. Therefore, this router can

be SDN-enabled, and the rest of the infrastructure remains the same. On the other hand, there

is a limitation to this technique if the organization’s gateway router is not Network Address

Translation (NAT) enabled; reverse-path traffic will undoubtedly reach the correct network but

might not reach the correct source/attacker.

The Port-Mapping technique has the advantage of correctly implementing True

Prevention, and no attack traffic reaches the victim network. On the other hand, it also has a

few limitations. These are (a) the existing free space in the IP packet is a bottleneck, (b) since

PortMergeIP Algorithm (Switch-Side Processing)
INPUT- Packet coming at ri
for i= 1 to n do
 while rtr.id = rj

q
 and in-port = rj

qk or rtr.id = rj
q and in-port= rj

ql
 do

 if packet is UDP and src-port==53 then
 Send the packet to Controller
 else if packet is UDP and dst-port==53 then
 Send the packet to Controller
 else

 Forward the packet to out-port
 end if
 end while
 while rtr.id = rj

h and in-port = rj
hk do

 ipv4-src = SRC-IP-ADDR
 Forward the packet to out-port
 end while
 Forward the packet to out-port
 end for
Port-Mapping Algorithm (Controller-Side Processing)
 Same as Port-Mapping

76

the processing time at each intermediate router increases, it is comparatively a bit slower than

its counterpart, (c) it requires a change in the functionality of each router along the path, and

(d) if some link along the request – response path becomes non-functional while forwarding

the response packet, the corresponding packet is lost. On the other hand, the PortMergeIP

technique also correctly implements True Prevention; no attack traffic reaches the victim,

reduces delay, correctly routes the reverse-path traffic to the attacker’s machine or legitimate

user, overcomes the bottleneck in terms of free memory requirement for storing physical port

numbers, and requires minimal change in ISP network.

4.4.4 Results and Discussion

In this section the experimental setup done to validate IP-Switching, Port-Mapping, and

PortMergeIP is explained. To validate these algorithms various parameters such as throughput,

packet loss, etc are calculated.

4.4.4.1 Experimental Setup

As shown in Fig. 4.11, a topology was created in an SDN environment using mininet

to implement and validate the proposed algorithms. It shows four access networks (access n/w-

1 to access n/w-4). Access n/w-1 belongs to the victim’s organization, and access n/w’s 2, 3,

and 4 are in control of an attacker. Any number of hosts in these access networks can launch

the DDoS attack; we have used A1, A2, and A3 to launch the attack by spoofing the source IP

address field of the packets to that of a host in the victim’s network. Each access network is

connected to the ISP’s first-hop router through its gateway router. The ISPs’ first-hop routers

are assumed to know the downstream IP addresses. These first-hop routers are responsible for

switching the IP addresses in the PortMergeIP and IP switching algorithms. To implement the

proposed IP-Switching algorithm in mininet, we connect a node to the organization’s gateway

router, and the ISPs know the IP address of that node. It works as a NAT router and is

responsible for forwarding the packet to the respective host machine. Besides this, DNS servers

77

to generate a DRDoS attack and HTTP servers to generate traffic for analysis are also

connected to the network. We used Ryu as the SDN controller and OpenFlow as a protocol for

communication between the SDN controller and switch.

DRDoS attack traffic of approx. 1Gbps and 1 Mbps are generated using scapy. The

attackers combinedly generate this attack. After attack generation, both algorithms are tested

on various parameters described in more detail in section 4.4.4.2.

4.4.4.2 Result and analysis

The three prevention algorithms, IP-Switching, Port-Mapping, and PortMergeIP, are

tested on parameters like throughput and packet loss to check their validity against DDoS

attacks. To avoid redundancy, we have shown the parameters graphs for only attacker A1, as

the behavior of these parameters is similar for A1, A2, and A3.

A. Throughput calculation for the victim’s and the attacker’s network

Throughput is calculated on the victim’s and attacker’s sides from HTTP servers during

an attack of 1 Gbps for no prevention, IP-Switching, and PortMergeIP. The bandwidth for

throughput calculation at the victim’s side and attacker’s, when there is no prevention in place,

is kept at 1 Gbps as an attack of approx. 1Gbps reaches the victim. For IP-Switching and

PortMergeIP, the bandwidth is 400Mbps, as each attacker generates an attack of 400 Mbps

(combinedly forming an attack of approx. 1Gbps towards the victim). For the Port-Mapping

algorithm, as we are using only one controller, and all the packets go to a controller, the

attackers generated an attack of approx. 1Mbps (each attacker generating an attack of approx.

450 kbps); hence the bandwidth is kept at 500 kbps. Wget is used for the calculation of

throughput.

Figure 4.12 shows throughput for the time at the attacker’s and victim’s sides when no

Prevention approach is in place, and Figures 4.13- 4.15 show when IP-Switching, PortMergeIP,

and PortMapping are in place, respectively.

78

Figure 4.12 : Throughput without any prevention technique

Figure 4.13 : Throughput (with IP-Switching)

Twenty iterations are done for throughput calculation, so #1-A represents throughput at

the attacker in the first iteration, #1-V represents throughput at the victim in the first iteration,

and so on. The graph’s dots represent individual iterations, and the line represents the average.

20

40

60

80

100

120

1 _ 3 4 _ 6 7 _ 9 1 0 _ 1 2 1 3 _ 1 5 1 6 _ 1 8 1 9 _ 2 1 2 2 _ 2 4 2 5 _ 2 7 2 8 _ 3 0

T
hr

ou
gh

pu
t(

 M
B

ps
)

Time (seconds)

Throughput(with No Prevention)

#1-A #1-V #2-A #2-V #3-A #3-V #4-A
#4-V #5-A #5-V #6-A #6-V #7-A #7-V
#8-A #8-V #9-A #9-V #10-A #10-V #11-A
#11-V #12-A #12-V #13-A #13-V #14-A #14-V
#15-A #15-V #16-A #16-V #17-A #17-V #18-A
#18-V #19-A #19-V #20-A #20-V A-Avg V-Avg

20

25

30

35

40

45

50

1 _ 8 9 _ 1 6 1 7 _ 2 4 2 5 _ 3 2 3 3 _ 4 0 4 1 _ 4 8 4 9 _ 5 6 5 7 _ 6 4 6 5 _ 7 2 7 3 _ 8 0

T
hr

ou
gh

pu
t (

M
B

ps
)

Time (seconds)

Throughput (with IP Switching)

#1-A #1-V #2-A #2-V #3-A #3-V #4-A
#4-V #5-A #5-V #6-A #6-V #7-A #7-V
#8-A #8-V #9-A #9-V #10-A #10-V #11-A
#11-V #12-A #12-V #13-A #13-V #14-A #14-V
#15-A #15-V #16-A #16-V #17-A #17-V #18-A
#18-V #19-A #19-V #20-A #20-V A-Avg V-Avg

79

Figure 4.14 : Throughput (with PortMergeIP)

Figure 4.15 : Throughput (with PortMapping)

It is clear from the charts that when there is no prevention approach in place, throughput

drops at the victim as soon as the attack starts at the 15th second, and when prevention

approaches are in place, throughput drops at the attacker, not at the victim. It is because, with

0

10

20

30

40

50

60

1 _ 6 7 _ 1 2 1 3 _ 1 8 1 9 _ 2 4 2 5 _ 3 0 3 1 _ 3 6 3 7 _ 4 2 4 3 _ 4 8 4 9 _ 5 4 5 5 _ 6 0 6 1 _ 6 6 6 7 _ 7 2

T
hr

ou
gh

pu
t(

K
B

ps
)

Time(seconds)

Throughput(with PortMapping)

#1-A #1-V #2-A #2-V #3-A #3-V #4-A
#4-V #5-A #5-V #6-A #6-V #7-A #7-V
#8-A #8-V #9-A #9-V #10-A #10-V #11-A
#11-V #12-A #12-V #13-A #13-V #14-A #14-V
#15-A #15-V #16-A #16-V #17-A #17-V #18-A
#18-V #19-A #19-V #20-A #20-V A-Avg V-Avg

20

25

30

35

40

45

50

1 _ 6 7 _ 1 2 1 3 _ 1 8 1 9 _ 2 4 2 5 _ 3 0 3 1 _ 3 6 3 7 _ 4 2 4 3 _ 4 8 4 9 _ 5 4 5 5 _ 6 0

T
hr

ou
gh

pu
t (

M
B

ps
)

Time (seconds)

Throughput (with PortMergeIP)

#1-A #1-V #2-A #2-V #3-A #3-V #4-A
#4-V #5-A #5-V #6-A #6-V #7-A #7-V
#8-A #8-V #9-A #9-V #10-A #10-V #11-A
#11-V #12-A #12-V #13-A #13-V #14-A #14-V
#15-A #15-V #16-A #16-V #17-A #17-V #18-A
#18-V #19-A #19-V #20-A #20-V A-Avg V-Avg

80

prevention approaches, the response goes to the originator of the attack (the attacker),

irrespective of the spoofed IP address; hence proving that the proposed approach prevents the

attack. The respective data values are also shown in Appendix B.

B. Packet loss due to attack

We calculate the loss of packets due to an attack in the network in both cases when the

prevention algorithms are in place (Figures 4.17-4.19) and when it is not (Figure 4.16). The

intensities of attacks are kept the same as that for throughput calculation. The link bandwidth

of the attacker’s and victim’s network is 500 Mbps for no prevention. For IP-Switching and

PortMergeIP, the link bandwidth is 100 Mbps; for Port-Mapping, it is kept at 300 kbps. Ping

is started between attacker A1 and the first HTTP server and between V1 and the second HTTP

server to calculate packet loss.

Figure 4.16 : Packet loss (without any prevention technique in place)

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

Pa
ck

et
 L

os
s

Time (Intervals)

Packet Loss (With No prevention)

#1-A #2-A #3-A #4-A #5-A #6-A #7-A
#8-A #9-A #10-A #11-A #12-A #13-A #14-A
#5-A #16-A #17-A #18-A #19-A #20-A Avg-A
#1-V #2-V #3-V #4-V #5-V #6-V #7-V
#8-V #9-V #10-V #11-V #12-V #13-V #14-V
#5-V #16-V #17-V #18-V #19-V #20-V Avg-V

81

Figure 4.17 : Packet loss w.r.t IP-Switching

As soon as the attack begins, packet loss occurs at the victim, while no packet loss

occurs at the attacker (Figure 4.16). But when our proposed approaches are in place, the victim

remains unaffected, and packet loss occurs at the attacker (Figures 4.17-4.19). This experiment

is also performed for twenty iterations.

Figure 4.18 : Packet loss w.r.t PortMergeIP

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

Pa
ck

et
 L

os
s

Time (Intervals)

Packet Loss (With IP Switching)

#1-A #2-A #3-A #4-A #5-A #6-A #7-A
#8-A #9-A #10-A #11-A #12-A #13-A #14-A
#15-A #16-A #17-A #18-A #19-A #20-A Avg-A
#1-V #2-V #3-V #4-V #5-V #6-V #7-V
#8-V #9-V #10-V #11-V #12-V #13-V #14-V
#15-V #16-V #17-V #18-V #19-V #20-V Avg-V

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

Pa
ck

et
 L

os
s

Time (Intervals)

Packet Loss (With PortMergeIP)

#1-A #2-A #3-A #4-A #5-A #6-A #7-A
#8-A #9-A #10-A #11-A #12-A #13-A #14-A
#15-A #16-A #17-A #18-A #19-A #20-A Avg-A
#1-V #2-V #3-V #4-V #5-V #6-V #7-V
#8-V #9-V #10-V #11-V #12-V #13-V #14-V
#15-V #16-V #17-V #18-V #19-V #20-V Avg-V

82

Figure 4.19 : Packet loss w.r.t PortMapping

C. The delay in DNS request response due to prevention algorithms-

The proposed DDoS prevention algorithms introduce an extra delay in the DNS

request-response packets. Therefore, we need to measure this delay. We calculate it for the

proposed algorithms and the authentication approach. Figure 4.20 shows the delay between

DNS request-response packets when the prevention algorithms are implemented. Baseline

delay indicates the average delay without any prevention algorithm, which is nearly 0.09

seconds. After this, PortMergeIP has slightly more delay as the packet goes to the controller

after IP is switched.

Furthermore, the IP switching technique has more delay than PortMergeIP as after

IP-Switching, we have implemented the NAT router mechanism to route the packet to the

actual host by connecting the gateway router to a host mimicking NAT router functionality.

It is the limitation of our simulation environment. The Port-Mapping technique delays

slightly more as all packets go to the controller at each router before they are forwarded. The

highest delay is in the authentication, as it needs one additional RTT before the server

receives the DNS response.

0%

40%

80%

120%

1 2 3 4 5 6 7 8 9 10

Pa
ck

et
 L

os
s

Time (Intervals)

Packet Loss (With PortMapping)

#1-A #2-A #3-A #4-A #5-A #6-A #7-A
#8-A #9-A #10-A #11-A #12-A #13-A #14-A
#15-A #16-A #17-A #18-A #19-A #20-A Avg-A
#1-V #2-V #3-V #4-V #5-V #6-V #7-V
#8-V #9-V #10-V #11-V #12-V #13-V #14-V
#5-V #16-V #17-V #18-V #19-V #20-V Avg-V

83

Figure 4.20 : DNS request-response delay due to prevention algorithms

4.4.4.3 Attack mitigation

The throughput and packet loss results show that the targeted victim is always safe as

no spoofed traffic reaches the victim. All the attack traffic is sent to the attacker. This leads to

constraining the attacker's available bandwidth and temporarily mitigating the attack. This can

be shown through Bandwidth Delay Product (BDP).

The congestion in the attacker’s network is calculated to prove that the attack will be

mitigated for some time using our algorithms. In the results section, we have shown how our

algorithms penalize the attacker’s network. Now, using the BDP, we show how the congestion

in the attacker’s network changes. As the name suggests, the BDP is the product of bandwidth

and delay in the network (Bandwidth-Delay Product). It tells about the data, which is yet to be

acknowledged, present in the link at any given time. It is the in-flight data often referred to as

the window size. To put it formally, if c is the data rate of a link (“bandwidth”) and RTT is the

round-trip time delay, then the BDP defines the window W given by eq (4.1).

W= c × RTT ……………………….. (4.1)

So, through this, we can find the congestion in the network. With no prevention

algorithm in place all the attack traffic goes toward the victim’s network. The BDP of victim’s

network increases gradually until the allowed TCP window size of all the links in between is

0

0.05

0.1

0.15

0.2

0.25

Baseline IP Switching Portmapping PortMergeIP Authentication

D
el

ay
 in

 se
co

nd
s

DNS Request-Response Delay

84

reached, as shown in Figure 4.21. As the attacker constantly sends request packets to the DNS

server, which in turn sends responses to the victim, the victim’s network is in continuous

congestion, and out of 1000 packets sent, only 276 are received.

Figure 4.21 : Congestion in victim’s network when there is no prevention algorithm

Figure 4.22 : Congestion in attacker’s network when prevention algorithm is in place.

A change in the behavior of the BDP line on the attacker’s side can be seen in Figure

4.22. As shown in Figure 4.22, the BDP in the network does not increase gradually till it

becomes constant; instead, it oscillates. When the attacker’s network is congested due to all the

DNS responses coming to it, the attacker cannot send any more request packets; as a result,

there is no response from the DNS server, and for that duration, the attacker’s network becomes

congestion free. Now the attacker can send packets again, leading to another congestion, and

the same process repeats, i.e., the reason why the B-D product line oscillates. This process

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

0 50 100 150 200 250 300

B
D

P

No of Packets

BDP on Victim's Side with No Prevention Approach

0
500000

1000000
1500000
2000000
2500000
3000000
3500000
4000000
4500000
5000000

1 101 201 301 401 501 601 701 801 901 1001

B
D

P

No of Packets

Bandwith Delay Product at Attacker's Side

85

repeats till the attacker stops sending the packets. The attack is mitigated for the amount of

time the attacker cannot send packets. Hence as per the definition provided of True Prevention,

the attack is mitigated automatically for some time. Based on these readings, if the ISP wants

to, it can block the attacker, thus mitigating the attack. This time depends majorly upon the

bandwidth of an attacker. Moreover, through the proposed techniques, the attacker will always

attack itself; hence the techniques will penalize the attacker.

4.5 Summary of the Chapter

In this chapter, we proposed four techniques to prevent DRDoS attacks with

implementation and results specific to DNS amplification attacks. All the proposed

techniques use the common philosophy to equip underlying network infrastructure with

enough rules/intelligence to enforce reverse path forwarding, the same as that of

corresponding forward-path forwarding of the client-server communication. The proposed

approaches provide prevention against DRDoS attacks focusing on reverse forwarding with

two subcategories. With such rules, an attacker would attack itself. The implementation

results show that the targeted victim is always safe as no spoofed traffic reaches the victim.

With the proposed approaches, the victim remains unaffected while the attack traffic goes to

the attacker itself, choking its bandwidth. This leads to attack mitigation for some time T.

The authentication approach (Sahri & Okamura, 2016) is the algorithm we used to

compare our techniques by focusing mainly on the additional RTT needed to get the final

DNS response. The reason for picking this algorithm is that they also prevent DNS

amplification attacks, and its underlying architecture is an SDN environment. SymSDN

shows a delay of .093 seconds and the authentication algorithm shows the highest delay of

.15 seconds. For IP Switching, PortMapping, and PortMergeIP, the highest delay is shown

86

by the authentication approach only as it needs one additional RTT before the server receives

the DNS response.

********** End of Chapter **********

87

CHAPTER 5- Prevention Of DRDoS Attacks with Reliable-Dynamic Path Identifiers

5.1 Introduction

As mentioned in chapter 1, shifting the defense domain from detection to attack

prevention is a more promising strategy. In this chapter, to prevent DRDoS attacks, we use

PIDs. PIDs are used as a packet routing mechanism for ICNs (H. Luo et al., 2017), (Hongbin

Luo et al., 2014). We propose using these PIDs to prevent DRDoS attacks by ensuring that the

response packet path is the same as the corresponding request packet, like in previous chapter.

Different authors use PIDs to avoid DRDoS attacks (H. Luo et al., 2017), (Hongbin Luo et al.,

2014), (Al-Duwairi et al., 2020). Because of PIDs, DRDoS attacks are not possible even if the

source-IP addresses are spoofed because the response packet is not forwarded using regular IP

forwarding (H. Luo et al., 2017). Instead, it is based on the PIDs stored in the corresponding

request packet. (Hongbin Luo et al., 2014) propose these PIDs as static. Static PIDs prevent

DRDoS attacks but make the network vulnerable to flooding attacks. If an attacker sniffs these

PIDs (by sniffing the network packet), a DDoS attack can be launched toward the sender of

these packets. Hence, DPIDs are proposed by (H. Luo et al., 2017). However, the proposed

approaches are prone to packet drops during PID updates.

In the preceding chapter, we discussed storing path information within the packet to

ensure that the response path aligns with the request path. In this chapter, we present a novel

concept called Reliable-Dynamic PIDs (RDPIDs) as a means of preventing DRDoS attacks.

RDPIDs are dynamic in nature, making them effective against DRDoS attacks and flooding

attacks (possible because of MITM learning static PIDs). They offer enhanced security against

DDoS attacks through the innovative incorporation of Reserved PIDs (RPIDs) and Open PIDs

(OPIDs). Additionally, RDPID boasts reduced PID negotiation delay compared to a prior study

88

(H. Luo et al., 2017). Further details on RDPID are provided in section 5.3, while the

subsequent section outlines the existing literature on the utilization of PIDs.

5.2 Related Work

In this section, related work concerning DDoS prevention using PIDs is presented.

Instead of using traditional IP forwarding to transmit packets, (Godfrey et al., 2009) have

proposed using pathlets, which are inter-domain routing objects. The authors propose to use a

standard, wireless path-vector protocol with a pathlet declaration containing forward identifier

for pathlets and a sequence of vnode identifiers. CoLoR, an approach proposed by Luo et al.

(Hongbin Luo et al., 2014), says that the future Internet will continue to be organized in

domains with provider/consumer/peer relationships. Every domain has a logical resource

manager, which maintains a registry table that stores content access information identified by

source identifiers. CoLoR also uses two local namespaces: domain-based connectors and route

identifiers (PIDs). The domain in CoLoR can use different local intra-domain protocols. Inter-

domain routing is based on PIDs. In CoLoR, users send GET messages to find their desired

content. In the GET messages, PIDs of the inter-domain path are stored in the packet. The

routing from the content provider to the content consumer is done based on these PIDs. The

PIDs are static, so a flooding attack is still possible. The other approach proposed by (H. Luo

et al., 2017) describes how flooding attacks are still possible if the attackers can discover these

inter-domain identifiers. The ways to know the PIDs are also described in detail, i.e., GET

luring and botnet cooperation. The attackers learn the PIDs between there and the victim’s

network through these ways. The PIDs are static and do not change, so the attackers can launch

a successful attack. That is why (H. Luo et al., 2017) proposed DPIDs, so even if the attackers

learn the PIDs and launch the attack, the attack cannot continue as the PIDs will change after

some time. We also used DPIDs and compared our approach with the one proposed by (H. Luo

89

et al., 2017). (Al-Duwairi et al., 2020) have also used the concept of DPID with Get-message

logging. This approach is mainly for ICNs where users request information using Get

messaging. The reason for logging Get messages for DDoS detection and prevention is that

normal users correspond to a Get message while an attacker does not. Here, the ICN routers

log Get request messages using bloom filters. Bloom filters will help in comprehensive logging,

and in return, they don’t even take up much space. This approach is claimed to give better

results against DDoS Prevention in comparison to DPID.

5.3 Proposed Methodology

The proposed technique for DDoS prevention uses PIDs described in (H. Luo et al.,

2017) to identify the inter-domain paths. Here domain refers to an independently maintained

network connected to other domains via Border Routers (BRs). A domain might be an AS’s or

ISP’s network in the Internet architecture. We assume that these domains are numbered D1,

D2… Dn. Each domain has one or more BR through which network traffic is routed to another

domain. Assume these BRs in each domain are also numbered B1, B2, …, and Bm. In addition,

each domain has a Resource Manager (RM) whose task is to share PIDs with the BRs to

maintain inter-domain routing. Figure 5.1 shows all these network elements. It shows six

domains (D1 to D6), BRs in each domain, RMs, and hosts. Host-1 and host-2 are located in

domain D1, and host-3 is in D2. It also shows a DNS server in D3. For each link connecting the

two BRs, a PID is generated and shared before any communication can start. These PIDs are

generated and distributed by a central entity called Network Manager (NM). Although we

assume NM to be a centralized entity in this work, it can be maintained as a distributed system.

90

For more clarity, let’s take an example. Suppose, for inter-domain routing, PID1 is used

between the domains D1 and D4, PID2 between D2 and D4, PID3 between D4 and D5, PID4

between D5 and D6, and PID5 between D6 and D3. These PIDs are negotiated and shared with

the BRs before any communication can start. Also, suppose host-1 in D1 generates a DNS

request packet for the DNS server in D3. This packet will be routed to D3 using any inter-

domain routing protocol, as described in (Avramopoulos & Suchara, 2009). The respective

BRs in between will push (i.e., store) the associated PIDs in the options and padding field of

the network packet’s IP header. Thus, PID1, PID3, PID4, and PID5 will be stored in the DNS

request packet.

Figure 5.1 : Network setup showing Domains, Bord Routers, and Resource Managers.

The corresponding response packet will follow the same path using these PIDs (rather

than IP forwarding) to reach back to host-1. With this approach, even if source-IP spoofing is

done by host-1 for any potential DRDoS attack, the response packet is assured to go back to

the attacker itself. Thus, an attacker will attack itself. There are two following possibilities with

PID assignments.

91

a) As proposed by (Hongbin Luo et al., 2014), PIDs can be assigned once and can be made

static. This approach has a disadvantage in that an attacker can learn these PID

sequences by sniffing the packets or deploying a honeypot “server” in the network. A

sniffed packet (or a packet coming to the honeypot) from some host-H will have a PID

sequence. The reverse of this sequence refers to the PID path back to the host-H. An

attacker could use this knowledge to launch a flooding attack on H.

b) To overcome the above problem, as proposed in (H. Luo et al., 2017), PIDs can be

made dynamic in the sense that they change after every fixed time interval T. Of course,

this technique results in an increase in network traffic during PID updates. The value

of T being less results in network congestion and T being more makes the source host

susceptible to flooding attack, as with static PIDs.

We propose RDPID to tackle the above issues. The proposed methodology is explained

using three points: (a) RDPID Generation, (b) Request-Routing, and (c) Response-Routing

5.3.1 Reliable-Dynamic PID (RDPID) Generation

Figure 5.2 shows the RPID and OPID generation for each link interface connecting two

BRs. If any two BRs (BR1 and BR2 as shown in Figure 5.2) are connected with a link L, the

RPID for an interface of BR1 becomes OPID for an interface of BR2 and vice versa.

Figure 5.2 : Reserved and Open PIDs

92

Algorithm 5.1 : PID Generation Algorithm

Let
D be the total number of domains, numbered 1... D
BD: Total number of Border Routers (BR) in Dth domain, numbered 1…BD, for all D

 : Link_ID between Ith domain’s Jth BR and Kth domain’s Mth BR (1 I D, 1 K
D, 1 J BI, 1 M BK)

 : Number of links to which Jth BR of Ith domain is connected to.
RPID (): Reserved PID for Link_ID
OPID (): Open PID for Link_ID
[Note that RPID () = OPID ()]
PID_Generation (Time interval T)
{
 Input T: time interval for PID update.
 Output: Pair [RPID () , OPID ()] for all Link_ID’s.
 Repeat after every time interval T
 {
 For d = 1 to D
 Generate_Keys (d)
 }
 Distribute all [RPID () , OPID ()] pairs for all Links via RM’s.
}
Generate_Keys (d)
{
 Input d: Domain for which key pairs are to be generated.
 Output: Unique RPID and OPID for each link interface.
 For b = 1 to Bd
 {
 For p = 1 to
 Key = GENERATE_UNIQUE_KEY();
 x = domain to which pth link of Bd is connected to.
 y = BR to which pth link of Bd is connected to.
 RKEY () = OKEY () = key
 }
}

93

The procedure PID_Generation(), shown in Algorithm 5.1, runs periodically after every

time interval T. For each domain, procedure Generate_Keys () generates RPIDs for each link

of each of its BR. The procedure assumes a function GENERATE_UNIQUE_KEY(), which

generates a unique key for a specific domain. Finally, the NM communicates all the pairs for a

domain with the corresponding RM, which shares the keys with its BRs. Now, these shared

PIDs can be used for communication. It should be noted that while each PID is not necessary

to be unique in the network, each PID must be unique inside a domain. In other words, these

PIDs are used to identify neighboring devices linked to a single device; thus, they do not need

to be unique across the network but only within a domain.

5.3.2 Request Routing

While forwarding a request packet, a BR, before sending the packet to another BR, must

append the open PID received from that BR within the options field of the IP header of a

network packet. The options field can be considered as a stack, and the PIDs are inserted on

top of this stack. The BR then consults these “stacked” PIDs to receive the response packets.

Figure 5.3 : Request packet routing

Figure 5.3 depicts the entire request packet routing. It shows six BRs, and each is

assumed to be in a different domain. The link interface of each BR shows the OPID of the next

BR on the link. The request packet is to be forwarded from BR1 to BR6. Based on the standard

94

IP routing, BR1 should first send the packet to BR2. Hence, BR1 appends the PID value two

within the options field of the packet and sends it. BR2 verifies this PID for correctness upon

receiving the packet; it should be its RPID. If the appended PID is malicious, the packet is

dropped.

Similarly, BR2 now appends the PID value 4 to send the packet to BR4. In this manner,

the entire routing is performed. The packet contains the entire flow indicated through the PIDs

at the destination. In this case, it is (2,4,5,6). This PID sequence is then used to trace the packet

back to the source.

5.3.3 Response Routing

Once the request packet has been received at the destination, the PID sequence is

referred for forwarding the corresponding response packet. Each BR maintains a PID table that

stores RPIDs and OPIDs of its interfaces.

Figure 5.4 : Response packet routing

The last PID in the options field (pointed to by the top of the stack pointer) is referred

to determine the subsequent BR to which the packet should be forwarded. Once determined,

the PID pointed at the top of the stack is popped, and the remaining PID sequence is sent along

with it. Figure 5.4 portrays the flow. It shows the PID table of BR4. When BR4 receives the

response packet with PID sequence (2, 4), with 4 being the last PID, it refers to its own PID

95

table to determine the next node on which packet would be forwarded. This last PID is then

popped, and the packet with the remaining PID sequence is sent further. This exact procedure

is then continued further till the packet reaches the destination.

5.4 RDPID v/s DPID

In the past, single PIDs were used to combat DDoS attacks; however, they are vulnerable

to other forms of attacks. Instead, using two PIDs (open and reserved) for each link interface

helps secure the network further. For example, it secures the network from Syn flood type of

DDoS attacks (also called (half-open attacks)) (Imperva). The attacker sends a half-open

connection request to the server as a client of this type. Of course, the source IP in this request

packet can be spoofed. The server acknowledges the connection and waits for the final

acknowledgment. Since the source IP was spoofed or otherwise, this acknowledgment will not

arrive; thus, server resources are wasted.

Figure 5.5 : Advantages of using RDPID over DPID

Consider the scenario depicted in Figure 5.5. Assume that host h1 sends a request packet

to host h2, and the underlying system uses a single PID for each link (shown within a square

box on top of each link). The routers in between would append the PIDs [1, 3, 5, 7] as the packet

96

traverses through the links A, B, C, and D. Now, if the host h2 has to send a request packet to

h1, the PIDs would also be [1,3,5,7], but appended in reverse order, i.e. [7, 5, 3, 1]. A sniffer at

BR5, trying to sniff incoming packets, would know this PID sequence for communication

between h1 and h2. As a result, an attacker can construct a spoofed request packet somewhere

between h2 and h1, thus launching a flooding DDoS attack against h1.

With two PIDs per router interface, such attacks are harder to launch. Here, the

sequence remains the same for the packet from h1 to h2, i.e., [1,3,5,7]. However, if h2 generates

a packet for h1, the PID sequence would be [8,6,4,2]. Therefore, after sniffing the request

packet generated from h1 at BR5 and getting the PID sequence [1, 3, 5, 7], when an attacker

generates a spoofed request packet from h2 to h1, the packet will be discarded at BR4; as for it

to forward any request, the PID appended should be 8. But, of course, an attacker can launch a

flooding attack toward host h1 using response packets. Its mitigation time depends upon the

RDPID update interval.

5.5 Simulation and Results

The topology shown in Figure 5.1 was emulated in mininet, using Click (Kohler et al.,

2000) as a router. The purpose is to demonstrate that the proposed technique can prevent DDoS

attacks. Click’s extensible language for deployment enables the creation of highly

customizable router functionalities. This way, routers can be implemented in Linux hardware

more efficiently. Also, Click achieves a very high forwarding rate per second. To do this, Click

removes the interrupt-driven architecture favoring polling, avoiding expensive context

switches and memory accesses. Mininet is a network emulator or, more accurately, a network

orchestration system. It works with a set of endpoints, switches, routers, and a single Linux

kernel connection.

97

The proposed technique’s effectiveness is shown to prevent the DRDoS attacks from

reaching the victim, prevent flooding attacks, and the effect of keys distribution on network

functioning. The measured parameters are compared with the DPID technique as presented in

(H. Luo et al., 2017).

To validate the prevention of DDoS attacks, in the simulated network (Figure 5.1), host-

1, as an attacker, generates DNS request packets with source IP spoofed to that of host-3. To

send the request packet from h1 to the DNS server configured in D3, the PID’s are updated by

the NM only on the three intermediate RM’s. It saves the time for updating because it is not

needed for border domains.

To test and validate the resilience of RDPID-based routing against preventing DRDoS

flooding attacks, host-1 in Figure 5.1 sends the DNS request packets to the DNS server, which

is configured as a network honeypot (or otherwise) that allows an attacker to sniff the packets.

Thus, an attacker in D3 learns the PID sequence and launches a flooding attack of 20 Mbps

against host-1. This attack rate was chosen to compare the effectiveness of RDPID with that of

DPID, as proposed by (H. Luo et al., 2017). As shown in Figure 5.6 four different scenarios

were taken. First, when PIDs are static (i.e., no RDPIDs). Second, when the RDPID routing

scheme is in place and its update period is 30 seconds. Third, when the RDPID update period

is 60 seconds; fourth, reduce the RDPID update period to 10 seconds upon detection of an

attack. Three of these four scenarios (i.e., first, second, and fourth) are also considered by (H.

Luo et al., 2017) to show resiliency against attacks. As expected, the victim host-1 is subjected

to a full 20Mbps attack with static PIDs. The attack gets mitigated in 33.2 seconds with an

RDPID update period of 30 seconds. With an update period of 60 seconds, the attack gets

mitigated in 70 seconds (as against 115 seconds reported in (H. Luo et al., 2017)). Also, with

an update period of 10 seconds after attack detection, it got mitigated in 14 seconds (as against

18 seconds reported in (H. Luo et al., 2017)).

98

Figure 5.6 : Prevention of DDoS attacks

The performance of RDPID was further evaluated using PID update delay. It is the sum

of time NM takes to share the RDPIDs with the intermediate RMs and then RMs to share them

with its BRs. 20000 PID update delay samples were recorded by running the proposed RDPID

distribution in the topology. As we compare our proposed work with (H. Luo et al., 2017), we

only calculate the CDF for OPID update delay. Figure 5.8 shows the CDF for the OPID update

delay, which is 10 ms. (H. Luo et al., 2017) calculated the PID negotiation delay and PID

distribution delay. The former refers to the interval between when an RM sends the PID update

message to its neighbor RM and receiving a corresponding acknowledgment. The latter is when

an RM sends the PID distribution message to a BR and receives the corresponding

acknowledgment. The sum of these two delays is the PID update delay. (H. Luo et al., 2017)

reported an average of 20 ms for PID negotiation and 3 ms for PID distribution, a total of 23

ms. With RDPID, the OPID (which is RPID for opposite BR) update was only 10 ms. Figure

5.8 shows that it was only 6 ms with a 99% probability. This reduction can be attributed to the

0

5

10

15

20

25

1 0 2 0 3 0 3 5 5 0 5 5 6 0 6 5 7 0 8 0 8 5 9 0

A
tt

ac
k

tr
af

fic
 in

 M
bp

s

Time (s)

RDPID update period 60 seconds

RDPID update period 30 seconds

Detection and then RDPID 10 seconds

No RDPID

99

fact that in our approach, RMs do not negotiate RDPIDs; NM’s job is to update all the PIDs to

RMs.

The loss of packets caused due to RDPID update is shown in Figure 5.7. As can be seen,

with a PID update period of 50 seconds, the loss is 1%, and with that of 100 seconds, it reduces

to 0%.

Figure 5.7 : Loss of packets due to PID update

Figure 5.8 : Time taken to update PIDs

C
D

F

Delay (s)

100

Further, the probability P of determining the PID depends on the number of hops (h)

and the size of character space Sch. It is given by eq (5.1).

 ……….…. (5.1)

Our experiment has a network with four hops for a packet to reach the DNS server and a

character space of 52 characters. Even in this small network, the probability of deducing the

correct PID sequence by an attacker is 10-7, as it has more than 7 million possibilities. Further,

with the PID change interval of 30 seconds, for an attacker to sustain an attack of 1 minute, the

probability reduces to 10-14, having more than 50 million possibilities of different PID

sequences.

5.6 Summary of the Chapter

This chapter proposed a DDoS prevention approach using RDPIDs against DPIDs

primarily used for ICNs. The experiments were conducted using DNS-based request-response

client-server inter-domain architecture. It is proved that with RDPID based routing mechanism

in place, the victim is constantly prevented from DRDoS attacks. Also, a flooding attack is

automatically mitigated within some constant time, depending on the PID update period. If the

attacker tries to guess the used DPIDs, there are approximately 50 million possible PID

sequences to guess, making it a computationally costly business for the attacker. Via different

simulations, it is shown that with our proposed approach, the PID negotiation time reduces to

6 ms, as against 23 ms reported in (H. Luo et al., 2017). Also, the attack gets mitigated in 70

seconds with a PID update period of 60 seconds (as against 115 seconds reported in (H. Luo et

al., 2017)).

********** End of Chapter **********

101

CHAPTER 6- PODIBC: Prevention of DRDoS Attacks using Identity -Based

Cryptography in Software-Defined Networking Environment

6.1 Introduction

The previous chapters provide prevention against DRDoS attacks using reverse

forwarding rules. One more promising approach is source authentication, as it prevents IP

spoofing. A way to do this is to use signatures to authenticate the sender's identity (Schridde et

al., 2009). Signatures mean digitally signing something from a key. Private keys are used to

sign the object, and public keys are used to verify them. Generally, they require a dedicated

external service that provides public-key certificates for corresponding private keys. So, private

keys remain confidential to the signee, and public keys can be known to all. The complexity of

this technique is that we need separate entities, i.e., PKES (Hu et al., 2017), within the network

to record all the key pairs. Managing and maintaining these servers to store and distribute all

the certificates is a hassle.

The other more promising approach is to use IBC (Long & Xiong, 2020) (“IEEE

Standard for Identity-Based Cryptographic Techniques Using Pairings,” 2013), as explained in

Chapter 3. It is a kind of public-key cryptography in which an identity unique to the

participating entity is used as a public key with a corresponding private key. It eliminates the

need for separate servers (e.g., PKES servers) to distribute public key certificates.

To prevent DRDoS attacks, in the chapter, we propose using the BLMQ signature

scheme (an IBS scheme) with SDN. We name the proposed scheme PoDIBC (Prevention of

DRDoS attacks using Identity-Based Cryptography, IBC). The following are the salient

features and advantages of PoDIBC:

102

a) To implement it, only the edge networks which require preventing their resources

against DRDoS attacks need to be SDN enabled, and the core network of the Internet

architecture remains unaffected.

b) (Schridde et al., 2009) proposed an IBS scheme to prevent IP spoofing. But that scheme

has an issue: - if an identity is known, the attacker can also generate the private key,

defeating the purpose of signing with a secure private key. We prove this shortcoming

in section 6.5.3 and that the proposed PoDIBC technique solves this issue.

c) Since a signature is embedded within the network packet, PoDIBC requires

approximately one-sixth of the network packet space as compared to (Schridde et al.,

2009).

d) PoDIBC also prevents replay attacks by combining the timestamp with the message to

be signed.

e) The packet identity itself is used as a public key, thus eliminating the need for separate

servers to provide public keys. The private keys are generated with the help of this

identity and are unique to this identity. For verification also, the same identity is used.

In PoDIBC, the SDN controller is responsible for generating and sharing the private

keys to all the hosts connected in the edge network based on the respective hosts' identities (IP

addresses).

6.2 Related Work

In computer communications, various techniques for source verification/authentication

to prevent IP spoofing have been proposed by different authors. One such technique is

presented by (Mishra et al., 2023). It improves Datagram Transport Layer Security (DTLS) by

using lightweight authentication encryption with Quark. The authors propososed an improved

method of over-hearing to prevent various types of attacks such as DOS, Man In The Middle

103

(MITM), active assaults, and passive attacks. Another proposed technique is by (X. Liu et al.,

2008), who suggest adding a new field, called Passport, within the IP header to prevent

spoofing. When the packet leaves its originating AS, the border/egress router attaches the

message authentication code to the passport header of the packet. A secret key is shared in

advance between the source AS and each AS in between the source and the destination. With

the help of this key and the message authentication code, the inter-between ASs can verify

whether or not the incoming packet belongs to that particular source address. The limitation of

this technique is that Diffie-Hellman is used to exchange the keys, which in itself is not secure.

A new IPv6 address generation algorithm is proposed by (Y. Liu et al., 2015). The basis of this

algorithm is time and NID, and the proposed approach has three steps. First, a scalable structure

of NID is designed. The address generation algorithm for IPv6 follows it. Finally, the

concatenation of network identity and time is encrypted using the IDEA algorithm ff,

generating an address assigned to the host. In this proposed technique, the authenticity of a

source address is achieved with the help of SAVA, which involves SAVI devices (Wu et al.,

2013). Such network devices complement ingress filtering (Wu et al., 2013) by adding IP

address validity to an individual source. This dependency on SAVI devices is a drawback.

(Q. Zhou et al., 2021) propose the integration of SAVI and SDN to meet SAVI

requirements in large-scale networks. The authors state that a central controller substantially

facilitates the validation process since the SAVI based on SDN can verify the legitimacy of

each passing packet and delete illegitimate ones in accordance with rules set by the controller.

The authors created a versatile framework for SDN-based networks that utilize the available

resources effectively while enabling centralized management. To detect anomalous activities

and enable differentiated security management, they introduced a state partitioning and

transitioning model for dynamic source address validation and binding relationships in the first

level of the flow table. SDN-Ti, an SDN-based solution for identifying and tracing attackers in

104

IPv6 networks, is presented by (C. Li et al., 2019). It involves translating the source IPv6

address of the packet to a trusted ID-encoded address generated by the SDN controller,

enabling effective identification of the attacker by the network administrator. This solution

supports multiple IPv6 address assignment scenarios and does not require any modification on

the end device, making it easy to deploy. The results suggest that SDN-Ti is a practical solution

with the potential to be deployed for a large number of users.

In addition to network packet modification, alternative methods have been suggested

that utilize the creation of certificates to sign packets and mitigate the risk of IP spoofing. These

certificates can be supported by a third party like a Certifying Authority (CA) (Cooper et al.,

2008), (Schridde et al., 2009) or can be self-certified (Andersen et al., 2008). The primary issue

with CA is that separate infrastructure is needed to maintain the keys, like in IPSec (Frankel &

Krishnan, 2011), (Kent & Atkinson, 1998), and TrueID (Hu et al., 2017).

The technique known as CGA (Aura, 2005) involves generating some of the bits in an

IPv6 address by hashing the host's public key. In HIP proposed by (Moskowitz & Nikander,

2006), the public key is used as the host's identity and is created by hashing the corresponding

host identifier. However, a drawback of these methods is that public keys must be generated

prior to address generation, and for HIP the protocol stack or the entire Internet infrastructure

would need to be modified.

To avoid the change in the protocol stack (and/or modifying the Internet architecture),

(Schridde et al., 2009) proposed the true-IP technique to prevent DRDoS attacks. TrueIP

leverages IBE to prevent IP spoofing by signing packets with the IP address via an IBC system.

This eliminates the need for public key distribution and Certificate Authority (CA)

infrastructures. The identity private key generator generates the private identity key and stores

a set of public parameters, while the sender of the packets signs them using their private key,

which is generated based on their IP address and public parameters. However, one drawback

105

of the TrueIP scheme is that if an identity is known, an attacker can generate a private key,

thereby compromising the security of the system. We prove this shortcoming in section 6.5.3

and prove that the proposed PoDIBC technique solves this issue. IBS scheme to provide

stronger authentication between devices is proposed by (Wei et al., 2020). This scheme protects

against Address Resolution Protocol (ARP) spoofing attacks, which android devices are

susceptible to when connecting to an insecure Wireless Local Area Network (WLAN). This

scheme involves utilizing the MAC address to create a unique identity that can be used to

validate the authenticity of an IP address. By employing this method, they ensure a reliable and

secure mapping between the identity and the IP address, which helps to establish trust and

integrity. This scheme does not require root privileges and can work on low resource

consumption.

6.3 BLMQ Signature Scheme using SDN Controller

The proposed use of the BLMQ signature scheme ("IEEE Standard for Identity-Based

Cryptographic Techniques Using Pairings," 2013), (Barreto et al., 2005), (Noel Michael

McCullagh, 2005) for preventing DRDoS attacks using IBC consists of four phases. The

following are the steps taken:

a) Generation of Master-Secret and Public-Parameters Group:

The SDN controller first generates a secret known as Master-Secret, which is only known

to the controller. This master-secret is used to generate a group called Public-Parameters

Group which would be shared with all the hosts connected to the controller via respective

SDN switch.

b) Private key generation

Host (either client or server), which requires to implement BLMQ signature scheme,

pings the controller by generating a parameter request packet with the destination IP

106

address as “1.1.1.1”. The SDN switch is configured such that when it receives a packet

with this IP address, the packet is simply forwarded to the controller. Upon receiving this

packet, the controller generates a private key for the host using its source IP address and

Master-Secret. Finally, the controller generates and forwards a request packet embedded

with private key and Public-Parameter Group to the host. Figure 6.1 shows step-1 and

step-2.

Figure 6.1 : Communication between host and controller to receive private key and Public
Parameters Group

c) Signing the message

Upon receiving its private key and Public Parameter Group from the controller, the host

is now ready to send the message. Upon receiving a message to be sent, a client generates

the sign using the BLMQ scheme for [message + timestamp]. Using timestamp for

generating the sign prevents replay attacks. It then generates the request packet embedded

with the message, timestamp, and the corresponding sign. This packet is forwarded to the

server.

d) Verification by the server

107

Upon receiving the request packet, the server extracts its source IP address and the sign.

It then recalculates the signature using the source IP and the Public Parameter Group.

This newly generated signature is compared with the sign extracted. If they match, and

the sum of extracted timestamp (Th) and validation period (V) is greater than the

current timestamp (Ts), the corresponding response packet is generated and forwarded;

else, the packet is dropped. Synchronization at both the host and server for timestamp

verification is necessary and can be achieved using NTP. Figure 6.2 shows step-3 and

step-4.

Figure 6.2 : Signing and verifying the packet

Above four steps are explained mathematically in the following subsections in detail.

Table 6.1 shows the notations used in the PoDIBC scheme.

6.3.1 Generation Of Master Secret and Public Parameters Group

The controller generates the Master-Secret and the Public- Parameter Group. The steps

are as follows:

1) A Master-Secret (Msec) is generated as per eq. (6.1).

Msec = Zs
* …………. (6.1)

108

where, Zs is a set of integers with reduction modulo s, and Zs
* is a multiplicative inverse

set of Zs.

2) Bilinear mapping (or pairing) of groups GA, GB, and μs of large prime order s is

generated as per eq. (6.2). Here GA and GB are groups of order s, μs is a group of order

s, A' is a generator of group GA, B' is a generator of group GB, and e is the pairing.

e: GA × GB → μs …………… (6.2)

where, t = e (A', B') and t μs

3) For verification purposes, a common key Pub (which is not identity) is also generated

with the help of the controller's Master-Secret, as shown in eq. (6.3).

Pub= Msec . B’ ………… (6.3)

4) Two hash functions (H1 and H2) are also needed for computations. We have used

SHA224 for hash functions,

For the BLMQ signature scheme, the Public Parameter Group is (A', B', GA , GB , μs ,

Pub, e, t, H1, H2). This group is shared with all the hosts connecting to the controller.

Table 6.1 : Notations used in the PoDIBC scheme.

Notation Explanation
Msec Master-Secret of the SDN controller
 Zs Set of integers with reduction modulo s
Zs

* Multiplicative inverse set of Zs
GA ,GB, μs Groups of order s
A' Generator of group GA
B' Generator of group GB
 e Bilinear mapping or pairing
H1 and H2 SHA224 hash functions
PRID Private Key

Th Timestamp at host
IP IP address of the signee (public

identity)
Pub A common key
hs Hash of message and a random integer
Ss Sign generated using private key and hs

109

6.3.2 Private Key Generation

The Private key (PRID) is generated using the Master Secret (i.e., Msec) and the identity

of the host (which, in our case, is the source IP address), as shown in eq. (6.4). This process is

similar to ("IEEE Standard for Identity-Based Cryptographic Techniques Using Pairings"),

(Barreto et al., 2005), (Noel Michael McCullagh, 2005). Since IP addresses differ for each host,

using it as an identity for private key generation guarantees a unique and different private key

for each host (Schridde et al., 2009).

PRID= (H1(IP)+ Msec)-1. A' ……… (6.4)

6.3.3 Signing the Message

The process of signing the message using the private key PRID is as described in (("IEEE

Standard for Identity-Based Cryptographic Techniques Using Pairings")(Barreto et al.,

2005)(Noel Michael McCullagh, 2005)), except that in the proposed scheme, we sign

(message+ timestamp). (Schridde et al. 2009) have also signed the timestamp. The reason for

doing this is to protect the network against replay and MITM attacks. Its formal proof is shown

in section 6.4.

If "Message" denotes the actual message to be sent, the message considered to be signed

would be Msg, where Msg = (Message + Th). Here Th is the current timestamp at the host.

For l chosen randomly such that l Zs
*, eq. (6.6) to (6.8) show the sign (Ss) generation process.

Finally, the signature Sig = (hs, Ss) will be sent within the packet, as shown in Figure 6.2.

Msg= (Message+ Th) ……………. (6.5)

k= tl ……………. (6.6)

hs= H2(Msg, k) ……………. (6.7)

Ss= (l+hs)PRID ……………. (6.8)

110

6.3.4 Verification by the Server

The server pings the controller and, in turn, receives the Public Parameter Group. Upon

receiving the network packet, the server extracts the embedded identity (i.e., the source IP

address), Msg, and the corresponding signature (i.e., Sig = (hs, Ss)). The value of hsnew is

computed using the public parameters group as shown in eq. (6.9).

where, = H1(IP) B’ + Pub

…………. (6.9)

If this computed hsnew is the same as the received hs, the source IP is authenticated, and

the packet is accepted. Otherwise, if the two are different, it indicates spoofing the source IP,

and the packet is dropped. In this case, further action can be taken toward identifying the

attacker by traceback.

6.4 Proof against IP Spoofing and Replay Attacks

In this section, we give formal proof that the proposed BLMQ IBS scheme will always

prevent the network from IP spoofing, thus preventing DRDoS attacks. In addition, we give

mathematical proof that replay attacks are also prevented.

6.4.1 Proof of Prevention against IP Spoofing

Let the valid and original IP of the attacker be IP1, and the spoofed IP that the attacker

will send as the source IP address in the network packets be IP2. From eq (6.9),

= H1(IP1)B’+ Pub ………. (6.10)

= H1(IP2)B’+Pub ………. (6.11)

The private Key of the attacker will be

 = (H1(IP1)+ Msec)-1. A' ….…. (6.12)

111

The signature (hs, Ss) is generated as per equations (6.7) and (6.8). Since the attacker

spoofs the source IP address, the corresponding field in the network packet contains the source

address as IP2. This packet is sent over the communication channel to the destination.

The process of verification at the server is as follows:

From eq (6.7),

 hs= H2(Msg,k)

hs= H2(Msg,tl)

hs= H2(Msg,tl+hs.t-hs)

From eqn (6.4),

From eqn (6.3),

From eqn (6.11),

From eqn (6.8),

112

Received sign on IP address IP1 will be-

hs= H2(Msg,k)

hs= H2(Msg,tl)

hs= H2(Msg,tl+hs.t-hs)

From eqn (6.4),

From eqn (6.3),

From eqn (6.10),

From eqn (6.8),

Hence, the received signature is not equal to the computed one.

113

Spoofed IP will not result in the same sign. Hence the server will discard the packet.

This proof is based on the BLMQ proof provided by (Noel Michael McCullagh, 2005), except

that we have replaced the identity with the source-IP address.

6.4.2 Proof of Protection against Replay Attacks

A replay attack is one form of a network attack wherein an attacker sniffs the legitimate

(possibly encrypted) messages and either delays them or retransmits them. In other words, it

happens when an attacker captures possibly confidential information on a secure channel and

then resends them after a delay, masquerading as the original sender (What Is a Replay Attack,

2023).

In the present context of using the BLMQ signature scheme for preventing DRDoS

attacks, the attacker can capture the signed packet and reuse the sign to masquerade as the

victim to get the packet accepted at the server. For example, suppose a legitimate user U1 (with

source IP address IP1) sends a DNS query message to the DNS server. Based upon the identity

IP1, this message contains the corresponding signature . Assume that this DNS query

message gets sniffed by a malicious user. Thus, this malicious user now knows the signature

and the IP address of U1. A replay attack is possible if this malicious user sends multiple

DNS query messages with source IP IP1 and signature . Such replay attacks are not possible

with the proposed scheme because of the timestamp field. Formally, in the remaining part of

this section, we prove that replay attacks are impossible by considering two scenarios.

Scenario-1: When the attacker uses the same timestamp as that sniffed/captured within

the request packet. Let ,

 Th be the system's timestamp when the packet is created at the host.

114

 V be the validation period of the timestamp to be checked when the packet is received

at the server. This validation period depends upon the RTT between the source and the

destination.

 Ts be the timestamp at the destination (or server) when the packet reaches it.

If the timestamp at the server, i.e. Ts does not fall within the range of V+ Th, the packet

is dropped. Formally, at the destination, if Th, < Ts < (V + Th), the packet is accepted,

else the packet is discarded.

Scenario-2: When the attacker uses the current timestamp Th', instead of the

timestamp of the captured packet Th. Let,

 The message received at the server be Msg' = M + Th.'

 The actual message on the computed sign be Msg = M + Th

From eqn (6.9), hs computed at the server would be

where, PubID= H1(IP)B’+Pub

The original hs would be

where, PubID= H1(IP)B’+Pub

Hence, the two signatures will be different, and the packet will be discarded.

6.5 Simulation and Results

This section describes the experimental setup done to validate the proposed approach.

In this section, we also show that with PoDIBC in place and with the victim under attack, the

attack traffic does not reach the victim, thus preventing its network from DRDoS attack.

115

6.5.1 Experimental Setup

Figure 6.3 : Network architecture for PoDIBC

As shown in Figure 6.3, the experimental topology consists of four subnets: an

attacker's network in which the attacker host resides, the victim's network in which the victim

host resides, a subnet for the DNS server, and a subnet for a test server. All these four subnets

are SDN networks. In addition, Figure 6.4 also shows the core network consisting of four

routers. We used Mininet (Mininet, 2022) to simulate the topology. This core network does not

need to be SDN enabled, but it is for now for experimental purposes. The whole topology is

currently connected to a single Controller. Multiple controllers can also be used for larger

networks, and these controllers can communicate with each other to pass the Public Parameters

Group. A Ryu SDN controller (RYU A, 2013) was used to configure the SDN switches and

routers and install the flow tables to route the packets. Python libraries scapy (Introduction:

About Scapy, 2023) and iperf (What Is IPerf / IPerf3 ?) were used to generate traffic and

bandwidth testing. To implement the proposed technique, we have used the bplib library

(Copyright (c) 2014, George Danezis (UCL), and a common group G (Copyright (c) 2014,

116

George Danezis (UCL), Copyright (c) 2016, The OpenSSL Project), with elliptical set of

groups G, and pairing e.

Initially, when the controller starts, it creates the Master Secret, and it creates the Public

Parameters Group. As the end host starts, it pings the controller. The controller, in turn, creates

the corresponding private key and passes this key and public parameters to the host. For

simulation purposes, a DRDoS attack is simulated using DNS Servers, towards which the

attacker will send source-IP spoofed DNS query request packets. Hence the request is in the

form of a DNS query to which the DNS server will respond. Further, to prevent replay attacks,

the timestamp was added with the query to be sent. Thus, the total message to be signed is the

[DNS-query + timestamp], and this signature (using BLMQ) is added after this message.

Two different sets of experiments were conducted using the experimental setup. The

first experiment showed a bandwidth test between the test server and the victim host. During

this test, the bandwidth of the network link of the victim was kept at 500 Mbps while

conducting a DNS-based DRDoS attack. We used HTTP traffic to generate legitimate traffic

in our experimental analysis. The available bandwidth was recorded with both the BLMQ

signature scheme and without it. In the second experiment, to measure the overhead due to the

proposed method, we measured the RTT of a DNS request-response cycle with both the

signature scheme present and not. For this, the victim host sends a legitimate packet to the DNS

server, which then decrypts and verifies the signature and replies with the appropriate response

packet.

The proposed architecture requires modifying the functionality of the base protocol

used for DRDoS attacks. Since, in this paper, we use DNS-based DRDoS attacks for

experimentation purposes, DNS functionality needs to change to implement the BLMQ

signature scheme.

117

6.5.2 Results and Discussion

This section shows the validation and effectiveness of the proposed PoDIBC scheme.

It proves that with PoDIBC in place and with victim under attack, the attack traffic does not

reach the victim, thus preventing its network from DRDoS attack. The second set of

experiments shows the overhead of implementing PoDIBC.

Figure 6.4 : Available intermediate bandwidth between the victim and test server with
PoDIBC in place.

Figure 6.4 shows the available TCP test bandwidth during the attack as a function of

time between the victim host and the test server. It is when the signature verification scheme is

in place. Experiments show that out of the available 500 Mbps link bandwidth, on average, 460

Mbps (or 92%) of effective intermediate bandwidth is available between the victim host and

the test server. Thus, even though the attacker is making an attack of 1 Gbps with source-IP

spoofed to that of the victim host, there is no effect on the available bandwidth (thus

communication) between the victim and servers. Correspondingly, Figure 6.5 shows the

available bandwidth without the signature verification scheme in place. In this case, the DNS

server reflects the packets toward the victim; thus, it is under attack. Here, an average

bandwidth of 0.52 Mbps (or 0.1%) was available, considerably lower than the one achieved in

435
440
445
450
455
460
465
470
475
480
485

1 11 21 31 41 51 61 71 81

B
an

dw
id

th
 (M

bp
s)

Time in Seconds

Intermediate Bandwidth between victim and Test-
server

118

the previous case. It is worth emphasizing that for both Figure 6.4 and 6.5 there was no effect

on the bandwidth for first 1-2 seconds of the start of an attack.

Figure 6.5 : Available intermediate bandwidth between the victim and test server without
PoDIBC in place.

Since the BLMQ signature verification scheme requires additional computation, an

additional delay is expected in the corresponding client-server communication service. The

computational cost would increase because of the following two additional tasks.

Task-1: Getting a private key and Public Parameter Group from the SDN controller.

Task-2: Using the Public Parameter Group and private key, generate the sign using the

BLMQ signature scheme, embed the sign into the network packet, and verify it at the receiver

end.

To show the delay caused by Task-1, we incorporated fetching the parameters while

sending the first request and response packet. The hosts fetch the parameters from the controller

using the SDN-enabled OpenFlow switch, as shown in Figure 6.3. Alternatively, a host can be

configured to fetch these parameters and a private key when it connects to the network. After

that, upon acquiring all the parameters, only Task-2 is required for the subsequent

communication. To show these additional delays caused by BLMQ, we calculate the following:

0

0.5

1

1.5

2

2.5

3

1 11 21 31 41 51 61 71 81

B
an

dw
id

th
(M

bp
s)

Time in Seconds

Intermediate Bandwidth between Victim and Test-server

119

a) The RTT delay of the first request packet- this delay includes fetching the parameters

from the controller, creating a request packet with the sign, sending the packet, sign

verification at the server after fetching the parameters, and getting the response.

b) Packet creation delay due to signing the packet at the client side- this delay includes

generating the sign using the already acquired private key and Public Parameter Group

and embedding the sign into the outgoing network packet.

c) Packet processing delay due to verification at the server side- this delay includes

overhead because of Signature verification at the receiver using an already acquired

Public Parameter Group.

d) The RTT overhead in terms of RTT of the second packet onwards, i.e., once the host

has already acquired the private key and Public Parameter Group. It shows the overhead

of implementing the proposed PoDIBC scheme for DRDoS prevention.

All four delays are shown respectively in Figures 6.6-6.9. Each graph shows the delay

with and without the signature verification approach for twenty iterations of experiments.

Figure 6.6 : RTT for first request packet

0

0.5

1

1.5

2

2.5

0 5 10 15 20

D
el

ay
 In

 S
ec

on
ds

Number of Iterations

Delay in Fi rs t Reques t packe t
Without Verification With Verification

120

Figure 6.6 shows the RTT delay of the first request packet. The average RTT for the

first request packet is 2.3 seconds with the signature verification scheme and 0.05 seconds

without the signature verification scheme. It is important to note that this delay is only for the

first packet, not subsequent packets, thus no significant impact on overall performance and user

experience. Therefore, in the context of preventing DDoS attacks, this delay is an acceptable

measure to protect the system from potential threats while minimizing the impact on legitimate

traffic.

Figure 6.7 shows the overhead (in terms of delay introduced) in request packet creation

at the client side due to sign generation. The request packet creation process with the PoDIBC

scheme in place introduces an average delay of 7 ms in request packet creation at the client

side, while without it, the delay is only 1 ms. Therefore, the additional delay due to sign

generation is about 6 ms on average.

Figure 6.7 : Overhead in packet creation due to sign generation

Figure 6.8 illustrates the processing delay to verify the signature on the server side.

Specifically, the delay with sign verification is, on average 16 ms; without it, the delay is only

0.2 ms.

0

0.002

0.004

0.006

0.008

0.01

0.012

0 5 10 15 20

D
el

ay
 In

 S
ec

on
ds

Number of Iteration

Delay Due to Sign Genera t ion

Packet-creation with Sign Packet-creation-without Sign

121

Figure 6.8 : Overhead due to Sign verification

The RTT graph in Figure 6.9 shows the total delay caused by the additional signing and

verification. RTT is the time taken to send the signed packet and receive the response after

verification. The average RTT when PoDIBC was in place was 76 ms; when PoDIBC was not,

it was 55 ms. Thus, the additional average computational delay was 21 ms due to PoDIBC.

Figure 6.9 shows the overhead while implementing the proposed DDoS prevention scheme

using the BLMQ signature.

Figure 6.9 : RTT overhead because of BLMQ signature scheme for DDoS prevention

0

0.005

0.01

0.015

0.02

0.025

0 5 1 0 1 5 2 0

D
el

ay
 In

 S
ec

on
ds

Number of Iteration

Delay Due to Sign Ver i f ica t ion
Packet-Processing with Sign Packet-Processing without Sign

0

0.02

0.04

0.06

0.08

0.1

0.12

0 5 10 15 20

D
el

ay
 In

 S
ec

on
ds

Number of Iteration

Network Overhead Due to BLMQ Signa ture
Scheme

Packet-RTT with Sign Packet-RTT without Sign

122

We verified 100 messages with the BLMQ algorithm with 100% accuracy. Accuracy

means the number of times the algorithm could authenticate correctly spoofed as spoofed and

honest as honest. The BLMQ's implemented runtime for 100 messages was 1.663 seconds.

6.5.3 Comparison and Discussion

The proposed scheme is not susceptible to key revocation problems. Key revocation is

a problem for IBC (Schridde et al., 2009). Since the public and private key pairs are generated

using an identity unique to a participating entity, if somehow the keys are known by the

perpetrator, they can be misused continuously. As the identity unique to a host cannot be

changed, the private/public key pair also cannot be changed. The IBC-based scheme proposed

using IP addresses as an identity does not pose this threat because IP addresses can be dynamic.

It is not hard-coded like a MAC address.

Also, in the proposed scheme, the network overhead in carrying additional bits of

information (in the form of a signature) is less than (Schridde et al., 2009). The total bit-length

of the sign is- Sig= (hs, Ss). We have used SHA224 for the hash, so hs= 224 bits. As shown in

eq (iv) and eq(viii), Ss are dependent on the order of the field. As mentioned in (Elliptic Curve

Cryptography (ECC), 2022) the private keys are in the range of elliptical curve field size, which

usually is 256 bits. Hence, Ss can be considered to be 256 bits. We also need to send the

query+timestamp to verify. The query is sent with the DNS packet, and the timestamp requires

192 bits. Thus, the total length of sign Sig is = 672 bits (i.e. 224 + 256 + 192). Comparatively,

the scheme of TrueIP (Schridde et al., 2009) requires 4128 bits, and that of X.509 certificate

requires 6144 bits, as mentioned in (Schridde et al., 2009). Thus, regarding the number of bits

required, the proposed scheme in this paper requires approx. one-sixth network packet space

as compared to (Schridde et al., 2009) and approx. one-ninth as compared to X.509 (Schridde

et al., 2009).

123

The TrueIP scheme is susceptible to a DRDoS attack, which is not the case in PoDIBC,

as shown in section 6.4. In TrueIP, the Private key is calculated as per eq. (6.13):

H(ID)1/R (mod N) ……….. (6.13)

where, ID is public identity, and R and N are public shared parameters.

If the process to generate the private key is also known, then any perpetrator can

generate the private key using these public parameters. If an attacker can also generate the

private key, it can quickly generate spoofed messages, thus capable of launching DRDoS

attacks. Specifically, suppose an attacker A1 knows the IP address of victim V1 (IPV). It will

generate the private key using public shared parameters R and N using eq (6.14).

Prkey= H(IPV)1/R (mod N) ……… (6.14)

Spoofing can be done using this private key, making a DRDoS attack possible. In the

PoDIBC scheme, the private key is generated using a Master Secret only known by the

controller, so even if the identity is known, the private key cannot be generated, as shown in

eq (6.4).

IPsec is a complete security protocol that provides encryption with authentication using

certificates. It involves protocols to negotiate keys and encryption algorithms that will be used

before the process of authentication starts. It is a heavy protocol that provides a very secure

channel for communication. Only to provide authentication, which our single packet approach

can also achieve, renders the need for a heavy protocol like IPsec.

6.6 Summary of the Chapter

In conclusion, our research demonstrates that preventing DRDoS attacks using

PoDIBC, a DRDoS prevention technique based on the BLMQ signature scheme of IBC, is a

more effective approach than detection and mitigation. Our technique is mathematically and

experimentally validated in an SDN environment, and we have shown that it is not susceptible

124

to replay attacks. Moreover, PoDIBC can detect IP spoofing and can be applied to prevent

source IP spoofing in general. Our experiments have shown that implementing PoDIBC

requires SDN-enabled edge networks, but no change in the core network is necessary. The

experiments have also shown that the overhead of PoDIBC in terms of increased RTT and

additional space in network packets is reasonable. When PoDIBC is in place, the victim's

network is always protected from attack traffic, and the victim's bandwidth remains unaffected.

********** End of Chapter **********

125

CHAPTER 7- Near Real-Time Detection and Mitigation of DDoS Attacks through

Feature Optimization in a Software-Defined Networking Environment

7.1 Introduction

Machine Learning (ML) is a key element in the rapidly expanding discipline of data

science (What Is Machine Learning(ML)?, IBM). ML algorithms are trained using statistical

techniques to produce classifications or predictions about a given dataset. These classifications

and predictions provide insightful details for businesses to grow and understand consumers’

needs. Following the emergence of ML and AI, scientists began employing ML methods to

identify and safeguard against DDoS attacks. It involves analyzing the intrinsic distinctions

between malicious and legitimate network traffic. Various factors such as traffic rate, packet

quantity and frequency, and the presence of multiple flows directed to a single destination IP

address exhibit specific variances between harmful and benign traffic. Thanks to the progress

in AI, ML algorithms have evolved to a level of sophistication where they can classify traffic

as either malicious or benign by leveraging these distributional dissimilarities.

However, the effectiveness of ML models heavily relies on the quality and

comprehensiveness of the training data they receive for detection purposes. Consequently, the

subsequent challenge has been to obtain well-defined datasets that accurately represent the

various types of attacks. Fortunately, this predicament has been addressed with the contribution

of the CICDDoS 2019 attack dataset by the Canadian Institute for Cybersecurity (DDoS

Evaluation Dataset (CIC-DDoS2019)), (Sharafaldin et al., 2019). This dataset encompasses

multiple distinct datasets specifically designed to simulate different types of attacks. The

availability of the aforementioned dataset has spurred significant research in this domain, with

126

numerous studies exploring various ML and Deep Learning (DL) approaches for detecting

attacks (Samom et al., 2021), (Kshirsagar & Kumar, 2022), (Rajagopal et al., 2021), and others.

We have employed the CICDDoS 2019 attack dataset to train our ML model. The rationale

behind this choice lies in the dataset’s extensive nature, exclusively encompassing diverse

DDoS attack types. In contrast, datasets like KDD-cup and UNSW-15 contain a broader

spectrum of cybersecurity threats, which includes DDoS attacks but not exclusively. Therefore,

we opted for a dataset focusing solely on a variety of DDoS attacks.

In the previous chapters, we study techniques involving amendment in the network

layer or routing techniques to provide True Prevention. In this chapter, we delve into the

utilization of machine learning models to detect and prevent attacks. The proposed method lies

in the category of Partial Prevention. Our primary focus lies on employing the random forest

model (BREIMAN, 2001) to identify DDoS attacks such as Portmap, DNS, UDP-lag, UDP,

and SYN, which are present in the CICDDoS 2019 attack dataset. Remarkably, we achieve an

impressive accuracy rate of 99.9% in detecting DDoS attacks using this model. We deploy the

trained model in a topology created in an SDN environment for near real-time attack detection.

By near real-time detection, we mean that some attack traffic will reach the victim by the time

the attack is detected. In our simulated setup, this attack traffic is approx. 1% of the total attack,

and the maximum time to detect the attack is 5.3 seconds; hence near real-time.

Within the simulated environment, an effective defense against DDoS attacks is

implemented through the use of an SDN barrier. This barrier is composed of an SDN switch

that replicates all incoming network traffic to a dedicated computing device running the trained

model. The primary responsibility of this model is to detect attacks and promptly inform the

controller regarding the source IP address of the attacker. Subsequently, the controller takes

127

action by discarding packets originating from the identified IP address, effectively blocking the

ongoing attack. The key contributions of this study can be summarized as follows:

 We conducted training using the random forest algorithm on the CICDDoS 2019 attack

dataset.

 Through meticulous hyperparameter tuning and optimized feature selection, we

achieved a significant accuracy for the random-forest model, an impressive 99.9%.

 By reducing the number of features from 88 to 15, we successfully achieved near real-

time detection of attacks with an accuracy of 99.99%.

 In the SDN environment, we generated realistic random DDoS attack traffic and

legitimate traffic. By leveraging the capabilities of the SDN switch, we seamlessly

mirrored this traffic to a specific node running the trained model. Consequently, the

model effectively classified the traffic as either an attack or normal.

 Additionally, we computed valuable statistics to determine the proportion of attack

traffic versus benign traffic that actually reached the intended victim.

 The accuracy achieved through Random Forest was better than that achieved by the

multi-classifier approach proposed by (Rajagopal et al., 2021). We achieved an

accuracy of 99.9% for CICDDoS 2019 attack dataset, in comparison to 97% accuracy

achieved by (Rajagopal et al., 2021).

7.2 Related Work

There has been promising research in detecting cyberattacks, like DDoS attacks, using

ML and DL techniques. Due to their accuracy, ML techniques can be deployed to detect DDoS

attacks by extracting a selected set of features from network traffic. The method proposed by

(Munivara Prasad et al., 2016) uses ML to achieve fast detection of app-DDoS attacks. The

approach focuses on a set of requests over an absolute time interval to detect anomalies in a

128

network. Different metrics are the ratio of packet types, packet count, route context, router

chain, context, a ratio of request intervals, etc. The performance is measured by calculating

precision, recall, sensitivity, and specificity. Considering that every DDoS attack tool has its

signature, (Laskar & Mishra, 2016) have proposed a detection technique. First, a database is

created using 14 feature vectors. Two vectors are used to filter out “suspicious” traffic; then,

the remaining 12 vectors are used on this suspicious traffic to test it for possible DDoS attacks.

Authors claim that this scheme can be used in real time. (Oo et al., 2015) proposed a packet

classification approach for DDoS prevention using a hidden semi-markov model based on a

selected set of parameters. It involves collecting packets every second, extracting features,

applying a classification algorithm, and using the hidden semi-markov model algorithm. The

set features include -the number of packets and bytes from a source to a destination IP address,

packet rate and byte rate, etc. It then defines a classification algorithm with rigid decision

boundaries for each parameter. It is computation and memory intensive since it requires

keeping track of packets from each source IP address to each destination IP address and has

many parameters to compute. (Yadav & Subramanian, 2016) proposed pattern learning to

detect application-layer DDoS attacks. A model based on neural networks like autoencoder

was applied for broad learning. The process was divided into training and testing the features

extracted from web server logs. The approach (M. E. Ahmed et al., 2017) proposed is based

on traffic monitoring and clustering using unsupervised learning. The proposed Dirichlet

process mixture model is a Bayesian approach for clustering over nonparametric traffic

patterns. Traffic features include- the total number of packets transmitted, connection duration

time, and ratio of source and destination bytes. The proposed approach consists of a learning

module, a traffic statistics manager, and a network resource manager. The limitation is that as

traffic flow increases, the accuracy of detecting an attack traffic connection reduces, and the

misclassification rate (i.e., the number of feature vectors assigned to wrong clusters over total

129

features) reaches nearly 50%. (C. C. Chen et al., 2017) have used SDN and ML techniques for

implementing a system to detect DRDoS packets and block amplification attacks

automatically. Their training model is built upon eight features: forward packet count,

backward packet count, flow volume, etc. They have shifted the detection towards the network

gate.

In the study proposed by (Nurwarsito & Nadhif, 2021), a DDoS attack detection and

mitigation system was developed within the framework of SDN architecture, employing the

random forest algorithm. The random forest algorithm serves to categorize incoming packets

as either normal or indicative of an attack, based on their flow entries. A limitation of this study

lies in the choice of the attack dataset used for training the random forest model. The dataset

employed in this study departs from the conventional standard, as it was generated by the

authors within the SDN environment, rather than being sourced from a more diverse and

authentic collection of DDoS attacks. Similarly to this (Santos et al., 2020) have also used

various ML algorithms like random forest, decision tree, SVM, and multi-layer perceptron to

detect and mitigate attacks of SDN environment. The DDoS attacks generated are limited to

SDN environment. This study also has the limitation of not using a standard dataset for training

the ML models. way to remove the load from controllers.

Using the CICDDoS dataset, we have focused on papers based on the same dataset.

(Sharafaldin et al., 2019) explain the CICDDoS-2019 dataset (Developing Realistic Distributed

Denial of Service (DDoS) Attack Dataset and Taxonomy). The article describes how the data

has been collected, the taxonomy of different datasets, and the weights of various features to

respective datasets. (Samom et al., 2021) have used the CICDDoS 2019 dataset and tried out

different ML models like logistic regression, random forest, naive Bayes, k-nearest neighbor,

etc. The results show that random forest gave better results with low latency. K-nearest

130

neighbor also showed better results but took more time to detect the attack. (Rajagopal et al.,

2021) has provided a meta-classification approach for network intrusion detection in a cloud

environment. Decision jungles, neural networks, and logistic regression are used for multi-

class classification. They have verified their approach with UNSW NB-15 (The UNSW-NB15

DATASET), (Moustafa & Slay, 2015), (Moustafa & Slay, 2016), (Moustafa et al., 2017),

(Moustafa et al., 2017), (Sarhan et al., 2021), CICIDS 2017 (Sharafaldin et al., 2018),

(Intrusion Detection Evaluation Dataset (CIC-IDS2017)), and CICDDOS 2019 attack datasets.

(Kshirsagar & Kumar, 2022) have improved attack detection accuracy by implementing a

feature reduction method. They have used information gain and correlation feature selection

techniques. They also use the CICDDoS 2019 attack dataset with the J48 classifier. (Assis et

al., 2021) proposed an SDN defense system against intrusion and DDoS attacks. The proposed

approach comprises two main parts, the detection and mitigation modules. The detection

module consists of gated recurrent, which is a recurrent DL approach. (Ma et al., 2023) have

also used CICDDoS 2019 dataset to train their random forest model in SDN environment. They

also reduce the total feature set to only 24 features. We optimize the feature selection process

further by reducing it to 15.

7.3 Proposed Methodology

Our proposed approach aims to achieve near real-time DDoS attack detection with

minimal impact on the victim. The methodology involves the implementation of a trained ML

model within the network, which will be responsible for predicting potential attacks. This

model uses the traffic data obtained through port mirroring to make accurate predictions.

Consequently, our proposed work can be divided into two main parts.

131

The first part entails the selection and training of the ML model, while the second part

involves setting up an SDN network to thoroughly test and validate the model’s performance.

Figure 7.1 : Proposed ML architecture

CICDDoS-
2019 Dataset

Portmap Dataset of CICDDoS-2019

Replace NAN and ∞ by 0.

Randomly split the dataset into 70%
training set and 30% testing set

Perform oversampling of benign data samples in the training set

Calculate f1-score, precision, recall using
algorithm Find_Cor-Coeff () for list of

features

Calculate f1-score, precision, recall using
algorithm Find_MI-Coeff () for list of

features from oversampled dataset

Select top MPORT features as explained in
section 7.4.3

Similarly get MSYN MDNS MUDP MUDPLAG

Select top NPORT features as explained in
section 7.4.3

Similarly get NSYN NDNS NUDP NUDPLAG

Pr
ep

ro
ce

ss
in

g
Fe

at
ur

e
R

ed
uc

tio
n

Take union
M = MSYN MDNS MUDP MUDPLAG

MPORT

Take union
N = NSYN NDNS NUDP NUDPLAG

NPORT

K= N M

Compute Gini impurity score for K features,
select top KT features, and merge all five

datasets on these KT features

Perform Hyper-Parameter tuning (as
explained in section 7.3.5) on 5 Hyper-

Parameters using OOB score as validation

Tuned Random
forest classifier H

yp
er

-p
ar

am
et

er
 tu

ni
ng

Repeat for
SYN, UDP,
DNS,UDPLAG

Repeat for
SYN, UDP,
DNS,UDPLAG

132

7.3.1 Machine learning Architecture

Our model training process involves utilizing the CICDDoS-2019 dataset, specifically

selecting datasets such as DNS, SYN, UDP, UDP-lag, and Portmap, encompassing reflection

and volumetric attacks. As illustrated in Figure 7.1, we perform preprocessing and feature

reduction on the dataset before feeding it into the model. Additionally, we fine-tune the

hyperparameters prior to deploying the trained model in the network.

7.3.2 Model Selection

We use random forest, an ML algorithm, to train our model. (Samom et al., 2021) have

used the CICDDoS 2019 dataset and tried out different machine learning models like logistic

regression, random forest, naive bayes, k-nearest neighbor, etc., The results show that random

forest (BREIMAN, 2001) gave better results with low latency. So, we have proceeded with the

random forest ML algorithm for our use case.

7.3.3 Preprocessing

As outlined in Section 7.1, we employ the CICDDoS-2019 attack dataset for training

the random forest model. Before inputting the dataset into the model, we perform preprocessing

steps, which involve replacing any infinity and NaN values with 0. It is important to note that

we choose not to drop these values to prevent any loss of information. In order to address the

dominance of attack data within the dataset, we employ a data augmentation technique known

as oversampling before feeding the dataset into the model. Through oversampling, we increase

the representation of benign data to achieve a more balanced distribution with the attack data.

This process effectively enlarges the overall dataset size.

Considering memory limitations, during the model training phase, we utilize three

million samples for each dataset, encompassing all 78 features, for the purpose of feature

selection. Subsequently, as we progressively reduce the number of features through the feature

133

selection approach, we increase the number of samples to enhance the final training of the

random forest model.

7.3.4 Feature Selection

To enable near real-time detection of DDoS attacks without compromising accuracy,

reducing the number of features is essential. While ensuring the detection accuracy remains at

approximately 99%, we reduced the features from 88 to 15. The rationale behind opting for a

limited set of features is to efficiently retrieve the minimum necessary information from raw

pcap files in real-time, precisely during the occurrence of an attack. Research conducted by

(Ma et al., 2023) has demonstrated that reducing the number of features can significantly

diminish attack prediction time while maintaining prediction accuracy.

We aim to reduce the dataset’s feature count without altering the fundamental feature

values. We employ feature subset selection techniques rather than feature reduction to achieve

this. As a result, we utilize Correlation and Mutual Information classifiers for feature selection,

eschewing feature reduction methods like PCA. PCA, a dimensionality reduction technique,

derives principal components grounded in feature covariance. By employing correlation, we

get the linear relationship between two variables. When applied to feature selection, it helps

identify features with a strong linear correlation with the target variable. MI is a more general

measure of the dependence between variables. It can capture non-linear relationships, which

correlation may miss. MI makes it suitable for feature selection in cases where the relationship

between features and the target is not strictly linear. Hence, we take a union of the features

selected from these two algorithms to capture both linear and non-linear relationships.

Algorithm 7.1: Process for feature reduction

Input- CICDDoS_2019_dataset- [data1=SYN, data2=PORTMAP, data3=DNS,
data4=UDP, data5=UDPLAG]
/*data is in the form of 2-D matrix i.e. - data[a,b] where a= flow-id number and
 b= feature number
Let, f[n] represents the nth feature, where (n= 1 to 78) */

134

Algorithm- Find_Cor-Coeff ()

Repeat for each of the five datasets, i.e. SYN, UDP, UDPLAG, DNS, PORTMAP

{

for (n = 1; n <= 78; n ++)

Cor [n] = Correlation-Coefficient of fn with target feature ‘Label’

for (i = 0.1; i < 1.0; i += 0.05)

{

 for (n = 1; n <= 78; n ++)

 {

 if (Cor [n] >i)

 List_cor [i] [n] = fn

 }

 Calculate F1 score, precision, recall, and accuracy of List_cor[i]
 }
}
Algorithm- Find_MI-score ()

Repeat for each of the five datasets, i.e. SYN, UDP, UDPLAG, DNS, PORTMAP

{

for (n = 1; n <= 78; n ++)

MI [n] = MI-score of fn with target feature ‘Label’

for (i =.0001; i < MI; i += 0.05)

{

 for (n = 1; n <= 78; n ++)

 {

 if (MI [n] >i)

 List_MI [i] [n] = fn

 }

 Calculate F1 score, precision, recall, and accuracy of List_MI[i]
 }
}

135

In addition to reducing the overall number of features from 88 to 15, it is important to

note that some features of type string (object) were also excluded from consideration to perform

data augmentation using oversampling. The feature selection procedure was specifically

applied to the remaining 78 features. This methodology involves leveraging the Pearson

correlation and mutual info (using the SelectKBest feature selection method) of sklearn library.

By employing these methods, we were able to effectively identify the most relevant and

informative features for the task at hand. The process can be divided into the following steps:

a) As shown in algorithm 7.1, we separately calculate the correlation coefficient and

Mutual Info (MI) of Portmap, SYN, DNS, UDP, and UDP-lag datasets. This calculation

was performed using all 78 available features. We determine the range for the

correlation coefficient as values ranging from 0.1 to 1, and for the MI score, the range

is set from 0.0001 to the maximum MI value until only one feature remains. We

calculate various evaluation metrics within these specified ranges, such as precision,

recall, and F1 score, for both the benign (0th class) and attack (1st class) datasets. We

calculate these metrics specifically for the features falling within the aforementioned

range.

b) Precision, recall, and F1 score graphs are plotted with varying correlation coefficients

and MI scores, as shown in Figure (7.2-7.6), (The data for these graphs is provided in

Appendix C). The x-axis represents the correlation value or MI score in these graphs,

while the y-axis represents the corresponding precision, recall, and F1 score. When

observing the graphs, if there is a noticeable dip in the value for a particular correlation

coefficient or MI score, we consider the features from the dataset that have a value

greater than or equal to that specific coefficient or score.

136

Figure 7.2 : Precision, F1 score and recall for correlation and MI score of DNS dataset

Figure 7.3 : Precision, F1 score and recall for correlation and MI score of Portmap dataset

Figure 7.4 : Precision, F1 score and recall for correlation and MI score of SYN dataset

0.55

0.65

0.75

0.85

0.95

0 0.2 0.4 0.6

Pr
ec

is
io

n/
R

ec
al

l/F
1

sc
or

e

Correlation Coefficient

Correlation value for DNS

 Precision (0th) Recall (0th)
F1 score(0th) Precision (1st)
Recall (1st) F1 score(1st)

0

0.5

1

1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Pr
ec

is
io

n/
R

ec
al

l/F
1

sc
or

e

MI Score

MI Score for DNS

 Precision (0th) Recall (0th)
F1 score(0th) Precision (1st)
Recall (1st) F1 score(1st)

0.85

0.9

0.95

1

1.05

0 0.2 0.4 0.6 0.8

Pr
ec

is
io

n/
R

ec
al

l/F
1

sc
or

e

Correlation Coefficient

Correlation value for Portmap

 Precision (0th) Recall (0th)
F1 score(0th) Precision (1st)
Recall (1st) F1 score(1st)

0.975
0.98

0.985
0.99

0.995
1

1.005

0 0.2 0.4 0.6 0.8

Pr
ec

is
io

n/
R

ec
al

l/F
1

sc
or

e

MI Score

MI Score for Portmap

 Precision (0th) Recall (0th)
F1 score(0th) Precision (1st)
Recall (1st) F1 score(1st)

0
0.2
0.4
0.6
0.8

1
1.2

0 0.2 0.4 0.6 0.8Pr
ec

is
io

n/
R

ec
al

l/F
1

sc
or

e

Correlation coefficient

Correlation value for SYN

 Precision (0th) Recall (0th)
F1 score(0th) Precision (1st)
Recall (1st) F1 score(1st)

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n/
R

ec
al

l/F
1

sc
or

e

MI Score

MI Score for SYN

 Precision (0th) Recall (0th)
F1 score(0th) Precision (1st)
Recall (1st) F1 score(1st)

137

Figure 7.5 : Precision, F1 score and recall for correlation and MI score of UDP dataset

Figure 7.6 : Precision, F1 score and recall for correlation and MI score of UDPLag dataset

c) After this, all the shortlisted features of individual datasets were combined for

correlation and MI scores. Using gini-impurity on the whole dataset (combining the

five datasets), we shortlisted the top 15 features (feature_importance). These 15 features

with description are shown in Table 7.1. For e.g.- the feature ‘ Fwd Packet Length Min’

means minimum size of packet in forward direction, and ‘Bwd IAT Max’ means

maximum time between two packets sent in the backward direction, etc.

With these 15 features, we got an accuracy of 99.99% from the Random-Forest model.

0

0.5

1

1.5

0 0.2 0.4 0.6

Pr
ec

is
io

n/
R

ec
al

l/F
1

sc
or

e

Correlation Coefficient

Correlation value for
UDPLag

 Precision (0th) Recall (0th)
F1 score(0th) Precision (1st)
Recall (1st) F1 score(1st)

0.96

0.97

0.98

0.99

1

1.01

0 0.2 0.4 0.6Pr
ec

is
io

n/
R

ec
al

l/F
1

sc
or

e

MI Score

MI Score for UDPLag

 Precision (0th) Recall (0th)
F1 score(0th) Precision (1st)
Recall (1st) F1 score(1st)

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8Pr
ec

is
io

n/
R

ec
al

l/F
1

sc
or

e

Correlation coefficient

Correlation value for UDP

 Precision (0th) Recall (0th)
F1 score(0th) Precision (1st)
Recall (1st) F1 score(1st)

0.94

0.96

0.98

1

1.02

0 0.2 0.4 0.6 0.8

Pr
ec

is
io

n/
R

ec
al

l/F
1

sc
or

e

MI Score

MI Score for UDP

 Precision (0th) Recall (0th)
F1 score(0th) Precision (1st)
Recall (1st) F1 score(1st)

138

Table 7.1 : Selected feature values and their description

S.No. Feature Name Description
1 ‘ Fwd Packet Length Min’, Minimum size of packet in forward

direction
2 ‘URG Flag Count’ Number of packets with URG
3 ‘Min Packet Length’ Minimum length of a packet
4 ‘Avg Fwd Segment Size’ Average size observed in the

forward direction
5 ‘ACK Flag Count’ Number of packets with ACK
6 ‘Init_Win_bytes_forward’ The total number of bytes sent in

initial window in the forward
direction

7 ‘Bwd IAT Total’ Total time between two packets
sent in the backward direction

8 ‘Average Packet Size’ Average size of packet
9 ‘Fwd Packet Length Mean’ Mean size of packet in forward

direction
10 ‘Packet Length Mean’ Mean length of a packet
11 ‘Packet Length Std’ Standard deviation length of a

packet
12 ‘Packet Length Variance’ Variance length of a packet
13 ‘Bwd IAT Max’ Maximum time between two

packets sent in the backward
direction

14 ‘Flow Duration’ Duration of the flow in
Microsecond

15 ‘Flow IAT Mean’ Mean time between two packets
sent in the flow

The feature importance or relevance in sklearn is calculated by normalizing the decrease

in node impurity through the likelihood of reaching that node (Ronaghan, 2018). We computed

the node probability by dividing the total number of samples by the number of samples that

reach the node. The feature with a higher value is more significant. Feature importance of

feature t is calculated as (Ronaghan, 2018):

= node i importance calculated by gini importance.

139

For each decision tree, scikit-learn calculates node importance () as

………… (7.2)

 = ith node importance calculated by gini importance

 = weighted samples reaching node i

 = gini impurity of the ith node

 = weighted samples reaching the left split of node i

 = gini impurity of left split

 = weighted samples reaching the right split of node i

 = gini impurity of right split

To determine the ultimate feature relevance at the random forest level, the process

involves calculating the importance of each attribute for every tree and then dividing the total

by the number of trees; it is :-

 = final feature importance of feature t, through all random forest trees.

 = normalized feature importance of feature t

7.3.5 Hyper-Paramter Tuning

Before deploying the trained model in the network, we perform hyper-parameter tuning

on the random forest model using the complete dataset.

The hyper-parameters that we tune include n_estimators (number of trees), max_depth,

min_samples_leafs, max_features, and max_leaf_nodes. We aim to identify the optimal values

for each hyper-parameter, which we achieve by evaluating the OOB scores. The OOB score is

computed using data that was not utilized during the model’s analysis, and therefore we rely

140

on the OOB scores to select hyper-parameter values. Figure 7.7 illustrates the OOB scores

compared to the training scores for various hyper-parameter values.

Figure 7.7 : Accuracy and OOB_score of hyper-tuned parameters (a) no_of_trees (b)

max_depth (c)min_samples_leaf (d) max_features (e) max_leaf_nodes

With the help of these graphs, the values chosen for hyper-parameters are shown in Table 7.2-

(a) (b)

(c) (d)

(e)

 oob_score

 train_score

141

Table 7.2 : Optimal values of the chosen hyper-parameters

S. No. Hyper-Parameter Optimal Value

1 n_estimators 20

2 max_depth 8

3 min_samples_leaf 4

4 max_features sqrt

5 max_leaf_nodes 75

The hyper-parameters min_samples_split, oob_score, and verbose are kept at default

values which are two, true, and true, respectively. The accuracy of the trained model on the

selected features and the tuned hyper-parameters is 99.94%. This trained random forest model

was now applied in our SDN environment to validate the approach.

7.4 The SDN Barrier

As the name suggests, the SDN barrier is a barrier between the attacker and the victim,

as shown in Figure 7.8. It is a term used for a setup in an SDN environment to prevent the

DDoS attack from reaching the victim. It consists of an SDN controller, the SDN switch

responsible for mirroring the traffic, and the detection module (the machine running the ML

model for predicting the attack). It is a protective measure that can be applied anywhere

between the victim and the attacker organization.

To facilitate the detection of malicious traffic, the traffic directed towards the victim is

mirrored to a dedicated node running the trained random forest model. This model assesses the

traffic and predicts whether it is benign or an attack.

142

Figure 7.8 : Proposed architecture of SDN barrier

In order to enable this process, the SDN controller configures flow rules for port

mirroring on the SDN switch. When the traffic is identified as benign, no further action is taken.

However, if the traffic is determined to be malicious, the SDN controller is instructed to block

all traffic originating from the corresponding IP address. This is achieved by the controller

pushing a flow rule to the switch, thereby dropping any flows from the attacker’s IP address.

We simulate a real-case scenario in the SDN environment, where an attacker

organization attacks a victim. We have deployed a DNS_DRDoS attack using a DNS Server.

The methodology is as follows:

143

 Initialization: Set up the SDN environment, including the SDN controller, SDN switch,

and the node running the trained model.

 DNS_DRDoS attack setup: Configure the DNS server to execute the DNS_DRDoS

attack.

 Traffic mirroring: Configure the SDN controller to enable port mirroring on the SDN

switch. This ensures that all incoming traffic, including the attack traffic, is duplicated

and forwarded to the node running the trained model for analysis.

 Traffic analysis: The trained random forest model on the node analyzes the mirrored

traffic in real-time. Based on the learned patterns and features, it classifies the traffic as

benign or malicious.

a. The computing node saves the traffic in the form of .pcap files. These files are saved

every 20 seconds or when they exceed 50 MB in size, whichever happens first.

b. The .pcap files are processed using CICFlowmeter (Cybersecurity). This tool

extracts the relevant features from the .pcap files and generates a .csv file.

c. The generated .csv file is then fed into the pre-trained machine learning classifier.

The classifier analyzes the network flows and classifies them as either malicious or

benign based on the learned patterns and features.

 Detection of malicious traffic: If the model identifies any traffic as malicious, it notifies

the SDN controller about the attacker’s IP address associated with the malicious traffic.

 Flow rule deployment: The SDN controller dynamically pushes flow rules to the SDN

switch, instructing it to drop any flows originating from the identified attacker’s IP

address. This action effectively blocks the attack traffic from reaching the victim.

 False positives: If the victim sends a request packet to an IP address previously blocked,

the system identifies it as a potential false positive. In such cases, the controller is

instructed to unblock the IP address to allow the traffic to flow freely.

144

By following these steps, the system can effectively monitor and classify network flows

in real-time, proactively blocking malicious traffic and mitigating potential false positives for

a more efficient and accurate prevention and mitigation system.

7.4.1 Handling False Positives-

 There may be instances where benign traffic is erroneously classified as attack traffic

by the model, leading to false positives and subsequent blocking of benign IP addresses by the

controller. For instance, in the case of a DNS_DRDoS attack, the controller may block the DNS

server responsible for generating attack traffic toward the victim. Consequently, if the victim

sends a DNS request to this server, the server’s response will not reach the victim because it is

already blocked. We have implemented a mechanism to unblock IP addresses to address this

issue if the victim generates a request directed toward that specific IP address. This ensures

that even if the controller mistakenly blocks the DNS server, it will be unblocked once the

victim initiates a request to that IP address. By incorporating this concept, we prevent any

disruption to legitimate communication between the victim and the blocked IP address,

mitigating the impact of false positives.

7.5 Result And Analysis

This section describes the experimental setup done to validate the proposed approach.

The time taken to detect the attack through the proposed model is also calculated and shown in

this section.

7.5.1 Experimental Setup

As shown in Figure 7.9, to test the proposed approach’s effectiveness, we simulated a

network using Mininet (Mininet, 2022).

145

Figure 7.9 : Experimental setup

The topology consists of a victim’s network where the model runs on node h7, an

attacker’s network, a DNS server for generating attack traffic, and a test server for generating

benign traffic. The simulations steps are as follows-

 The attackers perform a DNS reflection attack on the victim network, specifically on

the node labeled ‘h5’. There are two attack networks, each consisting of two attackers,

i.e., the nodes ‘h1’, ‘h2’, ‘h3’, and ‘h4’. They spoof the source IP address to match that

of ‘h5’ and send DNS request packets to the DNS server ‘h9’.

 The nodes ‘h5’ and ‘h6’ in the victim network randomly send and receive benign traffic

from the TCP test server ‘h8’.

In this simulation, the S3 switch acts as an SDN barrier. The controller installs a flow

rule to automatically send all traffic that enters and exits the victim network to node ‘h7’.

146

 The trained ML model is running on node ‘h7’. If it detects a malicious flow, it notifies

the controller to install a drop rule in ‘S3’ (SDN switch). It corresponds to the malicious

flow’s source IP address and blocks it. If the victim network sends traffic towards the

blocked IP address even after it was blocked, ‘h7’ notifies the controller to remove the

drop rule from ‘S3’ as it is likely the result of a false positive.

We ran the attack simulation for six minutes and six seconds since that is the median

length of a DDoS attack (The Median Duration of DDoS Attacks Was 6.1 Minutes in the First

Half of 2021). To test the algorithm’s efficiency, we calculated the following parameters:- total

attack traffic sent, total attack traffic reaching the victim, total benign traffic sent from the test

server, total benign traffic received from the test server, time taken to block the attack,

percentage of attack traffic reaching the victim, percentage of benign traffic reaching the

victim, and avg attack rate.

7.5.1 Results and Observations

Table 7.3 shows the calculated parameters as mentioned in section 7.5 with varying

attack rates ranging from 200Mbps to 1Gbps. The time taken to block the attack ranges from

5.3 to 3.8 seconds. The detection time appears to decrease when the avg attack rate increases

as the .pcap reach 50MB faster due to the faster rate of incoming traffic.

Table 7.3 : Traffic at the victim with varying attack rates

 200Mb/s 400Mb/s 600Mb/s 800Mb/s 1Gb/s

Total attack traffic sent 8.2GB 15.16GB 21.03GB 27.47GB 30.84GB

Total attack traffic
reaching the victim

108.51MB 145MB 211.50MB 218MB 241MB

Total benign traffic sent
from test server

2.8MB 2.6MB 2.8MB 2.53MB 2.8MB

147

Total benign traffic
received from test server

2.8MB 2.6MB 2.8MB 2.53MB 2.8MB

Time taken to block the
attack

5.3
seconds

4.3
seconds

4.1
seconds

3.8
seconds

3.8
seconds

Percentage of attack traffic
reaching the victim

1.31% 0.96% 1.01% 0.80% 0.79%

Percentage of benign traffic
reaching the victim

99.99% 99.99% 100% 100.00% 99.98%

Avg attack rate
174.79
MBit/s

323.95
MBit/s

451.35
MBit/s

601.37
MBit/s

705.92
MBit/s

Figure 7.10 : Generated attack vs. attack reaching the victim

As shown in Figure 7.10, the attack traffic reaching the victim is much less than the

traffic sent. On the other hand, as shown in Figure 7.11, the benign traffic sent is nearly the

same as that received by the victim. On average, 99.27% of the benign traffic is successfully

transferred across the network. It implies that the DDoS attack does not hinder benign traffic.

148

Figure 7.11 : Benign traffic sent vs. reaching the victim

7.6 Summary of the Chapter

In this chapter, we propose a model for near real-time detection of DDoS attacks using

random forest. The datasets used for training the model are DNS, SYN, UDP, UDP-lag, and

Portmap of the CICDDoS-2019 dataset. We perform feature reduction using correlation and

MI. The finalized features are ‘Fwd Packet Length Min,’ ‘URG Flag Count,’ ‘Min Packet

Length,’ ‘Avg Fwd Segment Size,’ ‘ACK Flag Count,’ ‘Init_Win_bytes_forward,’ ‘Bwd IAT

Total,’ ‘Average Packet Size,’ ‘Fwd Packet Length Mean,’ ‘Packet Length Mean,’ ‘Packet

Length Std,’ ‘Packet Length Variance,’ ‘Bwd IAT Max,’ ‘Flow Duration,’ ‘Flow IAT Mean.’

To assess the accuracy of the trained model in a real-time scenario, we construct a SDN

topology and generate both attack and legitimate traffic. The attack traffic is simulated to have

a speed of approx. 1 Gbps, while legitimate traffic is also included in the simulation. As

mentioned earlier, out of the total attack traffic with a speed of 1 Gbps, only 0.79% of the attack

traffic reaches the victim, while the remaining 99.21% is effectively blocked. On the other

hand, 99.98% of the benign traffic successfully reaches the victim. This demonstrates the

149

effectiveness of the proposed model in mitigating and intercepting the majority of the attack

traffic, thus minimizing the impact on the victim.

Furthermore, the trained model exhibits an impressive accuracy rate of 99.9% in

detecting the attacks. This high accuracy is achieved through meticulous hyper-parameter

tuning and optimized feature selection, reducing the feature set from 88 to 15 relevant features.

These improvements significantly enhance the performance of the random-forest model,

ensuring robust and accurate detection of attacks within the network.

********** End of Chapter **********

150

CHAPTER 8- Detection of Distributed Denial of Service Attacks using Entropy on

Sliding Window with Dynamic Threshold

8.1 Introduction

In the context of network traffic, entropy refers to the degree of randomness or

unpredictability found within the transmitted data. It serves as a metric for evaluating network

traffic patterns' complexity and informational content. When discussing network traffic,

entropy can be determined through various methods. One common approach involves

examining the distribution of data within the network traffic payload. If the values within the

payload are evenly spread out, the entropy will be higher. Conversely, if certain values or

patterns dominate the payload, the entropy will be lower. A low entropy value indicates that

the network traffic exhibits predictable patterns or structures. This can be indicative of specific

types of network traffic or anomalies. For instance, network traffic generated by automated bot

activity might display low entropy due to the repetitive nature of their actions. Hence; leading

to the detection of DDoS attacks. This chapter elaborated on detection of DDoS attacks using

entropy, instead of prevention as defined in the previous chapters.

Examining entropy within network traffic holds several benefits, including network

monitoring, intrusion detection, anomaly detection, and traffic classification. By analyzing the

entropy of network traffic, network administrators and security professionals can gain valuable

insights into the characteristics and behavior of the network. This knowledge enables them to

identify potential security threats or abnormalities more effectively.

In the literature, many researchers use entropy to detect DDoS attacks. The majority of

detection algorithms based on entropy use a static threshold (Bülbül & Fischer, 2020) (Ali et

al., 2021). However, such a static threshold would not work efficiently for DDoS attack

151

detection, resulting in many false positives. For instance, in normal traffic, the entropy values

can drop due to high traffic from a host and lead to a prediction of an attack, hence false

positives. To address this issue, we use a dynamic threshold as proposed by (Wang et al., 2015)

for SDN to detect the attack. We used the sliding window concept to get more accurate results

on the dataset. For sliding the window, our left and right pointers move by one second to predict

the attack in a particular time interval. We identify whether there is a sudden drop in the entropy

value of a particular window compared to the average entropy value for some previously

encountered windows. Such a drop in entropy value would increase the count of violations. To

increase the effectiveness of attack detection, we look for the particular number of such

violations in the previously fixed number of windows. It helps us to reduce the number of false

positives significantly. The proposed methodology is tested on the (DNS_DRDoS and

Portmap) dataset available in the CICDDoS2019 attack dataset, which resembles true real-

world data. More on this will be explained in section 8.3.

8.2 Related Work

Entropy measures the randomness in network traffic. One such type of entropy to

measure uncertainty is Shannon’s entropy (Shannon, 1951). If n is the number of packets in a

window and pi is the probability of occurrence of event xi, Shannon’s entropy H(X) is given

by eq. (8.1) and eq. (8.2) –

……………………………. (8.1)

…………………………………. (8.2)

Different authors have used variations of Shannon’s entropy to detect DDoS attacks.

These include General Entropy(GE) (Sahoo et al., 2018), fast entropy (David & Thomas,

2015), φ entropy (R. Li & Wu, 2020), etc. Sahoo et al. (Sahoo et al., 2018), have proposed the

152

use GE to detect DDoS attacks on SDN controllers. Taking advantage of flow-based traffic in

SDN controllers, GE is used to detect low-rate DDoS attacks. Generalized entropy Hα(X) is

given by (Sahoo et al., 2018), as shown in eq. (8.3) –

 (8.3)

where α is the order of general entropy, varying which different values of entropy can be

calculated. When α = 1, it becomes Shannon’s entropy. (R. Li & Wu, 2020) have also proposed

the detection of DDoS attacks against SDN controllers using entropy. They have used φ

entropy for the detection of DDoS attacks. φ entropy is used to widen the differences between

attack traffic and normal traffic, and also adjust parameters according to network conditions. φ

entropy, Hφ (X) is given by (R. Li & Wu, 2020), as shown in eq. (8.4) –

……………………… (8.4)

The parameter φ is used to adjust the sensitivity of measuring the frequency of events, where

φ > 0. To reduce computation time in the calculation of entropy, David et al. (David & Thomas,

2015) proposed to use fast entropy to detect DDoS attacks. Their approach is based on flow-

based analysis while keeping an adaptive threshold based on traffic patterns. A flow consists

of all packets with the same source and destination IP/port pair for a certain amount of time.

Let a random variable x(i, t) represent the flow count of a particular connection i over a given

time interval t. The fast entropy H(i,t)(X) for a particular interval and particular connection is

calculated as shown in eq. (8.5) and eq. (8.6):

 (8.5)

153

 (8.6)

To evaluate the approach proposed in this chapter, the CICDDoS-2019 attack dataset

has been used. (R. Zhou et al., 2021), (J. Li et al., 2020), (Bülbül & Fischer, 2020), and (Ali et

al., 2021) have also used this dataset to evaluate their approaches based on entropy. To detect

anomalies caused in network traffic by botnets and DDoS attacks, (R. Zhou et al., 2021)

proposed the use of the Euclidean distance-based multi-scale fuzzy entropy algorithm. The

input is taken as a time series X = (x1, x2, xn) with a time scale τ, and the output is the

entropy value. They analyzed their algorithm on the CICDDoS-2019 dataset and have shown

entropy curves on different time scales. In the approach proposed by (J. Li et al., 2020), the

primary focus is on volumetric DDoS attacks. For this, they proposed the use of an optimized

sliding window for entropy calculation. They used Shannon’s entropy only but on a joint pair

of (source IP, source port) and (destination IP, destination port), making it a joint entropy.

(Bülbül & Fischer, 2020) proposed DDoS detection and mitigation using NFV and SDN

environment. For detection of attack, they used entropy. After detecting an attack, traffic is

further analyzed to generate attack patterns so that attack traffic can be differentiated from

legitimate traffic. (Ali et al., 2021) have proposed the use of entropy and Sequential Probability

Ratio Test (SPRT) for DDoS detection. Flows are formed after monitoring the packets, and

these flows are gathered in specific window sizes. After this entropy calculation, SPRT is used

for the detection of DDoS attacks.

From the approaches mentioned above, we can say that entropy is effective for detection

of DDoS attacks. But to detect all types of DDoS attacks, not confined to only volumetric

attacks, we need to make our threshold for DDoS detection dynamic so that it can change

according to attack traffic and accurately provide detection. The approach proposed in this

chapter uses a dynamic threshold with entropy to give better results.

154

8.3 Proposed Methodology

In the proposed approach, we calculate entropy at fixed time intervals. We use the

concept of flows in this approach. A flow is a five-tuple entity, and a flow count is the total

number of packets of a flow in a particular time interval. Flow ID, source address, destination

address, source port, and destination port are the five tuples of a flow. So, a flow is a uni-

directional flow of packets from one source port, source IP address, to another destination port,

destination IP address. The entropy value would remain relatively stable without the attack,

fluctuating in a specific range. During an attack, the network switch will have multiple packets

with the same destination address.

Shannon’s entropy would drop significantly when a few flows would dominate others.

The algorithm considers entropy for a window, and we keep on sliding this window to consider

different time intervals. Table 8.1 describes the notations used in the proposed approach. The

algorithm is explained in Algorithm 8.1 (EBDD). The entropy can be calculated as per eq. (8.7)

to (8.9), where n is the total number of flows in the interval ΔT, and left and right are pointers

pointing to the leftmost and rightmost packets, respectively in the current window.

Received_Packetsi(T) are the packets received till time T for the ith flow.

….. (8.7)

.. (8.8)

 (8.9)

We use a dynamic threshold as proposed by (Wang et al., 2015). We have used the

sliding window concept to get more accurate results on the dataset used. For sliding the

window, our left and right pointers move by 1 second to predict the attack in a particular time

interval. Also, the proposed methodology is designed for real Internet scenarios, where

155

different types of DDoS attacks can take place. Hence, it is tested on DNS_DRDoS and

Portmap dataset of CICDDoS-2019 attack dataset, which resembles true real-world data.

Table 8.1 : Notations used in the proposed approach

8.3.1 Dynamic Threshold Algorithm and Attack Detection

For the current entropy calculation, if E −H > δ, it would be a violation since the current

entropy varies by a range of δ from the average entropy of the previous N traffic values, i.e.,

E. We then check if there are at least M such violations in previous S such windows, as also

proposed in (Wang et al., 2015). If that is the case, a DDoS attack is detected and reported.

Checking for M such violations in S ensures that we do not report a normal increase in traffic

which is not an attack. If there is no violation, we update δ and the average entropy for the

previous N traffic values, i.e., E, and continue the calculations for the next time window.

Notation Definition
n The total number of flows in an interval
N The number of nearest normal entropy values (used for calculating average

entropy)
D Dictionary consisting of all the flows along with there flow packets
Xi Flow packets corresponding to a flow Di in a given window
Hi Entropy of flow Di in a given window
H Total entropy of a window (calculated using summation of Hi)
E Weighted average entropy of previous N normal traffic values
M The minimum times the formulae (E −H > δ) is to be satisfied
s_len The length of the sliding window
S Window size to count the number of predictions in the previous history
δ Dynamic threshold used in prediction of attack
σ The standard deviation of normal entropy values
λ Threshold multiplicative factor

 A constant value for calculation of weighted average (changes with every
iteration)

startTime A constant denoting starting of traffic in seconds
endTime A constant denoting ending of traffic in seconds

156

Algorithm 8.1 : Entropy-based DDoS detection using sliding window and flow entropy
Initialize the local parameters E, δ, M, S, H, N, λ, ΔT, σ, left, right, endTime, s_len
left startTime
right startTime + ΔT
while right ≤ endTime do
 H 0
 for i in all flow id between left and right timestamp do
 Xi = Received_Packetsi (left + ΔT) - Received_Packetsi (left)

 H + = -pi * log pi
 end for

 if E – H > δ then:
 if M times in S then
 Report DDoS attack between window left and left + ΔT
 end if
 else

 end if
 left += s_len
 right += s_len
end while

If there is no violation, we update δ and the weighted average entropy for the previous

N traffic values, i.e., E, and continue the calculations for the next time window. A constant

term αi is used to give more weightage to the most recently observed entropy values as

compared to the previous ones. In the proposed approach, when there is no attack prediction in

a window, that window’s traffic is considered normal traffic. The proposed methodology can

also be understood from the flow diagram in Fig. 8.1.

157

Figure 8.1 : Flow of the dynamic threshold algorithm

Start

Initialize the local parameters E,
δ, M, S, H, N, λ, ΔT, σ, left,

right, endTime, s_len

right <
endTime

Compute Entropy (H) of the current window (between left
and right timestamp) by adding entropy of every individual

flow id active during the duration and then normalize it

E-H >
δ

M
times
in S ?

Confirm and report
DDoS attack in the

given window 1) Update Average Entropy E

 2) Compute Standard Deviation of previous
normal entropy with the average entropy and
update threshold δ

Update Left and Right
pointers by amount

s_len

End No

No

No

Yes

Yes Yes

158

8.4 Results and Discussion

The CICDDoS-2019 dataset contains benign and the most up-to-date common DDoS

attacks, resembling actual real-world data. This authentic dataset contains both benign traffic

and attack traffic, although the attack traffic is more in comparison to benign traffic. The dataset

was pre-processed by removing infinity and NaN values before applying our algorithm. The

features taken for entropy calculation are time-stamp, flow ID, and flow-packets/sec. Entropy

was calculated by varying ΔT and S. To test the metrics for the prediction of an attack,

DNS_DRDoS and Portmap attack datasets of CICDDoS-2019 have been used.

While accuracy is frequently employed as a metric to assess the effectiveness of a

classification model, it might not be consistently suitable or enlightening, particularly in

situations involving imbalanced datasets. In cases where the distribution of classes is uneven,

accuracy can be deceptive. Alternative metrics, such as precision, recall, and F1 score, offer a

more detailed perspective on the model's performance. Hence, our proposed algorithm's

performance is measured by calculating precision, recall, and F1 score in attack prediction by

varying ΔT and S. These metrics depend upon false positives, true positives, false negatives,

and true negatives. False positives are legitimate traffic detected as attack traffic; true negatives

are the legitimate traffic detected as legitimate traffic; false negatives are attack traffic detected

as legitimate traffic, and true positives are attack traffic detected as attack traffic.

Table 8.2 : Analysis of F1 score in prediction by varying S and ΔT for DNS_DRDoS

 S=3 S=5 S=7

ΔT=10 99.965 99.965 99.965

ΔT=20 99.964 99.964 99.964

ΔT=30 99.964 99.964 99.964

As shown in Table 8.2, the F1 score for the prediction of the attack is 99.96 % for the

DNS_DRDoS attack dataset on a time interval of 10 seconds. The algorithm achieves this high

159

value as there is an attack in almost every window, leading to higher prediction and detection

of attack. Taking the values ΔT=10 and S=3 from Table 8.2, we plot the graphs in Figures 8.2

and 8.3, respectively.

Figure 8.2 : Precision, recall, and F1 score by varying intervals for DNS_DRDoS dataset

Figure 8.3 : Precision, recall, and F1 score by varying S for DNS_DRDoS dataset

Similarly, we plot the precision, recall, and F1 score v/s ΔT and v/s S graphs for the

Portmap dataset in Figures 8.4 and 8.5, respectively. We plot the interval graph by keeping

S=3. The time ΔT=30 seconds gave higher performance metrics for prediction compared to its

previous windows, as the Portmap attack dataset has chunks of attack data and legitimate data

99.4

99.5

99.6

99.7

99.8

99.9

100

T= 5 T= 1 0 T= 1 5 T= 2 0 T= 2 5 T= 3 0Pr
ec

is
io

n,
 R

ec
al

l a
nd

 F
1

sc
or

e

Interval

Precision, Recall and F1 score with
varying intervals

Precision Recall F1-score

99.88

99.9

99.92

99.94

99.96

99.98

100

S = 3 S = 5 S = 7 S = 9Pr
ec

is
io

n,
 R

ec
al

l a
nd

 F
1-

sc
or

e

Interval

Precision, Recall and F1 score with
varying S- value

Precision Recall F1-score

160

rather than contiguous attack data. Hence, longer intervals gave higher values in predicting the

attack. The precision, recall, and F1 score v/s S graph is plotted for ΔT=30. The metric values

remain uniform across different S values for this interval.

Figure 8.4 : Precision, Recall, and F1 score by varying intervals for Portmap dataset

Figure 8.5 : Precision, Recall, and F1 score by varying S for Portmap dataset

8.5 Summary of the Chapter

The focus of this chapter is to detect DDoS attacks using entropy. Entropy is used to

measure randomness or uncertainty in a network’s traffic. As soon as this randomness

decreases, i.e., one type of traffic dominates the network, the entropy value decreases. This

84
86
88
90
92
94
96
98

100

T= 3 0 T= 3 5 T= 4 0 T= 4 5 T= 5 0Pr
ec

is
io

n,
 R

ec
al

l a
nd

 F
1-

sc
or

e

Interval

Precision, Recall and F1 score with
varying intervals

Precision Recall F1-score

84
86
88
90
92
94
96
98

100

S = 3 S = 5 S = 7 S = 9

Pr
ec

is
io

n,
 R

ec
al

l a
nd

 F
1

sc
or

e

Interval

Precision, Recall and F1 score with
varying S- value
Precision Recall F1-score

161

abbreviation leads to the possibility of an attack on the network. One benefit of entropy-based

algorithms is that entropy calculations require minimal computational effort. The proposed

approach employs a dynamic threshold mechanism to effectively distinguish between normal

and attack traffic. The entropy of a certain interval is compared to this dynamic threshold for

attack prediction. In our evaluation, we investigate the impact of varying the time intervals and

the entropy variation in previous windows for the precision of attack prediction. Through this

analysis, we achieve a notable F1 score of 99% in predicting DNS_DRDoS attacks and 94%

for Portmap attacks. The difference in the values for these predictions is because of the type of

attack present in these datasets. The DNS_DRDoS attack has contiguous attack data, resulting

in higher accuracy.

********** End of Chapter **********

162

CHAPTER 9- Conclusions and Future Research Directions

9.1 Conclusions

This thesis provides defense techniques against DRDoS attacks, primarily focusing on

Prevention. More specifically, the prevention techniques presented are IP-Switching,

PortMapping, PortMergeIP, SymSDN, RDPID, PoDIBC, and RF-SDN. In addition, we also

present a DDoS detection technique using entropy. The techniques provided mainly focus on

two types of Prevention- True and Partial.

 In True Prevention, the attack traffic can leave an attacker’s access network and enter

the core Internet network but can never reach the target victim’s network.

 In Partial Prevention, some attack traffic reaches the victim’s network. An additional

prevention layer is proposed to be placed in between the attacker’s and the victim’s

networks. The purpose of this prevention layer is to detect the ongoing attack at the

earliest and successively stop it from reaching the victim’s network.

The suggested prevention techniques aim to make the underlying network smart enough

to counter DrDoS attacks effectively. To demonstrate and validate the efficacy of the proposed

methods, the underlying network is considered to be an SDN network. Depending on the

specific technique, the entire network is either assumed to be SDN-enabled or only a portion

of it requires SDN integration.

Based on the definitions of True Prevention and Partial prevention, the techniques

proposed in this thesis can be categorized as described in Table 9.1.

163

Table 9.1 : Prevention techniques

Prevention Technique Requirement of EDGE /

CORE network to be SDN

enabled

Type Of Prevention

1. IP-Switching EDGE N/W (ISP works as

SDN Barrier)

True Prevention

2. PortMapping CORE N/W+EDGE N/W True Prevention

3. PortMergeIP EDGE N/W (ISP works as

SDN Barrier)

True Prevention

4. SymSDN CORE N/W+EDGE N/W True Prevention

5. RDPID CORE N/W True Prevention

6. PoDIBC EDGE N/W True Prevention

7. RF-SDN EDGE N/W (Partial

Prevention Layer as SDN

Barrier)

Partial Prevention

IP-Switching is a True Prevention approach, with ISP’s first-hop router working as an

SDN barrier. It is True Prevention as attack traffic leaves the edge network and enters the core

network, but it does not reach the victim due to the IP address being switched to the downstream

IP address by ISP.

PortMapping is also a True Prevention technique. However, the entire network must be

SDN-enabled to implement this algorithm, as the switches push in-port information in packets

for the whole path between the host and the server. It is True Prevention as the request path

takes the same path as the response; hence, even when the attack traffic enters the core network,

it never reaches the victim.

PortMergeIP is a True Prevention technique where the edge network and the ISP’s first-

hop router is required to be SDN enabled. It also overcomes the drawback of IP-Switching as

the response traffic not only reaches the attacker’s organization but also towards the attacker

responsible for the attack. The victim remains unaffected by the attack.

164

SymSDN is also a True Prevention approach requiring the entire network to be SDN

enabled as the OpenFlow switches store path information in its tables to implement symmetric

routing. It leads to attack traffic diverting back to the attacker, even with a spoofed source IP,

keeping the victim’s network unaffected by the attack.

RDPID is also a True Prevention approach, and it requires modifying the entire

underlying network to incorporate appropriate rules for forwarding packets based on PIDs. The

response reaches back to the attacker as the forwarding is based on PIDs, not the IP address;

hence the victim is unaffected.

PoDIBC is a True Prevention approach with the edge network as an SDN barrier. The

client and server do the signing and verification process, with the controller providing

parameters for the encryption process. It is True Prevention as the server drops the attack

request packets on unsuccessful sign verification; hence, True Prevention as no response packet

reaches the victim.

RF-SDN is a Partial Prevention approach with the DDoS detection module and SDN

controller working as an SDN barrier. The detection module can detect the attacks in near real-

time, and if the attack is detected, the controller is notified to block the malicious IP address. It

is Partial Prevention as a small part of attack traffic (experimentally proved to be approximately

0.79% for a 1-Gbps attack) reaches the victim.

Finally, chapter 8 explains a DDoS detection approach using entropy. The proposed

approach employs a dynamic threshold mechanism to effectively distinguish between normal

and attack traffic. Although we did achieve good precision in detecting the attacks, the time

interval for detection of attacks with good accuracy was more (experimentally proved to be

approx. 30 seconds) for non-contiguous attack data like Portmap.

9.2 Future Research Directions

The works proposed in this thesis can be extended in the following ways-

165

 It is established in the thesis that prevention is a better approach than detection and

mitigation of DDoS attacks. In this work, we have focused on the prevention of DRDoS

attacks and provided techniques for only these attacks. This work can be extended to

provide prevention from more categories of DDoS attacks like volumetric attacks and

zero-day attacks.

 To cover larger networks, multiple SDN controllers will be needed, and these

controllers need to communicate with each other to pass shared information. For e.g.,

in Chapter 6, for the PoDIBC technique, we currently connect the whole topology to a

single controller, but for larger networks, multiple controllers will be needed, and these

controllers need to communicate with each other to pass the public parameters. Further

research is required to get more insights into the effectiveness of the proposed

techniques in such cases.

 The techniques presented in the thesis require a change in the functionality of the

underlying network. We have proven the techniques assuming SDN as the under lying

network; however, the same can be achieved for the traditional network, which can be

researched in the future.

********** End of Chapter **********

166

REFERENCES

2016 Dyn cyberattack. Retrieved June 10, 2021, from
https://en.wikipedia.org/wiki/2016_Dyn_cyberattack

Ahmed, M. E., Kim, H., & Park, M. (2017). Mitigating DNS query-based DDoS attacks with
machine learning on software-defined networking. Proceedings - IEEE Military
Communications Conference MILCOM, 2017-Octob, 11–16.

Ahmed, Z., Afaqui, N., & Humayun, O. (2019). Detection and Prevention of DDoS attacks
on Software Defined Networks Controllers for Smart Grid. International Journal of
Computer Applications, 181(45), 16–21.

Al-Duwairi, B., Özkasap, Ö., Uysal, A., Kocaoğullar, C., & Yildirim, K. (2020b). LogDoS:
A Novel logging-based DDoS prevention mechanism in path identifier-Based information
centric networks. Computers and Security, 99, 102071.

Ali, B. H., Sulaiman, N., Al-Haddad, S. A. R., Atan, R., & Hassan, S. L. M., Alghrairi, M.
(2021). Identification of distributed denial of services anomalies by using combination of
entropy and sequential probabilities ratio test methods. Sensors, 21(19).

Andersen, D. G., Balakrishnan, H., Feamster, N., Koponen, T., Moon, D., & Shenker, S.
(2008). Accountable internet protocol (AIP). ACM SIGCOMM 2008 Conference on Data
Communication, 339–350.

Assis, M. V. O., Carvalho, L. F., Lloret, J., & Proença, M. L. (2021). A GRU deep learning
system against attacks in software defined networks. Journal of Network and Computer
Applications, 177(November 2020), 102942.

Aura, T. (2005). Cryptographically Generated Addresses (CGA), RFC 3972.
https://www.rfc-editor.org/rfc/rfc3972

Avramopoulos, I., & Suchara, M. (2009). Protecting the DNS from routing attacks: Two
alternative anycast implementations. IEEE Security and Privacy, 7(5), 14–20.

Bagnulo, M., & Garcia-Martinez, A. (2014). SEcure Neighbor Discovery (SEND) Source
Address Validation Improvement (SAVI). available: https://rfc-editor.org/rfc/rfc7219.txt

Baker, F., & Savola, P. (2004). Ingress Filtering for Multihomed Networks (pp. 1–16). IETF.
https://www.hjp.at/doc/rfc/rfc3704.html

Barreto, P. S. L. M., Libert, B., McCullagh, N., & Quisquater, J. J. (2005). Efficient and
provably-secure identity-based signatures and signcryption from bilinear maps. Lecture Notes
in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 3788 LNCS, 515–532.

Bawany, N. Z., Shamsi, J. A., & Salah, K. (2017). DDoS attack detection and mitigation using
SDN: methods, practices, and solutions. Arabian Journal for Science and Engineering, 42(2),
425–441. https://doi.org/DOI 10.1007/s13369-017-2414-5

Bhardwaj, K., Miranda, J. C., & Gavrilovska, A. (2018). Towards IoT-DDoS prevention
using edge computing. {USENIX} Workshop on Hot Topics in Edge Computing (HotEdge
18).

167

Bhatia, S., Behal, S. and A. I. (2018). Distributed Denial of Service Attacks and Defense
Mechanisms: Current Landscape and Future Directions. In Verstile Cybersecurity (pp. 55–
97). Springer, Cham.

Bi, J., Wu, J., Yao, G., & Baker, F. (2015). Source Address Validation Improvement (SAVI)
Solution for DHCP. https://rfc-editor.org/rfc/rfc7513.txt

Bi, J., Yao, G., Halpern, J. M., & Levy-Abegnoli, E. (2017). Source Address Validation
Improvement (SAVI) for Mixed Address Assignment Methods Scenario.
https://rfceditor.org/rfc/rfc8074.txt

Booters, Stressers and DDoSers. Retreived June 10, 2021, from,
https://www.imperva.com/learn/ddos/booters-stressers-ddosers/

Breiman, L. (1996). Bagging predictors. Machine Learning, Springer, 24.

BREIMAN, L. (2001). Random Forests. Machine Learning, Springer, 45.

Bülbül, N. S., & Fischer, M. (2020). SDN/NFV-based DDoS Mitigation via Pushback. ICC
2020-2020 IEEE International Conference on Communications (ICC), 1–6.

CAIDA’s Skitter MAP. Retrieved October 1, 2021, from
https://www.caida.org/~bhuffake/papers/skitviz/

Chen, C. C., Chen, Y. R., Lu, W. C., Tsai, S. C., & Yang, M. C. (2017). Detecting
amplification attacks with Software Defined Networking. 2017 IEEE Conference on
Dependable and Secure Computing, 195–201.

Chen, X., Xiao, L., Feng, W., Ge, N., & Wang, X. (2021). DDoS Defense for IoT: A
Stackelberg Game Model Enabled Collaborative Framework. IEEE Internet of Things
Journal, 4662(c), 1–16.

Cimpanu, C. (2020a). AWS said it mitigated a 2.3 Tbps DDoS attack, the largest ever.
Retreived June 11, 2021, from, https://www.zdnet.com/article/aws-said-it-mitigated-a-2-3-
tbps-ddos-attack-the-largest-ever/

Cimpanu, C. (2020b). Google says it mitigated a 2.54 Tbps DDoS attack in 2017, largest
known to date. Retreived June 11, 2021, from, https://www.zdnet.com/article/google-says-it-
mitigated-a-2-54-tbps-ddos-attack-in-2017-largest-known-to-date/

Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., & Polk, W. (2008). Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile,
RFC 5280. https://www.rfc-editor.org/rfc/rfc5280

Cybersecurity, C. I. for. CICFlowMeter (formerly ISCXFlowMeter). Retrieved March 28,
2023, from https://www.unb.ca/cic/research/applications.html#CICFlowMeter

Daemen, J., Govaerts, R., & Vandewalle, J. (1994). Weak keys for IDEA. Lecture Notes in
Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 773 LNCS, 224–231.

Dao, N. N., V. Phan, T., Saad, U., Kim, J., Bauschert, T., Do, D. T., & Cho, S. (2021).
Securing Heterogeneous IoT With Intelligent DDoS Attack Behavior Learning. IEEE Systems
Journal, 1–10.

Dao, N. N., Vu, D. N., Lee, Y., Park, M., & Cho, S. (2018). MAEC-X: DDoS prevention

168

leveraging multi-access edge computing. International Conference on Information
Networking, 2018-Janua, 245–248.

David, J., & Thomas, C. (2015). DDoS attack detection using fast entropy approach on
flowbased network traffic. Procedia Computer Science,50, 30–36.

DDOS attacks and the GitHub case. (2018). Institute of Research on Internet and Society.
Retreived June 11, 2021, from, https://irisbh.com.br/en/ddos-attacks-and-the-github-case/

DDoS Evaluation Dataset (CIC-DDoS2019),. University of Brunswick. Retrieved June 11,
2021, from https://www.unb.ca/cic/datasets/ddos-2019.html

DDoS quick guide. (2020). Retreived June 12, 2021, from, https://us-
cert.cisa.gov/sites/default/files/publications/DDoS Quick Guide.pdf

Deadlocks. Retrieved June 13, 2021, from
https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/7_Deadlocks.html

Dhanapal, A., & Nithyanandam, P. (2019). The slow http ddos attacks: Detection, mitigation
and prevention in the cloud environment. Scalable Computing, 20(4), 669–685.

Duan, Q., Al-Shaer, E., Chatterjee, S., Halappanavar, M., & Oehmen, C. (2018). Proactive
routing mutation against stealthy Distributed Denial of Service attacks: metrics, modeling,
and analysis. The Journal of Defense Modeling and Simulation, 15(2), 219–230.

Ehrenkranz, T., & Li, J. (2009). On the state of IP spoofing defense. ACM Transactions on
Internet Technology, 9(2).

Elliptic Curve Cryptography (ECC). (2022). Retreived April 30, 2023, from,
https://cryptobook.nakov.com/asymmetric-key-ciphers/elliptic-curve-cryptography-ecc

Famous DDoS attacks | The largest DDoS attacks of all time. (2021). Retreived June 10,
2021, from, https://www.cloudflare.com/learning/ddos/famous-ddos-attacks/

François, J., Aib, I., & Boutaba, R. (2012). FireCol: A collaborative protection network for
the detection of flooding DDoS attacks. IEEE/ACM Transactions on Networking, 20(6),
1828–1841.

Frankel, S., & Krishnan, S. (2011). IP Security (IPsec) and Internet Key Exchange (IKE)
Document Roadmap RFC 6071. https://datatracker.ietf.org/doc/html/rfc6071

Freiling, F. C., Holz, T., & Wicherski, G. (2005). Botnet tracking: Exploring a root-cause
methodology to prevent distributed denial-of-service attacks. European Symposium on
Research in Computer Security, 319–335.

Ghoshal, A. (2018). How GitHub braved the world’s largest DDoS attack. Retreived June
11, 2021, from, https://thenextweb.com/news/how-github-braved-the-worlds-largest-ddos-
attack

Godfrey, P. B., Ganichev, I., Shenker, S., & Stoica, I. (2009). Pathlet routing. Computer
Communication Review, 39(4), 111–122.

Goncalves, J. A., Faria, V. S., Vieira, G. B., Silva, C. A., & Mascarenhas, D. M. (2017).
WIDIP: Wireless distributed IPS for DDoS attacks. 2017 1st Cyber Security in Networking
Conference, CSNet 2017, 2017-Janua, 1–3.

169

Greg, L. (2006). Geeking with Greg. Retreived June 10, 2021, from,
http://glinden.blogspot.com/2006/04/early-amazon-shopping-cart.html

Grover, S., & Mittal, P. (2016). A novel model based on group controlled observation for
ddos attack detection and prevention in vanet. Indian Journal of Science and Technology,
9(36).

Gupta, B. B., Joshi, R. C., & Misra, M. (2010). Distributed Denial of Service Prevention
Techniques. International Journal of Computer and Electrical Engineering, 2(2), 268–276.

Harikrishna, P., & Amuthan, A. (2021). Rival-Model Penalized Self-Organizing Map
enforced DDoS attack prevention mechanism for software defined network-based cloud
computing environment. Journal of Parallel and Distributed Computing, 154, 142–152.

Hu, G., Chen, W., Li, Q., Jiang, Y., & Xu, K. (2017). TrueID: A practical solution to enhance
Internet accountability by assigning packets with creditable user identity code. Future
Generation Computer Systems, 72, 219–226.

Huong, T. T., & Thanh, N. H. (2017). Software defined networking-based One-packet DDoS
mitigation architecture. Proceedings of the 11th International Conference on Ubiquitous
Information Management and Communication, IMCOM 2017, 2–8.

IEEE Standard for Identity-Based Cryptographic Techniques using Pairings. (2013). IEEE
Std 1363.3-2013, 1–151.

Imperva. TCP SYN Flood. Retrieved April 4, 2023, from,
https://www.imperva.com/learn/ddos/syn-flood/

Introduction: About Scapy. (2023). Retreived July 3, 2022, from,
https://scapy.readthedocs.io/en/latest/introduction.html

Intrusion Detection Evaluation Dataset (CIC-IDS2017). Retrieved March 7, 2023, from
https://www.unb.ca/cic/datasets/ids-2017.html

Islam, M., Chowdhury, M., Li, H., & Hu, H. (2018). Cybersecurity attacks in vehicle-to-
infrastructure applications and their prevention. Transportation Research Record, 2672(19),
66–78.

Jaber, A. N., Zolkipli, M. F., Shakir, H. A., & Jassim, M. R. (2018). Host based intrusion
detection and prevention model against ddos attack in cloud computing. Lecture Notes on
Data Engineering and Communications Technologies, 13, 241–252.

Jingle, I. D. J., & Rajsingh, E. B. (2014). ColShield: an effective and collaborative protection
shield for the detection and prevention of collaborative flooding of DDoS attacks in wireless
mesh networks. Human-Centric Computing and Information Sciences, 4(1), 1–19.

Kalkan, K., & Alagöz, F. (2016). A distributed filtering mechanism against DDoS attacks:
ScoreForCore. Computer Networks, 108, 199–209.

Kaushal, K., & Sahni, V. (2016). Early Detection of DDoS Attack in WSN. International
Journal of Computer Applications, 134(13), 975–8887.

Kent, S., & Atkinson, R. (1998). Security Architecture for the Internet Protocol, RFC 2401.
https://datatracker.ietf.org/doc/html/rfc2401

Keromytis, A. D., Misra, V., & Rubenstein, D. (2004). SOS: An architecture for mitigating

170

DDoS attacks. Journal on Selected Areas in Communications, 22(1), 176–188.

Kim, S., Lee, S., Cho, G., Ahmed, M. E., Jeong, J. P., & Kim, H. (2017). Preventing DNS
amplification attacks using the history of DNS queries with SDN. In European Symposium
on Research in Computer Security, 135–152.

Kim, Y., Lau, W. C., Chuah, M. C., & Chao, H. . (2006). PacketScore: a statistics-based
packet filtering scheme against distributed denial-of-service attacks. IEEE Transactions on
Dependable and Secure Computin, 3(2), 141–155.

Kohler, E., Morris, R., Chen, B., Jannotti, J., & Kaashoek, M. F. (2000). The click modular
router. ACM Transactions on Computer Systems, 18(3), 263–297.

Kreutz, D., Ramos, F. M., Verissimo, P. E., Rothenberg, C. E., Azodolmolky, S., & Uhlig, S.
(2015). Software-Defined Networking : A Comprehensive Survey. 103(1).

Kshirsagar, D., & Kumar, S. (2022). A feature reduction based reflected and exploited DDoS
attacks detection system. Journal of Ambient Intelligence and Humanized Computing, 13(1),
393–405.

Kupreev Oleg, B. E., & Alexander, G. (2019). DDoS attacks in Q3 2019. Retreived June 11,
2021, from, https://securelist.com/ddos-report-q3-2019/94958/

Kupreev Oleg, B., Ekaterina, G., & Alexander. (2021). DDoS attacks in Q4 2020. Retreived
June 10, 2021, from, https://securelist.com/ddos-attacks-in-q4-2020/100650/

Lad, N., Prof, A., & Baria, J. (2014). DDoS Prevention on Rest Based Web Services in)
International Journal of Computer Science and Information Technologies, 5(6), 7314–7317.

Lai, X., & Massey, J. L. (1991). A proposal for a new block encryption standard. Lecture
Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 473 LNCS, 389–404.

Laskar, S., & Mishra, D. (2016). Qualified Vector Match and Merge Algorithm (QVMMA)
for DDoS Prevention and Mitigation. Procedia Computer Science, 79, 41–52.

Le Pennec, J. F., Bruno, A., & Grisi, N. (2014). Method and system for symmetric routing
(Patent No. U.S. Patent No. 8,634,428.). Washington, DC: U.S. Patent and Trademark Office.

Li, C., Wu, Q., Li, H., & Zhou, J. (2019). SDN-Ti: A General Solution Based on SDN to
Attacker Traceback and Identification in IPv6 Networks. IEEE International Conference on
Communications, 2019-May.

Li, J., Liu, M., Xue, Z., Fan, X., & He, X. (2020). A real-time volumetric detection scheme
for ddos in the internet of things. IEEE Access, 8.

Li, J., Mirkovic, J., Wang, M., Reiher, P., & Zhang, L. (2002). SAVE: Source address validity
enforcement protocol. Twenty-First Annual Joint Conference of the IEEE Computer and
Communications Societies, 1557–1566.

Li, R., & Wu, B. (2020). Early detection of DDoS based on ϕ-entropy in SDN networks. In
2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control
Conference (ITNEC), 731–735.

Liu, X., Li, A., Yang, X., & Wetherall, D. (2008). Passport: Secure and adoptable source
authentication. NSDI, 8, 365–378.

171

Liu, Y., Ren, G., Wu, J., Zhang, S., He, L., & Jia, Y. (2015). Building an IPv6 address
generation and traceback system with NIDTGA. Address Driven Network, 58(12), 1–14.

Liu, Z., Cao, Y., Zhu, M., & Ge, W. (2018). Umbrella: Enabling ISPs to offer readily
deployable and privacy-preserving DDoS prevention services. IEEE Transactions on
Information Forensics and Security, 14(4), 1098–1108.

Liu, Zhuotao, Jin, H., Hu, Y. C., & Bailey, M. (2018). Practical Proactive DDoS-Attack
Mitigation via Endpoint-Driven In-Network Traffic Control. IEEE/ACM Transactions on
Networking, 26(4), 1948–1961.

Long, Y., & Xiong, F. (2020). Secret sharing based BLMQ signature generation. ACM
International Conference Proceeding Series, 6–12.

Luo, H., Chen, Z., Li, J., & Vasilakos, A. V. (2017). Preventing distributed denial-of-service
flooding attacks with dynamic path identifiers. IEEE Transactions on Information Forensics
and Security, 12(8), 1801–1815.

Luo, H., Lin, Y., Zhang, H., & Zukerman, M. (2013). Preventing DDoS attacks by
identifier/locator separation. IEEE Network, 27(6), 60–65.

Luo, Hongbin, Chen, Z., Cui, J., Zhang, H., Zukerman, M., & Qiao, C. (2014). CoLoR: An
Information-Centric Internet Architecture for Innovations. June, 4–10.

Ma, R., Wang, Q., Bu, X., & Chen, X. (2023). Real-Time Detection of DDoS Attacks Based
on Random Forest in SDN. Applied Sciences (Switzerland), 13(13).

Malhi, A. K., & Batra, S. (2016). Genetic‐based framework for prevention of masquerade and
DDoS attacks in vehicular ad‐hocnetworks. Security and Communication Networks, 9(15),
2612–2626.

Menscher, D. (2020). Exponential growth in DDoS attack volumes. Retreived June 11, 2021,
from, https://cloud.google.com/blog/products/identity-security/identifying-and-protecting-
against-the-largest-ddos-attacks

Mininet. (2022). Retreived July 3, 2022, from, http://mininet.org/

Mirković, J., Prier, G., & Reiher, P. (2003). Source-end DDoS defense. Proceedings - 2nd
IEEE International Symposium on Network Computing and Applications, NCA 2003, 171–
178.

Mirkovic, J., & Reiher, P. (2004). A taxonomy of DDoS attack and DDoS defense
mechanisms. ACM SIGCOMM Computer Communication Review, 34(2), 39–53.

Mishra, S., Phuc, V. M., & Tanh, N. V. (2023). Lightweight Authentication Encryption to
Improve DTLS, Quark Combined with Overhearing to Prevent DoS and MITM on Low-
Resource IoT Devices. Internet of Things – ICIOT 2022.

Misra, S., Venkata Krishna, P., Agarwal, H., Saxena, A., & Obaidat, M. S. (2011). A learning
automata based solution for preventing distributed denial of service in internet of things.
Proceedings - 2011 IEEE International Conferences on Internet of Things and Cyber,
Physical and Social Computing, IThings/CPSCom 2011, 114–122.

Moskowitz, R., & Nikander, P. (2006). Host Identity Protocol (HIP) Architecture, RFC 4423.
https://www.rfc-editor.org/info/rfc4423

172

Moustafa, N., Creech, G., & Slay, J. (2017). Big Data Analytics for Intrusion Detection
System: Statistical Decision-Making Using Finite Dirichlet Mixture Models. In Data
Analytics and Decision Support for Cybersecurity. Springer.

Moustafa, N., & Slay, J. (2015). UNSW-NB15: a comprehensive data set for network
intrusion detection systems (UNSW-NB15 network data set). 2015 Military Communications
and Information Systems Conference (MilCIS).

Moustafa, N., & Slay, J. (2016). The evaluation of Network Anomaly Detection Systems:
Statistical analysis of the UNSW-NB15 data set and the comparison with the KDD99 data
set. Information Security Journal, 25(1–3), 18–31.

Moustafa, N., Slay, J., & Creech, G. (2017). Novel Geometric Area Analysis Technique for
Anomaly Detection Using Trapezoidal Area Estimation on Large-Scale Networks. IEEE
Transactions on Big Data, 5(4), 481–494.

Munivara Prasad, K., Rama Mohan Reddy, A., & Venugopal Rao, K. (2016). Anomaly based
real time prevention of under rated app-DDOS attacks on web: An experiential metrics based
machine learning approach. Indian Journal of Science and Technology, 9(27).

Nadeem, M., Arshad, A., Riaz, S., Band, S. S., & Mosavi, A. (2021). Intercept the cloud
network from brute force and ddos attacks via intrusion detection and prevention system.
IEEE Access, 9, 152300–152309.

Nagar, S., Rajput, S. S., Gupta, A. K., & Trivedi, M. C. (2017). Secure routing against DDoS
attack in wireless sensor network. 3rd IEEE International Conference On , 1–6.

Navaz, A. S., Sangeetha, V., & Prabhadevi, C. (2013). Entropy based Anomaly Detection
System to Prevent DDoS Attacks in Cloud. International Journal of Computer Applications,
62(15), 42–47.

Ndibwile, J. D., Govardhan, A., Okada, K., & Kadobayashi, Y. (2015). Web server protection
against application layer DDoS attacks using machine learning and traffic authentication.
Proceedings - International Computer Software and Applications Conference, 3, 261–267.

Netscout. (2019). CLOUD IN THE CROSSHAIRS. Retreived June 10, 2021, from,
https://www.netscout.com/report/

Newman, L. H. (2018). GitHub Survived the Biggest DDoS Attack Ever Recorded. Retreived
June 11, 2021, from, https://www.wired.com/story/github-ddos-memcached/

Noel Michael McCullagh. (2005). Cryptographic Applications of Bilinear Maps. Dublin City
University.

Nordmark, E., Bagnulo, M., & Levy-Abegnoli, E. (2012). FCFS SAVI: FirstCome, First-
Served Source Address Validation Improvement for Locally Assigned IPv6 Addresses.

Nurwarsito, H., & Nadhif, M. F. (2021). DDoS Attack Early Detection and Mitigation System
on SDN using Random Forest Algorithm and Ryu Framework. Proceedings of the 8th
International Conference on Computer and Communication Engineering, ICCCE 2021, 178–
183.

Ohri, P., Arockiam, D., Neogi, S. G., & Muttoo, S. K. (2024). Intrusion Detection and
Prevention System for Early Detection and Mitigation of DDoS Attacks in SDN
Environment. 2024 IEEE International Students’ Conference on Electrical, Electronics and

173

Computer Science, SCEECS 2024, 1–6.
https://doi.org/10.1109/SCEECS61402.2024.10481906

ONF. Software-Defined Networking (SDN) Definition. Retrieved April 10, 2023, from,
https://opennetworking.org/sdn-definition/

Oo, K. K., Ye, K. Z., Tun, H., Lin, K. Z., & M., E. P. (2015). Enhancement of Preventing
Application Layer Based on DDOS Attacks by Using Hidden Semi-Markov Model. In
Genetic and Evolutionary Computing (pp. 125–135).

OpenFlow Switch Specification Version 1.5.1 (Protocol version 0x06). (2015). In Open
Networking Foundation. https://opennetworking.org/wp-content/uploads/2014/10/openflow-
switch-v1.5.1.pdf

Osanaiye, O. A. (2015). Short Paper: IP spoofing detection for preventing DDoS attack in
Cloud Computing. 18th International Conference on Intelligence in Next Generation
Networks, 139–141.

Pappas, C., Reischuk, R. M., & Perrig, A. (2016). FAIR: Forwarding accountability for
Internet reputability. IEEE 23rd International Conference on Network Protocols (ICNP),
189–200.

Park, K., & Lee, H. (2001). On the effectiveness of route-based packet filtering for distributed
DoS attack prevention in power-law internets. ACM SIGCOMM Computer Communication
Review, 31(4), 15–26.

Paul, N. (2020). Five Most Famous DDoS Attacks and Then Some. Retrieved June 10, 2021,
from, https://www.a10networks.com/blog/5-most-famous-ddos-attacks/

Poongodi, M., Vijayakumar, V., Al-Turjman, F., Hamdi, M., & Ma, M. (2019). Intrusion
prevention system for DDoS attack on VANET with reCAPTCHA controller using
information based metrics. IEEE Access, 7, 158481–158491.

prevent. Merriam-Webster. Retrieved June 12, 2021, from, https://www.merriam-
webster.com/dictionary/prevent

Prince, M. (2013a). The DDoS That Almost Broke the Internet. Retrieved June 11, 2021, from,
https://blog.cloudflare.com/the-ddos-that-almost-broke-the-internet/

Prince, M. (2013b). The DDoS That Knocked Spamhaus Offline (And How We Mitigated It).
Retrieved June 11, 2021, from, https://blog.cloudflare.com/the-ddos-that-knocked-
spamhaus-offline-and-ho/

Rajagopal, S., Kundapur, P. P., & Hareesha, K. S. (2021). Towards Effective Network
Intrusion Detection: From Concept to Creation on Azure Cloud. IEEE Access, 9, 19723–
19742.

Random Forest. IBM Cloud Education. Retrieved March 6, 2023, from
https://www.ibm.com/in-en/topics/random-forest#:~:text=Random forest is a
commonly,both classification and regression problems.

Ronaghan, S. (2018). The Mathematics of Decision Trees, Random Forest and Feature
Importance in Scikit-learn and Spark. Towards Data Science.
https://towardsdatascience.com/the-mathematics-of-decision-trees-random-forest-and-
feature-importance-in-scikit-learn-and-spark-f2861df67e3

174

Rowshanrad, S., Namvarasl, S., Abdi, V., Hajizadeh, M., Keshtgary, M., Ieee, F., Rothenberg,
C. E., Ieee, M., Azodolmolky, S., Ieee, S. M., Uhlig, S., & Ieee, M. (2014). A survey on SDN,
the future of networking. Journal of Advanced Computer Science & Technology, 3(2), 232.

RYU A. COMPONENT-BASED SOFTWARE DEFINED NETWORKING FRAMEWORK.
Retrieved July 3, 2022, from, https://ryu-sdn.org/

Saharan, S., & Gupta, V. (2021). DDoS Prevention: Review and Issues. In Advances in
Machine Learning and Computational Intelligence (pp. 579-586.).

Sahi, A., Lai, D., Li, Y. A. N., & Diykh, M. (2017). An Efficient DDoS TCP Flood Attack
Detection and Prevention System in a Cloud Environment. IEEE Access, 5, 6036–6048.

Sahoo, K. S., Puthal, D., Tiwary, M., Rodrigues, J. J., Sahoo, B., & Dash, R. (2018). An early
detection of low rate DDoS attack to SDN based data center networks using information
distance metrics. Future Generation Computer Systems, 685–697.

Sahri, N. M., & Okamura, K. (2016). Protecting DNS services from IP spoofing-SDN
collaborative authentication approach. ACM International Conference Proceeding Series, 15-
17-June, 83–89.

Samom, P. S., Taggu, A., & Taggu E-Mail:, A. (2021). Distributed denial of service (Ddos)
attacks detection: A machine learning approach. Lecture Notes in Networks and Systems, 187,
75–87.

Santos, R., Souza, D., Santo, W., Ribeiro, A., & Moreno, E. (2020). Machine learning
algorithms to detect DDoS attacks in SDN. Concurrency and Computation: Practice and
Experience, 32(16), 1–14.

Sarhan, M., Layeghy, S., Moustafa, N., & Portmann, M. (2021). NetFlow Datasets for
Machine Learning-Based Network Intrusion Detection Systems. In Big Data Technologies
and Applications. Springer, Cham.

Saxena, R., & Dey, S. (2015). Cloud shield: Effective solution for ddos in cloud. International
Conference on Internet and Distributed Computing Systems, 3–10.

Schridde, C., Smith, M., & Freisleben, B. (2009). TrueIP: Prevention of IP spoofing attacks
using identity-based cryptography. SIN’09 - Proceedings of the 2nd International Conference
on Security of Information and Networks, 128–137.

Shafi, Q., & Basit, A. (2019). DDoS Botnet Prevention using Blockchain in Software Defined
Internet of Things. Proceedings of 2019 16th International Bhurban Conference on Applied
Sciences and Technology, IBCAST 2019, 624–628.

Shannon, C. E. (1951). Prediction and entropy of printed English. Bell System Technical
Journal, 30(1), 50–64.

Sharafaldin, I., Lashkari, A. H., & Ghorbani, A. A. (2018). Toward generating a new intrusion
detection dataset and intrusion traffic characterization. ICISSP 2018 - Proceedings of the 4th
International Conference on Information Systems Security and Privacy, 2018-Janua(Cic),
108–116.

Sharafaldin, I., Lashkari, A. H., Hakak, S., & Ghorbani, A. A. (2019). Developing realistic
distributed denial of service (DDoS) attack dataset and taxonomy. Proceedings -
International Carnahan Conference on Security Technology, 2019-Octob(Cic).

175

Shridhar, K., & Gautam, N. (2014). A Prevention of DDos Attacks in Cloud Using Honeypot.
International Journal of Science and Research (IJSR), 3(11), 2378–2383.

Siaterlis, C., & Maglaris, B. (2003). A novel approach for a Distributed Denial of Service
Detection Engine. National Technical University of Athens. Athens, Greece, 1–16.

Singh, A. K., Jaiswal, R. K., Abdukodir, K., & Muthanna, A. (2020). ARDefense: DDoS
detection and prevention using NFV and SDN. 12th International Congress on Ultra Modern
Telecommunications and Control Systems and Workshops (ICUMT), 236–241.

Singh, J., & Behal, S. (2020). Detection and mitigation of DDoS attacks in SDN: A
comprehensive review, research challenges and future directions. In Computer Science
Review (Vol. 37, p. 100279). Elsevier Ireland Ltd.

Software-Defined Networking: The New Norm for Networks. (2012). In Open Networking
Foundation. http://opennetworking.wpengine.com/wp-content/uploads/2011/09/wp-sdn-
newnorm.pdf

Somasundaram, A., & Meenakshi, V. S. (2021). A novel three layer filtering (3L-F)
framework for prevention of DDoS attack in cloud environment. International Journal of
Computer Networks and Applications, 8(4), 334–345.

Subbulakshmi, T., Parameswaran, P., Parthiban, C., Mariselvi, M., Anusha, J. A., &
Mahalakshmi, G. (2013). A unified approach for detection and prevention of DDoS attacks
using enhanced support vector machines and filtering mechanisms. ICTACT Journal on
Communication Technology, 4(2), 737–743.

Swami, R., Dave, M., & Ranga, V. (2019). Software-defined networking-based ddos defense
mechanisms. ACM Computing Surveys (CSUR), 52(2), 1–36.

The median duration of DDoS attacks was 6.1 minutes in the first half of 2021. Retrieved
March 23, 2023, from https://venturebeat.com/2021/09/04/the-median-duration-of-ddos-
attacks-was-6-1-%0Aminutes-in-the-first-half-of-2021/

The UNSW-NB15 DATASET. Retrieved March 7, 2023, from
https://research.unsw.edu.au/projects/unsw-nb15-dataset

Threat Landscape Report – Q1 2020. (2020). https://aws-shield-tlr.s3.amazonaws.com/2020-
Q1_AWS_Shield_TLR.pdf

Timcenko, V. V. (2014). An approach for DDoS attack prevention in mobile ad hoc networks.
Elektronika Ir Elektrotechnika, 20(6), 150–153.

Wang, R., Jia Z., & Ju, L. (2015). An entropy-based distributed DDoS detection mechanism
in software-defined networking. IEEE Trustcom/BigDataSE/ISPA, 310–317.

Wei, S., Wang, X., & Xu, K. (2020). NoPTPeer:Protecting android devices from stealthy
spoofing and stealing in WLANs without privilege. Proceedings - 2020 16th International
Conference on Mobility, Sensing and Networking, MSN 2020, 576–583.

What Is a Replay Attack. (2023). Kaspersky. Retreived July 1, 2022, from,
https://www.kaspersky.com/resource-center/definitions/replay-attack

What is iPerf / iPerf3 ?. Retrieved July 3, 2022, from https://iperf.fr/

What is machine learning(ML)? IBM. Retrieved March 6, 2023, from

176

https://www.ibm.com/in-en/topics/machine-learning

Wu, J., Bi, J., Bagnulo, M., Baker, F., & Vogt, C. (2013). Source address validation
improvement (SAVI) framework. IETF. https://www.hjp.at/doc/rfc/rfc7039.html

Wu, J., Bi, J., Li, X., Ren, G., Xu, K., & Williams, M. (2008). A Source Address Validation
Architecture ,RFC 5210. https://www.rfc-editor.org/rfc/rfc5210

Yadav, S., & Subramanian, S. (2016). Detection of Application Layer DDoS attack by feature
learning using Stacked AutoEncoder. 2016 International Conference on Computational
Techniques in Information and Communication Technologies, ICCTICT 2016 - Proceedings,
361–366.

Yan, Q., Yu, F. R., Gong, Q., & Li, J. (2015). Software-defined networking (SDN) and
distributed denial of service (DDoS) attacks in cloud computing environments: A survey,
some research issues, and challenges. IEEE Communications Surveys & Tutorials, 18(1),
602–622.

Yiu, T. (2019). Understanding Random Forest. Towards Data Science. Retreived March 6,
2023, from, https://towardsdatascience.com/understanding-random-forest-58381e0602d2

Zeebaree, S. R., Sharif, K. H., & Amin, R. M. M. (2018). Application layer distributed denial
of service attacks defense techniques: a review. Academic Journal of Nawroz University, 7(4),
113–117.

Zhou, Q., Yu, J., & Li, D. (2021). A dynamic and lightweight framework to secure source
addresses in the SDN-based networks. Computer Networks, 193(March), 108075.

Zhou, R., Wang, X., Yang, J., Zhang, W., & Zhang, S. (2021). Characterizing Network
Anomaly Traffic with Euclidean Distance-Based Multiscale Fuzzy Entropy. Security and
Communication Networks, 1–9.

177

APPENDICES

Appendix A

Throughput (without SymSDN)

Throughput (with SymSDN)

178

Packet loss (without SymSDN)

179

Packet loss (with SymSDN)

Appendix B

Throughput (without any Prevention scheme)

180

Throughput (with IP-Switching)

Throughput (with PortMergeIP)

181

Throughput (with PortMapping)

182

Packet loss (without any Prevention scheme)

Packet loss (with IP-Switching)

183

Packet loss (with PortMergeIP)

184

Packet loss (with PortMapping)

Appendix C

Precision, F1 score and Recall for Correlation value of DNS attack Dataset
 DNS

corelation
value

 Features name
Precision
(0th)

Recall
(0th)

F1
score(0th)

Precision
(1st)

Recall
(1st)

F1
score(1st)

0.1 Flow Duration 0.283253
Total Backward Packets 0.120505
 Fwd Packet Length Max 0.107764
Fwd Packet Length Min 0.117172
Fwd Packet Length Mean 0.115600
Fwd Packet Length Std 0.172959
Bwd Packet Length Max 0.239816
Bwd Packet Length Min 0.525153
Bwd Packet Length Mean 0.341763
Bwd Packet Length Std 0.238461
 Flow IAT Mean 0.198413
Flow IAT Std 0.251703
Flow IAT Max 0.248864
Fwd IAT Total 0.274338
Fwd IAT Mean 0.216968
Fwd IAT Std 0.241460
Fwd IAT Max 0.239073
Bwd IAT Total 0.240343
 Bwd IAT Mean 0.207499
 Bwd IAT Std 0.212781
 Bwd IAT Max 0.219618
Bwd IAT Min 0.188097
Fwd PSH Flags 0.355401
Min Packet Length 0.117275
Packet Length Mean 0.113725
Packet Length Std 0.262631
Packet Length Variance 0.157347
RST Flag Count 0.355401
ACK Flag Count 0.297723
URG Flag Count 0.538700
CWE Flag Count 0.306429
Down/Up Ratio 0.570168
Average Packet Size 0.114442
Avg Fwd Segment Size 0.115600
Avg Bwd Segment Size 0.341763
Subflow Bwd Packets 0.120505
Init_Win_bytes_forward 0.276853

0.940276 0.983974 0.961629 0.999989 0.999957 0.999973

185

Init_Win_bytes_backward 0.283531
Idle Mean 0.235001
 Idle Max 0.235850
Idle Min 0.230191
Label 1.000000

0.15 Flow Duration 0.283253
Fwd Packet Length Std 0.172959
Bwd Packet Length Max 0.239816
Bwd Packet Length Min 0.525153
Bwd Packet Length Mean 0.341763
Bwd Packet Length Std 0.238461
Flow IAT Mean 0.198413
Flow IAT Std 0.251703
Flow IAT Max 0.248864
Fwd IAT Total 0.274338
Fwd IAT Mean 0.216968
Fwd IAT Std 0.241460
Fwd IAT Max 0.239073
Bwd IAT Total 0.240343
Bwd IAT Mean 0.207499
 Bwd IAT Std 0.212781
Bwd IAT Max 0.219618
Bwd IAT Min 0.188097
Fwd PSH Flags 0.355401
Packet Length Std 0.262631
Packet Length Variance 0.157347
RST Flag Count 0.355401
ACK Flag Count 0.297723
URG Flag Count 0.538700
CWE Flag Count 0.306429
Down/Up Ratio 0.570168
Avg Bwd Segment Size 0.341763
Init_Win_bytes_forward 0.276853
Init_Win_bytes_backward 0.283531
Idle Mean 0.235001
Idle Max 0.235850
Idle Min 0.230191
Label 1.000000

0.943925 0.971154 0.957346 0.99998 0.99996 0.99997

0.2 Flow Duration 0.283253
Bwd Packet Length Max 0.239816
Bwd Packet Length Min 0.525153
Bwd Packet Length Mean 0.341763
Bwd Packet Length Std 0.238461
Flow IAT Std 0.251703
Flow IAT Max 0.248864
Fwd IAT Total 0.274338
Fwd IAT Mean 0.216968
Fwd IAT Std 0.241460
Fwd IAT Max 0.239073
Bwd IAT Total 0.240343
Bwd IAT Mean 0.207499
Bwd IAT Std 0.212781
Bwd IAT Max 0.219618
Fwd PSH Flags 0.355401
Packet Length Std 0.262631
RST Flag Count 0.355401
ACK Flag Count 0.297723
URG Flag Count 0.538700
CWE Flag Count 0.306429
Down/Up Ratio 0.570168
Avg Bwd Segment Size 0.341763
Init_Win_bytes_forward 0.276853
Init_Win_bytes_backward 0.283531
Idle Mean 0.235001
Idle Max 0.235850
Idle Min 0.230191
Label 1.000000

0.94081 0.967949 0.954186 0.999978 0.999958 0.999968

0.25 Flow Duration 0.283253
Bwd Packet Length Min 0.525153
Bwd Packet Length Mean 0.341763
Flow IAT Std 0.251703
Fwd IAT Total 0.274338
Fwd PSH Flags 0.355401
Packet Length Std 0.262631
RST Flag Count 0.355401
ACK Flag Count 0.297723
URG Flag Count 0.538700
CWE Flag Count 0.306429
Down/Up Ratio 0.570168
Avg Bwd Segment Size 0.341763
Init_Win_bytes_forward 0.276853
Init_Win_bytes_backward 0.283531
Label 1.000000

0.948276 0.969551 0.958796 0.999979 0.999963 0.999971

0.3 Bwd Packet Length Min 0.525153
Bwd Packet Length Mean 0.341763
Fwd PSH Flags 0.355401
RST Flag Count 0.355401
URG Flag Count 0.538700
CWE Flag Count 0.306429
Down/Up Ratio 0.570168
 Avg Bwd Segment Size 0.341763
Label 1.000000

0.794034 0.895833 0.841867 0.999928 0.999839 0.999883

0.35 Bwd Packet Length Min 0.525153
Fwd PSH Flags 0.355401
RST Flag Count 0.355401
URG Flag Count 0.538700
Down/Up Ratio 0.570168
Label 1.000000

0.748555 0.830128 0.787234 0.999882 0.999807 0.999844

186

0.4 Bwd Packet Length Min 0.525153
URG Flag Count 0.538700
Down/Up Ratio 0.570168
Label 1.000000

0.747475 0.830128 0.786636 0.999882 0.999805 0.999844

0.45 Bwd Packet Length Min 0.525153
URG Flag Count 0.538700
Down/Up Ratio 0.570168
Label 1.000000

0.747475 0.830128 0.786636 0.999882 0.999805 0.999844

0.5 Bwd Packet Length Min 0.525153
URG Flag Count 0.538700
Down/Up Ratio 0.570168
Label 1.000000

0.747475 0.830128 0.786636 0.999882 0.999805 0.999844

0.55 Down/Up Ratio 0.570168
Label 1.000000

0.745303 0.572115 0.647325 0.999703 0.999864 0.999784

Precision, F1 score and Recall for MI-score of DNS attack Dataset
Mi score
value

 Features name Precision
(0th)

Recall
(0th)

F1
score(0th)

 Precision
(1st)

Recall
(1st)

F1
score(1st)

0.0001 Label', ' Flow Duration', ' Total Fwd Packets', ' Total Backward
Packets', 'Total Length of Fwd Packets', ' Total Length of Bwd
Packets', ' Fwd Packet Length Max', ' Fwd Packet Length Min', ' Fwd
Packet Length Mean', ' Fwd Packet Length Std', 'Bwd Packet Length
Max', ' Bwd Packet Length Min', ' Bwd Packet Length Mean', ' Bwd
Packet Length Std', 'Flow Bytes/s', ' Flow Packets/s', ' Flow IAT
Mean', ' Flow IAT Std', ' Flow IAT Max', ' Flow IAT Min', 'Fwd IAT
Total', ' Fwd IAT Mean', ' Fwd IAT Std', ' Fwd IAT Max', ' Fwd IAT
Min', 'Bwd IAT Total', ' Bwd IAT Mean', ' Bwd IAT Std', ' Bwd IAT
Max', ' Bwd IAT Min', 'Fwd PSH Flags', ' Fwd Header Length', '
Bwd Header Length', 'Fwd Packets/s', ' Bwd Packets/s', ' Min Packet
Length', ' Max Packet Length', ' Packet Length Mean', ' Packet
Length Std', ' Packet Length Variance', 'FIN Flag Count', ' SYN Flag
Count', ' RST Flag Count', ' PSH Flag Count', ' ACK Flag Count', '
URG Flag Count', ' CWE Flag Count', ' Down/Up Ratio', ' Average
Packet Size', ' Avg Fwd Segment Size', ' Avg Bwd Segment Size', '
Fwd Header Length.1', ' Fwd Avg Packets/Bulk', ' Fwd Avg Bulk
Rate', ' Bwd Avg Bytes/Bulk', 'Subflow Fwd Packets', ' Subflow Fwd
Bytes', ' Subflow Bwd Packets', ' Subflow Bwd Bytes',
'Init_Win_bytes_forward', ' Init_Win_bytes_backward', '
act_data_pkt_fwd', ' min_seg_size_forward', 'Active Mean', ' Active
Std', ' Active Max', ' Active Min', 'Idle Mean', ' Idle Std', ' Idle Max', '
Idle Min'

0.990132 0.98527 0.987695 0.99999 0.999993 0.999992

0.05 Label', ' Flow Duration', ' Total Fwd Packets', ' Total Backward
Packets', 'Total Length of Fwd Packets', ' Total Length of Bwd
Packets', ' Fwd Packet Length Max', ' Fwd Packet Length Min', ' Fwd
Packet Length Mean', ' Fwd Packet Length Std', 'Bwd Packet Length
Max', ' Bwd Packet Length Min', ' Bwd Packet Length Mean', ' Bwd
Packet Length Std', 'Flow Bytes/s', ' Flow Packets/s', ' Flow IAT
Mean', ' Flow IAT Std', ' Flow IAT Max', ' Flow IAT Min', 'Fwd IAT
Total', ' Fwd IAT Mean', ' Fwd IAT Std', ' Fwd IAT Max', ' Fwd IAT
Min', 'Bwd IAT Total', ' Bwd IAT Mean', ' Bwd IAT Std', ' Bwd IAT
Max', ' Bwd IAT Min', 'Fwd PSH Flags', ' Fwd Header Length', '
Bwd Header Length', 'Fwd Packets/s', ' Bwd Packets/s', ' Min Packet
Length', ' Max Packet Length', ' Packet Length Mean', ' Packet
Length Std', ' Packet Length Variance', ' RST Flag Count', ' ACK
Flag Count', ' URG Flag Count', ' CWE Flag Count', ' Down/Up
Ratio', ' Average Packet Size', ' Avg Fwd Segment Size', ' Avg Bwd
Segment Size', ' Fwd Header Length.1', 'Subflow Fwd Packets', '
Subflow Fwd Bytes', ' Subflow Bwd Packets', ' Subflow Bwd Bytes',
'Init_Win_bytes_forward', ' Init_Win_bytes_backward', '
act_data_pkt_fwd', ' min_seg_size_forward'

0.982055 0.98527 0.98366 0.99999 0.999988 0.999989

0.1 Label', ' Flow Duration', ' Total Fwd Packets', ' Total Backward
Packets', 'Total Length of Fwd Packets', ' Total Length of Bwd
Packets', ' Fwd Packet Length Max', ' Fwd Packet Length Min', ' Fwd
Packet Length Mean', ' Fwd Packet Length Std', 'Bwd Packet Length
Max', ' Bwd Packet Length Min', ' Bwd Packet Length Mean', 'Flow
Bytes/s', ' Flow Packets/s', ' Flow IAT Mean', ' Flow IAT Std', ' Flow
IAT Max', ' Flow IAT Min', 'Fwd IAT Total', ' Fwd IAT Mean', '
Fwd IAT Std', ' Fwd IAT Max', ' Fwd IAT Min', 'Bwd IAT Total', '
Bwd IAT Mean', ' Bwd IAT Max', ' Bwd IAT Min', ' Fwd Header
Length', ' Bwd Header Length', 'Fwd Packets/s', ' Bwd Packets/s', '
Min Packet Length', ' Max Packet Length', ' Packet Length Mean', '
Packet Length Std', ' Packet Length Variance', ' URG Flag Count', '
Down/Up Ratio', ' Average Packet Size', ' Avg Fwd Segment Size', '
Avg Bwd Segment Size', ' Fwd Header Length.1', 'Subflow Fwd
Packets', ' Subflow Fwd Bytes', ' Subflow Bwd Packets', ' Subflow
Bwd Bytes', 'Init_Win_bytes_forward', ' Init_Win_bytes_backward', '
act_data_pkt_fwd', ' min_seg_size_forward'

0.98366 0.98527 0.984464 0.99999 0.999989 0.999989

0.15 Label', ' Flow Duration', ' Total Fwd Packets', ' Total Backward
Packets', 'Total Length of Fwd Packets', ' Total Length of Bwd
Packets', ' Fwd Packet Length Max', ' Fwd Packet Length Min', ' Fwd
Packet Length Mean', 'Bwd Packet Length Max', ' Bwd Packet
Length Min', ' Bwd Packet Length Mean', 'Flow Bytes/s', ' Flow
Packets/s', ' Flow IAT Mean', ' Flow IAT Std', ' Flow IAT Max', '
Flow IAT Min', 'Fwd IAT Total', ' Fwd IAT Mean', ' Fwd IAT Max',
' Fwd IAT Min', 'Bwd IAT Total', ' Bwd IAT Mean', ' Bwd IAT
Max', ' Bwd IAT Min', ' Fwd Header Length', ' Bwd Header Length',
'Fwd Packets/s', ' Bwd Packets/s', ' Min Packet Length', ' Max Packet
Length', ' Packet Length Mean', ' Packet Length Std', ' Packet Length
Variance', ' URG Flag Count', ' Down/Up Ratio', ' Average Packet
Size', ' Avg Fwd Segment Size', ' Avg Bwd Segment Size', ' Fwd
Header Length.1', 'Subflow Fwd Packets', ' Subflow Fwd Bytes', '
Subflow Bwd Packets', ' Subflow Bwd Bytes',
'Init_Win_bytes_forward', ' Init_Win_bytes_backward', '
act_data_pkt_fwd', ' min_seg_size_forward'

0.980424 0.983633 0.982026 0.999989 0.999987 0.999988

187

0.2 Label', ' Flow Duration', ' Total Fwd Packets', ' Total Backward
Packets', 'Total Length of Fwd Packets', ' Total Length of Bwd
Packets', ' Fwd Packet Length Max', ' Fwd Packet Length Min', ' Fwd
Packet Length Mean', 'Bwd Packet Length Max', ' Bwd Packet
Length Mean', 'Flow Bytes/s', ' Flow Packets/s', ' Flow IAT Mean', '
Flow IAT Std', ' Flow IAT Max', ' Flow IAT Min', 'Fwd IAT Total', '
Fwd IAT Mean', ' Fwd IAT Max', ' Fwd IAT Min', 'Bwd IAT Total', '
Bwd IAT Mean', ' Bwd IAT Max', ' Bwd IAT Min', ' Fwd Header
Length', ' Bwd Header Length', 'Fwd Packets/s', ' Bwd Packets/s', '
Min Packet Length', ' Max Packet Length', ' Packet Length Mean', '
Packet Length Std', ' Packet Length Variance', ' URG Flag Count', '
Down/Up Ratio', ' Average Packet Size', ' Avg Fwd Segment Size', '
Avg Bwd Segment Size', ' Fwd Header Length.1', 'Subflow Fwd
Packets', ' Subflow Fwd Bytes', ' Subflow Bwd Packets', ' Subflow
Bwd Bytes', 'Init_Win_bytes_forward', ' act_data_pkt_fwd', '
min_seg_size_forward'

0.982085 0.986907 0.98449 0.999991 0.999988 0.999989

0.25 Label', ' Flow Duration', ' Total Fwd Packets', ' Total Backward
Packets', 'Total Length of Fwd Packets', ' Fwd Packet Length Max', '
Fwd Packet Length Min', ' Fwd Packet Length Mean', 'Flow Bytes/s',
' Flow Packets/s', ' Flow IAT Mean', ' Flow IAT Std', ' Flow IAT
Max', ' Flow IAT Min', 'Fwd IAT Total', ' Fwd IAT Mean', ' Fwd
IAT Max', ' Fwd IAT Min', 'Bwd IAT Total', ' Bwd IAT Mean', '
Bwd IAT Max', ' Bwd IAT Min', ' Fwd Header Length', ' Bwd
Header Length', 'Fwd Packets/s', ' Bwd Packets/s', ' Min Packet
Length', ' Max Packet Length', ' Packet Length Mean', ' Packet
Length Std', ' Packet Length Variance', ' Down/Up Ratio', ' Average
Packet Size', ' Avg Fwd Segment Size', ' Fwd Header Length.1',
'Subflow Fwd Packets', ' Subflow Fwd Bytes', ' Subflow Bwd
Packets', 'Init_Win_bytes_forward', ' act_data_pkt_fwd', '
min_seg_size_forward'

0.982026 0.983633 0.982829 0.999989 0.999988 0.999988

0.3 Label', ' Flow Duration', ' Total Backward Packets', 'Total Length of
Fwd Packets', ' Fwd Packet Length Max', ' Fwd Packet Length Min', '
Fwd Packet Length Mean', 'Flow Bytes/s', ' Flow Packets/s', ' Flow
IAT Mean', ' Flow IAT Std', ' Flow IAT Max', 'Fwd IAT Total', '
Fwd IAT Mean', ' Fwd IAT Max', 'Bwd IAT Total', ' Bwd IAT
Mean', ' Bwd IAT Max', ' Bwd IAT Min', ' Fwd Header Length', '
Bwd Header Length', 'Fwd Packets/s', ' Bwd Packets/s', ' Min Packet
Length', ' Max Packet Length', ' Packet Length Mean', ' Average
Packet Size', ' Avg Fwd Segment Size', ' Fwd Header Length.1', '
Subflow Fwd Bytes', ' Subflow Bwd Packets', ' act_data_pkt_fwd', '
min_seg_size_forward'

0.934375 0.978723 0.956035 0.999986 0.999953 0.999969

0.35 Label', ' Flow Duration', ' Total Backward Packets', 'Total Length of
Fwd Packets', ' Fwd Packet Length Max', ' Fwd Packet Length Min', '
Fwd Packet Length Mean', 'Flow Bytes/s', ' Flow Packets/s', ' Flow
IAT Mean', ' Flow IAT Std', ' Flow IAT Max', 'Fwd IAT Total', '
Fwd IAT Mean', ' Fwd IAT Max', 'Bwd IAT Total', ' Bwd IAT
Mean', ' Bwd IAT Max', ' Bwd IAT Min', ' Fwd Header Length', '
Bwd Header Length', 'Fwd Packets/s', ' Bwd Packets/s', ' Min Packet
Length', ' Max Packet Length', ' Packet Length Mean', ' Average
Packet Size', ' Avg Fwd Segment Size', ' Fwd Header Length.1', '
Subflow Fwd Bytes', ' Subflow Bwd Packets', ' act_data_pkt_fwd', '
min_seg_size_forward'

0.934579 0.981997 0.957702 0.999988 0.999953 0.999971

0.4 Label', ' Flow Duration', ' Total Backward Packets', 'Total Length of
Fwd Packets', ' Fwd Packet Length Max', ' Fwd Packet Length Min', '
Fwd Packet Length Mean', 'Flow Bytes/s', ' Flow Packets/s', ' Flow
IAT Mean', ' Flow IAT Std', ' Flow IAT Max', 'Fwd IAT Total', '
Fwd IAT Mean', ' Fwd IAT Max', ' Fwd Header Length', 'Fwd
Packets/s', ' Min Packet Length', ' Max Packet Length', ' Packet
Length Mean', ' Average Packet Size', ' Avg Fwd Segment Size', '
Fwd Header Length.1', ' Subflow Fwd Bytes', ' Subflow Bwd
Packets', ' min_seg_size_forward'

0.931571 0.98036 0.955343 0.999987 0.999951 0.999969

0.45 Label',
' Flow Duration',
'Total Length of Fwd Packets',
' Fwd Packet Length Max',
 ' Fwd Packet Length Min',
' Fwd Packet Length Mean',
'Flow Bytes/s',
' Flow Packets/s',
' Flow IAT Mean',
' Flow IAT Std',
' Flow IAT Max',
 ' Fwd Header Length',
'Fwd Packets/s',
' Min Packet Length',
' Max Packet Length',
' Packet Length Mean',
' Average Packet Size',
 ' Avg Fwd Segment Size',
' Fwd Header Length.1',
 ' Subflow Fwd Bytes'

0.907154 0.97545 0.940063 0.999983 0.999932 0.999958

0.5 ' Label', 'Total Length of Fwd Packets', ' Fwd Packet Length Max', '
Fwd Packet Length Min', ' Fwd Packet Length Mean', 'Flow Bytes/s',
' Flow Packets/s', 'Fwd Packets/s', ' Min Packet Length', ' Max Packet
Length', ' Packet Length Mean', ' Average Packet Size', ' Avg Fwd
Segment Size', ' Subflow Fwd Bytes'

0.793609 0.97545 0.875184 0.999983 0.999828 0.999905

0.55 ' Label', 'Total Length of Fwd Packets', ' Fwd Packet Length Max', '
Fwd Packet Length Min', ' Fwd Packet Length Mean', 'Flow Bytes/s',
' Flow Packets/s', 'Fwd Packets/s', ' Min Packet Length', ' Max Packet
Length', ' Packet Length Mean', ' Average Packet Size', ' Avg Fwd
Segment Size', ' Subflow Fwd Bytes'

0.793609 0.97545 0.875184 0.999983 0.999828 0.999905

0.6 Label', 'Total Length of Fwd Packets', ' Fwd Packet Length Max', '
Fwd Packet Length Min', ' Fwd Packet Length Mean', 'Flow Bytes/s',
' Min Packet Length', ' Max Packet Length', ' Packet Length Mean', '
Average Packet Size', ' Avg Fwd Segment Size', ' Subflow Fwd
Bytes'

0.739877 0.986907 0.845722 0.999991 0.999764 0.999878

0.65 Label', 'Total Length of Fwd Packets', ' Fwd Packet Length Max', '
Fwd Packet Length Min', ' Fwd Packet Length Mean', 'Flow Bytes/s',

0.739877 0.986907 0.845722 0.999991 0.999764 0.999878

188

' Min Packet Length', ' Max Packet Length', ' Packet Length Mean', '
Average Packet Size', ' Avg Fwd Segment Size', ' Subflow Fwd
Bytes'

0.7 Label', 'Total Length of Fwd Packets', ' Fwd Packet Length Max', '
Fwd Packet Length Min', ' Fwd Packet Length Mean', ' Min Packet
Length', ' Max Packet Length', ' Packet Length Mean', ' Average
Packet Size', ' Avg Fwd Segment Size', ' Subflow Fwd Bytes'

0.738386 0.988543 0.845346 0.999992 0.999762 0.999877

0.75 Label', 'Total Length of Fwd Packets', ' Fwd Packet Length Max', '
Fwd Packet Length Min', ' Fwd Packet Length Mean', ' Min Packet
Length', ' Max Packet Length', ' Packet Length Mean', ' Avg Fwd
Segment Size'

0.740196 0.988543 0.846531 0.999992 0.999764 0.999878

Precision, F1 score and Recall for Correlation value of Portmap attack Dataset
corelatio
n value

 Features name Precision
(0th)

Recall (0th) F1 score(0th) Precision
(1st)

Recall (1st) F1
score(1st)

0.1 Flow Duration 0.342514
Fwd Packet Length Max 0.138812
Fwd Packet Length Min 0.729103
Fwd Packet Length Mean 0.661613
Fwd Packet Length Std 0.324970
Bwd Packet Length Max 0.376745
Bwd Packet Length Min 0.550527
Bwd Packet Length Mean 0.419155
Bwd Packet Length Std 0.334866
Flow Bytes/s 0.303703
Flow Packets/s 0.270935
Flow IAT Mean 0.190359
Flow IAT Std 0.304207
Flow IAT Max 0.317377
Fwd IAT Total 0.334536
Fwd IAT Mean 0.234730
Fwd IAT Std 0.300181
Fwd IAT Max 0.306861
Bwd IAT Total 0.308199
Bwd IAT Mean 0.281647
Bwd IAT Std 0.287126
Bwd IAT Max 0.286565
Bwd IAT Min 0.360017
Fwd PSH Flags 0.372674
Fwd Packets/s 0.271683
Min Packet Length 0.729168
Max Packet Length 0.131981
Packet Length Mean 0.530715
Packet Length Std 0.407571
Packet Length Variance 0.293627
RST Flag Count 0.372674
ACK Flag Count 0.351102
URG Flag Count 0.615081
CWE Flag Count 0.420886
Down/Up Ratio 0.648523
Average Packet Size 0.614206
Avg Fwd Segment Size 0.661613
Avg Bwd Segment Size 0.419155
Init_Win_bytes_forward 0.342721
Init_Win_bytes_backward 0.286310
Active Mean 0.154199
Active Max 0.127805
Active Min 0.134215
Idle Mean 0.301292
Idle Std 0.115712
Idle Max 0.304278
Idle Min 0.291854
Label 1.000000

0.996582 0.997947 0.997264 0.999946 0.999911 0.999929

0.15 Flow Duration 0.342514
Fwd Packet Length Min 0.729103
Fwd Packet Length Mean 0.661613
Fwd Packet Length Std 0.324970
Bwd Packet Length Max 0.376745
Bwd Packet Length Min 0.550527
Bwd Packet Length Mean 0.419155
Bwd Packet Length Std 0.334866
Flow Bytes/s 0.303703
Flow Packets/s 0.270935
Flow IAT Mean 0.190359
Flow IAT Std 0.304207
Flow IAT Max 0.317377
Fwd IAT Total 0.334536
Fwd IAT Mean 0.234730
Fwd IAT Std 0.300181
Fwd IAT Max 0.306861
Bwd IAT Total 0.308199
Bwd IAT Mean 0.281647
Bwd IAT Std 0.287126
Bwd IAT Max 0.286565
Bwd IAT Min 0.360017
Fwd PSH Flags 0.372674
Fwd Packets/s 0.271683
Min Packet Length 0.729168
Packet Length Mean 0.530715
Packet Length Std 0.407571
Packet Length Variance 0.293627
RST Flag Count 0.372674
ACK Flag Count 0.351102
URG Flag Count 0.615081

0.996582 0.997947 0.997264 0.999946 0.999911 0.999929

189

CWE Flag Count 0.420886
Down/Up Ratio 0.648523
Average Packet Size 0.614206
Avg Fwd Segment Size 0.661613
Avg Bwd Segment Size 0.419155
Init_Win_bytes_forward 0.342721
Init_Win_bytes_backward 0.286310
Active Mean 0.154199
Idle Mean 0.301292
Idle Max 0.304278
Idle Min 0.291854
Label 1.000000

0.2 Flow Duration 0.342514
Fwd Packet Length Min 0.729103
Fwd Packet Length Mean 0.661613
Fwd Packet Length Std 0.324970
Bwd Packet Length Max 0.376745
Bwd Packet Length Min 0.550527
Bwd Packet Length Mean 0.419155
Bwd Packet Length Std 0.334866
Flow Bytes/s 0.303703
Flow Packets/s 0.270935
Flow IAT Std 0.304207
Flow IAT Max 0.317377
Fwd IAT Total 0.334536
Fwd IAT Mean 0.234730
Fwd IAT Std 0.300181
Fwd IAT Max 0.306861
Bwd IAT Total 0.308199
Bwd IAT Mean 0.281647
Bwd IAT Std 0.287126
Bwd IAT Max 0.286565
Bwd IAT Min 0.360017
Fwd PSH Flags 0.372674
Fwd Packets/s 0.271683
Min Packet Length 0.729168
Packet Length Mean 0.530715
Packet Length Std 0.407571
Packet Length Variance 0.293627
RST Flag Count 0.372674
ACK Flag Count 0.351102
URG Flag Count 0.615081
CWE Flag Count 0.420886
Down/Up Ratio 0.648523
Average Packet Size 0.614206
Avg Fwd Segment Size 0.661613
Avg Bwd Segment Size 0.419155
Init_Win_bytes_forward 0.342721
Init_Win_bytes_backward 0.286310
Idle Mean 0.301292
Idle Max 0.304278
Idle Min 0.291854
Label 1.000000

0.997264 0.997947 0.997605 0.999946 0.999929 0.999938

0.25 Flow Duration 0.342514
Fwd Packet Length Min 0.729103
Fwd Packet Length Mean 0.661613
Fwd Packet Length Std 0.324970
Bwd Packet Length Max 0.376745
Bwd Packet Length Min 0.550527
Bwd Packet Length Mean 0.419155
Bwd Packet Length Std 0.334866
Flow Bytes/s 0.303703
Flow Packets/s 0.270935
Flow IAT Std 0.304207
Flow IAT Max 0.317377
Fwd IAT Total 0.334536
Fwd IAT Std 0.300181
Fwd IAT Max 0.306861
Bwd IAT Total 0.308199
Bwd IAT Mean 0.281647
Bwd IAT Std 0.287126
Bwd IAT Max 0.286565
Bwd IAT Min 0.360017
Fwd PSH Flags 0.372674
Fwd Packets/s 0.271683
Min Packet Length 0.729168
Packet Length Mean 0.530715
Packet Length Std 0.407571
Packet Length Variance 0.293627
RST Flag Count 0.372674
ACK Flag Count 0.351102
URG Flag Count 0.615081
CWE Flag Count 0.420886
Down/Up Ratio 0.648523
Average Packet Size 0.614206
Avg Fwd Segment Size 0.661613
Avg Bwd Segment Size 0.419155
Init_Win_bytes_forward 0.342721
Init_Win_bytes_backward 0.286310
Idle Mean 0.301292
Idle Max 0.304278
Idle Min 0.291854
Label 1.000000

0.997264 0.997947 0.997605 0.999946 0.999929 0.999938

0.3 Flow Duration 0.342514
Fwd Packet Length Min 0.729103
Fwd Packet Length Mean 0.661613
Fwd Packet Length Std 0.324970
Bwd Packet Length Max 0.376745

0.997947 0.997947 0.997947 0.999946 0.999946 0.999946

190

Bwd Packet Length Min 0.550527
Bwd Packet Length Mean 0.419155
Bwd Packet Length Std 0.334866
Flow Bytes/s 0.303703
Flow IAT Std 0.304207
Flow IAT Max 0.317377
Fwd IAT Total 0.334536
Fwd IAT Std 0.300181
Fwd IAT Max 0.306861
Bwd IAT Total 0.308199
Bwd IAT Min 0.360017
Fwd PSH Flags 0.372674
Min Packet Length 0.729168
Packet Length Mean 0.530715
Packet Length Std 0.407571
RST Flag Count 0.372674
ACK Flag Count 0.351102
URG Flag Count 0.615081
CWE Flag Count 0.420886
Down/Up Ratio 0.648523
Average Packet Size 0.614206
Avg Fwd Segment Size 0.661613
Avg Bwd Segment Size 0.419155
Init_Win_bytes_forward 0.342721
Idle Mean 0.301292
Idle Max 0.304278
Label 1.000000

0.35 Fwd Packet Length Min 0.729103
Fwd Packet Length Mean 0.661613
Bwd Packet Length Max 0.376745
Bwd Packet Length Min 0.550527
Bwd Packet Length Mean 0.419155
Bwd IAT Min 0.360017
Fwd PSH Flags 0.372674
Min Packet Length 0.729168
Packet Length Mean 0.530715
Packet Length Std 0.407571
RST Flag Count 0.372674
ACK Flag Count 0.351102
URG Flag Count 0.615081
CWE Flag Count 0.420886
Down/Up Ratio 0.648523
Average Packet Size 0.614206
Avg Fwd Segment Size 0.661613
Avg Bwd Segment Size 0.419155
Label 1.000000

0.985145 0.998631 0.991842 0.999964 0.999607 0.999786

0.4 Fwd Packet Length Min 0.729103
Fwd Packet Length Mean 0.661613
Bwd Packet Length Max 0.376745
Bwd Packet Length Min 0.550527
Bwd Packet Length Mean 0.419155
Bwd IAT Min 0.360017
Fwd PSH Flags 0.372674
Min Packet Length 0.729168
Packet Length Mean 0.530715
Packet Length Std 0.407571
RST Flag Count 0.372674
ACK Flag Count 0.351102
URG Flag Count 0.615081
CWE Flag Count 0.420886
Down/Up Ratio 0.648523
Average Packet Size 0.614206
Avg Fwd Segment Size 0.661613
Avg Bwd Segment Size 0.419155
Label 1.000000

0.979852 0.998631 0.989153 0.999964 0.999465 0.999714

0.45 Fwd Packet Length Min 0.729103
Fwd Packet Length Mean 0.661613
Bwd Packet Length Min 0.550527
Min Packet Length 0.729168
Packet Length Mean 0.530715
URG Flag Count 0.615081
Down/Up Ratio 0.648523
Average Packet Size 0.614206
Avg Fwd Segment Size 0.661613
Label 1.000000

0.979866 0.999316 0.989495 0.999982 0.999465 0.999723

0.5 Fwd Packet Length Min 0.729103
Fwd Packet Length Mean 0.661613
Bwd Packet Length Min 0.550527
Min Packet Length 0.729168
Packet Length Mean 0.530715
URG Flag Count 0.615081
Down/Up Ratio 0.648523
Average Packet Size 0.614206
Avg Fwd Segment Size 0.661613
Label 1.000000

0.979866 0.999316 0.989495 0.999982 0.999465 0.999723

0.55 Fwd Packet Length Min 0.729103
Fwd Packet Length Mean 0.661613
Bwd Packet Length Min 0.550527
Min Packet Length 0.729168
URG Flag Count 0.615081
Down/Up Ratio 0.648523
Average Packet Size 0.614206
Avg Fwd Segment Size 0.661613
Label 1.000000

0.979852 0.998631 0.989153 0.999964 0.999465 0.999714

0.6 Fwd Packet Length Min 0.729103
Fwd Packet Length Mean 0.661613
 Min Packet Length 0.729168
URG Flag Count 0.615081

0.979839 0.997947 0.98881 0.999946 0.999465 0.999706

191

Down/Up Ratio 0.648523
Average Packet Size 0.614206
 Avg Fwd Segment Size 0.661613
Label 1.000000

0.65 Fwd Packet Length Min 0.729103
Fwd Packet Length Mean 0.661613
Min Packet Length 0.729168
Avg Fwd Segment Size 0.661613
Label 1.00000

0.896255 0.999316 0.944984 0.999982 0.996985 0.998481

0.7 Fwd Packet Length Min 0.729103
Min Packet Length 0.729168
Label 1.000000

0.89406 0.999316 0.943762 0.999982 0.996913 0.998445

0.75 Label 1.0

Precision, F1 score and Recall for MI-score value of Portmap attack Dataset

Mi score value Features name Precision (0th) Recall
(0th)

F1 score(0th) Precision (1st) Recall
(1st)

F1 score(1st)

0.0001 Label',
' Flow Duration',
' Total Fwd Packets',
 ' Total Backward Packets',
'Total Length of Fwd Packets',
 ' Total Length of Bwd Packets',
 ' Fwd Packet Length Max',
' Fwd Packet Length Min',
 ' Fwd Packet Length Mean',
 ' Fwd Packet Length Std',
 'Bwd Packet Length Max',
 ' Bwd Packet Length Min',
 ' Bwd Packet Length Mean',
 ' Bwd Packet Length Std',
 'Flow Bytes/s',
' Flow Packets/s',
' Flow IAT Mean'
, ' Flow IAT Std',
 ' Flow IAT Max',
 ' Flow IAT Min',
 'Fwd IAT Total',
 ' Fwd IAT Mean',
 ' Fwd IAT Std',
' Fwd IAT Max',
 ' Fwd IAT Min',
 'Bwd IAT Total',
 ' Bwd IAT Mean',
' Bwd IAT Std',
' Bwd IAT Max',
' Bwd IAT Min',
 'Fwd PSH Flags',
 ' Bwd URG Flags',
 ' Fwd Header Length',
 ' Bwd Header Length',
'Fwd Packets/s',
' Bwd Packets/s',
' Min Packet Length',
 ' Max Packet Length',
' Packet Length Mean',
 ' Packet Length Std',
 ' Packet Length Variance',
 ' RST Flag Count',
 ' PSH Flag Count',
 ' ACK Flag Count',
 ' URG Flag Count',
 ' CWE Flag Count',
 ' Down/Up Ratio',
 ' Average Packet Size',
 ' Avg Fwd Segment Size',
 ' Avg Bwd Segment Size',
 ' Fwd Header Length.1',
 ' Fwd Avg Packets/Bulk',
' Bwd Avg Bytes/Bulk',
 'Subflow Fwd Packets',
' Subflow Fwd Bytes',
' Subflow Bwd Packets',
 ' Subflow Bwd Bytes',
 'Init_Win_bytes_forward',
' Init_Win_bytes_backward',
 ' act_data_pkt_fwd'
, ' min_seg_size_forward',
 'Active Mean', ' Active Std'
, ' Active Max', ' Active Min',
 'Idle Mean', '
 Idle Std',
 ' Idle Max',
' Idle Min'

0.99858 1 0.999289 1 0.999964 0.999982

0.05 Label',
' Flow Duration',
' Total Fwd Packets',
 ' Total Backward Packets',
'Total Length of Fwd Packets',
 ' Total Length of Bwd Packets',
 ' Fwd Packet Length Max',
' Fwd Packet Length Min',
 ' Fwd Packet Length Mean',
 ' Fwd Packet Length Std',
 'Bwd Packet Length Max',

0.99858 1 0.999289 1 0.999964 0.999982

192

 ' Bwd Packet Length Min',
 ' Bwd Packet Length Mean',
 ' Bwd Packet Length Std',
 'Flow Bytes/s',
' Flow Packets/s',
' Flow IAT Mean'
, ' Flow IAT Std',
 ' Flow IAT Max',
 ' Flow IAT Min',
 'Fwd IAT Total',
 ' Fwd IAT Mean',
 ' Fwd IAT Std',
' Fwd IAT Max',
 ' Fwd IAT Min',
 'Bwd IAT Total',
 ' Bwd IAT Mean',
' Bwd IAT Std',
' Bwd IAT Max',
' Bwd IAT Min',
' Fwd Header Length',
' Bwd Header Length',
 'Fwd Packets/s',
 ' Bwd Packets/s',
 ' Min Packet Length',
 ' Max Packet Length',
' Packet Length Mean',
' Packet Length Std',
 ' Packet Length Variance',
' ACK Flag Count',
 ' URG Flag Count', ' CWE Flag Count', '
Down/Up Ratio', ' Average Packet Size', '
Avg Fwd Segment Size', ' Avg Bwd Segment
Size', ' Fwd Header Length.1', 'Subflow Fwd
Packets', ' Subflow Fwd Bytes', ' Subflow
Bwd Packets', ' Subflow Bwd Bytes',
'Init_Win_bytes_forward', '
Init_Win_bytes_backward', '
act_data_pkt_fwd', ' min_seg_size_forward',
'Active Mean', ' Active Max', ' Active Min',
'Idle Mean', ' Idle Max', ' Idle Min'

0.1 Label',
' Flow Duration',
' Total Fwd Packets',
 ' Total Backward Packets',
'Total Length of Fwd Packets',
 ' Total Length of Bwd Packets',
 ' Fwd Packet Length Max',
' Fwd Packet Length Min',
 ' Fwd Packet Length Mean',
 ' Fwd Packet Length Std',
 'Bwd Packet Length Max',
 ' Bwd Packet Length Min',
 ' Bwd Packet Length Mean',
 'Flow Bytes/s',
' Flow Packets/s', ' Flow IAT Mean', ' Flow
IAT Std', ' Flow IAT Max', ' Flow IAT Min',
'Fwd IAT Total', ' Fwd IAT Mean', ' Fwd IAT
Std', ' Fwd IAT Max', ' Fwd IAT Min', 'Bwd
IAT Total', ' Bwd IAT Mean', ' Bwd IAT
Max', ' Bwd IAT Min', ' Fwd Header Length',
' Bwd Header Length', 'Fwd Packets/s', ' Bwd
Packets/s', ' Min Packet Length', ' Max Packet
Length', ' Packet Length Mean', ' Packet
Length Std', ' Packet Length Variance', ' URG
Flag Count', ' Down/Up Ratio', ' Average
Packet Size', ' Avg Fwd Segment Size', ' Avg
Bwd Segment Size', ' Fwd Header Length.1',
'Subflow Fwd Packets', ' Subflow Fwd Bytes',
' Subflow Bwd Packets', ' Subflow Bwd
Bytes', 'Init_Win_bytes_forward', '
Init_Win_bytes_backward', '
act_data_pkt_fwd', ' min_seg_size_forward'

0.99858 1 0.999289 1 0.999964 0.999982

0.15 Label',
' Flow Duration',
' Total Fwd Packets',
 ' Total Backward Packets',
'Total Length of Fwd Packets',
 ' Total Length of Bwd Packets',
 ' Fwd Packet Length Max',
' Fwd Packet Length Min',
 ' Fwd Packet Length Mean',
 'Bwd Packet Length Max', ' Bwd Packet
Length Min', ' Bwd Packet Length Mean',
'Flow Bytes/s', ' Flow Packets/s', ' Flow IAT
Mean', ' Flow IAT Std', ' Flow IAT Max', '
Flow IAT Min', 'Fwd IAT Total', ' Fwd IAT
Mean', ' Fwd IAT Max', ' Fwd IAT Min',
'Bwd IAT Total', ' Bwd IAT Mean', ' Bwd
IAT Max', ' Bwd IAT Min', ' Fwd Header
Length', ' Bwd Header Length', 'Fwd
Packets/s', ' Bwd Packets/s', ' Min Packet
Length', ' Max Packet Length', ' Packet
Length Mean', ' Packet Length Std', ' Packet
Length Variance', ' URG Flag Count', '
Down/Up Ratio', ' Average Packet Size', '
Avg Fwd Segment Size', ' Avg Bwd Segment
Size', ' Fwd Header Length.1', 'Subflow Fwd
Packets', ' Subflow Fwd Bytes', ' Subflow

0.997163 1 0.99858 1 0.999929 0.999964

193

Bwd Packets', ' Subflow Bwd Bytes',
'Init_Win_bytes_forward', '
Init_Win_bytes_backward', '
act_data_pkt_fwd', ' min_seg_size_forward'

0.2 Label',
' Flow Duration',
 ' Total Backward Packets',
'Total Length of Fwd Packets',
 ' Total Length of Bwd Packets',
 ' Fwd Packet Length Max',
' Fwd Packet Length Min',
 ' Fwd Packet Length Mean',
 'Bwd Packet Length Max', ' Bwd Packet
Length Min', ' Bwd Packet Length Mean',
'Flow Bytes/s', ' Flow Packets/s', ' Flow IAT
Mean', ' Flow IAT Std', ' Flow IAT Max', '
Flow IAT Min', 'Fwd IAT Total', ' Fwd IAT
Mean', ' Fwd IAT Max', ' Fwd IAT Min',
'Bwd IAT Total', ' Bwd IAT Mean', ' Bwd
IAT Max', ' Bwd IAT Min', ' Fwd Header
Length', ' Bwd Header Length', 'Fwd
Packets/s',' Bwd Packets/s', ' Min Packet
Length', ' Max Packet Length', ' Packet
Length Mean', ' Packet Length Std', ' Packet
Length Variance', ' Down/Up Ratio', '
Average Packet Size', ' Avg Fwd Segment
Size', ' Avg Bwd Segment Size', ' Fwd
Header Length.1', ' Subflow Fwd Bytes', '
Subflow Bwd Packets', ' Subflow Bwd
Bytes', 'Init_Win_bytes_forward', '
act_data_pkt_fwd', ' min_seg_size_forward'

0.997163 1 0.99858 1 0.999929 0.999964

0.25 Label',
' Flow Duration',
 ' Total Backward Packets',
'Total Length of Fwd Packets',
 ' Total Length of Bwd Packets',
 ' Fwd Packet Length Max',
' Fwd Packet Length Min',
 ' Fwd Packet Length Mean',
 'Bwd Packet Length Max', ' Bwd Packet
Length Min', ' Bwd Packet Length Mean',
'Flow Bytes/s', ' Flow Packets/s', ' Flow IAT
Mean', ' Flow IAT Std', ' Flow IAT Max', '
Flow IAT Min', 'Fwd IAT Total', ' Fwd IAT
Mean', ' Fwd IAT Max', ' Fwd IAT Min',
'Bwd IAT Total', ' Bwd IAT Mean', ' Bwd
IAT Max', ' Bwd IAT Min', ' Fwd Header
Length', ' Bwd Header Length', 'Fwd
Packets/s',' Bwd Packets/s', ' Min Packet
Length', ' Max Packet Length', ' Packet
Length Mean', ' Packet Length Std', ' Packet
Length Variance', ' Down/Up Ratio', '
Average Packet Size', ' Avg Fwd Segment
Size', ' Avg Bwd Segment Size', ' Fwd
Header Length.1', ' Subflow Fwd Bytes', '
Subflow Bwd Packets', ' Subflow Bwd
Bytes', 'Init_Win_bytes_forward', '
min_seg_size_forward'

0.997871 1 0.998934 1 0.999947 0.999973

0.3 Label',
' Flow Duration',
' Total Backward Packets',
 'Total Length of Fwd Packets',
 ' Total Length of Bwd Packets',
 ' Fwd Packet Length Max', ' Fwd Packet
Length Min',
 ' Fwd Packet Length Mean',
'Bwd Packet Length Max',
 ' Bwd Packet Length Mean',
 'Flow Bytes/s',
' Flow Packets/s',
' Flow IAT Mean',
' Flow IAT Std',
 ' Flow IAT Max',
 ' Flow IAT Min',
 'Fwd IAT Total',
 ' Fwd IAT Mean',
 ' Fwd IAT Max', '
 Fwd IAT Min',
'Bwd IAT Total',
 ' Bwd IAT Mean',
' Bwd IAT Max',
 ' Bwd IAT Min',
 ' Fwd Header Length', ' Bwd Header Length',
 'Fwd Packets/s', ' Bwd Packets/s',
 ' Min Packet Length', ' Max Packet Length',
' Packet Length Mean', ' Packet Length Std',
' Packet Length Variance', ' Down/Up Ratio'
, ' Average Packet Size', ' Avg Fwd Segment
Size',
 ' Avg Bwd Segment Size', ' Fwd Header
Length.1'
, ' Subflow Fwd Bytes', ' Subflow Bwd
Packets',
 ' Subflow Bwd Bytes'

0.996454 0.999289 0.997869 0.999982 0.999911 0.999947

0.35 Label', ' Flow Duration',
' Total Backward Packets',
 'Total Length of Fwd Packets',
 ' Fwd Packet Length Max',

0.995751 1 0.997871 1 0.999893 0.999947

194

' Fwd Packet Length Min',
 ' Fwd Packet Length Mean', 'Flow Bytes/s',
 ' Flow Packets/s', ' Flow IAT Mean',
 ' Flow IAT Std', ' Flow IAT Max',
 'Fwd IAT Total', ' Fwd IAT Mean',
 ' Fwd IAT Max', 'Bwd IAT Total',
 ' Bwd IAT Mean', ' Bwd IAT Max'
, ' Bwd IAT Min', ' Fwd Header Length',
 ' Bwd Header Length', 'Fwd Packets/s'
, ' Bwd Packets/s', ' Min Packet Length'
, ' Max Packet Length', ' Packet Length Mean'
, ' Packet Length Std',
' Packet Length Variance',
 ' Average Packet Size',
 ' Avg Fwd Segment Size',
' Fwd Header Length.1',
' Subflow Fwd Bytes', ' Subflow Bwd
Packets'

0.4 Label', ' Flow Duration',
 'Total Length of Fwd Packets',
' Fwd Packet Length Max',
' Fwd Packet Length Min',
 ' Fwd Packet Length Mean',
'Flow Bytes/s', ' Flow Packets/s',
' Flow IAT Mean', ' Flow IAT Std',
 ' Flow IAT Max', 'Fwd IAT Total'
 ' Fwd IAT Mean', ' Fwd IAT Max',
' Fwd Header Length',
 ' Bwd Header Length', 'Fwd Packets/s',
 ' Bwd Packets/s', ' Min Packet Length'
, ' Max Packet Length', ' Packet Length
Mean', ' Average Packet Size', ' Avg Fwd
Segment Size', ' Fwd Header Length.1', '
Subflow Fwd Bytes'

0.995745 0.998578 0.997159 0.999964 0.999893 0.999929

0.45 Label', ' Flow Duration',
'Total Length of Fwd Packets',
 ' Fwd Packet Length Max',
 ' Fwd Packet Length Min',
 ' Fwd Packet Length Mean', 'Flow Bytes/s',
 ' Flow Packets/s', ' Flow IAT Mean',
 ' Flow IAT Max', 'Fwd Packets/s',
 ' Min Packet Length', ' Max Packet Length',
 ' Packet Length Mean',
 ' Average Packet Size',
 ' Avg Fwd Segment Size',
 ' Subflow Fwd Bytes'

0.995742 0.997866 0.996803 0.999947 0.999893 0.99992

0.5 Label',
 ' Flow Duration',
'Total Length of Fwd Packets',
 ' Fwd Packet Length Max'
 ' Fwd Packet Length Min',
' Fwd Packet Length Mean',
 'Flow Bytes/s', ' Flow Packets/s',
 ' Flow IAT Mean', ' Flow IAT Max'
, 'Fwd Packets/s', ' Min Packet Length'
, ' Max Packet Length', ' Packet Length Mean'
, ' Average Packet Size',
' Avg Fwd Segment Size',
' Subflow Fwd Bytes'

0.995742 0.997866 0.996803 0.999947 0.999893 0.99992

0.55 Label',
'Total Length of Fwd Packets',
 ' Fwd Packet Length Max',
 ' Fwd Packet Length Min',
' Fwd Packet Length Mean',
'Flow Bytes/s',
 ' Min Packet Length',
 ' Max Packet Length'
, ' Packet Length Mean',
 ' Average Packet Size',
' Avg Fwd Segment Size',
 ' Subflow Fwd Bytes'

0.979777 0.999289 0.989437 0.999982 0.999483 0.999733

0.6 Label',
'Total Length of Fwd Packets',
' Fwd Packet Length Max',
 ' Fwd Packet Length Min',
' Fwd Packet Length Mean',
 'Flow Bytes/s',
 ' Min Packet Length',
 ' Max Packet Length',
' Packet Length Mean',
 ' Average Packet Size',
 ' Avg Fwd Segment Size',
' Subflow Fwd Bytes'

0.979777 0.999289 0.989437 0.999982 0.999483 0.999733

195

Precision, F1 score and Recall for Correlation value of SYN attack Dataset
SYN
corelation
value

 Features name Precision
(0th)

Recall
(0th)

F1
score(0th)

Support(0th)
Precision
(1st)

Recall
(1st)

F1
score(1st)

0.1 Total Backward Packets 0.120493
Total Length of Fwd Packets 0.208247
 Fwd Packet Length Max 0.322236
 Fwd Packet Length Mean 0.175248
 Fwd Packet Length Std 0.339199
Bwd Packet Length Max 0.383470
 Bwd Packet Length Min 0.381006
 Bwd Packet Length Mean 0.393921
 Bwd Packet Length Std 0.359309
Fwd PSH Flags 0.411012
 Fwd Header Length 0.142923
 Bwd Header Length 0.128348
 Max Packet Length 0.395465
 Packet Length Mean 0.290465
 Packet Length Std 0.416720
 Packet Length Variance 0.315024
 RST Flag Count 0.411012
 ACK Flag Count 0.784367
 URG Flag Count 0.639606
 CWE Flag Count 0.427593
 Average Packet Size 0.240398
 Avg Fwd Segment Size 0.175248
 Avg Bwd Segment Size 0.393921
 Fwd Header Length.1 0.142923
 Subflow Fwd Bytes 0.208247
 Subflow Bwd Packets 0.120493
 Init_Win_bytes_backward 0.270303
 min_seg_size_forward 0.423877
 Label 1.000000

0.967376 0.999191 0.983026 7419 0.999993 0.99972 0.999857

0.15 Total Length of Fwd Packets 0.208247
 Fwd Packet Length Max 0.322236
 Fwd Packet Length Mean 0.175248
 Fwd Packet Length Std 0.339199
Bwd Packet Length Max 0.383470
 Bwd Packet Length Min 0.381006
 Bwd Packet Length Mean 0.393921
 Bwd Packet Length Std 0.359309
Fwd PSH Flags 0.411012
 Max Packet Length 0.395465
 Packet Length Mean 0.290465
 Packet Length Std 0.416720
 Packet Length Variance 0.315024
 RST Flag Count 0.411012
 ACK Flag Count 0.784367
 URG Flag Count 0.639606
 CWE Flag Count 0.427593
 Average Packet Size 0.240398
 Avg Fwd Segment Size 0.175248
 Avg Bwd Segment Size 0.393921
 Subflow Fwd Bytes 0.208247
 Init_Win_bytes_backward 0.270303
 min_seg_size_forward 0.423877
 Label 1.000000

0.949194 0.99973 0.973807 7419 0.999998 0.999555 0.999776

0.2 Total Length of Fwd Packets 0.208247
 Fwd Packet Length Max 0.322236
 Fwd Packet Length Std 0.339199
Bwd Packet Length Max 0.383470
 Bwd Packet Length Min 0.381006
 Bwd Packet Length Mean 0.393921
 Bwd Packet Length Std 0.359309
Fwd PSH Flags 0.411012
 Max Packet Length 0.395465
 Packet Length Mean 0.290465
 Packet Length Std 0.416720
 Packet Length Variance 0.315024
 RST Flag Count 0.411012
 ACK Flag Count 0.784367
 URG Flag Count 0.639606
 CWE Flag Count 0.427593
 Average Packet Size 0.240398
 Avg Bwd Segment Size 0.393921
 Subflow Fwd Bytes 0.208247
 Init_Win_bytes_backward 0.270303
 min_seg_size_forward 0.423877
 Label 1.000000

0.949315 0.99973 0.973871 7419 0.999998 0.999556 0.999777

0.25 Fwd Packet Length Max 0.322236
 Fwd Packet Length Std 0.339199
Bwd Packet Length Max 0.383470
 Bwd Packet Length Min 0.381006
 Bwd Packet Length Mean 0.393921
 Bwd Packet Length Std 0.359309
Fwd PSH Flags 0.411012
 Max Packet Length 0.395465
 Packet Length Mean 0.290465
 Packet Length Std 0.416720
 Packet Length Variance 0.315024
 RST Flag Count 0.411012
 ACK Flag Count 0.784367
 URG Flag Count 0.639606
 CWE Flag Count 0.427593
 Avg Bwd Segment Size 0.393921
 Init_Win_bytes_backward 0.270303

0.949322 0.999865 0.973938 7419 0.999999 0.999556 0.999778

196

 min_seg_size_forward 0.423877
 Label 1.000000

0.3 Fwd Packet Length Max 0.322236
 Fwd Packet Length Std 0.339199
Bwd Packet Length Max 0.383470
 Bwd Packet Length Min 0.381006
 Bwd Packet Length Mean 0.393921
 Bwd Packet Length Std 0.359309
Fwd PSH Flags 0.411012
 Max Packet Length 0.395465
 Packet Length Std 0.416720
 Packet Length Variance 0.315024
 RST Flag Count 0.411012
 ACK Flag Count 0.784367
 URG Flag Count 0.639606
 CWE Flag Count 0.427593
 Avg Bwd Segment Size 0.393921
 min_seg_size_forward 0.423877
 Label 1.000000

0.9492 0.999865 0.973874 7419 0.999999 0.999555 0.999777

0.35 Bwd Packet Length Max 0.383470
 Bwd Packet Length Min 0.381006
 Bwd Packet Length Mean 0.393921
 Bwd Packet Length Std 0.359309
Fwd PSH Flags 0.411012
 Max Packet Length 0.395465
 Packet Length Std 0.416720
 RST Flag Count 0.411012
 ACK Flag Count 0.784367
 URG Flag Count 0.639606
 CWE Flag Count 0.427593
 Avg Bwd Segment Size 0.393921
 min_seg_size_forward 0.423877
 Label 1.000000

0.9492 0.999865 0.973874 7419 0.999999 0.999555 0.999777

0.4 Fwd PSH Flags 0.411012
 Packet Length Std 0.416720
 RST Flag Count 0.411012
 ACK Flag Count 0.784367
 URG Flag Count 0.639606
 CWE Flag Count 0.427593
 min_seg_size_forward 0.423877
 Label 1.000000

0.821425 0.999461 0.901739 7419 0.999996 0.998194 0.999094

0.45 ACK Flag Count 0.784367
 URG Flag Count 0.639606
 Label 1.000000

0.780659 0.79539 0.787956 7419 0.998299 0.998142 0.998221

0.5 ACK Flag Count 0.784367
 URG Flag Count 0.639606
 Label 1.000000

0.780659 0.79539 0.787956 7419 0.998299 0.998142 0.998221

0.55 ACK Flag Count 0.784367
 URG Flag Count 0.639606
 Label 1.000000

0.780659 0.79539 0.787956 7419 0.998299 0.998142 0.998221

0.6 ACK Flag Count 0.784367
 URG Flag Count 0.639606
 Label 1.000000

0.780659 0.79539 0.787956 7419 0.998299 0.998142 0.998221

0.65 ACK Flag Count 0.784367
 Label 1.000000

0.781279 0.79539 0.788271 7419 0.998299 0.998149 0.998224

0.7 ACK Flag Count 0.784367
 Label 1.000000

0.781279 0.79539 0.788271 7419 0.998299 0.998149 0.998224

0.75 ACK Flag Count 0.784367
 Label 1.000000

0.781279 0.79539 0.788271 7419 0.998299 0.998149 0.998224

Precision, F1 score and Recall for MI-score value of SYN attack Dataset

Mi score
value

 Features name
Precision
(0th)

Recall
(0th)

F1
score(0th)

Precision
(1st)

Recall
(1st)

F1
score(1st)

0.0001 Label', ' Flow Duration', ' Total Fwd Packets', ' Total Backward Packets',
'Total Length of Fwd Packets', ' Total Length of Bwd Packets', ' Fwd Packet
Length Max', ' Fwd Packet Length Min', ' Fwd Packet Length Mean', ' Fwd
Packet Length Std', 'Bwd Packet Length Max', ' Bwd Packet Length Min', '
Bwd Packet Length Mean', ' Bwd Packet Length Std', 'Flow Bytes/s', ' Flow
Packets/s', ' Flow IAT Mean', ' Flow IAT Std', ' Flow IAT Max', ' Flow IAT
Min', 'Fwd IAT Total', ' Fwd IAT Mean', ' Fwd IAT Std', ' Fwd IAT Max', '
Fwd IAT Min', 'Bwd IAT Total', ' Bwd IAT Mean', ' Bwd IAT Std', ' Bwd IAT
Max', ' Bwd IAT Min', 'Fwd PSH Flags', ' Fwd Header Length', ' Bwd Header
Length', 'Fwd Packets/s', ' Bwd Packets/s', ' Min Packet Length', ' Max Packet
Length', ' Packet Length Mean', ' Packet Length Std', ' Packet Length
Variance', 'FIN Flag Count', ' SYN Flag Count', ' RST Flag Count', ' ACK Flag
Count', ' URG Flag Count', ' CWE Flag Count', ' Down/Up Ratio', ' Average
Packet Size', ' Avg Fwd Segment Size', ' Avg Bwd Segment Size', ' Fwd
Header Length.1', ' Bwd Avg Packets/Bulk', 'Subflow Fwd Packets', ' Subflow
Fwd Bytes', ' Subflow Bwd Packets', ' Subflow Bwd Bytes',
'Init_Win_bytes_forward', ' Init_Win_bytes_backward', ' act_data_pkt_fwd', '
min_seg_size_forward', 'Active Mean', ' Active Std', ' Active Max', ' Active
Min', 'Idle Mean', ' Idle Std', ' Idle Max', ' Idle Min']

0.99601 0.999199 0.997602 0.999993 0.999966 0.99998

0.05 Label', ' Flow Duration', ' Total Fwd Packets', ' Total Backward Packets',
'Total Length of Fwd Packets', ' Total Length of Bwd Packets', ' Fwd Packet
Length Max', ' Fwd Packet Length Min', ' Fwd Packet Length Mean', ' Fwd
Packet Length Std', 'Bwd Packet Length Max', ' Bwd Packet Length Min', '
Bwd Packet Length Mean', ' Bwd Packet Length Std', 'Flow Bytes/s', ' Flow
Packets/s', ' Flow IAT Mean', ' Flow IAT Std', ' Flow IAT Max', ' Flow IAT
Min', 'Fwd IAT Total', ' Fwd IAT Mean', ' Fwd IAT Std', ' Fwd IAT Max', '
Fwd IAT Min', 'Bwd IAT Total', ' Bwd IAT Mean', ' Bwd IAT Std', ' Bwd IAT
Max', ' Bwd IAT Min', 'Fwd PSH Flags', ' Fwd Header Length', ' Bwd Header
Length', 'Fwd Packets/s', ' Bwd Packets/s', ' Min Packet Length', ' Max Packet
Length', ' Packet Length Mean', ' Packet Length Std', ' Packet Length

0.995878 0.999333 0.997602 0.999994 0.999965 0.99998

197

Variance', ' RST Flag Count', ' ACK Flag Count', ' URG Flag Count', ' CWE
Flag Count', ' Down/Up Ratio', ' Average Packet Size', ' Avg Fwd Segment
Size', ' Avg Bwd Segment Size', ' Fwd Header Length.1', 'Subflow Fwd
Packets', ' Subflow Fwd Bytes', ' Subflow Bwd Packets', ' Subflow Bwd
Bytes', 'Init_Win_bytes_forward', ' Init_Win_bytes_backward', '
act_data_pkt_fwd', ' min_seg_size_forward', 'Active Mean', ' Active Std', '
Active Max', ' Active Min', 'Idle Mean', ' Idle Std', ' Idle Max', ' Idle Min']

0.1 Label', ' Flow Duration', ' Total Fwd Packets', ' Total Backward Packets',
'Total Length of Fwd Packets', ' Total Length of Bwd Packets', ' Fwd Packet
Length Max', ' Fwd Packet Length Min', ' Fwd Packet Length Mean', ' Fwd
Packet Length Std', 'Bwd Packet Length Max', ' Bwd Packet Length Min', '
Bwd Packet Length Mean', 'Flow Bytes/s', ' Flow Packets/s', ' Flow IAT
Mean', ' Flow IAT Std', ' Flow IAT Max', ' Flow IAT Min', 'Fwd IAT Total', '
Fwd IAT Mean', ' Fwd IAT Std', ' Fwd IAT Max', ' Fwd IAT Min', 'Bwd IAT
Total', ' Bwd IAT Mean', ' Bwd IAT Max', ' Bwd IAT Min', ' Fwd Header
Length', ' Bwd Header Length', 'Fwd Packets/s', ' Bwd Packets/s', ' Min Packet
Length', ' Max Packet Length', ' Packet Length Mean', ' Packet Length Std', '
Packet Length Variance', ' ACK Flag Count', ' URG Flag Count', ' Down/Up
Ratio', ' Average Packet Size', ' Avg Fwd Segment Size', ' Avg Bwd Segment
Size', ' Fwd Header Length.1', 'Subflow Fwd Packets', ' Subflow Fwd Bytes', '
Subflow Bwd Packets', ' Subflow Bwd Bytes', 'Init_Win_bytes_forward', '
Init_Win_bytes_backward', ' act_data_pkt_fwd', ' min_seg_size_forward']

0.996143 0.999333 0.997735 0.999994 0.999968 0.999981

0.15 Label', ' Flow Duration', ' Total Fwd Packets', 'Total Length of Fwd Packets', '
Total Length of Bwd Packets', ' Fwd Packet Length Max', ' Fwd Packet Length
Min', ' Fwd Packet Length Mean', 'Bwd Packet Length Max', ' Bwd Packet
Length Min', ' Bwd Packet Length Mean', 'Flow Bytes/s', ' Flow Packets/s', '
Flow IAT Mean', ' Flow IAT Std', ' Flow IAT Max', ' Flow IAT Min', 'Fwd
IAT Total', ' Fwd IAT Mean', ' Fwd IAT Max', ' Fwd IAT Min', 'Bwd IAT
Total', ' Bwd IAT Mean', ' Bwd IAT Max', ' Bwd IAT Min', ' Fwd Header
Length', ' Bwd Header Length', 'Fwd Packets/s', ' Bwd Packets/s', ' Min Packet
Length', ' Max Packet Length', ' Packet Length Mean', ' Packet Length Std', '
Packet Length Variance', ' ACK Flag Count', ' URG Flag Count', ' Down/Up
Ratio', ' Average Packet Size', ' Avg Fwd Segment Size', ' Avg Bwd Segment
Size', ' Fwd Header Length.1', 'Subflow Fwd Packets', ' Subflow Fwd Bytes', '
Subflow Bwd Bytes', 'Init_Win_bytes_forward', ' Init_Win_bytes_backward', '
act_data_pkt_fwd', ' min_seg_size_forward']

0.995878 0.999333 0.997602 0.999994 0.999965 0.99998

0.2 Label', ' Flow Duration', ' Total Fwd Packets', 'Total Length of Fwd Packets', '
Total Length of Bwd Packets', ' Fwd Packet Length Max', ' Fwd Packet Length
Min', ' Fwd Packet Length Mean', 'Bwd Packet Length Max', ' Bwd Packet
Length Mean', 'Flow Bytes/s', ' Flow Packets/s', ' Flow IAT Mean', ' Flow IAT
Std', ' Flow IAT Max', ' Flow IAT Min', 'Fwd IAT Total', ' Fwd IAT Mean', '
Fwd IAT Max', ' Fwd IAT Min', 'Bwd IAT Total', ' Bwd IAT Mean', ' Bwd
IAT Max', ' Bwd IAT Min', ' Fwd Header Length', ' Bwd Header Length', 'Fwd
Packets/s', ' Bwd Packets/s', ' Min Packet Length', ' Max Packet Length', '
Packet Length Mean', ' Packet Length Std', ' Packet Length Variance', ' ACK
Flag Count', ' URG Flag Count', ' Average Packet Size', ' Avg Fwd Segment
Size', ' Avg Bwd Segment Size', ' Fwd Header Length.1', 'Subflow Fwd
Packets', ' Subflow Fwd Bytes', ' Subflow Bwd Bytes',
'Init_Win_bytes_forward', ' Init_Win_bytes_backward', ' act_data_pkt_fwd', '
min_seg_size_forward']

0.995745 0.999333 0.997536 0.999994 0.999964 0.999979

0.25 Label', ' Flow Duration', ' Total Fwd Packets', 'Total Length of Fwd Packets', '
Total Length of Bwd Packets', ' Fwd Packet Length Max', ' Fwd Packet Length
Min', ' Fwd Packet Length Mean', 'Flow Bytes/s', ' Flow Packets/s', ' Flow IAT
Mean', ' Flow IAT Std', ' Flow IAT Max', ' Flow IAT Min', 'Fwd IAT Total', '
Fwd IAT Mean', ' Fwd IAT Max', ' Fwd IAT Min', 'Bwd IAT Total', ' Bwd
IAT Mean', ' Bwd IAT Max', ' Fwd Header Length', 'Fwd Packets/s', ' Bwd
Packets/s', ' Min Packet Length', ' Max Packet Length', ' Packet Length Mean',
' Packet Length Std', ' Packet Length Variance', ' ACK Flag Count', ' Average
Packet Size', ' Avg Fwd Segment Size', ' Fwd Header Length.1', 'Subflow Fwd
Packets', ' Subflow Fwd Bytes', ' Subflow Bwd Bytes',
'Init_Win_bytes_forward', ' act_data_pkt_fwd', ' min_seg_size_forward']

0.995481 0.999333 0.997403 0.999994 0.999962 0.999978

0.3 Label', ' Flow Duration', 'Total Length of Fwd Packets', ' Fwd Packet Length
Max', ' Fwd Packet Length Min', ' Fwd Packet Length Mean', 'Flow Bytes/s', '
Flow Packets/s', ' Flow IAT Mean', ' Flow IAT Std', ' Flow IAT Max', ' Flow
IAT Min', 'Fwd IAT Total', ' Fwd IAT Mean', ' Fwd IAT Max', ' Fwd Header
Length', 'Fwd Packets/s', ' Bwd Packets/s', ' Min Packet Length', ' Max Packet
Length', ' Packet Length Mean', ' Packet Length Std', ' Packet Length
Variance', ' ACK Flag Count', ' Average Packet Size', ' Avg Fwd Segment
Size', ' Fwd Header Length.1', ' Subflow Fwd Bytes',
'Init_Win_bytes_forward', ' min_seg_size_forward']

0.995613 0.999466 0.997536 0.999996 0.999963 0.999979

0.35 Label', ' Flow Duration', 'Total Length of Fwd Packets', ' Fwd Packet Length
Max', ' Fwd Packet Length Min', ' Fwd Packet Length Mean', 'Flow Bytes/s', '
Flow Packets/s', ' Flow IAT Mean', ' Flow IAT Std', ' Flow IAT Max', 'Fwd
IAT Total', ' Fwd IAT Mean', ' Fwd IAT Max', ' Fwd Header Length', 'Fwd
Packets/s', ' Bwd Packets/s', ' Min Packet Length', ' Max Packet Length', '
Packet Length Mean', ' ACK Flag Count', ' Average Packet Size', ' Avg Fwd
Segment Size', ' Fwd Header Length.1', ' Subflow Fwd Bytes',
'Init_Win_bytes_forward', ' min_seg_size_forward']

0.995613 0.999466 0.997536 0.999996 0.999963 0.999979

0.4 Label', ' Flow Duration', 'Total Length of Fwd Packets', ' Fwd Packet Length
Max', ' Fwd Packet Length Min', ' Fwd Packet Length Mean', 'Flow Bytes/s', '
Flow Packets/s', ' Flow IAT Mean', ' Flow IAT Max', ' Fwd Header Length',
'Fwd Packets/s', ' Min Packet Length', ' Max Packet Length', ' Packet Length
Mean', ' ACK Flag Count', ' Average Packet Size', ' Avg Fwd Segment Size', '
Fwd Header Length.1', ' Subflow Fwd Bytes', 'Init_Win_bytes_forward', '
min_seg_size_forward']

0.995746 0.9996 0.997669 0.999997 0.999964 0.99998

0.45 Label', 'Total Length of Fwd Packets', ' Fwd Packet Length Min', ' Fwd Packet
Length Mean', 'Flow Bytes/s', ' Flow Packets/s', ' Flow IAT Mean', ' Flow IAT
Max', 'Fwd Packets/s', ' Min Packet Length', ' Packet Length Mean', ' ACK
Flag Count', ' Average Packet Size', ' Avg Fwd Segment Size', ' Subflow Fwd
Bytes', 'Init_Win_bytes_forward']

0.994029 0.9996 0.996806 0.999997 0.99995 0.999973

198

0.5 Label',

'Total Length of Fwd Packets',
 'Flow Bytes/s',
' Flow Packets/s',
'Fwd Packets/s',
 ' ACK Flag Count',
' Average Packet Size',
' Subflow Fwd Bytes',
 'Init_Win_bytes_forward',

0.994161 0.9996 0.996873 0.999997 0.999951 0.999974

0.55 Label', 'Total Length of Fwd Packets', 'Flow Bytes/s', ' ACK Flag Count', '
Average Packet Size', 'Init_Win_bytes_forward']

0.954158 0.999867 0.976477 0.999999 0.999597 0.999798

0.6 Label', 'Flow Bytes/s', 'Init_Win_bytes_forward'] 0.931957 0.999733 0.964656 0.999998 0.999387 0.999692
0.65 Label', 'Init_Win_bytes_forward' 0.802699 1 0.890553 1 0.997936 0.998967
0.7 Label', 'Init_Win_bytes_forward' 0.802699 1 0.890553 1 0.997936 0.998967

0.75 Label', 'Init_Win_bytes_forward' 0.802699 1 0.890553 1 0.997936 0.998967
0.8 ' Label', 'Init_Win_bytes_forward' 0.802699 1 0.890553 1 0.997936 0.998967

Precision, F1 score and Recall for Correlation value of UDP attack Dataset
 UDP-features

corelation
value

 Features name Precision
(0th)

Recall
(0th)

F1
score(0th)

 Precision
(1st)

Recall
(1st)

F1
score(1st)

0.1 Flow Duration 0.264399
 Total Backward Packets 0.178735
 Fwd Packet Length Max 0.216441
 Fwd Packet Length Min 0.232204
 Fwd Packet Length Mean 0.272626
Bwd Packet Length Max 0.350890
 Bwd Packet Length Min 0.483829
 Bwd Packet Length Mean 0.380976
 Bwd Packet Length Std 0.334964
 Flow IAT Mean 0.125424
 Flow IAT Std 0.187512
 Flow IAT Max 0.251776
Fwd IAT Total 0.256064
 Fwd IAT Mean 0.179106
 Fwd IAT Std 0.210681
 Fwd IAT Max 0.240887
Bwd IAT Total 0.241923
 Bwd IAT Mean 0.271974
 Bwd IAT Std 0.267322
 Bwd IAT Max 0.238984
 Bwd IAT Min 0.264667
Fwd PSH Flags 0.470833
 Bwd Packets/s 0.128154
 Min Packet Length 0.233385
 Packet Length Mean 0.242002
 Packet Length Std 0.129118
 Packet Length Variance 0.286102
 RST Flag Count 0.470833
 ACK Flag Count 0.401689
 URG Flag Count 0.727944
 CWE Flag Count 0.430615
 Down/Up Ratio 0.618930
 Average Packet Size 0.132722
 Avg Fwd Segment Size 0.272626
 Avg Bwd Segment Size 0.380976
 Subflow Bwd Packets 0.178735
Init_Win_bytes_forward 0.464147
 Init_Win_bytes_backward 0.239698
Active Mean 0.146077
 Active Max 0.151150
 Active Min 0.124369
Idle Mean 0.235977
 Idle Max 0.236119
 Idle Min 0.229957
 Label 1.000000

0.996109 1 0.998051 1 0.999997 0.999998

0.15 Flow Duration 0.264399
 Total Backward Packets 0.178735
 Fwd Packet Length Max 0.216441
 Fwd Packet Length Min 0.232204
 Fwd Packet Length Mean 0.272626
Bwd Packet Length Max 0.350890
 Bwd Packet Length Min 0.483829
 Bwd Packet Length Mean 0.380976
 Bwd Packet Length Std 0.334964
 Flow IAT Std 0.187512
 Flow IAT Max 0.251776
Fwd IAT Total 0.256064
 Fwd IAT Mean 0.179106
 Fwd IAT Std 0.210681
 Fwd IAT Max 0.240887
Bwd IAT Total 0.241923
 Bwd IAT Mean 0.271974
 Bwd IAT Std 0.267322
 Bwd IAT Max 0.238984
 Bwd IAT Min 0.264667
Fwd PSH Flags 0.470833
 Min Packet Length 0.233385
 Packet Length Mean 0.242002

0.996104 0.998698 0.997399 0.999999 0.999997 0.999998

199

 Packet Length Variance 0.286102
 RST Flag Count 0.470833
 ACK Flag Count 0.401689
 URG Flag Count 0.727944
 CWE Flag Count 0.430615
 Down/Up Ratio 0.618930
 Avg Fwd Segment Size 0.272626
 Avg Bwd Segment Size 0.380976
 Subflow Bwd Packets 0.178735
Init_Win_bytes_forward 0.464147
 Init_Win_bytes_backward 0.239698
 Active Max 0.151150
Idle Mean 0.235977
 Idle Max 0.236119
 Idle Min 0.229957
 Label 1.000000

0.2 Flow Duration 0.264399
 Fwd Packet Length Max 0.216441
 Fwd Packet Length Min 0.232204
 Fwd Packet Length Mean 0.272626
Bwd Packet Length Max 0.350890
 Bwd Packet Length Min 0.483829
 Bwd Packet Length Mean 0.380976
 Bwd Packet Length Std 0.334964
 Flow IAT Max 0.251776
Fwd IAT Total 0.256064
 Fwd IAT Std 0.210681
 Fwd IAT Max 0.240887
Bwd IAT Total 0.241923
 Bwd IAT Mean 0.271974
 Bwd IAT Std 0.267322
 Bwd IAT Max 0.238984
 Bwd IAT Min 0.264667
Fwd PSH Flags 0.470833
 Min Packet Length 0.233385
 Packet Length Mean 0.242002
 Packet Length Variance 0.286102
 RST Flag Count 0.470833
 ACK Flag Count 0.401689
 URG Flag Count 0.727944
 CWE Flag Count 0.430615
 Down/Up Ratio 0.618930
 Avg Fwd Segment Size 0.272626
 Avg Bwd Segment Size 0.380976
Init_Win_bytes_forward 0.464147
 Init_Win_bytes_backward 0.239698
Idle Mean 0.235977
 Idle Max 0.236119
 Idle Min 0.229957
 Label 1.000000

0.994812 0.998698 0.996751 0.999999 0.999996 0.999997

0.25 Flow Duration 0.264399
 Fwd Packet Length Mean 0.272626
Bwd Packet Length Max 0.350890
 Bwd Packet Length Min 0.483829
 Bwd Packet Length Mean 0.380976
 Bwd Packet Length Std 0.334964
 Flow IAT Max 0.251776
Fwd IAT Total 0.256064
 Bwd IAT Mean 0.271974
 Bwd IAT Std 0.267322
 Bwd IAT Min 0.264667
Fwd PSH Flags 0.470833
 Packet Length Variance 0.286102
 RST Flag Count 0.470833
 ACK Flag Count 0.401689
 URG Flag Count 0.727944
 CWE Flag Count 0.430615
 Down/Up Ratio 0.618930
 Avg Fwd Segment Size 0.272626
 Avg Bwd Segment Size 0.380976
Init_Win_bytes_forward 0.464147
 Label 1.000000

0.996109 1 0.998051 1 0.999997 0.999998

0.3 Bwd Packet Length Max 0.350890
 Bwd Packet Length Min 0.483829
 Bwd Packet Length Mean 0.380976
 Bwd Packet Length Std 0.334964
Fwd PSH Flags 0.470833
 RST Flag Count 0.470833
 ACK Flag Count 0.401689
 URG Flag Count 0.727944
 CWE Flag Count 0.430615
 Down/Up Ratio 0.618930
 Avg Bwd Segment Size 0.380976
Init_Win_bytes_forward 0.464147
 Label 1.000000

0.988095 0.972656 0.980315 0.999977 0.99999 0.999983

0.35 Bwd Packet Length Max 0.350890
 Bwd Packet Length Min 0.483829
 Bwd Packet Length Mean 0.380976
Fwd PSH Flags 0.470833
 RST Flag Count 0.470833
 ACK Flag Count 0.401689
 URG Flag Count 0.727944
 CWE Flag Count 0.430615
 Down/Up Ratio 0.618930
 Avg Bwd Segment Size 0.380976
Init_Win_bytes_forward 0.464147
 Label 1.000000

0.988095 0.972656 0.980315 0.999977 0.99999 0.999983

0.4 Bwd Packet Length Min 0.483829 0.982895 0.972656 0.977749 0.999977 0.999986 0.999981

200

Fwd PSH Flags 0.470833
 RST Flag Count 0.470833
 ACK Flag Count 0.401689
 URG Flag Count 0.727944
 CWE Flag Count 0.430615
 Down/Up Ratio 0.618930
Init_Win_bytes_forward 0.464147
 Label 1.000000

0.45 Bwd Packet Length Min 0.483829
Fwd PSH Flags 0.470833
 RST Flag Count 0.470833
 URG Flag Count 0.727944
 Down/Up Ratio 0.618930
Init_Win_bytes_forward 0.464147
 Label 1.000000

0.982895 0.972656 0.977749 0.999977 0.999986 0.999981

0.5 URG Flag Count 0.727944
 Down/Up Ratio 0.618930
 Label 1.000000

0.965665 0.878906 0.920245 0.999897 0.999973 0.999935

0.55 URG Flag Count 0.727944
 Down/Up Ratio 0.618930
 Label 1.000000

0.965665 0.878906 0.920245 0.999897 0.999973 0.999935

0.6 URG Flag Count 0.727944
 Down/Up Ratio 0.618930
 Label 1.000000

0.965665 0.878906 0.920245 0.999897 0.999973 0.999935

0.65 URG Flag Count 0.727944
 Label 1.000000

0.973274 0.56901 0.718159 0.999632 0.999987 0.999809

0.7 URG Flag Count 0.727944
 Label 1.000000

0.973274 0.56901 0.718159 0.999632 0.999987 0.999809

Precision, F1 score and Recall for MI-score value of UDP attack Dataset

Mi score
value Features name

 Precision
(0th) Recall (0th)

F1
score(0th)

 Precision
(1st) Recall (1st)

F1
score(1st)

0.0001

 Label', ' Flow Duration', ' Total Fwd Packets', ' Total Backward
Packets', 'Total Length of Fwd Packets', ' Total Length of Bwd
Packets', ' Fwd Packet Length Max', ' Fwd Packet Length Min', '
Fwd Packet Length Mean', ' Fwd Packet Length Std', 'Bwd
Packet Length Max', ' Bwd Packet Length Min', ' Bwd Packet
Length Mean', ' Bwd Packet Length Std', 'Flow Bytes/s', ' Flow
Packets/s', ' Flow IAT Mean', ' Flow IAT Std', ' Flow IAT Max',
' Flow IAT Min', 'Fwd IAT Total', ' Fwd IAT Mean', ' Fwd IAT
Std', ' Fwd IAT Max', ' Fwd IAT Min', 'Bwd IAT Total', ' Bwd
IAT Mean', ' Bwd IAT Std', ' Bwd IAT Max', ' Bwd IAT Min',
'Fwd PSH Flags', ' Bwd URG Flags', ' Fwd Header Length', '
Bwd Header Length', 'Fwd Packets/s', ' Bwd Packets/s', ' Min
Packet Length', ' Max Packet Length', ' Packet Length Mean', '
Packet Length Std', ' Packet Length Variance', ' RST Flag
Count', ' ACK Flag Count', ' URG Flag Count', ' CWE Flag
Count', ' ECE Flag Count', ' Down/Up Ratio', ' Average Packet
Size', ' Avg Fwd Segment Size', ' Avg Bwd Segment Size', '
Fwd Header Length.1', 'Fwd Avg Bytes/Bulk', ' Fwd Avg Bulk
Rate', 'Bwd Avg Bulk Rate', 'Subflow Fwd Packets', ' Subflow
Fwd Bytes', ' Subflow Bwd Packets', ' Subflow Bwd Bytes',
'Init_Win_bytes_forward', ' Init_Win_bytes_backward', '
act_data_pkt_fwd', ' min_seg_size_forward', 'Active Mean', '
Active Std', ' Active Max', ' Active Min', 'Idle Mean', ' Idle Std', '
Idle Max', ' Idle Min' 0.99085 0.997368 0.994098 0.999998 0.999992 0.999995

0.05

 Label', ' Flow Duration', ' Total Fwd Packets', ' Total Backward
Packets', 'Total Length of Fwd Packets', ' Total Length of Bwd
Packets', ' Fwd Packet Length Max', ' Fwd Packet Length Min', '
Fwd Packet Length Mean', ' Fwd Packet Length Std', 'Bwd
Packet Length Max', ' Bwd Packet Length Min', ' Bwd Packet
Length Mean', ' Bwd Packet Length Std', 'Flow Bytes/s', ' Flow
Packets/s', ' Flow IAT Mean', ' Flow IAT Std', ' Flow IAT Max',
' Flow IAT Min', 'Fwd IAT Total', ' Fwd IAT Mean', ' Fwd IAT
Std', ' Fwd IAT Max', ' Fwd IAT Min', 'Bwd IAT Total', ' Bwd
IAT Mean', ' Bwd IAT Std', ' Bwd IAT Max', ' Bwd IAT Min',
'Fwd PSH Flags', ' Fwd Header Length', ' Bwd Header Length',
'Fwd Packets/s', ' Bwd Packets/s', ' Min Packet Length', ' Max
Packet Length', ' Packet Length Mean', ' Packet Length Std', '
Packet Length Variance', ' RST Flag Count', ' ACK Flag Count',
' URG Flag Count', ' CWE Flag Count', ' Down/Up Ratio', '
Average Packet Size', ' Avg Fwd Segment Size', ' Avg Bwd
Segment Size', ' Fwd Header Length.1', 'Subflow Fwd Packets', '
Subflow Fwd Bytes', ' Subflow Bwd Packets', ' Subflow Bwd
Bytes', 'Init_Win_bytes_forward', ' Init_Win_bytes_backward', '
act_data_pkt_fwd', ' min_seg_size_forward' 0.99085 0.997368 0.994098 0.999998 0.999992 0.999995

0.1

 Label', ' Flow Duration', ' Total Fwd Packets', ' Total Backward
Packets', 'Total Length of Fwd Packets', ' Total Length of Bwd
Packets', ' Fwd Packet Length Max', ' Fwd Packet Length Min', '
Fwd Packet Length Mean', ' Fwd Packet Length Std', 'Bwd
Packet Length Max', ' Bwd Packet Length Min', ' Bwd Packet
Length Mean', 'Flow Bytes/s', ' Flow Packets/s', ' Flow IAT
Mean', ' Flow IAT Std', ' Flow IAT Max', ' Flow IAT Min', 'Fwd
IAT Total', ' Fwd IAT Mean', ' Fwd IAT Std', ' Fwd IAT Max', '
Fwd IAT Min', 'Bwd IAT Total', ' Bwd IAT Mean', ' Bwd IAT
Std', ' Bwd IAT Max', ' Bwd IAT Min', ' Fwd Header Length', '
Bwd Header Length', 'Fwd Packets/s', ' Bwd Packets/s', ' Min
Packet Length', ' Max Packet Length', ' Packet Length Mean', '
Packet Length Std', ' Packet Length Variance', ' URG Flag
Count', ' Down/Up Ratio', ' Average Packet Size', ' Avg Fwd
Segment Size', ' Avg Bwd Segment Size', ' Fwd Header
Length.1', 'Subflow Fwd Packets', ' Subflow Fwd Bytes', '
Subflow Bwd Packets', ' Subflow Bwd Bytes',
'Init_Win_bytes_forward', ' Init_Win_bytes_backward', '
act_data_pkt_fwd', ' min_seg_size_forward' 0.992147 0.997368 0.994751 0.999998 0.999993 0.999996

201

0.15

 Label', ' Flow Duration', ' Total Fwd Packets', ' Total Backward
Packets', 'Total Length of Fwd Packets', ' Total Length of Bwd
Packets', ' Fwd Packet Length Max', ' Fwd Packet Length Min', '
Fwd Packet Length Mean', ' Fwd Packet Length Std', 'Bwd
Packet Length Max', ' Bwd Packet Length Min', ' Bwd Packet
Length Mean', 'Flow Bytes/s', ' Flow Packets/s', ' Flow IAT
Mean', ' Flow IAT Std', ' Flow IAT Max', ' Flow IAT Min', 'Fwd
IAT Total', ' Fwd IAT Mean', ' Fwd IAT Std', ' Fwd IAT Max', '
Fwd IAT Min', 'Bwd IAT Total', ' Bwd IAT Mean', ' Bwd IAT
Max', ' Bwd IAT Min', ' Fwd Header Length', ' Bwd Header
Length', 'Fwd Packets/s', ' Bwd Packets/s', ' Min Packet Length',
' Max Packet Length', ' Packet Length Mean', ' Packet Length
Std', ' Packet Length Variance', ' URG Flag Count', ' Down/Up
Ratio', ' Average Packet Size', ' Avg Fwd Segment Size', ' Avg
Bwd Segment Size', ' Fwd Header Length.1', 'Subflow Fwd
Packets', ' Subflow Fwd Bytes', ' Subflow Bwd Packets', '
Subflow Bwd Bytes', 'Init_Win_bytes_forward', '
Init_Win_bytes_backward', ' act_data_pkt_fwd', '
min_seg_size_forward' 0.992147 0.997368 0.994751 0.999998 0.999993 0.999996

0.2

 Label', ' Flow Duration', ' Total Fwd Packets', ' Total Backward
Packets', 'Total Length of Fwd Packets', ' Total Length of Bwd
Packets', ' Fwd Packet Length Max', ' Fwd Packet Length Min', '
Fwd Packet Length Mean', ' Fwd Packet Length Std', 'Bwd
Packet Length Max', ' Bwd Packet Length Min', ' Bwd Packet
Length Mean', 'Flow Bytes/s', ' Flow Packets/s', ' Flow IAT
Mean', ' Flow IAT Std', ' Flow IAT Max', ' Flow IAT Min', 'Fwd
IAT Total', ' Fwd IAT Mean', ' Fwd IAT Std', ' Fwd IAT Max', '
Fwd IAT Min', 'Bwd IAT Total', ' Bwd IAT Mean', ' Bwd IAT
Max', ' Bwd IAT Min', ' Fwd Header Length', ' Bwd Header
Length', 'Fwd Packets/s', ' Bwd Packets/s', ' Min Packet Length',
' Max Packet Length', ' Packet Length Mean', ' Packet Length
Std', ' Packet Length Variance', ' URG Flag Count', ' Down/Up
Ratio', ' Average Packet Size', ' Avg Fwd Segment Size', ' Avg
Bwd Segment Size', ' Fwd Header Length.1', 'Subflow Fwd
Packets', ' Subflow Fwd Bytes', ' Subflow Bwd Packets', '
Subflow Bwd Bytes', 'Init_Win_bytes_forward', '
Init_Win_bytes_backward', ' act_data_pkt_fwd', '
min_seg_size_forward' 0.992147 0.997368 0.994751 0.999998 0.999993 0.999996

0.25

 Label', ' Flow Duration', ' Total Fwd Packets', ' Total Backward
Packets', 'Total Length of Fwd Packets', ' Total Length of Bwd
Packets', ' Fwd Packet Length Max', ' Fwd Packet Length Min', '
Fwd Packet Length Mean', ' Fwd Packet Length Std', 'Bwd
Packet Length Max', ' Bwd Packet Length Mean', 'Flow
Bytes/s', ' Flow Packets/s', ' Flow IAT Mean', ' Flow IAT Std', '
Flow IAT Max', 'Fwd IAT Total', ' Fwd IAT Mean', ' Fwd IAT
Std', ' Fwd IAT Max', 'Bwd IAT Total', ' Bwd IAT Mean', ' Bwd
IAT Max', ' Bwd IAT Min', ' Fwd Header Length', ' Bwd Header
Length', 'Fwd Packets/s', ' Bwd Packets/s', ' Min Packet Length',
' Max Packet Length', ' Packet Length Mean', ' Packet Length
Std', ' Packet Length Variance', ' URG Flag Count', ' Down/Up
Ratio', ' Average Packet Size', ' Avg Fwd Segment Size', ' Avg
Bwd Segment Size', ' Fwd Header Length.1', 'Subflow Fwd
Packets', ' Subflow Fwd Bytes', ' Subflow Bwd Packets', '
Subflow Bwd Bytes', 'Init_Win_bytes_forward', '
act_data_pkt_fwd', ' min_seg_size_forward' 0.992157 0.998684 0.99541 0.999999 0.999993 0.999996

0.3

 Label', ' Flow Duration', ' Total Backward Packets', 'Total
Length of Fwd Packets', ' Total Length of Bwd Packets', ' Fwd
Packet Length Max', ' Fwd Packet Length Min', ' Fwd Packet
Length Mean', ' Fwd Packet Length Std', 'Bwd Packet Length
Max', ' Bwd Packet Length Mean', 'Flow Bytes/s', ' Flow
Packets/s', ' Flow IAT Mean', ' Flow IAT Std', ' Flow IAT Max',
'Fwd IAT Total', ' Fwd IAT Mean', ' Fwd IAT Max', 'Bwd IAT
Total', ' Bwd IAT Mean', ' Bwd IAT Max', ' Bwd IAT Min', '
Fwd Header Length', ' Bwd Header Length', 'Fwd Packets/s', '
Bwd Packets/s', ' Min Packet Length', ' Max Packet Length', '
Packet Length Mean', ' Packet Length Std', ' Packet Length
Variance', ' Down/Up Ratio', ' Average Packet Size', ' Avg Fwd
Segment Size', ' Avg Bwd Segment Size', ' Fwd Header
Length.1', ' Subflow Fwd Bytes', ' Subflow Bwd Packets',
'Init_Win_bytes_forward', ' act_data_pkt_fwd', '
min_seg_size_forward' 0.98957 0.998684 0.994106 0.999999 0.999991 0.999995

0.35

 Label', ' Flow Duration', ' Total Backward Packets', 'Total
Length of Fwd Packets', ' Fwd Packet Length Max', ' Fwd
Packet Length Min', ' Fwd Packet Length Mean', 'Flow Bytes/s',
' Flow Packets/s', ' Flow IAT Mean', ' Flow IAT Std', ' Flow IAT
Max', 'Fwd IAT Total', ' Fwd IAT Mean', ' Fwd IAT Max', 'Bwd
IAT Total', ' Bwd IAT Mean', ' Bwd IAT Max', ' Bwd IAT Min',
' Bwd Header Length', 'Fwd Packets/s', ' Bwd Packets/s', ' Min
Packet Length', ' Max Packet Length', ' Packet Length Mean', '
Packet Length Std', ' Packet Length Variance', ' Average Packet
Size', ' Avg Fwd Segment Size', ' Subflow Fwd Bytes', ' Subflow
Bwd Packets', 'Init_Win_bytes_forward' 0.988281 0.998684 0.993455 0.999999 0.99999 0.999994

0.4

 Label', ' Flow Duration', 'Total Length of Fwd Packets', ' Fwd
Packet Length Max', ' Fwd Packet Length Min', ' Fwd Packet
Length Mean', 'Flow Bytes/s', ' Flow Packets/s', ' Flow IAT
Mean', ' Flow IAT Std', ' Flow IAT Max', 'Fwd IAT Total', '
Fwd IAT Mean', ' Fwd IAT Max', 'Fwd Packets/s', ' Min Packet
Length', ' Max Packet Length', ' Packet Length Mean', ' Packet
Length Std', ' Packet Length Variance', ' Average Packet Size', '
Avg Fwd Segment Size', ' Subflow Fwd Bytes' 0.979301 0.996053 0.987606 0.999997 0.999982 0.999989

0.45

 Label', 'Total Length of Fwd Packets', ' Fwd Packet Length
Max', ' Fwd Packet Length Min', ' Fwd Packet Length Mean',
'Flow Bytes/s', ' Flow Packets/s', ' Flow IAT Mean', ' Flow IAT
Max', 'Fwd IAT Total', ' Fwd IAT Max', 'Fwd Packets/s', ' Min
Packet Length', ' Max Packet Length', ' Packet Length Mean', '
Average Packet Size', ' Avg Fwd Segment Size', ' Subflow Fwd
Bytes' 0.980595 0.997368 0.988911 0.999998 0.999983 0.999991

202

0.5

 Label', 'Total Length of Fwd Packets', ' Fwd Packet Length
Max', ' Fwd Packet Length Min', ' Fwd Packet Length Mean',
'Flow Bytes/s', ' Flow Packets/s', 'Fwd Packets/s', ' Min Packet
Length', ' Max Packet Length', ' Packet Length Mean', ' Average
Packet Size', ' Avg Fwd Segment Size', ' Subflow Fwd Bytes' 0.975484 0.994737 0.985016 0.999996 0.999979 0.999987

0.55

 Label', 'Total Length of Fwd Packets', ' Fwd Packet Length
Max', ' Fwd Packet Length Min', ' Fwd Packet Length Mean',
'Flow Bytes/s', ' Min Packet Length', ' Max Packet Length', '
Packet Length Mean', ' Average Packet Size', ' Avg Fwd
Segment Size', ' Subflow Fwd Bytes' 0.959596 1 0.979381 1 0.999964 0.999982

0.6

 Label', 'Total Length of Fwd Packets', ' Fwd Packet Length
Max', ' Fwd Packet Length Min', ' Fwd Packet Length Mean',
'Flow Bytes/s', ' Min Packet Length', ' Max Packet Length', '
Packet Length Mean', ' Average Packet Size', ' Avg Fwd
Segment Size', ' Subflow Fwd Bytes' 0.959596 1 0.979381 1 0.999964 0.999982

0.65

 Label', 'Total Length of Fwd Packets', ' Fwd Packet Length
Max', ' Fwd Packet Length Min', ' Fwd Packet Length Mean', '
Min Packet Length', ' Max Packet Length', ' Packet Length
Mean', ' Average Packet Size', ' Avg Fwd Segment Size', '
Subflow Fwd Bytes' 0.957179 1 0.978121 1 0.999962 0.999981

0.7

 Label', 'Total Length of Fwd Packets', ' Fwd Packet Length
Max', ' Fwd Packet Length Min', ' Fwd Packet Length Mean', '
Min Packet Length', ' Max Packet Length', ' Packet Length
Mean', ' Average Packet Size', ' Avg Fwd Segment Size', '
Subflow Fwd Bytes' 0.957179 1 0.978121 1 0.999962 0.999981

0.75
 Label', ' Fwd Packet Length Min', ' Min Packet Length', '
Average Packet Size' 0.953576 1 0.976236 1 0.999959 0.999979

Precision, F1 score and Recall for Correlation value of UDPLag attack Dataset
 udplag
corelation
value Features name Precision (0th)

Recall
(0th) F1 score(0th) Precision (1st)

Recall
(1st)

F1
score(1st)

0.1

Total Backward Packets 0.257960
Total Length of Bwd Packets 0.144216
Fwd Packet Length Std 0.267577
Bwd Packet Length Max 0.352576
Bwd Packet Length Min 0.262471
Bwd Packet Length Mean 0.350310
Bwd Packet Length Std 0.293907
Bwd IAT Total 0.261406
Bwd IAT Std 0.100520
Bwd IAT Max 0.181043
Fwd PSH Flags 0.337964
Bwd Header Length 0.297883
Max Packet Length 0.128425
Packet Length Std 0.317316
Packet Length Variance 0.256579
RST Flag Count 0.337964
ACK Flag Count 0.191164
URG Flag Count 0.512530
CWE Flag Count 0.357120
Down/Up Ratio 0.322534
Avg Bwd Segment Size 0.350310
Subflow Bwd Packets 0.257960
Subflow Bwd Bytes 0.144216
Init_Win_bytes_backward 0.311125
act_data_pkt_fwd 0.181445
Label 1.000000 0.988656 0.994732 0.991685 0.999945 0.999882 0.999914

0.15

Total Backward Packets 0.257960
Fwd Packet Length Std 0.267577
Bwd Packet Length Max 0.352576
Bwd Packet Length Min 0.262471
Bwd Packet Length Mean 0.350310
Bwd Packet Length Std 0.293907
Bwd IAT Total 0.261406
Bwd IAT Max 0.181043
Fwd PSH Flags 0.337964
Bwd Header Length 0.297883
Packet Length Std 0.317316
Packet Length Variance 0.256579
RST Flag Count 0.337964
ACK Flag Count 0.191164
URG Flag Count 0.512530
CWE Flag Count 0.357120
Down/Up Ratio 0.322534
Avg Bwd Segment Size 0.350310
Subflow Bwd Packets 0.257960
Init_Win_bytes_backward 0.311125
act_data_pkt_fwd 0.181445
 Label 1.000000 0.987794 0.994732 0.991251 0.999945 0.999873 0.999909

0.2

Total Backward Packets 0.257960
Fwd Packet Length Std 0.267577
 Bwd Packet Length Max 0.352576
 Bwd Packet Length Min 0.262471
 Bwd Packet Length Mean 0.350310
 Bwd Packet Length Std 0.293907
 Bwd IAT Total 0.261406
 Fwd PSH Flags 0.337964
Bwd Header Length 0.297883
Packet Length Std 0.317316
 Packet Length Variance 0.256579
 RST Flag Count 0.337964
 URG Flag Count 0.512530
 CWE Flag Count 0.357120 0.984238 0.986831 0.985533 0.999864 0.999836 0.99985

203

 Down/Up Ratio 0.322534
Avg Bwd Segment Size 0.350310
Subflow Bwd Packets 0.257960
Init_Win_bytes_backward 0.311125
 Label 1.000000

0.25

Total Backward Packets 0.257960
Fwd Packet Length Std 0.267577
 Bwd Packet Length Max 0.352576
 Bwd Packet Length Min 0.262471
 Bwd Packet Length Mean 0.350310
 Bwd Packet Length Std 0.293907
 Bwd IAT Total 0.261406
 Fwd PSH Flags 0.337964
Bwd Header Length 0.297883
Packet Length Std 0.317316
 Packet Length Variance 0.256579
 RST Flag Count 0.337964
 URG Flag Count 0.512530
 CWE Flag Count 0.357120
 Down/Up Ratio 0.322534
Avg Bwd Segment Size 0.350310
Subflow Bwd Packets 0.257960
Init_Win_bytes_backward 0.311125
 Label 1.000000 0.984238 0.986831 0.985533 0.999864 0.999836 0.99985

0.3

Bwd Packet Length Max 0.352576
Bwd Packet Length Mean 0.350310
Fwd PSH Flags 0.337964
Packet Length Std 0.317316
RST Flag Count 0.337964
 URG Flag Count 0.512530
 CWE Flag Count 0.357120
 Down/Up Ratio 0.322534
Avg Bwd Segment Size 0.350310
Init_Win_bytes_backward 0.311125
 Label 1.000000 0.971429 0.985075 0.978204 0.999845 0.9997 0.999773

0.35

Bwd Packet Length Max 0.352576
Bwd Packet Length Mean 0.350310
 URG Flag Count 0.512530
 CWE Flag Count 0.357120
 Avg Bwd Segment Size 0.350310
Label 1.000000 0.873439 0.920983 0.896581 0.999182 0.998619 0.9989

0.4
URG Flag Count 0.51253
Label 1.00000 0.741117 0.384548 0.506358 0.993661 0.99861 0.996129

0.45
URG Flag Count 0.51253
Label 1.00000 0.741117 0.384548 0.506358 0.993661 0.99861 0.996129

0.5
URG Flag Count 0.51253
Label 1.00000 0.741117 0.384548 0.506358 0.993661 0.99861 0.996129

Precision, F1 score and Recall for MI-score value of UDPLag attack Dataset

Mi
score
value Features name

 Precision
(0th)

Recall
(0th)

F1
score(0th)

 Precision
(1st)

Recall
(1st)

F1
score(1st)

0.0001

 Label', ' Flow Duration', ' Total Fwd Packets',
' Total Backward Packets', 'Total Length of Fwd Packets',
 ' Total Length of Bwd Packets', ' Fwd Packet Length Max',
 ' Fwd Packet Length Min', ' Fwd Packet Length Mean',
' Fwd Packet Length Std', 'Bwd Packet Length Max',
 ' Bwd Packet Length Min', ' Bwd Packet Length Mean',
' Bwd Packet Length Std', 'Flow Bytes/s',
 ' Flow Packets/s', ' Flow IAT Mean', ' Flow IAT Std',
 ' Flow IAT Max', ' Flow IAT Min', 'Fwd IAT Total',
 ' Fwd IAT Mean', ' Fwd IAT Std', ' Fwd IAT Max',
 ' Fwd IAT Min', 'Bwd IAT Total', ' Bwd IAT Mean',
 ' Bwd IAT Std', ' Bwd IAT Max', ' Bwd IAT Min',
 'Fwd PSH Flags', ' Bwd PSH Flags', ' Bwd URG Flags',
 ' Fwd Header Length', ' Bwd Header Length', 'Fwd Packets/s',
 ' Bwd Packets/s', ' Min Packet Length', ' Max Packet Length',
 ' Packet Length Mean', ' Packet Length Std',
 ' Packet Length Variance',
 'FIN Flag Count', ' SYN Flag Count', ' RST Flag Count',
' PSH Flag Count', ' ACK Flag Count', ' URG Flag Count',
' CWE Flag Count', ' Down/Up Ratio',
 ' Average Packet Size', ' Avg Fwd Segment Size',
' Avg Bwd Segment Size', ' Fwd Header Length.1'
, ' Fwd Avg Packets/Bulk', ' Bwd Avg Bytes/Bulk',
 'Subflow Fwd Packets', ' Subflow Fwd Bytes'
, ' Subflow Bwd Packets', ' Subflow Bwd Bytes',
 'Init_Win_bytes_forward', ' Init_Win_bytes_backward'
, ' act_data_pkt_fwd', ' min_seg_size_forward',
 'Active Mean', ' Active Std', ' Active Max', '
 Active Min', 'Idle Mean', ' Idle Std',
' Idle Max', ' Idle Min'] 0.995495 0.998193 0.996843 0.999982 0.999955 0.999968

0.05

 Label', ' Flow Duration', ' Total Fwd Packets',
' Total Backward Packets', 'Total Length of Fwd Packets',
 ' Total Length of Bwd Packets', ' Fwd Packet Length Max',
 ' Fwd Packet Length Min', ' Fwd Packet Length Mean',
 ' Fwd Packet Length Std', 'Bwd Packet Length Max',
 ' Bwd Packet Length Min', ' Bwd Packet Length Mean',
 ' Bwd Packet Length Std', 'Flow Bytes/s',
 ' Flow Packets/s', ' Flow IAT Mean', ' Flow IAT Std',
 ' Flow IAT Max', ' Flow IAT Min', 'Fwd IAT Total',
 ' Fwd IAT Mean', ' Fwd IAT Std', ' Fwd IAT Max',
 ' Fwd IAT Min', 'Bwd IAT Total', ' Bwd IAT Mean',
 ' Bwd IAT Std', ' Bwd IAT Max', ' Bwd IAT Min',
 ' Fwd Header Length', ' Bwd Header Length', 0.995495 0.998193 0.996843 0.999982 0.999955 0.999968

204

 'Fwd Packets/s', ' Bwd Packets/s',
 ' Min Packet Length', ' Max Packet Length',
 ' Packet Length Mean', ' Packet Length Std',
 ' Packet Length Variance', ' ACK Flag Count',
 ' URG Flag Count', ' CWE Flag Count'
, ' Down/Up Ratio', ' Average Packet Size',
 ' Avg Fwd Segment Size',
 ' Avg Bwd Segment Size',
' Fwd Header Length.1', 'Subflow Fwd Packets',
 ' Subflow Fwd Bytes', ' Subflow Bwd Packets',
 ' Subflow Bwd Bytes', 'Init_Win_bytes_forward',
 ' Init_Win_bytes_backward', ' act_data_pkt_fwd',
 ' min_seg_size_forward', 'Active Mean',
 ' Active Max', ' Active Min', 'Idle Mean',
 ' Idle Max', ' Idle Min']

0.1

 Label', ' Flow Duration',
 ' Total Fwd Packets', ' Total Backward Packets',
 'Total Length of Fwd Packets', ' Total Length of Bwd Packets',
 ' Fwd Packet Length Max', ' Fwd Packet Length Min',
 ' Fwd Packet Length Mean', ' Fwd Packet Length Std',
 'Bwd Packet Length Max', ' Bwd Packet Length Min',
 ' Bwd Packet Length Mean', 'Flow Bytes/s',
 ' Flow Packets/s', ' Flow IAT Mean', ' Flow IAT Std',
 ' Flow IAT Max', ' Flow IAT Min', 'Fwd IAT Total',
 ' Fwd IAT Mean', ' Fwd IAT Std', ' Fwd IAT Max',
 ' Fwd IAT Min', 'Bwd IAT Total', ' Bwd IAT Mean',
 ' Bwd IAT Max', ' Bwd IAT Min', ' Fwd Header Length',
 ' Bwd Header Length', 'Fwd Packets/s', ' Bwd Packets/s'
, ' Min Packet Length', ' Max Packet Length',
' Packet Length Mean', ' Packet Length Std',
 ' Packet Length Variance', ' ACK Flag Count',
 ' URG Flag Count', ' Down/Up Ratio',
 ' Average Packet Size', ' Avg Fwd Segment Size',
 ' Avg Bwd Segment Size', ' Fwd Header Length.1',
 'Subflow Fwd Packets', ' Subflow Fwd Bytes',
 ' Subflow Bwd Packets', ' Subflow Bwd Bytes',
 'Init_Win_bytes_forward', ' Init_Win_bytes_backward',
 ' act_data_pkt_fwd'] 0.995491 0.99729 0.99639 0.999973 0.999955 0.999964

0.15

 Label', ' Flow Duration', ' Total Fwd Packets', '
 Total Backward Packets', 'Total Length of Fwd Packets',
' Total Length of Bwd Packets', ' Fwd Packet Length Max',
 ' Fwd Packet Length Min', ' Fwd Packet Length Mean',
 'Bwd Packet Length Max', ' Bwd Packet Length Min',
 ' Bwd Packet Length Mean', 'Flow Bytes/s',
' Flow Packets/s', ' Flow IAT Mean', ' Flow IAT Std'
, ' Flow IAT Max', ' Flow IAT Min', 'Fwd IAT Total',
 ' Fwd IAT Mean', ' Fwd IAT Max', ' Fwd IAT Min',
 'Bwd IAT Total', ' Bwd IAT Mean', ' Bwd IAT Max',
 ' Bwd IAT Min', ' Fwd Header Length',
 ' Bwd Header Length', 'Fwd Packets/s',
 ' Bwd Packets/s', ' Min Packet Length',
 ' Max Packet Length', ' Packet Length Mean',
 ' Packet Length Std', ' Packet Length Variance',
 ' ACK Flag Count', ' Down/Up Ratio',
' Average Packet Size', ' Avg Fwd Segment Size'
, ' Avg Bwd Segment Size', ' Fwd Header Length.1',
 'Subflow Fwd Packets', ' Subflow Fwd Bytes',
 ' Subflow Bwd Packets', ' Subflow Bwd Bytes'
, 'Init_Win_bytes_forward',
 ' Init_Win_bytes_backward', ' act_data_pkt_fwd'] 0.994595 0.99729 0.99594 0.999973 0.999945 0.999959

0.2

 Label', ' Flow Duration', ' Total Fwd Packets',
' Total Backward Packets', 'Total Length of Fwd Packets',
' Total Length of Bwd Packets', ' Fwd Packet Length Max',
' Fwd Packet Length Min', ' Fwd Packet Length Mean',
 'Bwd Packet Length Max', ' Bwd Packet Length Mean',
 'Flow Bytes/s', ' Flow Packets/s', ' Flow IAT Mean',
 ' Flow IAT Std', ' Flow IAT Max', ' Flow IAT Min',
 'Fwd IAT Total', ' Fwd IAT Mean', ' Fwd IAT Max',
 ' Fwd IAT Min', 'Bwd IAT Total', ' Bwd IAT Mean',
 ' Bwd IAT Max', ' Bwd IAT Min', ' Fwd Header Length',
 ' Bwd Header Length', 'Fwd Packets/s', ' Bwd Packets/s',
 ' Min Packet Length', ' Max Packet Length',
 ' Packet Length Mean', ' Packet Length Std',
 ' Packet Length Variance', ' ACK Flag Count',
 ' Down/Up Ratio', ' Average Packet Size',
 ' Avg Fwd Segment Size', ' Avg Bwd Segment Size',
' Fwd Header Length.1', 'Subflow Fwd Packets',
 ' Subflow Fwd Bytes', ' Subflow Bwd Packets',
 ' Subflow Bwd Bytes', 'Init_Win_bytes_forward'] 0.995479 0.99458 0.995029 0.999945 0.999955 0.99995

0.25

 Label', ' Flow Duration', ' Total Fwd Packets',
' Total Backward Packets', 'Total Length of Fwd Packets',
' Total Length of Bwd Packets', ' Fwd Packet Length Max',
' Fwd Packet Length Min', ' Fwd Packet Length Mean',
 'Bwd Packet Length Max', ' Bwd Packet Length Mean',
 'Flow Bytes/s', ' Flow Packets/s', ' Flow IAT Mean',
 ' Flow IAT Std', ' Flow IAT Max', ' Flow IAT Min',
 'Fwd IAT Total', ' Fwd IAT Mean', ' Fwd IAT Max',
 ' Fwd IAT Min', 'Bwd IAT Total', ' Bwd IAT Mean',
 ' Bwd IAT Max', ' Bwd IAT Min', ' Fwd Header Length',
 ' Bwd Header Length', 'Fwd Packets/s', ' Bwd Packets/s',
 ' Min Packet Length', ' Max Packet Length',
 ' Packet Length Mean', ' Packet Length Std',
 ' Packet Length Variance', ' ACK Flag Count',
 ' Down/Up Ratio', ' Average Packet Size',
 ' Avg Fwd Segment Size', ' Avg Bwd Segment Size',
' Fwd Header Length.1', 'Subflow Fwd Packets',
 ' Subflow Fwd Bytes', ' Subflow Bwd Packets',
 ' Subflow Bwd Bytes', 'Init_Win_bytes_forward'] 0.995479 0.99458 0.995029 0.999945 0.999955 0.99995

205

0.3

 Label',
' Flow Duration',
' Total Backward Packets',
'Total Length of Fwd Packets',
' Fwd Packet Length Max',
 ' Fwd Packet Length Mean',
'Flow Bytes/s',
' Flow Packets/s'
' Flow IAT Mean',
' Flow IAT Std',
' Flow IAT Max',
' Flow IAT Min',
'Fwd IAT Total',
' Fwd IAT Mean',
' Fwd IAT Max',
' Fwd IAT Min',
'Bwd IAT Total',
' Bwd IAT Mean',
' Bwd IAT Max',
' Bwd IAT Min',
' Fwd Header Length',
' Bwd Header Length',
'Fwd Packets/s',
' Bwd Packets/s',
' Max Packet Length',
' Packet Length Mean',
' Packet Length Std',
' Packet Length Variance',
' Average Packet Size',
' Avg Fwd Segment Size',
' Fwd Header Length.1',
' Subflow Fwd Bytes',
' Subflow Bwd Packets',
'Init_Win_bytes_forward', 0.99458 0.99458 0.99458 0.999945 0.999945 0.999945

0.35

 Label', ' Flow Duration', 'Total Length of Fwd Packets',
' Fwd Packet Length Max', ' Fwd Packet Length Mean',
 ' Flow Packets/s', ' Flow IAT Mean',
 ' Flow IAT Std', ' Flow IAT Max', ' Flow IAT Min',
 'Fwd IAT Total', ' Fwd IAT Mean', ' Fwd IAT Max',
 'Bwd IAT Total', ' Bwd IAT Mean', ' Bwd IAT Max',
 ' Bwd IAT Min', 'Fwd Packets/s', ' Bwd Packets/s',
' Max Packet Length', ' Packet Length Mean',
 ' Average Packet Size', ' Avg Fwd Segment Size',
 'Init_Win_bytes_forward'] 0.983842 0.990063 0.986943 0.9999 0.999836 0.999868

0.4

 Label', ' Flow Duration', ' Flow Packets/s',
' Flow IAT Mean', ' Flow IAT Std', ' Flow IAT Max',
 'Fwd IAT Total', ' Fwd IAT Mean', ' Fwd IAT Max',
'Bwd IAT Total', ' Bwd IAT Mean', ' Bwd IAT Max',
 'Fwd Packets/s', ' Bwd Packets/s',
 'Init_Win_bytes_forward'] 0.976043 0.993677 0.984781 0.999936 0.999755 0.999846

0.45

 Label', ' Flow Duration',
' Flow Packets/s', ' Flow IAT Mean',
' Flow IAT Std', ' Flow IAT Max',
 'Fwd Packets/s', ' Bwd Packets/s',
 'Init_Win_bytes_forward'] 0.97695 0.995483 0.98613 0.999955 0.999764 0.999859

0.5

 Label', ' Flow Duration', '
 Flow Packets/s', ' Flow IAT Mean',
 ' Flow IAT Max', 'Fwd Packets/s',
 'Init_Win_bytes_forward'] 0.967515 0.995483 0.9813 0.999955 0.999664 0.999809

206

List of Publications and Working Papers

Papers Published

 Saharan, S., and Gupta, V., (2019). Prevention and Mitigation of DNS based DDoS

attacks in SDN Environment. In 2019 11th International Conference on

Communication Systems & Networks (COMSNETS), Bengaluru, India, pp. 571-573,

doi: 10.1109/COMSNETS.2019.8711258. [Core National]

 Gupta, V., Kochar, A., Saharan, S., and Kulshrestha, R. (2019). DNS Amplification

Based DDoS Attacks in SDN Environment: Detection and Mitigation. In 2019 IEEE

4th International Conference on Computer and Communication Systems (ICCCS),

Singapore, pp. 473-478, doi: 10.1109/CCOMS.2019.8821716.

 Saharan, S., Gupta, V. (2021). DDoS Prevention: Review and Issues. In: Patnaik, S.,

Yang, XS., Sethi, I. (eds) Advances in Machine Learning and Computational

Intelligence. Algorithms for Intelligent Systems. Springer, Singapore.

https://doi.org/10.1007/978-981-15-5243-4_53

 Saharan, S., Gupta, V. (2022). Prevention of DrDoS Amplification Attacks by

Penalizing the Attackers in SDN Environment. In: Barolli, L., Hussain, F., Enokido, T.

(eds) Advanced Information Networking and Applications. AINA 2022. Lecture Notes

in Networks and Systems, vol 450. Springer, Cham. https://doi.org/10.1007/978-3-030-

99587-4_58 [Core B]

 Gupta, V., Saharan, S., Parida, S. (2022). Prevention of DDoS Attacks with Reliable-

Dynamic Path Identifiers. In: Barolli, L., Hussain, F., Enokido, T. (eds) Advanced

Information Networking and Applications. AINA 2022. Lecture Notes in Networks and

207

Systems, vol 449. Springer, Cham. https://doi.org/10.1007/978-3-030-99584-3_39

[Core B]

 Saharan, S., Gupta, V., Vora, N., Maheshwari, M. (2022). Detection of Distributed

Denial of Service Attacks Using Entropy on Sliding Window with Dynamic Threshold.

In: Barolli, L., Hussain, F., Enokido, T. (eds) Advanced Information Networking and

Applications. AINA 2022. Lecture Notes in Networks and Systems, vol 449. Springer,

Cham. https://doi.org/10.1007/978-3-030-99584-3_37 [Core B]

 Gupta, V., Saharan, S., and Raje S. (2023). SymSDN: A DRDoS Attack Prevention

Approach. In 2023 IEEE Wireless Communications and Networking Conference

(WCNC), Glasgow, United Kingdom, pp. 1-6,

doi: 10.1109/WCNC55385.2023.10119119. [Core B]

Under-review/Working Papers

 Saharan, S., Gupta, “Prevention of DDoS attacks: A comprehensive review and future

directions”, Information Security Journal: A Global Perspective, Taylor and Francis,

doi: 10.1080/19393555.2024.2347243 (Accepted)

 Saharan, S., Gupta, V., Sharma, H., Chaitanya, A.S.K., (2023). Optimizing Feature

Selection for Near-Real Time Detection and Mitigation of DDoS Attacks in Software-

Defined Networking Environment [under review]

208

Brief Biography of Supervisor

Vishal Gupta is working as an Associate Professor in the Department of Computer Science and

Information Systems of Birla Institute of Technology and Science, Pilani, India (BITS Pilani).

He did his Ph.D. from BITS Pilani in the year 2014. Since then, primarily, he has been working

in the area related to different aspects of Computer Networks. This includes Network Security

(specifically concerning DDoS attacks), Software Defined Networking, and Wireless

Networks (specifically IEEE 802.11). Other than Computer Networks, his research interests

include 3G-WLAN Interworking, Multi-Criteria Decision Making, Ranking algorithms, Link

Structure of the Web, and Search Engine ranking techniques.

209

Brief Biography of Candidate

Shail Saharan is currently pursuing her Ph.D. in Computer Science from the Birla Institute of

Technology and Science, Pilani, India. Her Ph.D. is in preventing DDoS attacks, and her

research area includes Network Security, Software Defined Networking, and DDoS attacks.

She has published research papers in core ranking national and international conferences during

her Ph.D. She also acted as a teaching assistant for subjects such as Computer programming,

Theory of computation, Object Oriented Programming, Network Security. She completed her

Master's in 2016 from IGDTUW, Delhi, and her Bachelors’ from MEC in 2014.

