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ABSTRACT

A large number of recent observations have indicated that the expansion
of the Universe is accelerating. The underlying cause of this acceleration is,
however, largely unknown. A dark energy component with an equation of
state (EoS) P/ρ = w < −1/3 remains the classic explanation for cosmic accel-
eration. Given the diversity of theoretical models with the same general phe-
nomenological implications, it becomes crucial for observations to constrain
the parameter space for dark energy models. In our study, we explore the
landscape of dark energy models by considering the following approaches (i)
model-independent EoS parametrizations, (ii) dark energy as modification of
gravity in a f(R) theory, and (iii) specific Quintessence models. Since dark
energy affects the late time evolution, we have focused our attention to the
post-reionization (z ≤ 6) probes of cosmology. We consider three probes that
imprint the background expansion history and growth of perturbations. We
firstly consider weak lensing of background sources by intervening large-scale
structure. Here, the quantity of interest is the power spectrum of the distortion
field which imprints dark energy through the cosmology dependent geomet-
ric quantities and the growth rate of density fluctuations. We also use two
probes of the post-reionization neutral hydrogen distribution, namely (i) 21-
cm intensity mapping, and (ii) Ly-α forest. These probes act as tracers of the
dark matter and provide 3D and 1D tomographic images of the underlying
large-scale structure, respectively over a wide range of redshifts. The statisti-
cal properties of the weak lensing convergence field, the 21-cm signal and the
Ly-α are quantified through their auto and cross power spectra. We have used
existing observational parameters for weak lensing experiments, Ly-α forest
observational data and considered futuristic observations of the 21-cm signal
using presently functioning and upcoming radio telescopes. We have used a
Fisher-Cramer-Rao, Monte-Carlo analysis to show what dark energy models
can be differentiated from the ΛCDM model with a high SNR. We have further
obtained observational bounds and error projections of model parameters. We
find that upcoming radio observations shall provide tight bounds on dark en-
ergy models and help us understand the nature of dark energy by restricting
the parameter space.
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CHAPTER 1
Introduction

Since ancient times, there has been a relentless human quest toward under-

standing the evolution and large-scale structure of the Universe. The ques-

tion about our place in the cosmos has never ceased to amaze us. With the

significant advances in observational astronomy, we now have an immense

amount of data probing the Universe on cosmological scales. Future obser-

vational milestones, especially in radio astronomy and gravitational wave as-

tronomy, will open new avenues and enrich us with even more information

about the Universe. However, we still have a profound lack of theoretical un-

derstanding about the Universe, its evolution, composition and structure. Pre-

cision cosmology has confronted us with a situation where only ∼ 5% of the

matter/energy budget of the Universe can be understood within the paradigm

of the standard model of particle physics. The remaining composition of the

Universe is largely problematic from both theoretical and observational per-

spective. This unknown sector of the Universe’s energy budget is attributed to

dark matter and dark energy. This thesis is concerned with the latter.

Observations of Type Ia supernovae have revealed that the Universe’s ex-

pansion is accelerating, countering the expectation that gravitational attrac-

tion would slow it down. This discovery provides direct evidence for the ex-

istence of dark energy [9–11]. Additionally, the distribution of galaxies and

other structures in the Universe provide evidence for accelerated expansion

[12–14]. Precise measurements of the anisotropies in the Cosmic Microwave

Background (CMB) have also indicated that the expansion of the Universe is

accelerating [15–18]. This counter-intuitive phenomenon can be explained by

positing a dark energy component, with an equation of state P/ρ = w < −1/3.

The cosmological constant has emerged as a strong candidate for dark energy,

as various observations [19] constrain w to be close to −1.

The ΛCDM model [20, 21] is defined by the following simple assumptions:

3
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• The Cosmological Principle: Our Universe is homogeneous and isotropic

on large scales (> 100 Mpc)

• The Universe consists of radiation (photons, neutrinos), ordinary matter

(baryons and leptons), cold (non-relativistic) dark matter (CDM) and a

cosmological constant which can be thought of as a homogeneous form

of energy whose density remains constant even in an expanding Uni-

verse and is associated with vacuum energy [19]. The cosmological con-

stant is responsible for the accelerated expansion.

• General Relativity (GR) is the correct theory for gravity on cosmological

scales.

• The spacetime metric is the Friedmann-Lemaitre-Robertson-Walker (FLRW)

metric where the spatial part is flat and scaled by a(t).

ds2 = dt2 − a(t)2(dr2 + r2dθ2 + r2 sin2 θdφ2) (1.1)

This follows from the cosmological principle, which implies that spatial

hypersurfaces must be surfaces of constant curvature.

• The dynamics of the Universe can be derived from Einstein’s field equa-

tion for this metric, which yields the Friedmann equations given by, [22]

(
ȧ

a

)2

= H2(t) = H2
0

∑
i=r,m,Λ

Ωi0a(t)−3(1+wi)

ä

a
= −4πG

3

∑
i

(ρi + 3Pi)

(1.2)

where the density ρi and pressure Pi of the ith component are related as

Pi = wiρi. The density parameters Ωio = ρi0/ρcr where ρcr = 3H2
0/8πG

sum up to unity assuming spatially flat Universe. The cosmological con-

stant Λ corresponds to wΛ = −1.

• A period of rapid accelerated expansion known as inflation is assumed

to address the horizon and flatness problems [23, 24]. Gaussian quantum

fluctuations from this inflation epoch seeded structure formation.
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While it is simple and has reasonable agreement with observations, the cos-

mological model with Λ remains elusive both theoretically and observationally

[20, 25–29]. The cosmological standard model ΛCDM is thus currently under

severe scrutiny (see [30, 31]).

The main theoretical difficulty with the ΛCDM model is the fine-tuning

issue arising from the large discrepancy between observations and theoretical

expectations on the value of the cosmological constant Λ (at least 60 orders of

magnitude) [29, 32, 33]. Further, there is the coincidence problem [34, 35]. This

concerns the fact that the present values of the densities of dark energy and

dark matter are of the same order of magnitude, ρDE/ρm ∼ O(1) despite the

two components having dramatically different evolution properties implying

that the present epoch is somewhat a special period in the cosmic history

In addition to the above theoretical challenges, there are cosmological ob-

servational data that appear to be in some tension (2σ or larger) with the stan-

dard ΛCDM model as specified by the Planck-18 parameter values [17, 36].

The main observational anomaly comes from the "Hubble tension (> 4σ)". H0

measured from local observations using the distance ladder approach is sig-

nificantly higher than the best fit H0 measured from CMB anisotropies. The

combined local measurements of H0 are in > 5σ tension with implicit CMB

measurements of H0 [37–39]. Further, measurements of the growth rate of cos-

mological perturbations (using probes like weak lensing, redshift space distor-

tions, and galaxy cluster counts) predict a slower growth rate than that esti-

mated using a ΛCDM fiducial cosmological parameter estimation with Planck

data at a level of about 2 − 3σ [40, 41]. The ΛCDM model also faces several

anomalies in the analysis of CMBR temperature anisotropy power spectra [42].

There are also several discrepancies between the galaxy and Lyman-α BAO at

an effective redshift of z ≈ 2.34 [43, 44]. There are several other tensions, like

the ”Age of the Universe” problem [45], lithium problem [46], or the anoma-

lous low baryon temperature [47].

Alternative cosmological models which go beyond the ΛCDM paradigm

include

• Scalar-Tensor theories, where Newton’s constant is made dynamical through

its dependence on a scalar field Φ as G→ G(Φ(r, t)) where the dynamics
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of the field its governed by its action [48–51].

• A dynamical cosmological constant through the introduction of a scalar

field (quintessence) [52–55].

• Allowing for a time-evolving Fine Structure Constant (Maxwell Dilaton

theories) with α→ α(Φ(r, t)) [56–58].

• Modification of the Einstein-Hilbert action by adding terms with may be

functions of the Ricci scalar R, the torsion scalar T and/or other invari-

ants. These theories are called f(R), f(T ) theories [59–64].

• Negative cosmological constant models use a scalar field along with a

negative cosmological constant for greater freedom on the parameter

space and attempts to address some issues like the Hubble tension prob-

lem [8, 65, 66].

This thesis aims to investigate alternatives to the ΛCDM cosmology. The

question is whether a given observational probe can discern such an alterna-

tive theory from the ΛCDM model. There are two problems at hand. Firstly,

one has to ascertain that the observational error bars are small enough for an

alternative theory such that the signal may be distinguishable statistically from

the fiducial ΛCDM predictions with a high SNR. The second problem involves

the actual precision error projections on the model parameters for different

instruments and observational parameters. Since dark energy affects low red-

shifts, we are interested in the low redshift probes of cosmology.

Dark energy and dark matter can not be directly observed. However, dark

energy affects the background evolution and growth of structures. The aim

is to measure the clustering properties of the dark matter field, which shall

imprint dark energy models. One can either probe dark matter through its

gravitational properties (lensing) or probe baryonic matter (neutral hydrogen)

as a biased tracer of the dark matter density field. This thesis focuses on three

cosmological probes as tools to test dark energy models. Each of these probes

can be used to image the low-redshift Universe tomographically. However,

while one gives a line of sight integral (weak lensing), the other two probes
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(21-cm and Ly-α) are biased tracers and sample the underlying dark matter

field.

1. Weak Lensing :

Weak gravitational lensing causes subtle shape distortions in the images

of distant galaxies or CMBR maps due to intervening gravitational in-

fluences of the large scale structure [67, 68]. In particular, it can be used

to measure the growth of large-scale structures in the Universe, which is

sensitive to the properties of dark energy [69–77]. The statistical prop-

erties of the distortion field are sensitive to background evolution, are

the growth of perturbations, and are thereby a probe of dark energy. We

look at weak lensing in cross-correlation with two probes of the neutral

intergalactic medium.

2. The 21-cm intensity mapping of the post-reionization epoch:

The post-reionization 21cm signal from neutral hydrogen (HI) in the in-

tergalactic medium (IGM) has emerged as a promising tool to probe the

nature of dark energy [78–80]. The advancement of large radio telescopes

and advanced data analysis methods promises more precise 21cm signal

measurements and hopes to shed greater light on the nature of dark en-

ergy [81–89]. The post-reionization HI 21-cm signal is yet to be detected.

However, several presently functioning and future telescopes aim to map

the HI distribution tomographically using the 21-cm signal. It is well ac-

cepted that the HI can be treated as a biased tracer of the cold dark matter

field in the post-reionization epoch [90–93]. We use this to investigate the

possibility of cross-correlating the 21-cm maps with other probes. The

predicted cross-correlation signal is then used to constrain various dark

energy models.

3. The Lyman-α forest:

Neutral hydrogen (HI) in the pre-dominantly ionized post-reionization

intergalactic medium (IGM) produces unique absorption features in the

spectra of background Quasars [94]. The Lyman-α forest is a powerful

cosmological probe that maps the density fluctuation field along one-

dimensional skewers corresponding to QSO sight lines. On suitable large
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cosmological scales, the Lyman-α forest is a biased tracer of the under-

lying dark matter (DM) distribution [95–99]. It’s clustering property is

directly related to the dark matter power spectrum and the cosmological

parameters. Like the HI 21-cm signal, Lyman-α forest observations can

be used as a probe of dark energy [100, 101].

1.1 Outline of the Thesis

With this brief introduction, we now present the thesis outline. The work in

this thesis aims to constrain dark energy models using the post-reionization

probes of IGM. Forecasts on dark energy model parameters are made by con-

sidering a host of probes of the post-reionization IGM. The outline of this thesis

is as follows:

• In chapter 2, we present the current theoretical understanding of the ob-

served cosmic acceleration. We discuss the most widely accepted model

with a positive ‘Cosmological Constant (Λ)’. Later, we discuss the cos-

mologically viable alternative theories to explain the late-time cosmic ac-

celeration without invoking a Λ. We mainly focus on f(R) gravity theo-

ries, Quintessence dark energy, and the model-independent approach to

construct the dark energy Equation of State.

• In chapter 3, we discuss the observational probes of the post-reionizaton

intergalactic medium (IGM). We mainly focus on “Weak Gravitational

Lensing”, “21cm Intensity Mapping” and “Lyman-α forest” as the most

promising observational tools for probing cosmological models using

data from existing and forthcoming experiments.

• In chapter 4, we investigate the prospects of detecting the cross-correlation

of CMBR weak-lensing convergence field with the large scale tracers of

the underlying dark matter distribution in the post-reionization epoch.

The cross-correlation is then used to make error projections for the dark

energy equation of state (EoS) for models with a time-evolving dark en-

ergy. The cross-correlation of CMBR weak-lensing with the post-reionization

probes of neutral hydrogen can give us a valuable understanding of the
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nature of evolving dark energy. We study the cross-correlation angular

power spectrum of the weak-lensing field with the Lyman-α forest and

the redshifted HI 21 cm signal from the post-reionization epoch. The

angular power spectra are expressed as a line of sight average over the

tomographic slices. We find that on using multiple observations with

an extended uGMRT like instrument or with a BOSS-like survey quasar

(QSO) survey, the cross-correlation with weak-lensing convergence field

can be detected at a very high SNR. The cross-correlation of weak-lensing

with Lyman-α forest allows the 1 − σ errors on the dark energy EoS pa-

rameters for different parametrizations to be constrained at a level of

precision comparable to combined Planck+SNIa+BAO+HST projections.

The 21-cm weak-lensing cross-correlation is also found to provide strong

constraints on the present value of the dark energy EoS parameters for

the 7CPL model.

• In chapter 5, we propose the intensity mapping of the redshifted HI21-cm

signal from the post-reionization epoch as a cosmological probe of f(R)

gravity. We consider the Hu-Sawicki family of f(R) gravity models char-

acterized by a single parameter f,R0. The f(R) modification to gravity

affects the post-reionization 21-cm power spectrum through the change

in the growth rate of density fluctuations. We find that a radio interfer-

ometric observation with a SKA1-Mid-like radio telescope in both auto-

correlation and cross-correlation with galaxy weak-lensing and Lyman-α

forest may distinguish f(R) models from ΛCDM cosmology at a preci-

sion which is competitive with other probes of f(R) gravity.

• In chapter 6, we investigate the possibility of constraining a thawing

Quintessence scalar field model for dark energy. We propose using the

imprint of baryon acoustic oscillation (BAO) on the cross-correlation of

post-reionization 21-cm signal and galaxy weak lensing convergence field

to tomographically measure the angular diameter distanceDA(z) and the

Hubble parameter H(z). The projected errors in these quantities are then

used to constrain the Quintessence model parameters. We find that ra-

dio interferometric observation at four observing frequencies 916MHz,

650 MHz, 520MHz and 430MHz with a SKA-1-Mid like radio telescope
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in cross-correlation with a deep weak lensing survey covering half the

sky may measure the binned DA and H at a few percent level of sensi-

tivity. The Monte Carlo analysis for a power law thawing Quintessence

model gives the 1− σ marginalized bounds on the dark energy parame-

ters. The constraints improve significantly when a joint analysis with SN

and other probes is performed.

• In chapter 7 we investigate a cosmological model involving a negative

cosmological constant (AdS vacua in the dark energy sector). We con-

sider a quintessence field on top of a negative cosmological constant and

study its impact on cosmological evolution and structure formation. We

use the power spectrum of the redshifted HI 21 cm brightness tempera-

ture maps from the post-reionization epoch as a cosmological probe. The

signature of baryon acoustic oscillations (BAO) on the multipoles of the

power spectrum is used to extract measurements ofDA(z) andH(z). The

projected errors on these are then subsequently employed to forecast the

constraints on the model parameters (H0,Ωm,ΩΛ, w0, wa) using Markov

Chain Monte Carlo techniques. We find that a negative cosmological con-

stant with a phantom dark energy equation of state (EoS) and a higher

value ofH0 is viable from BAO distance measurements data derived from

galaxy samples. We also find that BAO imprints on the 21cm power spec-

trum obtained from a futuristic SKA-mid like experiment yield a 1 − σ

error on a negative cosmological constant and the quintessence dark en-

ergy EoS parameters which is competitive with other probes. Further, we

use a new quantifier to probe dark energy using the Alcock-Paczynski

anisotropy of the redshift space power spectrum.

• Finally, chapter 8 summarizes the thesis and discusses future scopes.

Apart from these main chapters, there are three appendices on the topics

related to modified gravity field equations, weak lensing, and 21cm power

spectrum, and noise estimation.



CHAPTER 2
Cosmic acceleration and dark energy

In this chapter, we delve into the expansive realm of dark energy models, aim-

ing to provide an overview of some of the frameworks and their respective

merits and shortcomings. Despite the considerable strides cosmologists have

made in unraveling the mysteries of the Universe, a notable degree of uncer-

tainty still shrouds the established cosmological paradigm. In the last chapter,

we mentioned that many independent observations have indicated that the

expansion of the Universe is accelerating. The most direct evidence comes

from the High redshift Supernova search team [102] and the Supernova cos-

mology project [103]. Precise cosmological measurements from diverse probes

point to the fact that the Universe contains approximately ∼ 70% of the en-

ergy density in the form of dark energy and the remaining ∼ 30% in the form

of non-relativistic matter (both baryonic matter and dark matter). Baryonic

matter constitutes only ∼ 5% of the total matter budget of the Universe. The

bulk of the matter in the Universe is non-baryonic and manifests only through

their gravitational interaction. This matter is known as dark matter. Although

the physics of baryons can be understood using the standard model of particle

physics, the dark matter and dark energy sector still needs to be understood.

2.1 The cosmological constant Λ

Among the pantheon of dark energy models, the cosmological constant (Λ)

emerges as the simplest and most distinctive. It stands as a form of dark energy

characterized by its spatial and temporal unchanging nature, constituting the

simplest and most direct explanation for the observed accelerated expansion

of the cosmos. This concept was originally introduced by Albert Einstein him-

self within the framework of his gravitational theory [104]. In the subsequent

11
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sections of this thesis, we shall consider modifications to Einstein’s theory of

gravity, which is described by the Lagrangian L =
√
−gR. The Einstein’s field

equations are obtained by a variation of the following action with respect to

the metric gab we obtain the Einstein’s field equation:

Gab = Rab −
1

2
gabR =

8πG

c4
Tab (2.1)

In an attempt to ensure that the cosmological solutions to these equations pro-

duce a static Universe, Einstein introduced a constant term Λ. This maneuver

not only adhered to the principles of General Relativity (GR) but also harmo-

nized with the constraints imposed by the Bianchi identity (i.e. ∇bT
ab = 0).

The new field equations, reflective of Einstein’s inclusion of the cosmological

constant Λ, can be expressed as follows:

Gab =
8πG

c4
Tab + Λgab (2.2)

Einstein’s original aspiration rested on the notion that conventional matter

was the sole agent responsible for curving the fabric of spacetime, a postu-

late closely linked with Mach’s principle. This vision, however, encountered

a swift setback when de Sitter formulated a solution to Einstein’s equations

involving a cosmological constant devoid of any matter content. Notably, the

introduced cosmological constant Λ exhibited the behavior of a counteracting

force against gravity, unsettling the assumption about the Universe’s static na-

ture. This revelation eventually led to the breaking down the concept of a static

universe that Einstein had initially envisioned. In 1922, Friedmann proposed

an alternative cosmological model dispensing with the staticity assumption. In

this novel paradigm, he posited that the Universe demonstrated Homogene-

ity, Isotropy, and a propensity for expansion. Despite its conceptual innova-

tion, this model faced early resistance due to the prevalent belief in a static

universe, which was rooted in observational evidence. In 1927, the Belgian

physicist Georges Lemaitre also derived dynamical equations for the radius

of the Universe from the field equations involving Λ. Lemaitre was aware of

the observations of the recession of the spiral nebulae and the emerging evi-

dence that the nebulae belonged to galaxies other than our own. Lemaitre’s
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work harmonized these observations with general relativity, as the data sug-

gested that the Universe was expanding. However, the tide turned in 1929,

when Hubble’s groundbreaking discovery of galaxies receding from one an-

other provided compelling support for an expanding universe. This transfor-

mative revelation led to a reevaluation of the cosmological constant Λ’s role.

Thus, the concept of a static universe was ultimately abandoned, and the pur-

suit of a dynamically evolving cosmos gained ascendancy. This shift in per-

spective marked a critical juncture in the understanding of the Universe’s be-

havior, highlighting the indispensable role of the cosmological constant Λ in

shaping the course of cosmological theory. Einstein’s "greatest blunder" even-

tually became the most straightforward explanation for the accelerated expan-

sion discovered observationally much later. For a homogeneous and isotropic

expanding Universe, the spacetime metric (FLRW metric), has a constant spa-

tial curvature and is characterized by the curvature ( hyperbolic, spherical, or

flat) and the time-dependent scale factor a(t). The (00) and (aa) components of

Einstein’s equations give us the Friedmann equations

H2(t)

H2
0

=
∑

i=r,m,Λ

Ωia(t)−3(1+wi) (2.3)

ä

a
= −4πG

3

∑
i=r,m,Λ

(ρi + 3Pi) (2.4)

where we assume a multi-component Universe with each component behav-

ing like a perfect fluid with a ith component having the energy-momentum

tensor T (i)a
b = dig(−ρi, Pi, Pi, Pi) Following the conventional notation, we em-

ploy the symbol Ωi = ρi(0)/ρc with ρc = 3H2
0/8πG to denote various energy

density parameters. The energy conservation∇aT
a
0 = 0 gives,

d(ρia
3) = −Pid(a3) (2.5)

If the pressure density relationship is written as Pi = wi(a)ρi(a) where the

equation of state (EoS) parameter wi(a) can be a function of time, the formal
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solution is given by

ρi(a) ∝ exp

(
−3

∫ a

1

da′

a′
[1 + wi(a

′)]

)
(2.6)

Absorbing the cosmological constant in the energy-momentum tensor one

can envisage a dark energy fluid with the energy momentum tensor given by

T a(Λ)b = − Λ
8πG

δab = dig(−ρΛ,−ρΛ,−ρΛ,−ρΛ), where ρΛ ≡ Λ
8πG

is the effective en-

ergy density of the cosmological constant. The cosmological constant has an

equation PΛ = −ρΛ, satisfying the EoS parameter exactly w = −1. We know

that any component of the Universe with w < −1/3 will drive an acceleration.

Thus Λ, which corresponds to a negative pressure, can cause an acceleration.

Nonetheless, it’s worth acknowledging that Λ is not the sole contender to elu-

cidate the observed accelerated expansion of the Universe. Before exploring

potential substitutes for Λ (or dark energy), let’s examine several pieces of ob-

servational evidence supporting its existence.

Observational evidence of Dark Energy (or Λ)

Cosmic Microwave Background [17, 18, 105, 106]:

The Hot Big Bang theory entails that in the very early Universe, matter and

radiation were coupled to behave like a single fluid in thermal equilibrium, in-

teracting through Thomson scattering. As the expansion rate cooled down the

temperature, at around z ≈ 1100 (known as the epoch of recombination), pro-

ton and electron formed a bound state of the hydrogen atom, and the Universe

became transparent to photons, which started to free stream[22]. However,

they will keep a memory of their thermal equilibrium and exhibit a black body

spectrum. This spectrum of the photons free streaming from the epoch of re-

combination (CMBR) peaks in the microwave region of the spectrum at the

present epoch [22].

Though the CMBR is remarkably homogeneous in temperature and follows

a Planck distribution at temperature T0 = 2.724 ± 0.004K [107, 108] there are

fluctuations at a level of 10−5 [109]. These fluctuations are primarily rooted in

tiny density fluctuations that form the seeds of structure formation. In the

era preceding recombination, the interplay between photon-baryon plasma
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Figure 2.1: The solid black line corresponds to the standard model of cosmol-
ogy, and the distance modulus from the Union2.1 supernovae survey provides
excellent agreement with ΛCDM model.

and the gravitational potential exerted by dark matter governs the evolution

of the Universe. This interplay engenders a distinctive phenomenon known

as acoustic oscillations. The competing forces of photon-baryon pressure and

gravity give rise to these oscillations, which imprint a characteristic scale onto

the cosmic microwave background (CMB) radiation. The presence of these

acoustic oscillations introduces a specific scale (sound horizon at the decou-

pling era) on the CMBR temperature anisotropies. The angular measurement

of this scale serves as a standard ruler for probing the angular diameter dis-

tance, thereby offering insights into the geometry of the universe [105]. The

measured statistical properties of the CMBR anisotropies, when used for cos-

mological parameter estimation strongly supports a ΛCDM Universe [36].

Supernovae Surveys [9–11, 110–113]: By far the most direct probes of dark

energy come from the analysis of distance measurement from observation of

Supernovae explosions. Supernovae type Ia (SNIa) are thermonuclear explo-

sions of white dwarfs in binary systems with red giants [114]. Supernovae

spectra without any hydrogen are called type I. This class is subdivided into

types Ia and Ib, depending on the presence or absence of a silicon absorption

feature. Supernovae Ia show remarkable uniformity, and their spectra and

“light curves” are perfectly matched. Thus, these supernovae serve as "stan-

dard candles," enabling astronomers to employ them as reliable tools for esti-
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mating cosmic distances [115, 116]. Observations of distant SNIa can be used

to measure the luminosity distance as a function of redshift and thus probe the

evolutionary history of the universe [117]. The SNIa observations essentially

constrain the contents of the Universe by pinning down the combination [118],

q0 ≡ −
1

aH2

d2a

dt2

∣∣∣∣
t0

=
1

2

∑
i

Ωi0 (1 + 3wi0) (2.7)

For a -ve value of q0 corresponds to accelerated expansion and SNIa observa-

tions suggest q0 ≈ −0.6± 0.2 [119].

Baryon Acoustic Oscillations [1, 120–125]:

Density perturbations in the cosmological fluid drive acoustic waves in

the primordial baryon-photon plasma. These waves are frozen once recom-

bination occurs at z ∼ 1000, leaving a distinct oscillatory signature on the

CMBR anisotropy power spectrum. Baryons contribute to 15% of the total

matter density. Thus baryon acoustic oscillations are also imprinted in the

low redshift clustering of non-relativistic matter. However, the oscillatory ef-

fect is suppressed by a factor ∼ Ωb/Ωm ∼ 0.1 compared to the effect in CMBR

anisotropies. The baryon acoustic oscillation (BAO) is a powerful probe of cos-

mological parameters [3, 126–129]. A characteristic scale corresponding to the

sound horizon at recombination sets a standard ruler. This scale will imprint

in the clustering of galaxies and will appear as a peak or dip in the correla-

tion function, depending on whether there is an excess or deficiency of clus-

tering at that scale [121]. Observing the BAO feature in correlation function in

transverse and longitudinal directions, we can directly measure expansion rate

H(z) and angular diameter distance DA(z), which are sensitive to dark energy

[120]. BAO observations are particularly useful as the effect occurs on large

scales (∼ 150 Mpc), where density fluctuations are in the linear regime. These

provide means for estimating cosmological parameters and placing strin- gent

constraints on dark energy models [130].

Large Scale Structure [131–135]:

The Large Scale Structure (LSS) of the Universe refers to the distribution of

galaxies and matter on scales much larger than individual galaxies or galaxy

clusters. This distribution of galaxies in structures like filaments, sheets and
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Figure 2.2: From [1] the Baryon Acoustic Peak is a bump in the two-point corre-
lation function (in this case, of SDSS luminous red galaxies). Shown are models
with Ωmh

2 = 0.12 (top), 0.13 (second) and 0.14 (third), all with Ωbh
2 = 0.024).

The bottom line without an acoustic peak is the correlation function in the pure
CDM model, with Ωb = 0.

voids, is known as the cosmic web. These correlated structures can be seen

up to billions of light years in length and are created and shaped by gravity.

Galaxies are believed to form at the peaks of the dark matter overdensity field.

Thus, mapping out the galaxies over a range of redshifts gives a direct probe of

structure formation. The clustering statistics is quantified using the n− point

functions and their Fourier transforms. The measurement of the galaxy power

spectrum/bispectrum and the growth rate of density fluctuations in galaxy

redshift surveys like the 2dF Galaxy Redshift Survey (221,000 redshifts, com-

pleted 2002) *; the Sloan Digital Sky Survey SDSS † (approximately 1 million

redshifts by 2007), Baryon Oscillation Spectroscopic Survey (BOSS) ‡ points

towards a ΛCDM Universe [3, 4, 123, 128].

*http://www.2dfgrs.net/
†https://www.sdss.org/
‡https://www.sdss3.org/surveys/boss.php
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2.1.1 Problems with the cosmological constant Λ

The agreement between the theoretical predictions based on the ΛCDM model

and observations is impressive. It is then expected that new data from more

precision experiments would show compatibility with ΛCDM. The real sur-

prise occurs when this is not seen in reality. There are several observational

results where the data seems to be in tension (2σ or larger) with the ΛCDM

model [37, 136, 137].

Hubble Tension: Local measurements of the Hubble constant H0 are mea-

sured to values that are higher than those estimated from CMBR anisotropies

in the paradigm of the ΛCDM model [39, 136, 138, 139].

Growth Tension: Direct measurements of the growth rate of cosmological

perturbations from probes such as Weak Lensing, Redshift Space Distortions,

Cluster Counts etc., indicate a lower growth rate than that indicated by the

ΛCDM parameter values at a level of about > 2σ from CMBR [40, 41, 140, 141].

The value of the growth parameter combination S8 ≡ σ8(Ωm0/0.3)0.5 is found

by weak lensing, cluster counts, redshift space distortion data to be to be lower

compared to the Planck CMB value S8 = 0.834± 0.016 [36].

CMB anomalies: The ΛCDM model assumes that the primordial fluctua-

tions are Gaussian, statistically homogeneous, and isotropic. However, diverse

anomalies have been noticed in the CMB at large angular scales, which appear

to violate these assumption [42, 142, 143].

BAO anomalies: The BAO measurements from galaxy and Ly-α, gives a

2.5−3σ discrepancy between the BAO peak position in the Ly-α at an effective

redshift of z ∼ 2.34 and the CMB predictions from ΛCDM model [43, 44, 144].

Age of the Universe: The age of the Universe as obtained from local mea-

surements using the ages of the oldest observed stars (Pop II) in the Milky

Way appears to be larger and in some tension with the corresponding age of

the Universe obtained using the CMB Planck data in the context of ΛCDM [45].

QSO Hubble diagram: The distance modulus-redshift relation for quasars

at higher redshift (> 0.5) is in some tension with the concordance ΛCDM

model indicating some hints for phantom late time expansion [145–147].

Lithium problem: Measurements of old, metal-poor stars in the Milky

Way’s halo finds ∼ 5 times less lithium than that Big Bang Nucleosynthesis
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theory predicts [46].

Other than these observational tensions, the cosmological constant has seri-

ous theoretical difficulties. There are two most notable theoretical challenges:

(i) fine-tuning problem [29] and (ii) coincidence problem [148, 149] amongst

other theoretical issues.

Fine-tuning problem: Since |Λ|1/2 has the dimensions of inverse length, it

will set the scale for the Universe when cosmological constant dominates. It

follows that the most stringent bounds on Λ will arise from cosmology when

the expansion of the Universe has diluted the matter-energy density suffi-

ciently. The Universe’s expansion rate today is usually expressed in terms of

the Hubble constant: H0 = 100h km s−1 Mpc−1. Converting the unit frequency−1

to the corresponding energy in eV and km to Mpc, we obtain:

Λ ≈ H2
0 =

(
100h× 3.24× 10−20 × 6.58× 10−16eV

)2 ≈ (2.13h× 10−42GeV)2

Which corresponds to an energy density:

ρΛ =
Λ

8πG
≈ 2.227× 10−84GeV2 × 1.488× 1038GeV2

8× 3.14
≈ 0.132× 10−46GeV4

where we put G ∝ m−2
pl in the last substitution. Since the cosmological con-

stant is equivalent to the vacuum energy density of empty spacetime, we can

calculate the vacuum energy by summing over all the zero-point energies of

some field mass m, momentum k, and frequency ω up to a cut-off scale [25]

kmax >> m.

ρv =

∫ kmax

0

d3k

(2π)3

√
k2 +m2

2
=

∫ kmax

0

4πk2dk

(2π)3

1

2

√
k2 +m2 (2.8)

Since the integral is dominated in large k modes (k >> m):

ρv ≈
∫ kmax

0

4πk2dk

(2π)3

k

2
=

∫ kmax

0

πk3dk

4π3
=
k4
max

16π2
(2.9)

A plausible cut-off scale is the Planck scale (mpl), up to which general relativity
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is believed to hold, gives:

ρv ≈
m4
pl

16π2
≈ (1.22× 1019GeV)4

16π2
≈ 0.014× 1074GeV4 (2.10)

We can see the ratio of observed and predicted theoretical value

ρv
ρΛ

≈ 1074GeV4

10−47GeV4 ≈ 10121 (2.11)

differs by 121 orders of magnitude. However, there is another cutoff scale that

can be used if one considers the supersymmetry, which breaks down at around

1TeV. Then,

ρv ≈
(103GeV)4

16π2
≈ 6.34× 109GeV4 (2.12)

which is a value 56 orders of magnitude larger than the observed value. We,

however, do not know of any symmetry mechanism or invariance principle

that causes Λ to vanish. This discrepancy in the value of the vacuum energy is

also called the “smallness” problem [29] and is also referred to as the cosmo-

logical constant puzzle [20].

Coincidence problem: The coincidence problem refers to the absence of an

explanation for why the density of non-relativistic matter at present is of the

same order of magnitude as that of dark energy [150]. Since ρm ∝ a−3 and

ρΛ ∝ a0 leads to ρm/ρΛ ∝ a−3, which indicates that Λ was negligible in the past

and will dominate the future. If the cosmological constant is considered to be

an initial condition in the early Universe, it seems really unlikely that Λ should

have a value comparable to matter at the present cosmological epoch while

galaxies and other large scale structures have formed [150]. It’s fascinating to

note that large-scale structure would not have formed if the energy density

of the cosmological constant had been a few orders of magnitude greater or

lower. A possible solution to this problem is the anthropic principle, discussed

in [25] in details.

Other than these issues, the cosmological constant also has contradictions

with String theory [151–153] which finds it difficult to incorporate a small

value of Λ.
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2.2 Alternatives to the cosmological constant

This section explores a few of the widely used paradigms which explain the

cosmic acceleration without invoking the cosmological constant Λ. These al-

ternatives emerge due to theoretical paradoxes or incongruities in observa-

tions. Broadly, two avenues are pursued in addressing this challenge. The

first approach entails modifications to the theory of gravity on cosmic scales.

Alternatively, the second approach involves altering the matter sector within

Einstein’s field equations. This is accomplished by introducing a dynamic dark

energy fluid with nontrivial behaviors or employing a model-independent ap-

proach to reconstruct dark energy’s equation of state (EoS). These approaches

attempt to provide coherent explanations for the observed cosmic acceleration

while evading the necessity of resorting to the cosmological constant.

2.2.1 f(R) gravity theory

f(R) gravity represents a fundamental alternative to General Relativity for ex-

plaining the late-time cosmic acceleration, inflation, and other cosmological

phenomena without invoking the standard cosmological constant. Within the

framework of f(R) gravity theory, the Einstein-Hilbert action’s Ricci scalar R

is replaced by an arbitrary function denoted as f(R), leading to the following

transformation:

A =

∫
d4x
√
−gR→

∫
d4x
√
−gf(R) (2.13)

The standard way to obtain the field equations is by varying the action w.r.t

metric gµν . Such theories are called "metric f(R) gravity" theories. Alterna-

tively, one may use the Palatini formalism where the connection is assumed

to be independent of metric, and the action is varied w.r.t both metric and the

connection Γcab. Such theories are called the "Palatini f(R) gravity" theory. The

third and most general approach is called "metric-affine f(R) gravity", where

one uses the same Palatini formalism but without assuming the matter action

to be independent of the connection. Our work has focused on metric f(R)

gravity.
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The action in case of f(R) gravity can be written as

A =
1

2κ2

∫
d4x
√
−gf(R) +

∫
d4x
√
−gLm(gµν , φ) (2.14)

where κ2 = 8πG
c4

and Lm is the Lagrangian matter density, which is a function

of metric gµν and matter field φ. By varying the action w.r.t metric gµν we get

the modified field equation as the modified version of Friedmann equations:

Hḟ,R − 2Ḣf,R − f̈,R = κ2(ρ+ P )

3H2f,R −
1

2
(Rf,R − f(R)) + 3Hḟ,R = κ2ρ

(2.15)

where, we have assumed that the variation of the matter action gives the usual

energy-momentum tensor. Here f,R = ∂f(R)/∂R. These equations govern the

background dynamics of a flat FLRW universe in a metric f(R) gravity theory.

For a FLRW Universe the Ricci scalar is R = 6(2H2 + Ḣ)

Earlier, the model f(R) = R− αR−n(α > 0, n > 0) was proposed to explain

the late-time cosmic acceleration in the metric formalism [154–156]. However,

this model suffers from several problems [157, 158]. The instability of these

models under cosmological perturbations [159–163], the absence of the matter

era [164–166], and the inability to satisfy local gravity constraints from Solar

system tests [167–172] are some of the issues. The main reason why this model

does not work is that the quantity f,RR ≡ ∂2f/∂R2 is negative. The violation

of the condition f,RR > 0 gives rise to the negative mass squared M2 for the

scalaron field. Hence we require that f,RR > 0 to avoid a tachyonic instability.

The condition f,R ≡ ∂f/∂R > 0 is also required to avoid the appearance of

ghosts. Thus viable f(R) dark energy models need to satisfy [60]

f,R > 0, f,RR > 0, for R ≥ R0(> 0), (2.16)

where R0 is the Ricci scalar today. In literature number of authors studied cos-

mological dynamics for specific f(R) models [154, 156, 173–183]. However,

many viable f(R) models that can satisfy both cosmological and local grav-

ity constraints have been proposed [60, 63, 174, 176, 184–188] Since the law

of gravity gets modified over large distances in f(R) models, this leaves sev-
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eral interesting observational signatures such as the modification to the spec-

tra of galaxy clustering [159–161, 163, 189], CMB [161, 190, 191], and weak

lensing [192, 193]. The functional form of f(R) is chosen so that the model

is phenomenologically satisfactory. The f(R) cosmology to be indistinguish-

able from the ΛCDM at high redshifts where the latter is well constrained from

CMBR observations. This, for example, requires f,R → 1 as R → ∞ to repro-

duce the usual evolution history for z >> 1.

We use the f(R) gravity model proposed by Hu-Sawicki (HS), where the

functional form of f(R) is given by [25, 182]

f(R) = R− µRc
(R/Rc)

2

(R/Rc)2 + 1
(2.17)

Here µ and Rc are two non-negative parameters in the model where Rc is the

present-day value of the Ricci scalar. To recover standard GR results in Solar

system tests, the present-day value of f,R is restricted to log10 |f,R0| < −6 [182].

Looking at the growth of large scale structure (LSS) the quantity of interest

is the growth rate of matter density perturbations fg(k, z) ≡ d ln δm(k,z)
d ln a

. In

linear perturbation theory, and on sub-horizon scales (k/a >>H) the evolution

of matter density perturbations δm(k, z) is dictated by the differential equation

[161, 194–196].

δ̈m + 2Hδ̇m − 4πGeff (a, k)ρmδm ' 0 (2.18)

where Geff is an effective gravitational constant that is related to the standard

Newtonian gravitational constant (GN ) as

Geff (a, k) =
GN

f,R

[
1 +

(k2/a2)(f,RR/f,R)

1 + 3(k2/a2)(f,RR/f,R)

]
(2.19)

In f(R) theoriesGeff is a scale dependent function [197]. The scale dependence

of the growing mode can be used to differentiate the structure formation.

2.2.2 Quintessence as Dark Energy

Quintessence models are canonical scalar field models. The theory comprises

of a canonical scalar field φ with a potential V (φ) and interacts with all compo-

nents only through standard gravity. The word quintessence comes from the
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Latin words quintus, meaning ‘fifth’, and essentia, meaning ‘being’ used by

medieval alchemists. In quintessence, some unknown mechanism ensures that

the vacuum energy is zero and the scalar particle associated with quintessence

is sufficiently light such that the Universe has not settled at the vacuum state

yet [32]. As a result, the scalar field predominates the energy density on large

scales.

Let us consider quintessence in the presence of non-relativistic matter de-

scribed by a barotropic perfect fluid P (ρ) described by the Lagrangian density:

L =
1

2
∂µφ∂

µφ− V (φ) (2.20)

where V (φ) is the potential energy density of the field φ. The stress-energy

tensor can be obtained as which reduces to:

Tµν =
−2√
−g

δ(
√
−gL)

δgµν
= ∂µφ∂νφ− gµν

(
1

2
∂µφ∂νφ− V (φ)

)
(2.21)

Assuming that the scalar field is close to spatially uniform on cosmological

scales, we can neglect its spatial derivatives ∂iφ compared to its time deriva-

tives φ̇ we can obtain the energy density and the pressure of the field as:

ρφ = T 0
0 = g0µTµ0 = g00T00 =

φ̇2

2
+ V (φ) (2.22)

pφ = T ii = giµTµi = giiTii =
φ̇2

2
− V (φ) (2.23)

Thus, the EoS parameter is:

w(φ) =
φ̇2

2
− V (φ)

φ̇2

2
+ V (φ)

=
φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
(2.24)

If the potential is steep, then φ̇2/2 >> V (φ), then w(φ) ≈ φ̇

φ̇
≈ 1. If φ̇ <<

V (φ), then

w(φ) =
φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
≈ −2V (φ)

2V (φ)
≈ −1 (2.25)

Thus we can effectively obtain the cosmological constant w = −1 for φ̇ ≈ 0.



25 2.2. ALTERNATIVES TO THE COSMOLOGICAL CONSTANT

Quintessence can play the role of dark energy if:

w(φ) < −1

3
=⇒ φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
< −1

3
=⇒ 3φ̇2−6V (φ) < −φ̇2−2V (φ) =⇒ φ̇2 < V (φ)

However, this condition is insufficient since dark energy domination today

requires w = −1 not only at the present epoch but for an extended period.

Thus, it is a requirement that the condition φ̇2 < V (φ) holds for a while. This

can happen if the time derivative of this condition is also fulfilled:∣∣∣∣ ddtφ̇2

∣∣∣∣ < ∣∣∣∣ ddtV (φ)

∣∣∣∣ =⇒
∣∣∣φ̈∣∣∣ < ∣∣∣∣V ′(φ)

2

∣∣∣∣ < |V ′(φ)|

where V ′(φ) = dV (φ)/dφ. In summary, a scalar field can play the role of dark

energy if: φ̇2 < V (φ) and | φ̈ |<| V ′(φ) |. These are the slow-roll conditions.

The slow roll parameters are defined as

εs =
1

2κ2

(
V ′(φ)

V

)2

, ηs =
V ′′(φ)

κ2V
(2.26)

where κ2 = 8πG. Thus when εs << 1 and |ηs| << 1 we have φ̇2 < V (φ) and

| φ̈ |<| 3Hφ̇ |. The equation of state parameter w(φ) can be written as

w(φ) = −1 +
V ′(φ)2

9H2ρφ(ξs + 1)2
(2.27)

where ξs = φ̈/3Hφ̇. Thus, in the slow-roll limit |ξs| << 1 and

w(φ) ≈ −1 + 2ηs/3 (2.28)

The dynamics of the scalar field is determined by the Klein-Gordon equation:

φ̈+ 3

(
ȧ

a

)
φ̇+

dV

dφ
= 0 (2.29)

which can be obtained by the varying action Aφ (see Appendix): Assuming a

flat universe in the presence of matter and the Quintessence field gives:

H2 =
8πG

3
(ρm + ρφ) =

8πG

3

(
ρm +

1

2
φ̇2 + V (φ)

)
(2.30)
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Ḣ =
4πG

3

(
φ̇2 + ρm + Pm

)
(2.31)

The wide class of scalar field models are classified broadly into two broad cat-

egories [55]:

(i) The Thawing models In this class, the field is nearly frozen by Hubble

friction during the early cosmological epoch and it starts to evolve once the

field mass drops below the Hubble expansion rate. Example V (φ) = V0 +

M4−nφn (n > 0)

(ii) The Freezing models Here, the evolution of the field gradually slows

down because the potential tends to be shallow at later times. Example V (φ) ∼
M4+nφ−n (n > 0)

For the inverse power-law potential V (φ) ∝ φ−n (n > 0), a distinctive

phenomenon known as the "tracker solution" emerges [198]. For this solu-

tion, the parameter w remains nearly constant during the matter-dominated

epoch and subsequently commences a decrement. This case falls within the

subclass of freezing models. To achieve present-day cosmic acceleration, the

mass mφ(≡ d2V (φ)/dφ2) of the quintessence scalar field must be exceedingly

minuscule, satisfying the condition mφ ≤ H0 ≈ 10−33, eV. Nevertheless, un-

derstanding how such an extremely light mass aligns with the energy scales

characteristic of particle physics proves to be a formidable challenge [199].

Furthermore, without certain symmetries, radiative corrections could poten-

tially disrupt the requisite flatness of quintessence potentials, imperative for

cosmic acceleration [200]. It’s worth noting that the construction of viable

quintessence models within the framework of particle physics is not entirely

without hope [201–203]. Numerous models have been proposed, introducing

scalar fields or incorporating modifications to Tµν , and their dynamics have

been extensively explored in the literature. However, it is not the primary aim

of this thesis to delve into detailed explanations of these models. Additional

information can be found in [204] for further insights.

2.2.3 Reconstruction of w

In order to parameterize the equation of state w(z), there are two directions

of approach. Either one may calculate the EoS for some specified theory and
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then look for its effects on the cosmological expansion, or one may start from

the observations of the cosmological expansion and then reconstruct the scalar

field physics responsible for the effects observed. However, the latter approach

has issues [52]: (i) Unreliability of expansion measurement data (may exhibit

inherent uncertainties.), (ii) Translating the measured quantity into ρDE and w

often requires the utilization of one or more derivatives, (iii) The span of the

scale factor or equivalently redshift (z = 1/a− 1) entails limitations.

There are innumerable possible choices for w(z). However, it has been

shown that at most a two-parameter model can be optimally constrained from

observations [205]. A commonly used ansatz, proposed by Chevalier-Polarski

[206] and Linder [150], allows for dynamical dark energy and is based on an

expansion of w(a) around the present value of the scale factor a = 1:

w(a) = w0 + wa(1− a) (2.32)

This can be obtained by expanding w(a) in the Taylor series around a = 1

keeping only linear terms:

w(a) = w|a=1 + (a− 1)
dw

da

∣∣∣∣
a=1

+
1

2
(a− 1)2 d

2w

da2

∣∣∣∣
a=1

+ O
[
(a− 1)3

]
(2.33)

In terms of the redshift z, the EoS w(z) takes the form:

w(z) = w0 + wa

(
1− 1

1 + z

)
= w0 + wa

z

1 + z
(2.34)

where w0 is the present value i.e w(a0) = w0 + wa(1 − a0) = w0 and the value

of its slope dw(a)/da = −wa. Many such two-parameter models have been

proposed so far. It is found that few of the models are well-behaved and have a

bounded function of redshift throughout the entire cosmic evolution [205, 207–

210]. In this thesis, we have directed our attention towards a select subset of

these models, which will be explored in greater depth later.

We can reconstruct Quintessence fields using the EoS from 2.34. The energy
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density may be written as

ρDE = ρDE0 exp

[∫ z

0

3
1 + w0 + wa

z′

1+z′

1 + z′
dz′

]

and hence the Hubble expansion rate H(z):

H2(z) = H2
0

[
Ωm0(1 + z)3 + (1− Ωm0)(1 + z)3(1+w0+wa)e−3wa

z
1+z

]
(2.35)

Using (2.22), we can obtain the potential and kinetic term in terms of redshift:

V (z) =
1

2
(ρDE − pDE) =

1

2
[1− w(z)]ρDE(z) =

1

2

(
1− w0 − wa

z

1 + z

)
ρDE(z)

1

2
φ̇2 =

1

2
(ρDE + pDE) ==

1

2
[1 + w(z)]ρDE(z) =

1

2

(
1 + w0 + wa

z

1 + z

)
ρDE(z)

Similar way, we can obtain the field (φ) in terms of the redshift as:

φ =

∫ t0

te

|(1 + w(z))ρDE(z)|1/2dt =

∫ z

0

|[1 + w(z′)]ρDE(z′)|1/2 dz′

(1 + z′)H(z′)

The mechanism described here involving a slowly evolving field along the po-

tential V (φ), which contributes to the Universe’s acceleration bears a resem-

blance to the concept of slow-roll inflation in the very early Universe. How-

ever, a crucial distinction lies in including non-relativistic matter (dark matter

and baryons), which cannot be overlooked when delving into the dynamics of

dark energy with accuracy. Furthermore, the energy scale of the quintessence

potential must align with the order of ρDE ≈ 10−47,GeV4 today. This value is

significantly smaller than that of the inflaton potential [53].

We note here that the cosmological constant, if included, is generally treated

as the only cause for cosmic acceleration when taken alone. However, consid-

ering a cosmological constant along with a quintessence field infact, allows the

cosmological constant to be negative. Such models have been studied and ver-

ified against observations [8, 65, 66, 211]. These hybrid models may be useful

in easing some of the issues like the Hubble tension.



CHAPTER 3
Probing the post-reionization epoch using weak lensing

and the neutral IGM

Dark matter and dark energy, which dominate cosmological background evo-

lution and structure formation, cannot be detected directly. Dark matter is felt

primarily through its gravitational influence, and dark energy too, affects the

expansion history and growth of structures, and thereby, the imprint of these

constituents of the Universe can be seen in any probe of cosmology which

is affected by the expansion history and growth of structures. In this the-

sis, we have considered three different probes of large-scale structure. Firstly,

we consider weak lensing, which measures the distortion of images of distant

sources due to gravitational lensing by the intervening large-scale structure

and emerges as the line of sight integral over the matter distribution between

the source and the image plane. The two other probes we use are related to

the neutral hydrogen distribution in the post-reionization epoch. Following

the completion of complex astrophysical processes characterizing the epoch

of reionization, the Universe became predominantly ionized. However, some

neutral hydrogen survived and remained housed in two distinct astrophys-

ical systems. Bulk of the neutral gas formed the clumped Damped Lyman

Alpha systems which are the source of the 21-cm signal in emission. The dif-

fuse low-density neutral hydrogen in a predominantly ionized IGM formed

the Lyman Alpha Forest system, which produces a distinct absorption feature

in the quasar spectra. Both these systems become important probes of cosmol-

ogy through some line transition of the neutral hydrogen. Assuming the gas to

be a biased tracer of the underlying dark matter distribution, one may thereby

use the emission/absorption of these lines to tomographically map out the

dark matter field over a range of redshifts. In the next few sections, we discuss

these cosmological probes.

29



CHAPTER 3. PROBING THE POST-REIONIZATION EPOCH USING WEAK LENSING AND THE NEUTRAL IGM 30
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Figure 3.1: Sketch of a gravitational-lens system (adapted from [2]).

3.1 Weak Gravitational Lensing

One of the notable consequences of General Relativity (GR) is the phenomenon

of bending of light under gravity [212, 213]. This effect, known as gravitational

lensing [214, 215], gives rise to distortions in the images of background sources.

Measuring these tiny coherent distortions allows cosmologists to probe the

dark sector of the universe [67, 68]. The deflection of light can be derived

by examining geodesic curves originating from the field equations within the

framework of GR. The deflection of light by gravitational field ( potential Φ) is

given by the deflection angle and is described as an integral over the path

~α =
2

c2

∫
~∇⊥Φ d` (3.1)

In accordance with the illustration presented in Figure (3.1), we can read-

ily derive the ray-tracing equation by considering the intercepts of a light ray

concerning the optical axis at the distances DL and DS from the observer for

the lens and the source, respectively. Let ~θI be the angle between the opti-

cal axis and the image, and ~θS be the angle between the optical axis and the

source. Through geometrical considerations, we arrive at the relationship for
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an infinitesimal lens as

DS
~θS = DS

~θI −DLS~α (3.2)

where DLS is the distance between the lens and the source. An integral over

the comoving distance χ gives the total shift in the sky.

~δθ = ~θI − ~θS =
2

c2

∫ χs

0

DLS

DS

~∇⊥Φ dχ (3.3)

This equation serves as a foundational component in the ray-tracing analysis

of gravitational lensing. In practical observational scenarios, astronomers typ-

ically measure this deflection angle or the lensing potential in terms of the an-

gular position (~θ). This adjustment involves replacing ~∇⊥ with ~∇θ through the

relationship ~∇⊥ = D−1
L
~∇θ. The factor of D−1

L emerges from the small-angle ap-

proximation, where the perpendicular separation from the Line of Sight (LoS)

is DL
~θ. Consequently,

~δθ = ~∇θψ with ψ(χs~θ) =
2

c2

∫ χs

0

DLS

DLDS

Φ(χ, ~θ) dχ (3.4)

Here, we introduce the quantity ψ, referred to as the lensing potential. The

lensing potential encapsulates all the imaging properties of a gravitational lens

system. We define a magnification matrix M = ∂ ~θS
∂ ~θI

with matrix elements

Mij =
∂θSi
∂θIj

= δij − ψij (3.5)

The derivative is taken at the center of the lensed image, and we use the nota-

tion ψij ≡ ∂2ψ/∂θi∂θj . This equation reveals that, in the presence of a lens, the

mapping is determined by the curvature of the lensing potential ψ, whereas

in the absence of a lens, the mapping remains a simple identity. The second

derivatives of gravitational potentials correspond to tidal forces, implying that

local deformations caused by the lens mapping are dictated by the gravita-

tional tidal forces generated by the lens. The physical interpretation of magni-

fication matrix M can be gleaned from its trace:

trM = 2− ~∇2ψ = 2(1− κ) (3.6)
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where we have defined 2κ = ~∇2ψ. We can define the shear matrix as the

traceless part of the magnification matrix:

Γ ≡ −
(
M− 1

2
(tr(M))I

)
(3.7)

The shear matrix has the following components:

Γ11 ≡ γ1 =
1

2
(ψ11 − ψ22),Γ22 = −γ1,

Γ12 = Γ21 ≡ γ2 = ψ22

(3.8)

Indeed, the symmetric tensor Γ effectively quantifies the projection of the grav-

itational tidal field. This projection, in turn, characterizes the distortions expe-

rienced by background sources due to the lensing effect. We can express the

Magnification matrix in terms of κ and γ, as follows:

M = (1− κ)I− Γ =

[
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

]
(3.9)

For a non-singular M, we can compute its inverse (δ ~θI = M−1δ ~θS), which de-

termines how sources are mapped on images. The determinant of M,

detM = (1− κ)2 − γ2 with γ2 ≡ γ2
1 + γ2

2 (3.10)

The points where detM = 0 are known as critical points and play an important

role in strong lensing [216, 217]. In the context of weak lensing, we generally

assume that the linear lens mapping is invertible, leading to an expression:

M−1 =
1

detM

[
1− κ+ γ1 γ2

γ2 1− κ− γ1

]
(3.11)

The inverse of detM corresponds to magnification. Therefore, the matrix M =

M−1 is commonly referred to as the magnification tensor. With this context, we

introduce the quantity µ :

µ ≡ detM =
1

detM
=

1

(1− κ)2 − γ2
M ≈ 1 + 2κ (3.12)
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In the last step, we invoke a first-order Taylor expansion. As a result, in weak

gravitational lensing, convergence determines how magnified an image will

be rather than shear. The eigenvalues of the matrix M (or the inverse of the

eigenvalues of the M) quantify the amplification in the direction of the eigen-

vectors of the shear tensor.

Using Poisson’s equation in an expanding Universe that is spatially flat

(ΩK = 0), we can replace the Distances DLS , DS , DL with the corresponding

distances. Thus

κ =
4πG

c2

∫ χs

0

dχ
χ(χs − χ)

χs
a2ρ(χ) (3.13)

This expression for κ illustrates that it involves a Line of Sight integral weighted

by the mass density ρ. By introducing the density contrast δ = (ρ̄ − ρ)/ρ̄ and

converting ρ to conventional cosmological parameters ρ = (3H2
0/8πG)Ωm0a

−3

the expression for κ becomes:

κ =
3

2

H2
0

c2
Ωm0

∫ χs

0

dχ
χ(χs − χ)

χs

δ(χ)

a
(3.14)

This is often referred to as effective convergence, as it arises from the actual

mass distribution of the Universe. From an observational perspective, κ (or

any lensing quantity) cannot be directly inferred due to the unknown matter

distribution in a given direction. However, what can be estimated is the extent

of correlation between lensing quantities such as lensing potential, deflection

angle, convergence, or shear [215].

Conventionally, the angular correlation function (ξ(φ) is used to quantify

correlations in the observable κ, with ∆~θ = φ) :

ξ(∆~θ(= φ)) ≡ 〈κ(~θ)κ(~θ + ∆~θ)〉 (3.15)

This correlation function depends solely on the magnitude of the separation

vector ~φ and not its orientation due to the assumption of statistical isotropy.

Taking the Fourier transform of the correlation function ξ(φ), we obtain the

angular power spectrum:

C`
κ =

∫
d2φ ξ(φ) exp−i.

~̀.~φ (3.16)
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where ~̀ is the two-dimensional wave vector conjugate to the angular sepa-

ration ~φ. In the Limber approximation [218], the weak lensing convergence

power spectrum takes the form (refer to Appendix B for detailed derivation)

C`
κ(
~̀) =

9

4

(
H0

c

)4

Ω2
m0

∫ χs

0

dχ
g2(χ)

a2(χ)
D2

+(χ)P3D

(
~̀

χ

)
(3.17)

with g(χ) being the geometric factor,

g(χ) = χ

∫
χ

dχ′n(χ′)

(
χ′ − χ
χ′

)
(3.18)

where n(χ) is the radial distribution of source galaxies (normalized so that∫
dχ n(χ) = 1. If we look at the lensing of the CMBR, then all sources are at a

single redshift zs and the corresponding geometric factor shall be

g
CMB

(χ) = χ

(
χs − χ
χs

)
(3.19)

The quantity (C`
κ) in Eq:(3.17) is the observable quantity which contains

rich cosmological information [70]. Firstly, the weak lensing power spectrum

imprints the matter (both dark matter and baryonic) distribution through the

terms D+(z) and P (`/χ). Secondly, g(χ) encapsulates information about the

expansion history through χ(z), H(z), DA(z), etc. Thus the lensing power spec-

trum in principle can be used to constrain a host of cosmological parameters

[76, 219, 220]. Assuming that the fluctuations form a Gaussian random field,

the power spectrum contains the entire statistical information. However, since

the weak lensing field is nongaussian on small scales, higher-order correlations

may become important on large multipoles [221, 222].

The first detection of weak lensing by large-scale structure was announced

and remarkably consistent with theoretical expectations [223–225]. Since then,

several further measurements have been collected using ground-based [226–

231] and space-based observations [232–235], leading to an increasingly better

understanding of the cosmos.

Ground-based surveys currently cover approximately 100 square degrees,

while space-based surveys span a few square degrees but incorporate more
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distant galaxies with stronger lensing signals. These measurements have en-

abled the determination of E and B mode correlation functions of shear in real

space, resulting in impressive constraints on σ8 and Ωm0 [236]. While weak

lensing is a crucial probe of dark energy, it needs to be combined with other

potential probes like SNIa, CMB, etc., to produce robust constraints on EoS w

[237]. Future weak lensing studies have the potential to quantify dark energy

and modified gravity models much more accurately [238]. Gravitational lens-

ing proves to be a powerful tool for probing modified gravity theories since it

originates from the sum of two gravitational potentials, Φ + Ψ [239]. As modi-

fications to gravity impact Φ and Ψ differently, weak lensing can, in principle,

distinguish between Λ and modifications of gravity [240].

Weak gravitational lensing is thus a promising technique to study the na-

ture of dark energy and extract other interesting cosmological information si-

multaneously. Current experiments aim to observe weak lensing signals with

wider and deeper surveys. This shall enhance the accuracy and reliability of

measurements and put additional insights into dark energy models or modi-

fied gravity theories.

3.2 Probes of post-reionization neutral IGM

In the last section, we discussed the use of gravitational lensing to map out

the matter distribution. We shall now shift our focus to the probes of the

intergalactic medium (IGM). While dark matter has a dominant role is cos-

mic evolution and structure formation, baryonic matter (neutral hydrogen) is

detectable through matter/radiation interactions and can map out the dark

matter distribution through their gravitational interaction. Neutral hydrogen

in the post-reionization epoch are housed in two kinds of astrophysical sys-

tems (i) The dense clumped self-shielded Damped Lyman Alpha clouds which

source the 21-cm signal and (ii) diffuse Lyman-alpha forest systems. We shall

now discuss the redshifted HI 21-cm signal [81, 85, 86, 241] and the Lyman-

α forest [96, 97, 99, 242]. Alongside these, there are other probes of the IGM

which are not studied in this thesis. Notable amongst these probes are the

probes of the late-time anisotropies of the CMB like the Sunyaev-Zel’dovich
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effect [243–246] and the Integrated Sachs Wolfe (ISW) effect [247, 248]. Also,

intergalactic medium metallicity [249–251], is also known as a cosmological

probe.

3.2.1 Red-shifted 21cm signal

Hyperfine coupling of the proton and electron spins in the ground state of the

Hydrogen atom creates a triplet and a singlet state, with the triplet state having

a higher energy than the singlet state. The transition of these spin-flip states

results in the emission or absorption of radiation with a wavelength of 21-cm

(frequency 1420MHz) in the rest frame of the gas.

The radiative transfer equation describes the propagation of radiation through

the IGM.
dIν
ds

= −ανIν + jν (3.20)

where Iν is the intensity of the incident light and αν is the absorption coeffi-

cient. This equation may be expressed in terms of optical depth (dτν = ανds)

and Sν = jν/αν is the Source function. In the case when the source function

does not include the intensity Iν the solution of the radiative transfer equation

is given by

Iν = Iν(0) exp(−τν) + Sν [1− exp(−τν)] (3.21)

In a state of equilibrium, the ratio of occupancy of the hyperfine levels is con-

trolled by the spin temperature Ts defined by

n1

n0

= 3 exp

(
−T∗
Ts

)
(3.22)

where n0 and n1 denote the populations in the triplet and the singlet states,

respectively. Here T∗ = hνe/kB = 0.068 K, where h is the Planck’s constant,

νe equals 1420 MHz, and kB is Boltzmann’s constant. Along a line of sight,

the CMBR photons interact with the intervening HI through the 21-cm tran-

sition. According to the radiative transfer equation and relating the intensity

to temperature as I = 2kBT/λ
2 (in the Raleigh Jeans limit) we have the CMBR
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brightness temperature change as light passes through the gas as

T (τ) = Tγe
−τ + Ts(1− e−τ ) (3.23)

where τ is the 21-cm optical depth, and Tγ is the temperature of the back-

ground CMBR. The quantity of observational interest for radio observations

of the 21-cm radiation is the excess brightness temperature redshifted to the

observer at present, defined as

Tb(n, z) =
T (τ)− Tγ

1 + z
≈ (Ts − Tγ)τ

1 + z
(3.24)

where we have assumed that τ << 1 and CMBR anisotropies are neglected.

The 21-cm optical depth at a redshift z and along a line of sight n and is given

by [81–84, 252, 253]

τ =
4.0mK

Ts

(
Ωbh

2

0.022

)(
0.7

h

)
H0

H(z)
(1 + z)3ρHI

ρ̄H

[
1− (1 + z)

H(z)

∂v

∂rν

]
(3.25)

where the comoving distance rν , and the Hubble parameter H(z) are sensitive

to the cosmological model, v denotes the peculiar velocity component along

the sight line and ρHI
ρ̄H

is the ratio of the neutral hydrogen to the mean hydrogen

density. We write

δTb(ν, n̂) = T̄ (z)ηHI(z, n̂rν) (3.26)

where the redshift dependent quantity T̄ (z) is given by [253]

T̄ (z) = 4mK(1 + z)2

(
Ωbh2

0.022

)(
0.7

h

)
H0

H(z)
(3.27)

and

ηHI(z, n̂rν) = x̄HI(z)

{(
1− Tγ

Ts

)[
δH(n̂, z)− (1 + z)

H(z)

∂v(z, n̂rν)

∂rν

]
(3.28)

+
Tγ
Ts
s δH(n̂, z)

}
The quantity x̄HI(z) denotes the mean neutral fraction at a redshift z, and

δH(n̂, z) = (ρHI − ρ̄HI)/ρ̄HI is the HI perturbations. The function s relates the
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fluctuations of the spin temperature to the HI fluctuations.

Around a redshift of z ∼ 1000, protons and electrons combine and form

neutral hydrogen while the decoupled photons free stream and the Universe

enters the Dark Ages. A small fraction of electrons that survives the recombi-

nation participates in Collisional processes which try to keep the kinetic tem-

perature of the gas Tg at the CMB temperature. At lower redshifts z ∼ 200

these collisional processes become ineffective in maintaining the gas tempera-

ture and in the absence of external heating Tg ∝ (1 + z)2 while Tγ ∝ (1 + z).

The spin temperature Ts, however continues to be coupled to Tg till z ∼ 70

through the processes of collisional spin flipping after which it matches up

with Tγ again.

When gravitational collapse leads to the formation of the first luminous

sources at z ∼ 20, the population of the hyperfine triplet state increases due

to Lyman-α scattering, through the Wouthuysen-Field effect [254] causing the

spin temperature to rise above the CMB temperature, whereby Ts >> Tγ at

low redshifts.

The radiative transfer equation tells us that 21-cm radiation will only be

seen when Ts 6= Tγ . In the range of redshifts 30 ≤ z ≤ 200 where we have Ts <

Tγ and thus HI is to be seen as an absorption feature against the background

CMBR. At lower redshifts when Ts > Tγ , the redshifted 21-cm radiation would

be seen in emission. The thermal history and the evolution of the temperatures

are well studied [255, 256]. From the observational point of view, it implies that

the cosmological 21-cm signal will form a background in all radio observations

with frequencies 7.1 ≤ f ≤ 1420 MHz. The 21-cm line allows tomographic

imaging the entire three-dimensional volume in the redshift range 0 ≤ z ≤ 200

by suitably tuning the observing frequency of radio telescope.

The redshift range 0 ≤ z ≤ 200 is sliced into three epochs corresponding to

the major astrophysical events characterizing each of them

• The dark ages (20 < z < 200) - Density perturbations are linear, and the

gas distribution follows the dark matter distribution. 21-cm signal is seen

in absorption [257–259].

• The epoch of Reionization (EoR) (6 < z < 20)- With the formation of

the first luminous sources, the neutral hydrogen starts to get ionized.
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The absence of Gunn-Peterson troughs [260] in the absorption Lyman -

α forest spectra of distant quasars indicate that the complex processes

of reionization was complete at around z ∼ 6 [261–263]. Several heating

mechanisms [264, 265] causes the spin temperature Ts to rise significantly

above the CMB temperature. The 21-cm radiation from the EoR is seen

in emission.

• The post-reionization epoch (0 < z < 6)- The post-reionization IGM is

almost completely ionized. This is the entire era from the end of the

reionization process up to the present. The neutral fraction evolves from

its value xHI ∼ 1 in the “dark ages” to its present value∼ 10−3 and traces

the complex astrophysical processes characterizing each epoch.

We shall now discuss our present understanding of the intergalactic medium

in the post-reionization epoch. The IGM for z < 6 is mostly ionized. While this

is true for the low density gas, which, by the end of reionization is ionized, a

small fraction of neutral hydrogen survives in confined, over-dense regions of

the IGM which are self-shielded from the background ionizing radiation.

Two astrophysical systems which are related to the HI distribution in the

IGM are of immense observational importance

• The optically thin low-density Lyman-α absorbers. They produce dis-

tinct absorption lines (which look like a "forest") in the spectra of back-

ground quasars called the Lyman-α forest.

• The clumped, dense self shielded, damped Lyman-α systems (DLAs)

[266]. These DLAs remain neutral in spite of the background ionizing

radiation field. They also store the bulk (∼ 80%) of the HI at z < 4 [267]

with HI column density greater than 2 × 1020atoms/cm2 [268–270]. Ob-

servation of the distribution and clustering properties of the DLA clouds

indicates that these clouds are located in regions of highly non-linear

matter over density peaks, which are typically associated with galaxies.

[271–273]. These clouds primarily source the 21-cm radiation emission in

the post reionization epoch.

In some sense, the DLA’s and the Lyman-α forest are complimentary as the

DLA’s, which source the 21-cm emission, do not contribute to the Lyman-α
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optical depth. There is extensive literature on the HI -21 signal from the post-

reionization epoch [81–87, 89].

Several assumptions simplify the modeling of the post-reionization HI sig-

nal. These are either motivated by implicit observations or from numerical

simulations.

• In the post-reionization epoch, there is an enhancement of the popula-

tion of the triplet state of HI due to the Wouthuysen field coupling. This

makes the spin temperature Ts much greater than the CMB temperature

Tγ . Thus, the 21-cm radiation is seen in emission in this epoch against

the background CMBR [255, 256, 264]. For z ≤ 6, the spin temperature

and the gas the kinetic temperature remains strongly coupled through

Lyman-α scattering or collisional coupling [264].

• Extensive study of the Lyman-α absorption lines in quasar spectra in-

dicates that in the redshift range 1 ≤ z ≤ 3.5 the cosmological density

parameter of the neutral gas has a value Ωgas ∼ 10−3 [267]. Thus the

mean neutral fraction is x̄HI = Ωgas/Ωb ∼ 2.45 × 10−2. which does not

evolve in the entire redshift range z ≤ 6.

• On the large cosmological scales of interest, HI peculiar velocities are as-

sumed to be determined by the dark matter distribution. Thus, peculiar

velocity manifests as a redshift space distortion anisotropy in the 21-cm

power spectrum.

• The discrete nature of DLA sources is not considered. The corresponding

Poisson noise owing to this discrete sampling is neglected, assuming that

the number density of the DLA emitters is very large [89].

• HI perturbations are generated by a Gaussian random process. We do

not consider any non-gaussianity and thereby the statistical information

is contained in the two-point correlation or the power spectrum.

• Galaxy redshift surveys and numerical simulations show that the galax-

ies are a biased tracers of the underlying dark matter distribution [274–

276]. If we assume that HI in the post-reionization epoch is housed

predominantly in dark matter haloes, we may expect the gas to trace
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the underlying dark matter density field with a bias bT (k, z) defined as

bT (k, z) =
[
PHI(k,z)
P (k,z)

]1/2

where PHI(k, z) and P (k, z) denote the HI and dark

matter power spectra, respectively. The bias function quantifies the na-

ture of HI clustering in the post-reionization epoch. Further, the fluc-

tuations in the ionizing background may also contribute to bT (k, z) [81].

On scales below the Jean’s length, the linear density contrast of HI gas

is related to the dark matter density contrast through a scale dependent

function [277]. However, on large scales, the bias is known to be scale-

independent, though the scales above which the bias is linear, is sensitive

to the redshift being probed. Several authors have now demonstrated the

nature of HI bias using N-body simulations [91–93, 278]. The simulations

are based on the principle of populating dark matter halos in a certain

mass range with gas and thereby identifying them as DLAs. These sim-

ulations show that the large scale linear bias grows monotonically with

redshift for 1 < z < 4 [279]. This feature is shared by galaxy bias as well

[275, 280, 281]. There is a steep rise of the 21-cm bias on small scales.

This is because of the absence of small mass halos as is expected from

the CDM power spectrum, and, consequently, the HI being distributed

only in larger halos. A fitting formula for the bias bT (k, z) as a function of

both redshift z and scale k has been obtained from numerical simulations

[91, 92] of the post-reionization signal as

bT (k, z) =
4∑

m=0

2∑
n=0

c(m,n)kmzn (3.29)

We have used these simulation results in our modeling of the post-reionization

epoch.

• The 21-cm flux from individual clouds is extremely weak (< 10µJy) and

it is rather difficult for these clouds to be ever detected in radio observa-

tions, even with futuristic telescopes and in spite of signal enhancement

due to the effect of gravitational lensing [282]. However, intensity map-

ping experiments aim to map out the diffuse collective radiation from the

clouds without attempting to resolve individual sources.
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Adopting all the assumptions discussed above, the power spectrum of post-

reionization HI 21-cm brightness temperature fluctuations from redshift z is

given by [256, 283] (see Appendix C for detail analytical derivation)

PHI(k, z) = T̄ (z)2x̄2
HIbT (k, z)2(1 + βT (k, z)µ2)

2
P (k, z) (3.30)

where µ = k̂ · n̂, βT (k, z) = fg(k, z)/bT (k, z). The term fg(z, k)µ2 has its origin

in the HI peculiar velocities [83, 256] which, as we mentioned, are sourced by

the dark matter fluctuations.

Observations and challenges

The fact that the collective 21 cm signal forms a diffused background in all

radio observations at frequencies of observation f ≤ 1420 MHz makes is a

powerful tomographic tool. The fluctuations of this background emission on

the sky plane (angular variations) and across redshift (frequency), maps out

the tomographic image of the Universe. The statistical properties of the fluc-

tuations have a direct imprint on cosmological evolution history, growth of

perturbations, and the astrophysical properties of the IGM.

It is possible to study the nature of dark energy by using the redshifted 21-

cm signal from the post-reionization epoch (i.e. low redshift measurements)

[78, 81, 85, 87, 283–285]. As it traces the dark matter distribution the post-

reionization 21-cm intensity mapping [80] can be a tool for cosmological pa-

rameter estimation [85–87, 283, 284]. Measurement of the redshift space distor-

tion parameter has been suggested as a method to separate the astrophysical

component from the cosmology [84]. The measurement of the BAO imprint

through its oscillatory signature in the post-reionization power spectrum is a

powerful probe of dark energy. This has been studied by [286] for z > 3 and in

the low redshift range (z < 2) range as well [80].

The first detection of the intensity mapping of 21-cm signal was achieved

in 2010 [287]. Using the Green Bank Telescope (GBT), they detected a 3D 21-cm

intensity field in the redshift range z = 0.53−1.12. This discovery served as the

first observational evidence that the 21 cm intensity field traces the distribution

of galaxies at z ≈ 1 [288]. Extension of GBT, Masui et al. detected a cross-power
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spectrum at z ≈ 0.8 between 21-cm and galaxies in the WiggleZ Dark Energy

Survey [289] and Switzer et al. provided an upper limit on the 21 cm auto-

power spectrum for the first time [290]. The 21-cm power spectrum in auto-

correlation has yet to be discovered. This is a primary scientific objective of

several operational and planned radio interferometric arrays, including Giant

Metrewave Radio Telescope (GMRT), the Ooty Wide Field Array (OWFA), the

Canadian Hydrogen Intensity Mapping Experiment (CHIME), the Meer-Karoo

Array Telescope (MeerKAT), the Square Kilometer Array (SKA) are focused on

detecting the cosmological 21cm signal.

The possibility of 21-cm intensity mapping experiments as a precision probe

of cosmology faces several observational challenges. The signal is buried is

foregrounds from galactic and extragalactic sources that are≈ 5 orders of mag-

nitude larger [291, 292]. The foregrounds primarily arise from astrophysical

sources like Synchrotron radiation from our own galaxy, free free emission,

or extra-galactic radio point sources [293–295]. The Galactic synchrotron fore-

ground scales as ≈ (1 + z)2.6, and thus lower redshifts are least affected by the

galactic foreground. Secondly, in the low redshift range (z ≤ 6) the complex

astrophysical processes of the Reionization epoch are absent. Still, foreground

removal is the key challenge towards detecting the signal. It turns out that the

spectral properties of the foregrounds are strikingly different from the 21-cm

signal, which allows for the two to be separated. Several techniques attempt

to remove the foregrounds from the measured visibilities (e.g. [296–300], by

assuming the smooth nature of the foregrounds. The multi-frequency angular

power spectrum (MAPS) [301] has been proposed as a tool for foreground re-

moval by several groups [295, 302]. Some other groups adopt a ‘foreground

avoidance’ strategy where only the region outside the foreground wedge is

used to estimate the 21-cm power spectrum (e.g. [303–307]). Further, one re-

quires extremely precise bandpass, calibration for the detection of the signal.

Calibration introduces spectral structure into the foreground signal, making it

further difficult to effectively remove foregrounds. This difficulty has led to

many proposals for precise bandpass calibration [308–317]

The cosmological signal is also plagued by terrestrial RFI (radio frequency

interference) from mobile phones, satellite broadcasts, and other instrumental
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effects.

In this thesis, we focus on the proposal of cross-correlating the 21-cm signal

with other tracers as a way to bypass the foreground issue to some reasonable

extent. Before doing so, let us consider another very promising observational

probe of IGM, the Lyman-α forest.

3.2.2 Lyman-α forest: A cosmological probe

The Lyman-α forest is an absorption phenomenon in the spectra of background

quasistellar objects (QSOs) [96, 97, 100, 101, 318–322]. This observable event

manifests across ultraviolet (UV) and optical wavelengths, spanning from the

local Universe to the highest ascertainable redshifts where QSOs are observ-

able (currently around z ≈ 5). It probes the distribution of spatial fluctuations

of the HI optical depth in the intergalactic medium (IGM).

On its way to the observer through an expanding Universe, the light from

a bright, distant QSO passes through intervening intergalactic diffuse neutral

hydrogen. The absorption process induced by these gas entities alters the spec-

tra of the background objects, imparting a detailed record of the physical and

chemical conditions of the gas clouds onto the observable spectra of both the

background QSOs and galaxy sources. A neutral hydrogen cloud in the line of

sight (LOS) will cause absorption of the QSO continuum for a frequency red-

shifted to the Lyman-α (1215.67A◦) UV resonance line in the rest frame of the

gas. The inhomogeneous HI distribution in an expanding Universe thus leads

to the formation of a series of absorption lines blue ward of 1215.67A◦, known

as the Lyman-α forest. The optical depth of the Lyman-α forest is a tracer of the

underlying dark matter distribution and thus, the absorption spectra map out

the one-dimensional dark matter inhomogeneities. The term ’Lyman-α forest’

characterizes the visual aspect of optical spectra obtained from QSOs, display-

ing a dense assemblage of numerous sharp absorption lines. The vast majority

of lines within the Lyman-α forest correspond to the identical atomic transition

at a wavelength of 1215.67A. However, a small number of the absorption lines

in the Lyman-α forest are caused due to absorption by heavier elements. These

metal line contaminations do pose observational challenges.

The Lyman-α forest is a powerful cosmological probe [100, 323]. Detailed
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literature is available on the use of Lyman-α forest for the estimation of matter

power spectrum [242, 324], cosmological parameter estimation [101, 325, 326],

constraining small scales clustering properties of dark matter [327], constrain-

ing neutrino mass [242, 326] and probing the reionization history of the Uni-

verse [328–330].

The Lyman-α forest was initially theorized and observed by Gunn and Pe-

terson in 1965 [260]. The basic idea is as follows: going back in time, an increas-

ing fraction of the total baryonic mass of the Universe must be in the form of

neutral gas. The absorption cross-section of the Lyman-α line of neutral hy-

drogen is large enough that even if only a small fraction of the total mass of

the Universe were in the form of HI the redshifted Lyman-α lines should com-

pletely absorb a part of the spectrum of any background light source. The

absorption should essentially assume the shape of an absorption trough in a

QSO spectrum, extending blueward from the Lyman-α emission of the QSO.

This distinctive absorption pattern is referred as the Gunn Peterson effect.

The absence of a large Gunn Peterson absorption (trough) for redshifts z < 6

implies that the Universe must be ionized at these epochs.

QSO surveys subsequently demonstrated that the collective ionizing radia-

tion emitted by all known QSOs at high redshift potentially generates a potent

UV radiation field capable of maintaining a significant portion of the univer-

sal baryonic matter in a highly ionized state. This proposition hinges on the

assumption that the gas within the Universe achieves an approximate pho-

toionization equilibrium with the cosmic UV background. This equilibrium

entails that the recombination rate of electrons with protons to form neutral

hydrogen equals the rate of ionizations from the ground state of HI:

nenpα(T ) = nHIΓ (3.31)

In this equation, Γ denotes the rate of photoionizations per neutral hydrogen

atom. The variables ne, nHI , and np correspond to the number densities of elec-

trons, neutral hydrogen atoms, and protons (ionized hydrogen), respectively.

Observations of QSOs characterized by higher spectral resolutions revealed

a jagged "forest" comprised of numerous individual absorption lines. This in-

dicates that the distribution of neutral hydrogen within the Universe exhibits
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inhomogeneity, extending to the typical width of a Lyman-α line. The degree

of this clumpiness affects the observable quantity, which is the transmitted flux

of the QSO, denoted as F. This flux is proportional to exp(−τ), where τ is the

Lyman-α optical depth.

Assuming approximate photoionization equilibrium, the optical depth τ

depends on the baryon density fluctuations δb, IGM temperature T , and pho-

toionization rate Γ as [95, 96, 319, 331]

τ ∝ 〈A〉(1 + δb)
2 T−0.7 Γ−1 (3.32)

Here, 〈A〉 encompasses all factors dependent solely on the background cosmol-

ogy. The temperature follows a power-law relationship with baryon density,

defined as [331]:

T (z) = T0(z)(1 + δb)
γ(z)−1, γ(z) ≈ 1− 1.6 (3.33)

This power-law expression characterizes the thermal state of the intergalactic

medium (IGM) [332–334]. The key assumptions are therefore that (i) Γ, T0 and

γ have no spatial fluctuations, and (ii) the neutral hydrogen density is fully

determined by the local matter density via gravity.

The standard normalized quantity used for calculating correlations and

power spectra is the flux contrast δF of the Lyman-α forest. It is defined as:

δF =
F(n̂, z)

F̄
− 1 (3.34)

where F is the transmitted flux fraction, and F̄ is its mean value, indicating the

average transmission through the intervening IGM.

Most analytical studies of the Lyman-α forest assume that the transmitted-

flux fluctuations through the forest is believed to be as a tracer of the under-

lying dark matter distribution with a possible bias. Hydrodynamical simu-

lations [99, 335–338] and analytical modeling [339–345] are also extensively

used to study the properties of the Lyman-α forest. The simulations and semi-

analytical modeling of the Lyman-α forest do support the idea that the trans-

mitted flux is indeed a tracer of dark matter. The primary observable of the



47 3.3. THE CROSS-CORRELATION OF WEAK LENSING THE POST-REIONIZATION TRACERS OF IGM

Lyman-α forest is the one-dimensional flux power spectrum P F
1D defined by

[242, 318, 346, 347]

P F
1D =

1

2π

∫ ∞
k

dk′ k′ P F(k′) (3.35)

P F is the 3D power spectrum of the Lyman-α transmitted flux F.

Quasar surveys like SDSS III Baryon Oscillation Spectroscopic Survey (BOSS)

[348–350] aims to measure the absorption spectra of ∼ 160, 000 QSOs and the

data may improve significantly in future surveys. Thus the idea is then to treat

the Lyman-α forest as sampling a continuous 3D density field along skewers

corresponding to sight lines.

Many observational issues come in the way of constraining theoretical mod-

els using the Lyman-α forest. Some of the key sources of observational uncer-

tainty include: inadequate modeling of the of the background ionizing field,

errors in QSO continuum fitting, uncertainties in the slope of the temperature-

density relationship in the diffuse IGM and its inevitable fluctuations about

the mean relation, metal line contamination in the quasar spectra, and our lack

of knowledge about the effects of galactic super winds.

3.3 The cross-correlation of weak lensing the post-

reionization tracers of IGM

In this section, we explore the possibility of cross correlating the weak lensing

convergence field with tracers like the 21cm signal or Lyman-α forest. Simu-

lations indicate that on large cosmological scales, both the Lyman-α forest and

the 21-cm signal are biased tracers of the underlying dark matter (DM) dis-

tribution [91–93, 278, 351]. This has allowed the possibility of studying cross-

correlations between Lyman-α and post reionization 21-cm signal [278, 352–

355]. The cross between Lyman-α and post reionization 21-cm signal which

was proposed by [352, 353] has now been observationally detected [356]. Here,

we investigate the cross-correlation of weak lensing and 21-cm, originally pro-

posed as a cosmological probe in [357]. We show the general spherical sky

formulation and also derive the flat-sky result used earlier [357] from more

general considerations.



CHAPTER 3. PROBING THE POST-REIONIZATION EPOCH USING WEAK LENSING AND THE NEUTRAL IGM 48

• There is a crucial difference between the weak lensing and tracer fields.

The former measures the integrated effect along the LoS of a geometric

kernel from redshift z = 0 to the last scattering surface and, is hence

sensitive to the fluctuations of the density field on large scales. The trac-

ers (Lyman-α forest and redshifted 21-cm intensity maps) on the con-

trary, are tomographic probes of small-scale fluctuations. Thus, cross-

correlation quantifies the evolution of small wavelength modes of the

fluctuations on top of the long wavelength modes.

• It may be possible to lessen the severe impact of foreground contami-

nants and other systematic effects that plague the signal by cross-correlating

the 21 cm signal with other probes [357, 358]. The systematic noise that

arises in the individual surveys pose less threat in the cross-correlation

signal as they appear in the variance [278, 352–355]. Further, the fore-

grounds and contaminants of individual surveys are, in most cases, un-

correlated and hence do not bias the cross-correlation signal [359].

• Further, a cross-correlation signal may be detected at a greater Signal to

Noise Ratio (SNR) as compared to the HI auto-correlation [360].

It should be noted that using cross correlation won’t offer any new benefits if

all of the different probes’ observations are accurate. However, even after sub-

traction, we anticipate that the first generation observations of the redshifted

HI 21cm signal will contain significant systematic errors and foreground resid-

uals.

Cross-correlation angular power spectrum: Formalism

On large scales, the Lyman-α forest and the redshifted 21-cm signal from the

post-reionization epoch are both known to be biased tracers of the underly-

ing dark matter distribution. We denote δF to denote the fluctuations in the

Lyman-α transmitted flux δF = (F − F̄)/F̄. In the post-reionization era, the

neutral fraction remains constant [268, 361–363] and photo-ionization equilib-

rium leads to a power-law, temperature density relationship [328]. Numerical

simulations validate the Fluctuating Gunn-Peterson effect [343, 348, 364, 365]
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whereby it is reasonable to assume that on large scales the smoothed flux fluc-

tuations δF ∝ δ, where δ denotes the dark matter overdensity field.

The HI 21-cm emission signal also arises from the same redshift range as the

Lyman-α forest. However, they are sourced by the DLAs which are believed to

contain most of the HI during the post reionization era. The Lyman-α forest, on

the contrary, arises from the low-density HI in a predominantly ionized IGM.

On large scales, the HI 21-cm signal also traces the underlying dark matter

distribution. We use δT to denote the redshifted 21-cm brightness temperature

fluctuations.

Including a redshift space distortion, we may write both δF and δT in Fourier

space as

δi(r) =

∫
d3k

(2π)3
eik.r∆i(k) . (3.36)

where i = F and T refer to the Ly-α forest transmitted flux and 21-cm bright-

ness temperature, respectively, with

∆i(k) = Ai[1 + βiµ
2]∆(k) (3.37)

where ∆(k) is the dark matter density contrast in Fourier space and µ is the

cosine of the angle between the line of sight direction n̂ and the wave vector

(µ = k̂ · n̂). βi is the linear redshift distortion parameter. For the 21-cm signal,

we have

AT = 4.0 mK bT x̄HI(1 + z)2

(
Ωb0h

2

0.02

)(
0.7

h

)(
H0

H(z)

)
(3.38)

where x̄HI is the mean neutral fraction. In the post-reionization epoch z < 6,

Ωgas ∼ 10−3 and the neutral hydrogen fraction remains with a value x̄HI =

2.45× 10−2 [268, 361–363]. We may write βT = f(z)/bT where bT denotes a bias

and f(z) is growth rate of density perturbations. The bias function bT (k, z)

is scale-dependent below the Jeans scale. There is also additional scale depen-

dence arising from the fluctuations in the ionizing background [81]. The bias is

also a monotonically growing function of redshift [92]. Several studies indicate

that on large scales, a constant linear bias model is reasonably valid [91–93].

We adopt the bias function bT from simulation results [92]. The function βT (z)

crucially imprints the dark energy parametrizations through its dependence of
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f(z) and has a redshift dependence arising from both f(z) and bT (z).

The interpretation of the linear distortion parameter, βF for the Lyman-α

forest, is different owing to the non-linear relation between the Lyman-α trans-

mitted flux and the underlying dark matter density field [348]. Contrary to

the parameters for the HI 21-cm signal, the parameters (AF, βF) are indepen-

dent of each other and are sensitive to parameters like the IGM temperature-

density relationship (γ) and the flux probability distribution function (PDF)

of the Lyman-α forest. Analytical work [366] and extensive numerical sim-

ulations [278, 318, 367–369] demonstrates that in the absence of primordial

non-gaussianity the Lyman-α forest can be described by a linear theory with

a scale independent bias on large scales. We adopt an approximate values

(AF, βF) ≈ (−0.15, 1.11) from the simulations of Lyman-α forest[318].

We consider the cross-correlation of post-reionization tracers with the weak

lensing convergence field. There is a crucial difference between the weak lens-

ing field and the tracer fields. The former measures the integrated effect along

the line of sight of a geometric kernel from redshift z = 0 to the last scattering

surface and, is, hence sensitive to the fluctuations of the density field on large

scales. The tracers, namely the Lyman-α forest and redshifted 21-cm intesity

maps, on the contrary are tomographic probes of small-scale fluctuations. The

cross-correlation thereby quantifies the evolution of small wavelength modes

of the fluctuations on top of the long wavelength modes. Further, the noise and

systematics that affect the auto-correlation signal appear only in the variance

of the cross-correlation and may pose less of a challenge towards detecting the

cross-correlation signal . The 21-cm signal is buried deep under galactic and

extra-galactic foregrounds. Even after significant foreground removal, the cos-

mological origin of the 21 cm signal can only be ascertained only through a

cross-correlation. To formulate the cross-correlation angular power spectrum,

we expand the convergence field in terms of spherical harmonics as

κ(n̂) =
∞∑
`,m

aκ`mYlm(n̂) (3.39)
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The expansion coefficients aκlm can be obtained by inverting Eq.(3.39) as

aκ`m =

∫
dΩn̂ κ(n̂)Y ∗`m(n̂) (3.40)

Thus, on using the expression for κ(n̂) we have

aκ`m =

∫
dΩn̂ Y

∗
`m(n̂)

3

2

(
H0

c

)2

Ωm0

∫ χs

0

g(χ) χ
δ(χn̂, χ)

a(χ)
dχ (3.41)

Writing

δ(χn̂, χ) =

∫
d3k

(2π)3
eik.n̂χ∆(k)D+(χ) (3.42)

and using the Raleigh expansion

eik·nχ = 4π
∑
`,m

(−i)`j`(kχ)Y ∗`m(k̂)Y`m(n̂) (3.43)

along with the normalization∫
dΩn̂ Y

∗
`m(n̂)Y`m(n̂) = 1 (3.44)

we have

aκ`m = 4π(−i)`
∫

d3k

(2π)3

∫ χs

0

dχ Aκ(χ)D+(χ)j`(kχ)∆(k)Y ∗`m(k̂) (3.45)

where

Aκ(χ) =
3

2

(
H0

c

)2

Ωm0

g(χ) χ

a(χ)
(3.46)

For the post reionization tracers Lyman-α and redshifted 21-cm signals we de-

fine two fields on the sky by integrating δi(χn̂, χ) along the radial direction

Fi(n̂) =
1

χ2 − χ1

χ2∑
χ1

∆χ δi(χn̂, χ) (3.47)

Previous works [357, 370] consider these fields at a given redshift, where the

radial information is retained for tomographic study. The weak-lensing con-

vergence, on the contrary, consists of a line of sight integral whereby the red-

shift information is lost. We consider an average over the signals from red-
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shift slices and thus lose the redshift information but improve the SNR when

cross-correlating with the weak-lensing field. The expansion coefficients for

Lyman-α and redshifted 21-cm signals can be generally written as

aFi`m = 4π(−i)`
∫

d3k

(2π)3

1

χ2 − χ1

χ2∑
χ1

∆χ Ai(χ)D+(χ)

×
(
j`(kχ)− βi

d2j`(kχ)

d(kχ)2

)
∆(k)Y ∗`m(k̂)

Defining the cross-correlation angular power spectrum as

〈aκ`ma
Fi∗
`′m′〉 = CκFi

` δ`,`′δm,m′ (3.48)

we have

CκFi
` =

2

π(χ2 − χ1)

∫ χs

0

dχ

χ2∑
χ1

∆χ′Aκ(χ)D+(χ)Ai(χ
′)D+(χ′)

×
∫
dk k2j`(kχ)J`(kχ

′)P (k)

(3.49)

where

J`(kχ) =

(
j`(kχ)− βi

d2j`(kχ)

d(kχ)2

)
(3.50)

Similarly, the auto-correlation angular power spectra may be written as

Cκκ
` =

2

π

∫ χs

0

dχ

∫ χs

0

dχ′Aκ(χ)D+(χ)Aκ(χ
′)D+(χ′)

∫
dk k2j`(kχ)j`(kχ

′)P (k)

(3.51)

and

CFiFi
` =

2

π(χ2 − χ1)2

χ2∑
χ1

∆χ

χ2∑
χ1

∆χ′Ai(χ)D+(χ)Ai(χ
′)D+(χ′)

×
∫
dk k2J`(kχ)J`(kχ

′)P (k)

(3.52)

We shall now look at a simpler approximate calculation of the angular power

spectrum using the flat-sky approximation. Instead of using the basis of spher-

ical harmonics, we shall use the Fourier basis. This approximation is expected

to work if the observational field is not too large.
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Visibility based approach in “flat-sky" approximation

Radio interferometric observations of the redshifted 21-cm signal directly mea-

sure the complex Visibilities which are the Fourier components of the intensity

distribution on the sky. The radio telescope typically has a finite beam which

allows us to use the "flat-sky" approximation. Instead of expanding the fields

κ and δi in the basis of spherical harmonics, we shall now obtain a simplified

expression for the angular power spectrum by considering the flat sky approx-

imation, whereby we can use the Fourier basis. We define Visibilities as

VFi(
~U) =

∫
d2~θ a(~θ)Fi(~θ) e

−2πi~U.~θ (3.53)

Vκ(~U) =

∫
d2~θ κ(~θ) e−2πi~U.~θ (3.54)

where a(~θ) denotes the beam function of the telescope measuring the angular

coverage of the 21-cm or Lyman-α forest survey. Thus

VFi(
~U) =

1

χ2 − χ1

χ2∑
χ1

∆χ

∫
d2~θ Ai(χ)

∫
d2k⊥dk‖

(2π)3
[1 + βi(χ)µ2]∆(k)D+(χ)

×eik‖χ a(~θ) ei(k⊥χ−2π~U).~θ

where µ = k‖/k. Performing the ~θ integral, we have

VFi(
~U) =

1

χ2 − χ1

χ2∑
χ1

∆χ Ai(χ)

∫
d2k⊥dk‖

(2π)3
[1 + βi(χ)µ2]∆(k)D+(χ)

×eik‖χ ãi
(
k⊥χ

2π
− ~U

)
(3.55)

Where the aperture function ãi(~U) is the Fourier transformation of the tele-

scope beam function a(~θ). Similarly, for the convergence field, we have

Vκ(~U) =

∫ χs

0

dχ Aκ(χ)

∫
d2k⊥dk‖

(2π)3
∆(k)D+(χ) eik‖χ δD

(
k⊥χ

2π
− ~U

)
(3.56)
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where we have assumed an almost full sky weak-lensing survey. We are inter-

ested in the Visibility-Visibility correlation

〈VFi(~U)V ∗κ (~U′)〉 =
1

χ2 − χ1

χ2∑
χ1

∆χ

∫ χs

0

dχ′ Ai(χ)Aκ(χ
′)D+(χ)D+(χ′)

∫
d2k⊥dk‖

(2π)3
eik‖(χ−χ

′)

[
1 + βi(χ)

k2
‖

k2
‖ + k2

⊥

]
ãi

(
k⊥χ

2π
− ~U

)
δD

(
k⊥χ

′

2π
− ~U′

)
P (k)

Defining CFiκ = 〈VFi(~U)V ∗κ (~U′)〉

CFiκ =
1

π(χ2 − χ1)

χ2∑
χ1

∆χ

∫ χs

0

dχ′

χ′2
Ai(χ)Aκ(χ

′)D+(χ)D+(χ′)

∫ ∞
0

dk‖ cos k‖(χ− χ′)1 + βi(χ)
k2
‖

k2
‖ +

(
2π~U′

χ′

)2

 ãi(χ~U′ − χ′ ~U
χ′

)
P


√√√√k2

‖ +

(
2π~U′

χ′

)2


If the aperture function ãi is peaked, we may approximately write the visibility

correlation on the same baseline as

CFiκ(U) =
1

π(χ2 − χ1)

χ2∑
χ1

∆χ

χ2
Ai(χ)Aκ(χ)D2

+(χ)

∫ ∞
0

dk‖

[
1 + βi(χ)

k2
‖

k2

]
P (k)

with k =

√√√√k2
‖ +

(
2π~U

χ′

)2

(3.57)

The auto-correlation angular power spectrum may be similarly written as

CFiFi(U) =
1

π(χ2 − χ1)2

χ2∑
χ1

∆χ

χ2
A2
i (χ)D2

+(χ)

∫ ∞
0

dk‖

[
1 + βi(χ)

k2
‖

k2

]2

P (k)

Cκκ(U) =
1

π

∫ χs

0

dχ

χ2
A2
κ(χ)D2

+(χ)

∫ ∞
0

dk‖P (k) (3.58)

We often use the Eq: (3.57) in the thesis. Using the cross-correlation signal,

we study some of the popular dark energy models and constrain model pa-

rameters. We note here that working in the Fourier basis necessarily makes

the signal non-ergodic when one looks at correlation between two time slices

(due to time evolution of all the relevant quantities). Further, one also notes
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the inseparability of the baseline U (transverse) from the frequency (radial) in

this formalism [90]. The formulation developed in this section shall be used in

the next chapter to constrain dark energy models.

We note that the cross-correlation signal is itself affected by the 21-cm fore-

grounds [371–373], which degrades the signal. We have not incorporated this

effect in our analysis.





CHAPTER 4
Constraining dark energy using the cross correlations

of weak lensing with post-reionization probes of HI §

4.1 Introduction

We have seen that though observations have indicated that the expansion of

the Universe is accelerating [25, 374], the cause of what is driving this late time

acceleration is still an open question. Precision cosmological measurements in-

dicate that the Universe contains approximately∼ 70% of the energy density in

the form of dark energy [15, 16, 375, 376] and the remaining ∼ 30% in the form

of non-relativistic matter (both baryonic matter and dark matter). A natural

candidate for constant dark energy is the cosmological constant Λ. This model

with w = −1 is well tested by many observations. In this model the cosmolog-

ical constant Λ is to be interpreted as a non-zero vacuum energy density [19].

We have discussed several theoretical difficulties pertaining to the cosmolog-

ical constant (like the ‘fine tuning’ problem). We have also mentioned recent

results from low redshift measurements of H0 [27] which seems to be in tensin

with the Planck-2015 predictions for flat ΛCDM model. Further, there are in-

dications that a varying dark energy model maybe preferable over the concor-

dance ΛCDM model [28] at a high level of statistical significance. Our under-

standing of the cosmic acceleration thus still remains cloaked in mystery. Dark

energy models differing from the standard cosmological constant typically in-

volves a scalar field [21, 24, 55, 64, 377–385] whose dynamics with suitable

initial conditions is used to model the cosmic acceleration. It is generally a dif-

ficult program to constrain the immense diversity of such scalar field models

from observations. It is convenient to use some parametrization of these mod-

§The chapter is adapted from Constraining dark energy using the cross correlations of weak
lensing with post-reionization probes of neutral hydrogen, Chandrachud B.V Dash, Tapomoy Guha
Sarkar, Journal of Cosmology & Astroparticle Physics, 016, (2021).
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els which mimic their general behaviour. The dynamic EoS with p/ρ = w(z) is

one such commonly used parametrization [206, 382, 386–388]. The most pop-

ular and widely used parametrization of the EoS is a two-parameter model by

Chevallier-Linder-Polarski (CPL), [150, 206]. In this study we shall also use

two important variants of the CPL model called the 7CPL model [388] and

Barboza-Alcaniz (BA) model [207].

Weak gravitational lensing by intervening large scale structure [67, 68, 215]

distorts the images of distant background sources, over large angular scales.

This is caused by the deflection of light by the fluctuating gravitational field

created by the intervening overdensity field. We have discussed that pre-

cise quantitative measurement of these distortions opens a window towards

our understanding of the large scale matter distribution and geometry of the

Universe. Late time cosmic history is governed largely by dark energy, ei-

ther through a modification of the growing mode of density perturbations or

through clustering properties of dark energy or both. Weak-lensing studies

can be used to impose constraints on dark energy models [74, 76] since the

lensing distortions manifest as a line of sight integral of a ‘kernel’ which is

sensitive to background evolution and structure formation. Weak-lensing also

distorts the CMBR photon distribution and manifests as secondary anisotropy

in the CMBR maps [389]. The CMBR temperature and polarization maps may

be used to extract the effect of lensing [390–392]. Delensing of the CMBR is

crucial in quantifying the imprint of gravitational waves in the B modes [393].

Neutral hydrogen (HI) in the post-reionization epoch (z < 6) [81–85] is

housed in two important astrophysical systems of interest. We have seen that

the predominant fraction of the neutral gas is found in the dense self shielded

Damped Lyman-α (DLA) systems [266, 267]. These DLA clouds are the source

of the redshifted 21-cm signal, to be seen in emission. Intensity mapping of the

large scale HI distribution using observations the redshifted 21-cm radiation

[241, 394] aims to map out the collective diffuse emission without resolving

the individual DLA sources [78]. The statistics of these intensity maps is a

potentially rich probe of cosmological background evolution and large scale

structure formation [80, 283, 284, 286]. Several studies look at the possibility

of using 21-cm intensity mapping to constrain dark energy models [395, 396].
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It is also a key science goal of many radio telescopes like the GMRT * OWFA†,

MEERKAT‡, MWA§, CHIME¶, and SKA|| to detect the cosmological 21-cm sig-

nal for a tomographic imaging [397] at observing frequencies ν ≤ 1420MHz.

The Lyman-α system comprises of the diffuse HI in the dominantly ion-

ized post-reionization inter galactic medium (IGM), which produces distinct

absorption features in the spectra of background QSOs. These absorption fea-

tures known as the Lyman-α forest, provides one dimensional maps of the

underlying HI fluctuation field along QSO sight lines. The Lyman-α forest is

known to be a powerful cosmological probe [100, 101, 242, 329, 398–400]. The

Baryon Oscillation Spectroscopic Survey (BOSS) [349, 350] has measured the

BAO imprint on the Lyman-α forest. The high number density of QSOs in this

survey and the high signal to noise ratio (SNR) measurement of the Lyman-α

spectra allows 3D analysis [353, 401] and powerful investigation of the cosmo-

logical dark sector [402, 403].

Large scale numerical simulations indicate that on large cosmological scales

both the Lyman-α forest and the 21-cm signal are biased tracers of the under-

lying dark matter (DM) distribution [91–93, 278, 351]. This has allowed the

possibility of studying cross-correlations between Lyman-α and post reioniza-

tion 21-cm signal [278, 352–355]. We consider the cross correlation of these

post-reionization tracers with the weak-lensing convergence field to constrain

dark energy models. The cross-correlation of 21-cm signal and the Lyman-

α forest with weak-lensing has been studied earlier [357, 358]. We perform

an improved analysis of the angular cross power spectrum for correlations of

the CMBR weak lensing convergence field with the Lyman-α forest and 21-

cm signal for constraining different dark energy parametrizations. We use a

visibility based realistic formalism for this purpose. The entire redshift range

probed by the Lyman-α and the 21-cm signal is exploited in the present anal-

ysis whereby the signal is averaged over redshift bins. Cross-correlating the

integrated Lyman-α absorption with weak-lensing convergence has been stud-

*http://gmrt.ncra.tifr.res.in/
†https://arxiv.org/abs/1703.00621
‡http://www.ska.ac.za/meerkat/
§https://www.mwatelescope.org/
¶http://chime.phas.ubc.ca/

||https://www.skatelescope.org/
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ied [358]. We extend this idea to the post-reionization signal whereby we con-

sider the signal stacked up over the redshift slices in the observed bandwidth.

This is expected to yield greater SNR in detection and more stringent con-

straints on the dark energy parameters.

The chapter is divided as follows. We first consider the dark energy models.

We look at the auto correlation convergence power spectrum for CMBR weak-

lensing. We finally make signal to noise predictions with a Fisher matrix pa-

rameter estimation using a visibility based formulation of the cross-correlation

of the Lyman-α forest flux and 21-cm signal with the convergence field.

4.2 Dark energy models

The evolution of the Hubble parameter H(a) for a spatially flat FRW Universe

is given by

H(a)

H0

=

√
Ωm0a

−3 + (1− Ωm0) exp

[
−3

∫ a

1

da′
1 + w(a′)

a′

]
(4.1)

where H0 and Ωm0 denote the Hubble parameter and the matter density pa-

rameter respectively, at the present epoch and the Universe is assumed to be

comprised of non-relativistic matter and a dark energy component with an

evolving EoS w(a). We have used the cosmological parameters Planck18 re-

sults

(Ωm0 ,Ωb0 , H0, ns, σ8,ΩK) = (0.315, 0.0496, 67.4, 0.965, 0.811, 0)

from [36] in this work.

Our ignorance about the dynamics of Dark energy is modeled using the

EoS parametrization w(z) with a = 1/(1 + z). There are innumerable possible

choices for w(z). However it has been shown that at most a two-parameter

model can be optimally constrained from observations [205].

The model proposed by Chevallier Polarski [206] and Linder [150] gave a

phenomenological model-free parametrization to incorporate several features

of dark energy. This model has been extensively used by the Dark Energy Task
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force [23] as the standard two parameter description of dark energy dynamics.

The EoS is given by w
CPL

(z) = wCPL0 + wCPLa
z

1+z
. This model gives a smooth

variation of w(z) = w0 + wa at z → ∞ to w(z) = w0 at z = 0. It has also been

shown that a wide class of quintessence scalar field models can be mapped

into the CPL parametrization [208] . However a better fit to both tracking and

thawing class of models require a generalization of the CPL parametrization

[388]. We use the following parametrizations in this work.

w
CPL

(z) = wCPL0 + wCPLa

(
z

1+z

)
(CPL) (4.2)

w
7CPL

(z) = w7CPL
0 + w7CPL

a

(
z

1+z

)7
(7CPL) (4.3)

w
BA

(z) = wBA0 + wBAa

(
z(1+z)
1+z2

)
(BA) (4.4)

Each model is characterized by two constant parameters (w0, wa) withwa quan-

tifying the evolution of dark energy from its present value set by w0.

Background Evolution

Baryon acoustic oscillation (BAO) observations [127] aim to constrain the an-

gular diameter distance dA(z) and the Hubble parameter H(z) through the im-

print of the oscillatory feature of the matter power spectrum in the transverse

(angular) and longitudinal directions respectively. Due to low SNR in BAO

measurements, it is often convenient to measure an effective distance defined

as [25]

DV (z) =

[
(1 + z)2dA(z)2 cz

H(z)

]1/3

(4.5)

This effective distance is a direct quantifier of the background cosmological

model (density parameters) and is thereby sensitive to the dynamical evolu-

tion of dark energy. We use a dimensionless quantifier of cosmological dis-

tances [1]

r
BAO

(z) =
rs

DV (z)
(4.6)

where rs denotes the sound horizon at the recombination epoch. Figure (4.1)

shows the departure of r
BAO

as a function of z from the ΛCDM model predic-

tion. A redshift dependent difference of a few percent from the ΛCDM is seen

for the different parametrizations. The behaviour is very similar for the CPL
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Figure 4.1: The BAO distance ratio r
BAO

(z) versus redshift z for different dark
energy models (CPL, 7CPL, BA) in a spatially flat Universe scaled by rΛCDM

BAO
(z)

for the ΛCDM model.

and BA parametrizations which are known to mimic the thawing class of dark

energy models. The 7CPL parametrization which represents the tracking class

shows identical behaviour for some sets of model parameters (see figure (4.1)).

Observations from the 2df galaxy redshift survey gives the bounds on r
BAO

as

r
BAO

(z = 0.2) = 0.1980±0.0058 and r
BAO

(z = 0.35) = 0.1094±0.0033 [3]. All the

models with a redshift dependent w(z) seems to be in better agreement with

this data. The analysis of BOSS (SDSS III) CMASS sample along with Lumi-

nous red galaxy sample [4] from SDSS-II gives r
BAO

(z = 0.57) = 0.07315±0.002.

Figure (4.2) shows the model predictions as compared to the data at different

redshifts.
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Figure 4.2: The first two figures in the panel shows the data points from the
2df galaxy survey at redshifts z = 0.2 and z = 0.35 respectively and the third
figure shows the high redshift data at z = 0.57 from BOSS SDSS-III survey.

Growth of Perturbations

At sufficiently early times and on large spatial scales the matter density fluctu-

ations are much less than unity (|δ| << 1 , in linear regime). Under these con-

ditions the matter density contrast δ = δρm
ρ̄m

evolves independently for different

Fourier modes k. Separating the time dependent part of the matter overdensity

as δ(a) = D+(a)δm(a = 1). The growth of density fluctuations on sub horizon

scales can be obtained by solving the second order differential equation

d2D+

da2
+

(
1

H

dH

da
+

3

a

)
dD+

da
− 3

2

Ωm0H
2
0

a5H2
D+ = 0 (4.7)

In order to solve the above equation we choose the initial conditions in the

matter-dominated epoch (ai = 10−3), where the growth function grows lin-

early with the scale factor (D+ ∝ a). Dark energy affects the growth of cosmo-
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logical structure formation directly through the role of the expansion history

on the gravitational instability in an expanding background. This leads to the

appearance of the background evolution H(z) in the equation for the grow-

ing mode of density perturbations D+ (Eq: 4.7). We use the growth rate f(z)

defined as

f(z) =
dlnD+

dlna
(4.8)

to quantify the growth rate of perturbations. The observationally measurable

function f(z) imprints the dynamics of dark energy and is sensitive to any

departure from the ΛCDM.
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Figure 4.3: The growth rate of density fluctuations f(z) for different dark
energy EoS parametrizations. The ΛCDM model is shown in each subfigure
for comparison.

Figure (4.3), shows the linear growth rate of density perturbations for CPL,

7CPL and BA parametrizations. At higher redshifts, the all models approach

f ∼ 1 indicating that the growth of perturbation is dominated by non-relativistic

matter. Further, for 7CPL model, there is no dependence of the parameter wa.
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Figure 4.4: The ISW parameter fΦ = Φ̇
Φ

for different dark energy EoS
parametrizations. The ΛCDM model is shown in each subfigure for compari-
son.

Therefore, one does not expect to constrain the parameter wa for 7CPL model

using any observation related to matter clustering. Dark energy also has an

implicit observational effect. It causes a decay of the gravitational potential

(the scalar perturbation in the Newtonian conformal gauge), when the Uni-

verse evolves from the matter dominated to the the dark energy dominated

era. This is known to generate a weak anisotropy in the CMB temperature fluc-

tuation, through the Integrated Sachs Wolfe (henceforth ISW) effect [247, 404].

A curved spatial geometry also similarly contributes to this anisotropy. How-

ever, the spatial curvature of our Universe is constrained to be zero from CMBR

observations [130] whereby the effect of spatial curvature can be ignored in the

first approximation. The gravitational potential is expected to remain constant

in a purely matter dominated cosmology. Thus, any late-time evolution of the

gravitational potential is sensitive to the dark energy model [405–408]. The
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ISW anisotropy is a line of sight integral [409, 410]

∆T (n̂)ISW = 2T

∫ η0

η
LSS

dη Φ′(rn̂, η) (4.9)

where T is the present CMBR temperature, η
LSS

and η0 are the conformal times

at the last scattering surface and the present epoch respectively and Φ′ =

dΦ/dη. To quantify this effect we define a diagnostic for dark energy

fΦ(z) =
d

dη
lnΦ = (f − 1)H (4.10)

where H = 1
a
da/dη. It is known that f ∼ 1 in pure matter dominated epoch and

any departure from f = 1 indicates the action of dark energy. Noting that the

role of dark energy is imprinted in f −1, the function fΦ(z) is a sensitive probe

of dark energy. It quantifies the interplay of two time scales - the background

expansion rate (contained in H(z)) and the growth rate of cosmological struc-

ture (contained in f(z)). Figure (4.4) shows the redshift dependence of fΦ(z)

for different dark energy EoS parametrizations. The 7CPL model shows in-

sensitivity to the parameter wa, however, both CPL and BA parametrizations

show significant ∼ 2 − 4% departure from the ΛCDM behaviour. This may

be crucial in the improvement of detection sensitivities for ISW measurements

[408].

4.3 Weak-lensing convergence power spectrum

We consider the weak lensing of the Cosmic microwave background radiation

(CMBR). Gravitational lensing deflects the photons which are free streaming

from the last scattering surface (epoch of recombination z ∼ 1000 ) and mani-

fests as a secondary anisotropy in the CMBR temperature maps. The effect of

gravitational lensing can be extracted from these maps by constructing vari-

ous estimators for the convergence field κ through quadratic combination of

the (T,E,B) fields [390, 391]. Defining convergence κ as κ = −1
2
∇ · α where,

α is the total deflection, the convergence power spectrum for the CMBR weak

lensing is given by
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C`
κ
CMB

=
9

4

(
H0

c

)4

Ω2
m0

∫ χrec

0

g(χ)2

a2(χ)
P

(
`

χ
, χ

)
dχ. (4.11)

If χrec = χ(zrec) is the comoving distance to the last scattering surface then the

weak lensing geometric kernel g(χ) is given by

g(χ) =

(
χrec − χ
χrec

)
(4.12)

We have incorporated the Limber approximation in the above expression. The

Fisher matrix is diagonal for a full sky survey and the noise for the CMBR

convergence power spectrum is given by

∆C`
κ
CMB

=

√
2

(2`+ 1)

(
C`
κ
CMB

+ w−1e`
2σ2
b

)
(4.13)

where the first term comes from cosmic variance and the instrumental noise

is encapsulated in the weight w and a smoothing determined by the beam

width σb. We may write w = (σ2
pixΩpix)

−1. Here σ2
pix is the error in each pixel

which depends on the sensitivity s and observation time for each pixel tpix as

σpix = s/
√
tpix. If the FWHM ( full width at half maximum) is denoted by θfwhm

then Ωpix = Kθfwhm×θfwhm and σ2
b = θ2

fwhm/8ln2. The conversion factorK−1 =
1

(2π)2

∫
d2~̀ `2C`, where C` denotes the CMB angular power spectrum converts

noise in CMBR temperature angular power spectrum to that of convergence

angular power spectrum. The factor (2` + 1) in the denominator counts the

number of samples of C`
κ
CMB

for a given `. Figure (4.5) shows the SNR for the

CMBR weak-lensing angular power spectrum. We have assumed a CMBPol

like experiment with pixel noise of σ2
pix ≈ 1µK and θfwhm = 3arcmin andw−1 =

7.5µK−2deg−2 for our analysis [411].

Figure (4.5) shows the SNR for CMBR weak-lensing convergence angular

power spectrum. The sensitivities for different dark energy EoS parameteriza-

tions differ by a few percent from the ΛCDM predictions. However, the sen-

sitivities SNR ∼ 20 is good enough to rule out some of the parametrizations

at 3σ. But most EoS models remains degenerate to ΛCDM at these sensitivity

levels since the difference of the angular power spectrum is ∼ 1%.
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Figure 4.5: SNR for the CMBR convergence power spectrum for different
fiducial dark energy parametrizations.

4.4 Cross correlation signal

The angular power spectrum for two redshifts separated by ∆ is known to

decorrelate very fast in the radial direction [88]. In this work we consider the

summation in Eq (3.47) to extend over redshift slices whose separation is more

than the typical decorrelation length. This ensures that in the computation of

noise, each term in the summation may be thought of as an independent ran-

dom variable and the mutual covariances between the slices may be ignored.

This gives us the errors in the measurement of CFiκ(U) as

σ
Fiκ

=
CFiκ
√

2`+ 1
√
Nc√

(Cκκ + 〈Nκ〉)(CFiFi + 〈NFi〉)
(4.14)

where Nc is the number of redshift slices over which the average in Eq (3.47)

is taken and 〈NFi〉 and 〈Nκ〉 denotes the average of the noise power spectrum

for Fi and κ respectively. This variance is used in the Fisher matrix analysis for
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constraining various dark energy EoS parameters.

The parameters AF, βF, bT and x̄HI along with the cosmological parameters

model the cross-correlation signal. However the parameters AF, βF, bT and x̄HI
are largely uncertain. We perform the Fisher matrix analysis assuming AF, βF,

AT (related to x̄HI) and βT (related to bT ) along with the DE EoS parameters w0

and wa to be the free parameters. The Fisher matrix is given by

Fab =
∑
`

1

σ2
Fiκ

∂CFiκ
`

∂qa

∂CFiκ
`

∂qb
(4.15)

where we have qa = (w0, wa,AF, βF,AT , βT ). The parameters (w0, wa) are dif-

ferent for different models. The Cramer Rao bound gives the errors on the

ath parameter δqa =
√
F−1
aa . The error projections on (w0, wa) are obtained for

different dark energy models by marginalizing over the other parameters.

4.5 Cross-correlation of CMBR weak-lensing with

Lyman-α forest

The redshift distribution of quasars is known to peak in the redshift range

1.5 ≤ z ≤ 3 [412]. In our work we consider quasars in these redshifts only and

also consider that the Lyman-α forest spectrum for these quasars are measured

at a high SNR. We note that for any quasar the region 10, 000 km sec−1 blue-

wards of the quasar’s emission line is contaminated by the quasar’s proximity

effect and the Stromgen sphere. We exclude this from the Lyman-α forest spec-

tra. We also note that pixels at least 1, 000 km sec−1 red-ward of the quasar’s

needs to be excluded from the spectra to avoid contamination from Lyman-β

forest and O-VI lines. Thus, for a quasar at the fiducial redshift zQ = 2.5, the

Lyman-α forest can be measured in the redshift range 1.96 ≤ z ≤ 2.39 covering

a band z2 − z1 = 0.43.

We note that for the Lyman-α forest at a redshift z the noise is given by

NF =
1

n̄Q

(
σ2
FL + σ2

FN

)
(4.16)
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where

σ2
FL =

∫
d2U CFF(U)

and n̄Q is the angular number density of quasars. The quantity σ2
FN is a

pixel noise contribution. The observations of Lyman-α forest [413, 414] shows

that for the Lyman-α forest smoothed over ∼ 50Kms−1, the variance of the

flux fluctuations has a value σ2
FL ≈ 0.02. We adopt this value by choosing

the corresponding smoothing scale. We also assume an average S/N = 5

for every pixel in the spectra used for cross-correlation. This gives us σ2
FN =

0.04F̄(z)−2
(

4.6×10−4

∆z

)
. The mean flux F̄(z) ∼ 1. The variation of F̄(z) is how-

ever noted [261] The averaging overNc = z2−z2
∆z

different slices of redshift gives

〈NF〉. The smoothing scale ∆z is chosen by noting that at a given redshift z the

signal decorrelates over ∆z ∼ 10−3(1 + z)2
(

`
100

)−.0.7 [88].

Figure (4.6) shows the difference of the Lyman-α CMBR convergence cross

angular power spectrum for different dark energy EoS parametrizations from

the cross angular power spectrum for the ΛCDM model. We consider Planck

sensitivies for the cross-correlation with σpixΩ
1/2
pix = 0.7µK.deg. For Lyman-α

forest we have considered a BOSS like experiment with n̄Q = 8, 16, and 64deg−2

for our analysis.

We find that for n̄Q = 16deg−2 with ΛCDM fiducial model a peak SNR of ∼
50 (see Fig (4.7)) is obtained at ` ∼ 300. This allows CPL and 7CPL models to be

differentiable from the ΛCDM model at > 3σ sensitivity for ` > 1000. The BA

model however remains at 1σ from the ΛCDM and can not be differentiated at

these sensitivities. However its variance of the cross-correlation signal is very

sensitive to the quasar sampling and dense sampling is expected to improve

the sensitivity level for the cross-correlation. A Lyman-α survey with n̄Q =

64deg−2 the cross correlation has a peak SNR of ∼ 80 at ` ∼ 1200 [see Fig (4.7)]

. For such sensitivities CPL and 7CPL models can be differentiated at > 5σ for

` > 1500. The best-case scenario is shown in the last figure, which is at n̄Q ∼
100deg−2. The Fisher matrix in Eq (5.4) is used to put constraints on the dark

energy parameters. We have assumed that other cosmological parameters are

well constrained from CMBR observations and focus only on the dark energy

EoS parameters. Fig (4.9) shows the constraints on the parameters in the w0 −
wa plane. The contours correspond to also show the 68% and 95% marginalized
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Table 4.1: The the 68% (1 − σ) Constraints of DE parameters (w0, wa) from
Lyman-α and convergence cross power spectrum

Model n̄Q = 8deg−2 n̄Q = 16deg−2 n̄Q = 100deg−2

BA ∆w0 = 0.17 ∆w0 = 0.15 ∆w0 = 0.141
∆wa = 0.27 ∆wa = 0.243 ∆wa = 0.192

CPL ∆w0 = 0.191 ∆w0 = 0.168 ∆w0 = 0.121
∆wa = 0.57 ∆wa = 0.51 ∆wa = 0.42

7CPL ∆w0 = 0.081 ∆w0 = 0.079 ∆w0 = 0.068
∆wa = −− ∆wa = −− ∆wa = −−

confidence intervals for the parameters w0 and wa.

The table (4.1) shows the 1−σ errors on EoS parameters. We find that if dark

energy is described by CPL parametrization, the constraint in w0 −wa space is

competitive with the Planck+Bao+Supernova+HST for CPL parametrization

[415]. We also find that for the 7CPL parametrization, the parameterwa can not

be constrained. However, for 7CPL parametrization we can constrain w0 much

better than CPL or BA. Thus we note that for the measurement of the present

day value of the dark energy equation of state, 7CPL is definitely favourable

than CPL or BA and the generally popular CPL parametrization may not be

the best choice. It is also seen that the parameter space regions corresponding

to (w0 > −1, wa > 0) and (w0 < −1, wa < 0) is constrained much better than

the regions corresponding to (w0 > −1, wa < 0) and (w0 < −1, wa > 0). Thus

regions which correspond to dark energy being modeled by only phantom or

only non-phantom scalar fields are very strongly constrained.

4.6 Cross-correlation of CMBR weak-lensing with

redshifted 21-cm signal

In a radio-interferometric observation the noise rms. in the real part in each

visibility for single polarization measurement is given by

Vrms =
Tsys

K
√

2∆ν∆t

λ2

2kB
(4.17)
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Here kB is the Boltzmann constant, ∆ν is the width of the frequency channels

and ∆t is the integration time of the correlator. The total system temperature

Tsys maybe decomposed as Tsys = Ta + Tsky, where Ta is an instrumental con-

tribution and Tsky is a sky contribution which is usually subdominant and is

given by [79]

Tsky = 60K
( ν

300MHz

)−2.55

. (4.18)

The quantity K denotes the antenna sensitivity and maybe written as K =

Aeff/2 kB whereAeff denotes the effective collecting area of each antenna. The

factor λ2

2kB
intensity to temperature units in the Raleigh Jeans limit.

The noise variance in the visibility correlation is written as [88]

σ2
V V =

8V 4
rms

Np

(4.19)

where Np is the number of visibility pairs in a particular visibility bin U to

U + ∆U . This is given by [88, 93]

Np =
1

2

[
Nant(Nant − 1)

2

T

∆t
∆U2ρ(U, ν)

]2
2πU∆U

∆U2
(4.20)

where Nant is the total number of antennas is the array, and T is the total ob-

servation time. The normalized baseline distribution function ρ(U, ν) is given

by a convolution of the antenna distribution function with itself [416].

ρ(U, ν) =
c

B

∫ ∞
0

ρant(r)ρant(r− λU) (4.21)

where B is the band width and c is fixed by the normalization
∫
d2Uρ(U) = 1.

Table 4.2: uGMRT specifications
Observation time T Freq. range(MHz) Tsys(K) Nant ∆U Aeff (m2)

400 550-850 70 60, 100 32 1590

We consider Planck sensitivities for the cross-correlation. For the redshifted

21-cm observation we first consider the upgraded version of GMRT called

uGMRT [417], with antenna distribution roughly behaving as ρant(r) ∝ 1/r2

distributed over a 2 × 2Km2 region. Each antenna is assumed to be of 45
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m in diameter, with a field of view of 1.3◦ (FWHM). The frequency separa-

tion ν over which the 21-cm signal remains correlated scales approximately

as ν = 1MHz(`/100)−0.7 [88]. We assume that the signal is averaged over fre-

quency bins of this width to increase the signal-to-noise ratio (S/N). The dif-

ferent telescope parameters used for our analysis is summarized in table (4.2).

Figure (4.8) shows the SNR for a ΛCDM fiducial model. We find that for

a uGMRT with Nant = 60 with ΛCDM fiducial model a peak SNR of ∼ 40 is

obtained at ` ∼ 600. If the number of antennas in the interferometer is Nant =

100 a peak SNR of ∼ 54 is achieved at ` ∼ 1500. In the limit of negligible

instrumental noise a peak SNR of 70 is possible.

Figure (4.10) shows the difference of the 21-cm and CMBR convergence

cross angular power spectrum for different dark energy EoS parametrizations

from the cross angular power spectrum for the ΛCDM model. We find that

BA, CPL and 7CPL models to be differentiable from the ΛCDM model at > 3σ

sensitivity.

For making error projections on (w0−wa), we also consider the radio inter-

ferometer MeerKAT [418]. This telescope has dishes of 13.5m diameter and a

wider field of view. We consider the UHF-band of this telescope for our analy-

sis. The telescope parameters for MeerKAT are summarized in the table (4.3).

Table 4.3: MeerKAT specifications
Observation time T Freq. range Tsys Nant ∆U Aeff/Tsys

(Hrs) (MHz) (K) (m2/K)

400 580-1015 30 64 12 320

The Fisher matrix in Eq (5.4) is used to make error projections for the dark

energy parameters. Fig (4.11) shows the constraints on the parameters in the

w0 − wa plane for cross-correlation with uGMRT. The contours correspond to

the 68% and 95% marginalized confidence intervals for the parameters w0 and

wa. A summary of the errors obtained in the parameters (w0, wa) is given in the

table(4.4). We find that the constraints on the EoS parameters are much better

than the ones obtained from the cross-correlation with Lyman-α forest. This is

due to the large bandwidth of the 21 cm observation over which the signal is
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Table 4.4: The the 68% (1 − σ) Constraints of DE parameters (w0, wa) from HI
21-cm and convergence cross power spectrum

Model Cosmic variance limit uGMRT MeerKAT

BA ∆w0 = 0.079 ∆w0 = 0.098 ∆w0 = 0.122
∆wa = 0.121 ∆wa = 0.20 ∆wa = 0.22

CPL ∆w0 = 0.092 ∆w0 = 0.115 ∆w0 = 0.138
∆wa = 0.168 ∆wa = 0.40 ∆wa = 0.434

7CPL ∆w0 = 0.04 ∆w0 = 0.05 ∆w0 = 0.053
∆wa = −− ∆wa = −− ∆wa = −−

averaged.

The results from cross-correlation with a more realistic MeerKAT is shown

in the figure (4.12). The marginalized 1-σ errors obtained in the parameters

(w0, wa) for MeerKAT is also given in the table(4.4). The constraints show rea-

sonable degradation as compared to the uGMRT predictions.

The projected constraints on the dark energy equation of state indicate that

for a broadband 21-cm survey with uGMRT-like telescope with 100 or more

antennas the cross-correlation may constrain dark energy evolution at a level

which is better the projections for auto-correlation results with a SKA1 type ex-

periment [396] or a joint Planck+SN+BAO+HST [415]. The 7CPL parametriza-

tion is also seen to constrain the present value of dark energy EoS much better

than CPL and BA parametrization which is also the conclusion drawn in ear-

lier works [396]. We also find that BA model constrains (w0, wa) much better

than CPL model. Since CPL parametrization is the widely use parametriza-

tion to model dark energy evolution, we note that it may not be suitable to

constrain dark energy evolution.

The projection of (w0, wa) for CPL model has been studied extensively using

eBOSS and DESI cosmological data [419, 420]. The limits of the error contours

corresponding to the CPL model are w0 = (−1.5,−0.5), wa = (−1, 1) for the

eBOSS survey which is similar to our projections. The PLANCK+DESI data

limits for w0 and wa are w0 = (−1.13,−0.86) and wa = (−0.4, 0.4) respectively,

which has better figure of merit. A comparison of dark energy EoS parame-

ter error projections for different models are studied in an earlier work using

Sne Ia JLA and BAO datasets [421]. Their projected error limits for the CPL
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model parameters are ≈ w0 = (−1.6,−0.75) and wa = (−2.5,−1.5). Thus, we

note that the cross-correlations between the weak lensing convergence with

HI-21cm and Ly-α forest found better or reasonably close constraints on the

w0, wa parameter space when compared with some other probes.

4.7 Conclusion

There are several observational aspects that we have not considered in this

work. Foreground subtraction issues, is a major concern for the 21-cm sig-

nal. Large astrophysical foregrounds from galactic and extra galactic sources

pose a serious threat towards achieving desired detection sensitivities [359].

Though the problem of foreground subtraction is less for the cross correla-

tion, a significant amount of foreground subtraction is required to obtain good

SNR since the foregrounds appear as noise in the cross-correlation. For the

Lyman-α forest observations, continuum subtraction and avoiding metal line

contamination, though less serious, needs to carried out with high precision.

Further, man made radio frequency interferences (RFIs), calibration errors and

other systematics also needs to be tackled for a detection of the HI 21-cm sig-

nal. We emphasize that some of the fundamental problems posed by 21-cm

foregrounds can be avoided by considering cross correlations.

We also note that we have restricted our study of dark energy evolution to

a very small set of commonly used parametrizations. There are a large num-

ber of possible 2-parameter descriptions which may suit some specific dark

energy dynamics [388]. Though the CPL model and its variants fits a reason-

able stretch of dark energy dynamics they do not describe all kinds of dy-

namics [52, 422]. We also note that the error projections obtained in this work

from a Fisher matrix analysis gives a good idea about the efficacy of the cross-

correlation in constraining the (w0, wa) parameter space. However, a more so-

phisticated Bayesian analysis is needed for more robust statistical predictions.

We conclude by noting that the cross-correlation power spectrum of the

HI tracers from the post reionization epoch with weak-lensing fields is a di-

rect probe of cosmological structure formation which can be detected to a high

level of statistical sensitivity with upcoming QSO surveys and radiointerfer-
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ometers. This has the potential to provide new insights on dark energy evolu-

tion. This probe may be combined with other cosmological observations like

CMB, BAO, SNIa etc and a joint analysis shall be able to give us a clearer pic-

ture of the nature of dark energy and its cosmic evolution.
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Figure 4.6: The difference of the Lyman-α forest - CMBR convergence cross
power spectrum for different fiducial dark energy parametrizations from the
ΛCDM model. The 1−σ error is shown by the shaded region. The first and the
second figure corresponds to a quasar number density of n̄Q = 16deg−2 and
n̄Q = 64deg−2 respectively. The last figure shows the best case scenario in the
cosmic variance limit of no observational noise.



CHAPTER 4. CONSTRAINING DARK ENERGY USING THE CROSS CORRELATIONS OF WEAK LENSING WITH POST-REIONIZATION
PROBES OF HI 78

101 102 103

U

20

30

40

50

60

70

80

90

S/
N

(C
F )

nQ = 8deg 2

nQ = 16deg 2

nQ = 64deg 2

nQ = 100deg 2
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respectively. We also show the cosmic variance limit.
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Figure 4.9: The 68% and 95% marginalized confidence intervals for the param-
eters w0 and wa from the Lyman-α convergence cross correlation for different
dark energy EoS parametrizations. The fiducial model is chosen as the ΛCDM
model with (w0, wa) = (−1, 0). The three figures correspond to n̄Q = 8deg−2,
n̄Q = 16deg−2 and n̄Q = 100deg−2 respectively.
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Figure 4.10: The difference of the 21 cm - convergence cross power spectrum
for different fiducial dark energy parametrizations from the ΛCDM model.
The 1 − σ error is shown by the shaded region. The first and the second fig-
ure corresponds to a uGMRT like radio interferometer with Nant = 60 and
Nant = 100 respectively. The observation time is 400 hrs. The last figure shows
the best case scenario in the cosmic variance limit of no observational noise.
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Figure 4.11: The 68% and 95% marginalized confidence intervals for the pa-
rameters w0 and wa from the 21-cm convergence cross correlation for different
dark energy EoS parametrizations for uGMRT. The fiducial model is chosen as
the ΛCDM model with (w0, wa) = (−1, 0). The second figure shows the best
case scenario of a cosmic variance dominated experiment.
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Figure 4.12: The 68% and 95% marginalized confidence intervals for w0 and
wa from the 21-cm convergence cross correlation for different dark energy EoS
parametrizations. The fiducial model is chosen as the ΛCDM model with
(w0, wa) = (−1, 0). The figure correspond to MeerKAT observations.





CHAPTER 5
Intensity mapping of post-reionization 21-cm signal and

its cross-correlations as a probe of f (R) gravity §

5.1 Introduction

Einstein’s general theory of relativity (GR) has endured a complete century

of intensive scrutiny, and has emerged as the most successful theory of grav-

itation. Several tests on solar system scales have proved its consistency on

small scales [423]. However, modifications to the theory of gravity have often

been proposed as a way to explain the observed cosmic acceleration [62]. Sev-

eral observational evidences like Galaxy redshift surveys, Cosmic Microwave

Background Radiation (CMBR) observations and supernovae surveys strongly

indicate that the energy budget of our universe is dominated by dark energy- a

fluid with energy-momentum tensor that violates the strong energy condition

[15, 16, 27, 375]. We have seen earlier that though the cosmological constant

(Λ) treated as a fluid with an equation of state p = −ρ is the most popular can-

didate for dark energy in the framework of classical general relativity [19] the

ΛCDM, model suffers from several theoretical and observational difficulties

[20, 27–29]. In the matter sector, scalar fields have often been used to model

various properties of dynamical and clustering dark energy [21, 24, 64, 377–

380, 382]. Extensive literature is available on the diversity of such models and

their general treatment using model-independent parametrizations [150, 206,

207]. In the last chapter we looked at such scalar field parametrizations.

Alternatively, a modification of Einstein’s theory can mimic dark energy

without requiring an exotic fluid [25]. In f(R) theory, the Ricci scalar R ap-

pearing in the Einstein-Hilbert action, is replaced by a general function of R

§The chapter is adapted from Chandrachud B.V. Dash, Tapomoy Guha Sarkar, Journal of As-
tronomy & Astrophysics, (2022) on the special issue on Indian participation in SKA

83
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[61, 183, 424, 425] as

S =
1

2κ

∫
d4x
√
−gf(R) + Sm (5.1)

where κ = 8πGN
c4

and Sm is the action for matter. The f(R) modification natu-

rally has its imprint on the background comsological evolution and growth of

structures. The f(R) modification to gravity will affect the 21-cm power spec-

trum through its signature on cosmic distances, the Hubble parameter and the

growth rate of density perturbations. We consider a Hu-Sawicki form of f(R),

and investigate the possibility of differentiating such a modification from the

standard ΛCDM model.

In this chapter our objective is to make error projections on parameters of a

f(R) gravity theory using the post-reionization 21-cm power spectrum in auto

and cross-correlations. For cross-correlation of the 21-cm signal we have con-

sidered two dark matter tracers: (a) galaxy weak lensing and (b) the Lyman-

α forest. We investigate observational strategies with the upcoming SKA to-

wards constraining f(R) theories at precision levels competitive if not signif-

icantly better than the next generation of supernova Ia observations, galaxy

surveys, and CMB experiments.

5.2 Cosmology with f (R) gravity

We consider a spatially flat Universe comprising of radiation (density ργ) and

non-relativistic matter (density ρm). In a f(R) gravity theory, the Einstein’s

field equation and its trace for a Friedman-Lemitre-Robertson-Walker metric

(FLRW) with a scale factor a(t) and Hubble parameter H = ȧ(t)
a(t)

reduces to

[194]

3H2f,R −
1

2
(Rf,R − f) + 3Hḟ,R = κ2(ρm + ργ) (5.2)

Hf,R − 2f,RḢ − f̈,R = κ2

(
ρm +

4

3
ργ

)
(5.3)

where f,R = ∂f(R)/∂R and the “.” denotes a differentiation with respect to the

cosmic time t. The Ricci scalar R is given by R = 6(2H2 + Ḣ). It is convenient
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to express the above equations in terms of the following set of dimensionless

variables x1 ≡ − ḟ,R
Hf,R

, x2 ≡ − f
6H2f,R

, x3 ≡ R
6H2 , x4 ≡ κ2ργ

3H2f,R
. In terms of these

quantities the dynamical evolution of the density parameters can obtained by

solving the following set of autonomous first order differential equations [194]

x′1 = −1− x3 − 3x2 + x2
1 − x1x3 + x4 (5.4)

x′2 =
x1x3

m
− x2(2x3 − 4− x1) (5.5)

x′3 = −x1x3

m
− 2x3(x3 − 2) (5.6)

x′4 = −2x3x4 + x1x4 (5.7)

where ′ = d/d ln(a) and m measures the deviation from ΛCDM model defined

as m ≡ d ln f,R
d lnR

=
Rf,RR
f,R

. These equations form a 4-dimensional coupled dynam-

ical system which can be integrated numerically for a given f(R) and with

suitable initial conditions. Solution to the above coupled ODEs can be used

to determine the dynamics of the density parameters and map a f(R) gravity

theory to a dark energy with an effective equation of state (EoS) weff (z) as

Ωm ≡
κ2ρm

3H2f,R
= 1− (x1 + x2 + x3 + x4) (5.8)

Ωγ ≡ x4 (5.9)

Ω
DE
≡ x1 + x2 + x3 (5.10)

weff ≡ −
1

3
(2x3 − 1) (5.11)

A wide variety of f(R) models have been proposed [154, 156, 182, 183].

The functional form of f(R) is chosen so that the model is phenomenologi-

cally satisfactory. We expect the f(R) cosmology to be indistinguishable from

the ΛCDM at high redshifts where the latter is well constrained from CMBR

observations. At low redshifts the accelerated expansion history should be

close to the ΛCDM predictions and on Solar system scales the proposed f(R)

model should be consistent with the ΛCDM model as a limiting case.

We consider the f(R) gravity model proposed by Hu-Sawicki (HS), where

the functional form of f(R) is given by [25, 182]

f(R) = R− µRc
(R/Rc)

2

(R/Rc)2 + 1
(5.12)
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Here µ and Rc are two non-negative parameters in the model where Rc is the

present day value of the Ricci scalar. The expansion rate H for a viable f(R)

gravity theories is expected to be close to the concordance ΛCDM [426] pre-

dictions. The quantity f,R plays a crucial role to quantify the deviation of f(R)

gravity models from GR whereby f,R behaves like an extra degrees of freedom

that acts similar to a scalar field. We may write

f,R = −2f0
R

H2
0

[
1 +

(
R

Rc

)2
]−2

(5.13)

with |f0| ≡ (µH2
0 )/Rc as the only free parameter.

To recover standard GR results in Solar system tests, the present day value

of f,R is restricted to log10 |f,R0| < −6 [182]. Further, the second derivative

f,RR = d2f(R)/dR2 > 0 in order to avoid ghost and tachyonic solutions [184].

Weak Lensing peak abundance studies have provided strong constraints on

log10 |f,R0| < −4.82 and < −5.16 with WMAP9 and Planck15 priors, respec-

tively. Tight constraints are also obtained from weak lensing peak statistics

study with log10 |f,R0| < −4.73 (WMAP9) and log10 |f,R0| < −4.79 (Planck2013)

([427]). In our work we adopt the fiducial value log10 |f,R0| = −5 from obser-

vations [427, 428].

Growth of large scale structure (LSS) offers a unique possibility to constrain

cosmological models. The quantity of interest is the growth rate of matter den-

sity perturbations fg(k, z) ≡ d ln δm(k,z)
d ln a

which is sensitive to the expansion his-

tory of the Universe. In the linear perturbation theory, and on sub-horizon

scales (k/a >> H) the evolution of matter density perturbations δm(k, z) is dic-

tated by the differential equation [161, 194–196].

δ̈m + 2Hδ̇m − 4πGeff (a, k)ρmδm ' 0 (5.14)

where Geff is an effective gravitational constant which is related to standard

Newtonian gravitational constant (GN ) as

Geff (a, k) =
GN

f,R

[
1 +

(k2/a2)(f,RR/f,R)

1 + 3(k2/a2)(f,RR/f,R)

]
(5.15)
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Figure 5.1: The figure shows the departure of the growth rate fg(z, k) for the
f(R) theory with log10 |f,R0| = −5 from the ΛCDM prediction. We plot the
quantity |fg−f

ΛCDM
g

fΛCDM
g

| in the (z, k) plane.

In f(R) theories Geff is a scale dependent function [197]. The scale depen-

dence of the growing mode of density fluctuations is widely exploited to dif-

ferentiate the structure formation beyond standard model of cosmology. In

obtaining the approximate equation (5.14) we have incorporated the assump-

tion that oscillating modes are negligible compared to the modes induced by

matter perturbations and also ˙f,R ≈ 0 on sub-horizon scales of interest [194].

Figure (5.1) shows the departure of the the growth rate fg(z, k) for the f(R)

theory with log10 |f,R0| = −5 from the ΛCDM prediction. We know that the

growth rate is scale independent and depends only on redshift for the ΛCDM

model. Thus the k−dependence seen in the figure arises purely from the f(R)

modification to gravity. Since different modes grow differently, the evolution

has an additional contribution towards changing the shape of the cosmological

power spectrum. The departure is small at very low redshifts and also very

high redshifts and increases monotonically with k for a given redshift. We find

that a departure of > 12% is seen in the redshift window 0.5 < z < 1.5 for

k > 0.5Mpc−1.
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at redshift z = 2.3.
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In Figure (5.2) we have shown the linear growth rate fg(z, k) for ΛCDM

and f(R) with log10 |f,R0| = −5 at a redshift z = 2.3. At smaller scales (large k

modes) the scale dependent growth become more prominent and larger scales

(small k modes) f(R) gravity coincide with ΛCDM. We have also shown the

fg(k, z) for log10 |f,R0| = −4 and log10 |f,R0| = −6 gravity model for comparison

purpose only.

Matter power spectrum

f(R) gravity has a significant impact on structure formation in low density

regions through a scale dependent growth factor because of enhancement of

gravitational forces. The modification to the force law in modified gravity the-

ories is highly constrained from local tests [429]. It is also well studied that

f(R) modification to gravity will induce non-linearities in the power spectrum

through mechanisms like chameleon [430], dilaton effect [431] etc. The shape

of the matter power spectrum is sensitive to the choice of cosmological model

and as such it is sensitive probe of the underlying theory of gravity or dark

energy. We model the power spectrum in f(R) gravity models as

Pf(R)(k) =
PLin

(1 + k2/k2
trunc)

2
e−(k/ks)2

(5.16)

where PLin is the linear matter power spectrum. In our analysis we have used

the analytic fitting function by Hu-Eisenstein for PLin [126]. We have used the

fitting parameters (ktrunc, ks) for the suppressed matter power spectrum from

[432] for f(R) gravity models. P (k, z) is obtained by multiplying the square of

the growing mode with this. We remind ourselves that the growing mode is

scale dependent for f(R) models and is scale independent for ΛCDM model.

Figure (5.3) shows the relative deviation of matter power spectrum of f(R)

gravity theory from ΛCDM at a fiducial redshift z = 2.3. The topmost curve

corresponds to linear theory prediction and the one below shows the sup-

pressed matter power spectrum due to the additional factor introduced in

Eq(5.16). The relative deviation of PLin(k) from its ΛCDM counterpart grows at

smaller scales, because the mass of the scalar field yields a characteristic scale

dependence for the linear growing mode. Moreover, on linear scales there is



CHAPTER 5. INTENSITY MAPPING OF POST-REIONIZATION 21-CM SIGNAL AND ITS CROSS-CORRELATIONS AS A PROBE OF F (R)
GRAVITY 90

no additional chameleon screening mechanism.

Many simulation result shows that the deviation is significantly suppressed

due to screening mechanism [433, 434]. The additional prefactor in equation

(5.16) is fitted for mildly nonlinear behavior and reproduces the suppressed

matter power spectrum with sub percent accuracy without requiring the full

non linear simulations (refer Fig:5 in [433]).

5.3 The 21-cm signal from the post-reionization era

Bulk of the low density hydrogen gets completely ionized by the end of the

reionization epoch around z ∼ 6 [329]. A small fraction of HI that survives the

process of reionization is believed to remain confined in the over-dense regions

of the IGM. These clumped, dense damped Lyman-α systems (DLAs) [266] re-

main neutral as they are self shielded from the background ionizing radiation.

They store∼ 80% of the HI at z < 4 [267] with HI column density greater than

2 × 1020atoms/cm2 [268–270] and are the dominant source of the 21-cm radi-

ation in the post-reionization epoch. The clustering properties of these DLA

clouds suggest that they are associated with galaxies and located in regions of

highly non-linear matter over densities [271–273]. The 21-cm signal from the

post-reionization epoch has been extensively studied [81–83, 87–89, 435]. The

emitted flux from individual clouds is extremely weak (< 10µJy). These indi-

vidual DLA clouds are unlikely to be detected in radio observations, even with

futuristic telescopes. However, in an intensity mapping experiment one does

not aim to resolve the individual sources. The collective emission forms a dif-

fused background in all radio-observations at the observation frequencies less

than 1420MHz. Fluctuations of this signal on the sky plane and across redshift,

maps out the three dimensional tomographic image of the Universe.

Several assumptions simplify the modeling of the post-reionization HI sig-

nal. These are either motivated from implicit observations or from numerical

simulations. Adopting all the assumptions discussed above, the power spec-

trum of post-reionization HI 21-cm brightness temperature fluctuations from
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redshift z is given by ([256, 283])

PHI(k, z) = T̄ (z)2x̄2
HIbT (k, z)2(1 + βT (k, z)µ2)

2
P (k, z) (5.17)

where µ = k̂ · n̂, βT (k, z) = fg(k, z)/bT (k, z), and

T̄ (z) = 4.0 mK (1 + z)2

(
Ωb0h

2

0.02

)(
0.7

h

)
H0

H(z)
(5.18)

The term fg(z, k)µ2 has its origin in the HI peculiar velocities [83, 256] which,

as we mentioned, is also sourced by the dark matter fluctuations. The critical

density for collapse is smaller in f(R) gravity models which leads to a sig-

nificant suppression of bias i.e bf(R)
T < bGRT . This has been seen in numerical

simulations [434, 436]. Though the fitting function for bT (6.7) is obtained from

ΛCDM simuation, we used the same form for f(R) gravity assuming the bias

is not significantly different in the redshifts of our interest. However we have

kept the bias as free parameter which we have eventually marginalized over.

We kept the third order component of polynomial bias as the free parameter

because we know on large scale the bias is completely indistinguishable from

ΛCDM and suppression shows up only on small scales. For log10 |f,R0| = −5

model our used bias fitting function is well within the error bars and can be

used safely [436].

The f(R) modification affects the 21-cm power spectrum through the change

in the redshift space distortion parameter βT (k, z), and P (k, z). Figure (5.4)

shows the 21-cm power spectrum at z = 1 in the (k‖, k⊥) space. The asym-

metry in the signal is indicative of redshift space distortion and is sensitive

to βT (k, z). We emphasize that (x̄HI , βT (k, z)) along with the cosmological pa-

rameters completely model the post-reionization 21-cm signal. We note that

the product b2
T x̄HI which appears in the overall amplitude of the 21-cm sig-

nal is a largely unknown parameter and depends largely on the HI model-

ing. We shall, therefore be interested in constraining the function βT (k, z) from

some radio-interferometric observation of the signal. We shall marginalize our

Fisher matrix projections over the overall amplitude to make error projections.

We shall now investigate the possibility of constraining the function βT (k, z)

and thereby put observational bounds on |f,R0| from a radio-interferometric
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observation of the signal.

Observed 21-cm power spectrum

The quantity of interest in radio-interferometric observation is the complex

visibility V(U, ν) measured as function of baseline U = (u, v) and observing

frequency ν. Considering an observation frequency bandwidth and defining

∆ν as the difference from the central observing frequency, a further Fourier

transform in ∆ν gives us the visibility v(U, τ) as a function of delay channel

τ . The measured visibility can be written as a sum of signal s(U, τ) and noise

n(U, τ) as v(U, τ) = s(U, τ) + n(U, τ). The signal s(U, τ) can be written as

s(Ua, τm) =
2kB
λ2

∫
d3k

(2π)3
G(k,Ua, τm) δ̃Tb(k) (5.19)

where δ̃Tb(k) denotes the fluctuations of the 21-cm brightness temperature in

Fourier space. The transformation kernel G is given by

G(k⊥, k‖,Ua, τm) = Ã

(
k⊥r

2π
−Ua

)
B̃

(
k‖r
′

2π
− τm

)

where Ã(U) and B̃(τ) denote the Fourier transform of the telescope beam A(~θ)

and the frequency response window function B(∆ν) respectively. We use r to

denote comoving distance to the observing redshift z = (1420 MHz/ν)− 1 and

r′ = dr(ν)/dν. The signal covariance matrix is defined as

〈s(Ua, τm)s∗(Ub, τn)〉 = CS
(a,m),(b,n)

and is given by

CS =

(
2kB
λ2

)2
1

r2r′

∫
d2Udτ G(k,Ua, τm)G∗(k,Ub, τn)× PHI(k) (5.20)

where k = (2πU
r
, 2πτ
r′

). The noise in the visibilities measured at different base-

lines and frequency channels are uncorrelated. If we define the noise covari-
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ance matrix as CN = 〈n(Ua, τm) n∗(Ub, τn)〉, we have

CN =

(
2kB
λ2

)2(
λ2Tsys
Ae

)2
B

t
δm,nδa,b (5.21)

where t is the correlator integration time and B is the observing bandwidth.

The system temperature Tsys can be written as a contribution from the instru-

ment and the sky as Tsys = Tinst + Tsky, where Tsky = 60K
(

ν
300 MHz

)−2.5. We

first investigate the possibility of constraining the scale dependent function

βT (k, zfid). We divide the observational range kmin to kmax into Nbin bins and

constrain the values of βT (ki) at the middle of the bin ki using a Fisher matrix

analysis. The departure from the ΛCDM model for the fiducial log10 |f,R0| < −5

model for a range of k values, peaks around z ∼ 1. We choose the observational

central frequency to be 710MHz corresponding to this redshift. We first con-

sider an OWFA [437–439] like array which is the upgraded version of the Ooty

radio telescope and is expected to operate as an linear radio-interferometric

array. The OWFA is a 530 m long and 30 m wide parabolic cylindrical reflector

that is placed along the north-south direction on a hill that has the same slope

(∼ 11◦) as the latitude of the place. This makes it possible to track a given

patch of sky by rotating the cylinder about the long axis of the telescope. The

OWFA has 1056 dipoles in total that are equally placed at ∼ 0.5 m apart from

each other along the long axis of the telescope. OWFA is capable of operating

in two independent simultaneous radio-interferometric modes - PI and PII.

The OWFA PII has 264 antennas in total, the radio signals from 4 consecutive

dipoles have been combined to form a single antenna element. The OWFA PII

has the smallest baseline length, d = 1.92 m that corresponds to the distance

between the two consecutive antennas in the array. The OWFA PII has an op-

erating bandwidth, B = 39 MHz (for detailed specifications [439]). The full

covariance matrix is given by

Cab = CS +
CN

Nr

(5.22)
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Figure 5.4: The figure shows the 21-cm power spectrum in the (k‖, k⊥) space at
the observing frequency ν0 = 710MHz.

where Nr = 264 − a is the redundancy of the baselines. The Fisher matrix is

given by

Fij =
1

2

∑
m

C−1(m)abC(m)bc,iC
−1(m)cdC(m)bc,j (5.23)

where i and j runs over the parameters βT (k1), βT (k2), . . . βT (kNbin). The error

on the ith parameter is obtained from the Cramer Rao bound as
√
F−1
ii . We find

that in the k−range 0.06 < k < 1.32 βT (k) can be measured in 4 bins at> 9% for

500 × 50hrs observation with 50 independent pointings. Since the maximum

departure of βT (k) from the ΛCDM is ∼ 11% in the k−range of interest, such

an observation will at its best be able to distinguish between a log10 |f,R0| = −5

at a ∼ 1− σ level and log10 |f,R0| = −4 at ∼ 2− σ level.

For stronger constraints, we now consider a SKA1-mid type of radio array.

We consider a binning in visibility ∆U, and a total observing time T0 causing a

reduction of noise variance by a factor Np where Np is the number of visibility

pairs in the bin given by Np = Nvis(Nvis − 1)/2 ≈ N2
vis/2 where Nvis is the
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Figure 5.5: The figure shows the variation of βT (k, zfid) at the fiducial redshift
zfid = 1 for various Hu-Sawcki f(R) models. The ΛCDM prediction is also
shown. We also show the 1−σ error bars on βT at 6 logarithmically spaced k−
bins in the observed range of scales for the fiducial model with log10 |f,R0| =
−5.

number of visibilities in the bin measured in time T0. We may write

Nvis =
Nant(Nant − 1)

2

To
t
ρ(U)δ2U (5.24)

whereNant is the total number of antennas in the array and ρ(U) is the baseline

distribution function. In general, the baseline distribution function is given by

a convolution

ρ(U) = c

∫
d2rρant(r)ρant(r− λU) (5.25)

Where c is fixed by normalization of ρ(U) and ρant is the distribution of an-

tennas. Further, if we assume a uniform frequency response over the entire

observation bandwidth B and a Gaussian beam for the telescope∫
dτ B̃(τ − τm)B̃∗(τ − τn) = Bδmn, and (5.26)

∫
d2UA(U−Ua)A

∗(U−Ub) ≈
λ2

Ae
δa,b (5.27)

where, Ae is the effective area of the antenna dishes. With these simplifications
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we may then write

CS ≈
(

2kB
λ2

)2
Bλ2

r2r′Ae
PHI

(
2πUa

r
,
2πτm
r′

)
δm,nδa,b

The 21-cm power spectrum is not spherically symmetric, due to redshift

space distortion but is symmetric around the polar angle φ. Using this sym-

metry, we would want to sum all the Fourier cells in an annulus of constant

(k, µ = cos θ = k‖/k) with radial width ∆k and angular width ∆θ for a statis-

tical detection with improved SNR. The number of independent cells in such

an annulus is

Nc = 2πk2∆k∆µ
V ol

(2π)3
(5.28)

where the volume V ol of the intensity mapping survey is given by V ol =
r2λ2r′B
Ae

. Thus, the full covariance matrix may be written as

CTot =
1√
N c

[
CS +

CN

Np

]
(5.29)

The covariance matrix is diagonal owing to the binning in U since different

baselines which get correlated due to the telescope beam are now uncorrelated.

Further, to increase the sensitivity we consider the angle averaged power spec-

trum by averaging over µ. Thus we have

PHI(k) = T̄ (z)2x̄2
HIb

2
T

(
1 +

2

3
βT +

1

5
β2
T

)
P (k, z) (5.30)

and the corresponding variance is obtained by summing

δPHI(k) =

[∑
µ

1

δPHI(k, µ)2

]−1/2

(5.31)

where δPHI(k, µ) = Aer2r′

λ2B
CTot.

The fisher matrix for parameters λi may be written as

Fij =
∑
k

1

δP 2
HI(k)

∂PHI(k)

∂λi

∂PHI(k)

∂λj
(5.32)
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We consider a radio telescope with an operational frequency range of 350MHz

to 14GHz. We consider 250 dish antennae each of diameter 15m and efficiency

0.7. To calculate the normalized baseline distribution function We assume that

baselines are distributed such that the antenna distribution falls off as 1/r2. We

also assume that there is no baseline coverage below 30m. We assume Tsys =

60K and an observation bandwidth of 128MHz. We assume ∆U = Umin = 50

over which the signal is averaged.

Figure (5.5) shows the variation of βT (k, zfid) at the fiducial redshift z = 1

corresponding to the observing central frequency of 710MHz. The monotonic

rise of βT (k, zfid = 1.0) owes its origin to both the monotonic growth of fg(k)

and also a slow decrease of bT (k, zfid = 1.0) in the k− range of interest. The be-

haviour is similar for different values of log10 |f,R0|. The ΛCDM result is seen to

coincide with the f(R) prediction on large scales. We note that the log10 |f,R0| =
−6 matches with the ΛCDM model for k < 0.15Mpc−1. We consider a fidu-

cial log10 |f,R0| = −5 for our analysis. The k−range between the smallest and

largest baselines in binned as ∆k = αk where α = 1
Nbin

ln(Umax/Umin), with

(Umin, Umax) = (50, 550). We consider 400 × 50 hrs observation in 50 indepen-

dent pointings. The 1− σ errors on βT (ki) are obtained from the Fisher matrix

analysis where the overall normalization of the power-spectrum is marginal-

ized over. We find that for k > 0.4Mpc−1, the log10 |f,R0| = −5 can be differenti-

ated from the ΛCDM model at a sensitivity of> 5σ if we consider 6 k−bins. On

larger scales k < 0.4Mpc−1 the f(R) models with−6 < log10 |f,R0| < −4 remain

statistically indistinguishable from the ΛCDM model. Thus, it appears that 21-

cm observations of the post-reionization epoch may only be able to constrain

f(R) theories on relatively small scales.

Instead of constraining the binned function βT (k), we investigate the possi-

bility of putting bounds on log10 |f,R0| from the given observation. Marginaliz-

ing over the overall amplitude of the power spectrum, we are thus interested

in two parameters (Ωm0, log10 |f,R0|). The 1− σ bounds on log10 |f,R0| obtained

from the marginalized Fisher matrix is given in the table below. Our error pro-

jection maybe compared with constraints obtained from other observational

probes. We find that our projected constraints are competitive with constraints

obtained from diverse probes.
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Table 5.1: The 68% (1− σ) marginalized errors on log10 |f,R0| and Ωm0

Model log10 |fR0| Ωm0

f(R) −5± 0.62 0.315± 0.005

Table 5.2: Bounds on p = log10 |f,R0| from other probes
Probe of f(R) gravity Bound on log10 |f,R0|

GW Merger GW170817 p < −2.52 [440]
Suyaev Zeldovich clusters PLANCK −5.81 < p < −4.40 [441]

Weak lensing Peak Statistics −5.16 < p < −4.82 [427]
CMB + Cluster + SN + H0 + BAO p < −3.89 [442]

The radio-interferometric observation of the post-reionization HI 21-cm sig-

nal, thus holds the potential of providing robust constraints on f(R) models.

5.4 Cross-correlation of 21-cm signal with galaxy weak

lensing

Weak-lensing [67, 68] of background source galaxies by large scale structure

(cosmic shear) has been extensively studied as a powerful cosmological probe

[69–77]. The quantity of interest to us is the amplification matrix [67, 68] which

quantifies the distortions due to gravitational lensing. These distortions allow

to analyze large scale structures and map the matter distribution, on a broad

range of scales. Noting that scalar perturbations can not induce any rotation,

one only has shear (γ) and convergence (κ) effects in the lensed distorted im-

age of a galaxy. This weak shear/convergence signal is superposed on the

intrinsic ellipticities and irregularities of background galaxy images [216]. We

are interested in the statistical properties of these distortion fields. The angular

power spectrum of the shear field is identical to that of the convergence field

whereby we shall only be looking at the convergence field. The Weak-lensing

convergence field on the sky is given by a weighted line of sight integral [67]

of the overdensity field δ

κ(~θ) =

∫ χs

0

Aκ(χ)δ(χ~θ, χ)dχ (5.33)
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where χ denotes the comoving distance and

Aκ(χ) =
3

2

(
H0

c

)2

Ωm0

g(χ) χ

a(χ)
, with g(χ) =

∫ χs

χ

n(z)
dz

dχ′
χ′ − χ
χ′

dχ′ (5.34)

The weight function appearing in the kernel incorporates the all the sources

distributed according to a distribution function n(χ) upto χs. We have as-

sumed that the source galaxies are distributed as [443]

n(z) = n0

(
z

z0

)α
exp [−(z/z0)]β (5.35)

In this work, we have considered a weak-lensing survey where z0 = 0.5, α = 2

and β = 1 [77]. On small angular scales (typically for ` > 10) where "flat sky

" approximation is reasonable we can use the Limber approximation [218] in

Fourier space and write the weak-lensing convergence angular power spec-

trum as

C`
κ =

9

4

(
H0

c

)4

Ω2
m0

∫ χs

0

g2(χ)

a2(χ)
P

(
`

χ
, χ

)
dχ (5.36)

where P denotes the matter power spectrum. The noise for the convergence

angular power spectrum is given by ∆C`
κ where

∆C`
κ =

√
2

(2`+ 1)fsky

(
C`
κ +

σ2
ε

ng

)
(5.37)

Here, the Poisson noise is dictated by the total galaxy count

ng =

∫ χs

0

n(z)
dz

dχ′
dχ′ (5.38)

The fraction of the sky observed in the weak lensing survey is assumed to be

fsky = 0.5 and we adopt σε = 0.4 as the galaxy-intrinsic rms shear [70]. The

factor (2` + 1) in the denominator counts the number of samples of C`
κ for a

given `.

On large scales the redshifted HI 21-cm signal from post reionization epoch

known to be biased tracers of the underlying dark matter distribution. Assum-

ing HI perturbations are generated by a Gaussian random process, and incor-
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porating the effect of redshift space distortion the fluctuations of the 21-cm

brightness temperature, the cross-correlation signal in a flat sky approxima-

tion can be written as,

CTκ(U) =
1

π(χs − χ0)

χs∑
χo

∆χ

χ2
ATAκ

∫ ∞
0

dk‖

[
1 + βT

k2
‖

k2

]
P (k, χ) (5.39)

with k =

√
k2
‖ +

(
2π~U
χ

)2

.

The auto-correlation angular power spectra may be similarly written as

[360]

CTT (U) =
1

π(χ2 − χ1)2

χ2∑
χ1

∆χ

χ2
A2
T

∫ ∞
0

dk‖

[
1 + βT

k2
‖

k2

]2

P (k, χ) (5.40)

Cκκ(U) =
1

π

∫ χs

0

dχ

χ2
A2
κ

∫ ∞
0

dk‖P (k, χ) (5.41)

We follow the formalism in [360] and considered the cross-correlation with

the 21-cm signal averaged over the signals from redshift slices to improve the

signal to noise ratio. As a note of caution we point out that working in the

Fourier basis in the flat sky approximation necessarily makes the signal non-

ergodic when we consider correlation between two time slices (due to time

evolution of all the relevant cosmological quantities). Further, one also notes

the complications arising from the inseparability of the baseline U (transverse)

from the frequency (radial) in this formalism [90].

The angular power spectrum for two redshifts separated by ∆z is known to

decorrelate very fast in the radial direction [88]. In this work we consider the

summation in Eq: (6.6) over redshift slices each of whose width is larger than

the typical decorrelation length. Each term in the sum can thus be thought of

as an independent observation of the signal. Thus the noise in each term in

the summation may be thought of as an independent random variable and the

mutual noise covaraiances between the slices may be ignored. Thus the errors

in CTκ(U) is given by

σ
Tκ

=

√
(Cκκ + 〈Nκ〉)(CTT + 〈NT 〉)

(2`+ 1)Nc

(5.42)
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where Nc is the number of redshift slices over which tthe signal is averaged in

Eq: (6.6) and 〈NFHI 〉 and 〈Nκ〉 corresponds to the average of the noise power

spectrum for FHI and κ respectively.

We compute the expected bounds on HS f(R) gravity free parameter which

measures the deviation from ΛCDM models. We have considered telescope

specifications of the upcoming SKA1-mid radio interfeoremeter. We have used

the cosmological parameters from Planck-2018 results (Ωm0 ,Ωb0 , H0, ns, σ8,ΩK) =

(0.315, 0.0496, 67.4, 0.965, 0.811, 0) from [36] for our subsequent analysis.

The model galaxy distribution function (n(z, z0)) is adopted from [443, 444].

The cross-correlation can only be computed in an overlapping volume for the

weak lensing and 21-cm intensity mapping survey. We choose the frequency

band 400 − 950 MHz of SKA1-mid since it corresponds to a redshift range

that overlaps with the redshift range of the weak lensing survey. SKA1-mid

has 250 antennaes. The diameter of each antenna is taken to be 13.5m and

system temperature (Tsys) assumed to be 40 K for the entire redshift range.

We also assume that full frequency band will be sub-divided into smaller fre-

quency bands of 32 MHz. The details of the SKA1-mid telescope specifi-

cations including the baseline distribution can be found in the SKA website

https://www.skatelescope.org.

Cross-correlation of CMBR weak lensing and HI 21-cm power spectrum has

been studied earlier [357, 360]. Here we shall address the cross-correlation with

galaxy weak lensing. A typical galaxy weak lensing survey is different from

CMBR weak lensing survey for the following reason. The CMBR temperatures

are drawn from a Gaussian distribution, where the galaxies are the tracers

of the underlying matter distribution, which at least small scales completely

non-linear. However we have not incorporated the effects of non-linearity in

our analysis as we are working in the regime of the linear perturbation the-

ory. Secondly, the galaxy surveys are purely 3D while CMB anisotropies are in

general a function of angular position ` on sky. The Figure:(5.6) shows theoret-

ically expected convergence auto-correlation angular power spectrum signal

for ΛCDM and HS model with free parameter log10 |f,R0| = −5 for reference.

The source redshift of galaxy assumed to be zs = 1. It can be seen that on

larger scales the f(R) model predictions agree with ΛCDM. A significant de-

https://www.skatelescope.org
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viation from classical GR is only found beyond a scale ` > 200 because of the

scale dependent growing mode. Similar results are obtained from simulations

in [445, 446]. We also note that the deviation from ΛCDM in a range of scale

200 < ` < 3000 is typically around 10− 15%.

We are interested in the cross-correlation signal of HI 21-cm and galaxy

lensing. The cross-correlation signal takes the same shape as of convergence

auto-correlation signal. We have computed the cross-correlation signal us-

ing the equation (6.6). The Figure (5.7) shows the difference of the HI 21-

cm and galaxy weak lensing angular cross-correlation power spectrum for

HS parametrization with log10 |f,R0| = −5 from ΛCDM. The 1-σ error bars on

ΛCDM shows the HS model with log10 |f,R0| = −5 can be differentiate from

ΛCDM at a level of > 2σ sensitivity using galaxy density ng = 60arcmin−2 and

radio interferometric observation time Tobs = 600hrs.

Table 5.3: The 68% (1−σ) Constraints of log10 |f,R0| and Ωm0 from HI21-cm and
galaxy lensing cross power spectrum

Model log10 |fR0| Ωm0

HS-f(R) −5± 0.59 0.315± 0.10

The Fisher analysis is used to put bound on the parameter log10 |f,R0| using

the cross-correlation signal. Assuming the fiducial value of log10 |f,R0| = −5

and marginalizing over the overall amplitude, redshift distortion parameter

(βT ) we found the 1− σ bounds on log10 |f,R0| as shown in the above table.

5.5 Crosscorrelation of 21-cm signal with Lyman-α

forest

Lyman-α forest power spectrum

Lyman-α forest traces out the small fluctuations in the HIdensity in the IGM

along the line of sight (LoS) to distant background quasars and shows an ab-

sorption features in the quasar spectra. The quantity of interest is the trans-

mitted QSO flux through the Lyman-α. The fluctuating Gunn-Peterson effect



103 5.5. CROSSCORRELATION OF 21-CM SIGNAL WITH LYMAN-α FOREST

allows us to write

F = F̄e−A(1+δ)Γ

(5.43)

where F̄ denotes the mean transmitted flux, Γ depend on the slope of the

temperature-density power spectrum and the factor A depends on the HIpho-

toionization rate, which is difficult to measure independently and assumed to

be nearly ∼ 1. Several simulation works of Lyman-α forest shows the trans-

mitted flux δF = (F̄ − F )/F̄ ∝ δ [278].

The influence of f(R) gravity theory in the Lyman-α forest power spec-

trum has been studied extensively [432, 447]. Fitting formulas for Lyman-α for-

est power spectrum (PFF(k)) are usually written in terms of the matter power

spectrum P (k) with several prefactors to match numerical simulations. We fol-

low [432] to model the Lyman-α power spectrum in f(R) gravity theory. The

Lyman-α power spectrum can be written in terms of matter power spectrum

as follows

PFF(k, z) =
(1 + β

F
µ2)2

(1 + fgk‖/kNL)
P (k, z)e−(k‖/kth)2

(5.44)

where µ is the cosine of the angle between LoS (n̂) and the wave vector (~k)

so that µ = k̂.n̂ = k‖/k. Here β
F

is the large scale aniosotropy parameter or

so called the redshift distortion factor and kth is the thermal brodening cutoff

wave number. We will use Eq : 5.44 to compute the 3D and 1D Lyman-α

auto correlation power spectrum. The Eq : 5.44 gives the 3D Lyman-α power

spectrum in the redshift space. The observed 1D power spectrum along LoS is

given by the standard integral

P 1D
FF (k‖) =

1

(2π)2

∫
dk⊥PFF(k) (5.45)

Both Lyman-α and the HI 21-cm signal from the post reionization epoch

are extremely useful tools to probe underlying theory of gravity and put strin-

gent constraints on cosmological parameters individually. However on large

scale both trace the dark matter density field motivating us to investigate their

cross-correlation signal [352]. The cross-correlation of the Lyman-α and HI 21-

cm signal has been studied for the ΛCDM model extensively [278, 352–355]. In

this work we shall extend it to f(R) gravity models. The Lyman-α and HI 21-
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cm signal can be written using the formalism in [353] and equation (5.44). We

choose a fiducial redshift z = 2.3 for this analysis. Figure (5.8) shows the 3D

cross correlation power spectrum in (k⊥, k‖) plane for log10 |f,R0| = −5. The

asymmetry in cross signal arises because of Kaiser effect in the redshift space.

However the deviation of asymmetry is much enhanced than the auto correla-

tion signal. The Figure (5.8) shows the 3D Lyman-α and HI 21-cm cross correla-

tion power spectrum at a fiducial redshift z = 2.3. The fiducial redshift chosen

to be z = 2.3 as the QSO distribution is known to peaks at z = 2.25 and falls

off as we move away from peak [448]. The deviation of spherical symmetry in

power spectrum arises because of the linear redshift space distortion parame-

ter βF and βT . We next use the cross correlation signal to put constraints on the

parameter βT (k, z). We have used the cosmological parameters from Planck-

2018 results (Ωm0 ,Ωb0 , H0, ns, σ8,ΩK) = (0.315, 0.0496, 67.4, 0.965, 0.811, 0)

from [36] for our subsequent analysis. We consider a radio interferometric ar-

ray for the 21-cm observations mimicking the SKA1-mid. The SKA1-mid is one

of the three different instruments that will be built as a part of the SKA tele-

scope. SKA1-mid has 250 antennaes. The diameter of each antenna is taken

to be 13.5m and system temperature (Tsys) assumed to be 40 K for the red-

shift z = 2.3. We also assume that full frequency band will be sub-divided

into smaller frequency bands of 32 MHz. For Lyman-α forest observation we

have used the quasar number of distribution from DR14 of SDSS [448]. It has

a total angular coverage of 14,555 deg2 and we assumed the of QSO number

density n̄ = 60deg−2. Each spectra is assumed to have been measured at > 3σ.

sensitivity.

We have divided the k−range from 0.1 < k < 1 into 4 k−bins. We perform

Fisher matrix analysis for the following parameters -the binned values of βT ,

the overall normalization factor (N̄), distortion factor (β
F
), third order com-

ponent of polynomial bias bT . We have marginalized over all the parameters

except the four values of βT .

Fig:(5.9) shows the βT (k, z) for f(R) gravity models. The shaded region

corresponds to the 1 − σ error projection for the fiducial log10 |f,R0| = −5

gravity model. At large scale all f(R) gravity theories matches with standard

ΛCDM model. However we find that on small scales beyond (k > 0.5), the
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log10 |f,R0| = −5 model can be distinguished from ΛCDM model at a level of

3 − σ sensitivity if we consider 2 k−bins for 500 × 60hrs observation with 60

independent pointings. But other f(R) gravity models are not very much dis-

tinguishable (< 3 − σ) throughout the k range. This is because where at very

higher redshifts we expect all the modified gravity theories matches to our

standard concordance ΛCDM model and deviation from it is much smaller.

Instead of constraining the binned function βT (k), we investigate the possibil-

ity of putting bounds on log10 |f,R0| from the given observation. Marginalizing

over the overall amplitude of the power spectrum, we are thus interested in

two parameters (Ωm0, log10 |f,R0|). The error projections given below.

Table 5.4: The 68% (1− σ) marginalized errors on log10 |f,R0| and Ωm0 from the
21-cm and Lyman-α cross-correlation.

Model log10 |fR0| Ωm0

f(R) −5± 0.29 0.315± 0.012

5.6 Conclusion

Einstein’s relativity has been extremely well tested on solar system scales [171,

449, 450]. The f(R) modification often confronts the strong agreement of gen-

eral relativity on such small scales. Einstein’s relativity can be recovered and

solar system tests be evaded by the chameleon mechanism [172, 451, 452]. Ef-

fectively, this implies that f(R) differs very little fromR on solar system scales.

It has been shown that Hu-Sawicki f(R) gravity models agree well with the

late time cosmic acceleration without invoking a cosmological constant and

satisfies both cosmological and solar-system tests in the weak field limit [59].

However, solar-system tests alone put only weak bounds on these models [182]

and there is a great variability of model parameters. We have shown that the

21 cm intensity mapping instruments like SKA1 will be capable of constrain-

ing the a field value log10 |f,R0| = −5± 0.62 of 68% confidence. This is an order

of magnitude tighter than constraints currently available from galaxy cluster

abundance [453]. Further [454] showed that marginalized 95.4% the upper

limit on log10 |f,R0| = −4.79 using the Cluster+Planck+WMAP+Lensing+ACT+SPT+
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SN+BAO data. Joint analysis of 21-cm intensity mapping with the above ob-

servation probe shall be able to narrow down the current constraints. We note

that the low redshift departure of f(R) gravity from GR predictions is small

and better modeling is needed to invoke non-linear chameleon suppression

for tighter constraints on f(R) models.

The radio-interferometric observation of the post-reionization HI 21-cm sig-

nal, thus holds the potential of providing robust constraints on f(R) models.

We have seen that the error projections from both the auto-correlation and

cross-correlation signals provide competitive bounds on f(R) models. Sev-

eral observational aspects, however, plague the detection of the 21-cm signal.

We have evaded the key observational challenge arising from large astrophys-

ical foregrounds that plague the signal. Astrophysical foregrounds from both

galactic and extra galactic sources plague the signal and significant amount of

foreground subtraction is required before one may detect the signal. Several

methods of subtracting foregrounds have been suggested (see [295] and cita-

tions in this work) Cross-correlation of the 21-cm signal has also been proposed

as a way to mitigate the issue of large foregrounds [352, 353]. The cosmological

origin of the 21-cm signal may only be ascertained in a cross-correlation. The

foregrounds appear as noise in the cross-correlation and may be tackled by

considering larger survey volumes. Further, man made radio frequency inter-

ferences (RFIs), calibration errors and other observational systematics inhibits

the sensitive detection of the HI 21-cm signal. A detailed study of these obser-

vational aspects shall be studied in a future work. We conclude by noting that

future observation of the redshifted HI 21-cm signal shall be an important ad-

dition to the different cosmological probes aimed towards measuring possible

modifications to Einstein’s gravity. This shall enhance our understanding of

late time cosmological evolution and structure formation.
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ter log10 |f,R0| = −5 from the standard ΛCDM. The 1-σ error bars on ΛCDM
shown assuming the galaxy density ng = 60arcmin−2 and observation time
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CHAPTER 6
Probing Quintessence using BAO imprints on the

cross-correlation of weak lensing and post-reionization

HI 21-cm signal §

6.1 Introduction

The problem of cosmic acceleration [26, 102, 375] can be broadly tackled in

two ways. One approach involves modifying the gravity theory itself on large

scales [25]. f(R) modification to the Einstein action [182, 183, 452, 455] belongs

to this approach of modeling cosmic acceleration. In a second approach the

matter sector of Einstein’s field equation is modified by considering a dark en-

ergy fluid The cause of such cosmic acceleration is attributed to the so called

"Dark energy", [25, 32, 456, 457] a fluid that violates the strong energy con-

dition with some nontrivial dynamics. In both the approaches one may find

an effective dark energy EoS which dynamically varies as a function of red-

shift and in principle can be distinguished from the cosmological constant (Λ).

There are many models for dark energy that predict a dynamical equation of

state. For example, in the quintessence models, dark energy arises from a time

dependent scalar field, φ [21, 24, 198, 458, 459]. However these models still

require fine tuning for consistency with observations. A wide variety of phe-

nomenological potentials have been explored for quintessence field to achieve

w ≈ −1. In all these models, the minimally coupled scalar field is expected to

slowly roll in the present epoch. However, other than a few restricted class of

potentials, it is difficult to prevent corrections from various symmetry break-

ing mechanisms which tends to spoil the slow roll condition [460].

§The chapter is adapted from Probing Quintessence using BAO imprints on the cross-
correlation of weak lensing and post-reionization HI 21-cm signal, Chandrachud B.V Dash, Tapomoy
Guha Sarkar, Monthly Notices on Royal Astronomical Society, 256 , (2022).
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We consider the cross-correlation of HI 21-cm signal with the galaxy weak

lensing convergence field. It is known that [461] cross-correlations of indi-

vidual tracers of IGM often offer crucial advantages over auto-correlations.

The systematic noise that arises in the individual surveys is pose less threat in

the cross-correlation signal as they appear in the variance. Further, the fore-

grounds and contaminants of individual surveys are, in most cases, uncorre-

lated and hence do not bias the cross-correlation signal [357, 358]. The acoustic

waves in the primordial baryon-photon plasma are frozen once recombination

takes place at z ∼ 1000. The sound horizon at the epoch of recombination

provides a standard ruler which can be then used to calibrate cosmological

distances. Baryons imprint the cosmological power spectrum through a dis-

tinctive oscillatory signature [126, 127]. The BAO imprint on the 21-cm signal

has been studied [462, 463]. The baryon acoustic oscillation (BAO) is an impor-

tant probe of cosmology [1, 3, 4, 128, 462] as it allows us to measure the angular

diameter distance DA(z) and the Hubble parameter H(z) using the the trans-

verse and the longitudinal oscillatory features respectively thereby allowing

us to put stringent constraints on dark energy models. We propose the BAO

imprint on the cross-correlation of 21-cm signal and weak lensing convergence

as a probe of Quintessence dark energy. The chapter is organized as follows. In

Section-2 we discuss the cross-correlation of weak lensing shear/convergence

and HI excess brightness temperature. We also discuss the BAO imprint and

estimation of errors on the BAO parameters namely the expansion rate H(z),

angular diameter distance DA(z) and the dilation factor DV (z) from the tomo-

graphic measurement of cross-correlation power spectrum using Fisher for-

malism. In Section-3 we discuss the background and structure formation in

quintessence dark energy models and constrain the model parameters using

Markov Chain Monte Carlo (MCMC) simulation. We discuss our results and

other pertinent observational issues in the concluding section.

6.2 The cross-correlation signal

Weak gravitational lensing [215] by intervening large scale structure distorts

the images of distant background galaxies. This is caused by the deflection
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of light by the fluctuating gravitational field created by the intervening mass

distribution [444]. Weak lensing is a powerful cosmological probe as galaxy

shear is sensitive to both spacetime geometry and growth of structures. The

Weak-lensing convergence field on the sky is given by a weighted line of sight

integral [67] of the matter overdensity field δ as

κ(~θ) =

∫ χs

0

Aκ(χ)δ(χ~θ, χ)dχ (6.1)

where χs is the maximum distance to which the sources are distributed and

the cosmology-dependent function Aκ(χ) is given by

Aκ(χ) =
3

2
Ωm0H

2
0

χ

a(χ)

∫ χs

0

ns(z)
dz

dχ′
χ′ − χ
χ′

dχ′ (6.2)

where χ denotes the comoving distance and a(χ), the cosmological scale factor.

The redshift selection function of source galaxies, ns(z) tends to zero at both

low and high redshifts. It is typically modeled as a peaked function [444],

parametrized by (α, β, z0) of the from

ns(z) = N0z
αe
−
(
z
z0

)β
(6.3)

and satisfies the normalization condition∫ ∞
0

dz ns(z)dz = n̄g (6.4)

where n̄g is the the average number density of galaxies per unit steradian.

On large scales the redshifted HI 21-cm signal from post reionization epoch

(z < 6) known to be biased tracers of the underlying dark matter distribu-

tion [91–93]. We use δT to denote the redshifted 21-cm brightness temperature

fluctuations. The post reionization HI signal has been studied extensively [81–

85, 87–89, 464]. We follow the general formalism for the cross-correlation of

the 21-cm signal with other cosmological fields given in ([360]). Usually for

the investigations involving the 21-cm signal the the radial information is re-

tained for tomographic study. The weak-lensing signal, on the contrary con-

sists of a line of sight integral whereby the redshift information is lost. We
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consider an average over the 21-cm signals from redshift slices and thus lose

the individual redshift information but improve the signal to noise ratio when

cross-correlating with the weak-lensing field.

We define a brightness temperature field on the sky by integrating δT (χn̂, χ)

along the radial direction as

T (n̂) =
1

χ2 − χ1

χ2∑
χ1

δT (χn̂, χ)∆χ (6.5)

where χ1 and χ2 are the comoving distances corresponding to the redshift

slices of the 21-cm observation over which the signal is averaged.

Radio interferometric observations of the redshifted 21-cm signal directly

measures the complex Visibilities which are the Fourier components of the in-

tensity distribution on the sky. The radio telescope typically has a finite beam

which allows us to use the ‘flat-sky’ approximation. Ideally the fields κ and δT
are expanded in the basis of spherical harmonics. For convenience, we use a

simplified expression for the angular power spectrum by considering the flat

sky approximation whereby we can use the Fourier basis. Using this simpli-

fying assumption, we may approximately write the cross-correlation angular

power spectrum as [360]

CTκ
` =

1

π(χ2 − χ1)

χ2∑
χ1

∆χ

χ2
AT (χ)Aκ(χ)D2

+(χ)

∫ ∞
0

dk‖

[
1 + βT (χ)

k2
‖

k2

]
P (k)

where k =

√
k2
‖ +

(
`
χ

)2

, D+ is the growing mode of density fluctuations, and

βT = f/bT is the redshift distortion factor - the ratio of the logarithmic growth

rate f and the bias function and bT (k, z). The redshift dependent function AT

is given by [92, 253, 301]

AT = 4.0 mK bT x̄HI(1 + z)2

(
Ωb0h

2

0.02

)(
0.7

h

)(
H0

H(z)

)
(6.6)

The quantity bT (k, z) is the bias function defined as ratio of HI-21cm power

spectrum to dark matter power spectrum b2
T = PHI(z)/P (z). In the post-

reionization epoch z < 6, the neutral hydrogen fraction remains with a value
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x̄HI = 2.45×10−2 (adopted from [362, 363]). The clustering of the post-reionization

HI is quantified using bT . On sub-Jean’s length, the bias is scale dependent

[277]. However, on large scales the bias is known to be scale-independent.

The scales above which the bias is linear, is however sensitive to the redshift.

Post-reionization HI bias is studied extensively using N-body simulations [91–

93, 278]. These simulations demonstrate that the large scale linear bias in-

creases with redshift for 1 < z < 4 [279]. We have adopted the fitting formula

for the bias bT (k, z) as a function of both redshift z and scale k [91, 92] of the

post-reionization signal as

bT (k, z) =
4∑

m=0

2∑
n=0

c(m,n)kmzn (6.7)

The coefficients c(m,n) in the fit function are adopted from [91].

The angular power spectrum for two redshifts is known to decorrelate very

fast in the radial direction [88]. We consider the summation in Eq (6.5) to ex-

tend over redshift slices whose separation is more than the typical decorre-

lation length. This ensures that in the computation of noise for each term in

the summation may be thought of as an independent measurement and the

mutual covariances between the slices may be ignored.

6.2.1 The Baryon acoustic oscillation in the angular power spec-

trum

The sound horizon at the epoch of recombination is given by

s(zd) =

∫ ar

0

csda

a2H(a)
(6.8)

where ar is the scale factor at the epoch of recombination (redshift zd) and

cs is the sound speed given by cs(a) = c/
√

3(1 + 3ρb/4ργ) where ρb and ργ

denotes the baryonic and photon densities respectively. The WMAP 5-year

data constrains the value of zd and s(zd) to be zd = 1020.5 ± 1.6 and s(zd) =

153.3 ± 2.0Mpc [130]. We shall use these as the fiducial values in our subse-

quent analysis. The standard ruler ‘s’ defines a transverse angular scale and a
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redshift interval in the radial direction as

θs(z) =
s(zd)

(1 + z)DA(z)
δzs =

s(zd)H(z)

c
(6.9)

Measurement of θs and δzs, allows the independent determination of DA(z)

and H(z). The BAO feature comes from the baryonic part of P (k). Hence

we isolate the BAO power spectrum from cold dark matter power spectrum

through Pb(k) = P (k)−Pc(k). The baryonic power spectrum can be written as

[465, 466]

Pb(k) = A
sinx

x
e−(k

∑
s)

1.4

e−k
2
∑2
nl /2 (6.10)

where A is a normalization,
∑

s = 1/ksilk and
∑

s = 1/knl denotes the in-

verse scale of ‘Silk-damping’ and ‘non-linearity’ respectively. In our analysis

we have used knl = (3.07h−1Mpc)−1and ksilk = (8.38h−1Mpc)−1 from [466] and

x =
√
k2
⊥s

2
⊥ + k2

‖s
2
‖. We also use the combined effective distance DV (z) defined

as [1]

DV (z) ≡
[
(1 + z)2D2

A(z)
cz

H(z)

]1/3

(6.11)

The changes in DA and H(z) are reflected as changes in the values of s⊥ and

s‖ respectively, and the errors in s⊥ and s‖ corresponds to fractional errors in

DA and H(z) respectively. We use p1 = ln(s−1
⊥ ) and p2 = ln(s‖) as parameters

in our analysis. The Fisher matrix is given by

Fij =
∑
`

1

σ2
Tκ

1

π(χ2 − χ1)

χ2∑
χ1

∆χ

χ2
AT (χ)Aχ(χ)D2

+(χ)

∫ ∞
0

dk‖

[
1 + βT (χ)

k2
‖

k2

]

×∂Pb(k)

∂pi

∂Pb(k)

∂pj

=
∑
`

1

σ2
Tκ

AT (χ)Aχ(χ)

π(χ2 − χ1)

∆χ

χ2
D2

+(χ)

∫ ∞
0

dk‖

[
1 + βT

k2
‖

k2

](
cosx− sinx

x

)
fifj

Ae−(k
∑
s)

1.4

e−k
2
∑2
nl /2 (6.12)
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where f1 = k2
‖/k

2−1, f2 = k2
‖/k

2 and k2 = k2
‖+ `2/χ2. The variance σ

Tκ
is given

by

σ
Tκ

=

√
(Cκ

` +Nκ
` )(CT

` +NT
` )

(2`+ 1)fsky
(6.13)

where Cκ
` and CT

` are the convergence and 21-cm auto-correlation angular

power spectra respectively and Nκ
` and NT

` are the corresponding noise power

spectra.

The auto-correlation power spectra are given by ([360])

CT
` =

1

π(χ2 − χ1)2

χ2∑
χ1

∆χ

χ2
AT (χ)2D2

+(χ)

∫ ∞
0

dk‖

[
1 + βT (χ)

k2
‖

k2

]2

P (k) (6.14)

Cκ
` =

1

π

∫ χs

0

dχ

χ2
Aκ(χ)2D2

+(χ)

∫ ∞
0

dk‖P (k) (6.15)

The noise in the convergence power spectrum is dominated by Poisson noise.

Thus Nκ = σ2
ε/n̄g where σε is the galaxy-intrinsic rms shear [70]. The source

galaxy distribution is modeled using (α, β, z0) = (1.28, 0.97, 0.41) which we

have adopted from [467]. For the survey under consideration, we have taken

σε = 0.4 [444]. We use a visibility correlation approach to estimate the noise

power spectrum NT
` for the 21-cm signal [353, 468, 469].

NT
` =

(
T 2
sysλ

2

Ae

)2
B

ToNb(U, ν)
(6.16)

where Tsys is the system temperature, B is the total frequency bandwidth,

U = `/2π, To is the total observation time, and λ is the observed wavelength

corresponding to the observed frequency ν of the 21 cm signal. The quantity

Ae is the effective collecting area of an individual antenna which can be written

Ae = επ(Dd/2)2, where ε is the antenna efficiency and Dd is the diameter of the

dish. The Nb(U, ν) is the number density of baseline U and can be expressed as

Nb(U, ν) =
Nant(Nant − 1)

2
ρ

2D
(U, ν)∆U (6.17)

where Nant is the total number of antennae in the radio array and ρ
2D

(U, ν) is
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Figure 6.1: This shows the BAO imprint on the transverse cross-correlation
angular power spectrum CTκ

` . To highlight the BAO we have divided by the
no-wiggles power spectrum CTκ

nw which corresponds to the power spectrum
without the baryonic feature. This is shown for three redshifts z = 1.0, 1.5, 2.0.

the normalized baseline distribution function which follows the normalization

condition
∫
d2Uρ

2D
(U, ν) = 1. The system temperature Tsys can be written as a

sum of contributions from sky and the instrument as

Tsys = Tinst + Tsky (6.18)

where

Tsky = 60K
( ν

300MHz

)−2.5

(6.19)

We consider a radio telescope with an operational frequency range of 400−950

MHz. We consider 200 dish antennae in a radio interferometer roughly mim-

icking SKA1-Mid. The telescope parameters are summarized in table (7.1). The

full frequency range is divided into 4 bins centered on 916 MHz, 650 MHz, 520

MHz and 430MHz and 32 MHz bandwidth each. To calculate the normalized

baseline distribution function we have assumed that baselines are distributed

such that the antenna distribution falls off as 1/r2. We also assume that there

is no baseline coverage below 30m. We have also assumed ∆U = Ae/λ
2.

The BAO feature manifests itself as oscillations in the linear matter power

spectrum [126]. The first BAO peak has the largest amplitude and is a ∼ 10%

feature in the matter power spectrum P (k) at k ≈ 0.045Mpc−1. Figure (6.1)
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Figure 6.2: The figure shows the projected 1− σ error bars on H(z), DA(z) and
Dv(z) at 4 redshift bins where the galaxy lensing and HI-21cm cross correlation
signal is being observed. The fiducial cosmology is chosen to be ΛCDM.

Nant Freq. range Efficiency Dd To

200 400− 950 MHz 0.7 15m 600hrs

Table 6.1: Table showing the parameters of the radio interferometer used for
making error projections
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Redshift(z) (δH/H)% (δDA/DA)% (δDV /DV )%

0.55 4.09 2.02 2.24
1.16 6.23 2.30 2.79
1.74 10.90 4.035 4.62
2.28 17.00 6.40 6.97

Table 6.2: Percentage 1− σ errors on DA, H(z) and DV .

shows the BAO feature in the cross-correlation angular power spectrum CTκ
` .

The BAO, here, seen projected onto a plane appears as a series of oscillations

in CTκ
` , The positions of the peaks scales as ` ∼ k/χ. The amplitude of the

first oscillation in CTκ
` is the maximum as is about 1% in contrast to the ∼ 10%

feature seen in P (k). This reduction in amplitude arises due to the projection to

a plane whereby several 3D Fourier modes which do not have the BAO feature

also contribute to the ` where the BAO peak is seen. For z = 1.0 the first peak

occurs at ` ∼ 170 and it has a full width of ∆` ∼ 75. If the redshift is changed,

the position ` and width ∆` of the peak both scale as χ.

We have made error estimates by considering four redshift bins, corre-

sponding to four 32MHz bandwidth radio observations of the 21 cm signal

at four observing central frequencies. The total observing time of 2400 hrs is

divided into four 600 hrs observations at each frequency.

Figure (6.2) shows the projected errors on H(z) and DA(z) for the fiducial

ΛCDM cosmology. We find that DA(z) can be measured at a higher level of

precision compared toDV (z) andH(z). This is because the weak lensing kernel

is sensitive to DA(z) and the integration over χ(z) in the lensing signal leads

to stronger constraints on it. The percentage 1 − σ errors are summarized in

table (6.2). We find that H(z) is quite poorly constrained especially at higher

redshifts.

6.3 Quintessence cosmology

We investigate spatially flat, homogeneous, and isotropic cosmological mod-

els filled with three non-interacting components: dark matter, baryobs and a

scalar field φ, minimally coupled with gravity. The Lagrangian density for the
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quintessence field is given by

Lφ =
1

2
(∂µφ∂νφ)− V (φ) (6.20)

where V (φ) is the quintessence potential. The KG equation for quintessence

field obtained by varying action w.r.t the φ is

φ̈+ 3Hφ+ V,φ = 0 (6.21)

where V,φ differentiation w.r.t φ and the Friedmann equation for H is given by

H2 =
1

3
(ρm + ρb + ρφ) (6.22)

In order to study the dynamics of background quintessence model, let us de-

fine the following dimensionless quantities [25, 459]

x =
φ′√

6
, y =

√
V√

3H
, λ = −V,φ

V
, Γ = V

V,φφ
V 2
,φ

, b =

√
ρ
b√

3H
(6.23)

where we use units 8πG = c = 1 and the prime (′) denotes the derivative

w.r.t the number of e-folding N = log(a). Using the above quantities we can

define the density parameter (Ωφ) and the EoS (wφ = pφ/ρφ) to the scalar field

as follows

Ωφ = x2 + y2, γ = 1 + wφ =
2x2

x2 + y2
(6.24)

The dynamics of background cosmological evolution is obtained by solving a

autonomous system of first order equations [25, 459].

γ′ = 3γ(γ − 2) +
√

3γΩφ(2− γ)λ,

Ω′φ = 3(1− γ)Ωφ(1− Ωφ),

λ′ =
√

3γΩφλ
2(1− Γ),

b′ = −3

2
bΩφ(1− γ) (6.25)

In order to solve the above set of 1st order ODEs numerically, we fix the initial

conditions for γ, Ωφ, λ at the decoupling epoch. For thawing models, the scalar

field is initially frozen due to large Hubble damping, and this fixes the initial
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Figure 6.3: The figure shows the EoS (wφ) as a function of redshift z for different
quintessence field models after solving the autonomous ODE in (6.25). We kept
the initial slope of the field λi = 0.7 in all the cases.

condition γi ≈ 0. The quantity Γ which quantifies the shape of the potential is a

constant for power law potentials. The parameter λi is the initial slope of scalar

field and measures the deviation of ΛCDM model. For smaller λi the EoS (wφ)

of scalar field remain close to cosmological constant, whereas larger values of

λi lead to a significant deviation from ΛCDM. Assuming the contribution of

scalar field to the total energy density is negligibly small in the early universe,

we fix the present value of Ωφ. Similarly, we fix the initial value of b (related

to the density parameter for baryons) so that one gets right value of the Ωb0 =

0.049 [36] at the present epoch. Figure (6.3) shows the dynamical evolution

of the EoS of quintessence field for three models. We note that there is no

departure from the ΛCDM at large redshifts but a prominent model sensitive

departure for small redshifts. At z ∼ 0.5 there is almost a∼ 5% departure of the

EoS parameter wφ from that of the non-dynamical cosmological constant. The

departure of wφ from its ΛCDM value of −1, imprints on the growing mode

of density perturbations by virtue of the changes that it brings to the Hubble

parameter H(z).

Growth of matter fluctuations in the linear regime provides a powerful

complementary observation to put tighter constrains on cosmological param-

eters, and also break the possible degeneracy in diverse dark energy mod-

els. We have assumed spatially flat cosmology in our entire analysis and not
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constrained radiation density, as only dark matter and dark energy are dom-

inant in the late universe. The full relativistic treatment of perturbations for

Quintessence dark energy has been studied [395]. Ignoring super-horizon ef-

fects, we note that on sub-horizon scales, ignoring the clustering of Quintessence

field, the linearized equations governing the growth of matter fluctuations is

given by the ODE [470, 471]

D′′+ +

(
1 +

H′(a)

H(a)

)
D′+ −

3

2
Ωm(a)D+ = 0. (6.26)

Here, the prime denotes differentiation w.r.t to ‘log a’, H is the conformal Hub-

ble parameter defined as H = aH and δm is the linear density contrast for

the dark matter. In order to solve the above ODE, we fix the initial condi-

tions D+ grows linearly with a and the first derivative of dD+

da
= 1 at early

matter dominated epoch (a = 0.001). We now consider the BAO imprint on

the cross-correlation angular power spectrum to make error predictions on

Quintessence dark energy parameters which affects both background evolu-

tion and structure formation.

6.3.1 Statistical analysis and constraints on model parameters

Markov Chain Monte Carlo (MCMC) sampling provides an elegant way to

assess the parameters of a model, even if the corresponding posterior distribu-

tion is not accessible analytically. Monte Carlo approaches aim at approximat-

ing a target probability density p(x), x ∈ X (with X being a high-dimensional

space) by generating an independent and identically distributed set of samples

x(i)N

i=1. MCMC sampling combines the Monte Carlo principle of approximat-

ing a distribution by drawing random samples with the principle of Markov

chains, which offers a mathematical framework to ensure that the derived sam-

ple has the desired properties.

In this method, the unknown parameters are the states of a Markov chain,

and a proposal function that suggests a new set of parameters (based on the

current) one replaces the transition matrix at each step. One popular method is

the Metropolis-Hastings algorithm, which we introduce in our work [472, 473].

The method allows to approximate the posterior distribution even if it is not



CHAPTER 6. PROBING QUINTESSENCE USING BAO IMPRINTS ON THE CROSS-CORRELATION OF WEAK LENSING AND POST
REIONIZATION HI 21-CM SIGNAL 122

possible to sample from it directly.

Let θ be the set of unknown parameters, q(θn → θn+1) the proposal func-

tion, L(θ) = P (D|θ) the likelihood function, and π(θ) a predefined prior. The

Markov chain is created by starting with an initial set of parameters, and then

repeatedly suggesting a new one and either accepting or rejecting it by turns.

The proposal/acceptance steps are repeated until the chain has converged, and

a sufficiently large sample has been obtained. This procedure is delineated as

follows:

1. Initialize θ0

2. Proposal step: Given θn, draw a candidate θ0 from the proposal distribu-

tion q(θn → θ0)

3. Calculate the quantity A = L(θ0)
L(θn)

· π(θ0)
π(θn)

· q(θ0→θn)
q(θn→θ0)

4. Acceptance step: With probability min(A, 1), let θn+1 = θ0 (accept).

Otherwise, let θn+1 = θn (reject)

5. Increment n by one and repeat steps 2 and 3 or 4 until convergence.

In step 3 and 4 allows deciding upon acception / rejection of the newly sug-

gested parameter set based on the true posterior distribution. We have modi-

fied and used the publicly available * for our analysis.

We choose the following parameters (h,Γ, λi,Ωφ0) to quantify the Quintessence

dark energy. We have use uniform priors for these parameters in the Quintessence

model. The Hubble parameter at present (z = 0) in our subsequent calculations

is assumed to be H0 = 100hKm/s/Mpc, thus define the dimensionless param-

eter h. We perform a Markov Chain Monte Carlo (MCMC) analysis using the

observational data to constraint the model parameters and evolution of cosmo-

logical quantities. The analysis is carried out using the Python implementation

of MCMC sampler introduced by [474]. We take flat priors for these parame-

ters with ranges of h ∈ [0.5, 0.9], Γ ∈ [−1.5, 1.5], λi ∈ [0.5, 0.8],Ωφ0 ∈ [0.5, 0.8]

.

*https://github.com/dfm/emcee
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Parameters Ωφ0 Γ λi h

Constraints
( BAO only) 0.6600.064

−0.049 0.0910.784
−1.080 0.5750.067

−0.050 0.7230.038
−0.036

Constraints
(BAO+CC+fσ8+SN) 0.6160.034

−0.020 0.1570.895
−0.956 0.5480.049

−0.036 0.7010.016
−0.015

Table 6.3: The parameter values, obtained in the MCMC analysis combining
all the data sets are tabulated along the 1− σ uncertainty.

We first perform the MCMC analysis for the using the error bars obtained

on the binned H(z) and DA from the proposed 21-cm weak lensing cross-

correlation. The figure (7.6) shows the marginalized posterior distribution of

the set of parameters and (h,Γ, λi,Ωφ0) the corresponding 2D confidence con-

tours are obtained for the model V (φ) ∼ φ. The results are summarized in

table(7.2).

For a joint analysis, we employ three mainstream cosmological probes,

namely cosmic chronometers (CC), Supernovae Ia (SN) and fσ8. We have used

the observational measurements of Hubble expansion rate as a function of red-

shift using cosmic chronometers (CC) as compiled by [475]. The distance mod-

ulus measurement of type Ia supernovae (SN), is adopted from the Joint Light-

cone Analysis sample from [476]. We also incorporated the linear growth rate

data, namely the fσ8(z)(≡ f(z)σ8Dm(z)) from the measurements by various

galaxy surveys as compiled by [477]. The posterior probability distributions

of the parameters and the corresponding 2D confidence contours are shown

in figure (7.6). The constraint obtained for different parameters are shown in

table (7.2). The joint analysis gives improved constraints compared to the con-

straints obtained from the analysis of only our projected BAO results. These

constraints are also competitive with other probes [478–480].

6.4 Conclusion

In this work, we have explored the cross-correlation signal of weak galaxy

lensing and HI 21-cm. From the tomographic study we estimated the projected

errors on the H(z), DA(z) and DV (z) over a redshift range z ∼ 0 − 3. The

quantities of interest namely H(z) and DA(z) explicitly appears in the lensing
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Figure 6.4: Marginalized posterior distribution of the set of parameters and
(Ωφ0,Γ, λi, h) corresponding 2D confidence contours obtained from the MCMC
analysis for the model V (φ) ∼ φ. Left panel: utilizing the information from
the fisher matrix only. Right panel: utilizing all the data sets mentioned in the
discussion on the top of the fisher information.
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kernel and also in the BAO feature of the power spectrum. The cross-angular

spectrum involve a radial integral and hence loses the redshift information. We

have obtained tomographic information by locating the 21-cm slice at different

redshift bins before cross-correlating.

Several observational challenges come in the way of measuring the cos-

mological 21-cm signal. The 21-cm signal is buried deep under galactic and

extra-galactic foregrounds [295]. We have assumed that this key challenge is

addressed. Even after significant foreground removal, the cosmological origin

of the 21 cm signal can only be ascertained only through a cross-correlation

[278, 352, 355]. The foregrounds for the two individual probes are expected

to be significantly uncorrelated and hence leads to negligible effects in the ob-

serving cross-correlation power spectrum. We have not considered system-

atic error which arises from photometric redshift (or so called photo-z) errors

which may significantly degrade the cosmological information in the context

of lensing auto-correlation [77].

The BAO estimates of H(z), DA(z) allows us to probe dark energy mod-

els. We have considered the quintessence scalar field as a potential dark en-

ergy candidate and studied the background dynamics as well as the growth

perturbation in linear regime in such a paradigm. A Baysean parameter es-

timation using our BAO estimates indicate the possibility of good constraints

on scalar field models. The constraints also improve when joint analysis with

other probes is undertaken and reaches precision levels competitive with the

existing literature.





CHAPTER 7
Post-reionization HI 21-cm signal: A probe of negative

cosmological constant §

7.1 Introduction

We have seen that the ΛCDM model [20, 21, 481] provides a good descrip-

tion towards explaining most properties of a wide range of astrophysical and

cosmological data, including distance measurements at high redshifts [9, 102,

113], the cosmic microwave background (CMB) anisotropies power spectrum

[12], the statistical properties of large scale structures of the Universe [482] and

the observed abundances of different types of light nuclei [483–485]. All these

observations point towards an accelerated expansion history of the Universe.

Despite the overwhelming success of the ΛCDM model as a standard model

explaining these diverse observations, it still leaves significant uncertainties

and is plagued with difficulties [29, 30, 32, 33, 458, 486–489]. We have indicated

some of the observational anomalies with the ΛCDM model at a> 2−3σ level,

like the Hubble tension [138, 490–493]/ growth tension [40, 140, 494] CMBR

anomalies [42, 142], BAO discrepancy [43, 44, 144] and many others [137].

A positive cosmological constant is sometimes interpreted as a scalar field

at the positive minimum of its potential by moving the term Λgµν to the right-

hand side of the Einstein’s equation to include it in the energy momentum

tensor Tµν . A Quintessence [55, 199, 201, 202] scalar field, on the contrary,

slowly rolls towards the minimum in the positive part of the potential giving

rise to a dynamical dark energy with a time dependent equation of statew(a) =

PDE/ρDE . Several reports of the Hubble tension [141, 486, 489, 495–499] has

led to the proposal of a wide range of dark energy models. There are certain

§The chapter is adapted from Post-reionization HI 21-cm signal: A probe of negative cosmologi-
cal constant, Chandrachud B.V Dash, Tapomoy Guha Sarkar, Anjan A. Sen , Monthly Notices of the
Royal Astronomical Society, (527), February 2024
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proposed quintessence models with an AdS vacuum [65, 500–504] which do

not rule out the possibility of a negative Λ. We have considered Quintessence

models, with a non zero vacuum, which can be effectively seen as as a rolling

scalar field φ on top of a cosmological constant Λ 6= 0. The combination ρ
DE

=

ρφ+Λ satisfying the energy condition ρDE > 0 drives an accelerated expansion

[8].

We consider the post-reionization HI 21 cm brightness temperature maps as

a tracer of the underlying dark matter distribution and thereby a viable probe

of structure formation. The intensity mapping [78] of the post-reionization HI

21 cm signal [256] is a promising observational tool to measure cosmological

evolution and structure formation tomographically [255, 256, 397].

In this work, we have made projections of uncertainties on the dark en-

ergy parameters in Quintessence models, with a non zero vacuum, using a

proposed future observation of the power spectrum of the post-reionization

21 cm signal. We have used a Fisher/Monte-carlo analysis to indicate how

the error projection on the binned power spectrum allow us to constrain dark

energy models with a negative Λ.

The chapter is organized as follows: In Section-2 we discuss the dark en-

ergy models and constraints of observable quantities like the Hubble param-

eter and growth rate of density perturbations from diverse observations. In

Section-3 we discuss the 21-cm signal from the post reionization epoch and

noise projections using the futuristic SKA1-mid observations. We also con-

strain dark energy model parameters using Markov Chain Monte Carlo (MCMC)

simulation. We finally look at the anisotropic 21-cm power spectrum in red-

shift space using a new quantifier of the AP effect and show how we can con-

strain dark energy models using this probe of dark energy. We discuss our

results and other pertinent observational issues in the concluding section.

7.2 Quintessence dark energy with non-zero vacuum

We consider a Universe where the Quintessence field (φ) and cosmological con-

stant Λ both contribute to the overall dark energy density i.e. ρDE = ρφ + Λ

with the constraint that ρDE > 0 to ensure the late time cosmic acceleration
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[8]. Instead of working with a specific form of the Quintessence potential we

chose to use a broad equation of state (EoS) parametrization wφ(z). It has been

shown that at most a two-parameter model can be optimally constrained from

observations [205]. We use the CPL model proposed by CHEVALLIER and

POLARSKI [206] and Linder [150] which gave a phenomenological model-free

parametrization and incorporate several features of dark energy. This model

has been extensively used by the Dark Energy Task force [23] as the standard

two parameter description of dark energy dynamics. It has also been shown

that a wide class of quintessence scalar field models can be mapped into the

CPL parametrization [388]. The equation of state (EoS) is given by

wφ(z) = w0 + wa

(
z

1 + z

)
.

This model gives a smooth variation of wφ(z) = w0 + wa as z →∞ to wφ(z) =

w0 for z = 0 and the corresponding density of the quintessence field varies

with redshift as ρφ(a) ∝ a−3(1+w0+wa) exp3waa. In a spatially flat Universe, evo-

lution of the Hubble parameter H(a) is given by

H(a)

H0

=

√
Ωm0a

−3 + Ωφ0 exp

[
−3

∫ a

1

da′
1 + wφ(a′)

a′

]
+ ΩΛ0 (7.1)

with Ωm0 + Ωφ0 + ΩΛ = 1. We shall henceforth call this model with Λ along

with a scalar field as the CPL-ΛCDM model.

We consider two important cosmological observables. Firstly we consider

a dimensionless quantifier of cosmological distances [1]

r
BAO

(z) =
rs

D
V

(z)
(7.2)

where rs denotes the sound horizon at the drag epoch and D
V

(z) is the BAO

effective distance DV [25] is defined as

D
V

(z) =

[
(1 + z)2D2

A(z)
cz

H(z)

]1/3

(7.3)

This dimension-less distance r
BAO

is a quantifier of the background cosmo-

logical model (density parameters) and is thereby sensitive to the dynamical



CHAPTER 7. POST-REIONIZATION HI 21-CM SIGNAL: A PROBE OF NEGATIVE COSMOLOGICAL CONSTANT 130

evolution of dark energy.

Secondly, we use the growth rate of density fluctuations as a quantifier of

cosmological structure formation. Clustering of galaxies in spectroscopic sur-

veys [7], counts of galaxy clusters [505, 506] aim to measure the quantity called

the growth rate of matter density perturbations and the root mean square nor-

malization of the matter power spectrum σ8 given by:

f(a) ≡ d log D+(a)

d log a
and σ8(a) ≡ σ8,0

D+(a)

D+(a = 1)
(7.4)

A more robust and reliable quantity fσ8(a) that is measured by redshift sur-

veys is the combination of the growth rate f(a) and σ8(a). Figure (7.1) shows

variation of rBAO in the (ΩΛ, w0) plane for the CPL-ΛCDM model with H0 = 72

Km/s/Mpc. We have chosen wa = 0 for simplicity. Further, we have kept the

rs fixed to the value computed for the fixed Ωm and Ωb from ΛCDM model [36].

We note that rs does not change much with Ωφ ΩΛ.

We note that ΩΛ is negative in the second and third quadrant. The red con-

tour line corresponds to the observational data and the blue shaded region

depicts the 1σ errors. The first figure in the panel corresponds to z = 0.2 and

the red contour corresponds to observations from the 2df galaxy redshift sur-

vey gives the bounds on r
BAO

as r
BAO

(z = 0.2) = 0.1980±0.0058 [3]. The second

figure in the panel corresponds to z = 0.35 with measured r
BAO

(z = 0.35) =

0.1094 ± 0.0033 [3]. The analysis of BOSS (SDSS III) CMASS sample along

with Luminous red galaxy sample [4] from SDSS-II gives r
BAO

(z = 0.57) =

0.07315 ± 0.002, as is shown in the third figure of the panel. We also show the

contour for rBAO at the corresponding to that redshift for a pure ΛCDM cos-

mology with cosmological parameters [36] results (Ωm0 ,Ωb0 , H0, ns, σ8,ΩK) =

(0.315, 0.0496, 67.4, 0.965, 0.811, 0). All these observations are consistent with

the possibility of models with negative Λ with varying uncertainties. It is clear

from the observations that there are two separate regions consistent with data:

The third quadrant corresponds to Phantom models with negative Λ and the

first quadrant which corresponds to non-phantom models with positive Λ. It is

also clear that in spatially flat cosmologies with conditions ρm > 0 and ρφ > 0

implies that ΩΛ < 1 which is not supported by data. The addition of a neg-
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Figure 7.1: shows rBAO in the (ΩΛ, w0) plane. The red contour line corresponds
to the observational data point and the blue shaded region depicts the 1σ er-
rors. The data points in the left two figures come from the 2df galaxy survey at
redshifts of z = 0.2 and z = 0.35 respectively [3] and the third figure shows the
high redshift data at z = 0.57 from BOSS SDSS-III survey [4]. The red dotted
contour correspond to rBAO computed for a ΛCDM model. The grey sectors
correspond to the models for which the Universe did not ever go through an
accelerated phase till that redshift.
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Figure 7.2: shows variation of fσ8(z) in the (ΩΛ, w0) plane. The solid red
line corresponds to the observational data points from SDSS-III BOSS fσ8(z =
0.51) = 0.470 ± 0.041 [5], fσ8(z = 0.61) = 0.457 ± 0.052 [6] and eBOSS DR16
LRGxELG data fσ8(z = 0.7) = 0.4336±0.05003 [7]. The red dotted contour cor-
responds to fσ8(z) computed for a ΛCDM model. The grey sectors correspond
to the models for which the Universe did not ever go through an accelerated
phase till that redshift.
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ative cosmological constant to a phantom dark energy model seems viable

from the data. We find that the CPL-Λ CDM with a phantom field and neg-

ative Λ and H0 = 72 Km/s/Mpc, the observational data as also ΛCDM with

H0 = 67.4Km/s/Mpc are all qualitatively consistent. We note that while com-

puting rBAO, the sound horizon distance rs is fixed to the value computed for

Ωm and Ωb from [36] since rs does not change much with Ωφ ΩΛ.

Figure (7.2) shows variation of fσ8(z) in the (ΩΛ, w0) plane. The solid red

line corresponds to the observational data from SDSS-III BOSS fσ8(z = 0.51) =

0.470± 0.041 [5], fσ8(z = 0.61) = 0.457± 0.052 [6] and eBOSS DR16 LRGxELG

data fσ8(z = 0.7) = 0.4336± 0.05003 [7] respectively. While the mean observa-

tional fσ8 data falls in the non-phantom sector with negative Λ, the error bars

are quite large and again, the ΛCDM predictions (with H0 = 67.4Km/s/Mpc),

observed data and CPL-ΛCDM with phantom field and negative Λ forH0 = 72

Km/s/Mpc are all consistent within 1− σ errors. The addition of a negative Λ

to a phantom dark energy model seems to also push H0 to a higher value.

In models with negative cosmological constants there are regions in the

(w0 − ΩΛ) which corresponds to cosmologies which never had an accelerated

phase in the past or had a transient accelerated phase or H2(z) < 0. These re-

gions are studied in an earlier work [65]. In the range of (w0−ΩΛ) shown in the

above figures we have shaded these regions where the acceleration parameter

became negative, corresponding to the fact that in these models, the universe

did not ever accelerate upto that redshift.

7.2.1 The post-reionization 21cm power spectrum: The Alcock-

Paczyski anisotropy in redshift space

The power spectrum of post-reionization HI 21-cm excess brightness temper-

ature field δTb from redshift z [78, 241, 256, 283] is given by

P21(k, z, µ) = A2
T (bT + fµ2)

2
Pm(k, z) (7.5)

where

AT = 4.0 mK bT x̄HI(1 + z)2

(
Ωb0h

2

0.02

)(
0.7

h

)(
H0

H(z)

)
(7.6)
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The term f(z)µ2 has its origin in the HI peculiar velocities [83, 256] which, is

also assumed to be sourced by the dark matter fluctuations. Since our cos-

mological model is significantly different from the fiducial one (i.e., ΛCDM),

the difference will introduce additional anisotropies in the correlation func-

tion through the Alcock-Paczynski effect [507–509]. In the presence of the

Alcock-Paczynski effect, the redshift-space HI 21-cm power spectrum is given

by: [78, 241]

P21(k, z, µ) =
A2
T

α‖α
2
⊥

[
bT +

f(z)µ2

F 2 + µ2(1− F 2)

]2

Pm

(
k

α⊥

√
1 + µ2(F−2 − 1), z

)
(7.7)

where F = α‖/α⊥, with α‖ and α⊥ being the ratios of angular and radial dis-

tances between fiducial and real cosmologies, α‖ = Hf/Hr, α⊥ = Dr
A/D

f
A. The

overall factor α‖α2
⊥ is due to the scaling of the survey’s physical volume. As

the real geometry of the Universe differs from the one predicted by the fidu-

cial cosmology, we introduce additional distortion in the redshift space. The

AP test is sensitive to the isotropy of the Universe and can help differentiate

between different cosmological models. We note that the geometric factors

shall also imprint in the BAO feature of the power spectrum. Since 0 ≤ µ1

the redshift space 21cm power spectrum can be decomposed in the basis of

Legendre polynomials P`(µ) as [510]

P21(k, µ, z) =
∑
`

P`(z, k)P`(µ) (7.8)

The odd harmonics vanish by pair exchange symmetry and non-zero azimuthal

harmonics. ( as Y`,m’s with m 6= 0 vanish by symmetry about the line of sight).

Using the standard normalization

∫ +1

−1

P`(µ)Pr(µ)dµ =
2

2`+ 1
δ`,r

the first few Legendre polynomials are given by

P0(µ) = 1, P2(µ) =
1

2

(
3µ2 − 1

)
, P4(µ) =

1

8
(35µ4 − 30µ2 + 3) (7.9)
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The coefficients of the expansion of the 21cm power spectrum, can be found

by inverting the equation (7.8). Thus, we have

P`(z, k) =
(2`+ 1)

2

∫ +1

−1

dµ P`(µ)P21(z, k, µ) (7.10)

While full information is contained in an infinite set of functions {P`(z, k)}, we

shall be interested in the first few of these function which has the dominant

information.

7.2.2 The BAO feature in the multipoles of 21-cm power spec-

trum

The sound horizon at the drag epoch (z ∼ 1000) provides a standard ruler,

which can be used to calibrate cosmological distances. Baryons imprint the

cosmological power spectrum through a distinct oscillatory signature [126,

127]. The BAO imprint on the 21-cm signal has been studied extensively [462,

463]. The baryon acoustic oscillation (BAO) is an important probe of cosmol-

ogy [1, 3, 4, 128, 462] as it allows us to measure the angular diameter distance

DA(z) and the Hubble parameter H(z) using the transverse and the longitudi-

nal oscillatory features respectively [120].

The sound horizon at the drag epoch is given by

s(zd) =

∫ adrag

0

csda

a2H(a)
(7.11)

where adrag is the scale factor at the drag epoch redshift zd and cs is the sound

speed given by cs(a) = c/
√

3(1 + 3ρb/4ργ) where ρb and ργ denotes the bary-

onic and photon densities, respectively. The Planck 2018 constrains the value

of zd and s(zd) to be zd = 1060.01± 0.29 and s(zd) = 147.21± 0.23Mpc [36]. We

shall use these as the fiducial values in our subsequent analysis. The standard

ruler ‘s’ defines a transverse angular scale and a redshift interval in the radial

direction as

θs(z) =
s(zd)

(1 + z)DA(z)
δzs =

s(zd)H(z)

c
(7.12)

Measurement of θs and δzs, allows the independent determination of DA(z)
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and H(z). The BAO feature comes from the baryonic part of P (k). In order

to isolate the BAO feature, we subtract the cold dark matter power spectrum

from total P (k) as Pb(k) = P (k) − Pc(k). Owing to significant deviations be-

tween the assumed cosmology and the fiducial cosmology, our longitudinal

and tangential coordinates are rescaled by α‖ and α⊥ respectively, the true

power spectrum scaled as k′ = k
√

1 + µ2(F−2 − 1)/α⊥ from the apparent one

[507, 511, 512]. Incorporating the Alcock-Paczynski corrections explicitly in the

BAO power spectrum can be written as [465, 466]

Pb(k
′) = A

sinx

x
e−(k′

∑
s)

1.4

e−k
′2∑2

nl /2 (7.13)

where A is a normalization,
∑

s = 1/ksilk and
∑

s = 1/knl denotes the in-

verse scale of ‘Silk-damping’ and ‘non-linearity’ respectively. In our analysis

we have used knl = (3.07h−1Mpc)−1and ksilk = (8.38h−1Mpc)−1 from Seo and

Eisenstein [466] and x =
√
k2(1− µ2)s2

⊥ + k2µ2s2
‖. The changes in DA(z) and

H(z) are reflected as changes in the values of s⊥ and s‖ respectively, and the er-

rors in s⊥ and s‖ corresponds to fractional errors in DA and H(z) respectively.

We use p1 = ln(s−1
⊥ ) and p2 = ln(s‖) as parameters in our analysis. The Fisher

matrix is given by

Fij =

(
2`+ 1

2

)∫
dk′

∫ +1

−1

dµ
A2
T

α‖α2
⊥

[
bT +

f(z)µ2

F 2 + µ2(1− F 2)

]2

P`(µ)

δP 2
21(k, z, µ)

∂Pb(k
′)

∂pi

∂Pb(k
′)

∂pj

(7.14)

=

(
2`+ 1

2

)∫
dk′

∫ +1

−1

dµ
A2
T

α‖α
2
⊥

[
bT +

f(z)µ2

F 2 + µ2(1− F 2)

]2
P`(µ)

δP 2
21(k, z, µ)(

cosx− sinx

x

)2

fifjA
2e−2(k′

∑
s)

1.4

e−k
′2∑2

nl

(7.15)

where f1 = µ2 − 1 and f2 = µ2.

We choose SKA’s a Medium-Deep Band-2 survey that covers a sky area of

5,000 deg2 in the frequency range 0.95 − 1.75GHz (z = [0 − 0.5]) and a Wide

Band-1 survey that covers a sky area of 20,000 deg2 in the frequency range

0.35−1.05GHz (z = [0.35−3]) [513]. We calculate the expected error projections
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on DA(z) and H(z) in five evenly spaced, non-overlapping redshift bins, in

the redshift range [z=0-3] with ∆z = 0.5. Each of the six bins is taken to be

independent and is centered at redshifts of z = [0.25, 0.75, 1.25, 1.75, 2.25].

7.2.3 Visibility correlation

We use a visibility correlation approach to estimate the noise power spectrum

for the 21-cm signal [82, 253, 291, 353, 468, 469]. A radio interferometric ob-

servation measures the complex visibility. The measured visibility written as a

function of baseline U = (u, v) and frequency ν is a sum of signal and noise

V(U, ν) = S(U, ν) + N(U, ν) (7.16)

S(U, ν) =
2kB
λ2

∫
d~θ A(~θ)e2πiU·~θ δTb(~θ, ν) (7.17)

where, δTb(~θ, ν) is the fluctuations of the 21-cm brightness temperature and

A(~θ) is the telescope beam. The factor
(

2kB
λ2

)2
converts brightness temperature

to intensity (Raleigh Jeans limit). Defining ∆ν as the difference from the central

frequency, a further Fourier transform in frequency ∆ν gives us

s(U, τ) =
2kB
λ2

∫
d~θ dν A(~θ)B(∆ν) e2πi(U·~θ+τ∆ν) δTb(~θ, ν) (7.18)

where B(∆ν) is the frequency response function of the radio telescope.

s(Ua, τm) =
2kB
λ2

∫
d~θ d∆ν

∫
d3k

(2π)3
e−i(k⊥r·

~θ+k‖r
′∆ν) A(~θ)B(∆ν)

e2πi(Ua·~θ+τm∆ν) δ̃Tb(k⊥, k‖)

(7.19)

where the tilde denotes a Fourier transform and r′ = dr(ν)/dν.

s(Ua, τm) =
2kB
λ2

∫
d~θ d∆ν

∫
d3k

(2π)3
e−i(k⊥r−2πUa)·~θe−i(k‖r

′−2πτm)∆ν

A(~θ)B(∆ν) δ̃Tb(k⊥, k‖)

(7.20)

Performing the ~θ and ∆ν integral we have
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s(Ua, τm) =
2kB
λ2

∫
d3k

(2π)3
Ã

(
k⊥r

2π
−Ua

)
B̃

(
k‖r
′

2π
− τm

)
δ̃Tb(k⊥, k‖) (7.21)

Defining new integration variables as U = k⊥r
2π

and τ =
k‖r
′

2π
we have

〈s(Ua, τm)s∗(Ub, τn)〉 =

(
2kB
λ2

)2
1

r2r′

∫
dU dτÃ (U−Ua) Ã

∗ (U−Ub)

B̃ (τ − τm) B̃∗ (τ − τn)P21

(
2πU

r
,
2πτ

r′

)
(7.22)

Approximately, we may write∫
B̃ (τ − τm) B̃∗ (τ − τn) ≈ Bδm,n and

∫
dU Ã (U−Ua) Ã

∗ (U−Ub) ≈
λ2

Ae
δa,b

(7.23)

where B is the bandwidth of the telescope and where Ae is the effective area of

each dish. Hence

〈s(Ua, τm)s∗(Ub, τn)〉 ≈
(

2kB
λ2

)2
Bλ2

r2r′Ae
P21

(
2πUa

r
,
2πτ

r′

)
δm,nδa,b (7.24)

The noise in the visibilities measured at different baselines and frequency chan-

nels are uncorrelated. We then have

〈N(Ua, νm) N∗(Ub, νn)〉 = δa,bδm,n2σ2 (7.25)

where

σ =

√
2kBTsys

Ae
√

∆νt
(7.26)

where Ae is the effective area of the dishes, t is the correlator integration time

and ∆ν is the channel width. If B is the observing bandwidth, there would be

B/∆ν channels. The system temperature Tsys can be written as

Tsys = Tinst + Tsky (7.27)

where

Tsky = 60K
( ν

300 MHz

)−2.5

(7.28)
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Under a Fourier transform

n(U, τ) =

B/∆ν∑
i=1

N(U, νi)∆ν e2πiνiτ (7.29)

〈n(Ua, τ) n∗(Ub, τ)〉 = 2σ2δa,b∆ν
2 B

∆ν
= 2σ2δa,b∆νB (7.30)

〈n(Ua, τ) n∗(Ub, τ)〉 =
4k2

BT
2
sysB

A2
et

=

(
2kB
λ2

)2(
λ2Tsys
Ae

)2
B

t
(7.31)

Now cosidering a total observation time To and a bin ∆U, there is a reduction

of noise by a factor
√
Np where Np is the number of visibility pairs in the bin

Np = Nvis(Nvis − 1)/2 ≈ N2
vis/2 (7.32)

where Nvis is the number of visibilities in the bin. We may write

Nvis =
Nant(Nant − 1)

2

To
t
ρ(U)δ2U (7.33)

whereNant is the total number of antennas and ρ(U) is the baseline distribution

function.

〈n(Ua, τ) n∗(Ub, τ)〉 =

(
2kB
λ2

)2(
λ2TsysB

Ae

)2
2δa,b

Nant(Nant − 1)B To ρ(U)δ2U
(7.34)

where an additional reduction by
√

2 is incorporated by considering visibilities

in half plane. The 21 cm power spectrum is not spherically symmetric, due to

redshift space distortion but is symmetric around the polar angle φ. Because

of this symmetry, we want to sum all the Fourier cells in an annulus of con-

stant (k, µ = cos θ = k‖/k) with radial width ∆k and angular width ∆θ for a

statistical detection. The number of independent cells in such an annulus is

Nc = 2πk2 sin(θ)∆k∆θ
V ol

(2π)3
= 2πk2∆k∆µ

V ol

(2π)3
(7.35)



CHAPTER 7. POST-REIONIZATION HI 21-CM SIGNAL: A PROBE OF NEGATIVE COSMOLOGICAL CONSTANT 140

where

V ol =
r2λ2r′B

Ae
(7.36)

Thus the full covariance matrix for visibility correlation is [291, 353, 468, 469]

Ca,b =
1√
N c

(
2kB
λ2

)2 [
Bλ2

r2r′Ae
P21

(
2πUa

r
,
2πτ

r′

)
+(

λ2TsysB

Ae

)2
2

Nant(Nant − 1)B To ρ(U)δ2U

]
δa,b

We choose δ2U = Ae/λ
2, ∆k = k/10, ∆µ = µ/10.

The baseline distribution function ρ(U) is normalized as∫
dUρ(U) = 1 (7.37)

For uniform baseline distribution

ρ(U) =
1

π(U2
max − U2

min)
(7.38)

Generally

ρ(U) = c

∫
d2rρant(r)ρant(r− λU) (7.39)

Where c is fixed by normalization of ρ(U) and ρant is the distribution of an-

tennae. The covariance matrix in Eq (7.37) is used in our analysis to make

noise projections on the 21-cm power spectrum and its multipoles. Observa-

tions with total time time exceeding a limiting value will make the instrumen-

tal noise insignificant and the Signal to Noise Ratio is primarily influenced by

cosmic variance for such observations. Therefore, by introducing Npoint as the

number of independent pointings, the covariance is further reduced by a factor

of 1/
√
Npoint.

7.3 Results and discussion

In this section we discuss the results of our investigation. The figure (7.3)

shows the dimensionless 3D 21-cm power spectrum (∆2
21 = k3P21(k, z)/(2π2))

in redshift space at the fiducial redshift z = 1. In the plane of k‖ and k⊥, the
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Figure 7.3: shows the 3D HI 21-cm power spectrum at z = 1 in the (k⊥, k‖)
space. The asymmetry in the signal is indicative of redshift space distortion:
the left figure corresponds to the ΛCDM. In contrast, the right figure rep-
resents the CPL-ΛCDM model, where the Alcock-Paczynski effect enhanced
the distortions. The colorbar shows the value of the dimensionless quantity
∆2

21 = k3P21(k)/(2π2) in mK2.
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Figure 7.4: shows the 21-cm linear power spectrum monopole (top),
quadrupole (middle) and hexadecapole (bottom) at redshift z = 0.2. The dot-
ted line corresponds to ΛCDM.
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Figure 7.5: shows the 21-cm linear power spectrum monopole (top),
quadrupole (middle) and hexadecapole (bottom) at redshift z = 0.57. The
dotted line corresponds to ΛCDM.
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Figure 7.6: Marginalized posterior distribution of the set of parameters and
(H0,Ωm,ΩΛ, w0, wa, ωφ) corresponding 2D confidence contours obtained from
the MCMC analysis. The fiducial model parameters are taken from Sen et al.
[8]
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Nant Antennae Efficiency Ddis To Tsys B

250 0.7 15m 500hrs 60K 200MHz

Table 7.1: Table showing the telescope parameters used in our analysis.

power spectrum shows the anisotropy of the redshift space power spectrum.

The contours colored in blue correspond to the fiducial ΛCDM model, while

those in red pertain to the CPL-ΛCDM model. We choose the best-fit value on

CPL-ΛCDM model parameters (Ωm = 0.289,ΩΛ = −0.781, w0 = −1.03, wa =

−0.10) obtained from the combined data CMB+BAO+Pantheon+R21 [8]. The

Alcock-Paczynski effect makes a notable contribution, intensifying the anisotropy

observed in the power spectrum. The significant departure of the CPL-ΛCDM

model∼ 5% at k ∼ 1Mpc−1 indicates that a closer investigation of the possibil-

ity of discerning such models from the ΛCDM model is justified.

For the measurement of the 21-cm power spectrum, we consider a radio-

interferometric observation using a futuristic SKA1-Mid like experiment. The

typical telescope parameters used are summarized in the table below. We also

assume that the antenna distribution falls off as 1/r2, whereby the baseline

coverage on small scales is suppressed.

We consider 250 dish antennae each of diameter 15m and efficiency 0.7.

We assume Tsys = 60K and an observation bandwidth of 128MHz. The k-

range between the smallest and largest baselines is binned as ∆k = αk where

α = 1/Nbin ln(Umax/Umin). The minimum value of k is taken to be 0.005Mpc−1

the maximum value of k is taken to be 0.5Mpc−1 with logarithmically number

of bins Nbin = 8. We consider a total observation time of 500 × 150hrs with

150 independent pointings, we obtain the 1− σ errors on P`(k, z). The fiducial

model is chosen to be the ΛCDM. Figure (7.5) shows the multiples of P21(k, z)

for selective parameter values of CPL-ΛCDM model. The central dotted line

corresponds to ΛCDM. The fiducial redshift is chosen to be 0.2 (top) and 0.57

(bottom). We found that in the k range 0.01Mpc−1 < k < 0.1Mpc−1 phantom

models are distinguishable from ΛCDM at a sensitivity of > 3σ. For higher

multipoles, they are even more differentiable from fiducial ΛCDM. On the

contrary, non-phantom models remain statistically indistinguishable from the

ΛCDM model while considering monopole only. They are only distinguish-
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Parameters H0 Ωm ΩΛ w0 wa Ωφ

Constraints 69.2762.465
−1.600 0.3030.067

−0.060 −0.9680.539
−1.611−1.0310.046

−0.061−0.0050.442
−0.5371.7501.546

−0.537

Table 7.2: The parameter values, obtained in the MCMC analysis are tabulated
along the 1− σ uncertainty.

able in higher multipoles.

We see a strong effect of ΩΛ on the multipole components of the power

spectrum. A non-trivial ΩΛ introduces additional enhancement of anisotropy

in the 21-cm power spectrum through the redshift space distortion factor fµ2.

Additionally the power spectrum gets further modified through the departure

of the factor F = α‖/α⊥ from unity and through the matter power spectrum

P (k, µ) though the scalings of k⊥ and k‖. This explains the significant devia-

tion of the 21-cm power spectrum for the CPL-ΛCDM model from its standard

ΛCDM counterpart. This is become more prominent in the quadrupole and

hexadecapole components cause of the terms with the anisotropy are enhanced

by integrals of higher powers of µ in the Legendre polynomials.

The BAO imprint on the monopole P0(z, k) allows us to constrain DA(z)

and H(z). We perform a Markov Chain Monte Carlo (MCMC) analysis to con-

strain the model parameters using the projected error constraints obtained on

the binned H(z) and DA(z) from the P0(z, k). The analysis uses the Python

implementation of the MCMC sampler introduced by Foreman-Mackey et al.

[474]. We take flat priors for CPL-ΛCDM model parameters with ranges of

H0 ∈ [67, 73],Ωm ∈ [0.2, 0.6],ΩΛ ∈ [−7, 2], w0 ∈ [−1.5, 1.5], wa ∈ [−0.7, 0.7]. The

figure (7.6) shows the marginalized posterior distribution of the set of param-

eters (H0,Ωm,ΩΛ, w0, wa), and the corresponding 2D confidence contours are

obtained. The fiducial value of the model parameters are taken from the best

fit values of H0,Ωm,ΩΛ, w0, wa obtained from the combined data CMB+BAO+

Pantheon+R21 [8]. Constraints on model parameters are tabulated in Table

(7.2). While comparing with the projected error limits for the parameters of the

CPL-ΛCDM as obtained in Sen et al. [8], we find that 21-cm alone doesn’t im-

pose stringent constraints on the values of ΩΛ and wa. However, it does exhibit

a reasonably good ability to constrain the parameter w0. To attain more robust

constraints on these model parameters, a more comprehensive approach is re-
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quired. This involves combining the 21-cm power spectrum data with other

cosmological observations such as the CMB, BAO, SNIa, galaxy surveys etc.

Through the joint analysis, it becomes possible to significantly improve the

precision of parameter estimation.

Alcock-Paczynski anisotropy in redshift space: a dark energy

marker

We explore a more straightforward and robust measure of anisotropy that

doesn’t necessitate the fitting of the power spectrum to a specific form. The

’anisotropy ratio’ is defined as [514]

r(k, z) ≡
∫ 0.5

−1
P21(k, z, µ) dµ+

∫ 1

0.5
P21(k, z, µ) dµ∫ 0.5

−0.5
P21(k, z, µ) dµ

− 1 (7.40)

This quantity was proposed originally to study reionization power spectrum

[514] where the anisotropy arises even in a Λ CDM cosmology due to different

coefficients to different powers of µ in the reionization power spectrum. Here,

we use the same quantifier but the anisotropy is now rooted in the AP effect.

The quantity r(k, z) is usually studied at a fixed z. We have looked at its be-

havior in the entire (k, z) plane. The idea behind this to use the tomographic

power spectrum measurement of the 21-cm power spectrum and find the op-

timal (k, z) range for detection with high SNR. We can see that for the ΛCDM

model there is no k−dependence of r(k, z) due to the cancellation of the k

dependent quantities from the numerator and the denominator, and what sur-

vives depends only on the growth rate f which has redshift dependence at low

redshifts. At high redshifts f ∼ 1 and r(k, z) becomes a constant.

Introducing a CPL model for dark energy shows z dependence from the

growth rate and a k dependence from the AP effect. The BAO oscillations also

imprint due to the AP effect. The departure from Λ CDM is quite significant

when we consider the CPL-ΛCDM model. This implies that the quantity r(k, z)

is a potential probe of dark energy.

Figure 7.7 shows the behaviour of r(k, z) in the (k, z) plane. As discussed

earlier r has no k− dependence in the ΛCDM model (for a constant linear bias).
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Figure 7.7: shows the r(k, z) from 3D HI 21-cm power spectrum in the (k, z)
space. The upper one corresponds to ΛCDM, whereas the middle one corre-
sponds to CPL model with (w0, wa = −1.1,−0.1) and the bottom one for the
best fit values of CPL-ΛCDM parameters.
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Figure 7.8: shows the SNR for r(k, z) from 3D HI 21-cm power spectrum in
the (k, z) bins. The upper figure one corresponds to the CPL model with
(w0, wa = −1.1,−0.1) and the lower one is for the best fit values of CPL-ΛCDM
parameters [8].
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We see some redshift dependence at small redshift due to the variation of β(z)

with redshift at low redshifts. For the CPL model, we see that r(k.z) shows ad-

ditional anisotropy in the k−range (k < 10−1Mpc−1 ) at redshifts z ∼ 2.5 The

anisotropy is more pronounced for a model with negative cosmological con-

stant. The oscillatory feature indicates the BAO feature which does not cancel

in r(k, z) (as in the case of ΛCDM model) due to Alcock-Pacyzinski anisotropy.

We consider the possibility of measuring the quantity r in 5 k− bands at 5

observing frequencies. These 5 k-bins corresponds to different baseline U bins

at the different observing frequencies. The 1− σ SNR is calculated using

δr(k, z) =

[
δPN

21(k, z)

PN(k, z)
+
δPD

21(k, z)

PD(k, z)

]
r(k, z) (7.41)

where δPN
21(k, z) and δPD

21(k, z) are the variances of the numerator and denom-

inator parts of the Eq: 7.40.

The figure 7.8 shows the SNR for (i) CPL and (ii) CPL-ΛCDM fiducial cos-

mologies. We find that a peak SNR of ∼ 40 is possible at z ∼ 0.5 in the k-bin

centered at 0.03MPc−1 for the CPL model. The peak SNR in this bin is∼ 50 for

a CPL-ΛCDM fiducial model. This allows us to use r(k, z) as a cosmological

probe of dark energy.

Model CPL CPL-ΛCDM
Constraints ∆w0 = 0.067,∆wa = 0.152 ∆w0 = 0.0181

Table 7.3: Table showing 68% error projection on different dark energy models.

Figure 7.9 shows the confidence ellipses obtained from the Fisher matrix

Fij =
∑ 1

δr2

∂r

∂λi

∂r

∂λj
(7.42)

where λi = w0, wa The 1− σ (68%) errors are summarized in the table 7.3.

7.4 Conclusion

In this work, we study the possibility of constraining negative Λ using the

post-reionization HI 21-cm power spectrum. We specifically investigate the
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Figure 7.9: shows 68% and 95% marginalized confidence intervals for the pa-
rameters (w0, wa) from the 21-cm anisotropy ratio for the CPL model. The fidu-
cial model is chosen as the ΛCDM model with (w0, wa) = (−1, 0).

quintessence models with the most widely used dark energy EoS parameteri-

zation and add a non-zero vacua (in terms of a ±Λ).

By the analysis of BOSS (SDSS) data we find that addition of a negative cos-

mological constant to a phantom dark energy model seems viable. We see that

the CPL-ΛCDM with a phantom field and negative Λ and H0 = 72 Km/s/Mpc

qualitatively consistent with the data.

Further, we study the non-trivial CPL-ΛCDM model with the fσ8 data from

the galaxy surveys. We find that the mean observational fσ8 falls in the non-

phantom sector with negative Λ. Since the error bars are quite large, both

ΛCDM predictions (with H0 = 67.4Km/s/Mpc), and CPL-ΛCDM with phan-

tom field and negative Λ for H0 = 72 Km/s/Mpc are consistent within 1 − σ
errors. The addition of a negative Λ to a phantom dark energy model also

seems to push H0 to a higher value.

Subsequently, we look into the influence of the Alcock-Packzynski effect

on 3D HI 21-cm power spectrum. Using ΛCDM as a fiducial cosmology, we

explore the implications of the first few multipoles of the redshift-space 21-

cm power spectrum for the upcoming SKA intensity mapping experiments.
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We find that the multipoles specially the quadrupole and hexadecapole com-

ponents show significant departure from their standard ΛCDM counterparts.

We focus on the BAO feature on the monopole component, and estimate the

projected errors on the H(z) and DA(z) over a redshift range z ∼ 0− 3.

Further, we perform a MCMC analysis to constrain the CPL-ΛCDM model

parameters using the projected error constraints obtained on the binned H(z)

and DA(z) from the P0(z, k). We find that 21-cm alone doesn’t impose strin-

gent constraints on the model parameters. Combining the 21-cm power spec-

trum data with other cosmological observations such as the CMB, BAO, SNIa,

galaxy surveys, etc can significantly improve the precision of parameter esti-

mation.

In the end, we have considered an alternative quantifier r(k, z) to measure

the anisotropy in the power spectrum and made error projections on dark en-

ergy model parameters.

While we have not factored in several observational challenges towards de-

tecting the 21-cm signal. Proper mitigation of large galactic and extra-galactic

foregrounds and minimizing calibration errors are imperative for the any cos-

mological investigation. In a largely observationally idealized scenario, we

have obtained error projections on the model parameters from the BAO im-

print on the post-reionization 21-cm intensity maps. We employ a Bayesian

analysis techniques to put constraints on the model parameters. Precision mea-

surement of these parameters shall enhance our understanding of the under-

lying cosmological dynamics and potential implications of negative Λ values.

We would like to factor in some of the key observational issues in future.



CHAPTER 8
Conclusion and Future Scope

This thesis investigates the possibility of using the probes of the post-reionization

matter density field to improve our understanding of various dark energy

models. The dark energy models we have studied are

• Dark energy EoS parameterized in a model-independent manner

• f(R) modification to Einstein’s gravity

• Quintessence scalar fields

We have used the statistics of three tracers of the dark matter distribution.

Weak lensing and Lyman-alpha forest sample the large-scale matter distribu-

tion along one-dimensional line of sight skewers. The redshifted 21-cm signal

from the post-reionization Hi gives a three-dimensional map of the Universe.

We have studied these tomographic probes in auto and cross-correlation.

We have focused on the possibility of differentiating these models from the

ΛCDM model with a high statistical significance in upcoming experiments. We

have also used simulated futuristic data to make error projections on diverse

model parameters.

Future Scope

The following topics will be the focus of ongoing and future research.

• Recently, many authors suggested that the presence of the negative Λ

along with Quintessence dark energy can alleviate the H0 tension and

lift the fσ8 degeneracy. In our elementary study, we saw that negative

ΩΛ can be constrained using the HI 21cm observation. Further, the ram-

ifications and details of such scenarios need to be explored using other

probes as well in a multi-probe study.

153
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• We investigated the BAO oscillatory signature in the cross-power spec-

trum. BAO features in highly anisotropic 21-cm power spectrum in red-

shift space due to AP effect is an exciting area of investigation, especially

in models where exotic dark energy causes significant departure from

ΛCDM predictions of expansion rates and distances.

• While using different cosmological model/modified gravity theories, we

have not taken account of the Alcock-Panczyski effect in our calculation,

which severely impacts the power spectrum in redshift space and show

more anisotropies in the (k‖, k⊥) plane.

• Foreground subtraction is crucial to cosmological HI observations. We

would like to find out if cross-correlation actually gets around the fore-

ground problem. Finding the optimal window function to remove fore-

ground seepage in the weak lensing signal is to be investigated.

• An accurate determination of the cosmic HI signal will probably be pos-

sible by detecting the cross-correlation power spectrum. For more accu-

rate projections/constraints, it is necessary to investigate the best obser-

vational techniques and telescope designs.

• Angular HI 21-cm bispectrum in the redshift space needs to be explored.

Similarly, it is essential to look into cross-bispectrum taking different cos-

mological probes of IGM.

• The physics involved behind the observed Lyman-α forest and 21-cm

signal involves non-linear effects on small scales. Our linear theory anal-

ysis needs to be justified using non-linear theories like the Halo model or

through simulations.

• We have not explicitly modeled the effects of the galaxy photo-z errors

in our analysis with weak lensing. Since fairly broad redshift bins are

used, the effect of these errors may be largely mitigated in the case of the

galaxy autocorrelation lensing power spectrum.

• Extending our approaches towards intensity mapping with other emis-

sion lines (CO, CII) would enable us to form a comprehensive picture.



155

Exploiting the synergy of CMB, HI, Lyman-α forest, and galaxy surveys,

the methodology would be a powerful tool to explore more parameters

in cosmological models such as e.g., testing higher order gravity theories,

k-essence models etc.

The field of cosmology may rapidly change with an improved understand-

ing of the dark sector from observations and fundamental theoretical physics.

New avenues of theoretical investigations and observation strategies shall be

envisaged in sync with these developments.





APPENDIX A
Field equations for Quintessence and f (R) gravity

A.1 Derivation of the Klein-Gordon Equation

The action of scalar field:

Sφ =

∫ √
−gLφ(φ, ∂aφ)d4x (A.1)

where Lφ is the Lagrangian density. For a region Ω, we consider variation of

the field. φ(x)⇒ φ(x) + δ(x) which vanishes on the surface Γ(Ω), i.e δφ(x) = 0.

Hence

δS(Ω) = δ

(∫
Ω

√
−gLφ(φ, ∂αφ)d4x

)
=

∫
Ω

[
∂(
√
−gLφ)

∂φ
δφ+

∂(
√
−gLφ)

∂(∂aφ)
δ(∂aφ)

]
(A.2)

The second term in the above expression:

∂(
√
−gLφ)

∂(∂aφ)
δ(∂aφ) =

∂

∂xa

[
∂(
√
−gLφ)

∂(∂aφ)
δφ

]
− ∂

∂xa

[
∂(
√
−gLφ)

∂(∂aφ)

]
δφ (A.3)

δS(Ω) =

∫
Ω

[
∂(
√
−gLφ)

∂φ
δφ− ∂

∂xa

(
∂(
√
−gLφ)

∂(∂aφ)

)]
δφd4x+

∫
Ω

[
∂

∂xa

(
∂(
√
−gLφ)

∂(∂aφ)

)
δφ

]
d4x

(A.4)

Using the divergence theorem, the last term of the above expression goes off

as δφ = 0 an S = Γ(Ω):∫
Ω

[
∂

∂xa

(
∂(
√
−gLφ)

∂(∂aφ)

)
δφ

]
d4x =

∫
S=Γ(Ω)

(
∂(
√
−gLφ)

∂(∂aφ)

)
δφ.ndS = 0 (A.5)
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As δS(Ω) = 0, we obtain the Euler-Lagrange equation:∫
Ω

[
∂(
√
−gLφ)

∂φ
δφ− ∂

∂xa

(
∂(
√
−gLφ)

∂(∂aφ)

)]
δφd4x = 0

∂(
√
−gLφ)

∂φ
δφ− ∂

∂xa

(
∂(
√
−gLφ)

∂(∂aφ)

)
= 0

Evaluating the first term of the above,

∂

∂φ
(
√
−gLφ) =

√
−g ∂

∂φ
Lφ =

√
−g ∂

∂φ

(
1

2
gµν∂µφ∂νφ− V (φ)

)
= −
√
−g∂V

∂φ
(A.6)

and the second term,

∂a

[
∂(
√
−gLφ)

∂(∂aφ)

]
= ∂a

[
∂

∂(∂aφ)

(√
−g1

2
gµν∂µφ∂νφ−

√
−gV (φ)

)]
= ∂a

[√
−g1

2
gµν(∂µφδµa + ∂νφδνa)

]
= ∂µ(

√
−ggµν∂νφ)

= ∂µ(
√
−g)gµν∂νφ+ ∂µ(gµν)

√
−g∂νφ+ gµν

√
−g∂µ∂νφ

=
√
−g
(

1

2g
∂µ(g)gµν∂νφ+ ∂µ(gµν)∂νφ+ gµν∂µ∂νφ

)
(A.7)

For FLRW metric gµν = dig(1 − a2(t) − a2(t) − a2(t)), with determinant g =

det(gµν) = −a6(t). Since metric is diagonal, we can read out the following

quantities:

∂0g = −6a5ȧ , ∂ig = 0 , ∂µg
µν = ∂µg

µµ = 0 (A.8)

Further we have ∂0φ = φ̇ and ∂iφ = 0. Hence the term,

∂a

[
∂(
√
−gLφ)

∂(∂aφ)

]
=
√
a6

(
− 1

2a6
∂0gg

0ν∂νφ+ gµ0∂µ∂0φ

)
= a3

(
− 1

2a6
∂0gg

00∂0φ+ g00∂0∂0φ

)
= a3

(
− 1

2a6
(−6a5ȧ)φ̇+ φ̈

)
= a3

(
3

(
ȧ

a

)
φ̇+ φ̈

) (A.9)

Remaining term:

−
√
−g∂V

∂φ
− a3

(
a
ȧ

a
φ̇+ φ̈

)
= −a3

(
∂V

∂φ
+ 3

(
ȧ

a

)
φ̇+ φ̈

)
= 0 (A.10)
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finally we have reached the Klein-Gordon equation:

φ̈+ 3

(
ȧ

a

)
φ̇+

∂V

∂φ
= 0 (A.11)

A.2 Deriving field equation in f (R) gravity theory

The action in case of f(R) gravity can be written as

A =
1

2κ2

∫
d4x
√
−gf(R) +

∫
d4x
√
−gLm(gµν , φ) (A.12)

where κ2 = 8πG
c2

and Lm is the Lagrangian matter density which is a function of

metric gµν and matter field φ. Now let’s vary the action w.r.t metric gµν to get

the modified field equation.

*δA =

∫
d4xδ(

√
−gf(R)) =

∫
d4x
√
−gδ(f(R)) +

∫
d4xδ(

√
−g)f(R) (A.13)

Above we have not considered the variation of matter action which will even-

tually give the standard Einstein’s stress-energy-momentum tensor Tµν . The

variation of
√
−g can be work out as

δ
√
−g = δ

[
(−g−1)−1/2

]
= −1

2
(−g−1)−3/2δ(−g) = −1

2

√
−ggµνδgµν (A.14)

where the last expression we used the cyclic property of the trace i.e δ(g−1) =
1
g
gµνδg

µν (using Trace(N−1δN) = 1
detN

δ(detN) where N = gµν and detN =

detgµν = 1/g ). The variation of f(R) is expressed as

δf(R) =
∂f

∂R
=
∂f

∂R
(δgµν)Rµν +

∂f

∂R
gµνδRµν (A.15)

From now onward we will use the short hand notation of ∂f
∂R
≡ f,R and ∂2f

∂R2 ≡
f,RR. So the total action has three parts as follows

δA =

∫
d4x
√
−g(f,RRµν)δg

µν+

∫
d4x
√
−g(f,Rg

µν)δRµν+

∫
d4x
√
−g
(
−1

2
gµνf

)
δgµν

(A.16)

*dropped the κ2 term for a while
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The first and third term of the action are already in a designed form which

is multiplied by δgµν . So in order to organize the second term we need the

variation of Rµν using the Palatini equation

δRµν = ∇λδΓ
λ
µν −∇νδΓ

λ
µλ (A.17)

Hence the second term (δA2) now can be expressed as

(δA2) =

∫
d4x
√
−gf,Rgµν

[
∇λδΓ

λ
µν −∇νδΓ

λ
µλ

]
=

∫
d4x
√
−gf,Rgµν

[
∇λg

µνδΓλµν −∇νg
µνδΓλµλ

]
=

∫
d4x
√
−gf,Rgµν

[
∇σg

µνδΓσµν −∇σg
µσδΓλµλ

]
=

∫
d4x
√
−gf,Rgµν∇σ

[
gµνδΓσµν − gµσδΓλµλ

]
(A.18)

Inserting the variation δΓσµν in terms of δgµν using the following expression

δΓσµν = −1

2

[
gλµ∇ν(δg

λσ) + gλµ∇µ(δgλσ − gµαgνβ∇σ(δgαβ)
]

(A.19)

we now have the variation of action in the form

(δA2) =

∫
d4x
√
−g(−1

2
f,R)∇σ

[
δλν∇ν(δg

λσ) + δλν∇µ(δgλσ)− gαβ∇σ(δgαβ)

− δσρ∇ν(δg
λρ)− gµσgρλ∇ν(δg

λρ) + δσβ∇λ(δgαβ)

]
=

∫
d4x
√
−g(−1

2
f,R)∇σ

[
∇λ(δg

λσ)−∇λ(δg
λσ) +∇µ(δgµσ)

− gαβ∇σ(δgαβ)− gµσgρλ∇µ(δgλρ) + gλα∇λ(δgασ)

]
=

∫
d4x
√
−g(−1

2
f,R)∇σ

[
∇µ(δgµσ) +∇α(δgασ)− gαβ∇σ(δgαβ)− gρλ∇σ(δgλρ)

]
=

∫
d4x
√
−g(−1

2
f,R)∇σ

[
∇µ(δgµσ) +∇µ(δgµσ)− gµνβ∇σ(δgµν)− gµν∇σ(δgµν)

]
=

∫
d4x
√
−g(−1

2
f,R)∇σ

[
gµν∇σ(δgµν)−∇µ(δgµσ)

]
(A.20)
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Now the total variation of the action turn out as follows

δA =
1

2κ2

∫
d4x
√
−g
[
f,RRµνδg

µν + (−1

2
f,R)∇σ [gµν∇σ(δgµν)−∇µ(δgµσ)] + (−1

2
gµνfδg

µν

]
(A.21)

Now vary the action (A.21) with respect to the metric gives the field equation

δA

δgµν
= f,RRµν −

1

2
f(R)gµν −∇µ∇νf,R + gµν + gµν�f,R = κ2Tµν (A.22)

Where � = 1√
−g∂µ(

√
−ggµν∂µ) and the energy momentum stress tensor of mat-

ter is defined as

Tµν = − 2√
−g

δAm
δgµν

(A.23)

which satisfy the continuity equation∇µTµν = 0. While varying the field equa-

tion we have incorporated the fact that f,R is a scalar quantity and we can safely

compute covariant derivative. Multiplying gµν in eqn (A.22) leads to

f,RR
µ
µ −

1

2
f(R)δµµ −∇µ∇µf,R + δµµ�f,R = κ2T νµ (A.24)

Using δνµ = 4 and ∇µ∇µ ≡ �, the trace of the field equation is

f,RR + 3�f,R − 2f(R) = κ2T (A.25)

For f(R) = R − 2Λ where f,R = 1 we retrieve the standard Einstein’s field

equations. Comparing f(R) gravity to GR, the extra term �f,R in f(R) gravity

does not vanish and act like an extra propagating degrees of freedom φ ≡
f,R called ’Scalaron’, whose dynamics can be determined by the eqn (A.25).

Looking at the (00) component of A.24 i.e,

f,RR00 −
1

2
f(R)g00 −∇0∇0f,R + g00�f,R = κ2g00T

0
0 (A.26)
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The fourth term:

g00�f,R = −1
1√
−g

∂0(
√
−gg00∂0f,R)

= − 1

a3

∂

∂t

(
−a3 ∂

∂t
f,R

)
=

1

a3
3a2ȧḟ,R +

a3

a3
f̈,R

= 3Hḟ,R + f̈,R

(A.27)

The third term of A.24, the covariant derivative will be simply partial deriva-

tive as f,R is a scalar quantity and thus it will cancel the f̈,R term coming from

the last expression. So the remaining terms are,

f,R(3H2 − 1

2
R) +

1

2
f(R) + 3Hḟ,R = κ2ρ (A.28)

Rearranging we reached the first modified Friedmann equation,

3f,RH
2 = (f,RR− f(R))/2− 3Rḟ,R + κ2ρ (A.29)

For the second Friedmann equation, let us consider the (ii) term of (A.24):

f,RRii −
1

2
f(R)gii −∇i∇if,R + gii�f,R = κ2giiT

i
i (A.30)

Again considering the last term of LHS,

giiRii = a2 1√
−g

∂µ(
√
−ggµν∂νf,R)

= a2 1√
−g
[
∂0(
√
−gg00∂0f,R) + ∂i(

√
−ggii∂if,R)

]
= a2 1

a3

[
∂0

(
a3(−1)ḟ,R

)
∂i

(
a3 1

a2
∂if,R

)]
=

1

a

[
−3a2ȧḟ,R − a3f̈,R + ∂ia∂if,R + a∂i∂if,R

]
= −3a2Hḟ,R − a2f̈,R + a2Hḟ,R + ∂i∂if,R

= −2a2Hḟ,R − a2f̈,R + ∂i∂if,R

(A.31)

Now the last term of the above expression cancels with the ∇i∇i term in field

equation. Plugging the result and the Ricci tensor, Rii for FRLW metric we
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have,

(2ȧ2 + aä)f,R −
a2

2
f(R)− 2a2Hḟ,R − a2f̈,R = κ2a2P(

2ȧ2 + aä

a2

)
f,R −

1

2
f(R)− 2Hḟ,R − f̈,R = κ2P(

aä− ȧ2

a2
+ 3

ȧ2

a2

)
f,R −

1

2
f(R)− 2Hḟ,R − f̈,R = κ2P

(A.32)

Replacing the f(R)/2 term from the expresssion A.24,

− 1

2
f(R) = 2H2f,Rf,R −

1

2
f,RR + 3Hḟ,R − f̈,R − κ2ρ (A.33)

we have the following,

Ḣf,R + 3H2f,R + 3H2f,R −
1

2
f,Rf,R + 3Hḟ,R − 2Hḟ,R − f̈,R = κ2(ρ+ P )

Ḣf,R + 6H2f,R − 3(2H2 + Ḣ)f,R +Hḟ,R − f̈,R = κ2(ρ+ P )

Rearranging we get the second modified Friedmann equation:

Hḟ,R − 2Ḣf,R − f̈,R = κ2(ρ+ P ) (A.34)

Along with

3H2f,R −
1

2
(Rf,R − f(R)) + 3Hḟ,R = κ2ρ (A.35)

governs the background dynamics of a flat FLRW universe in f(R) gravity

theory.





APPENDIX B
Weak Gravitaional Lensing

B.1 Deriving weak gravitaional lensing convergence

power spectrum

Convergence κ(~θ), in the direction of ~θ integrated along the LoS,

κ(~θ) =
3

2

(
H0

c

)2

Ωm0

∫ χs

0

dχ g(χ) χ
δ(χ~θ, χ)

a(χ)
: g(χ) =

∫ χs

0

dχ′ns(χ
′)
χ′ − χ
χ′

(B.1)

Similar to the mass density power spectrum, we can define the convergence

power spectrum,

〈κ̃(~l)κ̃(~l′)〉 = (2π)2δD(~l −~l′)Pκ(~l) (B.2)

Assume κ(~θ) =
∫
dχW (χ)δ(χ~θ, χ) and the correlation function,

ξκ(∆~θ) = 〈κ(~θ)κ(~θ + ∆~θ)〉

=

∫
dχW (χ)

∫
dχ′W (χ′)〈δ(χ~θ, χ)δ(χ′(~θ + ∆~θ), χ′)〉

(B.3)

Now we have Pκ(~l) =
∫
d~θξκ(~θ)e

−il.~θ and the density contrast δ(χ~θ, χ) = δ(~r)

can be expressed in Fourier space:

δ(~r) =

∫
d~k

(2π)3
e−i(

~k.~r)δ̃(~k, χ)

=

∫
d~k

(2π)3
e−i

~k⊥.θχe−ik‖χD+(χ)δ̃(~k) (~k = (~k⊥, k‖))

(B.4)

Now

〈δ(~r)δ∗(~r)〉 =

∫
d~ke−i

~k⊥.θχe−i
~k⊥.(θ+∆~θ)χ′e−ik‖(χ−χ

′)D+(χ)D+(χ′)P3D(k) (B.5)
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For small angle approximation (∆~θ ≤ 1− 2 deg), ~k⊥ carries most of the power

at |~k| i.e. P3D(k) = P3D(k⊥). Moving to Eq: (B.3);

ξκ(∆~θ) =

∫
dχW (χ)

∫
dχ′W (χ′)

∫
d2~k⊥
(2π)2

P3D(|~k⊥|, χ)eiχ
~k⊥(~θ−~θ′)eik‖χ

∫
dχ′eik‖χ

′

=

∫
dχW 2(χ)

∫
d2~k⊥
(2π)2

P3D(|~k⊥|, χ)e−iχ
~k⊥.~θ

(B.6)

Where in the above expression we have assumed that the window function

(W (χ)) does not vary significantly over a redshift range. Putting the above

result in the Pκ(~l) expression,

Pκ(~l) =

∫
d2~θ

∫
dχW (χ)

∫
d2~k⊥
(2π)2

P3D(|~k⊥|, χ)e−iχ
~k⊥.~θ.ei

~l.~θ

=

∫
dχW 2(χ)

∫
d2~k⊥
(2π)2

P3D(|~k⊥|, χ).(2π)2δD(~l − χ~k⊥)

(B.7)

Changing variable ~k⊥χ = ~l we have

Pκ(~l) =

∫
dχ
W 2(χ)

χ3
P3D

(
~l

χ
, χ

)
(B.8)

Coming back to our original notation; the convergence power spectrum takes

the form

Pκ(~l) =
9

4

(
H0

c

)4

Ω2
m0

∫ χs

0

dχ
g2(χ)

a2(χ)
D2

+(χ)P3D

(
~l

χ

)
(B.9)

Spherical harmonic approach: The spherical harmonic moment of conver-

gence κ(n̂) are defined as

aκlm =

∫
dΩn̂ κ(n̂) Y ∗lm(n̂)

=

∫
dzW (z)

∫
S2

dΩ

∫
d3~k

(2π)3
δ̃(~k, z)ei

~k.~rY ∗lm(n̂)

(B.10)
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Using the plane wave expansion,

ei
~k,~χ = eikχ(k̂.n̂) = 4π

∞∑
l=0

l∑
m=−l

iljl(kχ)Y ∗lm(k̂)Y ∗lm(n̂) (B.11)

with orthogonalization condition
∫
S2 dΩY ∗lm(n̂)Yl′m′(n̂) = δl

′

l δ
m′
m .

Define angular power spectrum, Pκ(~l) ≡ 〈al1m1a
∗
l2m2
〉,

= (4π)2i(l1−l2)

∫
dz1dz2W (z1)W (z2)

∫
d3~k1

(2π)3

d3~k′2
(2π)3

〈δ̃(~k1, z1)δ̃(~k2, z2)〉

jl1(k1χ1)jl2(k2χ2)Y ∗l1m1
(k̂1)Yl2m2(k̂2)

(B.12)

Using the properties of the δD in spherical system; δD(~k1 + ~k2) = 1
k2

1
δD(k1 +

k2)δD(k̂1 + k̂2),

Pκ(~l) = (4π)2i(l1−l2)

∫
dz1dz2W (z1)W (z2)

∫
d3~k1

(2π)3

d3~k′2
(2π)3

(2π)3P3D(k1, z1, z2)

δD(~k1 + ~k2)jl1(k1χ1)jl2(k2χ2)Y ∗l1m1
(k̂1)Yl2m2(k̂2)

=
(4π)2

(2π)3
i(l1−l2)

∫
dz1dz2W (z1)W (z2)

∫
d3~k1P3D(k1, z1, z2)jl1(k1χ1)

jl2(−k1χ2)Y ∗l1m1
(k̂1)Yl2m2(−k̂2)

(B.13)

Using the parity symmetry of Bessel function, spherical harmonics and orthog-

onality condition, i.e. jl(−x) = (−i)ljl(x) and Ylm(−x) = (−i)lYlm(x),

Pκ(~l) = δl2l1δ
m2
m1

(4π)2i(l1−l2)

∫
dz1dz2W (z1)W (z2)

∫
d~k1

(2π)3
k2

1P3D(k1, z1, z2)jl1(k1χ1)jl2(k2χ2)

=
2

π

∫
dk k2

∫
dz1 dz2W (z1)W (z2)jl(kχ1)jl(kχ2)P3D(k, z1, z2)

≈ 2

π

∫
dk k2

∫
dzW 2(z)jl(kχ1)jl(kχ2)P3D(k, z1, z2)

(B.14)

Using small scale approximation or so called Limber approximation,∫
dk k2 jl(kχ1)jl(kχ2)f(k) ≈ π

2

δD(χ1 − χ2)

χ2
1

f

(
l

χ1

)
(B.15)
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Hence the final expression for the convergence power spectrum,

Cκ(~l) =

∫
dz
W 2(z)

χ2(z)
P3D

(
l

χ
, χ

)
(B.16)



APPENDIX C
Multifrequency Angular Power Spectrum of 21cm

signal

C.1 Deriving 21cm power spectrum

The ‘21 cm radiation efficiency in redshift space’.

ηHI(n, z) =
ρHI
ρ̄H

(
1− Tγ

Ts

)[
1− (1 + z)

H(z)

∂v

∂z

]
(C.1)

which varies with position and redshift, and it incorporates the details of the

HI evolution and the effects of the growth of large scale structures. We also

introduce η̃HI(k, z), the Fourier transform of ηHI(x, z), defined through

ηHI(n, z) =

∫
d3k

(2π)3
eik.χνnη̃HI(k, z) (C.2)

where

η̃HI = x̄HI

[
∆HI(z,k) + f(z)(k̂.n̂)2∆(z,k)

]
(C.3)

where ∆HI(z,k), ∆(z,k) are the Fourier transform of the fluctuations in the

HI and dark matter densities. The redshift space distortion factor f(z) relates

the peculiar velocities to the dark matter. Now define the three dimensional

power spectrum PHI(k, z),

〈η̃HI(k, z)η̃∗HI(k′, z)〉 = (2π)2δ3
D(k− k′)PHI(k, z) (C.4)
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Harmonic approach to MAPS
The spherical harmonic moment of T (z, n̂) are defined as

a21
lm(z) =

∫
dΩY ∗lm(n̂)T (z, n̂) (C.5)

= T̄

∫
dΩY ∗lm(n̂)

∫
d3k

(2π)3
η̃HI(k)e−ikχν(k̂.n̂) (C.6)

Using the expression (C.3) for η̃HI(k) in equation (C.5), the expression for

a21
lm(z) can be written as

a21
lm(z) = T̄ x̄HI

∫
dΩY ∗lm(n̂)

∫
d3k

(2π)3

[
∆HI(z,k) + f(z)(k̂.n̂)2∆(z,k)

]
e−ikχν(k̂.n̂)

(C.7)

Expanding the term e−ikχν(k̂.n̂) in terms of spherical Bessel function jl(kχν), one

can show that ∫
dΩY ∗lm(n̂)e−ikχν(k̂.n̂) = 4π(−i)ljl(kχν)Y ∗lm(k̂) (C.8)

Differentiating the above equation w.r.t kχν twice, we have∫
dΩ(k̂.n̂)2Y ∗lm(n̂)e−ikχν(k̂.n̂) = −4π(−i)lj ′′l (kχν)Y

∗
lm(k̂) (C.9)

where j′′l (x) is the second derivative of jl(x) with respect to the argument, and

can be obtained through the recursion relation

j′′l (x) =
l(l − 1)− x2

x2
jl(x) +

2

x
jl+1(x) (C.10)

So the final expression of a21
lm is given by

a21
lm(z) = 4πT̄ x̄HI(−i)l

∫
d3k

(2π)3
Y ∗lm(k̂) [∆HI(z,k)jl(kχν)− f(z)∆(z,k)j′′l (kχν)]

(C.11)

On large scales the redshifted HI 21-cm signal from post reionization epoch

(z < 6) known to be biased tracers of the underlying dark matter distribution

[91–93]. The bias function b quantifies the nature of HI clustering in the post-

reionization epoch. On large scales the bias is known to be scale-independent,

though the scales above which the bias is linear. Hence we impose ∆HI(z,k) =
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b∆(z,k) in the subsequent expressions. As f(z) is a slowly varying function,

we have neglected the difference between z1 and z2. Next we will calculate the

power spectrum Cl(z1, z2) ≡ 〈a21
lm(z1)a21∗

lm (z2)〉. Writing Cl

Cl(z1, z2) = (4π)2T̄ (z1)T̄ (z2)x̄2
HI

∫
d3k1

(2π)3

∫
d3k2

(2π)3
Y ∗lm(k̂1)Ylm(k̂2)

× 〈[b∆(z1,k1)jl(k1χν1)− f(z)∆(z1,k1)j′′l (k1χν1)]〉

× 〈[b∆∗(z2,k2)jl(k2χν2)− f(z)∆∗(z2,k2)j′′l (k2χν2)]〉

The terms involving the ensemble average of the form 〈∆(z1,k1)∆∗(z2,k2)〉 ≈
(2π)3δD(k1 − k2)P (z1, z2, k1). We can then use the Dirac delta function δD(k1 −
k2) to compute the k2 integral and thus can write the angular power spectrum

as

Cl(z1, z2) = (4π)2T̄ (z1)T̄ (z2)x̄2
HI

∫
d3k

(2π)3
Y ∗lm(k̂1)Ylm(k̂2)P (z1, z2, k)

×
[
b2jl(kχν1)jl(kχν2)− bf(z)(jl(kχν1)j′′l (kχν2) + jl(kχν2)j′′l (kχν1))

]
+
[
f 2(z)j′′l (kχν1)j′′l (kχν2)

]

Using the normalzation property of the spherical harmonics
∫
dn̂|Ylm(n̂)|2 =

1, one can carry out the angular integration and hence obtain,

Cl(z1, z2) =
2T̄ (z1)T̄ (z2)x̄2

HI

π

∫ ∞
0

k2dkP (z1, z2, k)

×
[
b2jl(kχν1)jl(kχν2)− bf(z)(jl(kχν1)j′′l (kχν2) + jl(kχν2)j′′l (kχν1))

]
+
[
f 2(z)j′′l (kχν1)j′′l (kχν2)

]
(C.12)

Typically χ ∼ 5 − 10, 000Mpc and k ∼ 0.1Mpc−1 so the spherical Bessel func-

tions jl(x) are typically evaluated in the limit of l < x < l2 . In practice integrals

over the product of two spherical Bessel functions are numerically challenging

due to their oscillatory behavior, so we will look for a scheme to approximate

this integral obtained using the method of steepest descent (this method is

also used, for example, to derive Stirling’s approximation to log n! for large

n). Starting with the integral representation of the spherical Bessel functions,

the integration contour is deformed slightly to pass through saddle points of
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the integrand, approaching along paths of steepest descent. This allows the

integral to be approximated as a Gaussian integral, which can be analytically

evaluated to

jl(x) ≈ 1

x
sin

(
x‖ + Φ(l)− lπ

2

)√
x

x‖
(C.13)

where we have suggestively defined x‖ =
√
x2 − l2 and Φ(l) = (l+1/2) arctan(l/x‖)

tends to zero for nearby frequency channels. Using the Bessel approximation

in (C.13) and the recursion for j′′(x) in (C.10) we will evaluate the integral for

‘flat sky approximation’ of MAPS. Consider the first term in (C.12)

C
(1)
l =

∫ ∞
0

k2dk P (z1, z2, k) b2jl(kχν1)jl(kχν2)

=

∫ ∞
0

��k
2dk P (z1, z2, k) b2 sin(k‖χν1 + Φ1)

��kχν1

√
k

k‖

sin(k‖χν2 + Φ2)

��kχν2

√
k

k‖

=

∫ ∞
0

��k‖

��k
dk‖ P (z1, z2, k) b2 sin(k‖χν1 + Φ1)

χν1

√
��k

��k‖

sin(k‖χν2 + Φ2)

χν2

√
��k

��k‖

=

∫ ∞
0

dk‖
cos(k‖(χν1 − χν2) + (Φ1 − Φ2)l)

2χν1χν2

b2P (z1, z2, k)

Ignoring the second term in the above expression, we have the final expression

(for the 1st term only)

C
(1)
l =

T̄ (z1)T̄ (z2)x̄2
HIb

2

πχν1χν2

∫ ∞
0

dk‖ cos(k‖∆χ)P (z1, z2, k) (C.14)

Moving to the second term of (C.12), and using the recursion relation for j′′l (x)

we have

C
(2)
l =

∫ ∞
0

k2dk P (z1, z2, k) bf(z)jl(kχν1)j′′l (kχν2)

=

∫ ∞
0

k2dk P (z1, z2, k) bf(z)jl(kχν1)

(
l2

k2χ2
ν2

− 1

)
jl(kχν2)

where in the j′′(kx) recursion we ignored the jl+1(x) term and for for large scale
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we approximate, l(l − 1) ≈ l2. Proceeding further

C
(2)
l =

∫ ∞
0

��k
2dk P (z1, z2, k) bf(z)

sin(k‖χν1 + Φ1)

��kχν1

√
k

k‖

(
l2

k2χ2
ν2

− 1

)
sin(k‖χν2 + Φ2)

��kχν2

√
k

k‖

=

∫ ∞
0

��k‖

��k
dk‖ P (z1, z2, k) bf(z)

sin(k‖χν1 + Φ1)

��kχν1

√
��k

��k‖

(
k2
⊥
k2
− 1

)
sin(k‖χν2 + Φ2)

��kχν2

√
��k

��k‖

= −
∫ ∞

0

dk‖
cos(k‖(χν1 − χν2) + (Φ1 − Φ2)l)

2χν1χν2

bf(z)µ2P (z1, z2, k)

where in the last expression we have used µ2 = 1 − (k2
⊥/k

2) = k2
‖/k

2, which is

the cosine of the angle between line of sight and the wave vector. Hence the

final expression

C
(2)
l = − T̄ (z1)T̄ (z2)x̄2

HI

πχν1χν2

∫ ∞
0

dk‖ cos(k‖∆χ)bf(z)µ2P (z1, z2, k) (C.15)

Third term of (C.12) takes the same form as above. So we will not calculate it

explicitly. Moving towards the last expression of (C.12),

C
(4)
l =

∫ ∞
0

k2dk P (z1, z2, k) f 2(z)j′′l (kχν1)j′′l (kχν2)

=

∫ ∞
0

k2dk P (z1, z2, k) f 2(z)

(
l2

k2χ2
ν1

− 1

)
jl(kχν1)

(
l2

k2χ2
ν2

− 1

)
jl(kχν2)

=

∫ ∞
0

��k
2dk P (z1, z2, k) f 2(z)

(
l2

k2χ2
ν1

− 1

)
sin(k‖χν1 + Φ1)

��kχν1

√
k

k‖

(
l2

k2χ2
ν2

− 1

)
sin(k‖χν2 + Φ2)

��kχν2

√
k

k‖

=

∫ ∞
0

��k‖

��k
dk‖ P (z1, z2, k) f 2(z)

(
k2
⊥
k2
− 1

)
sin(k‖χν1 + Φ1)

��kχν1

√
��k

��k‖

(
k2
⊥
k2
− 1

)
sin(k‖χν2 + Φ2)

��kχν2

√
��k

��k‖

=

∫ ∞
0

dk‖
cos(k‖(χν1 − χν2) + (Φ1 − Φ2)l)

2χν1χν2

f 2(z)µ4P (z1, z2, k)

Returning to the final expression,

C
(4)
l =

T̄ (z1)T̄ (z2)x̄2
HI

πχν1χν2

∫ ∞
0

dk‖ cos(k‖∆χ)f 2(z)µ4P (z1, z2, k) (C.16)
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Using the above results the final expression of MAPS in “Flat sky approxima-

tion”,

Cl(z1, z2) =
T̄ (z1)T̄ (z2)x̄2

HI

πχν1χν2

∫ ∞
0

dk‖ cos(k‖∆χ)[b2 + 2bf(z)µ2 + f 2(z)µ4]P (z1, z2, k)

Cl(z1, z2) =
T̄ (z1)T̄ (z2)x̄2

HI

πχν1χν2

∫ ∞
0

dk‖ cos(k‖∆χ)[b+ f(z)µ2]2P (z1, z2, k)

(C.17)

Consequently we arrive at the “flat sky approximation” used by [253] and

[301].

C.2 Noise estimation

We use a visibility correlation approach to estimate the noise power spectrum

for the 21-cm signal [82, 253, 291, 353, 468, 469]. A radiointerferometric obser-

vation measures the complex visibility. The measured visibility written as a

function of baseline U = (u, v) and frequency ν is a sum of signal and noise

V(U, ν) = S(U, ν) + N(U, ν) (C.18)

S(U, ν) =
2kB
λ2

∫
d~θ A(~θ)e2πiU·~θ δTb(~θ, ν) (C.19)

where, δTb(~θ, ν) is the fluctuations of the 21-cm brightness temperature and

A(~θ) is the telescope beam. The factor
(

2kB
λ2

)2
converts brightness temperature

to intensity (Raleigh Jeans limit). Defining ∆ν as the difference from the central

frequency, a further Fourier transform in frequency ∆ν gives us

s(U, τ) =
2kB
λ2

∫
d~θ dν A(~θ)B(∆ν) e2πi(U·~θ+τ∆ν) δTb(~θ, ν) (C.20)

where B(∆ν) is the frequency response function of the radio telescope.

s(Ua, τm) =
2kB
λ2

∫
d~θ d∆ν

∫
d3k

(2π)3
e−i(k⊥r·

~θ+k‖r
′∆ν) A(~θ)B(∆ν) e2πi(Ua·~θ+τm∆ν) δ̃Tb(k⊥, k‖)

(C.21)
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where the tilde denotes a fourier transform and r′ = dr(ν)/dν.

s(Ua, τm) =
2kB
λ2

∫
d~θ d∆ν

∫
d3k

(2π)3
e−i(k⊥r−2πUa)·~θe−i(k‖r

′−2πτm)∆ν A(~θ)B(∆ν) δ̃Tb(k⊥, k‖)

(C.22)

Performing the ~θ and ∆ν integral we have

s(Ua, τm) =
2kB
λ2

∫
d3k

(2π)3
Ã

(
k⊥r

2π
−Ua

)
B̃

(
k‖r
′

2π
− τm

)
δ̃Tb(k⊥, k‖) (C.23)

〈s(Ua, τm)s∗(Ub, τn)〉 =

(
2kB
λ2

)2 ∫
d3k

(2π)3

∫
d3k′

(2π)3
Ã

(
k⊥r

2π
−Ua

)
B̃

(
k‖r
′

2π
− τm

)
×Ã∗

(
k′⊥r

2π
−Ub

)
B̃∗

(
k′‖r
′

2π
− τn

)
(2π)3PHI(k)δD(k− k′)

〈s(Ua, τm)s∗(Ub, τn)〉 =

(
2kB
λ2

)2 ∫
d3k

(2π)3
Ã

(
k⊥r

2π
−Ua

)
B̃

(
k‖r
′

2π
− τm

)
×Ã∗

(
k⊥r

2π
−Ub

)
B̃∗
(
k‖r
′

2π
− τn

)
PHI(k)

Defining new integration variables as U = k⊥r
2π

and τ =
k‖r
′

2π
we have

〈s(Ua, τm)s∗(Ub, τn)〉 =

(
2kB
λ2

)2
1

r2r′

∫
dU dτÃ (U−Ua) Ã

∗ (U−Ub)

B̃ (τ − τm) B̃∗ (τ − τn)PHI

(
2πU

r
,
2πτ

r′

)
(C.24)

Approximately, we may write∫
B̃ (τ − τm) B̃∗ (τ − τn) ≈ Bδm,n and

∫
dU Ã (U−Ua) Ã

∗ (U−Ub) ≈
λ2

Ae
δa,b

(C.25)

where B is the bandwidth of the telescope and∫
dU Ã (U−Ua) Ã

∗ (U−Ub) ≈
λ2

Ae
δa,b (C.26)
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where Ae is the effective area of each dish. Hence

〈s(Ua, τm)s∗(Ub, τn)〉 ≈
(

2kB
λ2

)2
Bλ2

r2r′Ae
PHI

(
2πUa

r
,
2πτ

r′

)
δm,nδa,b (C.27)

where

PHI(k) = T̄ 2b2
T (z)(1 + βTµ

2)Pm(k, z) (C.28)

The noise in the visibilities measured at different baselines and frequency chan-

nels are uncorrelated. We then have

〈N(Ua, νm) N∗(Ub, νn)〉 = δa,bδm,n2σ2 (C.29)

where

σ =

√
2kBTsys

Ae
√

∆νt
(C.30)

where Ae is the effective area of the dishes, t is the correlator integration time

and ∆ν is the channel width. If B is the observing bandwidth, there would be

B/∆ν channels. The system temperature Tsys can be written as

Tsys = Tinst + Tsky (C.31)

where

Tsky = 60K
( ν

300 MHz

)−2.5

(C.32)

Under a Fourier transform

n(U, τ) =

B/∆ν∑
i=1

N(U, νi)∆ν e2πiνiτ (C.33)

〈n(Ua, τ) n∗(Ub, τ)〉 = 2σ2δa,b

B/∆ν∑
i=1

B/∆ν∑
j=1

δi,je
2πi(νi−νj)τ∆ν2 = 2σ2δa,b

B/∆ν∑
i=1

∆ν2

〈n(Ua, τ) n∗(Ub, τ)〉 = 2σ2δa,b∆ν
2 B

∆ν
= 2σ2δa,b∆νB (C.34)

〈n(Ua, τ) n∗(Ub, τ)〉 =
4k2

BT
2
sysB

A2
et

=

(
2kB
λ2

)2(
λ2Tsys
Ae

)2
B

t
(C.35)
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Now considering a total observation time To and a bin ∆U, there is a reduction

of noise by a factor
√
Np where Np is the number of visibility pairs in the bin

Np = Nvis(Nvis − 1)/2 ≈ N2
vis/2 (C.36)

where Nvis is the number of visibilities in the bin. We may write

Nvis =
Nant(Nant − 1)

2

To
t
ρ(U)δ2U (C.37)

whereNant is the total number of antennas and ρ(U) is the baseline distribution

function.

〈n(Ua, τ) n∗(Ub, τ)〉 =

(
2kB
λ2

)2(
λ2TsysB

Ae

)2
2δa,b

Nant(Nant − 1)B To ρ(U)δ2U
(C.38)

where an additional reduction by
√

2 is incorporated by considering visibilities

in half plane. The 21 cm power spectrum is not spherically symmetric, due to

redshift space distortion but is symmetric around the polar angle φ. Because

of this symmetry, we want to sum all the Fourier cells in an annulus of con-

stant (k, µ = cos θ = k‖/k) with radial width ∆k and angular width ∆θ for a

statistical detection. The number of independent cells in such an annulus is

Nc = 2πk2 sin(θ)∆k∆θ
V ol

(2π)3
= 2πk2∆k∆µ

V ol

(2π)3
(C.39)

where

V ol =
r2λ2r′B

Ae
(C.40)

Thus the full covariance matrix for visibility correlation is [291, 353, 468, 469]

Ca,b =
1√
N c

(
2kB
λ2

)2 [
Bλ2

r2r′Ae
PHI

(
2πUa

r
,
2πτ

r′

)
+

(
λ2TsysB

Ae

)2

× 2

Nant(Nant − 1)B To ρ(U)δ2U

]
δa,b

(C.41)
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Ca,b =
1√
Nc

(
2kB
λ2

)2 [
Bλ2

r2r′Ae
PHI

(
2πUa

r
,
2πτ

r′

)
+

(
λ2TsysB

Ae

)2
2

Nant(Nant − 1)BToρ(U)δ2U

]
δa,b

(C.42)

We choose δ2U = Ae/λ
2, ∆k = k/10, ∆µ = µ/10. The baseline distribution

function ρ(U) is normalized as ∫
dUρ(U) = 1 (C.43)

For uniform baseline distribution

ρ(U) =
1

π(U2
max − U2

min)
(C.44)

Generally

ρ(U) = c

∫
d2rρant(r)ρant(r− λU) (C.45)

Where c is fixed by normalization of ρ(U) and ρant is the distribution of anten-

naes. The total noise in the 3D 21-cm power spectrum is given by

δPHI(k, z, µ) =
1√
Nc

(PHI(k, z, µ) +NHI) (C.46)

Beyond certain hours of observation in a single field of view, Signal to Noise

Ratio is primarily influenced by cosmic variance. Therefore, by introducing

Npoint as the number of independent pointings, the covariance is further re-

duced by a factor of 1/
√
Npoint.
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