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Abstract

The transport sector is a critical driver of economic growth, employment, and access to essential

services like healthcare and education, serving millions daily. Government investments, includ-

ing initiatives like Bharatmala Pariyojana, aim to enhance road infrastructure and connectivity.

Sustainable transportation, encompassing user-friendliness, reliability, fuel efficiency, reduc-

tion road congestion, and less environmental impact, is now a top priority. Given the sector’s

pivotal role, a thorough understanding of its operations is essential. The primary objective is to

maximize output while minimizing inputs, achieved through efficient resource utilization. This

involves assessing productivity (output-input ratio) and efficiency (observed vs. optimal output

or input). Continuous performance evaluation is crucial to gauge the effectiveness of resource

allocation.

Passenger transportation is inherently a “service business” and poses unique challenges in

assessing productivity and efficiency. In particular, public transport requires advanced ana-

lytical tools for evaluation. Multi-criteria decision-making (MCDM) techniques have proven

invaluable in optimizing the sector’s performance. The thesis explores various MCDM models

tailored to investigate the productivity and efficiency of India’s public transport system.

The thesis commences with a foundational introduction in the first chapter, providing a

conceptual framework for the proposed work. This initial chapter provides a concise overview

of the methodologies employed, including MCDM, fuzzy MCDM, data envelopment analy-

sis (DEA), and fuzzy DEA techniques. These sophisticated methods analyze and assess vari-

ous performance, efficiency, and productivity aspects across diverse contexts. MCDM enables

decision-makers to evaluate multiple conflicting criteria, while fuzzy MCDM deals with uncer-

tainties and imprecise information in decision-making. On the other hand, DEA is utilized for

assessing the relative efficiency of entities by comparing their inputs and outputs, while fuzzy

DEA extends this approach to handle vague or uncertain data, providing a more comprehensive

evaluation of productivity and efficiency. These techniques collectively offer a robust frame-

work for comprehensively evaluating and enhancing performance within complex systems or

scenarios. This chapter expands on the study’s focus on the transportation sector, detailing the

specific geographical areas under scrutiny. It explores challenges impeding efficiency and de-

velopment, defines research objectives, and pinpoints gaps in existing knowledge, setting the

stage for this study’s contribution and advancement in the field.

Moving to the subsequent chapter, a unique blend of MCDM techniques is discussed. This

chapter involves a meticulous process of screening vital criteria, assigning appropriate weight

to screened criteria, and subsequently ranking the RSRTC depots based on their performance
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scores. This research encompasses a critical step, namely sensitivity analysis, conducted to

ascertain the impact of varying criteria weights on depot rankings. This analysis is pivotal

in identifying potential outliers and affirming the robustness of the efficiency scores acquired

through the hybrid MCDM methods.

In the third chapter, a thorough examination of prior research utilizing DEA models is con-

ducted, which serves as a crucial foundation for developing and applying an approach known

as the new slack model (NSM) under the variable returns to scale (VRS) assumption. This

innovative model is employed to assess the overall technical, pure technical, and scale effi-

ciencies of RSRTC depots over the years 2005-2022, taking into account the categorization of

depots based on topographical considerations. The chapter offers an insightful analysis of the

observed growth trends and efficiency patterns and provides valuable recommendations for po-

tential reductions in input quantities. This comprehensive evaluation significantly contributes

to a deeper understanding of the performance dynamics of RSRTC depots, facilitating informed

decision-making and resource optimization strategies.

The subsequent chapter 4 measures the total factor productivity (TFP) and applies the

Malmquist productivity index (MPI) and Luenberger productivity index (LPI) using NSM

model over a specified time frame of 11 years (2008–2019). Further, it is evaluated total produc-

tivity change in terms of technological change (Frontier shift) and technical efficiency change

(Catch-up Effect). The outcomes derived from these models offer a more realistic reflection of

real-world scenarios compared to efficiency evaluation. A detailed examination of the progress

and shifts in performance is exhibited in RSRTC depots for the consecutive 11 years 2008-2019.

Thus, the study demonstrates a significant trend wherein the decline in productivity across sev-

eral depots predominantly stems from technological changes, emphasizing the pivotal role of

technological advancements in shaping and influencing overall productivity within the trans-

portation system. This in-depth analysis provides critical insights into the evolving dynamics

of depot performance over the specified period. It is worth noting that the utilization of the

study contributes to a refined and accurate assessment of productivity changes, enhancing the

practical applicability of the results in real-world scenarios.

Chapter 5 introduces an application of the inverse super-efficiency DEA model. This ap-

proach precisely determines the necessary amount of inputs and outputs to achieve a specific

efficiency target. This chapter goes on to validate efficient DMU ranking by employing the

super-efficiency DEA model and its inverse counterpart. This reverse approach establishes a

robust and reliable framework for assessment, ensuring the accuracy of efficiency evaluations.

Furthermore, the chapter serves as a valuable guide for decision-makers in optimizing resource

allocation and operational strategies. By leveraging the insights gained from this model, stake-

holders can make choices to enhance overall efficiency within the system. This study identifies

the areas for improvement and implements targeted interventions to streamline operations and
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resource utilization. The IDEA super-efficiency model thus represents a significant step for-

ward in the quest for operational excellence and efficiency in the transportation sector.

Chapter 6 proposes a novel approach fuzzy cross-efficiency DEA model. This proposed

model employs a “credibility approach” to ensure accurate assessments in a fuzzy environment.

This study addresses scenarios where data may be incomplete or missing and resolves using

kNN approach. This chapter presents a detailed evaluation of STUs performance in India for

the financial year 2017-18. Efficiency scores are obtained using a fuzzy cross-efficiency model

and compared with those derived from the fuzzy DEA model, offering valuable insights into its

effectiveness. This study significantly contributes to the advancement of robust methodologies

for evaluating and enhancing the efficiency of STUs and using ensemble ranking to rank the

units uniformly, making the evaluation more accurate and reliable.

A summary and conclusions are presented in the final chapter of the thesis which also

outlines potential future directions and areas for further research. The thesis investigates and

deliberates on the diverse potential applications of further integrated DEA model extensions in

the public transport sector.
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Chapter 1

Introduction and Preliminaries

1.1 Overview of Transportation

Throughout history, the innate human desire for mobility has served as a gauge of societal

advancement. The evolution of transportation mirrors the progression of civilization itself.

Facilitating the movement of people and goods from point of origin to destination, ‘transporters’

perform one of the most important activities in every phase of advanced society. Where roads

are viewed as the vital pathways of a nation, the transportation of passengers and goods is

likened to the circulation of blood, energizing the economic activity of a country. Consequently,

passenger road transport services stand as an indispensable companion to a nation’s economic

development.

Transportation is a crucial component of both the industrial and social infrastructure. It

plays a significant role in fostering economic development, ensuring national security, and en-

hancing the population’s overall quality of life. This transportation network is a collaborative

endeavor involving private and public vehicle operators, facilitating the movement of millions

of people daily. Transportation sustainability has emerged as a paramount concern in the con-

temporary world, driven by a growing awareness of the interplay between transportation and

the environment. This concern is accompanied by various associated issues, including traffic

accidents, congestion, noise and air pollution, and global warming. These factors significantly

affects the overall performance of transportation systems and impact passengers’ travel experi-

ences, influence mode choices.

In India, the situation is further complicated by inherent problems in the public bus transport

sector. It faces severe financial constraints, marked by excessive operating costs, overstaffing,

low productivity, and imprudent use of resources. The combination of these financial and op-

erational challenges presents significant institutional barriers. To address these challenges, the

public transport goal needs to be improved to 60% of all motorized trips by 2030, and fatalities

must be reduced by 50% [1]. The declining passenger satisfaction and adverse effects on daily



2 Chapter 1. Introduction and Preliminaries

commuters underscore the pressing need for an improved and reliable public transit system, as

many commuters rely heavily on it for their daily travels. These pressing concerns for sustain-

able transportation encompass the crucial dimensions of social, environmental, and economic

progress. The urgency to revamp existing public transit systems has thereby gained renewed at-

tention in recent years [2, 3]. Achieving sustainability and efficiency in transportation systems,

whether on a global, local, or urban scale, is essential to realizing these goals.

The significance of an efficient and extensive public transport system cannot be overstated

in this context. It serves as a key element of any strategy that seeks to optimally meet the mobil-

ity demand that arises from rapid economic growth [4, 5]. Additionally, increasing the share of

public transport is essential for reducing sector emissions and improving social cohesion. It is

hard-pressed to meet its fleet replenishment needs, augment fleets to cater to growing demand,

or introduce efficiency-improving technologies [6]. In the post-liberalization era, it would be

difficult for governments to continue to provide financial support to cover the deficits in bus

transportation, especially with the growing emphasis on fiscal discipline. Existing financial

constraints and the inability to raise resources for investments are also caused in part by uneco-

nomical operations to meet the universal service obligation with tariffs that do not reflect the

cost of service delivery [7]. Thus, optimal pricing of public transport services to ensure eco-

nomic efficiency and cost recovery is critical for ensuring a sustainable public transportation

system.

1.2 Operations Research (OR)

“Operations research is neither a method nor a technique; it is or is becoming a science and, as

such, is defined by a combination of the phenomena it studies.” Russell L. Ackoff
India is one of the first nations to use operations research (OR) in practical applications.

In Hyderabad, the Regional Research Laboratory, the first OR unit, was established in 1949.

According to the Merriam-Webster dictionary, OR is the application of scientific and especially

mathematical methods to the study and analysis of problems involving complex systems. It

is a discipline that develops and applies advanced analytical methods to improve decision-

making1. It continues to be a relatively young scientific field despite its rapid advancement. Its

methodologies and applications are poised for further expansion, building on the influence of

its past achievements. The primary goal of OR is to achieve optimal outcomes within specified

constraints. This optimization process demands a thorough analysis and refinement of potential

options. When working towards optimization, one invariably encounters real-world limitations.

For instance, adhering to labor regulations on maximum work hours per individual becomes

1https://www.informs.org/Explore/What-is-O.R.-Analytics/What-is-O.R.
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a critical constraint for companies grappling with hiring challenges. In the realm of business

problem-solving using OR, a comprehensive evaluation of various options is essential, enabling

a balanced consideration of their respective merits and demerits while keeping these constraints

firmly in mind.

1.2.1 Multi-Criteria Decision Making

Multi-criteria decision-making (MCDM) is a subset of a broader class of OR models that pro-

vide solutions for decision assistance and evaluation of complicated issues with competing cri-

teria and significant uncertainty. In other words, MCDM is a technique for determining the best

option, ranking, and sorting the alternatives. Since the 1970s, it has been a powerful tool in the

fields of decision-making, value judgment, and evaluation. MCDM is a well-known acronym,

and Stanley Zionts helped popularize the acronym with his 1979 article “MCDM — If Not a

Roman Numeral, Then What?” MCDM is involved with creating and solving multi-criteria de-

cisions and planning problems. The decision-making process in the MCDM approach has five

sequential steps: (i) to define the goal or problem, (ii) to generate the alternatives, (iii) to select

the criteria and sub-criteria to evaluate the alternatives, (iv) to collect the judgment regarding

the importance, the relative importance of criteria, and (v) finally, the ranking of alternatives.

Typically, there are multiple optimal solutions for the same situations; hence, the preferences of

the decision-maker must distinguish between alternatives. Several methods are available in the

literature for MCDM. Some important names are analytic hierarchy process (AHP), analytic

network process (ANP), best-worst method (BWM), Brown–Gibson model, data envelopment

analysis (DEA), Decision EXpert (DEX), ELimination and ChoiceExpressingREality (ELEC-

TRE), Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE),

VIekriterijumsko KOmpromisno Rangiranje (VIKOR), and Technique for the Order of Priori-

tisation by Similarity to Ideal Solution (TOPSIS).

Utilizing multi-criteria benchmarking tools, rather than relying solely on standard account-

ing procedures, can significantly enhance the overall performance of firms. This approach

proves especially beneficial for managing and elevating service performance. For instance, how

can the number of buses, employees, and fuel consumption be minimized in the transport sector

while maintaining high-quality services? How can organizations effectively prioritize depots

for sustainable development? While DEA models offer solutions to these diverse challenges,

it’s worth noting that a single DEA model may not suffice. This thesis explores the applica-

tion of different types of DEA models and MCDM techniques. Despontin et al. (1983) [8]

discussed more than a hundred different MCDM techniques. Moreover, Mardani et al. (2016)

[9] systematically reviewed 89 papers regarding transportation system problems from 1993 to

2015 using MCDM techniques. Consequently, it does not matter which MCDM technique is
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better or worse, as the appropriateness of the methodology depends on the specific decision

circumstances [10].

1.2.2 Fuzzy MCDM

The day-to-day problems encountered often exhibit a level of uncertainty and vagueness. Tra-

ditional MCDM techniques face challenges when dealing with such problems [11, 12]. As a

result, fuzzy MCDM techniques prove invaluable in estimating the subjective evaluations made

by individuals.

As a result, fuzzy MCDM techniques prove invaluable in estimating the subjective eval-

uations made by individuals. Over the past few years, significant efforts have been made to

address uncertainty, imprecision, and subjectivity, primarily through the application of fuzzy

set theory. The integration of fuzzy set theory into multi-criteria evaluation methods within the

framework of utility theory has demonstrated practicality.

Unlike conventional MCDM techniques, fuzzy MCDM techniques are adept at evaluating

the best alternatives based on predetermined criteria. Moreover, these techniques can be ex-

tended beyond individual decision-makers to accommodate a group of decision-makers. The

process involves various intermediate steps, including the evaluation of alternatives versus cri-

teria, criteria versus criteria, and so forth. Criteria weights are assessed using linguistic values,

represented as fuzzy numbers. These linguistic variables can be articulated through sentences

or words in artificial or natural languages. In most fuzzy MCDM techniques, the values ob-

tained in the final steps are in fuzzy form, necessitating the application of proper defuzzification

methods to convert them into crisp sets, as discussed in subsequent sections.

Furthermore, in fuzzy MCDM problems, the final evaluation values of alternatives remain

fuzzy numbers, requiring an appropriate ranking approach for defuzzification into crisp values

for decision-making. Among the array of fuzzy MCDM techniques, fuzzy AHP (FAHP) is

widely favored in several domains owing to its effectiveness in addressing decision-making

problems involving numerous criteria and alternatives. Other noteworthy fuzzy techniques,

such as fuzzy TOPSIS and fuzzy PROMETHEE, have also gained prominence for their ability

to handle complex decision-making scenarios. More recently, the integration of fuzzy set theory

with type-2 and type-3 fuzzy sets has introduced additional advantages inherited from these

advanced fuzzy set concepts.
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1.3 Efficiency & Productivity

Efficiency analysis seeks to examine the relationship between inputs (resources) and outputs

(production) in a system, aiming to assess the ability of decision-making units (DMUs) to max-

imize output while utilizing a specific quantity of inputs and current technology. Alternatively,

it also seeks to minimize inputs while achieving a specific level of output. These functions are

especially useful when dealing with multiple inputs and outputs, often represented by a produc-

tion possibility frontier (PPF). Efficiency encompasses various dimensions, including technical,

allocative, economic, operational, environmental, and dynamic aspects [13].

Productivity and efficiency are often used interchangeably but refer to slightly different

concepts. Productivity measures the ratio of specific outputs to inputs. However, efficiency

evaluates how closely the output levels align with the highest potential yield, considering the

available resources and technology. Efficiency serves as a more comprehensive performance

evaluation tool compared to productivity since it considers limiting constraints such as scale

and aims to evaluate the value of the products in broader terms (see figure 1.1).

Fig. 1.1: Visualization of efficiency and productivity

1.4 Data Envelopment Analysis: An Overview

The concept of efficiency measurement through frontier analysis is attributed to the pioneering

work of [14], which debuted in 1957. Farrell’s seminal contribution offered a “data-oriented”

approach to assess the efficiency of homogeneous DMUs in scenarios with single input and

output. This early study laid the groundwork for the more comprehensive framework of DEA,

which is formally introduced by Charnes et al. [15] in 1978. Contrary to Farrell’s method,
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which is restricted to a single output and input, DEA generalized this concept by allowing

for multiple inputs and outputs, even handling different dimensional units, thus enhancing its

versatility and applicability across various contexts. At its core, DEA provides a way to com-

pare the performance of similar units—such as organizations, departments, or companies—by

assessing how efficiently they convert inputs like labor, capital, and energy into outputs [16].

The mathematical framework for DEA is rooted in linear programming, providing a rigorous

yet flexible methodology for efficiency assessment. DEA is originally developed to evaluate

non-profitable and government organizations, but it has subsequently applied to the service op-

erations of a variety of private companies [17].

DEA calculates these efficiency scores by comparing the performance of each DMU to a

frontier that represents the best possible performance achievable within the dataset. This fron-

tier is constructed based on the most efficient units in the dataset, forming an ideal benchmark.

A unique feature of DEA is its scoring system: it assigns efficiency scores ranging from zero to

one to each DMU. Units with a score of one are considered efficient. A score of one indicates

that the DMU is considered fully efficient according to the evaluated inputs and outputs. It

suggests that this particular unit is utilizing its resources optimally and achieving the maximum

possible output given the inputs and technology at hand. An efficiency score below one indi-

cates that the unit could potentially improve its performance by optimizing resource usage or

output generation relative to its peers. Units achieving a score of one align closely with this

benchmark, while scores below one indicate deviation from this optimal performance level.

Consider, for example, a simple case where two depots, A and B, evaluated on number of buses

and fuel use, with passenger count as the output. Using DEA, Depot A scores 1, indicating

full efficiency, while Depot B has an efficiency score of 0.8, which means that Depot B could

achieve the same passenger service while using 20% decrease resources like buses and fuel.

Therefore, Depot B has an opportunity to become 20% more efficient by making adjustments

in resource allocation or management.

Another strength of DEA is the ability to evaluate the comparative efficiency of DMUs

without requiring predetermined weights for inputs and outputs. This autonomy allows each

DMU to select the most favorable weight for inputs and outputs to calculate efficiency. One of

the basic assumptions in DEA is that all DMUs under study should be homogeneous, mean-

ing they should share the same production process to ensure a fair comparison. Apart from

efficiency scores, DEA also provides information on slack variables and shadow prices, offer-

ing deeper insights into where improvements can be made. Notably, DEA is often employed

as one of the tools in MCDM, adding to its multifaceted utility in performance evaluation.

Two different methodologies, parametric and non-parametric, are accessible for the production

frontier [18]. DEA over parametric methods like stochastic frontier analysis (SFA) lies in its

non-parametric nature, thereby not requiring any assumption about the functional form of the
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production frontier. In contrast, SFA is constrained by its need for a pre-defined functional

form and is sensitive to model specification errors. DEA is more flexible in constructing an

efficiency frontier based on actual data without assuming a specific mathematical relationship

between inputs and outputs. This makes DEA model more robust to specification and allows it

to be applied even in complex or poorly understood production settings. Furthermore, unlike

parametric methods that often demand large sample sizes for statistical reliability, DEA can

produce reliable efficiency estimates with smaller datasets.

Its objective approach, which minimizes the impact of human bias by avoiding subjective

weight assignment, further sets it apart from other MCDM techniques. While the basic DEA

model assumes constant or variable returns to scale and input-oriented or output-oriented effi-

ciency, various extensions like network DEA and fuzzy DEA models are developed to address

their limitations. These extended models accommodate more complex, real-world scenarios,

such as hierarchical structures or uncertain data. Over time, DEA has witnessed a remarkable

surge in new publications across various domains to evaluate efficiency [19].

1.4.1 Basic Concept of DEA

DEA focuses on boundary analysis rather than central tendencies, which distinguishes it from

other methodologies like statistical regression [20]. Rather than fitting a regression line through

the data’s centroid, DEA ‘elevates’ a segmented linear surface to envelop the set of observed

data points. This approach allows DEA to reveal intricate relationships that may remain ob-

scured when using traditional methodologies. As illustrated in figure 1.3, DEA establishes a

‘best practice’ frontier.

Theoretical Frontier: The theoretical frontier represents an idealized or optimal level of

performance that could theoretically be achieved under perfect conditions. This is essentially an

abstraction, often based on theoretical or mathematical models, that serves as the ultimate stan-

dard for efficiency. A DMU that operates on this frontier is considered perfectly efficient. How-

ever, it’s important to note that the theoretical frontier may not always be practically achievable

due to various constraints like technology limitations, budget restrictions, or other real-world

factors.

Best Practice Frontier: On the other hand, the best practice frontier is an empirical con-

struction based on actual observed data. It is formed by the “best-performing” DMUs in the

sample under study. In DEA, these are the units that have an efficiency score of 1. The best

practice frontier serves as a more attainable benchmark for other DMUs in the sample, show-

ing what is practically possible given current technology, practices, and resources. Inefficient

DMUs are those that operate below this frontier, and they can potentially improve their effi-

ciency by moving towards this best practice frontier.
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The main difference between the two is that while the theoretical frontier is often based on

a model or idealized assumptions, the best practice frontier is empirically derived from actual

data. Both are useful but serve different purposes: the theoretical frontier provides a standard

for what is conceptually possible, while the best practice frontier provides a standard for what

is practically achievable.

By employing DEA on this data set, units S1, S2, S3, and S4 are identified as efficient,

forming a ‘best practice frontier’ that encapsulates the entire data set. Units falling within this

envelope are thus considered inefficient. Such inefficient DMUs are provided with targeted

recommendations for enhancement, guiding them toward points (like S1, S2, S3, and S4) on

the efficiency frontier. The proximity of a unit to this frontier serves as an empirical measure

of its efficiency, or lack thereof.

Fig. 1.2: Theoretical and best practice frontiers [21].

1.4.2 Mathematical Formulation

Charnes et al. (1978) [15] defined DEA as a mathematical programming approach that uses

observed data to derive empirical insights into relationships. DEA extended the concept of

measuring technical efficiency from a single-input/single-output model to a more complex

multiple-input/multiple-output framework. It accomplished this by calculating a relative effi-

ciency score, which is formulated as the ratio of a singular ‘virtual’ output to a singular ‘virtual’

input.
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Suppose there is n number of DMUs, each producing s outputs from m inputs. Thus, xi

represents the ith input and yr represents the rth output. In DEA, multiple inputs and outputs

are linearly aggregated using weights ui and vr (ui,vr ≥ 0). The resulting efficiency score is

expressed as follows:

Efficiency =
weighted sum of outputs

weighted sum of inputs
=

∑s
r=1 vryr

∑m
i=1 uixi

(1)

Fig. 1.3: Production process.

1.4.3 Multiplier vs. Envelopment in DEA: Input and Output Orienta-
tions

The dual of dual is primal. Given this duality, the distinctions between ‘primal DEA program’

and ‘dual DEA program’ are inherently relative. Broadly, DEA can be conceptualized from

two primary perspectives:

1. Multiplier DEA Programs: These primarily involve the weights of inputs and outputs,

represented by ‘u’ and ‘v’. They focus on the direct measurement of efficiency ‘θ ’ by

assigning weights to specific inputs and outputs.

2. Envelopment DEA Programs: On the other hand, the weights of DMUs, are symbolized

by ‘λ ’. The essence of envelopment is about enveloping or enclosing the data points,

suggesting efficiency ‘ f ’ in a broader perspective.

Within the framework of DEA programs, there are two main orientations specific to the han-

dling of inputs and outputs:

1. Input-Oriented Envelopment DEA: This approach aims to achieve observed outputs

using minimal inputs. Efficiency is a function of input reduction, making it input-oriented.

It aligns with the dual of the output maximizing multiplier model.

2. Output-Oriented Envelopment DEA: This version emphasizes achieving the maximum

output given the existing amount of inputs, making it output-oriented. It corresponds with

the dual of the input minimizing multiplier model.
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1.4.4 Radial and Non-radial Models in DEA

The classification into radial and non-radial models in DEA provides distinct approaches for

assessing efficiency, offering varying perspectives on the optimization of inputs and outputs

within DMUs [19].

Radial: Radial DEA models are primarily concerned with proportional changes in inputs

and outputs while maintaining a fixed level of efficiency. Efficiency scores in radial models are

determined by how close a DMU is to the efficient frontier, and any radial movement toward

the frontier represents an improvement in efficiency. A DMU can reduce inputs and increase

outputs in radial models to enhance efficiency. It’s important to note that radial DEA models

exhibit unit invariance but not necessarily translation invariance.

Non-radial: Non-radial DEA models take a different approach by considering non-proportional

changes in inputs and outputs. These models assess efficiency while allowing for variations in

input and output quantities without adhering to a strict proportionality constraint. Efficiency

scores in non-radial models depend on the magnitude and direction of changes in inputs and

outputs relative to the efficient frontier. Non-radial models offer a more flexible view of effi-

ciency, acknowledging that real-world organizations may not always achieve proportional ad-

justments in their operations.

This thesis is centered exclusively on radial models within DEA. Specifically, the mod-

els are concentrated on emphasizing the proportional adjustments in inputs and outputs while

maintaining a fixed level of efficiency.

1.4.5 Radial DEA Models

The analysis predominantly revolved around several specific radial models within DEA.

1.4.5.1 CCR Model

The basic radial DEA model developed by Charnes, Cooper and Rhodes (called CCR model)

[15] to evaluate the relative efficiency of DMUs. Specifically, table 1.1 presents all four mul-

tiplier and envelopment versions of input- & output-oriented models, with assumptions of

constant returns to scale (CRS). These orientations focus on output-maximizing and input-

minimizing, respectively. This model is proven to be an effective tool for identifying empirical

frontiers and evaluating relative efficiency. The model framework is given below:
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Table 1.1: LPPs of CCR Model.

Multiplier version Envelopment version
Output-maximizing model Input-oriented CCR model

max θd =
s

∑
r=1

urdyrd

subject to
m

∑
i=1

vidxid = 1

s

∑
r=1

urdyr j −
m

∑
i=1

vidxi j ≤ 0 ∀ j

urd ≥ 0 ∀r = 1, · · · ,s
vid ≥ 0 ∀i = 1, · · · ,m.

min fd

subject to
n

∑
j=1

λ jxi j ≤ xid fd ∀i

n

∑
j=1

λ jyr j ≥ yrd ∀r

λ j ≥ 0 ∀ j.

Input-minimizing model Output-oriented CCR model

min θd =
m

∑
i=1

vidxid

subject to
s

∑
r=1

urdyrd = 1

s

∑
r=1

urdyr j −
m

∑
i=1

vidxi j ≤ 0 ∀ j

urd ≥ 0 ∀r = 1, · · · ,s
vid ≥ 0 ∀i = 1, · · · ,m.

max fd

subject to
n

∑
j=1

λ jxi j ≤ xid ∀i

n

∑
j=1

λ jyr j ≥ yrd fd ∀r

λ j ≥ 0 ∀ j.

Definition 1.4.1 A DMUd is called CCR efficient in the multiplier version if the optimal value

θ ∗
d =1, and there exists at least one optimal pair of weights (v,u) with v > 0, u> 0, otherwise

DMUd is CCR-inefficient. In other words, a DMUd is inefficient if it is possible to reduce any

of its inputs without reducing its output and without expanding some other inputs.

OR

Definition 1.4.2 A DMUd is said to be CCR efficient in the envelopment version if f ∗d =1 and

all input-output slacks are zero, i.e., (S+∗
i ,S−∗

r )= 0.

1.4.5.2 BCC Model

Banker, Charnes and Cooper introduced an innovative advancement to the DEA model, known

as the BCC model [22]. This model incorporated the variable returns to scale (VRS) assump-

tion through the inclusion of a convexity condition in the existing CCR DEA. The returns to
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scale assumption, especially VRS, ensures the estimation reflects economic reality. Thereafter,

the BCC model emerged as more prevalent in the current practical scenarios and suitable for

inferences by the researchers. The BCC model yields a measure of technical efficiency that

overlooks the effect of scale by only comparing a DMU to a unit of a similar scale. The BCC

model takes into account the variation of efficiency with respect to the scale of operations and

hence measures pure technical efficiency (PTE). Thus, CCR model is a specific case of BCC

model, and hence, the efficiency score obtained by the BCC model is greater than or equal to

the efficiency score obtained by the CCR model.

Table 1.2: LPPs of BCC Model.

Multiplier version Envelopment version
Output-maximizing model Input-oriented BCC model

max θd =
s

∑
r=1

urdyrd −wd

subject to
m

∑
i=1

vidxid = 1

s

∑
r=1

urdyr j −
m

∑
i=1

vidxi j −wd ≤ 0 ∀ j

urd ≥ 0 ∀r = 1, · · · ,s
vid ≥ 0 ∀i = 1, · · · ,m
wd free.

min fd

subject to
n

∑
j=1

λ jxi j ≤ xid fd ∀i

n

∑
j=1

λ jyr j ≥ yrd ∀r

n

∑
j=1

λ j = 1

λ j ≥ 0 ∀ j.

Input-minimizing model Output-oriented BCC model

min θd =
s

∑
i=1

vidxid −wd

subject to
s

∑
r=1

urdyrd = 1

s

∑
r=1

urdyr j −
m

∑
i=1

vidxi j −wd ≤ 0 ∀ j

urd ≥ 0 ∀r = 1, · · · ,s
vid ≥ 0 ∀i = 1, · · · ,m
wd free.

max fd

subject to
n

∑
j=1

λ jxi j ≤ xid ∀i

n

∑
j=1

λ jyr j ≥ yrd fd ∀r

n

∑
j=1

λ j = 1

λ j ≥ 0 ∀ j.

Example 1.4.1 Consider the data set of five DMUs with a single input and a single output.

The input-oriented CCR and BCC models is apply for the same data set and report the results.
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Observe that the CCR efficiency score is less than or equal to the BCC efficiency score for all

the DMUs. This implies that a CCR-efficient DMU is also BCC-efficient, but the converse is not

necessarily true (units A and C are BCC-efficient but not CCR-efficient). Figure 1.2 exhibits the

efficient frontiers. DMUs D, E, and F are CCR as well as BCC inefficient. These DMUs can

achieve efficient frontiers only by controlling.

Fig. 1.4: CRS and VRS frontiers.

Definition 1.4.3 Let ( f ∗d ,λ
∗,S−∗,S+∗) be an optimal solution of BCC envelopment model for

DMUd. If f ∗d = 1 and all the slacks S−∗ = 0, S+∗ = 0, then DMUd is called BCC-efficient (or

efficient); otherwise, it is called BCC-inefficient (or inefficient). The reference set of DMUd is

defined by Rd = { j|λ ∗
j > 0, j = 1, · · · ,n}.

Definition 1.4.4 Return to scale (RTS) refers to the rate by which output changes if all inputs

are changed by the same factor. Traditionally, RTS is conceptualized for single-output sce-

narios. Contemporary approaches have introduced multifaceted definitions to address diverse

production contexts [23]. The two scales generally employed are constant returns to scale

(CRS), and variable returns to scale (VRS).

Definition 1.4.5 CRS renders to the output increases by the same proportion as the increment

in inputs. This implies that production scale doesn’t impact efficiency.
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Definition 1.4.6 VRS occurs when a change in all the inputs does not result in the same pro-

portional change in the output. VRS further encompasses Increasing Returns to Scale (IRS)

and Decreasing Returns to Scale (DRS).

Definition 1.4.7 IRS is a proportional inputs increase that results in a greater than propor-

tional output increase, suggesting efficiencies at larger scales.

Definition 1.4.8 DRS is a proportional input increase that leads to a less than proportional

output rise, indicating reduced efficiencies at small scales.

Definition 1.4.9 Production Possibility Set (PPS) is defined as the set of all outputs that can be

produced using the available inputs. Mathematically, suppose n DMUs with m inputs and s out-

puts. The input and output vectors of DMUj ( j = 1, · · · ,n) are presented by xi j = (x1 j, · · · ,xm j)

and y j = (y1 j, · · · ,ys j), respectively. The PPS constructed under CRS postulate is defined by:

PCRS =

{
(x,y) : x ≥ ∑

j=1

λ jx j, y ≤ ∑
j=1

λ jy j, λ j ≥ 0, j = 1, . . . ,n

}

and the PPS constructed under the VRS postulate is defined as:

PV RS =

{
(x,y) | x ≥

n

∑
j=1

λ jx j, y ≤
n

∑
j=1

λ jy j,
n

∑
j=1

λ j = 1, λ j ≥ 0, j = 1, . . . ,n

}
,

where λ j is called the intensity scalar for DMUj

Definition 1.4.10 A DMUd with inputs xd and outputs yd is said to be efficient if there does not

exist any other (x,y) ∈ PPS, (x,y) �= (xd,yd) such that x ≤ xd and y ≥ yd.

1.4.6 Concepts & Definitions

Some of the important definitions related to DEA are here:

Definition 1.4.11 Decision-Making Units: The decision-making units (DMUs) refer to the

entities or organizational units under evaluation in DEA. These units can represent various

entities such as companies, departments, regions, or any other organizational divisions that

are subject to performance assessment. In DEA, DMUs are assessed based on inputs and

outputs to determine their relative efficiency and performance compared to other units. The

goal is to identify the most efficient units as improvement benchmarks and provide insights for

resource allocation and decision-making processes.
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Definition 1.4.12 Efficiency: Efficiency refers to how closely the use of resources to produce

outputs of a certain quality matches the ideal use of resources for outputs of the same quality.

If and only if any improvement in a DMU’s inputs or outputs would force some other inputs or

outputs to deteriorate, that DMU is said to be fully efficient.

Definition 1.4.13 Inefficiency: The level by which a DMU falls over its cost frontier and below

its output and profit frontiers can be viewed as a measure of inefficiency.

Definition 1.4.14 Input Slacks: The excesses in the actual input, known as input slacks, are

used to calculate the target input, which is required for the inefficient units to become the

efficient units.

Definition 1.4.15 Output Slacks: The shortfalls in the actual output, known as output slacks,

are used to calculate the target output, which is required for the inefficient units to become the

efficient units.

Definition 1.4.16 Peer Counts: The peers for inefficient DMUs are those efficient DMUs that

have a positive value of λ ’s. The total number for which an efficient DMU becomes peers for

inefficient DMUs is called peer count.

Definition 1.4.17 Productivity: Productivity refers to the measure of output or results gener-

ated from a specific set of inputs or resources within a given period of time. It quantifies the

efficiency and effectiveness of a process, system, or organization in converting inputs into valu-

able outputs.

1.4.7 DEA: A Brief Survey

The groundbreaking study on DEA is written by Charnes et al. (1978) [15], which is also one

of the most cited articles in the European Journal of Operational Research. The discipline has

grown steadily and quickly. The frequency of adoption of DEA as a method for efficiency anal-

ysis can be estimated using [24], which provides a bibliography of more than 472 publications

and dissertations published between 1978 and 1995. A bibliography of the DEA from 1978 to

2001 is produced in 2002 by Taveres et al. [25], which included 3203 published publications

by 2152 different authors. The theoretical and real-world applications of DEA are covered in a

survey and analysis of the first 30 years of literature by Emrouznejad et al. (2008) [26]. Kuah

et al. (2010) [27] highlighted the multilevel DEA models, stochastic DEA models, and fuzzy

DEA models. Liu et al. (2013) [28] conducted a comprehensive survey of DEA applications;

two-thirds of the DEA articles are embedded in application data, while the remaining one-third
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are solely methodological. Emrouznejad and Marra (2014) [29] concluded that two-stage con-

textual analysis and network DEA applications are a recent trend. Several research articles

related to DEA theoretical and top-5 applications are included: banking, health care, agricul-

ture & farm, transportation, and education. Emrouznejad and Yang (2018) [30] carried out an

extensive survey that included 10,300 journal articles with contributions from 11,975 differ-

ent authors, spanning publications from 1978 to the end of 2016. They recognized important

journals, the most well-known of which are the European Journal of Operational Research, the

Journal of the Operational Research Society, and others. The report also identified the main

application areas for DEA research in 2015 and 2016 as being public policy, supply chain, fi-

nance, agriculture, and transportation. DEA authors and 25,137 specific keywords across all

DEA-related articles in the database, which increased significantly in recent years. Panwar et

al. (2022) [31] studied a detailed literature and cover the development about the DEA in the

last five decades.

A considerable amount of DEA literature on theoretical and methodological extensions is

reported in [22, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,

53, 54]. There are several DEA models presented in the literature to address different issues.

Fig. 1.5: Distribution of DEA-related articles by year (1975-2020).

1.4.8 Concept of Productivity

Productivity is the relationship between the output per unit generated by a production or a

service system and the input, such as labor, capital, or other resources. It is implied in every

economic activity and primarily stands for producing more and more outputs from fewer and

fewer resources. When the productivity of two firms is compared, the more productivity firm

produces more output with the same input or the same output with lesser input.
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The two most commonly used types of productivity: partial factor productivity (PFP) and

total factor productivity (TFP). PFP measures the ratio of total output to a single or partial

input. TFP, or multifactor, is a measure of the ratio of total output and total input. It denotes

the combined effect of all resources in generating the total output units. It is defined as the ratio

of a weighted sum of output to the weighted sum of inputs. The directional distance function

(DDF) provides a framework for understanding how production processes can be analyzed and

evaluated in a multidimensional context, considering multiple inputs and outputs. This has

practical applications in various industries and economic analyses, enabling a more nuanced

assessment of productive efficiency. Generally, two kinds of distance functions are widely used

in studies: the Shephard distance function [55] and the DDF [56]. Therefore, the DDF is a

generalized form of the Shephard distance function. Economists frequently use specialized

indexes created to evaluate TFP in order to have a deeper knowledge of economic performance.

These indicators are essential for measuring the whole effect of several inputs, including labor,

capital, and technology, on output. DDF can be estimated in at least two different ways: non-

parametric DEA approach and parametric approach. The non-parametric DEA approach has

become a cornerstone in productivity analysis due to its unique ability to handle diverse input-

output technologies without relying on specific functional form assumptions. Analysts evaluate

the underlying forces that drive economic growth by using tools like the Fisher index, Paasche

index, Törnqvist index, Kendrick index, Solow index, Translog index, Malmquist productivity

index, Malmquist index, Hicks-Moorsten index, and Färe-Primont index, as well as additive

indexes such as the Luenberger-Hicks-Moorsten total factor productivity index or other TFP

indices, giving light on the relative contributions of various causes. These indexes provide us

with a strong lens through which to view the intricate dynamics of productivity.

1.4.8.1 Productivity Measurement Approaches

In the non-parametric framework, Malmquist productivity index, characterized by Caves et

al. (1982) [57] via distance functions and defined in the form of the geometric mean of two-

adjacent-period indexes, is used to measure productivity growth. In connection with the ad-

ditive nature of the DDF, Champer (1996) [58] introduced the Luenberger indicator. This

indicator, which is based on differences, assesses DDF by taking into account both output

expansions and input contractions. It marks a significant milestone as the initial endeavor to

measure productivity changes over time, using graph measures as the basis. Among those is the

Malmquist-Luenberger (M-L) index, introduced by Chung et al. (1997) [59]. The M-L index

is a special form of the Malmquist index in that it measures productivity change but in the spe-

cific context of producing undesirable outputs. Oh and Heshmati (2010) [60] point out that the



18 Chapter 1. Introduction and Preliminaries

standard version of MLPI does not consider the progressive feature of technology. They pro-

posed their own version of MLPI, which they appropriately called sequential MLPI (SMLPI).

Although MLPI is an adequate approach for measuring productivity change, it has a few short-

comings, as pointed out by Choi et al. (2015) [61]. Pastor and Lovell (2005) [62] presented a

global Malmquist index with all period data. Their index satisfies circularity, generates a single

measure for cross-period observations, and is immune to infeasible solutions. This adaptability

makes it an indispensable tool for assessing productivity changes across various industries and

sectors [63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73]. Taking a closer look at the topic in Chapter

3, entails providing a thorough analysis and engaging in an in-depth discussion of the issues

raised.

1.4.9 Inverse DEA Model

After evaluating the efficiency of the DMUs, two types of questions can arise. The first type

is the resource allocation problem. This determines how much inputs are needed to increase if

outputs are increased to some level, given that the efficiency of the DMU remains unchanged.

The other type of problem is an investment analysis problem, which determines how much

outputs are needed to increase if inputs are increased to some level, given that the efficiency of

the DMU remains the same. Generally, the interior technical formation of the DMU does not

change drastically in a short period of time. These formations of DEA models ensure that the

inverse DEA model can be used for resource allocation and investment analysis problems [74].

The inverse DEA model is first proposed by Wei et al. (2000) [75] for input or output estimation

and discussed the solution for the resource allocation and investment analysis problems. Yan

et al. (2002) [74] extended this methodology to include the preferences of decision-makers

through the implementation of priority cones. In addition, Lertworasirikul et al. (2011) [76]

proposed the inverse DEA model assumption. Assume there are m-inputs, s-outputs, and n-

number of DMUs and Xi j= amount of ith input consumed by jth DMU, Yr j= amount of rth

output produced by jth DMU, and f ∗ is given efficiency. Consider the rth output in the ratio

form, where 1 ≤ r ≤ s. Consider that the output values of DMU0 are increased from Y0 to

Y0 +ΔY0, ΔY0 �= 0. Then, the minimum change in input ΔX0 �= 0 can be computed by the

inverse CCR model and inverse DEA model with VRS that are given as follows:
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Table 1.3: Inverse-DEA models.

Inverse CCR model Inverse BCC model

min Δx0 = (Δx10, · · · ,Δxm0)
T

subject to
n

∑
j=1

λ jxi j ≤ f ∗(xi0 +Δxi0) ∀i

n

∑
j=1

λ jyr j ≥ yr0 +Δyr0 ∀r

λ j ≥ 0, ∀ j.

min Δx0 = (Δx10, · · · ,Δxm0)
T

subject to
n

∑
j=1

λ jxi j ≤ f ∗(xi0 +Δxi0) ∀i

n

∑
j=1

λ jyr j ≥ yr0 +Δyr0 ∀r

n

∑
j=1

λ j = 1

λ j ≥ 0, ∀ j.

Chapter 4 provided a comprehensive analysis and engage in-depth discussion of the raised

concerns.

1.4.10 Fuzzy Set Theory

In many practical applications, input and output data cannot be precisely measured. Impreci-

sion or approximation may arise from various sources, such as indirect measurements, model

estimations, subjective interpretations, and expert judgments based on available information.

Ignoring uncertainty and impreciseness in data sets might diminish decision models’ utility and

predictive capacity [77]. Consequently, methodologies that enable analysts to handle imprecise

or approximate data explicitly are of significant interest. DEA models, being highly sensitive

to potential imprecision in the dataset, benefit from such approaches. By formulating the eval-

uation problem within the framework of fuzzy set theory, analysts can augment the traditional

“crisp” DEA to encompass and represent the uncertainty inherent in real-world problems. In

1965, Zadeh [78] developed the fuzzy set theory, in which a grade of membership function is

developed, which provided an effective tool for dealing with vagueness and uncertainty. Fuzzy

techniques have various benefits compared to crisp methods because they have more flexible

decision boundaries, allowing them to be adapted to a certain application area and more accu-

rately reflect its peculiarities. Fuzzy optimization is a method designed to address ambiguity

stemming from uncertain parameters, expressed as elements whose membership in a specific

set lacks clarity. In contrast to robust optimization, which focuses solely on parameter uncer-

tainty, fuzzy optimization provides a framework to handle a broader spectrum of uncertainties

within the problem’s structure. These encompass variations in the decision maker’s level of
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ambition concerning the objective, fluctuations in the range of coefficients within the objective

function(s), and uncertainties regarding the satisfaction level of constraints. Below are some

definitions pertaining to fuzzy set theory.

Definition 1.4.18 Crisp set: A set A is said to be crisp if it is a well-defined collection of distinct

objects called elements of A. If an element x is in A, it is written as x ∈ A; otherwise, x �∈ A. Let

X be the universal of discourse. Then, A is defined as Ã = {(x,μÃ(x))|x ∈ X ; μÃ(x) ∈ {0,1}}
in which μÃ(x) is the characteristic function defined by

μÃ(x) =

⎧⎨
⎩1, x ∈ A

0, x �∈ A
(1.1)

Definition 1.4.19 Fuzzy set : Let X be the universal of discourse. Then a fuzzy set Ã in X

is defined by Ã = {(x,μÃ(x))|x ∈ X ; μÃ(x) ∈ [0,1]} in which μÃ(x) is called the membership

grade function of x the fuzzy set Ã.

Fig. 1.6: Membership function for crisp and fuzzy set.

Definition 1.4.20 Support of a fuzzy set : A support for a fuzzy set Ã on X denoted by S(Ã)

can be defined as,

S(Ã) = {x ∈ X |μÃ(x)> 0}. (1.2)

Definition 1.4.21 α− cut : An α−level cut for a fuzzy set Ã on X denoted by μÃ(x) defined as,

μÃ(x) = {x ∈ X |μÃ ≥ α}. (1.3)
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Definition 1.4.22 Height of a fuzzy set : The supremum of the fuzzy membership function is

defined to be the height of a fuzzy set.

Definition 1.4.23 Normal fuzzy set: If the Height of the membership function is 1, then the

fuzzy set is called normal fuzzy set.

Definition 1.4.24 Crossover point : The crossover point of A is an element that has a member-

ship value of 0.5.

Definition 1.4.25 Convex fuzzy set : A fuzzy set Ã of X is said to be convex fuzzy set if, μÃ(x)≥
min{μÃ(b), μÃ(a)} ∀ a ≤ x ≤ b).

Definition 1.4.26 Core of a fuzzy set : The set of all elements whose fuzzy membership grade

function has a value of 1 is defined as the core of the fuzzy set. The core of the fuzzy set is crisp

in nature and is defined as,

Core(Ã) = {x ∈ X |μÃ(x) = 1}. (1.4)

Fig. 1.7: Intuitive diagram for basics of fuzzy sets.

1.4.11 Fuzzy Numbers

Fuzzy numbers are the generalization of real numbers whose weight function is also known as

the membership grade function, where the membership grade is an intermediate binary value

between 0 and 1 [79]. Let Ã be a fuzzy set of a universal set X and such a set distinguishes
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with the membership grade function μÃ{x} : X → [0,1], which associates with each element

(x = x1,x2, · · · ,xn) in X to a real number lies between [0,1]. The fuzzy set Ã can be defined as:

˜A(x) = {x,μÃ{x}, x ∈ X} (1.5)

A fuzzy set Ã defined on real numbers R is said to be fuzzy number [80] if it satisfies the

following properties:

1. Ã is normal,

2. (Ã)α is a closed interval for every α ∈ (0,1],

3. The support of Ã is bounded.

There are many fuzzy numbers, depending on the nature of the user and the decision-making

process. However, the most commonly used and user-friendly membership grade functions are

triangular, gaussian, bell-shaped, and trapezoidal fuzzy numbers.

Definition 1.4.27 Triangular Fuzzy Number : TFNs are frequently favored by analysts due

to their computational simplicity. This simplicity makes TFNs an accessible and practical

choice for representing uncertainty in various applications. The TFN is implanted because of

its widespread acceptance in the literature, which is the most notable and fundamental [81].

The left and right sides of its linear representations are such that its membership function for

a TFN Ã = (a,b,c), a < b < c, where a represents the lower bound, b signifies the mean and c

denotes the upper bound. Now, the membership function is described below as:

μÃ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x ≤ a

x−a

b−a
, a ≤ x ≤ b

c− x

c−b
, b ≤ x ≤ c

0, c ≤ x.

If Ã = (a1,b1,c1) and B̃ = (a2,b2,c2) are two TFNs. Then, the basic mathematical opera-

tions of these two TFNs are as follows:

(Ã+ B̃) = (a1 +a2,b1 +b2,c1 + c2) a1,a2 ≥ 0 (1.6)

(Ã− B̃) = (a1 − c2,b1 −b2,c1 −a2) a1,a2 ≥ 0 (1.7)
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(Ã× B̃) = (a1 ×a2,b1 ×b2,c1 × c2) a1,a2 ≥ 0 (1.8)

(Ã÷ B̃) = (a1 ÷a2,b1 ÷b2,c1 ÷ c2) a1,a2 ≥ 0 (1.9)

(Ã−1) =

(
1

c1
,

1

b1
,

1

a1

)
Inverse of a triangular fuzzy number. (1.10)

Definition 1.4.28 Trapezoidal fuzzy numbers : Another widely used fuzzy number is the trape-

zoidal fuzzy number. A trapezoidal fuzzy number M̃ membership function for (a,b,c,d) such that

(a < b < c < d), is defined as,

μÃ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if x ≤ a
x−r
s−r , if a ≤ x ≤ b

1, if b ≤ x ≤ c
u−x
u−t , if c ≤ x ≤ d

0, if x ≥ d.

(1.11)

Definition 1.4.29 Gaussian fuzzy number : A fuzzy number is called a Gaussian fuzzy number

if it has a membership function,

μÃ(x) = te
(x−a)2

b , x ∈ R, b > 0. (1.12)

Definition 1.4.30 Cauchy fuzzy number : A fuzzy number is called a Cauchy fuzzy number if

it has a membership function,

μÃ(x) =
1

1+( x−b
a )

2
, x ∈ R, a > 0. (1.13)

1.4.12 Fuzzification

Fuzzification is the process of converting precise decisions within the input space into fuzzy

sets facilitated by the fuzzifier. It involves acknowledging that quantities traditionally seen as

deterministic actually carry a significant degree of uncertainty. This uncertainty can be ex-

pressed using a membership grade function. At the outset of the process, the fuzzification

function is applied to each input variable to ascertain the level of uncertainty. It interprets and

evaluates input variables, transforming them from crisp real numbers into practical approxi-

mations represented as fuzzy numbers. This assignment can be done through intuitive means

or based on algorithmic or logical operations. Commonly utilized fuzzification approaches

include rank-ordering, inference, neural networks, intuition, genetic algorithms, inductive rea-

soning, soft-partitioning, meta-rules, fuzzy statistics, and angular fuzzy sets [82].
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1.4.13 Defuzzification

Defuzzification involves the process of approximating a fuzzy set by determining the nearest

vertex in the unit hypercube. Conceptually, one can envision a fuzzy set as an assortment of

membership values or a vector of values within the unit interval. Defuzzification condenses this

vector into a singular scalar value, typically representing the most typical value. The prevalent

methods for converting fuzzy sets to crisp sets include the Max-Membership Principle, Cen-

troid method, Weighted Average method, and Mean-Max Membership. This defuzzification

procedure results in the transformation of a fuzzy set into a single-valued crisp quantity or into

a crisp set, thereby converting a fuzzy matrix to a crisp matrix or rendering a fuzzy number

crisp [83, 84, 85, 86].

1.5 Fuzzy DEA Models

The conventional DEA approach necessitates precise measurements of both inputs and outputs.

However, in practical scenarios, the recorded input and output data values are rarely exact or

entirely accurate, potentially leading to erroneous conclusions. Several scholars have proposed

various fuzzy techniques to address this data ambiguity. Since the seminal work by Sengupta

et al. (1992) [87, 88], there is sustained interest and expansion in the field of fuzzy DEA

(FDEA) research. Ali et al. (2013) [89] conducted a comprehensive review of FDEA meth-

ods and categorized them into six primary classifications: tolerance approach, α−level based

approach, fuzzy ranking approach, possibility approach, fuzzy arithmetic, and fuzzy random/

Type-2 fuzzy sets. They further organized pioneering articles that didn’t fit into these six cat-

egories. The following subsections provide concise introductions to these six categories and

present a brief overview of the relevant literature.

1.5.1 Tolerance Approach

In 1992, Sengupta et al. [87] introduced one of the earliest FDEA models employing the

tolerance approach. This technique involves incorporating uncertainty into the DEA model by

specifying tolerance levels for constraint violations. While it obscures the signs of inequality or

equality, it is not directly linked to ambiguous coefficients. The tolerance approach does entail

significant complexity, as it entails formulating a DEA model with a fuzzy objective function

and ambiguous constraints, which may or may not be met. Nonetheless, ambiguity is inherent

in most production processes, encompassing failure to achieve specified objectives and data

inaccuracies. The tolerance approach introduces adaptability by relaxing the DEA relationship

and treating input and output coefficients as crisp values.
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1.5.2 α-cut Approach

The α-cut approach stands out as one of the most widely used FDEA models, as evidenced by

its extensive representation in the FDEA literature. This approach revolves around converting

the FDEA model into a set of parametric programs that determine the lower and upper bounds

of the membership functions at varying values of α-level. Girod et al. (1996) [90] introduced

a fuzzy BCC and free disposal hull (FDH) model, which is radial efficiency. These models,

following the approach presented by Carlsson et al. (1986) [91], allow inputs to vary between

risk-free (upper) and impossible (lower) limits, while outputs can oscillate between risk-free

(lower) and impossible (upper) limits. Triantis et al. (1998) [92] brought forth the fuzzy LP

technique for measuring technical efficiency, establishing precise inputs and outputs within

risk-free and impossible limits. Then, three CCR, BCC, and FDH fuzzy models are developed

in terms of their risk-free and impossible constraints, along with their membership grade func-

tion. Additionally, Girod et al. (1999) [93] provided a detailed discussion of this paper by

implementing it on a roadmap. Triantis et al. (2003) [94] extended their earlier work on FDEA

to incorporate non-radial DEA metrics of technical efficiency within an integrated performance

measurement system. They compared this proposed method to a thorough examination of the

radial technical efficiency of the same manufacturing production line. To compute the fuzzy

interval efficiency of DMUs, Meida et al. (1998) [95] utilized the α−cut. Kao et al. (2000)

[96] devised an approach for evaluating the efficiency of DMUs with uncertain observations

in the BCC model. They built on the idea of substituting the FDEA model into the family of

traditional crisp DEA models. Using the α−cut methodology and Zadeh’s (1978) [97] exten-

sion concept, they estimated the membership functions of the fuzzy efficiency measures. This

involved transforming the FDEA model into a pair of parametric mathematical algorithms and

employing Chen et al. (2012) [98] ranking fuzzy number method to compute the DMU’s per-

formance. The interval is formed by solving this model at a specified value of α−cut, and

multiple such intervals can be employed to construct the corresponding fuzzy efficiency.

1.5.3 Fuzzy Ranking Approach

The fuzzy ranking approach is another significant technique that has garnered attention in the

FDEA literature. This method centers around the utilization of a fuzzy linear algorithm to

determine the fuzzy efficiency rating of DMUs, necessitating the ranking of the fuzzy set. Guo

et al. (2001) [99] pioneered in creating a fuzzy ranking approach for efficiency measurement.

They introduced a fuzzy CCR model in which fuzzy constraints are transformed into crisp

constraints by establishing a possibility level and applying a rule for comparing fuzzy numbers.

To rank a set of DMUs, a fuzzy aggregation method is employed for multiple attribute fuzzy
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values [100]. In their subsequent work, Guo et al. (2009) [101] proposed a novel FDEA model

tailored to address restaurant location problems in China. This demonstrates the versatility and

applicability of the fuzzy ranking approach beyond generic efficiency measurements.

1.5.4 Possibility Approach

Fuzzy set theory forms the foundational principle of possibility theory. As per Zadeh [97], a

fuzzy variable is linked to a possibility distribution, and a random variable is associated with a

probability distribution. In a fuzzy LP model, fuzzy coefficients can be viewed as fuzzy vari-

ables, and constraints can be seen as fuzzy events. Therefore, possibility theory provides a

framework for calculating the probabilities of these fuzzy events. For a comprehensive under-

standing of possibility theory, one can refer to the work of Dubois et al. [102]. Guo et al. [103]

developed FDEA models based on possibility and necessity measures. Subsequently, Lert-

worasirikul et al. (2003) [104, 105, 106] introduced the “possibility approach” and “credibility

approach” for addressing the ranking problem in FDEA models. They introduced the possibil-

ity approach by considering uncertainty in fuzzy objectives and constraints through possibility

measures from optimistic and pessimistic viewpoints. This transformed the FDEA model into

a credibility programming-DEA model, with fuzzy variables replaced by expected credits de-

rived using credibility measures.

1.5.5 Fuzzy Arithmetic Approach

A concise investigation into handling fuzzy data through the application of fuzzy arithmetic

is presented in [107]. Furthermore, Wang et al. (2009) [108] introduced two FDEA models

based on fuzzy arithmetic, incorporating fuzzy inputs and outputs. These models convert the

fuzzy CCR model into a three-LP model to assess DMU efficiency. Additionally, they devised

a fuzzy ranking system for DMU prioritization. Abdoli et al. (2011) [109] conducted a study

evaluating the productivity of a group of knowledge workers using an FDEA-based approach.

Jafarian et al. (2012) [110] expanded upon Chiang et al. (2000) [111] multi-objective static

DEA model, extending it into a fuzzy dynamic multi-objective DEA model. They simplified

the fuzzy multi-objective programming problem into a single-objective programming problem

by leveraging Zimmerman’s approach [112]. Additionally, Jafarian et al. (2012) [110] utilized

triangular fuzzy numbers to represent missing data in their model. They resolved the model

using the FDEA approach established by Wang et al. (2009) [108] after formulating the LP

model using the former method.
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1.5.6 Fuzzy DEA: A Brief Survey

One of the challenges in real-world situations is that the available data might be present in an

uncertain or qualitative form, or sometimes some data might be missing. Erdogan et al. (2015)

[113] concluded that the conventional DEA models are absurd to use with these types of data.

Sometimes, when the available data is in qualitative form, it is transformed into numerical data

by inviting subject or domain experts to evaluate the degree of confidence in all possible situ-

ations. Subsequent evidence from various studies in different settings around the world shows

that people routinely inflate small probabilities when answering these types of questions [114].

The fuzzy set theory, which is developed by Zadeh [78], handles this situation more effectively,

and it has expanded to deal with the concept of partial fact ranging from correct to incorrect.

Fuzzy theory has become the fundamental tool for handling imprecision or vagueness, aiming

at tractability, robustness, and low-cost solutions for real-world problems. Many researchers

applied DEA models to evaluate the efficiency of DMUs under fuzzy environments [115, 116].

Wen et al. (2009) [117] extended the traditional DEA models to a fuzzy DEA model based on

credibility measures. Chen et al. (2013) [118] concluded that the use of the fuzzy SBM DEA

model for estimating efficiency values not only represents the characteristic of the uncertainty

of the efficiency values, it also presents the potential effect of risk volatility on efficiency values.

Hsiao et al. (2011) [119] concluded that linguistic terms could not entirely fit the conventional

DEA models. Puri et al. (2013) [120] used fuzzy SBM DEA models to handle the imprecise

data and calculate the mix-efficiencies. Wanke et al. (2016) [121] presented an analysis of the

efficiency using fuzzy DEA and stochastic DEA models based on the α− level approach and

different tail dependence structures, respectively. Recently, Bakhtavar et al. (2019) [122] used

a special risk prioritization algorithm by failure mode and effects analysis by SBM DEA model

under fuzzy conditions.

Lertworasirikul et al. (2003) [105, 106] studied the fuzzy DEA models built by Guo et al.

(2000) [103], which took the possibility criterion and the necessity criterion as a measure and

solved the ranking problem with two distinct approaches, namely, the possibility approach and

credibility approach. Furthermore, Agarwal et al. (2014) [123] applied possibility measures to

solve the fuzzy SBM DEA model. The possibility measure is used but has no self-dual prop-

erty, which is undoubtedly needed for practice. Liu et al. (2002) [124] proposed a credibility

measure that shows the self-dual character. The credibility theory, which manages personal

conviction degree numerically, is given by Liu et al. [125] and refined in his next research

[126, 127]. Wen et al. (2010) [128] used the credibility measure to solve the CCR DEA model.

The model is apt for the constant return to scale, but both primal and dual forms of the CCR

model are required to measure the relative efficiency and efficient targets. Many researchers

used fuzzy set theory to handle qualitative data and integrate it with different models. Agarwal
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et al. (2014) [123] extended the conventional DEA model to a fuzzy DEA model and solved it

with the help of the α-cut approach. Yu et al. (2017) [129] used fuzzy DEA for sustainability

and found that suppliers with low carbon footprints exhibited poor efficiency, which may be

attributed to the additional effort required. Wanke et al. (2018) [130] used fuzzy DEA and

stochastic DEA to analyze the Angolan banks. Other recent applications of fuzzy DEA, such

as Peykani et al. (2019) [131] evaluated the efficiency using an adjusted fuzzy DEA approach.

Gupta et al.[132] proposed portfolio efficiency evaluation using BCC-DEA and RDM models

under fuzzy environments. The application of the model is shown by using superior risk mea-

sures of value at risk and conditional value at risk under a credibility measure. The BCC DEA

model is extended with a fuzzy environment for evaluating the efficiency of DMUs and solved

by credibility measures in Chapter 6.

Upon reviewing the existing literature, several research gaps have identified within the pub-

lic transport sector.

1. There is still a lack of a more robust approach for accurately determining criteria, criteria

weights and effectively evaluating performance in transport sector.

2. The efficiency and productivity evaluation is not analyzed enough for public transport

sector in India using the DEA model.

3. The limited exploration of inverse DEA for optimizing resource allocation in the context

of the transport sector.

4. The ranking of efficient DMUs in the FDEA problem still has a complex solution that

needs to be simplified.

1.5.7 Study Region

Rajasthan is one of the original states in India when the country gained independence and

reorganized in 1956. Situated in the northwestern region, it stands as the nation’s largest state,

spanning an area of approximately 342,239 km2, covering 10.4% of the country’s geographical

area. The area of the state is nearly equivalent to some of the countries in the world, like Italy

(3,01,200 km2), Poland (3,12,600 km2), and Norway (3,24,200 km2). The latest census in 2021

estimates Rajasthan had roughly 5.68% of the country’s total population. Over the past 70

years, Rajasthan’s population has grown nearly fivefold, from about 15.97 million in 1951 to

79 million in 2021. The absolute growth peaked between 1991 and 2001 with an addition of

roughly 12.5 million people, as shown in figure 1.8.
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Fig. 1.8: Population growth over a period of Rajasthan.

Rajasthan is known for its rich cultural heritage and is also significant from an economic

standpoint. Cities like Jaipur, Udaipur, Jaisalmer, and Jodhpur attract domestic and interna-

tional tourists. There is an average increase of 10.01% in the per capita income of Rajasthan,

whereas this increase has only 7.89% at the all-India level. Figure 1.9 provides a snapshot of

the economic health of Rajasthan state, as gauged by their per capita output. Rajasthan has the

lowest Net State Domestic Product (NSDP) per capita of Rs.1,56,149 for the year 2022-23.
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Fig. 1.9: Rajasthan NSDP per capita over the years.

Geographically, Rajasthan has huge diversity - a region of rolling sand dunes and lofty

hills, vast deserts, freezing cold and scorching heat, fertile plains in the east, and sparsely

populated areas in the west. The Aravalli range, stretching diagonally across Rajasthan, serves

as a geological divider, bifurcating the state into the western arid plain and the distinct eastern

plain. The state’s expansion is between 23°3’ to 30°12’ North latitude and 69°30’ to 78°17’

East longitude. It has a pretty different topography as compared to other states, as it comprises

most of the wide and inhospitable Thar Desert. The Thar Desert encapsulates 12 districts

(Barmer, Bikaner, Churu, Ganganagar, Hanumangarh, Jaisalmer, Jhunjhunun, Jodhpur, Jalor,

Nagaur, Pali, and Sikar) in the state and spreads in 61.11 % of the total area of the state. The

desert area of Rajasthan is among the few tropical deserts of the world which has the highest

population density.

1.5.7.1 Public Transport Infrastructure of the State

The transport sector encompasses different models of transport, including roads, railways, air-

ways, inland waterways, and shipping, facilitating efficient transportation of goods and citizens

across the country. Economic growth is closely linked to the transportation of goods and pas-

sengers. This efficiency contributes significantly to the transport sector in gross state domestic

product (GSDP)/ gross state value added (GSVA), which is evident from figure 1.10. The ma-

jority of the transport sector’s contribution in Rajasthan comes from road transport, highlighting
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its importance in the state’s economy. The road transport is pivotal for socio-economic devel-

opment, fostering social, regional, and national integration.

Fig. 1.10: Contribution of transport sector in GSDP/ GSVA of Rajasthan.

From March 2012 to March 2021, the number of registered motor vehicles in the state

surged from 8,985,568 to 20,223,021, marking a growth of 125.06% over the decade. Two-

wheelers, representing 73.78% of the total in 2012, increased to 75.86% by 2021. The pro-

portion of cars, jeeps, and taxis grew marginally from 10.40% in 2012 to 10.90% in 2021.

However, the share of buses declined from 0.93% to 0.61%, and goods vehicles saw a reduc-

tion from 4.02% to 3.68% during the same period. Road Transport has steadily expanded its

scope of operations to its inherent suitability for handling freight and passengers.

Rajasthan state road transport corporation (RSRTC) is established on October 1, 1964, un-

der the provisions of the Road Transport Corporation Act, 1950, with a modest fleet of 421

buses operating across 8 depots and serving 29,000 passengers daily. Its headquarters locat-

eded in Jaipur, RSRTC is a state government initiative that offers both interstate and intercity

bus transportation at subsidized fares, making it more accessible and affordable to the general

public. This subsidized fare service not only eases travel for daily commuters but also promotes

better connectivity across the state. As Rajasthan is the largest intercity bus transport service

provider, RSRTC boasts 52 small and large bus depots spread across the 33 districts of the
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state. RSRTC has witnessed considerable growth. Today, its vast fleet consists of 4,500 buses

from 52 depots, covering 1.6 million km and catering to the transportation needs of 1 million

passengers daily.

Currently, RSRTC provides services beyond Rajasthan, reaching out to states like Gujarat,

Haryana, Uttar Pradesh, Delhi, Himachal Pradesh, Uttarakhand, Madhya Pradesh, Jammu &

Kashmir, Chandigarh and Maharashtra. At present, RSRTC has ordinary, express, deluxe,

semi-deluxe, A.G. (Gandhi Rath and sleeper), air conditioning, volvo (also with LCD and/or

pantry), sleeper, and Mercedes buses in its fleet. On RSRTC buses, specific seats are reserved

exclusively for female passengers. These seats are usually marked with symbols or colors to

indicate the reservation. The reserved seats are meant to ensure that female passengers always

have a place to sit, even if the bus is crowded. For the convenience of the passenger at the

depot, the corporation generally has a rest room, canteens, lockers, waiting rooms, charging

points, CCTV surveillance, a booking office, toilets, drinking water, a parking area, a timetable

and fare chart display, inquire counters, a public address system, lights, fans, seats and benches,

ATM machines, and PCO, etc.

Fig. 1.11: Map of Rajasthan.

In 2011, RSRTC introduced the integrated transport management system (ITMS) to mod-

ernize its operations. The ITMS comprises an online reservation system (ORS), electronic

ticket machines (ETMs) integrated with ORS, a public online reservation system (PORS), an
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online management information system (MIS), and a vehicle scheduling and dispatch system.

A year later, in 2012, RSRTC rolled out an RFID-based smart card concessional pass system

(RFID SCPPS). This system facilitates the issuance of RFID smart cards for various purposes,

including concessional/free travel, monthly season tickets, and prepaid e-purse travel. It plays

a crucial role in providing transportation options to residents, tourists, and businesses, thereby

contributing to the state’s economic and social development.

1.5.7.2 Challenges in Transportation

According to a report [133], a few years back, due to the different topological conditions

(deserts, mountains, planes), the villages of Rajasthan are not well connected with each other

through an effective transport system. Nowadays, rural transport services are developed to im-

prove the social and economic status of the people. In spite of the above problem, many steps

have taken by the Government for the improvement of road network. The major obstacle in the

development of transport networks in the state is its geography, marked by the Thar Desert and

Aravalli mountain range, which presents unique challenges and opportunities for transporta-

tion. The vast expanse and variable terrain require specialized transport solutions. There are

several problems in the construction and maintenance of transport networks in the state.

1.6 Thesis Objectives

The management of the public transport sector must implement strategic measures to ensure

the optimal utilization of available resources, aiming to maximize output. Efficient and judi-

cious use of resources is imperative for enhancing the productivity of depots. The objective

of this thesis is to tackle the aforementioned challenges, with a specific focus on achieving the

following objectives:

1. Identify and rank the significant criteria influencing performance using hybrid MCDM

approach.

2. To highlight the growth trends and efficiency patterns of all DMUs at an aggregate level

using the NSM model with VRS assumptions.

3. To analyze total factor productivity changes, technical efficiency, and technological progress

using NSM model over the time of DMUs.

4. To analyze a super-efficiency inverse DEA (IDEA) model for ranking the efficient DMUs.

5. To apply the credibility approach to the fuzzy cross-efficiency DEA model for evaluating

efficiency.
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The study aims to provide a refined and robust framework for accurately assessing the

efficiency of the entities.

1.7 Thesis Contribution

The culmination of this research endeavors to shed light on several pivotal aspects within the

domain of efficiency analysis and productivity measurement in the transport sector. Through

the exploration of innovative methodologies and models, this thesis embarks on a comprehen-

sive journey encompassing various chapters that collectively contribute to the advancement of

decision-making processes and operational enhancements in transportation systems. Through

the collective exploration and development of these models and methodologies, this thesis

stands as a testament to the commitment towards offering practical solutions for improving

efficiency, resource allocation, and overall performance enhancement in the dynamic landscape

of transportation.

1. Hybrid MCDM Approach: In this study, the innovative application of MCDM tech-

niques is substantial practical implications. By effectively identifying and ranking the

most critical criteria affecting the performance of transportation depots, this study offers

valuable insights for decision-makers and stakeholders. For instance, transportation au-

thorities can utilize these findings to prioritize their focus on key performance criteria,

directing resources and efforts towards areas that significantly impact depot efficiency.

This prioritization allows for targeted improvements, potentially leading to enhanced op-

erational effectiveness and resource allocation within the transport depots. Moreover, the

integration of sensitivity analysis into the assessment process ensures a more robust and

reliable model for ranking based on their performance. This method enables a deeper un-

derstanding of the stability and consistency of efficiency scores, offering decision-makers

confidence in the reliability of ranking systems.

2. Efficiency Measurement: The DEA model and subsequent analysis of the RSRTC de-

pots offered significant practical advantages of the transport sector. By identifying ef-

ficiency trends and categorizing depots, this research enabled a detailed understanding

of the performance variations among RSRTC depots over time. These insights play a

pivotal role in optimizing depot operations and resource allocation. The findings aid in

pinpointing areas of excellence within certain depots, allowing transport authorities to

replicate successful practices across the network and improve overall efficiency. More-

over, determining input targets and assessing returns to scale assists in more efficient

resource allocation, leading to enhanced operational effectiveness and efficiency across
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the RSRTC depots. Understanding growth trends across different depot categories fur-

ther supports long-term strategic planning, allowing authorities to adapt proactively to

evolving transport demands. Additionally, a comparative analysis of depot efficiency

facilitates the identification of top-performing depots, fosters healthy competition, and

encourages efficiency-enhancing strategies across the entire transport system.

3. Productivity Evaluation: Productivity evaluation is a prominent implications for real-

life applications in the transport sector. By employing a NSM model with the VRS

assumption and utilizing measures such as MPI and LPI, this research enabled transport

authorities to assess productivity changes within RSRTC depots over a specified time

frame. This analysis is provided crucial insights into the dynamics of productivity shifts

from the period 2008-2019. These insights are instrumental in identifying periods of

enhanced productivity, determining efficiency fluctuations, and identifying the factors

influencing depot performance changes over time. By understanding these productivity

trends, transport authorities can gain valuable knowledge for strategic planning and re-

source allocation. They can identify and replicate successful practices observed during

periods of heightened productivity, implement targeted interventions to address declining

efficiency, and optimize resource allocation to improve the overall operational effective-

ness within the transport system. Ultimately, this research provides decision-makers with

actionable insights to enhance productivity, streamline operations, and improve the qual-

ity and efficiency of public transportation services for commuters and stakeholders in the

transport sector.

4. Inverse Super-Efficiency DEA Model: The implementation of the inverse super-efficiency

DEA model is offered tangible benefits for real-world decision-making. By ranking the

efficient depots and determining precise input-output quantities for predefined efficiency

objectives, this analysis is suggested a clear roadmap for optimizing resources. Trans-

port authorities is utilized these insights to allocate resources more effectively, enhance

operational strategies, and streamline depot performance. Ultimately, these methodolo-

gies is contributed to improving the overall efficiency and effectiveness of transportation

services, benefiting commuters, stakeholders, and broader community.

5. Cross-Efficiency BCC DEA Model: Introducing a noval model to assess the efficiency

of STUs in a fuzzy environment, this research tackles a crucial challenge faced by decision-

makers. The model is addressed the missing data and provides a practical framework for

conducting more accurate assessments of STUs’ operational effectiveness. In real-life

scenarios, this meant that transport authorities and policymakers gain a clearer and more

precise understanding of how efficiently STUs operate, despite potential uncertainties
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in the data. This improved understanding empowers decision-makers to make informed

choices in resource allocation, strategic planning, and policy development. It is allowed

for targeted interventions to enhance the efficiency of STUs, leading to better transporta-

tion services for commuters and stakeholders.

Overall, the application of these methodologies in the transport sector can assist trans-

portation authorities, managers, and policymakers in decisions making to optimize depot

performance, streamline operations, and ultimately improve the quality and efficiency of

public transportation services. In essence, this research equips transport authorities with

actionable insights to streamline operations, allocate resources effectively, plan strategi-

cally, and foster continual improvement within the transportation network.

1.8 Thesis Organization

This thesis is dedicated to delving into the mathematical intricacies of modeling and introduces

an innovative fuzzy DEA model for the purpose of efficiency analysis and productivity mea-

surement. Comprising a total of seven chapters, this thesis embarks on a comprehensive explo-

ration. Chapter 1 serves as an introduction, encompassing key aspects including transportation,

diverse DEA models, essential definitions within the realm of DEA, as well as discussions on

productivity, the relevance of fuzzy set theory, and the concept of inverse DEA. Additionally, it

outlines the research objectives and sheds light on the specific gaps addressed within this thesis.

Chapters 2-6 deal with the main contribution of research work, Chapters 2 to 5 encom-

pass the core of this research, focusing on the analysis of RSRTC depots. Building upon this

foundation, Chapter 6 expands the scope to encompass the entire Indian transport sector, specif-

ically addressing state transport undertakings (STUs). Chapter 7 consolidates the findings and

contributions, presenting a comprehensive conclusion along with promising avenues for future

research. This progression showcases the evolution of the study from a focused examination of

RSRTC depots to a broader exploration of the Indian transport landscape.

Chapter 2 is applied a one-of-a-kind combination of MCDM techniques for this objective.

This study is to identify and subsequently rank the key criteria that exert a significant influ-

ence on performance within the public transport sector. Performance is achieved by applying a

hybrid MCDM approach, which combines multiple methodologies to ensure a comprehensive

and accurate assessment. This study is provided a clear understanding of which criteria require

focused attention and strategic prioritization for optimal performance enhancement. In this re-

gard, sensitivity analysis detects the outliers and determines the robustness of efficiency scores

by varying the criteria weights. This proposed model is useful for ranking all depots.
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The second objective of the thesis is addressed in Chapter 3 presents the measures of effi-

ciency by establishing a input-oriented NSM DEA model under VRS assumption considering

the 52 depots of RSRTC for multi-period. The depots are categorized into three distinct groups

for comparative analysis. The study assesses efficiency patterns, establishes input targets, de-

termines the return to scale, and analyzes growth trends across all three categories of depots.

Chapter 4 measures the total factor productivity (TFP) and incorporates the Malmquist pro-

ductivity index (MPI) and Luenberger productivity index (LPI) using NSM model over a spec-

ified time frame (2008–2019). Further, it is evaluated total productivity change in terms of

technological change (Frontier shift) and technical efficiency change (Catch-up Effect). The

outcomes derived from these models offer a more realistic reflection of real-world scenarios

compared to efficiency evaluation. In this context, this approach offers a more robust frame-

work for studying productivity changes over time. This capability allows for capturing the cu-

mulative impact of evolving efficiencies and the dynamic shift of the efficient frontier, against

which efficiencies are measured. This nuanced methodology comprehensively explains pro-

ductivity dynamics in a changing operational landscape.

Chapter 5 delves into the application of the inverse super-efficiency DEA model. This ap-

proach serves the purpose of ascertaining the precise quantity of inputs and outputs required to

achieve a predefined efficiency objective. By doing so, the aim to validate the ranking of effi-

cient depots through the utilization of both super efficiency and inverse super efficiency DEA

models. This comprehensive analysis provides a robust framework for evaluating and compar-

ing the performance of depots, ensuring a more accurate assessment of their efficiency levels.

Additionally, it offers valuable insights for decision-makers in optimizing resource allocation

and operational strategies to enhance overall efficiency.

Chapter 6 develops the fuzzy cross-efficiency DEA model, which incorporates both self-

and peer evaluations, in fuzzy environments is employing a “credibility approach”. The main

objective of this chapter is to tackle a real-life issue involving missing data. By applying the pro-

posed model, measure the performance of STUs for the fiscal year 2017-18 and subsequently

compare the efficiency scores obtained with those derived from the fuzzy cross-efficiency DEA

model. This comprehensive analysis provides a robust framework for evaluating and bench-

marking the efficiency of STUs, ensuring a more accurate assessment of their operational ef-

fectiveness. Additionally, it offers valuable insights for decision-makers in optimizing resource

allocation and strategic planning to enhance overall efficiency.

The final chapter encapsulates the primary conclusions drawn from the extensive study con-

ducted throughout this work. Additionally, it provides valuable insights into potential avenues

for future research and exploration in this field. This chapter serves as a comprehensive culmi-

nation of the findings and a catalyst for further academic endeavors.





Chapter 2

A Comparative Analysis of Hybrid MCDM Meth-
ods for Performance Assessment and Ranking

In this chapter, a concise yet comprehensive overview of the key performance assessment cri-

teria is offered, employing hybrid multi-criteria decision-making (MCDM) techniques within

the context of the sustainable public road transport sector of Rajasthan state.

2.1 Introduction

Sustainable transportation is integral to society’s economic and social progress. Often referred

to as the “lifeblood” of daily commuters, transportation systems are widely acknowledged for

their vital role [134]. With the expansion of cities in the 20th century, the growth of transporta-

tion networks not only drove urban development but also brought about a series of challenges in

the pursuit of sustainability. A range of decision-making methods and tools exist to support the

research and development (R&D) of transportation systems. The significance of reaping sus-

tainability benefits and effectively utilizing resources in transport systems is widely recognized,

leading to substantial investments in R&D. Nevertheless, a pressing concern now arises—how

to translate the promise of sustainable transportation into a competitive advantage. To thrive

in today’s competitive landscape, many organizations acknowledge the strategic importance of

benchmarking to enhance performance and cultivate a commitment to gaining a competitive

edge [135, 136]. Moreover, operation management and criteria selection are important issues

in transportation system development. In many cases, operational management decisions in-

volve multiple aspects and conflicting criteria, making solutions more challenging to achieve.

To implement a successful policy or project in the transport sector, it is critical to involve mul-

tiple stakeholders in the decision-making process [137].

Based on the above aspects, this chapter addresses the following questions:

1This work has appeared in Goyal, S., Agarwal, S., Singh, NS., Mathur, T., and Mathur, N., 2022. Hy-
brid MCDM methods for performance assessment and ranking public transport sector: A case study.
Sustainability, 14(22), pp. 15110.
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(a) Which criteria could be the most effective to evaluate the performance of a depot?

(b) Which screened criteria and aspects have the most significance for performance assess-

ment?

(c) How the performance of the depot can be improved by aggregating all the attributes of

the collected criteria?

(d) How ranking results change due to variations in criteria weight?

Therefore, this study builds a hybrid MCDM hierarchy to rank the depots based on the

performance score by simultaneously taking into account the operational, passenger, cost, and

quality aspects. A hybrid MCDM technique such as fuzzy Delphi method (FDM), fuzzy Ana-

lytic Hierarchy Process (FAHP), TOPSIS-VIKOR-ELECTRE approach is used to quantify the

performance. Indeed, a hybrid approach, which combines two or more MCDM methods, holds

the potential to address intricate decision-making challenges effectively. The purpose of em-

ploying the FDM is to discern the most crucial criteria by gathering expert opinions through

structured questionnaires. The weights of the criteria must be assigned after they have estab-

lished using FDM to reflect their relative relevance. FAHP is a pair-wise comparison approach

that compares the significance of two criteria. Group decision-making has emerged as a crucial

and highly significant aspect of MCDM [138, 139, 140]. A collective of individuals is often

better equipped to navigate the complexity of a problem compared to a single decision-maker

(DM) [141]. Finally, the study employs TOPSIS-VIKOR-ELECTRE to evaluate and compare

the rankings of depots, utilizing the weights determined through FAHP. Additionally, a sensitiv-

ity analysis is conducted across various scenarios, involving the adjustment of criteria weights.

This research aims to apply an appropriate MCDM analysis that uses experts’ opinions to rank

the effectiveness of the available public transport system in attracting users away from using

private vehicles. MCDM is a technique for determining the best option, ordering, ranking, and

sorting the alternatives. Since the 1970s, it is a powerful tool in the fields of decision-making,

value judgment, and evaluation. Furthermore, MCDM techniques are commonly used due to

their capacity to address complicated problems with inadequate data systems. A detailed in-

sight into the proposed technique is presented in the following sections. The purpose of this

study is to answer these questions so as to help Rajasthan’s government come up with appro-

priate solutions for developing a transport system.

The subsequent sections are organized as follows: Section 2.2 lays the foundation by pro-

viding an overview of pertinent literature. Following this, Section 2.3 thoroughly explains

all the criteria used in the evaluation. Section 2.4 introduces the methodologies employed
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in detail, namely the fuzzy Delphi method, fuzzy AHP, and TOPSIS-VIKOR-ELECTRE meth-

ods. Section 2.5 presents an evaluation of the comparative TOPSIS-VIKOR-ELECTRE results,

shedding light on their implications. Additionally, Section 2.6 focuses on sensitivity analysis

regarding weight variation, contributing to the methodology’s robustness. Finally, Section 2.7

draws conclusions by synthesizing the key findings and their implications. This structured ap-

proach ensures a coherent flow of information throughout the research.

2.2 Literature Review

This section aims to review the application of MCDM in public transportation.

2.2.1 MCDM Methods in Public Transportation

MCDM is a decision-making approach that combines various techniques to help decision-

makers to make decisions based on their preferences among two or more criteria [142], rapidly

growing in the public transportation problems. According to Perez et al. (2015) [143], 58

distinct MCDM approaches might be employed in private and public urban passenger trans-

portation systems to make essential judgments in evaluating the design and operation of public

transportation systems available between 1982 and 2014. As a result, several researchers now

use MCDM as one of their primary decision-making tools when assessing the performance of

public transit systems [144, 143]. According to Hassan et al. (2013) [145], the services perfor-

mance of the transport sector is frequently assessed using MCDM methodologies. Macharis et

al. (2015) [137] pointed out that MCDM is mostly used in the transport sector’s appraisal of

the AHP approach.

There are various decision-making methodologies developed by researchers in the given

literature. Among the most commonly used MCDM methods is AHP, 276 publications pub-

lished during the period 1985-2012 are examined, and it is noted that 33% of research works

used AHP technique and developed a variation in the transportation sector. Yedla and Shrestha

(2003) [146] employed AHP to assess six sustainable ways of transportation. Sezhian et al.

(2011) [147] used fuzzy TOPSIS & AHP and ANOVA systematic algorithms for determining

the best-performing depot in India. Cafiso et al. (2013) [148] reported several rounds of the

Delphi process to improve consensus among the participants for bus safety and suggested that

Kendall’s test can be used to assess the level of concordance.

Streimikiene et al. (2013) [149] proposed the interval TOPSIS method on the road transport

sector. Aydin and Kahraman (2014) [150] focused on a hybrid fuzzy AHP and VIKOR MCDM

techniques for selecting public vehicles instead of trams, metros, commuter trains, and bus rapid

transit (BRT) systems. Erdogan and Kaya (2016) [151] advocated the utilization of type-2 fuzzy
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sets to more accurately account for uncertainties in the decision-making process, incorporating

three distinct techniques: Delphi, AHP, and TOPSIS. Hawas et al. (2016) [152] employed the

TOPSIS approach and K-mean clustering algorithm to build strategies and reliable guidelines

to improve public transit accessibility in urban cities. Nassereddine and Eskandari (2017) [153]

applied an integrated MCDM approach, combining Delphi, GAHP, and PROMETHEE, in the

evaluation of public transportation systems in Tehran. Avenali et al. (2018) [154] used a hy-

brid cost model that combines a bottom-up and a top-down method to calculate unit standard

costs for the Italian local public bus transportation industry. Demirel et al. (2018) [155] and

Dudek et al. (2018) [156] suggested AHP, fuzzy AHP, and ELECTRE to evaluate the selec-

tion of public transport. Guner (2018) [157] presented a two-stage AHP-TOPSIS technique.

Jamshidi (2018) [158] assessed the efficiency and ranked the criteria that influence passenger

satisfaction through the two-stage Delphi method in the road transport industry. Kiciński and

Solecka (2018) [159] evaluated various scenarios using multiple criteria for the enhancement

of the urban public transportation system in the city of Cracow. Melander et al. (2019) [160]

conducted a Delphi survey involving experts from academia, industry, and government, which

unveiled a diverse and multi-dimensional vision of future developments in goods transport in

Sweden for the year 2050. Jasti and Ram (2019) [161] developed an integrated and sustainable

framework by utilizing MCDM methods such as AHP and direct weighting for the urban bus

system of Hyderabad. Moslem and Duleba (2019) [162] utilized a fuzzy AHP model in the

context of sustainable decision-making for public transport development issues. Sekar and Ay-

din (2020) [163] integrated two MCDM methods, namely interval-valued intuitionistic fuzzy

analytical hierarchy process (IVIF-AHP) and COmbinative Distance-based Assessment (CO-

DAS), to assess the quality of public transportation services. Karam et al. (2021) [164] used

a hybrid analytical method that combined meta-synthesis, The fuzzy Delphi method (FDM),

and AHP to improve the sustainability of the transportation industry. The performance of the

metropolitan public transportation system is analyzed using a fuzzy multi-criteria analysis ap-

proach (MCAA) [165]. Bouraima et al. (2023) [166] introduced an enhanced fuzzy step-wise

weight assessment ratio analysis (SWARA) method, incorporating both the Bonferroni operator

and Measurement of Alternatives and Ranking according to the Compromise Solution (MAR-

COS) techniques within a unified methodological framework for evaluating the BRT system in

Tanzania. No approach is better than the others; each has its own set of benefits and drawbacks

as well as application areas. The same multi-criteria decision problem may be solved using

multiple techniques to produce more reliable decision information. Each approach has its own

set of benefits and drawbacks as well as application regions; no approach is superior to the

others. The same multi-criteria decision problem may be solved by more than one technique,

resulting in more reliable decision data [167].

The aforementioned literature review highlighted the importance of MCDM techniques in
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the assessment of the transport sector. However, the suitable criteria for performance assess-

ment depend on the problem statement. Further, studies on proposing a metric to determine

performance are limited.

2.3 Evaluation Criteria

The selection of appropriate criteria for performance measurement is pivotal as it forms the

foundation of the evaluation process and serves as a guide for improvements across various

aspects of the sector. Drawing on extensive prior research and aligning with prevalent trends

in the transportation sector, 29 critical criteria is meticulously identified. These encompass a

broad spectrum of factors and are categorically organized into four key criteria: operational

service, service quality, passenger service, and cost effects, as shown in table 2.1. This table

offers a comprehensive overview of the essential metrics used in the evaluation.

All criteria are explained briefly as follows:

2.3.1 Operational Service: Ensuring Smooth Operations

Operational service focuses on various critical metrics that collectively evaluate the efficiency

and effectiveness of the depot’s daily operations, ensuring that services run smoothly and on

schedule. Efficiently managing the workforce is crucial for overall operational success as it

affects service quality, maintenance, and administrative functions. This, in turn, can poten-

tially increase the depot’s ability to serve passengers, reduce waiting times, and accommodate

peak-hour demands [168]. Monitoring the services helps assess whether the depot is meeting

the demand effectively. Similarly, it’s important to strike a balance to avoid overcapacity and

operational inefficiencies.

• Total vehicles: This criterion quantifies the total number of vehicles in the depot’s fleet.

• Schedule vehicles: These are vehicles that are officially assigned to specific routes and

schedules. Monitoring the number of scheduled vehicles ensures that the depot has ade-

quate resources to maintain regular service operations.

• Operated vehicles: This criterion assesses the number of vehicles in operation on a given

day. It provides insights into the depot’s ability to deploy its fleet for service effectively.

• Off-road vehicles: These are vehicles that are temporarily out of service due to mainte-

nance, repairs, or other reasons. Tracking the number of off-road vehicles is crucial for

maintaining an efficient and reliable fleet.
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• Operated trips: This criterion measures the total number of trips successfully completed

by the depot’s vehicles within a specific period. It provides valuable insights into the

depot’s fleet’s operational efficiency and capacity utilization.

• Extra trips: This refers to additional services that are provided beyond the regular sched-

ule to accommodate unexpected passenger demand or special events. Monitoring extra

trips helps assess the depot’s flexibility and responsiveness to dynamic passenger needs.

• Curtailed trips: This occurs when a scheduled trip is terminated before reaching its fi-

nal destination, often due to unforeseen circumstances or operational reasons. Tracking

curtailed trips is important for identifying areas where service disruptions may occur and

implementing corrective measures.

• Total no. of employees: This criterion quantifies the overall workforce employed by the

depot, including both operational and administrative staff. It provides an indication of

the depot’s organizational size and capacity to manage day-to-day operations.

• Number of routes: This criterion represents the total count of distinct routes served by

the depot. It indicates the breadth of the depot’s transportation network.

• Routes distance: This criterion measures the combined length of all routes serviced by

the depot, reflecting the extent of geographical coverage.

2.3.2 Service Quality: Enhancing Passenger Experience

Service quality is the heart of efficient public transportation systems. Transit service quality

influences the commuter’s choice [169]. Commuter attitudes toward transport services are very

important when it comes to improving demand for the services [170]. Therefore, it is highly

essential to identify the lagging service parameters to increase commuter satisfaction and rev-

enue for the sustainable transport system. It encompasses factors such as punctuality, reliability,

passenger safety, and overall customer satisfaction. Assessing service quality provides insights

into the ability of depots to meet the demands and expectations of passengers. Choosing service

quality as a criterion is paramount:

• Rate of breakdown: This criterion quantifies the frequency of breakdowns or malfunc-

tions experienced by the depot’s vehicles. A lower number of breakdowns indicates

a more reliable and well-maintained fleet, ultimately contributing to improved service

quality and passenger satisfaction.
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• Rate of accidents: Safety is an important concern in public transportation. Monitoring

the number of accidents provides crucial insights into the effectiveness of safety measures

and the overall security of passengers and vehicles.

• Punctuality: Timeliness is a fundamental aspect of service quality. Punctuality ensures

that passengers can rely on the service schedule, leading to increased trust and usage of

public transport.

• Fleet utilization: This criterion evaluates the optimal use of the depot’s fleet. Efficient

fleet utilization indicates a well-managed operation that can cater to passenger demand

effectively.

• Vehicle utilization: This criterion focuses on the efficiency of individual vehicles. Maxi-

mizing vehicle usage ensures cost-effectiveness and meets passenger demands efficiently.

• Tyre efficiency: The condition and efficiency of tires are crucial for ensuring passenger

safety and maintaining operational efficiency. Regular monitoring and maintenance of

tires contribute to overall service quality.

2.3.3 Passenger Service: Meeting Traveler Needs

Passenger service criteria encompass several essential metrics that collectively gauge the ef-

fectiveness of a depot’s transportation services with a strong focus on passenger experience.

This metric provides a nuanced understanding of service coverage and frequency. Collectively,

these criteria provide a comprehensive view of how effectively the depot caters to passenger

demands, taking into account both quantity and quality of service, thus they are playing a piv-

otal role in evaluating the overall performance of the depot.

• Number of passengers: The volume of transportation activity within a specific year

stands as a key indicator, mirroring the comprehensive demand and utilization of the

depot’s services.

• Passenger km occupied: It quantifies the cumulative distance traveled by each passenger,

offering insights into the extent of journeys facilitated by the depot.

• Description of kilometers: This criterion is calculated as the total kilometers operated

during a specific period, divided by the total number of buses on the road in that period,

and then divided by the number of days within the same period.

• Load factor: It represents the percentage of total passenger kilometers relative to the total

carrying capacity and assesses the efficiency of passenger occupancy.
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2.3.4 Cost Effects: Analyzing Financial Aspects

Cost-effect criteria examine the financial aspects of depot operations, considering cost-saving

measures and resource allocation strategies. A comprehensive evaluation of these criteria en-

ables a complete understanding of the depot’s financial performance. Consequently, this under-

standing empowers precise, well-informed decision-making and facilitates the implementation

of targeted improvements. Key financial criteria include:

• Income per seat per km (in lakh): This metric is calculated by dividing the total income

by the product of the average number of seats in a bus and the average kilometers traveled

by buses of the depot. It helps us to understand the income generated per unit of capacity

and distance traveled.

• Total income per km: This criterion measures the total income generated by the depot

per km traveled. It provides insights into the revenue earned for each unit of distance

covered.

• Operating income (in lakh): This criterion represents the total operating income, a key

indicator of the depot’s financial health.

• Operating income per km: Operating income, also known as operating earnings, is di-

vided by the kilometers traveled to determine the operating income per km. This metric

reflects the financial performance of the depot in relation to its operational activities.

• Income per vehicle per day: This criterion assesses the income generated per bus per

day, providing insights into the daily revenue generation efficiency.

• Total expenditure per km: Total expenditure is divided by kilometers traveled to calculate

the total expenditure per km. This metric helps us understand the cost implications of the

depot’s operations on a per-km basis.

• Profit/loss per km: It is calculated as the difference between total income per km and

total expenditure per km. This metric indicates whether the depot is operating at a profit

or loss on a per km basis.

• Consumption rate of diesel and oil: This set of criteria examines fuel consumption ef-

ficiency, including diesel consumption per km per liter and engine oil top-up per km per

liter. These metrics help evaluate the cost-effectiveness of fuel usage in depot operations.
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Table 2.1: Definitions of criteria

Category Criteria Description
O

pe
ra

tio
na

lS
er

vi
ce

Total vehicles The number of vehicles held by a depot input.

Scheduled vehicles Total number of vehicles that are pre-assigned to a

depot for that year.

Operated vehicles Total number of vehicles that actually operated for a

depot for that year.

Off-road vehicles Total vehicles out of operated vehicles that remained

away from operation for a depot.

Scheduled trips Total count of trips scheduled for a depot for that

year.

Operating trips Total trips actually operated in a year.

Extra trips Unscheduled trips that operated in a year.

Curtailed trips Total count of cancelled trips .

Total no. of employees The number of employees in a depot which is indica-

tive of labor input.

No. of routes The number of routes which is described as network

size.

Routes distance The route distance is described as the total km trav-

eled by a passenger.

Se
rv

ic
e

Q
ua

lit
y

Rate of break down This indicator (is a measure of the mechanical relia-

bility of a fleet) expressed in terms of the number of

breakdowns per 10,000 kilometers.

Rate of accident This indicator is defined as the number of accidents

per 100,000 kilometers.

Punctuality
Percentage of scheduled trips that departed depot at

their scheduled time.

Percentage of scheduled trips that arrived depot at

their scheduled time.

Fleet utilization Fleet utilization is the percentage of the number of

buses on the road to buses held by the depots.

Vehicle utilization Vehicle utilization is the total kilometers traveled by

bus per day.

Tyre efficiency Ratio of km traveled to maximum km possible tire.

Pa
ss

en
ge

r
Se

rv
ic

e Number of passengers Total number of passenger traveled in a year.

Passenger km occupied Passenger km occupied is the cumulative distance

traveled by each passenger.

Description of km Total kl operated during a period, divided by the total

number of buses in that particular period and then

divided by the number of days in the period .

Load factor Percentage of total passenger kilometers to total

carrying capacity.

C
os

tE
ff

ec
ts

Income per seat per km (in lakh) Total income divided by (average number of seats in

a bus * kilometers traveled).

Total income per km Total income divided by kilometers traveled.

Operating income(in lakh) Operating income, also referred to as operating earn-

ings.

Operating income per km Total operating income divided by kilometers trav-

eled .

Income per vehicle per day Income divided by total buses per day.

Total expenditure per km Total expenditure divided by kilometers traveled.

Profit/ loss per km Total income per km-total expenditure per km.

Consumption rate of diesel and oil

Diesel consumption km per liter.

Engine oil top up km per liter.

Engine oil consumption per thousand km.
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Fig. 2.1: Schematic illustration of the proposed framework.



2.4. Proposed Methodology 49

2.4 Proposed Methodology

This section outlines a three-phase research process centered around hybrid techniques such

as FDM, FAHP, TOPSIS-VIKOR-ELECTRE. Firstly, using FDM method to develop the the

decision-making problem’s structure and identify significant criteria. Following this, the FAHP

method is applied to select the criteria weights. Finally, the TOPSIS-VIKOR-ELECTRE ap-

proach is employed to aggregate the criteria, rank the depots under evaluation, and conduct a

sensitivity analysis. This section provides a comprehensive overview of the research method-

ology. Figure 2.1 illustrates the steps involved in the proposed methodology.

2.4.1 Determining the Linguistic Terms

Assigning precise numerical values to criteria and alternatives can be challenging in real-world

scenarios. Diverse experts may hold varying perspectives and preferences. Fuzzy MCDM

addresses this by enabling the integration of multiple opinions and offering a method to consol-

idate them. To tackle this problem, Zadeh (1965) [78] first proposed the fuzzy set theory to deal

with the impreciseness and subjectivity unpredictability of human judgments. Their flexibility

in handling uncertainty makes them a crucial mathematical tool in various real-world applica-

tions [171]. Fuzzy set theory plays a vital role in translating qualitative linguistic expressions

like ‘good,’ ‘very good,’ ‘poor,’ and ‘very poor’ into quantifiable fuzzy numbers [144]. By

leveraging fuzzy set theory, these linguistic terms effectively manage uncertainties and repre-

sent imperfect information. A linguistic term conveys information using words or sentences

from a natural or artificial language rather than precise numerical values [172]. This approach

is indispensable for accurately representing and analyzing information in a fuzzy environment.

In addition, this study makes use of seven linguistic scales that are frequently used in MCDM

problem-solving. Triangular fuzzy numbers (TFNs) are employed to represent the linguistic

term, illustrated in table 2.2.

Table 2.2: Linguistic terms and corresponding TFNs for the significance criteria weight.

.

Linguistics term Corresponding TFNs
Very High Importance (0.9, 1, 1)

High Importance (0.7, 0.9, 1)

Medium High Important (0.5, 0.7, 0.9)

Medium Importance (0.3, 0.5, 0.7)

Medium Low Importance (0.1, 0.3, 0.5)

Low Importance (0, 0.1, 0.3)

Very Low Importance (0, 0, 0.1)
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2.4.2 Fuzzy Delphi Method

In 1950s, Dalkey and Helmer (1963) [173] proposed the Delphi method at the Rand Corpo-

ration [174]. The Delphi method is widely employed in many management decision-making,

prediction, analysis of public policy, and project organizing to acquire the most accurate judg-

ment among a group of experts. Furthermore, this method has proven to be the most effective

in detecting the trend of an enduring criterion. When investigating distributed group decisions,

there is no apparent solution to a policy issue [175]. On the contrary, Delphi approach allows

for the full integration of multiple expert opinions, and it is time-consuming and expensive. Ad-

ditionally, it’s important to acknowledge that even a small group of experts may face limitations

in addressing all pertinent issues. Moreover, due to its iterative nature in seeking convergent

answers through repeated surveys, the Delphi approach may experience a lower rate of ques-

tionnaire return [176].

Murray et al. (1985) [177] introduced the fuzzy Delphi method (FDM) by combining the

Delphi technique with fuzzy set theory to address impreciseness and vagueness inherent [178].

By introducing a fuzzy set theory-based approach, the FDM allows for the representation of im-

precise or subjective information, providing a more nuanced understanding of expert opinions.

The FDM yields results in an objective manner and eliminates the need for multiple survey

rounds, allowing for conclusions to be reached in a single round [179]. Hsu et al. (2000) [180]

utilized TFN to incorporate expert advice and implement the FDM. It provides a useful exten-

sion to help address these issues and improve the accuracy of expert-based decision making.

To pick the most effective criteria, this study used the FDM method.

The details of the procedure for the FDM method using these five steps are described below.

Step 1: Determine criteria
This study uses a comprehensive literature review and the conceptual framework to de-

termine the 29 criteria. The several literature-based criteria for performance measures in the

transport sector are listed in a tabular format (table 2.1).

Step 2: Collect expert judgements
A panel of five distinguished experts from academia has carefully selected to participate in

the questionnaire. Each expert is asked to provide judgments on the importance of criteria using

a linguistic scale, which includes categories such as ‘very high importance,’ ‘high importance,’

‘medium high importance, ‘medium importance,’ ‘medium low importance, ‘low importance,’

and ‘very low importance.’ To facilitate the evaluation, the criteria are organized into four dis-

tinct sections: operational service, passenger service, cost effects, and quality. This structured

approach ensures a comprehensive assessment of the various facets of the subject matter.

Step 3: Establish the expert opinion into triangular fuzzy numbers
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The approach transforms linguistic assessments into TFNs. The TFN is used to consider

the fuzziness in the judgments made by experts. In this study, linguistic criteria are chosen to

analyze the relevance of each criterion based on the table 2.2. In the instance where an expert

indicates “very high importance,” this corresponds to the TFN values of (0.9, 1, 1). The current

study applies Klir and Yuan (1995) [80] geometric mean model to determine the consensus of

a group decision as assessed by the experts.

Assume that, the fuzzy number represents opinion of the ith expert of n experts Z̃i j =

(ai j,bi j,ci j), ∀ i = 1,2, · · · ,n, j = 1,2, · · · ,m where m is the number of criteria.

First, computes the fuzzy weights of criteria Ã j = (a j,b j,c j), ∀ j = 1,2, · · · ,m as defined

in given equations,

a j = min
i

ai j j = 1,2, · · · ,m (2.1)

b j =

(
n

∏
i=1

bi j

)1/n

j = 1,2, · · · ,m (2.2)

c j = max
i

ci j j = 1,2, · · · ,m (2.3)

where, a j represents lower value, b j denotes geometric mean and c j stands for the highest value

within the fuzzy numbers. The indices i and j represent the number of experts and criteria,

respectively.

Step 4: Defuzzify the data
Defuzzification can be accomplished using a variety of complex approaches. The mean

approach is one of the simplest and is defined by equation (2.4),

Mj =
(a j +b j + c j)

3
, j = 1,2, · · · ,m (2.4)

Hence, defuzzified number Mj quantifies the collective judgment of all experts based on the

effectiveness of criteria.

Step 5: Identification of essential criteria
Finally, by specifying a “r” threshold, the appropriate criteria are screened out of a large

number of criteria. The screening criteria are as given below:

(a) If Mj ≥ r, then add jth criteria in evaluation index.

(b) If Mj < r, then omit jth criteria from the list.

The threshold of r = 0.6 is chosen for consideration as an evaluation criterion. The next round

is selected if the total number of criteria is higher than or equal to 0.6. Otherwise, it is discarded.
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Table 2.3: TFN of linguistic terms used in this study.

Linguistic Scale Crisp Scale FAHP Scale

Equally important 1 (1,1,1)

Weakly important 3 (2,3,4)

Fairly important 5 (4,5,6)

Strongly important 7 (6,7,8)

Absolutely important 9 (9,9,9)

Interpolation scale

2 (1,2,3)

4 (3,4,5)

6 (5,6,7)

8 (7,8,9)

2.4.3 FAHP Method

Analytic hierarchy process (AHP), first introduced by Saaty [181] in 1977, is a widely adopted

methodology for addressing complex systems and making decisions among multiple options.

Professionals and academics heavily rely on AHP across various engineering and management

domains [182]. The core objective of the AHP technique is to decompose a problem into

smaller sub-problems organized in a hierarchical structure [183]. In conventional AHP, a nine-

point scale is employed for conducting pairwise comparisons between categories and criteria.

However, this discrete scale can be problematic, particularly in handling uncertainty and vague-

ness in expert judgments [184].

FAHP adds fuzzy logic theory to the AHP technique to deal with the imprecision of expert

assessments. Various authors have presented several modifications to the FAHP approach and

applications in the literature. The first study that employed the fuzzy set theory to AHP with

fuzzy triangular numbers is suggested by Van and Predryez (1983) [185]. Buckley (1985)

[186] pioneered the application of trapezoidal fuzzy numbers to represent the decision maker’s

evaluation of alternatives for each criterion. Change (1996) [187] introduced a new approach to

dealing with FAHP. This study applied fuzzy triangular numbers for the pairwise comparison

scale based on FAHP [187], which is easier to compute than other FAHP approaches. Assigning

a TFN to each linguistic scale, as summarized in table 2.3.

The FAHP approach consists of the following five steps:

Step 1: Hierarchy structure of the criteria weight
The goal is to identify and rank the criteria for improving public transport performance.

This investigation encompasses three levels within the hierarchical framework. At the top level

lies the overarching goal of the study. In the middle layer, specific categories are identified.
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Finally, all the criteria pertinent to the public transport system are housed in the bottom layer.

These criteria are derived through the application of the FDM method, a specialized approach

tailored to handle imprecise data and expert opinions.

Step 2: Representation of the relative importance for pairwise comparison
The study employs the interval consideration approach to evaluate the range of ratings pro-

vided by each expert. Within this framework, experts utilize a fuzzy pairwise comparison

matrix to express their assessments in linguistic terms, leveraging their expertise and experi-

ence to determine the relative value of one criterion in comparison to another. Various methods

exist for aggregating expert judgments, including the average method, geometric mean method,

interval consideration technique, and others. For this study, the interval consideration approach

is specifically chosen to gauge the spectrum of rankings assigned by experts. TFNs are used for

consolidating expert rankings. The following expressions elucidate the calculations involved in

the ratings provided by different experts.

x̃i j = (li j,mi j,ni j) where i = 1,2, · · · ,n, j = 1,2, · · · ,m, e = 1,2, · · · ,E (2.5)

li j = min
e
(li je),

mi j =

(
∏
e=1

mi je

) 1
n

ni j = max
e

(ni je)

where n and m represent the number of rows and columns, respectively, and E signifies the

number of experts.

Step 3: Fuzzy weight determination

M1
Gi
,M2

Gi
, · · · ,Mm

Gi
, i = 1,2, · · · ,n (2.6)

The fuzzy synthetic extent value for the ith object is determined as follows in equation (2.7).

Si =

(
m

∑
j=1

l j,
m

∑
j=1

m j,
m

∑
j=1

n j)

)⊙(
1

∑n
i=1 ni

,
1

∑n
i=1 mi

,
1

∑n
i=1 l i

)
(2.7)

Step 4: Degree of possibility
The degree of possibilities of M1 = (l1,m1,n1)≤ M2 = (l2,m2,n2) is interpreted as:

V (M1 ≤ M2) = hgt(M1 ∩M2) (2.8)
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=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if m1 ≤ m2

n1−l2
(n1−m1)+(m2−l2)

, if l2 ≥ n1

0, otherwise

(2.9)

To compare M1 and M2 both the values of V(M1 ≤ M2) and V(M2 ≤ M1). The degree of

possibility V (M1 ≥ M2,M3, .....,Me) for a convex fuzzy numbers M and Mi (i = 1,2, · · · ,e) can

be defined by:

V (M ≥ M1,M2, · · · ,Me) =V [(M ≥ M1) and (M ≥ M2) and · · · and (M ≥ Me)]

= min[V (M ≥ Mi)], i = 1,2,3, · · · ,e.
(2.10)

Consider that,

d
′
(Ai) = [ min[V (M1 ≥ Me)], min[V (M2 ≥ Me)], ......., min[V (Mn ≥ Me)]], i = 1,2, ....,n;e �= i

(2.11)

The weight vector for (i = 1,2, ....,n) object can be calculated as follows:

W
′
= (d

′
(A1),d

′
(A2), .....,d

′
(An))

T , (2.12)

where, normalized weighted vector W is a non-fuzzy number.

W = (d(A1),d(A2), .....,d(An))
T (2.13)

Step 5: Consistency measurement of the judgments
The significance of priorities lies in their foundation on consistent matrices. Consistency

ensures that pairwise comparisons are guided by logic rather than randomness. The consis-

tency index (CIk) is determined using the equation derived from the comprehensive eigenvalue

method (λmax), as introduced by Saaty (2004) [188]. To maintain consistency, the value of the

consistency ratio (CRk) should ideally be less than 0.1 for the weights to be considered reliable.

If the ratio exceeds this threshold, it is recommended to re-evaluate the corresponding weights

to rectify any inconsistencies.

CIk =
λmax −n

n−1
(2.14)

CRk =
CIk

RIk
(2.15)
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where random index (RIk) differs for each matrix size n. Table 2.4 is used to calculate the n

size consistency index matrix of a randomly generated pairwise comparison.

Table 2.4: Random consistency index.

n 1 2 3 4 5 6 7 8 9 10

RI 0 0 0.58 0.89 1.12 1.24 1.32 1.41 1.45 1.49

2.4.4 Ranking Methods

This section provides a concise overview of three prominent methods widely used for ranking:

• TOPSIS

• VIKOR

• ELECTRE

2.4.4.1 TOPSIS Method

Hwang and Yoon (1981) [189] offered a method technique for ranking the alternative across

several criteria, order of preference by resemblance to the ideal solution (TOPSIS). According

to Zavadskas et al. (2016) [190], the TOPSIS method is the second most famous MCDM

method. The most desirable outcome must be the furthest away from both the positive and

negative ideal solutions for the successful TOPSIS strategy [191]. In contrast to the negative

ideal solution, which maximizes cost criteria at the expense of benefit criteria, the positive ideal

solution maximizes benefit criteria while minimizing cost criteria. The distances to the ideal

solutions, both positive and negative, are computed simultaneously. Based on their comparative

closeness and the sum of these two distance values, a preference ranking is created by Yue

(2011) [192].

The method is applied in this experiment through seven steps, which are as follows:

Step 1: Normalized decision matrix
The decision matrix is to be determined, where i = 1,2, ...,n denotes the alternatives and

j = 1,2, ...,m represents the criteria. xi j refers to the jth criterion associated to the ith alter-

native and represented as follows:

Xi j =

⎡
⎢⎢⎢⎢⎣

1 r̃12 r̃13 . . . r̃1m

r̃21 1 r̃23 . . . r̃2m
...

...
...

. . .
...

r̃n1 r̃n2 r̃n3 . . . 1

⎤
⎥⎥⎥⎥⎦
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Step 2: Vector normalized decision matrix
The decision matrix is xi j “normalized” by translating different scales and units among differ-

ent criteria into a common measurable unit to allow comparisons between the criteria. In order

to create a matrix whose element P = [pi j]m×n with i = 1,2, · · · ,n; j = 1,2, .....m is calculated

by,

pi j =
xi j√

∑m
i=1 xi j2

i = 1,2, .....n; j = 1,2, .....m (2.16)

The matrix P represents the relative rating of the alternatives.

Step 3: Weighted normalized decision matrix (Vi j)
The normalized matrix is computed by multiplying the columns of the normalized matrix pi j

with associated weights w j ∈ [0,1] :

Vi j = (wi.pi j) ∀ i, j (2.17)

where ∑n
i=1 wi = 1

Step 4: Positive and negative ideal solutions
The best preferable option is represented by the positive ideal solution (PIS), denoted as [S+],

while the worst preferable alternative is indicated by the negative ideal solution (NIS), denoted

as [S−].

S+ = {V+
1 , V+

2 , ..V+
j ..,V+

n }= {(max j Vi j | j ∈ J),(min j V i j | j ∈ J′)| j = 1,2, ......,m} (2.18)

S− = {V−
1 , V−

2 , ...V−
j ..,V−

n }= {(min j V i j | j ∈ J),(max jVi j | j ∈ J′)| j = 1,2, ......,m} (2.19)

Step 5: Euclidean distance measure
The measure is to calculate Euclidean distance [D+

i ,D
−
i ] from PIS [S+] and NIS [S−] to each

component from the ideal (V+
j ) and non-ideal alternatives (V−

j ), where:

D+
i =

√
n

∑
i=1

(Vi j −V+
i )

2
, i = 1,2, ......,n; 0 < D+

i < 1 (2.20)

D−
i =

√
n

∑
i=1

(Vi j −V−
i )

2
, i = 1,2, ......,n; 0 < D−

i < 1 (2.21)

Step 6: Relative closeness coefficient to the ideal solution
The relative closeness coefficient (ξ ∗

i ) is used to define the ith alternative (Vi) to an ideal solution
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Si,

ξ ∗
i =

D−
i

(D+
i +D−

i )
;0 < ξ < 1 (2.22)

where the higher value of ξ ∗
i represents the best performance.

Step 7: Priority Ranking of the alternatives
The preferences of a group of alternatives can be arranged in descending order of ξ ∗

i .

2.4.4.2 VIKOR Method

The VIekriterijumsko KOmpromisno Rangiranje (VIKOR) technique is created to address com-

plex MCDM issues, including several attributes with divergent and incompatible criteria (non-

commensurable units). The VIKOR method is introduced by Opricovi [193] in 1998. As a

planned tool, VIKOR’s distinctive structure is employed when decision experts are unable to

adequately communicate their preferences during the system design phase. This approach of-

fered the decision-maker a compromise ranking of attributes based on the closest to the “ideal”

solution using the initial weights of a problem with competing criteria [194]. Any attribute that

is added or removed could affect the results of the VIKOR ranking. For both the opponent

and the majority, this tactic preserved minimal personal regret and maximum group usefulness

[195].

On the other hand, the TOPSIS technique does not account for the relative distances be-

tween ideal solutions. In contrast to TOPSIS, the relative closeness is not always near to the

ideal values, VIKOR’s aggregate function is always closest to the best solutions. The VIKOR

technique is used to get around this restriction. There aren’t many research studies in the litera-

ture that address the numerous VIKOR application domains. For a number of case studies, the

revised VIKOR approach is suggested by Rao (2008) [196].

The five steps that follow are an explanation of the mathematical algorithm VIKOR com-

putations:

Step1: Normalize decision matrix
The goal of normalization is to standardize the matrix entry unit. The numerical attributes j on

each criterion i are used to determine the normalized values of the attributes ai j. The following

definition applies to the appropriate normalized value ri j.

ri j =
ai j√

∑n
i=1 ai j2

i = 1,2, · · · ,n; j = 1,2, · · · ,m (2.23)

Step2: Ideal solutions
The positive-ideal solution (PIS) f+i and negative ideal solution (NIS) f−i values of all criterion
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i = 1,2, · · · ,n and j = 1,2,3, · · · ,m,

f+i =

⎧⎨
⎩maxi fi j for benefit criterion

mini fi j for cost criterion
(2.24)

f−i =

⎧⎨
⎩mini fi j for benefit criterion

maxi fi j for cost criterion
(2.25)

where j represents the number of alternatives, n represents the number of criteria and fi j repre-

sents the rating of the ith criterion.

Step 3: The values of D j and R j

The utility (D j) and regret (R j) measure for each attributes are given below:

D j =
n

∑
i=1

wi( f+i − fi j)

( f+i − f−i )
(2.26)

R j = max
i

wi( f+i − fi j)

( f+i − f−i )
(2.27)

where wi is the weight of ith criteria.

Step 4: Compute the value of Q j

Q j =
w(D j −D+)

(D−−D+)
+

(1−w)(R j −R+)

(R−−R+)
(2.28)

D+=min
j

D j, D−=max
j

D j, R+=min
j

R j, R−=max
j

R j .

where the solution obtained by D+ and R+ correspond to the maximum group of utility and the

opponent’s minimum individual loss, respectively, and w = 0.5 is supplied as a weight for the

approach of the “majority of criteria”. However, w is capable of setting any value between 0

and 1.

Step 5: Rank the order of preference
Calculate the rank of the alternatives by the given ranking index (Q j) in decreasing order.

2.4.4.3 ELECTRE-I Method

According to Benayoun (1996) [197], ELECTRE-I (ELimination and ChoiceExpressingREal-

ity -I) is one of the most popular approaches for representing a decision-maker’s preferences

across a variety of areas. In addition to ELECTRE-I, several alternative approaches such as

ELECTRE-IV, ELECTRE-II, ELECTRE-TRI, ELECTRE TRI-C, and ELECTRE TRI-N have

emerged from the ELECTRE. Bojkovic et al. (2010) [198] used ELECTRE-I to examine the
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performance of transportation systems in relation to sustainability development challenges.

To reduce the subjectivity of the decision-maker, they offered a variation of the ELECTRE

approach. Karacasu and Arslan (2010) [199] used the ELECTRE approach to compare two

different public bus networks, one run by the local government and the other by private busi-

nesses. However, ELECTRE-I is unable to calculate the ranking of attributes. ELECTRE-II is

proposed to address the flaw in ELECTRE-I and create a ranking of alternatives. A AHP-based

ELECTRE-I to optimal design approach is proposed [200]. This study shows that AHP-based

ELECTRE-I models may react effectively when competing criteria are present, and they are

particularly useful for making decisions that call for widespread agreement.

This study’s methodology is divided into the following eight steps:

Step 1:Normalized decision matrix
The normalization of the assessment matrix is the process of converting various scales and

units across several criteria into common measurable units to enable comparisons across the

criteria. To achieve this, a variety of normalized processes is employed to construct an element

ri j of the normalizing evaluation matrix R if fi j is the evaluation matrix R of alternative j under

evaluation criterion i.

ri j =
ai j√

∑m
j=1 a2

i j

i = 1,2, · · · ,n; j = 1,2, · · · ,m (2.29)

Step 2: Weighted normalized decision matrix (Vi j)

To produce the weighted normalized decision matrix, multiply the normalized matrix ri j with

its associated weight wi.

Vi j = wi ∗ ri j i = 1,2,3, · · · ,n, j = 1,2,3, · · · ,m. (2.30)

where ∑n
i wi = 1n = 1

Step 3: Ascertainment of concordance (Cpq) and discordance (Dpq) sets
Let Ai = {p,q,r, · · ·} indicates a finite set of attributes. In the following formulation, the at-

tribute sets are divided into two different sets: Cpq and Dpq. If the following criteria are satis-

fied, the concordance set is used to describe the dominance query. After complimenting Cpq,

get a set of discordance intervals (Dpq):

Cpq = { j|ap j ≥ aq j}, Dpq = { j|ap j ≤ aq j}= { j−Cpq} (2.31)

Step 4: Concordance set matrix
The concordance interval matrix (Cpq) between Ap and Aq can be estimated based on the deci-

sion maker’s preference for attributes. The concordance index is established by the equation,
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Cpq = ∑
j=Cpq

Wj (2.32)

Step 5: Discordance interval matrix
The discordance index (Dpq) can be interpreted as the existence of discontent in the choice of

the scheme ‘p’ as opposed to ‘q’. In more detail, the involves

Dpq =

max
j∈Dpq

|Vp j −Vq j |
max
j∈m,n

|Vm j −Vn j | (2.33)

where Dpq represents the discordance index and m, n is used to compute the weighted normal-

ized value among all target attributes.

Step 6: Concordance interval matrix
Below is the concordance index matrix for satisfaction measurement:

c̄ =
m

∑
p=1

m

∑
q=1

c(p,q)
m(m−1)

(2.34)

Hence, c̄ is the critical value which is evaluated by the average dominance index. Thus, boolean

matrix (F) is

F =

⎧⎨
⎩ f (p,q) = 1 if c(p,q)≥ c̄

f (p,q) = 0 if c(p,q)< c̄
(2.35)

Step 7: Discordance interval matrix

d̄ =
m

∑
p=1

m

∑
q=1

d(p,q)
m(m−1)

(2.36)

Based on the discordance index mentioned above, the discordance index matrix (E) is given by

E =

⎧⎨
⎩e(p,q) = 1 if d(p,q)≤ d̄

e(p,q) = 0 if d(p,q)> d̄
(2.37)

Step 8: Net superior and inferior values
The net superior (c̄p) is the sum together the number of competitive superiority for all attributes.

cp =
n

∑
q=1

C(p,q)−
n

∑
q=1

C(q, p) (2.38)
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On the contrary, the inferior values (d̄p) are used to determine the number of inferiority ranking

the attributes.

dp =
n

∑
q=1

D(p,q)−
n

∑
q=1

D(q, p) (2.39)
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Table 2.5: Statistics of the criteria.

Category Criteria Mean SD Variance

O
pe

ra
tio

na
lS

er
vi

ce

Total vehicles 70.46 24.72 610.92

Scheduled vehicles 80.41 27.10 734.33

Operated vehicles 55.75 21.02 441.88

Off-road vehicles 10.25 6.13 37.58

Scheduled trips 80402.75 33344.19 1111834768

Operating trips 69571.79 28248.91 798001060.39

Extra trips 936.17 922.94 851826.34

Curtailed trips 13632.75 8242.58 67940444.46

Total no. of employees 272.29 116.97 70.46

No. of routes 42.89 14.08 198.34

Routes distance 9064.31 2966.59 8800646.88

Se
rv

ic
e

Q
ua

lit
y

Rate of break down 0.20 0.15 0.15

Rate of accident 0.05 0.03 0.00

Departure time 98.40 4.06 16.48

Arrival time 99.23 2.30 5.28

Fleet utilization 79.06 7.40 54.72

Vehicle utilization 391.87 46.39 2151.81

Tyre efficiency 91860.48 22437.66 503448490.20

Pa
ss

en
ge

r
Se

rv
ic

e

Number of passenger 59.38 28.03 785.42

Passenger km occupied 3.90 1.50 2.26

Description of km 104.57 39.51 1561.01

Load factor 76.08 4.99 24.90

C
os

tE
ff

ec
ts

Income per seat per km (in lakh) 66.77 9.26 9.26

Total income per km 3299.40 355.74 126552.40

Operating income (in lakh) 3447.68 1483.43 2200561.01

Operating income per km 3254.65 349.20 121941.96

Income per vehicle per day 12824.60 2869.61 8234687.30

Total expenditure per km 3989.21 438.97 192691.50

Profit/ loss per km 689.77 400.46 160367.04

Diesel consumption km per liter 5.04 0.30 0.09

Oil consumption top up km per

liter

0.62 0.21 0.05

Engine oil consumption per

thousand km

12824.60 2869.62 8234687.30
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2.5 Data

The study’s demonstration focused on transportation system management, which is visually

depicted in figure 2.1. The illustration provides a thorough structure for screening vital criteria,

establishing weights for assessment criteria, and subsequent stages for conducting a compar-

ative analysis using three distinct methods: TOPSIS, VIKOR, and ELECTRE. The study is

employed data from 52 RSRTC bus depots during the 2017-18 fiscal year, encompassing sta-

tistical analyses, including the computation of means, standard deviations (SD) and variance

in table 2.5. Further, steps involved in implementing the MCDM process are elucidated in the

following subsection:

Table 2.6: List of accepted criteria by FDM analysis .

Category Criteria Average Fuzzy Defuzzification
Weights
(a j,b j,c j) (Mj)

C1: Operational Service

C11: Operated vehicles (0.7,0.95,1) 0.883

C12: Operating trips (0,0,0.3) 0.91

C13: Total no. of employees (0.7,0.97,1) 0.891

C14: Routes distance (0.5,0.81,1) 0.772

C2: Service Quality

C21: Punctuality (0.5,0.87,1) 0.789

C22: Fleet utilization (0.5,0.89,1) 0.797

C23: Vehicle utilization (0.7,0.97,1) 0.891

C24: Rate of break down (0.3,0.69,1) 0.662

C3: Passenger Service

C31: Number of passengers (0.7,0.95,1) 0.883

C32: Passenger km occupied (0.7,0.95,1) 0.883

C33: Load factor (0.7,0.95,1) 0.883

C4: Cost Effects

C41: Total income per km (0.3,0.63,1) 0.643

C42: Operating income per km (0.3,0.73,1) 0.677

C43: Total expenditure per km (0.5,0.87,1) 0.789

2.5.1 Resuts and Discussion

Phase1: Identification and Classification of Criteria Using FDM Technique
The existing literature and available data revealed 29 criteria pertinent to assessing per-

formance in the public transport sector. The FDM technique is applied to address potential

ambiguities in determining the crucial criteria particularly due to the extensive range of criteria

available. This involved the creation of a questionnaire designed and developed to solicit ex-

pert opinions. The experts chosen for the analysis have at least five years of experience in their

respective fields. In order to ensure a well-rounded perspective, five experts from academia,
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renowned for their significant influence on policy decision-making, are included. The col-

lective responses from all experts’ questionnaires are combined to formulate comprehensive

judgments. The experts are tasked to rate the influence of criteria on performance using a lin-

guistic scale ranging from 0 to 1. A rating of 1 signified a substantial impact on performance,

while a rating of 0 denoted a minimal impact. The judgments of experts are captured using a

scale shown in table 2.2.

Following the process of defuzzification and filtering, table 2.6 showcases the precise nu-

merical values that represent the consolidated judgments of the experts. A threshold value of r

= 0.60 is taken based on prior studies and expert consultation to determine whether a given cri-

teria should be included or excluded. The criteria having a threshold value < 0.60 are accepted

(A); otherwise, they are rejected from the list. 14 vital criteria are accepted, while 15 criteria are

not accepted. As a result, the experts collectively ranked “total no. of employees” and “vehicle

utilization” as the most vital criteria of operational service and service quality. Conversely,

criteria “income per seat per km (in lakh)”, “scheduled vehicles” and “no. of routes” failed to

reach the threshold level. “curtailed trips” and “profit/ loss per km” emerged as the least rele-

vant criteria. Then, the process led to the exclusion of certain significant criteria typically used

to assess the quality of public transportation services, including accident rates, total vehicles,

scheduled trips, and distance covered. These findings suggest that preferences and rankings of

quality criteria may vary across different regional contexts and evolve over time, influenced by

the expansion of transportation services and the growing impact of new modes.

Phase 2: FAHP Computations for Priority Weights
The study listed the most significant criteria for assessing the performance of bus depots.

The decision hierarchy structure for the process of choosing criteria encompasses three levels,

as shown in figure 2.2. The first level’s primary objective is to rank the depots based on perfor-

mance scores. The second level involves the categorization of criteria into four distinct groups,

while the third level focuses on assigning significant weights to these categories and criteria.

To ascertain the relative weights of the main categories and their respective criteria, an FAHP is

employed. Expert responses from a panel of five members are collected using Saaty’s 1–9 scale

and utilized for pair-wise comparisons within each criterion. These comparisons are carried out

using equation (2.5).

The resulting fuzzy comparison judgments for all categories and criteria pertaining to the

ultimate objective are detailed in table 2.7. These values are computed using the geometric

mean of the evaluation findings. Subsequently, a pair-wise comparison matrix is generated,

forming the basis for criteria weight determination. In order to verify the accuracy of the

priority rankings within the pair-wise comparison matrix, consistency indices and ratios are

calculated. A decision-making group validated the weights at the end of this stage. Table 2.8
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derives the criteria’s relative weights, consistency index, and consistency ratio.

Fig. 2.2: Decision hierarchy of criteria.
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Table 2.7: Fuzzy pairwise comparison matrix corresponding to the criteria.

λmax = 4.18, CR=0.069

Operational

Service

Service Quality Passenger Ser-

vice

Cost Effects Local

Weight

Operational Service (1.00,1.00,1.00) (2.00,2.00,2.00) (2.00,2.91,4.00) (2.00,3.87,7.00) 0.501

Service Quality (0.25,0.34,0.50) (0.50,0.59,1) (1.00,1.00,1.00) (0.33,1.00,3.00) 0.143

Passenger Service (0.50,0.50,0.50) (1.00,1.00,1.00) (1.00,1.68,2.00) (2.00,2.21,3.00) 0.242

Cost Effects (0.14,0.26,0.50) (0.33,0.45,0.50) (0.33,1.00,3.00) (1.00,1.00,1.00) 0.113

Fuzzy pairwise comparison matrix and relative local weights corresponding Operational Service
λmax = 4.18, CR=0.093

Operated vehi-

cles

Operating trips Total no. of

employees

Routes Dis-

tance

Local

Weight

Operated vehicles (1.00,1.00,1.00) (0.50,1.73,3.00) (2.00,2.91,9.00) (0.33,1.41,3.00) 0.361

Operating trips (0.14,0.28,2.00) (1.00,1.00,1.00) (2.00,2.21,3.00) (0.25,1.46,3.00) 0.303

Total no. of employ-

ees

(0.11,0.28,0.50) (0.33,0.37,0.50) (1.00,1.00,1.00) (0.33,0.33,0.33) 0.078

Routes Distance (0.14,0.29,2.00) (0.14,0.27,1.00) (2.00,2.21,3.00) (1.00,1.00,1.00) 0.258

Fuzzy pairwise comparison matrix and relative local weights corresponding Service Quality
λmax = 4.18, CR=0.083

Punctuality Vehicle utiliza-

tion

Fleet utilization Rate of break

down

Local

Weight

Punctuality (1.00,1.00,1.00) (2.00,3.31,5.00) (2.00,2.21,3.00) (0.50,0.71,2.00) 0.367

Vehicle utilization (0.20,0.30,0.50) (1.00,1.00,1.00) (0.50,1.19,2.00) (0.33,0.45,0.50) 0.119

Fleet utilization (0.33,0.45,0.50) (0.50,0.84,2.00) (1.00,1.00,1.00) (0.33,0.58,2.00) 0.179

Rate of break down (0.50,1.41,2.00) (2.00,2.21,3.00) (0.50,1.73,3.00) (1.00,1.00,1.00) 0.335

Fuzzy pairwise comparison matrix and relative local weights corresponding Passenger Service
λmax = 4.18, CR=0.082

Passenger km

Occupied

Number of pas-

sengers

Load factor Local

Weight

Passenger km Occu-

pied

(1.00,1.00,1.00) (0.50,0.84,1.00) (1.00,1.19,2.00) 0.337

Number of passengers (1.00,1.19,2.00) (1.00,1.00,1.00) (1.00,1.68,2.00) 0.444

Load factor (0.50,0.84,1.00) (0.50,0.59,1.00) (1.00,1.00,1.00) 0.219

Fuzzy pairwise comparison matrix and relative local weights corresponding Cost Effects
λmax = 4.18, CR=0.092

Total income

per km

Total expendi-

ture per km

Operating in-

come per km

Local

Weight

Total income per km (1.00,1.00,1.00) (0.33,0.76,1.00) (0.50,0.84,1.00) 0.244

Total expenditure per

km

(1.00,1.32,3.00) (1.00,1.00,1.00) (1.00,1.00,1.00) 0.388

Operating income per

km

(1.00,1.19,2.00) (1.00,1.00,1.00) (1.00,1.00,1.00) 0.368
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The values of random index (RIk) from table 2.4 vary for different numbers of criteria.

RIk is calculated to be 0.58 for three criteria. Similarly, the RIk is determined to be 0.89 for

four criteria. These values serve as reference points for assessing the consistency of pairwise

comparisons in the decision-making process.

Table 2.8: The calculation result of weights by FAHP.

Category Local Weight Criteria Local Weight Global Weight Rank
using FAHP using FAHP using FAHP Rank

Operational Service

0.501 Operated vehicles 0.361 0.181 1

Operating trips 0.303 0.152 2

Total no. of employees 0.078 0.039 10

Routes distance 0.258 0.129 3

Service Quality

0.143 Punctuality 0.367 0.053 6

Vehicle utilization 0.119 0.017 13

Fleet utilization 0.179 0.026 12

Rate of break down 0.335 0.048 7

Passenger Service

0.242 Passenger km occupied 0.337 0.082 5

Number of passengers 0.444 0.107 4

Load factor 0.219 0.053 6

Cost Effects

0.113 Total income per km 0.244 0.028 11

Total expenditure per km 0.388 0.044 8

Operating income per km 0.368 0.042 9

The result is presented in table 2.8, which shows that the “Operational Service” (C1) is

the highest weight among the category “Passenger Service” (C3) is ranked as the second most

important category. “Service Quality” and “Cost Effects” are ranked third and fourth, respec-

tively.

• Operational Service (C1)
‘Operated vehicles’ (C11) has the highest priority, followed by ‘Operating trips’ (C12), ‘Routes

distance’ (C14), and ‘Total no. of employees’ (C13).

• Service Quality (C2)
‘Punctuality’ (C21) has the highest priority, followed by ‘Rate of break down’ (C24), ‘Fleet

utilization’ (C23), and ‘Vehicle utilization’ (C22).

• Passenger Service (C3)
‘Number of passengers’ (C32) has the highest priority, followed by ‘Passenger km occupied’

(C31), and ‘Load factor’ (C33)
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• Cost Effects (C4)
‘Total expenditure per km’ (C42) has the highest priority, followed by ‘Operating income per

km’(C43), and ‘Total income per km’ (C41).

Phase 3: Overall Comparison of MCDM Methods for Performance Evaluation
Using FAHP technique, established the weights for all the screened criteria from FDM

method and subsequently conducted the ranking process. To comprehensively evaluate the

ranking of depots, employ three distinct MCDM methods, namely TOPSIS, VIKOR, and ELEC-

TRE, all of which are integral in the analysis of this study. The rankings of the depots, based

on their final scores obtained from these three MCDM algorithms, are provided in table 2.9.

• TOPSIS Results
The results obtained by TOPSIS are tabulated in table 2.9. Sikar is the best-performing depot,

with the highest performance score of 0.78, while Karauli is the worst-performing depot, with

the smallest performance score of 0.02.

• VIKOR Results
Table 2.9 illustrates the assigned rank for the depots based on the VIKOR Index values. In

VIKOR, Sikar is the best-performing depot, with a performance value of 0.047, while Karauli

is the worst-performing depot, with a 0.995 performance value. As an illustration, Sikar is

calculated at the top spot with aggregate depots, and the value of the index is 0.954 (1-0.047),

which is the closest value to the ideal solution 1.

• ELECTRE Results
The ranking of the RSRTC bus depots is determined using the inferior and superior values of

ELECTRE. The obtained rankings are tabulated in table 2.9. Ranking by ELECTRE, Alwar is

the best-performing depot (33.12), while Jaisalmer is the worst-performing depot (-40.74) out

of 52 depots according to ELECTRE.

A decision matrix serves as the beginning point for evaluating the rank of the depots. Using the

MCDM technique, the efficient depot is evaluated in this study, considering various competing

criteria. The results evinced that Sikar is the best-performing depot, while Jaisalmer and Karauli

are the worst-performing depot in all methods. Abu Road and Dungarpur have the same rank in

all three methods. These three methods are ranked in a comparable order, though not identically.

TOPSIS and VIKOR produced 97.6% similar rankings of the depots. VIKOR and ELECTRE

produced 95.74% similar rankings of the depots.
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Table 2.9: Scores and ranking of each method for depot.

Methods TOPSIS VIKOR ELECTRE Methods TOPSIS VIKOR ELECTRE
Depots Score Rank Score Rank Score Rank Depots Score Rank Score Rank Score Rank

Abu Road 0.09 46 0.68 46 -25.98 46 Jalore 0.08 40 0.53 37 -11.24 36

Ajaymeru 0.21 7 0.21 6 17.62 11 Jhalawar 0.18 15 0.31 15 8.19 22

Ajmer 0.6 5 0.19 5 21.78 6 Jhunjhunu 0.25 8 0.28 14 21.89 5

Alwar 0.31 3 0.08 2 33.12 1 Jodhpur 0.15 12 0.27 10 13.69 12

Anoopgarh 0.08 37 0.58 38 -6.08 35 Karauli 0.02 52 0.96 52 -33.05 49

Banswara 0.1 35 0.48 29 -2.88 28 Khetri 0.08 47 0.69 47 -16.85 42

Baran 0.15 26 0.48 28 -4.08 33 Kota 0.14 20 0.33 18 7.68 20

Barmer 0.14 33 0.58 39 -7.66 37 Kotputli 0.21 29 0.52 31 -1.87 31

Beawar 0.22 25 0.56 36 3.75 24 Lohagarh 0.17 14 0.32 16 15.5 13

Bharatpur 0.18 16 0.33 17 18.7 8 Matsya Nagar 0.2 18 0.38 20 11.33 15

Bhilwara 0.13 17 0.3 13 10.65 14 Nagaur 0.1 30 0.47 27 -6.6 32

Bikaner 0.13 10 0.28 12 10.15 16 Pali 0.08 44 0.68 45 -18.43 43

Bundi 0.15 31 0.45 26 -1.45 27 Phalaudi 0.06 42 0.66 42 -18.38 45

Chittorgarh 0.17 13 0.22 7 14.79 10 Partapgarh 0.04 51 0.91 50 -40.07 51

Churu 0.14 41 0.55 40 -12.81 38 Rajasamand 0.06 45 0.68 44 -18.72 44

Dausa 0.14 36 0.54 32 -7.27 41 Sardaarshahar 0.14 24 0.5 30 -4.41 34

Deluxe 0.09 32 0.47 25 2.24 25 Sawaimodhopur 0.06 48 0.81 48 -31.55 50

Dhaulpur 0.15 27 0.47 24 1.4 30 Shapur 0.16 39 0.61 41 -16.25 40

Didwana 0.1 38 0.54 33 -11.25 39 Sikar 0.78 1 0.05 1 30.34 3

Dungarpur 0.17 23 0.43 23 3.54 23 Sirohi 0.08 43 0.68 43 -17.04 47

Falna 0.05 49 0.79 49 -26.75 48 Srimadhopur 0.22 19 0.38 22 9.42 17

Ganga Nagar 0.25 11 0.29 11 9.36 19 Tijara 0.19 28 0.55 34 0.9 29

Hanumangarh 0.3 2 0.16 4 21.46 7 Tonk 0.16 21 0.36 19 10.6 18

Hindaun 0.2 22 0.4 21 9.42 21 Udaipur 0.13 9 0.21 9 21.37 4

Jaipur 0.13 6 0.27 8 17.77 9 Vaishali Nagar 0.19 4 0.13 3 31.5 2

Jaisalmer 0.01 50 0.91 51 -40.74 52 Vidhyadhar Nagar 0.23 34 0.49 35 3.24 26

2.6 Sensitivity Analysis

According to Chang et al. (2007) [201], minor relative weight variations may lead to significant

variations in the overall ranking. Although such weights frequently depend totally on subjective

assessments, looking into the ranking’s consistency across different criteria is important. FAHP

technique is utilized to derive the category, and criteria weights are examined in determining

the dominance of each scenario. As perceptions of decision-makers vary, this method can be

validated using sensitivity analysis. To highlight the stability of ranking, sensitivity analysis

is essential. In this regard, eight different cases are analyzed by changing the weights of the

main criteria. Initially, the weight value is modified by increasing or decreasing the criterion

weight by 5%, 10%, 20%, or 50%, respectively. When a criterion weight increases or decreases

by 5%, 10%, 20%, or 50%, the remaining criteria must be proportionally adjusted to keep the

criterion weight at 1. Considering these sets of weights, MCDM methods TOPSIS, VIKOR,

and ELECTRE are used to examine each criterion.
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Table 2.10: Sensitivity analysis of criteria weights.

Change Criterion
Weights

TOPSIS VIKOR ELECTRE

0 2 >2 0 2 >2 0 2 >2

0.05 10 2 3 0 5 10 3 2 10

-0.05 8 2 5 0 6 9 0 2 13

0.1 7 2 6 0 0 15 2 2 11

-0.1 8 1 6 0 2 13 0 0 15

0.2 7 1 6 0 0 15 1 0 14

-0.2 7 1 6 0 0 15 0 0 15

0.5 6 2 7 0 0 15 0 0 15

-0.5 6 3 6 0 0 15 0 0 15

This analysis helps in checking the consistency of results regarding whether the model or

system works in the most favorable or unfavorable conditions. Sensitivity analysis is used in

this study to see how the ranking of depots varied as the weights of the criteria are changed. The

sensitivity coefficient indicated that increasing or decreasing the criterion weight by 5%, 10%,

20%, or 50% resulted in single, double, or multiple changes in the rankings of alternatives. The

sensitivity coefficient is equal to 0 if the rank is the same as the original rank. When the rank

of one depot increased, the rank of another fell, resulting in a sensitivity coefficient of 2.

The number of criteria that affected the rankings after adjusting the weight of one criterion is

displayed in table 2.10. The results demonstrated that, when weights are increased (decreased)

by 5%, the ranking of depots has some impact on the ranking with the VIKOR and ELECTRE

techniques but no impact on TOPSIS. When the criterion weights are increased or decreased by

50%, the ranking of the TOPSIS technique is the least affected, whereas ELECTRE showed the

most significant change (46% and 69% change) and VIKOR exhibited a change (39% and 72%

change). Only the TOPSIS ranking results remained nearly unchanged when the weight varied

drastically (50%), whereas the remaining two methods are altered by roughly 39% to 72%. In

VIKOR, the top-valued weights are much more affected when weights are decreased compared

to when they are increased. For example, when the weight of the operated vehicles (C11) cri-

terion is increased by 10%, observed 21 places of ranking changes, but when it is decreased

by 10%, observed almost twice as many ranking changes, i.e., 39 places. On the other hand,

in the ELECTRE method, the operated vehicles (C11) criterion ranking is not affected, even

though it is affected in all other models. The change in ranking is expected to be high, but this

is not the case for ELECTRE. “operational income per km” (C43) is the least affected criterion

in all the models. Among the considered scenarios, observed extreme deviations in punctuality

(C21), vehicle utilization (C23), fleet utilization (C22), rate of breakdown (C24), passenger-km

occupied (C32), number of passengers (C31), and load factor (C32). This through sensitivity

analysis is achieved, which can be based on scenarios that represent potential future develop-

ments or various viewpoints on the relative relevance of the criteria.
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2.7 Conclusions

Promoting sustainable transportation is a cornerstone of society’s progress, contributing to eco-

nomic growth and improved social well-being. With a surge in personal vehicle usage, en-

couraging individuals to shift towards public transit is pivotal. However, apprehensions about

service quality remain a concern for potential users, underscoring the need for public transit

providers to enhance their offerings. Effective selection of evaluation criteria plays a criti-

cal role in minimizing depot corrosion and failures. This chapter adds to the existing body

of knowledge by introducing a novel hybrid analytical approach that integrates fuzzy Delphi,

fuzzy AHP, and TOPSIS-VIKOR-ELECTRE methods. Leveraging fuzzy set theory to address

the inherent ambiguity associated with human subjectivity in assessing crucial criteria, resulting

in more robust and reliable outcomes. Drawing from an extensive literature review, identified

29 distinct criteria, which are subsequently grouped into four categories. Through the collabo-

rative effort of experts, the FDM narrowed down this list to 14 criteria deemed pivotal for the

assessment process. Following this, the FAHP is employed to ascertain the relative significance

of both the four categories and the 14 selected criteria.

The outcomes of this evaluation shed light on the prioritization of these categories and crite-

ria. The weights derived from the FAHP process are subsequently utilized in TOPSIS, VIKOR,

and ELECTRE for ranking the 52 RSRTC depots for the year 2017-18. These MCDM tech-

niques yielded substantial results, bridging gaps in previous research within the public transport

sector, particularly in the context of criteria selection. The proposed models stand out for their

simplicity, convenience, precision, and efficiency, offering valuable support to decision-makers

in their criterion selection process. This innovative hybrid MCDM method exhibits versatile

applicability to address similar criterion selection challenges in the transportation industry and

other decision-making problems.





Chapter 3

Assessing the Efficiency of Bus Transport Sector Us-
ing Data Envelopment Analysis

3.1 Introduction

Rajasthan state road transport corporation (RSRTC) plays a crucial role in connecting cities,

towns, and villages via intercity public bus transportation service. However, despite the rising

travel demand due to rapid urbanization and motorization, passenger traffic of RSRTC de-

creased by an average rate of approximately 0.157 million every year for the period 2007-17.

The decline in the use of public transport is attributed to several issues, including unorganized

and inconvenient bus services, which are often characterized by inefficiency and subpar service

quality. These problems plague the system, pushing many commuters to opt for alternative

means of transportation such as private vehicles or app-based taxi services. This shift demon-

strates a lack of confidence in public transport and highlights the urgent need for comprehensive

reforms and strategic planning within this sector [202]. Compounding this problem is that the

RSRTC operates at a loss, and the challenges posed by inefficient depot operations escalate its

financial difficulties. Such issues lead to rising costs, which affect sustainability across various

economic tiers. This situation underscores the urgent need to thoroughly review and optimize

operational strategies. The recommendation based on the findings of the study would also help

the government to bridge the gap between actual performance and feasible or achievable per-

formance, and to frame suitable policies for the development of the passenger road transport

sector in Rajasthan.

In this chapter, a sustainable benchmarking analysis is utilized to enhance the efficiency

of RSRTC with the ultimate aim of elevating organizational performance and ensuring cost-

effective services. There is no doubt that benchmarking analysis, which involves an analysis of

1This work has appeared in Goyal, S., Agarwal, S., Mathur, T., and Mathur, N., 2021. Assessing the
Radial Efficiency Performance of Bus Transport Sector Using Data Envelopment Analysis. InHandbook
of Machine Learning for Computational Optimization, 2021, 2, pp.71-87. CRC Press.
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the sources and determinants of operational efficiency, would be a valuable aid to policy formu-

lators in designing appropriate policies aiming to improve the overall health and competitive-

ness of RSRTC. Performance of the overall system can be increased by correctly identifying

subunit inefficiencies and then improving subunit performance with changes consistent with

system structures, goals, and constraints. In fact, internal benchmarking would help to identify

the criterion for taking corrective actions based on certain priority considerations.

Turning attention to the production frontier, there are two distinct methodologies: para-

metric and non-parametric [18]. Parametric methods require a specific functional form for the

relationship between criteria, whereas no such assumptions are required in a functional form

for non-parametric methods. Non-parametric methods are valuable in a range of applications,

including assessing the performance of non-profit organizations such as public transport sec-

tor. Data envelopment analysis (DEA) is a non-parametric linear programming-based empirical

approach for estimating the efficiency of a group of similar decison-making units (DMUs). Ef-

ficiency analysis within the DEA framework relied on traditional models such as CCR [15]

and BCC [22]. While these models offered valuable insights into efficiency analysis, they

fundamentally distinguished efficient DMUs from their inefficient counterparts. A DMU is

considered fully efficient when its efficiency score equals one. Some may exhibit efficiency, a

condition in which they are efficient with a reference point but are not fully efficient because of

the presence of slacks in their input and output. It is important to consider other DEA models

in order to address specific challenges and provide nuanced perspectives.

Inefficiencies, represented by deviations from optimal resource use, can significantly affect

the determination of the efficiency scores. Basic models frequently present zero values for sev-

eral multipliers, suggesting that certain factors such as inputs or outputs are not fully considered

when calculating efficiency scores. Additionally, significant discrepancies can arise in the in-

put and output weighting of various items, where certain components might have exceptionally

high or low values. Effectively, this can lead to oversight of some inputs or outputs, which

is often untenable in practical applications. Addressing these issues, NSM model introduced

by Agarwal et al. (2011) [203] is a noteworthy development in efficiency assessment models.

NSM directly integrates input and output slack for efficiency assessment. This approach offers

a more accurate depiction of the performance. NSM maintains the key properties of the radial

DEA model. Notably, the dual form of NSM indicates that all multipliers are positive. This

ensures that every input and output has a substantial impact on the performance evaluation of

DMUs. Consequently, the NSM delivers a holistic assessment of efficiency, considering the

influence of slack on the overall performance of DMUs. The NSM efficiency score does not

exceed the CCR efficiency score. In addition, if a DMU is NSM-efficient, then it is CCR-

efficient. Thereby presenting a more comprehensive assessment tool for managers seeking to

improve their overall technical efficiency (OTE), with the direct impact of input slack on the
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efficiency of DMUs. The NSM-DEA model is carried out using MATLAB. These results are

cross-checked using Python.

This chapter is organized into four sections. Section 3.2 provides a comprehensive overview

of the existing literature and studies on the evaluation of bus transport efficiency. Section 3.3

presents the nuances and specifics of the NSM for efficiency assessment by DEA, including

data, classification of depots, input and output criteria, and input targets for inefficient depots

of the RSRTC. The chapter culminates in the last section, 3.4, summarizing the key findings

and insights of the study.

3.2 Review of Research and Development Trends in Bus Trans-
port Sector

This section reviews some DEA-based studies on the transport sector worldwide. This review is

bifurcated into international and national contexts, providing an overview of the advancements

and key findings in the domain.

3.2.1 International Status

The ideal expression of efficiency measures the value of the produced outputs to consumers or

society, suggesting that it is a comprehensive and normative tool for evaluation [204, 205]. Sev-

eral seminal works have paved the way for contemporary research in the domain of efficiency

in the transportation sector. In 1996, Kerstens [206] took a deep dive into the technical effi-

ciency of French urban transit companies, employing DEA methodologies and Tobit regression

and illuminating the critical determinants of efficiency, ranging from vehicle age to population

density. Preceding this, Viton (1997) [207] broke new ground by offering a comprehensive

production frontier analysis for multimode bus transit in the USA, expanding the discourse to

encompass both motor-bus and demand-responsive services, thereby broadening the scope of

efficiency measurement in transit systems. Similarly, Cowie et al. (1999) [208] addressed scale

and technical efficiencies using DEA and the Mann-Whitney U-Test of the British bus indus-

try. Their analysis pinpointed that while there is a surge in the number of operating companies

immediately after deregulation, efficiencies varied significantly across regions due to differ-

ences in competition and market density. They suggested that privately owned companies are

more technically efficient than publicly owned companies because of their significantly higher

organizational efficiency. Husain et al. (2000) [209] analyzed the efficiency of 46 service

units within Malaysia’s road transport department (RTD) using the CCR model. Their findings

highlighted notable inefficiencies in several units, particularly concerning the overutilization of
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labor and associated elevated costs. They recommended reductions in labor and costs for these

units to improve operational efficiency. The study emphasized the significance of consistent

efficiency assessments in the public sector for optimal resource allocation and enhanced ser-

vice delivery. Nolan et al. (2002) [210] developed a method for evaluating the efficiency of

public organizations in meeting the social objectives specified by the intermodal surface trans-

portation efficiency act (ISTEA), focusing on urban transit agencies in the USA. The research

pointed out the challenges of evaluating and measuring social policy objectives and emphasized

the need for appropriate accountability measures and data collection procedures in regulatory

public policies. Karlaftis (2003, 2004) [211, 212] is a pioneer in transportation efficiency re-

search. Studies, focusing on USA transit systems, utilized traditional DEA models with VRS

assumptions, dividing 256 bus transits into six groups, and assessing their technical efficiency

and effectiveness. Odeck (2006) [213] evaluated the impact of inputs on the relative efficiency

of bus operators in the Norwegian bus industry. This study provided insights into the poten-

tial for input saving in the sector, suggesting a potential of approximately 21%, and found no

significant differences in efficiency scores between urban and rural bus operators and no per-

formance differences with respect to ownership.

Karlaftis (2009) [214] expanded the research to European transit systems, assessing the im-

pact of ownership and competition. Garcia (2009) [215] proposed a comparative technical and

scale efficiency analysis of public bus transport in Spain using DEA. Use of principal com-

ponent analysis (PCA) to reduce potential measures of supply-and demand-side and quality

outputs. Tobit regression analysis showed negative efficiency levels in relation to population

density and peak-to-base ratio. No relationship is found between efficiency levels and form

of ownership (public versus private). Barnum et al. (2011) [216] investigated the complex-

ities of public transit systems within a metropolitan area in the USA Using the BCC model,

they meticulously evaluated the technical efficiency (TE) of various transit types from buses

to trams. Their research revealed specific regions in which resource utilization could be op-

timized. More than just a diagnostic tool, their study provided actionable insights into buses

to trams. They recommended a strategic method for redistributing resources, ensuring that,

while costs are reduced, the overall quality and quantity of transit services remain consistent.

Baležentis & Baležentis (2011) [217] employed a combination of multi-objective optimization

by ratio analysis (MULTIMOORA) and DEA, both of which are well-recognized for the effi-

cient assessment of passenger and freight transport. The DEA method is used to evaluate the

technical and scale efficiency of the Lithuanian transport sector, providing estimates of both ac-

tual and potential efficiency. In a comprehensive study, Karlaftis and Tsamboulas (2012) [218]

evaluated the efficiency of public bus systems using multiple methodologies, including DEA,

SFA, and Neural Networks (NN), with a keen interest in the specification sensitivity of the

findings. Carvalho et al. (2015) [219] employed an optimized super-efficiency DEA model to
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evaluate the performance of Brazilian municipalities over a six-year span. Their analysis high-

lighted divergent strategies among cities: while Curitiba and Betim prioritized effectiveness,

São Bernardo and Salvador leaned towards efficiency. The study underscored that, although

the methodology is straightforward, the choice of inputs and outputs profoundly impacted the

outcomes.

Wu et al. (2016) [220] suggested that DEA is a more efficient technique than SFA for paral-

lel systems, which is passenger and freight transportation of China’s 30 provincial-level regions

for year 2012. Passenger transportation is relatively more efficient than freight transportation.

Another contribution is the exploration of alternative weight choices for the efficiency eval-

uation of the transportation system to enhance the accuracy and applicability of the findings.

Holmgren (2018) [221] proposed a model for evaluating the efficiency of public transport op-

erations and compared its results with those obtained from competing models estimated using

the same data from 27 Swedish counties from 1986 to 2015. The study emphasized the im-

portance of utilizing both demand-oriented measures (e.g., the number of trips or passenger

kilometers) and supply-oriented measures (e.g., vehicle kilometers or seat kilometers). These

dual measurements effectively captured not only the quantity consumed, but also the inherent

quality of the consumed quantity. A key takeaway from this research is that smaller models

that rely solely on one output measure might inadvertently underestimate the true efficiency

of the public transport sector. Chen et al. (2019) [222] introduced a novel methodology by

integrated cumulative opportunity measure and DEA method. This approach is developed to

evaluate the accessibility-based service effectiveness (ABSEV) of bus transit systems. Their

study specifically analyzed urban bus transit in Edmonton, Canada, focusing on the dual objec-

tives of enhancing transportation accessibility and addressing concerns related to social equity.

This study offered valuable insights for urban transportation planners and policymakers aiming

to strike a balance between service efficiency and equitable access. Karim et al. (2019) [205]

analyzed the efficiency and effectiveness of bus services across six public bus firms in various

Moroccan cities in 2013. Using the CRS DEA model, they identified potential areas for per-

formance enhancement. To account for external factors beyond the control of these transport

companies, which could impact the efficiency scores, they further employed Tobit regression

in their study.

Li et al. (2020) [223] proposed an approach for road transportation, considering carbon

emission intensity and fairness, leading to increased allocation efficiency. The proposed ap-

proach is applied to the empirical study of emission quota allocation in the road transportation

sector of 30 provinces in China, providing practical findings and implications for achieving

emission reduction targets and improving the efficiency of industrial development. Shen et

al. (2020) [224] proposed a benchmarking approach to assess sustainable road transport among

the 28 EU countries, considering both desirable achievements and undesirable costs. This study
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underscored the importance of this approach to sustainable development and emphasized that

performing well in only one aspect is insufficient. Sweden is identified as the best-performing

country for both factors.

3.2.2 National Status

After delving into the numerous global studies on efficiency, it’s pivotal to shift the focus to-

wards India. A limited number of researchers have delved into this area, pointing to a significant

gap in the existing literature. Using the DEA model, Ramanathan (1999) [225] analyzed the

efficiency of 29 state transport undertakings (STUs) from 1993 to 1994. The study found that

operators managed fuel efficiently but observed significant inefficiencies in fleet and staff us-

age. Regression analysis also indicated that older fleets and hilly operation areas negatively

impact efficiency. Jha and Singh (2001) [226] embarked on an exploration of technical effi-

ciency, with a spotlight on the cost-inefficiencies plaguing major Indian road transport enter-

prises. Their findings revealed pronounced discrepancies in cost inefficiency across STUs of

varying sizes. Notably, STUs of smaller to medium scale demonstrated heightened levels of

inefficiency compared to their larger counterparts. Moreover, th study offered invaluable per-

spectives on the operational efficiency of road transport entities. Such insights hold significant

potential for guiding policy frameworks, especially in considerations related to the consolida-

tion or segmentation of STUs. Karne et al. (2003) [202] examined the possibility of splitting

Maharashtra state road transport corporation (MSRTC) into a large organization and smaller

corporations to improve its financial recovery using CRS DEA model for the period 2000-

2002. This study emphasized the need for policymakers and managers of MSRTC to measure

and treat the problems facing MSRTC as an emergency. It identified falling load factors due to

competition from private bus and taxicab operators as one of the problems adversely affecting

the financial profitability of the MSRTC. Bhagavath (2006) [13] employed the BCC model to

analyze the technical efficiency of 44 STUs. This study revealed that only eight of these STUs

operated at the optimal scale efficiency (SE). One of the interesting findings of this study is

that STUs operating as companies are relatively more technically efficient than others, indicat-

ing a potential relationship between the organizational structure and efficiency levels of STUs.

Overall, the study highlighted the importance of using DEA to measure technical efficiency in

transportation and suggested avenues for further research to improve the measurement method-

ology. Badami and Haider (2007) [227] analyzed the financial and operational performance

of public bus transit services in Indian cities during the 1990s. Despite increasing fares and

declining ridership, it highlighted persistent losses in the public bus transit system. This study

contributes to the understanding of the challenges faced by Indian cities in maintaining and
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enhancing public transit services, particularly for the urban poor. This study suggested a disag-

gregated approach based on the needs and motivations of different groups in relation to public

transit, along with improved operating conditions and policies to address the challenge of pro-

viding financially viable and affordable public bus transit services.

Agarwal et al. (2010) [50] utilized an input-oriented basic DEA model, considering four

input variables (fleet size, total staff, fuel consumption, and accidents per lakh km) and three

output variables (bus utilization, passenger kilometers, and load factor), to evaluate the efficien-

cies of 35 STUs spanning the period from 2004 to 2008. Their findings indicated an average

efficiency of 83.26%. Intriguingly, even when inputs are reduced by 16.74% from their current

levels, there is no observed change in output. This study also identified 18 STUs as pure techni-

cal efficient, implying that they have no scope for further input reduction while maintaining the

same output level. The remaining 17 STUs are relatively inefficient. Furthermore, Nagadevara

et al. (2010) [228] introduced four inter-temporal variations in DEA efficiency across sub-

units of the 25 Karnataka state road transport corporation (KSRTC) from 2004 to 2009. Their

findings noted consistent efficiency in 11 depots throughout the five-year period. Notably, the

kolar depot experienced a significant decline in efficiency. Kumar (2011) [229] employed an

array of DEA models encompassing CCR, BCC, and Andersen and Petersen’s super-efficiency.

Computed various technical efficiency values for 31 individual SRTUs. Subsequently, a To-

bit regression analysis is conducted to delve into the variations in efficiency across different

SRTUs. A salient outcome of this study is the impact of various input and output factors on

efficiency. The results showcased that five SRTUs established the efficiency frontier, imply-

ing optimal operations. In contrast, the other 26 SRTUs are identified as inefficient, indicating

substantial room for input minimization. This study suggested that these SRTUs are squander

approximately a quarter of their resources in their production endeavors. A central takeaway

from this study is identifying the occupancy ratio as the pivotal determinant across all efficiency

metrics. Hanumappa et al. (2015) [230] applied DEA to measure both long-term and short-term

efficiencies of premium bus services operated by Bangalore metropolitan transport corporation

(BMTC) and focused explicitly on Volvo buses only, which may not provide a comprehensive

picture of the overall performance of BMTC’s entire bus fleet. They identified opportunities for

improvement at the bus depot and route level.

Venkatesh and Kushwaha (2017) [231] utilized a non-radial input-oriented DEA model to

measure technical efficiency, while mitigating the influence of slack on the efficiency score

of STUs. They offered a thorough insight into efficiency trends over the twelve-year span

from 2002 to 2013. A notable observation is declined in technical and labor efficiencies for

STUs during this period. This study also noted that larger STUs, in terms of fleet strength,

perform better than smaller STUs and suggested potential areas for further improvement, such

as examining the drivers of efficiency through regression analysis and computing efficiency at
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disaggregated levels, such as division, depot, or route. Venkatesh and Kushwaha (2018) [232]

addressed the need to study the efficiency levels of STUs, considering their operation under

high levels of government-imposed regulatory constraints. Investigated the minimum cost effi-

ciency using VRS assumption for both short and long runs in STUs. This study highlighted the

importance of obtaining efficiency in the short run, where some inputs are fixed, and as well as

in the long run, where all inputs are variable. Their findings revealed that through efficiency-

enhancing measures, STUs could potentially reduce costs by up to 9123.35 million dollars.

This study also indicated a trend of increasing reluctance to minimize costs over time. Addi-

tionally, they pinpoint that certain STUs function with an inadequately small fleet size in the

short term, leading to sub-optimal operations. On a related note, Saxena (2019) [233] explored

the technical, scale, and managerial efficiencies of Delhi transport corporations (DTC) inter-

state buses by utilizing the DEA technique and regression analysis. The study has data from

central institute of road transport (CIRT) publications, focused on 25 government-run transport

undertakings, and intentionally omitted private operators from the analysis. The findings indi-

cated that DTC ranks among the least efficient STUs, which showed a technical inefficiency

rate of 50.94% and operated under decreasing returns to scale. The evaluation contributed to

possible enhancements in the services provided by public transport. Gulati (2022) [234] made

significant advancements in recent studies on the efficiency of the public bus transit system in

India. This study intuitively incorporated the number of accidents as an undesirable output and

offered a more comprehensive assessment of system performance. The slack-based measure

(SBM) undesirable window analysis approach assessed the dynamic efficiency of 8 public bus

operators across major metropolitan cities in India. The findings present a reliable efficiency es-

timate for these public bus companies, which is invaluable for policymakers. By understanding

these efficiency performances, policymakers can devise effective strategies and interventions to

enhance both the technical and scale efficiency of bus companies in metropolitan cities. This

research contributed notably to the literature, filling a crucial gap and setting the stage for fur-

ther exploration in the domain of bus transport efficiency. Aneja et al. (2022) [235] aimed to

measure the efficiency of 20 major depots of Haryana roadways for the year 2017-2018 using

DEA and to determine the overall and depot-level efficiency of Haryana roadways. The study

used fleet size, total number of staff, and fuel consumption by buses as inputs and bus utiliza-

tion as output to assess the efficiency of the depots. The findings revealed that the five depots

(D1 Gurugram, D3 Chandigarh, D10 Bhiwani, D11 Sirsa, and D15 Delhi) are overall technical

efficient. The performance of the depots is not at par with the optimum level, with an overall

mean technical efficiency of 91%. Suggested that the depots can produce the same output level

by reducing 9% of inputs. Additionally, replacing old buses with new ones can improve fuel

efficiency, and capacity-building programs and training should be provided to workers to en-

hance performance.
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Despite the extensive literature review presented above, it is evident that the realm of public

bus transport efficiency studies, particularly in the Indian context, exhibits glaring oversight

concerning the Rajasthan public road transport sector. No study in the existing literature has

holistically approached or shed light on the intricacies of RSRTC depots’ efficiency. This

under-researched area represents a significant knowledge gap, particularly given Rajasthan’s

geographical vastness, demographic diversity, and unique transport challenges, which are dis-

tinctive from other Indian states.

Consequently, the principal aim of this research is not only to introduce this overlooked di-

mension but also to rigorously establish a benchmarking analysis model that critically assesses

the performance levels of RSRTC depots. This endeavor sought to gauge the overall efficiency

and compare region-wise efficiencies across various depots. Such a comprehensive approach

provides an unparalleled understanding of resource allocation, key determinants, and pivotal

factors that influence and shape operational efficiency within the RSRTC. By addressing this

research lacuna, the aim is to contribute a seminal work that enriches the academic discourse

and offers actionable insights for policymakers and government transport authorities.

3.3 Mathematical Description: NSM Model

Having discussed the merits of NSM in the context of addressing the limitations of the basic

CCR model, this section discusses the mathematical specifics underlying NSM. Through a

detailed exploration of its formulas and components, the intricate mechanics of the NSM model

became evident, offering a clearer understanding of its applications in efficiency assessment.

Each jth DMU ( j = 1,2, . . .d, . . . ,n) consumes m inputs to produce s outputs define by

xi j(i = 1,2, . . . ,m) and yr j(r = 1,2, . . . ,s) respectively. The underlying mathematical formula-

tion of the input-oriented NSM DEA model for DMUd is given below:
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Min ψ∗
d = ψd − 1

m+ s

[
m

∑
i=1

S−id
xid

+
s

∑
r=1

S+rd
yrd

]

subject to

n

∑
j=1

λ jyr j −S+rd = yrd ∀r = 1, · · · ,s
n

∑
j=1

λ jxi j +S−id = ψdxid ∀i = 1, · · · ,m
n

∑
j=1

λ j = 1 ∀ j = 1, · · · ,n

λ j ≥ 0 ∀ j = 1, · · · ,n
ψd is unrestricted in sign

S−id ≥ 0, S+rd ≥ 0.

(3.1)

where, ψ∗
d : Total input-oriented efficiency.

ψd: Reduction applied to all inputs of DMU to improve efficiency.
S+rd : The amount of deficiency for rth output.
S−id : The amount of excess resources used for ith input.
λ j : Intensity variables for dth DMU.

In the objective function, the term (S+rd/yrd) denotes the inefficiency in the dth DMU due

to the output shortfall in the rth output. Similarly, (S−id/xid) defines the inefficiency owing to the

existence of slack in the ith input of the dth DMU. Therefore, the expression 1
m+s

[
∑m

i=1
S−id
xid

+∑s
r=1

S+rd
yrd

]
quantifies the average efficiency affected by slack across all the inputs and outputs. It can also

calculate the average reduction rate of all m inputs and augmentation rate of all s outputs. Thus,

the total output produced efficiency due to the radial and slack parts of all inputs and outputs

is given an objective function. Variable λ j plays a significant role. In the mathematical model,

if the optimal value λ ∗
j of λ j is non-zero, then the jth DMU is part of the reference set (peer)

for the dth DMU. In practical terms, this implies that the jth DMU operates efficiently in areas

where the dth DMU is falling short.

Definition 3.3.1 When dth DMU fulfills both the conditions, where ψ∗
d = 1 and all the input

and output slacks (S+id,S
−
rd) are equal to zero, it is called as total potential technical efficient

DMU, Conversely, if the dth DMU has ψ∗
d ≤ 1 and/or non-zero values for slacks (S+id,S

−
rd �= 0),

it signifies either an excess or deficiency in resources, indicating inefficiency in the performance

of DMU.
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Definition 3.3.2 The collection of indices corresponding to positive λ j values defines the ref-

erence set for the dth inefficient DMU. This reference set, denoted by Rd, comprises indices that

represent other DMUs that are considered efficient and are used as benchmarks or references

to assess the performance of the dth inefficient DMU. Reference set Rd is explained as follows:

Rd = {DMU j : λ j > 0,∀ j = 1,2, . . . ,n} (3.2)

Theorem 3.3.1 The optimal value ψ∗
d of the NSM model is not greater than the optimal value

of f ∗d of the CCR model, i.e., ψ∗
d ≤ f ∗d .

Theorem 3.3.2 If a DMUd is efficient in the NSM model, then it is CCR efficient.

3.3.1 Input Targets

The structure of the input-oriented NSM model indicates the ability to manage and regulate ex-

cessive resource quantities after implementation, consequently minimizing input redundancies,

as demonstrated by the model. When a DMU is inefficient, DEA allows specific targets to be

set for the inputs of these inefficient DMUs. This process aims to improve their performance,

thereby enabling them to transition from inefficiency to efficiency. Each non-zero value in the

slacks provided valuable insights into the depots that are not meeting their performance poten-

tial. These insights are valuable for input criteria for the “development” stage of the proposed

performance enhancement strategy. The derivation of input targets is accomplished through the

following equation (3.3):

Input Target (t∗−) = Actual Input∗Overall Technical Efficiency (OTE)− Input Slacks (S∗−)
(3.3)

3.3.2 Efficiency Evaluation in DEA

This chapter frames benchmarks for RSRTC depots by analyzing time-series data from 2005

to 2022 concerning 52 bus depots (DMUs). This broader perspective enables observation of

evolving trends, pattern identification, and comprehension of efficiency trajectories over an

extended period. The aim is to pave the way for enhanced organizational performance and

more effective services. However, there are differences in the scope of data and methodological

nuances employed. Additionally, the analysis expands by utilizing both CRS and VRS scales,

offering a dual perspective for a more comprehensive view. The CRS scale reveals insights into

technical efficiency, while the VRS provides an understanding of scale efficiency, considering

the impact of depots’ operating sizes on their performance.
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For certain depots, such as Jaisalmer, Karauli, Partapgarh, Rajasamand, Sawaimodhopur,

and Shapur, there are data availability gaps for 2005-2013. To maintain consistency and re-

liability in the analysis, these depots are omitted from the timeframe. However, as data be-

came consistently available from 2014 onward, these depots are included in the analysis for the

years 2014-2022. This approach ensures that the efficiency calculations are based on complete

datasets, thereby avoiding potential inaccuracies from earlier incomplete records.

3.3.3 Region-Wise Classification of Depots

Understanding the operational dynamics region-wise and recognizing the areas that require

strategic intervention is crucial. This understanding is particularly pertinent in the context of

the Rajasthan region, characterized by diverse geographical features such as varying rocky

terrains, rolling sand dunes, wetlands, barren tracts, and river-drained plains. The topography

of the region can be partitioned into the following regions:

• The Aravalli or Hilly regions

• Thar Desert and

• Other arid regions

Considering this varied topography, conducting a region-wise comparison becomes crucial for

comprehending the performance disparities among various bus depots. As a result, the de-

pots are categorized based on their operational conditions into three distinct classifications:

low, medium, and high advantageous conditions. This categorization helps in assessing and

understanding the performance levels of these depots within the context of their operational

environments.

• Low Advantageous Condition: This category, characterized by the inhospitable thar desert

topography, inferior road connectivity, and the absence of facilities such as schools, hospitals,

and businesses, includes 25 depots. They are: Anoopgarh, Banswara, Baran, Barmer, Beawar,

Bundi, Churu, Dhaulpur, Didwana, Dungarpur, Falna, Hindaun, Jaisalmer, Jalore, Karauli,

Khetri, Lohagarh, Pali, Phalaudi, Partapgarh, Sardaarshahar, Shapur, Sirohi, Srimadhopur, and

Tijara.

• Medium Advantageous Condition: Depots falling under this category operate in regions that

combine both plain and Thar Desert topography and have decent road connectivity. The 14

depots in this category are Abu Road, Bharatpur, Bhilwara, Bikaner, Chittorgarh, Dausa, Hanu-

mangarh, Jhalawar, Jhunjhunu, Kotputli, Nagaur, Rajasamand, Sawaimodhopur, and Tonk.

• High Advantageous Condition: This category represents regions with well-connected roads,

high population density, and ample facilities, including schools, universities, hospitals, and
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more. It is termed the “high advantageous” due to these favorable conditions. The 13 depots

within this classification are Ajaymeru, Ajmer, Alwar, Deluxe, Ganga Nagar, Jaipur, Jodhpur,

Kota, Matsya Nagar, Sikar, Udaipur, Vaishali Nagar, and Vidhyadhar Nagar.

Table 3.1: Classification of depots by advantageous condition.

Category Depots

Low Advantageous Condition

Anoopgarh, Banswara, Baran, Barmer, Beawar, Bundi, Churu, Dhaulpur, Didwana,

Dungarpur, Falna, Hindaun, Jaisalmer, Jalore, Karauli, Khetri, Lohagarh, Pali,

Phalaudi, Parapgarh, Sardaarshahar, Shahoura, Sirohi, Srimadhopur, Tijara

Medium Advantageous Condition
Abu Road, Bharatpur, Bhilwara, Bikaner, Chittorgarh, Dausa, Hanumangarh, Jhalawar

Jhunjhunu, Kotputli, Nagaur, Rajasamand, Sawaimadhopur, Tonk

High Advantageous Condition
Ajaymeru, Ajmer, Alwar, Deluxe, Ganga Nagar, Jaipur, Jodhpur, Kota, Matsya Nagar

Sikar, Udaipur, Vaishali Nagar, Vidhyadhar Nagar

3.3.4 Selection of Inputs and Output

After defining the model and DMUs (bus depots), a crucial step involves determining the rel-

evant criteria for inclusion in the model. The decision on which criteria to incorporate holds

significant weight in the DEA methodology, as these criteria play a foundational role in shaping

the interpretation of results. Previous literature sources [50, 236, 230, 235] have informed the

choice of criteria; however, relying solely on past literature isn’t enough.

The primary objective is to conduct a comprehensive review of depot performance. This ne-

cessitates ensuring that the selected criteria are sufficiently comprehensive to provide an accu-

rate representation of a depot’s efficiency. For instance, criteria such as the number of vehicles,

employees, fuel consumption, and number of routes offer insights into resource utilization. The

number of vehicles and employees can highlight the scale and capacity of operations, whereas

fuel consumption provides a direct measure of operational efficiency and environmental impact.

Road connectivity serves as a measure of external factors affecting a depot’s performance. In

this methodology, four inputs, along with a single output criterion (passenger km occupied),

are chosen to assess efficiency. The output criterion measures the total distance traveled by all

passengers, representing the service provided by the depot. This rigorous approach to crite-

ria selection is intended to provide a clear perspective on the depot operational dynamics. By

adopting this method, this research offers invaluable insights for policymakers, highlighting

key performance determinants and suggesting directions for legislative measures to enhance

efficiency and service quality.

Inputs Comprised:

I1: The number of buses is indicative of capital input.
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I2: The number of employees is indicative of labor input.

I3: Fuel consumption, which is indicative of energy input, is calculated as

Fuel consumption (100 kl) = Description of km / average diesel consumption

I4: The number of routes, which is described as network (connectivity) size.

Output Comprised:

O1: Passenger km occupied is the cumulative distance traveled by each passenger, which is

defined as below:

Passenger km occupied (lakh) = Average no. of buses × description of km × load factor

Table 3.2: Descriptive statistics summary of inputs and output over the period

2005–2022.

I1 I2 I3 I4 O1

Max 161.000 918.000 54.053 122.000 10.276

Min 2.000 24.000 0.518 3.000 0.069

Average 78.060 321.376 21.256 46.454 3.733

SD 7.261 23.661 1.785 4.409 0.345

A keen analysis suggests notable variations among the chosen inputs and outputs for de-

pots. To gain more insights into the relationships among these variables for depots during the

period 2005–2022, descriptive statistics is employed in table 3.2. The number of buses in the

depots ranged from 2 to 161, while the number of employees ranged from 24 to 918. Differ-

ences in fuel consumption, from 0.518 to 54.053 kl, suggest varying operational intensities.

The number of routes between 3 and 122 highlights the breadth of service coverage. The out-

put, ranging from 0.069 to 10.276 lakhs, indicates diverse service utilization across depots and

years. This data provides a picture of the varied scales and nature of RSRTC operations. Then,

the collected data is structured into a table format, organizing the values of each variable cor-

responding to the respective years. Pearson correlation coefficient test matrix revealed strong

positive relationships between the number of buses, employees, fuel consumption, and pas-

senger km occupied, as shown in table 3.3. For instance, depots with more buses tend to have

more employees, and increased fuel consumption correlates with higher passenger km. Regres-

sion analysis explained approximately 90.8% of the variance in the dependent variable. This

analysis highlights the significance of the number of buses and fuel consumption as predictors,

indicating that an increase in these inputs is associated with a rise in passenger km occupied.
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Table 3.3: Correlation coefficients between input and output (period 2005-2022).

I1 I2 I3 I4 O1

I1 1
I2 0.837 1
I3 0.750 0.842 1
I4 0.679 0.683 0.499 1
O1 0.773 0.822 0.948 0.504 1

The correlation analysis is employed in table 3.2. The regression statistics depict a com-

pelling narrative, and the coefficient of determination, R2, stands at 90.08%, indicating that

the regression model explains a vast majority of the variability in the dependent variable. Fur-

ther underscoring this is the multiple R-value of 0.953, which points towards a robust linear

relationship among the variables. Delving into individual predictors, the ANOVA test signifies

the model’s statistical significance, with the F-statistic being a considerable 2065.907 and an

almost negligible significance F value. When examining coefficients, the number of buses (p-

value close to zero), the number of employees (p-value: 0.038), and fuel consumption (p-value

close to zero) emerge as substantial predictors.

Fig. 3.1: Regression relation between inputs and output.
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Interestingly, the number of routes doesn’t hold significant weight, indicated by its p-value

of 0.717. As a supplementary validation step, a cursory glance over residual analysis may be

advisable to trace any patterns or anomalies. This depth of analysis reinforces the potency of

the chosen variables and the statistical significance of the model.

3.3.4.1 Empirical Results & Discussion

The efficiencies of depots are estimated for time series data from 2005 to 2022. OTE, PTE, and

SE scores are obtained from input-oriented NSM model under CRS and VRS assumptions with

categorical depots. The categorization of all depots is rooted in the varied region topography

challenges and advantages that each depot faces. The classifications – low, medium, and high

advantageous conditions – offer a comparative analysis of the depots’ operational conditions.

Table 3.4 presents the average OTE, PTE, and SE values across the depots for all three cate-

gories over the years. The depots are segmented into three primary performance categories:

low advantageous condition, medium advantageous condition, and high advantageous condi-

tion. This categorization aims to distinguish between the operational capacities and efficiencies

of the various depots.

3.3.4.2 Overall Technical Efficiency (OTE) Scores

OTE is a measure of the overall efficiency of a depot in terms of how optimally it uses its

resources to achieve the desired outputs. OTE is typically a decomposition of pure technical

efficiency (PTE) and scale efficiency (SE).
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Table 3.4: Average OTE, PTE, and SE values for the period 2005-06 to 2021-22.

Depots OTE PTE SE Depots OTE PTE SE

Low Advantageous Condition
Anoopgarh 0.896 0.976 0.919 Bhilwara 0.924 0.963 0.959

Banswara 0.893 0.931 0.960 Bikaner 0.988 0.998 0.990

Baran 0.813 0.852 0.954 Chittorgarh 0.790 0.935 0.847

Barmer 0.972 0.978 0.994 Dausa 0.747 1.000 0.747

Beawar 0.896 0.997 0.898 Hanumangarh 0.943 1.000 0.943

Bundi 0.818 0.877 0.932 Jhalawar 0.760 0.977 0.779

Churu 0.936 0.941 0.995 Jhunjhunu 0.902 0.931 0.968

Dhaulpur 0.810 0.931 0.872 Kotputli 0.891 0.935 0.953

Didwana 0.795 0.918 0.868 Nagaur 0.922 0.951 0.970

Dungarpur 0.823 0.883 0.932 Rajasamand 0.789 0.970 0.816

Falna 0.766 0.978 0.784 Sawaimodhopur 0.849 0.920 0.922

Hindaun 0.807 0.997 0.810 Tonk 0.854 0.954 0.898

Jaisalmer 0.944 0.951 0.992 Average 0.856 0.964 0.890

Jalore 0.911 0.940 0.969 SD 0.074 0.027 0.080

Karauli 0.779 1.000 0.779 High Advantageous Condition
Khetri 0.828 0.894 0.927 Ajaymeru 0.723 0.980 0.737

Lohagarh 0.843 0.998 0.844 Ajmer 0.724 0.973 0.745

Pali 0.855 0.904 0.947 Alwar 0.733 0.974 0.752

Phalaudi 0.901 0.913 0.987 Deluxe 0.942 0.974 0.961

Partapgarh 0.703 0.789 0.896 Ganga Nagar 0.854 0.951 0.895

Sardaarshahar 0.872 0.926 0.942 Jaipur 0.927 0.973 0.951

Shapur 0.770 0.974 0.793 Jodhpur 0.789 0.897 0.875

Sirohi 0.822 0.920 0.898 Matsya Nagar 0.866 0.931 0.925

Srimadhopur 0.797 0.875 0.910 Kota 0.746 0.870 0.855

Tijara 0.942 0.995 0.948 Sikar 0.737 0.969 0.761

Average 0.848 0.934 0.910 Udaipur 0.771 0.912 0.843

SD 0.067 0.053 0.066 Vaishali Nagar 0.706 0.989 0.714

Medium Advantageous Condition Vidhyadhar Nagar 0.600 0.897 0.678

Abu Road 0.815 0.969 0.842 Average 0.778 0.945 0.822

Bharatpur 0.811 0.991 0.818 SD 0.096 0.039 0.096

• Low Advantageous Condition: Within the examined dataset, efficiency values span a spec-

trum from 0.636 to 1 across all years. Barmer and Churu depots stand out for their consistently

high metrics and incorporate their robust operational efficiency. However, an intriguing obser-

vation is a discernible decline in Churu’s performance after the year 2014-15, suggesting the
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possibility of external challenges or strategic shifts influencing its operational dynamics. On

the other hand, depots such as Dungarpur and Falna exhibited a more fluctuating efficiency tra-

jectory across the years, indicating potential inconsistencies in their operations impacting their

performance. A pattern that emerges from the data is a perceptible dip in efficiency for several

depots around the years 2018-19 and 2019-20. Adding to the narrative, Pratapgarh registered

the lowest average efficiency, clocking in at 0.703.

• Medium Advantageous Condition: The efficiency values for the depots span from 0.658 to

1 across all years. Abu Road, Bharatpur, Bhilwara, and Bikaner have maintained relatively

efficient scores throughout the years, demonstrating robust performance efficiency. Chittorgarh

and Dausa, while having commendable efficiency scores, display noticeable fluctuations over

the years, suggesting variations in their performance. Hanumangarh stands out for its consis-

tently high scores, especially from 2009-10 onwards. Jhalawar and Jhunjhunu registered an

evident decrease in efficiency in the middle years, specifically around 2012-13, but both have

shown resilience by improving their scores in subsequent years. An overall observation of the

depots shows a dip in efficiency values around 2018-19 and 2019-20, a trend consistent with

the previous dataset. Still, no depot maintains peak efficiency throughout the entire timeline.

• High Advantageous Condition: The efficiency values across the depots span from 0.448 to

1. Deluxe has the highest overall average performance, with a value of 0.942. Its performance

consistently remained at the top for several years, with only a slight decrease in 2018-19, 2019-

20, and 2020-21. Vidhyadhar Nagar has the lowest overall average performance, with a value

of 0.600. This depot’s performance seems to be consistently lower compared to the other de-

pots across the years. Ganga Nagar showed steady and consistent growth throughout, whereas

Matsya Nagar experienced peak performances in the latter years. It’s also worth noting that

some depots consistently perform at efficiency levels, like Jaipur, maintaining scores close to

or at 1 over the years. Based on the average values for each year, 2013-14 seems to have the

highest overall performance, with a value of 0.86. The year 2008-09 seems to have the lowest

overall performance, with an average value of 0.647. Notably, a few depots exhibited a decline

in scores between the years 2018-19 and 2020-21.

3.3.4.3 Pure Technical Efficiency (PTE) Scores

.

In discussions about efficiency, it’s crucial to understand the assumptions of the NSM

model. Under the CRS assumption, efficiency scores are presumed not to be influenced by

the scale or size of an operation. Essentially, under CRS, if inputs are doubled, the outputs

would ideally double as well, regardless of the operational size of a depot. However, real-

world scenarios often deviate from this ideal scenario. Depots might not always operate at an
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optimal scale, resulting in inefficiencies. To distinguish such inefficiencies from operational

challenges, the VRS assumption is considered within the NSM model. VRS plays a pivotal

role in distinguishing between scale inefficiencies and those arising due to converting inputs to

outputs. The efficiency score determined under the VRS assumption is termed pure technical

efficiency (PTE). As the name suggests, PTE solely evaluates the transformational efficiency of

inputs into outputs, abstracting away from scale considerations. It’s essential to note that PTE

always holds a value greater than or equal to OTE. This is because, when assessed under VRS,

there are generally more depots found on the efficiency frontier compared to when evaluated

under the CRS framework. This distinction emphasizes the importance of understanding the

nature and sources of inefficiencies when devising strategies for improvement.

• Low Advantageous Condition: Beawar, Hindaun, Karauli, Lohagarh, and Tijara have con-

sistently achieved better efficiency scores, which are close to or at 1. The year 2020-21 saw

a generally increased efficiency across the depots compared to previous years, suggesting pos-

sible improvements in practices or favorable conditions. The years 2018-19 and 2019-20 wit-

nessed a decline in average efficiency, which may indicate external challenges or operational

inefficiencies that affected multiple depots. Depots like Didwana, Dungarpur, Khetri, and Sri-

madhopur have shown inconsistency over the years. The overall average PTE efficiency score

over the years is 0.934, depots are operating at 93.4% of their potential efficiency under the

VRS assumption, is still a margin of 6.6% left for improvement. Identifying specific areas of

concern, challenges, and implementing targeted interventions can further boost the operational

efficiency of these depots.

• Medium Advantageous Condition: Many depots, including Abu Road, Bharatpur, Bikaner,

Dausa, and Hanumangarh, consistently operate near maximum efficiency. However, depots

such as Chittorgarh, Jhunjhunu, and Kotputli exhibit fluctuating performances, suggesting areas

of improvement. Rajasamand, a recent addition since 2014-15, has largely shown commend-

able scores near 1, but with a dip in 2020-21. The overall average efficiency remains high, but

there is a noticeable dip in 2012-13, and in recent years, 2020-21 and 2021-22, the scores are

slightly below the total average. Focusing on the reasons behind these fluctuations could lead

to enhanced operational efficiency across all depots.

• High Advantageous Condition: Depots such as Ajaymeru, Ajmer, and Alwar have maintained

consistently good performance scores, nearly approaching 1 across all the years, with averages

nearing 0.97. Despite an overall average of 0.974, Deluxe showed a decline in scores for 2020-

21 and 2021-22. Ganga Nagar and Jaipur have remained steady, with averages above 0.95.

Jodhpur and Matsya Nagar, with averages around 0.9, reveal some variability but generally

stay above the overall average. Kota’s scores fluctuate, suggesting areas for improvement, with

a 0.87 average value. Sikar is nearly impeccable, with an average of 0.969, while Udaipur’s
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performance is a bit more varied, holding an average of 0.912. Vaishali Nagar and Vidhyadhar

Nagar showcase commendable scores, with the latter exhibiting significant improvement since

its lower scores in earlier years. The overall average efficiency across all depots has remained

strong, with a noticeable increase in performance from 2005-06 to 2018-19, followed by a

slight decrease in the recent years, 2019-20 to 2021-22.

3.3.4.4 Scale Efficiency (SE) Scores

Scale efficiency in DEA refers to the extent to which a DMU operates at its most productive

scale size (MPSS). At its core, it emphasizes the significance of scale in operational efficiency.

Whether a unit is operating on a large scale with expansive resources or on a small scale with

limited capacity, the efficiency of its operations often hinges on its scale. A DMU that isn’t

operating at its MPSS might be incurring unnecessary costs or not capitalizing on potential

economies of scale. A comparison of the results obtained under the CRS and VRS technology

assumptions assesses whether the size of a depot influences its OTE. SE is the ratio of OTE to

PTE scores. A score of one signifies optimal scale efficiency, meaning the DMU operates at

its MPSS. Scores less than one, however, indicate deviations from the optimal scale. Such a

DMU may either be under-scaled (too small) or over-scaled (too large) relative to its ideal oper-

ational size. The comprehensive scale efficiency evaluation from 2005 to 2022 provides a broad

overview of depot performance over an extended period. As illustrated in Table 3.4, no single

depot maintained consistent full efficiency throughout the examined period. Scale efficiency

is a diagnostic tool that highlights scale-related inefficiencies and prompts remedial actions.

For managers and decision-makers, understanding SE is instrumental in strategic planning, re-

source allocation, and capacity management. By continuously monitoring and adjusting scale,

organizations can ensure that they are well-positioned to maximize output, minimize costs, and

achieve sustainable growth.

• Low Advantageous Condition: Barmer, Beawar, Falna, Hindaun, and Karauli consistently

show a value of 1 across most years, indicating a consistent performance or achievement of

a certain benchmark. On average, depots seem to operate at an efficiency rate above 0.800,

indicating a good level of scale efficiency. The depot Barmer consistently showcases high

efficiency, reaching a perfect score of unity multiple times. On the contrary, Didwana has the

lowest efficiency in 2005-06 with a score of 0.651, though it improved over the years. On

average, most depots seem to operate at an efficiency rate above 0.800, indicating a good level

of scale efficiency.

• Medium Advantageous Condition: Examining the overall average SE 0.889 for all the years

provided, while depots maintain good scale efficiency, there is still room for improvement,

especially in some specific years. However, some depots like Dausa and Jhalawar experienced
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dips in their SE scores in a few specific years. The lowest SE value is 0.673, observed for the

depot Dausa in 2012-13, and presents a highly significant opportunity for enhancement with a

potential of 32.69%. Multiple depots have achieved a perfect SE score of 1 in various years.

For instance, Bikaner achieved this score consecutively from 2005–06 to 2008–09 and then in

several other years, indicating optimal operations. Similarly, depots like Bhilwara, Jhunjhunu,

Kotputli, Nagaur, and Tonk also reached the perfect SE score in different years. It would be

beneficial for stakeholders to delve deeper and understand the underlying factors contributing

to the lower efficiencies and address them.

• High Advantageous Condition: The depots operated under this condition seemed to perform

pretty consistent on an average evaluation, with a general average scale efficiency of 0.822.

This implies that, on average, there’s a potential for a 17.8% improvement in scale efficiency

across all depots over the years under consideration. Deluxe and Jaipur are the standout depots

in terms of scale efficiency. Over many years, they consistently achieved perfect scores of

1, indicating optimal performance. Matsya Nagar and Udaipur also showed commendable

performance, occasionally hitting the maximum efficiency score. Notably, in the year 2013-14,

Udaipur scored a perfect 1. Ajaymeru, Ajmer, Alwar, and Jodhpur demonstrated considerable

stability throughout the years, hovering around a score of 0.74 to 0.87. The lowest SE score in

the results is 0.460, which is observed for the Vidhyadhar Nagar depot in the year 2009–10.

3.3.5 Growth Trends Over Years

This subsection analyzed the growth trends over the years for all categories: low, medium, and

high advantageous conditions. The figures 3.2, 3.3 and 3.4 provide a visual representation of

the average overall, pure technical, and scale efficiency scores for each category from 2005 to

2022.

• Low Advantageous Condition: The average OTE fluctuated in its early years after starting

in 2005–06 at a value of 0.660, dropping to its lowest level in 2009–10 at 0.639. The value

increased to 0.816 in 2010–2011, a noticeable increase. This rising trend continued, reaching a

high of 0.842 in 2011–2012. Following that, the OTE generally remained over the 0.8 threshold

despite some ups and downs, showing continuous technical efficiency in recent years.

The average PTE received a comparatively excellent 2005–2006 start at 0.833. From then on,

it showed a rising tendency, with a little decline in 2008–2009, but shortly after, it increased

steadily. From 2010 onward, the PTE numbers remained over 0.950, demonstrating excellent

pure technical efficiency. It’s important to note that the period from 2014–15 to 2020–21 has

extraordinarily high PTE values, which are almost equal to 1, indicating nearly flawless effi-

ciency.
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The average efficiency for the years provided seems to fluctuate, but generally, there’s a slight

increase in scale efficiency over the years, starting from 0.892 in 2005-06 to 0.910 in 2021-

22. In 2005–2006, the SE started at 0.792. The following years has a slight drop, peaking

in 2009–2010 at 0.718. However, the years that followed showed a noticeable improvement,

especially from 2010 to 2011, when values continuously remained over 0.800. This suggests

that scale efficiency is quite consistent and durable over the past few years.

Fig. 3.2: Overall, pure technical, and scale efficiency scores for low advantageous cate-

gory (2005-2022).

• Medium Advantageous Condition: OTE started out with a value of 0.855 in 2005-2006. OTE

levels showed a steady rise, reaching their maximum in 2008–09 at 0.901. After that, a slight

change is noted, although the efficiency remained over 0.850 until 2018–19. However, there

is a considerable decline in 2018–19 and 2019–20, falling to 0.771 and 0.755, respectively.

Fortunately, there is a renewal in the years that follow, pointing to a recovery at the end of the

period.

PTE, which started at a better efficiency 0.959 in 2005–2006, fluctuated a little initially but

usually stayed over 0.930, suggesting incredible pure technical efficiency. Efficiency experi-

enced decreases, most notably in 2018–19 at 0.888 and a little recovery thereafter. Overall,

PTE values show that, with just a few exceptions, PTE is continuously high.

SE began in 2005–2006 at 0.892. The trend for SE has typically upward throughout time, with

values mostly rising. In 2012–2013, a substantial increase peaked at 0.960. Minor oscillations
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occurred after this peak, but overall efficiency remained high. 2018–19 saw a substantial de-

cline to 0.873, while the following years saw a rebound trend.

Fig. 3.3: Overall, pure technical, and scale efficiency scores for medium advantageous

category (2005-2022).

The data shows a typically steady and high-efficiency trend across the analyzed period for

all three categories. However, it’s crucial to note a trend of decline in all three efficiencies,

especially in the years 2018-19 and 2019-20. This declining trend highlights potential problem

areas and necessitates a detailed examination of the operational elements during these years to

comprehend and address the underlying causes.

• High Advantageous Condition: OTE score has minor fluctuations in the middle years. How-

ever, a significant decline is observed in 2018-19 and 2019-20, with a slight recovery afterward.

PTE started notably high efficiency in 2005-06 and maintained good scores throughout. A drop

is noticeable in 2018-19, but it managed to hover near its initial values by the end of the period.

SE indicates the high performance until the year 2012–13. There are changes after this high,

with a noticeable fall in 2018–19 that is consistent.

The data indicates consistent performance across OTE, PTE, and SE over the years. Notably,

all three categories experienced a decline around 2018-19. By the end of the period in 2021-22,

there is a slight recovery, but not to their former peak values. This trend, especially the decline

in recent years, should be a point of focus for further investigation.
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Fig. 3.4: Overall, pure technical, and scale efficiency scores for high advantageous cate-

gory (2005-2022).

3.3.5.1 Returns to Scale

Returns to scale (RTS) is a core concept in production theory for the long run and refers to

how the quantity of output responds to a proportionate change in all inputs. It helps to under-

stand how the scale of production affects overall productivity. Several factors can influence the

returns to scale, including technological advancements, managerial practices, and input flexi-

bility. RTS can be visually represented on a production function graph. Increasing returns to

scale (IRS) would be a concave curve, decreasing returns to scale (DRS) would be a convex

curve, and constant returns to scale (CRS) would be a straight line. Baran, Didwana, Falna,

Khetri, Phalaudi, Shapur, Sirohi, and Tijara are among the 8 depots out of 25 that have con-

sistently shown IRS despite being in low advantageous conditions from the period 2005-06 to

2021-22. This indicates a consistent pattern in these areas, where output increases in a larger

proportion than the increase in inputs year after year. Abu Road, Bharatpur, Dausa, Jhalawar,

Rajasamand, and Sawaimodhopur consistently exhibited IRS throughout the entire period under

consideration in medium advantageous condition. Lastly, in the high advantageous conditions,

Ajaymeru, Ajmer, Kota, and Vidhyadhar Nagar have consistently demonstrated IRS over the

years. No depot has consistently displayed CRS or DRS during the span of the period, with the

exception of those displaying IRS.
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3.3.5.2 Returns to Scale Trends: A Three-Year Analysis (2019-2022)

Focusing on the last three years, from 2019 to 2022, offers a more detailed, current perspective,

highlighting recent behavioral shifts in depots. This narrow time frame serves as a magnifying

lens, pinpointing recent advancements or challenges.

In low advantageous conditions, the following depots consistently demonstrated IRS over

the three-year period: Banswara, Baran, Bundi, Churu, Dhaulpur, Didwana, Dungarpur, Falna,

Hindaun, Jalore, Karauli, Khetri, Lohagarh, Pali, Phalaudi, Partapgarh, Sardaarshahar, Shapur,

Sirohi, Srimadhopur, and Tijara. These depots have efficiently increased their output more than

the input over these years. None of the depots consistently showed CRS over the three-year

span. Anoopgarh, Barmer, Beawar, and Jaisalmer all displayed a combination of IRS, CRS, or

DRS throughout that time. Anoopgarh showed DRS for the years 2020–21 and 2021-22 after

starting with IRS in 2019-20. Beawar shifted from CRS in 2019-20 to IRS in the subsequent

years, indicating an improvement in operational efficiency. Barmer started with IRS in 2019-20

and then stabilized at CRS in the subsequent years. Jaisalmer is operating at IRS for the years

2019-20 and 2020-21 and then shifted to CRS in 2021-22. This suggests they have transitioned

to a balanced efficiency state.

In medium advantageous condition, 12 depots (Abu Road, Bharatpur, Bhilwara, Chittor-

garh, Dausa, Hanumangarh, Jhalawar, Jhunjhunu, Kotputli, Nagaur, Rajasamand, and Sawaimod-

hopur) exhibited a consistent IRS, only 1 Bikaner depot is CRS. No depot showed a mix of IRS,

CRS, or DRS over the period, implying a certain level of stability in their operations. In conclu-

sion, the depots’ performance, with a majority showcasing IRS, indicates a positive trajectory

in terms of operational efficiency and scalability. Bikaner might benefit from an operational

review to identify opportunities for improvement.

In high advantageous condition, the majority of the depots are either showing IRS or DRS.

There are fewer depots with CRS. The depots Ajaymeru, Ajmer, Deluxe, Kota, and Vidhyadhar

Nagar consistently demonstrated IRS. Jaipur and Matsya Nagar showed consistent CRS during

the three years, and Alwar, Ganga Nagar, Jodhpur, Sikar, Udaipur, and Vaishali Nagar consis-

tently pointed out as DRS depots.

The operational efficiency data across various depots over the span of three years indicates

that a significant majority of the depots have consistently demonstrated IRS. This consistent

performance showcases the operational prowess and effective utilization of resources within

these depots. Based on the three-year analysis from 2019 to 2022, valuable insights is garnered

that will pave the way for targeted improvements in the upcoming years. By understanding

the trends and patterns of returns to scale during this period to make better decisions, ensuring

enhanced efficiency and performance for the depot in the future.
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Table 3.5: Distribution of depots by returns to scale (2019-22).

IRS CRS DRS

Low Advantageous
Condition

Banswara, Baran, Bundi, Churu, Dhaulpur, Did-

wana, Dungarpur, Falna, Hindaun, Jalore,

Karauli, Khetri, Lohagarh, Pali, Phalaudi,

Partapgarh, Sardaarshahar, Shapur, Sirohi, Sri-

madhopur, Tijara

Medium Advanta-
geous Condition

Abu Road, Bharatpur, Bhilwara, Chittorgarh,

Dausa, Hanumangarh, Jhalawar,

Bikaner

Jhunjhunu ,Kotputli, Nagaur, Rajasamand

,Sawaimodhopur, Tonk

High Advantageous
Condition

Ajaymeru, Ajmer, Deluxe, Kota, Vidhyadhar Nagar
Jaipur, Mat-

sya Nagar

Alwar,

Ganga Na-

gar, Jodhpur

Sikar,

Udaipur,

Vaishali Na-

gar

3.3.5.3 Input Targets

For the upcoming target suggestions, primarily focus on the data from the current year, 2021-

22. This approach ensures that the recommendations are grounded in the most recent trends

and performance metrics, allowing for a more accurate and timely estimate for the forthcoming

period. Leveraging this year’s data enables us to make informed decisions that are relevant and

responsive to current dynamics and challenges.

• Low Advantageous Condition:
Some depots like Anoopgarh, Barmer, Jaisalmer, Karauli, Lohagarh, Shapur, Sirohi, and Tijara

have exactly met their targets with no slacks, as evidenced by the identical values in the target

and the slack columns. On the other hand, depots like Banswara, Bundi, Dhaulpur, Didwana,

Dungarpur, Hindaun, Jalore, Khetri, Phalaudi, Partapgarh, Sardaarshahar, and Srimadhopur

have exhibited significant deviations from their targets. For instance, Srimadhopur shows a no-

table difference with a slack of 19.49% in I1 and a significant 49.60% in I2. Such discrepancies

highlight areas where more attention might be required to meet the target values. The average

slack values are as follows: I1: 5.58%, I2: 17.31%, I3: 0.74%, and I4: 2.75% for each of the four

inputs are noteworthy, providing additional insights into the relative performance of different

depots. I2 exhibits the highest slack among the four inputs. The slack values represent the gap
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between the expected target and the achieved value, with higher slack indicating a greater devi-

ation from the goal. Overall, the data provides crucial insights into how different locations are

performing relative to their set targets and where improvements may be necessary. Table 3.6

provides a detailed breakdown of the actual & target inputs and associated slacks. Additionally,

for a visual representation, refer to figure 3.5 for graphical visualization.

Table 3.6: Actual, target, and slack in inputs of low advantageous condition depots

(2021-22).

I1 I2 I3 I4 Target1 Target2 Target3 Target4 Slack1 Slack2 Slack3 Slack4

Anoopgarh 46.00 171.00 10.89 42.00 46.00 171.00 10.89 42.00 0.00 0.00 0.00 0.00

Banswara 61.00 198.00 10.16 27.00 50.71 164.60 8.44 22.45 10.29 33.40 1.71 4.55

Baran 57.00 181.00 8.63 27.00 47.32 150.26 7.17 22.41 9.68 30.74 1.47 4.59

Barmer 45.00 182.00 10.18 27.00 45.00 182.00 10.18 27.00 0.00 0.00 0.00 0.00

Beawar 43.00 193.00 10.01 30.00 42.01 188.55 9.77 29.31 0.99 4.45 0.23 0.69

Bundi 64.00 187.00 7.30 27.00 51.54 150.60 5.88 21.74 12.46 36.40 1.42 5.26

Churu 58.00 187.00 7.78 19.00 49.97 161.13 6.70 16.37 8.03 25.87 1.08 2.63

Dhaulpur 60.00 250.00 8.56 38.00 49.65 206.88 7.08 31.45 10.35 43.12 1.48 6.55

Didwana 53.00 156.00 5.93 25.00 42.92 126.33 4.80 20.24 10.08 29.67 1.13 4.76

Dungarpur 83.00 227.00 8.16 33.00 62.17 170.03 6.11 24.72 20.83 56.97 2.05 8.28

Falna 31.00 92.00 5.09 25.00 26.80 79.55 4.40 21.62 4.20 12.45 0.69 3.38

Hindaun 59.00 211.00 6.95 43.00 57.61 206.03 6.79 41.99 1.39 4.97 0.16 1.01

Jaisalmer 23.00 82.00 5.44 10.00 23.00 82.00 5.44 10.00 0.00 0.00 0.00 0.00

Jalore 51.00 159.00 9.09 23.00 48.15 150.12 8.58 21.72 2.85 8.88 0.51 1.28

Karauli 10.00 42.00 1.71 14.00 10.00 42.00 1.71 14.00 0.00 0.00 0.00 0.00

Khetri 48.00 173.00 6.98 30.00 37.90 136.61 5.51 23.69 10.10 36.39 1.47 6.31

Lohagarh 73.00 293.00 8.38 58.00 73.00 293.00 8.38 58.00 0.00 0.00 0.00 0.00

Pali 49.00 169.00 9.79 26.00 48.62 167.70 9.71 25.80 0.38 1.30 0.08 0.20

Phalaudi 41.00 123.00 6.74 17.00 39.39 118.16 6.48 16.33 1.61 4.84 0.27 0.67

Partapgarh 32.00 92.00 4.99 21.00 24.98 71.82 3.89 16.39 7.02 20.18 1.09 4.61

Sardaarshahar 58.00 198.00 10.31 36.00 48.18 164.49 8.57 29.91 9.82 33.51 1.75 6.09

Shapur 53.00 159.00 4.36 35.00 53.00 159.00 4.36 35.00 0.00 0.00 0.00 0.00

Sirohi 43.00 122.00 6.96 32.00 43.00 122.00 6.96 32.00 0.00 0.00 0.00 0.00

Srimadhopur 77.00 196.00 7.38 31.00 57.51 146.40 5.52 23.15 19.49 49.60 1.87 7.85

Tijara 42.00 170.00 5.83 29.00 42.00 170.00 5.83 29.00 0.00 0.00 0.00 0.00

Average 50.40 168.52 7.50 29.00 44.82 151.21 6.77 26.25 15.03 13.87 12.67 11.74
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Fig. 3.5: Input target pattern of the low advantageous condition depots (2021-22).

Table 3.7: Actual, target, and slack in inputs of medium advantageous condition depots

(2021-22).

I1 I2 I3 I4 Target1 Target2 Target3 Target4 Slack1 Slack2 Slack3 Slack4

Abu Road 39.00 115.00 5.54 18.00 36.75 108.38 5.22 16.96 2.25 6.62 0.32 1.04

Bharatpur 59.00 333.00 9.59 50.00 59.00 333.00 9.59 50.00 0.00 0.00 0.00 0.00

Bhilwara 80.00 243.00 12.82 38.00 78.12 237.29 12.52 37.11 1.88 5.71 0.30 0.89

Bikaner 71.00 327.00 16.92 44.00 71.00 327.00 16.92 44.00 0.00 0.00 0.00 0.00

Chittorgarh 87.00 258.00 11.33 46.00 76.24 226.10 9.93 40.31 10.76 31.90 1.40 5.69

Dausa 59.00 230.00 6.57 49.00 59.00 230.00 6.57 49.00 0.00 0.00 0.00 0.00

Hanumangarh 76.00 276.00 15.10 51.00 76.00 276.00 15.10 51.00 0.00 0.00 0.00 0.00

Jhalawar 75.00 183.00 9.20 48.00 75.00 183.00 9.20 48.00 0.00 0.00 0.00 0.00

Jhunjhunu 83.00 340.00 12.06 38.00 69.29 283.85 10.07 31.72 13.71 56.15 1.99 6.28

Kotputli 49.00 199.00 7.55 26.00 41.32 167.80 6.36 21.92 7.68 31.20 1.18 4.08

Nagaur 61.00 287.00 13.31 30.00 59.94 281.99 13.08 29.48 1.06 5.01 0.23 0.52

Rajasamand 35.00 111.00 4.80 25.00 32.02 101.56 4.39 22.87 2.98 9.44 0.41 2.13

Sawaimodhopur 34.00 102.00 4.97 15.00 33.95 101.85 4.96 14.98 0.05 0.15 0.01 0.02

Tonk 75.00 256.00 9.95 60.00 75.00 256.00 9.95 60.00 0.00 0.00 0.00 0.00

Average 63.07 232.86 9.98 38.43 60.19 222.42 9.56 36.95 2.88 10.44 0.42 1.47

• Medium Advantageous Condition:
Bharatpur, Bikane, Dausa, Hanumangarh, Jhalawar, Tonk depots have exactly the same values

for the “Actual” and “Target” inputs. This indicates that these depots have perfectly met their

target values without any surplus or deficiency. The slack values for these depots are also zero
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across the board. Chittorgarh has significant positive slack values, especially for I2 (31.90%)

and I4 (5.69%). Jhunjhunu also shows high positive slack values, especially for I2 (56.15%)

and I4 (6.28%). Similarly, Kotputli and Nagaur have moderate positive slack values across the

year. Rajasamand has positive slack values for all input, indicating that the depot surpassed its

targets. I2 has the highest variability, with some depots overshooting their targets by significant

margins. The average slack values for each of the four inputs (I1, I2, I3, and I4) are notable: I1

has a slack of 2.88%, I2 has a slack of 10.44%, I3 has a slack of 0.42%, and I4 has a slack of

1.48%. These values offer further insights into the relative performance of various depots. I2

exhibits the highest slack among the four inputs. The comprehensive breakdown of actual and

target inputs, along with their respective slacks, can be found in table 3.7. Please refer to figure

3.6 for a graphical illustration.

Fig. 3.6: Input target pattern of the medium advantageous condition depots (2021-22).

• High Advantageous Condition:
Eight depots, including Ajaymeru, Alwar, Ganga Nagar, Jaipur, Jodhpur, Matsya Nagar, Udaipur,

and Vidhyadhar Nagar, have achieved a perfect alignment with their targets. This can be seen as

an indication of efficient operations. The depot “Sikar” stands out, having the highest positive

slack values in I2 (21.04%) and I4 (8.10%), suggesting potential oversupply or inefficiencies in

these areas.
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Fig. 3.7: Input target pattern of the high advantageous condition depots (2021-22).

Table 3.8: Actual, target, and slack in inputs of high advantageous condition depots

(2021-22).

I1 I2 I3 I4 Target1 Target2 Target3 Target4 Slack1 Slack2 Slack3 Slack4

Ajaymeru 106.00 241.00 9.69 42.00 106.00 241.00 9.69 42.00 0.00 0.00 0.00 0.00

Ajmer 84.00 268.00 8.52 45.00 74.64 238.14 7.57 39.99 9.36 29.86 0.95 5.01

Alwar 117.00 399.00 12.65 63.00 117.00 399.00 12.65 63.00 0.00 0.00 0.00 0.00

Deluxe 47.00 324.00 14.23 26.00 35.26 243.08 10.68 19.51 11.74 80.92 3.55 6.49

Ganga Nagar 81.00 273.00 14.35 40.00 81.00 273.00 14.35 40.00 0.00 0.00 0.00 0.00

Jaipur 126.00 579.00 24.00 37.00 126.00 579.00 24.00 37.00 0.00 0.00 0.00 0.00

Jodhpur 111.00 324.00 14.11 48.00 111.00 324.00 14.11 48.00 0.00 0.00 0.00 0.00

Matsya Nagar 61.00 271.00 11.86 26.00 61.00 271.00 11.86 26.00 0.00 0.00 0.00 0.00

Kota 84.00 279.00 11.30 30.00 72.69 241.45 9.78 25.96 11.31 37.55 1.52 4.04

Sikar 161.00 477.00 16.33 62.00 139.96 414.67 14.20 53.90 21.04 62.33 2.13 8.10

Udaipur 112.00 321.00 15.98 40.00 112.00 321.00 15.98 40.00 0.00 0.00 0.00 0.00

Vaishali Nagar 120.00 453.00 15.72 55.00 116.01 437.95 15.20 53.17 3.99 15.05 0.52 1.83

Vidhyadhar Nagar 91.00 314.00 7.15 63.00 91.00 314.00 7.15 63.00 0.00 0.00 0.00 0.00

Average 100.08 347.92 13.53 44.38 95.66 330.56 12.86 42.43 4.42 17.36 0.67 1.96

On the other hand, “Deluxe” depot showcased the most significant discrepancy between actual

input and targets, having the highest slack for I2 (80.92%) and I3 (3.55%). This situation at

Deluxe merits a thorough investigation into its operations. Vaishali Nagar’s operations appear

relatively efficient, though they have minor positive slack values, hinting at the potential need

for a slight buffer in their operations.
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The average slack values for each input (I1, I2, I3, and I4) are significant: I1 shows a slack of

4.42%, I2 exhibits a slack of 17.36%, I3 demonstrates a slack of 0.67%, and I4 displays a slack

of 1.96%. These figures provide additional insights into the relative performance of different

depots. Notably, I2 stands out with the highest slack among the four inputs. The detailed

breakdown of actual and target inputs, along with their respective slacks, is provided in table

3.8 and graphical visualization in figure 3.7.

It is crucial to note that in all three categories, I2 consistently exhibits the highest values.

This observation emphasizes the need to allocate special attention and resources towards im-

proving efficiency in this particular input for the current year, 2021-22. This approach allows

us to make informed decisions that are relevant and responsive to current dynamics and chal-

lenges, with special consideration for the optimization of I2.

3.4 Conclusions & Future Scope

This chapter is dedicated to employing an input-oriented NSM model under VRS assumption to

measure the efficiency of RSRTC depots over the period 2005-2022. Across the 52 depots, the

spectrum of efficiency under low, medium, and high advantageous conditions has showcased

varied trajectories. These variations offer a fresh perspective on enhancing service quality, es-

pecially when considering the specific inherent characteristics that affect the performance of

underperforming RSRTC depots. The transitional year from 2018-19 to 2019-20 stands out as

crucial, necessitating further reflection to identify the reasons underlying the declines in effi-

ciency in all categories. Future tactics that are more effective may be enabled by recognizing

and addressing the difficulties of this phase. Then, the year 2021-22, can be viewed as a signif-

icant inflection point. While there is a recovery observed from the downturn of the preceding

years, the depots did not necessarily reach their past performance level, indicating the con-

clusion of earlier instructions and the beginning of new strategies. The study calculated the

input target and slacks for inefficient depots. It found a substantial disparity between actual

and achievable performance under current operating conditions in the majority of depots. The

continuous improvement and stability in the numbers suggest effective operational strategies

and resource utilization over the years. This revamp holds the potential to bridge the observed

performance gap, optimize resource utilization, and propel RSRTC toward greater efficiency.
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Table 3.9: List of all depots of Rajasthan.

Depot Name Operating District Depot Name Operating District

Abu Road Sirohi Jalore Jalore

Ajaymeru Ajmer Jhalawar Jhalawar

Ajmer Ajmer Jhunjhunu Jhunjhunu

Alwar Alwar Jodhpur Jodhpur

Anoopgarh Sri Ganga Nagar Karauli Karauli

Banswara Banswara Khetri Jhunjhunu

Baran Baran Kota Kota

Barmer Barmer Kotputli Jaipur

Beawar Ajmer Lohagarh Bharatpur

Bharatpur Bharatpur Matsya Nagar Alwar

Bhilwara Bhilwara Nagaur Nagaur

Bikaner Bikaner Pali Pali

Bundi Bundi Phalaudi Jodhpur

Chittorgarh Chittorgarh Partapgarh Partapgarh

Churu Churu Rajasamand Rajasamand

Dausa Dausa Sardaarshahar Churu

Deluxe Jaipur Sawaimodhopur Sawaimodhopur

Dhaulpur Dhaulpur Shapur Jaipur

Didwana Nagaur Sikar Sikar

Dungarpur Dungarpur Sirohi Sirohi

Falna Pali Srimadhopur Sikar

Ganganagar Sri Ganganagar Tijara Alwar

Hanumangarh Hanumangarh Tonk Tonk

Hindaun Karauli Udaipur Udaipur

Jaipur Jaipur Vaishali Nagar Jaipur

Jaisalmer Jaisalmer Vidhyadhar Nagar Jaipur



Chapter 4

An Evaluation of Productivity Change in Public Trans-
port Sector Using DEA

4.1 Motivation and Objective

In the previous chapter, the purpose of efficiency analysis is to identify inefficient RSRTC bus

depots and proposed target values on the efficient frontier for these depots to facilitate future

improvements. However, delving deeper into the exploration of the transport sector reveals that

efficiency, while crucial, presents only part of the narrative. It’s important to acknowledge that

when data spans several period, efficiency values alone may not sufficiently depict units’ overall

performance over the time. Efficiency is measured relative to an efficient frontier that changes

over period, rendering efficiency analysis comparative rather than absolute. In such scenarios,

studying productivity change over time becomes more reasonable as it reflects the cumulative

impact of shifting efficiencies and changes in the efficient frontier. Integrating productivity

analysis alongside efficiency aims to offer a more comprehensive view of the transport sector’s

dynamics and potential avenues for improvement. This chapter serves as a bridge, connecting

the efficiency-focused findings with a broader perspective that encompasses productivity and

its role in advancing the transport sector.

The non-parametric DEA approach has gained widespread recognition and popularity in the

field of productivity analysis due to its versatility in handling various input-output technologies.

This adaptability makes it a valuable tool for assessing productivity change in diverse indus-

tries and assisting policymakers in decision-making and planning. Abundant literature seeks to

decompose productivity growth into several components, including technological change, effi-

ciency change, and scale efficiency change. This approach ensures that resources are allocated

effectively to foster sustainable economic growth and competitiveness. Productivity assessment

has a pivotal role across a multitude of sectors, exemplified by its application in diverse fields

1This work has appeared in Goyal, S., Agarwal, S. and Mathur T., 2022. An evaluation of the productiv-
ity change in public transport sector using DEA-based model. Management Science Letters, 12(2), pp.125-
36.
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including airport operations [237], rail industry [238], auto manufacturers [239], hotel manage-

ment [240], solar still technology [241], and water utility management [242].

O’Donnell (2010) [243] made a significant contribution by showcasing the possibility of

decomposing all theoretically meaningful productivity indexes into common underlying fac-

tors. In the realm of productivity analysis, various indexes are developed to capture different

facets of performance. Among these are ratio-based indexes like the Malmquist index, Hicks-

Moorsten index, and Färe-Primont index, as well as additive indexes such as the Luenberger-

HicksMoorsten index. This chapter focuses on two prominent productivity indexes: Malmquist

productivity index (MPI) and Luenberger productivity index (LPI). These indexes provide valu-

able insights into productivity dynamics and will be instrumental in the analysis.

Conceptually introduced by Malmquist (1953) [244], the index evaluates the productivity

change over time. In non-parametric framework, this index characterized by Caves et al. (1982)

[57], defined the distance function as a geometric mean of two adjacent-period indexes. MPI

is a widely spread approach to measure productivity change. Fare et al. (1992) [245] further

developed the productivity index. MPI is a ratio-based technique that uses distance functions

[246], to decomposed total productivity growth into technical efficiency change (TEC) and

technological change (TC) components [247, 248]. The limitation of MPI is that one has

to choose between orientation (input or output), under one corresponding consideration, ei-

ther cost minimization or revenue maximization. Additionally, MPI tends to exaggerate both

productivity growth and decline. To address these limitations, Chambers et al. (1996) [249]

and Chamber et al. (1996) [56] introduced Luenberger productivity index (LPI), which is a

difference-based index directional distance function (DDF) and has extensively used as a coun-

terpart of the MPI. LPI adopts a different approach by considering the simultaneous contraction

of inputs and expansion of outputs [250]. LPI is known for providing a more conservative es-

timate of productivity change. It doesn’t exaggerate improvements or declines in productivity.

MPI often tends to overestimate productivity changes. The study aims to calculate the potential

gap between MPI and LPI using both productivity indexes with the DEA technique.

This study observes and analyzes the efficiency changes and productivity for 46 out of 52

RSRTC depots due to the non-availability of data over the period 2008-19. As per the review of

literature no such research is done on the productivity of the Rajasthan public transport sector.

The rest of the chapter is organized as follows: Section 4.2 summarizes study on the pro-

ductivity of the transport sector using the DEA technique. Section 4.3 contains a methodol-

ogy framework. Section 4.4 discusses an empirical analysis that measures the productivity of

RSRTC bus depots, providing policy implications and suggestions. The conclusions and future

work are presented in the last section.
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4.2 Literature Review

Efficiency and productivity assessments are integral to evaluating the performance of trans-

portation systems. Odeck (2018) [251] thoroughly reviewed 11 research papers that employed

various methodologies to measure efficiency and productivity within the transportation sector.

Hensher and Daniels (1995) [252] evaluated the gross total factor productivity-MPI (GTMPI)

of public bus operators in Australia for the financial year 1991-92. Viton (1998) [253] com-

puted the multi-modal MPI production frontier for U.S. bus transit between 1988 and 1992.

Karne et al. (2003) [202] conducted a comprehensive analysis spanning from 1996 to 2002,

concentrating on the efficiency, financial performance, and productivity of the state transport

systems in the Indian state of Maharashtra. Furthermore, this study subdivided the area into six

distinct regions for a more detailed examination. Cho and Fan (2007) [254] developed the MPI

index for the Guo Gwang bus companies. Odeck (2008) [251] used MPI methodology to as-

sess the productivity of Norwegian bus industry data (1995-2002) for pre-mergers (1995- 1998)

and post-mergers (1999-2002) years. Wang et al. (2008) [255] suggested the Malmquist DEA

approach for evaluating the productivity of China’s transportation over the period 1980-2005.

They used the bootstrap method to estimate the confidence interval for technical efficiency.

Yu (2008) [256] identified MPI to locate the source of productivity growth for the Taiwan bus

transit system (TBTS). Agarwal et al. (2009) [257] examined the productivity of 34 state road

transport undertakings (SRTUs) in India using the DEA-based MPI approach for the period

1989-1990 to 2000-2001. Also, multiple regression analysis is assessed to determine the im-

pact of several background and uncontrollable variables on the productivity of SRTUs. Wu

and Cathy (2009) [258] studied productivity shifts in Taipei bus transit companies from 2004

to 2007. Findings revealed a decline in average efficiency, measured by MPI, attributed to

decreases in pure technical efficiency change and scale efficiency change. Meanwhile, an up-

swing in the average MPI due to increased technological change. Barros (2010) [259] applied

MPI and LPI indexes to 122 urban transport Portugal bus companies. In a study done by Oh

(2011) [260], overall productivity assessed using the Malmquist Luenberger Productivity Index

(MLPI) for the Seoul 52 bus industry during the years 2003 to 2005. Notably, 2003 represented

the pre-reform period, while 2005 marked the post-reform phase. Arman et al. (2013) [261]

employed MPI to gauge the productivity shifts over an eight-year span (2002-2009) within In-

dian public transit agencies. Yu et al. (2017) [262] analyzed the meta-frontier efficiency-change

(MEC), technology-change (MTC) and technology-gap-change indexes (TGC) of the transport

sector in 30 Chinese provinces from 2000 to 2012 by applying the contemporaneous meta-

frontier Malmquist-Luenberger carbon emission performance index (CMML) that included the
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non-radial DDF. Recently, Gulati (2021) [263] used the sequential Malmquist-Luenberger pro-

ductivity index (SMLPI) approach to estimate the unbiased TFP of 8 passenger bus companies

that operating in big metropolitan cities of India over the period 2011-2016. Moreover, Liu

et al. (2021) [264] empirically addressed the green productivity growth rate and stability of

China’s road transportation using DEA, DDF, and global Malmquist Luenberger index (GMLI)

model.

There are limited studies about the productivity change in the road transport sector globally.

This work assists in productivity change in terms of technical efficiency change (TEC) and

technological change (TC) analysis of RSRTC depots over the consecutive period of 2008-

2019. The primary goal of this research is to help policymakers formulate effective policies to

enhance the overall health and competitiveness of the RSRTC depots.

4.3 Mathematical Description

4.3.1 Technical Background of Productivity Change

Let’s assume two time periods, denoted as t and t+1. For period t, an input vector is defined as

xt
m j ∈ Rm

+ and an output vector as yt
s j ∈ Rs

+. For each period, n DMUs with different inputs and

outputs are observed, denoted for period t as (xt
m j,y

t
s j), stemming from a reference production

technology:

To = min
{
(xt

m j,y
t
s j) ∈

(
Rm
+×Rs

+

)
: xt

m j produces yt
s j

}
(4.1)

Input and output vectors are projected by DDF in a predetermined direction from themselves

to the technological frontier. The production technology can be received in terms of the input

Shepard distance function (SDF) [55]. The traditional SDF occurs when the direction is outside

the origin. The definition of the DDF is as follows:

Dt
d(x

t
d,y

t
d) = in f

{
ψd :

(
xt

i j,
yt

r j

ψd

)
∈ Tt

d , ψd > 0
}

(4.2)

This function returns the minimum value of ‘ψd’ that allows the output to be divided and still

remain within the production set defined by technology Tt
d . Since ψd ≤ 1, reducing the output

by the smallest factor possible yields the greatest proportional expansion of the output vector

yt while considering input xt and technology Tt
d .

Similarly, it is possible to define the following distance functions:
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Dt
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(4.3)

Dt+1
d (xt

d,y
t
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Dt+1
d (xt+1
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d ) = in f

{
ψd :

(
xt+1

i j ,
yt+1
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ψd
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∈ Tt+1

d , ψd > 0
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(4.5)

Similarly, the input distance function at time period t under the production technology Tt can

be defined as:

Dt
d(x

t
d,y

t
d) = sup

{
ψd :

(
xt

i j

ψd
,yt

r j

)
∈ Tt

d , ψd > 0
}

(4.6)

4.3.2 Malmquist Productivity Index

This field of study traces back to the foundational work of Solow (1996) [265], who introduced

a growth accounting framework to measure productivity growth. One notable recent devel-

opment in this area is the MPI, which has gained popularity due to its practical applications.

A key advantage of the MPI is its versatility, allowing for easy calculations using parametric

methods like SFA or a non-parametric approach such as DEA for efficiency measurement. The

MPI enables the decomposition of productivity change into two distinct components: technical

efficiency change (TEC) and technological change (TC). The idea of estimating productivity

is an index for DMUs at consecutive periods [57], calculates productivity index using distance

functions, and is defined as a geometric mean of indices from two adjacent periods. To compute

MPI, it is essential to define input and output indexes accurately. This calculation assumes that

the DMUs are efficient and that the production function is known in advance.

Färe et al. (1992) [245] proposed the modifications in MPI, utilizing the non-parametric

DEA technique and allowing for consideration of DMUs that may not be efficient. This ap-

proach calculates either input or output-oriented DEA models. The input-oriented Malmquist

index is as follows equation (4.7) for the time periods t and t +1:
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IMPIt,t+1
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d,crs(x

t
d,y

t
d)
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(4.7)

This indicates the productivity of the production point (xt+1,yt+1) in comparison to the

production point (xt ,yt), where Dt(xt ,yt), Dt+1(xt ,yt), Dt+1(xt+1,yt+1) and Dt(xt+1,yt+1) rep-

resent the distance functions in the time periods t and t +1.

If IMPIt is greater than one (IMPIt > 1), it signifies positive TFP growth, indicating a gain

in productivity from period t to time period t +1; Conversely, if it is less than one (IMPIt < 1),

it indicates negative TFP growth, implying a loss in productivity. A value of (IMPIt = 1)

signifies no change in productivity between t to time period t +1.

Thus, the geometric decomposition of productivity changes into two different components,

i.e., the Malmquist technical efficiency change (MTEC) and technological change (MTC) for

the period t (first year) and period t +1 (second year) [247]. The IMPI can defined as:
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(4.8)

= MT ECd(xt
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t
d,x

t+1
d ,yt+1

d )×MTCd(xt
d,y

t
d,x

t+1
d ,yt+1

d )

where Dt(xt ,yt) is defined as the input distance function for period t, which is given by m

number of input vectors to produce s number of output vectors. The total productivity pro-

gresses if IMPIt,t+1(xt ,yt) greater than 1, the value of IMPIt,t+1(xt ,yt) less than 1 implies TFP

decline and IMPIt,t+1(xt ,yt) equals to 1 means constant (no change) TFP for the period t to

t +1. Currently, the first component of equation (4.8) is interpreted as the change in efficiency

from period t to period t + 1; this element is known as efficiency change or catch-up impact.

The second component, known as the change in technology, depicts the transition from the old

to the new frontier in technology between period t and t + 1. Technology change (TC) and

technical efficiency change (T EC) > 1(< 1,1) denote growth (decline, no change) over the

period, respectively. MPI can be applied on both constant return to scale (CRS) and variable

return to scale (VRS) assumptions to obtain pure technical efficiency change (PTEC) and scale

efficiency change (SEC), as mentioned in equations (4.10), (4.11) and (4.12).
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Although, as shown in equation (4.9), this index consists of three components. PTEC and

SEC are measured in the first and second components, respectively, while TC is measured in

the third expression. The PTEC and SEC components are the decomposition of TEC index.

PTEC is defined as below:
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Fig. 4.1: MPI under CRS and VRS technology over the period.

Figure 4.1 illustrates the partitioning of technical efficiency change into PTEC and SEC,

where the single input ‘X’ scenario and output ‘Y’ under CRS and VRS technology assump-

tions are investigated. The production function is initially exhibited increasing returns to scale,

followed by constant returns, and eventually decreasing returns. Let’s consider a DMU is op-

erated at point N in time period t and then moved to point M in period t + 1. In the figure,

CRS-1 and CRS-2 denote the frontiers under the CRS assumption for time periods t and t +1,

respectively. Similarly, VRS-1 and VRS-2 represent the frontiers under the VRS assumption

for the same respective time periods.

Intuitively, this model is computing the input-oriented NSM-MPI based model (4.13) for

calculating the productivity changes over a consecutive period. xt
id is ith input and yt

rd is rth

output of dth DMU for the time period t. Now, Dt(xt
d,y

t
d) and ψ∗ represent the OTE score

indicating the input reduction required to produce the given output level. The following models

(4.13), (4.14), (4.15) and (4.16) presents a summary of the new index model.
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In the same manner, Dt+1
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d ) can be obtained by using the inputs and outputs of the

period t +1 instead of period t,
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where, Dt+1
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(4.16)

4.3.3 Luenberger Productivity Index

The MPI relies on radial DEA models, specifically input- and output-oriented ones. This im-

plies that one can either reduce inputs while keeping outputs constant or expand outputs while

maintaining inputs at a fixed level. It is not possible to simultaneously improve both inputs and

outputs. In contrast, LPI represents the shortage distance function that takes into consideration

both input reductions and output progress [249, 266], for time periods t and t +1 based on the
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production technology of time period t, defined as follows in equation (4.17):
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(4.17)

Similarly, LPI for periods t and t +1 consuming the production technology of period t +1

is defined as:
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(4.18)

The arithmetic average of the two LPIs (4.17) and (4.18) for two periods t and t+1 proposed

by Chambers et al. (1996) [249] is as follows:
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(4.19)

On the contrary, the LPI index is an arithmetic mean of the DDF indices for t and t +1 period.

Similarly, LPI can be separated into two parts:
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Here, LPIt,t+1 > (<)0 implies progress (regress) in productivity from period t to t +1 due to its

components efficiency change and technological change. LPIt,t+1 = 0 implies the productivity

remains same over the two periods t and t +1.

The LPI index’s Luenberger technological change (LTC) and technical efficiency change

(LTEC) components. This decomposition is motivated by the MPI, which is defined by:
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Table 4.1: Statistics summary of RSRTC depots for the period 2008-19.

Years I1 I2 I3 I4 O1 O2

2008-09 Mean 88.48 372.61 25.01 11151.6 4.36 394.83

Max 134 624 42.79 19529 9.61 572

Min 45 160 11.61 3151 1.86 277

SD 23.84 129.67 7.62 3504.77 1.51 50.36

2009-10 Mean 88.22 368.09 25.56 11169.1 4.52 399

Max 135 696 44.59 20489 8.95 578

Min 45 156 11.81 3979 1.86 280

SD 23.82 127.66 7.75 3746.12 1.55 49.58

2010-11 Mean 90.35 376.87 25.57 11074 4.67 395.8

Max 143 918 48.96 21800 9.94 586

Min 43 150 11.79 3713 2.01 272

SD 26.34 150.18 8.19 3930.38 1.58 50.9

2011-12 Mean 91.41 395.57 26.48 12236 4.7 403.46

Max 142 815 50.84 30810 9.79 607

Min 43 165 12.4 3506 2.11 267

SD 25.49 141.88 8.57 4843.67 1.54 52.01

2012-13 Mean 88.63 367.54 25.97 10172.7 4.5 394.93

Max 145 744 49.09 20243 9.79 614

Min 44 147 12.25 3490 2.14 259

SD 24.63 134.77 8.86 3365.72 1.62 52.66

2013-14 Mean 88.63 405.04 25.5 10351 4.59 393.8

Max 145 836 54.05 18535 10.49 614

Min 44 176 11.58 3301 1.96 246

SD 24.63 142.89 9.56 3369.77 1.71 53.32

2014-15 Mean 90.26 390.48 26 10234.7 4.66 394.96

Max 154 826 53.72 18552 10.28 615

Min 49 172 12.81 3530 2.08 287

SD 25.25 133.8 8.91 3103.05 1.64 50.67

2015-16 Mean 86.65 365.91 24.53 9911.37 4.54 401.63

Max 153 776 50.09 17782 9.55 650

Min 47 176 12.25 3189 2.19 337

SD 25 122.89 8.52 3014.77 1.54 50.55

2016-17 Mean 83.11 339.5 23.81 9234.76 4.2 391.72

Max 147 709 48.57 17368 8.89 608

Min 50 148 11.33 2703 1.98 323

SD 22 115.4 8.34 3153.92 1.4 46.65

2017-18 Mean 81.28 315.35 25.1 10065.3 4.45 387.33

Max 141 692 49.32 17794 9.17 596

Min 45 144 10.86 4338 2.16 306

SD 22.13 112.56 8.04 2804.66 1.36 46.25

2018-19 Mean 74.5 290.98 22.47 9543.28 4.19 391.93

Max 140 665 45.75 16769 9.02 586

Min 41 123 9.86 4586 1.97 311

SD 22.05 108.18 7.41 2682.35 1.34 45.38



4.4. Empirical Results and Discussion 117

4.3.4 Data, Inputs and Outputs Selection

Improving the performance and delivering the effective service of the transport sector is a vital

goal of this proposed study. This study is using secondary data of 52 depots from the annual re-

port of RSRTC. The research is hampered by a lack of data points for a few years, excluding the

six depots (Jaisalmer, Karauli, Partapgarh, Rajasamand, Sawaimodhopur and Shapur). Data is

taken for the period 2008-2019 of 46 RSRTC depots. The following section first describes four

inputs and two outputs that contribute to evaluating efficiency in the transport sector identified

from the literature survey [236, 203, 230]. Specifically, the number of buses (I1), the number

of employees (I2), fuel consumption (I3) and routes distance (I4) are inputs. The outputs are

passenger-kilometer occupied (O1) and vehicle utilization (O2). Table 4.1 represents the sum-

mary of statistics of all the variables for 46 depots from 2008 to 2019.

4.4 Empirical Results and Discussion

Initially, operational technical efficiency (OTE) is computed using the input-oriented NSM

DEA model. The best and worst depots are investigated based on efficiency values across all

the depots. These results are given in table 4.2. In addition, the extended analysis applying

the NSM model along with IMPI and LPI to determine the productivity changes of 46 depots

refined and deteriorated over the period 2008-2019 in the following subsection. If the efficiency

score is 1, then DMU is referred to as efficient; otherwise inefficient (<1). It is noticed that half

of the number of depots during the study period is relatively less than the average efficiency

score of 0.888. The efficiency scores show Deluxe and Falna are the most efficient (ψ∗ = 1)

depots in the study period. The remaining depots are inefficient for at least one year during the

study period. On the other hand, Jhalawar has the lowest average inefficiency score of 0.748

during the entire period. Jaipur is not efficient only for the year 2008-09. Similarly, Kotputli

and Phalaudi are not efficient only for 2010-17. All the depots are performing better in the

year 2017-18, with the highest average efficiency value is 91.597%. The average minimum

efficiency value in the year 2012-13 is 78.612%. The following subsections describe the IMPI,

LPI, MITEC, MTC, LTEC, and LTC values during the study period by table and figures.
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Table 4.2: Efficiency scores of 46 depots for the period 2008-19.

Depots Years

2008-09 2009-10 2010-11 2011-12 2012-13 2013-14 2014-15 2015-16 2016-17 2017-18 2018-19 Mean

Abu Road 0.855 0.760 0.858 0.885 0.933 0.981 1.000 1.000 1.000 1.000 1.000 0.934

Ajaymeru 0.691 0.699 0.812 0.853 0.838 0.845 0.831 0.830 0.792 0.833 0.768 0.799

Ajmer 0.828 0.805 0.884 0.866 0.875 0.851 0.885 0.862 0.855 0.862 0.758 0.848

Alwar 0.711 0.705 0.905 0.870 0.829 0.805 0.829 0.853 0.866 0.901 0.827 0.827

Anoopgarh 0.869 0.865 0.919 0.954 1.000 1.000 0.995 0.916 0.869 1.000 0.956 0.940

Banswara 0.854 0.873 0.886 0.956 0.954 0.915 0.859 0.884 0.879 0.839 0.860 0.887

Baran 0.798 0.890 0.908 0.910 0.942 0.869 0.843 0.874 0.873 0.887 0.846 0.877

Barmer 0.935 0.904 0.958 1.000 1.000 0.947 0.976 1.000 1.000 1.000 1.000 0.975

Beawar 0.709 0.736 0.836 0.835 0.848 0.897 0.949 0.877 0.925 0.987 1.000 0.873

Bharatpur 0.758 0.768 0.777 0.821 0.893 0.848 0.877 0.854 0.849 0.866 0.801 0.828

Bhilwara 0.739 0.784 0.912 0.888 0.891 0.920 0.935 0.914 0.965 1.000 0.931 0.898

Bikaner 0.782 0.705 0.900 0.914 0.824 0.850 0.902 0.872 0.860 0.914 0.860 0.853

Bundi 0.761 0.780 0.791 0.841 0.905 0.841 0.892 0.882 0.858 0.808 0.812 0.834

Chittorgarh 0.669 0.665 0.779 0.801 0.800 0.752 0.774 0.778 0.805 0.861 0.748 0.766

Churu 0.971 0.903 0.919 0.923 1.000 1.000 1.000 0.966 0.917 0.987 0.953 0.958

Dausa 0.700 0.736 0.758 0.795 0.854 0.780 0.834 0.864 0.869 0.951 0.894 0.821

Deluxe 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Dhaulpur 0.757 0.788 0.794 0.918 0.925 0.861 0.884 0.861 0.865 0.858 0.856 0.852

Didwana 0.946 0.918 0.843 0.820 0.943 0.903 0.928 0.963 0.907 0.958 0.917 0.913

Dungarpur 0.732 0.722 0.858 0.916 0.851 0.837 0.890 0.863 0.811 0.749 0.727 0.814

Falna 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Ganga Nagar 0.738 0.761 0.945 0.997 0.970 1.000 0.949 0.942 0.904 0.927 0.902 0.912

Hanumangarh 0.789 0.758 0.898 0.996 1.000 1.000 0.944 0.971 0.914 0.888 0.854 0.91

Hindaun 0.776 0.763 0.778 0.843 0.865 0.855 0.885 0.901 0.897 0.881 0.856 0.845

Jaipur 0.841 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.986

Jalore 0.932 0.892 0.991 0.868 0.859 0.839 0.889 0.872 1.000 0.858 0.900 0.900

Jhalawar 0.671 0.713 0.768 0.744 0.825 0.729 0.728 0.746 0.763 0.767 0.773 0.748

Jhunjhunu 0.827 0.973 0.989 1.000 0.882 0.894 0.887 0.909 0.819 0.939 0.879 0.909

Jodhpur 0.673 0.665 0.869 0.932 0.887 0.814 0.859 0.869 1.000 0.970 0.890 0.857

Khetri 0.955 0.847 0.874 0.866 0.918 0.907 0.834 0.865 0.795 0.915 0.985 0.887

Kota 0.694 0.708 0.839 0.865 0.808 0.790 0.823 0.811 0.993 0.796 0.776 0.809

Kotputli 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.887 1.000 1.000 0.99

Lohagarh 0.790 0.796 0.840 0.932 0.914 0.838 0.846 0.864 0.858 0.826 0.819 0.848

Matsya Nagar 0.824 0.876 0.963 0.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.968

Nagaur 0.855 0.839 0.838 0.920 0.893 0.922 0.875 0.893 0.888 0.926 0.886 0.885

Pali 0.984 0.982 0.957 0.994 1.000 0.947 0.987 0.998 1.000 1.000 0.974 0.984

Phalaudi 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.985 1.000 1.000 0.999

Sardaarshahar 0.915 0.847 0.873 0.911 0.900 0.958 0.918 0.897 0.916 0.909 0.946 0.908

Sikar 0.697 0.669 0.828 0.888 0.831 0.820 0.875 0.915 1.000 1.000 0.941 0.860

Sirohi 0.895 0.963 0.953 0.986 0.957 0.999 0.968 0.974 1.000 1.000 0.982 0.971

Srimadhopur 0.861 0.809 0.781 0.835 0.943 0.816 0.791 0.768 0.737 0.790 0.811 0.813

Tijara 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.955 1.000 1.000 0.996

Tonk 0.814 0.808 0.871 0.885 0.866 0.843 0.841 0.838 1.000 0.853 0.826 0.859

Udaipur 0.644 0.625 0.800 0.810 0.848 0.737 0.834 0.802 1.000 0.791 0.858 0.795

Vaishali Nagar 0.703 0.688 0.763 0.768 0.679 0.781 0.821 0.813 0.833 0.839 0.810 0.773

Vidhyadhar Nagar 0.918 0.690 0.984 0.988 1.000 0.963 0.936 1.000 1.000 1.000 1.000 0.948

Mean 0.823 0.819 0.885 0.908 0.912 0.895 0.904 0.903 0.911 0.914 0.895 0.888



4.4. Empirical Results and Discussion 119

4.4.1 IMPI & LPI Results

As mentioned earlier, IMPI is a combination of MTEC and MTC. These two components are

individually enumerated and then analyzed. Furthermore, the changes in MTEC can be decom-

posed into two main components: PTEC and SEC. Figure 4.2 represents the annual average

values of TFP using IMPI and LP1 applied to measure the productivity changes with an input-

oriented NSM model for all depots during the study period.

Fig. 4.2: Trends of IMPI and LPI values for all depots over the period 2008-19.

The positive average IMPI growth is 1.957% depot-wise, while MTEC has progressed by

1.289% and MTC has declined by -0.772% throughout the period. This growth is due mainly

to the positive value of MTEC and not because of MTC. Similarly, LPI gained about 1.41%

and LTEC increased by 3.383%, and LTC declined by -0.564% for each depot. This pro-

gressed mainly due to LTEC, while LTC is negative most of the time. The highest average

IMPI progress value is 7.343% in 2017-19, and the decrease in TFP is -5.022% in 2010-12.

Moreover, the highest average IMPI value is 5.898% for Beawar, whereas Tijara has the lowest

average IMPI value -0.0261% over the entire period. Further, the highest average TFP value

of LPI increased by 6.306% in 2017-19 and decreased by -4.432% in 2010-12. It is noted that

Beawar has the highest average LPI value 5.05%, and Tonk has declined -0.638% of produc-

tivity for the entire study period. The following sub-subsections describe two components of

productivity. Moreover, all average values of productivity indices shown in table 4.3.
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Table 4.3: Productivity scores of 46 depots using MPI and LPI.

Depots MPI LPI MTEC LTEC MTC LTC MSEC MPTEC

Abu Road 1.035 0.034 1.025 0.031 1.014 0.036 1.004 1.021

Ajaymeru 1.108 0.013 1.015 0.043 1.005 -0.016 1.001 1.019

Ajmer 1.183 0.001 0.993 0.025 1.01 -0.023 1.011 0.986

Alwar 1.019 0.012 1.020 0.085 1.001 -0.061 1.007 1.014

Anoopgarh 1.018 0.015 1.010 0.029 1.010 0.002 1.005 1.011

Banswara 1.007 0.005 1.002 0.016 1.005 -0.007 0.985 1.015

Baran 1.006 0.004 1.004 0.011 1.003 -0.004 0.997 1.010

Barmer 1.023 0.022 1.009 0.025 1.014 0.018 1.014 1.003

Beawar 1.059 0.051 1.036 0.063 1.023 0.038 1.013 1.025

Bharatpur 1.014 0.011 1.009 0.019 1.007 0.003 1.006 1.002

Bhilwara 1.036 0.030 1.028 0.051 1.009 0.008 1.000 1.025

Bikaner 1.018 0.013 1.018 0.064 1.006 -0.038 1.001 1.006

Bundi 1.013 0.009 1.007 0.016 1.007 0.002 1.012 0.995

Chittorgarh 1.024 0.016 1.016 0.044 1.010 -0.011 1.009 1.010

Churu 1.008 0.007 1.002 0.014 1.008 0.001 0.998 1.002

Dausa 1.034 0.028 1.027 0.037 1.009 0.018 1.015 1.014

Deluxe 1.007 0.003 1.000 -0.034 1.007 0.040 0.991 1.000

Dhaulpur 1.018 0.014 1.017 0.026 1.004 0.003 1.001 1.011

Didwana 1.012 0.009 1.004 0.012 1.009 0.007 1.006 0.998

Dungarpur 1.011 0.006 1.007 0.018 1.006 -0.005 1.013 0.994

Falna 1.020 0.018 1.000 -0.008 1.020 0.044 1.000 1.000

Ganga Nagar 1.032 0.025 1.023 0.088 1.012 -0.039 0.988 1.033

Hanumangarh 1.017 0.013 1.011 0.091 1.010 -0.065 0.985 1.023

Hindaun 1.014 0.012 1.013 0.030 1.002 -0.006 1.006 1.006

Jaipur 1.016 0.011 1.019 0.129 0.998 -0.107 0.982 1.019

Jalore 1.019 0.012 1.008 0.024 1.012 0.001 1.011 0.996

Jhalawar 1.023 0.015 1.017 0.025 1.007 0.006 0.999 1.017

Jhunjhunu 1.018 0.012 1.009 0.045 1.010 -0.022 0.995 1.010

Jodhpur 1.032 0.022 1.037 0.061 1.000 -0.017 1.006 1.026

Khetri 1.020 0.015 1.008 0.022 1.012 0.007 0.982 1.025

Kota 1.015 -0.003 1.015 0.000 0.996 -0.006 1.013 1.007

Kotputli 1.023 0.021 1.001 -0.015 1.021 0.056 1.003 1.001

Lohagarh 1.012 0.008 1.007 0.023 1.006 -0.006 1.002 1.005

Matsya Nagar 1.026 0.019 1.019 -0.005 1.007 0.044 1.002 1.019

Nagaur 1.012 0.010 1.005 0.018 1.009 0.001 0.984 1.015

Pali 1.008 0.006 0.999 0.004 1.010 0.008 1.013 0.990

Phalaudi 1.015 0.014 1.000 0.001 1.015 0.027 0.996 1.000

Sardaarshahar 1.018 0.015 1.009 0.034 1.009 -0.003 0.990 1.018

Sikar 1.023 0.017 1.036 0.140 0.991 -0.105 0.999 1.023

Sirohi 1.017 0.015 1.010 0.011 1.008 0.018 0.994 1.016

Srimadhopur 1.036 0.031 1.018 0.026 1.018 0.036 0.993 1.024

Tijara 1.000 -0.004 1.000 -0.034 0.999 0.027 0.999 1.000

Tonk 1.007 -0.006 1.006 -0.026 0.998 0.014 1.000 1.007

Udaipur 1.034 0.012 1.041 0.077 0.992 -0.052 1.024 1.016

Vaishali Nagar 1.018 0.013 1.018 0.089 1.001 -0.064 1.008 1.008

Vidhyadhar Nagar 1.040 0.022 1.016 0.111 1.024 -0.066 0.997 1.022

Mean 1.025 0.014 1.013 0.034 1.008 -0.006 1.001 1.011

4.4.2 MTEC & LTEC Results

The technical efficiency change (TEC) shows the gap in two frontiers for 2008 and 2019. Usu-

ally, the change in productivity using proper technology and efficient utilization of inputs of the
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depot can be related to the performance of the technical experience throughout the study period

for reforming the management of depot services. MTEC and LTEC consist of the change in

efficiency of all depots between 2008 and 2019. Often, MTEC is an important attribute for

accumulated TFP progress. The average of MTEC is 1.290% per year 2008-19. The highest

average of MTEC in 2009-11 is 9.094%. In 2017-19, the minimum average MTEC value is

0.978%, which means that the average MTEC value of depots decreased by 2.200% during the

period. Udaipur experienced the greatest growth in MTEC 4.088% between 2008 and 2019.

The technical efficiency of Deluxe and Falna neither increased nor decreased (MTEC= 1), in-

dicating that they are on the efficiency frontier.

Fig. 4.3: MTEC and LTEC over the period 2008-19.

There are eight depots (Abu Road, Beawar, Bhilwara, Dausa, Ganga Nagar, Jodhpur, Sikar,

and Udaipur) progress (20-40) % in the MTEC, whereas Ajmer and Pali showed a decline in

average MTEC by 6% and 12% over the period 2008-19. Figure 4.3 shows the MTEC and

LTEC values for 46 depots over the study period. The LTEC results show that the average

efficiency growth over the entire period is 3.380%. The highest average LTEC value in 2017-

19 is 8.525%, while -0.892% decreases the average LTEC in 2016-18. Similarly, in 2008-19,

7 bus depots offered declining LTEC values over the study period, and deluxe has the highest

drop in LTEC -3.441%. LTEC observed an almost positive value over the period for 39 depots.

As per the result, each RSRTC bus depot is growing at different rates of LTEC.
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4.4.3 MTC & LTC Results

TC calculates the impact of change (shift) in the bus depot of productivity growth range, which

helps explain the impact of technological change on productivity and the use of production

functions. Figure 4.4 presents the MTC and LTC values for 46 depots over the study period.

On the contrary, the maximum average MTC score of bus depots in 2017-19 is 9.835%, while

in 2010-12, there is a declined of -8.38%. Jaipur, Kota, Sikar, Tijara, Tonk, and Udaipur depots

showed a decline in average MTC with values -0.245%, -0.359%, -0.859%, -0.074%, -0.245%

and -0.781%, respectively over the study period. Jhunjhunu showed a decrease in MTC for the

years 2008-10, 2009-11, and 2010-12 while increasing for the other study periods. In 2008-10,

2009-11, 2012-14, 2014-16, 2016-18 and 2017-19, average LTC increased by 0.15%, 0.35%,

0.75%, 1.75%, 0.14% and 4.08% for all depots, respectively. During the period 2010-12, the

maximum average decline in LTC is -10.135%. Further, Kotputli progressed in the average LTC

by 5.593%, and Jaipur regressed in the average LTC by -10.54% between 2008-19. Twenty-one

depots showed a decline in average LTC growth from 2008-10 to 2017-19.

Fig. 4.4: MTC and LTC over the period 2008-19.
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4.5 Conclusions

Various DEA models are commonly utilized in the transport sector to calculate productivity.

This study, however, employed an input-oriented NSM DEA model to measure overall produc-

tivity growth using MPI and LPI. Further, it evaluated total productivity change into techno-

logical change (Frontier Shift) and technical efficiency change (Catch-up Effect). This study

expanded the TFP change utilizing the NSM model, meeting radial properties, unit invariance,

and translation invariance criteria. The comparison of IMPI and LPI trends for 46 RSRTC de-

pots during 2008-2019 revealed that average productivity progressed by 1.957% and 1.41%,

respectively. The study tested the approximation techniques of IMPI using LPI and found them

to be less accurate than in prior studies. Setting a benchmark for these 46 depots, the study

developed the concept of self-productivity for RSRTC depots in 2008 and 2019 using IMPI and

LPI. The results suggest implications for policymakers in legislative frameworks, advocating

financial development for appropriate management strategies and performance enhancement.





Chapter 5

Ranking of Efficient DMUs Using Super-Efficiency
Inverse DEA Model

5.1 Introduction

DEA is a mathematical programming-based technique for measuring the efficiency of a group

of DMUs based on observed inputs and outputs. The interest lies in using less input to produce

more output in the DEA literature. Incorporating prior information into the traditional DEA

model helps decision-makers fit their desires into the efficiency analysis process. An appealing

topic is how to maintain the efficiency score of an examined DMU if its fundamental structure

changes marginally. The inverse DEA (IDEA) methodology estimates feasible output levels

while scaling up inputs and maintaining efficiency scores within the DEA framework. The con-

cept of IDEA is initially introduced by Zhang and Cui [267] in 1999. However, it’s important

to note that IDEA studies operate under the assumption that the efficiency levels of observed

DMUs remain constant over the period of interest. This assumption primarily restricts the ap-

plication of IDEA and allows exploration of what alternative combinations of inputs and/or

outputs could have led to the same efficiency score. As inverse optimization technique for

managerial decisions, IDEA models offer valuable insights into resource allocation to achieve

a specific level of competitiveness. Additionally, these models empower the decision-makers to

explore improvements in efficiency scores. In recent years, advanced versions of IDEA mod-

els have emerged and found applications in various fields, including the banking sector [268],

transportation management [269], financial management [270], and many more.

One of the main issues discussed in traditional DEA models is their inability to efficiently

rank all the efficient DMUs. In practical applications, decision-makers are interested in ranking

all DMUs for resource allocation and performance reviews. DEA experts have thoroughly

investigated this issue, and a number of ranking methods are introduced based on different

1This work has appeared in Goyal, S. Talwar, M. Agarwal, S. and Mathur T., 2021. Ranking of efficient
DMUs using super-efficiency inverse DEA model. In Soft Computing for Problem Solving: Proceedings of
the SocProS 2022. Singapore: Springer Nature Singapore. 2, pp 615-626, 2023.



126 Chapter 5. Ranking of efficient DMUs using super-efficiency inverse DEA model

techniques and approaches. Most of these techniques can be viewed as offering supplementary

post-analysis to conventional DEA models, aiming to enhance the ultimate ranking. The super-

efficiency IDEA method is the futuristic approach for ranking DMUs because of its ability to

estimate the input changes based on any increments of the outputs, and hence is named the

growth potential method. Ranking from this method is more reliable because

• This method ranks DMUs based on their growth potential,

• The wasted inputs (values of slack variables) are low, and

• The variation in outputs is controllable.

Hence, this refers to the fact that the decision-maker can select different increments in output

to gain better insight regarding input variables, giving them more flexibility. In other words,

efficient DMUs have no scope for improvement in terms of efficiency, but ranking is vital for

preserving service quality. This research proposes a ranking for efficient depots of RSRTC

using the super-efficiency IDEA model. This study ranked the efficient depots based on the

highest IDEA efficiency score. This model finds utility in conducting production analysis and

optimizing resource allocation to enhance system efficiency in the future. Furthermore, they

serve as a tool to examine DMs’ preferences and policies, aiding in future decision-making,

particularly in estimating inputs and outputs during the analysis of production and resource

allocation, ultimately contributing to increased resource efficiency.

The remaining part of the chapter is written as follows: section 5.2 briefly introduces the

IDEA model extensions and their applications. The new methodology is presented in section

5.3 and applies to the specific context in section 5.4 along with a detailed discussion of the

results. In the last section, concluding remarks are mentioned.

5.2 Literature Review

This section reviewed the extended versions of IDEA models and applications in various fields.

Furthermore, the features of the developed IDEA model in this chapter are compared to other

proposed models for the transport sector to highlight the existing gap in this field.

5.2.1 Ranking Methods

Adler et al. (2002) [271] reviewed ranking methods of DEA and, for instance, specifically em-

phasized the advancement of the research field from 1986 to 2000. Aldamak and Zolfaghari

(2017) [272] studied four more categories of maturely developed papers published up to 2015

that focus on resolving the DEA ranking issue in order to increase the discrimination power
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of this analytical technique. Nevertheless, a subset of research studies have concentrated on

devising ranking approaches tailored specifically for DEA, such as cross-efficiency, super effi-

ciency, benchmarking ranking, and virtual frontier DEA (VFDEA) for ranking efficient DMUs.

Sexton et al. (1986) [273] proposed a cross-efficiency method for ranking DMUs based on the

idea that both units are self- and peer-evaluated. Andersen and Petersen (1993) [274] first intro-

duced the super-efficiency model by removing the DMUs under evaluation in order to improve

the ranking and construct a new frontier with the remaining ones. Mehrabian et al. (1999) [275]

offered a comprehensive ranking of efficient units after addressing issues of infeasibility and

stability. Tone (2001) [52] presented super-efficiency on the SBM model, which is always fea-

sible & stable and has the benefits of non-radial models. Sueyoshi et al. (1999) [276] proposed

a “benchmark approach” with the use of a slack-adjusted DEA model and OERA (Offensive

earned-run average) to overcome the shortcomings of multiple efficient units identified through

the DEA Model. Jahanshahloo et al. (2004) [277] showed a ranking method of efficient DMUs

using leave one out and L1 norm. Jahanshahloo et al. (2007) [278] proposed a new model with

the idea that efficient units can be the target DMU for inefficient DMUs. Bian and Xu (2013)

[279] proposed a virtual frontier DEA, which is further developed by Li et al. (2015) [280]. A

new optimal frontier is constructed, called the virtual frontier. Cui and Li (2014) [281] proposed

that the reference DMU set remains unchanged during the evaluation process. Wanke and Bar-

ros (2016) [121] applied virtual frontier dynamic range adjusted model DEA (VDRAM-DEA)

to assess Latin American airlines’ efficiencies. Also, Barros et al. (2017) [282] used VDRAM-

DEA to evaluate Angolan hydroelectric power stations, which caused higher efficiency score

discrimination. Soleimani et al. (2020) [283] introduced the single-objective linear program-

ming (SOLP) IDEA model to rank the efficient DMUs by removing one DMU in the PPS. All

ranking methods evaluate units from a particular perspective, and each has advantages and hin-

drances compared to others.

5.2.2 Applications of IDEA models

The idea of IDEA was introduced by Zhang and Cui (1999) [267] in the context of project

evaluation in public sectors. Subsequently formalized by Wei et al. (2000) [75] using the

multiple-objective linear programming (MOLP) techniques to solve the problems of resource

allocation and investment analysis. Yan et al. (2002) [74] further modified the IDEA method

by adding a cone constraint to resource allocation. In an inverse problem, the efficiency score

of a DMU is given, and the objective is to determine the optimal quantity of inputs and/or out-

puts required to reach the efficiency target. This problem is studied in many theoretical and

applied publications. Hadi and Foroughi (2006) [284] extended the work of [75] by allowing

arbitrary changes in input and output levels. Hadi et al. (2008) [285] introduced another IDEA
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to estimate the inputs under given increasing outputs while preserving the efficiency score. Lin

(2010) [286] tackled efficiency measurement and revenue-setting challenges in Taiwan chain

stores by applying imprecise DEA and IDEA models. Lertworasirikul et al. (2011) [76] intro-

duced an inverse BCC model for resource allocation without altering efficiency scores. Gattoufi

et al. (2014) [287] introduced a novel application of IDEA in mergers and acquisitions to es-

timate the optimal level of inputs and outputs from pre-merger DMUs, which is needed to be

kept by the post-merger entity to reach a given efficiency target. Ghobadi et al. (2014) [288]

applied the IDEA concept in a dynamic environment with fuzzy data. Jahanshahloo et al. [289]

proposed the IDEA model with a non-radial enhanced Russell model. Jahanshahloo et al. [290]

presented the time based IDEA model per an inter-temporal dependence assumption and devel-

oped a MOLP to solve the IDEA problem for weak Pareto solutions. Hadi-Vencheh et al. [291]

improved the IDEA models for interval data instead of crisp values in measuring the efficiency

score. Lim (2016) [292] proposed the IDEA model to establish new product targets based on

anticipated shifts in the production frontier. Zhang and Cui (2016) [293] integrated IDEA mod-

els into 12 scenarios. Amin et al. (2017) [294] extended the idea of mergers and acquisitions

using IDEA. They introduced a more comprehensive restructuring approach, aiming to enhance

efficiency in post-restructuring firms through either consolidation using synergy or splitting us-

ing reverse synergy. In this regard, Çakır (2017) [295] proposed a resource allocation solution

in a fuzzy setting, introducing an integrated Shannon’s entropy-IDEA model using a two-phase

approach. Eyni et al. (2017) [296] suggested IDEA for sensitivity analysis of DMUs with un-

desirable inputs and outputs. Ghiyasi (2017) [297] developed IDEA models utilizing cost and

revenue efficiency, incorporating price information. Recently, Amin and Al-Muharrami (2018)

[268] formulated a novel method with integrated goal programming (GP) and IDEA for han-

dling mergers and acquisitions involving firms with negative data in the banking industry. Also,

Emrouznejad et al. (2018) [298] developed an IDEA model to determine the optimal allocation

of CO2 emissions quota in the Chinese manufacturing industries. Wegener and Amin (2019)

[299] addressed the novel IDEA model to minimize GHG emissions with an application in the

oil and gas industry. Hosseininia and Saen (2020) [300] transformed the inverse SBM model

into a linear programming format, maintaining DMUs’ efficiency scores while estimating other

parameters. They also proposed an optimal combination of outputs and inputs within the pro-

duction possibility set (PPS). Guijarro et al. (2020) [301] suggested a model that merges IDEA

for calculating input savings from a merger and employs a genetic algorithm to address the com-

binatorial aspects of the problem. Hu et al. (2020) [302] noted that radial-based IDEA models

may be unreliable due to their disregard for slacks. They emphasized the drawbacks through a

counterexample and subsequently introduced a modified model to address this issue. Soleimani

et al. (2020) [283] introduced a SOLP IDEA model to rank the efficient DMUs by removing

the itself DMU in the PPS. Zhang and Cui (2020) [303] highlighted that the conventional IDEA
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models are radial-based. They pointed out that inverse radial DEA models may overlook slacks.

Consequently, they introduced an integrated framework termed non-radial IDEA models em-

ploying multi-objective programming. In another study, Aslani et al. (2021) [304] addressed

supply chain structures and intermediate products in an IDEA model to quantify the Bullwhip

effect in SCs with uncertain demands. Here, uncertain demands and forecasted data are treated

as inputs and outputs. Chen and Wang (2021) [269] identified limitations in the IDEA model

under VRS and introduced constraints for inputs and outputs to address this issue. They also

factored in efficiency and technological changes when optimizing inputs and outputs in IDEA

models. Numerical results on instances presented by Le et al. (2021) [305] assessed the ef-

ficiency and effectiveness using the inverse frontier-based benchmarking DEA model with a

mixed integer linear program in the education system. Sayar et al. (2021) [270] introduced an

enhanced IDEA model accounting for income and budget limitations in planning and budget-

ing. This model enables decision-makers to determine input values and output income shares

while considering income constraints in assessing supermarket efficiency within a chain.

The IDEA has the potential to solve challenging decision-making problems. However, there

are various applications of IDEA in the real world. The literature review shows that there are

limited studies on the public transport sector to rank efficient depots. To fill this gap, this

chapter introduces a model to minimize the input with a super-efficiency IDEA model with an

application in public transportation.

5.3 Description of the Methodology

The super-efficiency, IDEA, and super-efficiency IDEA models are described in the following

subsections.

5.3.1 Super-efficiency DEA Model

In the CCR DEA model, two types of DMUs exist: efficient and inefficient. When DMUs are

on the production frontier at the same time, the standard CCR model has poor discrimination,

making further evaluation and comparison between these DMUs problematic. To address the

lack of a CCR model to evaluate the DMU’s efficiency effectively and accurately, Andersen and

Petersen [274] suggested the super-efficiency DEA model, a complete efficiency measure. The

super-efficiency CCR model is a method that combines super-efficiency and the CCR model.

It can further distinguish efficiency among DMUs and then sort the relative efficiency of these

DMUs. Super-efficiency DEA has a similar function formula to the CCR model used for de-

termining the most productive scale size in the traditional DEA framework. For measuring the

efficiency of n DMUd , whereas each DMUd ∈ 1,2, · · · ,n, considering m inputs to produce s
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outputs represented by xid(i = 1, · · · ,m) and yrd(r = 1, · · · ,s) respectively, the linear form of

the input-oriented super-efficiency model for measuring the efficiency of dth DMU is defined

as follows:

min θd

Subject to

n

∑
j=1, j �=d

yr jλ jd ≥ yrd, ∀ r = 1, · · · ,s
n

∑
j=1, j �=d

xi jλ jd ≤ θdxid, ∀ i = 1, · · · ,m

λ jd ≥ 0, ∀ j = 1, · · · ,n

(5.1)

In model (5.1), the first and second constraints are linear inequality involving the output

and input values yr j and xi j their corresponding multipliers λ jd for all j except dth. In the

super-efficiency DEA model, inefficient DMUs receive the same efficiency score as in the CCR

model. However, its inputs can be proportionally increased for an efficient DMU while main-

taining the same efficiency score. The ratio of this input increase is termed its super-efficiency

value.

5.3.2 IDEA Model

In the following scenario if the efficiency score remains the same, how much input should

increase when the outputs increase? As a result, evaluate the increase in outputs and inputs to

answer this question considering yd to yd +Δyd and xd to xd +Δxd , yd,xd > 0 and Δyd ∈ Rs×n
+ ,

Δxd ∈ Rm×n
+ , respectively. The updated inputs xd + Δxd are represented by αd and outputs

yd +Δyd are denoted by βd for DMUd . The following MOLP model is used to calculate the αd

[306]:

min αd = (α1d,α2d, · · · ,αmd)

Subject to

n

∑
j=1

yr jλ jd ≥ βrd, ∀ r = 1, · · · ,s
n

∑
j=1

xi jλ jd ≤ θdαid, ∀ i = 1, · · · ,m

αid ≥ xid, ∀ i = 1, · · · ,m
λ jd ≥ 0, ∀ j = 1, · · · ,n.

(5.2)
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5.3.3 Super-efficiency IDEA Model

The fundamental IDEA models produce a new DMU. The production possibility set (PPS) in

these models is built by prior DMUs. It is built by n DMUs (DMU1, · · · ,DMUd, · · · ,DMUn),

while among them changed the DMUd with DMU
′
d by creating a new technology set that is

(DMU1, · · · ,DMU
′
d, · · · ,DMUn). Hadi-Vencheh et al. (2015) [291] proposed a new approach

by removing DMUd that new PPS constructed as (DMU1, · · · ,DMU(d−1),DMU(d+1), · · · ,DMUn).

Generally, PPS is built by replacing the ‘perturbed DMU’ with a new unit that includes the

updated inputs and outputs. The super-efficiency IDEA model is a valuable tool for decision-

makers when determining the actual ranking levels of efficient DMUs after changing the PPS.

After eliminating dth DMU, the PPS is not going to change (DMU1,DMU2, · · · ,DMU(d−1),DMU
′
d,

DMU(d+1), · · · ,DMUn). The model is given as follows:

min αd = (α1d,α2d, · · · ,αmd)

Subject to

n

∑
j=1, j �=d

yr jλ jd ≥ βrd, ∀ r = 1, · · · ,s
n

∑
j=1, j �=d

xi jλ jd ≤ θdαid, ∀ i = 1, · · · ,m

αid ≥ xid, ∀ i = 1, · · · ,m
λ jd ≥ 0, ∀ j = 1, · · · ,n

(5.3)

5.3.4 Ranking with IDEA

In this section, utilization of IDEA models using CRS technology for the following reasons:

(i) In one of the models, there is a uniform increase in all outputs of a unit, necessitating a

model that remains stable with changes in dimensions. (ii) The VRS model renders some units

infeasible, whereas the CCR model proves feasible.

5.3.4.1 Single-Objective IDEA Model

The main problem in the super-efficiency IDEA model is that it is MOLP, which implies that

it does not deliver an optimum solution of the model while still maintaining a non-exclusive

Pareto solution. This study employs an inverse DEA-based single-objective IDEA model to

overcome this limitation. The objective function is constructed by increasing the inputs. Ac-

cordingly, the input increment should be the same to produce a single-objective function for all

inputs. As a result, all outputs of DMU have the same increase.
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Sometimes, the increasing quantity of a unit of them is not always the same. For example,

in the road transport sector, one input is the fleet size (number of buses), and another is fuel

consumption (1000 kl). Therefore, all the criteria are normalized using the described equation,

x̂i j =
xi j

max xi j
,

ŷi j =
yi j

max yi j
.

⎫⎬
⎭ (5.4)

Hence, the increment of inputs are the same for all inputs to achieve a single-objective

function. Thus, outputs are increased by the same amount in all DMUs. All outputs of efficient

DMU are increased by (y+ β%), and later the growing percentage of inputs (x+ α%) is calcu-

lated. As a result, the single-objective linear programming IDEA model for efficient DMUs is

given as follows:

αd = min α

Subject to

n

∑
j=1, j �=d

ŷr jλ jd ≥ ŷrd +β , ∀ r = 1, · · · ,s
n

∑
j=1, j �=d

x̂i jλ jd ≤ x̂id +α ∀ i = 1, · · · ,m

x̂i j +α ≥ x̂id, ∀ i = 1, · · · ,m
λ jd ≥ 0, ∀ j = 1, · · · ,n

(5.5)

All DMUd outputs are enlarged by a comparable amount β in the model (5.5). All inputs

and outputs are dimensionless.

Definition 5.3.1 The rank of DMUj is better than DMUs, when α∗
j ≥ α∗

d .

5.4 Numerical Illustration

Passenger transportation is a “service business”, and measuring the efficiency of a service busi-

ness is complicated. This study aims to overcome the complex nature of the organizational op-

eration of passenger transportation at 52 RSRTC bus depots for the year 2018-19. In the present

work, DEA is utilized to sweep up the changes in efficiency. The process involves two main

steps: Step 1 focuses on calculating the efficiency values of bus depots using the CCR model

(1.1), aiming to identify the efficient units among them. The next step involves applying the

proposed super-efficiency IDEA model, represented by equation (5.5). This super-efficiency
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IDEA model is used specifically for ranking the bus depots that are identified as efficient in

Step 1.

5.4.1 Data

This study used a secondary data set of 52 bus depots provided by the annual reports of RSRTC

for 2018-19. Various criteria affect the transport system. Six significant criteria are selected to

assess the transport system, incorporating four input and two output criteria for the evaluation

of efficiency among the 52 bus depots. The descriptive statistics of inputs and outputs are given

in table 5.1.

Table 5.1: Descriptive statistics of inputs and outputs.

Criteria Max Min Average SD

Inputs

Fleet size 140.00 14.00 70.08 24.64

Labor 665.00 54.00 271.08 116.88

Fuel consumption 45.75 4.12 20.91 8.26

Routes distance 16769.00 3496.00 9064.31 2966.59

Outputs
Passenger km occupied 9.02 0.77 3.90 1.50

Vehicle utilization 586.00 311.00 391.87 46.39

Efficiency 1.00 0.80 0.91 0.05

5.4.2 Empirical Results

Initially, the CCR model (1.1) is employed to compute the efficiency scores for 52 RSRTC

depots. Among these, 7 depots—Beawar, Jaisalmer, Karauli, Matsya Nagar, Shapur, Tijara, and

Vidhyadhar Nagar—demonstrated optimal efficiency, each achieving a score of 1 (as shown in

Table 5.2). On the other hand, Dungarpur exhibited the lowest efficiency score, which is 0.801,

compared to the other depots. However, the lack of uniformity in efficiency scores among the

seven top-performing depots complicates the process of establishing a definitive ranking.



134 Chapter 5. Ranking of efficient DMUs using super-efficiency inverse DEA model

Table 5.2: Data and efficiency scores of efficient depots.

Depots I1 I2 I3 I4 O1 O2 CCR Score

Beawar 47.00 238.00 23.40 7285.00 4.75 392.00 1.00

Jaisalmer 25.00 91.00 9.61 4620.00 1.63 491.00 1.00

Karauli 14.00 54.00 4.12 3629.00 0.77 382.00 1.00

Matsya Nagar 73.00 306.00 23.32 6088.00 4.92 387.00 1.00

Shapur 61.00 196.00 9.45 3505.00 2.26 335.00 1.00

Tijara 50.00 199.00 16.75 7238.00 3.49 393.00 1.00

Vidhyadhar Nagar 84.00 349.00 9.86 4871.00 2.70 311.00 1.00

Subsequently, the ranking of 7 efficient depots is evaluated using the model (5.5) under the

assumption of CRS, and outcomes are detailed in table 5.3. To measure the input growth rate,

increase the amount of outputs of all efficient depots by ‘0.15’. The depot with the greater

objective function is ranked higher by the given definition, 5.3.1. The change in outputs for

the efficient Beawar are 4.898 and 392.15, respectively, so The obtained value of α∗
1 =0.234

for the Beawar, hence, Beawar secured the top rank with the most significant value of α∗
k , and

Jaisalmer secured rank 7 with the smallest value of α∗
k = 0.132. The exact process is repeated

for the remaining depots to determine their rankings.

Table 5.3: Ranking of efficient depots.

Depots Beawar Jaisalmer Karauli Matsya Nagar Shapur Tijara Vidhyadhar Nagar

min (α∗
k ) 0.234 0.132 0.156 0.187 0.147 0.132 0.157

Rank 1 7 4 2 5 6 3

The rank of efficient bus depots of super-efficiency IDEA and super-efficiency methods are

tabulated in table 5.4. In most cases, the outcomes obtained using the proposed methodology

and the super-efficiency method are comparable. Note that the results in this section are more

reliable due to the fact that this method ranks depots based on their growth.
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Table 5.4: Ranking of efficient depots using super-efficiency IDEA and super-efficiency

model.

Depots Super-efficiency IDEA model Super-efficiency model

Beawar 1 2

Jaisalmer 7 6

Karauli 4 1

Matsya Nagar 2 3

Shapur 5 4

Tijara 6 7

Vidhyadha Nagar 3 5

5.5 Conclusions

DEA models assess the relative efficiency of depots and effectively identify inefficient units,

it is difficult to differentiate between efficient ones. The IDEA approach has gained popular-

ity in DEA literature for re-evaluating depot efficiency when input or output values change.

The IDEA method primarily analyzes how the relationship between inputs and outputs in pro-

duction units changes while maintaining efficiency level. This serves as a valuable tool for

managerial decision-making, providing insights into resource allocation for achieving specific

level of competitiveness. Additionally, decision-makers should consider preferences for future

planning and evaluate potential system changes. This study applied a ranking system for ef-

ficient depots using the super-efficiency IDEA method alongside a single-objective LP model.

The research assesses the relative efficiency of 52 RSRTC bus depots for the 2018-19 period.

The proposed model identifies 7 RSRTC depots as efficient and 45 as inefficient, with efficiency

scores below 1. Subsequently, the efficient depots are ranked using the super-efficiency IDEA

model. This application also provides a novel analytical framework for addressing quality ser-

vice decisions in efficient depots, including optimal resource allocation among bus depots.





Chapter 6

A Novel Fuzzy Cross-Efficiency Evaluation and Rank-
ing in DEA

6.1 Introduction

The most notable aspect of DEA is self-evaluation. The essence of self-evaluation lies in com-

puting the ratio of weighted outputs to weighted inputs for each DMU, which fundamentally

serves to quantify how effectively the DMU is converting its inputs into outputs. DEA allows

each DMU to select or assign input and output weights during self-evaluation to optimize its

maximum efficiency score. DEA has some deficiencies in performance evaluation [307]. A

drawback arising from the weights assigned during self-evaluation introduces variability and

uncertainty into the efficiency assessment, i.e., the weights may be unrealistic, resulting in a

false impression of DMU efficiency [308, 309]. In addition, multiple DMUs achieve an effi-

ciency score of 1, leading to challenges in ranking them effectively, especially when DMs re-

quiresa a clear hierarchy for practical applications. These issues plague applying the traditional

DEA method to real-world scenarios. DEA approach may need modifications or additional

considerations to cater to the requirements of DMs and improve its applicability in practice,

such as employing alternative evaluation models or introducing certain constraints in weight

selection.

Given the identified drawbacks of the traditional DEA models, especially in handling self-

evaluation biases and challenges in ranking DMUs, a promising avenue that has emerged in

the literature is the concept of cross-efficiency evaluation, originally presented by Sexton et al.

(1986) [273]. Doyle and Green (1994) [310] extended the evaluation of efficiency assessment

of the DMUs paradigm by incorporating the secondary goal approach in both self- and peer-

evaluations. Cross-efficiency evaluation offers the benefit of establishing a distinct ranking

for DMUs in a unique order. Additionally, Boussofiane et al. (1991) [311] proved that this

approach is effective in distinguishing between various efficient DMUs. DEA cross-efficiency

is explicitly designed to determine weights for each DMU, resulting in n sets of weights to
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acquire n efficiencies. The average n efficiency scores provides a final efficiency score for

each DMU. The cross-efficiency model assesses efficiency from a global optimal viewpoint,

allowing for DMU ranking while preventing unrealistic multipliers. As a result, cross-efficiency

assessment boasts enhanced distinguishing power of DMUs and yields results that are more

indicative [312]. The competence of cross-efficiency evaluation to handle multiple solutions

has led to its widespread adoption in several fields, for example, portfolio selection [313],

supply chain management [314], public resource management [315], resource allocation [316],

power plant performance [317], and healthcare service [318].

Decision-making is a routine aspect of human life, as individuals constantly make choices

every day. A notable obstacle faced by those making decisions is the existence of uncertainty

or ambiguity. Uncertainty is prevalent due to incomplete, missing, and imprecise data, which

significantly affects the feasibility and reliability of the results by DEA models [89]. An inte-

grated approach is employed to address such data challenges and enhance the accuracy of the

DEA results. Initially, the k nearest-neighbor (kNN) algorithm, a machine-learning technique,

is employed to impute missing data. This technique operates by classifying the nearest neigh-

bors based on Euclidean distance and then leveraging these neighbors for imputation. While

kNN imputation significantly reduces uncertainty, a degree of ambiguity or vagueness may still

persist. Panchal et al. (2018) [319] concluded that fuzzy methodology is a powerful tool for

handling uncertainty and imprecision in the data. To address this remaining ambiguity, fuzzy

set theory is applied. This theoretical framework allows for the representation of vague or

imprecise information. Expanding on this, researchers have adeptly incorporated membership

functions from fuzzy set theory to refine the imputation process further [320, 112]. This in-

tegration enhances the precision of the filled missing values and provides a means to quantify

and manage the inherent vagueness in the data.

This study introduces a novel fuzzy cross-efficiency evaluation approach under the VRS

assumption to provide a more reliable and comprehensive evaluation of DMUs in a fuzzy en-

vironment. Wu et al. (2009) [258] suggested augmenting the VRS model with an extra con-

straint to ensure non-negative cross-efficiencies. However, this adjustment may not effectively

tackle the underlying issue of negative VRS cross-efficiency. The proposed method explores

all possible weights for each DMU, eliminating the need for subjective weight choices. The

negative efficiency scores can arise with the VRS assumption, which can pose difficulties in

accurately measuring the overall cross-efficiency and is not a reasonable outcome. De et al.

(2013) [321] proposed a method to address this challenge. This method restricts the multiplier

values employed in the model to ensure that all DMUs exhibit positive efficiency scores. The

proposed model incorporates secondary objectives to handle multiple optimal weights with

positive efficiency scores. This study is based on the fuzzy DEA model as detailed in the
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work of Lertworasirikul et al. (2003) [322]. The method is designed to ensure that the cross-

efficiency assessments maintain consistency with the original fuzzy efficiency measurements.

This suggests a rigorous and internally coherent approach to evaluating the performance of

decision-making units under uncertainty. It also transforms the fuzzy DEA model into a crisp

linear programming model using credibility measures at different credibility levels. This trans-

formation simplifies the evaluation process and explicitly addresses the lower and upper bounds

of fuzzy efficiency, resulting in more accurate rankings of DMUs.

The subsequent sections are organized in the following manner: section 6.2 provides an

overview of relevant literature, providing a contextual foundation. Section 6.3 delves into

the fuzzy cross-efficiency evaluation method using the credibility-level approach. Section 6.4

demonstrates the real-world utility of this approach in public transport sector. Subsequently, it

includes discussions on the empirical outcomes and introduces the ensemble ranking method to

enhance the robustness of the evaluation. Finally, the study draws its conclusions in the section

6.5.

6.2 Literature Review

This section is divided into two subsections: the first focuses on reviewing cross-efficiency

evaluation and extended ranking methods. The second delves into fuzzy cross-efficiency eval-

uation. This organization aims to offer a concise overview of the current literature in this area.

6.2.1 Cross Efficiency: A Brief Survey

The cross-efficiency evaluation method has emerged as the widely applied approach for assess-

ing the discriminating power of a DEA model [323]. However, it is crucial to acknowledge

that, despite its extensive adoption with the DEA framework. The cross-efficiency concept

in DEA allows the overall efficiency of a DMU to be evaluated through self-evaluation or

peer-evaluation. In contrast to conventional DEA, where a DMU is evaluated by its optimal

weights (self-evaluation), cross-efficiency appraises a DMU by a set of weights that are opti-

mally obtained in favor of all other DMUs (peer-evaluation) [273]. Doyle and Green (1994)

[310] incorporated a secondary goal to determine unique optimal weights. The two most pop-

ular secondary goal approaches, aggressive and benevolent formulations, involve an additional

criterion to choose weights that ensure optimal efficiency. These approaches are often utilized

in weight selection, considering specific additional objectives when determining the weights.

Various methods are proposed to select suitable weight sets for computing cross-evaluation fur-

ther to enhance the robustness and reliability of cross-efficiency evaluation. For instance, Liang

et al. (2008) [324] introduced the game cross-efficiency DEA method, which can generate a
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set of cross-efficiency scores representing a Nash equilibrium point for DMUs. Different tech-

niques, including super-efficiency and mixed-integer linear programming [325], are proposed

to select suitable weight sets. Wang and Chin (2010) [326] extended the aggressive and benevo-

lent models by proposing four alternative models. Jahanshahloo et al. (2011) [327] introduced

a symmetrical technique to enhance the DEA cross-efficiency evaluation. They proposed a

secondary goal model capable of selecting symmetric weights for DMUs. Researchers have

also addressed the issue of significant variations among weights chosen from different solu-

tions by implementing techniques such as setting lower bounds [328, 329, 330], implementing

ordered weight averaging operators [331], applying minimax and maximin formulations [332]

and assessing the proposed methodologies. Alternatively, some studies considered all possible

weights in the weight space to estimate the interval efficiency of the DMUs [333, 334]. Orkcu

et al. (2015) [335] and Wu et al. (2016) [323] introduced positive feedback in the secondary

goal evaluation strategies, which involved using target identification methodologies with desir-

able/undesirable targets. This addition is aimed at enhancing the reliability of cross-efficiency

evaluation. Olyaie (2019) [336] adopted a criterion that maximizes efficiency scores while min-

imizing the number of satisfied units.

A classic way to aggregate cross-efficiencies into final efficiencies is to take averages (e.g.,

Sexton et al. (1986) [273], Doyle and Green [310], and Sun et al. (2020) [337]). Despite being

simple and widely used, the average method fails to take into account the relative importance

of the evaluators. The reference value of the opinions of different evaluators is different, and

ignoring this difference will lead to bias in the results [338]. Wu et al. (2011) [307] introduced

Shannon entropy into cross-efficiency evaluation and assigned different weights to each eval-

uator DMU. Yang et al. (2012) [333] defined an alternative strategy for ranking DMUs using

minimal and maximal game cross-efficiency scores, which considers all possible weight sets

in weight space, eliminating the need for the decision maker to choose between aggressive or

benevolent strategies according to the idea of [339]. Moreover, Lahdelma and Salminen (2001)

[340] proposed the Holistic Acceptability Index (HAI) to gauge overall cross-efficiency scores.

This index is subsequently employed by Yang et al. (2012) [333] for ranking DMUs. Alcaraz

et al. (2013) [341] accounted for all possible weight choices that all DMUs can make, resulting

in a range of possible rankings for each DMU instead of a singular ranking position. Oukil

and Amin (2015) [342] combined cross-evaluation, preference voting, and ordered weighted

averaging (OWA) to discriminate among DMUs. An et al. (2018) [343] presented a combined

DEA/AHP method for full ranking for all DMUs by combining DEA and analytic hierarchy

process (AHP) techniques. This method evaluates every possible cross-efficiency of a DMU in

relation to all other DMUs, determining the interval cross-efficiency for each DMU. Liu (2018)

[344] introduced the concept of the signal-to-noise (SN) ratio as a numerical index for rank-

ing DMUs. This study emphasized the importance of considering the ranges and variances of
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cross-efficiencies as alternative ranking factors. Yu et al. (2019) [345] proposed a method that

combines interval data, cross-efficiency evaluation, and stochastic multi-criteria acceptability

analysis 2 (SMAA2) approaches to rank DMUs based on interval cross-efficiencies.

These different cross-efficiency evaluation formulations lead to different ranking results for

the DMUs. This research aims to fill this gap by proposing an ensemble ranking method that

combines the various techniques. This approach contributes to a more thorough and reliable

full ranking of DMUs. As a result, an unbiased average ensemble efficiency score is derived

for each DMU’s ranking.

6.2.2 Fuzzy cross-efficiency

Fuzzy DEA models have limitations in ranking efficient DMUs, as they rely only on self-

evaluation and lack adequate discriminative power. However, incorporating peer evaluation

through cross-efficiency evaluation can overcome this weakness and effectively rank the DMUs

in fuzzy environments. It is crucial to acknowledge that different approaches exist for calcu-

lating the efficiency score in fuzzy cross-efficiency DEA models. The method of fuzzy cross-

efficiency evaluation employed depends on the model’s specific features and underlying as-

sumptions.

Sirvent and León (2014) [346] proposed a fuzzy cross-efficiency assessment based on the

fuzzy DEA model introduced by Guo and Tanaka (2001) [99]. Subsequently, in 2015, Dotoli

et al. [347] presented a solution for the DEA cross-efficiency in case of uncertainty in inputs

and/or outputs. These uncertainties are represented as triangular fuzzy numbers. They applied

the secondary goals approach [310]. Then, the fuzzy cross-efficiency ranked the DMUs using

a center-of-area method. In the same year, Han et al. (2015) [348] constructed the following

concepts regarding fuzzy DMUs: Firstly, a fuzzy DMU operating at minimal input and max-

imal output is considered optimal. Secondly, a fuzzy DMU at its maximal input and minimal

output represents poor efficiency. Lastly, a fuzzy DMU with average input and output signifies

daily operational production. Chen (2016) [349] utilized the concept which is introduced by

[350] for self-evaluation and the weight selection methodology for computing the fuzzy peer-

evaluated efficiency of DMUs. The final cross-efficiency of a DMU is calculated by averaging

self-evaluated and peer-evaluated efficiency values. Ruiz and Sirvent (2017) [351] generated a

fuzzy cross-efficiency assessment founded on the fuzzy DEA model highlighted in [322]. In the

same year, Hatami-Marbini et al. [352] introduced a possibilistic programming challenge trans-

formed into an interval-programming problem utilizing the credibility level approach. Chen et

al. (2020) [353] studied a comprehensive model for fuzzy multi-objective portfolio selection

by incorporating the fuzzy mean-semivariance model and DEA cross-efficiency model. Liu

(2021) [354] extended the model proposed by Ramon et al. [334] with the concept of α-cut
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approach. This adaptation facilitated the evaluation of DMUs’ efficiency through fuzzy cross-

efficiency analysis. Their proposed method compared to existing methods for evaluating DMUs

efficiency in a fuzzy environment, and the results indicated that their method is more accurate

and efficient. Existing studies have mainly focused on CRS assumptions to avoid negative effi-

ciency scores in fuzzy cross-efficiency. There is a limited exploration of production technology

with VRS [355]. To address the fuzzy model, they employed the α-cut technique. This model

presented challenges to solving the large number of constraints and time-taking. Furthermore,

there seems to be a gap in the literature regarding the model’s application or discussion in real-

world contexts.

6.3 Preliminaries

6.3.1 Credibility Measure

The traditional DEA models, designed for precise data, face limitations in real-world scenar-

ios. Various fuzzy approaches, such as tolerance, alpha-cut, ranking, possibility, and credibility

methods, are developed to address these challenges. Sengupta (1992) [87] introduced the first

fuzzy model, employing tolerance levels to handle uncertainty. Kao and Liu (2000) [96] used

the alpha-cut method to convert fuzzy inputs and outputs into intervals. Emrouznejad (2013)

[356] introduced the ‘local alpha-cut level’ for multi-objective modeling. Guo and Tanaka

(2001) [99] proposed a fuzzy ranking approach through bi-level linear programming. Building

on Zadeh’s [97] fundamental principles of possibility theory for fuzzy sets, Lertworasirikul et

al. (2002) [357] and Lertworasirikul et al. (2002) [358] introduced “possibility” approaches

within the DEA-CRS model to address ranking challenges. Subsequently, Lertworasirikul et

al. (2003) [322] extended this possibility-based methodology to encompass a fuzzy DEA-VRS

model. However, it is noted that this “possibility” approach lacks the self-duality property, an

essential characteristic both theoretically and practically. These methodologies, while innova-

tive, exhibit limitations that may restrict their applicability in specific contexts [320].

Lertworasirikul et al. (2003) [322] introduced a “credibility approach”, which transforms

fuzzy variables into expected credits. On the other hand, Liu and Liu (2002) [124] outlined a

credibility principle to suggest self-duality measures. This approach is particularly noteworthy

because it addresses some of the limitations of other fuzzy methods. Methods like tolerance

levels, α-cut and possibility, and the credibility approach offer more robust and reliable re-

sults in a broader range of scenarios. For instance, Fasanghar et al. (2015) [359] used fuzzy

credibility-constrained programming. Amini et al. (2019) [360] applied it to evaluate railway

safety. Mahla and Agarwal (2021) [361] combined credibility with fuzzy SBM in Indian oil

sector. This study examined the potential of the credibility measure when dealing with the
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fuzzy DEA model. The applicability of this approach to real-world problems has not been ex-

tensively explored.

Let ξ be a nonempty set with P{ξ} be the power set of ξ . Liu (2006) [362] defined the

credibility set function Cr{·} as the credibility measure if and only if the following five axioms

are satisfied:

1. Cr { /0}= 1,

2. Cr is increasing, i.e., Cr {y} ≤Cr{x} whenever y ⊂ x ∈ ξ ,

3. The credibility measure is self-dual, i.e., Cr {y} + Cr {yC}=1 for any event y ∈ P{ξ},

4. Cr {∪iyi}∧0.5 = SupiCr{yi} for any events yi with SupiCr{yi}<0.5.

5. Crk satisfy the first four axioms on the sets ξk, k = 1,2, . . . ,n, respectively, and let ξ = ξ1 ×
ξ2 × ·· · ,×ξn. Then for each (ξ1,ξ2, . . . ,ξn) ∈ ξ , Cr{ξ1,ξ2, . . . ,ξn} = Cr1 {ξ1}∧Cr2 {ξ2}∧
· · ·∧Crn {ξn}.

The triplet (ξ ,P(ξ ),Cr) is called the credibility space.

Theorem 6.3.1 The two fuzzy variables ψ1 and ψ2 are specified on the credibility space (ξ ,P(ξ ),Cr).

If both Cr{ψ1 = z} and Cr{ψ2 = z} are quasi concave, then for any specific 0.5 ≤ α ≤ 1.

1. Cr{ψ1 +ψ2 ≤ a} ≥ α if and only if (ψ1)
U
2(1−α) + (ψ2)

U
2(1−α) ≤ a,

2. Cr{ψ1 +ψ2 ≤ a} ≤ α if and only if (ψ1)
U
2(1−α) + (ψ2)

U
2(1−α) ≥ a.

Definition 6.3.1 The credibility distribution of triangular fuzzy number M̃ = (r,s,u) such that

(r < s < u) is defined as,

Cr(M̃ ≤ b) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if r < b
b−r

2(s−r) , if r ≤ b < s
b+u−2s
2(u−s) , if s ≤ b < u

1, if r ≥ b.

(6.1)

Cr(M̃ ≥ b) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, if r < b
2s−r−b
2(s−r) , if r ≤ b < s
u−b

2(u−s) , if s ≤ b < u

0, if r ≥ b.

(6.2)

Where b is a scalar value used to compute the credibility measure depending on its position

relative to r, s, and u .The credibility measure is used to convert fuzzy-chance constraints into

their equivalent crisp ones for a given confidence level α ≥ 0.5 as equation (6.3):
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Cr(M̃ ≤ b)≥ α ⇐⇒ (2−2α)s+(2α −1)u

Cr(M̃ ≥ b)≥ α ⇐⇒ (2−2α)s+(2α −1)r
(6.3)

6.3.2 Cross-Efficiency Evaluation in DEA

For calculating the efficiency of n DMUs, where each DMU has i inputs and r outputs, consider

ith inputs is indicated by xi j (i = 1, · · · ,m) to produce rth outputs is denoted by yr j (r = 1, · · · ,s)

of DMU j, ( j = 1, · · · ,n), respectively. A more flexible and adaptable approach is the input-

oriented BCC DEA model. This model is used to assess the efficiency of a specific DMUd

under the assumption of variable returns to scale (VRS).

Max Edd =
s

∑
r=1

urdyrd −wd

s.t.
m

∑
i=1

vidxid = 1

s

∑
r=1

urdyr j −wd −
m

∑
i=1

vidxi j ≤ 0 j = 1, · · · ,n

urd ≥ 0 r = 1, · · · ,s
vid ≥ 0 i = 1, · · · ,m
wd free.

(6.4)

Linear programming model (6.4) is solved to determine the self-evaluation efficiency value Edd

of DMUd , where v∗id (i= 1, · · · ,m) represents the input weights, and u∗rd (r = 1, · · · ,s) represents

the output weights.

Definition 6.3.2 Edd is based on self-evaluation framework for DMUd. If E∗
dd = 1 and all

weight values v∗id,u
∗
rd > 0 ∀ i, r, then DMUd is deemed efficient. Conversely, if E∗

dd < 1, then

DMUd is considered as inefficient.

The free variable wd in the objective function model (6.4) can generate the often negative

efficiency when ∑s
r=1 urdyrd −wd becomes negative due to wd assuming significant negative

value [321]. A slight intuitive modification to the multiplier model is proposed to address this



6.3. Preliminaries 145

issue by adding a constraint in a model (6.5).

Max Edd =
s

∑
r=1

urdyrd −wd

s.t.
m

∑
i=1

vidxid = 1

s

∑
r=1

urdyr j −wd −
m

∑
i=1

vidxi j ≤ 0 j = 1, · · · ,n
s

∑
r=1

urdyr j −wd ≥ 0, j = 1, · · · ,n

urd ≥ 0 r = 1, · · · ,s
vid ≥ 0 i = 1, · · · ,m
wd free.

(6.5)

Each DMU selects optimal weights u∗rd and v∗id to maximize its efficiency score [363]. How-

ever, this approach may introduce a bias in self-evaluation. Cross-efficiency offers a solution by

considering the weights chosen by all n DMUs, incorporating both self- and peer-evaluations.

To obtain the optimal solution (u∗rd , v∗id) for a particular DMUd use the model (6.5). The effi-

ciency of DMUj, denoted as Ed j, is then determined based on the weights chosen by DMUd .

This process yields a peer-evaluation cross-efficiency, which is calculated as follows:

Ed j =
∑s

r=1 u∗rdyr j −w∗
d

∑m
i=1 v∗idxi j

(6.6)

The solution of model (6.6) generates an n× n matrix of cross-efficiency values. To calculate

the final cross-efficiency score for a specific DMUj, the average of all the cross-efficiency scores

corresponding to dth from the matrix be computed. This calculation can be performed using

the following formula:

Ē j =
1

n

n

∑
d=1

E jd, j = 1,2, · · · ,n (6.7)

DMUs may not always have unique optimal weights generated from the model (6.5). Con-

sequently, the traditional cross-efficiency assessment may lack consistency. To address this

issue, several cross-efficiency evaluation models are developed. Two prominent approaches are

the “aggressive” and “benevolent” models, these models help to establish the lower and upper

bounds of cross-efficiency by considering all possible weight combinations for each DMU.
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Min EA
d j =

s

∑
r=1

urdyr j −wd

s.t.
m

∑
i=1

vidxi j = 1

s

∑
r=1

urdyrd −wd −E∗
dd

m

∑
i=1

vidxid = 0

s

∑
r=1

urdyr j −wd −
m

∑
i=1

vidxi j ≤ 0 j = 1, · · · ,n, j �= d

s

∑
r=1

urdyr j −wd ≥ 0 j = 1, · · · ,n

urd ≥ 0 r = 1, · · · ,s
vid ≥ 0 i = 1, · · · ,m
wd free in sign

(6.8)

Max EB
d j =

s

∑
r=1

urdyr j −wd

s.t.
m

∑
i=1

vidxi j = 1

s

∑
r=1

urdyrd −wd −E∗
dd

m

∑
i=1

vidxid = 0

s

∑
r=1

urdyr j −wd −
m

∑
i=1

vidxi j ≤ 0 j = 1, · · · ,n, j �= d

s

∑
r=1

urdyr j −wd ≥ 0 j = 1, · · · ,n

urd ≥ 0 r = 1, · · · ,s
vid ≥ 0 i = 1, · · · ,m
wd free in sign

(6.9)

Models (6.8) and (6.9) are designed to prevent the occurrence of negative efficiency values.

In these models, E∗
dd represents the positive efficiency score of DMUd as computed from the

model (6.5).

The aggressive model (6.8) is designed to minimize the cross-efficiency of all other DMUs,

while the benevolent model (6.9) seeks to maximize them to some extent. The weights acquired

from these two models might differ from those obtained from the model (6.5). By maintaining
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the efficiency of DMUd at its current level of E∗
dd , models (6.8) and (6.9) produce the smallest

and largest cross-efficiency for DMUd . Only precise input and output can be used in these

models to calculate the cross-efficiency. Fuzzy DEA (FDEA) via fuzzy set theory is proposed

to handle efficiency evaluation in the presence of inaccuracies in the data. These models (6.8)

and (6.9) are modified into fuzzy cross-efficiency models to accommodate this fuzziness.

6.3.3 Fuzzy Cross-Efficiency Model

Assume that a set of DMUs has fuzzy numbers representing imprecise inputs x̃i j and outputs

ỹr j. These inputs and outputs describe the efficiency of each DMU within a production process

characterized by m inputs and s outputs. In this context, the fuzzy BCC DEA model (6.5) is

defined as follows:

Max Ẽdd =
s

∑
r=1

urdỹrd −wd

s.t.
m

∑
i=1

vidx̃id = 1

s

∑
r=1

urdỹr j −wd −
m

∑
i=1

vidx̃i j ≤ 0 j = 1, · · · ,n
s

∑
r=1

urdỹr j −wd ≥ 0 j = 1, · · · ,n

urd ≥ 0 r = 1, · · · ,s
vid ≥ 0 i = 1, · · · ,m
wd free in sign

(6.10)

The models (6.8) and (6.9), which are originally designed for crisp data, can be adapted to

handle fuzzy data. This modification allows for the application of aggressive and benevolent

models to scenarios where the observed values are represented as fuzzy numbers, ensuring that
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the cross-efficiency evaluation considers the fuzziness in the data.

Min ẼA
d j =

s

∑
r=1

urdỹr j −wd

s.t.
m

∑
i=1

vidx̃i j = 1

s

∑
r=1

urdỹrd −wd − Ẽ∗
dd

m

∑
i=1

vidX̃id = 0

s

∑
r=1

urdỹr j −wd −
m

∑
i=1

vidx̃i j ≤ 0 j = 1, · · · ,n, j �= d

s

∑
r=1

urdỹr j −wd ≥ 0 j = 1, · · · ,n

urd ≥ 0 r = 1, · · · ,s
vid ≥ 0 i = 1, · · · ,m
wd free in sign

(6.11)

Max ˜EB
d j =

s

∑
r=1

urdỹr j −wd

s.t.
m

∑
i=1

vidx̃i j = 1

s

∑
r=1

urdỹrd −wd − Ẽ∗
dd

m

∑
i=1

vidx̃id = 0

s

∑
r=1

urdỹr j −wd −
m

∑
i=1

vidx̃i j ≤ 0 j = 1, · · · ,n, j �= d

s

∑
r=1

urdỹr j −wd ≥ 0 j = 1, · · · ,n

urd ≥ 0 r = 1, · · · ,s
vid ≥ 0 i = 1, · · · ,m
wd free in sign

(6.12)

6.3.4 Fuzzy DEA Model with Credibility Approach

In the context of solving fuzzy cross-efficiency DEA problems, the α-cut method, as demon-

strated by Liu and Lee (2021) [354], is a widely known approach. However, it comes with

the drawback of generating a significant number of equations, specifically 4n+(m+ s+ 1)n2

equations for each model, even when dealing with relatively small problems. As an alternative,
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Lertworasirikul et al. (2003) [322] introduced a different method that employs a credibility

approach to solve fuzzy DEA models. In the upcoming section, the focus will be on exploring

a fuzzy BCC DEA model, complemented by a credibility approach that incorporates a non-

negativity constraint. This approach aims to make the concept clearer and more understandable

while addressing the challenges associated with solving fuzzy DEA problems:

Max Ẽd =

{ s

∑
r=1

urdỹrd

}U

2(1−α)

−wd

s.t.

{ m

∑
i=1

vidx̃id

}L

2(1−α)

= 1 k = 1, · · · ,n
{ s

∑
r=1

urdỹr j −
m

∑
i=1

vidx̃i j

}U

2(1−α)

−wd ≤ 0 j = 1, · · · ,n
{ s

∑
r=1

urdỹr j

}U

2(1−α)

−wd ≥ 0 j = 1, · · · ,n

urd ≥ 0 r = 1, · · · ,s
vid ≥ 0 i = 1, · · · ,m
wd free in sign.

(6.13)

Definition 6.3.3 DMUd is efficient only if the optimal value of model (6.13), denoted as Ẽ∗
d , is

greater than or equal to 1, at a credibility level α within the range [0.5, 1]. Conversely, if this

condition is not met, DMUd is deemed inefficient at the same credibility level.

Lemma 6.3.2 Let (E∗
d ,u

∗
rd,v

∗
id) be an optimal solution of model (6.13) for a given DMUd, then

{v∗id x̃id}L
2(α−1) = 1 holds.

Definition 6.3.4 Assuming (E∗
d ,u

∗
rd,v

∗
id) represents an optimal solution of model (6.13) for a

specific DMUd at a credibility level within the range [0.5,1], then the credibility cross-efficiency

of DMU j, ( j = 1, · · · ,n), evaluated at the same credibility level, obtained the weights of DMU j,

is defined as the ratio:

ECr
d j =

{u∗rdỹrd}U
α −w∗

d
{v∗id x̃id}L

α
(6.14)

Definition 6.3.5 Let ECr
d j , ( j = 1, · · · ,n) represent the cross-efficiency for a specific DMUd at

credibility level α within the range [0.5,1], the credibility cross-efficiency value of DMU j, ( j =

1, · · · ,n), evaluated at the same credibility level, expressed as:
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ĒCr
j =

1

n

n

∑
d=1

ECr
d j , j = 1, · · · ,n (6.15)

Based upon the previous lemma and the fundamental definitions of the credibility approach,

the aggressive and benevolent models for fuzzy BCC DEA cross-efficiency are transformed into

the following models:

Min ECr,A
d j =

(
s

∑
r=1

urd

n

∑
j=1, j �=d

ỹr j

)L

2(1−α)

−wd

subject to (
m

∑
i=1

vik

n

∑
j=1, j �=d

x̃i j)
U
2(1−α) = 1,

(
s

∑
r=1

urdỹrd)
U
2(1−α)−Edd(

m

∑
i=1

vidx̃i j)
L
2(1−α)−wd ≤ 0,

(
s

∑
r=1

urdỹr j)
U
2(1−α)− (

m

∑
i=1

vidx̃i j)
L
2(1−α)−wd ≤ 0, j = 1, · · · ,n, j �= d

(
s

∑
r=1

urdỹr j)
U
2(1−α)−wd ≤ 0, j = 1, · · · ,n, j �= d
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wd free in sign.

(6.16)
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(6.17)

The lower and upper bounds of efficiency are determined by the models (6.16) and (6.17),

denoted as (ECr,A
k )L

α and (ECr,B
k )Uα respectively, for each DMU across different α levels.

6.3.5 Fuzzy Correlation Coefficient of Input x̃ and Output ỹ

In the vast landscape of statistical analysis, the correlation coefficient has traditionally stood

as a pivotal tool, consistently employed to discern the relationship between variables across

various scientific and engineering fields. While these conventional techniques are effective for

precise data, the increasing challenges in dealing with ambiguous and imprecise information

necessitate the exploration of more advanced methodologies. This led to the convergence of

traditional correlation with fuzzy logic—a mathematical approach adept at analyzing vague or

uncertain data. Pioneering this convergence, Puri and Yadav [120] introduced a groundbreaking

method in 2013 and concluded that the correlation coefficient is a reliable measuring operator

for the applicability of generalized fuzzy sets in decision-making.

For two precise data sets, represented as r(x,y) with x = x1,x2, ...,xn and y = y1,y2, ...,yn,

the correlation coefficient is calculated using the following formula:

rL(x,y) =
n∑n

i=1 xi
Lyi

L −∑n
i=1 xi

L ∑n
i=1 yi

L√
n∑n

i=1

(
xi

L
)2 − (

∑n
i=1 xi

L
)2
√

n∑n
i=1

(
yi

L
)2 − (

∑n
i=1 yi

L
)2 (6.18)
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However, precise data might not always be available in real-life situations due to impre-

cisions or ambiguities. Hence, for two fuzzy data sets, x̃ and ỹ, depicted as x̃!, x̃2, x̃3, · · · , x̃n

and ỹ!, ỹ2, ỹ3, · · · , ỹn, the fuzzy correlation coefficient, denoted as r̃(x̃, ỹ), is calculated using the

following formula:

rR(x̃, ỹ) =
n∑n

i=1 xi
Ryi

R −∑n
i=1 xi

R ∑n
i=1 yi

R√
n∑n

i=1

(
xi

R
)2 − (

∑n
i=1 xi

R
)2
√

n∑n
i=1

(
yi

R
)2 − (

∑n
i=1 yi

R
)2 (6.19)

An expected value method is employed to derive the fuzzy correlation coefficient between

these fuzzy data sets. The initial step involves determining the expected intervals (EI) of the

fuzzy datasets, namely find EI(x̃i) = [x̃i
L, x̃

i
R], EI(ỹi) = [ỹi

L, ỹ
i
R], i = 1,2, · · · ,n. Using these

intervals, the expected interval of the fuzzy correlation coefficient,

r̃(x̃, ỹ), is identified as rEI(x̃, ỹ) = [rL(x̃, ỹ),rR(x̃, ỹ)], where:

• Both rL(x̃, ỹ) and rR(x̃, ỹ) lie within the range [-1,1].

• rL(x̃, ỹ) is equal to rL(ỹ, x̃) and similarly for rR(x̃, ỹ) = rR(ỹ, x̃).

• rL(x̃, ỹ) and rR(x̃, ỹ) both equals to 1 if x̃ = ỹ.

The average value of the fuzzy correlation coefficient is symbolized as rEV (x̃, ỹ) and is

expressed by:

rEV (x̃, ỹ) =
rL(x̃, ỹ)+ rR(x̃, ỹ)

2
(6.20)

Additionally, this average value adheres to the properties:

• rEV (x̃, ỹ) is confirmed to the range [-1, 1].

• rEV (x̃, ỹ) is symmetrical, i.e.,

rEV (x̃, ỹ) = rEV (ỹ, x̃) (6.21)

• rEV (x̃, ỹ) = 1 if x̃ = ỹ.

When the value of rEV (x̃, ỹ) is positive for every x̃ and ỹ, it indicates that the FDEA model

maintains consistency, and the incorporation of fuzzy inputs and outputs is appropriate.

Remark 6.3.1 If the data is crisp, the proposed approach gives similar results as given by the

conventional correlation coefficient formula defined in equation (6.20). In the case of crisp

data,
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rL(x̃, ỹ) = rR(x̃, ỹ) = rEV (x̃, ỹ) = r(x,y). (6.22)

6.4 Fuzzy Cross-Efficiency of Transport Sector

Evaluating the efficiency of the transport sector is a crucial concern for policymakers. In this

section, the proposed method is discussed to assess the efficiency of the transport system amid

ongoing improvements, taking into account the inherent uncertainties. However, evaluating

transport efficiency under uncertainty is essential, particularly in assessing the success of up-

coming reforms and verifying the sustainability of long-term reforms. The proposed fuzzy

cross-efficiency DEA approach is applied to address the uncertainty in evaluating the efficiency

of the transport sector. Applying this methodology is straightforward and beneficial for vali-

dating and planning targeted transportation reforms.

The proposed framework consists of the following three main phases as shown in figure

6.1:

Input-output data collection phase: The selection of the appropriate criteria necessary for an

effective performance evaluation serves as the beginning of this phase. The chosen input-output

variables are then the subject of a systematic collection of quantitative data, which forms the

basis for the ensuing analytical steps. This data is organized and preprocessed with great care

to ensure its accuracy and relevancy.

Fuzzy DEA-efficiency phase: This phase commences with the application of fuzzy DEA

methodologies to the gathered data. To refine the precision of the results, efficiencies are as-

sessed using a credibility measure with multiple credibility levels. The subsequent analysis of

these findings provides a clearer understanding of the relative efficiencies of the units under

study, highlighting their comparative strengths and areas of potential improvement. Further-

more, the fuzzy cross-efficiency technique is implemented, encompassing credibility level and

considering both aggressive and benevolent perspectives, reflecting the multifaceted nature of

the evaluation process.

Ranking phase: This crucial phase starts with the thorough creation of a decision matrix that

combines cross-efficiencies obtained from both (aggressive and benevolent) approaches. The

Ensemble ranking technique is used to ensure a multi-dimensional and thorough evaluation of

the STUs, improving the robustness and integrity of the ranking process.
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Fig. 6.1: Schematic view of the proposed approach.
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6.4.1 Data Collection

This study delves into an extensive analysis of the financial and operational performance of

public bus transit systems in India, focusing on data compiled from the financial year 2017-

2018. The database utilized for this in-depth examination originates from a comprehensive

report published by the Central Institute of Road Transport (CIRT). The dataset specifically

pertains to publicly owned and operated bus transit corporations operating in various states.

These corporations, commonly known as “state transport undertakings” (STUs), serve as the

cornerstone of public road transportation across India. STUs, in their role as critical providers

of mobility services, are indispensable components of India’s public transportation landscape.

They fulfill a crucial function by connecting urban and rural areas, ensuring that passengers

nationwide have access to reliable transportation services. STUs are distinctively characterized

by their commitment to non-profit objectives, with each state government playing a pivotal role

in overseeing and guiding their operations. This unique characteristic aligns with their mission

to prioritize public service and accessibility over profit generation. As such, the sustainability

and effectiveness of STUs are paramount to the nation’s continued growth and development.

Due to not availability of data, some STUs from the data set are excluded, including SMTU,

NGST, MZST, ARPST, TNSTC(TNV), CHNTU, PRTC, TRPTC, BSRTC, and CSTC from the

47 STUs, resulting in a final sample of 37 STUs. These exclusions are made primarily due to

the unavailability of complete and reliable data for these specific STUs. In pursuing rigorous

analysis, ensuring data accuracy and consistency is paramount. During this process, it’s worth

noting that some missing values persist within the dataset, which may be attributed to various

real-life factors, such as data recording discrepancies or specific operational challenges faced by

certain STUs. These real-life constraints emphasize the importance of meticulous data handling

and analysis to derive meaningful insights into the performance of public transport sector.

6.4.2 Data Pre-processing

Pre-processing is the preliminary stage of any data analysis process, involving the preparation

and transformation of raw data into a refined and usable format, including addressing missing

values. The presence of missing data in annual reports can decrease the statistical power of

the analytical model and adversely affect decision-making processes. This problem is common

and unavoidable in data-driven transport systems. Several factors contribute to this signifi-

cant problem, including imperfect manual data entry procedures, inaccurate measurements and

equipment errors.

Imputation techniques are frequently used to address these challenges. Among these tech-

niques, the k nearest neighbour (kNN) method proves to be typically successful for imputing
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numerical variables. This method is based on Euclidean distance or similar measures, making

it increasingly favored in empirical studies for its accuracy and simplicity. The main advantage

of kNN imputation is that it doesn’t require any parametric assumption, allowing it to adapt

to distinct types of variables or features that are important in estimation. In comparison, mean

imputation (MEI) is another approach, but still lacking in popularity for real-world problems.

Some degree of ambiguity or vagueness may still exist after predicting and filling the val-

ues that are missing. The fuzzy set theory is employed to overcome this remaining ambiguity.

Furthermore, the utilization of fuzzy numbers plays a pivotal role in reducing uncertainty when

predicting missing values. Employing membership functions from fuzzy set theory to express

uncertain values provides a robust strategy for handling erroneous data directly [112]. Through

the fuzzification process, predicted missing values are transformed into triangular fuzzy num-

bers. The application of Saaty’s scale [181] to fuzzify these values in triangular fuzzy numbers

enhances their suitability for representing uncertainty.

6.4.3 Inputs & Outputs

The development of an evaluation framework requires that the various inputs and outputs im-

pacts of the transport service be organized in a meaningful manner [364]. As calculation of

efficiency using DEA is sensitive in the selection of inputs and outputs, as the literature evi-

dences varied approaches [365]. Subjective evaluation grounded in expert opinion remains a

common method, yet others applied objective techniques based on mathematics and statistics.

Number of vehicles (I1), number of drivers (I2), staff ratio per bus and total traffic staff (I3),

administration (I4) & conductors (I5) and fuel consumption (I6) are the most considered vari-

ables since they represent the main inputs in the production process. On the other hand, the

most frequently used output measures are such as vehicles by traveled kilometers (O1) and the

number of passengers carried (O2).

Lower and upper correlations are calculated using the equations (6.18) and (6.19). The

upper diagonal entries indicate the upper correlation values, while the lower diagonal entries

section represents the lower correlation values in the table 6.1. These values are derived from

correlation analysis and provide an upper or lower estimate of the relationship between crite-

ria. Given that the final correlation is the average of both the lower and upper correlations, it

provides a more comprehensive perspective on the relationships between these criteria in table

6.2.



6.4. Fuzzy Cross-Efficiency of Transport Sector 157

Table 6.1: Upper & lower correlation between fuzzy inputs-outputs for the year (2017-

18).

Variables Inputs Outputs

(I1) (I2) (I3) (I4) (I5) (I6) (O1) (O2)

(I1) 1 0.919 0.825 0.901 0.804 0.819 0.976 0.798

(I2) 0.896 1 0.848 0.777 0.801 0.812 0.94 0.741

(I3) 0.797 0.839 1 0.693 0.836 0.786 0.799 0.797

(I4) 0.859 0.755 0.688 1 0.687 0.729 0.874 0.645

(I5) 0.795 0.784 0.820 0.663 1 0.845 0.799 0.663

(I6) 0.793 0.786 0.738 0.697 0.825 1 0.823 0.859

(O1) 0.967 0.913 0.775 0.838 0.787 0.797 1 0.758

(O2) 0.781 0.722 0.758 0.599 0.639 0.820 0.742 1

In table 6.1, the correlation coefficients of input and output variables are presented. Since

all values are positive, there are no inverse relationships observed among the provided criteria.

The relationships between input and output are predominantly strong. Most of the correlation

coefficients are close to 1. The correlation coefficients among the input and output criteria are

checked to ensure that the dataset satisfies the isotonicity property and to ensure that the input

and output variables are important and relevant.

Table 6.2: Final correlation between fuzzy inputs-outputs for the year (2017-18).

Variables Inputs Outputs

(I1) (I2) (I3) (I4) (I5) (I6) (O1) (O2)

(I1) 1

(I2) 0.907 1

(I3) 0.811 0.844 1

(I4) 0.88 0.766 0.69 1

(I5) 0.799 0.792 0.828 0.675 1

(I6) 0.806 0.799 0.762 0.713 0.835 1

(O1) 0.971 0.926 0.787 0.856 0.793 0.81 1

(O2) 0.789 0.731 0.778 0.622 0.651 0.839 0.75 1

6.4.4 Fuzzy DEA Efficiency Results

In order to evaluate the optimal efficiency scores of each STU, fuzzy DEA model (6.13) is

applied at different credibility level-α for each STU, respectively, and the obtained results

are presented in table 6.3. The values seem to range between 0 and 1 for each STU at dif-

ferent credibility levels, with 1 indicating the best performance. According to the results, 11
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STUs, namely, GSRTC, UPSRTC, KSRTC, RSRTC, TNSTC (MDU), TNSTC (KUM), TNSTC

(VPM), TNSTC (CBE), SETC (TN), NMMT, and PMPML with an efficiency score of 1 have

the best efficiency in converting inputs to outputs at all credibility levels [0.5, 0.9] with 0.1

steps computed. Whereas APSRTC, KnSRTC, TNSTC (SLM), ASMSTC, and SKNT show a

declining trend as α increases. This suggests that these STUs may be sensitive to the changing

conditions or parameters associated with increasing α values. STUs such as TSRTC, HRTC,

UTC, BEST, DTC, BMTC, MTC (CNI), TMTU, KMTU, KADMTU, and OSRTC have gener-

ally lower scores across the α values, especially as α increases, which could be areas of con-

cern. Out of 37 STUs, 26 have efficiency scores below 1, indicating that they are inefficient.

The scores of the inefficient STUs range between 0.426 and 0.986. The weakest performance

is related to the MTC (CNI) STU, which belongs to Chennai. The findings suggested that

the fuzzy DEA model lacks the ability to rank the efficient DMUs, and its low discriminatory

power is a limitation when it comes to evaluating efficiency scores. The standard deviation

(SD) increases as α increases, indicating that the variance in scores among STUs grows with

increasing α values. This suggests that the STUs are more diverse in their performance or re-

sponse to the conditions represented by higher α values. Table 6.3 reveals that the performance

of many STUs is sensitive to the value of α . An increase in α seems to affect the performance

of several STUs negatively.
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Table 6.3: Fuzzy BCC efficiency scores of STUs for the year 2017-18.

STUs α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9 Rank

APSRTC 1.000 1.000 1.000 1.000 0.878 14

MSRTC 0.898 0.918 0.940 0.838 0.653 24

GSRTC 1.000 1.000 1.000 1.000 1.000 1

UPSRTC 1.000 1.000 1.000 1.000 1.000 1

KnSRTC 1.000 1.000 1.000 1.000 0.874 15

KSRTC 1.000 1.000 1.000 1.000 1.000 1

RSRTC 1.000 1.000 1.000 1.000 1.000 1

NWKnRTC 0.852 0.938 1.000 1.000 1.000 17

TNSTC (MDU) 1.000 1.000 1.000 1.000 1.000 1

STHAR 0.964 0.964 0.919 0.830 0.723 22

TNSTC (KUM) 1.000 1.000 1.000 1.000 1.000 1

TNSTC (VPM) 1.000 1.000 1.000 1.000 1.000 1

TNSTC (CBE) 1.000 1.000 1.000 1.000 1.000 1

NEKnRTC 0.878 0.878 0.819 0.709 0.591 26

TNSTC (SLM) 1.000 1.000 1.000 1.000 0.986 12

TSRTC 0.762 0.760 0.743 0.736 0.738 28

SETC (TN) 1.000 1.000 1.000 1.000 1.000 1

NBSTC 0.951 0.947 0.918 0.881 0.819 21

SBSTC 0.970 0.970 0.970 0.960 0.896 18

KDTC 0.957 0.956 0.933 0.893 0.795 20

ASMSTC 1.000 1.000 0.905 0.768 0.661 23

ANST 0.892 0.892 0.802 0.658 0.530 27

SKNT 1.000 1.000 1.000 0.929 0.837 18

HRTC 0.868 0.865 0.758 0.646 0.540 29

UTC 0.867 0.867 0.867 0.826 0.713 25

MEGTC 0.971 0.976 0.972 0.970 1.000 13

NMMT 1.000 1.000 1.000 1.000 1.000 1

BEST 0.789 0.789 0.702 0.604 0.508 30

DTC* 0.810 0.788 0.663 0.539 0.431 35

BMTC 0.822 0.802 0.668 0.542 0.433 33

MTC (CNI) 0.801 0.798 0.656 0.533 0.426 36

PMPML 1.000 1.000 1.000 1.000 1.000 1

AMTS 0.860 1.000 1.000 1.000 1.000 16

TMTU 0.755 0.753 0.663 0.548 0.448 37

KMTU 0.839 0.811 0.667 0.544 0.437 31

KADMTU 0.839 0.807 0.668 0.545 0.437 32

OSRTC 0.813 0.796 0.670 0.544 0.436 34

Average 0.923 0.926 0.889 0.839 0.778

SD 0.085 0.089 0.136 0.185 0.227
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Fig. 6.2: Fuzzy BCC efficiency scores across (1-18) STUs (2017-2018).

Fig. 6.3: Fuzzy BCC efficiency scores across (19-37) STUs (2017-2018).
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6.4.5 Fuzzy Cross-Efficiency Evaluation

The present section examines the fuzzy cross-efficiency scores of 37 STUs. The cross-evaluation

method is more effective than the self-evaluation method, as it can differentiate between non-

dominated STUs where the latter method cannot. Then, use the results of table 6.3 into models

(6.17) and (6.16) to compute the interval cross-efficiency of each STU. The average fuzzy in-

terval cross-efficiency evaluation results are presented in table 6.4 under the same condition of

maintaining STU’s self-evaluation efficiency value unchanged. The results also include average

and standard deviation values at the end. In this study, the cross-efficiency values are denoted as

(ECr,A
k )L

α and (ECr,B
k )Uα , respectively. The aggressive evaluation approach aims to minimize the

cross-efficiency values, while the benevolent approach seeks to maximize them. Consequently,

the resulting values represent the lower bounds of efficiency for the aggressive evaluation and

the upper bounds for the benevolent evaluation. This dual assessment provides a comprehensive

understanding of the performance spectrum of various STUs across five different α measures,

which are shown as ‘min’ and ‘max’ efficiency scores for each α . The gap between the min

and max values is monotonically decreased until the iteration process converges to an optimal

solution of the fuzzy cross-efficiency DEA model. For aggressive and benevolent evaluation,

the mean efficiency score assigned by STUs is in the range [0.639, 0.878] for all credibility

levels [0.5, 0.9], respectively. The results provided, that UPSRTC has the highest average in

some of the measures, nearing 0.998 in one of them. While TMTU and MTC (CNI) appear

to be the lowest performing STUs in certain measures, with values as low as 0.353 for MTC

(CNI). AMTS has values that range from 0.673 to 1.000, indicating significant variability in

their performance. The standard deviation for α=0.9 measures is 0.190, which is relatively

high. This means that the performance of the STUs varies significantly for these particular

measures. In other words, some STUs might perform exceptionally well, while others might be

performing poorly in these specific measures. The wider range suggests inconsistency among

the STUs for these performance metrics. The effectiveness of the proposed methodology in

ranking between efficient STUs is demonstrated in a complex problem. Interestingly, the best

performer is changed under different credibility measure level. However, the fact that TMTU

always stays almost at the bottom of the list does not change the rank.
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Table 6.4: Average fuzzy cross-efficiency scores of 37 STUs (2017-18).

α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9

STUs min max min max min max min max min max

APSRTC 0.804 0.984 0.839 0.981 0.810 0.927 0.711 0.780 0.642 0.667

MSRTC 0.619 0.785 0.659 0.793 0.586 0.676 0.499 0.550 0.447 0.463

GSRTC 0.713 0.954 0.746 0.932 0.764 0.926 0.744 0.860 0.860 0.905

UPSRTC 0.844 0.998 0.869 0.994 0.861 0.971 0.827 0.909 0.838 0.879

KnSRTC 0.710 0.914 0.768 0.919 0.741 0.861 0.662 0.744 0.648 0.677

KSRTC 0.788 0.976 0.803 0.946 0.820 0.945 0.782 0.870 0.889 0.927

RSRTC 0.751 0.939 0.768 0.917 0.799 0.924 0.767 0.866 0.778 0.818

NWKnRTC 0.684 0.835 0.707 0.914 0.703 0.931 0.642 0.889 0.727 0.886

TNSTC (MDU) 0.732 0.940 0.781 0.935 0.793 0.925 0.768 0.861 0.875 0.912

STHAR 0.769 0.943 0.788 0.922 0.771 0.877 0.689 0.756 0.661 0.687

TNSTC (KUM) 0.722 0.947 0.794 0.968 0.785 0.931 0.736 0.830 0.821 0.846

TNSTC (VPM) 0.843 0.993 0.883 0.992 0.876 0.975 0.843 0.921 0.861 0.896

TNSTC (CBE) 0.780 0.982 0.823 0.978 0.798 0.931 0.767 0.857 0.846 0.883

NEKnRTC 0.673 0.847 0.704 0.838 0.668 0.768 0.584 0.642 0.546 0.567

TNSTC (SLM) 0.633 0.815 0.696 0.836 0.705 0.812 0.665 0.744 0.720 0.749

TSRTC 0.590 0.714 0.603 0.711 0.590 0.684 0.555 0.634 0.569 0.601

SETC (TN) 0.824 0.964 0.847 0.966 0.852 0.958 0.829 0.913 0.849 0.886

NBSTC 0.751 0.936 0.787 0.929 0.749 0.866 0.702 0.777 0.721 0.751

SBSTC 0.727 0.923 0.750 0.896 0.773 0.898 0.755 0.856 0.775 0.818

KDTC 0.796 0.945 0.831 0.943 0.813 0.908 0.761 0.829 0.722 0.749

ASMSTC 0.694 0.937 0.732 0.912 0.688 0.822 0.585 0.664 0.583 0.610

ANST 0.632 0.822 0.665 0.816 0.643 0.749 0.546 0.608 0.502 0.524

SKNT 0.764 0.930 0.766 0.921 0.797 0.930 0.740 0.840 0.726 0.761

HRTC 0.634 0.818 0.671 0.812 0.615 0.717 0.533 0.593 0.494 0.513

UTC 0.680 0.827 0.716 0.834 0.703 0.801 0.650 0.717 0.608 0.633

MEGTC 0.748 0.928 0.722 0.917 0.719 0.910 0.673 0.873 0.788 0.868

NMMT 0.812 0.983 0.797 0.975 0.777 0.953 0.724 0.908 0.801 0.871

BEST 0.550 0.716 0.586 0.738 0.521 0.653 0.433 0.565 0.412 0.496

DTC 0.639 0.790 0.658 0.772 0.584 0.659 0.497 0.537 0.423 0.435

BMTC 0.649 0.800 0.665 0.781 0.589 0.664 0.503 0.543 0.426 0.439

MTC (CNI) 0.520 0.708 0.576 0.738 0.497 0.616 0.407 0.502 0.353 0.419

PMPML 0.696 0.933 0.660 0.968 0.655 0.981 0.588 0.939 0.739 0.952

AMTS 0.673 0.835 0.684 0.981 0.664 0.998 0.595 1.000 0.730 1.000

TMTU 0.468 0.667 0.494 0.659 0.467 0.593 0.376 0.473 0.358 0.405

KMTU 0.659 0.816 0.676 0.793 0.592 0.667 0.506 0.546 0.428 0.440

KADMTU 0.659 0.815 0.674 0.791 0.593 0.667 0.507 0.547 0.429 0.441

OSRTC 0.635 0.790 0.655 0.773 0.583 0.660 0.495 0.537 0.426 0.4396

Average 0.699 0.877 0.725 0.878 0.701 0.831 0.639 0.743 0.649 0.698

SD 0.088 0.092 0.087 0.092 0.108 0.127 0.127 0.153 0.170 0.190
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Table 6.5: Aggressive and Benevolent ranking for all credibility level of 37 STUs

(2017-18).

α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9

STUs min max min max min max min max min max

APSRTC 5 3 4 3 6 12 14 18 22 22

MSRTC 33 33 31 28 32 29 32 30 29 30

GSRTC 17 8 17 13 15 13 10 12 4 5

UPSRTC 1 1 2 1 2 4 3 5 7 10

KnSRTC 18 20 13 17 17 21 19 21 21 21

KSRTC 7 6 7 10 4 7 4 9 1 3

RSRTC 11 13 13 18 7 15 6 10 11 14

NWKnRTC 21 22 21 20 20 8 21 7 15 7

TNSTC (MDU) 14 12 12 12 10 14 5 11 2 4

STHAR 9 11 10 15 14 19 16 20 20 20

TNSTC (KUM) 16 9 9 7 11 8 12 16 8 13

TNSTC (VPM) 2 2 1 2 1 3 1 3 3 6

TNSTC (CBE) 8 5 6 5 8 8 6 13 6 9

NEKnRTC 23 21 22 23 23 25 25 25 26 26

TNSTC (SLM) 31 28 23 24 19 23 18 21 19 18

TSRTC 34 35 34 36 30 28 26 26 25 25

SETC (TN) 3 7 3 9 3 5 2 4 5 7

NBSTC 11 15 11 14 16 20 15 19 18 17

SBSTC 15 19 16 22 13 18 9 14 12 14

KDTC 6 10 5 11 5 17 8 17 17 18

ASMSTC 20 14 18 21 22 22 24 24 24 24

ANST 32 25 28 26 26 26 27 27 27 27

SKNT 10 17 15 16 9 11 11 15 16 16

HRTC 30 26 27 27 27 27 28 28 28 28

UTC 22 24 20 25 20 24 20 23 23 23

MEGTC 13 18 19 18 18 16 17 8 10 12

NMMT 4 4 8 6 12 6 13 6 9 11

BEST 35 34 35 34 35 35 35 29 35 29

DTC 28 31 32 33 33 34 33 34 34 35

BMTC 27 30 28 31 31 32 31 33 32 34

MTC (CNI) 36 36 36 34 36 36 36 36 37 36

PMPML 19 16 30 7 25 2 23 2 13 2

AMTS 23 22 24 3 24 1 22 1 14 1

TMTU 37 37 37 37 37 37 37 37 36 37

KMTU 25 27 25 28 29 30 30 32 31 32

KADMTU 25 28 26 30 28 30 29 31 30 31

OSRTC 29 31 33 32 34 33 34 34 32 33
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6.4.6 Ensemble Ranking Method

In accordance with Mohammadi and Rezaei [366], this study introduces a half-quadratic pro-

gramming approach to calculate an ensemble ranking of alternative sites. The ensemble ranking

is aggregated by computing the weighted sum of the rankings under all sets of ranked dimension

weights, in which the set-wise weights are calculated using the minimizer function. Apparently,

the weights with respect to the rankings under all sets of ranked dimension weights conform to

the non-zero and unit-sum properties. This approach is particularly valuable for mitigating de-

cision bias. This methodology aims to calculate a unified ranking system by combining various

individual ranking systems, thereby enhancing the consensus and validity of the rankings. Con-

sider ‘n’ distinct techniques, each assigning a rank (R1,R2,R3, ...,Rn) to a particular alternative

according to their respective methods. Simultaneously, there exists a consolidated ranking de-

noted as R∗ for the same alternative. The primary objective of the ensemble ranking technique

is to minimize the Euclidean distance between each individual rank and the consolidated rank-

ing, R∗. To achieve this goal, a quadratic minimization function is formulated as follows:

min
1

2

n

∑
j=1

||R j −R∗||2.

Here, R j represents the individual computed rank, and R∗ is the assumed consolidated ranking.

This function aims to enhance the consensus with the consolidated ranking by reducing the

distance from it. An optimal weighted ensemble ranking procedure is devised by allocating

distinct weights w1,w2, ...,wn to each procedure and iteratively adjusting these weights until

they converge to a conclusive solution. Each auxiliary variable, signifying an individual ranking

method, is denoted by α j, where

α j = δ (||R j −R∗||22).

The weights are calculated by normalizing the auxiliary variables using the following formula:

w j =
α j

∑n
1 α j

.

The consolidated ranking is derived by taking the sum of each rank, each of which is multiplied

by its corresponding weight,

R∗(optimal) = ∑
j

w jR j.

The consensus index, denoted as C, provides a measure of the degree of agreement among the

various rankings and is used to form the ensemble ranking R∗. The calculation of the index C
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for an ensemble ranking R∗, considering the rankings R j where j = 1,2, . . . ,n, can be expressed

as follows

C(R∗) =
1

mn

m

∑
i=1

n

∑
j=1

Nσ (R∗
i −R j

i )

Nσ (0)
,

where Nσ (·) is the probability density function of the Gaussian distribution with a standard

deviation of σ and a mean of zero, and m is the number of alternatives.

The trust level, represented as T , signifies the extent to which one can have confidence in

the ensemble ranking. It reflects the reliability of this ranking. When an individual ranking

significantly differs from the majority of rankings, it receives a lower weight, consequently

exerting less influence on the ensemble ranking. In such cases, the trust level is less affected.

The calculation of the trust level can be summarized as follows

T (R∗) =
1

m

m

∑
i=1

n

∑
j=1

Wj
Nσ (R∗

i −R j
i )

Nσ (0)
.
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Table 6.6: Ensemble ranking results.

STUs R* Aggressive Ranking R* Benevolent Ranking Ensemble Ranking

APSRTC 9.731 10 11.812 12 17

MSRTC 31.503 32 29.902 30 31

GSRTC 12.927 13 10.333 9 8

UPSRTC 2.835 2 4.259 2 2

KnSRTC 17.464 18 20.011 21 21

KSRTC 4.710 4 7.056 7 4

RSRTC 9.443 9 14.029 14 10

NWKnRTC 19.801 19 12.489 13 18

TNSTC (MDU) 8.808 7 10.643 11 7

STHAR 13.615 15 17.189 19 20

TNSTC (KUM) 11.298 11 10.614 10 9

TNSTC (VPM) 1.522 1 3.216 1 1

TNSTC (CBE) 6.834 5 8.095 8 5

NEKnRTC 23.717 25 24.090 25 25

TNSTC (SLM) 21.950 23 22.676 23 22

TSRTC 29.921 31 29.846 28 28

SETC (TN) 3.110 3 6.353 5 3

NBSTC 14.111 16 17.103 18 19

SBSTC 12.977 14 17.371 20 14

KDTC 7.800 6 14.751 16 12

ASMSTC 21.550 21 21.204 22 24

ANST 27.962 28 26.229 26 26

SKNT 11.992 12 14.884 17 14

HRTC 27.966 29 27.229 27 27

UTC 20.881 20 23.799 24 24

MEGTC 15.705 17 14.313 15 15

NMMT 9.344 8 6.640 6 6

BEST 35.000 35 32.194 33 35

DTC 31.980 33 33.469 35 34

BMTC 29.768 30 32.049 32 32

MTC (CNI) 36.163 36 35.593 36 36

PMPML 22.457 24 5.470 4 19

AMTS 21.742 22 5.087 3 17

TMTU 36.837 37 37.000 37 37

KMTU 27.943 27 29.877 29 30

KADMTU 27.546 26 30.054 31 29

OSRTC 32.491 34 32.653 34 33

Confidence Index 0.996 0.997

Trust Level 0.996 0.997
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Fig. 6.4: Ranking comparisons.

Table 6.5 tabulates the ranking of maximum and minimum efficiency values, which are

used as the ranking inputs in the half-quadratic programming approach. As depicted in table

6.6, the consolidated ranking, denoted as R∗, and ensemble ranking are presented. The results

show that TNSTC (VPM) is the most promising STU since it obtains a lower score of R∗ at

3.316. In contrast, TMTU ranks as the least efficient STU, recording the highest score of 37

STUs. Moreover, These weight values imply a preference relationship among credibility levels

for aggressive and benevolent fuzzy cross-efficiency models. For the aggressive model, the

weight values are distributed as follows: α(= 0.5) holds a weight of 0.196, α(= 0.6) is 0.204,
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and α(= 0.7) comes in at 0.221, α(= 0.8) is 0.216, and α(= 0.9) stands at 0.163. On the other

hand, for the benevolent model, the respective weight values are: α(= 0.5) at 0.175, α(= 0.6)

at 0.203, α(= 0.7) is 0.2171, α(= 0.8) at 0.206 and α(= 0.9) stands at 0.198. Highlighting the

robustness of the ranking, the confidence indices and trust levels are recorded at (0.996, 0.997)

for both metrics, respectively. This shows that the reliability with regard to the final ensemble

assessment and the agreement among all ranking inputs are sufficiently relevant. Figure 6.4

highlights the differences between the ensemble ranking and the rankings obtained from both

aggressive and benevolent models. A noteworthy observation is that out of 37, 33 exhibit

varied rankings. However, the positions of specific STUs, namely TNSTC (VPM) at rank 1,

NEKnRTC at 25, MTC (CNI) at 36, and TMTU at 37, remain constant across the models. Such

consistency suggests that the performance evaluations for these units are notably stable and

robust.

6.5 Conclusions

This study introduces a novel method, the fuzzy cross-efficiency BCC DEA model, to assess

the performance of STUs in terms of efficiency, which takes into account the uncertainty factor

with missing values in a dataset. This approach integrated kNN and the fuzzy logic framework,

is allowing the model to maintain its discriminatory ability while also being able to handle

uncertainty using fuzzy logic. This approach considered all possible weights of all DMUs si-

multaneously and eliminated the need to select a specific set of weights. This model has a sig-

nificant advantage in not generating negative efficiencies, making it suitable for situations with

VRS assumptions. Two mathematical programs (aggressive and benevolent) for each credibil-

ity measure at different credibility levels determine the fuzzy cross-efficiency. By solving these

mathematical programs, it is possible to obtain the min and max bounds of the fuzzy cross-

efficiency with ease. However, it is demonstrated that the use of two different formulations -

aggressive and benevolent - can lead to two distinct efficiency rankings. This inconsistency

poses a challenge to the reliability of the cross-efficiency evaluation process. To address this,

the ensemble ranking method is applied, offering a unified ranking for all STUs and ensuring a

more robust and dependable assessment of their performance.
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Chapter 7

Conclusions and Future scope

7.1 Results and Findings

This thesis addressed the MCDM techniques, DEA, IDEA, and fuzzy DEA models to evaluate

the efficiency and productivity in the public transport sector. Additionally, various integrated

techniques guide criteria selection and weights, rank all DMUs, and identify the most efficient

ones. The primary contributions of this research are broadly categorized into two vital areas: (i)

the practical implementation of the proposed methodologies and models in the public transport

sector; and (ii) the development of innovative fuzzy DEA techniques adept at handling uncer-

tain, missing, and ambiguous data environments. An in-depth analysis of the RSRTC depots

forms the cornerstone of this research, serving as the basis for a comprehensive investigation.

This study extends its scope beyond the RSRTC to encompass the broader study region of In-

dia’s state transport undertakings (STUs).

The conclusions derived from each of these techniques are meticulously presented in their

respective chapters. In summary, these methods extend beyond theoretical applications within

the public transport sector, demonstrating their relevance and applicability in a wider array of

real-world scenarios. Furthermore, the research addressed critical limitations often encountered

in traditional DEA models. For instance, fuzzy DEA models demonstrate an ability to handle

uncertainty and ambiguity in data. To bolster this capability, an integrated fuzzy DEA model

with kNN method is deployed to impute missing values in the transport sector. This approach

is demonstrated to reduce uncertainties in the dataset. A application of the each methods are

shown in each chapter with reference to the public transport sector. From the results perspec-

tive, the following are the study’s specific findings:

• Selection of criteria is vital in preventing depot corrosion and failures. Chapter 2 applied a novel

hybrid approach that integrates fuzzy Delphi, fuzzy AHP, and TOPSIS-VIKOR-ELECTRE
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methods. Leveraging fuzzy set theory addressed subjectivity and ambiguity in criteria assess-

ment, leading to more robust outcomes. After identifying 29 distinct criteria, expert collabora-

tion and fuzzy Delphi Method narrowed the list to 14 pivotal criteria. The Fuzzy AHP method

determined the relative significance of the four categories and 14 screened criteria. The re-

sulting weights are used in TOPSIS, VIKOR, and ELECTRE approaches to rank 52 RSRTC

depots for the year 2017-18. These MCDM techniques provided substantial results, address-

ing gaps in previous research within the public transport sector, especially in criteria selection.

The proposed models are characterized by their simplicity, convenience, precision, and effi-

ciency, offering valuable support to decision-makers. This innovative hybrid MCDM method

is adaptable and address significant criterion selection challenges in transportation and other

decision-making contexts.

• The chapter 3 evaluates the efficiency of RSRTC depot using the input-oriented NSM model

with VRS assumption from 2005 to 2022. Across the 52 depots spanning from low, medium and

high advantageous conditions, identified a range of efficiency levels. These nuanced variations

offer a valuable opportunity for tailored interventions to enhance service quality. The results of

the time series analysis revealed that the RSRTC has 84.8%, 85.6%, and 77.8% average OTE

for the period 2005-2022. Many years have shown a decline in efficiency across all categories.

Average PTE (93.4%, 96.4%, and 94.5%) and SE (91%, 89%, and 82.2%) are estimated in all

three categories. This reveals that the inefficient use of input resources and average inputs slack

is about 5.23 %, and the average due scale size is about 12.6%. Addressing this challenges can

lead to more effective strategies. In 2021-22, while there is a recovery, depots didn’t reach past

performance levels, signifying a shift in strategies. The study identified significant performance

gaps in depots, emphasizing the need for optimization which marks a vital step in enhancing

RSRTC depot efficiency.

• Chapter 4 measures the total factor productivity (TFP) and incorporates the Malmquist produc-

tivity index (MPI) and Luenberger productivity index (LPI) using input-oriented NSM model

over a specified time frame (2008–2019). Additionally, the total productivity change decom-

posed into two key components: technical change (Frontier Shift) and technical efficiency

change (Catch-up Effect). The MPI and LPI indexes applied to the panel data of 46 depots

reveal that, on average, the total factor productivity (TFP) in the depots has increased by a

rate of 1.95% and 1.41%. MTC has declined by -0.772%, and LTC declined by -0.564% in

technical change throughout the period. Twenty-one depots showed a decline in average LTC

growth from 2008-10 to 2017-19. Thus, the study demonstrates a significant trend wherein the

decline in productivity across several depots predominantly stems from technological changes,

emphasizing the pivotal role of technological advancements in shaping and influencing overall

productivity within the transportation system.
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• DEA models are effective in evaluating the relative efficiency of DMUs. However, distinguish-

ing between efficient units can be challenging, discussed in the chapter 5. The inverse DEA

(IDEA) approach has emerged as a valuable tool for re-evaluating DMU efficiency when input

or output values change. It analyzed the relationship between inputs and outputs in production

units while maintaining efficiency levels, offering valuable insights for resource allocation and

competitiveness. For managerial decision-making, it is crucial to consider preferences and eval-

uate potential system changes. In this study, we applied a super-efficiency IDEA method and a

single-objective LP model to rank efficient depots among 52 RSRTC bus depots for 2018-19.

The model identified 7 RSRTC depots as efficient and 45 as inefficient, with efficiency scores

below 1. The super-efficiency IDEA model is used to rank the efficient depots. This application

provides a novel framework for making quality service decisions in efficient depots, including

optimal resource allocation among bus depots.

• Chapter 6 introduced the fuzzy cross-efficiency BCC DEA model to evaluate STUs’ efficiency,

addressing uncertainty with missing data. The approach integrates k-NN and fuzzy logic, main-

taining discrimination ability. Considering all possible weights simultaneously eliminates the

need for specific weight selection. This model’s advantage is its ability to avoid generating

negative efficiencies, which is particularly useful for situations with VRS assumptions. To de-

termine fuzzy cross-efficiency, mathematical programs (aggressive and benevolent) for each

credibility measure at different α levels, providing access to the minimum and maximum

bounds, are used. However, applying two different formulations could lead to distinct effi-

ciency rankings, challenging the evaluation process’s reliability. To address this, the ensemble

ranking method ensures a unified ranking for all STUs and enhances performance assessment

robustness. This advancement significantly contributes to the field, providing a more accurate

evaluation of STUs’ efficiency and performance.

7.2 Recommendation

The following recommendations are made on the basis of the findings of the study:

• In depots for which the value of efficiency scores is less than unity, improved performance

could result from the diffusion of new technology knowledge, improved managerial practices,

and more effective utilization of resources.

• To mitigate input slack in under-performing depots, it is advisable to consider reducing em-

ployee strength. Inefficient depots have the opportunity to adopt practices akin to those of the

most efficient depots, resulting in substantial cost savings.

• Drivers of new technological buses should receive ongoing training to ensure proficiency. Ad-

ditionally, incentives to consistently high-performing employees can be a motivational tool.
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Public recognition of their achievements can further inspire them. A systematic evaluation of

their work performance over time should be considered when considering promotions.

• Most depots are found to be operated at increasing returns to scale. Expanding their capacity

and fleet utilization can increase their productivity and efficiency.

• Efforts are required to be made toward replacing old buses and induction of modern buses to

raise efficiency.

• The RSRTC has to operate its services on socially obligatory routes even if it does not meet the

targets of performance indicators. Nevertheless, the corporation should consolidate its opera-

tion on nationalized routes.

• The use of more advanced fuel-efficient models of buses, better maintenance of fleets and

roads, and replacement of worn-out buses are likely to help in improving the performance of

the corporation.

• Promoting fuel conservation plays a pivotal role in enhancing the efficiency and productivity

of transport services. To achieve improved fuel efficiency, it is advised to streamline the num-

ber of stops, ensure regular fleet maintenance, monitor proper tyre pressures, and maintain a

consistent travel speed. Raising awareness among operating staff about the importance of fuel

conservation is crucial. To this end, implementing reward and promotion schemes is strongly

recommended. These incentives can effectively motivate staff to actively participate in fuel-

saving efforts.

• The analysis reveals that the TFP decline in the depots is primarily attributed to a decrease in

technical efficiency. To enhance technical efficiency, depots should focus on optimizing input

utilization to increase output.

7.3 Future Scope

• The utilization of DEA in conjunction with artificial neural network (ANN) models is another

aspect to consider; we can potentially enhance the accuracy and depth of efficiency predictions.

This integration allows for a more comprehensive assessment of performance by leveraging the

strengths of both methodologies.

• While the study emphasizes the importance of enhancing productivity for the sustained suc-

cess and prosperity of DMUs, it’s worth noting a potential limitation. Introducing an advanced

model like the Sequential Malmquist Luenberger productivity index (SMLPI) could be a valu-

able avenue for future research and could further enhance the assessment of productivity in

competitive environments. This potential enhancement could serve as a valuable addition to

the existing framework.
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• Explore advanced data imputation methods to help fill in missing values more accurately. Tech-

niques like multiple imputation or machine learning-based imputation models may be consid-

ered.

• As an extension of this study, it’s important to acknowledge a potential limitation of DEA,

which arises from its reliance on favorable weights for assessing the efficiency of a DMU. This

can sometimes lead to a lack of differentiation among many DMUs. To address this issue, a po-

tential avenue for future research could involve the application of the cross-efficiency method,

specifically in the context of a neutral cross-efficiency model. This model could incorporate

the most favorable weights for both input and output within the framework of the DEA model.

This extension holds promise for refining the assessment of DMU efficiency.
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[11] İ. Ertuğrul and N. Karakaşoğlu, “Performance evaluation of Turkish cement firms with

fuzzy analytic hierarchy process and topsis methods,” Expert Systems with Applica-

tions, vol. 36, no. 1, pp. 702–715, 2009.



176 Bibliography

[12] X. Wang and H. K. Chan, “A hierarchical fuzzy topsis approach to assess improvement

areas when implementing green supply chain initiatives,” International Journal of Pro-

duction Research, vol. 51, no. 10, pp. 3117–3130, 2013.

[13] V. Bhagavath, “Technical efficiency measurement by data envelopment analysis: An

application in transportation,” Alliance Journal of Business Research, vol. 2, no. 1,

pp. 60–72, 2006.

[14] M. J. Farrell, “The measurement of productive efficiency,” Journal of the Royal Statis-

tical Society Series A: Statistics in Society, vol. 120, no. 3, pp. 253–281, 1957.

[15] A. Charnes, W. W. Cooper, and E. Rhodes, “Measuring the efficiency of decision mak-

ing units,” European Journal of Operational Research, vol. 2, no. 6, pp. 429–444, 1978.

[16] X.-B. Li and G. R. Reeves, “A multiple criteria approach to data envelopment analysis,”

European Journal of Operational Research, vol. 115, no. 3, pp. 507–517, 1999.

[17] H. D. Sherman and J. Zhu, “Analyzing performance in service organizations,” MIT

Sloan Management Review, 2013.

[18] G. Zhou, W. Chung, and Y. Zhang, “Measuring energy efficiency performance of China’s

transport sector: A data envelopment analysis approach,” Expert Systems with Applica-

tions, vol. 41, no. 2, pp. 709–722, 2014.

[19] W. D. Cook and L. M. Seiford, “Data envelopment analysis (DEA)–thirty years on,”

European Journal of Operational Research, vol. 192, no. 1, pp. 1–17, 2009.

[20] W. W. Cooper, L. M. Seiford, and K. Tone, Introduction to data envelopment analysis

and its uses: with DEA -solver software and references. Springer Science & Business

Media, 2006.

[21] S. Hui and M. Wan, “Study of hotel energy performance using data envelopment anal-

ysis,” in 12th International Conference on Sustainable Energy Technologies, 2013,

pp. 26–29.

[22] R. D. Banker, A. Charnes, and W. W. Cooper, “Some models for estimating technical

and scale inefficiencies in data envelopment analysis,” Management Science, vol. 30,

no. 9, pp. 1078–1092, 1984.

[23] A. Dellnitz, A. Kleine, and W. Rödder, “CCR or BCC: What if we are in the wrong

model?” Journal of Business Economics, vol. 88, pp. 831–850, 2018.

[24] L. M. Seiford, “A bibliography for data envelopment analysis (1978-1996),” Annals of

Operations Research, vol. 73, no. 0, pp. 393–438, 1997.

[25] G. Tavares, “A bibliography of data envelopment analysis (1978-2001),” RUTCOR,

Rutgers University, vol. 11, p. 14, 2002.



Bibliography 177

[26] A. Emrouznejad, B. R. Parker, and G. Tavares, “Evaluation of research in efficiency

and productivity: A survey and analysis of the first 30 years of scholarly literature in

DEA,” Socio-Economic Planning Sciences, vol. 42, no. 3, pp. 151–157, 2008.

[27] C. T. Kuah, K. Y. Wong, and F. Behrouzi, “A review on data envelopment analysis

(DEA),” in 2010 Fourth Asia International Conference on Mathematical/Analytical

Modelling and Computer Simulation, IEEE, 2010, pp. 168–173.

[28] J. S. Liu, L. Y. Lu, W.-M. Lu, and B. J. Lin, “A survey of DEA applications,” Omega,

vol. 41, no. 5, pp. 893–902, 2013.

[29] A. Emrouznejad and M. Marra, “Ordered weighted averaging operators 1988–2014: A

citation-based literature survey,” International Journal of Intelligent Systems, vol. 29,

no. 11, pp. 994–1014, 2014.

[30] A. Emrouznejad and G.-l. Yang, “A survey and analysis of the first 40 years of scholarly

literature in DEA: 1978–2016,” Socio-Economic Planning Sciences, vol. 61, pp. 4–8,

2018.

[31] A. Panwar, M. Olfati, M. Pant, and V. Snasel, “A review on the 40 years of existence of

data envelopment analysis models: Historic development and current trends,” Archives

of Computational Methods in Engineering, vol. 29, no. 7, pp. 5397–5426, 2022.

[32] A. Charnes, W. W. Cooper, B. Golany, L. Seiford, and J. Stutz, “Foundations of data

envelopment analysis for pareto-koopmans efficient empirical production functions,”

Journal of Econometrics, vol. 30, no. 1-2, pp. 91–107, 1985.

[33] J. Jablonsky, “Multicriteria approaches for ranking of efficient units in DEA models,”

Central European Journal of Operations Research, vol. 20, pp. 435–449, 2012.
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