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Abstract

The present thesis addresses the problem of formulation of realistic service systems
using various heuristic and meta heuristic optimization techniques. The main aim of this
study is to analyze the behavior of the M/M/1 queueing networks with various features like
vacation, retrial, balking, reneging, jockeying, control policy, differentiated vacation, server
breakdown, and many others.

This research work consists of nine chapters. Chapter 1 introduces about the essential
service system characteristics and terminologies, random processes, an exhaustive litera-
ture survey on queueing theory, gaps in the existing research, objectives of the thesis, and
methodologies used in this study.

Chapter 2 deals with the customers’ impatient attributes in congestion using a queue-
ing theoretic approach which is motivated by observing real service systems where these
queueing occurrences interact. The impatience attributes taken in this model are balking,
reneging, and jockeying in an M/M/1 queueing system with 2 servers.

Chapter 3 consists of a service system with two types of unreliable servers and the ser-
vice is provided in two phases. In such tandem queues, the service is completed only when
all phases of services are rendered successfully. In the present model, the server of the initial
phase has a dual role as a server for the first phase and as a customer for the second phase.

Chapter 4 contains a two-phase stochastic queueing system wherein initial phase ser-
vice can be either rendered offline or online and final phase service is rendered in offline
mode only. In this multi-phase and multi-server tandem queue model, the arrival control
policy, namely F-policy, and the balking phenomena are considered for online and offline
customers, respectively.

Chapter 5 presents the optimal analysis of a F-policy M/M/1/K service system with
unreliable service and exponential startup time. This chapter focuses on optimal policies
for the highly efficient service system since the congestion of the customers more often
originates from degraded policies rather than faulty arrangements.

Chapter 6 analyzes a finite capacity service system with several realistic customer-server
phenomena: customer impatience, server’s partial breakdown, and threshold recovery pol-
icy. This queueing model also incorporates the concept of service pressure coefficient to
model real-time strategic policy.

Chapter 7 deals with the critical issue of the single-server congestion problem with
prominent customer impatience attributes and server strategic differentiated vacation. De-
spite their apparent practical relevance, the proposed congestion problem has yet to be stud-
ied from a service/production perspective with transient analysis.
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Chapter 8 presents the notion of orbital search mechanism in Markovian retrial queueing,
including multiple vacation policies, and server breakdown. Processes like arrival, service,
search, repair, and vacation are all stochastic in nature. System characteristics are derived
using the probability generating function (PGF) technique.

Finally, Chapter 9 summarizes the major contributions of the thesis work along with
some future direction.
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Chapter 1

Introduction

This chapter presents the thesis work’s motivation, general introduction, and historical liter-
ature survey. The chapter discusses the basics of queueing theory and the various method-
ologies used throughout this study. It also includes the objectives and scope of the present
work.
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1.1 Motivation

Queueing theory is a mathematical study of waiting lines. In the year 1909, queueing the-
ory was introduced by A. K. Erlang, a Danish engineer and mathematician who worked for
the Copenhagen Telephone Exchange and published the first paper on what would now be
called queueing theory. He modeled the number of telephone calls arriving at an exchange
by a Poisson process. Queueing theory is one of the truest areas of statistics and has a
wider applicability in several systems. The queueing models can effectively and efficiently
utilize the resources in several systems. Waiting is a naturally occurring phenomenon in
service systems, which leads to an annoying and dissatisfying situation among customers.
The common reason for waiting is large service requests against constrained capacity and
a shortfall in capital to provide service. Thus, customer waiting leads to the formation of a
queue in front of service providers, who experience a situation called congestion. Despite
congestion, it is essential to maintain the quality of service, which is the primary motivation
behind this research. The anticipated explosive growth in the number of arrivals in service
systems like health care, emergency services, ticket counters, communication services, pub-
lic transportation, etc., which are fundamental to daily life, imposes unprecedented chal-
lenges. System design and management are prerequisites for handling such challenges.
Based on the identified problem, efforts are directed in this work toward developing new
service regimes and strategies for improving service quality in a congested system. The
strategies include increasing the service capacities, incorporating a backup server in case of
unreliable service, distributing the workload among servers smoothly, implementing a con-
trollable arrival policy to avoid congestion, and others. The demand for service and service
times are both stochastic, leading to congestion as arriving service requests might not be
fulfilled immediately when service providers are busy serving other customers.

Online service systems have gained immense research interest in the past few years due
to the severe congestion that service facilities will face with the rapid development of the in-
ternet and electronic devices. Online ordering is becoming a cornerstone standard defining
congestion management. Such online processes are employed in various real-world con-
texts, including selling airline tickets, cloud resource allocation, sponsored search, real-time
bidding in display advertisement, dynamic fleet management, fog computing, and real-time
ride-sharing [137], [26]. However, this study primarily focuses on employing a queueing
theoretic approach to represent a service mechanism.
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This study aims to optimally configure the congested system while improving the Qual-
ity of Service (QoS). In this work, the customer-server interaction is mathematically mod-
eled as a queue system with specific features. In this work, the queueing model is first devel-
oped and formulated, resulting in a closed-form expression for steady-state or transient-state
performance measures of the system. Then the findings are applied in the design or recon-
figuration of the service system with a balance between system design cost and service
quality cost. The system design cost includes the cost of servers for providing service and
system maintenance costs. In contrast, the service quality cost is the sum of the customer’s
accessing and waiting costs [83].

1.2 Service systems

The term service is a provision of assistance and expertise through interaction between inter-
dependent parts like people, technologies, and providers that is externally oriented to achieve
and maintain a sustainable competitive advantage [19]. The term “services” can also refer to
a set of actions in which resources of different kinds (people, physical resources, commodi-
ties, and systems of service providers) are employed in contact with a customer to address
a problem or meet demand. A service system is defined as a configuration of people, tech-
nologies, organizations, and shared information that is able to create and deliver value to
providers, users, and other interested entities through service [129]. In the era of the internet
and the fourth industrial revolution, there is a continuous upgrade in the needs of customers,
and service facilities undergo an enormous transformation and adapt a new model using
state-of-the-art technology with flexibility to meet customer satisfaction and enhance their
competitiveness [227]. The adoption of self-monitoring, analysis, and reporting technology
affects value co-creation in service systems [134]. This monitoring, however, incurs a large
amount of resource costs, which include software, hardware, and human labour.

1.2.1 Quality of Service (QoS)

QoS is the description or measurement of the overall performance of a service, such as
improvement in operational processes, customer satisfaction, reliable service, and many
other performance outcomes. QoS is a pool of technologies that ensures the performance of
crucial applications even when the system efficiency is constrained. The economic success
of service systems depends on their ability to provide assured QoS. The QoS is measured on
three parameters: (a) customer attribute; (b) server attribute; and (c) service attribute. The
services of multimedia are an enticing trend distributed by the internet of the future, which
requires diverse QoS [85].
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1.2.2 Failure of Service System

The unavailability of a facility can be treated as the facility’s failure to provide service. De-
tection of failures in a service system, or service monitoring, is crucial to the improvement
of QoS and plays a vital role in distributed service-based systems where services are inter-
dependent, and in turn, the failure of one service may cause the failure of other services
[220].

It is generally unrealistic or infeasible to make sufficient resources available to construct
service facilities in large numbers so that all conceivable service requests can be met imme-
diately. Since there are a fixed number of servers due to the cost associated with each server,
congestion arises in such a system due to the long waiting times and heavy flow of incoming
service requests.

1.3 Congestion Management Using Queueing Theory Tools

Congestion is a natural phenomenon in several systems dealing with queues. Reducing
congestion and providing QoS is a prerequisite for any service station. Catering for an
enormous amount of service requests in the system significantly increases congestion and
degrades the achievable QoS. Examples of congested systems include (i) the accident and
emergency departments of a hospital, (ii) vehicles in traffic jams, (iii) incoming calls in call-
centers, and (iv) large data traffic in computing networks. Modeling the congestion evolution
triggered by user service requests for mult-applications is significant in mechanism analysis.

Congestion is a pervasive problem, and it significantly impacts the system from an eco-
nomic perspective through increased waiting times. The poor management of systems, the
exponential growth in service requests, unreliable servers, the absence of adequate planning,
the limited use of technology, and the lack of funds for preparation and implementation of
measures oriented to improve service systems have acted as catalysts in increasing conges-
tion. Broadly, two schools of thought exist for quantifying congestion on service systems.
The first considers the ratio of inflow service request volume to the capacity of the service
facility as a measure to quantify congestion. The second considers waiting time in receiving
service as a measure to define and characterize congestion [68]. After quantifying con-
gestion within the system, it is imperative to categorize the congestion into distinct levels
that accurately represent QoS. The development of efficient service regimes is needed to
cope with the increasing service requests while still providing satisfactory QoS [1]. The
QoS-based service systems with congestion can be improved by facilitating the following
criteria: (a) monitoring of existing congestion levels; (b) evaluation of the effectiveness
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of congestion strategies; and (c) identification and prioritization of critical segments in the
system.

The basic idea of queueing model has been borrowed from the every-day experience
of the queues at the checkout counters in a supermarket, calls arriving in call centers, data
transfer in computer networks etc.

1.4 Characteristics of Service Systems

A service system can be evaluated quantitatively by using a mathematical characterization
of the process. In general, there are eight basic aspects that provide comprehensive details
about the system.

Arrival Process

The pattern of arriving customers in the service system is stochastic or random in nature;
therefore, a probability distribution can be identified with the arrivals, i.e., inter-arrival
times. The time dependency factor classifies the arrival process as either stationary (time-
independent) or nonstationary (time-dependent). In the stationary arrival process, after a
considerable time period, the system reaches an equilibrium state, and the mean arrival rate
(λ ) becomes constant, which can be calculated mathematically as

λ =
1∫

∞

0 t f (t)dt

where, f (t) is the probability density function (PDF) of the inter-arrival time T .

Service Process

The service providers in the system follow certain service mechanisms to serve the cus-
tomers. The time between successive service completions is called service times, which is
not constant for all customers, so service times behaves stochastically. In this way, service
times follow a probability distribution depending on their nature. Service, like arrivals, can
be classified as stationary or on-stationary with respect to time. Another factor is the situa-
tion in which services depend on the number of customers queueing up, which is defined as
a state-dependent service.
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Number of Servers

The size of the service providers in the system classifies it into either single-server or multi-
server service systems. In the case of a single server, there is one queue of customers waiting
for service, whereas in other cases, there are several possible configurations, either a single
queue for all service providers or a different queue for individual servers. In a multi-server
service system, servers provide service at the same or different rates to the arriving cus-
tomers, called homogeneous or heterogeneous servers, respectively. It is generally assumed
that the servers operate independently of each other.

System Capacity

The size of the system for accommodating customers is generally limited. In virtual queue-
ing, the size is considerable enough to consider it an infinite-capacity service system. The
arrivals after the maximum capacity is reached are forced to balk the system or are termed
as lost customers.

Size of Prospective Arrivals

The prospective customers are those who join a service system based on their requirements.
For example, a patient seek service from a hospital, customer in need of household items
joins a grocery or super market store, person going to their destination waits for transporta-
tion service and many more. Therefore, depending on the size of the population requiring
a particular service, prospective customers sizes can be either finite or infinite. In general,
service systems have an infinite number of prospective customers, it is unpredictable to
determine who might need a particular service.

Queue Discipline

The service mechanism followed by service providers for arriving customers determines the
queue discipline. There are several ways to select customers for service, like First-come,
First-served (FCFS), Last-come, First-served (LCFS), service in random order (SIRO), pri-
ority, processor sharing (PS), etc. In general, FCFS queue discipline is most preferred.

Stages of Service

The service can be rendered in one go or in multiple stages depending on the arrangement
of servers in system as either arranged in parallel or in series. A queue in which service
is provided in phases or servers are arranged in series is termed a tandem queue. In such
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queueing systems, customers may be blocked or starved, as they can leave the system after
completion of all stages of service allocated in series.

Customer Behavior

The behavior of customers to join or remain in the system is unpredictable due to long
waiting queues. The common impatient behaviors shown by customers include balking,
reneging, and jockeying. Balking is a probabilistic impatient phenomenon of customers in
which a customer may leave the system at an epoch of joining in the system due to a long
waiting queue. Reneging is another unpredictable impatient phenomenon of customers;
wherein a customer initially enters the system but may decide to leave the system after
some time due to impatience in waiting queues. On the other hand, jockeying takes place as
the difference between the queue lengths increases. Customers may decide to switch from a
longer queue to an approximative shorter queue if it is perceived that the waiting time can be
reduced by switching lines. However, if the jockeying takes place, the customer must join
the other queue’s end and leave the current queue’s position. In practice, customers show
their impatience level depending on their queue position and level of satisfaction when they
know they are close to or far from the front of the queue.

1.5 Notation of Service Models

In service models with many stochastic processes and the involvement of several parameters
as random variables, there is a need to categorize and describe these models succinctly in
a mathematical short form. In 1953, a British statistician, D.G. Kendall [103], devised a
shorthand notation known as Kendall notation in the form A/B/C/X/Y/Z, where
A: specifies the arrival process or the distribution for inter-arrival times
B: describes the service time distribution
C: number of servers
X : system capacity
Y : size of prospective arrivals
Z: the queue discipline.
Generally, only the first three symbols are used when there are no restrictions on the size
of the system and prospective arrivals, and queue discipline is FCFS. In this case, the con-
vention is to omit the corresponding symbols from the queueing system representation. For
symbols A and B, the notation used to denote the exponential distribution is M which stands
for the Markovian or memoryless property of the exponential. Note that the Poisson arrival
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process is represented by M (i.e., exponential inter-arrival times); thus, an M/M/1 queue-
ing system means a FCFS single server queueing system with a Poisson arrival process, and
independent and identically distributed (IID) exponential service times.

1.6 Random Processes

1.6.1 Stochastic Process

Let N(t) be a random variable signifying the state of a system at time t. Stochastic process
is defined as the collection of such random variables, i.e., {N(t), t ∈ T}, where T indicate
the domain of time t.

Discrete-Time Stochastic Process

The stochastic process with T as a discrete set, i.e., T = {0,1,2, ...}.

Continuous-Time Stochastic Process

The stochastic process with T as a continuous set, i.e., T = {t|t ≥ 0}.

State Space

The collection of all possible values of {N(t); t ∈ T} is called state space of the stochastic
process.

1.6.2 Counting Process

A counting process typically represents the cumulative number of events that have occurred
till time t. A stochastic process {N(t), t ≥ 0} is said to be a counting process if following
holds:

1. N(t) is non-negative inter-valued

2. N(t) non-decreasing in time

3. for s < t, N(t)−N(s) is the number of events that occur in time-interval (s, t].
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1.6.3 Poisson Process

The Poisson process is one of the most widely-used counting processes for modeling aarivals
to the service system. It is usually used in scenarios where we are counting the occurrences
of certain events that appear to happen at a certain rate, but completely at random (with-
out a certain structure). The Poisson process or its extensions have been used to model in
examples like:

• the requests for individual documents on a web server

• arrival of customer in a service system

• the location of users in a wireless network

Definition: The counting process {N(t), t ≥ 0} is called a Poisson process with rate λ > 0
if following conditions hold:

1. N(0) = 0

2. {N(t), t ≥ 0} has independent occurrences of events in disjoint time intervals, called
independent increments. Mathematically,

Prob[N(∆t) = 0] = 1−λ∆t +o(∆t)

Prob[N(∆t) = 1] = λ∆t +o(∆t)

Prob[N(∆t) = 2] = o(∆t)

where, o(∆t) is a function such that lim∆t→0
o(∆t)

∆t = 0

3. The number of occurrences of events in any interval of length t is Poisson distributed
with parameter λ t, i.e.,

Prob[N(t + s)−N(s) = n] =
(λ t)ne−λ t

n!
∀s

Properties of Poisson Processes

1. Superposition property: Let {Ni(t), t ≥ 0}, i = 1,2, ...,k be independent Poisson
processes with corresponding rates λi. If N(t) = N1(t) + N2(t) + ...+ Nk(t) then
{N(t), t > 0} is also a Poisson process with rate λ1 +λ2 + ...+λk.

2. Decomposition property: The occurrences of events follow Poisson distribution with
rate λ . Suppose each events is recorded with property p, independent of anything
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else. Let N1(t) and N2(t) denote the number of events recorded and not recorded,
respectively by time t. Then, the processes {N1(t), t ≥ 0} and {N2(t), t ≥ 0} are
independent Poisson processes with rates pλ and (1− p)λ , respectively.

3. Exponentially distributed inter-arrival times: When the number of occurrences of
events in any interval is a Poisson random variable, the inter-arrival follows expo-
nential distribution and conversely, when the inter-arrival times follows exponential
distribution then the number of arrivals in a time interval is given by Poisson distribu-
tion and process is Poisson arrival process.

4. Memoryless or Markovian property of inter-arrival times: The memoryless prop-
erty of a Poisson process means that if we observe the process at a certain point in
time, the distribution of the time until next arrival is not affected by the fact that some
time interval has passed since the last arrival. Mathematically,

Prob[no arrival in (0, t0)] = e−λ t0

Prob[arrival in (t0, t0 + t)|no arrival in (0, t0)] =

∫ t0+t
t0 λe−λ t

e−λ t0
= 1− e−λ t (1.1)

Also, the probability of an arrival in (0, t) is

∫ t

0
λe−λ tdt = 1− e−λ t (1.2)

Therefore, from Eqns. 1.1 and 1.2 the conditional distribution of inter-arrival times
given that certain time has elapsed is the same as the unconditional distribution.

1.6.4 Markov Process

A stochastic process is termed as a Markov process if it satisfies Markovian property, i.e.,
stochastic behavior of the process in which the future is only dependent on the present state
but independent of the past progress. Mathematically, it is expressed as

P{X(tn + s)≤ x|X(t1) = x1,X(t2) = x2, ...,X(tn) = xn}

= P{X(tn + s)≤ x|X(tn) = xn},s > 0;0 ≤ t1 < t2 < ... < tn

1.6.5 Markov Chain

If the state space S is discrete, i.e., finite or countable infinite set and whose index set is
T = {0,1,2, ...}, the Markov process is called the Markov chain.
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Continuous-Time Markov Chain

Consider a continuous-time stochastic process {N(t), t ≥ 0} with discrete states {0,1,2, ...}
it is known as a continuous-time Markov Chain if the following condition is satisfied

P(N(t +h) = j|N(0) = i,N(x) = ix,0 ≤ x < t) = P(N(t +h) = j|N(t) = i) ∀ h ≥ 0

Discrete-Time Markov Chain

A discrete-time stochastic process {N(t), t = 0,1,2, ...} with discrete states {0,1,2, ...} is
called Markov chain if the equation

P(N(t +1) = j|N(0) = i0,N(1) = i1,N(2) = i2, ...,N(t) = i)

= P(N(t +1) = j|N(t) = i) = Pi j(t)

is satisfied for all possible states of i0, i1, i2,...,it−1, i, j and t ≥ 0. Pi j(t) is known as the
transition probability for the process from the state i at time t to state j at t +1.

1.6.6 Renewal Process

Let {Xt} be independent identically distributed (iid) non-negative random variables, Xt ∼
F(t) an arbitrary distribution. Then, the counting process

N(t) = max{n|Sn = X1 +X2 +X3 + ...+Xn < t} (1.3)

is called renewal process. The mean number of events m(t) on (0, t) is called the renewal
function

E[N(t)] = m(t) (1.4)

Renewal process generalizes the Poisson process by allowing the inter-occerance time be-
tween two successive events to be independent and identically distributed (iid) random vari-
able having an arbitrary distribution.

1.6.7 Birth and Death Process

Mathematically, a continuous-time Markov chain N(t) with state space Ω = {0,1,2, ...} is
called a birth and death process if the following axioms are satisfied
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Prob[N(t+h)−N(t) = k|N(t) = n] =



λnh+o(h); k = 1, n ≥ 0

µnh+o(h); k =−1, n ≥ 1

1− (λn +µn)h+o(h); k = 0, n ≥ 1

0; otherwise

where,

λn, n= 0,1,2... are positive constants called birth rates, µn, n= 1,2, ... are positive constants
called death rates and

lim
h→0

o(h)
h

= 0

1.6.8 Chapman-Kolmogorov Equation

Using the Markov property of the process, the Chapman-Kolmogorov equation gives multi-
step transition probability from state i to state j over all possible k values and is expressed
by

Pi j(t + s) =
∞

∑
k=0

Pik(t)Pk j(s)

This equation describes that in order to move from state i to state j in time t, X(t) moves to
state k in time t and then from k to j in the remaining time s.

1.6.9 Quasi-Birth and Death Process

A Markov chain with the state-space

Ω = {(n, j); 1 ≤ j ≤ np & n ≥ 0}

is known as quasi-birth and death process, where the state space is divided into different lev-
els and phases such that the level has np phases for each n. In a quasi-birth and death(QBD)
process, the transitions are allowed between the adjacent states only. Therefore, a QBD
process can be observed as a generator matrix in following way

Q =



A0 B0 0 0 · · ·
C1 A1 B1 0 · · ·
0 C2 A2 B2 · · ·
0 0 C3 A3 · · ·
...

...
...

... . . .


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where, each sub-matrix Bn can be obtained by the transitions from nth level to (n+1)th level
for n ≥ 0. Similarly, the sub-matrices Cn can be generated by balancing the transitions from
nth level to (n−1)th level for n ≥ 1 while the diagonal sub-matrices Cn are encoded within
the nth level for n ≥ 0.

1.7 Methodological Aspects

1.7.1 Probability Generating Function

The joint probability distribution function Pn, j represents the long-run fraction of time that
the system remains in state (N = n,J = j). Let {Pn, j,n ≥ 1& j ≥ 0 be the stationary distri-
bution of the Markov chain {N(t),J(t), t ≥ 0}. Let Π j(z), j ≥ 0 be the partial generating
functions which are given as follows

Π j(z) =
∞

∑
n=1

znPn, j, j ≥ 0;

1.7.2 Matrix Analytic Method

The matrix analytic method is a procedure to determine the stationary probability distribu-
tion of a Markov chain which has a reiterating structure after some point and a unbounded
state space in no more than one dimension. Such models are often designated as M/G/1
type Markov chains because they can figure transitions in an M/G/1 queueing model. The
method is a more intricate form of the matrix geometric method and is the classical solution
technique for M/G/1 chains. A stochastic matrix of an M/G/1 type is one of the form

Q =



B0 B1 B2 B3 . . .

A0 A1 A2 A3 . . .

0 A0 A1 A2 . . .

0 0 A0 A1 . . .
...

...
...

... . . .


where Bi and Ai are k× k matrices, if Q is irreducible and positive recurrent then the sta-
tionary queue-size distribution is specified by the solution to the equations

QP = P and eT P = 1 (1.5)
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where e epitomizes a vector of suitable dimension with all values equal to 1. Matching the
dimensional structure of Q,P is partitioned to P1, P2, P3, ...To calculate these probabilities,
the column stochastic matrix G is computed such that

G =
∞

∑
i=0

GiAi

G is called the auxiliary matrix. Matrices are defined

Āi+1 =
∞

∑
j=i+1

G j−i−1A j (1.6)

B̄i =
∞

∑
j=i

G j−iB j (1.7)

then P0 is found by solving

(eT + eT (I−
∞

∑
i=1

Āi)
−1

∞

∑
i=1

B̄i)P0 = 1

and hence,

Pi = (I− Ā1)
−1[B̄i+1P0 +

i−1

∑
j=1

Āi− j+1P j], i ≥ 1

1.7.3 Eigenvalue and Eigenvector

Let Q be any square matrix. A scalar λ is referred as an eigenvalue of Q if there exists a
non-zero (column) vector P such that

QP = λP (1.8)

Any vector satisfying the Eqn. 1.8 is called an eigenvector of Q corresponding to the eigen-
value λ .
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1.7.4 Laplace Transform

Assume f (t) be a real-valued function of real variable t, defined for t > 0. Let s be a variable
that assume to be real, and consider the function F̄(s) defined by

F̄(s) =
∫

∞

0
e−st f (t)dt (1.9)

for all values of s for which this integral exists.The function F̄(s) = L{ f (t)} by the integral
is called the Laplace transform of the function f (t). With the help of Laplace transform,
the system of differential equations with initial conditions is transform into system of linear
equations which is computationally easy to solve.

1.7.5 Quasi-Newton Method

The QN method provides the optimal results in two steps. First, we compute a search
direction pt , which indicates the direction of the input space (vector including initial values
of system design parameters) at iteration t. The second step determines how far we have to
move in this direction by computing a step length α t ∈ R+. Therefore, it is an optimization
method that searches for optimality with a descent direction.

pt =−(Ht)∇ f (xt) (1.10)

We then obtain the next iterate as

xt+1 = xt +α
t pt (1.11)

Here, the Hessian approximation Bt ≃ (Ht)−1 must satisfy the quasi-Newton condition
called secant equation.

Bt(xt+1 − xt) = yt (1.12)

where, yt = ∇ f (xt+1)−∇ f (xt) in which f : D → R is continuously differentiable function
on the domain D and ∇ f (xt) ∈ Rn denotes the gradient of f at xt .

Further, instead of computing the actual Hessian in the quasi-Newton method, we ap-
proximate the Hessian with the help of a positive definite symmetric matrix Bt ∈ Rn×n,
which is updated at every iteration as

Bt+1 = Bt +U
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Now, we utilize the concept of the popular BFGS-method to compute the matrix U as

U =
yt(yt)T

(yt)T (st)
− (Btst)(Btst)T

(st)T Btst (1.13)

where, st = α t pt and (yt)T represents transpose of yt .
When the analytically computed Jacobian J(xt) is used in place of Bt , the original New-

ton’s method is recovered. The primary difference between Newton and the QN method is
that Newton method uses the exact Jacobian matrix while the QN method uses approximated
results. Therefore, the QN method is more famous for feasible super-linear convergence and
is not calculated the Jacobian if some of the involved functions are twice continuously dif-
ferentiable and strongly non-convex or convex [231].

Algorithm 1 Pseudo code for the quasi-Newton method

1: Initialize: starting point x0, B0, and tmax;
2: for t < tmax do
3: solve Bt pt =−∇ f (xt) using Eqn. (1.10) ;
4: step size st = α t pt (line search along pt);
5: update iteration xt+1 = xt + st according to Eqn. (1.11)
6: update Bt+1 = Bt +U , where U is given by Eqn. (1.13)

end for
7: Output: Bnew and xnew

1.8 Nature-Inspired Optimization Techniques

Real-world numerical optimization problems have become increasingly challenging and
complicated, necessitating effective optimization techniques. The derivative-based clas-
sical optimization techniques are unsuitable for such high grades of complex problems.
The quasi and metaheuristic methods are newly developed optimization techniques used for
multi-variables, multi-modal, discrete-continuous complex problems. The primary purpose
of the metaheuristic technique is to explore the solution space effectively and efficiently
rather than only finding optimal or non-optimal solutions. Some major metaheuristic opti-
mization techniques that are used throughout the research work are briefly explained in the
next subsections.

1.8.1 Archimedes Optimization Algorithm

Archimedes optimization algorithm (AOA) is devised with inspirations from Archimedes’s
principle, an interesting law of Physics. This principle describes the relationship between a
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buoyant force and an object submerged in a fluid. It imitates that the weight of the displaced
fluid is proportionate to the buoyant force exerted upward on an object partially or fully
immersed in a fluid. AOA is a high-performance optimization technique in terms of con-
vergence speed and exploration-exploitation balance, as it effectively solves complicated
problems. A trade-off balance between exploration and exploitation is always crucial for
metaheuristic algorithms, among other features. This feature makes AOA well suited for
solving complex optimization problems with multiple locally optimal solutions. It retains
a population of solutions and investigates a vast region to identify the best global solution
[77]. For the detailed study of the AOA algorithm, refer the Chapter 2, Section 2.5.

1.8.2 Teaching Learning Based Optimization Algorithm

The teaching learning based optimization algorithm (TLBO) method is based on the impact
of the teacher’s influence on the output of students in a classroom. In this case, the result is
measured in terms of grades or outcomes. A teacher is often thought of as a highly learned
person who shares their expertise with learners. The quality of a teacher has an impact on the
students’ outcomes. A competent teacher prepares students to achieve better achievements
in terms of grades or marks.

TLBO is a population-based strategy that progresses to the global answer through a
population of solutions. The population is referred to as a group of learners or a class
of learners in TLBO. The population of optimization algorithms is comprised of various
design variables. As in other population-based optimization approaches, different design
variables will be equivalent to different subjects offered to learners. The learners’ outcome
will be analogous to the ’fitness’. The teacher is considered the best solution so far. The
TLBO procedure is split into two stages. The first part is called the ’Teacher Phase,’ while
the second is the ’Learner Phase.’ The ’Teacher Phase’ refers to learning from the teacher,
whereas the ’Learner Phase’ refers to learning through peer interaction. For the detailed
study of the TLBO algorithm, refer the Chapter 3, Section 3.6.

1.8.3 Grasshopper Optimization Algorithm

For all living things, survival comes first. They have been changing and adapting in many
ways to reach this goal. As the best and oldest optimizer on the planet, nature is an excellent
place to look for inspiration. Exploration and exploitation are the two logical segments of
the search process of nature-inspired algorithms. The fundamental concept in grasshopper
optimization algorithm (GOA) is that larvae with limited mobility are utilized for local ex-
ploitation, adults with high mobility are used for global exploration, and the grasshopper’s
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location is the optimal solution to solve the optimization problem. GOA uses mathematics
to simulate and replicate the natural behavior of grasshopper swarms to solve optimization
problems. The GOA developed by Saremi et al.[161] in 2017. For the detailed study of the
GOA algorithm, refer the Chapter 4, Section 4.6.

1.8.4 Grey Wolf Optimizer

Grey wolf optimizer (GWO) is a recently developed metaheuristic optimization technique
inspired by leadership hierarchy and the hunting mechanism of grey wolves. GWO is a
swarm intelligence method wherein leadership hierarchy is simulated by four categories of
grey wolves. The three primary phases of hunting: (i) searching, (ii) surrounding, and (iii)
attacking, the prey are employed for more extensive exploration and local search exploita-
tion of search space. Compared to other metaheuristic techniques, the main advantage of
GWO is how quickly it converges [136], [58], [67]. It is suitable for discrete and contin-
uous domains simultaneously. The circumferential system ensures rapid and accurate con-
vergence. For more comprehensive exploration and local exploitation of promising search
space, the three main stochastic progressions of hunting: searching, encircling, and attack-
ing the prey, are used. For the detailed study of the GWO algorithm, refer the Chapter 5,
Section 5.6.

1.8.5 Particle Swarm Optimization

Particle swarm optimization (PSO) algorithm is an agent-based optimization technique,
which was firstly familiarized by Kennedy and Eberhart in 1995 [104] having been inspired
by swarm intelligence and its movement. When birds (particles) fly in a flock (swarm) to
search for food randomly, they share information about what they find among themselves
and help the entire flock get the best hunt. The roaming nature of birds in the flock will in-
spire the exploration phase of the optimization procedure, which aims to avoid being stuck
in the local region. For the detailed study of the PSO algorithm, refer the Chapter 6, Section
6.7.2.

1.8.6 Cuckoo Search

Generally, cuckoos are captivating birds, not just for their beautiful sounds but also for their
aggressive reproduction method. Most of the cuckoo species lay their eggs in communal
nests, yet they may throw down the eggs of others to maximize the chances of their eggs
hatching. Nevertheless, some species practice obligatory brood parasitism, which involves
laying their eggs in the nests of other host birds. Some cuckoo species have evolved due
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to genetic variation where female parasitic cuckoos are capable of imitating the color and
pattern of eggs of certain host species. The behavior lessens the likelihood of their eggs
forsaking, increasing their reproductive potential. The competitiveness between cuckoos
and host species forms a combat system where cuckoos’ eggs can be exposed and thrown
down with a probability of P∗. The cuckoo search (CS) algorithm was given by Xin-She
Yang and Suash Deb [219] in the year 2009. For the detailed study of the CS algorithm,
refer the Chapter 6, Section 6.7.3.

1.8.7 Social Group Optimization

The inspiration for the population-based Social group optimization (SGO) algorithm devel-
oped by Satapathy and Naik [163] in 2016, comes from the concept of the social behavior
of human beings toward solving complex tasks in life. There are a number of behavioral
traits that humans possess to solve their problems in life. Individuals sometimes find these
problems too complex to solve alone and form groups to solve them with the influence of
one another’s traits. On the basis of the idea that solving a given complex problem in a
group comes out to be more effective and efficient than individuals in exploiting and ex-
ploring their different traits. Also, it has been observed that living entities imitate or follow
their surroundings and so human beings as well mimic the knowledge sharing concepts in
solving any task by observing others who are better than them. A person’s fitness value
corresponds to their ability to solve a problem in SGO. Consequently, the person with the
best fitness value enhances the knowledge of the entire group. For the detailed study of the
SGO algorithm, refer the Chapter 8, Section 8.5.

1.9 Literature Review

1.9.1 Historical Development of Queueing Theory

The study of telegraphic problems around the turn of the 20th century with the work of Er-
lang [55] and Engset [54] is the genesis of the field now known as queueing theory. James R.
Jackson [88] extended Erlang’s model of a single queueing station to a system of networked
queueing stations. The pioneering work by Naor [140] on service design with strategic cus-
tomers includes consideration of an observable M/M/1 queueing system with homogenous
customers and analyzed of revenue-maximizing price and socially optimal price. The objec-
tive of socially optimum decision-making is to minimize the total system cost, which is an
aggregate function of the costs incurred by both the service facilities and the customers who
use them. Typically, expenses associated with facility opening and service are seen from the
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perspective of the facilities, whereas costs associated with access and congestion are viewed
from the perspective of customers. It is clear that the first factor takes the system owner’s
cost into account, while the second factor takes service quality into account [84].

General introductory books in the area of queueing theory and stochastic processes are
by Cinlar [36], Cohen [37], Gross [69], Shortle et al. [174], Kleinrock [107], whereas
Takagi and Boguslavsky [180] provide a bibliography of books on queueing analysis and
performance evaluation. Computational algorithmic approaches of computer and stochastic
systems, in general, are treated by Neuts [144], Conway and Georganas [38] and Tijms [185,
186].

1.9.2 Queue with Customer Impatience Behavior

A seminal contribution to queueing theory was made by Conny Palm [147] by introducing
the option of customer abandonment. Haight [72, 74] rediscovered the balking and reneging
behavior of customers for the single server Markovian queueing problem. Kumar [114] is
the first researcher who introduced the efficient notion of retention of the reneging customer.
Later, many researchers (cf. [108], [177], [117], [23], [115]) investigated retention of the
reneging customer in the service sector in economic perspective. One of the earliest articles
dealing with jockeying in a two-station, the parallel system, is owing to Haight [73] who
analyzed a system in which arriving customers always join the shortest queue initially.

1.9.3 Queue with Arrival Control Policy

The control of arrivals in the service systems helps in congestion reduction, which is ad-
dressed through F-policy. Gupta [71] was the first to provide steady-state analytical solu-
tions for the F-policy M/M/1/K queueing system with an exponential startup time. The
methodological characteristics of the F-policy employed in the retrial queueing model, the
vacation and working vacation model, the unreliable server model, and the non-Markov
model were outlined by Jain et al. [93] to give a state-of-the-art of admission control
F-policy. Since then, the study of controllable F-policy has been modified by many re-
searchers, and extensive research has been carried out to enhance the use of arrival control
policy in various queueing and machining systems ([223], [206], [205], [133], [217]).

1.9.4 Queue with Vacation

The strategic vacation policy variants include multi-vacation, single-vacation, working va-
cation, Bernoulli vacation, gated vacation, N-policy etc. Server vacation in the queueing
system takes place due to several reasons, including a low workload, maintenance time, the
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failure to repair, and many more. In recent years, there has been considerable research on
customer impatience attributes in queueing systems with strategic server vacations/failures.
Levy and Yechiali [118] came up with the idea of the vacation queueing paradigm. A thor-
ough, excellent, and exhaustive study of vacation queueing models is found in Doshi’s sur-
vey [44], as well as in several publications on vacation queueing models ([181], [184], [8]).

1.9.5 Retrial Queue

A retrial queueing system allows customers who find all servers occupied to join a virtual
queue called retrial orbits and retry for service after a random length called retrial time. An
analysis of queueing economics in retrial queues was first carried out by Wang and Zhang
[194]. An overview of retrial queue theory in real-world call centers and cellular networks
systems may be found in [153] by Tuan. References [14], [106], [57], [42], [2] provide a
comprehensive survey of retrial queueing systems.

1.9.6 Queue with Server Breakdown

The literature on queue-based service systems is rich with assumptions about reliable servers,
which is seldom. The service provider is subject to breakdowns randomly at any instant in
practice. Most research findings on queueing-based service systems with server breakdown
consider that the server terminates working completely when the breakdown occurs. Never-
theless, in practice, some real-time systems exist in which the service provider still works at
a lesser rate in breakdown state, which referred to working breakdown or partial breakdown
in the queueing literature (cf. [178], [96], [96], [119], [124]) studied the single server Marko-
vian queue with working breakdown. A detailed survey on queueing-based service systems
with the breakdown of the server is provided by Krishnamoorthy et al. [111]. Liou [122]
explored the matrix method for a single server queue with customer impatience and servers’
working breakdown.

The breakdown of the server leads to massive congestion or high impatience attributes
among the customers, which increases the economic losses, customer dissatisfaction, etc.
The breakdown of the service facility needs strategic recovery. The concept of threshold
recovery policy was firstly introduced by Efrosinin and Semenova [53]. Jain and Bhagat [89]
envisaged a finite capacity retrial queueing-based service system with a threshold recovery
policy for unreliable servers. Yang et al. [212] formulated a cost optimization problem for a
threshold-based recovery policy for repairable M/M/1/N system.
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1.10 Gaps in the Existing Literature

1. The measures are required to control and regulate service mechanisms to avoid server
idling, which would lead to savings of resources and increase the efficiency and
throughput of the system.

2. The existing work on customer impatience behavior can be further extended by con-
sidering imperfect service, working vacation, unreliable server, working breakdowns,
or threshold-based control policies viz F-policy to control admission or N-policy to
control the starting of service.

3. For analyzing the non-Poisson inputs and non-exponential services time distributions
such as renewal processes, general distributions, matrix-exponential distributions, and
heavy-tailed distributions, and discussing the bulk arrival processes and/or the bulk
service processes, the effective algorithms for the performance measures are necessary
and interesting and need to develop.

4. The preemptive or non-preemptive priority, service interruption, and multi-phase op-
tional repair facilities have not been investigated much despite versatile in depict-
ing the many real-time congestion situations encountered in industrial and day-to-day
problems.

5. Retrial queue, interjecting of the customer, faffing delay, setup delay are some crucial
issues that need to study to make the service system more functional.

6. Vacation queueing system with F-Policy and vacation interruption can be further ex-
tended to more threshold-based service control policies, namely N-policy, T -policy,
for finite queueing models incorporating various queueing terminologies such as ge-
ometric abandonment and feedback policy, or non-Markovian models with variant
vacation.

1.11 Thesis Objectives

1. To explore a new regime of quality service.

2. To develop the mathematical Markovian models for some governing service sys-
tem/waiting problem associated with several realistic congestion problems.

3. To analyze the effects of customer’s behavior, server’s constraints, service mechanism,
and architectural limitation on the queueing system.
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4. To implement state-of-the-art methodology and techniques for optimal and sensitivity
analysis.

5. To establish the critical design parameter(s) of the governing models.

1.12 Organization of the Thesis

Having discussed the main objective and scope of the thesis, this section provides a brief
thematic overview of the chapter-wise road map.

Chapter 1 covers the introduction of service systems and ways to improve their quality,
along with the other queueing characteristics.

Chapter 2 provides customers’ impatient attributes in congestion using aqueueing the-
oretic approach. The proposed model in this chapter contemplatesthe existence of impatient
customers within a classical queueing system.

Chapter 3 presents a service system consisting of two types of servers: multi-subordinateservers
working in parallel and one chief server. This service strategy study is applicable to various
managerial systems.

Chapter 4 provides a two-stage service system wherein arriving customers in the first
stage can either join the queue and wait for their turn or directly seek service through the
online app. The controllable online booking is conceptualized for online-app users.

Chapter 5 focuses on optimal policies for an efficient service system since the conges-
tion of customers more often originates from degraded policies than faulty arrangements.
This chapter presents a notion of unreliable service and an F-policy for stochastic modeling
of a finite-capacity customer service system.

Chapter 6 analyzes a finite capacity service system consisting of several realistic queue-
ing characteristics, namely, impatient customers, partial server breakdowns, and threshold-
based recovery policies.

Chapter 7 presents the critical issue of the single-server congestion problem with promi-
nent customer impatience attributes and server strategic differentiated vacation. Despite
their apparent practical relevance, the proposed congestion problem has yet to be studied
from a service or production perspective with transient analysis. The queue-theoretic ap-
proach is used for mathematical modeling.

Chapter 8 provides the orbital search concept in Markovian retrial queueing, including
multiple vacation policies and server breakdown, which is described by an infinite number
of inflow-outflow balanced equations.

Finally, Chapter 9 summarizes the thesis work with an emphasis on the major contribu-
tions and future recommendations.



Chapter 2

Cost Analysis of Customer’s Impatience Attributes
in the Service System

This chapter uses a queueing-theoretic approach to deal with the customers’ impatient at-
tributes in congestion. Upon arrival, strategic customers initially either balk or join one of
the queues selectively and decide at subsequent arrival and departure epochs whether to re-
nege or jockey in a probabilistic manner with the aim of reducing expected waiting time. We
consider the simultaneous effect of customers’ impatience behaviors like balking, reneging,
and jockeying and reveal fascinating facts about customers’ behavior in waiting queues.
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2.1 Introduction

Congestion is ubiquitous. During congestion, queueing systems interplay between the cus-
tomers and the service provider. The theory of queueing systems was created and developed
to forecast the behavior of service systems subject to random demand from prospective cus-
tomers. In today’s scenario, everything needs to be served at a faster pace due to high com-
petence in socio-techno-economic constraints and the need of the hour, so cost and time have
become important factors. Customers value their time and often lose impatience when they
are delayed while waiting in a queue for service. This article extensively studies queueing
systems with customer impatience behavior due to their potential applications in real-life
congestion problems. The examples can be observed in hospital emergency rooms mak-
ing vital patient treatment decisions; inventory systems that store perishable goods; queues
arising in telecommunication networks, call centers, cloud computing, wireless sensor net-
works, and machine repair problems.

The impatience attributes of customers are observed through the customer actions in the
waiting line, who may balk, renege, or jockey. Impatience is the most prominent feature
of a service system when an individual wants to experience service but needs to queue.
For a long waiting time, customer abandonment, such as reneging and balking, has been
a significant concern in queueing systems in view of revenue, goodwill, incurred cost, etc.
Thus, customers’ impatient attributes should be involved in studying the service system
to model a more realistic queueing model. Various impatient characteristics of customers,
which we will be studying in this chapter, are classified as balking, reneging, and jockeying.

Modeling a service system consisting of the impatient behavior of customers using a
queueing theoretic approach presents more challenges. Behavioral operations explore how
servers and customers act in a functioning setting characterized by a patient threshold limit.
In particular, a customer decides to leave the system without completing service when wait-
ing time has crossed the patience threshold value, adversely affecting the firm’s economic
goodwill. Thus, predictive measures need to be taken to minimize the overleap and retain
impatient customers in the system using specific customer retention mechanisms. Shekhar
et al. [170] presented the realistic retaining policy of reneged customers under Bernoulli’s
scheduled modified vacation for the multi-server finite capacity queueing system. There
has been an emerging trend to study the queueing model from an economic viewpoint un-
der socio-techno constraints considering customers’ strategic behavior to get the maximum
benefit from a service system during the last few decades.

Haight [72], [74] first introduced customers’ balking and reneging behavior for the sin-
gle server Markovian queueing problem. One of the earliest articles dealing with jockeying
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in a two-station, the parallel system, is owing to Haight [73], who analyzed a system in
which arriving customers always join the shortest queue initially. Henceforth, empirical re-
search has been done on customers’ impatient behavior in waiting. Zhao et al. [229] dealt
with jockeying in the shortest queue. The evolution of literature emerged from the study
on queue joining by Naor [140], which was summarized in a book by Hassin and Haviv
[81]. In reality, decisions to leave the system are exaggerated by the timely information,
announcements, reviews, feedback, and dynamics of operational services, such as queue
length and the nature of service flows. Eminent research provides more supportive evidence
for a different types of service systems such as emergency departments at a hospital (Batt
and Terwiesch [20], Bolandifar et al. [21]), call-center (Zohar et al. [232]), finite capac-
ity (Tarabia [183]), telecommunications (Zhao and Grassman [229], Xu and Zhao [208]).
Jockeying can increase customers’ switching time between facilities, and on the other hand,
allowing jockeying will reduce customers’ waiting time in their queues considerably. Bal-
ancing the switching time drawbacks, jockeying should be employed in a system whose
servers have a reasonable distance to allow customers to switch their lines. Some notable
contributions are owing to [5], [160], [29], [41], [166].

The literature on optimal control of parallel service stations with jockeying could be
more extensive. Recently, Ravid [160] considered a two-server in parallel service facility
in which the arriving customer is assigned the server according to “join the shortest queue
with threshold jockeying” rule. In a generalized queueing network (G-network) wherein
signal entities are assumed to arrive in the system externally according to a Poisson process
in addition to the regular customers is a useful way of modeling the queueing behavior dur-
ing relief distribution due to the flexibility and computational efficiency using product form
results. Ozen and Krishnamurthy [146] used routing parameters and signal entities of the
G-network to model the jockeying of victims’ movement between relief centers during a dis-
aster. Dehghanian and Kharoufeh [40] minimized the total expected discounted jockeying
and holding costs over finite and infinite time horizons by establishing the optimal joining
and jockeying policies for the strategic customer who seeks service in a parallel queueing
system. Wang et al. [200] investigated the serviceability dynamics of a busy period for an
M/M/c multi-server queueing system with impatient customers who may balk or renege.

Non-smooth composite convex optimization has been widely used in the real world.
It entails using one or more non-smooth regularizers in several state-of-the-art techniques.
Traditional gradient-based techniques cannot solve such problems due to ill-conditioned op-
timization problems. The quasi-Newton method is gaining traction due to its effectiveness
in dealing with such problems and affine invariance [187]. Quasi-Newton methods are also
popular since they have local superlinear convergence and don’t require the Jacobian to be
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computed. However, because the quasi-Newton direction may differ from the descent di-
rection of the norm square metric function, global convergence of quasi-Newton techniques
for nonlinear equations is challenging to establish [231]. Queueing theorists also employed
the quasi-Newton method to determine optimal decision parameter(s) due to computational
richness for the explored constrained and non-constrained queueing models. The notewor-
thy contributions in the literature for the optimum analysis of queueing models using the
quasi-Newton technique are given by researchers (cf. [202], [203], [226] and [169]). We
also employ the quasi-Newton technique to determine the value of the studied model’s gov-
erning parameter(s) so that incurred cost is minimum.

The primary goal of any service system is to choose decision variables that meet all crite-
ria while having the lowest possible cost, i.e., the main goal is to comply with basic standards
while also achieving economic designs. In science and engineering, metaheuristics give ac-
ceptable solutions in a reasonable time for tackling complicated problems. Nature-inspired
metaheuristic approaches are now widely employed in various scientific, computing, and
engineering applications since they effectively solve complex problems. Using Darwin’s
theory of survival of the fittest, metaheuristic algorithms have imitated the behavior of phys-
ical and biological systems in nature. This chapter uses the recently developed Archimedes
optimization algorithm (AOA) to achieve the best predicted total cost with the best values of
decision parameters. We compare the results to those achieved using the well-known heuris-
tic methodology quasi-Newton method. Archimedes optimization algorithm is devised with
inspiration from an interesting law of Physics known as the Archimedes principle. It mimics
the buoyant force principle, which states that the buoyant force exerted upward on an item
wholly or partially submerged in a fluid is proportionate to the weight of the displaced fluid
[77].

Besides, to the best of our knowledge, modeling queueing systems with impatient be-
havior taking simultaneously balking, reneging, and jockeying has yet to be attempted in the
literature. Thus, this chapter contributes to this sense.

Against this background, the remainder of this chapter is structured in the following
manner. Section 2.2 discusses the developed model and defines its various states. In Sub-
section 2.2.1, we describe the assumptions and notations. Steady-state governing equations
are derived in Subsection 2.2.2. In Section 2.3, we brief various system performance mea-
sures using mathematical expressions. Section 2.4 presents the construction of the cost
function. The Archimedes optimization algorithm is elaborated thoroughly in Section 2.5.
The model’s numerical results and optimum analysis are presented in Section 2.6. Section
2.7 offers the conclusion of this research and future work.
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2.2 Model and State Description

The queueing-theoretic approach is essential for modeling and performance evaluation of
service systems. Our model considers an M/M/2 finite capacity queueing system with two
heterogeneous servers: Server 1 and Server 2, arranged in parallel. The capacity of each of
the servers is K, so the system capacity becomes 2K.

2.2.1 Assumptions and Notations

The major assumptions of the queueing problem contemplating random impatience behavior
and notations for the investigated model are reviewed as follows:

Arrival Process

• The customers arrive at the service system according to a Poisson process, with an
arrival rate λ .

• If the server is idle, the arriving customer gets service immediately; otherwise, he
must wait in the queue.

Service Process

• Customers are served on FCFS basis queue discipline by two heterogeneous servers
in parallel.

• The service times of all customers are independent and identically distributed random
variables which follow the exponential distribution with service rate µ1 and µ2 for the
first and second server, respectively.

• Each customer does not have any priority over any other customer.

Impatience Attributes

• The arriving customer may join the shortest queue with joining probability ξ or may
balk away with complementary probability 1−ξ .

• When a customer joins one of the queues, he may leave the system without being
served after a subsequent random time interval due to a long-expected waiting time.
The time-to-renege follows the exponential distribution with the reneging rate ν . The
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customers leave the system either by reneging or after completing service from one of
the two servers.

• When the difference between the number of customers in the queue becomes greater
than one, the customers from a long line may join the adjacent queue at the last po-
sition and leave their position in the current queue. The time-to-jockey follows the
exponential distribution with mean jockeying rate η .

• All customers are impatient with the same threshold limit except the first customer for
each server.

• The model under consideration is of finite capacity 2K; each customer who crosses
the threshold 2K is deemed a lost customer.

All occurrences, such as arrival, service, balking, reneging, jockeying, and loss of customers,
are statistically independent.

2.2.2 Steady State Differential Equations

We use the following notations to express the distinct states at any instant t for the stochastic
modeling of the examined queueing model.

N1(t)≡ Number of customers in front of server 1 at time t

N2(t)≡ Number of customers in front of server 2 at time t

Then, a continuous time Markov chain (CTMC) (N1(t),N2(t); t ≥ 0) on the state space

Ω ={(n1,n2) | n1 = 0,1,2, ..., ,K −1,K; n2 = 0,1,2, ...,K −1,K}

As t → ∞, the system approaches to steady-state. The governing steady-state probabilities
are defined as follows

Pn1,n2 = lim
t→∞

{N1(t) = n1,N2(t) = n2; n1 = 0,1,2, ...,K −1,K & n2 = 0,1,2, ...,K −1,K}
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Now for analyzing the studied server system, we construct steady-state Chapman-Kolmogrove
forward equations for the system states as follows:

−λP0,0 +µ1P1,0 +µ2P0,1 = 0 (2.1)

− (λ +µ2)P0,1 +
λ

2
P0,0 +µ1P1,1 +(µ2 +ν)P0,2 = 0 (2.2)

− (λ +µ2 +(n2 −1)ν +(n2 −1)ηP0,n2 +µ1P1,n2+

(µ2 +n2ν)P0,n2+1 = 0; 2 ≤ n2 ≤ K −1 (2.3)

− (λ +µ2 +(K −1)ν +(K −1)η)P0,K +µ1P1,K = 0 (2.4)

− (λ +µ1)P1,0 +
λ

2
P0,0 +µ2P1,1 +(µ1 +ν)P2,0 = 0 (2.5)

− (λ +µ1 +(n1 −1)ν +(n1 −1)η)Pn1,0 +µ2Pn1,1

+(µ1 +n1ν)Pn1+1,0 = 0; 2 ≤ n1 ≤ K −1 (2.6)

− (λ +µ1 +(K −1)ν +(K −1)η)PK,0 +µ2PK,1 = 0 (2.7)

− (λξ +µ1 +µ2)P1,1 +λP0,1 +λP1,0

+(µ2 +ν)P1,2 +(µ1 +ν)P2,1 +ηP2,0 +ηP0,2 = 0 (2.8)

− (λξ +µ1 +µ2 +ν)P2,1 +(µ1 +2ν)P3,1 +
λ

2
ξ P1,1

+λP2,0 +(µ2 +ν)P2,2 +2ηP3,0 = 0 (2.9)

− (λξ +µ1 +(n1 −1)ν +(n1 −2)η +µ2)Pn1,1 +(µ2 +ν)Pn1,2

+(µ1 +n1ν)Pn1+1,1 +λPn1,0 +n1ηPn1+1,0 = 0; 3 ≤ n1 ≤ K −1 (2.10)

− (λξ +µ1 +µ2 +(K −1)ν +(K −2)η)PK,1 +(µ2 +ν)PK,2

+λPK,0 = 0 (2.11)

− (λξ +µ1 +µ2 +ν)P1,2 +
λξ

2
P1,1 +λP0,2 +(µ1 +ν)P2,2

+(µ2 +2ν)P1,3 +2ηP0,3 = 0 (2.12)

− (λξ +µ1 +µ2 +(n2 −1)η +(n2 −2)ν)P1,n2 +λP0,n2 +(µ1 +ν)P2,n2

+(µ2 +n2ν)P1,n2+1 +n2ηP0,n2+1 = 0; 3 ≤ n2 ≤ K −1 (2.13)

− (λξ +µ1 +µ2 +(K −1)ν +(K −2)η)P1,K +(µ2 +ν)P2,K +λP0,K = 0 (2.14)

− (λξ +µ1 +(n1 −1)ν +µ2 +(n2 −1)ν)+(|ζ1 −ζ2|−1)ηPn1,n2

+Λ1(n1,n2)Pn1−1,n2 +Λ2(n1,n2)Pn1,n2−1 +(µ1 +n1ν)Pn1+1,n2

+(µ2 +n2ν)Pn1,n2+1 +V1(n1,n2)ηPn1−1,n2+1

+V2(n1,n2)ηPn1+1,n2−1 = 0; 2 ≤ n1 ≤ K −1,2 ≤ n2 ≤ K −1 (2.15)
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where,

Λ1(n1,n2) =


0; n1 −1 > n2

λ

2 ξ ; n1 −1 = n2

λξ ; n1 −1 < n2

Λ2(n1,n2) =


0; n2 −1 > n1

λ

2 ξ ; n2 −1 = n1

λξ ; n2 −1 < n1

ζ1(n1,n2) =

0; n1 = 0

n1 −1; n1 ≥ 1

ζ2(n1,n2) =

0; n2 = 0

n2 −1; n2 ≥ 1

V1(n1,n2) =

0 ; n2 −n1 +2 ≤ 0

n2 −n1 +2 ; n2 −n1 +2 > 0; n1,n2 > 1

V2(n1,n2) =

0 ; n1 −n2 +2 ≤ 0

n1 −n2 +2 ; n1 −n2 +2 > 0; n1,n2 > 1

− [λξ +µ1 +(n1 −1)ν +µ2 +(K −1)ν +(K −n1 −1)η ]Pn1,K +λξ Pn1−1,K

+(µ1 +n1ν)Pn1+1,K = 0; 2 ≤ n1 ≤ K −2 (2.16)

− [λξ +µ1 +(K −2)ν +µ2 +(K −1)ν ]PK−1,K +λξ PK−2,K(t)+
λξ

2
PK−1,K−1

+(µ1 +(K −1)ν)PK,K = 0 (2.17)

− [λξ +µ1 +(K −2)ν +µ2 +(K −1)ν ]PK−1,K +λξ PK−2,K +
λξ

2
PK−1,K−1

+(µ1 +(K −1)ν)PK,K = 0 (2.18)

− [λξ +µ1 +(K −1)ν +µ2 +(K −2)ν ]PK,K−1 +λξ PK,K−2 +
λξ

2
PK−1,K−1

+(µ2 +(K −1)ν)PK,K = 0; 2 ≤ n2 ≤ K −2 (2.19)

− [µ1 +(K −1)ν +µ2 +(K −1)ν ]PK,K +λξ PK,K−1 +λξ PK−1,K = 0 (2.20)

Equations 2.1-2.20 can be represented in the matrix form as

ΠΠΠQ = 0 (2.21)
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where Q denotes the coefficient matrix of order (K +1)2, ΠΠΠ is the column vector having all
the state probabilities and 0 is the null column vector of order (K +1)2. Following the law
of total probability, the normalizing condition for state probabilities is given as below

K

∑
n1=0

K

∑
n2=0

Pn1,n2 = 1 (2.22)

We further use the normalizing condition of probability as

ΠΠΠe = 1

where e = [1,1, ...,1]T is column vector of dimension (K +1)2 having all entries 1. Now,
we express the system of linear equations 2.21 as

ΠΠΠA = B

where, A denotes the matrix Q replacing the last row with a row vector having all elements
1 and B represents the column vector [0,0, ...0,1]T of order (K +1)2.

2.3 System Performance Measures

In this chapter, we analyze the sensitivity of the impatient attributes of the customers in
the service system economically. For the performance characterization of the governing
queueing model, there are some standard performance indices. We also employ perfor-
mance measures to delineate the modeling and methodology for finite-capacity multi-server
queueing systems with balking, reneging, and jockeying. The mathematical expression of
performance indices is used to exhibit the parametric analysis for the decision purpose.
These performance measures are correlated and recognized as increased importance in an
optimal and sensitivity analysis of the service environment.

• The expected number of the customers in the system

LS =
K

∑
n1=0

K

∑
n2=0

(n1 +n2)Pn1,n2 (2.23)

• The expected number of the customers in the queue

LQ =
K

∑
n1=1

K

∑
n2=1

(n1 +n2 −2)Pn1,n2 (2.24)
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• The throughput of the system

τp =
K

∑
n1=1

K

∑
n2=1

(µ1 +µ2)Pn1,n2 (2.25)

• The effective arrival rate of the customer in the system

λe f f =
K−1

∑
n1=1

λξ Pn1,n1 +
K

∑
n1=2

n1−1

∑
n2=1

λξ Pn1,n2 +
K

∑
n2=2

n2−1

∑
n1=1

λξ Pn1,n2+

K

∑
n1=0

λPn1,0 +
K

∑
n2=1

λP0,n2

(2.26)

• The expected waiting time of the customer in the system

WS =
Ls

λe f f
(2.27)

• The average balking rate of the customer

ABR =
K−1

∑
n1=1

K−1

∑
n2=1

λ (1−ξ ))Pn1,n2 +
K−1

∑
n1=1

λ (1−ξ )Pn1,K +
K−1

∑
n2=1

λ (1−ξ )PK,n2 (2.28)

• The average reneging rate of the customer

ARR=
K

∑
n1=1

K

∑
n2=1

(n1+n2−2)νPn1,n2 +
K

∑
n1=1

(n1−1)νPn1,0+
K

∑
n2=1

(n2−1)νP0,n2 (2.29)

• The frequency that the system is full

FF = λξ (PK−1,K +PK,K−1) (2.30)

2.4 Cost Analysis

The state-of-the-art chapter objective is the optimal and sensitive economic analysis of cus-
tomers’ impatience attributes. For that purpose, we develop a total expected cost function
per unit of time as the objective function for the M/M/2/2K queueing model with balking,
reneging, and jockeying. The main aim of the objective function is to determine the best
decision parameter(s) value to minimize the total operational cost of the system. The pa-
rameters µ1 and µ2 are considered as decision variables. The various cost parameters related
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to different states of the Markovian model are defined as follows:
Ch ≡ holding cost for each customer present in the system.
Cb ≡ balking cost for each customer who balks from the system.
Cr ≡ reneging cost for each customer who reneges from the system.
Ck ≡ the fixed cost for the system capacity.
C1 ≡ cost for service by server 1 of each customer in the system.
C2 ≡ cost for service by server 2 of each customer in the system.
The total expected cost function is given as follows

TC(µ1,µ2) =ChLS +CbABR+CrARR+CkK +C1µ1 +C2µ2 (2.31)

Hence, the governing optimization problem is developed as

TC(µ∗
1 ,µ

∗
2 ) = min{TC(µ1,µ2)}

We opt for the metaheuristic and quasi-optimization techniques discussed in the coming
sections to compute the optimal value of decision variables (µ∗

1 ,µ
∗
2 ) and total cost TC∗.

2.5 Archimedes Optimization Algorithm

Real-world numerical optimization problems have become increasingly challenging and
complicated, necessitating effective optimization techniques. The derivative-based clas-
sical optimization techniques are unsuitable for such high grades of complex problems.
The quasi and metaheuristic methods are newly developed optimization techniques used for
multi-variables, multi-modal, discrete-continuous complex problems. The primary purpose
of the metaheuristic technique is to explore the solution space effectively and efficiently
rather than only finding optimal or non-optimal solutions. In this chapter, we use a new
metaheuristic algorithm called Archimedes optimization algorithm (AOA), a population-
based algorithm to compete with the state-of-the-art and recent optimization algorithm for
carrying out sensitivity analysis of the model.

2.5.1 Inspiration

AOA is devised with inspiration from Archimedes’s principle, an interesting law of Physics.
More details about this principle are already discussed in subection 1.8.1.
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2.5.2 Mathematical Model and Algorithm

AOA commences the search process with the initial set of the population (candidate solu-
tion) with random volumes, densities, and accelerations.

Step 1 - Initialization
In the initial step, the position (x(i)), volume (V (i)), and density (D(i)) of object i is initial-
ized as follows:

x(i) = xl(i)+ rand × (xu(i)− xl(i)); i = 1,2, ...,N

V (i) = rand

D(i) = rand

A(i) = xl(i)+ rand × (xu(i)− xl(i)

where xl(i) and xu(i) are the lower and upper bounds of the search space, respectively and
rand is a D-dimensional vector randomly generates uniformly distributed number between
[0,1].

Step 2 - Update volumes and densities
For iteration t +1, the density and volume are updated as:

V t+1(i) =V t(i)+ rand × (V best −V t(i))

Dt+1(i) = Dt(i)+ rand × (Dbest −Dt(i)) (2.32)

where V best and Dbest are the volume and density connected with the best object, found so
far.

Step 3 - Transfer operator and density factor
At the start, objects collide and sometimes attempt to get an equilibrium state. In AOA,
transfer operator (T F) helps to transform search from exploration to exploitation as fol-
lows:

T F = e(
t−tmax

tmax ) (2.33)
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where t and tmax are iteration number and maximum iterations, respectively.
In a similar manner, density decreasing factor d assists AOA on global to local search.

dt+1 = e(
t−tmax

tmax )−
(

t
tmax

)
(2.34)

here, d decreases with time, allowing it to converge in a previously discovered favorable
region.

The ability of the metaheuristic optimization algorithm to "explore" and "exploit" is the
most critical aspect impacting its performance. Exploration refers to a search algorithm’s
capacity to search multiple sections of the search space to locate a suitable optimal with a
high probability. On the other hand, exploitation refers to the degree to focus a search on
a promising location to fine-tune a candidate solution. When the population diverges, the
algorithm is in an exploration stage; when the population condenses into a limited search
region, the algorithm is in an exploitation state. A metaheuristic algorithm generally begins
the search process with more exploration and minor exploitation, but as the search advances
toward the finish, the ratios invert.

Case I - Exploration phase
If T F ≤ 0.5, there is collision between objects and in this case acceleration for iteration t+1
is updated as

At+1(i) =
Dmr +Vmr ×Amr

Dt+1(i)×V t+1(i)
(2.35)

where Dmr, Vmr, and Amr represents density, volume, and accelaration of random object.

Case II - Exploitation phase
If T F > 0.5, there is no collision between objects, update acceleration for iteration t +1 as

At+1(i) =
Dbest +V best ×Abest

Dt+1(i)×V t+1(i)
(2.36)

where Abest is the acceleration of the best object.

Step 4 - Normalize acceleration
To calculate the percentage of change, acceleration is normalized as

At+1 (ī) = u× At+1(i)−min(A)
max(A)−min(A)

+ l (2.37)
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where u and l are the range of normalization and set to 0.9 and 0.1, respectively.
If object i is distant from the global optimum, its acceleration value is high, indicating

that it is in the exploration phase; otherwise, it is in the exploitation phase. This assists
search agents in moving towards the global best solution while also moving away from lo-
cal ones. Hence, AOA achieves the balance between exploration and exploitation.

Step 5 - Update position
The updated density, volume, and acceleration determine the new position of an object ac-
cording to the following cases.

The pseudo-code for iterative AOA is as follows:

Algorithm 2 Pseudo code for AOA
1: Input: Fix the population size N, maximum iterations tmax, c1, c2, c3, and c4;
2: Initialization: Population with random positions, densities and volumes, Evaluate ini-

tial population and select the one with the best fitness value;
3: while t < tmax or convergence criterion do
4: for each search agent, update density and volume using 2.32 do
5: update transfer and density factors T F and d using 2.33 and 2.34;
6: if T F ≤ 0.5 then
7: update accelaration using 2.35 and normalize accelaration using 2.37
8: update position using 2.38
9: else

10: update accelaration using 2.36 and normalize using 2.37
11: update direction flag F using 2.40
12: update position using 2.39

end if
end for

13: Calculate fitness of all search agents and select the one with the best fitness value.
end while

14: Output: return population with the best fitness value.

Case I: Exploration phase
T F ≤ 0.5

xt+1(i) = xt(i)+ c1 × rand ×At+1 (ī)×d × (xrand − xt(i)) (2.38)

where, c1 is constant equal to 2.
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Case II: Exploitation phase
T F > 0.5

xt+1(i) = xbestt
(i)+F × c2 × rand ×At+1 (ī)×d × (T × xbest − xt(i)) (2.39)

where, c2 is constant equal to 6.
T is defined as T = c3 ×T F , where c3 is a constant. T increases in the range [c3 × 0.3,1]
over time and initially subtracts a percentage from the best position.
F is the flag to change the direction of motion using

F =

−1; if P > 0.5

1; if P ≤ 0.5
(2.40)

where P = 2× rand − c4, where c4 is a constant

Step 6 - Evaluation
Evaluate each object using the objective function f and remember the best solution found
so far.
Assign xbest , Dbest , V best , and Abest .

2.6 Numerical Insights

When the system size is large enough, performance measures evaluated using traditional
methods are not efficient and cost-effective due to the complexity of the problem and the
increase in its dimension. In such a case, we use the state-of-the-art method and optimization
technique to solve the cost minimization problem computationally. Although an increased
system size makes the problem more complicated, it helps analyze the developed model
with existing real-world systems and a more realistic model. In this section, we focus on
numerical and optimal insights. Specifically, we consider the impact of different parameters
on system performance measures, which helps in deciding which parameter substantially
impacts some performance measures whereas less impact on others.

The numerical results for different experiments conducted on MATLAB (R2020b, 64-
bit, License number 925317) on computing system with configuration Intel(R) Xeon(R)
CPU E3-1231 v3 @ 3.40GHz 3.40 GHz with RAM 32.0 GB for various governing param-
eters and costs are summarized in Figures 2.1-2.10 and Table 2.1-2.6. For figures 2.1-2.10,
the default parameters are fixed as follows K = 15, λ = 2, µ1 = 1, µ2 = 1.5, ξ = 0.9, ν = 1,
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Figure 2.1: Expected number of customers in the system (LS) wrt (i) λ , (ii)
µ1, (iii) µ2, (iv) ξ , (v) ν , and (vi) η for different values of K.

and η = 0.9 and examine the effect of parameters K, λ , µ1, µ2, ξ , ν , and η on system
performances as the values of one or two of these parameters vary given that others are fixed
as above.

Figure 2.1 depicts the trend of the expected number of customers in the system LS, which
varies as a function of the governing parameters for capacity K. The value of LS increases
in proportion to the system capacity K as more customers are accommodated. The graph
shows an increasing trend in the value of LS for λ and ξ , and a decreasing trend for µ1,
µ2, and ν as expected. Figure 2.1(vi) shows the value of customers in front of server 1 and
server 2 for various system capacities and their variation concerning jockeying rate. The
optimal service rates need to be set to minimize the customers’ balking and reneging and
diminish the queue length.

Figure 2.2 shows a bar graph of customers’ waiting time in the system WS as a function
of the governing parameters for different values of K. The value of WS increases proportion-
ately to K since it allows more customers to accommodate. The graph shows similiar trend
in the value of WS for λ and ξ , µ1, µ2, and ν as LS in Figure 2.1, whereas WS shows no
change to jockeying rate η . The appropriate service facilities need to be designed in view
of the incurred cost to minimize the customers’ balking and reneging and lessen the waiting
time.



42 Chapter 2. Cost Analysis of Customer’s...

(i)

2.0 2.1 2.2 2.3 2.4 2.5
2

5

8

11

14

17

W
S

K=10

K=15

K=20

(ii)

0.3 0.4 0.5 0.6 0.7 0.8

 
1

2

5

8

11

14

17

 W
S

K=10

K=15

K=20

(iii)

2.4 2.5 2.6 2.7 2.8 2.9

 
2

2

5

8

11

14

17

 W
S

K=10

K=15

K=20

(iv)

0.60 0.65 0.70 0.75 0.80 0.85

 

2

5

8

11

14

17

 W
S

K=10

K=15

K=20

(v)

0.01 0.03 0.05 0.07 0.09 0.11

 

2

5

8

11

14

17

 W
S

K=10

K=15

K=20

(vi)

0.0 0.1 0.2 0.3 0.4 0.5

 

2.0

2.5

3.0

3.5

4.0

4.5

 W
S

K=10

K=15

K=20

Figure 2.2: Expected waiting time of customers in the system (WS) wrt (i) λ ,
(ii) µ1, (iii) µ2, (iv) ξ , (v) ν , and (vi) η for different values of K.
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Figure 2.4: Average reneging rate of customers in the system (ARR) wrt (i)
λ , (ii) µ1, (iii) µ2, (iv) ξ , (v) ν , and (vi) η for different values of
K.
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(iv) ξ , (v) ν , and (vi) η for different values of K.
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Figure 2.6: Throughput of the system (τp) wrt (i) λ , (ii) µ1, (iii) µ2, (iv) ξ ,
(v) ν , and (vi) η for different values of K.

Figure 2.7: Discrete graphs for the expected total cost of the system (TC)
for different parameters
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Figure 2.8: Expected total cost of the system (TC) for different parameters

The variation in the average balking rate ABR of a customer in relation to system pa-
rameters is depicted in Figure 2.3, which shows the value of ABR increases in proportion to
K in all circumstances since there are more allowable customers. As the arrivals increase,
there is more chance of customers balking away from the system, so ABR increases initially
for λ , but later on, the rate of increase in ABR slows down with an increase in λ . The rate
of balking is inversely proportional to the joining rate. So, ABR shows a slant decrease as ξ

increases. When customers waiting in queues for service show impatience and try to leave
the system, it will negatively impact arriving customers. The balking rate increases with an
increase in reneging. When the system capacity is higher, the rate of increase in ABR de-
creases apparently. In case of an increase in the jockeying rate, ABR increases to a specific
limit, become steady and does not change at all with an increase in η . It seemingly shows
impatience attributes among customers’ behavior and recommends prompt preventive mea-
sures.

Figure 2.4 depicts the change in a customer’s average reneging rate ARR about system
parameters, showing that the value of ARR grows in proportion to K since there are more
customers in a high capacity service system. As the number of arrivals rises, the likelihood
of customers abandoning the system increases; hence ARR rises with λ . When service is
improved, the tendency to leave the system decreases the rate of reneging. So in subfigures
(ii) and (iii) in Figure 2.4, the average rate of reneging decreases when we increase service
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rates µ1 and µ2 respectively. Whereas an increase in the joining probability of customers
leads to more congestion in the system, there will be more reneging of customers due to
long waits. Therefore, ARR increases as ξ increases. ARR increases with an increasing rate
of reneging ν . On the other hand, jockeying will not impact the average reneging rate.

The deviation in the failure frequency FF to system parameters is presented in Figure
2.5 for different system capacity K. Similar results for FF are perceived as for WS above
for all parameters except the fact that failure frequency is higher for smaller values of K.
The apparent effects of FF also support the correct mathematical modeling and theoretical
results. The bar graph in Figure 2.6 represents the variation in the system’s throughput
(τp) to system parameters for different system capacities K. As the number of customers
increases due to an increase in λ and ξ , the system’s throughput increases; since service is
provided to more people by these servers. The throughput of the system also increases with
service rate µ1 and µ2. The jockeying factor η does not impact the system’s throughput as
the customer only switches the queue and does not depart from the system. As the reneging
rate ν increases, the customer leaves the system without getting service, and throughput
decreases.

Besides the above-considered default value of system parameters, for figuring the change
in expected total cost (TC) formulated in Eqn. 2.31, we set different unit costs value as
follows Ch = 25, Cb = 5 , Cr = 15, Ck = 5, C1 = 8, C2 = 10. We plot the variation of TC

for varied rates and thresholds in Fig. 2.7. The palpable trends are noticed, which is evident
in our expected total cost formulation and modeling to be correct. The illustrated results
prompt an exploration of the optimal strategies for an efficient service system at minimum
incurred costs.

In Figure 2.8, we provide line graphs, surface, and contour plots with respect to decision
parameters µ1 and µ2 for default values of threshold rates and costs as assumed above.
Furthermore, in order to validate the proposed model, we obtained all graphs of the expected
total cost in a convex shape concerning these decision parameters. Figure 2.9 shows some
selective images for the convergence of Archimedes optimization algorithm. The selection
of these eight out of 30 images shows how these solutions are spread at random initially and
later on converge to an optimal point in the last.

In Fig. 2.10, we display the plot of optimal TC∗ for different iterations for multiple
runs and observe the convergence to the same value for all runs. It supports our choice
of Archimedes optimization algorithm for optimal analysis. Analytically, it is impossible
to establish since TC is the function of system performances which are the expression of
state probabilities that we get on solving the governing Chapman-Kolmogorov differential-
difference equations. To obtain the optimal value of decision parameters µ1 and µ2, we
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Figure 2.10: Convergence of iteration of Archimedes optimization algorithm

employ the quasi and metaheuristic optimization techniques and show that metaheuristic is
very useful for the optimal analysis of complex real-time systems.

In Tables 2.1 and 2.2, as would be expected, we observe that whatever be the initial
value of decision parameters µ1 and µ2 with tolerance 10−9, the optimal value of µ∗

1 and µ∗
2

is achieved in a finite number of iterations through the quasi-Newton method. We compile
the expected total cost corresponding to each iteration and gradient of TC with respect to µ1

and µ2. The last row gives the optimal value of µ1, µ2 and TC say µ∗
1 , µ∗

2 , and TC(µ∗
1 ,µ

∗
2 )

where max
[

∂TC
∂ µ1

, ∂TC
∂ µ2

]
< 10−9. Table 2.3 lists the four variations each of system parameters

K, λ , ξ , ν , and η to find the optimal value of decision parameters µ1, µ2, and expected
total cost as µ∗

1 , µ∗
2 and TC(µ∗

1 ,µ
∗
2 ) obtained via quasi-Newton method. Each of the vari-

ations gives the optimal value of total cost in 5 iterations as shown in the Table 2.3 for the
initial value of decision parameters µ10 = 1.5 and µ20 = 2. The value of expected total
cost increases with an increase in K, λ , and ξ whereas decreases as ν increases. The total
cost seems insensitive to change in η and shows a slight decrease as η increases signifi-
cantly. In the similiar manner,the Table 2.4 present four variations each of Ch, Cb, Cr, Ck,
C1, and C2 to obtain the optimal values µ∗

1 , µ∗
2 , and TC(µ∗

1 ,µ
∗
2 ) and number of iterations

required to reach these optimal values via quasi-Newton method. It can be inferred from
table that when cost elements increases, the expected total cost increases as well. For the
same sets of system parameters and unit costs considered in Table 2.3 and 2.4, the optimal
analysis results through Archimedes optimization algorithm (AOA) have been compiled in
Table 2.5 and 2.6, respectively. For the implementation of AOA, we have set the number
of populations, number of iterations, and number of runs as 50, 30, and 10, respectively.
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Table 2.3: Optimal expected total cost of the system TC(µ∗
1 ,µ

∗
2 ) for different

parameters via Newton quasi method with µ1 = 1.5,µ2 = 2

K,λ ,ξ ,ν , η Number of µ∗
1 µ∗

2 TC(µ∗
1 ,µ

∗
2 )

iteration

10,2,0.9,1,0.9 5 2.112014604 1.579443440 114.3494849

15,2,0.9,1,0.9 5 2.112014607 1.579443431 139.3494849

20,2,0.9,1,0.9 5 2.112014603 1.579443440 164.3494849

25,3,0.9,1,0.9 5 2.112014604 1.579443440 189.3494849

15,2,0.9,1,0.9 5 2.112014607 1.579443431 139.3494849

15,3,0.9,1,0.9 5 2.841282540 2.045699067 157.2286987

15,4,0.9,1,0.9 5 3.550213842 2.485950990 173.5772999

15,5,0.9,1,0.9 5 4.247474322 2.908748448 188.9565724

15,2,0.6,1,0.9 5 1.822481957 1.369516149 135.5770317

15,2,0.7,1,0.9 5 1.921309780 1.441815007 136.8568157

15,2,0.8,1,0.9 5 2.017641025 1.511649844 138.1128190

15,2,0.9,1,0.9 5 2.112014607 1.579443431 139.3494849

15,2,0.9,1,0.9 5 2.112014607 1.579443431 139.3494849

15,2,0.9,2,0.9 5 1.923198586 1.435851424 137.7867282

15,2,0.9,3,0.9 5 1.815045016 1.356754189 136.8526057

15,2,0.9,4,0.9 5 1.746419175 1.307841817 136.2349810

15,2,0.9,1,0.9 5 2.112014607 1.579443431 139.3494849

15,2,0.9,1,1.9 5 2.120662143 1.564358120 139.2005875

15,2,0.9,1,2.9 5 2.126676724 1.554264397 139.0935507

15,2,0.9,1,3.9 5 2.131036169 1.547112659 139.0127958
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Table 2.4: Optimal expected total cost of the system TC(µ∗
1 ,µ

∗
2 ) for

different parameters via Newton quasi method with initial guess
µ1 = 1.5,µ2 = 2.

Ch,Cb,Cr,Ck,C1,C2 Number of µ∗
1 µ∗

2 TC(µ∗
1 ,µ

∗
2 )

iteration

15,5,15,5,8,10 5 1.726334744 1.207946750 126.688202

20,5,15,5,8,10 5 1.929439481 1.405104536 133.351003

25,5,15,5,8,10 5 2.112014607 1.579443431 139.349484

30,5,15,5,8,10 5 2.278794065 1.736943788 144.841569

25,5,15,5,8,10 5 2.112014607 1.579443431 139.349484

25,10,15,5,8,10 5 2.124792874 1.589587007 139.635631

25,15,15,5,8,10 5 2.137484225 1.599657312 139.919548

25,20,15,5,8,10 5 2.150089587 1.609655278 140.201273

25,5,10,5,8,10 5 2.087119948 1.558572231 139.290369

25,5,15,5,8,10 5 2.112014607 1.579443431 139.349484

25,5,20,5,8,10 5 2.208228453 1.656827581 141.061106

25,5,25,5,8,10 5 2.262345088 1.700748835 141.876791

25,5,15,5,8,10 5 2.112014607 1.579443431 139.349484

25,5,15,10,8,10 5 2.150089587 1.609655278 215.201274

25,5,15,15,8,10 5 2.150089588 1.609655278 290.201273

25,5,15,20,8,10 5 2.150089588 1.609655278 365.201273

25,5,15,5,6,10 6 2.713618006 1.446345318 135.375019

25,5,15,5,8,10 5 2.112014607 1.579443431 139.349484

25,5,15,5,10,10 5 1.754711893 1.754711893 144.085651

25,5,15,5,12,10 4 1.456775966 1.884804721 147.284518

25,5,15,5,8,5 5 1.694899039 2.903228662 128.441137

25,5,15,5,8,10 5 2.112014607 1.579443431 139.349484

25,5,15,5,8,15 5 2.483070851 1.010359486 145.606722

25,5,15,5,8,20 5 2.737327350 0.645683093 149.683941
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We consider the range [0.1, 4.1] for both µ1 and µ2. Table 2.5 and 2.6 summarizes the re-
sults in terms of µ∗

1 , µ∗
2 , and TC(µ∗

1 ,µ
∗
2 ) and be verified with results in Table 2.3 and 2.4.

For almost all the sets, we have similar results. It evidences that a metaheuristic method
AOA is suitable for such complex real-time problems. For the statistical validation of AOA
convergent results, we compute the mean and maximum of minTCi

TCi
. The mean

[
minTCi

TCi

]
ranges from 1.00000000000003 to 1.00000000833455 whereas max

[
minTCi

TCi

]
ranges from

1.00000000000029 to 1.00000004162598. It shows how AoA is close to the optimal solu-
tion for multiple runs.

2.7 Conclusion

In this chapter, we have investigated a finite capacity multi-server queueing system with
the impatient behavior of customers, such as balking, jockeying, and reneging, taken into
account simultaneously. We have employed the matrix-analytic method to determine the
steady-state probabilities and computed various system performance measures. The numer-
ical simulation of various system performance measures has been accomplished to study the
system parameters’ effects. We also formulated a cost function and defined the problem of
cost minimization constraint. The optimal expected cost is the state-of-the-art analysis of
customers’ impatience attributes in the service system. We use an efficient meta-heuristic
optimization algorithm: AOA and quasi-Newton method with the aid of MATLAB software
to analyze the optimal values of decision parameters µ1 and µ2 with the optimal stability
condition and a global minimum of the cost function. Finally, several numerical experiments
have been included to demonstrate and attain optimal results. The cost analysis clearly com-
municates the validity and profitability of the established model. Minimizing service cost, a
widely sought attribute of any firm will benefit system designers and decision-makers.



Chapter 3

Economic Analysis of a Service System with Un-
reliable Service of Two Types of Servers

This chapter on service systems considers two types of servers: multi-subordinate servers
working in parallel and one chief server. The prospective customers arrive in the system
according to the Poisson process and join the single queue for initial service from any of the
subordinate servers, where they provide service according to an exponentially distributed
service time. The subordinate server behaves as a customer on behalf of the prospective
customer for the final service in tandem with the chief server, which provides service fol-
lowing an exponential distribution.
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3.1 Introduction

Queueing theory has seen numerous advancements and new applications in the last few
decades. The operation of service, manufacturing, and supply chain management requires a
thorough grasp of queueing systems. The rich and fertile theory is now used to analyze com-
munication networks and computer systems for internet and data traffic or bandwidth man-
agement, health care systems, traffic control, data science, machining systems, and many
others where “standing, waiting, and serving” takes precedence. The congestion leads to
blocking and delay, which leads to loss of customer time, goodwill, and satisfaction and
increases service costs. A queueing system mainly has three components, the input process,
the service mechanism, and the queue discipline.

Customers and servers who serve them make up conventional queueing systems, which
have been widely researched in the literature. However, this may only be the case some-
times. Servers may play the role of customers in some service systems and conversely.
Perel and Yechiali [151] first initiated this type of service system. They studied a service
system consisting of two connected queues in which customers of one queue act as servers
of the other queue while waiting in that queue. Several applications of this model related
to real-life systems were presented. To extend the applicability of the model, they further
expanded the scope of the analysis to the case where the customers of both queues act as
servers, and customers of each queue are the server of the other queue [152]. Sendfeld [165]
investigated a broader expansion of the queueing model proposed by Perel & Yechiali [151]
and append an overflow capability. The arrival and service rates for the finite first queue in
this generalized two-queue network depend on the state. The first queue’s customers serve
the second queue’s customers; hence the second queue’s service rate is determined by the
first queue’s state. Vidhya et al. [189] explored service systems consisting of two parallel
server queues with infinite buffers. Here, the first queue goes through a setup procedure
for a start-up process at the beginning of the queue. Some of the queue customers provide
service to the customers in the second queue by joining hands with its server. A recent study
by Hanukov [75] investigated a service system in which a subordinate server approaches
the chief server on the customer’s behalf. To investigate this model, the author conducted
an economic impact assessment to find the optimal work division policy that ensures the
amount of work devoted to each phase of the service to reduce the system’s total cost or
increase its functionality.

Scenarios in which servers act as customers and approach the chief server on the cus-
tomer’s behalf are quite natural in networks comprised of nodes that can receive and provide
service simultaneously. The service system shall consist of two or more levels of authority
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as service providers with uncertainties in their services’ success are often seen in everyday
life. An example related to a service network is web development firms. In these service
firms, customers want to have a website for their business model but need help understand-
ing how to develop it. They then approach subordinates of the firm as customers can’t
directly approach the chief developer of the company. They initially talk to a subordinate
developer who performs the first phase of the service by listening to the requirements they
want on their website to run their business model. After completing this phase of service,
the subordinate developer approaches the chief developer on behalf of the customer. If the
chief developer is busy with some other subordinate developer, he waits in the queue for
his turn. The chief developer completes the service in the end with assistance from him.
After service completion, the subordinate developer returns to his service phase, hands the
website to the present customer, and prepares to serve the next customer in the first phase.
The customer whose service is just completed inspects his website and tries to apply it to his
business model. If he finds his service unreliable, there is still some technicality involved.
He again approaches a subordinate developer and asks for the correction in the website by
waiting in the queue. On the other hand, if he finds the website working correctly and fulfills
his requirements, he leaves the system. Another application arises in the online purchasing
of goods where customer care persons simultaneously act as both server and customer. The
latter example demonstrates that subordinate servers are not required to approach the chief
server physically. From the above examples, the chief server is a kind of senior authority or
executive. As a result, the system only has one chief server, but the number of subordinate
servers is considered finite or unrestricted.

In this study, we examine a service system in which service is rendered in phases by
several subordinate servers in the initial stage and a single chief server in the final step. The
literature on multi-phase queues is substantial. Krishna and Lee [109] first studied the issue
of queueing systems with two-phase services using batch and individual phases. Doshi [43]
extended Krishna and Lee’s [109] work to incorporate general batch services and general
individual service times. Choudhury and Deka [33] used a Bernoulli vacation schedule to
conduct steady-state and reliability assessments on an M/G/1 queue with two-phase service
and server breakdowns. Wang et al. [193] provided performance measures for a retrial queue
with a finite number of sources and two-phase service, with service times considered to be
generally distributed in both phases. A number of studies (see, e.g., [127], [35], [34], [210],
[22], [175], [204], [190], [116] ) have recently appeared in the queueing literature in which
concepts of service in phases have been discussed.

In the previous research, it was considered that a single server provides a two-phase ser-
vice. Few articles have looked into scenarios including multi-server queues and a two-phase
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service. Yang et al. [214] modeled a finite capacity M/M/R/K queue with a two-phase
service and a second optional channel. The matrix-geometric strategy was employed by Ke
et al. [101] to compute the stationary probability distribution of the number of customers
in a M/M/R queue with a two-phase service. Ahuja et al. [7] investigated a multi-server
retrial queue with a finite population, balking customers, and two-phase service.

At the epoch of all phases of service completion, customers pay attention to the service
received for verification, whether reliable or unreliable. On inspection, if customers find
service unreliable, he reattempts the service by joining the queue of subordinate servers.
On the other hand, reliable service received customers depart from the system. In litera-
ture, studies on unreliable services are seldom available. Patterson and Korzeniowski [148]
constructed the corresponding embedded Markov chain and computed the stationary queue
length’s probability generating function (PGF). They also provided the Laplace-Stieltjes
transform of the stationary waiting time to provide sufficient conditions for positive recur-
rence and closed-form of stationary distribution for Markovian single server queue with a
newly introduced constraint unreliable service. As an extension of [148], Patterson and
Korzeniowski ([150],[149]) derived an explicit closed-form of the stationary distribution
of a Poisson arrival, exponential service, and single server queue with unreliable service
and working vacation. Shekhar et al. [171] conducted sensitivity and optimal analysis for
the expected total cost incurred and reliability characteristics for a machine repair problem
(MRP) of standbys provisioning in a Markovian environment with unreliable service and
vacation interruption. Recently, Esfeh [56] formulated new analytical estimates of mean
waiting time for diverse transit systems, including dial-a-ride, feeder-trunk, and single route
with unreliable service.

To the best of our knowledge, there has been no study on service systems with a subordinate-
chief server approach and unreliable service. In this sense, this study fills the gap and helps
economically analyze such a service system and find the decisive parameters.

The rest of this chapter is organized as follows: In the next Section 3.2, the model is
described with system states, notations, and steady-state equations. These equations are
solved to find probabilities using the repeated substitution approach in Section 3.3. The
system’s performance measures are derived and computed in vector form in Section 3.4.
The cost function is constructed for the model in Section 3.5. The meta-heuristic technique
TLBO used in the presented model is explained in detail along with its pseudo-code in
Section 3.6. We compute the steady-state probabilities numerically and plot the graphs
for various performance measures to check their sensitiveness to system parameters 3.7.
Sensitivity analysis is also conducted to obtain the optimal solution in Section 3.8. Finally,
concluding remarks are discussed in Section 3.9.
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3.2 Problem Description and Formulation

In this study, we formulated a queueing model in which the service providers are of two
types: R subordinate servers and one chief server. The service is completed commutatively
by subordinates and chief servers in two consecutive stages. The initial stage service is
performed by one of the subordinate servers, and the chief server completes the final stage
service. Any arriving customer initially joins one of the queues of subordinate servers who
are arranged in parallel to serve first phase service. After completing this phase of service,
the subordinate server approaches the chief server on behalf of the customer and acts as
a customer in this phase. If the chief server is busy serving another subordinate server,
he waits for his turn in the queue and remains occupied and doesn’t perform service in
this period. The chief server completes the service with the help of the subordinate server.
Subordinate servers are released after the final phase service to serve the next customer
waiting for the initial phase service. Upon service completion in both phases, the customer
inspects whether the service is successful or not on their behalf. Customers leave the system
only after successfully completing their service; otherwise, they rejoin the system and wait
for service in one of the queue of subordinate servers.
Assumptions and Notations:

• The arrival of customers in the system follows a Poisson process with a rate λ .

• The inter-service time for subordinate and chief servers is exponentially distributed
with rates µ and α , respectively.

• When all our subordinate services are busy, the upcoming customers have to wait in a
queue and will be provided service on a FCFS basis.

• When the chief server is busy serving a subordinate server, the arriving subordinate
servers will form a queue and be served on a FCFS basis.

• It is assumed that the service provided by the subordinate-chief server may be un-
reliable, which means that the service may be unsuccessful many times before it is
successful. The rate of successful and unsuccessful services are β1 and β2, respec-
tively.

• All stochastic processes and events are repeated repeatedly and statistically indepen-
dent of each other.
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3.2.1 Steady State Equations

The presented model is a QBD process in two dimensions with the state-space {N1,N2,J},
where N1 represents the count of customers in the system, N2 represents the count of subor-
dinate servers acting as customers for the chief server, and J denotes the inspection state of
the server after providing service to check whether service is successful or unsuccessful in
a steady state. The system states’ joint probability distribution function is as follows:

Pn1,n2 = Prob{N1 = n1,N2 = n2,J = 0}; n1 = 0,1,2, . . . ,K & n2 = 0,1,2, . . . ,R with n1 ≥ n2

Qn1,n2 = Prob{N1 = n1,N2 = n2,J = 1}; n1 = 0,1,2, . . . ,K & n2 = 0,1,2, . . . ,R with n1 ≥ n2

The system states are arranged in the following lexicographic order:
{P0,0,Q1,1,P1,0,P1,1,Q2,1,Q2,2, ...,PR−1,0,PR−1,1,PR−1,R−1,QR,1,QR,2, ...,QR,R,,PR,0,PR,1, ...

PR,R, ...,QK,1,QK,2, ...,QK,R,PK,0,PK,1, ...,PK,R}.
We have the following Chapman-Kolmogorov forward equations using the birth and death
process and relating the system’s states to a steady state.

−λP0,0 +β1Q1,1 = 0 (3.1)

− (λ +n1µ)Pn1,0 +λPn1−1,0 +β2Qn1,1 +β1Qn1+1,1 = 0; 1 ≤ n1 ≤ R−1 (3.2)

− (λ +Rµ)Pn1,0 +λPn1−1,0 +β2Qn1,1 +β1Qn1+1,1 = 0; R ≤ n1 ≤ K −1 (3.3)

− (Rµ)PK,0 +λPK−1,0 +β2QK,1 = 0 (3.4)

− (λ +α)Pn1,n1 +µPn1,n1−1 +β1Qn1+1,n1+1 = 0; 1 ≤ n1 ≤ R−1 (3.5)

− (λ +α)PR,R +µPR,R−1 = 0 (3.6)

− (λ +α)Pn1,R +λPn1−1,R +µPn1,R−1 = 0; R+1 ≤ n1 ≤ K −1 (3.7)

−αPK,R +µPK,R−1 +λPK−1,R = 0 (3.8)

− (λ +(n1 −n2)µ +α)Pn1,n2 +(n1 −n2 +1)µPn1,n2−1 +λPn1−1,n2 +β2Qn1,n2+1

+β1Qn1+1,n2+1 = 0; 2 ≤ n1 ≤ R−1, 1 ≤ n2 ≤ n1 −1 (3.9)

− (λ +(R−n2)µ +α)Pn1,n2 +(R−n2 +1)µPn1,n2−1 +λPn1−1,n2

+β2Qn1,n2+1 +β1Qn1+1,n2+1 = 0; R ≤ n1 ≤ K −1, 1 ≤ n2 ≤ R−1 (3.10)

− ((R−n2)µ +α)PK,n2 +(R−n2 +1)µPK,n2−1 +λPK−1,n2

+β2QK,n2+1 = 0; 1 ≤ n2 ≤ R−1 (3.11)

− (β1 +β2)Qn1,n2 +αPn1,n2 = 0; 1 ≤ n1 ≤ R, 1 ≤ n2 ≤ n1 (3.12)

− (β1 +β2)Qn1,n2 +αPn1,n2 = 0; R+1 ≤ n1 ≤ K, 1 ≤ n2 ≤ R (3.13)
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3.3 Steady-State Analysis

In order to demonstrate the steady-state probability distribution, the repeated substitution
approach is used, as it is extremely difficult to calculate the closed-form expressions of the
state probabilities due to multi-equation, multi-variable, and multiple-parameter queueing
problems. The MAM was first familiarized by Neuts[144] utilizing the concept of embed-
ded Markov chains in numerous realistic queue-based service systems. In this work, for
applying MAM, we define the probability vectors P̃i and Q̃i as follows:

P̃i =

 [Pi,0,Pi,1, ...,Pi,i]; i = 0,1,2, ...,R

[Pi,0,Pi,1, ...,Pi,R]; i = R+1,R+2, ...,K
(3.14)

Q̃i =

 [Qi,1,Qi,2, ...,Qi,i]; i = 1,2,3, ...,R

[Qi,1,Qi,2, ...,Qi,R]; i = R+1,R+2, ...,K
(3.15)

The complete probability vector of all system states is then calculated as

ΠΠΠ =
[
P̃0,Q̃1, P̃1,Q̃2, P̃2, ...,Q̃K, P̃K

]
(3.16)

which can be written as

ΠΠΠ = [ΠΠΠ0,ΠΠΠ1,ΠΠΠ2, ...,ΠΠΠK]

where, ΠΠΠ as a row vector whose ith(i = 1,2, ...,K) element is the steady-state probability
vector [Q̃i, P̃i], i.e. ΠΠΠi = [Q̃i, P̃i]; i = 1,2, . . . ,K with ΠΠΠ0 = P̃0. The system’s generator
matrix, represented by Q, can be constructed using the lexicographic order. Hence, the
equivalent block-tridiagonal structure of the transition rate matrix Q of the continuous-time
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Markov chain (CTMC) is represented as follows:

Q =



A0 0 E0 0 0 . . . 0 0 0 0 . . . 0 0 0
B1 C1 F1 0 0 . . . 0 0 0 0 . . . 0 0 0
0 D1 A1 0 E1 . . . 0 0 0 0 . . . 0 0 0
0 0 B2 C2 F2 . . . 0 0 0 0 . . . 0 0 0
0 0 0 D2 A2 . . . 0 0 0 0 . . . 0 0 0
...

...
...

...
... . . . ...

...
...

... . . .
...

...
...

0 0 0 0 0 . . . CR−1 FR−1 0 0 . . . 0 0 0
0 0 0 0 0 . . . DR−1 AR−1 0 ER−1 . . . 0 0 0
0 0 0 0 0 . . . 0 BR CR FR . . . 0 0 0
0 0 0 0 0 . . . 0 0 DR AR . . . 0 0 0
...

...
...

...
... . . .

...
...

...
... . . . ...

...
...

0 0 0 0 0 . . . 0 0 0 0 . . . AR 0 ER

0 0 0 0 0 . . . 0 0 0 0 . . . BR CR FR

0 0 0 0 0 . . . 0 0 0 0 . . . 0 DR AK


The Markov process’ rate matrix Q is analogous to the quasi-birth and death process and
the elements of the rate matrix Q as block submatrices are given as follows in element form
as:

An =



−λ −nµ nµ . . . 0 0
0 −λ − (n−1)µ −α . . . 0 0
...

... . . . ...
...

0 0 . . . −λ −µ −α µ

0 0 . . . 0 −λ −α


(n+1)×(n+1)

where 0 ≤ n ≤ R.

Ak =



−Rµ Rµ 0 . . . 0 0
0 −(R−1)µ −α (R−1)µ . . . 0 0
0 0 −(R−2)µ −α . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . −µ −α µ

0 0 0 . . . 0 −α


(R+1)×(R+1)
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Bn = β1In;1 ≤ n ≤ R−1

BR =



β1 0 . . . 0 0 0
0 β1 . . . 0 0 0
...

... . . . ...
...

...
0 0 . . . β1 0 0
0 0 . . . 0 β1 0


R×(R+1)

Cn =−(β1 +β2)In; Dn =



0 0 . . . 0
α 0 . . . 0
0 α . . . 0
...

... . . . ...
0 0 . . . α


(n+1)×n

;1 ≤ n ≤ R

En = λ In+1; 0 ≤ n ≤ R

Fn =


β2 0 . . . 0 0
0 β2 . . . 0 0
...

... . . . ...
...

0 0 . . . β2 0


n×(n+1)

;1 ≤ n ≤ R

Now, for the sake of computing steady-state probability vector ΠΠΠ from the system of equa-
tion 3.1-3.13, we have the following homogeneous system of equations with the help of rate
matrix Q as

ΠΠΠQ = 0 (3.17)
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with the initial condition ΠΠΠ0 = P0,0 = 1. The following steady-state matrix equations can
represent the homogeneous governing system of the equation 3.1-3.13 in terms of pre-
defined block matrices:

P̃0A0 + Q̃1B1 = 0

Q̃nCn + P̃nDn = 0; 1 ≤ n ≤ R

Q̃nCR + P̃nDR = 0; R+1 ≤ n ≤ K

P̃nEn + Q̃n+1Fn+1 + P̃n+1An+1 + Q̃n+2Bn+2 = 0; 0 ≤ n ≤ R−2

P̃R−1ER−1 + Q̃RFR + P̃RAR + Q̃R+1BR = 0

P̃nER + Q̃n+1FR + P̃n+1AR + Q̃n+2BR = 0; R ≤ n ≤ K −2

P̃K−1ER + Q̃KFR + P̃KAK = 0

We now have the result of appropriate matrix manipulation and recursive substitution as

Q̃1 = P̃0A0(−B−1
1 ) (3.18)

Q̃n = P̃nDn(−C−1
n ) = P̃nXn;1 ≤ n ≤ R (3.19)

Q̃n = P̃nDR(−C−1
R ) = P̃nXn;R+1 ≤ n ≤ K (3.20)

P̃n =
[
P̃n+1(Xn+1Fn+1 +An+1)+ P̃n+2Xn+2Bn+2

]
{−E−1

n };0 ≤ n ≤ R−2 (3.21)

P̃R−1 =
[
P̃R(XRFR +AR)+ P̃R+1XR+1BR

]
{−E−1

R−1} (3.22)

P̃n =
[
P̃n+1(Xn+1FR +AR)+ P̃n+2Xn+2BR

]
{−E−1

R };R ≤ n ≤ K −2 (3.23)

P̃K−1 =
[
P̃K(XKFR +AK)

]
{−E−1

R } (3.24)

wherein Xn has the closed form as follows

Xn =

Dn(−C−1
n ); 1 ≤ n ≤ R

DR(−C−1
R ); R+1 ≤ n ≤ K

Using Eqns. 3.16, 3.19 and 3.20,

ΠΠΠ =
[
P̃0, P̃1X1, P̃1, P̃2X2, P̃2, ..., P̃KXK, P̃K

]
(3.25)

We further use the normalizing condition of probability as

ΠΠΠe = 1
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where e = [1,1, ...,1]T is column vector of dimension 2K +1 having all entries 1.

(P̃0 + P̃1X1)e1 +(P̃1 + P̃2X2)e2 + ...+(P̃K−1 + P̃KXK)eK + P̃KeK+1 = 1
K

∑
i=1

(P̃i−1 + P̃iXi)ei + P̃KeK+1 = 1 (3.26)

where, ei is column vector of dimension (i+1) with all entries 1.
At this end, we have K+1 variables as P̃0, P̃1, ..., P̃K and K+1 equations as 3.21, 3.22, 3.23,
3.24 and 3.26 which can be solved to obtain these variable values. Further Q̃i’s are obtained
from P̃i’s by equations 3.19 and 3.20.

3.4 System Performance Measures

The acceptability of any model of the queueing problems can be best interpreted in terms
of its system characteristics. Here, several indices viz. expected customers’ count in the
system, expected subordinate servers count in queue, waiting time , throughput, etc. are
obtained in order to endorse the system’s applicability. Various system indices are expressed
in vector form as:

• Expected number of customers in the system

Lc =
K

∑
n1=0

n1Pn1,0 +
K

∑
n1=0

R

∑
n2=1

n1(Pn1,n2 +Qn1,n2)

=
R

∑
i=0

iP̃ici +
K

∑
i=R+1

iP̃icR +
R

∑
i=1

iQ̃idi +
K

∑
i=R+1

iQ̃idR (3.27)

where ci, cR, di, and dR are column vectors of dimension (i+ 1), (R+ 1), i and R

respectively, consisting of all entries 1.

• Expected number of subordinate servers waiting in the system

Ls =
R

∑
n1=1

n1

∑
n2=1

(n1 −n2)[Pn1,n2 +Qn1,n2]+
K

∑
n1=R+1

R

∑
n2=1

(R−n2)[Pn1,n2 +Qn1,n2]

=
R−1

∑
i=2

(P̃i + Q̃i)si +
K

∑
i=R

(P̃i + Q̃i)sR (3.28)
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where si = [0, i−1, i−2, ...,1,0]T and sR = [0,R−1,R−2, ...,1,0]T are column vec-
tors of dimensions (i+1) and (R+1), respectively.

• Expected waiting time of customer

Wc =
Lc

λe f f c
(3.29)

where λe f f c is effective arrival rate for customers given by

λe f f c =
R−1

∑
n1=0

n1

∑
n2=1

λPn1,n2 +
K−1

∑
n1=R

R

∑
n2=1

λPn1,n2

=
R−1

∑
i=0

λ P̃iui +
K−1

∑
i=R

λ P̃uR

where ui and uR are column vector of dimensions (i+ 1) and (R+ 1), respectively
with all entries 1.

• Expected waiting time of subordinate server

Ws =
Ls

λe f f s
(3.30)

where λe f f s is effective arrival rate for subordinate servers given by

λe f f s =
R−1

∑
n1=1

n1−1

∑
n2=0

(n1 −n2)µPn1,n2 +
K

∑
n1=R

R−1

∑
n2=0

(R−n2)µPn1,n2

=µ

R−1

∑
i=1

P̃ivi +µ

K

∑
i=R

P̃ivR

where vi = [i, i−1, i−2, ...,1,0]T and vR = [R,R−1,R−2, ...,1,0]T are column vec-
tors of dimensions (i+1) and (R+1), respectively.

• The probability that customer immediately after service is rendered

Pu =
R

∑
n1=1

n1

∑
n2=1

Qn1,n2 +
K

∑
n1=R+1

R

∑
n2=1

Qn1,n2

=
R

∑
i=1

Q̃iwi +
K

∑
i=R+1

Q̃iwR (3.31)

where wi and wR are column vector of dimensions i and R, respectively with all entries
1.
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• Throughput of the successful customer in the system

τps =
R−1

∑
n1=1

n1−1

∑
n2=0

(µ +α +β1)Pn1,n2 +
K

∑
n1=R

R−1

∑
n2=0

(µ +α +β1)Pn1,n2

=(µ +α +β1)
R

∑
i=1

P̃iai +(µ +α +β1)
K

∑
i=R+1

P̃iaR (3.32)

where ai = [1,1,1, ...,1,0]T and aR = [1,1,1, ...,1,0]T are column vectors of dimen-
sions (i+1) and (R+1), respectively.

• Throughput of the unsuccessful customer in the system

τpu =
R−1

∑
n1=1

n1−1

∑
n2=0

(µ +α +β2)Pn1,n2 +
K

∑
n1=R

R−1

∑
n2=0

(µ +α +β2)Pn1,n2

=(µ +α +β2)
R

∑
i=1

P̃iai +(µ +α +β2)
K

∑
i=R+1

P̃iaR (3.33)

where ai and aR are given as above vectors.

• Frequency of system full

FF =
R

∑
n2=0

λPK−1,n2 +
R

∑
n2=1

β2QK,n2

=λ P̃K−1fR+1 +β2Q̃KfR (3.34)

where fR and fR+1 are column vector of dimensions R and (R+1), respectively with
all entries 1.

3.5 Computation of the Cost Function

This section is dedicated to constructing a cost function using various cost components
encountered in the system. Several components of the cost per unit time associated with
distinct occurrences are used for this purpose. The cost components that are included in the
cost function are:
Ch1 ≡ Holding cost incurred for each customer present in the system.
Ch2 ≡ Holding cost incurred for each subordinate server waiting for the approval phase ser-
vice.
Cr ≡ Cost associated per subordinate server.
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Cm ≡ Cost incurred for providing the service with rate µ by subordinate server in prepara-
tion phase.
Ca ≡ Cost incurred for providing the service with rate α by chief server in the approval
phase.
Now, the total cost function per unit time is constructed by combining the different cost
aspects mentioned above with system performance indices such as-

TC(µ,α) =Ch1Lc +Ch2Ls +CrR+Cmµ +Caα (3.35)

The governing optimization problem is developed as

TC∗(µ∗,α∗) = Min{TC(µ,α)} (3.36)

We opt the metaheuristic optimization technique TLBO discussed in the coming section to
compute the optimal value of deciding parameters (µ∗,α∗).

3.6 Teaching Learning Based Optimization Algorithm

Inspiration

The TLBO method is based on the impact of the teacher’s influence on the output of students
in a classroom, which is discussed in more details in subection 1.8.2.

Teacher Phase

Let Mk be the mean and Tk be the teacher at any iteration k. Tk will attempt to move mean
Mk towards its own level, therefore the new mean will be Tk labelled as Mnew. The solution
is updated according to the difference between the existing and the new mean is given by

DMk = rk (Mnew −TFMk) (3.37)

where TF is a teaching factor that decides the change in mean value, and rk is a random
vector uniformly distributed within [0,1]D. The value of TF can be either 1 or 2, which is
again a heuristic step and decided randomly with equal probability.
The position of each learner in the kth iteration is updated by the following equation

Xk,new = Xk,old +DMk (3.38)
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where Xk,new = (X1
k,new, ...,X

D
k,new) and Xk,old = (X1

k,old, ...,X
D
k,old) are the kthlearner’s new and

old positions, respectively. If Xk,new is better than Xk,old , it is accepted; otherwise Xk,old is
unchanged.

Algorithm 3 Pseudo code for TLBO
1: Input: Initialize number of learners L, dimension D, iterations tmax;
2: while t < tmax or convergence criterion do
3: Choose the best learner as Tk;
4: Calculate the mean Mk of all learners;
5: for 1 ≤ i ≤ L do
6: T F = round(1+ rand(0,1))
7: Update the learner according to Eq. 3.38;
8: Evaluate f (Xk,new);
9: if f (Xk,new)< f (Xk,old) then

10: Update Xk,old with Xk,new
11: else Xk,old unchanged

end if
12: Randomly select another learner Xl(k ̸= l)
13: if f (Xk)≤ f (Xl) then
14: Update the learner according to Eq. 3.39;
15: else Update the learner according to Eq. 3.40;
16: Evaluate the new learner Xk,new;
17: if f (Xk,new)< f (Xk,old) then
18: Update Xk,old with Xk,new
19: else Xk,old unchanged

end if
end if

end for
end while

Learner Phase

Learners acquire knowledge in two different manners: one from teacher input and the other
through peer interaction. With the support of group discussions, presentations, formal com-
munications, and other means, a learner connects with other learners at random. If another
student has greater knowledge than the learner, the learner learns something new.
Learner Xk randomly selects another learner Xl (k ̸= l) and the learning process can be di-
vided into two cases as:
Case I If f (Xk)≤ f (Xl)

Xk,new = Xk,old + rk(Xk −Xl) (3.39)
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Case II If f (Xk)> f (Xl)

Xk,new = Xk,old + rk(Xl −Xk) (3.40)

where f (X) is the objective function with D−dimensional variables. If Xk,new is better than
Xk,old , it is accepted [30], [159],[233].

3.7 Numerical Illustrations of the Model

To illustrate the practicability of the presented model, numerical experiments are carried out
with the help of MATLAB software. The values of the default parameters are set as K = 30 ,
R = 4, λ = 2.5, µ = 2, α = 5, β1 = 1, and β2 = 0.5 to satisfy the requirements of the model
described in Section 3.2.

An increase in system capacity largen up the space for more accommodation of cus-
tomers, which in result increases mean number of customers in the system (Lc) as depicted
in Fig 3.1. The larger system size has more customers served in the first phase of service by
subordinate servers, increasing to Ls in the queue of the chief server (Fig 3.2). The queue
size is directly related to the waiting time; thus, Wc and Ws are also higher for larger K (Fig
3.3,3.4). The entry of customers into the system leads to the formation of the queue; there-
fore, increasing the arrival rate tends to increase queue size (as observed in Fig 3.1(i), Fig
3.2(i)) and waiting time (as shown in Fig 3.3(i) and Fig 3.4(i)) as well. From the common
notion, it can be easily deducted that a larger queue size hampers the customer’s patience
due to increased waiting time in the system. The inspection for successful service (β1)
directes that customers leave the system after service completion of all phases. Also, sub-
ordinate servers get back to perform preliminary phase service to newly arriving customers
and depart from the chief server queue, as clearly observed in Figs 3.2(iv) and 3.4(iv). The
peculiar pattern is observed for smaller β1 due to capacity constraints in which subordinate
servers perform the preliminary phase sooner in lesser congestion but trend changes when
service improves further. The inspection for unsuccessful service β2 ultimately determines
the number of customers rejoin again in the system due to service failure. Thus, the pattern
followed by graphs of Lc, Ls, and Wc are similar as that of λ (see Fig 3.1(v), Fig 3.2(v), and
Fig 3.3(v)). In a queueing system, service regimes are crucial in determining the satisfaction
level of customers. In our model, service is provided cumulatively by subordinate servers
in parallel and a chief server in the phases in tandem. Each phase’s service rate is vital in
deciding queue size and waiting time. An improvement in the service of subordinate servers
results in an apparent reduction in queue length and waiting time (see Fig 3.1(ii, iii, iv) and
Fig 3.3(ii, iii, iv)).
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Figure 3.1: Expected number of customer in the system (Lc) wrt (i) λ , (ii) µ ,
(iii) α , (iv) β1, (v) β2, and (vi) R for different values of K.
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Figure 3.3: Expected waiting time of customer (Wc) wrt (i) λ , (ii) µ , (iii) α ,
(iv) β1, (v) β2, and (vi) R for different values of K.
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As described in the model description (Section 3.2), subordinate servers are arranged in
parallel to serve customers in the preliminary phase, so each server has a different queue. An
increment in the number of subordinate servers increases the number of customers served
in the preliminary phase and reduces their queue length and waiting time (see Fig 3.1(vi)
and Fig 3.3(vi)). From the earlier explanation, it can be easily deduced that an increased
number of subordinate servers queue up for the second phase service to be provided by the
chief server (see Fig 3.2(vi) and Fig 3.4(vi)).

The system’s throughput measures the number of customers the service facility serves in
a unit time. The incoming customers in the service system enhance the throughput count to a
certain extent but gradually decrease by increasing the arrival rates beyond some limit. The
trend of the number of customers beyond system capacity and upcoming customers is lost
(see Fig 3.5(i)). In the service systems where service is rendered in phases, customers depart
after all phases of service are completed. In the presented model, there is a single chief
server, so an increased number of subordinate servers and their service rate (µ) increase
congestion in the final phase, as shown in Fig 3.5(ii), (vi). On the contrary, the throughput
of successful customers increases when the final phase of service improves (see Fig 3.5
(iii, iv, v)). The throughput of unsuccessful customers in the system also goes through the
same procedures as customers whose service is successful. After completing the service,
customers decide whether the service is reliable or unreliable. On that note, we can observe
that the trend of τpu is similar to τps for all the parameters, as shown in Fig 3.6.

The frequency of the system being full, i.e., the arriving prospective customers are lost,
is determined by the flow of customers in and out. The trend of the FF graph is an easy
observation of the fact that maximum customer accommodation is reached by increasing the
arrival rate (see Fig 3.7 (i), (v)) and decreased by increasing the service rate (see Fig 3.7 (ii),
(iii), (iv), (vi)).

3.8 Sensitivity Analysis of the Model

The computation of the total cost (TC) is done by first choosing following unit cost elements
Ch1 = 100, Ch2 = 300, Cr = 50, Cm = 5, and Ca = 30 as default cost parameters. The result
of illustrations are depicted in Fig 3.8-3.11 and Tables 3.1-3.2.

To benefit the cost analysis from an economic viewpoint, the function of cost TC(µ,α)

is plotted against system parameters in Fig 3.8 and Fig 3.9 as surface plot, line graph, contour
plot. We observe that the graph of TC is convex for parameters µ and α (see Fig 3.8(ii),
Fig 3.9(i,ii)) that prompt µ and α as decision parameters. The waiting time of customers in
the system needs to be minimized to make the system cost-effective. We achieve a low-cost
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Figure 3.5: Throughput of the successful customer in the system (τps) wrt (i)
λ , (ii) µ , (iii) α , (iv) β1, (v) β2, and (vi) R for different values of
K.

service system by providing a better service facility by increasing the number of subordinate
servers. There is cost associated with each server, so if there is an increase in the number
of subordinate servers after a specific optimal value, cost increases. Thus, TC is convex
due to the trending nature (Fig 3.9 (iii, v, vi) and needs to balance the incurred cost. The
depicted trend prompts that all decision parameters are favorable in system design and play
an essential part in advancing the presented model. The results are fascinating and may
be used for future upgradation in realistic queueing problems of multi-stage services with
a reasonable selection of service rates. We employ the meta-heuristic technique TLBO to
investigate the effect of the system’s attributes on the optimal total cost TC(µ∗,α∗).

Many population-based metaheuristic optimization approaches, like TLBO, are iterative
techniques. When the iterations proceed, all search solution points converge to the best,
defined as the search point with the optimal values of the decision variables, as illustrated
in Fig 3.10. The total cost (TC(µ∗,α∗) value is lowest at µ∗ and α∗. The convergence of
multiple runs with distinct initial sets of the solution (population) is depicted in Fig 3.11. It
is observed that TLBO converges to the optimal solution point after some generation from
the distinct initial set of solution points.
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Figure 3.6: Throughput of the unsuccessful customer in the system (τpu) wrt
(i) λ , (ii) µ , (iii) α , (iv) β1, (v) β2, and (vi) R for different values
of K.
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Figure 3.8: Surface plot for total cost of the system (TC) wrt combinations
of (i) (K,λ ) (ii) (µ,α) (iii) (β1,β2) (iv) (K,R).

Figure 3.9: Total cost of the system (TC) wrt (i) λ , (ii) µ , (iii) α , (iv) β1, (v)
β2, and (vi) R for different values of K.
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Figure 3.11: Total cost of the system (TC) wrt (i) λ , (ii) µ , (iii) α , (iv) β1,
(v) β2, and (vi) R for different values of K.
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Tables 3.1 and 3.2 comprise the optimal value of decision parameters (µ∗,α∗) for min-
imum cost for a different set of governing parameters and cost elements, respectively. For
the demonstration purpose, we use a randomly generated population of size 50, 30 inde-
pendent generations, and 10 independent numbers of run along with the lower and upper
limits for µ and α as [3,10] and [18,30], respectively, and obtain optimum values of the
continuous decision parameters up to the fifth decimal place in both the Tables 3.1 and 3.2.
To demonstrate the resilience of the TLBO method, we employ the notion of statistical in-
ferences, particularly the mean and maximum of the ratio of optimum TC∗(µ∗,α∗) in all
runs and optimal TC∗(µ∗,α∗) in each run. Furthermore, we can see from both Tables 3.1
and 3.2 that the mean and maximum values of TC

TC∗ are between 1.00000000018273621 and
1.00000000098926489, where TC is the best (minimum) solution among ten independent
TLBO runs and TC∗ is the best (minimum) solution among ten independent TLBO runs.

In a nutshell, we infer the following points

• Appropriate service facility and system design are needed to develop a better service
system.

• Optimal decision values are fixed to optimize the incurred cost.

• Precautions need to be taken in service to avoid unreliable service, delay in service,
etc.

3.9 Conclusion

In this chapter, we investigated a finite capacity service system with a subordinate-chief
server approach, and the service is unreliable. The service is provided in two phases, viz
preparation and approval phase by subordinate and chief servers, respectively. In the ap-
proval phase, subordinate servers behave like customers and seek service from the chief
server on customers’ behalf. The service is finally completed by the chief server and the
subordinate server’s assistance. At the end of service completion, the customer decides
whether the service is reliable or unreliable. Suppose a customer finds the service unreli-
able, s/he retries for service. We apply the repeated substitution approach to determine the
probabilities of the system in the steady-state. Various system performancemeasures of the
system are derived in vector form for developing their numerical simulations. The provided
model is subjected to an economic analysis by finding the total cost function for decision
parameters µ and α for cost minimization and utility maximization. The optimal results
are computed by employing the meta-heuristic technique TLBO on the governing total cost
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optimization problem. The cost analysis clearly communicates the viability and profitability
of the established model.





Chapter 4

Admission Control Policy on Online and Impa-
tience Attributes of Offline Customers in Multi-
phase Queueing Systems

This chapter considers a two-phase service system like pre-registration and verification sys-
tems, token and service systems, prepayment, and service systems, etc. The arriving cus-
tomers in the first phase can either join the queue and wait for their turn or directly seek ser-
vice through the online application. In the next phase, the customers, through both modes,
must be present physically in the system. The controllable online booking is conceptualized
for the online-application users as, after a specific threshold limit, the online application cus-
tomers will not be able to book online due to capacity constraints to benefit the customers
waiting physically. There is a general tendency of the waiting customers to abandon the
long queue in the first phase.
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4.1 Introduction

A queueing problem often develops when a customer has to wait in one to receive a service.
Adjustments must be made to the arriving units, the service facilities, or both to address
the problem. For many years, queueing theory has been used in various industries, includ-
ing banking, aviation, restaurants, transportation, supply chains, and tourist sectors, among
many others. In this chapter, we studied a finite capacity queueing system in which arriving
customers have two paths to receive service. In the first stage, either by physically being
in the system or through websites or mobile applications, and in the next phase of service,
customers need to be physically present in the system irrespective of the path chosen in the
first stage of service.

Online ordering is becoming a cornerstone standard defining congestion management.
Such online processes are employed in various real-world contexts, including selling airline
tickets, cloud resource allocation, sponsored search, real-time bidding in display advertise-
ment, dynamic fleet management, fog computing, and real-time ride-sharing [137], [26].
However, in this study, our primary focus is on employing a queueing theoretic approach to
represent a service mechanism. We have also employed the arrival control policy, namely the
F-policy, on the customers coming to the system through the app. In this policy, the server
keeps providing service to the customer until it reaches the system’s maximum capacity
and then stops taking further customers until the queue length decreases to a pre-specified
threshold value, F . Finding the best operating strategy that results in the lowest overall cost
is the goal of controllable queueing models, service control, or arrival control. Gupta [71]
was the first to provide steady-state analytical solutions for the F-policy M/M/1/K queue-
ing system with an exponential startup time. To get the steady-state probability distributions
of the number of customers in the F-policy G/M/1/K and M/G/1/K queueing systems,
Wang et al. [196], [195] present a recursive approach utilizing the supplementary variable
technique and treating the supplementary variable as the remaining inter-arrival time. Ke
et al. [99] extended the issue of controlling arrivals for an M/M/1/K queuing system with
an F-policy, suggesting that specific customers may want a second service in addition to
the first crucial service. The methodological characteristics of the F-policy employed in
the retrial queueing model, the vacation and working vacation model, the unreliable server
model, and the non-Markov model were outlined by Jain et al. [93] to give a state-of-the-art
of admission control F-policy. Since then, the study of controllable F-policy has been mod-
ified by many researchers, and extensive research has been carried out to enhance the use of
arrival control policy in various queueing and machining systems (see [223], [206], [205],
[133], [217]). In this manner, we can prioritize that customer who has arrived in the system
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in stage 1 and prevent them from getting frustrated. In this way, app customers merely have
something to lose and can retry again, but the customers who have already arrived in the
system hoping to be served should ideally be given service. This phenomenon is common
in services like restaurants, banks, booking counters, passport or visa renewal offices, etc.,
as they have the dual facility of providing the initial phase of service by giving them a token
number for the service they seek.

Customers’ frustration is reaching a tipping point where many are unwilling to wait in
line longer than the minimum amount of time. Customers’ impatient attitudes make it more
challenging to simulate queuing systems. The economic aspect of queueing theory in con-
sideration of customers’ decision to join the queue has received significant study focus over
the last few decades. In a queuing system with the balking phenomenon, each customer
joins the queue if its length is smaller than the most extended queue length they will endure,
according to Haight [72]. In the model being studied, we have also employed the impatience
attribute of customers, namely balking, in which customers may show a tendency to leave
the system when they find congestion that is intolerable or beyond their threshold value.
This impatience behavior is only for the customers planning to physically join the queue
of stage one. Since there can be no balking on the app users as they have not experienced
congestion or long wait due to booking for tokens through the app being present outside of
the system. Economou and Kanta [49, 50, 51] have analyzed balking with various M/M/1
queue types in great detail. Singh [176] examines a two-server queuing model with a pre-
determined probability of balking with two distinct types of customers. In an M/G/1 queue
with several vacations, Economou et al. [70] studied equilibrium and socially optimal balk-
ing approaches. In the steady-state study of queueing systems, the phenomenon of balking
has been handled as one of the stochastic components. Yechiali [221] investigated a GI/M/1
queuing process with a stationary balking mechanism and a linear cost-reward structure. As
a result, there has been constant discussion of the steady-state analysis of queueing systems
taking balking into account. For instance, in Arizono et al. [13], Jain et al. [91], Economou
et al. [47], Lumb et al. [126], and Negahban [141]the corresponding Markovian queueing
systems with balking have been taken into consideration.

In this study, it is assumed that different servers provide a two-phase service. Only a
few studies have looked into multi-server queues using a two-phase service. An M/M/R/K

queue with finite capacity and two-phase service was examined by Yang et al. [214]. A
similar approach was used by Ke et al. [101] to compute the stationary probability distri-
bution of the system’s customer count for an M/M/R queue with a two-phase service. A
multi-server retrial queue with a finite population, balking customers, and two-phase service
was taken into consideration by Ahuja et al. [7]. Yeh et al. [222] analyzed a two-phase finite
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capacity M/M/1/K queueing system with < p,F >-policy.
The novelty of the present investigation is:

• To study a two-channel queueing model that addresses arrivals via two modes.

• To address the effect of arrival control policy on app customers.

• To address the customer’s impatience attributes in offline mode.

• We are determining the optimal cost of the system using an efficient and recent meta-
heuristic technique called the grasshopper optimization algorithm.

The remainder of this chapter are organized as follows. In the next Section 4.2, the model
is described with system assumptions, notations, and states. The model is formulated as
a quasi-birth-and-death process and steady-state analysis is done by implementing the re-
peated substitution method to determine the stationary distribution probabilities in Section
4.3. The system’s performance measures are derived and computed in Section 4.4. The
cost function is constructed for the model in Section 4.5. In Section 4.6, the grasshopper
optimization algorithm is discussed in detail, along with its pseudo-code. Section 4.7 is de-
voted to compute the steady-state probabilities numerically and plot the graphs for various
performance measures to check their sensitiveness to system parameters. Finally, Section
4.8 presents concluding remarks, and future scope of this study.

4.2 Problem Description and Formulation

In this study, we aim to develop a two phase state-dependent queueing model. In the initial
phase of service, there are two ways in which a customer can join, either by being physically
present in the system or through online websites or mobile applications. There is no restric-
tion on customers for choosing any route of this phase service; it totally depends on their
convenience, but they can only choose one path out of two, not both. In the next consecutive
phase, customers must be present in the system in any way selected in the previous service
phase.

4.2.1 Basic Assumptions and Notations

1. The arrivals are identically independent of each other and follow the Poisson process
for both stages of service. The inter-arrival time between two customers follows ex-
ponential distributions for both the initial and final phase of service with parameters
λ1 and λ2, respectively.
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2. The arrivals controllable F-policy is applied to the customers directly approaching the
second phase of service. In this policy, the server keeps serving customers until the
maximum capacity, K is reached in the system and then stops allowing app customers
to apply for service until the queue size reduces to the threshold limit set to be F .

3. At the epoch of queue size reduces till F , the server requires a startup time distributed
exponentially with parameter γ to start allowing fellows to the system. After that,
the system usually functions until reaching its maximum capacity, at which time the
above process is repeated repeatedly.

4. There is also a limit on customers’ accommodation in first phase for initially joining
the system for the starting service, which is k. Once this amount is reached, the next
arriving customer has to leave the system and is termed as a lost customer.

5. Increased congestion in the system leads customers to leave the system without being
served, and such a phenomenon is known as balking. The reasons for withdrawing
from the system can be an unexpected delay, getting late for the next task, or change
of mind if it takes longer than expected waiting time, etc., The impatience behavior is
seen in customers who are stuck in the congestion scenario. So, we have employed
this balking behavior in stage 1 customers who decide to be present in the system for
service. The probabilities of a customer balking away from the system without service
or joining the system are complimentary to each other as ξ̄ and ξ , respectively. The
stage 2 customers can barely think of leaving the service in between after taking and
paying for it, except for some exceptions. So, we have not included balking nature of
the customer in stage 2 of service.

6. The inter-time between services also follows an exponential distribution for both ini-
tial and final phases with parameters µ and β , respectively, independent of each other.

4.2.2 Practical Justification of the Model

A practical situation related to our proposed model is the cinema booking system, where
tickets can be booked online by receiving a token as a seat number and joining the system
directly for the movie. Another available option is queueing for tickets at the counter and
receiving the token. In both cases, either booking online or offline, the final service is
received by physically being present in the system. The control policy applies to online
users if the situation arises in a way that enough people have arrived at the counter. In
such a case, online booking is stopped for a while until the line reduces to a limit set. The
preference is given to offline users for two reasons: (i) such service is in premises where
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other services like food restaurants, shopping malls, etc. Hence, it increases the chances
for offline customers to use these services for benefit in several ways from an economic
viewpoint. (ii) to value the time and presence of offline customers, whereas online customers
can rebook for another slot. The counter customers also show impatient behavior and decide
to balk if the time taken to get the ticket is too long.

4.2.3 System States

In order to analyze the presented system in steady state, it is formulated as a QBD process
in three-dimensional CTMC with a state space {N1(t),N2(t),J(t)}, where N1(t) denotes the
count of customers in first stage of service, N2(t) represents the count of customers in final
service stage, and J(t) represents the state in which customers are allowed or not allowed at
time t. Let N1 ≡ lim

t→∞
N1(t), N2 ≡ lim

t→∞
N2(t), and J ≡ lim

t→∞
J(t). The system steady-states joint

probability distribution function is as follows:

Pn1,n2 = Prob[N1 = n1,N2 = n2,J = 0]; n1 = 0,1,2, . . . ,k & n2 = 0,1,2, . . . ,K −1

Qn1,n2 = Prob[N1 = n1,N2 = n2,S = 1]; n1 = 0,1,2, . . . ,k & n2 = 0,1,2, . . . ,K

Thus, Pn1,n2 and Qn1,n2 represents the long-run fraction of time that the system stays in state
(N1 = n1,N2 = n2,J = 0) and (N1 = n1,N2 = n2,J = 1), respectively.

4.3 Steady-State Analysis

In order to construct the transition rate matrix Q of the corresponding QBD process, the
system states are arranged in the following lexicographic order:
{P0,0,P0,1,P0,2, ...,P0,K−1,Q0,0,Q0,1, ...,Q0,K,,P1,0,P1,1, ...P1,K−1,Q1,0,Q1,1...,Pk,0,Pk,1,Pk,2

...,Pk,K−1,Qk,0,Qk,1, ...,Qk,K}.
Hence, the equivalent block-tridiagonal structure of the transition rate matrix Q of the
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continuous-time Markov chain (CTMC) is represented as follows:

Q =



A0 0 C0

T0 B0 0 D0

L0 0 A1 0 C0

L1 T0 B1 0 D0
. . . . . . . . . . . . . . .

L0 0 A1 0 C0

L1 T0 B1 0 D0

L0 0 A2 0 C0

L1 T0 B2 0 D0

L2 0 A2 0 C0

L3 T0 B2 0 D0
. . . . . . . . . . . . . . .

L2 0 A2 0 C0

L3 T0 B2 0 D0

L2 0 A3 0
L3 T0 B3


The Markov process’ rate matrix Q is analogous to the quasi-birth and death process and
the elements of the rate matrix Q as block sub-matrices are given as follows in element form
as:

{A0}1,1 =−(λ1 + γ); {A0}i,i =−(λ1 +β + γ), i = 2,3, ...,F

{A0}i,i =−(λ1 +β ), i = F +1,F +2, ...,K; {A0}i,i+1 = β , i = 1,2, ...,K −1

{B0}1,1 =−(λ1 +λ2); {B0}i,i =−(λ1 +λ2 +β ), i = 2,3, ...,K

{B0}K+1,K+1 =−(λ1 +β ); {B0}i,i+1 = β , i = 1,2, ...,K −1; {B0}i+1,i = λ2, i = 1,2, ...,K

{A1}1,1 =−(λ1 +µ + γ); {A1}i,i =−(λ1 +β +µ + γ); i = 2,3, ...,F

{A1}i,i =−(λ1 +β +µ), i = F +1,F +2, ...,K; {A1}i,i+1 = β ; i = 1,2, ...,K −1

{B1}1,1 =−(λ1 +λ2 +µ); {B1}i,i =−(λ1 +λ2 +β +µ); i = 2,3, ...,K −1

{B1}K,K =−(λ1 +λ2 +β ); {B1}K+1,K+1 =−(λ1 +β )

{B1}i,i+1 = β , i = 1,2, ...,K −1; {B1}i+1,i = λ2, i = 1,2, ...,K

{A2}1,1 =−(λ1ξ +µ + γ); {A2}i,i =−(λ1ξ +β +µ + γ); i = 2,3, ...,F

{A2}i,i =−(λ1ξ +β +µ), i = F +1,F +2, ...,K; {A2}i,i+1 = β ; i = 1,2, ...,K −1
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{B2}1,1 =−(λ1ξ +λ2 +µ); {B2}i,i =−(λ1ξ +λ2 +β +µ); i = 2,3, ...,K −1

{B2}K,K =−(λ1ξ +λ2 +β ); {B2}K+1,K+1 =−(λ1ξ +β )

{B2}i,i+1 = β , i = 1,2, ...,K −1; {B2}i+1,i = λ2, i = 1,2, ...,K

{A3}1,1 =−(µ + γ); {A3}i,i =−(β +µ + γ); i = 2,3, ...,F

{A3}i,i =−(β +µ), i = F +1,F +2, ...,K; {A3}i,i+1 = β ; i = 1,2, ...,K −1

{B3}1,1 =−(λ2 +µ); {B3}i,i =−(λ2 +β +µ); i = 2,3, ...,K −1

{B3}K,K =−(λ2 +β ); {B3}K+1,K+1 =−β

{B3}i,i+1 = β , i = 1,2, ...,K −1; {B3}i+1,i = λ2, i = 1,2, ...,K

{C0}i+1,i = µ, i = 1,2, ...,K −1; {D0}i+1,i = µ, i = 1,2, ...,K −1

{T0}i,i = γ, i = 1,2, ...,F +1

L0 = λ1IK; L1 = λ1IK+1; L2 = λ1ξ IK; L3 = λ1ξ IK+1

The matrices A0, A1, A2, A3, C0, L0, L2 each of order K ×K, B0, B1, B2, B3, D0, L1, L2

each of order (K +1)× (K +1), and T0 of order (K +1)×K.
The multi-equation, multi-variable, and multiple parameter queueing problem makes it

highly challenging to calculate the closed-form expressions of the state probabilities; hence
the repeated substitution approach is utilized to illustrate the steady-state probability distri-
bution. The notion of embedded Markov chains was initially used in the matrix analytical
approach by Neuts [143] in several realistic queue-based service systems. The probability
vectors P̃i and Q̃i are defined in this work to be used with the repeated substitution approach
as follows:

P̃i = [Pi,0,Pi,1,Pi,2...,Pi,K−1]; i = 0,1,2, ...,k (4.1)

Q̃i = [Qi,0,Qi,1, ...,Qi,K−1,Qi,K]; i = 0,1,2, ...,k (4.2)

The complete probability vector of all system states is then calculated as

ΠΠΠ =
[
P̃0,Q̃0, P̃1,Q̃1, P̃2, ...,Q̃k−1, P̃k,Q̃k

]
(4.3)

Now, for the sake of solving P̃i and Q̃i we use a subset of equations from ΠΠΠQ = 0 combined
with the normalization equation ΠΠΠe = 1 where e is a column vector whose elements are all
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equal to 1.
Consequently, we solve the following linear set:

P̃0A0 + Q̃0T0 + P̃1L0 = 0 (4.4)

Q̃0B0 + Q̃1L1 = 0; 1 ≤ k ≤ R (4.5)

P̃i−1C0 + P̃iA1 + Q̃iT0 + P̃i+1L0 = 0; 1 ≤ i ≤ F (4.6)

Q̃i−1D0 + Q̃iB1 + Q̃i+1L1 = 0; 1 ≤ i ≤ F (4.7)

P̃i−1C0 + P̃iA2 + Q̃iT0 + P̃i+1L2 = 0; F +1 ≤ i ≤ k−1 (4.8)

Q̃i−1D0 + Q̃iB2 + Q̃i+1L3 = 0; F +1 ≤ i ≤ k−1 (4.9)

P̃k−1C0 + P̃kA3 + Q̃kT0 = 0 (4.10)

Q̃k−1D0 + Q̃kB3 = 0 (4.11)
k

∑
i=0

(P̃i + Q̃i)e = 1 (4.12)

We now have the result of appropriate matrix manipulation and recursive substitution as

P̃1 =
(
P̃0A0 + Q̃0T0

){
−L−1

0
}

(4.13)

Q̃1 = Q̃0B0
{
−L−1

1
}

(4.14)

P̃i+1 =


(
P̃i−1C0 + P̃iA1 + Q̃iT0

){
−L−1

0
}

;1 ≤ i ≤ F(
P̃i−1C0 + P̃iA2 + Q̃iT0

){
−L−1

2
}

;F +1 ≤ i ≤ k−1
(4.15)

Q̃i+1 =


(
Q̃i−1D0 + Q̃iB1

){
−L−1

1
}

;1 ≤ i ≤ F(
Q̃i−1D0 + Q̃iB2

){
−L−1

3
}

;F +1 ≤ i ≤ k−1
(4.16)

4.4 System Performance Measures

The acceptability of any model of the queueing problems can be best interpreted in terms
of its system characteristics. Here, several indices viz. expected customers’ count in the
system, expected subordinate servers count in queue, waiting time , throughput, etc. are
key performance measures of interest which are obtained in order to endorse the system’s
applicability. Various system indices are expressed in vector form as:
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• Expected number of customers in the first stage

L1 =
k

∑
n1=1

K−1

∑
n2=0

n1(Pn1,n2 +Qn1,n2)+
k

∑
n1=1

n1Qn1,K

=
k

∑
n1=1

n1(P̃n1eK + Q̃n1eK+1) (4.17)

where eK , and eK+1 are column vectors of dimensions K and K +1 respectively, con-
sisting of all entries 1.

• Expected number of customers in the second stage

L2 =
k

∑
n1=0

K−1

∑
n2=1

n2(Pn1,n2 +Qn1,n2)+
k

∑
n1=0

KQn1,K

=
k

∑
n1=0

P̃n1uK +
k

∑
n1=0

Q̃n1uK+1 (4.18)

where, uK = [0,1,2, ...,K−2,K−1]T and uK+1 = [0,1,2, ...,K−1,K]T of dimensions
K and K +1, respectively.

• Expected waiting time of customer in first stage

W1 =
L1

λe f f 1
(4.19)

where λe f f 1 is effective arrival rate for customers in the first stage

λe f f 1 =
G−1

∑
n1=0

K−1

∑
n2=0

λ1Pn1,n2 +
k−1

∑
n1=G

K−1

∑
n2=0

λ1ξ Pn1,n2 +
G−1

∑
n1=0

K

∑
n2=0

λ1Qn1,n2 +
k−1

∑
n1=G

K

∑
n2=0

λ1ξ Qn1,n2

=
G−1

∑
n1=0

λ1P̃n1eK +
k−1

∑
n1=G

λ1ξ P̃n1eK +
G−1

∑
n1=0

λ1Q̃n1eK+1 +
k−1

∑
n1=G

λ1ξ Q̃n1eK+1

where eK and eK+1 are defined earlier.

• Expected waiting time of customer in second queue

W2 =
L2

λe f f 2
(4.20)
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where λe f f 2 is effective arrival rate for customers in the second stage

λe f f 2 =
k−1

∑
n1=0

K−1

∑
n2=1

µPn1,n2 +
k

∑
n1=0

K

∑
n2=1

λ2Qn1,n2 +
k−1

∑
n1=0

K

∑
n2=1

µQn1,n2

=
k−1

∑
n1=0

µP̃n1el−1 +
k

∑
n1=0

λ2Q̃n1el +
k−1

∑
n1=0

µQ̃n1ei

• Average balking rate

ABR =
k−1

∑
n1=G

K−1

∑
n2=0

λ1ξ (Pn1,n2 +Qn1,n2)+
k−1

∑
n1=G

λ1ξ Qn1,K

=λ1ξ

k−1

∑
n1=G

(P̃n1eK + Q̃n1eK+1) (4.21)

• Throughput of the system

τp =
k

∑
n1=1

K−1

∑
n2=0

(µ +β )Pn1,n2 +
k

∑
n1=0

K−1

∑
n2=1

βPn1,n2 +
k

∑
n1=1

K−2

∑
n2=0

(µ +β )Qn1,n2 +
k

∑
n1=0

K

∑
n2=1

βQn1,n2

=
k

∑
n1=0

β P̃n1el−1 +
k

∑
n1=1

(µ +β )P̃n1eK +
k

∑
n1=1

(µ +β )Q̃n1em +
k

∑
n1=0

β Q̃n1el (4.22)

where, em = [1,1, ...,1,0,0]T , el−1 = [0,1,1, ...,1,1]T and el = [0,1,1, ...,1,1]T of di-
mensions K, K −1 and K, respectively.

• The probability that the server requires a startup time before starting the service

Ps =
k

∑
n1=0

F

∑
n2=0

Pn1,n2

=
k

∑
n1=0

P̃n1eF (4.23)

where, eF = [1,1, ...,1,0,0, ...,0,0]T of dimension K with first F +1 entries as 1 and
remaining entries as 0.
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• The probability that the server is blocked

Pb =
k

∑
n1=0

K−1

∑
n2=0

Pn1,n2

=
k

∑
n1=0

P̃n1eK (4.24)

4.5 The Computation of Cost Function

In this section, the total cost function of two decision parameters, µ , and β , is formulated
using various cost components for performance measures encountered in the system. Sev-
eral components of the cost per unit time associated with distinct occurrences are used for
this purpose. The cost components that are included in the cost function are:
Ch1 ≡ The holding cost incurred for each customer present in the first stage.
Ch2 ≡ The holding cost incurred for each customer waiting for the second stage service.
C1 ≡ The cost associated for providing service with rate µ .
C2 ≡ The cost associated for providing service with rate β .
Cb ≡ The cost associated when server is blocked.
Ck ≡ The cost associated for for system capacity K.
Cw ≡ The cost associated for waiting time of customer in initial phase.
Cs ≡ The cost associated for waiting time of customer in final phase.
Now, the cost function per unit time is constructed by combining the different cost aspects
mentioned above with system performance indices such as-

TC(µ,β ) =Ch1 ×L1 +Ch2 ×L2 +C1 ×µ +C2 ×β +Cb ×Pbl +Ck ×K +Cw ×W1 +Cs ×W2;
(4.25)

The governing optimization problem is developed as

TC(µ∗,β ∗) = min
µ,β

{TC(µ,β )} (4.26)

Embedding a meta-heuristic optimization algorithm on the total cost function is a powerful
tool for cost-optimal from an economic analysis viewpoint. In this chapter, based on the de-
cision parameters of the system, a total cost function for the proposed model is formulated
as a multi-objective optimization problem considering the customer count in the initial and
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final phases, service cost for both the servers, and waiting time of customers in the system.
Then, a robust meta-heuristic optimization technique named Grasshopper Optimization Al-
gorithm is employed to solve it to obtain the optimal total cost TC∗ and deciding parameters
(µ∗,β ∗).

4.6 Grasshopper Optimization Algorithm

Inspiration

The fundamental concept in GOA is that larvae with limited mobility are utilized for local
exploitation, adults with high mobility are used for global exploration, and the grasshopper’s
location is the optimal solution to solve the optimization problem.

Mathematical Model and Algorithm

The mathematical model for simulating the behavior of grasshopper swarms is as follows:

Pi =COi +GFi +Wi (4.27)

where Pi, COi, GFi, and Wi denote the position, the community interaction, the gravity force,
and the wind advection of the ith grasshopper, respectively. The grasshoppers are randomly
distributed in the search space as search agents. So, Eq 4.27 is rewritten by considering their
random behavior in the following manner:

Pi = r1SOi + r2GFi + r3Wi (4.28)

where r1, r2, r3 are the random numbers within [0,1]. The search component in GOA is
calculated as

COi =
N

∑
j=1, j ̸=i

S(di j)d̂i j (4.29)

where N denotes the number of the grasshoppers in the swarm, di j =| Pj −Pi | is the distance
between the ith grasshopper and the jth grasshopper, d̂i j =

Pj−Pi
di j

is the unit vector from the
ith grasshopper to the jth grasshopper. A function to explain the power of social forces
represented by S(r) is defined as

S(r) = f e
−r
l − e−r (4.30)
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where f and l indicate the intensity of attraction and the attractive length scale with ranges
[0,1] and [1,2], respectively. The function S divides space between two grasshoppers into
three zones: the attraction zone, comfort zone, and repulsion zone. Distance between any
two grasshoppers assumed to be between 1 and 4 since the force between two grasshoppers
disappears if the distance between them is significant. The gravitational force GFi in the Eq.
4.27 is defined by

GFi =−gêg (4.31)

where g is the gravitational constant and êg presents a combination vector toward the middle
of the surface. The wind force Wi in the Eq. 4.27 is defined by

Wi = uêw (4.32)

where u is a constant drift and êw is a combination vector toward the wind.

Pi =
N

∑
j=1, j ̸=i

S
(∣∣Pj −Pi

∣∣)Pj −Pi

di j
−gêg +uêw (4.33)

In order to make the algorithm converge to a specific point and prevent grasshoppers from
quickly reaching their comfort zone, the formula is improved to make it close to the optimal
solution. The modified equation of Eq 4.33 is given by

Pd
i = η

N

∑
j=1, j ̸=i

η
Ubd −Lbd

2
S
(∣∣∣Pd

j −Pd
i

∣∣∣)Pd
j −Pd

i

di j
+ T̂d (4.34)

where Ubd , Lbd are the higher bound and the smaller bound of the dth component of the
ith grasshopper, T d is the value in dth dimension of best agent or the optimal grasshopper
T ∗, the adaptive parameter η presents a decreasing coefficient to narrow the comfort zone,
repulsion zone, and attraction zone. In Eq. 4.34, the gravity factor is set to 0. And assume
that the wind direction is always towards a target T d .
To balance the exploration stage and the exploitation, the parameter c is defined by

η = ηmax − t
ηmax −ηmin

T
(4.35)

where ηmax and ηmin are the maximal and the minimal values of the parameter η , respec-
tively. T represents the maximum iteration and t is the current iteration.
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Algorithm 4 Pseudo code for Grasshopper Optimizer
1: Parameter Initialization: iteration, ηmax, ηmin, l, and f
2: Initialize the swarm of grasshoppers randomly Xi, i = 1,2,3, ...,n
3: Evaluate the fitness value of each grasshopper
4: Select the best solution among all (best search agent)
5: while t < tmax or convergence criterion do
6: update η using Eqn. 4.35;
7: for each grasshopper do
8: Normalize distance between grasshopper in the range [1,4]
9: Update present position of grasshopper according to Eq. 4.34;

10: Fetch current grasshopper back if it goes outside limits;
end for

11: update the best solution if there’s a better one
12: itration= itration+1

end while
13: Output: Return the best optimum solution.

Table 4.1: Data set of parameters involved in presented model (Section 4.2)
with sources

System Parameters Numeric value Source(s)

λ1 20 [76]
λ2 0.5 Assumed
µ 5 Assumed
β 4 Assumed
ξ 0.1 [12]
γ 0.4 [196]
F 5 Assumed
G 5 [76]
K 20 Assumed

Ch1 25 [196]
Ch2 30 [196]
C1 100 [196]
C2 150 [196]
Cb 100 [196]
Ck 200 Assumed
Cw 250 [113]
Cs 300 [113]
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Figure 4.1: Effect of initial phase queue capacity k on queue length L1 wrt
(i) λ1, (ii) µ , (iii) ξ , (iv) G. The parameters values are taken
from Table 4.1.
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Figure 4.2: Effect of system capacity K on queue length L2 wrt (i) λ2, (ii) β ,
(iii) γ , (iv) F . The parameters values are taken from Table 4.1.

4.7 Results and Discussion

In this section, the developed model is used to simulate the performance measures of the
system derived in Section 4.4 under various parameters. To illustrate the practicability of the
presented model and theoretical analysis, all numerical results obtained were produced by
implementing algorithms in MATLAB software (R2022b ( 9.9.0.1592791), 64-bit, Licence
number 925317) on a system with configuration Intel(R), Xeon(R), CPU E3-1231 v3 @
3.40 GHz with RAM 32.0 GB. The values of the default parameters are given in Table 4.1
to satisfy the requirements of the model described in Section 4.2.

Fig 4.1 shows variation in the length of the first phase queue for various determining
system parameters. The mathematical expression for L1 in Eqn. 4.17 emphasizes that ac-
commodation constraint k for the initial phase is the determining factor of queue size for
this phase. Henceforth, L1 has experimented against system parameters for different values
of k. It can be seen from Fig 4.1 that the estimated pattern follows the simulation results
very closely. From Fig 4.1, we can observe that λ1, µ , ξ and γ significantly affect L1.
Following conclusions can be induced from Fig 4.1. We can observe that λ1, µ , ξ and γ

significantly affect L1 in fig 4.1. The following conclusions can be induced from Fig 4.1.
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Figure 4.3: Expected waiting time of customers in the initial phase of the
system (W1) wrt (i) λ1, (ii) µ , (iii) ξ , (iv) G for the parametric
values given in Table 4.1.
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(a) Arrival factor: Fig 4.1(i) depicts that as the arrival rate λ1 increases, L1 increases with
a decreasing rate due to balking factor, but ultimately it increases on a further rise in λ1

values. (b) Service factor: An increment in the service rate of the phase 1 server decreases
the queue length to a certain value, but the pattern reverses on further increase in its service.
The reason for such is that balking reduces with queue length. Further service improvement
outperforms the balking factor and increases L1, as shown in Fig 4.1(ii). (c) Impatience
attribute: In Fig 4.1(iii), we illustrate the impact of abandonments on queue length using
joining probability ξ . As expected, the customers count increases with joining probability,
implying that balking discourages customers from joining the system. It exemplifies the
idea that the probability of a customer loss increases with increasing consumer impatience.
(d) Fig 4.1(iv) demonstrates that L1 increases significantly when the initialization of balking
phenomena is increased.

To examine the effect of λ2, β , γ and F on L2, we take the same default parameters values
given in Table 4.1. The trend of the L2 graph in Fig 4.2 (i, ii) can be expected by noting that
the explanation is more or less the same as that of Fig 4.1 (i, ii) for their respective arrival
and service rates. The state-dependent admissible control policy in phase 2 enhances the
queue size in case of an increase in set-up time and threshold limit F . (see in Fig 4.2 (iii,
iv)) From the Little’s formula for waiting times in Eqns 4.19 and 4.20, W1 and W2 are in
direct proportionate to L1 and L2, respectively. This can be easily seen in the pattern of W1

and W2 graphs (Fig 4.3, 4.4) for parameters λ1, µ , ξ , and G following similar to that of L1

(see Fig 4.1), whereas for parameters λ2, β , γ , and F following similar to that of L2(see Fig
4.2). The present numerical results are in good agreement with the practical implications
and existing results for classical queueing models.

Throughput measures the rate of successful services per unit of time by all servers in
the system. Thus, the performance of the system ultimately depends on the throughput. In
order to boost the service quality and output of the system, the model is designed in such a
way as to maximize the throughput. As shown in Fig 4.5(i, ii), it turns out that service rates
resulting in throughput(τp) of the system increase accordingly. The control of arrivals and
reduction in set-up time improves the efficiency of the server, as illustrated in Fig 4.5(iii,
iv). Further, we investigate the effect of control policy parameters γ and F on probabilities
of server blockage (Pb) and server requiring startup time before service to restart (Ps). The
numerical results of Ps and Pb for various system capacities are depicted in Fig 4.6. The
observations are as follows: (i) As the startup rate γ increases, the time taken for the server
to resume the service is reduced, as shown in Fig 4.6(i). (ii) When the threshold limit F of
the control policy is on the higher side, the server requires sufficient time to respond to a
restart of service (see Fig 4.6(ii)). (iii) The probability of the server being blocked is reduced
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Figure 4.4: Expected waiting time of customers in the final phase of the
system (W2) wrt (i) λ2, (ii) β , (iii) γ , (iv) F for the parametric
values given in Table 4.1.
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Figure 4.5: Throughput (τp) of the system wrt (i) µ and k, (ii) β and K, (iii)
γ and K, (iv) F and K. The default set of paramters values are
given in Table 4.1.

for servers that are quick in resuming the service (Fig 4.6 (iii), (iv)).
A numerical study of system performance measures allows us to obtain further insights

into the effect of the decision parameters of the system on the total cost function. The
deciding parameters are µ and β , which are the service rates of servers that are flexible and
can be decided in the system. The problem arises in setting these service rates in order to
minimize the cost incurred. In that direction, the total cost function is evaluated against
µ and β in Fig 4.7(i, ii). This figure points out that the total cost function is convex with
respect to both parameters. The convexity nature of TC for µ and β guarantees that TC is
convex with the simultaneous effect of µ and β . The total cost is then evaluated numerically
to obtain a convex surface plot and closed contour, as depicted in Fig 4.7(iii, iv).

4.7.1 Sensitivity Analysis

The primary goal of this chapter is to find the ideal point (µ∗, β ∗) which gives rise to
the optimal cost TC∗. This is accomplished by applying the GOA technique on the total
cost objective function over some range of µ and β values obtained from the contour plot
(Fig 4.7(iv)). The MATLAB software was utilized for coding GOA and carrying out the



4.7. Results and Discussion 107

0.1 0.2 0.3 0.4 0.5 0.6

 

0

0.1

0.2

0.3

0.4

0.5

 P
s

(i)

K=30

K=40

K=50

10 12 14 16 18 20

 F

0.10

0.15

0.20

0.25

0.30

0.35

 P
s

(ii)

K=30

K=40

K=50

0.1 0.2 0.3 0.4 0.5 0.6

 

0.65

0.68

0.71

0.74

0.77

0.80

 P
b

(iii)

K=30

K=40

K=50

10 12 14 16 18 20

 F

0.65

0.66

0.67

0.68

0.69

0.70

 P
b

(iv)

K=30

K=40

K=50

Figure 4.6: Variations in the values of probabilities Ps and Pb by varying
system size K wrt (i, iii) γ , and (ii, iv) F for parametres values
taken from Table 4.1.



108 Chapter 4. Admission Control Policy on...

Figure 4.7: Plot of total cost (TC) wrt system’s decision parameters (i) µ ,
(ii) β as well their cumulative effect in (iii) surface plot and (iv)
contour plot of TC for parameters values given in Table 4.1.
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optimization. For the algorithm’s initialization, 30 populations are allotted randomly in
the contour space. As the iterations go by, all try to converge to a single point inside the
innermost contour which gives the optimal values for deciding parameters and total cost, as
illustrated in Fig 4.8.

A total of 30 iterations are evaluated, and observed that the optimal point is reached after
around 10 iterations only. Multiple runs of GOA are experimented on the total cost function
to avoid misconceptions in the obtained optimal cost. The run graphs of these iterations for
10 runs are shown in Fig 4.9 for different TC ranges.

The results presented in Tables 4.2-4.3 show the effect of system parameters and cost el-
ements on optimal total cost (TC∗) using the GOA algorithm and aid in supporting the
estimation of the Mean and Maximum value of TCi

TC∗ . For instance, in the effect of system
capacity in Table 4.2, it should be noted that, for increasing K, TC∗ is increasing more
rapidly while the optimal service rates converge to the same value µ∗ = 3.123262 and
β ∗ = 5.257844 for large K. Optimal total cost TC∗ is obtained for the parameter values
set in Table 4.1, which give TC∗ = 6084.369292 with Mean

(
TCi
TC∗

)
= 1.000000000156704

and Max
(

TCi
TC∗

)
= 1.000000000162291.

4.8 Conclusions and Managerial Insights

This chapter studies a queueing system combining two phases of service with arrival con-
trol policy. To tackle such queueing problem and strive towards an unclogged system,
which contributes to economic savings through maximum utilization of service providers
and queue management of system, desperate and proactive measures are deemed necessary.
To this end, this chapter focuses on explicitly measuring the total cost of the model by con-
sidering some of the most determining performance measures of the system. The numerical
simulation results in this chapter provide important insights into the complex interactions
between the parameters and the critical performance measures of the system. The findings
confirmed that the balking strategies of customers negatively impact the system’s through-
put, and the admission control policy, i.e., the F-policy, helps service providers reduce the
congestion level. After all, the results of this study indicate the optimal service rates of
servers to be kept in order to obtain the optimal cost for the multi-objective total cost opti-
mization problem. In this regard, present study develops a queuing system to improve the
management of service facilities. However, further work is required to establish this ap-
proach for the model with multi-server in each phase and determine the optimal number of
servers. A natural extension of the presented model is to consider discount policy for the
app user in order to promote online ordering that reduces congestion.
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Figure 4.9: Convergence of iteration of GOA algorithm
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Chapter 5

Quasi and Metaheuristic Optimization Approach
for Service System with Strategic Policy and Un-
reliable Service

Demands for cost-efficient and just-in-time service systems have increased rapidly due to
the nature of present-day competition. We focus on optimal policies for the highly effi-
cient service system since the congestion of the customers more often originates from de-
graded policies rather than faulty arrangements. The quasi and metaheuristic optimization
techniques have been widely used to establish cost-optimal service policies to diminish the
congestion of customers, which arises mainly due to the phenomena of unplanned policies
or caused by inadequate facilities. This chapter presents a notion of unreliable service and
F-policy for stochastic modeling of a finite capacity customer service system.
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5.1 Introduction

Demands for efficient service have increased vastly under the present-day just-in-time and
competitive requirements. The study of state-of-the-art service systems is needed because
the consequences of involved congestion often cause enormous economic and reputational
losses. The queueing theory is a mathematical study of such congestion in a systematic
manner.

Conventionally, many queueing systems were studied, assuming the service would never
fail. It is a primary consideration to believe that service has been rendered successfully to
the customer at the end of service time completion. Although these assumptions simplify
the problem analysis, this may only sometimes be true in real-time queueing/service sys-
tems. In many real-life scenarios, a service rendered may be unsuccessful and need to be
verified. Such a queueing system can be modeled as for crowded railway stations where
announcements are made for the arrival and departure of trains, but passengers might not
hear announcements due to heavy disturbance at the platform. Other applications include
remotely rendered services that might not reach customers due to technical faults. At the
checkpoint, sometimes, there may need to verify service quality or perfection before leaving
the service facility, like bills, details, date, etc. In these examples, though service is rendered
but does not reach the customer, such service is called an unreliable service. A queueing
system with unreliable service is a more realistic representation of the service systems; thus,
assuming unreliable service is more reasonable.

In literature, studies on unreliable services are seldom available (cf. [148], [149]). Sen-
sitivity and optimal analysis were done by Shekhar et al. [171] for the expected total cost
incurred and reliability characteristics for a machine repair problem of standby provision-
ing in a Markovian environment with unreliable service and vacation interruption. Esfeh
[56] developed new mean waiting time formulations for diverse transit systems, including
dial-a-ride service, feeder-trunk service, and single route with unreliable service.

In our day-to-day life, the formation of queues can be observed everywhere, either phys-
ically such as in shopping mall counters, vehicles in traffic jams, polling booth centers,
railway reservation windows, or virtually like industry 4.0, cloud computing, the Internet
of Things, and numerous other places. Queue formation eases the understanding of service
patterns at a time but ultimately causes a delay in the service, a significant issue for cus-
tomers and service facilitators. Despite challenges in the smooth functioning of the service
system where long queues are formed, the arrivals should be controlled by implementing the
strategic admission control policy. In the present study, we consider a controllable arrival
queueing system with unreliable service under the F-policy, which is more practical when



118 Chapter 5. Quasi and Metaheuristic Optimization...

dealing with real-time congestion problems. These issues represent a research gap in the
literature.

Analytical solutions for computing steady-state queue-size distribution for the F-policy
Markovian M/M/1/K queueing system with an exponential startup time were first proposed
by Gupta [71]. According to the F-policy, the customers are allowed to enter the system for
service until the number of customers outreaches the system’s capacity K, and no more cus-
tomers are admitted to join the queue until the number of customers ceases to rest up to a
predefined level F . The server takes a random startup time before allowing customers to
enter the system. F-policy deals with the case of controlling arrivals in a queueing system
to avoid an overload, long delay, or congestion situation at a slight loss of revenue. Wang
et al. addressed the optimal control of the F-policy for G/M/1/K and M/G/1/K queueing
systems in [196] and [195], respectively. Yang et al. [217] analyzed an M/M/2/K queue-
ing system with F-policy and heterogeneous servers. Recently, Rani et al. [158] modeled
Markovian queueing with reboot, recovery, and server vacationing under the F-policy to
explore the performance of fault-tolerant systems. Wu et al. [207], [205] considered an
F-policy queue with alternating service rates and formulated a bi-objective model using ex-
pected costs and waiting times along with the trade-off between operating costs and service
quality.

Yang et al. [213] obtained the stationary distribution of the system size using the supple-
mentary variable technique recursively for randomized control of arrivals in a finite-capacity
single-server GI/M/1 system with starting failures. Shekhar et al. [169] investigated a ran-
domized arrival control policy for impatient prospective customers in the finite queueing
system with working vacation interruption. Jain et al. [93] presented a state-of-the-art lit-
erature survey on the F-policy for limited capacity and finite population state-dependent
Markovian and non-Markovian queueing models. Jain et al. [92] used the remaining retrial
time as the supplementary variable to frame the governing equations for the finite capacity
state-dependent queueing model with F-policy and general retrial attempts and obtained the
solution using the Laplace-Stieltjes transform and recursive method. Yang et al. [209] used
the OptQuest tool in ARENA, a simulation software, for extensive computational experi-
ments to find the optimal threshold F that minimizes the expected cost per unit time.

The primary purpose of this study is to preview the practical implementation of optimal
cost practice of service systems. Due to the prevailing global economic crises, optimal cost
measures have become the prioritized topic in the current strategic management practices.
Optimal cost measures address questions about efficient and effective leadership and are
explored in detail using different optimization techniques (cf. [216], [11]).
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This manuscript focuses on determining the value of the governing parameter(s) of stud-
ied models so that, the incurred expected cost is minimum. Ford et al. [59] generalize the
standard secant equations by considering a path defined by a polynomial and a gradient
vector approximation with a polynomial interpolant. Kao et al. [97] introduced a modified
version of the quasi-Newton method, where parameters are determined from some numeri-
cal experimentation. A quasi-Newton method is an advanced tool, and many updates have
enriched it in recent years (cf. [226], [203], [78]). Due to computational richness, queue-
ing theorists also used the quasi-Newton method for determining optimal decision parame-
ter(s) for the studied constrained and non-constrained queueing models. Wang et al. [199]
used the direct search method and the quasi-Newton method to find the global minimum
(F∗,µ∗,γ∗) for the control policy of a removable and unreliable server for finite capacity
single server Markovian queueing system where the removable server operates an F-policy.
Some more significant contributions for optimal analysis of queueing models employing the
quasi-Newton approach in the literature exist (cf. [215], [101]). The main disadvantage of
the direct-search and quasi-Newton methods is their strict discrete and continuous domain.

To our knowledge, a finite capacity M/M/1 queueing model under F-policy with unre-
liable service has never been discussed in the literature or explored economically. The re-
search gap motivates us to develop more practical queueing models considering unreliable
service and controllable arrival processes. The purpose of this investigation is to accom-
plish three objectives. The first is to present the mathematical model of a state-of-the-art
finite controllable arrival single server Markovian queueing system with unreliable service.
The second is to offer applications of the efficient GWO metaheuristics technique for op-
timizing congestion problems. The third is to present extensive numerical results with an
exhaustive parametric investigation for decision-makers. This queueing system has poten-
tial applications in wireless communication networks, vehicular traffic flow, voice, and data
networks. This model can be extended in the future by incorporating linguistic uncertainty
and discouragement in arrivals, as discussed in [98], [154].

The remaining chapter is coordinated in the following manner: Section 5.2 outlines the
model description of the studied unreliable service mechanism and admission control F-
policy for finite capacity single-server queueing system. In Section 5.3, we represent the
studied queueing system in the closed-form block matrices and delineate the solution algo-
rithm to obtain the steady-state probabilities in vector form in Subsection 5.3.1. Section 5.4
highlights various governing system performance measures. In Section 5.5, a cost function
is formulated to determine the optimal values of several decision parameters at a minimal
expected total cost. The description and overview of the grey wolf optimization technique,
used for obtaining optimality of the studied model are briefed in Section 5.6. The special
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cases studied in the past of the present model are discussed in Section 5.7. Some numerical
results are provided in tabular and graphical form to illustrate the optimal analysis and sim-
ulations of various system performance measures in Section 5.8. Lastly, Section 5.9 gives
concluding comments, contributions, and offer a future perspective.

5.2 Model Description

We examine a F-policy reliable single server M/M/1 Markovian queueing system with
unreliable service and exponential startup time. The primary assumptions and notations for
the studied model are characterized as follows.

Arrival Process

• The prospective customers arrive for intended service according to a Poisson process
with arrival rate λ .

• For admission control to avoid long queues in waiting, if the queue size reaches a
threshold K (K < ∞), then no prospective customer is permitted to join the queue until
the queue size diminishes a pre-specified threshold value F (1 ≤ F ≤ K −1).

• When customers are permissible to join, the service provider takes startup time, which
follows an exponential distribution with a mean time of 1/γ .

• Since the studied model is finite, the customer beyond the threshold K is assumed to
be a lost customer.

Service Process

• A reliable server provides the service following the queue discipline of First Come
First Served.

• The service times of customers are independent and identically distributed random
variables that follow an exponential distribution with service rate µ .

• At the completion epoch of service, the customer assesses the nature of service as
reliable or unreliable. This delay includes the time to check bills, descriptions, details,
dates, quality, etc.

• If the customers receive reliable service, they leave the system with random time-to-
leave, which follows an exponential distribution with the mean rate β1; otherwise,
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they remain in the system for a random period that follows an exponential distribution
with a mean rate β2.

The arrival and service processes are independent, i.e., all the events like arrival, service,
reliable service, unreliable service, startup, customer allowed, or customer not allowed are
statistically independent of each other.

For the stochastic modeling of the studied queueing problem, we have also used the
following notations to describe the different states at any instant t.

N(t)≡ System size of the customers in the system at time t

J(t)≡ The state of the server at time t

where

J(t) =



0 ; the customer is not permissible to enter the service system and customer

immediately after service is rendered

1 ; the customer is not permissible to enter the service system and the server is busy

2 ; the customer is permissible to enter the service system, and the server is busy.

3 ; the customer is permissible to enter the service system and customer immediately

after service is rendered
Then, (N(t),J(t); t ≥ 0) is a continuous time Markov chain (CTMC) on the state space Ω

Ω ={(n, j) | n = 1,2,3, ...,K −1,K ; j = 0}∪{(n, j) | n = 0,1,2, ...,K −1,K ; j = 1}∪

{(n, j) | n = 0,1,2, ...,K −2,K −1 ; j = 2}∪{(n, j) | n = 1,2, ...,K −2,K −1 ; j = 3}
As t → ∞, the system tends to stable condition. The governing steady-state probabilities are
denoted as follows.

πn,0 = lim
t→∞

Prob{N(t) = n,J(t) = 0}; n = 1,2,3, ...,K −1,K

πn,1 = lim
t→∞

Prob{N(t) = n,J(t) = 1}; n = 0,1,2,3, ...,K −1,K

πn,2 = lim
t→∞

Prob{N(t) = n,J(t) = 2}; n = 0,1,2,3, ...,K −2,K −1

πn,3 = lim
t→∞

Prob{N(t) = n,J(t) = 3}; n = 1,2,3, ...,K −2,K −1

The Chapman-Kolmogrove forward system of linear equations for the studied F-policy
M/M/1 queueing system with unpredictable unreliable service and random startup time, in
terms of inflow-outflow rates and state probabilities, are as follows.

−(β1 +β2 + γ)πn,0 +µπn,1 = 0; 1 ≤ n ≤ F (5.1)

−(β1 +β2)πn,0 +µπn,1 = 0; F +1 ≤ n ≤ K −1 (5.2)

−(β1 +β2)πK,0 +µπK,1 +λπK−1,3 = 0 (5.3)

−γπ0,1 +β1π1,0 = 0 (5.4)
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−(µ + γ)πn,1 +β2πn,0 +β1πn+1,0 = 0; 1 ≤ n ≤ F (5.5)

−µπn,1 +β2πn,0 +β1πn+1,0 = 0; F +1 ≤ n ≤ K −1 (5.6)

−µπK,1 +β2πK,0 +λπK−1,2 = 0 (5.7)

−λπ0,2 + γπ0,1 +β1π1,3 = 0 (5.8)

−(λ +µ)πn,2 +λπn−1,2 +β2πn,3 +β1πn+1,3 + γπn,1 = 0; 1 ≤ n ≤ F (5.9)

−(λ +µ)πn,2 +λπn−1,2 +β2πn,3 +β1πn+1,3 = 0; F +1 ≤ n ≤ K −2 (5.10)

−(λ +µ)πK−1,2 +λπK−2,2 +β2πK−1,3 = 0 (5.11)

−(β1 +β2 +λ )π1,3 + γπ1,0 +µπ1,2 = 0 (5.12)

−(β1 +β2 +λ )πn,3 +λπn−1,3 + γπn,0 +µπn,2 = 0; 2 ≤ n ≤ F (5.13)

−(β1 +β2 +λ )πn,3 +λπn−1,3 +µπn,2 = 0; F +1 ≤ n ≤ K −1 (5.14)

Following the law of total probability, the normalizing condition for state probabilities is
given below.

K

∑
n=1

πn,0 +
K

∑
n=0

πn,1 +
K−1

∑
n=0

πn,2 +
K−1

∑
n=1

πn,3 = 1 (5.15)

Practical Justification of the Model

There exist numerous real-life practical instances that illustrate both notions of unreliable
service and admission control F-policy. One example of a F-policy with unreliable service
in healthcare is the management of emergency departments. In a busy emergency depart-
ment, limited resources, such as available beds or staff, may lead to delays and overcrowd-
ing. To manage this, an F-policy can be implemented, where patients are only allowed to
enter the department if the number of patients currently waiting is below a certain threshold
(K). Additionally, a patient receiving unreliable services, such as a misdiagnosis or improper
treatment, may result in a longer stay or readmission. By incorporating the concept of un-
reliable service into the F-policy, healthcare providers can better manage patient flow and
ensure quality care. This policy is used in real-life situations like popular dining, where to-
kens are given for table numbers, and orders are received after the announcement of the table
number. This policy also considers unreliable service, where customers may not receive the
intended service due to technical faults, leading to system overcrowding and unsuccessful
service. Another application is computer networking systems, where messages are trans-
mitted as data between processors. In the event of technical issues, the transmitted data may
not be received despite being sent. This example is elaborated more in [196]. Overall, the
F-policy is a commonly used technique to manage queueing systems in various industries,
including telecommunication, transportation, and healthcare, where it is necessary to ensure
that the waiting times are reasonable and the system remains stable. In this chapter, we have
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presented the mathematical modeling of the model mentioned above. However, industrial
validation and simulation remain future endeavors.

5.3 Matrix Analytic Solutions

The matrix-analytic method is employed to compute the steady-state probabilities for the
studied F-policy M/M/1/K queueing system with unreliable service and exponential startup
time. The transition rate matrix Q of the Markov chain model of interest has a tridiagonal
block structure, as follows.

Q =



X0 Z0 0 0 ... 0 0 0 ... 0 0
Y0 X1 Z1 0 ... 0 0 0 ... 0 0
0 Y1 X1 Z1 ... 0 0 0 ... 0 0
... . . . . . . . . . . . . ...

...
...

...
...

...
0 0 0 Y1 X1 Z1 0 0 0 ... 0
0 0 0 0 Y1 X2 Z1 0 0 ... 0
0 0 0 0 0 Y1 X2 Z1 0 ... 0
...

...
...

...
... . . . . . . . . . . . . . . . ...

0 0 0 0 ... 0 0 Y1 X2 Z1 0
0 0 0 0 ... 0 0 0 Y1 X2 Z2

0 0 0 0 ... 0 0 0 0 Y2 X3


The block tridiagonal matrix Q is a square matrix of order 4K. The principal diagonal block
entries X0, X1, X2, and X3 are square matrices of order 2, 4, 4, and 2 respectively. The first
diagonal below block entries Y0, Y1, and Y2 are of order 4×2, 4×4, and 2×4 respectively.
The first diagonal above block entries Z0, Z1, and Z2 are of order 2× 4, 4× 4, and 4× 2
respectively. All elements in the matrix form of transition matrix Q are defined as follows.

X0 =

[
−γ γ

0 −λ

]
, X1 =


−(γ +β1 +β2) β2 0 γ

µ −(γ +µ) γ 0
0 0 −(µ +λ ) µ

0 0 β2 −(λ +β1 +β2)

 ,

X2 =


−(β1 +β2) β2 0 0

µ −µ 0 0
0 0 −(µ +λ ) µ

0 0 β2 −(λ +β1 +β2)

 , X3 =

[
−(β1 +β2) β2

µ −µ

]
,
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Y0 =


β1 0
0 0
0 0
0 β1

 , Y1 =


0 β1 0 0
0 0 0 0
0 0 0 0
0 0 β1 0

 , Y2 =

[
0 β1 0 0
0 0 0 0

]
,

Z0 =

[
0 0 0 0
0 0 λ 0

]
, Z1 =


0 0 0 0
0 0 0 0
0 0 λ 0
0 0 0 λ

 , Z2 =


0 0
0 0
0 λ

λ 0

 .
The vector ΠΠΠ, steady-state probabilities, is partitioned as (P0,P1,P2, ...,PK−1,PK). The sub-
vectors P0 = {π0,1,π0,2}, Pn = {πn,0,πn,1,πn,2,πn,3};1 ≤ n ≤ K −1, and PK = {πK,0,πK,1}
have dimensions of two, four, and two respectively. Due to the complexity involved in the
studied model, the analytical solution for state probabilities is not feasible. For determining
the numerical value of state probabilities, we merely solve the following problem.

ΠΠΠQ = 0 (5.16)

with the initial condition 5.15

ΠΠΠe = 1 (5.17)

where e is column vector of ones of order 4K. Therefore, the governing system of equations
in matrix form in 5.16 are manifested for computing state probabilities as follows.

P0X0 +P1Y0 = 0 (5.18)

P0Z0 +P1X1 +P2Y1 = 0 (5.19)

Pn−1Z1 +PnX1 +Pn+1Y1 = 0; 2 ≤ n ≤ F (5.20)

Pn−1Z1 +PnX2 +Pn+1Y1 = 0; F +1 ≤ n ≤ K −2 (5.21)

PK−2Z1 +PK−1X2 +PKY2 = 0 (5.22)

PK−1Z2 +PKX3 = 0 (5.23)

5.3.1 State Probabilities

We get the following solution using basic matrix manipulation to derive the state probabili-
ties in the vector form. Since, matrix X0 is non-singular, Eqn. 5.18 gives

P0 = P1V0, where V0 =−Y0X−1
0 (5.24)

From Eqns. 5.19 and 5.24, we have following result

P1 = P2V1,where V1 =−Y1(V0Z0 +X1)
−1 (5.25)

Using Eqns. 5.20 and 5.25, we have following iterative result

Pn = Pn+1Vn,where Vn =−Y1(Vn−1Z1 +X1)
−1; 2 ≤ n ≤ F (5.26)
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A similar result for different states can be derived using Eqns. 5.21 and 5.26 as follows

Pn = Pn+1Vn,where Vn =−Y1(Vn−1Z1 +X2)
−1; F +1 ≤ n ≤ K −2 (5.27)

Using Eqns. 5.22 and 5.27, we get the following result

PK−1 = PKVK−1,where VK−1 =−Y2(VK−2Z1 +X2)
−1 (5.28)

Hence, computing Eqns. 5.24 - 5.28 in recursive manner, the state probabilities Pn;
0 ≤ n ≤ K −1 can be expressed in terms of state probability PK as follow.

Pn = Pn+1Vn = Pn+2VnVn+1 = ...= PK

K−n

∏
ζ=1

VK−ζ = PKΨΨΨ
∗
n (5.29)

where ΨΨΨ
∗
n = ∏

K−n
ζ=1 VK−ζ and Vn; 0 ≤ n ≤ K −1 are given above in Eqns. 5.24 - 5.28. By

the normalizing condition Pe = 1 and Eqn. 5.29, we get

P0e2 +
K−1

∑
n=1

Pne1 +PKe2 = P0e2 +[P1 +P2 + ...+PK−1]e1 +PKe2

= PKΨΨΨ
∗
0e2 +

[
PKΨΨΨ

∗
1 +PKΨΨΨ

∗
2 + ...+PKΨΨΨ

∗
K−1
]

e1 +PKe2

= PK

[
ΨΨΨ

∗
0e2 +

K−1

∑
n=1

ΨΨΨ
∗
ne1 + e2

]
= 1 (5.30)

where e1 and e2 are column vectors defined as e1 = [1,1,1,1]T , e2 = [1,1]T . Hence, Eqn.
5.23 can be written as

PK [VK−1Z2 +X3] = 0 (5.31)

Therefore, on solving Eqns. 5.30 and 5.31, we can obtain state probability PK . Hence,
we can compute the steady-state probabilities for Pn;0 ≤ n ≤ K − 1 from Eqn. 5.29. We
have also developed the MATLAB program to compute the numerical value of steady-state
probabilities.

5.4 System Performance Measures

Our optimal analysis is based on the following system performance characteristics of the
studied F-policy M/M/1/K queueing system with unreliable service and exponential startup
time.

The expected number of customers in the system

LS = PK

[
K−1

∑
n=1

nΨΨΨ
∗

ne1 +Ke2

]
(5.32)

Throughput of the system

τp = β1PK

[
K−1

∑
n=1

ΨΨΨ
∗

nu1 + e3

]
(5.33)
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The effective arrival rate

λe f f = PK

[
λ

(
ΨΨΨ

∗
0e4 +

K−1

∑
n=1

ΨΨΨ
∗

nu2

)
+β2

K−1

∑
n=1

ΨΨΨ
∗

nu1

]
(5.34)

The expected waiting time in the system

WS =
PK
[
∑

K−1
n=0 nΨΨΨ

∗
ne1 +Ke2

]
PK
[
λ (ΨΨΨ∗

0e4 +∑
K−1
n=1 ΨΨΨ

∗
nu2)+β2∑

K−1
n=1 ΨΨΨ

∗
nu1
] (5.35)

The probability that the server is busy

PB = PK

[
K−1

∑
n=1

ΨΨΨ
∗

nu3 + e4

]
(5.36)

The probability that the server starts to allow customers to enter the system

PS = PK

[
ΨΨΨ

∗
0e3 +

F

∑
n=1

ΨΨΨ
∗

nu4

]
(5.37)

The probability that the system is blocked

PL = PK

[
ΨΨΨ

∗
0e3 +

K−1

∑
n=1

ΨΨΨ
∗

nu4 + e2

]
(5.38)

The probability that the customer is allowed to enter the system

PA = PK

[
ΨΨΨ

∗
0e4 +

K−1

∑
n=1

ΨΨΨ
∗

nu2

]
(5.39)

The probability that customer immediately leave after service is rendered

PU = PK

[
K−1

∑
n=1

ΨΨΨ
∗

nu1 + e3

]
(5.40)

The frequency that customers are not allowed to join the system

FF = PK
[
β2e3 +λΨΨΨ

∗
K−1u2

]
(5.41)

where P = [P0,P1,P2, ...,PK−1,PK], e3=[1,0]T , e4=e2 − e3, u1=[1,0,0,1]T , u2=[0,0,1,1]T ,
u3=e1-u1 and u4=e1-u2.

5.5 Cost Analysis

We evolve an expected cost function for the studied Markovian single server queueing sys-
tem with F-policy, unreliable service, and exponential startup time. The parameters µ and
γ are decision variables. The cost elements related to the different states of the Markovian
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model are defined as follows.
CH ≡ unit holding cost for each customer queued in the system.
CB ≡ unit cost when the reliable server is busy.
CS ≡ unit startup cost for letting the customer enter the system.
CL ≡ unit cost for every lost customer when the limited capacity is full, and

the system is blocked.
CA ≡ unit cost when the server permits the customer to join the system.
CU ≡ unit cost for the customer immediately after the service rendered.
C1 ≡ unit cost for service by the reliable server during a normal busy period.
C2 ≡ unit cost for the server being startup mode.

The expected total cost function is given as

TC =CHLS +CBPB +CSPS +CLλPL +CAPA +CU PU +C1µ +C2γ (5.42)

Hence, the optimization problem is formulated as

TC(µ∗,γ∗) = min
µ,γ

(TC) (5.43)

5.6 Grey Wolf Optimizer

With the increased complexity and dimensionality of real-time problems under socio-economic-
techno-oriented constraints, the metaheuristic optimization techniques have become very
practical because of their flexibility, simplicity, derivation-free mechanism, and local optima
avoidance. Metaheuristic techniques have inspirations from animal behaviors, physical phe-
nomena, or evolutionary concepts and apply to diverse problems without any algorithm’s
structural changes. Metaheuristics techniques are derivation-free mechanisms that optimize
stochastically and have a superior ability to avoid local optima.

Mirjalili et al. [136] proposed a new metaheuristic called grey wolf optimizer (GWO)
stimulated by the natural leadership hierarchy and hunting mechanism of grey wolves. In
recent years, there has been growing interest in developing the variant of GWO and explor-
ing its applicability in managerial decision-making. Zamfirache et al. [225] explore the use
of GWO to solve the optimal tuning of fuzzy controllers for the policy iteration reinforce-
ment learning-based control approach. To determine a solar system’s highest power point
tracking, Aguila et al. [6] developed a discrete proportional-integral-derivative controller
optimized using the GWO algorithm. To anticipate and optimize indoor air quality, thermal
comfort levels, and energy usage, a back propagation neural network model is integrated
by Li et al. [120] with an adaptive multi-objective particle swarm optimizer and GWO al-
gorithm. Thobiani et al. [10] proposed a hybrid optimization technique based on particle
swarm optimization to improve GWO for crack detection utilizing inverse analysis. Zhao et
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al. [228] utilized GWO to obtain the optimal control variables sequences, which safeguard
a lower turbine outlet temperature with unchanged thrust. Chouar et al. [31] dealt with the
cost reduction and lead time improvement in a physical internet-supply chain network using
a hybrid framework based on an improved GWO and an artificial neural network. Indra-
maya et al. [86] compared the strengths, weaknesses, nature, and behavior of the various
collective intelligence metaheuristic algorithms in solving various benchmarking problems
and concluded that GWO is the most efficient algorithm.

5.6.1 Inspiration

Grey wolves are well-thought-out apex predators and mostly favor to render the livelihood
in a pack of size 5-12 on average with a strict social dominant hierarchy: Wα , Wβ , Wδ , and
Wω .

• Wα : The Wα , the best in management, is mainly accountable for making decisions
democratic about hunting and verbalized to the pack.

• Wβ : The wolves Wβ are subordinates who help the Wα in decision-making as an
advisor or their pack activities as discipliners. The Wβ reinforces the Wα ’s guidelines
throughout the pack and gives feedback to the Wα and probably the best candidate to
be the Wα if Wα becomes inefficient for hunting.

• Wδ : Wolf responsible as elders, caretakers, scouts, sentinels, and hunters belong to
category Wδ , which are superior to Wω but have a submission to Wα and Wβ .

• Wω : The bottommost ranking wolf is Wω , which acts as a scapegoat and always has
to submit to all the other dominant wolves.

Hunting in the group is another motivating social behavior of grey wolves. The main
phases of hunting are as follows: (i) Tracking, chasing, and impending the prey; (ii) pur-
suing, encircling, and niggling the prey until it stops moving; (iii) attack towards the prey.
Next, the hunting technique and the social hierarchy of grey wolves are modeled mathemat-
ically to design stochastic GWO and optimize.

5.6.2 Mathematical Model and Algorithm

For mathematically modeling the wolves’ social hierarchy system, the fittest solution is
coined as Wα ; consequently, the second and third best solutions are titled as Wβ and Wδ ,
and the rest are classified as Wω . In the GWO algorithm, the hunting mechanism is steered
by best solution wolves Wα , Wβ , and Wδ , wherein the wolves Wω trail these three dominant
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wolves. Grey wolves can recognize the position of prey and encircle them. The second step
of encircling the prey by the grey wolves during the hunt is simulated mathematically as

D̃ = |C̃.G̃p(n)− G̃(n)| (5.44)

G̃(n+1) = X̃p(n)− Ã.D̃ (5.45)

Ã = 2ã.r̃1 − ã (5.46)

C̃ = 2.r̃2 (5.47)

where
The grey wolves’ position (solutions) will change in hyper-cubes (or hyper-spheres) around
the optimal solution attained till the current iteration.

For simulating the hunting mechanism guided mainly by the Wα and occasionally by the
Wβ and Wδ , we assume that the Wα , Wβ , and Wδ have better knowledge about the potential
location of prey. We save the first three best solutions obtained till the current iteration and
oblige the other search agents, including Wωs, to keep posted on their positions according
to the current position of the best search agent employing the following formula.

D̃α = |C̃1.G̃α(n)− G̃(n)|; (5.48a)

D̃β = |C̃2.G̃β (n)− G̃(n)|; (5.48b)

D̃δ = |C̃3.G̃δ (n)− G̃(n)|; (5.48c)

Hence,

G̃1 = G̃α − Ã1.D̃α ; (5.49a)

G̃2 = G̃β − Ã2.D̃β ; (5.49b)

G̃3 = G̃δ − Ã3.D̃δ ; (5.49c)

So,

G̃(n+1) =
G̃1 + G̃2 + G̃3

3
(5.50)

The Wα , Wβ , and Wδ estimate the approximate position of the target, and other search agents
(wolves) update their position nearby randomly around the prey.

The last step of hunting is attacking the target when the prey stops moving. For simu-
lating this mechanism mathematically, we decrease the value of ã and hence the fluctuation
range of Ã.

In the GWO algorithm, search agents keep their position posted based on the location of
the Wα , Wβ , and Wδ , and attack towards the target. The GWO algorithm is susceptible to
stagnation in local solutions, and the encircling mechanism discussed prompts exploration
to some extent, but GWO needs more operators to accentuate exploration. The position of
wolves Wα , Wβ , and Wδ are mainly governed by search. Wα , Wβ , and Wδ diverge from each
other to hunt for prey and converge to attack the target. To represent the diverging behavior
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of the wolves (search agent) from the prey to find fitter prey, we take |Ã| > 1. The diverg-
ing behavior allows the proposed algorithm to search globally, i.e., exploration by a search
agent. The exploration in GWO is also enhanced by vector C̃ containing random values
in [0,2] that provide arbitrary weights for prey. The random weights emphasize the effect
of prey in defining the distance in Eqn. 5.44 if the value is greater than or equal to one or
otherwise deemphasized. Since the element’s value in vector C̃ is not linearly decreasing
in contrast to the element of vector Ã, it promotes GWO to illustrate a more random be-
havior throughout the optimization. It favors exploration during initial and final iterations
and local optima avoidance. The vector component C̃ is beneficial in local optima stagna-
tion, especially in the terminating iterations. The realistic effect of obstacles in hunting to
approaching prey in nature is also modeled by considering random vector C̃. The random
vector C̃ figures the obstacles in nature that act in the hunting paths of wolves. It prevents
them from quickly and conveniently approaching prey, i.e., depending on the position of
a wolf. It can randomly give the prey a weight, making it harder and farther to reach for
wolves or vice versa.

In GWO, the optimization process is initiated by a random population of grey wolves
(candidate solutions). As iterations proceed, α , β , and δ wolves estimate the probable po-
sition of the prey, and each candidate solution keeps posted its distance from the prey. The
proposed social hierarchy assists GWO in saving the best solutions acquired so far through-
out the iteration. The proposed encircling mechanism outlines a circle-shaped neighborhood
candidate around the solutions, which can be protracted to higher dimensions as a hyper-
sphere with different random radii, governed by the random parameters Ã and C̃. The
proposed hunting method consents to candidate solutions to locate the probable position of
the prey. The algorithm GWO considers that the parameter ã is decreased from 2 to 0, which
governs the value of vector Ã to emphasize exploration and exploitation. Exploration and
exploitation are certified by the adaptive values of ã and Ã, allowing GWO to transition
smoothly between exploration and exploitation. Candidate solutions tend to deviate from
the prey when |Ã| > 1 and congregate towards the prey when |Ã| < 1. With decreasing Ã,
half of the iterations are favored to search (exploration) (|Ã| ≥ 1) and the other half are com-
mitted to exploitation (|Ã| < 1). In the GWO, only two main parameters ã and C̃ must be
adjusted. Finally, the GWO iterative algorithm ends on achieving the terminating criterion.
The flow chart for grey wolf optimization technique is depicted in Fig.5.1.
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Initialize parameters, Max-iteration
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Output best
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Gα, Gβ , Gδ are the best,
second best, and third
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Update ã, Ã, and C̃
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Best score = Gα,
itr = itr + 1

No

Yes

Figure 5.1: The flow chart of the grey wolf optimization algorithm
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Algorithm 5 The pseudo-code for the iterative GWO algorithm

1: Pre-set the grey wolf population X̃i(i = 1,2, ...,n)
2: Set ã, Ã and C̃
3: Estimate the fitness of each search agent
4: G̃α = the best search agent
5: G̃β = the second best search
6: G̃δ = the third best search
7: while (terminating criterion) or (n < Max number of iterations) do
8: for each search agent do
9: Keep posted on the position of the current search agent by Eqn. 5.50

end for
10: Keep posted ã,Ã, and C̃
11: Estimate the fitness of all search agents
12: Update G̃α , G̃β and G̃δ

13: itr = itr+1
end while

14: Output: Return G̃α .

Table 5.1: The control parameters of algorithms and corresponding value

Control Parameter Numerical Value Equation Number

Number of dimension 2

Number of population 50

Number of iteration 100

Number of run 10

µ0 [1,3]

γ0 [0.01,0.1]

r̃1 U [0,1)

r̃2 U [0,1)

ã 2− itr
(2−0

100

)
Ã1, Ã2, Ã3 2ãr̃1 − ã 5.46

C̃1, C̃2, C̃3 2r̃2 5.47

D̃α , D̃β , D̃δ 5.48

G̃1,G̃2,G̃3 5.49
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5.7 Special Cases

We present the following special cases of our studied model that give similar results that are
known for the queueing systems published in the literature.

Case 1: When γ → ∞ and F = K − 1, the studied model reduces as finite capacity M/M/1
queueing model with unreliable service ([148]).

Case 2: When β1 → ∞, the model resembles with Markovian single server queueing model
with F-policy ([71]).

Case 3: For β1 → ∞,γ → ∞ and F = K −1, the model approaches to classical finite capacity
single server Markovian queueing model.

Case 4: For 0 < β1 < ∞, β2 = 0, γ → ∞ and F = K −1, if we set µ = β1, the model reduces
to standard M/Ek=2/1/K queueing model.

Case 5: In case 4, if we set β2 = 0 & µ > β1, the model deduces to a finite capacity single
server with hyperexponential service time distribution M/HE/1/K queueing model.

5.8 Numerical Results

With the technological advancement, the service systems have a wide area of applications
such as shopping malls, service windows, internet of things, cloud computing, communica-
tion systems, computer systems, etc. In congestion, efficient service facilities are significant.
The service facility is also directly related to optimal strategic design, reputation, availabil-
ity, development, and competitiveness. In order to make efficient service system that meet
users’ requirements, it is necessary to measure and predict the system indices effectively.
Using the presented theoretical and numerical results, system managers or policymakers can
predict the efficiency of the service system of interest and do an excellent job of managing
and controlling system quality.

The numerical results for different experiments conducted on MATLAB (R2018b, 64-
bit, License number 925317) on a computing system with configuration Intel(R) Core(TM)
i5-5200U CPU @ 2.20GHz with RAM 16.0 GB for hospital management of 20 beds where
patient arrive randomly with the aim of better diagnosis and treatment and the results are
summarized in Figs. 5.2-5.12 and Table 5.2-5.7. For Figs. 5.2-5.12, the default parameters
are fixed as follows K = 20, F = 8, λ = 1, µ = 8, β1 = 0.9, β2 = 0.1, γ = 8 that are
estimated from the records and examine the effect of parameters K,F,λ ,µ,β1,β2 on system
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Figure 5.2: Expected number of customers in the system (LS) for different
parameters

performances as the values of one or two of these parameters vary given that others are fixed
as above.

In Fig. 5.2 and Fig. 5.3, we depict the variation of the expected number of customers in
the system LS to governing parameters for thresholds K and F , respectively. As the threshold
values K and F increase, the value of LS increases. The increasing trend of LS is observed
for arrival rate λ whereas decreasing trends are observed wrt to service rate µ and β1. The
mild increasing change is detected for the startup rate γ . The apparent results verify the
stochastic modeling of the studied service system.

The deviation in the expected waiting time of the customers in the system WS to sys-
tem parameters is presented in Fig. 5.4 and Fig. 5.5 for different threshold values K and
F . Similar results for WS are perceived as for LS above for all thresholds and parameters.
The apparent effects of WS also support the correct mathematical modeling and theoretical
results. The optimal service strategies are needed to reduce the long queue and long delays
in waiting.

The bar graphs in Fig. 5.6 and Fig. 5.7 represent the changing trend in throughput of
the system T h for varied values of system parameters. More system throughput is shown
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Figure 5.3: Expected number of customers in the system (LS) for different
parameters
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Figure 5.4: Expected waiting time of the customers in the system (WS) for
different parameters

for increased arrival rate λ . It is due to more number of customers in the system. The
system’s throughput T h increases with the service rate µ and rate of successful service β1.
The trifling results are witnessed for startup time γ .

Besides the above-considered default value of system parameters, for figuring the change
in expected total cost TC formulated in Eqn. 5.42, we set different unit costs value as follows
CH = 25, CB = 200, CS = 400, CL = 100, CA = 50, CU = 10, C1 = 50, C2 = 10. We plot
the variation of TC for varied rates and thresholds in Fig. 5.8 and Fig. 5.9. The palpable
trends are noticed, which is evident in our expected total cost formulation and modeling
to be correct. The illustrated results prompt an exploration of the optimal strategies for an
efficient service system at minimum incurred costs.

For that purpose, we portray a line graph, surface plot, and contour plot in Fig. 5.10 for
decision parameters µ and γ for default values of thresholds, rates, and costs, as assumed
above. All graphs prove that the expected total cost is a convex function of decision pa-
rameters µ and γ . In Fig. 5.12, we display the plot of optimal TC∗ for different iterations
for multiple runs and observe the convergence to the same value for all runs. It supports
our choice of grey wolf optimization for optimal analysis. Analytically, it is impossible to
establish since TC is the function of system performances which are the expression of state
probabilities we get on solving the governing Chapman-Kolmogorov differential-difference
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Figure 5.5: Expected waiting time of the customers in the system (WS) for
different parameters
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Figure 5.6: Throughput of the system (τp) for different parameters
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Figure 5.7: Throughput of the system(τp) for different parameters.
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Figure 5.8: Expected total cost of the system (TC) for different parameters

equations. To obtain the optimal value of decision parameters µ and γ , we employ the quasi
and metaheuristic optimization techniques and show that metaheuristic is very useful for the
optimal analysis of complex real-time systems.

We employ the quasi-Newton method and grey wolf optimizer elaborated in the previous
section to determine the optimal value of decision parameters µ and γ and associated optimal
expected total cost TC in Eq.5.43. For this purpose, we set the default value of thresholds,
rates, and incurred unit costs as follows K=20, F=8, λ=0.6, µ = 2, β1=0.7, β2=0.3, γ = 0.02,
CH=22, CB=190, CS=380, CL=95, CA=40, CU =8, C1=40, C2=8 and results are tabulated in
Table 5.2-5.7.

In Table 5.2 and Table 5.3, we illustrate the iteration of the quasi-Newton method with
the initial value of decision parameters µ0 = 2 and γ0 = 0.02 with tolerance 10−7. We
compile the expected total cost corresponding to each iteration, the gradient of TC wrt µ

and γ . The last row gives optimal value of µ , γ , and TC say µ∗, γ∗, and TC(µ∗,γ∗) where
max

[
∂TC
∂ µ

, ∂TC
∂γ

]
< 10−7.

In Table 5.4-5.5, the results of optimal analyses via the quasi-Newton method are sum-
marized different sets of system parameters and costs. For different sets of system parame-
ters K,F,λ ,β1,β2, the optimal value of decision parameters µ∗ and γ∗, and the optimal value
of expected total cost TC obtained by quasi-Newton method are tabulated in Table 5.4 with
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Figure 5.9: Expected total cost of the system(TC) for different parameters

Figure 5.10: Expected total cost of the system (TC) for different parameters.
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Figure 5.12: Convergence of iteration of Grey-wolf optimization.

the number of iterations for the initial value of decision parameters µ0 = 2 and γ0 = 0.02.
The optimal expected total cost TC(µ∗,γ∗) increases in general with K, F , λ , and β2 and
decreases with β1 with few exceptional. The observation about the optimal value of µ and
γ and the number of iterations can be inferred from the table. Similar data are generated for
different set of unit costs CH , CB, CS, CL, CA, CU , C1, C2, and summarized in the Table 5.5.
It is observed that the optimal value of TC increases by increasing the value of unit costs.
There is a tremendous increase in cost related to K and F . The optimal value of decision
parameters can also be a significant element for policymakers.

For the same sets of system parameters and unit costs considered in Table 5.4-5.5, the
optimal analysis results through grey wolf optimizer (GWO) have been compiled in Table
5.6-5.7, respectively. For the implementation of GWO, we set parameters as per Table 5.1.
Table 5.6-5.7 summarizes the results in terms of µ∗, γ∗, and TC(µ∗,γ∗) and be verified
with results in Table 5.3-5.5. For almost all the sets, we have similar results. It evidences
that a metaheuristic method GWO suits such complex real-time problems. For the statisti-
cal validation of GWO convergent results, we compute the mean and maximum of minTCi

TCi
.

The mean
[

minTCi
TCi

]
ranges from 1.0000001 to 1.0000036 whereas max

[
minTCi

TCi

]
ranges from

0.0000007 to 0.0000082. It shows how GWO is close to the optimal solution for multiple
runs. Table 5.8 summarizes the optimal value and time elapsed for the parameters in Table
5.6 using genetic algorithm and PSO. It supports our choice to choose GWO since in both
criterion of minimum value and time elapsed, GWO is depicting the better results.

In a nutshell, we have the following inferential remarks;

• The incurred cost function is vital to adjudge the economic benefits.

• The setting of optimal strategies for providing the service is essential for making de-
cisions optimally. The service rate µ and startup rate γ must be controlled per our
constraints.
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• The long queue or waiting delay must be reduced since it increases the expected total
cost. For this purpose, we must optimally set thresholds F and K.

• The new metaheuristic optimization techniques GWO is suitable for complex real-
time applications due to its highly and fastly convergent results.

5.9 Conclusion

In this chapter, we have conceptualized the notion of unreliable service for a F-policy
M/M/1/K service system with an arrival control policy. The proposed model is described
with the help of system assumptions, notations, system states, and their steady-state equa-
tions. We computed the stationary distribution of the model using the matrix analytical
method and derived various system performances in vector form. Further, we have con-
structed the total cost function of the system using derived performances and parameters by
multiplying cost weights. Numerical experimentation and optimal analysis are carried out
to perform the sensitivity of system parameters on different performances measures and to-
tal cost function. Numerical contribution to improving the system indices of this chapter is
threefold: (i) increasing the service rate µ , (ii) setting the startup time optimally γ , and (iii)
identifying the appropriate thresholds F and K to avoid long waiting delay. The numerical
improvements by the implementation of quasi-Newton method and the GWO algorithm for
the optimal analysis showed that for the initial input data for parameters taken in numerical
results, the optimal range for decision parameters µ and γ varies in the range of [1.022,3.63]
and [0.009,1.03], respectively, with initial values of µ0 = 2 and γ0 = 0.02. The GWO works
effectively in solving complex problems because the operators are intended to enable the
GWO to avoid local optima successfully and swiftly converge to the optimum. The results
showed that GWO could provide highly promising results and enhance the applicability of
the proposed algorithm in solving real problems.
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Table 5.4: Optimal expected total cost of the system (TC(µ∗,γ∗)) for
different parameters via quasi-Newton method with µ0 = 2,
γ0 = 0.02

K,F ,λ ,β1,β2 Number of iteration µ∗ γ∗ TC(µ∗,γ∗)

12,8,0.7,0.7,0.3 12 1.84219911 1.02742684 409.768440

16,8,0.7,0.7,03 10 2.21667825 0.15375096 448.469201

20,8,0.7,0.7,0.3 8 2.15352938 0.07265412 482.553711

24,8,0.7,0.7,0.3 7 1.97774011 0.03512229 516.703050

20,8,0.7,0.7,0.3 8 2.15352938 0.07265412 482.553711

20,10,0.7,0.7,0.3 7 2.27895689 0.05034637 498.380621

20,12,0.7,0.7,0.3 6 2.37039346 0.03603930 513.316935

20,14,0.7,0.7,0.3 7 2.40805553 0.02580218 527.133510

20,8,0.4,0.7,0.3 9 2.66908442 0.05495393 282.827206

20,8,0.6,0.7,0.3 8 2.84259334 0.07767657 447.400323

20,8,0.7,0.7,0.3 8 2.15352938 0.07265412 482.553711

20,8,0.8,0.7,0.3 9 1.90998398 0.08244469 503.061301

20,8,0.7,0.4,0.3 11 1.02245146 0.00941105 510.355603

20,8,0.7,0.6,0.3 8 1.81515633 0.07103110 492.717514

20,8,0.7,0.7,0.3 8 2.15352938 0.07265412 482.553711

20,8,0.7,0.8,0.3 9 2.76021334 0.08498858 466.044204

20,8,0.7,0.7,0.3 8 2.15352938 0.07265412 482.553711

20,8,0.7,0.7,0.4 8 2.15849534 0.07027238 490.369408

20,8,0.7,0.7,0.5 8 2.15845330 0.06787837 497.545129

20,8,0.7,0.7,0.6 8 2.15405544 0.06544041 507.164713
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Table 5.5: Optimal expected total cost of the system (TC(µ∗,γ∗)) for
different costs via quasi-Newton method with µ0=2, γ0=0.02

Ch,Cb,Cs,CI ,Ca,Cu,C1,C2 Iteration µ∗ γ∗ TC(µ∗,γ∗)

Number

16,190,380,95,40,8,40,8 10 2.51264066 0.12686454 387.352355

18,190,380,95,40,8,40,8 9 2.63335773 0.10556719 407.870956

20,190,380,95,40,8,40,8 9 2.74273600 0.08993149 427.865243

22,190,380,95,40,8,40,8 8 2.84259334 0.07767657 441.400323

22,180,380,95,40,8,40,8 8 2.79804651 0.07793918 444.920976

22,190,380,95,40,8,40,8 8 2.84259334 0.07767657 447.400323

22,200,380,95,40,8,40,8 8 2.88595302 0.07741142 449.849892

22,210,380,95,40,8,40,8 8 2.92821456 0.07714374 452.271085

22,190,370,95,40,8,40,8 8 2.82036021 0.07324288 446.723290

22,190,380,95,40,8,40,8 8 2.84259334 0.07767657 447.400323

22,190,390,95,40,8,40,8 9 2.86290327 0.08206858 448.040432

22,190,400,95,40,8,40,8 9 2.88159173 0.08643423 448.647710

22,190,380,75,40,8,40,8 8 2.77940270 0.07303782 445.166479

22,190,380,85,40,8,40,8 8 2.81158961 0.07537966 446.293890

22,190,380,95,40,8,40,8 8 2.84259334 0.07767657 447.400323

22,190,380,105,40,8,40,8 8 2.87252232 0.07993293 448.487178

22,190,380,95,35,8,40,8 8 2.86760469 0.07955952 443.307341

22,190,380,95,40,8,40,8 8 2.84259334 0.07767657 447.400323

22,190,380,95,45,8,40,8 8 2.81683592 0.07576547 451.479712

22,190,380,95,50,8,40,8 8 2.79027058 0.07382373 455.544707

22,190,380,95,40,6,40,8 8 2.85124983 0.07832521 445.998508

22,190,380,95,40,8,40,8 8 2.84259334 0.07767657 447.400323

22,190,380,95,40,10,40,8 8 2.83384922 0.07702463 448.800541

22,190,380,95,40,12,40,8 8 2.82501508 0.07636928 450.199130

22,190,380,95,40,8,30,8 8 3.63826754 0.08835508 415.201084

22,190,380,95,40,8,40,8 8 2.84259334 0.07767657 447.400323

22,190,380,95,40,8,50,8 8 2.24283827 0.06800464 472.696179

22,190,380,95,40,8,60,8 8 1.78754542 0.05921334 492.740465

22,190,380,95,40,8,40,6 8 2.84466686 0.07884673 447.243706

22,190,380,95,40,8,40,8 8 2.84259334 0.07767657 447.400323

22,190,380,95,40,8,40,10 8 2.84060201 0.07656842 447.554663

22,190,380,95,40,8,40,12 8 2.83868570 0.07551627 447.706843
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Table 5.8: Optimal expected total cost of the system (TC(µ∗,γ∗)) for
different parameters via genetic algorithm and particle swarm
optimization

Genetic Algorithm Particle Swarm Optimization
K,F ,λ ,β1,β2 TC(µ∗,γ∗) Time Elapsed TC(µ∗,γ∗) Time Elapsed

12,8,0.7,0.7,0.3 415.505382 2079.16 420.422605 2267.72

16,8,0.7,0.7,0.3 457.494825 2264.57 461.026457 2461.87

20,8,0.7,0.7,0.3 492.204824 2268.18 496.547808 2513.19

24,8,0.7,0.7,0.3 523.420269 2346.98 530.736785 2542.71

20,8,0.7,0.7,0.3 492.204824 2268.18 496.547808 2513.19

20,10,0.7,0.7,0.3 507.351799 2173.82 513.088165 2387.35

20,12,0.7,0.7,0.3 520.503376 2175.25 525.970202 2392.05

20,14,0.7,0.7,0.3 535.567603 2188.78 538.487923 2397.94

20,8,0.4,0.7,0.3 294.140868 2163.81 297.607968 2362.78

20,8,0.6,0.7,0.3 452.769181 2504.81 458.822507 2714.608

20,8,0.7,0.7,0.3 492.204824 2268.18 496.547808 2513.19

20,8,0.8,0.7,0.3 513.122601 2186.57 516.392499 2364.22

20,8,0.7,0.4,0.3 508.517561 2193.58 510.273807 2375.1

20,8,0.7,0.6,0.3 502.036017 2148.33 505.8194384 2347.68

20,8,0.7,0.7,0.3 492.204824 2268.18 496.547808 2513.19

20,8,0.7,0.8,0.3 480.491868 2132.80 478.705108 2349.25

20,8,0.7,0.7,0.3 492.204824 2268.18 496.547808 2513.19

20,8,0.7,0.7,0.4 504.590169 2093.37 504.901554 2343.79

20,8,0.7,0.7,0.5 512.972256 2120.05 514.801972 2385.52

20,8,0.7,0.7,0.6 519.749134 2145.91 523.115527 2339.72



Chapter 6

Finite Capacity Service System with Partial Server
Breakdown and Recovery Policy: An Economic
Perspective

Developing a comprehensive service strategy for optimizing customer satisfaction is an on-
going challenge for a successful facility provider. The critical points of comprehensive
systems are selecting the suitable service design, establishing an effective service delivery
process, and building continuous improvement. This study analyzes a finite capacity service
system with several realistic customer-server phenomena: customer impatience, server’s
partial breakdown, and threshold recovery policy. When the number of customers is more,
the server is under pressure to increase the service rate to reduce the service system’s load.
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6.1 Background

Under socio-econo-techno constraints, an efficient service system is vital for continuous
and sustainable development in the fast-growing competitive world. Effective service in-
cludes customer satisfaction and uninterrupted, quality, cost-effective, time-prompt service.
In congestion, we have to experience the cognition of waiting in a queue and waiting for our
turn to seek the hassle-free service. Waiting is ubiquitous and reinforces strategic research
on critical areas of the service facility. The optimal service design ranges from optimal ca-
pacity to uninterrupted availability, optimal service rate to optimal cost, quality to prompt
service, etc. Decision-makers must explore the existing technological innovation and the
acceptance of the customers to design a service system.

In today’s technological era, the study of queueing-based service systems has centered
on the mainstream due to the growing importance and complexity. This chapter highlights
essential reflections of a queueing-based service system using several realistic queueing
notions such as balking, service pressure coefficient, threshold-based recovery policy, and
partial server breakdown. A thorough survey of the literature on queueing systems with the
above-mentioned queueing notions shows that these queueing notions have been rarely stud-
ied in conjunction with different theoretical concepts. Quality of providing service and op-
erational efficiency is the most crucial factor for organizations, either service or production.
Over the past few decades, there has been an increased interest among researchers, system
analysts, and decision-makers/policymakers in congestion problems, including work related
to server breakdown, threshold-based recovery policies, and service pressure coefficients.

In congestion, impatience is prevalent among the customers. In general, at the epoch
of arrival, if the server is unavailable either due to busy in serving waiting customers or
breaks down, customers may show a reluctance attitude to join the queue and therefore may
be uncertain whether to enter the service system. The longer the waiting queue, the higher
the likelihood of customers balking. Haight [72] was the first researcher who introduced
the notion of customer balking in the queueing literature for a Markovian environment.
Later, Haight [74] again envisaged a single service provider Markovian queue that charac-
terized the customers’ continuous abandonment. Abou-El-Ata and Shawky [3] investigated
Markovian overflow queue with balking behavior of customers. Abou-El-Ata and Hariri
[4] extended the analytical solution for the multi-server Markovian queue with customer
impatience. Drekic and Woolford [45] investigated a priority queue assigning low priority
to impatient customers. Lozano and Moreno [125] studied the abandonment behavior of
arrived customers in a single-server service system in a discrete-time environment with an
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infinite/finite buffer. Sun et al. [179] explored the customer impatience (balking) in a sin-
gle server Markovian environment with the double-adaptive working vacation (WV) policy.
Since impatience attributes directly affect the quality of service (QoS), queueing problems
with the attribute of impatience customers have motivated many scholars to investigate a
distinguished service environment (cf. [168], [167]).

The efficient service system is dynamic with a load of customers improving customer
service to impact customer retention levels. Under the pressure of increased congestion,
the server may tempt to increase the service efficiency. This chapter also incorporates the
concept of service pressure coefficient to model real-time strategic policy. The pressure
coefficient is an absolute constant value and defines as the amount to which the server in-
creases the service capacity (rate) to diminish the over waiting load of the service system.
For the higher backlog of waiting, there is a high chance that the servers may start operating
intensely until the backlog becomes small or non-existent. Wang and Lin[197] anticipated
the concept of pressure conditions for the service systems for the first time in the queueing
literature. Wang et al. [198] examined the warm-standby provisioning machine interference
problem with multiple-imperfect coverage and multiple-server with the pressure condition
for improving the repair rate. More recently, Shekhar et al. [170] conceptualized service
pressure conditions for retaining the reneged customers in the multi-server Bernoulli’s va-
cation queueing problem.

The literature on queue-based service systems is rich with assumptions about reliable
servers, which is seldom. The service provider is subject to breakdowns randomly at any
instant in practice. Most research findings on queueing-based service systems with server
breakdown consider that the server terminates working completely when the breakdown oc-
curs. Nevertheless, in practice, some real-time systems exist in which the service provider
still works at a lesser rate in breakdown state, which referred to working breakdown or
partial breakdown in the queueing literature (cf. [178], [96], [96], [119], [124]) studied the
single server Markovian queue with working breakdown. A detailed survey on queueing-
based service systems with the breakdown of the server is provided by Krishnamoorthy et
al. [111]. Liou [122] explored the matrix method for a single server queue with customer
impatience and servers’ working breakdown. Yang and Chen [210] analyzed a single server
service system with the working breakdown and optional service policies. Rajadurai [157]
employed the supplementary variable technique to analyze the general retrial queue with the
catastrophic conditions and working breakdown under multiple working vacation policies.
Recently, Yen et al. [223] dealt with a retrial MRP with the working breakdown & exponen-
tially start-up time and implemented the PSO algorithm to establish the optimal management
policy with optimal joint values of the faster and slower service rates simultaneously at the
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minimum mean cost of the system.
The breakdown of the server leads to massive congestion or high impatience attributes

among the customers, which increases the economic losses, customer dissatisfaction, etc.
The breakdown of the service facility needs strategic recovery. The present study uses strate-
gic corrective measures: threshold recovery policy. According to these economic corrective
measures, when the active server is broken down, the recovery can be performed if there
exists a pre-specified (T (1 ≤ T ≤ K)) number of customers in the service system. The con-
cept of threshold recovery policy was firstly introduced by Efrosinin and Semenova [53].
Jain and Bhagat [89] envisaged a finite capacity retrial queueing-based service system with
a threshold recovery policy for unreliable servers. Yang et al. [212] formulated a cost op-
timization problem for a threshold-based recovery policy for repairable M/M/1/N system.
Yang and Chiang [211] incorporated the concept of threshold recovery policy for a ma-
chine interference problem and employed the metaheuristics and PSO algorithm to obtain
the converging results along with the mean cost of the machine interference problem.

The cost optimization problems are developed to infer the strategic policies employed
in the optimal design. For better understanding of the converging results and utilization of
several nature-inspired optimization techniques, one can refer the research works (cf. [169],
[168], [170], [171]) and references therein.

To the best of our knowledge, no research in the queueing literature has addressed
threshold-based recovery policy, servers’ working breakdown, customer impatience, and
service pressure conditions. This research gap in the literature motivates us for the present
study. Moreover, motivated by the results of the nature-inspired algorithms: PSO and CS
algorithm, we employ these techniques to optimize the system parameters (i.e., decision
variables) and the mean cost of the developed model. A comparative study among CS al-
gorith & PSO algorithm, and QN method has also been conferred to prove the excellence
of the metaheuristics. The significant contribution of the present study is to implement the
optimization algorithms and to develop MATLAB codes for comparing the findings of the
CS algorithm, PSO algorithm, and the QN method in terms of statistical parameters, com-
putation time, and operating policies in optimal conditions, et cetera.

The proposed model has many real-life applications in service systems like computer and
communication systems, supply chain management, production systems, inventory control,
and machine repair problems. The hardware unit consisting of routers, computers, switches,
etc., processes the data packets in several communication systems. When a data packet ar-
rives and finds a long latency, it may lose the information. As the number of data packets
load increases in a hardware unit, it extends its built-in standby power to a faster processing
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rate. The processing slows down regarding technical issues in the hardware unit or associ-
ated software. The persistent technical issues are recovered following some state-dependent
strategic policies.

The remaining content of this chapter is framed as follows. Section 6.2 familiarizes
the proposed queueing modeling and defines its states with several assumptions and nota-
tions. The repeated substitution method and corresponding solution algorithm to compute
the steady-state probability distribution are discussed in Section 6.3. Section 6.4 showcases
how the system performance indicators are defined and formulated in vector form. Sec-
tion 6.5 confers the cost function as a constrained optimization problem. Besides this, some
of the special cases are provided in Section 6.6. Next, the QN method, PSO & CS algo-
rithms are discussed in detail along with their pseudo-codes in Subsections 6.7.1, 6.7.2, and
6.7.3, respectively. In Section 6.8, several numerical illustrations with the help of numerous
graphs and tables are explained. Lastly, in Section 6.9 some of the concluding remarks and
future prospects are provided.

6.2 Proposed Model and State Description

The present study develops a finite capacity service system with numerous realistic queue-
ing notions like customer impatience, service pressure coefficient, partial server breakdown,
and threshold-based recovery policy. The capacity of the studied service system is proposed
as K. The prospective customer joins the service system for intended service following the
Poisson process with parameter λ (> 0). If the service facility is idle at the arrival epoch,
the customer gets the intended service instantly; otherwise, arrived customer queues in the
waiting line. The service provider selects the customer to serve from the queue following
the First-Come, First-Served (FCFS) queue discipline. It is assumed that the service times to
serve the customers follow an exponential distribution with parameter µb during the normal
busy state. The server is deteriorated (partially broken down) due to some technical issues
that occur following the Poisson process with parameter υ . It continues service uninterrupt-
edly to waiting customers at a slower rate instead of complete termination. The service times
during the partial breakdown period of the server also follow an independent and identically
(iid) exponentially distributed with rate parameter µd . The notion of the threshold recovery
policy is employed to abridge the mean cost of the service system due to customers in wait-
ing. According to this, the partial breakdown server is not recovered until the number of
customers in the system attains a pre-specified threshold value T (1 ≤ T ≤ K). The recover
times of the breakdown server follow an iid exponential distribution with rate parameter ϑ .
After accomplishing the recovery action, the server is ready to furnish the service to the
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waiting customers immediately at a standard efficiency. When the service provider is busy
or malfunctioning, the customers who join the service system tend to become impatient,
causing them to depart the system with a probability of 1−ξ . These customers may remain
in the system with the complimentary probability ξ . If the number of customers in the sys-
tem is T or more, the concept of the service pressure coefficient is considered. The pressure
factor is assumed to be dependent on number of customers in the system and parameter ψ .
Additionally, we assume that all continuous random variables, namely, inter-arrival times,
breakdown times, and service/repair times, are mutually independent. The events arrival,
service, repair, recovery, and balking are independent to each other.
Let

N(t) = number of customers in the service system at time instant t, and
J(t) = the server’s state at the time t, where

J(t) =

0; if the service provider is in normal working attribute

1; if the service provider is in working breakdown state
Thus, the process {(N(t),J(t)); t ≥ 0} is Markov chain defined in continuous time as a two-
tuple irreducible CTMC with the state-space Ω = {{(n,0);n = 0,1,2, . . . ,K}∪{(n,1);n =

1,2, . . . ,K}}. Hence, at time instant t (t ≥ 0), all the system-state probabilities are outlined
as follows

πn,0(t) = Prob{N(t) = n,J(t) = 0}; n = 0,1,2, ...,K

πn,1(t) = Prob{N(t) = n,J(t) = 1}; n = 1,2, ...,K

Assuming all the considerations, the state-dependent mean service rate of the service provider
is defined as

µ
(n)
b =

µb; 1 ≤ n ≤ T −1( 2n
n+1

)ψ
µb; T ≤ n ≤ K

µd < µ
(n)
b ; ∀n

Now, using the theoretical concept and axioms of the QBD (quasi birth and death) process,
the system of Chapman–Kolmogorov forward differential-difference equations, that governs
the proposed model, is delineated to exhibit the transient-state probabilities representing the
likelihood of distinguished states of the service system. Following the different system
states, we have
When the server is Idle

π
′
0,0(t) =−λπ0,0(t)+µ

(1)
b π1,0(t) (6.1)
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When the server is in the regular working attribute
π
′
1,0(t) =−

(
λξ +µ

(1)
b +υ

)
π1,0(t)+λπ0,0(t)+µ

(2)
b π2,0(t) (6.2)

π
′
n,0(t) =−

(
λξ +µ

(n)
b +υ

)
πn,0(t)+λξ πn−1,0(t)+µ

(n+1)
b πn+1,0(t);

2 ≤ n ≤ T −1 (6.3)

π
′
T,0(t) =−

(
λξ +µ

(T )
b +υ

)
πT,0(t)+λξ πT−1,0(t)+µ

(T+1)
b πT+1,0(t)

+ϑπT,1(t) (6.4)

π
′
n,0(t) =−

(
λξ +µ

(n)
b +υ

)
πn,0(t)+λξ πn−1,0(t)+µ

(n+1)
b πn+1,0(t)

+ϑπn,1(t);T +1 ≤ n ≤ K −1 (6.5)

π
′
K,0(t) =−

(
µ
(K)
b +υ

)
πK,0(t)+λξ πK−1,0(t)+ϑπK,1(t) (6.6)

When the server is in working breakdown state
π
′
0,1(t) =−λπ0,1(t)+υπ0,0(t)+µdπ1,1(t) (6.7)

π
′
1,1(t) =−(λξ +µd)π1,1(t)+λπ0,1(t)+υπ1,0(t)+µdπ2,1(t) (6.8)

π
′
n,1(t) =−(λξ +µd)πn,1(t)+λξ πn−1,1(t)+υπn,0(t)+µdπn+1,1(t);

2 ≤ n ≤ T −1 (6.9)

π
′
n,1(t) =−(λξ +µd +ϑ)πn,1(t)+λξ πn−1,1(t)+υπn,0(t)+µdπn+1,1(t); (6.10)

T ≤ n ≤ K −1

π
′
K,1(t) =−(µd +ϑ)πK,1(t)+λξ πK−1,1(t)+υπK,0(t) (6.11)

At t = 0, the initial condition is
π0,0(0) = 1

πn,0 = 0;n = 1,2, . . . ,K

πn,1(0) = 0;n = 1,2, . . . ,K

(6.12)

6.3 Steady-State Analysis

In equilibrium condition, i.e., t → ∞, the following are the state probabilities for the analysis
of the service system, which are depicted as

forn = 0,1,2, . . . ,K, lim
t→∞

πn,0(t) = πn,0 and lim
t→∞

π
′
n,0(t) = 0

forn = 1,2, . . . ,K, lim
t→∞

πn,1(t) = πn,1 and lim
t→∞

π
′
n,1(t) = 0

Now, to derive the state probability distribution, we adopt the repeated substitution ap-
proach as the system of equations is highly complicated to calculate the closed/vector-form
of expression of the state probabilities because of intricate constraints like multi-equation,
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multi-variable, and multiple parameters. The matrix analytic method was first familiar-
ized by Neuts [142] utilizing the concept of embedded Markov chains for numerous realis-
tic queue-based service systems. For the matrix approach, we characterize the probability
vector P̃n;n = 0,1,2, ...,K as row vector having steady-state probabilities as elements, i.e.,
P̃0 = [π0,0] and P̃n = [πn,0,πn,1];n = 1,2, . . . ,K. The transition rate matrix of the Markov
chain can equivalently be defined using the QBD process. Hence, by balancing the incoming
and outgoing transitions, the tridiagonal generator matrix Q of the studied CTMC is defined
as follows

Q =



A0 B0 0 0 · · · 0 0 0
C0 A1 B1 0 · · · 0 0 0
0 C1 A2 B1 · · · 0 0 0
0 0 C2 A3 · · · 0 0 0
...

...
...

... . . . ...
...

...
0 0 0 0 · · · AK−2 B1 0
0 0 0 0 · · · CK−2 AK−1 B1

0 0 0 0 · · · 0 CK−1 AK


The elements of the transition rate matrix Q as block submatrices are represented as follows.

A0 =
[
−λ

]
; B0 =

[
−λ 0

]
; B1 =

[
λξ 0
0 λξ

]
;

C0 =

[
µ1

b

0

]
; An =

[
a(n)11 a(n)12

a(n)21 a(n)22

]
We depict each element of the block submatrix An;n = 1,2, . . . ,K as the scalar a(n)i j whose
closed form structure is defined as follows

a(n)i j =



−
(

λξ +υ +µ
(n)
b

)
; i = j = 1 & 1 ≤ n ≤ K −1

−
(

υ +µ
(n)
b

)
; i = j = 1 & n = K

υ ; i < j & 1 ≤ n ≤ K

ϑ ; i > j & 1 ≤ n ≤ K

−(λξ ) ; i = j = 2 & n = 1

−(λξ +µd) ; i = j = 2 & 2 ≤ n ≤ T −1

−(λξ +ϑ +µd) ; i = j = 2 & T ≤ n ≤ K −1

−(ϑ +µd) ; i = j = 2 & n = K

0; otherwise
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Similarly, we define the block submatrix Cn;n = 1,2, . . . ,K −1 as

Cn =

[
c(n)11 0

0 c(n)22

]
where, element of the matrix Cn for n = 1,2, . . . ,K −1 is the scalar c(n)ii outlined as

c(n)ii =


µ
(n+1)
b ; i = 1 & 1 ≤ n ≤ K −1

µd; i = 2 & 1 ≤ n ≤ K −1

0; otherwise

Let ΠΠΠ =
[
P̃0, P̃1, ..., P̃K−1, P̃K

]
be the probability vector in equilibrium associated to the

pre-defined generator matrix Q. Considering the partition of the probability vector ΠΠΠ, we
represent governing system of equations in matrix form as

ΠΠΠQ = 0 (6.13)

The homogeneous governing system of equations 6.13 can straightforwardly be represented
in the form of pre-defined block submatrices as

P̃0A0 + P̃1C0 = 0 (6.14)

P̃0B0 + P̃1A1 + P̃2C1 = 0 (6.15)

P̃n−1B1 + P̃nAn + P̃n+1Cn = 0;n = 2,3, ...,K −1 (6.16)

P̃K−1B1 + P̃KAK = 0 (6.17)

Now, after appropriate matrix operation and recursive substitution of each element, we ob-
tain

P̃0 = P̃1C0
(
−A−1

0
)
= P̃1ΞΞΞ0

P̃1 = P̃2C1

[
−(ΞΞΞ0B0 +A1)

−1
]
= P̃2ΞΞΞ1

P̃n = P̃n+1Cn

[
−(ΞΞΞn−1B1 +An)

−1
]
= P̃n+1ΞΞΞn; n = 2,3, ...,K −1

where,

ΞΞΞn =


−C0A−1

0 ; n = 0

−C1 (ΞΞΞ0B0 +A1)
−1 ; n = 1

−Cn (ΞΞΞn−1B1 +An)
−1 ; 2 ≤ n ≤ K −1

Again by the recursive back substitution, we redefine each of the state probability vector P̃n

in the closed product form of ΞΞΞn; n = 0,1,2, ...,K −1 as

P̃n = P̃K{ΞΞΞK−1ΞΞΞK−2ΞΞΞK−3 . . .ΞΞΞn+2ΞΞΞn+1ΞΞΞn};n = 0,1,2, . . . ,K −1

P̃n = P̃K

(
K−1

∏
i=n

ΞΞΞi

)
= P̃KΦΦΦn;n = 0,1,2, . . . ,K −1 (6.18)

Following the total probability rule, we define the normalization condition for the state-
probability distribution as ΠΠΠe = 1, which can be equivalently rewritten using the partition
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of the probability vector as[
P̃0e1 + P̃1e2 + P̃2e2 + . . .+ P̃K−1e2 + P̃Ke2

]
= 1 (6.19)

where, e1 = [1] and e2 = [1 1]T . Now using the eq.n(6.18), the eq.n(6.19) can be redefined
as

P̃KΦΦΦ0e1 +
[
P̃1 + P̃2 + . . .+ P̃K−1 + P̃K

]
e2 = 1

P̃KΦΦΦ0e1 +
[
P̃KΦΦΦ1 + P̃KΦΦΦ2 + . . .+ P̃KΦΦΦK−1 + P̃PPK

]
e2 = 1

P̃KΦΦΦ0e1 + P̃K [ΦΦΦ1 +ΦΦΦ2 + . . .+ΦΦΦK−1 + I]e2 = 1

=⇒ P̃K

[
ΦΦΦ0e1 +

(
K−1

∏
n=1

ΦΦΦn + I

)
e2

]
= 1 (6.20)

The state probability vector P̃K is evaluated from eq.n(6.17) and eq.n(6.20), henceforth, all
the other steady-state probabilities P̃0, P̃1, . . . , P̃K−1 are evaluated from the eq.n(6.18).

After the computation of state probabilities, we define various performance indices in
the next section to tract the modeling and analyze the efficiency of the service system.

6.4 System Performance Measures

In general, there are many standard system performance indicators that can illustrate the
quality performance of the service systems. This chapter also provides several queueing-
based system performance indices for finite capacity service systems with service pressure
coefficient, threshold-based recovery policy, and working breakdown to outline the model-
ing and procedure used. These system performance measures are also useful in demonstrat-
ing the parametric investigation to achieve the objective of decision-making. Moreover, all
the system performance indicators defined in this section are correlated and recognized as
prime importance in a specific situation. Next, we characterize these system performance
indicators in the closed/vector form in terms of governing state probabilities.

• Mean number of customers in the queueing system

LS = P̃K

(
K−1

∑
n=1

nΦΦΦne2 +Ke2

)
(6.21)

• Mean number of customers in the waiting queue

LQ = P̃K

(
K−1

∑
n=1

(n−1)ΦΦΦne2 +(K −1)e2

)
(6.22)

• Probability that server is in working breakdown state

PWD = P̃K

(
K−1

∑
n=1

ΦΦΦne3 + e3

)
(6.23)

where, e3 = [0 1]T
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• Probability that the server is in a busy state

PB = P̃K

(
K−1

∑
n=1

ΦΦΦne4 + e4

)
(6.24)

where, e4 = [1 0]T

• Probability that server is idle

PI = P̃0e1 (6.25)

• Throughput of the service system

τp = P̃K

(
K−1

∑
n=1

µ
(n)
b ΦΦΦne4 +µ

(K)
b e4 +

K−1

∑
n=1

µdΦΦΦne3 +µde3

)
(6.26)

• Average balking rate

ABR = P̃K

(
K−1

∑
n=1

(1−ξ )λΦΦΦne2

)
(6.27)

• Effective arrival rate

λeff = λ P̃0e1 + P̃K

(
K−1

∑
n=1

ξ λΦΦΦne2

)
(6.28)

• Mean waiting time in the service system

WS =
P̃K
(
∑

K−1
n=1 nΦΦΦne2 +Ke2

)
λ P̃0e1 + P̃K

(
∑

K−1
n=1 ξ λΦΦΦne2

) (6.29)

Using these defined performance indices, we develop the cost optimization problem in the
next section with pertinent decision parameters and design parameters.

6.5 Cost Analysis

For the economical analysis of the studied Markovian single server finite capacity service
system, this section comprises the formulation of the mean cost function utilizing different
cost factors incurred. The parameters µd and µb are considered as decision variables. The
core purpose of the study is to use the joint stationary probability distribution and system
performance characteristics of the developed model to optimize the long-run mean cost at
the optimal value of the decision parameters. The cost elements unified to the different
system states of the queueing model are defined as follows.

Ch ≡ The unit cost associated with customers waiting in the system
Cd ≡ The unit cost incurred with the partial breakdown of the server
Cb ≡ The unit cost incurred with the busy state of the server
Ci ≡ The unit cost incurred with the idle server
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Cµb ≡ Unit cost for rendering the service with rate µb

Cµd ≡ Unit cost for rendering the service with rate µd

Cw ≡ cost associated with each waiting customer present in the system
We use the above-defined components related to the mean cost and performance indices
defined in the previous section to formulate the cost optimization problem as follows

TC(µb,µd) =ChLS +CdPWD +CbPB +CiPI +Cµb µb +Cµd µd +CwWS (6.30)

The considered model’s cost optimization (minimization) problem is framed mathematically
as an optimal control problem.

TC(µ∗
b ,µ

∗
d ) = min

µd<µb
{TC(µb,µd)} (6.31)

where µ∗
b and µ∗

d are the optimized values of decision variables that minimize the mean cost.
We employ the classical and meta-heuristic optimization techniques to determine the

optimal mean cost. The details and results are discussed in the forthcoming sections.

6.6 Special Cases

In this section, for the validity and tractability of developed model, the comparative study
with several existing research articles is provided by relaxing one or more assumptions.
It proves that, the results of the governing model resemble with the actual findings in the
queueing literature.

Case 1: For ξ = 1, µ
(n)
b = µ , and υ = 0, the studied model analogous to classical M/M/1/K

queueing model (cf. Kleinrock [107]).

Case 2: For ξ ̸= 1, µ
(n)
b = µ , and υ = 0, our model and findings match with the outcomes

of a queueing system with balking proposed by Haight [72].

Case 3: By substituting ξ ̸= 1, µ
(n)
b = µ , υ ̸= 0, and ϑ = 0, the governing model converts

to the queueing problem with working breakdown and customer impatience investigated by
Liou [122].

Case 4: By taking ξ = 1, and υ = 0, the studied model deduces to a queueing model
with service pressure coefficient proposed by Hiller and Lieberman [82].

Case 5: In the case when ξ = 1, µ
(n)
b = µ , υ ̸= 0, and ϑ = 0, the current model resem-

bles with the single server service system with working breakdown of the server proposed
by Kalidass et al. [96].
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Case 6: By setting the combination of parameters as ξ = 1, µ
(n)
b = µ , υ ̸= 0, and ϑ ̸= 0,

the model becomes a finite capacity queue-based service system with working breakdown
and threshold-based recovery policy which was examined by Efrosinin et al. [53] in the
literature.

6.7 Optimization Techniques

We employ the classical and meta-heuristic techniques to determine the optimal value of
decision parameters at the minimum mean cost. The results of each technique are compared
to others to validate the newly evolved meta-heuristic techniques. The results are compiled
in the next section. In this section, we give detail, algorithm, and pseudo-code of classical
method: quasi-Newton method (QN), and meta-heuristic optimization techniques: particle
swarm optimization (PSO), cuckoo search (CS).

6.7.1 Quasi-Newton Method

The literature on algorithms shows that gradient-based optimization algorithms have er-
rors (i.e. zigzagging) when dealing with ill-conditioned optimization problems. Therefore,
the quasi-Newton technique of order two is gaining interest as it uses curvature informa-
tion and efficacy in dealing with ill-conditioned cost optimization problems. Second-order
techniques have various benefits over the first-order methods, including a high rate of local
converging simulations (usually super-linear) and preserving invariance (non-sensitiveness
to the choice of coordinates). Inspiring by this fact, we have incorporated the semi-classical
optimizer: the QN method, for the governing multi-objective problem. The advantage of
the QN method for multi-objective and multi-constraint optimization is that the estimation
of Jacobian matrices is reasonably faster than their actual estimation. This change is signif-
icantly more apparent when the range of the problem’s solution space is extensive. The QN
method is explained in more details in Subsection 1.7.5 along with its pseudo-code.

6.7.2 Particle Swarm Optimization

PSO is a bio-inspired process that searches for an optimal solution in the solution space
globally. PSO algorithm is best suited for non-linear, non-convex, and multi-modal opti-
mization problems. Multiple local and global optimal are present, and we need to obtain the
global optimum of the problem. In PSO, we use both global best (pt

gb) and the individual
(particle) best (pt∗

i ) simultaneously at the iteration t. Using certain individuals best aims to
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escalate the diversity in the promising solutions; however, this diversity may be mimicked
by employing randomization. As a result, if the optimization problem of interest is sub-
stantially non-linear and multi-modal, there is no convincing justification for choosing the
individual best [218]. An elementary set of locations (solutions) (p0

i ) and velocities (v0
i ) are

generated randomly for each particle (bird) in the swarm (flock). Each particle’s speed is
stochastically accelerated towards its prior best position (individual best) and the global best
solution across iterations in the search space [121].

vt+1
i =vt

i + c1r1(pt∗
i − pt

i)+ c2r2(pt
gb − pt

i) (6.32)

where c1 and c2 are positive constants chosen at the initiation of the process. The vector
pt∗

i is the finest position (best solution) for the particles till time instant t, determined using
the objective function f (pi) in the local search region. The vector pt

gb is defined as the
universally best (i.e., global best) position vector for all the particles. At each iteration, the
solution vector is updated to provide the terminating optimum position. The vectors pt

i and
vt

i are the current values of the position and velocity vector respectively. Furthermore, r1

and r2 are the random vectors chosen from the uniformly distributed random variate ru in
the continuous range [0, 1], re-selected at each iteration of the algorithm. Here, randomness
shows a significant role in avoiding getting trapped at a local optimum.

The second term of eq.n(6.32) assures complete exploitation of the local area in the
search space to find an exact value of the local optimum. Similarly, the third term of
eq.n(6.32) prompts that the entire search space is explored to find a global optimum and
escape getting trapped at a local optimum. Thus, the choice of c1 and c2 is critical in con-
firming compatibility, and hence their selection should be made sensibly.

Concurrently, each particle is updated according to its velocity. The position updating
formula is defined as

pt+1
i = pt

i + vt+1
i (6.33)

The above equation explores the process from point to point globally. So we assure that
each new point is evaluated for potential improvement. Further, we adopt the concept of
inertia function Ω(t) (cf. Shi and Eberhart [172]) to stabilize the exploration of the particles.
It stops particles to be stuck in a local region or overshoot from optimum value. Henceforth,
the velocity formula is restructured as follows

vt+1
i =Ωvt

i + c1r1(pt∗
i − pt

i)+ c2r2(pt
gb − pt

i) (6.34)

The appropriate value of the inertia function Ω(t) is taken among the range [0.50.9]. The
pseudo-code of the PSO algorithm can be characterized as
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Algorithm 6 The pseudo-code for PSO algorithm
1: Input: Objective function, population size, r1, r2, c1, c2, starting particle position, tmax;
2: Initialization: Find position of n particles;
3: while t < tmax or convergence criterion do
4: for All n particles and all d dimensions do
5: Update new velocity vt+1

i according to eq.n(6.34);
6: Update new position of particle pt+1

i according to eq.n(6.33);
7: Evaluate objective function at new position;
8: Find the current best position (pi) for each particle;

end for
9: Update global best pgb;

end while
10: Output: optimal objective value TC∗ at p∗.

6.7.3 Cuckoo Search

Generally, cuckoos are captivating birds, not just for their beautiful sounds but also for their
aggressive reproduction method. Most of the cuckoo species lay their eggs in communal
nests, yet they may throw down the eggs of others to maximize the chances of their eggs
hatching. Nevertheless, some species practice obligatory brood parasitism, which involves
laying their eggs in the nests of other host birds. Some cuckoo species have evolved due
to genetic variation where female parasitic cuckoos are capable of imitating the color and
pattern of eggs of certain host species. The behavior lessens the likelihood of their eggs
forsaking, increasing their reproductive potential. The competitiveness between cuckoos
and host species forms a combat system where cuckoos’ eggs can be exposed and thrown
down with a probability of P∗.

The resemblance of two eggs (solutions) pi and p j can be roughly evaluated by their
difference (p j − pi) . Thus, the location at iteration t can be modified by

pt+1
i = pt

i +υs⊗H(Pa − ε)⊗ (pt
j − pt

k) (6.35)

where s is step-size, which is ranged by a variable υ consisting of positive values, H is a
Heaviside step-function used to simulate the discovery probability with the help of random
number ε taken from a uniform distributed range [0, 1]. Furthermore, the product notation
⊗ of two vectors means entry-wise multiplications. Now, for generating new solution pt+1

i

for the ith cuckoo, a Lévy flight is performed as

pt+1
i = pt

i +υL(s,λ ) (6.36)

where the Lévy flights are random walks with phases being taken from

L(s,λ )∼ 1
s1+λ

(
λΓ(λ )sin(πλ )/2

π

)
(6.37)
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to approximate a Lévy probability distribution with an exponent 0 ≤ λ ≤ 2. Here, the
gamma function is defined as

Γ(λ ) =

∞∫
0

zλ−1e−udu (6.38)

The pseudo-code for the CS algorithm is defined as follows.

Algorithm 7 The pseudo-code for CS algorithm

1: Input: Objective function TC(x), x = {x0
1,x

0
2, ...,x

0
d}, population size, tmax;

2: Initialization: Population of n host nests xi(1 ≤ i ≤ n);
3: while t < tmax or convergence criterion do
4: Get a cuckoo randomly (say, i) by Lévy distribution;
5: Evaluate its fitness value Fi;
6: Choose a nest among n (say, j) randomly;
7: Evaluate its fitness value Fj;
8: if (Fi > Fj) then
9: replace j by the new solution;

end if
10: Abandon a fraction (Pa) of worse nests and built new ones;
11: Keep the best solutions/nests;
12: Rank the solutions/nests and find the current best;

end while
13: Output: If the stopping criterion is met, then p∗ is the best global solution found so far.

6.8 Results and Discussion

In this section, several numerical examples are given to perform the sensitivity analysis of
the stationary system performance indices of the proposed single server finite capacity ser-
vice system for various intricate system parameters. The numerical results and illustrations
are outlined in Figs. 6.1–6.4, which show the outcome of several system parameters on the
system performance indices, namely, the mean number of customers in the service system
(LS), and throughput of the service system (τp). For illustrations, we standardize the capac-
ity of the service system as K = 15 and threshold T = 7. The other system parameters are
fixed as follows: λ = 1.5, ξ = 0.7, µb = 3.0, µd = 1.5, ψ = 1.0, υ = 0.01, ϑ = 8.0.

In Figs. 6.1 and 6.2, we illustrate the line graphs for the mean number of customers in
the service system wrt λ and µb, respectively, for the varied parametric values of design
parameters T , ξ , υ , and ψ . It is easy to observe that LS shows a growing trend for increasing
values of λ and the reverse effect for increased values of µb as intuitively expected. For the
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Figure 6.1: Effect of varied (i) T , (ii) ξ , (iii) υ , and (iv) ψ wrt λ on mean
number of customers in the service system.
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Figure 6.2: Effect of varied (i) T , (ii) ξ , (iii) υ , and (iv) ψ wrt µb on mean
number of customers in the service system.
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Figure 6.3: Effect of varied (i) T , (ii) ξ , (iii) υ , and (iv) ψ wrt λ on the
throughput of the service system.

fixed value of λ , an increasing trend is observed for the higher values of T , ξ , and υ as
in Fig. 6.1. Nevertheless, at the same time, the reverse trend is observed in the case of ψ .
Similarly, in Fig. 6.2-(iv), it is observed that for the definite values of µb and increasing ψ ,
LS is decreasing. It is apparent from the fact that as the pressure factor increases, the active
servers’ service rate increases, which results in a decreasing trend in LS.

The influence of system parameters λ and µb on the throughput (τp) of the service system
is depicted in Figs. 6.3 and 6.4, respectively, as bar graphs. These figures provide a better
and more important understanding to the system analysts on distinguishing the variations of
throughput of the service system wrt to various system parameters value. Throughput gives
the mean number of customers served by the server either in normal mode or partial break-
down state; subsequently, it increases when the number of arrivals in the service system in-
creases and the service rate increases. The trend is expected since there is more likelihood of
customers. The parameter ξ positively affects throughput, as shown in Figs. 6.3(ii) & 6.4(ii),
whereas T and υ negatively that can be observed in Figs. 6.3(i) & (iii) and Figs. 6.4(i) & (iii).
Moreover, τp is the least sensitive wrt ψ , which results in a minor change with higher values
of ψ , as presented in Figs. 6.3(iv) & 6.4(iv).

Besides the earlier fixed default value of system parameters, the default values of several cost
elements are also considered as Ch = 5, Cd = 60, Cb = 250, Ci = 170; Cµb = 2, Cµd = 17,



170 Chapter 6. Finite Capacity Service System...

(i)

3.1 3.3 3.5 3.7 3.9

b

1.0

1.1

1.2

1.3

1.4

p

T = 5

T= 6

T= 7

(ii)

3.1 3.3 3.5 3.7 3.9

b

0.9

1.0

1.1

1.2

1.3

1.4

p

 = 0.5

 = 0.6

 = 0.7

(iii)

3.1 3.3 3.5 3.7 3.9

b

0.9

1.0

1.1

1.2

1.3

1.4

p

 = 0.01

 = 0.05

 = 0.09

(iv)

3.1 3.3 3.5 3.7 3.9

b

0.9

1.0

1.1

1.2

1.3

1.4

p

 = 1.0

 = 2.0

 = 3.0
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throughput of the service system.

Figure 6.5: Mean cost (TC) wrt varied (i) (T,λ ), (ii) (ξ ,λ ), (iii) (λ ,υ), and
(iv) (ψ,λ ).
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Figure 6.6: Mean cost (TC) wrt varied (i) (T,µb), (ii) (ξ ,µb), (iii) (µb,υ),
and (iv) (µb,ψ).

and Cw = 100 to analyze studied service system economically. For the various combina-
tions of default parameters, Figs. 6.5 and 6.6 depict the variation in the value of the mean
cost (TC) of the system, given in eq.n (6.30). Fig. 6.5(i) characterizes the variation on TC

for increasing values of T and λ , revealing that the mean cost (TC) enhances as intuitively
expected. From Figs. 6.5(ii) & (iv), we notice that for higher values of combinations (λ ,ξ )
and (λ ,ψ), the mean cost TC is deduced rapidly in comparison to Fig. 6.5(iii). Correspond-
ingly, TC significantly raises with the higher values of parameters µb and T as in Fig. 6.6(i).
In Fig. 6.6(ii), it is noticeable that, first, the TC increases more rapidly wrt positively varied
(ξ ,µb) and remains almost constant later. Similar findings are exhibited for the remaining
figures as well. Therefore, all of these statistics incite that the default parametric values
used here are praiseworthy in decision making, planning, and designing the service system,
which plays a significant role in the development of the governing model.

From the results provided in the above Figs. 6.1–6.6, it is perceived that there is a strategic
need to estimate the optimal operating policy to minimize the mean cost incurred in the
service system. Generally, it is highly typical to evaluate the analytical and closed-form
of µ∗

b and µ∗
d , because of the high order complexity and non-linearity involved in the cost

optimization problem. The trend for incurred TC wrt to the system design parameters µb

and µd respectively, have been calculated numerically with the help of Fig. 6.7–6.9. In this
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Figure 6.7: Mean cost (TC) wrt decision variables µb and µd .

 

Figure 6.8: Contour plot for mean cost (TC) wrt varied µb and µd .

context, the values of different default system parameters and performance associated unit
cost, are considered as follows: K = 20; T = 10; λ = 4.0, ξ = 0.3, ψ = 1.0, υ = 0.2,
ϑ = 3.0, Ch = 130, Cd = 60, Cb = 100, Ci = 350, Cµb = 5, Cµd = 35, and Cw = 100. The
lower and upper limits of the decision/system design parameters µb and µd are taken as
[220] and [17] respectively. From Fig. 6.7, the conclusion be inferred that the mean cost
TC(µb,µd) is convex in nature as intuitively anticipated.

To calculate the optimal combinations of the design decision parameters µb and µd , the
nature-inspired optimization technique: PSO and CS algorithm are utilized. The results are
compared with the results of the quasi-Newton method. The results delineated in Figs. 6.8–
6.10 infer the convex nature of cost function wrt to decision parameters. Several generations
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Figure 6.9: Three dimensional contour plot for mean cost (TC) wrt varied
µb and µd .

 

Figure 6.10: Surface plot for the mean cost (TC) wrt varied (µb,µd).
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Generation 50       Generation 100 

   

Figure 6.11: PSO algorithm’s different generations.
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of the PSO algorithm have also been depicted in Fig 6.11 to display the robustness and
working nature of the PSO algorithm. These results show that the mean cost of the service
system wrt combined values of continuous system design parameters, µb and µd , is optimal,
and the used algorithm plays an essential role in providing converging results.

Table 6.1: Iterations of QN method in finding the optimal values of µb and
µd .

Iterations µd µb TC(µb,µd)

0 3.000000 12.000000 549.252374

1 2.005001 11.651540 530.572348

2 2.307443 10.644663 527.526168

3 2.212510 10.519532 526.369986

4 2.175001 10.475921 526.289346

5 2.181594 10.460087 526.285852

6 2.181004 10.457057 526.285811

7 2.180910 10.456292 526.285810

8 2.180910 10.456295 526.285810

9 2.180910 10.456296 526.285810

10 2.180910 10.456297 526.285810

11 2.180910 10.456297 526.285810

Next, we also provide numerous simulations wrt several combinations of system pa-
rameters to validate the converging results and the convexity of the formulated cost func-
tion (6.30) in Tables 6.1–6.5. We have incorporated the semi-classical optimizer: QN
method and meta-heuristics like PSO and CS algorithm. Because the PSO algorithm does
not involve the computation of gradients, it is an appropriate technique to calculate the op-
timum of single/multi-modal optimization problems. The advantage of the meta-heuristics
like PSO and CS algorithms is that these can be employed to examine the optimal values of
decision variables whether discrete or continuous. The parametric values of the system com-
ponents are taken as the same as in the previous simulation to demonstrate the converging
results. The PSO algorithm pertinent parameters are fixed as c1 = 2, c2 = 2 and Ω = 0 : 5.
We conventionally fix the lower and upper bounds for µb and µd as [5.0 15.0] and [2.0 5.0]
respectively, and obtained the optimal operating decision parameters in Table 6.4 up to the
tenth place of decimal. The numerical results in Table 6.4 are depicted by considering 20
independent runs with 100 generations in each run and 50 particles generated randomly for
each PSO simulation. For the validity purpose, we have also used the notion of statistical
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characteristics: mean-ratio and maximum-ratio of the optimal mean cost for all independent
runs, to show the robustness of the proposed PSO algorithm.

For a better understanding of the research findings, a comparative study between the
QN, PSO, and CS algorithm is accomplished for several combinations of system parame-
ters in Tables 6.1-6.5. The computation time among all the iterations and optimal results
are fundamental aspects for comparing the efficacy and effectiveness of an algorithm. So
inspired by this, we have used both in each table with each combination of system parame-
ters. It is observed that the calculated optimal values of design parameters and mean cost by
the proposed algorithms QN, PSO, and CS algorithm are almost equivalent. The CPU time
(in seconds) for the PSO algorithm is slightly less than the CS algorithm in each iteration.
The associated mean cost enlisted by the PSO algorithm meets the optimality considerably
and efficiently for all considered test instances. The results of the PSO algorithm are also
superior to the QN method, for each numerical example. Newton’s method involves the
computation of gradient for calculating the Hessian. We obtain gradient numerically due to
the high non-linearity and complexity of the optimization problem. It includes the high-scale
estimation, which minimizes the efficacy of the algorithm.

From the above examples/numerical experiments and deliberations, we can say that the
PSO algorithm effectively gives optimal results compared to the CS algorithm and the quasi-
Newton method. It is also noticed that optimum setup of system design parameters is essen-
tial to reduce the mean cost required in rendering service to the potential customers.

6.9 Conclusion

The uniqueness of the current work is to observe the effects of several queueing characteris-
tics, viz customer impatience, threshold recovery policy, and partial server breakdown under
the pressure condition, on the operational capability and performance of the service system.
The Chapman-Kolmogorov differential-difference equations have been provided for mod-
eling purposes. The steady-state probability distribution has been demonstrated using the
repeated substitution approach. Further, to show the quality performance of the service sys-
tem, numerous system performance indices have been provided. The function for the mean
cost and associated cost optimization problem has been provided for the economic analysis.
The nature-inspired optimizer, PSO, and CS algorithm has been used for the numerical il-
lustration of cost analysis. Moreover, the comparative analysis between the semi-classical
optimizer: QN method and meta-heuristics optimization techniques CS algorithm, PSO al-
gorithm has also been performed to depict the optimal operating combination (i.e., optimal
service rates µ∗

b and µ∗
d ) with the minimal mean cost TC∗ of the service system.





Chapter 7

Transient Analysis of Queueing Based Congestion
with Differentiated-Vacations and Customer’s Im-
patience Attributes

This chapter studies the critical issue of the single-server congestion problem with promi-
nent customer impatience attributes and server strategic differentiated vacation. Despite
their apparent practical relevance, the proposed congestion problem has yet to be studied
from a service/production perspective with transient analysis.
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7.1 Introduction

The optimal service system emphasizes strategic congestion management to address the
customer’s traffic. Congestion management is an association between planning and opera-
tions. The research study’s prime objective is to present a systematic process for managing
customer congestion and provides critical information on the performance of the service
system. The investigation identifies alternative strategies for alleviating congestion and en-
hancing customers’ mobility to levels that attain a state of intended service. At the core, con-
gestion management includes performance monitoring, alternative strategies for congestion,
and norms for detecting when action is required. Studying congestion and its causes is used
to develop more efficient and cost-effective services and systems. The critical goal of the
studied service system is to prioritize strategies that would be most effective for congestion
management. The queueing analysis is one of the most effective and practical mathemat-
ical tools for understanding and aiding decision-making in dealing with critical resources
and managing congestion. The queueing theory aims to design efficient systems that ren-
der service competently to customers with minimum delay but do not cost too much to be
sustainable. Several queueing systems representing different service designs, regimes, and
strategies, wherein the common feature is that customers arrive randomly at facilities to get
service, need to investigate.

The queueing problems with customer impatience attribute and service provider strate-
gic vacation interest many researchers in neoteric times due to their broad applicability in
real-time congestion. Server vacation may occur for several reasons, including a low work-
load, maintenance time, the failure to repair, and many more. In recent years, there has been
considerable research on customer impatience attributes in queueing systems with strategic
server vacations/failures. Levy and Yechiali[118] were the ones who introduced the server
vacation policy initially. A thorough, excellent, and exhaustive study of vacation queue-
ing models is found in Doshi’s survey [44], as well as in several publications on vacation
queueing models (cf. [181], [184], [8]).

The strategic vacation policy variants include multi-vacation, single-vacation, working
vacation, Bernoulli vacation, gated vacation, N-policy etc. The server goes on vacation
mode if found no waiting customer for service instead of continuing in an idle state and in-
creasing the service cost. In a single-vacation policy, when the server returns from vacation,
it serves any waiting customers in the system; otherwise, it stays idle. The server immedi-
ately takes another vacation in the multiple vacation policy when it resumes from vacation
and discovers no waiting customer in the system. In a working vacation policy, the server
remotely offers the service at a slower rate instead of terminating it or removing itself from
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the system. In N− policy, the server remains on vacation until there is an accumulation of N

customers. In the present study, we propose the multiple-vacation-based differentiated vaca-
tion queueing systems that are widely used strategies to control access to the service facility
and simulate many energy-saving modes, such as wireless communications, flexible manu-
facturing systems, etc. Isijola et al. [87] studied the variant of multiple vacations wherein
two sorts of vacations, each with a different random duration, are analyzed. Vijayashree
and Janani [191] analyzed the single server queueing system incorporating differentiated-
vacations policy and obtained the transient probability using modified Bessel function and
Laplace transform techniques.

Kempa and Marjasz [102] derived the conditional probability distribution analytically
for the queue size in a limited-buffer single-channel M/G/1/N queueing model with batch
arrivals operating under the multiple vacation policy. They calculated the time to a first
buffer overflow employing Korolyuk’s potential, integral equations, and embedded Markov
chain notions. Ayyappan and Deepa [17] analyzed a non-Markovian batch arrival bulk ser-
vice M[X ]/G(a,b)/1 queueing system featuring multiple vacation policies, service interrup-
tion & setup time with N-policy. In recent years many researchers (cf [66], [182], [16],
[167], [112]) opted for the multiple vacation policy & several types of methodologies to
analyze the performance characteristics and provided several numerical illustrations.

In everyday life, numerous queueing circumstances happen, and a long queue may deter
customers. As a response, customers either elect not to join the line (i.e., balk) or leave after
waiting due to impatience (i.e., renege). The dissatisfaction level of customers increases due
to long waiting for service and deciding to leave the system without getting served at ran-
dom times. Haight [72] first conceptualized customers’ balking attribute in a single server
queueing model. Later, Haight [74] again proposed the reneging attribute of customers for
the M/M/1 queueing model. Many service systems originating in real-world applications
may have intermittently inaccessible servers, impacting a customer’s sojourn duration and
willingness to join. Naor [140] pioneered the research of queueing systems concerned with
customers’ reluctance behavior from an economic perspective. The economic assessment
of customer balking behavior is significant. Indeed, the approach and findings are also more
important (cf.[105], [48], [25]). The decision of a waiting customer to stay or renege is
continually offered till his departure from the system. The waiting time before reneging
depends on the service type [27]. For instance, if a customer is waiting for a mode of trans-
portation and an unexpected event occurs that might cause more delays, the customer may
opt to renege and utilize one of the available alternative service options instead (cf. [52],
[60]). Al-Seedy et al. [9] provided a technique for evaluating transient probabilities of the
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queueing model M/M/c incorporating reneging and balking. Hassin [79] presumed to re-
nege as a crucial component for the realistic modeling of customers’ strategic behavior in
queueing models involving vacations. Due to their adaptability and applicability, these mod-
els with impatient customers have been thoroughly evaluated (cf. [135], [80], [130], [28],
[162]). Customers’ impatience attributes are comprehended as a possible loss of customers,
resulting in a loss of total income owing to their insurmountable influence on a system’s
intended financial situation from a cost perspective.

Kumar [114] is the first researcher who introduced the efficient notion of retention of the
reneging customer. Later, many researchers (cf. [108], [177], [117], [23], [115]) investigated
retention of the reneging customer in the service sector in economic perspective. Bouchen-
touf and Guendouzi [24] studied the MX/M/C queueing model, including muti-working
vacation variants in modeling and computed the steady-state solution and henceforth perfor-
mance measure for economic analysis using the probability generating function (PGF).

To the best of our surveys, no studies have been undertaken on customers’ impatience
attributes: balking and reneging in queueing systems with differentiated-multiple vacations.
The research gap makes a broader platform for our study. Customers may opt to be reluctant
to service when a server goes on vacation and system congestion grows. In comparison to
earlier research, the importance of our analysis is that we concentrate on the impact of
balking and reneging options in systems with differentiated-multiple vacations.

The structure of the remaining chapter is organized in the following order. We describe
the proposed queueing-based congestion model along with its states and notations in Sec-
tion 7.2. Section 7.3 explains the proposed methodology: modified Bessel function and
generating function. In Section 7.4, we discuss the transient analysis employing the Laplace
transformation and derive the state probabilities of the studied model. The system’s perfor-
mance measures are derived in Section 7.5 with the help of transient probabilities computed
in the previous Section. The following Section 7.6 contains different experimental results,
numerical findings, and significant qualitative insights. In the end, we conclude and offer
potential study prospects for the future in Section 7.7.

7.2 Problem Statement and Associated Equations

In this chapter, we have considered a single-server queueing system with the following
assumptions and notations:

• The customers are generated randomly from the population of prospective customers
of size infinite.
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Table 7.1: List of parameters used

Notation Description
λ the arrival rate of the customers
ξ the joining probability
ν the reneging rate
µ the service rate
θ1 the type-1 vacation parameter
θ2 the type-2 vacation parameter
N(t) number of customers in the system at time t
J(t) the state of the service provider at time t
πn, j the probability of n customers in the system and service provider in state j
m(t) expected number of the customers in the system at time t
V (t) variance of the number of the customers in the system at time t

• The inter-time between arrivals of customers for the intended service in the system is
assumed exponentially with mean arrival rate λ .

• Upon arrival, the prospective customer gets the intended service immediately if the
service provider is idle; otherwise, the customer joins the queue and waits for service.

• The customer may be impatient at the arrival epoch if the server is on vacation or busy.
Each arrived customer may decide whether to join or balk the system with probability
ξ or complementary probability 1−ξ , respectively.

• After waiting for some subsequent time interval, the customer may renege from the
system. The random waiting time before reneging is exponentially distributed with a
mean time of 1/ν .

• There is one reliable server to serve the customer waiting in the system with finite
capacity.

• The waiting customer is chosen for service following first-come-first-serve (FCFS)
queue discipline.

• The continuous random variable, time-to-serve a customer, follows exponential dis-
tribution (memoryless distribution) with parameter µ .

• Under the strategic policy, we assume that there are two types of vacations: type-1
vacation and type-2 vacation.

• The type-1 vacation is initiated after a nonzero-length busy period and is independent
of the busy period. The vacation time for type-1 is exponentially distributed with
parameter θ1.
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• The type-2 vacation is initiated when no customer is queued for the service when the
service provider returns from vacation. The duration of type-2 vacation follows an
exponential distribution with parameter θ2.

All events’ arrival/service, balking/reneging, and vacation are independent of each other.
Let (N(t),J(t)) define a two-tuple continuous-time Markov chain (CTMC) with two-

dimensional state space S = {(n, j) : n = 0,1,2, . . .& j = 0,1,2}, where

N(t) ≡ number of customers present in the system at instant t

J(t) ≡ state of the service provider (SP) at instant t

where

J(t) =


0; the SP is in active busy mode at instant t

1; the SP is on a type-1 vacation at instant t

2; the SP is on a type-2 vacation at instant t
For modeling purposes, we define the joint probability distribution as

πn, j(t) = Prob[N(t) = n,J(t) = j];(n, j) ∈ S

The Chapman-Kolmogorov differential-difference equations for the studied model are de-
rived using the assumptions and notations stated above. We start the analysis with the for-
mation of equations for rate of change of joint probabilities πn, j;∀n, j (state probabilites) for
different states by balancing the inflow-outflow rates, i.e., outflow rate with negative sign
and inflow with positive sign along with state probabilities.

dπ1,0(t)
dt

=− (λξ +µ)π1,0(t)+θ1π1,1(t)+θ2π1,2(t)+(µ +ν)π2,0(t) (7.1)

dπn,0(t)
dt

=− (λξ +µ +(n−1)ν)πn,0(t)+λξ πn−1,0(t)+θ1πn,1(t) (7.2)

+θ2πn,2(t)+(µ +nν)πn+1,0(t); n = 2,3,4, . . .

dπ0,1(t)
dt

=− (λ +θ1)π0,1(t)+µπ1,0(t) (7.3)

dπ1,1(t)
dt

=− (λξ +θ1)π1,1(t)+λπ0,1(t) (7.4)

dπn,1(t)
dt

=− (λξ +θ1)πn,1(t)+λξ πn−1,1(t); n = 2,3,4, . . . (7.5)

dπ0,2(t)
dt

=−λπ0,2(t)+θ1π0,1(t) (7.6)

dπ1,2(t)
dt

=− (λξ +θ2)π1,2(t)+λπ0,2(t) (7.7)

dπn,2(t)
dt

=− (λξ +θ2)πn,2(t)+λξ πn−1,2(t); n = 2,3,4, . . . (7.8)
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The system of differential-difference equation (7.1)-(7.8) dependent to the initial conditions

πn, j(0) =

{
1;n = 0, j = 1

0;otherwise
are solved to obtain state probabilities employing mathematical notions of hypergeomet-
ric Laplace transform, modified Bessel’s function, generating function in the forthcoming
section.

7.3 Mathematical Preliminaries

This section introduces some basic principles of modified Bessel functions and generating
functions that the fellow researcher will need to comprehend this chapter better.

7.3.1 Modified Bessel Function

Bessel’s modified equation is given by

t2 dy
dt

+ t
dy
dt

− (t2 + r2)y(t) = 0, r ≥ 0

The solution of the above equation is the first kind of modified Bessel function of order r,
indicated by Br, defined as

Br(t) =
∞

∑
m=0

(t/2)2m+r

l!Γ(m+ r+1)
,r > 0

In particular, Br(t) = B−r(t) for r ≥ 0.

7.3.2 Generating Function

The following is a definition of a generating function G(z, t) in powers of t for a collection
of functions { fm(z)}.

G(z, t) =
∞

∑
m=1

cm fm(z)tm (7.9)

where cm is a parameter coefficient function of m of the set { fm(z)} and independent to z

and t. The symbol { fm(z)} is used to indicate the infinite set { f0(z), f1(z), . . . , fm(z), . . .}.
If fm(z) is also defined for negative, function H(z, t) having a Laurent series expansion is of
the form

H(z, t) =
∞

∑
−∞

cm fm(z)tm (7.10)

If fm(z) is the point probability function of a drv z, then the generating function is called a
probability generating function (cf. [132], [95]).



7.4. Transient Analysis 189

7.4 Transient Analysis

Using pre-stated mathematical notions of the Bessel function and generating function, we
obtain the explicit formula for time-dependent queue-size distribution for the studied queueing-
based congestion system in this section. We employ the following sequel for this purpose.

7.4.1 Laplace Transform

The following is the definition of the Laplace transform L of state probabilities πn, j ∀n, j

and corresponding derivatives

π
∗
n, j(s) = L

(
πn, j(t)

)
=

∞∫
0

e−st
πn, j(t)dt; ∀ n, j & s ∈ C

L
(

dπn, j(t)
dt

)
= sπ

∗
n, j(s)−πn, j(0); ∀ n, j

The system of differential-difference equations from eqn(7.1) to eqn(7.8) is converted as
system of linear equations from eqn(7.11) to eqn(7.18) on applying pre-defined Laplace
transform as follows

sπ
∗
1,0(s)−π1,0(0) =− (λξ +µ)π

∗
1,0(s)+θ1π

∗
1,1(s)+θ2π

∗
1,2(s)+(µ +ν)π

∗
2,0(s) (7.11)

sπ
∗
n,0(s)−πn,0(0) =− (λξ +µ +(n−1)ν)π

∗
n,0(s)+λξ π

∗
n−1,0(s)+θ1π

∗
n,1(s) (7.12)

+θ2π
∗
n,2(s)+(µ +nν)π

∗
n+1,0(s) n = 2,3,4, . . .

sπ
∗
0,1(s)−π0,1(0) =− (λ +θ1)π

∗
0,1(s)+µπ

∗
1,0(s) (7.13)

sπ
∗
1,1(s)−π1,1(0) =− (λξ +θ1)π

∗
1,1(s)+λπ

∗
0,1(s) (7.14)

sπ
∗
n,1(s)−πn,1(0) =− (λξ +θ1)π

∗
n,1(s)+λξ π

∗
n−1,1(s); n = 2,3,4, . . . (7.15)

sπ
∗
0,2(s)−π0,2(0) =−λπ

∗
0,2(s)+θ1π

∗
0,1(s) (7.16)

sπ
∗
1,2(s)−π1,2(0) =− (λξ +θ2)π

∗
1,2(s)+λπ

∗
0,2(s) (7.17)

sπ
∗
n,2(s)−πn,2(0) =− (λξ +θ2)π

∗
n,2(s)+λξ π

∗
n−1,2(s); n = 2,3,4, . . . (7.18)

Analytical solutions, even if approximate, give a straightforward method for decision-makers
to estimate congestion and waiting time more quickly. They also typically lower the calcula-
tion time of traditional models by introducing better initial parameters into their optimization
search space.
On applying initial condition π0,1(0) = 1, from eqn(7.13) we have

sπ
∗
0,1(s) =1− (λ +θ1)π

∗
0,1(s)+µπ

∗
1,0(s)

(s+λ +θ1)π
∗
0,1(s) =1+µπ

∗
1,0(s)

π
∗
0,1(s) =

1
s+λ +θ1

+
µ

s+λ +θ1
π
∗
1,0(s) (7.19)
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Simillarly on applying initial condition π1,1(0) = 0, from eqn(7.14) we get

sπ
∗
1,1(s) =−(λξ +θ1)π

∗
1,1(s)+λπ

∗
0,1(s)

π
∗
1,1(s) =

λ

s+λξ +θ1
π
∗
0,1(s) (7.20)

With initial condition πn,1(0) = 0;n = 2,3,4, . . . , eqn(7.15) gives

sπ
∗
n,1(s) =− (λξ +θ1)π

∗
n,1(s)+λξ π

∗
n−1,1(s); n = 2,3,4, . . .

π
∗
n,1(s) =

λξ

s+λξ +θ1
π
∗
n−1,1(s); n = 2,3,4, . . .

which recursively yields

π
∗
n,1(s) =

(
λξ

s+λξ +θ1

)n−1

π
∗
1,1(s); n = 2,3,4, . . .

Hence, using the eqn(7.20), we get

π
∗
n,1(s) =

(
λ

s+λξ +θ1

)n

ξ
n−1

π
∗
0,1(s); n = 1,2,3, . . . (7.21)

We henceforth solve eqn(7.21) by substituting the value of π∗
0,1(s) from eqn(7.19)

π
∗
n,1(s) =

λ nξ n−1

(s+λξ +θ1)
n+1 +

µ λ nξ n−1

(s+λ +θ1)(s+λξ +θ1)
n+1 π

∗
1,0(s); n = 1,2,3, . . .

(7.22)

Since π0,2(0) = 0, the eqn(7.16) deduce as

(s+λ )π
∗
0,2(s) = θ1π

∗
0,1(s)

π
∗
0,2(s) =

(
θ1

s+λ

)
π
∗
0,1(s) (7.23)

Hence, from eqn(7.19) & eqn(7.23) we get

π
∗
0,2(s) =

θ1

(s+λ )(s+λ +θ1)
+

θ1 µ

(s+λ )(s+λ +θ1)
π
∗
1,0(s) (7.24)

Using initial condition π1,2(0) = 0, the eqn(7.17) reduces to

π
∗
1,2(s) =

(
λ

s+λξ +θ2

)
π
∗
0,2(s) (7.25)
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Simillarly, under the initial condition πn,2(0) = 0, the eqn(7.18) reduces as

π
∗
n,2(s) =

(
λξ

s+λξ +θ2

)
π
∗
n−1,2(s); n = 2,3,4, . . . (7.26)

which recursively yields

π
∗
n,2(s) =

(
λ

s+λξ +θ2

)n

ξ
n−1

π
∗
0,2(s); n = 1,2,3, . . . (7.27)

Using eqn(7.24) and eqn(7.27), we have

π
∗
n,2(s) =

θ1λ nξ n−1

(s+λ )(s+λ +θ1)(s+λξ + θ2)
n

+
θ1 µ λ nξ n−1

(s+λ )(s+λ +θ1)(s+λξ +θ2)
n ×π

∗
1,0(s); n = 0,1,2, . . .

(7.28)

After taking partial fraction and the inverse Laplace transform in eqn(7.22) and eqn(7.28),
we have

πn,1(t) =
λ nξ n−1e−(λξ+θ1)t

n!
+µλ

n
ξ

n−1

{
tne−(λ+θ1)t

n!
⋆

tne−(λξ+θ1)t

n!
⋆π1,0(t)

}
;

n = 1,2,3, . . .

πn,2(t) =θ1λ
n
ξ

n−1

{
e−λ t ⋆ e−(λ+θ1)t ⋆

t(n−1)e−(λξ+θ2)t

(n−1)!

}

+θ1µ λ
n
ξ

n−1

{
e−λ t ⋆ e−(λ+θ1)t ⋆

t(n−1)e−(λξ+θ2)t

(n−1)!
⋆π1,0(t)

}
; n = 0,1,2, . . .

Define the probability generating function (PGF) as

P(z, t) =
∞

∑
n=1

πn,0(t)zn

then,
∂P(z, t)

∂ t
=

∞

∑
n=1

dπn,0

dt
zn

Using eqn(7.1) and eqn(7.2), after some algebra we have

∂P(z, t)
∂ t

− (ν (1− z))
∂P(z, t)

∂ z
=

((
1− z−1)(

ν −µ
)
+λξ

(
z−1

))
P(z, t)

+
∞

∑
n=1

θ1πn,1(t)zn +
∞

∑
n=1

θ2πn,2(t)zn −µπ1,0(t)

(7.29)
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On solving the eqn(7.29), we obtain

P(z, t) = exp[
((

z−1 −1
)(

µ −ν
)
+λξ

(
z−1

))
]t +

∫ t

0
exp
([

(z−1 −1
)

(
µ −ν

)
+λξ

(
z−1

)
] (t −u)

)
×

[
∞

∑
n=1

θ1πn,1(t)zn +
∞

∑
n=1

θ2πn,2(t)zn

−µπ1,0(t)

]
(7.30)

It is well known that if

Ψ = 2
√

ξ λ (µ −ν) & Ω =

√
ξ λ

(µ −ν)
(7.31)

then,

exp
{(

ξ λ z+
µ −ν

z

)
t
}
=

∞

∑
n=−∞

(Ωz)n In (Ψ t) (7.32)

Using the eqn(7.32), we have

P(z, t) =exp
(

λξ z+
µ −ν

z

)
t × exp

(
− (µ −ν)+λξ

)
t

+
∫ t

0
exp
(

λξ z+
µ −ν

z

)
(t −u)× exp

(
− (µ −ν)+λξ

)
(t −u)

∞

∑
n=1

θ1πn,1(t)zndu

+
∫ t

0
exp
(

λξ z+
µ −ν

z

)
(t −u)× exp

(
− (µ −ν)+λξ

)
(t −u)

∞

∑
n=1

θ2πn,2(t)zndu

−
∫ t

0
exp
(

λξ z+
µ −ν

z

)
(t −u)× exp

(
− (µ −ν)+λξ

)
(t −u)µπ1,0(t)du

(7.33)

On equating the cofficient of nth power of z of eqn(7.33) on the both side for n = 0,1,2, . . . ,
we have

πn,0(t) =Ω
nIn(Φt)exp

(
− (µ −ν)+λξ

)
t

+θ1

∫ t

0
exp
(
− (µ −ν)+λξ

)
(t −u)

[
n

∑
k=0

Ω
kIk(.)πn−k,1(t)+

n

∑
k=0

Ω
−kIk(.)πn+k,1(u)

]
du

+θ2

∫ t

0
exp
(
− (µ −ν)+λξ

)
(t −u)

[
n

∑
k=0

Ω
kIk(.)πn−k,2(t)+

n

∑
k=0

Ω
−kIk(.)πn+k,2(u)

]
du

−µ

∫ t

0
exp
(
− (µ −ν)+λξ

)
(t −u)ΩnIn(Φt)π1,0(t)du

(7.34)
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where In = In(α(t − u)). The eqn(7.34) hold for negative integer n = −1,−2,−3, . . . with
the lhs substituted as zero. Using I−n(.) = In(.) for n = 1,2,3, . . .

0 =Ω
−nI−n(Φt)exp

(
− (µ −ν)+λξ

)
t

+θ1

∫ t

0
exp
(
− (µ −ν)+λξ

)
(t −u)

[
∞

∑
k=0

Ω
−(n+k)In+k(.)πn+k,1(t)

]
du

+θ2

∫ t

0
exp
(
− (µ −ν)+λξ

)
(t −u)

[
∞

∑
k=0

Ω
−(n+k)In+k(.)πn+k,2(t)

]
du

−µ

∫ t

0
exp
(
− (µ −ν)+λξ

)
(t −u)Ω−nI−n(Φt)π1,0(t)du

(7.35)

By eqn(7.34) & eqn(7.35), for n = 1,2,3, . . . , we have state probabilities when service
provider is in busy-state at instant t as

πn,0(t) =exp
(
− (µ −ν)+λξ

)
t

[
Ω

nIn(Φ t)−Ω
−nI−n(Φ t)

]

+θ1

∫ t

0
exp
(
− (µ −ν)+λξ

)
(t −u)

×

[
n

∑
k=0

Ω
kIk(.)πn−k,1(t)+

n

∑
k=0

Ω
−kIk(.)πn+k,1(u)−

∞

∑
k=0

Ω
n−kIn+k(.)πn+k,1(t)

]
du

+θ2

∫ t

0
exp
(
− (µ −ν)+λξ

)
(t −u)

×

[
n

∑
k=0

Ω
kIk(.)πn−k,2(t)+

n

∑
k=0

Ω
−kIk(.)πn+k,2(u)−

∞

∑
k=0

Ω
n−kIn+k(.)πn+k,2(t)

]
du

(7.36)
Hence, state probabilities at instant t for n = 0,1,2, . . . when service provider is on type-1
vacation as

πn,1(t) =
λ nξ n−1e−(λξ+θ1)t

n!
+µλ

n
ξ

n−1

{
tne−(λ+θ1)t

n!
⋆

tne−(λξ+θ1)t

n!
⋆π1,0(t)

}
and is on type-2 vacation as

πn,2(t) =θ1λ
n
ξ

n−1

{
e−λ t ⋆ e−(λ+θ1)t ⋆

t(n−1)e−(λξ+θ2)t

(n−1)!

}

+θ1µ λ
n
ξ

n−1

{
e−λ t ⋆ e−(λ+θ1)t ⋆

t(n−1)e−(λξ+θ2)t

(n−1)!
⋆π1,0(t)

}
respectively.
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Figure 7.1: The variation of the state probability πn,0(t) wrt t

 

Figure 7.2: The variation of the state probability πn,1(t) wrt t
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Figure 7.3: The variation of the state probability πn,2(t) wrt t

For the default value of the involved parameters λ = 0.3; µ = 0.5, ν = 0.1, ξ = 0.6,
θ1 = 0.3 and θ2 = 0.4, we plot the variation of state-probabilities πn,0, πn,1, and πn,2 in Fig.
7.1, Fig. 7.2, and Fig. 7.3 respectively wherein the deviation is displayed for n = 5,15,
and 20. Fig. 7.1-7.3 illustrate that the state probabilities become stable, which prompt the
system to tend to steady-state after a long time. Initially, there is much fluctuation in state
probabilities which shows the customers are getting service immediately.

7.5 Performance Measures

The acceptance of any queueing model is best evaluated in terms of its system character-
istics. Evaluating queueing system performance indices is the most essential and promis-
ing method for improving any system. Systematic observation of the state genuinely aids
decision-makers in enhancing the performance and efficiency of the queueing system.

7.5.1 Expectation of N(t)

Estimating the number of customers in the system N(t) at arbitrary instant t is the primary
goal of any queueing modeling. Here, it is expressed as

m(t) = E(N(t))

=
∞

∑
n=1

n(πn,0(t)+πn,1(t)+πn,2(t))

On differentiating both sides wrt t, we have

m′(t) =
∞

∑
n=1

n
(
π
′
n,0(t)+π

′
n,1(t)+π

′
n,2(t)

)
(7.37)
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On substituting the value from eqn(7.1) to eqn(7.8) in eqn(7.37) and using some mathemat-
ical manipulation, we get
m′(t) =− (λξ +µ)π1,0(t)+(µ +ν)π2,0(t)−λξ (π1,1(t)+π1,2(t))+λ (π0,1(t)+π0,2(t))

+
∞

∑
n=2

(µ −λξ −ν)nπn,0(t)+ν

∞

∑
n=2

n2
πn,0(t)+λξ

∞

∑
n=2

nπn−1,0(t)−λξ

∞

∑
n=2

nπn,2(t)

+µ

∞

∑
n=2

nπn+1,0(t)+ν

∞

∑
n=2

n2
νπn+1,0(t)−λξ

∞

∑
n=2

nπn,1(t)+λξ

∞

∑
n=2

nπn−1,1(t)

+λξ

∞

∑
n=0

nπn−1,2(t)

(7.38)

m(t) =− (λξ +µ)
∫ t

0
π1,0(y)dy+(µ +ν)

∫ t

0
π2,0(y)dy−λξ

∫ t

0
(π1,1(y)+π1,2(y))dy

+
∫ t

0
λ (π0,1(y)+π0,2(y))dy+

∞

∑
n=2

∫ t

0
(µ −λξ −ν)nπn,0(y)dy

+ν

∞

∑
n=2

∫ t

0
n2

πn,0(y)dy+λξ

∞

∑
n=2

∫ t

0
nπn−1,0(y)dy−λξ

∞

∑
n=2

∫ t

0
nπn,2(y)dy

+µ

∞

∑
n=2

∫ t

0
nπn+1,0(y)dy+ν

∞

∑
n=2

∫ t

0
n2

νπn+1,0(y)dy−λξ

∞

∑
n=2

∫ t

0
nπn,1(y)dy

+λξ

∞

∑
n=2

∫ t

0
nπn−1,1(y)dy+λξ

∞

∑
n=0

∫ t

0
nπn−1,2(y)dy

(7.39)

7.5.2 The variance of N(t)

The variance V (t) of a number of customers in the system N(t) at an arbitrary instant t is
calculated as:

V (t) = E(N2(t))− (E(N(t)))2 (7.40)

where E(N2(t)) represents the 2nd moment of drv N(t) at instant t. Therefore,

E(N2(t)) =
∞

∑
n=1

n2 (πn,0(t)+πn,1(t)+πn,2(t))

E(N(t)) =
∞

∑
n=1

n(πn,0(t)+πn,1(t)+πn,2(t))

Differentiating both sides of eqn(7.40) with respect to t yields

V ′(t) = E ′(N2(t))− (E ′(N(t)))2 (7.41)
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On substituting the values of computed state probabilities, we get
V ′(t) =− (µ +λξ )π1,0(t)+(µ +ν)π2,0(t)−λξ π1,1(t)+λπ0,1(t)−λξ π1,2(t)+λπ0,2(t)

+(µ −λξ )
∞

∑
n=2

n2
πn,0(t)+ν

∞

∑
n=2

n2(n−1)πn,0(t)+θ2

∞

∑
n=2

n2
πn,2(t)+µ

∞

∑
n=2

n2
πn+1,0(t)

+ν

∞

∑
n=2

n3
πn+1,0(t)−λξ

∞

∑
n=2

n2
πn,1(t)+λξ

∞

∑
n=2

n2
πn−1,1(t)− (λξ +θ2)

∞

∑
n=2

n2
πn,2(t)

+λξ

∞

∑
n=2

n2
πn−1,2(t)−

dm
dt

(7.42)
Hence, we have

V (t) =− (µ +λξ )
∫ t

0
π1,0(y)dy+(µ +ν)

∫ t

0
π2,0(y)dy−λξ

∫ t

0
π1,1(y)dy+λ

∫ t

0
π0,1(y)dy

−λξ

∫ t

0
π1,2(y)dy+λ

∫ t

0
π0,2(y)dy− (µ +λξ )

∞

∑
n=2

∫ t

0
n2

πn,0(y)dy

+ν

∞

∑
n=2

∫ t

0
n2(n−1)πn,0(y)dy+θ2

∞

∑
n=2

∫ t

0
n2

πn,2(y)dy+µ

∞

∑
n=2

∫ t

0
n2

πn+1,0(y)dy+

ν

∞

∑
n=2

∫ t

0
n3

πn+1,0(y)dy−λξ

∞

∑
n=2

∫ t

0
n2

πn,1(y)dy+λξ

∞

∑
n=2

∫ t

0
n2

πn−1,1(y)dy

− (λξ +θ2)
∞

∑
n=2

∫ t

0
n2

πn,2(y)dy+λξ

∞

∑
n=2

n2
∫ t

0
πn−1,2(y)dy−m(t)

(7.43)

7.6 Numerical Results

The numerical results for different experiments conducted on MAPLE software with a com-
puting system of hardware configuration having processor Intel(R) Core(TM) i5-5200U
CPU @ 2.20GHz and RAM 16.0 GB for various involved parameters are summarized in
Fig. 7.4-7.6. The depicted results show the effects of various system parameters on the
system performance measures, namely, expected customers count in the system (m(t)) and
time-dependent variance (V (t)). Initially we set the default value of system parameters as
λ = 0.3; µ = 0.5, ν = 0.1, ξ = 0.6, θ1 = 0.3 and θ2 = 0.4.
Fig. 7.4 depicts the deviation in the mean number of customers in the system wrt t for dif-

ferent values of λ as 0.2, 0.5, and 0.8. The apparent result is that m(t) is increasing wrt λ .
As the time t is large, the plot becomes uniform, revealing the system achieves stability after
a long time, and the system tends to steady state. Initially, a lot of fluctuation of decreasing
and increasing value is observed with customer accumulation before stability.
Fig. 7.5 depicts the deviation of the expected number of customers in the system m(t) wrt
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Figure 7.4: The variation of the mean number of the customers in the system
m(t) wrt t

  

Figure 7.5: The variation of the mean number of the customers in the system
m(t) wrt t

time t for varying the duration of type-1 vacation as θ1 = 0.2, 0.3, and 0.5 which denotes
the rate at which the server joins the system from type-1 vacation mode. Fig. 7.5 indicates
that m(t) increases with time for all values of θ1 with some fluctuation in the initial time.
As the server’s vacation time is longer, the system remains with no service provider in this
period, and arriving customers either join or show balking behavior. This pattern can be
easily inferred from Fig. 7.5 as the customers’ count in the system rises for the lesser value
of parameter θ1.
While Fig. 7.6 illustrates the graph of variance V (t) with time t for varying the duration of
type-1 vacation as θ1 = 0.2, 0.3, and 0.5. Fig. 7.6 reveals that V (t) increase with time for
all values of θ1. As the server’s vacation time decreases, arriving customers’ reluctance be-
havior decreases. This observation can be easily incidental from Fig. 7.6 as the customers’
count variance in the system upsurges for the lesser parameter θ1.

7.7 Conclusion

In this chapter, we have analyzed the queueing-based congestion model incorporating strate-
gic, differentiated-multiple vacations and customer impatience attributes like balking and
reneging. The studied system has infinite differential-difference equations, which are solved
with the help of Laplace transformation, Bessel modified function, and generating function
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Figure 7.6: The variation of the variance of the number of the customers in
the system V (t) wrt t

techniques. The transient analysis of the system gives the explicit formula for transient-state
probabilities of the proposed queueing-based congestion system. The investigation demon-
strates the dynamic congestion behavior in the planning phase. These transient probabilities
are helpful in the evaluation of the characteristic measure of the system. The numerical
illustrations are performed, which also justify the theoretical results. The present model can
be extended for service with general distribution and batch arrivals. The unreliability of the
server can also be included in future work.





Chapter 8

Cost Analysis of a Retrial Queueing System with
an Unreliable Server Incorporating an Orbital Search
Mechanism, Multiple Vacation Policies, and the
Balking Phenomenon

This chapter focuses on studying the orbital search concept in Markovian retrial queueing,
including multiple vacation policies and server breakdown, which is described by an infi-
nite number of inflow-outflow balanced equations. Processes like arrival, service, search,
repair, and vacation are all stochastic in nature. System characteristics are derived using the
probability generating function (PGF) technique, and a theoretical background for the PGF
technique is established.
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8.1 Introduction

Modern businesses, specifically e-commerce and call center service systems, have signifi-
cantly benefited from advances in technology like artificial intelligence (AI), machine learn-
ing (ML), neural networks, etc. in terms of helping servers reduce their idle time and in-
crease their utility via searching for entities that appeared before the system but not in the
present. These types of service systems are usually termed "retrial queueing systems" in the
queueing theoretic approach. The term "entity" is basically for service seekers in the system,
which can be a call, a customer, a machine, etc. A retrial queueing system allows customers
who find all servers occupied to join a virtual queue called retrial orbits and retry for service
after a random length called retrial time. A retrial queue is comprised of an infinite capac-
ity orbit and a service facility with finite servers. There are many applications for retrial
queueing systems, such as telephone switching systems, computer and telecommunication
networks [224], which have triggered scientific attention and reinvigorated its study in the
last two decades. An analysis of queueing economics in retrial queues was first carried out
by Wang and Zhang [194]. An overview of retrial queue theory in real-world call centers
and cellular networks systems may be found in [153] by Tuan. References [14], [106], [57],
[42], [2] provide a comprehensive survey of retrial queueing systems.

In most studies on retrial queues, it is assumed that servers become idle after service
until the arrival of the next primary or retrial customer. This assumption is a hindrance in
achieving maximum utility of the server’s idle time. Orbital search is a progressive idea
introduced by Neuts [145], in which the server search in the orbit for customers during its
idle time. A service is followed by another if a search is done; otherwise, it is followed
by an idle interval. Therefore, it becomes vital to consider orbital search in retrial queues
for maximizing the server’s utilization of idle time. Until recently, few research works
have been conducted on retrial queues with orbital search (c.f. [15], [39], [46], [64], [62]).
Rajadurai et al. [155] implemented the orbital search policy in a Bernoulli vacation schedule
M[X ]/G/1 feedback retrial G-queue with impatient customers.

Besides considering the orbital search policy in our retrial queue model, we will also
consider multiple vacation policies and server breakdown. As a result of the multiple vaca-
tion policy, when the server has no customer to serve within the system and no customer to
find via orbit search, it takes a vacation after a random time period. After returning from
this vacation, he keeps on taking vacations until he finds atleast one customer in the orbit.
Levy and Yechiali [118] came up with the idea of the vacation queueing paradigm. Vari-
ous studies on retrial with vacation has expanded and deepened including two-phase service
[192], feedback [155], [18], server breakdown [156], [188], and second optional service
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with balking [128]. Shin[173] developed a unified model of the level dependent quasi-birth-
and-death (LDQBD) process used in Markovian multi-server queues with customers retrials
and server’s vacations.

Server breakdown is considered as a most common cause of service disruption. It is
inevitable that service disruptions will occur in many real-world situations. Studies com-
monly assume that servers in service stations are always operational and that stations don’t
malfunction. These presumptions, however, are essentially irrational. A breakdown of a
service station in real life is common and needs to be fixed on a frequent basis. In this chap-
ter, the server is subject to breakdown while providing service to the customer for a short
time interval. When a server malfunctions, it is sent for repair, which results in a service
interruption for customers arriving during that time. After the server breakdown, a customer
who had just been served waits for the remaining service to be delivered. Choudhury et al.
[32] examined a retrial queueing system with two service failure and repair stages. Ke et
al. [100] stressed on a feedback retrial queue with customer balking and unreliable servers.
Krishna et al. [110] pointed out a retrial queue with server subject to two types of break-
downs and repairs. Interested readers can see the retrial queue model with server breakdown
in [65], [164], [131].

In our model, the server makes strategic searching decisions in the orbit in a manner sim-
ilar to the aforementioned work on orbital search retrial queueing models. To the best of our
knowledge, this is the first effort to study how the realistic consideration of orbital search,
vacation, and server breakdown impacts the system’s performance and total cost function.
This study also looks at the effects of the model’s features from three different aspects: (i)
We have stressed the need to obtain the probabilities of the server’s state analytically using
the probability generating functions technique. (ii) In this context, analyzing the system
characteristics is highly complex due to their non-linear nature. Therefore, numerical ex-
periments are carried out to point out the impact of system parameters on its performance
measures. We evaluate and validate our proposed model using extensive numerical results.
(iii) Our key findings are in obtaining optimality of the total cost of the model with regard
to critical parameters using newly developed meta-heuristic optimization techniques.

The rest of our chapter proceeds as follows: In the coming Section 8.2, we address the
description of the proposed model in more detail. In Section 8.3, we derive the server’s state
probabilities and various system characteristics analytically by employing the probability
generating functions technique. Nextly, the cost function is mathematically formulated in
Section 8.4. In Section 8.5, we elaborated on the social group optimization algorithm and its
pseudocode for implementation purposes. Numerical simulations are presented in Section
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8.6 to describe the dynamics of the system, including its performance measures and opti-
mality of the total cost. Finally, we conclude with key findings and propose future plans for
the extension of this model in Section 8.7.

8.2 Model Description

We consider a system that consists of an unreliable server serving in a retrial queueing sys-
tem with infinite capacity, an orbital search mechanism, multiple vacation policies, and the
balking phenomenon of arriving customers. This model considers the common occurrences
of a retrial service system in view of its applicability. For the sake of completeness, the main
stochastic processes of the model are described below:

Arrival Processes

The inputs or entities arriving in the system are termed “customers” in this chapter. The
arrival of customers in the system occurs in a Poisson fashion with the parameter λ . Arrivals
initially join the system as “primary customers”, but if the server is busy, they tend to join the
orbit as “retrial customers”. These retrial customers keep on reattempting to get the service
in random time periods referred to as “retrial times”, following an exponential distribution
with parameter Γ.

The Service Process

The outgoing of customers from the system can be in any of the following scenarios: after
service completion, balk out of the system, or joining orbit to give a chance for reattempts.
If the service is completed, the customer exits the system after receiving it. The service
rendered by the server in a given time period is called the “service time”, following an
exponential distribution with parameter µ . The customers chosen for service are based on
first-come-first-serve (FCFS) queue discipline.

Repair and Breakdown Processes

An unreliable server, according to this model, is prone to failures due to a variety of causes,
such as hardware or software faults in the case of a machine, an emergency or health issues in
the case of a human, or natural calamities that disrupt system functioning. The breakdown
process of the server is random and occurs over a time period following an exponential
distribution with parameter υ . The breakdown causes the system to lose money, so repairs
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are started right away to cut down on the loss. The time to repair also follows an exponential
distribution with parameter ϑ .

Orbital Search Process

Once the server gets rid of servicing the customer present in the system, it either starts
to search for customers from orbit with probability p or remains idle in the system with
probability q(= 1− p). The search for customers starts at the head of the orbit. Meanwhile,
in the search operation, if there is a request from either the primary or retrial customer, it
is taken into consideration and the search stops. Inter-search times follow an exponential
distribution with θ as a parameter.

Vacation Process

When the server finds system empty and also found no request from orbit via orbital search,
it takes a vacation with rate δ and returns back to the system as soon as he founds a customer
in system or vacation time is over. The time duration of server’s vacation is exponentially
distributed with rate ς . After return from vacation, if server found no customer in the system
and orbit, it continues to take vacation until he founds atleast one customer in the system.

Balking Rules

Upon arriving in the system if customer finds server busy he decides to whether join with
probabilities q0, q1, and q2 when server is in busy, vacation, and breakdown states, respec-
tively. Otherwise, customers shows impatience attribute and decides to balk away from the
system.

The Indepedence

All of the above stochastic processes are mutually independent of each other.
In the model formulation, the necessary parameters used throughout this chapter are as given
in Table 8.1.

8.2.1 Practical Justification of the Model

In banks or multinational companies (MNCs), there are a finite number of servicemen who
work as customer care agents by providing them information about the company’s policies
or registering a complaint if the customer is unsatisfied with its services. Customers are
present virtually when they contact customer care personnel over the phone. This will arise
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Table 8.1: List of parameters used

Variable Description
λ arrival rate of primary customer
Γ retrial rate customers waiting in queue for service
µ the server’s service rate
θ search rate of the server in the orbit
δ Rate of return of the server to the vacation state from the busy state
ς Rate of returning the server from vacation to its normal busy state
υ breakdown rate of the server
ϑ repair rate for the server
q0 joining probability of customers when the server is in busy state
q1 joining probability of customers when the server is in vacation state
q2 joining probability of customers when the server is in breakdown state
Pn, j The system’s stationary probability while in state (n, j)
Π j(z) probability generating function of Pn, j

in two cases: either the call gets connected or the caller remains in waiting due to the
occupancy of the service provider with other customers. These waiting customers keep
on retrying for calls to get connected or may leave the system if waiting is beyond their
threshold limit. Customer care agents, on the other hand, may search for customers in
the virtual queue or orbit using their waiting call history, or they may remain idle in the
system. Meanwhile, if there are any technical faults or network issues, referred to as "server
breakdowns" in queueing terminology, the service may be suspended, repaired, and then
resume taking calls. Due to their limited capacity to work, customer service representatives
may repeatedly take a random time period off in the form of vacation and return after the
vacation period is over. The proposed model incorporates all the scenarios described in the
above example.

8.3 Steady-State Analysis

The above-described queueing system is modelled as a quasi-birth-and-death (QBD) process
with system states {(N,J);N ≥ 0,J = 1,3,4 & N ≥ 1,J = 0,2}, where N represents the num-
ber of customers in the system and J represents the state of the server. The joint probability
distribution function Pn, j represents the long-run fraction of time that the system remains in
state (N = n,J = j). Let {Pn,0,n ≥ 1;Pn,1,n ≥ 0;Pn,2,n ≥ 1;Pn,3,n ≥ 0;Pn,4,n ≥ 0;} be the
stationary distribution of the Markov chain {N(t),J(t), t ≥ 0}. Let Π j(z), j = 0,1,2,3,4 be
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the partial generating functions which are given as follows

Π0(z) =
∞

∑
n=1

znPn,0; Π1(z) =
∞

∑
n=0

znPn,1; Π2(z) =
∞

∑
n=1

znPn,2

Π3(z) =
∞

∑
n=0

znPn,3; Π4(z) =
∞

∑
n=0

znPn,4, | z |≤ 1

We have the following preliminary result.

Theorem 8.3.1. In the steady-state for the M/M/1 constant retrial queue with multiple

vacations, server breakdown and orbital search for the given arrival rates (λ ,λ0,λ ,λ1,λ2),

the probabilities that the server is idle (Pi), busy (Pb), in search orbit (Ps), on vacation (Pv),

and under repair (Pr) respectively, are as follows:

Pi = Π0(1) =
qµ

(λ +Γ)
(B−1)P0,1;

Pb = Π1(1) = BP0,1;

Ps = Π2(1) =
pµ

(λ +Γ+θ)
(B−1)P0,1;

Pr = Π3(1) =
υ

ϑ
BP0,1;

Pv = Π4(1) =
δ

ς
BP0,1;

where,

B =
qµΓ(λ +Γ+θ)+ pµ(Γ+θ)(λ +Γ)

−λ0(λ +Γ)(λ +Γ+θ)ϑς +(Γ+θ)pµ(λ +Γ)ϑς

−υλ2(λ +Γ)(λ +Γ+θ)ς −δλ1ϑ(λ +Γ)(λ +Γ+θ)

P0,1 =
(λ +Γ)(λ +Γ+θ)ϑς

qµ(B−1)(λ +Γ+θ)ϑς +B(λ +Γ)(λ +Γ+θ)ϑς

+ pµ(λ +Γ)ϑς(B−1)+υB(λ +Γ)

Proof. We have the following equations using the birth and death process and relating the
system’s state to a steady state.

(λ1 + ς)Pn,4 = λ1Pn−1,4 +δPn,1; n ≥ 0 (8.1)

(λ +Γ)Pn,0 = qµPn,1; n ≥ 1 (8.2)

(λ0 +µ +υ +δ )Pn,1 = λ0Pn−1,1 +λPn,0 +λPn,2 +ΓPn+1,0 +(Γ+θ)Pn+1,2

+ϑPn,3; n ≥ 1 (8.3)

(λ0 +υ +δ )P0,1 = ΓP1,0 +(Γ+θ)P1,2 +ϑP0,3 + ςP0,4; (8.4)

(λ +Γ+θ)Pn,2 = pµ Pn,1; n ≥ 1 (8.5)

(λ2 +ϑ)Pn,3 = λ2Pn−1,3 +υPn,1; n ≥ 0 (8.6)

where, P−1, j = 0, j = 1,3,4.
Multiplying Eqns. 8.1 and 8.6 by zn and summing it from n = 0 to n = ∞ and then using
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Π1(z), Π3(z), and Π4(z) defined above, we have

(λ1(1− z)+ ς)Π4(z) = δΠ1(z) (8.7)

(λ2(1− z)+ϑ)Π3(z) = υΠ1(z) (8.8)

Multiplying Eqns. 8.2 and 8.5 by zn and summing it from n = 1 to n = ∞ and then using
Π0(z), Π1(z), and Π2(z) defined above, we have

(λ +Γ)Π0(z) = qµ(Π1(z)−P0,1) (8.9)

(λ +Γ+θ)Π2(z) = pµ(Π1(z)−P0,1) (8.10)

Similarly, multiplying Eqn. 8.3 by zn and summing it from n = 0 to n = ∞, we have

(λ0(1− z)+µ +υ +δ )Π1(z) =µP0,1 +(
Γ

z
+λ )Π0(z)+(

Γ+θ

z
+λ )Π2(z)

+ϑΠ3(z)+ ςΠ4(z) (8.11)

Solving Eqns. 8.7-8.11, and after some algebraic manipulations we obtain

Π1(z) =

[
µ − (Γ

z +λ ) qµ

λ+Γ
− pµ

λ+Γ+θ
(Γ+θ

z +λ )
]
P0,1

λ0(1− z)+µ +υ +δ − (Γ

z +λ ) qµ

λ+Γ
− (Γ+θ

z +λ ) pµ

λ+Γ+θ
− ϑυ

λ2(1−z)+ϑ
− ςδ

λ1(1−z)+ς

(8.12)
Substituting z = 1 in Eqn.8.12 and using theory of calculus for indeterminate forms, we
obatin

Π1(1) = BP0,1 (8.13)

where

B =
qµΓ(λ +Γ+θ)+ pµ(Γ+θ)(λ +Γ)

(λ +Γ)(λ +Γ+θ)[−λ0ϑς −υλ2ς −δλ1ϑ ]

+µϑς [Γq(λ +Γ+θ)+(Γ+θ)p(λ +Γ)]

(8.14)

Solving Eqns. 8.7-8.10 by substituting z = 1 and Eqn. 8.13, we obtain the following:

Π0(1) =
qµ(B−1)

λ +Γ
P0,1 (8.15)

Π2(1) =
pµ(B−1)
λ +Γ+θ

P0,1 (8.16)

Π3(1) =
υB
ϑ

P0,1 (8.17)

Π4(1) =
δB
ς

P0,1 (8.18)

To solve P0,1 explicitly, we use the normalizing condition of probability as
4

∑
j=0

Π j(1) = 1

which gives

P0,1 =
(λ +Γ)(λ +Γ+θ)ϑς

(B−1)µϑς [q(λ +Γ+θ)+ p(λ +Γ)]+(λ +Γ+θ)(λ +Γ)B[ϑς +υς +δϑ ]

Lemma 8.3.2. The system is stable if and only if B > 1, where B is given by Eqn.8.14.
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Proof. The non-negativity axiom of probability gives that Eqns. 8.15-8.18 are valid for
B > 1.
On the other hand, the inequality B > 1 is also necessary for the system to be stable, which
can be guaranteed by

P0,1 =
(λ +Γ)(λ +Γ+θ)ϑς

(B−1)µϑς [q(λ +Γ+θ)+ p(λ +Γ)]+(λ +Γ+θ)(λ +Γ)B[ϑς +υς +δϑ ]
> 0

Thus, B > 1 is a necessary and sufficient condition for the system to be stable.

After that, we want to use the server’s different system states to figure out orbit size
distributions.

Theorem 8.3.3. The mean orbit sizes when the server is in system states such as busy, idle, in

search period, under repair, and on vacation for the Markovian retrial queue with multiple

vacations, an unreliable server, customer balking, and an orbital search mechanism are

respectively given by

N1 =CP0,1

N0 =
qµ

λ +Γ
N1

N2 =
pµ

λ +Γ+θ
N1

N3 =
λ2υBP0,1 +υϑN1

ϑ 2

N4 =
λ1δBP0,1 +δςN1

ς2

where,

C =

(
Γqµ

λ+Γ
+ (Γ+θ)pµ

λ+Γ+θ

)(
λ0 +

λ2υ

ϑ
(1+ λ2

ϑ
)+ λ1δ

ς
(1+ λ1

ς
)

)
(

λ0 − Γqµ

λ+Γ
− (Γ+θ)pµ

λ+Γ+θ
+ λ2υ

ϑ
+ λ1δ

ς

)2

Proof. By differentiating Eqns. 8.7-8.11 with respect to z, denoted by N j = Π′
j(1), j =

0,1,2,3,4 and using 8.12, after some algebraic calculations, we have the following results.

8.3.1 Mean Waiting Time

Let W be the waiting time of a customer in system given by

W =Wo +Ws

where, Wo and Ws denote waiting times in orbit and in service completion, respectively. We
know that, the time required for service completion Ws =

1
µ

, we must obtain W0.
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Theorem 8.3.4. For the Markovian retrial queue with multiple vacations, an unreliable

server, customer balking, and an orbital search mechanism, the mean sojourn time of the

customer in orbit is given by

Wo =
N

λret
(8.19)

where, N = N0 +N1 +N2 +N3 +N4 and λret = λ0Π1(1)+λ1Π3(1)+λ2Π4(1)

Proof. In idle and vacation states, the server immediately starts the service upon customer
arrival. So the wait in orbit is required when the server is unavailable upon its arrival ac-
cording to the PASTA property, which can be possible in three cases as follows:

• The server is in busy state: Π1(1)

• The server is in breakdown state: Π3(1)

• The server is in vacation state: Π4(1)

Thus, the total arrival rate in the retrial orbit is λret = λ0Π1(1)+λ1Π3(1)+λ2Π4(1).
In addition, from Theorem 8.3.3, the mean number of customers in the orbit is N = N0 +

N1 +N2 +N3 +N4.
From the Little’s formula, we can obtain 8.19.

8.4 Cost Analysis

Economic agglomeration effects of expenses incurred in the system have promoted progress
in the study of cost minimization problems using an effective optimization technique. In
this regard, state-of-the-art metaheuristic optimization techniques have greatly accelerated
the development of the cost minimization and profit maximization problems of complex
queueing systems.
Now, we consider the proposed total cost optimization problem which can be mathemati-
cally formulated as:

TC∗ = minimize
µ∗,θ∗

TC(µ,θ)

where, the total cost function TC(µ,θ) is given by

TC(µ,θ) =ChN +CvPv +CiPi +CbPb +CsPs +CrPr +CwW +Cmµ +Cθ θ (8.20)

The costing attributable to different aspects of the system are as follows:
Ch ≡ Cost for sustaining per customer in the retrial space during unit time.
Cv ≡ Cost/unit time of the server while in vacation period.
Ci ≡ The cost per unit time when the server is sitting idle in the system.
Cb ≡ Cost for the server in per unit time in the normal busy mode.
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Cs ≡ Cost of the server in the orbital search state per unit of time.
Cr ≡ The cost spent per customer per unit time when the server is in breakdown state.
Cw ≡ The cost agreed upon per unit time spent by the customer waiting for service.
Cm ≡ Cost/unit time of rendering service by the server with rate µ while in busy state.
Cθ ≡ Cost/unit time of the server while searching for customers in the orbit with rate θ .
The terms N, Pv, Pi, Pb, Ps, Pr, and W in Eq. 8.20 are highly non-linear in decision parameters
(µ,θ) and multiplied by different cost rates which makes TC(µ,θ) tedious to minimize
analytically. Hence, it is challenging to execute analytical methods for such optimization
problems, especially regarding convexity, as well as to determine the optimal values. The
goal of the system administrators is to decide how to trade off between cost minimization
and performance maximization.

The overall objective of this study is to implement an efficient and state-of-the-art meta-
heuristic optimization technique to the formulated total cost minimization problem and con-
sequently obtain the optimal cost TC∗ of the system along with optimal values of service
rate µ∗ and searching rate θ ∗. In this regard, we opt for the metaheuristic optimization tech-
nique (social group optimization algorithm) discussed in the coming Section 8.5 to evaluate
the optimality.

8.5 Social Group Optimization technique

Inspiration

The inspiration for the population-based Social group optimization(SGO) algorithm devel-
oped by Satapathy and Naik [163] in 2016, comes from the concept of the social behavior of
human beings toward solving complex tasks in life. There are a number of behavioral traits
that humans possess to solve their problems in life. Individuals sometimes find these prob-
lems too complex to solve alone and form groups to solve them with the influence of one
another’s traits. On the basis of the idea that solving a given complex problem in a group
comes out to be more effective and efficient than individuals in exploiting and exploring
their different traits. Also, it has been observed that living entities imitate or follow their
surroundings and so human beings as well mimic the knowledge sharing concepts in solving
any task by observing others who are better than them. A person’s fitness value corresponds
to their ability to solve a problem in SGO. Consequently, the person with the best fitness
value enhances the knowledge of the entire group.
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Mathematical Formulation of SGO

Let Pi, i = 1,2,3, ...,N be the persons of a social group defined by Pi = (pi1, pi2, ..., piD),
where D is the number of variables as a person’s behavioral traits which determines the
dimensions of a person and fi, i = 1,2, ...,N are their corresponding fitness values. The
knowledge of each individual in a group is mapped by their fitness. SGO is divided into
mainly two phases: improving and acquiring phase ([139], [138]).
Improving phase: In this phase, the knowledge level of each person in the group is im-
proved with the impact of the best person in the group, who is one with the highest level of
knowledge and capacity to solve the problem. The knowledge updation of every individual
in the group is according to the relation:

Pnewi, j = ζ ∗Poldi, j + r ∗ (gbest j −Poldi, j) (8.21)

where, Pnewi, j and Poldi, j are new and old knowledge levels, respectively, ζ represents the
self-introspection parameter lies between 0 and 1, r is a random numeral [0,1], and gbest

is knowledge level of best person in group defined as gbest j = max{ fi, i = 1,2, ...,N} at jth
iteration for solving maximization problems.
Acquiring phase: In the acquiring phase, each person increases his/her knowledge with the
mutual interaction among other people in the group by randomly select one person from the
group Pr based on i ̸= r, and the best person with knowledge level gbest in the group at that
point in time. Once the fitness value becomes fi > fr, the knowledge updating procedure is
executed as:

Pnewi, j = Poldi, j + r1 ∗ (Pi, j −Pr, j)+ r2 ∗ (gbest j −Pi, j) (8.22)

otherwise,

Pnewi, j = Poldi, j + r1 ∗ (Pr, j −Pi, j)+ r2 ∗ (gbest j −Pi, j) (8.23)

where, r1 and r2 are two independent random numbers in the range [0,1], Pr, j is the knowl-
edge value of the randomly chosen individual ([94], [123]).

8.6 Computational Analysis

In order to evaluate the influence of each parameter on the system characteristics obtained in
Sections 8.3 and 8.4, we performed a numerical study. As a baseline, we used the following
parameter values given in Table 8.2. The purpose of this numerical section is twofold. First,
it is to demonstrate the long-run performance of the system analyzed in Section 8.3. Second,
it is being shown how the optimization techniques employed in obtaining the optimal values
of critical parameters and minimum total cost.
Fig. 8.1 corresponds to variations in probabilities of the server’s state with regard to system
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Algorithm 8 Pseudo code for SGO
1: Parameter Initialization: population size N, search dimension D, self-introspection

factor c, the objective function f , and total iteration tmax.
2: Randomly initialize the population and evaluate fitness value of each individual.
3: while iteration < tmax or convergence criterion do
4: Find the best person with fitness value gbest and perform the improving phase.
5: for i=1:N do
6: for j=1:D do
7: Update Pnewi j according to Eqn. 8.21

end for
end for

8: If Pnew provides better fitness than Pold, accept Pnew.
9: Initiate the acquiring phase to update knowledge level based on attained gbest.

10: for i=1:N do
11: Randomly select one person Pr, i ̸= r
12: if fi is better than fr then
13: for j=1:D do
14: update Pnewi j according to Eqn. 8.22

end for
15: else
16: for j=1:D do
17: update Pnewi j according to Eqn. 8.23

end for
end if

18: If Pnew provides better fitness than Pold, accept Pnew.
end for

end while
19: itration= itration+1
20: Output: Return the best optimum solution.
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Table 8.2: The data set of parameters involved in the outlined model, along
with their sources

System Parameters Numeric value Source(s)

λ 1 [61], [230]

Γ 7.5 [64]

µ 5.25 Assumed

θ 0.75 Assumed

δ 0.1 [61]

ς 0.8 [201]

υ 1.3 Assumed

ϑ 1.5 Assumed

p 0.55 [64], [63]

q 0.45 [64], [63]

q0 0.9 Assumed

q1 0.8 Assumed

q2 0.7 Assumed

Ch 250 [170]

Cv 30 Assumed

Ci 300 Assumed

Cb 150 [169]

Cs 200 Assumed

Cr 100 Assumed

Cθ 4.5 Assumed

Cm 60 [90]

Cw 250 Assumed
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Figure 8.1: Bar graphs for distribution of the server’s state probabilities wrt
system parameters. The default set of paramters values are given
in Table 8.2.

parameters. The orbital search quest and increased retrials are designed to keep the server
busy in either serving (Pb) or searching (Ps). On the contrary, the idleness (Pi) of the server
is reduced. These observations can be verified from Fig. 8.1 (ii, iii). The improvement in
repair and vacation rates of the server is additive in terms of server utilization, and busy state
probabilities tend to increase with it, while the proportional change in search probabilities
is negative(Fig. 8.1(iv, v)). The vacation rate matches very well with the server being in
vacation state (Pv), as illustrated in Fig. 8.1(vi).

Fig. 8.2 exhibits graphs for orbit size (N) versus service rate (µ) with regard to various
system parameters. The sudden fluctuation in orbital size for arrivals is the impact of retrial
and the orbit search mechanism when λ is quite small. Eventually, as the arrival of primary
customers arises, the effect is suppressed and N behaves linearly in decreasing proportion,
as can be seen in Fig. 8.2(i). Customers retry for service from orbit in retrials and are
treated as if they are waiting if the server is already busy. In such scenarios, the count of
orbital sizes reduces when retrials are more frequent (Fig. 8.2(ii)). Repairing servers faster
and quick returns from vacation are regarded as a benefit to system efficiency, and thus N

decreases as the repair rate ϑ and vacation return rate to busy state ς increases (Fig. 8.2(iii,
v)). When the server is unavailable, either in a breakdown state or during a vacation period,
the orbit size graph exhibits unusual behavior. Normally, the orbit size increases, but in this
case, as the server breakdown rate (υ) increases further, the orbit size decreases until a limit
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Figure 8.2: Line graphs of the mean orbit size (N) and the service rate of the
server (µ) for different system parameters. The default set of
paramters values are given in Table 8.2.

is reached, at which point the behaviour reverses. The reason behind this is that as the server
becomes unavailable due to the balking effect, there is a tendency for customers not to join
the system when the server is in a breakdown state or during a vacation period. This balking
factor prevents further increases in υ , causing N to naturally increase (Fig. 8.2 (iv, vi)).
The sojourn time W is in line with orbit size N and inverses with total arrival rate λret . So,

the dominance of N or λret determines variations in the graphs of W versus µ , as shown in
Fig. 8.3, for different parameters.

Fig. 8.4(i, ii) resemble convex graphs, indicating that for the parameters µ and θ , it is
possible to obtain a convex surface graph with a closed contour, as shown in Fig. 8.4(iii,
iv). According to Fig. 8.4(i,ii), the total cost TC decreases as the server’s service rate and
searching rate improve until a point in both cases and then increases. This trait illustrates that
an increase in service and search rates makes the system less congested and more profitable
in terms of the number of services rendered, but a further increase in µ and θ makes it more
expensive and less profitable from an economic perspective. Thus, to overcome this issue,
there is a trade-off between cost minimization and server utilization maximization through
simultaneous variation in mu and theta for the TC function. Fig. 8.4 (iii, iv) gives the results.
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Figure 8.3: Bar graphs of the mean waiting time in orbit (Wo) and the
service rate of the server (µ) for different system parameters.
The default set of paramters values are given in Table 8.2.

Figure 8.4: Plot of total cost (TC) wrt system’s decision parameters (i) µ ,
(ii) θ as well their cumulative effect in (iii) surface plot and (iv)
contour plot of TC for parameters values set.



8.7. Conclusion 219

8.6.1 Sensitivity Analysis

The SGO algorithm is coded in MATLAB R2020b, License Number 925317, and is run
on a computer with the following specifications: Intel(R) Xeon(R) CPU E3-1231 v3 @
3.40 GHz, 3401 MHz, with 4 Core(s), 8 Logical Processor(s), and 32 GB RAM. It takes
around 3 seconds to reach the optimized solution after 30 iterations. The convergence result
is demonstrated in Fig. 8.5. We did a sensitivity analysis on the parameter values to find
out how each parameter affected the optimal solution. Fig. 8.4 shows that the function
is unimodal over the set of parameters given in Table 8.2. The optimal service rate and
searching rate are µ∗ = 6.794699 and θ ∗ = 4.814927, respectively, and the minimal total
cost rate is TC∗ = 1070.607677.

Tables 8.3 and 8.4 show how the total cost TC∗ and the critical parameters µ∗ and θ ∗ change
depending on the system parameters and the cost elements in the total cost function. Here,
variations in parameter values are considered by altering them one at a time to test the effects
on optimization results. The optimal parameters (µ∗,θ ∗) that lead to the lowest system cost
(TC∗) are summed up for different parameter sets (Table 8.3) and cost sets (Table 8.4).
The computational times reported in Tables 8.3 and 8.4 are for an average of 20 runs each
for different scenarios by perturbing different parameters in the model. Fig. 8.6 shows
the convergence of the objective function TC during the minimization efforts of the SGO
algorithm. The figure shows that after 10 iterations, convergence to the optimal solution
(µ∗,θ ∗,TC∗) is achieved.

8.7 Conclusion

We addressed the orbital search mechanism in the retrial queue problem in this chapter, in-
corporating multiple vacation policy and server breakdown. The consideration of all such
phenomena in the outlined model makes it more realistic and applicable. We emphasize
in analytically determining the probabilities of the server’s state using the probability gen-
erating functions technique, so that it can be deduced that the server is in a specific state
and in what proportion, and how parameters play a critical role in the change of its propor-
tion. We further use these probabilities to find several system characteristics and the total
cost function formulation. These performance measures of the system are enriched with
numerical experiments against several parameters. We have employed a newly developed
meta-heuristic optimization technique, SGO algorithm, to obtain the optimality of the total
cost function and critical parameters of the system. The evaluation of the optimum system
cost and optimal design parameters allows decision makers to solve their techno-economic
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Figure 8.6: Convergence of iteration of SGO algorithm



222 Chapter 8. Cost Analysis of a retrial Queueing System...
Ta

bl
e

8.
3:

O
pt

im
al

ex
pe

ct
ed

to
ta

lc
os

to
ft

he
sy

st
em

T
C
∗

fo
rd

iff
er

en
tp

ar
am

et
er

s
vi

a
SG

O
al

go
ri

th
m

.

(λ
,Γ

,ς
,ϑ

,δ
,υ

,p
,q

0,
q 1

,q
2)

µ
∗

θ
∗

T
C
∗

M
ea

n
T

C
i

T
C
∗

M
ax

T
C

i
T

C
∗

Ti
m

e
(∗

10
−

10
+

1)
(∗

10
−

10
+

1)
el

ap
se

d

0.
8,

7.
5,

0.
8,

1.
5,

0.
1,

1.
3,

0.
55

,0
.9

,0
.8

,0
.7

6.
05

45
98

3.
60

82
07

97
7.

94
74

64
4.

86
23

63
2.

82
64

74
0.

12
65

03

1.
0,

7.
5,

0.
8,

1.
5,

0.
1,

1.
3,

0.
55

,0
.9

,0
.8

,0
.7

6.
79

46
99

4.
81

49
27

10
70

.6
07

67
7

8.
38

46
75

6.
87

64
43

0.
11

78
32

1.
2,

7.
5,

0.
8,

1.
5,

0.
1,

1.
3,

0.
55

,0
.9

,0
.8

,0
.7

7.
54

10
15

6.
00

40
55

11
63

.1
85

86
7

3.
86

37
32

5.
89

65
33

0.
11

19
23

2

1,
6.

5,
0.

8,
1.

5,
0.

1,
1.

3,
0.

55
,0

.9
,0

.8
,0

.7
6.

83
66

4
5.

90
36

97
10

85
.6

79
12

2
1.

98
37

53
4.

82
61

83
0.

14
55

26
7

1,
8.

5,
0.

8,
1.

5,
0.

1,
1.

3,
0.

55
,0

.9
,0

.8
,0

.7
6.

76
18

81
3.

74
56

61
10

57
.8

59
04

7
3.

29
73

21
5.

87
26

42
0.

12
52

07

1,
7.

5,
0.

6,
1.

5,
0.

1,
1.

3,
0.

55
,0

.9
,0

.8
,0

.7
6.

30
05

03
3.

16
56

71
10

06
.4

87
58

8
7.

98
32

76
5.

86
42

24
0.

10
68

93

1,
7.

5,
1.

0,
1.

5,
0.

1,
1.

3,
0.

55
,0

.9
,0

.8
,0

.7
6.

91
51

05
5.

25
71

91
10

88
.7

88
35

9
6.

36
82

24
2.

62
43

24
0.

12
83

73

1,
7.

5,
0.

8,
1.

0,
0.

1,
1.

3,
0.

55
,0

.9
,0

.8
,0

.7
6.

87
56

86
2.

93
17

65
11

12
.4

17
72

4
5.

87
62

42
1.

98
36

52
0.

10
87

06

1,
7.

5,
0.

8,
2.

0,
0.

1,
1.

3,
0.

55
,0

.9
,0

.8
,0

.7
6.

80
59

77
5.

02
28

71
10

71
.5

40
45

9
3.

98
34

65
2.

98
64

32
0.

12
55

11

1,
7.

5,
0.

8,
1.

5,
0.

05
,1

.3
,0

.5
5,

0.
9,

0.
8,

0.
7

6.
60

86
12

4.
66

21
49

10
39

.1
14

42
5

4.
87

26
42

5.
28

64
21

0.
11

14
41

1,
7.

5,
0.

8,
1.

5,
0.

15
,1

.3
,0

.5
5,

0.
9,

0.
8,

0.
7

7.
15

79
41

5.
09

88
16

11
30

.5
44

14
7

7.
76

53
24

9.
87

65
42

0.
11

33
57

1,
7.

5,
0.

8,
1.

5,
0.

1,
1.

0,
0.

55
,0

.9
,0

.8
,0

.7
6.

37
32

44
4.

64
67

56
10

18
.0

08
58

8
4.

56
49

83
3.

54
32

11
0.

10
73

14

1,
7.

5,
0.

8,
1.

5,
0.

1,
1.

6,
0.

55
,0

.9
,0

.8
,0

.7
7.

20
25

64
4.

97
28

57
11

19
.6

25
72

9
1.

98
63

42
2.

86
35

98
0.

11
79

79

1,
7.

5,
0.

8,
1.

5,
0.

1,
1.

3,
0.

45
,0

.9
,0

.8
,0

.7
6.

84
28

97
3.

63
38

38
10

76
.7

57
77

7
5.

76
42

51
4.

87
64

23
0.

11
59

31

1,
7.

5,
0.

8,
1.

5,
0.

1,
1.

3,
0.

65
,0

.9
,0

.8
,0

.7
6.

74
54

45
5.

86
44

09
10

63
.6

35
29

9
2.

83
76

21
1.

97
35

25
0.

11
16

85

1,
7.

5,
0.

8,
1.

5,
0.

1,
1.

3,
0.

55
,0

.8
5,

0.
8,

0.
7

6.
71

67
18

4.
74

72
65

10
65

.9
86

56
7

3.
98

36
75

5.
89

53
67

0.
10

80
05

1,
7.

5,
0.

8,
1.

5,
0.

1,
1.

3,
0.

55
,0

.9
5,

0.
8,

0.
7

6.
87

28
96

4.
88

22
96

10
75

.3
99

08
5

1.
90

38
75

2.
98

32
75

0.
10

43
78

1,
7.

5,
0.

8,
1.

5,
0.

1,
1.

3,
0.

55
,0

.9
,0

.7
5,

0.
7

6.
80

12
01

4.
84

26
87

10
72

.0
22

74
8

1.
97

65
32

5.
98

25
48

0.
11

80
72

1,
7.

5,
0.

8,
1.

5,
0.

1,
1.

3,
0.

55
,0

.9
,0

.8
5,

0.
7

6.
81

87
57

3.
59

23
38

10
74

.7
80

66
8

9.
98

63
54

4.
93

87
63

0.
12

26
46

1,
7.

5,
0.

8,
1.

5,
0.

1,
1.

3,
0.

55
,0

.9
,0

.8
,0

.6
6.

50
61

82
4.

39
20

36
10

19
.5

27
88

5
2.

82
64

11
3.

93
28

65
0.

13
69

59

1,
7.

5,
0.

8,
1.

5,
0.

1,
1.

3,
0.

55
,0

.9
,0

.8
,0

.8
7.

08
78

9
5.

24
48

14
11

22
.4

12
83

7
1.

93
76

58
4.

87
63

22
0.

13
24

11



8.7. Conclusion 223

Ta
bl

e
8.

4:
O

pt
im

al
ex

pe
ct

ed
to

ta
lc

os
to

ft
he

sy
st

em
T

C
∗

fo
rd

iff
er

en
tp

ar
am

et
er

s
vi

a
SG

O
al

go
ri

th
m

.

(C
h,C

v,C
m

,C
b,C

r,C
s,C

w
,C

i,C
θ

)
µ
∗

θ
∗

T
C
∗

M
ea

n
T

C
i

T
C
∗

M
ax

T
C

i
T

C
∗

Ti
m

e
(∗

10
−

10
+

1)
(∗

10
−

10
+

1)
el

ap
se

d

20
0,

30
,6

0,
15

0,
10

0,
20

0,
25

0,
30

0,
4.

5
6.

58
41

86
4.

43
63

18
10

23
.6

97
68

0
1.

83
97

65
1.

43
57

65
0.

11
49

52

25
0,

30
,6

0,
15

0,
10

0,
20

0,
25

0,
30

0,
4.

5
6.

79
46

99
4.

81
49

27
10

70
.6

07
67

7
8.

38
46

75
6.

87
64

43
0.

11
78

32

30
0,

30
,6

0,
15

0,
10

0,
20

0,
25

0,
30

0,
4.

5
6.

99
54

89
5.

18
86

46
11

16
.3

45
15

2
1.

98
43

56
4.

87
36

43
0.

10
71

39

25
0,

20
,6

0,
15

0,
10

0,
20

0,
25

0,
30

0,
4.

5
6.

79
49

11
4.

81
60

71
10

70
.0

02
11

7
2.

84
39

08
5.

87
63

43
0.

11
33

97

25
0,

40
,6

0,
15

0,
10

0,
20

0,
25

0,
30

0,
4.

5
6.

79
44

87
4.

81
37

85
10

71
.2

13
23

6
1.

63
54

79
8.

27
65

43
0.

11
56

14

25
0,

30
,4

0,
15

0,
10

0,
20

0,
25

0,
30

0,
4.

5
7.

94
20

98
4.

26
90

25
92

4.
40

34
41

5.
87

24
54

6.
87

32
65

0.
12

60
09

25
0,

30
,8

0,
15

0,
10

0,
20

0,
25

0,
30

0,
4.

5
6.

11
18

57
5.

29
20

65
11

99
.1

81
85

6
7.

39
86

53
1.

98
63

53
0.

12
19

66

25
0,

30
,6

0,
10

0,
10

0,
20

0,
25

0,
30

0,
4.

5
6.

80
32

04
4.

86
04

92
10

46
.3

83
54

6
2.

83
65

73
3.

86
32

89
0.

11
79

81

25
0,

30
,6

0,
20

0,
10

0,
20

0,
25

0,
30

0,
4.

5
6.

78
62

34
4.

76
90

14
10

94
.8

28
28

1
4.

78
25

64
5.

86
34

94
0.

11
14

44

25
0,

30
,6

0,
15

0,
50

,2
00

,2
50

,3
00

,4
.5

6.
80

20
68

4.
85

44
37

10
49

.6
13

63
3

1.
97

54
87

3.
87

25
42

0.
11

11
35

25
0,

30
,6

0,
15

0,
15

0,
20

0,
25

0,
30

0,
4.

5
6.

78
73

61
4.

77
51

57
10

91
.5

99
07

2
9.

27
64

38
1.

83
76

29
0.

11
54

11

25
0,

30
,6

0,
15

0,
10

0,
10

0,
25

0,
30

0,
4.

5
6.

78
14

81
4.

64
07

43
10

69
.0

53
68

5
5.

89
26

33
4.

21
86

41
0.

12
28

57

25
0,

30
,6

0,
15

0,
10

0,
30

0,
25

0,
30

0,
4.

5
6.

80
78

16
4.

98
54

22
10

72
.1

34
52

6
2.

97
45

32
8.

74
65

02
0.

12
24

44

25
0,

30
,6

0,
15

0,
10

0,
20

0,
20

0,
30

0,
4.

5
6.

51
43

14
4.

22
38

71
10

12
.6

20
84

8
4.

98
64

21
3.

82
63

92
0.

10
96

78

25
0,

30
,6

0,
15

0,
10

0,
20

0,
30

0,
30

0,
4.

5
7.

05
96

21
5.

36
55

71
11

26
.4

61
49

4
5.

38
96

52
1.

98
75

22
0.

11
49

02

25
0,

30
,6

0,
15

0,
10

0,
20

0,
25

0,
20

0,
4.

5
6.

77
42

03
4.

80
50

69
10

68
.6

28
50

6
6.

89
64

22
4.

78
26

54
0.

11
52

93

25
0,

30
,6

0,
15

0,
10

0,
20

0,
25

0,
40

0,
4.

5
6.

81
54

71
4.

82
48

27
10

72
.5

76
48

2
7.

86
32

43
6.

86
48

92
0.

10
75

26

25
0,

30
,6

0,
15

0,
10

0,
20

0,
25

0,
30

0,
3.

5
6.

76
77

42
6.

52
96

41
10

64
.9

89
18

8
2.

89
36

52
1.

98
65

83
0.

10
93

98

25
0,

30
,6

0,
15

0,
10

0,
20

0,
25

0,
30

0,
5.

5
6.

81
87

57
3.

59
23

38
10

74
.7

80
66

8
3.

74
36

51
5.

75
32

48
0.

12
26

45



224 Chapter 8. Cost Analysis of a retrial Queueing System...

problems with the system in an efficient manner. The optimal results are summarized in tab-
ular form for various sets of parameters and costs. Future research directions are to include
the following considerations: (i) The concept of hybrid vacation, which combines work-
ing vacation and complete vacation, can be used to develop and integrate new features for
possible extension in the outlined model. (ii) In order to model an actual service system as
accurately as possible, one can consider the case where the service, retrial, search, repair,
and vacation times follow a general (non-Markovian) distribution. (iii) Moreover, retrial
queues with many servers are more realistic in practice.



Chapter 9

Conclusions and Future Work

In this chapter, the main outcomes of the thesis are encapsulated. Further, few research
directions are also provided that may be studied in the future course of research work.

9.1 Summary and Conclusions

The main objective of the thesis was framed as the study of queue-based service systems
with distinct waiting variants. This thesis contributes to the descriptive modeling of some
queueing systems with various phenomena like customer impatience behavior, single and
multiple vacation policies, arrival control policies, homogenous and heterogenous servers,
and some others. Queueing is a mechanism used to handle congestion, and congestion is
a natural phenomenon in everyday life. The queueing models can approximate realistic
situations with accurate predictions of performance measures and are useful for evaluation,
control, and monitoring of the systems. This thesis is divided into nine chapters:

Chapter 1 of this thesis deals with brief introduction of the service models and motivation
of the present work. The review of customer-oriented, server-oriented, and system-oriented
queueing models is presented in order to highlight the present work in its right perspective.
The modeling of these systems is highly influenced by the characterization of the constituent
processes, namely, arrival and service processes. The chapter-wise outline of the thesis is
also presented.

Chapter 2 deals with the analysis and development of a multi-server queueing model in-
corporating three types of impatience attributes of customers: balking, reneging, and jockey-
ing. Upon arrival, strategic customers initially either balk or join one of the multi-queues se-
lectively and decide at subsequent arrival and departure epochs whether to renege or jockey
in a probabilistic manner with the aim of early service or reducing expected waiting time.
The study of systems integrating customers’ attributes is motivated by observing real service



226 Chapter 9. Conclusions and Future Work

systems where these queueing occurrences interact. The proposed model contemplates the
existence of impatient customers within a classical queueing system.

Chapter 3 investigated a finite-capacity service system with heterogeneous servers of two
types as subordinate servers and a chief server arranged in tandem. Subordinate servers con-
tribute in the initial phase of service, and the chief server completes the remaining service
in the final phase. The service provided by the subordinate-chief server may be unreliable,
which means the service may be repeatedly unsuccessful before it is successful. The cur-
rent service strategy studied is applicable for various managerial systems like application
form approval systems, amateur-expert systems, and call centers that operateunder a policy
according to which customers are not allowed to approach the chief server of the system
directly.

Chapter 4 deals with the analysis and development of a two-phase service system. The
arriving customers in the first phase can either join the queue and wait for their turn or di-
rectly seek service through the online application. In the next phase, the customers, through
both modes, must be physically present in the system. The controllable online booking is
conceptualized for the online application users as, after a specific threshold limit, the online
application customers will not be able to book online due to capacity constraints to benefit
the customers waiting physically. There is a general tendency among the waiting customers
to abandon the long queue in the first phase. The numerical simulation results provide
important insights into the complex interactions between the parameters and the critical per-
formance measures of the system. The findings confirmed that the balking strategies of
customers negatively impact the system’s throughput, and the admission control policy, i.e.,
the F-policy, helps service providers reduce the congestion level.

Chapter 5 focused on optimal policies for a highly efficient service system since the con-
gestion of customers more often originates from degraded policies than faulty arrangements.
In this chapter, we presented a notion of unreliable service and an F-policy for stochastic
modeling of a finite-capacity customer service system. This study captures diversified ser-
vice characteristics, customer behavior, and performability measures. The results indicate
that preventive and corrective actions are crucial for a better service system. Our inferences
also demonstrate that the optimization approach and stochastic modeling are practical ways
to ensure efficient policies and optimize performance for the studied service model.

Chapter 6 analyzed a finite capacity service system with several realistic customer-server
phenomena: customer impatience, server’s partial breakdown, and threshold recovery pol-
icy. When the number of customers is more, the server is under pressure to increase the
service rate to reduce the service system’s load. Motivating from this fact, the concept
of service pressure condition is also incorporated. This study is mainly based on efficient
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resource utilization of real-life queueing-based service systems. This research provides es-
sential theoretical and practical contributions to service systems that can be replicated in an
organization with limited resources facing the challenge of queues. As a practical aspect,
the insights derived from this study can help decision-makers take the necessary actions to
reduce the overall cost of the service systems.

Chapter 7 deals with the critical issue of the single-server congestion problem withpr
ominent customer impatience attributes and server strategic differentiated vacation. Despite
their apparent practical relevance, the proposed congestion problem has yet to be studied
from a service/production perspective with transient analysis.The queue-theoretic approach
is used for mathematical modeling. The transient queue-size distribution has been derived
using a modified Bessel function and generating function technique. A time-dependent
solution is advantageous for queueing systems’ dynamic behavior over a planning phase
and is predominantly valuable within the real-time design process for the the-state-of-the-
art strategic system.

Chapter 8 presents the orbital search concept in Markovian retrial queueing model, in-
cluding multiple vacation policies, and server breakdown. The consideration of all such
phenomena in the outlined model makes it more realistic and applicable. We emphasize in
analytically determining the probabilities of the server’s state using the probability generat-
ing functions technique, so that it can be deduced that the server is in a specific state and in
what proportion, and how parameters play a critical role in the change of its proportion.

9.2 Contributions Through this Research

The major findings of the present study are highlighted below.

• The present study is mainly based on efficient resource utilization of real-life queueing-
based service systems. This research provides essential theoretical and practical con-
tributions to service systems that can be replicated in an organization with limited
resources facing the challenge of queues. As a practical aspect, the insights derived
from this study can help decision-makers take the necessary actions to reduce the
overall cost of the service systems.

• This investigation demonstrated the dynamic congestion behavior of the customer in
the planning phase.
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• The steady-state and transient-state analytical results developed in this thesis would
be useful to managers and system analysts in optimally allocating resources for sys-
tem cost reduction. These transient and steady state probabilities are helpful in the
evaluation of the characteristic measure of the system.

• We computed the stationary distribution of various models using the repeated substi-
tution approach and derived various system performances in vector form.

• We also formulated a cost function and defined the problem of cost minimization con-
straint in each model. The state-of-the-art analysis of the service system is optimal
expected cost. We used several efficient meta-heuristic optimization algorithms to
analyze the optimal values of decision parameters of the system with the optimal sta-
bility condition and a global minimum of the cost function. Finally, several numerical
experiments have been included to demonstrate and attain optimal results. The cost
analysis clearly communicates the validity and profitability of the established model.
Minimizing the cost of service, a widely sought attribute of any firm, will benefit
system designers and decision-makers.

9.3 Future Scope of the Present Research Work

A number of future researches that can be developed and/or integrated as an advancement
of the present thesis work are listed below.

• We can extend the present study for the random processes like service times or ar-
rival times follows a distribution of general nature despite exponential to fit practical
systems better.

• An extension for a more realistic queueing system can be done by increasing the
number of phases for service for more than two phases. In such a case, servers will
render services in phases orderly as servers of the previous phase will act as a customer
for the next phase of service. In such a service system, there will be several levels
of servers before reaching the final phase of service which contributes to economic
savings through maximum utilization of service providers and queue management of
system.

• In addition to the substantial insights in this research, there are many other queueing
notions, such as machine repair problems, working vacation, etc., that present future
research opportunities for academics, managers, and policymakers.
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