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Abstract

Fractional calculus is an abstract idea exploring interpretations of differentiation having
non-integer order. For a very long time, it was considered a topic of merely theoretical
interest. However, introducing several useful definitions of fractional derivatives has
extended its application domain. Fractional calculus has emerged as a multifarious domain
supported by computational power and algorithmic representations. It has been found that
the fractional derivatives are capable of incorporating memory into the system and thereby
are suitable to improve the performance of history-dependent tasks, such as the prediction
of time series data, capturing the viscoelastic behavior of complex fluids, describing
anomalous diffusion processes, modeling the transmission of diseases, or some biological
phenomena, and locality-aware tasks such as image processing and computer vision in
general. Fractional calculus is one of the fastest-growing topics in the field of mathematics.
Although there is tremendous growth in fractional calculus applications, we are still at the
beginning of applying this powerful tool in many research fields. The potential applications
of this field of research are vast and far-reaching, making it an area of significant interest
and importance to researchers.

The thesis explores the synergy between fractional calculus and artificial intelligence,
specifically in time series forecasting, computer vision, and biometrics. It also investigates
the significance of fractional calculus-based techniques in crime transmission modeling.
Chapter 1 begins with an introduction to fractional calculus, highlighting the advantages
of applying fractional derivatives to solve real-world problems. The next section of the
chapter highlights the addressed research gaps to formulate the objectives for the proposed
work. The methodology to achieve research goals is devised, and fundamental concepts of
fractional calculus, criminology, computer vision, biometrics, time-series forecasting, and
mathematical approaches have been introduced. A thorough literature survey is conducted
in Chapter 2 to establish the research gaps.

Fractional calculus is applied in criminology due to the dependency of the current
situation of crime prevalent in society on the past behavior of the citizens. A criminally
active individual’s contact may impact the behavior of others adversely. Therefore, the
future state highly correlates to an individual’s criminal history in the transmission phase.
Various integer-order differential models have been proposed to capture the spread of crime.
Most of these dynamic systems haven’t considered the criminal’s history and the crime’s



impact on society. To incorporate history, a fractional-order crime transmission model is
proposed in Chapter 3 considering five classes viz law-abiding citizens, non-incarcerated
criminals, incarcerated criminals, prison-released, and recidivists. The primary focus
of the proposed model is to study the effect of recidivism in society and decide the
adequate imprisonment for repeat offenders. The existence, uniqueness, non-negativity
and boundedness of the solution of the proposed model are examined. The local stability
of the equilibrium points is also analyzed using Routh-Hurwitz Criteria with Matignon
conditions. Further, the threshold condition for the uniform asymptotic stability of the
system is evaluated using the Lyapunov stability method. Moreover, the current study
also examines the long-term impact of the imprisonment of criminals on society. The
numerical simulations of the model for a range of fractional orders are obtained using the
power series expansion method to strengthen the theoretical results.

Another application of fractional calculus is examined on time-series forecasting. In
Chapter 4, the Air Quality Index (AQI) of Indian cities of different tiers is predicted
using Vanilla Recurrent Neural Network (RNN). AQI is used to measure the air quality
of any region which is calculated based on the concentration of ground-level Ozone,
particle pollution, Carbon Monoxide, and Sulphur Dioxide in the air. The air quality of an
area depends on current weather conditions, vehicle traffic in that area, or anything that
increases air pollution. But the current air quality also depends on the climate conditions
and growth of industrialization in that area, making AQI a history-dependent parameter.
To capture this dependency, the memory property of fractional derivatives is exploited in
this algorithm. The fractional gradient descent algorithm involving Caputo’s derivative is
used in the backpropagation algorithm to train RNNs. Due to the availability of a large
amount of data and high computation support, deep neural networks are capable of giving
state-of-the-art results in time series prediction. But in this study, basic Vanilla RNN is
chosen to check the effectiveness of fractional derivatives.

One of the important applications of fractional calculus in the past decade is in the field
of computer vision. Deep CNNs are being applied in computer vision tasks such as image
classification, image denoising, object detection, etc. Their ability to learn complex and
non-linear relationships between the features leads to higher accuracies. The performance
of any deep learning algorithm is dependent on the quality of features that are being
extracted. Thus for effective feature extraction, long-term memory is incorporated into
deep neural networks with the help of fractional derivatives. This methodology is applied
to three computer vision tasks: road segmentation, salient object detection, and palmprint
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image recognition in Chapter 5, Chapter 6, and Chapter 7 respectively.

Segmentation of a road portion from a satellite image is challenging due to its complex
background, occlusion, shadows, clouds, and other optical artifacts. One must combine
local and global cues for an accurate and continuous/connected road network extraction.
Chapter 5 proposes a model using fractional derivative-based weighted skip connections
on a dense convolutional neural network for road segmentation. Weights corresponding
to the skip connections are determined using Grunwald-Letnikov fractional derivative.
Fractional derivatives being non-local incorporates memory into the system, combining
local and global features. Experiments have been performed on two open-source, widely-
used benchmark databases viz. Massachusetts Road Database (MRD) and Ottawa Road
Database (ORD). These datasets represent different road topography and network structure,
including varying road widths and complexities.

The application of fractional calculus to salient object detection is discussed in Chap-
ter 6. Detecting multiple salient objects of varying scales, from a cluttered background and
without sharp boundaries is still challenging. An accurate saliency map production requires
low-level appearance and high-level semantic features. Thus an optimal combination of
local and global cues is required to extract effective and comprehensive features. This
chapter proposes a salient object detection network with a densely connected encoder
having fractional derivative-based weighted skip connections and a decoder with multiple
modules for improving the quality of features. The weightage for the skip connections
is determined using Grunwald–Letnikov’s version of fractional derivative. Due to the
non-locality of fractional derivatives, memory is incorporated into the system, thereby
preventing the dilution of features due to the increasing network depth. The decoder has
multiple modules to refine the extracted features, aggregate the multi-level features and
remove redundant information. The weighted skip connections and multiple decoder mod-
ules assist in obtaining the discriminative features required for learning the relationship
between multiple salient objects. The proposed technique is tested on six widely-used,
publicly available databases: ECSSD, HKU-IS, PASCAL-S, DUT-OMRON, DUTS-TE
and SOD.

Chapter 7 analyzes the effectiveness of fractional calculus in palmprint-based hu-
man authentication systems. Palmprint identification attempts to determine a person’s
identity by matching a palmprint image sample to all of the templates in the database
and identifying the most similar. A palmprint recognition system based on ResNet34
integrated with the attention mechanism is developed. For higher recognition accuracy, the

xiii



memory is incorporated into the network by densely connecting the layers of the networks
with fractional weighted skip connections. These fractional weights are derived from the
Grunwald-Letnikov version of the fractional derivative. The non-locality of fractional
derivatives enhances the feature extraction performance of the network by combining the
local and global features, thereby improving the matching accuracy of the authentication
system. The features are further improved by using attention modules at each level and
large-margin cosine loss and focal loss to optimize the network parameters. Experiments
are performed on three open-source, widely-used palmprint databases: IIT-D Touchless,
CASIA, and Tongji-Contactless.

Chapter 8 consolidates the work by comprehensively summarizing the critical research
findings and highlighting the potential areas for future exploration.
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Chapter 1

Introduction

The idea of fractional calculus is fundamental that refers to obtaining functional derivatives
and integrals when order is not strictly an integer. Developing empirical interpretations
of these mathematical representations remained a puzzle for a long time. Some early
works indicate that the notion incorporates the sense of locality and thus encompasses
history. This seemingly strange concept can be correlated to common real-life applications
such as crime spread, epidemics, time series, and images. For example, a pixel in an
image is associated with its neighborhood and cannot be arbitrarily different from its
surrounding. Fractional calculus can inherently model these relations and become helpful
in various applications. In the past two decades, fractional order-based systems are
performing better in various science and engineering applications where non-locality or
history has an important role to play [21–26]. This thesis aims to highlight the advantages
of using fractional calculus to overcome the challenges in the existing literature. A
brief introduction to fractional calculus, mathematical modeling, and soft computing
techniques, specifically neural networks & computer vision, is done in this chapter. It also
accommodates the description of useful definitions, theorems, and evaluation parameters
required to develop and analyze the proposed fractional calculus-based models.

1.1 Fractional Calculus
Issac Newton and Leibniz invented differential calculus around three centuries ago. In basic
calculus, for an integer m, the m-th order derivative of a function means differentiating a
function ′m′ times successively. The expression dmg

dtm
can also be interpreted as an operator

whose action on the function g(t) is determined by the parameter m. Fractional calculus
was originated in 1695 when L’hopital asked Leibniz about the behavior of this general
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operator for n being a non-integer. After that, the search for an operator that transforms
g into its m-th derivative or anti-derivative starts. Fractional calculus is an area which
deals with differentiation and integration of arbitrary order. Many different ways has been
proposed to generalize differentiation and integration for non-integer orders that preserve
the several standard differential properties.

Initially, this field was not utilized for practical applications, and due to this, fractional
calculus was considered an abstract area containing only rigorous and complicated math-
ematical manipulations. The pertinence of the subject stands lacking to date. However,
due to the advent of multiple tools and software, a significant resurgence of interest has
developed in it. Fractional calculus is emerging and has been applied to several fields of
Science, Engineering, and Economics [21–31]. Abel was the first one to apply fractional
derivatives to solve the tautochrone problem. The leading edge of applying fractional
derivative over ordinary derivative is that the piece-wise continuity of a function is suffi-
cient to be fractionally differentiable. Another useful property is that fractional derivatives
(and integrals) are global. Thereby these consider the history and non-local distributed
effects [32]. Hence it is beneficial to use fractional derivatives where history dependency
exists, including viscoelasticity [33], biology [34], stock market [35], anomalous diffusion
[36], bacterial chemotaxis [37], signal and image processing [38] and complex networks
[39]. Arbitrary order α of differentiation/integration in fractional-order-based methods
also contribute to an additional degree of freedom in the process of optimization. Differ-
entiation and integration of arbitrary order have been defined in various ways, including
Riemann-Liouville, Grunwald-Letnikov, Caputo, Weyl, Jumarie, Riesz, Hadamard and
Erdelyi-Kober. Each definition has its own distinct characteristics. There are pros and cons
of using any version of fractional derivative. To overcome cons of definitions, several new
versions of fractional derivatives are being introduced. Most commonly used fractional
differential and integral versions are mentioned as follows:

1.1.1 Riemann-Liouville (R-L) Fractional Integral Operator

The R-L generalization of integration is the most frequently used version of fractional
integration [21]. If α > 0 and g is a piece wise continuous function on J ′ = [0,∞)

and integrable on any finite subinterval of J = (0,∞), then for t > a and t, a ∈ R the
following equation

aD
−α
t g(t) =

1

Γ(α)

∫ t

a

(t− η)α−1g(η) dη (1.1.1)

2
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represents the R-L fractional integral of order α and the function Γ(·) is the Gamma
function. This definition cannot be treated as a generalization of differentiation. As if −α
is replaced by some β > 0 , then

aD
β
t g(t) =

1

Γ(−β)

∫ t

a

(t− η)−β−1g(η) dη (1.1.2)

The above expression have Γ(−β) in the denominator which is not defined for negative
integers and zero. Hence the R-L fractional integral operator in Equation (1.1.1) doesn’t
work for regular differentiation and thus cannot be generalized to the fractional differential
operator, which led to the development of different operators for generalized differentiation
[40]. The three most frequently used definitions are the following:

1.1.2 Riemann-Liouville (R-L) Fractional Derivative

The R-L fractional derivative definition is a natural generalization of the ordinary derivative.
As in the integer-order case, the R-L fractional derivative is left inverse of the fractional
integral,

RL
a Dα

t D
−αg(t) = D0g(t) = g(t). (1.1.3)

If t > a, α > 0 and m ∈ N, such that m− 1 < α < m , then for evaluating the derivative
of order α , the m− α order R-L integral of function g(t) is differentiated m-times,

RL
a Dα

t g(t) = Dm
[
aD

−(m−α)
t g(t)

]
,

i.e.

RL
a Dα

t g(t) =


1

Γ(m− α)

dm

dtm

∫ t

a

g(η)

(t− η)α+1−m
dη, m− 1 < α < m

dm

dtm
g(t), α = m

(1.1.4)

is called the R-L fractional derivative of order α [21]. But this definition has some
disadvantages as well. Firstly the R-L derivative of order α, (< 1) of a constant is not
zero.

RL
0 Dα

t k =
k

Γ(1− α)
t−α ̸= 0 (1.1.5)

3
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Secondly, the Laplace transform of this R-L derivative of order α > 0, m−1 ≤ α < m

defined by

L {RL
0 Dα

t g(t); s} = sαG(s)−
n−1∑
k=0

sk[RL
0 Dα−k−1

t g(t)]t=0. (1.1.6)

involves the usage of initial values for fractional order derivatives, which don’t have any
physical interpretations.

1.1.3 Caputo Fractional Derivative

If t > a, α > 0 and m ∈ N, such that m− 1 < α < m, then for evaluating the derivative
of order α , the m− α order R-L integral of mth order differentiation of function g(t) is
computed,

C
a D

α
t g(t) = aD

−(m−α)
t [Dmg(t)] ,

i.e.

C
a D

α
t g(t) =


1

Γ(m− α)

∫ t

a

g(m)(η)

(t− η)α+1−m
dη, m− 1 < α < m

dm

dtm
g(t), α = m

(1.1.7)

which is called the Caputo fractional derivative of order α. This definition of fractional
derivative was given by Caputo in 1967 to overcome the limitations of R-L derivative as
explained above [41]. The Caputo’s derivative of order α > 0, m − 1 ≤ α < m for a
constant k is zero,

C
0 D

α
t k =

1

Γ(n− α)

∫ t

0

k(m)

(t− η)α+1−m
dη = 0 ,m− 1 < α < m (1.1.8)

and Laplace transforms of Caputo fractional derivative of order α > 0, m− 1 ≤ α < m

defined as

L {C0 Dα
t g(t); s} = sαG(s)−

n−1∑
k=0

sα−k−1[C0 D
k
t g(t)]t=0. (1.1.9)

involves the usage of initial values of ordinary derivative, which makes this definition
more applicable to real-world problems.

4
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a) α = 0.7 b) α = 1.7

Figure 1.1: Comparing Grunwald–Letnikov, Riemann-Liouville, and Caputo fractional derivative
of a function sin(λt) for λ = 1.5

1.1.4 Grünwald-Letnikov (G-L) Fractional Derivative

This is the discrete version of fractional derivative, which was introduced by Anton
Karl Grünwald and Aleksey Vasilievich Letnikov in 1867 and 1868 respectively. In the
expression (1.1.10), derivative of order α is expressed as limit of a sum and it is very
intriguing that it makes no assumption other than that the function should be defined.

aD
α
t g(t) = lim

h→0
nh=t−a

h−α

n∑
r=0

(−1)r
(
α

r

)
g(t− bh) (1.1.10)

aD
α
t g(t) =

m−1∑
k=0

g(k)(a)(t− a)−α+k

Γ(−α +m)
+

1

Γ(m− α)

∫ t

a

g(m)(η)

(t− η)−m−1+α
dη, (1.1.11)

If the function is continuously differentiable m times, then for positive real number α,
m− 1 < α < m, (1.1.10) can be written as (1.1.11). The above two expressions represent
G-L derivative of order α and the function Γ(·) is the Gamma function. The equation
(1.1.10) can be written as

δαg(t)

δtα
= g(t)+(−α)g(t−1)+

(−α)(−α + 1)

2
g(t−2)+

(−α)(−α + 1)(−α + 2)

6
g(t−3)+

· · ·+
Γ(−α + 1)

m!Γ(−α +m+ 1)
g(t−m) + · · · (1.1.12)

Similarly, for the two dimensional signal g(r, t), α order differentiation w.r.t r can be

5
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expressed as

δαg(r, t)

δrα
= g(r, t)+(−α)g(r−1, t)+

(−α)(−α + 1)

2
g(r−2, t)+

(−α)(−α + 1)(−α + 2)

6

g(r − 3, t) + · · ·+
Γ(−α + 1)

m!Γ(−α +m+ 1)
g(r −m, t) + · · · (1.1.13)

where r, t can have only discrete values, that is r = 1, 2, · · · , t = 1, 2, · · · . The
Grünwald-Letnikov fractional derivative formulation is widely used in several branches
of study to solve fractional differential equations numerically. Based on the properties of
different definitions, R-L derivative is generally used to evaluate theoretical results, the
Caputo derivative is used for solving engineering problems, involving fractional differential
equations, and the G-L derivative is mainly used in signal processing. Figure 1.1 shows
the asymptotic behavior of all three derivative versions, and it can be observed that as
t→∞, all the definitions are equivalent, i.e., aD

α
t g(t) ∼ C

a D
α
t g(t) ∼ RL

a Dα
t g(t).

1.1.5 Memory Property

The attractive property of fractional derivatives is non-locality. When the integer-order
derivative is computed at a point b, the value obtained depends only on b and b+h or b−h.
This property is called a locality. But the fractional derivative is derived by integrating over
an entire range of values, which can be seen from the above two definitions (1.1.3) and
(1.1.4). While evaluating the G-L derivative, it considers all the past values of the function,
which is clear from (1.1.10). This non-locality is one of the main drivers of interest in
fractional calculus applications. Many physical phenomena have memory effects, meaning
their present state also depends on previous states. Such systems are difficult to model
and analyze using integer-order differential equations (IODE), but non-locality makes
integer-order differential equations (FODE) capable of incorporating memory effects. It
can be seen from the expression (1.1.10) that the values of the function at all past points
are taken into account while calculating the fractional derivative at a point t. The memory
of a dynamic system follows the power law, in which while defining the present state of the
system at time t, the weight of the previous state at time tj is proportional to (t− tj)

α−1,
where 0 < α < 1 is the order of the derivative [42, 43]. Figure 1.2 depicts the short-term
memory of IODE and the long-term memory of FODE.

6
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Figure 1.2: Memory weights corresponding to IODE and FODE [5]

1.2 Mathematical Modeling
Mathematical modeling represents real-world phenomena or systems using mathemat-
ical equations and structures. Its process involves problem formulation, assumptions,
mathematical model development, parameter estimation, model analysis, simulations for
validating it, and refinement of the model as needed. Mathematical models help to under-
stand complex systems, make predictions, optimize processes, and test hypotheses. It is a
powerful tool for analyzing real-life problems in various fields, including engineering [32],
sociology [44], biology [45], economics [46], and epidemiology [47]. A few common
approaches to mathematical modeling are deterministic modeling, stochastic modeling,
optimization, and data-driven modeling [48]. This thesis has explored deterministic and
optimization modeling approaches. The optimization modeling approach is discussed in
the next section. The deterministic models assume that the system’s behavior is predictable
and does not incorporate randomness or uncertainty. The change in variables of these
models is generally described using differential equations. Several approaches have been
developed in the existing literature to analyze the deterministic models. The standard
approaches used to investigate the stability of the proposed fractional-order model are
explained in this section after describing a few useful definitions related to this study.

Definition 1.2.1. (Dynamical System) If an object’s state varies over time, that system

is termed a dynamical system. Mathematically, it is a system in which the trajectory of

an object is represented with the help of a function dependent on time that describes the

relation of future states with the current state.

Definition 1.2.2. (Deterministic System) A dynamical system is called deterministic if

it leads to the unique final state for each initial state. Such a system can be expressed

7
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through the following mapping

ζ(x, t) ≡ ζt(x) : Ω→ Ω (1.2.1)

for each continuous time variable t ∈ R and phase space Ω. The position of the system

started from x0 at time t is given by x(t) = ζt(x0). Moreover, it is assumed that t ≥ 0 and

at t = 0, ζt(x0) = x0.

Definition 1.2.3. (Fractional-order Autonomous System) Consider the following fractional-

order system
C
0 D

α
t x(t) = f(x), x(0) = x0 (1.2.2)

where 0 < α ≤ 1, x ∈ Rn is a vector and f : E(⊂ Rn) → Rn is a continuously

differentiable function. It is said to be autonomous if f does not depend on t explicitly.

Definition 1.2.4. (Stability) The solution x(t) of system (1.2.2) with x(0) = x0, is called

locally stable if for any ϵ > 0 there exist a δ(ϵ) > 0 and t0 such that for a solution ˆx(t),

the inequality ||x̂0 − x0|| < δ implies ||x̂(t)− x(t)|| < ϵ for each t > t0, In other words,

the solution x(t) is locally stable if any solution initiated from δ-neighborhood of x0 always

remains in ϵ-neighborhood of x(t) after a considerable time.

Definition 1.2.5. (Asymptotic Stability) The solution x(t) of the system (1.2.2) with initial

data x(0) = x0, is said to be locally asymptotically stable if there exists a δ > 0 such

that the inequality ||x̂0 − x0|| < δ implies limt→∞ ||x̂(t)− x(t)|| → 0. In other words the

solution x(t) is locally asymptotically stable if any solution initiated from δ-neighborhood

of x0 converges to the solution x(t).

Definition 1.2.6. (Instability) The solution x(t) of the system (1.2.2) is known as unstable

if it is not locally stable.

Definition 1.2.7. (Equilibrium Point) Equilibrium point is a solution x̂ of system (1.2.2)
that does not change with time and it satisfies f(x̂) = 0.

Definition 1.2.8. (Global Stability) An equilibrium point is called globally asymptotically

stable if the solutions initiated from a point in a finite region, converge to the equilibrium

point.

Definition 1.2.9. (Invariant Set) ) A set Ω ∈ Rn is said to be invariant if for every solution

x(t), x(t0) ∈ Ω implies x(t) ∈ Ω for all t > t0. In other words, if a solution is started

from a point in Ω remains in Ω all the time.

8
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a) 0 < α < 1 b) α = 1

Figure 1.3: Stability region for fractional-order system (a) and integer-order system (b)

Theorem 1.2.1. (Existence and Uniqueness Theorem)[49] Consider the following initial

value problem
C
0 D

α
t x(t) = g(t, x(t)), x(k)(a) = xk (1.2.3)

where k = 0, 1, · · · , ⌈α⌉ − 1 for some α > 0 on the interval [a, T ] and C
0 D

α
t denotes

the Caputo fractional differential operator of order α, and if g : [a, T ] × R → R be

a continuous and bounded function which satisfies the Lipschitz condition (1.2.4) with

respect to the second variable, i.e.,

|g(y, x1)− g(y, x2)| ≤ l|x1 − x2| (1.2.4)

for some constant l > 0. Then, the fractional order initial value problem has a unique

continuous solution on [a, T ].

Theorem 1.2.2. (Matignon Criteria for Local Asymptotic Stability) [50] The fractional-

order system (1.2.2) is said to be locally asymptotically stable at the equilibrium point

x̂ ∈ E(⊂ Rn) if all the eigenvalues λi of the Jacobian matrix J = ∂ f
∂ x

, x ∈ Rn evaluated

at the equilibrium point x̂ satisfy

|arg(λi)| >
απ

2
, i = 1, 2, · · · , n, 0 < α < 1 (1.2.5)

where arg(λi) is the principal value of the argument of the eigenvalue λi of the Jacobian

matrix J . If arg(λi) does not satisfy (1.2.5), then the system is unstable around that point.

These conditions of the Theorem 1.2.2 are presented graphically in Figure 1.3. It can
be observed that the stability region of the fractional order system is more than that of the
integer order system.

9
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Theorem 1.2.3. (Routh-Hurwitz Criteria for Fractional-order System) [51, 52] Let

P (λ) = 0 be the characteristic equation of the Jacobian matrix J = ∂ f
∂ x

, x ∈ Rn for the

fractional order system (1.2.2)

P (λ) = λn + A1λ
n−1 + A2λ

n−2 + ...An = 0, (1.2.6)

with real coefficients A1, A2, · · ·An. The conditions in which all the roots of expression

(1.2.6) satisfy (1.2.5) are known as fractional order Routh-Hurwitz conditions. A sufficient

condition for all the solutions of the inequality (1.2.5) is the positivity of all principal

diagonals of minors of the Hurwitz matrix

Hn =


A1 1 0 0 0 0 . . . 0

A3 A2 A1 1 0 0 . . . 0

A5 A4 A3 A2 A1 1 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 0 0 An

 .

It can be observed that the entries in Hn on the principal diagonal are the coefficients of

(1.2.6), and the alternating columns of Hn consist of either the coefficients with only even

or with only odd indices. Thus, Hn = (hij), where hij = A2i−k, with missing coefficients

being replaced with zero. The conditions for negative real parts of the solutions of (1.2.6)
for some values of n = 2, 3 and 4 are given below. However, the use of this theorem

becomes impractical for large n.

• n = 2 : A1 > 0, A2 > 0 or A1 < 0, 4A2 > (A1)
2,

∣∣∣∣tan−1(
√

4A2 − A2
1)/A1

∣∣∣∣ > απ

2

• n = 3 : A1 > 0, A3 > 0, A1A2 > A3 if discriminant of polynomial (1.2.6) is positive.

Theorem 1.2.4. (Extended Lyapunov Approach for Uniform Asymptotic Stability)
[49, 53] Let x0 be an equilibrium point of the non-autonomous fractional-order dynamical

system (1.2.3) where x0 belongs to domain Φ ⊂ R. Then if for any continuously differ-

entiable function F (x, t) : Φ × [ 0,∞) → R, there exists continuous positive definite

functions F1(x), F2(x), F3(x) defined on domain Φ such that F1(x) ≤ F (x, t) ≤ F2(x)

and C
0 D

α
t F (x, t) ≤ −F3(x) for every α ∈ (0, 1). Then the equilibrium point x0 is

uniformly asymptotically stable.
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1.3 Soft Computing
Soft computing originated in the mid-1980s as a response to the limitations of traditional
computing methods in dealing with real-world problems that involve uncertainty, impre-
cision, and complexity. Traditional computing methods based on precise mathematical
models are not always sufficient to deal with real-world problems involving ambiguity
and uncertainty. Researchers realized there was a need for a new approach that could
handle imprecise and uncertain information, and thus the field of soft computing was born.
The origins of soft computing can be traced back to the work of several pioneers in the
field, including Lotfi A. Zadeh, who introduced the concept of fuzzy sets and fuzzy logic
in 1965 [54]. Soft computing originated as a response to the limitations of traditional
computing methods in dealing with real-world problems that involved uncertainty, impre-
cision, and complexity. It emerged from the convergence of several fields, including fuzzy
logic, neural networks, and genetic algorithms, and has since grown to encompass other
techniques such as machine learning, evolutionary computation, and swarm intelligence.
The interdisciplinary nature of soft computing has made it a powerful tool for tackling a
wide range of challenging problems in diverse domains. The proposed work is based on
the soft computing techniques briefly described below.

1.3.1 Artificial Neural Networks
Artificial Neural Networks (ANNs) are computational models inspired by the structure
and functioning of the human brain. They are designed to process the data and learn
complex patterns from it. ANNs consist of interconnected artificial neurons (nodes or
units) organized in layers, which receive input signals, perform calculations, and produce
output signals. It involves machine learning that makes the system capable of learning and
improving from experience without being explicitly programmed [55–58]. The learning
process commences with the observation of data like examples, instructions, patterns, or
direct experiences. This develops criteria that help the machine make decisions in the
future. Training an ANN involves a learning process where the network adjusts the weights
and biases associated with its connections to minimize the error between the predicted and
desired outputs. This is typically done using optimization algorithms, such as gradient
descent, which iteratively updates the weights based on the calculated error. The training
aims to optimize the network’s ability to generalize and make accurate predictions on
unseen data.
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Backpropagation is one of the ways of training multi-layer ANN. It has a mathematical
foundation that is strong although not highly practical. Rumelhart etal. [59] first introduced
a backpropagation neural network in 1986. The backpropagation algorithm is used to
efficiently train ANNs following a gradient-based optimization algorithm that uses the
chain rule. The main feature of backpropagation is its iterative, recursive, and efficient
method for calculating the weights updates to improve the network until it can perform the
task for which it is being trained. The update rule it uses is

∆w = −ηδE
δw

(1.3.1)

where η is the learning rate.

ANNs can be applied to various tasks, including classification, regression, pattern
recognition, and time series analysis. They have been successfully used in diverse fields
such as image and speech recognition, natural language processing, recommendation
systems, and financial forecasting. With the advancements in deep learning, which involves
using ANNs with many hidden layers (known as deep neural networks), ANNs have
achieved remarkable performance in complex tasks and have become prominent techniques
in machine learning and artificial intelligence. This thesis explores the application of
fractional calculus in the backpropagation algorithm for time-series forecasting through
RNNs. Some popular variants of ANNs are briefly described below:

1. Feed Forward Neural Network [60]: This was the first and the simplest ANN,
in which information just passes in the forward direction, i.e., from the input layer
through the hidden layer to the output layer. No loops or cycle exists in the network
connections.

2. Recurrent Neural Network (RNN) [61]: Recurrent Neural Networks (RNNs) is
a type of Neural Network where the output from the previous step is fed as input
to the current step. Such networks are developed to handle sequential data. Basic
RNNs face difficulty in learning long-term dependencies.

3. Autoencoders [62]: The structure of these networks has two components: encoder
network, and decoder network. Encoder learns a compressed representation of
the input data and then decoder decompresses the encoding of the input data by
reconstructing it and generating the desired output. These networks are majorly
used for image reconstruction, such as for denoising, captioning, and segmenting.
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4. Long Short-Term Memory (LSTM) [63]: It is a variant of RNN developed for
learning long-term dependencies using dedicated circuits . An LSTM unit has a
cell, an input gate, a forget cate and an output gate. The cell remembers values
over arbitrary time intervals and the gates control the flow of information to the cell.
The information which is not required from the previous cell state is removed by
the forget gate. The input gate controls the information to be added to the current
cell state. Lastly, the extraction of useful information from the current cell state to
generate output is managed by the output gate. This design of the network addresses
the problem of vanishing gradient problem. The comparison of the structures of
RNN and LSTM is shown with the help of a figure in Chapter 4, where these
networks are leveraged for AQI prediction.

5. Convolutional Neural Network (CNN): These networks are developed for dealing
with image, speech, or audio signal inputs. A CNN has three components: 1)
Convolutional layer, 2) Pooling layers, and 3) Fully connected layer. The first layer
of a CNN is a convolutional layer and the last layer is the fully connected layer. In
between these layers, several convolutional and pooling layers are stacked. The
complexity of the network increases with an increase in the number of convolutional
layers. The convolutional layers are the main building blocks of the CNNs. It
applies the filter to the input image and generates a feature map. A filter is a
2-dimensional array of weights. It is applied to a section of the image and the
dot product between pixel values of the images and these weights is computed to
generate the corresponding output. This filter is repeatedly swept by a stride and
applied over the whole image to generate the final output feature map. A ReLu
activation function1 is generally added after the convolution layer to introduce
non-linearity to the network. The pooling layer reduces the dimension of the
input by applying a filter over it, reducing the complexity of the network. Unlike
convolutional layers, the filters of pooling layers do not have any weights. The
output feature map corresponding to a particular position is computed by taking the
max of the pixel values (max-pooling) or the average of the pixel values (average
pooling). As the name depicts, the fully connected layer is the last layer of the
network connected to each node of its previous layer. The feature extracted through
this layer is fed to the softmax activation function to obtain the probabilities from 0 to
1. This helps in the classification of the input data. Some popular CNN architectures

1f(x) = max{0, x}
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Figure 1.4: Skip Connection [6]

are LeNet-5 [64], AlexNet [65], VGG-16 [66] and ResNet [6].

6. Residual Neural Network (ResNet) [6]: It is the most frequently used deep
convolutional neural network that uses a technique called skip connections to solve
the problem of vanishing/exploding gradients. These skip connections connect
activations of a layer to further layers by skipping some layers in between. This
forms a residual block. ResNets are made by stacking these residual blocks together.
Layers connected via skip connections are shown in Figure 1.4. The weight of the
skip connection is equal to one in ResNet. If the weightage is not unity, then that
skip is termed as a weighted skip connection.

1.3.2 Computer Vision
Computer vision is an important application of artificial intelligence, that originated around
60 years ago. Computer vision aims to develop machines that can see. Recent events
incited a transformed curiosity in how machines see and how computer vision can be
used. Computer vision is an interdisciplinary area dealing with developing vision-related
capabilities for a computer. It aims to extract meaning from the image pixel values.
Computer vision aims to build a system that performs the same task as the human visual
system. Specifically, describing images and videos by recognizing objects, providing
annotation, performing segmentation and analyzing the motion of image frames [67]. All
these tasks involve pre-processing, feature extraction, matching, and decision.

It all started in 1966, when Seymour Papert and Marvin Minsky started a summer
vision project in the AI group of MIT. The project aimed to build a system that can analyze
a scene and then detect objects in the scene. The project continued for two months, open-
ing the door to an important research area. David Marr, a neuroscientist at MIT, started
working in computer vision in the 70s and contributed significantly to it [68]. He is known
as the father of the current computer vision. Subdomains of computer vision comprise
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edge detection, object detection, video tracking, motion analysis, image denoising, scene
reconstruction, image segmentation, etc. This thesis explores the application of fractional
calculus in the domains viz. image segmentation, object detection and image recognition.
This section describes the mathematical approach employed in the study for memory in-
corporation into the architecture of DCNNs that improves the quality of feature extraction.

1.3.2.1 Modeling the Underlying Dynamics and Architecture of DCNN as Fractional
Optimal Control Problem

This section explains the approach for dynamic system modeling of the forward propa-
gation of Deep Convolutional Neural Networks (DCNNs) [69]. The output of any layer
of a CNN depends on that layer’s input and the convolution kernel’s parameters. Thus
the propagation of a simple DCNN with T number of layers can be represented by the
following mathematical expression:

zt+1 = σ(θt ∗ zt) t = 1, 2, · · ·T (1.3.2)

where zt ∈ Rn is the input of the tth layer, zt+1 ∈ Rn is the output of the tth layer
of the network and θt ∈ Rm is the matrix of parameters of the convolution kernel and
σ : Rn → Rn is a non-linear activation function dependent on the input zt and convolution
parameters θt. The optimal parameters of the neural network are obtained by minimizing
the sum of the loss function and the regularization function of the parameters over all
layers. Mathematically, the optimal solution θ(t) is evaluated by solving the following
expression

min
{θt}Tt=1

T∑
t=1

R(θt) + L(Φ(zT ), u), (1.3.3)

where R(·) is the regularization function dependent on convolution parameters, Φ(zT ) :
Rn → Rd is the output of the final layer, u is the expected output of the network and
L(·, ·) : Rd → R is the loss function.

The forward propagation of a DCNN is equivalent to a dynamical system and a dynamic
system can be described by an ODE [69, 70]. If z(t) is the corresponding trajectory of the
system, then the dynamics of the deep neural network can be represented by the following
ODE:

.
z(t) = f(z(t), θ(t)), z(0) = z0, t ∈ [0, T ] (1.3.4)
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where z0 is the initial condition of the dynamic system and θ(t) is the control parameter
[71], and that system can be solved by the optimal control method. The target is to find the
best control θ(t) for the system at time t. Thus for that the payoff P has to be maximized
which is shown in the following equation :

P (θ) =

∫ T

0

H(z(t), θ(t)) + J(Φ(θ(t)))dθ (1.3.5)

where H(·) and J(·) are the running payoff and the terminal payoff respectively [71],
which act like the loss and regularization function in (1.3.3).

In this thesis, the proposed computer vision algorithms design the architecture of the
networks by solving a fractional optimal control problem. The propagation of features
through layers of DCNN is treated as a dynamic system and is represented with the help
of a fractional differential system with optimal controls. Consider the following fractional
differential system [72] describing the propagation of deep CNN in which the feature
trajectory z(t, s) is assumed to be continuous in time and space:

min
θ(t)

∫
Ω

L(Φ(z(T, s)), u(s)) ds

s.t.

0D
α
t z(t, s) = f(z(t, s), θ(t)), z(0, s) = Ψ(I(s)), t ∈ [0, T ] (1.3.6)

where s ∈ Ω is the two dimensional spatial position, I(s) is the input image, u(s) is the
ground truth image and Φ,Ψ are linear transformation , e.g. convolution. The proposed
networks are designed by solving the corresponding fractional optimal control problem as
the fractional-order differential equation has long-term memory. The problem (1.3.6) aims
to find the optimal control θ(t) such that the objective loss is minimized [73].

The architectures of the proposed computer vision models are designed by discretizing
the fractional differential system of equations. Analysis in [74], justifies that the discretiza-
tions correspond to the forward propagation of these networks. In each transition, all the
features given by the output of the historical states are being used at each state, and thus the
features are being used for a long time. Due to the application of fractional derivatives in
the evolution process, the network gets embedded with weighted skip connections. Those
weights depend on the fractional order of differentiation and the current state. The order α
is positive and less than 1, so the weighted sum remains positive and doesn’t explode. For
discretization, the step size, h is set to be 1. Then definition (1.1.10) takes the following
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form for order 0 < α < 1:

0D
α
t z(t, s) ≈

t∑
k=0

(−1)k
(
α

k

)
z(t− k, s) (1.3.7)

Thus, after combining the above expression (1.3.7) with 0D
α
t z(t, s) = f(z(t, s), θ(t))

of the system (1.3.6), we get expression (1.3.8) that clearly shows the incorporation of
memory into the network.

z(t, s) = f(z(t, s), θ(t))−
t∑

k=1

(−1)k
(
α

k

)
z(t− k, s) (1.3.8)

zt+1 = f(zt, θt) +
t∑

k=1

(−1)(t−k+1)

(
α

t− k + 1

)
zk (1.3.9)

Pontryagin’s maximum principle [73] further justifies the long-term memory incorporation
into the network. The long-term memory in the network helps prevent the dilution of
features, after propagation through multiple layers. Subsequently, this improves the
performance of the network. and accuracy of the predictions.

1.3.3 Evaluation Parameters

This section defines the evaluation parameters adopted for measuring the performance of
the proposed networks. This thesis analyses the performance of algorithms developed for
time series and image data. To measure the performance of computer vision algorithms,
the pixels of the predicted images are divided into four categories concerning the ground
truth of the saliency map: true positive ( TP ), true negative ( TN ), false positive ( FP ),
and false negative (FN). Here, TP denotes the number of correctly detected pixels, FN
denotes the number of missed pixels, TN denotes the correctly excluded pixels, and FP
is the number of pixels falsely detected. The effectiveness of the proposed methods is
evaluated using standard metrics, described below.

Definition 1.3.1. (Mean Squared Error (MSE)) It gives the average of the squared

difference between the actual value and output value which can be expressed as

MSE =
1

N

N∑
i=1

(xi − yi)
2 (1.3.10)
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where xi, yi are output and actual values. It is always positive, and lower values of MSE

indicate the good performance of the model.

Definition 1.3.2. (Root Mean Squared Error (RMSE)) It gives the square root of the av-

erage of the squared difference between the actual value and output value. Mathematically,

it can be expressed as

RMSE =

√√√√ 1

N

N∑
i=1

(xi − yi)2 (1.3.11)

where xi, and yi are predicted and actual values, which are observed for N times.

Definition 1.3.3. (Mean Absolute Percentage Error (MAPE)) is the average percentage

of the absolute difference between the actual and predicted value divided by the actual

values for each period [75]. The following expression can express MAPE

MAPE =
100

N

N∑
i=1

|xi − yi|
|yi|

(1.3.12)

where xi is the predicted value and yi is the expected output for iteration i, which are

observed for N times. This is a form of percentage error, which helps analyze the different

models in varying situations.

Definition 1.3.4. (Structural Similarity (SSIM)) It estimates the level of similarity between

two images. Its values lie in [−1, 1]. The higher the absolute value of SSIM, the more the

similarity. The negative structural similarity scores correspond to inverted local image

structures. For two images I1, I2 can be computed as

SSIM =
(2µI1µI2 + a)(2σI1I2 + b)

(µ2
I2
+ µ2

I2
+ a)(σ2

I2
+ σ2

I2
+ b)

(1.3.13)

where µi, σi are mean and standard deviation of image i, and σI1I2 is co-variance of I1
and I2.

Definition 1.3.5. (Recall (R)) It is the ratio of successfully retrieved relevant pixels to the

total relevant pixels which can be expressed as

Recall = TP/(TP + FN) (1.3.14)

Definition 1.3.6. (Precision (P)) This metric is also based on relevance, which is given by
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the ratio of successfully retrieved relevant pixels to the total retrieved pixels. Thus it can

be expressed as

Precision = TP/(TP + FP ) (1.3.15)

Definition 1.3.7. (Mean Intersection over Union (mIoU)) It measures the percentage

of overlap between the ground truth and the predicted output. It can be evaluated by the

following expression (1.3.16). In other words, it is the ratio of the common number of

pixels between the expected and predicted output, and the total pixels across both images.

IoU = (target ∩ prediction)/(target ∪ prediction) (1.3.16)

Definition 1.3.8. (Pixel Level Mean Absolute Error (MAE)) The average pixel-wise

absolute difference between the predicted image and the ground truth is termed MAE. It is

expressed as

MAE =
1

XY

X∑
x=1

Y∑
y=1

|GT (x, y)− PI(x, y)| (1.3.17)

where GT is the ground truth, PI is the predicted image, X , and Y is the width and height

of predicted image. The smaller the value of MAE, the better the system.

Definition 1.3.9. (Precision-Recall (P-R) Curve) The values of precision and recall are

computed at different thresholds, and the curve plotted using these precision-recall pairs

is called as P-R curve. A high area implies high precision and recall, equivalent to having

low FP and low FN, respectively, thus, the system with the higher area is considered better.

Definition 1.3.10. (F-measure (Fβ)) This metric is chosen for gauging the similarities

between the predicted image and the ground truth. Precision (P) and recall (R) are taken

into account in Fβ evaluation, which is expressed as

Fβ =
(1 + β2)P ·R
β2 · P +R

. (1.3.18)

where β2 is chosen to be less than 1 for emphasizing more on the precision. More be the Fβ

score, better be the system. For β = 1, this score is called the F1-score/ dice coefficient. It

is used for testing the efficiency of object/activity detection algorithms. It ranges between 0

and 1. The higher be the value of the F-measure, the more is the efficiency of the algorithm.

The F-measure score is determined for each pair of precision-recall data and uses the

highest value as the dataset’s evaluation score denoted as Fmax
β . An adaptive threshold
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that is twice the mean value of the prediction is used to calculate F avg
β . It reflects the

spatial consistency of the predictions. The values of precision and recall are computed at

different thresholds and the curve plotted using the values of F-measure corresponding to

these precision-recall pairs is called F-measure curve.

The performance of an authentication system depending on any biometric modality
is evaluated using the five standard evaluation metrics viz. Correct Recognition Rate
(CRR), Equal Error Rate (EER), Accuracy (Acc), Discriminative Index (DI) and Reciever
Operating Characteristic (ROC) curve. A comparison of two biometric samples is referred
to as genuine if they belong to the same individuals. However, if the comparison is
made between two samples belonging to different individuals, it is known as an imposter
comparison. All these evaluation metrics are described below.

Definition 1.3.11. (Correct Recognition Rate (CRR)) The percentage of the test set

that gets its actual match at rank-1 is rank-1 recognition accuracy, also known as CRR.

Mathematically, it can be expressed as equal to C
T
×100, where C is the number of samples

correctly matched at rank-1 and T is the total number of samples matched.

Definition 1.3.12. (Equal Error Rate (EER)) The number of imposter matches accepted

by the system out of the total number of samples provided is known as the false acceptance

rate (FAR). The False Rejection Rate (FRR) is the proportion of genuine samples the

system rejects. When the value of FAR and FRR coincides, then that value is referred as

the equal error rate (EER).

Definition 1.3.13. (Accuracy (Acc)) The accuracy of a recognition system is the ratio of

the correctly recognized samples to the total number of samples matched. Mathematically,

it is max
(
100− FAR+FRR

2

)
.

Definition 1.3.14. (Discriminative Index (DI)) It measures how effectively genuine and

imposter matching scores are isolated. It can be mathematically expressed as µg−µi

σg
2−σi

2 ,

where µg/ µi and σg / σi are mean and standard deviation of genuine/imposter scores.

Definition 1.3.15. (Reciever Operating Characteristic (ROC) Curve) The parametric plot

of FAR against FRR for different decision threshold values refers to the ROC curve. It

evaluates the classification performance comprehensively at different threshold values.

The area under the ROC curve depicts the error in distinguishing between the classes,

therefore it is also called as Error Under Curve (EUC). The system with the lesser area is

considered better.
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1.4 Research Gaps
Based on a thorough review2 of the existing literature, the following gaps were identified:

1. Fractional-order differential models for designing the policies and law enforcement
on recidivists have not been researched upon.

2. Effectiveness of Fractional order gradient-based learning algorithm for training
ANNs is not yet investigated much.

3. Fractional calculus-based deep learning algorithms have not been explored for
computer vision applications such as object detection, image segmentation, and
image matching.

4. Real-time robust vision system is still a challenge in matching features of different
biometric modalities.

1.5 Thesis Objectives
Based on the identified research gaps, the thesis aims to perceive the applications and
possible postulates of fractional calculus in three different areas: criminology, time-series
forecasting, and computer vision. To achieve this primary objective, three sub-objectives
are framed as follows:

1. To analyze the effectiveness of fractional differential equations methods in modeling
crime transmission.

2. Investigate the importance of fractional gradient-based learning in improving the
training of Artificial Neural Networks (ANNs).

3. Apply Fractional Calculus based approaches to solve image segmentation, object
detection and image matching problems in Computer Vision domain.

The first objective is addressed in Chapter 3, the second is discussed in Chapter 4 and
the third objective is addressed in Chapter 5-Chapter 7.

2Detailed review of the existing literature is presented in Chapter 2.
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1.6 Thesis Contribution
In this thesis, some history-dependent processes are modeled using fractional calculus-
based techniques to characterize them accurately. The main contribution of the thesis can
be categorized based on the domain, in which fractional calculus is applied.

1. Criminology: The primary purpose of crime transmission modeling here is to
help understand the facts and analyze, based on the past behavior of criminals
and judiciary that how crime rates are expected to vary when specific parameters
are modified in the presence of recidivists. The population comprises five com-
partments: criminal, non-criminal, imprisoned, prison-released, and recidivist. A
fractional-order crime dissemination model with the aforementioned compartments
is developed to comprehend the complexity of criminal activity and societal be-
haviors. The historical dependencies of crime transmission in society are modeled
by exploiting the memory property of fractional derivatives. The ablation study is
performed to obtain adequate imprisonment, especially for repeat offenders.

2. AQI Prediction: With sufficient data and computational support, AQI forecasting is
being done with deep neural networks. But these methods require learning a large
number of parameters. Thus, a simpler and more accurate method is developed in this
thesis using a Vanilla RNN. The current level of air pollution in any area also depends
on the AQI status in the past. The architecture of vanilla RNN is much simpler
than the structure/functioning of an LSTM, but the predictions made by RNNs
with fractional gradient-based backpropagation are comparable and sometimes even
better than LSTM with the integer-order gradient descent algorithm. With simpler
architecture, achieving better results shows the effectiveness of fractional gradient
over integer-order gradient descent on time series data.

3. Sattelite Image Road Segmentation: The complex backgrounds and occlusion due
to buildings, cars, trees , etc., overlapping, interlacing, and shadowing of the clouds,
trees etc. in satellite images affect the accuracy of road network extraction. Long-
term feature interactions are required to extract roads from the images with complex
backgrounds since such interactions can preserve semantic/appearance information.
Thus to improve the forward propagation of the features, it is better to reuse the
feature extracted at preceding states. A U-shaped densely connected network
with fractional-weighted skip connections for satellite image road segmentation is
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proposed in this thesis. This work has exploited the memory property of fractional
derivatives to prevent the dilution of features after propagation through multiple
layers. Experiments show that extracted road networks are continuous and the edge
information is preserved even in the presence of occlusions like trees and buildings.
The effectiveness of non-local fractional derivatives in the proposed network can be
observed from the segmented outputs as there is less loss of information.

4. Salient Object Detection: Detecting multiple salient objects of varying scales,
from a cluttered background and with sharp boundaries is still challenging. An
accurate saliency map production requires low-level appearance and high-level
semantic features. Thus an optimal combination of local and global cues is required
to extract features effectively. A salient object detection network with a densely
connected encoder having fractional derivative-based weighted skip connections and
a decoder with multiple modules is proposed in this thesis to improve the quality
of features. The network predictions for each fractional α are aggregated using a
weighted average ensemble method based on the system’s F-measure, to diversify the
predictions. The proposed model performs better even in challenging scenarios such
as cluttered background, multiple salient objects, low contrast difference between
salient objects and background, and foreground/background disturbances. Moreover,
it chooses the correct salient objects and produces more complete salient maps due
to the simultaneous aggregation of local and local features.

5. Palmprint Image Recognition: The non-uniformity in the features of the palm,
due to the significant variations in the shape and texture of the palm from person to
person, makes it challenging to develop a universal and robust model that can accu-
rately identify all individuals. This paper proposes a palmprint-based authentication
system that extracts features from FrDPalmNet, a novel fractional-derivative-based
residual network embedded with dual attention modules. The trainable weights of
FrDPalmNet are optimized by using large-margin cosine loss with focal loss. This
increases the inter-class variations with intra-class similarities. This feature extrac-
tion process generates more expressive and discriminative features. The predictions
of FrDPalmNet for each fractional α are aggregated using a weighted average en-
semble method based on the system’s error rate. The effectiveness of adopting the
proposed palmprint recognition system is evaluated on unconstrained databases.
Results show that the proposed system achieves state-of-the-art performance with
uniform accuracy over heterogeneous databases.
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1.7 Thesis Organisation
Having discussed the main objectives and contribution of the thesis, this section provides
a brief thematic overview of the chapter-wise road map. The thesis organizes the research
effort into seven chapters. Chapter 2 is dedicated to a detailed literature survey of the
application of fractional calculus in considered problems. The next five chapters, i.e.,
Chapter 3 - Chapter 7, address the application of fractional derivatives in criminology,
AQI forecasting, road segmentation, salient object detection, and palmprint recognition.

Chapter 3 proposes a five-compartment fractional-order model to analyze the dy-
namics of crime transmission. The analysis is focused on designing the policies and
law enforcement on the recidivists. Subsequently, the stability of the equilibrium points
and threshold conditions for the system are determined. Numerical simulations are also
performed to validate the theoretical results.

Chapter 4 analyzes the effectiveness of using a fractional gradient descent algorithm
in training neural networks for time-series forecasting. The algorithm’s efficacy is demon-
strated in the data on air quality. In this chapter, five cities of different tiers are considered
for AQI prediction. Bengaluru, Kolkata, and Hyderabad are Tier I cities, while Patna and
Talcher are Tier II and Tier III cities, respectively.

Chapter 5 proposes a U-shaped densely connected network with fractional-weighted
skip connections for satellite image road segmentation. This work has exploited the mem-
ory property of fractional derivatives to prevent the dilution of features after propagation
through multiple layers. Experiments are carried out on two open-source databases MRD
and ORD, with different road structures and backgrounds.

Chapter 6 proposes a salient object detection network with a densely connected
encoder having fractional derivative-based weighted skip connections and a decoder with
multiple modules for improving the quality of features. Experiments are performed on
six benchmark databases with different complexities: ECSSD, HKU-IS, PASCAL-S,
DUT-OMRON, DUTS-TE and SOD.

Chapter 7 proposes a palmprint-based human authentication system that uses a metric-
based deep learning network, called FrDPalmNet, for feature extraction. The long-term
memory of fractional derivatives and the dual attention mechanism is exploited to extract
highly discriminative features. The proposed technique is tested on four popular publicly
available palmprint databases viz. CASIA, IIT-D Touchless and Tongji-Contactless.

Subsequently, Chapter 8 provides the overall summary and discusses the potential
future scope of the work.
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Literature Review

This chapter presents a detailed review of fractional-order derivative-based techniques in
the existing literature. The discussion highlights the advantages of fractional calculus-
based algorithms over conventional algorithms. It has been observed that the memory
property of fractional derivatives is being exploited in the considered domains. This
study shows the successful implementations of fractional calculus and brings out the
challenges and future scopes. Application of fractional derivatives is discussed in six
different domains viz. crime modeling, backpropagation training algorithm for ANNs and
computer vision in Section 2.1, Section 2.2 and Section 2.3 respectively. A summary of
the survey is presented at the end of the chapter.

2.1 Fractional Calculus in Crime Tansmission Modeling
Criminologists examined various reasons in the twenty-first century to understand why
an individual would commit crimes. Throughout history, individuals have sought to
understand why a person will commit crimes in terms of biological, psychological, social,
and economic aspects. Greed, anger, jealousy, retribution, or vanity may contribute to
a crime being committed. Some individuals tend to commit organized crimes. In the
transmission phase, the future condition is strongly linked to a person’s criminal history.
The likelihood of having a criminal conviction is two times higher in the children of
criminal parents than in non-criminal parents [76, 77]. To reduce crime dissemination, the
history and experience of the judiciary are also very relevant [78]. Further, to strengthen the
proper functioning of jurisdictional agencies, several mathematical models were introduced
[3, 79–81]. The previous experiments were conceived as a preliminary investigation
based on the ordinary differential equation (integer-order) compartmental crime models.
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Conventional mathematical models cannot obtain the higher degree of accuracy necessary
to explain the transmission process. Since fractional calculus can better represent and
handle the retention and transmission characteristics of different materials than integer-
order models [82], fractional differential equations are being used to address this issue. In
light of this, two fractional-order crime transmission models are developed to include the
history of crime [7, 8].

The model shown in Figure 2.1 is a fractional-order three-compartment model par-
titioned into three sections: non-offenders (A) indulged in crime/offenders (O) and the
imprisoned population (P ).

Figure 2.1: Flowchart of the three-compartment fractional crime transmission model [7]

The above fractional-order model is three-compartment, and the equilibrium points are
determined using the phase plane method. Further, equilibrium points are classified into
low and high-crime equilibriums. The tipping point classifying low and high equilibrium
points in the crime transmission fractional model is identified to be the threshold value.
The obtained equilibria points help to analyze the impact of criminal activity in the
community by altering crucial parameters such as people’s incarceration and the release
of criminals. One of the critical conclusions of the study is to show that a minute growth
in the imprisonment rate tends to lower the spread of crime. Adopting this model by
jurisdiction departments and allies may help tackle crime transmission effectively.

In the above model, the behavior of prison-released individuals is not analyzed. Hence,
a fractional-order crime propagation four-compartment mathematical model is proposed
for analyzing the dynamics of the spread of crime by categorizing the extant population
into four subgroups based on their criminal histories. These clusters include law-abiding
citizens (non-criminals (X)), criminally active individuals (who have not been imprisoned
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(C)), prisoners (P ), and prisoners who completed the prison tenure (recovered (R)), shown
in Figure 2.2.

Figure 2.2: Schematic Diagram of the four-compartment Crime Transmission Model [8]

It is assumed that crime can be optimized with proper law enforcement and subsequent
treatment. Individuals from the recovered class are believed to transfer to the criminal
or non-criminal populations as certain offenders do not change their minds even after
rehabilitation. The delay coefficient (τ) is also included in this four-compartment model
to investigate the time difference between an individual’s crime and judgment. The results
of the delayed version of this model suggest that once the delay reaches a certain threshold,
the model oscillates periodically. If the order of derivative increases from 0 to 1, the
delay decreases, indicating that the model’s stability region expands. Further, to consider
the role of recidivists in crime transmission, a five-dimensional fractional-order model is
developed in this thesis, shown in Chapter 3.

2.2 Fractional Calculus in Training of ANN
This section discusses the application of fractional calculus in improving the training of
neural networks. Fractional Calculus has been applied to ANNs due to the long-term
memory, or non-locality of fractional derivatives [39, 83–85]. While training of neural
networks using the backpropagation algorithm, instead of integer order derivative, the
fractional-order derivative is used in the fractional-order gradient-based algorithm, and the
update rule becomes

∆w = −ηδ
αE

δwα
(2.2.1)
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where η is the learning rate, and α is the fractional order of differentiation. The frac-
tional derivative was used for the backpropagation algorithm for feed-forward neural
networks(FNNs) by Chen etal. [86] in 2013. The simulation results demonstrated that the
convergence speed based on fractional-order FNNs was much faster than integer-order
FNNs. In 2015, Pu [87] paid attention to the fractional order gradient method. It was
observed that this method might not lead to the actual extreme point. Chen [88, 89]
rectified this defect using truncation and short memory principle in the fractional-order
gradient method. In 2017, Wang etal. [84] used the fractional steepest descent algorithm
for training three-layered neural networks and proved its monotonicity and convergence.

Also, Khan etal. [85], proposed fractional-order backpropagation through a time
algorithm for Recurrent Neural Networks (RNNs). Year after, Khan etal. [90] proposed a
fractional gradient descent-based learning algorithm (FGD) for the radial basis function
neural networks. The proposed FGD amalgamates the conventional and the modified
Riemann–Liouville derivative-based fractional gradient descent method. In 2018, Bao
etal. [91], proposed a deep fractional-order BP neural network with L2 regularisation
term, and the order α can be any positive real number. Caputo’s derivative-based fractional
gradient method for backpropagation of Convolutional Neural Networks (CNNs) has been
introduced, successfully converging to real extreme points [92]. Memory or history plays
a significant role in the training of neural networks. Hence, applying fractional derivatives
that inherently incorporate history in computation seems meaningful and beneficial for
training these neural networks. For dealing with the complexity of history-dependent data,
fractional-order neural networks can be used for rigorous analysis.

2.3 Fractional Calculus in Computer Vision
Fractional calculus has been applied in various computer vision domains [93–96], but
still, there are many areas where this technique needs to be involved and evaluated
for improvement. In 1991, Oustaloup et al. laid a cornerstone for the application of
fractional calculus in computer vision. They used fractional derivatives for edge detection
[97, 98], and since then, it has been applied in various domains of computer vision.
Fractional calculus is used in computer vision for enhancement, better detection selectivity,
developing robust denoising models, and dealing with discontinuities. Unlike integer-order
derivatives, fractional derivatives’ non-local nature helps gather past and surrounding
information. This section highlights the usage of fractional calculus in three domains viz.
image segmentation, image recognition, and object detection, along with a summarization
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of the advantages of fractional-order methods for computer vision and image processing
which have been used till now.

2.3.1 Image Segmentation

Image segmentation is the process of partitioning an image into multiple segments or sets
of pixels. This is typically used to locate objects and their boundaries in images. The
segmentation process converts an image into a more meaningful version that is easier to
analyze. In an image, there are regions that don’t contain any useful information. So
processing the whole image is not efficient. By dividing the image into segments, the
important segments can be used for processing the image. Image segmentation techniques
have made a massive impact on the analysis of medical images and remote sensing
images. These techniques help to approach problems in a more granular manner and get
more meaningful results. There are several techniques for segmenting an image, such
as the threshold methods [99, 117, 118], clustering method, PDE-based methods [119],
variational methods and hybrid techniques [120]. The image segmentation techniques,
which are based on differential calculus, are being generalized using fractional derivatives.

The most commonly used are optimal threshold methods which segment an image
into two or more clusters. These methods search for the optimal threshold values, making
the thresholded classes based on suitable characteristics. This is done by optimizing
an objective function. Otsu’s thresholding method [117] automatically determines an
optimal threshold value to separate the pixels of an image into two classes: foreground and
background. This threshold is determined by minimizing intra-class intensity variance,
or, equivalently, by maximizing inter-class variance. Some other thresholding methods
adopt several biological-inspired algorithms when the function that is to be optimized is
not continuous, non-differentiable, and contains multiple non-linearly related parameters.

Particle Swarm Optimization (PSO) is a method of optimization inspired by birds
flocking in search of food. It consists of several particles that iteratively move in the search
space seeking the global optimum. In image processing, pixels of an image act as search
space. The objective is to evaluate the threshold value that maximizes the between-class
variance of the distribution of intensity levels in the given image. However, PSO and
other optimization algorithms have a problem getting trapped on a local optimum so
that the algorithm can fail. Fractional derivatives exhibit memory property, so they are
more suitable for describing phenomena like irreversibility and chaos. Thus, the dynamic
phenomena of the trajectory of a particle build a case where fractional derivatives can be
utilized.
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Table 2.1: Some benchmarking fractional-order image segmentation methods

S
No.

Authors Methods Database Results Outperformed

1 Ghamisi
et al. .
[99]
(2012)

FODPSO Hyperspectral
ROSIS dataset
(Pavia)

Average & STD
fitness value
at level 12 =
3002.73±5.14

Otsu, PSO and DPSO

2 Ghamisi
et al. .
[100]
(2013)

FODPSO +
SVM

a)Hyperspectral
ROSIS dataset
(Pavia)
b) Multispectral
Worldview im-
ages (Australia)

Acc = 96% PSO+SVM and DPSO+SVM

3. Ghamisi
et al. .
[101]
(2013)

FODPSO +
SVM + Mean
Shift Segmen-
tation (MSS)

a) Hyperspectral
ROSIS dataset
(Pavia)
b) Hyperspec-
tral AVIRIS
dataset (Salinas)

Accuracy=
98.04%

Acc= 96.27%

FODPSO+SVM, MSS+SVM
and SVM

4. Lahmiri
et al. .
[9]
(2017)

(PSO, DPSO
and FODPSO)
+ Directional
Spectral Distri-
bution (DSD)

Glioma images Acc = 99.18% PSO+DSD and DPSO+DSD

5. Yousri
et al. .
[102]
(2020)

FO-FPA +
fuzzy entropy

Natural
grayscale
images

PSNR = 22.93
Average SSIM=
0.806

traditional FPA, Cuckoo
Search [103], PSO, GWO
[104] and SSA [105]

6. Perez
et al. .
[106]
(2019)

ABC-
fractional
Gaussian ker-
nel + Cuckoo
search [103]

HRF [107]
STARE [108]
DRIVE [109]

Acc = 95.12%
Acc =94.39%
Acc =95.97%

nOtsu, Gabor filter and
fractional Gaussian derivative
method [110]

7. Shukla et
al. . [93]
(2020)

Weighted
fractional
derivative
mask + local
PCA

STARE[108]
DRIVE[109]

Acc= 95.73%
Acc= 94.74 %

Several traditional methods

8. Ren et al.
. [111]
(2015)

fractional
active contour
model

real and syn-
thetic images

visual compari-
son

C-V model [112], local binary
fitting energy model [113] and
a level set approach [114]

9. Chen
et al. .
[115]
(2019)

adaptive-
weighting
fractional
active contour
model

real ultrasound
and synthetic im-
ages

dice similarity
coefficient
metric value
= 0.9686 (
gaussian noise
with SD = 0.1)

CV model [112], local binary
fitting energy model [113], a
level set approach [114] and a
global level set approach [116]
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Figure 2.3: Segmentation results on brain MRIs for Glioma detection [9]

One of the best performing PSO variants named Darwinian PSO [121] was extended
using fractional calculus to control the convergence rate of the algorithm, denoted as
FODPSO [122]. Search methods based on Otsu’s thresholding method are simple but
are computationally expensive and can get trapped on local optima. To overcome these
problems, the two algorithms, DPSO and FODPSO, have been applied to multi-level
segmentation [99, 118]. Results showed that FODPSO is more efficient than DPSO,
particularly during the increased level of segmentation, making it possible to achieve
a better threshold, more stability, and less processing time due to less computational
complexity.

As hyperspectral and multispectral images have high dimensions, it is not easy to
design algorithms for image segmentation with high accuracy and efficiency. FODPSO
has been used to segment such remote sensing images [100]. Moreover, a classification
approach based on FODPSO and Support Vector Machine (SVM) has been proposed to
show the efficiency of segmentation carried out by FODPSO. It has been observed that
SVM classification accuracy is more while using FODPSO for segmentation. Also, as
a preprocessing step to the classification of remote sensing images, FODPSO has been
integrated with the mean shift variance method of segmentation to overcome drawbacks of
both methods, resulting in an increase of accuracy in classification [101]. Glioma detection
system based on segmented brain MRIs by FODPSO outperformed other systems based
on PSO and DPSO [9]. The results have been validated on brain MRI data obtained from
the webpage of Harvard Medical School1. So FODPSO has been proven successful in
segmenting medical images as well, which can be seen in Figure 2.3. FODPSO has also
been used in the preprocessing step of recognizing handwritten polynomials [123]. Firstly,
the input image was segmented using the FODPSO technique, and then this segmented
image was further used as an input to these CNNs for character recognition. The results

1http://med.harvard.edu/AANLIB/
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obtained from this recognition method were significant, with an average accuracy of 99 %.

Flower Pollination Algorithm (FPA) is another biologically inspired algorithm recently
integrated with fractional calculus to benefit from the memory properties of fractional
derivatives [102]. The search abilities of FPA were enhanced, and the algorithm became
adaptive in terms of FPA exploration and exploitation chores. This FO-FPA has been
used for multi-level image segmentation by evaluating thresholds that divide the image
into a set of classes. FO-FPA outperforms the other meta-heuristic methods such as PSO,
Cuckoo Search, and traditional FPA.

Fractional calculus is being leveraged in the pre-processing step before the image
segmentation. A method to detect blood vessels in retinal images based on the Atan-
gana–Baleanu fractional derivative with fractional Gaussian kernel has been presented
[106]. In this method, a fractional derivative-based Gaussian mask has been proposed to
denoise the image. The enhanced image has been segmented manually and by using other
segmentation methods. This method provided two degrees of freedom due to different
derivative orders while evaluating the gradient and Gaussian kernel. This segmentation
method performed well for various kinds of images, whether noisy or with other light-
ing conditions. The technique has been tested on two databases. The STARE [108]
database consists of 400 raw fundus images collected by the Shiley eye center at the
University of California and the Veterans Administration Medical Center in San Diego.
The database has a list of diagnoses along with the diagnosis code and results of blood
vessel segmentation for 40 hand-labeled images. The DRIVE database [109] contains
images of diabetic retinopathy collected from diabetic retinopathy screening programs in
the Netherlands. A Canon CR5 non-mydriatic 3CCD camera with a 45-degree field of
vision was used to collect data from 400 diabetic participants aged 25 to 90. The proposed
technique has obtained The average accuracy of 95.58% and 95.97% was attained for
vessel segmentation on STARE [108] and DRIVE [109] databases. Another fractional
filter-based efficient algorithm has been presented for retinal blood vessel segmentation in
[93]. Saving thin retinal vessels and noise removal simultaneously in the segmentation
process is a challenging task. Firstly, the fractional filter is applied to the gray image
of the input retinal image to overcome this problem. This fractional mask removed the
noise and preserved the fine details and edges simultaneously. The rest of the processing
steps’ performance, like Principal Component Analysis (PCA), is enhanced by using
this noise immune fractional mask. The average accuracy of 95.73% and 94.76% on
STARE and DRIVE databases was attained for vessel segmentation. This algorithm was
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computationally efficient and relatively better than the other state-of-the-art methods of
retinal image segmentation. Being non-adaptive is the only limitation of this algorithm.
This limitation can be further overcome, and the technique can be improved by introducing
an adaptive function corresponding to the fractional filter.

Besides these, the other method for image segmentation is by means of active contour
models using level sets. The basic idea of such models is detecting objects in an image
by developing a curve, subject to some constraints derived from the input image. The
curve evolution equation is derived from the minimization problem for the energy function
defined on the level set function. The Chan-Vese (CV) [119] model is a popular region-
based level set model for image segmentation. The model is robust to initial contours and
noise, and here regions are assumed to have piece-wise constant intensity. But real-world
images have intensity inhomogeneity. For such images, the CV model is not efficient for
segmentation. To deal with this problem, various other models have been proposed. A
generalized CV model with a fractional-order derivative term has been introduced to the
energy function as a regularisation term. This fractional-order gradient term helps preserve
low-frequency features and texture, which leads to better extraction of image details when
intensity inhomogeneity exists [124].

Another active contour model based on fractional-order differentiation consisting of
the energy functional with the global fitting term and fractional-order derivative term as
regularization term has also been introduced [111]. The model captured details of intensity
inhomogeneous images more accurately. For segmentation of inhomogeneous images, a
Fourier domain fractional differentiation based adaptive-weighting active contour model
has also been proposed [115]. The energy function is the sum of the regularization term
for smooth curve evolution, with the local term and global information term having
corresponding weights that are automatically adjusted. This model’s energy fitting term
is the amalgamation of the fractional order differentiation, the fractional-order gradient
magnitude, and the difference image into the CV model. As fractional-order derivative
preserves and enhances the low-frequency features in an excellent manner [124], thus
this helps in the segmentation of intensity inhomogeneous images. The magnitude of
the fractional gradient also has the memory property of fractional differentiation. This
property makes the process immune to noise. Similarly, when the image with fractional
order gradient magnitude image is subtracted from the actual image, the image becomes
smoother than the true image. Also, the contrast of this difference image is better than
the contrast of the difference image obtained while using integer-order differentiation
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Table 2.2: Some benchmarking fractional-order object detection methods

S
No.

Authors Methods Database Results Outperformed

1 Guan et al. .
[128]
(2012)

FrFT based ALE Sea clutter data
(recorded by the
McMaster Univer-
sity IPIX radar)

SCR = - 6db traditional am-
plitude detec-
tor and CA-
CFAR detector
[129]

2. Yu et al. . [130]
(2018)

SFrFT Radar target SNR = -3db DFrFT

3. Ratre et al. .
[131]
(2018)

FKSOM UCSD AD 2 MOTP = 0.989
Av Acc = 0.934
Sensitivity = 0.929
Specificity=1.

SOM and
Deep Belief
Network [132]

4. Lingaswamy et
al. . [133]
(2020)

Gaussian denoising
filters + fractional
derivatives for for-
ward and backward
tracking + Otsu,

Human motion
videos

Acc ∈ [93.6, 97.3] Traditional
object tracking
methods

5. Takeda et al. .
[12]
(2019)

Fractional
anisotropic fil-
ter

Real videos like
Drone, gun and
4 synthetic ball
videos

PSNR=46.5 Acceleration[10]
and Jerk [11]

6. Chen et al. .
[89]
(2018)

FrQZM FAU [134]
GRIP [135]

F-measure = 0.953
F-measure = 0.939

Forgery detec-
tion methods
[135–138]

3The UCSD image database is available at the following link: http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm

magnitude [115]. The segmentation results were satisfactory for inhomogeneous intensity
images, but the model didn’t perform well for unevenly illuminated images. The order of
differentiation was still chosen manually between 0 and 1. Some benchmarking works
mentioned above are summarized in Table 2.1.

The state-of-the-art image segmentation networks involve, Transformers [125] such as
BEiT [126], and OneFormer [127], which are deep neural networks. Fractional calculus
can be integrated with deep learning architectures for image segmentation like in FOCNet
[5]. Fractional calculus-based image denoising techniques can also be adopted to improve
the pixel classification accuracy during segmentation.

2.3.2 Object Detection

One of the most exciting problems of computer vision and image processing is object

detection. It is the technique of classifying and detecting multiple objects of a specific
class in an image or a video. Feature extraction can be performed using various techniques,
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including: 1) Handcrafted feature extractors like Histogram of Oriented Gradients (HOG),
Scale-Invariant Feature Transform (SIFT), Speeded-Up Robust Features (SURF), and
Local Binary Patterns (LBP); 2) Dimensionality reduction techniques like PCA, Linear
and Discriminant Analysis (LDA); 3) Deep learning algorithms like CNNs. Due to the
non-locality of fractional differentiation, as mentioned before, fractional calculus-based
techniques have been used in pre-processing steps of object detection algorithms for more
accurate feature extraction, and significant results are obtained. This section describes the
fractional calculus-based pre-processing steps for detecting objects in different areas such
as moving object detection, object tracking, and subtle change detection in the videos etc.

Fractional Fourier Transform (FrFT) transforms a function defined in the time/frequency
domain into a domain between frequency and time. Thus it provides a way of measuring
the angular distribution in the time-frequency plane. It offers an extra degree of freedom of
choosing any rotation angle, further improving results compared to when ordinary Fourier
transform is used. High dimensional echo data of radar can be sparsely represented in
the Fourier domain to reduce the computational complexity. On the same grounds, sparse
Fractional Fourier Transform (SFrFT) was proposed and used for Moving Target Detection
in radar images [130, 139]. The SFrFT-based method was found to be computationally
less complicated and had significant clutter suppression ability, thus producing the desired
output.

Anomaly detection in video surveillance is not an easy task. A three-step hybrid
model has been presented in [131], starting with object identification and tracking, then
followed by feature extraction. A Fractional Kohonen Self-Organizing Map (FKSOM)
has been proposed for localizing anomalies in video surveillance. FKSOM is developed
by using fractional calculus in the weight update process of SOM (an ANN developed
by Kohonen). It organizes the features extracted by the tracking model to check for any
abnormal behavior in the video. The performance of pattern matching and filtering gets
enhanced by the application of fractional derivatives. This algorithm performs better than
SOM and Deep Belief Network [132]. Desired values of evaluation parameters- accuracy,
sensitivity, and specificity- were obtained.

Fractional calculus has been successfully applied to license plate recognition [140].
The license plate quality is generally low due to various factors such as improper illumina-
tion conditions, weather conditions, and background. So to improve detection accuracy,
there is a need for edge enhancement in plate images. Image enhancement studies the
sudden changes in pixel values to enhance image quality. Evaluation of derivatives is
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well-known for measuring such abrupt changes. Fractional derivatives have long memory
properties, so they are expected to portray such changes better. A mathematical model for
text detection involving Reisz fractional operator for enhancement has been developed. It
is based on the idea that the real and complex number power of derivatives can be used to
examine the rapid changes in license plate images caused by several factors. Experiments
on benchmark license plate image databases showed that the model performed better than
the existing enhancement techniques. The edges on license plate images are enhanced even
in different distortions, thus improving license plate detection and recognition performance.
The best character recognition rate of 77.38% was obtained for ICDAR 2015-SR dataset
[141] after enhancement by this Reisz fractional operator.

The properties of fractional derivatives have been exploited for improving the results
for moving object detection and object tracking involving forward and backward tracking
[133]. In this approach, the input video is divided into different frames, and then each
frame is first denoised by Gaussian filters. After denoising, fractional derivatives are
evaluated for forward and backward tracking, and the absolute difference is figured out.
The results from forward and backward tracking are pooled together to get the final product.
The resultant image is then segmented using Otsu’s thresholding method, and the object is
detected on each frame. The performance of this method was found to be significantly
better than the traditional strategies.

Fractional calculus has been applied to video magnification as well. Video magnifi-
cation is a technique to observe the subtle changes in the video, invisible to the naked
eye. While capturing, these subtle changes get mixed up with the noise. Traditional
methods also consider non-meaningful subtle changes occur due to photographic noise
and thus give misleading results. Also, the temporal distribution of meaningful subtle
changes is regarded as anisotropic diffusion. Based on these observations, a fractional
anisotropic filter has been proposed for detecting only significant subtle changes [12] as in
Figure 2.4. The filter produced remarkable magnification results and was much better than
those obtained with state-of-the-art methods. But still, the process had some limitations.
Firstly, the estimation of co-variance in fractional anisotropy was not immune to outliers.
Secondly, it performed slowly for large-sized videos. Most importantly, it assumed the
distribution of noise to be having isotropic diffusion, and this assumption can also result
in misleading results. Fractional calculus has been applied to copy-move forgery and its
automatic detection as well [89]. Fractional Quaternion Zernike Moments (FrQZM)’s
results were found to be superior to various existing algorithms, but better results can be
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expected using a deep learning approach in this model.

State-of-the-art deep learning algorithms for real-time object detection include YOLOv4
[142] in terms of time estimation and quality of results on the MS Coco dataset [143]. At
the same time, the best pedestrian detection results are obtained by Beta R-CNN [144].
YOLO [145], RetinaNet [146] and Fast RCNN [147] are some of the milestones in the
cutting edge of object detection. The architecture of the above state-of-the-art model can
be used with fractional derivatives for feature extraction. like in FOCNet [5], the network
layers are connected via fractional-weighted skips. The weights are obtained from the
definition of the G-L fractional derivative. Some benchmarking object detection methods
mentioned in this section are summarized in Table 2.2.

2.3.3 Image Recognition

Image recognition is a classical computer vision problem of pattern recognition. It
determines whether a particular object, activity, or feature is contained in the image or not.
It is a combined task of first detecting and then classifying the object or activity. There
are numerous methods of image recognition. Generally, a feature vector is extracted for
image recognition. For feature extraction, dimensionality reduction is the most popular
machine learning method. The image is decomposed into a composition of a set of base
images. The dimensionality reduction methods like PCA, Linear Discriminant Analysis
(LDA), and some kernel-based non-linear feature extractors like SVM, kernel-PCA, and
kernel discriminant analysis have caught much attention. Such methods may lead to poor
classification performance in case of significant variations, say, variations in illumination,
facial expressions, age, facial hair, and poses. The image gray value matrices are very
sensitive to such variations. For instance, in face recognition, prominent facial variations
such as occlusion, lighting, expressions, and so on affect these ML methods’ performance
[148, 149]. To address these problems, fractional calculus has been used for the dimension
reduction of an image.

For instance, the Fractional-order Embedding Canonical Correlation analysis (FECCA)
method is built for multi-view dimensionality reduction and recognition [150]. Between-
set and within-set samples, covariance matrices are used in dimensionality reduction,
which helps in recognition. But these matrices suffer from noise disturbance. Due to less
availability of training samples, matrices deviate from true ones. During canonical correla-
tion analysis, these biased estimates deteriorate the learning for dimensionality reduction.
To reduce the adverse effects of biased estimates, fractional calculus is employed to correct
eigenvalues and singular values of covariance matrices and then reconstruct the covariance
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Figure 2.4: Comparison of magnification results. a) Original b) Acceleration [10] of and c) Jerk
[11] d) Fractional method in [12]

matrices. This method outperformed the existing Canonical Correlation Analysis (CCA)
methods and joint dimensionality reduction techniques pertaining to classification accuracy.
Another successful development of the fractional calculus-based dimensionality reduction
method is seen in digital holograms. A digital hologram encapsulates the complete in-
formation of a three-dimensional object into a two-dimensional complex fringe pattern.
Under the aegis of digital Fresnel holography, three-dimensional objects are recognized
using fractional Fourier transform-based correlators: Joint Fractional Correlator(JFC)
and Non-linear Joint Fractional Correlator (NJFC) [151]. On comparing the recognition
performance, the non-linear fractional correlator distinguished similar objects more easily
than the linear fractional correlator.

Furthermore, in image recognition, some techniques have been developed that produce
the intermediate representation between the original grayscale image and the dimension-
ality reduction methods. Singular Value Decomposition (SVD) is the most well-known
technique to obtain such image representation. Every image matrix can be decomposed
into a set of base images by SVD. On these grounds, the image matrix can be viewed as a
composition of a set of base images. Among these base images, some leading images cor-
respond to high singular values. These leading images, which represent the original image
matrix, are more prone to sensitivity. Thus great variations affect the process of feature
extraction. To overcome this, the fractional parameter α has been introduced to SVD for
developing the intermediate representation of the image in [152]. With this parameter’s
help, the weights of variations in the leading base images are deflated to reduce the effects
of variations. The fractional parameter α is chosen based on the database and methods to
be implemented for the recognition. The effectiveness of using this fractional-order SVD
representation has been analyzed for many facial recognition methods, such as PCA and
LDA. The results showed significant improvement in the classification performance in the
presence of high facial variations.
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Gabor filter is another way of extracting features, that employs a linear filter for
texture analysis, which essentially means that it analyzes whether there is any specific
frequency content in the image in specific directions in a localized region around the point
or region of analysis. Gabor filter has been integrated with fractional power polynomial
and fractional Fourier transform to improve its feature extraction capability. The fractional
Power Polynomial (FPP) model and Gabor filter have been used with kernel discriminant
analysis and kernel PCA for reducing the dimension of features [153, 154]. By combining
fractional Fourier transform with the discrimination analysis technique of dimension
reduction, a face recognition approach has been developed [155]. This Gabor filter can
also be integrated with fractional-order SVD to obtain better intermediate representations
of the image matrix.

Recently, feature extractors based on moments are catching attention. The moment
is a type of image transform that projects an image into the frequency domain using
orthogonal or non-orthogonal polynomials, either in cartesian or polar coordinates. Image
reconstruction using non-orthogonal moments is challenging to carry out. Moreover, these
moments make the process noisy. On the other hand, orthogonal moments are obtained
from a set of orthogonal polynomials that can represent images with the minimum amount
of information redundancy and high noise robustness. Orthogonal moments defined
in polar coordinates have the advantage of being rotation invariant. Zernike Moments
(ZM) radially shifted Legendre polynomials and Chebyshev–Fourier moments are familiar
orthogonal moments in polar form. The fractional framework of above mentioned moments
has also been presented, and experiments show that while extracting features, fractional-
order orthogonal moments reconstruct the image with high accuracy and recognize the
image robustly [167]. A leaf disease classifying model has been developed based on
Fractional-order Zernike Moments (FZM) [165]. Features are extracted using FZM, and
then further SVM has been used for classifying the disease. The results show that the
FZM-SVM algorithm outperforms other state-of-the-art methods, including integer-order
ZM, SIFT, HOG, and SURF, with 97.4% accuracy at moment order 30 and differential
order 2.5. Another fractional-order moment presented for image analysis is Chebyshev
moments [163]. This fractional-order Chebyshev moment performed significantly well in
image representation and pattern recognition with high robustness to noise. In the future,
other fractional-order moments can be derived and used for feature extraction.

The fractional differential theory has been used in designing the PCA-SVM coupling
algorithm. In [166], a fractional differential mask operator has been developed for edge
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Table 2.3: Some benchmarking fractional-order image recognition methods

S
No.

Authors Methods Database Accuracy Outperformed

1 Liu et al. .
[153]
(2004)

Gabor based Ker-
nel PCA + FPP

FERET [156]
CMU PIE
[157]

99.5%
95.3%

PCA, kernel PCA, Ker-
nel PCA with FPP, Ga-
bor based PCA and Ga-
bor based Kernel PCA
with polynomial kernel

2 Jing et al. .
[155]
(2006)

FrFT + discrimi-
nant analysis tech-
nique

ORL [158]
FERET [156]

97.5%
82.63%

Eigen-face, fisher face,
DLDA and Fourier LDA

3. Liu et al. .
[152]
(2008)

Fractional SVD FERET [156],
AR [159] and
YALE [160]

80.92% OGVM and SV

4. Li et al. .
[154]
(2012)

Gabor filter + FPP
based kernel dis-
criminant locality
preserving projec-
tion

ORL [158] 96.7% PCA, kernel PCA, LDA
and KDA

5. Yuan et al. .
[150]
(2014)

FECCA CENPARMI,
UCI, AR
[159], AT&T
[161] and
COIL-20
[162]

93.4%,
98.1%, 98.4%,
96.35% and
98.17% resp.

CCA, generalized CCA,
Regularized CCA and lo-
cality preserving CCA

6. Kumar et al. .
[151]
(2015)

NJFC with digi-
tal fresnel holog-
raphy

- (Peak to side
lobe) 78.25

JFC

7. Benouini et al.
. [163]
(2019)

Fractional-order
chebyshev mo-
ment (FCM)
and Moment
Invariants(MI)

MPEG-7
[164]
COIL-20
[162]
Butterfly

90.1%
86.22
57.05%

Legendre MI, Gegen-
bauer MI, Discrete
Tchebichef MI, Discrete
Krawtchouk MI and
Geometric MI

8. Kaur et al. .
[165]
(2019)

FZM + SVM Grape leaf
database
(from plant
village web-
site)

97.4% SIFT, SURF and HOG

9. Hu et al. .
[166]
(2019)

Fractional-order-
PCA-SVM

ORL [158] 99.24% PCA-NN, Sobel-
SVM, Sobel-PCA-
NN, fractional-order
PCA-NN and fractional-
order-SVM

detection in highly self-similar images. PCA is applied for feature extraction, and then
these images are recognized using the SVM algorithm. The fractional differential mask
helped fast extract facial features, even in variable illumination and expressions. Signifi-
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cant improvement in speed and accuracy of recognition was observed on account of the
fractional-order-PCA-SVM coupling algorithm. All the methods mentioned in this section
are also shown in Table 2.3.

The above-mentioned methods are mostly machine learning-based algorithms, but
currently, deep learning methods are outperforming other recognition methods. ViT-
G/14[168] and FixEfficientNet-L2[169] are state-of-the-art deep learning models for
classification. But even these deep learning models don’t perform well while recognizing
objects in a noisy image and small size objects in a large image. Therefore to improve
recognition abilities, these deep learning techniques can be integrated with fractional
calculus.

2.4 Summary
This chapter presents a thorough review of existing literature related to the application
of fractional calculus in criminology, training algorithms of ANNs, and computer vision
domains viz. image segmentation, object detection, and image recognition. Based on the
survey of fractional-order crime transmission models, it has been observed that the role of
recidivists is not analyzed with historical consideration. The policies and rehabilitation
programs can be designed separately for such criminals by developing fractional-order
models. In the case of neural network training algorithms based on fractional calculus,
it is noted that it is beneficial to use those algorithms in the cases of history-dependent
data. Moreover, it is observed that the applications of these algorithms are not investigated
much. In computer vision domains, it is observed that the synergy of deep learning and
fractional calculus is not explored. The memory property of fractional calculus can be
utilized for enhancing the memory of deep neural networks and preventing information
loss. Therefore, fractional calculus can be used to improve the feature extraction capability
of the deep neural networks from the images and develop state-of-the-art models. All
these identified gaps are addressed in this thesis chapter-wise.

A part of this chapter is published in the following referred publication:

Sugandha Arora, Trilok Mathur, Shivi Agarwal, Kamlesh Tiwari, and Phalguni Gupta.

”Applications of fractional calculus in computer vision: A survey.” Neurocomputing 489

(2022): 407-428 (I.F- 6, SCI-Q1, Elsevier)
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Crime Transmission Modeling

There is no such simple or universal definition of crime. For various purposes, legitimate
definitions of crime have been stipulated. The most widely held belief is that crime is
a legal category, that is, some act is a crime if it is proclaimed as such by the relevant
and applicable legislation. Human trafficking, theft, fraud, kidnapping, rape, conspiracy,
first-degree murder, domestic abuse, child abuse are major crimes. It has been analyzed
that inequality in society and the lack of employment also lead to increased materialistic
crimes like vehicle theft, robbery etc. [170]. Modeling the prevalence of crime is a
multidisciplinary task as crime is a social issue. Thus it necessitates a comprehension of
the social structure and economic factors promoting the dissemination of crime.

The theories behind the development of crime transmission models for increasing the
efficiency of law enforcement and criminal justice have been discussed in [171]. ’Broken
window theory’ is the most widely adopted criminological theory, introduced by Wilson
and Kelling [172]. It states that multiple broken windows are likely due to a single
damaged window. The theory has linked the broken window to the insufficient monitoring
of the target population, leading to a rise in the crime rate. The notion is demonstrated by
using a variety of examples and anecdotes. The effect of minor features concerning urban
chaos is illustrated in spreading anti-social behavior and perilous crimes. Blumstein’s
work is focused on modeling the recidivism process with the help of criminal data [173].
He has proposed the modification of the deployment of police forces and accordingly
advised policymakers on incarceration to reduce crime. In general, it is believed that the
increase in prison length leads to a decrease in the rate of crime spread. But it has been
reviewed and concluded that length of imprisonment deters crime but weakly [174]. This
means that a specific optimal value of the length of the prison exists, which can reduce the
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crime spread. Thus models are now developed to obtain an optimal prison length [79].

Over the past few years, several mathematical models have been introduced to control
and comprehend criminal activities [175–178]. For example, the evolution of regional
heterogeneity in criminal behavior was studied using innovative reaction-diffusion systems
[179, 180]; approaches based on game theory have been applied to better understand
criminal behavior [81, 181, 182]; and differential systems have been developed to model
the dynamics of the spread of crime in a society [1, 3, 183]. Extensive use of statistical
tools has also been seen in the analysis of criminal data [184, 185].

Although numerous factors influence crime transmission in society, this is evident that
it is propagating like an infectious disease. There is a spike in the number of criminal
activities, thus motivating the jurisdiction’s design of several new policies. To control the
spread of crime, it is required to analyze the factors leading to its propagation including
the several past stages of criminal behavior. A criminally active individual’s contact may
impact the behavior of others adversely. Therefore, the future state highly correlates to
an individual’s criminal history in the transmission phase. Very few models [7, 8] have
considered the history of criminals and criminal justice, one of the significant factors
that decide the future state of crime transmission in society. In these works, fractional
differential equation-based systems have been developed to model crime propagation.
The memory property and non-local behavior of fractional derivatives assist in effectively
modeling the history-dependent dynamic systems [44, 47]. Non-locality means that the
current and past behavior of the function determines the future state of the function.
In addition, the models based on fractional differentiation provide an additional degree
of freedom due to different fractional orders. Further, it is noteworthy that fractional-
order derivatives model the physical engineering processes superior to that of ordinary
derivatives [32].

Pritam et al. [7] proposed an essential fractional-order crime transmission model with
three states of criminal activity. Based on crime involvement and imprisonment, along
with considering the criminal history of any member of the population, they divided the
population into three compartments, viz. non-criminal population, criminal population,
and imprisoned population. They used phase-plane analysis to evaluate the equilibria of
the model and employed the Lyapunov function to determine the threshold conditions.
Bansal et al. [8] proposed a four-compartment fractional-order model for analyzing the
spread of crime with an additional factor of time delay between the occurrence of criminal
activity by an individual and their imprisonment. In addition to criminal, non-criminal,
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and imprisoned, they considered the population released separately. They have analyzed
the stability of equilibria of the delayed model. The existing crime transmission fractional-
order differential models have not considered the possibility of recidivism in society. It
has been observed that past offenders are relapsing into crime either due to ineffective
or severe punishments [186]. Hence, it is essential to evaluate the adequate subjection
amount of ’stick’ and ’carrot’ on criminals [187]. Specifically, in addition to imprisoning
criminals with appropriate prison length, there is a need to rehabilitate and integrate past
offenders into society. Therefore, a five-compartment fractional-order crime transmission
model is developed in this chapter to analyze crime spread in the presence of recidivists.
The contributions of the chapter are highlighted below:

1. In this work, a 5-D fractional-order crime dissemination model is developed to
comprehend the complexity of criminal activity and behaviors in society. The
history dependencies of crime transmission in society are modeled by exploiting the
memory property of fractional derivatives. The population is divided into criminal,
non-criminal, imprisoned, prison-released, and recidivist.

2. Routh–Hurwitz criteria [51, 52] with Matignon conditions [50] are employed to
analyze the model’s equilibrium points and evaluate the threshold conditions. The
extended Lyapunov function approach is also used to determine the global stability
of the fractional-order system and the corresponding threshold condition for a crime-
free society. Results show that the fractional-order crime dissemination model is
uniformly asymptotic stable.

3. The primary purpose of crime transmission modeling here is to help understand the
facts and analyze how crime rates are expected to vary when specific parameters are
modified in the presence of recidivists. The ablation study is performed to obtain
adequate imprisonment, especially for repeat offenders.

4. Numerical simulations are also carried out for the stability analysis of the model
with different fractional orders α. The memory effect due to different orders is
observed in the spread of crime and thus on the population of criminals. Numerical
results show that the derivative order α can be used to avoid ineffective punishments.

The chapter is structured as follows: Section 3.1 describes the proposed fractional-order
crime dissemination model; The existence, uniqueness, non-negativity, and boundedness
of the solution are proved in Section 3.2; Section 3.3 explains the theoretical results

45



Chapter 3

related to the stability of crime-free and endemic equilibrium of the proposed model; The
stability analysis of endemic equilibrium is done with the help of numerical simulations in
Section 3.4; The ablation study is discussed in Section 3.5 accompanied by the concluding
remarks.

3.1 Proposed Fractional-order Crime Transmission Model
Crime spreads in society like a communicable disease. A person with a criminal back-
ground may affect or influence someone with no criminal background. Thus it is required
to imprison the criminals to control the spread of crime for some period of time. But after
imprisonment, they get released and then can assimilate back into society or can again
indulge in criminal activities due to ineffective or severe punishments. Hence, it is required
to keep a check on the criminals released from prison and then further on the recidivists.
For modeling the dynamics of the crime spread in society, these five sub-populations
are needed to be focused and the policies are to be designed for each set of populations
separately such as different rehabilitation programs, different prison lengths etc. Unlike
existing crime transmission differential models, the developed fractional dynamic system
(3.1.1) helps investigate historic and simultaneous effects of imprisonment, length of
prison, recidivism, contagion, history of criminals, and jurisdiction on crime transmission.

The conventional integer-order crime transmission model is taken from [79], and the
fractionalizing procedure given by Dokoumetzidis et al. [188] is adopted for developing the
proposed crime transmission fractional differential model and for analyzing the dynamical
aspects of the final fractionalized differential system. The proposed fractional-order
differential system demonstrates crime propagation in society based on an individual’s
criminal record and imprisonment by classifying the total population into the following
classes:

• A : Law abiding people

• O1 : Non-Incarcerated criminals

• P : Incarcerated criminals

• O2 : Repeat offenders

• R : Released people

Figure 3.1 displays the population flow between the bifurcated classes. Five sub-
populations viz. non-criminals, non-incarcerated criminals, prisoners, recidivists, and
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Figure 3.1: Schematic diagram of the fractional-order crime transmission model

prison-released are shown in green, red, yellow, orange, and blue colored boxes re-
spectively. Arrows with the flow rate over it show the flow of the population to other
compartments. The system (3.1.1) represents Caputo’s version-based fractional-order
crime transmission model with five classes where α is the fractional order which lies in
(0, 1]. The dimension of all the population-based parameters A, O1, P , O2, R, and N

used in the proposed fractional crime transmission model is aligned with the conventional
integer-order crime transmission model [79]. Therefore, the incoming and outgoing flux
for a class is not violating the population balance. It can also be seen from the L.H.S. of
the system that the fractionalized system satisfies the power-law kind of system dynamics
and the population of the classes is in fractional time with dimension t−α. Further, every
parameter in the R.H.S. of the system has power α to keep the system dimensionally
balanced because the rate of change of any population concerning time has dimension t−1.

The first equation of the system (3.1.1) depicts the flux of non-criminal class A. Law-
abiding citizens can indulge in criminal activities due to social interaction with other
criminals at the rate ν1. The term να

1
A(O1+O2)
(N−P )

captures the change in population due to
contact of innocent citizens with other criminals. People indulging in criminal activity for
the first time can return to the non-criminal class without punishment, at rate η1, and the
term ηα1O1 captures this flux. The first-time offenders are caught at the incarceration rate
λ1. The second equation of the system (3.1.1) is the sum of terms relating to a contagion
effect, non-contagion effect, resistance, and incarceration, which depicts the flux of the
criminal population/ offenders.
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C
0 D

α
t A(t) = ηα1O1 − να

1

A(O1 +O2)

(N − P )
+ ξαR

C
0 D

α
t O1(t) = −ηα1O1 + να

1

A(O1 +O2)

(N − P )
− λα

1O1

C
0 D

α
t P (t) = λα

1O1 + λα
2O2 − rαP

C
0 D

α
t R(t) = rαP + ηα2O2 − να

2R− ξαR

C
0 D

α
t O2(t) = να

2R− λα
2O2 − ηα2O2

N = A+O1 +O2 + P +R

(3.1.1)

The third equation of the system (3.1.1) captures the change in the prison population
occurring due to the imprisonment of first-time and repeat offenders and the release of
prisoners after punishment at a rate r. The fourth equation of the system (3.1.1) captures
the change in the current prison-released population. The prison-released people can
indulge in criminal activities again at rate ν2 due to their natural tendency, independent of
interactions with other criminals. The term να

2A captures the change in population due to
the non-contagion effects. The prison-released people move back to society at the rate η2

after punishment and rehabilitation programs, the term ηα2O2 captures this flux. The repeat
offenders are caught at the incarceration rate λ2. The last equation of the system shows
the assumption that the total population remains constant. It can be observed that all the
equations of the system are dimensionally balanced and thus, the model is well-posed.

Table 3.1: Parameter elucidation: Parameterization of the population flows

Parameter Elucidation
ν1 Crime indulgence rate due to social interactions
η1 Rate of assimilating back into society from criminal class O1

λ1 Law-enforcement rate
r Prison-release rate
ν2 Rate of crime indulgence of prison-released people
η2 Rate at which recidivists become criminally inactive
λ2 Law-enforcement rate on recidivists
ξ Rate of moving back to society after releasing from prison
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3.2 Analysis of Solution
This section shows that the solutions of the system (3.1.1) are not only existent but
also unique, non-negative and bounded. Let X(t) = (A(t), O1(t), P (t), R(t), O2(t)) and
Ω+ = {X(t) ∈ Ω ⊆ R5 : X(t) ≥ 0}.

3.2.1 Existence and Uniqueness of Solution

Theorem 3.2.1. If X(t) = (A(t), O1(t), P (t), R(t), O2(t)) there exists a unique solution

of system (3.1.1) with initial condition X(t0 = 0).

Proof. Consider the following system with each equation assumed to be represented by a
function fi(t, A(t), O1(t), P (t), R(t), O2(t)).

C
0 D

α
t A(t) = ηα1O1 − να

1

A(O1 +O2)

(N − P )
+ ξαR = f1(t, A,O1, P, R,O2)

C
0 D

α
t O1(t) = −ηα1O1 + να

1

A(O1 +O2)

(N − P )
− λα

1O1 = f2(t, A,O1, P, R(t), O2)

C
0 D

α
t P (t) = λα

1O1 + λα
2O2 − rαP = f3(t, A,O1, P, R,O2)

C
0 D

α
t R(t) = rαP + ηα2O2 − να

2R− ξαR = f4(t, A,O1, P,R,O2)

C
0 D

α
t O2(t) = να

2R− λα
2O2 − ηα2O2 = f5(t, A,O1, P, R(t), O2)

(3.2.1)

To prove the Lipschitz continuity, consider the function f1

|f1(t, A,O1, P,R,O2)− f1(t, A
′, O′

1, P
′, R′, O′

2)|

=

∣∣∣∣∣
(
ηα1 (O1 −O′

1)− να
1

[
A(N − P −R)

(N − P )
− A′(N − P ′ −R′)

(N − P ′)

]
+ ξα(R−R′)

)∣∣∣∣∣
≤ max{ηα1 , να

1 , ξ
α} (|A− A′|+ |R−R′|+ |O1 −O′

1|)

≤ L||X −X ′||
(3.2.2)

where || · || is the L1 -norm defined on R5. Hence, f1(t, A,O1, P, R,O2) satisfies the
Lipschitz condition and the other fi(t, A,O1, P,R,O2) also satisfy Lipschitz condition
in a similar manner. Being the total population to be constant, the sub-population
A(t), O1(t), P (t), R(t), O2(t) are bounded and clearly, fi(t, A,O1, P, R,O2) are continu-
ous on (0,∞). Thus fi(t, A,O1, P, R,O2) are bounded on (0,∞). Using Theorem 1.2.1,
it can be easily concluded that the system (3.1.1) has unique continuous solution on (0,∞).
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This completes the proof of Theorem 3.2.1.

3.2.2 Non-Negativity and Boundedness of Solution
The solution of the system (3.1.1) denotes the population of non-criminal population,
criminal population, prisoners, recidivists, and recovered population. In real-life scenarios,
the number of persons can not be negative. So, the solution of the system is shown as
non-negative. Boundedness refers to the restriction on the growth of a particular population
class.

Theorem 3.2.2. The solutions of system (3.1.1) are non-negative and bounded, if they

initiate in Ω+.

Proof. From the model (3.1.1), we find that

C
0 D

α
t A(t)|A=0 = ηα1O1 + ξαR ≥ 0

C
0 D

α
t O1(t)|O1=0 = να

1

AO2

(N − P )
≥ 0

C
0 D

α
t P (t)|P=0 = λα

1O1 + λα
2O2 ≥ 0

C
0 D

α
t R(t)|R=0 = rαP + ηα2O2 ≥ 0

C
0 D

α
t O2(t)|O2=0 = να

2R ≥ 0

(3.2.3)

Thus the sub-populations A(t), O1(t), P (t), R(t) and O2(t) are non-negative. As A(t) +
O1(t)+P (t)+R(t)+O2(t) = N , where the total population N is considered to be constant,
each sub-population lies in [0, N ]. Hence the sub-populations A(t), O1(t), P (t), R(t) and
O2(t) are bounded as well. This completes the proof of Theorem 3.2.2.

3.3 Equilibrium Points and their Stability
In this section, the equilibrium points for the system (3.1.1) are determined and their
asymptotic stability is analyzed. The equilibrium points are classified into crime-free
equilibrium E0 and positive equilibrium E∗. The crime-free equilibrium point E0 for the
system denotes the steady state solution when there is no criminal population and it is
given by

O1 = P = O2 = R = 0. (3.3.1)

The endemic equilibrium point E∗ = (O∗
1, P

∗, R∗, O∗
2) is steady state solution of system

(3.3.2) which is obtained when O1 > 0. The total population is assumed to be constant,
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thus the system (3.1.1) is reduced to a four-dimensional fractional-order system by putting
A = N − (O1 + O2 + P + R). After replacing A in the system (3.2.1), the following
system (3.3.2) is obtained. This system is equivalent to the proposed model represented by
the system (3.1.1).

C
0 D

α
t O1(t) = −ηα1O1 + να

1

A(O1 +O2)

(N − P )
− λα

1O1 = f2(t, A,O1, P, R,O2)

C
0 D

α
t P (t) = λα

1O1 + λα
2O2 − rαP = f3(t, A,O1, P, R,O2)

C
0 D

α
t R(t) = rαP + ηα2O2 − να

2R− ξαR = f4(t, A,O1, P,R,O2)

C
0 D

α
t O2(t) = να

2R− λα
2O2 − ηα2O2 = f5(t, A,O1, P, R,O2)

(3.3.2)

The reduced system with four equations is examined in place of the proposed model
which has a set of five equations. Firstly, the stability of E0 and E∗ are analyzed using
Routh–Hurwitz criteria [51, 52] with Matignon conditions [50]. Further, the extended
Lyapunov function approach [49, 53] is employed on the obtained four-dimensional
fractional system for verifying the threshold conditions.

3.3.1 Crime Free Equilibrium

In this section, threshold conditions is derived for the global asymptotic stability of the
crime-free equilibrium of the system using Routh-Hurwitz criteria [51] with Matignon
conditions [50, 52] and then verified by using extended Lyapunov function approach
[49, 53].

3.3.1.1 Stability Analysis of E0 using Matignon Criteria

To evaluate the stability of the steady-state E0, the Jacobian matrix J(E0) is computed as
below

J0 =


∂f2
∂O1

∂f2
∂P

∂f2
∂R

∂f2
∂O2

∂f3
∂O1

∂f3
∂P

∂f3
∂R

∂f3
∂O2

∂f4
∂O1

∂f4
∂P

∂f4
∂R

∂f4
∂O2

∂f5
∂O1

∂f5
∂P

∂f5
∂R

∂f5
∂O2


E0

=


−η1α − λ1

α + ν1
α 0 0 ν1

α

λ1
α −rα 0 λ2

α

0 rα −ν2α − ξα η2
α

0 0 ν2
α −λ2

α − η2
α



From row 1, first eigen value of J0, e1 = −η1α − λ1
α + ν1

α. For other eigen values,
consider the following reduced forms of J0 as follows:
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−rα 0 λ2
α − λ1

αν1α

−η1α−λ1
α+ν1α

rα −ν2α − ξα η2
α

0 ν2
α −λ2

α − η2
α

→
−rα 0 λ2

α − λ1
αν1α

−η1α−λ1
α+ν1α

0 −ν2α − ξα η2
α + λ2

α − λ1
αν1α

−η1α−λ1
α+ν1α

0 ν2
α −λ2

α − η2
α


Here it can be seen that the second eigenvalue, e2 = −rα < 0. Now, consider the trace
and determinant of the following reduced matrix

V =

[
−ν2α − ξα η2

α + λ2
α − λ1

αν1α

−η1α−λ1
α+ν1α

ν2
α −λ2

α − η2
α

]
e3 + e4 = Trace(V ) = −ν2α − ξα − λ2

α − η2
α < 0

Det(V ) = (ν2
α + ξα)(λ2

α + η2
α)− ν2

α

(
η2

α + λ2
α − λ1

αν1
α

−η1α − λ1
α + ν1α

)
(3.3.3)

For the eigenvalues with negative real parts, their product will be positive, thus e3 · e4 =
Det(V ) > 0. Therefore from (3.3.3), we get the following:

(ν2
α + ξα)(λ2

α + η2
α) > ν2

α

(
η2

α + λ2
α − λ1

αν1
α

−η1α − λ1
α + ν1α

)

=⇒
ν2

αλ1
αν1

α

ξα(λ2
α + η2α)(η1α + λ1

α − ν1α)
< 1 =⇒

να
1

λα
1 + ηα1

+
να
1 λ

α
1 (ν

α
2 )

(λα
2 + ηα2 )(λ

α
1 + ηα1 )ξ

α
< 1

(3.3.4)

From the above equation, we get
να
1

(λα
1 + ηα1 )

< 1 =⇒ να
1 < λα

1 + ηα1 =⇒ Re{e1} < 0.

The expression in the above equation represents the threshold condition for the fractional-
order system (3.3.2), which can be denoted byR0 as follows:

R0 =

(
να
1

λα
1 + ηα1

)
+

να
1 λ

α
1 (ν

α
2 )

(λα
2 + ηα2 )(λ

α
1 + ηα1 )ξ

α
< 1 (3.3.5)

All the eigen values have negative real parts, i.e., |arg(ei)| >
απ

2
for 0 < α < 1

when R0 < 1. So the system satisfies Matignon conditions [50] and by Routh-Hurwitz
criteria [51, 52] it can be concluded that E0 = (0, 0, 0, 0) of the system (3.3.2) is locally
asymptotically stable when R0 < 1. (O0

1, P
0, R0, O0

2) → (0, 0, 0, 0) as t → ∞. So the
crime-free equilibrium point E0 is globally asymptotically stable forR0 < 1. Thus, we
have the following theorem.
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Theorem 3.3.1. If R0 < 1, equilibrium point E0 = (0, 0, 0, 0) of the system (3.3.2) is

globally asymptotically stable, else it is unstable.

3.3.1.2 Threshold using Lyapunov Method

Extended Lyapunov function approach [49, 53] is employed on four-dimensional fractional
dynamical system (3.3.2) obtained by putting A = N − (O1 + O2 + P + R) in (3.1.1).
Consider the following Lyapunov function for the fractional-order system (3.3.2)

L = O1 + C1P + C2R + C3O2 (3.3.6)

where C1, C2, C3 are positive constants and they will be chosen later such that the solutions
of the fractional system propagate to lower level sets and hence the solution of the system
tends to the origin.

C
0 D

α
t L = C

0 D
α
t O1 + C1

C
0 D

α
t P + C2

C
0 D

α
t R + C3

C
0 D

α
t O2

= να
1

A(O1 +O2)

(N − P )
− λα

1O1 − ηα1O1

+ C1λ
α
1O1 + C1λ

α
2O2 − C1r

αP

+ C2r
αP + C2η

α
2O2 − C2ν

α
2R− C2ξ

αR

− C3λ
α
2O2 + C3ν

α
2R− C3η

α
2O2

= O1

[
να
1

(
A

N − P

)
− (λα

1 + ηα1 ) + C1λ
α
1

]
+ P [(C2 − C1)r

α] +R [−C2(ν
α
20 + ξα) + C3ν

α
2 ] (3.3.7)

+O2

[
να
1

(
A

N − P

)
+ (C1 − C3)λ

α
2 + (C2 − C3)η

α
2

]
We look for the positive constants C1, C2, C3 in such a way that the values in all the square
brackets of equation (3.3.7) remain negative, i.e., C

0 D
α
t L < 0. Thus for the term in the first

pair of square brackets in (3.3.7):

να
1

(
A

N − P

)
− (λα

1 + ηα1 ) + C1λ
α
1 ≤ να

1 − (λα
1 + ηα1 ) + C1λ

α
1 ≤ 0

requiring

0 < C1 ≤
λα
1 + ηα1 − να

1

λα
1

=⇒ να
1 < λα

1 + ηα1 (3.3.8)
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For the term in the second pair of square brackets in (3.3.7) to be negative requires the
following:

C2 < C1 (3.3.9)

For the negativity of the term in the third pair of square brackets in (3.3.7), the following
should hold:

−C2(ν
α
2 + ξα) + C3ν

α
2 < −C2(ν

α
20 + ξα) + C3ν

α
20

= C3(ν
α
2 )− C2(ν

α
2 + ξα) < 0

=⇒ C3 < C2

(
να
2 + ξα

να
2

)
(3.3.10)

And using (3.3.9), for the negativity of the term in the last pair of square brackets in
(3.3.7):

να
1

(
A

N − P

)
+ (C1 − C3)λ

α
2 + (C2 − C3)η

α
2 ≤ να

1 − (C1 − C3)λ
α
2 + (C2 − C3)η

α
2

< να
1 + (C1 − C3)(λ

α
2 + ηα2 ) < 0

=⇒ C1 +
να
1

λα
2 + ηα2

< C3 (3.3.11)

Now, combining (3.3.9), (3.3.10) and (3.3.11), we get:

C1 +
να
1

λα
2 + ηα2

< C3 < C2

(
να
2 + ξα

να
2

)
< C1

(
να
2 + ξα

να
2

)

=⇒
να
1

λα
2 + ηα2

< C1 ·
ξα

να
2

=⇒
να
1 (ν

α
2 )

ξα(λα
2 + ηα2 )

< C1 (3.3.12)

Combining (3.3.8) and (3.3.12), we get:

να
1 (ν

α
2 )

ξα(λα
2 + ηα2 )

< C1 <
λα
1 + ηα1 − να

1

λα
1

(3.3.13)
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There exists a positive constants C1 which satisfy (3.3.13) and suitable C2, C3, if and only
if the following holds:

να
1 (ν

α
2 )

ξα(λα
2 + ηα2 )

<
λα
1 + ηα1 − να

1

λα
1

=⇒
να
1

λα
1 + ηα1

+
να
1 λ

α
1 (ν

α
2 )

(λα
2 + ηα2 )(λ

α
1 + ηα1 )ξ

α
< 1 (3.3.14)

The expression (3.3.14) is same as the threshold condition (3.3.5) obtained from the
Routh-Hurwitz criteria with Matignon conditions. ForR0 < 1, the Lyapunov function L

with suitable C1, C2 and C3 is bounded for the constant population N and the Caputo’s
fractional derivative of L is negative i.e., C

0 D
α
t L < 0 with C

0 D
α
t L = 0 if and only if

O1 = P = O2 = R = 0. Thus this makes the function L suitable as a Lyapunov candidate
for the model. It can be concluded from Theorem 1.2.4 that the proposed fractional-order
crime transmission model is uniformly asymptotic stable [49, 53]. Thus we have the
following theorem.

Theorem 3.3.2. If R0 < 1, equilibrium point E0 = (0, 0, 0, 0) of the system (3.3.2) is

uniformly asymptotically stable, else it is unstable.

Reproduction Number (R0). The expression in the equation (3.3.14) represents the
threshold condition for the fractional-order system (3.3.2), which is denoted byR0. The
inequality R0 < 1 behaves as a separating border for the crime-free equilibrium cases
and cases where the solution tends to the endemic equilibrium point depicting the high
crime state. The R0 is the reproduction number, representing the number of citizens a
criminal can influence to indulge in crime. The first term of the expression (3.3.5) is
dedicated to first-time offenders O1. The numerator is the crime indulgence rate and the
denominator comprises the sum of the law-enforcement rate and desistance rate. The
numerator in the second term of the expression (3.3.5), is the product of the crime indul-
gence rate of first-time offenders, the crime indulgence rate of repeat offenders and the
law-enforcement rate on first-time offenders. The second term of the expression (3.3.5) is
dedicated to repeat-offenders O2. The denominator of the second term of the expression
(3.3.5) is the product of three terms responsible for leaving the repeat-offender class O2.
It is the combination (sum/product) of the law-enforcement rate and desistance rate of
repeat-offenders and the redemption rate of prison-released criminals. Hence for crime-
free equilibrium, i.e., forR0 < 1, the numerator ofR0 should be less than the denominator.
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3.3.2 Endemic Equilibrium in the System

The endemic equilibrium point E∗ = (O∗
1, P

∗, R∗, O∗
2) is steady state solution of system

(3.3.2) which is obtained when O1 > 0 and, it yields the following equations:

−ηα1O1 + να
1

A(O1 +O2)

(N − P )
− λα

1O1 = 0

λα
1O1 + λα

2O2 − rαP = 0

rαP + ηα2O2 − να
2R− ξαR = 0

να
2R− λα

2O2 − ηα2O2 = 0

(3.3.15)

The above system can be simplified as :

A

(N − P )
=

ηα1 + λα
1

να
1

O1

(O1 +O2)

rαP = λα
1O1 + λα

2O2

rαP + ηα2O2 = (να
2 + ξα)R

να
2R = (λα

2 + ηα2 )O2

(3.3.16)

From the last three equations of the above simplified system, we obtain O1 =
ξα

λα
1

R and

O2 =
να
2

(λα
2 + ηα2 )

R. Putting this in equation first of system (3.3.15), we get

A

(N − P )
=

ηα1 + λα
1

να
1

1

1 +
να
2 λ

α
1

(ηα2 + λα
2 )ξ

α

(3.3.17)

Now, using equation (3.3.5), we get

R0 =
να
1

ηα1 + λα
1

(
1 +

να
2 λ

α
1

(ηα2 + λα
2 )ξ

α

)
=

(N − P )

A
(3.3.18)

Thus at the endemic equilibrium of the system, we have

A

(N − P )
=

1

R0

(3.3.19)

56



Chapter 3

=⇒ O1 +O2 +A+R = N −P = A · R0 =⇒ O1 +O2 +R = A(R0− 1) (3.3.20)

As O1 > 0, O2 > 0, A > 0 and R > 0, therefore R0 > 1. Moreover, the prevalence
of equilibrium 1

R0
of non-criminals can be interpreted as the the ratio of the rate of

discontinuing criminal activities and the rate of involvement in illegal activities. Thus E∗

equilibrium occurs ifR0 > 1. The endemic equilibrium E∗ = (O∗
1, P

∗, R∗, O∗
2) where

O∗
1 =

ξα

λα
1

R∗, O∗
2 =

να
2

(λα
2 + ηα2 )

R∗, P ∗ = N −

(
R0

R0 − 1

)[
ξα

λα
1

+
να
2

λα
2 + ηα2

+ 1

]
R∗,

R∗ =
λα
1 ξ

α(λα
2 + ηα2 )(R0 − 1) N

(R0 − 1) [λα
1 (ν

α
2 λ

α
2 + ξα(η2α + λα

2 ))] +R0(ξα((λα
2 + ηα2 )ξ

α + να
2 λ

α
1 + λα

1 (λ
α
2 + ηα2 ))

·

3.3.2.1 Stability Analysis of E∗ using Routh-Hurwitz Criteria

To evaluate the stability of the endemic equilibrium E∗, we compute the Jacobian matrix
J(E∗) as below

J∗ =


∂f2
∂O1

∂f2
∂P

∂f2
∂R

∂f2
∂O2

∂f3
∂O1

∂f3
∂P

∂f3
∂R

∂f3
∂O2

∂f4
∂O1

∂f4
∂P

∂f4
∂R

∂f4
∂O2

∂f5
∂O1

∂f5
∂P

∂f5
∂R

∂f5
∂O2


E∗

=


a b c d

e f 0 h

0 j k l

0 0 n o


where a = −ηα1−λα

1+
να
1

R0

+c, b = −c

[
1

R0

− 1

]
, c = −να

1

[
ξα

λα
1

+
να
2

(λα
2 + ηα2 )

]
R∗

N − P ∗,

d =
να
1

R0

+ c , e = λ1
α, f = −rα , h = λ2

α , j = rα, k = −ν2α − ξα , l = η2
α,

n = ν2
α , o = −λ2

α − η2
α .

The characteristic polynomial of the above Jacobian matrix is m4 + K1m
3 + K2m

2 +

K3m+K4 = 0, where
K1 = −a− f − k − o

K2 = af − be+ ak + ao+ fk + fo+ ko− ln

K3 = bek − afk − cej − afo+ beo− ako+ aln− fko+ fln− hjn

K4 = afko− afln+ ahjn− beko+ beln+ cejo− dejn
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Hence, by using the Routh-Hurwitz criterion [51, 52], the endemic equilibrium E∗ =

(O∗
1, P

∗, R∗, O∗
2) is locally asymptotically stable.if and only if the following conditions are

met:

K1 > 0; K4 > 0; K1K2 −K3 > 0; K1K2K3 −K2
3 −K4K

2
1 > 0 (3.3.21)

Thus, the following theorem can be stated.

Theorem 3.3.3. The endemic equilibrium point E∗ = (O∗
1, P

∗, R∗, O∗
2) for the system

(3.3.2) exists and is locally asymptotically stable if and only if the inequalities in (3.3.21)
hold.

3.4 Stability Analysis of Endemic Equilibrium using Nu-
merical Simulations

In this section, the stability of endemic equilibrium points of the model (3.1.1) for different
fractional orders α is shown with the help of numerical simulations. Most of the values
of parameters in S2 are fetched from [1–3] to illustrate the dynamics of crime, which
are also shown in Table 3.2. For evaluating the numerical solution of the proposed
fractional model, we used the Power Series Expansion (PSE) approach described in
[189, 190]. In this approach, Caputo’s fractional derivative is approximated with the
help of Grünwald–Letnikov’s definition of fractional derivative in (1.1.10) because for
a broad class of functions and for t→∞, these two definitions of fractional derivatives
are equivalent [72]. The Adams–Bashforth–Moulton and PSE methods are the most
frequently used methods for evaluating numerical solutions of fractional models. Both
methods have approximately the same accuracy in terms of solutions [189]. In this work,
the PSE method is used which gives a more straightforward numerical solution for the
system C

0 D
α
t X(t) = f(X(t), t) of the form

X(tk) = hα (f(X(tk), tk))−
k∑

j=1

c
(α)
j X(tk−j) (3.4.1)

where tk = kh, h is the time step of calculation and c
(α)
j = (−1)j

(
α
j

)
= Γ(α+1)

Γ(α−j+1).Γ(j+1)

are binomial coefficients for j = 0, 1, · · · , computed using expression (3.4.2) given in
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Algorithm 1 Numerical approximation of the true solution of the proposed model
Input Variables
α ← fractional order of the differential equation (0 < α ≤ 1)

X0 ← array of the initial conditions (A(1), O1(1), P (1), R(1), O2(1))
TSim ← simulation time

h ← time step size (0 < h ≤ 1)

n = round(TSim/h); % time step:

% parameters of the proposed model:
ν1 = 0.005; η1 = 0.045; λ1 = 0.6; r = 0.01; ν2 = 0.3; η2 = 0.03; λ2 = 0.7; ξ = 0.1;

function [yo] = mem(r, c, p) % Memory Function

hist = 0;

for ii=1:p-1

memory = memory + c(ii)*r(p-i);

end

yo = memory;

Discretization of Proposed Model using Power Series Expansion Method of Approximation:
% binomial coefficients calculation:

cp1 = 1; cp2 = 1; cp3 = 1; cp4 = 1; cp5 = 1;
for j=1:n

c1(j) = (1− (1+ α)/j) ∗ cp1;
c2(j) = (1− (1+ α)/j) ∗ cp2;
c3(j) = (1− (1+ α)/j) ∗ cp3;
c4(j) = (1− (1+ α)/j) ∗ cp4;
c5(j) = (1− (1+ α)/j) ∗ cp5;
cp1 = c1(j); cp2 = c2(j); cp3 = c3(j); cp4 = c4(j); cp5 = c5(j);

end

% initial conditions:

A(1) = X0(1); O1(1) = X0(2); P(1) = X0(3); R(1) = X0(4); O2(1) = X0(5);
% calculation of numerical solution of proposed model:

for i=2:n

A(i) = (η1
α ∗ O1(i− 1)− να1 ∗ (O1(i− 1) + O2(i− 1)) ∗

(
A(i−1)

N−P(i−1)

)
+ ξα ∗ R(i− 1)) ∗ hα−

mem(A, c1, i);

O1(i) = (−η1α ∗ O1(i− 1) + να1 ∗ (O1(i− 1) + O2(i− 1)) ∗
(

A(i−1)
N−P(i−1)

)
− λα

1 ∗ O1(i− 1)) ∗ hα−
mem(O1, c2, i);

P(i) = (λα
1 ∗ O1(i) + λα

2 ∗ O2(i− 1)− rα ∗ P(i− 1)) ∗ hα − mem(P, c3, i);
R(i) = (rα ∗ P(i) + η2

α ∗ O2(i− 1)− να2 ∗ R(i− 1)− ξα ∗ R(i− 1)) ∗ hα − mem(R, c4, i);
O2(i) = (να2 ∗ R(i)− ηα2 ∗ O2(i− 1)− ηα2 ∗ O2(i− 1)) ∗ hα − mem(O2, c5, i);

end

for j=1:n

X(j, 1) = A(j);
X(j, 2) = O1(j);
X(j, 3) = P(j);
X(j, 4) = R(j);
X(j, 5) = O2(j);

end

T=h:h:TSim;

Output Variables
X ← arrays of n + 1 real numbers that contain the approximate solutions.
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[189]

c
(α)
0 = 1 c

(α)
j = (1−

1 + α

j
)c

(α)
j−1. (3.4.2)

Thus we get the numerical solution of the system (3.1.1) by solving the following set of
equations with parameters from the two sets S1, S2 which are chosen randomly such that
R0 > 1.

A(tk) = hα

(
ηα1O1 − να

1

A(O1 +O2)

(N − P )
+ ξαR

)
−

k∑
j=1

c
(α)
j A(tk−j)

O1(tk) = hα

(
−ηα1O1 + να

1

A(O1 +O2)

(N − P )
− λα

1O1

)
−

k∑
j=1

c
(α)
j O1(tk−j)

P (tk) = hα

(
λα
1O1 + λα

2O2 − rαP

)
−

k∑
j=1

c
(α)
j P (tk−j) (3.4.3)

R(tk) = hα

(
rαP + ηα2O2 − να

2R− ξαR

)
−

k∑
j=1

c
(α)
j R(tk−j)

O2(tk) = hα

(
να
2R− λα

2O2 − ηα2O2

)
−

k∑
j=1

c
(α)
j O2(tk−j)

The aforementioned methodology is also presented in Algorithm 1. The resulting
equations, input variables, set of parameters, initial conditions and output variables are also
mentioned. Numerical results for fractional systems (3.1.1) where α is varying from 0.7 to
1 can be seen in the Figure 3.2 to Figure 3.5. The simulations are shown on two sets of
parameters, S1 has mostly realistic parametric values and S2 has random parametric values
such that R0 > 1. It is clear from the figures that the models for fractional derivative
order α (0.7 ≤ α ≤ 1) are asymptotically stable. In the previous section, it is theoretically
proved that the endemic equilibrium point E∗ is locally asymptotically stable ifR0 > 1.
Thus the simulations strengthen the theoretical results. The simulations are shown with
two different time frames Tsim = 100 and Tsim = 500. It can be observed that as the order
decreases, the criminal population (O1(t) and O2(t)) also decreases. The trajectories of all
the population classes justify the stability of the proposed model irrespective of the order
chosen. The model with parameters from S1 takes longer to reach the equilibrium point
than the model with parameters from S2. The significant difference between parameters
of S1 and S2 are the values of η1, η2 and λ2, which represents the rate at which non-
incarcerated criminals (first-time offender / repeat offender) are assimilating back into
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society and law enforcement rate on recidivists. The set S1 has significantly lesser values
of η1, η2 and λ2. This means that society with a lower rate of assimilation back into
society and less law enforcement on recidivists will achieve the equilibrium later. Thus,
the simulations validate that recidivists should be handled with stricter policies to reduce
crime spread.

Figure 3.6 to Figure 3.9 show the comparison between the performance of the basic
differential model and fractional model by taking α = 0.99 and α = 0.89. It is visible
from these figures that the fractional order model converges faster to the to the endemic
equilibrium point than the basic integer order model. It can also be observed that the
fractional order model has richer dynamics than the basic model. The fractional-order
model can describe the dynamics in a better way and help more in controlling crime
spread. The fractional-order model converges faster than the conventional model The
faster convergence of the fractional-order model means that the criminal population will
stop growing early in the case of fractional order. It is observed that the fractional order has
a significant effect on the dynamic behavior of all the components. Also, it is noticed that
when the derivative order α is reduced from 1, the memory effect of the system increases.
Therefore the crime spreads slowly with faster convergence to the equilibrium. Moreover,
catching criminals in society takes time and depends on the rate of law enforcement in an
area. This results in an increase in the non-incarcerated criminals, fast progress of crime
and thus an increase in incarcerated criminals.

On the other hand, the experience or knowledge of individuals about the punishment
causes non-criminals and non-incarcerated criminals to take different precautions, such
as behavioral change, avoiding contact with other criminals and joining rehabilitation
programs against crime transmission. This leads to a slow growth of crime among
the population. Therefore, from the numerical results in Figure 3.2 to Figure 3.5, we
conclude that the order of Caputo’s derivative α in the system (3.1.1) can play the role of
precautionary measure against crime transmission, punishment of criminals and delay in
catching criminals. Moreover, Figure 3.6 to Figure 3.9 infer that the differential equations
with fractional order derivatives have rich dynamics and describe criminological systems
better than classical integer-order models. It can be concluded that the derivative order can
play the role of precaution against crime transmission, and the experience or knowledge of
individuals about criminal history.
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Table 3.2: Set of parameter values used for showing numerical simulations

Parameter ν1 η1 λ1 r ν2 η2 λ2 ξ
Value Set S1 0.05 0.045 0.6 0.01 0.3 0.03 0.07 0.1

Value Set S2 0.7 0.4 0.4 0.6 0.6 0.2 0.5 0.7
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Figure 3.2: Variations of non-criminals A, non-incarcerated criminals O1, incarcerated criminals P ,
prison-released population R and repeat offenders O2 with time T = 100 for a set of parameters in
S1 and different order α
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Figure 3.3: Variations of non-criminals A, non-incarcerated criminals O1, incarcerated criminals P ,
prison-released population R and repeat offenders O2 with time T = 500 for a set of parameters in
S1 and different order α
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Figure 3.4: Variations of non-criminals A, non-incarcerated criminals O1, incarcerated criminals P ,
prison-released population R and repeat offenders O2 with time T = 100 for a set of parameters in
set S2 and different order α
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Figure 3.5: Variations of non-criminals A, non-incarcerated criminals O1, incarcerated criminals P ,
prison-released population R and repeat Offenders O2 with time T = 500 for a set of parameters
in set S2 and different order α
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Figure 3.6: Comparison between the basic differential model (α = 1) and the fractional dynamics
with α = 0.89, when parameters are taken from set S1
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Figure 3.7: Comparison between the basic differential model (α = 1) and the fractional dynamics
with α = 0.89, when parameters are taken from set S2
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Figure 3.8: Comparison between the classical model (α = 1) and the fractional dynamics with
α = 0.99, when parameters are taken from set S1
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Figure 3.9: Comparison between the classical model (α = 1) and the fractional dynamics with
α = 0.99, when parameters are taken from set S2
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3.5 Effects of Changing Different Parameters

3.5.1 Effect of Increasing Prison Length

It is intriguing to notice that the thresholdR0 and the fractions of criminally active
A

N − P

and criminally-inactive individuals
O1 +O2 +R

N − P
are independent of prison-release rate

r, hence of prison length l = 1/r. However, it can be seen from the second and third
equations of the system (3.3.15) that the equilibrium values of all classes A,O1, O2, P, R

depend on r. As the prison length parameter l increases (r decreases), the equilibrium
population of incarcerated criminals increases, while the equilibrium population of other

classes decreases irrespective of order α. As we have
A

N − P
=

1

R0

, which implies that

flows of A and I are in opposite directions when r increases. Moreover, O1 =
ξα

λα
1

R

and O2 =
να
2

(λα
2 + ηα2 )

R which implies that flows of O1, O2 are in same directions when

r increases. Hence, considering R + O1 + O2 = kR for some k > 0 and using A =

1

R0

(N − P ) gives the following

1

R0

(N − P ) = N − (O1 +O2 +R)− P = N − kR− P (3.5.1)

=⇒

(
1−

1

R0

)
N =

(
1−

1

R0

)
P + kR (3.5.2)

As R0 > 1 for endemic equilibrium, the coefficients for variables on the right-hand
side of the above equation are positive. Thus, P and R move in the opposite direction
as r increases. In addition, the second equation of system (3.3.15), justifies that as r

increases, R,O1, O2 increases and P decreases. Figure (3.10) shows this dependence for
varying prison lengths. In Figure (3.10), one can see that as prison length l increases from
2 to 5, the equilibrium population of prisoners increases, and the rest of the equilibrium
population decreases irrespective of order α. It can be concluded that increasing the prison
length doesn’t have much effect on the threshold condition, on the fractions of criminally
active and criminally inactive populations. It leads to a larger prison population along
with a reduction of criminally active and inactive individuals. Thus it is advisable not to
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increase prison length, and it should be chosen according to the condition of society.

Figure 3.10: Impact of imprisonment or changing prison length (l = 1/r) on the criminal population
at different states for α = 1 (left) and α = 0.95 (right)

3.5.2 Impact of Law-Enforcement Rate
It is evident from the expression (3.3.5) for threshold R0 that to achieve a crime-free
society, low crime-indulgence rates (ν1, ν2) and high desistance rates (η1, η2, ξ) along with
high law-enforcement rates (λ1, λ2) are required. However, there is a law-enforcement
rate term in the numerator of R0, which means that over-incarceration of first-time
offenders is not recommended and optimal values of law-enforcement rate exist. But in the
denominator, the law-enforcement rate for recidivists balances the expression and suggests
paying more attention to repeat offenders than first-time offenders. Therefore, the required
imprisonment level can be evaluated by analyzing this fractional model. As we have

να
1 ν

α
2 λ

α
1

ξα(ηα1 − να
1 + λα

1 )
− ηα2 < λα

2 (3.5.3)

Thus, if να1 να2 λα
1

ξα(ηα1 −να1 +λα
1 )

< ηα2 , i.e., if the rate of crime indulgence is lesser than the rate of
desistance of recidivists then there is no need of imprisonment. Therefore, rehabilitation
programs should be conducted effectively for criminals, especially first-time offenders,
resulting in low indulgence in criminal activity and hence prevention of crime transmission
in society.

3.5.3 Effects of Desistance Parameters
The rates for first-time offenders and repeat offenders of withdrawal from criminal activities
without being punished are analyzed in this section. The partial derivatives of R0 with
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respect to η1 and η2 are found to be negative as shown in (3.5.4), which means that social
interventions, rehabilitation programs for desistance of offenders decrease crime. For

majority of judicious parameters,

∣∣∣∣∣∂R0

∂ηα1

∣∣∣∣∣ >
∣∣∣∣∣∂R0

∂ηα2

∣∣∣∣∣, irrespective of order α. Consequently,

first-time offenders require more observation as compared to repeat offenders. So it is
required to increase the rate of desistance and decrease the reproduction number, hence
decreasing the crime transmission in society. And therefore, punishments and rehabilitation
programs should be designed separately for first-time offenders (O1) and repeat offenders
(O2) with more focus on (O1) to efficiently control the crime spread due to the assimilation
of criminals back into society.

∂R0

∂ηα1
=
− α ηα−1

1 να
1

(ηα1 + λα
1 )

2

[
1 +

να
2 λ

α
1

(ηα2 + λα
2 )ξ

α

]
∂R0

∂ηα2
=
− α ηα−1

2 να
1

(ηα1 + λα
1 )

[
να
2 λ

α
1

(ηα2 + λα
2 )

2ξα

]
(3.5.4)

3.6 Summary
This chapter introduces a mathematical model with in-built memory to study the dynamics
of crime transmission using the five stages of the criminal justice system. The basic
reproduction parameterR0 is evaluated with non-locality indulgence, which behaves as a
threshold for separating no-crime cases and cases leading to endemic equilibrium. The
stability of the fractional order crime transmission model is investigated concerning the
values of R0. The crime-free equilibrium is uniform asymptotically stable for R0 < 1,
and the endemic equilibrium is locally asymptotically stable forR0 > 1. ForR0 ≥ 1, the
stability of the positive endemic equilibrium state E∗ is investigated. Numerical results
are shown to strengthen the results of the proposed model. It is observed that fractional
order models converge to the endemic equilibrium faster than the conventional one. When
the order of derivative α is reduced from 1, the memory effect of the system increases,
and it is observed that crime spreads slowly with a long-time increase in the number of
incarcerated criminals. Also, the criminal population and hence the prisoner population
decreases with a decrease in fractional order α. Meanwhile, it is observed that increasing
the prison length doesn’t have much effect on the threshold condition, on the fractions of
criminally active and criminally inactive populations. This work recommends making
more strict policies to catch repeat offenders than to catch first-time offenders. It is
advised to organize rehabilitation programs for first-time offenders by influencing
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them to prevent engaging in criminal activities and improving their desistance rate
for eradicating crime from society. Moreover, the necessary level of imprisonment can
be evaluated by scrutinizing the proposed model to reduce the crime prevailing in society.

A part of this chapter is published in the following referred publication:

Sugandha Arora, Trilok Mathur, and Kamlesh Tiwari. ”A fractional-order model to study

the dynamics of the spread of crime.” Journal of Computational and Applied Mathematics

426 (2023): 115102 (I.F- 2.872 , SCI-Q2, Elsevier).
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Air Quality Index Prediction

With the increase in urbanization, industrialization, and traffic in the cities, the air pollutants
are increasing and air quality is reducing [191]. To keep a check on the extent of air
pollution, US Environment Protection Agency has introduced a parameter called the
Air Quality Index (AQI) which tracks the daily effects of air pollutants [192]. AQI is a
numerical value between 0 to 500, when the value of AQI is 0, the air quality is adequate
and if the value of AQI is 500, then the air quality is hazardous. AQI is calculated by
considering major air pollutants viz. Carbon Monoxide (CO), Nitrogen Dioxide (NO2),
Ozone (O3), Particulate Matter (PM10 and PM2.5) and Sulphur Dioxide (SO2). These
pollutants are the residual gases and particles emitted from vehicles, industries and due to
climate change [193].

Biomass and coal-burning highly increase the levels of Particulate matter (PM10 and
PM2.5) that causes haze in the air. These particles deteriorate the air composition and cause
respiratory problems in living beings. Moreover, haze reduces the visibility that further
affects the economic sectors such as tourism, and agriculture [194]. The combustion of
fossil fuels is carried out in several industries which are the main contributors of SO2 and
NO2 in the air [195, 196]. Motorized vehicles and combustion of fossil fuels also emit
CO, which is another major pollutant responsible for worsening air quality. CO is highly
poisonous and can even lead to mortality on long exposure [197]. Another major pollutant
is ground-level Ozone O3, obtained from the combination of two primary pollutants,
Nitrogen oxides (NOx) and Volatile Organic Compounds (VOCs). The 95% of these
primary pollutants come from oil, coal, and gasoline combustion in vehicles, industries,
power plants, and households; upstream gas and oil production; combustion of residual
woods and the evaporated liquid fuels [198]. Exposure to Ozone can significantly affect



Chapter 4

human health, cause Asthma, and can lead to pre-mature mortality [199]. In addition,
Ozone can adversely affect the vegetation, damage the flowers, and shrubs, and reduce
crop productivity. [200, 201].

Air pollution is not a local phenomenon, the current quality of air is dependent on its
history. The industrialization has massively impacted the environment especially the air
quality [202]. The levels of air pollutants like ground-level Ozone and Particulate Matter
are also getting influenced by modifying weather patterns that occurred due to climate
change [203, 204]. The change in climate affects the temperature, humidity levels, and
wind patterns, which in turn influences the air quality. In addition, the naturally occurring
emissions, for example, wind-blown dust, and wildfires, get provoked by climate-driven
changes in meteorology that affect air quality. The uncontrolled emission of air pollutants
is gradually causing air pollution. Continuous exposure to polluted air is severely affecting
human health [205] and leading to the development of lung, heart, and skin diseases. [206].
Thus, forecasting of AQI is required to preserve public health, enable effective policy
planning, and promote environmental sustainability by managing and reducing the effects
of air pollution.

Several forecasting techniques for AQI are being developed to prevent the serious
consequences of air pollution. Based on target objectives, the techniques and approaches
of forecasting are being expanded and improved. Traditional AQI forecasting techniques
involve statistical techniques such as Auto-regressive Integrated Moving Average (ARIMA)
[207, 208], Principal Component Regression (PCR) [209], Multiple Linear Regression
(MLR) [210] and Grey models [211, 212]. Fractional calculus is bieng successfully
used for air quality prediction [213–215]. Fractional derivative based Kalman filter
has been introduced to measure the pollutant emission and hence the air quality [213].
Several variants of fractional Kalman filters have been developed using different fractional
order derivatives version for improving the prediction accuracy [214–216]. In these
air-quality models, fractional calculus has been incorporated because of its non-local
nature. However, these models perform well, but with the high increase in pollution,
more accurate methods are required. These models are linear and thus cannot capture
the non-linear traits [217, 218]. Even with a large amount of data, not much increase is
seen in the accuracy of these models. The performances of the statistical techniques have
been improved by developing hybrid techniques [219]. Artificial Intelligence (AI)-based
techniques can analyze non-linear data. Thus AI-based models are being developed for
time-series forecasting [220, 221], which uses historical data taken at successive equally
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Figure 4.1: RNN Architecture with fractional backpropagation (top) & LSTM architecture (bottom).

spaced points in time to predict future values. With the availability of a sufficient amount
of data and computational support, AQI forecasting is being done with a deep neural
network [222]. But these methods require to learn large number of parameters. Thus, a
simpler and more accurate method is developed in this paper using a Vanilla RNN. The
current level of air pollution in any area also depends on AQI status in the past. To capture
the history dependency, fractional derivatives have been employed in the backpropagation
algorithm to train Vanilla RNN for the prediction of AQI in Indian cities.

In our study, the effect of using fractional derivatives in learning neural networks
is analyzed to predict air quality in a few Indian cities. Six of the world’s top 10 most
polluted cities are from India. Air pollution is observed as the second biggest risk factor
causing diseases in India and thus affecting its economy. Thus there is a need to check
air pollution in Indian cities. Each city has its unique features like population per square
km, temperature, humidity level, climate, vehicles, industries in the region, etc. and thus it
is better to study air pollution region-wise. Generally, the air quality in tier I and urban
cities is low and it is required to give more attention in such areas. But there is a gradual
increase in air pollution in other cities as well across India.

This chapter considers five cities of different tiers for AQI prediction. Bengaluru,
Kolkata, and Hyderabad are tier I cities, while Patna and Talcher are tier II and tier
III cities respectively. The major air pollutants of Kolkata are also predicted using the
proposed approach. The results show that the proposed method achieves minimum error on
some fractional order. Also, the obtained results are comparable to the LSTM. This chapter
is structured as follows: The next section explains the proposed approach, Section 4.2
discusses the experimental results obtained, followed by concluding remarks in Section 4.3.
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4.1 Proposed Approach

In this study, Vanilla RNN is employed to predict the AQI value of a day based on the
previous sequential AQI data of five different cities. RNNs are capable of learning the
sequential pattern of historical data. Further, the accuracy of the system is improved by
incorporating memory into the system using the fractional gradient descent algorithm.

4.1.1 Fractional Gradient Based Backward Propagation Algorithm

This section introduces fractional-order truncated backpropagation through a time algo-
rithm on RNN with 10 neurons in a layer. This backpropagation algorithm considers the
truncated depth of the input data and the network state, making the algorithm computation-
ally efficient. For the implementation of the backpropagation algorithm, the mean squared
error at an instant is considered which is described as follows:

E(s) =
1

2

∑
i∈Ω

(Φ(ui(s))− xi(s))
2 =

1

2

∑
i∈Ω

(ei(s))
2 (4.1.1)

where i is the output neuron, Φ(ui(s)) and xi(s) are the actual output and the expected
output of the ith neuron at time s and ui(s) =

∑
j∈Ω wijvj(s) at time s where wij(s) is the

weight of a signal from jth neuron to ith and vj(s) is the output of jth neuron at time s,
then the update rule becomes:

wij(s+ 1) = wij(s)− η∇α
wij

E(s) (4.1.2)

where η is the learning rate and ∇α
wij

represents the factional gradient w.r.t wij . Now,
∇α

wij
E(s) can be evaluated by applying the approximated chain to the error function. The

actual chain rule applicable on fractional derivatives is complicated and involve special
mathematical functions, thus several , approximated chain rules has been developed for
fractional derivatives. [223–226] The chain rule given by expression (4.1.3) has been
obtained by using fractional Taylor’s series expansion for differentiable function. Consider
a differentiable function, say f then for a small h:

f(x+ h) = f(x) +
hα

Γ(1 + α)
f (α)(x) +

h2α

Γ(2 + α)
f (2α)(x) +

h3α

Γ(3 + α)
f (3α)(x) + · · ·
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Then

∆f(x)

hα
=

1

Γ(1 + α)
f (α)(x) +

hα

Γ(2 + α)
f (2α)(x) +

h2α

Γ(3 + α)
f (3α)(x) + · · ·

Taking limit h→ 0 , we get

limh→0
∆f(x)

hα
=

1

Γ(1 + α)
f (α)(x)

Also , limh→0
∆αf(x)

hα = f (α)(x)

⇒ ∆αf(x) ≈ Γ(1 + α)∆f(x) 0 < α < 1

From above equation we can also say dαf(x) ≈ Γ(1 + α)df(x) 0 < α < 1. Using this
result,

dαf(v(x))

dxα
=

dαf(v(x))

dαv

dαv

dxα

=
Γ(α + 1)df(v(x))

Γ(α + 1)dv
v(α)x (x)

= fv
′
(v).v(α)x

Hence
Dα

xf(v(x)) = D
′

vf(v).D
α
xv(x). (4.1.3)

After using the above mentioned fractional chain rule, we get

∇α
wji

E(s) =
∂E(s)

∂ej(s)
·
∂ej(s)

∂vj(s)
·
∂vj(s)

∂ui(s)
·
∂αui(s)

∂wα
ji(s)

(4.1.4)

Suppose
∂E(s)

∂uj(s)
= δj(s), then

∂E(s)

∂ej(s)
·
∂ej(s)

∂vj(s)
·
∂vj(s)

∂ui(s)
=

∂E(s)

∂uj(s)
·
∂αui(s)

∂wα
ji(s)

= δj(s) ·
∂αui(s)

∂wα
ji(s)

(4.1.5)

Now, as in this study Caputo’s version of fractional derivative (1.1.7) is being used and
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C
0 D

α
xx

p =
Γ(p+ 1)xp−α

Γ(p− α + 1)
, for p > −1, then the following holds

∂αui(s)

∂wα
ji(s)

=
w1−α

ji (s)vi(s)

Γ(2− α)
(4.1.6)

Thus from Equation (1.1.7), Equation (4.1.5) and Equation (4.1.6) the following final
update rule is obtained

wkj(s+ 1) = wkj(s)− η

n∑
s=n−h+1

δk(s)
w1−α

kj (s)vj(s)

Γ(2− α)
. (4.1.7)

4.1.2 Data Exploration and Processing

In this study, the continuous AQI data is used to predict future unseen AQI values. For each
city, a continuous-time patch of around 1000 data points is used from the AQI dataset. The
sample data can be seen in Table 4.1. For constructing the training data, a min-max scaler
is used to scale the data values between 0 and 1. The predicted values are also obtained
between 0 and 1, which are inverse-transformed later to evaluate the final predicted AQI
value.

Table 4.1: Data samples of all cities

Bengaluru
Date 2019-09-01 2019-09-02 2019-09-03 2019-09-04 2019-09-05 2019-19-06
AQI 61 48 51 51 56 64

Kolkata
Date 2018-06-16 2018-06-17 2018-06-18 2018-06-19 2018-06-20 2018-06-21
AQI 119 113 107 148 94 100

Hyderabad
Date 2017-11-01 2017-11-02 2017-11-03 2017-11-04 2017-11-05 2017-11-06
AQI 150 156 158 114 91 80

Patna
Date 2017-11-05 2017-11-06 2017-11-07 2017-11-08 2017-11-09 2017-11-10
AQI 276 289 286 354 430 439

Talcher
Date 2018-02-08 2018-02-09 2018-02-10 2018-02-13 2018-02-14 2018-02-15
AQI 311 321 343 343 269 243
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4.1.3 Neural Network Architecture and Training

Vanilla RNN is used in the proposed model which has a single-layered architecture with
10 nodes. The fractional gradient-based RNN model is built from scratch. Forward
propagation and fractional gradient-based backpropagation as given by Equation (4.1.7)
is used for training Vanilla RNN. On the other hand, the LSTM also has a single-layered
architecture with 10 nodes, and the integer-order gradient descent algorithm is used to
train the model. A window of 10 days (timestamps) is used, which would predict the AQI
data for the next (11th) day. Training and testing sets have 600-800 and 100 data values
respectively. For the initializing of weights for the models, The most widely adopted
Xavier’s initialization is used with 0.1 learning rate. This initialization process sets the
initial weights by sampling from a Gaussian distribution with zero mean and variance
calculated based on the number of inputs and outputs of each layer to avoid the problem
of vanishing or exploding gradients. The models corresponding to each city and fractional
order are trained for 80 epochs. The Figure 4.1 shows the architecture of the RNN with
fractional gradient-based backpropagation. In the diagram, a part of the neural network,
A accepts input xt and outputs a value ht at timestamp t. U , W , and V represent the
matrices of weights corresponding to connections joining the input state to the hidden
state, one hidden state to the successive hidden state, and the hidden state to the output
state respectively. It can be noted that the same set of weights is used for every time step.
The gated architecture of LSTM is also shown in Figure 4.1.

4.2 Results and Discussion

This section describes the AQI dataset of five chosen cities, the results obtained using
the proposed approach on the AQI data, and the discussion of the comparison between
predictions of LSTM and the proposed approach on different fractional orders. The stan-
dard evaluation metrics for forecasting models viz. Root Mean Squared Error (RMSE)
and Mean Absolute Percentage Error (MAPE) have been employed to assess the perfor-
mance of the proposed model in the prediction of AQI of different Indian cities and the
major pollutants in one of those cities. The lesser the value of RMSE and MAPE, the
better the predictor’s performance. These errors measure the performance of forecasting,
climatology, and regression analysis for verifying the experimental results.
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4.2.1 Database Specifications

The AQI dataset of five cities for 2015-2020 is considered which is publicly available at
the official portal of the Central Pollution Control Board, Government of India 1. The
dataset consists of daily air quality levels at various stations across multiple cities in India
which are obtained by averaging out the hourly value of AQI. Indian cities chosen for the
analysis includes Kolkata, Hyderabad, Bengaluru, Patna, and Talcher. Basic information
related to these cities:

• Kolkata (22◦34′03′′N 88◦43′57′′ E), located in West Bengal, is a tier I and the
seventh-most populous city of India with third-most populous metropolitan area.
The concentration of pollutants such as Sulphur Dioxide and Nitrogen Dioxide
remains within the limit but the presence of Particulate Matter in the air is high
and is increasing over the years. Due to this air pollution is severe and is causing
respiratory ailments like lung cancer.

• Bengaluru (12◦58′44′′N 77◦35′30′′E) located in Karnataka, is also a tier I, and
the third-most populous city of India with fifth-most populous metropolitan area.
Bengaluru is also considered as ”Silicon Valley of India” because it is the nation’s
top IT exporter. This IT hub region is the most polluted and is causing several
environmental issues. Due to the large population, Bengaluru generates tonnes of
solid waste which is polluting the environment. Thus the large population and IT
hub of Bengaluru is the major reason for air pollution.

• Hyderabad (17◦21′42′′N 78◦28′29′′ E) located in Telangana, is also a tier I, and
the fourth-most populous city of India with sixth-most populous metropolitan area.
Again due to the large population, increased economic activity, and rapid urban-
ization, tonnes of solid waste are generated and disposal of such waste becomes
hazardous and pollutes the environment. The Particulate Matter (PM10) dispersed in
the atmosphere causes around 2500 deaths each year.

• Patna (25◦36′0′′N 85◦6′0′′E) located in Bihar, is a tier II city with a high population.
Air pollution is a major issue in this city. The situation in winter becomes even
worse due to dense smog, leading to an increase in mortality. Patna was declared as
the second most air polluted city in India, in the WHO survey of 2014.

1https://cpcb.nic.in/
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Table 4.2: Comparison of fractional gradient-based RNN with integer gradient-based RNN and
LSTM on the basis of RMSE

Model Bengaluru Kolkata Hyderabad Patna Talcher
α =6/9 21.47 31.35 25.35 44.30 14.25
α =7/9 19.36 26.12 07.41 34.08 11.40
α =8/9 13.22 19.00 09.75 23.85 29.64
α =1 14.78 21.37 08.58 25.44 15.96
α =10/9 24.99 28.50 11.31 38.56 21.09
α =11/9 35.20 21.85 09.95 29.53 24.51
LSTM 10.78 19.00 07.02 24.12 13.11

• Talcher (20◦57′0′′ N 85◦13′48′′ E) located in Angul district of Orissa, is a tier III
city. This is a small city with less population, but Talcher has the country’s biggest
coalfield with the highest coal reserve of around 52 billion tonnes. The presence of
these coal mines leads to air pollution.

The cities of different tiers have been chosen where air pollution is a major issue. To
summarise, the cities with a large population or with a high emission rate of air pollutants
affecting human health are considered. Around 600 normalized data points for each city
have been used for the analysis, which is divided into train and test data in the ratio of 4:1.
The model is tested on the data for 100 days for each city.

4.2.2 AQI Prediction Results using Fractional Gradient Learning

The performance of RNN in predicting AQI values of each city using the fractional
backpropagation algorithm is analyzed. To assess the performance of the model, RMSE
and MAPE are computed. The prediction performance of RNN using the fractional
gradient descent algorithm with values of fractional orders in the neighborhood of 1

is compared with the performance of RNN with the traditional integer-order gradient
descent algorithm where the order remains 1. The values of fractional order α which
are considered are 6/9, 7/9, 8/9, 1, 10/9, 11/9 [227]. The results obtained at different
orders using the proposed approach can be seen in Table 4.2 and 4.3. The graphs in
the Figure 4.2 - Figure 4.6 show the comparison between actual and predicted output
for Bengaluru, Kolkata, Hyderabad, Patna and Talcher respectively. In all the graphs,
the expected output and the actual output are represented by the orange and blue lines
respectively. It can be observed that the least RMSE and MAPE are acquired by Vanilla
RNN at some fractional order, either on 7/9 or 8/9 for all the cities. The model achieved
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Table 4.3: Comparison of fractional gradient-based RNN with integer gradient-based RNN and
LSTM on the basis of MAPE (%)

Model Bengaluru Kolkata Hyderabad Patna Talcher
α =6/9 14.41 18.21 16.67 14.78 06.62
α =7/9 11.32 11.58 03.22 10.64 04.15
α =8/9 06.11 07.02 05.92 07.43 16.30
α =1 07.15 09.31 05.23 08.07 06.11
α =10/9 16.60 12.90 05.49 11.51 06.66
α =11/9 22.54 10.50 04.99 12.90 07.90
LSTM 05.78 06.61 03.45 07.83 04.11

minimum RMSE and MAPE of 13.22 and 06.11% respectively at α = 8/9 for Bengaluru.
Also, the minimum RMSE and MAPE are found to be 19 and 7.02% for Kolkata and 23.85

and 7.43% for Patna at α = 8/9. Moreover, the minimum RMSE and MAPE are found to
be 7.41 and 3.22% for Hyderabad and 11.40 and 4.15% for Talcher at α = 7/9. Thus it
can be concluded from the results that the fractional order gradient is more accurate than
the integer-order gradient algorithm. Moreover, the proposed model performed best for
α = 0.7 by achieving the least MAPE of 3.22% for Hyderabad among all the cities.

4.2.3 Results Comparison between Proposed Method and LSTM
The prediction of AQI for the same set of datasets of all cities is done using LSTM as
well with the same number of timestamps, nodes, and the same procedure for inputs as
for fractional RNN. The obtained results are also shown in Table 4.2 and 4.3. It can be
concluded from the table that the performance of the LSTM is comparable to Vanilla RNN
with fractional gradient learning. RMSE values for the proposed network are 23.85 &
11.40 which are lesser than 24.12 & 13.11 RMSE achieved by LSTM, corresponding to
Talcher and Patna respectively. The RMSE of fractional-based RNN and LSTM is found
to be 19 for Kolkata which is equal. Similarly, the MAPE for Hyderabad and Patna are
found to be 03.22% and 7.43% respectively by RNN with fractional gradient learning,
whereas higher MAPE of 3.45% and 7.83% for Hyderabad and Patna respectively are
achieved by LSTM. For Talcher, MAPE is found to be 4.15% corresponding to fractional
gradient-based RNN and is found to be 4.11% for LSTM which are almost equivalent. It
can be seen that the least MAPE of 3.22% is obtained by fractional gradient-based RNN
for Hyderabad as compared to other cities and models. Figure 4.7 shows the comparison
between the expected AQI value and the AQI value predicted for all the cities by LSTM.
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Figure 4.2: Predicted vs actual AQI of Bengaluru city for the period of 100 days from 29-08-2019
to 07-12-2019

85



Chapter 4

0 20 40 60 80
Days

50

100

150

200

250

300

350

AQ
I V

al
ue

Predicted AQI
Actual AQI

(a) α = 6/9

0 20 40 60 80
Days

50

100

150

200

250

300

350

400

AQ
I V

al
ue

Predicted AQI
Actual AQI

(b) α = 7/9

0 20 40 60 80
Days

50

100

150

200

250

300

350

AQ
I V

al
ue

Predicted AQI
Actual AQI

(c) α = 8/9

0 20 40 60 80
Days

50

100

150

200

250

300

350
AQ

I V
al

ue
Predicted AQI
Actual AQI

(d) α = 1

0 20 40 60 80
Days

50

100

150

200

250

300

350

AQ
I V

al
ue

Predicted AQI
Actual AQI

(e) α = 10/9

0 20 40 60 80
Days

50

100

150

200

250

300

350

AQ
I V

al
ue

Predicted AQI
Actual AQI

(f) α = 11/9

Figure 4.3: Predicted vs actual AQI of Kolkata city for the period of 100 days from 28-10-2019 to
04-02-2020
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Figure 4.4: Predicted vs actual AQI of Hyderabad city for the period of 100 days from 29-09-2019
to 06-01-2020
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Figure 4.5: Predicted vs actual AQI of Patna city for the period of 100 days from 26-03-2019 to
04-07-2019

88



Chapter 4

0 10 20 30 40 50 60 70 80
Days

40

60

80

100

120

140

160

180

200
AQ

I V
al

ue
Predicted AQI
Actual AQI

(a) α = 6/9

0 10 20 30 40 50 60 70 80
Days

40

60

80

100

120

140

160

180

200

AQ
I V

al
ue

Predicted AQI
Actual AQI

(b) α = 7/9

0 10 20 30 40 50 60 70 80
Days

40

60

80

100

120

140

160

180

200

AQ
I V

al
ue

Predicted AQI
Actual AQI

(c) α = 8/9

0 10 20 30 40 50 60 70 80
Days

40

60

80

100

120

140

160

180

200

AQ
I V

al
ue

Predicted AQI
Actual AQI

(d) α = 1

0 10 20 30 40 50 60 70 80
Days

40

60

80

100

120

140

160

180

200

AQ
I V

al
ue

Predicted AQI
Actual AQI

(e) α = 10/9

0 10 20 30 40 50 60 70 80
Days

40

60

80

100

120

140

160

180

200

AQ
I V

al
ue

Predicted AQI
Actual AQI

(f) α = 11/9

Figure 4.6: Predicted vs actual AQI of Telchar city for the period of 100 days from 01-03-2020 to
08-06-2020
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Figure 4.7: Predicted vs actual AQI of all cities for the period of 100 days using LSTM

4.2.4 Prediction Results of Major Pollutants in Kolkata

The proposed approach is implemented for the prediction of the concentration of major
pollutants- SO2, CO, and PM10. Here, the considered time is also the same as used in
the prediction of the AQI of Kolkata. As we have seen in the above section that the
performance of the algorithm is found to be better either for α = 7/9 or 8/9. So we have
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Table 4.4: RMSE corresponding to fractional gradient based RNN for different orders in predicting
the concentration of different pollutants responsible for air pollution in Kolkata city

RMSE MAPE (%)Pollutant
α =7/9 α =8/9 α =1 α =7/9 α =8/9 α =1

SO2 1.9 1.62 1.77 7.00 5.55 6.83
CO 0.20 0.12 0.15 5.21 4.20 4.89
PM10 36.45 19.25 33.75 10.95 6.77 11.21

considered these two fractional values to compare the results with the integer-order-based
learning of Vanilla RNN. The Figure 4.8, Figure 4.9 and Figure 4.10 shows the comparison
between expected air pollutant concentrations and actual concentrations in Kolkata. It can
be observed from Table 4.4 that minimum RMSE and MAPE for each city are attained
at order α = 8/9, thus outperforming the traditional integer-order learning for Vanilla
RNN. Moreover, the least MAPE of 4.70% is achieved in the prediction of CO and thus,
the proposed model is better for predicting the concentrations of CO as compared to other
pollutants.
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Figure 4.8: Predicted vs actual Sulphur Dioxide (SO2) in the air in Kolkata for the period of 100
days from 28-10-2019 to 04-02-2020

4.3 Summary
In this chapter, the fractional-order gradient is used in the backpropagation of error of
Vanilla RNN for the AQI prediction of five Indian cities belonging to different tiers.
Through the results of the prediction of AQI of multiple cities, it is observed that the
minimum error on predictions is achieved at a fractional order. Most cities achieve better
results when the order is equal to 8/9. The architecture of vanilla RNN is much simpler
than the structure or functioning of an LSTM, but the predictions made by RNNs with
fractional gradient-based backpropagation are comparable and sometimes even better than
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Figure 4.9: Predicted vs actual Carbon Monoxide (CO) in the air in Kolkata for the period of 100
days from 28-10-2019 to 04-02-2020
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Figure 4.10: Predicted vs actual Particulate Matter (PM10) in the air in Kolkata for the period of
100 days from 28-10-2019 to 04-02-2020

LSTM with the integer-order gradient descent algorithm. Specifically, the least MAPE
value is found for Hyderabad by using fractional gradient-based RNN as compared to
other cities and models. Moreover, the proposed approach is used to predict major air
pollutants in the tier I city of Kolkata. Here also, it is observed that the least MAPE is
achieved during predictions of CO concentrations at a fractional order. Achieving lesser
RMSE and MAPE, while using simpler architecture shows the effectiveness of fractional
gradient over integer-order gradient descent.

From the results, it can be seen that RMSE is more for Kolkata and Patna. The possible
reasons for it can be: 1) Increasing Pollution in Patna, putting it amongst the world’s top
10 most polluted cities, and; 2) Continuous growth of Particulate Matter in Kolkata. The
memory property of fractional derivatives can be well exploited with deep neural networks
for dealing with complex and dynamic data.

This work can be extended by predicting air pollutants in all the cities and subsequently
predicting AQI values on that basis. This strategy can detect major air pollutants in a city,
and accordingly stringent actions can be taken to prevent further damage. A portfolio of
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economic activities can be created considering the air quality of the particular city and also
detecting the most affecting gases among them in the future. The order of the derivative is
chosen manually in this paper, due to which results are evaluated only on a few values of
order. Hence. there is a need to develop an adaptive method that automatically evaluates
the optimal order for a particular city or dataset.

A part of this chapter is published in the following referred publication:

Sugandha Arora, Narinderjit Singh Sawaran Singh, Divyanshu Singh, Rishi Rakesh

Shrivastava, Trilok Mathur, Kamlesh Tiwari, and Shivi Agarwal. ”Air Quality Predic-

tion Using the Fractional Gradient-Based Recurrent Neural Network.” Computational

intelligence and neuroscience 2022 (2022) (Hindawi).
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Satellite Image Road Segmentation

Remote sensing images acquired through satellites are high-resolution and contain large
coverage of the geographical region. These images provide accurate topographical infor-
mation about the earth’s surface [228–230]. Roads can be extracted from these images,
which can help in urban planning, emergency rescue, autonomous driving etc. Semantic
segmentation is needed to extract roads from such images. It is equivalent to a classifica-
tion setup that assigns a class of either road or non-road to every pixel of the image. This
chapter focuses on extracting all the pixels corresponding to roads.

Traditional automatic road segmentation methods involve the usage of machine learn-
ing techniques like Bayesian [231] and heuristic methods [232, 233]. Heuristic methods
semantically combine roads and group them using hypothesis and testing paradigm, while
the Bayesian approach involves stochastic process models which extract roads by prob-
abilistic modeling [234, 235]. Ambient challenges include shadow, variable road width,
complex surroundings, occlusion arising due to traffic and trees etc. pose serious chal-
lenges to these methods and significantly reduce their accuracy [236, 237]. Most machine
learning algorithms fail to achieve high precision in the road network segmentation due
to their inability to handle multi-scale road sections, particularly narrow road segments
with substantial width variability [238, 239]. Road extraction models based on road fea-
tures, automation, problems arising while extraction and the type of methods adopted, are
comprehensively reviewed in [240].

To overcome the challenges of road network segmentation, several deep-learning
approaches have been developed [249, 261, 284]. Convolutional neural networks (CNN)
are popular filters for extracting useful features from an image. A network with multiple
layers of CNNs called deep convolutional neural networks (DCNNs) can be devised to
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Figure 5.1: Visual representation of references arranged in chronological order

build a hierarchy of features from the multi-scale remote sensing data sets [266, 272]. The
mainstream segmentation networks like Fully Convolutional Neural Networks (FCNN)
[246], U-Net [244], U-Net++ [262], Deeplabv3 [253], deep residual U-Net [259] etc

are successfully being used for the road extraction. The FCNNs with skip connection
architecture can combine semantic information from deep, coarse layers and appearance
information from shallow, fine layers to improve the segmentation performance. This
fusion of fine and coarse layers intends to preserve global structure while making local
predictions. Further, U-Net [244, 262] uses an end-to-end training approach by concate-
nating the pair of corresponding cropped feature maps from the encoder and decoder that
prevents the loss of information and helps in the precise localization. ResNet [6, 259]
uses the past feature maps using skip connections that help to prevent vanishing gradient
problems and avoid any loss of information. DenseNet [265] also uses skip connections to
get inputs from each preceding layer of a dense block, which increases the input variability
and the network performs more accurately.

The architectures of networks mentioned above can efficiently perform the segmen-
tation task, but complex backgrounds and occlusion due to buildings, cars, trees , etc.,
overlapping, interlacing, and shadowing of the clouds, trees etc. in satellite images affects
the accuracy of road network extraction. Long-term feature interactions are required to
extract roads from the images with complex backgrounds, since such interactions can
preserve semantic/appearance information. Thus to improve the forward propagation of
the features, it is better to reuse the feature extracted at preceding states. The architec-
ture of some DCNNs such as DenseNet [265], SDUNet [289], CondiNet++ [282] and
RoadVecNet [280] have been designed to address the problem of long-term memory and
preservation of global and local cues, but without any solid theoretical explanation of
memory exploitation. These works extract global and local features separately, while
fractional derivative-based methods inherently compute global and local features. FOCNet
[5] has been proposed in the literature for image denoising to address the memory issue,
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Table 5.1: Comparison of state-of-the-art road segmentation methods with respect to architecture
and results on ORD and MRD

Methods Architecture Database Results
1. ResUnet: encoder

decoder architecture
[259] (2018)

U-Net like architecture with
residual skip connections

MRD
[242]

breaking point=0.9187 and out-
performed state-of-the-art meth-
ods : U-Net [244], Saito-CNN
[247] and Mnih-CNN [241]

2. D-linkNet : encoder
decoder architecture
[256] (2018)

pretained ResNet34 as en-
coder, and decoder of orig-
inal linkNet with dilated con-
volutions

DGRD Achieved best IoU scores 0.6466
and 0.6342 on the validation and
the test set resp.

3. GL-DenseUNet : en-
coder decoder archi-
tecture [257] (2018)

DenseUnet architecture with
global attention unit

Google
earth
images

Outperformed U-Net [244],
FCN [246] and DeepLabV3+
[255] with higher F1-scores

4. End-to-End road cen-
terline extraction us-
ing a confidence map
[260] (2018)

The model adopted 13 VGG
layers to create an encode-
decode network architec-
ture.The model generates
multiple scale outputs.

MRD
[242]

The model achieves 0.92 on com-
pleteness metrics and 0.87 on
correctness matrics

5. DenseUNet : encoder
and decoder architec-
ture [265] (2019)

UNet with dense blocks MRD
[242]

Outperformed UNet [244], Seg-
Net [251], GL-DenseUNet [257]
with F1-score and mIoU of
74.07% and 74.47% resp.

6. A Two-Step Deep
Convolution Neu-
ral Network [267]
(2019)

Used two continuous Unet:
high precision first Unet and
then high recall second Unet

MRD
[242]

The model achieved significant
results in terms of accuracy, pre-
cision, Recall and F1-score.

7. Generative Adversar-
ial Network [279]
(2021)

Used GAN based approach
with Modified UNet as gen-
erative part

MRD
[242]

the approach achieved 91.54 pre-
cision, 92.92 recall, MCC of
91.13, mIOU of 87.43 and a F1-
score of 92.20.

8. RoadVecNet: en-
coder and decoder
architecture [280]
(2021)

Used two encoders, two de-
coders, basically two U-nets
with dense connections

ORD
[258] &
MRD
[242]

Achieved high F1-scores, MCC
and mean IoU on both databases

9. BMDANet: encoder
decoder [286] (2021)

with multi-dimensional atten-
tion module

ORD
[258]

Outperformed S-O-A methods
like UNet [244], D-linknet [256]
with 0.9363 F1-score and 0.8802
mIoU.

10. ConDinet++ : en-
coder and decoder
architecture [282]
(2022)

Pretrained VGG16 as en-
coder, feature fusion using
conditional dilated convolu-
tion blocks in the decoder
with the joint loss of cross-
entropy and Lovasz loss

MRD
[242]

the model outperformed several
state-of-the-art with high preci-
sion, recall, mIOU and F1-Score

11. SDUNet: encoder
and decoder architec-
ture [289] (2022)

DenseUNet with DULR
Module, loss function as
sum of binary cross entropy
loss and dice coeff loss

MRD
[242]

Outperformed state-of-the-art
like UNet [244], D-linknet [256]
with 0.7410 F1-score & 0.7840
mIoU.
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where the network is designed by solving a system of fractional differential equations, and,
the global and local features are extracted inherently. Some relevant road segmentation
works are compared in Table 5.1 based on architecture and results. Figure 6.1 shows
the arrangement of references in chronological order to show how over time, frontiers of
mathematical background have developed and the work on the road network segmentation
has gained research attention from the community. It can be noted that earlier fractional
calculus was an abstract area of research with vigorous calculations and recently with
the introduction of new definitions of fractional derivatives, the applications of fractional
calculus is being seen in several domains of science and engineering including image
processing. It can also be seen that the arrival of deep learning has motivated the growth
of automatic road extraction techniques and researchers are engaged in overcoming the
challenges through the development of new models.

The automatic way of finding the network parameters treats the system as a black
box, which lacks interpretability [291, 292]. Due to this, understanding the conceptual
basis, potential advantages, and limitations of methods become difficult [293]. Moreover,
tuning the additional parameters when handling different databases is not feasible. If the
process of decision-making by the network is known, then this provides the flexibility
of adjusting human preferences through parameters. Thus it is recommended to decide
these parameters on a mathematical basis. Some recent studies have shown that the
forward propagation in DCNNs can be treated as a dynamic system which can further be
characterized by a differential equation [69, 70, 263]. The forward propagation of ResNet
is shown to be equivalent to the forward Euler numerical discretization of an ordinary
differential equation (ODE) in [263]. They also showed that other recent architectures
like RevNet [254], and FractalNet [250] can be designed by the discretization of some
ordinary/ partial differential equation [271]. The ordinary/partial differential equations
systems are local, so only short-term feature interactions are possible, whereas fractional
differential systems are non-local and have long-term memory. Numerous dynamic
systems have been demonstrated to be better characterized by FODE than ODE [294].
Therefore, designing the road segmentation network using ODE is not enough. We have
modeled the propagation of the deep road segmentation network as a dynamic system
using fractional differential equations to enhance the memory of the network. Fractional
differential equations are non-local and incorporate memory into the system by adding
fractional weights to the skip connections between the layers. These fractional weights
can be interpreted using the mathematical framework of Grunwald-Letnikov fractional
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derivatives [82]. The memory of a dynamic system obeys the power law [42], which means
the recent stage will have more weightage than the older ones, and Grunwald Letnikov
fractional derivatives also follow the power-law memory property [42, 43].

In this chapter, the road segmentation network is designed by solving a fractional
optimal control problem. The forward propagation of the proposed network is constructed
by discretizing the system of Grunwald-Letnikov-based FODEs with control variables.
As a result, the output of each layer of the proposed network becomes dependent on the
weighted sum of features of previous layers at the same level where weights are controlled
by fractional order and state of the network. The advantages of using FODE-based
dense road segmentation networks over ODE-based dense segmentation networks are: 1)
The FODE can describe the power-law memory mode and has been proven effective in
preserving memory. 2) The output of each layer of the proposed network depends on the
weighted sum of features of previous layers at the same level instead of the concatenation
of the features, which reduces the number of learning parameters. The main contributions
of the chapter are highlighted below:

1. This chapter proposes a road segmentation network with weighted skip connec-
tions which is modeled as a dynamic system using G-L fractional derivative. This
work exploits the memory property of fractional derivatives in designing the road
extraction network.

2. The proposed fractional derivative-based dense network considers all past feature
vectors and reuses them at forward states, but with a lesser number of parameters
and with mathematical interpretations behind it. The weighted sum of outputs of the
previous layer is computed in place of their concatenation to reduce the number of
parameters. Weights corresponding to these skip connections depend on the chosen
order of derivative.

3. Experiments are carried out on two open-source databases viz. Massachusetts Road
Database (MRD) [242] and Ottawa Road Database (ORD) [258] with different
road structures and backgrounds. Results show that the proposed model achieves
state-of-the-art performance in terms of recall, F1-score, and mean IoU.

This chapter is structured as follows: Section 5.1 explains the proposed approach,
followed by the experimental results obtained in Section 5.2, and the concluding remarks
are added in Section 5.3.
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Table 5.2: Scalewise architecture details of the proposed road segmentation network

Level Input Size Number of layers Number of Filters
1 512 × 512 4 (both sides) 64
2 256 × 256 5 (both sides) 128
3 128 × 128 7 (both sides) 256
4 64 × 64 10 (both sides) 512
5 32 × 32 12 1024

5.1 Proposed Approach

This section describes the proposed methodology from a mathematical perspective. The
proposed architecture is designed by solving an optimal control problem comprising
fractional differential equations. The fractional optimal problem view of road segmentation
is presented in this section. Moreover, the architecture of the network is well explained
with the help of mathematical equations.

5.1.1 Fractional Optimal Control View of Road Segmentation

The propagation between the layers of the proposed network is modeled as a dynamic
system. The dynamic system is then represented with the help of fractional differential
equations with control parameters. The obtained fractional optimal control problem is
described here. Consider the following fractional differential system [72] describing
the propagation of deep CNN in which the feature trajectory z(t, s) is assumed to be
continuous in time and space:

min
θ(t)

∫
Ω

L(Φ(z(T, s)), u(s)) ds

s.t.

0D
α
t z(t, s) = f(z(t, s), θ(t)), z(0, s) = Ψ(I(s)), t ∈ [0, T ] (5.1.1)

where s ∈ Ω is the two-dimensional spatial position, I(s) is the input road image, u(s)
is the ground truth segmented road image and Φ,Ψ are linear transformation , e.g. con-
volution. The proposed network is designed by solving the above fractional optimal
control problem as the fractional-order differential equation has long-term memory. The
problem (5.1.1) aims to find the optimal control θ(t) such that the objective loss, i.e., dice
coefficient loss is minimized [73].
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Figure 5.2: Densely Connected Fractional Block (DCFB) with 4 layers

Figure 5.3: Diagram of the proposed architecture for road segmentation

5.1.2 Architecture of the Proposed Road Segmentation Network

The architecture of the proposed model is designed by discretizing the multi-scale system.
In each transition, all the features given by the output of the historical states are being used
at each state, and thus the features are being used for a long time. Due to the application of
fractional derivatives in the evolution process, the network gets embedded with weighted
skip connections and those weights are dependent on the fractional order of differentiation
and the current state. The order α is positive and less than 1, due to which the weighted
sum remains positive and doesn’t explode. For discretization, the step size, h is set to be 1.
Then definition (1.1.10) takes the following form for order 0 < α < 1:
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Table 5.3: Layerwise architecture details of the proposed road segmentation network

Layer Description Kernel Stride Regularizer Dropout Pool Pool
Size Length Size Stride

Transition Up Conv2DTranspose 2× 2 2 L2 - - -
Transition Down BN+Conv2D 1× 1 1 - - - -

Dropout+MaxPool - - - 0.2 2× 2 2
DCFB Layer BN+Conv2D 3× 3 1 - - - -

Dropout - - - - 0.2 -

0D
α
t z(t, s) ≈

t∑
k=0

(−1)k
(
α

k

)
z(t− k, s) (5.1.2)

Thus after combining the above expression (5.1.2) with 0D
α
t z(t, s) = f(z(t, s), θ(t)) of

system (5.1.1), we get

z(t, s) = f(z(t, s), θ(t))−
t∑

k=1

(−1)k
(
α

k

)
z(t− k, s) (5.1.3)

zt+1 = f(zt, θt) +
t∑

k=1

(−1)(t−k+1)

(
α

t− k + 1

)
zk (5.1.4)

The proposed network is U-shaped, and thus it has four transitions down and cor-
respondingly four transitions up (four scales). The scale-wise architectural details, i.e.,
number of layers, filters, and input size at a particular transition are presented in Table 5.2.
The following system can describe the multi-scale representation of the evolution process:

0D
α
t z(t, s, pli) = f(z(t, s, pli)), θpli (t)) (5.1.5)

0D
α
t z(t, s, prj) = f(z(t, s, prj)), θprj (t)) (5.1.6)

for each i ∈ [1, 5], j ∈ [1, 4], t ∈ [0, T ] with the following initial conditions

z(0, s, prj) = T↑z(nrj+1
, s, prj+1

) + z(nlj , s, plj),

z(0, s, pl1) = Ψ(I(s)), z(0, s, pli) = T↓z(nli−1
, s, pli−1

) (5.1.7)

where T↓ denotes max pooling operation, T↑ denotes upsampling, θpli is convolution kernel
at scale i on the left and θpri is convolution kernel at scale i on the right. Thus the evolution
process of the road segmentation network is represented by (5.1.8).
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zpt+1 =
t∑

k=0

wkz
p
k + σ(θt ∗ (zpt ))) (5.1.8)

where σ is a non-linear unit denoting ’Convolution + Batch normalization1 + ReLu’, zpt+1 is
the output of tth layer of scale p, wk = (−1)(t−k+1)

(
α

t−k+1

)
, and thus wt = α. The network

layers are densely connected with the help of fractional-weighted skip connections. The
layer t is connected with (t− 1)th, (t− 2)th · · · layers via skip connections with weights
w1, w2.. respectively. The general evolution of the network is represented by (5.1.8). The
architecture is built from the Densely Connected Fractional Blocks (DCFBs) shown in
Figure 5.2, where BN stands for batch normalization and N stands for number of layers.
The layer at each level is addressed as a DCFB layer. The architecture of the model can
be seen in Figure 5.3 and the corresponding architectural details related to any layer of
the network are presented in Table 5.3. As shown in Figure 5.3, the network is composed
of a downsampling path with 4 Transitions Down (TD) shown with blue arrows and an
upsampling path with 4 Transitions Up (TU) shown with orange arrows. Black horizontal
arrows represent skip connections, the feature maps from the downsampling path are added
to the corresponding feature maps in the upsampling path. The propagation in between the
layers at left are represented by (5.1.5) and by (5.1.6) for the layers at right with initial
conditions given by (5.1.7). If (xi, yi) represents the training set where xi is the input
satellite image and yi is the corresponding ground truth segmented image. So, if ziT (Θ) is
the final output and Θ represents the parameters of the network. Thus dice coefficient loss
(DCL) for a particular image sample is given by:

DCL(ziT (Θ), yi) = 1−DC(ziT (Θ), yi) = 1−
(

2TPi

2TPi + FPi + FNi

)
(5.1.9)

where TPi, FPi and FNi are true positive, false positive and false negative pixels respec-
tively for ith image sample.

The optimized value of network parameters is obtained after solving the above set of
fractional differential equations that are representing the evolution process of the proposed
network. At each level, the features of each layer are connected with each other with the
help of weighted skip connections in accordance with the definition of G-L fractional
derivative. This enhances the memory of the system and the features of the present

1Process of normalizing the inputs of each layer by adjusting and scaling them to have zero mean and
unit variance.
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Figure 5.4: Sample database Images. First row MRD, and second row ORD

state become more expressive due to the preservation of the semantic and appearance
information of the road images.

5.2 Experimental Results
This section consists of descriptions of the database used, evaluation parameters chosen for
assessing the performance of the proposed model, experimental settings, and the results
obtained after all the experiments. To show the effectiveness of the proposed model in
extracting the roads, experiments are performed on two benchmark databases. An ablation
study is done by taking the proposed network with different fractional orders, and the
performance of the proposed method is compared with some recent road segmentation
networks (with the same hyperparameters).

5.2.1 Database Specifications

Two remote sensing databases viz. MRD [242] and ORD [258] are used to show the
performance of the proposed model. Both databases are open-sourced and are being
widely used. They have different topographical road maps with variable road widths and
complexities. The detailed information of both databases is given below:

1. Massachusetts Road Database (MRD) [242]: This database consists of 1171 aerial
images with 0.5m spatial resolution of the state of Massachusetts2. Images cover
a wide variety of urban, suburban, and rural regions. Each image is 1500 × 1500

pixels covering a total of 2.25 sq km area of Massachusetts with an approximate

2
[Online]. Available: http://www.cs.toronto.edu/vmnih/data/
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road width of 6-9 pixels. The first row of Figure 5.4 displays the sample images of
this database.

2. Ottawa Road Database (ORD) [258]: This database consists of 20 aerial images
of several typical urban areas of the Ottawa state, obtained using Google Earth. The
images are of 0.21m spatial resolution per pixel (zoom level 19) with variable size,
some being of size 4500× 5500 while others being of 1000× 2000. This database
is challenging as it has highly complex images and covers several urban areas. The
second row of Figure 5.4 shows some sample images of this database.

5.2.2 Training/Testing Protocol

The performance of the model is evaluated on two databases. In the case of MRD, 1108
images are used for training, 49 for testing, and 14 for verification. This database split is
kept the same as in [289] and other state-of-the-art methods for comparing segmentation
results. The training images are further augmented by applying four operations: horizon-
tal/vertical flipping, grid distortion and rotation at 90◦. The number of training images
becomes five times the original training database split. The model is then trained using the
resized 5540 images of size 512× 512.

To compare the segmentation results with the state-of-the-art [286], the split of the
ORD is set to be as 14 images for training, 3 for validating, and 3 for testing the model.
The actual images of ORD are quite large, thus augmentation techniques are applied after
dividing the images into segments of size to 512× 512. For training the proposed network,
the 14 training images are randomly segmented into patches of size 512× 512, then the
obtained patches are augmented by applying five different operations: horizontal/vertical
flipping and rotation at 90◦, 180◦, and 270◦. On average, 280 patches corresponding
to each image of the training set are obtained and the model is then trained using 3946

images.

5.2.3 Implementation Details and Experimental Settings

The model is trained from scratch without extra data, a post-processing module, or pre-
trained weights. All the experiments are performed on a Linux-based operating system with
NVIDIA GeForce GTX 1080 Ti graphic card with graphic memory of 11 GB. The model
has ReLu functions, thus it is initialized using the HeNormal initialization method [245].
This initializer randomly draws samples from a truncated normal distribution centered at
0 with a standard deviation equal to

√
(2/n) where n is the number of input units in the
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Table 5.4: Comparison of results obtained by proposed road segmentation network with state-of-
the-art methods on MRD

Model Precision Recall mIoU F1-score
U-Net [244] 0.747 0.721 0.722 0.682

Dlinknet [256] 0.767 0.741 0.737 0.717
HsgNet [268] 0.769 0.752 0.749 0.720

Dense-UNet [289] 0.780 0.731 0.739 0.714
SUNet [289] 0.798 0.736 0.753 0.721

SDUNet [289] 0.812 0.757 0.784 0.741
Proposed (α =0.4) 0.698 0.830 0.787 0.748

Figure 5.5: Visual results on proposed networks and other existing networks on MRD (top) and
ORD (bottom): Yellow and red boxes depict good segmentation results whereas results in the blue
boxes are not good for ORD and MRD
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Table 5.5: Comparison of results obtained by proposed road segmentation network with state-of-
the-art methods on ORD

Model Precision Recall mIoU F1-score
DeeplabV3 [253] - - 0.8362 0.9146
MACUNet [278] - - 0.8419 0.9142

DeeplabV3+ [253] - - 0.8473 0.9174
D-LinkNet [256] - - 0.8360 0.9107

UNet++ [262] - - 0.8523 0.9203
BMDANet [286] - - 0.8802 0.9363

Proposed (α =0.5) 0.8867 0.9374 0.9062 0.9110

Figure 5.6: Visual results obtained by the proposed network on some mislabeled data of MRD

weight tensor. The Adam optimizer [243] with default settings is used to minimize the
loss function and find the optimal control parameters. This optimizer dynamically adjusts
weights in an effective manner by incorporating adaptive learning rates and momentum
3. The learning rate is set to be 0.0001 with a decay of 0.1 after every 20 epoch. The
validation set is set for early stopping and the drop-out rate is set to 0.2 to avoid over-fitting.
The total number of epochs is set to be 200.

5.2.4 Results and Discussion

To evaluate the road segmentation performance of the proposed network, the ground
truth segmented images are compared with the corresponding segmented outputs of
the model. We have computed the F1-score, recall, precision, and mean IoU on both
databases to assess the quantitative performance. The proposed network is dense, so the

3accumulation of a running average of past gradients for dampening the effect of fluctuations in the
current gradient direction.
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comparison of the quantitative results is made with state-of-the-art road segmentation
dense networks. The proposed network (α = 0.4) on MRD are compared with the
benchmarking segmentation network U-Net [244], Dlinknet [256], HsgNet [268], and
dense networks viz. Dense-UNet [289], SUNet [289], and SDUNet [289]. The values of
evaluation parameters corresponding to these state-of-the-art methods are extracted from
[289]. It can be noted from the Table 5.4 that SDUNet model had achieved the maximum
precision, recall, mean IoU and F1-score of 0.812,0.757, 0.784 and 0.741 respectively.
The precision of the proposed network is found to be 0.698 which is comparatively lower
for MRD due to the extraction of some false regions, but the overall performance is
significantly good. The results in the Table 5.4 clearly show that the proposed network
achieved 0.830 mean IoU, 0.787 F1-score and recall 0.748 and these metrics are higher
than SDUNet [289] and hence than the other aforementioned methods. It can be seen from
the visual results in Figure 5.5 that extracted road networks are mostly continuous with
very few breaking points even in the presence of complex backgrounds. The third row of
images clearly shows the superiorty of our model than other existing models. The presence
of weighted skip connections in the proposed dense network has helped in gathering more
global information as compared to other dense networks viz. Dense-UNet [289], Dlinknet
[256], SDUNet [289].

But the precision of the proposed model is less for MRD as compared to other models.
By lower precision, it means that the model returns comparatively more false positives
than other models. But due to high recall, the model has a low false negative rate. Thus our
model is more capable of extracting the pixels related to roads as compared to other models.
But in the MR database, the driveways are of the same color as the roads. Secondly, the
MR database contains some errors and imprecision in ground truth where some of the road
pixels are mislabeled as non-road pixels due to the occlusion of trees, clouds, and shadows.
The mislabeled data affects the pixel classification accuracy [295, 296]. Our model intends
to label these road pixels correctly. Thus these two issues lead to an increase in false
positives with respect to the ground truth. Hence precision metric is lower in our model.
Few samples where road pixels are mislabelled and the corresponding segmentation results
obtained by the proposed model are shown in Figure 5.6. The red boxes are drawn over
regions of interest. These areas are labeled as non-road in the ground truth. The proposed
network is correctly labeling these roads in the boxes.

The quantitative results of the final proposed network (α = 0.5) on ORD are compared
with other state-of-the-art road segmentation networks viz. Deeplabv3 [253], MACUNet
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Table 5.6: Results of the proposed model with different fractional order on MRD and ORD

Model Precision Recall F1-score Acc mIoU Precision Recall F1-score Acc mIoU
Database: Massachusetts Road Database Database: Ottawa Road Database

α =0.2 0.686 0.810 0.741 0.971 0.776 0.836 0.881 0.859 0.962 0.851
α =0.3 0.682 0.802 0.737 0.971 0.764 0.829 0.904 0.867 0.963 0.864
α =0.4 0.698 0.830 0.748 0.978 0.787 0.822 0.926 0.873 0.964 0.876
α =0.5 0.736 0.764 0.741 0.973 0.772 0.887 0.937 0.911 0.976 0.906
α =0.6 0.675 0.811 0.735 0.970 0.758 0.829 0.936 0.882 0.966 0.879
α =0.7 0.679 0.821 0.721 0.970 0.783 0.868 0.921 0.864 0.971 0.889
α =0.8 0.699 0.771 0.729 0.970 0.758 0.833 0.941 0.875 0.967 0.882
α =0.9 0.657 0.799 0.715 0.968 0.754 0.796 0.951 0.855 0.962 0.874

[278], DeeplabV3+ [253], D-LinkNet [256], UNet++ [262], and BMDANet [286] and the
results are reported in the Table 5.5. The values of F1-score and mean IoU corresponding
to the aforementioned methods are extracted from [286]. It can be observed from the table
that the BMDANet [286] had achieved the maximum values of F1-score and mean IoU
as 0.9363 and 0.8802 respectively. The results clearly show that the proposed network
achieved a higher mean IoU of 0.9062 as compared to BMDANet [286] and the other
mentioned segmentation methods. The proposed method improved the segmentation
results of the state-of-the-art for ORD by 3% in terms of mean IoU. The F1-score of the
model is found to be 0.9110 which is comparable to other state-of-the-art methods. The
model achieved precision and recall of 0.8867 and 0.9374 respectively which depicts a
significantly good-performing binary classifier. From the visual results in Figure 5.5 it can
be seen that extracted road networks are continuous and the edge information is preserved
even in the presence of occlusions like trees and buildings. The effectiveness of non-local
fractional derivatives in the proposed network can be observed from the segmented outputs
as there is less loss of information.

5.2.5 Ablation Study

The performance of the proposed network depends on the feature extracted and thus on
the feature propagation between layers. The features obtained from each layer are being
reused at future states with the help of fractional weighted skip connections. Therefore,
an ablation study has been done to see the effect of varying the fractional order α on
the performance of the model. Experiments are carried out on both databases for α =

0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9. To analyze the performance of the network with
different fractional weights, we have computed F1-score, recall, precision, pixel-wise
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Figure 5.7: ROC plots for MRD at different fractional orders with the zoomed view of the upper
left corner of the graphs: Largest area under the curve corresponding to order= 0.6

accuracy (Acc) and mean IoU (mIoU) on the databases. The Table 5.6 shows the obtained
results on MRD and ORD. The values of the evaluation parameters for MRD depict that
the model performed well for fractional orders α : 0.2 ≤ α ≤ 0.7. It is found that
the model achieved the highest precision of 0.736 at fractional order α = 0.5 on MRD.
However, the model achieved higher recall, F1-score, accuracy and mean IoU of 0.830,
0.748, 0.978 and 0.787 respectively on order α = 0.4 for MRD. Furthermore, the model
performed better at α = 0.5 for ORD with higher precision, F1-score, accuracy, and mean
IoU of 0.887, 0.911, 0.976 and 0.906 respectively. The recall value at α = 0.5 is found to
be 0.937 which is close to the highest recall value of 0.941 attained at α = 0.8 for ORD.
Receiver Operating Characteristic (ROC) curves shown in Figure 5.7 and Figure 5.8 are
also plotted at different fractional orders (hence with different weighted connections) to
evaluate the performances of the models. The curves are drawn and the corresponding
area under the graphs is also mentioned. It depicts the classification performance of the
model at different thresholds for different fractional orders. It is a graph with the false
positive rate on the x-axis and the true positive rate on the y-axis. The area under the curve

110



Chapter 5

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os
iti
ve

 ra
te

ROC curve

Order = 0.2 (area = 0.946)
Order = 0.3 (area = 0.949)
Order = 0.4 (area = 0.965)
Order = 0.5 (area = 0.963)
Order = 0.6 (area = 0.956)
Order = 0.7 (area = 0.948)
Order = 0.8 (area = 0.962)
Order = 0.9 (area = 0.964)0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Order = 0.2 (area = 0.946)
Order = 0.3 (area = 0.949)
Order = 0.4 (area = 0.965)
Order = 0.5 (area = 0.963)
Order = 0.6 (area = 0.956)
Order = 0.7 (area = 0.948)
Order = 0.8 (area = 0.962)
Order = 0.9 (area = 0.964)

Figure 5.8: ROC plots for ORD at different fractional orders with the zoomed view of the upper
left corner of the graphs: Largest area under the curve corresponding to order= 0.4

is computed for each curve which signifies the degree of separability of road and non-road
pixels in the database. The more the area under the curves, the better the segmentation
(binary classifier). The curve corresponding to order α = 0.5 acquires the highest area
of 0.965 under it for ORD. Thus all the evaluation metrics are aligned with graphical
results for ORD. The curves corresponding to order α = 0.2, 0.6 acquires the highest
area under them of 0.922 for MRD, but the rest of the evaluation metrics are found to
be: precision 0.686, recall 0.810, F1-score 0.741, accuracy 0.971 and mean IoU 0.776

for α = 0.2, and precision 0.675, recall 0.811, F1-score 0.735, accuracy 0.970 and mean
IoU 0.758 for α = 0.6, which are lesser for these orders. The curve corresponding to
α = 0.4 acquires the second highest area of 0.913 under it with the highest values of other
evaluation metrics. Thus the model with order α = 0.4 and α = 0.5 are used throughout
the experiments for MRD and ORD respectively.
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5.3 Summary
This chapter proposes a U-shaped dense network with weighted skip connections to
segment roads from high-resolution satellite images. The proposed network is designed
by solving a fractional optimal control problem. The proposed approach involves the
weighted sum of the output of previous layers at a particular transition, unlike basic dense
networks where the output of the previous layers is concatenated. Thus the proposed
method is computationally efficient. Moreover, the performance of the proposed network
is found to be better than other state-of-the-art methods in terms of F1-score and the
mean IoU at fractional order 0.4 for MRD and 0.5 for ORD than the state-of-the-art
segmentation results. By exploiting the memory property of fractional derivatives, the
forward propagation of features is strengthened and lesser loss of information is seen. The
results show that the extracted roads are more complete for both databases. Moreover,
the model performs better than other state-of-the-art methods on MRD in terms of higher
recall, F1-score and mean IoU of 0.830, 0.748 and 0.787 respectively. In addition, the
model achieved better mean IoU of 0.9062 that shows an improvement of around 3 % in
segmentation results with respect to the state-of-the-art method on ORD.

Two possible areas for improvement are identified: 1) The driveways are the same
color as the actual roads, due to which the pixels related to driveways are labeled as roads.
This increases the number of false positive pixels. 2) Several trees and their shades falling
on the roads cause occlusion. The proposed model captures local and global information
simultaneously and is capable of extracting the pixels of roads occluded by the trees. But
while solving the issue of occlusion, the model labels some pixels corresponding to trees
nearby the roads as road pixels and hence the sharpness of the edges of the roads gets
affected. This again increases the false positive pixels. More false negatives affect the
segmentation performance of the model hence hampering the precision metric. In the
future, these problems can be targeted to obtain continuous and accurate road structures.

A part of this chapter is published in the following referred publication:

Sugandha Arora, Harsh Kumar Suman, Trilok Mathur, Hari Mohan Pandey, and Kamlesh

Tiwari. ”Fractional derivative based weighted skip connections for satellite image road

segmentation.” Neural Networks 161 (2023): 142-153 (I.F- 9.657 , SCI-Q1, Elsevier).
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Salient Object Detection

Salient Object Detection is a computer vision task that automatically detects and highlights
the most “salient” or visually distinct objects in an image. Salient objects are typically
considered objects or regions in an image that captures a viewer’s attention and stand
out from the surrounding context. This can be determined by various visual cues such as
color, texture, shape, and orientation [297]. Salient object detection is used in multiple
applications such as image and video summarization [298], visual attention modeling
[299], object recognition [300] and tracking [301]. The goal of salient object detection is
to identify the regions in an image that are most likely to be of interest to a human observer
and to separate these regions from the background or other less important objects in the
image.

Salient Object Detection is a challenging task in computer vision for several reasons
[302]. First, the intra-class variability, where the same object class can have significant
variations in shape, color, and texture, makes it challenging to define a single set of
features that can accurately detect salient objects. Second, inter-class similarity is also an
issue where different object classes have visual similarities, which makes it difficult to
differentiate between them and leads to false positive detections. Third, the salient objects
can be partially or fully occluded by other objects, which makes them difficult to detect.
Additionally, the presence of clutter in the background can make it difficult to distinguish
salient objects from their surroundings. Background complexity of the background adds
another dimension where the image may contain multiple objects and textures, making it
difficult to distinguish the salient objects from the background. Fourth, illumination and
contrast are always a challenge related to the changes in lighting conditions, contrast, and
color that can seriously affect the visibility of objects and lead to false detection. Last,
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viewpoint and scale variations can significantly affect its salience, making it difficult to
design a single algorithm that works for all images [303].

Several deep learning models have been developed to overcome the challenges men-
tioned above. Multi-level features representing high-level semantic information and
low-level fine details are required simultaneously to obtain an accurate salient map. Some
of the recent works involving the integration of multi-level features are described as
follows. Salient object detection algorithms based on fully convolutional networks [304–
306] have multiple convolutional layers and pooling layers that integrate local and global
features and thus produce significantly good quality salient maps. Due to the pooling
operations, the maps have rich high-level semantic information but with less accurate and
rough boundaries. Several other recent works employed skip connections to integrate
high-level semantic information and low-level fine details and obtain salient maps with
sharper boundaries [14, 307]. Zhang et al. [308] designed a network with an attention
mechanism in which multi-level contextual information is integrated selectively in a pro-
gressive manner. Qin et al. [274] proposed a two leveled nested U-structure with residual
connections and captured contextual information from multiple levels. Chen et al. [309]
have developed a model with global information consisting of a backbone network for
features extraction and then some modules for aggregating low-level appearance features,
high-level semantic features, and global context features. Recently, to improve the perfor-
mance of the existing encoder-decoder architectures, a masked edge attention module and
an object attention module are employed with the encoder and decoder, respectively [310].
Table 6.1 elucidates these and some other recent works.

Most networks mentioned above have an encoder-decoder architecture that uses ex-
tracted features through backbone networks. The deep CNNs like AlexNet [65], ResNet
[6], ResNeXt [311], and DenseNet [312] are some of the most frequently employed back-
bone networks. Deep networks like VGG and AlexNet suffer from a vanishing gradient
problem that the information can vanish or wash out after passing the features through
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Image GT Proposed GCPANet BASNet BMPM RASv2 PiCANetR

Figure 6.2: Some visual examples and their predictions generated by the proposed network,
GCPANet [13], BASNet [14], BMPM [15], RASv2 [16] and PiCANetR [17]

multiple layers [313]. To overcome this issue, networks like ResNet [6], FractalNet [250],
ResNeXt [311] and Highway Networks [314] are developed, that pass the information
from early to later layers via skip connections. DenseNet [312] was designed to ensure
maximum information transfer and to enable the memory of the network by connecting
all layers having the same-sized feature maps. But the features are combined through
concatenation, which involves using many parameters and there doesn’t exist any math-
ematical framework behind memory exploitation. FOCNet [5] is introduced for image
denoising, which densely connects the layers via weighted skip connections and combines
their outputs through element-wise summation. This approach is adopted in the previous
chapter for enabling long-term feature interactions in the road segmentation network[315].
Long-term memory is required to detect salient objects as long-term feature interactions
help preserve mid and high-frequency features and, thus, the fine details in the image.
Therefore, long-term feature interactions are expected to help detect salient objects with
sharp boundaries.
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This chapter has designed a salient object detection network with an encoder-decoder
architecture where the encoder part has a residual network with fractional weighted
skip connections [5, 315] and the structure of the decoder has feature refinement and
aggregation modules inspired by GCPANet [309]. The key contributions of this work are
listed below:

1. This chapter proposes a salient object detection network with encoder-decoder
architecture equipped with long-term memory. This long-term memory is obtained
by densely connecting the layers of the backbone network via fractional weighted
skip connections.

2. The network performance is analyzed with different loss functions and fractional
orders α (0 < α ≤ 1).

3. The performance-based ensembling of models is leveraged corresponding to order
α using F-measure. Using multiple learners of the same algorithm diversified the
model predictions and developed a better system.

4. The proposed model is evaluated on six benchmark databases with different com-
plexities: viz. HKU-IS [316], PASCAL-S [317], ECSSD [318], DUT-OMRON
[319], DUTS-TE [320] and SOD [321]. According to the results, the model exhibits
state-of-the-art performance in terms of F-measure and mean absolute error.

The chapter is structured as follows: is explained in Section 6.1 explains the proposed
approach, followed by the experimental results obtained and ablation studies in Section 6.2.

6.1 Proposed Approach
This section elaborates the approach adopted for the detection of salient objects. It
describes the optimal control view of salient object detection, designing of the proposed
network architecture, and the model ensembling technique.

6.1.1 Fractional Optimal Control View of Salient Object Detection
As in the previous chapter, the propagation of features at each layer of the deep CNN can
be treated as trajectories of a dynamic system. Subsequently, that dynamic system can be
described with the help of differential equations. This approach represents the feature flow
in the backbone network, assuming the decoder part to be the nonlinear transformation of
the encoder output into a higher dimensional space. In this section, the evolution process
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Table 6.1: Summarization of recent state-of-the-art salient object detection methods with respect to
architecture and results

S
No. Name of the paper Method/ Technique/ Architecture Comparison

1.
BASNet: Boundary-
Aware Salient Object
Detection (2019) [14]

Densely supervised Encoder-Decoder network and a
residual refinement module with hybrid loss function

Outperformed 15 state-of-the-art meth-
ods on six benchmark datasets in terms
of both region-based and boundary-
aware measures

2.

Global Context-Aware
Progressive Aggre-
gation Network for
Salient Object Detec-
tion (2020) [309]

Integrated low-level appearance features, high-level
semantic features, and global context features using
multiple modules after backbone network

Outperformed 12 state-of-the-art meth-
ods on six benchmark datasets

3.

U2-Net: Going
deeper with nested
U-structure for salient
object detection
(2020) [274]

1. Two-level nested U-structure- to train a deep net-
work without using backbones from image classifica-
tion tasks.

2. Residual U-blocks- to capture more contextual in-
formation from different scales and increase depth
without increasing computational cost.

1. Gives better results for maximal F-
measure, MAE, relaxFb

β , Fw
β and struc-

ture measure on ECSSD, HKU-IS and
DUT-OMRON datasets when compared
to 2020 SOTA models.

2. Faster and smaller model

4.

iNAS: Integral NAS
for Device-Aware
Salient Object Detec-
tion (2021) [322]

1. Flexible device-aware search scheme- to train the
model once and find high-performance, low-latency
models on multiple devices.

1. Gives better results for maximal F-
measure, MAE and structure measure
on ECSSD, DUT-O, DUTS-TE, HKU-
IS and PASCAL-S datasets.

2. Has better speed than U2-Net and has
the best performance-latency balance.

5.

Pyramidal Feature
Shrinking for Salient
Object Detection
(2021) [323]

1. Pyramid Shrinking Decoder- to shrink adjacent
features in pairs layer-by-layer.

2. Adjacent Fusion Module- to retain useful informa-
tion in adjacent feature nodes and reduce noise.

3. Scale-aware Enrichment Module- to pre-process the
features extracted and get rich multi-scale features.

1. Gives better results for average F-
measure, MAE and E-measure on EC-
SSD, HKU-IS, PASCAL-S and DUTS-
TE datasets.

2. More prominent in multi-object im-
ages, complex background images, and
images with confusing objects.

6.

Multi-scale Edge-
based U-shape
Network for Salient
Object Detection
(2021) [324]

1. U-shape Edge Network modules- to extract useful
information for boundary prediction.

2. Additional down-sampling module- to alleviate the
location inaccuracy.

1. Gives better results for mean F-
measure, MAE, structure measure, E-
measure on DUTS-TE, ECSSD, DUT-
OMROM and HKU-IS datasets than re-
cent methods.

2. Better at keeping lots of detail with
sharp edges and high precision.

7.

Recursive Contour-
Saliency Blending
Network for Accurate
Salient Object Detec-
tion (2021) [325]

1. Contour-saliency blending module- to exchange
information between contour and saliency

2. Recursive CNN- to increase contour-saliency fusion
while keeping the same total trainable parameters.

3. Stage-wise feature extraction module- to pick best
features from previous intermediate saliency predic-
tions.

Suppresses wrong predictions better by
giving better results across average F-
measure, MAE, E-measure, Fw

β on DUT-
OMRON, ECSSD, PASCAL-S, HKU-IS
and DUTS-TE datasets

8.

TRACER: Extreme
Attention Guided
Salient Object Tracing
Network (2022) [310]

1. The masked edge attention module for the enhance-
ment of the edge features in low-level representations
2. A union attention module for the aggregation of
multi-level features
3.Object attention module to reduce the distribution
discrepancy between encoder and decoder features
4. Adaptive pixel intensity loss to give optimal atten-
tion to the pixels

TRACER improves the performance and
computational efficiency in comparison
to the existing methods on the DUTS and
DUT-OMRON datasets
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Table 6.2: Elements of the encoder (ResNet-50 inspired) architecture: Description of image output
size, convolution layers, and filters at all scales

Level Output Size Layers, Filters Frequency
Layer1 144× 144 7 × 7, 64, stide=2

Layer2 72× 72 3 × 3 max pool, stide=2

1 72× 72

 1× 1, 64
3× 3, 64
1× 1, 256

 3

2 36× 36

 1× 1, 64
3× 3, 64
1× 1, 256

 4

3 18× 18

 1× 1, 64
3× 3, 64
1× 1, 256

 6

4 9× 9

 1× 1, 64
3× 3, 64
1× 1, 256

 3

of the proposed network is described using fractional differential equations to enhance the
process of feature propagation in the backbone network.

Consider the following system Equation (6.1.1) of fractional differential equations
[82] that describes the feature propagation in the deep CNN. Here, the feature trajectory is
represented by v(t, s), a continuous function in terms of time and space both, s ∈ Ω is the
two dimensional spatial position, I(s) is the input image, u(s) is the ground truth salient
map image and Φ,Ψ are linear transformations, such as convolution.

min
θ(t)

∫
Ω

L(Φ(v(T, s)), u(s)) ds (6.1.1)

s.t.

0D
α
t v(t, s) = f(v(t, s), θ(t)), v(0, s) = Ψ(I(s)), t ∈ [0, T ] (6.1.2)

The objective is to find the optimal control parameter θ(t) satisfying equations in the
system (6.1.2) such that the loss in Equation (6.1.1) is minimized [73].

6.1.2 Architecture of the Proposed Salient Object Detection Network

The network has an encoder-decoder architecture with a ResNet-50-like [6] structure as
the backbone network in the encoder part for feature extraction and has interwoven feature

118



Chapter 6

Figure 6.3: Fractional Residual Block (FRB) with four sub-blocks comprising three layers each

aggregation modules with big skip connections in the decoder part to predict the saliency
map in a supervised manner. The evolution process in the network is considered a dynamic
system. The propagation of features through the sub-blocks of the backbone network
is considered as trajectories of the dynamic system and the operations occurring in the
decoder part are considered a non-linear function. The evolution process is described using
fractional differential equations with optimal control conditions. The sub-blocks at a scale
of the encoder are connected to other sub-blocks via fractional weighted skip connections
that incorporate long-term memory into the system. These densely connected sub-blocks
with weighted skips help preserve global appearance with semantic information. The
features extracted from the final layer of the encoder are strengthened using the head
attention module and then forwarded to each level of the decoder with the help of the
global feature flow module. These strengthened features and the features from each level
of the encoder are aggregated with the features of the corresponding level using the feature
integration module, and then these aggregated features are refined at each level using the
self-refinement module. To improve the optimization process of the network, the minor
loss is evaluated at each level of the decoder and then combined with the major loss of the
network.

6.1.2.1 Encoder with Fractional Weighed Skips

The ResNet-50-like architecture with a residual connection after every three layers is used
in the encoder part. Thus to model the evolution as a dynamic system, each scale/block
is divided into sub-blocks of three convolution layers. To sum up, the propagation of
features through sub-blocks of the backbone network is modeled as a dynamic system,
which is described using a set of fractional differential equations and then the optimal
control parameters are evaluated after solving it. The application of fractional derivatives
adds weighted skip connections to the backbone network. These weights are dependent on
the current sub-block (t) of the network and the order of differentiation. The order α along
with fractional weights are positive and less than 1, i.e., 0 < α ≤ 1, and the weighted sum
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of features remains positive and does not explode. The following version of the definition
1.1.10 is used in the proposed model where h = 1 and t denotes a sub-block of three layers
in the network. The evolution process for the multi-scale dynamic system is described
below:

0D
α
t v(t, s, pi) = f(v(t, s, pi)), θpi(t)) (6.1.3)

for each i ∈ [1, 4], t ∈ [0, T ] with the following initial conditions

v(0, s, p1) = Ψ(I(s)), v(0, s, pi) = T↓v(
∑i−1

k=1nk, s, pi−1) (6.1.4)

where T↓ denotes max pooling operation, nk denotes the number of sub-blocks at level k,
θpi is convolution kernel at level i. Thus the evolution process of the backbone network
for the proposed salient map prediction model is represented by Equation (6.1.5).

vpit+1 =
t∑

k=0

wkv
pi
k + σ(θt ∗ (vpit ))) (6.1.5)

where σ is a non-linear unit denoting the three consecutive application of ’Convolution
+ Batch normalization + ReLu’ on the output of sub-block t, vpit+1 is the output of tth

sub-block of scale pi, wk = (−1)(t−k+1)
(

α
t−k+1

)
, and thus wt = α. The structure of a

fractional residual block is shown in Figure 6.3. N stands for the number of sub-blocks.
The sub-block n is connected with (n− 1)th, (n− 2)th sub-blocks via skip connections
with weights w1, w2.. respectively. The detailed scale-wise architectural details for the
backbone network viz. number of layers, sub-blocks and filters, at a particular level is
presented in Table 6.2.

6.1.2.2 Decoder with Refinement and Aggregation Modules
The structure of the decoder part is inspired by GCPANet [309] which has four modules:
Head Attention (HA), Feature Integration (FI), Self Refinement (SR) and Global Feature
Flow (GFF). HA module helps extract more expressive and selective features by exploiting
channel-wise and spatial attention mechanisms. Specifically, the combination of operations
like convolution, average-pooling, and ReLu are used for strengthening the features. FI
module aggregates the interwoven features of the current layer (fc) with the features from
the same level of the encoder (fe) and final layer of the encoder (fd). Specifically, fc, fe
and fd are fed through the convolution layer, upsampled and then element-wise multiplied
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Figure 6.4: Structure of the proposed network for salient object detection

to obtain fce, fec and fed and then these interwoven features are concatenated to obtain
the aggregated features. SR module refines the aggregated features obtained after passing
through HA and FI modules by multiplying with and adding to features obtained after
convolution. GFF module acts as a big skip connection with the combination of non-linear
operations like convolution and activation functions. It transfers the multi-level features
obtained by the encoder to the FI modules of the decoder.

6.1.2.3 Loss Function
Salient object detection is a binary problem classifying the pixel as belonging to the salient
or non-salient category. To train the proposed model, the binary cross-entropy loss is
employed as the loss function for comparing the generated saliency map and the ground
truth. It can be formulated as

LBCE = −
1

h w

h∑
i=1

w∑
j=1

[Gij log(pij) + (1−Gij) log(1− pij)] (6.1.6)

where h, w are the height and width of the input image, Gij ∈ {0, 1} is the ground truth
label of the pixel at (i, j) and pij is the predicted probability of that pixel belonging to
the salient category. To optimize the network parameters, the loss is evaluated at three
intermediate stages (of the decoder) denoted as L1, L2, and L3, and at the end. Specifically,
a 3× 3 convolution is applied after each stage to squeeze the channel of the output feature
maps to one. Then these maps are up-sampled to the same size as the ground truth using
bilinear interpolation and then the sigmoid function is applied to normalize the predicted
values into [0, 1]. Therefore, the final loss used for training is

L = Lmajor +
3∑

i=1

ciLi (6.1.7)
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Figure 6.5: Weighted average ensemble model

where ci denotes the weightage for a loss Li and Lmajor denotes the final loss of the
network. Only Lmajor loss is considered during inference.

Therefore, the proposed salient object detection network is designed by solving the
fractional optimal control problem, i.e., evaluating the optimal control parameter θ(t) that
minimizes the loss function L in Equation 6.1.7, subject to conditions in Equation 6.1.3
and Equation 6.1.4. The structure of the proposed network is shown in Figure 6.4. The
encoder has four FRBs with N sub-blocks, while the decoder comprises feature refinement
and aggregation modules. The feature maps from each FRB are passed to layers of the
decoder at the corresponding level via big skip connections for their aggregation. L1, L2,
L3 are minor losses and Lmajor is the dominant loss determined at the end.

6.1.3 Weighted Average Ensembling

The most frequently adopted evaluation parameter for binary classification, F-measure is
used for the performance-based ensembling of the proposed network. The model with the
highest F-measure is given the highest weightage coefficient. Thus, the proposed fractional
models with output Oα are ensembled with a weightage coefficient equal to ξα = F avg

β,α ,
that represents the average F-measure corresponding to order α. The Formula used for
ensembling is given by (6.1.8). OE represents the final output of the model. Figure 6.5
shows the model ensemble method for obtaining the final model.

OE =
ξ0.1O0.1 + ξ0.2 O0.2 + ξ0.3 O0.3 + · · · ξ1.0 O1.0

ξ0.1 + ξ0.2 + ξ0.3 + · · · ξ1.0
(6.1.8)
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6.2 Experimental Results
In this section, databases, implementation details, and training/testing strategies are de-
scribed. Further, the results are evaluated on these databases to show the effectiveness of
the proposed technique.

6.2.1 Database Specifications
The performance of proposed approach is evaluated on six benchmark databases for salient
object detection viz.ECSSD [318], HKU-IS [316], PASCAL-S [317] , DUT-OMRON
[319], DUTS-TE [320] and SOD [321]. A brief description of these databases is given
below.

• ECSSD [318] consists of 1000 natural images with complex structures and mean-
ingful semantics.

• HKU-IS [316] contains 4,477 images. Most of the images have low contrast and
multiple salient objects with common pixels.

• PASCAL-S [317] consists of 850 natural images derived from the PASCAL VOC
dataset. Many images have cluttered backgrounds and complex foreground objects.

• DUT-OMRON [319] includes 5168 high resolution images. Images have multiple
salient objects with relatively cluttered backgrounds and complex structures.

• DUTS [320] is the largest salient object detection benchmark database with a
training partition of 10,553 images, referred as the DUTS-TR set, and a testing
partition of 5,019 images, referred to as DUTS-TE set.

• SOD [321] is originally designed for image segmentation. The images are of low
contrast and have multiple salient objects touching the boundary of the image.

6.2.2 Training/Testing Protocol
The model’s performance is evaluated on six benchmark databases mentioned above and
trained on the DUTS-TR database. The training data is augmented by horizontal/vertical
flipping, random contrast, and blurring to increase the generalization capability of the
model. Each image is resized to 320× 320 and then a patch of size 288× 288 is randomly
cropped and used for training. Each testing image is also resized to 320 before predicting
their saliency map.
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Figure 6.6: Precision-recall curves for all databases showing comparison of the proposed approach
with other state-of-the-art models
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6.2.3 Implementation Details and Experimental Settings

The backbone network consists of ResNet-50 [6] with dense fractional-weighted connec-
tions where the weights for the skips are derived from G-L fractional derivative. The
pre-trained weights of ResNet-50 on ImageNet [326] are used for initializing the backbone
networks corresponding to all fractional orders. Mini-batch Stochastic gradient descent
(SGD) algorithm1 is applied to optimize the proposed network with a batch size of 64,
weight decay of 5e − 4, and momentum of 0.9. The maximum learning rates for the
backbone network and the rest of the network are set to be 0.005 and 0.5 respectively,
which are further adjusted by applying warm-up and linear decay strategies. The total
number of epochs is set to be 50. The model is implemented in PyTorch framework on a
Linux-based operating system with the NVIDIA A100-PCIE graphic card with graphic
memory of 40 GB.

6.2.4 Results and Discussion

The results obtained by the proposed network are ensembled to obtain the final results,
which are compared with following other state-of-the-art saliency map generation methods:
Amulet [327], C2SNet [328], RADF [329], RANet[16] DGRL [330], PAGR [308], R3Net
[331], BMPM [15], PiCANet [17], CPD-R [332], BASNet[14] and GCPANet [309]. For
fair comparisons, the provided saliency maps or the maps generated using their official
implementations are used to compute the quantitative parameters further.

Quantitative Comparison.The models are compared based on three evaluation metrics
viz. mean absolute error (MAE), max F-measure (Fmax

β ) and averaged F-measure (F avg
β )

with β2 = 0.3. The proposed model’s performance is better than the other methods in
terms of either of the parameters on all the databases. Specifically, the model achieved
state-of-the-art performance on DUTS and SOD with significant improvement in all three
parameters, on HKU-IS and PASCAL-S with higher Fmax

β and lower MAE, on DUT-
OMRON with lesser MAE and ECSSD with same F avg

β . The rest of the parameters
are also comparable to other models. Table 6.3 compares the proposed method with
these existing models by displaying the values of all evaluation metrics on six considered
databases. The comparison of the proposed model with other state-of-the-art models is
also drawn via precision-Recall curves. The area under these curves depicts the classifying
ability of the model. More be the area under the curve, better be the system. The zoomed

1It is a variant of gradient descent algorithm that updates weights after looking at a small batch of the
training set.
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view of the top right corner of the graphs is shown in Figure 6.6 for clear comparison. It
can be observed from the figure that the curves corresponding to the proposed model have
the highest area under them for the majority of the databases.

Qualitative Comparison. Some saliency maps obtained by the proposed model and other
state-of-the-art methods are compared in Figure 6.2. It can be observed from the figure
that the proposed model can perform better even in challenging scenarios such as cluttered
background (row2 and row 4), multiple salient objects (row3 and row 5), low contrast
difference between salient objects and background (row 1), and foreground/background
disturbances (row 1 and row 3). The proposed model chooses the correct salient objects
and produces more complete salient maps due to the simultaneous aggregation of local
and local features.

6.2.5 Ablation Study

In this section, the effectiveness of key components of the proposed model is analyzed.
The ablation study comprises two parts: architecture ablation and loss function ablation.
The ablation study is performed on all six databases.

6.2.5.1 Loss Function Ablation
To determine the most suitable loss function for the proposed model, experiments are
conducted for the architecture obtained at α = 1. The results are evaluated on all the
databases. The following loss functions and their combinations are considered: binary
cross-entropy (BCE), focal, structural similarity (SSIM), and intersection over union (IOU).
Results in Table 6.4 justify the reason behind choosing the binary-cross entropy loss. It
can be observed from the metrics that the network trained with BCE loss performed better
on the majority of the databases.

6.2.5.2 Architecture Ablation
The performance of any salient object detection network depends upon the feature ex-
tracted and their propagation between the layers at each level. The proposed network
reuses the features obtained from previous layers at the present state with the help of
fractional-weighted skip connections. Different factional orders give different arrays of
weights for the skip connections in the backbone network. At α = 1, the backbone network
becomes almost equivalent to the ResNet-50 architecture [6]. To evaluate the effectiveness
of the proposed network, the results are reported for the architectures corresponding to
the different values of fractional order α (0 < α ≤ 1) for all the databases with BCE loss
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Chapter 6

Figure 6.7: Precision-Recall curves and Fmeasure-Threshold curves for four databases correspond-
ing to different fractional orders in column 1 and column 2, respectively: Red curve in each graph
depicts the performance of the best model
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and the ’BCE+SSIM+IOU’ loss. A system’s memory gets enhanced at fractional orders,
as seen from Table 6.4 results. It can be observed that irrespective of the loss function
used, the best results are obtained at a fractional order and not at α = 1. From the values
of the evaluation parameters, the network with ’BCE+SSIM+IOU’ loss performed the
best at α = 0.3 for ECSSD and SOD, at α = 0.4 for PASCAL and DUTS-TE, at α = 0.5

and α = 0.3 for DUTS-OMRON, and at α = 0.8 for HKU-IS. The network with BCE
loss performed the best at α = 0.4 for ECSSD and HKU-IS, at α = 0.5 for SOD, at
α = 0.7 for DUTS-OMRON, α = 0.8 for DUTS-TE, and PASCAL at α = 1, 0.8. The
Precision-Recall and F-measure curves with BCE loss are shown in Figure 6.7 are also
drawn to validate the quantitative results of the final model. ’1-Precision’ and ’1-Recall’
are plotted for each fractional order. The areas below these graphs depict errors in the
system. Thus, the lesser the area under the curve, the better the system. The model with
the best metrics for a database is plotted in red.

6.3 Summary

In this chapter, a salient object detection network with an encoder-decoder architecture
equipped with feature aggregation paths and modules is designed by exploiting the memory
property of fractional derivatives. In the encoder, weighted skip connections are added for
combining the output of previous layers through summation and passing the features to
subsequent layers, increasing the input variability and accuracy of the system. Thus the
proposed model is computationally efficient even with dense connections. The decoder
has feature aggregation, self-refinement, and attention modules for obtaining the more
expressive and selective features that assist in learning the relationship between multiple
salient objects. The network’s performance is evaluated at multiple values of fractional
order α < 1. It is observed that the model is achieving its best performance on a database
at different values of fractional order α. The models are aggregated based on F-measure
values obtained for a system corresponding to α for diversifying the model predictions.
The results show that the salient maps are produced with clear boundaries. The model
performs well even in the presence of low contrast and cluttered background and accurately
generates the salient maps from the images with multiple objects. Moreover, the proposed
network’s performance is found to be better than the other state-of-the-art methods on all
six databases in terms of either F-measure or MAE. Therefore, it can be concluded that
the feature propagation through layers has strengthened, leading to uniform performance
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across all databases and improvement in the model’s generalization capability. The results
show that the model performs well even in the presence of low contrast and cluttered
background and accurately generates the salient maps from the images with multiple
objects.
There is a scope for improvement in two areas: 1) The boundaries of salient maps are
sometimes not sharp enough. The proposed model simultaneously captures local and
global information with the capability of understanding the relation between multiple
salient objects and extracting objects from the background with low contrast difference.
However, while solving the above issues, the model labels some background pixels as
pixels belonging to the salient object. Hence, the sharpness of the boundaries of the salient
objects gets affected. This affects the saliency map generation accuracy of the model.
2) The salient objects comprising very fine structures are inaccurately generated. The
pixels corresponding to objects with thin structures are difficult to extract. The example
showing this issue can be seen in row 6 of Figure 6.2. The thin sharp branches are not
precisely extracted. In the future, these problems can be targeted to obtain saliency maps
with sharper boundaries.

A part of this chapter is communicated as follows :

Sugandha Arora, Trilok Mathur and Kamlesh Tiwari. ”Feature Aggregation for Salient

Object Detection Using Fractional Weighted Skip Connections.” (Communicated).
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Chapter 7

Palmprint-based Human Recognition
System

Biometric authentication utilizes an individual’s behavior and biological characteristics
for automated recognition. Biometric modalities such as face [333], palmprint [334],
fingerprint[335], iris [336], teeth [337], footprint [338], knuckle print [339], etc have
been successfully applied for human authentication. Each biometric trait has different
advantages, due to which modality is chosen based on the application. Palmprint has
unique and stable features like ridges and stripes, which make the authentication system
more reliable and efficient [340]. Moreover, the palmprint images can be extracted with
and without any contact with the sensor/camera, making extracting data for palmprint-
based authentication easier. Palmprint biometrics is used in various applications, including
border control, access control, and time and attendance tracking.

Like any biometric technology, palmprint-based human authentication faces several
challenges affecting its accuracy and reliability [341]. First, the quality of the palmprint
image can significantly impact the accuracy of the authentication system. The images’
improper illumination, motion blur, and low resolution make feature extraction difficult
[20]. Second, the non-uniformity in the features of the palm, as the shape and texture of
the palm can vary significantly from person to person, makes it challenging to develop
a universal model that can accurately identify all individuals [342]. Third, the presence
of jewellery, gloves, or other objects that cover the palm can cause occlusion and reduce
the accuracy of the authentication system [343]. Fourth, the skin on the palm can change
with time due to the appearance of wrinkles and cuts caused by some injury. Such changes
in the palmprint patterns can impact the accuracy of the authentication system, mainly if
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Figure 7.1: Block Diagram showing the stages of the proposed palmprint recognition system

the system is developed using older images of the individual [344]. Lastly, developing a
robust and accurate palmprint recognition algorithm requires significant computational
resources, making it challenging to implement palmprint-based authentication systems on
low-power devices or in resource-constrained environments.

To overcome the above-mentioned challenges, several palmprint recognition systems
have been developed. Some of the effective methods are based on handcrafted features
[345] and traditional machine learning algorithms [346, 347]. Manual extraction of
features was found to be more erroneous and traditional machine learning methods were
also unable to handle image variations [348, 349]. The most advanced techniques include
coding-based methods, local pattern descriptors, and deep learning approaches. Coding-
based methods compute a biometric template by applying filters to the image and encoding
the results. Then, the resulting biometric templates are compared globally based on
their Hamming distance [350]. The PalmCode [351], binary Orientation Co-Occurrence
Vector method [352], Double-Orientation Code [353], and Robust Line Orientation Code
[354] are some of the most frequently used coding-based methods. Due to their global-
matching procedure, these methods perform well on partially constrained databases but
face difficulty dealing with local variations like rotation and translation [355]. Several
recent approaches focus on local texture patterns that perform well on unconstrained
data with variations. Some of those techniques are Scale-Invariant Feature Transform
(SIFT) [356], Local Directional Patterns (LDP) [357], Local Binary Patterns (LBP) [357],
Histograms of Oriented Gradients (HOG) [358], and Local Tetra Patterns (LTrP) [359]
descriptors. These are texture-based techniques that first encode pixel intensity values,
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then blockwise compute the histograms of the encodings, and then concatenate these
blockwise histograms to obtain the feature vectors. The obtained feature vectors represent
the corresponding biometric templates which are compared using different distance metrics
(Euclidean or chi-squared distance). The LDP [357], LBP [357], and LTrP [359] are widely
adopted and highly accurate local texture descriptors for touchless palmprint recognition.
However, its computations involve handcrafted feature extraction procedures requiring
manual parameter tuning. While overcoming these drawbacks, several deep-learning-based
palmprint recognition systems are developed due to their ability to natively process input
images and adapt to samples captured with heterogeneous devices. Deep learning-based
methods are successfully being used to extract features; hence, deep CNNs are applicable
for image classification, object detection, and several other tasks. Deep CNNs are used for
palmprint recognition and give state-of-the-art results [341]. These algorithms can learn
complex and non-linear relationships between the palmprint features and the individual’s
identity, leading to high recognition accuracy.

The performance of a recognition system depends upon the quality of features extracted.
Deep neural networks use multiple layers to extract higher-level features progressively.
With the increase in depth of the networks, the problem of vanishing gradient and infor-
mation loss arises. Many recent works such as ResNets [6], FractalNet [250], DenseNet
[312], and many others, have addressed this issue. The drawbacks of these networks are
mentioned in the earlier chapters. The approach used in the previous two chapters of
adding weighted skip connections is adopted here for developing a recognition system.
Adding weighted skip connections: 1) enables deeper networks for better feature extrac-
tion; 2) solves the vanishing gradient problem; 3) incorporates long-term memory with a
mathematical framework; and 4) improves the network’s generalization ability, leading to
the extraction of more expressive features. The obtained feature vectors can be improved
by further refinement and adding explicit constraints on their distribution to make them
significantly separable. A fractional-derivative-based feature extraction network integrated
with a dual attention mechanism is designed to address this. The key contributions of this
work are described below:

1. This chapter proposes a palmprint-based authentication system that extracts features
from FrDPalmNet, a novel fractional-derivative-based residual network embedded
with dual attention modules. The feature extraction process is modeled as a dynamic
system using the G-L fractional derivative. The fractional derivative incorporates
long-term memory into the system to extract more expressive features, that are
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further refined in a dual way, i.e., channel-wise and position-wise.

2. The trainable weights of FrDPalmNet are optimized by using large-margin cosine
loss [360] with focal loss [146]. This increases the inter-class variations and intra-
class similarities between the features and helps learn more discriminative features.

3. The predictions of FrDPalmNet for each α are aggregated using a weighted average
ensemble method based on the system’s error rate. Using multiple learners of the
same algorithm diversified the model predictions and developed a better recognition
system.

4. The effectiveness of adopting the proposed palmprint recognition system is evaluated
on three widely used publicly available palmprint image databases viz. CASIA [18]
, IIT Delhi Touchless [19] and Tongji Contactless Palmprint Database [20]. All
these databases are acquired in an unconstrained environment.

The rest of the chapter is structured as follows: Section 7.1 describes the proposed
approach, i.e., pre-processing, architecture designing, loss function, matching strategy, and
model ensembling. The detailed analysis of experimental results is done in the Section 7.2.

7.1 Proposed Approach
This section provides a detailed description of the proposed palmprint recognition approach.
The four main components of the proposed approach viz. pre-processing of Region of
Interest (ROI) palmprint images, feature extraction, matching the extracted features and
evaluating the scores, and score fusion via ensembling. The original palmprint images have
cluttered backgrounds and some unnecessary parts of the hands like wrists and fingers,
other than the palms. The method given by Zhang et. al. [351] is adopted to extract the
required portion of the palms from the images. It binarizes the image and then separates the
palm from the background. Then, the gaps between the fingers are used as reference points
to get the y-axis of the coordinate system. The point at which the line perpendicular to the
line joining these reference points is referred to as the origin of the coordinate system. A
sub-image is extracted from the central part of the image based on the coordinate system.
The histogram equalization technique is used to enhance the extracted ROI images. For
feature extraction, FrDPalmNet is proposed which has layers with fractional weighted
skip connections and dual attention modules are applied at each level. The large-margin
cosine loss and focal loss are applied in FrDPalmNet for effective learning. Ten variants
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Figure 7.2: Samples of palmprint ROIs in row 1 with corresponding enhanced images in row 2

of FrDPalmNet depending on different fractional orders (0 < α ≤ 1) are considered. The
features of test images are matched with the features of training images. The score files
corresponding to each fractional order are fused to obtain the final ensembled score file.
All the components of the proposed approach are described in the following subsections.

7.1.1 Pre-processing

The extracted ROI images are enhanced by adaptively equalizing their histograms. It means
that the most frequent intensity values are effectively spread out, i.e., the intensity range of
the ROI images is stretched out. CLAHE (contrast limited adaptive histogram equalization)
variant of adaptive histogram equalization is employed, which locally improves the contrast
in an image while preventing noise amplification. ROI images are divided into small tiles
of size 4×4 each and then the histogram is equalized in these small tiles separately. Before
applying CLAHE, pixels in any histogram bin that exceeds the chosen contrast limit (= 2),
are clipped and uniformly distributed to other histogram bins. This enhancement technique
highlights the edges and reduces any blurry effect due to light reflection during palmprint
image acquisition. The enhanced output image becomes more suitable for deep feature
extraction and matching. Figure 7.2 shows that images enhanced with CLAHE have
prominent principal lines and ridges.

7.1.2 Architecture of FrDPalmNet

The proposed network has four residual blocks with fractional-weighted skip connections
and dual attention assistance after each block. Each fractional residual block has multiple
sub-blocks. The sub-blocks at a scale of the network are connected to other sub-blocks via
fractional weighted skip connections that incorporate long-term memory into the system.
The features extracted from the final layer of a fractional residual block are pooled and
then strengthened using the dual attention modules. The evolution process in the network
is modeled as a dynamic system. The propagation of features through the sub-blocks
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Figure 7.3: Fractional Residual Block (FRB) with N = 4 sub-blocks comprising two layers each

of the network are considered as trajectories of the dynamic system and the operations
occurring in the dual attention modules are considered as a non-linear function. The
feature propagation through sub-blocks is described using fractional differential equations
with optimal control conditions. Large-margin cosine loss followed by focal loss is applied
to improve the optimization process of the network. The major components of the network
are described below with supporting mathematical explanations for memory exploitation.

7.1.2.1 Fractional Residual Blocks (FRB)
The ResNet-34-like architecture with residual connection after every two layers is used for
feature extraction. For modeling the evolution process of the network as a dynamic system,
each scale/block is divided into sub-blocks of two convolution layers. To sum up, the
propagation of features through sub-blocks of the network is modeled as a dynamic system,
which is described using a set of fractional differential equations, and then the optimal
control parameters are evaluated after solving it. The application of fractional derivatives
adds weighted skip connections to the residual blocks of the network. These weights
depend on the network’s current sub-block (t) and the differentiation order. The order α
and fractional weights are positive and less than 1, i.e., 0 < α ≤ 1, and the weighted sum
of features remains positive and does not explode. Fractional Residual Block with four
sub-blocks comprising two layers each is shown in Figure 7.3. N stands for the number of
sub-blocks. The sub-block n is connected with (n− 1)th, (n− 2)th sub-blocks via skip
connections with weights w1, w2.. respectively.

7.1.2.2 Dual Attention Module
Since the ROI of palmprint images has noise due to improper illumination, motion blur,
and low resolution, it leads to distorted features and affects the system’s accuracy. To
improve the discriminating ability of the palmprint-based authentication system, the
local features are adaptively integrated with their global dependencies based on a self-
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Figure 7.4: Structure of the proposed FrDPalmNet for palmprint feature extraction

attention mechanism. The attention modules automatically select the region from the
image responsible for maximum contribution in accurate matching. The dual attention
module applies position attention and channel attention mechanisms after the final layer of
the FRB. The Position Attention Module (PAM) aggregates semantically similar pixels
in the spatial domain of the input feature map. It is applied to the entire input feature
map based on pixel values without consideration of the spatial positions of the pixel.
The Channel Attention Module (CAM) captures the channel-wise relationship of features
obtained from the FRB. Both modules are spatially invariant. The outputs of both modules
are then combined to improve feature representation, resulting in more precise matching
results.

• Channel Attention Module (CAM). The different channel maps corresponding
to high level features are class-specific and their semantic information are interde-
pendent to each other. To capture this channel-wise relationship, it is required to
differentiate between essential features and redundant information. This improves
the representation of features and stability of the network. Therefore, ECA-Net
[361] is used as a channel attention module after every FRB to specifically model the
interdependencies between the channel maps. Its implementation involves the usage
of a one-dimensional convolution of size F (= 5) that requires just six trainable
parameters. The CAM is applied on the feature E

(i)
m extracted from FRB at level m

with weights given by A
(1)
m , is denoted by ACAM(E

(i)
m ;A

(1)
m ). Mathematically, the

channel-wise highlighted feature F
(i)
m,1 at level m is given by the following

F
(i)
m,1 = E(i)

m ⊗ ACAM(E(i)
m ;A(1)

m ) (7.1.1)

where ⊗ represents matrix multiplication.
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• Position Attention Module (PAM). The palmprint images have diverse features
like ridges, principal lines, and wrinkles spread from one end of the image to another.
PAM [362] captures the spatial semantic regularities in the palmprints. Assume E(i)

m

be the output of the FRB at level m that is passed to PAM for focusing on spatial
dependencies. The PAM is applied on the feature E

(i)
m extracted from FRB at level

m with weights given by A
(2)
m , is denoted by APAM(E

(i)
m ;A

(2)
m ). Mathematically, the

spatially enhanced feature F
(i)
m,2 at level m is given by the following

F
(i)
m,2 = E(i)

m ⊗ APAM(E(i)
m ;A(2)

m ) + E(i)
m . (7.1.2)

where ⊗ represents matrix multiplication.

• Feature Combination. The outputs from CAM and PAM after each FRB are
aggregated to get the spatially and channel-wise highlighted feature. The features
vectors are summed up element-wise to get the final feature. Mathematically, the
final feature C

(i)
m is given by

C(i)
m = F

(i)
m,1 ⊕ F

(i)
m,2 (7.1.3)

where ⊕ denotes element-wise summation, F (i)
m,1 and F

(i)
m,2 are features extracted

from CAM and PAM respectively, applied after FRB at level m. These attention
modules are applied four times in the network. The output of the fourth dual atten-
tion module C4 is flattened to get a one-dimensional vector followed by applying
a fully connected and batch normalization layer to get the embedding P (i) of size
512× 1 for the input palmprint image I(i).

7.1.2.3 Loss Function
Large-Margin cosine Loss (LMCL) is employed to increase the feature discrimination
power of the network. Its formulation involves combining the Softmax function with a
cosine similarity transformation. It adds an angular margin to the conventional Softmax
loss, ensuring that the embeddings of different classes are more distinguishable. This is
achieved by increasing the angular distance between the embedding of the correct class
and the embeddings of other classes. The norm of the feature vectors is fixed to be s, and
θ is the angle between the feature vector and the corresponding weight vector obtained
after applying L2 normalization/euclidean normalization. Palmprint recognition is a binary
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classification problem as the images matched are genuine or imposter matches. The motive
is to increase the margin between imposter matches and decrease the margin between
genuine matches. If θi denotes the angle between the weight vector and the learned feature
vector for an image belonging to class i, then the conditions followed by these feature
vectors are given as

C1 : cos θ1 −m > cos θ2 (7.1.4)

C2 : cos θ2 −m > cos θ1 (7.1.5)

The conditions C1 and C2 are satisfied to match within class S1 and S2 respectively.
The term cos θi −m < cos θj with margin m > 0 makes the classification more stringent.
Using these margin constraints, the LMCL function is expressed as

Llmc =
1

N

∑
i

− log
es(cos(θyi ,i)−m)

es(cos(θyi ,i)−m) +
∑

j ̸=yi
es cos(θj ,i)

(7.1.6)

where, cos(θj, i) = W T
j O

(i) and Wj is the weight vector for the class i. The output of
LMCL, a vector of class probabilities, is fed to the Focal Loss (FL) [146] for facilitating
backpropagation. Mathematically, it is expressed as

FL(p, y) = −(1− py)
γlog(py) (7.1.7)

where γ is a hyperparameter focused on hard negative examples. After combining the
FRBs, dual attention modules, and the loss function, we get the final feature extraction
models corresponding to different fractional order α. The proposed deep feature extraction
network FrDPalmNet is designed by solving the following fractional optimal control
problem :

min
θ(t)

M∑
y=1

FL(p, y),

subject to,

0D
α
t v(t, s, pi) = f(v(t, s, pi)), θpi(t))

s.t. v(0, s, pi) = Ad(T↓v(
∑i−1

k=1nk, s, pi−1)),

v(0, s, p1) = Ψ(I(s)), i ∈ [1, 4], t ∈ [0, T ] (7.1.8)
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Table 7.1: Description and comparison of the considered palmprint databases

Database Hand
State

Sessions Session
Interval

Number
of Palms

Samples
per palm

Gallery
Samples

Probe
Samples

Total
Samples

CASIA [18] Fixed 1 - 602 8-10 2408 2831 5239
IIT-D [19] Fixed 1 - 460 5-6 1841 760 2600
Tongji [20] Free 2 61 days 600 20 6000 6000 12000

whereAd denotes dual attention, T↓ denotes max pooling operation, nk denotes the number
of sub-blocks at level k, θpi is convolution kernel at level i. Thus the evolution process of
the proposed feature extraction model is represented by (7.1.9).

vpit+1 =
t∑

k=0

wkv
pi
k + σ(θt ∗ (vpit ))) (7.1.9)

, where σ is a non-linear unit denoting the twice consecutive application of ’Convolution
+ Batch normalization + ReLu’ on the output of sub-block t, vpit+1, is the output of tth

sub-block of scale pi, wk = (−1)(t−k+1)
(

α
t−k+1

)
, and thus wt = α. The p network is shown

in Figure 7.4, built from four FRBs shown in Figure 7.3 with N sub-blocks.

7.1.3 Matching Strategy
The features of the palmprint database are extracted from the models corresponding to
each α. The features of test images are matched to train images and the matching score is
evaluated for each pair. The score files corresponding to each α are Sα. The score file is
further analyzed and evaluation metrics are computed for each database.

7.1.4 Weighted Average Ensembling
The verification performance of the authentication system is majorly dependent on EER.
The model with the highest EER is given the least weightage coefficient. Thus the proposed
fractional models are ensembled with a weightage coefficient equal to βα = 1

EERα
. The

Formula used for ensembling is given by (7.1.10). SE represents the final matching score
of the model.

SE =
β0.1S0.1 + β0.2 S0.2 + β0.3 S0.3 + · · · β1.0 S1.0

β0.1 + β0.2 + β0.3 + · · · β1.0

(7.1.10)

7.2 Experimental Results
In this section, databases are introduced, and implementation details and matching strate-
gies are described. Further, the results are evaluated on these databases to show the
effectiveness of the proposed system.
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Figure 7.5: Sample ROIs of the palmprint databases: First, second and third row shows the images
from CASIA [18], IIT-D [19] and Tongji [20] databases respectively

7.2.1 Database Specifications

The proposed approach is evaluated on the three most widely-used and publicly-available
palmprint databases, namely, CASIA Palmprint Image Database [18], IIT Delhi Touchless
Palmprint Database [19] and Tongji Contactless Palmprint Database [20]. Every database
considers a person’s left and right palms as two different subjects. All the databases are
acquired using contactless devices. The Tongji Contactless Palmprint database images are
extracted by freely placing the hand in an enclosed box, having controlled illumination
without any contact with the surface. The rest of the databases are acquired by placing the
hand on a fixed surface in an enclosed box having controlled brightness. The Region of
interest (ROI) from these palmprint images is extracted using the well-approved technique
proposed in [351]. The databases are briefly described below and in Table 7.1. The sample
ROI images are shown in the Figure 7.5.

• CASIA Palmprint Image Database [18] The CASIA palmprint database from the
Chinese Academy of Sciences, Institute of Automation consists of 5239 images
collected from the palms of 301 individuals. Around Eight images from each
subject’s palm are collected in a single session without any restriction on posture
and position of the palm. The original images are in bitmap (∗.bmp) format with
dimensions 640× 480. The extracted ROI images are of dimension 128× 128.

• IIT Delhi Touchless Palmprint Database [19] This database consists of 2600
palmprint images acquired from both palms of 230 students and staff of IIT Delhi
from June 2006- July 2007. Five-Six images from each palm were captured in
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varying poses. The original images are in bitmap (∗.bmp) format with dimensions
800× 600. The extracted ROI images are of dimension 150× 150.

• Tongji Contactless Palmprint Database [20] This is a large-scale database con-
sisting of 12000 palmprint images. It is collected by Tongji University from both
the palms of 300 subjects in two sessions with the gap of 2 months. 275 subjects
are from the age group of 20 to 30 years and the rest are from the 30 to 50-year
age group. Ten images from each subject’s palm are collected in each session. The
original images are of dimensions 800 × 600. The extracted ROI images are of
dimension 128× 128.

Table 7.2: Recognition performance of FrDPalmNet shown with state-of-the-art results from
PalmHashNet [4] on the considered databases

CASIA IIT-D TongjiModel CRR EER DI Acc CRR EER DI Acc CRR EER DI Acc
PalmHashNet 100 0.031 4.71 99.98 99.42 0.39 3.94 99.62 97.8 0.53 2.82 97.65
Proposed 99.55 0.34 3.82 99.74 99.34 0.24 3.80 99.78 98.73 0.64 3.28 99.38

7.2.2 Training/Testing Protocol

All the databases used for experiments are non-uniform, and there is no fixed partition of
training and testing images. The most frequently followed partition in the existing literature
is adopted to evaluate the recognition performance. The training partition contains the
gallery images used for training the model, and the testing partition contains query images,
which are matched with the gallery images for identification. If the match is between
images of the same subject, then that is termed a genuine match otherwise it is an imposter
match. Each subject of the CASIA palmprint database has around eight or ten images,
thus train partition has four images associated with each subject, and the rest of the images
are added to the test partition. Each subject of the IIT-D palmprint database has around
five or six images, thus test partition has one or two images associated with each subject.
The Tongji contactless palmprint database is acquired in two sessions. Each subject has
ten images in each session. The images collected from one session are added to the train
partition and second-session images are added to the test partition.

The acquired palmprint images are non-uniform, have occlusion and variations in
illumination, etc. To make the network resilient to such non-uniformities, the training
partitions of the databases are augmented using Python Augmentor [363]. The images

144



Chapter 7

are transformed by applying random zoom, rotation, contrast, brightness, and horizontal
flipping. These five processes are performed on each image of the training partition,
making the final training size six times. The final training portion of CASIA, IIT-D, and
Tongji databases consisted of 14448, 11046, and 36000, respectively.

7.2.3 Implementation Details and Experimental Settings

A Linux-based operating system with the NVIDIA A100-PCIE graphic card having graphic
memory of 40 GB is used to implement the model in the PyTorch framework. LMCL
loss with margin m = 0.35 and norm s = 300 and focal loss with γ = 2 is employed for
training the network. Adam optimizer is used for weight updation with weight decay of
5e− 4, the initial learning rate of 3−4 which is adjusted after every 20 epochs with linear
decay of 0.1. The model is trained for 100 epochs with a batch size of 64.

7.2.4 Results and Discussion

The proposed network FrDPalmNet extracts the feature embeddings of training and test
images. To evaluate the palmprint recognition performance of the proposed system, the
feature embeddings for the test and training images are compared, and Euclidean distance
is evaluated between them. Those distances are treated as scores; on that basis, the system’s
accuracy, CRR, EER, and DI are computed on all three databases. The final proposed
recognition system is developed from the ensemble of FrDPalmNet for each α. The final
proposed system’s results on all databases and their comparison with the state-of-the-art
network PalmHashNet [4] are shown in Table 7.2. The accuracies of the proposed system
are 99.4%, 99.78% and 99.38% on CASIA, IIT-D, and Tongji respectively. Moreover, the
EERs of the proposed system are 0.34%, 0.24%, and 0.64% on CASIA, IIT-D, and Tongji
respectively. Thus the system has accuracy above 99% and EER below 1% on all the
databases which justifies the great verification performance of the authentication system.
The genuine and imposter score histogram is plotted in the second column of Figure 7.6
showing the performance of the proposed approach on all three databases. The peaks for
genuine and imposter scores in the score histogram for all the databases are well separable.
The best imposter score and a genuine score of all the images are plotted on the graphs
in the first column of Figure 7.6. It can be observed that the proposed system has a clear
separation between the values. More separability implies a better recognition system. The
value of the parameter DI denotes class separability. The proposed system achieved DI of
3.82, 3.80 and 3.28 on CASIA, IIT-D and Tongji respectively. The proposed system has
better verification performance than the PalmHashNet with higher accuracy, higher DI,
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a) CASIA

b) IIT-D

c) Tongji

Figure 7.6: First column: Best genuine and imposter scores for every image in the database;
Second column: Histogram of genuine and imposter scores
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Table 7.3: EERs (%) of palmprint verification using proposed approach (FrDPalmNet) and other
benchmarking methods on the considered databases

Feature Extraction Method CASIA IIT-D Tongji
Feature extraction using Karhunen–Loeve transform [364] 0.55 7.72
Column Sampling based Discrete Supervised Hashing (COSDISH) [354] 0.81 7.44
L1 norm sparse multiscale competitive code with Gaussian filters [365] 0.48 - -
Local Line binary Directional Patterns (LLDP) [357] - 4.07 -
Adversarial Metric Learning [359] - 1.73 1.21
Feature extraction using Local Micro-structure Tetra Pattern (LMTrP) [366] - 0.87 -
PalmHashNet with modified Softmax loss [4] 0.03 0.39 0.53
Proposed FrDPalmNet 0.34 0.24 0.64

Table 7.4: CRR (%) of the proposed recognition system (FrDPalmNet) and other benchmarking
methods on the considered databases

Feature Extraction Method CASIA IIT-D Tongji
Difference of Block Means [367] 94.17 99.02 -
Adversial Metric Learning [359] - 99.02 97.17
Deep CNN for discriminative feature representation (DDR) [368] 97.06 97.25 -
Column Sampling based Discrete Supervised Hashing (COSDISH) [354] - - 96.38
Hashing network with structural similarity metric [369] - - 97.65
PalmHashNet with modified Softmax loss [4] 100 99.42 97.8
ProposedFrDPalmNet 99.55 99.34 98.73

and comparable EER of 99.38, 3.28 and 0.64 respectively for the Tongji database. On the
other hand, PalmHashNet has accuracy, DI, and EER of 97.6, 0.53, and 2.82 respectively
on Tongji. The proposed achieved accuracy and EER of 99.78% and 0.24% respectively
on the IIT-D database, while PalmHashNet has accuracy and EER of 99.62% and 0.39%

respectively. Clearly, the proposed system is a better palmprint verification system on the
IIT-D palmprint database. On the CASIA database, the proposed approach has achieved
comparable accuracy of 99.74% with PalmHashNet.

The Rank-1 identification rates (CRR) for the proposed approach are 99.55% and
99.34% (> 99%) for CASIA and IIT-D. The identification performance is comparable to
the state-of-the-art model for CASIA and IIT-D, while the identification rate is 98.73%
for the Tongji database, better than the state-of-the-art. The verification and identification
results of the proposed approach are compared with various existing palmprint recognition
techniques. It can be seen from Table 7.3 that the proposed approach performs best in
terms of EER when tested on the IIT-D Touchless palmprint database. Table 7.4 shows
that the proposed approach performs best in terms of rank-1 identification rate (CRR)
when tested on the Tongji database. Therefore, it can be said that the proposed approach
performs well with comparable performance with the other state-of-the-art techniques
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Table 7.5: Comparison of the proposed method for different fractional orders and their ensemble
based on CRR, EER, DI, and Accuracy (Acc)

Network CRR EER DI Acc CRR EER DI Acc CRR EER DI Acc
CASIA IIT-D Tongji

α = 0.1 98.90 0.57 3.58 99.53 98.03 1.22 3.27 98.86 94.13 2.27 2.73 97.85
α = 0.2 99.17 0.57 3.65 99.54 98.42 0.96 3.36 99.14 94.17 2.00 2.84 98.05
α = 0.3 99.10 0.60 3.52 99.42 98.42 0.85 3.36 99.20 95.98 1.46 2.96 98.56
α = 0.4 99.02 0.66 3.45 99.42 97.76 0.92 3.46 9.17 96.37 1.56 2.96 98.49
α = 0.5 99.17 0.55 3.65 99.54 98.42 0.82 3.46 99.28 96.83 1.40 3.06 98.67
α = 0.6 99.10 0.62 3.53 99.44 98.16 0.82 3.52 99.29 97.10 1.25 3.06 98.79
α = 0.7 98.83 0.70 3.61 99.43 98.95 0.53 3.54 99.57 97.63 1.36 3.03 98.69
α = 0.8 99.24 0.57 3.63 99.50 98.42 0.89 3.39 99.19 97.70 1.30 3.09 98.77
α = 0.9 98.94 0.60 3.48 99.43 98.16 0.66 3.41 99.36 97.18 1.38 3.06 98.69
α = 1 99.28 0.68 3.51 99.40 98.42 0.85 3.41 99.20 97.32 1.46 3.01 98.59
Ensembled 99.55 0.34 3.82 99.74 99.34 0.24 3.80 99.78 98.73 0.64 3.28 99.38

proposed in the literature.

7.2.5 Ablation Study

The performance of the proposed recognition system depends upon the quality of features
extracted and thus on the process of feature propagation. The feature from a layer of
the network is propagated to multiple layers via weighted skip connections and those
weights are dependent on the fractional order α. Thus ablation study is performed on
order α to search for the optimal weights leading to the extraction of superior features that
would improve the palmprint recognition performance. The features are extracted from the
FrDPalmNet at α = 0.1, 0.2, 0.3, · · · , 1.0 on all three databases. Rank-1 identification
rate (CRR), EER, DI and accuracy are computed for analyzing the performance of the
models. At α = 1, the weight of just the previous connection becomes equal to one and
the rest of the weights become zero. Thus the network obtained at α = 1 is equivalent to
plain ResNet34 integrated with dual attention.

Table 7.5 shows the results obtained at different α. The best results at some α are
represented by bold and italic font for each database. At α = 1, the values of CRR,
EER, DI and accuracy are 0.68%, 3.51 and 99.40% for CASIA, 98.42%, 0.85%, 3.41 and
99.20% for IIT-D, and 99.28%, 97.32%, 1.46%, 3.01 and 98.59% for Tongji, respectively.
The results at some fractional orders α are better than those at α = 1 for all three databases.
The best CRR for CASIA is 99.28% obtained at α = 1. But the best EER, DI and accuracy
are 0.55%, 3.65 and 99.54% respectively, obtained at α = 0.5. The best CRR, DI, EER
and accuracy are 98.95% 0.53% 3.54 and 99.57% respectively obtained at α = 0.7 for
IIT-D. The best CRR and DI are 97.70% and 3.09 respectively, obtained at α = 0.8, while
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the best EER and accuracy are 1.25% and 98.79% respectively obtained at α = 0.6 for
Tongji.

Figure 7.7: ROC Curves of the proposed approach at each α and final proposed ensemble system:
Red curve depicts the final proposed system

The ROC curves for each database corresponding to each α are plotted in log-scale
as shown in Figure 7.7. The log scaling focuses on a more meaningful lower side of the
curve. The area under the ROC curve depicts the degree of separability between the classes.
Lesser be the area under the curve, the better the system. The blue ROC curve in each
graph representing the performance for CASIA, IIT-D and Tongji at α = 0.6, α = 0.7 and
α = 0.7 respectively, has the least area amongst all the models for different α. The same
can be validated from the values of evaluation parameters as well in Table 7.5. It can be
seen that the models are performing well for all databases on different fractional orders.
Thus the dissimilarity scores of the features of a database obtained from the models for
different α are ensembled using the weighted average method based on the EER parameter
to focus on better verification performance of the system. After ensembling the models
for all α, the best results are obtained for all the databases. The red ROC curve for each

149



Chapter 7

database represents the performance of the ensemble model.

7.3 Summary
In this chapter, a palmprint-based human authentication system is developed using the
proposed network FrDPalmNet that generates highly discriminative and expressive features.
FrDPalmNet is designed using the theory of fractional optimal control which mitigated the
issue of short-term memory of the existing integer-order derivative-based networks. The
outputs of the layers of the fractional residual blocks (FRB) of this network are integrated
using weighted summation, unlike other dense networks which involve concatenation of
outputs. Thus the propagation of features is enhanced resulting in the preservation of
information with lesser computation cost. The features after each FRB is strengthened
using dual attention modules. Further, LMCL with focal loss is used to train the model for
feature extraction and obtain the embeddings with high intra-class similarity and inter-class
separability. The three major elements of FrDPalmNet: FRBs, dual attention modules, and
LMCL with focal loss, helps in the determination of high-accuracy features. The feature
vectors generated using FrDPalmNet for each α are matched with all gallery images and
the genuine/imposter scores are determined. CRR, EER, DI, and accuracy are computed
to analyze the systems’ performance. The score files are aggregated based on EER values
obtained for a system corresponding to α. The decision is made using multiple learners
of the same algorithm for diversifying the model predictions. The proposed approach is
validated on CASIA, IIT-D, and Tongji palmprint databases for thorough evaluation. The
proposed system achieved comparable and sometimes even better results than the other
methods existing in the literature. Moreover, the system showed more uniform accuracy
results on heterogeneous databases. Specifically, the system achieved an accuracy of above
99% and EER below 1% on all considered databases. The rank-1 identification rate is
98.73% for Tongji outperforming the state-of-the-art and above 99% for CASIA and IIT-D.
The consistent results of the proposed system demonstrate the efficiency and feasibility of
its application on other heterogeneous databases captured using different devices.

A part of this chapter is communicated as follows:
Sugandha Arora, Trilok Mathur and Kamlesh Tiwari. ”FrDPalmNet: Dual Attention

Mechanism and Residual Blocks with Fractional Weighted Skips for Palmprint-based

Human Authentication System.” (Communicated).
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Conclusion and Future Scope

This thesis presents novel approaches to investigate the effectiveness of fractional differen-
tiation. The potential applications of fractional calculus in science, engineering, finance,
and social science are exponentially growing with time. This research uses fractional
calculus to model crime transmission, train neural networks, and design memory-inherent
deep neural networks through a concrete mathematical framework. It is observed that
the memory property of fractional derivatives is well exploited in considered domains,
by allowing the modeling and analysis of the complex systems that exhibit long-term
dependence and non-linear behavior. This process of memory incorporation brings explain-
ability and interpretability into the system, enhancing transparency and trustworthiness
and enabling a better understanding of the process. The comparative analysis with the
existing literature reveals that the findings are better than those of prior work reported in
the literature. The conclusions inferred for each application area, followed by the future
scope of this research work, are discussed in the next section.

8.1 Conclusions of the Work

8.1.1 Crime Transmission Modeling

Unlike existing crime transmission differential models, the proposed fractional model helps
investigate the historic and simultaneous effects of imprisonment, recidivism, contagion,
history of criminals, and jurisdiction on crime transmission. The basic reproduction
parameterR0 is evaluated with non-locality indulgence, which behaves as a threshold for
representing the number of citizens a criminal can influence to indulge in crime. This
work recommends stricter policies to catch repeat offenders than first-time offenders. It is
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also advised to organize rehabilitation programs for first-time offenders by influencing
them to prevent criminal activities and improve their desistance rate for eradicating crime
transmission from society. Meanwhile, it is observed that increasing the prison length
doesn’t have much effect on the threshold condition, on the fractions of criminally active
and criminally inactive populations. The fractional order α can be a precautionary measure
against crime transmission, punishment of criminals and delay in catching criminals by
computing the necessary level of imprisonment by scrutinizing the proposed model to
reduce the crime prevailing in society.

8.1.2 AQI Forecasting

The fractional-order gradient-based backpropagation algorithm is utilized to train Vanilla
RNN for the AQI prediction of five Indian cities. The proposed approach is used to
predict major air pollutants in tier I city, Kolkata. The results of the prediction of AQI
of multiple cities and the prediction of air pollutants show that the minimum error on
predictions is achieved using fractional order derivative. Most cities achieve better results
when the order is equal to 8/9. The architecture of vanilla RNN is much simpler than
the structure/functioning of an LSTM, but the predictions made by RNNs with fractional
gradient-based backpropagation are comparable and sometimes even better than LSTM
with the integer-order gradient descent algorithm. With simpler architecture, achieving
lesser RMSE and MAPE shows the effectiveness of fractional gradient over integer-order
gradient descent. Hence, the memory property of fractional derivatives can be well
exploited with deep neural networks for dealing with more complex and dynamic data.

8.1.3 Satellite Image Road Segmentation

A dense network with weighted skip connections is proposed to segment roads from high-
resolution satellite images. Weights corresponding to the skip connections are determined
using Grunwald-Letnikov fractional derivative. Fractional derivatives being non-local,
incorporates memory into the system, combining local and global features. This introduces
interpretability to the memory exploitation of the network. The proposed network involves
the weighted sum of the output of previous layers at a particular transition, unlike basic
dense networks where the output of the previous layers is concatenated. Thus the proposed
method is computationally efficient. Experiments are performed on two open-source,
widely-used benchmark databases viz. Massachusetts Road database (MRD) and Ottawa
Road database (ORD). These datasets represent different road topography and network
structure, including varying road widths and complexities. Moreover, the performance of
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the proposed network is found to be better than other state-of-the-art methods in terms
of F1-score and the mean IoU at fractional order 0.4 for MRD and at 0.5 for ORD than
the state-of-the-art segmentation results. The results show that the extracted roads are
more complete for both databases. Moreover, the model has performed better than other
state-of-the-art methods on MRD in terms of higher recall, F1-score, and mean IoU of
0.830, 0.748, and 0.787, respectively. In addition, the model achieved a better mean IoU
of 0.9062 that shows an improvement of around 3 % in segmentation results with respect
to the state-of-the-art method on ORD. Therefore, it can be concluded that the forward
propagation of features has strengthened and lesser loss of information is seen.

8.1.4 Salient Object Detection

A salient object detection network is designed with a densely connected encoder hav-
ing fractional derivative-based weighted skip connections and a decoder with multiple
modules. The weighted skip connections add memory to the system, which prevents the
dilution of features due to the increasing network depth. The weighted skip connections
and multiple decoder modules has assisted in obtaining the discriminative features required
for learning the relationship between multiple salient objects. The network’s performance
is evaluated at multiple values of fractional order α < 1. It is observed that the model is
achieving its best performance on a database at different values of fractional order α. The
models are aggregated based on F-measure values obtained for a system corresponding
to α for diversifying the model predictions. The results show that the salient maps are
produced with clear boundaries. The model performs well even in the presence of low
contrast and cluttered background and accurately generates the salient maps from the
images with multiple objects. Moreover, the proposed network performs better than the
other state-of-the-art methods on all six databases with either a higher F-measure or lower
MAE. Therefore, it can be concluded that the feature propagation through layers has
strengthened, leading to uniform performance across all databases and improvement in the
model’s generalization capability.

8.1.5 Palmprint Recognition System

A palmprint-based human authentication system is developed using the proposed network
FrDPalmNet that generates embeddings with high intra-class similarity and inter-class
separability. FrDPalmNet is designed using the theory of fractional optimal control, which
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mitigated the issue of short-term memory of the existing integer-order derivative-based
networks. The feature vectors generated using FrDPalmNet for each α are matched with
all gallery images and the genuine/imposter scores are determined. CRR, EER, DI, and
accuracy are computed to analyze the systems’ performance. The score files are aggregated
based on EER values obtained for a system corresponding to α. The decision is made using
multiple learners of the same algorithm, diversifying the model predictions. The proposed
approach is validated on CASIA, IIT-D, and Tongji palmprint databases for a thorough
evaluation. The proposed system achieved comparable and sometimes even better results
than the other methods existing in the literature. Moreover, the system showed uniform
accuracy results across all databases. Specifically, the system achieved an accuracy of
above 99% and EER below 1% on all considered databases. The rank-1 identification rate
is 98.73% for Tongji outperforming the state-of-the-art and above 99% for CASIA and
IIT-D. The proposed system’s uniform results demonstrate the efficiency and feasibility of
its application on other heterogeneous databases acquired using different devices.

8.2 Future Scope of Research
The future scope for the above-mentioned fields is presented in this section. The findings
of this research provide valuable insights and contribute to the existing body of knowledge
in the field. Based on the observations made in the presented work, the following research
prospects arise :

8.2.1 Crime Transmission Modeling
1. Development of Higher-dimensional Models: in the actual scenario, a recidivist

can commit crimes and be convicted multiple times. To address this with non-locality
inherence, the models considering more population sub-classes can be developed
by considering more factors affecting crime growth in societies to model crime
dynamics accurately.

2. Criminal Data Validation: The approaches must be developed for validating the
theoretical results through actual criminal data.

8.2.2 AQI Forecasting
1. Detection of Major Pollutants: This work can be extended by predicting other

air pollutants in the cities and subsequently AQI values can also be predicted.
This strategy can detect major air pollutants in a city, and stringent actions can be
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taken to prevent further damage. A portfolio of economic activities can be created
considering the air quality of the particular city and also detecting the most affecting
gases among them in the future.

2. Complex Architectures: The current work aims to analyze fractional derivatives’
effectiveness in the backpropagation algorithm for training basic ANNs which can
be extended to the application on complex architectures.

3. Generalization of other CNN optimizers : The stochastic gradient descent algo-
rithm is generalized to a fractional version and applied in time-series forecasting.
This can be extended to applying fractional versions of Adam, AdaGrad, RMSProp,
and other derivative-based training algorithms.

8.2.3 Satellite Image Road Segmentation
1. Availability of Large Databases: The currently available satellite image road

databases are smaller, which is insufficient to develop highly accurate models
robust to environmental factors such as shadows, occlusions, and varying road
widths. Therefore, there is a need to acquire large-sized databases in heterogeneous
conditions.

2. Multi-spectral Data Analysis: Incorporating multi-spectral data into road seg-
mentation can help improve road detection accuracy, especially in challenging
environments, such as urban areas with high building densities. Future research
could focus on developing algorithms that effectively use multispectral data for road
segmentation.

3. Application to New Domains: Road segmentation in satellite images is primarily
applied to urban areas, but there are still many other domains where road segmenta-
tion could have applications. For instance, road segmentation could be applied to
agricultural areas to improve crop yield prediction. Therefore, data should be made
available accordingly.

8.2.4 Salient Object Detection
1. Benchmark Datasets and Evaluation Metrics: The availability of diverse and chal-

lenging benchmark databases and appropriate evaluation metrics is crucial for fair
and comprehensive evaluation of salient object detection algorithms. Continuously
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developing and maintaining benchmark databases and promoting standardized evalu-
ation protocols will facilitate objective comparisons and drive further advancements
in the field.

2. Real-Time Detection: This work can be extended to the detection of objects in
real-time. The algorithms should be developed on real-time data to apply salient
object detection techniques in robotics and autonomous vehicles.

8.2.5 Palmprint Recognition System
1. Acquisition of Large Databases: The benchmark databases available for experi-

mentation are smaller than the actual biometric databases for real-world scenarios.
Therefore, there is a need to collect a large database for experimentation.

2. Different Biometric Modalities: In this work, the human authentication system
is developed using palmprint databases. It can be extended to developing systems
based on other biometric modalities: Iris, fingerprint, knuckle print, teeth, and
forehead.

3. Multi-modal Systems: Biometric authentication systems can be classified as Uni-
modal or Multi-modal based on the number of modalities considered. Uni-modal
systems use only one biometric trait while multi-modal systems use two or more
biometric traits together for authentication. However, combining different biometric
traits into one system requires fusion which can be done at the sensor, feature,
matching score, or decision level. In this work, a recognition technique is proposed
for uni-modal systems. It can be extended by combining multiple modalities for
recognition.

Comprehensively, some approaches must be explored to apply evolutionary optimiza-
tion algorithms like PSO, genetic algorithm, or other heuristic algorithms to develop an
adaptive method that automatically evaluates the optimal fractional order for a particular
model or database. Subsequently, fractional calculus will be an even more powerful tool
for modeling and analyzing complex systems in various fields. Its applications are still
being explored and are likely to find new avenues.
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