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Abstract

Blood microcirculation is a crucial process which is vital for oxygenation of tissues and
healthy functioning of the cardiovascular system. Maintaining organs’ healthy functioning
depends on the efficient intricate system of microvessels responsible for transporting oxy-
gen and nutrients to tissues while simultaneously collecting waste. Therefore, it is essential
to investigate and understand the mechanisms regulating microcirculation to discover new
treatments and improve clinical outcomes. Recent developments in imaging technology al-
lowed to capture exquisitely detailed pictures of microvascular blood flow. However, it can
be difficult to interpret these pictures and extract quantitative data on blood flow velocity,
flow rate, and other critical characteristics. To better diagnose and track the progress of mi-
crocirculatory disorders, quantitative data can be extracted through mathematical analysis.
Researchers can simulate many scenarios using mathematical models to determine the most
important factors affecting blood flow. The potential of the mathematical study of blood mi-
crocirculation through microvessels to improve our knowledge of complicated physiological
processes and disease states has gained significant attention in recent years. Mathematical
models can also be used to simulate the effects of various drugs on microcirculation and
identify the most effective treatment strategies. The limits of existing diagnostic and treat-
ment methods can be uncovered by mathematical analysis, which can inspire the discovery
of more effective treatments. The potential applications of this field of research are vast
and far-reaching, making it an area of significant interest and importance to researchers and
clinicians alike.

The thesis is aimed at investigating the blood microcirculation through suitable mathe-
matical approach and structured into seven chapters, each serving a specific purpose. Chap-
ter 1 provides an introduction to the research topic of blood microcirculation in the human
cardiovascular system. It begins by highlighting the need to study blood microcirculation,
as it is critical in maintaining tissue oxygenation and overall cardiovascular health. The
next section of the chapter conducts a thorough literature survey to recognize research gaps
that should be addressed. This method ensures that the research is well-focused and rele-
vant by establishing clear research objectives for the proposed study. The methodology is
discussed in detail to help readers understand the approach that will be followed. Chapter
1 set the foundation for the research by establishing the need for studying blood microcir-
culation, identifying research gaps, establishing research objectives, outlining the research
methodology, and introducing fundamental concepts critical for understanding the research
findings.

The microcirculation through microvessels separates the blood into a core fluid rich in
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erythrocytes surrounded by plasma fluid devoid of cells. Throughout the thesis, the two-
fluid model has been employed to depict blood flow in microvessels accurately. Chapters
2 and 3 represent the cell-free plasma layer as a Newtonian fluid and the core fluid as a
micropolar fluid in which blood particles like RBCs, WBCs, and platelets are suspended,
respectively, to account for the micro-structure of erythrocytes. In addition, the thixotropic
behavior of blood is investigated by modeling it as a two-fluid, having a Newtonian fluid
with constant viscosity modeling the plasma surrounding and the central region having a
viscoelastic Herschel-Bulkley fluid with variable viscosity throughout Chapters 4-6.

The objective of Chapter 2 is to examine the influence of the microrotation of erythro-
cytes, external magnatic field and heat transfer on mechanical quantities of blood microcir-
culation through the microvessel with thin endothelial glycocalyx-layered microvessels. A
Brinkman formulation governs the flow through the thin glycocalyx layer adjacent to the
microvessel wall. The heat transfer through EGL and its applications to physiological as-
pects have also been studied. The equations governing the various flow characteristics are
solved analytically. In addition, Fåhræus effect and hematocrit have been investigated. Two
boundary conditions have been formulated, representing the termination of erythrocyte spin
and no occurrence of couple stress at the micropolar-plasma interface. Compared to the no-
spin condition, the relatively strong influence of the no-couple stress condition on Fåhræus
effect, flow characteristics, and hematocrit has been observed. Graphical interpretations of
the different parametric influences on blood microcirculation have been studied with both
boundary conditions.

Chapter 3 considers blood microcirculation under the identical scenario of Chapter 2
with absorbing vessel walls and aims to extend the study to examine the mechanism of
the solute dispersion phenomenon. A jump in stress is witnessed at the plasma fluid-EGL
interface, which is depicted as an interfacial condition derived by Ochoa-Tapia and Whitaker
[1]. Sankarasubramanian and Gill’s [2] approach has been employed to acquire asymptotic
expressions for the solute dispersion coefficients and mean concentration with the help of
analytical temperature and velocity profile. To comprehend certain clinical features of blood
microcirculation, the effect of erythrocyte spinning, coupling number, EGL thickness and
permeability, thermal conductivity, radiation parameter, and Hartmann number on the solute
dispersion coefficients and mean concentration interpreted graphically.

A theoretical attempt has been made in Chapter 4 to examine the impact of the heat
transfer aspect on the flow characteristics of temperature-dependent viscous blood microcir-
culation through endothelial glycocalyx layered microvessels. The velocity profile through
the core of the microvessel is obtained analytically with a linear approximation of the
Reynolds viscosity model. The Brinkman-Forchheimer equation governs blood flow through
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the endothelium glycocalyx layer to encompass the permeability spectrum. The perturba-
tion technique is employed to solve the Brinkman-Forchheimer governing equation analyt-
ically. Singular and regular perturbation problems are encountered for small Darcy num-
bers (SDN) and large Darcy numbers (LDN), respectively. Analytical solutions acquired
for hemodynamical characteristics and exercised for the graphical interpretations regarding
the simultaneous impact of Forchheimer number, permeability, viscosity, Grashof number,
thermal conductivity, and Richardson number have been discussed in detail. The study ob-
served the addition in resistance proportional to the thickness of the EGL adjacent to the
microvessel wall. The study concludes the impact of temperature on flow characteristics
and comprehends the importance of studying temperature-dependent viscosity models for
devising clinical procedures involving temperature variations.

Delivering drugs to the targeted location or transporting nutrients to needy organs in-
volves the dispersion of solutes through blood microcirculation. The process is believed
to be influenced by the varying characteristics of viscosity, heat transfer, and other related
factors. The change in temperature during clinical procedures can affect blood viscosity;
hence, examining its impact on the drug deliverance process becomes intriguing. Chapter
5 is motivated toward examining the dispersion of solutes in blood microcirculation through
microvessels influenced by temperature-sensitive viscosity and heat transfer. Sankarasubra-
manian and Gill [2] procedure is exercised to derive asymptotic expressions for coefficients
of diffusion and mean concentration influenced by heat transfer and temperature-sensitive
viscosity. The fluid model is reduced to its specific cases to validate obtained results regard-
ing the solute dispersion process influenced by temperature-sensitive viscosity. In addition,
the dispersion process is accelerated with the dominance of thermal buoyancy forces. The
graphical analysis shed light on the solute dispersion process’s sensitivity regarding heat
transfer and temperature-sensitive viscosity.

The focus of Chapter 6 is to study the hydrodynamic characteristics of blood microcir-
culation through a microvessel having EGL adjacent to the absorbing wall with a sophis-
ticated mathematical model. The endothelial glycocalyx layer affects the hydrodynamical
properties of plasma in microcirculation due to the absorption of plasma proteins and carbo-
hydrate accumulation ([3], [4]). The equations governing the mathematical model delineat-
ing blood microcirculation through microvessel having EGL adjacent to the absorbing wall.
Sankarasubramanian and Gill [2] procedure is exercised to obtain asymptotically solve the
solute dispersion process. A comparison has been drawn between the generalized model
and its reduced specific fluid models for the solute dispersion process. The graphical study
interprets the sensitivity of the solute dispersion coefficients regarding EGL thickness, EGL
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porosity, plasma layer thickness, and wall absorbing capacity. EGL adjacent to the mi-
crovessel wall decreases both convective and axial dispersion in the case of a wall with high
reactivity. One notable observation is that a decrease in the porosity of EGL adjacent to the
microvessel wall leads to a decrease in the average solute concentration.

Chapter 7 serves as a critical component of the thesis by comprehensively summarizing
the key research findings, highlighting the most noteworthy results with physical signif-
icance and practical applications. This chapter aims to offer readers a clear and concise
understanding of the research, drawing attention to the most relevant and essential aspects.
By identifying the research’s strengths and weaknesses, readers can better understand the
reliability and validity of the findings. By outlining potential challenges and opportunities
for further development, the chapter provides a road map for future scope and improvements
to the completed research work. By synthesizing all this information in one place, the chap-
ter helps to ensure that the research can be effectively translated into practical applications
and future research.
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Chapter 1

Introduction

The cardiovascular diseases triggered by an abnormal blood circulation in arteries ac-
count for the majority of untimely deaths in developed countries. The improvement in such
scenario requires a deep understanding of blood circulation in human cardiovascular system
for advancement of clinical diagnosis and treatment procedures.

Figure 1.1: Systematic Blood Circulatory Route [5]

The systematic conception of
blood circulation in the human car-
diovascular system based on evi-
dence provided by William Har-
vey, opens the window of oppor-
tunity for future scholars to study
modern physiology. Blood trav-
els through a systematic circula-
tory route as shown in Figure 1.1
and reach to specific organs in the
body [5]. While in circulation
through capillary bed, blood per-
forms two essential operations of
transport and exchange. Each cell
of the human body has particular
immunological and nutritional re-
quirements, which are taken care
by blood in continuous motion.

The capillary bed (Figure 1.2:(a))
is a unique interweaving structure
of microvessels (capillaries) being

200±250 µm long and having a diameter of 8µm to 10µm (Figure 1.2:(b)). At the capillary
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bed, the cells attain direct access to blood. Throughout the body, capillaries function as
part of a capillary bed, a network of 10–100 capillaries. Thin-walled exchange microves-
sels, known as capillaries (Figure 1.2:(c)), primarily facilitate the exchange of substances
between the blood and interstitial fluid. Throughout the body, capillaries function as part of
a capillary bed, a network of 10–100 capillaries. Capillaries are present close to nearly all
cells throughout the body, although their density depends upon the metabolic demands of
the specific tissue they supply. Tissues with high metabolic demands, such as muscles, the
brain, the liver, the kidneys, and the nervous system, possess abundant capillary networks to
facilitate the delivery of oxygen and nutrients (Figure 1.2:(d)). Compared to the diameter of
red blood cells, the diameter of such microvessels is either smaller or approximately equal.

(a) [5]

(b) [6]

(c) [5]
(d) [7]

Figure 1.2: Blood microcirculation (a) Capillary bed, (b) Diameter of capillary, (c)Red
blood cells passing through capillaries and (e) Oxygen transport phenomena in capillary

Vital organs of the human body, like the brain, lungs, and kidneys, are equipped with a
highly dense network of microvessels to deal with the tremendous requirement of nutrient
exchange. Therefore, studying the mechanical aspects of micro-circulation in microvessels
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is of immense importance to understanding the mechanism of life-threatening diseases and
inventing or improving the clinical diagnosis and treatment procedure.

The branch of fluid dynamics examining the mechanical aspect of physiological flow is
known as bio-mechanics. Bio-mechanics can empower researchers with laws of physics to
express the fluid flow in terms of a mathematical expressions and the effects of mechanical
parameters on the behaviour of fluid flow could be analyzed through these expressions. In
mathematics, there are customarily two approaches namely analytical and numerical to solve
a problem governing the real life phenomenon. The solution gained through analytical ap-
proach is exact and guarantee the accurate prediction regarding qualitative behaviour of real
life phenomenon in contrast to the solution achieved through numerical approach. However,
in practice numerical techniques are exercised for practical purposes as most of the time to
get analytical solution is either impossible or quite difficult. In 1828, Jean Poiseuille’s work
[8] marked the beginning of the study of mechanics of the blood flow and contributed to the
circulation through small vessels. Blood circulation through microvessels is termed by Fung
[9] as micro-circulation. The current chapter accommodates the documentation of required
concepts with a detailed literature review to identify the gap in existing research work, es-
tablish objectives for the proposed work and devise a methodology to achieve established
objectives.

1.1 The Microcirculation

1.1.1 Blood Components in Microcirculation

Figure 1.3: Blood Components [10]

The term "microcirculation" describes the process by which the body’s tissues receive and
release oxygen, nutrients, and wastes via the body’s tiny blood vessels (such as arterioles,
capillaries, and venules). Several different components of microcirculatory blood are re-
sponsible for keeping tissues healthy and functioning correctly.
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1. The most numerous blood cells, which are about 99% of the cellular components of
blood, known as red blood cells (RBCs), transport oxygen from the lungs to the body’s
tissues and remove carbon dioxide. About 40−45% of the total blood volume com-
prises RBCs. In the microcirculation, the proportion of RBCs may be slightly lower
due to their larger size than other blood components, making it difficult for them to
pass through narrow capillaries. RBCs must be highly deformable to pass through the
tight confines of microcapillaries on their way to the tissues. RBCs emit vasodilators
and vasoconstrictors, which help to control blood flow and blood pressure, respec-
tively.

2. White blood cells (WBCs) are part of the immune system and defend the body against
infections and foreign substances. WBCs comprise a small percentage of the total
blood volume, typically less than 1%. WBCs can move through the walls of blood
vessels and into surrounding tissues to fight infections.

3. Platelets, which are cellular fragments in the form of a disc, contribute to blood coag-
ulation. Platelets are also present in small numbers in the microcirculation, typically
less than 1% of the total blood volume. They can bind to injured blood vessel walls
in the microcirculation and secrete clotting factors to avoid excessive bleeding.

4. Plasma, the blood’s liquid component containing the remaining 1% of the cellular
components, comprises proteins, electrolytes, hormones, and nutrients. Plasma aids
in the transportation of nutrients, waste materials, and other substances throughout the
body and plays a part in regulating blood pressure and pH balance. Plasma comprises
approximately 55−60% of the total blood volume.

Vasoactive chemicals like nitric oxide and endothelin are released, and smooth muscle cells
in the walls of arterioles contract and relax to control blood flow in the microcirculation. Red
blood cells (RBCs) can influence blood flow via rheological factors, including viscosity
and shear stress. The microcirculation system relies heavily on the blood and its many
components to function and stay healthy.

1.1.2 Structure of Microvessels in Microcirculation

Microcirculation includes small blood vessels such as arterioles, capillaries, and venules,
which have distinct structural features that allow them to perform their specialized func-
tions in exchanging gases, nutrients, and waste products between the blood and surrounding
tissues. Here is a brief description of the structure of these microvessels:
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1.1.2.1 Arterioles

Arterioles are small blood vessels that connect larger arteries to capillaries. They have a
muscular wall composed of smooth muscle cells, which can contract or relax to regulate
blood flow to the capillaries. Arterioles also have a layer of endothelial cells lining their
inner surface, which provides a barrier between blood and the surrounding tissue.

1.1.2.2 Capillaries

(a) (b)

(c)

Figure 1.4: Capillary structure and types (a) Continuous (b) Fenestrated (c) Sinusoid. [5]

Capillaries are the smallest and most numerous blood vessels in the body. They consist
of a single layer of endothelial cells, which are highly permeable to gases and nutrients.
Capillaries have a very small diameter, typically between 8µm to 10µm, which allow them
to exchange substances with surrounding tissues through diffusion. Some capillaries also
have pores or fenestrations in their endothelial layer, which allow larger molecules to pass
through.The human body consists of three distinct types of capillaries: continuous capillar-
ies, fenestrated capillaries, and sinusoids. The majority of capillaries present in the brain,
lungs, skeletal and smooth muscle, and connective tissues are classified as continuous capil-
laries. Fenestrated capillaries can be observed within various anatomical structures, choroid
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plexuses of the ventricles in the brain, including the kidneys, villi of the small intestine, cil-
iary processes of the eyes, and endocrine glands. The presence of sinusoids can be observed
in the , anterior pituitary, spleen and parathyroid glands. A brief description of the structure
of capillaries is discussed here

• Capillaries are composed of a single layer of endothelial cells, which line the inner
surface of the vessel wall. These cells are flattened and elongated, creating a thin
barrier between the blood and surrounding tissues. Endothelial cells are connected by
tight junctions, which restrict the movement of larger molecules and cells between the
blood and surrounding tissues.

• The endothelial cells are supported by a thin basement membrane, which is com-
posed of a meshwork of collagen and glycoproteins. The basement membrane pro-
vides mechanical support and helps to maintain the integrity of the capillary wall.

• Pericytes are specialized cells that are located in close proximity to the endothelial
cells. They wrap around the capillary wall and are thought to play a role in regulating
blood flow and capillary permeability. Pericytes can also differentiate into other cell
types, such as smooth muscle cells or fibroblasts.

• Small gaps, called intercellular clefts, are present between adjacent endothelial cells.
These gaps allow for the exchange of small molecules, such as oxygen, carbon diox-
ide, and nutrients, between the blood and surrounding tissues.

The structure of capillaries is highly responsible to facilitate the exchange of substances
between the blood and surrounding tissues. The thin layer of endothelial cells, supported
by a basement membrane and pericytes, allows for a high degree of permeability, while
tight junctions and intercellular clefts help to regulate the movement of larger molecules
and cells.

1.1.2.3 Venules

Venules are small blood vessels that connect capillaries to larger veins. They have a similar
structure to arterioles, with a muscular wall composed of smooth muscle cells and a layer
of endothelial cells. Venules can also serve as sites for leukocyte migration, as they have a
wider diameter than capillaries and a more porous endothelial layer.

Overall, the microvessels involved in microcirculation have distinct structural features
that allow them to perform their specialized functions in exchanging substances between the
blood and surrounding tissues. Arterioles can regulate blood flow to the capillaries, while
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capillaries provide a highly permeable barrier for exchange, and venules serve as a site for
leukocyte migration.

1.2 The Mechanical Aspects of Microcirculation

The long-neglected field of the mechanics of microcirculation has, in the last few years,
begun to be subjected to more rigorous analysis through the application of the unifying
principles of physics. To examine the mechanism of microcirculation, one must know the
mechanical aspects affecting it. Some significant aspects are noted here.

(a) The micro structure of blood components affecting circulation and the adequate way
to accommodate these interference in a mathematical frame work.

(b) The porous structure of permeable microvessel wall catering the transport and ex-
change process.

(c) The resistance or assistance provided through external factors such as radiation and
magnetic field.

(d) The examination of solute dispersion process in microcirculation.

In order to examine the mechanism of microcirculation of blood, one must consider the
blood as a fluid either Newtonian or non-Newtonian.

1.2.1 Newtonian Fluid

When the shear rates reach approximately 100/sec and the arteries are larger than 1 mm in
diameter, blood demonstrates the characteristics of a Newtonian fluid, where the viscosity
coefficient represents the constant proportionality between the strain rate and shear stress.
Newtonian fluids are those that abide by Newton’s law of viscosity, which can be mathe-
matically expressed by stating that shear stress remains constantly proportional in relation
to the strain rate.

τ̃N = µ̃N
∂ w̃N

∂ r̃
, (1.1)

where τ̃N , w̃N , µ̃N , ∂ w̃N
∂ r̃ denotes the shear stress, axial velocity, viscosity coefficient, and

strain rate of unidirectional Newtonian fluid flow in a tube, respectively.

1.2.2 Non-Newtonian Fluid

Non-Newtonian behavior describes that fluid’s viscosity and flow behavior is affected by
elements other than the shear rate, for example blood’s viscosity is affected by the blood’s
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composition, the presence of cells and proteins, and the features of the blood arteries through
which the blood flows. Blood exhibits non-Newtonian behavior at the low shear rates typical
of capillaries and other blood channels with diameters below 1 mm. This indicates that the
shear stress and strain rate are not linearly related. The shear stress is the force per unit area
that drives the fluid, and the strain rate is the rate at which the fluid deforms under stress. As
the shear rate varies, so does the blood’s viscosity.

Additionally, blood is thixotropic, which means its viscosity decreases with time under a
constant stress or shear rate. This quality facilitates oxygen and nutrition delivery to tissues
via the circulatory system by facilitating blood flow via capillaries and other tiny blood
vessels. Blood can also show shear thinning behavior, where its viscosity reduces with an
increasing shear rate. The presence of red blood cells, which may align and create structures
that decrease flow resistance at high shear rates, is responsible for this behavior.

Research and clinical applications in biomedicine rely heavily on our knowledge of
blood’s non-Newtonian properties, including designing artificial organs, creating drug deliv-
ery devices, and investigating the mechanics of blood flow in conditions like hypertension
and thrombosis. Let us take a look at two of the most well-known non-Newtonian fluid
models in order to better understand the peculiar behaviour of blood.

1.2.2.1 Micropolar Fluid

In our circulatory system, blood is a composition of erythrocytes and plasma with nutrients
and other fiber tissues, so the shape and size of the fluid molecules play a vital role in mi-
crocirculation through microvessels. The classical Navier-Stokes equations fails to examine
the impact of fluid particles’ substructure on circulation. Ariman [11] emphasized the in-
clusion of the deformable structure of blood in the form of microrotation and validated this
micropolar model of blood by comparing it with the experimental work of Bugliarello and
Hayden [12]. A detailed description of microcontinuum fluids with their applications for
real and ideal fluid flow was also provided by him ([13], [14]). Eringen [15] introduced
the fundamental theory of simple microfluids with molecules exhibiting micro-rotation, and
he derived fluid motion equations governing a new class of viscous microfluids. He [16]
extended his work for a class of micropolar fluid, which is a subclass of microfluids, and
the molecules of these fluids have micro-motion and spin inertia. The micropolar fluid sup-
ports the couple stress and body couples only. Physically the micropolar fluid exhibits the
independent rotation of molecules with its local vorticity. The constitutive equation for the
motion of the micropolar fluid is derived by Eringen as follows.



1.2. The Mechanical Aspects of Microcirculation 9

∇ · v = 0, (1.2a)

ρ v̇ = ρF −∇p+(µv +κv)∆v+κv∇×ω, (1.2b)

ρ Ĵ · ω̇ = ρL+(α +β )∇∇ ·ω + γ∆ω +κv∇× v−2κvω, (1.2c)

Burton [17] characterized the blood as a suspension of cells containing hydrocarbon and
other molecules. Due to their flexible nature, RBCs can pass through relatively smaller
capillaries. Fung [18] analyzed the viscous properties due to the flexible nature of RBCs.
Devanathan [19] and Mekheimer [20] utilized the single fluid model of micropolar fluid
through circular tubes with and without constrictions to analyze the effect of the micro-
structure of molecules through fluid flow. Srinivasacharya and Shiferaw [21] investigated
the flow of micropolar fluid with hall and ionic effects flowing through a circular pipe under
the influence of an external magnetic field of uniform strength. Khanukaeva et al. ([22]-
[23]) analyzed the flow of micropolar fluid through a membrane with a porous layer using
a cell model technique in which the flow is parallel and perpendicular to the axis of the
cylindrical cell. Siddheshwar and Manjunath [24] discussed the impact of the shape and
size of the fluid particles on the unsteady solute dispersion process in micropolar fluid flow
through a tube with heterogeneous chemical reaction.

1.2.2.2 Herschel-Bulkley Fluid

Among the various relations used to characterize the behavior of viscous fluids, the Herschel-
Bulkley model, also known as the yield power law model, is particularly useful for describ-
ing the behavior of fluids that display yield stress and for which the shear stress tends to
behave like a power law at high shear rate. Since it generalizes the Bingham and power-
law models, this one is frequently used to characterize the rheological behavior of non-
Newtonian fluids [25]. The expression governing the Herschel-Bulkley fluid is given by
[26]

τ̃H = τ̃y+

[
µ̃H

(
−∂ w̃H

∂ r̃

)] 1
n

, if τ̃H > τ̃y, (1.3a)

∂ w̃H

∂ r̃
= 0, if τ̃H ≤ τ̃y, (1.3b)

where τ̃H , τ̃y, w̃H , µ̃H , ∂ w̃H
∂ r̃ , n are the shear stress, yield stress, axial velocity, viscosity

coefficient, strain rate, and fluid behaviour parameter of Herschel-Bulkley fluid, respec-
tively. Both shear-thinning and shear-thickening fluid behaviours are reflected in the flow by
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fluid behaviour parameter n. The Herschel-Bulkley fluid has two parameters: the Herschel-
Bulkley fluid behaviour parameter n and the yield-stress τ̃y, and for particular values of these
two parameters, the model reduces to the Newtonian and various non-Newtonian models,
making it more realistic than other non-Newtonian models.

1.2.3 Two-Fluid Model

With experimental evidence and theoretical study, Bugliarello and Sevilla [27] established
the multi-phase nature of blood in microcirculation through microvessels. Blood flow is
partitioned into the core fluid exhibiting non-Newtonian behavior due to the suspension of
cells (RBCs, WBCs, and platelets) encompassed by a thin layer of cell-free plasma near
the microvessel wall. Thus for the realistic situation of the bloodstreams in microvessels,
the two-fluid models are found significantly appropriate as it presumes the non-Newtonian
behavior for all the erythrocytes occupying the core region of the blood vessels and the
surrounding thin layer of plasma near the wall as Newtonian fluid [28].

Adopting blood as a two-fluid model, several studies ([29], [30], [31], [32], [33], [34],
[35]) examined the diverse aspect of microcirculation through microvessels with or with-
out constrictions and analyzed the impact of plasma layer thickness, plasma layer viscosity,
constriction height, and non-Newtonian nature of blood in core region fluid on hemody-
namical quantities such as flow rate and flow impedance. Following the presumptions of the
two-fluid model, Debnath et al. [36] examined the solute dispersion for the periodic flow of
blood through absorbing microvessels. Inspired by the two-fluid model, Rana and Murthy
[37] considered blood flow as a flow of Casson fluid in the central region surrounded by a
flow of Newtonian fluid in a peripheral region near the boundary and discussed the effect of
plasma layer thickness, periodicity, pressure gradient amplitude, Schmidt number and wall
reaction on the dispersion process in the circulation of blood through small blood vessels by
taking the two-fluid model approach.

1.2.4 Viscosity of Blood

The term "blood viscosity" describes how thick and sticky blood is, which hinders its capac-
ity to flow through blood arteries. The quantity and makeup of various blood components,
such as RBCs, WBCs, plasma proteins, and platelets, primarily determine blood viscosity.
Red blood cells, the most abundant cells in the blood, play a significant role in blood viscos-
ity. They deliver oxygen to cells and eliminate waste products from the body. Their size and
shape affect the fact that how easily red blood cells are carried through blood arteries. When
people are healthy, their red blood cells adapt and alter their form to fit through small blood
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arteries. However, if there are an excessively high number of red blood cells, as occurs in
sickle cell disease, they might clump together and make the blood more viscous.

Blood viscosity is also affected by plasma proteins like fibrinogen and globulins. These
proteins function in coagulation and immune system reactions. When present in high con-
centrations, these proteins can raise blood viscosity and impede the normal flow of blood
through the body’s blood vessels. Tiny blood cells called platelets are vital to the clotting
process. Blood clots are formed when platelets clump together after an injury to a blood
artery. Platelets are necessary for clotting, but excess can increase blood viscosity. Dehy-
dration, excessive red blood cells, elevated plasma protein levels, and other diseases and
medical situations all contribute to thicker blood. Polycythemia vera is one such condition;
it is an uncommon blood ailment with too many red blood cells in the body. People at high
risk for cardiovascular disease or stroke should have their blood viscosity monitored regu-
larly. Aspirin and other blood-thinning drugs may be used in conjunction with a healthy diet
and regular exercise to treat high blood pressure.

Blood viscosity being a key characteristic, is solely addressed as a function of shear rate
in many studies. However, there are a number of additional physical variables impacting
blood viscosity that must be taken into account due to the complexity of blood as a whole
(consisting of cells, plasma, and other nutrients). Among these factors are hematocrit, body
temperature, illness severity, and the RBCs’ biological age [26].

1.2.4.1 Variable Nature of Blood Viscosity

Because viscosity is such a significant physical property of the blood, research into its vary-
ing nature is essential. According to Lih [38], the temperature, hematocrit, concentration,
and vessel width all have a role in determining blood’s viscosity. He also noticed that when
blood passes through a tube with a smaller diameter and a low shear rate, the blood’s viscos-
ity may change. Several writers ([39], [40], [41], [42], [43], [44], [45], [46]) have taken this
into account by examining the effect of altering viscosity. They discovered that the variable
nature of viscosity is crucial to fluid flow in conduits of decreasing diameter.

Taking into account the blood in the core area as Newtonian or non-Newtonian fluids,
numerous authors ([47], [48], [28]) have studied the effect of hematocrit-dependent viscosity
on TFM of blood flow through the tube with or without constrictions. Tiwari and Chauhan
([28], [49], [50], [51]) explored the impact of position-dependent viscosity when discussing
the TFM of blood flow in blood capillaries with a constriction or a porous patch near the
tube wall. They demonstrated that flow variability and hematocrit are both affected by the
presence of a glycocalyx layer and the non-constant character of viscosity.
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1.2.5 Heat Transfer Aspect

In the modern era, cancer and other malignant tumors have become increasingly common
as a result of environmental factors like increased pollution and the widespread use of toxic
chemicals, so scientists have been working hard to find a way to eradicate them through a
combination of experimental findings and mathematical modeling. In hyperthermia, where
heat transport is involved, even a 2◦C or 3◦C temperature difference can profoundly affect
the body’s internal fluid dynamics. In addition, laser treatment, cryosurgery, and other meth-
ods aid in destroying active cancer cells. When body temperature rises, it causes harm to
otherwise healthy tissue. Nevertheless, the therapeutic process, including the modest tem-
perature shift, may be helpful in treating ailments like cancer or malignant tumors [44].
Radiation has been produced and directed toward the front lines of the contaminated region
via the heat transfer aspect. The treatment’s efficacy is evaluated by how well the absorbed
energy warms the region around the infection without harming the surrounding healthy tis-
sue. Heat (hyperthermia), radiation (laser therapy), and cold (cryosurgery) are all used to
cure various diseases by destroying abnormal tissues and malignant cells without harming
the healthy ones.

In addition to the discussed perspective, it has been shown that blood flow is closely
related to the delivery of oxygen and nutrients to the organ. Increased circulation promotes
body heat, which in turn increases the organ’s delivery of oxygen and nutrients [52]. When
a muscle receives enough oxygen, the repair process moves forward faster than when oxy-
gen levels are low. Physiotherapy’s ability to improve circulation to a sick body part is a
significant benefit of the discipline. Ogulu and Abbey [53] considered the porous media
within the artery to explore the impact of heat transmission during the treatment method
for a malignant tumor or cancer. Using a heat transfer methodology and the Boussinesq
approximation under the assumption of low electrical conductivity, Prakash and Ogulu [54]
analyzed the oscillating flow of a power-law fluid through a constricted tube. They eluci-
dated this method’s application to deep heat muscle therapy. Chamkha [55] investigated the
non-Darcian flow of an electrically conducting and heat-generating / absorbing fluid via a
channel in a homogeneous porous media using hydromagnetic mixed convection. The free
and mixed convection of a micropolar fluid moving in a vertical channel with asymmetric
heating on the wall was studied by Chamkha et al. ([56],[57]), who provided both an ana-
lytical and numerical solution to this problem. Heat transfer was later shown to be crucial
in medical therapy during surgery after several authors ([46],[58]) conducted studies on the
flow of viscoelastic/non-viscoelastic fluids via constricted/porous conduits. Selimefendigi
et al. [59] used numerical simulation to examine the effects of varying cylinder diameters
on the mixed convection in a cavity containing nanofluid and porous layers.
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1.2.6 Endothelial Glycocalyx Layer (EGL)

Glycocalyx refers to the thin gel-like coating that covers endothelial cells and protects the
circulatory system from damage. Proteoglycans and glycosaminoglycans are found in the
endothelial glycocalyx layer (EGL), a membrane-bound form of the EGL. By accumulating
protein from the blood, the EGL becomes thicker, creating more friction for the blood to
flow in microvessels. Due to its profound effect on circulatory parameters, the formation
of atheromatous plaques in the artery wall as a result of the transport process taking place
in arteries impelled researchers to analyze the phenomenon mathematically. It has been
hypothesized that atherosclerotic plaques can be explained by the movement of a soluble
substance through the blood vessel’s porous layers. In order to fully understand how flow
variables and transport phenomena in blood microcirculation are affected by an endothelial
glycocalyx layer adjacent to vessel walls, it is essential to consider the influence of mechan-
ical characteristics of it.

The increased arterial permeability caused by the thinning of EGL is the primary precipi-
tating factor in the development of cardiovascular disease. In addition to decreasing porosity
and slowing plasma flow in microvessels, the layer of macromolecules along the vessel walls
may further increase flow resistance ([60]-[61]). Secomb et al. [3] conducted experiments
to determine the existence of endothelial glycocalyx layer in the capillary, which plays a
part in the increase in flow resistance and decrease in hematocrit. Based on the mechanical
properties of endothelial glycocalyx layer, it can be depicted as a porous medium.

1.2.7 Flow through Porous Medium

Hill [62] concluded that the stability of a fluid’s Poiseuille flow through a Darcy porous
layer and a Brinkman layer is affected by the depth of the layer and the ratio of the porous
layer’s thickness to the fluid layer’s thickness. To investigate the dynamical properties of the
multi-phase flow in a cylindrical tube with porous boundaries, Sacheti et al. [63] used the
Brinkman formulation for a porous medium to do a parametric analysis of bubble motion in
the creeping flow of two immiscible fluids. The shear stress jump condition, first described
by Ochoa-Tapia and Whitaker [1], involves a sudden change in shear stress at the fluid-
porous interface. To better understand and analyse many physical and biological processes,
several researchers have formalised the flow through porous media using the stress jump
condition. Deo et al. [64] assumed the stress jump interfacial condition between the fluid
and the endothelial glycocalyx layer (EGL) and used a cell model approach to calculate the
hydrodynamic permeability of a population of porous cylinders surrounding an impermeable
core.
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The cyclic Newtonian fluid flow through a tube having a circular cross-section was stud-
ied by Tiwari and Deo [65] using the Brinkman equation and observed a phase lag be-
tween the flow characteristic and the pressure gradient. Blood flow with the two-fluid model
through a porous multilayered blood artery has been studied by researchers ([66], [67], [68]).
The vascular wall was thought to consist of a porous Darcy layer and a thinner Brinkman
layer. For three-layer model of blood flow via a blood artery, Tiwari and Chauhan ([49],[50],
[51]) presented the work for a thin porous region close to a wall. Researchers looked at how
hematocrit, flow factors, and the Fåhræus effect were affected by blood’s porous layer, its
varying viscosity, its periodicity, and its non-Newtonian nature. Accurately estimating the
flow quantities is more important in the medical sciences, and they discovered that a thin
porous layer near a wall and fluctuating viscosity have influence on this.

1.2.8 Solute Dispersion

The objective of investigating the physical mechanism underlying solute dispersion in fluid
flow is to gain a comprehensive understanding of the processes involved in the mixing and
transportation of soluble substances within fluids. Due to wide range of applications in
chemical engineering, physiological fluid dynamics, and the medical sciences, ([69], [70],
[71], [72], [73]) the process has become one of the most intriguing subject for researchers.
In recent development, many authors explored areas such as application of mass trans-
port in environmental dispersion into a wetland [74], drug delivery for the effective cancer
chemotherapy [75] and petroleum technology for the diffusion of surfactant into a matrix
[76].

In circulatory systems, solute dispersion explains the mixing or transporting substances
such as medications, nutrients, contaminants, plasma proteins, and metabolic materials into
the blood circulation and respiratory flow. Life-threatening diseases like cancer have clin-
ical management procedures in which medications (carrier particles) are administered into
our physiological system via injection or capsule. In the case of capsule delivery, the car-
rier particles are directed to the site of infection, making solute dispersion research relevant.
The indicator dilution method determines cardiac output in a living organism. Introducing
the dye in the blood capillaries along the blood flow and then measuring its concentration
at some downstream point is a benefit of this procedure. In addition to the uses mentioned
above, we can witness the function of diffusion in artificial surgical devices and get insight
into artificial aids like hemodialyzers and annular oxygenators [77]. As a result, the disper-
sion theory may be used to estimate the pace at which drugs will diffuse throughout living
organisms.
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Taylor [78] was the first to initiate the investigation of solute dispersion in a fluid that
is in motion through a straight circular tube, and it was his observation that the solvent is
spread by a process that involves molecular diffusion and velocity along the direction of
flow occurring simultaneously, that laid the groundwork for further research. Concentration
analysis offers a fresh perspective from which to calculate diffusion coefficients. Taylor’s
idea was expanded by Aris [79], who also abolished the limits placed on some parameters
in the aforementioned theory. He proposed a novel method, the “method of moments" for
studying the diffusion of a solvent in a uniformly cross-sectioned circular tube. The afore-
mentioned method of dispersion analysis was only applicable over long periods of time, and
hence it was of little use in studying the diffusion process during shorter periods of time. By
conducting an analytical investigation of the unsteady diffusion equation, Gill and Sankara-
subramanian [80] were able to circumvent this restriction. The authors presented a “series

expansion method" for reliably obtaining an analytical solution to the convective diffusion
process, valid for any time period.

1.3 Mathematical Expressions Governing the Microcircu-
lation

The physical laws of mass conservation, momentum conservation, and energy conservation
must be met by blood when it is in circulation. The governing mathematical expressions for
such laws are illustrated here.

1.3.1 Law of Mass Conservation

The continuity equation, or law of mass conservation is a fundamental principle in fluid
dynamics, states that the mass of a blood remains constant as it moves through a vessel. If
there is no net gain or loss of fluid inside a system, then the mass of fluid remain constant at
any point of time in the system. The mathematical expression for the law is given by

∂ρ

∂ t
=−∇.(ρw̃), (1.4)

where ρ , w̃ denotes the density and velocity of fluid, respectively. By solving the continuity
equation, one can ensure that there are no sudden shifts in pressure or velocity that might
cause harm to the system.
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1.3.2 Law of Momentum Conservation

The law of momentum conservation in fluid flow is a fundamental principle that underlies
much of our understanding of how fluids behave in motion and has wide-ranging applica-
tions in science and engineering. The law asserts that the mass and speed of fluid in a closed
system remain unchanged until acted upon by some external force. In microcirculation such
forces are blood viscosity, blood pressure and gravitational force. The principal can be
mathematically stated as

ρ
Dw̃
Dt

+∇p = η∇
2w̃+ρF̃, (1.5)

where D
Dt , ∇2 and F̃ denote the total/material derivative, the Laplacian operator and the

external body force respectively. ρ , p, η and w̃ express the fluid density, pressure, the
kinematic viscosity and velocity respectively.

When a solution is obtained for the law of momentum conservation in fluid flow, it
signifies that the velocity, pressure, and other fluid properties have been determined at each
point in the fluid domain under consideration. This solution provides valuable insights into
the fluid flow behavior, such as the distribution of velocity and pressure in the fluid domain,
the flow rate, the forces acting on the fluid, and so on. Furthermore, a solution to the law
of momentum conservation can be used to predict how a fluid will behave under different
conditions.

1.3.3 Law of Energy Conservation

When a fluid is moving in a closed system, its total energy does not change as long as no
external work is done on it by things like the body and surface forces, thermal conduction,
and heat sources like chemical reactions, according to the law of energy conservation, also
known as Bernoulli’s principle. Throughout the flow, there is no change in the fluid’s total
kinetic, potential, and pressure energies at any one location. This principle can be expressed
mathematically as Bernoulli’s equation.

ρCv
DT̃
Dt

− K̃∇
2T̃ =

∂ Q̃
∂ t

, (1.6)

where T̃, K̃ symbolize the temperature and the thermal conductivity of the fluid respectively.
At constant volume Cv denotes the specific.The external source or sink generates or absorbs
heat, which is repesented here by Q̃.
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As the fluid flows through the system, the solution may compute the changes in energy
and utilise that data to infer the fluid’s behaviour at various locations. In order to compre-
hend and foretell the actions of fluids in motion, its solution is crucial.

1.3.4 Law of Advection-Diffusion

When a scalar quantity such as the concentration of a chemical species or the temperature
is being transported through a fluid, the advection-diffusion equation is used to characterise
this process. The equation incorporates both advection and diffusion into the transport pro-
cess. Transport of a scalar quantity can occur by either a fluid’s bulk motion (advection)
or random molecule motion (diffusion). The concentration equation is a partial differential
equation that unifies these processes.

∂ C̃
∂ t

+∇ ·
(

w̃ C̃
)
= ∇ ·

(
D̃m∇C̃

)
, (1.7)

where w̃ is the velocity of the fluid, C̃ is the local concentration of the solute, D̃m is coeffi-
cient of molecular diffusion assumed to be constant, and ∇ is a gradient operator.

Change in concentration over time is represented by the first term on the left side of the
equation (1.7). Advection of the scalar quantity due to fluid motion is represented by the
second term. The first term on the right side of the equation (1.7) reflects the scalar amount
diffusing as a result of random molecule motion.

1.3.5 Momentum Equation in Porous Medium

1.3.5.1 Brinkman Equation

Brinkman [81] modified Darcy’s law and states that the flow rate of a fluid through a porous
medium is proportional to the pressure gradient in the medium. Brinkman [81] expanded
his research to include the permeability of the porous zone with micro-sized holes. Darcy’s
law does not account for the effects of fluid viscosity or boundary effects. The Brinkman
equation incorporates these effects by adding an effective viscosity term and a gradient of
velocity term to Darcy’s law. The resulting equation is

ρ
∂ w̃
∂ t

=−
(

∂ p
∂ z

+
µ

k
w̃
)
+µE∇

2(w̃), (1.8)

where ρ denotes the fluid density, p denotes the pressure, w̃ is the velocity, µ expresses
blood viscosity, µE expresses effective blood viscosity and k represents the permeability
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constant for the porous medium. When the medium is neither homogenous or isotropic, or
when the fluid viscosity is large, this model outperforms Darcy’s law.

1.3.5.2 The Brinkman-Forchheimer Equation

The Brinkman-Forchheimer equation is an extension of Darcy’s law, which describes the
flow of a fluid through a porous medium in the absence of any fluid inertia. The Brinkman-
Forchheimer equation accounts for both viscous and inertial effects, making it more accurate
for modeling flow in porous media under higher flow rates.
The Brinkman-Forchheimer equation can be written as follows

ρ
∂ w̃
∂ t

=−
(

∂ p
∂ z

+
µ

k
w̃
)
+µE∇

2(w̃)− CF√
k

ρ|w̃|w̃, (1.9)

where ρ denotes the fluid density, p denotes the pressure, w̃ is the velocity, µ expresses
blood viscosity, µE expresses effective blood viscosity, k represents the permeability con-
stant for the porous medium and CF denotes the inertial coefficient.

1.4 Boundary Conditions

Boundary conditions are of significant importance in the mathematical modelling of various
processes. Using the assumptions established while modeling the physiological process they
are used to solve the governing equations by analyzing the behavior of the solutions. The
following boundary conditions may describe the more realistic and complex circumstances
involved in blood microcirculation:

1. Velocity or shear stress and angular velocity are assumed to be finite at the microvessel
axis [82].

2. Velocity profile, shear stress, temperature profile and concentration profile are as-
sumed to be continuous at the interfaces[83].

3. The stress jump condition of tangential stress to take momentum transfer in an account
is held at the fluid-porous interface [1].

4. There is no slip and no-couple stress assumed at the microvessel wall [82].

5. The microvessel wall is considered isothermal for temperature

6. Solute dispersion process is studied under the assumption of solute absorption at the
vessel wall.
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All the boundary and interface conditions described above are formulated mathematically
in the respective chapters.

1.5 Mathematical Methods

To understand the microcirculation and predict the behavior of blood in microcirculation,
the governing equations must be solved. The solution can aid to develop or improve clinical
treatments and medical devices. It is not always easy to obtain exact analytical solution of
the governing equations of fluid flow. Here discussed mathematical techniques are therefore
utmost interest to us.

“ The essence of mathematics is not to make simple things complicated,
but to make complicated things simple."

— Stan Gudder

1.5.1 Perturbation Technique

The perturbation theory devised as an adequate technique for handling the complex calcula-
tions, in an attempt to understand the motion of celestial bodies. In academia, perturbation
can be interpreted as a slight variation from an established state. A group of analytical meth-
ods embodied in perturbation theory can facilitate an approximate solution to a complex
problem just utilising the well known analytical solution of a nearly related uncomplicated
problem. The technique consist a crucial step which splits the problem into slowly varying
solvable and rapidly varying perturbing components.

Perturbation techniques are based on a Taylor series expansion of the mechanical trans-
formation involving a relatively small dimensionless parameter. To understand this thech-
nique, let’s consider any real life phenomena which is mathematically governed by a bound-
ary value problem in the form of

F̃ [w̃(r̃)] = 0,

B̃[w̃(r̃)] = 0 on ∂ δ̃ .
(1.10)

When the above expression models the real life phenomenon quite nearly, it often becomes
impossible or too dificult to obtain the exact analytical solution of (1.10). In these scenario,
let’s consider the non-dimensional form involving the relatively small parameter say “ε” of
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(1.10).

F [w(r);ε] = 0,

B[w(r);ε] = 0 on ∂δ (0 < ε << 1).
(1.11)

The technique begins with the decomposition of the problem F [w(r);ε] = 0 into two parts
as

S[w(r)]+P[w(r);ε] = 0, (1.12)

where S[w(r)] denotes the nearly related uncomplicated problem whose exact analytical
solution let’s say “w0(r)” can be easily obtained and P[w(r);ε] is a perturbing component
of the problem. In perturbation theory, the solution of (1.11) is expressed as a power series
in a perterbed parameter ε as

w(r) = w0(r)+
∞

∑
n=1

ε
nwn(r). (1.13)

The first term is the known exact analytical solution to the related simple problem S[w(r)].
One can obtain an approximate perturbation solution’ of (1.11) by truncating (1.13) as suc-
cessive terms in the series expansion with higher powers of ε usually become smaller.

w(r)≈ w0(r)+
N

∑
n=1

ε
nwn(r)+O(εN+1). (1.14)

The series (1.14) is known as asymptotic series and such solution is known as asymptotic
series solution. Customarily, only the first three terms, the solution to the known problem,
the first and second order perturbation correction have been kept for practicality i.e.,

w(r)≈ w0(r)+ εw1(r)+ ε
2w1(r)+O(ε3). (1.15)

1.5.1.1 Regular Perturbation

A perturbation problem is regular when the perturbed component with nonzero small ε and
the unperturbed component for vanishing ε share significant qualitative similarity. If the
power series (1.14) in ε converges uniformly as ε approaches zero, the problem (1.11) is
called a regular perturbation problem.
In this case, the approximate perturbed solution can be obtained by expanding the governing
equations as a series in ε , collecting terms with equal powers of ε and solve them in turn as
far as the solution is required.
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As the perturbation parameter approaches the limit value, the approximate solution to a
regular perturbed problem converge to the analytical solution of the unperturbed problem.

1.5.1.2 Singular Perturbation

Singular perturbation problem is qualitatively different from it’s unperturbed problem. For
a singular perturbation problem, the power series (1.14) in ε does not converge uniformly.
Different time scales and length parameters affects the solutions of differential equations
arising in singular perturbation problems. Broadly, singular perturbation problems can be
classified into two types: Boundary layer problems and multiple-scale problems.
Boundary layer problems are of particular interest to us as it arises in Chapter 6 and can
be handled adequately by matched asymptotic expansion method. The domain of singular
perturbation problem can be segregated in two or more parts. There exist a large primary
sub domain in which the problem could be treated as regular perturbation problem and the
approximate solution can be achieved through an asymptotic series (1.14). In Other small
subdomains known as boundary layers, an asymptotic series (1.14) could not approximate
the solution. Boundary layers appears at narrow zones near the boundary of domain.
The approximate solution obtained through (1.14) for primary domain is only valid out side
boundary layers and therefore known as outer solution and denoted by wo.
Matched Asymptotic Expansions
In continuum mechanics, necessity of solution for classical problems gave rise to the con-
ception of matched asymptotic expansions. As mentioned, boundary layers are narrow do-
mains and hence required to be stretched or magnified to investigate it’s behaviour which
can help to draw the uniform solution for a singularly perturbed problem. The stretching
parameter can be introduced as

ξ =
(r−a)

εk , (1.16)

where a is the point where boundary layer arising and k is the scale of magnification re-
quired. Utilising stretching parameter into the boundary value problem (1.11), it transforms
into

F [w(ξ );ε] = 0,

B[w(ξ );ε] = 0 on ∂δ .
(1.17)

Now the approximate solution for (1.17) can be obtained by a new asymptotic series expan-
sion other than (1.14). This solution is considered an inner solution and denoted by wi(ξ )

as it is only valid inside the boundary layer.
Here, the primary domain and boundary layers may not be separated exclusively and may
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overlap. Therefore, the approximate solution of primary domain and boundary layers can
not be combined directly. Instead, a suitable matching condition is enforced to generate
a composite solution. Prandtl’s boundary layer theory is very renowned in practice and
therefore Prandtl’s matching condition is usually employed to obtain the composite solution
which is uniformly convergent for singularly perturbed problem.
Prandtl’s matching condition

woverlap = (wi)o = (wo)i. (1.18)

Composite Solution
w(r)≈ wi +wo −woverlap. (1.19)

In (1.18), (wi)o is the limiting value of the inner solution from outside of the boundary layer,
(wo)i is the limiting value of the outer solution from outside of the primary domain i.e., from
inside the boundary layers and woverlap denotes the solution in the overlapping area between
the primary domain and boundary layers.
The detailed procedure for acquiring the solution for singular perturbation problems with
different matching conditions has been discussed substantially by Bush [84] and Nayfeh
[85].

1.5.2 Technique of Eigenfunction Expansion

It could be really intriguing in complicated scenarios when solving the non-homogeneous
boundary value problem with homogeneous boundary conditions is difficult, to obtain a so-
lution with help of eigenfunctions of a related homogeneous problem. The non-homogeneous
second-order partial differential equations with homogeneous boundary conditions is of par-
ticular interest and therefore a concise description about the technique of eigenfunction ex-
pansion employed for solving the same is demonstrated here.
Consider the BVP in the form,

d
dr

(
A(r)

dw(r)
dr

)
+(B(r)−ΛC(r))w(r) = L[w(r)]−ΛC(r)w(r) = F(r), (1.20)

together with the boundary conditions

a1w(r) = a2
dw(r)

dr
at r = 0, and b1w(r) = b2

dw(r)
dr

at r = 1. (1.21)

where Λ denotes the provided constant and the function F(r) is provided for r ∈ [0,1].The
functions A(r), B(r), C(r) and dA(r)

dr appearing in (1.20) are believed to be continuous for
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r ∈ [0,1] and A(r)> 0, C(r)> 0 and L[w(r)] = d
dr

(
A(r)dw(r)

dr

)
+B(r)w(r).

The homogeneous problem corresponding to (1.20) is given by

L[w(r)]−ΛC(r)w(r) = 0, (1.22)

Introducing the eigenvalues of (1.22) with the similar boundary conditions (1.21) as Λ1 <

Λ2 <Λ3 < · · ·<Λm < .. . and the corresponding orthogonal eigenfunctions be ψ1,ψ2,ψ3, . . . ,
ψm, . . . . The series solution of the non-homogeneous differential equation (1.20) with cor-
responding homogeneous boundary conditions (1.21) can be denoted as w = ψ(r) in the
form

ψ(r) =
∞

∑
m=1

bmψm(r), (1.23)

where

bm =

∫ 1
0 C(r)ψ(r)ψm(r)dr∫ 1

0 rψ2
m(r)dr

, m = 1,2,3, ... (1.24)

However, (1.24) is not of any help to calculate bm as ψ(r) is not known. bm must be
obtained in a way such that (1.20) and (1.21) are satisfied. One must observe that each
ψm(r) satisfy boundary conditions (1.21) and hence ψ(r) given by (1.23) always satisfy
boundary conditions (1.21). Therefore ψ(r) only requires to satisfy (1.21)

L[ψ(r)] = ΛC(r)ψ(r)+F(r), (1.25)

To obtain bm, substitute the series expansion given by (1.24) into (1.26). The left side of
(1.26) becomes

L[ψ(r)] = L[
∞

∑
m=1

bnψm(r)] =
∞

∑
m=1

bmL[ψm(r)]

=
∞

∑
m=1

bmΛmC(r)ψm(r),
(1.26)

One can rewrite the non-homogeneous term in (1.25) as C(r)[F(r)/C(r)]. If F(r)/C(r) and
it’s derivative are piecewise continuous 0 ≤ r ≤ 1 then in the open interval 0 < r < 1 it can
be expanded in a convergent series as

F(r)
C(r)

=
∞

∑
m=1

cmψm(r), (1.27)
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where, using (1.25) with ψ(r) replaced by F(r)/C(r),

cm =

∫ 1
0 C(r)F(r)

C(r)ψm(r)dr∫ 1
0 rψ2

m(r)dr
=

∫ 1
0 F(r)ψm(r)dr∫ 1

0 rψ2
m(r)dr

, m = 1,2,3, ... (1.28)

Upon substituting for ψ(r), L[ψ(r)], and F(r) in (1.25) from (1.23), (1.26), and (1.27),
respectively, one obtains

∞

∑
m=1

bmmΛmC(r)ψm(r) = ΛC(r)
∞

∑
m=1

bmψm(r)+C(r)
∞

∑
m=1

cmψm(r). (1.29)

After collecting terms and cancelling the common nonzero factor C(r) we have

∞

∑
m=1

[(Λm −Λ)bm − cm]ψm(r) = 0. (1.30)

One can observe that the coefficient of ψm(r) must be zero for each m if (1.30) is to hold for
each r in the interval 0 ≤ r ≤ 1. Therefore

(Λm −Λ)bm − cm = 0, m = 1,2,3, .... (1.31)

If Λ is not equal to any eigenvalue of the (1.23) then

bm−=
cm

(Λm −Λ)
, m = 1,2,3, ..., (1.32)

and

w(r) = ψ(r) =
∞

∑
m=1

cm

(Λm −Λ)
ψm(r)

=
∞

∑
m=1

∫ 1
0 F(r)ψm(r)dr

(Λm −Λ)
∫ 1

0 rψ2
m(r)dr

ψm(r). (1.33)

The technique of the eigenfunction expansion elucidated here has been utilised in (1.5.3)
to obtain the solution of the equations governing solute dispersion. Boyce et al. [86] have
illustrated theory in great details by explaining it’s application to solve different problems.
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1.5.3 Solution Technique for Solute Dispersion Problem

Following the solution method given in Sankarasubramanian and Gill [2], the solution ex-
pression for the dimensionless form of the convective diffusion equation (1.7) in cylindrical
coordinate system with help of appropriate boundary conditions is formulated as

C =
∞

∑
l=0

gl(t,r)
∂ lCM

∂ zl , (1.34a)

where gl (l = 0,1,2, ...) are the function of time and radial distance. The cross-sectional
average concentration CM of the soluble matter is defined as

CM = 2
∫ 1

0
Crdr. (1.34b)

The equation (1.7) is multiplied by 2r throughout and integrating with respect to r from
(r = 0) to (r = 1), the governing equation (1.7) can be rewritten by introducing the definition
of cross-sectional average concentration

∂CM

∂ t
+2

∂

∂ z

(∫ 1

0
rw(r, t)C(t,z,r)dr

)
−2

∂C
∂ r

(t,z,1)− 1
Pe2

∂ 2CM

∂ z2 = 0. (1.35)

Introducing Eq. (1.34a) into Eq. (1.35), the mean concentration is given as

∂CM

∂ t
=

∞

∑
l=0

Ml(t)
∂ lCM

∂ zl , (1.36a)

where

g−1 = 0,

Ml(t)−
δl2

Pe2 +2
∫ 1

0
rgl−1(t,r)w(r)dr−2

∂gl

∂ r
(t,1) = 0, l = 0,1,2, ...,

(1.36b)

and δlm denotes Kronecker delta

δlm =

{
0, l ̸= m,

1, l = m.
(1.36c)

As observed by Gill and Sankarsubramanian [80], the higher order coefficients possess very
small magnitude for very large time in the solute dispersion process and the good approxima-
tion could be achieved without involving any terms above the second order term. Therefore,
it has been decided to terminate the series expansion (1.36a) at second order term.
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Wall absorption attributes to the reduction of solute concentration in the system, which
produces the negative sign and nonzero flux at wall for the exchange coefficient M0(t). M1(t)

delineates the convection of solute caused by the velocity of the fluid flow and known as the
convection coefficient. M2(t) denotes the dispersion coefficient and represents the disper-
sion process as the simultaneous outcome of the velocity driven convection and molecular
diffusion process at a time. The resulting mean concentration is derived as

∂CM

∂ t
= M2(t)

∂ 2CM

∂ z2 +M1(t)
∂CM

∂ z
+M0(t)CM, (1.37a)

where

Ml(t)−
δl2

Pe2 +2
∫ 1

0
rgl−1(t,r)w(r)dr−2

∂gl

∂ r
(t,1) = 0, l = 0,1,2, .... (1.37b)

To solve the above equations (1.37a) and (1.37b), we need to find out the diffusion co-
efficients (Ml(t), l = 0,1,2) with help of the suitable initial and boundary conditions. For
this, the corresponding unknown functions gl(t,r), l = 0,1,2 must be determined in order to
compute the expression for mean concentration from the equation (1.37a). Introducing Eqs.
(1.34a) and (1.37a) into the Eq. (1.7). On comparing the coefficient of ∂ kCM

∂ zk , (k = 0,1,2),
the system of differential equations for the function gk are outlined as

∂gk

∂ t
=

1
r

∂

∂ r

(
r

∂gk

∂ r

)
−w(r)gk−1 +

1
Pe2 gk−2 −

k

∑
l=0

Mlgk−l, k = 0,1,2, (1.38)

where g−1 = g−2 = 0.
The initial and boundary conditions for gk and CM can be derived from the boundary condi-
tions

CM(0,z) = 2χ(z)
∫ 1

0
X(r)rdr, (1.39a)
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which gives

gk(0,r) = 0, k = 1,2, (1.39b)

g0(0,r) =
X(r)

2
∫ 1

0 X(r)rdr
, (1.39c)

gk(t,0) = finite, k = 0,1,2, (1.39d)

∂gk

∂ r
(t,1) =−βgk(t,1), k = 0,1,2, (1.39e)∫ 1

0
gk(t,r)rdr =

1
2

δk0, k = 0,1,2, (1.39f)

and

CM(t,z) =
∂CM

∂ z
(t,z) = 0, as z → ∞, (1.39g)

where δk0 is mentioned in Eq. (1.36c). In the present study, we are interested to analyze
the behavior of the diffusion coefficient as well as mean concentration of the solute at large
time (i.e. t → ∞).

1.5.3.1 Estimation for the Function g0(t,r) and Exchange Coefficient M0(t)

The equation for g0(t,r) in terms of exchange coefficient M0(t) from equation (1.38) may
be written as

∂g0

∂ t
=

1
r

∂

∂ r

(
r

∂g0

∂ r

)
−g0M0. (1.40a)

The suitable initial (IC) and boundary conditions (BCs) for the function g0(t,r) are evaluated
from equations (1.39c),(1.39d)− (1.39e) by substituting k = 0 and an additional condition
can be obtained from (1.39g)

∫ 1

0
g0(t,r)rdr =

1
2
. (1.40b)

The equation (1.40a) for the function g0 in terms of exchange coefficient M0 is independent
of the fluid velocity. Using the eigenfunction expansion method discussed earlier in (1.5.2)
[86], the solution of the non-homogeneous BVPs given in Eq. (1.40a) for g0(t,r) satisfying
the initial and boundary conditions (1.39c),(1.39d)− (1.39e) and an additional condition
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(1.40b) is in form

g0(t,r) =
∑

∞
0 AkJ0(αkr)e−α2

k t

2∑
∞
0

(
Ak
αk

)
J1(αk)e−α2

k t
, (1.41a)

where α ′
ks are roots of the transcendental equation in terms of Bessel functions J0,J1 de-

scribed below
αkJ1(αk) = βJ0(αk), k = 0,1,2, ... (1.41b)

and the expansion coefficient A′
ks are obtained from the initial condition as

Ak =
α2

k
∫ 1

0 rX(r)J0(αkr)dr

(α2
k +β 2)J2

0(αk)
∫ 1

0 rX(r)dr
, k = 0,1,2, ... (1.41c)

The exchange coefficient M0(t) is obtained form the Eq. (1.37b) using equation (1.39e)

M0(t) = 2
∂g0

∂ r
(t,1) =−2βg0(t,1) =− ∑

∞
0 AkαkJ1(αk)e−α2

k t

∑
∞
0

(
Ak
αk

)
J1(αk)e−α2

k t
. (1.42)

The solution expression for the exchange coefficient M0 is precisely same as obtained in the
previous studies ([2], [87], [88], [89]) as its computation does not include fluid velocity. So,
the analysis of exchange coefficient is discarded in the present study as the expression of
M0(t) remains invariant for fluid flow involving constant or variable viscosity model.

In the limiting case as t → ∞, the aforementioned equations (1.41a) and (1.42) give the
limiting value in the form of asymptotic representation for the function g0 and exchange
coefficient M0 as below,

lim
t→∞

M0(t) = M0(∞) =−α
2
0 , (1.43a)

lim
t→∞

g0(t,r) = g0(∞,r) =
α0

2J1(α0)
J0(α0r), (1.43b)

where α0 is the first root (least in magnitude) of the Eq. (1.41b).

1.5.3.2 Asymptotic Representation of Diffusion Coefficients (Mm(t))

As per the above discussion, the function g0 and the solution expression for the exchange
coefficient M0(t) are independent of flow velocity, however the function gk(t,r) and the
diffusion coefficients (Mk(t), k = 1,2) depend on the flow velocity of the fluid. So, in this
case, steady flow of two-fluid model using heat transfer approach is considered to obtain the
diffusion coefficients. The asymptotic expression for the function g′ks are obtained from the
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equation (1.38)

1
r

d
dr

(
r

dgk

dr

)
+α

2
0 gk = w(r)gk−1 −

1
Pe2 gk−2 +

k

∑
l=1

Mlgl−l (1.44a)

where k = 1,2, g−1 = 0 and the diffusion coefficients (Mk, k = 1,2) are given by

Mk =
δk2

Pe2 +2
dgk

dr
(1)−2

∫ 1

0
rw(r)gk−1(r)dr. (1.44b)

The boundary conditions (BCs) with an additional condition on fm(r) are described below
from Eqs. (1.39)

gk(0) = finite,
dgk

dr
(1) =−βgk(1), k = 1,2,∫ 1

0
gkrdr = 0, k = 1,2.

(1.45)

By following the solution strategy of the work of Sankarasubramanian and Gill [2], the
diffusion coefficients (Mk, k = 1,2) are delineated in terms of the functions (gk, k = 1,2)

Mk =

∫ 1
0 rJ0(α0r)

(
gk−2(r)

Pe2 −w(r)gk−1(r)−
k−1
∑

l=1
Mlgk−l(r)

)
dr∫ 1

0 rg0(r)J(α0r)dr
, k = 1,2. (1.46)

The convection coefficient (M1) from Eq. (1.46) is obtained by using the limiting value of
known function g0 for large time and it is delineated by

M1 =
−
∫ 1

0 w(r)g0(r)rJ0(α0r)dr∫ 1
0 g0(r)rJ0(α0r)dr

=
−2α2

0

(α2
0 +β 2)J2

0(α0)

∫ 1

0
w(r)rJ2

0(α0r)dr. (1.47)

The expression for the function g1 can be obtained from (1.44a) by putting k = 1 and it is
delineated by

1
r

d
dr

(
r

dg1

dr

)
+α

2
0 g1 = w(r)g0 +M1g0, (1.48)

along with the following boundary conditions for g1

g1(0) = finite,
dg1

dr
(1) =−βg1(1),∫ 1

0
g1rdr = 0.

(1.49)
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Using Eqs. (1.47) in (1.48), the solution for g1 satisfying the boundary conditions (1.49) is
given by

g1(r) =
∞

∑
k=0

BkJ0(αkr), (1.50a)

where the expansion coefficient B0 is evaluated in terms of Bn (n = 1,2, ...).

B0 =
−α0

J1(α0)

∞

∑
k=1

Bk
J1(αk)

αk
, (1.50b)

Introducing equations (1.50b) into (1.50a), the function g1 can be rewritten as

g1 =
∞

∑
k=1

Bk

[
J0(αkr)− α0

J1(α0)

J1(αk)

αk
J0(α0r)

]
, (1.50c)

where B′
ks are given by

Bk =
2α2

k

(α2
0 −α2

k )(α
2
k +β 2)J2

0(αk)

∫ 1

0
(w(r)+M1)g0(r)rJ0(αkr)dr. (1.50d)

The expression for dispersion coefficient (M2) is obtained using the equations (1.50c),(1.50d)

and (1.46) and it is delineated by

M2 =
1

Pe2 −
4α0J1(α0)

(α2
0 +β 2)J2

0(α0)

∫ 1

0
(w(r)+M1)g1(r)rJ0(α0r)dr. (1.51)

1.5.3.3 Solution for Mean Concentration (CM)

The solution expression of the Eq. (1.37a) with help of the diffusion coefficients (1.42),(1.47),(1.51)
and boundary conditions (1.39a),(1.39g) for solute mean concentration (CM) is derived as

CM(t,z) =
1

2Pe
√

πT
Exp

(
η −

z2
1

4T

)
, (1.52)

where

η(t) =
∫ t

0
M0(ξ )dξ , (1.53a)

z1(t,z) = z+
∫ t

0
M1(ξ )dξ , (1.53b)

T (t) =
∫ t

0
M2(ξ )dξ . (1.53c)
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The Eqs. (1.53a)− (1.53c) can be approximated for large time t(t ≥ 0.5) as below [2]

T (t)∼ M2t, (1.54a)

z1(t,z)∼ z+M1t, (1.54b)

ξ (t)∼ M0t. (1.54c)

The exchange M0, convective M1 and dispersion coefficient M2 are independent of radial
non-uniformities with initial solute distribution (d).

“ It is unworthy of excellent men to lose hours like slaves in the labour of
calculation which could safely be relegated to anyone else if machines were
used."

— Gottfried Leibniz

MATHEMATICA 10.0.2 is employed where ever required for countering complex calcula-
tions arising throughout the proposed research work.

1.6 Gaps in Existing Research

To the best of our understanding and belief, following a literature review, it is evident that
the following aspects of the microcirculation of blood through microvessels have yet to be
extensively investigated.

• The two-fluid model investigating the impact of the microstructure of blood on the
flow and drug deliverance process in microcirculation has yet to be thoroughly stud-
ied.

• The two-fluid model with or without varying viscosity model has not been investigated
much for the flow through a porous layered straight or curved tube.

• The theoretical study on a two-fluid model with Hematocrit-dependent viscosity ap-
proaches has yet to be addressed for flow-through microvessels.

• The heat transfer aspect of a two-phase fluid model with temperature-dependent vis-
cosity for blood has yet to be explored deeply in blood flow modeling through mi-
crovessels.

• Analysis of the non-Newtonian fluid flow approach through the conduit with a non-
circular cross-section has received little consideration.
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• Analysing solute dispersion in two-fluid flow of blood in micro circulation using the
appropriate dispersion model has received less consideration.

1.7 Research Objectives

Based on literature survey and identified research gaps, objectives of the thesis work are,

• To conduct mathematical analysis regarding the impact of the microstructure of blood
microcirculation by adopting an adequate mathematical model.

• To constitute a mathematical model accountable for temperature or Hematocrit de-
pendent viscosity of blood and examine the impact of variable viscosity on microcir-
culation.

• To explore the heat transfer and solute dispersion aspect to gain theoretical under-
standing for the drug deliverance process and pave ways for devising new clinical
procedures involving temperature variation.

1.8 Thesis Organisation

The thesis organizes the research effort into seven chapters. Chapter 1 highlights the need
to study blood microcirculation in the human cardiovascular system and conduct a litera-
ture review to identify existing research gaps to establish objectives for the proposed work.
The methodology to achieve research goals is devised, and fundamental concepts of Bio-
mechanics, blood microcirculation, and mathematical approaches have been introduced.

The objective of Chapter 2 is to examine the influence of the microrotation of erythro-
cytes, external magnatic field and heat transfer on mechanical quantities of blood micro-
circulation through the microvessel with thin endothelial glycocalyx-layered microvessels.
Graphical interpretations of the different parametric influences on blood microcirculation
have been studied with both conditions at interface. Compared to the no-spin condition, the
relatively strong influence of the no-couple stress condition on Fåhræus effect, flow charac-
teristics, and hematocrit has been observed.

Chapter 3 considers blood microcirculation under the identical scenario of Chapter 2
with absorbing vessel walls and aims to extend the study to examine the mechanism of the
solute dispersion phenomenon. To comprehend certain clinical features of blood micro-
circulation, the effect of erythrocyte spinning, coupling number, EGL thickness and per-
meability, thermal conductivity, radiation parameter, and Hartmann number on the solute
dispersion coefficients and mean concentration interpreted graphically.
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A theoretical attempt has been made in Chapter 4 to examine the impact of the heat
transfer aspect on the flow characteristics of temperature-dependent viscous blood microcir-
culation through endothelial glycocalyx layered microvessels. The Brinkman-Forchheimer
equation governs blood flow through the endothelium glycocalyx layer to encompass the
permeability spectrum. The perturbation technique is employed to solve the Brinkman-
Forchheimer governing equation analytically. Singular and regular perturbation problems
are encountered for small Darcy numbers (SDN) and large Darcy numbers (LDN), respec-
tively. The study concludes the impact of temperature on flow characteristics and com-
prehends the importance of studying temperature-dependent viscosity models for devising
clinical procedures involving temperature variations.

Delivering drugs to the targeted location or transporting nutrients to needy organs in-
volves the dispersion of solutes through blood microcirculation. The process is believed
to be influenced by the varying characteristics of viscosity, heat transfer, and other related
factors. Chapter 5 is motivated toward examining the dispersion of solutes in blood mi-
crocirculation through microvessels influenced by temperature-sensitive viscosity and heat
transfer. The graphical analysis shed light on the solute dispersion process’s sensitivity re-
garding heat transfer and temperature-sensitive viscosity. In addition, the dispersion process
is accelerated with the dominance of thermal buoyancy forces.

The focus of Chapter 6 is to study the hydrodynamic characteristics of blood microcircu-
lation through a microvessel having EGL adjacent to the absorbing wall with a sophisticated
mathematical model. A comparison has been drawn between the generalized model and its
reduced specific fluid models for the solute dispersion process. The graphical study in-
terprets the sensitivity of the solute dispersion coefficients regarding EGL thickness, EGL
porosity, plasma layer thickness, and wall absorbing capacity. EGL adjacent to the mi-
crovessel wall decreases both convective and axial dispersion in the case of a wall with high
reactivity. One notable observation is that a decrease in the porosity of EGL adjacent to the
microvessel wall leads to a decrease in the average solute concentration.

The thesis is summarised in Chapter 7, which highlights the noteworthy findings with
physical significance and application. The advantages and limitations of the study are cov-
ered to make it more relevant for clinical application. In addition, the chapter recommends
directions for future study and ways to strengthen the current work so that it may be used
more effectively in clinical practice.





Chapter 2

Influence of Erythrocyte Microstructure and EGL
on Microcirculation under Heat Transfer Aspect

The behavior of the physiological fluids and their physical mechanism are very crucial
to understand the circulatory system in the human beings, which may help to classify the
diseases, affecting the flow of fluids through vascular systems. With the help of mathemat-
ical modeling in fluid mechanics or medical sciences, several authors made efforts in the
form of various interdisciplinary works to resolve or minimize the effect of diseases during
the flow of fluid through vessels. Nowadays, cancer is one of the most dangerous diseases
which is uncontrolled under the normal situations and its treatment involves the heat transfer
approach. Besides this, another disease leading to circulatory disorder is the atherosclero-
sis, which may arise due to accumulation of fatty plaques of cholesterol, carbohydrates,
fibrous tissues or macromolecules inside the arterial wall. The study of the blood flow
through microvessels (arterioles, venules and capillaries) plays significantly different roles
in comparison to the larger blood vessels. We hope that the present study may be helpful in
understanding the several kinds of effect on the flow of blood through the blood vessels with
a porous layer near the wall. The accumulation of fatty plaques inside the arterial wall at
a specific place reduces the area of the flow through blood vessels in which enhanced flow
impedance occurs due to the presence of fatty plaques of cholesterol known as stenosis.
Many investigators ([90], [91]) studied the impact of constriction/catheterization on steady
flow of Newtonian or non-Newtonian fluid through constricted/catheterized artery. A pe-
riodic nature of viscoelastic fluids flowing through constricted tube has been done by the
several researchers in their studies ([92], [93]).

All the above studies performed the analysis of viscoelastic/non-Newtonian fluids flow-
ing through conduit but the emphasis has not been given to the fluid particles and their struc-
tures.Recently, Khanukaeva et al. ([22], [23]) analyzed the flow of micropolar fluid through

1This work has published as A. Tiwari, P.D. Shah, and S.S. Chauhan,"Analytical study of Micropolar
fluid flow through porous layered microvessels with heat transfer approach", Eur. Phys. J. Plus 135
(2020) 209.
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a membrane with porous layer using cell model technique in which the flow is parallel and
perpendicular to the axis of cylindrical cell. They formulated the governing equations for
two different interface conditions namely, no-spin (NS) and no-couple stress (NCS) repre-
senting the zero and non-zero micro-rotational (angular) velocity at the interface.

All the above studies involve the impermeable nature of blood vessels but under different
circumstances such as deposition of carbohydrates, fibrous tissues or micro-molecules inside
the lumen obstruct the flow and further leads to the diseases like polycythemia and another
microangiopathic disease. The development of atheromatous plaques in the arterial wall
due to transport process occurring in arteries created the curiosity of researchers to math-
ematically analyze the same owing to its severe impact on circulation. The transportation
of the fluid material through porous layered blood vessels has been used to understand the
formation and development of atheromatous plaques. Although a large number of studies
reveal an easier flow among vessel wall tissues for large blood vessels having an endothelial
lining of macromolecules with low permeability but the same need not be true for small
blood vessels. The study of blood flow through the porous medium has been a compelling
topic for researchers and has wide practical situations in the areas of engineering and med-
ical field. Darcy [94] gave an empirical method to formulate the mathematical equation of
fluid flow through porous media in terms of permeability but this law was restricted for low
permeability only. Brinkman [95] described the flow through porous mass by modifying the
Darcy’s equation and found a relation between the permeability of the porous media, par-
ticle size and density. Brinkman [96] extended his work to the permeability of the porous
region with closely packed porous particles (micro-pores). Ochoa-Tapia and Whitaker ([1],
[97]) introduced the discontinuity in shear stress at fluid-porous interface also known as the
stress jump condition. The flow of Casson fluid through a porous tube was discussed by
Dash et al. [98] under the constant as well as radially varying permeability assumptions.

The theoretical study of the hydrodynamic mixed convection of Newtonian fluid flow
through vertical conduit with asymmetric and symmetric heating wall was done by Chamkha
[99] under the presence or absence of heat absorption or generation impacts. He reported
an analytical solution of velocity and temperature profiles for different three thermal bound-
ary conditions on both the walls in the presence of uniform magnetic field in transverse
direction of the fluid flow. The steady and transient laminar hydrodynamic flows and heat
generation/absorption aspects through porous channels in the presence of a transverse mag-
netic field were discussed by Chamkha ([55], [100]) in which the induced magnetic field
and Hall effect of hydromagnetic flow are assumed to be neglected due to very small mag-
netic Reynolds number. He [101] extended his work for double-diffusive convective flow
through uniform porous medium channel with the assumption of temperature-dependent
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heat source and sink within the enclosure of the boundaries of the channel. Srinivasacharya
and Shiferaw [21] analyzed the impact of Hall and ionic effect on the flow of micropo-
lar fluid through a circular tube and concluded that a rising Hall and ion-slip parameter
contributes to enhancement in hemodynamical quantities such as linear and angular veloc-
ity, rate of fluid flow and flow impedance. The impact of heat transfer and the isothermal
permeable nature of walls on unsteady oscillatory flow of two-immiscible fluids through
horizontal channel was discussed by Umavathi et al. [102] and they found a decrement in
velocity and temperature profile with increasing viscosity ratio however a growth in the
above quantities is observed with rising frequency parameter. Ponalagusamy and Selvi
[103] analyzed the combined effect of heat transfer and magnetic field on two-layer model
of blood flow through a constricted tube by considering blood as Newtonian fluid in both
the regions (core as well as plasma regions). Recently, Kumar et al. [104] discussed the
two-fluid (micropolar-viscous) model of laminar flow through a vertical channel and ana-
lyzed the impact of micropolar fluid and heat transfer parameters on flow variables. The
heat generation or absorption effects on the flow of two-immiscible fluids through porous or
nonporous channel was discussed by Chamkha [105] due to presence of uniform magnetic
field in the transverse direction of the flow pattern. The impact of porous medium and heat
transfer parameters on the generalized plain Couette and unsteady oscillatory viscous fluid
flow through composite porous medium channels with different temperatures at the walls
were analyzed by Umavathi et al. ([106],[107]).

The two-phase flow representing the fluid-particle natural convection has wide appli-
cations in many physical and biological problems including the particle suspension model
for blood flow. This motivated many researchers to work on application based problems
using this approach. The steady and unsteady hydromagnetic fluid-particle flow through
conduits with heat generation or absorption aspects were discussed analytically by several
authors ([108]-[109]). Going through the aforementioned works and to the best of the au-
thor’s knowledge, a lacunae in the existing research has been observed which may be useful
in understanding the mechanical aspect of physiological systems. So far no attempt has been
made in analyzing the effect of such a layer on flow variables using micropolar fluid model
of blood flow. Besides this, the impact of zero and non-zero spins of the microlevel particles
on the flow variables, hematocrit and Fåhræus effect under the dominance of thermal buoy-
ancy forces has not yet been analyzed which may be important for therapeutic treatment of
certain diseases involving radiation.

The present study aims to analyze the impact of glycocalyx layer near the wall and two
different formulations (no-spin and no-couple stress conditions at the interface representing
the zero and non-zero microrotational velocity at the interface) on three-layered model of
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blood flow through porous layered tubes by taking micropolar fluid as a core region fluid.
The motivation for taking micropolar fluid in this study is to analyze the impact of microlevel
properties of the fluid like coupling, micro-scale parameters and an additional parameter φM

on flow variables, hematocrit and Fåhræus effects. Besides the microlevel parameters, the
effect of heat transfer and porous layer parameters on the above quantities is also analyzed
graphically and compared with the previous works of single and two-fluid model without
porous region near the tube walls.

2.1 Problem Formulation

The physical model concerns an axially symmetric, laminar, incompressible, steady and
fully developed flow of blood through a heated circular blood vessel as shown in Figure2.1.
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Figure 2.1: The schematic diagram of the microvessel model description for two-fluid
model incorporating a thin endothelial glycocalyx layer adjacent to the microvessel wall

R̃1, R̃2, R̃3 are the radii of the central, intermediate and porous regions of blood vessel, re-
spectively. The flow of blood is taken as two-fluid model. It is assumed that blood in the
core region is micropolar fluid and in the plasma region, it is Newtonian fluid. An exter-
nal magnetic field B⃗ of a uniform strength |B⃗| = B̃ is applied in the transverse direction of
the flow. The induced magnetic field and Hall effect of hydromagnetic flow are assumed
to be neglected due to very small magnetic Reynolds number. The wall of blood vessel is
composed by a thin Brinkman layer. We shall use the cylindrical polar coordinate system
(r̃, φ̃ , z̃), where r̃, z̃ are the radial and axial coordinates, respectively and the origin is situated
on the vessel axis. The microrotational vector of the micropolar fluid in the core is given
by (0,Ω̃M,0). The flow in all the regions is assumed to be driven by the constant pressure
gradient (−∂ p̃

∂ z̃ = ps). The boundary condition for temperature on the wall is isothermal
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condition.
The governing equations for the above problem will be:

Region- I, i.e. 0 < r̃ ≤ R̃1

∂ w̃M

∂ z̃
= 0, (2.1a)

∂ p̃M

∂ r̃
= 0, (2.1b)

−∂ p̃M

∂ z̃
+

(µ̃M + κ̃M)

r̃
∂

∂ r̃

(
r̃

∂ w̃M

∂ r̃

)
+

2κ̃M

r̃
∂ (r̃Ω̃M)

∂ r̃
− σ̃MB̃2w̃M + g̃ρ̃M γ̃(T̃M − T̃∞) = 0,

(2.1c)

(λ̃M + ζ̃M)

(
∂

∂ r̃

(
1
r̃

∂

∂ r̃
(r̃Ω̃M)

))
−2κ̃M

(
∂ w̃M

∂ r̃
+2Ω̃M

)
= 0, (2.1d)

K̃M

(
∂ 2T̃M

∂ r̃2 +
1
r̃

∂ T̃M

∂ r̃

)
− ∂ q̃M

∂ r̃
= 0, (2.1e)

where ρ̃M, p̃M, w̃M,Ω̃M, K̃M, T̃M are the density, pressure, axial velocity, angular velocity,
thermal conductivity and temperature of blood in core region, respectively; µ̃M, λ̃M, ζ̃M and
κ̃M are the viscosities of the micropolar fluid, respectively; σ̃M is an electrical conductivity;
B̃ is an uniform magnetic field; T̃∞ is an ambient temperature and g̃ is the gravitational force.

Region- II, i.e. R̃1 < r̃ ≤ R̃2

∂ p̃N

∂ r̃
= 0, (2.2a)

−∂ p̃N

∂ z̃
+

µ̃N

r̃
∂

∂ r̃

(
r̃

∂ w̃N

∂ r̃

)
− σ̃NB̃2w̃N + g̃ρ̃N γ̃(T̃N − T̃∞) = 0, (2.2b)

K̃N

(
∂ 2T̃N

∂ r̃2 +
1
r̃

∂ T̃N

∂ r̃

)
− ∂ q̃N

∂ r̃
= 0, (2.2c)

where ρ̃N , p̃N , w̃N , µ̃N , K̃N , T̃N , σ̃N are the density, pressure, axial velocity, viscosity, thermal
conductivity, temperature and electrical conductivity of blood in plasma region, respectively.

Region- III, i.e. R̃2 < r̃ ≤ R̃3

∂ p̃B

∂ r̃
= 0, (2.3a)

−∂ p̃B

∂ z̃
+

µ̃E

r̃
∂

∂ r̃

(
r̃

∂ w̃B

∂ r̃

)
− µ̃Nw̃B

k̃
− σ̃NB̃2w̃B + g̃ρ̃N γ̃(T̃B − T̃∞) = 0, (2.3b)

K̃N

(
∂ 2T̃B

∂ r̃2 +
1
r̃

∂ T̃B

∂ r̃

)
− ∂ q̃B

∂ r̃
= 0, (2.3c)
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where p̃B, w̃B, µ̃E , T̃B are the pressure, velocity, effective viscosity of porous layer, tempera-
ture of blood in porous region, respectively and k̃ is the permeability constant. Many of the
earlier works used the Brinkman model assuming that the fluid viscosity and the Brinkman
viscosity (i.e. effective viscosity µ̃E) to be same however in the present model, the fluid
viscosity and the Brinkman viscosity are different.

Here, the radiative heat fluxes in the core and plasma regions for micropolar and New-
tonian fluids may respectively be expressed as ([53], [103])

∂ q̃M

∂ r̃
= 4α̃

2
M(T̃M − T̃∞), (2.4a)

∂ q̃N

∂ r̃
= 4α̃

2
N(T̃N − T̃∞), (2.4b)

∂ q̃B

∂ r̃
= 4α̃

2
N(T̃B − T̃∞), (2.4c)

where α̃M and α̃N the mean absorption coefficients for micropolar and Newtonian fluid,
respectively which are much less than unity.

The pressure gradient is taken as constant for all the regions ([91], [28], [49])

∂ p̃M

∂ z̃
=

∂ p̃N

∂ z̃
=

∂ p̃B

∂ z̃
=−q̃0 ps, (2.5)

where q̃0 is the characteristic pressure gradient and ps is the non-dimensional pressure gra-
dient along the axis of the vessel.

To solve the above system of Eqs. (2.1)−(2.5), the following non-dimensional variables
are introduced:

pM =
p̃MR̃3

W0µ̃N
, pN =

p̃NR̃3

W0µ̃N
, pB =

p̃BR̃3

W0µ̃N
, H2 =

σ̃NR̃2
3B̃2

µ̃N
, H2

1 =
µRH2

σ0
,

r =
r̃

R̃3
, z =

D̃mz̃

R̃2
3W0

, R1 =
R̃1

R̃3
, R2 =

R̃2

R̃3
, N2

1 =
4R̃2

3α̃2
N

K̃N
, ΩM =

Ω̃MR̃3

W0
,

θB =
T̃B − T̃∞

T̃w − T̃∞

, θM =
T̃M − T̃∞

T̃w − T̃∞

, θN =
T̃N − T̃∞

T̃w − T̃∞

, k =
k̃

R̃2
3

, λ
2
1 =

µ̃E

µ̃N
,

Gr =
g̃ρ̃N γ̃R̃2

3(T̃w − T̃∞)

W0µ̃N
, wM =

w̃M

W0
, wN =

w̃N

W0
, wB =

w̃B

W0
, W0 =

q̃0R̃2
3

4µ̃N
,

ρ0 =
ρ̃N

ρ̃M
, K0 =

K̃N

K̃M
, σ0 =

σ̃N

σ̃M
, α0 =

αN

αM
, µR =

µ̃N

µ̃M
, H2

2 =
1

λ 2
1

(
1
k
+H2

)
,

(2.6)

where ρ0,σ0,K0,α0,µR are the density ratio, electrical conductivity ratio, thermal conduc-
tivity ratio, mean heat absorption ratio, viscosity ratio, respectively; W0 is the average veloc-
ity; Gr is the Grashof number; λ1 is the viscosity ratio parameter and T̃w is the temperature
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at wall.
Using the above non-dimensional variables (2.6), the governing Eqs. (2.1)− (2.5) in

non-dimensional form will become:
Region- I, i.e. 0 < r ≤ R1

∂wM

∂ z
= 0, (2.7a)

∂ pM

∂ r
= 0, (2.7b)

4ps(1−N)µR +
1
r

∂

∂ r

(
r

∂wM

∂ r

)
+

2N
r

∂

∂ r

(
r

∂ΦM

∂ r

)
− (1−N)H2

1 wM +
µRGr(1−N)

ρ0
θM = 0,

(2.7c)

∂

∂ r

(1
r

∂

∂ r

(
r

∂ΦM

∂ r

)
− N

2n2(1−N)
(wM +2ΦM)

)
= 0 (2.7d)

∂ 2θM

∂ r2 +
1
r

∂θM

∂ r
+

N2
1 K0

α2
0

θM = 0, (2.7e)

where N = κ̃M
κ̃M+µ̃M

is known as coupling parameter which demonstrates the rotational effects

of micropolar particles; n2 = λ̃M+ζ̃M

4µ̃MR̃2
3

is a micro-scale parameter (particle size); H2
1 = µRH2

σ0
is

a magnetic number; N2
1 =

4R̃2
3α̃2

N
κ̃N

is the radiation parameter and the angular velocity is taken
as ΩM = dΦM

dr .
Region- II, i.e. R1 < r ≤ R2

∂ pN

∂ r
= 0, (2.8a)

4ps +
1
r

∂

∂ r

(
r

∂wN

∂ r

)
−H2wN +GrθN = 0, (2.8b)

∂ 2θN

∂ r2 +
1
r

∂θN

∂ r
+N2

1 θN = 0. (2.8c)

Region- III, i.e. R2 < r ≤ 1

∂ pB

∂ r
= 0, (2.9a)

4ps +
λ 2

1
r

∂

∂ r

(
r

∂wB

∂ r

)
−
(

1
k
+H2

)
wB +GrθB = 0, (2.9b)

∂ 2θB

∂ r2 +
1
r

∂θB

∂ r
+N2

1 θB = 0. (2.9c)

The dimensionless boundary conditions are given as follows:
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1. The conditions for velocity, angular velocity and temperature on the axis have been
considered as

∂wM

∂ r
= 0, ΩM = 0 and

∂θM

∂ r
= 0 at r = 0. (2.10a)

2. Continuity of velocity at micropolar-Newtonian fluid interface and Newtonian fluid-
porous interface i.e.

wM = wN at r = R1, (2.10b)

wN = wB at r = R2. (2.10c)

3. Continuity of shear stresses at micropolar and Newtonian fluid interface, i.e.

1
(1−N)

∂wM

∂ r
+

N
(1−N)

ΩM(r) = µR
∂wN

∂ r
at r = R1. (2.10d)

4. No spin condition at the micropolar-Newtonian fluid interface, i.e.

ΩM(r) = 0, at r = R1. (2.10e)

The physical interpretation of the above condition represents the zero angular velocity
at the micropolar-Newtonian interface i.e. the movement of the molecules without
micro-rotation.

5. No couple stress condition at micropolar-Newtonian fluid interface, i.e

∂ΩM(r)
∂ r

− φM

r
ΩM(r) = 0, at r = R1, (2.10f)

where φM = (λ̃M−ζ̃M)

(λ̃M+ζ̃M)
is an additional parameter that demonstrates the constraints on

viscosity coefficient can vary in the interval [−1,1] ([22]). The parameter φM is intro-
duced as the non-symmetric couple stress tensor do not reduce the dimensional form
of the boundary conditions (2.10d) and (2.10 f ) in terms of microlevel parameters
N and n. The situation λ̃M = ζ̃M is of great significance as it makes the boundary
condition (2.10 f ) and hence the solution of the problem independent of the flexibility
parameter λ̃M and ζ̃M. The physical interpretation of the above condition represents
the non-zero angular velocity at the micropolar-Newtonian interface i.e. the move-
ment of the molecules with non-zero micro-rotation.
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6. Continuity of temperature at micropolar-Newtonian fluid interface and Newtonian
fluid-porous interface i.e.

θM = θN ,
∂θM

∂ r
= K0

∂θN

∂ r
at r = R1, (2.10g)

θN = θB,
∂θN

∂ r
=

∂θB

∂ r
at r = R2. (2.10h)

7. The stress jump condition of tangential stress at Newtonian fluid and porous interface
([1], [97]), i.e.

1
αp

∂wB

∂ r
− ∂wN

∂ r
=

βS√
k

wB at r = R2, (2.10i)

where αp is the porosity parameter and βS is stress jump parameter.

8. Isothermal condition for temperature and no-slip condition for velocity at the wall,
i.e.

wB = 0, θB = 1 at r = 1. (2.10j)

The rate of fluid flow Qs in non-dimensional form is given by ([91], [28], [49])

Qs = 8
∫ 1

0
rw(r)dr,

= 8
(∫ R1

0
rwMdr+

∫ R2

R1

rwNdr+
∫ 1

R2

rwBdr
)
. (2.11)

The frictional resistance λs per unit length of the tube is given by ([91], [28], [49])

λs =
ps

Qs
. (2.12)

The fraction of volume occupied by red blood cells (RBCs) and total volume of the blood is
defined as hematocrit (Ht) i.e. volume concentration of RBCs in whole blood ([47], [49],
[51])

Ht =
∫ R1

0 Cv(r)wM(r)dr∫ R3
0 rw(r)dr

, (2.13)

where Cv(r) is the concentration profile of the RBCs

Cv(r) =
cv

R2
1
(R2

1 − r2)H(R1 − r)H(r), (2.14)
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where H(r) is Heaviside unit function and cv is constant in concentration relation.

The ratio of tube hematocrit HT to discharge hematocrit HD is defined as Fåhræus effect
Fe which is expressed as below ([3], [49])

Fe =
HT

HD
=

W̄
Wrbc

, (2.15)

where W̄ is the average velocity flowing through the tube and Wrbc is the velocity of the red
blood cells (RBCs).

2.2 Solution of the Problem

The momentum and energy equations (2.7)− (2.9) are solved subject to the boundary
and interface conditions Eq. (2.10) for the velocity and temperature distributions. The
transformed governing equations under the assumptions mentioned in problem formula-
tion section are coupled system of linear ordinary differential equations. Solving the Eqs.
(2.7)− (2.9), we get the following:
The temperature and velocity profiles for micropolar fluid are obtained as below

θM =C1J0(N2r)+C2Y0(N2r), (2.16a)

wM =C3I0(α1r)+C4K0(α1r)+C5I0(α2r)+C6K0(α2r)+
4psµR

H2
1

+

(
µRGrC1

ρ0

)(
N2

2 (1−N)n2 +N
n2

)(
J0(N2r)(

α2
1 +N2

2
)(

α2
2 +N2

2
)) , (2.16b)

and angular velocity ΩM is obtained using the expressions (2.16a)− (2.16b) of axial veloc-
ity and temperature profile

ΩM =
n2(1−N)

2N2

(
(1−N)H2

1
dwM

dr
− d(D2wM)

dr

)
− 1

2
dwM

dr

+

(
n2(1−N)

2N2

)(
µRGr(1−N)C1N2

ρ0

)
J1(N2r),

ΩM =
1

2N2

(
1

n2ρ0
(
α2

1 +N2
2
)(

α2
2 +N2

2
)

(
C1GrµRN2J1(N2r)

(
H2

1 n2(N −1)2 (n2N2
2 (N −1)−N

)
+n4(N −1)2 (

α
2
2
(
α

2
1 +N2

2
)
+α

2
1 N2

2
))

−n2N2
2 (N −1)2N +N3)

+α1
(
H2

1 n2(N −1)2 +α
2
1 n2(N −1)−N2)(C3I1(rα1)−C4K1(rα1))
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+α2
(
H2

1 n2(N −1)2 +α
2
2 n2(N −1)−N2)(C5I1(rα2)−C6K1(rα2))

)
, (2.16c)

where D2 = 1
r

d
dr

(
r d

dr

)
is a differential operator and N2 =

N2
1 K0
α2

0
. The parameters α1 and α2

are defined in this form

α
2
1 +α

2
2 = (1−N)H2

1 +
N
n2 ,

α
2
1 α

2
2 =

NH2
1

n2 .

(2.17)

The temperature and velocity profiles for Newtonian fluid are obtained as below

θN =C7J0(N1r)+C8Y0(N1r), (2.18a)

wN =C9I0(Hr)+C10K0(Hr)+
Gr

H2 +N2
1
(C7J0(N1r)+C8Y0(N1r))+

4ps

H2 . (2.18b)

The temperature and velocity profiles for Brinkman region are obtained as below

θB =C11J0(N1r)+C12Y0(N1r), (2.19a)

wB =C13I0(H2r)+C14K0(H2r)+
4ps

H2
2 λ 2

1

+
Gr

λ 2
1
(
H2

2 +N2
1
)(C11J0(N1r)+C12Y0(N1r)), (2.19b)

where H2
2 = 1

λ 2
1

(1
k +H2). Using the boundary conditions (2.10a)− (2.10 j), the constants

C1 −C14 are evaluated through MATHEMATICA 10.0.2 but the due to large expressions,
these are not mentioned here.

2.3 Results and Discussion

The present study is the first attempt to perform a comparative analysis between no-couple
stress and no-spin formulation of three-layered fluid flow through a tube with a glycoca-
lyx (porous) layer near wall by taking micropolar fluid in the core region. The selection
of micropolar fluid play an important role to understand circulation process of fluid in mi-
crovessels with the microrotation property of the fluid molecules. The present model re-
duces to two-fluid model (Newtonian fluid in core as well as the plasma regions) for N → 0.
The effect of various parameters like radiation parameter, coupling number, Hartmann num-
ber, thermal conductivity, Grashof number, viscosity ratio and microrotation parameter of
the fluid particles on flow variables, hematocrit and Fåhræus effect are depicted pictorially
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and compared with previous studies. We have fixed the values of following parameters
σ0 = α0 = ρ0 = cv = 1,βS = 0.5,k = 5,h = 0.05 throughout the analysis.

The range of values of various parameters is taken from the previous studies to perform
the graphical analysis is given in Table 2.1.

Parametric values

Parameters Values Resources

Absorption ratio α0 1.00 [103]

Coupling parameter N 0 ≤ N < 1 [22], [68], [21]

Density ratio ρ0 0.92-1.00 [34], [103]

Grashof number Gr 0.5-17 [41], [45],
[103]

Hartmann number H 0.1-4.0 [68], [21],
[103]

Micro-scale parameter n [ 0,∞ ) [22], [23]

Parameter φM −1 ≤ φM ≤ 1 [22], [23]

Plasma layer thickness h 0.015-0.05 [110], [28],
[49]

Radiation parameter N1 2-15 [53], [103]

Steady pressure gradient ps 1-10 [91], [28], [49]

Stress jump parameter βS −1 ≤ βS ≤ 1 [49], [51], [68]

Thermal conductivity ratio K0 0.4-1.0 [103], [104]

Viscosity ratio µR 0.5-1.0 [68], [103]

Viscosity ratio parameter λ1 1.0-1.6 [49], [51]

Table 2.1: The range of parameters appropriate for flow through narrow tubes with their
resources

2.3.1 Velocity Profile

The velocity profile w with radial distance r for different thermal conductivity ratio K0 is
depicted in Figure 2.2:(a) representing a slight dominance of no-couple stress (NCS) for-
mulation over no-spin condition (NS). This can be explained from the fact that a reduced
angular velocity at the interface for no-spin formulation leads to reduction in linear (axial)
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velocity. This observation is in agreement with the previous work of Khanukaeva et al. [22]
although in that case the basic model was different. Rising velocity due to growth in con-
ductivity ratio K0 is validating the finding of Ponalagusamy and Selvi [103] for Newtonian
fluid as coupling parameter N is taken very small.
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Figure 2.2: Impact of conductivity ratio K0 on velocity profile w varying with radial
distance r under (a) the different interface conditions (φM = 0.5) and (b) TFM with and
without porous walls. (H = µR = 0.5,n = 0.2,N = 0.1, ps = 1,N1 = 2,Gr = λ1 = 1.5)

A noteworthy observation is that rising conductivity ratio K0 leads to slightly higher
difference between the two formulations (no-spin and no-couple stress conditions) which
may be acredited to the dependence of microrotation vector on thermal conductivity. A
comparative analysis of velocity profile between tubes with and without porous layer near
the wall for no-spin condition is depicted in Figure 2.2:(b). The difference in fluid velocities
in tubes with and without porous region near the wall slightly widen with the increase in
thermal conductivity ratio K0.
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Figure 2.3: Impact of Grashof number Gr on velocity profile w varying with radial dis-
tance r under (a) the different interface conditions (φM = 0.5) and (b) TFM with and
without porous walls. (H = µR = 0.5,n = 0.2,N = 0.1, ps = 1,N1 = 2,K0 = 0.6,λ1 = 1.5)
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The effect of thermal buoyancy and viscous forces on the velocity profile for two dif-
ferent interface boundary conditions (no-spin and no-couple stress) has been done in Figure
2.3:(a). The graphical analysis reveals that the difference in the fluid velocity for the two
formulations slightly increases with the dominance of the thermal buoyancy forces showing
that heat transfer aspect also affects the microlevel effects. A similar observation has been
made in Figure 2.3:(b) depicting widening of difference in velocity profile for fluid flow
in tubes with and without PW under the dominance of the thermal buoyancy forces (with
increase in Grashof number Gr) over viscous forces.
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Figure 2.4: Velocity profile w varying with radial distance r influenced by (a) coupling
number N (n = 0.2) and (b) micro-scale parameter n (N = 0.3). (H = µR = 0.5, ps =
1,N1 = 2,K0 = 0.6,λ1 = Gr = 1.5)

A rising coupling number N leads to significant decay in axial (linear) velocity w de-
picted in Figure 2.4:(a) which signifies that a dominance of microlevel parameters leads to
significant reduction in axial velocity w. The effect of micro-scale parameter n on the axial
velocity w for flow in tubes with and without PW under no-spin condition reveals a sig-
nificant decay in the fluid velocity with growing micro-scale parameter n (Figure 2.4:(b)).
Besides this, it also reveals the diminishing difference in fluid velocity for flow through
tubes with and without PW. The conclusion suggests a relatively larger fluid velocity in
tubes without glycocalyx layer and for relatively lesser micro-scale parameter n (smaller
particle size).

Figure 2.5:(a) represents the profile of angular velocity ΩM for both the formulations
under different thermal conductivity ratio K0. Vanishing of the angular velocity ΩM at the
interface (micropolar-Newtonian fluid interface) leads to a relatively smaller value of angu-
lar velocity for no-spin condition in comparison to the values of no-couple stress condition.
It is perceived that the larger values of K0 affect the angular velocity more significantly for
no-couple stress formulation in comparison to the no-spin condition. Another observation is
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that for no-spin condition, the effects of K0 are at its peak in the middle while for no-couple
stress condition, this effect continuously increased till the interface.
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Figure 2.5: Angular velocity ΩM varying with radial distance r influenced by (a) conduc-
tivity ratio K0 (φM = 0.01,Gr = 1.5) and (b) Grashof number Gr (φM = 0.5,K0 = 0.6).
(H = µR = 0.5,n = 0.2, ps = 1,N1 = 2,N = 0.1,λ1 = 1.5)

Figure 2.5:(b) reveals that the dominance of thermal buoyancy forces over the viscous
forces leads to slight increase in angular velocity for no-spin condition. However, the same
leads to significant growth in angular velocity for no-couple stress condition. Therefore
Figures 2.5:(a) and 2.5:(b) reveal that the heat transfer aspect significantly affects the angular
velocity for no-couple stress formulation in comparison to no-spin condition. In comparison
to axial velocity profiles, we observe a relatively significant difference in the angular velocity
between two formulations owing to the involvement of angular velocity ΩM in formulating
the condition at the interface. For a different model an almost similar observation was
concluded by Khanukaeva et al. [22].
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Figure 2.6: Angular velocity ΩM varying with radial distance r influenced by (a) radia-
tion parameter N1 (n = 0.2,K0 = 0.3,Gr = 0.5) and (b) micro-scale parameter n (N1 =
2.0,K0 = 0.6,Gr = 1.5). (H = µR = 0.5,N = 0.2, ps = 1,λ1 = 1.5,φM = 0.1)
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Rise in radiation parameter N1 leads to growth in angular velocity ΩM for both the for-
mulations as depicted in Figure 2.6:(a). A noteworthy observation is that beyond a specific
value (N1 = 3.0), the radiation parameter N1 significantly increases the angular velocity.
This reveals that the larger the rate at which the heat conduction is transferred to the ther-
mal radiation, the more change will take place in angular velocity and the same leads to
changes in micro-scale properties of the fluid motion. The effect of micro-scale parameter
n on angular velocity ΩM is shown in Figure 2.6:(b) which clearly indicates that smaller the
particle size (micro-scale parameter n = 0.1), the larger will be angular velocity for both the
formulations. This effect gradually reduces upon increase in the particle size.

2.3.2 Flow Rate

Figure 2.7:(a) depicts a decreasing flow rate Qs with Hartmann number H for both the for-
mulations under different thermal conductivity ratio K0. This observation is in agreement
with the results of Jaiswal and Yadav [68]. A new observation is that this decay rate is
slightly higher for no-couple stress formulation owing to higher linear velocity for no-couple
stress condition. The difference in the flow rate Qs for both the formulations is significantly
reduced for large Hartmann number (i.e. higher magnetic field). A comparative analysis of
flow rate Qs variation with Hartmann number H for flow through tubes with and without
PW reveals a significantly higher flow rate for the latter case. Besides this, the decay rate is
also slightly higher for the flow through tube without PW as evident from the Figure 2.7:(b).
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Figure 2.7: Impact of conductivity ratio K0 on flow rate Qs varying with Hartmann num-
ber H under (a) different interface conditions (φM = 1.0) and (b) TFM with and without
PW. (µR = 0.5,n = 5, ps = 1,N1 = 2,N = 0.1,λ1 = Gr = 1.5)

A comparison between two-fluid model with and without porous region near the tube
wall and single-fluid model without PW is being pictorially depicted in Figure 2.8:(a). The
flow rate Qs increases with the Grashof number Gr for flow through tubes with and without
PW as evident from the Figure 2.8:(a). It is perceived that the growth rate of Qs is higher for
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flow through tube without PW; however, this value as well as the growth rate significantly
decays with rise in the coupling parameter N. This decay can be justified from the fact that
a rising coupling parameter N leads to higher coefficient of microrotational viscosities and
hence microlevel effects which further slows down the fluid flow.
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Figure 2.8: Flow rate Qs influenced by (a) Grashof number Gr for different values of
coupling parameter N (n = 0.2, ps = 1) and (b) pressure gradient ps for different values
of micro-scale parameter n (N = 0.4,Gr = 1.5). (H = µR = φM = 0.5,K0 = 0.6,N1 =
2,λ1 = 1.5)
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Figure 2.9: Flow rate Qs varying with parameter φM influenced by radiation parameter N1
and viscosity ratio parameter λ1. (µR = H = 0.5, ps = 1,K0 = 0.6,Gr = 1.5,N = n = 0.2)

This observation clearly shows that the microlevel effects significantly affect the effect
of thermal buoyancy forces on the flow rate. The present study is reduced to SFM without
PW for plasma layer thickness (h = 0). This specific case is used to validate our study
with previous works ([56]-[57]). Variation of the flow rate Qs with the pressure gradient
ps for both the formulations under varying micro-scale parameter n is depicted in Figure
2.8:(b). It is perceived that the flow rate linearly increases with the pressure gradient ps but
the growth rate consistently decays with increase in the micro-scale parameter owing to an
increased particle size which results in lowering the flow rate. A novel observation is that
the difference in no-couple stress and no-spin formulations significantly widens at higher
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pressure gradient and lower particle size (n = 0.1). Besides this, the growth rate for Qs is
significantly higher for no-couple stress condition in comparison to no-spin condition.

Figure 2.9 reveals that flow rate uniformly increases with parameter φM for different vis-
cosity ratio parameter λ1 and radiation parameter N1 which is in agreement with a different
model of Khanukaeva et al. [22].

2.3.3 Flow Resistance

The decay of flow resistance λs with decreasing Hartmann number H and increasing ther-
mal conductivity ratio K0 is in agreement with previously established results ([68], [21]) as
evident from the Figure 2.10:(a).
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Figure 2.10: Impact of Hartmann number H on flow resistance λs varying with conduc-
tivity ratio K0 under (a) two different interface conditions and (b) TFM with and without
PW. (µR = φM = 0.5, ps = 1,n = N = 0.2,Gr = λ1 = 1.5,N1 = 2)

A novel observation is that the decay rate of flow resistance λs with K0 is slightly higher
for no-spin condition in comparison to no-couple stress condition. From Figure 2.10:(b), a
similar observation is reported in comparative analysis of variation of λs with K0 between
flow through tubes with and without porous region near the tube walls under no-spin con-
dition. It is evident that for flow through tube with PW, the flow resistance λs as well as its
decay rate with K0 is higher.

A comparison between two-fluid model with and without porous region near the tube
wall and single-fluid model without PW is being graphically demonstrated in Figure 2.11:(a).
A rising coupling parameter (i.e. microlevel effects) leads to significant increase in flow
resistance λs as evident from the Figure 2.11:(a) however, this growth rate significantly
reduces with the dominance of thermal buoyancy forces over viscous forces. The above
observation concludes that a rising coupling parameter N leads to rise in coefficient of mi-
crorotation viscosity which further enhances the obstruction against the flow but it is seen
that this effect is significantly reduced in case of enhancement in temperature.
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Figure 2.11: Flow resistance λs influenced by (a) coupling parameter (0.001≤N ≤ 0.99)
for different values of Grashof number Gr (n = 0.2,K0 = 0.6,N1 = 2) and (b) radiation
parameter N1 for different values of micro-scale parameter n (N = 0.3,Gr = 0.5,K0 =
0.4). (µR = H = φM = 0.5, ps = 1,λ1 = 1.5)

The present study is reduced to SFM without PW for plasma layer thickness (h = 0).
This specific case is used to validate our study with previous works ([56]-[57]). From Figure
2.11:(b), a comparative analysis of λs with radiation parameter N1 for both the formulations
reveals a significant decay in flow resistance with increasing radiation parameter N1. While
a slight change in λs is reported for no-spin condition under the increasing micro-scale
parameters, this change is significant for no-couple stress condition. It is evident that the
micro-scale parameter is more effective in no-couple stress formulation due to presence of
flexibility parameter in the solution.

2.3.4 Hematocrit (Ht)

Effect of Hartmann number H, conductivity ratio K0 for both the formulations (no-spin and
no-couple stress conditions) and for flow through tubes with and without PW have been
depicted in Figure 2.12. A rising Hartmann number H leads to decay in the hematocrit Ht

with a slightly higher decay rate for no-couple stress condition and this decay rate further
reduces for higher K0. For all possible values of K0, the hematocrit Ht is slightly higher
for no-couple stress formulation (Figure 2.12:(a)). It is also reported by analysing Figure
2.12:(b) that flow through tube with PW has significantly higher hematocrit Ht in compari-
son to flow through tube without PW which may be accredited to a reduced flow resistance
λs and hence smooth flow through tubes. A reduced decay rate for Ht is reported for higher
K0 in both cases.
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Figure 2.12: Impact of conductivity ratio K0 on hematocrit Ht varying with Hartmann
number H under (a) different interface conditions (φM = 1.0) and (b) TFM with and
without PW. (µR = 0.5,n = 5, ps = cv = 1,N1 = 2,N = 0.1,λ1 = Gr = 1.5)

A slight growth followed by an almost steady plot for Ht is reported in Figure 2.13:(a)
with increasing Grashof number Gr showing that the Ht is almost independent of the ther-
mal buoyancy forces when it significantly dominates the viscous forces (higher Grashof
number Gr). This observation is same for flow through tubes with and without PW. It is also
observed that a rising coupling parameter N affects the Ht more significantly in flow through
tube without PW in comparison to flow through tube with PW. A similar observation is re-
ported for hematocrit variation with thermal buoyancy forces under different micro-scale
parameter. As evident from the Figure 2.13:(b), the hematocrit assumes higher values for
flow through tube with porous region near the tube wall in comparison to the flow through
the tube without porous region near the tube wall. A rising micro-scale parameter leads to
decay in hematocrit for larger particle size.
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Figure 2.13: Hematocrit Ht varying with Grashof number Gr influenced by (a) coupling
parameter N (n = 0.2) and (b) micro-scale parameter n (N = 0.3). (H = µR = 0.5,cv =
ps = 1,N1 = 2,K0 = 0.6,λ1 = 1.5)

A rising viscosity ratio parameter λ1 leads to rise in hematocrit Ht which is in good
agreement with our previous work [49] for viscoelastic fluid (Figure 2.14:(a)).An increase
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in the viscosity ratio µR (= µ̃N/µ̃M) leads to a significant rise in Ht which is more signif-
icant for high porosity glycocalyx layer. This can be justified due to a relative increase in
Newtonian viscosity causing reduced plasma flow and hence a higher RBCs concentration.
Besides this, a rising radiation parameter N1 leads to rise in hematocrit Ht. This can be
justified as the rising radiation parameter N1 leads to higher transfer rate from heat energy to
radiation leading to reduced temperature profile which further reduces the effect of thermal
buoyancy forces leading to a decay in flow rate and hence growth in concentration. This
rising concentration of RBCs leads to growth in hematocrit Ht. From the Figure 2.14:(b),
an almost similar observation is reported for variation of Ht with radiation parameter N1 for
both the formulations.
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Figure 2.14: Hematocrit Ht varying with radiation parameter N1 influenced by (a) vis-
cosity ratio parameter λ1 and viscosity ratio µR and (b) between two interface conditions
(µR = 0.8). (H = 0.5,cv = ps = φM = 1,K0 = 0.35,Gr = 1.5,N = 0.1,n = 0.2)

2.3.5 Fåhræus Effect (Fe)

�� ���� ���������

��=���

��=���

��=���

�� ������ ������

��=���

��=���

��=���

��� ��� ��� ��� ��� ��� ��� ���

������

������

������

������

������

������

�

�
�

(a)

���� �� (��)

��=���

��=���

��=���

������� �� (��)

��=���

��=���

��=���

��� ��� ��� ��� ��� ��� ��� ���

�����

�����

�����

�����

�����

�

�
�

(b)

Figure 2.15: Impact of Grashof number Gr on Fåhræus effect Fe varying with Hartmann
number H between (a)two interface conditions and (b) TFM with and without PW. (µR =
0.5,n = 5, ps = φM = 1,K0 = 0.6,λ1 = 1.5,N = 0.1,N1 = 2)
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A significant growth in Fåhræus effect Fe is reported in Figure 2.15:(a) for rising Hartmann
number H owing to decay in the hematocrit and hence RBCs concentration in the core
region. A noteworthy observation is that a rising Grashof number Gr leads to decay in Fe in
both the formulations. A similar observation is reported in Figure 2.15:(b) for comparative
analysis of Fåhræus effect between flow through tubes with and without porous region near
the tube walls. An existence of a porous layer near the wall causes obstruction in flow
of plasma leading towards enhanced RBCs concentration and hence the hematocrit which
further reduces the Fåhræus effect Fe.
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Figure 2.16: Impact of coupling parameter N on Fåhræus effect Fe varying with conduc-
tivity ratio K0 between (a) two interface conditions and (b) TFM with and without PW.
(H = µR = 0.5,n = 0.2, ps = φM = 1,λ1 = Gr = 1.5,N1 = 2)

A rising conductivity ratio K0 leads to decay in the Fåhræus effect Fe for both the formula-
tions as evident from the Figure 2.16:(a).
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Figure 2.17: Fåhræus effect Fe varying with radiation parameter N1 for different values
of micro-scale parameter n between TFM with and without PW. (µR = H = 0.5, ps =
1,K0 = 0.4,Gr = λ1 = 1.5,N = 0.2)

The difference in both the formulations widen as the coupling parameter N increases
leading to dominance of microlevel effects for small K0. A similar observation is reported in
Figure 2.16:(b) revealing a relatively strong effect of microlevel parameters on the Fåhræus
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effect for the flow through tube without PW in comparison to the flow through tube with
PW.

Decay in the Fåhræus effect with the radiation parameter N1 is shown in the Figure 2.17
for the flow through tubes with and without porous region near the tube wall. It is evident
that the transformation of heat energy into the radiation at a larger rate leads to decay in Fe.
Besides this, a rise in micro-scale parameter (particle size) leads to growth in Fe however
further increasing particle size has an insignificant impact on the Fåhræus effect Fe.

2.4 Conclusions

The present study is a novel approach to examine a comparative analysis between two differ-
ent formulations (no-spin and no-couple stress conditions) on the flow of micropolar fluid
through a glycocalyx layered microvessel under the heat transfer approach. No-spin and
no-couple stress conditions represent the zero and non-zero angular velocities at the inter-
face (micropolar-Newtonian fluid interface i.e. R1). The dependencies of the hemodynami-
cal quantities, hematocrit and Fåhræus effect on the microlevel properties of the micopolar
fluid, porous layer, heat transfer parameters are analyzed and compared with flow through
tubes with and without porous walls for two different formulations (no-spin and no-couple
stress conditions). Throughout the whole discussions, the following main outcomes as con-
clusions have been made:

1. A slight dominance of no-couple stress formulation over the no-spin condition on the
hemodynamical quantities such as axial and angular velocity, flow rate and hematocrit
is observed; however, no-spin formulation dominates the no-couple stress condition
on the flow resistance and Fåhræus effect for the fixed values of the other parameters.

2. Most of the important flow variables are significantly affected by the microlevel pa-
rameters, which includes a significant reduction in velocity, flow rate and hematocrit
while the same leads to growth in flow resistance and Fåhræus effect.

3. A novel observation is that the heat transfer parameters such as Grashof number, ther-
mal conductivity ratio and radiation parameter significantly affect the hematocrit and
Fåhræus effect.

4. A reduction in volume concentration of RBCs in whole blood (hematocrit) is observed
with rising magnetic field for both the formulations and also found that the hematocrit
is slightly lower for no-spin condition; however, a significant growth in Fåhræus effect
is reported with increase in magnetic field.
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5. A relatively thick plasma (increasing viscosity ratio µR) leads to higher hematocrit Ht

and slightly lesser effect of radiation parameter N1 on hematocrit Ht.

The present study is a theoretical attempt to conclude a significant impact of heat trans-
fer parameters, porous layer parameters and two different formulations on flow quantities,
hematocrit and Fåhræus effect, which need to be experimentally verified. The outcomes
can be used for the treatment of the various diseases like cancer or malignant tumor in the
medical sciences, which involve temperature variation or applying magnetic field.



Chapter 3

Solute Dispersion into Microcirculation Influenced
by EGL, Erythrocyte Structure and Heat Trans-
fer Aspect

3.1 Introduction

The wall of the blood vessel plays a major barrier in the transportation of materials between
blood and tissues in the circulation through microvessels (arterioles, venules, and capillar-
ies). The study of the mass transport in the microcirculation is the primary concern with a
physiological mechanism involving the transportation of metabolites and catabolites across
the wall of the capillary tube. The physical behavior of mass transportation involves smooth
exchange of metabolism, respiratory gases, nutrients, and catabolites through vessel walls
during the diffusion process. Large numbers of practical situations of heat and mass transfer
involve interphase mass transport such as open tube chromatography, thermal pollution in
natural streams, etc. Sankarasubramanian and Gill [2] studied the theory of the exchange-
able interphase mass transportation due to the first-order reactive wall to analyze the solute
dispersion process in a tube by using the “generalized dispersion model". The inclusion
of the first-order boundary reaction leads to the rise of a new term “exchange coefficient”
reflecting the inter-phase mass transportation.

All the above investigations concerned the effect of various hemodynamical parameters
on Newtonian fluid flow through larger diameter tube, but due to different circumstances
like shape and size of the blood vessels, blood behaves like non-Newtonian fluids. Adopt-
ing the presumption of wall reactions (reversible or irreversible boundary reactions), several
authors ([87], [88], [89]) analyzed the impact of first-order wall reaction on solute disper-
sion in a non-Newtonian fluid flow through circular vessels. Recently, Rana and Murthy

2This work has been published as P.D. Shah, A. Tiwari and S.S. Chauhan,"Solute dispersion in
Micropolar-Newtonian fluid flowing through porous layered tubes with absorbing walls", International
Communications in Heat and Mass Transfer 119 (2020) 104724.
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([111], [112]) studied the longitudinal dispersion of a solute in non-Newtonian (Casson and
Herschel-Bulkley) fluids flowing through small blood vessels with absorbing wall and the
flow was driven by the periodic pressure gradient. They observed the effect of various pa-
rameters like the Womersley parameter, wall absorption parameter, Herschel-Bulkley fluid
(HB) parameter, and amplitude of the periodic pressure gradient on the whole dispersion
process. Roy et al. [113] employed the homogenization method to study the average of
mass transport phenomenon by considering nonlinear chemical decay within the bulk flow
for reversible/irreversible reactions at the annular tube wall.

While dispersion can be applied to understand the transportation of drugs to tissues,
various clinical treatments involve a slight rise in temperature or use of radiation and it is
an interesting problem to mathematically analyze its impact on circulation or transport of
nutrients to our tissues. In recent times, due to rising pollution and significantly increasing
toxic materials in our surroundings, the human being is severely suffering from cancer or
malignant tumor and the researchers made an effort to treat such kind of diseases through
mathematical modeling with experimental experience. The heat transfer aspect has been
used to generate the radiation into the forefront of the infected area. The absorbed energy
leads to a rise in the temperature around the infected area without damaging any healthy
tissues. Chamkha et al. ([56], [57]) presented numerical and analytical solutions of the
fully developed laminar free and mixed convection of a micropolar fluid in a vertical chan-
nel with asymmetrical distribution of temperature at the wall. Many authors ([114], [41],
[45]) covered the heat transfer aspect in their studies on the flow of fluid through conduits
with constriction. Misra et al. [115] calculated the flow of blood through blood vessels dur-
ing electromagnetic hyperthermia and therapeutic procedure for cancer or malignant tumor.
Mekheimer and Abd Elmaboud [42] analyzed the combined effect of heat transfer and mag-
netic field on the circulation of Newtonian fluid flowing through the vertical annulus and the
governing equations were solved under the assumptions of long wavelength approximations
and zero Reynolds number. The steady and unsteady laminar MHD flows and heat genera-
tion/absorption aspects through homogeneous porous channels were discussed by Chamkha
([55], [100]) in which the induced magnetic field and Hall effect of hydromagnetic flow are
assumed to be neglected due to very small magnetic Reynolds number.

Many authors also covered the other aspects of Soret and Dufour effects, natural or
mixed convection on heat and mass transfer in flow through tubes or channels. In the pres-
ence or absence of heat generation or absorption and first-order chemical reaction effects,
an analytical study of steady and oscillatory flow was carried out by Modather et al. [116]
and Magyari and Chamkha [117], for the combined aspects of heat and mass transfer by
natural convection of micropolar, viscous fluid flow near a continuously moving vertical
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permeable infinitely long surface. To motivate future experimental work, a numerical in-
vestigation was undertaken by Chamkha and Rashad [118], which examined the transfer of
heat and mass by mixed convection flow of MHD under the influence of first-order chemi-
cal reaction, magnetic field, Soret, and Dufour effects over a rotating vertical cone. In the
presence of heat generation or absorption and natural convection effects, Chamkha [105]
obtained an analytical solution of the steady, hydromagnetic, fully developed flow of two
viscous immiscible fluids through a vertical impermeable channel filled with or without the
homogeneous porous medium. Ponalagusamy and Selvi [103] analyzed the combined effect
of heat transfer and magnetic field on a two-layer model of blood flow through a constricted
tube by considering blood as Newtonian fluid in both the regions (core as well as plasma
regions). Ghalambaz et al. [119] pioneered the study investigating the suspension and heat
transfer behavior of NEPCM nanoparticles and concluded that they circulate with free con-
vection in the cavity. Shashikumar et al. [120] explored the influence of nanoparticles shape
on the flow of viscous fluid through microchannel under the impact of magnetism and ra-
diation while considering convection and partial slipping at the boundary. Ayoubloo et al.

[121] analyzed the unsteady flow of free convection behavior of non-Newtonian power-law
fluid through a co-axial cylindrical pipe with a thin layer of homogeneous porous medium
adjacent to the inner cylindrical tube.

The transportation of the solvent material of drugs or toxins in a two-fluid model of
blood flowing through porous layered small blood vessels has been studied in the present
work. Two-fluid model for blood flow through small blood vessels has been taken in which
the central region is occupied by the micropolar fluid and a plasma layer surrounded over
the central region occupied is by Newtonian fluid. A thin porous layer near the wall of the
blood vessel is considered, which is governed by the Brinkman equation and the transporta-
tion of lipoprotein through the intimal of vessel wall tissue has been analyzed. The heat
transfer approach has also been considered due to more realistic phenomena for the com-
plex physiological system of the human body. Analytical expressions for axial velocities
and microrotational velocity for micropolar fluid and temperature profiles have been ob-
tained in terms of Bessel functions and the concentration equation for the solute is solved by
the series expansion method of Sankarasubramanian and Gill [2]. The effect of numerous
parameters on diffusion coefficients and mean concentration are depicted graphically and
compared with the previous works.
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3.2 Problem Formulation

Steady, incompressible blood flowing through the blood vessel is assumed to be axially sym-
metric, laminar, and fully developed as shown in Figure 3.1. As the study suggests ([27],
[28]), for a more realistic representation of the blood flow in a microvessel, the two-fluid
approach is employed. In the present study, microscopic effects due to local behavior and
micro-motion of the suspended blood particles like RBCs, WBCs, and platelets are taken
into account by assuming blood as a micropolar fluid in the core region and the nature of
cell-free blood plasma is exhibited as Newtonian fluid in the peripheral region. The pe-
ripheral layer of plasma is divided into two regions (intermediate and porous regions) and
both regions are occupied by Newtonian fluid. A thin Brinkman layer mathematically repli-
cates the mechanical aspects of an endothelial glycocalyx layer near the wall. Considering
magnetic Reynolds numbers to be very small, there exists a negligible Hall Effect of MHD
flow and weak induced magnetic field, hence both should be neglected ([55], [100]). The
cylindrical polar coordinate system with origin on the vessel axis has been adopted. Vector
representation for the micro-rotation of the blood particles thorough the core is denoted by
(0,Ω̃M,0). The pressure gradient advancing the flow through both regions is assumed to be
constant [49]. The exchange of heat at the boundary has not been taken into consideration
(isothermal condition). The existence of clinical procedures under the external magnetic
field compels to apply the uniform magnetic field |B⃗|= B̃ on the flow by an external source
in the transverse direction in the present work [122]. Following the above hypothesis, the
governing equations for the above problem are described below:

Region- I, i.e., 0 < r̃ ≤ R̃1

∂ w̃M

∂ z̃
= 0, (3.1a)

∂ p̃M

∂ r̃
= 0, (3.1b)

−∂ p̃M

∂ z̃
+

(µ̃M + κ̃M)

r̃
∂

∂ r̃

(
r̃

∂ w̃M

∂ r̃

)
+

2κ̃M

r̃
∂ (r̃Ω̃M)

∂ r̃
− σ̃MB̃2w̃M + g̃ρ̃M γ̃(T̃M − T̃∞) = 0,

(3.1c)

(λ̃M + ζ̃M)

(
∂

∂ r̃

(
1
r̃

∂

∂ r̃
(r̃Ω̃M)

))
−2κ̃M

(
∂ w̃M

∂ r̃
+2Ω̃M

)
= 0, (3.1d)

K̃M

(
∂ 2T̃M

∂ r̃2 +
1
r̃

∂ T̃M

∂ r̃

)
− ∂ q̃M

∂ r̃
= 0, (3.1e)

where ρ̃M, p̃M, w̃M,Ω̃M, K̃M, T̃M, σ̃M are the density, pressure, axial velocity, angular velocity,
thermal conductivity, temperature and electrical conductivity of blood in the core region,
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respectively; µ̃M, λ̃M, ζ̃M and κ̃M are the viscosities of the micropolar fluid, respectively; T̃∞

is an ambient temperature, g̃ is the gravitational force and B̃ is a uniform magnetic field.
Region- II, i.e., R̃1 < r̃ ≤ R̃2

∂ w̃N

∂ z̃
= 0, (3.2a)

∂ p̃N

∂ r̃
= 0, (3.2b)

−∂ p̃N

∂ z̃
+

µ̃N

r̃
∂

∂ r̃

(
r̃

∂ w̃N

∂ r̃

)
− σ̃NB̃2w̃N + g̃ρ̃N γ̃(T̃N − T̃∞) = 0, (3.2c)

K̃N

(
∂ 2T̃N

∂ r̃2 +
1
r̃

∂ T̃N

∂ r̃

)
− ∂ q̃N

∂ r̃
= 0, (3.2d)

where ρ̃N , p̃N , w̃N , µ̃N , K̃N , T̃N , σ̃N are the density, pressure, axial velocity, viscosity, thermal
conductivity, temperature and electrical conductivity of blood in the plasma region, respec-
tively.

Brinkman [95] formulation has been used to model the flow through porous media.
Region- III, i.e., R̃2 < r̃ ≤ R̃3

∂ w̃B

∂ z̃
= 0, (3.3a)

∂ p̃B

∂ r̃
= 0, (3.3b)

−∂ p̃B

∂ z̃
+

µ̃E

r̃
∂

∂ r̃

(
r̃

∂ w̃B

∂ r̃

)
− µ̃Nw̃B

k̃
− σ̃NB̃2w̃B + g̃ρ̃N γ̃(T̃B − T̃∞) = 0, (3.3c)

K̃N

(
∂ 2T̃B

∂ r̃2 +
1
r̃

∂ T̃B

∂ r̃

)
− ∂ q̃B

∂ r̃
= 0, (3.3d)

where p̃B, w̃B, µ̃E , T̃B are the pressure, velocity, effective viscosity of porous layer, tempera-
ture of blood in porous region, respectively and k̃ is the permeability constant.

The radiative heat fluxes in the core and plasma regions for micropolar and Newtonian
fluids may respectively be expressed as ([114], [103])

∂ q̃M

∂ r̃
= 4α̃

2
M(T̃M − T̃∞), (3.4a)

∂ q̃N

∂ r̃
= 4α̃

2
N(T̃N − T̃∞), (3.4b)

∂ q̃B

∂ r̃
= 4α̃

2
N(T̃B − T̃∞), (3.4c)

where α̃M and α̃N are the mean radiation absorption coefficients for micropolar and New-
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tonian fluids, respectively which are much less than unity.
The pressure gradient is taken as constant for all the regions ([28], [122])

∂ p̃M

∂ z̃
=

∂ p̃N

∂ z̃
=

∂ p̃B

∂ z̃
=−q̃0 ps, (3.5)

where q̃0 is the characteristic pressure gradient and ps is the pressure gradient for steady
flow.
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Figure 3.1: The schematic diagram of the three-layered liquid model for having a thin
endothelial glycocalyx layer adjacent to the absorbing microvessel wall

The physical sketch of the three-layered liquid model with absorbing walls is presented
in Figure 3.1, where R̃1, R̃2, R̃3 are the radii of the central, intermediate and porous regions
of blood vessel, respectively. As depicted in Figure 3.1, micropolar fluid exhibiting micro-
rotational behavior of the cell, a dense fragment of blood that flows through the central
passage of the vessel denoted by Region-I. The endothelial glycocalyx layer at the vessel
wall is replicated as the porous layer at the boundary of the cylindrical tube and identified
as Region-III. The cell-free fragment of blood functions as Newtonian fluid and known as
plasma that flows through both Region-II and Region-III.
To solve the above system of Eqs. (3.1)− (3.5), the following non-dimensional variables
are introduced:
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pM =
p̃MR̃3

W0µ̃N
, pN =

p̃NR̃3

W0µ̃N
, pB =

p̃BR̃3

W0µ̃N
, H2 =

σ̃NR̃2
3B̃2

µ̃N
, H2

1 =
µRH2

σ0
,

r =
r̃

R̃3
, z =

D̃mz̃

R̃2
3W0

, R1 =
R̃1

R̃3
, R2 =

R̃2

R̃3
, N2

1 =
4R̃2

3α̃2
N

K̃N
, ΩM =

Ω̃MR̃3

W0
,

θB =
T̃B − T̃∞

T̃w − T̃∞

, θM =
T̃M − T̃∞

T̃w − T̃∞

, θN =
T̃N − T̃∞

T̃w − T̃∞

, k =
k̃

R̃2
3

, λ
2
1 =

µ̃E

µ̃N
,

Gr =
g̃ρ̃N γ̃R̃2

3(T̃w − T̃∞)

W0µ̃N
, wM =

w̃M

W0
, wN =

w̃N

W0
, wB =

w̃B

W0
, W0 =

q̃0R̃2
3

4µ̃N
,

ρ0 =
ρ̃N

ρ̃M
, K0 =

K̃N

K̃M
, σ0 =

σ̃N

σ̃M
, α0 =

αN

αM
, µR =

µ̃N

µ̃M
, H2

2 =
1

λ 2
1

(
1
k
+H2

)
,

(3.6)

where ρ0,σ0,K0,α0,µR are the density ratio, electrical conductivity ratio, thermal conduc-
tivity ratio, mean heat absorption ratio, viscosity ratio respectively; W0 is the characteristic
velocity, Gr is the Grashof number, λ1 is the viscosity ratio parameter and T̃w is the temper-
ature at wall.

Using the above non-dimensional variables (3.6), the governing equations in the non-
dimensional form will become for different regions

Region- I, i.e., 0 < r ≤ R1

∂wM

∂ z
= 0, (3.7a)

∂ pM

∂ r
= 0, (3.7b)

4ps(1−N)µR +D2wM +2ND2
ΦM−(1−N)H2

1 wM +
µRGr(1−N)

ρ0
θM = 0, (3.7c)

∂

∂ r

(
D2

ΦM− N
2n2(1−N)

(wM +2ΦM)
)
= 0 (3.7d)

D2
θM+

N2
1 K0

α2
0

θM = 0, (3.7e)

where D2 = 1
r

∂

∂ r

(
r ∂

∂ r

)
is a differential operator, N = κ̃M

κ̃M+µ̃M
is known as coupling parameter

which demonstrates the rotation effects of micropolar particles, n2 = λ̃M+ζ̃M

4µ̃MR̃2
3

is a micropolar

(micro-scale) parameter, H2
1 = µRH2

σ0
is a magnetic number, N2

1 =
4R̃2

3α̃2
N

κ̃N
is the radiation

parameter and the angular velocity is taken as ΩM = ∂ΦM
∂ r .
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Region- II, i.e., R1 < r ≤ R2

∂wN

∂ z
= 0, (3.8a)

∂ pN

∂ r
= 0, (3.8b)

4ps +D2wN −H2wN +GrθN = 0, (3.8c)

D2
θN +N2

1 θN = 0, (3.8d)

Region- III, i.e., R2 < r ≤ 1

∂wB

∂ z
= 0, (3.9a)

∂ pB

∂ r
= 0, (3.9b)

4ps +λ
2
1 D2wB−

(
1
k
+H2

)
wB +GrθB = 0, (3.9c)

D2
θB +N2

1 θB = 0. (3.9d)

The dimensionless boundary conditions are given as follows:

1. The conditions for velocity, angular velocity, and temperature on the axis have been
considered as

∂wM

∂ r
= 0, ΩM = 0 and

∂θM

∂ r
= 0 at r = 0. (3.10a)

2. Continuity of velocities and temperatures at the micropolar-Newtonian fluid interface
and Newtonian fluid-porous interface, i.e.,

wM = wN at r = R1, (3.10b)

θM = θN ,
∂θM

∂ r
= K0

∂θN

∂ r
at r = R1, (3.10c)

wN = wB at r = R2, (3.10d)

θN = θB,
∂θN

∂ r
=

∂θB

∂ r
at r = R2. (3.10e)

3. Continuity of shear stresses at the micropolar and Newtonian fluid interface, i.e.,

1
(1−N)

∂wM

∂ r
+

N
(1−N)

ΩM(r) = µR
∂wN

∂ r
at r = R1. (3.10f)



3.3. Solution of the Problem 67

4. No-spin condition at the micropolar-Newtonian fluid interface, i.e.,

ΩM(r) = 0, at r = R1. (3.10g)

5. No-couple stress condition on the micropolar-Newtonian fluid interface, i.e.,

∂ΩM(r)
∂ r

− φM

r
ΩM(r) = 0, at r = R1, (3.10h)

where φM = (λ̃M−ζ̃M)

(λ̃M+ζ̃M)
is an additional parameter which reflects the constrains on vis-

cosity coefficient and it can vary in the interval [−1;1] ([22], [122]).

6. The momentum transfer condition at Newtonian fluid and porous interface which is
known as stress-jump condition of tangential stress [1], i.e.,

1
αp

∂wB

∂ r
− ∂wN

∂ r
=

βS√
k

wB at r = R2, (3.10i)

where αp is the porosity parameter and βS is the stress-jump parameter.

7. Isothermal and no-slip condition at the tube wall, i.e.,

wB = 0, θB = 1 at r = 1. (3.10j)

3.3 Solution of the Problem

Analytical expressions for velocity, micro-rotational velocity, and temperature profiles are
obtained by solving the Eqs. (3.7)− (3.9), we get the followings:
Region- I, i.e., 0 < r ≤ R1

θM = E1J0(N2r)+E2Y0(N2r), (3.11a)

wM = E3I0(a1r)+E4K0(a1r)+E5I0(a2r)+E6K0(a2r)+
4psµR

H2
1

+

(
µRGrE1

ρ0

)(
N2

2 (1−N)n2 +N
n2

)(
J0(N2r)(

a2
1 +N2

2
)(

a2
2 +N2

2
)) , (3.11b)

ΩM =
1

2N2

( 1
n2ρ0

(
a2

1 +N2
2
)(

a2
2 +N2

2
) (µRE1GrN2J1(N2r)

(
H2

1 n2(N −1)2 (n2N2
2 (N −1)−N

)
+n4(N −1)2 (a2

2
(
a2

1 +N2
2
)
+a2

1N2
2
))

−n2N2
2 (N −1)2N +N3)

+a1
(
H2

1 n2(N −1)2 +a2
1n2(N −1)−N2)(E3I1(a1r)−E4K1(a1r))
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+a2
(
H2

1 n2(N −1)2 +a2
2n2(N −1)−N2)(E5I1(a2r)−E6K1(a2r))

)
, (3.11c)

where N2 =
N2

1 K0
α2

0
and a1 and a2 are defined in this form

a2
1 +a2

2 = (1−N)H2
1 +

N
n2 ,

a2
1a2

2 =
NH2

1
n2 .

(3.12)

Region- II, i.e., R1 ≤ r ≤ R2

θN = E7J0(N1r)+E8Y0(N1r), (3.13a)

wN = E9I0(Hr)+E10K0(Hr)+
Gr

H2 +N2
1
(E7J0(N1r)+E8Y0(N1r))+

4ps

H2 , (3.13b)

Region- III, i.e., R2 ≤ r ≤ 1

θB = E11J0(N1r)+E12Y0(N1r), (3.14a)

wB = E13I0(H2r)+E14K0(H2r)+
4ps

H2
2 λ 2

1

+
Gr

λ 2
1
(
H2

2 +N2
1
)(E11J0(N1r)+E12Y0(N1r)), (3.14b)

where H2
2 = 1

λ 2
1

(1
k +H2). The constants E1 −E14 appeared in the solutions (3.11)− (3.14)

of the given equations are evaluated analytically through MATHEMATICA 10.0 software
using the given boundary conditions (3.10). The complete expressions for velocities for
different regions are not mentioned in the manuscript due to very large expressions.

3.4 Concentration Solution

3.4.1 Governing Equations

Let us consider the inoculation of the unsteady solute dispersion into the flowing stream of
blood flow depicted here as a two-fluid (micropolar-Newtonian) model through a vessel of
radius R̃3 with a thin porous layer near the absorbing walls. The solvent material in a blood
vessel with reactive walls is delineated in Figure 3.1. The occurrence of the first-order irre-
versible catalytic reaction let the solvent material to be absorbed continuously with the rate
of absorption proportional to the concentration of solute at the outer wall.
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The dimensional form of the unsteady convective diffusion equation is written below de-
scribes the concentration C̃ of the solvent material in the unidirectional steady, incompress-
ible blood flow which assumed to be axially symmetric, laminar and fully developed through
the narrow blood vessel.

∂C̃
∂ t̃

+ w̃(r̃)
∂C̃
∂ z̃

= D̃m

(
1
r̃

∂

∂ r̃

(
r̃

∂C̃
∂ r̃

)
+

∂ 2C̃
∂ z̃2

)
, (3.15)

w̃ is the axial velocity of the fluid in blood vessel and, C̃ is the local concentration of the
solute, and D̃m is coefficient of molecular diffusion assumed to be constant.

3.4.2 Initial and Boundary Conditions

3.4.2.1 Initial Condition (IC)

A uniform distribution of the solute is assumed at the beginning (i.e., t = 0) and the distri-
bution of the concentration at the beginning of the diffusion process is reported as below.

C(0,z,r) = ψ(z)X(r), (3.16a)

with

ψ(z) =
δ (z)
d2Pe

, (3.16b)

and

X(r) =

{
1, 0 < r ≤ d,

0, d < r ≤ 1,
(3.16c)

where δ (z) is Dirac delta function.

3.4.2.2 Boundary Conditions (BCs)

The boundary conditions (BCs) signifying a first-order heterogeneous irreversible reaction
at the tube wall and a finite concentration in the system at any instant of time are given by

∂C
∂ r

(t,z,1) =−βC(t,z,1), (3.17a)
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C(t,∞,r) =
∂C
∂ z

(t,∞,r) = 0, (3.17b)

C(t,z,0) = finite, (3.17c)

where β is the non-dimensional wall reactive (absorption) parameter or first-order reaction
rate representing the rate of loss on the tube wall. It is obvious that as the wall absorption
parameter β → 0, the results should approach for the case of no reactant flux at the tube wall
[2].

3.4.3 Diffusion Coefficients and Mean Concentration

The solution of the equation (3.15) with the help of the initial and boundary conditions
(3.16)−(3.17) has been obtained using Sankarasubramanian and Gill [2] approach to finally
obtain the diffusion coefficients and mean concentration. The solution expression for the
exchange coefficient M0(t) is obtained as

M0(t) =− ∑
∞
0 AkαkJ1(αk)e−α2

k t

∑
∞
0

(
Ak
αk

)
J1(αk)e−α2

k t
, (3.18a)

which is exactly the same as derived in the previous works ([2], [87], [88], [89]) as its
computation does not include fluid velocity.
The expression for convection coefficient (M1) is obtained as

M1 =
−2α2

0

(α2
0 +β 2)J2

0(α0)

∫ 1

0
w(r)rJ2

0(α0r)dr. (3.18b)

The expression for the dispersion coefficient (M2) is given by

M2 =
1

Pe2 −
4α0J1(α0)

(α2
0 +β 2)J2

0(α0)

∫ 1

0
(w(r)+M1)g1(r)rJ0(α0r)dr. (3.18c)

The expression for the mean concentration (CM) of the solute is obtained as

CM(t,z) =
1

2Pe
√

πT
Exp

(
η −

z2
1

4T

)
. (3.18d)

The detailed description of the solution method and derivation of the diffusion coefficients
as well as mean concentration has been provided in Chapter 1 (1.5.3). All the integrations
involved in the expressions of convective coefficient (−M1), dispersion coefficient (M2) and
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mean concentration (CM) are evaluated in MATHEMATICA 10.0.2 software using numeri-
cal integration.

3.5 Results and Discussion

An analytical treatment of solute dispersion in a micropolar-Newtonian fluid flowing through
porous layered microvessels with absorbing walls has been performed in the present study
by considering the heat transfer aspect of the flow. The selection of micropolar fluid

Values of parameters

Parameters Values Resources

Absorption ratio α0 1.00 [103], [122]
Coupling parameter N 0 ≤ N < 1 [68], [22], [21]
Densities ratio ρ0 0.92-1.00 [36], [103],

[37]
Grashof number Gr 0.5-17 [103], [41],

[45]
Hartmann number H 0.1-4.0 [103], [68],

[21]
Micropolar parameter n [ 0,∞ ) [22], [122]
Parameter φM −1 ≤ φM ≤ 1 [22], [122]
Plasma layer thickness h 0.015-0.05 [28], [49]
Permeability k (0,∞) [65], [49], [51]
Radiation parameter N1 2-15 [114], [103]
Steady pressure gradient ps 1-10 [28], [49]
Stess-jump parameter βS −1 < βS < 1 [49], [51], [68]
Thermal conductivity ratio K0 0.4-1.0 [103], [122]
Viscosity ratio µR 0.5-1.0 [36], [103]
Viscosity ratio parameter λ1 1.0-1.6 [49], [51]
Wall absorption parameter β 0.01-100 [87], [111],

[112]

Table 3.1: The range of parameters appropriate for flow through narrow tubes with their
resources

plays an important role to understand the impact of micro-level effects on the solute dis-
persion process in fluid flowing through microvessels. The core region of the blood ves-
sel is occupied by micropolar fluid and the intermediate and porous regions of the blood
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vessel are occupied by Newtonian fluid. The plasma region consists of the intermedi-
ate and porous regions. The range of the core, intermediate and porous regions radii are
0 < r ≤ R1, R1 < r ≤ R2 and R2 < r ≤ 1, respectively. The thickness of core and plasma
regions are taken as h1 and h, respectively and h1 + h = 1. The thickness of the interme-
diate region (R1 < r ≤ R2) is taken as 25% of the whole plasma layer width ([3], [62],
[49]). Therefore, the typical estimates for core, intermediate and porous regions radii are
R1 = 1−h, R2 = 1− 3h

4 and 1, respectively. The effect of various parameters like radiation
parameter, coupling number, Hartmann number, thermal conductivity, Grashof number and
micro-rotation of the fluid particles on the diffusion coefficients and mean concentration are
depicted pictorially and compared with the previous studies. The values have been fixed for
the parameters σ0 = α0 = ρ0 = 1 and the Peclet number Pe = 103.

The range of values of various parameters are taken from the previous studies to perform
the graphical analysis which is given in Table 3.1.

3.5.1 Convective Coefficient (M1)
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Figure 3.2: Convective coefficient (−M1) with Hartmann number H (a) for different
values of plasma layer thickness h (λ1 = 1.0) and (b) between flow through tubes with
and without porous walls (λ1 = 1.6,h = 0.05). (βS = µR = 0.5,k = n = 5,K0 = 0.6,N =
0.1, ps = φM = 1,N1 = 2,Gr = 1.5,β = 100)

A comparative analysis of variation of convective coefficient with Hartmann number
H for varying peripheral layer thickness h is depicted in Figure 3.2:(a) for no-spin (NS)
and no-couple stress (NCS) formulations at the fluid-fluid interface. A decay in convective
coefficient (−M1) is observed for rising Hartmann number owing to reduced velocity pro-
file which is in agreement with the previous results [122]. An increase in peripheral layer
thickness leads to a rise in convective coefficient which can be accredited to a relatively
smoother flow in the tube [37]. A relatively higher convective coefficient is reported for
NCS formulation in comparison to no-spin condition at the fluid-fluid interface. This can
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be explained from work [122] of a relatively higher velocity profile for NCS formulation.
Figure 3.2:(b) reveals a significantly higher difference in convective coefficient between no-
spin and no-couple stress formulations as well as between two-fluid model (TFM) of blood
flowing through tubes with and without porous region near the tube walls for low Hartmann
number. This difference reduces with increasing Hartmann number.

The dominance of thermal buoyancy forces over the viscous forces leads to a rise in the
convective coefficient for both the formulations (NS and NCS) as depicted in Figure 3.3:(a).
However, a decay in porosity near the tube wall leads to decay in the convective coefficient.
The above variation can be accredited to the change taking place in velocity profile due to
rising Grashof number Gr and viscosity ratio parameter λ1 ([123], [124]). A similar analysis
of variation of convective coefficient with Grashof number for flow through tubes with and
without porous region near the tube walls is depicted in Figure 3.3:(b).
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Figure 3.3: Convective coefficient (−M1) varying with Grashof number Gr (a) influenced
by viscosity ratio parameter λ1 (N = 0.2,K0 = 0.4) and (b) between flow through tubes
with and without porous walls (λ1 = 1.6,N = 0.1,K0 = 0.6). (βS = H = µR = 0.5, ps =
φM = 1,N1 = 2,k = n = 5,h = 0.05,β = 100)

Here also convective coefficient is higher for flow-through tubes without a porous re-
gion near the vessel wall (PW) and for NCS formulation. The growth rate of variation of
convective coefficient with Grashof number is higher for higher porosity near the tube wall
(for infinitely large permeability, the porous region reduces to the fluid region and hence
observed a relatively larger M1 for this case).

Figure 3.4:(a) reveals a nonlinear growth in convective coefficient with a rising ther-
mal conductivity ratio K0. The growth rate is slightly higher for NCS formulation relative
to NS condition and further increases for higher wall absorption (β = 100). A consistent
increase in convective coefficient with increasing β is in agreement with previous studies
([87], [37]). From Figure 3.4:(b), a decay in convective coefficient with rising coupling num-
ber N shows that a stronger micro-rotational effect significantly affects the solute dispersion
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in flow through tubes. It is further observed that a higher viscosity ratio (µR) (relatively more
obstruction in flow through the peripheral region) leads to growth in convective coefficient
and this difference slightly reduces with the dominance of micro-rotational effects.
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Figure 3.4: Convective coefficient (−M1) varying with conductivity ratio K0 influenced
by (a) wall absorption parameter β (N = 0.2,µR = 0.5) and (b) coupling number N and
viscosity ratio µR (β = 100). (βS = H = 0.5,Gr = 1.5, ps = λ1 = φM = 1,N1 = 2,k = n =
5,h = 0.05)

Linear growth in −M1 with pressure gradient ps is observed owing to an increase in
velocity as depicted in Figure 3.5:(a) which is in agreement with the previous works ([49],
[122]). A rising radiation parameter N1 leads to growth in −M1 for both the formulations
(NS and NCS) which may be accredited to a slightly enhanced flow rate [122]. This further
signifies that solute dispersion in flow through tubes is significantly affected with the rate
at which the heat energy is transformed into the radiation and this growth is significant for
radiation parameter (N1 > 2.5).
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Figure 3.5: Impact of radiation parameter N1 on convective coefficient (−M1) varying
with pressure gradient ps under (a) different conditions (NS and NCS) and (b) between
flow through tubes with and without porous walls. (βS = H = µR = 0.5,λ1 = Gr =
1.5,K0 = 0.4,φM = 1,N = 0.1,k = n = 5,h = 0.05,β = 100)
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Figure 3.5:(b) reveals a greater impact of radiation parameter N1 on the convective coef-
ficient in case of flow through tubes without PW in comparison to flow through tubes with
PW. The gap between growth rate of −M1 between NS and NCS in (Figure 3.5:(a)) and flow
through tubes without PW compared to with PW (Figure 3.5:(b)) widens with increment in
pressure gradient ps.
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Figure 3.6: Impact of micro-scale parameter n on convective coefficient (−M1) varying
with viscosity ratio parameter λ1. (βS = H = φM = µR = 0.5,h = 0.05,N = 0.4,K0 =
0.6, ps = 1,N1 = 2,Gr = 1.5,k = 5,β = 0.01)

The effect of micro-scale parameter (particle size n) on the convective coefficient is
shown in Figure 3.6. It is observed that an increase in micro-scale parameter leads to decay
in the convective coefficient although its variation pattern with viscosity ratio parameter
λ1 remains unchanged. It is also perceived that for no-couple stress condition, the decay
in −M1 with particle size n is significantly reduced for large particle size; however, this
variation shows slight reduction for no-spin formulation.

A rising permeability leads to smoother flow and hence a slight increase in convective
coefficient is witnessed from Table 3.2:(a). Further, an increase in parameter φM leads to
a slight increase in convective coefficient owing to enhancement in flow rate [122]. An
increasing value of the stress-jump parameter βS contributes to a slight decay in the con-
vective coefficient as shown in Table 3.2:(b) for both the formulations (NS and NCS). The
justification of this observation is that an increase in the stress-jump parameter βS leads to
a relatively higher shear stress of porous region in comparison to clear fluid (non-porous)
region leading to reduced flow rate [49] and hence reduced convection.
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k No Spin φM =−1.0 φM =−0.5 φM = 0.0 φM = 0.5 φM = 1.0

0.5 0.8945 0.8946 0.8946 0.8946 0.8947 0.9853

1.0 0.8947 0.8948 0.8948 0.8948 0.8949 0.9854

3.0 0.8949 0.8949 0.8949 0.8950 0.8951 0.9856

5.0 0.8949 0.8950 0.8950 0.8950 0.8951 0.9857

7.0 0.8950 0.8950 0.8950 0.8951 0.8951 0.9857

9.0 0.8950 0.8950 0.8951 0.8951 0.8952 0.9857

(a)

βS No Spin φM =−1.0 φM =−0.5 φM = 0.0 φM = 0.5 φM = 1.0

-0.9 0.8955 0.8955 0.8955 0.8955 0.8956 0.9862

-0.6 0.8953 0.8954 0.8954 0.8954 0.8955 0.9861

-0.3 0.8952 0.8953 0.8953 0.8953 0.8954 0.9860

0.0 0.8951 0.8952 0.8952 0.8952 0.8953 0.9859

0.3 0.8950 0.8951 0.8951 0.8951 0.8952 0.9858

0.6 0.8949 0.8950 0.8950 0.8950 0.8951 0.9856

0.9 0.8948 0.8948 0.8949 0.8949 0.8950 0.9855

(b)

Table 3.2: Convective coefficient (−M1) varying with (a) permeability k (βS = 0.5) and
(b) stress-jump parameter βS (k = 5) for different values of no-couple stress parameter
φM. (H = 0.5,n = 5,h = 0.05,λ1 = Gr = 1.5,µR = 0.8,K0 = 0.6, ps = 1,N = 0.1,N1 =
2,β = 100)
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3.5.2 Dispersion Coefficient (M2)

The impact of Hartmann number H and varying peripheral layer thickness h on the variation
of dispersion coefficient M2 is depicted in Figure 3.7:(a) for no-spin (NS) and no-couple
stress (NCS) formulations at the fluid-fluid interface.
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Figure 3.7: Axial dispersion coefficient (M2 −1/Pe2) varying with Hartmann number H
(a) for different values of plasma layer thickness h and (b) between flow through tubes
with and without porous walls (h = 0.05). (βS = µR = 0.5,k = n = 5,K0 = 0.6,N =
0.1,β = ps = φM = 1,N1 = 2,Gr = λ1 = 1.5)

A rising Hartmann number H leads to decay in axial dispersion M2 with a slightly lesser
decay rate for the no-spin condition in comparison to no-couple stress formulation. A slight
increase in peripheral layer thickness leads to decay in dispersion coefficient M2 which is
in agreement with the previous study [37]. Figure 3.7:(b) reveals a significantly higher
difference in dispersion coefficient between no-spin and no-couple stress formulations as
well as between TFM of blood flow through tubes with and without porous region near the
tube walls for low Hartmann number. This difference reduces with increasing Hartmann
number ([125], [126], [127], [128] [129]).

The dominance of thermal buoyancy forces over the viscous forces contributes to en-
hancement in dispersion coefficient for both the formulations (NS and NCS) as shown in
Figure 3.8:(a). An increasing nature of the dispersion coefficient with Grashof number is
almost negligibly affected by the variation in the porosity of the porous layer near the tube
wall. This observation is the same for both the formulations. A similar analysis of varia-
tion of dispersion coefficient with Grashof number for flow through tubes with and without
porous region near the tube walls is depicted in Figure 3.8:(b). Here also, dispersion coef-
ficient is higher for flow through tubes with PW and for NCS formulation. The growth rate
of variation of dispersion coefficient with Grashof number is higher for lower porosity near
the tube wall (for infinitely large permeability, the porous region reduces to the fluid region
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and hence observed a relatively larger M2 for this case). The gap between growth rate of the
dispersion coefficient between NS and NCS widens with increment in Grashof number.
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Figure 3.8: Axial dispersion coefficient (M2 − 1/Pe2) varying with Grashof number Gr
(a) for different values of viscosity ratio parameter λ1 and (b) between flow through tubes
with and without porous walls (λ1 = 1.6). (βS = H = µR = 0.5,K0 = 0.6,N = 0.1, ps =
φM = 1,N1 = 2,k = n = 5,h = 0.05,β = 0.01)
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Figure 3.9: Axial dispersion coefficient (M2 −1/Pe2) varying with pressure gradient ps

(a) for different values of radiation parameter N1 and (b) between flow through tubes with
and without porous walls. (βS = H = µR = 0.5,K0 = 0.4,N = 0.1,Gr = λ1 = 1.5,β =
φM = 1,k = n = 5,h = 0.05)

Linear growth in dispersion coefficient M2 with pressure gradient ps is observed owing
to an increase in velocity which is in agreement with the previous works ([49], [122]) as
depicted in Figure 3.9:(a). A rising radiation parameter N1 contributes to growth in M2

for both the formulations (NS and NCS) which may be accredited to a slightly enhanced
flow rate [122]. This further signifies that the solute dispersion in flow through tubes is
significantly affected with the rate at which the heat energy is transformed into the radiation
and this growth is significant for radiation parameter (N1 > 2.5). The gap between growth
rate of the dispersion coefficient between NS and NCS widens with increment in pressure
gradient ps. Figure 3.9:(b) suggests a slightly reduced dispersion coefficient for flow through
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tubes without PW. It is also observed that the growth rate of M2 with a pressure gradient is
slightly higher for flow through tubes with PW.

3.5.3 Mean Concentration (CM)

A comparative analysis of mean concentration CM for both the formulations (NS and NCS)
under varying wall absorption parameter β is discussed in Figure 3.10. For both the for-
mulations, the mean concentration significantly reduces with an increase in β which is in
agreement with the previous studies ([87], [89]). Also for low wall absorption (β = 0.01),
the mean concentration is slightly higher for no-spin condition owing to relatively low ve-
locity profile. However the behavior changes for moderate and higher values of β (1,100)
i.e. for moderately and highly absorbing walls despite the larger velocity profile, the mean
concentration for NCS formulation is slightly higher. Figure 3.10:(b) reveals that the diffu-
sion process is more dominant for no-spin condition near the point of injection. However,
as we move away from the point of injection, the same is dominated by NCS formulation.
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Figure 3.10: Effect of wall absorption parameter β on mean concentration CM varying
with (a) time t (z = 0.35) and (b) axial distance z (t = 0.5). (βS = H = µR = 0.5,K0 =
0.6,Gr = 1.5,λ1 = ps = φM = 1,N1 = 2,k = n = 5,h = 0.05,N = 0.1)

An increase in Hartmann number H leads to decay in mean concentration CM for both
the formulations (NS and NCS) as evident from Figure 3.11:(a). However, an increase in
peripheral layer thickness h leads to significant growth in the peak of the mean concentration
CM. It is also observed that for both the formulations, the mean concentration CM curve
widen with the increase in Hartmann number H and decrease in plasma layer thickness
h indicating that these two parameters lead to a slight increase in the time elapsed in the
diffusion process. Besides this, the comparative analysis shows that for no-couple stress
formulation, the diffusion process begins and ends relatively earlier in comparison to the
no-spin formulation at the interface. From Figure 3.11:(b), the variation of CM along the
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axial distance for both the formulations shows that near the point of injection, a rise in
Hartmann number H leads to growth in CM.
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Figure 3.11: Impact of Hartmann number H and plasma layer thickness h on mean
concentration CM varying with (a) time t (z = 0.5) and (b) axial distance z (t = 0.5).
(βS = µR = 0.5,K0 = 0.6,Gr = 1.5,λ1 = β = ps = φM = 1,N1 = 2,k = n = 5,N = 0.1)
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Figure 3.12: Impact of Grashof number Gr and viscosity ratio parameter λ1 on mean
concentration CM varying with (a) time t (z = 0.5) and (b) axial distance z (t = 0.5).
(βS = µR = H = 0.5,K0 = 0.6,h = 0.05,β = ps = φM = 1,N1 = 2,k = n = 5,N = 0.1)

However, an increase in peripheral layer thickness h leads to growth in the peak of CM

but as we move away from the point of injection (larger axial distance z) the variation in
CM for varying H and h changes which are in agreement with the Figure 3.11:(a). From
Figure 3.12:(a), a comparative analysis of time variation of mean concentration for both the
formulations under varying Grashof number Gr and viscosity ratio parameter λ1 suggests
a significant delay in dispersion process and lower peak in CM for no-spin formulation in
comparison to no-couple stress formulation. However, the variation of CM along the axial
distance shows an almost negligible difference in CM for both the formulations (NS and
NCS).
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Figure 3.13: Mean concentration CM varying with time t for (a) different conditions (No-
spin and no-couple stress) and (b) different models (TFM of blood flow through tubes
with and without PW). (βS = H = µR = z = 0.5,h = 0.05,λ1 = Gr = 1.5,φM = β = ps =
1,N1 = 2,N = 0.1,k = n = 5)

A rising thermal conductivity ratio K0 leads to growth in the mean concentration for both
the formulations (NS and NCS) although the same leads to a slightly early appearance in the
peak of the CM as evident from Figure 3.13:(a). A comparative analysis of the time profile
of CM for dispersion in tubes with and without porous region near the tube wall for no-spin
formulation suggests a slightly reduced time for dispersion process for the later case. This
observation can be accredited to a relatively smoother flow in tubes without PW. Besides
this, the peak of CM assumes relatively higher values for dispersion in flow through tubes
without porous region near the tube wall.
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Figure 3.14: Impact of coupling number N and viscosity ratio µR on mean concentration
CM varying with (a) time t (z= 0.5) and (b) axial distance z (t = 0.5). (βS =H = 0.5,K0 =
0.6,h = 0.05,λ1 = Gr = 1.5,β = ps = 1,N1 = 2,k = n = 5)

The time profile of the mean concentration under varying coupling number N shows a
decay in the peak of the value of CM as well as a significant delay in the completion of the
solute dispersion process which is evident from the widening of the profile curve (Figure
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3.14:(a)). These observations are the same for dispersion in tubes with and without PW.
An increase in viscosity ratio µR (i.e. relatively higher viscosity of Newtonian fluid or fluid
in the peripheral region) results in a significant reduction in time to complete the diffusion
process. From Figure 3.14:(b), the effect of coupling number N on the variation of mean
concentration along axial distance for dispersion in tubes with and without porous region
near the tube wall reveals a slight increase in CM for higher coupling number near the point
of injection but this behavior changes as we move away from the point of injection (higher
axial distance z). An increase in viscosity ratio µR results in slight widening of the mean
concentration curve.
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Figure 3.15: Effect of radiation parameter N1 on mean concentration CM with (a) time
t (z = 0.5) and (b) axial distance z (t = 0.5). (βS = µR = H = 0.5,K0 = 0.4,λ1 = Gr =
1.5,h = 0.05,β = ps = φM = 1,N = 0.1,k = n = 5)

An increase in radiation parameter N1 leads to significantly reduced time for completion
of the diffusion process (Figure 3.15:(a)). This can be justified from the fact that a larger
rate of transformation of heat energy to the thermal radiation leads to an increase in flow
rate [122] and hence results in reduced time for the completion of the diffusion process.
Variation of the mean concentration along the axial distance for different radiation parameter
N1 reveals that near the point of injection, an increasing N1 leads to a slow dispersion process
with reduced peak of the mean concentration and a slightly widen mean concentration curve
as evident from the Figure 3.15:(b).

Effect of particle size (n) on the time profile of the mean concentration is depicted in
Figure 3.16. Figure 3.16:(a) reveals that an increase in particle size leads to a slightly higher
peak of the mean concentration and a slightly delayed diffusion process as evident from the
widening of the curve. A similar observation can be made for no-couple stress formulation
except for the fact that the peak of the mean concentration is not changing. From Figure
3.16:(b), a comparative analysis of the time profile of the mean concentration for the disper-
sion in tubes with and without porous region near the tube wall reveals a negligible change
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in peak of the mean concentration with increasing particle size for the dispersion in tubes
without porous region near the tube wall.
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Figure 3.16: Impact of micro-scale parameter n on mean concentration CM varying with
time t under (a) different conditions (NS and NCS) and (b) TFM of blood flow through
tubes with and without PW (for no-couple stress condition). (βS = µR = H = z = φM =
0.5,K0 = 0.6,λ1 = Gr = 1.5,h = 0.05, ps = 1,N = 0.4,N1 = 2,k = 5,β = 0.01)

3.6 Conclusions

A novel approach of heat and mass transfer on solute dispersion in a two-fluid model of
blood flow through narrow blood vessels with absorbing walls has been done in the present
study which is physically realistic in the cardiovascular system to perform the mixing or
transporting drug in bloodstreams through vascular systems. It is observed that the heat
transfer and microlevel parameters of the fluid particles have a significant impact on the
diffusion process. The important determinations of the present study are pointed out as
below:

1. Relatively higher diffusion coefficients (convective and dispersion coefficients) are
reported for no-couple stress formulation in comparison to no-spin condition at the
fluid-fluid interface.

2. A rising Hartmann number H leads to decay in diffusion coefficients as well as time
profile of mean concentration showing a clear impact of the magnetic field on the
diffusion process.

3. Microlevel parameters (N and n) have a significant impact on the diffusion coefficients
and mean concentration in both the formulations (NS and NCS). Specifically, a higher
coupling parameter N leads to a delay in the diffusion process.
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4. The variation in porosity significantly affects the convection process but has an almost
negligible effect on the axial dispersion.

5. For no-couple stress formulation, the peak in the time profile of mean concentration
appears relatively earlier in comparison to the no-spin formulation.

The present work shows a significant impact of microlevel parameters on the diffusion pro-
cess in flow through a tube. The model is physiologically realistic in the sense that mi-
cropolar fluid resembles the blood as suggested by Ariman [11] and the existence of the
porous layer near the wall resembles the endothelial glycocalyx layer. So, the outcome of
the present work may have a significant impact on the transportation of nutrients into the
physiological system.



Chapter 4

Influence of Varying Viscosity Nature and EGL on
Microcirculation under Heat Transfer Aspect

4.1 Introduction

The alarming situation of sudden elevation in the cases of cardiovascular diseases due
to rising pollution and the unhealthy lifestyle of an individual has posed a stiff challenge for
researchers to reanalyze the functioning of the circulatory system from the mechanical and
modeling perspective to enable duly required rapid transformation of medical treatments. A
mathematical study of heat transfer effects on the blood flowing through permeable medium
could give an imperative insight into the mechanism of hemodynamics, which is account-
able for the progression of such diseases and could help in developing effective cure care.
Numerous mathematical studies have been conducted to replicate blood’s Newtonian and
non-Newtonian fluid behavior in separate regions of the lumen of a blood vessel. Several
works ([90]-[130]) have been done on the flow of Newtonian/non-Newtonian fluid flow
through constricted tubes. The Herschel-Bulkley fluid is considered as the core region fluid
owing to its validity for low, moderate as well as high shear rates [91].

All the above discussions did not consider the permeable nature of the tube wall, which
is an important aspect of the physiological fluid flow through tubes. It is believed that due to
unusual lifestyle and food habits, the reporting of cardiovascular diseases has significantly
increased causing a severe concern for the society owing to the presence of lipids (macro-
molecules) in the blood. Darcy [94] was first to examine the flow of fluids through porous
media which was only valid for a porous medium with low permeability. Brinkman [95] re-
moved Darcy’s restriction and gave the Brinkman equation, which is valid for low as well as
high permeability. The Brinkman model replicates the resistance offered against the flow of

3The work has been published as S.S. Chauhan, P.D. Shah and A. Tiwari, "Analytical Study of the
Effect of Variable Viscosity and Heat Transfer on Two Fluid Flowing through Porous Layered Tubes",
Transport in Porous Media 142 (2022) 641.
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fluid through the porous medium. It was used to analyze the circulation of non-Newtonian
Casson fluid in a tube using constant and varying Darcy numbers of the porous medium
(Dash et al. [98]).

A theoretical investigation of heat transfer in the flow of Newtonian fluid through the
porous saturated conduits was done by Hooman and Gurgenci ([131]-[132]) and the flow
through the porous medium was perceived by the Brinkman-Forchheimer model which is
valid for governing the flow through all kind of porous medium. The regular perturbation
technique was utilized to solve the equations for large Darcy number however, a matched
asymptotic method was applied to solve for small Darcy number. By applying the magnetic
field in the normal direction of the liquid flow, many authors studied the single or multi-
phase flow of liquids through conduits. Misra et al. [115] developed a mathematical model
to analyze the flow of second-grade viscoelastic liquid through homogeneous porous con-
duits. Kumar et al. [104] presented an analytical solution of the fully-developed laminar
free-convection flow of a micropolar and viscous fluid in a vertical channel. For an un-
steady laminar flow of an electrically conducting fluid, Chamkha [Chamkh99] employed
finite difference method to investigate the heat transfer arises due to particulate suspension
in fluid flowing through channels and circular pipes. He [99]studied the hydromagnetic
mixed convection flow in a vertical channel with symmetric and asymmetric wall heating
conditions analytically and also numerically examined the viscous dissipation effect as well
as Joule heating effect. Several other researchers [133]-[134] also explored the heat transfer
of nanofluid in different situations with the presense of thermal radiation and Joule heat-
ing. Toghraie et al. [135] examined a two-phase flow in a micro concentric annulus under
non-uniform heat flux boundary conditions. Ponalagusamy and Selvi [103] developed a
mathematical model that investigated the simultaneous procedure of heat transfer and con-
striction size on the flow of two-immiscible Newtonian fluids through a constricted vessel.
Recently, Tiwari et al. [122] analyzed the impact of heat transfer on microlevel properties
of fluid by using micropolar fluid model in the core region.

Viscosity of blood is a crucial parameter and in all the above cited works, it is discussed
only as a function of shear rate. However, blood being a complex quantity constituting the
cells, plasma, and other nutrients, one must take several other physical factors into con-
sideration affecting the blood viscosity. These parameters include hematocrit, temperature,
disease state and natural age of RBCs with exercise level [26]. The theoretical and exper-
imental work of Lih [38] concluded that the viscosity of the blood is variable at the low
shear rate region. Adopting the assumption of Lih, many authors ([41]-[136]) considered
the temperature-dependent viscosity of the blood and investigated the impact of variable
viscosity on hemodynamical quantities. Sharma et al. [137] developed the blood flow as a
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two fluid model having viscoelastic Jeffrey fluid in the central region to derive the analytic
expressions for velocity in a stenotic artery. The study was extended by Sharma and Yadav
[138] to understand the biomagnetic fluid aspect of blood flow. Further, Yadav et al. [139]
modelled the flow as an oscillatory flow to take the pulsatile nature of blood flow in an ac-
count. Recently, Tiwari and Chauhan ([49]-[51]) considered the TFM of blood flow through
tubes comprising an endothelial glycocalyx layer porous region adjacent with the tube wall
by assuming the flow pattern of blood to be steady as well as pulsatile and analyzed the im-
pact of hematocrit-dependent viscosity on flow variables, hematocrit, and Fahraeus effect.
The significance of heat transfer and mass transport in the blood flowing through a narrow
vessel having porous layer near the absorbing wall was attempted to be understood by Shah
et al. [140]. Tiwari et al. [141] studied the impact of viscosity varying with respect to the
temperature and heat transfer on the process of drug delivery in two-fluid model of blood.
Saini et al. [142] utilized Brinkman-Forchheimer equation to investigate the influence of
temperature-dependent viscosity on the creeping flow of non-Newtonian fluid. The above
literature survey suggests that so far the Brinkman-Forchheimer model for the formulation of
the flow through endothelial glycocalyx layer in microvessels with temperature-dependent
viscosity has not been done. This may give us some useful results emphasizing how flows
through microvessels will be affected due to the treatment of disease like malignant tumor.

In the proposed study, the physical aspect of an endothelial glycocalyx layer adjacent
with the vessel wall is attempted to be understood by considering the Brinkman-Forchheimer
equation governing the flow through an EGL. The heat transfer and viscosity describing the
temperature-dependent nature on the two-fluid model of the blood flow through an endothe-
lial glycocalyx layered tube has been investigated. Mathematical expressions for flow ve-
locities in different regions are obtained analytically. The impact of endothelial glycocalyx
layer, temperature and viscosity describing the variable nature, on flow variables have been
analyzed. To validate the proposed work, the influence of an endothelial glycocalyx layer
(and hence porous layer parameters), varying viscosity and temperature parameters have
been examined graphically and the comparison have been drawn with the previous studies.

4.2 Formulation of Problem

4.2.1 Problem Statement and Description of Model

In the proposed study, the cylindrical frame of reference (r̃,φ , z̃) having origin fixed at the
vessel axis is employed to replicate the flow of blood in a heated porous blood vessel. The
flow of blood is depicted here as a fully developed, steady, laminar flow of an incompressible
three-layered fluid comprising of HB and Newtonian fluids to incorporate varying viscous
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behavior of blood at the core region and to exhibit Newtonian behavior of plasma in the
peripheral region, respectively. Brinkman-Forchheimer equation governs the circulation of
blood through a thin endothelial glycocaly layer adjacent with the wall of the microvessel.
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Figure 4.1: The schematic diagram of model description for two-fluid model with an
endothelial glycocalyx layer adjacent to the microvessel wall

Figure 4.1 delineates the physical model of the problem and the circulation of blood through
microvessel is divided into three phases, where R̃1, R̃2, R̃3 are the radii of the Phase- I, Phase-
II and III of the microvessel, respectively and R̃p represents the radius of plug flow region.
The core microvessel region filled with Herschel-Bulkley fluid exhibiting non-Newtonian
behaviour is denoted by Phase-I. Newtonian fluid flow through both Phase-II and III together
representing the plasma region. The intermediate region delineated by Phase-II is governed
by Newtonian fluid and Phase-III replicates an EGL adjacent with the microvessel’s wall
depicting the porous region of the microvessel.

4.2.2 Governing Equations

To delineate the mass conservation and the momentum of blood flow through vessel, conti-
nuity equation and Navier–Stokes equations have been modeled to govern the fluid flow in
different regions as follow:
Phase- I, i.e., 0 < r̃ ≤ R̃1

∂ w̃H

∂ z̃
= 0, (4.1a)

∂ p̃H

∂ r̃
= 0, (4.1b)
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−∂ p̃H

∂ z̃
− 1

r̃
∂

∂ r̃
(r̃τ̃H)+ g̃ρ̃H γ̃(T̃H − T̃∞) = 0, (4.1c)

K̃H

(
∂ 2T̃H

∂ r̃2 +
1
r̃

∂ T̃H

∂ r̃

)
+ Q̃H = 0, (4.1d)

The mathematical expression for the Herschel-Bulkley fluid is given as

τ̃H = τ̃y+

[
µ̃(T̃H)

(
−∂ w̃H

∂ r̃

)] 1
n

, if τ̃H ≥ τ̃y, (4.1e)

∂ w̃H

∂ r̃
= 0, if τ̃H ≤ τ̃y, (4.1f)

where w̃H , ρ̃H , p̃H are the flow parameters of Herschel-Bulkley fluid describing the axial ve-
locity, density, and pressure, respectively. The parameters associated with heat transfer are
µ̃(T̃H), K̃H , T̃H , Q̃H , describing the temperature dependent variable viscosity, thermal con-
ductivity, temperature, and constant heat absorption of blood in core region, respectively;
the acceleration resulting from gravity is denoted by g̃ , τ̃H , τ̃y corresponds to the shear and
yield stress of Herschel-Bulkley fluid, respectively; coefficient of the temperature stimulated
volume expansion is denoted by γ̃ , and T̃∞ is the ambient temperature of the blood.
Phase- II, i.e., R̃1 < r̃ ≤ R̃2

∂ w̃N

∂ z̃
= 0, (4.2a)

∂ p̃N

∂ r̃
= 0, (4.2b)

−∂ p̃N

∂ z̃
+

µ̃N

r̃
∂

∂ r̃

(
r̃

∂ w̃N

∂ r̃

)
+ g̃ρ̃N γ̃(T̃N − T̃∞) = 0, (4.2c)

K̃N

(
∂ 2T̃N

∂ r̃2 +
1
r̃

∂ T̃N

∂ r̃

)
+ Q̃N = 0, (4.2d)

where ρ̃N , p̃N , w̃N , µ̃N , are the flow parameters of the Newtonian fluid describing the density,
pressure, velocity along the axial direction, and viscosity, respectively; K̃N , T̃N , Q̃N are the
heat transfer parameters of Newtonian fluid describing the thermal conductivity, tempera-
ture, constant heat absorption of blood in plasma region, respectively.
Phase- III, i.e., R̃2 < r̃ ≤ R̃3

∂ w̃B

∂ z̃
= 0, (4.3a)

∂ p̃B

∂ r̃
= 0, (4.3b)
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−∂ p̃B

∂ z̃
+

µ̃E

r̃
∂

∂ r̃

(
r̃

∂ w̃B

∂ r̃

)
− µ̃N

k̃
w̃B −

CF ρ̃Nw̃2
B√

k̃
+ g̃ρ̃N γ̃(T̃B − T̃∞) = 0, (4.3c)

K̃N

(
∂ 2T̃B

∂ r̃2 +
1
r̃

∂ T̃B

∂ r̃

)
+ Q̃N = 0, (4.3d)

where p̃B, w̃B, µ̃E , T̃B are the flow parameters of an endothelial glycocalyx layer describing
the pressure, velocity along the axial direction, effective viscosity of Brinkman-Forchheimer
layer, temperature, respectively; CF is the inertial coefficient and k̃ is the permeability (Darcy
number) constant in the porous medium.
For solving the differential Eqs. (4.1)− (4.3), firstly, we non-dimensionalise these Eqs
(4.1)− (4.3) using the following variables:

τH =
τ̃H R̃3

µ̃NW0
, pH =

p̃H R̃3

W0µ̃N
, pN =

p̃NR̃3

W0µ̃N
, pB =

p̃BR̃3

W0µ̃N
, Θ =

τ̃yR̃3

µ̃NW0
, Rp =

R̃p

R̃3
,

r =
r̃

R̃3
, R1 =

R̃1

R̃3
, R2 =

R̃2

R̃3
, γ1 =

Q̃H R̃2
3

K̃N(T̃w − T̃∞)
, F =

CF ρ̃N q̃0R̃3
3

µ̃E µ̃N
,

θB =
T̃B − T̃∞

T̃w − T̃∞

, θH =
T̃H − T̃∞

T̃w − T̃∞

, θN =
T̃N − T̃∞

T̃w − T̃∞

, γ2 =
Q̃NR̃2

3

K̃N(T̃w − T̃∞)
,

Gr =
g̃ρ̃N γ̃R̃2

3(T̃w − T̃∞)

W0µ̃N
, wH =

w̃H

W0
, wN =

w̃N

W0
, wB =

w̃B

W0
, k =

k̃

R̃2
3

,

z =
z̃

R̃3
, ρ0 =

ρ̃N

ρ̃H
, K0 =

K̃N

K̃H
, λ

2
1 =

µ̃E

µ̃N
, S2 =

1
kλ 2

1
, W0 =

q̃0R̃2
3

µ̃N
,

(4.4)

where W0,ρ0,K0,λ1 are the average (characteristic) velocity, density ratio, thermal con-
ductivity ratio, viscosity ratio parameter, respectively; F is the Forchheimer number, S is
the shape parameter in porous media, k is the permeability (Darcy number) of the porous
medium and Gr is the free convection parameter or Grashof number.
Using (4.4), the governing equations (4.1)− (4.3) are reduced to the following dimension-
less form:
Phase- I, i.e., 0 < r ≤ R1

∂wH

∂ z
= 0, (4.5a)

∂ pH

∂ r
= 0, (4.5b)

−∂ pH

∂ z
−1

r
∂

∂ r
(rτH)+

GrθH

ρ0
= 0, (4.5c)

∂ 2θH

∂ r2 +
1
r

∂θH

∂ r
+ γ1K0 = 0, (4.5d)
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where the mathematical expression for Herschel-Bulkley fluid is given as

τH = Θ+

[
e−αθH

(
−∂wH

∂ r

)] 1
n

, if τH ≥ Θ, (4.5e)

∂wH

∂ r
= 0, if τH ≤ Θ, (4.5f)

where Θ =
τ̃yR̃3
µ̃NW0

is dimensionless yield stress and µ̃H = µ̃N

(
R̃3

W0µ̃N

)1−n
is the constant vis-

cosity coefficient of Herschel-Bulkley fluid.
Phase- II, i.e., R1 < r ≤ R2

∂wN

∂ z
= 0, (4.6a)

∂ pN

∂ r
= 0, (4.6b)

−∂ pN

∂ z
+

1
r

∂

∂ r

(
r

∂wN

∂ r

)
+GrθN = 0, (4.6c)

∂ 2θN

∂ r2 +
1
r

∂θN

∂ r
+ γ2 = 0. (4.6d)

Phase- III, i.e., R2 < r ≤ 1

∂wB

∂ z
= 0, (4.7a)

∂ pB

∂ r
= 0, (4.7b)

− 1
λ 2

1

(
∂ pB

∂ z

)
+

1
r

∂

∂ r

(
r

∂wB

∂ r

)
−S2wB −FSλ1w2

B +
GrθB

λ 2
1

= 0, (4.7c)

∂ 2θB

∂ r2 +
1
r

∂θB

∂ r
+ γ2 = 0. (4.7d)

The dimensionless boundary conditions which are taken into consideration for the present
work as follows:

1. The finite temperature and shear stress have been considered on the axis, i.e.,

∂θH

∂ r
= 0, and τH is finite at r = 0. (4.8a)

2. The flow velocities are considered continuous at both the core-intermediate and intermediate-
porous interfaces, i.e.,

wH = wN at r = R1, (4.8b)
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wN = wB at r = R2. (4.8c)

3. At the interface of the Herschel-Bulkley and Newtonian fluid, the continuity of shear
stresses have been considered, i.e.,

τH =−∂wN

∂ r
at r = R1. (4.8d)

4. At the interface of the HB-NF and Newtonian fluid-porous, we considered the conti-
nuity of the temperatures, i.e.,

θH = θN ,
∂θH

∂ r
= K0

∂θN

∂ r
at r = R1, (4.8e)

θN = θB,
∂θN

∂ r
=

∂θB

∂ r
at r = R2. (4.8f)

5. Ochoa-Tapia and Whitaker [1] introduced the stress jump condition that delineates
the discontinuity in the shear stress of liquid in porous and non-porous regions at the
interface. The stress jump interfacial condition is assumed at the fluid-endothelial
glycocalyx layer interface [1], i.e.,

1
αp

∂wB

∂ r
− ∂wN

∂ r
=

βS√
k

wB at r = R2, (4.8g)

where αp denotes the parameter measuring the porosity of medium and βS denotes
the parameter associated with stress jump.

6. The temperature is finite and there is no slip at the microvessels wall, i.e.,

θB = 1, wB = 0 at r = 1. (4.8h)

The non-dimensional volumetric flow rate is denoted by Qs and given by ([91], [49])

Qs = 8
∫ 1

0
rw(r)dr,

= 8
(∫ R1

0
rwHdr+

∫ R2

R1

rwNdr+
∫ 1

R2

rwBdr
)
. (4.9)

The frictional resistance λs per unit length of the tube is given by

λs =
ps

Qs
. (4.10)
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4.3 Solution of the Problem

The pressure gradient in core, intermediate and porous regions are considered as to be non
varying, i.e.,

∂ pH

∂ z
=

∂ pN

∂ z
=

∂ pB

∂ z
=−ps. (4.11)

The Reynolds model has been utilize to model the dimensionless viscosity ([41], [45])

µ(θH) = e−αθH , µ(θH) = 1−αθH for α ≪ 1, (4.12)

where α denote the Reynolds model viscosity parameter (index).
Solving the Eqs. (4.5)− (4.6) by using Eqs. (4.11) and (4.12), we get the followings:
Phase- I, i.e., 0 < r ≤ R1

θH =C1 lnr+C2 −
(

γ1K0

4

)
r2, (4.13a)

τH =
1
r

(
psr2

2
− C1Gr2

4ρ
+

C1r2Gr log(r)
2ρ

+
C2r2Gr

2ρ
− γ1GrK0r4

16ρ

)
+

C3

r
, (4.13b)

wH =C4 −
2−4n−3

(n+1)(n+3)(αC2 −1)(C2Gr+ psρ)

(
r
(
8C2Gr+ γ1(−Gr)K0r2 +8psρ

)
ρ

)n

(
1− γ1GrK0r2

8C2G+8psρ

)−n(
16Θ

(
n2 +4n+3

)
ρF1

(
n
2

;1−n,1;
n+2

2
;

GrK0r2γ1

8C2Gr+8psρ
,

K0r2αγ1

4C2α −4

)
+ r
(

γ1GrK0(n+1)r2F1

(
n+3

2
;1−n,1;

n+5
2

;
GrK0r2γ1

8C2Gr+8psρ
,

K0r2αγ1

4C2α −4

)
−8(n+3)(C2Gr+ psρ)F1

(
n+1

2
;1−n,1;

n+3
2

;
GrK0r2γ1

8C2Gr+8psρ
,

K0r2αγ1

4C2α −4

)))
.

(4.13c)

Phase- II, i.e., R1 ≤ r ≤ R2

θN =C5 log(r)+C6 −
(

γ2

4

)
r2, (4.14a)

wN =

(
C7 −

C5r2Gr
4

)
log(r)+C8 +

Gr(C5 −C6)r2

4
+

γ2r4Gr
64

− psr2

4
(4.14b)
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4.3.1 Solution for Large Darcy Number

Phase- III, i.e., R2 < r ≤ 1
An asymptotic expansion for the velocity distribution in terms of the small parameter S can
be written as [85]

wB = wB0 +SwB1 +S2wB2 + ..., (4.15)

with the assumption that the parameter S= 1
λ1
√

k
is much less than unity, where k is the Darcy

number in the porous medium. Mathematically for large Darcy number k, the parameter
S ≪ 1.
Putting the expression of velocity wB from the above in Eq. (4.15) in the Eq. (4.7b), we
have obtained the expressions up to second order for the velocity profile wB of Forchheimer
region as

θB =C9 log(r)+C10 −
(

γ2

4

)
r2, (4.16a)

wB0 =
1

64λ 2
1

(
−16

(
GrC9r2 −4C11λ

2
1
)

log(r)+64C12λ
2
1 +16Gr(C9 −C10)r2

+Grγ2r4 −16psr2) , (4.16b)

∂ 2wB1

∂ r2 +
1
r

∂wB1

∂ r
= Fλ1w2

B0, (4.16c)

∂ 2wB2

∂ r2 +
1
r

∂wB2

∂ r
= wB0 +2Fλ1wB0wB1. (4.16d)

The first and second-order expressions of velocity in the Forchheimer region are cumber-
some, so they are not mentioned here.

4.3.2 Solution for Small Darcy Number

Phase- III, i.e., R2 < r ≤ 1
For SDN k, the parameter S is very large. Dividing Eq. (4.7b) by S2, we have

− 1
S2λ 2

1

(
∂ pB

∂ z

)
+

S−2

r
∂

∂ r

(
r

∂wB

∂ r

)
−wB −FS−1

λ1w2
B +

GrθB

S2λ 2
1
= 0, (4.17)

The above equation (4.17) represents singular perturbation problem in respect of a very
small parameter S−1 because the limiting case S−1 → 0 reduces the order of the Eq. (4.17).
The work of Bush [84] discusses the detailed description about singular perturbation prob-
lem with matched asymptotic technique. Imitating the same approach, first the outer solution
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of velocity wo
B can be written as below by skipping some intermediate terms

wo
B(r) =

wB2

S2 +
wB4

S4 +
wB5

S5

=
1

λ 3
1 S5

(
λ1S3

(
Gr
(

C10 +C9 log(r)− γ2r2

4

)
+ ps

)
− γ2Grλ1S

−F
(

Gr
(

C10 +C9 log(r)− γ2r2

4

)
+ ps

)2
)
, (4.18)

where the zeroth wB0, first wB1 and third wB3 order approximation of velocity profile wB

vanishes and the expressions for the second, forth and fifth order velocity profile are given
below

wB2 =
ps +GrθB

λ 2
1

,

wB4 =
∂ 2wB2

∂ r2 +
1
r

∂wB2

∂ r
,

wB5 =−Fλ1w2
B2.

(4.19)

The limit of outer solution can be obtained in terms of inner limit as follow

(wo
B)

in = lim
S→∞

wo
B = 0. (4.20)

Now to obtain the expression representing inner solution, one should adopt the stretched
variable as

η = S(1− r), (4.21)

and then to obtain a solution as a single-term, the smaller term (S−1 → 0) should be ne-
glected. The momentum equation reduces to the form

∂ 2win
B

∂η2 −win
B = 0. (4.22)

The solution ot the above equation is obtained as

win
B (r) =C13e−η =C13e−S(1−r). (4.23)

The limit of inner solution can be obtained in terms of outer limit as follow

(win
B )

o = lim
η→∞

win
B = 0 (4.24)
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To obtain the matching solution from Eq. (4.20) and Eq. (4.24), Prandtl’s matching condi-
tion has been utilized

wm
B (r) = 0. (4.25)

We use the Prandtl’s matching condition as described in Bush [84] to find the composite
solution of the problem

wB = wo
B(r)+win

B (r)−wm
B (r), (4.26)

=
1

λ 3
1 S5

(
λ1S3

(
Gr
(

C10 +C9 log(r)− γ2r2

4

)
+ ps

)
− γ2Grλ1S

−F
(

Gr
(

C10 +C9 log(r)− γ2r2

4

)
+ ps

)2
)
+C13e−S(1−r). (4.27)

Where C1 −C13 are arbitrary constants and the values of these constants are obtained using
given boundary conditions. Being too complicated, the expressions of constants are not
manageable to be mentioned here. The expressions of flow rate Qs and flow resistance λs

involves integrals and are numerically calculated through Mathematica 10.0.2 software.

4.4 Results and Discussion

The proposed work intends to research the simultaneous effects of the heat transfer and a
permeable glycocalyx layer near the vessel wall on the blood flow modeled here as the flow
of a three-layered fluid having a viscosity as a function of temperature through microvessels.
Brinkman-Forchheimer equation leads the blood flow through a thin permeable glycocalyx
layer at the wall. The investigation of the flow quantities under the influence of numerous
parameters such as variable viscosity, porous layer, and heat transfer parameters have been
carried out.

4.4.1 Selection of Parametric Values and Validation of the Model

The results have been compared with two-fluid models having constant viscosity and in the
absence of the permeable glycocalyx layer near the wall independently. The parameter Gr

is actually the Richardson number defined as Ri = Gr/Re2. It is a parameter telling us if
the flow is dominated by free convection Ri > 10, forced convection Ri < 1 or mixed if
1 < Ri < 10 ([143]-[144]). Keeping the low Reynolds number Re validity in our problem
(0.005≤Re≤ 0.5), and based on the other literature, the values of Richardson number Ri for
forced and free convection are taken as 0.9 and 103, respectively. The Brinkman model for
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the porous medium is a specific case of our model in the absence of Forchheimer number
F . We have fixed the values of some of the parameters γ0 = ρ0 = λ1 = 1 and βS = 0.5
throughout the whole study. The work of Tiwari and Chauhan ([28], [49]) provided the
various parametric values and the range of additional parameters with their resources are
given in Table 4.1.

Values of parameters

Parameters Values Resources

Absorption ratio α0 α0 = 1.00 [103]
Density ratio ρ0 0.92 ≤ ρ0 ≤ 1.00 [34], [103]
Forchheimer number F 0 ≤ F ≤ 2 [131], [132]
Grashof number Gr 0.5 ≤ Gr ≤ 10 [103], [41],

[45]
HB fluid parameter n 0.90 ≤ n ≤ 1.10 [91], [28]
Plasma layer thickness h 0.015 ≤ h ≤ 0.10 [103], [28]
Permeability k 0 < k < ∞ [131], [132],

[49]
Reynolds number Re 0.005 ≤ Re ≤ 0.5 [145], [146]
Richardson number Ri 0.01 ≤ Ri ≤ 1000 [143], [144]
Steady pressure gradient ps 1 ≤ ps ≤ 10 [91], [28], [49]
Stress jump parameter βS −1 ≤ βS ≤ 1 [68], [49], [51]
Thermal conductivity ratio K0 0.4 ≤ K0 ≤ 1.0 [103], [104]

Table 4.1: The range of parameters appropriate for flow through narrow tubes with their
resources

4.4.2 Velocity Profile (w)

Figure 4.2:(a) depicts the impact of viscosity index on the variation of flow profile w with
radial distance under small and large Darcy number. A decay in flow profile with distance r

is observed for constant and variable viscosity under both the cases (SDN and LDN) which
is in excellent understanding with the previous work of Tiwari and Chauhan [49]. A novel
result is that an increasing viscosity index α contributes to decay in viscosity of the core
region fluid owing to smother the fluid velocity (i.e. growth in velocity). A slight difference
in velocity profile between large and small Darcy numbers can be accredited to the reduced
permeability of the porous medium for the latter case. In Figure 4.2:(b), the difference in
velocity profile for the TFM with and without an EGL adjacent to the wall (PW) for small
Darcy number and with an EGL adjacent to the wall for large Darcy number are depicted.
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As evident in the case of a tube without porous layer at the wall, the fluid velocity is slightly
higher owing to reduced resistance. However, for large Darcy numbers, the porous layer
reduces to hyperporous cases (i.e. significantly reduced resistance) resulting in the velocity
profile almost coinciding with the case of TFM without an endothelial glycocalyx layer
adjacent to the wall. For LDN (k → ∞), the permeability of the porous region will be very
high resulting in an almost negligible Brinkman resistance. This situation is depicted in
Figure 4.2:(c) where the velocity profile for TFM with the PW for LDN and TFM without
PW are almost coincident.

(a)

(b) (c)

Figure 4.2: Impact of viscosity index α on velocity profile w varying with radial distance
r between (a) small (k = 0.05) and large Darcy number (k = 100) and (b)-(c) TFM with
and without PW. (ps = 1,h = 0.05,K0 = 0.6,Gr = 1.5)

Figure 4.3 depicts the effect of the Forchheimer number on velocity profile wB in the
porous region. An increasing Forchheimer number leads to a slight decay in the fluid ve-
locity for the porous region owing to growth in nonlinear resistance term. For Forchheimer
number (F = 0), the specific case of Brinkman formulation of the porous region is verified
[49].
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Figure 4.3: Impact of Forchheimer number F on velocity wB in porous region varying
with radial distance r. (ps = 1,h = 0.10,k = 0.05,K0 = 0.6)

A dominance of free convection over forced convection in the variation of plug flow
velocity wp with pressure gradient is observed in Figure 4.4 for both the formulations (SDN
and LDN) under low Reynolds number (Re= 0.05) assumption. The difference in small and
large Darcy numbers is wider for free convection in comparison to the forced convection. It
is also evident that the growth rate of plug flow velocity is relatively higher for LDN owing
to the smoother flow through the porous medium.

Figure 4.4: Effect of Richardson number Ri on plug core velocity wp varying with pres-
sure gradient ps. (α = h=Θ= 0.10,k =(0.05,100),Re= 0.05,K0 = 0.6,F = 2,n= 0.95)

The rising thermal buoyancy forces lead to linear enhancement in plug flow velocity wp

as depicted in Figure 4.5:(a) for SDN and LDN. A noteworthy observation is that a rising
viscosity parameter leads to an increase in the plug flow velocity for both the cases, which
can be accredited to the reduction in viscosity of the core region fluid. A slight difference
in plug core velocity with Grashof number is observed in Figure 4.5:(b) for TFM with and
without an endothelial glycocalyx layer adjacent with the wall. It is also observed that plug
flow velocity is higher for LDN (hyperporous case) in comparison to SDN.
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(b)

Figure 4.5: Impact of viscosity index α on plug core velocity wp varying with Grashof
number Gr between (a) SDN and LDN and (b) TFM with and without PW. (ps = 1,h =
0.05,K0 = 0.6,F = 2,Θ = 0.10,k = (0.05,100))

The plug core velocity increases with rising conductivity ratio as evident from Figure
4.6:(a). This growth rate further increases for higher viscosity parameter and this obser-
vation is for both SDN and LDN. Although for LDN, the plug core velocity is slightly
higher owing to a relatively smooth flow through porous region. A comparison between
flow through microvessels with and without an endothelial glycocalyx layer adjacent with
the wall shows a similar observation along with a relatively higher plug core velocity for
flow through microvessels without an endothelial glycocalyx layer adjacent with the walls
(Figure 4.6:(b)).
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(b)

Figure 4.6: Impact of viscosity index α on plug core velocity wp varying with con-
ductivity ratio K0 between (a) SDN and LDN and (b) TFM with and without PW.
(ps = 1,h = 0.05,Gr = 1.5,F = 2,Θ = 0.10,k = (0.05,100))

4.4.3 Wall Shear Stress (τw)

Like the previous studies, the dominance of thermal buoyancy forces leads to significant
growth in wall shear stress τw as depicted in Figure 4.7:(a) which is significantly higher
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for LDN (hyperporous layer). A noteworthy observation is that increasing Forchheimer
number F leads to decay in τw for SDN and makes this variation nonlinear, which may be
accredited to a significant presence of the non-linear resistance term due to Forchheimer
number. however no variation is observed in τw with increasing Forchheimer number F for
LDN due to negligible presence of the non-linear resistance term into formulation.

(a) (b)

Figure 4.7: Impact of Forchheimer number F on wall shear stress τw varying with (a)
Grashof number Gr (K0 = 0.6) and (b) thermal conductivity ratio K0 (Gr = 1.5). (ps =
1,h = 0.05,βS = 0.1,k = (0.05,100))

Figure 4.7:(b) depicts the slight growth in wall shear stress with a conductivity ratio K0

for SDN and LDN. The growth rate is higher for LDN in comparison to SDN. A remarkable
observation is that wall shear stress is slightly higher in case of Brinkman formulation (F =

0) in comparison to Brinkman-Forchheimer formulation (F ̸= 0), which may be accredited
to a significant presence of the non-linear resistance term due to Forchheimer number.

4.4.4 Flow Rate (Qs)

Figure 4.8:(a) reveals an increasing flow rate with rising thermal buoyancy forces for small
and large Darcy numbers under varying viscosity assumptions. A reduction in core region
viscosity (i.e. enhancement in the values of viscosity parameter) contributes to growth in
the rate of fluid flow for SDN and LDN cases. Like the above observation in velocity
profiles, the value of flow rate is slightly higher for LDN in comparison to SDN under the
assumptions of both constant and variable viscosity. A slight difference in the fluid flow rate
Qs with Grashof number is observed in Figure 4.8:(b) for TFM with and without an EGL
adjacent with the wall. It is also observed that the flow rate Qs is higher for flow through
tube without porous layer in comparison to with porous layer having small Darcy numbers.
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(b)

Figure 4.8: Impact of viscosity index α on flow rate Qs varying with Grashof number be-
tween (a) SDN and LDN and (b) TFM with and without PW. (ps = 1,Θ = h = 0.10,K0 =
0.6,n = 0.95,F = 2,k = (0.05,100))

The rising thermal conductivity ratio leads to a linear growth in flow rate for SDN and
LDN as presented in Figure 4.9. The effect of Forchheimer number F is slightly visible for
SDN. For LDN, the effect of Forchheimer number on the variation of flow rate with K0 is
negligible. The Forchheimer number’s moderate influence on flow rate can be attributed to
very thin porous layer near the wall. This effect may be more significant for a thick porous
layer.
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Figure 4.9: Impact of Forchheimer number F on flow rate Qs varying with conductivity
ratio K0 between SDN and LDN. (ps = 1,Θ = h = 0.10,n = 0.95,α = 0.2,Gr = 1.5,k =
(0.05,100))

An increasing flow rate with pressure gradient for all four fluids (Power-law fluid-PL,
NF, HB fluid and Bingham-plastic fluid-BP) is observed in Figure 4.10 for natural as well
as forced convection. This analysis is being done for SDN. It is further noticed that the
difference of growth rate in flow rate Qs between shear thickening fluids (PL, HB) and non
shear thickening fluids (NF, BP) widens with increasing pressure gradient.
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Figure 4.10: Impact of Richardson number Ri on plug core velocity Qs varying with
pressure gradient ps. (α = h = Θ = 0.10,k = Re = 0.05,K0 = 0.6,F = 2,n = 0.90)

4.4.5 Flow Resistance (λs)

An increasing thermal conductivity ratio contributes to a linear decay in flow resistance for
SDN and LDN as demonstrated in Figure 4.11. The effect of Forchheimer number F is
slightly visible for SDN. For LDN, the effect of Forchheimer number on the variation of
flow resistance with K0 is negligible. Forchheimer number’s moderate influence on flow
resistance can be attributed to very thin porous layer near the wall. For a thick porous layer,
this effect may be more significant.
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Figure 4.11: Impact of Forchheimer number F on flow resistance λs varying with con-
ductivity ratio K0 between SDN and LDN. (ps = 1,Θ = h = 0.10,n = 0.95,α = 0.2,Gr =
1.5,k = (0.05,100))

A flow resistance λs decays with increasing Grashof number Gr as demonstrated in Fig-
ure 4.12:(a) which is in good understanding with authors work on micropolar fluid [122].
However, the decay rate slightly reduces with increasing viscosity parameter α . Flow re-
sistance for LDN is relatively lesser in comparison to SDN. A comparison between flow
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through microvessels with and without an EGL adjacent to the wall shows a similar obser-
vation along with a relatively higher flow resistance for flow through microvessels with an
EGL adjacent to the wall (Figure 4.12:(b)).
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Figure 4.12: Impact of viscosity index α on flow resistance λs varying with Grashof
number Gr (a) under SDN and LDN and (b) between TFM with and without PW. (ps =
1,K0 = 0.6,n = 0.95,F = 2,h = Θ = 0.10,k = (0.05,100))

4.5 Conclusions

The present work investigates the flow characteristic of a three-layer liquid model of blood
flow through an endothelial glycocalyx layered microvessels using temperature-dependent
viscosity. The Brinkman-Forchheimer model is used for the flow through porous medium,
which occurs due to the presence of a glycocalyx layer near the wall which is an extension
of the Brinkman model. Throughout the whole discussions, the following interferences can
be made:

1. A relatively higher velocity, plug flow velocity and flow rate is observed for lager
Darcy number in comparison to small Darcy number however, a reverse observation
is made for flow resistance.

2. The viscosity index rises for less viscous core fluid and results into the growth of
velocity profile, the higher velocity in plug core region and higher flow rate of fluid.
But the flow impedance is observed to be reduced in less viscous core fluid.

3. The significance of high Grashof number and conductivity ratio is observed due to the
relative increment in the fluid velocity through plug core region and higher flow rate
of fluid.
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4. The impact of Forchheimer number on flow quantities is slightly visible for small
Darcy number however, it is negligible in case of large Darcy number. This effect is
more significant for a thick endothelial glycocalyx layer adjacent with the wall.

5. All the flow variables except the flow resistance assume relatively higher values for
flow through microvessels without an EGL adjacent with the wall in comparison to
the flow through microvessels with an EGL adjacent with the wall owing to absence
of the Brinkman and nonlinear Forchheimer resistance of the porous medium.

Proposed analysis examines the influence of heat transfer over various quantities related
to hemodynamic and also establish that the flow quantities are significantly affected by the
temperature-dependent viscosity. In the peripheral region, the plasma flow is dominated
by the Forchheimer parameter and it may govern the hematocrit by affecting the RBCs
concentration.

These effects will be more significant if the endothelial glycocalyx layer thickness be-
come larger. The findings of the present work can be important in such cases as the correct
information of the flow variables will be helpful in accurate computation of blood pressure
and hematocrit, which may be crucial for medical treatment due to various pathological
situations. However, the work defining need to be experimentally verified.





Chapter 5

Solute Dispersion into Microcirculation: A Tem-
perature Dependent Viscosity Approach

5.1 Introduction

Flow through a tube was always a topic of interest among the mathematicians due to
its direct application in blood flow through narrow vessels (arterioles, venules and capillar-
ies) ([147], [148]). The mathematical modeling of our physiological systems reveals the
influence of various factors on the flow through blood vessels as well as the diffusion of
solute due to injecting drugs or nutrients into the tissues through our physiological systems.
Due to a complex network of arteries and veins in our body and almost each one having
certain distinct properties, it is really difficult to develop a model perfect for all arteries and
veins. Now days, due to unusual life style and food habits, the reporting of the cardiovascu-
lar diseases have significantly increased causing a big concern for the society. The clinical
treatment of various diseases such as cancer involved the transportation of drug through in-
jection or capsule (carrier particles) into our physiological system. The drug is transported
to the tissues through diffusion process via circulatory system. In case of treatment through
capsule, the carrier particles are targeted at the location of the infected area, which makes
the study of solute dispersion pertinent to clinical treatment of diseases like cancer. Besides
the above applications, we can also see the role of diffusion process in artificial devices dur-
ing surgery and the dispersion theory is applied to understand the fabricated accessories like
hemodialyzers and annular oxygenators [77].

The wall of the blood vessels are the major barrier in the transportation of the solvent
materials among tissues and blood. The mechanism of the mass transportation across their
boundaries in circulation are elementary concern in which metabolites and catabolites are
exchanged across the narrow tube. This observation makes it more appropriate to look into

4This work has been published as A. Tiwari, P.D. Shah and S.S. Chauhan, "Unsteady solute dispersion
in two-fluid flowing through narrow tubes: A temperature-dependent viscosity approach", International
Journal of Thermal Sciences 161 (2021) 106651.
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the mass transport across the boundaries (vessel walls) which was missing in earlier works.
In order to address this issue, Sankarasubramanian and Gill [2] developed a new approach
of mass transport across their boundaries in which they applied the series expansion method
to solve the convective dispersion equation with inter-phase mass transfer. A novel observa-
tion was that a new term “exchange coefficient" arise by including the absorption effect at
wall reflecting the interphase mass transport of the solute. The impact of irreversible bound-
ary reactions on solute dispersion in viscoelastic/non-viscoelastic fluids (Casson and HB
fluid) through a conduit or annular tube has been discussed by many investigators ([149],
[87], [150], [151], [152], [88]) and they observed that the diffusion coefficients and mean
concentration are influenced by non-Newtonian behavior of fluid, mass transport across the
boundary, catheter size and reaction at wall ([153], [154]). Recently, Rana and Murthy
([111], [112]) discussed the impact of irreversible wall reactions on solute dispersion in
yield-stress fluids (Casson and Herschel-Bulkley fluids) flowing through a tube by assum-
ing a periodic pressure driven flow and they analyzed the effect of Womersley number, yield
stress and boundary retention on diffusion process. They [89] also studied the solute disper-
sion in different non-Newtonian fluids (Carreau and Carreau-Yasuda fluids) flowing through
a tube with boundary absorption.

In the recent times, the most dangerous disease is well known as cancer or malignant
tumor causing concern for society. The researchers made their contributions via mathemat-
ical modeling to develop the treatment for the cure of diseases. In this process, the infected
cancerous cells are targeted through the radiation obtained from the transformation of the
absorbed energy without damaging the healthy tissues. The combined effect of heat transfer
with temperature parameters and magnetic field in transverse direction on the circulation
of Newtonian fluid (NF) flowing through the vertical annulus was analyzed by Mekheimer
and Abd Elmaboud [20] in which the governing equations are solved under the presump-
tions of long wavelength approximations and zero Reynolds number. Misra et al. [115]
computed the flow rate of blood flow in blood vessels during electromagnetic hyperthermia
which is applicable in therapeutic procedure for cancer or malignant tumor treatment. The
periodic nature of NF flowing through a catheterized tube with mild constriction under heat
transfer was done by Abd Elmaboud and Mekheimer [155] and they pointed out that the
flow quantities are influenced by the heat transfer, catheter size and constriction height. The
aforementioned studies pertains the flow of SFM of blood through conduit but according to
the experimental work of Bugliarello and Sevilla [27], the blood exhibit the two-fluid nature
whenever it flows through narrow tube. Ponalagusamy and Selvi [103] theoretically inves-
tigated the oscillatory flow of TFM in a constricted tube by assuming blood as Newtonian
fluid in both the regions using heat transfer and magnetic field approach and they observed
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that the dominance of thermal buoyancy forces and rise in the peripheral layer thickness
lead to decay in frictional resistance. Recently, Tiwari et al. [122] discussed the impact of
micro-level properties of the fluid on three-layered model of the micropolar-Newtonian fluid
flow through microvessels with porous region near the wall using heat transfer approach.

Recently, Tiwari et al. [156] analyzed the influence of porous layer and position-dependent
viscosity parameters on solute dispersion in the circulation of two-fluid model of blood flow-
ing through microvessels consisting a porous region near the absorbing walls and observed
that the inclusion of porous layer near the absorbing vessel wall and position-dependent
viscosity reduces the convective coefficient.

Going through the above literature and to the best of author’s knowledge, the composi-
tion of variable nature of viscosity (temperature-dependent viscosity) for Herschel-Bulkley
fluid and heat transfer aspect on solute dispersion process in two-fluid model of blood flow
through smaller diameter blood vessels with reactive walls did not receive enough attention,
despite a physiologically realistic situation in transportation or mixing of drugs or injecting
the solute in vascular systems of the human body and resolve the medical problems.

An analytical treatment of solute dispersion in a TFM of blood flowing through a smaller
diameter tube with reactive walls under the temperature-dependent viscosity and heat trans-
fer aspect has been done in the present study by taking blood as viscoelastic (Herschel-
Bulkley) fluid occupied in a central region and Newtonian fluid occupied in a plasma region
near the wall. Mathematical expressions of diffusion coefficients have also been found by
using the generalized dispersion model [2] by assuming the viscosity parameter of Reynolds
model to be less than unity. Influence of viscosity and temperature parameters on diffusion
coefficients like convective, dispersion coefficients and mean concentration are analyzed
and the results are compared with previous studies on constant viscosity model.

The present work is divided into 5 sections. The mathematical formulation of the hy-
drodynamic flow is demonstrated in Sec. 2 comprising the statement of the problem, model
description, governing equations for flow profile, non-dimentionalization and their respec-
tive analytical solutions of the governing equations for core as well as plasma regions. The
mathematical statement and governing equation for unsteady convective diffusion equation
is presented in Sec. 3 which includes the initial and boundary conditions, the solution ex-
pressions for the diffusion coefficients and mean concentration. Results and graphical anal-
ysis is presented in Sec. 4 for diffusion coefficients and mean concentration of the solution.
The summary and conclusions are presented at the end of the work.
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5.2 Mathematical Formulation

5.2.1 Statement of the Problem and Model Description

Blood flowing through the narrow vessels can be segregated into plasma fluid and cells
infused core fluid and therefore modeling the flow of blood as the flow of two fluids is
quintessential for microvessels. Plasma being a cell free fluid and exhibiting a Newto-
nian behavior is assumed to be the Newtonian fluid with constant viscosity in Region-II.
In the core, suspension of blood cells triggers non-Newtonian behavior and therefore repre-
sented as Herschel-Bulkley fluid with temperature-dependent viscosity in Region-I. Based
on the above assumptions, the physical model concerns the steady flow of a two-fluid model
of blood flow through microvessels under the presumptions of interphase mass transport
through the vessel walls. The flow is assumed to be laminar, unidirectional (along the axial
direction only (0,0, w̃z̃)), axially symmetric and fully developed. Due to a cylindrical tube
representation of blood vessel, the cylindrical coordinates systems (r̃,φ , z̃) has been used for
mathematical formulations, where r̃, z̃ are the transverse and axial coordinates and whose
origin is situated on the vessel axis. To replicate the transportation of nutrients through the
vessel wall, the absorbing nature of vessel walls have been considered.

The physical sketch of the present work for two-fluid model is demonstrated in Figure
5.1, where R̃1 and R̃2 are the radii of the central and plasma regions of the blood vessel,
respectively and R̃p is the plug core radius.
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Figure 5.1: The schematic diagram of model description for two-fluid model through
microvessel with absorbing walls
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5.2.2 Governing Equations of Hydrodynamical Flow

Following the above presumptions, the equations which drive the flow are as follows:
Region- I, i.e., 0 < r̃ ≤ R̃1

∂ w̃H

∂ z̃
= 0, (5.1a)

∂ p̃H

∂ r̃
= 0, (5.1b)

−∂ p̃H

∂ z̃
− 1

r̃
∂

∂ r̃
(r̃τ̃H)+g̃ρ̃H γ̃(T̃H − T̃∞) = 0, (5.1c)

K̃H

(
∂ 2T̃H

∂ r̃2 +
1
r̃

∂ T̃H

∂ r̃

)
+ Q̃H = 0, (5.1d)

where shear stress τ̃ = |τ̃r̃z|=−τ̃r̃z (since τ̃ = τ̃H or τ̃ = τ̃N).
The mathematical expression for the Herschel-Bulkley fluid is given as

τ̃H = τ̃y+

[
µ̃(T̃H)

(
−∂ w̃H

∂ r̃

)] 1
n

, if τ̃H > τ̃y, (5.1e)

∂ w̃H

∂ r̃
= 0, if τ̃H ≤ τ̃y, (5.1f)

where ρ̃H , p̃H , w̃H , µ̃(T̃H), K̃H , T̃H , Q̃H are the density, pressure, axial velocity, temperature
dependent viscosity, thermal conductivity, temperature, constant heat absorption of blood in
core region, respectively and g̃ the acceleration due to gravity; τ̃H the shear stress of HB
fluid; τ̃y the yield stress; γ̃ the coefficient of the volume expansion due to the temperature
and T̃∞ is the uniform temperature of the fluid at the center of the constriction.
Region- II, i.e., R̃1 < r̃ ≤ R̃2

∂ w̃N

∂ z̃
= 0, (5.2a)

∂ p̃N

∂ r̃
= 0, (5.2b)

−∂ p̃N

∂ z̃
+

µ̃N

r̃
∂

∂ r̃

(
r̃

∂ w̃N

∂ r̃

)
+ g̃ρ̃N γ̃(T̃N − T̃∞) = 0, (5.2c)

K̃N

(
∂ 2T̃N

∂ r̃2 +
1
r̃

∂ T̃N

∂ r̃

)
+ Q̃N = 0, (5.2d)

where ρ̃N , p̃N , w̃N , µ̃N , K̃N , T̃N , Q̃N are the density, pressure, axial velocity, viscosity, thermal
conductivity, temperature, constant heat absorption of blood in plasma region, respectively.
The expression of the temperature-dependent viscosity of Reynolds model is assumed as
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([47], [41], [28])

µ̃(T̃H) = µ̃He
−α

(
T̃H−T̃∞

T̃w−T̃∞

)
, (5.3)

where α (≪ 1) is the viscosity parameter (index); µ̃H is the constant viscosity coefficient of
HB fluid and T̃w is the temperature of the vessel wall.
The boundary conditions (BCs) are given as

τ̃H is finite and
∂ T̃H

∂ r̃
= 0, at r̃ = 0,

τ̃H =−µ̃N
∂ w̃N

∂ r̃
, w̃H = w̃N , T̃H = T̃N , K̃H

∂ T̃H

∂ r̃
= K̃N

∂ T̃N

∂ r̃
, at r̃ = R̃1, (5.4)

w̃N = 0, T̃N = T̃w, at r̃ = R̃2.

Let the pressure gradient for different regions to be constant ([28], [49], [91]) i.e.

∂ p̃H

∂ z̃
=

∂ p̃N

∂ z̃
=−q̃0 ps, (5.5)

where q̃0 is the negative pressure gradient and ps is the non-dimensional steady state pres-
sure gradient.

5.2.3 Non-Dimensional Parameters and Governing Equations

To solve the above system of Eqs. (5.1−5.3) with boundary conditions (5.4), the following
dimensionless variables are introduced:

τH =
τ̃H R̃2

µ̃NW0
, pH =

p̃H R̃2

W0µ̃N
, pN =

p̃NR̃2

W0µ̃N
, Θ =

τ̃yR̃2

µ̃NW0
, γ1 =

Q̃H R̃2
2

K̃N(T̃w − T̃∞)
,

r =
r̃

R̃2
, z =

D̃mz̃

R̃2
2W0

, wH =
w̃H

W0
, wN =

w̃N

W0
, R1 =

R̃1

R̃2
, γ2 =

Q̃NR̃2
2

K̃N(T̃w − T̃∞)
,

θH =
T̃H − T̃∞

T̃w − T̃∞

, θN =
T̃N − T̃∞

T̃w − T̃∞

, Gr =
g̃ρ̃N γ̃R̃2

2(T̃w − T̃∞)

W0µ̃N
, Pe =

W0R̃2

D̃m
,

ρ0 =
ρ̃N

ρ̃H
, γ0 =

γ2

γ1
, K0 =

K̃N

K̃H
, t =

D̃mt̃

R̃2
2

, C =
C̃
C0

, W0 =
q̃0R̃2

2
µ̃N

, β =
k̃R̂2

D̃m
,

(5.6)

where γ0 is the fraction of absorption coefficient in cell free region to absorption coefficient
in core region; W0 is the average velocity; Pe is the Peclet number and ρ0 is the density ratio.
Using Eq. (5.6), the governing Eqs. (5.1)− (5.3) with boundary conditions (5.4) in dimen-
sionless form will become:
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Region- I, i.e., 0 < r ≤ R1

∂ pH

∂ r
= 0, (5.7a)

−∂ pH

∂ z
− 1

r
∂

∂ r
(rτH)+

GrθH

ρ0
= 0, (5.7b)

∂ 2θH

∂ r2 +
1
r

∂θH

∂ r
+ γ1K0 = 0, (5.7c)

where the mathematical expression for Herschel-Bulkley fluid is given as

τH = Θ+

[
e−αθH

(
−∂wH

∂ r

)] 1
n

, if τH > Θ, (5.7d)

∂wH

∂ r
= 0, if τH ≤ Θ, (5.7e)

where Θ =
τ̃yR̃2
µ̃NW0

is dimensionless yield stress and µ̃H = µ̃N

(
R̃2

W0µ̃N

)1−n
.

Region- II, i.e., R1 < r ≤ 1

∂wN

∂ z
= 0, (5.8a)

∂ pN

∂ r
= 0, (5.8b)

−∂ pN

∂ z
+

1
r

∂

∂ r

(
r

∂wN

∂ r

)
+GrθN = 0, (5.8c)

∂ 2θN

∂ r2 +
1
r

∂θN

∂ r
+ γ2 = 0, (5.8d)

where K0 is the fraction of thermal conductivity in cell free plasma layer to thermal conduc-
tivity in core region and Gr is the free convection parameter or Grashof number.
The boundary conditions (BCs) in dimensionless form are given as

τH is finite and
∂θH

∂ r
= 0 at r = 0,

τH =−∂wN

∂ r
, wH = wN , θH = θN ,

∂θH

∂ r
= K0

∂θN

∂ r
, at r = R1,

wN = 0, θN = 1 at r = 1.

(5.9)

The Reynolds model of viscosity for Herschel-Bulkley fluid can be approximated as ([41],
[45])

µ(θH) = e−αθH , µ(θH) = 1−αθH for α ≪ 1, (5.10)
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where α denote the Reynolds model viscosity parameter (index).
Let the pressure gradients to be constant for steady flow state ([28], [49], [91])

∂ pH

∂ z
=

∂ pN

∂ z
=−ps. (5.11)

5.2.4 Analytical Solution of the Governing Equations

Solving Eqs. (5.7) and (5.8) by using Eqs. (5.10) and (5.11), we get the followings:
The temperature profile, shear stress and axial velocity of core region fluid are obtained

as below

θH =C1 log(r)+C2 −
γ1K0

4
r2, (5.12a)

τH =
r2 (−4C1Gr+8C2Gr− γ1GrK0r2 +8psρ0

)
+8GrC1r2 log(r)

16ρ0r
+

C3

r
, (5.12b)

wH =C4 −
2−4n−3

(n+1)(n+3)(αC2 −1)(C2Gr+ psρ0)

×

(
r
(
8C2Gr− γ1GrK0r2 +8psρ0

)
ρ0

)n(
1− γ1GrK0r2

8C2Gr+8psρ0

)−n

×
(

8(n+3)
(

2Θ(n+1)ρ0F1

(
n
2

;1−n,1;
n+2

2
;

GrK0r2γ1

8C2Gr+8psρ0
,

K0r2αγ1

4C2α −4

)
−r(C2Gr+ psρ0)F1

(
n+1

2
;1−n,1;

n+3
2

;
GrK0r2γ1

8C2Gr+8psρ0
,

K0r2αγ1

4C2α −4

))
+γ1GrK0(n+1)r3F1

(
n+3

2
;1−n,1;

n+5
2

;
GrK0r2γ1

8C2Gr+8psρ0
,

K0r2αγ1

4C2α −4

))
. (5.12c)

and temperature profile and axial velocity of plasma region fluid are obtained as

θN =C5 log(r)+C6 −
γ2r2

4
, (5.13a)

wN = log(r)
(

C7 −
1
4

GrC5r2
)
+C8 +

1
4

GrC5r2 − 1
4

GrC6r2 +
1

64
Grγ2r4 − psr2

4
, (5.13b)

where C1−C8 are arbitrary constants. Due complexity of the expressions, constants are eval-
uated by using MATHEMATICA 10.0.2 with help of the boundary conditions (5.9) which
are not mentioned here due to very large expressions and hence the complete mathematical
expressions for the axial velocities have not been presented in the manuscript.
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5.3 Concentration Solution

5.3.1 Governing Equations

Taylor’s dispersion of a solute injected into the two-fluid model portraying the flow of blood
flowing through the vessel with absorbing wall and having radius R̃2 is delineated in Fig-
ure 5.2. The convection which arises due to fluid velocity represents the movement of the
cross-section consisting a swarm of particles. Scattering of solute particles along the radial
direction in axially symmetric manner leads to the introduction of molecular diffusion term
which is represented through red dashed arrows in the Figure 5.2. Further, the concentration
profile owing to the combined effect of the convection and dispersion is depicted near the
exit end of the tube. The concentration C of the solvent into the unidirectional fully de-

r̃

z̃

Flow Profile Convection + Diffusion = Dispersion Concentration Profile

Figure 5.2: The physical sketch of the solute dispersion process for two-fluid model

veloped, axisymmetric, laminar, steady flow of incompressible fluid through narrow blood
vessel is governed by the non-dimensional diffusion equation as scripted bellow.

∂C
∂ t

+w(r)
∂C
∂ z

=
1
r

∂

∂ r

(
r

∂C
∂ r

)
+

1
Pe2

∂ 2C
∂ z2 , (5.14)

where w(r) is the axial velocity of the fluid in artery and D̃m is coefficient of molecular
diffusion (molecular diffusivity), which is assumed to be constant, C0 is the reference con-
centration, Pe is the Peclet number and d p̃

dz̃ is the applied pressure gradient along the axis of
the artery.
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5.3.2 Initial and Boundary Conditions

5.3.2.1 Initial Condition (IC)

Initially the solute is believed to be uniformly distributed and as the diffusion process initi-
ates, the concentration distribution in the system is noted as below

C(0,z,r) = ψ(z)X(r), (5.15a)

with

ψ(z) =
δ (z)
d2Pe

, (5.15b)

and

X(r) =

{
1, 0 < r ≤ d,

0, d < r ≤ 1,
(5.15c)

where δ (z) is Dirac delta function.

5.3.2.2 Boundary Conditions (BCs)

At any instant of time, the first ordered irreversible reaction at tube wall is heterogeneous
and the system having a finite concentration can be drafted as the boundary conditions given
by

∂C
∂ r

(t,z,r) =−βC(t,z,r), at r = 1, (5.16a)

C(t,z,r) =
∂C
∂ z

(t,z,r) = 0, as z → ∞, (5.16b)

C(t,z,r) = finite, at r = 0, (5.16c)

here β = k̃R̃2
D̃m

denotes the parameter of wall absorption in non-dimensional form and k̃ is the
constant reaction rate.

5.3.3 Diffusion Coefficients and Mean Concentration

The solution of the equation (5.14) with the help of the initial and boundary conditions
(5.15)−(5.16) has been obtained using Sankarasubramanian and Gill [2] approach to finally
obtain the diffusion coefficients and mean concentration. The solution expression for the
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exchange coefficient M0(t) is obtained as

M0(t) =− ∑
∞
0 AkαkJ1(αk)e−α2

k t

∑
∞
0

(
Ak
αk

)
J1(αk)e−α2

k t
, (5.17a)

which is exactly the same as derived in the previous works ([2], [87], [88], [89]) as its
computation does not include fluid velocity.
The expression for convection coefficient (M1) is obtained as

M1 =
−2α2

0

(α2
0 +β 2)J2

0(α0)

∫ 1

0
w(r)rJ2

0(α0r)dr. (5.17b)

The expression for the dispersion coefficient (M2) is given by

M2 =
1

Pe2 −
4α0J1(α0)

(α2
0 +β 2)J2

0(α0)

∫ 1

0
(w(r)+M1)g1(r)rJ0(α0r)dr. (5.17c)

The expression for the mean concentration (CM) of the solute is obtained as

CM(t,z) =
1

2Pe
√

πT
Exp

(
η −

z2
1

4T

)
. (5.17d)

The detailed description of the solution method and derivation of the diffusion coefficients
as well as mean concentration has been provided in 1.5.3.

5.4 Results and Discussion

The simultaneous impact of temperature-dependent viscosity and heat transfer on solute
dispersion in a two-fluid model of blood flowing through narrow blood vessels with reactive
walls has been done in the present work by assuming the generalized dispersion model [2].
Blood is taken as two-fluid model consisting with a central region occupied by viscoelastic
(Herschel-Bulkley) fluid and a cell free region near wall occupied by Newtonian fluid. Heat
transfer approach and temperature-dependent viscosity has been taken into account, which
helps us in better way in the medical treatments. The impact of various parameters such
as thermal buoyancy forces Gr, thermal conductivity ratio K0, wall reactive parameter β ,
viscosity parameter α and pressure gradient ps on diffusion coefficients (M1, M2) and mean
concentration CM have been analyzed. A comparative study between viscoelastic (BP, HB)
and non-viscoelastic (NF, PL) fluids has been presented in graphical form. Another analysis
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of the shear thinning (n > 1) and shear thickening (n < 1) behavior of fluids affecting the
solute dispersion process has also been done.

5.4.1 Parameter Selection and Model Validation

Following range of values of various parameters are taken from the previous studies to
perform the graphical analysis which is given in Table 5.1.

Values of parameters

Parameters Values Resources

Absorption ratio γ0 1.00 [103]

Densities ratio ρ0 0.92-1.00 [34], [36],
[103]

Grashof number Gr 0.5-17 [103], [41],
[45]

Plasma layer thickness h 0.015-0.05 [31], [28], [49]

Power-law index n 0.90-1.10 [28], [49], [91]

Steady pressure gradient ps 1-10 [28], [49], [91]

Thermal conductivity ratio K0 0.2-1.0 [103]

Viscosity parameter α 0.0-0.5 [41], [45]

Wall absorption parameter β 0-100 [87], [111],
[112]

Yield stress Θ 0.00-0.25 [87], [91]

Table 5.1: The range of parameters appropriate for flow through narrow tubes with their
resources

The present study is validated through comparison of results with limiting case of Ramana
and Sarojamma [88] in Figure 5.3:(a) and another limiting case of Sankarasubramanian and
Gill [2] in Figure 5.3:(b). It is perceived that in the limiting case of Gr → 0,α → 0,R1 = 1,
the present model reduces to the case of single fluid model (Herschel-Bulkley fluid with
constant viscosity) without heat transfer approach (Ramana and Sarojamma [88]) and in this
case, our results representing the valiation of convective coefficient (−M1) with yield stress
Θ graphically matches with the result of Ramana and Sarojamma [88]. Further the values
n = 1,Θ = 0.0 reduces the present model into the single-fluid model (Newtonian fluid with
constant viscosity) studied by Sankarasubramanian and Gill [2]. Here also, we observed
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that the variation of convective coefficient with steady state pressure gradient shows a good
agreement between the limiting case of present study and the study of Sankarasubramanian
and Gill [2]. For this validation the formulation of Sankarasubramanian and Gill [2] was
used with a general parametric term of pressure gradient. Under the limiting cases (Gr →
0,α = 0), the present work reduces to specific case of Tiwari et al. [156] representing the
dispersion in two-fluid flow through tubes with constant viscosity and without heat transfer.
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Figure 5.3: Convection coefficient (−M1) varying with (a) yield stress Θ between the
limiting case (Gr → 0,α → 0,R1 = ps = 1) of the present study and the work of Ramana
and Sarojamma [88] for single Herschel-Bulkley fluid model with constant viscosity and
(b) pressure gradient ps between the limiting case (Gr → 0,α → 0,R1 = n= 1,Θ= 0.0) of
the present study and the work of Sankarasubramanian and Gill [2] for single Newtonian
fluid model with constant viscosity. (β = 1)

Our results for variation of convective coefficient with plug core radius Rp exactly
matches with the work of Tiwari et al. [156] in this limiting case (Figure 5.4).
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Figure 5.4: Convection coefficient (−M1) varying with plug flow radius Rp between the
limiting case (Gr → 0,α → 0) of the present study and the limiting case (K = 0,λ1 =
1,k → ∞) of the work of Tiwari et al. [156] for two-fluid model with constant viscosity.
(ps = 1,R1 = n = 0.95,h = 0.05)
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τ̃y

(N/m2)

α = 0.0,
k̃ = 6×10−8

α = 0.2,
k̃ = 6×10−8

α = 0.0,
k̃ = 6×10−6

α = 0.2,
k̃ = 6×10−6

α = 0.0,
k̃ = 6×10−4

α = 0.2,
k̃ = 6×10−4

0.0×10−3 0.537789 0.718444 0.617463 0.833854 0.850650 1.17720

4.0×10−3 0.537256 0.717682 0.616823 0.832934 0.849675 1.175770

8.0×10−3 0.536723 0.716921 0.616184 0.832014 0.848701 1.17435

12.0×10−3 0.536190 0.716159 0.615544 0.831094 0.847726 1.17292

16.0×10−3 0.535657 0.715397 0.614904 0.830173 0.846757 1.17150

20.0×10−3 0.535125 0.714635 0.614265 0.829253 0.845776 1.17007

Table 5.2: Impact of dimensional yield-stress τ̃y, viscosity parameter α and constant
reaction rate k̃ (m/s) on convection coefficient (−M1). (n = 0.95, ps = 1 ([91]), Q̃H =
Q̃N = 1.0×108W/m3, γ̃ = 7.964/◦C ([41]), T̃w − T̃∞ = 0.5◦C, R̃1 = 95µm, R̃2 = 100µm,
µ̃N = 1.2×10−3N.s/m2, D̃m = 6×10−10m2/s ([37]), K̃H = 0.5W/m◦C, K̃N = 0.4W/m◦C
([157]))

For the variation of the dimensional form of the yield-stress τ̃y from 0−20×10−3N/m2,
the values of convective coefficient (non-dimensional value) are presented in Table 5.2. Fur-
ther for the same case, the values of other dimensional form of the parameters are presented
to give an insight of correspondence between the range of the non-dimensional parameters
considered in the analysis and the corresponding range of dimensional parameters involved.

(a) (b)

Figure 5.5: Impact of wall absorption parameter β on convection coefficient (−M1) vary-
ing with respect to conductivity ratio K0 with (a) viscosity parameter α (R1 = 0.95) (Solid
lines for constant viscosity model (α = 0.0) and dashed lines for variable viscosity model
(α = 0.2)) and (b) plasma layer thickness h (α = 0.2,R1 = 0.90) (Solid lines for two-fluid
model and dashed lines for single-fluid model). (Gr = 2,Θ = 0.10, ps = 1,n = 0.95)
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As evident from the Table 5.2, a rising yield-stress τ̃y leads to decay in convective co-
efficient and for increasing constant reaction rate k̃ (reactive walls), growth in convective
coefficient is observed, which is same as the observations made using non-dimensional pa-
rameters in Figure 5.3:(a) and Figure 5.5:(a).

5.4.2 Convective Coefficient (−M1)

Figure 5.5:(a) demonstrates the effect of reactive (absorbing) walls and varying viscosity on
variation of convective dispersion (−M1) with thermal conductivity ratio K0. The convective
dispersion (−M1) slightly increases with increase in thermal conductivity ratio K0. However
this growth is relatively higher for varying viscosity model (α = 0.2). This can be justified
as the varying nature of viscosity lead to reduced viscosity owing to smoother flow in the
region. A noteworthy finding is that the effect of thermal conductivity ratio K0 on convective
dispersion for varying viscosity model is significant (high) when the tube walls are highly
reactive (β = 100). Another observation is that the growth rate of convective coefficient is
relatively higher for varying viscosity model which further increases very significantly for
highly reactive walls (β = 100). Figure 5.5:(b) depicts a comparative study of variation of
convective coefficient with thermal conductivity ratio K0 between two-fluid model (TFM)
and single-fluid model (SFM) under varying viscosity assumption. The convective coeffi-
cient is higher for two-fluid model when thermal conductivity is low but at higher thermal
conductivity, this behavior reverses. This behavior is independent of the wall reactivity.

(a) (b)

Figure 5.6: Impact of wall absorption parameter β on convection coefficient (−M1) vary-
ing with Grashof number Gr with (a) viscosity parameter α (R1 = 0.95) (Solid lines
for constant viscosity model (α = 0.0) and dashed lines for variable viscosity model
(α = 0.2)) and (b) plasma layer thickness h (α = 0.2,R1 = 0.90) (Solid lines for two-fluid
model and dashed lines for single-fluid model). (K0 = 0.8,Θ = 0.10, ps = 1,n = 0.95)

The effect of Grashof number Gr on convective coefficient (−M1) is pictorially de-
scribed in Figure 5.6:(a). It is clear that dominance of thermal buoyancy forces (larger
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Grashof number Gr > 1) lead to rise in convective coefficient and the growth rate of convec-
tive coefficient increases for varying viscosity model (α = 0.2) and it further increases with
highly reactive walls (β = 100). This observation further asserts that the dispersion phenom-
ena is significantly affected by the heat transfer. Figure 5.6:(b) demonstrates the compar-
ative study between single and two-fluid model on variation of convective coefficient with
Grashof number Gr under varying viscosity assumption. It is evident from the figure that
the convective coefficient is slightly higher for two fluid model when the Grashof number is
high (approximately Gr > 4) but at low value of Grashof number (approximately Gr < 4)
this effect is negligibly small.

Figure 5.7: Impact of viscosity parameter α on convection coefficient (−M1) varying
with pressure gradient ps. (Gr = 2,K0 = 0.8,Θ = 0.1,R1 = 0.95,n = 0.9,β = 100) (Solid
lines for constant viscosity model (α = 0.0) and dashed lines for variable viscosity model
(α = 0.2))

Figure 5.7 reveals an increase in convective coefficient with rising steady state pressure
gradient ps owing to increased fluid flow through the tube. Like the previous study of
Ramana and Sarojamma [88] for the case of single-fluid model, the convective coefficient is
highest for Newtonian fluid and lowest for Herschel-Bulkley fluid model. It is evident that
the varying viscosity assumption leads to a higher growth rate in convective coefficient.

5.4.3 Dispersion Coefficient (M2 −1/Pe2)

Figure 5.8 illustrates the effect of thermal conductivity K0 on axial dispersion for varying
viscosity under different walls reactivity. It is evident that the influence of thermal con-
ductivity K0 on axial dispersion is very strong for least absorbing walls (β = 0.01) and in
all cases, a rising conductivity ratio K0 leads to growth in axial dispersion M2. Like the
previous studies ([87], [88], [111]), axial dispersion M2 decays with increasing wall reac-
tivity β . A rise in varying viscosity parameter leads to growth in axial dispersion owing
to reduced viscosity and smoother flow velocity. It is also evident that the growth rate of
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axial dispersion with conductivity ratio K0 is higher for varying viscosity (α = 0.1) and
least reactive walls (β = 0.01). So, we conclude that the effect of conductivity ratio K0

will have almost negligible impact on axial dispersion when a significant interphase mass
transport occurs through vessel walls (highly reactive walls β = 100). A comparative study
reveals that the difference in axial dispersion M2 between SFM and TFM is relatively more
for varying viscosity approach in comparison to constant viscosity model. It is also evident
that the difference in axial dispersion between two models rises with K0 with slightly wider
different for varying viscosity. This shows that heat transfer aspect significantly affect the
axial dispersion in flows through tubes with moderate or less reactive walls.
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Figure 5.8: Impact of viscosity parameter α and absorption parameter β on dispersion
coefficient (M2−1/Pe2) varying with conductivity ratio K0. (Gr = 2,Θ = 0.1, ps = 1,n =
0.95) (Solid lines for constant viscosity model (α = 0.0) and dashed lines for variable
viscosity model (α = 0.1))
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Figure 5.9: Impact of viscosity parameter α and absorption parameter β on dispersion
coefficient (M2−1/Pe2) varying with Grashof number Gr. (K0 = 0.8,Θ= 0.1, ps = 1,n=
R1 = 0.95) (Solid lines for constant viscosity model (α = 0.0) and dashed lines for vari-
able viscosity model (α = 0.2))

The effect of Grashof number Gr (and hence the dominance of thermal buoyancy forces)
on axial dispersion M2 is depicted in Figure 5.9 for high (β = 100) and least (β = 0.01) re-
active walls. It is clear from the observation that rise in Grashof number Gr leads to growth
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in axial dispersion M2 revealing the effect of heat transfer on axial dispersion M2. How-
ever the effect of Grashof number Gr on axial dispersion M2 is more dominant for varying
viscosity model in comparison to the constant viscosity model as evident from their higher
growth rate. Like the thermal conductivity ratio K0, the thermal buoyancy forces also have
more dominating effect on axial dispersion for lesser reactive walls i.e. lesser interphase
mass transport through the vessel wall leads to more rapid increase in axial dispersion with
Grashof number Gr. This figure also reveals a significant difference in axial dispersion M2

for SFM and TFM and this difference is relatively higher for varying viscosity model.
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Figure 5.10: Impact of viscosity parameter α on dispersion coefficient (M2 − 1/Pe2)
varying with pressure gradient ps. (Gr = 2,K0 = 0.8,Θ = 0.1,R1 = 0.95,n = 0.9,β =
100) (Solid lines for constant viscosity model (α = 0.0) and dashed lines for variable
viscosity model (α = 0.2))

Like the previous study of Ramana and Sarojamma [88] for the single-fluid model, a
rise in pressure gradient ps leads to growth in axial dispersion M2 owing to the increased
fluid flow in tubes and the axial dispersion is relatively higher for varying viscosity model
(Figure 5.10). It is perceived that the axial dispersion is highest for NF and least for HB
fluid model for both the formulations (α = 0.0 and α ̸= 0.0). A remarkable observation is
that the varying viscosity assumption leads to a larger growth rate in axial dispersion.

5.4.4 Mean Concentration (CM)

The time profile of mean concentration CM for varying viscosity assumption is depicted in
Figure 5.11 for low (Gr = 0.5) and high (Gr = 2.0) thermal buoyancy forces under highly
reactive walls. It is perceived from the Figure 5.11:(a) that with rise in viscosity parameter
α , the mean concentration CM significantly increases and the difference between TFM and
SFM is significantly reduced for higher viscosity parameter (α = 0.2). A rise in viscosity
parameter α leads to relatively quicker beginning of the diffusion process. For large thermal
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buoyancy forces (i.e. higher Grashof number Gr) the diffusion process starts relatively
earlier as evident form the Figure 5.11:(b).
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Figure 5.11: Impact of viscosity parameter α on mean concentration CM varying with
time t for different Grashof numbers (a) Gr = 0.5 and (b) Gr = 2 (K0 = 0.8,Θ = 0.1,n =
0.9, ps = 1,β = 100,z = 0.5). (Solid lines for two-fluid model (TFM) and dashed lines
for single-fluid model (SFM))

A noteworthy finding is that there is a significant rise in value of mean concentration CM in
comparison to the value for low buoyancy forces showing a significant impact of heat trans-
fer on diffusion process. A relatively larger difference in the peak of mean concentration
CM is reported between TFM and SFM in comparison to low buoyancy forces. This shift of
peak in mean concentration CM is reduced for varying viscosity model.
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Figure 5.12: Impact of viscosity parameter α and conductivity ratio K0 on mean concen-
tration CM varying with respect to (a) time t (z = 0.5) and (b) axial distance z (t = 0.5).
(Gr = 2,Θ = 0.1,R1 = n = 0.95, ps = 1,β = 100) (Solid lines for low conductivity ratio
(K0 = 0.4) and dashed lines for high conductivity ratio (K0 = 0.8))

Variation of mean concentration CM with time t and axial distance z for different thermal
conductivity ratio K0 under varying α and higher wall absorption parameter (β = 100) are
depicted in Figure 5.12:(a) and Figure 5.12:(b). A rise in conductivity ratio K0 leads to
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enhanced mean concentration CM as well as quicker beginning of diffusion process. Apart
form that, a significant shift in peak of mean concentration CM is also reported. However,
a reverse effect of conductivity ratio K0 on mean concentration CM is observed in variation
along axial distance z (Figure 5.12:(b)). A noteworthy finding is that for rising conductivity
ratio K0 the positions of peak of the mean concentration CM are relatively farther for varying
viscosity model in comparison to constant viscosity model.
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Figure 5.13: Impact of viscosity parameter α and Grashof number Gr on average con-
centration CM varying with respect to CM with (a) time t (z = 0.5) and (b) axial distance
z (t = 0.5). (K0 = 0.8,Θ= 0.10,R1 = 0.9,= n= 0.95, ps = β = 1) (Solid lines for constant
viscosity model (α = 0.0) and dashed lines for variable viscosity model (α = 0.2))

The time profile of mean concentration CM for different Grashof number Gr and vis-
cosity parameter α suggests that the shifting in peak of CM for varying viscosity is reduced
in case of more dominant thermal buoyancy forces (in case of moderate reactive walls).
It is also perceived that for low thermal buoyancy forces the time for diffusion process is
increased in comparison to high Gr. The difference in peak of mean concentration CM be-
tween TFM and SFM is higher for higher Grashof number Gr. A noteworthy finding is that
the difference in time to complete the diffusion process for TFM and SFM is significantly
reduced in case of varying viscosity approach. The axial variation of mean concentration CM

for different viscosity parameter α and Grashof number Gr are presented in Figure 5.13:(b).
For low thermal buoyancy forces, a slight increase and shift in peak of mean concentration is
reported for TFM in comparison to SFM. However, in case of dominating thermal buoyancy
forces not only the shift in peak of CM is very significant but also the axial span covered for
diffusion process in SFM is relatively higher than TFM. All these observations are same for
varying viscosity model with an exception that the shifting in peak is relatively lesser.

Figure 5.14 reveals that the time and axial distance profile of mean concentration CM

agrees with the previous results for low, moderate and highly reactive walls ([87], [89],
[112]). The mean concentration CM profile suggests a shift in peak for varying viscosity
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model with a reduced peak for mean concentration CM in case of insignificant wall reactivity
and higher peak for moderate and higher wall reactivity. The axial distance profile of mean
concentration is depicted in Figure 5.14:(b) reveals that for varying viscosity, a significant
decay in peak of mean concentration is observed for low and moderate reactive walls but this
decay is insignificant for highly reactive walls. The shifting in peak of mean concentration
is also observed which is most for highly reactive walls.
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Figure 5.14: Impact of viscosity parameter α and absorption parameter β on mean con-
centration CM varying with respect to (a) time t (z= 0.5) and (b) axial distance z (t = 0.5).
(K0 = 0.8,R1 = n= 0.95,Gr = 2,Θ= 0.1, ps = 1) (Solid lines for constant viscosity model
(α = 0.0) and dashed lines for variable viscosity model (α = 0.2))
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Figure 5.15: Impact of viscosity parameter α on mean concentration CM varying with
respect to (a) time t (z = 0.5) and (b) axial distance z (t = 0.5). (n = 0.9,K0 = 0.8,R1 =
0.95,Gr = 2,Θ = 0.1, ps = β = 1) (Solid lines for constant viscosity model (α = 0.0) and
dashed lines for variable viscosity model (α = 0.2))

A comparative study of time profile of mean concentration for all four fluid models is
depicted in Figure 5.15:(a). It is perceived that the peak of mean concentration for viscoelas-
tic fluids are slightly lesser than the peak of non-viscoelastic fluids and for all four fluids the
varying viscosity leads to increase in peak of CM. A similar analysis for all four fluids shows
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that the peak of CM is attained nearer to the point of injection for constant viscosity model
in comparison to varying viscosity model (Figure 5.15:(b)).
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Figure 5.16: Impact of Grashof number Gr on mean concentration CM varying with
respect to (a) time t (z = 0.5) and (b) axial distance z (t = 0.5). (α = 0.2,n = 0.9,K0 =
0.8,R1 = 0.95,Θ = 0.1, ps = β = 1) (Solid lines for low Grashof number (Gr = 0.5) and
dashed lines for high Grashof number (Gr = 1.5))

A comparative analysis of variation of mean concentration CM with time and axial
distance are depicted in Figure 5.16:(a) and Figure 5.16:(b). For low Grashof number
(Gr = 0.5) as demonstrated in Figure 5.16:(a), a significant shifting in peak of CM for yield-
stress fluids (Bingham-Plastic and Herschel-Bulkley fluids) and fluids with no yield-stress
(Newtonian and Power-Law fluids) is observed but the same reduces in case of high Grashof
number (Gr = 1.5).

Another observation is that for low Grashof number (Gr = 0.5), the peak of CM is high-
est for Power-law fluid and least for Bingham-plastic fluid but on increasing the value of
thermal buoyancy forces (Gr = 1.5), the peak of Newtonian fluid become largest and the
peak of Herschel-Bulkley fluid become smallest. This indicates that the dominance of ther-
mal buoyancy forces have significant impact on the mean concentration CM for all four fluid
models. From Figure 5.16:(b), the axial variation of CM for all four fluid models shows
a significant shifting in peak of CM from the point of injection for high thermal buoyancy
forces (Gr = 1.5) in comparison to low Grashof number (Gr = 0.5).

As demonstrated in Figure 5.17:(b), the profile for mean concentration along the axis
shows a reduced difference in peak of CM between constant and varying viscosity model
with increase in time for highly reactive wall. However for highly reactive walls (β = 100),
the span covered along axis for diffusion process is significantly reduced for constant as well
as varying viscosity model. For constant viscosity model, the above observations agrees
with previous studies ([87], [88], [89]). For walls with low reactivity, the corresponding
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mean concentration curve is wider indicating a larger reaction is covered for completion of
diffusion process (Figure 5.17:(a)).
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Figure 5.17: Impact of viscosity parameter α on mean concentration CM varying with z
for different values of time t under different wall absorption parameter (a) β = 0.01 and
(b) β = 100 (K0 = 0.8,R1 = n = 0.95,Gr = 2,Θ = 0.1, ps = 1). (Solid lines for constant
viscosity model (α = 0.0) and dashed lines for variable viscosity model (α = 0.2))
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Figure 5.18: Impact of pressure gradient ps and Herschel-Bulkley fluid parameter n on
mean concentration CM varying with respect to (a) time t (z = 0.5) and (b) axial distance
z (t = 0.5). (α = 0.2,K0 = 0.8,R1 = 0.95,Gr = 2.0,Θ = 0.10,β = 1) (Solid lines for
lower pressure gradient (ps = 1) and dashed lines for higher pressure gradient (ps = 5))

The effect of shear thinning/thickening behavior of fluids on CM is depicted in Figure
5.18:(a) for different pressure gradient. The time profile of CM suggests a slightly larger
peak for CM in case of shear thinning fluid and this difference further increases for higher
pressure gradient. It is also observed that the peak of CM is attained relatively earlier for
shear thinning fluids. A reverse observation is noted in Figure 5.18:(b) for variation of CM

along the axis showing a reduced peak and a farther peak position from the point of injection
for shear thinning fluids. This difference widens for higher pressure gradient ps.
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Figure 5.19: Impact of Grashof number Gr and Herschel-Bulkley fluid parameter n on
mean concentration CM with respect to (a) time t (z = 0.5) and (b) axial distance z (t =
0.5). (α = 0.2,K0 = 0.8,R1 = 0.95,Θ = 0.10, ps = β = 1). (Solid lines for low Grashof
number (Gr = 0.5) and dashed lines for high Grashof number (Gr = 1.5))

The effect of shear thinning/thickening behavior of fluids on mean concentration CM for
different thermal buoyancy forces Gr are depicted in Figure 5.19:(a) and Figure 5.19:(b).
The time profile suggests a reduced peak of CM for shear thinning fluids in comparison to
shear thickening fluids. However this difference is reduced for large buoyancy forces (Gr =

1.5) although in this case the peak of CM for shear thinning fluids is higher in comparison
to shear thickening fluids. From Figure 5.19:(b), the axial variation of CM for different
values of HB fluid parameter n and Grashof number Gr shows that on increasing the shear
thickening behavior of fluid, the peak of CM is attained slightly farther from the point of
injection. However this shifting of peak on increasing the shear thinning behavior of fluid is
significantly reduced for high Grashof number (Gr = 1.5).

5.5 Summary and Conclusions

A novel approach of heat transfer and temperature-dependent viscosity on solute dispersion
in a two-fluid model of blood flow through narrow blood vessels has been employed in the
present study which is physically realistic in cardiovascular system to perform the mixing
or drug transportation to tissues through blood vessels or other vascular systems. The com-
bined impact of temperature parameters and viscosity parameter on diffusion coefficients
and mean concentration has also been discussed in detail and it is found that all these pa-
rameters have definite impact on these quantities.

The following important (novel) determinations of the present study are pointed out:
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1. All the diffusion coefficients and mean concentration are significantly affected by
the thermal buoyancy forces Gr, thermal conductivity ratio K0 and varying viscosity
parameter α .

2. The time to complete diffusion process is significantly lesser under the dominance of
thermal buoyancy forces (i.e. higher Grashof number Gr).

3. For all types of vessel wall (low, moderate and highly reactive), the difference in con-
vective coefficient for two-fluid model (TFM) and single-fluid model (SFM) reduces
with increasing conductivity ratio K0 which further starts increasing after a certain
value. However, the above difference for axial dispersion consistently increases with
thermal conductivity ratio K0.

4. The temperature-dependent viscosity reduces the difference in mean concentration
CM for two-fluid model (TFM) and single-fluid model (SFM).

5. The dominance of thermal buoyancy forces reduces shifting of peak of mean concen-
tration CM between yield-stress fluids and with no yield-stress fluids.

Above outcomes suggest that transportation of nutrients to physiological system or drug
delivery to tissues under medical treatment involving slightly high temperature are severely
affected. The heat transfer aspects included in this study suggests that the above process
may be delayed under slightly higher temperature arising due to certain medical treatments.
It will be interesting to experimentally validates these observations for further applications
to various medical treatments of diseases related to the physiological systems.





Chapter 6

Solute Dispersion into Microcirculation Influenced
by EGL and Varying Viscosity Nature

6.1 Introduction

The complex physiological system of the human body has various situations where inter-
face mass transport plays a significant role such as the transport of lipoprotein through
the intimal of vessel wall tissue. Sankarasubramanian and Gill [2] analyzed the interface
transportation of mass on solute dispersion in a fluid flowing through vessels in which the
exchange coefficient arise with interface mass transfer. This coefficient strongly depends on
the rate of interfacial mass transport and also affects the dispersion phenomena. Following
the presumption of wall reaction (reversible or irreversible boundary reaction), many authors
([149], [87], [150], [151], [152], [88]) analyzed the effect of wall reaction on solute disper-
sion in a Newtonian/non-Newtonian fluid flow through vessels having circular cross-section
with or without catheters.

Recently, Rana and Murthy ([111], [112]) studied the longitudinal dispersion of a so-
lute in yield-stress fluids (Casson and Herschel-Bulkley fluids) flowing through small blood
vessels with absorbing wall and the flow was driven by the periodic nature of pressure gra-
dient. They observed the effect of various parameters like the Womersley parameter, wall
absorption parameter, Herschel-Bulkley fluid (HB) parameter and amplitude of the peri-
odic pressure gradient on the whole dispersion process. A comparative study of diffusion
process among the non-Newtonian fluids flowing through smaller diameter tubes with ab-
sorbing walls has been done by Rana and Murthy [89].

A multi-phase flow of fluids consists of two-immiscible fluids (a liquid bubble embedded
in another fluid) through a vertical tube with a porous boundary was discussed by Sacheti et

5The work has appeared in A. Tiwari, P.D. Shah and S.S. Chauhan, "Solute dispersion in two-fluid
flowing through tubes with a porous layer near the absorbing wall: Model for dispersion phenomenon
in microvessels", International Journal of Multiphase Flow 131 (2020) 103380.
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al. [63]. Tiwari and Deo [158] studied the impact of Womersley number and permeability
in the porous medium on the periodic flow of Newtonian fluid flowing through a tube of
circular cross-section and the Brinkman equation was used to formulate the motion of the
fluid through the porous media. They analyzed the effect of porosity near the wall on the
phase lag in flow rate and pressure gradient. Shaw et al. [159] used a two-fluid model with
Casson fluid nature of blood in the core region to predict the magnet targeting of carrier
particles. A theoretical study of a two-layer fluid model of blood flowing through capillaries
has been examined by Boodoo et al. [66] where blood was assumed as micropolar fluid
in the central region and Newtonian fluid in the peripheral region. The model assumed a
thin Brinkman layer overlying a porous Darcy layer composing the wall of the capillary.
Sharma and Yadav [83] covered the combined aspect of porous layer near the wall and
constriction on the two-fluid model of blood flow through narrow constricted tubes and
analyzed the impact of permeability and different constriction size on the flow variables
such as wall shear stress, velocity, and rate of flow. They used the fluid-porous interface
boundary condition of Ochoa-Tapia and Whitaker ([1], [1]) and Brinkman-Darcy interface
boundary condition (BC) of Beavers and Joseph [160]. Jaiswal and Yadav [68] presented the
impact of a uniform magnetic field and porous layer near the wall on micropolar-Newtonian
fluid flow through narrow tubes with different permeabilities of the porous medium. They
found that the micro-rotation of the particles and permeabilities of Brinkman and Darcy’s
regions significantly affected the flow quantities. Recently, Tiwari et al. [122] applied the
two-fluid model of blood flowing through tubes with a porous layer near the wall by taking
micro-structures into account. Recently, Tiwari and Chauhan ([49], [50], [51]) analyzed the
simultaneous impact of the porous layer and variable viscosity on the two-fluid model of
blood flow through arteries with a porous layer near the tube wall. Following the above
presumptions, not much work has been done on the solute dispersion process in a two-fluid
model of blood flowing through tubes with a porous layer near the tube wall.

In the present analysis, an attempt has been made to understand the physical significance
of the solute dispersion through porous media flow and the impact of the porous layer on
the diffusion process like convective and dispersion coefficients. In the present model, we
are going to analyze the combined effect of the porous layer and variable nature of viscosity
on solute dispersion in a two-fluid model of blood flowing through tubes with a thin porous
layer near the tube wall. Mathematical expressions for flow velocity are obtained for differ-
ent regions and following the generalized dispersion model of Sankarasubramanian and Gill
[2], the analytical expressions for exchange, convective, dispersion coefficients and mean
concentration have been obtained. The impact of porous layer (and hence porous layer pa-
rameters), varying viscosity and wall absorption has been analyzed pictorially and compared
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with the previous studies.

6.2 Problem Formulation

The solute dispersion in the two-fluid model of blood flow through a tube with a porous
layer near the wall as depicted in Figure 6.1 has been analyzed. Blood is assumed to be
Herschel-Bulkley fluid (HB) with variable viscosity in the core region and Newtonian fluid
with constant viscosity representing plasma in the outer region. The peripheral layer of
plasma is divided in to two regions (intermediate and porous regions) and both regions are
occupied by Newtonian fluid. The one-dimensional steady flow through a tube is assumed
to be laminar, incompressible, fully developed with flow symmetry about the axis of the
tube. A thin deposition of the Brinkman layer near the wall is assumed which accounts
for a porous layer as suggested by Secomb et al. [3]. The flow in the porous medium
is governed by Brinkman equation with the effective viscosity different from that of the
Newtonian fluid viscosity. The blood vessel is assumed to be a cylinder with rigid wall due
to which the standard cylindrical polar coordinates system (r̃,φ , z̃) has been employed where
(r̃, z̃) represents the coordinates in radial and axial directions respectively with origin lying
on the axis of the vessel. Since the flow pattern of the blood is assumed to be unidirectional,
so the radial component of velocity vanishes for all the regions (central, intermediate and
porous regions).
Adopting the above hypotheses, the equations governing the fluid flow through tubes of
circular cross-section with a porous layer near the boundaries of the tube are described
below ([49]).
For non-Newtonian region, i.e., 0 < r̃ ≤ R̃1

∂ w̃H

∂ z̃
= 0, (6.1a)

∂ p̃H

∂ r̃
= 0, (6.1b)

∂ p̃H

∂ z̃
+

1
r̃

∂

∂ r̃
(r̃τ̃H) = 0. (6.1c)

For constitutive equation of non-Newtonian (Herschel-Bulkley) fluid τ̃H is given as

τ̃H = τ̃y+

[
µ̃1(r̃)

(
−∂ w̃H

∂ r̃

)] 1
n

, if τ̃H > τ̃y, (6.1d)

∂ w̃H

∂ r̃
= 0, if τ̃H ≤ τ̃y, (6.1e)
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where p̃H , w̃H , µ̃1(r̃) = µ̃H(1+K −K(r̃/R̃3)
m) are the pressure, velocity, radially varying

viscosity of blood in core region, respectively; µ̃H , τ̃H constant viscosity coefficient and
shear stress of Herschel-Bulkley fluid, respectively; τ̃y is the yield stress, n is the Herschel-
Bulkley fluid parameter, K is the constant in viscosity relation and m is varying viscosity
index of the core region fluid.
For intermediate region, i.e., R̃1 < r̃ ≤ R̃2

∂ w̃N

∂ z̃
= 0, (6.2a)

∂ p̃N

∂ r̃
= 0, (6.2b)

−∂ p̃N

∂ z̃
+

µ̃N

r̃
∂

∂ r̃

(
r̃

∂ w̃N

∂ r̃

)
= 0, (6.2c)

where p̃N , w̃N , µ̃N are the pressure, velocity, constant viscosity coefficient of blood in plasma
in the peripheral region, respectively.
Flow through porous medium involves the modeling of flow through pores which also offer
some resistance against the flow. Darcy (1856) employed the term “permeability" to conduct
a mathematical study describing the flow of fluid through the porous media having low
permeability. Brinkman [95] extended Darcy’s mathematical study by considering particle
size and particle density with the permeability of the porous media to elucidate the flow of
fluid through porous mass and carried out the study for the flow of fluid through microporous
medium [96]. In lieu of the above discussion, the Brinkman equation has been used to model
flow through porous layer near the wall.
For porous region, i.e., R̃2 < r̃ ≤ R̃3

∂ w̃B

∂ z̃
= 0, (6.3a)

∂ p̃B

∂ r̃
= 0, (6.3b)

−∂ p̃B

∂ z̃
+

µ̃E

r̃
∂

∂ r̃

(
r̃

∂ w̃B

∂ r̃

)
− µ̃N

k̃
w̃B = 0, (6.3c)

where p̃B, w̃B, µ̃E are the pressure, velocity, effective viscosity of porous region, respectively
and k̃ is permeability in the porous region.
Ochoa-Tapia and Whitaker ([1], [97]) gave a detail description of the solutions of the equa-
tion of motion of homogeneous fluid past a porous medium and suggested the stress-jump
condition at the boundary between a homogeneous fluid and a porous medium which was
further used in the various applications by the researchers. Bhattacharyya and Raja Sekhar
[161] employed stress-jump boundary condition at the fluid-porous interface to study flow
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past a porous spherical shell. Srivastava and Srivastava [124] observed a reduced drag on the
porous sphere with the rise in permeability using Stokes flow formulation. The momentum
transfer condition known as stress-jump condition was employed at the fluid-porous inter-
face to examine the hydrodynamic permeability of swarm of porous cylindrical particles
(Deo et al. [64]).
The boundary conditions are given as

τ̃H is finite, at r̃ = 0,

τ̃H =−µ̃N
∂ w̃N

∂ r
, w̃H = w̃N , at r̃ = R̃1,

w̃N = w̃B,
1

αp

∂ w̃B

∂ r̃
−∂ w̃N

∂ r̃
=

βS√
k̃

w̃B, at r̃ = R̃2,

w̃B = 0, at r̃ = R̃3.

(6.4)

Figure 6.1: The schematic diagram of model description for two-fluid model with an
endothelial glycocalyx layer adjacent to the microvessel wall

The physical sketch for the present model is demonstrated in Figure 6.1, where R̃1, R̃2, R̃3

are the central, intermediate and porous regions radii of the tube, respectively and R̃p is the
plug flow radius. Region-I replicates the core (central) region of the blood vessel which is
occupied by non-Newtonian (Herschel-Bulkley) fluid, Region-II presents the intermediate
region that is governed by Newtonian fluid and Region-III replicates the porous region of
the blood vessel which is occupied by Newtonian fluid. Region-II and III constitutes the
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plasma region. The following dimensionless variables are introduced: ([89], [36], [49])

τH =
τ̃H R̃3

µ̃NW0
,Θ =

τ̃yR̃3

µ̃NW0
, pH =

p̃H R̃3

W0µ̃N
, pN =

p̃NR̃3

W0µ̃N
, pB =

p̃BR̃3

W0µ̃N
,r =

r̃

R̃3
,

wH =
w̃H

W0
, wN =

w̃N

W0
, wB =

w̃B

W0
, R1 =

R̃1

R̃3
, R2 =

R̃2

R̃3
, Pe =

W0R̃3

D̃m
,

t =
D̃mt̃

R̃2
3

, C =
C̃
C0

, W0 =
q̃0R̃2

3
4µ̃N

, λ
2
1 =

µ̃E

µ̃N
, k =

k̃

R̃2
0

, z =
D̃mz̃

W0R̃2
3

,

(6.5)

where W0 is the average velocity, Θ is the non-dimensional yield-stress, q̃0 is the characteris-
tic pressure gradient, Dm is constant molecular diffusivity, C0 is the reference concentration
and λ 2

1 is the viscosity ratio ([124], [156]).
Using the non-dimensional variables (6.5), Eqs. (6.1)−(6.4) transformed into non-dimensional
form as given below
Region- I, i.e., 0 < r ≤ R1

∂wH

∂ z
= 0, (6.6a)

∂ pH

∂ r
= 0, (6.6b)

4
(

∂ pH

∂ z

)
+

1
r

∂

∂ r
(rτH) = 0, (6.6c)

where the equation for Herschel-Bulkley (HB) fluid is given as

τH = Θ+

[
(1+K −Krm)

(
−∂wH

∂ r

)] 1
n

, if τH > Θ, (6.6d)

∂wH

∂ r
= 0, if τH ≤ Θ, (6.6e)

where µ̃H = µ̃N

(
R̃3

W0µ̃N

)1−n
is the constant viscosity coefficient of Herschel-Bulkley fluid.

Region- II, i.e., R1 < r ≤ R2

∂wN

∂ z
= 0, (6.7a)

∂ pN

∂ r
= 0, (6.7b)

−4
(

∂ pN

∂ z

)
+

1
r

∂

∂ r

(
r

∂wN

∂ r

)
= 0. (6.7c)
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Region- III, i.e., R2 < r ≤ 1

∂wB

∂ z
= 0, (6.8a)

∂ pB

∂ r
= 0, (6.8b)

−4
(

∂ pB

∂ z

)
+

λ 2
1
r

∂

∂ r

(
r

∂wB

∂ r

)
− wB

k
= 0, (6.8c)

where λ1 is the viscosity ratio parameter and k is the permeability of the porous layer.
The boundary conditions in dimensionless form are given as

τH is finite, at r = 0,

τH =−∂wN

∂ r
, wH = wN , at r = R1,

wN = wB,
1

αp

∂wB

∂ r
−∂wN

∂ r
=

βS√
k

wB, at r = R2,

wB = 0, at r = 1.

(6.9)

6.2.1 Analytical Solution

Consider the pressure gradients to be constant in central, intermediate and porous regions
([91], [49])

∂ pH

∂ z
=

∂ pN

∂ z
=

∂ pB

∂ z
=−ps, (6.10)

where ps is the steady pressure gradient along the axis of the tube.
Solving dimensionless governing Eqs. (6.6), (6.7) and (6.8) for different regions by using
Eq. (6.10), we have obtained the following expressions:
Region- I, i.e., 0 < r ≤ R1

τH = 2psr+
C1

r
, (6.11a)

wH =C2 −
2n−1(psr)n

(K +1)ps

(
2psr
n+1

−Θ+
K3r3m

(K +1)3

(
2psr

3m+n+1
− Θn

3m+n

)
+

K2r2m

(K +1)2

(
2psr

2m+n+1
− Θn

2m+n

)
+

Krm

K +1

(
2psr

m+n+1
− Θn

m+n

))
. (6.11b)

Region- II, i.e., R1 < r ≤ R2

wN =C3 lnr+C4 − psr2. (6.11c)
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Region- III, i.e., R2 < r ≤ 1

wB =C5I0

(
γr
λ1

)
+C6K0

(
γr
λ1

)
+

4ps

γ2 , (6.11d)

where 1
k = γ2; C1−C6 are arbitrary constants which can be evaluated by using given bound-

ary conditions (6.9) and I0,K0 are modified Bessel functions. The complete expressions for
velocities (wH(r), wN(r), wB(r)) has been evaluated in MATHEMATICA 10.0.2 and due
to very large expressions, these have not been presented in the Manuscript.

6.3 Concentration Solution

6.3.1 Governing Equations

The solute dispersion in the two-fluid model of blood flow through a tube of radius R̃3 with
porous layer near the boundary is depicted in Figure 6.1.

The unidirectional steady flow through the tube is assumed to be laminar, incompress-
ible, fully developed with flow symmetry about the axis of the tube, the diffusion equation
that demonstrates the concentration C of the soluble material can be scripted as in the di-
mensionless form

∂C
∂ t

+w(r)
∂C
∂ z

=
1
r

∂

∂ r

(
r

∂C
∂ r

)
+

1
Pe2

∂ 2C
∂ z2 , (6.12)

where w(r) (≡ wH/wN/wB) is the longitudinal velocity of the fluid, d p̃
dz̃ is the pressure gradi-

ent applied along the axis of the tube and Pe = R̃3
3q̃0

4µ̃ND̃m
is the Peclet number, which measures

the relative characteristic time of the diffusion process to the convection process.

6.3.2 Initial and Boundary Conditions

6.3.2.1 Initial Condition (IC)

A uniform distribution of the solute is assumed at the beginning and the distribution of the
concentration at the beginning of the diffusion process is reported as below.

C(0,z,r) = ψ(z)X(r), (6.13a)
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with

ψ(z) =
δ (z)
d2Pe

, (6.13b)

and

X(r) =

{
1, 0 < r ≤ d,

0, d < r ≤ 1,
(6.13c)

where δ (z) is Dirac delta function.

6.3.2.2 Boundary Conditions (BCs)

The boundary conditions (BCs) signifying a first order heterogeneous irreversible reaction
at the tube wall and a finite concentration in the system at any instant of time are given by

∂C
∂ r

(t,z,1) =−βC(t,z,1), (6.14a)

C(t,∞,r) =
∂C
∂ z

(t,∞,r) = 0, (6.14b)

C(t,z,0) = finite, (6.14c)

where β is the non-dimensional wall absorption parameter or first-order reaction rate repre-
senting the rate of loss on the tube wall.

6.3.3 Diffusion Coefficients and Mean Concentration

The solution of the equation (6.12) with the help of the initial and boundary conditions
(6.13)−(6.14) has been obtained using Sankarasubramanian and Gill [2] approach to finally
obtain the diffusion coefficients and mean concentration. The solution expression for the
exchange coefficient M0(t) is obtained as

M0(t) =− ∑
∞
0 AkαkJ1(αk)e−α2

k t

∑
∞
0

(
Ak
αk

)
J1(αk)e−α2

k t
, (6.15a)

which is exactly the same as derived in the previous works ([2], [87], [88], [89]) as its
computation does not include fluid velocity.
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The expression for convection coefficient (M1) is obtained as

M1 =
−2α2

0

(α2
0 +β 2)J2

0(α0)

∫ 1

0
w(r)rJ2

0(α0r)dr. (6.15b)

The expression for the dispersion coefficient (M2) is given by

M2 =
1

Pe2 −
4α0J1(α0)

(α2
0 +β 2)J2

0(α0)

∫ 1

0
(w(r)+M1)g1(r)rJ0(α0r)dr. (6.15c)

The expression for the mean concentration (CM) of the solute is obtained as

CM(t,z) =
1

2Pe
√

πT
Exp

(
η −

z2
1

4T

)
. (6.15d)

The detailed description of the solution method and derivation of the diffusion coefficients
as well as mean concentration has been provided in Chapter 1 (1.5.3). All the integrations
involved in the expressions of convective coefficient (−M1), dispersion coefficient (M2) and
mean concentration (CM) are evaluated in MATHEMATICA 10.0.2 software using numeri-
cal integration.

6.4 Results and Discussion

An effort has been made to understand the impact of a porous layer near the tube wall on
solute dispersion in the circulation of yield-stress fluid flowing through a tube with wall
absorption. The impact of various parameters like porous layer parameters (k,λ1,βS) and
viscosity parameters (K,m) on solute dispersion process has been analyzed and it is ob-
served that these parameters significantly affect the solute dispersion process. In the ab-
sence of a porous layer near the wall and variable nature of viscosity, this model reduces
to the work of Ramana and Sarojamma [88] representing the case of the single-fluid model
(SFM) with constant viscosity. A comparative study has also been done between the two-
fluid model (TFM) with and without a porous layer near the tube walls in the present work.
The thickness of the intermediate region (R1 < r ≤ R2) is taken as 25% of the whole plasma
layer width ([3], [62], [66]). The range of the core, intermediate and porous regions are
0 < r ≤ R1, R1 < r ≤ R2 and R2 < r ≤ 1, respectively. We have taken the thickness of
core and plasma regions as h1 and h, respectively and h1 + h = 1. Therefore, the typical
estimates for core, intermediate and porous regions radii are R1 = 1−h, R2 = 1− 3h

4 and 1,
respectively. The impact of the porous layer and viscosity parameters on flow variables like
velocity, flow rate, and flow impedance has been discussed in detail in previous work ([49]).
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The range of values of various parameters are taken from the previous studies to perform
the graphical analysis and comparison of our result has been made with the previous works.
The range of values of various parameters with their resources are given in Table 6.1.

Values of parameters

Parameters Values Resources

Peclet number Pe 10−104 [89]

Permeability k (0,∞) [98], [158], [49]

Plasma layer thickness h 0.015-0.050 [31], [28], [49]

Power-law index n 0.90-1.10 [91], [28], [49]

Steady pressure gradient
ps

1-10 [91], [28], [49]

Stress-jump parameter βS −1 < βS < 1 [68]

Viscosity index m 0.0-3.0 [47], [49]

Viscosity parameter K 0.00-0.90 [47], [49]

Viscosity ratio parameter
λ1

1.0-1.5 [124],[122]

Wall absorption parameter
β

0.01 ≤ β ≤
100

[87], [111], [112], [36]

Yield stress Θ 0.00-0.10 [87], [91], [36]

Table 6.1: The range of parameters appropriate for flow through narrow tubes with their
resources

6.4.1 Convective Coefficient

The effect of a thin porous layer on the convective coefficient (−M1) is discussed through
various porous medium parameters in Figure 6.2 and Figure 6.3. Decay in convective coef-
ficient (−M1) is observed with viscosity ratio parameter λ1 in Figure 6.2, signifying that a
reduced porosity obstructs the flow of plasma in the peripheral layer resulting in a reduced
convective coefficient (−M1). The impact of variable viscosity is more significant in the
case of higher wall absorption (β = 100). A comparative study of viscosity ratio parameter
λ1 affecting the convective coefficient (−M1) for four different fluids is depicted in Figure
6.3 by taking different peripheral layer thickness h. It is evident that the reduction rate of
convective coefficient (−M1) with λ1 is significantly larger for high plasma layer thickness
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h as for a thick porous layer, the effect of porosity will have a relatively more significant ef-
fect on convective coefficient. The convective coefficient is least for Herschel-Bulkley (HB)
fluid and most for Newtonian fluid (NF) and an increased h leads to a significant increase
in the decay rate of convective coefficient as a thicker porous layer near the wall have a
significant impact of porosity parameter on velocity and hence the convective coefficient.

β=0.01, m=0 β=0.01, m=3 β=1.00, m=0

β=1.00, m=3 β=100, m=0 β=100, m=3

1.0 1.1 1.2 1.3 1.4 1.5

0.40

0.45

0.50

0.55

0.60

0.65

0.70

λ1

-
M

1

Figure 6.2: Impact of wall absorption parameter β and viscosity index m on convective
coefficient (−M1) varying with viscosity ratio parameter λ1. K = 0.2,h = 0.05,βS =
0.1,k = 5,Θ = 0.10, ps = 1,n = 0.95)
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Figure 6.3: Impact of plasma layer thickness h on convective coefficient (−M1) varying
with viscosity ratio parameter λ1. (K = 0.2,m = 3,βS = 0.1,k = 5, ps = 1,β = 1.0)

The effect of steady-state pressure gradient ps and hence the effect of pressure-driven
flow on convective coefficient (−M1) is discussed in Figure 6.4. An increasing pressure
gradient ps leads to a significant rise in the convective coefficient (−M1) due to the rise
in fluid velocity. The growth rate of the convective coefficient increases with an increase
in the reactive nature of the wall which agrees with the previous studies of Nagarani et al.
[87], and Ramana and Sarojamma [88]. However, for varying nature of viscosity, a slight
decay in convective coefficient (−M1) is observed which is due to a rise in obstruction
against the flow. It is also perceived that the varying nature of viscosity reduces the growth
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rate of convective coefficient with pressure gradient and this decay in growth rate is more
significant for highly reactive walls (β = 100).

K=0.0, β=0.01 K=0.2, β=0.01
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Figure 6.4: Impact of wall absorption parameter β and viscosity parameter K on convec-
tive coefficient (−M1) varying with pressure gradient ps. (m = 3,h = 0.05,βS = 0.1,k =
5,Θ = 0.10,n = 0.95,λ1 = 1)

Figure 6.5 reveals the increasing nature of convective coefficient (−M1) with Herschel-
Bulkley fluid (HB) parameter n for different porous layer thickness but this growth rate
slightly decays with higher porous layer thickness near the wall. Similarly, a wider dif-
ference in convective coefficient (−M1) between walls with and without a porous layer is
reported owing to increased resistance for plasma flow in the peripheral region. Another
observation of a higher convective coefficient is reported for higher plasma layer thickness
h owing to a higher plasma layer thickness resulting in a higher flow rate.

�=����� (���� ��)

�=����� (������� ��)

�=����� (���� ��)

�=����� (������� ��)

���� ���� ���� ���� ����
����

����

����

����

����

����

����

�

-
�
�

Figure 6.5: Impact of plasma layer thickness h on convective coefficient (−M1) varying
with Herschel-Bulkley fluid parameter n. (m = 3,K = 0.2,βS = 0.1,k = 5,Θ = 0.10,β =
ps = λ1 = 1)

A slight increase in convective coefficient (−M1) is observed with a rise in permeability
(k) of the porous layer near the wall, which is due to smoother flow of plasma in the porous
layer (Table 6.2).
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k m=0,
β=0.01

m=3,
β=0.01

m=0,
β=1.00

m=3,
β=1.00

m=0,
β=100

m=3,
β=100

0.5 0.465416 0.431794 0.530309 0.489636 0.716915 0.654389

1.0 0.465561 0.431939 0.530454 0.489781 0.717060 0.654534

3.0 0.465697 0.432075 0.530590 0.489917 0.717196 0.654670

5.0 0.465737 0.432115 0.530630 0.489957 0.717236 0.654710

7.0 0.465757 0.432135 0.530650 0.489977 0.717257 0.654731

9.0 0.465770 0.432148 0.530663 0.489991 0.717270 0.654744

Table 6.2: Impact of viscosity index m, wall absorption parameter β and permeability
in porous region k on convection coefficient (−M1). (K = 0.2,Θ = 0.10,n = 0.95, ps =
λ1 = 1,h = 0.05,βS = 0.1)

k m=0,
β=0.01

m=3,
β=0.01

m=0,
β=1.00

m=3,
β=1.00

m=0,
β=100

m=3,
β=100

0.5 0.465416 0.431794 0.530309 0.489636 0.716915 0.654389

1.0 0.465561 0.431939 0.530454 0.489781 0.717060 0.654534

3.0 0.465697 0.432075 0.530590 0.489917 0.717196 0.654670

5.0 0.465737 0.432115 0.530630 0.489957 0.717236 0.654710

7.0 0.465757 0.432135 0.530650 0.489977 0.717257 0.654731

9.0 0.465770 0.432148 0.530663 0.489991 0.717270 0.654744

Table 6.3: Impact of viscosity index m, wall absorption parameter β and permeability
in porous region k on convection coefficient (−M1). (K = 0.2,Θ = 0.10,n = 0.95, ps =
λ1 = 1,h = 0.05,βS = 0.1)

It is also apparent that an increase in the viscosity index contributes to substantial decay
in convective coefficient (−M1), which is the same for high as well as low permeability of
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the porous layer. A slight decay in convective coefficient (−M1) is observed with the stress-
jump parameter βS and this decay is relatively higher for thicker porous layer near the wall
indicating that deposition of thick layer near the wall significantly affects the convective
coefficient (−M1) in the tube (Table 6.3).

6.4.2 Dispersion Coefficient

Axial dispersion (M2 − 1/Pe2) is significantly affected by the viscosity index m as evident
from Figure 6.6 for all the range of β (0.01− 100). For the low and moderate range of
β (0.01 and 1.00), the axial dispersion demonstrates a slight increase with λ1 showing
that a low porosity layer near the wall contributes towards a slight rise in axial dispersion
(M2 − 1/Pe2) if the wall is not highly reactive. However, in the case of a highly reactive
wall (β = 100), the axial dispersion slightly decays with λ1. For all ranges of β , the varying
nature of viscosity contributes towards significant decay in axial dispersion, which may be
attributed to decay in velocity and flow rates.
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Figure 6.6: Impact of wall absorption parameter on dispersion coefficient (M2 −1/Pe2)
varying with viscosity ratio parameter λ1 (a) β = 0.01, (b) β = 1.00 and (c) β = 100.
(K = 0.2,h = 0.05,Θ = 0.10, ps = 1,βS = 0.1,k = 5,n = 0.95)
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Figure 6.7 denotes the comparative variation of axial dispersion with λ1 for four different
fluids using different porous layer thickness. As evident a thin porous layer has an almost
negligible effect on axial dispersion for all four fluids but as the thickness is increased, a
slight growth in axial dispersion with rising λ1 is observed. This indicates that a reduced
porosity slightly assist the axial dispersion for higher plasma layer thickness. Further, a
significant difference in dispersion coefficient between yield-stress (BP and HB) and non
yield-stress (NF and PL) fluids is observed for all plasma layer thickness.
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Figure 6.7: Impact of plasma layer thickness h on dispersion coefficient (M2 − 1/Pe2)
varying with viscosity ratio parameter λ1. (K = 0.2,m = 3,βS = 0.1,k = 5, ps = β = 1)
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Figure 6.8: Impact of wall absorption parameter β and viscosity parameter K on disper-
sion coefficient (M2 − 1/Pe2) varying with pressure gradient ps. (m = 3,h = 0.05,βS =
0.1,k = 5,Θ = 0.10,n = 0.95,λ1 = 1)

Figure 6.8 suggests that like the convective coefficient (−M1), the axial dispersion (M2−
1/Pe2) also increases with a rise in pressure gradient ps and the increasing growth rate
is significantly reduced for varying viscosity model as well as for absorbing walls with
moderate reactivity compared to low reactive walls. It is further observed that the effect of
varying viscosity on axial dispersion is relatively more significant for less reactive walls. As
observed from the previous works of Nagarani et al. [87], Ramana and Sarojamma [88],
Rana and Murthy [89], the dispersion coefficient significantly reduces for reactive walls.
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Unlike the convective coefficient (−M1), the axial dispersion (M2−1/Pe2) shows reduction
with increased peripheral layer thickness. The reduction in the axial dispersion (M2−1/Pe2)

further grows with the inclusion of porous layer near the wall (Figure 6.9). This variation
remains same for shear thinning and shear thickening fluids, exhibiting a slight ease in axial
dispersion for shear thinning fluid.
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Figure 6.9: Impact of plasma layer thickness h on dispersion coefficient (M2 − 1/Pe2)
varying with HB fluid parameter n. (m = 3,K = 0.2,βS = 0.1,k = 5,Θ = 0.10,β = ps =
λ1 = 1)

k m=0,
β=0.01

m=3,
β=0.01

m=0,
β=1.00

m=3,
β=1.00

m=0,
β=100

m=3,
β=100

0.5 20.7697 18.2348 2.38418 2.08942 1.31168 1.14144

1.0 20.7690 18.2342 2.38414 2.08938 1.31169 1.14146

3.0 20.7685 18.2336 2.38410 2.08935 1.31171 1.14147

5.0 20.7683 18.2334 2.38409 2.08934 1.31171 1.14148

7.0 20.7682 18.2333 2.38409 2.08933 1.31171 1.14148

9.0 20.7681 18.2333 2.38408 2.08933 1.31172 1.14148

Table 6.4: Impact of viscosity index m, wall absorption parameter β and permeability in
porous region k on dispersion coefficient (M2 − 1/Pe2)× 103. (K = 0.2,Θ = 0.10,n =
0.95, ps = λ1 = 1,h = 0.05,βS = 0.1)
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Table 6.4 reveals the effect of permeability on axial dispersion for reactive walls. An
almost negligible decay in axial dispersion is reported with rising permeability. However,
a significant decay is reported for varying viscosity model. Also, as observed from the
previous studies of Nagarani et al. [87], Ramana and Sarojamma [88], Rana and Murthy
[89], the axial dispersion shows decay with rising wall absorption parameter.

6.4.3 Mean Concentration

Time-dependent concentration profile CM for different viscosity index m and viscosity ratio
parameter λ1 is depicted in Figure 6.10:(a). Increment of both the viscosity index m and
viscosity ratio parameter λ1 lead to a significant decay in mean concentration. A delayed
and reduced peak of mean concentration is observed for higher m and λ1 showing that the
varying nature of viscosity and the porosity of porous layer near the wall affect the mean
concentration with time. However, for variation with axial distance z the rising viscosity
index leads to a rise in mean concentration. The justification for this comes from the time
variation of mean concentration showing that for a low time the concentration profile is
slightly different and the same is reflected in Figure 6.10:(b). It is also evident that an
increasing viscosity index and viscosity parameter results in an early peak (lesser z) but an
almost negligible change in peak is observed for reduced porosity of layer near the wall.

m=0, λ1=1.0

m=3, λ1=1.0

m=0, λ1=1.3

m=3, λ1=1.3

m=0, λ1=1.6

m=3, λ1=1.6

0.6 0.8 1.0 1.2 1.4 1.6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

t

C
M
⨯
1
0

3

(a)

m=0, λ1=1.0

m=3, λ1=1.0

m=0, λ1=1.3

m=3, λ1=1.3

m=0, λ1=1.6

m=3, λ1=1.6

0.1 0.2 0.3 0.4

0

1

2

3

4

z

C
M
⨯
1
0

3

(b)

Figure 6.10: Impact of viscosity index m and viscosity ratio parameter λ1 on mean con-
centration CM varying with respect to (a) time t (z= 0.5) and (b) axial distance z (t = 0.5).
(K = 0.2,β = 1.00,h = 0.05,Pe = 103,Θ = 0.10, ps = 1,βS = 0.1,k = 5,n = 0.95)

Figure 6.11:(a) reveals a significantly reduced and delayed peak of mean concentration
CM with rising viscosity parameter K emphasizing the effect of varying nature of viscosity
on the dispersion process. A similar observation of mean concentration profile with lon-
gitudinal direction z for different viscosity parameter K and viscosity ratio parameter λ1 is
reported in Figure 6.11:(b) for which the justification is the same as that of Figure 6.10:(b).
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Figure 6.11: Impact of viscosity parameter K and viscosity ratio parameter λ1 on mean
concentration CM varying with respect to (a) time t (z = 0.5) and (b) axial distance z (t =
0.5). (m = 3,β = 100,h = 0.05,Pe = 103,Θ = 0.10, ps = 1,βS = 0.1,k = 5,n = 0.95)

A time-dependent concentration profile CM for different m and z shows that a larger time
is required to attain peak as we move away from the point of solute injection which matches
with previous studies (Figure 6.12:(a)). A noteworthy observation is that the time taken
for the solute dispersion process increases and peak in CM decreases between constant and
varying viscosity model significantly as we move away from the point of injection. So, a
shift and decay in peak of mean concentration between constant and varying viscosity is
observed as we move away from point of injection.
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Figure 6.12: Impact of viscosity index m on mean concentration CM varying with respect
to (a) time t for different values of axial distance z and (b) axial distance z for different
values of time t. (K = 0.2,h = 0.05,Θ = 0.10, ps = λ1 = 1,βS = 0.1,k = 5,n = 0.95,Pe =
103,β = 0.01)

A similar observation is reported for variation of CM with longitudinal distance for dif-
ferent times (Figure 6.12:(b)). For a larger time, the peak of CM is shifted. The mean
concentration curve along axial distance shows that initially the peak of mean concentration
appeared almost at the same location (same z) for constant and varying viscosity cases but a
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slight shift in peak position is observed with the progress of time in the dispersion process.
Furthermore, a larger time leads to farther spread of solute in the axial direction for con-
stant and varying viscosity cases which agrees with previous works of Nagarani et al. [87],
Ramana and Sarojamma [88], Rana and Murthy [89].
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Figure 6.13: Impact of viscosity index m on mean concentration CM varying with respect
to (a) time t for different values of axial distance z and (b) axial distance z for different
values of time t. (K = 0.2,h = 0.05,Θ = 0.10, ps = λ1 = 1,βS = 0.1,k = 5,n = 0.95,Pe =
103,β = 1.00)

A similar analysis has been done for a tube with a reactive wall where a slightly delayed
peak is observed for a reactive wall for the varying viscosity case. For a highly reactive wall,
the solute dispersion process is completed relatively quicker along with the axial distance.
A higher mean concentration is observed for varying viscosity relative to constant viscosity
for low β .
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Figure 6.14: Impact of viscosity index m on mean concentration CM varying with respect
to (a) time t for different values of axial distance z and (b) axial distance z for different
values of time t. (K = 0.2,h = 0.05,Θ = 0.10, ps = λ1 = 1,βS = 0.1,k = 5,n = 0.95,Pe =
103,β = 100)
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A noteworthy observation is that near the point of solute injection, the mean concen-
tration is higher for varying viscosity in comparison to constant viscosity model and this
pattern reverses as we move away from the point of injection (Figure 6.13-6.14). Figure
6.13 also depicts a significant decay and shift in the peak of mean concentration between
constant and varying viscosity models for a relatively larger time. Unlike the less and in-
termediate reactive walls (Figure 6.12:(a) and 6.13:(a)), the peak of mean concentration CM

for varying viscosity model is higher than constant viscosity model for highly reactive walls
(Figure 6.14:(a)) near the point of solute injection. However, this trend reverses as we move
away from the point of solute injection (increasing z).

NF with PW

NF without PW

PL with PW

PL without PW

BP with PW

BP without PW

HB with PW

HB without PW

0.6 0.8 1.0 1.2 1.4 1.6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

t

C
M
⨯
1
0

3

(a)

NF with PW

NF without PW

PL with PW

PL without PW

BP with PW

BP without PW

HB with PW

HB without PW

0.10 0.15 0.20 0.25 0.30 0.35 0.40

0

1

2

3

4

z

C
M
⨯
1
0

3

(b)

Figure 6.15: Mean concentration CM varying with respect to (a) time t (z = 0.5) and (b)
axial distance z (t = 0.5) between with and without porous region near the walls. (K =
0.2,h = 0.05,βS = 0.1,m = 3,n = 0.90,k = 5,Θ = 0.10, ps = β = 1,λ1 = 1.3,Pe = 103)

A comparative study of present work with previous works (dispersion through a tube
with no porous layer near the wall) is discussed in Figure 6.15. For all four fluids, the CM

for the tube with a porous layer near the tube wall is significantly less than CM for a tube
without a porous layer near the boundary. It is also perceived that the viscoelastic nature
reduces the mean concentration CM which is evident from Figure 6.15:(a) showing a con-
sistently decaying mean concentration CM from Newtonian fluid to Herschel-Bulkley fluid.
An important observation is that the inclusion of a porous layer near the wall contributes to
a reduced and delayed peak of CM relative to that of the tube without a porous layer near
the wall for all four fluids. Apart from that, a delayed peak is reported for viscoelastic fluids
in comparison to NF. However, for small z, the Herschel-Bulkley fluid shows a higher CM

relative to NF and an early peak of CM is reported for tubes with porous walls in comparison
to tubes without porous walls (Figure 6.15:(b)).

The mean concentration slightly rises with increasing permeability owing to a smoother
flow of plasma in the peripheral region (Table 6.5). Although the growth rate slightly reduces
for highly reactive walls.
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k m=0,
β=0.01

m=3,
β=0.01

m=0,
β=1.00

m=3,
β=1.00

m=0,
β=100

m=3,
β=100

0.5 0.490829 0.319880 0.337616 0.229289 0.0902226 0.0508794

1.0 0.491268 0.320222 0.337883 0.229512 0.0903063 0.0509460

3.0 0.491682 0.320545 0.338135 0.229722 0.0903852 0.0510087

5.0 0.491802 0.320639 0.338208 0.229783 0.0904081 0.0510269

7.0 0.491865 0.320687 0.338246 0.229814 0.0904201 0.0510364

9.0 0.491905 0.320719 0.338271 0.229835 0.0904277 0.0510425

Table 6.5: Impact of viscosity index m, wall absorption parameter β and permeability in
porous region k on mean concentration (CM × 103). (K = 0.2,Θ = 0.10,n = 0.95, ps =
λ1 = 1,h = 0.05,βS = 0.1, t = z = 0.5,Pe = 103)

βS K=0.0,
h=0.015

K=0.2,
h=0.015

K=0.0,
h=0.03

K=0.2,
h=0.03

K=0.0,
h=0.05

K=0.2,
h=0.05

-0.9 0.326551 0.0143416 0.233528 0.0088705 0.142586 0.0044259

-0.5 0.325980 0.0143106 0.231852 0.0087920 0.139642 0.0043135

-0.3 0.325696 0.0142953 0.231024 0.0087533 0.138207 0.0042589

0.3 0.324849 0.0142493 0.228575 0.0086389 0.134039 0.0041012

0.5 0.324569 0.0142341 0.227771 0.0086014 0.132694 0.0040506

0.9 0.324009 0.0142039 0.226180 0.0085273 0.130069 0.0039520

Table 6.6: Impact of viscosity parameter K, plasma layer thickness h and stress jump
parameter βS on mean concentration (CM ×106). (m = 3,Θ = 0.10,n = 0.95, ps = λ1 =
1,k = 5,β = 1.0,Pe = 103, t = z = 0.5)
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Further, a rising stress-jump parameter slightly decays the mean concentration for vari-
ous porous layer thickness (Table 6.6). However, this decay rate slightly reduces for varying
viscosity model. So, we conclude that a relative slipping at the fluid-porous interface slightly
affects the mean concentration.

The time profile of mean concentration depicts a higher CM for shear-thinning fluids,
which gradually enhances with steady pressure gradient ps (Figure 6.16:(a)). It is also per-
ceived that the dispersion process lasts slightly longer for shear thickening fluids. However,
along axial variation, the mean concentration decays with rising steady pressure gradient
ps (Figure 6.16:(b)). A remarkable observation is that as we move away from the point
of injection, the peak of mean concentration for shear thickening fluids become relatively
higher than shear-thinning fluids. This further results in a relatively delayed peak of mean
concentration for shear-thinning fluids.
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Figure 6.16: Impact of pressure gradient ps and HB fluid parameter n on mean concentra-
tion CM varying with respect to with (a) time t (z = 0.5) and (b) axial distance z (t = 0.5).
(K = 0.2,h = 0.05,βS = 0.1,m = 3,k = 5,Θ = 0.10,β = 1,λ1 = 1.0,Pe = 103)

6.5 Conclusions

Solute dispersion analysis for two-fluid model of blood flowing through a tube with a porous
layer near the boundary has been done using a generalized dispersion model with emphasis
is being given to varying nature of viscosity in the central region containing non-Newtonian
fluid. The important findings of the present study are:

1. The convective coefficient and axial dispersion are significantly affected by the poros-
ity of the porous layer, viscosity index, viscosity parameter, Herschel-Bulkley fluid
parameter and the thickness of the porous layer near the wall.
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2. The mean concentration depends upon, the varying nature of viscosity as well as the
parameters determining thickness and porosity of the porous layer near the wall.

3. The mean concentration is higher for shear-thinning fluids and the dispersion process
lasts slightly longer for shear-thickening fluids.

4. A comparative study shows a significant difference in the mean concentration for
flow-through tubes with and without a porous layer near the wall.

So, any process involving solute dispersion such as drug delivery to a specific tissue or
physiological system may be significantly affected in case there is a deposition of a porous
layer at the wall which is a physically realistic situation as suggested by Secomb et al. [3].



Chapter 7

Conclusions and Research Prospects

7.1 Conclusions

The present study is a novel approach to investigate the mechanical aspects of blood micro-
circulation by depicting it as an axially symmetric unidirectional, fully developed, steady,
laminar flow of an incompressible two-fluid. Considering the viscosity’s dependence on
hematocrit or temperature in different scenarios, the effects of variable viscosity on flow
variables and diffusion coefficients have been examined. The influence of the microstruc-
ture of erythrocytes on microcirculation and transport phenomena has been examined. The
presence of endothelial glycocalyx layer (EGL) in close proximity to the vessel wall has
been taken into account, and the impact of the permeable properties of the vessel wall on
hemodynamic and transport properties has been investigated. A comparative analysis has
been conducted with existing literature, revealing that obtained findings are consistent with
prior research.

The primary conclusions are found to be:

1. Most of the important flow variables are significantly affected by the microlevel pa-
rameters (N and n), which includes a significant reduction in velocity, flow rate QS

and hematocrit HT while the same leads to growth in flow resistance λs and Fåhræus
effect Fe. The heat transfer parameters such as Grashof number Gr, thermal conduc-
tivity ratio K0vand radiation parameter N1 significantly affect the hematocrit HT and
Fåhræus effect Fe.

2. The viscosity index α rises for less viscous core fluid and results into the growth of
velocity profile, the higher velocity in plug core region and higher flow rate of fluid.
But the flow impedance is observed to be reduced in less viscous core fluid.

3. The mean concentration depends upon, the varying nature of viscosity as well as the
parameters determining thickness and porosity of the porous layer near the wall. The
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mean concentration is higher for shear-thinning fluids and the dispersion process lasts
slightly longer for shear-thickening fluids. A comparative study shows a significant
difference in the mean concentration for flow-through tubes with and without a porous
layer near the wall.

7.2 Noteworthy Contributions

The study offers following noteworthy contributions to the existing understanding of the
subject.

1. Microlevel parameters (N and n) have a significant impact on the diffusion coefficients
and mean concentration in both the formulations (NS and NCS). Specifically, a higher
coupling parameter N leads to a delay in the diffusion process. A rising Hartmann
number H leads to decay in diffusion coefficients as well as time profile of mean
concentration showing a clear impact of the magnetic field on the diffusion process.

2. Relatively higher diffusion coefficients (convective and dispersion coefficients) are
reported for no-couple stress formulation in comparison to no-spin condition at the
fluid-fluid interface. For no-couple stress formulation, the peak in the time profile of
mean concentration appears relatively earlier in comparison to the no-spin formula-
tion.

3. All the diffusion coefficients and mean concentration are significantly affected by the
thermal buoyancy forces Gr, thermal conductivity ratio K0 and varying viscosity pa-
rameter α . The time to complete diffusion process is significantly lesser under the
dominance of thermal buoyancy forces (i.e. higher Grashof number Gr). These out-
comes suggest that transportation of nutrients to physiological system or drug delivery
to tissues under medical treatment involving slightly high temperature are severely af-
fected.

4. The impact of Forchheimer number on flow quantities is slightly visible for small
Darcy number however, it is negligible in case of large Darcy number. This effect is
more significant for a thick endothelial glycocalyx layer adjacent with the wall.

5. All the flow variables except the flow resistance assume relatively higher values for
flow through microvessels without an EGL adjacent with the wall in comparison to
the flow through microvessels with an EGL adjacent with the wall owing to absence
of the Brinkman and nonlinear Forchheimer resistance of the porous medium.
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7.3 Research Constraint

The study has certain limitations that should be acknowledged.

1. The curvature of micro vessel has not been taken into account. Microvessel curvature
may compromise brain blood flow and oxygenation, leading to cognitive impairment
in neurodegenerative conditions. The mechanics of different physiological and patho-
logical processes may be revealed by studying microvessel curvature. It may assist
find vascular disease therapy targets.

2. Plaque accumulation in arteriosclerosis may roughen artery walls, reducing blood flow
and increasing the risk of clot formation. The impact of rough vessel walls on micro-
circulation and transport phenomena has not been investigated in the present study.

3. Hypertension may cause the smooth muscle layer of the artery wall to become hyper-
trophied and lose its flexibility, raising blood pressure and risk of cardiovascular dis-
ease. However, Marfan syndrome may make artery walls excessively elastic, causing
aneurysms and other structural problems. Although, the elastic nature of microvessel
has significant influence on microcirculation, the influence of microvessel elasticity
remains unexamined.

4. Obtained results should be experimentally validated for further applications to various
medical treatments of diseases related to the physiological systems.

Although there may be limitations to the research work, the findings can still provide valu-
able insights and contribute to the existing body of knowledge in the field. These limitations
can serve as opportunities for future research and improvement to build upon the current
findings.

7.4 Research Prospects

In regard of the study presented and above mentioned constraints, the following research
prospects arises

1. An analytical study for solute dispersion in the two-fluid model for blood microcircu-
lation through straight or slightly curved microvessels should be done to examine the
impact of roughness and elasticity of vessel walls.

2. Solute dispersion of electroosmotic blood flow through straight or slightly curved
microvessels can be studied under different pathological conditions.
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3. The mass transport process in microcirculation of blood throgh straight or slightly
curved microvessels with linear reversible and irreversible reactions at the vessel wall
should be studied.

4. Blood microcirculation through microvessels with non circular cross section under
various circumstances can be examined.

5. Center Manifolds and Hypocoercivity approach can be applied to gain a rigorous un-
derstanding of solute dispersion process in flow of blood through straight or slightly
curved microvessels under two fluid model framework.

6. The machine learning approach can be utilised to investigate the microcirculation and
transport phenomena in cardiovascular system.

“ I may not have reached where I intended to,
but I think I have ended up where I needed to be."

— Douglas Adams
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