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ABSTRACT 

Cyber physical production system (CPPS) is a key enabling technology of Industry 4.0 

for online monitoring, prediction, visualization, simulation, optimization, etc. Its 

implementation has enhanced the management capabilities and performance of traditional 

manufacturing systems to meet several engineering requirements at unit, system, and 

system of systems levels. A generic in-depth understanding of the multidisciplinary 

concepts of CPPS is required for quick adoption of CPPS by the industries. Therefore, this 

thesis aims at providing a generic CPPS framework and validates it for a 3D printer, a 

CNC machining center and a learning factory.  

The thesis provides theoretical and practical contributions to the existing body of 

knowledge on CPPS for smart manufacturing analytics and management. It provides a 

systematic literature review on CPPS to provide an in-depth understanding of the 

multidisciplinary concepts for developing a generic CPPS framework for smart 

manufacturing analytics and management. A large number of elements and sub-elements 

are developed for the four phases of the CPPS framework. The selection of the elements 

and sub-elements depends upon the requirement of the system and the objectives of the 

CPPS for the system.  

The proposed CPPS framework for smart 3D printing analytics and management 

transforms a conventional 3D printer into a smart 3D printer by integrating cost-effective 

solutions using low-cost sensors, devices, actuators, and open-source software. A three-

layer architecture is proposed for cloud, fog, and edge computing implementation in 3D 

printing, wherein these three computing technologies do not compete rather complement 

one another. Data-driven descriptive, prognostic, and prescriptive analytics are presented 

for predicting energy distribution during various 3D printing stages, live estimation of 

environmental impacts for the 3D printed products, monitoring the nozzle health, and 

prescribing optimal printing parameters depending on the managerial requirements.  

A CPPS framework for smart tool health analytics and management is proposed and 

implemented for a milling process to enable smart management capabilities of online 

monitoring of cutting tool degradation, detecting anomalous behaviour, predicting tool life 

of cutting tool, and prescribing optimum cutting parameters depending on the managerial 

requirements.   
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A CPPS framework for an existing learning factory is proposed by integrating it with 

inexpensive radio-frequency identification (RFID) and machine vision (MV) systems to 

facilitate smart functionalities of live monitoring, visualization, traceability & tracking, 

and feedback & control. A live dashboard is developed to monitor energy demand, track 

& trace the workpiece in real-time and provide real-time feedback. The study allows for 

the development of transversal competencies for the workforce, industrial engineers, and 

engineering students to effectively handle the complexity and future challenges of Industry 

4.0.  

The study would serve as a reference in providing researchers and practitioners with 

valuable insights, knowledge updates, and decision support in selecting CPPS elements 

and sub-elements according to their impacts and required efforts. It will also assist in 

understanding the maturity status, guiding future developments by addressing the 

important needs, and advancing the knowledge, management capabilities, and potential of 

traditional manufacturing. Finally, the proposed CPPS solutions developed with 

inexpensive hardware and open-source software would help micro, small, and medium 

enterprises (MSMEs) to realize the Industry 4.0 benefits of increased productivity, 

reliability, and product quality at a reasonable cost.  



v 

TABLE OF CONTENTS 
                                                             Page No. 

Acknowledgements                                                                i 

Abstract                                                                 iii 

Table of contents                                                                v 

List of figures                                                                 xi 

List of tables                                                                  xvi 

List of abbreviations and symbols                                                                    xviii 

CHAPTER 1: INTRODUCTION                1-12 

1.1 INDUSTRY 4.0        1 

1.2 CYBER PHYSICAL PRODUCTION SYSTEM    4 

1.3 RESEARCH MOTIVATION       7 

1.4 OBJECTIVES OF THE STUDY      9 

1.5 RESEARCH METHODOLOGY      9 

1.6 SIGNIFICANCE OF THE STUDY      11 

1.7 ORGANIZATION OF THE THESIS      12 

CHAPTER 2: A SYSTEMATIC LITERATURE REVIEW ON CYBER       13-63 
                         PHYSICAL PRODUCTION SYSTEM 

 2.1 INTRODUCTION        13 

 2.2 RESEARCH METHODOLOGY      18 

2.2.1 Planning for Systematic Literature Review    19 

2.2.2 Identification of Literature using PRISMA Technique   19 

2.2.3 Analysis and Synthesis of Literature     21 

2.2.4 Interpretation of Scientometric and Content Analyses Results  21  

 2.3 SCIENTOMETRIC ANALYSIS      21 

            2.3.1 Research Methodology Classification     22 



vi 

     2.3.2 Timeline Distribution        24 

     2.3.3 Geographical Distribution of Literature     25 

     2.3.4 Source Analysis        26 

     2.3.5 Sustainability Development Goals (SDGs) Analysis   28 

     2.3.6 Keyword Co-occurrence Analysis     29 

     2.3.7 Co-authorship Among Countries     31 

     2.3.8 Author and Co-citation Analysis     31 

 2.4 CONTENT ANALYSIS       32 

2.4.1 Hierarchical Levels in CPPS      32 

2.4.2 Data Types        34 

2.4.3 Autonomy Levels        35 

2.4.4 Modelling Techniques       36 

2.4.5 Analytics Techniques       38 

2.4.6 Application Scenarios of CPPS     39 

2.4.7 Enabling Technologies of CPPS     41 

2.4.8 Barrier/Challenge to CPPS      43 

2.4.9 Engineering Needs/Requirement Analysis    45 

2.4.10 Significance Analysis of CPPS Deployment    48 

 2.5 INTERPRETATION OF SCIENTOMETRIC AND CONTENT  
ANALYSES RESULTS       51 

2.5.1 Development of an Impact-Effort Matrix for CPPS Elements 52 

2.5.2 Identification of Paradigm Shifts in CPPS    54 

2.5.3 Development of a Concept Map for CPPS    58 

2.6 SUMMARY         60 

2.7 RESEARCH GAPS        61 

 



vii 

CHAPTER 3: DEVELOPMENT OF A GENERIC CPPS             65-77 
                         FRAMEWORK FOR SMART MANUFACTURING  
                         ANALYTICS AND MANAGEMENT 

3.1 INTRODUCTION        65 

3.2 BACKGROUND         65 

3.3 A GENERIC CPPS FRAMEWORK FOR SMART     72 
      MANUFACTURING ANALYTICS AND MANAGEMENT  

3.3.1 Physical World        72 

3.3.2 Data Acquisition System      74 

3.3.3 Cyber World        74 

3.3.4 Smart Manufacturing Management System    75 

3.4 SUMMARY         77 

CHAPTER 4: DEVELOPMENT OF A CPPS FRAMEWORK           79-162 
                         FOR SMART 3D PRINTING ANALYTICS AND  
                         MANAGEMENT  

4.1 INTRODUCTION        79 

4.2 BACKGROUND        85 

4.2.1 Cloud, Fog, and Edge Computing Technologies   85  

4.2.2 Descriptive Analytics of 3D Printing     90  

4.2.2.1 Characterization and energy distribution in printing stages 90  

4.2.2.2 Live LCA implementation in 3D printing   91 

4.2.3 Prognostic Analytics of 3D Printing     92 

4.2.4 Prescriptive Analytics of 3D Printing     93 

4.2.5 Diagnostic Analytics of 3D Printing     94 

4.3 RESEARCH METHODOLOGY      96 

4.4 EXPERIMENTAL PLANNING (MATERIALS AND METHODS) 98 

4.4.1 Experimental Equipment/Methods      98 



viii 

4.4.2 Design of Experiments       101 

4.5 PHYSICAL WORLD (HARDWARE AND SOFTWARE USED)  102 

4.6 DATA ACQUISITION SYSTEM      104 

4.6.1 Communication Protocols      106 

4.6.2 Data Storage        107 

4.7 CYBER WORLD        108 

4.7.1 Computing Platforms for the Cyber World    108 

4.7.2 Descriptive Analytics Modules      110 

4.7.2.1 Development of a machine learning algorithm for  110 
            characterization and energy distribution  
            in printing stages   

4.7.2.2 Development of a computational model for    117 
            live LCA implementation  

4.7.3 Development of Prognostic Analytics to Predict the RUL  118 
         of the Nozzle   

4.7.4 Development of Prescriptive Analytics to Prescribe Optimum 121  
         Printing Parameters  

4.7.5 Development of Diagnostic Analytics to Detect Anomalies   131 
         during 3D Printing 

4.7.5.1 One class support vector ML algorithm   138 

4.7.5.2 Local outlier factor (LOF) ML algorithm   140 

4.7.5.3 Support vector machine (SVM) ML algorithm  140 

4.7.5.4 Long short-term memory (LSTM) ML algorithm  143 

4.7.5.5 Comparison of the developed ML algorithms  145 

4.8 A SMART 3D PRINTER MANAGEMENT SYSTEM   147 

4.8.1 Decision Support, Visualization, Feedback, and Control  147 

4.8.2 Real-time Monitoring of Relative Humidity    150 

4.8.3 Real-time Monitoring of Ambient Temperature   151 



ix 

4.8.4 Real-time Monitoring of Environmental Emissions   152 

4.8.5 Real-time Monitoring of Acceleration and Orientation  153 

4.8.6 Machine Vision based Online Monitoring, Identification,  155 
and Control of Defects 

4.8.7 Real-time Monitoring and Control of Energy Consumption  157 

4.9 COST ANALYSIS        159 

4.10 SUMMARY         160 

CHAPTER 5: DEVELOPMENT OF A CPPS FRAMEWORK FOR           163-212 
                         SMART TOOL HEALTH ANALYTICS AND  
                         MANAGEMENT  

5.1 INTRODUCTION        163 

5.2 BACKGROUND        167 

5.2.1 Tool Health Modelling Techniques     167  

5.2.2 Tool Health Analytics       169  

5.3 RESEARCH METHODOLOGY      176 

5.4 EXPERIMENTAL PLANNING (MATERIALS AND METHODS) 178 

5.5 PHYSICAL WORLD (HARDWARE AND SOFTWARE USED)  180 

5.6 DATA ACQUISITION SYSTEM      180 

5.7 CYBER WORLD        182 

5.7.1 Development of a ML Algorithm for RUL Prediction of a  182  
         Cutting Tool (Prognostic Analytics) 

5.7.2 Prescriptive Analytics to Prescribe Optimum Cutting Parameters 190 

5.7.3 Anomaly Detection (Diagnostic Analytics)    205 

5.8 A SMART TOOL HEALTH MANAGEMENT SYSTEM   207  

5.9 KNOWLEDGE-BASED SYSTEM      208 

5.10 SUMMARY         210 

 



x 

CHAPTER 6: DEVELOPMENT OF A CPPS FRAMEWORK FOR A          213-234  
                          LEARNING FACTORY TO FACILITATE TEACHING,  
                          TRAINING, AND EXPERIENTIAL LEARNING  

6.1 INTRODUCTION        213 

6.2 BACKGROUND        216 

6.3 LEARNING FACTORY       218 

6.4 RESEARCH METHODOLOGY      222 

6.5 PHYSICAL WORLD (HARDWARE AND SOFTWARE USED)  223 

6.6 DATA ACQUISITION SYSTEM      224 

      6.6.1 Communication Protocols      224 

      6.6.2 Data Storage        225 

6.7 CYBER WORLD        225 

6.7.1 Development of a Machine Vision based Defect Detection System 225 

6.7.2 Development of a RFID-based Real-Time Part Traceability  227 
         System  

6.8 A SMART LEARNING FACTORY MANAGEMENT SYSTEM  227 

6.9 SUMMARY         233 

CHAPTER 7: CONCLUSIONS                          235-242 

REFERENCES                 243-290 

APPENDIX – A (List of publications)      A1 

APPENDIX – B (Brief biography of candidate and supervisors)  B1 

APPENDIX – C (Reproduced enlarged for figures 2.21 and 3.1)  C1-C2 

  



xi 

LIST OF FIGURES  

Figure No. Title of the Figure Page No. 

1.1 A timeline of significant industrial developments during the 
four industrial revolutions, adapted from UNIDO (2017), 
Kagermann et al. (2013)  

2 

1.2 Key Industry 4.0 technologies and their capabilities, 
adapted from García & García (2019)   

3 

1.3 Research methodology to achieve the thesis objectives  10 

2.1 Research methodology for the systematic literature review 18 

2.2 Literature review using the PRISMA technique 20 

2.3 Publication distribution versus research methodologies 23 

2.4 Timeline distribution 24 

2.5 Geographical distribution of literature 25 

2.6 Geographical distribution of literature on the world map 25 

2.7 Source analysis (source type) 26 

2.8 Source analysis (subject discipline) 27 

2.9 Source analysis (source title) 27 

2.10 Sustainability development goals (SDGs) mapping for the 
published articles 

28 

2.11 Overlay network visualization for keywords co-occurrence 30 

2.12 Density network visualization for keywords co-occurrence 30 

2.13 Network visualization for co-authorship among countries 31 

2.14 Network visualization for author and their co-citations 32 

2.15 Hierarchical levels in CPPS 33 

2.16 The twelve main enabling technologies of CPPS 42 

2.17 Barriers/challenges in CPPS 44 

2.18 Significance of CPPS deployment across various 
dimensions 

49 

2.19 Impact-effort matrix for CPPS 53 

2.20 A paradigm shift diagram for various developments 
(concepts, methodologies, practices) over the past, at the 
present and in the future based on their maturity levels 

55 

2.21 Proposed concept map for a CPPS from a holistic 
perspective 

59 



xii 

Figure No. Title of the Figure Page No. 

3.1 A generic CPPS framework for smart manufacturing 
analytics and management  

73 

4.1 Proposed CPPS framework for 3D printing analytics 97 

4.2 Physical world comprising of a 3D Printer with integrated 
sensor networks and devices 

102 

4.3 Nozzle images at different intervals (a) d = 0.4044 mm at 
zero hours (new nozzle), (b) d = 0.4216 mm after 10 hours, 
(c) d = 0.4340 mm after 20 hours, and (d) d = 0.4635 mm 
after 30 hours 

106 

4.4 Proposed three-layer architecture for cloud, fog, and edge 
implementation in 3D printing, adapted from Yousefpour et 
al. (2019), Beregi et al. (2019), Winsystems (2022), 
Digiteum (2022)  

109 

4.5 Active power with respect to time during 3D printing 110 

4.6 Plots for (a) Training loss, validation loss with accuracy, 
confusion matrix for (b) PLA, (c) ABS, and (d) PETG 
filament materials 

113 

4.7 Characterization performed manually for (a) PLA, (b) ABS, 
(c) PETG, and performed through algorithm for (d) PLA, 
(e) ABS, (f) PETG filament materials 

115 

4.8 Predicted energy distribution for (a) PLA, (b) PETG, and 
(c) ABS filament materials 

116 

4.9 Power time series data during the printing stage 119 

4.10 Predictions on test data 120 

4.11 RUL of the nozzle as predicted by the proposed model 
using power data 

121 

4.12 Main effect plot for specific carbon footprint 125 

4.13 Main effect plot for surface roughness 126 

4.14 Main effect plot for printing time 126 

4.15 Residual plot for specific carbon footprint 127 

4.16 Residual plot for surface roughness 127 

4.17 Residual plot for printing time 128 

4.18 Optimization plot for minimization of specific carbon 
footprint and printing time simultaneously at target surface 
roughness value 

130 

 
 

  
 



xiii 

Figure No. Title of the Figure Page No. 
4.19 Normal and abnormal accelerometer data along x-, y-, z-

axes 
133 

4.20 Normal and abnormal gyroscope data along x-, y-, z-axes 134 

4.21 Denoised accelerometer data along x-, y-, z-axes 135 

4.22 Denoised gyroscope data along x-, y-, z-axes 136 

4.23 PCA plot for denoised vibration data 137 

4.24 One-Class SVM algorithm confusion matrix for (a) 
training, (b) testing, and (c) validation 

139 

4.25 LOF algorithm confusion matrix for (a) training, (b) 
testing, and (c) validation 

141 

4.26 SVM algorithm confusion matrix for (a) training, (b) 
testing, and (c) validation 

142 

4.27 LSTM algorithm (a) Loss curve, and confusion matrices for 
(b) training, (c) testing, and (d) validation  

144 

4.28 Dashboard for online visualization of GWP for a 3D 
printed product 

148 

4.29 Live dashboard for 3D printer management system 149 

4.30 Relative humidity values with respect to time for (a) PLA, 
(b) ABS, and (c) PETG filament materials   

150 

4.31 Ambient temperature values with respect to time for (a) 
PLA, (b) ABS, and (c) PETG filament materials 

151 

4.32 VOC values with respect to time for (a) PLA, (b) ABS, and 
(c) PETG filament materials, PM values with respect to 
time for (d) PLA, (e) ABS, and (f) PETG filament materials 

153 

4.33 Acceleration with respect to time during 3D printing with 
PLA filament material along (a) x-axis, (b) y-axis, (c) z-
axis; and orientation along (d) x-axis, (e) y-axis, (f) z-axis 

154 

4.34 Process flow diagram for online monitoring, identification, 
and control of defects during 3D printing 

156 

4.35 Snapshot of (a) 3D printed product, (b) comparison with 
CAD model 

157 

4.36 Power consumption profiles with respect to time for (a) 
PLA, (b) ABS, and (c) PETG filament materials 

158 

5.1 Research methodology for the development of a CPPS 
framework for smart tool health management system 

177 



xiv 

Figure No. Title of the Figure Page No. 

5.2 Physical world comprising of CNC vertical milling center 
with integrated sensor networks and devices; energy and 
material flow  

180 

5.3 Data acquisition dashboards for (a) surface roughness 
measurement, (b) power monitor, (c) tool wear 
measurement, (d) acquisition of force data, power data, and 
XDK sensor data 

181 

5.4 Power profile for the milling operation 183 

5.5 Characterization of stages using (a) manual labelling and 
(b) GMM-HMM algorithm 

185 

5.6 Confusion matrix for characterization of stages using 
GMM-HMM algorithm 

186 

5.7 Graphical representation of predicted RUL using the (a) 
linear regression, (b) Bayesian regression, and (c) 
autoregressive models 

188 

5.8 Main effect plot for active power threshold 195 

5.9 Main effect plot for predicted tool life 196 

5.10 Main effect plot for material removal rate 196 

5.11 Main effect plot for surface roughness 197 

5.12 Interaction plot for active power threshold 198 

5.13 Interaction plot for predicted tool life 198 

5.14 Interaction plot for material removal rate 199 

5.15 Interaction plot for surface roughness 199 

5.16 Residual plots for active power threshold 200 

5.17 Residual plots for predicted tool life 200 

5.18 Residual plots for material removal rate 201 

5.19 Residual plots for surface roughness 201 

5.20 Optimization plot for the first scenario (PTL and MRR 
maximization) 

203 

5.21 Optimization plot for the second scenario (PTL and MRR 
maximization at target surface roughness value) 

204 

5.22 Optimization plot for the third scenario (PTL and MRR 
maximization, and APT minimization at surface roughness 
value) 

204 

   



xv 

Figure No. Title of the Figure Page No. 
5.23 Area under the ROC curves obtained for random forest 

algorithm using (a) force and (b) power data 
207 

5.24 Anomalous behaviour for sudden tool breakdown and 
gradual tool wear  

208 

5.25 Time series plots for (a) energy consumption, (b) surface 
roughness, and (c) tool wear 

209 

5.26 Tool wear after (a)10 minutes, (b) 90 minutes, (c) 130 
minutes; chips colour after (d) 10 minutes, (e) 90 minutes, 
and (f) 130 minutes 

209 

6.1 Dimensions and key features of learning factories, adapted 
from Abele et al. (2015)  

219 

6.2 Existing learning factory infrastructure at Birla Institute of 
Technology & Science, Pilani, Pilani campus, Rajasthan, 
India 

222 

6.3 Development of a CPPS framework for smart learning 
factory 

222 

6.4 Process flow diagram for a machine vision-based defect 
detection system 

226 

6.5 Loss function with respect to the total number of iterations 226 

6.6 Process flow diagram for RFID-based real-time part 
traceability system in a learning factory 

229 

6.7 Learning factory with (a) various MPS stations, (b) 
dashboard for live energy monitoring, (c) graphic user 
interface for manual control action 

230 

6.8 Energy consumption with respect to time for distribution 
and pickup station 

231 

6.9 Energy consumption with respect to time for separating, 
storage and sorting stations 

231 

6.10 A dashboard for visual tracking of the entire assembly 
process in the learning factory 

232 

  



xvi 

LIST OF TABLES 

Table No. Title of the Table Page No. 

2.1 Summary of the existing literature review on CPPS 14 

2.2 Research methodologies used in CPPS literature 22 

2.3 Description of hierarchical levels in CPPS 33 

2.4 Classification of data that can be managed using CPPS 34 

2.5 A brief description of various data analytics techniques 38 

2.6 The application scenarios of CPPS at different hierarchical 
levels 

40 

2.7 Classification of enabling technologies into categories and 
subcategories 

43 

2.8 Various engineering needs/requirements across hierarchical 
levels and from the external stakeholders' perspective 

46 

4.1 Literature on computing technologies in manufacturing 
domain 

88 

4.2 3D printing parameters and their levels based on Taguchi 
L27 orthogonal array 

101 

4.3 CPPS components with their technical specifications, 
applications, communication protocol, and data platform 

103 

4.4 Measurement of performance characteristics 104 

4.5 Experimental data based on Taguchi L27 orthogonal array 105 

4.6 Features extracted from power signature and correlation 
with labels of stages 

111 

4.7 Energy consumption in each stage for PLA, ABS, and 
PETG filament materials 

116 

4.8 Comparison of machine learning models for prediction of 
nozzle’s RUL 

118 

4.9 Analysis of variance results for specific carbon footprint, 
surface roughness, and printing time 

122 

4.10 Confirmation test results for output response functions 131 

4.11 Summary of the dataset 132 

4.12 Range of amplitude for normal and abnormal vibrations 132 

4.13 Evaluation metrics of algorithms for dataset-1 145 

4.14 Evaluation metrics of algorithms for dataset-2  146 

   



xvii 

Table No. Title of the Table Page No. 
4.15 Evaluation metrics of algorithms for dataset-3 146 

4.16 Comparison of different algorithms based on overall 
accuracy and computational time 

146 

4.17 Energy consumption for PLA, ABS, and PETG filament 
materials 

159 

5.1 An overview of reviewed literature in the domain of tool 
health analytics 

172 

5.2 Machining parameters and their values based on Taguchi L-
27 orthogonal array 

179 

5.3 Sensors and devices with their applications and 
measurement techniques 

181 

5.4 Results for active power threshold (APT), predicted tool 
life (PTL), material removal rate (MRR), and surface 
roughness (Ra) at different L27 array conditions 

189 

5.5 ANOVA results for active power threshold 192 

5.6 ANOVA results for predicted tool life 192 

5.7 ANOVA results for material removal rate 193 

5.8 ANOVA results for surface roughness 193 

5.9 Prescription of optimum results under different scenarios 203 

5.10 Performance of different anomaly detection machine 
learning algorithms using force and power data 

206 

6.1 Distribution of various learning factories with major thrust 
area across the globe, adapted from IALF (2023) 

220 

6.2 List of hardware and software resources with their 
technical specifications and applications 

224 

6.3 Energy consumption (in idle as well as the working mode) 
of each MPS station with a cycle time of 20 seconds 

231 

 

  



xviii 

LIST OF ABBREVIATIONS AND SYMBOLS 

Abbreviation/Symbol Description 

3D Three-Dimensional 

5G Fifth Generation 

ABS Acrylonitrile Butadiene Styrene 

AGV Automated Guided Vehicle 

AI Artificial Intelligence 

AISI American Iron and Steel Institute 

AM Additive Manufacturing 

ANN Artificial Neural Network 

ANOVA  Analysis of Variance  

API Application Programming Interface 

APT Active Power Threshold 

AR Augmented Reality 

AUC Area Under the ROC Curve 

AWS Amazon Web Services 

BCPS Blockchain enabled Cyber Physical System 

BiLSTM Bidirectional Long Short Term Memory  

BPNN Back Propagation Neural Network 

BT Bed Temperature 

CAD Computer Aided Design 

CDATT Cross Domain Adaptation Network based on Attention 
Mechanism 

CNN Convolutional Neural Network 

CPPS Cyber Physical Production System 

CPS Cyber Physical System 

CRM Customer Relationship Management 

CS Computer Science 

CSI Camera Serial Interface 

CSV Comma Separated Values 

d Axial Depth of Cut  



xix 

Abbreviation/Symbol Description 

DFA Desirability Function Approach 

DOE Design of Experiments 

DSS   Decision Support System 

ERP Enterprise Resource Planning 

ET Extruder Temperature 

f Feed 

FDM Fused Deposition Modeling 

FPR False Positive Rate 

GA Genetic Algorithm 

G-Code Geometric Code 

GHG Green House Gases  

GMM Gaussian Mixture Model  

GPS Global Positioning System 

GRU Gate Recurrent Units 

GUI Graphic User Interface 

GWP  Global Warming Potential 

HMI Human Machine Interface 

HMM Hidden Markov Model  

HRC Hardness Rockwell C 

HTTP Hypertext Transfer Protocol 

HVAC Heating Ventilation and Air Conditioning 

I2C Inter Integrated Circuit 

IALF International Association of Learning Factories 

ICT Information and Communications Technology 

IDE Integrated Development Environment 

IIoT Industrial Internet of Things 

IIRA Industrial Internet Reference Architecture 

IoT Internet of Things 

IP Internet Protocol 

IT Information Technology 



xx 

Abbreviation/Symbol Description 

KBS Knowledge Based System  

KNN K-Nearest Neighbour 

KPI Key Performance Indicator 

LCA  Life Cycle Assessment  

LCD Liquid Crystal Display 

LH  Layer Height  

LOF Local Outlier Factor 

LS-SVM Least Squares Support Vector Machine 

LSTM  Long Short Term Memory  

LTE Long-Term Evolution 

M2M Machine to Machine 

MES Manufacturing Execution System 

ML Machine Learning 

MPS Modular Production System 

MQTT Message Queuing Telemetry Transport 

MR Mixed Reality 

MRR Material Removal Rate 

MSME Micro Small and Medium Enterprise 

MTBF Mean Time Between Failures 

MTTR Mean Time To Repair 

MV  Machine Vision  

NASSCOM National Association of Software and Service Companies 

NFC Near Field Communication 

NI DAQ National Instrumentation Data Acquisition 

NIST National Institute of Standards and Technology 

NM-ICPS National Mission on Interdisciplinary Cyber Physical 
Systems 

NSGA Non-dominated Sorting Genetic Algorithm 

OEE Overall Equipment Effectiveness 

OPC UA Open Platform Communications United Architecture 

PC Personal Computer 



xxi 

Abbreviation/Symbol Description 

PCA Principal Component Analysis 

PETG Polyethylene Terephthalate Glycol  

PLA Polylactic Acid 

PLC Programmable Logic Controller 

PLM Product Lifecycle Management 

PM Particulate Matter 

PMS Printer Management Software 

PRISMA Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses 

PT Print Time 

PTL Predicted Tool Life 

PW Product Weight 

Ra Average Surface Roughness  

RAM Random Access Memory 

RAMI Reference Architectural Model Industrie 4.0 

RFID Radio Frequency Identification 

RH Relative Humidity 

RMSE Root Mean Square Error 

RNN Recurrent Neural Network  

ROC Receiver Operating Characteristic 

RSM Response Surface Methodhology 

RTLS Real-time Locating System 

RUL Remaining Useful Life 

SAMARTH Smart Advanced Manufacturing and Rapid 
Transformation Hub 

SCF Specific Carbon Footprint 

SDG Sustainable Development Goal 

SME Small and Midsize Enterprise 

SPI Serial Peripheral Interface 

SQL Structured Query Language 

SSD Single Shot Detector 



xxii 

Abbreviation/Symbol Description 

SVC Support Vector Classifier 

SVM Support Vector Machine  

SVR Support Vector Regression 

TCP Transmission Control Protocol 

THE Times Higher Education 

TPR True Positive Rate 

UART Universal Asynchronous Receiver Transmitter 

UNIDO United Nations Industrial Development Organization 

UNSW University of New South Wales 

US United States 

USD United States Dollar 

v Cutting Speed  

VOC Volatile Organic Compound 

VPN Virtual Private Network 

VR Virtual Reality 

XDK Xbox Development Kit 
 



 

CHAPTER 1 

INTRODUCTION  

 
1.1 INDUSTRY 4.0 

The historical impacts of industrial revolutions are substantial and continue to shape 

modern patterns of residence, leisure activities, and political dialogue through advances in 

manufacturing techniques and organizational structures (Stearns, 2021).  

The advent of steam engine in the late 18th century sparked the first industrial 

revolution. It automated physically demanding and repetitive tasks, leading to increased 

productivity, reduced production expenses, improved living conditions, and fostered urban 

development. The second industrial revolution occurred in the late 19th century with the 

introduction of linear assembly lines. The assembly lines were powered by electricity 

generated from oil and gas, which enabled mass production and led to significant 

efficiency improvements. In the 1970s, the third industrial revolution began with the 

incorporation of electronics, information technology, and communication technology into 

manufacturing processes. This integration facilitated automation and engineering 

advancement, resulting in enhanced productivity (UNIDO, 2017). 

The rising demand for customised, connected, intelligent, and sustainable products, 

along with the rapid development of Internet of Things (IoT), cyber physical systems 

(CPS), and artificial intelligence (AI) technologies led to the emergence of fourth 

industrial revolution (Moghaddam et al., 2018).  It is commonly known as Industry 4.0, a 

term coined by the German government in the year 2011 as part of its high-tech strategy 

2020 action plan to establish Germany as a manufacturing industry leader (L. Xu et al., 

2018). The fourth industrial revolution is also referred to as digital manufacturing or smart 
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manufacturing. It has led to the convergence of the physical and virtual worlds in the form 

of cyber-physical systems, where the computational components cooperate with the 

physical processes, utilizing and providing data analytics services on the internet 

(Monostori et al., 2016). It monitors and synchronizes information between physical and 

cyber systems for improving efficiency, collaboration, and resilience (Lee et al., 2015), 

and cooperate intelligently to achieve optimal manufacturing processes, manage 

disruptions, and adapt to changing circumstances (Rojas & Rauch, 2019).   

Industry 4.0 has transitioned from being a future trend to a present reality. It currently 

holds a prominent position in the strategic and research priorities of numerous enterprises 

(Xu et al., 2018). It has significant potential for addressing customer needs, enhancing 

decision-making flexibility, increasing resource efficiency, generating value through new 

services, adapting to demographic changes in the workforce, promoting work-life balance, 

and sustaining competitiveness in a high-wage economy (Kagermann et al., 2013). Figure 

1.1 depicts a timeline of significant industrial developments during the four industrial 

revolutions.  

 
Figure 1.1 A timeline of significant industrial developments during the four industrial revolutions, adapted 

from UNIDO (2017), Kagermann et al. (2013)  
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The successful implementation of Industry 4.0 transformation necessitates the 

incorporation of twelve fundamental technologies (García & García, 2019). These 

technologies include sensors & actuators, RFID & RTLS, mobile technologies, 

communication & networking, cyber physical systems, additive manufacturing, 

virtualization technologies (VR & AR), cloud, simulation, data analytics & AI, adaptive 

robotics, and cybersecurity. Figure 1.2 shows the capabilities of these technologies. 

 

 

Figure 1.2 Key Industry 4.0 technologies and their capabilities, adapted from García & García (2019) 
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1.2 CYBER PHYSICAL PRODUCTION SYSTEM 

The cyber physical system (CPS) refers to the fusion of the physical world with the 

virtual world, enabling powerful computation, collaborative communication, and 

advanced analytics (Morgan & O’Donnell, 2018). In the manufacturing domain, CPS is 

described as a cyber physical production system (CPPS). CPPS is regarded as one of the 

fundamental components of the development endeavour leading to smart manufacturing 

and industry 4.0 (Ahmed et al., 2021). CPPS has the potential to enhance the capabilities 

of a production system threefold (Lins & Oliveira, 2020). It facilitates innovation, 

automation, enhanced customer responsiveness, and intelligent systems (Suvarna et al., 

2021). It also enables online monitoring, simulation, prediction, and optimization of 

manufacturing operations, which is essential for improving the flexibility and efficiency 

of a manufacturing system (Ding et al., 2019).  

A cyber world is a virtual representation of the corresponding physical system. It can 

be either a digital twin or data-driven with varying modelling and computational 

capabilities (Thiede et al., 2016). Modelling and simulation can be performed using data 

mining or machine learning techniques (Rogall et al., 2022). Overall, CPPS approach 

allows integration of various hardware/software, data acquisition, data analytics, 

dashboards, feedback, and control actions. It also enables real-time capability, modularity, 

reconfigurability, and scalability (Lins et al., 2020).  

The advancements in innovative and cost-effective sensors, microcontrollers, 

networking, data storage options, etc. are driving the deployment of CPPS in industry. The 

digital applications are generating a huge amount of data from the production systems, and 

this data has become a commodity of significant value in manufacturing. The potential for 
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data-driven applications to provide manufacturing companies with competitive advantages 

is becoming increasingly apparent (Kusiak, 2022). This data, which is metaphorized as oil 

of the 18th century remains an untapped asset lacking systematic uses (Wired, 2018). 

However, the advancement in the big data analysis or data analytics during the last decade 

is enabling the manufacturing industry to analyse the past and the present data for 

identifying potential bottlenecks, detecting anomalies, predicting maintenance events, 

getting valuable insights to optimize the production systems in real-time. However, the 

industry is getting only little benefits expected of data analytics, and only a small number 

of industries are using data analytics to reap its benefits. Therefore, there is a great potential 

for the manufacturing industries to use data analytics for betterment of processes, 

sustainability, and profits. Also, there is a huge unexplored business potential for young 

entrepreneurs and researchers to initiate data acquisition and data analytics start-ups.  

Data analytics and machine learning help researchers to mine or discover meaningful 

correlations, patterns, and trends by blending different technologies and techniques such 

as pattern recognition, statistics, and mathematics (Larose, 2005). Predictive analytics has 

several benefits in the manufacturing industry such as minimizing scrap, preventing tool 

failure, alerting quality issues, factory safety, and remote maintenance of tools. Prognostic 

analytics assesses tool/equipment health and predicts the remaining useful life (RUL) 

(Weiss et al., 2015). Prescriptive analytics prescribes the best mode, route, manner or 

move to operate the systems for improving the agility and value creation. Smart and 

intelligent decisions based on prescriptive analytics can automate the decision-making of 

a system concerning its design, planning, scheduling, controlling, and operations using a 

mix of optimisation, heuristics, machine learning, and cyber physical systems (Menezes et 

al., 2019). 
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Generally, CPPS can significantly enhance economic and environmental performance 

in manufacturing (Thiede, 2018). It promotes self-awareness and self-prediction at the 

unit/component/process level. At the system level, it enables self-configuration and 

maintenance, ensures minimal production downtime, and provides factory management 

with efficient production planning and inventory management (Lee et al., 2015). At the 

system of systems level, a smart service platform facilitates interconnection and 

interoperability between multiple system level CPPSs. This allows collaborative 

application optimization with multiple stakeholders, such as personalized customizations, 

intelligent design, and remote maintenance. Consequently, the design process is shortened, 

decreasing time and related expenses (Qi et al., 2018). In the case of smart production 

logistics, it has resulted in operational benefits of improved delivery, decreased makespan 

time and energy consumption (Flores-García et al., 2023). 

The recent use of CPPS has demonstrated its potential for improving performance of 

additive manufacturing, subtractive manufacturing, battery production (Schlichter et al., 

2022), 3D printing (Wiese et al., 2021), resistance spot welding (Ahmed et al. 2021), CNC 

machine tool (Pantazis et al., 2023), HVAC (Vogt et al., 2022), etc. 

CPPS has been the subject of numerous review studies, including narrative, systematic, 

state-of-the-art, and critical literature review. However, these studies are scattered and 

need to provide a comprehensive understanding of CPPS from a generic perspective. The 

existing literature does not provide a holistic understanding of the multidisciplinary 

concepts of CPPS, resembling the parable of 'The Blind Men and an Elephant'.  A generic 

CPPS framework for smart manufacturing analytics and management, impact & effort 

requirements for CPPS adoption, and a concept map specifically for CPPS is missing in 

the literature.   
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Most of the conventional manufacturing equipment are yet to be Industry 4.0 compliant 

and lacks intelligent functionalities. At present, it is economically impossible from Indian 

MSMEs’ perspective that these equipment will be replaced with the Industry 4.0 compliant 

equipment before the end of life of these equipment. The enhancement of the smart 

functionalities of the traditional manufacturing equipment by using inexpensive sensors, 

actuators, and open-source software is a viable solution to achieve the Industry 4.0 benefits 

of increased productivity, reliability, and product quality for the Indian MSMEs.  

1.3 RESEARCH MOTIVATION  

The French novelist, Marcel Proust, famously stated that “The real voyage of discovery 

consists not in seeking new landscapes, but in having new eyes”. This statement remains 

relevant today, particularly in the context of cyber physical production systems, which 

offer enhanced visibility to anticipate future events and enable timely decision-making.  

In one of studies, Monostori et al. (2016) reviewed the potential of cyber physical 

systems in manufacturing, including their economic potentials. The review concluded that 

the digitization of the manufacturing industry will have significant economic and 

organizational effects, with intelligent and connected products bringing about significant 

changes in value creation and the competitive landscape. These innovations have the 

potential to significantly boost productivity, and enhance the functionality and 

performance of products. Furthermore, according to a report published by McKinsey 

Global Institute, CPPS is projected to yield substantial cost savings of 900 billion to 2.3 

trillion USD by 2025, based on the assumption that nearly every manufacturing facility 

(80 – 100%) will be digitalized by that time (Manyika et al., 2015).    
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The Indian manufacturing sector is transforming due to Industry 4.0. It has shifted from 

a production-centric to a customer-centric approach to meet the demand for affordable and 

customized products. This development increases the need for flexible and responsive 

manufacturing. Industry 4.0 is significant for India because it has the potential to increase 

the manufacturing sector's competitiveness, flexibility, and responsiveness to customer 

demands (Parhi et al., 2022). By 2025, more than two-thirds of Indian manufacturers are 

expected to embrace digital transformation, which is crucial in achieving India's 

manufacturing GDP target of 25% (NASSCOM, 2022). 

The Indian government has recognized the significant potential of cyber-physical 

systems in various sectors such as services, manufacturing, agriculture, water 

management, energy management, traffic management, healthcare, environment, 

infrastructure, geo-information systems, security, financial systems, and crime prevention. 

This has resulted in the establishment of a national mission on interdisciplinary cyber-

physical systems (NM-ICPS) aimed at ensuring future security through the development 

of basic research and infrastructure, manpower, and skills. Furthermore, the “smart and 

advanced manufacturing rapid transformation hub (SAMARTH)” project by Government 

of India has been initiated to promote Industry 4.0 technologies by 2025, specifically in 

the manufacturing sector (Parhi et al., 2022).  

Despite these efforts, Indian industries still face numerous challenges in leveraging the 

full potential of Industry 4.0. Employees lack the necessary skills (analytical, data security, 

data management, etc.) to implement Industry 4.0 technologies, resulting in a significant 

skills gap. Small and medium-sized enterprises are hesitant to implement Industry 4.0 due 
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to the lack of funds, the unpredictability of the investment, and the impact on their bottom 

line (Singhal, 2021).  

 The current work is motivated by the need to address these challenges faced by Indian 

manufacturing industries. This research demonstrates that CPPSs can be developed using 

low-cost technologies like low-cost sensors, devices, open-source software to harness the 

potentials of Industry 4.0 and enable competency development to bridge skill gaps by 

facilitating teaching, training, and experiential learning on a didactic platform.  

1.4 OBJECTIVES OF THE STUDY  

The objectives of this study are as follows:   

• Development of a generic CPPS framework for smart manufacturing analytics and 

management considering possible elements and sub-elements. 

• Development of a CPPS framework for smart 3D printing analytics and management 

based on data-driven analytics techniques and integrated computing technologies. 

• Development of a CPPS framework for smart tool health analytics and management 

for a CNC milling center. 

• Development of a CPPS framework for a learning factory to facilitate teaching, 

training, and experiential learning. 

1.5 RESEARCH METHODOLOGY  

The research methodology adopted in this study to achieve the above-mentioned 

objectives is shown in figure 1.3.  
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Figure 1.3 Research methodology to achieve the thesis objectives 
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1.6 SIGNIFICANCE OF THE STUDY  

The present work adds value to the body of knowledge of cyber physical production 

system through systematic literature review that would serve as a reference in providing 

researchers and practitioners with valuable insights, knowledge updates, and decision 

support in selecting CPPS elements and sub-elements according to their impacts and 

required efforts. It will assist in understanding the maturity status; guiding future 

developments by addressing the important needs; and advancing the knowledge and 

management capabilities. 

The present work utilizes the potential of Industry 4.0 (CPPS and enabling 

technologies, such as advancements in innovative and cost-effective sensors, 

microcontrollers, networking, data storage, cloud, fog, edge computing, etc.) to facilitate 

smart functionalities in a conventional manufacturing system. As a result, this could be 

instrumental in enhancing the management capabilities of a conventional manufacturing 

system and achieving the Industry 4.0 benefits of increased productivity, reliability, and 

product quality at a reasonable price.  

The significance of this research lies not only in its ability to predict variables, but also 

in its ability to prescribe optimal solutions using prescriptive analytics that enable 

recommendation of optimal process parameters.  

This research also allows for the development of transversal competencies for 

workforce, industrial engineers, and engineering students, allowing them to effectively 

handle the complexity and future challenges of Industry 4.0.    
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1.7 ORGANIZATION OF THE THESIS  

The thesis is organized in seven chapters. Chapter 1 presents an introduction of the 

thesis. Chapter 2 presents a systematic literature review of 164 articles focusing on cyber 

physical production system for smart manufacturing analytics and management. It 

discovers interrelationships among various meaningful information/concepts and provides 

an in-depth understanding of the multidisciplinary concepts of CPPS. Chapter 3 proposes 

a generic CPPS framework. Chapter 4 proposes a CPPS framework for smart 3D printing 

analytics and management, wherein a conventional 3D printer is transformed into a smart 

3D printer by integrating cost-effective solutions (low-cost smart sensors, devices, 

actuators, and open-source software) to enable smart management capabilities of online 

monitoring, data acquisition, visualization, control, and analytics. Chapter 5 proposes a 

CPPS framework for smart tool health analytics and management. A CNC milling center 

is integrated with smart sensors and devices to enable smart management capabilities of 

online monitoring, data acquisition, visualization, control, and analytics. Chapter 6 

proposes a CPPS framework for a learning factory, where an existing learning factory 

infrastructure is integrated with inexpensive RFID and MV systems. Chapter 7 presents 

summary of the main contributions, acknowledging limitations, discussing significance, 

and providing an outlook for future research.   

  



 

CHAPTER 2 

A SYSTEMATIC LITERATURE REVIEW ON CYBER PHYSICAL 

PRODUCTION SYSTEM  

 

This chapter presents a systematic literature review on cyber physical production 

system. The study aims to provide an in-depth, clear, and concise understanding of 

multidisciplinary concepts of CPPS through proper classification and clustering of its 

knowledge and information, analyzing the engineering needs/requirements, discovering 

interrelationships among meaningful information/concepts, and visualizing the paradigm 

shifts. 

2.1 INTRODUCTION  

The importance of a literature review lies in presenting a logically argued case founded 

on a comprehensive understanding of the current state of knowledge about a topic of study 

(Machi & McEvoy, 2021). It is classified into eight types, namely; systematic, state-of-

the-art, narrative, realistic, rapid, conceptual, expert, and critical (Sangwa & Sangwan, 

2018). A systematic literature review employs narrative and subjective methods to 

synthesize the findings of selected studies after searching, identifying, evaluating, and 

abstracting data (Paré et al., 2015). Table 2.1 summarizes the existing literature review 

papers in the context of CPPS. The analysis of existing reviews reveals that researchers 

have primarily focused on narrative and systematic reviews, with less emphasis on state-

of-the-art and critical literature reviews. During the initial phase of CPPS's development, 

from the year 2010 – 2015, only narrative reviews were conducted. Since 2016, most 

researchers have conducted systematic reviews, followed by narrative reviews.  
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Table 2.1 Summary of the existing literature review on CPPS 

Author Sub-type Scientific contribution 

Monostori L. 
(2014) 

Narrative The origin of CPPS; the interaction (parallel development and mutual 
influence) between CS, ICT, and manufacturing; and CPPS’s 
expectations & challenges were discussed. 

Schmidt et al. 
(2015) 

Narrative The integration approach and its types in CPPS were investigated and 
categorized according to the degree of integration. 

Wang et al. 
(2015) 

Narrative The status, recent developments, definitions, characteristics, drivers, 
barriers and initiatives, applications, and prospects of CPPS were 
reviewed.  

Monostori et 
al. (2016) 

Narrative In addition to the earlier work of Monostori L. (2014), case studies of 
CPPS were presented, the economic potentials of CPPS were 
highlighted, and a three-step model was presented to assist companies 
in developing their own Industry 4.0 vision and roadmap. 

Hehenberger 
et al. (2016) 

Narrative The transition from mechatronics to CPS and cloud based (IoT) 
systems is described; CPPS is explained using case studies; and design, 
modelling, simulation, and integration were discussed. 

Trappey et al. 
(2016) 

Systematic The patent portfolios and international standards pertaining to the 5C's 
CPS architecture proposed by Lee et al. (2015) were reviewed.  

Jiang et al. 
(2018) 

Narrative The application of CPPS in monitoring, fault diagnosis, and control was 
reviewed, along with the practical requirements, challenges, and future 
research directions. 

Moghaddam 
et al. (2018) 

Critical The characteristics of several reference architectures, including RAMI 
4.0, IIRA, IBM Industry 4.0, and NIST Smart Manufacturing, were 
examined. Additionally, strategies that companies can use to modify 
their current architectural designs to comply with these characteristics 
were investigated. 

Tilbury DM 
(2019) 

Narrative Architectures, digital twins and simulation, cyber security, and possible 
future research directions for CPPS, such as mass customization and 
energy-efficient manufacturing were discussed.  

Vater et al. 
(2019) 

Narrative The main components of prescriptive analytics and its needs in smart 
manufacturing for shopfloor production control were reviewed. 

Cardin O. 
(2019) 

Narrative A framework was proposed to analyse current developments and 
categorize the developments and applications of CPPS with the support 
of various illustrative examples. 

Rojas et al. 
(2019) 

Systematic A systematic literature review was conducted to investigate recent 
developments in CPPS, with an emphasis on the importance of 
connectivity and control systems in manufacturing. 

Rossit et al. 
(2019) 

Narrative The impacts of CPPS on scheduling in addressing fundamental issues 
and higher-level production planning tasks were reviewed. 

Sinha et al. 
(2020) 

Narrative The architectures, anticipated features, challenges, and socio-economic 
impact of CPPS, and its required technologies and management skills, 
were reviewed and discussed. 

Nota et al. 
(2020) 

Systematic Technologies such as CPPS, OEE analysis, and IoT were reviewed for 
improving energy efficiency. A method to quantify energy losses 
during batch processes was also proposed. 
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Table 2.1 Summary of the existing literature review on CPPS (contd…) 

Author Sub-type Scientific contribution 

Liu et al. 
(2021) 

Systematic A framework for the digitalization and servitization of machine tools 
was proposed. Topics such as enabling technologies, methodologies, 
standards, architectures, applications, major research issues, challenges, 
and future research directions were also discussed.  

Rojas et al. 
(2021) 

Systematic The literature review focused on the implementation of CPPS in SMEs 
with an emphasis on identifying the challenges and future research 
directions. 

Andronie et 
al. (2021) 

Systematic The literature review on CPPS focused primarily on AI-based decision-
making algorithms, IoT sensing networks, and deep learning-enhanced 
smart process management. 

X. Wu et al., 
(2020) 

Systematic The review was focused on the concept development and engineering 
development stages of CPPS. The findings of the literature review 
analysis were used to propose a concept map that outlined the themes 
of existing research. 

Danelon et al.  
(2021) 

State-of-
the-art 

A bibliometric analysis of literature focused on CPPS from 2008 to 
2019 was conducted to highlight the research trends. 

Andronie et 
al. (2021) 

Systematic The purpose of the review was to assess the capabilities of CPPS in 
achieving sustainable smart manufacturing through data- and service-
driven product lifecycle management. 

Suvarna et al. 
(2021) 

Narrative A comprehensive view of the CPPS's role in transforming three key and 
essential drivers, namely data-driven manufacturing, decentralized 
manufacturing, and integrated blockchains for data security, was 
presented. 

Castillo et al. 
(2022) 

Systematic The review investigated the role of CPPS in enabling smart capabilities 
like anomaly detection and decision support in the context of FDM 3D 
printers. 

Habib et al. 
(2022) 

Narrative CPS's role in smart manufacturing was reviewed, including 
technologies, architectures, applications, future scope, and 
implementation challenges. 

Webert et al. 
(2022) 

Narrative The role of CPPS in smart manufacturing, including its features, 
technologies, architectures, applications, future scope, and 
implementation challenges, was reviewed. 

Fernandes et 
al. (2022) 

Systematic The application of metaheuristic algorithms in CPPS context to address 
dynamic scheduling issues and achieve energy-efficient scheduling in 
shop floor operations was reviewed. 

 

The widely used cyber physical system concept map (Berkeley, 2012) has been 

developed for larger audiences having several applications in sectors including 

communication, consumer, energy, infrastructure, health care, manufacturing, military, 

physical security, robotics, smart buildings, and transportation sectors. The concept map 

is not well suited for the manufacturing domain. A few researchers have attempted to 
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develop a concept map/ontology for CPPS. The scope of the concept map by X. Wu et al. 

(2020) is narrow and limited as it is mainly focused towards CPPS’s research topics. 

Similarly, Wang et al. (2016) proposed a concept map consisting of holons, agents and 

function blocks for CPPS implementation in a decentralized/cloud environment. Trappey 

et al. (2016) presented an ontology based on the 5C's (connection, conversion, cyber, 

cognition, configuration) of CPS architecture proposed by Lee et al. (2015).  

Impact effort analysis of CPPS’s elements can be highly useful for researchers or 

practitioners in decision making, e.g., selecting CPPS elements as per the impacts and 

efforts needed, e.g., skill, machine, time & money. This can also be useful in virtual 

commissioning or evaluating the elements of CPPS before the actual set-up. However, to 

the best of author’s knowledge, there is no literature in the context of CPPS impact-effort 

matrix to help the practitioner. 

Content analysis helps to gain useful insights and enhances the understanding of a 

research domain through a broader and more condensed description of a phenomenon 

(Moldavska et al., 2017). There has been hardly any attempt to classify data, autonomy, 

analytics, modelling techniques, enabling technologies, significance of implementing 

CPPS, and applications considering all three hierarchy levels.  

Although researchers have outlined several challenges in their studies, there is hardly 

any literature where these challenges have been identified at element/component levels of 

the CPPS framework.  

Similarly, researchers have outlined several future research directions in their studies. 

However, a paradigm for CPPS showing its maturity levels over the past, at present and in 

future is still missing in the literature.  

Scientometric analysis is a powerful tool to explore the scope and trend of any research 

domain and the first step for extracting and validating the most relevant data from a large 
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database (Castillo et al., 2022). In the context of CPPS, scientometric analysis in terms of 

research type classification and sustainability development goals are missing in the 

literature. The present study aims to bridge the identified research gaps. This is achieved 

through the following objectives: 

• To conduct an up-to-date systematic literature review from a holistic perspective of 

CPPS, considering all three hierarchy levels; namely unit, system, and system of 

systems 

• To conduct scientometric analysis in terms of research methodology classification, 

timeline distribution, geographical distribution, source analysis, SDGs analysis, 

keyword co-occurrence analysis, co-authorship among countries, and author and co-

citation analysis 

• To perform descriptive analytics for classifying data types, autonomy, analytics, 

modelling techniques, enabling technologies, significance analysis, and applications 

considering the three hierarchy levels of CPPS 

• To identify challenges at each element/component of the CPPS framework 

• To analyze the engineering needs/requirements at the unit, system, and system of 

systems levels. 

• To develop impacts-efforts matrix of CPPS elements based on the interpretation of the 

review analysis results that would provide decision support for the realization of a 

CPPS in their use cases 

• To propose a paradigm for CPPS showing its maturity levels over the past, at present, 

and outline future research directions  

• To develop a concept map for CPPS that is well-suited for a researcher or practitioner 

working in the manufacturing domain  
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2.2 RESEARCH METHODOLOGY  

 Figure 2.1 shows the research methodology for conducting the systematic literature 

review. This consists of four main steps, namely research planning, development of a 

database for literature review using the PRISMA technique, data analysis and synthesis, 

and outcome of scientometric and content analyses.  

 

Figure 2.1 Research methodology for the systematic literature review 
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2.2.1 Planning for Systematic Literature Review 

 The research planning step consists of selecting the topic, defining the area of research, 

the scope of the study, and framing research questions. The area of research for the 

systematic literature review is cyber physical production system for smart manufacturing 

analytics and management. The scope of the work is limited to cyber physical production 

systems application in the manufacturing domain. Research questions framed to be 

investigated in the literature to address the objectives of the present study are as follows:  

• What is the current status, trends, and research focus on CPPS? 

• What are the potentials, characteristics (e.g., data types, autonomy, analytics, 

modelling techniques, etc.), architectures, frameworks, enabling technologies, and 

application areas for CPPS implementation? 

• What are the major sustainability development goals that can be achieved through 

CPPS implementation? 

• What engineering requirements can be fulfilled by implementing CPPS in a smart 

manufacturing management system? 

• How are the elements of CPPS correlated with the engineering needs/requirements 

from hierarchy levels and external stakeholders’ perspectives? 

• What are the major challenges and future research directions in the context of CPPS? 

• How are hierarchical levels, autonomy, analytics, modelling techniques, enabling 

technologies, and applications classified in a CPPS? 

• What impact do the elements of CPPS have, and what effort is required for their 

implementation? 

• How to develop a concept map for a better understanding of the interrelationships 

among different elements and information in a CPPS? 

2.2.2 Identification of Literature using PRISMA Technique  

 Database for literature review is developed using the preferred reporting items for 

systematic reviews and meta-analyses (PRISMA) technique. It is an evidence-based 

minimum set of items for reporting in systematic reviews and meta-analyses. It is widely 
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used by researchers to improve the reporting of systematic reviews and meta-analyses 

(Moher et al., 2009). Figure 2.2 shows the four phases of the PRISMA flow diagram used 

for developing the database. 

In the identification phase, records are identified from databases. In the present study, 

two databases, namely Scopus and Web of Science, were used to search for literature using 

the search term “Cyber Physical Production System” in article title, abstract, and 

keywords. The selected range is up to December 31, 2022, and only English-language 

articles were considered. The source type included journals, conference proceedings, book 

chapters, journal editorials, etc. The second phase is screening, where duplicates are 

removed. In the first stage of exclusion, articles were excluded that are out of scope and 

provided insufficient details. In the second stage of exclusion, articles were excluded based 

on the thorough examination of the whole paper. The fourth phase involves the inclusion 

of additional records identified through the snowballing method along with the selected 

articles after the exclusion phase.  

 

Figure 2.2 Literature review using the PRISMA technique 
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2.2.3 Analysis and Synthesis of Literature 

 Data analysis and synthesis for the systematic literature review were conducted using 

scientometric and content analyses of quantitative and qualitative data, respectively.  

Scientometric analysis is a powerful tool to explore the scope and trend of any research 

domain and the first step to extract and validate the most relevant data from a large 

database (Castillo et al., 2022). In the present work, scientometric analysis was conducted 

to get an overview of the latest trends by analyzing various perspectives, namely research 

methodology classification, timeline distribution, geographical distribution, source 

analysis, SDGs analysis, keyword co-occurrence analysis, co-authorship among countries, 

and author and co-citation analysis. 

Content analysis helps to gain useful insights and enhances the understanding of a 

research domain through a broader and more condensed description of a phenomenon 

(Moldavska & Welo, 2017). In the present work, literature contents were analyzed for 

classifying/grouping various concepts of CPPS such as hierarchical levels, data types, 

autonomy, analytics, modelling techniques, and enabling technologies; and analyzing 

applications areas, barriers/challenges, engineering needs/requirements, and significance. 

2.2.4 Interpretation of Scientometric and Content Analyses Results 

  Interpretations of data analysis and synthesis results help to understand concepts in a 

clear and concise perspective; discover interrelationships among meaningful 

information/concepts; and visualize the paradigm shift of a research domain. In the present 

work, results obtained through data analysis and synthesis were interpreted to propose a 

concept map, analyze the impact-efforts for the CPPS’s elements, provide a paradigm 

diagram to visualize the shift in research directions, and identify research gaps. 

2.3 SCIENTOMETRIC ANALYSIS 

This section discusses the results obtained using scientometric analysis, namely 

research methodology classification, timeline distribution, geographical distribution, 
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source analysis, SDGs analysis, keyword co-occurrence analysis, co-authorship among 

countries, and author and co-citation analysis.  

2.3.1 Research Methodology Classification  

The research methodology adopted for the selected articles is broadly classified into 

seven types, namely conceptual, descriptive, pragmatic, empirical, editorial, report, and 

literature review. Research methodology is classified as pragmatic, when it deals with 

practical problems (Okpoti & Jeong, 2021). It is further classified into real, simulation, 

prototypical, and exemplary based on the production environment. According to Machi et 

al. (2021).  “a literature review is a written document that presents a logically argued case 

founded on a comprehensive understanding of the current state of knowledge about a topic 

of study”. It is further classified into eight types, namely systematic, state of the art, 

narrative, realistic, rapid, conceptual, expert, and critical (Sangwa & Sangwan, 2018). A 

brief description of each type and sub-type of research methodology is shown in Table 2.2. 

Table 2.2 Research methodologies used in CPPS literature 

Type Subtype/environment Feature/ focus 

Conceptual  Describes fundamental concepts of CPPS.  

Descriptive  Describes fundamental concepts of CPPS and proposes a 
framework/architecture. 

Pragmatic 

Real Real-world manufacturing problem is solved along with 
conceptual/descriptive study 

Simulation The simulation environment is used to develop a 
manufacturing problem.  
 

Prototypical The manufacturing problem is solved using prototypical 
implementation along with a conceptual/descriptive study. 

Exemplary Illustrative or exemplary data are used to describe or solve 
manufacturing problems along with conceptual/ descriptive 
study. 

Empirical  Data for the study has been taken from existing databases, 
reviews, case studies, taxonomy, or typological approaches. 

Editorial  An opinion or viewpoint expressed by a member of the 
editorial board or any senior researcher or expert in a journal. 
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Table 2.2 Research methodologies used in CPPS literature (contd…) 

Type Subtype/environment Feature/ focus 

Report 
 An informative document produced by a company or non-

profit organisation to highlight features of a solution, 
product, or service. 

Literature 
review 

Systematic Provides meta-analysis and synthesis of the selected 
literature. 

State-of-the-art Concentrates primarily on current research on the selected 
topic. 

Narrative Summarizes the information about the methods and results. 

Realistic Used to synthesize individual studies and produce a 
generalized theory. 

Rapid Systematic assessment of the existing findings on the 
selected topic. 

Conceptual Provides a theoretical literature review of existing theories 
and interrelationships among them. 

Expert Review done by experts of the subject or field. 

Critical Provides a higher degree of analysis and synthesis of the 
selected topic. 

 

Figure 2.3 shows the article published in each type of methodology. Figure 2.3 

indicates that most of the researchers have used pragmatic, conceptual, and descriptive 

methodologies.  

 

 
Figure 2.3 Publication distribution versus research methodologies 
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The reason for the large number of pragmatic studies may be that the many authors 

have used case studies in real situation to demonstrate the CPPS adoption for enhancing 

potentials and functionalities (e.g., online monitoring, prediction, visualization, 

simulation, optimization, automation, etc.) of traditional manufacturing systems in an 

Industry 4.0 environment.   

2.3.2 Timeline Distribution  

Figure 2.4 shows the distribution of the literature along the timeline from the year 2010 

to 2022 in chronological order. The first article was published by Rajkumar et al. (2010), 

where the importance of CPS for enhancing interaction and controlling the physical world 

in the manufacturing domain was provided along with other domains such as 

transportation, healthcare, agriculture, energy, defense, aerospace, and buildings. More 

than one-third of articles were published in the last two years, showing the importance of 

the topic. There was a sudden drop in articles in the year 2020. This decline can be 

attributed to the COVID-19 pandemic. 

 

Figure 2.4 Timeline distribution 
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2.3.3 Geographical Distribution of Literature  

Figure 2.5 shows the geographical distribution of literature as per its source. It can be 

observed that Germany is the leading country, followed by China and the United States, 

which are equally placed. France, Italy, Austria, and India are placed at fourth, fifth, sixth, 

and seventh positions, respectively. The geographical distribution of literature on the 

world map is graphically visualized in Figure 2.6, which shows that most of the research 

on CPPS is conducted in Europe. 

 
Figure 2.5 Geographical distribution of literature 

 
Figure 2.6 Geographical distribution of literature on the world map  
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2.3.4 Source Analysis  

Figure 2.7 shows the source analysis of articles according to their type. It can be 

observed that most of the articles are from the journal (around 62%), followed by 

conferences (around 35%). Reports and book chapters contribute only a few of the total 

articles.  

 

Figure 2.7 Source analysis (source type)  

 

Figure 2.8 shows the source analysis of articles according to subject discipline.  It can 

be observed that CPPS involves a multidisciplinary approach. Most of the articles are 

distributed over engineering and computer science disciplines. Other disciplines such as 

energy, mathematics, environmental science, business, management & accounting, 

material science, decision and social sciences also contribute. This supports the statement 

of Monostori et al. (2014) about CPPS – “a convergence of the physical and cyber worlds 

through the parallel development of computer science, information and communication 

technologies and manufacturing automation has been observed over the years”.  
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Figure 2.8 Source analysis (subject discipline) 

Figure 2.9 shows the source analysis of articles according to source title. It can be 

observed that Procedia CIRP has the highest number of articles, followed by IEEE 

proceedings, Journal of Manufacturing Systems, Computers in Industry, International 

Journal of Advanced Manufacturing Technology, International Journal of Computer 

Integrated Manufacturing, etc.  

 

Figure 2.9 Source analysis (source title) 
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2.3.5 Sustainability Development Goals (SDGs) Analysis  

The data for mapping SDGs with the articles is extracted from the Scopus database. 

According to the information provided on the Scopus website “Sustainable Development 

Goals (SDGs) are specific research areas that are helping to solve real-world problems. 

Elsevier data science teams have built extensive keyword queries, supplemented with 

machine learning, to map documents to SDGs with very high precision. Times Higher 

Education (THE) also uses the Elsevier SDG data mapping as part of their Impact 

Rankings” (Scopus, 2023). 

Figure 2.10 shows the SDGs mapping for the published articles. It can be observed that 

more than two third of the articles are mapped to SDG 9 that aims to foster Industry, 

innovation, and infrastructure. SDGs 7 & 8 aim for affordable & clean energy, decent work 

& economic growth have been provided equal coverage (around 8%). The published 

articles are also mapped with SDGs 13, 17, 8, 6 & 11 in the order of their percentage 

coverage.  

 

 

Figure 2.10 Sustainability development goals (SDGs) mapping for the published articles 
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2.3.6 Keyword Co-occurrence Analysis  

The keywords provided for an article are useful in measuring the research topic and 

determining the interrelationship of these topics (Castillo et al., 2022). A keyword co-

occurrence analysis was conducted to examine research trends and focus of the reviewed 

topic of “cyber physical production systems”. This was performed using VOSviewer, a 

commonly used software tool for constructing and visualizing bibliometric networks by 

extracting significant terms from scientific literature (VOSviewer, 2023). A bibliometric 

file containing author and indexed keywords generated from the Scopus database is used 

as a source file for the VOSviewer software. The threshold limit was set at five, indicating 

that the same word must have appeared in at least five articles for a visual link to be 

generated. The threshold was set to improve the visibility/readability of the generated 

network diagram. 

Figures 2.11 illustrate the overlay network visualization for keywords co-occurrence. 

The size of the circle represents the number of occurrences of the keyword, while the lines 

or connections illustrate their relationship. The more the keyword co-occurrences, the 

closer and stronger the link.  

The most frequently used keywords indicate the most studied research issue between 

the years 2010 to 2022. The decreasing order of keywords with respect to frequency of 

occurrence is CPPS, embedded system, Industry 4.0, internet of things, production control, 

decision making, life cycle, artificial intelligence, maintenance, etc. The change of colour 

from blue to yellow represents a change in the average publication year of the keywords 

between the years 2010 to 2022. The yellow colour of nodes indicates the recent trends of 

the researcher’s interest and are gaining on topics such as CPPS, energy efficiency, 

machine learning, industrial internet of things, big data, etc.  
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Figure 2.11 Overlay network visualization for keywords co-occurrence  

Figure 2.12 shows the density network visualization for keywords co-occurrence 

wherein the yellow colour and larger font size indicate the strength of the keywords, while 

their proximity denotes their relatedness. Industry 4.0 has the strongest link strength and 

is closely related to cyber physical system, embedded systems, decision making, industrial 

internet of things, etc. 

 

Figure 2.12 Density network visualization for keywords co-occurrence  
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2.3.7 Co-authorship Among Countries  

Figure 2.13 shows the network visualization for co-authorship among eleven countries 

created using the VOSviewer software. The circle size corresponds to the number of 

publications in the country/region. The thickness of the links indicates the frequency of 

co-authorship between the two countries. The threshold was set at a minimum of two co-

authorship articles between countries. It can be observed that Germany, followed by China, 

the United States, and France, has the most significant number of co-authorships. The 

strongest collaborations are between Germany and the United States; China and New 

Zealand; Germany and India; Germany and Italy, while France and China; Hungary and 

Austria; are also involved in collaborations on a lesser scale.  

 

Figure 2.13 Network visualization for co-authorship among countries  

2.3.8 Author and Co-citation Analysis  

Author and co-citation analysis is a method used to identify influential authors in a 

particular research field. It also examines the connections between authors through their 

co-citations. Figure 2.14 shows the network visualization for authors and their co-citation. 

The circle's size indicates the frequency of co-citations among authors or papers, while the 

thickness of the lines indicates the degree of co-citation strength. The threshold was set at 

a minimum of twenty citations for an author in the VOSviewer software to improve the 

visibility/readability of the generated network diagram. The authors Monostori L., Wang 

L., Xu X., Lee J., and Tao F. have the highest number of co-citations with other authors, 

suggesting their significant contributions to the advancement of this research area. 
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Figure 2.14 Network visualization for author and their co-citations  

2.4 CONTENT ANALYSIS  

This section discusses the results obtained by analysing the content of the literature. 

The information extracted from the literature is analyzed and organized for categorizing 

hierarchical levels, data types, autonomy levels, analytics types, modelling techniques, 

enabling technologies, and analyzing applications area, barriers/challenges, engineering 

needs/requirements, and significance of implementing CPPS.    

2.4.1 Hierarchical Levels in CPPS 

CPS can generally range in size from small-scale devices such as pacemakers to large-

scale systems such as national power grids (Wang et al., 2015). Therefore, it is essential 

to differentiate these ranges precisely and concisely. There are a few articles (Qi et al., 

2018; Tao et al., 2019; Wang et al., 2015; Nota et al., 2020) where information regarding 

hierarchical levels is provided. The hierarchical levels of the CPPS can be classified into 

three broad categories: unit, system, and system of systems level. Figure 2.15 illustrates 

the categorization for these hierarchical levels, and Table 2.3 provides a concise distinction 

between these hierarchical levels, with descriptions and examples.  
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Figure 2.15 Hierarchical levels in CPPS 

Table 2.3 Description of hierarchical levels in CPPS  

Hierarchical 
level 

Description Examples 

Level I: Unit 

It is the lowest hierarchical level of CPPS. It 
includes smart components/equipment/ 
materials (Qi et al., 2018)/individual devices 
performing a unit process (Nota et al., 2020). 

CNC machines, smart robots, 
material embedded with RFID; 
AGV embedded with sensors (Qi et 
al., 2018); 3D printers; welding; 
casting, etc. 

Level II: System 

It is the intermediate hierarchical level of 
CPPS. It integrates multiple unit-level CPPSs 
that work in collaboration (Qi et al., 2018). It 
includes production line/cell/smart factory/ 
smart shopfloor process chain/facility layout/ 
technical building services.  

Shopfloor with more than one 
machine tool (CNC machines, 
smart robots, AGVs, and conveyor 
belts, etc.) & process chains; 
automotive production line; 
manufacturing assembly process, 
etc. 

Level III: System 
of systems 

It is the highest hierarchical level of CPPS. It 
integrates multiple system-level CPPSs at life 
cycle/industrial symbiosis/enterprises/supply 
chain stages and constitutes a smart service 
platform (Qi et al., 2018). Coordination and 
collaboration between these systems and 
subsystems involve complex interactions (L. 
Wang et al., 2015; Lin et al., 2019).  

Multiple production lines/multiple 
factories (Qi et al., 2018); 
collaborative services between 
production, design, and service 
companies (Tao et al., 2019); 
MSMEs; large-scale enterprises, 
etc. 
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2.4.2 Data Types  

Data is often metaphorized as the oil of the 18th century due to its potential as an 

unexplored resource. If utilized systematically, it has the potential to facilitate data-driven 

applications that provide manufacturing companies with growing competitive advantages 

(Kusiak, 2022). The categorization of data types is a crucial process in unlocking the vast 

capabilities and potential of CPPS via their smart management systems. Only a few 

researchers (Beckers et al., 2022; Rogall et al., 2022) have attempted to classify the data 

generated in a CPPS. However, these are more specific to applications (e.g., metal 

cutting/3D printing). Therefore, the contents of 164 articles have been analyzed to provide 

a holistic view of various data types into six broad categories. Table 2.4 lists a wide range 

of data type categories that are managed using CPPS. 

Table 2.4 Classification of data that can be managed using CPPS 

Sl. No. Data types Sub-types Description Examples 

1 Metadata  It describes the higher-
level fixed characteristics 
of a component/process/ 
machine/product. 

Date & time, component ID, 
process name, geometry 
feature, tool used, cutting 
fluid, machine tool, process 
parameters, product properties 
like material type, hardness, 
etc. 

2 State 
variables or 
process data 

 It describes the changing 
system behaviour within a 
process step. 

Time series data of power, 
force, vibration, etc. 

3 Process 
metadata 

 It provides specific 
descriptions of the origin 
of the process data. 

Sampling rate/measuring 
range/voltage range of the 
sensor, etc. 

4 Event data 

Machine It describes various 
conditions of the machine. 

Idle, set up, operate, alarms, 
power on/off, etc. 

Product  It describes various 
statuses related to the 
product.  

Finished product, inventories, 
delayed product, defective 
products, etc. 

Event time It describes various events 
related to time. 

Set up time, lead time, takt 
time, cycle time, waiting time, 
throughput time, assembly 
time, etc. 
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Table 2.4 Classification of data that can be managed using CPPS (Contd.) 

Sl. No. Data types Sub-types Description Examples 

5 Performance 
indicators 

Technological 

It describes data that can 
be utilized to evaluate 
technological 
performance. 

Concentricity, surface 
roughness, RUL, MTBF, 
MTTR, etc. 

Environmental  

It describes data that can 
be used to estimate 
environmental impacts.   

Energy consumption 
(machine, auxiliary units), 
material inputs & outputs, 
waste & emissions, etc. 

Economic 
It describes data that can 
be used to measure 
economic performance.  

Cost, utilization level, OEE, 
average worker occupancy, 
manufacturing time, etc. 

6 External 
influencing 
factors 

 It describes data regarding 
external factors that 
influence the performance 
of a CPPS. 

Ambient temperature, 
humidity, atmospheric 
pressure, etc. 

  

2.4.3 Autonomy Levels  

The level of autonomy refers to CPPS's ability to develop and implement its own 

strategies and plans as well as response to identified tasks or problems (Ansari et al., 2018). 

The classification of autonomy, which ranges from fully automatic to fully manual, is 

essential for understanding the level/degree of human interaction with CPPS (Cardin, 

2019). The level of autonomy depends on how autonomous and self-reliant/independent a 

system element is in its interactions with other system elements (Schmidt et al., 2015). 

There are only a few articles (Ansari et al., 2018; Schmidt et al., 2015; Thiede et al., 2016; 

Cardin, 2019) where autonomy levels have been classified to determine the degree of 

human interaction with the CPPS. Based on literature, following are the levels of autonomy 

in a CPPS:  

• Level 1 autonomy (Manual): CPPS only provides data and transparency of KPIs to a 

human who oversees all decisions and actions to be taken manually. 
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• Level II autonomy (Semi-automatic): CPPS acts as an active decision support tool and 

takes simple decisions itself and leaves complex decisions to human for execution.  

• Level III autonomy (Fully automatic): CPPS controls the physical world automatically 

without any human intervention. The role of humans is limited to the supervision of 

the CPPS, i.e., transparency regarding KPIs and control actions. 

2.4.4 Modelling Techniques  

Modelling techniques are essential for establishing correlations among processed data, 

which enables data analytics and optimization techniques to generate valuable insights in 

subsequent steps. It is used to understand/predict/optimize/simulate the behaviour of 

physical systems (Mendia et al., 2022). Only a few researchers (Mendia et al., 2022; 

Thiede et al., 2016; Rai et al. 2020) have classified and described some of the modelling 

techniques. Therefore, based on the literature, following classification and description of 

modelling techniques with their relative advantages and limitations emerges:   

• Physics-based models: They are used to model the dynamics of a system and consider 

various assumptions or simplifications to solve the complexities of a physical system 

(Rai et al., 2020). The main advantages of physics-based modelling are reduced 

experimental efforts, time, material, and costs (Malakizadi et al., 2020; J. Wang et al., 

2020). However, non-availability of in-depth prior knowledge of system behaviour and 

the inability to be updated with the dynamic changes in physical parameters result in 

lower accuracies, effectiveness, and flexibilities of these models (Wu, et al., 2017a; P. 

Wang et al., 2019; Zhao et al., 2019). 

• Empirical/mathematical models: These are mathematical equation-based models 

derived from statistics and data analysis rather than physical laws. They are based on 

experimental data and do not necessarily have a theoretical basis. Empirical models 

have the advantage of being simple and easy to use because they do not require a deep 

understanding of the underlying physical principles (Chakrabortty & Bose, 2017). 
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These models can also be useful for making predictions or optimizing processes when 

theoretical models are not available or are too complex to use (Yuan et al., 2022). 

However, it may be challenging, time-consuming, and expensive to conduct multiple 

experiments (Denkena et al., 2020). These models may not always be accurate or 

reliable, especially when applied outside the range of conditions for which they were 

developed (Yuan et al., 2022). 

• Data-driven models: They rely on machine learning techniques to learn from data 

patterns and predict future behaviour. The advantages include its capability to handle 

complex systems where it is challenging to develop the input-output relationship 

between input and output variables. They can adapt to changes in the system over time, 

making them more flexible than physics-based models that are based on fixed 

equations. These models are easier to implement than physics-based models because 

they don't require detailed knowledge of the system's physical dynamics (Rai et al., 

2020). However, these models do not incorporate domain knowledge of physical 

systems and are, therefore, unaware of the physical laws inherent to industrial 

processes, resulting in the identification of unconnected patterns (Mendia et al., 2022). 

• Hybrid models: They combine physics and data-driven models to utilize both prior 

scientific knowledge and data to improve performance (Rai et al., 2020). Hybridization 

enables data-based insights and explanations of machine learning algorithms based on 

domain expertise and application environment. Consequently, this improves the 

interpretability of the results, which is crucial in a CPPS for effective human-centric 

decision-making in situations where humans interact with machines (Mendia et al., 

2022). Despite several advantages, hybrid models can be computationally expensive, 

time-consuming, and difficult to develop because they require both physics-based 

equations and machine-learning techniques, which can be complex and difficult to 

integrate (Rai et al., 2020). 
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2.4.5 Analytics Techniques  

Analytics is the process of transforming raw data into actionable insights using a 

variety of tools, technologies, and processes to identify trends and solve problems (AWS, 

2023). Analytics is used in the manufacturing industry, for basic monitoring and diagnosis 

to advanced predictive maintenance and process automation. It enables contextual 

awareness in real-time and provides actionable insights for decision support that improves 

equipment utilization, cost, process, human-based errors, productivity, and profitability 

(IIoT World, 2023). 

A search on the internet provides many analytics terminologies, which is confusing 

many a times. Some universities, like the University of New South Wales (UNSW, 2020), 

provide a good classification of different analytics techniques. Only a few articles 

(Menezes et al., 2019; Ferreira & Gonçalves, 2022; Ansari et al., 2019b; Vater et al., 2019) 

provide description of these widely used terminologies. Moreover, the meaning, scope and 

significance of the various analytics techniques may vary depending upon the objective 

and domain of the study. The various domains in which these terminologies are widely 

used these days are healthcare, retail & sales, marketing, maintenance, search engines, oil 

& gas exploration, manufacturing, etc. Table 2.5 briefly describes the different types of 

analytics and modelling techniques. 

Table 2.5 A brief description of various data analytics techniques  

Technique Description Modelling techniques 

Descriptive analytics The analysis of current/historical data to 
answer questions about what is 
happening/ happened. 

Statistical/machine learning 
modelling techniques are used to 
analyze raw data to identify trends 
and relationships between variables 
to convert into meaning information. 

Diagnostic analytics It explains why it happened by analysing 
distinctive characteristics related to 
abnormal behaviour in the data. 

Probability theory, filtering, 
classification/clustering, regression 
analysis and time-series data analysis 
to detect the anomalies in the data.  
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Table 2.5 A brief description for various data analytics techniques (contd…) 

Technique Description Modelling techniques 

Predictive/prognostic 
analytics 

It analyses data to predict future values 
for a variable/KPI/component's life 
before its failure or unsatisfactory 
performance. 

Analysis of historical data to detect 
patterns in the data using machine 
learning algorithms. 

 

Prescriptive 
analytics 

It employs data and models to 
prescribe/recommend the most effective 
strategies based on management needs. 

Analysis of historical and current 
data to create models to prescribe the 
optimum outcome based on machine 
learning algorithms in conjunction 
with statistical and computational 
modelling.  

Cognitive analytics It achieves full automation of the 
analytics through automated detections, 
predictions, and prescriptions, resulting 
in smarter decisions over time.  

It achieves human-like intelligence 
using advanced AI techniques such 
as computer vision, adaptive 
machine learning, etc. 

 

2.4.6 Application Scenarios of CPPS 

 The tools, techniques, and procedures discovered in theoretical research are used to 

solve practical problems through applied research. An overview of application scenarios 

is significant for understanding the current state of the developments taking place in CPPS 

implementation. This would provide useful information to a researcher/practitioner in 

exploring the unaddressed domain in manufacturing where CPPS has not yet been 

implemented. The contents of 164 articles were investigated to provide a view of various 

CPPS application scenarios. Table 2.6 presents the application scenarios of CPPS, 

considering the three hierarchical levels namely unit, system, and system of systems. CPPS 

application is widely used in both additive and subtractive manufacturing domain. In 3D 

printing domain, CPPS has only been implemented in FDM and multi-jet fusion processes, 

whereas for other processes, namely SLA/SLM/DED, CPPS approaches are yet to be 

applied.  
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Table 2.6 The application scenarios of CPPS at different hierarchical levels 

Hierarchal level Domain Subdomain 

Unit 

3D Printing Fused deposition modelling (C. Liu et al., 2022; Mennenga et 
al., 2020; Rogall, et al., 2022) 

Machining 

CNC drilling (R. G. Lins et al., 2020) 

CNC lathe (Parto et al., 2022) 

CNC milling (C. Liu et al., 2027; Wu et al., 2017b; Zhu & 
Zhang, 2018; C. Liu et al., 2018; Y. Zhang et al., 2020) 

Others 

Burnishing process (Patalas-Maliszewska et al., 2022) 

Casting process (J. H. Lee et al., 2018) 

Robotic arm (T. Lins & Oliveira, 2020) 

Cooling tower (Schulze et al., 2019) 

Metal forming (Ralph et al., 2022; Lu & Xu, 2019) 

Injection molding (Hürkamp et al., 2021) 

Rolling mill (Bampoula et al., 2021) 

Punching process (Iber et al., 2021) 

Robot servo system (Gao et al., 2021) 

Resistance spot welding (Ahmed et al., 2019) 

System 

3D Printing 

Multi-jet fusion process chains (Wiese et al., 2021) 

Vehicle manufacturing factory providing customized 
customer services combining multiple services, such as 3D 
printing, robot, and welding services (Lu & Ju, 2017) 

Multiple 3D printers on the shopfloor connected to cloud 
platform for fabricating customized products and enabling 
remote services (Cui et al., 2022) 

Machining 

Energy efficient scheduling optimization in machining 
(Liang et al., 2018) 

Machining production line (Herwan et al., 2018) 

Shopfloor with more than one machine tools & process 
chain (CNC machine, bending center, punching machine, 
press brake machine, laser, robots, AGVs, industrial vision 
systems, ASRS, conveyor, etc.) (Tang et al., 2018; 
Mahmood et al., 2019; H. Zhang et al., 2020; Borangiu et 
al., 2020) 

Other 

Automotive production line (Mendia et al., 2022) 

Manufacturing assembly process (Attajer et al., 2022) 

Ball screw manufacturing company (J. Lee et al., 2017) 

Bearing manufacturing company (Von Birgelen et al., 2018) 

Drum manufacturing line (Siaterlis et al., 2021) 

Electroplating process chain (Leiden et al., 2021) 
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Table 2.6 The application scenarios of CPPS at different hierarchical levels (contd…) 

Hierarchal level Domain Subdomain 

System Other 

Facility layout (Farooq et al., 2021) 

Manufacturing turbomachinery components for the oil and 
gas industry in a factory (Padovano et al., 2021) 

Battery lab factory (Vogt et al., 2022; Schlichter et al., 2022) 

Factory manufacturing spindles, bearings, and gears (Song et 
al., 2021) 

MPS/prototype digital factory/ pilot factory (consisting of 
intralogistics test platform; conveyor system; heating 
process, milling process, handling process, etc.) (Thiede et 
al., 2016; Coito et al., 2022; Tang et al., 2018; Garcia et al., 
2016; Berger et al., 2016; Stock et al., 2020) 

System of 
Systems 

 Multi-national enterprise to automate inter-factory 
production management (Lu & Xu, 2018) 

Supply chain activities (logistics, purchasing, production, 
distribution, intralogistics, recycling) (Pei et al., 2019) 

Supply chain activities (production, logistic system for 
material handling & ware housing) (Bayhan et al., 2020)  

Manufacturing company for gearboxes and engines for the 
automotive sector, etc. (Ansari et al., 2019b) 

 

2.4.7 Enabling Technologies of CPPS  

The enabling technologies of CPPS include a wide range of technologies that serve as 

its fundamental building blocks and provide numerous benefits to facilitate future 

advancements. Its classification assists in identifying the key driving technologies and 

identifying areas where further research and development is required to fully realize the 

potential of CPPS. Several literatures have classified the enabling technologies for 

Industry 4.0, which is a much broader concept, e.g., Boston Consulting Group (Rüßmann, 

et al. 2015) classified the enabling technologies of Industry 4.0 into nine clusters: additive 

manufacturing, augmented reality, big data and analytics, autonomous robots, simulation, 

horizontal and vertical system integration, IIoT, cybersecurity, and cloud. Only a few 

articles have classified the enabling technologies of CPPS. Pei et al. (2019) classified 

enabling technologies into five clusters, namely manufacturing process, information and 

computing technology, big data/cloud, research and development, and logistics and supply 
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chain management. However, these enabling technologies are primarily focused on 

intralogistics only. Therefore, the contents of articles selected using the PRISMA 

technique were examined to provide a comprehensive overview of the various CPPS-

enabling technologies. Figure 2.16 illustrates the twelve main enabling technologies of 

CPPS, namely smart manufacturing technology; smart sensors, devices, and actuators; 

product design technology; information & communication technology; data management; 

data analytics; computing technology; modelling, simulation, and optimization; 

virtualization technology; servitization; cyber security technology; and didactics. Table 

2.7 classifies the enabling technologies into twelve main categories and their respective 

subcategories.  

 

Figure 2.16 The twelve main enabling technologies of CPPS 
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Table 2.7 Classification of enabling technologies into categories and subcategories 

Sl. No. Enabling technologies  
(main categories) 

Enabling technologies (subcategories) 

1 Smart manufacturing 
technology 

3D printing, machining, casting, welding, forming, etc. 

2 Smart sensors, devices, and 
actuators 

Power analyzer, smart power grids, robots, RFID, NFC, 
AGV, HVAC devices, etc. 

3 Product design technology Plug & play, modular design, miniaturization, portable 
design, etc. 

4 Information & communication 
technology 

Server, protocol, connectivity, network; cellular, 4G & 5G 
data services, machine-to-machine & human to machine 
communication, integration, interoperability, etc. 

5 Data management  Data transmission, data cleaning, data processing, signal 
conditioning, data fusion, data storage, etc. 

6 Data analytics  Big data analytics, machine learning, artificial intelligence 
algorithms, descriptive analytics, diagnostic analytics, 
predictive analytics, prescriptive analytics, etc. 

7 Computing technology APIs, cloud, fog, edge, etc. 

8 Modelling, simulation, and 
optimization  

Modelling (empirical, physics-based, data-driven, hybrid); 
simulation (digital twin); optimization (evolutionary, non-
evolutionary) 

9 Virtualization technology Dashboards for real-time monitoring & control, human robot 
collaboration, AR/VR/MR, etc. 

10 Servitization  Real-time scheduling, quality management, maintenance 
management, production management, logistics and SCM, 
automated warehousing, real-time localization & tracing, 
ERP, PLM, MES, CRM, remote service, etc. 

11 Cyber security technology Firewall, VPN, access control, blockchain technology, etc. 

12 Didactics  Learning factory, AR/VR based training, etc. 

 

2.4.8 Barrier/Challenge to CPPS  

Barriers or challenges in the CPPS context refer to obstacles that need to be addressed 

to fully realise the potential benefits of a successful implementation. The challenges can 

pertain to various aspects such as design, implementation, operation, and maintenance 

(Monostori, 2014). Several articles have identified challenges that are often generic. The 

CPPS challenges are classified as per CPPS elements as shown in Figure 2.17.  
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Figure 2.17 Barriers/challenges in CPPS  

The significance of this classification lies in increasing the awareness of researchers/ 

practitioners in mitigating these challenges and realising the potential benefits of 

successful implementation.  

The common challenges at all elements are: increase in complexity (Jiang et al., 2018), 

affordability (Uhlemann et al., 2017), standardization (Beregi et al., 2019; Uhlemann et 

al., 2017), portability, scalability, cyber security, and flexibility (D. Wu et al., 2017b), 

workforce knowledge & competencies (J. Lee et al., 2019), integration & interoperability 
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(R. Rojas et al., 2021), reliability (Habib et al., 2022), environmental impacts during life 

cycle stages (Thiede, 2022), social impacts (Ansari et al., 2019b) including workforce 

redundancy, demographics change, technology sickness (e.g., virtual reality sickness, 

etc.).  

The challenges for the physical world are safety (Habib et al., 2022; Jiang et al., 2018; 

Ansari et al., 2019b), human machine interaction (R. A. Rojas & Rauch, 2019), disposal 

after end of life, redundancy/obsolescence, etc. The challenges for data acquisition system 

are data privacy (R. A. Rojas & Rauch, 2019), data fragmentation & heterogeneity 

(Christou et al., 2022), data management (volume, velocity, and variety) (Christou et al., 

2022; Lu & Xu, 2019), storage capacity (J. Lee et al., 2019), network redundancy (e.g., 

4G to 5G), latency, data redundancy, connectivity loss, data democratization, etc.  

The challenges for cyber world include high computational power demand (Verl et al., 

2013), include data analytics from heterogeneous data sources, processing speed, etc. The 

challenges for the smart manufacturing management system include adaptive user 

interface (Rojas & Rauch, 2019), authorized accessibility, verification, validation privacy 

(Ansari et al., 2019b; J. Lee et al., 2019), attaining level three autonomy for immediate 

responsiveness to feedback & control, etc.  

2.4.9 Engineering Needs/Requirement Analysis  

Engineering need/requirement analysis is a method for extracting information from 

stakeholders, such as customers, users, and other interested parties, to understand their 

expectations and requirements for the system. It is a crucial step in the design of any 

complex system, as it ensures that the system will be effective and efficient in achieving 

its intended objectives (Francalanza et al., 2018). Only a few researchers (Francalanza et 

al., 2018; R. G. Lins et al., 2020) have conducted engineering need/requirement analysis 



LITERATURE REVIEW 

46 | P a g e  

for a CPPS for specific scenarios. The contents of 164 articles selected using the PRISMA 

technique have been analyzed to provide a comprehensive view of engineering 

need/requirement analysis across different hierarchical levels, namely unit, system, and 

system of systems. In addition, the requirements of external stakeholders, such as 

regulatory authorities, customers, market, etc., have also been analyzed. Table 2.8 

enumerates various engineering needs/requirements across different hierarchical levels 

and from the external stakeholders' perspective. The fulfilment of these 

needs/requirements would enhance the capabilities and advance the development of a 

CPPS towards achieving the objectives of Industry 4.0.  

Table 2.8 Various engineering needs/requirements across hierarchical levels and from the external 
stakeholders' perspective 

Hierarchical levels Engineering needs/requirements 

Unit level 

Process understanding (Hürkamp et al., 2021) 

Online monitoring of state variables & KPIs (Wiemer et al., 2017; J. Lee et 
al., 2017) 

Online resource monitoring (Lu & Xu, 2018) 

Traceability (Wessel et al., 2019) 

Machine failure detection (Y. Zhang et al., 2020; Ansari et al., 2019b; J. Lee 
et al., 2017) 

Product defects (J. H. Lee et al., 2018) 

Machine breakdown (Okpoti & Jeong, 2021) 

Zero-defect manufacturing (Christou et al., 2022) 

Quality prediction (Ahmed et al., 2019; Ahmed et al., 2021) 

Predictive maintenance (J. Lee et al., 2017; Kroll et al., 2014; Christou et al., 
2022) 

RUL prognosis due to machine/component degradation (Ansari et al., 2019b; 
D. Wu, et al., 2017b) 

Optimal adjustment of process parameters (Wiemer et al., 2017) 

Optimized decision-making (Wiemer et al., 2017) 

Energy substitution (Thiede, 2022) 

Energy flexible operation (Grosch et al., 2022) 

Process transparency (Rogall et al., 2022) 

Process visibility (Fang et al., 2020) 
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Table 2.8 Various engineering needs/requirements across different hierarchical levels and from the 
external stakeholders' perspective (contd…) 

Hierarchical levels Engineering needs/requirements 

Unit level 

Resilient and autonomous responses to failures (catastrophic operational 
disruptions, stoppage, breaks, etc.) (Tomiyama & Moyen, 2018) 

Safety, security & reliability (Sinha & Roy, 2020) 

Computational power demand (Verl et al., 2013) 

Experimental testing and prototyping (Hürkamp et al., 2021) 

Simplicity (easy setup, easily removable, easy integration) 

Transforming existing/legacy system into a CPPS (Ralph et al., 2022; T. Lins 
& Oliveira, 2020) 

Low price (T. Lins & Oliveira, 2020) 

Openness 

Real-time capabilities/decreased latency for time sensitive decisions and 
control (Prenzel & Steinhorst, 2021; Berger et al., 2019) 

Decentralization (Prenzel & Steinhorst, 2021; Berger et al., 2019) 

Self-X capabilities (robustness, autonomy, organization, maintenance, repair, 
adaptability, reconfiguration, etc.) (Stock et al., 2020) 

System level 

Autonomous production scheduling (X. Wu et al., 2021) 

Decentralized production control for dynamic scenarios such as order 
change, operation failure, machine breakdown, etc. (Okpoti & Jeong, 2021; 
Meissner & Aurich, 2019) 

Dynamic or context aware scheduling (Wan et al., 2022) 

Efficient management for handling disturbances (Tomiyama & Moyen, 2018) 

Energy efficient scheduling (Nouiri et al., 2019; Fernandes et al., 2022) 

Flexible worker allocation (Fang et al., 2021) 

KPIs (cycle times, delays, OEE, etc.) analytics & management (J. Lee et al., 
2015; Menezes et al., 2019) 

Networked production lines (Verl et al., 2012) 

Production planning for optimal manufacturing process sequence (Beckers et 
al., 2022) 

Self-aware, flexible, lean, agile, reconfigurable production lines (Borangiu et 
al., 2020; Lu & Xu, 2018) 

System optimization (Habib et al., 2022) 

System of systems 

Flexible, lean, agile, and reconfigurable supply chains (Lu & Ju, 2017; 
Ghouat et al., 2021) 

Dynamic business and engineering processes (Kagermann et al., 2013) 

Integrated and collaborative value networks for organization and sharing of 
manufacturing resources online (Moghaddam et al., 2018) 
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Table 2.8 Various engineering needs/requirements across different hierarchical levels and from the 
external stakeholders' perspective (contd…) 

Hierarchical levels Engineering needs/requirements 

 Intelligent intralogistics to meet volatile market and individualized needs (Pei 
et al., 2019)  

Product lifecycle management (Pei et al., 2019) 

External stakeholders Regulaory authorities:  environmental performance, impacts, transparency, 
hotspots identification, benchmarking, etc. (Leiden et al., 2021) 

Customer: volatile behaviour, mass customization, in-time delivery, high 
quality, low cost, carbon footprint data for every product (Francalanza et al., 
2017; Chakroun et al., 2022; Ghouat et al., 2021) 

Workplace safety and worker health risks assessment (Leiden et al., 2021; Q. 
Liu et al., 2015) 

Global and competitive market (Q. Liu et al., 2015) 

Training employees/didactics (Seitz & Nyhuis, 2015) 

2.4.10 Significance Analysis of CPPS Deployment  

Significance analysis of the existing literature facilitates understanding the possibilities 

of CPPS deployment. Figure 2.18 illustrates the quantitative and qualitative significance 

of CPPS deployment by existing researchers across various dimensions. It can be observed 

that deployment of CPPS has positive effects (quantitively and qualitatively) on all 

dimensions of sustainability (environmental, economic, and social) as well as 

technological advantages. The results of this analysis would provide a researcher/ 

practitioner confidence and support for enhancing the sustainability and technological 

performance of their manufacturing systems.  

From the environmental perspective, implementing CPPS has resulted in 

energy/resource savings (Liang et al., 2018; Schulze et al., 2019; Leiden et al., 2021; 

Thiede, 2022; Vogt et al., 2022; Schlichter et al., 2022) through several facilities such as 

smart energy management (Tan et al., 2021), product lifecycle management (Bagozi et al., 

2021), detection of anomalous energy consumption patterns (Mendia et al., 2022), energy-

flexible operation of production machines (Grosch et al., 2022), real-time monitoring of  
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Figure 2.18 Significance of CPPS deployment across various dimensions 
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the environmental impacts (Hagen et al., 2019), energy-efficient scheduling (Fernandes et 

al., 2022), and increased transparency regarding environmental performance (Rogall et al., 

2022). From the economic perspective, implementation of CPPS has resulted in 

productivity improvement (Liang et al., 2018), reduced down-time (Schreiber et al., 2018; 

Lee et al., 2015; Ansari et al., 2019b; Christou et al., 2022),  reduced production rejects 

(Hürkamp et al., 2021), reduced business risks (Kagermann et al., 2013), reduced 

production cost (C. Liu et al., 2021), decentralized production planning and control (Ilsen 

et al., 2017), reduced lead time (Ahmed et al., 2021), improved production efficiency 

(Fang et al., 2021), improved OEE  (Nota et al., 2020; Christou et al., 2022), reduced 

maintenance costs (Bampoula et al., 2021), service-oriented smart manufacturing (Cui et 

al., 2022), increased productivity (Webert et al., 2022; Monostori et al., 2016) and 

decrease of production loss through efficient fault management and quick amendment of 

faults in production lines (Webert et al., 2022).  

From the societal perspective, implementation of CPPS has the potential to promote 

occupational safety of workers (Leiden et al., 2021), provide better services to customers 

(Zhou et al., 2016), enhance the abilities for humans to interact and control the physical 

world (Rajkumar et al., 2010), and promote symbiotic human-robot collaboration (L. 

Wang et al., 2015). These enhanced potentials are possible due to better and advanced 

communication between humans, machines, and products (Monostori, 2014) using user 

guided visual analysis tools (Post et al., 2017) and advanced techniques such as augmented 

and virtual reality (Havard et al., 2021).  

The foundation for all the three pillars of sustainability lies in the technological 

advancements achieved through CPPS implementation. These advancements are possible 

due to higher levels of intelligence, autonomy, and connectivity of the production system 

(C. Liu et al., 2018). There is a wide range of technological benefits such as  better product 
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quality and system reliability (Lee et al., 2015; Herwan et al., 2018), optimal adjustment 

of process parameters (Wiemer et al., 2017), machine to machine/shop floor 

communications (Garcia et al., 2016), adaptiveness, autonomous cooperation capabilities, 

improved product quality (C. Liu & Xu, 2017), advanced monitoring of machine health 

conditions (D. Wu et al., 2017b), prognostics health management (Gao et al., 2021),  

(Cody et al., 2022), anomaly detection (Von Birgelen et al., 2018), predictive maintenance 

(Bagozi et al., 2021), proactive decision making (Mahmood et al., 2019), and accurate and 

reliable assessments of product quality in real-time (Andronie et al., 2021). CPPS enables 

self-organizing manufacturing & smart/context-aware scheduling and control under 

dynamic and uncertain production environments (Wang et al., 2015; Wan et al., 2022; 

Chawla et al., 2020; Tang et al., 2018), dynamic resource management (Engelsberger & 

Greiner, 2018; Tomiyama & Moyen, 2018; Siafara et al., 2018), system reconfigurability 

and flexibility (Ribeiro & Bjorkman, 2018), and enhanced scalability and resiliency 

(Siaterlis et al., 2021). CPPS also promotes on-demand manufacturing services (Lu & Xu, 

2019), remote services (diagnosis, condition monitoring, etc.) (Zubrzycki et al., 2021) and 

can secure and provide dependable functioning of manufacturing systems using 

blockchain technology (J. Lee et al., 2019).  

2.5 INTERPRETATION OF SCIENTOMETRIC AND CONTENT ANALYSES 

RESULTS 

Interpretation of the results of scientometric and content analyses led to the following 

outcomes: 

• Development of an impact-effort matrix for CPPS elements 

• Identification of paradigm shifts in CPPS 

• Development of a concept map for CPPS 
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2.5.1 Development of an Impact-Effort Matrix for CPPS Elements 

 The impact-effort matrix is a decision-making tool that helps in selecting the most 

effective solution from multiple options by evaluating the maximum impact achievable 

with minimal effort. It can be highly useful for researchers and practitioners in decision 

making e.g., selecting CPPS elements as per the impacts required and the corresponding 

efforts needed in terms of skill, machinery, time, and money.  

Figure 2.19 shows the impact-effort matrix plot for the different elements of a CPPS. 

The horizontal axis represents effort or complexity of CPPS elements in terms of time, 

money, skills, etc. The vertical axis represents impact or significance of the CPPS elements 

in terms of environment, economy, society, and technology. The matrix is divided into 

nine quadrants (I to IX) as shown in Figure 2.19. The sub-elements, namely direct data 

storage, monitoring, and level 1(manual) autonomy are in the first quadrant due to their 

relatively low impact and effort. The navigation system and external retrofitting module 

are placed in the second quadrant due to their relatively medium impact and low effort. 

The unit level, HVAC system, and social module are in the third quadrant due to their 

relatively high impact and low effort. The descriptive analytics is placed in the fourth 

quadrant due to its relatively low impact and medium effort. Several sub-elements, namely 

communication infrastructure, data management module, data, storage on network, 

communication module, computing platform module, analysis module, software module, 

visualization module, level two (semi-automatic) autonomy, and software module are 

placed in the fifth quadrant due to their relatively medium impact and medium effort. The 

sixth quadrant includes system level, internal retrofitting module, prescriptive analytics 

module, simulation/digital twin module, management system, decision support system 

(optimal settings recommender), remote accessibility & service module due to their 

relatively high impacts and medium efforts. 
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Figure 2.19 Impact-effort matrix for CPPS 

There is no sub-element in the seventh quadrant having low impacts and high efforts. 

The sub-elements, namely logistics system, learning factory, modelling module, 

diagnostic analytics and predictive analytics module are placed in the eight-module due to 

their relatively medium impacts and high efforts. Finally, the ninth quadrant with the 

highest impact and effort includes system of system (hierarchy level three), cognitive 

analytics module, cyber security module, level three (fully automatic) autonomy, 

knowledge management module, and value-added service module.  
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2.5.2 Identification of Paradigm Shifts in CPPS 

The study of future research directions contributes to the exploration of future research 

developments, such as innovative concepts, methodologies (tools/techniques), and 

practices based on their maturity levels that can be utilized to address the most demanding 

needs and advance knowledge within a domain. The literature review acts as a bridge 

between future research and previous studies. Based on the findings of the literature 

review, a paradigm shift diagram for various developments (concepts, methodologies, 

practices) over the past, at the present and in future is constructed based on their maturity 

levels. Figure 2.20 presents a glimpse of the paradigm shift over time. The horizontal axis 

represents the timeline and is segmented into the past, the present, and the future. The 

horizon of the future is further subdivided into the short term and the long term. The 

vertical axis represents the maturity levels of various concepts, methodologies, tools, 

techniques, and practices.  

It can be observed that the first cluster consists of various 

concepts/methodologies/practices, such as descriptive analytics, 2G/3G wireless 

connectivity, and level one (manual) autonomy, static value stream mapping, static 

sequencing & scheduling, static production planning, static simulation, statistical analysis, 

non-evolutionary optimization, empirical, and physics models, etc.   

The second cluster consists of various concepts/methodologies/practices, such as 

hybrid models; cloud, edge, fog computing; level two autonomy; dynamic value stream 

mapping; dynamic sequencing & scheduling; dynamic production planning; dynamic 

simulation/digital twin; evolutionary optimization; diagnostic and predictive analytics;  
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Figure 2.20 A paradigm shift diagram for various developments (concepts, methodologies, practices) over 

the past, at the present and in the future based on their maturity levels  
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hybrid manufacturing; standardization; cyber security; human machine symbiosis; 

knowledge-based system; live LCA; ultra-high speed wireless network; augmented reality 

application in maintenance, training, etc.; remote accessibility; blockchain enabled CPPS; 

sustainability of CPPS; simple and affordable CPPS; innovative didactics; real-time 

capabilities; performance improvements; online resource sharing; remote accessibility; on-

demand manufacturing services, etc. Lot of research is going on these domains. These 

concepts/methodologies/practices have been used in the recent past, are still used and 

researched today, and will be used in the near future.  

Lastly, the third cluster consists of various concepts/methodologies/practices, such as 

level three (fully autonomic) autonomy, system of system/hierarchical level three 

deployment; explainable AI techniques; cognitive analytics; generative AI techniques such 

as ChatGPT, Amazon Codewhisperer, etc.; automated data redundancy; data 

democratization; value driven CPPS in meeting SDG goals; etc. This group of concepts, 

methodologies, and practices is currently underdeveloped but holds significant importance 

for their application in both short-term and long-term manufacturing contexts. The 

descriptions of a few of these future research directions are as follows: 

• Level III autonomy: This will lead to full automation in manufacturing with minimum 

human intervention. It will enable self X capabilities (robustness, autonomy, 

organization, maintenance, repair, adaptability, reconfiguration, etc.) and lead to zero-

defect manufacturing. It will also increase productivity, product quality, profitability 

and effectively deal with demographic changes. However, it will also increase the 

complexity in manufacturing.  

• Level III system of systems deployment: It facilitates interconnection and 

interoperability among multiple system level CPPSs and enables collaborative 
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application optimization with multiple stakeholders, such as personalization, 

intelligent design, and remote maintenance (Qi et al., 2018). However, its full-scale 

deployment across industrial symbiosis, enterprises, life cycle phases has yet to be 

fully realized. Its large-scale deployment has enormous potential. 

• Explainable AI techniques: Machine learning, as black box models, fails to explain the 

underlying reasoning behind the trend of a phenomenon and therefore lacks 

accountability & generality (Barredo et al., 2020). Explainable AI techniques have the 

potential to effectively deal with these limitations and have a lot of potential in their 

future applications in smart manufacturing.   

• Cognitive analytics: It will transform the traditional manufacturing using features such 

as automated detections, predictions, and prescriptions. It will help in achieving 

efficient production, managing unforeseen situations, predicting, and detecting 

machine failures/anomalies, and making smarter decisions over the time (Rousopoulou 

et al., 2022). 

• Generative AI techniques: These techniques have a great potential to revolutionize the 

manufacturing industry. It can be highly useful for knowledge modelling where users 

can easily code optimized tool paths in machining or 3D printing based on their 

organizational requirements. Recently, Badini et al., (2023) has demonstrated the 

capabilities of ChatGPT, a very popular generative AI technique to generate Gcode for 

optimized performance in 3D printing application. These techniques will also be highly 

useful for users to develop machine learning algorithms for their specific use cases 

without requiring expert domain knowledge. 
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• Automated data redundancy: This feature aims to automatically delete the redundant 

data from the data acquisition platform, e.g., cloud, fog, edge, local hardware devices. 

This feature will be an essential feature in future CPPS as it will help to minimize 

consumption of energy and resources required for data storage. 

• Data democratization: It aims to democratize or provide accessibility of data and 

analytics tool to all stakeholders (Harland et al., 2022). This will enable enhanced data 

driven transparency, easy adoption of analytics tools, benchmarking of tools and 

techniques. This will be highly useful to MSMEs as it will significantly reduce energy 

and resources.  

• Value driven CPPS: The scientometric analysis showed that more than two thirds of 

the articles are mapped to SDG 9 that aims to foster industry, innovation, and 

infrastructure. There is a strong need to increase the sustainability dimensions of CPPS 

from technology to value driven so that it can be mapped to other SDG goals more 

effectively.  

2.5.3 Development of a Concept Map for CPPS  

 A concept map is a visual representation of the interconnections among various 

elements within a system, which facilitates understanding and efficient implementation of 

the system. Based on the findings of the literature, a concept map is proposed for the 

understanding of the interrelationships among different components and information in a 

CPPS. This is expected to serve as a quick reference for researchers and practitioners in 

the manufacturing domain. Figure 2.21 presents a glimpse of interrelationships among 

various elements in a CPPS from a holistic perspective. 
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Figure 2.21 Proposed concept map for a CPPS from a holistic perspective* 
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2.6 SUMMARY  

This chapter provides a systematic literature review on the topic of CPPS to provide 

an understanding of CPPS concepts, latest developments, potential benefits, enabling 

technologies, application areas, engineering requirements, challenges, future research 

directions, etc. Data analysis and synthesis for the systematic literature review were 

conducted using scientometric and content analyses of quantitative and qualitative data, 

respectively. The data analysis and synthesis were then interpreted to provide a 

understanding of CPPS from different perspectives. The important outcomes of the 

systematic literature review are as follows: 

• The scientometric analysis provided an overview of the latest trends by analyzing 

various perspectives, namely research methodologies used, timeline distribution, 

geographical distribution, source analysis, SDGs analysis, keyword co-occurrence 

analysis, co-authorship among countries, and author and co-citation analysis. 

• Content analysis provided useful insights to enhance the understanding of the 

multidisciplinary concepts of CPPS from a broader perspective by 

classifying/grouping various concepts of CPPS such as hierarchical level, data type, 

autonomy, analytics, modelling techniques, enabling technologies; and analyzing 

applications area, barrier/challenges, engineering needs/requirements, and 

significance. 

• The impact-effort matrix for CPPS’s elements has been proposed to select the most 

effective solution from multiple options by evaluating the maximum impact achievable 

with minimal effort. This would be highly useful for researchers and practitioners in 

decision making.    
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• A paradigm shift diagram for various developments (concepts, methodologies, 

practices) over the past, at the present and in the future based on their maturity levels 

has been proposed. This can be highly useful for a researcher and practitioner in 

addressing the needs and advancing the knowledge and development in the field of 

cyber physical production systems. 

• The proposed concept map provides easy understanding of the interrelationships 

among different components and information in CPPS. This will serve as a quick 

reference for researchers and practitioners in the manufacturing domain.  

Lastly, the main contribution of the present work lies in providing useful insights and 

knowledge updates for both the research community and industrial practitioners and 

guiding future developments in enhancing the management capabilities and potentials of 

CPPS.  

Although, authors have tried to best to present analyses through proper reasoning using 

literature. However, impact-effort analysis has been performed based on authors 

knowledge, experience, and brainstorming with shopfloor practitioners. Therefore, there 

is a chance for disagreement among researchers. However, this also provides scope for 

improvement of these results through future research work and open discussions.  

2.7 RESEARCH GAPS 

Based on literature review, the following research gaps have been identified: 

• There is hardly any architecture or framework that considers a holistic perspective, i.e., 

a framework considering unit level, system level, and system of systems level, together 

indicating the possible elements and sub-elements. There is a need for a generic and 

holistic CPPS framework in smart manufacturing analytics and management that 

encompasses all relevant elements and sub-elements. 
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• Obtaining valuable insights through the application of analytics techniques is one of 

the primary reasons for implementing CPPS. Descriptive, diagnostic, and predictive 

analytics have been the primary focus of research. Prescriptive analytics, that provides 

real-time recommendations and allow practitioners to adjust variables according to 

managerial requirements is not yet proposed in CPPS domain. 

• The implementation of CPPS to address pragmatic issues is still in its nascent stages 

and has not yet attained maturity. Implementing CPPS at the unit level is the essential 

first step in meeting other hierarchical levels' engineering needs/requirements. There 

have been only a few attempts to implement CPPS in applications such as 3D printing 

and CNC milling. These studies have focused primarily on facilitating data acquisition, 

online monitoring, and control. Incorporating these combined analytics techniques 

(descriptive, prognostics, prescriptive, and diagnostics) to facilitate online monitoring, 

visualization, decision support, knowledge management, feedback, and control is 

missing from the literature. There are still research gaps in fully utilizing the 

advantages of Industry 4.0 to improve the management capabilities of these 

conventional manufacturing equipment for increased productivity, reliability, and 

product quality at an affordable cost. 

• The three computing technologies, cloud, fog, and edge have unique advantages and 

disadvantages. However, these three key technologies are implemented independently, 

with fewer attempts to integrate them to complement one another. 

• The paradigm diagram indicates a requirement for the development of value driven 

CPPS. This can be accomplished through innovative research that can be more 

effectively aligned with other SDG goals. There is hardly any CPPS framework for the 

environmental sustainability of the 3D printing process. These frameworks should 

allow users to assess the environmental impact of 3D printed products by considering 
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various combinations of design and process parameters. Consequently, this could 

facilitate real-time monitoring of environmental impacts, providing timely decision 

support and valuable insights to operators, project managers, business managers, and 

customers, thereby enhancing visibility and transparency.  

• The analysis of barriers/challenges identified workforce competencies as a prevalent 

obstacle to the success of CPPS. The analysis of the impact-effort matrix revealed that 

the learning factory is positioned in the eighth quadrant due to its moderate impact and 

significant effort. The impact can be enhanced by developing a CPPS framework for 

learning factories that facilitates knowledge transfer between innovation and learning 

for enhancing the technical skills of the Industry 4.0 workforce, industrial engineers, 

and engineering students. The effort can be reduced by employing affordable 

intelligent sensors, devices, and open-source software. 



 

CHAPTER 3 

  DEVELOPMENT OF A GENERIC CPPS FRAMEWORK FOR SMART 

MANUFACTURING ANALYTICS AND MANAGEMENT  

 

This chapter proposes a generic CPPS framework for smart manufacturing 

management system considering its elements and sub-elements.  

3.1 INTRODUCTION  

A framework refers to a structured set of rules, guidelines, or protocols that provide a 

roadmap for developing and implementing a system or application based on foundational 

review of existing theories. In the context of CPPS, several frameworks/architectures have 

been proposed and implemented by different researchers over the years using case studies. 

However, a holistic CPPS framework considering all three hierarchy levels, namely unit, 

system, and system of systems, is missing in the literature. Therefore, the review of 

existing literature has been conducted to extract possible elements and sub-elements of 

CPPS and propose a generic framework for smart manufacturing analytics and 

management based on its current status and advancement.  

Section 3.2 presents the research background to provide an overview of various 

architectures and frameworks proposed by researchers over the years, outlines the research 

gaps, and develops the objectives. Section 3.3 proposes a holistic CPPS framework for 

smart manufacturing analytics and management. Finally, section 3.4 concludes the chapter 

by highlighting the significance of the proposed framework. 

3.2 BACKGROUND 

Several architectures and frameworks have been proposed for CPPS over time. This 

section provides a brief overview of various architectures and frameworks, including their 

components, sub-components, significance, and limitations.  
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Lee et al. (2015) proposed a 5C CPS architecture to improve Industry 4.0 

manufacturing systems. The architecture comprises five layers: connection, conversion, 

cyber, cognition, and configuration. The proposed framework provides a comprehensive 

strategy for enhancing product quality and system reliability using more intelligent and 

robust manufacturing equipment. However, despite its wide adoption and usefulness in 

guiding CPS implementation in manufacturing, the framework mainly concentrates on 

hierarchical levels of units and systems and does not consider the system of systems level, 

making it less comprehensive.  

Thiede et al. (2016) introduced a CPPS framework comprising four main components: 

physical world, data acquisition, cyber world, and feedback/control for implementing 

CPPS in learning factories. The proposed framework, with its four main components, is 

transferrable and has gained widespread acceptance among researchers to implement 

CPPS in other applications. However, it does not address the system of systems level, and 

the sub-elements are not explicitly defined or listed.  

Liu et al. (2018) proposed an architecture consisting of several components, namely 

designers and planners, physical devices, networks, machine tool cyber twins, shopfloor 

technicians, smart HMIs, feedback loops, and cloud. The proposed architecture offers 

guidelines for enhancing conventional CNC machine tools into cyber-physical machine 

tools. This integration enables the seamless integration of machine tools, machining 

processes, real-time machining data, and intelligent algorithms through diverse network 

connections. The proposed architecture primarily emphasizes on CNC machines and lacks 

generality for other manufacturing applications. 

Ansari et al. (2019b) introduced a CPPS framework designed explicitly for prescriptive 

maintenance applications. The system comprises of four layers: data management, 

predictive data analytics toolbox, recommender, and decision support dashboard. These 
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layers aim to enhance functional capabilities, including processing large amounts of 

diverse data from various sources, and generating decision support measures and 

recommendations for improving maintenance plans aligned with production planning and 

control systems. The proposed framework is not versatile enough for other manufacturing 

applications. 

Schulze et al. (2019) proposed a CPPS framework for managing cooling towers. This 

framework consists of four key components: physical world, data acquisition, cyber world, 

and feedback & control, which were originally introduced by Thiede et al. (2016). The 

framework was successfully implemented for an industrial cooling tower system at a 

German automotive manufacturing plant. The study demonstrated the potential for 

substantial reductions in water and energy demands by implementing adapted operational 

strategies.  

Lee et al. (2019) revised their old (Lee et al., 2015) CPS architecture for Industry 4.0 

manufacturing systems based on blockchain technology. In addition to the already existing 

five layers (connection, conversion, cyber, cognition, and configuration) proposed by Lee 

et al. (2015), a blockchain-enabled CPS (BCPS) layer was added to ensure the safe and 

dependable operations. However, the revised framework too lacks a holistic approach and 

does not include all possible elements and sub-elements.  

Lu et al. (2019) introduced a CPPS architecture designed specifically for cloud-based 

manufacturing equipment. The system comprises two primary elements: smart 

manufacturing equipment and cyberspace. It also includes various sub-components, such 

as artificial intelligence, machine condition monitoring, big data analytics, service 

management, and remote user. The implementation facilitated the connection of 

manufacturing equipment to the cloud, enabling the provision of on-demand 

manufacturing services. 
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H. Zhang et al. (2020) introduced a digital twin-based architecture for CPPS. The 

system comprises of four components: the physical layer, network layer, virtual layer, and 

application layer. The proposed architecture facilitates the integration and sharing of 

manufacturing resources, enabling seamless connectivity and access to real-time 

synchronized data through a semantic information model. 

Fang et al. (2020) introduced a CPPS framework for shop floor applications. The 

system comprises of two primary elements: the physical and cyber worlds. The physical 

world consists a shop floor and an edge processing layer, while the cyber world 

encompasses data analytics and an intelligent service layer. The implementation of the 

proposed framework improved production efficiency by facilitating real-time data 

collection, processing, and visibility on the shop floor. 

Y. Zhang et al. (2020) introduced a CPPS framework for a CNC milling center. The 

system comprises of two primary components: physical and cyber components. The 

physical component includes CNC indicators and real-time controller indicators. The 

cyber components comprise a cloud database, smart process monitoring system, and 

analytics capabilities of descriptive, diagnostics, and predictive analytics. The proposed 

framework outlines the data acquisition process from shop floor equipment, storage of data 

in a cloud-based database, and utilization of data analytics for process monitoring. The 

proposed framework was implemented and achieved an accuracy of approximately 73% 

in predicting failures during the milling process. 

Song et al. (2021) introduced a CPPS framework for monitoring critical components 

in a smart production line. The system comprises of five layers: the smart connection layer, 

the physics-based modelling layer, the data-driven layer, the cognition layer, and the 

configuration layer. The framework combined physics and data-driven modelling 
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techniques to establish a closed-loop workflow, minimizing the risk of failures that could 

disrupt smart production line operations. 

Liu et al. (2021) developed a conceptual framework for cyber-physical machine tools. 

The system has three primary components: the physical level, edge server, and cloud 

services. The physical level encompasses various components such as a machine tool, 

cutting tool, data acquisition device, workpiece, sensor, camera, and RFID tags. The edge 

server consists of three sub-elements: the machine tool digital twin, edge computing 

services, and modularized intelligent algorithms. The cloud services included customised 

manufacturing services and intelligent human-machine interaction assisted by augmented 

reality. The proposed framework offers a comprehensive solution for the digitalization and 

servitization of next-generation machine tools at the system level, assist machine tool 

manufacturers understand the latest advancements in digitalization and servitization of 

machine tools, and develop practical solutions to meet the growing customer demand for 

digitalization and servitization.  

Harvard et al. (2021) proposed a factory-level architecture for CPPS to facilitate 

maintenance activities. The system comprises of two layers: the physical reality and its 

digital twin. The real world consists flexible manufacturing systems, robots and 

workstations, augmented reality devices, and human-machine interface devices. The 

utilization of databases enables human-centric tools like augmented reality and virtual 

reality to assist human resources in making informed decisions. The suggested architecture 

enhanced the factory's ability to quickly adapt and recover from disruptions, resulting in 

increased flexibility and agility. 

Leiden et al. (2021) introduced a CPPS framework to enhance the efficiency of 

planning and operating electroplating process chains. The system comprised of five 

components: physical system, data acquisition, cyber system, decision support, and 
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control. The physical system comprised a chain of electroplating processes. The data 

acquisition system collected product, process, production, energy, and material flow 

information. The cyber system utilized agent-based simulation. A decision support system 

was employed to evaluate the environmental and economic effects. The control system 

oversees chemical monitoring, dosing, and adaptive logistics. The successful 

implementation of CPPS in the electroplating process chain led to significant electricity 

and resource savings (approximately 10 %). 

Ahmed et al. (2021) proposed a CPPS framework for resistance spot welding to 

provide valuable insights and support practitioners' decision-making.  It comprised six 

components: machine layer, data layer, analysis layer, optimization layer, design layer, 

and machine visualization layer. This method integrates data across all phases of the 

analytics lifecycle, including data collection, predictive analytics, and visualization. The 

integrated framework aims to help decision-makers understand how product design affects 

manufacturing. In addition to data analytics, the proposed framework includes 

optimization of closed-loop machine parameter considering the desired product design. 

The framework simultaneously optimizes the target product assembly, predicted response, 

process, and material design parameters. 

Müller et al. (2022) introduced a CPPS architecture that integrates knowledge 

modelling and management to facilitate self-organized reconfiguration management. The 

system is comprised of a physical layer and a cyber layer. The physical layer encompasses 

physical assets, while the cyber layer is divided into four layers: asset layer, control layer, 

proxy layer, and management layer.  

Vogt et al. (2022) introduced a CPPS framework for improving the energy efficiency 

of HVAC systems in industrial settings. The four main elements are the physical world, 

data acquisition, cyber world, and feedback and control. The pragmatic implementation of 
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the proposed framework improved the energy efficiency of the HVAC system in the 

production environment by considering ambient conditions, production environment 

conditions, and process parameters, thereby reducing the final energy demand. 

Ralph et al. (2022) presented a framework for transforming a rolling mill into a CPPS. 

The system comprises of six layers: machine layer, data acquisition layer, pre-processing 

layer, main processing layer, programming layer, and visualization layer. The framework 

incorporates two front-end human-machine interfaces, the first of which is a condition 

monitoring system for the rolling process. The second displays the outcomes of a robust 

machine-learning algorithm. The proposed framework was helpful in predicting and 

adjusting the rolling schedule.   

A review of literature reveals that many of the frameworks are tailored to specific 

applications and some resulting in limited adaptability in other manufacturing contexts. 

Although practitioners have widely adopted some of these in implementing CPPS, there is 

hardly any architecture or framework that provides a generic perspective from which the 

researchers and practitioners can pick up the relevant elements and sub-elements for their 

research or application. The elements and the sub-elements are not explicitly defined or 

listed, resulting in a narrow scope. The architectures and frameworks in literature lack a 

comprehensive applicability of the multidisciplinary concepts of CPPS, resembling the 

parable of “The Blind Men and an Elephant”. A generic CPPS framework for smart 

manufacturing analytics and management is still missing in the literature. Moreover, 

without a holistic understanding and conceptualization of all possible elements and sub-

elements of a CPPS, a practitioner may face difficulty in implementing CPPS for their 

specific use cases. Therefore, a generic CPPS framework for smart manufacturing 

analytics and management with possible elements and sub-elements is highly needed in 

the current scenario. The present work bridges this gap by extracting possible elements 

and sub-elements from existing literature and proposing a generic CPPS framework for 
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smart manufacturing analytics that is adaptable for a wide range of manufacturing 

applications. 

3.3 A GENERIC CPPS FRAMEWORK FOR SMART MANUFACTURING 

ANALYTICS AND MANAGEMENT 

Figure 3.1 illustrates the proposed CPPS framework for smart manufacturing analytics 

and management with possible elements and sub-elements. The four main components are 

the physical world, data acquisition system, cyber world, and smart manufacturing 

management system. A brief description for each of these elements and its sub elements is 

as follows: 

3.3.1 Physical World 

The physical world comprises the manufacturing module (machine and material) at 

unit/system/system of systems levels integrated with various physical hardware and soft 

resources. Hardware and software resources are necessary for enabling smart capabilities, 

such as automated sensing, in both wired and wireless modes. These resources also 

facilitate smart functionalities in the manufacturing module. 

The hardware resources include retrofitting module, communication infrastructure, 

navigation system, logistic system, and HVAC system. The retrofitting module consists of 

smart sensors, controllers & actuators; computational, storage, visualization, and testing 

equipment, etc. These can be integrated either internally or externally into the machine. 

The communication infrastructure consists of servers, WIFI-routers, ethernet ports, wires, 

connectors, etc. The navigation system enables real-time tracking and tracing of material 

flows and consists of GPS devices, RFID and NFC system, etc. The logistics system 

enables transportation and handling of materials and consists of robots, AGVs conveyors, 

etc. The HVAC system consists of devices and equipment required for technical building 

services such as maintaining temperature, humidity, air quality, etc. The soft resources 

include software, human, and knowledge in the form of expertise, standard documents, 

etc. 
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Figure 3.1 A generic CPPS framework for smart manufacturing analytics and management* 
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3.3.2 Data Acquisition System  

The data acquisition system connects the elements of CPPS and is responsible for the 

automatic storage, communication, and management of various types of data, namely meta 

data, state variables/process data, process meta data, performance indicators 

(technological, environmental, economic), and external influencing factors. This is 

achieved using a variety of sub-elements, namely communication module, data storage 

module, data management module, and software module.  

The communication module consists of receiving & transmitting data using IoT 

gateway, protocols (wired/wireless), network (cellular/3G/LTE/4G/5G, etc.), etc. The data 

storage module consists of acquiring data directly on a local hardware device or on a 

network using any of the computing platforms, such as cloud, fog, edge, etc. The data 

management module consists of understanding the data, extracting its features, and 

performing various tasks such as cleaning, outlier removal, pre-processing, fusion, etc. to 

make it suitable for subsequent steps. The software module consists of data acquisition 

software (e.g., LabVIEW, DynoWare) that is responsible for measuring variables/KPIs, 

conditioning/converting signals from analog to digital, and recording data.  

3.3.3 Cyber World 

 The cyber world serves as the digital brain of CPPS by performing various tasks such 

as computation, modelling, analysis, and analytics on data to generate meaningful 

information using artificial intelligence techniques. It consists of various modules, namely 

computing platform, modelling, analysis, analytics, simulation/digital twin, software, and 

cyber security modules. The computing platform module consists of the operating system, 

web browser, APIs, cloud, fog, edge, etc., where these tasks (computations, modelling, 

analysis, and analytics) are carried out. The modelling module consists of various models 

such as physics-based, empirical/mathematical, data-driven/machine learning, hybrid, etc. 
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These are essential for establishing correlations among processed data, which enables data 

analytics and optimization techniques, to generate valuable insights in subsequent steps. 

The analysis module consists of various analyses such as historical, statistical, cause-

effect, Pareto fronts, etc., for a better understanding of the manufacturing process and the 

system. The analytics module consists of various analyses such as descriptive, diagnostic, 

predictive/prognostic, prescriptive, cognitive, etc. This facilitates basic monitoring and 

diagnosis, as well as advanced predictive maintenance and process automation, by 

identifying trends and generating valuable insights. The simulation/digital twin module 

enables up-to-date virtual representations of the physical world through a variety of 

simulation types such as continuous/discrete events, process chains, agent-based, etc. The 

software module consists of various modelling, analyses, analytics, and simulation 

software to carry out these tasks. Lastly, the cyber security module serves as a shield for 

the entire CPPS by enabling confidentiality, authorized access, authenticity, and 

preventing cyber threats, attacks, data loss/theft, etc. using a variety of security features 

(e.g., VPN, firewall, network protection, etc.) and solutions (e.g., anti-malware software, 

blockchain technology, etc.).  

3.3.4 Smart Manufacturing Management System  

The management system in the CPPS framework acts as a decision-making tool at all 

levels of the hierarchy, where management decisions are made based on the organizational 

needs and implemented in the physical world. Various sub-elements that play an essential 

role in its successful execution include the monitoring & visualization module, decision 

support system, autonomy module, remote accessibility & services module, value-added 

services module, social module, external stakeholders’ modules, knowledge management 

module, and software modules. 
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The monitoring module is the most basic sub-element of a management system for 

monitoring state variables, performance indicators (including technological, 

environmental, and economic factors), and anomalies. It allows control decisions to be 

made based on predefined threshold limits for these variables & KPIs. The visualization 

module employs a dashboard/HMI/GUI to display data and information in an efficient and 

user-friendly manner using various tools and techniques, such as reports, graphs, Gantt 

charts, control charts, AR/VR/MR, digital twin simulators, etc. This allows a practitioner 

to quickly evaluate the status, identify bottlenecks, and guide maintenance activities or 

process variables based on organizational needs. The decision support system recommends 

optimal settings based on various assessments such as technical, environmental, economic, 

etc. It is also used for making scheduling decisions based on the context/dynamic 

requirements of the production. The digital twin provides decision support for evaluating 

the current state of actual production taking place at the unit/system/system of systems 

level, predicting future trends, and optimizing its activities. The remote accessibility & 

services module is used to provide remote access and services for controlling, maintaining 

the manufacturing process, and guiding or training the workforce remotely using advanced 

techniques, such as AR/VR/MR. The value-added services include various services, such 

as ERP, PLM, SCM, MES, CRM, etc. that are useful for managing manufacturing 

activities at higher hierarchical levels, such as the system of systems level, effectively and 

efficiently. The social module involves internal stakeholders at various levels, including 

product design, operations, strategy, and business levels. The external stakeholder module 

consists of government regulators, non-governmental organizations (NGOs), and certifiers 

with the goal of regulating environmental impacts, incorporating KPI transparency, and 

developing reference KPIs for benchmarking. The knowledge management module 

updates the existing system's knowledge, reasoning, and analysis based on feedback 

received during each iteration, thereby enhancing the CPPS's performance and robustness 
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over time. The software module consists of various management software to carry out 

these tasks. Finally, the loop is closed using the autonomy module, which controls the 

physical world based on its level of maturity (manual/semi-automatic/fully automatic).  

3.4 SUMMARY  

This chapter proposes a generic CPPS framework for smart manufacturing analytics 

and management by developing possible elements and sub-elements from the literature. 

The significance lies in providing a comprehensive understanding of CPPS from a holistic 

perspective considering all three hierarchy levels, namely, unit, system, and system of 

systems. The proposed framework would provide a roadmap/guideline and higher 

confidence to a practitioner in implementing CPPS for a wide range of manufacturing 

applications, thereby enhancing the management capabilities and performances of 

manufacturing applications at all three hierarchy levels.  



 

 

CHAPTER 4 

DEVELOPMENT OF A CPPS FRAMEWORK FOR SMART 3D PRINTING 

ANALYTICS AND MANAGEMENT 

 

This chapter provides a proof of concept by proposing a CPPS framework for smart 

3D printing analytics and management where in a conventional 3D printer is transformed 

into a smart 3D printer by integrating cost-effective solutions to enable smart management 

capabilities of online monitoring, data acquisition, visualization, control, and analytics. 

4.1 INTRODUCTION 

Additive manufacturing (AM), popularly known as 3D printing, is a group of 

technologies used to produce an object layer by layer through material deposition directly 

from a computer-aided design (CAD) file. It has been widely adopted in aerospace, 

automobiles, energy, and healthcare industries (Z. Li et al., 2019), with several advantages 

such as low production cost, ability to make complex geometries and shapes, reduced 

inventory, and faster deliveries (Ford & Despeisse, 2016). However, 3D printing is a 

relatively immature technology (Amores et al., 2022). There are several challenges that 

need to be mitigated such as product quality in terms of surface integrity (Ahn et al., 2009), 

(Z. Li et al., 2019); reliability, manufacturing efficiency (Fu et al., 2021); printing cost & 

speed; and perception that it is unsuitable for mass production (Ford & Despeisse, 2016).  

In recent years, 3D printing technology has been propelled by enormous improvement 

in computing power, availability of low-cost sensors and IoT devices, and miniaturization 

(Schlaepfer & Koch, 2015). It is expected to undergo rapid transformation using Industry 

4.0 technologies, such as CPPS, artificial intelligence (AI), IoT, data mining, and 

computing technologies. These technologies can contribute to more autonomous and 

reliable 3D printing systems (Castillo et al., 2022). It can facilitate affordable and efficient 
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energy monitoring systems (Syafrudin et al., 2018), where value-added and non-value-

added energy stages can be identified to take corrective action in an Industry 4.0 

environment.   

There is an enormous potential and scope for implementing CPPS to achieve smart 3D 

printing systems. It can facilitate online monitoring, visualization, control, and analytics 

in a smart manufacturing system and enhances the potential of conventional 3D Printers. 

CPPS has made the availability of sensor data much easier and accessible that can be 

further analyzed using data analytics techniques for monitoring the condition, predicting, 

optimizing, and controlling a physical process, thereby significantly improving production 

efficiency and flexibility (Ding et al., 2019), and allowing interconnected machines to 

operate effectively, cooperatively, and resiliently (J. Lee et al., 2015).  

Rapid digitalization of manufacturing systems has led to the availability of huge data. 

This data needs to be stored, processed, and analyzed in the cyber world, and sent back to 

the physical world with varying requirements of latency, bandwidth, security, etc. The 

three computing technologies, namely cloud, fog, and edge, enable the fusion and 

establishment of the closed loop between the physical and cyber worlds to complement 

and meet the specific requirements of latency, bandwidth, security, etc. (Qi et al., 2018; 

Shi et al., 2016). Therefore, engineering needs arise to utilize these computing 

technologies where they do not compete, but instead complement each other to enable 

intelligent capabilities like online sharing of resources with real-time monitoring, 

visualization, and control in a traditional 3D printer.  

Descriptive analytics is the simplest form of data analytics, which analyses 

current/historical data to identify trends and relationships between variables and converts 

them into meaningful information to answer questions about what is happening/has 

happened using statistical/machine learning modelling techniques (UNSW, 2020). It 
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facilitates the development of smart and energy efficient monitoring systems by providing 

a comprehensive understanding of the energy consumption pattern for a manufacturing 

system (Sihag et al., 2018). There have been hardly any attempts to develop algorithms 

for the identification of process state in the case of FDM 3D printing process. Therefore, 

the present research develops a machine learning algorithm for characterization, as well as 

estimation of energy consumption at various stages during a 3D printing process. The 

proposed algorithm identifies the value-added energy (printing stage), non-value-added 

energy (standby stage), and non-value added but necessary energy (pre-heating stage).  

Life cycle assessment (LCA) has become an important tool to identify, evaluate and 

assess the environmental impacts of a product, process, or system, along all the stages of 

product life cycle. However, several drawbacks such as complexity, uncertainty and 

impreciseness are also associated with this methodology. On the other hand, live LCA as 

a plausible solution, is gaining popularity with the advancements in Industry 4.0 tools and 

techniques, enhancing ability to collect and analyse live data from various processes, 

interpret results, identify hotspots, trade-offs, and present better ideas about the 

environmental impacts in-line with the process. Descriptive analytics facilitates the live 

estimation of environmental impacts. Therefore, the present research develops a 

computational model for live estimation of environmental impacts, in which real-time 

process data is acquired, processed, analyzed, visualized, and interpreted to calculate the 

environmental impacts for 3D printed products.  

Prognostic analytics proactively predicts the remaining useful life (RUL) of a 

component before its failure using model-based, data-driven, and hybrid methods (Ferreira 

& Gonçalves, 2022). It has become a requirement for today’s smart machines to increase 

productivity, maintain surface quality, prevent surface damage (Traini et al., 2021), reduce 

machining and maintenance costs (Aramesh et al., 2016), proactively schedule 
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maintenance activities, efficiently manage assets, prevent failures and breakdowns 

(Moghaddass & Zuo, 2014), and better operational reliability and safety of the 

manufacturing system (Sun et al., 2012). The nozzle in a 3D printer is one of the most 

wear-prone components as it is continuously subjected to stress during the material 

extrusion process. The side-effects of nozzle wear include the loss of print quality and the 

time-consuming adjustment of the nozzle clearance to the print bed to compensate for 

(Gühring, 2022).  Prognostic analytics (RUL prediction) is one of the latest research topics 

for enhancing overall equipment effectiveness, reliability, maintainability, and product 

quality, particularly in machine tool, aerospace, and automotive industries. Researchers 

have developed machine learning algorithms for predicting performance measures of 3D 

printing. Machine learning models have been used for optimizing printing parameters, 

monitoring process, and detecting defects. This supports practitioners in premanufacturing 

planning (CAD design of parts), process parameter modelling, and quality inspection & 

assessment (Wang et al., 2020; Xames et al., 2022).  

Prescriptive analytics aims to provide actionable recommendations for managerial 

decision-making and improve processes through optimization (Ansari et al., 2019b). 

Methods for prescriptive analytics are generally classified into six categories, namely 

probabilistic models, machine learning/data mining, mathematical programming, 

evolutionary computation, simulation, and logic-based models (Lepenioti et al., 2020). It 

can assist operations to improve the identification of existing correlations between 

parameters and outliers and optimize the process parameters. Therefore, a practitioner is 

facilitated to improve the design and change the parameters based on the management 

requirements (Ahmed et al., 2021). A few researchers have implemented prescriptive 

analytics based on the CPPS framework for resistance spot welding (Ahmed et al., 2021), 

weaving process (Saggiomo et al., 2016), and milling process (Pantazis et al., 2023).  
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Long-term use of a 3D printer can also cause anomalies, such as the loosening of 

connected components, screws, and belt slippage, which cause abnormal vibrations that 

affect product quality and lead to the failure of 3D printer components (Yen & Chuang, 

2022). FDM is a widely used 3D printing technique for producing functional products due 

to its ability to fabricate intricate and precise parts (Sandanamsamy et al., 2022). However, 

the FDM process is less reliable, with a failure rate of approximately 20% due to 

challenges like material runout, nozzle clogging, excessive vibration, under-extrusion, 

over-extrusion, and abnormal temperature (Fu et al., 2021). Diagnostic analytics enables 

robust closed-loop process control for increased process efficiency (Fu et al., 2021), lower 

failure rates, greater precision, and assured quality of the printed parts (Khusheef et al., 

2022). Anomaly detection is beneficial for managing machines and their components in a 

manufacturing environment (Kammerer et al., 2019). An alert to pause or halt the printing 

process, upon the detection of an anomaly during the early stages of 3D printing is 

extremely important. This can avoid reprinting of the parts thereby saving material & time 

(Delli & Chang, 2018). This also improves customer confidence in the printed products 

and decreases rejection costs (Oleff et al., 2021).  

Conventional 3D printers sold in market are deprived of smart functionalities such as 

data acquisition, connectedness, smart decision making, intelligence, responsiveness 

towards internal and external changes, real-time monitoring, and control of state variables 

and performance measures. Implementation of CPPS in 3D printing can be instrumental 

to facilitate real-time online monitoring, visualization, decision support, planning, and 

control of the printing process, printer health, and RUL to improve quality, reliability, and 

performance. This chapter aims to propose a CPPS framework for smart 3D printing 

analytics and management. This is accomplished by incorporating the following: 
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• Transformation of a conventional 3D printer into a smart 3D printer using low-cost 

smart sensors, devices, and open-source software. 

• Development of a CPPS framework for smart 3D printing analytics and management 

based on data-driven analytics techniques and computing technologies, namely, cloud, 

fog, and edge for real-time online monitoring, visualization, and control.  

• Development of a machine vision-based defect detection algorithm to monitor, 

identify, and control defects during 3D printing process, resulting in less wastage of 

filament materials. 

• Development of machine learning algorithms for live demonstration of energy 

consumption during printing stages (descriptive analytics).  

• Development of computational model for live estimation of environmental impacts for 

3D printed products (descriptive analytics).  

• Development of a machine learning algorithm to predict the RUL of a 3D printer 

nozzle (prognostic analytics).  

• Development of regression models using analysis of variables (ANOVA) to prescribe 

optimum printing parameters for minimizing carbon footprint and printing time at the 

targeted surface quality (prescriptive analytics).  

• Development and comparison of machine-learning algorithms for anomaly detection 

in 3D printing using vibration data (diagnostic analytics). 

• Development of smart management system for real-time monitoring, visualization and 

control using user-guided dashboards, decision support, feedback, and control. 

 

This chapter is organized as follows: Section 4.2 presents the research background, 

outlines significant contributions, compares existing literature, and identifies research 

gaps. Section 4.3 presents the research methodology and proposes a CPPS framework for 
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smart 3D printing analytics and management. Sections 4.4, 4.5, and 4.6 discuss the 

experimental planning, physical world, and data acquisition system, respectively. Section 

4.7 discusses the cyber world through the development of machine learning and 

computational algorithms for executing different types of analytics, including descriptive, 

prognostic, prescriptive, and diagnostic analytics. Section 4.8 discusses the smart 3D 

printer management system based on monitoring, visualization, decision support, remote 

services, feedback, and control. Section 4.9 discusses the cost effectiveness analysis. 

Finally, Section 4.10 summarizes the chapter and highlights the major contribution of the 

present work.  

4.2 BACKGROUND 

This section provides a background of computing technologies and the analytics 

techniques used in this chapter.  

4.2.1 Cloud, Fog, and Edge Computing Technologies  

Verl et al. (2013) developed a cloud computing-based concept for controlling machine 

tools and demonstrated two decisive advantages of cloud computing technology for 

machine tool applications: one, it is possible to scale the performance of the machine tools; 

two, flexibility of the production is considerably increased because of centralized software 

interface. Coupek et al. (2016) connected the manufacturing and assembly processes with 

cloud computing, which offered more storage space and processing power than machine 

tool numerical controls, to improve product quality, decrease scrap, and save energy and 

raw material. Patel et al. (2017) outlined fog computing as an intelligent approach for IoT 

analytics that automated edge-to-cloud transitions and enabled the design of powerful 

sensing/actuating devices to perform a few computation tasks at the device or gateway 

level. Wu et al. (2017b) presented a data-driven process monitoring, and prognosis of 
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machine health framework based on fog computing. A proof of concept was demonstrated 

to justify the capabilities and feasibility of fog computing technology to predict tool wear 

and schedule maintenance activities (Wu et al., 2017b). Zhou et al. (2018) presented a fog 

computing-based architecture for cyber physical machine tool for a CNC machine tool and 

demonstrated that the application of fog computing improves autonomy, interconnection, 

intelligence, and interoperability. Zheng et al. (2018) reviewed smart manufacturing 

systems for Industry 4.0 and proposed a cloud-based smart control system for machine 

tools which allows servitization of machine control, implementation of complex 

algorithms and increase in flexibility, while highlighting cyber security and service 

availability as significant limitations. Hsu et al. (2018) developed a cloud-based advanced 

planning and scheduling system with real-time visualization of the analyzed data. The 

implementation at a manufacturing company demonstrated the effectiveness of cloud 

computing in enhancing planning quality with minimal implementation and maintenance 

costs. Omar et al. (2019) proposed a fog computing implementation architecture for 

manual and automatic workstations, mobile robots, robotic arms, and additive 

manufacturing systems. It was found that fog computing improved system latency, 

scalability, and interoperability. Lu & Xu (2019) proposed a cloud-based generic 

architecture and demonstrated the proposed architecture’s ability to transform legacy 

production systems into cloud-based CPPS for enabling on-demand manufacturing 

services, which allowed manufacturing companies to share resources and knowledge with 

clients. Beregi et al. (2019) proposed a fluid CPPS architecture combining the cloud, fog 

and edge computing with mist and dew computing to provide the right data at the right 

location, speed, frequency, and quantity; which streamlined the data flow and accelerated 

the system communication. The implementation of the proposed architecture with the five 

computing technologies demonstrated the improvements in latency, data propagation and 
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resource replication. Um et al. (2020) proposed an architecture for smart production based 

on edge computing. The pre-processed data from an augmented reality device was 

presented to update production lines and human-machine interaction to address cloud 

latency and dependability issues, to help maintain connections and fulfil requests in the 

event of network problems, and to improve quality of service. Yin et al. (2020) proposed 

an edge computing-based framework and demonstrated, through the implementation in a 

textile industry, the capability of edge computing to decrease latency and enhance 

production efficiency by effectively dealing with the dynamic disturbances of yarn 

breakage, machine failure, and yarn quality. Liu et al. (2021) integrated edge and cloud 

computing technologies to develop a conceptual framework of cyber physical machine 

tools. The databases and intelligent algorithms were hosted at edge server to enable users 

to configure/integrate edge computing as custom manufacturing services. The error 

compensation, process optimization, modelling & simulation, and value-added services 

were hosted as cloud services. Cui et al. (2022) proposed and implemented a cloud-based 

system architecture to create smart 3D printing cloud networks, which permitted the 

virtualization of the resources and capabilities into a shared pool, allowing users to obtain 

on-demand cloud services. Denker et al. (2022) utilized edge computing to monitor and 

control the temperature of a production line in a foundry facility. The analytical 

capabilities of the edge components avoided high-volume data transfers, thereby reducing 

latency for the real-time control.  

Literature on computing technologies in manufacturing domain is shown in Table 4.1. 

The literature shows that most of the researchers have used cloud computing; a few have 

used either fog or edge computing; and even one researcher has used cloud, fog, edge, 

mist, and dew technologies.  
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Table 4.1 Literature on computing technologies in manufacturing domain  

Author Application(s) Engineering need(s) Computing 
technologies(s) 

Verl et al. (2013)   Machine tool Scalability and adaptability for dynamic 
requirements 

Cloud 

Coupek et al. 
(2016) 

Production 
process 

Large storage space and high processing 
power 

Cloud 

Patel et al. (2017) -- Powerful sensing/actuating devices to 
perform computation tasks at reduced 
latency  

Fog 

Wu et al. (2017) Power plant and 
CNC machines 

Real-time sensing, monitoring, and 
scalable high-performance computing for 
diagnosis and prognosis applications 

Fog 

Zhou et al. (2018) Machine tool Accessibility of CNC machine tools with 
a higher degree of intelligence. 

Fog 

Zheng et al. (2018) Machine tool Servitization of machine control and 
increased flexibility 

Cloud  

Hsu et al. (2018) Metal 
manufacturing 
company 

Dynamic production and operations 
schedules and real-time visualization of 
data for production planning 

Cloud 

Qi et al. (2018) -- Conceptual framework to demonstrate 
the complementary nature of cloud, fog 
and edge technologies at unit level, 
system level and system-of-system level 

Cloud, fog, 
edge 

Omar et al. (2019) Laboratory 
demonstrator  

Interoperability and scalability of the 
laboratory demonstrator 

Fog 

Lu & Xu (2019) Light gauge steel 
framing 
production 

On-demand manufacturing services, 
sharing resources and knowledge with 
clients 

Cloud 

Beregi et al. (2019) Pilot factory Right data at the right location, 
frequency, and quantity for decreased 
latency, faster decisions, and optimal data 
distribution  

Cloud, fog, 
edge, mist, dew  

Um et al. (2020) Augmented reality 
device 

Address network issues, cloud latency 
and dependability, and enhance quality of 
service 

Fog 

Yin et al. (2020)   Textile industry Decrease real-time task processing 
latency and defect detection 

Edge 

Liu et al. (2021) Machine tool Hosts databases and intelligent 
algorithms to execute intelligent 
computing tasks and provide custom 
cloud services 

Cloud, edge 

Cui et al. (2022) 3D printing Virtualization of 3D printing resources 
for on-demand sharing 

Cloud 

Denker et al. (2022) Foundry 
production line  

Real-time monitor and control of the 
temperature 

Edge 
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The review also shows that the fog and edge technologies have been used for real-time 

task processing (Yin et al., 2020), real-time control (Denker et al., 2022), real-time defect 

detection (Yin et al., 2020), and latency & service quality improvement in general (Patel 

et al., 2017; Um et al., 2020; Beregi et al., 2019). Cloud computing has been used for the 

improvement of scalability (Verl et al., 2013), large storage and faster processing (Coupek 

et al., 2016), and for improved visualization, servitization, resource sharing, etc. (Cui et 

al., 2022; Y. Lu & Xu, 2019; Zheng et al., 2018).   

These three computing technologies do not compete, rather complement each other. 

Each of these technologies has their own benefits and limitations. However, these key 

technologies are implemented separately, with fewer attempts to integrate all the three key 

technologies to complement each other. Only Qi et al. (2018) proposed a model for 

implementing cyber physical systems and digital twin for smart manufacturing using 

cloud, fog, and edge computing. However, a detailed methodology for implementation 

using a proof of concept on how to manage enormous amount of data generated and 

combine relative benefits of each one of these technologies is still missing in the literature.   

The present work utilizes the computing technologies where they do not compete, but 

instead complement each other to enable intelligent capabilities and online sharing of 

resources which are scalable, reliable, and efficient. Cloud computing has been used to 

facilitate data storage, processing, monitoring, visualization, and analytics for temperature, 

humidity, and energy consumption, as these variables require high storage volumes, 

remote and easy accessibility, scalability, and redundancy. Fog computing facilitates local 

data storage, processing, analytics, monitoring, and control of volatile organic compounds, 

accelerations, and particulate matters, which also require online control, but the response 

will be after analyzing the data and need not be immediate. Edge computing facilitates 

automatic defect detection, filament runout, filament breakage, and smoke at its source, as 
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these parameters require faster insights, very low latency, autonomous and prompt 

decision-making, and instant actuation without demanding resource-intensive processing 

and higher storage. A machine vision-based defect detection algorithm is developed to 

monitor, identify, and control defects during the 3D printing process, resulting in less 

wastage of filament materials. 

The novelty of the present work lies in providing a CPPS framework for online 

monitoring, visualization, and control using cloud, fog, and edge computing technologies 

for proper management and efficient utilization of data in terms of latency, bandwidth, and 

security.  

4.2.2 Descriptive Analytics of 3D Printing 

4.2.2.1 Characterization and energy distribution in printing stages 

There is a growing interest among researchers to automatically identify the process 

states using machine learning algorithms for machine tools (Sihag et al., 2018; Petruschke 

et al., 2021) injection molding (Pang et al., 2011), selective laser melting (Z. Lu et al., 

2018). Sihag et al. (2018) developed a structured algorithm using KNN and PCA to 

identify the status of a machine tool in various operational states to improve both energy 

and time efficiencies. Similarly, Petruschke et. al. (2021) developed machine learning 

algorithms using both CNN and LSTM to automatically identify energy states of metal 

cutting machine tools based on the load profiles. LSTM architecture achieved a slightly 

better test accuracy as compared to convolutional neural networks. Pang et al. (2011) 

developed an algorithm to automatically identify the process states of an industrial 

injection molding machine using integrated Savizky-Golay filter and a neural network. Lu 

et al. (2018) developed an algorithm using Savizky-Golay filter and extremum slope of 
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regression lines to automatically identify the process states (idle, prepare, powder-coating, 

laser-scanning, finish) for a selective laser melting based on power data.  

The present work proposes a machine learning algorithm that identifies the value-

added energy (printing stage), non-value-added energy (standby stage), and non-value 

added but necessary energy (pre-heating stage). The novelty of this work lies in enabling 

users to identify the non-value adding stage and the corresponding energy consumption to 

take corrective measures.  

4.2.2.2 Live LCA implementation in 3D printing  

Cerdas et al. (2017) proposed a framework integrating LCA methodology with the shop 

floor to automate data collection and enable visibility of environmental impacts on the shop 

floor. The real-time data obtained from the shop floor is transformed into life cycle 

inventories using discrete event simulation modeling. Using appropriate simulation 

techniques, the results are generated and visualized. The manufacturing systems are 

monitored using this framework that allows decision making for efficient use of energy 

and resources. Fang et al. (2020) explored the utilization of data analytics in achieving 

production visibility through the implementation of CPPS. The framework developed is 

then verified using a demonstrative case and it has been noted that some uncertainties arise 

because the production environment has not been factored in the proposed approach. Ding 

et al. (2021) proposed a production monitoring system combining product service systems, 

CPPS, and cloud-edge orchestration technologies This would allow the customer to be 

involved in the manufacturing phase and thereby catering to personalized customizations 

by providing flexibility and transparency with a business model and a framework 

developed along with production monitoring and energy monitoring systems which were 

verified using a case study.   
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Majority of the researchers have focussed mainly on life cycle assessment to identify 

and assess the environmental impact of manufacturing along with all the stages of the 

product life cycle. However, several drawbacks such as complexity, uncertainty and 

impreciseness are also associated with it. There has been limited research on 

implementation of live LCA using CPPS for 3D printed products to collect and analyse 

live data from various processes, interpret results, and present better ideas about the 

environmental impacts.  

The novelty of the present work is that live LCA has been implemented on the 3D 

printing process based on the proposed CPPS framework. Environmental impacts such as 

GWP are calculated in-line with production and visualized depending on the energy and 

material consumption values assisting the operators in real-time monitoring of the 

environmental impact, assisting the operator to act based on the visibility and decision-

making process. Also, the proposed methodology helps the customers to proactively decide 

which product best aligns with their sustainably conscious needs. This could also result 

judicial pricing of the sustainable products at a higher price by the companies. 

4.2.3 Prognostic Analytics of 3D Printing  

Advances in Industry 4.0 technologies, particularly the accessibility of advanced and 

affordable sensors, microcontrollers, processors, data acquisition systems, and better 

modelling techniques, have accelerated research into predicting 3D printing variables 

(Nam et al., 2020). Z. Li et al. (2019) proposed an ensemble-based machine learning 

algorithm to predict the surface roughness of parts using temperature and vibration data in 

3D printing. Nam et al. (2020) proposed a support vector machine (SVM) algorithm to 

monitor health and diagnose faults due to uneven levelling of the bed during 3D printing. 

Sampedro et al. (2021) proposed a long short-term memory (LSTM) machine learning 
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algorithm to monitor and predict the temperature of the extruder and bed used in a 3D 

printer, thereby preventing defects and rejections.  Z. Jin et al. (2020) proposed a deep 

learning algorithm to predict the onset of warping, thereby significantly reducing the 

warpage and twisting of layers in 3D printing. J. Li et al. (2018) proposed a hybrid 

algorithm to predict the thermal field in each layer during 3D printing. Integration of 

physics-based 3D finite element analysis thermal model with the data-driven surrogate 

model provided accurate and fast prediction. 

The literature review reveals that prognostic analytics (RUL prediction) of either 

component (e.g., nozzle life) or the 3D printer system itself has been hardly performed and 

remains largely an unexplored topic in the 3D printing domain. 

4.2.4 Prescriptive Analytics of 3D Printing 

Zhao et al. (2018) implemented CPPS in a photopolymer 3D printing process to get a 

real-time accurate estimation and control of cured height profiles. Wiese et al. (2021) 

implemented a CPPS, using an agent-based process simulation model, to develop an energy 

value stream map to support decision-making in the planning of different process chains. 

Elhoone et al. (2020) proposed a CPS framework for the dynamic identification of 3D 

printers and the allocation of digital designs for 3D printing. An ANN based expert system 

was modelled to predict optimal part designs. Implementation of the proposed framework 

resulted in improved resource utilization. 

There is hardly any literature on prescriptive analytics based on the 3D printing CPPS 

framework. A few researchers have presented prescriptive analytics based on the CPPS 

framework in other manufacturing domains such as resistance spot welding (Ahmed et al., 

2021), weaving process (Saggiomo et al., 2016), and milling process (Pantazis et al., 

2023).    
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4.2.5 Diagnostic Analytics of 3D Printing 

In recent years, researchers have proposed several ML algorithms for monitoring and 

detecting anomalies such as process abnormalities, geometrical defects of parts, structural 

faults, etc. Paraskevoudis et al. (2020) proposed a deep convolutional neural network 

(CNN) algorithm for detecting stringing defects, using the real-time acquisition of 3D 

printing images, with high classification accuracy and speed. Its deployment in a live 

environment allowed the printing process to be terminated or parameters adjusted if any 

stringing defect was detected. Khan et al. (2021) also proposed a deep CNN algorithm that 

uses image processing of acquired images and computer vision to detect geometric 

distortions of the infill patterns caused by inconsistent extrusion, improper infills, lack of 

support, or sagging. Khusheef et al. (2022) proposed an LSTM algorithm to detect 

anomalies using acquired images with an accuracy of 99.85% and a detection time of sub-

milliseconds, making it suitable for real-time process monitoring. Delli et al. (2018) 

proposed a support vector machine (SVM) algorithm to automatically evaluate 3D-printed 

products and detect filament runout and structural or geometrical flaws using acquired top-

view images. However, disadvantages include the need to pause printing to capture images 

of a partially completed part and the inability to detect defects on the vertical plane. Chen 

et al. (2019) proposed a vision-based system using acquired images to detect and classify 

anomalies during 3D printing process with an accuracy of around 68.88%. The primary 

disadvantage of this setup is that the printing process must be halted for the raspberry pi 

camera to capture a full-view image of the top layer of the 3D print. 

Y. Li et al. (2019) used vibration data and a back-propagation neural network (BPNN) 

algorithm to monitor and diagnose quality defects of warpage and material stack with an 

accuracy of more than 95%. Becker et al. (2020) proposed an LSTM algorithm to detect 

different states of a 3D printing process using acoustic signals. However, the algorithm 
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was unable to differentiate between fan noise and improper nozzle height. Rao et al. (2015) 

proposed a Bayesian nonparametric analysis algorithm that employed heterogeneous 

sensor data from accelerometers, temperature sensors, and video borescope to detect 

anomalies and facilitate the correction of process drifts in real-time. Mishra et al. (2022) 

proposed an artificial neural network (ANN) algorithm for 3D printing to identify states 

of normal extrusion, blocked nozzle, semi-blocked nozzle, material runout, and filament 

loading/unloading using vibration signals.  

Literature review reveals that anomaly detection using acquired images has numerous 

benefits, including real-time monitoring, inspection, and quality control. However, there 

are challenges, such as pausing the print to capture images, the inability to detect defects 

on the vertical plane, and the requirement of a camera with higher resolution, which limit 

its productivity, reliability, and economics. Anomaly detection using acquired signals of 

vibration, temperature, and acoustic provides insight into the process abnormalities and 

condition of the 3D printing and possesses advantages of real-time monitoring, analytics, 

visualization, and control without pausing the print. Vibration monitoring is an effective 

tool because it provides insight into the machine’s condition (Mishra et al., 2022).  A 

literature review carried out by Fu et al. (2021) on online monitoring of a FDM 3D printing 

process emphasized the need for detecting anomalies due to structural faults that restrict 

the functionality of a component during 3D printing. 

Most of the researchers identified the anomalies in the printed product. Only a few 

studies identified the anomalies in the printer causing the defective products. Y. Li et al. 

(2019) proposed least squares support vector machine (LS-SVM) algorithm to detect 

printer anomaly but only to detect the filament jam. Yen et al. (2022) proposed a neural 

network algorithm for detecting anomalies in the printer using vibration data. Yen et al. 

(2022) also proposed an integrated human-machine interface design using LabVIEW to 
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achieve real-time fault diagnosis and control of a 3D printer. However, the accuracy of 

anomaly detection was relatively low (approximately 83.5%). 

The present work proposes four ML algorithms – two supervised and two unsupervised 

– to evaluate and compare their application for anomaly detection in a 3D printer. The 

proposed research is a step in the forward direction to make it possible to integrate a simple 

3D printer in an Industry 4.0 environment with low-cost sensors for real-time monitoring, 

fault detection, and control. Anomaly detection at source with higher accuracy would 

increase applicability under Industry 4.0 environment, which would be a significant step 

towards error-free 3D printing, resulting in lesser material wastage and improved product 

quality. Moreover, the low-cost anomaly detection system can assist MSMEs in realizing 

the Industry 4.0 benefits of increased productivity, reliability, and product quality at a 

reasonable cost. 

4.3 RESEARCH METHODOLOGY 

The research methodology used in this research is shown in Figure 4.1. It comprises 

four fundamental components of a CPPS: the physical world, data acquisition system, the 

cyber world, and the smart management system. In addition to these four fundamental 

elements, experimental planning is also added.  

The first step in the research methodology is to plan the experiments through the proper 

selection of experimental equipment, filament materials, sensors & devices, printing 

parameters and their levels, and responses/performance characteristics. The experiments 

are then designed using Taguchi L27 orthogonal array, which provides a robust design for 

acquiring a wide range of data with fewer experiments and lower costs. The second step 

is to set up the physical world through the integration of hardware and software with the 

3D printer. In the third step, experiments were performed to acquire state variables and  
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Figure 4.1 Proposed CPPS framework for 3D printing analytics 
  



SMART 3D PRINTING ANALYTICS AND MANAGEMENT 

98 | P a g e  

performance measures. Data transmissions are carried out using suitable communication 

protocols. The data is stored either directly on the local hardware device or on the network 

using computing technologies, namely cloud, fog, and edge. Data acquisition takes place 

in both modes i.e., online as well as offline. Data is then preprocessed, and features are 

extracted to make it suitable for better understanding and processing in the subsequent 

steps.  The fourth steps show the development of cyber world, where various computing 

technologies, namely cloud, fog, and edge are used for data processing and analytics. The 

fifth to eight steps shows the development of cyber world where data are processed into 

meaning information for generating descriptive, prognostic, prescriptive, and diagnostic 

analyses using various modelling techniques such as machine learning algorithms and 

mathematical models. The ninth step shows the development of a smart 3D printer 

management system where various dashboards, such as live monitoring of the printing 

process, parameters, state variables, and performance measures are developed for 

supporting decisions on control actions to be taken by an operator depending on the 

organizational needs. 

4.4 EXPERIMENTAL PLANNING (MATERIALS AND METHODS) 

This section discusses the experimental planning in each sub section that involves 

proper selection of experimental equipment, sensors & devices, printing parameters and 

their levels, and responses/performance characteristics; selection of filament material; and 

development of design of experiments.  

4.4.1 Experimental Equipment/Methods 

A Prusa i3MK3S fused deposition modelling (FDM) 3D printer was used to print parts. 

Several alternative brands and models are available in the market like MakerBot 

Replicator, Ultimaker, Anycubic i3 Mega, Matterhackers Pulse, etc. The reason for 
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selecting Prusa i3MK3S was its availability at our facility center. However, the proposed 

CPPS framework for 3D printing analytics is general, which is applicable and transferable 

to all the FDM 3D printers, irrespective of brand and size.  

Various thermoplastic materials such as PLA, ABS, PETG, and polycarbonate are 

selected as filament materials based on the research requirements. Before the experiments 

were conducted, potential impact parameters, according to the experience obtained 

through pilot experiments for the responses on the Prusa i3MK3S 3D printer were 

analyzed. Pilot experiments were performed to correlate the effects of nozzle diameter on 

energy consumption. Two identical parts were printed using 0.4 mm and 0.5 mm nozzle 

diameters with the same settings. There was an increase of approximately 14.3 % in energy 

consumption using a 0.5 mm nozzle diameter. This increase can be attributed to the extra 

heat required to melt the filament material. According to the information provided by a 3D 

printer manufacturer company, a larger nozzle lays down a wider perimeter (PRUSA, 

2018). This can also be interpreted as larger nozzle diameter leads to higher flow rate. 

Therefore, more filaments must be melted in a shorter time, and this is only possible with 

more power consumption (Gühring, 2022) However, detailed mathematical and physical 

justifications are beyond the scope of the present work. 

In the present work, five printing parameters, namely infill percentage, layer height, 

extruder temperature, bed temperature, and scale/size were selected to study the influence 

on specific carbon footprint, print time, and surface quality.  The product volume at 100% 

scale is 14286 mm3 for the 3D printed product. Printing parameters were selected based 

on the review of the relevant literature. These parameters were found to have varying 

effects on the performance characteristics under consideration, namely specific carbon 

footprint, surface roughness, and printing time. The term infill as a process parameter 

refers to the density of the internal structure of the 3D printed product. According to 

Griffiths et al. (2016) a decrease in infill results in a reduction in printing time, part weight, 

and energy consumption. Layer height has a substantial impact on the product quality and 
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surface finish (Ayrilmis, 2018; Poonia et al., 2023). Increasing layer height, on the other 

hand, increases print height, thereby decreasing printing time and decreasing energy 

consumption (Ayrilmis, 2018). The bed temperature and extruder temperature parameters 

exhibit a direct correlation with energy consumption or specific carbon footprint. This is 

due to the continuous heating of the bed and extruder, which is necessary to ensure firm 

attachment of the printed product to the build platform and the continuous melting of the 

filament, respectively (Yang & Liu, 2020). Likewise, an increase in scale or part size leads 

to a reduction in specific energy consumption (Yi et al., 2020).  

Each parameter has three levels. The determination of levels was based on literature 

review, 3D printer manufacturer's recommendations, slicer software (Prusa Slicer), and 

the preliminary experimental trials. Literature provides recommendations for determining 

the levels of different process parameters.  Researcher have varied the LH from 0.1 – 0.4 

mm in literature [0.15 – 0.4 mm (Griffiths et al., 2016); 0.1 – 0.3 mm (Poonia et al., 2023); 

0.1 – 0.2 mm (Yi et al., 2020); 0.15 – 0.25 mm (Pérez et al., 2018); 0.1 – 0.2 mm (Junwen 

et al., 2019); 0.1 – 0.3 mm (Abas et al., 2022); 0.1 – 0.3 mm (Kechagias et al., 2023)]. The 

infill percentage is determined by the product's functionality and has a substantial effect 

on the product's weight and printing time (Griffiths et al., 2016). Infill has been varied 

from 10 – 100% [60 – 100% (Griffiths et al., 2016); 10 – 50% (Poonia et al., 2023); 20 – 

50% (Abas et al., 2022); 80 – 100% (Kechagias et al., 2023)]. Extruder temperature has 

been varied from 185 – 250°C [190 – 250°C (Poonia et al., 2023); 195 – 225°C (Pérez et 

al., 2018); 185 – 195°C (Junwen et al., 2019); 190 – 220°C (Abas et al., 2022); 195 – 

215°C (Kechagias et al., 2023)]. Bed temperature has been varied from 40 – 90°C [60 – 

70°C (Junwen et al., 2019); 70 – 90°C (Abas et al., 2022); 45 – 60°C (Thumsorn et al., 

2022); 40 – 60°C (Kechagias et al., 2023)]. The scale of the product depends on the 

physical limitation of the printer and the objective of the printing. It has been varied from 

60 –120% [90 – 110% (Poonia et al., 2023); 60 –120% (Yi et al., 2020)]. The selected 

level values also lie within the acceptable range as specified on the manufacturer's website 
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(PRUSA, 2023). The levels also depend on the type of filament material being printed. In 

the present work, PLA as a filament material is used for which some recommendations are 

provided on the manufacturer's website (e.g., extruder temperature of 215 ± 15 °C, bed 

temperature of 60 ± 10°C) (PLA, 2023). Experimental factors and levels are presented in 

Table 4.2.  

Table 4.2 3D printing parameters and their levels based on Taguchi L27 orthogonal array 

Parameters Symbols Units Levels 

Level 1 Level 2 Level 3 

Infill Infill % 10 20 30 

Layer Height LH mm 0.10 0.20 0.30 

Extruder Temperature ET °C 200 215 230 

Bed Temperature BT °C 50 60 70 

Scale Scale % 50 100 150 

4.4.2. Design of Experiments 

Taguchi L27 orthogonal array has been selected for the design of the experiments. The 

Taguchi L27 design is a robust design of experiment technique to reduce variation in a 

process during experimentation (Bilga et al., 2016). It uses orthogonal arrays to vary the 

process parameters affecting the responses (performance characteristics). An optimal and 

robust design is achieved through the exploration of a design that yields consistent 

performance despite the presence of noise factors (Y. Li & Zhu, 2019). The advantages of 

Taguchi L27 are enhanced process execution with the least number of experimental runs. 

This significantly reduces costs, material consumption, and experimentation time (Bilga 

et al., 2016; Y. Li & Zhu, 2019). The disadvantage of the Taguchi method lies in its 

assumption that the sensitivity measures and process variances are constant and 

independent of control factor settings. However, noise factors may be uncontrollable or 

difficult to reduce, resulting in suboptimal solutions, information loss, efficiency loss, and 

decreased flexibility. Despite these drawbacks, the Taguchi method is widely used due to 
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its simplicity, ease of understanding and application, and less prerequisite of statistical and 

mathematical knowledge (Tsui, 1996). 

4.5 PHYSICAL WORLD (HARDWARE AND SOFTWARE USED) 

The physical world is a manufacturing system performing the assigned task physically 

(Thiede et al., 2016). Figure 4.2 illustrates the physical world where the Prusa MK3S 3D 

Printer is integrated with a low-cost sensor network for acquiring state variables and 

performance measures. The printer is enclosed in a chamber whose parameters can be 

controlled using open-source printer management software (e.g., OctoPrint). Raspberry pi 

is used to integrate sensor, devices, and actuators with the 3D printer system to enable Wi-

Fi connection, and to host OctoPrint, running locally on the web server for real-time 

monitoring and control. Table 4.3 lists the components of the proposed 3D printer CPPS 

(sensors/devices/actuators/software) with their technical specifications, applications, 

communication protocol, and data platform used with the 3D Printer.  

 
Figure 4.2 Physical world comprising of a 3D Printer with integrated sensor networks and devices  
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Table 4.3 CPPS components with their technical specifications, applications, communication protocol, and 
data platform 

CPPS components 
(sensors/devices/software) 

Technical 
specifications 

Application(s)/ 
measured 
parameters 

Communication 
protocol 

Data 
platform  

Printer management 
software 

4 GB installation 
size 

Extruder and 
bed 
temperatures, 
build time, 
filament usage 

USB Cloud 

Raspberry pi RAM: 8GB, 
processor: 
broadcom 
BCM2711, quad-
core Cortex-A72 
(ARM v8) 64-bit 
SoC @ 1.5GHz 

Micro-processor USB, I2C, SPI, 
UART 

Depends 
on user 

NodeMCU Clock Speed 80 
MHz, flash 
memory/SRAM 4 
MB / 64 KB 

Micro-controller I2C, SPI, UART Depends 
on user 

Webcam (RGB-D) HD 720p/30fps, 
field of View-60° 

Live monitoring USB Edge/ 
cloud 

VOC sensor (SGP40) Specified range: 0.3 
to 30 ppm, limit of 
detection: <50 ppb 

Environmental 
emissions 
monitoring 

I2C Fog 

PM sensor (SPS30) Mass concentration 
range: 0 to 1’000 
μg/m3, number 
concentration 
range: 0 to 3’000 
per cm3 

Environmental 
emissions 
monitoring 

UART/I2C Fog 

Acceleration & gyroscope 
(MPU6050) 

Working voltage: 
2.375V-3.46V, 
typical X, Y & Z 
frequencies- 33, 30 
& 27 per sec, 
output data rage up 
to 800 Hz 

Vibration 
analysis 

I2C Fog 

Ambient temperature and 
humidity sensor (DHT11) 

Humidity 
measurement 
range: 20% to 90% 
RH at 25℃, 
temperature 
measurement 
range: 0℃ to 50℃   

Environmental 
variable 
measurement 

Serial 
communication 

Cloud 

Filament sensor (FES 
V1.0) 

 Failure 
prevention 

Serial 
communication 

Edge 

Smart energy meter 
(HS110) 

Protocol: IEEE 
802.11b/g/n, 
wireless type: 
2.4GHz, maximum 
Load: 15A 

Power, voltage, 
current 

TCP/IP Cloud 

Smart energy meter 
(Beckhoff system module) 

Supply voltage: 24 
V DC, External 
feed current: 6 A 

Power, voltage, 
current 

Fieldbus  Direct 
storage 

Relay module Relay maximum 
output: DC 
30V/10A, AC 
250V/10A 

Failure 
prevention 

Serial 
communication 

Edge 
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4.6 DATA ACQUISITION SYSTEM 

Data acquisition system gathers influencing factors and state variables from the 

physical world and stores them in appropriate databases.  It is the most critical part in 

CPPS implementation as interconnection of physical world to cyber world and feedback 

or decision support from cyber world to physical world depends on it. The data was 

acquired from sensors and measuring devices in hybrid mode – online measurements for 

acquiring state variables and performance measures, whereas nozzle wear and workpiece 

surface roughness were measured offline as listed in Table 4.4.  

Table 4.4 Measurement of performance characteristics 

Performance characteristics Measurement tool Measurement parameter 

Quality parameters Mitutoyo SJ-410 Surface roughness  

Nozzle wear Mitutoyo quick scope 
microscope 

Nozzle diameter 

 

The online monitoring and data acquisition systems were established using Node-Red; 

an open-source, browser-based programming tool for interconnecting IoT devices, 

application programming interface (API), online services, and python codes. Carbon 

footprint values were measured online at different combinations of printing parameters. 

Total carbon footprint is the sum of the carbon footprint for the filament material 

consumption and carbon footprint due to energy consumption during the printing process. 

Specific carbon footprint values were then calculated by dividing the carbon footprint by 

the amount of filament material consumed. Experimental results for all twenty-seven runs 

are shown in Table 4.5.   
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Table 4.5 Experimental data based on Taguchi L27 orthogonal array 

Run 
Order 

Infill 
(%) LH (mm) ET (°C) BT (°C) Scale (%) 

SCF 
(CO2-

eq) 

Ra 
(μm) 

PT 
(min) 

1 10 0.1 200 50 50 32.069 9.181 30 

2 10 0.1 200 50 100 24.891 8.869 51 

3 10 0.1 200 50 150 23.964 9.626 82 

4 10 0.2 215 60 50 27.632 15.039 16 

5 10 0.2 215 60 100 21.195 14.873 28 

6 10 0.2 215 60 150 18.415 19.176 45 

7 10 0.3 230 70 50 25.348 20.688 10 

8 10 0.3 230 70 100 22.374 21.768 18 

9 10 0.3 230 70 150 17.704 16.218 29 

10 20 0.1 215 70 50 42.553 10.743 30 

11 20 0.1 215 70 100 32.855 9.179 56 

12 20 0.1 215 70 150 30.285 9.316 97 

13 20 0.2 230 50 50 23.076 14.829 16 

14 20 0.2 230 50 100 20.424 15.574 30 

15 20 0.2 230 50 150 19.127 14.414 53 

16 20 0.3 200 60 50 18.297 20.476 11 

1 20 0.3 200 60 100 16.495 19.985 19 

18 20 0.3 200 60 150 15.255 20.246 31 

19 30 0.1 230 60 50 33.974 10.667 31 

20 30 0.1 230 60 100 29.843 9.572 62 

21 30 0.1 230 60 150 28.228 9.144        115 

22 30 0.2 200 70 50 30.210 14.652 16 

23 30 0.2 200 70 100 23.926 14.024 34 

24 30 0.2 200 70 150 23.157 12.530 63 

25 30 0.3 215 50 50 21.593 21.742 10 

26 30 0.3 215 50 100 16.159 19.688 19 

27 30 0.3 215 50 150 14.316 18.797 34 

 

The nozzle diameter is measured after an interval of every 10 hours using Mitutoyo 

quick scope microscope to validate the gradual increase in nozzle diameter. Figure 4.3 

shows the nozzle diameter at different intervals.  
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Figure 4.3 Nozzle images at different intervals (a) d = 0.4044 mm at zero hours (new nozzle), (b) d = 
0.4216 mm after 10 hours, (c) d = 0.4340 mm after 20 hours, and (d) d = 0.4635 mm after 30 hours 

4.6.1 Communication Protocols 

A communication protocol is one of the key elements in a smart manufacturing system 

for supervisory control, data acquisition & transmission, and synchronous exchange of 

information in real-time (Göppert et al., 2021). Acquisition of data is highly dependent on 

the sensor stacks being used, as listed in Table 4.3. These components require specific 

communication protocols and can therefore be interfaced with devices supporting the same 

protocol. PMS installed on the raspberry pi is integrated with the Prusa 3D printer, running 

on the same Wi- Fi network to set up a server connection to the network with all measuring 

devices and smart sensors. Sensor data is acquired by connecting the sensors to either a 
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NodeMCU or a raspberry pi via I2C or UART communication, respectively. MQTT 

communication protocol running on TCP/IP is also used to acquire and publish data from 

smart sensors e.g., XDK sensor and smart energy meter. Beckhoff system module, running 

on TwinCAT software uses fieldbus communication module to acquire and record data. 

The vibration sensor is interfaced with a raspberry pi 4 (RAM: 8GB, processor: 

BroadcomBCM2711, 64-bit SoC @1.5GHz) using a python program. The data exchange 

between raspberry pi & accelerometer is performed using I2C communication protocol. 

The raw vibration (gyroscope and accelerometer) data generated during the printing 

process was sent to raspberry pi using vibration sensor for real-time monitoring and 

acquisition with a sampling rate of 5 Hz. A sensor which uses I2C communication protocol 

for data transfer is read by a micro-controller or microprocessor via I2C communication 

only.   

4.6.2 Data Storage  

 Direct storage refers to the process of storing data locally on a hardware device and 

then processing it later. The Beckhoff system module, running on TwinCAT software is 

used to acquire and record data such as power, voltage, and current at every timestep of 

250 milli seconds.  

Multiple routes have been used to transfer data from various sensors to the cloud for 

analytics, storage, and visualization. Ambient temperature and humidity have been 

captured and stored on the cloud in Google spreadsheets using the inbuilt script editor of 

Google spreadsheets. A web app has been deployed at the receiving end, and the 

NodeMCU is flashed with a script at the sender end which communicates to the web app 

for sending data via HTTP requests. NodeMCU is configured to connect to the local 

network on start-up and which starts pushing recently recorded data from the sensor to the 



SMART 3D PRINTING ANALYTICS AND MANAGEMENT 

108 | P a g e  

cloud. Similarly, smart energy meter is configured to send data to Google spreadsheets 

using its API on Google cloud console. Smart energy meter is configured to connect to 

local network at the start-up. Once available on the local network, a device on local 

network can host a JavaScript and a python script that starts capturing the data points and 

hosts the energy dashboard on the local host. 

Sending data to fog layer is done using python scripts running on the raspberry pi. The 

scripts are written to communicate to sensors, namely VOC sensor and gyroscope sensor 

via I2C protocol. The data is saved in a CSV file as latest data points.  

Some of the features implemented in the present work, such as automated image-based 

defect detection, and actuation based on threshold requires proximity to data (product 

snapshots) at its source using IoT devices or local edge servers for faster insights, reduced 

latency, and autonomous decision making and actuation. 

4.7 CYBER WORLD 

4.7.1 Computing Platforms for the Cyber World 

According to Thiede et al. (2016), a cyber world is the virtual (model-based/data-

driven/simulation) representation of the manufacturing system. A cyber system may have 

different types of modelling and computational capabilities, e.g., data based (e.g., 

regressions, decision trees), physical (e.g., equations based on physical laws), numerical 

or discrete events. The processed data is then converted into useful insights in the form of 

visualization dashboard for improved transparency and feedback. Cloud, fog, and edge 

computing technologies, independently or in combination, are used as per the requirement 

or constraints related to the application and the technology. Figure 4.4 illustrates the 

proposed three-layer architecture for 3D printing reflecting the use of cloud, fog, and edge 

technologies and the associated tasks and flow.  
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 Figure 4.4 Proposed three-layer architecture for cloud, fog, and edge implementation in 3D printing, 

adapted from Yousefpour et al. (2019), Beregi et al. (2019), Winsystems (2022), Digiteum (2022) 
 

The decisions regarding what data types need to be hosted on which computing layer 

depend on the degree of time sensitivity (Beregi et al., 2019). Edge computing is used for 

time-sensitive data so that computations and analytics can be made closer to the data, 

saving network and storage costs. Fog computing is used for less time-sensitive data that 

can wait minutes for analysis and actions. Cloud computing is used for time-insensitive 

data that can be sent to the cloud for historical analysis and long-term storage. 

Edge computing facilitates micro data storage & processing in real time for quick 

response tasks needing immediate action/control related to defects and smoke detection. 

Fog computing has been used for local data storage, processing, analytics, monitoring, and 

control of volatile organic compounds, accelerations, particulate matters, and orientation 

tasks, which also require online control, but the response will be after analyzing the data 
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and need not be immediate. Cloud computing facilitates data storage, processing, 

monitoring, visualization, and analytics. In the present case, it is deployed to visualize 

temperature, humidity, and energy consumption. 

 

4.7.2 Descriptive Analytics Modules 

4.7.2.1 Development of a machine learning algorithm for characterization and energy 

distribution in printing stages 

A component undergoes multiple stages during 3D printing process such as standby, 

pre-heating and printing. Figure 4.5 shows a sample of the power consumption time series 

data with the labelled regions for the different stages of the 3D printing process. This 

section focuses on the development of machine learning algorithms for live distribution of 

energy consumption during printing stages. Machine learning model is developed using 

long short-term memory algorithm, and is trained, validated, and deployed for the 

classification of various stages during 3D printing process. Furthermore, energy 

consumption in each stage is estimated based on Simpson's rule.  

Figure 4.5 Active power with respect to time during 3D printing  
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Data preprocessing and feature extraction 

  Jupyter notebook with Python version 3.8.3 has been used for the pre-processing of 

the data and preparation of the LSTM model. Multiple features are extracted from the 

power time series data by grouping the data points into small bins of ten consecutive 

timesteps. The extracted features are mentioned in Table 4.6. The correlation of these 

features with the target value is computed, and the features with correlation value greater 

than or equal to 0.7 are used for training the machine learning model with the features like 

RMS power, form factor, mean of normalized data, and maximum of normalized data. 

Table 4.6 Features extracted from power signature and correlation with labels of stages 

Feature Formula Correlation coefficient 

RMS Power Ek 0.74 

Minimum Power (Emin) Min (Ek) 0.69 

Maximum of Normalized Data (Enormmax) Max (Ek) - Min (Ek) 0.77 

RMS of Normalized Data (Enormrms) 
√

1

𝑛
𝛴(𝐸𝑘 − 𝐸𝑚𝑖𝑛 )2 

-0.60 
 
 
 

Mean of Normalized Data (Enormmean) 1

𝑛
𝛴(Ek-Emin) 0.73 

Standard Deviation of Normalized Data 
(EnormSD) √

1

𝑛
𝛴((𝐸𝑘 − 𝐸𝑚𝑖𝑛) − 𝐸𝑚𝑒𝑎𝑛  )2 

0.47 
 
 

Crest Factor Enormmax/Enormrms 0.39 

Form Factor Enormrms/Enormavg 0.85 

RMS Power Ek 0.74 

LSTM Model Preparation for Stage Characterization 

LSTM is a type of RNN, used mostly to deal with time-series data. Unlike a typical 

RNN it overcomes the issue of long-term dependency, making it ideal for this use case. 

The architecture of LSTM is similar to that of a RNN having three parts or gates – forget 

gate, input gate and output gate. 
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The developed LSTM model contains a layer of 100 nodes and a dense output layer of 

three nodes as there are three classes for classification – standby, preheating and printing. 

The activation function used in the output dense layer is SoftMax function. The optimizer 

used is Adam optimizer and the loss function is categorical loss. The model is trained for 

30 epochs and a batch size of 60. The model is trained using data obtained by conducting 

experiments. The final model is used to characterize the stages of new input datasets and 

for estimation of energy consumption in each stage. 

The LSTM model is fitted with the training dataset. 67% of the dataset is used for 

training purposes, and 33% of dataset is used for validation purposes. Accuracy is 

calculated by comparing the actual labels with the predicted labels for the validation 

dataset. The network is trained for 30 epochs as further training did not decrease validation 

loss and produces a validation accuracy of 98.2% as shown in Figure 4.6 (a). Training loss 

is the error on the training set, whereas validation loss is the error obtained after passing 

the validation set through the trained LSTM.  There is a drop in validation and training 

loss as the number of epochs increase. 

Figure 4.6 (b) shows the confusion matrix obtained after running the LSTM model on 

a real data set of PLA filament material. There are three different labels- standby, 

preheating and printing. Confusion matrixes help to calculate performance metrics like 

accuracy, recall and specificity. According to the analysis, LSTM correctly classified 2570 

points out of 2639 points i.e., it gives an accuracy of 97.38%. Similarly in Figure 4.6 (c), 

the confusion matrix for ABS filament material shows that 5959 points out of 6301 points 

are classified correctly with an accuracy of 94.57%. In Figure 4.6 (d), from the confusion 

matrix of PETG filament material, it is found that out of 11675 points, 11648 points are 

classified correctly giving an accuracy of 99.76%.  
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Figure 4.6 Plots for (a) Training loss, validation loss with accuracy, confusion matrix for (b) PLA, (c) 

ABS, and (d) PETG filament materials 

Characterization 

Figures 4.7 (a), 4.7 (b), and 4.7 (c) illustrate the power time series data for the 3D 

printing processes for PLA, ABS and PETG filament materials, respectively with three 

distinct stages: standby, preheating and printing. The points are manually labelled for 

validating the LSTM model. The trained LSTM is then used to predict the labels as shown 

in Figures 4.7 (d), 4.7 (e), and 4.7 (f) for PLA, ABS and PETG filament material, 

respectively. It can be observed for PLA filament material in Figure 4.7 (a) and Figure 4.7 

(d) that most of the points have been classified correctly and only a few points have been 

misclassified. Similar results can be seen for ABS filament material in Figures 4.7 (b) and 

4.7 (e) as only a few points have been misclassified compared to the correct classifications. 

Similar results have been obtained in the case of PETG filament material as illustrated in 

Figures 4.7 (c) and 4.7 (f).  
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Estimation of energy consumption 

 After performing the stage characterization, energy consumed in each stage is 

calculated for PLA, ABS, and PETG filament materials as shown in Table 4.7. Predicted 

energy distribution for all the three filament materials is illustrated in Figure 4.8. This is 

performed by finding the area under the power time series curve for each stage using 

Simpson's rule, a numerical method for calculating definite integrals. 

The maximum energy consumption takes place in the printing stage, followed by the 

preheating and standby stages. The prediction error in energy consumption for PLA 

filament material are 11.31%, 8.11%, and 5.51% for standby, preheating, and printing 

stages respectively. The developed model fits well for PLA filament material as all errors 

are in the acceptable ranges. However, the prediction error in energy consumption for ABS 

filament material are 13.37%, 18.88%, and 9.37% for standby, preheating, and printing 

stages respectively. The reason for higher errors in preheating and printing stages is due to 

misclassification of large number of data points. This can also be seen in the confusion 

matrix shown in Figure 4.6 (c), where 342 data points of the preheating stage are 

misclassified as the printing stage. Therefore, the predicted energy consumed in the 

preheating stage is less than the actual energy consumed, whereas the predicted energy 

consumed in printing stage is higher than the actual energy consumed. Similarly, the high 

error in the preheating stage for PETG filament material can be attributed to the 

misclassification of data points in the preheating and printing stages. Despite its good 

characterization accuracy for all three filament materials, the energy estimation for ABS 

and PETG is not so accurate for preheating and printing stages due to misclassifications 

occurring mainly at the transition from one stage to another. 
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Figure 4.7 Characterization performed manually for (a) PLA, (b) ABS, (c) PETG, and performed through 

algorithm for (d) PLA, (e) ABS, and (f) PETG filament materials 
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Figure 4.8 Predicted energy distribution for (a) PLA, (b) PETG, and (c) ABS filament materials 

 
 
 

Table 4.7 Energy consumption in each stage for PLA, ABS, and PETG filament materials 

Material Stage Actual (Watt) Predicted (Watt) Error (%) 

PLA Standby 1705.65 1898.64 11.31 

Preheating 18669.72 20185.41 8.11 

Printing 32627.89 30828.35 5.51 

ABS Standby 366.49 415.50 13.37 

Preheating 80261.10 65109.77 18.88 

Printing 159705.25 174678.17 9.37 

PETG Standby 1669.26 1794.49 7.50 

Preheating 36755.01 35904.60 2.31 

Printing 350640.90 351202.07 0.16 
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4.7.2.2 Development of a computational model for live LCA implementation 

 For the present case, the data collected from the physical stage is transferred to a SQL 

database. The cyber system is developed using Node-Red; an open-source, browsing based 

programming tool for wiring together IoT devices, APIs, online services, python codes, 

run locally at the edge of the network using the wide range of nodes in the palettes or 

modules connected graphically. 

The cyber system performs a significant amount of computation, and analysis of GWP 

values using intelligent processing systems running on Brightway2, an open-source 

framework for LCA, supported on python program API with the Node-Red. The power 

consumption values stored in SQL database are summed up and processed at near real-

time for each component produced. The GWP value is calculated just after the 3D printed 

product has been printed.  

Several KPIs such as GWP, human toxicity potential, ozone depletion, etc. provide us 

with the measures of the environmental impacts of the production stage (Ecochain, 2023). 

GWP has been considered for the present use case as it is a characterization factor for the 

impact category of climate change, and indicates the energy absorbed by one ton of the 

specified atmospheric gas relative to one ton of carbon dioxide. GWP has been cited widely 

in several studies spanning various industries/sectors, illustrating the efforts across 

industries to reduce greenhouse gas emissions (Rigon et al., 2019). 

Live LCA has been implemented using the CPPS approach to intertwine the physical 

and cyber world using data acquisition and visualization resulting in real-time monitoring 

of the environmental impact, assisting operators to act based on the visibility. The decision-

making process for customers, operators, and manufacturers also becomes transparent. 

Both energy and material consumptions have been considered to calculate the GWP values 

instantaneously as the product is printed.  
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4.7.3 Development of Prognostic Analytics to Predict the RUL of the Nozzle  

   Pilot experiments were first performed using new and old nozzles made of brass (E3D 

V6) to establish that energy consumption during 3D printing increases with respect to 

printing time as nozzle wear increases. Pilot experiments were conducted using 

polycarbonate filament material as polycarbonate materials have higher hardness and 

energy requirements, which result in faster degradation of the nozzle. The faster nozzle 

degradation saved experimental time and resources as compared to other commonly used 

filament materials like PLA, ABS, and PETG. TwinCAT software running on Beckhoff 

power module was used to measure power. 

Power time series data of around thirty hours were acquired at a sampling rate of 4 Hz 

during 3D printing of similar cylindrical workpieces, repeatedly at the constant printing 

conditions to develop a machine learning model for the prediction of nozzle’s remaining 

useful life. The data was first pre-processed (filtered, cleaned, and formatted into a feasible 

format) to make it appropriate for machine learning models. Google Colab, an open-source 

notebook environment with python version 3.7.12, was used to pre-process and develop 

the machine learning model to predict nozzle’s RUL using linear regression, quadratic 

regression, cubic regression, exponential regression, LSTM, and autoregressive 

algorithms. Finally, an autoregressive model was found to be the most suitable among all 

the developed machine learning models after examining the evaluation parameter scores 

of RMSE, as listed in Table 4.8.   

Table 4.8 Comparison of machine learning models for prediction of nozzle’s RUL 

Sl. No. Model RMSE 

1 Linear Regression 11.074 

2 Quadratic Regression 12.465 

3 Cubic Regression 12.000 

4 Exponential Regression 11.014 

5 LSTM 6.819 

6 Autoregressive 4.533 
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An autoregressive model is a time-series algorithm which uses observations from the 

previous time steps as input to predict the values at the next time step. The autoregressive 

model has been used in several applications such as RUL prediction of lithium-ion 

batteries (D. Liu et al., 2014), forecasting of machine state (Pham et al., 2010), detection 

of anomalous behaviour with RUL of bearing (X. Jin et al., 2016).  

Power time series data during the printing stage for every experimental run were 

combined and stacked together to create a single continuous array of target variables for 

better visualization of the trend as shown in Figure 4.9.   

 
Figure 4.9 Power time series data during the printing stage  

Data were resampled at 120 Hz to decrease computation time during the testing and 

prediction. Data was converted into ‘differenced data’ to prevent the autoregressive 

algorithm from exhibiting Naive forecasting behaviour (where the previous period's target 

variable value is used as the next period's predicted target variable value). Data was then 

used to train the auto-regressive model. 70% of the total data was used for training and the 

remaining 30% for testing as it is a standard practice among researchers, e.g., (C. Qi et al., 

2018; Xu & Goodacre, 2018) to divide data in the ratio of 70:30 for training and testing 

the machine learning algorithms, respectively. The 70:30 ratio is found to provide an 

optimal performance of the machine learning algorithms (Nguyen et al., 2021; Mirbolouki 

et al., 2022). If the training set is too small then the model might not learn enough from 



SMART 3D PRINTING ANALYTICS AND MANAGEMENT 

120 | P a g e  

the data, underfit the data, and have low accuracy. On the other hand, if the higher training 

data is used then the model learns too much from the data, overfits the data, and has poor 

generalization. Therefore, dataset of 70:30 is generally considered to provide the best 

performance for a machine learning algorithm (Nguyen et al., 2021).  

 The coefficients learned by the model were extracted from the previous data to make 

future predictions over the test dataset. The number of lag variables used on differenced 

data sets during future predictions is 300. Predictions performed by the model on test data 

are shown in Figure 4.10. 

 
Figure 4.10 Predictions on test data 

 

Figure 4.11 shows the variation of power in multipliers with respect to time that can 

be used to predict the nozzle’s RUL. This was done by obtaining time (in hours) on the x-

axis and selecting an appropriate y-axis value based on user preferences. As there has been 

no prior research work performed on setting the power threshold criterion for nozzle 

rejection, therefore, the power threshold multiplier has been set to 1.3 (130% of initial 

power consumption), which is a well-established cutting tool rejection criterion for 

machine tool industry (Dadgari et al., 2018; Corne et al., 2017). The nozzle’s RUL at the 

defined threshold is found to be approximately 300 hours.   
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Figure 4.11 RUL of the nozzle as predicted by the proposed model using power data 

4.7.4 Development of Prescriptive Analytics to Prescribe Optimum Printing 

Parameters  

 Regression models were developed using response surface methodology (RSM) to 

predict specific carbon footprint (SCF), surface roughness (Ra), and printing time (PT). 

These models were improved using a backward elimination technique that starts with all 

potential terms in the model and then removing the least significant term. Equations 4.1 to 

4.3 are the developed mathematical models to describe the relationship between a set of 

continuous predictors (scale, layer height, bed temperature, infill percentage, and extruder 

temperature) and responses (specific carbon footprint, surface roughness, and printing 

time). 

SCF (CO2eq) = 27.92 −  132.6 LH (mm) +  0.0438 ET (°C) +  0.2933 BT (°C) −

               0.1998 Scale (%) +  177.1 LH (mm) × LH (mm)  +  0.000642 Scale (%)  × Scale (%)          4.1 

 

Ra (µm) =  4.485 +  51.84 LH (mm)                4.2 

 

PT (min) =  23.1 +  0.417 Infill (%)  −  269.4 LH (mm)  +  0.510 Scale (%)  +  739 LH (mm) ×

                       LH (mm) +  0.001889 Scale (%) × Scale (%)  −  2.333 LH (mm) × Scale (%)           4.3                    
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Table 4.9 shows the ANOVA results. A lower p-value corresponds to a higher level of 

significance for the process parameter's effect on the response. A deeper analysis of 

ANOVA literature shows that if the value of p<0.05, it is safe to reject the null hypothesis. 

However, even if the p value is much higher (e.g., p=0.2) then the interpretation crucially 

depends upon whether the data can be well approximated by a normal distribution 

(Brereton, 2019). In the current scenario, the p-value for the extruder temperature is 0.138. 

In practice, the extruder temperature exhibits a direct correlation with energy consumption 

or specific carbon footprint as continuous melting and extrusion of the filament material 

is required during the 3D printing process (Yang & Liu, 2020). Therefore, extruder 

temperature is also included in the analysis and equation for the specific carbon footprint 

(SCF) even though the p-value is 0.138. Table 4.9 also shows the results of ANOVA tests 

to test the developed models' adequacy for specific carbon footprint, surface roughness, 

and printing time. The R-square values are 0.9446, 0.9029, and 0.9696 for specific carbon 

footprint, surface roughness, and printing time, respectively which indicate that 94.46%, 

90.29%, and 96.96% of the total variations are explained by the model for specific carbon 

footprint, surface roughness, and printing time, respectively.   

Table 4.9 Analysis of variance results for specific carbon footprint, surface roughness, and printing time 

Analysis of variance for specific carbon footprint 

Source DOF Adj SS Adj MS F-value P-value        %Contribution 

Model 6 1112.60 185.434 56.82 0.000 94.46 

 Linear 4 1078.34 269.584 82.60 0.000 91.55 

LH (mm) 1 686.00 685.995 210.19 0.000 58.24 

ET (°C) 1 7.78 7.779 2.38 0.138 0.66 

BT (°C) 1 154.84 154.845 47.45 0.000 13.15 

Scale (%) 1 229.72 229.716 70.39 0.000 19.50 

Square 2 34.27 17.134 5.25 0.015 2.91 
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Table 4.9 Analysis of variance results for specific carbon footprint, surface roughness, and printing 
time (contd…)  

Analysis of variance for specific carbon footprint (     …)  

Source DOF Adj SS Adj MS F-value P-value %Contribution 

LH 
(mm)*LH 
(mm) 

1 18.82 18.820 5.77 0.026 1.60 

Scale (%) 
*Scale (%) 

1 15.45 15.447 4.73 0.042 1.31 

Error 20 65.27 3.264       5.54 

Total 26 1177.88           

Model 
Summary 

R-square = 94.46% 

Analysis of variance for surface roughness 

Model 1 483.70 483.698 232.34 0.000 90.29 

Linear 1 483.70 483.698 232.34 0.000 90.29 

LH (mm) 1 483.70 483.698 232.34 0.000 90.29 

Error 25 52.05 2.082       9.72 

Total 26 535.74           

Model 
Summary 

R-square = 90.29% 

Analysis of variance for printing time  

Model 6 18116.6 3019.44 106.38 0.000 96.96 

Linear 3 16021.9 5340.65 188.17 0.000 85.75 

Infill (%) 1 312.5 312.50 11.01 0.003 1.67 

LH (mm) 1 7729.4 7729.39 272.33 0.000 41.37 

Scale (%) 1 7980.1 7980.06 281.16 0.000 42.71 

Square 2 461.4 230.69 8.13 0.003 2.47 

LH 
(mm)*LH 
(mm) 

1 327.6 327.57 11.54 0.003 1.75 

Scale (%) 
*Scale (%) 

1 133.8 133.80 4.71 0.042 0.72 

2-Way 
Interaction 

1 1633.3 1633.33 57.55 0.000 8.74 

LH 
(mm)*Scale 
(%) 

1 1633.3 1633.33 57.55 0.000 8.74 

Error 20 567.6 28.38       3.04 

Total 26 18684.3           

Model 
Summary 

R-square = 96.96% 
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Main effect plots for specific carbon footprint, surface roughness, and printing time 

are shown in Figures 4.12, 4.13, and 4.14, respectively. The interpretation for different 

natures of the effect of printing parameters on responses is explained as follows.  

The main effect plot for specific carbon footprint reveals that layer height has the 

strong effect, followed by scale, bed temperature, extruder temperature, and infill. 

Increasing layer height decreases the specific carbon footprint significantly as a larger 

height means faster printing, reducing the printing time and energy consumption, thereby 

decreasing the specific carbon footprint. Similarly, increasing scale or part size reduces 

the specific carbon footprint as larger prints result in lower specific energy consumption 

(Yi et al., 2020). On the other hand, increasing bed temperature increases the specific 

carbon footprint as more energy is required to maintain the temperature of the heated bed. 

However, the specific carbon footprint increase due to bed temperature is insignificant as 

compared to layer height and scale. Similarly, increasing the infill percentage increases 

the specific carbon footprint as a larger infill percentage means more filament material 

consumption, which in turn increases the printing time and embodied energy of the 

filament material. However, its effect is insignificant as compared to other printing 

parameters.  

The main effect plot for surface roughness reveals that only layer height is dominating 

the surface roughness of 3D printed products, as expected. Increasing the layer height 

increases the surface roughness. The reason is evident that larger layer height reduces the 

resolution and print quality, supporting the findings obtained by Pérez et al., 2018. Scale 

or part size also influences the surface roughness of a 3D-printed part as increasing scale 

or part size decreases the surface roughness as contours are printed with finer details. Other 

printing parameters (infill, extruder temperature, and bed temperature) are insignificant for 

surface roughness. 

The main effect plot for printing time reveals that scale or print size is the most 

significant printing parameter, followed by layer height and infill. The reason is that when 

the scale increases, printing time increases as more volume needs to be printed. Increasing 
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layer height increases the print height, thus reducing the printing time. Therefore, printing 

time is inversely proportional to the layer thickness. Infill percentage increases the density 

of print, thereby increasing the print time. Extruder temperature is the least significant for 

printing time as a small part of the total time is consumed to heat the extruder in the range 

of 200°C to 230 °C from room temperature.    

Residual plots for SCF, Ra, and PT (Figures 4.15, 4.16, and 4.17, respectively) show 

that there are no trends, and the errors are distributed normally. Outliers in the normal 

probability plots are unusual points at the upper/lower extreme/distant from the probability 

plot line (Tewari et al., 2011). There are some outliers observed in the normal probability 

plot for specific carbon footprint, surface roughness and printing time as shown in Figures 

4.15, 4.16, and 4.17, respectively. The outliers are caused due to one or several factors 

during the experimentation process such as failed experiments, uncontrolled factors (e.g., 

ambient temperature, humidity, etc.), errors in the measurement, etc. Eliminating these 

outliers is not recommended because it can introduce bias into the data (Morgan, 2017). 

Most of the points in the current study are located along the probability plot line, indicating 

a high degree of linearity, and thus supporting the adequacy of the proposed models. 

 
Figure 4.12 Main effect plot for specific carbon footprint  
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Figure 4.13 Main effect plot for surface roughness 

 

 

 
Figure 4.14 Main effect plot for printing time 
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Figure 4.15 Residual plot for specific carbon footprint 

 

 
Figure 4.16 Residual plot for surface roughness 
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Figure 4.17 Residual plot for printing time 

Optimization techniques are widely used in several disciplines such as economics, 

engineering, healthcare, biology, etc. (Gurgen et al., 2015). These techniques aim to solve 

either a single or multi-objective problem by determining an optimal or multiple optimal 

solutions, respectively. The complexities arise in case of multi objective problems when 

the objectives conflict with each other or there exists a trade-off between them (Gurgen et 

al., 2015). Optimization typically involves two steps. The first step is model development, 

which establishes the relationship between process parameters and objective functions. 

The second step entails obtaining optimal solution(s) through the application of 

appropriate optimization techniques (Dureja et al., 2016). Various modelling and 

optimization methods have been utilized to determine the optimal conditions such as 

regression model combined with non-dominated sorting genetic algorithm-II (NSGA-II) 
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technique for order preference by similarity to ideal solution (TOPSIS) and goal 

programming (Gurgen et al., 2015); genetic algorithm (GA) and particle swarm 

optimization (PSO) (Gadagi & Adake, 2021); RSM and desirability function (DF) 

(Camposeco-Negrete, 2015; Bagaber & Yusoff, 2017; Senthil et al., 2020); RSM, ANN, 

and DF methods (Chabbi et al., 2017), etc.  

Derringer & Suich (Derringer & Suich, 1980) introduced the desirability function in 

1980 to optimize multiple responses in manufacturing rubber compounds for tire treads. It 

works on the principle of a reduced gradient algorithm. It is one of the most widely used 

multi-objective optimization techniques for prescribing optimum parameters (Sangwan & 

Sihag, 2019), and scheduling jobs on shopfloor (Dabbas et al., 2003). The advantages of 

the desirability function lie in its ability to generate optimal solution(s) in conflicting or 

adverse conditions. It is also simple to understand and implement for practitioners who 

require a quick and effective solution depending on managerial requirements (Costa et al., 

2011). Multi-objective problems are first converted into a single objective by transforming 

individual responses into a dimensionless desirability function value varying from zero to 

one, where ‘0’ represents unacceptable and ‘1’ represents completely desirable values 

(Chou & Chen, 2012). Multiple solutions are initially generated and converged to obtain 

the optimal solution representing the maximum value of composite desirability (Sarikaya 

& Güllü, 2014). 

In the present study, the desirability function is used to determine optimal settings for 

simultaneously minimizing specific carbon footprint and printing time at the target surface 

roughness values by using Minitab 18. Figure 4.18 shows the optimization plot to visualize 

how responses change with the variation in printing parameters.   
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Figure 4.18 Optimization plot for minimization of specific carbon footprint and printing time 

simultaneously at target surface roughness value 

The optimal printing parameters for minimum specific carbon footprint and printing 

time for target surface roughness values of 14.000 μm were found with an infill percentage 

of 10, layer height of 0.18 mm, extruder temperature of 200°C, bed temperature of 50 °C, 

and scale/ part size of 83.333% (volume of 11905 mm3). The values of specific carbon 

footprint and printing time for the target surface roughness values of 14.000 μm were 

found to be 20.790 CO2-eq and 26.03 minutes, respectively.   

A confirmation test was performed using the prescribed parameter settings to validate 

the effectiveness of the proposed model. Table 4.10 compares the results of the 

confirmation experiments with the optimal printing parameters for the proposed model at 

the target surface roughness value of 14.00 μm. It can be observed that the percentage 

errors for specific carbon footprint, printing time, and surface roughness are 14.14%, 2.74 

%, and 4.86 %, respectively. This shows a good agreement between the predicted and 

experimental results.  
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Table 4.10 Confirmation test results for output response functions 

Methodology 

Optimum printing parameters by the 
proposed prescriptive analytics 

Output responses 

Infill 
(%) 

LH 
(mm) 

ET 
(°C) 

BT 
(°C) 

Scale 
(%) 

SCF 
(CO2-eq) 

PT 
(min) 

Ra 
(μm) 

The proposed 
model results 

10 0.18 200 50 83.33 

20.790 22.603 14.000 

The confirmation 
experiment 
results 

18.213 22.000 14.716 

Percentage errors 14.14% 2.74% 4.86% 

  

4.7.5 Development of Diagnostic Analytics to Detect Anomalies during 3D Printing  

 Vibration data containing acceleration and gyroscope time series stamps were 

acquired along x, y, and z axes. The process of acquiring data is followed from Yen et al. 

(2022), where anomalous points were manually introduced during the printing process for 

a certain period of time. The anomalies were introduced manually by pulling the x-axis 

belt, pulling and pushing the bed, slightly knocking the structure of the printer, and shaking 

the printer itself to record the abnormal data points (Table 4.11).  

 Table 4.11 describes the data set acquired for the present research work. The three 

datasets are for training, testing and validation. Dataset-1 is a training dataset which is a 

mixture of abnormal and normal data points. Dataset-2 is a testing dataset, which consists 

of only normal points. Dataset-3 is a validation dataset that contains both normal and 

abnormal points, but with a smaller number of abnormal points. The normal and abnormal 

signals were identified by algorithms by analysing Dataset-1 which is a combination of 

normal as well abnormal signals. Table 4.12 shows the range of normal and abnormal 

signals for the accelerometer and gyroscope. However, it should be noted that these ranges 

are not universal but will depend upon the printer and the acquired data. 
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Table 4.11 Summary of the dataset  

Dataset  Abnormal points Normal points  Total data points 

Dataset-1 2644 2922 5566 

Dataset-2 0 7987 7987 

Dataset-3 405 7562 7967 

 

Table 4.12 Range of amplitude for normal and abnormal vibrations 

 
Data type 

 
Range 

Accelerometer Gyroscope 

x-axis  
(m/s2) 

y-axis  
(m/s2) 

z-axis  
(m/s2) 

x-axis 
(deg/s) 

y-axis 
(deg/s) 

z-axis 
(deg/s) 

Normal  Minimum -13.08 -4.81 -11.25 -1.95 -25.01 -5.24 

Maximum 14.15 5.7 14.6 1.94 23.67 3.9 

Abnormal Minimum -19.61 -5.6 -19.61 -5.5 -31.48 -32.58 

Maximum 19.61 19.50 19.61 4.58 35.19 27.04 

   

Figures 4.19 and 4.20 show samples of the accelerometer and gyroscope data, 

respectively along the x-, y-, z-axes during normal and abnormal printer health using blue 

and orange lines, respectively. These plots provide a visual representation of how the data 

looks in two opposite processes. Data pre-processing and denoising of raw accelerometer 

data were performed using python as a scripting language. Denoising of the data was 

performed to remove noise from the data and retain only relevant signals using 

PyWavelets, a wavelet transformation python package (G. Lee et al., 2019). Figures 4.21 

and 4.22 show samples of the denoised and noisy signals for the accelerometer and 

gyroscope data, respectively along the x-, y-, z-axes.  
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Figure 4.19 Normal and abnormal accelerometer data along x-, y-, z-axes  
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Figure 4.20 Normal and abnormal gyroscope data along x-, y-, z-axes  
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Figure 4.21 Denoised accelerometer data along x-, y-, z-axes  
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Figure 4.22 Denoised gyroscope data along x-, y-, z-axes  
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The PCA plot for denoised vibration data is shown in Figure 4.23. Principal component 

analysis (PCA) is a dimensional reduction method. The data were standardized, and 

principal component analysis (PCA) was used to reduce the feature space from six features 

(three axes of acceleration and three axes of gyroscope) to two feature spaces (PCA_1 and 

PCA_2). It shows the projection of the vibration points in these two feature spaces for easy 

visualization and analysis. PCA was performed using the python library – sklearn. The 

points were grouped automatically between 0 and 10 on the x-axis using python library. 

PCA enables the concentration of as much information (variance) as possible in a lower-

dimensional space so that regular visualization charts can be generated (Mendia et al., 

2022). In this case, the point separated by 70 on the x-axis (PCA_1) and at -15 on the y-

axis (PCA_2) represents maximum abnormality as this point is away from the apex and 

scattered. 

 

Figure 4.23 PCA plot for denoised vibration data 
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Several researchers (Mendia et al., 2022; Hürkamp et al., 2021; Reddy et al., 2022) 

have used accuracy, precision, and recall as performance metrices for evaluating machine 

learning algorithms. Therefore, the developed algorithms were evaluated using these 

performance metrics. Accuracy is the ratio of all accurate predictions to the total number 

of predictions. Precision of a label is the ratio of accurate positive predictions of the label 

to the total predictions of the label. Recall of a label is the ratio of accurate positive 

predictions of the label to the total number of actual labels.   

4.7.5.1 One-class support vector ML algorithm  

 One-Class SVM is a type of SVM which is an unsupervised algorithm, unlike other 

SVM algorithms. This is mainly used for novelty detection. i.e., classifying the new unseen 

data as similar or different from the data it is trained on. The developed One-Class SVM 

algorithm has parameter ‘nu’ which tells the algorithm to assume a fraction of points to be 

the outlier. This value was set to 0.04, and represents that there lies only 4% of data points 

that are abnormal. This value has been arrived at on the basis that a printer should normally 

have a very small proportion of data points with abnormal values which are mostly due to 

sudden movements of nozzle or bed during the printing process.  The ‘gamma’ parameter 

was set to 0.01. This hyper parameter value was tuned using hit and trial method for the 

best prediction performance. Generally, a larger gamma value is used for complex 

classification and a smaller gamma value is used for simpler classification. In this case 

since the classification is simple in terms of normal and abnormal, therefore the value of 

the gamma parameter was taken as 0.01 for the best prediction performance. The One-

Class SVM algorithm was trained on dataset 1, and the algorithm was tested and validated 

on dataset 2 and 3, respectively. In each of the three cases, the evaluation metrics of the 

algorithm were determined by comparing the actual labels to the predicted labels. The 

confusion matrices for the training, testing, and validation are shown in Figures 4.24 (a), 
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4.24 (b), and 4.24 (c), respectively.  Here the label ‘0’ indicates a normal data point, and 

the label ‘1’ indicates an outlier or abnormal data point. The training, testing, and 

validation accuracy were found to be 55%, 88%, and 93%, respectively.  

 
Figure 4.24 One-Class SVM algorithm confusion matrix for (a) training, (b) testing, and (c) validation  
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4.7.5.2 Local outlier factor (LOF) ML algorithm 

 LOF algorithm is an unsupervised anomaly identification that calculates the local 

density deviation of a data point relative to its neighbours. It classifies points as outliers 

with lower density than their neighbours. The developed LOF algorithm has parameter 

contamination which tells the algorithm to assume a fraction of points to be an outlier. 

This value was set to 0.04. The ‘n_neighbors’ parameter tells how many data points are to 

be considered as neighbors which were set to 100. The novelty parameter tells the 

algorithm whether novelty detection is being done which was set as true. The algorithm 

was trained on the denoised and pre-processed accelerometer data. 

The LOF algorithm was trained, tested, and validated on dataset-1, dataset-2, and 

dataset-3, respectively. The confusion matrices for training, testing, and validation are 

shown in figures 4.25 (a), 4.25 (b), and 4.25 (c), respectively. The training testing and 

validation accuracy were found to be 54.79%, 77.50%, and 90.58%, respectively. 

4.7.5.3 Support vector machine (SVM) ML algorithm 

 SVM is a supervised machine learning algorithm for classification and regression 

(IBM, 2023). The support vector classifier (SVC) identifies the hyperplane that maximizes 

the difference between two classes. Default parameter values have been used for algorithm 

preparation. The algorithm was trained on the denoised and pre-processed accelerometer 

data. 

The SVM algorithm was trained, tested, and validated in a similar manner to the One-

Class SVM algorithm. The confusion matrices for training, testing, and validation are 

shown in Figures 4.26 (a), 4.26 (b), and 4.26 (c), respectively. In this, the training, testing, 

and validation accuracy were found to be 89.27%, 97.60%, and 97.21%, respectively.  
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Figure 4.25 LOF algorithm confusion matrix for (a) training, (b) testing, and (c) validation 
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 Figure 4.26 SVM algorithm confusion matrix for (a) training, (b) testing, and (c) validation 
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4.7.5.4 Long short-term memory (LSTM) ML algorithm  

  Recurring Neural Network (RNN) is a neural network design that is primarily 

employed for sequential or time-series data. It generates output based on the prior time-

step value. LSTM is a type of RNN utilized primarily for managing time-series data. In 

contrast to a conventional RNN, it overcomes the issue of long-term dependency, making 

it ideal for this application. LSTM consists of three gates: forget gate, input gate, and 

output gate. Data were grouped for ten consecutive timesteps for every two timesteps. The 

input layer of the developed algorithm consists of an RNN layer with 128 nodes, a dropout 

layer with a dropout value of 0.5, a dense layer with 64 nodes, and a SoftMax layer with 

two nodes that indicate whether the data is normal or an outlier. The hyper-parameter 

values in respective layers were obtained by hyper tuning and training the developed 

algorithm until the best possible results were obtained.  

The algorithm was then trained for 200 epochs with a batch size of 2048. The trained 

algorithm was then used to identify anomalies in validation data. The LSTM algorithm 

was fitted on dataset – 1, out of which 67% of data was used for training the algorithm and 

the rest for testing. Datasets – 2 and – 3 were used for algorithm validation. The network 

was trained for 200 epochs since the validation loss did not change much, resulting in a 

validation accuracy of 92.14%, as shown in Figure 4.27 (a). Training loss refers to the 

error on the training set, whereas validation loss is the error acquired when passing the 

validation set through the trained LSTM. As the number of epochs increases, validation 

and training losses decrease. From the confusion matrices, as shown in Figures 4.27 (b), 

4.27 (c), and 4.27 (d), the accuracy of the training data was found to be 94.82%; for dataset 

– 2, the accuracy was found to be 98.49%; and for the dataset – 3, it was found to be 

97.48%. As these values are high (greater than 90%), and therefore validates the developed 

algorithm. 
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Figure 4.27 LSTM algorithm (a) Loss curve, and confusion matrices for (b) training, (c) testing, and (d) 
validation 
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4.7.5.5 Comparison of the developed ML algorithms  

Tables 4.13, 4.14, and 4.15 show the comparison of evaluation metrics of developed 

algorithms on datasets – 1, – 2 and – 3, respectively. It was found that LSTM (supervised 

machine learning) algorithm outperforms the One-Class SVM (unsupervised machine 

learning) in terms of better precision and recalls for abnormal data points.   

The comparison of overall accuracy and computational time for anomaly detection 

using the proposed algorithms is shown in Table 4.16. The proposed algorithms were 

deployed on the Google Colab platform running on hardware specifications of Intel(R) 

Xeon(R) CPU @ 2.20GHz with a RAM size of 12.38 GB. Unsupervised machine learning 

algorithms took less computational time as compared to supervised machine learning 

algorithms suggesting that they are more feasible for in-situ process monitoring and 

anomaly detection during 3D printing, advantageous in applications where less latency is 

required. 

The LSTM algorithm was selected for anomaly detection during 3D printing due to its 

highest accuracy. Although it requires more computational time, this can be reduced to 

sub-milliseconds with improved hardware specifications, making it feasible for in-situ 

process monitoring and anomaly detection during 3D printing.   

Table 4.13 Evaluation metrics of algorithms for dataset-1 
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Table 4.14 Evaluation metrics of algorithms for dataset-2 

Label 

One-Class SVM LSTM LOF SVC 
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Table 4.15 Evaluation metrics of algorithms for dataset-3 

Label 

One-Class SVM LSTM LOF SVC 
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Abnormal (1) 0.30 0.26 0.63 0.94 0.21 0.32 0.66 0.93 
 

 

Table 4.16 Comparison of different algorithms based on overall accuracy and computational time 

Algorithm Overall 
accuracy (%) 

Computational time (seconds) 

Dataset 1 Dataset 2 Dataset 3 Average computational 
time 

One-Class SVM 81.38 0.018 0.030 0.489 0.179 

LOF 76.55 0.034 0.029 0.575 0.212 

LSTM 97.17 1.159 0.742 1.178 1.026 

SVC 95.30 1.180 1.292 1.086 1.186 
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4.8 A SMART 3D PRINTER MANAGEMENT SYSTEM  

4.8.1 Decision Support, Visualization, Feedback, and Control 

 Appropriate and timely decisions making is a crucial solution for industries to sustain 

in the era of industry 4.0 (Salama & Eltawil, 2018). Data is collected, processed, and 

analyzed to obtain various patterns and infographics, and displayed on a dashboard to 

provide active decision support to a user in real-time. The decision support system is an 

integral element of a CPS, placed at the fourth (cognition level) out of five levels of CPS 

implementation architecture (J. Lee et al., 2015). It is useful in obtaining additional 

information about performance of the shop floor or assembly line, evaluating a wide 

variety of scenarios for improving responses, and lastly obtaining the optimum 

combination of decision variables from multiple possible solutions in a comparatively 

short span of time. Consequently, it eases managerial tasks by providing timely, informed, 

and valuable insights using dashboards and alternatives for executing these decisions after 

evaluating different scenarios (Kellenbrink et al., 2022).   

The decision support system for the present research provides real-time 

recommendations of printing parameters depending on the managerial requirements, 

enabling a practitioner to override printing parameters directly on PMS, both locally and 

remotely. Interaction and physical actuation take place for the variables crossing the 

threshold values. Active decisions can be taken based on threshold limits, through alerts 

or instructions enabling the operator to effectively interact with the physical world. This 

can be performed either manually or through automated actuation. Figure 4.28 shows the 

PMS dashboard for online monitoring and controlling of a 3D printer, and Figure 4.29 

shows the dashboard for online visualization of printing parameters using Node-Red.  
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Figure 4.28 Dashboard for online visualization of GWP for a 3D printed product  
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Figure 4.29 Live dashboard for 3D printer management system  
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4.8.2 Real-time Monitoring of Relative Humidity  

Humidity-time plots for PLA, ABS, and PETG filament materials are shown in Figure 

4.30.  

 
Figure 4.30 Relative humidity values with respect to time for (a) PLA, (b) ABS, and (c) PETG filament 

materials   



SMART 3D PRINTING ANALYTICS AND MANAGEMENT 

151 | P a g e  

 It can be observed that relative humidity in the enclosed chamber keeps on decreasing 

until it reaches the saturation state. The saturation value depends on the filament material 

being used and therefore governs the quality of the finished parts. Filament materials like 

nylon have high moisture absorbing tendency from atmosphere and can lead to clogging 

of the nozzle. This can be prevented using real-time monitoring of humidity values and 

employing active mechanisms such as dehumidifier.  

4.8.3 Real-time Monitoring of Ambient Temperature 

Figure 4.31 illustrates variation of ambient temperature of the 3D printer enclosure 

with respect to time for PLA, ABS, and PETG filament materials.  

 
Figure 4.31 Ambient temperature values with respect to time for (a) PLA, (b) ABS, and (c) PETG filament 

materials 
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There is a steady increase in the ambient temperature of the enclosure due to the heat 

produced by the heated bed and nozzle. The ambient temperature is found to be highest 

for ABS since it prints at higher temperatures. A commonly known behaviour for ABS is 

that it warps very easily when not printed at adequate ambient temperature. To prevent 

printing failure from warping, it is essential to monitor the ambient temperature along with 

active control for the best results.  

4.8.4 Real-time Monitoring of Environmental Emissions 

Thermal degradation of thermoplastics generates airborne emissions with a wide 

collection of additives, free monomers, carcinogens, and respiratory sensitizers that are 

hazardous to human health (Unwin et al., 2013). Real-time monitoring of environmental 

emissions (like VOCs and PM) during the 3D printing is significant for assessing 

potentially harmful exposure to a user on the shop floor, and useful in understanding the 

thermal degradation process of thermoplastics (Wojnowski et al., 2022). 

Real-time monitoring with adaptive control, such as proper ventilation, optimum 

process temperature, has great potential in dynamically controlling the risk associated with 

the airborne emissions. Figure 4.32 illustrates the VOC values with respect to time for (a) 

PLA, (b) ABS, (c) PETG filament materials.  

It can be observed that the values end up saturating to a certain number of VOC 

particles which is generally around 28000 ppm. For the given experimental conditions, 

Figures 4.32 (d), (e), and (f) show the PM values with respect to time for PLA, ABS, and 

PETG filament materials, respectively obtained using SPS30 PM sensor. It can be inferred 

that the typical PM size of the given environment was around 0.55 for all the three 

filaments. 
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Figure 4.32 VOC values with respect to time for (a) PLA, (b) ABS, and (c) PETG filament materials, PM 
values with respect to time for (d) PLA, (e) ABS, and (f) PETG filament materials 

4.8.5 Real-time Monitoring of Acceleration and Orientation 

Acceleration and orientation data acquired during 3D printing with PLA filament is 

shown in Figure 4.33. This holds a lot of potential for condition monitoring. The captured 

data of the three filament materials can help in solving printing problems of ghosting or 

ringing. The gyroscope measured orientation can help in calibrating the maximum 

allowable accelerations of the 3D Printer for countering ghosting while decreasing print 

time. 
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Figure 4.33 Acceleration with respect to time during 3D printing with PLA filament material along (a) x-
axis, (b) y-axis, (c) z-axis; and orientation along (d) x-axis, (e) y-axis, (f) z-axis 
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4.8.6 Machine Vision based Online Monitoring, Identification, and Control of 

Defects 

Machine vision is used to monitor, identify, and control defects during 3D printing 

process using image processing algorithms on edge. A Camera and a Raspberry Pi were 

wired together with python scripts and local edge servers for deploying defect 

identification and control module on Node-Red; an open source, flow-based development 

tool for visual programming. 

Figure 4.34 illustrates the process flow diagram for online monitoring, identification, 

and control of defects during 3D printing. A machine vision camera attached to the 

raspberry pi is used to take regular snapshots after printing of each layer as shown in Figure 

4.35 (a). These snapshots are imported sequentially with height information, turned to 

grayscale, and blurred before finding the outer edge of the printed specimen. The logic 

behind the identification, and control of defects is provided using image processing 

algorithm programmed using python language. Modelling consists of digital image 

processing using OpenCV for implementing real-time machine vision system. The 

specimen image is transformed into numerical features to identify printing deviations as 

compared to the CAD data and assigned dimensional tolerances. This is followed by image 

warping, where the length and interval of the coordinate arrays are restructured into equal 

length and interval. The contour arrays of the detected edge and CAD are compared in a 

sorted sequence for the given height. Comparison is made in terms of absolute distance 

between corresponding pixels. The output is then generated as a two-dimensional 

graphical representation along with quantitative value notification to the dashboard as 

shown in Figure 4.35 (b). The product is continuously 3D printed until any defect is 

detected. Under faulty circumstances, printing is paused, and a notification is sent to the 

dashboard for the user to confirm. A relay module is also used as an edge device. A small 
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voltage signal via the relay module energizes the electromagnets and thus opens the switch 

and vice versa.  It is programmed to turn off the 3D Printer when anything goes beyond 

the nominal values like high VOC values in the enclosure, which can suggest unsafe 

working conditions and therefore automatically pause the 3D Printer. Alert messages are 

generated and sent to the manager using Gmail API and Google cloud console. A common 

cause of print failure is the printer running out of filament. If the printer being used does 

not have the capability to detect and pause filament runaway, then the entire print is wasted 

since the nozzle will continue to trace its path without depositing any filament material. 

To prevent this failure, a filament sensor is used to detect the filament availability for the 

subsequent printing. Filament sensor is hosted on edge computing for active feedback and 

control with reduced latency and response time. If the filament sensor detects no filament, 

it automatically pauses the print and lifts nozzle to a safe location so the user change 

filament or resolve the issue manually.  

 
Figure 4.34 Process flow diagram for online monitoring, identification, and control of defects during 3D 

printing  
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Figure 4.35 Snapshot of (a) 3D printed product, (b) comparison with CAD model 

4.8.7 Real-time Monitoring and Control of Energy Consumption 

 Energy consumption data during 3D printing process can be acquired and recorded as 

timestamps using inexpensive energy monitoring systems. It can be further processed and 

analyzed to get a better understanding of the process. A smart energy meter is used for 

monitoring and recording power consumed during standby, preheating, calibration, 

printing, and cooldown as shown in Figure 4.36. 

During the standby phase, the printer is powered on but is not handling any active job. 

Due to its idle state, printer consumes minimum power to keep itself alive and ready to 

receive instructions from user while displaying the current status. During preheating, 

energy is used up to pull nozzle and bed temperatures to the required values for printing 

the specified filament material. During the calibration process, power is consumed as most 

of the actuators are functioning. During the actual printing, the power consumption profile 

is dependent on the model being printed. Abrupt motions in printing lead to sudden curve 

changes and spike formations. The longer the print time, the greater is the power 

consumption. Lastly, during cool-down sequence, power consumption drop is noticed 

since nozzle and heated thermistor reduce drawing of power and the temperatures start 

falling. Motors are also turned off during cool-down sequence. After cool-down, printer 

again enters standby phase, until turned off, waiting for next job.  
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Figure 4.36 Power consumption profiles with respect to time for (a) PLA, (b) ABS, and (c) 
PETG filament materials  
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Energy consumption depends on several variables such as infill, layer height, filament 

material, bed temperature, nozzle temperature, printing time, etc. Table 4.17 compares the 

energy consumption for PLA, ABS, and PETG filament materials under similar conditions 

except bed and nozzle temperature settings. ABS filament material consumes the highest 

power while printing almost the same weight as PLA and PETG filament materials. 

Moreover, live data such as filament material consumption can be acquired from PMS, 

along with the live energy data from smart energy meter to estimate the carbon footprint 

instantaneously. This will enable a user to dynamically monitor and assess the performance 

measures values and provide prompt decision support. 

Table 4.17 Energy consumption for PLA, ABS, and PETG filament materials 

Material Parameter settings Bed temperature 
(°C) 

Extruder 
temperature (°C) 

Energy consumption 
(kWh) 

Infill 
(%) 

Layer height 
(mm) 

PLA 
 

10 
 

0.2 

215 60 0.07 

ABS 255 110 0.15 

PETG 250 90 0.13 

4.9 COST ANALYSIS 

The total cost of hardware is approximately 260 USD, excluding the 3D printer. Open-

source software was used so no cost is involved for the software. Cloud computing 

platform does not cost up to a certain limit in free tier subscription. Therefore, there is zero 

cost involved in usage of cloud computing platforms for the present use case. The 

raspberry pi, smart energy plug, VOC sensor, PM sensor, webcam cost USD 75, USD 45, 

USD 24, USD 63, USD 24, respectively. Gyroscope, NodeMCU, filament sensor, relay 

module, and a few auxiliary hardware required to set up local network connectivity, etc. 

costed around USD 30. The low-cost solutions become significant for the adoption of these 

systems in micro, small and medium enterprises (MSMEs). Secondly, the MSMEs do not 
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have enough funds to buy new Industry 4.0 compliant or smart systems/equipment to 

realize the benefits of Industry 4.0 adoption. The proposed low-cost system can be used 

with the existing equipment to get higher productivity, greater reliability, improved 

uptime, and enhanced quality benefits of Industry 4.0.  

4.10 SUMMARY 

This chapter presents a CPPS framework for smart 3D printing analytics and 

management. Further, the following models have been developed to demonstrate the 

usefulness of the proposed CPPS framework: 

• Real-time monitoring, visualization and control using computing technologies 

• Real-time monitoring and control of defects during 3D printing using a machine vision 

system and edge computing 

• Live demonstration of energy consumption and carbon footprint during 3D printing 

• Development of machine learning algorithm to predict RUL of a 3D printer nozzle 

• Development of machine learning algorithm for real-time anomaly detection using 

vibration data  

• Development of a live dashboard for the real-time visualization and control 

• Development of a prescriptive model to prescribe optimal printing parameters for 

minimizing carbon footprint and printing time at targeted surface finish. 

The conclusions and the practical significance are as follows: 

• Cloud computing platform was found better to store data for temperature, humidity, 

and energy consumption as these variables require high storage volumes, remote and 

easy accessibility, scalability, and redundancy. Fog computing platform was used to 

store data on VOC, acceleration, particulate matter, and orientation for the closer 
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proximity of data source as these parameters require resource intensive processing, 

medium storage volumes, low latency, and easy accessibility. Edge computing 

platform was used to automatically detect defects, filament runout, filament breakage, 

and smoke at its source as these parameters require faster insights, very low latency, 

autonomous and prompt decision making, and instant actuation without demanding 

resource intensive processing and higher storage. 

• The proposed LSTM machine learning algorithm for descriptive analytics 

characterizes and estimates energy consumption during various stages of 3D printing 

and for different materials (PLA, ABS, PETG) with high prediction accuracy. This 

would be helpful in understanding of the energy consumption in each stage of the 3D 

printing process. 

• The proposed computational model for descriptive analytics enables live estimation of 

environmental impact for the 3D printed products with varying combinations of 

printing parameters. It offers different stakeholders (operator, manager, manufacturer) 

the results of life cycle assessment for prompt interventions. Furthermore, it enables 

environmentally conscious consumers to make well-informed purchasing decisions 

through enhanced transparency and visibility. 

• The proposed prognostic model, developed by using autoregressive machine learning 

algorithm, is valuable to monitor the nozzle health, which helps to improve the printer 

uptime, reliability, and energy efficiency; and product quality. It also prevents 

abnormal power usage and facilitates proactive planning of maintenance schedule and 

sequence of orders.  

• Prescriptive analytics enabled to understand the relationship among 3D printer 

performance measures. It prescribed optimal printing parameters, providing decision 
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support to practitioners in overriding the parameters online for the simultaneous 

optimization of environmental, economic, and technological performance 

characteristics. This is also useful at the computer-aided process planning stages in the 

design optimization and the production of high-quality goods with tight tolerances 

demanded by a customer. 

• The proposed diagnostic model developed by using machine learning algorithms 

detected anomalies due to mechanical or structural failure of the 3D printer. The 

developed supervised LSTM algorithm has an overall accuracy of 97.17%, 

outperforming other supervised (SVM), and unsupervised (One-Class SVM, LOF) 

machine learning algorithms. Unsupervised machine learning algorithms were found 

to have higher computational speed than supervised machine learning algorithms for 

detecting anomalies during 3D printing. The significance of timely detection of 

anomalies lies in its ability to achieve error-free 3D printing, resulting in less material 

waste, reduced human intervention & costs, and improved product quality by detecting 

potential anomalies during printing and terminating the printing process.  



 

  

CHAPTER 5 

DEVELOPMENT OF A CPPS FRAMEWORK FOR SMART TOOL HEALTH 

ANALYTICS AND MANAGEMENT  

 

More and more organizations are trying to install tool health analytics dashboards for 

CNC machines to avoid unexpected failures, maintain machining accuracy, and optimize 

tool change. This chapter aims at developing a CPPS framework for a smart tool health 

management system to prescribe the optimum cutting parameters to managers/operators 

for optimizing the remaining useful life and/or material removal rate, and/or active power 

consumption (either separately or simultaneously) at a predefined surface finish.   

5.1 INTRODUCTION 

Metal cutting is an essential process of removing unwanted material from the 

workpiece to obtain the desired shape and size. The frequent replacement of tools during 

machining adds to tooling cost as well as lowers productivity. Generally, the tool life is 

pre-determined at laboratory conditions for a tool-workpiece material pair for a range of 

operating conditions. However, the workpiece properties, particularly near the surface of 

the workpiece may be different when produced under actual working conditions. This 

leads to either inefficient use of a tool (tool changed before the end of life) or premature 

tool failure leading to poor surface finish, dimensional accuracy, surface texture, etc. The 

literature suggests a downtime up to 20% (Kurada & Bradley, 1997) and productivity loss 

of 7-20 % (Kegg, 1984) for the inefficient use of tools. This becomes more challenging 

when working with hard materials and superalloys, known as difficult to machine 

materials. One such difficult to machine material is AISI H13 tool steel with hardness 

greater than 30 HRC. H13 tool steel is widely used in aerospace, automotive, and tooling 

(moulds and dies) industries. This research used H13 tool steel workpiece material and 
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coated carbide tool (AlTiN). An optimized tool change will also assist managers in 

developing efficient production plans and tool purchase schedules. The benefits become 

profound for autonomous manufacturing under industry 4.0 environment. Therefore, this 

study uses machine learning algorithms on the real-time data to predict the remaining 

useful life of the tool in real-time and prescribes the optimum cutting variables to achieve 

the organizational objectives of optimum RUL and/or material removal rate (MRR) at a 

predefined surface finish. 

Most of the existing research on tool health analysis provides proof of concept as 

happens with any new research. It means that remaining useful life is predicted based on 

the data at specific cutting conditions for a tool/workpiece material combination. Few 

researchers (Drouillet et al., 2016; Malakizadi et al., 2020; Corne et al., 2017; Zhou et al., 

2022) have varied one of the cutting parameters to predict the RUL without incorporating 

standard design of experiments (DOE) methodologies. This has limited use in industrial 

applications as the cutting parameters in industry are variables, and RUL may be different 

from the predicted value at the specific cutting parameters. Therefore, a proper design of 

experiments is required so that the RUL can be predicted to include the effects of cutting 

parameters on it. The predicted RUL under these statistically significant conditions can be 

further optimized to provide a set of cutting parameters for optimum/maximum RUL. The 

surface finish for a machining job is known as a priori (Kant & Sangwan, 2014), therefore 

optimization of RUL without the prescribed surface finish hardly has any practical 

significance. The proposed research methodology can also prescribe the cutting 

parameters for maximum MRR and the corresponding RUL at the targeted surface finish 

as required by the industry. The proposed model takes into consideration the productivity, 

cost, and quality into consideration to prescribe the cutting parameters for a milling 

operation.   
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The prognostic and prescriptive analyses work well with normal working conditions 

considering wear and tear. But a diagnostic analysis is necessary to detect anomalous 

behaviour of a system. An anomaly is defined as the occurrence of events/items/data 

points/observations that are distinct (abrupt or gradual) from what is standard, normal, or 

expected (Saez et al., 2017). There can be multiple reasons for anomalous behaviour in 

machining operations. There may be failure events during the useful life of a tool due to 

several reasons such as improper fixing of either tool or workpiece, presence of 

irregularities on the workpiece, etc. Anomalous behaviour detection in real-time can 

facilitate timely actions, to prevent machining faults, through automated actuation or 

operator intervention (Nouri et al., 2015). Diagnosis could detect tool wear stages and 

anomalies and prevent dynamic breakdown of cutting tools to maintain product quality, 

reduce downtime, and improve the reliability during smart manufacturing (Wei et al., 

2022; F. Zhang et al., 2020). Unmanned running of machine tools, as envisioned under 

industry 4.0, under abnormal conditions may lead not only the high rejections and poor 

surface finish but may also damage the machine tools and sensors. Diagnostic analysis 

should be offered complementary with the prognostic and prescriptive analyses to avoid 

costly damage and runouts as well as to imbibe confidence in the managers and operators 

under industry 4.0 environment. Proper diagnostic could prevent product rejections and 

premature tool failures thereby saving time, money, and energy (Cooper et al., 2020). 

CPPS based approach has been used to retrofit and upgrade traditional CNC machines 

into smart machines with the integration of various hardware and software components by 

enabling 3Cs (computation, communication, and control) with real-time capabilities, 

modularity, and reconfigurability (Lins et al., 2020). There have been a few attempts (Lins 

et al., 2020; Y. Zhang et al., 2020) to integrate CPPS approach with the tool health 

analytics. This chapter develops a cyber physical production system framework for tool 
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health analysis combining diagnostic, prognostic, and prescriptive analytics, along with 

the development of a knowledge-based system. 

Knowledge-based system (KBS) aims to store relevant acquired data, information, and 

intelligence to be shared among stakeholders (Wan et al., 2019). In a smart factory, KBS 

has become an essential component for enabling strategic and operational functions by 

continuously supporting value creation and facilitating the development and protection of 

human-machine collective intelligence (Ansari, 2019a). Further, KBS has demonstrated 

promising results in increasing overall equipment efficiency (OEE) by approximately 5% 

in the automotive industry by predicting early downtime, recommending text for 

documentation, and selecting the best-suited maintenance technician (Ansari et al., 2021). 

This chapter also presents a novel knowledge-based system that updates knowledge and 

information about the chip colour at the different health conditions of a tool. The KBS also 

draws the tool life curve of the cutting tool and the energy consumption pattern across the 

tool life. The KBS will help the managers and even less skilled employees to take better 

decisions for the selection of cutting parameters and tool change. This chapter proposes 

machine learning algorithms (gaussian mixture model integrated with hidden Markov 

model for classification and autoregressive model for prediction) to predict the RUL of the 

cutting tool; regression models to prescribe optimum cutting parameters; a machine 

learning algorithm (random forest) for anomaly detection; and a knowledge-based system 

for chip conditions and tool life curves. 

The chapter is structured as follows. Section 5.2 presents the research background 

focusing on modelling techniques and analytics used for tool health analysis. Section 5.3 

presents the research methodology and proposes a CPPS framework for smart tool health 

analytics and management. Sections 5.4, 5.5, 5.6, 5.7 discuss the experimental planning, 

physical world, data acquisition system, and cyber world respectively. Section 5.8 
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discusses the smart tool health management system. Section 5.9 presents a knowledge-

based system. Finally, section 5.10 summarizes the chapter and highlights the major 

contribution of the present work.  

5.2 BACKGROUND 

5.2.1 Tool Health Modelling Techniques 

The tools and techniques adopted for tool health analysis can be broadly divided into 

five categories: namely, analytical models, physics-based models, mathematical/empirical 

models, data-driven models, and hybrid models. 

Researchers have developed numerous analytical/mechanistic models by extending the 

basic Taylor’s tool life equation for predictive assessment of tool-wear and tool-life 

(Marksberry & Jawahir, 2008). However, these models are unsuitable for industrial 

applications for not considering the underlying uncertainty in tool wear. Moreover, these 

models also require a large number of experiments to determine the empirical constants 

using sophisticated equipment (dynamometers to calculate forces) that increase the 

experimental efforts, time, material, and costs (Marksberry & Jawahir, 2008; Drouillet et 

al., 2016). 

Physics-based models have been developed by researchers to correlate tool 

degradation with sensor signals for force, power, current, vibration, etc. These models 

consider various assumptions or simplifications and can solve the complexities of tool 

wear prediction with reduced experimental efforts, time, material, and costs (Malakizadi 

et al., 2020; J. Wang et al., 2020) but require an in-depth understanding of the system 

behaviour (Wu et al., 2017a). However, limitations such as non-availability of in-depth 

prior knowledge of system behaviour and inability of being updated with the dynamic 

changes in physical parameters result in lower accuracies, effectiveness, and flexibilities 

of these models (Wu et al., 2017a; Wang et al., 2019; Zhao et al., 2019). 
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Mathematical/empirical modelling is the conversion of a real-life scenario into a 

mathematical equation (Dundar et al., 2012). Several studies have been carried out by 

researchers (Zoghipour et al., 2021; Hanafi et al., 2012; Kant & Sangwan, 2014; Q. Wang 

et al., 2014; Camposeco-Negrete, 2015; Li et al., 2017; Wang et al., 2019) to develop 

mathematical equations using statistical techniques to investigate, evaluate, predict, and 

optimize a variety of responses such as tool life, surface roughness, machining time, 

energy consumption, etc. Researchers have shown that mathematical models could 

effectively predict the tool wear with a good correlation between the predicted and the 

measured values (Choudhury & Srinivas, 2004). However, large number of experiments 

required to develop mathematical models can be challenging and time consuming. 

Moreover, oversimplification of the real problem without considering all influencing 

parameters can result in inaccuracies and impractical solutions for industrial applications 

(Denkena et al., 2020). 

Data-driven models are of two types: one, batch processing of the recorded process 

data to develop a model and then dynamically update the developed model with the new 

data; two, real-time or near real-time data mining and processing the live data for the real-

time decision making. Real-time data processing is very challenging and requires fast 

response time and low processing time (Dogan & Birant, 2021). The recent developments 

in digitalization have generated a huge amount of data in industries. Stored or real-time 

data are analyzed using machine learning algorithms to discover useful insights and 

support decision making (Zhao et al., 2019; F. Zhang et al., 2020). Several machine 

learning algorithms are used to process sensor data, which can be trained to learn from its 

past behaviour or trend and can use the learning to make future predictions of tool life 

(Drouillet et al., 2016). Machine learning models have several benefits: convenient (low 

entrance barrier), automatable (fully computational), fast (online operations possible), and 

provide better insight for knowledge driven continuous process improvement (Thiede et 

al., 2020). Machine learning algorithms have been used by researchers for tool wear 
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prediction (Ma et al., 2021; Y. Li et al., 2019; Duan et al., 2022) and tool condition 

monitoring (Wang et al., 2014) with good accuracies. 

Hybrid models combine different types of models (physics-based models, 

mathematical models, data-driven models). Currently, there is an increasing trend among 

researchers to apply hybrid models for tool wear prediction (Rai & Sahu, 2020). Yang et 

al. (2022) proposed a hybrid model combining physics-based model with machine learning 

models for detecting anomalies during milling operations. The model was able to reduce 

false alarms significantly with the ability to detect online tool wear with good accuracy. 

Hybrid models have been used for predicting tool life (Zhu & Zhang, 2019), and tool wear 

in different stages (initial, normal, and severe) of tool life (Li et al., 2022). 

5.2.2 Tool Health Analytics 

Relevant literature on tool health analysis has been reviewed in terms of modelling 

techniques, state variables, machining process, algorithms, and workpiece materials used.  

Pimenov et al. (2022) reviewed artificial intelligence techniques for monitoring tool 

wear in machining and the effective use of modern sensors (dynamometers, 

accelerometers, acoustic emission sensors, current and power sensors, image sensors, etc.) 

for automating and modelling technological parameters of turning, milling, drilling, and 

grinding processes. Watanabe et al. (2020) proposed a data-driven technique using 

Mahalanobis-Taguchi algorithm to detect anomalies due to chip biting and tool vibration 

using motor current during the turning of stainless steel. Similarly, Cooper et al. (2020) 

proposed a generative adversarial network algorithm (a data-driven technique) to detect 

tool failure using acoustic signals while milling AISI 1018 steel. Lins et al. (2020) 

modelled images using Petri Net algorithm, a data-driven technique, to monitor tool wear 

and provide alerts for the tool change. Wei et al. (2022) acquired force data to develop a 

data-driven technique based on optimal path forest to classify different tool wear states in 

a milling process. Zhou et al. (2020) modelled vibration signals using SVM algorithm to 

identify transition points for a tool change during the milling of titanium alloys. Zhou et 
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al. (2022) proposed a two-layer angle kernel extreme learning machine algorithm to 

monitor tool wear conditions using acoustic sensor signals during the milling of AISI 1045 

steel. R. Liu (2022) proposed a calibration-based algorithm that uses similarity analysis to 

monitor tool wear and used edge computing close to the data source to reduce latency. 

Aramesh et al. (2016) proposed an empirical model to estimate the RUL of turning 

tools using survival analysis techniques based on the proportional hazard model. Tool wear 

under variable cutting speed and feed but with constant depth of cut were measured at the 

second transition point and taken as a failure criterion (baseline) to estimate the RUL of 

cutting tools. Y. Zhang et al. (2020) predicted tool failure based on vibration variable and 

gradient boosting decision tree algorithm for a milling process. Corne et al. (2017) 

predicted tool wear using spindle power and neural network model during the drilling of 

Inconel alloy. Li et al. (2022) proposed a hybrid (physics and data-driven) model to predict 

tool wear in three different stages (initial, normal, and severe) based on the force and 

vibration variables and using the meta-learning algorithm for a milling process. Wu et al. 

(2017a) predicted the RUL of a tool using current and voltage variables based on random 

forest algorithm during the milling of stainless steel. Malakizadi et al. (2020) proposed a 

physics-based technique based on neural networks to predict tool wear occurring due to 

dissolution and diffusion phenomena during turning of C50 steel. Ma et al. (2021) 

modelled force variable using the convolutional neural network (CNN) – gated recurrent 

unit (GRU) algorithm, a deep learning data-driven technique, to predict tool wear during 

the milling of a titanium alloy (TC18). Drouillet et al. (2016), modelled spindle power to 

predict the RUL of a cutting tool with high accuracy and significantly less computational 

time using neural networks during the milling of stainless steel. Li et al. (2019) acquired 

both power and current data to develop a data-driven technique based on meta-learning to 

predict tool wear during the milling of a titanium alloy. Jinsong et al. (2017) predicted the 

RUL of a cutting tool with improvements in cycle time, machining efficiency, and product 

quality using neural network and spindle load data during the milling of titanium alloy. 
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Zhu & Zhang (2019) proposed a hybrid (empirical and analytical) technique based on 

neural networks to predict tool life using force data during the milling of Inconel alloy. 

Cheng et al. (2022) acquired force data for simultaneous monitoring and prediction of tool 

wear during the milling of superalloy (Haynes 230) based on the CNN-BiLSTM algorithm. 

Ferreira & Gonçalves (2022) reviewed the literature for RUL prediction using machine 

learning algorithms and explored the potential of predicting the RUL and integrating it 

with production planning and maintenance systems to reduce downtimes, improve 

maintenance plans and production schedules, and minimize defects, which can lead to 

higher profits and customer satisfaction. He et al. (2022) proposed a cross-domain 

adaptation network based on attention mechanism to predict tool wear during milling of 

AISI 1045 steel using vibration signals datasets. X. Liu et al. (2022) proposed a customized 

DenseNet and GRU integrated model to predict tool wear based on multi-sensor feature 

fusion of force, vibration, and acoustic data during the milling of stainless steel. The 

proposed model performed better in terms of accuracy than the other previously developed 

models for the PHM 2010 benchmark data set. However, the proposed model was 

developed under constant cutting parameters.  

All studies, except Kene & Choudhury (2019) provide only prognostic analytics of tool 

health. Kene & Choudhury (2019) developed an analytical model based on sensor fusion 

function to predict tool wear and prescribed optimal cutting parameters during a turning 

process. This chapter proposes a prescriptive analytics model for the milling process. The 

current study proposes a hybrid technique for prescribing the optimum cutting parameters 

to managers/operators to optimize the remaining useful life and/or material removal rate, 

and/or active power consumption (either separately or simultaneously) at a predefined 

surface finish.   

Table 5.1 presents an overview of reviewed literature with respect to their 

objective(s)/purpose, employed methods/modeling techniques, machining process, data 

types, algorithms, materials, and technology readiness level (TRL). 
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Table 5.1 An overview of reviewed literature in the domain of tool health analytics 

Objective(s) Author(s) Modelling 
Technique 

Machining 
process Data types Algorithm(s) Material Technology readiness level 

(TRL) 

Diagnostic 
analytics 

Watanabe et 
al. (2020) Data-driven Turning Motor 

current Mahalanobis-Taguchi Stainless-steel Method development  

Cooper et al. 
(2020) Data-driven Milling Acoustic 

signals 
Generative adversarial 
networks AISI 1018 steel Method development  

Lins et al. 
(2020) Data-driven Drilling Images Petri Net ˗ Architecture development with 

proof-of-concept demonstration 

Wei et al.  
(2022) Data-driven Milling Force Optimal path forest ˗ Method development 

Zhou et al. 
(2020) Data-driven Milling Vibration Support vector machine Titanium alloy (Ti-

6Al-4V) Method development  

Zhou et al. 
(2022) Data-driven Milling Acoustic 

signals 
Two-layer angle kernel 
extreme learning AISI 1045 steel Method development and 

experimental investigations  

R. Liu (2022) Data-driven Milling 
Spindle 
torque 
signals 

Calibration-based 
algorithm AISI 1018 steel Method development with proof-

of-concept demonstration  

Prognostic 
analytics 

Aramesh et al. 
(2016) Empirical Turning ˗ Proportional hazard model Ti-MMCs Experimental research  

Y. Zhang et 
al. (2020)  Data-driven Milling 

Vibration 
 

Integrated dynamic 
principal component 
analysis and gradient 
boosting decision trees 

˗ Framework development with 
proof-of-concept demonstration 

 



SMART TOOL HEALTH ANALYTICS AND MANAGEMENT 

173 | P a g e  

Table 5.1 An overview of reviewed literature in the domain of tool health analytics (contd…) 

Objective(s) Author(s) Modelling 
Technique 

Machining 
process Data types Algorithm(s) Material Technology readiness level 

(TRL) 

Prognostic 
analytics 

Corne et al. 
(2017) Data-driven Drilling Spindle 

power, force Neural network Inconel 625 Method development and 
experimental investigations 

Li et al. 
(2022) 

Hybrid 
(physics and 
data driven) 

Milling Force, 
vibration Meta learning ˗ 

Method development, 
experimental and performance 
comparison 

Wu et al. 
(2017) Data-driven Milling Current, 

voltage Random forest Stainless steel 
Method development, 
experimental and performance 
comparison 

Malakizadi et 
al. (2020) Physics-based Turning Temperature Neural network C50 steel Method development 

Ma et al. 
(2021) Data-driven Milling Force CNN-GRU Titanium alloy 

(TC18) 
Method development and 
experimental investigations 

Drouillet et al. 
(2016) Data-driven Milling Spindle 

power Neural network Stainless-steel Method development and 
experimental investigations 

Li et al. 
(2019) Data-driven Milling Power, 

current Meta learning Titanium alloy Method development and 
experimental investigations 

Jinsong et al. 
(2017) Data driven Milling Spindle load Neural network Titanium alloy Method development and 

experimental investigations 

Zhu & Zhang 
(2019) 

Hybrid 
(empirical 
and 
analytical) 

Milling Force Neural network Inconel alloy 718 Method development and 
experimental investigations 

Cheng et al. 
(2022) Data-driven Milling Force CNN-BiLSTM Superalloy (Haynes 

230) 
Method development and 
experimental investigations 
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Table 5.1 An overview of reviewed literature in the domain of tool health analytics (contd…) 

Objective(s) Author(s) Modelling 
Technique 

Machining 
process Data types Algorithm(s) Material Technology readiness level 

(TRL) 

 He et al. 
(2022) Data-driven Milling Vibration 

Cross-domain adaptation 
network based on attention 

mechanism (CDATT) 
AISI 1045 steel Method development and 

experimental investigations 

 X. Liu et al. 
(2022) Data-driven Milling 

Force, 
vibration, 
acoustic 

Integrated DenseNet and 
GRU model Stainless steel Method development and 

performance comparison 

Prescriptive 
analytics 

Kene & 
Choudhury 
(2019) 

Analytical Turning 

Force, 
vibration, 
surface 
roughness  

˗ E24 grade steel 
Method development and 
experimental investigations 
 

Diagnostic  
+  

Prescriptive 
analytics 

This chapter Hybrid Milling 

Force, 
power, 
surface 
roughness 

Auto-regression, GMM-
HMM, random forest, 
RSM 

AISI H13 tool steel Framework development with 
proof-of-concept demonstration 
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Literature review shows that tool health analysis has been employed for single point 

(turning) as well as multi-point (milling and drilling) cutting tools, but more attention has 

been given to the milling process. It may be attributed to the complex and dynamic nature 

of cutting in milling, higher cost of milling cutters, and higher costs and lower productivity 

associated with tool failures and replacements in a milling process. Yan et al. (1999) has 

also mentioned that, in tool health analytics, more significance has been given to milling 

process analytics due to higher complexities involved in milling, and a semi-intermittent 

process that generates discontinuous signals during intermittent engagement and 

disengagement of the inserts. More tool health analysis studies have been performed for 

difficult to machine workpiece materials due to faster tool wear rate thereby affecting the 

product quality, energy consumption and productivity because of frequent tool 

replacements.  

Wan et al. (2019) proposed a knowledge-based system using case-based reasoning for 

planning maintenance activities thereby improving the efficiency and effectiveness of 

machine tool maintenance. Francalanza et al. (2017) proposed a knowledge-based tool for 

CPPS-based digital factories to support decision-making and minimize disruptions.  

The objectives of this chapter are (i) to develop a CPPS framework for a smart tool 

health analysis combining diagnostic and prescriptive analytics, and (ii) to develop a 

knowledge-based system for tool health monitoring. The objectives are achieved by 

developing the following models: 

• Development of a machine learning algorithm to predict RUL of a tool (prognostic 

analytics) 

• Development of regression models to prescribe optimum cutting parameters to 

optimize RUL in conjunction with MRR and APT (prescriptive analytics) 
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• Development of a machine learning based methodology for anomaly detection 

(diagnostic analytics) 

• Development of a knowledge-based system to update the learning from the machine 

learning algorithms; and to update the tool life curve and chip conditions at different 

phases of a tool life.  

5.3 RESEARCH METHODOLOGY  

The research methodology for the present work is based on a cyber-physical 

production system framework. It consists of four fundamental elements: physical world, 

data acquisition system, cyber world, and decision support system. In addition to these 

four fundamental elements, two extension elements are also proposed, namely design of 

experiments and knowledge base development, as shown in Figure 5.1.  

The first step is to plan the experiments by selecting the appropriate cutting parameters, 

workpiece, cutting tool, and workpiece preparation. The experiments were then designed 

using the Taguchi L27 orthogonal array, which provides a robust design for acquiring a 

broad range of data with fewer experiments and at a reduced cost.  

The second step is to set up the physical world through the integration of various 

hardware, such as energy meter, dynamometer, XDK sensor, and software such as 

LabVIEW, Node-RED, DynoWare with the CNC machine. In the third step, experiments 

were performed to acquire online data related to power & force from CNC machine. 

Subsequently, offline data related to tool wear, surface roughness, and chips texture were 

acquired from the cutting tool, machined workpiece, and chips, respectively. Next step is 

the development of cyber world wherein data was processed into meaning information for 

generating prognostic, prescriptive and diagnostic analyses using machine learning 

algorithms and regression models. 
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Figure 5.1 Research methodology for the development of a CPPS framework for smart tool health 
management system  
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Next step involves the development of a decision support system, in which dashboards 

were developed for monitoring cutting parameters, RUL, MRR, and anomalous behaviour 

to support decisions regarding control actions to be taken by an operator based on 

organizational requirements. The last step involves the development of a knowledge-based 

system that updates knowledge and information about the chip colour at different health 

conditions of a tool and various curves (tool life, energy consumption, and surface 

roughness).  

CPPS framework would enable networked physical components and computational 

processes, where ‘cyber’ and ‘physical’ parts are tightly coupled in a feedback relation, 

continuously affecting one another leading to analyzable and predictable systems, while 

promoting learning and analysis on live data. The arrows in Figure 5.1 represent the flow 

of data from one element to another. The loop is closed with the human at the center to 

provide simple (the lesser, the better) overrides depending on the condition of the machine. 

CPPS framework has the potential to take decisions based on the algorithmic monitoring 

system with minimum operator intervention, and expert knowledge of various tools and 

techniques of decision-making process (Teti et al., 2010).  

5.4 EXPERIMENTAL PLANNING (MATERIALS AND METHODS)  

Experiments were performed to acquire data for tool health prescriptive analytics. 

Three axes CNC vertical milling center of make LMW JV 40 (spindle motor capacity of 

7.5 KW, maximum spindle speed of 8000 RPM), is used to perform end milling on AISI 

H13 tool steel using coated carbide cutting tool. The hardness of the workpiece is 45 HRC. 

The size of the workpiece was 50×50×50 mm3. The cutting tool is AlTiN coated cemented 

carbides end mill cutter of 12 mm diameter with four flutes. Carbide tools are widely used 
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for machining difficult-to-machine materials due to their performance and price (Shokrani 

et al., 2012).   

Experiments were designed using Taguchi L-27 orthogonal array approach, which is a 

systematic way to design, conduct, and analyse experiments. This results in obtaining 

maximum quantitative information from a lesser number of experimental trials which 

reduces the experimental cost & machining time and improves the quality & robustness 

(Gokulachandran & Mohandas, 2015). Table 5.2 lists the machining parameters with three 

levels that were chosen to cover critical values observed during preliminary 

experimentation. The machine capability and recommendation from insert manufacturer 

were also considered during the design of experiments.  

Each experiment was performed using a fresh tool to acquire twenty-seven time series 

data sets. The cycle time for each experiment was 800 seconds. The material removal takes 

place for about 600 seconds excluding the air cutting time. Each workpiece was prepared 

by rough milling, before the experiment, to remove the oxidized layer present on the 

surface. The experiments were performed in a controlled environment. Real-time data of 

ambient temperature and relative humidity were acquired using XDK sensor node and 

monitored online and wirelessly through MQTT protocol on Node-Red dashboard. 

Ambient temperature varied between 25°C and 30°C whereas relative humidity was in the 

range of 40% to 60%. 

 Table 5.2 Machining parameters and their values based on Taguchi L-27 orthogonal array 

Sl. No. Parameters Unit Symbol Level 1 Level 2 Level 3 

1 Cutting speed  m/min  v 120 150 180 

2 Feed mm/rev f 0.2 0.3 0.4 

3 Axial depth of cut  mm d 0.2 0.5 0.8 
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5.5 PHYSICAL WORLD (HARDWARE AND SOFTWARE USED)  

Figure 5.2 illustrates the physical world comprising of a CNC vertical milling center 

with integrated sensor networks and devices, flows. Machining processes were performed 

on the workpiece to get the desired shape and size of the final product with or without 

coolant in a controlled manner. Machining process also results in worn-out tools, by-

products such as unwanted materials in the form of chips, polluted coolant, etc. Various 

sensors and devices were integrated with the CNC machine to acquire data or monitor the 

parameters of temperature and humidity.  

 

Figure 5.2 Physical world comprising of CNC vertical milling center with integrated sensor networks and 
devices; energy and material flow 

5.6 DATA ACQUISITION SYSTEM  

Generally, data acquired from the physical world can be broadly categorized into 

product, process, and external data (Thiede et al., 2020). Data from the physical world 

resulting from the CNC machining center, and other external sensors/devices are listed in 

Table 5.3. The data was acquired from sensors and measuring devices in hybrid mode –
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online measurements for acquiring power consumption and force data, whereas tool wear 

and workpiece surface roughness were measured offline.  

Table 5.3 Sensors and devices with their applications and measurement techniques 

Sensor/Device Application Measurement Technique 

NI DAQ Power data  Indirect 

Kistler dynamometer Force data Indirect 

Mitutoyo quick scope 
microscope 

Tool wear measurement Direct 
 

Mitutoyo SJ-410 Surface 
roughness tester 

Workpiece surface roughness Direct 

XDK Temperature and humidity Indirect 

 

Figure 5.3 shows different online and offline data acquisition dashboards for (a) 

surface roughness measurement, (b) inbuilt power measurement, (c) tool wear 

measurement, (d) acquisition of force, power, and XDK sensor data.  

 

 

Figure 5.3 Data acquisition dashboards for (a) surface roughness measurement, (b) power monitor,   
(c) tool wear measurement, (d) acquisition of force data, power data, and XDK sensor data 
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5.7 CYBER WORLD 

This section presents the development of machine learning algorithms that can be 

deployed in the cyber world facilitating real-time monitoring, diagnosis, and prognosis 

during the milling process. Historical time series data obtained from different sensors and 

devices were used to develop machine learning models for characterization of stages, 

prediction of tool’s RUL, and detection of anomaly during the milling process.  

5.7.1 Development of a ML Algorithm for RUL Prediction of a Cutting Tool 

(Prognostic Analytics) 

The power data was acquired and stored using the power module of the NI DAQ 

system running on the LabVIEW environment during the experimentation step. Sensor 

data in the raw form may contain missing values, noises, and unfeasible format, therefore, 

needs to be pre-processed (filtered, cleaned, normalized, smoothed, and formatted) to 

make it suitable for machine learning models. The first step was to characterize different 

stages during the machining so that power consumed only during the metal cutting stage 

is considered as tool wear occurs when the cutting tool is in contact with the workpiece. 

This has been done using the GMM-HMM algorithm, an unsupervised machine learning 

algorithm. The main objective of characterization is to automatically classify material 

removal for extracting power consumption during the material removal stages only. The 

extracted power values are then split into training and testing sets. Different algorithms are 

then trained and tested to select the best algorithm until the model predicts the remaining 

useful life for the set threshold. The model is validated using the confirmation test.  

Characterization of stages is significant in identifying the value-added (material 

removal), non-value added (standby), and non-value added but necessary stages 
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(automatic tool change, air cutting, spindle on, axes movement after each layer of cut, 

spindle acceleration and deceleration). The energy consumption for these stages can be 

estimated and monitored under the industry 4.0 environment to take corrective measures 

if abnormal trends are observed in the computed KPIs.  

Figure 5.4 shows the power profile for the milling operation, showing different 

observed stages. Here, the standby stage means that the spindle is not rotating. Spindle 

acceleration stage is when the spindle just switches on and experiences a jerk. The stage 

when the tool moves from the end of the current layer machining to the start of the next 

layer in a multi-layer milling operation is the layer change stage. Spindle deceleration stage 

is when the spindle turns off and moves back to the original position.  

 

 
Figure 5.4 Power profile for the milling operation 

 

Characterization of stages is modelled using GMM-HMM algorithm that utilizes 

multiple Gaussian density functions for fitting continuous time series data with complex 

patterns. The reason for selecting GMM-HMM algorithm for characterization is its 
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demonstrated ability to classify time series data with high performance in applications, 

such as human activity recognition (Cheng et al., 2021), optical fiber signal transmission 

(Tian et al., 2020), spindle health condition evaluation (Yang et al., 2023), etc. The main 

advantages of GMM-HMM are high accuracy and robustness (Cheng et al., 2021) with 

reduced computational complexity (Tian et al., 2020). The GMM-HMM algorithm 

demonstrated higher accuracy in classifying various spindle health conditions of a CNC 

machine compared to other combined methods, such as PSO-SVM and GA-ELM (Yang 

et al., 2023). Moreover, as an unsupervised machine learning algorithm, it can be trained 

and deployed efficiently on a smaller training dataset to automatically classify various 

states (Hiruta et al., 2021).  

The present work utilizes the acquired machine tool power data to characterize the four 

different stages: namely machining or material removal stage, spindle on or off stage, 

standby stage, and layer change stage. Figures 5.5 (a) and 5.5 (b) show the characterization 

of different stages performed for a sample machining run (run 26 of table 5.4) using 

manual labelling and GMM-HMM algorithm, respectively for 200 seconds. 

Figure 5.6 illustrates the confusion matrix to validate the performance of the developed 

model for the characterization. The developed model can classify around 3742 points out 

of 4001 points correctly with an accuracy of 93.52%. However, there are some 

misclassifications too, mostly occurring for the layer change stage since there is not much 

difference between the magnitude of power from machining stage to layer change stage 

and layer change stage to machining stage.  
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Figure 5.5 Characterization of stages using (a) manual labelling and (b) GMM-HMM algorithm 
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Figure 5.6 Confusion matrix for characterization of stages using GMM-HMM algorithm 

 

Power consumption increases with time, indicating a positive correlation between 

these two variables. Various regression algorithms such as linear, Bayesian, and 

autoregressive were trained and tested to find the most suitable algorithm that predicts 

RUL with minimum percentage error or deviation as compared to the actual tool life. 

RMSE values are almost the same for all the three models. It was found that the predicted 

percentage error as compared to the actual tool life obtained during experimentation is 

minimum (around 5.38 %) for the autoregressive model. Therefore, autoregressive model 

was selected for predicting RUL. An autoregressive model is a time series model that uses 
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observations from the previous time steps as input to predict the value in the next time 

step. This type of model is widely used when either a positive or negative correlation exists 

between values in time series. The lag value for the autoregressive model is four which 

means that the model is looking back four time periods to predict the fifth time period 

value. The rationale behind autoregressive model outperforming linear and bayesian 

regression models in predicting RUL of the cutting tool can be attributed to complex non-

linear relationships existing between the variables (i.e., power and time). Autoregressive 

models can be used to model the complex relationship between variables as they are based 

on stochastic process theory and mathematical statistics (Song et al., 2017). On the other 

hand, linear regression models assume a linear association between the dependent variable 

and the independent variables (Bergh et al., 2021). While Bayesian regression models 

provide a slight improvement in prediction performance over linear regression models, 

they, too, fail to accurately predict RUL.  

Figure 5.7 illustrates the graphical representation of the predicted RUL using the linear 

regression, Bayesian regression, and autoregressive models for run 26. The sky-blue 

colored shape represents the material removal data for 600 seconds. The pink colored line 

represents the threshold value. An active power threshold is automatically set in the model 

at 130 % of the average power value for 600 seconds. The active power threshold for the 

run 26 is 1112.15 Watts. Lastly, the red colored line represents the predicted power values 

over time. The power value reached the threshold at 27785 seconds (around 463 minutes), 

2771 seconds (around 462 minutes), and 8235 seconds (around 137 minutes) using linear 

regression, Bayesian regression, and autoregressive models.  
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Figure 5.7 Graphical representation of predicted RUL using the (a) linear regression, (b) Bayesian 
regression, and (c) autoregressive models 
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Table 5.4 lists the obtained results for active power threshold, predicted tool life, and 

total material removed using the proposed model.  

 

Table 5.4 Results for active power threshold (APT), predicted tool life (PTL), material removal rate 
(MRR), and surface roughness (Ra) at different L27 array conditions 

Run No. v(m/min) f(mm/rev) d(mm) APT (W) PTL 
(minutes) 

MRR (mm3/min) Ra (µm) 

1 120 0.2 0.2 832.72 309 305.568 0.308 

2 120 0.2 0.5 852.96 152 763.920 0.188 

3 120 0.2 0.8 855.22 124 1222.272 0.233 

4 120 0.3 0.2 845.14 305 458.352 0.486 

5 120 0.3 0.5 878.59 127 1145.880 0.395 

6 120 0.3 0.8 890.30 120 1833.408 0.311 

7 120 0.4 0.2 860.31 128 611.136 0.502 

8 120 0.4 0.5 902.31 109 1527.840 0.373 

9 120 0.4 0.8 1035.57 137 2444.544 0.535 

10 150 0.2 0.2 859.93 223 381.888 0.581 

11 150 0.2 0.5 878.69 148 954.720 0.183 

12 150 0.2 0.8 885.59 130 1527.552 0.228 

13 150 0.3 0.2 868.65 357 572.832 0.383 

14 150 0.3 0.5 921.92 262 1432.080 0.320 

15 150 0.3 0.8 979.66 140 2291.328 0.348 

16 150 0.4 0.2 920.47 279 763.776 0.292 

17 150 0.4 0.5 1014.93 105 1909.440 0.307 

18 150 0.4 0.8 1102.40 199 3055.104 0.586 

19 180 0.2 0.2 969.32 213 458.304 0.341 

20 180 0.2 0.5 985.18 168 1145.760 0.218 

21 180 0.2 0.8 1034.50 68 1833.216 0.250 

22 180 0.3 0.2 980.54 393 687.456 0.372 

23 180 0.3 0.5 1013.71 127 1718.640 0.292 

24 180 0.3 0.8 1044.59 65 2749.824 0.368 

25 180 0.4 0.2 1015.34 95 916.608 0.256 

26 180 0.4 0.5 1112.15 137 2291.520 0.230 

27 180 0.4 0.8 1109.91 69 3666.432 0.346 
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The predicted tool life is the sum of initial machining time (ten minutes required to 

display trend in the acquired power data) and the remaining useful life of the tool predicted 

using the developed model. The computation time for deploying the complete model 

(characterization with RUL prediction model) varies between 0.829 seconds to 9.783 

seconds when performed on Intel i5-6300HQ processor with dynamic random-access 

memory (RAM) allocation of 7.516 GB out of 8 GB.  

5.7.2 Prescriptive Analytics to Prescribe Optimum Cutting Parameters  

In this study, prescriptive analytics considers the prior knowledge of a specific range 

of cutting parameters, namely cutting speed, feed rate, and depth of cut, based on the 

machine's capability and cutting tool insert manufacturer recommendations. In addition, it 

considers the prior knowledge of the developed predictive model for performance 

characteristics, such as predicted tool life (PTL), active power threshold (APT), material 

removal rate (MRR), and surface roughness (Ra), as well as their complex relationship to 

the cutting parameters. 

Prescription of optimum cutting parameters can be performed using various modelling 

techniques, such as analytical, physics-based, regression/empirical, data-driven, or hybrid. 

First, a performance characteristic model is developed (e.g., RUL, MRR, APT, and Ra in 

this study). Next, this model is optimized to prescribe optimal values using an optimization 

technique, such as the desirability function approach, genetic algorithm, particle swarm 

optimization, etc. (desirability function approach in this study). Regression/empirical 

models are practical, fast and provide direct estimation of industry-relevant parameters 

(Arrazola et al., 2013). Therefore, regression models were developed and integrated with 

the desirability function approach to prescribe optimum cutting parameters in the current 
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study.  However, certain limitations are also associated with the regression/empirical 

models, such as the need for extensive experimentation, which can be time-consuming and 

costly, and the validity of the results may be limited to the specific range of 

experimentation (Arrazola et al., 2013). 

Regression models were developed using response surface methodology for active 

power threshold, predicted tool life, material removal rate, and surface roughness. The 

models were improved using backward elimination technique that starts with all potential 

terms in the model and removes the least significant term. Equations 5.1 to 5.4 were 

developed to describe the relationship between a set of cutting parameters, namely cutting 

speed (v), feed (f), axial depth of cut (d) for the responses of active power threshold (APT), 

predicted tool life (PTL), material removal rate (MRR), and surface roughness (Ra). 

APT =  1156 −  4.12𝑣 −  1230𝑓 −  136.6𝑑 +  0.0218𝑣2  +  2118𝑓2  +  940𝑓 ∗ 𝑑                                  5.1                                                            

PTL =  −1209 +  15.18𝑣 +  3168𝑓 −  231.5𝑑 −  0.0517𝑣 2 −  5533𝑓2                                             5.2                                                                       

MRR =  1432 −  9.55𝑣 −  4773𝑓 −  2864𝑑 +  31.82𝑣 ∗ 𝑓 +  19.09𝑣 ∗ 𝑑 +  9548𝑓 ∗ 𝑑                   5.3                                                                

Ra =  0.173 +  0.00426𝑣 +  1.94𝑓 −  1.897𝑑 +  1.058𝑑2  −  0.01828𝑣 ∗ 𝑓 +  2.600𝑓 ∗ 𝑑               5.4                             

Analysis of variance has been performed to statistically analyse the adequacy of the 

developed model using F-value and p-value. The F-value determines whether the term is 

associated with the response or not and the p-value is the probability that measures the 

evidence against the null hypothesis. The process parameter whose p-value is less than or 

equal to significance level (α = 0.05) is found to be statistically significant otherwise 

statistically insignificant at 95% confidence level. Tables from 5.5, 5.6, 5.7, and 5.8 show 

the analysis of variance results for active power threshold, predicted tool life, material 

removal rate, and surface roughness, respectively.   
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Table 5.5 ANOVA results for active power threshold 

Source DF Adj SS Adj MS F-Value P-Value %Contribution 

Model 6 191415 31902.4 59.03 0.000 94.65 

Linear 3 176859 58953.0 109.08 0.000 87.46 

V 1 95648 95647.7 176.97 0.000 47.30 

F 1 46949 46948.7 86.87 0.000 23.22 

D 1 34263 34262.6 63.39 0.000 16.94 

Square 2 5011 2505.7 4.64 0.022 2.48 

v*v 1 2319 2319.1 4.29 0.051 1.15 

f*f 1 2692 2692.4 4.98 0.037 1.33 

2-Way Interaction 1 9544 9544.0 17.66 0.000 4.72 

f*d 1 9544 9544.0 17.66 0.000 4.72 

Error 20 10809 540.5    

Total 26 202224     

Model Summary 

R-Square = 94.65% 

 

Table 5.6 ANOVA results for predicted tool life 

Source DF Adj SS Adj MS F-Value P-Value % Contribution 

Model 5 123983 24797 6.18 0.001 59.53 

Linear 3 92639 30880 7.69 0.001 44.48 

v 1 1663 1663 0.41 0.527 0.80 

f 1 4171 4171 1.04 0.320 2.00 

D 1 86806 86806 21.62 0.000 41.68 

Square 2 31344 15672 3.90 0.036 15.05 

v*v 1 12974 12974 3.23 0.087 6.23 

f*f 1 18371 18371 4.58 0.044 8.82 

Error 21 84299 4014       40.47 

Total 26 208283           

Model Summary 

R-Square = 60.53% 
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Table 5.7 ANOVA results for material removal rate 

Source DF Adj SS Adj MS F-Value P-Value %Contribution 

Model 6 20318616 3386436 2580.67 0.000 99.87 

 Linear 3 18870392 6290131 4793.47 0.000 92.75 

 V 1 1476243 1476243 1124.99 0.000 7.26 

 F 1 4102394 4102394 3126.28 0.000 20.16 

 D 1 13291756 13291756 10129.14 0.000 65.33 

2-Way 
Interaction 

3 1448224 482741 367.88 0.000 7.12 

v*f 1 109351 109351 83.33 0.000 0.54 

v*d 1 354298 354298 270.00 0.000 1.74 

f*d 1 984574 984574 750.31 0.000 4.84 

Error 20 26245 1312   0.13 

Total 26 20344861     

Model Summary 

R-Square = 99.87% 

 

Table 5.8 ANOVA results for surface roughness 

Source DF Adj SS Adj MS F-Value P-Value %Contribution 

Model 6 0.237794 0.039632 8.26 0.000 71.24 

Linear 3 0.074302 0.024767 5.16 0.008 22.26 

v 1 0.024054 0.024054 5.01 0.037 7.21 

f 1 0.044701 0.044701 9.31 0.006 13.39 

d 1 0.005548 0.005548 1.16 0.295 1.66 

Square 1 0.054404 0.054404 11.33 0.003 16.30 

d*d 1 0.054404 0.054404 11.33 0.003 16.30 

2-Way 
Interaction 

2 0.109088 0.054544 11.36 0.001 32.68 

v*f 1 0.036080 0.036080 7.52 0.013 10.81 

f*d 1 0.073008 0.073008 15.21 0.001 21.87 

Error 20 0.096008 0.004800        

Total 26 0.333802           

Model Summary 

R-Square = 71.24% 
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P-value for all the three cutting parameters (cutting speed, feed, axial depth of cut) 

along with linear, square and interaction terms are less than 0.05 for both active power 

threshold and material removal rate, indicating strong influence of these parameter. In the 

case of predicted tool life, the p-value for only axial depth of cut is less than 0.05 indicating 

significant influence. The impact of feed and cutting speed are almost negligible. Linear 

and square terms are significant whereas interaction terms are insignificant, hence 

removed from the developed regression model. In case of surface roughness, the p-value 

for cutting speed and feed with linear, square and interaction terms is less than 0.05 

indicating significant influence of all these input parameters. However, the impact of feed 

is much higher than cutting speed. The impact of axial depth of cut is negligible.  R-square 

values indicate how well the model fits the data. The value of R-square obtained for the 

predicted tool life is 0.6153, which indicates that 60.53% of the total variation is explained 

by the model. The R-square values were high except for predicted tool life, which means 

the model fits the data well. In the case of predicted tool life, the R-square value is 

comparatively less due to some misclassifications during stage transitions from machining 

stage to layer change and vice-versa. However, this does not influence the tool life. 

Figures 5.8, 5.9, 5.10, and 5.11 illustrate the main effect plots comparing the relative 

strength of the effects of various process parameters on active power threshold, predicted 

tool life, material removal rate, and surface roughness, respectively. The main effect plot 

for active power threshold (Figures 5.8) reveals that lower energy consumption could be 

achieved only at lower levels of cutting speed, feed rate, and axial depth of cut as this 

means low material removal rate. With the increase in cutting speed, more power is 

required by the spindle motor. As the feed rate increases, the axis motor needs to move 

faster resulting in higher power consumption. The same occurs with the high value of depth 

of cut, due to higher material removal, the machine spends more power.  
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The main effect plot for predicted tool life, as shown in Figure 5.9, reveals that the 

effect of axial depth of cut on the tool life is higher as compared to cutting speed and feed. 

This is due to the increase in cutting force and tool temperature as the axial depth of cut 

increases. The main effect plot for material removal rate (Figure 5.10) shows that higher 

amount of material removal rate can be achieved at higher levels of axial depth of cut, 

feed, and spindle speed, as expected. The main effect plot for surface roughness (Figure 

5.11) shows that increase in cutting speed decreases the surface roughness. There is an 

increase in surface roughness with the increase in feed rate. Surface roughness is observed 

to be highest at the lowest level of axial depth of cut as small depth of cut results in friction 

when machining top layer of workpiece and therefore results in poor surface finish.  

 

 
Figure 5.8 Main effect plot for active power threshold 
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Figure 5.9 Main effect plot for predicted tool life 
 

 

Figure 5.10 Main effect plot for material removal rate 
  



SMART TOOL HEALTH ANALYTICS AND MANAGEMENT 

197 | P a g e  

 

 

Figure 5.11 Main effect plot for surface roughness 

 

Interaction plot is a powerful graphical tool which plots the mean response of two 

factors at all possible combinations of their settings. Figures 5.12, 5.13, 5.14, and 5.15 

illustrate the interaction plots for active power threshold, predicted tool life, material 

removal rate, and surface roughness, respectively to demonstrate the relationship between 

categorical factor and a continuous response. There exist interactions between the process 

parameters and the response variables. The results also agree with the ANOVA test results 

of Tables 5.5, 5.6, 5.7 and 5.8.  

Figures 5.16, 5.17, 5.18, and 5.19 reveal that the residual plots for active power 

threshold, predicted tool life, material removal rate, and surface roughness, respectively 

are not showing any trend and the errors are distributed normally.  
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Figure 5.12 Interaction plot for active power threshold 
 

 

 

Figure 5.13 Interaction plot for predicted tool life 
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Figure 5.14 Interaction plot for material removal rate 
 

 

 

Figure 5.15 Interaction plot for surface roughness 
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Figure 5.16 Residual plots for active power threshold 
 

 

 

 

Figure 5.17 Residual plots for predicted tool life 
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Figure 5.18 Residual plots for material removal rate 
 

 

 

Figure 5.19 Residual plots for surface roughness 
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Once the regression models were developed and validated using ANOVA then 

desirability function approach was used to prescribe the cutting parameters to get the 

optimum APT, PTL, and MRR at the targeted Ra. The desirability function approach, first 

proposed by Derringer and Suich, is one of the most widely used multiobjective 

optimization techniques for parameter optimization (Sangwan & Sihag, 2019). The values 

of individual response variables are transformed into a dimensionless desirability function 

value ranging from zero to one. The first step is to develop a regression model for each 

response, and then estimate the desirability functional value for each response according 

to the response characteristics (minimization, maximization or attain target value). Multi-

objective optimization problems are converted into a single objective problem by 

combining all objectives into one composite desirability function (Zoghipour et al., 2021). 

Reduced gradient algorithm is used to maximize the composite desirability function value. 

This algorithm starts with multiple possible solutions and then converges to a final optimal 

solution. Trial version of Minitab 18 was used to determine the optimal settings for the 

parameters using the developed regression models for each response (equations 5.1 to 5.4).    

Multiobjective optimization is performed to prescribe optimal cutting parameters for 

three different scenarios. In the first scenario, optimal cutting parameters were prescribed 

for the maximization of both predicted tool life and material removal rate, simultaneously. 

In the second scenario, both predicted tool life and material removal rate were maximized, 

simultaneously at the target surface roughness value. In the third scenario, predicted tool 

life and material removal rate were maximized, whereas active power threshold was 

minimized, simultaneously for the target surface roughness value. Prescription of optimum 

results (optimal cutting parameters setting with optimal solution) under different scenarios 

are presented in Table 5.9. Figures 5.20, 521, and 5.22 illustrate the optimization plots 

with interactive variable settings to visualize how responses are affected with changes in 

parameters or variables.  
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Table 5.9 Prescription of optimum results under different scenarios 

Scenarios 

Optimum cutting 
parameters 

Optimum responses Composite 
desirability 

Cutting 
speed 

(m/min) 

f 
(mm/rev) 

d 
(mm) 

MRR 
(mm3/min) 

PTL 
(min) 

Ra 
(µm) 

(Target) 

APT 
(W) 

 

First scenario  156 0.32 0.65 2110.695 195   0.461 

Second 
scenario for 
target Ra = 
0.27 µm 

164 0.32 0.57 1888.963 207 0.27  0.588 

Third scenario 
for target Ra = 
0.27 µm 

146 0.28 0.57 1498.546 226 0.27 913.9 0.592 

 

Figure 5.20 Optimization plot for the first scenario (PTL and MRR maximization) 
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Figure 5.21 Optimization plot for the second scenario (PTL and MRR maximization at target surface 
roughness value) 

 

Figure 5.22 Optimization plot for the third scenario (PTL and MRR maximization, and APT minimization 
at target surface roughness value)  
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5.7.3 Anomaly Detection (Diagnostic Analytics)  

Power data was acquired at the sampling frequency of 5 Hz using NI DAQ system 

(type 9244 for current, type NI-9227 for voltage), visualized and stored on LabVIEW 

programming interface. Force data was acquired using Kistler 9272 dynamometer at a 

sampling frequency of 1000 Hz. Raw data may contain significant deviations within the 

features which makes the model hard to learn. Therefore, standardization is performed on 

the data to acquire the values within a specific range using standard scaling technique 

where the values are centered around the mean with a unit standard deviation. Also, other 

pre-processing steps of filtering, cleaning, and formatting were done to make the data 

suitable for machine learning models. The extracted data were split into training and 

testing sets in the ratio of 70:30, respectively. Different algorithms were trained and tested 

on the historical data to select the best algorithm using diagnostic performance metrices, 

namely classification accuracy, F1 score, and area under the receiver operating 

characteristic curve (AUC). 

Classification accuracy defines the model performance as the number of correct 

predictions divided by the number of all predictions. F1-score metric combines the 

precision and recall of a classifier into a single metric by taking their harmonic means and 

is primarily used to compare the performance of two classifiers. AUC indicates how well 

the model distinguishes between positive and negative classes. The greater the AUC, the 

better is the model performance. The model is finally deployed to be used for the new data 

if the user is satisfied with the model evaluation step, otherwise the model is tuned, 

retrained, and tested for better performances.  

Both force and power data under normal and abnormal conditions were manually 

labelled as 1 and 0, respectively. Normal condition for the present case refers to the data 

collected for the twenty-seven trials during the useful life of the cutting tool whereas 

abnormal conditions refer to the data set obtained under various circumstances such as 



SMART TOOL HEALTH ANALYTICS AND MANAGEMENT 

206 | P a g e  

workpiece loosely fixed, catastrophic tool failure, sudden breakdown of machine, etc. Data 

obtained under both normal and abnormal conditions were then combined to be trained 

and tested using supervised machine learning algorithms of logistic regression, k-nearest 

neighbor (KNN), decision tree, and random forest. Different algorithms were trained and 

tested on the historical data to select the best algorithm based on accuracy. Table 5.10 lists 

the performance of the different algorithms for anomaly prediction using force and power 

data, respectively.  

Table 5.10 Performance of different anomaly detection machine learning algorithms using force and power 
data 

Machine Learning 
Algorithm 

Force Data Power Data 

Performance Metrics Accuracy F1-score AUC Accuracy F1-score AUC 

Logistic Regression 0.84 0.88 0.85 0.77 0.84 0.7 

KNN 0.90 0.92 0.93 0.81 0.85 0.86 

Decision Tree 0.84 0.89 0.88 0.82 0.86 0.88 

Random Forest 0.89 0.91 0.95 0.83 0.87         0.90 

 

Random forest algorithm using force data is finally selected for predicting anomaly. 

Wu et. al. (2017a) also confirms that random forest is better for predicting tool wear as 

compared to ANNs and SVR. Figure 5.23 illustrates the area under the receiver operating 

characteristic (ROC) curve obtained for random forest algorithm using force and power 

data. AUC is basically a probability curve that compares the true positive rate (TPR) to the 

false positive rate (FPR) at various thresholds and measures a classifier's ability to 

distinguish between classes.  It ranges in value from zero to one. If model predictions are 

100% wrong, then AUC is zero, and if predictions are 100% correct then AUC is 1.0. The 

AUC obtained for random forest algorithm using force data is 0.95 and power data is 0.90. 

This implies that the developed model for predicting anomaly is robust. 
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Figure 5.23 Area under the ROC curves obtained for random forest algorithm using (a) force and (b) 
power data 

5.8 A SMART TOOL HEALTH MANAGEMENT SYSTEM  

Computations and deployment of machine learning models in the cyber world would 

result in useful insights which could be displayed on the dashboard to provide active 

decision support to a user in real-time. Figure 5.24 shows the anomalous behaviour under 

two different cases. In the first case, anomalous behaviour is seen as a sudden spike in 

power value due to the sudden failure of the tool. In the second case, there is a steady 

increase in the power value due to gradual wear of the tool at the end of the useful life. 

Alarms can be actuated when the stated variables or KPIs cross certain predefined or 

dynamic threshold values. Anomaly can be detected in real-time, enabling adaptive 

adjustments for process parameters to prevent dynamic breakdowns/failures and geometric 

irregularities. Real-time prediction with a reasonable forecast horizon of power or force is 

a crucial aspect influencing tool wear. This can result in achieving the better possibility to 

adapt or stop the process even before unwanted events could occur (Finkeldey et al., 2020). 

The remaining useful life estimation of the cutting tool could assist maintenance engineers 

to optimize a maintenance schedule and sequence the order. Spare parts can be ordered in 

advance based on the predicted RUL. The operator has the minimum interventions to 

override the parameters based on the anomaly detection alarm. 
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Figure 5.24 Anomalous behaviour for sudden tool breakdown and gradual tool wear 

5.9 KNOWLEDGE-BASED SYSTEM  

There are several tool rejection criteria such as maximum allowable flank wear, power 

consumption or force values, or surface roughness of workpiece (Corne et al., 2017; 

Dadgari et al., 2018). Cutting tool is generally rejected and not used for machining if any 

of these criteria is met – flank wear greater than 0.3 mm, power consumption or cutting 

force increases above 120% to 130% of the initial value, surface roughness of the 

workpiece reaches to a predefined value. Actual tool life is determined using experiments 

performed in several passes until the cutting tool wears off to the threshold limit. Figure 

5.25 plots the variation of energy consumption, surface roughness, and tool wear with 

respect to the machining time until the flank wear reaches 0.3 mm. The process parameters 

for this experiment are selected from Table 5.4 for experimental run 26 (v = 180 m/min, f 

= 0.4 mm/rev, d = 0.5 mm). Variation of tool wear with respect to time is shown in Figure 

5.25 (c). The tool life is around 130 minutes when the tool wear reaches 0.3 mm. Similar 

trends can be observed for power consumption and surface roughness, as shown in figures 

5.25 (a) and 5.25 (b), respectively. Figures 5.26 (a) to (f) show the variation of tool (flank 

wear) and chip colour at various intervals of machining time. The colour of the chips 
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changes from metallic colour in normal condition to sky blue as the cutting tool fails. The 

predicted value of RUL at run 26 (Table 5.4) is 137 minutes, whereas the experimental 

tool life for the same conditions was found to be 130 minutes. The percentage error 

between the predicted and the actual tool life is around 5.38%. 

 
Figure 5.25 Time series plots for (a) energy consumption, (b) surface roughness, and (c) tool wear 

 

 

 
Figure 5.26 Tool wear after (a)10 minutes, (b) 90 minutes, (c) 130 minutes; chips colour after (d) 10 

minutes, (e) 90 minutes, and (f) 130 minutes  
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5.10 SUMMARY  

This chapter presents a CPPS framework for smart tool health management for a CNC 

milling center using prescriptive and diagnostic analytics. Further, the following models 

have been developed to demonstrate the usefulness of the proposed CPPS framework: 

• Development of machine learning algorithm to predict RUL of a cutting tool  

• Development of a machine learning algorithms for anomaly detection during milling 

process 

• Development of a prescriptive model to prescribe optimum cutting parameters to 

optimize RUL in conjunction with MRR and APT at the required surface finish 

• Development of a knowledge-based system to update the learning from the machine 

learning algorithms to update the tool life curve and chip conditions at different phases 

of a cutting tool life 

It was also found that power consumption of 130% of the initial power consumption 

is a good active power threshold for the cutting tool life. Autoregressive machine learning 

algorithm was used in conjunction with GMM-HMM algorithm to predict the RUL of the 

cutting tool using live machine tool power data. The accuracy of the predicted RUL was 

found to be 94.62% as compared to the actual tool life obtained during validation 

experiment. Another machine learning algorithm developed for the detection of anomalous 

behaviour of the tool using random forest model on force and power data was found to be 

robust for anomaly detection with an AUC score of 0.95 and 0.90 for force and power 

datasets, respectively.  

The prescriptive analytics using response surface modelling of the active power 

threshold, predicted tool life, material removal rate, and surface finish using Taguchi 

method and ANOVA prescribes the optimum cutting parameters for the optimum 
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combination of RUL, APT, and MRR at the targeted surface finish of the part. The 

ANOVA results, interaction plots and optimization plots revealed that higher tool life can 

be achieved at lower levels of cutting speed, feed rate, and axial depth of cut. However, 

the effect of axial depth of cut on the tool life is the highest.  

Prescriptive and diagnostic analytics for tool health based on CPPS is valuable in 

monitoring tool degradation, detecting anomalous behaviour, predicting tool life of cutting 

tool, and prescribing optimum cutting parameters. Useful insights using sensor data 

analysis could assist a practitioner with real-time alerts to avoid unexpected failure of 

cutting tool, maintain machining accuracy, and product quality. RUL prediction of the 

cutting tool can assist the production manager to optimize the maintenance schedule and 

sequence. Finally, the proposed framework would provide better resource utilization and 

improve the energy efficiency of machine tools with reduced production cost, lower 

downtime, reduced maintenance costs, and increased productivity and quality.  

This study also leads to the development of a KBS to continuously update various 

curves (tool life, energy consumption, surface roughness) and chip colours at the different 

health conditions of a tool for the researchers to compare, validate and benchmark. Future 

research could consider factors such as maintenance planning (unplanned downtime, 

scheduling, etc.), system vibration, cutting tool deflections, etc. In future, more robust, 

interoperable, and versatile models trained with large volumes of datasets acquired from 

different types of workpiece materials, cutting tools, cutting parameters, and machine tools 

can be used. The computation time for model processing can be decreased with better 

computational capacity of the system so that the latency is reduced. Future research can 

also be performed on securing the proposed CPPS framework using blockchain 

technology. 
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Although the findings of the current study are constrained to a specific CNC machine, 

considering its capabilities, the process involved, and the physical and chemical properties 

of the cutting tool and workpiece; but the proposed CPPS framework is generic in nature. 

It is reproducible and scalable to a variety of machining applications, such as turning, 

broaching, drilling, etc. 

Another limitation of the current research is that it monitors the health of the cutting 

tool only and not the machine tool at the system level. The present work is a step towards 

meeting the various Industry 4.0 environment requirements outlined by Lee et al. (2015) 

– self-awareness, self-prediction, self-configuration, and efficient maintenance.  



 

CHAPTER 6 

DEVELOPMENT OF A CPPS FRAMEWORK FOR A LEARNING FACTORY 

TO FACILITATE TEACHING, TRAINING AND EXPERIENTIAL LEARNING  

 

This chapter proposes a CPPS framework for a learning factory to facilitate teaching, 

training, and experiential learning to meet the needs of the Industry 4.0 workforce, 

industrial engineers, and engineering students in general. 

6.1 INTRODUCTION 

The fourth industrial revolution, also known as Industry 4.0, is characterized by 

incorporating the IoT and services into the manufacturing environment, where intelligent 

machines, storage systems, and production facilities communicate, stimulate actions, and 

autonomously monitor and control one another (Kagermann et al., 2013). The accelerated 

digitalization due to technological advancements in the Industry 4.0 environment has 

widened the gap in the technical competencies between academia and industry. Future 

manufacturing scenarios necessitate that industrial engineers possess complex and 

interdisciplinary skills to handle the modelling of intricate processes and integrate multiple 

systems across domains. Learning factories enable students to acquire additional IT 

knowledge by working with digital models, utilizing simulation software, manipulating, 

and analysing data, or designing cyber-physical-world interfaces (Abele et al., 2017). 

Learning factories provide competitive, safe, and cost-effective environment for the 

development of transversal competencies in engineering students or newly inducted 

employees (Devika et al., 2020). It provides a didactic platform where challenges related 

to future factories based on Industry 4.0 can be experienced and demonstrated based on 

'learning by doing' to meet the requirement of Industry 4.0 workforce (Louw & Walker, 

2018). Initial studies have shown better performance among students with respect to skill 
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development and knowledge acquisition (Baena et al., 2017). It also provides a learning 

environment for several applications such as process improvement, layout planning, 

energy efficiency, lean administration, resource efficiency, sustainability, logistics 

optimization, management and organization, product emergence, process automation 

technology, etc. (Abele et al., 2018). 

Product traceability has become an essential component of any supply chain. The 

availability of real-time tracking and tracing data among the various business supply chain 

partners facilitates the making of well-informed, accurate decisions (Dessureault, 2019). 

This also provides efficient real-time monitoring and dynamic dispatching of inter-

enterprise production and transportation enabling manufacturers to manage highly 

fluctuating, diverse, and customised customer requirements swiftly through an efficient 

collaboration between different stakeholders (Ding et al., 2018).  

Machine vision (MV) systems are camera-based solutions which can be used for 

quality control and object tracing. Machine learning algorithms have made the MV 

systems capable of image recognition. Manual inspections, measurements, and fault 

detections are inefficient leading to higher time, cost, and manpower. MV systems are 

increasingly being used in manufacturing environments for quality control and tracking 

parts in a mass production environment (Frustaci et al., 2020). MV system also removes 

possibilities of human biased decisions in quality control and facilitates the development 

of more efficient production processes, such as lean and agile manufacturing systems 

(Wagner et al., 2017).  

RFID, unlike barcodes and QR codes where the object must be in the line of sight and 

only one code can be read at a time, can read multiple tags at a time even when the tags 

are not in line of sight. RFID technology can be used to accurately read and store data 

about the material flow in the production line. This in turn helps in real-time capturing of 
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data and object visibility (Yang et al., 2012). The real-time data can be used by the 

managers for efficient planning of logistics and material consumptions. Now a days, RFID 

tags are cost effective, robust, high temperature and moisture resistant (Zhekun et al., 

2004). RFID technology compared to other similar technologies offer higher accuracy and 

instantaneous detection without visual contact; and is reprogrammable in nature (Gladysz 

et al., 2020). RFIDs can be installed in places where humans cannot reach or it is unsafe 

for the operator. The data can be written, erased, rewritten on RFID which is not possible 

for barcode or QR code. RFID tags can be reused which is important for resource 

sustainability. 

Utilizing RFID and MV together enables product/part tracing through the value chain 

as well as real-time defect control. The traceability becomes useful during product recalls 

as in automotive industry or reverse logistics as in garments and apparel, pharmaceutical, 

and online retail business. RFID equipped product/part can address industrial challenges 

related to part identification, monitoring, and tracking (Velandi et al., 2016).  

A two-way knowledge transfer between innovation and learning is required for new-

age manufacturing. Such knowledge transfer helps in providing the hands-on approach for 

skill development which in turn helps in developing novel solutions for industrial growth 

(Chryssolouris et al., 2016).  Since RFID, MV, and CPPS systems are currently emerging 

production paradigms, it becomes necessary to provide a well-defined framework with 

respect to CPPS for a learning factory to facilitate teaching, training and experiential 

learning.  

This chapter aims to propose a CPPS framework for learning factory to facilitate 

teaching, training and experiential learning. This is achieved by incorporating the 

following objectives.  
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• Integration of an inexpensive RFID technology and a machine vision system in an 

existing learning factory. 

• Development of a machine vision-based defect detection system. 

• Development of a RFID based real-time part traceability system. 

• Development of a live dashboard to monitor energy demand, track and trace the 

workpieces in real-time, and provide immediate feedback through visibility to 

operators and floor managers. 

This chapter is organized as follows: Section 5.2 presents the research background and 

outlines significant existing contribution in the field. Section 5.3 provides an overview of 

learning factories, including their fundamental concepts, dimensions, key characteristics, 

as well as their global distribution and major thrust areas. Section 5.4 presents the research 

methodology and proposes a CPPS framework for learning factory to facilitate teaching, 

training and experiential learning. Sections 5.5 and 5.6 discuss the physical world, and 

data acquisition system, respectively. Section 5.7 discusses the cyber world through 

development of a machine vision-based defect detection system and RFID-based real-time 

part traceability system. Section 5.8 discusses the smart learning factory management 

system for real-time monitoring, visualization, traceability & tracking, feedback, and 

control. Finally, Section 5.9 summarizes the chapter and highlights the major contribution 

of the chapter.  

6.2 BACKGROUND 

A cost-effective machine vision application has been reported for a learning factory 

for research and development in the field of intelligent manufacturing systems. This 

resulted in the development of competencies and skills, practical training to engineering 

students through self-learning and working on projects dealing with real-life challenges 

(Louw & Droomer, 2019). MV system based on CPS has been implemented for monitoring 
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of tool wear in a production system (Lins et al., 2020). Similarly, MV systems have also 

been applied in a learning factory for quality control solutions at a sorting station (Zancul 

et al., 2020). An automated and non-contact type MV system-based surface roughness 

measurement technique has also been reported (Joshi & Patil, 2020). A low-cost CPS 

based MV system has also been reported to control, monitor, and visualize the quality of 

spur gears processing in real-time (Ramírez, 2019). MV system implementation in a 

learning factory increases the awareness among students and practitioners about its 

possible applications (Zancul et al., 2020).  

Although, the adoption of RFID technology is increasing primarily in retail and supply 

chain management applications but its potential in manufacturing industries remains 

largely untapped (Zhekun et al., 2004). RFID technology has been used in a learning 

factory enabling students to understand and upgrade their skills (Crnjac et al., 2019). A 

low-cost RFID system integrated with learning factory has been used for the demonstrator 

purpose in the real production environment (Afonso & Walker, 2018). RFID technology 

has been applied for developing automatic identification systems capable of storing the 

complete component history to prevent expensive downtime through repairing the 

processing defects and enabling the product recalls (Velandia et al., 2016). However, the 

main limitation of RFID application in industry is decreased processing speed on the shop 

floor (Gjeldum et al., 2018). 

Traceability 4.0 is gaining popularity in conjunction with Industry 4.0, with emphasis 

on the 4Ms (man, machine, material, and method) (Zosel, 2020). Traceability is a 

significant supply chain feature and has been a pain point for manufacturers during product 

recalls. RFID technologies have revolutionised traceability facilitating the product recall 

issue (Dai et al., 2021). Traceability has been applied in lithium-ion battery production for 

intelligent tracking and tracing production and product characteristics, such as energy 
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consumption, material, etc. enabling automated identification of processes, linking of all 

acquired product-specific data, and facilitating data driven applications (Wessel, 2020).  

The application of traceability in a learning factory to monitor product origin and 

provide real-time visibility of its movement in the value chain has not found researcher’s 

attention. The present work aims to enable traceability and defect detection system within 

an existing learning factory.  

6.3 LEARNING FACTORY 

The concept of a learning factory provides a didactic platform where real challenges 

associated with factories can be experienced and demonstrated in a cost-effective and safe 

manner, developing multidisciplinary skills and practically oriented approaches based on 

'learning by doing'. The term "learning factory" was coined and patented in 1994, when 

the National Science Foundation (NSF) of the United States awarded a consortium led by 

Penn State University a grant to develop a “learning factory” (Abele et al., 2015). It is 

composed of two words “learning” and “factory” to incorporate both learning and teaching 

elements and a production environment (Wagner et al., 2012). The term “learning”, as 

opposed to “teaching” emphasizes experiential learning, which, according to research, 

improves retention and application more than traditional methods such as lectures (Cachay 

et al., 2012). The initial version of learning factories emphasized the practical application 

of knowledge acquired during engineering education to address industry challenges and 

design or redesign products to meet specific requirements. A learning factory 

encompasses, namely purpose, process, setting, product, didactics, and operating models 

(Abele et al., 2015). Figure 6.1 shows the dimensions and key features of learning 

factories. The purpose of learning factory is to provide teaching, training, and/or research. 

The process involved can be authentic, multistage, technical and/or organizational 

innovation.  
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Figure 6.1 Dimensions and key features of learning factories, adapted from Abele et al. (2015) 
 

 

The setting can be changeable, real, and/or virtual. The product can be physical objects 

or services. The didactics can be concept based, formal and informal learning, own actions 

of trainees, on-site and/or remote learning which allows the ongoing operation. In recent 

years, there has been a rise in the development of learning factories with the aim of 

improving the learning experiences of trainees in various fields of knowledge (Abele et 

al., 2015). According to the International Association of Learning Factories (IALF), there 

are currently twenty-seven learning factories around the world that provide research and 

training. Table 6.1 lists the geographical distribution of learning factories across the globe 

with their major thrust areas.  

 



LEARNING FACTORY 

220 | P a g e  

Table 6.1 Distribution of various learning factories with major thrust area across the globe, adapted from 
IALF (2023) 

Country Affiliation Major thrust area 

Austria Vienna University of 
Technology 

Smart data analytics, collaborative human robotic 
systems, cloud-based automation 

Austria Graz University of 
Technology 

Agile manufacturing, lean management, energy 
efficiency, agility, digitalization 

Greece University of Patras Manufacturing processes modelling and energy 
efficiency, robots, automation 

Germany RWTH Aachen University Industry 4.0, condition monitoring, sensor technology, 
automation 

Germany University of Potsdam CPPS, IoT, IIoT, digital twin, cyber security, human 
machine interaction, smart factory, AR/VR 

Germany Technical University, 
Braunschweig 

Energy and resource efficiency, Industry 4.0, urban 
factories 

Germany Reutlingen University Human-robot-collaboration, intralogistics systems, digital 
twin 

Germany Ruhr University Bochum Lean management, human-robot-collaboration, digital 
twin, digital shadow, AR/VR applications in lean/six 
sigma 

Germany Karlsruhe Institute of 
Technology 

Site selection, lean and Industry 4.0, quality control 

 

Germany Technical University of 
Munich 

Animation for process stability during milling, solution to 
vibration problems 

Sweden KTH Royal Institute of 
Technology 

flexible/adaptive manufacturing 

South Africa Stellenbosch University Lean operations, ergonomics, shop-floor-management 

Italy Free University of Bolzano Automation and robotics, human machine collaboration, 
lean and flexible assembly, worker assistance systems 

Hungary Hungarian Academy of 
Sciences 

Collaborative and advance robotic assembly 

Luxembourg University of Luxembourg Lean Manufacturing, process optimization, augmented 
reality and digital manuals, quality management 

Neatherlands University of Twente Smart manufacturing solutions based on CPPS, 
sustainable manufacturing, human factors in 
manufacturing systems 

Crotia University of Split Lean management tools, plan layout, digital factory, 
assembly in Industry 4.0, additive manufacturing  

Finland Aalto University Flexible production systems, artificial intelligence, digital 
twins, simulation models safety and security  

Malaysia University Malaysia 
Pahang 

CPPS, blockchain and artificial intelligence technology, 
smart logistics and supply chain system 
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Table 6.1 Distribution of various learning factories with major thrust areas across the globe, adapted 
from IALF (2023) (contd…) 

Country Affiliation Major thrust area 

Singapore Agency for Science, 
Technology and Research 

Contextual and dynamic planning, prescriptive and 
predictive models, quality monitoring 

China Tongji University Cloud/edge computing, sensor, and data acquisition 

Canada University of Alberta Sustainable production, automation, and AI technologies 

Canada McMaster University 3D printing, CNC machine tools, robotics assembly 

USA Purdue University Quality control/assurance, workplace Safety, AR/VR 

Brazil University of São Paulo Production planning and control; ergonomics 

India Birla Institute of 
Technology & Science, 
Pilani 

CPPS, digital twin, AR/VR, quality control 

 

Most of the learning factories are in Germany, followed by other developed nations 

such as Austria and Canada. India, China, Brazil, and South Africa also have learning 

factories providing research and training. However, there is a need to set up additional 

learning factories across universities, depending on the size and population of these 

countries. The major thrust area for these learning factories is primarily on Industry 4.0 

technologies (e.g., CPPS, digital twin, cloud manufacturing, AR/VR applications, data 

analytics, HMI, M2M, interactions etc.), sustainable manufacturing, agile manufacturing, 

lean management, etc. 

Figure 6.2 shows the existing learning factory infrastructure at Birla Institute of 

Technology & Science, Pilani, Pilani campus, Rajasthan, India. It currently consists of 

six modular production systems, namely distribution, measuring, storage, pick & place, 

separating, and sorting station, in addition to sensors, AR/VR devices, and integrating 3D 

printers. 
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Figure 6.2 Existing learning factory infrastructure at Birla Institute of Technology & Science, Pilani, 

Pilani campus, Rajasthan, India 

6.4 RESEARCH METHODOLOGY 

Figure 6.3 depicts the four-step research methodology adopted for the development of 

a smart learning factory management system.  

 
Figure 6.3 Development of a CPPS framework for smart learning factory  
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The first step consists of setting the physical world through the integration of hardware 

and software. The second step consists of acquiring online data from the physical world. 

The third step consists of developing smart functionalities in the cyber world through the 

development of machine vision-based system to identify part defects and RFID-based real-

time part traceability system. The fourth step consists of deployment of smart features of 

online monitoring, visualization, traceability & tracking, feedback and control for a smart 

learning factory management system.  

6.5 PHYSICAL WORLD (HARDWARE AND SOFTWARE USED) 

 The physical world consists of a learning factory where various modular production 

systems, such as distribution, storage, pick-and-place, separating, and sorting stations are 

interconnected to represent a prototypical assembly line. These modular production 

systems are controlled using programmable logic controllers (PLCs) and interconnected 

through a moving conveyor line. The learning factory is integrated with various hardware 

and software, as listed in Table 6.2, along with their technical specifications/source and 

applications.  

The products for the present case are prototype cylindrical workpieces of different 

colours, namely silver, black and red. RFID modules have been set up at places where 

monitoring is required. The RFID modules are placed at the exits of the stations and RFID 

tags are attached to the products. The workpieces are attached with RFID tags which can 

be detected when the workpiece is around 10 cm from the scanner. The tags operate on a 

radio frequency of 13.56 MHz and are passive in nature. The raspberry pi camera uses an 

eight-megapixel sensor which supports 720p at 30fps. The camera is attached to the pi 

using a 15 cm ribbon cable to the CSI port.  
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Table 6.2 List of hardware and software resources with their technical specifications and applications 

Resources CPPS components Technical Specifications/source Applications 

Hardware 

Modular Production 
System 

Combinations of FESTO MPS in 
sequence: Pick & Place, Separation, 
and Sorting Stations 

Prototypical 
representation of 
assembly line 

Programmable logic 
controllers (PLCs) 

12 digital inputs, 8 digital outputs, 
USB interface for data transfer, I-Port 
and Modbus TCP protocol 

Controller 

Raspberry Pi 4 Model-B  RAM: 8GB LPDDR4 SDRAM, 
Processor: Broadcom BCM2711, quad-
core Cortex-A72 (ARM v8) 64-bit SoC 
@ 1.5GHz 

Micro-processor 

Raspberry Pi Camera V2 Resolution: 8 Megapixel, Image 
Sensor: Sony IMX219, Sensor 
Resolution: 2592 x 1944 pixels, Video 
Modes: 1080p30, 720p60 & 
640x480p60/90, Focal Length: 3.60 
mm +/- 0.01, F Stop: 2.9  

Live monitoring 

Arduino Uno Microcontroller Chip: ATmega328P, 
Clock Speed: 16 MHz, Flash Memory: 
32 KB, SRAM: 2 KB 

Micro-processor 

RFID Reader/Writer Operating Frequency (MHz): 13.56, 
SPI data rate (Mbit/s): 10, Operating 
distance (mm): 50 

Tracing and 
tracking 

Smart energy meter 
(Beckhoff system module)  

Supply voltage: 24 V DC, External 
feed current: 6 A 

Energy 
monitoring  

Software 

Python 3.8 Open source Developing 
logic/algorithm 

TensorFlow Open source Developing AI 
applications 

Node-RED Open source  Developing 
dashboards 

 

6.6 DATA ACQUISITION SYSTEM   

6.6.1 Communication Protocols 

 Data transmission among CPPS components takes place using various wired/wireless 

communication protocols, such as Modbus TCP/IP and MQTT protocol. The RFID 

module is programmed using Arduino IDE that communicates with the Raspberry Pi using 

MQTT protocol. The real-time tracking and tracing data are sent to live dashboard 
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wirelessly using MQTT protocol. The Beckhoff system module is used to acquire energy 

data based on Modbus TCP/IP protocol. Machine-to-machine communication among 

modular production systems and control actions such as actuations takes place using 

Modbus TCP/IP protocol.  

6.6.2 Data Storage 

The energy data is stored locally where an onboard SQL database on the PC supports 

the efficient storage and retrieval of the data. Other data related to tracking and tracing 

such as unique identity number of the workpiece, date, time, station information, defect 

status are stored locally on the hardware storage of the raspberry pi.  

6.7 CYBER WORLD  

6.7.1. Development of a Machine Vision based Defect Detection System  

Figure 6.4 illustrates the process flow diagram for the development of a machine 

vision-based defect detection system deployed in the learning factory. The defect detection 

system was created using Quantized SSD Mobilenet in TensorFlow Lite, an open-source 

machine learning platform known for its versatility and extensive range of tools, including 

libraries, community forums, and resources. The developed model was trained with images 

of defective and non-defective workpieces. A dataset consisting of 1200 images was 

divided into two subsets: a testing set, which comprised 20% of the images, and a training 

set, which comprised the remaining 80% of the images. The model was trained for 

approximately sixteen hours to achieve a loss function value below two. Figure 6.5 shows 

the loss function with respect to the total number of iterations. A total of 21674 iterations 

were carried out for achieving loss consistently below two. The prediction results showed 

that the developed machine vision-based defect detection system can detect geometric 

defects (cracks), color defects (presence of other colours) as well as the surface quality of 
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the workpieces (presence of other materials on the surface) of the workpieces with high 

accuracy (around 98%). The developed model was then deployed in the real environment 

where an accuracy rate of over 85% was set as a benchmark for ensuring error-free 

outcomes. Only results with an accuracy rate of 85% or higher are included in the database. 

Frames with accuracy below the specified threshold were used to update and enhance the 

accuracy of the trained model. 

Figure 6.4 Process flow diagram for a machine vision-based defect detection system 

 

 

 
Figure 6.5 Loss function with respect to the total number of iterations 
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6.7.2. Development of a RFID-based Real-Time Part Traceability System  

 Figure 6.6 shows the process flow diagram for a RFID-based real-time part traceability 

system in a learning factory. A python program was developed and installed on the 

Raspberry pi processor for providing the logic for production initiation and object 

detection-based quality control. The process starts with the customer placing an order for 

the product. Availability of materials required for the product is checked. If all the 

materials are not available, then the operator is notified, the database is updated with the 

required information, and the process stops. In case the materials are available, production 

is initiated. The product is tracked by the RFID as it exits each station and the database is 

updated. When a product exits a station, it is assumed that the activities for that station 

have been carried out without any problem. Any anomaly in the workpiece is detected 

using the defect detection module that has been developed based on machine vision. If it 

passes the quality check, then the customer is notified about it and the database is updated. 

If it fails the quality check, then the operator is informed about it and the database is 

updated again. The program is terminated until the customer initiates it again by placing a 

new order.   

6.8 A SMART LEARNING FACTORY MANAGEMENT SYSTEM  

The smart learning factory management system enables various smart functionalities, 

such as live monitoring, visualization, traceability and tracking, and feedback and control. 

Figure 6.7 (a) shows the learning factory with MPS stations. Figure 6.7 (b) shows the 

dashboard for live energy monitoring where Beckhoff energy meter running on TwinCAT 

software is used to acquire energy data. The control action takes place in both manual and 
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automated modes. Figure 6.7 (c) shows the graphic user interface for manual control 

actions. Figures 6.8 and 6.9 show the plots for energy consumptions with respect to time 

for different stations. Table 6.3 shows power consumption in idle as well as working 

modes of each MPS station.  It is observed that whenever the system is idle then power 

consumed remains to fluctuate at approximately 10 watts. When all components of the 

system (such as slider, pneumatic lid, pick and place arm) are active or in working 

condition then peaks in power consumption can be seen at each station and a cyclic pattern 

is observed. The database variables are used for developing a dashboard for ease of 

understanding and traceability of products using Node-RED, an open-source software. 

Figure 6.10 shows the developed dashboard for visual tracking of the entire assembly 

process in the learning factory. It displays real-time data for each product, obtained from 

the developed RFID and MV systems. It keeps track of the timestamp of each part’s 

movements from one station to another and data logs when the part crosses the sorting 

station. The dashboard also features a search function that enables users to trace products 

by their part ID or defective status. This allows users to search the database for specific 

parts and filter results based on the defect status.  
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Figure 6.6 Process flow diagram for RFID-based real-time part traceability system in a learning factory
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Figure 6.7 Learning factory with (a) various MPS stations, (b) dashboard for live energy monitoring, (c) graphic user interface for manual control action
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Figure 6.8 Energy consumption with respect to time for distribution and pickup station 

 

 
Figure 6.9 Energy consumption with respect to time for separating, storage and sorting stations 

 
 
 

Table 6.3 Energy consumption (in idle as well as the working mode) of each MPS station with a cycle time 
of 20 seconds 

Sl. no. Station Energy utilization per cycle (W) 

1 Distribution 285.3 

2 Storage 703 

3 Pick and Place 388.6+320 

4 Separating 366.1 

5 Sorting 320 
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Figure 6.10 A dashboard for visual tracking of the entire assembly process in the learning factory 
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6.9 SUMMARY  

 This chapter proposes a CPPS framework for a learning factory to facilitate teaching, 

training and experiential learning. The proposed framework integrates low-cost RFID 

technology and machine vision system in a learning factory environment. It consists of 

four main components of CPPS, namely physical world, data acquisition, cyber world, and 

visualization for enabling various smart functionalities of live monitoring, visualization, 

traceability & tracking, and feedback and control. The inexpensive system provides 

immediate visible feedback to the operators and floor managers, and enables part 

traceability. Further, the following models have been developed to demonstrate the 

usefulness of the proposed CPPS framework: 

• Development of a machine vision-based defect detection system. 

• Development of a RFID based real-time part traceability system. 

• Development of a live dashboard to monitor energy demand, track & trace the 

workpieces in real-time and provide feedback to operators and floor managers. 

The conclusions drawn and the practical significance are as follows:  

• RFID system allowed intelligent tracking and tracing of workpieces in real-time at all 

the stations, enabling the visibility of the product’s entire movement in the value chain. 

The significance lies in the ability to identify irregularities or detect anomalies in the 

process chain by observing cycle time patterns over time. 

• Machine vision system enables the detection of workpiece defects. The proposed 

system can be used to monitor and control the product quality in real-time without 

human intervention. 
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• The research also shows how a learning factory provides an ideal platform for 

developing, implementing, and testing new concepts and technologies. Industry 4.0 

workforce, industrial engineers, and engineering students can develop 

multidisciplinary competencies based on “learning by doing”, which is extremely 

beneficial for training multidisciplinary and complex concepts and technologies of 

Industry 4.0. Therefore, the proposed framework would be useful in bridging the gap 

between academic and industrial technical competencies. 

• Integration of smart energy meter with the learning factory enabled online monitoring 

of energy demand for each MPS station. It could facilitate smart energy management 

if an abnormal energy pattern is detected.  

Lastly, the proposed framework can be transferred to shop floor facility assisting the 

manufacturers to trace the parts at any point of time in a value chain including aftersales 

where traceability has been a pain point for manufacturers during product recalls.  



 

 

CHAPTER 7 

CONCLUSIONS  

 

CPPS is an essential prerequisite to facilitate real-time monitoring, data acquisition, 

visualization, control, and analytics of a manufacturing system. Its implementation 

enhances the management capabilities and performance of traditional manufacturing 

systems to meet several engineering requirements. Some of these significant engineering 

requirements are self-awareness, self-prediction, self-configuration, efficient 

maintenance, robustness, autonomy, adaptability, reconfigurability, etc. at the unit level; 

flexibility, leanness, agility, reconfigurability, context awareness & energy efficient 

scheduling, decentralized production control, etc. at the system level; and product lifecycle 

management, flexibility, leanness, agility, reconfigurable supply chains, etc. at the system 

of systems level.  

These engineering requirements provides several technological benefits, such as higher 

level of intelligence, autonomy, connectivity, better product quality, smart energy 

management, enhanced system reliability, reduced production downtime, improved 

production planning, enhanced inventory management, proactive decision making, etc. 

Implementation of CPPS has resulted in energy & resource savings, increased 

transparency regarding environmental performance from the environmental perspective; 

reduced business risks, reduced maintenance costs, increased productivity, decreased 

production loss, enhanced occupational safety of workers, improved customer services, 

enhanced abilities for humans to interact and control the physical world, improved 

symbiotic human-robot collaboration. 

This thesis proposed a generic CPPS framework for smart manufacturing analytics and 

management. Further, the generic CPPS framework was used to develop and implement 
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smart functionalities in Industry 4.0 non-compliant physical systems, namely a 3D printer, 

a CNC machine center, and a learning factory for real-time monitoring, visualization, 

control, and analytics. 

A systematic literature review of 164 articles relevant to the topic of cyber physical 

production system is presented in chapter 2. The literature review discovered 

interrelationships among various CPPS concepts. It added to the body of knowledge of the 

CPPS in terms of latest developments, characteristics (data types, autonomy, analytics, 

modelling techniques), enabling technologies, application areas, and challenges. The 

chapter also provides an impact-efforts matrix, outlines future research directions, and 

proposes a concept map.  

 In chapter 3, a generic CPPS framework was proposed for smart manufacturing 

analytics and management using the components, elements and sub-elements identified 

through the literature review. 

In chapter 4, a CPPS framework for smart 3D printing analytics and management was 

proposed, where a conventional 3D printer was transformed into a smart 3D printer by 

integrating cost-effective solutions (low-cost sensors, devices, actuators, and open-source 

software) to enable smart management capabilities of online monitoring, data acquisition, 

visualization, control, and analytics.  

In chapter 5, a CPPS framework for smart tool health analytics and management was 

proposed. A CNC milling center was integrated with smart sensors and devices to enable 

smart management capabilities of online monitoring, data acquisition, visualization, 

control, and analytics.  

Finally, in chapter 6, a CPPS framework for a learning factory was proposed, where 

an existing learning factory infrastructure was integrated with an inexpensive RFID and 
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MV systems for facilitating smart functionalities of live monitoring, visualization, 

traceability & tracking, and feedback & control. 

MAJOR RESEARCH CONTRIBUTIONS 

The present study contributes both theoretically and practically to the existing body of 

knowledge on CPPS by proposing a concept map, frameworks, and providing useful 

insights and knowledge updates, and implementing pragmatic solutions based on the 

proposed CPPS framework for solving real-world manufacturing problems. The major 

research contribution of the present study are as follows: 

• The scientometric analysis of literature provides an overview of the latest trends by 

analyzing various perspectives, namely research methodology classification, timeline 

distribution, geographical distribution, source analysis, SDGs analysis, keyword co-

occurrence analysis, co-authorship among countries, and author and co-citation 

analysis. 

• Content analysis of literature provides useful insights to enhance the understanding of 

the multidisciplinary concepts of CPPS from a broader perspective by 

classifying/grouping various concepts of CPPS such as, hierarchical levels, data types, 

types of autonomies, types of analytics, modelling techniques, enabling technologies; 

and analyzing applications areas, barriers/challenges, engineering needs/ 

requirements, and significance of its deployment.  

• Development of a concept map for CPPS that is well-suited for a researcher or 

practitioner working in the manufacturing domain. 

• Development of a generic CPPS framework for smart manufacturing analytics and 

management considering possible elements and sub-elements. 
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• A CPPS framework for smart 3D printing analytics and management was proposed 

based on data-driven analytics techniques and cloud, fog, and edge computing 

technologies.  

• Descriptive, prognostics, prescriptive, and diagnostics analytics provided insights and 

predicted energy distribution during various 3D printing stages, live estimation of 

environmental impacts for a 3D printed product, computed the remaining useful life of 

the nozzle, and prescribed the optimal printing parameters depending on the 

managerial requirements.  

• Insights were generated through various data analytics techniques for monitoring tool 

degradation, detecting anomalous behaviour, predicting tool life of cutting tool, and 

prescribing optimum cutting parameters depending on the managerial requirements.  

• A knowledge-based system was also developed to update tool life, energy 

consumption, surface roughness, and chip colours at the different health conditions of 

a cutting tool which can be used to compare, validate and benchmark. 

• In the case of learning factory, implementing CPPS facilitated various smart 

functionalities, such as live monitoring, visualization, traceability & tracking, and 

feedback & control. The developed dashboard provided visible feedback to operators 

and floor managers, and enabled part traceability at any point of time in a value chain.   

PRACTICAL SIGNIFICANCE 

The practical significance of the present study are as follows: 

• The value addition to the body of knowledge of CPPS through systematic literature 

review would serve as a reference in providing researchers and practitioners with 

valuable insights, knowledge updates, and decision support in selecting CPPS elements 

and sub-elements according to their impacts and required efforts. It will assist in 
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understanding the maturity status, guiding future developments by addressing the 

important needs, and advancing the knowledge, management capabilities, and 

potentials of traditional manufacturing in an Industry 4.0 environment.   

• Characterization and estimation of energy consumption during various stages of 3D 

printing would be significant in comprehensive understanding of the energy 

consumption in each stage of the 3D printing process and providing decision support 

to practitioners in improving the areas of energy consumption and time inefficiencies. 

• Live estimation of environmental impact for the 3D printed products offers 

stakeholders (operator, manager, manufacturer) in understanding the results of life 

cycle assessment and take prompt actions. It also enables environmentally conscious 

consumers to make well-informed purchasing decisions through enhanced 

transparency and visibility. 

• Nozzle health monitoring of a 3D printer, cutting tool health monitoring of a CNC 

machine and their remaining useful life predictions are significant in improving the 

system uptime, reliability, energy efficiency, and product quality. It assists the 

production manager to optimize the maintenance schedule and sequence. It also 

prevents abnormal power usage and facilitates proactive planning of maintenance 

schedule and sequence of orders.  

• Prescriptive analytics enabled real-time recommendation of optimal process 

parameters in 3D printing and milling operations. This supports practitioners in 

overriding the parameters, depending on the managerial requirements.  

• In the case of 3D printing, diagnostics analytics enabled detection of anomalies due to 

mechanical or structural failure during the process for achieving error-free 3D printing. 

This results in less material waste, reduced human intervention & costs, and improved 

product quality. 
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• In the case of CNC machining process, diagnostics analytics enabled detection of 

anomalous behaviour during milling process, thereby assisting a practitioner with real-

time alerts to avoid unexpected failure of cutting tools, maintain machining accuracy, 

and product quality.  

• Learning factory provided a didactic platform by supporting teaching, training, and 

experiential learning, where the technical skills of the Industry 4.0 workforce, 

industrial engineers, and engineering students can be upgraded and innovative 

developments in the domain of Industry 4.0 can take place. 

• The proposed Industry 4.0 solutions developed with inexpensive hardware and open-

source software can be helpful to micro, small, and medium enterprises (MSMEs) in 

realizing the Industry 4.0 benefits of increased productivity, reliability and product 

quality at a reasonable price. 

Finally, the present work will be a step towards meeting the various Industry 4.0 

environment requirements of self-awareness, self-prediction, self-configuration, and 

efficient maintenance as outlined by Lee et al. (2015) to reduce production downtime, 

improve production planning, and enhance inventory management. 

LIMITATIONS AND OUTLOOK 

Despite several advantages, there are certain limitations of the present study. A more 

detailed and comprehensive review can be conducted with additional databases such as 

ProQuest, EBSCO, JSTOR etc., and various similar search terms related to CPPS such as 

Industry 4.0, digital twin, cyber physical system, cloud manufacturing, IIoT, etc. 

In the case of 3D printing, the proposed diagnostic system is limited to detecting 

anomalies due to structural and mechanical failure, and it does not include anomalies 

caused by nozzle clogging and wear. In future, work can be done to improve the accuracy 
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of the proposed algorithms and to develop machine learning algorithms for automatically 

classifying the various types of 3D printing defects in real-time. The results obtained for 

smart 3D printing analytics and management are limited to the parameters of infill, layer 

height, extruder and bed temperatures without considering other printing parameters such 

as fan speed, printing speed, wall thickness, and build orientation. The current framework 

can be extended to other application scenarios where several smart 3D printers are 

interconnected on a shop floor or in a smart factory and require massive data processing 

for automated job scheduling, energy and resource management, user warnings and 

automated actions in case of failures, automated removal of printed parts and storage in a 

warehouse using cobots. The future scope also includes use of 5G communication 

technology for ultra-high speed data transfer, and lowest latency across all the three 

computing platforms (cloud, fog, and edge). The application of blockchain technology for 

data sharing can provide enhanced security for access control as well as data storage on all 

three computing platforms (cloud, fog, and edge).   

In the case of CNC machine, the limitation of the current research is that it monitors 

the health of only the cutting tool and not the machine tool at the system level. Similar 

frameworks for monitoring the health of other components can turn a conventional 

machine tool into a smart machine tool, which can be highly useful for the overall 

maintenance planning of the system. In future, the machine learning models can be more 

robust, interoperable, and versatile if trained with large volumes of data sets acquired from 

different types of workpiece materials, cutting tools, cutting parameters, and machine 

tools.  

In the case of proposed RFID and MV systems for learning factory, it was observed 

that the RFID tags fail to be detected at higher speeds. MV system also needs to be trained 

with different environments to improve the accuracy as the training environment plays a 
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significant role in defect detection. The present latency of one second can be improved 

further. The proposed framework for traceability can be transferred to shop floor facility 

assisting the manufacturers to trace the parts in value chain at any point of time including 

aftersales where traceability has been a pain point for manufacturers during product recalls. 

Finally, the thesis outcome can be used to enhance the technical and management skills of 

workforce, industrial engineers, and engineering students, enabling them to handle the 

complexities and future challenges of Industry 4.0 with increased confidence.  



 

REFERENCES 

 

Abas, M., Habib, T., Noor, S., Salah, B., & Zimon, D. (2022). Parametric Investigation 

and Optimization to Study the Effect of Process Parameters on the Dimensional 

Deviation of Fused Deposition Modeling of 3D Printed Parts. Polymers, 14(17). 

https://doi.org/10.3390/polym14173667 

Abele, E., Chryssolouris, G., Sihn, W., Metternich, J., ElMaraghy, H., Seliger, G., Sivard, 

G., ElMaraghy, W., Hummel, V., Tisch, M., & Seifermann, S. (2017). Learning 

factories for future oriented research and education in manufacturing. CIRP Annals, 

66(2), 803–826. https://doi.org/https://doi.org/10.1016/j.cirp.2017.05.005 

Abele, E., Metternich, J., Tisch, M., & Reitberger, T. (2018). Learning                        

Factories: Concepts, Guidelines, Best-Practice Examples. 335-459. 

https://doi.org/10.1007/978-3-319-92261-4 

Abele, E., Metternich, J., Tisch, M., Chryssolouris, G., Sihn, W., ElMaraghy, H., Hummel, 

V., & Ranz, F. (2015). Learning Factories for Research, Education, and Training. 

Procedia CIRP, 32, 1–6. https://doi.org/10.1016/J.PROCIR.2015.02.187 

Afonso, P., & Walker, M. (2018). Design and implementation of a low cost RFID learning 

factory system in a learning factory Design and implementation of a low cost RFID 

track and trace. Procedia Manufacturing, 23(2017), 255–260. 

https://doi.org/10.1016/j.promfg.2018.04.026 

Ahmed, F., Jannat, N. E., Gavidel, S. Z., Rickli, J., & Kim, K. Y. (2019). A conceptual 

framework for cyber-physical system in connected RSW weldability certification. 

Procedia Manufacturing, 38, 431–438. https://doi.org/10.1016/j.promfg.2020.01.055 

Ahmed, F., Jannat, N. E., Schmidt, D., & Kim, K. Y. (2021). Data-driven cyber-physical 

system framework for connected resistance spot welding                                       

weldability certification. Robotics and Computer-Integrated Manufacturing, 67. 

https://doi.org/10.1016/j.rcim.2020.102036 



REFERENCES 

244 | P a g e  

Ahn, D., Kweon, J. H., Kwon, S., Song, J., & Lee, S. (2009). Representation of surface 

roughness in fused deposition modeling. Journal of Materials Processing Technology, 

209(15–16), 5593–5600. https://doi.org/10.1016/J.JMATPROTEC.2009.05.016 

Amores, I. D., González-Gutiérrez, J., García, I. M., Franco, J. M., & Gallegos, C. (2022). 

3D printing – Present and future – A Chemical Engineering perspective.           

Chemical Engineering Research and Design, 187, 598–610. 

https://doi.org/10.1016/J.CHERD.2022.08.049 

Andronie, M., Lăzăroiu, G., Iatagan, M., Hurloiu, I., & Dijmărescu, I. (2021). Sustainable 

cyber-physical production systems in big data-driven smart urban economy: A 

systematic literature review. Sustainability (Switzerland), 13(2), 1–15. 

https://doi.org/10.3390/su13020751 

Ansari, F. (2019a). Knowledge Management 4.0: Theoretical and Practical Considerations                                                   

in Cyber Physical Production Systems. IFAC-PapersOnLine, 52(13), 1597–1602. 

https://doi.org/https://doi.org/10.1016/j.ifacol.2019.11.428 

Ansari, F., Glawar, R., & Nemeth, T. (2019b). PriMa: a prescriptive maintenance model 

for cyber-physical production systems. International Journal of Computer Integrated 

Manufacturing, 32(4–5), 482–503. https://doi.org/10.1080/0951192X.2019.1571236 

Ansari, F., Khobreh, M., Seidenberg, U., & Sihn, W. (2018). A problem-solving ontology 

for human-centered cyber physical production systems. CIRP Journal of 

Manufacturing Science and Technology, 22, 91–106. 

https://doi.org/https://doi.org/10.1016/j.cirpj.2018.06.002 

Ansari, F., Kohl, L., Giner, J., & Meier, H. (2021). Text mining for AI enhanced failure                                          

detection and availability optimization in production systems. CIRP Annals, 70(1), 

373–376. https://doi.org/https://doi.org/10.1016/j.cirp.2021.04.045 

Aramesh, M., Attia, M. H., Kishawy, H. A., & Balazinski, M. (2016). Estimating the 

remaining useful tool life of worn tools under different cutting parameters: A survival 

life analysis during turning of titanium metal matrix composites (Ti-MMCs).         

CIRP Journal of Manufacturing Science and Technology, 12, 35–43. 

https://doi.org/10.1016/J.CIRPJ.2015.10.001 



REFERENCES 

245 | P a g e  

Arrazola, P. J., Özel, T., Umbrello, D., Davies, M., & Jawahir, I. S. (2013). Recent                                                   

advances in modelling of metal machining processes. CIRP Annals, 62(2), 695–718. 

https://doi.org/https://doi.org/10.1016/j.cirp.2013.05.006 

Attajer, A., Darmoul, S., Chaabane, S., Sallez, Y., & Riane, F. (2022). An analytic 

hierarchy process augmented with expert rules for product driven control in cyber-

physical manufacturing systems. Computers in Industry, 143, 103742. 

https://doi.org/https://doi.org/10.1016/j.compind.2022.103742 

AWS. (2023). What is data analytics? Retrieved May 16, 2023, from 

https://aws.amazon.com/what-is/data-analytics/ 

Ayrilmis, N. (2018). Effect of layer thickness on surface properties of 3D printed materials 

produced from wood flour/PLA filament. Polymer Testing, 71, 163–166. 

https://doi.org/10.1016/j.polymertesting.2018.09.009 

Badini, S., Regondi, S., Frontoni, E., & Pugliese, R. (2023). Assessing the capabilities of 

ChatGPT to improve additive manufacturing troubleshooting.                             

Advanced Industrial and Engineering Polymer Research. 

https://doi.org/https://doi.org/10.1016/j.aiepr.2023.03.003 

Baena, F., Guarin, A., Mora, J., Sauza, J., & Retat, S. (2017). Learning Factory:                 

The Path to Industry 4.0. Procedia Manufacturing, 9, 73–80. 

https://doi.org/https://doi.org/10.1016/j.promfg.2017.04.022 

Bagaber, S. A., & Yusoff, A. R. (2017). Multi-objective optimization of cutting parameters 

to minimize power consumption in dry turning of stainless steel 316.                       

Journal of Cleaner Production, 157, 30–46.   

https://doi.org/https://doi.org/10.1016/j.jclepro.2017.03.231 

Bagozi, A., Bianchini, D., & Rula, A. (2021). A Multi-perspective Model of Smart 

Products for Designing Web-Based Services on the Production Chain. In Lecture 

Notes in Computer Science (including subseries Lecture Notes in Artificial 

Intelligence and Lecture Notes in Bioinformatics): Vol. 13081 LNCS. 

https://doi.org/10.1007/978-3-030-91560-5_33 



REFERENCES 

246 | P a g e  

Bampoula, X., Siaterlis, G., Nikolakis, N., & Alexopoulos, K. (2021). A deep learning 

model for predictive maintenance in cyber-physical production systems using LSTM 

autoencoders. Sensors (Switzerland), 21(3), 1–14. https://doi.org/10.3390/s21030972 

Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., 

Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F. 

(2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, 

opportunities and challenges toward responsible AI. Information Fusion, 58, 82–115. 

https://doi.org/https://doi.org/10.1016/j.inffus.2019.12.012 

Bayhan, H., Meißner, M., Kaiser, P., Meyer, M., & Hompel, M. (2020). Presentation of a 

novel real-time production supply concept with cyber-physical systems and 

efficiency validation by process status indicators. International Journal of Advanced 

Manufacturing Technology, 108(1–2), 527–537. https://doi.org/10.1007/s00170-

020-05373-z 

Becker, P., Roth, C., Roennau, A., & Dillmann, R. (2020). Acoustic Anomaly Detection 

in Additive Manufacturing with Long Short-Term Memory Neural Networks. 2020 

IEEE 7th International Conference on Industrial Engineering and Applications 

(ICIEA), 921–926. https://doi.org/10.1109/ICIEA49774.2020.9102002 

Beckers, A., Hommen, T., Becker, M., Kornely, M. J. K., Reuter, E., Grünert, G., 

Ortjohann, L., Jacob, J., Niemietz, P., Barth, S., Barth, S., & Bergs, T. (2022). 

Digitalized manufacturing process sequences – foundations and analysis of the 

economic and ecological potential. CIRP Journal of Manufacturing Science and 

Technology, 39, 387–400. https://doi.org/10.1016/j.cirpj.2022.09.001 

Beregi, R., Pedone, G., & Mezgár, I. (2019). A novel fluid architecture for cyber-physical 

production systems. International Journal of Computer Integrated Manufacturing, 

32(4–5), 340–351. https://doi.org/10.1080/0951192X.2019.1571239 

Berger, C., Berlak, J., & Reinhart, G. (2016). Service-based production planning and 

control of cyber-physical production systems. 29th Bled EConference: Digital 

Economy, BLED 2016, 491–502. 



REFERENCES 

247 | P a g e  

Berger, C., Zipfel, A., Braunreuther, S., & Reinhart, G. (2019). Approach for an event-

driven production control for cyber-physical production systems. Procedia CIRP, 79, 

349–354. https://doi.org/10.1016/j.procir.2019.02.085 

Bergh, D. van den, Clyde, M. A., Gupta, A. R. K. N., de Jong, T., Gronau, Q. F., Marsman, 

M., Ly, A., & Wagenmakers, E.-J. (2021). A tutorial on Bayesian multi-model linear 

regression with BAS and JASP. Behavior Research Methods, 53(6), 2351–2371. 

https://doi.org/10.3758/s13428-021-01552-2 

Berkeley. (2012). Cyber-Physical Systems- a Concept Map. Retrieved May 6, 2023, from 

https://ptolemy.berkeley.edu/projects/cps/ 

Bilga, P. S., Singh, S., & Kumar, R. (2016). Optimization of energy consumption response 

parameters for turning operation using Taguchi method.                                                 

Journal of Cleaner Production, 137, 1406–1417. 

https://doi.org/https://doi.org/10.1016/j.jclepro.2016.07.220 

Borangiu, T., Morariu, O., Răileanu, S., Trentesaux, D., Leitão, P., & Barata, J. (2020). 

Digital transformation of manufacturing. Industry of the future with cyber-physical 

production systems. Romanian Journal of Information Science and Technology, 

23(1), 3–37. 

Brereton, R. G. (2019). ANOVA tables and statistical significance of models. Journal of 

Chemometrics, 33(3), e3019. https://doi.org/https://doi.org/10.1002/cem.3019 

Cachay, J., Wennemer, J., Abele, E., & Tenberg, R. (2012). Study on Action-Oriented 

Learning with a Learning Factory Approach.                                                                     

Procedia - Social and Behavioral Sciences, 55, 1144–1153. 

https://doi.org/https://doi.org/10.1016/j.sbspro.2012.09.608 

Camposeco-Negrete, C. (2015). Optimization of cutting parameters using Response 

Surface Method for minimizing energy consumption and maximizing cutting quality 

in turning of AISI 6061 T6 aluminum. Journal of Cleaner Production, 91, 109–117. 

https://doi.org/10.1016/j.jclepro.2014.12.017 



REFERENCES 

248 | P a g e  

Cardin, O. (2019). Classification of cyber-physical production systems applications: 

Proposition of an analysis framework. Computers in Industry, 104, 11–21. 

https://doi.org/10.1016/j.compind.2018.10.002 

Castillo, M., Monroy, R., & Ahmad, R. (2022). Scientometric analysis and systematic 

review of smart manufacturing technologies applied to the 3D printing polymer 

material extrusion system. Journal of Intelligent Manufacturing. 

https://doi.org/10.1007/s10845-022-02049-1 

Cerdas, F., Thiede, S., Juraschek, M., Turetskyy, A., & Herrmann, C. (2017). Shop-floor 

Life Cycle Assessment. Procedia CIRP, 61, 393–398. 

https://doi.org/10.1016/j.procir.2016.11.178 

Chabbi, A., Yallese, M. A., Nouioua, M., Meddour, I., Mabrouki, T., & Girardin, F. 

(2017). Modeling and optimization of turning process parameters during the cutting 

of polymer (POM C) based on RSM, ANN, and DF methods. The International 

Journal of Advanced Manufacturing Technology, 91(5), 2267–2290. 

https://doi.org/10.1007/s00170-016-9858-8 

Chakrabortty, A., & Bose, A. (2017). Smart Grid Simulations and Their Supporting 

Implementation Methods. Proceedings of the IEEE, 105(11), 2220–2243. 

https://doi.org/10.1109/JPROC.2017.2737635 

Chakroun, A., Hani, Y., Elmhamedi, A., & Masmoudi, F. (2022). A proposed integrated 

manufacturing system of a workshop producing brass accessories in the context of 

industry 4.0. International Journal of Advanced Manufacturing Technology. 

https://doi.org/10.1007/s00170-022-10057-x 

Chawla, V. K., Angra, S., Suri, S., & Kalra, R. S. (2020). A synergic framework for cyber-

physical production systems in the context of industry 4.0 and beyond. International 

Journal of Data and Network Science, 4(2), 237–244. 

https://doi.org/10.5267/j.ijdns.2019.12.002 



REFERENCES 

249 | P a g e  

Chen, W. J., Ho, J.-H., Mustapha, K. B., & Chai, T.-Y. (2019). A Vision Based System 

for Anomaly Detection and Classification in Additive Manufacturing. 2019 IEEE 

Conference on Sustainable Utilization and Development                                                          

in Engineering and Technologies (CSUDET), 87–92. 

https://doi.org/10.1109/CSUDET47057.2019.9214635 

Cheng, M., Jiao, L., Yan, P., Jiang, H., Wang, R., Qiu, T., & Wang, X. (2022). Intelligent 

tool wear monitoring and multi-step prediction based on deep                                    

learning model. Journal of Manufacturing Systems, 62, 286–300. 

https://doi.org/10.1016/J.JMSY.2021.12.002 

Cheng, X., Huang, B., & Zong, J. (2021). Device-Free Human Activity Recognition Based 

on GMM-HMM Using Channel State Information. IEEE Access, 9, 76592–76601. 

https://doi.org/10.1109/ACCESS.2021.3082627 

Chou, C. J., & Chen, L. F. (2012). Combining neural networks and genetic algorithms for 

optimising the parameter design of the inter-metal dielectric process.           

International Journal of Production Research, 50(7), 1905–1916. 

https://doi.org/10.1080/00207543.2011.574499 

Choudhury, S. K., & Srinivas, P. (2004). Tool wear prediction in turning.                       

Journal of Materials Processing Technology, 153–154(1–3), 276–280. 

https://doi.org/10.1016/j.jmatprotec.2004.04.296 

Christou, I. T., Kefalakis, N., Soldatos, J. K., & Despotopoulou, A.-M. (2022). End-to-end 

industrial IoT platform for Quality 4.0 applications. Computers in Industry, 137. 

https://doi.org/10.1016/j.compind.2021.103591 

Chryssolouris, G., Mavrikios, D., & Rentzos, L. (2016). The Teaching Factory: A 

Manufacturing Education Paradigm. Procedia CIRP, 57, 44–48. 

https://doi.org/https://doi.org/10.1016/j.procir.2016.11.009 



REFERENCES 

250 | P a g e  

Cody, T., Adams, S., Beling, P., & Freeman, L. (2022). On Valuing the Impact of Machine 

Learning Faults to Cyber-Physical Production Systems. 2022 IEEE International 

Conference on Omni-Layer Intelligent Systems, COINS 2022. 

https://doi.org/10.1109/COINS54846.2022.9854969 

Coito, T., Firme, B., Martins, M. S. E., Costigliola, A., Lucas, R., Figueiredo, J., Vieira, 

S. M., & Sousa, J. M. C. (2022). Integration of industrial IoT architectures for 

dynamic scheduling. Computers and Industrial Engineering, 171. 

https://doi.org/10.1016/j.cie.2022.108387 

Cooper, C., Zhang, J., Gao, R. X., Wang, P., & Ragai, I. (2020). Anomaly                   

detection in milling tools using acoustic signals and generative                                                    

adversarial networks. Procedia Manufacturing, 48, 372–378. 

https://doi.org/https://doi.org/10.1016/j.promfg.2020.05.059 

Corne, R., Nath, C., el Mansori, M., & Kurfess, T. (2017). Study of spindle power data 

with neural network for predicting real-time tool wear/breakage during inconel 

drilling. Journal of Manufacturing Systems, 43, 287–295. 

https://doi.org/10.1016/j.jmsy.2017.01.004 

Costa, N. R., Lourenço, J., & Pereira, Z. L. (2011). Desirability function approach: A 

review and performance evaluation in adverse conditions.                              

Chemometrics and Intelligent Laboratory Systems, 107(2), 234–244. 

https://doi.org/https://doi.org/10.1016/j.chemolab.2011.04.004 

Coupek, D., Lechler, A., & Verl, A. (2016). Cloud-based control for downstream defect 

reduction in the production of electric motors. 2016 International Conference on 

Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & 

International Transportation Electrification Conference (ESARS-ITEC), 1–6. 

https://doi.org/10.1109/ESARS-ITEC.2016.7841361 



REFERENCES 

251 | P a g e  

Crnjac, M., Aljinovic, A., Santana, A., Afonso, P., Zanin, A., & Wernke, R. (2019). 

Integration and testing of the RFID-enabled Smart Factory concept within the 

Learning Factory within the Learning Factory. Procedia Manufacturing, 31, 384–389. 

https://doi.org/10.1016/j.promfg.2019.03.060 

Cui, J., Ren, L., Mai, J., Zheng, P., & Zhang, L. (2022). 3D Printing in the Context of 

Cloud Manufacturing. Robotics and Computer-Integrated Manufacturing, 74, 

102256. https://doi.org/https://doi.org/10.1016/j.rcim.2021.102256 

Dabbas, R. M., Fowler, J. W., Rollier, D. A., & McCarville, D. (2003). Multiple response 

optimization using mixture-designed experiments and desirability functions in 

semiconductor scheduling. International Journal of Production Research, 41(5), 939–

961. https://doi.org/10.1080/0020754021000030402 

Dadgari, A., Huo, D., & Swailes, D. (2018). Investigation on tool                                              

wear and tool life prediction in micro-milling of Ti-6Al-4V.                     

Nanotechnology and Precision Engineering, 1(4), 218–225. 

https://doi.org/https://doi.org/10.1016/j.npe.2018.12.005 

Dai, B., Nu, Y., Xie, X., & Li, J. (2021). Interactions of traceability and reliability 

optimization in a competitive supply chain with product recall. European Journal of 

Operational Research, 290(1), 116-131. https://doi.org/10.1016/j.ejor.2020.08.003 

Danelon Lopes, L. C., & Neumann, C. (2021). Research and trends in cyber-physical 

production systems from 2008 to 2019. Procedia CIRP, 99, 592–597. 

https://doi.org/10.1016/j.procir.2021.03.113 

Delli, U., & Chang, S. (2018). Automated Process Monitoring in 3D Printing Using 

Supervised Machine Learning. Procedia Manufacturing, 26, 865–870. 

https://doi.org/https://doi.org/10.1016/j.promfg.2018.07.111 

Denkena, B., Abele, E., Brecher, C., Dittrich, M. A., Kara, S., & Mori, M. (2020). Energy 

efficient machine tools. CIRP Annals, 69(2), 646–667. 

https://doi.org/10.1016/j.cirp.2020.05.008 



REFERENCES 

252 | P a g e  

Denker, J., Iannino, V., Laudenberg, C., Tenner, A., Jelali, M., & Daun, M. (2022). 

Improved Temperature Monitoring and Control of Production Lines in Casting 

through BaSyx Framework and Edge Intelligence. 2022 International Joint 

Conference on Neural Networks (IJCNN), 1–8. 

https://doi.org/10.1109/IJCNN55064.2022.9891962 

Derringer, G., & Suich, R. (1980). Simultaneous Optimization of Several Response 

Variables. Journal of Quality Technology, 12(4), 214–219. 

https://doi.org/10.1080/00224065.1980.11980968 

Dessureault, S. (2019). Costs , Benefits and Business Value of Traceability : A Literature 

Review. https://doi.org/10.13140/RG.2.2.27835.98086 

Devika, Raj, P., Venugopal, A., Thiede, B., Herrmann, C., & Sangwan, K. S. (2020). 

Development of the Transversal Competencies in Learning                                     

Factories. Procedia Manufacturing, 45, 349–354. 

https://doi.org/https://doi.org/10.1016/j.promfg.2020.04.031 

Digiteum. (2022). Difference Between Cloud, Fog and Edge Computing in IoT. Retrieved 

April 26, 2022, from https://www.digiteum.com/cloud-fog-edge-computing-iot/. 

Ding, K., Chan, F. T. S., Zhang, X., Zhou, G., & Zhang, F. (2019). Defining a Digital 

Twin-based Cyber-Physical Production System for autonomous manufacturing in 

smart shop floors. International Journal of Production Research, 57(20), 6315–6334. 

https://doi.org/10.1080/00207543.2019.1566661 

Ding, K., Jiang, P., & Su, S. (2018). RFID-enabled social manufacturing system for inter-

enterprise monitoring and dispatching of integrated production and transportation 

tasks. Robotics and Computer-Integrated Manufacturing, 49, 120-133. 

https://doi.org/10.1016/j.rcim.2017.06.009 

Ding, K., Zhang, Y., Chan, F. T. S., Zhang, C., Lv, J., Liu, Q., Leng, J., & Fu, H. (2021). 

A cyber-physical production monitoring service system for energy- aware 

collaborative production monitoring in a smart shop floor. Journal of Cleaner 

Production, 297, 126599. https://doi.org/10.1016/j.jclepro.2021.126599 



REFERENCES 

253 | P a g e  

Dogan, A., & Birant, D. (2021). Machine learning and data mining in manufacturing. 

Expert Systems With Applications, 166, 114060. 

https://doi.org/10.1016/j.eswa.2020.114060 

Drouillet, C., Karandikar, J., Nath, C., Journeaux, A. C., el Mansori, M., & Kurfess, T. 

(2016). Tool life predictions in milling using spindle power with the neural network 

technique. Journal of Manufacturing Processes, 22, 161–168. 

https://doi.org/10.1016/j.jmapro.2016.03.010 

Duan, J., Hu, C., Zhan, X., Zhou, H., Liao, G., & Shi, T. (2022). MS-SSPCANet: A 

powerful deep learning framework for tool wear prediction. Robotics and Computer-

Integrated Manufacturing, 78, 102391. https://doi.org/10.1016/J.RCIM.2022.102391 

Dundar, S., Gokkurt, B., & Soylu, Y. (2012). Mathematical Modelling at a Glance: A 

Theoretical Study. Procedia - Social and Behavioral Sciences, 46, 3465–3470. 

https://doi.org/10.1016/J.SBSPRO.2012.06.086 

Dureja, J. S., Gupta, V. K., Sharma, V. S., Dogra, M., & Bhatti, M. S. (2016). A review of 

empirical modeling techniques to optimize machining parameters for hard turning 

applications. In Proceedings of the Institution of Mechanical Engineers, Part B: 

Journal of Engineering Manufacture (Vol. 230, Issue 3, pp. 389–404). SAGE 

Publications Ltd. https://doi.org/10.1177/0954405414558731 

Ecochain. (2023). Impact Categories (LCA)-Overview. Retrieved April 26, 2023, from 

https://ecochain.com/knowledge/impact-categories-lca/ 

Elhoone, H., Zhang, T., Anwar, M., & Desai, S. (2020). Cyber-based design for additive 

manufacturing using artificial neural networks for Industry 4.0.                      

International Journal of Production Research, 58(9), 2841–2861. 

https://doi.org/10.1080/00207543.2019.1671627 

Engelsberger, M., & Greiner, T. (2018). Dynamic reconfiguration of service-oriented 

resources in cyber–physical production systems by a process-independent         

approach with multiple criteria and multiple resource management                                       

operations. Future Generation Computer Systems, 88, 424–441. 

https://doi.org/10.1016/j.future.2018.06.002 



REFERENCES 

254 | P a g e  

Fang, P., Yang, J., Liao, Q., Zhong, R. Y., & Jiang, Y. (2021). Flexible Worker Allocation 

in Aircraft Final Assembly Line Using Multiobjective Evolutionary Algorithms. 

IEEE Transactions on Industrial Informatics, 17(11), 7468–7478. 

https://doi.org/10.1109/TII.2021.3051896 

Fang, P., Yang, J., Zheng, L., Zhong, R. Y., & Jiang, Y. (2020). Data analytics-enable 

production visibility for Cyber-Physical Production Systems. Journal of 

Manufacturing Systems, 57, 242–253. https://doi.org/10.1016/j.jmsy.2020.09.002 

Khan, M. F., Alam, A., Siddiqui, M. A., Alam, M. S., Rafat, Y., Salik, N., & Al-Saidan, I. 

(2021). Real-time defect detection in 3D printing using machine                              

learning. Materials Today: Proceedings, 42, 521-528. 

https://doi.org/https://doi.org/10.1016/j.matpr.2020.10.482  

Farooq, B., Bao, J., Raza, H., Sun, Y., & Ma, Q. (2021). Flow-shop path planning for 

multi-automated guided vehicles in intelligent textile spinning cyber-physical 

production systems dynamic environment. Journal of Manufacturing Systems, 59, 

98–116. https://doi.org/10.1016/j.jmsy.2021.01.009 

Fernandes, J. M. R. C., Homayouni, S. M., & Fontes, D. B. M. M. (2022). Energy-Efficient 

Scheduling in Job Shop Manufacturing Systems: A Literature Review. Sustainability 

(Switzerland), 14(10). https://doi.org/10.3390/su14106264 

Ferreira, C., & Gonçalves, G. (2022). Remaining Useful Life prediction and challenges: A 

literature review on the use of Machine Learning Methods. Journal of Manufacturing 

Systems, 63, 550–562. https://doi.org/10.1016/J.JMSY.2022.05.010 

Finkeldey, F., Saadallah, A., Wiederkehr, P., & Morik, K. (2020). Real-time prediction of 

process forces in milling operations using synchronized data fusion of simulation and 

sensor data. Engineering Applications of Artificial Intelligence, 94, 103753. 

https://doi.org/10.1016/j.engappai.2020.103753 



REFERENCES 

255 | P a g e  

Flores-García, E., Jeong, Y., Liu, S., Wiktorsson, M., & Wang, L. (2023). Enabling 

industrial internet of things-based digital servitization in smart production logistics. 

International Journal of Production Research, 61(12), 3884–3909. 

https://doi.org/10.1080/00207543.2022.2081099 

Ford, S., & Despeisse, M. (2016). Additive manufacturing and sustainability: an 

exploratory study of the advantages and challenges. Journal of Cleaner Production, 

137, 1573–1587. https://doi.org/10.1016/J.JCLEPRO.2016.04.150 

Francalanza, E., Borg, J., & Constantinescu, C. (2017). A knowledge-based tool for 

designing cyber physical production systems. Computers in Industry, 84, 39–58. 

https://doi.org/10.1016/j.compind.2016.08.001 

Francalanza, E., Mercieca, M., & Fenech, A. (2018). Modular System Design Approach 

for Cyber Physical Production Systems. Procedia CIRP, 72, 486–491. 

https://doi.org/10.1016/j.procir.2018.03.090 

Frustaci, F., Perri, S., Cocorullo, G., & Corsonello, P. (2020). An embedded machine 

vision system for an in-line quality check of assembly processes. Procedia 

Manufacturing, 42(2019), 211–218. https://doi.org/10.1016/j.promfg.2020.02.072 

Fu, Y., Downey, A., Yuan, L., Pratt, A., & Balogun, Y. (2021). In situ monitoring for fused 

filament fabrication process: A review. Additive Manufacturing, 38, 101749. 

https://doi.org/10.1016/J.ADDMA.2020.101749 

Gadagi, A., & Adake, C. (2021). A constrained multi-objective optimization of turning 

process parameters by genetic algorithm and particle swarm optimization techniques. 

Materials Today: Proceedings, 42, 1207–1212. 

https://doi.org/https://doi.org/10.1016/j.matpr.2020.12.692 

Gao, G., Zhou, D., Tang, H., & Hu, X. (2021). An Intelligent Health diagnosis and 

Maintenance Decision-making approach in Smart Manufacturing. Reliability 

Engineering and System Safety, 216. https://doi.org/10.1016/j.ress.2021.107965 



REFERENCES 

256 | P a g e  

Garcia, M. V., Irisarri, E., Perez, F., Estevez, E., Orive, D., & Marcos, M. (2016). Plant 

floor communications integration using a low cost CPPS architecture. IEEE 

International Conference on Emerging Technologies and Factory Automation, ETFA, 

2016-Novem. https://doi.org/10.1109/ETFA.2016.7733631 

García, S. G., & García, M. G. (2019). Industry 4.0 implications in production and 

maintenance management: An overview. Procedia Manufacturing, 41, 415–422. 

https://doi.org/https://doi.org/10.1016/j.promfg.2019.09.027 

Ghouat, M., Haddout, A., & Benhadou, M. (2021). Impact of Industry 4.0 Concept on the 

Levers of Lean Manufacturing Approach in Manufacturing Industries. International 

Journal of Automotive and Mechanical Engineering, 18(1), 8523–8530. 

https://doi.org/10.15282/ijame.18.1.2021.11.0646 

Gjeldum, N., Mladineo, M., Crnjac, M., Veza, I., & Aljinovic, A. (2018). Performance 

analysis of the RFID system for optimal design of the intelligent assembly line in the 

learning factory. Procedia Manufacturing, 23, 63-68. 

https://doi.org/10.1016/j.promfg.2018.03.162 

Gladysz, B., Ejsmont, K., Kluczek, A., Corti, D., & Marciniak, S. (2020). A Method for 

an Integrated Sustainability Assessment of RFID Technology. Resources, 9(9), 107. 

https://doi.org/10.3390/resources9090107 

Gokulachandran, J., & Mohandas, K. (2015). Prediction of cutting tool life based on 

Taguchi approach with fuzzy logic and support vector regression techniques. 

International Journal of Quality and Reliability Management, 32(3), 270–290. 

https://doi.org/10.1108/IJQRM-06-2012-0084 

Göppert, A., Grahn, L., Rachner, J., Grunert, D., Hort, S., & Schmitt, R. H. (2021). 

Pipeline for ontology-based modeling and automated deployment of digital twins for 

planning and control of manufacturing systems. Journal of Intelligent Manufacturing. 

https://doi.org/10.1007/s10845-021-01860-6 



REFERENCES 

257 | P a g e  

Griffiths, C. A., Howarth, J., De Almeida-Rowbotham, G., Rees, A., & Kerton, R. (2016). 

A design of experiments approach for the optimisation of energy and waste during 

the production of parts manufactured by 3D printing. Journal of Cleaner Production, 

139, 74–85. https://doi.org/10.1016/j.jclepro.2016.07.182  

Grosch, B., Fuhrländer-Völker, D., Stock, J., & Weigold, M. (2022). Cyber-physical 

production system for energy-flexible control of production machines. Procedia 

CIRP, 107, 221–226. https://doi.org/10.1016/j.procir.2022.04.037 

Gühring. (2022). 3D printing: nozzle diameter and layer thickness. Retrieved December 

13, 2022, from https://guehring.com/en/industries/additive-manufacturing/ 

Gurgen, S., Sofuoglu, M. A., Cakir, F. H., Orak, S., & Kushan, M. C. (2015). Multi 

Response Optimization of Turning Operation with Self-propelled Rotary Tool. 

Procedia - Social and Behavioral Sciences, 195, 2592–2600. 

https://doi.org/https://doi.org/10.1016/j.sbspro.2015.06.459 

Habib, M. K., & Chimsom I, C. (2022). CPS: Role, Characteristics, Architectures and 

Future Potentials. Procedia Computer Science, 200, 1347–1358. 

https://doi.org/10.1016/j.procs.2022.01.336 

Hagen, J., Büth, L., Haupt, J., Cerdas, F., & Herrmann, C. (2019). Live LCA in learning 

factories: Real time assessment of product life cycles environmental impacts. 

Procedia Manufacturing, 45, 128-133. https://doi.org/10.1016/j.promfg.2020.04.083 

Hanafi, I., Khamlichi, A., Cabrera, F. M., Almansa, E., & Jabbouri, A. (2012). 

Optimization of cutting conditions for sustainable machining of PEEK-CF30 using 

TiN tools. Journal of Cleaner Production, 33, 1–9. 

https://doi.org/10.1016/j.jclepro.2012.05.005 

Harland, T., Hocken, C., Schröer, T., & Stich, V. (2022). Towards a Democratization of 

Data in the Context of Industry 4.0. Sci, 4(3). https://doi.org/10.3390/sci4030029 



REFERENCES 

258 | P a g e  

Havard, V., Sahnoun, M., Bettayeb, B., Duval, F., & Baudry, D. (2021). Data architecture 

and model design for Industry 4.0 components integration in cyber-physical 

production systems. Proceedings of the Institution of Mechanical Engineers, Part B: 

Journal of Engineering Manufacture, 235(14), 2338–2349. 

https://doi.org/10.1177/0954405420979463 

He, J., Sun, Y., Yin, C., He, Y., & Wang, Y. (2022). Cross-domain adaptation network 

based on attention mechanism for tool wear prediction. Journal of Intelligent 

Manufacturing. https://doi.org/10.1007/s10845-022-02005-z 

Hehenberger, P., Vogel-Heuser, B., Bradley, D., Eynard, B., Tomiyama, T., & Achiche, 

S. (2016). Design, modelling, simulation and integration of cyber physical systems: 

Methods and applications. Computers in Industry, 82, 273–289. 

https://doi.org/10.1016/j.compind.2016.05.006 

Herwan, J., Kano, S., Oleg, R., Sawada, H., & Kasashima, N. (2018). Cyber-physical 

system architecture for machining production line. Proceedings - 2018 IEEE 

Industrial Cyber-Physical Systems, ICPS 2018, 387–391. 

https://doi.org/10.1109/ICPHYS.2018.8387689 

Hiruta, T., Maki, K., Kato, T., & Umeda, Y. (2021). Unsupervised Learning Based 

Diagnosis Model for Anomaly Detection of Motor Bearing                                                 

with Current Data. Procedia CIRP, 98, 336–341. 

https://doi.org/https://doi.org/10.1016/j.procir.2021.01.113 

Hsu, T.-H., Wang, L.-C., & Chu, P.-C. (2018). Development of a Cloud-based Advanced 

Planning and Scheduling System. Procedia Manufacturing, 17, 427–434. 

https://doi.org/https://doi.org/10.1016/j.promfg.2018.10.066 

Hürkamp, A., Gellrich, S., Dér, A., Herrmann, C., Dröder, K., & Thiede, S. (2021). 

Machine learning and simulation-based surrogate modeling for improved process 

chain operation. The International Journal of Advanced Manufacturing Technology, 

117(7), 2297–2307. https://doi.org/10.1007/s00170-021-07084-5 



REFERENCES 

259 | P a g e  

IALF. (2023). International Association of Learning Factories. Retrieved August 27, 2023, 

from https://ialf-online.net/ 

Iber, M., Lechner, P., Jandl, C., Mader, M., & Reichmann, M. (2021). Auditory augmented 

process monitoring for cyber physical production systems. Personal and Ubiquitous 

Computing, 25(4), 691–704. https://doi.org/10.1007/s00779-020-01394-3 

IBM. (2023). What is supervised learning? Retrieved December 30, 2022, from 

https://www.ibm.com/topics/supervised-learning 

IIoT World. (2023). Manufacturing analytics: what it is, top use cases, and benefits. 

Retrieved May 15, 2023, from https://www.iiot-world.com/smart-

manufacturing/manufacturing-analytics-what-it-is-and-top-use-cases/ 

Ilsen, R., Meissner, H., & Aurich, J. C. (2017). Optimizing energy consumption in a 

decentralized manufacturing system. Journal of Computing and Information Science 

in Engineering, 17(2). https://doi.org/10.1115/1.4034585 

Jiang, Y., Yin, S., & Kaynak, O. (2018). Data-Driven Monitoring and Safety Control of 

Industrial Cyber-Physical Systems: Basics and Beyond. IEEE Access, 6, 47374–

47384. https://doi.org/10.1109/ACCESS.2018.2866403 

Jin, X., Sun, Y., Que, Z., Wang, Y., & Chow, T. W. S. (2016). Anomaly Detection and 

Fault Prognosis for Bearings. IEEE Transactions on Instrumentation and 

Measurement, 65(9), 2046–2054. https://doi.org/10.1109/TIM.2016.2570398 

Jin, Z., Zhang, Z., & Gu, G. X. (2020). Automated Real-Time Detection and Prediction of 

Interlayer Imperfections in Additive Manufacturing Processes Using Artificial 

Intelligence. Advanced Intelligent Systems, 2(1), 1900130. 

https://doi.org/https://doi.org/10.1002/aisy.201900130 

Jinsong, B., Yuan, G., Xiaohu, Z., Jianguo, Z., & Xia, J. (2017). A Data Driven Model for 

Predicting Tool Health Condition in High Speed Milling of Titanium Plates Using 

Real-Time SCADA. Procedia CIRP, 61, 317–322. 

https://doi.org/10.1016/j.procir.2016.11.191 



REFERENCES 

260 | P a g e  

Joshi, K., & Patil, B. (2020). Prediction of Surface Roughness by Machine Vision using 

Principal Components based Regression Analysis. Procedia Computer Science, 167, 

382–391. https://doi.org/https://doi.org/10.1016/j.procs.2020.03.242 

Junwen, C., Gang, Z., & Hua, Z. (2019). Energy Consumption Prediction of Fused 

Deposition 3D Printer Based on Improved Regularized BP Neural Network. IOP 

Conference Series: Earth and Environmental Science, 295(3). 

https://doi.org/10.1088/1755-1315/295/3/032001 

Kagermann, H., Helbig, J., Hellinger, A., & Wahlster, W. (2013). Recommendations for 

implementing the strategic initiative INDUSTRIE 4.0: Securing the future of German 

manufacturing industry; final report of the Industrie 4.0 Working Group. 

Kammerer, K., Hoppenstedt, B., Pryss, R., Stökler, S., Allgaier, J., & Reichert, M. (2019). 

Anomaly Detections for Manufacturing Systems Based on Sensor Data—Insights 

into Two Challenging Real-World Production Settings. Sensors, 19(24). 

https://doi.org/10.3390/s19245370 

Kant, G., & Sangwan, K. S. (2014). Prediction and optimization of machining parameters 

for minimizing power consumption and surface roughness in machining. Journal of 

Cleaner Production, 83, 151–164. https://doi.org/10.1016/j.jclepro.2014.07.073 

Kechagias, J. D., Vidakis, N., Petousis, M., & Mountakis, N. (2023). A multi-parametric 

process evaluation of the mechanical response of PLA in FFF                                               

3D printing. Materials and Manufacturing Processes, 38(8), 941–953. 

https://doi.org/10.1080/10426914.2022.2089895 

Kegg, R. L. (1984). One-Line Machine and Process Diagnostics. CIRP Annals, 33(2), 

469–473. https://doi.org/10.1016/S0007-8506(16)30168-8 

Kellenbrink, C., Nübel, N., Schnabel, A., Gilge, P., Seume, J. R., Denkena, B., & Helber, 

S. (2022). A regeneration process chain with an integrated decision support system 

for individual regeneration processes based on a virtual twin. International Journal of 

Production Research. https://doi.org/10.1080/00207543.2022.2051089 



REFERENCES 

261 | P a g e  

Kene, A. P., & Choudhury, S. K. (2019). Analytical modeling of tool health monitoring 

system using multiple sensor data fusion approach in hard machining. Measurement: 

Journal of the International Measurement Confederation, 145, 118–129. 

https://doi.org/10.1016/j.measurement.2019.05.062 

Khusheef, A. S., Shahbazi, M., & Hashemi, R. (2022). Investigation of long short-term 

memory networks for real-time process monitoring in fused deposition modeling. 

Progress in Additive Manufacturing. https://doi.org/10.1007/s40964-022-00371-x 

Kroll, B., Schaffranek, D., Schriegel, S., & Niggemann, O. (2014). System modeling based 

on machine learning for anomaly detection and predictive maintenance in industrial 

plants. 19th IEEE International Conference on Emerging Technologies and Factory 

Automation, ETFA 2014. https://doi.org/10.1109/ETFA.2014.7005202 

Kurada, S., & Bradley, C. (1997). A review of machine vision sensors for tool condition 

monitoring. Computers in Industry, 34(1), 55–72. https://doi.org/10.1016/S0166-

3615(96)00075-9 

Kusiak, A. (2022). Predictive models in digital manufacturing: research, applications, and                                         

future outlook. International Journal of Production Research, 61:17, 6052-6062. 

https://doi.org/10.1080/00207543.2022.2122620  

Larose, D. T. (2005). Discovering Knowledge in Data: An Introduction to Data Mining. 

John Wiley & Sons, Inc., Hoboken, New Jersey. 

Lee, G., Gommers, R., Waselewski, F., Wohlfahrt, K., & O’Leary, A. (2019). PyWavelets: 

A Python package for wavelet analysis. Journal of Open Source Software, 4(36), 

1237. https://doi.org/10.21105/joss.01237 

Lee, J. H., Do Noh, S., Kim, H.-J., & Kang, Y.-S. (2018). Implementation of cyber-

physical production systems for quality prediction and operation control in metal 

casting. Sensors (Switzerland), 18(5). https://doi.org/10.3390/s18051428 



REFERENCES 

262 | P a g e  

Lee, J., Azamfar, M., & Singh, J. (2019). A blockchain enabled Cyber-Physical System 

architecture for Industry 4.0 manufacturing systems. Manufacturing Letters, 20, 34–

39. https://doi.org/10.1016/j.mfglet.2019.05.003 

Lee, J., Bagheri, B., & Kao, H.-A. (2015). A Cyber-Physical Systems architecture for                                              

Industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18–23. 

https://doi.org/https://doi.org/10.1016/j.mfglet.2014.12.001 

Lee, J., Jin, C., & Bagheri, B. (2017). Cyber physical systems for predictive production 

systems. Production Engineering, 11(2), 155–165. https://doi.org/10.1007/s11740-

017-0729-4 

Leiden, A., Herrmann, C., & Thiede, S. (2021). Cyber-physical production system 

approach for energy and resource efficient planning and operation                                       

of plating process chains. Journal of Cleaner Production, 280. 

https://doi.org/10.1016/j.jclepro.2020.125160 

Lepenioti, K., Bousdekis, A., Apostolou, D., & Mentzas, G. (2020). Prescriptive analytics: 

Literature review and research challenges. In International Journal of Information 

Management (Vol. 50, pp. 57–70). Elsevier Ltd. 

https://doi.org/10.1016/j.ijinfomgt.2019.04.003 

Li, J., Jin, R., & Yu, H. Z. (2018). Integration of physically-based and data-driven 

approaches for thermal field prediction in additive manufacturing. Materials and 

Design, 139, 473–485. https://doi.org/10.1016/j.matdes.2017.11.028 

Li, L., Li, C., Tang, Y., & Li, L. (2017). An integrated approach of process planning and 

cutting parameter optimization for energy-aware CNC machining. Journal of Cleaner 

Production, 162, 458–473. https://doi.org/10.1016/j.jclepro.2017.06.034 

Li, Y., & Zhu, L. (2019). Optimization of user experience in mobile application design by 

using a fuzzy analytic-network-process-based Taguchi method. Applied Soft 

Computing, 79, 268–282. https://doi.org/https://doi.org/10.1016/j.asoc.2019.03.048 



REFERENCES 

263 | P a g e  

Li, Y., Liu, C., Hua, J., Gao, J., & Maropoulos, P. (2019). A novel method for accurately 

monitoring and predicting tool wear under varying cutting conditions based on meta-

learning. CIRP Annals, 68(1), 487–490. https://doi.org/10.1016/J.CIRP.2019.03.010 

Li, Y., Wang, J., Huang, Z., & Gao, R. X. (2022). Physics-informed meta learning for 

machining tool wear prediction. Journal of Manufacturing Systems, 62, 17–27. 

https://doi.org/10.1016/j.jmsy.2021.10.013 

Li, Y., Zhao, W., Li, Q., Wang, T., & Wang, G. (2019). In-Situ Monitoring and Diagnosing 

for Fused Filament Fabrication Process Based on Vibration Sensors. Sensors, 19(11). 

https://doi.org/10.3390/s19112589 

Li, Z., Zhang, Z., Shi, J., & Wu, D. (2019). Prediction of surface roughness in extrusion-

based additive manufacturing with machine learning. Robotics and Computer-

Integrated Manufacturing, 57, 488–495. https://doi.org/10.1016/j.rcim.2019.01.004 

Liang, Y. C., Lu, X., Li, W. D., & Wang, S. (2018). Cyber Physical System and Big Data 

enabled energy efficient machining optimisation. Journal of Cleaner Production, 187, 

46–62. https://doi.org/10.1016/j.jclepro.2018.03.149 

Lin, W. D., Low, Y. H., Chong, Y. T., & Teo, C. L. (2019). Integrated Cyber Physical 

Simulation Modelling Environment for Manufacturing 4.0. IEEE International 

Conference on Industrial Engineering and Engineering Management, 2019-Decem, 

1861–1865. https://doi.org/10.1109/IEEM.2018.8607696 

Lins, R. G., de Araujo, P. R. M., & Corazzim, M. (2020). In-process machine vision 

monitoring of tool wear for Cyber-Physical Production Systems. Robotics and 

Computer-Integrated Manufacturing, 61. https://doi.org/10.1016/j.rcim.2019.101859 

Lins, T., & Oliveira, R. A. R. (2020). Cyber-physical production systems retrofitting in 

context of industry 4.0. Computers & Industrial Engineering, 139, 106193. 

https://doi.org/10.1016/J.CIE.2019.106193 



REFERENCES 

264 | P a g e  

Liu, C., & Xu, X. (2017). Cyber-physical Machine Tool - The Era of Machine Tool 4.0. 

Procedia CIRP, 63, 70–75. https://doi.org/10.1016/j.procir.2017.03.078 

Liu, C., Su, Z., Xu, X., & Lu, Y. (2022). Service-oriented industrial internet of things 

gateway for cloud manufacturing. Robotics and Computer-Integrated Manufacturing, 

73, 102217. https://doi.org/10.1016/J.RCIM.2021.102217 

Liu, C., Vengayil, H., Zhong, R. Y., & Xu, X. (2018). A systematic development method 

for cyber-physical machine tools. Journal of Manufacturing Systems, 48, 13–24. 

https://doi.org/10.1016/j.jmsy.2018.02.001 

Liu, C., Zheng, P., & Xu, X. (2021). Digitalisation and servitisation of machine tools in 

the era of Industry 4.0: a review. International Journal of Production Research. 

https://doi.org/10.1080/00207543.2021.1969462 

Liu, D., Luo, Y., Liu, J., Peng, Y., Guo, L., & Pecht, M. (2014). Lithium-ion battery 

remaining useful life estimation based on fusion nonlinear degradation AR model and 

RPF algorithm. Neural Computing and Applications, 25(3–4), 557–572. 

https://doi.org/10.1007/s00521-013-1520-x 

Liu, Q., Chen, J., Liao, Y., Mueller, E., Jentsch, D., Boerner, F., & She, M. (2015). An 

Application of Horizontal and Vertical Integration in Cyber-Physical Production 

Systems. Proceedings - 2015 International Conference on Cyber-Enabled Distributed 

Computing and Knowledge Discovery, CyberC 2015, 110–113. 

https://doi.org/10.1109/CyberC.2015.22 

Liu, R. (2022). An edge-based algorithm for tool wear monitoring in repetitive milling 

processes. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-022-

01925-0 

Liu, X., Zhang, B., Li, X., Liu, S., Yue, C., & Liang, S. Y. (2022). An approach for tool 

wear prediction using customized DenseNet and GRU integrated model based on 

multi-sensor feature fusion. Journal of Intelligent Manufacturing. 

https://doi.org/10.1007/s10845-022-01954-9 



REFERENCES 

265 | P a g e  

Louw, L., & Droomer, M. (2019). Development of a low cost machine vision based quality 

control system for a learning factory. Procedia Manufacturing, 31, 264–269. 

https://doi.org/https://doi.org/10.1016/j.promfg.2019.03.042 

Louw, L., & Walker, M. (2018). Design and implementation of a low cost RFID track and 

trace system in a learning factory. Procedia Manufacturing, 23, 255–260. 

https://doi.org/https://doi.org/10.1016/j.promfg.2018.04.026 

Lu, Y., & Ju, F. (2017). Smart Manufacturing Systems based on Cyber-physical 

Manufacturing Services (CPMS). 50(1), 15883–15889. 

https://doi.org/10.1016/j.ifacol.2017.08.2349 

Lu, Y., & Xu, X. (2018). Resource virtualization: A core technology for developing cyber-

physical production systems. Journal of Manufacturing Systems, 47, 128–140. 

https://doi.org/10.1016/j.jmsy.2018.05.003 

Lu, Y., & Xu, X. (2019). Cloud-based manufacturing equipment and big data analytics to 

enable on-demand manufacturing services. Robotics and                                        

Computer-Integrated Manufacturing, 57, 92–102. 

https://doi.org/https://doi.org/10.1016/j.rcim.2018.11.006 

Lu, Z., Peng, T., & Chen, W. (2018). Automated Process State Identification for Metal 

Additive Manufacturing based on Power Data; Automated Process State 

Identification for Metal Additive Manufacturing based on Power Data. In 2018 IEEE 

14th International Conference on Automation Science and Engineering (CASE). 

https://doi.org/10.0/Linux-x86_64 

Ma, J., Luo, D., Liao, X., Zhang, Z., Huang, Y., & Lu, J. (2021). Tool wear mechanism 

and prediction in milling TC18 titanium alloy using deep learning. Measurement, 

173, 108554. https://doi.org/https://doi.org/10.1016/j.measurement.2020.108554 

Machi, L. A., & McEvoy, B. T. (2021). The literature review: Six steps to success. Corwin 

Press. 



REFERENCES 

266 | P a g e  

Mahmood, K., Karaulova, T., Otto, T., & Shevtshenko, E. (2019). Development of cyber-

physical production systems based on modelling technologies. Proceedings of the 

Estonian Academy of Sciences, 68(4). https://doi.org/10.3176/proc.2019.4.02 

Malakizadi, A., Shi, B., Hoier, P., Attia, H., & Krajnik, P. (2020). Physics-based approach 

for predicting dissolution‒diffusion tool wear in machining. CIRP Annals, 69(1), 81–

84. https://doi.org/10.1016/j.cirp.2020.04.040 

Manyika J, Chui M, Bughin J, Dobbs R, Bisson P, & Marrs A. (2015). Disruptive 

technologies: Advances that will transform life, business, and the global economy. 

www.mckinsey.com/mgi. 

Marksberry, P. W., & Jawahir, I. S. (2008). A comprehensive tool-wear/tool-life 

performance model in the evaluation of NDM (near dry machining) for sustainable 

manufacturing. International Journal of Machine Tools and Manufacture, 48(7–8), 

878–886. https://doi.org/10.1016/J.IJMACHTOOLS.2007.11.006 

Meissner, H., & Aurich, J. C. (2019). Implications of cyber-physical production systems 

on integrated process planning and scheduling. Procedia Manufacturing, 28, 167–

173. https://doi.org/10.1016/j.promfg.2018.12.027 

Mendia, I., Gil-Lopez, S., Grau, I., & Del Ser, J. (2022). A novel approach for the detection 

of anomalous energy consumption patterns in industrial cyber-physical systems. 

Expert Systems. https://doi.org/10.1111/exsy.12959 

Menezes, B. C., Kelly, J. D., Leal, A. G., & le Roux, G. C. (2019). Predictive, Prescriptive 

and Detective Analytics for Smart Manufacturing in the Information Age. IFAC-

PapersOnLine, 52(1), 568–573. https://doi.org/10.1016/J.IFACOL.2019.06.123 

Mennenga, M., Rogall, C., Yang, C.-J., Wölper, J., Herrmann, C., & Thiede, S. (2020). 

Architecture and development approach for integrated cyber-physical production-

service systems (CPPSS). Procedia CIRP, 90, 742–747. 

https://doi.org/10.1016/j.procir.2020.02.050 



REFERENCES 

267 | P a g e  

Mirbolouki, A., Heddam, S., Singh Parmar, K., Trajkovic, S., Mehraein, M., & Kisi, O. 

(2022). Comparison of the advanced machine learning methods for better prediction 

accuracy of solar radiation using only temperature data: A case study. International 

Journal of Energy Research, 46(3), 2709–2736. 

https://doi.org/https://doi.org/10.1002/er.7341 

Mishra, R., Powers, W. B., & Kate, K. (2022). Comparative study of vibration signatures 

of FDM 3D printers. Progress in Additive Manufacturing. 

https://doi.org/10.1007/s40964-022-00323-5 

Moghaddam, M., Cadavid, M. N., Kenley, C. R., & Deshmukh, A. V. (2018). Reference 

architectures for smart manufacturing: A critical review. Journal of Manufacturing 

Systems, 49, 215–225. https://doi.org/10.1016/j.jmsy.2018.10.006 

Moghaddass, R., & Zuo, M. J. (2014). An integrated framework for online diagnostic and 

prognostic health monitoring using a multistate deterioration                                     

process. Reliability Engineering & System Safety, 124, 92–104. 

https://doi.org/10.1016/J.RESS.2013.11.006 

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred Reporting Items 

for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Annals of 

Internal Medicine, 151(4), 264–269. https://doi.org/10.7326/0003-4819-151-4-

200908180-00135 

Moldavska, A., & Welo, T. (2017). The concept of sustainable manufacturing                      

and its definitions: A content-analysis based literature                                                     

review. Journal of Cleaner Production, 166, 744–755. 

https://doi.org/https://doi.org/10.1016/j.jclepro.2017.08.006 

Monostori, L. (2014). Cyber-physical Production Systems: Roots, Expectations                  

and R&D Challenges. Procedia CIRP, 17, 9–13. 

https://doi.org/https://doi.org/10.1016/j.procir.2014.03.115 



REFERENCES 

268 | P a g e  

Monostori, L., Kádár, B., Bauernhansl, T., Kondoh, S., Kumara, S., Reinhart, G., Sauer, 

O., Schuh, G., Sihn, W., & Ueda, K. (2016). Cyber-physical                                         

systems in manufacturing. CIRP Annals, 65(2), 621–641. 

https://doi.org/10.1016/j.cirp.2016.06.005 

Morgan, C. J. (2017). Use of proper statistical techniques for research studies with small 

samples. American Journal of Physiology-Lung Cellular and Molecular Physiology, 

313(5), L873–L877. https://doi.org/10.1152/ajplung.00238.2017 

Morgan, J., & O’Donnell, G. E. (2018). Cyber physical process monitoring                 

systems. Journal of Intelligent Manufacturing, 29(6), 1317–1328. 

https://doi.org/10.1007/s10845-015-1180-z  

Müller, T., Kamm, S., Löcklin, A., White, D., Mellinger, M., Jazdi, N., & Weyrich, M. 

(2022). Architecture and knowledge modelling for self-organized reconfiguration 

management of cyber-physical production systems. International Journal of 

Computer Integrated Manufacturing, 1-22. 

Nam, J., Jo, N., Kim, J. S., & Lee, S. W. (2020). Development of a health monitoring and 

diagnosis framework for fused deposition modeling process based on a machine 

learning algorithm. Proceedings of the Institution of Mechanical Engineers, Part B: 

Journal of Engineering Manufacture, 234(1–2), 324–332. 

https://doi.org/10.1177/0954405419855224 

NASSCOM (2022), India Industry 4.0 adoption: A case study to make manufacturing 

digitalization by 2025. Retrieved June 10, 2022, from 

https://www.nasscom.in/product/61#:~:text=Overview,India's%20manufacturing%2

0GDP%20to%2025%25.  

 

 



REFERENCES 

269 | P a g e  

Nguyen, Q. H., Ly, H.-B., Ho, L. S., Al-Ansari, N., Le, H. Van, Tran, V. Q., Prakash, I., 

& Pham, B. T. (2021). Influence of Data Splitting on Performance of Machine 

Learning Models in Prediction of Shear Strength of Soil. Mathematical Problems in 

Engineering, 2021, 4832864. https://doi.org/10.1155/2021/4832864 

Nota, G., Nota, F. D., Peluso, D., & Lazo, A. T. (2020). Energy efficiency in Industry 4.0: 

The case of batch production processes. Sustainability (Switzerland), 12(16). 

https://doi.org/10.3390/su12166631 

Nouiri, M., Trentesaux, D., & Bekrar, A. (2019). Towards energy efficient scheduling of 

manufacturing systems through collaboration between cyber physical production and 

energy systems. Energies, 12(23). https://doi.org/10.3390/en12234448 

Nouri, M., Fussell, B. K., Ziniti, B. L., & Linder, E. (2015). Real-time tool wear 

monitoring in milling using a cutting condition independent method. International 

Journal of Machine Tools and Manufacture, 89, 1–13. 

https://doi.org/10.1016/J.IJMACHTOOLS.2014.10.011 

Okpoti, E. S., & Jeong, I. J. (2021). A reactive decentralized coordination algorithm for 

event-driven production planning and control: A cyber-physical production system 

prototype case study. Journal of Manufacturing Systems, 58, 143–158. 

https://doi.org/10.1016/j.jmsy.2020.11.002 

Oleff, A., Küster, B., Stonis, M., & Overmeyer, L. (2021). Process monitoring for material 

extrusion additive manufacturing: a state-of-the-art review. Progress in Additive 

Manufacturing, 6(4), 705–730. https://doi.org/10.1007/s40964-021-00192-4 

Omar, A., Imen, B., M’hammed, S., Bouziane, B., & David, B. (2019). Deployment of 

Fog Computing Platform for Cyber Physical Production System Based on Docker 

Technology. 2019 International Conference on Applied Automation and Industrial 

Diagnostics (ICAAID), 1, 1–6. https://doi.org/10.1109/ICAAID.2019.8934949 



REFERENCES 

270 | P a g e  

Padovano, A., Longo, F., Nicoletti, L., Gazzaneo, L., Chiurco, A., & Talarico, S. (2021). 

A prescriptive maintenance system for intelligent production planning and control in 

a smart cyber-physical production line. Procedia CIRP, 104, 1819–1824. 

https://doi.org/10.1016/j.procir.2021.11.307 

Pang, C.K., Le, C. V., Gan, O. P., Chee, X. M., Zhang, D. H., Luo, M., Chan, H. L., & 

Lewis, F. L. (2011). Intelligent Energy Audit and Machine Management for Energy-

Efficient Manufacturing. In 2011 IEEE 5th International Conference on Cybernetics 

and Intelligent Systems (CIS). https://doi.org/10.1109/ICCIS.2011.6070317 

Pantazis, D., Pease, S. G., Goodall, P., West, A., & Conway, P. (2023). A design of 

experiments Cyber–Physical System for energy modelling and optimisation in end-

milling machining. Robotics and Computer-Integrated Manufacturing, 80, 102469. 

https://doi.org/https://doi.org/10.1016/j.rcim.2022.102469 

Paraskevoudis, K., Karayannis, P., & Koumoulos, E. P. (2020). Real-Time 3D Printing 

Remote Defect Detection (Stringing) with Computer Vision and Artificial 

Intelligence. Processes, 8(11). https://doi.org/10.3390/pr8111464 

Paré, G., Trudel, M.-C., Jaana, M., & Kitsiou, S. (2015). Synthesizing information systems 

knowledge: A typology of literature reviews. Information & Management, 52(2), 

183–199. https://doi.org/https://doi.org/10.1016/j.im.2014.08.008 

Parhi, S., Joshi, K., Wuest, T., & Akarte, M. (2022). Factors affecting Industry 4.0 

adoption – A hybrid SEM-ANN approach. Computers & Industrial Engineering, 168, 

108062. https://doi.org/https://doi.org/10.1016/j.cie.2022.108062 

Parto, M., Urbina Coronado, P. D., Saldana, C., & Kurfess, T. (2022). Cyber-Physical 

System Implementation for Manufacturing With Analytics in the Cloud Layer. 

Journal of Computing and Information Science in Engineering, 22(1). 

https://doi.org/10.1115/1.4051663 



REFERENCES 

271 | P a g e  

Patalas-Maliszewska, J., Posdzich, M., & Skrzypek, K. (2022). Modelling information for 

the burnishing process in a cyber-physical production system. International Journal 

of Applied Mathematics and Computer Science, 32(3), 345–354. 

https://doi.org/10.34768/amcs-2022-0025 

Patel, P., Intizar Ali, M., & Sheth, A. (2017). On Using the Intelligent Edge for IoT 

Analytics. IEEE Intelligent Systems, 32(5), 64–69. 

https://doi.org/10.1109/MIS.2017.3711653 

Pei, S., Zhao, J., Zhang, N., & Guo, M. (2019). Methodology on developing an assessment 

tool for intralogistics by considering cyber-physical production systems enabling 

technologies. International Journal of Computer Integrated Manufacturing, 32(4–5), 

406–412. https://doi.org/10.1080/0951192X.2019.1605200 

Pérez, M., Medina-Sánchez, G., García-Collado, A., Gupta, M., & Carou, D. (2018). 

Surface quality enhancement of fused deposition modeling (FDM) printed samples 

based on the selection of critical printing parameters. Materials, 11(8). 

https://doi.org/10.3390/ma11081382 

Petruschke, L., Walther, J., Burkhardt, M., Luther, M., & Weigold, M. (2021). Machine 

learning based identification of energy states of metal cutting machine tools using 

load profiles. Procedia CIRP, 104, 357–362. 

https://doi.org/10.1016/J.PROCIR.2021.11.060 

Pham, H. T., Tran, V. T., & Yang, B. S. (2010). A hybrid of nonlinear autoregressive 

model with exogenous input and autoregressive moving average model for long-term 

machine state forecasting. Expert Systems with Applications, 37(4), 3310–3317. 

https://doi.org/10.1016/J.ESWA.2009.10.020 

Pimenov, D. Y., Bustillo, A., Wojciechowski, S., Sharma, V. S., Gupta, M. K., & 

Kuntoğlu, M. (2022). Artificial intelligence systems for tool condition monitoring in 

machining: analysis and critical review. Journal of Intelligent Manufacturing. 

https://doi.org/10.1007/s10845-022-01923-2 



REFERENCES 

272 | P a g e  

PLA. (2023). Basic info about PLA. Retrieved April 28, 2023, from 

https://help.prusa3d.com/article/pla_206 

Poonia, V., Kumar, R., Kulshrestha, R., & Sangwan, K. S. (2023). Optimization of 

Specific Energy, Scrap, and Surface Roughness in 3D Printing Using Integrated 

ANN-GA Approach. Procedia CIRP, 116, 324–329. 

https://doi.org/https://doi.org/10.1016/j.procir.2023.02.055 

Post, T., Ilsen, R., Hamann, B., Hagen, H., & Aurich, J. C. (2017). User-guided visual 

analysis of cyber-physical production systems. Journal of Computing and 

Information Science in Engineering, 17(2). https://doi.org/10.1115/1.4034872 

Prenzel, L., & Steinhorst, S. (2021). Decentralized Autonomous Architecture for Resilient 

Cyber-Physical Production Systems. Proceedings -Design, Automation and Test in 

Europe, DATE, 2021-Febru, 1300–1303. 

https://doi.org/10.23919/DATE51398.2021.9473954 

PRUSA. (2018). Everything about nozzles with a different diameter. Retrieved December 

18, 2022, from https://blog.prusa3d.com/everything-about-nozzles-with-a-different-

diameter_8344/ 

PRUSA. (2023). Original Prusa i3 MK3s+ 3D printer: Technical parameters. Retrieved 

April 24, 2023, from https://www.prusa3d.com/product/original-prusa-i3-mk3s-3d-

printer-3/#specs. 

Qi, C., Fourie, A., Chen, Q., & Zhang, Q. (2018). A strength prediction model using 

artificial intelligence for recycling waste tailings as cemented paste                        

backfill. Journal of Cleaner Production, 183, 566–578. 

https://doi.org/https://doi.org/10.1016/j.jclepro.2018.02.154 

 



REFERENCES 

273 | P a g e  

Qi, Q., Zhao, D., Liao, T. W., & Tao, F. (2018). Modeling of cyber-physical systems and 

digital twin based on edge computing, fog computing and cloud computing towards 

smart manufacturing. ASME 2018 13th International Manufacturing Science and 

Engineering Conference, MSEC 2018, 1. https://doi.org/10.1115/MSEC2018-6435  

Rai, R., & Sahu, C. K. (2020). Driven by Data or Derived through Physics? A Review of 

Hybrid Physics Guided Machine Learning Techniques with Cyber-Physical System 

(CPS) Focus. IEEE Access, 8, 71050–71073. 

https://doi.org/10.1109/ACCESS.2020.2987324 

Rajkumar, R., Lee, I., Sha, L., & Stankovic, J. (2010). Cyber-physical systems: The next 

computing revolution. Proceedings - Design Automation Conference, 731–736. 

https://doi.org/10.1145/1837274.1837461 

Ralph, B. J., Sorger, M., Hartl, K., Schwarz-Gsaxner, A., Messner, F., & Stockinger, M. 

(2022). Transformation of a rolling mill aggregate to a cyber physical production 

system: from sensor retrofitting to machine learning. Journal of Intelligent 

Manufacturing, 33(2), 493–518. https://doi.org/10.1007/s10845-021-01856-2 

Ramírez, F. I. J., & Barrionuevo, J. M. J. (2019). Cyber-physical system for quality control 

of spur gears through artificial vision techniques. IEEE Fourth Ecuador Technical 

Chapters Meeting (ETCM), pp. 1-6, doi: 10.1109/ETCM48019.2019.9014881.  

Rao, P. K., Liu, J. (Peter), Roberson, D., Kong, Z. (James), & Williams, C. (2015). Online 

Real-Time Quality Monitoring in Additive Manufacturing Processes Using 

Heterogeneous Sensors. Journal of Manufacturing Science and Engineering, 137(6). 

https://doi.org/10.1115/1.4029823 

Reddy, D. J. P., Gunasekaran, M., & Sundari, K. K. S. (2022). An Effective Approach for 

the Prediction of Car Loan Default Based-on Accuracy, Precision, Recall Using 

Extreme Logistic Regression Algorithm and K-Nearest Neighbors Algorithm on 

Financial Institution Loan Dataset. 2022 International Conference on Cyber 

Resilience (ICCR), 1–5. https://doi.org/10.1109/ICCR56254.2022.9995969 



REFERENCES 

274 | P a g e  

Ribeiro, L., & Bjorkman, M. (2018). Transitioning from Standard Automation Solutions 

to Cyber-Physical Production Systems: An Assessment of Critical Conceptual and 

Technical Challenges. IEEE Systems Journal, 12(4), 3816–3827. 

https://doi.org/10.1109/JSYST.2017.2771139 

Rigon, M. R., Zortea, R., Moraes, C. A. M., & Modolo, R. C. E. (2019). Suggestion of life 

cycle impact assessment methodology: Selection criteria for environmental impact 

categories. New Frontiers on Life Cycle Assessment-Theory and Application. 

https://doi.org/ 10.5772/intechopen.83454 

Rogall, C., Mennenga, M., Herrmann, C., & Thiede, S. (2022). Systematic Development 

of Sustainability-Oriented Cyber-Physical Production Systems. Sustainability, 14(4), 

2080. https://doi.org/10.3390/su14042080  

Rojas, R. A., & Rauch, E. (2019). From a literature review to a conceptual framework of 

enablers for smart manufacturing control. International Journal of Advanced 

Manufacturing Technology, 104(1–4), 517–533. https://doi.org/10.1007/s00170-

019-03854-4 

Rojas, R., Rauch, E., & Matt, D. T. (2021). Research Fields and Challenges to implement 

Cyber-Physical Production Systems in SMEs: A Literature Review. Chiang Mai 

University Journal of Natural Sciences, 20(2), 1–19. 

https://doi.org/10.12982/CMUJNS.2021.022 

Rossit, D. A., Tohmé, F., & Frutos, M. (2019). Production planning and scheduling in 

Cyber-Physical Production Systems: a review. International Journal of Computer 

Integrated Manufacturing, 32(4–5), 385–395. 

https://doi.org/10.1080/0951192X.2019.1605199 

Rousopoulou, V., Vafeiadis, T., Nizamis, A., Iakovidis, I., Samaras, L., Kirtsoglou, A., 

Georgiadis, K., Ioannidis, D., & Tzovaras, D. (2022). Cognitive analytics platform 

with AI solutions for anomaly detection. Computers in Industry, 134, 103555. 

https://doi.org/https://doi.org/10.1016/j.compind.2021.103555 



REFERENCES 

275 | P a g e  

Rüßmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., Engel, P., & Harnisch, M. 

(2015). (2015). Industry 4.0: The future of productivity and growth in manufacturing 

industries. Boston consulting group, 9(1), 54-89.  

Saez, M., Maturana, F., Barton, K., & Tilbury, D. (2017). Anomaly detection and 

productivity analysis for cyber-physical systems in manufacturing. 13th IEEE 

Conference on Automation Science and Engineering (CASE), 23–29. 

https://doi.org/10.1109/COASE.2017.8256070 

Saggiomo, M., Kemper, M., Gloy, Y.-S., & Gries, T. (2016). Weaving machine as cyber-

physical production system: Multi-objective self-optimization of the weaving 

process. 2016 IEEE International Conference on Industrial Technology (ICIT), 2084–

2089. https://doi.org/10.1109/ICIT.2016.7475090 

Salama, S., & Eltawil, A. B. (2018). A Decision Support System Architecture Based on 

Simulation Optimization for Cyber-Physical Systems. Procedia Manufacturing, 26, 

1147–1158. https://doi.org/https://doi.org/10.1016/j.promfg.2018.07.151 

Sampedro, G. A., Paramartha Putra, M. A., Kim, D. S., & Lee, J. M. (2021). 3D Printer 

State Prediction: A Deep Learning Model Approach. Proceedings - 2021 1st 

International Conference in Information and Computing Research, ICORE 2021, 

135–138. https://doi.org/10.1109/iCORE54267.2021.00043 

Sandanamsamy, L., Harun, W. S. W., Ishak, I., Romlay, F. R. M., Kadirgama, K., 

Ramasamy, D., Idris, S. R. A., & Tsumori, F. (2022). A comprehensive review on 

fused deposition modelling of polylactic acid. Progress in Additive Manufacturing. 

https://doi.org/10.1007/s40964-022-00356-w 

Sangwa, N. R., & Sangwan, K. S. (2018). Leanness assessment of organizational 

performance: a systematic literature review. Journal of Manufacturing Technology 

Management, 29(5), 768–788. https://doi.org/10.1108/JMTM-09-2017-0196 



REFERENCES 

276 | P a g e  

Sangwan, K. S., & Sihag, N. (2019). Multi-objective optimization for energy efficient 

machining with high productivity and quality for a turning process. Procedia CIRP, 

80, 67–72. https://doi.org/10.1016/j.procir.2019.01.022 

Sarikaya, M., & Güllü, A. (2014). Taguchi design and response surface methodology 

based analysis of machining parameters in CNC turning under MQL. Journal of 

Cleaner Production, 65, 604–616. https://doi.org/10.1016/j.jclepro.2013.08.040 

Schlaepfer, R. C., & Koch, M. (2015). Industry 4.0: Challenges and solutions for the digital 

transformation and use of exponential technologies. 

https://www2.deloitte.com/content/dam/Deloitte/ch/Documents/manufacturing/ch-

en-manufacturing-industry-4-0-24102014.pdf 

Schlichter, J., Vogt, M., Agrawal, N., Wolf, L., & Herrmann, C. (2022). Enabling Energy 

Efficient HVAC Operation Through IWSNs. IEEE Transactions on Green 

Communications and Networking, 6(1), 132–147. 

https://doi.org/10.1109/TGCN.2021.3105370 

Schmidt, N., Lüder, A., Rosendahl, R., Ryashentseva, D., Foehr, M., & Vollmar, J. (2015). 

Surveying integration approaches for relevance in Cyber Physical Production 

Systems. IEEE International Conference on Emerging Technologies and Factory 

Automation, ETFA, 2015-Octob. https://doi.org/10.1109/ETFA.2015.7301518 

Schreiber, M., Klöber-Koch, J., Richter, C., & Reinhart, G. (2018). Integrated Production 

and Maintenance Planning for Cyber-physical Production Systems. Procedia CIRP, 

72, 934–939. https://doi.org/10.1016/j.procir.2018.03.144 

Schulze, C., Thiede, S., Thiede, B., Kurle, D., Blume, S., & Herrmann, C. (2019). Cooling 

tower management in manufacturing companies: A cyber-physical                           

system approach. Journal of Cleaner Production, 211, 428–441. 

https://doi.org/10.1016/j.jclepro.2018.11.184 



REFERENCES 

277 | P a g e  

Scopus. (2023). How are SDGs mapped? Retrieved May 13, 2023, from 

https://service.elsevier.com/app/answers/detail/a_id/31662/supporthub/scopusconte

nt/ 

Seitz, K. F., & Nyhuis, P. (2015). Cyber-physical production systems combined with 

logistic models-a learning factory concept for an improved production planning and 

control. Procedia CIRP, 92–97. https://doi.org/10.1016/j.procir.2015.02.220 

Senthil, S. M., Parameshwaran, R., Ragu Nathan, S., Bhuvanesh Kumar, M., & 

Deepandurai, K. (2020). A multi-objective optimization of the friction stir welding 

process using RSM-based-desirability function approach for joining aluminum alloy 

6063-T6 pipes. Structural and Multidisciplinary Optimization, 62(3), 1117–1133. 

https://doi.org/10.1007/s00158-020-02542-2 

Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge Computing: Vision and 

Challenges. IEEE Internet of Things Journal, 3(5), 637–646. 

https://doi.org/10.1109/JIOT.2016.2579198 

Shokrani, A., Dhokia, V., & Newman, S. T. (2012). International Journal of Machine Tools 

& Manufacture Environmentally conscious machining of difficult-to-machine 

materials with regard to cutting fluids. International Journal of Machine Tools and 

Manufacture, 57, 83–101. https://doi.org/10.1016/j.ijmachtools.2012.02.002 

Siafara, L. C., Kholerdi, H., Bratukhin, A., Taherinejad, N., & Jantsch, A. (2018). 

SAMBA–an architecture for adaptive cognitive control of distributed Cyber-Physical 

Production Systems based on its self-awareness. e & i Elektrotechnik und 

Informationstechnik. https://doi.org/10.1007/s00502-018-0614-7 

Siaterlis, G., Franke, M., Klein, K., Hribernik, K. A., Thoben, K.-D., Siatras, V., Nikolakis, 

N., Petrali, P., & Alexopoulos, K. (2021). A framework for advanced visualization of 

predictive analytics in cyber-physical production systems. Procedia CIRP, 104, 

1565–1570. https://doi.org/10.1016/j.procir.2021.11.264 



REFERENCES 

278 | P a g e  

Sihag, N., Sangwan, K. S., & Pundir, S. (2018). Development of a Structured Algorithm 

to Identify the Status of a Machine Tool to Improve Energy and Time Efficiencies. 

Procedia CIRP, 69, 294–299. https://doi.org/10.1016/j.procir.2017.11.081 

Singhal, N. (2021). An Empirical Investigation of Industry 4.0 Preparedness in India. 

Vision, 25(3), 300 – 311. https://doi.org/10.1177/0972262920950066 

Sinha, D., & Roy, R. (2020). Reviewing Cyber-Physical System as a Part of Smart Factory 

in Industry 4.0. IEEE Engineering Management Review, 48(2), 103–117. 

https://doi.org/10.1109/EMR.2020.2992606 

Song, L., Wang, L., Wu, J., Liang, J., & Liu, Z. (2021). Integrating Physics and Data 

Driven Cyber-Physical System for Condition Monitoring of Critical Transmission 

Components in Smart Production Line. Applied Sciences, 11(19), 8967. 

https://doi.org/10.3390/app11198967 

Song, Y., Liu, D., Yang, C., & Peng, Y. (2017). Data-driven hybrid remaining useful life 

estimation approach for spacecraft lithium-ion battery. Microelectronics Reliability, 

75, 142–153. https://doi.org/https://doi.org/10.1016/j.microrel.2017.06.045 

Stearns, P. N. (2021). The industrial revolution in world history. Routledge.  

Stock, D., Bauernhansl, T., Weyrich, M., Feurer, M., & Wutzke, R. (2020). System 

Architectures for Cyber-Physical Production Systems enabling Self-X and 

Autonomy. IEEE International Conference on Emerging Technologies and Factory 

Automation, ETFA, 148–155. https://doi.org/10.1109/ETFA46521.2020.9212182 

Sun, B., Zeng, S., Kang, R., & Pecht, M. G. (2012). Benefits and Challenges of System 

Prognostics. IEEE Transactions on Reliability, 61(2), 323–335. 

https://doi.org/10.1109/TR.2012.2194173 

Suvarna, M., Yap, K. S., Yang, W., Li, J., Ng, Y. T., & Wang, X. (2021). Cyber–Physical 

Production Systems for Data-Driven, Decentralized, and Secure Manufacturing-A 

Perspective. Engineering, 7(9), 1212–1223. 

https://doi.org/10.1016/j.eng.2021.04.021 



REFERENCES 

279 | P a g e  

Syafrudin, M., Alfian, G., Fitriyani, N. L., & Rhee, J. (2018). Performance analysis of IoT-

based sensor, big data processing, and machine learning model for real-time 

monitoring system in automotive manufacturing. Sensors (Switzerland), 18(9). 

https://doi.org/10.3390/s18092946 

Tan, D., Suvarna, M., Shee Tan, Y., Li, J., & Wang, X. (2021). A three-step machine 

learning framework for energy profiling, activity state prediction and production 

estimation in smart process manufacturing. Applied Energy, 291, 116808. 

https://doi.org/https://doi.org/10.1016/j.apenergy.2021.116808 

Tang, D., Zheng, K., Zhang, H., Zhang, Z., Sang, Z., Zhang, T., Espinosa-Oviedo, J.-A., 

& Vargas-Solar, G. (2018). Using autonomous intelligence to build a smart shop 

floor. International Journal of Advanced Manufacturing Technology, 94(5–8), 1597–

1606. https://doi.org/10.1007/s00170-017-0459-y 

Tao, F., Qi, Q., Wang, L., & Nee, A. Y. C. (2019). Digital Twins and Cyber–Physical 

Systems toward Smart Manufacturing and Industry 4.0: Correlation and Comparison. 

Engineering, 5(4), 653–661. https://doi.org/10.1016/J.ENG.2019.01.014 

Teti, R., Jemielniak, K., O’Donnell, G., & Dornfeld, D. (2010). Advanced monitoring of 

machining operations. CIRP Annals, 59(2), 717–739. 

https://doi.org/10.1016/J.CIRP.2010.05.010 

Tewari, S., Geyer, C. J., & Mohan, N. (2011). A statistical model for wind power forecast 

error and its application to the estimation of penalties in liberalized markets. IEEE 

Transactions on Power Systems, 26(4), 2031 – 2039. 

https://doi.org/10.1109/TPWRS.2011.2141159 

Thiede, S. (2018). Environmental Sustainability of Cyber Physical Production Systems. 

Procedia CIRP, 69, 644–649. https://doi.org/10.1016/j.procir.2017.11.124 



REFERENCES 

280 | P a g e  

Thiede, S. (2022). Cyber Physical Production Systems and Their Role for Decarbonization 

of Industry. In Lecture Notes in Energy (Vol. 86). https://doi.org/10.1007/978-3-030-

86215-2_8 

Thiede, S., Juraschek, M., & Herrmann, C. (2016). Implementing Cyber-physical 

Production Systems in Learning Factories. Procedia CIRP, 54, 7–12. 

https://doi.org/10.1016/J.PROCIR.2016.04.098 

Thiede, S., Turetskyy, A., Loellhoeffel, T., Kwade, A., Kara, S., & Herrmann, C. (2020). 

Machine learning approach for systematic analysis of energy efficiency potentials in 

manufacturing processes: A case of battery production. CIRP Annals, 69(1), 21–24. 

https://doi.org/10.1016/J.CIRP.2020.04.090 

Thumsorn, S., Prasong, W., Kurose, T., Ishigami, A., Kobayashi, Y., & Ito, H. (2022). 

Rheological Behavior and Dynamic Mechanical Properties for Interpretation of Layer 

Adhesion in FDM 3D Printing. Polymers, 14(13). 

https://doi.org/10.3390/polym14132721 

Tian, F., Zhou, Q., & Yang, C. (2020). Gaussian mixture model-hidden Markov model 

based nonlinear equalizer for optical fiber transmission. Optics Express, 28(7), 9728–

9737. https://doi.org/10.1364/OE.386476 

Tilbury, D. M. (2019). Cyber-Physical Manufacturing Systems. Annual Review of 

Control, Robotics, and Autonomous Systems, 2(1), 427–443. 

https://doi.org/10.1146/annurev-control-053018-023652 

Tomiyama, T., & Moyen, F. (2018). Resilient architecture for cyber-physical production 

systems. CIRP Annals, 67(1), 161–164. https://doi.org/10.1016/j.cirp.2018.04.021 

Traini, E., Bruno, G., & Lombardi, F. (2021). Tool condition monitoring framework for 

predictive maintenance: a case study on milling process. International Journal of 

Production Research, 59(23), 7179–7193. 

https://doi.org/10.1080/00207543.2020.1836419 



REFERENCES 

281 | P a g e  

Trappey, A. J. C., Trappey, C. V, Govindarajan, U. H., Sun, J. J., & Chuang, A. C. (2016). 

A Review of Technology Standards and Patent Portfolios for Enabling Cyber-

Physical Systems in Advanced Manufacturing. IEEE Access, 4, 7356–7382. 

https://doi.org/10.1109/ACCESS.2016.2619360 

Tsui, K.-L. (1996). A critical look at Taguchi’s modelling approach for robust design. 

Journal of Applied Statistics, 23(1), 81–96. https://doi.org/10.1080/02664769624378 

Uhlemann, T. H.-J., Lehmann, C., & Steinhilper, R. (2017). The Digital Twin: Realizing 

the Cyber-Physical Production System for Industry 4.0. Procedia CIRP, 61, 335–340. 

https://doi.org/10.1016/j.procir.2016.11.152 

Um, J., Gezer, V., Wagner, A., & Ruskowski, M. (2020). Edge Computing in Smart 

Production. In Advances in Intelligent Systems and Computing (Vol. 980). 

https://doi.org/10.1007/978-3-030-19648-6_17 

UNIDO (2017). Accelerating clean energy through Industry 4.0: manufacturing the next 

revolution. A report of the United Nations Industrial Development                  

Organization, Vienna, Austria. Retrieved June 18, 2023, from 

https://www.unido.org/sites/default/files/201708/REPORT_Accelerating_clean_ene

rgy_through_Industry_4.0.Final_0.pdf  

UNSW. (2020). Descriptive, Predictive, Prescriptive Analytics-UNSW Online. Retrieved 

July 1, 2022, from https://studyonline.unsw.edu.au/blog/descriptive-predictive-

prescriptive-analytics 

Unwin, J., Coldwell, M. R., Keen, C., & McAlinden, J. J. (2013). Airborne emissions of 

carcinogens and respiratory sensitizers during thermal processing of plastics. Annals 

of Occupational Hygiene, 57(3), 399–406. https://doi.org/10.1093/annhyg/mes078 

Vater, J., Harscheidt, L., & Knoll, A. (2019). Smart Manufacturing with Prescriptive 

Analytics. 2019 8th International Conference on Industrial Technology and 

Management (ICITM), 224–228. https://doi.org/10.1109/ICITM.2019.8710673 



REFERENCES 

282 | P a g e  

Velandia, D. M. S., Kaur, N., Whittow, W. G., Conway, P. P., & West, A. A. (2016). 

Towards industrial internet of things: Crankshaft monitoring, traceability and 

tracking using RFID. Robotics and Computer-Integrated Manufacturing, 41, 66-77. 

https://doi.org/10.1016/j.rcim.2016.02.004 

Verl, A., Lechler, A., & Schlechtendahl, J. (2012). Glocalized cyber physical production 

systems. Production Engineering, 6(6), 643–649. https://doi.org/10.1007/s11740-

012-0418-2 

Verl, A., Lechler, A., Wesner, S., Kirstädter, A., Schlechtendahl, J., Schubert, L., & Meier, 

S. (2013). An Approach for a Cloud-based Machine Tool Control. Procedia CIRP, 7, 

682–687. https://doi.org/https://doi.org/10.1016/j.procir.2013.06.053 

Vogt, M., Buchholz, C., Thiede, S., & Herrmann, C. (2022). Energy efficiency of Heating, 

Ventilation and Air Conditioning systems in production environments through 

model-predictive control schemes: The case of battery                                            

production. Journal of Cleaner Production, 350, 131354. 

https://doi.org/https://doi.org/10.1016/j.jclepro.2022.131354 

Von Birgelen, A., Buratti, D., Mager, J., & Niggemann, O. (2018). Self-Organizing Maps 

for Anomaly Localization and Predictive Maintenance in Cyber-Physical Production 

Systems. Procedia CIRP, 72, 480–485. https://doi.org/10.1016/j.procir.2018.03.150 

VOSviewer. (2023). VOSviewer: Visualising scientific landscapes. Retrieved May 13, 

2023, from https://www.vosviewer.com/ 

Wagner, T., Herrmann, C., & Thiede, S. (2017). Industry 4.0 Impacts on                               

Lean Production Systems. Procedia CIRP, 63, 125–131. 

https://doi.org/https://doi.org/10.1016/j.procir.2017.02.041 

Wagner, U., AlGeddawy, T., ElMaraghy, H., & Müller, E. (2012). The State-of-the-Art 

and Prospects of Learning Factories. Procedia CIRP, 3(1), 109–114. 

https://doi.org/10.1016/J.PROCIR.2012.07.020 



REFERENCES 

283 | P a g e  

Wan, G., Dong, X., Dong, Q., He, Y., & Zeng, P. (2022). Context-aware scheduling and 

control architecture for cyber-physical production systems. Journal of Manufacturing 

Systems, 62, 550–560. https://doi.org/10.1016/j.jmsy.2022.01.008 

Wan, S., Li, D., Gao, J., & Li, J. (2019). A knowledge based machine tool maintenance 

planning system using case-based reasoning techniques. Robotics and Computer-

Integrated Manufacturing, 58, 80–96. https://doi.org/10.1016/J.RCIM.2019.01.012 

Wang, C., Tan, X. P., Tor, S. B., & Lim, C. S. (2020). Machine learning in additive 

manufacturing: State-of-the-art and perspectives. Additive Manufacturing, 36, 

101538. https://doi.org/10.1016/J.ADDMA.2020.101538 

Wang, G. F., Yang, Y. W., Zhang, Y. C., & Xie, Q. L. (2014). Vibration sensor based tool 

condition monitoring using ν support vector machine and locality preserving 

projection. Sensors and Actuators A: Physical, 209, 24–32. 

https://doi.org/10.1016/J.SNA.2014.01.004 

Wang, H., Zhong, R. Y., Liu, G., Mu, W. L., Tian, X., & Leng, D. (2019). An optimization 

model for energy-efficient machining for sustainable production. Journal of Cleaner 

Production, 232, 1121–1133. https://doi.org/10.1016/j.jclepro.2019.05.271 

Wang, J., Li, Y., Zhao, R., & Gao, R. X. (2020). Physics guided neural network for 

machining tool wear prediction. Journal of Manufacturing Systems, 57 (October), 

298–310. https://doi.org/10.1016/j.jmsy.2020.09.005 

Wang, L., & Haghighi, A. (2016). Combined strength of holons, agents and function 

blocks in cyber-physical systems. Journal of Manufacturing Systems, 40, 25–34. 

https://doi.org/https://doi.org/10.1016/j.jmsy.2016.05.002 

Wang, L., Törngren, M., & Onori, M. (2015). Current status and advancement of cyber-

physical systems in manufacturing. Journal of Manufacturing Systems, 37, 517–527. 

https://doi.org/10.1016/j.jmsy.2015.04.008 



REFERENCES 

284 | P a g e  

Wang, P., Liu, Z., Gao, R. X., & Guo, Y. (2019). Heterogeneous data-driven hybrid 

machine learning for tool condition prognosis. CIRP Annals, 68(1), 455–458. 

https://doi.org/10.1016/J.CIRP.2019.03.007 

Wang, Q., Liu, F., & Wang, X. (2014). Multi-objective optimization of machining 

parameters considering energy consumption. The International Journal of Advanced 

Manufacturing Technology, 71(5–8), 1133–1142. https://doi.org/10.1007/s00170-

013-5547-z 

Watanabe, T., Kono, I., & Onozuka, H. (2020). Anomaly detection methods in turning 

based on motor data analysis. Procedia Manufacturing, 48, 882–893. 

https://doi.org/10.1016/J.PROMFG.2020.05.126 

Webert, H., Döß, T., Kaupp, L., & Simons, S. (2022). Fault Handling in Industry 4.0: 

Definition, Process and Applications. Sensors, 22(6). 

https://doi.org/10.3390/s22062205 

Wei, X., Liu, X., Yue, C., Wang, L., Liang, S. Y., & Qin, Y. (2022). Tool wear state 

recognition based on feature selection method with whitening variational mode 

decomposition. Robotics and Computer-Integrated Manufacturing, 77. 

https://doi.org/10.1016/j.rcim.2022.102344 

Weiss, B., Vogl, G., Helu, M., Qiao, G., Pellegrino, J., Justiniano, M., & Raghunathan, A. 

(2015). Measurement Science for Prognostics and Health Management for Smart 

Manufacturing Systems: Key Findings from a Road mapping                               

Workshop. Annual Conference of the PHM Society, 7(1). 

https://doi.org/10.36001/phmconf.2015.v7i1.2712 

Wessel, J., Turetskyy, A., Wojahn, O., Herrmann, C., & Thiede, S. (2020). Tracking and 

Tracing for Data Mining Application in the Lithium-ion Battery Production. Procedia 

CIRP, 93, 162-167. https://doi.org/10.1016/j.procir.2020.03.071 



REFERENCES 

285 | P a g e  

Wiemer, H., Hellmich, A., & Ihlenfeldt, S. (2017). A holistic approach for developing and 

commissioning data driven CPPS functionality in manufacturing systems. In Lecture 

Notes in Mechanical Engineering. https://doi.org/10.1007/978-3-319-56430-2_18 

Wiese, M., Dér, A., Leiden, A., Abraham, T., Herrmann, C., & Thiede, S. (2021). Dynamic 

modeling of additive manufacturing process chains for end-use part manufacturing. 

Procedia CIRP, 104, 500–505. https://doi.org/10.1016/j.procir.2021.11.084 

Winsystems. (2022). Cloud, Fog and Edge Computing – What’s the Difference? Retrieved 

April 26, 2022, from https://www.winsystems.com/cloud-fog-and-edge-computing-

whats-the-difference/. 

Wired. (2018). Data is the new oil of the digital economy. Retrieved May 15, 2023, from 

https://www.wired.com/insights/2014/07/data-new-oil-digital-economy/ 

Wojnowski, W., Kalinowska, K., Majchrzak, T., & Zabiegała, B. (2022). Real-time 

monitoring of the emission of volatile organic compounds from polylactide 3D 

printing filaments. Science of the Total Environment, 805. 

https://doi.org/10.1016/j.scitotenv.2021.150181 

Wu, D., Jennings, C., Terpenny, J., Gao, R. X., & Kumara, S. (2017a). A Comparative 

Study on Machine Learning Algorithms for Smart Manufacturing: Tool Wear 

Prediction Using Random Forests. Journal of Manufacturing Science and 

Engineering, Transactions of the ASME, 139(7). https://doi.org/10.1115/1.4036350 

Wu, D., Liu, S., Zhang, L., Terpenny, J., Gao, R. X., Kurfess, T., & Guzzo, J. A. (2017b). 

A fog computing-based framework for process monitoring and prognosis in cyber-

manufacturing. Journal of Manufacturing Systems, 43, 25–34. 

https://doi.org/https://doi.org/10.1016/j.jmsy.2017.02.011 

Wu, X., Goepp, V., & Siadat, A. (2020). Concept and engineering development of cyber 

physical production systems: a systematic literature review. International Journal of 

Advanced Manufacturing Technology, 111(1–2), 243–261. 

https://doi.org/10.1007/s00170-020-06110-2 



REFERENCES 

286 | P a g e  

Wu, X., Goepp, V., Siadat, A., & Vernadat, F. (2021). A method for supporting the 

transformation of an existing production system with its integrated Enterprise 

Information Systems (EISs) into a Cyber Physical Production System (CPPS). 

Computers in Industry, 131. https://doi.org/10.1016/j.compind.2021.103483 

Xames, M. D., Torsha, F. K., & Sarwar, F. (2022). A systematic literature review on recent 

trends of machine learning applications in additive manufacturing. In Journal of 

Intelligent Manufacturing. Springer. https://doi.org/10.1007/s10845-022-01957-6 

Xu, L. Da, Xu, E. L., & Li, L. (2018). Industry 4.0: State of the art and future trends. 

International Journal of Production Research, 56(8), 2941 – 2962. 

https://doi.org/10.1080/00207543.2018.1444806 

Xu, Y., & Goodacre, R. (2018). On Splitting Training and Validation Set: A Comparative 

Study of Cross-Validation, Bootstrap and Systematic Sampling for Estimating the 

Generalization Performance of Supervised Learning. Journal of Analysis and Testing, 

2(3), 249–262. https://doi.org/10.1007/s41664-018-0068-2 

Yan, W., Wong, Y. S., Lee, K. S., & Ning, T. (1999). An investigation of indices based on 

milling force for tool wear in milling. Journal of Materials Processing Technology, 

89–90, 245–253. https://doi.org/10.1016/S0924-0136(99)00143-0 

Yang, H., Li, G., He, J., Wang, L., & Nie, X. (2023). Health condition evaluation method 

for motorized spindle on the basis of optimised VMD and GMM-HMM. The 

International Journal of Advanced Manufacturing Technology, 124(11), 4465–4477. 

https://doi.org/10.1007/s00170-022-10202-6 

Yang, J., & Liu, Y. (2020). Energy, time and material consumption modelling for fused 

deposition modelling process. Procedia CIRP, 90, 510–515. 

https://doi.org/10.1016/j.procir.2020.02.130 



REFERENCES 

287 | P a g e  

Yang, Q., Pattipati, K. R., Awasthi, U., & Bollas, G. M. (2022). Hybrid data-driven and 

model-informed online tool wear detection in milling machines. Journal of 

Manufacturing Systems, 63, 329–343. https://doi.org/10.1016/j.jmsy.2022.04.001 

Yang, T. Q. H. D., Huang, G. Q., & Qin, H. L. W. (2012). A case of implementing RFID-

based real-time shop-floor material management for household electrical appliance 

manufacturers. Journal of Intelligent Manufacturing, 23, 2343-2356. 

https://doi.org/10.1007/s10845-010-0476-2 

Yen, C.-T., & Chuang, P.-C. (2022). Application of a neural network integrated with the 

internet of things sensing technology for 3D printer fault diagnosis. Microsystem 

Technologies, 28(1), 13–23. https://doi.org/10.1007/s00542-019-04323-4 

Yi, L., Chen, T., Ehmsen, S., Gläßner, C., & Aurich, J. C. (2020). A study on impact 

factors of the energy consumption of the fused deposition modeling process using 

two-level full factorial experiments. Procedia CIRP, 93, 79–84. 

https://doi.org/10.1016/j.procir.2020.03.036 

Yin, S., Bao, J., Zhang, J., Li, J., Wang, J., & Huang, X. (2020). Real-time task processing 

for spinning cyber-physical production systems based on edge computing. Journal of 

Intelligent Manufacturing, 31(8), 2069–2087. https://doi.org/10.1007/s10845-020-

01553-6 

Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F., Niakanlahiji, A., Kong, J., 

& Jue, J. P. (2019). All one needs to know about fog computing and related edge 

computing paradigms: A complete survey. Journal of Systems Architecture, 98, 289–

330. https://doi.org/10.1016/J.SYSARC.2019.02.009 

Yuan, D., Luo, T., Gu, C., & Zhu, K. (2022). The Cyber-Physical System of Machine Tool 

Monitoring: A Model-driven Approach with Extended Kalman Filter 

Implementation. IEEE Transactions on Industrial Informatics, 1–10. 

https://doi.org/10.1109/TII.2022.3231422 



REFERENCES 

288 | P a g e  

Zancul, E., Martins, H. O., & Lopes, F. P. (2020). Machine Vision applications in a 

Learning Factory Machine Vision applications in a Learning Factory. Procedia 

Manufacturing, 45, 516–521. https://doi.org/10.1016/j.promfg.2020.04.069 

Zhang, F., Yan, J., Fu, P., Wang, J., & Gao, R. X. (2020). Ensemble sparse supervised 

model for bearing fault diagnosis in smart manufacturing. Robotics and Computer-

Integrated Manufacturing, 65. https://doi.org/10.1016/j.rcim.2019.101920 

Zhang, H., Yan, Q., & Wen, Z. (2020). Information modeling for cyber-physical 

production system based on digital twin and AutomationML. International Journal of 

Advanced Manufacturing Technology, 107(3–4), 1927–1945. 

https://doi.org/10.1007/s00170-020-05056-9 

Zhang, Y., Beudaert, X., Argandoña, J., Ratchev S., Munoa J. (2020). A CPPS based on 

GBDT for predicting failure events in milling. The International Journal of Advanced 

Manufacturing Technology. 111, 341–357 https://doi.org/10.1007/s00170-020-

06078-z  

Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., & Gao, R. X. (2019). Deep learning and 

its applications to machine health monitoring. In Mechanical Systems and Signal 

Processing (Vol. 115, pp. 213–237). Academic Press. 

https://doi.org/10.1016/j.ymssp.2018.05.050 

Zhao, X., & Rosen, D. W. (2018). An implementation of real-time feedback control of 

cured part height in Exposure Controlled Projection Lithography with in-situ 

interferometric measurement feedback. Additive Manufacturing, 23, 253–263. 

https://doi.org/10.1016/J.ADDMA.2018.07.016 

Zhekun, L., Gadh, R., & Prabhu, B. S. (2004). Applications of RFID technology and smart 

parts in manufacturing. In International Design Engineering Technical Conferences 

and Computers and Information in Engineering Conference, Vol. 46970, pp. 123-129. 

https://doi.org/10.1115/DETC2004-57662  



REFERENCES 

289 | P a g e  

Zheng, P., wang, H., Sang, Z., Zhong, R. Y., Liu, Y., Liu, C., Mubarok, K., Yu, S., & Xu, 

X. (2018). Smart manufacturing systems for Industry 4.0: Conceptual framework, 

scenarios, and future perspectives. Frontiers of Mechanical Engineering, 13(2), 137–

150. https://doi.org/10.1007/s11465-018-0499-5 

Zhou, C., Yang, B., Guo, K., Liu, J., Sun, J., Song, G., Zhu, S., Sun, C., & Jiang, Z. (2020). 

Vibration singularity analysis for milling tool condition monitoring.            

International Journal of Mechanical Sciences, 166, 105254. 

https://doi.org/10.1016/J.IJMECSCI.2019.105254 

Zhou, K., Liu, T., & Liang, L. (2016). From cyber-physical systems to Industry 4.0: Make 

future manufacturing become possible. International Journal of Manufacturing 

Research, 11(2), 167–188. https://doi.org/10.1504/IJMR.2016.078251 

Zhou, Y., Sun, B., Sun, W., & Lei, Z. (2022). Tool wear condition monitoring based on a 

two-layer angle kernel extreme learning machine using sound sensor for milling 

process. Journal of Intelligent Manufacturing, 33(1), 247–258. 

https://doi.org/10.1007/s10845-020-01663-1 

Zhou, Z., Hu, J., Liu, Q., Lou, P., Yan, J., & Li, W. (2018). Fog Computing-Based Cyber-

Physical Machine Tool System. IEEE Access, 6, 44580–44590. 

https://doi.org/10.1109/ACCESS.2018.2863258 

Zhu, K., & Zhang, Y. (2018). A Cyber-Physical Production System Framework of Smart 

CNC Machining Monitoring System. IEEE/ASME Transactions on Mechatronics, 

23(6), 2579–2586. https://doi.org/10.1109/TMECH.2018.2834622 

Zhu, K., & Zhang, Y. (2019). A generic tool wear model and its application to force 

modeling and wear monitoring in high speed milling. Mechanical Systems and Signal 

Processing, 115, 147–161. https://doi.org/10.1016/J.YMSSP.2018.05.045 



REFERENCES 

290 | P a g e  

Zoghipour, N., Yaratan, A. F., & Kaynak, Y. (2021). Multi objective optimization of rough 

pocket milling strategies during machining of lead-free brass alloys using Desirability 

function and Genetic algorithms-based analysis. Procedia CIRP, 99, 145–150. 

https://doi.org/10.1016/j.procir.2021.03.022  

Zosel A, Yamakawa K. (2020). Traceability 4.0: The fundamental element of global 

manufacturing. Retrieved June 18, 2023, from https://automation.omron.com/en/us/ 

Zubrzycki, J., Świć, A., Sobaszek, Ł., Kovac, J., Kralikova, R., Jencik, R., ... & Homza, J. 

(2021). Cyber-physical systems technologies as a key factor in the process of Industry 

4.0 and smart manufacturing development. Applied Computer Science, 17(4), 84-99. 

Applied Computer Science, 17(4), 84–99. https://doi.org/10.23743/acs-2021-31 



 

A1 

APPENDIX – A  

Publications 

1. Kumar, R., Sangwan, K.S., Herrmann, C., Ghosh, R. (2023). Development of a cyber 

physical production system framework for smart tool health management. Journal of 

Intelligent Manufacturing, https://doi.org/10.1007/s10845-023-02192-3. 

2. Sangwan, K.S., Kumar, R., Herrmann, C., Sharma, D. K., & Patel, R. (2023). 

Development of a cyber physical production system framework                                            

for 3D printing analytics. Applied Soft Computing, 110719. 

https://doi.org/10.1016/j.asoc.2023.110719. 

3. Kumar, R., Sangwan, K.S., Herrmann, C., Thakur S. (2023). A cyber physical 

production system framework for online monitoring, visualization and control by using 

cloud, fog, and edge computing technologies. International Journal of Computer 

Integrated Manufacturing, 2023, https://doi.org/10.1080/0951192X.2023.2189312. 

4. Kumar, R., Sangwan, K.S., Herrmann, C., Ghosh, R., Sangwan, M. (2023). 

Development and comparison of machine-learning algorithms for anomaly detection 

in 3D printing using vibration data. Progress in Additive Manufacturing Journal, 

https://doi.org/10.1007/s40964-023-00472-1. 

5. Sangwan, K.S., Kumar, R., Herrmann, C., Sharma, D. K., & Patel, R. (2023). 

Development of regression algorithms to predict remaining useful life of a 3D printer 

nozzle. Code Ocean, https://doi.org/10.24433/CO.7020937.v1 

6. Kumar, R., Padma Vilochani, P. G., Kahnthinisha, S., Patil, O., Cerdas, F., Sangwan, 

K. S., & Herrmann, C. (2022). Live Life Cycle Assessment Implementation using 

Cyber Physical Production System Framework for 3D Printed Products. Procedia 

CIRP, 105, 284-289. https://doi.org/10.1016/j.procir.2022.02.047 

https://doi.org/10.24433/CO.7020937.v1


APPENDIX-A 

A2 

7. Kumar, R., Ghosh, R., Malik, R., Sangwan, K. S., & Herrmann, C. (2022). 

Development of Machine Learning Algorithm for Characterization and Estimation of 

Energy Consumption of Various Stages during 3D Printing. Procedia CIRP, 107, 65-

70. https://doi.org/10.1016/j.procir.2022.04.011  

8. Kumar, R., Patil, O., Nath S, K., Rohilla, K., & Singh Sangwan, K. S. (2021). Machine 

Vision and Radio-Frequency Identification (RFID) based Real-Time Part Traceability 

in a Learning Factory. Procedia CIRP, 104, 630-635. 

https://doi.org/10.1016/j.procir.2021.11.106  

9. Kumar, R., Patil, O., Nath S, K., Sangwan, K. S., & Kumar, R. (2021). A Machine 

Vision-based Cyber-Physical Production System for Energy Efficiency and Enhanced 

Teaching-Learning Using a Learning Factory. Procedia CIRP, 98, 424-429. 

https://doi.org/10.1016/j.procir.2021.01.128  

Working Papers 

10. Development of a human centric cyber physical production system framework for 

enhanced social sustainability 

11. A systematic literature review on cyber physical production system for smart 

manufacturing analytics and management. 

12. Development of a cyber physical production system framework for context aware 

scheduling in manufacturing systems.  

 



 

B1 

APPENDIX – B 

 
About the candidate (Rishi Kumar) 

Rishi Kumar is a PhD candidate in the Department of Mechanical Engineering 
at Birla Institute of Technology and Science Pilani, Pilani Campus, India. He 
has published more than 15 research papers in international journals and 
conferences. He has gained research experience as a visiting researcher at TU 

Braunschweig, Germany. He is a lifetime member of Indian Society for Technical 
Education (ISTE), affiliate member of IITI DRISHTI CPS foundation, and student 
member of American Society of Mechanical Engineers (ASME).  

About the supervisor (Prof. Kuldip Singh Sangwan) 
 Prof. (Dr.) Kuldip Singh Sangwan is a Senior Professor of Mechanical 
Engineering at Birla Institute of Technology and Science, Pilani (BITS 
Pilani), Pilani campus. He is the recipient of the prestigious Shri B. K. Birla 
and Shrimati Sarala Birla Chair Professorship. He has guided one post-doc; 

eleven PhDs and eleven PhDs are in progress. Prof. Sangwan has published more than 170 
papers in international journals of repute. He has an active collaboration with TU 
Braunschweig, Germany since last 13 years. Prof. Sangwan is a fellow of the Institution 
of Engineers (India). He has collaborative projects worth more than 7.6 crore INR with 
international agencies, industry, and Indian Government agencies. Professor Sangwan 
found a place in the ‘top 2% world scientists’ list curated by Stanford University 
researchers. 

About the Co-supervisor (Prof. Christoph Herrmann)   
Prof. (Dr.-Ing.) Christoph Herrmann is university professor for 
Sustainable Manufacturing & Life Cycle Engineering and co-director of 
IWF, Institute of Machine Tools and Production Technology, Technische 
Universität Braunschweig as well as director of the Fraunhofer Institute 
for Surface Engineering and Thin Films IST since November 2018. From 
2005 to 2008 he was also scientific director of KERP Center of Excellence 

Environment & Electronics, Vienna. Also, he was scientific director and member of the 
NFF (Niedersächsisches Forschungszentrum Fahrzeugtechnik/Automotive Research 
Center Lower Saxony), Germany. He has published more than 300 papers and book 
publications as author, co-author, and editor. Prof. Herrmann is member of the German 
Academic Association for Production Technology (WGP), visiting SIMTech fellow at the 
Singapore Institute of Manufacturing Technology, and fellow of the International 
Academy for Production Engineering (CIRP).  



C1 

APPENDIX – C  

 

 
Figure 2.21 Proposed concept map for a CPPS from a holistic perspective 
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Figure 3.1 A generic CPPS framework for smart manufacturing analytics and management  
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