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ABSTRACT

The fundamental objective of this thesis is to introduce numerical methods based on quadratic

spline techniques, focusing primarily on attaining uniform convergence. The approaches

presented in this study are specifically developed to tackle a diverse range of singularly

perturbed problems (SPPs). These issues include various scenarios such as degenerate

parabolic problems, systems of SPPs, and higher-order SPPs. These problems make their

existence known in various physical phenomena found in research and engineering. Two

noteworthy examples are the investigation of the behavior of DC motors and the chemical

flow reactor theory field. In the upsurge, their influence may be seen in areas such as

lubrication theory, the investigation of transport phenomena encountered in chemistry and

biology, population dynamics, neural networks, and the study of fluid flow via unsaturated

absorbent media. The presence of differential equations in which the higher-order spatial

derivative(s) is/are scaled by very small parameters allows for identifying such problems.

Indeed, any ordinary/partial differential equations (ODEs/PDEs) that display rapid changes in

some provinces of their specified domain are called SPPs. As a development, the presence of

boundary layers is a distinctive attribute, leading to the formation of narrow regions near the

domain’s boundary. In these specified zones, when the perturbation parameter tends toward

zero, there is a prominent increase in the steepness of the solution’s gradient. The standard

numerical methods are inadequate in capturing the layer behavior of the solution and fail to

give satisfactory results.

This thesis aims to make progress in the design, analysis, and advancement of numerical

methods that exhibit parameter uniformity, particularly in their use for solving SPPs. There

are two commonly employed ways of addressing these issues. One approach involves using

fitted-operator techniques, which effectively capture the characteristics of the solution inside

the boundary layers and can be easily implemented on a mesh with equidistant spacing. In

contrast, the other approach involves the utilization of layer-adapted meshes. Fitted operator

approaches employ a uniform mesh, rendering them easily implementable and facilitating

a more straightforward convergence analysis than methods relying on non-uniform meshes.

One of the primary limitations of these approaches is the inability to establish a ε-uniform



fitted operator method on an equidistant mesh in the presence of parabolic boundary layers

inside the solution. A further aspect that needs refinement in this technique is the challenges of

applying these strategies to multidimensional problems inside intricate domains. In addition,

the utilization of fitted mesh techniques necessitates acquiring information about the precise

positioning and thickness of the boundary layers to build non-uniform grids that are suitably

tailored for the given application. This phenomenon governs the progression of numerical

techniques that exhibit parameter uniformity, meaning that the error constant is unaffected

by variations in the perturbation parameter ε and the mesh parameter. Within this particular

context, the mesh is generated by utilizing pre-established knowledge of the behavior of

the solution. The exponentially graded mesh (eXp mesh) is characterized by its unique

approach of not explicitly identifying transition points during changes in the layer’s behavior,

differentiating it from Bakhvalov and Shishkin meshes.

The thesis commences with a brief introduction that outlines the objectives and explains

the motivation for studying SPPs. At first, a numerical scheme is developed to solve singularly

perturbed convection-diffusion type degenerates parabolic problems. As the perturbation

parameter approaches zero, the solution to this problem exhibits a parabolic boundary layer

in the neighborhood of the left end side of the domain. The proposed approach employs the

Crank-Nicolson methodology on a uniformly distributed temporal mesh and the quadratic

spline collocation method on an eXp mesh in space. Later, we presented the analysis for

singularly perturbed arbitrary systems of ODEs/PDEs. We derived the robust error estimates to

establish the optimal order of convergence. The findings from numerical investigations provide

empirical evidence that supports the theoretical conclusions and validates the efficiency and

correctness of the suggested method.

Extending our work from second-order problems to higher-order problems, we present

spline-based techniques for fourth-order convection-diffusion/reaction-diffusion type prob-

lems. The associated DE is converted into a strong/weakly coupled system of two singularly

perturbed ODEs with Dirichlet boundary conditions to solve the problem numerically. One

of the equations in the system is independent of the perturbation parameter. The calculated

theoretical bounds on the spline interpolation error show that the method is second-order

parameter-uniformly convergent. In the final section of the thesis, we examine possible paths

xi



for further expanding the research undertaken in this study.
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Chapter 1

Introduction

1.1 Singular perturbation problems
Numerous scientific and technological domains are plagued by singular perturbation problems

(SPPs), a class of mathematical complications. The SPPs field has developed throughout

its history, boasting a substantial historical context, and it persists in harboring considerable

promise for generating beneficial advancements in diverse scientific and technical fields. This

discussion pertains to the extensive range of applications within several domains of applied

mathematics, including but not limited to fluid dynamics, the characterization of fluctuations

arising from turbulent motion in waves and currents, heat and mass transfer in the fields

of nuclear and chemical engineering, quantum physics, and electroanalytic chemistry. The

presence of differential equations in which very small parameters scale the highest-order

spatial derivative allows for identifying such problems. These issues manifest themselves in

mathematical models with steep gradients, quick transitions, and the interplay of numerous

scales due to the enormous diversity in the scales of the controlling processes. Among the

many applications of SPPs, the Navier-Stokes equation in fluid dynamics stands out as an

especially striking example

∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
+
∂P

∂x
=

1

Re

(
∂2U

∂x2
+
∂2U

∂y2

)
, (1.1.1)
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with the appropriate set of conditions. P is the pressure, and U , V represents the velocity in

the x and y directions, respectively. ‘Re’ is the well-known ‘Reynolds number’, which shifts

in a manner that is inversely proportional to the fluid’s kinematic viscosity and fluctuates

directly in proportion to the characteristic length and the characteristic velocity. Taking very

large value (� 1) of ‘Re’, Equation (1.1.1) becomes singularly perturbed. Other interesting

examples include systems of parabolic singularly perturbed convection-diffusion issues,

including the enzyme model with diffusion and convection, the neutron transport phenomenon

with sufficiently relatively small diffusion coefficients, and the tubular model in chemical

reactor theory. For illustration, think of an enzyme-substrate model with convection-diffusion

as follows:

Tt −D1∇2T+~b · ∇T = K−1R−K1ET,

Rt −D2∇2R+~b · ∇R = K1ET− (K−1 +K2)R,

Et −D′2∇2E+~b · ∇E = (K−1 +K2)R−K1ET,

Pt −D3∇2P+~b · ∇P = K2R,

where T, P, E represent substrate, enzyme and product, respectively and K−1, K1 and K2 are

reaction rates. The enzyme-substrate complex is denoted by R = TE and ~b is the velocity

of the convecting fluid. Further developments on this model can be seen in [1, 2]. We also

talk about a Turing model given by Dillon et al. [3] that features pattern formation using

reaction-diffusion equations with Robin boundary conditions

∂Y

∂t
= Y∇2Y + R̃(Y, p̃) on S,

n · Y∇Y = H(Y∗ −Y) on ∂S,

Y(r, 0) = Y0(r).

(1.1.2)

Equation (1.1.2) is transformed into the following equation introducing non-dimensionalization

parameters and linearization (see [3])

2
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∂χ

∂τ
= µD∇2χ+Kχ on S,

n · ∇χ = −Qχ on ∂S,

χ(η, 0) = χ0(η),

(1.1.3)

where Y and Y∗ are vectors of varying and fixed chemical concentrations. Y and H are

diagonal matrices, where Y is positive definite and H includes mass transfer coefficients, and

resultant production rate is denoted by R̃. Deflection due to the tensile force of a load is

another noteworthy example, and it occurs when a defined load is delivered to a flexible beam

(with limited flexural stiffness). The modeling of these problems leads to the Orr-Sommerfield

equation [4, 5]

EIz(4)(x)−
(
N0
EA
2L

∫ L

0

(z′(x))2dx

)
z′′ = f(x), 0 ≤ x ≤ L,

where A, L → cross-sectional area and length of the beam, E → Young’s modulus, I →

moment of inertia, N0 → initial axial tension in the beam. Books by Morton [6], O’ Malley

[4], Pao [7], Linß [8] and Roos et al. [9] provide more information on the practical use of

singularly perturbed differential equations.

During the Third International Congress of Mathematicians in Heidelberg in 1904, Prandtl

[10] came up with the concept that was later be known as the “boundary layer”. Prandtl dug

into the substantial influence that even minute variables like viscosity have in ordinary fluids

such as water and air, highlighting their importance in flow dynamics in his seven-page study

on boundary layer theory. The paper was thorough and covered all aspects of the idea. This

ground-breaking theory served as the foundation for developing contemporary fluid dynamics.

Although Prandtl was the one who initially presented the concept of a “boundary layer”,

Wasow [11], who made significant contributions, is mainly credited with bringing to light

the term’s broader relevance. After that, the phrase “singular perturbation” was first used in

1946 in Friedrichs and Wasow’s work, described in their article [12] presented at New York

University.

In the subsequent section, we will provide a concise overview of the concept of the

3
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singular perturbation issue, as it is frequently formulated in its most straightforward and

widely employed structure. Singular perturbations occur in differential equations due to

small parameter(s) in the product of higher-order spatial derivative(s). The term ‘singular’

perturbation emerges when these parameter(s) approaches zero, resulting in an ill-posedness

to the problem as the order of the differential equation reduces by at least one. At the same

time, the boundary conditions (BCs) stay the same. The presence of these parameter(s) causes

the solution to be multiscale. Narrow sections are termed layer areas, and they emerge where

the solution changes abruptly due to high gradients while the solution continues smoothly in

the remaining domain. In most cases, boundary/interior layers are present when addressing

issues involving such equations.

Mathematically, first, we consider a singularly perturbed boundary value problem; say Tε,

−εy′′(x) + a(x)y′(x) + b(x)y(x) = f(x), c < x < d,

y(c) = α, y(d) = β.
(1.1.4)

where 0 < ε � 1, a(x), b(x), and f(x) are sufficiently smooth functions. Assuming

that, for each ε, the problem Tε has a unique smooth solution yε(x), we aim to construct

approximations of yε(x) for small values of ε. The solution yε(x) of Tε depends on ε and BCs

as well. Now we obtain the ‘reduced problem’ T0 having the solution y0, by putting ε = 0 in

(1.1.4)

−a(x)y′(x) + b(x)y(x) = f(x), c < x < d,

y(c) = α, y(d) = β,
(1.1.5)

Now, y0, the solution to the reduced problem (1.1.5) need not necessarily satisfy all the BCs.

For a layperson, these questions can arise

• Does the problem (1.1.4) has a limiting solution as ε→ 0, i.e., does lim
ε→0

yε(x) exist?

• If yes, then

(i) Does this solution satisfy the Equation (1.1.5), i.e., does lim
ε→0

yε(x) = y0(x) hold

true?

4
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(ii) Which of the BC(s) will be satisfied by the limiting solution?

The problem Tε is called regularly perturbed if the solution yε(x) approaches uniformly to

y0(x) as ε → 0, otherwise, Tε is said to be singularly perturbed. In the literature, some

researchers deliver the subsequent characterization of SPPs

• Miller et al. [13] :

The justification for the name ‘singular perturbation’ is that the nature of the differ-

ential equations changes completely in the limit case when the singular perturbation

parameter is equal to zero.

• Roos et al. [14] :

They are differential equations (ordinary or partial) that depend on a small positive

parameter ε and whose solutions (or their derivatives) approach a discontinuous limit

as ε approaches zero. Such problems are said to be singularly perturbed, where we

regard ε as a perturbation parameter.

• Linß [8] :

Let B be a function space with norm ‖ · ‖B. Let D ⊂ Rd be a parameter domain. The

continuous function u : D → B, ε 7→ u(ε) is said to be regular for ε → ε∗ ∈ ∂D if

there exists a function u∗ ∈ B such that:

lim
ε→ε∗
‖uε − u∗‖B = 0,

otherwise uε is said to be singular for ε→ ε∗.

Considering (1.1.4) as our reference problem, we see the summary of various linear

problems that will be very helpful in our further study.
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Table 1.1: Different classes of SPPs

Conditions on a(x) Position of layer
a(x) 6= 0 on c ≤ x ≤ d :

a(x) < 0 Boundary layer at x = c
a(x) > 0 Boundary layer at x = d

a(x) = 0 :
b(x) > 0 Boundary layers at x = c and x = d
b(x) < 0 Oscillatory solution

b(x) changes sign Classical turning point

a′(x0) 6= b(x0), a(x0) = 0 :
a′(x0) < 0 Only interior layer at x0

a′(x0) > 0 Boundary layers at x = c and x = d

Let us take one example to confirm the previous analogy.

Example 1.1.1. −εy′′ + y′ = 1 on (0, 1), y(0) = y(1) = 0, with exact solution y(x) =

x− e−
1−x
ε − e−1/ε

1− e−1/ε
.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1x
0
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0.2

0.3

0.4
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0.6
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1

y

Figure 1.1: Exact Solution for ε = 2−8

For any a ∈ [0, 1),

lim
x→a

lim
ε→0

y(x) = a = lim
ε→0

lim
x→a

y(x),

but

1 = lim
x→1

lim
ε→0

y(x) 6= lim
ε→0

lim
x→1

y(x) = 0.
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The phenomenon known as the appearance of an unequality, which may be observed at a

specific moment (for example, when x = 1 in this scenario), indicates that the problem is

singularly perturbed. The unequality implies that the solution y(x) changes abruptly as x

approaches 1; we say there is a boundary layer at x = 1.

There are two distinct layers, namely, the parabolic and regular layers, discussed in the

academic literature. If the characteristic of the reduced problem is parallel to the boundary, it is

called parabolic; otherwise, it is regular. It is possible for a layer to appear at the intersection

or corner of the domain, in which case it is called a “corner layer”. Standard numerical

methods on an equidistant mesh fail to produce satisfactory approximations because large

oscillations appear near the layer region(s). In other words, we can generate a scheme on

an equidistant mesh that converges at all mesh points uniformly in the diffusion parameter

unless an unacceptably large number of mesh points are used. It is not practical at all; thus, to

resolve the layer(s), a non-uniform mesh is required. Because of these difficulties, researchers

across applied mathematics and engineering disciplines have been more interested in finding

numerical solutions for singularly perturbed problems.

1.2 Challenges in solving the singularly perturbed prob-

lems
Explaining singularly perturbed situations presents a formidable undertaking because of the

distinctive attributes inherent in these problems. Below is a pointwise representation enu-

merating many significant obstacles commonly encountered in solving singularly perturbed

problems:

• Stiffness and Rapid Changes. These problems frequently encompass rapidly changing

or steep gradients, making numerical approaches susceptible to stability concerns and

oscillatory behavior. Standard numerical methods might result in omitting crucial data

while estimating the solution in areas characterized by fast change.

• Multiple Scales. The issues mentioned above demonstrate the presence of various

scales, posing a significant challenge in effectively capturing them. Traditional ap-

proaches often require highly refined grids and expensive computational resources.
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• Layers. Layers are commonly observed in singular perturbation problems, charac-

terized by fast variations in the solution at specified boundaries and/ or the domain’s

interior. Effectively resolving these layers can provide a significant challenge.

• Scaling Parameters. The selection of scaling parameters can have a substantial influ-

ence on the numerical solution, and the process of choosing suitable scales is frequently

challenging.

• Mesh Selection. The selection of mesh, referring to the spatial discretization technique,

has the potential to impact both the precision and stability of the solution. Choosing the

most suitable mesh can sometimes provide a significant challenge.

• Oscillatory Solutions. Fluctuations in the solution, especially around transition areas,

can be introduced by numerical techniques and mask the system’s actual behavior.

• Sensitivity of the Parameter. Identifying robust numerical algorithms that may effec-

tively address various circumstances can be challenging because of the high sensitivity

of the solution to parameter changes.

• Confirmation and Verification. Validating the correctness of numerical solutions can

be difficult, mainly when a comparable analytical solution is not readily accessible for

comparison.

To effectively address these obstacles, one must have a comprehensive knowledge of the

mathematical and physical concepts behind them and the ability to create and implement

specialized numerical algorithms customized to the particular qualities of singularly perturbed

systems.

1.3 Concise literature survey on proposed model problems
The investigation of SPPs may be broken down into two separate classes: the first is through

the many landscapes of asymptotic analysis, which provides insights into the qualitative

core of the problem. Due to the inherent challenges associated with asymptotic analysis, re-

searchers often seek alternate methodologies. Consequently, numerical analysis has emerged
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as a viable tool for addressing SPPs, which reveals the quantitative complexities and ne-

cessitates an in-depth understanding of the solution’s complexities to succeed. It is a dual

voyage in which one participant obtains profound knowledge while the other separates the

complexities with the desire for a deep understanding.

In the context of asymptotic analysis, the primary aim is to develop a refined analytical

approximation for solving a differential equation that cannot be explicitly solved. It is accom-

plished through the skillful application of asymptotic expansion techniques. A differential

equation of lower order is obtained through a straightforward asymptotic expansion using a se-

quence dependent on the perturbation parameter. This results in an eventual consequence: the

asymptotic expansions might not satisfy all initial or boundary requirements. The approach

entails decomposing the expansion inside the initial variables’ domain, sometimes called

the “outer expansion”. The validity of this expansion remains independent of the boundary

layers. Nevertheless, the true phenomenon occurs when we effectively incorporate the “inner

expansion” strategically located in the layer region. The enigmatic BCs find their counterpart

within this domain that closely adheres to its boundaries, culminating in the complicated

interplay of these dual expansions. The inner expansion elegantly manifests through stretched

variables, imparting a certain rhythmic quality to the equation. Simultaneously, in a distinct

rhythm, the outer expansion gradually reveals itself through the recognizable manners of the

first independent variable. The matching of these expansions reaches its pinnacle through an

agreeable convergence, carefully managed at the boundary layer’s periphery. The approach of

matched asymptotic expansion can be likened to a lyrical dance, wherein the inner and outer

expansions achieve a state of harmony. This technique transforms mathematical steps into a

harmonious tango of variables. For a comprehensive introduction to asymptotic techniques,

see Nayfeh [15], O’Malley [16, 17], Bellman [18], Smith [19] and reference therein.

When solving SPPs on a uniform grid, traditional computational methods such as regular

finite difference, finite element, or finite volume approaches have constraints. A large number

of mesh points are required to achieve the needed accuracy as ε → 0, corresponding in

magnitude to the perturbation parameter, significantly increasing the system size and causing

inadequate performance. The set of algebraic equations necessarily grows more prominent

as the problem’s dimension increases, which raises computation costs proportionally. This
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problem emphasizes the need for uniform numerical methods, which reduce the negative

effects of computational complexity by maintaining the independence of the convergence

order and error constants from the perturbation parameter.

SPPs can be solved using various numerical approaches available in numerical analysis.

Beginning with Pearson’s contributions [20, 21], Kadalbajoo et al. [22–25] published a

comprehensive analysis of numerical approaches for dealing with SPPs from 1980 to 2009.

These survey articles help to understand the development of various numerical techniques

developed for SPPs.

Various articles have been published on the numerical findings of singularly perturbed

turning point problems (SP-TPPs). We cite some of those (for further results, the readers are

referred to the references therein). In 1993, Vulanović and Farrell [26] proposed a first-order

exponentially fitted scheme for SPBVP with multiple turning points at a boundary. They also

presented an improved modification on a special discretization mesh. Natesan and Ramanujam

[27] used a combination of classical numerical methods and exponentially fitted difference

schemes for solving SP-TPPs exhibiting twin boundary layers. Later, in 2003, Natesan et al.

[28] suggested an almost first-order robust numerical method on a Shishkin mesh to solve

SP-TPPs exhibiting two exponential boundaries. A literature review between 1970 and 2011

on asymptotic and numerical analysis of SP-TPPs can be seen in [29]. Kumar [30] proposed

an almost second-order parameter-uniform scheme comprising cubic B-spline basis functions

on a Shishkin mesh to solve differential-difference SP-TPPs whose solutions exhibit interior

or twin boundary layers. In [31], he constructed a quintic B-spline parameter-uniform scheme

for SP-TPPs showing interior or twin boundary layers. Recently, Alam et al. [32] proposed

a parameter-uniform trigonometric quintic B-spline collocation method to solve SP-TPPs

whose solutions exhibit interior/twin boundary layers.

Starting in the late 1960s, in this evolution process, several numerical methods (inde-

pendent of ε) have been constructed for a scalar reaction-diffusion equation (see, [33–35]

and the references therein). On the other hand, less effort has been devoted to systems of

reaction-diffusion boundary value problems. For a system of two coupled singularly perturbed

reaction-diffusion equations, with diffusion coefficients ε1, ε2, depending on the relation and

values of ε1 and ε2 three cases are of interest (i) ε1, ε2 arbitrary, (ii) ε1 = ε, ε2 = 1, and (iii)
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ε1 = ε2 = ε (see [36]). Some schemes and their corresponding convergence analyses for

these particular cases can be seen in [37–39], where a parameter-uniform convergence of

the first order was established. We cite some works about systems of SPBVPs: Matthews

et al. [40] proposed classical finite difference operators with special piecewise-uniform

meshes to solve a system of two coupled reaction-diffusion equations. Madden and Stynes

[41] suggested the first-order parameter-uniform central difference scheme with a variant of

Shishkin mesh for a coupled system of two singularly perturbed linear reaction-diffusion

equations. Using the basic ideas of the perturbation method, Valanarasu and Ramanujam [42]

suggested exponentially fitted FDMs to solve a class of weakly coupled systems of singularly

perturbed reaction-diffusion equations. For a coupled system of equations containing different

magnitudes diffusion parameters, Linß and Madden [43] considered a central difference

scheme on layer-adapted piecewise uniform meshes. They established that their scheme is

almost second-order parameter-uniform convergent, which improves the scheme proposed in

[41]. Linß and Madden [44] suggested a FEM on general layer-adapted meshes (Shishkin

and Bakhvalov meshes) for a system of two coupled reaction-diffusion equations. They have

shown that the method is of first-order and almost first-order (up to a logarithmic factor)

parameter-uniform convergent with Bakhvalov and Shishkin meshes, respectively. Natesan

and Deb [45] devised a second-order uniformly convergent hybrid scheme for a singularly

perturbed system of reaction-diffusion equations. The scheme comprises a cubic spline

scheme in the layer region and the classical central difference scheme elsewhere. Clavero et

al. [46] presented a non-monotone FDM of HODIE type on a Shishkin mesh for the coupled

systems of singularly perturbed reaction-diffusion equations. They have shown that the

scheme is a parameter-uniform convergent of orders two and three in the cases of different and

equal diffusion parameters, respectively. They have also addressed a hybrid FDM of HODIE

type on a piecewise uniform Shishkin mesh for the coupled systems of singularly perturbed

reaction-diffusion equations [47]. They have shown that the discretized operator satisfies

the discrete maximum principle, and the scheme is almost a third-order parameter-uniform

convergent (except for a logarithmic factor).

Das and Natesan [48] proposed a second-order central difference scheme with the adap-

tively generated graded mesh for a system of coupled singularly perturbed reaction-diffusion

11
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equations. In the system, they have taken diffusion parameters with different magnitudes.

Lin and Stynes [49] considered a FEM for a system of coupled reaction-diffusion equations,

where each equation has the same diffusion coefficient. The method was used with a Shishkin

mesh and showed an almost first-order convergent, independent of the magnitude of the

diffusion parameter. Constructing an adaptive layer mesh using the equidistribution principle

for a positive monitor function, Das and Aguiar [50] proposed an accurate second-order

scheme for a system of reaction-diffusion equations. Singh and Natesan [51] applied the

nonsymmetric discontinuous Galerkin FEM with interior penalties on a piecewise-uniform

Shishkin mesh to obtain the numerical solution of a system of reaction-diffusion equations.

They have shown that the method is k-th order uniformly convergent in the energy norm,

where k is the polynomial degree. In some of the above articles, the equations have diffusion

parameters of different magnitudes, while diffusion parameters of the same magnitudes were

taken in some works.

Later on, an extension in terms of ` ≥ 2 (an arbitrary system) singularly perturbed

equations were given by Linß and Madden [43, 52] in which they improved the accuracy

from first-order to second-order. Gracia et al. [53] considered a singularly perturbed system

with an arbitrary number of parabolic reaction-diffusion equations. For the arbitrary system

of linear SPPs (reaction-diffusion type) in two space dimensions, the readers are referred to

Kellogg et al. [54, 55]. Using the Bakhvalov and Shishkin meshes in their analysis, they

obtained convergence of O(N−2) and O(N−2 ln2N) respectively, where N is the degree of

freedom. In the literature, we see posterior meshes whose construction does not require prior

knowledge of layers like width and location. These meshes use the idea of equidistribution

using a positive, strictly monotonically increasing monitor function. Das and Natesan [48]

developed their numerical technique using adaptively generated mesh and proved second-

order uniform convergence for systems of arbitrary size (` ≥ 2). Das et al. [56] constructed

a first-order accurate numerical technique on the equidistributed mesh using a combination

of backward and forward difference schemes. Later, they enhanced the order of accuracy by

two using spline approximations. Refer to [57–60] and references therein for more studies

on equidistributed meshes for different types of SPPs. High-order numerical methods help

to provide more precise numerical approximations using the equivalent computational cost
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of other numerical schemes. Clavero et al. [47, 61] presented almost third-order parameter-

uniform numerical methods for singularly perturbed systems of reaction-diffusion ordinary

and parabolic partial differential equations. For an arbitrary singularly perturbed system of

reaction-diffusion problems, a uniformly convergent Schwarz domain decomposition method

(of almost fourth-order) was proposed by Rao and Kumar [62]. For a semilinear system of

SPPs (reaction-diffusion type), Kumar and Kumar [63] developed a uniformly convergent

(almost fourth-order) hybrid numerical method on a generalized Shishkin mesh. In [64],

Das and Natesan proposed a hybrid scheme using cubic spline approximations for reaction-

diffusion Robin-type BVPs. Interested readers may refer to different classes of singularly

perturbed problems like a discontinuity in source and convection terms in two-parameter

problems [65–67].

In the literature, a linear model is considered when a thin elastic plate is clamped under

tension by a load applied vertically to the plane of the longitudinal axis. Semper [68]

considered the following fourth-order elliptic PDE

ε2∆2Y −∇ · (a∇Y ) = f(x, y), (x, y) ∈ Ω ⊆ R2,

Y =
∂Y

∂n
= 0, on ∂Ω,

where ε =
bending rigidity of plate

tensile stiffness in the plate
, f(x, y) represents transverse load and the solution

Y (x, y) indicates the displacement of the plate. Franz and Roos [69] also considered fourth-

order elliptic PDE concerning the plate bending problem

ε2∆2Y − b∆Y + (c · ∇)Y + dY = f(x, y), (x, y) ∈ Ω = (0, 1)2,

Y =
∂Y

∂n
= 0, on ∂Ω.

Using a non-uniform mesh (generated by the equidistribution principle), Gupta and

Kaushik [70] proposed a higher-order hybrid numerical technique and proved optimal conver-

gence (independent of any logarithmic factor). Different types of hp FEM were implemented

by Panaseti et al. [71] and Constantinou et al. [72] on the Spectral Boundary Layer Mesh. In

[73], Constantinou considered h version of FEM using Hermite polynomials on exponentially
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graded mesh (eXp mesh) and showed uniformly convergent results in the energy norm and

balanced norm.

1.4 Motivation

The widespread occurrence of singularly perturbed problems across various scientific and

engineering subfields served as the impetus for the author of this thesis to delve into the world

of singularly perturbed issues. Mathematical complexities that are difficult to solve using

traditional computing methods frequently arise when there is a significant change in the scales

of the phenomena regulating the situation. It can cause the challenges described above.

Understanding how to deal with singularly perturbed issues successfully is essential

because these challenges encompass situations in which relatively few adjustments to a

parameter can significantly affect the system’s behavior. These phenomena are not only

academic curiosities but also reflections of events that occur in the real world. Some examples

include the boundary layer phenomena in fluid dynamics, the design of electronic circuits,

and chemical processes. Therefore, becoming proficient in the numerical methods that may

be used to tackle these issues is essential to the progression of knowledge and technology in

various fields.

In addition, SPPs are commonly utilized as a crucible for the testing and improvement

of numerical techniques. Our mathematical toolbox will be expanded due to successfully

navigating these hurdles, and our ability to solve problems in more broad contexts will be

enhanced due to this expansion. Our capability to deal with systems that contain elements on

several scales is improved, which is necessary in today’s technologically advanced society.

In conclusion, the desire to decipher the complexities of SPPs is the impetus for this thesis.

These problems are intriguing not just from a theoretical standpoint but also for the practical

insights they bring across a wide range of academic fields. By acting in this manner, we

contribute to the overarching goal of overcoming complex challenges and effectively using

the potential of numerical analysis to further scientific comprehension and technological

innovation.
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1.5 Model problems
We investigate five model problems numerically as part of this thesis, which are stated in the

following manner.

1. We consider a degenerate parabolic convection-diffusion IBVP in the rectangular domain

G = Gx × Gt = (0, 1)× (0, T ] for some finite positive T :

Lx,εu(x, t) ≡ ε
∂2u

∂x2
+ b(x, t)

∂u

∂x
− c(x, t)∂u

∂t
− d(x, t)u = f(x, t), (x, t) ∈ G,

with the conditions

u(x, 0) = V(x), x ∈ [0, 1], u(0, t) = p0(t), u(1, t) = p1(t), t ∈ [0, T ],

where 0 < ε� 1 is a perturbation parameter. The boundary of the domain G is defined as

∂G = G\G. We assume that the coefficients b(x, t), c(x, t), and d(x, t) satisfy

b(x, t) = b0(x, t)xp, p ≥ 1, (x, t) ∈ G,

b0(x, t) ≥ β > 0, c(x, t) ≥ γ > 0, d(x, t) ≥ δ ≥ 0, (x, t) ∈ G.

Generally, a parabolic boundary layer of width O(
√
ε) appears to solve the problem at the

left lateral surface as ε approaches zero.

2. We consider a system of ` weakly coupled reaction-diffusion equations whose solution

uuu ∈ (C2(0, 1) ∩ C[0, 1])` satisfies

LLLuuu(x) := −EEEuuu′′(x) +BBB(x)uuu(x) = ggg(x), x ∈ (0, 1),

uuu(0) = %%%0, uuu(1) = %%%1,

whereLLL = (L1, . . . ,L`)T , EEE = diag(ε2
1, ε

2
2, . . . , ε

2
`) with εk = ε, k = 1, 2, . . . , `,BBB(x) =

(bij(x))`×`, ggg(x) = (g1(x), g2(x), . . . , g`(x))T , uuu(x) = (u1(x), u2(x), . . . , u`(x))T , %%%0 =

(%0,1, . . . , %0,`)
T , and %%%1 = (%1,1, . . . , %1,`)

T . We assume that each column of the coupling

matrix BBB : [0, 1] → R(`,`) and the function ggg : [0, 1] → R` belong to C4[0, 1]`. We
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assume that the following inequality holds to fulfill the condition of the strongly diagonally

dominant matrix along with the nonsingularity ofBBB(x) ∀x ∈ [0, 1]

∑̀
k=1
k 6=i

∥∥∥∥bikbii
∥∥∥∥ < 1, for i = 1, 2, . . . , `.

The solution components exhibit boundary layers at x = 0 and x = 1 of width O(ε).

3. Next, we have a general weakly-coupled reaction-diffusion system (m number of equa-

tions) of parabolic IBVPs

LyLyLy :=
∂yyy

∂t
−EEE ∂

2yyy

∂x2
+AAA(x, t)yyy = fff(x, t), (x, t) ∈ Q = Qx ×Qt,

yyy(0, t) = qqq(t) in Ql, yyy(1, t) = rrr(t) in Qr, yyy(x, 0) = 000 in Qb,

where Ql = {(0, t)| 0 ≤ t ≤ T }, Qr = {(1, t)| 0 ≤ t ≤ T }, Qb = {(x, 0)| 0 ≤ x ≤ 1},

LLL = (L1,L2, . . . ,Lm)T ,EEE = diag(ε, ε, . . . , ε), fff(x, t) = (f1(x, t), f2(x, t), . . . , fm(x, t))T ,

AAA = {aij(x, t)}mi,j=1, yyy(x, t) = (y1(x, t), y2(x, t), . . . , ym(x, t))T , qqq = (q1, q2, . . . , qm)T ,

rrr = (r1, r2, . . . , rm)T . The boundary of Q denoted by ∂Q = Q\Q includes initial (Qb)

and lateral boundaries (Ql and Qr) of the domain. The operator Lk can be defined as

Lkyyy =
∂yk
∂t
− ε∂

2yk
∂x2

+
m∑
j=1

akjyj.

In general, boundary layers of width O(
√
ε) appear in the solution components at the left

and right lateral surfaces as ε approaches zero.

4. We consider the following singularly perturbed fourth-order differential equation

−µz(4)(t) + a(t)z′′(t)− b(t)z(t) = −f(t), t ∈ D = (0, 1),

subject to the following boundary conditions (BCs)

z(0) = q1, z(1) = q3, z
′′(0) = −q2, z

′′(1) = −q4,
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where 0 < µ � 1 is referred to as the perturbation parameter. We consider a particular

type of BCs influenced by [35], which helps us to set up uniform stability estimates and

other results. We assume a(t), b(t) and f(t) to be sufficiently smooth that satisfy the

following conditions

ζ∗ > a(t) > ζ > 0, 0 > b(t) > −β, β > 0,

ζ − 2β > η > 0, for some η.

5. The following singularly perturbed convection-diffusion type fourth-order boundary value

problem (BVP) will be in consideration

−εy(4)(x)−a(x)y′′′(x)+b(x)y′′(x)+c(x)y′(x)−d(x)y(x) = −f(x), x ∈ D = (0, 1),

subject to the following BCs

y(0) = q1, y(1) = q3, y
′′(0) = −q2, y

′′(1) = −q4.

We assume a(x), b(x), c(x), d(x) and f(x) to be sufficiently smooth that satisfy the

following conditions

a(x) > α∗ > 0, b(x) > β∗ > 0,

c(x) > γ∗ > 0, 0 > d(x) > −δ∗, δ∗ > 0,

α∗ − δ∗(1 + ζ∗) > η∗ > 0, for some η∗ and ζ∗ > 0,

for x ∈ D.

1.6 Thesis contribution
The creation and detailed examination of a novel quadratic spline-based numerical approach

is the basis for this thesis’s significant contribution to numerical analysis and the study of

singularly perturbed problems. This novel technique has several significant contributions,

including the following:
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• Robust Nature of the Technique. The thesis offers a robust numerical approach to

address issues caused by singular perturbations. In computational mathematics and

engineering, tackling issues like these, characterized by steep gradients and many scales,

has been a struggle for a long time. The quadratic spline approach that has been offered

provides an efficient manner of responding to the issues that have been presented.

• Accuracy and Convergence. Demonstrating the accuracy and convergence qualities

of the proposed approach constitutes an essential contribution. Exhaustive mathemat-

ical study and computing experimentation show second-order convergence even in

singularities and fast changes. This understanding benefits practitioners looking for

trustworthy numerical tools to solve situations with steep gradients in the real world.

• Independency on Mesh. The approach is a significant improvement since it can work

well on eXp mesh without requiring any prior knowledge of transition parameters. This

proficiency to use any mesh refinement technique improves the method’s flexibility and

makes it easier to apply to new types of issues.

• Versatility. By putting it to use in a variety of different model situations, the the-

sis demonstrates the adaptability of the technique that is based on quadratic splines.

Problems with various physical understandings, parameter sensitivities, and transition

factors are included in this category.

• Verification and Benchmarking. The suggested method’s numerical findings are thor-

oughly checked against theoretical constraints and compared to established approaches.

The outcomes of the benchmarks show that the technique outperforms the alternatives,

giving it a viable option for resolving singularly perturbed cases.

• Applications to Diverse Fields. In addition to the theoretical assistance, the thesis

strongly emphasizes the practical usefulness of the technique across a wide range of

applications in various academic disciplines. It illustrates the approach’s potential

in numerous fields, from fluid dynamics to electrical engineering. Additionally, it

highlights the importance of the method in solving real-world issues.
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• Future Research Suggestions. In addition to this, the thesis outlines potential direc-

tions for further investigation. It involves applying the method to issues with a higher

dimension, fractional PDEs, and integro differential equations and investigating how it

might be integrated with uncertainty quantification techniques, which will pave the way

for more research and development in the field.

In conclusion, the thesis’s presented numerical approach is essential to the arsenal of aca-

demics and researchers who work with singularly perturbed problems. Because of its accuracy,

convergence features, adaptability, and independence from mesh details, it is an encouraging

option for a wide range of applications, and it has the potential to stimulate innovation and

advancement in computational mathematics and engineering.

1.7 Plan of the thesis
Consisting of a total of seven chapters, this thesis starts with Chapter 1, which provides a

thorough overview and the historical backdrop of previous research in the field of singular

perturbation. Moreover, it provides the justification and objectives that underlie the resolution

of singularly perturbed systems of differential equations and higher-order problems. The

succeeding portions of this thesis consist of six chapters and are arranged in the following

manner:

In Chapter 2, a numerical scheme is developed to solve singularly perturbed convection-

diffusion type degenerate parabolic problems. The degenerative nature of the problem is due

to the coefficient of the convection term. The problem is semi-discretized using the Crank-

Nicolson scheme, and then the quadratic spline basis functions are used to discretize the

semi-discrete problem. A priori bounds for the solution and its derivatives of the continuous

problem are given, which are necessary to analyze the error. A rigorous error analysis shows

that the proposed method is boundary layer resolving and second-order parameter uniformly

convergent. Some numerical experiments have been devised to support the proposed scheme’s

theoretical findings and effectiveness.

Chapter 3 is dedicated to analyzing a parameter-uniform numerical scheme for a system

of weakly coupled singularly perturbed reaction-diffusion equations of arbitrary size with

appropriate boundary conditions. More precisely, quadratic B-spline basis functions with an
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eXp mesh are used to solve a `× ` system whose solution exhibits parabolic (or exponential)

boundary layers at both endpoints of the domain. A convergence analysis is addressed, which

shows a uniform convergence of the second order. To validate the theoretical findings, test

problems are solved numerically.

Chapter 4 presents a uniformly convergent numerical technique for a time-dependent

reaction-dominated singularly perturbed system, including the same diffusion parameters

multiplied with second-order spatial derivatives in all equations. The proposed numerical

approach consists of the Crank-Nicolson scheme in the temporal direction over a uniform

mesh and quadratic B-splines collocation technique over an eXp mesh in the spatial direction.

We derived the robust error estimates to establish the optimal order of convergence. Numerical

investigations confirm the theoretical determinations and the proposed method’s efficiency

and accuracy.

A numerical study for the fourth-order singularly perturbed boundary value problems

(SP-BVPs) is carried out in Chapter 5. The associated differential equation is converted

into a weakly coupled system of two singularly perturbed ordinary differential equations

(SP-ODEs) with Dirichlet boundary conditions to solve the problem numerically. One of the

equations in the system is independent of the perturbation parameter. To solve this system,

we present a numerical technique of quadratic B-splines on an eXp mesh. The established

results show that the scheme is second-order uniformly convergent in the discrete maximum

norm. The theoretical results are validated using the proposed method on two test problems.

Chapter 6 contemplates a numerical investigation of the convection-diffusion type’s

fourth-order singularly perturbed linear and nonlinear boundary value problems. First, the

considered linear fourth-order differential equation is converted into a strongly/weakly coupled

singularly perturbed system (depending on the coefficient of the first-order derivative) of

two ordinary differential equations with Dirichlet boundary conditions to solve the problem

numerically. To obtain the solution for this system, we propose a numerical method of

quadratic B-splines on an eXp mesh. Convergence analysis shows that the proposed numerical

scheme is second-order uniformly convergent in the discrete maximum norm. The nonlinear

differential equation is linearized using the quasilinearization technique, and then the proposed

approach is applied to the linearized problem. The theoretical outcomes are validated by
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executing the proposed method on three test problems.

In conclusion, Chapter 7 provides a concise recapitulation of the outcomes, highlighting

the different contributions generated as a result of this thesis. In furtherance of this, it presents

a variety of opportunities for future research that might be conducted with the intention of

building upon already established theoretical findings.

Comprehensive numerical findings have been offered to support the theoretical discoveries

and to demonstrate the accuracy of the advised computational methods. The numerical

outcomes corresponding to the various illustrations have been brought out in the numerical

section of each chapter. Each chapter is supplemented by appropriate graphs and tables, which

support the analytical findings obtained from the chapter.
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A uniformly convergent quadratic

B-spline based scheme for singularly

perturbed degenerate parabolic

problems

The fundamental motivation behind this work is to provide a numerical scheme for singularly

perturbed degenerate parabolic PDEs that is robust and accurate over a broad range of pa-

rameter values. Chemical kinetics, biological pattern formation, heat conduction in materials

with sharp surfaces, thin-film flows, and the modeling of semiconductor devices are just a

few examples of many scientific and technical fields where these equations are frequently

used. In the framework of PDEs, degeneracy is when some coefficients or terms become zero

or explode at some points in the domain. Thus, the typical solutions fail, and the analysis

becomes more complicated.

The work of this chapter has been published in the following publication:

S. Singh, D. Kumar, H. Ramos, “A uniformly convergent quadratic B-spline based scheme for

singularly perturbed degenerate parabolic problems.” Math. Comput. Simul., 195 (2022),

88–106.
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The combined effect of singular perturbation and degeneracy renders these problems

difficult and intriguing to investigate. Using standard computational techniques may result in

an excessive amount of errors or the requirement of fine grids, which leads to inefficiency in

the computation. The analysis of such issues calls for advanced mathematical methods that

consider the relationship between singular perturbations and degeneracy.

2.1 Problem statement

In this study, we consider the following parabolic singularly perturbed (PSP) initial-boundary

value problem (IBVP) named as degenerate parabolic convection-diffusion IBVP in the

rectangular domain G = Gx × Gt = (0, 1)× (0, T ] for some finite positive T :

Lx,εu(x, t) ≡ ε
∂2u

∂x2
+ b(x, t)

∂u

∂x
− c(x, t)∂u

∂t
− d(x, t)u = f(x, t), (x, t) ∈ G, (2.1.1a)

with the initial condition

u(x, 0) = V(x) on Px = [0, 1]× {0}, (2.1.1b)

and the boundary conditions

u(0, t) = p0(t) on P0 = {0} × [0, T ], (2.1.1c)

u(1, t) = p1(t) on P1 = {1} × [0, T ], (2.1.1d)

where 0 < ε � 1 is a perturbation parameter; P0, P1, and Px are the left, right, and the

bottom sides of the domain G, respectively. The boundary of the domain G is defined as

∂G = Px ∪ P0 ∪ P1. We assume that the coefficients b(x, t), c(x, t), and d(x, t) satisfy

b(x, t) = b0(x, t)xp, p ≥ 1, (x, t) ∈ G,

b0(x, t) ≥ β > 0, c(x, t) ≥ γ > 0, d(x, t) ≥ δ ≥ 0, (x, t) ∈ G. (2.1.2)

Problem (2.1.1) is related to the flow problem when directed towards the left side P0 of the

domain, and the flow stops at this boundary. These problems arise in modeling heat flow
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and mass transport near an oceanic rise [74] and developing the models of thermal boundary

layers in laminar flow [75].

As the coefficient b(x, t) of the convection term vanishes at x = 0, the problem (2.1.1)

is called a problem with a boundary turning point. It covers two aspects: the turning point

for p = 1 is referred to as a simple turning point (assuming the linear velocity distribution

[74]), and it is a multiple turning point when p > 1 (for higher orders of velocity distribution

[75], Chapter 12). The reduced problem obtained by taking ε = 0 in (2.1.1) is the following

first-order hyperbolic PDE

b(x, t)(u0)x(x, t)− c(x, t)(u0)t(x, t)− d(x, t)u0(x, t) = f(x, t), (x, t) ∈ G,

u0(x, t) = u(x, t), (x, t) ∈ Px ∪ P1. (2.1.3)

The left side P0 and all other lines parallel to P0 are the characteristic curves of the reduced

problem when b(0, t) = 0, c(0, t) > 0. Consequently, the resulting boundary layer functions

are called the parabolic boundary layer functions. These are characterized by the boundary

values u(0, t) at the left side P0. It has been observed that the left lateral surface and the

characteristic curve of (2.1.3) do not have any intersection. However, their deviation increases

vertically, far from the lateral boundary (see [76, 77]). They have also observed the exponential

(regular) boundary layer function as a result of the inconsistency between the boundary value

p0(t) and the value being transported along the characteristic at the intersection point (if

b(x, t) > 0, ∀(x, t) ∈ G then every characteristic intersects P0 at one point). In general, a

parabolic boundary layer of width O(
√
ε) appears in the solution to the problem (2.1.1) in the

neighbourhood of P0 as ε approaches zero.

2.1.1 Literature of the problem

To solve the problem (2.1.1), Dunne et al. [78] proposed an almost first-order parameter-

uniform upwind finite-difference scheme on a Shishkin mesh. Christara et al. [79] proposed

quadratic-spline collocation for the space discretization and classical finite differences for

the time discretization. They have also introduced adaptive mesh techniques providing

competitive results to solve the American put option pricing problems, giving very competitive
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results. Viscor and Stynes [80] used a standard implicit central difference scheme to solve the

degenerate parabolic problem and showed that the method is dependent on the degeneracy

parameter but is independent of the singular perturbation parameter. To solve (2.1.1), Gupta

and Kadalbajoo [76] proposed a B-spline collocation method in space combined with the

implicit Euler scheme in time. To solve singularly perturbed degenerate convection-diffusion

problems with discontinuity in the source term, Clavero et al. [81] constructed a parameter-

uniform scheme. They used an upwind finite difference scheme with a Shishkin mesh in the

spatial direction and the implicit Euler method on a uniform mesh in the temporal direction.

The discontinuity originates from the presence of an interior layer in the solution to the

problem. Majumdar and Natesan [82] proposed an almost first-order convergent in space

and first-order convergent in time parameter-uniform numerical scheme consisting of the

implicit-Euler scheme for the time derivative and an upwind finite difference scheme for the

spatial derivatives. They have used the Richardson extrapolation scheme to increase the order

of accuracy toO(N−2 ln2N+(∆t)2). Majumdar and Natesan [83] proposed a hybrid scheme

comprising a central difference scheme in the inner region and the midpoint upwind scheme

in the outer region. They proved the second-order (more precisely, second-order in the outer

region and almost second-order in the inner region) parameter-uniform convergence in space.

Yadav et al. [84] proposed an implicit Euler difference formula and a hybrid scheme in the

temporal and spatial directions, respectively. To resolve the boundary layer, they have used a

generalized Shishkin mesh. Moreover, they have used the Richardson extrapolation in the time

direction to increase time accuracy. Recently, Kumar and Aguiar [85] constructed a parameter-

uniform method of order one for the solution of (2.1.1). Their discretization consists of the

implicit Euler method in the temporal direction and an upwind finite difference scheme in the

spatial direction. The boundary layer is resolved using an adaptive mesh generated using the

equidistribution principle. In this chapter, we aim to construct a parameter-uniform numerical

scheme for the problem (2.1.1). We use the Crank-Nicolson scheme to get the semi-discrete

problem, and then the quadratic B-spline basis functions are used for the full discretization.

An exponentially graded mesh is constructed in the spatial direction to resolve the boundary

layer.

The following outline constitutes the chapter’s structure: Section 2.2 offers some essential
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preliminary findings on the solution and its derivatives. The proposed numerical approach

is described thoroughly in Section 2.3, which includes time and spatial discretizations. In

Section 2.4, we thoroughly examine the scheme’s convergence. To ascertain the efficacy of our

methodology, we undertake numerical simulations and subsequently analyze the outcomes

in Section 2.5. Finally, in Section 2.6, the chapter is concluded with final remarks and

recommendations for potential avenues of future research within this domain.

Throughout the chapter, C is a positive generic constant independent of the perturbation

and mesh parameters and can take different values at different places. Furthermore, we

denote the maximum norm by ‖.‖ e.g., for a function w defined on a domain D, we define

‖w‖D = maxD |w|.

2.2 Properties of the solution of the continuous problem

In the numerical study of SPPs, analytical results play an important role in finding the bounds

for the exact solution to the continuous problem, the solution, and the derivatives to the

semi-discrete and fully discretized problems. We assume that b(x, t), c(x, t), and d(x, t) are

Hölder continuous in both space and time with exponent λ ∈ (0, 1). We further assume

that the functions b0(x, t), c(x, t), d(x, t), and f(x, t) on G, and V , p0, and p1 on ∂G are

sufficiently smooth, which guarantee the essential smoothness of the solution on G. The

following conditions are also made on the problem data given in (2.1.1) (see [84, 86] for

definitions of Hölder continuous function and the space CK
λ ):

b(x, t), c(x, t), d(x, t), f(x, t) ∈ Cq
λ(G), V(x) ∈ Cq+2

λ [0, 1],

p0(t) ∈ Cq/2+1
λ [0, T ], p1(t) ∈ Cq/2+1

λ [0, T ], q ≥ 0, λ ∈ (0, 1).

Furthermore, at the corner points P c = (P0 ∪ P1) ∩ Px = {(0, 0), (1, 0)}, the problem data

satisfy the compatibility conditions (see [84]) for time derivatives up to order q0 = [q/2] + 1.

The following compatibility conditions ensure the existence of a unique solution to the

problem (2.1.1)

V(0) = p0(0), V(1) = p1(0), (2.2.1a)
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−c(0, 0)
∂p0(0, 0)

∂t
= f(0, 0)−

(
ε
∂2

∂x2
+ b(0, 0)

∂

∂x
− d(0, 0)

)
V(0), (2.2.1b)

−c(1, 0)
∂p1(1, 0)

∂t
= f(1, 0)−

(
ε
∂2

∂x2
+ b(1, 0)

∂

∂x
− d(1, 0)

)
V(1). (2.2.1c)

Results given in [87] directly imply that the solution to the IBVP (2.1.1) satisfies the following

bounds:

|u(x, 0)− V(x)| ≤ Ct,

|u(1, t)− p1(t)| ≤ C(1− x).

Furthermore, it can be noted that the solution u(x, t) to the problem (2.1.1) is bounded, i.e.,

‖u(x, t)‖G ≤ C.

Lemma 2.2.1 (Continuous minimum principle). Let W (x, t) ∈ C2,1(G). If W (x, t) ≥

0, ∀ (x, t) ∈ ∂G and Lx,εW (x, t) ≤ 0, ∀ (x, t) ∈ G, then W (x, t) ≥ 0, ∀ (x, t) ∈ G.

Proof. For the proof, the readers are referred to [82].

The stability bound for the solution to the problem (2.1.1) given in the following lemma

can be obtained using Lemma 2.2.1.

Lemma 2.2.2 (Stability bound). For all ε > 0, the solution u(x, t) of the IBVP (2.1.1) satisfies

the following bound

‖u‖G ≤ ‖u‖∂G +
T

γ
‖f‖G.

Proof. Let us construct the barrier functions

Φ±(x, t) = ‖u‖∂G +
t

γ
‖f‖G ± u(x, t), (x, t) ∈ G.

From above we find Φ±(x, t) > 0, ∀ (x, t) ∈ ∂G. Also, as c(x, t) ≥ γ > 0 and ‖f‖ ≥

f(x, t), ∀ (x, t) ∈ G, so −c(x, t)γ−1‖f‖ ± f(x, t) ≤ 0. Using the above inequalities, we

obtain

Lx,εΦ±(x, t) ≤ 0, ∀ (x, t) ∈ G.
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Therefore, direct use of Lemma 2.2.1 gives Φ±(x, t) ≥ 0, ∀ (x, t) ∈ G, which leads to the

desired bound.

The following theorem gives the bounds for the mixed derivatives of u.

Theorem 2.2.1. For all i, j ≥ 0 satisfying 0 ≤ i + 2j ≤ 4, the solution u(x, t) of the IBVP

(2.1.1) satisfies ∥∥∥∥ ∂i+ju∂xi∂tj

∥∥∥∥
G
≤ C(1 + ε−i/2 exp(−x

√
δ/ε)).

Proof. For the proof, the readers are referred to [83].

The estimates obtained in Theorem 2.2.1 are weak from the convergence point of view,

and these bounds are insufficient to get parameter-uniform results. To obtain stronger error

bounds on u(x, t) and its derivatives, we decompose the solution u(x, t) into two parts as

u(x, t) = y(x, t) + z(x, t), ∀ (x, t) ∈ G, where y(x, t) and z(x, t) represent the regular

(smooth) and singular components, respectively. The regular component is the solution to the

following non-homogeneous problem

Lx,εy(x, t) = f(x, t), (x, t) ∈ G,

y(x, t) = u(x, t), (x, t) ∈ Px ∪ P1,

and the singular component is the solution to the following homogeneous problem

Lx,εz(x, t) = 0, (x, t) ∈ G,

z(x, t) = 0, (x, t) ∈ Px ∪ P1,

z(x, t) = u(x, t)− y(x, t), (x, t) ∈ P0.

The following theorem gives the bounds of the mixed derivatives of the regular and singular

components.

Theorem 2.2.2. For all i, j ≥ 0 satisfying 0 ≤ i + 2j ≤ 6, the regular and singular

components satisfy ∥∥∥∥ ∂i+jy∂xi∂tj

∥∥∥∥
G
≤ C(1 + ε3− i

2 ),
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Chapter 2∥∥∥∥ ∂i+jz∂xi∂tj

∥∥∥∥
G
≤ C(ε−i/2 exp(−x

√
δ/ε)).

Proof. Let us assume an asymptotic expansion for the regular component given by

y(x, t) = y0(x, t) + εy1(x, t) + ε2y2(x, t) + ε3y3(x, t) + · · · = v(x, t) + ry(x, t), (x, t) ∈ G,

(2.2.2)

where v(x, t) = y0(x, t) + εy1(x, t) + ε2y2(x, t), and ry(x, t) denotes the remainder term

(contribution of the higher order terms). The solution y0(x, t) satisfies the following reduced

hyperbolic problem

(
b
∂y0

∂x
− c∂y0

∂t
− dy0

)
(x, t) = f(x, t), (x, t) ∈ G,

y0(x, t) = u(x, t), (x, t) ∈ Px ∪ P1. (2.2.3)

Also, yk(x, t) (for k = 1, 2) satisfy the following equations

(
b
∂yk
∂x
− c∂yk

∂t
− dyk

)
(x, t) = −

(
∂2yk−1

∂x2

)
(x, t), (x, t) ∈ G,

yk(x, t) = 0, (x, t) ∈ Px ∪ P1, (2.2.4)

and

Lx,εry(x, t) = −ε3

(
∂2y2

∂x2

)
(x, t), (x, t) ∈ G,

ry(x, t) = 0, (x, t) ∈ ∂G. (2.2.5)

Thus, v(x, t) satisfies

Lx,εv(x, t) = f(x, t), (x, t) ∈ G,

v(x, t) = u(x, t), (x, t) ∈ Px ∪ P1. (2.2.6)

Since yk(x, t), for k = 0, 1, 2 are ε free solutions of the first-order reduced hyperbolic PDEs

(2.2.3) and (2.2.4) with bounded coefficients. So for all i, j ≥ 0 satisfying 0 ≤ i + 2j ≤ 6,
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we have ∥∥∥∥∂i+jyk∂xi∂tj

∥∥∥∥
G
≤ C, k = 0, 1, 2. (2.2.7)

Also, as ry(x, t) is a solution of (2.2.5) (a problem similar to the problem (2.1.1)), proceeding

similarly as in [84] for all i, j ≥ 0, satisfying 0 ≤ i+ 2j ≤ 6 gives∥∥∥∥ ∂i+jry∂xi∂tj

∥∥∥∥
G
≤ Cε−i/2. (2.2.8)

Using the estimates of (2.2.7) and (2.2.8), we get the desired bounds for the regular component.

Now, to get the bounds for the singular component z(x, t), we consider the following barrier

functions

Φ±(x, t) = C exp

(
−x
√
δ

ε

)
exp(t)± z(x, t), (x, t) ∈ G, (2.2.9)

where C is chosen in such a way that

Φ±(x, 0) ≥ 0, (x, 0) ∈ Px,

Φ±(0, t) ≥ 0, (0, t) ∈ P0,

Φ±(1, t) ≥ 0, (1, t) ∈ P1.

Then, Φ±(x, t) ≥ 0, ∀ (x, t) ∈ ∂G and Lx,εΦ±(x, t) ≤ 0, ∀(x, t) ∈ G (as d(x, t) ≥ δ > 0).

Thus, using Lemma 2.2.1, we get

|z(x, t)| ≤ C exp

(
−x
√
δ

ε

)
exp(t) ≤ C exp

(
−x
√
δ

ε

)
, (x, t) ∈ G. (2.2.10)

Using a similar approach to that given in [88], we can find the bounds on the z(x, t) derivatives.

Hence, the proof is completed.

2.3 The discrete problem
In this section, we discretize the continuous problem (2.1.1). First, it is discretized in the

temporal direction using the Crank-Nicolson scheme on a uniform mesh. Some essential

properties of the solution to the semi-discrete problem are given. Then, after constructing
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a piecewise uniform exponentially graded mesh in the spatial direction, a quadratic spline

collocation method (QSCM) is used to find the solution at the collocation points.

2.3.1 Temporal semi-discretization

To get a uniform partition ΩNt
t = {tj = j∆t, j = 0, 1, . . . , Nt} of the domain Gt = [0, T ] in

the temporal direction, we divide [0, T ] into Nt mesh subintervals with step length ∆t = T
Nt

.

At (j + 1
2
)-th time level, the problem (2.1.1) is discretized as

ũ0(x) = V(x), x ∈ Gx, (2.3.1a)

Lũj+1(x) ≡ ε

2
ũj+1
xx (x) +

bj+
1
2 (x)

2
ũj+1
x (x)−

(
cj+

1
2 (x)

∆t
+
dj+

1
2 (x)

2

)
ũj+1(x)

= gj+1(x), x ∈ Gx, j ≥ 0, (2.3.1b)

ũj+1(0) = p0(tj+1), ũj+1(1) = p1(tj+1), j ≥ 0, (2.3.1c)

where ũj+1 ≈ u(x, tj+1) is the solution to (2.3.1) at (j + 1)-th time level, and

gj+1(x) =
1

2
(f j+1(x) + f j(x))− ε

2
ũjxx(x)− b

j+ 1
2 (x)

2
ũjx(x)−

(
cj+

1
2 (x)

∆t
− d

j+ 1
2 (x)

2

)
ũj(x).

To establish the convergence, we represent the local truncation error (LTE) as ej+1 =

Lνj+1(x) − gj+1, where νj+1 is the approximate solution of (2.3.1). We also define the

global error as follows, which is the sum of all LTEs at each time level

Ej =

j∑
n=0

en.

The proof of the following lemmas, which estimate the LTE and the global truncation error,

can be seen in [89].

Lemma 2.3.1. Under the assumption∣∣∣∣∂ju(x, t)

∂tj

∣∣∣∣ ≤ C, ∀ (x, t) ∈ G, 0 ≤ j ≤ 3,
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the LTE ej+1 for the scheme (2.3.1) in the temporal direction satisfies

‖ej+1‖ ≤ C(∆t)3.

Lemma 2.3.2. Under the assumption of Lemma 2.3.1, the global error Ej of the discretized

scheme (2.3.1) satisfies the bound

sup
j≤ T

∆t

‖Ej‖ ≤ C(∆t)2.

The above results conclude that the semi-discrete scheme (2.3.1) is second-order conver-

gent in time. The solution ũj+1(x) to the problem (2.3.1) can also be decomposed into regular

and singular component as ũj+1(x) = ỹj+1(x) + z̃j+1(x). The bounds on these components

are given in the following theorem (refer to [90]).

Theorem 2.3.1. The solution ũj+1(x) and its derivatives satisfy the following bounds∣∣∣∣dkũj+1(x)

dxk

∣∣∣∣ ≤ C(1 + ε−k/2 exp(−x
√
δ/ε)), x ∈ Gx, 0 ≤ k ≤ 4,

where the regular and singular components satisfy the following bounds∣∣∣∣dkỹj+1(x)

dxk

∣∣∣∣ ≤ C(1 + ε(3− k
2

)), x ∈ Gx, 0 ≤ k ≤ 4,∣∣∣∣dkz̃j+1(x)

dxk

∣∣∣∣ ≤ C(ε−k/2 exp(−x
√
δ/ε)), x ∈ Gx, 0 ≤ k ≤ 4.

2.3.2 Spatial mesh generation

To obtain an exponentially graded mesh ΩNx
x = {xi| 0 ≤ i ≤ Nx} divide the interval (0, 1)

intoNx > 2 (multiple of 2) subintervals Ii = [xi−1, xi]. Let Pk be the space of all polynomials

of degree ≤ k. We generate these points with the help of the mesh generating function Ψ(ρ),

which is monotonically increasing, continuous, and piecewise continuously differentiable,

given by

Ψ(ρ) = − ln(1− 2Ck,ερ), ρ ∈ [0, 1/2− 1/Nx], (2.3.2)
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where Ck,ε = 1 − exp

(
− 1

(k+1)
√
ε

)
∈ R+. We split the interval [0, 1] as a union of two

subintervals [0, xNx
2
−1] and [xNx

2
−1, 1], where xNx

2
−1 is the transition point of the mesh. The

mesh points in these subintervals are defined as

xi =


(k + 1)

√
εΨ(ρi), i = 0, 1, . . . , Nx

2
− 1,

xNx
2
−1 +

(1− xNx
2
−1

Nx

2
+ 1

)
, i = Nx

2
, . . . , Nx,

(2.3.3)

where ρi = i
Nx

for i = 0, 1, . . . , Nx and h̃i = xi − xi−1 for i = 1, 2, . . . , Nx. The mesh

points are distributed equidistantly in [xNx
2
−1, 1] and exponentially graded in [0, xNx

2
−1]

with Nx/2 + 1, Nx/2 − 1 elements, respectively. Using the mesh characterizing function

Φ = exp(−Ψ) defined in [91], the mesh spacing satisfies

h̃i ≤

C(k + 1)
√
εN−1

x max Ψ′(ρi) ≤ C
√
εN−1

x , i = 1, 2, . . . , Nx

2
− 1,

CN−1
x , i = Nx

2
, . . . , Nx,

(2.3.4)

and also they satisfy the following estimate [91, 92]

|h̃i+1 − h̃i| = C


√
εN−2

x , i = 1, 2, . . . , Nx

2
− 1,

0, i = Nx/2, . . . , Nx.

(2.3.5)

2.3.3 Implementation of QSCM

In this section, by using QSCM in the spatial direction on an exponentially graded mesh, we

convert the semi-discrete scheme (2.3.1) into a fully discrete scheme. For m, k ∈ N (m < k)

we define the polynomial space Smk as

Smk (ΩNx
x ) = {r ∈ Cm[0, 1] : r|Ii ∈ Pk, for i = 1, 2, . . . , Nx}.
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We further define the quadraticB-spline functionsBi(x) ∈ S1
2(ΩNx

x ) for i = 0, 1, 2, . . . , Nx, Nx+

1 as follows

B0(x) =


(x1 − x)2

h̃2
1

, x0 ≤ x ≤ x1,

0, otherwise,

B1(x) =



h̃2
1 − (x1 − x)2

h̃2
1

− (x− x0)2

h̃1(h̃1 + h̃2)
, x0 ≤ x ≤ x1,

(x2 − x)2

h̃1(h̃1 + h̃2)
, x1 ≤ x ≤ x2,

0, otherwise,

and for i = 2, 3, . . . , Nx − 1

Bi(x) =



(x− xi−2)2

h̃i−1(h̃i−1 + h̃i)
, xi−2 ≤ x ≤ xi−1,

(x− xi−2)(xi − x)

h̃i(h̃i−1 + h̃i)
+

(xi+1 − x)(x− xi−1)

h̃i(h̃i + h̃i+1)
, xi−1 ≤ x ≤ xi,

(xi+1 − x)2

h̃i+1(h̃i + h̃i+1)
, xi ≤ x ≤ xi+1,

0, otherwise,

while for i = Nx, Nx + 1 these are given as

BNx(x) =



(xNx−2 − x)2

h̃Nx−1(h̃Nx−1 + h̃Nx)
, xNx−2 ≤ x ≤ xNx−1,

h̃2
Nx
− (xNx−1 − x)2

h̃2
Nx

− (x− xNx)2

h̃Nx(h̃Nx−1 + h̃Nx)
, xNx−1 ≤ x ≤ xNx ,

0, otherwise,

BNx+1(x) =


(xNx−1 − x)2

h̃2
Nx

, xNx−1 ≤ x ≤ xNx ,

0, otherwise.

Now we define the collocation points (mid points of Ii) as xi−1/2 = xi+xi−1

2
= xi−1 + h̃i

2
=

xi − h̃i
2
, i = 1, 2, . . . , Nx. We seek an approximate solution at the (j + 1)-th time level at
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these collocation points as

Sj+1(x) =
Nx+1∑
k=0

wj+1
k Bk(x), j = 0, 1, . . . , Nt − 1, (2.3.6)

wherewj+1
k are the coefficients at the (j+1)-th time level. The conversion of the semi-discrete

scheme (2.3.1) into a fully discrete scheme using this collocation method results in

S0
i−1/2 = V(xi−1/2),

LSj+1
i−1/2 = gj+1(xi−1/2), for i = 1, 2, . . . , Nx,

Sj+1
0 = p0(tj+1), Sj+1

Nx
= p1(tj+1). (2.3.7)

At each time level, the values of S, S ′, S ′′ at the mid-points are given by

Sj+1(xi−1/2) =

(
h̃i

4(h̃i + h̃i−1)

)
wj+1
i−1 +

(
1− h̃i

4(h̃i + h̃i−1)
− h̃i

4(h̃i + h̃i+1)

)
wj+1
i

+

(
h̃i

4(h̃i + h̃i+1)

)
wj+1
i+1 ,

(S ′)j+1(xi−1/2) =

(
−1

h̃i + h̃i−1

)
wj+1
i−1 +

(
1

h̃i + h̃i−1

− 1

h̃i + h̃i+1

)
wj+1
i

+

(
1

h̃i + h̃i+1

)
wj+1
i+1 ,

(S ′′)j+1(xi−1/2) =

(
2

h̃i(h̃i + h̃i−1)

)
wj+1
i−1 +

(
− 2

h̃i(h̃i + h̃i−1)
− 2

h̃i(h̃i + h̃i+1)

)
wj+1
i

+

(
2

h̃i(h̃i + h̃i+1)

)
wj+1
i+1 . (2.3.8)

The values of wj+1
i for i = 0, 1, . . . , Nx + 1 are calculated by solving the following system

wj+1
0 = p0(tj+1),

[LNxwj+1]i−1/2 = gj+1(xi−1/2), i = 1, 2, . . . , Nx,

wj+1
Nx+1 = p1(tj+1), (2.3.9)
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where wj+1 = (wj+1
0 , . . . , wj+1

Nx+1)T ∈ RNx+2. The operator LNx and gj+1(xi−1/2) in (2.3.9)

are defined as

[LNxwj+1]i−1/2 =
ε

2

[
2(wj+1

i+1 − w
j+1
i )

h̃i(h̃i + h̃i+1)
−

2(wj+1
i − wj+1

i−1 )

h̃i(h̃i + h̃i−1)

]
+
b
j+ 1

2

i−1/2

2

[
wj+1
i+1 − w

j+1
i

h̃i + h̃i+1

+
wj+1
i − wj+1

i−1

h̃i + h̃i−1

]
−

(
c
j+ 1

2

i−1/2

∆t
+
d
j+ 1

2

i−1/2

2

)[
h̃iw

j+1
i−1

4(h̃i + h̃i−1)

+

(
1− h̃i

4(h̃i + h̃i−1)
− h̃i

4(h̃i + h̃i+1)

)
wj+1
i +

h̃iw
j+1
i+1

4(h̃i + h̃i+1)

]
,

and

gj+1(xi−1/2) =
1

2
(f j+1(xi−1/2) + f j(xi−1/2))− ε

2

[
2(wji+1 − w

j
i )

h̃i(h̃i + h̃i+1)
−

2(wji − w
j
i−1)

h̃i(h̃i + h̃i−1)

]

−
b
j+ 1

2

i−1/2

2

[
wji+1 − w

j
i

h̃i + h̃i+1

+
wji − w

j
i−1

h̃i + h̃i−1

]
−

(
c
j+ 1

2

i−1/2

∆t
−
d
j+ 1

2

i−1/2

2

)

×

[
h̃iw

j
i−1

4(h̃i + h̃i−1)
+

(
1− h̃i

4(h̃i + h̃i−1)
− h̃i

4(h̃i + h̃i+1)

)
wji +

h̃iw
j
i+1

4(h̃i + h̃i+1)

]
,

where b
j+ 1

2

i−1/2 = b(xi−1/2, tj+1/2), c
j+ 1

2

i−1/2 = c(xi−1/2, tj+1/2), and d
j+ 1

2

i−1/2 = d(xi−1/2, tj+1/2).

We fix h̃0 = h̃Nx+1 = 0. It gives rise to a linear system of the form

Aiw
j+1
i−1 +Biw

j+1
i + Ciw

j+1
i+1 = gj+1(xi−1/2),

where

Ai =
ε

h̃i(h̃i + h̃i−1)
−

b
j+ 1

2

i−1/2

2(h̃i + h̃i−1)
−
(
c
j+ 1

2

i−1/2

∆t
+
d
j+ 1

2

i−1/2

2

)
h̃i

4(h̃i + h̃i−1)
,

Bi = −ε
[

1

h̃i(h̃i + h̃i+1)
+

1

h̃i(h̃i + h̃i−1)

]
+
b
j+ 1

2

i−1/2

2

[
−1

h̃i + h̃i+1

+
1

h̃i + h̃i−1

]

−
(
c
j+ 1

2

i−1/2

∆t
+
d
j+ 1

2

i−1/2

2

)(
1− h̃i

4(h̃i + h̃i−1)
− h̃i

4(h̃i + h̃i+1)

)
,
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Ci =
ε

h̃i(h̃i + h̃i+1)
+

b
j+ 1

2

i−1/2

2(h̃i + h̃i+1)
−
(
c
j+ 1

2

i−1/2

∆t
+
d
j+ 1

2

i−1/2

2

)
h̃i

4(h̃i + h̃i+1)
.

2.4 Convergence analysis

In this section, we shall develop the parameter-uniform convergence of the proposed method.

We find ṽj+1 ∈ S1
2(ΩNx

x ) such that

[Lṽj+1]i−1/2 = gj+1(xi−1/2), i = 1, 2, . . . , Nx, ṽ
j+1
0 = p0(tj+1), ṽj+1

Nx
= p1(tj+1). (2.4.1)

We represent ṽj+1(x) as

ṽj+1(x) =
Nx+1∑
k=0

w̃j+1
k Bk(x), j = 0, 1, . . . , Nt − 1.

Applying the collocation scheme at each time level, the coefficients w̃j+1
k are determined by

solving the equivalent system

[LNxw̃j+1]i−1/2 = gj+1(xi−1/2), i = 1, 2, . . . , Nx, w̃
j+1
0 = p0(tj+1), w̃j+1

Nx+1 = p1(tj+1),

(2.4.2)

where w̃j+1 = (w̃j+1
0 , . . . , w̃j+1

Nx+1) ∈ RNx+2. Now, first, we discuss the error estimates in

S0
2-interpolation, which will be used to prove error estimates in S1

2-interpolation. After

concluding all these estimates, we can easily prove the uniform convergence of the proposed

method.

2.4.1 S0
2-interpolation

To find a piecewise quadratic function I0
2v

j+1 ∈ S0
2(ΩNx

x ) for an arbitrary function vj+1 ∈

C0(Gx), consider the following interpolation problem

(I0
2v

j+1)i = vj+1
i , i = 0, 1, . . . , Nx, and (I0

2v
j+1)i−1/2 = vj+1

i−1/2, i = 1, 2, . . . , Nx,

where vj+1
i = v(xi, tj+1), vj+1

i−1/2 = v(xi−1/2, tj+1).
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Theorem 2.4.1. Assuming bj+1, cj+1, dj+1, f j+1 ∈ C4(Gx), the interpolating error ũj+1 −

I0
2 ũ

j+1 for the semi-discrete solution ũj+1 of (2.3.1) at each time level satisfies the following

bounds

‖ũj+1 − I0
2 ũ

j+1‖ ≤ CN−3
x ,

max
i=1,2,...,Nx

|(ũj+1 − I0
2 ũ

j+1)′i−1/2| ≤ CN−2
x ,

√
ε max
i=1,2,...,Nx

|(ũj+1 − I0
2 ũ

j+1)′′i−1/2| ≤ CN−2
x .

Proof. The interpolating error in the solution and its derivatives satisfy the following bounds

[92]

‖ũj+1 − I0
2 ũ

j+1‖Ii ≤ Ch̃3
i ‖(ũj+1)′′′‖Ii , (2.4.3a)

|(ũj+1 − I0
2 ũ

j+1)′i−1/2| ≤ Ch̃2
i ‖(ũj+1)′′′‖Ii , (2.4.3b)

|(ũj+1 − I0
2 ũ

j+1)′′i−1/2| ≤ Ch̃2
i ‖(ũj+1)(4)‖Ii . (2.4.3c)

Applying the decomposition of ũj+1 and the linearity property of I0
2 , the interpolating error in

ũj+1 can be decomposed in the following manner

ũj+1 − I0
2 ũ

j+1 = (ỹj+1 − I0
2 ỹ

j+1) + (z̃j+1 − I0
2 z̃

j+1). (2.4.4)

The above decomposition encourages us to separately compute the error estimates for regular

and singular components. For the regular component, the use of Theorem 2.3.1 and inequality

(2.3.4) give

‖ỹj+1 − I0
2 ỹ

j+1‖Ii ≤ Ch̃3
i ‖(ỹj+1)′′′‖Ii ≤ CN−3

x ,

max
i=1,2,...,Nx

|(ỹj+1 − I0
2 ỹ

j+1)′i−1/2| ≤ Ch̃2
i ‖(ỹj+1)′′′‖Ii ≤ CN−2

x ,

max
i=1,2,...,Nx

|(ỹj+1 − I0
2 ỹ

j+1)′′i−1/2| ≤ Ch̃2
i ‖(ỹj+1)(4)‖Ii ≤ CN−2

x .

We analyze the errors of the singular component in layer region and uniform region using

Theorem 2.3.1 and the inequality (2.3.4).
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Case 1. For Ii ⊂ [0, xNx
2
−1], we have

‖z̃j+1 − I0
2 z̃

j+1‖Ii ≤ Ch̃3
i ‖(z̃j+1)′′′‖Ii ≤ CN−3

x .

Case 2. For Ii ⊂ [xNx
2
−1, 1], we have

‖z̃j+1 − I0
2 z̃

j+1‖Ii ≤ Ch̃3
i ‖(z̃j+1)′′′‖Ii ≤ CN−3

x .

The required result is obtained using the triangle inequality in (2.4.4). Using the same

approach, one can obtain bounds for (ũj+1 − I0
2 ũ

j+1)′i−1/2 and (ũj+1 − I0
2 ũ

j+1)′′i−1/2.

Lemma 2.4.1. Assume r ∈ S0
2(ΩNx

x ) such that ri−1/2 = 0, i = 1, 2, . . . , Nx, then

‖r‖Ii ≤ max
i
{|ri−1|, |ri|}, ‖r′‖Ii ≤

4

h̃i
max
i
{|ri−1|, |ri|}, ‖r′′‖Ii ≤

8

h̃2
i

max
i
{|ri−1|, |ri|}.

Proof. Refer to Lemma 3.2 given in [92].

2.4.2 S1
2-interpolation

To find a piecewise quadratic function I1
2v

j+1 ∈ S1
2(ΩNx

x ) for an arbitrary function vj+1 ∈

C1(Gx), consider the following interpolation problem

(I1
2v

j+1)i−1/2 = vj+1
i−1/2, i = 1, 2, . . . , Nx, (I

1
2v

j+1)0 = vj+1
0 , (I1

2v
j+1)Nx = vj+1

Nx
. (2.4.5)

For the quadratic spline r(x), for i = 1, 2, . . . , Nx, we set ri = r(xi), ri−1/2 = r(xi −

h̃i/2), ai = h̃i+1

h̃i+h̃i+1
, and ci = 1− ai = h̃i

h̃i+h̃i+1
. Let G : S1

2(ΩNx
x )→ RNx+1 be the operator

defined by

[Gr]i = airi−1 + 3ri + ciri+1,

then because of continuity, the parameters ri−1, ri, and ri−1/2 must satisfy the consistency

relation [93]

airi−1 + 3ri + ciri+1 = 4airi−1/2 + 4ciri+1/2, i = 1, 2, . . . , Nx − 1. (2.4.6)
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Lemma 2.4.2 (Stability of the operator G). Assuming that r0 = rNx = 0 for all ri ∈ RNx+1,

the operator G satisfies the following stability bound

max
i=1,2,...,Nx−1

|ri| ≤
1

2
max

i=1,2,...,Nx−1
|[Gr]i|.

Proof. Refer to [94] for the proof.

Theorem 2.4.2. Assuming that bj+1, cj+1, dj+1, f j+1 ∈ C4(Gx) the interpolating errors

ũj+1 − I1
2 ũ

j+1 for the semi-discrete solution ũj+1 of (2.3.1) at each time level satisfy the

following bounds

max
i=0,1,...,Nx

|(ũj+1 − I1
2 ũ

j+1)i| ≤ CN−4
x , (2.4.7)

‖ũj+1 − I1
2 ũ

j+1‖ ≤ CN−3
x , (2.4.8)

max
i=1,2,...,Nx

|(ũj+1 − I1
2 ũ

j+1)′i−1/2| ≤ CN−2
x , (2.4.9)

√
ε max
i=1,2,...,Nx

|(ũj+1 − I1
2 ũ

j+1)′′i−1/2| ≤ CN−2
x . (2.4.10)

Proof. The interpolating error of an arbitrary function vj+1 ∈ C4(Gx) satisfies

(vj+1 − I1
2v

j+1)0 = (vj+1 − I1
2v

j+1)Nx = 0.

Truncation error is given by using (2.4.5) and (2.4.6)

τ j+1
v,i = [G(vj+1−I1

2v
j+1)]i = aiv

j+1
i−1−4aiv

j+1
i−1/2+3vj+1

i −4civ
j+1
i+1/2+civ

j+1
i+1 , i = 1, 2, . . . , Nx.

(2.4.11)

The use of Taylor series expansion in (2.4.11) implies

|τ j+1
v,i | ≤

1

12
h̃ih̃i+1|h̃i+1 − h̃i|‖(vj+1)′′′‖Ii +

5

96
max{h̃4

i , h̃
4
i+1}‖(vj+1)(4)‖Ii∪Ii+1

. (2.4.12)

Again the truncation error τ j+1
ũ,i can be decomposed as

τ j+1
ũ,i = τ j+1

ỹ,i + τ j+1
z̃,i .
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Using Theorem 2.3.1 and the inequality (2.4.12), the regular component τ j+1
ỹ,i can be bounded

as follows

|τ j+1
ỹ,i | ≤ C(h̃ih̃i+1|h̃i+1 − h̃i|+ max{h̃4

i , h̃
4
i+1}).

In the layer region [0, xNx
2
−1], it is h̃i+1 < h̃i, and thus

|τ j+1
ỹ,i | ≤ C(h̃2

i |h̃i+1 − h̃i|+ h̃4
i ).

Now using (2.3.4) and (2.3.5), we have

|τ j+1
ỹ,i | ≤ CN−4

x .

Following the approach of Lemma 2.4.2, we find

max
i=0,1,...,Nx

|(ỹj+1 − I1
2 ỹ

j+1)i| ≤ CN−4
x . (2.4.13)

A similar procedure can be used to find the following bounds for τ j+1
z̃,i for i = 1, 2, . . . , Nx

2
−1.

|τ j+1
z̃,i | ≤

1

12
h̃ih̃i+1|h̃i+1 − h̃i|‖(z̃j+1)′′′‖Ii +

5

96
max{h̃4

i , h̃
4
i+1}‖(z̃j+1)(4)‖Ii∪Ii+1

≤ CN−4
x

∥∥∥∥ exp

(
−x
√
δ

ε

)∥∥∥∥
Ii

≤ CN−4
x .

For i = Nx

2
, Nx

2
+ 1, . . . , Nx,

|τ j+1
z̃,i | ≤

1

12
h̃ih̃i+1|h̃i+1 − h̃i|‖(z̃j+1)′′′‖Ii +

5

96
max{h̃4

i , h̃
4
i+1}‖(z̃j+1)(4)‖Ii∪Ii+1

≤ CN−4
x ε−2

∥∥∥∥ exp

(
−x
√
δ

ε

)∥∥∥∥
Ii

≤ CN−4
x .
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Using the approach of Lemma 2.4.2, we get

max
i=0,1,...,Nx

|(z̃j+1 − I1
2 z̃

j+1)i| ≤ CN−4
x . (2.4.14)

From the inequalities (2.4.13) and (2.4.14), we can obtain the estimate (2.4.7). To prove

(2.4.8), we use the triangle inequality to obtain

‖ũj+1 − I1
2 ũ

j+1‖ ≤ ‖ũj+1 − I0
2 ũ

j+1‖+ ‖I0
2 ũ

j+1 − I1
2 ũ

j+1‖

≤ ‖ũj+1 − I0
2 ũ

j+1‖+ max
i=0,1,...,Nx

|(ũj+1 − I1
2 ũ

j+1)i|.

From S2
0-interpolation, we know (I0

2 ũ
j+1)i = ũj+1

i , i = 0, 1, . . . , Nx. Using Theorem 2.4.1

and estimate (2.4.7), we obtain (2.4.8). To obtain the estimate (2.4.9), we use Lemma 2.4.1,

Theorem 2.4.1, (2.4.7), and the triangle inequality

|(ũj+1 − I1
2 ũ

j+1)′i−1/2| ≤ |(ũj+1 − I0
2 ũ

j+1)′i−1/2|+ |(I0
2 ũ

j+1 − I1
2 ũ

j+1)′i−1/2|

≤ |(ũj+1 − I0
2 ũ

j+1)′i−1/2|+
4

h̃i
max

i=0,1,...,Nx

|(ũj+1 − I1
2 ũ

j+1)i|.

A simple use of the triangle inequality again gives

√
ε|(ũj+1 − I1

2 ũ
j+1)′′i−1/2| ≤

√
ε|(ũj+1 − I0

2 ũ
j+1)′′i−1/2|+

√
ε|(I0

2 ũ
j+1 − I1

2 ũ
j+1)′′i−1/2|

≤
√
ε|(ũj+1 − I0

2 ũ
j+1)′i−1/2|+

8

h̃2
i

max
i=0,1,...,Nx

√
ε|(ũj+1 − I1

2 ũ
j+1)i|.

Now, using a procedure similar to the one we use to prove (2.4.9), we obtain (2.4.10). Hence,

the proof is completed.

Theorem 2.4.3 (Stability of the operator LNx). The operator LNx satisfies the following

stability bound in the maximum-norm

‖Θ‖ ≤ 4∆t

δ∆t+ 1
‖LNxΘ‖, for all Θ ∈ RNx+2

0 ,

where RNx+2
0 = {s ∈ RNx+2 : s0 = sNx+1 = 0}.

Proof. Refer to [94].
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Theorem 2.4.4. The semi-discrete solution ũj+1(x) of the problem (2.3.1) and the solution

ṽj+1(x) of the problem (2.4.1) satisfy

‖ũj+1 − ṽj+1‖ ≤ CN−2
x ,

‖ũj+1
i−1/2 − ṽ

j+1
i−1/2‖ ≤ CN−2

x , for i = 1, 2, . . . , Nx.

Proof. Using the triangle inequality, we get

‖ũj+1 − ṽj+1‖ ≤ ‖ũj+1 − I1
2 ũ

j+1‖+ ‖I1
2 ũ

j+1 − ṽj+1‖.

As I1
2 ũ

j+1 is the interpolant of ũj+1, it can be written as

I1
2 ũ

j+1(x) =
Nx+1∑
k=0

β̃j+1
k Bk(x).

Thus,

[LNx(w̃j+1 − β̃j+1)]i−1/2 = L(ṽj+1 − I1
2 ũ

j+1)i−1/2, i = 1, 2, . . . , Nx.

Since w̃j+1 − β̃j+1 ∈ RNx+2
0 , the application of Theorems 2.4.2 and 2.4.3 gives

‖I1
2 ũ

j+1 − ṽj+1‖ ≤ ‖w̃j+1 − β̃j+1‖ ≤ CN−2
x .

The second estimate can be obtained by using the same procedure as in Theorem 2.4.4.

Corollary 2.4.1. Assuming that N−lx ≤ C∆t, 0 < l < 1, then

|ũj+1
i−1/2 − ṽ

j+1
i−1/2| ≤ C∆tN−2+l

x , i = 1, 2, . . . , Nx.

This bound is required to prove the parameter-uniform convergence of the fully discrete

scheme.

Theorem 2.4.5. For N−lx ≤ C∆t, 0 < l < 1, we have

‖u(xi−1/2, tj)− Sji−1/2‖ ≤ C((∆t)2 +N−2+l
x ).
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Proof. Let ξji = u(xi−1/2, tj) − Sji−1/2 be the error at j-th time level. We split ξji by the

triangle inequality, as

‖ξji ‖ ≤ ‖u(xi−1/2, tj)− ũji−1/2‖+ ‖ũji−1/2 − ṽ
j
i−1/2‖+ ‖ṽji−1/2 − S

j
i−1/2‖.

Using the corollary 2.4.1 and the boundedness of the time derivative, we get

‖ξji ‖ ≤ C∆t((∆t)2 +N−2+l
x ) + ‖ṽji−1/2 − S

j
i−1/2‖.

Using the stability estimate given in Theorem 2.4.3, it can be proved that

‖ṽji−1/2 − S
j
i−1/2‖ ≤ ‖u(xi−1/2, tj−1)− Sj−1

i−1/2‖,

this recurrence follows at each time level, and finally, we deduce our required estimate

‖ξji ‖ ≤ C∆t((∆t)2 +N−2+l
x ) + ‖ξj−1

i ‖.

Using the inequality repeatedly, we get the required result.

2.5 Numerical simulations and discussion

In this section, to validate the theoretical findings and assess the performance of the proposed

scheme, we have applied our numerical scheme to solve two test problems. For the first

problem, the readers are referred to [76, 78, 84, 85], and for the second problem, the readers

are referred to [82–84]). The numerical results for different values of p are compared with the

existing results. As the exact solutions of the test problems are unknown, the double mesh

principle estimates the errors and convergence orders. To measure the accuracy of the method,

the error estimates are devised in the discrete maximum norm defined as

eNx,Nt
ε = max

j

(
max
i
|U2Nx,2Nt(x2i−1, t2j−1)− UNx,Nt(xi−1/2, tj)|

)
,
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where UNx,Nt(xi, tj) and U2Nx,2Nt(x2i−1, t2j−1) are the numerical solutions to the given

problem by taking (Nx, Nt) and (2Nx, 2Nt) partitions, respectively. Also, the corresponding

order of convergence is defined as

ρNx,Nt
ε =

ln(eNx,Nt
ε /e2Nx,2Nt

ε )

ln 2
.

Furthermore, we calculate the ε-uniform maximum pointwise error eNx,Nt and the correspond-

ing ε-uniform order of convergence ρNx,Nt as follows

eNx,Nt = max
ε
eNx,Nt
ε ,

ρNx,Nt =
ln(eNx,Nt/e2Nx,2Nt)

ln 2
.

Example 2.5.1. Consider the following SP degenerate parabolic IBVP:

ε
∂2u

∂x2
+ xp

∂u

∂x
− ∂u

∂t
− u = x2 − 1, (x, t) ∈ G = (0, 1)× (0, 1],

subject to

u(0, t) = 1 + t2, t ∈ P0, u(1, t) = 0, t ∈ P1, u(x, 0) = (1− x)2, x ∈ Px.

Example 2.5.2. Consider the following SP degenerate parabolic IBVP:

ε
∂2u

∂x2
+ xp

∂u

∂x
− ∂u

∂t
− (x+ p)u = p(x2 − 1) exp(−t), (x, t) ∈ G = (0, 1)× (0, 1],

subject to

u(0, t) = 1 + t2, t ∈ P0, u(1, t) = 0, t ∈ P1, u(x, 0) = (1− x)2, x ∈ Px.

The solutions to these problems exhibit a boundary layer of widthO(
√
ε), so while solving

these problems numerically, we face the difficulty on a uniform mesh (in the spatial direction)

when ε tends to zero. We discretize the spatial domain using an exponentially graded mesh to

overcome this difficulty. Using exponentially graded mesh increases the mesh point density
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Table 2.1: eNx,Nt
ε , ρNx,Nt

ε , eNx,Nt , and ρNx,Nt for Example 2.5.1 for p = 1

Nx

ε 8 16 32 64 128
2−8 9.6503e− 03 2.8447e− 03 7.0104e− 04 1.7688e− 04 4.4147e− 05

1.7623 2.0207 1.9866 2.0024
2−16 9.7260e− 03 2.8849e− 03 7.0998e− 04 1.7933e− 04 4.4779e− 05

1.7533 2.0227 1.9852 2.0018
2−24 9.7269e− 03 2.8849e− 03 7.0999e− 04 1.7934e− 04 4.4780e− 05

1.7533 2.0227 1.9852 2.0018
2−32 9.7269e− 03 2.8849e− 03 7.0999e− 04 1.7934e− 04 4.4780e− 05

1.7533 2.0227 1.9852 2.0018

eNx,Nt (PM) 9.7269e− 03 2.8849e− 03 7.0999e− 04 1.7934e− 04 4.4780e− 05
ρNx,Nt (PM) 1.7533 2.0227 1.9852 2.0018
eNx,Nt ([78]) 6.29e− 02 3.61e− 02 1.94e− 02 9.94e− 03 4.79e− 03
ρNx,Nt ([78]) 0.677 0.811 0.885 0.935
eNx,Nt ([76]) − 2.6631e− 02 1.4511e− 03 7.5647e− 02 3.8609e− 03
ρNx,Nt ([76]) − 0.8759 0.9398 0.9703
eNx,Nt ([84]) 1.593e− 02 3.887e− 03 9.449e− 04 2.345e− 04 6.424e− 5
ρNx,Nt ([84]) 2.035 2.040 2.011 1.868

within the layer region and resolves the boundary layer efficiently.

The numerical results of Example 2.5.1 for different values of ε, p, and Nx are given in

Tables 2.1–2.2. The numerical results (eNx,Nt
ε and ρNx,Nt

ε ) for p = 1 are presented in Table

2.1. A comparison with the schemes proposed by Yadav et al. [84], Dunne et al. [78], and

Gupta and Kadalbajoo [76] is given at the end of Table 2.1. Table 2.2 provides the comparison

of ε-uniform maximum pointwise errors eNx,Nt and the corresponding ε-uniform orders of

convergence ρNx,Nt between the proposed scheme and the schemes considered in [76, 78, 84]

for various values of p > 1. It can be observed that the error bounds do not depend on p.

We have used Nx = Nt to compute the results presented in the tables. These tables show

that the proposed scheme is better than the schemes proposed in [76, 78, 84] regarding the

parameter-uniform error estimates and the order of convergence.

The results obtained for Example 2.5.2 for different values of ε, p, and Nx are given in

Tables 2.3–2.4. A comparative study for p = 1 between the proposed scheme and the scheme

given by Majumdar and Natesan [82] is given in Table 2.3. From these results, it can be

seen that the proposed scheme performs better than the one in [82]. A comparison of eNx,Nt
ε

between the schemes given in [82–84] and the proposed scheme for ε = 2−20 and for different

values of p (2, 6, and 10) are given in Table 2.4.

For Example 2.5.1, a comparison of the results between our scheme and the scheme given
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Table 2.2: Comparison of eNx,Nt and ρNx,Nt for the Example 2.5.1 associated to different
values of p

Nx

p Scheme 8 16 32 64 128
2 [78] 5.67e− 02 4.09e− 02 2.28e− 02 1.21e− 02 5.96e− 03

0.388 0.744 0.825 0.895
[76] − 8.1465e− 03 5.2846e− 03 2.9479e− 03 1.5508e− 03

− 0.6244 0.8421 0.9267
[84] 2.889e− 02 7.860e− 03 2.567e− 03 7.124e− 04 2.299e− 04

1.878 1.614 1.849 1.832
PM 7.8402e− 03 1.8698e− 03 5.5839e− 04 1.5843e− 04 4.7157e− 05

2.0680 1.7436 1.8174 1.7483

6 [76] − 1.0568e− 02 5.4783e− 03 2.9877e− 03 1.5596e− 03
− 0.9479 0.8747 0.9379

[84] 4.743e− 02 2.330e− 02 7.745e− 03 2.649e− 03 8.419e− 04
1.025 1.589 1.548 1.654

PM 3.5792e− 02 1.6816e− 02 4.5071e− 03 1.2934e− 03 4.3795e− 04
1.0875 1.9005 1.8026 1.5624

10 [78] 4.39e− 02 3.72e− 02 2.83e− 02 1.65e− 02 8.36e− 03
0.115 0.511 0.594 0.734

[76] − 1.7124e− 02 5.4782e− 03 2.9877e− 03 1.5595e− 03
− 1.6442 0.8747 0.9379

[84] 1.934e− 01 6.003e− 02 1.607e− 02 4.713e− 03 1.347e− 03
1.688 1.901 1.770 1.806

PM 6.4141e− 03 1.7347e− 02 9.4634e− 03 2.6238e− 03 8.2703e− 04
0.8743 1.8507 1.6657

Table 2.3: eNx,Nt
ε , eNx,Nt , and ρNx,Nt for Example 2.5.2 for p = 1

Nx

ε 8 16 32 64 128
2−10 1.1916e− 02 3.4849e− 03 8.6107e− 04 2.1667e− 04 5.4298e− 05
2−15 1.1961e− 02 3.5096e− 03 8.6690e− 04 2.1810e− 04 5.4348e− 05
2−20 1.1977e− 02 3.5129e− 03 8.6766e− 04 2.1829e− 04 5.4394e− 05
2−25 1.1980e− 02 3.5134e− 03 8.6778e− 04 2.1832e− 04 5.4401e− 05
2−30 1.1981e− 02 3.5135e− 03 8.6780e− 04 2.1832e− 04 5.4402e− 05
2−35 1.1982e− 02 3.5136e− 03 8.6780e− 04 2.1832e− 04 5.4402e− 05

eNx,Nt (PM) 1.1982e− 02 3.5136e− 03 8.6780e− 04 2.1832e− 04 5.4402e− 05
ρNx,Nt (PM) 1.7533 2.0227 1.9852 2.0018
eNx,Nt ([82]) − − 1.0568e− 03 3.3876e− 04 1.0496e− 04
ρNx,Nt ([82]) − − 1.6413 1.6904
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Table 2.4: Comparison of eNx,Nt
ε for Example 2.5.2 for ε = 2−20 associated with the different

values of p

Nx

p Scheme 32 64 128 256
2 [83] with Nt = N2

x 6.8958e− 03 2.6028e− 03 8.9736e− 04 2.9563e− 04
[84] 1.522e− 03 5.568e− 04 1.925e− 04 6.408e− 05
PM 6.7777e− 04 2.7015e− 04 1.0613e− 04 4.1748e− 05

6 [83] with Nt = N2
x 1.4830e− 02 5.6392e− 03 1.9744e− 04 6.4986e− 04

[84] 3.309e− 03 1.222e− 03 4.230e− 04 1.412e− 04
PM 2.1981e− 04 8.7937e− 04 3.3182e− 04 1.2664e− 04

10 [83] with Nt = N2
x 2.1820e− 02 8.1427e− 03 2.9871e− 03 1.0048e− 03

[84] 5.117e− 03 1.886e− 03 6.550e− 04 2.189e− 04
PM 3.0652e− 03 1.2367e− 03 4.6664e− 04 1.7464e− 04

in [76, 78, 84] are also shown graphically (see Figure 2.1(a)). In Figure 2.1(a), eNx,Nt are

plotted for p = 1 by taking Nx from 16 to 256. It clearly shows that eNx,Nt of our scheme

are lower than those considered in [76, 78, 84]. In Figure 2.1(b), we have shown that eNx,Nt

of our scheme for p = 3 are lower than those considered in [83, 84]. To show the physical

phenomenon of the solution to the problems, the surface plots (refer Figure 2.2) for different

values of p and ε are drawn. From these graphs, it can be observed that for small ε (close to

zero), the solution to these problems exhibits a boundary layer at the left lateral surface. It

can also be observed that the width of the boundary layer continuously depends on ε, and it

decreases as ε decreases.
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(a) Comparison of eNx,Nt for Example 2.5.1 for p = 1,
ε = 2−32 from Nx = 16 to Nx = 256
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(b) Log-log plot of eNx,Nt for Example 2.5.2 for p = 3,
ε = 2−32 from Nx = 16 to Nx = 256

Figure 2.1: Maximum absolute error comparison plots

Remark 2.5.1. Numerical experiments carried out in this section do not require any restric-
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(a) p = 3, ε = 2−7 (b) p = 3, ε = 2−35

(c) p = 6, ε = 2−8 (d) p = 6, ε = 2−28

Figure 2.2: Surface plots of numerical solution of the Example 2.5.1 ((a) and (b)) and Example
2.5.2 ((c) and (d)) by using Nx = Nt = 64

tion like N−lx ≤ C∆t, 0 < l < 1 to achieve parameter-uniform estimates.

2.6 Conclusion
A numerical scheme comprising the Crank-Nicolson scheme in the temporal direction and the

quadratic spline collocation method in the spatial direction is developed to solve the singularly

perturbed convection-diffusion type degenerated parabolic problems. An exponentially graded

mesh is used to resolve the boundary layer. The scheme is shown to be second-order parameter-

uniformly convergent through rigorous error analysis. The numerical results for two test

49



Chapter 2

problems validate the theoretical error bounds and show a better performance of the proposed

scheme than some existing methods. For future work, we aim to extend the present method

for higher-dimensional PDEs and systems of PDEs.
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An efficient parameter uniform

spline-based technique for singularly

perturbed weakly coupled

reaction-diffusion systems

Many different scientific and practical applications call for a specific category of mathe-

matical models known as a singularly perturbed weakly coupled reaction-diffusion system

of ODEs. The interaction among diffusion and reaction components in singularly perturbed

BVPs can rise to intriguing pattern generation and spatial organization phenomena in chemi-

cal kinetics and reaction-diffusion systems. These systems typically result in double-layer

structures because of parameters (commonly denoted by ε) that multiply the highest-order

derivative term.

The work of this chapter has been published in the following publication:

S. Singh, D. Kumar, H. Ramos, “An efficient parameter uniform spline-based technique for

singularly perturbed weakly coupled reaction-diffusion systems.” J. Appl. Anal. Comput., 13

(2023), 2203–2228.
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Because of this property, the system behaves excitingly and is challenging to examine,

necessitating specialized analysis techniques such as adaptive mesh refinement, domain

decomposition, and higher-order numerical schemes.

3.1 Problem statement
We consider the following singularly perturbed problem, which involves a system of ` weakly

coupled reaction-diffusion equations. We seek a solution uuu ∈ (C2(0, 1) ∩ C[0, 1])` that

satisfies

LLLuuu(x) := −EEEuuu′′(x) +BBB(x)uuu(x) = ggg(x), x ∈ (0, 1), (3.1.1a)

subject to the Dirichlet boundary conditions

uuu(0) = %%%0, uuu(1) = %%%1, (3.1.1b)

where LLL = (L1, . . . ,L`)T , EEE = diag(ε2
1, ε

2
2, . . . , ε

2
`) with εk = ε, k = 1, 2, . . . , `, BBB(x) =

(bij(x))`×`, ggg(x) = (g1(x), g2(x), . . . , g`(x))T , uuu(x) = (u1(x), u2(x), . . . , u`(x))T , %%%0 =

(%0,1, . . . , %0,`)
T , and %%%1 = (%1,1, . . . , %1,`)

T . We assume that each column of the coupling

matrix BBB : [0, 1] → R(`,`) and the function ggg : [0, 1] → R` belong to C4[0, 1]`. We assume

that the following inequality holds to fulfill the condition of the strongly diagonally dominant

matrix along with the nonsingularity ofBBB(x) ∀x ∈ [0, 1]

∑̀
k=1
k 6=i

∥∥∥∥bikbii
∥∥∥∥ < 1, for i = 1, 2, . . . , `. (3.1.2)

3.1.1 Brief literature survey and motivation

These systems of equations frequently arise in several applications in science and engineering,

as in electroanalytical chemistry [36], predator-prey population dynamics [95], the turbulent

interaction of waves and currents [96, 97], chemical reactor theory [98], the classical linear

double-diffusion model for saturated flow in fractured porous media [99], modelling of the

diffusion process in bones [100], and control theory [101]. Only a few articles have appeared
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dealing with systems of arbitrary size; to cite a few, Linß and Madden [52] proposed a

parameter-uniform central difference scheme on layer-adapted meshes (Shishkin, Bakhvalov,

and Equidistribution meshes). They have shown that the method is second-order accurate on

the Bakhvalov and Equidistribution meshes, while it is almost second-order accurate up to a

logarithmic factor on a Shishkin mesh. Linß suggested a FEM on arbitrary meshes (layer-

adapted meshes) for a system of ` > 2 singularly perturbed reaction-diffusion equations.

Theoretically, he has shown that the error bounds for the Shishkin meshes are sharper than

those on the Bakhvalov meshes. Stephens and Madden [102] developed the discrete Schwarz

method on three overlapping subdomains for arbitrarily sized coupled singularly perturbed

systems. They have used standard FDM on a uniform mesh on each subdomain and proved

that the technique is parameter-uniform when appropriate subdomains are used. In this chapter,

we consider a ` × ` system of singularly perturbed reaction-diffusion equations in which

the equations have diffusion parameters of the same magnitudes. We use an exponentially

graded mesh for the discretization, which results in a second-order (without logarithmic

factor) parameter-uniform convergence. The proposed scheme extends the method developed

for a single singularly perturbed reaction-diffusion BVP [94] to a system of reaction-diffusion

equations.

We propose and analyze a parameter-uniform numerical method that uses quadratic B-

spline basis functions with a special non-uniform exponentially graded mesh [91, 103–105].

In [91], Constantinou and Xenophontos analyzed h version FEM in the natural energy norm

for the singularly perturbed class of reaction-diffusion and convection-diffusion problems.

Shivhare et al. [103] constructed a quadratic B-spline-based parameter uniform numerical

scheme of second order in space and first order in time for two parameter singularly perturbed

PDEs. Exploring the degenerate parabolic problems, Singh et al. [105] proposed a uniformly

convergent method and proved second-order convergence on the exponentially graded mesh.

Zarin [104] developed the h-version of the standard Galerkin method using higher order

polynomials and proved its robust convergence in the energy norm.

The chapter is organized as follows: Section 3.2 gives preliminary results on the solution

and its derivatives. A decomposition of the exact solution is also provided in this section.

The scheme is proposed in Section 3.3, divided into two subsections: in subsection 3.3.1, an
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exponentially graded mesh is constructed, and the collocation scheme is given in subsection

3.3.2. The comprehensive convergence analysis is provided in Section 3.4. Numerical

simulations and discussion of the results are exemplified in Section 3.5, while some concluding

comments and further research in this direction are included in Section 3.6.

Throughout the chapter, matrices and vectors will be denoted by bold letters, while we

use plain letters for scalars. A superscript T will be used to transpose a vector/matrix. When

the domain D is obvious, the standard notation ‖.‖ will be used (instead of ‖.‖D) for the

infinity-norm (L∞−norm) e.g., for a scalar function U defined on an interval I , we define

‖U‖ = maxx∈I |U(x)| while for a vector valued function UUU = (U1, U2, . . . , U`)
T ∈ R`,

defined on I , the infinity-norm is defined as ‖UUU‖ = maxx∈I{|U1(x)|, |U2(x)|, . . . , |U`(x)|}.

For simplicity, for any function U , we use Uj for U(xj) and Ũj for an approximation of U

at xj . For a vector valued function UUU = (U1, U2, . . . , U`)
T ∈ R` applied to xj we use the

notation (U1, U2, . . . , U`)
T (xj) = (U1,j, U2,j, . . . , U`,j)

T . Furthermore,CCC = (C,C, . . . , C)T

denotes a generic positive constant vector independent of the perturbation parameter ε, the

nodal points xj , and the mesh parameter Nx. A subscripted C (e.g., C1) is also a constant

independent of ε, xj , and Nx, but whose value is fixed. Furthermore, we use C0(D) for the set

of continuous functions in D, and Ck(D) for k times continuously differentiable functions in

D. Moreover, Ck(D)` is used for k times continuously differentiable vector-valued functions

(with ` components) in D.

3.2 Preliminary: properties of the exact solution

In this section, we present some bounds on the solution uuu and its derivatives, which will be

used in the convergence analysis.

Theorem 3.2.1. Assume thatBBB satisfies the following conditions to be a strongly diagonally

dominant matrix

bii > 0, and
∑̀
k=1
k 6=i

∥∥∥∥bikbii
∥∥∥∥ < ξ < 1, ξ ∈ (0, 1), for i = 1, 2, . . . , `.
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Then

|u(k)
i (x)| 6 C

{
1 + ε−k

(
e−λx/ε + e−λ(1−x)/ε

)}
, for k = 0, 1, 2; i = 1, 2, . . . , `,

where λ = λ(ξ) > 0 is given by

λ2 = (1− ξ) min
i=1,2,...,`

{
min
x∈[0,1]

bii(x)

}
.

Proof. Refer to the proof of Theorem 2.4 given in [52].

In the study of numerical simulation of SPBVPs, stability estimates ensure the bound-

edness of the solution. We assumed that the coupling matrixBBB is an arbitrary matrix with

positive diagonal entries. We give the following stability criterion using the maximum

principle (refer to Protter and Weinberger [106]).

Lemma 3.2.1 (Stability Estimate). Consider the differential operator

L̃u := −ν2u′′ + c(x)u′ + b(x)u,

with ν > 0, b, c ∈ C[0, 1] and b(x) > 0 on [0, 1]. Then

‖V‖ 6 max

{∥∥∥∥L̃Vb
∥∥∥∥, |V(0)|, |V(1)|

}
, for all V ∈ C2(0, 1) ∩ C[0, 1].

We decompose the solution of problem (3.1.1) as uuu = ϕϕϕ + ηηη, with ϕϕϕ = (ϕ1, . . . , ϕ`)
T ,

and ηηη = (η1, . . . , η`)
T , where the components satisfy the following BVPs, respectively

−ε2ϕ′′i (x) + bii(x)ϕi(x) = gi(x), 0 < x < 1, ϕi(0) = %0,i, ϕi(1) = %1,i, i = 1, 2, . . . , `,

and

−ε2η′′i (x)+bii(x)ηi(x) = −
∑̀
k=1
k 6=i

bik(x)uk(x), 0 < x < 1, ηi(0) = ηi(1) = 0, i = 1, 2, . . . , `.
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Using Lemma 3.2.1, we obtain

‖ϕi‖ 6 max

{∥∥∥∥ gibii
∥∥∥∥, |%0,i|, |%1,i|

}
, and ‖ηi‖ 6

∑̀
k=1
k 6=i

∥∥∥∥bikbii
∥∥∥∥‖uk‖ for i = 1, 2, . . . , `.

Now, since ‖ui‖ 6 ‖ϕi‖+ ‖ηi‖, we have

‖ui‖ −
∑̀
k=1
k 6=i

∥∥∥∥bikbii
∥∥∥∥‖uk‖ 6 max

{∥∥∥∥ gibii
∥∥∥∥, |%0,i|, |%1,i|

}
for i = 1, 2, . . . , `.

We consider the matrix

GGG =


1 −‖b12/b11‖ . . . −‖b1`/b11‖

−‖b21/b22‖ 1 . . . −‖b2`/b22‖
...

... . . . ...

−‖b`1/b``‖ −‖b`2/b``‖ . . . 1

 , (3.2.1)

such that all entries ofGGG−1 are non-negative, then u is bounded for the given data.

Theorem 3.2.2. Assuming that the coupling matrix BBB has positive diagonal entries, the

matrixGGG is inverse monotone. Then the solution uuu of (3.1.1) satisfies

‖ui‖ 6
∑̀
k=1

(GGG−1)ik max

{∥∥∥∥ gibii
∥∥∥∥, |%0,i|, |%1,i|

}
, for i = 1, 2, . . . , `.

Proof. The condition (3.1.2) implies that the matrix GGG is a strictly diagonally dominant

L0-matrix, and the inverse monotonicity of GGG is directed by the M -matrix criterion. The

proof follows using Lemma 3.2.1 (see [52, 107, 108] for the details).

Remark 3.2.1. In general, the operator LLL does not satisfy the maximum principle, but

Theorem 3.2.2 suggests thatLLL is stable in the maximum-norm.

Remark 3.2.2. The existence and uniqueness of the solution uuu ∈ C4[0, 1]` is guaranteed by

the following arguments:

(a) The stability estimates of the vector-differential operatorLLL using the standard arguments
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given in [109].

(b) The coupling matrix BBB and the vector-valued function ggg belong to the space of twice

continuously differentiable functions.

Due to the presence of boundary layers, we need to examine the solution in regular and

layer regions. So, we decompose uuu into three parts as follows:

uuu = vvv +wwwL +wwwR,

where vvv is the regular component, wwwL and wwwR are termed as the left and right singular

components, respectively. These components are the solutions of the following BVPs for

x ∈ (0, 1), respectively:

−EEEvvv′′(x) +BBB(x)vvv(x) = ggg(x), vvv(0) = BBB(0)−1ggg(0), vvv(1) = BBB(1)−1ggg(1), (3.2.2a)

−EEEwww′′L(x) +BBB(x)wwwL(x) = 0, wwwL(0) = %%%0 − vvv(0), wwwL(1) = 0, (3.2.2b)

and

−EEEwww′′R(x) +BBB(x)wwwR(x) = 0, wwwR(0) = 0, wwwR(1) = %%%1 − vvv(1). (3.2.2c)

Theorem 3.2.3. The components vvv,wwwL, andwwwR satisfy

|v(k)
i | 6 C, for k = 0, 1, . . . , 4; i = 1, 2, . . . , `, (3.2.3a)

|(wL)
(k)
i | 6 Cε−ke−λx/ε, for k = 0, 1, . . . , 4; i = 1, 2, . . . , `, (3.2.3b)

|(wR)
(k)
i | 6 Cε−ke−λ(1−x)/ε, for k = 0, 1, . . . , 4; i = 1, 2, . . . , `. (3.2.3c)

Proof. An explanatory proof is given in [47].

3.3 The proposed scheme
In this section, first, we give the details of the construction of the non-uniform mesh. Then,

we introduce and implement the proposed scheme for the problem (3.1.1).
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3.3.1 Mesh construction

It is well-known that standard numerical schemes on an equidistant mesh fail to solve SPBVPs,

and unexpectedly large oscillations appear near the layer region(s) when we use a classical

numerical technique. In other words, we can generate a scheme on an equidistant mesh that

converges at all mesh points uniformly in the diffusion parameter unless an unacceptably

large number of mesh points are used. It is not practical at all; thus, to resolve the layer(s), a

non-uniform mesh is required. In this section, we construct an exponentially graded mesh

that generates more mesh points in the layer region than in the other part of the domain.

To construct the exponentially graded mesh ∆ = {xj| 0 6 j 6 Nx}, we split the interval

[0, 1] into Nx > 4 (with Nx a multiple of 4) subintervals Ij = [xj−1, xj]. We denote by Pp,

the space of all polynomials of degree 6 p. In the construction of the mesh, we require a mesh

generating function Ψ(ρ), which belongs to a class of piecewise continuously differentiable

functions, monotonically increasing in nature, and defined as

Ψ(ρ) = − ln(1− 2Cp,ερ), ρ ∈ [0, 1/2− 1/Nx], (3.3.1)

where Cp,ε = 1 − exp

(
− 1

(p+1)ε

)
∈ R+. With the help of the transition points xNx

4
−1 and

x 3Nx
4

+1, we split the interval [0, 1] into three subintervals such that [0, 1] = [0, xNx
4
−1] ∪

[xNx
4
−1, x 3Nx

4
+1] ∪ [x 3Nx

4
+1, 1]. The nodal points can be written in the following form

xj =


(p+ 1)εΨ(ρj), j = 0, 1, . . . , Nx

4
− 1,

xNx
4
−1 +

(x 3Nx
4

+1 − xNx
4
−1

Nx

2
+ 2

)
(j −Nx/4 + 1), j = Nx

4
, . . . , 3Nx

4
,

1− (p+ 1)εΨ(1− ρj), j = 3Nx

4
+ 1, . . . , Nx,

where ρj = j
Nx

for j = 0, 1, . . . , Nx, and h̃j = xj − xj−1 for j = 1, 2, . . . , Nx. The

mesh points are distributed equidistantly in [xNx
4
−1, x 3Nx

4
+1] with Nx/2 + 2 subintervals,

and exponentially graded in [0, xNx
4
−1] and [x 3Nx

4
+1, 1] with Nx/4− 1 subintervals in each.

The mesh step lengths h̃j satisfy the following inequalities utilizing the mesh characterizing
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function Φ = exp(−Ψ) (see [91] for more details)

h̃j 6


C(p+ 1)εN−1

x max Ψ′(ρj), j = 1, 2, . . . , Nx

4
− 1,

CN−1
x , j = Nx

4
, . . . , 3Nx

4
+ 1,

C(p+ 1)εN−1
x max Ψ′(1− ρj), j = 3Nx

4
+ 2, . . . , Nx,

which can be further simplified as

h̃j 6


C(p+ 1)εN−1

x max |Φ′(ρj)| exp
(

xj
(p+1)ε

)
, j = 1, 2, . . . , Nx

4
− 1,

CN−1
x , j = Nx

4
, . . . , 3Nx

4
+ 1,

C(p+ 1)εN−1
x max |Φ′(1− ρj)| exp

(
1−xj

(p+1)ε

)
, j = 3Nx

4
+ 2, . . . , Nx.

Since max |Φ′| < 2, we can simply write the above inequalities as

h̃j 6


CεN−1

x exp
(

xj
(p+1)ε

)
, j = 1, 2, . . . , Nx

4
− 1,

CN−1
x , j = Nx

4
, . . . , 3Nx

4
+ 1,

CεN−1
x exp

(
1−xj

(p+1)ε

)
, j = 3Nx

4
+ 2, . . . , Nx,

(3.3.2)

and the step lengths of this adaptive mesh satisfy the following estimates

|h̃j+1 − h̃j| 6 C


εN−2

x , j = 1, 2, . . . , Nx

4
− 1,

0, j = Nx

4
, . . . , 3Nx

4
,

εN−2
x , j = 3Nx

4
+ 1, . . . , Nx.

(3.3.3)

Remark 3.3.1. Near the transition points, the Shishkin and Bakhvalov meshes do not satisfy

the inequality |h̃i+1 − h̃i| ≤ CN−2
x . Thus, we cannot extend our analysis to these meshes.

3.3.2 Discretization of the problem

In this section, considering the collocation approach, we discretize the problem (3.1.1) using

piecewise quadratic C1-splines. We denote the mesh intervals by Ij = [xj−1, xj], and the
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collocation points are chosen as midpoints of these intervals i.e.,

Xj = xj−1/2 :=
xj−1 + xj

2
= xj−1 +

h̃j
2

= xj −
h̃j
2
, for j = 1, 2, . . . , Nx.

For m, p ∈ N (m < p), we define

Smp (∆) := {r ∈ Cm[0, 1] : r|Ij ∈ Pp, for j = 1, 2, . . . , Nx}.

To discretize (3.1.1), we consider a vector of splines whose components are in S1
2(∆) and sat-

isfies the BVP (3.1.1) at certain points. It is known that the midpoints of Ij, j = 1, 2, . . . , Nx,

are the best choice for collocation with quadratic C1-splines for regularly perturbed BVPs

(see [110]). Next, we define the quadratic nonuniform and nonsmooth splines Bj(x) ∈ S1
2(∆)

for j = 0, 1, 2, . . . , Nx, Nx + 1 as follows:

B0(x) =


(x1 − x)2

h̃2
1

, x0 6 x 6 x1,

0, otherwise,

B1(x) =



h̃2
1 − (x1 − x)2

h̃2
1

+
(x− x0)2

h̃1(h̃1 + h̃2)
, x0 6 x 6 x1,

(x2 − x)2

h̃1(h̃1 + h̃2)
, x1 6 x 6 x2,

0, otherwise,

and for j = 2, 3, . . . , Nx − 1,

Bj(x) =



(x− xj−2)2

h̃j−1(h̃j−1 + h̃j)
, xj−2 6 x 6 xj−1,

(x− xj−2)(xj − x)

h̃j(h̃j−1 + h̃j)
+

(xj+1 − x)(x− xj−1)

h̃j(h̃j + h̃j+1)
, xj−1 6 x 6 xj,

(xj+1 − x)2

h̃j+1(h̃j + h̃j+1)
, xj 6 x 6 xj+1,

0, otherwise,
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while for j = Nx, Nx + 1 these are given as

BNx(x) =



(x− xNx−2)2

h̃Nx−1(h̃Nx−1 + h̃Nx)
, xNx−2 6 x 6 xNx−1,

h̃2
Nx
− (x− xNx−1)2

h̃2
Nx

+
(xNx − x)2

h̃Nx(h̃Nx−1 + h̃Nx)
, xNx−1 6 x 6 xNx ,

0, otherwise,

BNx+1(x) =


(x− xNx−1)2

h̃2
Nx

, xNx−1 6 x 6 xNx ,

0, otherwise.

The discretization consists of finding ũuu whose components are in S1
2(∆) such that

ũuu0 = ũuu(0) = %%%0, (LLLũuu)j−1/2 = gggj−1/2, ũuuNx = ũuu(1) = %%%1, j = 1, 2, . . . , Nx. (3.3.4)

Using the component-wise form, for k = 1, 2, . . . , ` it can be written as

(ũk)0 = %0,k, (Lkũk)j−1/2 = (gk)j−1/2, (ũk)Nx = %1,k, j = 1, 2, . . . , Nx. (3.3.5)

We represent each component of the collocation solution ũuu as

ũk(x) =
Nx+1∑
j=0

αj,kBj(x), k = 1, 2, . . . , `, (3.3.6)

where the coefficients αj,k can be determined by solving the following system obtained by

using (3.3.6) in (3.3.4). This system can be written in the form

α0,k = %0,k, [LLLαααk]j−1/2 = gggj−1/2, j = 1, 2, . . . , Nx, αNx+1,k = %1,k, k = 1, 2, . . . , `,

(3.3.7)

where [LLLαααk]j−1/2 comes from the discretization of (LLLũuu)j−1/2 and is given by

[LLLαααk]j−1/2 :=− ε2

[
2(αj+1,k − αj,k)
h̃j(h̃j + h̃j+1)

− 2(αj,k − αj−1,k)

h̃j(h̃j + h̃j−1)

]
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+
∑̀
m=1

(bkm)j−1/2

[
q+
j αj+1,k +

(
1− q+

j − q−j
)
αj,k + q−j αj−1,k

]
, j = 1, 2, . . . , Nx,

where q+
j :=

h̃j

4(h̃j+h̃j+1)
and q−j :=

h̃j

4(h̃j+h̃j−1)
. Combining all the equations, we get the system

AAA℘℘℘ = G,

where

G =

(
%0,1, g1(X1), . . . , g1(XNx), %1,1︸ ︷︷ ︸

1st component

, %0,2, g2(X1), . . . , g2(XNx), %1,2︸ ︷︷ ︸
2ndcomponent

, . . . . . . ,

%0,`, g`(X1), . . . , g`(XNx), %1,`︸ ︷︷ ︸
`th component

)T
,

℘℘℘ =

(
α0,1, α1,1, . . . , αNx,1, αNx+1,1︸ ︷︷ ︸

1st component

, α0,2, α1,2, . . . , αNx,2, αNx+1,2︸ ︷︷ ︸
2ndcomponent

, . . . . . . ,

α0,`, α1,`, . . . , αNx,`, αNx+1,`︸ ︷︷ ︸
`th component

)T
.

The matrixAAA is given as

AAA =


A11 A12 . . . A1`

A21 A22 . . . A2`

...
... . . . ...

A`1 A`2 . . . A``

 ,

where each Akm is a submatrix of order (Nx + 2)× (Nx + 2). These submatrices are given by

Akk =



1 0 0 0 . . . . . . 0

a21,kk a22,kk a23,kk 0 . . . . . . 0

0 a32,kk a33,kk a34,kk . . . . . . 0
... . . . . . . . . . ...

...
...

. . . . . . . . . 0 aNx+1Nx,kk aNx+1Nx+1,kk aNx+1Nx+2,kk

. . . . . . . . . 0 0 0 1


,
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where

aii−1,kk = −
8ε2q−i−1

h̃2
i−1

+ bkk(Xi−1)q−i−1,

aii,kk =
8ε2q+

i−1

h̃2
i−1

−
8ε2q−i−1

h̃2
i−1

+ bkk(Xi−1)

(
1− q+

i−1 − q−i−1

)
,

aii+1,kk = −
8ε2q+

i−1

h̃2
i−1

+ bkk(Xi−1)q+
i−1,

for i = 2, 3, . . . , Nx + 1. Furthermore, for m 6= k, m = 1, 2, . . . , `; k = 1, 2, . . . , `, the

submatrix Akm is

Akm =



0 0 0 0 . . . . . . 0

a21,km a22,km a23,km 0 . . . . . . 0

0 a32,km a33,km a34,km . . . . . . 0
... . . . . . . . . . ...

...
...

. . . . . . . . . 0 aNx+1Nx,km aNx+1Nx+1,km aNx+1Nx+2,km

. . . . . . . . . 0 0 0 0


,

where

aii−1,km = bkm(Xi−1)q−i−1,

aii,km = bkm(Xi−1)

(
1− q+

i−1 − q−i−1

)
,

aii+1,km = bkm(Xi−1)q+
i−1,

for i = 2, 3, . . . , Nx + 1.
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3.4 Convergence analysis

3.4.1 S0
2-interpolation

To find the interpolation I0
2yyy whose components are in S0

2(∆), we solve the following interpo-

lation problem assuming that yk ∈ C0[0, 1]:

(I0
2yk)j = (yk)j, j = 0, 1, . . . , Nx, and (I0

2yk)j−1/2 = (yk)j−1/2, j = 1, 2, . . . , Nx,

where (yk)j = yk(xj), (yk)j−1/2 = yk(Xj), k = 1, 2, . . . , `.

Theorem 3.4.1. Assuming bij(x), gj(x) ∈ C4[0, 1], for i, j = 1, 2, . . . , `, the interpolation

error uuu− I0
2uuu of the solution uuu of (3.1.1) satisfies the following bounds:

‖uuu− I0
2uuu‖ 6 CN−3

x , and EEE max
j=1,2,...,Nx

|(uuu− I0
2uuu)′′j−1/2| 6 CCCN−2

x .

Proof. First, we make use of the Lagrange representation of the interpolation polynomial

and Taylor expansions to verify that for any yyy ∈ C4[0, 1]`, the interpolation error on each Ij

satisfies∥∥∥∥yk−I0
2yk

∥∥∥∥
Ij

6
h̃3
j

24

∥∥∥∥y(3)
k

∥∥∥∥
Ij

,

∣∣∣∣(yk−I0
2yk)

′′
j−1/2

∣∣∣∣ 6 h̃2
j

48

∥∥∥∥y(4)
k

∥∥∥∥
Ij

, k = 1, 2, . . . , `. (3.4.1)

Using the linear property of I0
2 , the solution components uk can be decomposed as

uk − I0
2uk = (vk − I0

2vk) +

(
(wL)k − I0

2 (wL)k

)
+

(
(wR)k − I0

2 (wR)k

)
.

We start this analysis by finding the interpolation error in the regular component. For

Ij ⊂ [x0, xNx/4−1], we use the bounds given in Theorem 3.2.3, to obtain

h̃3
j

24

∣∣∣∣v(3)
k

∣∣∣∣
Ij

6 Cε3N−3
x exp

(
3xj

(p+ 1)ε

)
6 CN−3

x exp

(
xj
ε

)
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6 CN−3
x exp

(
(p+ 1)Ψ(ρj)

)
6 CN−3

x .

Similarly, using the same analysis in the right layer region Ij ⊂ [x3Nx/4+2, xNx ], we obtain

‖vk − I0
2vk‖Ij 6 CN−3

x . Also, for Ij ⊂ [xNx/4, x3Nx/4+1], the bounds for h̃j (using Equation

(3.3.2)) trivially give ‖vk − I0
2vk‖Ij 6 CN−3

x . Thus, by combining all the estimates for the

regular component, we get

‖vk − I0
2vk‖ 6 CN−3

x .

Next, we consider the left singular component (wL)k in Ij ⊂ [x0, xNx/4−1]. Using Theorem

3.2.3 and the inequality given in (3.3.2), we get

h̃3
j

24

∣∣∣∣(wL)
(3)
k

∣∣∣∣
Ij

6 Cε3N−3
x exp

(
3xj

(p+ 1)ε

)
ε−3|e−λx/ε|Ij

6 CN−3
x exp

(
xj
ε
− xj−1

ε

)
6 CN−3

x exp

(
h̃j
ε

)
6 CN−3

x exp

(
(p+ 1)N−1

x max Ψ′(ρj)

)
6 CN−3

x .

Now for Ij ⊂ [xNx/4, x3Nx/4+1], we obtain

h̃3
j

24

∣∣∣∣(wL)
(3)
k

∣∣∣∣
Ij

6 CN−3
x ε−3|e−λx/ε|Ij

6 CN−3
x ε−3 exp

(
−λxj−1

ε

)
.

Using L’Hôpital’s rule, it is easy to see that the term ε−3 exp

(
−λxj−1

ε

)
is bounded in

[xNx/4, x3Nx/4+1]. Thus, the above inequality gives

h̃3
j

24

∣∣∣∣(wL)
(3)
k

∣∣∣∣
Ij

6 CN−3
x .
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Similar bounds can be obtained for Ij ⊂ [x3Nx/4+2, xNx ] using the same arguments as for

[x0, xNx/4−1]. Thus, we get

‖(wL)k − I0
2 (wL)k‖ 6 CN−3

x .

Now for the right singular component (wR)k in Ij ⊂ [x0, xNx/4−1] (using Theorem 3.2.3 and

the inequality in (3.3.2)), we get

h̃3
j

24

∣∣∣∣(wR)
(3)
k

∣∣∣∣
Ij

6 Cε3N−3
x exp

(
3xj

(p+ 1)ε

)
ε−3|e−λ(1−x)/ε|Ij

6 Cε3N−3
x exp

(
C1xj
ε

)
ε−3 exp

(
−C2(1− xj−1)

ε

)
6 CN−3

x exp

(
C3
xj − (1− xj−1)

ε

)
6 CN−3

x exp

(
C3
h̃j − 1− 2xj−1

ε

)
6 CN−3

x exp

(
C3(p+ 1)N−1

x max Ψ′(ρj)

)
6 CN−3

x .

Following the same approach as we have done for (wL)k in the intervals [xNx/4, x3Nx/4+1]

and [x3Nx/4+2, xNx ], we obtain

‖(wR)k − I0
2 (wR)k‖ 6 CN−3

x .

Next, we find the bounds for max
j=1,2,...,Nx

|(uk − I0
2uk)

′′
j−1/2|. For this purpose, first, we consider

vk in Ij ⊂ [x0, xNx/4−1] as follows

h̃2
j

48

∣∣∣∣v(4)
k

∣∣∣∣
Ij

6 Cε2N−2
x exp

(
2xj

(p+ 1)ε

)
(using Theorem 3.2.3 and the inequality in (3.3.2))

6 CN−2
x exp

(
2xj

(p+ 1)ε

)
6 CN−2

x exp

(
2Ψ(ρj)

)
6 CN−2

x .
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Similar results can be obtained for the intervals [xNx/4, x3Nx/4+1] and [x3Nx/4+2, xNx ]. Now

for the left singular component in Ij ⊂ [x0, xNx/4−1], we have

h̃2
j

48

∣∣∣∣(wL)
(4)
k

∣∣∣∣
Ij

6 Cε2N−2
x exp

(
2xj

(p+ 1)ε

)
ε−4|e−λx/ε|Ij

6 Cε2N−2
x exp

(
C1xj
ε

)
ε−4 exp

(
−C2xj−1

ε

)
6 Cε−2N−2

x exp

(
C3(xj − xj−1)

ε

)
6 Cε−2N−2

x exp

(
C3h̃j
ε

)
6 Cε−2N−2

x exp

(
C3(p+ 1)N−1

x max Ψ′(ρj)

)
6 Cε−2N−2

x .

A similar procedure can obtain the same bounds for the intervals [xNx/4, x3Nx/4+1] and

[x3Nx/4+2, xNx ]. Thus, we have

max
j=1,2,...,Nx

|((wL)k − I0
2 (wL)k)

′′
j−1/2| 6 Cε−2N−2

x .

Furthermore, one can use a similar analogy to find the bounds for the right singular component

(wR)k. Finally, using the triangle inequality leads us to complete the proof.

Lemma 3.4.1. Let sk ∈ S0
2(∆) with (sk)j−1/2 = 0, j = 1, 2, . . . , Nx; k = 1, 2, . . . , `, then

‖sk‖Ij 6 max
j
{|(sk)j−1|, |(sk)j|}, ‖s′′k‖Ij 6

8

h̃2
j

max
j
{|(sk)j−1|, |(sk)j|}.

Proof. Refer to [103] for a complete proof.

3.4.2 S1
2-interpolation

To find the interpolation I1
2yk ∈ S1

2(∆) assuming that yk ∈ C1[0, 1], we solve the following

interpolation problem:

(I1
2yk)0 = (yk)0, (I1

2yk)j−1/2 = (yk)j−1/2, j = 1, 2, . . . , Nx, (I1
2yk)Nx = (yk)Nx ,

(3.4.2)
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where (yk)j−1/2 = yk(Xj), for k = 1, 2, . . . , `.

Let Λ : S1
2(∆)→ RNx+1 be the operator defined by

[Λsk]j = aj(sk)j−1 + 3(sk)j + cj(sk)j+1,

where aj =
h̃j+1

h̃j+h̃j+1
and cj = 1− aj =

h̃j

h̃j+h̃j+1
. Then from [93, 111], we have

[Λsk]j ≡ aj(sk)j−1+3(sk)j+cj(sk)j+1 = 4aj(sk)j−1/2+4cj(sk)j+1/2, j = 1, 2, . . . , Nx−1,

(3.4.3)

Lemma 3.4.2. The operator Λ in (3.4.3) is stable, with (sk)0 = (sk)Nx = 0,

max
j=1,2,...,Nx−1

|(sk)j| 6
1

2

{
max

j=1,2,...,Nx−1
|[Λsk]j|

}
, k = 1, 2, . . . , `,

for sk ∈ RNx+1.

Proof. Refer to Lemma 3 given in [94].

Theorem 3.4.2. Assume that bij(x), gj(x) ∈ C4[0, 1], for i, j = 1, 2, . . . , `, then the inter-

polation error uuu− I1
2uuu of the solution uuu of (3.1.1) satisfies the following bounds

max
j=0,1,...,Nx

|(uuu− I1
2uuu)j| 6 CCCN−4

x , (3.4.4a)

‖uuu− I1
2uuu‖ 6 CN−3

x , (3.4.4b)

EEE max
j=1,2,...,Nx

|(uuu− I1
2uuu)′′j−1/2| 6 CCCN−2

x . (3.4.4c)

Proof. For the interpolation error yk− I1
2yk, we consider an arbitrary function yk that satisfies

(yk − I1
2yk)0 = (yk − I1

2yk)Nx = 0, k = 1, 2, . . . , `.

Using the definitions of S1
2-interpolation and the operator Λ given by (3.4.2) and (3.4.3),

respectively, we have

τyk,j = [Λ(yk − I1
2yk)]j = aj(yk)j−1 − 4aj(yk)j−1/2 + 3(yk)j − 4cj(yk)j+1/2 + cj(yk)j+1,

(3.4.5)
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for j = 1, 2, . . . , Nx, k = 1, 2, . . . , `. Furthermore, we use the Taylor series expansions to

get

|τyk,j| 6
1

12
h̃jh̃j+1|h̃j+1 − h̃j||(y′′′k )j|Ij +

5

96
max{h̃4

j , h̃
4
j+1}‖(y

(4)
k )j‖Ij∪Ij+1

. (3.4.6)

Now, the interpolation error can be decomposed as

uk − I1
2uk = (vk − I1

2vk) +

(
(wL)k − I1

2 (wL)k

)
+

(
(wR)k − I1

2 (wR)k

)
,

or

τuk,j = τvk,j + τ(wL)k,j + τ(wR)k,j.

To find the error, we start considering the regular component. For Ij ⊂ [x0, xNx/4−1], we use

Theorem 3.2.3 and the inequality (3.4.6), to get

|τvk,j| 6 C

(
h̃jh̃j+1|h̃j+1 − h̃j|+ max{h̃4

j , h̃
4
j+1}

)
.

Now as h̃j < h̃j+1 holds in [x0, xNx/4−1], so

|τvk,j| 6 C

(
h̃2
j+1|h̃j+1 − h̃j|+ h̃4

j+1

)
6 C

(
ε3N−4

x exp

(
2xj+1

(p+ 1)ε

)
+ ε4N−4

x exp

(
4xj+1

(p+ 1)ε

))
6 CN−4

x exp

(
4xj+1

(p+ 1)ε

)
6 CN−4

x exp

(
4Ψ(ρj+1)

)
6 CN−4

x .

Moreover, for xj ∈ [xNx/4, x3Nx/4+1], it is obvious to prove that |τvk,j| 6 CN−4
x . A similar

bound can be proved for xj ∈ [x3Nx/4+2, xNx ]. Therefore, using Lemma 3.4.2, we get

max
j=0,1,...,Nx

|(vk − I1
2vk)j| 6 CN−4

x .
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Now in the process of finding the bounds for (wL)k, we use the fact that h̃j < h̃j+1 for

xj ∈ [x0, xNx/4−1], which yields

|τ(wL)k,j| 6
1

12
h̃jh̃j+1|h̃j+1 − h̃j||(w′′′L )k,j|Ij +

5

96
max{h̃4

j , h̃
4
j+1}‖(w

(4)
L )k,j‖Ij∪Ij+1

6 C

(
h̃2
j+1|h̃j+1 − h̃j|ε−3|e−λx/ε|Ij + h̃4

j+1ε
−4|e−λx/ε|Ij∪Ij+1

)
6 C

(
N−4
x exp

(
2xj+1

(p+ 1)ε

)
|e−λx/ε|Ij +N−4

x exp

(
4xj+1

(p+ 1)ε

)
|e−λx/ε|Ij∪Ij+1

)
6 CN−4

x exp

(
C1h̃j+1

ε

)
6 CN−4

x exp

(
C1(p+ 1)N−1

x max Ψ′(ρj+1)

)
6 CN−4

x .

Similar bounds can be obtained in [x3Nx/4+2, xNx ]. Moreover, it is easy to prove τ(wL)k,j 6

CN−4
x for xj ∈ [xNx/4, x3Nx/4+1]. Therefore, using Lemma 3.4.2, we get

max
j=0,1,...,Nx

|((wL)k − I1
2 (wL)k)j| 6 CN−4

x .

Similar arguments can be used to derive the bounds for the right singular component (wR)k

(we skip the analysis here). The estimate in (3.4.4a) can be attained directly by combining all

the interpolation errors for three components. To prove (3.4.4b), we use the triangle inequality

as

‖uuu− I1
2uuu‖ 6 ‖uuu− I0

2uuu‖+ ‖I0
2uuu− I1

2uuu‖

6 ‖uuu− I0
2uuu‖+ max

j=0,1,...,Nx

|(uuu− I1
2uuu)j|.

Now using the fact (I1
2uuu)j = uuuj, j = 0, 1, . . . , Nx, Lemma 3.4.1, Theorem 3.4.1, and (3.4.4a),

we obtain the estimate (3.4.4b). Furthermore, to obtain the inequality (3.4.4c), we use the

same approach as we have used for (3.4.4b). For this purpose, we write

|(uk − I1
2uk)

′′
j−1/2| 6 |(uk − I0

2uk)
′′
j−1/2|+ |(I0

2uk − I1
2uk)

′′
j−1/2|
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6 |(uk − I0
2uk)

′′
j−1/2|+ max

j=0,1,...,Nx

8

h̃2
j

|(uk − I1
2uk)j|.

Hence, the proof is completed using Theorem 3.4.1 and inequality (3.4.4a).

Theorem 3.4.3. We assume that there exists a constant µ > 0 such that

max{h̃j+1, h̃j−1} > µh̃j, j = 1, 2, . . . , Nx − 1, h̃1 > µh̃2, and h̃Nx > µh̃Nx−1.

Then the operator Lk is stable in the maximum-norm being

‖γγγk‖ 6 3 max
j=1,2,...,Nx

∣∣∣∣ [Lkγγγk]j−1/2

nj−1/2,k

∣∣∣∣, k = 1, 2, . . . , `,

for all γγγk ∈ RNx+2
0 = {r ∈ RNx+2 : r0 = rNx+1 = 0}, where nj−1/2,k :=

∑̀
m=1

(bkm)j−1/2

(
1−

q+
j − q−j

)
, j = 1, 2, . . . , Nx, k = 1, 2, . . . , `.

Proof. Note that q+
j , q

−
j ∈ (0, 1/4), therefore nj,k > 0, j = 1, 2, . . . , Nx. For arbitrary

vectors γγγk ∈ RNx+2
0 , we define the operators ΛΛΛk by

[ΛΛΛkγγγk]j−1/2 = − ε2

nj−1/2,k

[
2(γj+1,k − γj,k)
h̃j(h̃j + h̃j+1)

− 2(γj,k − γj−1,k)

h̃j(h̃j + h̃j−1)

]
+ γj,k, j = 1, 2, . . . , Nx.

The operators ΛΛΛk are well defined due to the positivity of all nj−1/2,k. We get the required

result as in [94].

Theorem 3.4.4. Let uuu be the exact solution to (3.1.1) and ũuu is its approximation on the

exponentially graded mesh, then

‖uuu− ũuu‖ 6 CN−2
x .

Proof. We generalize the approach given in [105] for a scalar problem to a system. Using the

triangle inequality, we have

‖uk − ũk‖ 6 ‖uk − I1
2uk‖+ ‖I1

2uk − ũk‖,
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for k = 1, 2, . . . , `. Making use of B-spline functions, we write the interpolant I1
2uk as

I1
2uk(x) =

Nx+1∑
j=0

βj,kBj(x), for k = 1, 2, . . . , `.

[LLL(αααk − βββk)]j−1/2 = Lk(ũk − I1
2uk)j−1/2 = ε2(I1

2uk − uk)j−1/2, j = 1, 2, . . . , Nx.

Finally, Theorems 3.4.2 and 3.4.3 give

‖αααk − βββk‖ 6 CN−2
x .

Since each Bj > 0 and the sum of all basis functions equals 1, so

‖I1
2uuu− ũuu‖ 6 ‖αααk − βββk‖ 6 CN−2

x .

We now apply Theorem 3.4.2 to complete the proof.

3.5 Numerical outcomes and discussion
In this section, we examine the verification of the theoretical estimates provided in the previous

section by considering two numerical examples. The error estimates (in the maximum

norm) are obtained using the double mesh principle [112]. The maximum pointwise error is

computed as

eNx
k,ε = max

j
|ũk(x2j−1)− ûk(xj−1/2)|,

where ûk and ũk represent the computed solutions by consideringNx and 2Nx mesh partitions,

respectively. We also compute the corresponding order of convergence as

ηNx
k,ε =

ln(eNx
k,ε/e

2Nx
k,ε )

ln 2
.

Furthermore, we calculate the ε-uniform maximum pointwise error eNx
k and the corresponding

ε-uniform order of convergence ηNx
k as follows

eNx
k = max

ε
eNx
k,ε ,
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ηNx
k =

ln(eNx
k /e2Nx

k )

ln 2
.

Remark 3.5.1. All the above estimates are calculated for k = 1, 2, . . . , `.

We have also calculated the overall error eeeNx as follows:

eeeNx = max
k

(max
ε
eNx
k,ε).

Finally, the corresponding orders of convergence are given by

ηηηNx =
ln(eeeNx/eee2Nx)

ln 2
.

From a practical point of view, we have calculated the uniform errors over a finite range of ε

values (ε = 1, 10−1, . . . , 10−10).

In the test problems, for simplicity, we take ` = 2 in the first problem and ` = 3 in

the second problem. The solution components are denoted as uk (exact solution) and ũk

(numerical solution), respectively. Moreover, the solution in vector form is denoted by bold

letters.

Example 3.5.1. In this example, we consider the following system of two equations:

−ε2u′′1 + 2(1 + x)2u1 − (1 + x3)u2 = 2ex,

−ε2u′′2 − 2 cos

(
πx

4

)
u1 + (1 +

√
2)e1−xu2 = 10x+ 1,

u1(0) = u1(1) = 0, u2(0) = u2(1) = 0.

For this example, the matrixBBB, ggg(x), %%%0, and %%%1 are as given below

BBB =

 2(1 + x)2 −(1 + x3)

−2 cos

(
πx
4

)
(1 +

√
2)e1−x

 , ggg(x) = (2ex, 10x+1)T , %%%0 = (0, 0)T , %%%1 = (0, 0)T .
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Example 3.5.2. In this example, we consider the following system of three equations:

−ε2u′′1 + 3u1 + (1− x)(u2 − u3) = ex,

−ε2u′′2 + 2u1 + (4 + x)u2 − u3 = cosx,

−ε2u′′3 + 2u1 + 3u3 = 1 + x2,

u1(0) = u1(1) = 0, u2(0) = u2(1) = 0, u3(0) = u3(1) = 0.

For this example, the matrixBBB, ggg(x), %%%0, and %%%1 are as given below

BBB =


3 1− x −(1− x)

2 4 + x −1

2 0 3

 , ggg(x) = (ex, cosx, 1+x2)T , %%%0 = (0, 0, 0)T , %%%1 = (0, 0, 0)T .

The solution of the system exhibits twin boundary layers in the neighborhoods of x = 0

and x = 1. As explained above, the uniform mesh is unsuitable for resolving these layers, and

one cannot obtain parameter-uniform estimates on this mesh. So, the numerical results for both

examples are obtained using the exponentially graded mesh (eXp mesh). Tables 3.1 and 3.2

show the second-order parameter-uniform results for the solutions ũ1 and ũ2 for Example 3.5.1.

Similarly, for Example 3.5.2, we obtain the parameter-uniform estimates of order O(N−2
x )

for ũ1, ũ2, and ũ3, respectively (refer to Tables 3.3, 3.4, and 3.5). We have also computed

the results for the Shishkin mesh and Bakhvalov-Shishkin (B-S) mesh and compared the

results on these meshes in Tables 3.6 and 3.7. This comparison suggests a parameter-uniform

convergence of orders O(N−2
x ), O(N−2

x ln2Nx), and O(N−2
x ), respectively. To support this,

we have also calculated ε-uniform orders of convergence and ε-uniform error constants (see

[113] for the computation of CNx).

Furthermore, we combine the mesh plots of the considered meshes (eXp, Shishkin, and

B-S) in a single plot showing the distribution of mesh points in the layer and regular regions.

Since the eXp and the B-S mesh differ by slightly changing the choice of the mesh generating

function Ψ(ρ), the mesh points coincide in the plot. We have displayed the presence of

boundary layers in the solution by plotting the 2-D graphs. From Fig. 3.2 it is observed that

the boundary layers for ε = 10−4 are stiffer (see Figs. 3.2(b) and 3.2(d)) as compared to the
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(b) ε = 2−20

Figure 3.1: Mesh comparison of eXp mesh, Shishkin mesh, B-S mesh for Nx = 64

boundary layers for ε = 10−2 (see Figs. 3.2(a) and 3.2(c)) which confirms the theory that for

SPBVPs the width of the boundary layer decreases as ε decreases.

Remark 3.5.2. In Fig. 3.2, u∆;k represents the kth component of the numerical solution on

the partition ∆.

3.6 Concluding remarks
A numerical scheme that uses the quadratic B-spline functions on an exponentially graded

mesh has been developed for a weakly coupled system of ` singularly perturbed reaction-

diffusion equations. The main reason to choose the exponentially graded mesh is its advantage

over other meshes like Shishkin and Bakhvalov-type meshes, as it does not require prior

information about the transition parameter i.e., it is independent of the transition point(s).

The estimated theoretical bounds on the spline interpolation error show that the method is

second-order convergent irrespective of the E value. The numerical results in the tables

validate the theoretical estimates regarding the orders of convergence and the errors estimated

in Section 3.4.
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Table
3.1:M

axim
um

pointw
ise

errors
e
N

x
1
,ε

in
the

solution
ũ

1
forE

xam
ple

3.5.1

N
x

ε
64

128
256

512
1024

2048
4096

10
−

2
3.4414e−

03
8.7439e−

04
2.1556e−

04
5.2958e−

05
1.3095e−

05
3.2550e−

06
8.1124e−

07
1.9766

2.0202
2.0252

2.0158
2.0083

2.0045
10
−

4
3.4571e−

03
8.7821e−

04
2.1656e−
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Figure 3.2: Numerical solution plots of Example 3.5.1 (subfigures (a) and (b)), and Example
3.5.2 (subfigures (c) and (d))
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Chapter 4

A robust numerical technique for a

weakly coupled system of parabolic

singularly perturbed reaction-diffusion

equations

In mathematics, a class of models known as weakly coupled systems of parabolic sin-

gularly perturbed reaction-diffusion equations is a model that can be used to illustrate the

complicated dynamic relationship between diffusion and reaction processes in complex sys-

tems. The phrase “weakly coupled” denotes that the interconnections among the variables

are relatively unnoticeable compared to their dynamics. Nevertheless, despite their limited

strength, these couplings can still give rise to complex dynamics and impact the collective

behaviour of the system as a whole, hence facilitating the creation of patterns and spatial

organization.

The work of this chapter has been published in the following publication:

S. Singh, D. Kumar, J Vigo-Aguiar, “ A robust numerical technique for a weakly coupled

system of parabolic singularly perturbed reaction-diffusion equations.” J. Math. Chem., 61

(2023), 1313–1350.
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Chapter 4

The system exhibits a singularly perturbed characteristic, resulting in the emergence

of boundary layers. These boundary layers are narrow regions where variables undergo

fast fluctuations. The layers mentioned above are of utmost importance in determining the

comprehensive behavior of the solution.

4.1 Problem statement

Time-dependent singularly perturbed problems (SPPs) can be described by the Burgers’ and

Navier Stokes equations. These problems occur in several models, like for saturated flow

in fractured porous media [99], the well-known linear double-diffusion model [99], and the

bone diffusion process [100]. First, we consider the following singularly perturbed parabolic

reaction-diffusion initial boundary value problem (IBVP) onQ = Qx×Qt = (0, 1)× (0, T ]

Ly :=
∂y

∂t
− ε∂

2y

∂x2
+ a(x, t)y = f(x, t), (x, t) ∈ Q, (4.1.1a)

y(0, t) = q(t) in Ql, y(1, t) = r(t) in Qr, y(x, 0) = 0 in Qb, (4.1.1b)

where Ql = {(0, t)| 0 ≤ t ≤ T }, Qr = {(1, t)| 0 ≤ t ≤ T }, Qb = {(x, 0)| 0 ≤ x ≤ 1}.

The boundary of Q denoted by ∂Q = Q\Q includes initial (Qb) and lateral boundaries (Ql
and Qr) of the domain. Mainly in this chapter, we are concerned with a general weakly-

coupled reaction-diffusion system (m number of equations) of the following type

LyLyLy :=
∂yyy

∂t
−EEE ∂

2yyy

∂x2
+AAA(x, t)yyy = fff(x, t), (x, t) ∈ Q = Qx ×Qt, (4.1.2a)

yyy(0, t) = qqq(t) in Ql, yyy(1, t) = rrr(t) in Qr, yyy(x, 0) = 000 in Qb, (4.1.2b)

whereLLL = (L1,L2, . . . ,Lm)T ,EEE = diag(ε, ε, . . . , ε), fff(x, t) = (f1(x, t), f2(x, t), . . . , fm(x, t))T ,

AAA = {aij(x, t)}mi,j=1, yyy(x, t) = (y1(x, t), y2(x, t), . . . , ym(x, t))T , qqq = (q1, q2, . . . , qm)T ,

rrr = (r1, r2, . . . , rm)T . The operator Lk can be defined as

Lkyyy =
∂yk
∂t
− ε∂

2yk
∂x2

+
m∑
j=1

akjyj.

This kind of system is pervasive in modeling chemical reactor theory, turbulence in water
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waves, and control theory. The entries aij(x, t) of the coefficient matrix AAA are assumed to

satisfy the following positivity condition


m∑
j=1

aij ≥ α > 0, aii > 0, 1 ≤ i ≤ m,

aij ≤ 0, for i 6= j.

(4.1.3)

We also assume that AAA is a diagonally dominant matrix. Otherwise, we can apply the

transformation vvv(x, t) = yyy(x, t)e−αt with sufficiently large α to transform the diagonal

entries in such a way that they satisfy first condition of the Equation (4.1.3) (see [114]). We

assume that a unique solution yyy ∈ (C(2,2)(Q) ∩ C(4,2)(Q))m exist by assuming sufficient

smooth and regular data of the problem (4.1.2). The following conditions are also assumed

on the boundary conditions and source functions
qqq(l)(0) = rrr(l)(0) = 000, l = 0, 1, 2,

∂i+i0fff

∂xi∂ti0

∣∣∣∣
(0,0)

=
∂i+i0fff

∂xi∂ti0

∣∣∣∣
(1,0)

= 000, 0 ≤ i+ 2i0 ≤ 4,
(4.1.4)

which are inspired by the compatibility conditions required for the equations of type (4.1.1).

Several ways can affect the numerical analysis of SPPs depending on how the magnitude of

the parameter varies. For example, for two equations (m = 2), we have the following cases

(i) 0 < ε1 = ε2 ≤ 1, (ii) 0 < ε1 ≤ 1, ε2 = 1, (iii) ε1 and ε2 are arbitrary. These cases can be

generalized for the system containing the m number of equations. The analysis for cases (i)

and (ii) is more straightforward than case (iii) because in case (iii), the solution components

may possess a sublayer for each of the perturbation parameters.

4.1.1 Literature survey

A sufficient amount of literature is available for singularly perturbed systems (for m = 2)

containing the above three cases. For m = 2, Madden and Stynes [41] developed a first-

order uniformly convergent scheme for singularly perturbed BVPs. Later, improved order of

convergence (from first-order to second-order) was established by Linß and Madden in [43]

concerned with the same equation as in [41]. In [52], Linß and Madden considered a system
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of m ≥ 2 equations assuming the coupling matrix is strongly diagonally dominant with the

conditions

aii(x) > 0,
m∑
k=1
k 6=i

max
x∈[0,1]

∣∣∣∣aikaii
∣∣∣∣ < 1, i = 1, 2, . . . ,m.

Their work used Shishkin, Bakhvalov, and equidistribution meshes to compare their

parameter uniform results. Taking εk = ε, ∀k and a coercive coupling matrixAAA, Bakhvalov

[33] established second-order convergence in his paper. Das and Natesan [64] dealt with a

system of BVPs with Robin-type boundary conditions using a hybrid scheme that combines

central difference and cubic spline approximations in different regions. Das and Vigo-Aguiar

[50] proposed a second-order uniformly convergent technique on a layer adaptive mesh whose

construction uses the equidistribution of a positive valued monitor function. For m = 2, a

system of parabolic IBVPs with the same diffusion parameters was considered by Shishkina

and Shishkin in [115]. They used classical finite difference schemes and obtained almost

second-order ε-uniform estimates in the spatial direction. Clavero et al. [116] proposed a

numerical method combining Crank-Nicolson discretization in time with the central finite

difference in space on the Shishkin mesh. Kumar and Rao [117] devised a method based on

Schwarz domain decomposition for singularly perturbed reaction-diffusion IBVPs. Then,

they extended this method for a system (m ≥ 2) of IBVPs. Singh and Natesan [51] studied a

system of two reaction-diffusion BVPs applying the nonsymmetric discontinuous Galerkin

finite element method (NIPG method). They proved the first and second-order uniform

convergence depending on the degree of the piecewise polynomial used in finite element

space. Recently, Shakti et al. [59] proposed an optimal numerical technique using adaptive

mesh by taking different diffusion parameters and comparing the uniform, Shishkin, and

adaptive mesh accuracy. Further, one can review the references in the above-cited articles for

more numerical methods.

The chapter is organized as follows: In Section 4.2, some basic properties and bounds

on the exact solution and its derivatives are established. The numerical scheme, including

the mesh construction and the temporal and spatial discretization, is developed in Section

4.3. The error estimates through S0
2 and S1

2 interpolations are obtained in Section 4.4. To

validate the theoretical findings, two test problems are considered in Section 4.5. Finally,
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some concluding remarks are included in Section 4.6.

Throughout the chapter, we have used C as a positive generic constant independent of the

perturbation and mesh parameters, which can take different values at different places, and

CCC = (C,C, . . . , C) is used for a positive generic constant vector. Moreover, a subscripted C

(e.g., C1) is used for a constant.

4.2 Continuous problem
This section deduces some bounds on the exact solution and its derivatives to the problem

(4.1.2). The coupling matrix AAA is assumed to satisfy the condition (4.1.3). Under these

assumptions, we establish the maximum principle for the differential operator LLL and prove

that it satisfies the stability results in the maximum norm.

Lemma 4.2.1. Assume that yyy ∈ (C(2,1)(Q)∩C(0,0)(Q))m such that yyy(x, 0) ≥ 0 on (0, 1) and

yyy(0, t) ≥ 0, yyy(1, t) ≥ 0 on (0, T ]. Then LyLyLy ≥ 0, ∀ (x, t) ∈ Q implies that yyy ≥ 0, ∀ (x, t) ∈

Q.

Proof. We contradict the statement by assuming that there is a point (x̂, t̂) ∈ Q\∂Q such that

min{y1(x̂, t̂), . . . , ym(x̂, t̂)} = min

{
min

(x,t)∈Q
y1(x, t), min

(x,t)∈Q
y2(x, t), . . . , min

(x,t)∈Q
ym(x, t)

}
< 0.

Without loss of generality, suppose that y1(x̂, t̂) ≤ y2(x̂, t̂) ≤ · · · ≤ ym(x̂, t̂). At the point

(x̂, t̂), we have the following conditions

∂y1

∂x

∣∣∣∣
(x̂,t̂)

= 0,
∂y1

∂t

∣∣∣∣
(x̂,t̂)

= 0,
∂2y1

∂x2

∣∣∣∣
(x̂,t̂)

≥ 0,

and from the first equation of LyLyLy, we obtain

L1yyy(x̂, t̂) =

(
∂y1

∂t
− ε∂

2y1

∂x2
+

m∑
`=1

a1m(x, t)y`(x, t)

)
(x̂,t̂)

,

≤
m∑
`=1

a1`(x̂, t̂)y1(x̂, t̂) +
m∑
`=2

a1`(x̂, t̂)(y`(x̂, t̂)− y1(x̂, t̂)),

≤
m∑
`=1

a1`(x̂, t̂)y1(x̂, t̂) < 0.
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Therefore, we have

L1yyy(x̂, t̂) < 0,

which contradicts the hypothesis. Hence, we conclude the result.

Lemma 4.2.2. The solution yyy to the problem (4.1.2) satisfies

‖yyy‖Q ≤
1

α
‖fff‖Q + max{‖qqq‖Qt

, ‖rrr‖Qt
}.

Proof. This lemma can be easily proved by implementing the maximum principle on the

barrier functions ΦΦΦ±(x, t) =
1

α
‖fff‖Q + max{‖qqq‖Qt

, ‖rrr‖Qt
} ± yyy(x, t), (x, t) ∈ Q.

Lemma 4.2.3. The solution yyy to the problem (4.1.2) satisfies∥∥∥∥∂lyyy∂tl
∥∥∥∥
Q
≤ C, l = 0, 1, 2.

Proof. We use the barrier function ψψψ = (1 + t)CCC to prove the result. First, to prove the result

for yyyt, assume ppp = yyyt. On Ql ∪Qr, ppp satisfies

|ppp(x, t)| ≤ max
t∈Qt

{|qqq′t|, |rrr′t|} ≤ CCC,

and on Qb taking continuity of initial condition, we get

‖ppp(x, 0)‖Qx
= ‖fff(x, 0)‖Qx

≤ C.

Differentiating (4.1.2a) w.r.t. t, to get

LpLpLp = fff t −AAAtyyy, (x, t) ∈ Q,

where AAAt =
(
∂aij
∂t

)
. We use previously defined barrier function ψψψ = (1 + t)CCC to prove

‖ppp‖Q = ‖yyyt‖Q ≤ C. The analysis for qqq = yyytt follows

|qqq(x, t)| ≤ CCC, (x, t) ∈ Ql ∪Qr,

‖qqq(x, 0)‖Qx
= ‖fff t(x, 0)−AAAtyyy + EEEfffxx(x, 0)−AAAfff(x, 0)‖Qx

≤ C,
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LqLqLq = fff tt −AAAttyyy − 2AAAtyyyt, (x, t) ∈ Q,

whereAAAtt =
(
∂2aij
∂t2

)
. Again, using ψψψ = (1 + t)CCC, we have ‖qqq‖Q = ‖yyytt‖Q ≤ C.

Now, we decompose the exact solution as

yyy = ννν︸︷︷︸
regular component

+www = wwwl +wwwr︸ ︷︷ ︸
singular component

,

where the regular component ννν satisfies
LνLνLν = fff, in Q,

ννν(x, 0) = 000, on Qb,

ννν = zzz, on Ql ∪Qr,

(4.2.1)

and zzz is the solution ofz
zzt +AAAzzz = fff, (x, t) ∈ (Ql ∪Qr)\{(0, 0), (1, 0)},

zzz(x, 0) = 000, x ∈ {0, 1}.
(4.2.2)

The left and right components ofwww are the solutions to the following problems
LLLwwwl = 000, in Q,

wwwl(x, 0) = 000, on Qb,

wwwl(0, t) = qqq(t)− ννν(0, t)−wwwr(0, t), wwwl(1, t) = 000, t ∈ Qt.

(4.2.3)


LLLwwwr = 000, in Q,

wwwr(x, 0) = 000, on Qb,

wwwr(0, t) = 000, wwwr(1, t) = rrr(t)− ννν(1, t), t ∈ Qt.

(4.2.4)
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Theorem 4.2.1. The solutions of (4.2.1), (4.2.3) and (4.2.4) satisfy the following bounds∣∣∣∣∂i+jνk∂xi∂tj

∣∣∣∣ ≤ C(1 + ε1−i/2), for 0 ≤ i ≤ 4, 1 ≤ k ≤ m, (4.2.5a)∣∣∣∣∂i+jwl;k∂xi∂tj

∣∣∣∣ ≤ Cε−i/2e−x
√
α/ε, for 0 ≤ i ≤ 4, 1 ≤ k ≤ m, (4.2.5b)∣∣∣∣∂i+jwr;k∂xi∂tj

∣∣∣∣ ≤ Cε−i/2e−(1−x)
√
α/ε, for 0 ≤ i ≤ 4, 1 ≤ k ≤ m. (4.2.5c)

Proof. The bounds can be easily obtained using the similar ideas of [116].

4.3 The proposed scheme

This section presents the construction of the mesh and brings into effect the offered numerical

scheme to the problem (4.1.2).

4.3.1 Discretization in time

This discretization process of the problem (4.1.2) includes the Crank-Nicolson technique

on an equidistant mesh. We divide [0, T ] into Mt subintervals with step size δt = T
Mt

and

consider a uniform partition ΩMt
t = {tj = jδt, j = 0, 1, . . . ,Mt} of Qt = [0, T ] in the time

direction. At the (j + 1
2
)-th time level, Equation (4.1.2) is discretized as

ỹyy0(x) = 000, x ∈ Qx, (4.3.1a)

LLLỹyyj+1(x) ≡ −E
EE
2
ỹyyj+1
xx (x) +

(
1

δt
III +

AAAj+
1
2 (x)

2

)
ỹyyj+1(x) = gggj+1(x), x ∈ Qx, j ≥ 0,

(4.3.1b)

ỹyyj+1(0) = qqq(tj+1), ỹyyj+1(1) = rrr(tj+1), j ≥ 0, (4.3.1c)

where III is the identity matrix of order m × m, AAAj+
1
2 (x) = (akl(x, tj+ 1

2
))1≤k,l≤m, ỹyyj+1 ≈

yyy(x, tj+1) represents the solution of the Equation (4.3.1) at the (j + 1)-th time level, and

gggj+1(x) = fff j+
1
2 (x) +

EEE
2
ỹyyjxx(x) +

(
1

δt
III − AAAj+

1
2 (x)

2

)
ỹyyj(x).
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For the components ỹj+1
k , k = 1, 2, . . . ,m the above equation can be written as

ỹ0
k(x) = 0, (4.3.2a)

Lkỹyyj+1(x) ≡ −ε
2

(ỹj+1
xx )k(x) +

(
1

δt
+
a
j+ 1

2
kk (x)

2

)
ỹj+1
k (x) +

1

2

m∑
l=1
l 6=k

a
j+ 1

2
lk (x)ỹj+1

l (x) = gj+1
k (x),

(4.3.2b)

ỹj+1
k (0) = qk(tj+1), ỹj+1

k (1) = rk(tj+1), j ≥ 0, (4.3.2c)

where

gj+1
k (x) = f

j+ 1
2

k (x) +
ε

2
(ỹjxx)k(x) +

(
1

δt
− a

j+ 1
2

kk (x)

2

)
ỹjk(x)− 1

2

m∑
l=1
l 6=k

a
j+ 1

2
lk (x)ỹjl (x).

The study of local truncation error (LTE) requires the solution of the following auxiliary

problem

LLLŷyyj+1(x) ≡ −E
EE
2
ŷyyj+1
xx (x) +

(
1

δt
III +

AAAj+
1
2 (x)

2

)
ŷyyj+1(x) = gggj+1(x), x ∈ Qx, j ≥ 0,

(4.3.3a)

ŷyyj+1(0) = qqq(tj+1), ŷyyj+1(1) = rrr(tj+1), j ≥ 0. (4.3.3b)

Lemma 4.3.1. The LTE associated to the Equation (4.3.1), defined as eeej+1 = yyy(x, tj+1)−

ŷyyj+1(x), satisfies ‖eeej+1‖ ≤ C(δt)3.

Proof. The proof is analogous to the proof of Lemma 2.3 given in [89].

Lemma 4.3.2. We define the global error byEEEj =

j∑
n=0

eeen, which satisfy the following bound

‖EEEj‖ ≤ C(δt)2, j ≤ T
δt
.
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Proof. We have

‖EEEj‖ =

∥∥∥∥ j∑
k=1

eeek
∥∥∥∥, j ≤ Tδt

≤ ‖eee1‖+ ‖eee2‖+ · · ·+ ‖eeej‖.

The use of estimate given in Lemma 4.3.1 gives

‖EEEj‖ ≤ Cj(δt)3

= C(δt)2(jδt)

≤ C(δt)2T , since j ≤Mt

≤ C(δt)2.

From the Lemma 4.3.2, it is evident that the semi-discretized scheme (4.3.1) is convergent

of second-order in time. We can decompose the k-th solution component ỹj+1
k (x) as ỹj+1

k (x) =

νj+1
k (x)+wj+1

l;k (x)+wj+1
r;k (x), where the components derivatives satisfy the following bounds

(see [50, 89, 116] for detailed analysis)∣∣∣∣diνj+1
k (x)

dxi

∣∣∣∣ ≤ C(1 + ε1−i/2), x ∈ Qx, 0 ≤ i ≤ 4, (4.3.4a)∣∣∣∣diwj+1
l;k (x)

dxi

∣∣∣∣ ≤ C(ε−i/2e−x
√
α/ε), x ∈ Qx, 0 ≤ i ≤ 4, (4.3.4b)∣∣∣∣diwj+1

r;k (x)

dxi

∣∣∣∣ ≤ C(ε−i/2e−(1−x)
√
α/ε), x ∈ Qx, 0 ≤ i ≤ 4, (4.3.4c)

for k = 0, 1, . . . ,m.

4.3.2 Exponentially graded mesh (eXp mesh) construction

A well-known fact from the literature tells us that traditional numerical techniques using

uniform mesh are insufficient to solve singularly perturbed IBVPs because they produce

abruptly extensive oscillations near the layer(s). In additional terms, we can modify this

statement as a method can only be developed by using many nodal points on a uniform mesh

that gives a uniform approximation at all mesh points and does not depend on the diffusion
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parameter. From the application perspective, this goal could be more attainable. Therefore,

the situation demands a nonuniform mesh to determine the uniform approximation in the

layer region. This subsection mainly focused on constructing an exponentially graded mesh

that quickly resolves the layer part by introducing more mesh points in the layer part.

First, the interval [0, 1] is divided into Mx > 4 (divisible by 4) subintervals I∗i = [x∗i−1, x
∗
i ]

to construct the eXp mesh ∆Mx = {x∗i | 0 ≤ i ≤ Mx}. The polynomial space Πs is defined

as Πs = {r(x)| deg(r(x)) ≤ s}, where deg(r(x)) denotes the degree of a polynomial r(x).

The mesh generating function Ψ(η), which is a piecewise continuously differentiable and

monotonically increasing function, is defined by

Ψ(η) = − ln(1− 2Cs,εη), η ∈ [0, 1/2− 1/Mx], (4.3.5)

where Cs,ε = 1−exp

(
− 1

(s+1)
√
ε

)
∈ R+. The interval [0, 1] can be split into three subintervals

as [0, 1] = [0, x∗Mx
4
−1

] ∪ [x∗Mx
4
−1
, x∗3Mx

4
+1

] ∪ [x∗3Mx
4

+1
, 1]. The nodal points are given as

x∗i =



(s+ 1)
√
εΨ(ηi), i = 0, 1, . . . , Mx

4
− 1,

x∗Mx
4
−1

+

(x∗3Mx
4

+1
− x∗Mx

4
−1

Mx

2
+ 2

)
(i−Mx/4 + 1), i = Mx

4
, . . . , 3Mx

4
,

1− (s+ 1)
√
εΨ(1− ηi), i = 3Mx

4
+ 1, . . . ,Mx,

where ηi = i
Mx

for i = 0, 1, . . . ,Mx, and ĥi = x∗i − x∗i−1 for i = 1, 2, . . . ,Mx. The interval

[x∗Mx
4
−1
, x∗3Mx

4
+1

] (with Mx/2 + 2 partitions) contains equidistant mesh points and the union

[0, x∗Mx
4
−1

]∪ [x∗3Mx
4

+1
, 1] (with Mx/4− 1 partitions in each subinterval) contain exponentially

graded distribution of mesh points. The estimates on ĥi can be evaluated using the mesh

characterizing function Φ = exp(−Ψ) (see [91] for more details)

ĥi ≤


C(s+ 1)

√
εM−1

x max Ψ′(ηi), i = 1, 2, . . . , Mx

4
− 1,

CM−1
x , i = Mx

4
, . . . , 3Mx

4
+ 1,

C(s+ 1)
√
εM−1

x max Ψ′(1− ηi), i = 3Mx

4
+ 2, . . . ,Mx,
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which can be further simplified as

ĥi ≤


C(s+ 1)

√
εM−1

x max |Φ′ | exp
(

x∗i
(s+1)

√
ε

)
, i = 1, 2, . . . , Mx

4
− 1,

CM−1
x , i = Mx

4
, . . . , 3Mx

4
+ 1,

C(s+ 1)
√
εM−1

x max |Φ′ | exp
(

1−x∗i
(s+1)

√
ε

)
, i = 3Mx

4
+ 2, . . . ,Mx.

Using max |Φ′ | ≤ 2, the above estimates can be simplified as

ĥi ≤


C
√
εM−1

x exp
(

x∗i
(s+1)

√
ε

)
, i = 1, 2, . . . , Mx

4
− 1,

CM−1
x , i = Mx

4
, . . . , 3Mx

4
+ 1,

C
√
εM−1

x exp
(

1−x∗i
(s+1)

√
ε

)
, i = 3Mx

4
+ 2, . . . ,Mx.

(4.3.6)

Additionally, the eXp mesh satisfies

|ĥi+1 − ĥi| ≤ C



√
εM−2

x , i = 1, 2, . . . , Mx

4
− 1,

0, i = Mx

4
, . . . , 3Mx

4
,

√
εM−2

x , i = 3Mx

4
+ 1, . . . ,Mx.

(4.3.7)

4.3.3 Execution of the collocation technique

In this section, we execute our collocation technique to find the solution of the Equation (4.3.1)

by converting the semi-discretized form to a fully discrete form with the use of piecewise

quadratic C1-splines. The collocation points are denoted by χ∗i

χ∗i = x∗i−1/2 :=
x∗i−1 + x∗i

2
= x∗i−1 +

ĥi
2

= x∗i −
ĥi
2
, for i = 1, 2, . . . ,Mx.

For m, s ∈ N ∪ {0} (m < s), we define the following spaces

Sm
s (∆Mx) := {r ∈ Cm[0, 1] : r|I∗i ∈ Πs, for i = 1, 2, . . . ,Mx},

Sm
s,0(∆Mx) := {r ∈ Sm

s (∆Mx) : r(0) = r(1) = 0}.
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The quadratic splines Bi(x) ∈ S1
2(∆Mx), i = 0, 1, . . . ,Mx + 1 defined below constitute the

solution basis for IBVP (4.3.1)

B0(x) =


(x∗1 − x)2

ĥ2
1

, x∗0 ≤ x ≤ x∗1,

0, otherwise,

B1(x) =



ĥ2
1 − (x∗1 − x)2

ĥ2
1

− (x− x∗0)2

ĥ1(ĥ1 + ĥ2)
, x∗0 ≤ x ≤ x∗1,

(x∗2 − x)2

ĥ1(ĥ1 + ĥ2)
, x∗1 ≤ x ≤ x∗2,

0, otherwise,

and for i = 2, 3, . . . ,Mx − 1,

Bi(x) =



(x− x∗i−2)2

ĥi−1(ĥi−1 + ĥi)
, x∗i−2 ≤ x ≤ x∗i−1,

(x− x∗i−2)(x∗i − x)

ĥi(ĥi−1 + ĥi)
+

(x∗i+1 − x)(x− x∗i−1)

ĥi(ĥi + ĥi+1)
, x∗i−1 ≤ x ≤ x∗i ,

(x∗i+1 − x)2

ĥi+1(ĥi + ĥi+1)
, x∗i ≤ x ≤ x∗i+1,

0, otherwise,

while for i = Mx, Mx + 1 these are defined as

BMx(x) =



(x− x∗Mx−2)2

ĥMx−1(ĥMx−1 + ĥMx)
, x∗Mx−2 ≤ x ≤ x∗Mx−1,

ĥ2
Mx
− (x− x∗Mx−1)2

ĥ2
Mx

−
(x∗Mx

− x)2

ĥMx(ĥMx−1 + ĥMx)
, x∗Mx−1 ≤ x ≤ x∗Mx

,

0, otherwise,

BMx+1(x) =


(x− x∗Mx−1)2

ĥ2
Mx

, x∗Mx−1 ≤ x ≤ x∗Mx
,

0, otherwise.
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The approximate solution for the k-th component at the (j + 1)-th time level is taken as

S j+1
k (x) =

Mx+1∑
l=0

αj+1
l;k Bl(x), j = 0, 1, . . . ,Mt − 1, (4.3.8)

where αj+1
l;k are the unknowns at the (j + 1)-th time level. The component-wise (for k =

1, 2, . . . ,m) form of fully discrete scheme can be written as

S 0
i−1/2;k = 0,

LkSSS j+1
i−1/2 = gj+1

k (χ∗i ), for i = 1, 2, . . . ,Mx,

S j+1
0;k = qk(tj+1), S j+1

Mx;k = rk(tj+1). (4.3.9)

At each time level, the values of Sk and S ′′
k at χ∗i are given by

S j+1
k (χ∗i ) =

(
ĥi

4(ĥi + ĥi−1)

)
αj+1
i−1;k +

(
1− ĥi

4(ĥi + ĥi−1)
− ĥi

4(ĥi + ĥi+1)

)
αj+1
i;k

+

(
ĥi

4(ĥi + ĥi+1)

)
αj+1
i+1;k,

(S ′′
k )j+1(χ∗i ) =

(
2

ĥi(ĥi + ĥi−1)

)
αj+1
i−1;k +

(
− 2

ĥi(ĥi + ĥi−1)
− 2

ĥi(ĥi + ĥi+1)

)
αj+1
i;k

+

(
2

ĥi(ĥi + ĥi+1)

)
αj+1
i+1;k. (4.3.10)

Substituting these values in (4.3.2b), the L.H.S. becomes

LMx
k αααj+1

k =− ε

2

[(
2αj+1

i−1;k

ĥi(ĥi + ĥi−1)

)
+

(
− 2

ĥi(ĥi + ĥi−1)
− 2

ĥi(ĥi + ĥi+1)

)
αj+1
i;k

+

(
2αj+1

i+1;k

ĥi(ĥi + ĥi+1)

)]
+

(
1

δt
+
a
j+ 1

2
kk (x)

2

)[
q̂−i α

j+1
i−1;k + (1− q̂−i − q̂+

i )αj+1
i;k

+ q̂+
i α

j+1
i+1;k

]
+

1

2

m∑
l 6=k,l=1

(alk)
j+ 1

2

i−1/2

[
q̂−i α

j+1
i−1;k + (1− q̂−i − q̂+

i )αj+1
i;k + q̂+

i α
j+1
i+1;k

]
,
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where q+
i := ĥi

4(ĥi+ĥi+1)
and q−i := ĥi

4(ĥi+ĥi−1)
. In the R.H.S., we have

gj+1
k (x) =

ε

2

[(
2αji−1;k

ĥi(ĥi + ĥi−1)

)
+

(
− 2

ĥi(ĥi + ĥi−1)
− 2

ĥi(ĥi + ĥi+1)

)
αji;k

+

(
2αji+1;k

ĥi(ĥi + ĥi+1)

)]
+

(
1

δt
− a

j+ 1
2

kk (x)

2

)[
q̂−i α

j
i−1;k + (1− q̂−i − q̂+

i )αji;k

+ q̂+
i α

j
i+1;k

]
− 1

2

m∑
l 6=k,l=1

(alk)
j+ 1

2

i−1/2

[
q̂−i α

j
i−1;k + (1− q̂−i − q̂+

i )αji;k + q̂+
i α

j
i+1;k

]

+ f
j+ 1

2
k (χ∗i ).

We combine all the equations and form a system of the type

AAAαααj+1 = BBBαααj +GGG,

where

GGG =

(
q1, f

j+ 1
2

1 (χ∗1), . . . , f
j+ 1

2
1 (χ∗Mx

), r1︸ ︷︷ ︸
1st component

, q2, f
j+ 1

2
2 (χ∗1), . . . , f

j+ 1
2

2 (χ∗Mx
), r2︸ ︷︷ ︸

2ndcomponent

, . . . ,

qm, f
j+ 1

2
m (χ∗1), . . . , f

j+ 1
2

m (χ∗Mx
), rm︸ ︷︷ ︸

mth component

)T
,

αααj+1 =

(
αj+1

0;1 , α
j+1
1;1 , . . . , α

j+1
Mx+1;1︸ ︷︷ ︸

1st component

, αj+1
0;2 , α

j+1
1;2 , . . . , α

j+1
Mx+1;2︸ ︷︷ ︸

2nd component

, . . . ,

αj+1
0;m , α

j+1
1;m , . . . , α

j+1
Mx+1;m︸ ︷︷ ︸

m
th component

)T
.

The matricesAAA andBBB are given by

AAA =


A11 A12 . . . A1m

A21 A22 . . . A2m

...
... . . . ...

Am1 Am2 . . . Amm

 , BBB =


B11 B12 . . . B1m

B21 B22 . . . B2m

...
... . . . ...

Bm1 Bm2 . . . Bmm

 .
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Each Alk is also a matrix of order (Mx + 2)× (Mx + 2). The matrix Akk is given as

Akk =



1 0 0 0 . . . . . . 0

a21;kk a22;kk a23;kk 0 . . . . . . 0

0 a32;kk a33;kk a34;kk . . . . . . 0
... . . . . . . . . . ...

...
...

. . . . . . . . . 0 aMx+1Mx;kk aMx+1Mx+1;kk aMx+1Mx+2;kk

. . . . . . . . . 0 0 0 1


,

where

aii−1;kk = −
4εq̂−i−1

ĥ2
i−1

+

(
1

δt
+
a
j+ 1

2
kk (χ∗i−1)

2

)
q̂−i−1,

aii;kk =
4εq̂+

i−1

ĥ2
i−1

+
4εq̂−i−1

ĥ2
i−1

+

(
1

δt
+
a
j+ 1

2
kk (χ∗i−1)

2

)(
1− q̂+

i−1 − q̂−i−1

)
,

aii+1;kk = −
4εq̂+

i−1

ĥ2
i−1

+

(
1

δt
+
a
j+ 1

2
kk (χ∗i−1)

2

)
q̂+
i−1,

for i = 2, 3, . . . ,Mx + 1. Furthermore, for l 6= k, l = 1, 2, . . . ,m, k = 1, 2, . . . ,m the

matrix Alk is given as

Alk =



0 0 0 0 . . . . . . 0

a21;lk a22;lk a23;lk 0 . . . . . . 0

0 a32;lk a33;lk a34;lk . . . . . . 0
... . . . . . . . . . ...

...
...

. . . . . . . . . 0 aMx+1Mx;lk aMx+1Mx+1;lk aMx+1Mx+2;lk

. . . . . . . . . 0 0 0 0


,

where

aii−1,lk =
1

2
a
j+ 1

2
lk (χ∗i−1)q̂−i−1,

aii,lk =
1

2
a
j+ 1

2
lk (χ∗i−1)

(
1− q̂+

i−1 − q̂−i−1

)
,
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aii+1,lk =
1

2
a
j+ 1

2
lk (χ∗i−1)q̂+

i−1,

for i = 2, 3, . . . ,Mx + 1. Again, each Blk is also a matrix of order (Mx + 2) × (Mx + 2).

The matrix Bkk is given as

Bkk =



0 0 0 0 . . . . . . 0

b21;kk b22;kk b23;kk 0 . . . . . . 0

0 b32;kk b33;kk b34;kk . . . . . . 0
... . . . . . . . . . ...

...
...

. . . . . . . . . 0 bMx+1Mx;kk bMx+1Mx+1;kk bMx+1Mx+2;kk

. . . . . . . . . 0 0 0 0


,

where

bii−1;kk =
4εq̂−i−1

ĥ2
i−1

+

(
1

δt
−
a
j+ 1

2
kk (χ∗i−1)

2

)
q̂−i−1,

bii;kk =−
4εq̂+

i−1

ĥ2
i−1

−
4εq̂−i−1

ĥ2
i−1

+

(
1

δt
−
a
j+ 1

2
kk (χ∗i−1)

2

)(
1− q̂+

i−1 − q̂−i−1

)
,

bii+1;kk =
4εq̂+

i−1

ĥ2
i−1

+

(
1

δt
−
a
j+ 1

2
kk (χ∗i−1)

2

)
q̂+
i−1,

for i = 2, 3, . . . ,Mx + 1. Furthermore, for l 6= k, l = 1, 2, . . . ,m, k = 1, 2, . . . ,m the

matrix Blk is given as

Blk =



0 0 0 0 . . . . . . 0

b21;lk b22;lk b23;lk 0 . . . . . . 0

0 b32;lk b33;lk b34;lk . . . . . . 0
... . . . . . . . . . ...

...
...

. . . . . . . . . 0 bMx+1Mx;lk bMx+1Mx+1;lk bMx+1Mx+2;lk

. . . . . . . . . 0 0 0 0


,
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where

bii−1,lk = −1

2
a
j+ 1

2
lk (χ∗i−1)q̂−i−1,

bii,lk = −1

2
a
j+ 1

2
lk (χ∗i−1)

(
1− q̂+

i−1 − q̂−i−1

)
,

bii+1,lk = −1

2
a
j+ 1

2
lk (χ∗i−1)q̂+

i−1,

for i = 2, 3, . . . ,Mx + 1.

4.4 Convergence and error analysis

In this section, first we find Yj+1
k ∈ S1

2(∆Mx) such that

[LkYYYj+1]i−1/2 = gj+1
k (χ∗i ), i = 1, 2, . . . ,Mx, (YYYj+1)0 = qqq(tj+1), (YYYj+1)Mx = rrr(tj+1),

(4.4.1)

where the components Yj+1
k are represented as

Y
j+1
k (x) =

Mx+1∑
l=0

ςj+1
l;k Bl(x), j = 0, 1, . . . ,Mt − 1.

We apply our collocation technique on each component at each time step to get the following

system

[LMx
k ςςςj+1

k ]i−1/2 = gj+1
k (χ∗i ), i = 1, 2, . . . ,Mx, ς

j+1
0;k = qk(tj+1), ςj+1

Mx+1;k = rk(tj+1),

(4.4.2)

then, to prove the parameter-uniform convergence, we need error estimates in S0
2 and S1

2-

interpolations.

4.4.1 S02-interpolation

To find an interpolating function I0
2Y

j+1
k ∈ S0

2(∆Mx) for the function Yj+1
k ∈ C0(Qx), we

need to solve the following interpolation problem

(I0
2Y

j+1
k )i = (Yj+1

k )i, i = 0, 1, . . . ,Mx, and (I0
2Y

j+1
k )i−1/2 = (Yj+1

k )i−1/2, i = 1, 2, . . . ,Mx,
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where (Yj+1
k )i = Yk(x

∗
i , tj+1), (Yj+1

k )i−1/2 = Yk(χ
∗
i , tj+1), k = 1, 2, . . . ,m.

Theorem 4.4.1. Assuming aj+1
pq , f j+1

k ∈ C4(Qx), the interpolating error ỹyyj+1− I0
2ỹyy
j+1 in the

semi-discretized solution ỹyyj+1 of equation (4.3.1) at each time step satisfies

‖ỹyyj+1 − I0
2ỹyy
j+1‖ ≤ CM−3

x ,

EEE max
i=1,2,...,Mx

|(ỹyyj+1 − I0
2ỹyy
j+1)′′i−1/2| ≤ CCCM−2

x .

Proof. First, using the Lagrange representation and Taylor expansions for interpolating

polynomial, we verify that for any ỹyyj+1 ∈ C4[0, 1]m,

∥∥∥∥ỹj+1
k −I

0
2ỹ
j+1
k

∥∥∥∥
I∗i

≤ ĥ3
i

24

∥∥∥∥(ỹj+1
k )(3)

∥∥∥∥
I∗i

,

∣∣∣∣(ỹj+1
k −I

0
2ỹ
j+1
k )′′i−1/2

∣∣∣∣ ≤ ĥ2
i

48

∥∥∥∥(ỹj+1
k )(4)

∥∥∥∥
I∗i

. (4.4.3)

Solution components ỹj+1
k can be decomposed by making use of the linear property of I0

2 as

ỹj+1
k − I0

2ỹ
j+1
k = (νj+1

k − I0
2ν

j+1
k ) +

(
wj+1
l;k − I0

2w
j+1
l;k

)
+

(
wj+1
r;k − I0

2w
j+1
r;k

)
.

First, we analyze the regular component as follows. For I∗i ⊂ [0, x∗Mx
4
−1

], using the bounds of

the Equation (4.3.4), we obtain

ĥ3
i

24

∣∣∣∣(νj+1
k )(3)

∣∣∣∣
I∗i

≤ Cε3/2M−3
x exp

(
3x∗i

(s+ 1)
√
ε

)
(1 + ε−1/2)

≤ CM−3
x exp

(
x∗i√
ε

)
≤ CM−3

x exp

(
(s+ 1)Ψ(ηi)

)
≤ CM−3

x .

Using the bounds for ĥi from Equation (4.3.6), we get ‖νj+1
k − I0

2ν
j+1
k ‖I∗i ≤ CM−3

x for the

right layer region (I∗i ⊂ [x∗3Mx
4

+2
, 1]) and regular region (I∗i ⊂ [x∗Mx

4

, x∗3Mx
4

+1
]). Thus, for

regular component νj+1
k in all the three regions, we have

‖νj+1
k − I0

2ν
j+1
k ‖ ≤ CM−3

x .
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For the left singular component wj+1
l;k in I∗i ⊂ [0, x∗Mx

4
−1

], using the bounds and inequality of

Equations (4.3.4) and (4.3.6), we get

ĥ3
i

24

∣∣∣∣(wj+1
l;k )(3)

∣∣∣∣
I∗i

≤ Cε3/2M−3
x exp

(
3x∗i

(s+ 1)
√
ε

)
ε−3/2

∣∣∣∣e−x√α/ε∣∣∣∣
I∗i

≤ CM−3
x exp

(
x∗i√
ε
−
x∗i−1√
ε

)
≤ CM−3

x exp

(
ĥi√
ε

)
≤ CM−3

x exp

(
(s+ 1)M−1

x max Ψ′(ηi)

)
≤ CM−3

x .

Now for I∗i ⊂ [x∗Mx
4

, x∗3Mx
4

+1
], we obtain

ĥ3
i

24

∣∣∣∣(wj+1
l;k )(3)

∣∣∣∣
I∗i

≤ CM−3
x ε−3/2

∣∣∣∣e−x√α/ε∣∣∣∣
I∗i

≤ CM−3
x ε−3/2 exp

(
−x∗i−1

√
α

ε

)
.

Here we use L’Hôpital rule (as limit of ε→ 0) to show that the term ε−3/2 exp

(
−x∗i−1

√
α

ε

)
is bounded in [x∗Mx

4

, x∗3Mx
4

+1
]. Thus

ĥ3
i

24

∣∣∣∣(wj+1
l;k )(3)

∣∣∣∣
I∗i

≤ CM−3
x .

Following the analogy of the subinterval [0, x∗Mx
4
−1

], one can easily get the bounds in I∗i ⊂

[x∗3Mx
4

+2
, 1]. Combining all these estimates, we have

‖wj+1
l;k − I0

2w
j+1
l;k ‖ ≤ CM−3

x .

For the right singular component wj+1
r;k in I∗i ⊂ [0, x∗Mx

4
−1

], using the bounds and inequality of
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Equations (4.3.4) and (4.3.6), we get

ĥ3
i

24

∣∣∣∣(wj+1
r;k )(3)

∣∣∣∣
I∗i

≤ Cε3/2M−3
x exp

(
3x∗i

(s+ 1)
√
ε

)
ε−3/2

∣∣∣∣e−(1−x)
√
α/ε

∣∣∣∣
I∗i

≤ Cε3/2M−3
x exp

(
C1x

∗
i√
ε

)
ε−3/2 exp

(
−
C2(1− x∗i−1)√

ε

)
≤ CM−3

x exp

(
C3

x∗i − (1− x∗i−1)√
ε

)
≤ CM−3

x exp

(
C3

ĥi − 1− 2x∗i−1√
ε

)
≤ CM−3

x exp

(
C3(s+ 1)M−1

x max Ψ′(ηi)

)
≤ CM−3

x .

The bounds in the intervals [x∗3Mx
4

+2
, 1] and [x∗Mx

4

, x∗3Mx
4

+1
] can easily be obtained by following

the previously used approach for wj+1
l;k . Thus, we get

‖wj+1
r;k − I0

2w
j+1
r;k ‖ ≤ CM−3

x .

In the next step we obtain the bounds for max
i=1,2,...,Mx

|(yj+1
k − I0

2y
j+1
k )′′i−1/2|. For this, first

consider νk in I∗i ⊂ [0, x∗Mx
4
−1

] as follows

ĥ2
i

48

∣∣∣∣(νj+1
k )(4)

∣∣∣∣
I∗i

≤ CεM−2
x exp

(
2x∗i

(s+ 1)
√
ε

)
(1 + ε−1) (using Equations (4.3.4) and (4.3.6))

≤ CM−2
x exp

(
2x∗i

(s+ 1)
√
ε

)
≤ CM−2

x exp

(
2Ψ(ηi)

)
≤ CM−2

x .

Similar results can be obtained for the intervals [x∗Mx
4

, x∗3Mx
4

+1
] and [x∗3Mx

4
+2
, 1]. Now for the

left singular component in I∗i ⊂ [0, x∗Mx
4
−1

], we have

ĥ2
i

48

∣∣∣∣(wj+1
l;k )(4)

∣∣∣∣
I∗i

≤ CεM−2
x exp

(
2x∗i

(s+ 1)
√
ε

)
ε−2

∣∣∣∣e−x√α/ε∣∣∣∣
I∗i
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≤ CεM−2
x exp

(
C4x

∗
i√
ε

)
ε−2 exp

(
−C5x

∗
i−1√
ε

)
≤ Cε−1M−2

x exp

(
C6(x∗i − x∗i−1)√

ε

)
≤ Cε−1M−2

x exp

(
C6ĥi√
ε

)
≤ Cε−1M−2

x exp

(
C6(s+ 1)M−1

x max Ψ′(ηi)

)
≤ Cε−1M−2

x .

Previously used approach led us to obtain the bounds for the intervals [x∗Mx
4

, x∗3Mx
4

+1
] and

[x∗3Mx
4

+2
, 1]. Thus,

max
i=1,2,...,Mx

|(wj+1
l;k − I0

2w
j+1
l;k )′′i−1/2| ≤ Cε−1M−2

x .

For the right singular component wj+1
r;k in I∗i ⊂ [0, x∗Mx

4
−1

], using the bounds and inequality of

Equations (4.3.4) and (4.3.6), we get

ĥ2
i

48

∣∣∣∣(wj+1
r;k )(4)

∣∣∣∣
I∗i

≤ CεM−2
x exp

(
3x∗i

(s+ 1)
√
ε

)
ε−2

∣∣∣∣e−(1−x)
√
α/ε

∣∣∣∣
I∗i

≤ Cε−1M−2
x exp

(
C7x

∗
i√
ε

)
exp

(
−
C8(1− x∗i−1)√

ε

)
≤ Cε−1M−2

x exp

(
C9

x∗i − (1− x∗i−1)√
ε

)
≤ Cε−1M−2

x exp

(
C9

ĥi − 1− 2x∗i−1√
ε

)
≤ Cε−1M−2

x exp

(
C9(s+ 1)M−1

x max Ψ′(ηi)

)
≤ Cε−1M−2

x .

Previously used approach led us to obtain the bounds for the intervals [x∗Mx
4

, x∗3Mx
4

+1
] and

[x∗3Mx
4

+2
, 1]. Thus,

max
i=1,2,...,Mx

|(wj+1
r;k − I0

2w
j+1
r;k )′′i−1/2| ≤ Cε−1M−2

x .
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As discussed earlier, I0
2ỹ
j+1
k satisfy linearity, so using the triangle inequality, the proof is

completed.

Lemma 4.4.1. Let φk ∈ S0
2(∆Mx) with (φk)i−1/2 = 0, i = 1, 2, . . . ,Mx, k = 1, 2, . . . ,m,

then

‖φk‖I∗i ≤ max
i
{|(φk)i−1|, |(φk)i|}, ‖φ′′k‖I∗i ≤

8

ĥ2
i

max
i
{|(φk)i−1|, |(φk)i|}.

Proof. Refer to [94].

4.4.2 S12-interpolation

To find an interpolating function I1
2Y

j+1
k ∈ S1

2(∆Mx) for the function Yj+1
k ∈ C1(Qx), we

need to solve the following interpolation problem

(I1
2Y

j+1
k )i−1/2 = (Yj+1

k )i−1/2, i = 1, 2, . . . ,Mx,

(I1
2Y

j+1
k )0 = (Yj+1

k )0, (I1
2Y

j+1
k )Mx = (Yj+1

k )Mx , (4.4.4)

where (Yj+1
k )i−1/2 = Yk(χ

∗
i , tj+1), k = 1, 2, . . . ,m. From [93, 111], we have

[Λφk]i ≡ ai(φk)i−1+3(φk)i+ci(φk)i+1 = 4ai(φk)i−1/2+4ci(φk)i+1/2, i = 1, 2, . . . ,Mx−1,

(4.4.5)

where ai = ĥi+1

ĥi+ĥi+1
and ci = 1− ai = ĥi

ĥi+ĥi+1
.

Lemma 4.4.2. The operator Λ (refer Equation (4.4.5)) is stable, with (φk)0 = (φk)1 = 0,

max
i=1,2,...,Mx−1

|(φk)i| ≤
1

2
max

i=1,2,...,Mx−1
|[Λφk]i|, k = 1, 2, . . . ,m,

for the vectors φk ∈ RMx+1.

Proof. Refer to [94].

Theorem 4.4.2. Assuming aj+1
pq , f j+1

k ∈ C4(Qx), the interpolating error ỹyyj+1− I1
2ỹyy
j+1 in the
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semi-discretized solution ỹyyj+1 of equation (4.3.1) at each time step satisfies

max
i=0,1,...,Mx

|(ỹyyj+1 − I1
2ỹyy
j+1)i| ≤ CCCM−4

x , (4.4.6a)

‖ỹyyj+1 − I1
2ỹyy
j+1‖ ≤ CM−3

x , (4.4.6b)

EEE max
i=1,2,...,Mx

|(ỹyyj+1 − I1
2ỹyy
j+1)′′i−1/2| ≤ CCCM−2

x . (4.4.6c)

Proof. For an arbitrary function ψj+1
k ∈ C4(Qx), the interpolating error satisfies

(ψj+1
k − I1

2ψ
j+1
k )0 = (ψj+1

k − I1
2ψ

j+1
k )1 = 0.

We use Equations (4.4.4) and (4.4.5) to get the following expression for truncation error

τj+1
ψk,i

= [Λ(ψj+1
k − I1

2ψ
j+1
k )]i

= ai(ψ
j+1
k )i−1 − 4ai(ψ

j+1
k )i−1/2 + 3(ψj+1

k )i − 4ci(ψ
j+1
k )i+1/2 + ci(ψ

j+1
k )i+1,

(4.4.7)

for i = 1, 2, . . . ,Mx, k = 1, 2, . . . ,m. Using the Taylor expansions in (4.4.7), we obtain

|τj+1
ψk,i
| ≤ 1

12
ĥiĥi+1|ĥi+1− ĥi|‖(ψj+1

k )′′′‖I∗i +
5

96
max{ĥ4

i , ĥ
4
i+1}‖(ψ

j+1
k )(4)‖I∗i ∪I∗i+1

. (4.4.8)

Now, the decomposition of the interpolating error is given by

ỹj+1
k − I1

2ỹ
j+1
k = (νj+1

k − I1
2ν

j+1
k ) +

(
wj+1
l;k − I1

2w
j+1
l;k

)
+

(
wj+1
r;k − I1

2w
j+1
r;k

)
,

or

τj+1
yk,i

= τj+1
νk,i

+ τj+1
wl;k,i

+ τj+1
wr;k,i

.

We start with exploring the regular component in I∗i ⊂ [0, x∗Mx
4
−1

]. Using the inequality

(4.4.8) and bounds of (4.3.4), we get

|τj+1
νk,i
| ≤ C

(
ĥiĥi+1|ĥi+1 − ĥi|(1 + ε−1/2) + max{ĥ4

i , ĥ
4
i+1}(1 + ε−1)

)
.
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Now as ĥi < ĥi+1 holds in [0, x∗Mx
4
−1

], so

|τj+1
νk,i
| ≤ C

(
ĥ2
i+1|ĥi+1 − ĥi|(1 + ε−1/2) + ĥ4

i+1(1 + ε−1)

)
≤ C

(
ε3/2(1 + ε−1/2)M−4

x exp

(
2x∗i+1

(s+ 1)
√
ε

)
+ ε2(1 + ε−1)M−4

x exp

(
4x∗i+1

(s+ 1)
√
ε

))
≤ CM−4

x exp

(
4x∗i+1

(s+ 1)
√
ε

)
≤ CM−4

x exp

(
4Ψ(ηi+1)

)
≤ CM−4

x .

When x∗i ∈ [x∗Mx
4

, x∗3Mx
4

+1
], it is easy to prove |τj+1

νk,i
| ≤ CM−4

x . Similar result can be proved

for x∗i ∈ [x∗3Mx
4

+2
, 1]. Therefore, applying Lemma 4.4.2, we get

max
i=0,1,...,Mx

|(νj+1
k − I1

2ν
j+1
k )i| ≤ CM−4

x .

Finding the bounds for wj+1
l;k , use of the fact ĥi < ĥi+1 for x∗i ∈ [0, x∗Mx

4
−1

] gives

|τj+1
wl;k,i
| ≤ 1

12
ĥiĥi+1|ĥi+1 − ĥi|‖(wj+1

l;k )′′′‖I∗i +
5

96
max{ĥ4

i , ĥ
4
i+1}‖(w

j+1
l;k )(4)‖I∗i ∪I∗i+1

≤ C

(
ĥ2
i+1|ĥi+1 − ĥi|ε−3/2

∣∣∣∣e−x√α/ε∣∣∣∣
I∗i

+ ĥ4
i+1ε

−2

∣∣∣∣e−x√α/ε∣∣∣∣
I∗i ∪I∗i+1

)
≤ CM−4

x

(
exp

(
2x∗i+1

(s+ 1)
√
ε

)∣∣∣∣e−x√α/ε∣∣∣∣
I∗i

+ exp

(
4x∗i+1

(s+ 1)
√
ε

)∣∣∣∣e−x√α/ε∣∣∣∣
I∗i ∪I∗i+1

)
≤ CM−4

x exp

(
C10ĥi+1√

ε

)
≤ CM−4

x exp

(
C10(s+ 1)M−1

x max Ψ′(ηi+1)

)
≤ CM−4

x .

Similarly for wj+1
r;k , we have

|τj+1
wr;k,i
| ≤ 1

12
ĥiĥi+1|ĥi+1 − ĥi|‖(wj+1

r;k )′′′‖I∗i +
5

96
max{ĥ4

i , ĥ
4
i+1}‖(w

j+1
r;k )(4)‖I∗i ∪I∗i+1
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≤ C

(
ĥ2
i+1|ĥi+1 − ĥi|ε−3/2

∣∣∣∣e−(1−x)
√
α/ε

∣∣∣∣
I∗i

+ ĥ4
i+1ε

−2

∣∣∣∣e−(1−x)
√
α/ε

∣∣∣∣
I∗i ∪I∗i+1

)
≤ CM−4

x

(
exp

(
2x∗i+1

(s+ 1)
√
ε

)∣∣∣∣e−(1−x)
√
α/ε

∣∣∣∣
I∗i

+ exp

(
4x∗i+1

(s+ 1)
√
ε

)∣∣∣∣e−(1−x)
√
α/ε

∣∣∣∣
I∗i ∪I∗i+1

)
≤ CM−4

x exp

(
C11(s+ 1)M−1

x max Ψ′(ηi+1)

)
≤ CM−4

x .

The similar approach can be followed in the subintervals [x∗Mx
4

, x∗3Mx
4

+1
] and [x∗3Mx

4
+2
, 1] for

both the components. Therefore, applying Lemma 4.4.2, we get

max
i=0,1,...,Mx

∣∣∣∣(wj+1
l;k − I1

2w
j+1
l;k

)
i

∣∣∣∣ ≤ CM−4
x , and max

i=0,1,...,Mx

∣∣∣∣(wj+1
r;k − I1

2w
j+1
r;k

)
i

∣∣∣∣ ≤ CM−4
x .

We skip some analysis as it is analogous to the previous one. We combine all the interpolating

errors to obtain the bound (4.4.6a). To prove the bound (4.4.6b), we make use of triangle

inequality as

‖ỹyyj+1 − I1
2ỹyy
j+1‖ ≤ ‖ỹyyj+1 − I0

2ỹyy
j+1‖+ ‖I0

2ỹyy
j+1 − I1

2ỹyy
j+1‖

≤ ‖ỹyyj+1 − I0
2ỹyy
j+1‖+ max

i=0,1,...,Mx

|(ỹyyj+1 − I1
2ỹyy
j+1)i|.

From S0
2-interpolation, we have (I0

2ỹyy
j+1)i = ỹyyj+1

i , i = 0, 1, . . . ,Mx. Using Lemma 4.4.1,

Theorem 4.4.1, and Equation (4.4.6a), we get the estimate (4.4.6b). For Equation (4.4.6c), we

use

|(ỹj+1
k − I1

2ỹ
j+1
k )′′i−1/2| ≤ |(ỹ

j+1
k − I0

2ỹ
j+1
k )′′i−1/2|+ |(I0

2ỹ
j+1
k − I1

2ỹ
j+1
k )′′i−1/2|

≤ |(ỹj+1
k − I0

2ỹ
j+1
k )′′i−1/2|+ max

i=0,1,...,Mx

8

ĥ2
i

|(ỹj+1
k − I1

2ỹ
j+1
k )i|.

Finally, use Theorem 4.4.1 and inequality (4.4.6a) to complete the proof.

Theorem 4.4.3. Assume that µ is a positive constant such that

max{ĥi+1, ĥi−1} > µĥi, i = 1, 2, . . . ,Mx − 1, ĥ1 > µĥ2, and ĥMx > µĥMx−1.
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Then the operator Lk satisfies the following stability bound in the maximum-norm i.e.,

‖Θk‖ ≤
4δt

αδt+ 1
max

i=1,2,...,Mx

∣∣∣∣ [LkΘk]i−1/2

nj+1
i−1/2;k

∣∣∣∣,
for all Θk ∈ RMx+2

0 = {r ∈ RMx+2 : r0 = rMx+1 = 0}, where

nj+1
i−1/2;k :=

1

2

m∑
l 6=k,l=1

(alk)
j+ 1

2

i−1/2

[
q̂−i α

j+1
i−1;k + (1− q̂−i − q̂+

i )αj+1
i;k + q̂+

i α
j+1
i+1;k

]
, k = 1, 2, . . . ,m.

Proof. Refer to [94].

Theorem 4.4.4. Let ỹyyj+1(x) andYYYj+1(x) are the solutions to the problems (4.3.1) and (4.4.1),

respectively. Then

‖ỹyyj+1 −YYYj+1‖ ≤ CM−2
x ,

‖ỹyyj+1
i−1/2 −YYY

j+1
i−1/2‖ ≤ CM−2

x , for i = 1, 2, . . . ,Mx.

Proof. To prove the first inequality, we use the triangle inequality

‖ỹj+1
k −Yj+1

k ‖ ≤ ‖ỹ
j+1
k − I1

2 ỹ
j+1
k ‖+ ‖I1

2ỹ
j+1
k −Yj+1

k ‖.

The interpolant I1
2ỹ
j+1
k of ỹj+1

k can be defined as

I1
2ỹ
j+1
k (x) =

Mx+1∑
l=0

βj+1
l;k Bl(x).

Thus,

[LMx
k (ςςςj+1

k −βββj+1
k )]i−1/2 = Lk(YYYj+1 − I1

2ỹyy
j+1)i−1/2, i = 1, 2, . . . ,Mx.

Since ςςςj+1
k −βββj+1

k ∈ RMx+2
0 , then we use Theorems 4.4.2 and 4.4.3 for

‖I1
2ỹ
j+1
k −Yj+1

k ‖ ≤ ‖ςςς
j+1
k −βββj+1

k ‖ ≤ CM−2
x .
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The process of obtaining the second estimate is analogous to the first part.

Corollary 4.4.1. Assuming that M−p
x ≤ Cδt, 0 < p < 1, then

|ỹj+1
k −Yj+1

k | ≤ CδtM−2+p
x , i = 1, 2, . . . ,Mx. (4.4.9)

The bound given in the Equation (4.4.9) is needed for establishing the parameter-uniform

convergence of the fully discretized scheme.

Theorem 4.4.5. For M−p
x ≤ Cδt, 0 < p < 1, we have

‖yyy(χ∗i , tj)−SSS j
i−1/2‖ ≤ C((δt)2 +M−2+p

x ).

Proof. Let ξji;k = yk(χ
∗
i , tj) −S j

i−1/2;k denotes the error in the k-th component at the j-th

time step. Splitting ξji;k using the triangle inequality

‖ξji;k‖ ≤ ‖yk(χ
∗
i , tj)− ỹ

j
i−1/2;k‖+ ‖ỹji−1/2;k −Y

j
i−1/2;k‖+ ‖Yj

i−1/2;k −S j
i−1/2;k‖.

Since the time derivatives of the solution are bounded, use of Corollary 4.4.1 gives

‖ξji;k‖ ≤ Cδt((δt)2 +M−2+p
x ) + ‖Yj

i−1/2;k −S j
i−1/2;k‖.

Stability estimate of Theorem 4.4.3 provide the following result

‖Yj
i−1/2;k −S j

i−1/2;k‖ ≤ ‖yk(χ
∗
i , tj−1)−S j−1

i−1/2;k‖,

and this recurrence occurs as we move to other time levels and finally, we have our required

estimate

‖ξji;k‖ ≤ Cδt((δt)2 +M−2+p
x ) + ‖ξj−1

i;k ‖.

A repeated use of this inequality leads to the final result

‖yyy(χ∗i , tj)−SSS j
i−1/2‖ ≤ C((δt)2 +M−2+p

x ).
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4.5 Computational experiments
This section delivers some numerical results, which verify our theoretical determinations. We

consider the numerical investigations on three test problems to show the applicability and

efficiency of the present method.

Remark 4.5.1. Figures 4.1(f), 4.2(f), and 4.3(f) are drawn using Mx = Mt = 128 while

other figures are drawn using Mx = Mt = 64.

Example 4.5.1. First, we consider the following one-dimensional reaction-diffusion parabolic

problem:
∂y

∂t
− ε∂

2y

∂x2
+ (6 + x2)y = t3(1 + x), (x, t) ∈ (0, 1)× (0, 1],

subject to

y(0, t) = 0, y(1, t) = 0, t ∈ [0, 1], y(x, 0) = 0, x ∈ [0, 1].

Example 4.5.2. Next, we consider the following weakly-coupled reaction-diffusion parabolic

system of two equations:

∂yyy

∂t
−EEE ∂

2yyy

∂x2
+AAAyyy = fff(x, t), (x, t) ∈ (0, 1)× (0, 1],

subject to

yyy(0, t) = 000, yyy(1, t) = 000, t ∈ [0, 1], yyy(x, 0) = 000, x ∈ [0, 1],

where

AAA =

 2(1 + x2) −(1 + x3)

−2 cos(πx
4

) 4 exp(1− x)

 , fff =

 2 exp(x)t(1− t)

(10x+ 1)t(1− t)

 .
Example 4.5.3. In the end, we consider the following weakly-coupled reaction-diffusion

parabolic system of three equations:

∂yyy

∂t
−EEE ∂

2yyy

∂x2
+AAAyyy = fff(x, t), (x, t) ∈ (0, 1)× (0, 1],
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subject to

yyy(0, t) = 000, yyy(1, t) = 000, t ∈ [0, 1], yyy(x, 0) = 000, x ∈ [0, 1],

where

AAA =


2 −(1− x) −(1 + x)

−x 1 + x −x

−(2 + x) −(1− x) 3 + x

 , fff =


16x2(1− x)2

t2

−16x2(1− x)2

 .

The exact solutions are not available for the considered problems, so we employ the double

mesh principle [112] to obtain the maximum pointwise error and associated convergence

orders. We give the maximum pointwise errors by the following formula

eMx,Mt

k,ε = max
j

(
max
i
|ỹk(x∗2i−1, t2j−1)− ỹk(χ∗i , tj)|

)
, k = 1, 2, . . . ,m,

where ỹk(χ∗i , tj) and ỹk(x∗2i−1, t2j−1) are the computed solutions of the k-th component using

(Mx,Mt) and (2Mx, 2Mt) points, respectively. The associated orders of convergence are

given as

ρMx,Mt

k,ε = log2

(
eMx,Mt

k,ε /e2Mx,2Mt

k,ε

)
.

In continuation, we also calculate the parameter-uniform errors eMx,Mt

k and the associated

parameter-uniform orders of convergence ρMx,Mt

k as follows

eMx,Mt

k = max
ε
eMx,Mt

k,ε , ρMx,Mt

k = log2

(
eMx,Mt

k /e2Mx,2Mt

k

)
, k = 1, 2, . . . ,m.

We further calculate the overall uniform errors eeeMx,Mt and the associated orders of convergence

ρρρMx,Mt using the following formulas:

eeeMx,Mt = max
k

(eMx,Mt

k ), ρρρMx,Mt = log2

(
eeeMx,Mt/eee2Mx,2Mt

)
.

We find all these estimates over a finite range of ε values (ε = 2−6, 2−10, . . . , 2−26).
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Remark 4.5.2. For Example 4.5.1, estimates are given by

eMx,Mt
ε = max

j

(
max
i
|ỹ(x∗2i−1, t2j−1)− ỹ(χ∗i , tj)|

)
, ρMx,Mt

ε = log2

(
eMx,Mt
ε /e2Mx,2Mt

ε

)
,

eMx,Mt = max
ε
eMx,Mt
ε , ρMx,Mt = log2

(
eMx,Mt/e2Mx,2Mt

)
.

We have considered the scalar problem in Example 4.5.1 since there is no literature

concerned with developing the numerical technique for singularly perturbed reaction-diffusion

IBVP taken in Example 4.5.1 using quadratic B-splines. In Table 4.1 we have presented the

results of eMx,Mt
ε , ρMx,Mt

ε , eMx,Mt , and ρMx,Mt for Example 4.5.1. The results are parameter

uniform and in line with theoretical estimates. Two surface plots of the numerical solution

are displayed in subfigures 4.1(a) and 4.1(b) for different values of ε. It is evident from

these plots that the solution exhibits boundary layers at both ends. Figures 4.1(c) and 4.1(d)

portray the numerical solution at different time steps for ε = 2−6 and ε = 2−15, respectively.

These subfigures show that reducing the ε values impacts the boundary layer width (it reduces

when ε decreases). At the end of Figure 4.1, we have added error plots of numerical solution

keeping ε fixed and changing the mesh points. We observed that errors in the boundary layer

region dominate the errors in the regular region (can be seen through high tips).

Now we discuss the results of our problems in Examples 4.5.2 and 4.5.3. We have taken

m = 2, m = 3, and variable coefficients in these examples, respectively. We display the

results of eMx,Mt

k,ε , ρMx,Mt

k,ε , eMx,Mt

k , ρMx,Mt

k , and CMx,Mt

k for k = 1, 2 in Tables 4.2 and 4.3 for

the first and second solution component of Example 4.5.2, respectively. In both tables, the

results are parameter uniform (in each column, errors are very close, independent of ε) and

can be confirmed by the values of CMx,Mt

k (see [113]). Figures 4.2 and 4.3 include surface

plots of the numerical solution, 2D plots of the numerical solution at different time levels,

and error plots of the first and second solution components of Example 4.5.2, respectively.

Boundary layers at x = 0 and x = 1 can be easily observed in both solution components.

High spikes are observed in the error plots at both endpoints. Keeping ε fixed and double the

mesh points, in Figures 4.2(e) and 4.2(f), we observe that the height of spikes reduces i.e.,

error decreases as we increase the number of points. We observed similar types of results

for Example 4.5.3. In Table 4.7, we compare the results of eeeMx,Mt , ρρρMx,Mt and CCCMx,Mt by
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Table 4.1: eMx,Mt
ε , ρMx,Mt

ε , eMx,Mt , and ρMx,Mt for Example 4.5.1

Mesh points with Mx = Mt

ε 16 32 64 128 256
2−6 1.3746e− 03 5.2503e− 04 1.3610e− 04 3.3672e− 05 8.2783e− 06

1.3885 1.9477 2.0150 2.0241
2−10 1.4474e− 03 5.9209e− 04 1.5636e− 04 3.8496e− 05 9.4898e− 06

1.2896 1.9209 2.0221 2.0203
2−14 1.4561e− 03 5.9107e− 04 1.5605e− 04 3.8496e− 05 9.4704e− 06

1.3007 1.9213 2.0192 2.0232
2−18 1.4626e− 03 5.9084e− 04 1.5598e− 04 3.8399e− 05 9.4651e− 06

1.3077 1.9214 2.0222 2.0204
2−22 1.4648e− 03 5.9078e− 04 1.5596e− 04 3.8396e− 05 9.4645e− 06

1.3100 1.9214 2.0221 2.0204
2−26 1.4654e− 03 5.9077e− 04 1.5596e− 04 3.8395e− 05 9.4645e− 06

1.3106 1.9214 2.0221 2.0204

eMx,Mt 1.4654e− 03 5.9209e− 04 1.5636e− 04 3.8496e− 05 9.4898e− 06
ρMx,Mt 1.3074 1.9209 2.0221 2.0203

considering three different meshes, namely Shishkin [94], eXp [91], and Bakhvalov-Shishkin

(B-S) [91] meshes.

Remark 4.5.3. The restriction M−p
x ≤ Cδt, 0 < p < 1 is imposed only to obtain parameter-

uniform estimates; computational experiments are free from this restriction.

4.6 Conclusion
A robust spline-based numerical technique is presented for the singularly perturbed system

of m ≥ 2 equations with the same diffusion parameter. It has been established theoretically

that the suggested approach converges uniformly with second-order accuracy in space, along

with second-order accuracy in time, using the Crank-Nicolson method. The execution of the

proposed scheme demonstrates that theoretical bounds and tabular results are highly credible.
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(a) ε = 2−7 (b) ε = 2−14
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(c) ε = 2−6
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(d) ε = 2−15

(e) ε = 2−15 and Mx =Mt = 64 (f) ε = 2−15 and Mx =Mt = 128

Figure 4.1: Surface plots of the numerical solution ((a) and (b)), numerical solution at different
time levels ((c) and (d)), and the error plots ((e) and (f)) for Example 4.5.1
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Table 4.2: eMx,Mt

1,ε , ρMx,Mt

1,ε , eMx,Mt

1 , ρMx,Mt

1 , and CMx,Mt

1 for Example 4.5.2

Mesh points with Mx = 2Mt

ε Mt = 8 Mt = 16 Mt = 32 Mt = 64 Mt = 128
2−6 3.4056e− 03 8.5514e− 04 2.1489e− 04 5.3729e− 05 1.3431e− 05

1.9937 1.9926 1.9998 2.0001
2−10 4.5568e− 03 1.1618e− 03 2.9003e− 04 7.2541e− 05 1.8137e− 05

1.9717 2.0021 1.9993 1.9999
2−14 4.8957e− 03 1.2712e− 03 3.1931e− 04 7.9894e− 05 1.9958e− 05

1.9453 1.9932 1.9988 2.0011
2−18 4.9857e− 03 1.2998e− 03 3.2747e− 04 8.2054e− 05 2.0484e− 05

1.9395 1.9889 1.9967 2.0021
2−22 5.0085e− 03 1.3070e− 03 3.2941e− 04 8.2529e− 05 2.0476e− 05

1.9381 1.9883 1.9969 2.0110
2−26 5.0090e− 03 1.3072e− 03 3.2942e− 04 8.2532e− 05 2.0476e− 05

1.9381 1.9883 1.9969 2.0110

eMx,Mt

1 5.0090e− 03 1.3072e− 03 3.2942e− 04 8.2532e− 05 2.0476e− 05

ρMx,Mt

1 1.9381 1.9883 1.9969 2.0110

CMx,Mt

1 0.4408 0.4306 0.4304 0.4293 0.4290

Table 4.3: eMx,Mt

2,ε , ρMx,Mt

2,ε , eMx,Mt

2 , ρMx,Mt

2 , and CMx,Mt

2 for Example 4.5.2

Mesh points with Mx = 2Mt

ε Mt = 8 Mt = 16 Mt = 32 Mt = 64 Mt = 128
2−6 5.7545e− 03 1.1152e− 03 2.9459e− 04 7.1619e− 05 1.7886e− 05

2.3674 1.9205 2.0403 2.0015
2−10 6.1205e− 03 1.3985e− 03 3.5029e− 04 8.7592e− 05 2.1872e− 05

2.1298 1.9973 1.9997 2.1337
2−14 6.1539e− 03 1.5220e− 03 3.7936e− 04 9.4775e− 05 2.3669e− 05

2.0155 2.0043 2.0010 2.0015
2−18 6.1621e− 03 1.5569e− 03 3.8822e− 04 9.7017e− 05 2.4078e− 05

1.9847 2.0037 2.0006 2.0105
2−22 6.1829e− 03 1.5664e− 03 3.9088e− 04 9.7640e− 05 2.4230e− 05

1.9808 2.0027 2.0012 2.0107
2−26 6.1832e− 03 1.5655e− 03 3.9098e− 04 9.7640e− 05 2.4230e− 05

2.0337 2.0007 2.0036 2.0107

eMx,Mt

2 1.3632e− 03 3.3352e− 04 8.3044e− 05 2.0721e− 05 5.1788e− 06

ρMx,Mt

2 2.0312 2.0058 2.0028 2.0004

CMx,Mt

2 0.4408 0.4306 0.4304 0.4293 0.4290
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(a) ε = 2−8 (b) ε = 2−16
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(c) ε = 2−10
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(d) ε = 2−20

(e) ε = 2−15 and Mx =Mt = 64 (f) ε = 2−15 and Mx =Mt = 128

Figure 4.2: Surface plots of the numerical solution ((a) and (b)), numerical solution at different
time levels ((c) and (d)), and the error plots ((e) and (f)) of the first solution component for
Example 4.5.2
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(a) ε = 2−8 (b) ε = 2−16
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(c) ε = 2−10
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(d) ε = 2−20

(e) ε = 2−15 and Mx =Mt = 64 (f) ε = 2−15 and Mx =Mt = 128

Figure 4.3: Surface plots of the numerical solution ((a) and (b)), numerical solution at different
time levels ((c) and (d)), and error plots ((e) and (f)) of the second solution component for
Example 4.5.2
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Table 4.4: eMx,Mt

1,ε , ρMx,Mt

1,ε , eMx,Mt

1 , ρMx,Mt

1 , and CMx,Mt

1 for Example 4.5.3

Mesh points with Mx = 2Mt

ε Mt = 8 Mt = 16 Mt = 32 Mt = 64 Mt = 128
2−6 1.3632e− 03 3.3352e− 04 8.3044e− 05 2.0721e− 05 5.1788e− 06

2.0312 2.0058 2.0028 2.0004
2−10 1.2981e− 03 3.1621e− 04 7.8991e− 05 1.9703e− 05 4.4898e− 06

2.0374 2.0011 2.0033 2.1337
2−14 1.2937e− 03 3.1558e− 04 7.8824e− 05 1.9659e− 05 4.4704e− 06

2.0354 2.0013 2.0034 2.1367
2−18 1.2919e− 03 3.1544e− 04 7.8815e− 05 1.9654e− 05 4.4451e− 06

2.0341 2.0008 2.0036 2.1445
2−22 1.2915e− 03 3.1541e− 04 7.8815e− 05 1.9654e− 05 4.4445e− 06

2.0337 2.0007 2.0036 2.1447
2−26 1.2915e− 03 3.1541e− 04 7.8815e− 05 1.9654e− 05 4.4445e− 06

2.0337 2.0007 2.0036 2.1447

eMx,Mt

1 1.3632e− 03 3.3352e− 04 8.3044e− 05 2.0721e− 05 5.1788e− 06

ρMx,Mt

1 2.0312 2.0058 2.0028 2.0004

CMx,Mt

1 0.4408 0.4306 0.4304 0.4293 0.4290

Table 4.5: eMx,Mt

2,ε , ρMx,Mt

2,ε , eMx,Mt

2 , ρMx,Mt

2 , and CMx,Mt

2 for Example 4.5.3

Mesh points with Mx = 2Mt

ε Mt = 8 Mt = 16 Mt = 32 Mt = 64 Mt = 128
2−6 1.1148e− 03 2.8781e− 04 7.1200e− 05 1.7627e− 05 4.3787e− 06

1.9536 2.0152 2.0141 2.0091
2−10 1.2537e− 03 3.1912e− 04 7.9966e− 05 1.9862e− 05 4.4898e− 06

1.9740 1.9966 2.0094 2.1453
2−14 1.2617e− 03 3.2006e− 04 8.0186e− 05 2.0067e− 05 4.4920e− 06

1.9790 1.9969 1.9985 2.1594
2−18 1.2647e− 03 3.2010e− 04 8.0258e− 05 2.0062e− 05 4.4998e− 06

1.9822 1.9958 2.0002 2.1565
2−22 1.2647e− 03 3.2010e− 04 8.0260e− 05 2.0068e− 05 4.5001e− 06

1.9822 1.9958 1.9998 2.1569
2−26 1.2647e− 03 3.2010e− 04 8.0260e− 05 2.0068e− 05 4.5001e− 06

1.9822 1.9958 1.9998 2.1569

eMx,Mt

2 1.2647e− 03 3.2010e− 04 8.0260e− 05 2.0068e− 05 4.5001e− 06

ρMx,Mt

2 1.9822 1.9958 1.9998 2.1569

CMx,Mt

2 0.7145 0.8919 0.9140 0.9101 0.9100
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Table 4.6: eMx,Mt

3,ε , ρMx,Mt

3,ε , eMx,Mt

3 , ρMx,Mt

3 , and CMx,Mt

3 for Example 4.5.3

Mesh points with Mx = 2Mt

ε Mt = 8 Mt = 16 Mt = 32 Mt = 64 Mt = 128
2−6 2.2753e− 03 5.7419e− 04 1.4203e− 04 3.5413e− 05 8.8434e− 06

1.9865 2.0153 2.0038 2.0016
2−10 2.2017e− 03 5.4998e− 04 1.3598e− 04 3.3965e− 05 8.4798e− 06

2.0012 2.0160 2.0013 2.0019
2−14 2.1949e− 03 5.4846e− 04 1.3564e− 04 3.3888e− 05 8.4704e− 06

2.0007 2.0156 2.0009 2.0003
2−18 2.1923e− 03 5.4832e− 04 1.3564e− 04 3.3883e− 05 8.4621e− 06

1.994 2.0152 2.0011 2.0015
2−22 2.1917e− 03 5.4830e− 04 1.3564e− 04 3.3883e− 05 8.4625e− 06

1.990 2.0152 2.0011 2.0014
2−26 2.1917e− 03 5.4830e− 04 1.3564e− 04 3.3883e− 05 8.4625e− 06

1.990 2.0152 2.0011 2.0014

eMx,Mt

3 2.2753e− 03 5.7419e− 04 1.4203e− 04 3.5413e− 05 8.8434e− 06

ρMx,Mt

3 1.9865 2.0153 2.0038 2.0016

CMx,Mt

3 0.7480 0.7486 0.7408 0.7402 0.7401

Table 4.7: Uniform maximum pointwise errors comparison in the solution for Example 4.5.3
on different meshes

Mesh points with Mx = 2Mt

Mesh Mt = 8 Mt = 16 Mt = 32 Mt = 64 Mt = 128
eeeMx,Mt 2.27e− 03 5.74e− 04 1.42e− 04 3.54e− 05 8.84e− 06

eXp ρρρMx,Mt 1.98 2.01 2.00 2.00 -
CCCMx,Mt 0.74 0.74 0.74 0.74 0.74

eeeMx,Mt 2.52e− 03 1.15e− 03 4.25e− 04 1.45e− 04 4.48e− 05
Shishkin ρρρMx,Mt 1.13 1.43 1.55 1.69 -

CCCMx,Mt 0.10 0.10 0.08 0.09 0.09

eeeMx,Mt 2.25e− 03 5.70e− 04 1.39e− 04 3.52e− 05 8.81e− 06
B-S ρρρMx,Mt 1.98 2.01 2.00 2.00 -

CCCMx,Mt 0.72 0.72 0.72 0.72 0.72
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(a) ε = 2−10 (b) ε = 2−20
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(c) ε = 2−11
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(d) ε = 2−22

Figure 4.4: Surface plots of the numerical solution ((a) and (b)) and numerical solution at
different time levels ((c) and (d)) of the first solution component for Example 4.5.3
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(a) ε = 2−8 (b) ε = 2−16
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(c) ε = 2−8
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(d) ε = 2−16

Figure 4.5: Surface plots of the numerical solution ((a) and (b)) and numerical solution at
different time levels ((c) and (d)) of the second solution component for Example 4.5.3
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(a) ε = 2−10 (b) ε = 2−20
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(c) ε = 2−11
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(d) ε = 2−22

Figure 4.6: Surface plots of the numerical solution ((a) and (b)) and numerical solution at
different time levels ((c) and (d)) of the third solution component for Example 4.5.3
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Spline-based parameter-uniform scheme

for fourth-order singularly perturbed

differential equations

Fourth-order singularly perturbed differential equations of reaction-diffusion type stand

out from the maze of mathematical equations as intriguing enigmas that pique the interest of

scientists and mathematicians. These equations blend the beauty of higher-order derivatives

with the complexness of chemical reactions and diffusive processes. Higher-order derivatives

build a tapestry of intricate dynamics, which encourages us to grasp subtle behaviors and

spatial nuances that are not accessible to models with lower-order derivatives. Boundary

layers are of great interest, as they exhibit dynamic behavior and give rise to novel occurrences,

presenting a visually and mathematically exciting display.

The work of this chapter has been published in the following publication:

S. Singh, D. Kumar, “Spline-based parameter-uniform scheme for fourth-order singularly

perturbed differential equations.” J. Math. Chem., 60 (2022), 1872–1902.
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5.1 Problem statement

Higher-order SPPs are divided into two classes, and this classification is based on reducing

the order of the original differential equation if one puts µ = 0 [35]. Here, µ is referred to

as the perturbation parameter, appearing in the multiplication of the highest-order derivative

of the differential equation. If the order of the differential equation is reduced by one, then

SPPs are of convection-diffusion type, whereas if it is reduced by two, then SPPs are of

reaction-diffusion type. Motivated by the work in [35], in this chapter, we have taken the

stability problems related to fluid dynamics when a specified load is attached to an elastic

beam (with a small flexural rigidity) that shows a deflection due to the tension force of the

load. The modeling of these problems leads to the Orr-Sommerfield equation [4, 5]

EIz(4)(t)−
(
N0
EA
2L

∫ L

0

(z′(t))2dt

)
z′′ = f(t), 0 ≤ t ≤ L,

where A, L → cross-sectional area and length of the beam, E → Young’s modulus, I →

moment of inertia, N0 → initial axial tension in the beam. After rescaling all the parameters,

we get the following singularly perturbed fourth-order differential equation, whose order is

reduced by two for the unperturbed problem (when µ = 0):

− µz(4)(t) + a(t)z′′(t)− b(t)z(t) = −f(t), t ∈ D = (0, 1), (5.1.1a)

subject to the following BCs

z(0) = q1, z(1) = q3, z
′′(0) = −q2, z

′′(1) = −q4, (5.1.1b)

where 0 < µ� 1 is referred to as the perturbation parameter. We consider a particular type

of BCs influenced by [35], which helps us to set up uniform stability estimates and other

results. To extend the maximum principle theory, we transform (5.1.1a)-(5.1.1b) into a system

of two weakly coupled second-order ODEs with Dirichlet BCs. We assume a(t), b(t), and

f(t) to be sufficiently smooth that satisfy the following conditions

ζ∗ > a(t) > ζ > 0, (5.1.2a)
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0 > b(t) > −β, β > 0, (5.1.2b)

ζ − 2β > η > 0, for some η, (5.1.2c)

for t ∈ D. The above assumptions (5.1.2a)-(5.1.2c) guarantee the existence of a unique

solution z(t) ∈ C4(D) ∩ C2(D) (see [118]). We transform the BVP (5.1.1a)-(5.1.1b) into a

simpler form

LLLzzz(t) = fff(t), t ∈ D,

zzz(0) = (q1, q2)T , zzz(1) = (q3, q4)T ,

which is equivalent to

L1zzz(t) ≡ −z′′1 (t)− z2(t) = 0, t ∈ D, (5.1.3a)

L2zzz(t) ≡ −µz′′2 (t) + a(t)z2(t) + b(t)z1(t) = f(t), t ∈ D, (5.1.3b)

z1(0) = q1, z1(1) = q3, z2(0) = q2, z2(1) = q4, (5.1.3c)

where zzz(t) = (z1(t), z2(t))T ,LLL = (L1,L2)T , and fff(t) = (0, f(t))T . In the rest of the chapter,

we consider the system (5.1.3) in place of (5.1.1) in our analysis.

Remark 5.1.1. The condition (5.1.2a) implies that (5.1.1) is a non-turning point problem

and the condition (5.1.2b) assures that the system (5.1.3) is quasi-monotone (see definition

2.3 in [119]). The conditions (5.1.2a) and (5.1.2b) will be used to establish the maximum

principle for the system (5.1.3). Furthermore, the stability estimates will be derived using the

condition (5.1.2c) and the maximum principle.

These types of systems have been less examined in the past. To cite a few, Shanthi and

Ramanujam [118] devised a first-order convergent numerical method combining classical and

exponentially fitted finite difference schemes. Das and Natesan [120] proposed a second-order

finite difference method on a non-uniform mesh generated by the equidistribution principle.

Recently, Cen et al. [121] proposed an almost fourth-order finite difference scheme on

Vulanović-Shishkin mesh. They demonstrated parameter-uniform convergence through their
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hybrid method.

The chapter’s construction is as follows: Section 5.2 explains the solution’s continuous

properties, such as maximum principle and stability estimates. The decomposition of the

solution into regular and singular components (left and right components) is also given.

Furthermore, the bounds on their derivatives are also provided in this section. Section 5.3

illustrates the mesh construction and the implementation of the scheme to solve the system

(5.1.3). The interpolation error estimates in S0
2 and S1

2 interpolations are given in Section 5.4,

using the bounds of Section 5.2 and Section 5.3. The parameter-uniform convergence results

established in Section 5.4 are verified in Section 5.5 through two test examples. Section 5.6

presents some concluding remarks about our study.

Throughout the chapter, we use the following notations: Ck(D) is the set of all k times

continuously differentiable functions in a domain D whereas Ck(D)2 is the set of all k times

continuously differentiable vector-valued functions with two components in D; C denotes

a positive generic constant that can take different values at different places whereas the

subscripted C (such as Cj for some j) is a fixed constant. The constant vectorCCC is given as

CCC = C(1, 1)T and the vector zzz is given as zzz = (z1, z2)T .

5.2 Analytical results

In this section, first, we establish a maximum principle for the system (5.1.3). Then, a stability

estimate is derived for the solution to the system (5.1.3) using the maximum principle. Some

theoretical bounds for the solution and its derivatives are also given in this section.

Lemma 5.2.1 (Maximum principle). For the system (5.1.3) assume thatL1zzz(t) > 0,L2zzz(t) >

0 in D, z1(0) > 0, z1(1) > 0, z2(0) > 0, and z2(1) > 0. Then zzz(t) > 0, ∀ t ∈ D.

Proof. To prove the lemma, we define yyy(t) = (y1(t), y2(t))T =
(

(1 + σ)
(

2−t2
2

)
, 1
)T

where

0 < σ < 1. Since yyy(t) > 0, ∀ t ∈ D, so

L1yyy(t) = σ > 0,

L2yyy(t) = a(t) + b(t)

[
(1 + σ)

(
2− t2

2

)]
> ζ − 2β > η > 0.
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For contrary assume that zzz(t) < 0 and define α = max
t∈D
{−z1(t)/y1(t),−z2(t)/y2(t)} which

gives (zj + αyj)(t) > 0, j = 1, 2, t ∈ D. Also, there exists a point t0 ∈ D such that either

−z1(t0)/y1(t0) = α or −z2(t0)/y2(t0) = α. In the first case, we get −z1(t0)/y1(t0) = α i.e.,

(z1 + αy1)(t0) = 0. It means z1 + αy1 has a minima at t = t0 and so

L1(zzz + αyyy)(t0) = −(z1 + αy1)′′(t0)− (z2 + αy2)(t0) < 0,

which is a contradiction. Similarly, in the second case, we get −z2(t0)/y2(t0) = α i.e.,

(z2 + αy2)(t0) = 0. It means z2 + αy2 has a minima at t = t0 and so

L2(zzz + αyyy)(t0) = −µ(z2 + αy2)′′(t0) + a(t0)(z2 + αy2)(t0) + b(t0)(z1 + αy1)(t0) < 0,

which is again a contradiction. Hence, the result is obtained.

Lemma 5.2.2 (Stability estimates). The solution zzz(t) of the system (5.1.3) satisfies

‖zzz(t)‖ 6 C max

{
‖zzz(0)‖, ‖zzz(1)‖,max

t∈D
|L1zzz|,max

t∈D
|L2zzz|

}
, ∀ t ∈ D,

where ‖zzz(t)‖ = max{|z1(t)|, |z2(t)|}.

Proof. For the proof, refer to [118, 122].

Lemma 5.2.3. The components of the solution of (5.1.3) and its derivatives satisfy the

following bounds

|z(k)
1 (t)| 6 C(1 + µ1−k/2Bµ(t)), for k = 0, 1, . . . , 4,

|z(k)
2 (t)| 6 C(1 + µ−k/2Bµ(t)), for k = 0, 1, . . . , 4,

where Bµ(t) = exp(−t
√
ζ/µ) + exp(−(1− t)

√
ζ/µ).

Proof. Follow the approach given in [118] for the descriptive proof.

To prove the parameter-uniform convergence, we require more precise bounds for the
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exact solution of the system (5.1.3). For this, we decompose the solution zzz(t) into three parts

zzz(t) = vvv(t) +wwwL(t) +wwwR(t), (5.2.1)

where vvv(t) = (v1, v2)T ,wwwL(t) = (wL1 (t), wL2 (t))T , andwwwR(t) = (wR1 (t), wR2 (t))T are regular,

left singular, and right singular components of zzz(t). The regular component satisfies the

following problem

LLLvvv(t) = fff(t), t ∈ D,

vvv(0) = (z1(0), (f(0)− b(0)z1(0))/a(0))T , vvv(1) = (z1(1), (f(1)− b(1)z1(1))/a(1))T ,

(5.2.2)

and the singular components are solutions of the following BVPs

LLLwwwL(t) = 0, t ∈ D, wwwL(0) = zzz(0)− vvv(0), wwwL(1) = 0, (5.2.3)

LLLwwwR(t) = 0, t ∈ D, wwwR(0) = 0, wwwR(1) = zzz(1)− vvv(1). (5.2.4)

Theorem 5.2.1. If a(t), b(t), and f(t) ∈ C2(D), then the components vvv(t), wwwL(t), wwwR(t),

and their derivatives satisfy the following bounds

|v(k)
1 (t)| 6 C, |v(k)

2 (t)| 6 C(1 + µ(2−k)/2), t ∈ D, 0 6 k 6 4,

|(wL1 )(k)(t)| 6 Cµ1−k/2 exp(−t
√
a(0)/µ), 0 6 k 6 4

|(wR1 )(k)(t)| 6 Cµ1−k/2 exp(−(1− t)
√
a(1)/µ), 0 6 k 6 4,

|(wL2 )(k)(t)| 6 Cµ−k/2 exp(−t
√
a(0)/µ), 0 6 k 6 4

|(wR2 )(k)(t)| 6 Cµ−k/2 exp(−(1− t)
√
a(1)/µ), 0 6 k 6 4.

Proof. These bounds can be established by following the arguments in [120, 121].

Lemma 5.2.4. The zero-order asymptotic expansion zzzas of the solution zzz of (5.1.3) satisfies

‖zzz − zzzas‖ 6 C
√
µ.
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Proof. Refer to Theorem 2.2 given in [118] for the proof.

5.3 The proposed scheme
In this section, we provide a detailed structure of the non-uniform mesh followed by the

scheme analysis to solve the problem (5.1.3).

5.3.1 The mesh construction

It is well-known that standard numerical methods on a uniform mesh give unsatisfactory

results because they fail to provide efficient and oscillations-free solutions near the layer

region(s). Additionally, it is easier to construct a scheme on a uniform mesh that is uniformly

convergent in the diffusion parameter if one uses a significantly large number of mesh points.

For computational purposes, it is practically impossible. Thus, we feel the requirement of

non-uniform meshes to resolve the layer(s). In this section, we will construct an eXp mesh

that generates more mesh points in the layer region than in the other part of the domain.

To construct the eXp mesh ∆ = {tj| 0 6 j 6M}, we divide the interval [0, 1] intoM > 4

(multiple of 4) subintervals Ij = [tj−1, tj]. We denote by Πp, the space of all polynomials of

degree 6 p. While constructing the mesh, we use a monotonically increasing, continuous,

and piecewise continuously differentiable mesh generating function Ψ(%), which is defined as

Ψ(%) = − ln(1− 2φp,µ%), % ∈ [0, 1/2− 1/M ], (5.3.1)

where φp,µ = 1 − exp

(
− 1

(p+1)
√
µ

)
∈ R+. We split the interval [0, 1] as the union of three

subintervals [0, tM
4
−1], [tM

4
−1, t 3M

4
+1] and [t 3M

4
+1, 1] i.e., [0, 1] = [0, tM

4
−1] ∪ [tM

4
−1, t 3M

4
+1] ∪

[t 3M
4

+1, 1], where tM
4
−1 and t 3M

4
+1 are the transition points. The nodal points can be written

in the following form

tj =


(p + 1)

√
µΨ(%j), j = 0, 1, . . . , M

4
− 1,

tM
4
−1 +

(t 3M
4

+1 − tM
4
−1

M
2

+ 2

)
(j −M/4 + 1), j = M

4
, . . . , 3M

4
,

1− (p + 1)
√
µΨ(1− %j), j = 3M

4
+ 1, . . . ,M,
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where %j = j
M

, and hj = tj − tj−1 for j = 1, 2, . . . ,M . The mesh points are equidistantly

distributed in [tM
4
−1, t 3M

4
+1] with M/2 + 2 elements and these are exponentially graded

distributed in [0, tM
4
−1] ∪ [t 3M

4
+1, 1], respectively. The mesh step length hj satisfies the

following inequalities utilizing the mesh characterizing function Φ = exp(−Ψ) (see [91] for

more details)

hj 6


C(p + 1)

√
µM−1 maxΨ ′(%j), j = 1, 2, . . . , M

4
− 1,

CM−1
t , j = M

4
, . . . , 3M

4
+ 1,

C(p + 1)
√
µM−1 maxΨ ′(1− %j), j = 3M

4
+ 2, . . . ,M,

further

hj 6


C(p + 1)

√
µM−1 max |Φ′| exp

(
tj

(p+1)
√
µ

)
, j = 1, 2, . . . , M

4
− 1,

CM−1
t , j = M

4
, . . . , 3M

4
+ 1,

C(p + 1)
√
µM−1 max |Φ′| exp

(
1−tj

(p+1)
√
µ

)
, j = 3M

4
+ 2, . . . ,M.

As max |Φ′ | 6 2, we can simply write the above inequalities as

hj 6


C
√
µM−1 exp

(
tj

(p+1)
√
µ

)
, j = 1, 2, . . . , M

4
− 1,

CM−1
t , j = M

4
, . . . , 3M

4
+ 1,

C
√
µM−1 exp

(
1−tj

(p+1)
√
µ

)
, j = 3M

4
+ 2, . . . ,M,

(5.3.2)

and this adaptive mesh satisfies the following estimate

|hj+1 − hj| 6 C



√
µM−2, j = 1, 2, . . . , M

4
− 1,

0, j = M
4
, . . . , 3M

4
,

√
µM−2, j = 3M

4
+ 1, . . . ,M.

(5.3.3)

Remark 5.3.1. The Shishkin and Bakhvalov meshes violate the inequality |hj+1 − hj| 6

CM−2 near the transition points. Thus, we cannot extend our analysis to these meshes.
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5.3.2 Implementation of the collocation scheme

To discretize (5.1.3) we seek the quadratic splines Bj(t) ∈ S1
2(∆), j = 0, 1, . . . ,M + 1 that

satisfies the BVP (5.1.3) at certain points as follows:

B0(t) =


(t1 − t)2

h2
1

, t0 6 t 6 t1,

0, otherwise,

B1(t) =



h2
1 − (t1 − t)2

h2
1

− (t− t0)2

h1(h1 + h2)
, t0 6 t 6 t1,

(t2 − t)2

h1(h1 + h2)
, t1 6 t 6 t2,

0, otherwise,

and for j = 2, 3, . . . ,M − 1,

Bj(t) =



(t− tj−2)2

hj−1(hj−1 + hj)
, tj−2 6 t 6 tj−1,

(t− tj−2)(tj − t)
hj(hj−1 + hj)

+
(tj+1 − t)(t− tj−1)

hj(hj + hj+1)
, tj−1 6 t 6 tj,

(tj+1 − t)2

hj+1(hj + hj+1)
, tj 6 t 6 tj+1,

0, otherwise,

while for j = M, M + 1 these are given as

BM(t) =



(t− tM−2)2

hM−1(hM−1 + hM)
, tM−2 6 t 6 tM−1,

h2
M − (t− tM−1)2

h2
M

− (tM − t)2

hM(hM−1 + hM)
, tM−1 6 t 6 tM ,

0, otherwise,

BM+1(t) =


(t− tM−1)2

h2
M

, tM−1 6 t 6 tM ,

0, otherwise.

The midpoints of Ij, j = 1, 2, . . . ,M are the best choices for collocation with quadratic

C1-splines for regularly perturbed BVPs (see [110]), we take the collocation points ξj as the
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average of endpoints of the intervals Ij i.e.,

ξj = tj−1/2 :=
tj−1 + tj

2
= tj−1 +

hj
2

= tj −
hj
2
, for j = 1, 2, . . . ,M.

For m, p ∈ N (m < p), we define

Sm
p (∆) := {r ∈ Cm[0, 1] : r|Ij ∈ Πp, for j = 1, 2, . . . ,M},

as a polynomial space and

Sm
p,0(∆) := {r ∈ Sm

p (∆) : r(0) = r(1) = 0}.

For the discretization of (5.1.3) we find z̃zz ∈ S1
2(∆) such that

z̃zz(0) = (q1, q2)T , (LLLz̃zz)j−1/2 = fff j−1/2, z̃zz(1) = (q3, q4)T , j = 1, 2, . . . ,M. (5.3.4)

We rewrite (5.3.4) in the component form as

z̃1(0) = q1, (L1z̃zz)j−1/2 = 0, z̃1(1) = q3, j = 1, 2, . . . ,M, (5.3.5a)

z̃2(0) = q2, (L2z̃zz)j−1/2 = fj−1/2, z̃2(1) = q4, j = 1, 2, . . . ,M. (5.3.5b)

The collocation solution z̃zz is represented by

z̃k(t) =
M+1∑
j=0

αj,kBj(t), k = 1, 2. (5.3.6)

Using (5.3.6) in (5.3.4) and (5.3.5), we obtain the following system

α0,k = qk, [LLLααα]j−1/2 = fff j−1/2, j = 1, 2, . . . ,M, αM+1,k = qk+2, k = 1, 2, (5.3.7)
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which is equivalent to

α0,1 = q1, [L1ααα]j−1/2 = 0, αM+1,1 = q3, j = 1, 2, . . . ,M, (5.3.8a)

α0,2 = q2, [L2ααα]j−1/2 = fj−1/2, αM+1,2 = q4, j = 1, 2, . . . ,M, (5.3.8b)

with ααα := (α0,1, α1,1, . . . , αM+1,1, α0,2, α1,2, . . . , αM+1,2)T ∈ R2M+4, LLL := (L1, L2)T . The

operators in (5.3.8) can be simplified as

[L1ααα]j−1/2 :=−
[

2(αj+1,1 − αj,1)

hj(hj + hj+1)
− 2(αj,1 − αj−1,1)

hj(hj + hj−1)

]
−
[
q̃+
j αj+1,2 +

(
1− q̃+

j − q̃−j
)
αj,2

+ q̃−j αj−1,2

]
,

[L2ααα]j−1/2 :=− µ
[

2(αj+1,2 − αj,2)

hj(hj + hj+1)
− 2(αj,2 − αj−1,2)

hj(hj + hj−1)

]
+ aj−1/2

[
q̃+
j αj+1,2 +

(
1− q̃+

j

− q̃−j
)
αj,2 + q̃−j αj−1,2

]
+ bj−1/2

[
q̃+
j αj+1,1 +

(
1− q̃+

j − q̃−j
)
αj,1 + q̃−j αj−1,1

]
,

where q̃+
j :=

hj
4(hj+hj+1)

and q̃−j :=
hj

4(hj+hj−1)
. Combining all the equations, we get the system

AAAααα = G,

where

AAA =

A B

C D

 , G =

(
q1, 0, . . . , 0, q3︸ ︷︷ ︸

1st component

, q2, f(ξ1), . . . , f(ξM), q4︸ ︷︷ ︸
2

ndcomponent

)T
,

ααα =

(
α0,1, α1,1, . . . , αM,1, αM+1,1︸ ︷︷ ︸

1st component

, α0,2, α1,2, . . . , αM,2, αM+1,2︸ ︷︷ ︸
2ndcomponent

)T
.

135



Chapter 5

The matrices A,B,C, and D are given by

A =



1 0 0 0 . . . . . . 0

a21 a22 a23 0 . . . . . . 0

0 a32 a33 a34 . . . . . . 0
... . . . . . . . . . ...

...
...

. . . . . . . . . 0 aM+1M aM+1M+1 aM+1M+2

. . . . . . . . . 0 0 0 1


(M+2)×(M+2)

,

B =



0 0 0 0 . . . . . . 0

b21 b22 b23 0 . . . . . . 0

0 b32 b33 b34 . . . . . . 0
... . . . . . . . . . ...

...
...

. . . . . . . . . 0 bM+1M bM+1M+1 bM+1M+2

. . . . . . . . . 0 0 0 0


(M+2)×(M+2)

,

C =



0 0 0 0 . . . . . . 0

c21 c22 c23 0 . . . . . . 0

0 c32 c33 c34 . . . . . . 0
... . . . . . . . . . ...

...
...

. . . . . . . . . 0 cM+1M cM+1M+1 cM+1M+2

. . . . . . . . . 0 0 0 0


(M+2)×(M+2)

,
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D =



1 0 0 0 . . . . . . 0

d21 d22 d23 0 . . . . . . 0

0 d32 d33 d34 . . . . . . 0
... . . . . . . . . . ...

...
...

. . . . . . . . . 0 dM+1M dM+1M+1 dM+1M+2

. . . . . . . . . 0 0 0 1


(M+2)×(M+2)

,

where for j = 1, 2, . . . ,M

aj+1,j = − 2

hj(hj + hj−1)
, cj+1,j = q̃−j bj−1/2,

aj+1,j+1 =
2

hj(hj + hj−1)
+

2

hj(hj + hj+1)
, cj+1,j+1 = bj−1/2(1− q̃+

j − q̃−j ),

aj+1,j+2 = − 2

hj(hj + hj+1)
, cj+1,j+2 = q̃+

j bj−1/2,

bj+1,j = −q̃−j , dj+1,j = − 2µ

hj(hj + hj−1)
+ q̃−j aj−1/2,

bj+1,j+1 = −(1− q̃+
j − q̃−j ), bj+1,j+2 = −q̃+

j , dj+1,j+2 = − 2µ

hj(hj + hj+1)
+ q̃+

j aj−1/2,

dj+1,j+1 =
2µ

hj(hj + hj−1)
+

2µ

hj(hj + hj+1)
+ aj−1/2(1− q̃+

j − q̃−j ).

5.4 Convergence analysis

5.4.1 S0
2-interpolation

To obtain the interpolation I0
2zk ∈ S0

2(∆) for an arbitrary function zk ∈ C0[0, 1], we find the

solution of the following interpolation problem

(I0
2zk)j = (zk)j, j = 0, 1, . . . ,M, and (I0

2zk)j−1/2 = (zk)j−1/2, j = 1, 2, . . . ,M,

where (zk)j = zk(tj), (zk)j−1/2 = zk(ξj), k = 1, 2.

Theorem 5.4.1. Assuming a(t), b(t), f(t) ∈ C2[0, 1], the interpolation error zzz − I0
2zzz of the

137



Chapter 5

solution zzz of (5.1.3) satisfies the following bounds:

‖zzz − I0
2zzz‖ 6 CCCM−3, and µµµ max

j=1,2,...,M
|(zzz − I0

2zzz)′′j−1/2| 6 CCCM−2,

where µµµ = diag(1, µ).

Proof. First, we employ the Lagrange representation of the interpolation polynomial and

Taylor expansions to confirm that for any zzz ∈ C4[0, 1]2, the interpolation error on each Ij

satisfies∥∥∥∥zk − I0
2zk

∥∥∥∥
Ij

6
h3
j

24

∥∥∥∥z(3)
k

∥∥∥∥
Ij

,

∣∣∣∣(zk − I0
2zk)

′′
j−1/2

∣∣∣∣ 6 h2
j

48

∥∥∥∥z(4)
k

∥∥∥∥
Ij

, k = 1, 2. (5.4.1)

Making use of the linearity of I0
2 , we decompose the solution components zk into three parts

as follows

zk − I0
2zk = (vk − I0

2vk) +

(
wLk − I0

2w
L
k

)
+

(
wRk − I0

2w
R
k

)
.

Since the bounds for both the components are different, therefore we analyze both components

separately.

Analysis for first component z1: We start with finding the interpolation error in the

regular component. For Ij ⊂ [t0, tM/4−1], we make use of the bounds given in Theorem 5.2.1,

to obtain

h3
j

24

∣∣∣∣v(3)
1

∣∣∣∣
Ij

6 Cµ3/2M−3 exp

(
3tj

(p + 1)
√
µ

)
6 CM−3 exp

(
tj√
µ

)
6 CM−3 exp

(
(p + 1)Ψ(%j)

)
6 CM−3.

Similarly, we employ the same analysis in the right layer region Ij ⊂ [t3M/4+2, tM ], to

obtain ‖v1 − I0
2v1‖Ij 6 CM−3. Also, for Ij ⊂ [tM/4, t3M/4+1], the bounds for hj (using the
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inequality (5.3.2)) trivially gives ‖v1 − I0
2v1‖Ij 6 CM−3. Thus, on consolidating all the

estimates for the regular component, we perceive

‖v1 − I0
2v1‖ 6 CM−3.

Next, we consider the left singular component wL1 in Ij ⊂ [t0, tM/4−1]. Using Theorem 5.2.1

and the inequality (5.3.2), we get

h3
j

24

∣∣∣∣(wL1 )(3)

∣∣∣∣
Ij

6 Cµ3/2M−3 exp

(
3tj

(p + 1)
√
µ

)
µ−1/2| exp(−t

√
a(0)/µ)|Ij

6 CM−3 exp

[
C1

(
tj√
µ
− tj−1√

µ

)]
6 CM−3 exp

(
C1

hj√
µ

)
6 CM−3 exp

(
C1(p + 1)M−1 maxΨ ′(%j)

)
6 CM−3.

Now for Ij ⊂ [tM/4, t3M/4+1], we obtain

h3
j

24

∣∣∣∣(wL1 )(3)

∣∣∣∣
Ij

6 CM−3µ−1/2| exp(−t
√
a(0)/µ)|Ij

6 CM−3µ−1/2 exp

(
−
√
a(0)tj−1√

µ

)
.

Since µ−1/2 exp

(
−
√
a(0)tj−1√

µ

)
is bounded in [tM/4, t3M/4+1], the above inequality gives

h3
j

24

∣∣∣∣(wL1 )(3)

∣∣∣∣
Ij

6 CM−3.

We can derive the same bounds for Ij ⊂ [t3M/4+2, tM ] analogous to [t0, tM/4−1]. Thus,

‖wL1 − I0
2w

L
1 ‖ 6 CM−3.
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Now for wR1 in Ij ⊂ [t0, tM/4−1] (using Theorem 5.2.1 and the inequality (5.3.2)), we get

h3
j

24

∣∣∣∣(wR1 )(3)

∣∣∣∣
Ij

6 Cµ3/2M−3 exp

(
3tj

(p + 1)
√
µ

)
µ−1/2| exp(−(1− t)

√
a(1)/µ)|Ij

6 CM−3 exp

(
C2tj√
µ

)
exp

(
−C3(1− tj−1)

√
µ

)
6 CM−3 exp

(
C4
tj − (1− tj−1)

√
µ

)
6 CM−3 exp

(
C4
hj − 1− 2tj−1√

µ

)
6 CM−3 exp

(
C4(p + 1)M−1 maxΨ ′(%j)

)
6 CM−3.

Following the same approach, one can deduce the bounds forwR1 in the intervals [tM/4, t3M/4+1]

and [t3M/4+2, tM ] as

‖wR1 − I0
2w

R
1 ‖ 6 CM−3.

Now to obtain the bound for max
j=1,2,...,M

|(z1 − I0
2z1)′′j−1/2|, first, we consider v1 in Ij ⊂

[t0, tM/4−1] as follows

h2
j

48

∣∣∣∣v(4)
1

∣∣∣∣
Ij

6 CµM−2 exp

(
2tj

(p + 1)
√
µ

)
(using Theorem 5.2.1 and the inequality (5.3.2))

6 CM−2 exp

(
2tj

(p + 1)
√
µ

)
6 CM−2 exp

(
2Ψ(%j)

)
6 CM−2.

Use similar approach for v1 the intervals [tM/4, t3M/4+1] and [t3M/4+2, tM ]. Now for the wL1

in Ij ⊂ [t0, tM/4−1], we have

h2
j

48

∣∣∣∣(wL1 )(4)

∣∣∣∣
Ij

6 CµM−2 exp

(
2tj

(p + 1)
√
µ

)
µ−1| exp(−t

√
a(0)/µ)|Ij

6 CM−2 exp

(
C5tj√
µ

)
exp

(
−C6tj−1√

µ

)
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6 CM−2 exp

(
C7(tj − tj−1)

√
µ

)
6 CM−2 exp

(
C7hj√
µ

)
6 CM−2 exp

(
C3(p + 1)M−1 maxΨ ′(%j)

)
6 CM−2.

For the intervals [tM/4, t3M/4+1] and [t3M/4+2, tM ], we perform the same analysis to obtain

max
j=1,2,...,M

|(wL1 − I0
2w

L
1 )′′j−1/2| 6 CM−2.

Furthermore, analogously, we find the bounds for wR1 . Subsequently, the effective use of

triangle inequality guides us to complete the proof.

Analysis for second component z2: We start with finding the interpolation error in the

regular component. For Ij ⊂ [t0, tM/4−1], we make use of the bounds given in Theorem 5.2.1,

to obtain

h3
j

24

∣∣∣∣v(3)
2

∣∣∣∣
Ij

6 Cµ3/2(1 + µ−1/2)M−3 exp

(
3tj

(p + 1)
√
µ

)
6 CM−3 exp

(
tj√
µ

)
6 CM−3 exp

(
(p + 1)Ψ(%j)

)
6 CM−3.

Similarly, we employ the above analysis in the right layer region Ij ⊂ [t3M/4+2, tM ], to obtain

‖v2 − I0
2v2‖Ij 6 CM−3. Also, for Ij ⊂ [tM/4, t3M/4+1], the bounds for hj (using inequality

(5.3.2)) trivially gives ‖v2 − I0
2v2‖Ij 6 CM−3. Thus, on consolidating all the estimates for

the regular component, we perceive

‖v2 − I0
2v2‖ 6 CM−3.

Next, we consider the left singular component wL2 in Ij ⊂ [t0, tM/4−1]. Using Theorem 5.2.1
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and the inequality (5.3.2), we get

h3
j

24

∣∣∣∣(wL2 )(3)

∣∣∣∣
Ij

6 Cµ3/2M−3 exp

(
3tj

(p + 1)
√
µ

)
µ−3/2| exp(−t

√
a(0)/µ)|Ij

6 CM−3 exp

[
C8

(
tj√
µ
− tj−1√

µ

)]
6 CM−3 exp

(
C8

hj√
µ

)
6 CM−3 exp

(
C8(p + 1)M−1 maxΨ ′(%j)

)
6 CM−3.

Now for Ij ⊂ [tM/4, t3M/4+1], we obtain

h3
j

24

∣∣∣∣(wL2 )(3)

∣∣∣∣
Ij

6 CM−3µ−3/2| exp(−t
√
a(0)/µ)|Ij

6 CM−3µ−3/2 exp

(
−
√
a(0)tj−1√

µ

)
.

The term µ−3/2 exp

(
−
√
a(0)tj−1√

µ

)
is bounded in [tM/4, t3M/4+1], by employing the L’Hôpital

rule. Hence, the above inequality gives

h3
j

24

∣∣∣∣(wL2 )(3)

∣∣∣∣
Ij

6 CM−3.

Similarly, we can derive the bound for Ij ⊂ [t3M/4+2, tM ] as we obtained for [t0, tM/4−1].

Thus,

‖wL2 − I0
2w

L
2 ‖ 6 CM−3.

Now for wR2 in Ij ⊂ [t0, tM/4−1] (using Theorem 5.2.1 and the inequality (5.3.2)), we get

h3
j

24

∣∣∣∣(wR2 )(3)

∣∣∣∣
Ij

6 Cµ3/2M−3 exp

(
3tj

(p + 1)
√
µ

)
µ−3/2| exp(−(1− t)

√
a(1)/µ)|Ij

6 CM−3 exp

(
C9tj√
µ

)
exp

(
−C10(1− tj−1)

√
µ

)
6 CM−3 exp

(
C11

tj − (1− tj−1)
√
µ

)
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6 CM−3 exp

(
C11

hj − 1− 2tj−1√
µ

)
6 CM−3 exp

(
C11(p + 1)M−1 maxΨ ′(%j)

)
6 CM−3.

Following the same approach one can deduce the bounds forwR2 in the intervals [tM/4, t3M/4+1]

and [t3M/4+2, tM ] as

‖wR2 − I0
2w

R
2 ‖ 6 CM−3.

Now to obtain the bound for max
j=1,2,...,M

|(z2 − I0
2z2)′′j−1/2|, first, we consider v2 in Ij ⊂

[t0, tM/4−1] as follows

h2
j

48

∣∣∣∣v(4)
2

∣∣∣∣
Ij

6 Cµ(1 + µ−1)M−2 exp

(
2tj

(p + 1)
√
µ

)
(using Theorem 5.2.1 and the inequality (5.3.2))

6 CM−2 exp

(
2tj

(p + 1)
√
µ

)
6 CM−2 exp

(
2Ψ(%j)

)
6 CM−2.

The similar approach can be used for v2 in the intervals [tM/4, t3M/4+1] and [t3M/4+2, tM ].

Now for the wL2 in Ij ⊂ [t0, tM/4−1], we have

h2
j

48

∣∣∣∣(wL2 )(4)

∣∣∣∣
Ij

6 CµM−2 exp

(
2tj

(p + 1)
√
µ

)
µ−2| exp(−t

√
a(0)/µ)|Ij

6 Cµ−1M−2 exp

(
C12tj√
µ

)
exp

(
−C13tj−1√

µ

)
6 Cµ−1M−2 exp

(
C14(tj − tj−1)

√
µ

)
6 Cµ−1M−2 exp

(
C14hj√

µ

)
6 Cµ−1M−2 exp

(
C14(p + 1)M−1 maxΨ ′(%j)

)
6 Cµ−1M−2.
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For the intervals [tM/4, t3M/4+1] and [t3M/4+2, tM ], we perform the same analysis to obtain

max
j=1,2,...,M

|(wL2 − I0
2w

L
2 )′′j−1/2| 6 Cµ−1M−2.

Furthermore, analogously, we find the bounds for wR2 . Subsequently, the effective use of

triangle inequality guides us to complete the proof.

Lemma 5.4.1. Let sk ∈ S0
2(∆) with (sk)j−1/2 = 0, j = 1, 2, . . . ,M, k = 1, 2, then

‖sk‖Ij 6 max
j
{|(sk)j−1|, |(sk)j|}, ‖s′′k‖Ij 6

8

h2
j

max
j
{|(sk)j−1|, |(sk)j|}.

Proof. The result follows using the approach given in [103].

5.4.2 S1
2-interpolation

To obtain the interpolation I1
2zk ∈ S1

2(∆) for an arbitrary function zk ∈ C1[0, 1] we find the

solution of the following interpolation problem

(I1
2zk)0 = (zk)0, (I1

2zk)j−1/2 = (zk)j−1/2, j = 1, 2, . . . ,M, (I1
2zk)M = (zk)M , (5.4.2)

where (zk)j−1/2 = zk(ξj), for k = 1, 2.

From [93, 111], we have

[Λsk]j ≡ aj(sk)j−1 + 3(sk)j + cj(sk)j+1, j = 1, 2, . . . ,M − 1, (5.4.3a)

or

[Λsk]j ≡ 4aj(sk)j−1/2 + 4cj(sk)j+1/2, j = 1, 2, . . . ,M − 1, (5.4.3b)

where (sk)j+1/2 = sk

(
tj +

hj+1

2

)
= sk

(
tj + tj+1

2

)
, aj =

hj+1

hj + hj+1

and cj = 1 − aj =

hj
hj + hj+1

.

Lemma 5.4.2. For all vectors sk ∈ RM+1 with (sk)0 = (sk)M = 0, the operator Λ is stable

i.e.,

max
j=1,2,...,M−1

|(sk)j| 6
1

2
max

j=1,2,...,M−1
|[Λsk]j|, k = 1, 2.
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Proof. Refer to Lemma 3 given in [94] for the detailed proof.

Theorem 5.4.2. Assume that a(t), b(t), f(t) ∈ C2[0, 1], then the interpolation error zzz − I1
2zzz

of the solution zzz of (5.1.3) satisfies

max
j=0,1,...,M

|(zzz − I1
2zzz)j| 6 CCCM−4, (5.4.4a)

‖zzz − I1
2zzz‖ 6 CCCM−3, (5.4.4b)

µµµ max
j=1,2,...,M

|(zzz − I1
2zzz)′′j−1/2| 6 CCCM−2. (5.4.4c)

Proof. To find the interpolation error zk − I1
2zk, we examine an arbitrary function zk such

that

(zk − I1
2zk)0 = (zk − I1

2zk)M = 0, k = 1, 2.

Using the definitions of S1
2-interpolation and the operator Λ, we have

τzk,j = [Λ(zk − I1
2zk)]j = aj(zk)j−1 − 4aj(zk)j−1/2 + 3(zk)j − 4cj(zk)j+1/2 + cj(zk)j+1,

(5.4.5)

for j = 1, 2, . . . ,M, k = 1, 2. Moreover, we use the Taylor series expansions to get

|τzk,j| 6
1

12
hjhj+1|hj+1 − hj||(z(3)

k )j|Ij +
5

96
max{h4

j , h
4
j+1}‖(z

(4)
k )j‖Ij∪Ij+1

. (5.4.6)

Promptly, we decompose the interpolation error into three parts

zk − I1
2zk = (vk − I1

2vk) +

(
wLk − I1

2w
L
k

)
+

(
wRk − I1

2w
R
k

)
,

or

τzk,j = τvk,j + τwL
k ,j

+ τwR
k ,j
.

Analysis for first component z1: We begin with finding the error in the regular com-

ponent. For Ij ⊂ [t0, tM/4−1], we employ Theorem 5.2.1 and the inequality (5.4.6), to

get

|τv1,j| 6 C

(
hjhj+1|hj+1 − hj|+ max{h4

j , h
4
j+1}

)
.
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In [t0, tM/4−1] which gives

|τv1,j| 6 C

(
h2
j+1|hj+1 − hj|+ h4

j+1

)
as hj < hj+1

6 C

(
µ3/2M−4 exp

(
2tj+1

(p + 1)
√
µ

)
+ µ2M−4 exp

(
4tj+1

(p + 1)
√
µ

))
6 CM−4 exp

(
4tj+1

(p + 1)
√
µ

)
6 CM−4 exp

(
4Ψ(%j+1)

)
6 CM−4.

Moreover, for tj ∈ [tM/4, t3M/4+1], it is easy to prove |τv1,j| 6 CM−4. Similarly, for

tj ∈ [t3M/4+2, tM ] we get |τv1,j| 6 CM−4. Therefore, using the application of Lemma 5.4.2,

we obtain

max
j=0,1,...,M

|(v1 − I1
2v1)j| 6 CM−4.

Now to find the bounds for wL1 , we use the fact that hj < hj+1 for tj ∈ [t0, tM/4−1], which

yields

|τwL
1 ,j
| 6 1

12
hjhj+1|hj+1 − hj||(wL1,j)

′′′ |Ij +
5

96
max{h4

j , h
4
j+1}‖(wL1,j)(4)‖Ij∪Ij+1

6 C

(
h2
j+1|hj+1 − hj|µ−1/2| exp(−t

√
a(0)/µ)|Ij + h4

j+1µ
−1|| exp(−t

√
a(0)/µ)|Ij |Ij∪Ij+1

)
6 CM−4

(
exp

(
2tj+1

(p + 1)
√
µ

)∣∣∣∣ exp

(
− t

√
a(0)

µ

)∣∣∣∣
Ij

+ exp

(
4tj+1

(p + 1)
√
µ

)∣∣∣∣ exp

(
− t

√
a(0)

µ

)∣∣∣∣
Ij∪Ij+1

)
6 CM−4 exp

(
C15hj+1√

µ

)
6 CM−4 exp

(
C15(p + 1)M−1 maxΨ ′(%j+1)

)
6 CM−4.

In the right layer region [t3M/4+1, tM ], we obtain the same bounds. Furthermore, one can

easily prove |τwL
1 ,j
| 6 CM−4 for tj ∈ [tM/4−1, t3M/4+1]. An application of Lemma 5.4.2
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provides

max
j=0,1,...,M

|(wL1 − I1
2w

L
1 )j| 6 CM−4.

The same theory can be used to derive the bounds for the right singular component wR1

(skipping the analysis here).

Analysis for the second component z2: As the analysis is analogous to the study for the

first component in S1
2-interpolation, we are not providing the details here.

The estimate in (5.4.4a) can be achieved immediately by consolidating all the interpolation

errors for three components. To show (5.4.4b), we use triangle inequality as

‖zzz − I1
2zzz‖ 6 ‖zzz − I0

2zzz‖+ ‖I0
2zzz − I1

2zzz‖

6 ‖zzz − I0
2zzz‖+ max

j=0,1,...,M
|(zzz − I1

2zzz)j|.

Now using (I1
2zzz)j = (zzz)j, j = 0, 1, . . . ,M , Lemma 5.4.1, Theorem 5.4.1, and (5.4.4a), we

obtain the estimate (5.4.4b). Moreover, to obtain the inequality (5.4.4c), we use the identical

approach as we have done for (5.4.4b). For this goal, we write

|(zk − I1
2zk)

′′
j−1/2| 6 |(zk − I0

2zk)
′′
j−1/2|+ |(I0

2zk − I1
2zk)

′′
j−1/2|

6 |(zk − I0
2zk)

′′
j−1/2|+ max

j=0,1,...,M

8

h2
j

|(zk − I1
2zk)j|.

Hence, the proof is accomplished by utilizing Theorem 5.4.1 and inequality (5.4.4a).

Lemma 5.4.3. If there exists a constant µ1 > 0 such that

max{hj+1, hj−1} > µ1hj, j = 1, 2, . . . ,M − 1, h1 > µ1h2, and hM > µ1hM−1,

then the operator LLL is stable in the infinity-norm i.e.,

‖γγγ‖ 6 2
(1 + µ1)

µ1ζ
‖LLLγγγ‖, for all γγγ = (γ1, γ2)T , γk ∈ RM+2

0 = {r ∈ RM+2 : r0 = rM+1 = 0}.

Proof. Following the approach of [94], we obtain the required result.

Theorem 5.4.3. Let zzz and z̃zz are the exact and approximate solutions to (5.1.3), respectively,
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on the eXp mesh, then

‖zzz − z̃zz‖ 6 CM−2.

Proof. The use of triangle inequality yields

‖zk − z̃k‖ 6 ‖zk − I1
2zk‖+ ‖I1

2zk − z̃k‖,

for k = 1, 2. Now making use of B-spline functions, we write the interpolant I1
2zk as

I1
2zk(x) =

M+1∑
j=0

βj,kBj(x), for k = 1, 2.

[LLL(ααα− βββ)]j−1/2 = µµµ(I1
2zzz − zzz)

′′

j−1/2, j = 1, 2, . . . ,M, k = 1, 2.

Finally, Theorem 5.4.2 and Lemma 5.4.3 give

‖ααα− βββ‖ 6 CM−2.

Since each Bj > 0 and the sum of all basis functions equals 1, so

‖I1
2zzz − z̃zz‖ 6 ‖ααα− βββ‖ 6 CM−2.

The proof is finally completed by applying Theorem 5.4.2.

5.5 Numerical illustrations

In this section, we verify the theoretical results obtained in the previous section by implement-

ing our numerical method on two test problems. The exact solution for both test problems is

unavailable, so we use the double-mesh principle [112] to calculate the error estimates and

orders of convergence. We define a maximum pointwise error as

EM
k,µ = max

j
|z̃k(t2j−1)− ẑk(tj−1/2)|, k = 1, 2,
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taking M and 2M intervals in consideration, ẑk and z̃k denote the computed solutions on

these intervals respectively. The following formula gives the associated orders of convergence

χMk,µ = log2

(
EM
k,µ

E2M
k,µ

)
, k = 1, 2.

Uniform errors EM
k , for each fixed M are obtained by taking the maximum of EM

k,µ over a

finite range of µ values ranging over S = {µ|µ = 2−8, 2−12, . . . , 2−30},

EM
k = max

µ∈S
EM
k,µ, k = 1, 2,

Moreover, the associated orders of parameter uniform convergence χMk are given by

χMk = log2

(
EM
k

E2M
k

)
, k = 1, 2.

We have also calculated the overall error EEEM and corresponding orders of convergence as

follows:

EEEM = max
k

(max
µ∈S

EM
k,µ),

χχχM = log2

(
EEEM

EEE2M

)
.

Additionally, we have also determined µ-uniform error constants CM
1 , CM

2 (see [113], Chapter

8, page 166, for the computational algorithm) to confirm this analogy. The exact and numerical

solutions components are denoted as zk and z̃k, respectively. Moreover, the solution in the

vector form is represented by bold letters.

Example 5.5.1. In this example, we consider the following fourth-order, two-point BVP:

−µz(4)(t) + (6− t2)z′′(t) + 2z(t) = −(10t+ 1), t ∈ (0, 1),

z(0) = 1, z(1) = 1, z′′(0) = −1, z′′(1) = −1.
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Example 5.5.2. In this example, we consider the following two-point BVP:

−µz(4)(t) + 5 exp(1− t)z′′(t) + (1 + t3)z(t) = −2 exp(t), t ∈ (0, 1),

z(0) = 1, z(1) = 1, z′′(0) = −1, z′′(1) = −1.

As the first equation of the system (second-order differential equation in the first com-

ponent z1) is independent of the perturbation parameter, we do not observe steep boundary

layers in the first component (refer to [120]). In contrast, the second component exhibits twin

boundary layers in the neighborhood of the left and right ends of the domain. As mentioned

earlier, the uniform mesh is not a good choice to resolve these boundary layers, which is

also confirmed by the results of the test problems for which we obtain negative orders of

convergence (refer to Tables 5.1 and 5.2). One cannot procure their aim of obtaining parameter

uniform measures on this mesh. So, here, we preferred eXp mesh to obtain the numerical

results for both problems. Tables 5.3, 5.4, 5.5, and 5.6 validate the parameter-uniform results

for the solutions z̃1 and z̃2 in Examples 5.5.1 and 5.5.2, which are uniformly convergent of

O(M−2). These tables confirm the theoretical fact that µ-uniform errors show monotoni-

cally decreasing behavior as the number of mesh intervals M increases. Additionally, we

have also determined µ-uniform orders of convergence χχχM and µ-uniform error constants

(CCCM = max
k
CM
k ) to confirm this analogy.

A comparison of computed results between three meshes (eXp, Shishkin, and Bakhvalov-

Shishkin (B-S) mesh) is provided in Tables 5.7 and 5.8. One can observe that results on the

Shishkin mesh are almost second-order convergent (which is O(M−2 ln2M)), whereas on

the eXp mesh and B-S mesh, obtained results give second-order accuracy with lesser errors

compared to the Shishkin mesh.

Furthermore, we display combined plots of described meshes (eXp, Shishkin, and B-S

meshes) in Fig. 5.1 for different values of µ, which shows the distribution of mesh points in

different regions (layer and regular) of the domain. As mentioned in [91], eXp mesh and B-S

mesh are both excellent choices for these types of problems, differ by a slight variation in

the selection of mesh generating function Ψ(%). We have demonstrated the appearance of the

boundary layer in the solution component z̃2 by plotting the graphs of the solution. From
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Table 5.1: Maximum pointwise errors in the solutions on uniform mesh for µ = 2−28 for
Examples 5.5.1

z̃1 z̃2

M EM
1,µ χM1,µ EM

2,µ χM2,µ
32 3.222e− 06 2.021 7.437e− 06 −2.045
64 7.933e− 07 2.011 3.071e− 05 −2.001
128 1.967e− 07 2.005 1.230e− 04 −1.995
256 4.899e− 08 2.002 4.906e− 04 −1.978
512 1.222e− 08 2.001 1.933e− 03 −1.913
1024 3.052e− 09 - 7.283e− 03 -

Table 5.2: Maximum pointwise errors in the solutions on uniform mesh for µ = 2−28 for
Examples 5.5.2

z̃1 z̃2

M EM
1,µ χM1,µ EM

2,µ χM2,µ
32 9.993e− 06 2.010 9.994e− 06 0.109
64 2.480e− 06 2.006 9.261e− 06 −2.012
128 6.172e− 07 2.003 3.737e− 05 −1.997
256 1.539e− 07 2.001 1.492e− 04 −1.979
512 3.844e− 08 2.000 5.884e− 04 −1.914
1024 9.604e− 09 - 2.218e− 03 -

Fig. 5.2, it is noticed that the boundary layers for µ = 10−6 are stiffer (refer Figs. 5.2(b)

and 5.2(d)) as compared to boundary layers for µ = 10−3 (refer Figs. 5.2(a) and 5.2(c))

which validates the theory, that for SPBVPs the width of the boundary layer decreases as µ

decreases.

Remark 5.5.1. In Fig. 5.2, z∆
k represents the kth component of the numerical solution on the

partition ∆.

5.6 Concluding remarks
A numerical scheme comprising the quadratic B-splines on the eXp mesh is investigated for

the fourth-order singularly perturbed BVPs. The primary motivation to adopt the exponentially

graded mesh is that it does not need prior knowledge about the transition parameter i.e., it is

independent of the transition point(s). In contrast, other meshes like Bakhvalov and Shishkin-
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Table 5.3: Maximum pointwise errors EM
1,µ in the solution z̃1 for Example 5.5.1

M
µ 32 64 128 256 512 1024
2−8 2.3461e− 05 6.5592e− 06 1.7130e− 06 4.3602e− 07 1.0987e− 07 2.7845e− 08

1.8387 1.9370 1.9741 1.9886 1.9803
2−12 1.7630e− 05 5.4024e− 06 1.4923e− 06 3.9199e− 07 1.0048e− 07 2.5456e− 08

1.7064 1.8561 1.9286 1.9639 1.9808
2−16 7.8702e− 06 2.2170e− 06 6.0518e− 07 1.6076e− 07 4.1381e− 08 1.0460e− 08

1.8278 1.8732 1.9125 1.9579 1.9841
2−20 9.4327e− 06 2.5722e− 06 6.7291e− 07 1.7210e− 07 4.3556e− 08 1.0792e− 08

1.8747 1.9345 1.9672 1.9823 2.0129
2−24 1.0122e− 05 2.7735e− 06 7.2530e− 07 1.8550e− 07 4.6697e− 08 1.1990e− 08

1.8677 1.9351 1.9672 1.9900 1.9615
2−28 1.0332e− 05 2.8294e− 06 7.4052e− 07 1.8912e− 07 4.7259e− 08 9.9457e− 09

1.8368 1.9657 1.9692 2.0006 2.2484
2−30 1.0367e− 05 2.8387e− 06 7.4314e− 07 1.9022e− 07 4.8853e− 08 1.1572e− 08

1.8687 1.9335 1.9660 1.9611 2.0778

EM
1 2.3461e− 05 6.5592e− 06 1.7130e− 06 4.3602e− 07 1.0987e− 07 2.7845e− 08

χM
1 1.8387 1.9370 1.9741 1.9886 1.9803
CM

1 0.0142 0.0155 0.0162 0.0166 0.0171 0.0162

Table 5.4: Maximum pointwise errors EM
2,µ in the solution z̃2 for Example 5.5.1

M
µ 32 64 128 256 512 1024
2−8 8.2846e− 03 2.4950e− 03 6.4062e− 04 1.5738e− 04 3.8850e− 05 9.6341e− 06

1.7314 1.9615 2.0252 2.0183 2.0117
2−12 8.4202e− 03 2.5451e− 03 6.5380e− 04 1.6060e− 04 3.9655e− 05 9.8330e− 06

1.7261 1.9608 2.0254 2.0179 2.0118
2−16 8.4448e− 03 2.5521e− 03 6.5572e− 04 1.6108e− 04 3.9774e− 05 9.8626e− 06

1.7264 1.9605 2.0253 2.0179 2.0118
2−20 8.4513e− 03 2.5539e− 03 6.5621e− 04 1.6120e− 04 3.9805e− 05 9.8702e− 06

1.7265 1.9605 2.0253 2.0179 2.0118
2−24 8.4530e− 03 2.5543e− 03 6.5634e− 04 1.6124e− 04 3.9812e− 05 9.8721e− 06

1.7261 1.9604 2.0252 2.0179 2.0117
2−28 8.4534e− 03 2.5545e− 03 6.5637e− 04 1.6124e− 04 3.9814e− 05 9.8726e− 06

1.7265 1.9605 2.0253 2.0179 2.0118
2−30 8.4535e− 03 2.5545e− 03 6.5638e− 04 1.6125e− 04 3.9815e− 05 9.8727e− 06

1.7265 1.9605 2.0253 2.0179 2.0118

EM
2 8.4535e− 03 2.5545e− 03 6.5638e− 04 1.6125e− 04 3.9815e− 05 9.8727e− 06

χM
2 1.7265 1.9605 2.0253 2.0179 2.0118
CM

2 11.5418 13.9509 14.3388 14.0898 13.9163 13.8031
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Table 5.5: Maximum pointwise errors EM
1,µ in the solution z̃1 for Example 5.5.2

M
µ 32 64 128 256 512 1024
2−8 2.7497e− 05 7.3428e− 06 1.8792e− 06 4.7392e− 07 1.1890e− 07 2.9804e− 08

1.9049 1.9662 1.9874 1.9949 1.9962
2−12 1.4878e− 05 4.5389e− 06 1.2507e− 06 3.2812e− 07 8.3969e− 08 2.1297e− 08

1.7128 1.8596 1.9304 1.9663 1.9792
2−16 2.4553e− 05 6.6558e− 06 1.7312e− 06 4.4143e− 07 1.1145e− 07 2.7981e− 08

1.8832 1.9428 1.9715 1.9858 1.9939
2−20 2.9922e− 05 8.2465e− 06 2.1653e− 06 5.5497e− 07 1.4049e− 07 3.5223e− 08

1.8594 1.9292 1.9641 1.9819 1.9959
2−24 3.1399e− 05 8.6892e− 06 2.2890e− 06 5.8722e− 07 1.4843e− 07 3.8089e− 08

1.8534 1.9245 1.9627 1.9841 1.9623
2−28 3.1776e− 05 8.8037e− 06 2.3207e− 06 5.9564e− 07 1.5037e− 07 3.7029e− 08

1.8518 1.9235 1.9620 1.9859 2.0218
2−30 3.1839e− 05 8.8233e− 06 2.3259e− 06 5.9755e− 07 1.5375e− 07 3.3171e− 08

1.8514 1.9234 1.9607 1.9585 2.2126

EM
1 3.1839e− 05 8.8233e− 06 2.3259e− 06 5.9755e− 07 1.5375e− 07 3.3171e− 08

χM
1 1.8514 1.9234 1.9607 1.9585 2.2126
CM

1 0.0435 0.0482 0.0508 0.0522 0.0537 0.0526

Table 5.6: Maximum pointwise errors EM
2,µ in the solution z̃2 for Example 5.5.2

M
µ 32 64 128 256 512 1024
2−8 7.3662e− 03 3.3448e− 03 9.2219e− 04 2.3204e− 04 5.7190e− 05 1.4139e− 05

1.1390 1.8588 1.9907 2.0205 2.0161
2−12 7.2268e− 03 3.3181e− 03 9.1534e− 04 2.3040e− 04 5.6795e− 05 1.4039e− 05

1.1230 1.8580 1.9902 2.0203 2.0163
2−16 7.1859e− 03 3.3049e− 03 9.1156e− 04 2.2943e− 04 5.6553e− 05 1.3979e− 05

1.1206 1.8582 1.9903 2.0204 2.0163
2−20 7.1757e− 03 3.3016e− 03 9.1061e− 04 2.2918e− 04 5.6492e− 05 1.3964e− 05

1.1200 1.8583 1.9904 2.0204 2.0163
2−24 7.1731e− 03 3.3008e− 03 9.1038e− 04 2.2912e− 04 5.6477e− 05 1.3961e− 05

1.1198 1.8583 1.9904 2.0204 2.0163
2−28 7.1725e− 03 3.3006e− 03 9.1032e− 04 2.2911e− 04 5.6473e− 05 1.3960e− 05

1.1197 1.8582 1.9903 2.0204 2.0163
2−30 7.1724e− 03 3.3006e− 03 9.1031e− 04 2.2910e− 04 5.6472e− 05 1.3960e− 05

1.1197 1.8582 1.9903 2.0204 2.0163

EM
2 7.3662e− 03 3.3448e− 03 9.2219e− 04 2.3204e− 04 5.7190e− 05 1.4139e− 05

χM
2 1.1390 1.8588 1.9907 2.0205 2.0161
CM

2 9.7927 18.0255 19.8860 20.0194 19.7385 19.5169
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Figure 5.1: Mesh comparison of eXp mesh, Shishkin mesh, and B-S mesh for M = 64

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

0.5

1

1.5

2

2.5

N
u

m
e

r
ic

a
l 

S
o

lu
ti

o
n

 z
1

  z
2

(a) M = 256, µ = 10−3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

0.5

1

1.5

2

2.5

3

N
u

m
e

r
ic

a
l 

S
o

lu
ti

o
n

  z
1

  z
2

(b) M = 256, µ = 10−6
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(c) M = 256, µ = 10−3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N
u

m
e

r
ic

a
l 

S
o

lu
ti

o
n

  z
1

  z
2

(d) M = 256, µ = 10−6

Figure 5.2: Numerical solution plots of Example 5.5.1 (subfigures (a) and (b)), and Example
5.5.2 (subfigures (c) and (d))
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type meshes need this information in advance. The computed theoretical bounds on the spline

interpolation error reveal that the method is second-order parameter-uniformly convergent.

The numerical outcomes displayed in the tables verify the theoretical estimates on the orders

of convergence and the errors evaluated in Section 5.4.

157



Chapter 6

Uniformly convergent scheme for

fourth-order singularly perturbed

convection-diffusion ODE

Convection-diffusion with fourth-order singular perturbation ODEs cross theoretical borders

to have a tangible impact on various fields. Their solutions shed light on the mysterious

subtleties that lie dormant inside nature and give us a glimpse into the fundamental principles

that regulate different physical processes. The appearance of boundary layers is one of

the defining characteristics of these equations. These layers provide locations in which

the solutions undergo abrupt changes. This intricate feature offers an ideal foundation for

research, with their analysis revealing how the system navigates steep gradients and evolves.

6.1 Introduction

Motivated by the work of Shanthi and Ramanujam [123, 124], in this chapter, the following

singularly perturbed convection-diffusion type fourth-order boundary value problem (BVP)

will be in consideration

The work of this chapter has been published in the following publication:

S. Singh, D. Kumar, V. Shanthi, “Uniformly convergent scheme for fourth-order singularly

perturbed convection-diffusion ODE.” Appl. Numer. Math., 186 (2023), 334–357.
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− εy(4)(x)− a(x)y′′′(x) + b(x)y′′(x) + c(x)y′(x)− d(x)y(x) = −f(x), x ∈ D = (0, 1),

(6.1.1a)

subject to the following boundary conditions (BCs)

y(0) = q1, y(1) = q3, y
′′(0) = −q2, y

′′(1) = −q4. (6.1.1b)

Choosing a particular type of BCs motivated by [35] helps us to establish uniform stability

estimates and other results. To extend the maximum principle theory, we transform (6.1.1a)-

(6.1.1b) into a system of two strongly/weakly coupled singularly perturbed systems (depending

on the coefficient of the first order derivative) of second-order ordinary differential equations

(ODEs) (refer [125] for the definition of strongly/weakly coupled systems) with Dirichlet

BCs. We assume a(x), b(x), c(x), d(x), and f(x) to be sufficiently smooth that satisfy the

following conditions

a(x) > α∗ > 0, b(x) > β∗ > 0, (6.1.2a)

c(x) > γ∗ > 0, 0 > d(x) > −δ∗, δ∗ > 0, (6.1.2b)

α∗ − δ∗(1 + ζ∗) > η∗ > 0, for some η∗ and ζ∗ > 0, (6.1.2c)

for x ∈ D.

Under these assumptions the BVP (6.1.1a)-(6.1.1b) has a unique solution y(x) exhibiting

a less severe boundary layer at x = 0 [35, 112]. The ‘less severe’ means the solution y(x)

of the BVP (6.1.1a)-(6.1.1b) and its first derivative are bounded uniformly, for all ε on the

interval [0, 1]. It may be noted that the reduced problem satisfies the boundary condition at

x = 0 exactly [35]. The applications of the problem mentioned above can be seen in reactor

theory [126], traveling of water waves [127], pattern formation in second-order materials, and

traveling waves in suspension bridges [128]. Fourth-order differential equations like extended

Fisher-Kolmogorov equations [129], Swift-Hohenberg equation [130], Euler-Bernoulli beam

equation [131], and Benjamin-Ono equation appear in different fields and explains several
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mathematical and physical phenomena.

Existence of a unique solution y(x) ∈ C4(D) ∩ C2(D) guaranteed by the assumptions

made in the equations (6.1.2a)-(6.1.2c) (see [132]). We convert the BVP (6.1.1a)-(6.1.1b) into

a simpler form as follows

LLLyyy(x) = fff(x), x ∈ D,

yyy(0) = (q1, q2)T , yyy(1) = (q3, q4)T ,

which is equivalent to

L1yyy(x) ≡ −y′′1(x)− y2(x) = 0, x ∈ D, (6.1.3a)

L2yyy(x) ≡ −εy′′2(x)− a(x)y′2(x)− c(x)y′1(x) + b(x)y2(x) + d(x)y1(x) = f(x), x ∈ D,

(6.1.3b)

y1(0) = q1, y1(1) = q3, y2(0) = q2, y2(1) = q4, (6.1.3c)

which can be written in a simpler way as

LLLyyy(x) ≡

L1yyy(x)

L2yyy(x)

 ≡
− d2

dx2
0

0 −ε d
2

dx2

yyy −A(x)yyy′ + B(x)yyy = fff(x),

where A(x) =

 0 0

c(x) a(x)

, B(x) =

 0 −1

d(x) b(x)

, yyy(x) = (y1(x), y2(x))T , LLL =

(L1,L2)T , and fff(x) = (0, f(x))T . The system (6.1.3) will be in consideration in place

of (6.1.1) in our analysis in the remaining chapter.

Remark 6.1.1. The fourth-order ODEs are reduced into a system of two second-order ODEs

using the given BCs of the kind (6.1.1b). According to the condition, the singularly perturbed

problem is a non-turning point issue (6.1.2a). Condition (6.1.2b) is applied to ensure that the

aforementioned system (6.1.3a)-(6.1.3c) is “quasi-monotone” (see definition 2.3 in [119]).

To obtain the maximum principle for the SPBVP (6.1.3a)-(6.1.3c), the conditions (6.1.2a)-

(6.1.2c) are adequate. The last criterion (6.1.2c) is combined with the maximum principle to
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arrive at a stable outcome.

In current years, constructing the numerical techniques for fourth-order SPODEs has been

successfully attempted by several researchers. For the reaction-diffusion class of fourth-order

ODEs in 2002, Shanthi and Ramanujam suggested an exponentially fitted finite difference

method (EFFDM) for linear and nonlinear BVPs. In [124], the authors used the boundary

value technique (BVT), which includes EFFDM in the layer region and classical FDM away

from the layer region. In [133], Shanthi and Ramanujam used the fitted operator method

(FOM), fitted mesh method (FMM), and BVT for the respective class of BVP. Das and Natesan

[120] used the adaptive mesh via equidistribution of a monitor function and developed a

second-order uniformly convergent scheme. Using the Vulanović-Shishkin mesh, Cen et al.

[121] constructed an almost fourth-order hybrid FDM combining non-equidistant generalized

Numerov and the central difference schemes. Recently, Singh and Kumar [134] analyzed

quadratic B-splines-based technique using eXp mesh and showed second-order parameter

uniform convergent results.

For the convection-diffusion type SPBVPs in [123], the authors employed BVT to find the

numerical solution. In 2016, Chandru and Shanthi [135] considered fourth-order SPBVP with

a turning point in the domain. They converted the considered problem into a weakly coupled

system of two second-order ODEs and implemented their asymptotic numerical scheme on

linear and nonlinear problems. After going through the cited literature and their references,

spline approximations are not new for singular perturbation, but currently, it is less explored

for the higher order singularly perturbed problems. In most cases, we see the presence of

a logarithmic factor in the convergence part of the method, but here, the use of quadratic

B-spline with a graded mesh provides a second-order convergence (without logarithmic

factor). We intend to construct a parameter uniform approximation for the problem (6.1.1) by

applying B-spline’s collocation technique on the eXp mesh. Along with this, we also explore

the proposed method for nonlinear problems.

The present piece of work is systematized as follows. Section 6.2 contains the analytic

properties of the continuous solution of SPBVP (6.1.1) and its equivalent form (6.1.3) and

derivatives bounds of the components. The execution and construction of the numerical

scheme are given in Section 6.3, along with the properties of the eXp mesh. Section 6.4
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examines the convergence estimates in detail and offers second-order uniform accuracy.

Section 6.5 is devoted to the nonlinear BVPs, which include the quasilinearization technique

for nonlinear problems. After linearizing, it is easy to implement the proposed method. In

supporting the provided convergence, we give computational results in Section 6.6. The

present manuscript completes with concluding comments in Section 6.7.

Throughout the chapter, we denote C as a positive generic constant that takes different

values at different places andCCC = (C,C). Moreover, Ci, i = 1, 2, . . . , 11 are fixed constants.

6.2 Analytical results

6.2.1 Maximum principle and stability result

Here, we state some basic results without proofs for the BVP (6.1.3a)-(6.1.3c). These results

can be proved using the procedures adopted in [124, 132].

Theorem 6.2.1. Consider the BVP (6.1.3a)-(6.1.3c), assume that L1yyy ≥ 0, L2yyy ≥ 0 in D,

y1(0) ≥ 0, y1(1) ≥ 0, y2(0) ≥ 0, and y2(1) ≥ 0. Then, yyy(x) ≥ 0, in D.

Proof. Follow the approach of [132] for the proof.

Lemma 6.2.1. Consider the BVP (6.1.3a)-(6.1.3c). If yyy is a smooth function, then

‖yyy‖ ≤ C max{|y1(0)|, |y2(0)|, |y1(1)|, |y2(1)|,max
x∈D
|L1yyy|,max

x∈D
|L2yyy|},

where ‖yyy‖ = max{|y1(x)|, |y2(x)|}.

Lemma 6.2.2. For k = 1, 2, we have the following bounds

|y(k)
1 | ≤ C, |y(k)

2 | ≤ C(1 + ε−k),

and

|y(k+2)
1 | ≤ C(1 + ε−k), |y(k+2)

2 | ≤ Cε−2(1 + ε−k).

Proof. We have the required proof by using the result of Lemma 6.2.1 and applying the

arguments of [112, 113].
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The proof of parameter-uniform convergence requires sharper bounds for the exact solution

and its derivatives of the system (6.1.3). For this, we decompose the solution yyy(x) into two

parts

yyy(x) = vvv(x) +www(x), (6.2.1)

where vvv(x) = (v1, v2)T ,www(x) = (w1(x), w2(x))T are the regular and singular components of

yyy(x), respectively.

Theorem 6.2.2. If a(x), b(x), c(x), d(x), and f(x) ∈ C4(D). Then the components vvv(x),

www(x), and their derivatives have the following bounds

|v(k)
1 (x)| 6 C, |v(k)

2 (x)| 6 C(1 + ε4−k), x ∈ D, 0 6 k 6 4,

|w(k)
1 (x)| 6 Cε2−k exp(−xα∗/ε), |w(k)

2 (x)| 6 Cε−k exp(−xα∗/ε), x ∈ D, 0 6 k 6 4.

Proof. We use the minimum regularity of the coefficient functions a, b, c, d, and f to prove a

higher-order decomposition of the analytical solution. The regular component can be written

in the form vvv = vvv0 + εvvv1 + ε2vvv2 + ε3vvv3 + ε4vvv4, where vvv0 = (v01, v02)T , vvv1 = (v11, v12)T ,

vvv2 = (v21, v22)T , vvv3 = (v31, v32)T , vvv4 = (v41, v42)T and satisfies the following problems

− d2

dx2
0

0 0

vvv0 −A(x)vvv′0 + B(x)vvv0 = fff(x), vvv0(1) = yyy(1),

− d2

dx2
0

0 0

vvv1 −A(x)vvv′1 + B(x)vvv1 =

0 0

0
d2

dx2

vvv0, vvv1(1) = 000,

− d2

dx2
0

0 0

vvv2 −A(x)vvv′2 + B(x)vvv2 =

0 0

0
d2

dx2

vvv1, vvv2(1) = 000,

− d2

dx2
0

0 0

vvv3 −A(x)vvv′3 + B(x)vvv3 =

0 0

0
d2

dx2

vvv2, vvv3(1) = 000,

Lv4Lv4Lv4 =

0 0

0
d2

dx2

vvv3, vvv4(0) = 000, vvv4(1) = 000.
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Thus

LLLvvv(x) = fff(x), x ∈ D, (6.2.2)

for suitably chosen vvv(0) and vvv(1). Moreover, the singular component is the solution to the

following BVP

LLLwww(x) = 0, x ∈ D, www(0) = yyy(0)− vvv(0), www(1) = 0. (6.2.3)

We can apply the approach of [136] (by putting µ = 1). For more details on this approach, one

can refer [132, 137, 138]. With the mentioned decomposition and Lemma 6.2.2 the following

bounds hold for vvv

|v(k)
1 (x)| 6 C, |v(k)

2 (x)| 6 C(1 + ε4−k). (6.2.4)

The appropriate choice of barrier function gives the following bounds on the components of

www

|w1(x)| 6 C1ε
2(1− exp(−xα∗/ε)), (6.2.5a)

|w2(x)| 6 C1ε
2(1− exp(−xα∗/ε)) + C2α

∗ exp(−xα∗/ε). (6.2.5b)

Using the argument of [112, 113, 136], the first order derivatives satisfy

|w′1(x)| 6 C1ε exp(−xα∗/ε), (6.2.6a)

|w′2(x)| 6 C1ε exp(−xα∗/ε) + C2ε
−1α∗ exp(−xα∗/ε), (6.2.6b)

6 Cε−1 exp(−xα∗/ε). (6.2.6c)

We use differential equations to get the bounds for second-order derivatives

|w′′1(x)| 6 C exp(−xα∗/ε), (6.2.7a)

|w′′2(x)| 6 C(1− exp(−xα∗/ε)) + Cε−2 exp(−xα∗/ε). (6.2.7b)
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The third and fourth-order derivatives satisfy

|w′′′1 (x)| 6 Cε2(1 + ε−3 exp(−xα∗/ε)), (6.2.8a)

|w′′′2 (x)| 6 Cε−1(1 + ε−2 exp(−xα∗/ε)), (6.2.8b)

|w′′′′1 (x)| 6 C(1 + ε−2 exp(−xα∗/ε)), (6.2.8c)

|w′′′′2 (x)| 6 Cε−2(1 + ε−2 exp(−xα∗/ε)). (6.2.8d)

Thus, we have obtained the required bounds. The asymptotic expansion approach of [132]

can also be used. In [138], a third-order convection-diffusion type problem is considered, but

the approach of proving the bounds can be followed.

6.3 The suggested numerical method

This section includes the construction of the eXp mesh, pursued by the construction and

implementation of the method to the problem (6.1.3).

6.3.1 Construction of the mesh

A combination of standard numerical techniques with a uniform mesh delivers unsatisfactory

results (not parameter-uniform) because of the solution oscillations near the layer region

unless a large number of mesh points is considered; that is practically impossible. Thus, one

feels the necessity of layer-resolving mesh, and non-uniform meshes are suitable for this

purpose. This section will produce a particular type of eXp mesh that generates more mesh

points in the layer region (in the neighborhood of the left part of the domain) than the regular

part.

To construct the eXp mesh ∆Nx = {xj| 0 6 j 6 Nx}, the interval [0, 1] can be divided

into Nx > 2 (multiple of 2) subintervals Ij = [xj−1, xj]. Construction of the mesh requires

a piecewise continuously differentiable, monotonically increasing, and continuous mesh

generating function Υ (%), which is characterized as

Υ (%) = − ln(1− 2φP,ε%), % ∈ [0, 1/2− 1/Nx], (6.3.1)

165



Chapter 6

where P is the degree of the polynomial, φP,ε = 1− exp

(
− 1

(P+1)ε

)
∈ R+. We divide the

interval [0, 1] as [0, 1] = [0, xNx
2
−1] ∪ [xNx

2
−1, 1], where xNx

2
−1 is the transition point. We

write the grid points in the following format

xj =


(P + 1)εΥ (%j), j = 0, 1, . . . , Nx

2
− 1,

xNx
2
−1 +

(1− xNx
2
−1

Nx

2
+ 1

)
, j = Nx

2
, . . . , Nx,

where %j = j
Nx

for j = 0, 1, . . . , Nx. The mesh points are distributed equidistantly in

[xNx
2
−1, 1] with Nx/2 + 1 elements and exponentially graded in [0, xNx

2
−1] with Nx/2 − 1

elements. The step size ĥj = xj − xj−1, j = 1, 2, . . . , Nx fulfills the following inequalities

using the function Θ = exp(−Υ ), known as the mesh characterizing function (see [91] for

more details)

ĥj 6

C(P + 1)εN−1
x maxΥ ′(%j), j = 1, 2, . . . , Nx

2
− 1,

CN−1
x , j = Nx

2
, . . . , Nx,

further on simplification

ĥj 6

C(P + 1)εN−1
x max |Θ′| exp

(
xj

(P+1)ε

)
, j = 1, 2, . . . , Nx

2
− 1,

CN−1
x , j = Nx

2
, . . . , Nx.

As max |Θ′ | 6 2, the above inequalities can be simplified as

ĥj 6

CεN
−1
x exp

(
xj

(P+1)ε

)
, j = 1, 2, . . . , Nx

2
− 1,

CN−1
x , j = Nx

2
, . . . , Nx,

(6.3.2)

and for the mesh ∆Nx , ĥj also holds

|ĥj+1 − ĥj| 6 C

εN
−2
x , j = 1, 2, . . . , Nx

2
− 1,

0, j = Nx

2
, . . . , Nx − 1.

(6.3.3)
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Remark 6.3.1. This analysis cannot be given for the meshes provided by Shishkin and

Bakhvalov because of the violation of the condition |ĥj+1 − ĥj| 6 CN−2
x in the vicinity of

transition points (refer [94]).

6.3.2 Execution of the collocation technique

In this section, we demonstrate the execution of our collocation technique to find the solution

to the problem (6.1.3) using piecewise quadratic C1-splines. We denote by χj , the collocation

points obtained by taking an average of xj−1 and xj i.e.,

χj = xj−1/2 :=
xj−1 + xj

2
= xj−1 +

ĥj
2

= xj −
ĥj
2
, for j = 1, 2, . . . , Nx.

For m,P ∈ N (m < P), we define the following spaces

Sm
P (∆Nx) := {r ∈ Cm[0, 1] : r|Ij ∈ ΠP , for j = 1, 2, . . . , Nx},

where ΠP is the set of all polynomials of degree 6 P .

For the discretization of (6.1.3), we seek the quadratic splines Bj(x) ∈ S1
2(∆Nx), j =

0, 1, . . . , Nx + 1 defined below that constitute the solution of BVP (6.1.3)

B0(x) =


(x1 − x)2

ĥ2
1

, x0 6 x 6 x1,

0, otherwise,

B1(x) =



ĥ2
1 − (x1 − x)2

ĥ2
1

− (x− x0)2

ĥ1(ĥ1 + ĥ2)
, x0 6 x 6 x1,

(x2 − x)2

ĥ1(ĥ1 + ĥ2)
, x1 6 x 6 x2,

0, otherwise,
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and for j = 2, 3, . . . , Nx − 1,

Bj(x) =



(x− xj−2)2

ĥj−1(ĥj−1 + ĥj)
, xj−2 6 x 6 xj−1,

(x− xj−2)(xj − x)

ĥj(ĥj−1 + ĥj)
+

(xj+1 − x)(x− xj−1)

ĥj(ĥj + ĥj+1)
, xj−1 6 x 6 xj,

(xj+1 − x)2

ĥj+1(ĥj + ĥj+1)
, xj 6 x 6 xj+1,

0, otherwise,

while for j = Nx, Nx + 1 these are defined as

BNx(x) =



(x− xNx−2)2

ĥNx−1(ĥNx−1 + ĥNx)
, xNx−2 6 x 6 xNx−1,

ĥ2
Nx
− (x− xNx−1)2

ĥ2
Nx

− (xNx − x)2

ĥNx(ĥNx−1 + ĥNx)
, xNx−1 6 x 6 xNx ,

0, otherwise,

BNx+1(x) =


(x− xNx−1)2

ĥ2
Nx

, xNx−1 6 x 6 xNx ,

0, otherwise.

To discretize the Equation (6.1.3), we seek ỹyy ∈ S1
2(∆Nx) such that

ỹyy(0) = (q1, q2)T , (LLLỹyy)j−1/2 = fff j−1/2, ỹyy(1) = (q3, q4)T , j = 1, 2, . . . , Nx. (6.3.4)

Equation (6.3.4) can be rewritten in the components form as

ỹ1(0) = q1, (L1ỹyy)j−1/2 = 0, ỹ1(1) = q3, j = 1, 2, . . . , Nx, (6.3.5a)

ỹ2(0) = q2, (L2ỹyy)j−1/2 = fj−1/2, ỹ2(1) = q4, j = 1, 2, . . . , Nx. (6.3.5b)

We represent the collocation solution ỹyy as

ỹk(x) =
Nx+1∑
j=0

λj,kBj(x), k = 1, 2. (6.3.6)
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Use of (6.3.6) in (6.3.4) and (6.3.5) give the following system

λ0,k = qk, [LLLλλλ]j−1/2 = fff j−1/2, j = 1, 2, . . . , Nx, λNx+1,k = qk+2, k = 1, 2, (6.3.7)

which represent the same system given by the following equations

λ0,1 = q1, [L1λλλ]j−1/2 = 0, λNx+1,1 = q3, j = 1, 2, . . . , Nx, (6.3.8a)

λ0,2 = q2, [L2λλλ]j−1/2 = fj−1/2, λNx+1,2 = q4, j = 1, 2, . . . , Nx, (6.3.8b)

with λλλ := (λ0,1, λ1,1, . . . , λNx+1,1, λ0,2, λ1,2, . . . , λNx+1,2)T ∈ R2Nx+4, LLL := (L1, L2)T . The

operators in (6.3.8) can be written in a simple way as

[L1λλλ]j−1/2 :=−
[

2(λj+1,1 − λj,1)

ĥj(ĥj + ĥj+1)
− 2(λj,1 − λj−1,1)

ĥj(ĥj + ĥj−1)

]
−
[
q̃+
j λj+1,2 +

(
1− q̃+

j − q̃−j
)
λj,2

+ q̃−j λj−1,2

]
,

[L2λλλ]j−1/2 :=− ε
[

2(λj+1,2 − λj,2)

ĥj(ĥj + ĥj+1)
− 2(λj,2 − λj−1,2)

ĥj(ĥj + ĥj−1)

]
+ bj−1/2

[
q̃+
j λj+1,2 +

(
1− q̃+

j − q̃−j
)
λj,2

+ q̃−j λj−1,2

]
− aj−1/2

[
− λj−1,2

ĥj + ĥj−1

+ λj,2

(
1

ĥj + ĥj−1

− 1

ĥj + ĥj+1

)
+

λj+1,2

ĥj + ĥj+1

]
− cj−1/2

[
− λj−1,1

ĥj + ĥj−1

+ λj,1

(
1

ĥj + ĥj−1

− 1

ĥj + ĥj+1

)
+

λj+1,1

ĥj + ĥj+1

]
+ dj−1/2

[
q̃+
j λj+1,1 +

(
1− q̃+

j − q̃−j
)
λj,1 + q̃−j λj−1,1

]
,

where q̃+
j :=

ĥj

4(ĥj + ĥj+1)
and q̃−j :=

ĥj

4(ĥj + ĥj−1)
. Merging all the equations delivers the

following system

AAAλλλ = G,

where

AAA =

Â B̂

Ĉ D̂

 , G =

(
q1, 0, . . . , 0, q3︸ ︷︷ ︸

1
st component

, q2, f(χ1), . . . , f(χNx), q4︸ ︷︷ ︸
2

ndcomponent

)T
,
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λλλ =

(
λ0,1, λ1,1, . . . , λNx,1, λNx+1,1︸ ︷︷ ︸

1st component

, λ0,2, λ1,2, . . . , λNx,2, λNx+1,2︸ ︷︷ ︸
2nd component

)T
.

The matrices Â, B̂, Ĉ and D̂ are given by

Â =



1 0 0 0 . . . . . . 0

â21 â22 â23 0 . . . . . . 0

0 â32 â33 â34 . . . . . . 0
... . . . . . . . . . ...

...
...

. . . . . . . . . 0 âNx+1Nx âNx+1Nx+1 âNx+1Nx+2

. . . . . . . . . 0 0 0 1


(Nx+2)×(Nx+2)

,

B̂ =



0 0 0 0 . . . . . . 0

b̂21 b̂22 b̂23 0 . . . . . . 0

0 b̂32 b̂33 b̂34 . . . . . . 0
... . . . . . . . . . ...

...
...

. . . . . . . . . 0 b̂Nx+1Nx b̂Nx+1Nx+1 b̂Nx+1Nx+2

. . . . . . . . . 0 0 0 0


(Nx+2)×(Nx+2)

,

Ĉ =



0 0 0 0 . . . . . . 0

ĉ21 ĉ22 ĉ23 0 . . . . . . 0

0 ĉ32 ĉ33 ĉ34 . . . . . . 0
... . . . . . . . . . ...

...
...

. . . . . . . . . 0 ĉNx+1Nx ĉNx+1Nx+1 ĉNx+1Nx+2

. . . . . . . . . 0 0 0 0


(Nx+2)×(Nx+2)

,
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D̂ =



1 0 0 0 . . . . . . 0

d̂21 d̂22 d̂23 0 . . . . . . 0

0 d̂32 d̂33 d̂34 . . . . . . 0
... . . . . . . . . . ...

...
...

. . . . . . . . . 0 d̂Nx+1Nx d̂Nx+1Nx+1 d̂Nx+1Nx+2

. . . . . . . . . 0 0 0 1


(Nx+2)×(Nx+2)

,

where for j = 1, 2, . . . , Nx

âj+1,j = − 2

ĥj(ĥj + ĥj−1)
, âj+1,j+1 =

2

ĥj(ĥj + ĥj−1)
+

2

ĥj(ĥj + ĥj+1)
,

âj+1,j+2 =
2

ĥj(ĥj + ĥj+1)
, b̂j+1,j = −q̃−j , b̂j+1,j+1 = −(1− q̃+

j − q̃−j ), b̂j+1,j+2 = −q̃+
j ,

ĉj+1,j =
cj−1/2

ĥj + ĥj−1

+ q̃−j dj−1/2, ĉj+1,j+2 = −
cj−1/2

ĥj + ĥj−1

+ q̃+
j dj−1/2,

ĉj+1,j+1 = − cj−1/2

(
1

ĥj + ĥj−1

− 1

ĥj + ĥj+1

)
+ dj−1/2(1− q̃+

j − q̃−j ),

d̂j+1,j =
2ε

ĥj(ĥj + ĥj−1)
+ q̃−j bj−1/2 +

aj−1/2

ĥj + ĥj−1

,

d̂j+1,j+1 = 2ε

(
1

ĥj + ĥj−1

+
1

ĥj + ĥj+1

)
+ bj−1/2(1− q̃+

j − q̃−j )

aj−1/2

(
1

ĥj + ĥj−1

− 1

ĥj + ĥj+1

)
,

d̂j+1,j+2 = − 2ε

ĥj(ĥj + ĥj+1)
+ q̃+

j bj−1/2 −
aj−1/2

ĥj + ĥj+1

.

6.4 Convergence analysis

6.4.1 S0
2-interpolation

We solve the following interpolation problem to find the interpolation I0
2yk ∈ S0

2(∆Nx) for an

arbitrary function yk ∈ C0[0, 1]

(I0
2yk)j = (yk)j, j = 0, 1, . . . , Nx, and (I0

2yk)j−1/2 = (yk)j−1/2, j = 1, 2, . . . , Nx,
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where (yk)j = yk(xj), (yk)j−1/2 = yk(χj), k = 1, 2.

Theorem 6.4.1. Assuming a(x), b(x), c(x), d(x), f(x) ∈ C4[0, 1], the interpolating error

yyy − I0
2yyy of the solution yyy of (6.1.3) satisfies the following bounds:

‖yyy − I0
2yyy‖ 6 CN−3

x , εεε max
j=1,2,...,Nx

|(yyy − I0
2yyy)′j−1/2| 6 CCCN−2

x ,

εεε2 max
j=1,2,...,Nx

|(yyy − I0
2yyy)′′j−1/2| 6 CCCN−2

x ,

where εεε = diag(1, ε).

Proof. First, we utilize the Lagrange representation of the interpolating polynomial and

Taylor series expansions to verify that for any yyy ∈ C4[0, 1]2, the interpolating error on each

subinterval satisfies∥∥∥∥yk−I0
2yk

∥∥∥∥
Ij

6
ĥ3
j

24

∥∥∥∥y(3)
k

∥∥∥∥
Ij

,

∣∣∣∣(yk−I0
2yk)

′
j−1/2

∣∣∣∣ 6 ĥ2
j

24

∥∥∥∥y(3)
k

∥∥∥∥
Ij

,

∣∣∣∣(yk−I0
2yk)

′′
j−1/2

∣∣∣∣ 6 ĥ2
j

48

∥∥∥∥y(4)
k

∥∥∥∥
Ij

,

(6.4.1)

for k = 1, 2. Applying the linearity property of I0
2 , decomposition of the solution components

yk into two parts is given by

yk − I0
2yk = (vk − I0

2vk) + (wk − I0
2wk).

Since the nature of both solution components is distinct, we give individual analyses for both

solution components.

Analysis for first component y1: We start our analysis by finding the interpolating error

in the regular component. For Ij ⊂ [0, xNx/2−1], we apply the bounds given in Theorem 6.2.2,

to obtain

ĥ3
j

24

∣∣∣∣v(3)
1

∣∣∣∣
Ij

6 Cε3N−3
x exp

(
3xj

(P + 1)ε

)
6 CN−3

x exp

(
xj
ε

)
6 CN−3

x exp

(
(P + 1)Υ (%j)

)
6 CN−3

x .
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Also, for Ij ⊂ [xNx/2, 1], the bounds for ĥj (using (6.3.2)) trivially gives ‖v1 − I0
2v1‖Ij 6

CN−3
x . Thus, by merging all these estimates, we have

‖v1 − I0
2v1‖ 6 CN−3

x .

Next, we assess the singular component w1 in Ij ⊂ [0, xNx/2−1]. Using Theorem 6.2.2 and

the inequality (6.3.2), we get

ĥ3
j

24

∣∣∣∣w(3)
1

∣∣∣∣
Ij

6 Cε3N−3
x exp

(
3xj

(P + 1)ε

)
ε−1| exp(−xα∗/ε)|Ij

6 CN−3
x exp

[
C1

(
xj
ε
− xj−1

ε

)]
6 CN−3

x exp

(
C1
ĥj
ε

)
6 CN−3

x exp

(
C1(P + 1)N−1

x maxΥ ′(%j)

)
6 CN−3

x .

Now for Ij ⊂ [xNx/2, 1], we obtain

ĥ3
j

24

∣∣∣∣w(3)
1

∣∣∣∣
Ij

6 CN−3
x ε−1| exp(−xα∗/ε)|Ij

6 CN−3
x ε−1 exp

(
−α

∗xj−1

ε

)
.

Since ε−1 exp

(
−α∗xj−1

ε

)
is bounded in [xNx/2, 1], the above inequality gives

ĥ3
j

24

∣∣∣∣w(3)
1

∣∣∣∣
Ij

6 CN−3
x .

Thus, for the singular component, we obtain

‖w1 − I0
2w1‖ 6 CN−3

x .
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Now to acquire the bound for max
j=1,2,...,Nx

|(y1 − I0
2y1)′j−1/2|, first, we assess v1 in Ij ⊂

[0, xNx/2−1] as follows

ĥ2
j

24

∣∣∣∣v(3)
1

∣∣∣∣
Ij

6 Cε2N−2
x exp

(
2xj

(P + 1)ε

)
6 CN−2

x exp

(
2xj

(P + 1)ε

)
6 CN−2

x exp

(
2Υ (%j)

)
6 CN−2

x .

Also, for Ij ⊂ [xNx/2, 1], the bounds for ĥj (using (6.3.2)) trivially gives |(v1− I0
2v1)′j−1/2| 6

CN−2
x . Thus, by merging all these estimates, we have∣∣∣∣(v1 − I0

2v1)′j−1/2

∣∣∣∣ 6 CN−2
x .

Next, we assess the singular component w1 in Ij ⊂ [0, xNx/2−1]. Using Theorem 6.2.2 and

the inequality (6.3.2), we get

ĥ2
j

24

∣∣∣∣w(3)
1

∣∣∣∣
Ij

6 Cε2N−2
x exp

(
2xj

(P + 1)ε

)
ε−1| exp(−xα∗/ε)|Ij

6 CN−2
x exp

[
C2

(
xj
ε
− xj−1

ε

)]
6 CN−2

x exp

(
C2
ĥj
ε

)
6 CN−2

x exp

(
C2(P + 1)N−1

x maxΥ ′(%j)

)
6 CN−2

x .

Similar bound can be obtained in Ij ⊂ [xNx/2, 1]. Now to acquire the bound for max
j=1,2,...,Nx

|(y1−

I0
2y1)′′j−1/2|, first, we assess v1 in Ij ⊂ [0, xNx/2−1] as follows

ĥ2
j

48

∣∣∣∣v(4)
1

∣∣∣∣
Ij

6 Cε2N−2
x exp

(
2xj

(P + 1)ε

)
(using Theorem 6.2.2 and the inequality (6.3.2))
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6 CN−2
x exp

(
2xj

(P + 1)ε

)
6 CN−2

x exp

(
2Υ (%j)

)
6 CN−2

x .

Use similar approach for v1 the interval [xNx/2, 1]. Now for the w1 in Ij ⊂ [0, xNx/2−1], we

have

ĥ2
j

48

∣∣∣∣w(4)
1

∣∣∣∣
Ij

6 Cε2N−2
x exp

(
2xj

(P + 1)ε

)
ε−2| exp(−xα∗/ε)|Ij

6 CN−2
x exp

(
C3xj
ε

)
exp

(
−C4xj−1

ε

)
6 CN−2

x exp

(
C5(xj − xj−1)

ε

)
6 CN−2

x exp

(
C5ĥj
ε

)
6 CN−2

x exp

(
C5(P + 1)N−1

x maxΥ ′(%j)

)
6 CN−2

x .

For the interval [xNx/2, 1]

ĥ2
j

48

∣∣∣∣w(4)
1

∣∣∣∣
Ij

6 CN−2
x ε−2| exp(−xα∗/ε)|Ij

6 CN−2
x ε−2 exp

(
−α∗xj−1

ε

)
.

Since ε−2 exp

(
−α∗xj−1

ε

)
is bounded in [xNx/2, 1], the above inequality gives

ĥ2
j

48

∣∣∣∣w(4)
1

∣∣∣∣
Ij

6 CN−2
x .

Analysis for second component y2: We start our analysis by finding the interpolating

error in the regular component. For Ij ⊂ [0, xNx/2−1], we apply the bounds given in Theorem
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6.2.2, to obtain

ĥ3
j

24

∣∣∣∣v(3)
2

∣∣∣∣
Ij

6 Cε3N−3
x exp

(
3xj

(P + 1)ε

)
6 CN−3

x exp

(
xj
ε

)
6 CN−3

x exp

(
(P + 1)Υ (%j)

)
6 CN−3

x .

Also, for Ij ⊂ [xNx/2, 1], the bounds for ĥj (using (6.3.2)) trivially gives ‖v2 − I0
2v2‖Ij 6

CN−3
x . Thus, by merging all these estimates, we have

‖v2 − I0
2v2‖ 6 CN−3

x .

Next, we assess the singular component w2 in Ij ⊂ [0, xNx/2−1]. Using Theorem 6.2.2 and

the inequality (6.3.2), we get

ĥ3
j

24

∣∣∣∣w(3)
2

∣∣∣∣
Ij

6 Cε3N−3
x exp

(
3xj

(P + 1)ε

)
ε−3| exp(−xα∗/ε)|Ij

6 CN−3
x exp

[
C6

(
xj
ε
− xj−1

ε

)]
6 CN−3

x exp

(
C6
ĥj
ε

)
6 CN−3

x exp

(
C6(P + 1)N−1

x maxΥ ′(%j)

)
6 CN−3

x .

Now for Ij ⊂ [xNx/2, 1], we obtain

ĥ3
j

24

∣∣∣∣w(3)
2

∣∣∣∣
Ij

6 CN−3
x ε−3| exp(−xα∗/ε)|Ij

6 CN−3
x ε−3 exp

(
−α

∗xj−1

ε

)
.
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Since ε−3 exp

(
−α∗xj−1

ε

)
is bounded in [xNx/2, 1], the above inequality gives

ĥ3
j

24

∣∣∣∣w(3)
2

∣∣∣∣
Ij

6 CN−3
x .

Thus, for the singular component, we obtain

‖w2 − I0
2w2‖ 6 CN−3

x .

Now to acquire the bound for max
j=1,2,...,Nx

|(y2 − I0
2y2)′j−1/2|, first, we assess v2 in Ij ⊂

[0, xNx/2−1] as follows

ĥ2
j

24

∣∣∣∣v(3)
2

∣∣∣∣
Ij

6 Cε2N−2
x exp

(
2xj

(P + 1)ε

)
6 CN−2

x exp

(
2xj

(P + 1)ε

)
6 CN−2

x exp

(
2Υ (%j)

)
6 CN−2

x .

Also, for Ij ⊂ [xNx/2, 1], the bounds for ĥj (using (6.3.2)) trivially gives |(v2− I0
2v2)′j−1/2| 6

CN−2
x . Thus, by merging all these estimates, we have∣∣∣∣(v2 − I0

2v2)′j−1/2

∣∣∣∣ 6 CN−2
x .

Next, we assess the singular component w2 in Ij ⊂ [0, xNx/2−1]. Using Theorem 6.2.2 and

the inequality (6.3.2), we get

ĥ2
j

24

∣∣∣∣w(3)
2

∣∣∣∣
Ij

6 Cε2N−2
x exp

(
2xj

(P + 1)ε

)
ε−3| exp(−xα∗/ε)|Ij

6 Cε−1N−2
x exp

[
C7

(
xj
ε
− xj−1

ε

)]
6 Cε−1N−2

x exp

(
C7
ĥj
ε

)
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6 Cε−1N−2
x exp

(
C7(P + 1)N−1

x maxΥ ′(%j)

)
6 Cε−1N−2

x .

Similar bound can be obtained in Ij ⊂ [xNx/2, 1]. Now to acquire the bound for max
j=1,2,...,Nx

|(y2−

I0
2y2)′′j−1/2|, first, we assess v2 in Ij ⊂ [0, xNx/2−1] as follows

ĥ2
j

48

∣∣∣∣v(4)
2

∣∣∣∣
Ij

6 Cε2N−2
x exp

(
2xj

(P + 1)ε

)
(using Theorem 6.2.2 and the inequality (6.3.2))

6 CN−2
x exp

(
2xj

(P + 1)ε

)
6 CN−2

x exp

(
2Υ (%j)

)
6 CN−2

x .

Use similar approach for v2 the interval [xNx/2, 1]. Now for the w1 in Ij ⊂ [0, xNx/2−1], we

have

ĥ2
j

48

∣∣∣∣w(4)
2

∣∣∣∣
Ij

6 Cε2N−2
x exp

(
2xj

(P + 1)ε

)
ε−4| exp(−xα∗/ε)|Ij

6 Cε−2N−2
x exp

(
C8xj
ε

)
exp

(
−C9xj−1

ε

)
6 Cε−2N−2

x exp

(
C10(xj − xj−1)

ε

)
6 Cε−2N−2

x exp

(
C10ĥj
ε

)
6 Cε−2N−2

x exp

(
C10(P + 1)N−1

x maxΥ ′(%j)

)
6 Cε−2N−2

x .

For the interval [xNx/2, 1]

ĥ2
j

48

∣∣∣∣w(4)
2

∣∣∣∣
Ij

6 CN−2
x ε−4| exp(−xα∗/ε)|Ij

6 Cε−2N−2
x ε−2 exp

(
−α∗xj−1

ε

)
.
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Since ε−2 exp

(
−α∗xj−1

ε

)
is bounded in [xNx/2, 1], the above inequality gives

ĥ2
j

48

∣∣∣∣w(4)
2

∣∣∣∣
Ij

6 Cε−2N−2
x .

Lemma 6.4.1. Let z ∈ S0
2(∆Nx) with zj−1/2 = 0, j = 1, 2, . . . , Nx, then

‖z‖Ij 6 max
j
{|zj−1|, |zj|}, ‖z′‖Ij 6

4

ĥj
max
j
{|zj−1|, |zj|}, ‖z′′‖Ij 6

8

ĥ2
j

max
j
{|zj−1|, |zj|}.

Proof. From [93] we know that,

z(x) =
2

ĥ2
j

(x− xj−1/2)[zj−1(x− xj) + zj(x− xj−1)], x ∈ Ij,

which implies

|z(x)| = 2

ĥ2
j

|x− xj−1/2|max{|zj−1|, |zj|}(|x− xj|+ |x− xj−1|).

Using the relations |x− xj−1/2| 6
ĥj
2

and |x− xj|+ |x− xj−1| = ĥj , so

‖z‖Ij 6 max
j
{|zj−1|, |zj|}.

Differentiating the function z(x), we get

z′(x) =
2

ĥ2
j

(zj−1 + zj)(x− xj−1/2) +
2

ĥ2
j

[zj−1(x− xj) + zj(x− xj−1)],

By taking the absolute value, we get

|z′(x)| = 2

ĥ2
j

(|zj−1|+ |zj|)|x− xj−1/2|+
2

ĥ2
j

max{|zj−1|, |zj|}(|x− xj|+ |x− xj−1|).
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Using the above relations gives

‖z′‖Ij 6
4

ĥj
max
j
{|zj−1|, |zj|}.

A similar approach can easily obtain the bound on z′′.

6.4.2 S1
2-interpolation

We solve the following interpolation problem to find the interpolation I1
2yk ∈ S1

2(∆Nx) for an

arbitrary function yk ∈ C1[0, 1]

(I1
2yk)0 = (yk)0, (I1

2yk)j−1/2 = (yk)j−1/2, j = 1, 2, . . . , Nx, (I1
2yk)Nx = (yk)Nx ,

(6.4.2)

where (yk)j−1/2 = yk(χj), for k = 1, 2.

From [93, 111], we have

[ΛRk]j ≡ rj(Rk)j−1+3(Rk)j+sj(Rk)j+1 = 4rj(Rk)j−1/2+4sj(Rk)j+1/2, j = 1, 2, . . . , Nx−1,

(6.4.3)

where rj =
ĥj+1

ĥj+ĥj+1
and sj = 1− rj =

ĥj

ĥj+ĥj+1
.

Lemma 6.4.2. For all vectors Rk ∈ RNx+1 with (Rk)0 = (Rk)Nx = 0, the operator Λ is

stable i.e.,

max
j=1,2,...,Nx−1

|(Rk)j| 6
1

2
max

j=1,2,...,Nx−1
|[ΛRk]j|, k = 1, 2.

Proof. For the proof, refer to [94].

Theorem 6.4.2. Assume that a(x), b(x), c(x), d(x), f(x) ∈ C4[0, 1], then the interpolating

error yyy − I1
2yyy of the solution yyy of (6.1.3) satisfies

max
j=0,1,...,Nx

|(yyy − I1
2yyy)j| 6 CCCN−4

x , (6.4.4a)

‖yyy − I1
2yyy‖ 6 CN−3

x , (6.4.4b)

εεε max
j=1,2,...,Nx

|(yyy − I1
2yyy)′j−1/2| 6 CCCN−2

x , (6.4.4c)

εεε2 max
j=1,2,...,Nx

|(yyy − I1
2yyy)′′j−1/2| 6 CCCN−2

x . (6.4.4d)
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Proof. To find the interpolating error yk − I1
2yk, we examine an arbitrary function yk such

that

(yk − I1
2yk)0 = (yk − I1

2yk)Nx = 0, k = 1, 2.

Using the definitions of S1
2-interpolation and the operator Λ, we have

τ̂yk,j = [Λ(yk − I1
2yk)]j = rj(yk)j−1 − 4rj(yk)j−1/2 + 3(yk)j − 4sj(yk)j+1/2 + sj(yk)j+1,

(6.4.5)

for j = 1, 2, . . . , Nx, k = 1, 2. Moreover, we utilize the Taylor series expansions to bring

|τ̂yk,j| 6
1

12
ĥjĥj+1|ĥj+1 − ĥj||(y(3)

k )j|Ij +
5

96
max{ĥ4

j , ĥ
4
j+1}‖(y

(4)
k )j‖Ij∪Ij+1

. (6.4.6)

We decompose the interpolating error into two parts as

yk − I1
2yk = (vk − I1

2vk) + (wk − I1
2wk),

or

τ̂yk,j = τ̂vk,j + τ̂wk,j.

Analysis for first component y1: We start with the regular component. For Ij ⊂

[0, xNx/2−1], we employ Theorem 6.2.2 and the inequality (6.4.6), to get

|τ̂v1,j| 6 C

(
ĥjĥj+1|ĥj+1 − ĥj|+ max{ĥ4

j , ĥ
4
j+1}

)
.

In [0, xNx/2−1] we obtain

|τ̂v1,j| 6 C

(
ĥ2
j+1|ĥj+1 − ĥj|+ ĥ4

j+1

)
as ĥj < ĥj+1

6 C

(
ε3N−4

x exp

(
2xj+1

(P + 1)ε

)
+ ε4N−4

x exp

(
4xj+1

(P + 1)ε

))
6 CN−4

x exp

(
4xj+1

(P + 1)ε

)
6 CN−4

x exp

(
4Υ (%j+1)

)
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6 CN−4
x .

Moreover, for xj ∈ [xNx/2, 1], it is straightforward to verify |τ̂v1,j| 6 CN−4
x . Therefore,

Lemma 6.4.2 gives

max
j=0,1,...,Nx

|(v1 − I1
2v1)j| 6 CN−4

x .

Now to find the bounds for w1, we employ the attribute that ĥj < ĥj+1 for xj ∈ [0, xNx/2−1],

which yields

|τ̂w1,j| 6
1

12
ĥjĥj+1|ĥj+1 − ĥj||(w1,j)

′′′ |Ij +
5

96
max{ĥ4

j , ĥ
4
j+1}‖(w1,j)

(4)‖Ij∪Ij+1

6 C

(
ĥ2
j+1|ĥj+1 − ĥj|ε−1| exp(−xα∗/ε)|Ij + ĥ4

j+1ε
−2| exp(−xα∗/ε)|Ij∪Ij+1

)
6 CN−4

x

(
exp

(
2xj+1

(P + 1)ε

)
| exp(−xα∗/ε)|Ij + exp

(
4xj+1

(P + 1)ε

)
| exp(−xα∗/ε)|Ij∪Ij+1

)
6 CN−4

x exp

(
C11ĥj+1

ε

)
6 CN−4

x exp

(
C11(P + 1)N−1

x maxΥ ′(%j+1)

)
6 CN−4

x .

In the regular region [xNx/2, 1] we acquire the identical bounds. An application of Lemma

6.4.2 delivers

max
j=0,1,...,Nx

|(w1 − I1
2w1)j| 6 CN−4

x .

Analysis for the second component y2: The examination is analogous to the first com-

ponent in S1
2-interpolation. We are not delivering the details here.

The estimation given in (6.4.4a) can be acquired instantly by combining all the interpolat-

ing errors for both components. To show (6.4.4b), we utilize triangle inequality as

‖yyy − I1
2yyy‖ 6 ‖yyy − I0

2yyy‖+ ‖I0
2yyy − I1

2yyy‖

6 ‖yyy − I0
2yyy‖+ max

j=0,1,...,Nx

|(yyy − I1
2yyy)j|.

Now using (I1
2yyy)j = (yyy)j, j = 0, 1, . . . , Nx, Lemma 6.4.1, Theorem 6.4.1, and (6.4.4a), we
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get the estimate (6.4.4b). Moreover, to obtain the inequality (6.4.4c) and (6.4.4d), we employ

a similar procedure as we have accomplished for (6.4.4b). For this, we have

|(yk − I1
2yk)

′
j−1/2| 6 |(yk − I0

2yk)
′
j−1/2|+ |(I0

2yk − I1
2yk)

′
j−1/2|

6 |(yk − I0
2yk)

′′
j−1/2|+ max

j=0,1,...,Nx

4

ĥj
|(yk − I1

2yk)j|,

|(yk − I1
2yk)

′′
j−1/2| 6 |(yk − I0

2yk)
′′
j−1/2|+ |(I0

2yk − I1
2yk)

′′
j−1/2|

6 |(yk − I0
2yk)

′′
j−1/2|+ max

j=0,1,...,Nx

8

ĥ2
j

|(yk − I1
2yk)j|.

Hence, we complete the proof by using the Theorem 6.4.1 and inequality (6.4.4a).

Lemma 6.4.3. If there exists a constant µ1 > 0 such that

max{ĥj+1, ĥj−1} > µ1ĥj, j = 1, 2, . . . , Nx − 1, ĥ1 > µ1ĥ2, and ĥNx > µ1ĥNx−1.

Then the operator LLL is stable in the infinity-norm i.e.,

‖γγγ‖ 6 C
(1 + µ1)

µ1α∗
‖LLLγγγ‖, for allγγγ = (γ1, γ2)T , γk ∈ RNx+2

0 = {z ∈ RNx+2 : z0 = zNx+1 = 0}.

Proof. Set (m1)j−1/2 =

(
1−q̃+

j −q̃−j
)
, (m2)j−1/2 = bj−1/2

(
1−q̃+

j −q̃−j
)
, j = 1, 2, . . . , Nx

and q̃+
j , q̃

−
j ∈ (0, 1/4), therefore (m1)j−1/2, (m2)j−1/2 > 0. For arbitrary γ1 and γ2, we define

[Λ1γγγ]j−1/2 := − 1

(m1)j−1/2

[
2(γj+1,1 − γj,1)

ĥj(ĥj + ĥj+1)
− 2(γj,1 − γj−1,1)

ĥj(ĥj + ĥj−1)

]
− γj,2,

[Λ2γγγ]j−1/2 :=
1

(m2)j−1/2

{
− ε
[

2(γj+1,2 − γj,2)

ĥj(ĥj + ĥj+1)
− 2(γj,2 − γj−1,2)

ĥj(ĥj + ĥj−1)

]
+ dj−1/2

[
q̃+
j γj+1,1

+

(
1− q̃+

j − q̃−j
)
γj,1 + q̃−j γj−1,1

]
− aj−1/2

[
− γj−1,2

ĥj + ĥj−1

+ γj,2

(
1

ĥj + ĥj−1

− 1

ĥj + ĥj+1

)
+

γj+1,2

ĥj + ĥj+1

]
− cj−1/2

[
− γj−1,1

ĥj + ĥj−1

+ γj,1

(
1

ĥj + ĥj−1

− 1

ĥj + ĥj+1

)
+

γj+1,1

ĥj + ĥj+1

]}
+ γj,2.

The operators Λ1 and Λ2 are well defined because (m1)j−1/2 and (m2)j−1/2 are positive. The
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M -criterion [139] implies that ‖Λ−1
k ‖ 6 1. Next, we have

[Λ1γγγ]j−1/2 =

[L1γγγ]j−1/2 +

[
q̃+
j λj+1,2 + q̃−j λj−1,2

]
(m1)j−1/2

,

[Λ2γγγ]j−1/2 =

[L2γγγ]j−1/2 − bj−1/2

[
q̃+
j λj+1,2 + q̃−j λj−1,2

]
(m2)j−1/2

.

We obtain the desired proof by applying the [94] analogy.

Theorem 6.4.3. Let ỹyy and yyy are the solutions to the problems (6.3.4) and (6.1.3), respectively,

on the eXp mesh, then

‖yyy − ỹyy‖ 6 CN−2
x .

Proof. The triangle inequality yields

‖yk − ỹk‖ 6 ‖yk − I1
2yk‖+ ‖I1

2yk − ỹk‖,

for k = 1, 2. The interpolant I1
2yk can be written as follows by using B-spline functions

I1
2yk(x) =

Nx+1∑
j=0

βj,kBj(x), for k = 1, 2.

Use of Theorem 6.4.2 and Lemma 6.4.3 give

‖λλλ−βββ‖ 6 CN−2
x .

Since each Bj > 0 and the sum of all basis functions is equal to 1, so

‖I1
2yyy − ỹyy‖ 6 ‖λλλ−βββ‖ 6 CN−2

x .

An application of Theorem 6.4.2 completes the proof.
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6.5 Nonlinear BVPs

Now, we look into the following nonlinear class of BVPs

εy(4)(x) = F(x, y′, y′′, y′′′), x ∈ D = (0, 1), (6.5.1a)

subject to the following BCs

y(0) = q1, y(1) = q3, y
′′(0) = −q2, y

′′(1) = −q4, (6.5.1b)

where F(x, y′, y′′, y′′′) is a sufficiently smooth function with respect to its arguments and

satisfies the following requirements

Fy′′′ > α∗ > 0, Fy′′ > β∗ > 0, (6.5.2a)

Fy′ > γ∗ > 0, 0 > Fy > −δ∗, δ∗ > 0, (6.5.2b)

α∗ − δ∗(1 + ζ∗) > η∗ > 0, for some η∗ and ζ∗ > 0, (6.5.2c)

for x ∈ D. Putting ε = 0, we obtain the following reduced problem

F(x, y′, y′′, y′′′) = 0, y(0) = q1, y(1) = q3, y
′′(1) = −q4, (6.5.3)

which has a solution y0 ∈ C4(D). With these assumptions, there exists a unique solution

to the problem (6.5.1) and exhibits a boundary layer of width O(ε) in the neighborhood of

x = 0. Other analytical aspects like uniqueness, existence, and asymptotical analysis can

be seen in [140, 141]. In the process of finding the numerical solution for (6.5.1), we use

Newton’s technique of quasilinearization [112]. We have the following linearized form of

(6.5.1)

−εy(4)[p+1](x)− a[p](x)y′′′[p+1](x) + b[p](x)y′′[p+1](x) + c[p](x)y′[p+1](x)

− d[p](x)y[p+1](x) = −f [p](x), x ∈ D = (0, 1),

(6.5.4a)

185



Chapter 6

y[p+1](0) = q1, y
[p+1](1) = q3, y

′′[p+1](0) = −q2, y
′′[p+1](1) = −q4, (6.5.4b)

where

a[p](x) = Fy′′′(x, y′[p], y′′[p], y′′′[p]), b[p](x) = Fy′′(x, y′[p], y′′[p], y′′′[p]),

c[p](x) = Fy′(x, y′[p], y′′[p], y′′′[p]), d[p](x) = Fy(x, y′[p], y′′[p], y′′′[p]),

−f [p](x) = F(x, y′[p], y′′[p], y′′′[p])− y[p]Fy(x, y′[p], y′′[p], y′′′[p]) + y′[p]Fy′(x, y′[p], y′′[p], y′′′[p])

− y′′[p]Fy′′(x, y′[p], y′′[p], y′′′[p]) + y′′′[p]Fy′′′(x, y′[p], y′′[p], y′′′[p]).

We have the following mentions

1. For each p, from (6.5.2) we get

a[p](x) > α∗ > 0, b[p](x) > β∗ > 0, c[p](x) > γ∗ > 0, 0 > d[p](x) > −δ∗, δ∗ > 0.

2. The linearized form (6.5.4) can be solved using the numerical technique discussed in

Section 3.

6.6 Numerical illustrations
This section verifies the theoretical outcomes by executing our numerical approach on three

test problems. Due to the unavailability of the analytic solution for all test problems, we use

the double-mesh principle [112] to compute the error estimates and orders of convergence.

We determine maximum pointwise error (MPE) as

ENx
k,ε = max

j
|ỹk(x2j−1)− ŷk(xj−1/2)|, k = 1, 2,

takingNx and 2Nx mesh intervals into consideration, ŷk and ỹk denote the numerical solutions

on these mesh intervals, respectively. After obtaining the MPEs, we calculate the associated

orders of convergence using the formula

χNx
k,ε = log2

(
ENx
k,ε

E2Nx
k,ε

)
, k = 1, 2.
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For each fixed Nx, uniform errors ENx
k are obtained as

ENx
k = max

ε∈S
ENx
k,ε , k = 1, 2,

where S = {ε|ε = 2−10, 2−14, . . . , 2−28}. Moreover, the associated orders of parameter

uniform convergence χNx
k are given by

χNx
k = log2

(
ENx
k

E2Nx
k

)
, k = 1, 2.

The overall errorEEENx and corresponding orders of convergence χχχNx are given by

EEENx = max{ENx
1 , ENx

2 },

χχχNx = log2

(
EEENx

EEE2Nx

)
.

We denote yk and ỹk as the solution components of the exact and numerical solutions,

respectively. Moreover, the bold notation represents the solution in vector form.

Example 6.6.1. First, we solve the following fourth-order BVP

−εy(4)(x)− 2(2x+ 1)y′′′(x) + xy′′(x) + 4y′(x) + y(x) = − cosx, x ∈ (0, 1),

y(0) = 1, y(1) = 1, y′′(0) = −1, y′′(1) = −1.

Example 6.6.2. Next, we solve the following fourth-order BVP

−εy(4)(x)− exp(1− x)y′′′(x) + y′′(x) + y(x) = − exp(x), x ∈ (0, 1),

y(0) = 1, y(1) = 1, y′′(0) = −1, y′′(1) = −1.

Example 6.6.3. Last, we solve the following nonlinear fourth-order BVP

−εy(4)(x)− exp(2x+ 1)y′′′(x) + y′′2(x) + y(x) = 0, x ∈ (0, 1),

y(0) = 1, y(1) = 1, y′′(0) = −1, y′′(1) = −1.
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As we notice, the perturbation parameter does not appear in the first equation of the system

(6.1.3), so we do not observe any sharp boundary layer in the first solution component. While

the second solution component exhibits a boundary layer near the left end of the domain. As

cited before, the uniform mesh is unsuitable for resolving the boundary layers. One cannot

accomplish the purpose of getting parameter uniform estimations on this mesh. So, in the

present chapter, we preferred the eXp mesh to obtain the numerical outcomes for all problems.

Tables 6.1, 6.2, 6.4, and 6.5 validate the parameter-uniform results for the solutions ỹ1 and

ỹ2 in Examples 6.6.1 and 6.6.2, which are uniformly convergent of O(N−2
x ). These tables

prove that ε-uniform errors monotonically decrease as the number of mesh intervals Nx

increases. Further, we have also determined ε-uniform orders of convergence and ε-uniform

error constants CCCNx (see [113], Chapter 8, page 166 for the computation of CCCNx) to verify

this analogy.

A comparison of numerical results between eXp, Shishkin, and Bakhvalov-Shishkin (B-S)

mesh is given in Tables 6.3 and 6.6. One can notice that results on Shishkin mesh provide

almost second-order accuracy (which is of O(N−2
x ln2Nx)). While on B-S and eXp mesh,

the acquired results give second-order accuracy with reduced errors compared to the Shishkin

mesh.

As mentioned in [91], B-S and eXp meshes are suitable choices for these class problems,

varying by a small variation in the selection of mesh generating function Υ (%). We have

illustrated the formation of the boundary layer in the solution component ỹ2 by plotting the

graphs of the numerical solution. From Figs. 6.1 and 6.2, it can be noticed that the layer at

x = 0, for ε = 10−4 (refer Figs. 6.1(b) and 6.2(b)) is stiffer as compared to ε = 10−2 (refer

Figs. 6.1(a) and 6.2(a)) which confirm the aspect, decreasing the ε results in the decreasement

of the width of the layer. We have considered a nonlinear fourth-order BVP in Example 6.6.3.

After converting into a system (like (6.1.3)), we see that nonlinearity appears in the second

equation. For Example 6.6.3, we provide the uniform results of O(N−2
x ) in Tables 6.7 and

6.8. In Figure 6.3, it is easy to see the boundary layer in the second component, whose width

decreases as ε decreases.
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Table 6.1: ENx
1,ε , χNx

1,ε , ENx
1 , χNx

1 , and CPU time (in seconds) for Example 6.6.1

Nx

ε 32 64 128 256 512
2−10 9.2932e− 06 2.2039e− 06 6.6282e− 07 1.8114e− 07 4.6799e− 08

2.0761 1.7334 1.8715 1.9526
2−14 1.3729e− 05 3.4945e− 06 8.7867e− 07 2.1961e− 07 5.4710e− 08

1.9741 1.9917 2.0004 2.0051
2−18 1.4070e− 05 3.6006e− 06 9.1120e− 07 2.2926e− 07 5.7483e− 08

1.9663 1.9824 1.9908 1.9958
2−22 1.4092e− 05 3.6072e− 06 9.1325e− 07 2.2986e− 07 5.7654e− 08

1.9659 1.9818 1.9903 1.9953
2−26 1.4101e− 05 3.6077e− 06 9.1338e− 07 2.2990e− 07 5.7666e− 08

1.9666 1.9818 1.9902 1.9952
2−28 1.4125e− 05 3.6077e− 06 9.1338e− 07 2.2990e− 07 5.7667e− 08

1.9691 1.9818 1.9902 1.9952
CPU time 0.0992 0.1282 0.1693 0.2021 0.5095

ENx
1 1.4125e− 05 3.6077e− 06 9.1338e− 07 2.2990e− 07 5.7667e− 08

χNx
1 1.9691 1.9818 1.9902 1.9952

CNx
1 0.0193 0.0197 0.0200 0.0201 0.0202

Table 6.2: ENx
2,ε , χNx

2,ε , ENx
2 , χNx

2 , and CPU time (in seconds) for Example 6.6.1

Nx

ε 32 64 128 256 512
2−10 1.2311e− 02 3.1789e− 03 7.9747e− 04 1.9888e− 04 4.9551e− 05

1.9533 1.9950 2.0035 2.0049
2−14 1.2231e− 02 3.1554e− 03 7.9098e− 04 1.9716e− 04 4.9158e− 05

1.9546 1.9961 2.0043 2.0039
2−18 1.2225e− 02 3.1538e− 03 7.9052e− 04 1.9704e− 04 4.9071e− 05

1.9547 1.9962 2.0043 2.0055
2−22 1.2225e− 02 3.1537e− 03 7.9050e− 04 1.9700e− 04 4.7323e− 05

1.9547 1.9962 2.0046 2.0576
2−26 1.2225e− 02 3.1537e− 03 7.9046e− 04 1.9703e− 04 4.7301e− 05

1.9547 1.9963 2.0043 2.0585
2−28 1.2225e− 02 3.1537e− 03 7.9046e− 04 1.9703e− 04 4.7300e− 05

1.9547 1.9963 2.0043 2.0585
CPU time 0.0937 0.1313 0.1507 0.1994 0.5096

ENx
2 1.2311e− 02 3.1789e− 03 7.9747e− 04 1.9888e− 04 4.9551e− 05

χNx
2 1.9533 1.9950 2.0035 2.0049

CNx
2 16.6912 17.2237 17.2695 17.3002 17.3000
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Table 6.4: ENx
1,ε , χNx

1,ε , ENx
1 , χNx

1 , and CPU time (in seconds) for Example 6.6.2

Nx

ε 32 64 128 256 512
2−10 8.4932e− 05 2.2161e− 05 5.6284e− 06 1.4107e− 06 3.5092e− 07

1.9383 1.9772 1.9963 2.0072
2−14 8.9221e− 05 2.3507e− 05 6.0327e− 06 1.5268e− 06 3.8391e− 07

1.9243 1.9622 1.9823 1.9917
2−18 8.9495e− 05 2.3593e− 05 6.0593e− 06 1.5344e− 06 3.8606e− 07

1.9234 1.9611 1.9815 1.9908
2−22 8.9513e− 05 2.3599e− 05 6.0609e− 06 1.5349e− 06 3.8620e− 07

1.9234 1.9611 1.9815 1.9908
2−26 8.9518e− 05 2.3599e− 05 6.0610e− 06 1.5349e− 06 3.8621e− 07

1.9234 1.9611 1.9815 1.9907
2−28 8.9531e− 05 2.3599e− 05 6.0610e− 06 1.5349e− 06 3.8621e− 07

1.9234 1.9611 1.9815 1.9908
CPU time 0.1789 0.1995 0.2334 0.3429 0.7541

ENx
1 8.9531e− 05 2.3599e− 05 6.0610e− 06 1.5349e− 06 3.8621e− 07

χNx
1 1.9234 1.9611 1.9815 1.9908

CNx
1 0.1222 0.1284 0.1324 0.1341 0.1350

Table 6.5: ENx
2,ε , χNx

2,ε , ENx
2 , χNx

2 , and CPU time (in seconds) for Example 6.6.2

Nx

ε 32 64 128 256 512
2−10 3.9384e− 02 1.0381e− 02 2.4893e− 03 6.2139e− 04 1.5487e− 04

1.9237 2.0601 2.0022 2.0044
2−14 3.9429e− 02 1.0389e− 02 2.4912e− 03 6.2176e− 04 1.5494e− 04

1.9242 2.0601 2.0024 2.0045
2−18 3.9432e− 02 1.0390e− 02 2.4913e− 03 6.2179e− 04 1.5499e− 04

1.9242 2.0602 2.0024 2.0043
2−22 3.9432e− 02 1.0390e− 02 2.4913e− 03 6.2172e− 04 1.5472e− 04

1.9242 2.0602 2.0026 2.0066
2−26 3.9432e− 02 1.0390e− 02 2.4909e− 03 6.2073e− 04 1.5368e− 04

1.9242 2.0605 2.0046 2.0140
2−28 3.9432e− 02 1.0390e− 02 2.4905e− 03 6.2073e− 04 1.5367e− 04

1.9242 2.0607 2.0047 2.0141
CPU time 0.1544 0.2096 0.2169 0.3190 0.9111

ENx
2 3.9432e− 02 1.0390e− 02 2.4913e− 03 6.2179e− 04 1.5499e− 04

χNx
2 1.9242 2.0606 2.0024 2.0043

CNx
2 53.8381 56.7417 54.3831 53.8494 53.8420
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Table 6.7: ENx
1,ε , χNx

1,ε , ENx
1 , χNx

1 , and CPU time (in seconds) for Example 6.6.3

Nx

ε 32 64 128 256 512
2−10 9.3838e− 07 3.1206e− 07 9.7593e− 08 2.8182e− 08 6.9874e− 09

1.5883 1.6770 1.7920 2.0119
2−14 1.3668e− 06 3.5111e− 07 8.8247e− 08 2.2015e− 08 5.4701e− 09

1.9608 1.9923 2.0031 2.0088
2−18 1.4074e− 06 3.6409e− 07 9.2215e− 08 2.3172e− 08 5.8045e− 09

1.9507 1.9812 1.9926 1.9971
2−22 1.4279e− 06 3.6491e− 07 9.2465e− 08 2.3247e− 08 5.8270e− 09

1.9683 1.9806 1.9919 1.9962
2−26 1.4280e− 06 3.6490e− 07 9.2464e− 08 2.3246e− 08 5.8270e− 09

1.9683 1.9806 1.9919 1.9962
2−28 1.4280e− 06 3.6490e− 07 9.2464e− 08 2.3246e− 08 5.8270e− 09

1.9691 1.9818 1.9902 1.9952
CPU time 0.2997 0.4162 0.6000 1.2170 4.4456

ENx
1 1.4280e− 06 3.6490e− 07 9.7593e− 08 2.8182e− 08 6.9874e− 09

χNx
1 1.9684 1.9027 1.7920 2.0119

CNx
1 0.0023 0.0020 0.0020 0.0020 0.0020

Table 6.8: ENx
2,ε , χNx

2,ε , ENx
2 , χNx

2 , and CPU time (in seconds) for Example 6.6.3

Nx

ε 32 64 128 256 512
2−10 1.6945e− 02 3.6257e− 03 9.3528e− 04 2.3547e− 04 5.8666e− 05

2.2245 1.9548 1.9899 2.0049
2−14 1.6935e− 02 3.6247e− 03 9.3488e− 04 2.3536e− 04 5.8630e− 05

2.2241 1.9550 1.9899 2.0052
2−18 1.6934e− 02 3.6246e− 03 9.3486e− 04 2.3537e− 04 5.8712e− 05

2.2240 1.9550 1.9898 2.0032
2−22 1.6934e− 02 3.6246e− 03 9.3485e− 04 2.3527e− 04 5.9486e− 05

2.2241 1.9550 1.9904 1.9837
2−26 1.6934e− 02 3.6246e− 03 9.3485e− 04 2.3527e− 04 5.9486e− 05

2.2241 1.9550 1.9904 1.9837
2−28 1.6934e− 02 3.6246e− 03 9.3485e− 04 2.3527e− 04 5.9486e− 05

2.2241 1.9550 1.9904 1.9837
CPU time 0.2880 0.4400 0.4940 1.2604 4.2056

ENx
2 1.6945e− 02 3.6257e− 03 9.3528e− 04 2.3547e− 04 5.9486e− 05

χNx
2 2.2245 1.9548 1.9899 1.9849

CNx
2 23.1150 19.7949 20.4110 20.6940 20.3641
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Figure 6.1: Numerical solution plots (subfigures (a) and (b)) of Example 6.6.1
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Figure 6.2: Numerical solution plots (subfigures (a) and (b)) of Example 6.6.2
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Figure 6.3: Numerical solution plots (subfigures (a) and (b)) of Example 6.6.3
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6.7 Concluding comments
A numerical method incorporating the quadratic B-splines on the eXp mesh is analyzed for

the fourth-order convection-diffusion type linear and nonlinear singularly perturbed BVPs.

Since eXp mesh does not require prior knowledge about the transition parameter, this is our

primary motivation to adopt this mesh. In contrast, different meshes given by Bakhvalov and

Shishkin need these details in advance. The nonlinear differential equations are linearized

through Newton’s method. The calculated theoretical bounds on the spline interpolation error

demonstrate that the present method shows second-order parameter-uniform accuracy. The

numerical results in the tables ensure the theoretical estimations in Section 6.4.
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Conclusions

The most important findings gained throughout this thesis are gathered in this section. In

addition, it addresses the various paths that may be taken to build upon the existing study and

dives into further investigating these directions.

7.1 Summary
The results of this thesis, along with some significant remarks, are broken down into their

essential components as follows:

• The first chapter discusses the analytical and mathematical foundations of singular

perturbation theory. This thesis is devoted to developing robust numerical techniques

to resolve the challenges associated with the computational treatment of singularly

perturbed problems. The first chapter of this research attempts to discuss most of these

difficulties in greater depth.

• Chapter 2 offers a novel numerical method for solving degenerate parabolic problems

of the convection-diffusion type subject to singular perturbations. We present a compu-

tation framework that combines the Crank-Nicolson scheme with the quadratic spline

collocation method in time and spatial direction, respectively. This hybrid approach has

been meticulously crafted to handle the complexities of solving the concerned class of

singularly perturbed problems. In conjunction with this, an exponentially graded mesh
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is employed precisely, which brings about resolution inside the boundary layer domain.

The comprehensive examination of error and rigorous analysis confirms that the sug-

gested technique provides second-order parameter-uniform convergence. Remarkably,

the proposed approach outperforms current methods in terms of effectiveness.

• As we progressed through Chapter 3, we examined a more challenging topic, a weakly

coupled system of ` singularly perturbed reaction-diffusion equations. These systems

typically result in double-layer structures because of parameters (commonly denoted by

ε) that multiply the highest-order derivative term. The decision to use an exponentially

graded mesh was driven substantially by the specific benefits offered by this method

over other approaches to meshing, such as the Shishkin and Bakhvalov-type meshes.

The theoretical bounds of the spline interpolation error have been calculated by carefully

examining the underlying methodology. These second-order robustly convergent results

of the suggested approach are remarkable because they hold regardless of the size of

the perturbation parameter. In a complete review of the various physical and numerical

characteristics of singularly perturbed systems, this suggested collocation approach is

practical and easily implementable.

• The complex dynamical interaction between diffusion and reaction processes in complex

systems is illustrated in Chapter 4 as we discuss a class of models referred to as weakly

coupled systems of parabolic singularly perturbed reaction-diffusion equations. We

provide a robust numerical technique based on splines to solve the problem of a

singularly perturbed system consisting of equations with the same diffusion parameter.

The theoretical background verifies that the suggested method converges uniformly

and achieves second-order spatial precision. In addition, the Crank-Nicolson approach

is used to confirm the temporal accuracy of second-order. The execution practice of

the conceived system substantiates the unchanging credibility of both the theoretical

bounds and the tabulated outcomes.

• In addition, the current thesis contributes toward developing an efficient numerical

technique for the fourth-order singularly perturbed problems in Chapters 5 and 6. The

solutions presented by the researchers illuminate the enigmatic intricacies inherent in
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natural phenomena, offering us a look into the underlying principles governing a diverse

range of physical processes. As mentioned above, the presence of boundary layers is a

fundamental attribute of the equations. Spline techniques have yet to be explored in the

literature for these problems. The complex nature of the problem can be made easier

to handle by reformulating it into a system of reaction-diffusion/convection-diffusion

problems of the second order in which one equation is free from perturbation parameters.

To address these boundary value problems, we investigate a numerical method that

applies quadratic B-splines across an exponentially graded mesh. The computed

theoretical bounds on the spline interpolation error reveal that the technique is second-

order parameter-uniformly convergent. Later on, in Chapter 6, we also considered the

non-linear boundary value problem. The detailed tabulation of numerical data validates

the theoretical estimates about convergence orders and errors.

7.2 Future scopes
Examining the complexities of numerical methods based on quadratic spline for singularly

perturbed problems, we explore a fascinating terrain of less explored paths and promising

directions for future development in this area. The results of this study provide new avenues

for investigation and creativity in addition to adding to the corpus of existing knowledge. The

possible paths for further research are described in this section, emphasizing the areas that

call for more in-depth investigation and methodological advancements.

1. Singularly perturbed integro-differential equations arising in finance, electrostatics,

chemistry, biology, theory of elasticity, potential theory, heat and mass transfer, astron-

omy, and fluid dynamics [142].

2. Higher dimensional singularly perturbed differential equations [143].

3. Time fractional singularly perturbed PDEs [144].

4. Delay differential equations and delay integro-differential equations [145, 146].
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