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Abstract

Population models in ecology are mathematical depictions of biological populations in natural
ecosystems that are used to understand and forecast their behavior. Ecologists can use these
models to gain insight into the factors that drive population growth, decline, and stability. It
serves as a foundation for ecological research, allowing scientists to test hypotheses, make
predictions, and create natural resource and biodiversity management strategies. Relationships
between prey and predator are an essential component of Mathematical Ecology. Examining
prey-predator interactions in the presence of an infectious disease has become vital in recent
years. The spread of infectious diseases is one of the epidemiological factors that can influence
population size, structure, and dynamics. Differential equation is a standard tool used to model
prey-predator interactions mathematically. Every model becomes different when the predation
rate is represented by a particular functional response. Several factors affect the predation rate
and the population density tremendously, such as fear of predation and its carry-over effects,
group defense, hunting cooperation, prey refuge, additional food for predators, prey herd shape,
counter-attacking by strong prey, migration, time delay, seasonality, etc. Including these factors
make the model more realistic and challenging to study.

This thesis investigates various ecological and eco-epidemiological models that depict in-
teractions between prey and predators in the presence of diverse environmental factors, which
can significantly impact the system dynamics. The variations in population traits offer valuable
insights into ecosystem management. The thesis comprises seven chapters, the first of which
is an introduction to the research. Subsequent chapters present the formulation and analysis
of unique models represented as ordinary differential equations or delay differential equations.
All proposed models are demonstrated to be well-posed, and their feasible steady-state solu-
tions are determined. Numerous results are established regarding the existence and stability
of equilibrium points. We examine the system dynamics by applying stability theory to both
non-delayed and delayed models, exploring bifurcation theory, chaos theory, and the theory
for seasonal models. To validate our theoretical findings, we conducted extensive numerical
simulations. The mathematical results obtained are interpreted in the context of ecology. The
abstract of every chapter is given as follows.

Chapter 1 presents the basic introduction to the forthcoming chapters. It contains the back-
ground and motivation of the research work carried out in this thesis. A brief overview of the
key concepts frequently employed throughout this thesis is included. This chapter also contains
the thesis objectives and most used mathematical tools in subsequent chapters.
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In Chapter 2, we examined the dynamical features of a Leslie-Gower prey-predator model
incorporating the effect of fear and group defense among prey and the mechanism of coop-
erative hunting by predators. A temporal delay in the prey species’ specific growth rate to
examine the impact of the fear reaction has been considered. The existence and uniqueness of
the interior equilibrium are explained, and sufficient conditions for the local and global stability
behavior are obtained. Regarding the fear parameter and cooperation strength parameter, the
system undergoes Hopf-bifurcation, transcritical bifurcation, and saddle-node bifurcation. Ad-
ditionally, we noticed how stability dynamics change when fear and delay are simultaneously
varied. Moreover, the system exhibits bi-stability between two interior equilibrium points. The
basin of attraction of these attractors is also plotted. We examined system dynamics for the fear-
response delay and observed that the stability of positive equilibrium changes multiple times
via supercritical Hopf bifurcation. Furthermore, we obtained two Hopf-point critical values of
the fear parameter in the presence of delay.

In Chapter 3, we analyzed a system of delay differential equations incorporating prey’s
refuge, fear, fear-response delay, extra food for predators and their gestation lag. We assumed
that the predator can choose between additional food and its favorite food (prey). We examined
the system with or without delay. The persistence, stability (local and global) and various bi-
furcations are discussed. We performed detailed analysis for transcritical and Hopf-bifurcation.
The existence of positive equilibria and the stability of prey-free equilibrium are interrelated. It
is shown that (i) fear can stabilize or destabilize the system, (ii) prey refuge in a specific limit
can be advantageous for both species, (iii) at a lower energy level (gained from extra food), the
system undergoes a supercritical Hopf-bifurcation and (iv) when the predator gains high energy
from extra food, it can survive through a homoclinic bifurcation, and prey may become extinct.
The possible occurrence of bi-stability with or without delay is discussed. We observed switch-
ing of stability thrice via subcritical Hopf-bifurcation for fear-response delay. On changing
some parametric values, the system undergoes a supercritical Hopf-bifurcation for both delay
parameters. The delayed system undergoes Hopf-bifurcation, so we can say that both delay
parameters play a vital role in regulating the system’s dynamics.

In Chapter 4, we discussed the impact of additional food on prey-predator system in the
presence of an infectious disease among prey. We formulated a three-dimensional system in
which, along with additional food, the predator consumes susceptible (S) and infected (I) prey
using a modified Leslie-Gower scheme. The predator can switch between prey and the pro-
vided extra food (similar to Chapter 3). Our study aims to control the existing disease in the
system with the provision of alternative food. To achieve the goal, we investigated the sug-
gested model and its disease-free subsystem theoretically and numerically. The scope of our
analysis is broadened to encompass both local and global bifurcations. Hopf-bifurcation, tran-
scritical bifurcation, saddle-node bifurcation, homoclinic bifurcation, heteroclinic bifurcation,



ix

all occur due to stability transitioning between steady states or cycles. Numerical results indi-
cated that the additional food parameter αA contributes to the complex dynamics of the system.
A slight modification in αA can significantly change the characteristics of the entire system.
In a specific range of αA, all of these unanticipated changes render the system bi-stable and
multi-stable. In such cases, we plotted their basins of attraction. Consequently, a set of starting
values for which the system is disease-free is obtained. We also illustrated the phenomenon
of global stability toward the positive equilibrium. Furthermore, the infection rate is capable
of altering the dynamics of the system. Through a subcritical Hopf-bifurcation, it can control
the oscillations in species around their positive steady state. However, ample energy from the
alternative food may lead to disease eradication even for higher infection rates.

Chapter 5 also discusses an eco-epidemic model where prey exhibits herd behavior. The
shape of the herd can alter the system dynamics significantly. When strong (susceptible) prey
forms a herd to defend against the predator, it can reverse their role. This chapter focused on
spotlighting the impact of disease, generalized herd shape, predator mortality due to prey group,
the attack rate for healthy prey, and time delay. These factors crucially govern the system’s dy-
namics like Hopf-bifurcation, transcritical bifurcation, and chaos. The sketch of the maximum
Lyapunov exponent confirmed the chaotic nature. Extensive theoretical and numerical analysis
revealed the existence and stability of steady-states in the presence or absence of delay. We
found that disease spread in prey can enhance the chances of predator survival. Furthermore,
sensitivity analysis demonstrates the influence of some epidemic and ecological parameters on
the reproduction numbers of the proposed eco-epidemic system.

Chapter 6 highlights the reverse side of the same ecological coin by considering the counter-
attack of prey on immature predators. We assumed that the birth rate of prey is affected by the
fear of adult predators and its carry-over effects (COEs). Next, we introduced two discrete
delays to show time lag due to COEs and fear-response. We observed that the existence of a
positive equilibrium point and the stability of the prey-only equilibrium is independent of fear
and COEs. Furthermore, the necessary condition for the co-existence of all three species is
determined. Our system experiences several local and global bifurcations, like, Hopf, saddle-
node, transcritical, and homoclinic bifurcation. The simultaneous variation in the attack rate of
prey and predator results in the Bogdanov–Takens bifurcation. Our numerical results explained
the paradox of enrichment, chaos, and bi-stability of node-focus and node-cycle types. The
system, with and without delay, is analyzed theoretically and numerically. Using the normal
form method and center manifold theorem, the conditions for stability and direction of Hopf-
bifurcation are also derived. The cascade of predator attacks, prey counter-attacks, and predator
defense exhibit intricate dynamics, which sheds light on ecological harmony.

The carrying capacity’s functional dependence illustrates the reality that any species’ activ-
ities can enhance or diminish its carrying capacity. Migration is the need of many species to
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achieve better opportunities for survival. Chapter 7 deals with a tri-trophic system with variable
carrying capacity, where the middle predator often immigrates to consume its prey and often
emigrates to secure themselves from predators. We performed a detailed analysis to prove the
boundedness of the solutions. Further, we examined the existence and stability of equilibrium
points, followed by the bifurcation analysis. We explored various local and global bifurcations
like Hopf, saddle-node, transcritical, and homoclinic for the critical parameters β (measuring
the impact of prey activities on the carrying capacity) and k1 (measuring the migration rate of
a predator). Higher values of β generate unpredictability, which helps explain the enrichment
paradox. The presence of a chaotic attractor and bi-stability of node-node type is demonstrated
via numerical simulation. The migratory behavior of middle predators can control chaos in
the system. Furthermore, we studied the proposed model in the presence of seasonal fluctu-
ations. Persistence of the non-autonomous system, existence, and global stability of periodic
solutions are proved. The seasonality in β brings the bi-stability of a chaotic and periodic at-
tractor. Moreover, the bi-stability in the autonomous system shifts to the global stability of an
equilibrium in the seasonal model. When birth and death rates are seasonal along with β , the
extinction of one or more populations is possible. Our findings revealed that the population’s
intense constructive and destructive actions can allow the basal prey to thrive while eradicating
both predators.



xi

Contents

Certificate iii

Acknowledgments v

Abstract vii

1 Introduction 1
1.1 Basic introduction and literature survey . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Some useful definitions and key concepts . . . . . . . . . . . . . . . . . . . . 7
1.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Bifurcation Analysis of a Leslie-Gower Prey-Predator Model with Fear, Coop-
erative Hunting and Time Delay 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 The mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Dynamics of the non-delayed system . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Equilibrium points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.3 Bifurcation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Analysis of the delayed system . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Numerical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Complex dynamics of Leslie–Gower prey–predator model with fear, refuge and
additional food under multiple delays 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Construction of mathematical model . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Dynamics of non-delayed model . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Well-posedness of model . . . . . . . . . . . . . . . . . . . . . . . . . 40



xii

3.3.2 Equilibrium points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.3 Local stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.4 Limit cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.5 Transcritical bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.6 Global stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Dynamics of the delayed model . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.1 Local stability and Hopf-bifurcation . . . . . . . . . . . . . . . . . . . 51
3.4.2 Direction and stability of Hopf-bifurcation . . . . . . . . . . . . . . . . 55

3.5 Numerical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5.1 Computation for the non-delayed system . . . . . . . . . . . . . . . . . 59
3.5.2 Computation for the delayed model . . . . . . . . . . . . . . . . . . . 66

3.6 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Bifurcations and multi-stability in an eco-epidemic model with additional food 77
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 The model with basic assumptions . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3 Positivity and boundedness of the proposed system . . . . . . . . . . . . . . . 82
4.4 Dynamics of subsystem (4.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.5 Dynamics of the proposed system (4.1) . . . . . . . . . . . . . . . . . . . . . . 86

4.5.1 Local stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5.2 Global stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.6 Numerical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.7 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5 Bifurcation and chaos in a delayed eco-epidemic model induced by prey
configuration 109
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2 The eco-epidemiological framework . . . . . . . . . . . . . . . . . . . . . . . 111
5.3 Well-posedness of the formulated system . . . . . . . . . . . . . . . . . . . . . 114
5.4 Equilibrium points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.5 Stability assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.6 The effect of time delay on the proposed system . . . . . . . . . . . . . . . . . 122
5.7 Numerical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.8 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6 Role reversal in a stage-structured prey–predator model with fear, delay, and
carry-over effects 139
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139



xiii

6.2 The model construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.3 Mathematical preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.3.1 Positivity and boundedness . . . . . . . . . . . . . . . . . . . . . . . . 144
6.3.2 Equilibrium points and local stability . . . . . . . . . . . . . . . . . . . 145
6.3.3 Hopf-bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.3.4 Transcritical bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.4 Stability analysis of delayed model (6.1) . . . . . . . . . . . . . . . . . . . . . 152
6.4.1 Direction and stability of Hopf-bifurcation . . . . . . . . . . . . . . . . 156

6.5 Numerical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.6 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7 Chaos in a seasonal food-chain model with migration and variable carrying
capacity 175
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.2 The food chain model construction . . . . . . . . . . . . . . . . . . . . . . . . 177
7.3 Well-posedness of system (7.1) . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7.4 Equilibrium points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
7.5 Stability assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.5.1 Hopf-bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.5.2 Saddle-node bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.6 Effect of seasonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
7.7 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.8 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Conclusions and future directions 205

List of Publications 227

Workshops and Conferences 229

Brief Biography of the Supervisor 230

Brief Biography of the Candidate 231





xv

List of Figures

2.1 Different colors showing all cases of Table 2.2 in Kλ -plane, where r = 0.6, a =

1, α = 0.4, ω = 1, b = 1, s = 0.4, r0 = 0.05, r1 = 0.05. . . . . . . . . . . . . 22
2.2 Trajectories of system (2.2) started from different initial conditions are

converging towards globally stable node E∗. . . . . . . . . . . . . . . . . . . . 27
2.3 System (2.2) experiences transcritical bifurcation with respect to the fear

parameter K between interior and prey-free steady-states. The other parameters
are from (2.14). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 System exhibits saddle-node bifurcation for two interior equilibrium points
(one stable and one saddle) with respect to the cooperation strength λ , where
α = 0.7 and other parameters are same as in (2.14). . . . . . . . . . . . . . . . 29

2.5 (a) Bi-stability between two interior equilibrium points at α = 0.7 and other
parameters are from (2.14). Here green and magenta color dashed curves
represent the prey and predator nullclines, respectively. (b) The basin of
attraction for two stable points is shown by blue color for E∗(3)(4.088,2.0352)
and red color for E∗(1)(0.2929,0.5171). . . . . . . . . . . . . . . . . . . . . . 29

2.6 (a) Phase portrait showing E∗ as stable focus at λ = 3. (b) After λ > λ [h f ],
stable limit cycle surrounding unstable E∗ at λ = 3.9. . . . . . . . . . . . . . . 30

2.7 Stability change of system (2.2) about positive equilibrium through Hopf-
bifurcation with respect to λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8 Hopf-bifurcation curve in λK-plane for system (2.2). The interior equilibrium
is stable below the curve, and above the curve it becomes unstable through
Hopf-bifurcation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.9 System (2.2)’s stability change about positive equilibrium through Hopf-
bifurcation with respect to τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.10 Phase portrait showing the solution behavior before and after the Hopf-
bifurcation with respect to τ . The blue colored solution trajectory is going
to the interior equilibrium point at τ = 0.1, and the red colored trajectory is
converging towards the stable limit cycle at τ = 5. . . . . . . . . . . . . . . . . 32



xvi

2.11 Two Hopf-bifurcation curves dividing the τK-plane into three regions. . . . . . 33

3.1 Nullclines showing number of interior equilibria with varying αA when
(a)αA = 0.3, (b)αA = 8, (c)αA = 8.758699 and (d)αA = 9.5, fixing other
parameters as r = 3.5, K = 0.05, q = 0.3, r0 = 0.5, r1 = 0.0375, a = 1, KA =

1.7, α = 2, s = 0.2, m = 0.65, β = 1. . . . . . . . . . . . . . . . . . . . . . 43
3.2 Time series solution for system (3.3) around E∗ for (a) K = 1, (b) K = 1.7, (c)

K = 4.5. (d) Combined phase portrait corresponding to (a), (b) and (c) initiated
from (1,1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Bifurcation diagram with respect to fear parameter K and remaining parameters
are same as in (3.33). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 The effect of refuge on prey and predator population, other parameters are the
same as in Eq. (3.33). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5 Switching of stability of E∗. (a) E∗ is stable at αA = 0.2 < α∗A. (b) E∗ is
unstable at αA = 0.5 > α∗A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 Effect of αA causes the system (3.3) to undergo a homoclinic bifurcation at
αA = α∗∗A between saddle point E1 and stable limit cycle around E∗. The stable
limit cycle approach towards saddle point E1 before the homoclinic bifurcation
(a), (b). The last vestige of the limit cycle: homoclinic orbit, is formed at the
homoclinic bifurcation (c). After bifurcation, the trajectory tends towards E1 (d). 64

3.7 Various stability regions of the model (3.3) in the qK−plane. . . . . . . . . . . 65
3.8 E1 is globally asymptotically stable where the parameters are the same as in

Fig. 3.1 (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.9 Bi-stability phenomenon between equilibrium points E1 and E∗1 for the system

(3.3). Here αA = 8, a = 1, K = 0.05 and other parameters are from (3.33). . . . 66
3.10 When τ2 = 0.2 < τ20 and τ1 = 0, E∗ is locally asymptotically stable (a,c). At

τ2 = 0.52 > τ20 and τ1 = 0, E∗ is unstable (b, d). . . . . . . . . . . . . . . . . 67
3.11 Bifurcation diagram representing attractors (equilibrium points and limit

cycles) for various values of gestation delay τ2. . . . . . . . . . . . . . . . . . 68
3.12 When τ1 = 0.2 < τ10 and τ2 = 0, E∗ is locally asymptotically stable (a,c). At

τ1 = 0.52 > τ10 and τ2 = 0, E∗ is unstable and a stable limit cycle is born (b, d). 68
3.13 Bifurcation diagram showing the effect of fear response delay on E∗. . . . . . . 69
3.14 Phase portrait at (a)τ1 = 4 < τ

(1)
1 , (b)τ(1)1 < τ1 = 7.1 < τ

(2)
1 , (c)τ(2)1 < τ1 =

30 < τ
(3)
1 and (d)τ1 = 35 > τ

(3)
1 . Parametric values are same as chosen in Fig.

3.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.15 Bifurcation diagram for y showing subcritical Hopf-bifurcation with respect to

τ1, other parameters are the same as chosen in Fig. 3.9 . . . . . . . . . . . . . . 71



xvii

3.16 Stability region for the system (3.2) in Kτ1− plane, other parameters are same
as in (3.33). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.17 Region of stability and instability in τ1τ2−plane. . . . . . . . . . . . . . . . . 72
3.18 Fixing τ1 = 0.3 ∈ (0,τ10) we obtained τ ′20

= 0.13631786 from (3.28).When
τ2 = 0.09 < τ ′20

, E∗ is locally asymptotically stable (a,c). At τ2 = 0.16 > τ ′20

E∗ is unstable and it is surrounded by a stable limit cycle (b,d). . . . . . . . . . 73

4.1 Schematic flow chart showing model (4.1) formulation. . . . . . . . . . . . . . 80
4.2 Intersection of isoclines is a unique interior equilibrium (S∗, I∗). . . . . . . . . 88
4.3 Nullclines and phase portrait of SP subsystem (4.2) for different values of αA.

Green curve represent the prey nullclines and red lines represent the predator
nullclines. Two trajectories starting from different initial points are shown by
magenta and blue color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Bifurcation diagram showing double Hopf-bifurcation and a transcritical
bifurcation in SP subsystem (4.2) with respect to αA. . . . . . . . . . . . . . . 94

4.5 Global stability of subsystem (4.2) about E∗(S∗,P∗) for parameters set given in
Table 4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.6 Series of phase portraits with regard to αA. (a) αA = 0, (b) αA = 0.1, (c)
αA = 0.38, (d) αA = 0.5, (e) αA = 1, (f) αA = 4.5. The other parameters are
same as (4.13). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.7 Multi-stability among steady-states EP, ESP and E∗ at αA = 8 and other
parameters are taken from (4.13). . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.8 Phase portrait showing stability dynamics of SP- subsystem at (a) αA = 0.5 and
(b) αA = 4.5. Here the parameters are same as in (4.13). . . . . . . . . . . . . . 98

4.9 Basin of attraction at αA = 4.5 for system (4.1) (left) and (4.2) (right),
respectively. Here red and blue dots represent initial values for which the
predator-only equilibrium is stable, whereas blue dots are corresponding to the
disease-free equilibrium, i.e., ESP (in full system) and E∗ (in SP subsystem).
This figure is corresponding to the Fig. 4.6 (f) and Fig. 4.8 (b), respectively. . . 99

4.10 Basin of attraction for multi-stable equilibrium points EP (red dots), ESP (blue
dots) and E∗ (green dots). This illustration is associated with Fig. 4.7. . . . . . 99

4.11 Saddle-node bifurcation diagram concerning αA. . . . . . . . . . . . . . . . . . 100
4.12 Circle graph representing different attractors concerning αA for all parameters

from (4.13). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



xviii

4.13 The effect of disease transmission rate β on system (4.1)’s dynamics when
αA = 0.5 and the parameters other than β , & αA are same as (4.13). (a)Focus-
node bi-stability for β = 0.1, (b)stable focus E∗ at β = 0.13, (c)focus-cycle
bi-stability for β = 0.14, (d) stable heteroclinic orbit at β = 0.18, . . . . . . . 102

4.14 Basins of attraction corresponding to Fig. 4.13 (a) and (c). Green dots are the
initial values for which the system is stable around E∗, blue dots show the basin
of pull for ESP and magenta dots display the basin of attraction of heteroclinic
cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.15 Bi-parametric graph showing Hopf-bifurcation curves and saddle-node curve
in the βαA- plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.16 Effect of infection rate β on the population density for αA = 0. . . . . . . . . . 104
4.17 Effect of infection rate β on the population density for αA = 0.1. . . . . . . . . 104
4.18 Effect of infection rate β on the population density for αA = 0.5. . . . . . . . . 105

5.1 Schematic flowchart for model (5.1). . . . . . . . . . . . . . . . . . . . . . . . 113
5.2 The plot of f (S) vs. S showing unique positive root S∗ of Eq. (5.4). . . . . . . . 118
5.3 Surface plot displaying existence of E∗(16.8232,0.8145,0.55509). Here green

color surface is S-nullcline ( f1(S, I,P) = 0), blue surface denotes I-nullcline
( f2(S, I,P) = 0) and voilet color surface represents P-nullcline ( f3(S, I,P) = 0). 119

5.4 The plot of f (S) vs. S showing two positive roots S∗1 and S∗2 of Eq. (5.4). . . . . 119
5.5 Phase portrait demonstrating saddle nature of E0(0,0,0) for the parameters set

(5.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.6 Phase portrait showing all existing steady-states for the parametric values given

in Table 5.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.7 Effect of δ1 on system (5.1)’s dynamics at (a) δ1 = 0.02, (b) δ1 = 0.1, (c)

δ1 = 0.5. The parameter values are: α = 0.7, µ1 = 2.1, c2 = 0.5, rest of the
parameters are taken from Table 5.2. . . . . . . . . . . . . . . . . . . . . . . . 127

5.8 Hopf-bifurcation diagram for δ1 exhibiting the emergence of periodic oscil-
lations after the bifurcation point δ1 = δ ∗1 = 0.077446. Red and blue colors
represent the maximum and minimum of the positive solution in the non-
transient period, respectively. For δ1 < δ ∗1 , the coinciding of maximum and
minimum values demonstrate the stability of E∗. After that, the solution
fluctuates between its maximum and minimum values, becoming unstable. . . . 127

5.9 Time series curve depicting the influence of the prey’s herd shape α on the
population density (a) Susceptible prey, (b) Infected prey and (c) Predator. The
parameters values are taken from Table 5.2. . . . . . . . . . . . . . . . . . . . 128

5.10 Bifurcation diagram with respect to α . . . . . . . . . . . . . . . . . . . . . . . 128



xix

5.11 Transcritical bifurcation diagram demonstrating the transition of stability
between E1, ESI and E∗ with respect to β , where µ1 = 2.1 and other parameters
are same as in Table 5.2. The green dots denote the bifurcation points β ∗= 2.52
and β ∗∗ = 2.58 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.12 Phase portraits showing complex dynamics of system (5.1) for different values
of a1 at (a) a1 = 0.08, (b)a1 = 0.3, (c) a1 = 0.4, (d) a1 = 0.55, (e) a1 = 0.6, (f)
a1 = 0.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.13 Sensitivity of trajectories with initial condition at a1 = 0.9. . . . . . . . . . . . 131
5.14 Maximum Lyapunov exponent with respect to a1. . . . . . . . . . . . . . . . . 132
5.15 Graphical demonstration of system (5.7)’s solutions at τ = 0.5. Here (a), (b),

and (c) display the temporal dynamics for all interacting species. (d) is the
phase portrait instancing the convergence of solution towards E∗. . . . . . . . 133

5.16 Graphical illustration of system (5.7)’s solutions at τ = 0.7. (a), (b) and (c)
show that all solutions oscillate between maximum and minimum values as
a consequence of Hopf-bifurcation. The corresponding phase portrait (d)
represents the existence of a stable limit cycle around repelling E∗. . . . . . . . 134

5.17 Two parameter bifurcation diagram in δ1α- plane for distinct values of τ . . . . 134
5.18 Sensitivity of R0 (left) and RP

0 (right) for the associated parameters. . . . . . . . 136

6.1 eα-plane divided based on the number of interior equilibrium points. Red,
blue, and green color depicts the set of (e,α) values for which the system
exhibits two, one, and zero positive equilibrium points, respectively. The rest
of the parameters are taken from Table 6.1. . . . . . . . . . . . . . . . . . . . . 147

6.2 Three-dimensional geometric plot illustrating the non-delayed system’s solu-
tion behavior for different attack rates of prey, i.e., (a) e = 0.05, (b) e = 0.15,
(c) e = 0.25, (d) e = 0.28. Other parameters are taken from Table 6.1. . . . . . 158

6.3 Bifurcation diagram for prey density with respect to the role reversal parameter
e in the absence of time delay. Here TC is the transcritical bifurcation point, SN
is saddle-node bifurcation point, and Hf is the Hopf-bifurcation point. Dashed
and solid curve represent the unstable and stable nature of an equilibrium point.
Green color denotes the predator-free equilibrium E1 and the two interior
equilibrium points E∗1 and E∗2 are shown by red and blue colors, respectively. . . 159

6.4 This figure displays the basin of attraction for two attractors corresponding to
Fig. 6.2 (b) and Fig. 6.2 (c) in (a) and (b), respectively. The green color dots
represent the basin of attraction for E∗1 , set of blue color dots is basin for E1,
and magenta color dots forms the basin for the limit cycle. . . . . . . . . . . . 159



xx

6.5 (a) Solution trajectory of system (6.2) converging to the limit cycle for c = 0.06
after the Hopf-bifurcation. (b) Hopf-bifurcation diagram of y regarding c. . . . 160

6.6 (a) Solution trajectory of system (6.2) converging to the limit cycle for k = 3
after the Hopf-bifurcation. (b) Hopf-bifurcation diagram of y regarding k. . . . 161

6.7 Hopf-bifurcation curve in cK-plane for system (6.2). . . . . . . . . . . . . . . 162
6.8 Bifurcation diagram for (a) x, (b) y, and (c) z species with respect to r. When

r <[H f ], the maximum and minimum of the solution coincide at the positive
steady-state E∗, showing the stable nature of E∗. The difference between the
maximum (red color) and minimum (blue color) solution increases with the
rise in r after the Hopf point r <[H f ]. This figure depicts the instability of the
non-delayed system’s solution when r increases. . . . . . . . . . . . . . . . . . 163

6.9 Phase portrait showing (a) instability of the interior equilibrium E∗ as a
consequence of paradox of enrichment at k = 4, α = 6.5. The paradox is
resolved for (b) k = 4.2 and (c)α = 6.4, making system (6.2) stable around E∗.
Here r = 2.85 and other parameters are the same as in Table 6.1. . . . . . . . . 163

6.10 Intersection of Hopf curve, saddle-node curve, and homoclinic curve at the
Bogdanov-Takens bifurcation point. All these bifurcations occur with respect
to e and α for system (6.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.11 Phaseportraits showing (x,y) solutions passing through various equilibrium
points corresponding to (a) Region I, (b) Region II, (c) Region III, (d) Region
IV displayed in Fig. 6.10. Green color represents the prey (x) nullcline and
yellow color represents the juvenile predator (y) nullcline. . . . . . . . . . . . . 166

6.12 (a), (b), and (c) depicts the bifurcation diagram for x,y, and z species,
respectively, with respect to the COE delay τ1. This figure illustrates how
oscillations about positive equilibrium can occur and be controlled repeatedly
in the presence of COE delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.13 Behavior of solution for distinct values of τ2 at (a)τ2 = 30, (b)τ2 = 32,
(c)τ2 = 45, (d)τ2 = 57, (e)τ2 = 77, (f)τ2 = 82. . . . . . . . . . . . . . . . . . . 168

6.14 Bifurcation diagram showing the emergence of chaos for an intermediate range
of τ2, when τ1 = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.15 The time evolution of species (a) x, (b) y, and (c) z, illustrating the sensitivity
towards the initial point chosen at τ2 = 57, and other parameters are same as in
(6.32). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.16 The plot of Maximum Lyapunov Exponent with respect to τ2, when τ1 = 0. . . 170
6.17 Bifurcation diagram demonstrating the occurrence of Hopf-bifurcation and

chaos with respect to τ2, when τ1 = 30. . . . . . . . . . . . . . . . . . . . . . . 170



xxi

6.18 The time evolution of species (a) x, (b) y, and (c) z, explaining the sensitivity
towards the initial point chosen. We choose parameters from (6.32), τ1 = 30,
and τ2 = 57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.19 The plot of MLE versus τ2 when τ1 = 30, and other parameters are taken from
(6.32). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.1 Intersection of nullclines (7.5) and (7.6) display the existence of x∗ = 1.896013
and y∗ = 0.269527, and correspondingly we get z∗ = 0.057201 from (7.7). The
parameters are taken from Table 7.1 except δ2 = 0.1. . . . . . . . . . . . . . . 182

7.2 Phase portraits showing different dynamics of system (7.1) with regard to β

at (a) β = −2.4, (b) β = −2, (c) β = −0.05, (d) β = 0.05, (e) β = 0.42, (f)
β = 0.46, (g) β = 0.5, (h) β = 0.55916, (i)β = 0.6. Here the parameters are
same as in Table 7.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7.3 Bifurcation diagram of all species displaying the emergence of chaos with
respect to β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

7.4 Sensitive dependence of solutions x, y, z on the initial condition when solution
is perturbed by (0.01,0.001,0.001) for the parameters corresponding to Fig.
7.2 (g). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

7.5 (a) The positive nature of the Maximum Lyapunov exponent shows the chaotic
behavior with respect to β , and (b) Randomness in the Poincare map for y= 0.1
at β = 0.5 also verifies chaos. The parameter set is same as Table 7.1. . . . . . 196

7.6 Bifurcation digram illustrating x-density with respect to the migration rate of
middle predator k1. (a) Reduction of chaos to a stable limit cycle by the route
of period-halving due to immigration. (b) Emigration can control chaos by
eradicating y and z population density. Rest of the parameters are kept unchanged.197

7.7 Hopf-bifurcation and homoclinic bifurcation curves in k1β -plane. . . . . . . . . 197
7.8 System (7.1) achieves bi-stability between E1 and E∗ for β = 0.32, a1 = 2.4.

Rest of the parameters are same as in Table 7.1. (a) Phaseportrait showing
co-existence of two planar E(1)

∗ , E(2)
∗ , and an axial equilibrium point E1.

Trajectories starting from very close two different points converge to E1 and
E(1)
∗ , simultaneously. (b) The solution starting from green and blue region will

eventually approach towards attractors E1 and E(1)
∗ , respectively. . . . . . . . . 198



xxii

7.9 (a) Two planar equilibrium points approach towards each other with increase
in β , and eventually annihilate at β = β [sn] = 0.471932 through saddle-node
bifurcation. Here all parameters are taken from Table 7.1 except a1 = 2.4. (b)
System (7.1) experiences saddle-node bifurcation of two interior equilibrium
points with decrease in β at β = β ∗[sn] = 0.17875. Here a1 = 0.4, a2 = 0.8,
and rest of the parameters are taken from Table 7.1. . . . . . . . . . . . . . . . 198

7.10 Shilnikov-like connection of saddle-focus E∗ and saddle E1. Here r =

0.58, K = 2.2, d2 = 0.4, c2 = 0.9, k1 = 0.2, a1 = 0.7, a2 = 1.2, β = 0.6, and
other parameters are taken from Table 7.1. . . . . . . . . . . . . . . . . . . . . 199

7.11 The time series solution of seasonal and non-seasonal models starting from
(2,0.3,0.05) for parameter values given in Table 7.1. The non-seasonal system
has a chaotic solution but including seasonality eliminates chaos and solution
converges to the predator-free equilibrium E1 for β (t) = β +β0sin(ωt) and
r(t) = r+ r0cos(ωt), where ω = 0.1, β0 = 0.4 and r0 = 0.4. . . . . . . . . . . 200

7.12 The time series solution of seasonal and non-seasonal models starting from
(2,0.3,0.05) for parameter values given in Table 7.1. The non-seasonal system
has a chaotic solution but including seasonality eliminates chaos and solution
converges to the planar equilibrium E1 periodically for β (t) = β +β0sin(ωt)

and d1(t) = d1 +d10sin(ωt), where ω = 0.1, β0 = 0.4 and d10 = 0.2. . . . . . . 200
7.13 System (7.14) achieves bi-stability between (a) periodic attractor (blue) and (b)

chaotic attractor (red) when started from two different initial conditions (2,1,2)
and (0.1,0.1,0.1), respectively. (c) The blue and red regions are the basins of
attraction for periodic and chaotic attractors, respectively. The parameters set
is taken from Table 7.1 with seasonality in β such that β (t) = β +β0sin(ωt),
where β0 = 0.44, ω = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

7.14 Global stability of the periodic solution of the non-autonomous system (7.14)
due to seasonality in d1 such that d1(t) = d1 + d10sin(ωt), with d10 = 0.03,
ω = 0.1, β =−0.2, and other parameters are taken from Table 7.1. . . . . . . . 202

7.15 System (7.14)’s periodic solution is globally stable aboutE1 for β = 0.32 a1 =

2.4, β0 = 0.2, ω = 0.1 for initial values: (2,2,2), (0.5,1,0.1), (4,1,0.5), and (3,0.5,1).
The corresponding non-seasonal model is bi-stable between an axial and a pla-
nar equilibrium (see Fig. 7.8(a)). . . . . . . . . . . . . . . . . . . . . . . . . . 203



xxiii

List of Tables

1.1 Some of the most common functional responses used in the literature. . . . . . 10

2.1 Biological explanation and dimension of variables/parameters employed in
model (2.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Existence of positive root of (2.3) . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 The local stability characteristics of system (2.2)’s boundary equilibria . . . . . 22

3.1 Biological explication of variables/parameters used in model (3.2) . . . . . . . 39
3.2 Equilibrium points of the proposed model and their stability behavior in the

absence of delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3 Effect of q on steady state of prey and predator population when K = 0.1 and

all parameters are same as in (3.33). . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 Biological explication of variables/parameters used in model (4.1) . . . . . . . 81
4.2 The local stability behavior of boundary equilibria of subsystem (4.2) . . . . . 85
4.3 Data set of parameters used in (4.2) with references. . . . . . . . . . . . . . . . 93
4.4 A brief description of attractors based on intervals of αA, as seen in Fig. 4.12. . 102

5.1 Biological explanation of variables/parameters used in model (5.1) . . . . . . . 114
5.2 Data set of parameters involved in (5.1) with sources. . . . . . . . . . . . . . . 125
5.3 Eigenvalues of equilibrium points associated with dataset given in Table 5.2. . . 126

6.1 Data set of parameters used in (6.1) with references. . . . . . . . . . . . . . . . 144
6.2 Equilibrium points of the proposed model and their stability behavior in the

absence of delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.1 Numeric values of parameters utilised in (7.1) . . . . . . . . . . . . . . . . . . 178
7.2 Equilibrium points of model (7.1) and their stability behavior. . . . . . . . . . . 183





xxv

Dedicated To

My Parents and Husband,

The Pillars of My Strength





1

Chapter 1

Introduction

1.1 Basic introduction and literature survey

Mathematical biology is one of the most captivating and growing modern applications of math-
ematics. In recent years, this interdisciplinary field of study has brought together an enormous
number of biologists, physicists, engineers, and mathematicians. Mathematical biologists de-
velop models to depict biological processes such as population interaction, metabolic reactions,
disease propagation, and evolutionary dynamics. These models assist scientists in simulating
and analyzing real-world natural events in a regulated, theoretical context. Population biology
involves various natural elements influencing populations, such as birth rates, mortality rates,
migration, predation, competition, and environmental changes. The study of population dy-
namics examines how the population’s density, structure, and distribution vary over time. In
1798, Thomas Robert Malthus [1] established the fundamental mathematical model to illustrate
the exponential growth of any population. The renowned Malthus model is given by

dx
dt

= rx,

with x(0) = x0 is the initial population density, and r is the population growth rate.
Although this model served as the cornerstone for population dynamics, it fails to represent
reality accurately. Due to the limited resources, every habitat has a limited capacity to sustain
its inhabitants. This presumption became the primary basis of contention for the Malthusian
hypothesis. Later on, in 1838, Pierre F Verhulst [2] worked on the shortcomings of Malthus
model, and proposed the following logistic growth population model.

dx
dt

= rx
(

1− x
K

)
,

where r is the intrinsic growth rate, and K is the environmental carrying capacity. The non-
linearity in the logistic growth function explains the overcrowding effect limiting the population
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growth.
Although the logistic growth model discusses only a single species, one can rely on other

species for food, habitat, or other resources. For conservation efforts, it is essential to com-
prehend these dependencies. A species’ disruption can have a massive impact on the whole
ecosystem. The interaction between species can drastically alter the system’s dynamics. In eco-
logical research, it is vital to investigate the interactions between organisms to sustain balanced
growth. These interactions are represented as mathematical models, which aid in understanding
the system’s ongoing dynamics.

Predator-prey interactions are a major evolutionary driving force, mediating the behavior of
both predator and prey. Initially, Lotka and Volterra (LV) [3, 4] expressed the relationship of
prey and predator in terms of two-dimensional ordinary differential equations, given by

dx
dt

= ax−bxy,

dy
dt

= cxy−dy,

where x(t) and y(t) are the prey and predator population density at any time t, respectively, a

is the natural growth rate of prey and d is the natural mortality rate of predator. The predator
attacks on prey with rate b, and c

b is the conversion efficiency. This is the basic model developed
to describe oscillations in several populations. Nevertheless, it does not relate to many realistic
scenarios. One of which is that the prey population grows unbounded without predation. The
other shortcoming of the LV model is that the feeding rate of the predator increases with the
number of prey linearly without saturation. This model also considers that the predator is a
specialist, i.e., they consume only a specific type of prey. However, when the predator consumes
more than one type of food resource (generalist predator), it can not be represented through the
LV model. Notwithstanding its limitations, the model has influenced population biology and
ecology by offering a framework for comprehending interactions between predators and prey.

Leslie [5] introduced a predator-prey model where the carrying capacity of the predator
is directly proportional to the prey density. The Leslie-Gower formulation [6] posits that a
predator population’s decline is proportional to the per capita availability of its favorite food.
They expressed predator’s growth as a logistic growth function. Therefore, the Leslie-Gower
(LG) model is given by

dx
dt

= (r1−b1x−a1y)x,

dy
dt

=

(
r2−a2

y
x

)
y,

where r1 and r2 are the growth rates of prey and predator, respectively, b1 measures the strength
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of competition among individuals of species x, a1 (respectively, a2) is the maximum value at
per capita reduction rate of x (respectively, to y) can attain. When there is extreme scarcity,
y can switch to other populations, but its development will be constrained by the lack of its
most preferred food x. This issue can be resolved by increasing the denominator by a positive
constant d, it measures the extent to which environment provides protection to predator. Thus,
the predator’s equation of the modified Leslie-Gower model becomes

dy
dt

=

(
r2−a2

y
x+d

)
y,

where y
x+d is the modified LG term showing that the predator y can survive even in the absence

of its favorite food x [7].
Ideally, to maximize the fitness of a prey-predator relationship, we analyze the impact of

various factors affecting their interaction, like hunting rate, handling time, search efficiency,
feeding rate, predator interference, and several environmental factors. Studying these concepts
is crucial and challenging, making the system more consistent with the real world. A predator’s
per capita feeding rate on prey is called its functional response [8]. Using distinct functional
responses allows ecologists to accurately formulate a wide range of ecosystems and investigate
complex dynamics. The famous LV and LG models showed that the predator’s feeding rate
linearly increases with prey abundance using Holling type I functional response. However, the
predator’s limited capacity to process food and the time required for handling the prey cannot be
ignored. This led to the proposal of Holling type II, a non-linear functional response. Another
functional response, Holling type III, was developed considering additional factors such as
prey switching and the learning time of the predator. When the prey density is abundant, they
can form groups to defend themselves against predators. This ecological aspect is represented
through the Holling type IV functional response. All these responses are merely prey-dependent
functions, which are widely used by researchers to present a specific ecological scenario [9, 10,
11, 12].

Functional responses implemented in the system represent direct killing only. However,
a predator’s mere presence might have an impact on the prey’s physical and mental health
[13]. While looking for food, there is often a risk of predators, which might lead to starvation
[14]. The fearful prey may not get an appropriate environment to breed young ones. And the
indirect effect of dread can be more lethal than the direct effect of killing [15, 16, 17]. Many
experimental studies suggest that fear can significantly affect the reproduction rate of prey [18,
19]. Wang et al. [17] proposed the basic prey-predator model incorporating fear effect on the
reproduction rate. According to their study, a high level of fear can control oscillations and
stabilize the system, and it can also reverse the direction of Hopf-bifurcation from supercritical
to subcritical. Following this, numerous authors focused on understanding predator fear using
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mathematical models [20, 21, 22]. However, several clinical trials in recent years have revealed
that such non-lethal effects are not restricted to a single species generation but have a long-term
impact lasting many generations [23]. This explains the term "carry-over effect (COE)," which
refers to how past conditions affect the current state of prey survival, behavior, and reproductive
success. The conditions may influence breeding success in one season encountered the previous
season [24]. Therefore, studying ecological COEs has become a growing trend in mathematical
modeling. Several researchers [21, 23, 25, 26] investigating fear and its COEs found that
increased COE enhances prey growth because of lessons learned from previous incidents.

It is critical to secure the safety of the prey in order to preserve biodiversity and maintain
ecological balance. Nature can provide some shelter to prey to help them avoid predators
through prey refuge. It regulates population densities and reduces the over-exploitation of
prey. However, prey refuge up to a large extent can cause difficulty for predators to capture
them, and consequently, their population starts to decline [27]. Therefore, there is a need to
balance the prey refuge and hunting capability. In nature, many predators hunt in groups for
a common target, which improves their communal attack rate. For example, spotted hyenas
succeeded in 15% of solo hunts of wildebeest Connochaetes taurinus calves, whereas 74%
of team hunts [28]. Group hunting offers several advantages, such as decreasing searching
time, chasing distance, and increasing the hunting probability of large prey. The mathematical
implementation of this factor modifies the functional response, precisely the attack rate. Pal
et al. [20] investigated the integrated impact of fear and cooperative hunting in their model,
detecting various bifurcations and multi-stability.

Apart from predators forming groups, prey can also gather in groups for foraging and self-
defense. Group defense is an effective anti-predator behavior exhibited by many prey species.
It enhances their chances of survival, strengthens their social bond, and reduces the predation
risk. According to an experimental investigation, minnows’ shoaling behavior reduces the risk
of predation. Ajraldi et al. [29] gave the fundamental mathematical model describing the
prey herd behavior so that the predator cannot reach the herd’s interior. Only the prey on the
boundaries can be the victims. They represented the prey herd by using a square root term
(
√

X) instead of the simple prey term (X). Nevertheless, it could explain only two-dimensional
herd shapes. Venturino and Petrovskii [30] came up with further advancements and gave the
concept of a generalized herd shape by introducing Xα , where α ∈ (0,1) signifies the type
of herd shape. Subsequently, many researchers used this concept to describe prey-predator
inter-relationships [31, 32]. Sometimes, when strong prey exhibit herd behavior, they can not
only protect themselves but also kill the predator [33]. This shows the role reversal of prey
and predator due to herd behavior. The phenomenon of role reversal can also be witnessed in
the stage-structured prey-predator system. When an adult predator kills prey, then prey takes
revenge by counter-attacking predator juveniles [34]. This provokes parent predators to hunt
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more, and the tug-of-war goes on offering rich dynamics to understand the mathematical and
ecological perspective.

The dominance of prey defense can lead to predator extinction [35]. The provision of addi-
tional food to the predator increases their chances of survival. Kumar and Dubey [36] found that
without additional food, both populations oscillate, and these oscillations can be completely
controlled by increasing the predator’s need for extra food. Indeed, supplying additional food
is advantageous for weak and suffering predators. For example, lionesses at AENP were given
culled warthog carcasses while they were struggling to keep newborn cubs alive [37]. Some
articles suggest that additional food for the predator regulates the effect of fear and prey refuge
by promoting persistence [38, 39]. Furthermore, supplying alternative food to the predator is
proven to be a non-chemical method of disease control among prey [40].

The first mathematical description of contagious diseases in populations was formulated by
Kermack and McKendric [41]. They classified the whole population into three primary com-
partments: susceptible-infected-recovered (SIR), which inspired a lot of researchers to study
the spread of infectious diseases through mathematical modeling. Depending upon the nature
of the disease, different incidence rates, such as bilinear, saturation, etc., are used [42, 43]. It
is a fundamental metric for understanding the risk and impact of a disease within a commu-
nity. Nowadays, illness in ecosystems has evolved into an exciting field of study known as
eco-epidemiology. This field examines how different species interact in the presence of an in-
fectious disease and how their dynamics are affected. Anderson and May [44] introduced the
basic concept of mathematical modeling in eco-epidemiology. They found that the pathogen
invasion in a prey-predator system could alter the stability behavior. In an eco-epidemic model
with alternative food for the predator, Haque and Greenhalgh [45] pointed out that alternative
food may play an essential role in promoting the persistence of predator-prey systems. Banerjee
et al. [46] conducted a thorough analysis of local and global bifurcations for an eco-epidemic
model with healthy prey showing herd behavior.

Many researchers in the past have seen that very complex dynamics can arise in a system
with three or more species. One necessary approach to studying an ecological community be-
gins with an important object: its food web. In literature, the dynamics of a tri-trophic system
are found to be of greater interest than a simple two-dimensional system. Initially, Hastings
and Powell [47] detected chaos in a tri-trophic food chain model with Holling type II func-
tional response for biologically reasonable parameter values. Later on, a multitude of research
articles were published comprising food-chain models and their complex dynamics [48, 49].
In a phytoplankton-zooplankton-fish system, zooplankton shows anti-predator behavior by mi-
grating from the system. It moves down into the sea’s deepest depths to evade being noticed by
fish, the top predators [50]. Hossain et al. [51] remarked that immigration and emigration of
middle predators can be crucial in controlling chaos in a food-chain system.
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Another aspect that can bring more realism in population dynamics is considering the car-
rying capacity as non-constant. Carrying capacity is the maximum sustainable population
strength an environment can support with the available resources. However, it is significantly
depleted or enriched by the impact of population activities [52]. Recently, the concept of the
variable carrying capacity of any species, formulated as the combination of the natural car-
rying capacity and its density, has been highlighted [53, 54]. Constructive activities such as
establishing wildlife reserve zones for animals can increase their carrying capacity. In contrast,
destructive activities like overgrazing by animals can degrade the land, resulting in a decre-
ment in their carrying capacity. Therefore, it is crucial to investigate the impact of population
activities on the system dynamics.

Time delay plays a fundamental role in most natural and man-made processes. This in-
dicates that any event that occurred at a past time influences the current state, represented
mathematically by delay differential equations [55]. Delay differential equations show bio-
logical events more realistically and elicit intricate dynamics [56]. Natural processes usually
demonstrate a temporal lag between the occurrence of an event and the visualization of its con-
sequences. For example, it takes time to process gestation, maturation, anti-predator response,
defense mechanism, behavioral change, etc. Therefore, there is a large body of literature on
ecological systems incorporating time delays [11, 21, 22, 33, 36]. Considering time delays
in mathematical modeling is essential for capturing the real-world dynamics of systems and
developing more accurate predictions.

Most ecological phenomena are examined under a constant environment, which is odd. The
seasonally varied parameters produce periodic oscillations in the system [57]. This aspect is
generally modeled using time-dependent parameters. The resulting non-autonomous system is
quite challenging to analyze compared to the non-seasonal autonomous system. Mondal et al.

[58] compared the seasonal and non-seasonal pre-predator models with fear, cooperation, and
refuge. Their numerical results reveal the presence of higher periodic and chaotic attractors.
Zeng [59] employed Mawhin’s coincidence degree theory to show the existence of periodic
solutions in a non-autonomous food-chain model.

1.2 Objectives of the thesis

This thesis aims to examine various factors that significantly affect the harmony of an ecosystem
and to address some biological population-related challenges that can alter ecological stability.
We found some gaps based on the abovementioned literature review, which we state as our
thesis objectives.
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1. To analyze the impact of fear, hunting cooperation, and time delay in a Leslie-Gower
prey-predator model.

2. To study the complex dynamics of a Leslie-Gower prey-predator model with fear, refuge,
and additional food effects under multiple delays.

3. To understand the correlation between disease and alternative food in an eco-epidemic
model.

4. To explore the occurrence of bifurcations and chaos: consequences of prey configuration
in an eco-epidemic system.

5. To investigate the role-reversal phenomenon in a delayed stage-structured prey-predator
model with fear and its carry-over effects.

6. To study the chaotic dynamics in a seasonal food-chain model with migration and vari-
able carrying capacity.

1.3 Some useful definitions and key concepts

Most dynamical systems in ecology can be adequately expressed as differential equations. The
general form of the system of ordinary differential equations is given by

du
dt

= f (u), u(t0) = u0, (1.1)

where u(t) = (u1(t),u2(t), ...,un(t))T , f (u(t)) = ( f1, f2, ..., fn)
T and t0 is the initial time of the

solution. The sufficient smoothness of f guarantees the existence and uniqueness of the solu-
tion for (1.1).

Definition 1.3.1. The solution u(t) of (1.1) is said to be stable if, for each ε > 0, there exists a

δ = δ (ε)> 0 such that, for any solution ū(t) = u(t, t0, ū0) of (1.1), the inequality ‖ū0−u0‖< δ

implies ‖ū(t)−u(t)‖< ε ∀t ≥ t0.

Definition 1.3.2. The solution u(t) of (1.1) is called locally asymptotically stable if it is stable

and there exists a δ0 > 0 such that ‖ū0−u0‖< δ0 implies ‖ū(t)−u(t)‖→ 0 as t→ ∞.

Definition 1.3.3. The solution u(t) of (1.1) is called unstable if it is not stable.

Definition 1.3.4. A point u∗ ∈Rn is called an equilibrium point or steady-state solution of (1.1)

if f (u∗) = 0. This equilibrium point is said to hyperbolic if no eigenvalue of D f (u∗) (Jacobian

of f calculated at u∗) have zero real part.
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Definition 1.3.5. An equilibrium point u∗ of system (1.1) is called source (unstable) or sink
(stable) if all the corresponding eigenvalues of D f (u∗) have positive or negative real parts,

respectively. u∗ is called a saddle point if at least one eigenvalue has a real part of the opposite

sign from other eigenvalues.

Definition 1.3.6. An equilibrium point u∗ of (1.1) is called globally asymptotically stable if

every solution initiated from a bounded domain converges to u∗.

Definition 1.3.7. A closed solution trajectory of (1.1) is said to be periodic orbit or cycle if it

is not a steady-state. The stability of this periodic orbit or cycle can be defined similar to the

stability of an equilibrium point.

Definition 1.3.8. The trajectory or orbit φ(t0) of (1.1) is defined as

φ(t0) = {u ∈ Rn : u = u(t, t0,u0), t ∈ R},

where u(t,u0) is any solution of (1.1) defined ∀t ∈ R.

Definition 1.3.9. [60] A point q ∈ E (subset of Rn such that f ∈ C1(E)) is called a ω-limit
point of φ if ∃ a sequence {tn}, tn→ ∞ as n→ ∞ such that

lim
n→∞

φ(tn,y0) = q.

In a similar manner, a point p∈ E is called an α-limit point of φ if ∃ a sequence {tn}, tn→−∞

as n→ ∞ such that

lim
n→∞

φ(tn,y0) = p.

Definition 1.3.10. [60] A periodic solution Γ of (1.1) is called limit cycle if it is either ω or

α-limit set of some another orbit. If a periodic orbit Γ is ω-limit set (or α- limit set) of every

orbit in its neighbourhood then it is called a stable limit cycle (or unstable limit cycle). If Γ

is α-limit set of one orbit other than itself and ω-limit set of another orbit than itself then is

known as semi-stable limit cycle.

Definition 1.3.11. A set Ω ∈ Rn is called an invariant set if for every solution u, u(t0) ∈ Ω

implies u(t) ∈Ω ∀t > t0.

Definition 1.3.12. The collection of initial points u0 ∈ Rn is called the basin of attraction for

an attractor ã of (1.1) if

lim
t→∞

u(t,u0) = ã.

Definition 1.3.13. In a dynamical system, multi-stability occurs when more than one attrac-

tors are present at the same time. The curve separating their basin of attraction is known as

separatrix.
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Definition 1.3.14. An individual who is healthy and can get disease under certain conditions

is said to be susceptible (S). The ones who have contracted the disease are called infected (I)

and can transmit the illness to the susceptible population.

Definition 1.3.15. The Basic reproduction number (R0) is defined as the average number of

secondary infections caused by an infected individual, in a fully susceptible population. In

commonly used infection models, when R0 > 1 the infection will be able to start spreading in a

population, but not if R0 < 1.

Definition 1.3.16. In dynamical systems theory, a bifurcation is a qualitative change in the

behavior of a system as one or more parameters are varied. Qualitative change can occur by

the variation in the number of steady-states or stability behavior.

Definition 1.3.17. With variation in a parameter, when one saddle and one stable equilibrium

points approach each other and annihilate at a critical point, it is called saddle-node bifurca-
tion.

Definition 1.3.18. The transcritical bifurcation occurs when two equilibrium points exchange

their stability with the variation of a single parameter.

Definition 1.3.19. The transition from a steady-state to periodic oscillations arises due to

Hopf-bifurcation. At the bifurcation point, the real part of the complex eigenvalues becomes

zero.

Definition 1.3.20. In supercritical Hopf-bifurcation, a stable equilibrium loses its stability,

and a stable limit cycle occurs when a parameter crosses a threshold.

Definition 1.3.21. In subcritical Hopf-bifurcation, an unstable equilibrium gains stability by

generating an unstable limit cycle on crossing a parameter critical point.

Definition 1.3.22. When a limit cycle expands and connects a saddle point, it is called homo-
clinic bifurcation, and the formed structure is a homoclinic orbit.

Definition 1.3.23. In heteroclinic bifurcation, a limit cycle collides with two or more saddle

points. The resultant periodic orbit is called heteroclinic orbit.

Definition 1.3.24. The Bogdanov-Takens bifurcation involves the interaction of different bi-

furcations like saddle-node, homoclinic, and Hopf bifurcations when two parameters are si-

multaneously varied. It is a well-known example of co-dimension two bifurcation.

Definition 1.3.25. A chaotic solution is defined as behavior that is extremely sensitive to initial

conditions and appears unpredictable even when the system is deterministic and governed by

certain equations.
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Definition 1.3.26. A delay differential equation (DDE) is a differential equation using delays

as the dependent variable. In other words, the rate of change of dependent variables at a given

time is determined by their current and previous states. The general form of DDE is given by

du(t)
dt

= f (t,u(t),uτ),

where uτ = {u(τ) : 0≤ τ ≤ t} represents the solution trajectory in the past.

Definition 1.3.27. A functional response in mathematical ecology refers to the link between

the density of a prey population and the consumption rate or feeding rate of its predators.

It illustrates how the pace at which predators consume prey fluctuates with changes in prey

abundance. Some frequently used functional responses in the literature with their mathematical

forms are enlisted in Table 1.1.

Table 1.1: Some of the most common functional responses used in the literature.

Functional response Mathematical expression Reference(s)

Holling type I αx [61, 62]

Holling type II αx
1+αhx [61, 62]

Holling type III αx2

1+αhx2 [61, 62]

Holling type IV αx
x2
i +x+b

[63]

Beddington DeAngelis αx
1+αhx+by [64]

Crowley Martin αx
(1+αhx)(1+by) [65]

Definition 1.3.28. A system of differential equations is referred to as non-autonomous when

(1.1) explicitly depends on time; otherwise, it is an autonomous system.

Definition 1.3.29. [66] Let D⊂ RN be a bounded open set and T : D̄→ RN be a continuously

differentiable map. Let T ′(u) be its Jacobian, and det T ′(u) be the Jacobian’s determinant. If

z /∈ T (∂D), then the Brouwer degree can be given as

deg(T,D,z) := ∑
u∈T−1(z)

sign det T ′(u).

Definition 1.3.30. [67] Let X and Y be two Banach spaces and an operator T : X → Y is

named as Fredholm operator if dimension of its kernel and codimension of its image are finite.

The index of the Fredholm operator is given by

indexT = dimKerT − codimImT.
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1.4 Methodology

To analyze the properties like stability, chaos, basic reproduction number, bifurcation associ-
ated with our proposed models defined by ordinary differential equations and delay differential
equations, we adopt the following different approaches:

1. Linearization of differential equations: Assume that our model can be represented in
the following form

dX(t)
dt

= F(X(t)), (1.2)

where X(t) = (x1(t),x2(t), ...,xn(t))T and F(X(t)) = ( f1, f2, ..., fn)
T .

Let Z(t) = (z1(t),z2(t), ...,zn(t))T such that zi(t) = xi(t)− x∗i , i = 1,2, ...,n and E∗ =

(x∗1,x
∗
2, ...,x

∗
n)

T be the equilibrium point corresponding to the given system (1.2). Lin-
earizing (1.2) about E∗, we get

dZ(t)
dt

= DZ(t), (1.3)

where D = ∂F
∂X

∣∣∣∣
E∗

is the Jacobian matrix evaluated at E∗.

2. Local stability: To determine stability of an equilibrium point in its neighbourhood, we
first evaluate the characteristic equation corresponding to Jacobian matrix at the equilib-
rium point, and then we check the sign of real part of the eigenvalues of this equation.
For this we use following theorem:

Theorem 1.4.1. (Hurwitz’s Theorem)[68] A necessary and sufficient condition for the

negativity of the real parts of all the roots of the equation

λ
n +a1λ

n−1 + ...+an = 0, (1.4)

with real coefficients is the positivity of all principle diagonals minors of the Hurwitz

matrix

Hn =



a1 1 0 0 0 0 0 . . . 0
a3 a2 a1 1 0 0 0 . . . 0
a5 a4 a3 a2 a1 1 0 . . . 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0 an


.

Remark: The characteristic equation (1.4) is said to be stable if all its roots have negative
real part.
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3. Global stability: If a trajectory initiating from anywhere in its domain approaches to the
same equilibrium point, then that equilibrium is said to be globally stable. In this method,
we choose a positive definite Lyapunov function to establish the sufficient conditions for
the global stability of the system around the critical point.
Let us consider an autonomous system of ODEs:

dx
dt

= f (x), (1.5)

where f ∈C1(Rn) and Sρ = {x ∈ Rn : ||x|| < ρ} such that f is smooth enough to ensure
the existence and uniqueness of (1.5) and x∗ is the equilibrium point for it.
We have some important results to ample the conditions ensuring the global stability of
the system. Thus, we can state the following theorems.

Theorem 1.4.2. If there exists a scalar function V (x) which is positive definite about x∗

such that V ′(x)< 0 (derivative of V (x) along (1.5) is negative definite) on Sρ , then x∗ is

asymptotically stable.

Theorem 1.4.3. If there exists a scalar function V (x) which is positive definite about x∗

such that V ′(x)≤ 0 on Sρ , then x∗ is stable.

Theorem 1.4.4. If there exists a scalar function V (x);V (0) = 0 such that dV
dt > 0 on Sρ

and if in every neighbourhood N of the x∗, N ⊂ Sρ , there is a point x0 where V (x0) > 0
then then x∗ is unstable.

Theorem 1.4.5. Consider system (1.2) with n = 2 and B is a continuously differentiable

function on a simple connected domain D. Now, we define

∇ =
∂

∂x1
( f1B)+

∂

∂x2
( f2B).

If the sign of ∇ remains same throughout D, then according to the Bendixson-Dulac

criteria, system (1.2) (for n = 2) will not have a periodic solution in D.

4. Bifurcation theory: If varying a parameter changes the qualitative behavior of steady
state(s) of a dynamical system then we say that the system undergoes bifurcation.

For an illustration of the Sotomayor theorem’s conditions [60] to show the occurrence of
saddle-node and transcritical bifurcation, we consider the following system.

dx
dt

= f (x,α), (1.6)
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where α as the bifurcation parameter. Let x = x0 be the hyperbolic equilibrium of system
(1.6) at the critical point α =α0. Now, we determine the eigenvectors p and q for the zero
eigenvalue of A = D f (x0,α0) and AT , respectively. Further, we proceed with Theorems
1.4.6 and 1.4.7.

Theorem 1.4.6. System (1.6) experiences saddle-node bifurcation about x = x0, a hyper-

bolic equilibrium, at α = α0 if the following conditions of the Sotomayor’s theorem [60]

are fulfilled.

(i) qT fα(x0,α0) 6= 0, and

(ii) qT [D2 f (x0,α0)(p, p)] 6= 0.

Theorem 1.4.7. System (1.6) experiences transcritical bifurcation about x = x0, a hyper-

bolic equilibrium, at α = α0 if the following conditions of the Sotomayor’s theorem [60]

are fulfilled.

(i) qT fα(x0,α0) = 0,

(ii) qT [D fα(x0,α0)p] 6= 0, and

(ii) qT [D2 f (x0,α0)(p, p)] 6= 0.

In Hopf-bifurcation, D f (x0,α0) has a pair of complex eigenvalues. The supercritical or
subcritical Hopf-bifurcation occurs when the complex eigenvalue crosses the imaginary
axis from left to right (negative to positive) or right to left (positive to negative).
Let us consider a planar system

dx1

dt
= f1(x1,x2,α),

dx2

dt
= f2(x1,x2,α). (1.7)

Now, we suppose that the jacobian matrix about E∗ = (x∗1,x
∗
2) has eigenvalues λ1,2(α) =

ξ (α)± iω(α). Further, we assume that the following conditions hold at α = α0:

(i) non-hyperbolicity condition:

ξ (α0) = 0, ω(α0) = ω > 0,

(ii) transversality condition:
dξ (α)

dα

∣∣∣∣
α=α0

= d 6= 0,
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then system (1.7) experiences Hopf-bifurcation about E∗ at α = α0 [69]. Furthermore,
to determine the direction of Hopf-bifurcation, using [17], we calculate

σ =
1

16
( f1x1x1x1

+ f1x1x2x2
+ f2x1x1x2

+ f2x2x2x2
)+

1
16ω

( f1x1x2
( f1x1x1

+ f1x2x2
)

− f2x1x2
( f2x1x1

+ f2x2x2
)− f1x1x1

f2x2x2
+ f1x2x2

f2x2x2
),

where fx1x2 =
∂ 2 f

∂x1∂x2

∣∣∣∣
E∗,α=α0

, and other derivatives can be written in a similar manner.

Therefore, the obtained Hopf-bifurcation is supercritical (or subcritical) if σ is negative
(or positive).

5. Chaos detection: Some dynamical systems exhibit chaos. In this case, the system is ex-
tremely sensitive to initial conditions. A minor change in the initial condition generates
a large change in the system’s behavior, making it unpredictable in the future. How-
ever, not all systems are chaotic. For chaos confirmation, we determine the maximum
Lyapunov exponent, defined as

λ = lim
t→∞

lim
δZ0→0

1
t

ln
δZ(t)
δZ0

,

where δZ0 is the perturbation in the initial condition, and δZ(t) is the resulting change
in the solution.
Remark: For a system to be chaotic, the corresponding maximum Lyapunov exponent
must be positive.

6. Basic reproduction number (R0): To calculate this number we shall use a standard
method i.e., next generation matrix method [70]. The dominant eigenvalue of this matrix
is equal to the basic reproduction number. We use this method for the analysis of an
eco-epidemic model.

7. Sensitivity analysis: Sensitivity indices help us to quantify the relative change in a state
variable when a parameter is changed. The normalized forward sensitivity index of dif-
ferentiable R0 dependent on any of its parameters p is defined as follows.

γ
R0
p =

∂R0

∂ p
p

R0
,

where γ
R0
p represent the sensitivity level with regard to any parameter p for R0. A positive

sensitivity index implies that an increase (or decrease) in the value of a parameter cor-
responds to an increase (or decrease) in the reproduction number. In contrast, negative
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index parameters indicate that a rise (or reduction) in the value of the parameter results
in a drop (or increase) in the reproduction number [71].

8. Existence and global stability of a periodic solution in non-autonomous system: In a
non-autonomous system, the time-dependent parameters can cause the system to have a
periodic solution. The illustration of the periodic solution’s existence and global stability
is a complex task and requires advanced mathematical techniques. We use the following
theory to understand the same.

Lemma 1.4.8. [56] If function g is non-negative, uniformly continuous and integrable

on [0,∞), then limt→∞ g(t) = 0 .

For the existence of periodic solutions of a non-autonomous model, we use continuation
theorem from coincidence degree theory by Gains and Mawhin [72]. Let P and Q be
two normed vector spaces, F : DomU ⊂ P→ Q is a linear map, and W : P→ Q is a
continuous map. If F is a Fredholm operator of index zero i.e., dim KerF =codim Im
F < ∞ and there exists a non-continuous projection S : P→ Q and R : V → V such
that Im S =Ker F , Im F =Ker R =Im(I−R) then F |DomF ∩KerS : (I−S)X → ImF is
invertible. Let F−1

S be the inverse of F . Let φ be an open bounded subset of P such that
RW (φ̄) is bounded and F−1

S (I−R)W : φ̄ → P is compact then W is said to be F-compact
on φ̄ . Let Im R is isomorphic to Ker F , so there exists an isomorphism K : ImR→ KerF .

Lemma 1.4.9. [72] Let F be a Fredholm operator with index zero and W be a F-compact

on φ̄ . If

(a) for each ρ ∈ (0,1), each solution u of Fu = ρWu is such that u /∈ ∂φ ,

(b) RWu 6= 0 for every u ∈ ∂φ ∩KerF,

(c) the Brouwer degree deg(KRW,φ ∩KerF,0) 6= 0,

then the equation Fu =Wu has atleast one solution in DomF ∩ φ̄ .

9. Numerical Simulation: In every forthcoming chapter of this thesis, we perform ex-
tensive numerical simulations with the help of Mathematica/MATLAB to validate the
theoretical findings. We mainly use standard MATLAB solvers ode45 and dde23 to
solve system of ODEs and DDEs, respectively. The obtained plots help us to visualize
population dynamics with respect to the crucial ecological factors.
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Chapter 2

Bifurcation Analysis of a Leslie-Gower Prey-Predator
Model with Fear, Cooperative Hunting and Time
Delay1

2.1 Introduction

A classic use of mathematics in ecology is the study of prey-predator interactions using dif-
ferential equations. The dynamics of such systems are often altered due to various ecological
factors. Employing these factors makes the system more consistent with the real world. Many
field experiments conducted by ecologists show that the growth rate of prey is affected not only
by direct killing by its predator but also by the non-consumptive action of the predator [19, 73,
74]. According to naturalists, it comes from predation-induced fear in the prey species. Due to
this, prey exhibits various anti-predation behaviors, such as changes in habitat, foraging behav-
ior, and other physiological changes. In the long run, these actions decrease the fecundity and
survival of prey species. Wang et al. [17] proposed and analyzed the basic mathematical model
that takes into account the cost of fear, which lowers the birth rate of prey. From thereon, many
researchers studied the complex dynamics with respect to fear in various predator-prey models
[22, 75, 76]. Introducing fear may cause the interacting populations to oscillate or stabilitate
about their steady-state [20]. These oscillations are most commonly due to the occurrence of
Hopf-bifurcation [77].

In population dynamics, group defense is a common concept that describes an instance in
which prey form groups to defend against the predator, which can cut off the predation rate.
According to an experimental investigation, minnows’ shoaling behaviour reduces the risk of
predation [78]. Considering Holling type IV or Monod-Haldane type functional response is
the most frequent and accessible technique to implement group defense [79, 80]. Mishra et al.

1A considerable part of this chapter is published in Nonlinear Dynamics and Applications: Proceedings of
the ICNDA 2022, 1069-1080, 2022.
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[81] explored a Leslie-Gower prey-predator model with group defence and found that increased
prey defensive ability results in model destabilization, which can result in periodic and chaotic
variations. It is evident from the research that dominance of defense could lead to predator’s
extinction [82]. The cooperation among predators to hunt down the target significantly increase
the chances of their survival [83]. Saha and Samanta [84] extensively studied a 3-D prey-
predator model involving cooperative hunting strategy and group defense mechanism. They
observed transcritical bifurcation, saddle-node bifurcation, Hopf- bifurcation, and many other
type of bifurcations. Pal et al. [20] studied the combined effect of fear and cooperative hunt-
ing and they observed various bifurcations and bi-stability in their model. The predator often
switches to a different food to prevent extinction and becomes a generalist. The standard way
to incorporate this feature is to use the modified Leslie-Gower scheme. Many authors [7, 85,
86] remarked the persistence of species in the modified Leslie-Gower prey-predator model.

The presence of time lag is common in most natural and man-made events. This indicates
that the impact of an event occurring at a former period is perceived at the present moment,
which is mathematically represented by delay differential equations. Biological events repre-
sented by delay differential equations appear more lifelike and induce complicated dynamics
[55, 56]. In general, natural processes like gestation, maturation, incubation, etc., have a tem-
poral lag between the occurrence of an event and the visualization of its impact. Tiwari et al.

[75] investigated a non-autonomous predator-prey system implementing fear, hunting coopera-
tion, and prey refuge with multiple time delays, including fear response delay. They found that
while fear, hunting cooperation, and fear response delay destabilize the system, a larger time
lag in the fear response pushes the system back to a stable state. Based on the aforementioned
facts, ecological systems with time delays have been extensively studied [22, 87, 88, 89].

As per our knowledge, there is no work done comprising fear, fear-response delay, group
hunting, and group defense in a Leslie-Gower prey-predator model. Hence our main purpose
is to study the effects of group defense in prey, group hunting in predator and fear induced by
predator in prey on the dynamical behavior of prey-predator system.

2.2 The mathematical model

The survival of species is one of the most fundamental and significant issues in ecology. In this
section, we formulate a system of differential equations explaining the interaction of prey x(t)

and predator y(t) at any instant of time t in the presence of several ecological factors.

1. The modified Leslie-Gower prey-predator model formulation is an interesting approach
in species conservation. According to this scheme, the predator acts as a generalist,
which increases their chances of survival [90]. Therefore, we assume that the predator
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can consume prey as well as other food provided, and their relationship is represented
using modified Leslie-Gower scheme.

2. The fear of predation can cause a significant reduction in the growth rate of prey [17].
So, we multiply the growth rate r with the term 1

1+Ky , a decreasing function of predator
population, where K denotes the level of fear. As the impact of the anti-predation traits
adopted by prey species on its demography is not instantaneously observed; therefore,
we consider its effect on growth rate with a fear response delay τ .

3. Since many small size predators prefer to hunt in packs to boost their success rate. We
incorporate the effect of group hunting in the attack rate by introducing a function h(y) =

α +λy [91], where α is the attack rate of lone predator, and λ denotes the cooperation
strength.

Inspiring from aforementioned facts and pioneering literature as cited in the introduction, we
propose the following model.

dx
dt

=
rx

1+Ky(t− τ)
− r0x− r1x2− (α +λy)xy

a+ x2 ,

dy
dt

= sy− ωy2

b+ x
,

x(s) = φ1(s)> 0, y(s) = φ2(s)> 0, where s ∈ [−τ,0] and φ1,φ2 ∈C([−τ,0],R).

(2.1)

In the absence of time delay, model (2.1) reduces to the following system of ordinary differential
equations.

dx
dt

=
rx

1+Ky
− r0x− r1x2− (α +λy)xy

a+ x2 := f (x,y),

dy
dt

= sy− ωy2

b+ x
:= g(x,y),

x(0)≥ 0, y(0)≥ 0.

(2.2)

The variables and parameters involved in the model are listed in Table 2.1 with their biological
meaning and dimensions.
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Table 2.1: Biological explanation and dimension of variables/parameters employed in
model (2.2).

Variables/Parameters Biological explanation Dimensions

x Prey density Biomass
y Predator density Biomass
r Birth rate of prey Time−1

K Cost of fear Biomass−1

r0 Prey mortality rate Time−1

r1 Death rate of prey due to competition among them Biomass−1Time−1

α Predation rate Biomass Time−1

λ Cooperation strength of predators Time−1

a Half saturation constant of prey Biomass2

b Half saturation constant of predator Biomass
s Intrinsic growth rate of predator Time−1

ω The highest rate of predator eradication per capita Time−1

2.3 Dynamics of the non-delayed system

The model (2.2) can be re-written as

dx
dt

= xφ1(x,y),
dy
dt

= yφ2(x,y),

where
φ1(x,y) =

r
1+Ky

− r0− r1x− (α +λy)y
a+ x2 , φ2(x,y) = s− ωy

b+ x
.

It follows that

x(t) = x(0)e
∫ t

0 φ1(x(θ),y(θ))dθ ≥ 0, y(t) = y(0)e
∫ t

0 φ2(x(θ),y(θ))dθ ≥ 0.

Hence, in R2
+, all (x(t),y(t)) solutions with the positive starting point stay positive.

Nature does not enable any species to spread rapidly due to a lack of resources. As a result,
it is critical to ensure that the solutions of the proposed model are bounded.

Theorem 2.3.1. All solutions initiating in R2
+ are contained in the domain Ω = {(x,y) ∈

R2
+ : 0≤ x≤ K1, 0≤ y≤ s(b+K1)

ω
}, where K1 =

r−r0
r1

> 0.

Proof. We may write the first equation of the model as

ẋ≤ rx− r0x− r1x2.
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This implies
limsup

t→∞

x(t)≤ r− r0

r1
:= K1.

To show the boundedness of y(t), we can write

ẏ≤ sy− ωy2

b+K1
.

This entails
limsup

t→∞

y(t)≤ (b+K1)s
ω

:= K2,

which completes the proof.

2.3.1 Equilibrium points

The proposed system has four feasible equilibrium points: extinction equilibrium; E0(0,0),
predator-free equilibrium; E1(K1,0), prey-free equilibrium; E2(0, bs

ω
) and interior equilibrium;

E∗(x∗,y∗). Here x∗ is a positive root of the following quartic equation:

A1x4 +A2x3 +A3x2 +A4x+A5 = 0, (2.3)

where
A1 = r1ω

2sK,

A2 = ω
2(r0Ks+ r1ω + r1Ksb)+ s3

λK,

A3 = ω
2Ks(r0b+ r1a)+3bλKs3 + s2

ω(λ +αK)− (r− r0)ω
3,

A4 = (r0Ksa+ r1a(ω +Ksb))ω2 +3λKb2s3 + sαω
2 +2bs2

ω(λ +αK),

A5 = λKb3s3 +b2s2
ω(λ +αK)+bω

2s(α + r0aK)− (r− r0)aω
3.

Since A1, A2 and A4 are positive. Therefore, according to the Descartes’ rule of signs, Eq. (2.3)
will have unique, two, three or no positive root based on the sign of A3 and A5 (refer to Table
2.2 and Fig. 2.1). It is worthy to note here that when A3 > 0 and A5 < 0, Eq. (2.3) has a
unique positive solution x∗. On obtaining x∗ from Eq. (2.3), we can easily determine y∗ from
the relation

y∗ =
s(b+ω)

x∗
.
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Table 2.2: Existence of positive root of (2.3)

A3 A5 Number of positive roots Color
− + 2 or 0 yellow
− − 3 or 1 red
+ − 1 green
+ + 0 blue

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

K

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fig. 2.1: Different colors showing all cases of Table 2.2 in Kλ -plane, where r = 0.6, a=
1, α = 0.4, ω = 1, b = 1, s = 0.4, r0 = 0.05, r1 = 0.05.

2.3.2 Stability analysis

The local stability feature of any equilibrium can be established using eigenvalue theory. The
boundary equilibria with their local stability feature are described in Table 2.3.

Table 2.3: The local stability characteristics of system (2.2)’s boundary equilibria

Equilibrium points Stability characteristics

E0(0,0) Unconditionally unstable
E1(K1,0) Always saddle point

E2(0, bs
ω
) Asymptotically stable if r < (1+ bKs

ω
)(r0 +

(αω+λbs)bs
aω2 );

saddle if r > (1+ bKs
ω
)(r0 +

(αω+λbs)bs
aω2 )

Biological significance: As per the concept of the modified Leslie-Gower prey-predator
model, the predator can switch to other food when prey is absent. Moreover, predator performs
cooperative hunting and induce fear in prey. Due to all these factors, predators may not become
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extinct. Therefore, when the prey’s birth rate is less than a critical value, they might become
extinct, nevertheless, predator always persists due to their generalist nature. Hence the prey-
free equilibrium E2(0, bs

ω
) can be stable, but the extinction state E0(0,0) and predator-free state

E1(K1,0) can never be stable.

Theorem 2.3.2. E∗(x∗,y∗) is locally asymptotically stable if and only if B1 > 0 and B2 > 0,

where B1 and B2 are stated in the proof.

Proof. The Jacobian matrix, computed at positive equilibrium E∗(x∗,y∗)) is given by

J|E∗ =

−r1x∗+ 2(α+λy∗)x∗2y∗

(a+x∗2)2 − rKx∗
(1+Ky∗)2 −

(α+2λy∗)x∗

a+x∗2

ωy∗2

(b+x∗)2 − ωy∗
b+x∗

 .

The characteristic equation for the aforementioned matrix is as follows:

ξ
2 +B1ξ +B2 = 0, (2.4)

where

B1 = r1x∗− 2(α +λy∗)x∗2y∗

(a+ x∗2)2 +
ωy∗

b+ x∗
,

B2 =
ωx∗y∗

b+ x∗

[
r1−

2(α +λy∗)x∗y∗

(a+ x∗2)2 +
y∗

(b+ x∗)

(
rK

(1+Ky∗)2 +
(α +2λy∗)

a+ x∗2

)]
.

As per the Routh-Hurwitz criterion, the interior equilibrium E∗(x∗,y∗) is locally asymptotically
stable if and only if B1 > 0 and B2 > 0.

Remark. If r1 >
2(α+λy∗)x∗y∗

(a+x∗2)2 , then E∗(x∗,y∗) is locally asymptotically stable.
In a two-dimensional system, the possible attractors inside the positive invariant set could be

equilibrium points and periodic solutions. If we are able to show that no periodic solution exists,
and all boundary equilibrium points are unstable, then, in that case, all trajectories starting in
the positive invariant region will eventually converge to the interior equilibrium E∗ if it exists
uniquely.

Theorem 2.3.3. Let the positive equilibrium E∗ exists uniquely. Then it is globally asymptoti-

cally stable under the following conditions:

(i) r > (1+ bKs
ω
)(r0 +

(αω+λbs)bs
aω2 ),

(ii) 3
√

3(α+λK2)
8a
√

a < r1
K2

+ ω

K1(b+K1)
.

Proof. If (i) holds, it directly implies E2(0, bs
ω
) is a saddle point. Now, to show the non-

existence of periodic solution, consider a function that is continuously differentiable in R2
+,
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H = 1
xy and we define

∇ =
∂

∂x
( f H)+

∂

∂y
(gH).

Simple calculation yields

∇ =−r1

y
+

2x(α +λy)
(a+ x2)2 −

ω

x(b+ x)
.

∇ remains negative if 3
√

3(α+λK2)
8a
√

a < r1
K2

+ ω

K1(b+K1)
.

Hence, system (2.2) cannot have a closed trajectory in the interior of the positive xy-plane,
according to the Bendixson-Dulac criteria. In such a case, all solutions starting in Ω will
converge to the interior equilibrium E∗, if it exists uniquely.

2.3.3 Bifurcation analysis

Theorem 2.3.4. System (2.2) experiences a transcritical bifurcation between the axial equi-

librium E2(0, bs
ω
) and interior equilibrium E∗(x∗,y∗) with respect to the fear parameter at

K = K[tc] = ω

bs

(
(r−r0)aω2−(αω+λbs)bs

r0aω2+(αω+λbs)bs

)
if (r− r0)aω2 > (αω +λbs)bs and δ3 6= 0, where δ3 is

defined in the proof.

Proof. At K = K[tc],

A = J|E2 =

(
0 0
s2

ω
−s

)
.

v = (1, s
ω
) and w = (1,0) are the eigenvectors of matrix A and AT for the zero eigenvalue,

respectively. Let F = ( f ,g)T , where f and g are the RHS functions of model (2.2). Now, we
define
δ1 = wT FK(E2,K[tc]), δ2 = wT [DFK(E2,K[tc])v], and δ3 = wT [D2F(E2,K[tc])(v,v)].

Simple computation yields

δ1 = 0, δ2 =−
rbsω

(ω +bKs)2 < 0

and

δ3 =−2r1−
2

ra2ω4b
(r0aω

2 +(αω +λbs)bs)((r− r0)aω
2− (αω +λbs)bs).

If δ3 6= 0, then all the conditions of the Sotomayor’s Theorem [60] are satisfied. Hence, the

system experiences a transcritical bifurcation at K =K[tc]= ω

bs

(
(r−r0)aω2−(αω+λbs)bs

r0aω2+(αω+λbs)bs

)
between

prey-free equilibrium E2 and coexistence equilibrium E∗.
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Theorem 2.3.5. Let us assume that B2 is positive. Then system (2.2) experiences a Hopf-

bifurcation with respect to the cooperation strength λ at λ = λ [h f ] around the coexistence

equilibrium E∗.

Proof. It can be noted that

(i) When B1 > 0 and B2 > 0, E∗ is locally asymptotically stable for λ < λ [h f ].

(ii) When B1 < 0 and B2 > 0, E∗ is unstable for λ > λ [h f ].

Here B1 and B2 are defined in Eq. (2.4). This indicates that there is a switching of stability
when cooperative strength λ crosses the critical value λ = λ [h f ]. At this point, B1 = 0 and
B2 > 0, which implies that the eigenvalues are purely imaginary. Furthermore, we check the
transversality condition viz.,

dB1

dλ

∣∣∣∣
λ=λ [h f ]

=− 2x∗2y∗2

(a+ x∗2)2 < 0.

Therefore, by the Andronov-Hopf bifurcation theorem, the system undergoes Hopf-bifurcation
at λ = λ [h f ] near the equilibrium point E∗.

2.4 Analysis of the delayed system

In this section, we discuss the effect of fear-response delay on the stability dynamics of the
proposed system. For this, we linearize system (2.1) about E∗, which is given by the following
matrix.

J = P+Qe−λτ ,

where

P =

−r1x∗+ 2(α+λy∗)x∗2y∗

a+x∗2 − (α+2λy∗)x∗

a+x∗2

ωy∗2

(b+x∗)2 − ωy∗
b+x∗

 and Q =

(
0 − rKx∗

(1+Ky∗)2

0 0

)

are the jacobian matrices about E∗ in the direction of t and (t− τ).
The characteristic equation of matrix J can be written as

ξ
2 +Θ1ξ +Θ2 +Θ3e−ξ τ = 0, (2.5)

where Θ1 = r1x∗− 2(α+λy∗)x∗2y∗

a+x∗2 + ωy∗
b+x∗ , Θ2 =

ωx∗y∗
b+x∗

(
r1− 2(α+λy∗)x∗y∗

a+x∗2

)
+ (α+2λy∗)ωx∗y∗2

(a+x∗2)(b+x∗)2 , Θ3 =

rKωx∗y∗2

(b+x∗)2(1+Ky∗)2 .
If every characteristic root of Eq. (2.5) has a negative real component, then system (2.1) is stable
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around the positive equilibrium point E∗. The characteristic root must cross the imaginary axis
to demonstrate stability switching via Hopf-bifurcation. This leads us to assume that the root of
Eq. (2.5) is iη2(η2 > 0). Substituting ξ = iη2 in Eq. (2.5), the real and imaginary components
are given by

Θ3cos(η2τ) = η2
2−Θ2, (2.6)

Θ3sin(η2τ) = Θ1η2. (2.7)

On solving (2.6) and (2.7), we obtain the following expression to determine the critical value
of τ for the occurrence of Hopf-bifurcation.

tan(η2τ) =
Θ1η2

η22−Θ2
, (2.8)

where η2 is the positive root of the following bi-quadratic equation obtained by squaring and
adding Eqs. (2.6) and (2.7).

η2
4 +(Θ2

1−2Θ2)η2
2 +(Θ2

2−Θ3
2) = 0. (2.9)

To derive the transversality condition for Hopf-bifurcation, we substitute ξ = η1 + iη2 in Eq.
(2.5). Separating real and imaginary parts, we obtain

η
2
1 −η

2
2 +Θ1η1 +Θ2 +Θ3e−η1τcos(η2τ) = 0, (2.10)

2η1η2 +Θ1η2−Θ3e−η1τsin(η2τ) = 0. (2.11)

Now we differentiate Eqs. (2.10) and (2.11) with respect to τ and set η1 = 0, τ = τ0 (conditions
for the Hopf-bifurcation point) to get

M1η1τ +M2η2τ = N1, (2.12)

−M2η1τ +M1η2τ = N2, (2.13)

where
M1 = Θ1−Θ3τ0cos(η2τ0),

M2 =−2η2−Θ3τ0sin(η2τ0),

N1 = Θ3η2sin(η2τ0),

N2 = Θ3η2cos(η2τ0).
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Solving Eqs. (2.12) and (2.13), we get

d(Re(ξ ))
dτ

∣∣∣∣
τ=τ0

= η1τ

∣∣∣∣
τ=τ0

=
N1M1−N2M2

M2
1 +M2

2
.

Therefore, the transversality condition for Hopf-bifurcation given by

d(Re(ξ ))
dτ

∣∣∣∣
τ=τ0

6= 0

holds if
N1M1 6= N2M2.

2.5 Numerical simulation

We use MATLAB R2021a to run numerical simulations to validate our analytical results of
both models (2.1) and (2.2). The dataset we have picked is as follows:

r = 0.6, λ = 0.7, K = 0.1, a = 1, α = 0.0005, ω = 1, b = 1, s = 0.4, r0 = 0.05,

r1 = 0.05
(2.14)

7.4 7.5 7.6 7.7 7.8 7.9 8 8.1 8.2

x

2.5

3

3.5

4

4.5

5

y

stable E*

Fig. 2.2: Trajectories of system (2.2) started from different initial conditions are con-
verging towards globally stable node E∗.

In the non-delayed system (2.2), for λ = 0.005 and other parameters from (2.14), the
predator-only state (0,0.4) is a saddle-point. As per Theorem 2.3.3, we obtain 3

√
3(α+λK2)
8a
√

a −
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r1
K2

+ ω

K1(b+K1)
= −0.002, implying that the system cannot have a closed trajectory in R2

+. The
interior equilibrium E∗(7.8437,3.5374) exists uniquely, and is a globally stable focus with
eigenvalues −0.395±0.2044i. This phenomenon can be seen in Fig. 2.2.

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

K

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

x K=K[tc]
stable E*

unstable E2 stable E2

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

K

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

y

stable E*

stable E2
unstable E2

K=K[tc]

Fig. 2.3: System (2.2) experiences transcritical bifurcation with respect to the fear pa-
rameter K between interior and prey-free steady-states. The other parameters are from
(2.14).

As large literature demonstrates intriguing dynamics with respect to the fear parameter [88,
76, 20], we investigate model (2.2) against the fear parameter K. As per Theorem 2.3.4, we ob-
tained K[tc] = 6.7478 and δ3 =−0.3367 6= 0. All conditions of the theorem are satisfied, hence
the system undergoes a transcritical bifurcation at K = K[tc]. The phenomenon of transcritical
bifurcation is easy to understand with the help of a bifurcation diagram. It can be depicted
from Fig. 2.3, E∗ is stable and E2 is unstable when K < K[tc]. In this range, the value of ∇

remains negative. Therefore, E∗ is globally stable. After crossing the threshold value of the
fear parameter, the stability of E∗ is transferred to E2 via a transcritical bifurcation.

The traits of the system (2.2) are not limited to transcritical bifurcation. It has been observed
that there are three positive equilibrium points, out of which two are stable, and the other is a
saddle-point for the parameters given in (2.14) with α = 0.7. The stable point E∗(1) and saddle-
point E∗(2) approach towards each other with the decrease in cooperation strength. At λ = λ [sn],
they annihilate one another by means of a saddle-node bifurcation (see Fig. 2.4).
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Fig. 2.4: System exhibits saddle-node bifurcation for two interior equilibrium points
(one stable and one saddle) with respect to the cooperation strength λ , where α = 0.7
and other parameters are same as in (2.14).

The phase portrait diagram illustrating focus-node bi-stability between two interior equilib-
rium points (E∗(1), E∗(3)) along with one saddle interior equilibrium E∗(2) and saddle prey-free
equilibrium E2 is shown in Fig. 2.5 (a). In such a case, the initial condition of the solution
decides its convergence. Here, the solutions from red color ∗ will eventually go to the attrac-
tor E∗(1)(0.2929,0.5171). On the other hand, if the solution begins from blue color ∗, it will
approach E∗(3)(4.088,2.0352) in the future (refer to Fig. 2.5(b)).
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Fig. 2.5: (a) Bi-stability between two interior equilibrium points at α = 0.7 and
other parameters are from (2.14). Here green and magenta color dashed curves rep-
resent the prey and predator nullclines, respectively. (b) The basin of attraction for
two stable points is shown by blue color for E∗(3)(4.088,2.0352) and red color for
E∗(1)(0.2929,0.5171).
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For s = 0.2, α = 0.7 and keeping other parameters same as in (2.14), we compute the value
of Hopf-bifurcation point λ [h f ] by equating B1 to zero, and we obtained λ [h f ] = 3.6567. At this

value, B2 = 0.0424 > 0, and dB1
dλ

∣∣∣∣
λ=λ [h f ]

= −0.1064 < 0. Hence, according to Theorem 2.3.5,

the system experiences Hopf-bifurcation at λ [h f ] = 3.6567 around E∗(5.0208,1.2041).
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Fig. 2.6: (a) Phase portrait showing E∗ as stable focus at λ = 3. (b) After λ > λ [h f ],
stable limit cycle surrounding unstable E∗ at λ = 3.9.
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Fig. 2.7: Stability change of system (2.2) about positive equilibrium through Hopf-
bifurcation with respect to λ .

For the lower value of cooperation strength λ , both species fluctuate for a finite time around
their steady-state. They eventually reach the positive equilibrium E∗ (see the phase portrait in
Fig 2.6 (a) at λ = 3 < λ [h f ]). When the value of λ is increased, E∗ loses its stability with the
formation of a stable limit cycle through Hopf-bifurcation at λ = λ [h f ] = 3.6567. The phase
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portrait after Hopf-bifurcation is depicted in Fig. 2.6 (b) at λ = 3.9 > λ [h f ]. Furthermore,
for better visualization of the stability switching via Hopf-bifurcation, we sketch the Hopf-
bifurcation diagram in Fig. 2.7. In this figure, we plot the maximum and minimum values of
the population density in the non-transient period. For λ < λ [h f ], the maximum and minimum
coincides, illustrating the stability of E∗. However, both population densities oscillate between
one maximum and one minimum, showing the existence of limit cycle for λ > λ [h f ]. This
sudden change in the dynamics is due to the supercritical Hopf-bifurcation at λ = λ [h f ].

2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

K

Fig. 2.8: Hopf-bifurcation curve in λK-plane for system (2.2). The interior equilib-
rium is stable below the curve, and above the curve it becomes unstable through Hopf-
bifurcation.
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Fig. 2.9: System (2.2)’s stability change about positive equilibrium through Hopf-
bifurcation with respect to τ .
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Since our model has complex dynamics with respect to the fear and cooperation strength,
this motivates us to perform bi-parametric analysis for λ and K, simultaneously. In Fig. 2.8,
for each λ , we obtain a critical value of K at which the Hopf-bifurcation occurs. Joining all
these bifurcation points, we obtain a Hopf-bifurcation curve in λK-plane.
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Fig. 2.10: Phase portrait showing the solution behavior before and after the Hopf-
bifurcation with respect to τ . The blue colored solution trajectory is going to the interior
equilibrium point at τ = 0.1, and the red colored trajectory is converging towards the
stable limit cycle at τ = 5.

Moving forward to the delayed system, we explore the stability traits of system (2.1) with
respect to the fear-response delay τ . For the chosen set of parameters from (2.14) with α = 0.7,
s = 0.2 and λ = 3.4, the interior equilibrium E∗(5.344,1.2688) is locally asymptotically sta-
ble in the absence of time delay. With a slight increase in τ , population starts to oscillate
periodically about E∗ at τ = τ01 = 0.2518 via a supercritical Hopf-bifurcation. These oscilla-
tions occur for a wide range of τ , and then gets controlled at τ = τ02 = 22.8532. On crossing
this Hopf-point, populations converge to their positive steady-state. However, this situation
no longer stays as another Hopf-bifurcation occurs at τ = τ03 = 27.5091, and consequently
system becomes unstable with the generation of a stable limit cycle. The Hopf-bifurcation
diagram in Fig. 2.9 depicts the stability change multiple times due to the occurrence of super-
critical Hopf-bifurcation with respect to fear-response delay. Furthermore, to demonstrate the
solution behavior for τ < τ01 and τ > τ01, we plot the phase portrait diagram in Fig. 2.10.

In the presence of delay, we vary the cost of fear K for the same parameters set (see Fig.
2.11). The interior equilibrium is initially stable for very low level of fear in the region R1.
However, an increase in K causes the instability of E∗ through a supercritical Hopf-bifurcation
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on crossing the blue curve. Therefore, both populations oscillate periodically between one
maximum and one minimum value, showing the existence of limit cycle in the region R2. When
the fear level is comparatively high, the oscillations are controlled and limit cycle disappears
leading to the stability of E∗ again through another Hopf-bifurcation on crossing the red curve.
Therefore, in the region R3, the interior equilibrium E∗ is stable.
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Fig. 2.11: Two Hopf-bifurcation curves dividing the τK-plane into three regions.

2.6 Discussion and conclusion

In the present manuscript, we proposed a modified Leslie-Gower predator-prey model employ-
ing ordinary differential equations. While formulation of the model, we considered that the
birth rate of the prey population is reduced due to the fear induced by predators. Therefore
we multiply the birth rate of the prey population with the decreasing function of the predator
population size, φ(K,y) = 1

1+Ky . The effect of fear on prey population is not visible imme-
diately, it takes a fear-response delay τ . Moreover, we assumed that predators cooperate for
hunting a common target. This mechanism affects the predation rate significantly. Therefore,
the group hunting term α +λy is incorporated in the functional response term. Prey species
perform group defense for their survival in this situation, which is shown in the model through
simplified Holling type IV functional response.

To ensure the biological validity of the system, we proved that all solutions are positive and
bounded in R2

+. We determined all feasible equilibrium points and analyzed their stability. The
extinction state E0(0,0) and predator-free state E1(K1,0) are always unstable. When the prey’s
birth rate is less than a critical value, the prey-free equilibrium E2(0, bs

ω
) is stable. All cases
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of the existence of positive equilibrium E∗ are discussed. The proposed system can exhibit
at most three interior equilibrium points. We obtained sufficient conditions for the local and
global stability of E∗.

It is noticed that the fear parameter K and the cooperation strength parameter λ play a
crucial role in the system’s dynamics. The system experiences transcritical bifurcation for the
fear parameter. Moreover, we remarked that a high level of fear might cause the prey species
to be extinct. The system shows a feature of bi-stability between two interior points, and it
undergoes a saddle-node bifurcation with respect to λ . We noticed that both species start to
fluctuate about their co-existence state when the cooperation strength λ is more than a critical
value λ [h f ]. This change in dynamics is due to the Hopf-bifurcation at λ = λ [h f ]. Since our
system has fear and cooperation strength as crucial parameters, we varied them simultaneously.
Consequently, we obtained a Hopf-bifurcation curve in λK-plane.

We further extended our study to understand the traits of the delayed system. The increase
in fear-response delay in system (2.1) caused several times stability change of the positive
equilibrium through supercritical Hopf-bifurcation. We obtained a broad range of τ , for which
both populations oscillate in a periodic manner. Furthermore, the change in stability occurs
twice through Hopf-bifurcation on adjusting the fear level in the presence of time delay.
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Chapter 3

Complex dynamics of Leslie–Gower prey–predator
model with fear, refuge and additional food under
multiple delays 1

3.1 Introduction

Understanding prey-predator interactions via differential equations is a classical application of
mathematics in ecology. It is trendy to study these interactions with different concepts like har-
vesting, functional response, a refuge for prey, time delays, additional food for predators, etc.
Employing these ideas makes the system more consistent with the real world. The dynamics
of a prey-predator system depend upon the feeding rate of a predator on prey. The predator’s
per capita feeding rate on prey is called functional response [61]. Holling type II functional
response is a function of prey abundance which serves extensive literature on prey-predator
theory [92].

Leslie [5] introduced a predator-prey model where the carrying capacity of the predator
is directly proportional to the prey density. Many researchers have widely used this concept
[9, 93, 94, 95, 96]. Aziz-Alaoui and Okiye [7] gave the first study of a prey-predator model
with modified Leslie-Gower and Holling type II schemes. This concept was further used with
delay differential equations by Nindjin et al. [90] and with stochastic perturbation by Ji et al.

[96]. Aguirre et al. [97] obtained three limit cycles due to Hopf-bifurcation and homoclinic
bifurcation in a Leslie-Gower model with Allee effect in prey population. Chen et al. [98]
studied the Leslie-Gower model with refuge for prey. The work by Zhang et al. [10] gives an
insight into the dynamics of the modified Leslie-Gower model with nonlinear harvesting and
Holling type IV functional response.

1A considerable part of this chapter is published in International Journal of Biomathematics, 15, 2250060,
2022.
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Functional responses introduced in the system show direct killing only. But merely the
presence of a predator can affect the prey physically and mentally as well [13]. Usually, there
is a predation risk while searching for food, resulting in starvation [14]. The scared prey may
not find a suitable environment to reproduce juveniles. And this indirect effect of fear can be
more than the direct killing effect [15, 16, 17]. Experiments done by Zanette et al. [19] reflect
that fear of predators alone led to a 40% reduction in the successor of the song sparrows could
produce. Evidence of the fear effect can also be seen in snowshoe hares [18] and dugongs [99].
Sheriff et al. [18] monitored free-ranging female snowshoe hares and observed declination
in their reproduction output. Dugongs sacrifice food by staying in deeper water where the
encounter rate with tiger sharks is low [99].

The fear in prey causes declination in both species [100]. Extra food is offered to the preda-
tor to help them grow faster. Prey population increases as distraction caused by additional food
to the predator reduce the level of fear in prey. A study done by Mondal et al. [38] shows
providing additional food to the predator plays a crucial role in controlling the fear effect. Das
and Samanta [39] studied a stochastic prey-predator model with refuge for prey and additional
food for the predator. They observed that reserving prey can lead to predator extinction, but
supplying an adequate amount of extra food can prevent their extinction. Some authors [101,
102] have investigated the consequences of providing additional food to the predator in a prey-
predator system. Without the provision of additional food, prey and predator never co-exist,
and predator goes to extinction in finite time [101]. van Baalen et al. [103] explored the link
between optimal foraging theory and population dynamical consequences when foraging preda-
tors switch to alternative food either in the fine-grained environment or in the coarse-grained
environment. They concluded that alternative food shows a stabilizing effect and promotes per-
sistence. Holt [104] investigated that in the presence of supplementary food, predator increases,
and prey decreases at the equilibrium level. This predator-mediated effect of extra food on prey
density is “apparent competition” [104]. Some studies [105, 106] are available in the literature
in favor of apparent competition. But some experimental studies show that additional food
provided to the predator does not enhance the target predation [107, 108]. A recent study by
Kaur et al. [102] shows that both populations survive at a stable level when the additional
food is available for the predator in a sufficient amount; they grow continuously. Provision
of additional food is undoubtedly beneficial for weak and struggling predators. For example,
lionesses at AENP were provided with culled warthog carcasses while they were struggling to
keep young cubs alive [37].

The work by Srinivasu et al. [109] reflects that providing the right kind of additional food
to the predator can enhance the predation effect, leading to prey elimination. Also, supplying
low-quality food at high density causes distraction to predators, and prey can be relieved from
predation pressure. A recent study by Kumar and Dubey [36] reveals that both populations
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oscillate in the absence of additional food. These oscillations can be completely controlled by
increasing the predator dependency factor on additional food. The effect of additional food in
the dynamics of a prey-predator system can also be seen in [40, 110, 111].

It is vital to consider prey refuge in the prey-predator system to maintain the ecological
balance. By providing refuge, nature can offer a certain degree of protection to the prey. It
prevents over-exploitation of prey. Increasing the amount of refuge can increase prey density.
Kar [112] and Huang et al. [113] analyzed prey-predator interaction with prey refuge. They
discovered that refugia stabilized the system. When prey is afraid of predators, Zhang et al.

[27] examined the effect of prey refuge on predator density. The authors concluded that fear
could suppress the predator population.

Every process has a time delay that cannot be ignored. The inclusion of time delay brings
realism to the scheme by demonstrating the future state’s reliance on the past state [55]. One of
the main benefits of using a time-delayed term is that it can accurately explain the dietary energy
transformation mechanism [114, 115]. The use of delay differential equations in modeling
population dynamics is currently very active [88, 116, 117, 118]. Biological processes include
time delays with various factors like maturation [119], gestation [11], prey hunting [119], anti-
predator response [88], etc. Time delay can alter the stability dynamics of the system [56]. Liu
et al. [120] examined the combined effect of maturation and gestation delay on the dynamics
of a prey-predator model. Bandopadhyay and Banerjee [121] calculated the length of a time
delay to preserve stability. The system shows richer dynamics in the presence of time delay.
Therefore, it is vital to study time lag’s impact on the system’s dynamics.

Keeping the above aspects in mind, the main focus of our present study is to explore the
following ecological issues:

1. How are the system’s dynamics affected by fear and refuge factors?

2. What are the conditions for the persistence and extinction of both species?

3. Does additional food for predators promote richer biodiversity?

4. What is the range of time delay in which the prey-predator system shows stable dynam-
ics?

In this paper, to explore the above issues, we propose a Leslie-Gower prey-predator model
to study the impact of fear, refuge, additional food, fear-response delay, and gestation delay
on the system’s dynamics in Sec. 3.2. To the best of the authors’ knowledge, such general
models are not available in the literature. Sec. 3.3 discusses the non-delayed model and its well-
posedness, equilibrium analysis, and local and global stability. Also, we show the existence of
a limit cycle here. Sec. 3.4 presents the local stability and Hopf-bifurcation analysis of the
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delayed system. We validate our analytical findings in Sec. 3.5. In the end, all the results are
summarized in Sec. 3.6.

3.2 Construction of mathematical model

Onana et al. [11] studied the following model:

dx
dt

= r
(

1− x(t)
K

)
x(t)−qλ1(1−m)x(t)y(t)−φ(x(t)),

dy
dt

= sy(t)
(

1− y(t− τ)

qα(1−m)x(t− τ)+(1−q)αAKA

)
,

(3.1)

where x(t) and y(t) are the number of prey population and predator population, respectively.
Using this work as inspiration, we develop a model (3.2) based on the following assumptions:

• It is assumed that the birth rate of the prey population is reduced due to the fear induced by
predators. Therefore we multiply the birth rate of the prey population with the decreasing
function of the predator population size, φ(K,y) = 1

1+Ky . A similar fear function was
used by many authors [17, 88, 122]. In the absence of fear, the prey population grows
logistically.

• As the feeding rate of predators decreases with prey density due to handling and searching
time, we assume that the predators ingest prey by Holling type II functional response [9].

• Due to the fact that increment in predator population after ingesting prey is not an instan-
taneous phenomenon, we assume that a predator individual takes τ2 time for gestation.
Therefore, the rate of predator change depends on the number of individuals present at
the time (t− τ2) [123].

• The fear effect can stabilize the prey-predator system and promote the co-existence of
all the populations. Due to the fear of predation risk, the birth rate of prey individuals
decreases. In order to study the effect of fear response, we consider a time delay τ1 in
the specific growth rate of the prey species. This fear mechanism takes τ1 units of time
to respond to changes in the prey population [88].
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With the above considerations in mind, the mathematical model integrating the fear effect,
refuge, and additional food for the predator under multiple delays is as follows:

dx
dt

=
rx

1+Ky(t− τ1)
− r0x− r1x2− qα(1−m)xy

a+q(1−m)x
,

dy
dt

= sy
(

1− βy(t− τ2)

qα(1−m)x(t− τ2)+(1−q)αAKA

)
,

x(s) = φ1(s)≥ 0, y(s) = φ2(s)≥ 0, s ∈ [−τ,0], τ = max{τ1,τ2}.

(3.2)

In the absence of both delays (τ1 = τ2 = 0), the model (3.2) takes the following form:

dx
dt

=
rx

1+Ky
− r0x− r1x2− qα(1−m)xy

a+q(1−m)x
,

dy
dt

= sy
(

1− βy
qα(1−m)x+(1−q)αAKA

)
,

x(0)≥ 0, y(0)≥ 0.

(3.3)

The biological meaning of parameters used in the proposed model is given in Table 3.1.
Remark. If r < r0, then the prey population will die out. Therefore, we will consider r > r0

throughout this article to avoid this situation.

Table 3.1: Biological explication of variables/parameters used in model (3.2)

Variables/Parameters Biological explication Dimension
x Number of prey individuals Biomass
y Number of predator individuals Biomass
r Birth rate of prey Time−1

s Intrinsic growth rate of predator Time−1

r0 Natural death rate of prey Time−1

r1 Death rate of prey due to competition among them Biomass−1Time−1

a Half saturation constant Biomass
K Cost of fear Biomass−1

q Preference rate of predator for food and q ∈ (0,1) Dimensionless
m Refuge parameter and m ∈ (0,1) Dimensionless
αA It measures the amount of energy of the additional food

assimilate into the predator’s energy Time−1

KA Additional food of constant density A Biomass
α Maximum rate of per capita removal of prey species due to predation Time−1

β Maximum rate of per capita removal of predator species Time−1

τ1 Fear response time delay Time
τ2 Gestation delay Time
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3.3 Dynamics of non-delayed model

In this section, we look at the dynamics of the system (3.3). First, we demonstrate that our
model is biologically viable (refer to Subsec. 3.3.1). The steady-state solutions are then deter-
mined (refer to Subsec. 3.3.2), followed by the stability analysis (refer to Subsec. 3.3.3 and
3.3.6). We address the presence of a periodic solution in Subsec. 3.3.4 and then present an
analysis for transcritical bifurcation in Subsec. 3.3.5.

3.3.1 Well-posedness of model

This subsection shows that all solutions of the system (3.3) are positive and bounded. Further-
more, we demonstrate that the system is uniformly persistent under a parametric condition.
Let F = ( f ,g)T ,
where

f =
rx

1+Ky
− r0x− r1x2− qα(1−m)xy

a+q(1−m)x

and
g = sy

(
1− βy

qα(1−m)x+(1−q)αAKA

)
.

Since F and Jacobian(F) are continuous in R2
+, the IVP (3.3) has a unique solution by the

standard theory of the ODE system.
Further, the model (3.3) can be re-written as

dx
dt

= xφ1(x,y),
dy
dt

= yφ2(x,y),

where

φ1(x,y) =
r

1+Ky
− r0− r1x− qα(1−m)y

a+q(1−m)x
,

φ2(x,y) = s
(

1− βy
qα(1−m)x+(1−q)αAKA

)
.

It follows that
x(t) = x(0)e

∫ t
0 φ1(x,y)ds ≥ 0,

y(t) = y(0)e
∫ t

0 φ2(x,y)ds ≥ 0.

Thus, all solutions (x(t),y(t)) with initial condition (x(0),y(0)) remain positive throughout the
region R2

+.
The following lemma illustrates the boundedness of the system (3.3).
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Lemma 3.3.1. The set Ω = {(x,y) : 0≤ x≤ K1,0≤ y≤ µ} is an invariant set for all solutions

initiated in the positive quadrant, where K1 =
r−r0

r1
and µ = 1

β
(qα(1−m)K1 +(1−q)αAKA).

Proof. We may deduce the first equation of the model (3.3) as

dx
dt
≤ rx− r1x2− r0x,

which implies

limsup
t→∞

x(t)≤ K1,

where

K1 =
r− r0

r1
.

Now, the second equation of the model gives

dy
dt
≤ sy

(
1− βy

(qα(1−m)K1 +(1−q)αAKA)

)
,

which yields
limsup

t→∞

y(t)≤ µ,

where
µ =

1
β
(qα(1−m)K1 +(1−q)αAKA).

We also note that if x(t)≥ K1 and y(t)≥ µ , then dx
dt ≤ 0, dy

dt ≤ 0.
This shows that all solutions of the system (3.3) starting in the region Ω remain in Ω for all
t > 0.

Lemma 3.3.2. If the following condition

r > (1+Kµ)

(
r0 +

qα(1−m)µ

a

)
holds, then the system (3.3) is uniformly persistent.

Proof. The persistence of the system ensures that the species will not become extinct and are
present for all future time if they are present initially.
From the model (3.3) and using Lemma 3.3.1, we can write

dx
dt
≥
(

r
1+Kµ

− r0−
qα(1−m)µ

a

)
x− r1x2,
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dy
dt
≥ sy

(
1− βy

(1−q)αAKA

)
,

which implies

liminf
t→∞

x(t)≥
(

r
1+Kµ

− r0−
qα(1−m)µ

a

)
1
r1

=: xa,

liminf
t→∞

y(t)≥ 1
β
(1−q)αAKA =: ya.

Let Ma = min{xa,ya},Mm = max{K1,µ} and X(t) =

(
x(t)

y(t)

)
.

Then it follows that
Ma ≤ liminfX(t)≤ limsupX(t)≤Mm.

Hence the system is uniformly persistent.

3.3.2 Equilibrium points

It can be investigated that the model (3.3) has four types of equilibria, namely, trivial extinc-

tion equilibrium E0(0,0), prey-free equilibrium E1

(
0, (1−q)αAKA

β

)
, predator-free equilibrium

E2(
r−r0

r1
,0), and co-existence equilibrium E∗(x∗,y∗). The equilibria E0, E1, and E2 exist uncon-

ditionally.

Existence of interior equilibrium E∗(x∗,y∗): Here x∗ and y∗ are positive solutions of the
following equations:

r
1+Ky∗

− r0− r1x∗− qα(1−m)y∗

a+q(1−m)x∗
= 0, (3.4)

s
(

1− βy∗

qα(1−m)x∗+(1−q)αAKA

)
= 0. (3.5)

From Eq. (3.5), we have

y∗ =
1
β
(qα(1−m)x∗+(1−q)αAKA)> 0.

Substituting this value of y∗ in Eq. (3.4), we get

P1x∗3 +P2x∗2 +P3x∗+P4 = 0, (3.6)
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where

P1 =
K
β

r1q2
α(1−m)2,

P2 = q(1−m)[r1(1+
K
β
(1−q)αAKA +

K
β

aα)+
K
β

r0qα(1−m)+
K
β 2 q2

α
3(1−m)2],

P3 =
K
β
[r0aαq(1−m)+

2
β

q2
α

2(1−m)2(1−q)αAKA + r0q(1−q)(1−m)αAKA

+ar1(1−q)αAKA]+q2 α2

β
(1−m)2 +ar1− (r− r0)q(1−m),

P4 =
K
β
(1−q)αAKA[

αq
β

(1−m)(1−q)αAKA +ar0]+
qα

β
(1−q)(1−m)αAKA− (r− r0)a.
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Fig. 3.1: Nullclines showing number of interior equilibria with varying αA when
(a)αA = 0.3, (b)αA = 8, (c)αA = 8.758699 and (d)αA = 9.5, fixing other parameters
as r = 3.5, K = 0.05, q = 0.3, r0 = 0.5, r1 = 0.0375, a = 1, KA = 1.7, α = 2, s =
0.2, m = 0.65, β = 1.
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The discriminant of Eq. (3.6) is given by:

∆ = P2
2 P2

3 −4P1P3
3 −4P3

2 P4−27P2
1 P2

4 +18P1P2P3P4.

Depending upon the sign of P3,P4, and ∆, the proposed system would have none, one, or two
co-existence equilibria (refer to Fig. 3.1).

(a) Existence of unique positive equilibrium.
By Descarte’s rule of sign, Eq. (3.6) will have a unique positive solution x∗ if and only if
P4 < 0. The value of y∗ can be conveniently calculated by substituting this value of x∗ in
Eq. (3.5). This implies that there exists a unique interior equilibrium E∗(x∗,y∗).

(b) Existence of dual positive equilibria.
If P3 < 0 and P4 > 0, then by Descarte’s rule of sign Eq. (3.6) will have at most two
positive roots. Additionally, if ∆ > 0, then Eq. (3.6) will have exactly two positive roots.

(c) Existence of one positive solution of Eqs. (3.4) and (3.5) with multiplicity two.
When P3 < 0, P4 > 0 and ∆ = 0, Eq. (3.6) will have a positive double root.

(d) Non-existence of interior equilibrium.

• If P3 and P4 are positive, then Eq. (3.6) will not have a positive root.

• If P3 < 0, P4 > 0 and ∆< 0, then the system (3.3) will not attain positive equilibrium.

Remark. In Fig. 3.1 (a), P4 is negative for a smaller value of αA (αA = 0.3), which implies
E1(0,

(1−q)αAKA
ξ

) is unstable. Therefore, species are more likely to persist at a lower value of
additional food parameter αA. When αA is increased to larger values (see Fig. 3.1 (b), (c), (d)),
P4 becomes positive, which implies that the prey-free equilibrium E1 is always stable. Hence,
at higher values of αA, predators can use the additional food energy for predation, which might
cause prey’s extinction.

3.3.3 Local stability analysis

To examine the local stability behavior of the equilibrium, we compute the variational matrix
corresponding to the system (3.3) at each equilibrium point. Based upon the sign of the real
part of the eigenvalue of this matrix, we obtain the following results:

1. The equilibrium point E0(0,0) is unstable.
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2. The variational matrix at E1

(
0, (1−q)αAKA

β

)
is given by:

( rβ

β+KαAKA(1−q) − r0−q(1−m)(1−q)αAKA
α

aβ
0

sqα(1−m)
β

−s

)
.

It is noted that

• E1 is locally asymptotically stable if

rβ <

(
r0 +q(1−m)(1−q)αAKA

α

aβ

)
(β +KαAKA(1−q)).

• E1 is a saddle point if

rβ >

(
r0 +q(1−m)(1−q)αAKA

α

aβ

)
(β +KαAKA(1−q)).

3 E2(
r−r0

r1
,0) is a saddle point with stable manifold in x direction and with unstable mani-

fold in y direction.

Remark: It should be highlighted that the system (3.3) has a unique positive equilibrium if and
only if prey-free equilibrium E1 is unstable.

In order to study the local stability behavior of positive equilibrium, let M|E∗ be the varia-
tional matrix evaluated at E∗(x∗,y∗). Then

M|E∗ =

−r1x∗+ αq2(1−m)2x∗y∗

(a+q(1−m)x∗)2 − rKx∗
(1+Ky∗)2 −

qα(1−m)x∗

(a+q(1−m)x∗)
sβqα(1−m)y∗2

(qα(1−m)x∗+(1−q)αAKA)2 − sβy∗

(qα(1−m)x∗+(1−q)αAKA)

 .

The characteristic equation corresponding to the above matrix is

λ
2 +A1λ +A2 = 0, (3.7)

where

A1 = r1x∗− αq2(1−m)2x∗y∗

[a+q(1−m)x∗]2
+

β sy∗

[qα(1−m)x∗+(1−q)αAKA]
=−tr(M|E∗),

A2 =
sβy∗

[qα(1−m)x∗+(1−q)αAKA]

[
r1x∗− αq2(1−m)2x∗y∗

(a+q(1−m)x∗)2

]
+

sβqα(1−m)y∗2x∗

[qα(1−m)x∗+(1−q)αAKA]2

[
rK

(1+Ky∗)2 +
qα(1−m)

(a+q(1−m)x∗)

]
= det(M|E∗).
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Using the Routh-Hurwitz criterion, all the eigenvalues of M|E∗ have negative real part if and
only if the following conditions hold:

A1 > 0, A2 > 0. (3.8)

Thus, we can state the following theorem.

Theorem 3.3.3. The positive equilibrium point E∗ is locally asymptotically stable in the inte-

rior of the positive quadrant of the xy-plane if and only if (3.8) holds true.

Remark: We can easily note that (3.8) holds true if

r1 >
αq2(1−m)2y∗

(a+q(1−m)x∗)2 .

3.3.4 Limit cycle

Theorem 3.3.4. Let E∗ exists uniquely and any one of the following condition holds:

(i) A1 < 0, A2 > 0,

(ii) A1 < 0, A2 < 0.

Then the model (3.3) has a limit cycle.

Proof. From Lemma 3.3.1, it follows that int(Ω) is a positively invariant set. If (i) or (ii) holds,
then E∗ is unstable. So, it is clear that the ω− limit set does not contain any stationary point.
Hence, according to the Poincare-Bendixson theorem, the system has a limit cycle.

Now, we investigate the possibility of Hopf-bifurcation around the interior equilibrium E∗ by
considering the parameter αA as the bifurcation parameter.

The interior equilibrium E∗ loses its stability through Hopf-bifurcation when the eigenval-
ues are complex conjugate with zero real parts. We consider αA as the bifurcation parameter.
Let λ (αA) = λr(αA)+ iλi(αA) be an eigenvalue of the characteristic equation (3.7). After sub-
stituting the value of λ (αA) in Eq. (3.7) and separating the real and imaginary parts, we get

λ
2
r −λ

2
i +A1λr +A2 = 0 (3.9)

2λrλi +A1λi = 0 (3.10)

At the Hopf-bifurcation point αA = α∗A, λr(αA) = 0. Therefore, we obtain

−λ
2
i +A2 = 0, where λi ∈ R



3.3. Dynamics of non-delayed model 47

and
A1λi = 0, where λi 6= 0.

Therefore, from the above equations, we have A1(αA) = 0, and A2(αA)> 0.
Thus at the bifurcation point, A1(αA) = 0 yields

α
∗
A =

1
(1−q)KA

[
β sy∗

αq2(1−m)2x∗y∗

(a+q(1−m)x∗)2 − r1x∗
−qα(1−m)x∗

]
.

Differentiating Eqs. (3.9) and (3.10) with respect to αA and substituting λr = 0, we obtain

−2λi
dλi

dαA
+A1

dλr

dαA
+

dA2

dαA
= 0,

2λi
dλr

dαA
+

dA1

dαA
λi +A1

dλi

dαA
= 0.

Solving these equations, we get

dλr

dαA

∣∣∣∣
αA=α∗A

=−
A1

dA2
dαA

+2 dA1
dαA

λ 2
i

A2
1 +4λ 2

i
6= 0,

provided A1
dA2
dαA

+2 dA1
dαA

λ 2
i 6= 0.

Thus we can state the following result.

Theorem 3.3.5. If A2 > 0 and dλr(αA)
dαA

|αA=α∗A
6= 0, then the interior equilibrium E∗ of the model

(3.3) is locally asymptotically stable when αA < α∗A, and undergoes Hopf-bifurcation around

E∗ at αA = α∗A.

3.3.5 Transcritical bifurcation

Theorem 3.3.6. The non-delayed system undergoes a transcritical bifurcation between interior

equilibrium E∗ and prey-free equilibrium E1

(
0, (1−q)αAKA

β

)
at

K = K[tc] =
β

(1−q)αAKA

(
r

r0 +
qα

aβ
(1−m)(1−q)αAKA

−1

)

if r > (r0+
qα

aβ
(1−m)(1−q)αAKA) and δ3 6= 0, where δ3 is defined in the proof of this theorem.
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Proof. The variational matrix corresponding to the system (3.3) at E1 is given by

H = DF(E1,K) =

( rβ

β+KαAKA(1−q) − r0−q(1−m)(1−q)αAKA
α

aβ
0

sqα(1−m)
β

−s

)
.

E1 is a non-hyperbolic equilibrium at K = K[tc]. Therefore, the matrix at this point becomes

H =

(
0 0

sqα(1−m)
β

−s

)
.

The eigenvectors v = (1, qα(1−m)
β

)T and w = (1,0)T are corresponding to the eigenvalue zero
of matrix H and HT , respectively.
Let F = ( f ,g)T , where f and g are the same as mentioned earlier.

FK =

(
− rxy

(1+Ky)2

0

)
.

Clearly,
δ1 = wT FK(E1,K[tc]) = 0.

Now, consider

δ2 = wT [DFK(E1,K[tc])v] =
(

1 0
)(− rβ (1−q)αAKA

(β+K[tc](1−q)αAKA)2 0

0 0

)(
1

qα(1−m)
β

)

which yields

δ2 =−
rβ (1−q)αAKA

(β +K[tc](1−q)αAKA)2
6= 0.

Clearly, δ2 is non-zero.
Let us define

δ3 = wT [D2F(E1,K[tc])(v,v)] =
(

1 0
)( fxx fxy fyx fyy

gxx gxy gyx gyy

)
(E1,K[tc])


v1v1

v1v2

v2v1

v2v2


= fxxv1v1 +2 fxyv1v2 + fyyv2v2,
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where

fxx(E1,K[tc]) =−2r1 +
2q2α(1−m)2(1−q)αAKA

βa2 ,

fxy(E1,K[tc]) =− rK[tc]β 2

(β +K[tc](1−q)αAKA)2
− qα(1−m)

a
,

fyy(E1,K[tc]) = 0, gxx(E1,K[tc]) =−2sq2α2(1−m)2

β (1−q)αAKA
,

gxy(E1,K[tc]) =
2sqα(1−m)

(1−q)αAKA
, gyy(E1,K[tc]) =− 2sβ

(1−q)αAKA
,

v1v1 = 1, v1v2 =
qα(1−m)

β
, v2v2 =

q2α2(1−m)2

β 2 ,

which entails that

δ3 =−2r1+
2q2α(1−q)(1−m)2αAKA

βa2 − 2qα(1−m)

β

(
rK[tc]β 2

(β +K[tc](1−q)αAKA)2
+

qα(1−m)

a

)
.

If δ3 6= 0, then by the Sotomayor’s theorem as mentioned by Perko [60], the non-delayed system
experiences a transcritical bifurcation between E∗ and E1 at K = K[tc].

3.3.6 Global stability analysis

Theorem 3.3.7. If {P3 > 0, P4 > 0} or {P3 < 0, P4 > 0 and ∆ < 0}, then the prey-free equilib-

rium E1 is globally asymptotically stable.

Proof. In Lemma 3.3.1, we have proved that the solutions starting in the first quadrant are
bounded and lie in the invariant region Ω. The equilibrium points E0(0,0) and E2(K1,0) are al-
ways unstable, and no positive equilibrium exists if {P3 > 0, P4 > 0} or {P3 < 0, P4 > 0 and ∆<

0} (refer to Subsec. 3.3.2). Therefore, by the Poincare-Bendixson theorem, the equilibrium
point E1 is the only attractor in the first quadrant.

Theorem 3.3.8. The system (3.3) is globally asymptotically stable around the interior equilib-

rium E∗ if the following inequality holds:

L2 < 4L1L2, (3.11)

where L, L1, and L2 are defined in the proof of this theorem.
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Proof. Let a positive definite Lyapunov function about E∗ be

V (x,y) = x− x∗− x∗ln
x
x∗

+

[
y− y∗− y∗ln

y
y∗

]
.

Now, along with the solutions of the model (3.3), differentiate V with regard to time t to obtain

dV
dt

=
(x− x∗)

x
dx
dt

+
(y− y∗)

y
dy
dt

.

Substituting the value of dx
dt and dy

dt from the model (3.3), we get

dV
dt

=−a11(x− x∗)2 +a12(x− x∗)(y− y∗)−a22(y− y∗)2,

where

a11 = r1−
q2α(1−m)2y∗

(a+q(1−m)x)(a+q(1−m)x∗)
,

a22 =
sβ

(qα(1−m)x∗+(1−q)αAKA)
,

a12 =
sβqα(1−m)y

(qα(1−m)x∗+(1−q)αAKA)(qα(1−m)x+(1−q)αAKA)
− qα(1−m)

a+q(1−m)x
− rK

(1+Ky)(1+Ky∗)
.

dV
dt is negative definite under condition (3.11), where

L =
sβqα(1−m)µ

(qα(1−m)x∗+(1−q)αAKA)(1−q)αAKA
− qα(1−m)

a+q(1−m)K1
− rK

(1+Kµ)(1+Ky∗)
,

L1 = r1−
q2α(1−m)2y∗

a(a+q(1−m)x∗)
,

L2 =
sβ

(qα(1−m)x∗+(1−q)αAKA)
.

Therefore, interior equilibrium E∗(x∗,y∗) is globally asymptotically stable if condition (3.11)
holds.

3.4 Dynamics of the delayed model

In this section, we will investigate the dynamics of the delayed system (3.2).
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3.4.1 Local stability and Hopf-bifurcation

The model (3.2) can be rewritten as

dΨ(t)
dt

= F((Ψ(t), Ψ(t− τ1),Ψ(t− τ2)),

where

Ψ(t) = [x(t),y(t)]T ,Ψ(t− τi) = [x(t− τi),y(t− τi)]
T , i = 1,2.

Let the variational matrix of the model (3.2) with respect to Ψ(t), Ψ(t− τ1), Ψ(t− τ2) at any
point (u,v) be

V = P′1 +P′2e−λτ1 +P′3e−λτ2 =

(
a11 a12

a21 a22

)
,

where

P′1 =
(

∂F
∂Ψ(t)

)
(u,v)

, P′2 =
(

∂F
∂Ψ(t− τ1)

)
(u,v)

, P′3 =
(

∂F
∂Ψ(t− τ2)

)
(u,v)

,

a11 =
r

1+Kv
− r0−2r1u− aqα(1−m)v

(a+q(1−m)u)2 ,

a12 =−
qα(1−m)u

a+q(1−m)u
− rKue−λτ1

(1+Kv)2 , a21 =−
sβqα(1−m)v2e−λτ2

(qα(1−m)u+(1−q)αaKA)2 ,

a22 = s
(

1− βv
qα(1−m)u+(1−q)αAKA

)
− sβve−λτ2

qα(1−m)u+(1−q)αAKA
.

Remark. In the presence of delay, the local stability behavior of all the boundary equilibria
remains unaltered. At E∗, we obtain

V =

 −r1x∗+ b2
1

α
x∗y∗ −b1x∗−b2e−λτ1

qα(1−m)
b2

3
s e−λτ2 −b3e−λτ2

 ,

where

b1 =
qα(1−m)

a+q(1−m)x∗
, b2 =

rKx∗

(1+Ky∗)2 , b3 =
sβy∗

qα(1−m)x∗+(1−q)αAKA
.
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The corresponding characteristic equation is

λ
2 +Aλ +(Eλ +F)e−λτ2 +Ge−λ (τ1+τ2) = 0, (3.12)

where

A=

(
r1−

b2
1

α
y∗
)

x∗, E = b3, F = b3

(
r1−

b2
1

α
y∗
)

x∗+b1b2
3

qα(1−m)

s
x∗, G=

b2b2
3qα(1−m)

s
.

Case(1): τ1 = τ2 = 0. Then Eq. (3.12) becomes

λ
2 +(A+E)λ +F +G = 0. (3.13)

The characteristic equation (3.13) is the same as the characteristic equation (3.7) of the non-
delayed model (3.3) studied in Subsec. 3.3.3.
All the roots of Eq. (3.13) have negative real parts if and only if
(H1): A+E > 0 and F +G > 0.
So the interior equilibrium E∗(x∗,y∗) is locally asymptotically stable if and only if (H1) holds.
Case(2): τ1 = 0, τ2 > 0. Then Eq. (3.12) becomes

λ
2 +Aλ +(Eλ +F +G)e−λτ2 = 0. (3.14)

This is a transcendental equation. So stability behavior of the system (3.2) cannot be deter-
mined by Routh-Hurwitz criteria. Let us assume λ =±iω(ω > 0); then the real and imaginary
components are given below

Eω sin(ωτ2)+(F +G)cos(ωτ2) = ω
2, (3.15)

Eω cos(ωτ2)− (F +G)sin(ωτ2) =−Aω, (3.16)

Combining Eqs. (3.15) and (3.16) leads to a quadratic equation in ω2 as

ω
4 +(A2−E2)ω2− (F +G)2 = 0. (3.17)

If we put ω2 = ρ , then Eq. (3.17) becomes

ρ
2 + c1ρ + c2 = 0,

where c1 = A2−E2 and c2 =−(F +G)2.
Remark. Since Eq. (3.17) has a unique positive root (say ω1), therefore, the stability of the
system (3.2) with respect to τ2 cannot be switched more than once.
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Substituting ω2
1 in Eq. (3.17), we get

τ2n =
1

ω1
cos−1

(
(F +G−AE)ω2

1
E2ω2

1 +(F +G)2

)
+

2nπ

ω1
, n = 0,1,2, ... (3.18)

Now, we will verify the transversality condition of Hopf-bifurcation.
Put λ = ξ + iω in Eq. (3.14), we get real and imaginary parts as follows:

ξ
2−ω

2 +Aξ +(Eξ +F +G)e−ξ τ2 cos(ωτ2)+Eω sin(ωτ2)e−ξ τ2 = 0, (3.19)

2ωξ +Aω +Eωe−ξ τ2 cos(ωτ2)− (Eξ +F +G)e−ξ τ2 sin(ωτ2) = 0. (3.20)

Differentiating (3.19) and (3.20) with respect to τ2 and substituting τ2 = τ20 , we get

P1ξτ20
+P2ωτ20

= R1, (3.21)

−P2ξτ20
+P1ωτ20

= R2, (3.22)

where

P1 = A+(E− (F +G)τ20)cos(ω1τ20)− τ20Eω1 sin(ω1τ20),

P2 = (E− τ20(F +G))sin(ω1τ20)+Eω1τ20 cos(ω1τ20)−2ω1,

R1 = (F +G)ω1 sin(ω1τ20)−Eω
2
1 cos(ω1τ20),

R2 = (F +G)ω1 cos(ω1τ20)+Eω
2
1 sin(ω1τ20).

Solving (3.21) and (3.22), we get(
d(Reλ )

dτ2

)
τ2=τ20 ,λ=iω1

= ξτ20
=

R1P1−R2P2

P2
1 +P2

2
.

(H2) : R1P1−R2P2 6= 0.

If (H2) holds, then stability switching of E∗ occurs. The following theorem states the criteria
for Hopf-bifurcation near E∗.

Theorem 3.4.1. For the system (3.2), τ2 as ordinate, assuming (H2) holds, there exists a posi-

tive number τ20 such that E∗ is locally asymptotically stable when τ2 < τ20 and unstable when

τ2 > τ20 . Furthermore, the system (3.2) undergoes a Hopf-bifurcation about E∗ at τ2 = τ20 .

Case(3): τ1 > 0, τ2 = 0.
We can state the following theorem under an analysis similar to Case(2).
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Theorem 3.4.2. For the system (3.2), with τ1 as abscissa, the equilibrium point E∗ is locally

asymptotically stable when τ1 < τ10 and unstable when τ1 > τ10 . Furthermore, the system (3.2)

undergoes a Hopf-bifurcation near E∗ at τ1 = τ10 , where

τ10 =
1

ω2
tan−1

(
(A+E)ω2

ω2
2 −F

)
.

Case(4): τ1 > 0, τ2 > 0.
We consider Eq. (3.12) keeping τ1 fix in its stable range (0,τ10) and τ2 to vary. Let iω(ω > 0)
be a root of Eq. (3.12). Separating real and imaginary parts, we obtain

ω
2 = [F +Gcos(ωτ1)]cos(ωτ2)+ [Eω−Gsin(ωτ1)]sin(ωτ2), (3.23)

Aω = [F +Gcos(ωτ1)]sin(ωτ2)− [Eω−Gsin(ωτ1)]cos(ωτ2). (3.24)

On eliminating τ2, we get

ω
4 +(A2−E2)ω2 +(2GE sin(ωτ1))ω− (2GF cos(ωτ1)+F2 +G2) = 0. (3.25)

Without loss of generality, we can assume that there exists at least one positive root ω0 of Eq.
(3.25). So, rewriting Eqs. (3.23) and (3.24) as

ω
2
0 = B1 cos(ω0τ2)+B2 sin(ω0τ2), (3.26)

Aω0 = B1 sin(ω0τ2)−B2 cos(ω0τ2), (3.27)

where
B1 = F +Gcos(ω0τ1),

B2 = Eω0−Gsin(ω0τ1).

On solving Eqs. (3.26) and (3.27), we obtain the following critical value of τ2 as

τ2
′
i =

1
ω0

cos−1
(

B2
1−A2ω2

0

ω2
0 B1 +Aω0B2

)
+

2iπ
ω0

, i = 0,1,2... (3.28)

Now, to verify the transversality condition for Hopf-bifurcation, put λ = ξ + iω in Eq. (3.12)
and then separating real and imaginary parts, we get

ξ
2−ω

2+Aξ +(Eξ +F)e−ξ τ2 cos(ωτ2)+Eω sin(ωτ2)e−ξ τ2 +Gcos(ω(τ1+τ2))e−ξ (τ1+τ2)= 0,
(3.29)
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2ωξ +Aω +Eωe−ξ τ2 cos(ωτ2)− (Eξ +F)e−ξ τ2 sin(ωτ2)−Gsin(ω(τ1 + τ2))e−ξ (τ1+τ2) = 0.
(3.30)

Differentiating (3.29) and (3.30) with respect to τ2 and put ξ = 0 (the system changes stability
when Re(λ ) = 0) and τ2 = τ ′20

, we obtain

M1ξτ ′20
+M2ωτ ′20

= N1, (3.31)

−M2ξτ ′20
+M1ωτ ′20

= N2, (3.32)

where

M1 = A+(E−Fτ
′
20
)cos(ω0τ

′
20
)− τ

′
20

Eω0 sin(ω0τ
′
20
)−G(τ1 + τ

′
20
)cos(ω0(τ1 + τ

′
20
)),

M2 = (E− τ
′
20

F)sin(ω0τ
′
20
)+Eω0τ

′
20

cos(ω0τ
′
20
)−2ω0−G(τ1 + τ

′
20
)sin(ω0(τ1 + τ

′
20
)),

N1 = Fω0 sin(ω0τ
′
20
)−Eω

2
0 cos(ω0τ

′
20
)+Gω0 sin(ω0(τ1 + τ

′
20
)),

N2 = Fω0 cos(ω0τ
′
20
)+Eω

2
0 sin(ω0τ

′
20
)+Gω0 cos(ω0(τ1 + τ

′
20
)).

Solving (3.31) and (3.32), we get(
d(Reλ )

dτ2

)
τ2=τ ′20

,λ=iω0

= ξτ ′20
=

N1M1−N2M2

M2
1 +M2

2
.

(H3) : N1M1−N2M2 6= 0.

Theorem 3.4.3. For the system (3.2), with τ1 ∈ (0,τ10) and assuming that (H3) holds, there

exists a positive number τ ′20
such that E∗ is locally asymptotically stable when τ2 < τ ′20

and

unstable when τ2 > τ ′20
. Furthermore, the system (3.2) undergoes a Hopf-bifurcation near E∗

at τ2 = τ ′20
.

3.4.2 Direction and stability of Hopf-bifurcation

In the previous subsection, we obtained conditions under which the system experiences Hopf-
bifurcation with respect to delay parameters τ1 and τ2. Here, we will determine the direction
of Hopf-bifurcation and stability of the bifurcated periodic solution at τ2 = τ ′20

and τ1 = τ∗1 =∈
(0,τ10) using center manifold theorem and normal form theory as described by Hassard et al.

[124].
Let τ2 = τ ′20

+µ, µ ∈ R so that Hopf-bifurcation occurs at µ = 0. Rescaling the time delay
t 7→ t

τ2
, the system (3.2) can be written as

U̇ = τ2(P′U(t)+Q′U(t−
τ∗1
τ2
)+R′U(t−1)+ f (x,y)),
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where
U(t) = (x(t),y(t))T .

P′ =

(
P11 P12

0 0

)
, Q′ =

(
0 Q12

0 0

)
, R′ =

(
0 0

R21 R22

)
, f = ( f1, f2)

T ,

such that P11 =−r1x∗+ b2
1

a x∗y∗, P12 =−b1x∗, Q12 =−b2, R21 =
qα(1−m)b2

3
s , R22 =−b3.

The non-linear terms f1, f2 are given by

f1 =
rx(t)

1+Ky(t− τ∗1
τ2
)
− r1x2(t)− qα(1−m)x(t)y(t)

a+q(1−m)x(t)
,

f2 =−
sy(t)y(t−1)

qα(1−m)x(t−1)+(1−q)αAKA
.

In functional form, the delayed system can be written as

Lµφ = (τ2 +µ)

(
P′φ(0)+Q′φ(−

τ∗1
τ2
)+R′φ(−1)

)
,

φ = (φ1,φ2)
T ∈C([−1,0],R2).

By the Riesz representation theorem, there exists a 2×2 matrix η(θ ,µ) such that its elements
are function of bounded variation. Therefore,

Lµφ =
∫ 0

−1
dη(θ ,µ)φ(θ).

In fact, choosing

η(θ ,µ) =



(τ ′20
+µ)(P′+Q′+R′), θ = 0,

(τ ′20
+µ)(Q′+R′), θ ∈ [

−τ∗1
τ2

,0),

(τ ′20
+µ)R′, θ ∈ (−1, −τ∗1

τ2
),

0, θ =−1,

for φ ∈C1([−1,0],R2), we define

A(µ)φ(θ) =


dφ(θ)

dθ
, −1≤ θ < 0,

∫ 0
−1[dη(ξ ,µ)]φ(ξ ), θ = 0,
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A∗ψ(s) =


−dψ(s)

ds , s ∈ (0,1],

∫ 0
−1[dη(ξ ,0)]ψ(−ξ ), s = 0,

and the bilinear form

〈ψ(s),φ(θ)〉= ψ(0)φ(0)−
∫ 0

−1

∫
θ

ξ=0
ψ(ξ −θ)dη(θ)φ(ξ )dξ ,

where
η(θ) = η(θ ,0).

We know that eigenvalues of A(0) are ±iω∗τ ′20
. Since A and A∗ are adjoint. Therefore, eigen-

values of A and A∗ are same. Now, we need to verify that

q(θ) = (1,α1)
T eiω∗τ ′20

θ
(θ ∈ [−1,0])

and
q∗(s) =

1
D
(1,α∗1 )e

iω∗τ ′20
s
(s ∈ [0,1])

are the eigenvectors of A(0) and A∗ corresponding to the eigenvalue iω∗τ ′20
and −iω∗τ ′20

, re-
spectively, where

〈q∗(s),q(θ)〉= 1, 〈q∗(s),q(θ)〉= 1,

α1 =
R21

iω∗eiω∗τ ′20 −R22

,

α
∗
1 =−(P12 +Q12e

iω∗τ∗1
τ ′20 )

iω∗+R22eiω∗τ ′20

,

and

D = 1+α1α∗1 + τ
′
20

[
R21α∗1 e−iω∗τ ′20 +R22α1α∗1 e−iω∗τ ′20 +Q12

α1τ∗1
τ ′20

e
−iω∗τ∗1

τ ′20

]
.
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Following the algorithms explained by Hassard et al. [124] and using a computation process
similar to that in [125], which is used to obtain the properties of Hopf-bifurcation, we obtain

g20 = τ
′
20

D
[

rW (1)
20 (0)−2rKα1e−iω∗τ∗1 −2r1−

2αα1q(1−m)

a
−

2α∗1 sα2
1 e−iω∗τ ′20

(1−q)αAKA

]
,

g02 = τ
′
20

D
[

rW (1)
02 (0)−2rKα1eiω∗τ∗1 −2r1−

2αα1q(1−m)

a
−

2α∗1 sα1
2eiω∗τ ′20

(1−q)αAKA

]
,

g11 = τ
′
20

D
[

rW (1)
11 (0)− rKα1e−iω∗τ∗1 − rKα1eiω∗τ∗1 −2r1−

α(α1 +α1)q(1−m)

a
−

α∗1 sα1α1eiω∗τ ′20

(1−q)αAKA

]
,

g21 = τ
′
20

D
[

r(−2Kα1W (1)
11 (0)e−iω∗τ∗1 −Kα1W (1)

20 (0)eiω∗τ∗1 +KW (2)
20

τ∗1
τ ′20

+2KW (2)
11

τ∗1
τ ′20

+2K2
α

2
1 e−2iω∗τ∗1 +4K2

α1α1)− r1(W
(1)
20 (0)+2W (1)

11 (0))− 2αq(1−m)

a

(
α1W (1)

11 (0)+
α1

2
W (1)

20 (0)

+
W (2)

20 (0)
2

+W (2)
11 (0)− 2α1q(1−m)

a
− α1q(1−m)

a
)−

2α∗1 s
(1−q)αAKA

(α1W (2)
11 (0)e−iω∗τ ′20

+
α1

2
W (2)

20 (0)eiω∗τ ′20 +
α1

2
W (2)

20 (−1)+W (2)
11 (−1)α1−

αq(1−m)α1α1

(1−q)αAKA
−

αq(1−m)α2
1

(1−q)αAKA

)]
,

where

W20(θ) =
ig20

ω∗τ ′20

q(0)eiω∗τ ′20
θ
+

ig02

3ω∗τ ′20

q(0)e−iω∗τ ′20
θ
+M1e2iω∗τ ′20

θ
,

W02(θ) =−
ig02

3ω∗τ ′20

q(0)eiω∗τ ′20
θ − ig20

ω∗τ ′20

q(0)e−iω∗τ ′20
θ
+M2e−2iω∗τ ′20

θ
,

W11(θ) =−
ig11

ω∗τ ′20

q(0)eiω∗τ ′20
θ
+

ig11

ω∗τ ′20

q(0)e−iω∗τ ′20
θ
+M3.

M1 and M2 can be computed as

M1 = 2

(
2iω∗−P11 −P12−Q12e−2iω∗τ∗1

−R21e−2iω∗τ ′20 2iω∗−R22e−2iω∗τ ′20

)−1(
−r+ r1 +qα(1−m)α1

sα2
1 e−2iω∗τ ′20

)
,

M2 = 2

(
−2iω∗−P11 −P12−Q12e2iω∗τ∗1

−R21e2iω∗τ ′20 −2iω∗−R22e2iω∗τ ′20

)−1(
−r+ r1 +qα(1−m)α1

sα1
2e2iω∗τ ′20

)
,

M3 = 2

(
−P11 −P12−Q12

−R21 −R22

)−1(
−r+ r1 +qα(1−m) (α1+α1)

2

sα1α1

)
.

Consequently, we can find gi j in terms of delay parameter and other biological parameters.
To determine characteristics of the bifurcated periodic solution, we can compute the following
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coefficients:

C1(0) =
i

2τ ′20
ω∗

(
g20g11−2|g11|2−

|g02|2

3

)
+

g21

3
, µ2 =−

Re{C1(0)}
Re{λ ′(τ ′20

)}
,

β2 = 2Re{C1(0)} and T2 =−
Im{C1(0)}+µ2{Im(λ ′(τ ′20

))}
ω∗τ ′20

.

Now we are able to state the following theorem.

Theorem 3.4.4. 1. The sign of µ2 determines the direction of the Hopf-bifurcation. If µ2 >

0(< 0), then the Hopf-bifurcation is supercritical (subcritical).

2. The sign of β2 determines the stability of the bifurcating periodic solution. If β2 > 0(< 0),
then the obtained periodic solution is unstable (stable).

3. T2 determines the period of the bifurcating periodic solution. If T2 > 0(< 0), then the

period increases (decreases).

3.5 Numerical simulation

In order to support the theoretical analysis, some numerical simulations are performed using
MATLAB R2020b. The set of parameters is chosen as follows:

r = 3.5, K = 1, q = 0.3, r0 = 0.5, r1 = 0.0375, a = 0.1,

KA = 1.7, α = 2, s = 0.2, m = 0.65, αA = 0.3, β = 1.
(3.33)

The corresponding equilibrium points and their stability behavior are given in Table 3.2.

Table 3.2: Equilibrium points of the proposed model and their stability behavior in the
absence of delay.

Equilibrium points Eigenvalues Stability behavior
E0(0,0) (3,0.2) unstable
E1(0,0.357) (1.3295,−0.2) saddle point
E2(80,0) (−3,0.2) saddle point
E∗(7.13,1.8543) (−0.0312±0.4175i) stable focus

3.5.1 Computation for the non-delayed system

This subsection presents the numerical simulation for the system (3.3) with parameters given in
(3.33). To examine the effect of fear, refuge, and additional food on the dynamics of the system
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(3.3), we obtain exciting results concerning parameters: K, q, m, αA. The effect of fear (on
varying K) is shown in Fig. 3.2 and Fig. 3.3.
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Fig. 3.2: Time series solution for system (3.3) around E∗ for (a) K = 1, (b) K = 1.7, (c)
K = 4.5. (d) Combined phase portrait corresponding to (a), (b) and (c) initiated from
(1,1).

In Fig. 3.2 (a), initially, for some duration, the prey and predator population oscillate about
their steady-state, and eventually, it converges to the co-existence equilibrium. On increas-
ing the value of the fear parameter, at K = K[H1] = 1.3576755, the system undergoes Hopf-
bifurcation resulting in instability of E∗, and a stable limit cycle is induced. At K = 1.7, the
system is unstable about E∗, as shown in Fig.3.2 (b). Both populations fluctuate highly about
their mean position between their maximum and minimum values. Further increase in K makes
the system stable from periodic oscillations via Hopf-bifurcation at K = K[H2] = 4.396743.
Hence at K = 4.5, the system shows stable behavior about E∗, shown in Fig. 3.2 (c). Phase
portraits corresponding to Fig. 3.2 (a), 3.2 (b), and 3.2 (c) are shown in Fig. 3.2 (d). Therefore,
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we conclude that the stability behavior of the co-existence equilibrium of the system (3.3) is
sensitive to the fear parameter.

Now, to check the transversality condition for Hopf-bifurcation at K[H1] and K[H2], using
Newton’s forward difference formula, we obtain the following results:

d(Re(λ ))
dK

∣∣∣∣
K=K[H1]

= 0.0671 > 0

and
d(Re(λ ))

dK

∣∣∣∣
K=K[H2]

=−0.0729 < 0.

Also, at both the bifurcation points

Re(λ ) = tr(M|E∗) = 0, det(M|E∗)> 0,

where λ is the characteristic root of Eq. (3.7). Therefore by the Andronov-Hopf-bifurcation
theorem, the system (3.3) undergoes Hopf-bifurcation at K[H1] and K[H2] around the positive
equilibrium E∗. At K =K[tc]= 5.04389962, we obtain δ3 =−0.3279 6= 0. Therefore, according
to Theorem 3.3.6, the system (3.3) undergoes a transcritical bifurcation at K = K[tc].

In order to visualize Hopf-bifurcation and transcritical bifurcation with respect to the fear
parameter K, we draw a bifurcation diagram in Fig. 3.3. According to Fig. 3.2, our system
undergoes Hopf-bifurcation at K[H1] and K[H2]. This situation is combinedly presented in Fig.
3.3.
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Fig. 3.3: Bifurcation diagram with respect to fear parameter K and remaining parame-
ters are same as in (3.33).

In Region I, the system is locally asymptotically stable around the interior equilibrium E∗
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and unstable around prey-free equilibrium E1. In Region II, E∗ is unstable, and a stable limit
cycle is born via Hopf-bifurcation at K = K[H1]. The axial equilibrium E1 is also unstable
in this region. In Region III, the positive equilibrium point E∗ again switches its stability
through Hopf-bifurcation at K = K[H2], and E1 is still unstable. At K = K[tc] = 5.04389962, E∗

disappears and transfers its stability to the prey-free equilibrium point E1. The aforementioned
phenomenon is transcritical bifurcation. Therefore, Region IV shows stable behavior of E1, and
E∗ does not exist here.

To determine the direction of Hopf-bifurcation, we use the formula given in [17]. We obtain
σ∗|K=K[H1] =−0.3148569566 and σ∗|K=K[H2] =−3.6036317012. Since these values are nega-
tive. Therefore, the direction of Hopf-bifurcation at K = K[H1] and K = K[H2] is supercritical.

Table 3.3: Effect of q on steady state of prey and predator population when K = 0.1 and
all parameters are same as in (3.33).

value of q x∗ y∗

0.1 49.6502 3.9345
0.2 38.1714 5.752
0.3 30.7263 6.8795
0.4 25.239 7.3729
0.5 20.941 7.5843
0.6 17.4666 7.54
0.7 14.6112 7.3175
0.8 12.2463 6.96
0.9 10.2826 6.529

From Table 3.3, one can see that on increasing the preference rate of the predator, the prey
population decreases, and on consuming prey, the predator population grows. Now, for larger
values of q, as the predator is highly dependent on prey and prey are lesser in number, the
predator population decreases. This result justifies the negative feedback.

Effect of m: The effect of refuge parameter m is shown in Fig. 3.4. From this figure, we
note that the prey population increases with an increase in the value of the refuge parameter. In
contrast, the predator population initially increases up to m = 0.39236 and then decreases. This
shows that reserving prey is beneficial for both prey and predator up to a threshold value of the
refuge parameter. However, beyond this value, it causes a negative effect on the predator. The
rate of change in predator population y∗ with respect to m is determined, and we get[

dy∗

dm

]
m=m∗

= 0.

Predator population attain its maximum i.e., y∗max = 7.5957 at m = m∗ = 0.39236.
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Fig. 3.4: The effect of refuge on prey and predator population, other parameters are the
same as in Eq. (3.33).
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Fig. 3.5: Switching of stability of E∗. (a) E∗ is stable at αA = 0.2 < α∗A. (b) E∗ is unsta-
ble at αA = 0.5 > α∗A.

Effect of αA: The effect of additional food parameter αA is depicted in Fig. 3.5 and Fig. 3.6 .
From Fig. 3.5, it is observed that the positive equilibrium E∗ is stable initially at αA = 0.2. On
increasing the value of αA, the system (3.3) undergoes Hopf-bifurcation at αA =αA

∗= 0.41983,
computed by the formula derived in Sec. 3.3. After this value, E∗ becomes unstable, and
a stable limit cycle is born. The direction of Hopf-bifurcation is obtained from the formula
given in Wang [17], which gives σ∗ = −0.1884045609. By Perko [60], it is a supercritical
Hopf-bifurcation as σ∗ < 0.

Initially, at αA = 0.48, a stable limit cycle around E∗ and a saddle point E1 are observed
in Fig. 3.6 (a). With the increase in the value of αA, at αA = 0.51, the limit cycle expands
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and approaches towards the saddle point E1. This can be seen in Fig. 3.6 (b). The limit
cycle collides with saddle point E1 at αA = α∗∗A = 0.61091, the homoclinic bifurcation point,
and a closed trajectory with an infinite period termed homoclinic orbit is formed, in which the
saddle point links itself, as seen in Fig. 3.6 (c). After homoclinic bifurcation, the limit cycle
disappears, and the prey-free equilibrium E1 is stable. Fig. 3.6 (d) shows the phase portrait after
homoclinic bifurcation at αA = 0.63. It concludes that as we increase αA, the prey population
immediately collapses after homoclinic bifurcation [126].
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Fig. 3.6: Effect of αA causes the system (3.3) to undergo a homoclinic bifurcation at
αA = α∗∗A between saddle point E1 and stable limit cycle around E∗. The stable limit
cycle approach towards saddle point E1 before the homoclinic bifurcation (a), (b). The
last vestige of the limit cycle: homoclinic orbit, is formed at the homoclinic bifurcation
(c). After bifurcation, the trajectory tends towards E1 (d).

The variation of the preference rate of predator with fear parameter is shown in Fig. 3.7.
From this figure, it is observed that on increasing preference rate of the predator, the cost of
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fear in prey varies such that the stability of E∗ and E1 is affected, which gives rise to four
different regions. In region I, E∗ is stable and E1 is unstable. E∗ changes its stability via Hopf-
bifurcation, and a stable limit cycle occurs in region II. Region III represents the stability region
of E∗ as the system (3.3) undergoes Hopf-bifurcation again. In region IV, E1 is stable by means
of a transcritical bifurcation.
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Fig. 3.7: Various stability regions of the model (3.3) in the qK−plane.

We can see from Fig. 3.1 (d) that no positive equilibrium exists for the chosen set of
parameters, and P3 =−0.1274, P4 = 0.9986 and ∆=−1.2237×10−6. Furthermore, all existing
equilibria except the prey-free equilibrium are unstable. Hence by the Poincare-Bendixson’s
theorem, the equilibrium E1 is globally asymptotically stable (shown in Fig. 3.8). This finding
supports Theorem 3.3.7.
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Fig. 3.8: E1 is globally asymptotically stable where the parameters are the same as in
Fig. 3.1 (d).

The co-existence between two stable attractors can be achieved using a control parameter.
This phenomenon is bi-stability. The system can converge to two different attractors depending
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upon the initial condition. Our system exhibits bi-stability between prey-free and interior equi-
librium (see Fig. 3.9 ). The black dashed curve shown here is the separatrix; it separates the
region of stability of both equilibria. It is clear from Fig. 3.9 that the trajectory (green curve)
started from below the separatrix converges to E∗1 , and the blue curve started from above the
separatrix approaches to E1. For bi-stability, the range of αA is [7.631265,8.585380].
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Fig. 3.9: Bi-stability phenomenon between equilibrium points E1 and E∗1 for the system
(3.3). Here αA = 8, a = 1, K = 0.05 and other parameters are from (3.33).

3.5.2 Computation for the delayed model

Here we shall perform numerical simulation for the delayed model (3.2) with the set of param-
eters (3.33). For the chosen parameters, the numerical value of equilibrium points is the same
as in Table 3.2. In the absence of delay, condition (3.8) holds, which implies that the system is
stable about the interior equilibrium E∗. Upon introducing delay, we shall investigate different
cases discussed in Subsec. 3.4.1.

The effect of gestation delay: τ1 = 0, τ2 > 0. We can verify Theorem 3.4.1 numerically. We
observe that the transversality condition (H2) holds at τ20 . This value of τ20 can be determined
using (3.18). Taking n = 0, we obtain

τ20 = 0.345727 and
d(Reλ )

dτ2

∣∣∣∣
τ2=τ20

= 0.014547 6= 0.

This shows Re(λ ) is increasing function of τ2 at τ2 = τ20 . Thus, according to Theorem 3.4.1,
the system (3.2) undergoes a Hopf-bifurcation around E∗ at τ2 = τ20 = 0.345727.

Fig. 3.10 (a) (time series curve) and Fig. 3.10 (c) (phase portrait) show that the solution
trajectory oscillates about E∗ at first and eventually converges to it. This behavior is the local
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asymptotic stability of E∗ at τ2 = 0.2 < τ20 . On increasing the value of gestation delay, the
system experiences a Hopf-bifurcation near E∗ at τ2 = τ20 . Consequently, E∗ is no longer
stable, and a stable limit cycle is induced at τ2 = 0.52 > τ20 (refer to Fig. 3.10 (b), (d)).
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Fig. 3.10: When τ2 = 0.2 < τ20 and τ1 = 0, E∗ is locally asymptotically stable (a,c). At
τ2 = 0.52 > τ20 and τ1 = 0, E∗ is unstable (b, d).

To demonstrate the Hopf-bifurcation in a better way, we constructed a bifurcation diagram
in three dimensions (see Fig. 3.11). Trajectories of both populations are plotted against gesta-
tion delay. It is observed that before the critical value of τ2, the positive equilibrium is stable,
but when it crosses this value, the trajectory is attracted towards limit cycles. The colored
closed orbits shown here are stable limit cycles.
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Fig. 3.11: Bifurcation diagram representing attractors (equilibrium points and limit cy-
cles) for various values of gestation delay τ2.
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Fig. 3.12: When τ1 = 0.2 < τ10 and τ2 = 0, E∗ is locally asymptotically stable (a,c). At
τ1 = 0.52 > τ10 and τ2 = 0, E∗ is unstable and a stable limit cycle is born (b, d).
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The effect of fear-response delay: τ1 > 0, τ2 = 0. Fig. 3.12 gives the verification of Theorem
3.4.2. This shows Hopf-bifurcation near E∗ at τ1 = τ10 = 0.489907. When the prey’s fear
response is immediate, i.e., τ1 = 0, the co-existence equilibrium E∗ is stable. When there is a
time lag, such as τ1 > 0, E∗ stays stable until τ1 reaches τ10 . At this point, E∗ loses its stability,
and a stable limit cycle is born by means of a supercritical Hopf-bifurcation. This phenomenon
is better demonstrated by the bifurcation diagram in Fig. 3.13. The colored closed trajectories
shown here are the stable limit cycles.

Fig. 3.13: Bifurcation diagram showing the effect of fear response delay on E∗.

How does the fear-response delay affect the system’s bi-stability (shown in Fig. 3.9)?
To find the answer to this question, we analyze the system in the presence of fear-response delay
for parametric values similar to Fig. 3.9. Bi-stability is a phenomenon that relies on the initial
condition. At τ1 = 4, the system is bi-stable between E1(0,9.52) and E∗(16.6898,13.0248).
If we start any trajectory inside the cyan region, it eventually converges to the co-existence
equilibrium (see the yellow spiral). This closed area denotes the set of initial values for which
the trajectory converges to E∗, while any trajectory starting outside of it goes to E1 (see the
green curve). The boundary of this region (black curve) forms the unstable limit cycle (see Fig.
3.14 (a)). On increasing the value of τ1, the system undergoes a subcritical Hopf-bifurcation at
τ1 = τ

(1)
1 = 6.5576641808 and becomes unstable about E∗. Fig. 3.14 (b) depicts instability of

E∗ and stability of E1 at τ1 = 7.1 > τ
(1)
1 . In this case, the amplitude of the oscillations about

E∗ increases and becomes so high that it touches the stable manifold of E1, resulting in almost
everywhere stability of prey-free equilibrium. On further increasing τ1, the system regains its
stability via another subcritical Hopf-bifurcation at τ1 = τ

(2)
1 = 23.30867546, and an unstable

limit cycle enclosing stable E∗ is generated. Fig. 3.14 (c) illustrates this behavior at τ1 = 30 >

τ
(2)
1 . However, the system remains no longer stable (via another subcritical Hopf-bifurcation)

when the fear-response delay crosses another critical value τ1 = τ
(3)
1 = 33.56175777054. Fig.
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3.14 (d) at τ1 = 35 > τ
(3)
1 has the same explanation as Fig. 3.14 (b). In all these cases, the prey-

free equilibrium E1 is always stable. The range of τ1 for the system to be bi-stable between
E∗ and E1: [0,τ(1)1 )∪ (τ(2)1 ,τ

(3)
1 ). This multiple switching of stability with respect to the fear-

response delay can be better explained through the bifurcation diagram plotted in Fig. 3.15.
The phenomenon of bi-stability between E∗ and E1 remains unaffected by τ1 until it reaches
the first critical value, i.e., τ

(1)
1 . In fact, for a lower value of τ1, E∗ is stable for a broader range

of y. E∗ switches stability thrice via subcritical Hopf-bifurcation at τ
(1)
1 , τ

(2)
1 ,and τ

(3)
1 .
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Fig. 3.14: Phase portrait at (a)τ1 = 4 < τ
(1)
1 , (b)τ(1)

1 < τ1 = 7.1 < τ
(2)
1 , (c)τ(2)

1 < τ1 =

30 < τ
(3)
1 and (d)τ1 = 35 > τ

(3)
1 . Parametric values are same as chosen in Fig. 3.9.
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Fig. 3.15: Bifurcation diagram for y showing subcritical Hopf-bifurcation with respect
to τ1, other parameters are the same as chosen in Fig. 3.9 .

The first two critical values are obtained from the formula in Theorem 3.4.2 corresponding
to ω

(1)
2 = 0.23267529 and ω

(2)
2 = 0.11304208. τ

(3)
1 is determined from the numerical simula-

tion. The solid red and green lines represent the stability of E∗ and E1, respectively. The blue
and red dashed line or curve shows instability (see Fig. 3.15).
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Fig. 3.16: Stability region for the system (3.2) in Kτ1− plane, other parameters are same
as in (3.33).

Since the system shows Hopf-bifurcation regarding K and τ1, we plotted Fig. 3.16. The
values of K for which the system is stable around E∗ are taken on the abscissa. For each value
of such K, one can obtain a unique value of τ1 at which the system starts showing oscillatory
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behavior. This divides the Kτ1− plane into two different regions. E∗ is locally asymptotically
stable in the blue region, and in the white region, it is unstable and periodic solutions occur.
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Fig. 3.17: Region of stability and instability in τ1τ2−plane.

Integrated effect of fear-response delay and gestation delay: τ1 > 0, τ2 > 0. For each
value of τ1 in its stable range [0,τ10), a unique value of τ2 in its stable range [0,τ ′20

) is obtained
at which the system switches its stability via Hopf-bifurcation. Below this point, the system
is stable around positive equilibrium E∗, and at this point, it becomes unstable with born of a
stable limit cycle. The collection of all such points forms the Hopf-bifurcation curve, as shown
in Fig. 3.17.

Taking τ1 = 0.3 ∈ (0,τ10), we obtain a critical value of gestation delay at which the Hopf-
bifurcation can occur. On substituting i = 0 in (3.28), we get τ ′20

= 0.13631786. The transver-
sality condition also holds, viz.

d(Reλ )

dτ2

∣∣∣∣
τ2=τ ′20

= (1.2393)10−4 6= 0.

In the presence of fear-response delay, Fig. 3.18 (a) and (c) display the stability of positive
equilibrium E∗ when the value of τ2 is less than its critical value τ ′20

, and Fig. 3.18 (b) and
(d) presents the stable limit cycle surrounding unstable E∗ when τ2 > τ ′20

. All of these aspects
verify Theorem 3.4.3. Hence, the system (3.2) experiences a Hopf-bifurcation in the presence
of both delays.
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Fig. 3.18: Fixing τ1 = 0.3 ∈ (0,τ10) we obtained τ ′20
= 0.13631786 from (3.28).When

τ2 = 0.09 < τ ′20
, E∗ is locally asymptotically stable (a,c). At τ2 = 0.16 > τ ′20

E∗ is
unstable and it is surrounded by a stable limit cycle (b,d).

3.6 Discussion and conclusion

In this article, we have studied the Leslie-Gower prey-predator model, assuming predators can
consume prey as well as the constant additional food provided, according to their choice. The
impact of prey’s fear of being victimized is also considered. For prey conservation, some are
protected, and hence the concept of refuge is taken into consideration. We have also analyzed
this system in the presence of gestation delay and fear response delay. As per our knowledge,
no literature shows dynamics for a prey-predator model with all these effects.

In the non-delayed model, we observed that when species are present initially, they will
sustain for all time if the birth rate of prey is good enough. The system exhibits four equilibria:
trivial equilibrium E0(0,0), prey-free equilibrium E1(0,

(1−q)αAKA
β

), predator-free equilibrium
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E2(
r−r0

r1
,0) and interior equilibrium E∗(x∗,y∗). E0 and E2 are always unstable. Prey-free equi-

librium is stable only when the birth rate of prey does not exceed a particular value. The
stability of this equilibrium decides the number of positive steady-states. The instability of E1

guarantees the existence of a unique positive equilibrium and vice versa. When E1 is stable,
the system acquires either two positive equilibria or none. When both species do not co-exist,
the prey will become extinct, and the predator will survive, resulting in the global stability of
E1 (see Fig. 3.8). The stability of E∗ can be achieved under a necessary and sufficient con-
dition (3.8). Furthermore, we discussed the possibility of Hopf-bifurcation and transcritical
bifurcation.

Many researchers have shown that cost of fear can alter the stability of the system [76,
127]. Therefore it is essential to investigate our model concerning the fear parameter K. We
obtained fascinating results with respect to it. The system shows multiple Hopf-bifurcations and
a transcritical bifurcation on varying K. In the absence of fear, both species converge to their
positive steady-state. This behavior is unaltered until the fear reaches a certain level. At this
level, both species start oscillating about the positive equilibrium. Taking K in a specific range
can maintain the stability of the system. When prey individuals are too afraid, they may forage
less, eventually leading to extinction. Although increasing fear reduces the predator density,
they never go extinct (see Fig. 3.3). This result agrees with the recent findings demonstrated by
Mishra and Upadhyay [128]. They remarked that the fear of wolf spiders reduces the density of
insect pests and helps the plant ecosystem, strengthening the role of wolf spiders as biocontrol
agents. In our system, it has been observed that extra food provided to the predator plays a
significant role in governing the dynamics of the system.

Onana et al. [11] concluded that when predators’ preference rate increases, they decline.
On the other hand, our findings show that the increasing preference rate of predators results
in their increment. However, when predators prefer prey more, they decline. Possibly, this
diminution in predators is the consequence of the reduction in prey population (due to the lack
of their favorite food) (refer to Table 3.3). Since the system shows extensive fear parameter and
preference rate results, we divided the qK− plane into various regions based on the stability of
E∗ and E1. By looking at Fig. 3.7, one can determine the value of q and K for which the system
attains Hopf-bifurcation and transcritical bifurcation.

The purpose of introducing refuge to prey is to control the biological imbalance. We ob-
tained a result in favor of it viz. reserving prey up to a certain level can enhance both the
species. It is also noted that predators never go extinct even when the prey refuge is strong. The
presence of extra food could be the reason for the survival of predators. A study by Ghosh et

al. [110] reveals that both species co-exist at the low value of prey refuge, but predators extinct
at strong prey refuge.
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The amount of energy obtained from additional food given to the predator can have a mas-
sive impact on the dynamics of the system. The system shows local as well as global dynamics
with respect to αA. As predators get more energy from additional food, they can consume more
prey. The decrease in prey may lead to their extinction. As shown in Fig. 3.6, at a high value of
αA, the prey population extinct, and the predator population survives via a homoclinic global
bifurcation. Prasad et al. [111] observed that a large quantity of additional food with high
quality to predators could lead to prey eradication. Also, when both populations co-exist and
the system is oscillatory, reducing the value of αA can stabilize the system via a supercritical
Hopf-bifurcation.

The system without delay exhibits bi-stability by adjusting the additional food parameter
αA. The solution trajectory converges to two different attractors depending on the initial state.
One is the co-existence equilibrium, and the other is prey-free equilibrium. Their basin of
attraction is separated by a curve called separatrix (see Fig. 3.9 ). Also, we obtained the range
of αA, for which the system stays bi-stable between E∗ and E1.

Destabilization of a prey-predator system with respect to time delay is frequent. To study
the dynamics of the delayed system (3.2), we investigated analytically and numerically. We
studied this model in the presence of gestation delay, fear response delay, and when both de-
lays are present. In all these cases, we observed that a stable system undergoes a supercritical
Hopf-bifurcation at a slightly high value of the delay parameter, resulting in oscillations of both
species around their co-existence equilibrium. With a different set of parameters, we examined
the effect of fear-response delay on the bi-stability of the non-delayed system. The delayed
system experiences stability switching three times through subcritical Hopf-bifurcation as τ1

varies. Consequently, we obtained a range of τ1, for which the system is bi-stable between E∗

and E1. Panday et al. [88] analyzed that multiple switching of stability arises due to super-
critical Hopf-bifurcation for fear-response delay. Moreover, they also observed a bi-stability
phenomenon between interior equilibrium and limit cycle. Gestation delay introduced in the
system (τ1 = 0,τ2 > 0) can cause at most one-time stability switching through Hopf-bifurcation.
Analytically, we determined the direction of Hopf-bifurcation and stability of the bifurcated
limit cycle. Since the system shows Hopf-bifurcation with respect to the fear parameter and
both the delays, we mapped Hopf-bifurcation curve in Kτ1−plane and τ1τ2−plane. To under-
stand the bifurcation phenomenon clearly, bifurcation diagrams are constructed (see Figs. 3.11,
3.13 and 3.15).

Our findings might give a biological understanding of prey-predator relationships. This
research can be expanded in the future by incorporating diffusion aspects. The impact of the
reaction-diffusion effect on prey-predator interactions would be fascinating to investigate.
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Chapter 4

Bifurcations and multi-stability in an eco-epidemic
model with additional food 1

4.1 Introduction

In the study of ecosystems, predator-prey interactions are a major topic of debate. Non-linear
differential equations are frequently used to express the interaction between them. Complex
phenomena such as bifurcation and chaos have been found in these sorts of dynamic systems
[129]. When prey, or predator, or both are exposed to some infectious disease, the dynamics
of the system are often altered. We direct interested readers to the pieces of literature [45, 130,
131] and relevant references therein. The study of illness in a prey-predator system falls under
the umbrella of eco-epidemiology, a specialized branch of research. The fusion of ecology and
epidemiology has made tremendous progress in recent decades. To examine the interaction
among prey and predator, plenty of mathematical models are developed [33, 128, 132, 133,
134, 135, 136]. In 1986, Anderson and May [44] discovered that the virus in a prey-predator
system is capable of changing the stability behavior. Many articles in the prior research focused
solely on parasite infection in prey [137], while some addressed predator infection through
prey consumption [138] or disease transmission in predators [139]. Recently, Majumder et

al. [140] looked at the impact of ambient noise on species persistence and extinction in an
eco-epidemic system. Due to the fact that infected preys are weak, the predator can hunt them
easily. According to Joly and Messier [141], wolf hunts on moose are more likely to succeed if
the moose is severely infested by Echinococcus granulosus. However, Saha and Samanta [84]
revealed that if a predator consumes infected prey in a large amount, the predator population
declines. This shows that feeding on sick prey can harm the predator. Several experimental
investigations have demonstrated that parasitic mortality enhances predation susceptibility in
the majority of eco-epidemic systems [142, 143]. When a predator feeds on healthy food, it

1A considerable part of this chapter is published in The European Physical Journal Plus, 137, 118, 2022.
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may do so out of fear of contracting a disease from the diseased prey. For example, dicyphus
hesperus females rejected infected nymphs 96% of the time compared to non-infected nymphs
39% of the time [144].

The healthy prey may show a defense mechanism against predation. The effect of group
defense on interacting populations is often presented through the Holling type IV functional
response: ωx

x2
i +x+a

[48]. Calculations conducted by Yamauchi and Yamamura [145] showed

that defensive evolution in prey tended to enhance harmonious cohabitation among the three
species and, depending on parameter values, lowered the amplitude of population oscillations.
A Leslie-Gower prey-predator model with group defense was investigated by Mishra et al.

[81], they determined that greater prey defensive capacity leads to destabilization of the model,
which can lead to periodic and chaotic fluctuations. In the presence of disease in prey, Bate and
Hilker [146] hypothesized that prey performs group defense and found that the prey’s sickness
can aid the predator by lowering prey numbers. Banerjee et al. [46] performed extensive
bifurcation analysis comprising local and global bifurcations for an eco-epidemic model with
herd behavior of prey. Gimmelli et al. [147] investigated an ODE model with a sick predator
interacting with the prey showing herd behavior. They observed a heteroclinic connection
between saddle equilibrium points in the disease-free system.

An additional food given to the predators increases the density of predators which causes
a decrease in the equilibrium level of prey species. It has been observed that additional food
given to the predators may reduce or eliminate oscillations in the prey-predator system [109].
For species conservation, it is essential to eradicate the disease from a prey-predator system.
Providing additional food to the predator is one of the non-chemical approaches for this aim. It
is evident from the research done that extra food for the predator can control disease in the sys-
tem. Sahoo’s [40] numerical results indicate that in the absence of additional food, the system
can not be disease-free above a threshold of infection rate but providing food can eliminate the
disease even if the transmission rate is high. Plenty of eco-epidemiological models have been
developed and analyzed in the last several decades with the goal of controlling the disease, and
it has become a topic of great interest. Samanta et al. [148] observed that in the presence of
alternative food, enrichment plays a significant role in reducing the diseased population. Sahoo
and Poria [149] formulated a SEIP prey-predator model with disease in prey, and to control
the disease in the system; they studied the consequences of providing alternative food to the
predator. It does not matter whether the predator is infected or not, a predator species’ popula-
tion does not become extinct when they have access to an alternate food supply [45]. Providing
alternative food to one of the interacting species has become an eco-friendly method with appli-
cations in a variety of disciplines, including biological conservation, bio-remediation, resource
management, biological control, pest management, and so on. However, research shows that
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studying predator–prey dynamics in the presence of increased food accessible to the predator
alters the system’s qualitative behavior. Therefore, it is important to investigate the effect of
additional food on the dynamics of a prey-predator system.

The primary goal of the present article is to investigate the impact of additional food to
control disease in a prey-predator system. To achieve this goal, firstly, we formulate a Leslie-
Gower prey-predator initial value problem based upon some assumptions in Sect. 4.2. The
biological viability of the proposed system is demonstrated in Sect. 4.3. Next, we analyze the
disease-free subsystem substantially in Sect. 4.4. The results obtained in this section are helpful
in determining the dynamics of the full system. Sect. 4.5 deals with equilibrium point analysis,
local stability, Hopf-bifurcation, and global stability. Then, to confirm the analytical results
derived, we perform numerical simulations in Sect. 4.6. Lastly, all findings of the chapter
(theoretical and numerical) are summarized in Sect. 4.7.

4.2 The model with basic assumptions

In this section, we propose a formal model that depicts disease transmission in a prey-predator
system based on the following assumptions:

1. In the presence of infection, the prey population is divided into two basic compartments:
susceptible prey S(t) and infected prey I(t), with the predator’s density represented by
P(t) at any time t.

2. Only susceptible prey can compete for the resources (limited). As a result, their growth
is considered logistic growth. Infected prey, on the other hand, is supposed to be unable
to reproduce. Therefore, their population growth is solely related to the infection of
susceptible victims. The transmission among susceptible and infected classes obeys the
mass-action law [133]. Nevertheless, the prey cannot transmit this disease to the predator
in any case [150].

3. The predator cannot distinguish between healthy and infected prey, and thus predator
utilizes healthy as well as infected prey, which is reasonably significant [84].

4. Susceptible preys are healthy and can defend themselves. Hence Holling type IV func-
tional response is taken into consideration. In comparison, infected preys are not strong
enough to defend themselves against predation. Therefore, we assume that the predator
consumes infected prey employing Holling type II functional response.
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5. The residual loss in infected prey is either due to its natural death (includes death due to
infection also) or by predation, which means that the infected prey is not immune to the
disease.

6. We presume that the predator is fed extra food of constant density KA and gains energy
in the form of biomass αA. According to the proportions given by the parameter q, the
predator consumes prey and the supplementary meal. Therefore, their development is
reliant on both sources, and this relationship follows the modified Leslie-Gower scheme
[11].

Fig. 4.1: Schematic flow chart showing model (4.1) formulation.

In light of the preceding assumptions, the interaction between susceptible prey, infected prey,
and predators feeding on them is represented as

dS
dt

= r1S
(

1− S+ I
K

)
−βSI− qα1SP

S2

γ
+S+a1

= f1(S, I,P),

dI
dt

= βSI−δ1I− qα2IP
a2 + I

= f2(S, I,P),

dP
dt

= r2P
(

1− ξ P
qα1S+qα2I +(1−q)αAKA

)
= f3(S, I,P),

(4.1)

S(0)≥ 0, I(0)≥ 0 P(0)≥ 0.

The biological meaning and dimension of parameters and variables involved in system (4.1) are
listed in Table 4.1, and the formulation of this model is illustrated as a schematic view in Fig.



4.2. The model with basic assumptions 81

4.1. The proposed system (4.1) is composed of two subsystems: SP model (4.2) and SI model
(4.3).

(i) In the absence of disease, i.e., I = 0, model (4.1) takes the following form:

dS
dt

= r1S
(

1− S
K

)
− qα1SP

S2

γ
+S+a1

= h1(S,P),

dP
dt

= r2P
(

1− ξ P
qα1S+(1−q)αAKA

)
= h2(S,P),

(4.2)

Investigating (4.2) would be very valuable in studying the intricate dynamics of (4.1).
Model (4.2) is an interesting problem to study as it has not been addressed in the current
literature. We will analyze this system in Sect. 4.4.

(ii) In the absence of predation, i.e., P = 0, model (4.1) is transformed into an epidemic
model, given by:

dS
dt

= r1S
(

1− S+ I
K

)
−βSI,

dI
dt

= βSI−δ1I.
(4.3)

Sahoo [40] thoroughly investigated this model (4.3).

Table 4.1: Biological explication of variables/parameters used in model (4.1)

Variables/Parameters Biological explication Dimension

S Susceptible prey density Biomass
I Infected prey density Biomass
P Predator density Biomass
r1 Intrinsic growth rate of susceptible prey Time−1

K Environmental carrying capacity of prey Biomass
β Rate of disease transmission at which the susceptible prey gets infected Biomass−1 Time−1

α1 Maximum rate of per capita removal of susceptible prey due to predation Time−1

a1 Half saturation constant for susceptible prey Biomass
γ Measure of predator’s immunity from prey Biomass
δ1 Natural death rate of infected prey + death rate due to infection Time−1

q Preference rate of predator for food and q ∈ (0,1) Dimensionless
α2 Maximum rate of per capita removal of infected prey due to predation Time−1

a2 Half saturation constant for infected prey Biomass
r2 Intrinsic growth rate of predator Time−1

αA It measures the amount of energy of the additional food Time−1

assimilate into the predator’s energy
KA Additional food of constant density A Biomass
ξ Maximum rate of per capita removal of predator species Time−1
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4.3 Positivity and boundedness of the proposed system

The other form of model (4.1) is

dS
dt

= Sφ1(S, I,P),
dI
dt

= Iφ2(S, I,P),
dP
dt

= Pφ3(S, I,P),

where

φ1(S, I,P) = r1

(
1− S+ I

K

)
−β I− qα1P

S2

γ
+S+a1

, φ2(S, I,P) = βS−δ1−
qα2P
a2 + I

,

φ3(S, I,P) = r2

(
1− ξ P

qα1S+qα2I +(1−q)αAKA

)
.

It follows that
S(t) = S(0)e

∫ t
0 φ1(S(θ),I(θ),P(θ))dθ ≥ 0,

I(t) = I(0)e
∫ t

0 φ2(S(θ),I(θ),P(θ))dθ ≥ 0,

P(t) = P(0)e
∫ t

0 φ3(S(θ),I(θ),P(θ))dθ ≥ 0.

Thus, all solutions (S(t), I(t),P(t)) with the positive initial condition remain positive through-
out the region R3

+.
Due to a scarcity of resources, nature does not allow any species to expand abruptly. There-

fore, it is essential to check the boundedness of the formulated model.

Theorem 4.3.1. All solutions of system (4.1) starting in R3
+ are confined in the region Ω =

{(S, I,P) ∈ R3
+ : 0≤ S ≤ K, 0≤ S+ I ≤ 2r1K

δ∗
, 0≤ P≤ µ}, where δ∗ and µ are defined in the

proof of this theorem.

Proof. From the first equation of the model

dS
dt
≤ r1S

(
1− S

K

)
,

which implies
limsup

t→∞

S(t)≤ K.

Combining first and second equations of the model gives

dS
dt

+
dI
dt
≤ 2r1S− r1S−δ1I,

≤ 2r1K−δ∗(S+ I),
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where δ∗ = min{δ1,r1}. This implies

limsup
t→∞

(S(t)+ I(t))≤ 2r1K
δ∗

.

Now, to show the boundedness of predator population, we can write

dP
dt
≤ r2P

(
1− ξ P

(qK(α1 +
2α2r1

δ∗
)+(1−q)αAKA)

)
,

Using differential inequality theory, we arrive at

limsup
t→∞

P(t)≤ 1
ξ

(
qK(α1 +

2α2r1

δ∗
)+(1−q)αAKA

)
= µ.

Therefore, we can conclude that all solutions of system (4.1) remain attracted in the region
Ω.

When a population is present at the beginning, it has the potential to live under certain
conditions. The following theorem determines these requirements.

Theorem 4.3.2. Assume that the following inequalities are true:

(i) 2(r1+βK)
δ∗

+ qα1µ

a1r1
< 1,

(ii) 1
Sa
(qα1Kµ

a1r1
+ 2δ1K

δ∗
+ 2qα2Kµ

a2δ∗
)< 1,

then the system (4.1) persists uniformly.

Proof. If each component population survives, the system is considered to perpetuate. Analyt-
ically, the system is said to be persistent if there exists Ma > 0, Mb > 0 such that

Ma ≤ liminfX(t)≤ limsupX(t)≤Mb.

In order to prove the above condition, we manipulate the first equation of the model as

dS
dt
≥
(

r1− (
r1

K
+β )

2r1K
δ∗
− qα1µ

a1

)
S− r1S2

K

which implies

liminf
t→∞

S(t)≥
(

r1− (
r1

K
+β )

2r1K
δ∗
− qα1µ

a1

)
K
r1

=: Sa.

Now, from first two equations of model (4.1), we can write

d(S+ I)
dt

+ r1(S+ I)≥ r1Sa−
qα1Kµ

a1
− 2δ1r1K

δ∗
− 2qr1α2Kµ

a2δ∗
.
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Therefore,

liminf
t→∞

(S+ I)(t)≥ Sa−
qα1Kµ

a1r1
− 2δ1K

δ∗
− 2qα2Kµ

a2δ∗
=: Ia.

From the third equation of the model we directly obtain

liminf
t→∞

P(t)≥ (1−q)αAKA

ξ
= Pa.

Let Ma = min{Sa, Ia,Pa}, Mb = max{K, 2r1K
δ∗

,µ} and X(t) = (S(t), I(t),P(t))′. If both condi-
tions mentioned in the theorem are satisfied, then it follows that

Ma ≤ liminfX(t)≤ limsupX(t)≤Mb.

As a result of this, the theorem is established.

4.4 Dynamics of subsystem (4.2)

The boundedness of system (4.1) results into the boundedness of subsystem (4.2). The possible
four steady-states of system (4.2) are: (i)E0(0,0), (ii)E1(K,0), (iii)E2(0,

(1−q)αAKA
ξ

), (iv)E∗(S∗,P∗),
here (S∗,P∗) is the unique positive solution of following equations:

r1

(
1− S

K

)
− qα1P

S2

γ
+S+a1

= 0, (4.4)

P =
1
ξ
(qα1S+(1−q)αAKA). (4.5)

Solving Eqs. (4.4) and (4.5) we obtain

B1S3 +B3S2 +B5S+B7 = 0, (4.6)

where B1 = r1ξ > 0, B3 = r1ξ (γ−K), B5 = −r1γξ K + r1a1γξ +q2α2
1 γK, B7 = qα1γK(1−

q)αAKA− r1a1γξ K.

The possible cases for the uniqueness of E∗ are following:
B1 B3 B5 B7

(i) + + + -
(ii) + + - -
(iii) + - - -
(iv) + - + -
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• In cases (i), (ii) and (iii), using the Descarte’s rule, the existence of unique positive root
of Eq. (4.6) is guaranteed.

• In case (iv), by Descarte’s rule of sign Eq. (4.6) may have three positive roots or one
positive root and two complex roots. Moreover, if the discriminant of the cubic equation,
i.e., ∆ = B2

3B2
5−4B1B3

5−4B3
3B7−27B2

1B2
7+18B1B3B5B7 is negative, then it assures that

Eq. (4.6) has exactly one positive root. This provides us the next theorem.

Theorem 4.4.1. (a) Let any one of the following holds:

(i) B3 > 0, B5 > 0 and B7 < 0,

(ii) B3 > 0, B5 < 0 and B7 < 0,

(iii) B3 < 0, B5 < 0 and B7 < 0.

Then subsystem (4.2) has a unique positive equilibrium E∗(S∗,P∗).

(b) Let the following inequalities hold: B3 < 0, B5 > 0, B7 < 0 and ∆ < 0. Then E∗(S∗,P∗)

exists uniquely.

Remark. B7 < 0 is the necessary condition for the uniqueness of E∗(S∗,P∗).

Local stability: Based on the eigenvalue theory, the local stability behavior of any equilib-
rium is determined. Table 4.2 describes the boundary equilibria and their local stability behav-
ior of subsystem (4.2).

Table 4.2: The local stability behavior of boundary equilibria of subsystem (4.2)

Equilibrium point Stability behavior

(0,0) Unconditionally unstable
(K,0) Always saddle

(0, (1−q)αAKA
ξ

) Asymptotically stable if r1 <
qα1(1−q)αAKA

a1ξ
;

saddle if r1 >
qα1(1−q)αAKA

a1ξ

For the stability behavior of E∗(S∗,P∗), we can state the following theorem.

Theorem 4.4.2. E∗(S∗,P∗) is locally asymptotically stable if and only if Θ1 > 0 and Θ2 > 0,

where Θ1 and Θ2 are defined in the proof of this theorem.

Proof. The variational matrix for (4.2) about E∗(S∗,P∗) is

M|E∗ =

− r1S∗
K +

qα1S∗P∗( 2S∗
γ
+1)

( S∗2
γ
+S∗+a1)2

− qα1S∗
S∗2

γ
+S∗+a1

r2ξ P∗2qα1
(qα1S∗+(1−q)αAKA)2 − r2ξ P∗

qα1S∗+(1−q)αAKA
.

 .
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The characteristic equation corresponding to above matrix is

λ
2 +Θ1λ +Θ2 = 0,

where Θ1 =−tr(M|E∗) and Θ2 = det(M|E∗).
According to Routh-Hurwitz criteria, E∗(S∗,P∗) is locally asymptotically stable if and only if
Θ1 > 0 and Θ2 > 0.

Remark. If r1 >
Kqα1P∗( 2S∗

γ
+1)

( S∗2
γ
+S∗+a1)2

, the stability of E∗(S∗,P∗) is confirmed.

Now let us discuss the global stability of subsystem (4.2) in the next theorem.

Theorem 4.4.3. Let E∗(S∗,P∗) exists uniquely, and it will be the global attractor if ∇1 < 0,

where ∇1 is defined in the proof of this theorem.

Proof. The uniqueness of E∗(S∗,P∗) yields r1 >
qα1(1−q)αAKA

a1ξ
which implies that the prey-free

equilibrium is unstable. Now, the possible attractors in the positive quadrant of the SP− plane
are E∗ and the limit cycle. Let us consider a continuously differentiable function in R2

+ as

H1 =
( S2

γ
+S+a1)

SP .
Now,

∇1 =
∂

∂S
(h1H1)+

∂

∂P
(h2H1),

which gives

∇1 =−
r1

P

[
3S2

Kγ
+2S(

1
K
− 1

γ
)+

a1

K

]
−

r2ξ (S2

γ
+S+a1)

S(qα1S+(1−q)αAKA)
.

If ∇1 < 0, then by the Bendixson-Dulac’s criteria, the system (4.2) can not have a limit cycle.
Therefore, in this case, E∗(S∗,P∗) will be the global attractor.

Remark. If γ > K, then ∇1 is always negative.

4.5 Dynamics of the proposed system (4.1)

The equilibrium points of system (4.1) are E0(0,0,0), ES(K,0,0), EP(0,0,
(1−q)αAKA

ξ
), ESI(

δ1
β
, r1(βK−δ1)

β (r1+βK) ,0),
ESP(SSP,0,PSP) and E∗(S∗, I∗,P∗). The existence of ESP(SSP,0,PSP) is same as discussed in the
previous section. The axial equilibria: ES and EP exist unconditionally. ESI exists if K > δ1

β
,

and the disease in this case can be eradicated if K < δ1
β

.
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Existence of E∗(S∗, I∗,P∗): Here (S∗, I∗, P∗) is the unique positive solution of the following
algebraic equations:

r1

(
1− S+ I

K

)
−β I− qα1P

S2

γ
+S+a1

= 0, (4.7)

βS−δ1−
qα2P
a2 + I

= 0, (4.8)

r2

(
1− ξ P

qα1S+qα2I +(1−q)αAKA

)
= 0. (4.9)

Eq. (4.9) can be rewritten as

P =
1
ξ
(qα1S+qα2I +(1−q)αAKA).

Substituting this value in (4.7) and (4.8), we obtain

A1S+A2I +A3SI +A4 = 0 = ψ1(S, I), (4.10)

B1S3 +B2S2I +B3S2 +B4SI +B5S+B6I +B7 = 0 = ψ2(S, I), (4.11)

where
A1 = q2α1α2−βa2ξ , A2 = q2α2

2 +ξ δ1 > 0, A3 =−ξ β < 0, A4 = ξ δ1a2+q(1−q)α2αAKA > 0,
B1 = r1ξ > 0, B2 = r1ξ +βKξ > 0, B3 = r1ξ (γ−K), B4 = r1γξ +βγξ K > 0,
B5 =−r1γξ K + r1a1γξ +q2α2

1 γK, B6 = r1a1γξ +βa1γξ K +q2α1α2γK > 0,
B7 = qα1γK(1−q)αAKA− r1a1γξ K.

The curve ψ1 passes through (0, Ī1) and (S̄1,0), where Ī1 = −A4
A2

< 0 and S̄1 = −A4
A1

> 0 (if
A1 < 0), and we also assume that its slope

dI
dS

=−A1 + IA3

A2 +SA3

is positive. The curve ψ2 passes through (0, Ī2) and (S̄2,0), where Ī2 =−B7
B6

> 0, if B7 < 0 and
let S̄2 be the unique positive root of the equation:

B1S3 +B3S2 +B5S+B7 = 0.

The slope of ψ2
dI
dS

=−3B1S2 +2SIB2 +2SB3 +B4I +B5

B2S2 +B4S+B6

is assumed to be negative. If S̄1 < S̄2, then curves ψ1 and ψ2 intersect at a unique positive
point (S∗, I∗). Substituting it in (4.9) yields a unique positive equilibrium E∗(S∗, I∗,P∗). All
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the sufficient conditions for existence of E∗ are mentioned in the theorem below.

Theorem 4.5.1. The interior equilibrium E∗(S∗, I∗,P∗) of the proposed system (4.1) exists

uniquely under the following conditions: (i) A1 < 0,

(ii) A1+IA3
A2+SA3

< 0,

(iii) 3B1S2 +2SIB2 +2SB3 +B4I +B5 > 0,

(iv) B7 < 0,

(v) S̄1 < S̄2.

To verify Theorem 4.5.1, we consider a set of parameters as
K = 5, r1 = 2.5, α1 = 0.1539, α2 = 0.04, a1 = 0.1, a2 = 0.1, γ = 0.1, r2 = 2, KA = 10, q =

0.6, δ1 = 0.05, β = 0.3, ξ = 1.
For this set, all conditions in Theorem 4.5.1 are fulfilled viz., (i)− 0.0919 < 0, (ii)−

51.2557 < 0, (iii)12.1502 > 0, (iv)− 0.1214 < 0 and (v) condition can be verified from Fig.
4.2. As a result, a unique interior equilibrium E∗(S∗, I∗,P∗) of system (4.1) is obtained. Here
P∗ is determined on substituting values of S∗ and I∗ in Eq. (4.9). Thus, the interior equilibrium
is E∗(2.154,1.778,1.6644).

S

I

1

2

Interior equilibrium
(2.154,1.778)

Fig. 4.2: Intersection of isoclines is a unique interior equilibrium (S∗, I∗).

4.5.1 Local stability

Local stability refers to the stability of an equilibrium point in the near vicinity. The Routh-
Hurwitz criterion and the Jacobian matrix will be used to investigate this phenomenon. The
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characteristics of extinction equilibrium E0(0,0,0), prey-only equilibrium ES(S,0,0) and predator-
only equilibrium EP(0,0,

(1−q)αAKA
ξ

) are the same as mentioned in Table 4.2. Now let us discuss
the stabilizing property of all feasible planar and interior equilibrium points of system (4.1).

Stability behavior of ESI(SSI, ISI,0): The variational matrix about ESI is

M|ESI =


− r1SSI

K − r1SSI
K −δ1 − qα1SSI

S2
SI
γ
+SSI+a1

β ISI 0 − qα2ISI
a2+ISI

0 0 r2

 .

The determinant of above matrix is r2β ISI(
r1SSI

K +δ1)> 0. For the stability of ESI , determinant
of M|ESI must be negative. Hence ESI is always unstable.

Stability behavior of ESP(SSP,0,PSP): The variational matrix about ESP is

M|ESP =


− r1SSP

K +
qα1SSPPSP(

2SSP
γ

+1)

(
S2
SP
γ
+SSP+a1)2

− r1SSP
K −βSSP − qα1SSP

S2
SP
γ
+SSP+a1

0 βSSP−δ1− qα2PSP
a2

0
r2ξ P2

SPqα1
(qα1SSP+(1−q)αAKA)2

r2ξ P2
SPqα2

(qα1SSP+(1−q)αAKA)2 − r2ξ PSP
qα1SSP+(1−q)αAKA

 ,

Clearly, one eigenvalue of the above matrix is βSSP− δ1− qα2PSP
a2

. The other two eigenvalues
are the roots of the characteristic equation given in Theorem 4.4.2. Therefore, for stability
conditions of ESP, we can establish the next theorem.

Theorem 4.5.2. ESP is locally asymptotically stable if the following conditions hold true:

(i) δ1 > βSSP− qα2PSP
a2

,

(ii) r1 >
Kqα1PSP(

2SSP
γ

+1)

(
S2
SP
γ
+SSP+a1)2

.

Biological meaning: The disease from the considered eco-epidemic problem can be com-
pletely eradicated if the death rate of the infected prey is greater than a threshold value. Also,
birth rate of susceptible prey must exceed a critical value so that the susceptible prey and the
predator can survive.

Remark.

(i) EP is stable⇒ ESP does not exist uniquely. The contrapositive of this statement is also
true.
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(ii) ESP is stable⇒ E∗(S∗,P∗) is stable. The converse of this statement is not true.

Stability behavior of E∗(S∗, I∗,P∗): The variational matrix about E∗ is

M|E∗ =

m11 m12 m13

m21 m22 m23

m31 m32 m33



=


− r1S∗

K +
qα1S∗P∗( 2S∗

γ
+1)

( S∗2
γ
+S∗+a1)2

− r1S∗
K −βS∗ − qα1S∗

S∗2
γ
+S∗+a1

β I∗ qα2I∗P∗

(a2+I∗)2 − qα2I∗
a2+I∗

r2ξ P∗2qα1
(qα1S∗+qα2I∗+(1−q)αAKA)2

r2ξ P∗2qα2
(qα1S∗+qα2I∗+(1−q)αAKA)2 − r2ξ P∗

qα1S∗+qα2I∗+(1−q)αAKA

 ,

The characteristic equation corresponding to M|E∗ is

λ
3 +D1λ

2 +D2λ +D3 = 0,

where
D1 = −(m11 +m22 +m33), D2 = m11m22 +m11m33 +m22m33−m12m21−m13m31−m32m23,
D3 = m11m23m32 +m12m21m33 +m13m31m22−m11m22m33−m12m23m31−m13m21m32.
According to Routh-Hurwitz criteria, E∗(S∗, I∗,P∗) is locally asymptotically stable if and only
if D1 > 0, D3 > 0, and D1D2−D3 > 0. In the next theorem, we study the Hopf-bifurcation
behavior of the system taking αA as a bifurcation parameter.

Theorem 4.5.3. The system (4.1) undergoes Hopf-bifurcation at αA = α
[h f ]
A around E∗ (if it

exists) where α
[h f ]
A is the unique positive root of the equation D1(αA)D2(αA)−D3(αA) = 0

with D1(αA)> 0, D2(αA)> 0 and D2 6= 1 holds.

Proof. The characteristic equation of the Jacobian matrix of E∗ is

λ
3 +D1(αA)λ

2 +D2(αA)λ +D3(αA) = 0, (4.12)

For αA = α
[h f ]
A , the above characteristic equation is transformed as

(λ 2 +D2)(λ +D1) = 0,

which entails λ1,2 = ±i
√

D2, λ3 = −D1. Differentiating Eq. (4.12) with respect to αA, we
obtain

dλ

dαA
=−

D′1λ 2 +D′2λ +D′3
3λ 2 +2D1λ +D2

.
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Now,
dλ

dαA

∣∣∣∣
λ=i
√

D2

=
−D′1D2 +D′3 + iD′2

√
D2

2D2−2iD1
√

D2
.

=
(−D′1D2

2 +D2D′3−D1D′2D3/2
2 )+ i(D2

2D′2 +D1
√

D2D′3−D1D′1D3/2
2 )

2(D2
2 +D2

1D2)
,

which implies
dRe(λ )

dαA

∣∣∣∣
αA=α

[h f ]
A

=−
D1D′2(

√
D2−1)

2(D2 +D2
1)

∣∣∣∣
αA=α

[h f ]
A

6= 0.

Hence, the transversality condition, i.e., dRe(λ )
dαA
|
αA=α

[h f ]
A
6= 0 holds if D2 6= 1. This brings the

theorem to a close.

Remark. With regard to any other parameter, the Hopf-bifurcation analysis will be analo-
gous to that provided in the previous Theorem 4.5.3.

4.5.2 Global stability

In this section, global stability behavior of the unique positive equilibrium E∗(S∗, I∗,P∗) is
studied. We are able to find some sufficient conditions under which E∗(S∗, I∗,P∗) is globally
asymptotically stable.

Theorem 4.5.4. E∗(S∗, I∗,P∗) is globally asymptotically stable if the following conditions hold

true:

(i) 4r2
1β 2K2

δ 2
∗

+( r1
K +β )2 <

[
r1
K −

(1+K+S∗)qα1P∗

a1(
S∗2

γ
+S∗+a1)

]
(δ1−βS∗),

(ii)
[

r2ξ qα2P∗

(1−q)αAKA(qα1S∗+qα2I∗+(1−q)αAKA)
− qα2I∗

a2+I∗

]2

< r2ξ

(qK(α1+
2α2r1

δ∗ )+(1−q)αAKA)
(δ1−βS∗),

(iii)
[

r2ξ qα2P∗

(1−q)αAKA(qα1S∗+qα2I∗+(1−q)αAKA)
− qα1

a1

]2

< r2ξ

(qK(α1+
2α2r1

δ∗ )+(1−q)αAKA)

[
r1
K −

(1+K+S∗)qα1P∗

a1(
S∗2

γ
+S∗+a1)

]
.

Proof. We consider a positive definite Lyapunov function about E∗(S∗, I∗,P∗) as

V1 = S−S∗−S∗ln
S
S∗

+
1
2
(I− I∗)2 +(P−P∗−P∗ln

P
P∗

).

Differentiating V1 with respect to time along the solutions of (4.1), we obtain

V̇1 =
S−S∗

S
dS
dt

+(I− I∗)
dI
dt

+
(P−P∗)

P
dP
dt

.
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Further, some algebraic manipulation yields

V̇1 =
a11

2
(S−S∗)2 +a12(S−S∗)(I− I∗)+

a22

2
(I− I∗)2

+
a22

2
(I− I∗)2 +a23(I− I∗)(P−P∗)+

a33

2
(P−P∗)2

+
a33

2
(P−P∗)2 +a13(P−P∗)(S−S∗)+

a11

2
(S−S∗)2,

where
a11 =−

r1

K
+

(1+S+S∗)qα1P∗

(S∗2

γ
+S∗+a1)(

S2

γ
+S+a1)

, a22 = βS∗−δ1−
qα2a2P

(a2 + I)(a2 + I∗)
,

a33 =−
r2ξ

(qα1S+qα2I +(1−q)αAKA)
, a12 = β I− (

r1

K
+β ),

a13 =−
qα1

S2

γ
+S+a1

+
r2ξ qα1P∗

qα1S+qα2I +(1−q)αAKA)(qα1S∗+qα2I∗+(1−q)αAKA)
,

a23 =−
qα2I∗

a2 + I∗
+

r2ξ qα2P∗

qα1S+qα2I +(1−q)αAKA)(qα1S∗+qα2I∗+(1−q)αAKA)
.

As per the Sylvester’s criterion, V̇1 is negative definite if
a11 < 0, a22 < 0, a33 < 0, a2

12 < a11a22, a2
23 < a22a33 & a2

13 < a11a33.

If (i), (ii), (iii) holds, then the Sylvester’s criterion is satisfied. Hence the theorem follows.

4.6 Numerical simulation

We begin by numerically simulating the subsystem (4.2) using the parameter values given in
Table 4.3. We construct nullclines and the system phase diagram for various values of αA.
With the increment in αA, the system changes its stability through double Hopf-bifurcation
and a transcritical bifurcation. At αA = 0.3, the system exhibits a stable focus at the positive
equilibrium E∗(S∗,P∗) (Fig. 4.3(a)). However, this stability no longer sustains as the system
undergoes Hopf-bifurcation at α

[H1]
A = 0.667092, which causes the born of a stable limit cycle

enclosing E∗. At αA = 1, the system displays a stable limit cycle around E∗ (Fig. 4.3(b)). The
aforementioned limit cycle vanishes when the system experiences another Hopf-bifurcation at
α
[H2]
A = 1.419495, and E∗ becomes stable. For αA = 2, the system shows stable dynamics

around the co-existence state E∗ (Fig. 4.3(c)). With a further rise in αA, the system experiences
another type of bifurcation, i.e., transcritical bifurcation at α

[tc]
A = 3.125. The positive steady-

state dissipate at this point, transferring stability to the prey-free state. Therefore, at αA = 3.5,
the prey-free equilibrium E2 is a stable node (Fig. 4.3(d)).
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Table 4.3: Data set of parameters used in (4.2) with references.

Parameters Numerical value Reference(s)

r1 5 [150]
K 8.3 [48]
α1 5 [40]
a1 5 Assumed
γ 1 [48]
r2 2 [150]
KA 10 Assumed
q 0.8 [11]
ξ 1 [150]

αA 0.3 Assumed
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Fig. 4.3: Nullclines and phase portrait of SP subsystem (4.2) for different values of αA.
Green curve represent the prey nullclines and red lines represent the predator nullclines.
Two trajectories starting from different initial points are shown by magenta and blue
color.
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To visualize these bifurcations in a better way, we plotted bifurcation diagram with regard
to αA for S (left) and P (right) in Fig. 4.4. Here blue curve represents E∗ and oscillations about
it and red is for E2; solid curve shows stable nature and dashed curve denotes instability. At
α
[H1]
A and α

[H2]
A , Θ1 = 0 and Θ2 > 0 =⇒ Re(λ ) = 0. The transversality condition for Hopf-

bifurcation at α
[H1]
A and α

[H2]
A can be checked using the Newton’s forward difference formula,

which results:
Re(λ )
dαA

∣∣∣∣
α
[H1]
A

= 6 > 0 and
Re(λ )
dαA

∣∣∣∣
α
[H2]
A

=−0.75 < 0.

Therefore, Re(λ ) is a monotonic function of αA at both the bifurcation points. All these condi-
tions verify the occurrence of Hopf-bifurcation at α

[H1]
A and α

[H2]
A .
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Fig. 4.4: Bifurcation diagram showing double Hopf-bifurcation and a transcritical bifur-
cation in SP subsystem (4.2) with respect to αA.

For the set of parameters given in Table (4.3), we obtain E∗(3.7697,15.6791) and the eigen-
values corresponding to it are: −0.224±1.4474i. The prey-free equilibrium (0,0.6) is a saddle
point as r1− (qα1(1−q)αAKA

a1ξ
) = 4.52 > 0. Furthermore, ∇1 = −0.493 < 0 shows that system

(4.2) does not exhibit any periodic orbit. This confirms the global stability of E∗(S∗,P∗) (refer
to Theorem 4.4.3). Attraction of trajectories towards the global attractor E∗ is shown in Fig.
4.5.



4.6. Numerical simulation 95

0 1 2 3 4 5 6 7 8 9

S

0

5

10

15

20

25

30

P

stable E*

Fig. 4.5: Global stability of subsystem (4.2) about E∗(S∗,P∗) for parameters set given in
Table 4.3.

Let us examine the effect of additional food parameter αA on the dynamics of full system
(4.1) with a different set of parameters:

K = 5, r1 = 2.5, α1 = 0.1539, α2 = 0.04, a1 = a2 = γ = 0.1, r2 = 2, KA = 10, q = 0.6,

δ1 = 0.05, β = 0.3, ξ = 1.

(4.13)

We plot a series of phase diagrams with the variation in αA (Fig. 4.6). When the predator
does not get energy from the provided additional food, i.e., αA = 0 in such case, the positive
steady state of the SIP system is locally asymptotically stable, and the disease-free state ESP is
saddle (Fig. 4.6 (a)). For positive values of αA, the predator-only steady-state EP comes into
existence, and it remains saddle for initial values. With the increase in αA, the oscillations about
the positive equilibrium E∗ are turned on, i.e., a stable limit cycle occurs through a supercritical
Hopf-bifurcation at α

(1)
A = 0.08261. However, the disease-free equilibrium ESP remains saddle

(Fig. 4.6(b)). The limit cycle swells with the rise in αA, and gradually it connects the predator-
only saddle point EP forming a homoclinic orbit (Fig. 4.6 (c)), which is stable. This coalesces of
limit cycle, and EP is the homoclinic bifurcation. It occurs in our system (4.1) at α

(2)
A = 0.3739.

The homoclinic orbit surrounding E∗ stays for αA ∈ [0.3739,0.4146). After that, it integrates
another saddle point ESP into it by the heteroclinic bifurcation at α

(3)
A = 0.4146. This closed

trajectory formed connecting two saddle points EP & ESP is the heteroclinic orbit (Fig. 4.6
(d)). The connection between the two saddles is such that the stable manifold of EP coincides
with the unstable manifold of ESP and the period of the heteroclinic cycle becomes infinite.
Furthermore, only the predator population survives (EP is stable) when the heteroclinic cycle
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or the saddle-saddle connection breaks at α
(4)
A = 0.6769. EP’s stability promotes the formation

of another planar equilibrium, E(1)
SP , which is a saddle node (Fig. 4.6 (e)). As αA is boosted

more, the system achieves bi-stability between axial and planar equilibrium (EP & ESP) for
αA = 4.5 (Fig. 4.6 (f)). In this case, the basin of attraction for the stable steady-states in shown
in Fig. (4.9 (a)). The critical value of αA for which the system becomes stable about ESP is
α
(5)
A = 1.3938. Later on, the system attains tri-stability between the axial EP , planar ESP and

the interior equilibrium E∗ at α
(6)
A = 7.5238.

(a) (b) (c)

(d) (e) (f)

Fig. 4.6: Series of phase portraits with regard to αA. (a) αA = 0, (b) αA = 0.1, (c) αA =
0.38, (d) αA = 0.5, (e) αA = 1, (f) αA = 4.5. The other parameters are same as (4.13).

Multi-stability: The concept of multi-stability between different attractors is based on their
presence and stability criteria. Ecological models may exhibit more than one interior equilib-
rium points. All feasible interior equilibrium points may have different stability behavior which
depends on the combination of model parameters. In many prey-predator systems, only one or
a few states exist where all species persist with different abundances; in most other states, some
species become extinct. The latter phases are undesirable because they result in a decrease in
biodiversity in the model system. This type of multi-stability can be linked to very convoluted
fractal basins of attraction of the various equilibria, resulting in a shift in biodiversity induced
by the transition to a state in which part of the species has died out [151]. A multi-stable sys-
tem can adopt several stable states, in the same ecological conditions. The presence of many
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stable states allows for a considerable deal of system performance flexibility without requiring
large parameter adjustments [152]. Knowlton [153] presented the experimental evidence of
conservation of marine ecosystem due to the existence of multiple attractors. Understanding
the complex behavior of interacting populations such as multi-stability pattern is an important
aspect to study for managing ecological systems. In the present work, system (4.1) is tri-stable
between predator-only equilibrium EP, disease-free equilibrium ESP, and the positive equilib-
rium E∗ if all the four conditions stated below are satisfied.

(i) r1− qα1(1−q)αAKA
a1ξ

< 0,

(ii) δ1−βSSP +
qα2PSP

a2
> 0,

(iii) r1−
Kqα1PSP(

2SSP
γ

+1)

(
S2

SP
γ
+SSP+a1)2

> 0,

(iv) D1 > 0, D3 > 0 and D1D2−D3 > 0.

(a) (b)

Fig. 4.7: Multi-stability among steady-states EP, ESP and E∗ at αA = 8 and other param-
eters are taken from (4.13).

At αA = 8, the steady-states with their nature are listed as:

(4.0596,0.5655,32.388) saddle node E∗(1)

(1.3384,2.0965,32.1739) stable spiral E∗

(0.2937,0,32.0271) saddle node E(1)
SP

(4.9762,0,32.4595) stable node ESP

(0,0,32) stable node EP
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Simple calculation yields (i) : −27.0488 < 0, (ii) : 6.3473 > 0, (iii) : 2.4764 > 0, (iv) :
D1 = 2.0388 > 0, D3 = 0.62787 > 0, D1D2−D3 = 1.5973 > 0. This shows that the system
is tri-stable for EP, ESP and E∗. Moreover, the system (4.1) attains multi-stability for all αA ∈
[7.5238,11.5438]. Beyond this value, the interior equilibrium does not exist. For αA = 8, we
plot the phase portrait showing all steady-states (whose nature may alter) in Fig. 4.7 (a), while
Fig. 4.7 (b) displays attractors only. Since the dynamical behavior of multi-stable systems is
influenced by the initial circumstances, it is possible to find coexisting attractors by choosing
suitable initial conditions [154]. The creation of the attractor is accompanied by the emergence
of its basin of attraction, the limits of which might be smooth or fractal. A bi-stable system
with only two coexisting attractors usually has smooth boundaries of their respective basins of
attraction, whereas a multi-stable system frequently has fractal basin boundaries [152]. The
basin of attraction for the three steady-states is shown by different colors; green color for E∗,
blue color for ESP and red color represent initial values for EP in Fig. 4.10.
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Fig. 4.8: Phase portrait showing stability dynamics of SP- subsystem at (a) αA = 0.5 and
(b) αA = 4.5. Here the parameters are same as in (4.13).

The dynamics of the SP subsystem are considerably different with respect to αA, for the set
(4.13). The system (4.2) is globally asymptotically stable about E∗(S∗P∗) for αA ∈ [0,0.6769).
Additionally, Theorem 4.4.3 holds for the mentioned range. At αA = 0.6769 and onwards,
the system attains bi-stability between prey-free equilibrium E2 and the positive equilibrium
E∗. In Fig. 4.8 (a), for αA = 0.5, trajectories starting from six different initial pairs eventually
converge to the E∗(4.9982,2.46150). Corresponding to it the eigenvalues are −2.4966,−2,
∇1 = −94.19904 and r1− (qα1(1−q)αAKA

a1ξ
) = 0.6532 > 0. Therefore, Theorem 4.4.3 holds and

E∗ attracts all trajectories globally in the positive quadrant of the SP− plane. In Fig. 4.8 (b), two
trajectories starting from different initial points converge to two different attractors resulting in
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bi-stability between E∗(4.9865,18.46045) and E2(0,18) at αA = 4.5. The set of initial values
for which the trajectories eventually converge to E∗ (blue color dots) and E2 (red color dots) is
displayed in Fig. 4.9 (b).

(a) (b)

Fig. 4.9: Basin of attraction at αA = 4.5 for system (4.1) (left) and (4.2) (right), respec-
tively. Here red and blue dots represent initial values for which the predator-only equi-
librium is stable, whereas blue dots are corresponding to the disease-free equilibrium,
i.e., ESP (in full system) and E∗ (in SP subsystem). This figure is corresponding to the
Fig. 4.6 (f) and Fig. 4.8 (b), respectively.

Fig. 4.10: Basin of attraction for multi-stable equilibrium points EP (red dots), ESP (blue
dots) and E∗ (green dots). This illustration is associated with Fig. 4.7.
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It can be depicted from Fig. 4.11 that for lower values of parameter αA two inner equi-
librium points E∗ and E∗(1) coexist. E∗ denotes a stable point, while E∗(1) denotes a saddle
point. When we raise the value of αA, both equilibrium points approach towards one another
until they clash and obliterate each other via a saddle-node bifurcation at the threshold value
α
[sn]
A = 11.5438. For αA >α

[sn]
A , neither of the interior equilibria exists. For the chosen set of pa-

rameters, at αA =α
[sn]
A = 11.5438 we have coexistence equilibrium Ē(2.7051,1.3637,46.4577)

and det(M|Ē) = 0.
The variational matrix around Ē at the saddle-node bifurcation point αA = α

[sn]
A is

A = M|Ē =

−1.2419 −2.1642 −0.0032
0.4090 0.7095 −0.02236
0.1846 0.048 −1.9999

 .

The eigenvectors corresponding to the eigenvalue zero of matrix A and AT are v=(1,−0.5739,0.0794)T

and w = (1,3.0535,0.0478)T , respectively. Our computation yields

FαA(Ē,α
[sn]
A ) =

 0
0

7.9999

 and D2F(Ē,α [sn]
A )(v,v) =

 −0.12
0.3208

0.00057

 .
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Fig. 4.11: Saddle-node bifurcation diagram concerning αA.

Here F = ( f1, f2, f3)
T , and FαA is the partial derivative of F with respect to αA.

wT FαA(Ē,α
[sn]
A ) = 0.3824 6= 0 and wT [D2F(Ē,α [sn]

A )(v,v)] =−1.0995 6= 0.

Therefore, according to the Sotomayor’s theorem [60], system (4.1) undergoes saddle-node
bifurcation at αA = α

[sn]
A = 11.5438 around Ē((2.7051,1.3637,46.4577)).
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The effect of αA on the dynamics of system (4.1) is presented in Fig. 4.12. Different sectors
of the circle contain various attractors. The explanation for all the sectors in the circle is sum-
marized in Table 4.4. We now study the characteristics of system (4.1) concerning the infection
rate β with αA = 0.5 and other parameters are from (4.13). β does not affect the stability of
predator-only equilibrium but affects the nature of disease-free state and co-existence state of
equilibria. It is noticed from Fig. 4.13 (a) that E∗ and ESP are co-stable for β = 0.1. For the
initial values from the blue dots in Fig. 4.14 (a), the trajectory converges towards ESP, which
indicates that the disease can be eliminated when the trajectory is started from any blue dot.
The stability of ESP is lost at β = 0.1282, and it becomes saddle. At β = 0.13, high oscillations
occur around stable equilibrium E∗ for the initial time, and eventually, the trajectory goes to
the stable focus. Moreover, the trajectory experiences a pull towards stable manifold of EP and
ESP ( Fig. 4.13 (b)). On small increment in β , the system exhibits focus-cycle bi-stability (Fig.
4.13 (c), and in between them, there is an invisible repeller (limit cycle) which separates the
basins of attraction of heteroclinic cycle and the focus steady-state E∗. The basin of attraction
at β = 0.14 is plotted in Fig. 4.14. With a slight increment in β , the interior equilibrium loses
its stability by means of a subcritical Hopf-bifurcation at β = 0.1732, while the saddle-saddle
connection remains stable. This feature is presented in Fig. 4.13 (d).

Fig. 4.12: Circle graph representing different attractors concerning αA for all parameters
from (4.13).
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Table 4.4: A brief description of attractors based on intervals of αA, as seen in Fig. 4.12.

Range of αA Attractor(s) Color(s)(respectively)

[0,α(1)
A ) E∗ green

(α
(1)
A ,α

(2)
A ) limit cycle pink

(α
(2)
A ,α

(3)
A ) homoclinic orbit yellow

(α
(3)
A ,α

(4)
A ) heteroclinic orbit aqua

(α
(4)
A ,α

(5)
A ) EP red

(α
(5)
A ,α

(6)
A ) EP,ESP red, blue (circles)

(α
(6)
A ,α

[sn]
A ) EP, ESP, E∗ red, blue, green (circles)

(a) (b)

(c) (d)

Fig. 4.13: The effect of disease transmission rate β on system (4.1)’s dynamics when
αA = 0.5 and the parameters other than β , & αA are same as (4.13). (a)Focus-node bi-
stability for β = 0.1, (b)stable focus E∗ at β = 0.13, (c)focus-cycle bi-stability for β =
0.14, (d) stable heteroclinic orbit at β = 0.18,
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The system shows complex dynamics for additional food parameter αA and infection rate
β , which motivates us to observe the combined effect of both the parameters. The integrated
effect of β and αA is shown in Fig. 4.15. We obtain three critical values of αA corresponding
to a single value of β for which the system (4.1) undergoes Hopf-bifurcation twice followed
by a saddle-node bifurcation about the co-existence equilibria. As a result, the βαA- plane
is divided into various regions. In Region I, the interior equilibrium of (4.1) exists uniquely
and is locally asymptotically stable. However, it loses its stability at the first Hopf-bifurcation
point on the red-colored curve. Therefore in Region II, the interior equilibrium behaves as a
repeller, surrounded by a closed trajectory. Boosting αA again stabilizes the system about co-
existence equilibrium by means of a supercritical Hopf-bifurcation on the blue-colored curve.
On crossing this curve, there are two interior equilibria one is stable (it was unstable in Region
II), and the other is a saddle in Region III. On increment in αA, these two equilibria approach
each other to perform a saddle-node bifurcation. Upon reaching the saddle-node bifurcation
curve (green), both positive equilibria destroy each other and finally disappear. Region IV has
no interior equilibrium because of this. In Fig. 4.15, the predator-only state and the disease-
free state of equilibria always exist, but their stability behavior changes from the saddle to
stable with respect to αA (when β is fix). Below the cyan-colored dashed line, EP is a saddle,
and above this line, EP gains stability. ESP is a saddle in the region below the yellow-colored
dashed curve, but beyond this curve, the ESP becomes stable. Therefore, we can say that in
between the yellow (dashed) and blue curve, the system attains bi-stability about EP and ESP,
and the system is tri-stable between EP, ESP and E∗ in Region III.

(a) (b)

Fig. 4.14: Basins of attraction corresponding to Fig. 4.13 (a) and (c). Green dots are the
initial values for which the system is stable around E∗, blue dots show the basin of pull
for ESP and magenta dots display the basin of attraction of heteroclinic cycle.
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Fig. 4.15: Bi-parametric graph showing Hopf-bifurcation curves and saddle-node curve
in the βαA- plane.
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Fig. 4.16: Effect of infection rate β on the population density for αA = 0.
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Fig. 4.17: Effect of infection rate β on the population density for αA = 0.1.
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Fig. 4.18: Effect of infection rate β on the population density for αA = 0.5.

In the absence of extra food αA = 0, the system can be made disease-free (ESP is stable)
only when β ∈ [0.02,0.0322) (Fig. 4.16). The elimination of the disease for this range depends
on the initial condition. However, for a higher infection rate, the disease persists in the system
(E∗ is stable). If the predator receives energy from the additional meal, at αA = 0.1, the illness
can be managed for a higher infection rate β ∈ [0.02,0.0514) (Fig. 4.17). Furthermore, if the
predator obtains more energy from the given food, disease eradication is better. At αA = 0.5,
ESP is stable for the higher range of infection rate, i.e., β ∈ [0.02,0.1282) (Fig. 4.18). It can
be depicted from Figs. 4.16, 4.17 and 4.18 that the population numbers remarkably vary for
β ∈ [0.02,0.2). The susceptible population decline for ascending infection rates and is added to
the infected class simultaneously. However, the disease gets deadly for higher infection rates;
consequently, the infected prey declines. Due to the lack of the favorite food of the predator,
viz., healthy prey, predator numbers decrease significantly. There is a rapid declination in
predators when there is no provision of alternative food. However, when they gain energy from
the extra food, the decrement is not so fast. The rise in αA does not affect this behavior up
to some extent. Nevertheless, species start to oscillate about their positive steady-state for a
higher infection rate β > 0.1731 at αA = 0.5. The green curve in Figs. 4.16, 4.17 and 4.18
denotes the co-existence equilibrium E∗ of system (4.1), whereas magenta color line displays
the disease-free equilibrium ESP.

4.7 Discussion and conclusion

Though there are many ways to control the disease in species, mostly are the chemical ap-
proaches like treatment [155], vaccination [156], etc. In literature, a considerable amount of
work has been done on prey-predator models with additional food. However, a few demon-
strated the application of additional food to control the disease in the system [40, 149]. The
present article deals with a prey-predator model where prey develops an untreatable infectious
disease, and the predator can switch to the different food provided. Therefore, we formulated
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a Leslie-Gower model where the predator depends on more than one food source to realize
this effect. Generally, the epidemic models are divided into a finite number of compartments.
When prey catches the disease, we assumed that the whole prey population is classified into
two compartments: susceptible (S) and infected (I). Furthermore, we hypothesized that the
susceptible prey is strong enough to defend themselves from the predator. Thus, this interac-
tion is incorporated as Holling type IV functional response. Since the infected prey population
may be weak and thus the interaction between infected prey and predator is taken as Holling
type II functional response.

Firstly, we established the well-posedness of the proposed model. Then, we used the iso-
clines method to determine sufficient conditions for the uniqueness and existence of the posi-
tive steady-state. We analyzed the disease-free subsystem in order to study the proposed model
finely. Consequently, we discovered that if the prey birth rate is above a certain threshold, the
disease-free equilibrium (E∗ or ESP) occurs. The present article contains extensive work on
the long-term behavior of all feasible states of the system (4.1) and (4.2). We used eigenvalue
theory and Lyapunov stability theory to determine local and global stability, respectively. If
the birth rate of prey exceeds a certain threshold value and the mortality rate of infected prey
exceeds a different threshold value, in that situation, the disease can be completely eradicated
from the system. Mathematically, the ESP is stable in such a case.

Our model analysis shows that stability behavior of all feasible steady-states depends on
the value of additional food parameter. Both systems (4.1) and (4.2) show rich dynamics with
respect to the additional food parameter αA. For a considered set of parameters given in the text
and with the increment in αA, the subsystem (4.2) switches stability thrice through double Hopf-
bifurcation and a transcritical bifurcation. It is also observed that all trajectories initiated from
different points in the positive quadrant of the SP-plane converge to the positive equilibrium of
(4.2) for the same set. This global attraction towards E∗ is proven theoretically and numerically
as well. Now, for a different set of parameters, we discovered fascinating results regarding
additional food energy parameter. The system (4.1)’s stability about EP, ESP and E∗ is not
always same. The stability dynamics of these equilibria are highly sensitive to the change in αA.
The system undergoes different types of local and global bifurcations for αA; Hopf-bifurcation,
saddle-node bifurcation, homoclinic and heteroclinic bifurcation. The roller-coaster of these
bifurcations makes the system bi-stable and tri-stable for different ranges of αA. The presence
of attractors of (4.1) for different values of αA is uniquely presented through a circle graph Fig.
4.12. For the same set of parameters, subsystem (4.2) is either globally asymptotically stable
about E∗ or bi-stable between E∗ and E2. We have plotted basins of attraction whenever the
system is bi-stable or tri-stable. If any solution trajectory starts from the blue-colored point,
the system will go disease-free (see Figs. 4.9, 4.10, 4.14). Due to the disease eradication,
both healthy prey and predator will survive, resulting in the richer biodiversity of the system.
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Moreover, the flexibility provided by the multi-stability of steady-states may result in species
conservation.

The disease-transmission rate β is also a crucial parameter to study. It is capable of altering
system (4.1)’s kinetics. For lower values of infection rate, the system is bi-stable between co-
existence and disease-free steady-states (E∗ and ESP). For a greater infection rate, the system
performs a subcritical Hopf-bifurcation, and periodic oscillations occur about E∗. Moreover,
these oscillations go to the stable manifolds of two saddle points, forming a stable heteroclinic
orbit.

Since the system shows captivating dynamics for αA and β , we constructed a bi-parametric
curve concerning it (Fig. 4.15). As a result, we found distinct regions depending on whether
the solution trajectory converges to steady-state attractor(s) or cyclic attractor on undergoing
Hopf-bifurcation and saddle-node bifurcation. We can conclude from Fig. 4.15 that the disease
elimination is achievable in the region above the yellow-dashed line in the βαA-plane.

When there is no additional food for the predator, the disease extermination is feasible
at lower infection rates only (refer to Fig. 4.16). However, in the presence of extra food,
the predator gains energy from it. In such a case, disease control is possible even for higher
infection rates (see Figs. 4.17 and 4.18). In this way, the disease in a prey-predator system can
be managed if the predator’s energy (obtained from additional food) is boosted more. Sahoo
[40] discovered a similar kind of strategy to control disease in the prey-predator system. The
author observed that supplying an adequate amount of extra food quantity to the predator can
make the system disease-free.
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Chapter 5

Bifurcation and chaos in a delayed eco-epidemic model
induced by prey configuration 1

5.1 Introduction

Ecology and epidemiology, individually, are prominent areas of study. Nowadays, significant
research is also going on in the interdisciplinary field of eco-epidemiology. It contains assess-
ments of interactions between hosts and their viruses, parasites, and illnesses of both people
and wildlife at the population and community level. On the other hand, diseases can have a
considerable impact not only on their host populations but also on other species that interact
with them [44]. The invasion of disease has far-reaching effects on the structure and stability of
ecosystems [157]. Eco-epidemiology research aids in identifying the critical elements that con-
tribute to the spread of infectious illnesses and determining the most effective control tactics.
Studying a mathematical model of ordinary differential equations is a standard way to know an
eco-epidemic system. An eco-epidemic model hybridizes an ecological and epidemic model.

In the prey population, the link between predation and infection is multifaceted. According
to Lafferty and Morris [158], due to a fatal disease, killifish (Fundulus parvipinnis) comes to
the surface and becomes more vulnerable to predation. Infection among prey or predator or
both can regulate their co-existence as well as stability dynamics. The incidence rate plays a
crucial role in analyzing the disease transmission among prey-predator species. The incidence
rate refers to the number of infected people in a particular period (per unit of time). In classic
epidemic models, the bilinear incidence rate is widely used [159, 160]. However, the imple-
mentation of a saturated incidence rate can explain the diverse dynamics of the system [150].
The non-linear incidence function incorporates the saturation of disease transmission at high
infective levels [161]. Han et al. [162] analyzed four eco-epidemic models with standard in-
cidence and mass-action incidence. They demonstrated that when the sickness remains in the

1A considerable part of this chapter is published in Chaos Solitons and Fractals, 165, 112785, 2022.
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prey population and the predators ingest enough to survive, the disease continues in the predator
population. According to Haque et al. [163], a sufficiently significant sickness in the prey may
prevent predator extinction. Similar findings have been reported in another eco-epidemiological
model [164], in which enhanced susceptibility of diseased prey is proven to allow the predator
population to survive. Some experimental shreds of evidence show that infectious mortality
increases the chance of predation in many eco-epidemiological systems [141, 143]. Neverthe-
less, too much dependence on diseased prey can harm the predator, decreasing their number
[84]. The fear of contracting the disease diverts the predator toward the consumption of healthy
prey [144]. An ecosystem is likely to show unpredictability in real. Many ecological and eco-
epidemiological systems offer complex dynamics like bifurcation and chaos [165, 166, 167,
168]. Eilersen et al. [169] predicted chaos when the disease among prey is contagious enough
to last. Shaikh et al. [166] detected chaos through the period-doubling route in an eco-epidemic
system with additional food.

When predation is a threat, many animals organize groups to protect themselves. There is
a plethora of research on ecological systems in which the prey population demonstrates herd
behavior [32, 80, 170]. An experimental study reveals that the shoaling behavior of Minnows
dilutes the predation risk [78]. The basic model displaying herd behavior was introduced by
Ajraldi et al. [29]. The fundamental premise is that the predator will not be able to reach the
interior prey of the herd. Therefore the predator would only target the nearest prey within the
prey group’s boundaries. Mathematically, they represented this type of interaction by using the
square root of the prey population (

√
X) rather than simply the prey population (X). Such algo-

rithms are limited to 2D pack forms found in prey such as buffalos, lambs, and other animals.
However, those algorithms cannot deal with 3D herd forms like birds, fish, and other species.
In 2013, Venturino and Petrovskii [30] came up with the elementary concept of generalized
herd shape and replaced

√
X with Xα , where 0 < α < 1. Their study was further extended by

Xu et al.[31], and then by Bulai and Venturino [32].
Apart from using the herd behavior concept in ecology, many researchers implement it in

eco-epidemiology [171, 172]. In the presence of infectious disease, the sound prey can show
herd behavior against predation. Gupta and Dubey [80] observed fascinating dynamics in their
eco-epidemic model with herd behavior. Banerjee et al. [46] used the square root function
to show the herd behavior of prey and remarked on the impact of simultaneous feeding of
the predator on healthy and sick prey. Time delay integrated with an ODE system makes the
model more practicable. A small change in time delay can lead to bifurcation and chaos in the
associated system [173]. Moreover, the research on delayed prey-predator models with herd
behavior is gaining much attention [170]. Wu and Meng [174] constructed a model incorpo-
rating several ecological factors like herd behavior, time delay, etc. They discussed local and
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global stability and determined the basic reproduction number associated. Djilali [175] incor-
porated the concept of generalized herd shape in the classic Holling type II functional response
in a time-delayed prey-predator model. The author examined the effect of prey herd shape on
the system’s dynamics. As the prey herd shape changes, the predator’s hunting strategy also
modifies, which causes variation in both population densities.

In the physical realm, coordinated behavior by a prey herd has the potential to injure the
predator, particularly in the case of larger prey like buffaloes, elephants, and hippopotami,
which are incredibly harmful to the predator (lions and hyenas as an example). Every year,
many predators die from buffalo horns or hippopotamus bites, demonstrating the enormous
strength of the herd’s cooperative behavior, and this is the primary purpose for living in con-
gregations that prior studies had overlooked. This is only a sampling of the creatures that may
demonstrate this behavior; we can also name other living beings, such as bees, which guard the
herd and employs this cooperative method to defend the group, and the ant population, which
does the same. In an experimental study by Choh et al. [176], it was found that young prey
exposed to adult predators modifies their behavior later in life: as adults, they kill juvenile
predators at a higher rate. Djilali et al. [33] conducted the first investigation to demonstrate that
powerful prey might kill the predator. Furthermore, they believed that some time is necessary
between the injury of a predator during predation and the predator’s death. Motivated by their
work, we have the current piece of research.

It is worth noting that none of the research described above discusses the association be-
tween various aspects such as generalized herd structure, sickness, prey defense boosting preda-
tor lethality, and the time delay between predator injury and death. The current study is an
attempt to fill this void.

5.2 The eco-epidemiological framework

Mathematic modeling is commonly used to analyze population dynamics better and understand
natural occurrences. Ordinary differential equations are frequently used to study the interaction
between prey and predator, which can help with species conservation and population man-
agement. This section discusses the formulation of a three-dimensional prey-predator model,
where the prey exhibits herd behavior and has an infectious disease, predicated on the following
assumptions.

1. We assume that the diseased prey population dies quickly, and reproduction is only eval-
uated for the vulnerable prey species. However, sick prey contributes to the ecosystem’s
carrying capacity. The afflicted classes are unable to recover or develop immunity. Either
predation or natural death eliminates them. The prey is assumed to grow logistically in
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the absence of disease and predator. Thus we have

dS
dt

= rS
(

1− S
K

)
,

where r is the intrinsic growth rate of susceptible prey and K denotes the environmental
carrying capacity of prey.

2. The fatal contagious disease divides the prey population into two sub-populations: sus-
ceptible prey (S) and infected prey (I). Direct contact is the only way for infection to
spread. The saturated incidence rate, i.e., βSI

b+S , where β is the rate of disease transmis-
sion, and b is the half-saturation constant, shows the disease transmission mechanism.
Therefore, the basic epidemic model exhibiting prey(S)-prey(I) interaction is given by
the set of differential equations below:

dS
dt

= rS
(

1− S+ I
K

)
− βSI

b+S
,

dI
dt

=
βSI
b+S

−µ1I.

Here µ1 is the natural death rate of infected prey.

3. We believe that the prey’s disease cannot be passed on to the predator. Furthermore, the
predator cannot differentiate between healthy and diseased prey; it uses both healthy and
sick prey, which is reasonable.

4. The weakness in infected prey makes them highly vulnerable to predation. Due to this,
the predator’s feeding rate for infected prey is reflected by the Holling type I functional
response.

5. The healthy prey population forms a herd, and so exhibits social behavior. We consider
that prey and predator individuals interact mainly around the perimeter (border) of the
pack (herd) produced in 2D space or along the whole surface area of the herd in 3D
space. When prey is herded, the interaction between prey and predator is confined to
the prey exposed on the herd’s exterior. This behavior is reflected through the modified
Holling type II functional response. Based on this concept, Djilali et al. [33] recently
created and studied the following model :

dS
dt

= rS
(

1− S
K

)
− a1SαP

1+a1σSα
,

dP
dt

=
c1a1SαP

1+a1σSα
−µ2P−δ1SαP.
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Here α is the rate of herd shape such that α ∈ (0,1).

• When α = 1
2 , the herd shape is a square or circle,

• When α = 2
3 , the herd shape is a sphere or cube.

The last term in the above model displays the role reversal of prey and predator. The
strong prey on the outer herd can injure the predator, which can result in the predator’s
death.

In this chapter, we are using this idea to show the interaction between healthy prey and
predator.

S I

P

Fig. 5.1: Schematic flowchart for model (5.1).

Fusing all the aforementioned aspects of ecology and epidemiology gives us the following
system of ordinary differential equations:

dS
dt

= rS
(

1− S+ I
K

)
− βSI

b+S
− a1SαP

1+a1σSα
= f1(S, I,P),

dI
dt

=
βSI
b+S

−µ1I−a2IP = f2(S, I,P),

dP
dt

=
c1a1SαP

1+a1σSα
+ c2a2IP−µ2P−δ1SαP = f3(S, I,P),

(5.1)
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S(0)> 0, I(0)≥ 0 P(0)≥ 0.

Table 5.1 summarizes the biological meaning and dimension of the parameters and variables
used in system (5.1), and Fig. 5.1 depicts the model formulation as a schematic view.

5.3 Well-posedness of the formulated system

In the real world, neither the population number can go negative nor can they grow abruptly.
Therefore, well-posedness of the formulated system must be verified first.

Table 5.1: Biological explanation of variables/parameters used in model (5.1)

Variables/Parameters Biological explanation Dimension

S Susceptible prey density Biomass
I Infected prey density Biomass
P Predator density Biomass
β Rate of disease transmission at which the susceptible prey gets infected Time−1

r Intrinsic growth rate of susceptible prey Time−1

K Environmental carrying capacity of prey Biomass
a1 Maximum rate of per capita removal of susceptible prey due to predation Biomass−α Time−1

a2 Maximum rate of per capita removal of infected prey due to predation Biomass−1Time−1

δ1 Mortality rate of the predator due to prey group Biomass−α Time−1

c1 Conversion rate of the healthy prey to a predator Dimensionless
c2 Conversion rate of the infected prey to a predator Dimensionless
α Rate of the herd shape Dimensionless
σ Time spent by predator in handling healthy prey Time
b Half-saturation constant for disease transmission Biomass
µ1 Natural death rate of infected prey Time−1

µ2 Natural death rate of predator Time−1

Theorem 5.3.1. Every solution of system (5.1) beginning from the stated initial condition is

unique and positive in Γ, where Γ is defined in the proof.

Proof. The concept of herd behavior is based on the case in which the prey population is suffi-
ciently dense to permit a herd formation. Therefore it is biologically reasonable to consider that
susceptible prey density is far from zero. Now, we can see that the functions f1, f2 and f3 in the
right-hand side (RHS) of the formulated model system (5.1) are locally Lipschitz-continuous
in the region Γ = {(S, I,P) ∈ [q,A]× [0,B]× [0,C]}, with q is a positive real constant. In fact,
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it can easily be seen that ∀S1, S2 ∈ Γ,

| f1(S1, I,P)− f1(S2, I,P)| ≤ r|S1−S2|+
r
K
|S1−S2||S1 +S2|+

r|I|
K
|S1−S2|+

βb|I||S1−S2|
|b+S1||b+S2|

+
a1|P||S1−S2||Sα

1 −Sα
2 |

|S1−S2||1+a1σSα
1 ||1+a1σSα

2 |

≤ |S1−S2|
(

r+
r(|S1|+ |S2|)

K
+

r|I|
K

+
βb|I|

|b+S1||b+S2|

+
a1|P|(|S1|α + |S2|α)

|1+a1σSα
1 ||1+a1σSα

2 ||(|S1|− |S2|)|

)
≤ L|S1−S2|,

where
L = r+

2rA
K

+
rB
K

+
βbB

(b+q)2 +
2a1AαC
(A−q)

> 0

is the Lipschitz constant. Therefore, f1(S, I,P) is locally Lipschitz-continuous with respect to
S. Similar explanation can be given for f2 and f3. Hence the system has a unique solution in
the region Γ.

Now, to show the positivity of the solutions, first we need to prove that S(t)> 0 ∀t > 0. If

it is not true, then there exist a t1 > 0 with t1 = in f{t : S(t) = 0, t > 0}, such that dS
dt

∣∣∣∣
t=t1

< 0

and S(t)> 0, ∀t ∈ [0, t1). From the first equation of the model (5.1), we observe that

dS
dt

∣∣∣∣
t=t1

= rS(t1)
(

1− S(t1)+ I(t1)
K

)
− βS(t1)I(t1)

b+S(t1)
− a1Sα(t1)P(t1)

1+a1σSα(t1)
= 0,

which contradicts the condition dS
dt

∣∣∣∣
t=t1

< 0. So, S(t)> 0 ∀t ≥ 0.

Next, the second and third equations of the model can be written as

dI
dt

= Iφ1(S, I,P),
dP
dt

= Pφ2(S, I,P),

where

φ1(S, I,P) =
βS

b+S
−µ1−a2P, φ2(S, I,P) =

c1a1Sα

1+a1σSα
+ c2a2I−µ2−δ1Sα .

It follows that

I(t) = I(0)e
∫ t

0 φ1(S(θ),I(θ),P(θ))dθ ≥ 0, P(t) = P(0)e
∫ t

0 φ2(S(θ),I(θ),P(θ))dθ ≥ 0.



116
Chapter 5. Bifurcation and chaos in a delayed eco-epidemic model induced by prey

configuration

Thus, all solutions (S(t), I(t),P(t)) with the stated initial condition remain positive ∀t > 0 [177].

Theorem 5.3.2. All solutions of system (5.1) beginning in R3
+ stay enclosed in the region Ω =

{(S, I,P) : 0 < S + I ≤ (r+η1)
2K

4rη1
, 0 < S + 1

c1
P ≤ (r+η2)

2K
4rη2

}, where η1 and η2 are some real

numbers satisfying 0 < η1 < µ1, 0 < η2 < µ2− (r+η1)
2Kc2a2

4rη1
.

Proof. From the first equation of the model, we can write

dS
dt
≤ rS

(
1− S

K

)
which implies that

limsup
t→∞

S(t)≤ K.

Let z1 = S+ I and η1 > 0. Then

dz1

dt
+η1z1 = rS

(
1− S+ I

K

)
− a1SαP

1+a1σSα
−µ1I−a2IP+η1(S+ I)

≤ rS
(

1− S
K

)
−µ1I +η1(S+ I)

≤ (r+η1)S−
rS2

K
− (µ1−η1)I

≤ (r+η1)S−
rS2

K
, for η1 < µ1.

Define κ(S) = (r+η1)S− rS2

K . Then

max
S≥0

κ(S) =
(r+η1)

2K
4r

.

Therefore,
dz1

dt
+η1z1 ≤

(r+η1)
2K

4r
,

which implies

limsup
t→∞

(S(t)+ I(t))≤ (r+η1)
2K

4rη1
.

Now, to check the boundedness of P(t), we consider z2 = S+ 1
c1

P and η2 > 0. Then

dz2

dt
+η2z2 = rS

(
1− S+ I

K

)
− βSI

b+S
+

c2a2

c1
IP− µ2

c1
P− δ1

c1
SαP+η2S+

η2

c1
P,

≤ (r+η2)S−
rS2

K
−
(

µ2

c1
− η2

c1
− c2a2Imax

c1

)
P, where Imax =

(r+η1)
2K

4rη1
.
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Now, for 0 < η2 < µ2− c2a2Imax, we can write

dz2

dt
+η2z2 ≤ (r+η2)S−

rS2

K

which entails that

limsup
t→∞

(
S(t)+

1
c1

P(t)
)
≤ (r+η2)

2K
4rη2

.

Hence the theorem follows.

5.4 Equilibrium points

The proposed system has the following feasible equilibrium points:

E0(0,0,0), E1(K,0,0), ESI(SSI, ISI,0), ESP(SSP,0,PSP),and E∗(S∗, I∗,P∗),

where SSI =
µ1b

β−µ1
, ISI =

rb(K(β−µ1)−µ1b)
(K(β−µ1)+rb) . Therefore, the epidemic equilibrium exists if and only

if the basic reproduction number
(

R0 =
βK

µ1(b+K)

)
> 1.

The disease-free equilibrium ESP has been extensively studied by Djilali et al. [33].
Remark.

(i) If R0 < 1, disease cannot invade.

(ii) If R0 > 1, disease may invade.

The interior equilibrium E∗(S∗, I∗,P∗) of system (5.1) is the positive solution of the following
equations:

r
(

1− S+ I
K

)
− β I

b+S
− a1Sα−1P

1+a1σSα
= 0,

βS
b+S

−µ1−a2P = 0,

c1a1Sα

1+a1σSα
+ c2a2I−µ2−δ1Sα = 0.

On solving these equations, we obtain

I =
1

c2a2

(
µ2 +δ1Sα − c1a1Sα

1+a1σSα

)
, (5.2)

P =
1
a2

(
βS

b+S
−µ1

)
, (5.3)

f (S) = A1Sα+2 +A2Sα+1 +A3S2α+1 +A4S2α +A5Sα +A6S2 +A7S+A8Sα−1 +A9, (5.4)
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where
A1 = rc2a2a1σ , A2 = (rc2a2a1σ(b−K)+ r(δ1− c1a1 +µ2σa1)), A3 = ra1σδ1,
A4 =(a1σδ1(βK+rb)), A5 =(a1c2K(β−µ1)+(βK+rb)(δ1−c1a1+µ2a1σ)−rKbc2a2a1σ),
A6 = rc2a2, A7 = (brc2a2−rKc2a2+rµ2), A8 =−a1c2Kµ1b, A9 =−rKbc2a2+rbµ2+βKµ2.

Theorem 5.4.1. Eq. (5.4) will have a unique positive root S∗ if f (K) > 0 and f ′(S) > 0.

Furthermore, we can obtain I∗ and P∗ from Eqs. (5.2) and (5.3), respectively.

Proof. We can easily observe that as S→ 0, f (S)→−∞. Assume that f (K) is positive and
f (S) is an increasing function of S. Then f (S) will intersect at exactly one point on the positive
S- axis. For the better realization of this theorem, we consider a numerical example. We take
the following set of parameters:

r = 0.4, K = 30, a1 = 0.5, σ = 2, µ2 = 0.5, α = 0.1, c1 = 0.85, δ1 = 0.0145, β = 5.5,

b = 12, µ1 = 2.1, a2 = 2, c2 = 0.17.

(5.5)

Simple computation yields f (K) = 128.13996 > 0 and f (S) is an increasing function. With
the help of MATLAB, we obtain Fig. 5.2 showing f (S) crosses the positive S- axis exactly
once at S∗ = 16.8232. Corresponding to this S∗, we obtain I∗ = 0.8145 and P∗ = 0.55509 from
Eqs. (5.2) and (5.3), respectively.

Fig. 5.2: The plot of f (S) vs. S showing unique positive root S∗ of Eq. (5.4).
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Remark. It may be noted here that A1, A3, A4 and A6 are positive, A8 is negative and 0 <

α < 1. By computing f ′(S), it can be easily be seen that f ′(S)> 0 if the following conditions
hold:

A2 > 0, A5 > 0,and A7 > 0.

Fig. 5.3: Surface plot displaying existence of E∗(16.8232,0.8145,0.55509). Here
green color surface is S-nullcline ( f1(S, I,P) = 0), blue surface denotes I-nullcline
( f2(S, I,P) = 0) and voilet color surface represents P-nullcline ( f3(S, I,P) = 0).

Fig. 5.4: The plot of f (S) vs. S showing two positive roots S∗1 and S∗2 of Eq. (5.4).
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To support a unique positive equilibrium, we have a surface plot showing the junction of
three nullclines as an interior equilibrium point E∗(16.8232,0.8145,0.55509) (see Fig. 5.3).

Due to the complexity of Eq. (5.4), theoretically, it is difficult to determine the number and
nature of its roots. However, we can observe numerically that the system can have multiple
interior equilibrium points. For the parameter values from Table 5.2, Eq. (5.4) has two posi-
tive roots S∗1 = 24.2275 and S∗2 = 0.6339 (see Fig. 5.4). The corresponding steady-states are
E∗1(24.2275,0.6513,1.1772) and E∗2(0.6339,0.9567,0.118).

5.5 Stability assessment

It is appropriate to check the eigenvalues of the variational matrix at each equilibrium point to
obtain the local stability requirements. Based on this, we have the following results:

• If R0 < 1 and
(

RP
0 = c1a1Kα

(1+a1σKα )(µ2+δ1Kα )

)
< 1, then E1(K,0,0) is locally asymptotically

stable. Here RP
0 is the disease-free demographic reproduction number for the predator.

• If r > βKISI
(b+SSI)2 and c1a1Sα

SI
1+a1σSSI

+ c2a2ISI < µ2 +δ1Sα
SI , then ESI(SSI, ISI,0) is locally asymp-

totically stable.

Remark.
(i) When going through the variational matrix method, we get singularity at the extinction

equilibrium E0. Therefore, we cannot determine the stability behavior of E0 by this
method. However, we obtained the phase portrait displaying E0 as the saddle point (see
Fig. 5.5).

Fig. 5.5: Phase portrait demonstrating saddle nature of E0(0,0,0) for the parameters set
(5.5).
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(ii) The existence of predator-free equilibrium ESI directs that E1 cannot be stable.

(iii) When RP
0 < 1, the predator cannot capture prey.

(iv) When RP
0 > 1, the predator may capture prey.

Stability of E∗: The variational matrix about the positive equilibrium E∗ is

M|E∗ =

m11 m12 m13

m21 m22 m23

m31 m32 m33

 ,

where
m11 =− rS∗

K + βS∗I∗

(b+S∗)2 +
a1(1−α)S∗(α−1)P∗

1+a1σS∗α +
αa2

1σS∗(2α−1)P∗

(1+a1σS∗α )2 , m12 =− rS∗
K −

βS∗
b+S∗ ,

m13 =− a1S∗α
1+a1σS∗α , m21 =

bβ I∗

(b+S∗)2 , m22 = 0, m23 =−a2I∗,

m31 =
αc1a1S∗(α−1)P∗

(1+a1σS∗α )2 −δ1αS∗(α−1)P∗, m32 = c2a2P∗, m33 = 0.
The characteristic equation corresponding to the above matrix is

λ
3 +B1λ

2 +B2λ +B3 = 0, (5.6)

where B1 =−m11, B2 =−m23m32−m13m31−m12m21 and B3 =−det(M|E∗).
According to the Routh-Hurwitz criteria, E∗ is locally asymptotically stable if and only if B1 >

0, B3 > 0, and B1B2−B3 > 0.

Theorem 5.5.1. The necessary and sufficient conditions for the existence of Hopf-bifurcation

around E∗ at δ1 = δ ∗1 are the following:

(i) B1 > 0, B3 > 0,

(ii) B1B2−B3 = 0,

(iii) dR
dδ1

∣∣∣∣
δ1=δ ∗1

6= 0, where R = B1B2−B3.

Proof. At δ1 = δ ∗1 , B1B2−B3 = 0, Eq. (5.6) becomes

(λ +B1)(λ
2 +B2) = 0.

This implies λ1,2 =±i
√

B2 and λ3 =−B1, where B2(δ1)> 0.
Differentiate Eq. (5.6) with respect to δ1, we obtain

dλ

dδ1

∣∣∣∣
δ1=δ ∗1

=−
[

B′1λ 2 +B′2λ +B′3
3λ 2 +2B1λ +B2

]
δ1=δ ∗1

.
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This implies

Re
[

dλ

dδ1

]
δ1=δ ∗1

=−
dR
dδ1

2(B2
1 +B2)

.

Thus, Re
[

dλ

dδ1

]
δ1=δ ∗1

6= 0 if dR
dδ1
6= 0. Hence the theorem follows.

Remark. The analysis of Hopf-bifurcation for any other parameter will be identical to that
presented in Theorem 5.5.1.

5.6 The effect of time delay on the proposed system

Djilali et al. [33] considered a time lag between injury and death of the injured predator.
Believing in their idea, we would like to see the effect of such time delay on our proposed
model. Model (5.1) in the presence of time delay reduces to the following delay differential
equations:

dS
dt

= rS
(

1− S+ I
K

)
− βSI

b+S
− a1SαP

1+a1σSα
= f1(S, I,P),

dI
dt

=
βSI
b+S

−µ1I−a2IP = f2(S, I,P),

dP
dt

=
c1a1SαP

1+a1σSα
+ c2a2IP−µ2P−δ1(S(t− τ))αP(t− τ) = f ′3(S, I,P),

(5.7)

subject to the non-negative conditions S(s) = φ1(s)> 0, I(s) = φ2(s)≥ 0, P(s) = φ3(s)≥ 0 for
s ∈ [−τ,0], where τ is the time duration between injury and the passing away of the predator.
System (5.7) can be written in the vector form as

dψ(t)
dt

= F1(ψ(t),ψ(t− τ)),

where

ψ(t) = [S(t), I(t),P(t)]T , ψ(t− τ) = [S(t− τ), I(t− τ),P(t− τ)]T and F1 = [ f1, f2, f ′3]
T .

Let the variational matrix of the delayed system with respect to ψ(t), ψ(t−τ) at E∗(S∗, I∗,P∗)

be

V =U ′1 +U ′2e−λτ =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 ,
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where
U ′1 =

∂F1

∂ψ

∣∣∣∣
(S∗,I∗,P∗)

, U ′2 =
∂F1

∂ψ(t− τ)

∣∣∣∣
(S∗,I∗,P∗)

,

a11 =−
rS∗

K
+

βS∗I∗

(b+S∗)2 +
a1S∗α−1P∗(1−α +a1σS∗α)

(1+a1σS∗α)2 , a12 =−
rS∗

K
− βS∗

b+S∗
,

a13 =−
a1S∗α

(1+a1σS∗α)
, a21 =

bβ I∗

(b+S∗)2 , a22 = 0, a23 =−a2I∗,

a31 = αS∗(α−1)P∗(
c1a1

(1+a1σS∗α)2 −δ1e−λτ), a32 = c2a2P∗, a33 = δ1S∗α(P∗− e−λτ).

The characteristic equation of the above matrix is given by following equation:

λ
3 +n1λ

2 +n2λ +n3 +(λ 2 +n4λ +n5)ρe−λτ = 0, (5.8)

where

n1 =−a11−ρP∗, n2 = c2a2
2I∗P∗+a11ρP∗+

c1a2
1αS∗2α−1P∗

(1+a1σS∗α)3 +

(
r
K
+

β

b+S∗

)
bβS∗I∗

(b+S∗)2 ,

n3 =−a11c2a2
2I∗P∗−

(
rS∗

K
+

βS∗

b+S∗

)(
bβρI∗P∗

(b+S∗)2 +
c1a1a2αS∗α−1I∗P∗

(1+a1σS∗α)2

)
+

a1a2c2bβS∗α I∗P∗

(b+S∗)2(1+a1σS∗α)
,

n4 =
rS∗

K
− βS∗I∗

(b+S∗)2 −
a1S∗α−1P∗(1−α +a1σS∗α)

(1+a1σS∗α)2 −a1a2αS∗α−1P∗,

n5 = (
r
K
+

β

b+S∗
)(

bβS∗I∗

(b+S∗)2 +a2αI∗P∗), ρ = δ1S∗α , .

System (5.7) is stable around the positive equilibrium point E∗(S∗, I∗,P∗) if all the characteristic
roots of Eq. (5.8) have a negative real component. In order to show switching of stability via
Hopf-bifurcation, the characteristic root must cross the imaginary axis. As a result, we suppose
that iω (ω > 0) is the root of Eq. (5.8). Then the real and imaginary parts of Eq. (5.8) is given
by

(n5−ω
2)ρcos(ωτ)+n4ωρsin(ωτ) = n1ω

2−n3, (5.9)

ρn4ωcos(ωτ)−ρ(n5−ω
2)sin(ωτ) = ω

3−n2ω. (5.10)

Squaring and adding the above two equations, we get the following sextic equation:

ω
6 +q1ω

4 +q2ω
2 +q3 = 0, (5.11)

where
q1 = n2

1−2n2−ρ
2, q2 = n2

2−2n1n3 +2n5ρ
2−n2

4ρ
2, q3 = n2

3−n2
5ρ

2.
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The critical value of τ can be determined by calculating {[Eq.(5.9)]× n4ω − [Eq.(5.10)]×
(n5−ω2)}, which results

τ j =
1

ω1

{
sin−1

[
(n1ω2

1 −n3)n4ω1 +ω1(n2−ω2
1 )(n5−ω2

1 )

ρ((n5−ω2
1 )

2 +n2
4ω2

1 )

]
+2π j

}
, j = 0,1,2, ... (5.12)

For the positivity of τ j, the range of sin(ωτ) should be positive. Therefore, τ j is positive if the
following inequality holds:

(n1n4−n2−n5)
2 < 4(n2n5−n3n4).

To test the transversality criterion for Hopf-bifurcation, substitute λ = ξ + iω in Eq. (5.8), and
then separate real and imaginary components to obtain

ξ
3−3ω

2
ξ +n1(ξ

2−ω
2)+n2ξ +n3 +ρ(ξ 2−ω

2 +n4ξ +n5)e−ξ τcos(ωτ)

+ρωe−ξ τsin(ωτ)(2ξ +n4) = 0,
(5.13)

−ω
3 +3ξ

2
ω +2n1ξ ω +n2ω−ρe−ξ τsin(ωτ)(ξ 2−ω

2 +n4ξ +n5)

+ρωe−ξ τcos(ωτ)(2n3ξ +n4) = 0.
(5.14)

When we differentiate Eqs. (5.13) and (5.14) with regard to τ and set ξ = 0 (the system loses
stability when Re(λ ) = 0) and τ = τ0, we get

M1ξτ0 +M2ωτ0 = N1, (5.15)

−M2ξτ0 +M1ωτ0 = N2, (5.16)

where

M1 = ρ(τ0(ω
2
1 −n5)+n4)cos(ω1τ0)+ρω1(2− τ0n4)sin(ω1τ0)+n2−3ω

2
1 ,

M2 = ρω1(−2+ τ0n4)cos(ω1τ0)+ρ(n4 + τ0(ω
2
1 −n5))sin(ω1τ0)−2n1ω1,

N1 = ρω1(n5−ω
2
1 )sin(ω1τ0)−n4ω

2
1 cos(ω1τ0),

N2 = ρω1(n5−ω
2
1 )cos(ω1τ0)+n4ω

2
1 sin(ω1τ0).

Solving Eqs. (5.15) and (5.16), we obtain

d(Re(λ ))
dτ

∣∣∣∣
τ=τ0

= ξτ0 =
N1M1−N2M2

M2
1 +M2

2
.
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Hence the transversality condition

d(Re(λ ))
dτ

∣∣∣∣
τ=τ0

6= 0 holds, if N1M1 6= N2M2.

Theorem 5.6.1. System (5.7) undergoes Hopf-bifurcation with respect to τ at τ = τ0(τ0 > 0)
such that E∗ is locally asymptotically stable when τ < τ0, and unstable when τ > τ0, if N1M1 6=
N2M2 at τ = τ0.

5.7 Numerical simulation

We begin by numerically simulating system (5.1) using the parameter values given in Table
5.2. The system exhibits four equilibrium points listed in Table 5.3 with eigenvalues. Figure
5.6 displays the phase portrait diagram corresponding to the Table 5.3. It shows the bi-stability
between an interior equilibrium and a limit cycle surrounding a planar equilibrium and other
points’ stability behavior based on the eigenvalues mentioned in Table 5.3.

Table 5.2: Data set of parameters involved in (5.1) with sources.

Parameters Numerical value Source(s)

r 0.5 [33]
K 30 Assumed
a1 0.5 [175]
a2 2 [130]
σ 2 [175]
µ1 0.05 [80]
µ2 0.5 [33]
c1 0.85 [33]
c2 0.17 Assumed
β 3 [178]
b 6 Assumed
δ1 0.0145 [33]
α 0.55 [33]
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Fig. 5.6: Phase portrait showing all existing steady-states for the parametric values given
in Table 5.2.

Table 5.3: Eigenvalues of equilibrium points associated with dataset given in Table 5.2.

Equilibrium points Eigenvalues

E∗1(24.2275,0.6513,1.1772) −0.322, −0.005±0.744i

E∗2(0.6339,0.9567,0.118) 0.012±0.4408i, 0.0336

E1(30,0,0) −0.5, 2.45, −0.2258

ESI(0.1016,0.9802,0) 0.0031±0.1564i, −0.0767

Effect of predator mortality due to prey group (δ1): Initially, for low values of δ1, system
(5.1) is locally asymptotically stable about the positive equilibrium E∗ (see Fig. 5.7 (a)). With
a slight increase in the value of δ1, system (5.1) undergoes Hopf-bifurcation at δ1 = δ ∗1 =

0.077446. At the Hopf-bifurcation point, E∗(24.008731,0.832865,1.150008) exists with B1 =

0.3307591, B2 = 0.295172175, and B3 = 0.09763095, which yields all conditions mentioned
in Theorem 5.5.1 are fulfilled. Then afterward, interior equilibrium E∗ is unstable, and a stable
limit cycle is observed around it for δ1 ∈ (0.077446,0.219583) (see Fig. 5.7 (b)). In this range,
the oscillations in the system become so high that eventually, it touches the axis of predator-free
equilibrium ESI(14,1.6,0) at δ ∗∗1 = 0.219583. Therefore, the epidemic state ESI(14,1.6,0) is a
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stable focus for the higher values of δ1 (see Fig. 5.7 (c)). We generated bifurcation diagrams for
all three populations S, I, and P with respect to δ1 to comprehend better the system’s dynamics
owing to Hopf-bifurcation (see Fig. 5.8).

(a) (b) (c)

Fig. 5.7: Effect of δ1 on system (5.1)’s dynamics at (a) δ1 = 0.02, (b) δ1 = 0.1, (c) δ1 =
0.5. The parameter values are: α = 0.7, µ1 = 2.1, c2 = 0.5, rest of the parameters are
taken from Table 5.2.
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Fig. 5.8: Hopf-bifurcation diagram for δ1 exhibiting the emergence of periodic oscilla-
tions after the bifurcation point δ1 = δ ∗1 = 0.077446. Red and blue colors represent the
maximum and minimum of the positive solution in the non-transient period, respectively.
For δ1 < δ ∗1 , the coinciding of maximum and minimum values demonstrate the stabil-
ity of E∗. After that, the solution fluctuates between its maximum and minimum values,
becoming unstable.

Effect of herd shape (α): In Fig. 5.9, the impact of different herd shapes on temporal dy-
namics of system (5.1) is highlighted. For multiple values of α , we plot the time series curve
of healthy prey (S), infected prey (I), and predator (P). For α = 0.1, 0.5, the system shows sta-
ble dynamics around interior equilibrium E∗. Whereas the system shows periodic oscillations
around E∗ for α = 0.67. This switching of stability occurs via a supercritical Hopf-bifurcation
at α = α∗ = 0.6621. To demonstrate this phenomenon in a better way, we plot bifurcation
diagrams for S, I and P concerning α as the bifurcation parameter (see Fig. 5.10).
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Fig. 5.9: Time series curve depicting the influence of the prey’s herd shape α on the
population density (a) Susceptible prey, (b) Infected prey and (c) Predator. The parame-
ters values are taken from Table 5.2.
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Fig. 5.10: Bifurcation diagram with respect to α .

Effect of disease transmission (β ): The infectious disease among prey has an immense im-
pact on the dynamics of the proposed model. The system experiences transcritical bifurcation
twice with the variation in the disease transmission rate β for different steady-states. We can
see from Fig. 5.11 that for high values of β , such that β ∈ (2.58,2.9), three steady-states
are present: Disease-free and predator-free state E1, epidemic state ESI , and co-existence state
E∗. Out of these three states, E∗ is locally asymptotically stable, and the rest two are saddle
points. Each color in Fig. 5.11 represents different equilibrium. Red color denotes E∗, blue
color denotes ESI , and magenta color is for E1. A stable state is represented by the solid curve,
whereas a dashed curve shows the saddle nature of an equilibrium point. With a decrease in
β , the interior equilibrium E∗ transfers its stability to the epidemic state ESI through a trans-
critical bifurcation at β = β ∗∗ = 2.58 (shown by green color point). Meanwhile, E1 remains a
saddle-point. The saddle nature of E1 changes when β further decreases. The system undergoes
another transcritical bifurcation when ESI passes stability to E1 at β = β ∗ = 2.52.
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Sotomayor’s theorem validation for transcritical bifurcation: In order to show the tran-
scritical bifurcation for system (5.1), concerning disease transmission rate β , we consider
µ1 = 2.1, and other parameters from Table 5.2. For the chosen set, E1(30,0,0) is a non-
hyperbolic equilibrium at β = β ∗ = 2.52. The Jacobian matrix about E1 at β = β ∗ is given
by

H =

−0.5 −2.6 −0.43326
0 0 0
0 0 −0.2258

 .

The eigenvectors corresponding to zero eigenvalue of H and HT are v = (−5.2, 1, 0)T and
w = (0, 1, 0)T , respectively. Now, we define

∆1 = wT Fβ (E1,β
∗),

∆2 = wT DFβ (E1,β
∗)v,

and
∆3 = wT [D2F(E1,β

∗)(v,v)],

where F = ( f1, f2, f3)
T , Fβ is the derivative of F with respect to β , DF and D2F are first order

and second order derivatives of F .
Simple calculation yields

Fβ (E1,β
∗) = (0,0,0)T which implies ∆1 = 0,

DFβ (E1,β
∗) =

0 −0.83333 0
0 0.83333 0
0 0 0

 which implies ∆2 = 0.83333 6= 0,

D2Fβ (E1,β
∗)(v,v) =

 f1SSv2
1 +2 f1SI v1v2 +2 f1SPv1v3

2 f2SI v1v2 +2 f2IPv2v3

2 f3SPv1v3 +2 f3IPv2v3

 which implies ∆3 =−0.121333 6= 0.

All conditions of the Sotomayor’s theorem [60] are satisfied. Therefore, system (5.1) experi-
ences transcritical bifurcation about E1(30,0,0) at β = β ∗ = 2.52.
Remark. The validation of Sotomayor’s theorem for transcritical bifurcation at β = β ∗∗ will
be the same as the above process.
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Fig. 5.11: Transcritical bifurcation diagram demonstrating the transition of stability
between E1, ESI and E∗ with respect to β , where µ1 = 2.1 and other parameters are same
as in Table 5.2. The green dots denote the bifurcation points β ∗ = 2.52 and β ∗∗ = 2.58

Effect of predation rate for susceptible prey (a1): The attack rate of the predator to hunt
the healthy prey (predation rate) is a crucial parameter that governs the intricate dynamics of
the system. Fig 5.12 depicts the geometric representations of system (5.1)’s solutions with the
minor change in a1. When a1 is small, at a1 = 0.08, the system is stable about the positive
steady-state E∗ (Fig. 5.12 (a)). Due to the Hopf-bifurcation, species begin to oscillate periodi-
cally at the bifurcation point a1 = a∗1 = 0.1593. The phase portrait at a1 = 0.3 (Fig. 5.12 (b))
displays the after bifurcation scenario. The limit cycle approach to the saddle point creates a
homoclinic loop as we move from Fig. 5.12 (b) to (c). With the further increase in a1, species
oscillate between two maximum and two minimum values. Therefore, the stable limit cycle of
period two occurs (Fig. 5.12 (d)). Furthermore, the period of oscillation increases with the rise
in a1. At a1 = 0.6, the system has a period four stable limit cycle (see Fig5.12 (e)). When the
attack rate is sufficiently large, the system enters a chaotic regime. We can see from the phase
portrait diagram at a1 = 0.9 (Fig. 5.12 (f)) that the presence of a chaotic attractor shows the un-
predictability of the solution. For the chaos detection, we checked the sensitivity of the solution
toward the initial condition. A slight adjustment to the initial solution can yield considerable
variation in the final solution. Fig. 5.13 depicts the sensitivity of solution (S, I,P) for ini-
tial conditions (10,0.5,0.5) and (10,0.51,0.51). Moreover, the maximum Lyapunov exponent
sketched in Fig. 5.14 is a standard method to verify the existence of chaos. For a1 ∈ (0.8,1.5),
the positivity of the maximum Lyapunov exponent confirms the chaotic trait.
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(d) (e) (f)

Fig. 5.12: Phase portraits showing complex dynamics of system (5.1) for different val-
ues of a1 at (a) a1 = 0.08, (b)a1 = 0.3, (c) a1 = 0.4, (d) a1 = 0.55, (e) a1 = 0.6, (f)
a1 = 0.9.
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Fig. 5.13: Sensitivity of trajectories with initial condition at a1 = 0.9.

Effect of time delay (τ): Every procedure has a time lag that must be taken into account. The
addition of time delay to the system adds realism by emphasizing the future state’s dependency
on the past form [55]. The dynamical behavior of delayed systems has been the subject of
several studies [156, 179, 180, 181].
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Fig. 5.14: Maximum Lyapunov exponent with respect to a1.

Here we present the numerical simulation for the theoretical results obtained in Section
5.6. The numeric value of the interior equilibrium is unaffected by the variation of the delay
parameter. Therefore, for the parameters in Table 5.2, E∗(24.2275304,0.6513395,1.1772581)
exists irrespective of time lag. However, its stability is tremendously affected by death delay
τ . Initially for τ = 0, E∗(24.2275304,0.6513395,1.1772581) is locally asymptotically stable
(see Fig. 5.6). With the rise in the value of τ , the magnitude of the real part of the complex
eigenvalue decreases and becomes zero at τ = τ0 = 0.611518. On crossing this critical value
of τ , all populations oscillate about the positive steady state by means of Hopf-bifurcation. To
determine the critical value of τ , we find the positive root ω1 = 0.759011 from the six degree
equation (5.11), and corresponding to it, we calculate the value of τ0 (the critical value of τ

for Hopf-bifurcation) from the formula stated in (5.12), which is obtained as τ0 = 0.611518.
Moreover, the transversality condition holds at τ = τ0 as N1M1−N2M2 = 0.223011 6= 0 The
dynamics of system (5.7) before (at τ = 0.5) and after (at τ = 0.7) Hopf-bifurcation are demon-
strated in Fig. 5.15 and Fig. 5.16, respectively.
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Fig. 5.15: Graphical demonstration of system (5.7)’s solutions at τ = 0.5. Here (a), (b),
and (c) display the temporal dynamics for all interacting species. (d) is the phase portrait
instancing the convergence of solution towards E∗.

Based on the preceding findings, we have observed that α and δ1 are the crucial parameters
that contribute to the complex dynamics of the proposed eco-epidemic system. This inspires us
to perform the bi-parametric analysis in the δ1α-plane. We find a critical value of α for each
value of δ1 (and vice-versa), at which the system suffers Hopf-bifurcation. Connecting all these
points forms a Hopf-bifurcation curve. We have drawn these curves in absence and presence of
time delay for three different values of τ , τ = 0, 0.5, 1 in Fig. 5.17. It can be observed from
the figure that when τ increases, the Hopf-bifurcation curve shifts downwards with the almost
same shape. The internal equilibrium E∗ is stable below the curve, but unstable above it, with
a stable limit cycle surrounding it.
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Fig. 5.16: Graphical illustration of system (5.7)’s solutions at τ = 0.7. (a), (b) and (c)
show that all solutions oscillate between maximum and minimum values as a conse-
quence of Hopf-bifurcation. The corresponding phase portrait (d) represents the exis-
tence of a stable limit cycle around repelling E∗.
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Fig. 5.17: Two parameter bifurcation diagram in δ1α- plane for distinct values of τ .
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Sensitivity analysis

In epidemiology, the basic reproduction number R0 is a pivotal metric. Another reproduction
number named disease-free demographic reproduction number RP

0 is an important figure in
eco-epidemiology. Both reproduction numbers are influential to the characteristics of an eco-
epidemic model. Model (5.1) must be subjected to sensitivity analysis to determine the relative
change in the reproduction numbers R0 and RP

0 to the relative change in its control attributes.
The normalized forward sensitivity index of differentiable R0 and RP

0 dependent on any of its
parameters p is defined as follows.

γ
R0
p =

∂R0

∂ p
p

R0
, γ

RP
0

p =
∂RP

0
∂ p

p
RP

0
, (5.17)

where γ
R0
p and γ

RP
0

p represent the sensitivity level with regard to any parameter p for R0 and RP
0 ,

respectively. In our model system, we have

R0 =
βK

µ1(b+K)
, RP

0 =
c1a1Kα

(1+a1σKα)(µ2 +δ1Kα)
.

Considering the parameter values from Table 5.2, we can calculate γ
R0
p and γ

RP
0

p for the associ-
ated parameters using (5.17). As a result, Fig. 5.18 visually depicts the sensitivity indexes for
model (5.1). A positive sensitivity index implies that an increase (or decrease) in the value of
a parameter corresponds to an increase (or decrease) in the reproduction number. In contrast,
negative index parameters indicate that a rise (or reduction) in the value of the parameter results
in a drop (or increase) in the reproduction number [182].

Observations from Fig. 5.18:

• β , µ1 are the most sensitive parameters for R0, and c1 is most sensitive for RP
0 , i.e., 100%

influential.

• R0 will drop (or rise) by 16.66% if the value of b or K is increased.

• The most sensitive metric of all the negative indices in Fig. 5.18 (right) is the predator’s
handling time for healthy prey, denoted by σ . It means that changing the value of σ

lowers (or raises) the value of RP
0 by 86.65%.

• System is least sensitive for RP
0 with respect to K, i.e., 1.37%.
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Fig. 5.18: Sensitivity of R0 (left) and RP
0 (right) for the associated parameters.

5.8 Discussion and conclusion

This article investigates the dynamical behavior of a prey-predator system where the prey devel-
ops an infectious disease. This illness cannot be communicated to their progeny and predators
consuming them. The prey unaffected by the disease is assumed to be strong, therefore, per-
forms group defense against the predator. Many animals, including buffaloes, gnus, bees, ants,
elephants, sardines, and tunas, engage in this activity. This behavior may be observed in nature
when prey moves in large herds. The most appealing aspect of this behavior is the slightly
odd interaction between the two species (prey and predator); the predator hunts the prey on
the herd’s borders, leading to the conclusion that the number of prey victimized by a predator
is proportional to the number of prey on the group’s confinement. The herd form is square or
circle when α = 1/2. Some species, such as birds and fish, do not always follow this regular
pattern; instead, they create spherical or cubical formations; hence, the rate of herd shape α is
2/3. To generalize the forms, we assumed that the rate of herd shape α is between 0 and 1. Re-
cently, Djilali et al. [33] highlighted the external competition between strong prey and predator.
According to them, the prey on the fence of the herd can injure or kill the predator. Moreover,
they used the fact that injury and passing away of the predator are not instantaneous and there-
fore investigated the system for the time delay. We incorporated these aspects of ecology in our
model to fit the real-life situation better.

The proposed model behaves well, as all solutions are positive and bounded. We deter-
mined all feasible steady-states of the system and examined the co-existence of species S, I,
and P. Theoretically and numerically, their local stability behavior has been explored enor-
mously. When predator-free equilibrium ESI exists, the healthy-prey only state E1 cannot be
stable. Sauna et al. [183] designed and analyzed the interaction of grouped prey, solitary prey,



5.8. Discussion and conclusion 137

and predator for α = 0.5. Their mathematical results reveal that grouped prey will go extinct
when lone prey and predator are absent. On the other hand, our work proves the survival of
prey exhibiting herd behavior even when lone prey and predator die out (E1(K,0,0) is locally
asymptotically stable under some conditions). The stability of E1 depends on the two key
numerals: the basic reproduction number R0 and the disease-free demographic reproduction
number for the predator RP

0 . The grouped prey can survive (E1 is stable) when these numerals
are less than unity, which conveys the benefit of living in herds. We observed that the system
experiences Hopf-bifurcation about E∗ for herd shape rate at α = 0.6621. Djilali et al. [33]
reported a similar phenomenon at α ∈ (0.6,0.7) in the absence of disease. Furthermore, our
work and their research show that an increase in predator mortality due to prey herd δ1 or time
delay τ can cause population fluctuations. Our study expresses that the high value of δ1 can
lead to predator elimination, which is biologically practicable. Due to the criticality of α , δ1

and τ , we determined the effect of time delay τ on the Hopf-bifurcation curves in αδ1-plane.
With an increment in τ , the Hopf-bifurcation curve shifts downwards (see Fig. 5.17).

A certain herd shape is advantageous to either prey or predator. The predator’s strategy to
attack the target varies with the form of the herd [175]. Therefore, the attack rate plays a vital
role in regulating the system’s dynamics. Our work looked at the influence of a1 (attack rate for
healthy prey) and found some intriguing outcomes. Fig. 5.13 depicts a variety of system traits
concerning a1. For lower a1, the system undergoes Hopf-bifurcation, and stable E∗ bifurcates
into a stable limit cycle. Gradually, the limit cycle links saddle E1 in the form of a homoclinic
loop. The system experiences period-doubling and eventually reaches a chaotic regime with
the increment in a1. Therefore, we can conclude that the formulated system is sensitive to the
initial condition.

Next, we looked at the impact of disease on interacting populations. Though the infection
does not spread among predators, their number varies due to the illness among prey. Three
steady-states axial E1, planar ESI , and interior E∗ are affected when the infection rate β changes
(see Fig. 5.11). Controlling the infection among prey can manage the predator population [80].
In the current study, when the infection rate lies in a particular range (β ∈ (β ∗,β ∗∗)), predators
can be removed (ESI is stable). Moreover, when β is less than a threshold, the disease can also
be eradicated, i.e., E1(K,0,0) becomes stable. Our findings reveal that disease transmission rate
and attack rate on vulnerable prey play a significant role in controlling the system’s dynamics,
and the system undergoes various bifurcations. Our observation also agrees with those reported
by Saha and Samanta [172] for α = 0.5.

In the end, we conducted a sensitivity analysis on the proposed model for basic reproduction
number R0 and disease-free demographic reproduction number RP

0 to identify the factors that
might regulate the dynamics of the system and give insights into species conservation.
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Chapter 6

Role reversal in a stage-structured prey–predator
model with fear, delay, and carry-over effects 1

6.1 Introduction

In classical prey-predator models, there is a misconception that every predator chases prey with
the same strength. However, this does not always fit with the real world as the species behaves
differently during the juvenile and adult life phases [184]. Predators weaned during adolescence
lack foraging or hunting skills, which makes predation during juvenility an arduous endeavor.
This scenario is investigated using the concept of stage structure in predator-prey models [185,
186, 187, 188, 189]. The mathematical incorporation of stages of any species is generally done
by constructing a system of differential equations.

One thing that is common in the aforementioned literature is that young predators are nur-
tured by their adult parents in a relatively secure habitat. Nevertheless, in the real world, these
assumptions are overly idealistic, as juvenile predator survival is significantly more difficult.
The ability of prey to kill vulnerable predators that pose no threat to them is less well recog-
nized. Due to size changes throughout maturation, adult predators are resistant to large prey,
but juvenile predators are susceptible to attack by prey [190]. Mature lions hunt buffaloes for
food, but juvenile lions cannot fight buffaloes until they are about one year old, and they also
rely on their parents for survival. Furthermore, buffaloes attack and sometimes kill infant lions
[191]. Frankliniella occidentalis, a worldwide prey species, is said to engage in anti-predator
behaviour by ingesting phytoseiid mite eggs[192]. A study by Kaushik and Banerjee [193] sug-
gests that counter-attacking controls heavy predation. Moreover, they draw the conclusion from
their research that excessive counter-attacking can completely eliminate the predators. Li et al.

1A considerable part of this chapter is published in Chaos: An Interdisciplinary Journal of Nonlinear Sci-
ence, 33, 093114, 2023.
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[34] believed that the counter-attacking on juvenile predators directly benefits the prey popula-
tion. This situation of the role reversal of prey and predator brings out ecologically plausible
complex dynamics.

Prey-predator interactions are generally studied to understand direct killing. Nevertheless,
fear of predators among prey can hamper their reproduction rate [17, 194]. Therefore, it is
better to explore the dynamics of a prey-predator system in the presence of fear. A large piece
of the literature shows that fear among prey can stabilize or destabilize the system [21, 26,
58, 195, 196, 197]. In addition, fear above a threshold can cause the system to enter a state
of chaos [122]. To overcome the fear of predation, prey often exhibits anti-predator behavior.
When prey has no chance of escape, the last option left is to counter-attack. Recently, Prasad
and Sasmal [195] studied a system of ordinary differential equations with fear and counter-
attacking strategy as the anti-predator response. Their findings uncover fascinating dynamics
like bi-stability, Hopf-bifurcation, and Bogdanov-Takens bifurcation.

The term “carry-over effect” came to light from repeated clinical experiment evaluations. In
an ecological scenario, any circumstance in which an individual’s prior history and experiences
explain their current performance is a carry-over effect [198]. The incorporation of the carry-
over effect into a population model can aid in understanding the relationship between life-
history trade-offs and reproduction costs. Thus there is an increasing trend of investigating the
prey-predator model with carry-over effect [21, 25].

Almost every biological process has some time lag, and integration of such time delay
makes the model more realistic and engaging [55]. The study of delay differential equations
has become popular as it provides rich dynamics. Many researchers discovered that the system
undergoes Hopf-bifurcation with respect to time delay [199, 200]. Sajan et al. [21] found that
the carry-over effect of fear in prey is not observed instantly. So, they introduced a carry-over
effect delay in the three-species model and found that the large value of time delay transforms
the chaotic system into a stable one.

Based on the aforementioned discussion, we formulate and study a mathematical model
showing the interaction of prey, immature predator, and mature predator in the presence of fear
and its carry-over effect with two discrete time delays. The purpose of our research is to look
into the following problems:

1. How does fear, its COE and time delay impact population density and stability traits?

2. Does the phenomenon of bi-stability occur for our system?

3. In what way does the role reversal influence the co-existence of species?

4. How can the paradox of enrichment phenomenon be observed in our model, and under
what circumstances can it be ruled out?
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Further part of the manuscript is organized as follows: Section 6.2 shows the basic assumptions
and the formulation of the model. The mathematical preliminaries including well-posedness,
existence and stability of equilibrium points of the model system are discussed in Section 6.3.
Moreover, we explore the possible bifurcations occurring in the system. Next, we investigate
the local stability behavior and Hopf-bifurcation for the time-delayed system in Section 6.4. In
Section 6.5, we observe the system dynamics through computational work. We use MATLAB
R2021a to validate our analytical findings. Lastly, we summarize all our findings in Section
6.6.

6.2 The model construction

We develop a system of differential equations governing the continuous time interaction of
prey x(t), juvenile predator y(t), and adult predator z(t). Based on the literature survey done in
Section 6.1, we formulate a mathematical model with the following assumptions:

1. When predator is absent, the prey population grows logistically with intrinsic growth rate
r− r0(> 0) and carrying capacity K1 =

r−r0
r1

, here r, r0, and r1 are the birth, death, and
intraspecific interference rates, respectively. Therefore the single species model is given
by

dx
dt

= (r− r0)x
(

1− x
K1

)
.

2. We assume that the predators are of specialist nature and their growth completely depends
on the prey density consumed. To demonstrate the interaction of adult predator and prey,
we use the Holling type II functional response, given by

p(x) =
αx

1+αhx
,

where α is the attack rate and h is the handling time.

3. The juvenile predator is incapable of reproducing and hunting. So they completely rely on
their parents for survival [201]. A fraction of the consumed biomass by mature predator
gets transferred into the young ones. The immature predator is transformed to the mature
class with the constant rate β . d1 and d2 are the mortality rates of juvenile and adult
predator, respectively.

4. In addition to the direct killing, adult predator induce fear in prey, which hampers the
birth rate of prey negatively. Moreover, this fear has some carry-over effects on the prey
density. Thus we incorporate these ecological factors into our model using the function



142
Chapter 6. Role reversal in a stage-structured prey–predator model with fear, delay, and

carry-over effects

φ(c,k,x,z) = 1+cx
1+cx+kz , where k and c are the fear and its COE parameters [21]. From the

ecological point of view, φ(c,k,x,z) must satisfy the following properties.

(i) In the absence of predator or fear effect, the function φ makes no sense, and the
birth rate of the prey is unaffected. Therefore,

φ(c,0,x,z) = φ(c,k,x,0) = 1.

(ii) Increasing the level of fear or predator density lowers the prey growth. In mathe-
matical terms, we have

∂φ

∂k
=− (1+ cx)z

(1+ cx+ kz)2 < 0,
∂φ

∂ z
=− (1+ cx)k

(1+ cx+ kz)2 < 0.

(iii) When fear level or the predator density is extremely high, prey species might be
eliminated. Thus,

lim
k→∞

φ(c,k,x,z) = lim
z→∞

φ(c,k,x,z) = 0.

(iv) An increase in COE has a beneficial impact on prey growth as a result of lessons
learned from past experiences. Mathematically, we can write

∂φ

∂c
=

kxz
(1+ cx+ kz)2 > 0.

(v) The reproduction rate of the prey naturally increases with the rise in population
density. Therefore,

∂φ

∂x
=

ckz
(1+ cx+ kz)2 > 0.

(vi) When the COE or the prey density is too large, there will be no impact of fear on
the reproduction rate. Hence, we obtain

lim
c→∞

φ(c,k,x,z) = lim
x→∞

φ(c,k,x,z) = 1.

5. The COEs caused by fear are not instantaneous, and the effects of the induced fear on the
prey population will inevitably be delayed [21]. Consequently, including a COEs delay
τ1 in our system is ecologically reasonable.

6. The effect of fear does not retard the prey’s birth rate immediately. Therefore, we incor-
porate the fear delay τ2 to show a more realistic approach [22].
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7. Further, we assume the prey takes revenge by counter-attacking the vulnerable juvenile
predator with the constant rate e. A fraction of biomass intake by the prey helps them to
reproduce new ones with the rate f . The counter-attack by prey causes the adult predator
to show parental concern and hunt on prey. In a basic ecological sense, the juveniles of z

are consumed by x, but adult predators of density z consume x. When the size structures
of prey and predator coincide, it is challenging to identify the predator and the prey,
which results in their role reversal [34].

Combining all the aspects mentioned above, we establish a mathematical model given by

dx
dt

= rx
(

1+ cx(t− τ1)

1+ cx(t− τ1)+ kz(t− τ2)

)
− r0x− r1x2− αxz

1+αhx
+ f xy,

dy
dt

=
c1αxz

1+αhx
−βy−d1y− exy,

dz
dt

= βy−d2z,

(6.1)

x(s) = φ1(s)≥ 0, y(s) = φ2(s)≥ 0, z(s) = φ3(s)≥ 0, s ∈ [−τ,0],τ = max{τ1,τ2}.

In the absence of time delay (τ1 = 0, τ2 = 0), model (6.1) is converted into the following three-
dimensional system. All parameters included in the proposed system are explained in Table
6.1.

dx
dt

= rx
(

1+ cx
1+ cx+ kz

)
− r0x− r1x2− αxz

1+αhx
+ f xy = f1(x,y,z),

dy
dt

=
c1αxz

1+αhx
−βy−d1y− exy = f2(x,y,z),

dz
dt

= βy−d2z = f3(x,y,z),

(6.2)

x(0)≥ 0, y(0)≥ 0, z(0)≥ 0.

6.3 Mathematical preliminaries

In this part, firstly, we will check if the model is well-posed or not by ensuring the positivity
and boundedness of solutions. Next, we investigate the equilibrium points and their stabil-
ity behavior. Furthermore, we explore numerous bifurcations with respect to the significant
parameters.
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Table 6.1: Data set of parameters used in (6.1) with references.

Parameters Ecological meaning Numerical value Reference(s)

r Birth rate of the prey 2.6 [25]
r0 Natural death rate of the prey 0.75 [22]
r1 Intra-specific competition coefficient 0.35 Assumed
K Level of fear 4 [21]
α Predation rate of the adult predator 6.5 Assumed
d1 Natural death rate of immature predator 0.2 [34, 202]
d2 Natural death rate of mature predator 0.7 Assumed
c Carry-over effect 0.001 [21]
β Growth rate of immature predator 1.1 Assumed
c1 Conversion efficiency 0.8 [193]
h Handling time 0.65 [202]
e Predation rate of the prey 0.25 [193]
f Reproduction rate of the prey 0.001 Assumed

6.3.1 Positivity and boundedness

It is simply clear from the equations of model (6.2) that

dx
dt

∣∣∣∣
x=0

= 0,
dy
dt

∣∣∣∣
y=0

=
c1αxz

1+αhx
,

dz
dt

∣∣∣∣
z=0

= βy.

Since dx
dt

∣∣∣∣
x=0
≥ 0, it implies that x(t)≥ 0 ∀ t ≥ 0. Now, we assert that dy

dt

∣∣∣∣
y=0

= c1αxz
1+αhx ≥ 0 hence

y(t)≥ 0 ∀ t ≥ 0. If this is not the case, then suppose that ∃ a t1 > 0 with t1 = in f{t : y(t)= 0, t >

0}, such that dy(t1)
dt

∣∣∣∣
y(t1)=0

= c1αx(t1)z(t1)
1+αhx(t1)

< 0. Furthermore, we also have y(t1) = 0, y(t)> 0 with

t ∈ [0, t1) and z(t1)< 0. Since z(0)≥ 0, there is a t2 > 0 with t2 = in f{t : z(t) = 0, t ∈ [0, t1)}.
Therefore, by the definition of t2, dz(t2)

dt ≤ 0. However dz(t2)
dt = βy(t2) > 0, which contradicts

our premise. Hence dy
dt

∣∣∣∣
y=0
≥ 0, which follows that y(t) ≥ 0 ∀ t ≥ 0. Finally, from the third

equation of the model dz
dt

∣∣∣∣
z=0

= βy≥ 0, it follows that z(t)≥ 0 ∀ t ≥ 0.

Theorem 6.3.1. The set Ω = {(x,y,z) : 0 < c1x+y+ z≤ c1r2

4ηr1
} is a region of attraction for all

solutions initiating in the interior of the positive quadrant, where η ≤ min{r0, d1, d2}.
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Proof. Let W = c1x+ y+ z and choose η > 0 such that

dW
dt

+ηW =
c1rx(1+ cx)
1+ cx+ kz

− c1r0x− c1r1x2 + c1 f xy−d1y−d2z− exy+η(c1x+ y+ z)

≤ c1rx− c1r1x2− (e− c1 f )xy− c1(r0−η)x− (d1−η)y− (d2−η)z.

Let e > c1 f and for η ≤ min{r0, d1, d2}, we can write

dW
dt

+ηW ≤ c1rx− r1c1x2

≤ c1r2

4r1
.

Therefore,

limsup
t→∞

(c1x+ y+ z)≤ c1r2

4ηr1
.

Hence the theorem is established.

6.3.2 Equilibrium points and local stability

It is easy to see that the system has two boundary steady-states: E0(0,0,0) and E1(K1,0,0),
where K1 = r−r0

r1
. The predator-free state E1 exists when r > r0. Furthermore, the system

exhibits a unique interior equilibrium point E∗(x∗,y∗,z∗), which can be obtained by solving
following equations.

r
(

1+ cx
1+ cx+ kz

)
− r0− r1x− αz

1+αhx
+ f y = 0, (6.3)

c1αxz
1+αhx

−βy−d1y− ex = 0, (6.4)

z =
βy
d2

. (6.5)

Solving Eqs. (6.3), (6.4), (6.5), we obtain following two quadratic equations.

A1x2 +A2x+A3 = 0, (6.6)

where A1 = αhed2, A2 = d2(e+αβh+αhd1)− c1αβ , A3 = d2(β +d1).

B1y2 +B2y+B3 = 0, (6.7)
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where B1 =
βkγ

d2
, B2 = γ(1+ cx∗)+ kβ (r0+r1x∗)

d2
, B3 = (1+ cx∗)r1(x∗−K1),γ = βα

d2(1+αhx∗) − f .

Using Descarte’s rule of sign, we can discuss the number of positive solutions of Eqs. (6.6) and
(6.7). Therefore, to state the existence of the interior equilibrium, we have the following three
theorems.

Theorem 6.3.2. The system acquire two positive equilibrium points if the following conditions

hold.

(i) A2 <−2
√

A1A3,

(ii) γ > 0 and x∗i < K1 ∀i = 1,2.

Proof. It is easy to note from Eq. (6.6) that the sign of A1 and A3 is always positive. The
Descarte’s rule suggests that for the existence of roots of Eq. (6.6), the negativity of the sign
of A2 is necessary. In such a case, number of roots can be two or zero. Moreover, if the
discriminant of the quadratic equation is positive, the equation has exactly two positive roots.
Therefore, for the existence of the positive root, we obtain the following necessary condition.

A2 < 0, and A2
2 > 4A1A3.

Now, after calculating roots x∗i from Eq. (6.6) , we need to determine y∗i from Eq. (6.7). If γ is
positive and x∗i < K1 for each i = 1,2, then B1 > 0, B2 > 0 and B3 < 0. Therefore, for each x∗i ,
we can determine unique y∗i from Eq. (6.7), and z∗i from Eq. (6.5).

Theorem 6.3.3. The system acquires a unique positive equilibrium if the following conditions

hold.

(i) A2 <−2
√

A1A3,

(ii) γ > 0 and

(iii) x∗i > K1, i = 1 or 2.

Proof. In addition to the previous theorem, if one of the roots obtained from Eq. (6.6) is bigger
than K1 and the other root is lesser than K1. Then in such a case, x∗ > K1 is not acceptable for
our ecological system as the prey density cannot exceed its carrying capacity. Therefore, the
system has a unique positive equilibrium if the conditions of the theorem are satisfied.

Remark.

(i) If A2 = −2
√

A1A3, then we note that A2 is negative and Eq. (6.6) has a unique positive
root of multiplicity two.
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(ii) If γ > 0 and x∗ < K1, then Eq. (6.7) has a unique positive root.

(iii) If A2 = −2
√

A1A3, γ > 0 and x∗ < K1, then the proposed system has a unique positive
equilibrium.

When conditions of both Theorems 6.3.2 and 6.3.3 are not satisfied, the system has no
positive equilibrium. Therefore, we can establish the next theorem.

Theorem 6.3.4. The system has no positive equilibrium if any one of the following cases is

true.

(i) A2 ≥ 0,

(ii) −2
√

A1A3 < A2 < 0,

(iii) A2 <−2
√

A1A3, B2(x∗i )> 0 and x∗i > K1 ∀i = 1,2,

(iv) A2 <−2
√

A1A3, B1 < 0, B2(x∗i )< 0 and x∗i < K1 ∀i = 1,2.

All these three theorems can be illustrated numerically by varying e and α in Fig. 6.1. The
pair (e,α) for which the conditions of Theorem 6.3.2 are satisfied is colored red, and this region
has exactly two interior equilibrium points. The blue color region points satisfy all conditions
of Theorem 6.3.3, corresponding to a unique interior equilibrium. The green color region meets
up the requirement of Theorem 6.3.4, and hence there does not exist any positive equilibrium.

Fig. 6.1: eα-plane divided based on the number of interior equilibrium points. Red,
blue, and green color depicts the set of (e,α) values for which the system exhibits two,
one, and zero positive equilibrium points, respectively. The rest of the parameters are
taken from Table 6.1.
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Remark.

• It is important to note here that the necessary mathematical condition for the existence of
E∗ is A2 <−2

√
A1A3, which yields the following inequality:

d2 <
c1αβ

[
√

e+
√

αh(β +d1)]2
.

• It is natural that any population number cannot exceed its environmental carrying capac-
ity. Since prey density x∗ is less than its carrying capacity K1, it implies B3 < 0. All other
cases of B3 are not permissible for our system.

• The proposed system can have at most two interior equilibrium points, and the existence
of positive equilibrium is independent of fear (k) and carry-over effect (c).

The local stability behavior of an autonomous system’s equilibrium point is determined by
the sign of the eigenvalues of the associated jacobian matrix. Let J1 be the Jacobian matrix
corresponding to the positive steady-state E∗, which is given by the following.

J1 =

 j11 j12 j13

j21 j22 j23

j31 j32 j33

=


kcrx∗z∗

(1+cx∗+kz∗)2 − r1x∗+ hα2x∗z∗
(1+αhx∗)2 f x∗ − rkx∗(1+cx∗)

(1+cx∗+kz∗)2 − αx∗
1+αhx∗

c1αz∗

(1+αhx∗)2 − ey∗ −d1−β − ex∗ c1αx∗
1+αhx∗

0 β −d2


Let Θ1 =−( j11+ j22+ j33), Θ2 = j22 j33− j23 j32+ j11 j33+ j11 j22− j12 j21, Θ3 =− j11( j22 j33−
j23 j32)+ j21( j12 j33− j13 j32). Then the local stability behavior of the non-negative equilibria
is summarized in Table 6.2.

Table 6.2: Equilibrium points of the proposed model and their stability behavior in the
absence of delay.

Equilibrium points Eigenvalues Stability behavior

E0(0,0,0) r− r0, −d1−β , d2 saddle point
E1(K1,0,0) −r1K1, other two are the roots of

λ 2 +Γ1λ +Γ2, where Γ1 = d1 +β + eK1 +d2 stable⇔ Γ2 > 0
and Γ2 = d2(d1 +β + eK1)− c1αβK1

1+αhK1

E∗(x∗,y∗,z∗) roots of λ 3 +Θ1λ 2 +Θ2λ +Θ3 = 0, stable⇔Θ1 > 0,Θ3 > 0
Θ1Θ2−Θ3 > 0

Remark. The stability of E1 is independent of the reproduction rate of prey ( f ), fear (k),
and the carry-over effect (c). Moreover, the necessary and sufficient condition for the stability
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is given by

d2 >
c1αβK1

(1+αhK1)(d1 +β + eK1)
.

In an ecological sense, when the death rate of the mature predator exceeds a threshold, the
predator population will die out, and the prey will survive, resulting in the stability of E1.

6.3.3 Hopf-bifurcation

Theorem 6.3.5. System (1) experiences Hopf-bifurcation at e = e∗ about the co-existence state

E∗ if the following conditions hold:

(i) Θ1(e∗)Θ2(e∗)−Θ3(e∗) = 0,

(ii) Θ1(e∗)> 0, Θ3(e∗)> 0,

(iii)
(

Θ1
dΘ2
de +Θ2

dΘ1
de −

dΘ3
de

)
e=e∗
6= 0.

Proof. At the Hopf-bifurcation point e = e∗, Θ1Θ2−Θ3 = 0, the characteristic equation of J1

can be re-written as
(λ +Θ1)(λ

2 +Θ2) = 0.

This yields λ1 = −Θ1 and λ2,3 = ±i
√

Θ2, where Θ1 > 0,Θ2 > 0. To evaluate the transver-
sality condition, we assume that λ2,3(e) = ξ1(e) + iξ2(e) and substitute λ = ξ1 + iξ2 in the
characteristic equation to obtain the real and imaginary parts as follows:

ξ
3
1 −3ξ1ξ

2
2 +Θ1(ξ

2
1 −ξ

2
2 )+Θ2ξ1 +B3 = 0, (6.8)

−ξ
3
2 +3ξ2ξ

2
1 +2Θ1ξ1ξ2 +Θ2ξ2 = 0. (6.9)

Combining Eqs. (6.8) and (6.9), we get

8ξ
3
1 +8Θ1ξ

2
1 +2ξ1(Θ2 +Θ

2
1)+Θ1Θ2−Θ3 = 0. (6.10)

Now, differentiating Eq. (6.10) with respect to e, then at e = e∗, we obtain

dξ1

de

∣∣∣∣
e=e∗

=− 1
2(Θ2 +Θ2

1)

[
Θ1

dΘ2

de
+Θ2

dΘ1

de
− dΘ3

de

]
e=e∗

.

Therefore, the transversality condition is[
Θ1

dΘ2

de
+Θ2

dΘ1

de
− dΘ3

de

]
e=e∗
6= 0.
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Hence the theorem follows.

Direction and stability of Hopf-bifurcation

To find the direction and stability of the bifurcating periodic solution, we need to determine
Lyapunov’s first coefficient. At the Hopf-bifurcation point, we shift the interior equilibrium
point E∗(x∗,y∗,z∗) to the origin using the transformation:

u1 = x− x∗, u2 = y− y∗,u3 = z− z∗.

System (6.2) can also be written as

U ′ = J1U +ρ(U), (6.11)

where U = (U1,U2,U3)
T and ρ(U) = (g1,g2,g3)

T . Here g1, g2 and g3 are the second order
terms of the Taylor’s expansion of f1, f2 and f3 about (0,0,0), respectively.

g1 =
1
2

{[
2rckz∗(1+ kz∗)
(1+ cx∗+ kz∗)3 −2r1 +

2hα2z∗

(1+αhx∗)3

]
u2

1 +
2k2rx∗(1+ cx∗)
(1+ cx∗+ kz∗)3 u2

3 + f u1u2−
[

rk
(1+ cx∗+ kz∗)2

+
2crk2x∗z∗

(1+ cx∗+ kz∗)3 −
α

(1+αhx∗)2

]
u1u3

}
,

g2 =
1
2

{
− 2c1α2hz∗

(1+αhx∗)3 u2
1− eu1u2 +

c1α

(1+αhx∗)2 u1u3

}
, g3 = 0.

The eigenvectors corresponding to the eigenvalues iω , λ3 are Ξ1 = (ξ11,ξ21,ξ31)
T and Ξ2 =

(ξ12,ξ22,ξ32)
T , respectively, where

ξ11 = α1 + iβ1, ξ21 = α2 + iβ2, ξ31 = 1,

α1 =
x∗{[ rk(1+cx∗)

(1+cx∗+kz∗)2 +
α

1+αhx∗ −
f d2
β
][ kcrx∗z∗
(1+cx∗+kz∗)2 − r1x∗+ hα2x∗z∗

(1+αhx∗)2 ]+
f ω2

β
}

[ kcrx∗z∗
(1+cx∗+kz∗)2 − r1x∗+ hα2x∗z∗

(1+αhx∗)2 ]2 +ω2
,

β1 = ωx∗
− f

β
[ kcrx∗z∗
(1+cx∗+kz∗)2 − r1x∗+ hα2x∗z∗

(1+αhx∗)2 ]+ [ rk(1+cx∗)
(1+cx∗+Kz∗)2 +

α

1+αhx∗ −
f d2
β
]

[ kcrx∗z∗
(1+cx∗+kz∗)2 − r1x∗+ hα2x∗z∗

(1+αhx∗)2 ]2 +ω2
,

α2 =
d2

β
, β2 =

ω

β
, ξ31 = 1,

ξ12 =
x∗{[ rk(1+cx∗)

(1+cx∗+kz∗)2 +
α

1+αhx∗ ]−
f (d2+λ3

β
}

[ kcrx∗z∗
(1+cx∗+kz∗)2 − r1x∗+ hα2x∗z∗

(1+αhx∗)2 −λ3]
, ξ22 =

d2 +λ3

β
, ξ32 = 1.
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Now, let us define B = [Re(Ξ1),−Im(Ξ1),Ξ2], and M = B−1U , where M = (M1,M2,M3)
T ,

then system (6.11) takes the following form:

M′ = [B−1J1B]M+δ (M), (6.12)

where

δ (M) =

κ1

κ2

κ3

= B−1
ρ(BM).

As per the Central Manifold Theorem [203], we can write(
M1

M2

)′
=

(
0 −ω

ω 0

)(
M1

M2

)
+

(
κ1(M1,M2;e = e∗)

κ2(M1,M2;e = e∗)

)
. (6.13)

Here

(
κ1

κ2

)
= 1

∆

(
−β2ξ32g1(BM)+β1ξ32g2(BM)

(ξ22−α2ξ32)g1(BM)+(α1ξ32−ξ12)g2(BM)

)
, where ∆ = −α1β2ξ32 +

β1(α2ξ32−ξ22)+ξ12β2.
Next, we evaluate the first Lyapunov coefficient based on the normal form (6.13), which is

given as

L =
1

16

[
κ

1
M1M1M1

+κ
1
M1M2M2

+κ
2
M1M1M2

+κ
2
M2M2M2

]
+

1
16ω

[
κ

1
M1M2

(κ1
M1M1

+κ
1
M2M2

)

−κ
2
M1M2

(κ2
M1M1

+κ
2
M2M2

)−κ
1
M1M1

κ
2
M1M1

+κ
1
M2M2

κ
2
M2M2

]
.

The sign of L determines the direction of Hopf-bifurcation. For this, we have our next theorem.

Theorem 6.3.6. The system (6.2) experiences a

(i) supercritical Hopf-bifurcation if L < 0,

(ii) subcritical Hopf-bifurcation if L > 0, and

(iii) generalized Hopf-bifurcation if L = 0

around a positive equilibrium E∗ at e = e∗.

6.3.4 Transcritical bifurcation

Theorem 6.3.7. The system experiences transcritical bifurcation around predator-free equilib-

rium E1(K1,0,0) at e = e[tc] =
(

c1K1αβ

d2(1+αhK1)
−β − d1

)
1

K1
if v1 6= 0, where v1 is defined in the

proof.



152
Chapter 6. Role reversal in a stage-structured prey–predator model with fear, delay, and

carry-over effects

Proof. The variational matrix around E1 at e = e[tc] is

A =


−(r− r0) f K1 − krK1

(1+cK1)
− αK1

(1+αhK1)

0 −β −d1− e[tc]K1
c1K1α

1+αhK1

0 β −d2

 .

Let the eigenvectors corresponding to the matrices A and AT for eigenvalue zero be v=
(

1
r1
( f d2

β
−(

kr
1+cK1

+ α

1+αhK1

)
), d2

β
, 1
)T

and w =

(
0, 1, c1K1α

d2(1+αhK1)

)T

, respectively. Now, simple calcu-

lation yields the following.
∆1 = wT Fe(E1,e[tc]) = 0,

∆2 = wT DFe(E1,e[tc])v =−
d2K1

β
6= 0,

and

∆3 = wT [D2F(E1,e[tc])](v,v) = 2v1

(
c1α2hK1

(1+αhK1)2 +
d2(d1 +β )

βK1

)
,

where
v1 =

1
r1

[
f d2

β
−
(

kr
1+ cK1

+
α

1+αhK1

)]
.

Now we can note that v1 6= 0 =⇒ ∆3 6= 0. Hence, we can conclude that all conditions of the So-
tomayor’s Theorem [60] are satisfied. Therefore, the system undergoes transcritical bifurcation

around E1 at e = e[tc] =
(

c1K1αβ

d2(1+αhK1)
−β −d1

)
1

K1
if v1 6= 0.

6.4 Stability analysis of delayed model (6.1)

It may be noted that our model’s equilibrium density level is independent of the time delay. The
analysis for the positivity and boundedness of the delayed model is similar to the non-delayed
model, as performed in Section 6.3. The detail analysis is outlined in [200]. Thus, we omit the
proof.

The equilibrium points of the proposed model do not change with respect to the time delay.
Nevertheless, stability may alter. Therefore, we now linearize system (6.1) to investigate its
stability behavior about the positive equilibrium. The linearized form of system (6.1) is given
by the following matrix.

J2 = P′1 +P′2e−λτ1 +P′3e−λτ2,
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where P′1, P′2, P′3 are the Jacobian matrices about E∗(x∗,y∗,z∗) in the direction of t, (t−τ1), (t−
τ2), respectively. Therefore, the final matrix is given by

J2 =

v11 + v∗11e−λτ1 j12 v13 + v∗13e−λτ2

j21 j22 j23

j31 j32 j33

 ,

where v11 = −r1x∗+ hα2x∗z∗
(1+αhx∗)2 , v∗11 = crkx∗z∗

(1+cx∗+kz∗)2 , v13 = − αx∗
1+αhx∗ , v∗13 = − rkx∗(1+cx∗)

(1+cx∗+kz∗)2 , and
rest of the entries are same as of the non-delayed system matrix J1.
The transcendental characteristic equation about E∗ in the form of λ is as follows.

λ
3 +µ1λ

2 +µ2λ +µ3 +(λ 2 +η1λ +η2)ρe−λτ1 +ρη3e−λτ2 = 0, (6.14)

where

µ1 = r1x∗− hα2x∗z∗

(1+αhx∗)2 +d1 +β + ex∗+d2,

µ2 = d2(d1 +β + ex∗)− c1αβx∗

(1+αhx∗)
+(d2 +d1 +β + ex∗)

(
r1x∗− hα2x∗z∗

(1+αhx∗)2

)
+ f x∗

(
ey∗− c1αz∗

(1+αhx∗)2

)
,

µ3 =

(
r1x∗− hα2x∗z∗

(1+αhx∗)2

)(
d2(d1 +β + ex∗)− c1αβx∗

(1+αhx∗)

)
+ x∗

(
f d2−

αβ

1+αhx∗

)(
ey∗− c1αz∗

(1+αhx∗)2

)
,

η1 = d1 +β + ex∗+d2,

η2 = d2(d1 +β + ex∗)− c1αβx∗

(1+αhx∗)
,

η3 =
β (1+ cx∗)

cz∗

(
ey∗− c1αz∗

(1+αhx∗)2

)
.

Case I: τ1 = τ2 = 0 : In the absence of delay, Eq. (6.14) reduces to the characteristic equation
of system (6.2), and therefore the local stability behavior of both systems (6.1) and (6.2) is
identical.

Case II: τ1 > 0, τ2 = 0 : In this case, Eq. (6.14) takes the following form.

λ
3 +µ1λ

2 +µ2λ +µ3 +(λ 2 +η1λ +η2)ρe−λτ1 +ρη3 = 0. (6.15)

Finding the exact solution to the above transcendental equation is difficult. Nevertheless, we
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can determine the critical value of carry-over effect delay at which system (6.1) experiences
stability switching through Hopf-bifurcation. At the Hopf-bifurcation point, the two eigenval-
ues of Eq. (6.14) must be purely imaginary. Therefore, we substitute λ = iζ in Eq. (6.14) to
obtain following equations:

ρ(η2−ζ
2)cos(ζ τ)+ρη1ζ sin(ζ τ) = µ1ζ

2−µ3−ρη3, (6.16)

ρη1ζ cos(ζ τ)−ρ(η2−ζ
2)sin(ζ τ) = ζ

3−µ2ζ . (6.17)

Squaring and adding Eqs. (6.16) and (6.17), we get

ζ
6+ζ

4(µ2
1 −2µ2−ρ

2)+ζ
2(µ2

2 −2µ1(µ3+ρη3)+ρ
2(2η2−η

2
1 ))+(µ3+ρη3)

2−ρ
2
η

2
2 = 0.
(6.18)

Furthermore, manipulating Eqs. (6.16) and (6.17) yields the following formula to determine
the critical value of τ1 at which the Hopf-bifurcation occurs.

τ1
∗
i =

1
ζ

cos−1
{
(η2−ζ 2)(µ1ζ 2− (µ3 +ρη3))+η1ζ 2(ζ 2−µ2)

ρ[(η2−ζ 2)2 +η2
1 ζ 2]

}
+

2iπ
ζ

, ∀i = 0,1,2, ...

(6.19)
The transversality condition required for the Hopf-bifurcation can be obtained under an analysis
similar to the analysis obtained in [204], and it is given by

dRe(λ )
dτ1

∣∣∣∣
τ1=τ1

∗
0

=
R1S1−R2S2

S2
1 +S2

2
6= 0 when R1S1 6= R2S2, (6.20)

where
R1 = ρζ (η2−ζ

2)sin(ζ τ1
∗
0)−η1ζ

2cos(ζ τ1
∗
0),

R2 = ρζ (η2−ζ
2)cos(ζ τ1

∗
0)+η1ζ

2sin(ζ τ1
∗
0),

S1 = ρ(τ1
∗
0(ζ

2−η2)+η1)cos(ζ τ1
∗
0)+ρζ (2− τ

∗
0 η1)sin(ζ τ1

∗
0)+µ2−3ζ

2,

S2 = ρζ (−2+ τ1
∗
0η1)cos(ζ τ1

∗
0)+ρ(η1 + τ

∗
0 (ζ

2−η2))sin(ζ τ1
∗
0)−2µ1ζ .

Thus, we can state the following theorem.

Theorem 6.4.1. System (6.1) undergoes Hopf-bifurcation with respect to the carry-over effect

delay τ1 at τ1 = τ1
∗
0 > 0 if its transversality condition (6.20) holds.

Case III: τ1 = 0, τ2 > 0 In this case, Eq. (6.14) takes the following form.

λ
3 +(µ1 +ρ)λ 2 +(µ2 +η1ρ)λ +µ3 +ρη2 +ρη3e−λτ2 = 0. (6.21)
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Now, we proceed similarly to the previous case to obtain the critical value of fear-response
delay at which the Hopf-bifurcation can occur.

τ
∗
2 =

1
ζ

cos−1 ζ 2(µ1 +ρ)−µ3−ρη2

ρη3
.

Theorem 6.4.2. For System (6.1), E∗ is stable when τ2 < τ2
∗ and unstable when τ2 > τ2

∗.

Moreover, the system experiences Hopf-bifurcation with respect to the fear-response delay τ2

at τ2 = τ2
∗.

Case IV: τ1 > 0, τ2 ∈ (0,τ∗2 ) : In this case, we choose τ2 from its stable interval (0,τ∗2 ).
Now, we need to determine the critical value of τ1 while fixing τ2. As per the requirement of
Hopf-bifurcation we substitute λ = iζ in Eq. (6.14) to obtain the following equations.

ρ(η2−ζ
2)cos(ζ τ1)+ρη1ζ sin(ζ τ1) = µ1ζ

2−µ3−ρη3cos(ζ τ2). (6.22)

ρη1ζ cos(ζ τ1)−ρ(η2−ζ
2)sin(ζ τ1) = ζ

3−µ2ζ −ρη3sin(ζ τ2). (6.23)

Solving Eqs. (6.22) and (6.23), we get

τ
∗
1 =

1
ζ

cos−1
[
(η2−ζ 2)(µ1ζ 2−µ3−ρη3cos(ζ τ2))+η1ζ (ζ 3−µ2ζ −ρη3sin(ζ τ2))

ρ[(η2−ζ 2)2 +η2
1 ζ 2].

]
In order to test the transversality condition for the Hopf-bifurcation, we substitute λ = χ + iζ

in Eq. (6.14). Now, separating real and imaginary parts, we obtain following equations.

χ
3−3ζ

2
χ +µ1(χ

2−ζ
2)+µ2χ +µ3 +ρη3 +ρ(χ2−ζ

2 +η1χ +η2)e−χτ1cos(ζ τ1)

+ρζ (η1 +2χ)e−χτ1sin(ζ τ1)+ρη3e−χτ2cos(ζ τ2) = 0
(6.24)

−ζ
3 +3ζ χ

2 +2ζ χµ1 +µ2ζ +ρζ e−χτ1(2χ +η1)cos(ζ τ1)

−ρ(χ2−ζ
2 +η1χ +η2)e−χτ1sin(ζ τ1)−ρη3e−χτ2sin(ζ τ2) = 0

(6.25)

Differentiating Eqs. (6.24) and (6.25) with respect to τ1 and then substitute χ = 0, we get

Q1χτ1 +Q2ζτ1 =W1, (6.26)

−Q2χτ1 +Q1ζτ1 =W2, (6.27)

where

Q1 = µ2−3ζ
2 +(η1− τ1(η2−ζ

2))ρcos(ζ τ1)+(2−η1τ1)ρζ sin(ζ τ1)−ρη3τ2cos(ζ τ2),
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Q2 =−2ζ µ1 +(η1τ1−2)ζ ρcos(ζ τ1)+(η1− τ1(η2−ζ
2))ρsin(ζ τ1)−ρη3τ2sin(ζ τ2),

W1 = ρζ (η2−ζ
2)sin(ζ τ1)−ρη1ζ

2cos(ζ τ1),

W2 = ρη1ζ
2sin(ζ τ1)+ρζ (η2−ζ

2)cos(ζ τ1).

Solving Eqs. (6.26) and (6.27), we obtain

χτ1 =
dRe(λ )

dτ1

∣∣∣∣
τ1=τ∗1

=
W1Q1−W2Q2

Q2
1 +Q2

2
6= 0. (6.28)

Theorem 6.4.3. When τ2 is fixed in its stable interval [0,τ∗2 ), system (6.1) undergoes Hopf-

bifurcation at τ1 = τ∗1 if the transversality condition (6.28) holds.

Case V: τ1 ∈ (0,τ∗1 ), τ2 > 0 : The analysis for this case is analogous to that of Case IV.

Remark. It is important to note here that the inequalities (6.20) and (6.28) must hold for
the occurrence of Hopf-bifurcation with respect to τ1 and τ2, respectively. However, in the case
of equality, a pair of complex-conjugate eigenvalues does not cross the imaginary axis with
non-zero speed [69].

6.4.1 Direction and stability of Hopf-bifurcation

Here, we determine the direction of Hopf-bifurcation and stability of the bifurcated periodic
solution at τ1 = τ∗10

and τ2 ∈ (0,τ2
∗) using the center manifold theorem and normal form theory

as described by Hassard et al. [124]. Under an analysis similar to [179], we determine the
following expressions for our model.

C1(0) =
i

2τ∗10
ζ

(
g20g11−2|g11|2−

|g02|2

3

)
+

g21

3
, µ2 =−

Re{C1(0)}
Re{λ ′(τ∗10

)}
,

β2 = 2Re{C1(0)} and T2 =−
Im{C1(0)}+µ2{Im(λ ′(τ∗10

))}
ζ τ∗10

,

where
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g20 =
τ∗10

D

[
rW (1)

20 (0)−2rkβ1e−iζ τ∗2 −2r1−2αβ1 +2 f α1 +2α∗1 (αc1β1− eα1)

]
,

g02 =
τ∗10

D

[
rW (1)

02 (0)−2rkβ1e−iζ τ∗2 −2r1−2αβ1 +2 f α1 +2α∗1 (αc1β1− eα1)

]
,

g11 =
τ∗10

D

[
rW (1)

11 (0)− rk(β1 +β1)e−iζ τ∗2 −2r1−α(β1 +β1)+ f (α1 +α1)+α∗1 (αc1(β1 +β1)

− e(α1 +α1))

]
,

g21 =
τ∗10

D

[
2rk(−β1W (1)

20 (0)e−iζ τ∗2 −W (3)
20 (
−τ∗2
τ∗10

)−W (3)
11 (
−τ∗2
τ∗10

)−β1W (1)
11 (0)e−iζ τ∗2 + kβ1(β1

+β1)e−2iζ τ∗2 + ce−iζ (τ∗10
+τ∗2 )(2β1 +β1))−4r1W (1)

11 (0)−2(α + c1α∗1 )(W
(3)
11 (0)+W (1)

11 (0)β1

+
β1

2
W (1)

20 (0)+
W (3)

20 (0)
2

)+2α
2h(2β1 +β1)+2( f − eα∗1 )(W

(2)
11 (0)+W (1)

11 (0)α1 +
α1

2
W (1)

20 (0)

+
W (2)

20 (0)
2

)+α∗1 (W
(3)
11 (0)+W (1)

11 (0)β1 +
β1

2
W (1)

20 (0)+
W (3)

20 (0)
2

)−2α
2c1h(2β1 +β1)

]
.

Here W20(θ), W02(θ), W11(θ), D, α1, β1, α∗1 ,β
∗
1 can be determined following the procedure

used in [179].
Now we are able to state the following theorem.

Theorem 6.4.4. 1. The sign of µ2 determines the direction of the Hopf-bifurcation. If µ2 >

0(< 0), then the Hopf-bifurcation is supercritical (subcritical).

2. The sign of β2 determines the stability of the bifurcating periodic solution. If β2 > 0(< 0),
then the obtained periodic solution is unstable (stable).

3. T2 determines the period of the bifurcating periodic solution. If T2 > 0(< 0), then the

period increases (decreases).

6.5 Numerical simulation

Let us consider the parameter values from Table 6.1. For this set, the system exhibits two inte-
rior equilibrium points E∗1(0.8475,0.1436,0.2255), E∗2(1.4512,0.128,0.2012), and a predator-
free equilibrium E1(5.2857,0,0). From Fig. 6.2 (c), we observe that both E∗1 and E1 are at-
tractors, depending upon the initial condition. E∗2 is a saddle point, which ecologically signifies
that species appear to converge in this state, but it does not.
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(a) (b)

(c) (d)

Fig. 6.2: Three-dimensional geometric plot illustrating the non-delayed system’s so-
lution behavior for different attack rates of prey, i.e., (a) e = 0.05, (b) e = 0.15, (c)
e = 0.25, (d) e = 0.28. Other parameters are taken from Table 6.1.

Role reversal effect: We examine our system with respect to the role reversal parameter (e)
theoretically and numerically. A series of phase portraits are plotted for different values of e

in Fig. 6.2 (a)-(d). This Figure demonstrates the bi-stability phenomenon and several local
bifurcations occurring in the system. Role reversal of prey and predator can cause the change
in stability of E1 and E∗1 , and number of positive steady-states. Consequently, the system
experiences Hopf-bifurcation, saddle-node bifurcation and transcritical bifurcation (see Fig.
6.3).
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x

SN

TC

Hf

Fig. 6.3: Bifurcation diagram for prey density with respect to the role reversal param-
eter e in the absence of time delay. Here TC is the transcritical bifurcation point, SN is
saddle-node bifurcation point, and Hf is the Hopf-bifurcation point. Dashed and solid
curve represent the unstable and stable nature of an equilibrium point. Green color de-
notes the predator-free equilibrium E1 and the two interior equilibrium points E∗1 and E∗2
are shown by red and blue colors, respectively.

(a) (b)

Fig. 6.4: This figure displays the basin of attraction for two attractors corresponding to
Fig. 6.2 (b) and Fig. 6.2 (c) in (a) and (b), respectively. The green color dots represent
the basin of attraction for E∗1 , set of blue color dots is basin for E1, and magenta color
dots forms the basin for the limit cycle.

When the attack rate of prey (e) is low, all species oscillate about their positive steady-state
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(see Fig. 6.2 (a)). When e increases, the possibility of predator extinction arises as the prey-
only state becomes stable through transcritical bifurcation. Due to this, the system acquires
bi-stability between the limit cycle and prey-only state E1, and one more interior equilibrium
comes into existence (see Fig. 6.2 (b)). The set of initial values for which the solution con-
verges to a particular attractor is its basin of attraction. The three-dimensional basin for E1

and limit cycle are represented with different colors in Fig. 6.4 (a). The limit cycle suffers
Hopf-bifurcation and loses stability when e is further increased. After this, the system is bi-
stable again, but this time it is node-focus bi-stability (see Fig. 6.2 (c)). We can visualize the
basin of attraction for interior (focus) and axial (node) equilibrium in Fig. 6.4 (b). In addition,
when the counter-attack rate is sufficiently high, the saddle-node bifurcation prohibits species
from coexisting. However, the stability of the prey-only state remains unchanged. Therefore,
predators can be eradicated when prey becomes more violent (see Fig. 6.2 (d)).

We have explored the Hopf and transcritical bifurcations in Section 6.3. In the following
example, we are able to show the occurrence of the saddle-node bifurcation with respect to the
role reversal parameter (e).

(a)

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055

c

0.14

0.142

0.144

0.146

0.148

0.15

0.152

0.154

y

c=c[Hf]

(b)

Fig. 6.5: (a) Solution trajectory of system (6.2) converging to the limit cycle for c = 0.06
after the Hopf-bifurcation. (b) Hopf-bifurcation diagram of y regarding c.

Example 1: Consider e = e[sn] = 0.265283 and other parameters from Table 6.1, the Jacobian
matrix around E∗(1.0464,0.1405,0.2209) is obtained as follows:

J1 =

−0.163 0.001 −4.417
0 −1.58 1.008
0 1.1 −0.7

 .
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The eigenvectors corresponding to the eigenvalue zero of matrix J1 and JT
1 are v=(−0.999, 0.022, 0.036)T

and w = (0, −0.571, −0.82)T , respectively.
Now, we calculate

Fe(E∗,e[sn]) = (0, −0.1501, 0)T ,

which yields
∇1 = wT Fe(E∗,e[sn]) = 0.0857 6= 0.

Some calculation yields another quantity

∇2 = wT [D2F(E∗,e[sn])](v,v) = 0.032756 6= 0.

All conditions of Sotomayor’s Theorem for saddle-node bifurcation are satisfied [60]. Hence,
system undergoes saddle-node bifurcation at e= e[sn]= 0.265283 around E∗(1.0464,0.1405,0.2209).

(a)

3 3.1 3.2 3.3 3.4 3.5 3.6

k

0.15

0.155

0.16

0.165

0.17

0.175

0.18

y k=k[Hf]

(b)

Fig. 6.6: (a) Solution trajectory of system (6.2) converging to the limit cycle for k = 3
after the Hopf-bifurcation. (b) Hopf-bifurcation diagram of y regarding k.

Fear and carry-over effect: From the theoretical analysis done in the previous section, we
can remark that the existence of any equilibrium and stability of extinction and predator-free
equilibrium is unaffected by the fear (k) and its carry-over effect (c). Since, the stability of an
interior equilibrium depends on k and c, the system can undergo Hopf-bifurcation under fear
and carry-over effect. Figs. 6.5 (a) and 6.6 (a) show the stable nature of limit cycle surrounding
unstable E∗1 , and saddle nature of E∗2 at c = 0.06 and k = 3, respectively. The instability of
E∗1 is due to the supercritical Hopf-bifurcation with respect to c and k at c[H f ] = 0.044966 and
k[H f ] = 3.3859, respectively. The bifurcation diagrams taking maximum and minimum values
of y for different values of c and k are sketched in Fig. 6.5 (b) and 6.6 (b), respectively. It
is important to note here that the population number is not much affected by the variation in
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c. Switching of stability regarding fear and its carry-over effect motivates us to plot the Hopf-
bifurcation curve in ck-plane. According to Fig. 6.7, for each value of c, one can determine K

at which the system switches stability through Hopf-bifurcation.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

c

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

k

Fig. 6.7: Hopf-bifurcation curve in cK-plane for system (6.2).

Paradox of enrichment: Expansion of carrying capacity may not always support the enrich-
ment of the ecosystem. Moreover, an increase in carrying capacity may destabilize the system
(instead of stabilizing). This phenomenon is termed as "Paradox of enrichment." In our model,
we can observe the paradox of enrichment with respect to the birth rate of the prey population
(r) (see Fig. 6.8). The reason for choosing r to be the enrichment parameter is the expression
for the carrying capacity of prey, i.e., K1 =

r−r0
r1

. So, adjusting carrying capacity or birth rate
works the same for our model. For the parameters chosen from Table 6.1, the co-existence state
E∗(0.8475,0.1436,0.2255) has eigenvalues −2.228393, −0.014662±0.18895i. The negativ-
ity of the real part of eigenvalues confirms the local stability of E∗, and graphically solution
trajectory converges to it. When we increase the value of r, species oscillate about their mean
state, generating a stable limit cycle. Mathematically, the magnitude of the real part of complex
eigenvalues decreases up to zero and then increases. This phenomenon takes place due to a
supercritical Hopf-bifurcation at r = r[H f ] = 2.809619.

The paradox of enrichment can be completely precluded by adjusting the fear level (k) or
the predator’s attack rate (α). We can see from Figure 6.9 (a) that at a certain level of fear
(at k = 4), system is unstable around its co-existence state. However, a slight increment in
fear level can control the oscillations demonstrating elimination of the paradox. Therefore, at
k = 4.2, E∗ becomes a stable focus (see Fig. 6.9 (b)). Moreover, keeping the fear level same (at
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k = 4), and a slight decrease in the attack rate of the predator (α) can also resolve the paradox.
Fig. 6.9 (c) depicts that the trajectory converges to the attractor E∗ for α = 6.4.
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z
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Fig. 6.8: Bifurcation diagram for (a) x, (b) y, and (c) z species with respect to r. When
r <[H f ], the maximum and minimum of the solution coincide at the positive steady-
state E∗, showing the stable nature of E∗. The difference between the maximum (red
color) and minimum (blue color) solution increases with the rise in r after the Hopf point
r <[H f ]. This figure depicts the instability of the non-delayed system’s solution when r
increases.

(a) (b) (c)

Fig. 6.9: Phase portrait showing (a) instability of the interior equilibrium E∗ as a con-
sequence of paradox of enrichment at k = 4, α = 6.5. The paradox is resolved for (b)
k = 4.2 and (c)α = 6.4, making system (6.2) stable around E∗. Here r = 2.85 and other
parameters are the same as in Table 6.1.

Effect of predation rate of prey and predator: We have already seen that our system pos-
sesses complex dynamics with respect to the predation rate of prey (e). What if we vary the
predation rate of predator (α) and prey (e) together? Variation of two parameters simultane-
ously can provide intriguing system dynamics, an important one is Bogdanov-Takens bifurca-
tion. This bifurcation is an exciting combination of Hopf-bifurcation, saddle-node bifurcation,
and homoclinic bifurcation (see BT marked in Fig. 6.10). At the Bogdanov-Takens bifurcation
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point, the Jacobian matrix evaluated at an interior equilibrium has an eigenvalue zero of mul-
tiplicity two, and another eigenvalue is negative. To derive the normal form of BT-bifurcation,
we follow the steps mentioned in [69].

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

e

Saddle-node bifurcation
Hopf-bifurcation
Homoclinic bifurcation

BT

Fig. 6.10: Intersection of Hopf curve, saddle-node curve, and homoclinic curve at the
Bogdanov-Takens bifurcation point. All these bifurcations occur with respect to e and α

for system (6.2).

Firstly, we shift the interior equilibrium E∗(x∗,y∗,z∗) to the origin using the transformation:

x− x∗ = u1, y− y∗ = u2, z− z∗ = u3.

Then system (6.2) is reduced as

du1

dt
= (u1 + x∗)

[
r(1+ c(u1 + x∗))

1+ c(u1 + x∗)+ k(u3 + z∗)
− r0− r1(u1 + x∗)− α(u3 + z∗)

1+αh(u1 + x∗)
+ f (u2 + y∗)

]
= f1(u1,u2,u3),

du2

dt
=

c1α(u1 + x∗)(u3 + z∗)
1+αh(u1 + x∗)

−β (u2 + y∗)−d1(u2 + y∗)− e(u1 + x∗)(u2 + y∗) = f2(u1,u2,u3),

du3

dt
= β (u2 + y∗)−d2(u3 + z∗) = f3(u1,u2,u3).

(6.29)

System (6.29) can also be written as system (6.11). Due to the complexity of the model, it is
difficult to find the eigenvectors of J1 explicitly in analytical manner. Therefore, we have our
next example for the further explanation.
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Example 2: At α = α [bt] = 8.577806, e = e[bt] = 8.577806 and other parameters from Table
6.1, the eigenvectors of the Jacobian matrix about E∗(0.8156,0.1411,0.2217) are the columns
of the following matrix.

P =

Ξ1 Ξ2 Ξ3
1 1 1.592

0 −0.174 −1.435
0 −0.274 1

,

where Ξ1, Ξ2, and Ξ3 satisfy J1Ξ1 = 0, J1Ξ2 = Ξ1, and (J1−λ I)Ξ3 = 0, where λ =−2.285.
Now, we use the following transformation.u1

u2

u3

= P

w1

w2

w3

=

 w1 +w2 +1.592w3

−0.174w2−1.435w3

−0.274w2 +w3

 .

From (6.11), we get w1

w2

w3


′

= P−1

u1

u2

u3


′

= P−1

{
J1

u1

u2

u3

+

g1

g2

0

}.
Some mathematical calculation yields

dw1

dt
= w2−0.4129w2

1 +0.05236w2
2−0.6225w1w2 +O(|w1,w2,w3|2),

dw2

dt
= 0.4202w1w2 +0.0875w2

1 +0.3325w2
2 +O(|w1,w2,w3|2),

dw3

dt
=−2.285w3 +O(|w1,w2,w3|2).

. (6.30)

Using the steps given in [203], system (6.30) is transformed to the normal form as

dw1

dt
= w2,

dw2

dt
= 0.0875w2

1−0.4056w1w2 +O(|w1,w2|2).
(6.31)

In system (6.31), the coefficient of w2
1 and w1w2 are non-zero, it concludes that the Bogdanov-

Takens bifurcation of codimension two occur in the proposed system at (α,e)= (8.577806,0.35).
At this point, eigenvalues of the Jacobian matrix about E∗(0.8156,0.1411,0.2217) are 0, 0,−2.2855,
and consequently, the Hopf curve, saddle-node curve, and Homoclinic curve intersect here (see
Fig. 6.10).
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Fig. 6.11: Phaseportraits showing (x,y) solutions passing through various equilibrium
points corresponding to (a) Region I, (b) Region II, (c) Region III, (d) Region IV dis-
played in Fig. 6.10. Green color represents the prey (x) nullcline and yellow color repre-
sents the juvenile predator (y) nullcline.

Various bifurcations occurring in the system divide the αe region into four regions. Region
I has no interior equilibrium due to the occurrence of the saddle-node bifurcation at the red
curve. Region II displays the scenario before the saddle-node bifurcation, where one stable and
one saddle equilibrium exist. As we move across the blue Hopf curve, a positive equilibrium
loses its stability through a supercritical Hopf-bifurcation and generates a stable limit cycle
in Region III. This limit cycle expands and eventually connects the existing saddle interior
equilibrium at the magenta curve through a homoclinic global bifurcation. After this, the limit
cycle disappears, and the solution goes to the already stable E1 in Region IV (see Fig. 6.10).

We can plot x and y nullclines of the reduced system obtained by substituting the value of
z from Eq.(6.5) in (6.3) and (6.4). The intersection of nullclines is the x and y coordinate of
an equilibrium point. We have plotted the solution trajectory and nullclines corresponding to
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Regions I, II, III, and IV in Fig. 6.10. For α = 5 and e = 0.25, positive equilibrium does not
exist, and all trajectories converge to the predator-free equilibrium (see Fig. 6.11 (a)). Now,
with the same value of α and e = 0.18, two positive equilibrium points E∗1 and E∗2 exist; one is
a saddle, and the other is stable (see Fig. 6.11 (b)). After experiencing the supercritical Hopf-
bifurcation, E∗1 becomes a repeller enclosed within a stable limit cycle for α = 6.5 and e = 0.2
(see Fig. 6.11 (c)). Increasing the value of α takes us toward the global homoclinic bifurcation.
For α = 8, the solution finally converges to the predator-free state E1 (see Fig. 6.11 (d)).

Effect of carry-over delay (τ1 > 0,τ2 = 0): Let us consider the following set of parameters.

r = 3, r0 = 0.4, r1 = 0.6, k = 0.5, d1 = 0.08, d2 = 0.1, c = 0.15, β = 0.8, c1 = 0.5, h = 1,

f = 0.001, e = 0.05, α = 0.57

(6.32)

For the above set of parameters, the proposed system is unstable about E∗(0.5134,0.2448,1.9583)
in the absence of time delay. Moreover, there are oscillations about the positive steady-state.
These oscillations in the system are controlled for a particular value of τ1. Consequently, the
system becomes stable, and all solutions converge to E∗. The stability no longer sustains when
the time delay is further increased. Limit cycle oscillations occur for a certain range of τ1.
The stability switching dynamics goes on when the value of τ1 is higher. The visual of the
aforementioned properties is demonstrated in Fig. 6.12. This figure shows six times stabil-
ity switching for the different critical values of τ1 at τ1 = τ1

∗
i , for i = 0,1,2,3,4,5. At these

bifurcation points, the pair of complex eigenvalues becomes purely imaginary.
For the chosen set of parameters, the stability behavior of the interior equilibrium keeps on

changing, but predator-free equilibrium remains saddle for all τ1 ≥ 0.
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Fig. 6.12: (a), (b), and (c) depicts the bifurcation diagram for x,y, and z species, respec-
tively, with respect to the COE delay τ1. This figure illustrates how oscillations about
positive equilibrium can occur and be controlled repeatedly in the presence of COE de-
lay.
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Effect of fear-response delay (τ1 = 0,τ2 > 0): The system without time delay has a stable
limit cycle for the parameters set (6.32). When we impose fear-response delay, E∗ is unstable,
and the limit cycle enclosing it persists for an intermediate range of τ2. In a specific range of τ2,
chaos and two-periodic and higher periodic solutions emerge. The high periodicity of solutions
and the occurrence of chaos enrich the system’s dynamics with fear-response delay.

(a) (b) (c)

(d) (e) (f)

Fig. 6.13: Behavior of solution for distinct values of τ2 at (a)τ2 = 30, (b)τ2 = 32, (c)τ2 =
45, (d)τ2 = 57, (e)τ2 = 77, (f)τ2 = 82.

The series of phase portraits are drawn in Fig. 6.13. We note that the solutions oscillate
about their positive steady-state in the form of a limit cycle at τ2 = 30. When τ2 is increased,
we observe the unpredictability of the solution indicating the phenomenon of chaos at τ2 = 32
(see Fig. 6.13 (b)). The chaos is controlled, and a limit cycle of period-2 occurs for τ2 = 45
(see Fig. 6.13 (c)). Further increase in delay makes the system chaotic again at τ2 = 57 (see
Fig. 6.13 (d)), and this chaos can be controlled again for higher values of τ2. After leaving the
chaotic behavior, oscillations of a high period occur (at τ2 = 77) in the system (see Fig. 6.13
(e)), and finally, the system has a limit cycle attractor at τ2 = 82 (see Fig. 6.13 (f)).
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Fig. 6.14: Bifurcation diagram showing the emergence of chaos for an intermediate
range of τ2, when τ1 = 0.
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Fig. 6.15: The time evolution of species (a) x, (b) y, and (c) z, illustrating the sensitivity
towards the initial point chosen at τ2 = 57, and other parameters are same as in (6.32).

For better visualization of the change in dynamics of system (6.1) regarding fear-response
delay, we draw the bifurcation diagram for prey density with respect to τ2 (see Fig. 6.14).
To detect chaos, we perform sensitivity analysis concerning the initial condition. A slight
perturbation in the initial solution (0.5,0.26,0.2)→ (0.51,0.27,0.21) causes a large deviation
in the final solution (shown by blue and red color in Fig. 6.15). In support of this, we draw the
maximum Lyapunov exponent (MLE) to confirm the chaotic phenomenon (see Fig. 6.16). The
positivity of the MLE shows the chaotic trait of the system with respect to the fear-response
delay.
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Fig. 6.16: The plot of Maximum Lyapunov Exponent with respect to τ2, when τ1 = 0.
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Fig. 6.17: Bifurcation diagram demonstrating the occurrence of Hopf-bifurcation and
chaos with respect to τ2, when τ1 = 30.

Combined effect of fear-response and COE delays: Let us fix τ1 in its stable range from
Fig. 6.12 say τ1 = 30. Now, vary τ2 while keeping all parameters the same from (6.32). When
τ2 = 0, E∗ is stable, and it switches stability through Hopf-bifurcation at τ2 = τ∗2 = 1.145. Going
for large values of τ2, the solution of system (6.1) shows chaotic trait, and then it becomes
predictable for a certain range. Furthermore, the system again enters into a state of chaos for
comparatively large values of τ2. The non-linear phenomena such as Hopf-bifurcation and
chaos can be visualized through a bifurcation diagram. Therefore, we plot the prey density
against the carry-over delay for a non-transient period in Fig. 6.17. Furthermore, we perform
the sensitivity analysis at τ2 = 57 to show that the system is sensitive to the small change in its
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initial condition (see Fig. 6.18). Consequently, our non-linear multi-delayed system shows the
attribute of chaos for fear-response delay when the COE delay is fixed. Moreover, we sketch
the MLE against τ2, and its positivity verifies the chaotic trait of the system (see Fig. 6.19).
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Fig. 6.18: The time evolution of species (a) x, (b) y, and (c) z, explaining the sensitivity
towards the initial point chosen. We choose parameters from (6.32), τ1 = 30, and τ2 =
57.
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Fig. 6.19: The plot of MLE versus τ2 when τ1 = 30, and other parameters are taken from
(6.32).

6.6 Discussion and conclusion

Generally, it is an idealized fact that predator hunts and prey defend. When prey is powerful
enough, it defends itself by counter-attacking feeble predator. The proposed model divides the
predator class into mature (adults) and immature (juveniles). We assumed that the adult preda-
tor hunts on prey and creates fear of being killed. The fear effect has some carry-over effects
on the prey population. Moreover, fear increment causes prey reproduction to decrease, and
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its carry-over effect impacts the reproduction rate positively. In these life-tragic circumstances,
the prey shows anti-predator behavior and kills the juvenile of the predator. These juveniles
are vulnerable to predation and can neither re-attack nor reproduce. Their parents are the only
source of survival. The ecological relationship between prey and predator in different stages of
life has been portrayed through a set of differential equations.

In the present manuscript, we first constructed the mathematical model based on some eco-
logical assumptions. Then we examined the well-posedness of the model by proving the pos-
itivity and boundedness of the system solutions. Next, we explored all steady-state solutions
and their stability in the neighborhood. We found that the system can have at most two interior
equilibrium points. The death rate of the mature predator should not exceed a threshold value
for the co-existence of all species. Using the Descarte’s rule of sign, we stated three theorems
for the co-existence of species. Based on this, we plotted the (e,α) points associated with two,
one, and zero interior equilibrium points (see Fig. 6.1).

We perceived that the existence of positive equilibrium and stability of other equilibria are
independent of fear (k) and carry-over effect (c). However, the stability of interior equilibrium
is tremendously affected. An increase in COE causes the populations to oscillate about their
mean state. Oscillations in the system can be completely controlled when the fear level in-
creases. Both these cases show the occurrence of super-critical Hopf-bifurcation. Moreover,
we obtained a Hopf-curve in the ck-plane (see Fig. 6.7). From Fig. 6.6 (b) and Fig. 6.5(b),
we can observe that the juvenile predator density decreases with a rise in fear. In contrast, it
increases with the increment in the carry-over effect. While modeling these two ecological
factors, we expected that the predator population would be benefited due to the fear and prey
density would be boosted due to the carry-over effect. But, our findings reveal that the role
reversal of prey and predator causes the fear and COE impact to get reversed. These results
answer the first question from the Introduction Section.

The change in the number and stability trait of the equilibrium point encouraged us to inves-
tigate the possible bifurcations occurring in the system. We discussed the direction and stability
of the Hopf-bifurcation regarding the crucial parameters. Moreover, we explored transcritical
and saddle-node bifurcation for the role reversal parameter (see Fig. 6.3). Apart from these
codimension-one bifurcations, we observed the Bogdanov-Takens bifurcation of codimension-
two. Variations in the attack rate of predators and the counter-attack rate of prey simultaneously
resulted in a Hopf curve, saddle-node curve, and a homoclinic curve in the αe-plane (see Fig.
6.10 ). The BT point is the splendid combination of two local (Hopf and saddle-node) and one
global (homoclinic) bifurcation. These bifurcations can be closely seen in the phase portraits
sketched in Fig. 6.11. This figure suggests that the attack rates (e and α) in the fixed propor-
tion can create ecological balance. Therefore, the third question mentioned in the Introduction
section has been answered.
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Our system is sensitive to the initial condition as bi-stability between two attractors oc-
curs. For a certain level of counter-attacking, species can oscillate about a positive steady-
state, or predators can become extinct, depending upon the starting point. This result is con-
cluded from the node-cycle bi-stability demonstrated in Fig. 6.2 (b). For a particular range of
counter-attacking, the co-existence equilibrium becomes stable through a super-critical Hopf-
bifurcation. This scenario shows the bi-stability between focus and node (see Fig. 6.2 (c)). So,
the final solution can either converge to the predator-free or co-existence state; it depends on
their basins. Furthermore, the predator-free equilibrium stays stable when the role reversal pa-
rameter is significant (see Fig. 6.2 (d)). In an ecological sense, too much counter-attacking can
wipe out all predators. This gives the answer to the second and third objectives of our research.

When we increased the carrying capacity (by increasing r), the system was expected to be-
come enriched. However, instead of this, instability occurred. This phenomenon is the paradox
of enrichment, and we depicted it through the bifurcation diagram in Fig. 6.8. In our study, the
paradox can be eliminated by adjusting the fear or attack rate of the predator. A slight increase
in the fear level or decrease in the attack rate helped us to control the species’ oscillations (see
Fig. 6.9). It answers the fourth question raised in the Introduction section. Sajan et al. [21] and
Sasmal and Takeuchi [25] reported a similar phenomenon regarding fear.

Considering the time delay in the model system takes it closer to reality. We incorporated
a time delay due to carry-over effects τ1 and another delay due to the fear-response τ2 in the
reproduction rate of the prey. Variation in the delay does not affect the level of any equilibrium.
Our results reveal that the stability of the predator-free and extinction equilibrium is unchanged
with respect to time delay, but the stability of the interior equilibrium can change tremendously.
Therefore, we analyzed the local stability and Hopf-bifurcation around the positive steady-state
theoretically and numerically for all the possible cases of τ1 and τ2. Moreover, we examined
the direction and stability of Hopf-bifurcation using the center manifold theorem and normal
form theory. Our numerical findings show a switching of stability multiple times with a rise in
COE delay. This switching takes place due to the occurrence of a supercritical Hopf-bifurcation
(see Fig. 6.12). When we examined the system dynamics concerning fear-response delay, we
obtained fascinating dynamics like period-doubling and chaos. Sensitive dependence on the
initial condition of the solution and plot of MLE confirms the chaotic trait of the system even
when the COE delay is present or not. Moreover, when τ1 = 0 or 30, the chaos or unpredictabil-
ity can be controlled for an intermediate range of τ2. This answers our first question raised in
the Introduction.
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Chapter 7

Chaos in a seasonal food-chain model with migra-
tion and variable carrying capacity 1

7.1 Introduction

Many of the prey-predator models generally focus on single or two-species interaction. How-
ever, mathematical advancements reveal that the dynamics of a three-species model can be far
more complex [47, 205]. Studying the interconnection of three species to form a food chain
is a popular way of understanding population dynamics ecologically and mathematically. In
traditional food chains, the basal prey is the food for the middle predator, and the middle preda-
tor is the food for the top predator. Upadhyay [206] investigated the occurrence of chaos and
multi-stability in a tri-trophic food-chain model.

In nature, migration is a frequently observed phenomenon. For a multitude of reasons,
like habitat security, climate change, mating chances, food accessibility, shelter needs, etc., a
species may migrate. Immigration and emigration are the two main types of migration that
affect a particular region. In a three-species food-chain system, the intermediate predator im-
migrates for hunting the prey and emigrates to escape from its predator. Zooplankton performs
vertical migration in a phytoplankton-zooplankton-fish system to gain the maximum benefit
[50]. A broad range of tri-trophic models without migration experience chaos via a period-
doubling route. Moreover, this phenomenon can be completely reversed in the presence of
migration [207]. An adequate level of migration in a food chain can control the chaotic oscilla-
tions to stabilize it [208, 209]. Recently, Hossain et al. [51] performed an extensive numerical
simulation for a simple food-chain model with middle predator migration. They observed com-
plex non-linear dynamics such as stability switching, bi-stability, and chaos.

In population biology, carrying capacity is referred to as the maximum burden that an envi-
ronment can sustain. A large piece of literature considers the carrying capacity of any species to

1Revised version submitted in Nonlinear Dynamics
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be constant [22, 89, 112, 210]. Nevertheless, natural or species-induced environmental changes
can affect the carrying capacity. Yukalov et al. [52] believed a population’s creative or destruc-
tive activity could enrich or deplete its natural carrying capacity. They formulated carrying
capacity as the function of individuals, i.e., K(t) = A+BN(t), where A > 0 denotes the ca-
pacity for individuals N(t) innately, and B ∈ R measures the influence of activities on carrying
capacity. When B > 0 (or < 0), the activities are constructive (or destructive). Pati and Ghosh
[53] studied a prey-predator model where the carrying capacity of prey is the combination of
intrinsic and prey-proportional induced carrying capacity. They determined that B < 1 is the
necessary condition for the existence of predator-free equilibrium. Recently, Bhunia et al. [54]
extended the work of Pati and Ghosh [53] to investigate the emergence of Turing patterns in a
diffusive predator-prey model with prey harvesting and variable carrying capacity.

The majority of ecological events are modeled and studied in a constant context, which is
unusual. They have a significant degree of physical variability, which causes birth rates, mortal-
ity rates, and other key population rates to change significantly over time [168]. Considering the
parameters as periodic time functions makes the model more realistic because many environ-
mental factors affecting species’ survival in the ecological community are seasonally induced
[211]. Zeng [59] analyzed a seasonally-forced non-autonomous food-chain model with Holling
type-II functional response to establish its permanence, extinction, and global stability. Re-
cently, Dwivedi and Kumari [49] incorporated seasonality by means of sinusoidal functions in
a tri-trophic system. They observed that seasonal variations can disturb the limit cycle to make
the system chaotic. Furthermore, their study highlights the phase synchronization and various
bifurcations. Samanta et al. [212] designed a four-dimensional phytoplankton-zooplankton-
fish model where zooplankton migrate between two water levels to elude their predators. They
proved the periodic solution’s existence and global attractivity in the non-autonomous version.

According to the authors’ knowledge, no research has been done on a food-chain model
with migration and variable carrying capacity, where multiple parameters can take any real
value. Moreover, the authors could not find an analysis of a non-autonomous system where
parameters can take a negative value. The present work attempts to fill the aforementioned
gap and divides the manuscript into the following sections. Section 7.1 comprises the relevant
literature survey showing the need and base to introduce a new mathematical model. Section 7.2
shows the mathematical formulation for a food-chain model. Section 7.3 discusses the well-
posedness of the proposed system. Existence and stability assessment of equilibrium points
are carried out in sections 7.4 and 7.5, respectively. In Section 7.6, we study the effect of
seasonality in our model theoretically. Section 7.7 shows the extensive numerical simulation to
verify our theoretical findings. Finally, we conclude all results with a discussion in Section 7.8.
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7.2 The food chain model construction

In a food chain, let x(t), y(t), and z(t) be the population density of the basal prey, middle
predator, and top predator, respectively, at any time t. The rate of change in a population
density depends on several ecological factors. In this section, we formulate the interaction of
three species based on the following assumptions.

1. In the absence of y and z, x population grows logistically with the intrinsic growth rate r

to achieve its carrying capacity K. Many prey activities promote resource preservation,
which can improve the environment’s carrying capacity. For instance, selective grazing
encourages biodiversity by allowing different plant species to coexist. However, certain
behaviors within the prey population could result in a reduction in the carrying capacity.
For instance, in the Kaibab plateau and the bison population [213], the overgrazing and
habitat degradation caused by the rising mule deer population harmed the carrying ca-
pacity. Therefore, considering the impact of species’ activities on their carrying capacity
is biologically more sound. Thus, we consider the variable carrying capacity of prey as
K+βx, where β > 0(< 0) measures the constructive (destructive) impact of the activities
of x on its natural carrying capacity K [52, 53, 214]. So, the logistic growth of x without
y and z is given by the following differential equation.

dx
dt

= rx
(

1− x
K +βx

)
.

2. We assume that x shows group defense against y when y consumes x. Therefore, their
relationship can be presented through the simplified Holling type IV functional response:

α1x
a1+x2 , where α1 is the attack rate of y, and a1 is the half-saturation constant. The pop-
ulation y retards by natural mortality rate d1, and intraspecific interference rate δ1. The
prey-predator relationship of x and y is shown by the following equations.

dx
dt

= rx
(

1− x
K +βx

)
− α1xy

a1 + x2 ,
dy
dt

=
c1α1xy
a1 + x2 −d1y−δ1y2.
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Table 7.1: Numeric values of parameters utilised in (7.1)

Parameters Ecological meaning Numerical value Reference(s)

r Birth rate of the prey 0.5 [33]
β Measures the impact of activities on the carrying capacity 0.5 Assumed
K Carrying capacity of basal prey 1.2 [215]
α1 Predation rate of the middle predator 1 [216]
a1 Half saturation constant when y eats x 1 [217]
c1 Conversion efficiency of middle predator 0.9 [215]
c2 Conversion efficiency of top predator 0.8 [193]
α2 Predation rate of the top predator 1.8 Assumed
a2 Half saturation constant when z eats y 1 [217]
d1 Natural death rate of middle predator 0.3 [218]
d2 Natural death rate of top predator 0.3 [218]
k1 Migration rate of middle predator 0.01 Assumed
δ1 Intraspecific interference rate among middle predators 0.001 [210]
δ2 Intraspecific interference rate among top predators 0.001 [210]

3. When y is food for z through Holling type II functional response: α2y
a2+y , where α2 is the at-

tack rate of z and a2 is the half-saturation constant, the model becomes three-dimensional
food-chain. The loss in z is by the natural death (d2) and intraspecific competition among
them (δ2). Thus, the tri-trophic model displaying the interaction of x, y and z is given by:

dx
dt

= rx
(

1− x
K +βx

)
− α1xy

a1 + x2 ,

dy
dt

=
c1α1xy
a1 + x2 −

α2yz
a2 + y

−d1y−δ1y2,

dz
dt

=
c2α2yz
a2 + y

−d2z−δ2z2.

4. To lower the predation pressure, the intermediate predator often emigrates from the sys-
tem and immigrates into the system to gain the maximum food. The migration rate k1 can
be positive or negative when y immigrates or emigrates, respectively [51]. Thus, adding
one more term to the y-equation finalizes our model (7.1) as

dx
dt

= rx
(

1− x
K +βx

)
− α1xy

a1 + x2 = xφ1(x,y,z),

dy
dt

=
c1α1xy
a1 + x2 −

α2yz
a2 + y

−d1y+ k1y−δ1y2 = yφ2(x,y,z),

dz
dt

=
c2α2yz
a2 + y

−d2z−δ2z2 = zφ3(x,y,z),

(7.1)

x(0)≥ 0, y(0)≥ 0 z(0)≥ 0.
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The ecological meaning of all the parameters with their default numeric value is listed in Table
7.1.

7.3 Well-posedness of system (7.1)

Theorem 7.3.1. Every solution starting from a non-negative initial condition is uniformly

bounded in the following region.

Ω1 =

{
(x,y,z) : 0≤ x+

1
c1

y+
1

c1c2
z≤ (r+ν)2K

4rν

}
, when β ≤ 0

Ω2 =

{
(x,y,z) : 0≤ x+

1
c1

y+
1

c1c2
z≤ (r+ν)x0

ν
−

rx2
0

(K +βx0)ν

}
, when β > 0,

where ν and x0 are defined in the proof.

Proof. To examine the boundedness of the solutions of (7.1), we take

W = x+
1
c1

y+
1

c1c2
z.

We can write using system (7.1)

dW
dt

= rx
(

1− x
K +βx

)
− (d1− k1)

c1
y− d2

c1c2
z− δ1

c1
y2− δ2

c1c2
z2, (7.2)

Case I: β ≤ 0
Since K +βx≤ K, we can reduce Eq. (7.2) to the following inequality.

dW
dt
≤ rx

(
1− x

K

)
− (d1− k1)

c1
y− d2

c1c2
z.

Now, let ν > 0 and d1 > k1, such that

ν ≤ min{d2,d1− k1}.

Therefore,
dW
dt

+νW ≤ (r+ν)x− rx2

K
which implies

dW
dt

+νW ≤ (r+ν)2K
4r

.
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Hence,

limsup
t→∞

W (t)≤ (r+ν)2K
4rν

.

Case II: β > 0
Eq. (7.2), can be re-written as

dW
dt

+νW ≤ (r+ν)x− rx2

K +βx
,

where ν is the same as discussed in Case I.
Now, we consider f (x) = (r+ν)x− rx2

K+βx .
In order to maximize the function f (x), we perform derivative test.
So,

f ′(x) = x2 +ψ1x+ψ2 = 0,

where ψ1 =
2K
β
, ψ2 =

(r+ν)K2

β (−r+β (r+ν)) .
The above quadratic equation has a positive root under the following condition.

β <
r

r+ν
. (7.3)

Thus, the critical value of x is given by

x0 =−
K
β

(
1−

√
1− β (r+ν)

(−r(1−β )+βν)

)
> 0.

Now, we evaluate the double derivative of f (x) at x = x0 to obtain

f ′′(x0) =−
2rK2

(K +βx0)3 < 0.

Therefore, x = x0 is the point of local maximum. So, we can write

dW
dt

+νW ≤M,

where

M = f (x0) = (r+ν)x0−
rx2

0
K +βx0

.

Hence,
limsup

t→∞

W (t)≤ M
ν
.

Therefore, all solutions of system (7.1) are bounded.
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Remark. When β > 0, the inequality (7.3) must be true for the boundedness of system
(7.1).

7.4 Equilibrium points

The equilibrium points of (7.1) are its steady-state solutions. The proposed system can exhibit
following equilibrium points:

(i) Population-free equilibrium E0(0,0,0), it exists trivially.

(ii) Predator-free state E1(x1,0,0), where x1 =
K

1−β
is the carrying capacity, is feasible only

when β < 1.

(iii) In the absence of top predator, system (7.1) acquires a planar equilibrium E∗(x∗,y∗,0).
Here x∗ is the solution of the following five degree equation.

A1x5 +A2x4 +A3x3 +A4x2 +A5x+A6 = 0, (7.4)

where

A1 =
δ1r(1−β )

α1
> 0, A2 =−

δ1rK
α1

< 0, A3 =
2δ1ra1(1−β )

α1
− (d1− k1)β ,

A4 =−
2δ1ra1K

α1
− (d1− k1)K + c1α1β , A5 =

δ1ra2
1(1−β )

α1
− (d1− k1)a1β + c1α1K,

A6 =−
δ1ra2

1K
α1

− (d1− k1)a1K < 0.

As per the Descarte’s rule of sign, Eq. (7.4) will have atleast one positive root. x∗ obtained
from Eq. (7.4) can be substituted in the following formula to obtain corresponding y∗.

y∗ =
r(a1 + x2

∗)

α1

(
1− x∗

K +βx∗

)
,

provided x∗ < x1.

(iv) System (7.1) can have a co-existence equilibrium E∗(x∗,y∗,z∗), where x∗ and y∗ are de-
termined by solving the following system.

r
(

1− x
K +βx

)
− α1y

a1 + x2 = 0, (7.5)
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c1α1x
a1 + x2 −

α2

δ2(a2 + y)

(
c2α2y
a2 + y

−d2

)
− (d1− k1)−δ1y = 0. (7.6)

The corresponding z∗ can be calculated from the following expression.

z =
1
δ2

(
c2α2y∗

a2 + y∗
−d2

)
. (7.7)

Remark. It is difficult to solve system (7.5) and (7.6) analytically, therefore we show the
existence of E∗ numerically.

-0.5 0 0.5 1 1.5 2 2.5 3

x

-0.5

0

0.5

1

y

x-nullcline
y-nullcine

Fig. 7.1: Intersection of nullclines (7.5) and (7.6) display the existence of x∗ = 1.896013
and y∗ = 0.269527, and correspondingly we get z∗ = 0.057201 from (7.7). The parame-
ters are taken from Table 7.1 except δ2 = 0.1.

7.5 Stability assessment

In this section, we examine the local stability of all the feasible equilibrium points. First,
we evaluate the Jacobian matrix for system (7.1) about a steady-state, then we determine the
eigenvalues associated, and the negativity of the real part of all eigenvalues confirms the stable
nature of the equilibrium point.

Let V be the variational matrix evaluated at E∗ such that V = [ai j]3×3, where

a11 =−
rKx∗

(K +βx∗)2 +
2α1x∗2y∗

(a1 + x∗2)2 , a12 =−
α1x∗

a1 + x∗2
, a13 = 0,
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a21 =
c1α1y∗(a1− x∗2)

(a1 + x∗2)2 , a22 =
α2y∗z∗

(a2 + y∗)2 −δ1y∗, a23 =−
α2y∗

a2 + y∗
,

a31 = 0, a32 =
c2α2a2z∗

(a2 + y∗)2 , a33 =−δ2z∗.

The condition(s) for the local stability of all feasible equilibria are listed in Table 7.2.

Table 7.2: Equilibrium points of model (7.1) and their stability behavior.

Equilibrium points Stability behavior

E0(0,0,0) always saddle point
E1(x1,0,0) stable⇔ d1 > k1 +

c1α1x1
a1+x12

E∗(x∗,y∗,0) stable⇔ d2 >
c2α2y∗
a2+y∗

, Γ1 > 0, Γ2 > 0, where

Γ1 = 2δ1y∗+d1− k1 +
rKx∗

(K+βx∗)2 −
2α1x2

∗y∗
(a1+x2

∗)
2 − c1α1x∗

(a1+x2
∗)

, and

Γ2 = ( rKx∗
(K+βx∗)2 −

2α1x2
∗y∗

(a1+x2
∗)

2 )(2δ1y∗+d1− k1− c1α1x∗
(a1+x2

∗)
)+ rc1α1x∗(a1−x2

∗)
(a1+x2

∗)
2 (1− x∗

K+βx∗
)

E∗(x∗,y∗,z∗) stable⇔ Θ1 > 0, Θ3 > 0, Θ1Θ2−Θ3 > 0, where
Θ1 =−a11−a22−a33, Θ2 = a22a33−a23a32 +a11a33 +a11a22−a12a21,

Θ3 = a11(a22a33−a23a32)−a12a21a33

Remark.

(i) When the death rate of the middle predator exceeds a threshold, i.e.,

d1 > k1 +
c1α1x1

a1 + x12 ,

then both predators die out, and the prey survives.

(ii) The death rate of top predators is more prominent than a critical value, i.e.,

d2 >
c2α2y∗
a2 + y∗

is necessary for the co-existence of prey and middle predators and the extinction of top
predators.

7.5.1 Hopf-bifurcation

Here we show that the system experiences Hopf-bifurcation around positive equilibrium under
certain conditions.

Theorem 7.5.1. The system exhibits limit cycle around E∗ through Hopf-bifurcation at β = β H f

under following conditions:

(i) Θ1(β
H f )> 0, Θ3(β

H f )> 0,
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(ii) Θ1(β
H f )Θ2(β

H f )−Θ3(β
H f ) = 0,

(iii)
(

Θ1
dΘ2
dβ

+Θ2
dΘ1
dβ
− dΘ3

dβ

)
β=β H f

6= 0.

Proof. At the Hopf-bifurcation point β = β H f , Θ1Θ2−Θ3 = 0, the characteristic equation of
V can be re-written as

(λ 2 +Θ2)(λ +Θ1) = 0.

This yields λ1,2 = ±i
√

Θ2 and λ3 = −Θ1, where Θ1 > 0,Θ2 > 0. Now, we determine the
transversality condition for existence of Hopf-bifurcation. For this, we assume that λ1,2(β ) =

ξ1(β )+ iξ2(β ) and substitute λ = ξ1 + iξ2 in the characteristic equation to obtain the real and
imaginary parts as follows:

ξ
3
1 −3ξ1ξ

2
2 +Θ1(ξ

2
1 −ξ

2
2 )+Θ2ξ1 +Θ3 = 0, (7.8)

−ξ
3
2 +3ξ2ξ

2
1 +2Θ1ξ1ξ2 +Θ2ξ2 = 0. (7.9)

Combining Eqs. (7.8) and (7.9), we get

8ξ
3
1 +8Θ1ξ

2
1 +2ξ1(Θ2 +Θ

2
1)+Θ1Θ2−Θ3 = 0. (7.10)

Now, differentiating Eq. (7.10) with respect to β , then at β = β H f , we obtain

dξ1

dβ

∣∣∣∣
β=β H f

=− 1
2(Θ2 +Θ2

1)

[
Θ1

dΘ2

dβ
+Θ2

dΘ1

dβ
− dΘ3

dβ

]
β=β H f

.

Therefore, the transversality condition is[
Θ1

dΘ2

dβ
+Θ2

dΘ1

dβ
− dΘ3

dβ

]
β=β H f

6= 0.

Hence the theorem follows.

7.5.2 Saddle-node bifurcation

Theorem 7.5.2. System (7.1) experiences saddle-node bifurcation around interior equilibrium

at β = β ∗[sn] if ∆ 6= 0, where ∆ is defined in the proof of the theorem.

Proof. Following the procedure of demonstrating the Sotomayor’s theorem [60], we determine
the eigenvectors of the Jacobian matrix V and V T around interior equilibrium E∗ at β = β ∗[sn]
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for zero eigenvalue, such that

V p = 0, V T q = 0, where p = (p1, p2, p3)
T and q = (q1,q2,q3)

T .

So, we obtain a system of linear equations in p given by

a11 p1 +a12 p2 = 0, (7.11)

a21 p1 +a22 p2 +a23 p3 = 0, (7.12)

and
p3 =−

a32

a33
p2.

Substituting p3 in Eq. (7.12), we obtain

a21 p1 +

(
a22−

a23a32

a33

)
p2 = 0. (7.13)

Solving Eqs. (7.11) and (7.13), we get[
a11

(
a22−

a23a32

a33

)
−a12a21

]
p1 = 0.

In the above equation, the coefficient of p1 is det(V )
a33

, which is zero at the saddle-node bifurcation
point. Therefore, p1 can be any arbitary number, say, p1 = 1. Further, simple calculation yields
p2 =−a11

a12
and p3 =

a32a11
a33a12

.
In a similar manner done above, we calculate q1 = 1, q2 =−a11

a21
, q3 =

a11a23
a21a33

. Differentiating
the right side functions of (7.1), with respect to β to obtain

fβ (β
∗[sn],E∗) =


rx∗3

(K+β ∗[sn]x∗)2

0
0

 .

Now

qT fβ (β
∗[sn],E∗) =

rx∗3

(K +β ∗[sn]x∗)2
6= 0.

Next, we evaluate ∆ = qT [D2 f (β ∗[sn],E∗)](p, p), where

D2 f =

(a11)x (a11)y (a11)z (a12)x (a12)y (a12)z (a13)x (a13)y (a13)z

(a21)x (a21)y (a21)z (a22)x (a22)y (a22)z (a23)x (a23)y (a23)z

(a31)x (a31)y (a31)z (a32)x (a32)y (a32)z (a33)x (a33)y (a33)z


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and
(p, p) = (p2

1, p1 p2, p1 p3, p2 p1, p2
2, p2 p3, p3 p1, p3 p2, p2

3)
T .

After some calculations, we obtain

∆ = (a11)x +2(a11)y p2 +q2((a21)x +2(a21)y p2 +(a22)y p2
2 +2(a22)z p2 p3)+q3((a32)y p2

2

+2(a32)z p2 p3 +(a33)z p2
3),

where (a11)x =− rK(K−βx∗)
(K+βx∗)3 + 4α1x∗y∗(a1−x∗2)

(a1+x∗2)3 , (a11)y =
2α1x∗2

(a1+x∗2)2 , (a21)x =−2c1α1x∗y∗

(a1+x∗2)2−
4c1α1x∗y∗(a1−x∗2)

(a1+x∗2)3 ,

(a21)y =
c1α1(a1−x∗2)

(a1+x∗2)2 , (a22)y =
(a2−y∗)α2z∗

(a2+y∗)3 −δ1, (a22)z =− α2a2
(a2+y∗)2 , (a32)y =−2c2α2a2z∗

(a2+y∗)3 , (a32)z =
c2α2a2
(a2+y∗)2 , and (a33)z =−δ2.
Therefore, as per the Sotomayor’s theorem [60], system (7.1) undergoes saddle-node bifurca-
tion between two interior equilibrium points at β = β ∗[sn] if ∆ 6= 0.

Remark. The occurrence of saddle-node bifurcation about planar steady-states can be
proven under an analysis similar to Theorem 7.5.2.

7.6 Effect of seasonality

Most prey-predator models in literature take place in a deterministic and constant environ-
ment. However, the majority of biological interactions occur under very erratic settings, which
causes the physical parameters related to these interactions, such as carrying capacity, birth
and death rates, competition coefficients, etc., to shift dramatically. Our model becomes a
non-autonomous model when environmental fluctuations are taken into account, where physi-
cal parameters fluctuate periodically for seasonal causes. Therefore, model (7.1) takes on the
following form when seasonality is taken into consideration.

dx(t)
dt

= r(t)x(t)
(

1− x(t)
K(t)+β (t)x(t)

)
− α1(t)x(t)y(t)

a1(t)+ x2(t)
,

dy(t)
dt

=
c1(t)α1(t)x(t)y(t)

a1(t)+ x2(t)
− α2(t)y(t)z(t)

a2(t)+ y(t)
− (d1(t)− k1(t))y(t)−δ1(t)y2(t),

dz(t)
dt

=
c2(t)α2(t)y(t)z(t)

a2(t)+ y(t)
−d2(t)z(t)−δ2(t)z2(t),

(7.14)

To determine the upper and lower bounds of system (7.14), we will use the following result.

x′(t) = g(t,x)x(t)(b− x(t)), b 6= 0; x(t) =
bx(0)exp(

∫ t
0 bg(s,x(s))ds)

x(0)[exp(
∫ t

0 bg(s,x(s))ds)−1]+b
. (7.15)
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Theorem 7.6.1. The solutions of system (7.14) originating from R+
3 are confined in the region

Ω = {(x,y,z) ∈ R+
3 : mκ

1 < x(t)< Mκ
1 , mκ

2 < y(t)< Mκ
2 , mκ

3 < z(t)< Mκ
3 ,}, where

Mκ
1 = max{Mκ1

1 ,Mκ2
1 }, with Mκ1

1 =
rgKg

rl +κ1, Mκ2
1 =

γgx0−
rlx2

0
Kg+β gx0

ν
+κ2,

x0 =
Kg

β g

(√
rl

rl− γgβ g −1
)
,

mκ
1 = min{mκ1

1 ,mκ2
1 }, with mκ1

1 = rl− rg

β l −
α

g
1 Mκ

2

al
1
−κ1, mκ2

1 = (rl−
α

g
1 Mκ

2

al
1

)
Kl

rg −κ2,

Mκ
2 =

cg
1α

g
1 Mκ

1

al
1δ l

1
, mκ

2 =
1

δ
g
1

(
cl

1α l
1mκ

1

ag
1 +Mκ

1
2 −

α
g
2 Mκ

3

al
2
− (dg

1− kl
1)

)
,

Mκ
3 =

cg
2α

g
2

δ l
2

+κ, mκ
3 =

1
δ

g
2

(
cl

2α l
2mκ

2
ag

2 +Mκ
2
−dg

2

)
,

κ, κ1, κ2 are sufficiently small, and the bounds of any parameter of system (7.14) such as a1

are; al
1 = in ft∈R a1(t), ag

1 = supt∈R a1(t).

Proof. When β < 0, we can write from the first equation of the model (7.14)

dx(t)
dt
≤ r(t)x(t)− r(t)x2(t)

K(t)

≤ rlx(t)
Kg

(
rgKg

rl − x(t)
)

Now using (7.15), we get

x(t)≤
Mκ1

1 x(0)exp(rgt)
x(0)[exp(rgt)−1]+Mκ1

1
≤Mκ1

1 .

When β > 0, first equation of the model can be re-written as

dx(t)
dt

+νx(t)≤ (r(t)+ν)x(t)− r(t)x2(t)
K(t)+β (t)x(t)

.

Let r+ν = γ , now we have

dx(t)
dt

+νx(t)≤ γ
gx(t)− rlx2(t)

Kg +β gx(t)
.
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Following the procedure as done in Section 3, we get

x(t)≤Mκ2
1 ,

Now, we take a unique upper bound of x(t) irrespective of sign of β , i.e., Mκ
1 =max{Mκ1

1 ,Mκ2
1 }.

The second equation of the model yields

dy(t)
dt
≤

cl
1α l

1x(t)y(t)
a1

−δ1y2(t),

≤ δ
l
1y(t)

(
cg

1α
g
1 Mκ

1

al
1δ l

1
− y(t)

)
.

Using (7.15), we get

y(t)≤
y(0)Mκ

2 exp(δ l
1Mκ

2 t)
y(0)[exp(δ l

1Mκ
2 t)−1]+Mκ

2
≤Mκ

2 .

From the third equation of the model (7.14), we have

dz(t)
dt
≤ c2(t)α2(t)z(t)−δ2(t)z2(t),

≤ δ
l
2z(t)

(
cg

2α
g
2

δ l
2
− z(t)

)
.

Now, using (7.15), we can write

z(t)≤
z(0)Mκ

3 exp(cg
2α

g
2 t)

z(0)[exp(cg
2α

g
2 t)−1]+Mκ

3
≤Mκ

3 .

Next, we derive lower bounds of the solutions of system (7.14).
When β < 0, we can write from the first equation of the model (7.14)

dx(t)
dt
≥ r(t)x(t)− r(t)x(t)2

β (t)x(t)
− α1(t)x(t)y(t)

a1(t)
,

≥
(

rl− rg

β l −
α

g
1 Mκ

2

al
1

)
x− x2.

Let η1 = rl− rg

β l −
α

g
1 Mκ

2
al

1
> 0 then using (7.15), we obtain

x(t)≥
mκ1

1 x(0)exp(η1t)
x(0)[exp(η1t)−1]+mκ1

1
≥ mκ1

1 .
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When β > 0, we have

dx(t)
dt
≥ r(t)x(t)− r(t)x2(t)

K(t)
− α1(t)x(t)y(t)

a1(t)
,

≥
(

r(t)−
α1(t)Mκ

2
a1(t)

)
x(t)− r(t)x2(t)

K(t)
.

dx(t)
dt
≥ rgx(t)

Kl

(
Kl

rg

(
rl−

α
g
1 Mκ

2

al
1

)
− x(t)

)
.

Let η2 = rl− α
g
1 Mκ

2
al

1
> 0, then

x(t)≥
mκ2

1 x(0)exp(η2t)
x(0)[exp(η2t)−1]+mκ2

1
≥ mκ2

1 .

Now, we take a unique lower bound of x(t) irrespective of sign of β , i.e., mκ
1 = min{mκ1

1 ,mκ2
1 }.

Next, we determine the lower bound of y(t), for this we have

dy(t)
dt
≥ c1α1xy

a1 + x2 −
α2yz
a2
− (d1− k1)y−δ1y2

≥ δ
g
1 y(t)

[(
cl

1α l
1mκ

1

ag
1 +Mκ

1
2 −

α
g
2 Mκ

3

al
2
− (dg

1− kl
1)

)
1

δ
g
1
− y(t)

]
.

Let η3 =
cl

1α l
1mκ

1
ag

1+Mκ
1

2 −
α

g
2 Mκ

3
al

2
− (dg

1− kl
1)> 0 then using (7.15), we can write

y(t)≥
y(0)mκ

2 exp(η3t)
y(0)[exp(η3t)−1]+mκ

2
≥ mκ

2 .

From the third equation of the model (7.14), we have

dz(t)
dt
≥ δ

g
2 z(t)

[
1

δ
g
2

(
cl

2α l
2mκ

2
ag

2 +Mκ
2
−dg

2

)
− z(t)

]
.

Let η4 =
cl

2α l
2mκ

2
ag

2+Mκ
2
−dg

2 > 0 then using (7.15) yields

z(t)≥
z(0)mκ

3 exp(η4t)
z(0)[exp(η4t)−1]+mκ

3
≥ mκ

3 .

Hence the theorem follows.

Theorem 7.6.2. System (7.14) possesses atleast one positive ω-periodic solution if the operator

equation L3L4u = 0 has a finite number of real-valued solutions (u1ζ ,u2ζ ,u3ζ ), ζ = 1,2, ...n
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such that
n

∑
ζ=1

sign det(L3L4)
′(u1ζ ,u2ζ ,u3ζ ) 6= 0,

where L3 and L4 are defined in the proof.

Proof. Considering x(t) = eu1(t), y(t) = eu2(t), z(t) = eu3(t), system (7.14) is transformed into
the following form.

du1(t)
dt

= r(t)
(

1− eu1(t)

K(t)+β (t)eu1(t)

)
− α1(t)eu2(t)

a1(t)+ e2u1(t)
= F1(u1,u2,u3),

du2(t)
dt

=
c1(t)α1(t)eu1(t)

a1 + e2u1(t)
− α2eu3(t)

a2(t)+ eu2(t)
− (d1(t)− k1(t))−δ1(t)eu2(t) = F2(u1,u2,u3),

du3(t)
dt

=
c2(t)α2(t)eu2(t)

a2(t)+ eu2(t)
−d2(t)−δ2(t)eu3(t) = F3(u1,u2,u3).

(7.16)

If the transformed system (7.16) has a ω-periodic solution (u1(t),u2(t),u3(t)) then the proposed
non-autonomous system (7.14) will also have a ω-periodic solution (eu1(t),eu2(t),eu3(t)).

For implementation of the continuation theorem [72], we define two Banach Spaces P and
Q such that

P = Q = {(u1,u2,u3) ∈C(R,R3)| u j(t +ω) = u j(t), j = 1,2,3},

provided with the norm

‖(u1,u2,u3)‖=
3

∑
j=1

max
t∈[0,ω]

|u j(t)|.

Let
L1u(t) = u′(t), L2u(t) = L3u(t) =

1
ω

∫
ω

0
u(t)dt, and L4u(t) = F(t),

where u(t) = (u1(t),u2(t),u3(t))T and F(t) = (F1(t),F2(t),F3(t))T .
It is easy to note that system (7.16) is equivalent to the equation L1u = L4u. In order to prove
the existence of ω-periodic solution of (7.16), we need to verify all conditions of Lemma 3.2
mentioned in [210].
It is simple to examine that

Ker(L1) = {(u1,u2,u3) ∈ P| (u1,u2,u3) = (c1,c2,c3) ∈ R3},

Im(L1) = {(u1,u2,u3) ∈ P|
∫

ω

0
u j(t)dt = 0, j = 1,2,3},
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and the quotient space P
ImL1

is isomorphic to KerL1 then codim ImL1 = dim KerL1 = 3. Hence,
L1 is a Fredholm mapping of index three. The operators L2 and L3 are such that ImL2 =

KerL1, ImL1 = KerL3 = Im(I−L3). An inverse map L1
−1
L2

: ImL1 → DomL1 ∩KerL2 exists,
which is given by

L1
−1
L2

u1

u2

u3

=


∫ t

0 u1(s)ds− 1
ω

∫
ω

0
∫ t

0 u1(s)dsdt∫ t
0 u2(s)ds− 1

ω

∫
ω

0
∫ t

0 u2(s)dsdt∫ t
0 u3(s)ds− 1

ω

∫
ω

0
∫ t

0 u3(s)dsdt

 .

Since L3L4 and L1
−1
L2
(I−L3)L4 are continuous, we are able to confirm that L4 is L1-compact on

any closed bounded set in Ω̄∗ [210].
From the previous theorem, we have

mκ
1 < x(t)< Mκ

1 , mκ
2 < y(t)< Mκ

2 , mκ
3 < z(t)< Mκ

3 ,

then for the system L1u = ρL4u, where 0 < ρ < 1, we can write

max
t∈[0,ω]

|u1(t)| ≤ max{|ln(mκ
1 )|, |ln(Mκ

1 )|}= D1,

max
t∈[0,ω]

|u2(t)| ≤ max{|ln(mκ
2 )|, |ln(Mκ

2 )|}= D2,

max
t∈[0,ω]

|u3(t)| ≤ max{|ln(mκ
3 )|, |ln(Mκ

3 )|}= D3.

Let Ω∗ = {(u1,u2,u3)
T ∈ P| ‖(u1,u2,u3)‖< D} and D = D1 +D2 +D3 +D4, where D4 > 0 is

adequately large such that each solution of L1u = ρL4u, given by
1
ω

∫
ω

0 [r(1− eu1
K+βeu1 )−

α1eu2

a1+e2u1
]dt

1
ω

∫
ω

0 [ c1α1eu1

a1+e2u1
− α2eu3

a2+eu2 − (d1− k1)−δ1eu2]dt
1
ω

∫
ω

0 [c2α2eu2
a2+eu2 −d2−δ2eu3]dt

= 0 (7.17)

satisfies ‖(u1,u2,u3)‖< D, which implies u /∈ ∂Ω∗. This verifies the first condition of Lemma
3.2 [210].
For the demonstration of second condition of Lemma, we consider (u1,u2,u3)∈ ∂Ω∗∩KerL1 =

∂Ω∗∩R3 with ‖(u1,u2,u3)‖= D, then

L3L4u =


1
ω

∫
ω

0 [r(1− eu1
K+βeu1 )−

α1eu2

a1+e2u1
]dt

1
ω

∫
ω

0 [ c1α1eu1

a1+e2u1
− α2eu3

a2+eu2 − (d1− k1)−δ1eu2]dt
1
ω

∫
ω

0 [c2α2eu2
a2+eu2 −d2−δ2eu3 ]dt

 6= 0. (7.18)
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If the matrix in (7.18) becomes zero, then u is the solution of (7.17) where u /∈ ∂Ω∗, which is
the contradiction of our assumption. Therefore, the second condition of Lemma 3.2 is fulfilled.
Now, we define a homomorphism

H : ImL3→ KerL1, (u1,u2,u3)
T → (u1,u2,u3)

T ,

then
deg(HL3L4,∂Ω

∗∩KerL1,0) = deg(L3L4,∂Ω
∗∩KerL1,0).

We further assume that L3L4u = 0 has a finite number of real-valued solutions (u1ζ ,u2ζ ,u3ζ ),
ζ = 1,2, ...n such that

n

∑
ζ=1

sign det(L3L4)
′(u1ζ ,u2ζ ,u3ζ ) 6= 0. (7.19)

Thus, taking the assumption stated in (7.19), we can derive from the Brouwer’s degree theory
[66] that

deg(HL3L4,∂Ω
∗∩KerL1,0) 6= 0.

Hence, all conditions of Lemma 3.2 stated in [210] are satisfied, and L1u= L4u possesses atleast
one solution in DomL1∩ Ω̄∗. Furthermore, we reach to the conclusion that there exists atleast
one ω-periodic solution (u1(t),u2(t),u3(t)) of system (7.16). Equivalently, we can confirm the
existence of atleast one ω-periodic solution (eu1(t),eu2(t),eu3(t)) of system (7.14).

Theorem 7.6.3. The positive ω− periodic solution (x1,y1,z1) is globally asymptotically stable

if Ji > 0, i = 1,2,3, where Ji is defined in the proof.

Proof. Let (x1,y1,z1) and (x2,y2,z2) be two distinct w− periodic solutions. Now we define

V1 = |lnx1(t)− lnx2(t)|, V2 = |lny1(t)− lny2(t)|, V3 = |lnz1(t)− lnz2(t)|.

We calculate the Dini’s derivative of Vi, i = 1,2,3 along system (7.14) to get

D+V1(t) = sgn(lnx1(t)− lnx2(t))
[

ẋ1

x1
− ẋ2

x2

]
= sgn(x1− x2)

[
− rK

(K +βx1)(K +βx2)
(x1− x2)−

α1

a1 + x2
2
(y1− y2)+

α1y1

(a1 + x2
1)(a1 + x2

2)
(x2

1− x2
2)

]
≤
[

α1y1(x1 + x2)

(a1 + x2
1)(a1 + x2

2)
− rK

(K +βx1)(K +βx2)

]
|x1− x2|+

α1

a1 + x2
2
|y1− y2|.

In the similar manner we obtain

D+V2(t)≤
c1α1(a1− x1x2)

(a1 + x2
1)(a1 + x2

2)
|x1−x2|+

[
α2z1

(a2 + y1)(a2 + y2)
−δ1

]
|y1−y2|+

α2

(a2 + y2)
|z1−z2|,
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D+V3(t)≤
c2α2a2

(a2 + y1)(a2 + y2)
|y1− y2|−δ2|z1− z2|.

Combining all the above inequalities for V =V1 +V2 +V3, we get

D+V (t)≤
[

α1(y1(x1 + x2)+ c1(a1− x1x2))

(a1 + x2
1)(a1 + x2

2)
− rK

(K +βx1)(K +βx2)

]
|x1− x2|+

[
α1

a1 + x2
2

+
α2(z1 + c2a2)

(a2 + y1)(a2 + y2)
−δ1

]
|y1− y2|+

[
α2

(a2 + y2)
−δ2

]
|z1− z2|

≤
[

α1(2Mκ
1 Mκ

2 + c1(a1−mκ
1

2))

(a1 +mκ
1

2)2
− rK

(K +βMκ
1 )

2

]
|x1− x2|+

[
α1

a1 +mκ
1

2

+
α2(Mκ

3 + c2a2)

(a2 +mκ
2 )

2 −δ1

]
|y1− y2|+

[
α2

(a2 +mκ
2 )
−δ2

]
|z1− z2|.

This yields
D+V (t)≤−J1|x1− x2|− J2|y1− y2|− J3|z1− z2|, (7.20)

where

J1 =
rK

(K +βMκ
1 )

2 −
α1(2Mκ

1 Mκ
2 + c1(a1−mκ

1
2))

(a1 +mκ
1

2)2
,

J2 = δ1−
α1

a1 +mκ
1

2 −
α2(Mκ

3 + c2a2)

(a2 +mκ
2 )

2 ,

J3 = δ2−
α2

(a2 +mκ
2 )

.

When all J1, J2 and J3 are positive then we can say that V (t) is a non-increasing function on
[0,∞), integrating (7.20), we obtain

V (t)+ J1

∫ t

0
|x1− x2|ds+ J2

∫ t

0
|y1− y2|ds+ J3

∫ t

0
|z1− z2|ds < ∞ (7.21)

Using Lemma 3.1 stated in [210], we conclude that

lim
t→∞
|x1− x2|= 0, lim

t→∞
|y1− y2|= 0, lim

t→∞
|z1− z2|= 0.

Therefore, the positive solution of ω− period of the non-autonomous system (7.14) is globally
asymptotically stable.

7.7 Numerical Simulation

In this section, we can visualize all the dynamics of the seasonal and non-seasonal models
for a certain set of parameters using MATLAB R2021a. Numerical simulations can witness
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the existence and stability of equilibrium points studied theoretically. Furthermore, we explore
various bifurcations like Hopf, saddle-node, transcritical, and homoclinic for the crucial factors.
The non-linearity in three-dimensional models has a high chance of opening the door to chaos.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7.2: Phase portraits showing different dynamics of system (7.1) with regard to β at
(a) β = −2.4, (b) β = −2, (c) β = −0.05, (d) β = 0.05, (e) β = 0.42, (f) β = 0.46, (g)
β = 0.5, (h) β = 0.55916, (i)β = 0.6. Here the parameters are same as in Table 7.1.

When populations’ activities alter the natural carrying capacity, it can also alter the system’s
dynamics. For an increasing value of β , we plot a series of phase portraits showing significant
changes in the dynamics (see Fig. 7.2). At β = −2.4 (Fig. 7.2(a)), only the predator-free
equilibrium E1 exists and is stable. No other attractor is present at this stage. With an increment
in β , at β =−2 (Fig. 7.2(b)), the planar equilibrium E∗ comes into existence, and E1 transfers
its stability to E∗ through a transcritical bifurcation. With a further rise in β , the z population
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takes a positive number via transcritical bifurcation between planar and interior states, and
the co-existence equilibrium E∗ exists as a stable focus at β = −0.05 (Fig. 7.2(c)). This E∗

leaves its stability through a supercritical Hopf-bifurcation, and consequently, a stable limit
cycle arises surrounding repeller E∗ at β = 0.05 (Fig. 7.2(d)). Further, solutions of system (1)
oscillate between two maximum and two minimum values for β = 0.42 (Fig. 7.2(e)), which is
the period-doubling phenomenon. With a slight rise in β , the solution becomes higher-periodic
at β = 0.46 (Fig. 7.2(f)) and eventually becomes chaotic at β = 0.5 (Fig. 7.2(g)). This chaotic
attractor forms a homoclinic connection with saddle E1 at β = 0.55916 (Fig. 7.2(h)), and
finally, the cyclic loop breaks and E1 becomes stable through homoclinic bifurcation at β = 0.6
(Fig. 7.2(i)).
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Fig. 7.3: Bifurcation diagram of all species displaying the emergence of chaos with re-
spect to β .
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Fig. 7.4: Sensitive dependence of solutions x, y, z on the initial condition when solution
is perturbed by (0.01,0.001,0.001) for the parameters corresponding to Fig. 7.2 (g).

All the aforementioned dynamical properties can be combinedly presented through a bifur-
cation diagram in Fig. 7.3. This diagram helps us observe the change in population numbers
and their oscillations with respect to β . The rise in β enhances the carrying capacity of prey,
but this does not enrich our system. In fact, expanding carrying capacity destabilizes the system
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and generates chaotic solution. Therefore, our model exhibits the phenomenon of paradox of
enrichment.
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Fig. 7.5: (a) The positive nature of the Maximum Lyapunov exponent shows the chaotic
behavior with respect to β , and (b) Randomness in the Poincare map for y = 0.1 at β =
0.5 also verifies chaos. The parameter set is same as Table 7.1.

For the investigation of chaos at β = 0.5, we perform a time-series analysis for two solutions
starting from very near but different initial conditions. Over time, we notice that solutions
initiating from a very little perturbation are showing significant deviation. We plot these two
series with different colors to observe the difference in the final solution (see Fig. 7.4). This
abrupt behavior explains the chaotic trait of the system. Furthermore, to confirm chaos, we
plot the maximum Lyapunov exponent with respect to β . From Fig. 7.5(a), we observe a
specific range of β in which the MLE takes the positive value. Hence, the occurrence of chaos
is confirmed. At y = 0.1, we plot the Poincare map with many scattered points in xz-plane (see
Fig. 7.5(b)). The randomness of these points ensures the chaotic nature of system (7.1).

Middle predator migration from or into the system can affect the interacting species’ popu-
lation density and food chain dynamics. Thus, it is crucial to examine the dynamics of system
(7.1) regarding migration. For the parameters from Table 7.1, the system is chaotic in the ab-
sence of migration. When intermediate predators immigrate, the chaos can be suppressed via a
period-halving path to the limit cycle for an acceptable level of immigration (see Fig. 7.6(a)).

When intermediate predator emigrates, there are chances of food scarcity for the top preda-
tor. Consequently, inappropriate emigration can cause elimination of middle and top predator.
We can observe from Fig. 7.6(b), system is chaotic in the absence of migration. With an
increase in emigration, the chaotic attractor gradually connects the saddle predator-free equi-
librium, and finally, after a threshold of k1, E1 becomes stable.
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Fig. 7.6: Bifurcation digram illustrating x-density with respect to the migration rate of
middle predator k1. (a) Reduction of chaos to a stable limit cycle by the route of period-
halving due to immigration. (b) Emigration can control chaos by eradicating y and z
population density. Rest of the parameters are kept unchanged.
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Fig. 7.7: Hopf-bifurcation and homoclinic bifurcation curves in k1β -plane.

Our model has two very influential parameters β and k1. Varying them simultaneously
can be of significant consequence. For k1 ∈ [−0.1,0.1], we obtain two critical values of β at
which the system experiences Hopf-bifurcation and homoclinic bifurcation, respectively (see
Fig. 7.7). The blue and red curves in Fig. 7.7 divide the k1β -plane into three regions. Below
the blue curve, the interior equilibrium is stable, and it loses stability through a supercritical
Hopf-bifurcation when it crosses the blue curve. Therefore, in between the blue and red curves,
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the solution is oscillatory, and a stable cycle persists. The cycle connects the saddle axial
equilibrium at the red curve by forming a homoclinic loop. The homoclinic loop disappears in
the region above the red-colored curve, and the axial point is stable.

(a) (b)

Fig. 7.8: System (7.1) achieves bi-stability between E1 and E∗ for β = 0.32, a1 = 2.4.
Rest of the parameters are same as in Table 7.1. (a) Phaseportrait showing co-existence
of two planar E(1)

∗ , E(2)
∗ , and an axial equilibrium point E1. Trajectories starting from

very close two different points converge to E1 and E(1)
∗ , simultaneously. (b) The solution

starting from green and blue region will eventually approach towards attractors E1 and
E(1)
∗ , respectively.
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Fig. 7.9: (a) Two planar equilibrium points approach towards each other with increase in
β , and eventually annihilate at β = β [sn] = 0.471932 through saddle-node bifurcation.
Here all parameters are taken from Table 7.1 except a1 = 2.4. (b) System (7.1) experi-
ences saddle-node bifurcation of two interior equilibrium points with decrease in β at
β = β ∗[sn] = 0.17875. Here a1 = 0.4, a2 = 0.8, and rest of the parameters are taken from
Table 7.1.
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In non-linear systems, multi-stability is an intriguing property in which more than one at-
tractor is present at the same time for the same parameter set. For a1 = 2.4 and β = 0.32,
system (7.1) has two planar steady-states E(1)

∗ (1.4914,0.2561,0) and E(2)
∗ (1.6254,0.1387,0),

and one axial state E1(1.7647,0,0). According to Table 7.2, stability conditions for E(1)
∗ and

E1 are fulfilled for the chosen set, and both are stable nodes. Therefore, the phenomenon of
bi-stability arises between E(1)

∗ and E1. Figure 7.8(a) demonstrates solutions starting from two
different but nearby points converging towards one planar E(1)

∗ and one axial E1 steady-state.
These co-stable attractors have different basins of attraction for the same parameter set. Fig.
7.8(b) displays the green-colored region corresponding to the axial equilibrium E1, and the
blue-colored region is the basin for planar state E(1)

∗ .

Fig. 7.10: Shilnikov-like connection of saddle-focus E∗ and saddle E1. Here r =
0.58, K = 2.2, d2 = 0.4, c2 = 0.9, k1 = 0.2, a1 = 0.7, a2 = 1.2, β = 0.6, and other
parameters are taken from Table 7.1.

When two equilibriums approach each other and eventually annihilate with respect to the
change in parameter, the saddle-node bifurcation happens. After this phenomenon, the equilib-
riums mentioned above do not exist. For a1 = 0.4, a2 = 0.8, and β = 0.17875, the co-existence
state E∗(0.7561,0.2107,0.2302) exists, and the determinant of the Jacobian matrix at E∗ is
zero. Moreover, we calculate ∆ =−0.41591, which is non-zero. Hence, as per Theorem 7.5.2,
the system exhibits saddle-node bifurcation about interior equilibrium. In a similar fashion,
saddle-node bifurcation of two planar equilibrium points can be explained. We can visualize
the saddle-node bifurcation of two planar and two interior steady-states from Fig. 7.9(a) and
7.9(b), respectively. The change in the number of steady-states with respect to β demonstrates
the saddle-node bifurcation.
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For a slightly different set of parametrs: r = 0.58, K = 2.2, d2 = 0.4, c2 = 0.9, k1 =

0.2, a1 = 0.7, a2 = 1.2, β = 0.6, we have a saddle-focus E∗(0.078,0.3952,0) with eigenvalues
−0.0052±0.2348i, 0.0013, and a saddle-node E1(5.5,0,0) with eigenvalues−0.232,0.06,−0.4.
The stable manifold of E∗ is of dimension two, and the unstable one is of one dimension. The
limit cycle emerged around E∗ is eventually repelled, and it connects the saddle-node E1 to
form a Shilnikov-like connection (see Fig. 7.10). Furthermore, the existence of a Shilnikov-
like connection promotes chaotic dynamics of the system [219].
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Fig. 7.11: The time series solution of seasonal and non-seasonal models starting from
(2,0.3,0.05) for parameter values given in Table 7.1. The non-seasonal system has a
chaotic solution but including seasonality eliminates chaos and solution converges to the
predator-free equilibrium E1 for β (t) = β +β0sin(ωt) and r(t) = r+ r0cos(ωt), where
ω = 0.1, β0 = 0.4 and r0 = 0.4.
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Fig. 7.12: The time series solution of seasonal and non-seasonal models starting from
(2,0.3,0.05) for parameter values given in Table 7.1. The non-seasonal system has a
chaotic solution but including seasonality eliminates chaos and solution converges to the
planar equilibrium E1 periodically for β (t) = β +β0sin(ωt) and d1(t) = d1+d10sin(ωt),
where ω = 0.1, β0 = 0.4 and d10 = 0.2.



7.7. Numerical Simulation 201

Now, we investigate the non-autonomous system’s dynamics with the help of numeri-
cal simulation. According to various ecological and environmental aspects, realistic scenar-
ios allow the seasonal model parameters for periodic fluctuations. We consider β , d1 pa-
rameters in a sinusoidal form, and r in cosinusoidal form such that β (t) = β + β0sin(ωt),
d1(t) = d1 + d10sin(ωt), and r(t) = r+ r0cos(ωt), where β0, d10, and r0 are the intensity of
seasonality, their default value is set zero unless mentioned. The rest of the parameters are
considered as time independent.
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Fig. 7.13: System (7.14) achieves bi-stability between (a) periodic attractor (blue) and
(b) chaotic attractor (red) when started from two different initial conditions (2,1,2) and
(0.1,0.1,0.1), respectively. (c) The blue and red regions are the basins of attraction for
periodic and chaotic attractors, respectively. The parameters set is taken from Table 7.1
with seasonality in β such that β (t) = β +β0sin(ωt), where β0 = 0.44, ω = 0.1.

For the chosen parameters set from Table 7.1, we have seen that the autonomous system
is chaotic. The chaotic trait vanishes from sight upon introducing seasonality, and the solution
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initiated from the same point can converge to two different solutions. We consider seasonally
forced intensity in β and r as β0 = 0.4, r0 = 0.4, and observe that the solution of the seasonal
model goes to the predator-free state E1 in a periodic manner (see Fig. 7.11). However, the
seasonal model’s solution converges to the planar equilibrium E∗ periodically when seasonality
is taken for β and d1 as β0 = 0.4 and d10 = 0.2 (see Fig. 7.12). Furthermore, system (7.14)
achieves bi-stability between a chaotic and a periodic attractor for a slightly large value of β0.
Figures 7.13(a) and 7.13(b) demonstrate the existence of a periodic and chaotic solution for
the same set of parameters with β0 = 0.44. Figure 7.13(c) represents the two sets of initial
values for which the solution eventually goes to either periodic or chaotic attractor for the same
parameters, simultaneously.

Fig. 7.14: Global stability of the periodic solution of the non-autonomous system (7.14)
due to seasonality in d1 such that d1(t) = d1 + d10sin(ωt), with d10 = 0.03, ω = 0.1,
β =−0.2, and other parameters are taken from Table 7.1.

The locally asymptotic stable interior equilibrium exhibited in the autonomous model (7.1)
for β =−0.2 changes to globally attractive periodic solutions when the mortality rate of middle
predator is influenced by seasonality with intensity d10 = 0.03 (see Fig. 7.14). In Fig. 7.14,
the non-autonomous system’s solutions from different initial conditions eventually converge
to the periodic attractor. Furthermore, the bi-stability trait in the autonomous system between
planar E∗ and axial E1 equilibrium points switches to the global stability of E1 when β is
considered seasonal with intensity β0 = 0.2. The other parameters are taken from Table 7.1
except β = 0.32 and a1 = 2.4. Fig. 7.15 depicts the globally attractive behavior of time series
solution with respect to different initial conditions.
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Fig. 7.15: System (7.14)’s periodic solution is globally stable aboutE1 for β = 0.32 a1 =
2.4, β0 = 0.2, ω = 0.1 for initial values: (2,2,2), (0.5,1,0.1), (4,1,0.5), and (3,0.5,1).
The corresponding non-seasonal model is bi-stable between an axial and a planar equi-
librium (see Fig. 7.8(a)).

7.8 Discussion and conclusion

The present article investigates the dynamics of a food-chain model showing the interaction
between basal prey x, intermediate predator y, and top predator z. We presumed that prey has
a non-constant carrying capacity K +βx, where β measures the influence of the population’s
activity on the carrying capacity. We further assumed that the intermediate predator plays
wisely and migrates with the rate k1 from or into the system for maximum benefit. These two
real-valued parameters, β and k1, are crucial and offer intricate dynamics. Furthermore, we
explored the impact of seasonality on the autonomous system.

Firstly, we performed the formal analysis to ensure the boundedness of formulated system
(7.1), which is a prerequisite for further analysis. Next, we examined feasible steady-state’s
existence, stability, and possible bifurcations. Furthermore, the system’s persistence, existence,
and global stability of its periodic solution are investigated for the non-autonomous system. In
the numerical simulation, we mainly focused on the impact of the activity measure of popu-
lation on its carrying capacity, migration, and seasonality. According to Yukolov et al. [214],
populations’ damaging actions on their carrying capacity or the interacting population cause ex-
treme occurrences and finite-time extinctions. Our results reveal that the destructive action of
species can alter the system dynamics through transcritical bifurcation twice. When the level of
destruction increases, one or more species can become extinct. The bifurcation diagram against
β depicts the stability of the co-existence state for less destructive action. However, as β de-
clines, the top predator first becomes extinct, followed by the extinction of the middle predator.
Furthermore, constructive action by the population on its carrying capacity can promote insta-
bility and induce chaos in the system through the period-doubling route. This phenomenon is
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popularly known as the paradox of enrichment. We performed time-series sensitivity concern-
ing the initial condition for chaos detection and sketched the maximum Lyapunov exponent
and a Poincare map for confirmation. For the significantly immense value of β , the chaotic
attractor expands and connects the prey-only saddle state E1, eventually leading to the stability
of E1 through the homoclinic bifurcation. Therefore, the population’s extremely constructive
and destructive activities can cause the basal prey to survive and eliminate both predators.

The pressure of being killed triggers the emigration of middle predators from the food-
chain, and their greed for hunting prey provokes them to immigrate into the system. In our
model, the increment in immigration rate controls chaos through the period-halving route.
Therefore, immigration can be seen as a preventive measure for chaotic dynamics. Some re-
search articles [207, 209, 220] witnessed a similar result of suppression of chaos in the presence
of immigration of middle predators in a food-chain. Thus, species migration can critically al-
ter the dynamics of a food-chain system. We also examined the impact of emigration on the
chaotic system. The emigration beyond the limit can cause the eradication of both predator
densities. This is likely due to the specialist nature of top predators. A study by Hossain et al.

[51] also reveals species extinction at high migration rates. They mainly analyzed their model
through numerical simulation to demonstrate bi-stability and chaos in a tri-trophic model. How-
ever, they did not theoretically study the system to explain its boundedness and occurrence of
bifurcations. Our study attempts to fill this gap, and we are able to obtain some theoretical
results. Furthermore, due to the criticality of β and k1, we varied them simultaneously for the
bi-parametric study. For each k1, we obtained two critical values of β at which the system un-
dergoes Hopf and homoclinic bifurcations, plotting Hopf and homoclinic curves in k1β -plane.

The rich features of our non-linear system include bi-stability, Shilnikov-like connection,
and different kind of bifurcations. We considered periodicity in model parameters to incor-
porate seasonality to make the model more realistic. The results of autonomous and non-
autonomous systems are recognizably comparable. Bi-stability between E1 and E∗ in a no-
seasonal model shifts to the globally stable periodic solution about E1 in the presence of sea-
sonality in β . Considering β as seasonal also promotes bi-stability between a chaotic and
a periodic attractor when the non-seasonal model has a chaotic attractor only. Furthermore,
instead of the solution converging to the chaotic attractor (as in an autonomous system), the
extinction of one or more species is possible when seasonality is taken for the intrinsic growth
rate of prey or the death rate of the middle predator along with β .
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Conclusions

In this thesis, we focused on the mathematical formulation and analysis of the model represent-
ing prey-predator interactions. Several ecological and epidemic factors significantly affect the
dynamics of the system. Therefore, we examined each proposed model theoretically and nu-
merically with respect to the crucial parameters. The well-posedness of every model has been
thoroughly investigated to ensure that the populations cannot go negative or unbounded in the
future. Following this, we determined the feasible equilibrium points and their stability behav-
ior. Then, we explored possible local and global bifurcations occurring in the system. Many
of our non-linear systems exhibited rich dynamical properties like multi-stability and chaos.
Through extensive numerical simulation, we presented system dynamics by drawing numerous
time-series plots, phase portraits, and basins of attraction.

Chapter 2 includes a modified Leslie-Gower prey-predator model with fear, group de-
fense, hunting cooperation, and fear-response delay. We obtained transcritical, saddle-node,
and Hopf-bifurcations for fear and cooperation strength parameters in the non-delayed system.
Apart from this, the phenomenon of bi-stability occurred between two co-existence steady-
states. Moreover, the system with delay experiences stability switching multiple times due to
supercritical Hopf-bifurcation.

In Chapter 3, a modified Leslie-Gower prey-predator model with fear, refuge, additional
food, gestation, and fear-response delay has been proposed and analyzed. The inclusion of
these many ecological factors makes the system complex and offer intricate dynamics. We
determined the conditions for the persistence and extinction of both species. Apart from local
bifurcations, we observed a global bifurcation, homoclinic bifurcation, in which the limit cycle
connects the prey-free equilibrium. Prey refuge in limit can benefit both species; otherwise,
predators might be extinct. However, additional food provided to the predator can enrich their
density and promote co-existence. Moreover, supplementary food above a threshold can elim-
inate prey species. We observed the impact of delay on the bi-stability between interior and
axial equilibriums. The delayed system undergoes subcritical Hopf-bifurcation several times,
which yields an unstable limit cycle.

In Chapter 4, we considered an infectious disease among prey that divides the prey pop-
ulation into two compartments: susceptible and infected. Assuming susceptible prey to be
healthy, they perform group defense against predation. Unlike them, infected ones are easy to
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catch. Therefore, we formulated a three-dimensional eco-epidemic model where the predators
can switch to additional food. Our theoretical and numerical results revealed that the adequate
arrangement of supplementary food can eradicate the disease among prey. Moreover, a minor
adjustment in additional food parameter led to more fascinating system dynamics, like hetero-
clinic bifurcation and multi-stability.

When a herd of susceptible (healthy) prey exhibits a defensive strategy, their herd shape
can alter the predator’s attack rate. Additionally, they can even kill their predators. Chapter
5 presents the aforementioned prey-predator interaction with a discrete delay. We performed
a detailed analysis of the uniqueness and positivity of solutions. The attack rate of predator
and prey, disease transmission rate and time delay are the crucial factors governing the system
dynamics. In this chapter, we witnessed the occurrence of chaos through the period-doubling
route. The maximum Lyapunov exponent was sketched to confirm the chaotic phenomenon.
Time delay causes the shifting of the Hopf-bifurcation curve in a significant manner. We also
conducted a sensitivity analysis to check the influence of parameters on basic reproduction
numbers associated with the epidemic and ecological subsystems.

Chapter 6 is dedicated to a stage-structured prey-predator model incorporating fear and its
carry-over effects (COE) on prey birth rate. We assumed that the adult predator kills prey
and prey counter-attacks on the juvenile predator (vulnerable). This loop continues, and the
process turns into the role reversal of prey and predator. The mathematical model explaining
these ecological aspects is formulated using ordinary differential equations. We observed that
the predation rate of predator and prey plays a crucial role in maintaining ecological balance.
Simultaneous variation in both these rates causes the system to undergo Bogdanov-Takens bi-
furcation. This bifurcation point is the point where the Hopf, saddle-node, and homoclinic
curves meet. We observed the paradox of enrichment, which can be ruled out by increasing the
fear level. The system attains bi-stability of node-focus and node-cycle type. Furthermore, we
analyzed our model with respect to the fear-response delay and COE delay. For an intermedi-
ate delay range, the system achieves switching of stability several times and the emergence of
chaotic phenomenon.

In Chapter 7, we studied three species food-chain model where the middle predator migrates
from or into the system for its optimum benefit. We assumed that the carrying capacity of prey
is non-constant. The constructive or destructive activities of species can enrich or deplete their
carrying capacity. Therefore, we replaced the natural carrying capacity with a combination of
natural carrying capacity and a function of its population density. We investigated the proposed
system concerning two crucial real-valued parameters: β (measuring the impact of activities
on carrying capacity) and k1 (migration rate). The proposed system exhibits the enrichment
paradox when β is increased. In fact, the chaotic solution arises for sufficiently large β . Vari-
ation in β generates several bifurcations like Hopf, saddle-node, homoclinic, and two times
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transcritical bifurcation. However, variation in k1 is proven to be a chaos control strategy. We
plotted the Poincare map to show the existence of chaos. Next, we examined the system in
the presence of seasonality. The non-autonomous system exhibits more intriguing dynamics
than the non-seasonal model. We proved the persistence, existence, and global stability of
the periodic solution. Our numerical results demonstrate the bi-stability between chaotic and
periodic attractors. We also thoroughly compared the findings of both the autonomous and
non-autonomous systems.

Future directions

This thesis focuses on the dynamical study of ecological and eco-epidemic models represent-
ing prey-predator relationships with several environmental factors. The following are possible
future goals for our work.

• In this thesis, we worked on temporal models and would like to extend our work in
a spatial-temporal direction to study diffusion and delay-diffusion models using partial
differential equations.

• We investigated either two or three-species interactions in this thesis. It would be more
captivating to investigate the dynamics of four or more populations’ interactions.

• Working on eco-epidemic models has developed our immense interest in infectious dis-
ease modeling. In this thesis, we considered general disease in prey only. However, we
can study a particular disease spread among interacting populations. Moreover, we can
fit the model with real-life data for more accurate outcomes to predict disease outbreaks
and control strategies.
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