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Abstract

Population models in ecology are mathematical depictions of biological populations in natural
ecosystems that are used to understand and forecast their behavior. Ecologists can use these
models to gain insight into the factors that drive population growth, decline, and stability. It
serves as a foundation for ecological research, allowing scientists to test hypotheses, make
predictions, and create natural resource and biodiversity management strategies. Relationships
between prey and predator are an essential component of Mathematical Ecology. Examining
prey-predator interactions in the presence of an infectious disease has become vital in recent
years. The spread of infectious diseases is one of the epidemiological factors that can influence
population size, structure, and dynamics. Differential equation is a standard tool used to model
prey-predator interactions mathematically. Every model becomes different when the predation
rate is represented by a particular functional response. Several factors affect the predation rate
and the population density tremendously, such as fear of predation and its carry-over effects,
group defense, hunting cooperation, prey refuge, additional food for predators, prey herd shape,
counter-attacking by strong prey, migration, time delay, seasonality, etc. Including these factors
make the model more realistic and challenging to study.

This thesis investigates various ecological and eco-epidemiological models that depict in-
teractions between prey and predators in the presence of diverse environmental factors, which
can significantly impact the system dynamics. The variations in population traits offer valuable
insights into ecosystem management. The thesis comprises seven chapters, the first of which
is an introduction to the research. Subsequent chapters present the formulation and analysis
of unique models represented as ordinary differential equations or delay differential equations.
All proposed models are demonstrated to be well-posed, and their feasible steady-state solu-
tions are determined. Numerous results are established regarding the existence and stability
of equilibrium points. We examine the system dynamics by applying stability theory to both
non-delayed and delayed models, exploring bifurcation theory, chaos theory, and the theory
for seasonal models. To validate our theoretical findings, we conducted extensive numerical
simulations. The mathematical results obtained are interpreted in the context of ecology. The
abstract of every chapter is given as follows.

Chapter 1 presents the basic introduction to the forthcoming chapters. It contains the back-
ground and motivation of the research work carried out in this thesis. A brief overview of the
key concepts frequently employed throughout this thesis is included. This chapter also contains

the thesis objectives and most used mathematical tools in subsequent chapters.
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In Chapter 2, we examined the dynamical features of a Leslie-Gower prey-predator model
incorporating the effect of fear and group defense among prey and the mechanism of coop-
erative hunting by predators. A temporal delay in the prey species’ specific growth rate to
examine the impact of the fear reaction has been considered. The existence and uniqueness of
the interior equilibrium are explained, and sufficient conditions for the local and global stability
behavior are obtained. Regarding the fear parameter and cooperation strength parameter, the
system undergoes Hopf-bifurcation, transcritical bifurcation, and saddle-node bifurcation. Ad-
ditionally, we noticed how stability dynamics change when fear and delay are simultaneously
varied. Moreover, the system exhibits bi-stability between two interior equilibrium points. The
basin of attraction of these attractors is also plotted. We examined system dynamics for the fear-
response delay and observed that the stability of positive equilibrium changes multiple times
via supercritical Hopf bifurcation. Furthermore, we obtained two Hopf-point critical values of
the fear parameter in the presence of delay.

In Chapter 3, we analyzed a system of delay differential equations incorporating prey’s
refuge, fear, fear-response delay, extra food for predators and their gestation lag. We assumed
that the predator can choose between additional food and its favorite food (prey). We examined
the system with or without delay. The persistence, stability (local and global) and various bi-
furcations are discussed. We performed detailed analysis for transcritical and Hopf-bifurcation.
The existence of positive equilibria and the stability of prey-free equilibrium are interrelated. It
is shown that (i) fear can stabilize or destabilize the system, (ii) prey refuge in a specific limit
can be advantageous for both species, (iii) at a lower energy level (gained from extra food), the
system undergoes a supercritical Hopf-bifurcation and (iv) when the predator gains high energy
from extra food, it can survive through a homoclinic bifurcation, and prey may become extinct.
The possible occurrence of bi-stability with or without delay is discussed. We observed switch-
ing of stability thrice via subcritical Hopf-bifurcation for fear-response delay. On changing
some parametric values, the system undergoes a supercritical Hopf-bifurcation for both delay
parameters. The delayed system undergoes Hopf-bifurcation, so we can say that both delay
parameters play a vital role in regulating the system’s dynamics.

In Chapter 4, we discussed the impact of additional food on prey-predator system in the
presence of an infectious disease among prey. We formulated a three-dimensional system in
which, along with additional food, the predator consumes susceptible (S) and infected (/) prey
using a modified Leslie-Gower scheme. The predator can switch between prey and the pro-
vided extra food (similar to Chapter 3). Our study aims to control the existing disease in the
system with the provision of alternative food. To achieve the goal, we investigated the sug-
gested model and its disease-free subsystem theoretically and numerically. The scope of our
analysis is broadened to encompass both local and global bifurcations. Hopf-bifurcation, tran-

scritical bifurcation, saddle-node bifurcation, homoclinic bifurcation, heteroclinic bifurcation,
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all occur due to stability transitioning between steady states or cycles. Numerical results indi-
cated that the additional food parameter o4 contributes to the complex dynamics of the system.
A slight modification in o4 can significantly change the characteristics of the entire system.
In a specific range of oy, all of these unanticipated changes render the system bi-stable and
multi-stable. In such cases, we plotted their basins of attraction. Consequently, a set of starting
values for which the system is disease-free is obtained. We also illustrated the phenomenon
of global stability toward the positive equilibrium. Furthermore, the infection rate is capable
of altering the dynamics of the system. Through a subcritical Hopf-bifurcation, it can control
the oscillations in species around their positive steady state. However, ample energy from the
alternative food may lead to disease eradication even for higher infection rates.

Chapter 5 also discusses an eco-epidemic model where prey exhibits herd behavior. The
shape of the herd can alter the system dynamics significantly. When strong (susceptible) prey
forms a herd to defend against the predator, it can reverse their role. This chapter focused on
spotlighting the impact of disease, generalized herd shape, predator mortality due to prey group,
the attack rate for healthy prey, and time delay. These factors crucially govern the system’s dy-
namics like Hopf-bifurcation, transcritical bifurcation, and chaos. The sketch of the maximum
Lyapunov exponent confirmed the chaotic nature. Extensive theoretical and numerical analysis
revealed the existence and stability of steady-states in the presence or absence of delay. We
found that disease spread in prey can enhance the chances of predator survival. Furthermore,
sensitivity analysis demonstrates the influence of some epidemic and ecological parameters on
the reproduction numbers of the proposed eco-epidemic system.

Chapter 6 highlights the reverse side of the same ecological coin by considering the counter-
attack of prey on immature predators. We assumed that the birth rate of prey is affected by the
fear of adult predators and its carry-over effects (COEs). Next, we introduced two discrete
delays to show time lag due to COEs and fear-response. We observed that the existence of a
positive equilibrium point and the stability of the prey-only equilibrium is independent of fear
and COEs. Furthermore, the necessary condition for the co-existence of all three species is
determined. Our system experiences several local and global bifurcations, like, Hopf, saddle-
node, transcritical, and homoclinic bifurcation. The simultaneous variation in the attack rate of
prey and predator results in the Bogdanov—Takens bifurcation. Our numerical results explained
the paradox of enrichment, chaos, and bi-stability of node-focus and node-cycle types. The
system, with and without delay, is analyzed theoretically and numerically. Using the normal
form method and center manifold theorem, the conditions for stability and direction of Hopf-
bifurcation are also derived. The cascade of predator attacks, prey counter-attacks, and predator
defense exhibit intricate dynamics, which sheds light on ecological harmony.

The carrying capacity’s functional dependence illustrates the reality that any species’ activ-

ities can enhance or diminish its carrying capacity. Migration is the need of many species to



achieve better opportunities for survival. Chapter 7 deals with a tri-trophic system with variable
carrying capacity, where the middle predator often immigrates to consume its prey and often
emigrates to secure themselves from predators. We performed a detailed analysis to prove the
boundedness of the solutions. Further, we examined the existence and stability of equilibrium
points, followed by the bifurcation analysis. We explored various local and global bifurcations
like Hopf, saddle-node, transcritical, and homoclinic for the critical parameters 8 (measuring
the impact of prey activities on the carrying capacity) and k; (measuring the migration rate of
a predator). Higher values of B generate unpredictability, which helps explain the enrichment
paradox. The presence of a chaotic attractor and bi-stability of node-node type is demonstrated
via numerical simulation. The migratory behavior of middle predators can control chaos in
the system. Furthermore, we studied the proposed model in the presence of seasonal fluctu-
ations. Persistence of the non-autonomous system, existence, and global stability of periodic
solutions are proved. The seasonality in 8 brings the bi-stability of a chaotic and periodic at-
tractor. Moreover, the bi-stability in the autonomous system shifts to the global stability of an
equilibrium in the seasonal model. When birth and death rates are seasonal along with 3, the
extinction of one or more populations is possible. Our findings revealed that the population’s
intense constructive and destructive actions can allow the basal prey to thrive while eradicating

both predators.
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Chapter 1

Introduction

1.1 Basic introduction and literature survey

Mathematical biology is one of the most captivating and growing modern applications of math-
ematics. In recent years, this interdisciplinary field of study has brought together an enormous
number of biologists, physicists, engineers, and mathematicians. Mathematical biologists de-
velop models to depict biological processes such as population interaction, metabolic reactions,
disease propagation, and evolutionary dynamics. These models assist scientists in simulating
and analyzing real-world natural events in a regulated, theoretical context. Population biology
involves various natural elements influencing populations, such as birth rates, mortality rates,
migration, predation, competition, and environmental changes. The study of population dy-
namics examines how the population’s density, structure, and distribution vary over time. In
1798, Thomas Robert Malthus [1] established the fundamental mathematical model to illustrate

the exponential growth of any population. The renowned Malthus model is given by

dx
2 =
with x(0) = x is the initial population density, and r is the population growth rate.

Although this model served as the cornerstone for population dynamics, it fails to represent
reality accurately. Due to the limited resources, every habitat has a limited capacity to sustain
its inhabitants. This presumption became the primary basis of contention for the Malthusian
hypothesis. Later on, in 1838, Pierre F Verhulst [2] worked on the shortcomings of Malthus

model, and proposed the following logistic growth population model.

dx | X
— =7rXx -
dt K)’
where r is the intrinsic growth rate, and K is the environmental carrying capacity. The non-

linearity in the logistic growth function explains the overcrowding effect limiting the population
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growth.

Although the logistic growth model discusses only a single species, one can rely on other
species for food, habitat, or other resources. For conservation efforts, it is essential to com-
prehend these dependencies. A species’ disruption can have a massive impact on the whole
ecosystem. The interaction between species can drastically alter the system’s dynamics. In eco-
logical research, it is vital to investigate the interactions between organisms to sustain balanced
growth. These interactions are represented as mathematical models, which aid in understanding
the system’s ongoing dynamics.

Predator-prey interactions are a major evolutionary driving force, mediating the behavior of
both predator and prey. Initially, Lotka and Volterra (LV) [3, 4] expressed the relationship of
prey and predator in terms of two-dimensional ordinary differential equations, given by

d
d—); = ax — bxy,
d
d—f = cxy —dy,

where x(¢) and y(¢) are the prey and predator population density at any time 7, respectively, a
is the natural growth rate of prey and d is the natural mortality rate of predator. The predator
attacks on prey with rate b, and  is the conversion efficiency. This is the basic model developed
to describe oscillations in several populations. Nevertheless, it does not relate to many realistic
scenarios. One of which is that the prey population grows unbounded without predation. The
other shortcoming of the LV model is that the feeding rate of the predator increases with the
number of prey linearly without saturation. This model also considers that the predator is a
specialist, i.e., they consume only a specific type of prey. However, when the predator consumes
more than one type of food resource (generalist predator), it can not be represented through the
LV model. Notwithstanding its limitations, the model has influenced population biology and
ecology by offering a framework for comprehending interactions between predators and prey.
Leslie [5] introduced a predator-prey model where the carrying capacity of the predator
is directly proportional to the prey density. The Leslie-Gower formulation [6] posits that a
predator population’s decline is proportional to the per capita availability of its favorite food.
They expressed predator’s growth as a logistic growth function. Therefore, the Leslie-Gower

(LG) model is given by

dx
7 (ri —bix—ayy)x,

dt 2 2x )

where r| and r; are the growth rates of prey and predator, respectively, b measures the strength
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of competition among individuals of species x, a; (respectively, a) is the maximum value at
per capita reduction rate of x (respectively, to y) can attain. When there is extreme scarcity,
y can switch to other populations, but its development will be constrained by the lack of its
most preferred food x. This issue can be resolved by increasing the denominator by a positive
constant d, it measures the extent to which environment provides protection to predator. Thus,

the predator’s equation of the modified Leslie-Gower model becomes

4 = (’”2 - 612L>)’7

dt x+d
where )ﬁ is the modified LG term showing that the predator y can survive even in the absence
of its favorite food x [7].

Ideally, to maximize the fitness of a prey-predator relationship, we analyze the impact of
various factors affecting their interaction, like hunting rate, handling time, search efficiency,
feeding rate, predator interference, and several environmental factors. Studying these concepts
is crucial and challenging, making the system more consistent with the real world. A predator’s
per capita feeding rate on prey is called its functional response [8]. Using distinct functional
responses allows ecologists to accurately formulate a wide range of ecosystems and investigate
complex dynamics. The famous LV and LG models showed that the predator’s feeding rate
linearly increases with prey abundance using Holling type I functional response. However, the
predator’s limited capacity to process food and the time required for handling the prey cannot be
ignored. This led to the proposal of Holling type II, a non-linear functional response. Another
functional response, Holling type III, was developed considering additional factors such as
prey switching and the learning time of the predator. When the prey density is abundant, they
can form groups to defend themselves against predators. This ecological aspect is represented
through the Holling type IV functional response. All these responses are merely prey-dependent
functions, which are widely used by researchers to present a specific ecological scenario [9, 10,
11, 12].

Functional responses implemented in the system represent direct killing only. However,
a predator’s mere presence might have an impact on the prey’s physical and mental health
[13]. While looking for food, there is often a risk of predators, which might lead to starvation
[14]. The fearful prey may not get an appropriate environment to breed young ones. And the
indirect effect of dread can be more lethal than the direct effect of killing [15, 16, 17]. Many
experimental studies suggest that fear can significantly affect the reproduction rate of prey [18,
19]. Wang et al. [17] proposed the basic prey-predator model incorporating fear effect on the
reproduction rate. According to their study, a high level of fear can control oscillations and
stabilize the system, and it can also reverse the direction of Hopf-bifurcation from supercritical

to subcritical. Following this, numerous authors focused on understanding predator fear using
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mathematical models [20, 21, 22]. However, several clinical trials in recent years have revealed
that such non-lethal effects are not restricted to a single species generation but have a long-term
impact lasting many generations [23]. This explains the term "carry-over effect (COE)," which
refers to how past conditions affect the current state of prey survival, behavior, and reproductive
success. The conditions may influence breeding success in one season encountered the previous
season [24]. Therefore, studying ecological COEs has become a growing trend in mathematical
modeling. Several researchers [21, 23, 25, 26] investigating fear and its COEs found that
increased COE enhances prey growth because of lessons learned from previous incidents.

It is critical to secure the safety of the prey in order to preserve biodiversity and maintain
ecological balance. Nature can provide some shelter to prey to help them avoid predators
through prey refuge. It regulates population densities and reduces the over-exploitation of
prey. However, prey refuge up to a large extent can cause difficulty for predators to capture
them, and consequently, their population starts to decline [27]. Therefore, there is a need to
balance the prey refuge and hunting capability. In nature, many predators hunt in groups for
a common target, which improves their communal attack rate. For example, spotted hyenas
succeeded in 15% of solo hunts of wildebeest Connochaetes taurinus calves, whereas 74%
of team hunts [28]. Group hunting offers several advantages, such as decreasing searching
time, chasing distance, and increasing the hunting probability of large prey. The mathematical
implementation of this factor modifies the functional response, precisely the attack rate. Pal
et al. [20] investigated the integrated impact of fear and cooperative hunting in their model,
detecting various bifurcations and multi-stability.

Apart from predators forming groups, prey can also gather in groups for foraging and self-
defense. Group defense is an effective anti-predator behavior exhibited by many prey species.
It enhances their chances of survival, strengthens their social bond, and reduces the predation
risk. According to an experimental investigation, minnows’ shoaling behavior reduces the risk
of predation. Ajraldi er al. [29] gave the fundamental mathematical model describing the
prey herd behavior so that the predator cannot reach the herd’s interior. Only the prey on the
boundaries can be the victims. They represented the prey herd by using a square root term
(v/X) instead of the simple prey term (X ). Nevertheless, it could explain only two-dimensional
herd shapes. Venturino and Petrovskii [30] came up with further advancements and gave the
concept of a generalized herd shape by introducing X%, where a € (0,1) signifies the type
of herd shape. Subsequently, many researchers used this concept to describe prey-predator
inter-relationships [31, 32]. Sometimes, when strong prey exhibit herd behavior, they can not
only protect themselves but also kill the predator [33]. This shows the role reversal of prey
and predator due to herd behavior. The phenomenon of role reversal can also be witnessed in
the stage-structured prey-predator system. When an adult predator kills prey, then prey takes
revenge by counter-attacking predator juveniles [34]. This provokes parent predators to hunt
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more, and the tug-of-war goes on offering rich dynamics to understand the mathematical and
ecological perspective.

The dominance of prey defense can lead to predator extinction [35]. The provision of addi-
tional food to the predator increases their chances of survival. Kumar and Dubey [36] found that
without additional food, both populations oscillate, and these oscillations can be completely
controlled by increasing the predator’s need for extra food. Indeed, supplying additional food
is advantageous for weak and suffering predators. For example, lionesses at AENP were given
culled warthog carcasses while they were struggling to keep newborn cubs alive [37]. Some
articles suggest that additional food for the predator regulates the effect of fear and prey refuge
by promoting persistence [38, 39]. Furthermore, supplying alternative food to the predator is
proven to be a non-chemical method of disease control among prey [40].

The first mathematical description of contagious diseases in populations was formulated by
Kermack and McKendric [41]. They classified the whole population into three primary com-
partments: susceptible-infected-recovered (SIR), which inspired a lot of researchers to study
the spread of infectious diseases through mathematical modeling. Depending upon the nature
of the disease, different incidence rates, such as bilinear, saturation, etc., are used [42, 43]. It
is a fundamental metric for understanding the risk and impact of a disease within a commu-
nity. Nowadays, illness in ecosystems has evolved into an exciting field of study known as
eco-epidemiology. This field examines how different species interact in the presence of an in-
fectious disease and how their dynamics are affected. Anderson and May [44] introduced the
basic concept of mathematical modeling in eco-epidemiology. They found that the pathogen
invasion in a prey-predator system could alter the stability behavior. In an eco-epidemic model
with alternative food for the predator, Haque and Greenhalgh [45] pointed out that alternative
food may play an essential role in promoting the persistence of predator-prey systems. Banerjee
et al. [46] conducted a thorough analysis of local and global bifurcations for an eco-epidemic
model with healthy prey showing herd behavior.

Many researchers in the past have seen that very complex dynamics can arise in a system
with three or more species. One necessary approach to studying an ecological community be-
gins with an important object: its food web. In literature, the dynamics of a tri-trophic system
are found to be of greater interest than a simple two-dimensional system. Initially, Hastings
and Powell [47] detected chaos in a tri-trophic food chain model with Holling type II func-
tional response for biologically reasonable parameter values. Later on, a multitude of research
articles were published comprising food-chain models and their complex dynamics [48, 49].
In a phytoplankton-zooplankton-fish system, zooplankton shows anti-predator behavior by mi-
grating from the system. It moves down into the sea’s deepest depths to evade being noticed by
fish, the top predators [50]. Hossain et al. [51] remarked that immigration and emigration of

middle predators can be crucial in controlling chaos in a food-chain system.
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Another aspect that can bring more realism in population dynamics is considering the car-
rying capacity as non-constant. Carrying capacity is the maximum sustainable population
strength an environment can support with the available resources. However, it is significantly
depleted or enriched by the impact of population activities [52]. Recently, the concept of the
variable carrying capacity of any species, formulated as the combination of the natural car-
rying capacity and its density, has been highlighted [53, 54]. Constructive activities such as
establishing wildlife reserve zones for animals can increase their carrying capacity. In contrast,
destructive activities like overgrazing by animals can degrade the land, resulting in a decre-
ment in their carrying capacity. Therefore, it is crucial to investigate the impact of population
activities on the system dynamics.

Time delay plays a fundamental role in most natural and man-made processes. This in-
dicates that any event that occurred at a past time influences the current state, represented
mathematically by delay differential equations [S5]. Delay differential equations show bio-
logical events more realistically and elicit intricate dynamics [56]. Natural processes usually
demonstrate a temporal lag between the occurrence of an event and the visualization of its con-
sequences. For example, it takes time to process gestation, maturation, anti-predator response,
defense mechanism, behavioral change, etc. Therefore, there is a large body of literature on
ecological systems incorporating time delays [11, 21, 22, 33, 36]. Considering time delays
in mathematical modeling is essential for capturing the real-world dynamics of systems and
developing more accurate predictions.

Most ecological phenomena are examined under a constant environment, which is odd. The
seasonally varied parameters produce periodic oscillations in the system [57]. This aspect is
generally modeled using time-dependent parameters. The resulting non-autonomous system is
quite challenging to analyze compared to the non-seasonal autonomous system. Mondal ef al.
[58] compared the seasonal and non-seasonal pre-predator models with fear, cooperation, and
refuge. Their numerical results reveal the presence of higher periodic and chaotic attractors.
Zeng [59] employed Mawhin’s coincidence degree theory to show the existence of periodic

solutions in a non-autonomous food-chain model.

1.2 Objectives of the thesis

This thesis aims to examine various factors that significantly affect the harmony of an ecosystem
and to address some biological population-related challenges that can alter ecological stability.
We found some gaps based on the abovementioned literature review, which we state as our

thesis objectives.
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1. To analyze the impact of fear, hunting cooperation, and time delay in a Leslie-Gower

prey-predator model.

2. To study the complex dynamics of a Leslie-Gower prey-predator model with fear, refuge,

and additional food effects under multiple delays.

3. To understand the correlation between disease and alternative food in an eco-epidemic

model.

4. To explore the occurrence of bifurcations and chaos: consequences of prey configuration

in an eco-epidemic system.

5. To investigate the role-reversal phenomenon in a delayed stage-structured prey-predator

model with fear and its carry-over effects.

6. To study the chaotic dynamics in a seasonal food-chain model with migration and vari-

able carrying capacity.

1.3 Some useful definitions and key concepts

Most dynamical systems in ecology can be adequately expressed as differential equations. The

general form of the system of ordinary differential equations is given by

du
— = o) = 1.1
dt f(u)7 I/l( 0) uo, (L.1)
where u(t) = (uy (t),uz(t),....,un(t))T, f(u(t)) = (f1, /..., u)" and ty is the initial time of the
solution. The sufficient smoothness of f guarantees the existence and uniqueness of the solu-

tion for (1.1).

Definition 1.3.1. The solution u(t) of (1.1) is said to be stable if, for each € > 0, there exists a
0 = 0(¢&) > 0 such that, for any solution i(t) = u(t,to,tip) of (1.1), the inequality ||y — ug|| < &
implies ||i(t) —u(t)|| < €Vt > 1.

Definition 1.3.2. The solution u(t) of (1.1) is called locally asymptotically stable if it is stable
and there exists a 8 > 0 such that ||y — uo|| < Oy implies ||i(t) —u(t)|| — 0 ast — co.

Definition 1.3.3. The solution u(t) of (1.1) is called unstable if it is not stable.

Definition 1.3.4. A point u* € R" is called an equilibrium point or steady-state solution of (1.1)
if f(u*) = 0. This equilibrium point is said to hyperbolic if no eigenvalue of Df (u*) (Jacobian

of f calculated at u*) have zero real part.
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Definition 1.3.5. An equilibrium point u* of system (1.1) is called source (unstable) or sink
(stable) if all the corresponding eigenvalues of Df(u*) have positive or negative real parts,
respectively. u* is called a saddle point if at least one eigenvalue has a real part of the opposite

sign from other eigenvalues.

Definition 1.3.6. An equilibrium point u* of (1.1) is called globally asymptotically stable if

every solution initiated from a bounded domain converges to u*.

Definition 1.3.7. A closed solution trajectory of (1.1) is said to be periodic orbit or cycle if it
is not a steady-state. The stability of this periodic orbit or cycle can be defined similar to the

stability of an equilibrium point.

Definition 1.3.8. The trajectory or orbit ¢ (ty) of (1.1) is defined as
¢)(Z‘0) = {l/l ER": u= u(t,to,uo),l‘ € R},

where u(t,uq) is any solution of (1.1) defined ¥t € R.

Definition 1.3.9. [60] A point q € E (subset of R" such that f € C'(E)) is called a w-limit
point of ¢ if 3 a sequence {t,}, t, — o0 as n — oo such that

r}gl;lo(])(ln;yO) =q.

In a similar manner, a point p € E is called an o-limit point of ¢ if 3 a sequence {t,}, t, — —oo
as n — oo such that

Tim (1,30) = p.
Definition 1.3.10. [60] A periodic solution T" of (1.1) is called limit cycle if it is either @ or
o-limit set of some another orbit. If a periodic orbit I is @-limit set (or o- limit set) of every
orbit in its neighbourhood then it is called a stable limit cycle (or unstable limit cycle). If T’
is o-limit set of one orbit other than itself and w-limit set of another orbit than itself then is

known as semi-stable limit cycle.

Definition 1.3.11. A set Q € R" is called an invariant set if for every solution u, u(ty) € Q
implies u(t) € QVt > 1.

Definition 1.3.12. The collection of initial points ug € R" is called the basin of attraction for
an attractor a of (1.1) if

tlggu(t, up) =d.
Definition 1.3.13. In a dynamical system, multi-stability occurs when more than one attrac-

tors are present at the same time. The curve separating their basin of attraction is known as

separatrix.
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Definition 1.3.14. An individual who is healthy and can get disease under certain conditions
is said to be susceptible (S). The ones who have contracted the disease are called infected (1)

and can transmit the illness to the susceptible population.

Definition 1.3.15. The Basic reproduction number (Ry) is defined as the average number of
secondary infections caused by an infected individual, in a fully susceptible population. In
commonly used infection models, when Ry > 1 the infection will be able to start spreading in a

population, but not if Ry < 1.

Definition 1.3.16. In dynamical systems theory, a bifurcation is a qualitative change in the
behavior of a system as one or more parameters are varied. Qualitative change can occur by

the variation in the number of steady-states or stability behavior.

Definition 1.3.17. With variation in a parameter, when one saddle and one stable equilibrium
points approach each other and annihilate at a critical point, it is called saddle-node bifurca-

tion.

Definition 1.3.18. The transcritical bifurcation occurs when two equilibrium points exchange

their stability with the variation of a single parameter.

Definition 1.3.19. The transition from a steady-state to periodic oscillations arises due to
Hopf-bifurcation. At the bifurcation point, the real part of the complex eigenvalues becomes

Zero.

Definition 1.3.20. In supercritical Hopf-bifurcation, a stable equilibrium loses its stability,

and a stable limit cycle occurs when a parameter crosses a threshold.

Definition 1.3.21. In subcritical Hopf-bifurcation, an unstable equilibrium gains stability by

generating an unstable limit cycle on crossing a parameter critical point.

Definition 1.3.22. When a limit cycle expands and connects a saddle point, it is called homo-

clinic bifurcation, and the formed structure is a homoclinic orbit.

Definition 1.3.23. In heteroclinic bifurcation, a limit cycle collides with two or more saddle

points. The resultant periodic orbit is called heteroclinic orbit.

Definition 1.3.24. The Bogdanov-Takens bifurcation involves the interaction of different bi-
furcations like saddle-node, homoclinic, and Hopf bifurcations when two parameters are si-

multaneously varied. It is a well-known example of co-dimension two bifurcation.

Definition 1.3.25. A chaotic solution is defined as behavior that is extremely sensitive to initial
conditions and appears unpredictable even when the system is deterministic and governed by

certain equations.
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Definition 1.3.26. A delay differential equation (DDE) is a differential equation using delays
as the dependent variable. In other words, the rate of change of dependent variables at a given

time is determined by their current and previous states. The general form of DDE is given by

du(t)
dt

:f<t7u(t)7u’f)7

where ur = {u(t) : 0 <1t <t} represents the solution trajectory in the past.

Definition 1.3.27. A functional response in mathematical ecology refers to the link between
the density of a prey population and the consumption rate or feeding rate of its predators.
It illustrates how the pace at which predators consume prey fluctuates with changes in prey
abundance. Some frequently used functional responses in the literature with their mathematical

forms are enlisted in Table 1.1.

Table 1.1: Some of the most common functional responses used in the literature.

Functional response | Mathematical expression | Reference(s)
Holling type I ox [61, 62]
Holling type II : +"‘szh - [61, 62]
Holling type III T [61, 62]

Holling type IV S [63]

= +x+b
Beddington DeAngelis 1+a+§+by [64]
Crowley Martin 7o h?)x(l ) [65]

Definition 1.3.28. A system of differential equations is referred to as non-autonomous when

(1.1) explicitly depends on time; otherwise, it is an autonomous system.

Definition 1.3.29. [66] Let D C RN be a bounded open set and T : D — R" be a continuously
differentiable map. Let T'(u) be its Jacobian, and det T'(u) be the Jacobian’s determinant. If
72 ¢ T(dD), then the Brouwer degree can be given as

deg(T,D,z) := Z sign det T'(u).
ueT—1(z)

Definition 1.3.30. [67] Let X and Y be two Banach spaces and an operator T : X — Y is
named as Fredholm operator if dimension of its kernel and codimension of its image are finite.

The index of the Fredholm operator is given by

indexT = dimKerT — codimImT.
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1.4 Methodology

To analyze the properties like stability, chaos, basic reproduction number, bifurcation associ-
ated with our proposed models defined by ordinary differential equations and delay differential

equations, we adopt the following different approaches:

1. Linearization of differential equations: Assume that our model can be represented in

the following form

U= Fx(), (1.2)

where X (t) = (x1(t),x2(t),....x,(t))T and F(X(¢)) = (f1, f2, -, f1) .
Let Z(t) = (z1(2),22(t), .-, za(¢))T such that z;(t) = x;(t) —x}, i = 1,2,...,n and E* =

(x},x3,...,x5)T be the equilibrium point corresponding to the given system (1.2). Lin-

earizing (1.2) about E*, we get

dZ(t)
— 2 =DZ(t 1.3
where D = g—§ is the Jacobian matrix evaluated at E*.
E*

2. Local stability: To determine stability of an equilibrium point in its neighbourhood, we
first evaluate the characteristic equation corresponding to Jacobian matrix at the equilib-
rium point, and then we check the sign of real part of the eigenvalues of this equation.

For this we use following theorem:

Theorem 1.4.1. (Hurwitz’s Theorem)[68] A necessary and sufficient condition for the
negativity of the real parts of all the roots of the equation

A+ A"+ 4a, =0, (1.4)

with real coefficients is the positivity of all principle diagonals minors of the Hurwitz

matrix } 3
ag 1 0 0 O OO0 ... O
ay az ai 1 0O 00 ... 0
H,=|as a1 a3 ap ap 1 0 ... O

0O 0 0 0 0 0O0 0 ap

Remark: The characteristic equation (1.4) is said to be stable if all its roots have negative

real part.
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3. Global stability: If a trajectory initiating from anywhere in its domain approaches to the

same equilibrium point, then that equilibrium is said to be globally stable. In this method,
we choose a positive definite Lyapunov function to establish the sufficient conditions for
the global stability of the system around the critical point.

Let us consider an autonomous system of ODE:s:

dx
= , 1.5
P ro (1.5
where f € C1(R") and S, = {x € R": ||x|| < p} such that f is smooth enough to ensure
the existence and uniqueness of (1.5) and x* is the equilibrium point for it.

We have some important results to ample the conditions ensuring the global stability of

the system. Thus, we can state the following theorems.

Theorem 1.4.2. If there exists a scalar function V (x) which is positive definite about x*
such that V'(x) < 0 (derivative of V (x) along (1.5) is negative definite) on Sp, then x* is
asymptotically stable.

Theorem 1.4.3. If there exists a scalar function V (x) which is positive definite about x*
such that V'(x) <0 on Sp, then x* is stable.

Theorem 1.4.4. If there exists a scalar function V(x);V(0) = 0 such that ‘2—‘; >0onS,
and if in every neighbourhood N of the x*, N C Sy, there is a point xo where V (xg) > 0

then then x* is unstable.

Theorem 1.4.5. Consider system (1.2) with n =2 and B is a continuously differentiable

function on a simple connected domain D. Now, we define

0 0
V= 8_x1(f1B)+ 8_x2(f23)'

If the sign of V remains same throughout D, then according to the Bendixson-Dulac

criteria, system (1.2) (for n = 2) will not have a periodic solution in D.

. Bifurcation theory: If varying a parameter changes the qualitative behavior of steady

state(s) of a dynamical system then we say that the system undergoes bifurcation.

For an illustration of the Sotomayor theorem’s conditions [60] to show the occurrence of

saddle-node and transcritical bifurcation, we consider the following system.

dx_

Z_f(xva)a (16)
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where « as the bifurcation parameter. Let x = xq be the hyperbolic equilibrium of system
(1.6) at the critical point & = 0. Now, we determine the eigenvectors p and g for the zero
eigenvalue of A = D f(xo, o) and A7, respectively. Further, we proceed with Theorems
1.4.6 and 1.4.7.

Theorem 1.4.6. System (1.6) experiences saddle-node bifurcation about x = x¢, a hyper-
bolic equilibrium, at o0 = Q if the following conditions of the Sotomayor’s theorem [60]
are fulfilled.

(i) 4" fa(x0, 00) # 0, and
(ii) q"[D*f(x0,00)(p,p)] # 0.
Theorem 1.4.7. System (1.6) experiences transcritical bifurcation about x = xo, a hyper-

bolic equilibrium, at o0 = 0y if the following conditions of the Sotomayor’s theorem [60]
are fulfilled.

(i) 4" fa(x0,00) =0,

(ii) q" [Dfa(xo, 00)p] # 0, and

(ii) q" [D*f(x0,00)(p,p)] # 0.
In Hopf-bifurcation, D f(xp, 0p) has a pair of complex eigenvalues. The supercritical or
subcritical Hopf-bifurcation occurs when the complex eigenvalue crosses the imaginary

axis from left to right (negative to positive) or right to left (positive to negative).

Let us consider a planar system

dxq dx;

W = f1 (Xl,xZ,OC), W = fz(xl,xZ,OC). (1.7)

Now, we suppose that the jacobian matrix about E* = (x7,x3) has eigenvalues A »(¢t) =

&(a) +iow(a). Further, we assume that the following conditions hold at o = ay:

(1) non-hyperbolicity condition:
E(op) =0, o(ap) = >0,

(i1) transversality condition:
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then system (1.7) experiences Hopf-bifurcation about E* at o = oy [69]. Furthermore,
to determine the direction of Hopf-bifurcation, using [17], we calculate

1 1
6= E(flxlxlxl +f1x1x2x2 +f2x1x1x2 +f2x2x2x2) + @(quxz (f1x1x1 +f1x2x2)

- fle)C2 (f2x1x1 + f2x2x2) - flxlxl f2x2x2 + fl)szzfzxZ)Cz) )

92 . . . . .
where fy,x, = i , and other derivatives can be written in a similar manner.
142 8x18x2

E*a=0
Therefore, the obtained Hopf-bifurcation is supercritical (or subcritical) if ¢ is negative

(or positive).

. Chaos detection: Some dynamical systems exhibit chaos. In this case, the system is ex-

tremely sensitive to initial conditions. A minor change in the initial condition generates
a large change in the system’s behavior, making it unpredictable in the future. How-
ever, not all systems are chaotic. For chaos confirmation, we determine the maximum

Lyapunov exponent, defined as

A =lim lim 1lnéz(t),
1= 857001 87

where 67 is the perturbation in the initial condition, and 6Z(¢) is the resulting change
in the solution.
Remark: For a system to be chaotic, the corresponding maximum Lyapunov exponent

must be positive.

. Basic reproduction number (Ry): To calculate this number we shall use a standard

method i.e., next generation matrix method [70]. The dominant eigenvalue of this matrix
is equal to the basic reproduction number. We use this method for the analysis of an
eco-epidemic model.

. Sensitivity analysis: Sensitivity indices help us to quantify the relative change in a state

variable when a parameter is changed. The normalized forward sensitivity index of dif-

ferentiable Ry dependent on any of its parameters p is defined as follows.
o R p
P dp Ry

where }/Ilf % represent the sensitivity level with regard to any parameter p for Ry. A positive
sensitivity index implies that an increase (or decrease) in the value of a parameter cor-

responds to an increase (or decrease) in the reproduction number. In contrast, negative
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index parameters indicate that a rise (or reduction) in the value of the parameter results
in a drop (or increase) in the reproduction number [71].

8. Existence and global stability of a periodic solution in non-autonomous system: In a
non-autonomous system, the time-dependent parameters can cause the system to have a
periodic solution. The illustration of the periodic solution’s existence and global stability
is a complex task and requires advanced mathematical techniques. We use the following
theory to understand the same.

Lemma 1.4.8. [56] If function g is non-negative, uniformly continuous and integrable

on [0,00), then lim; . g(t) =0.

For the existence of periodic solutions of a non-autonomous model, we use continuation
theorem from coincidence degree theory by Gains and Mawhin [72]. Let P and Q be
two normed vector spaces, F': DomU C P — Q is a linear map, and W : P — Q is a
continuous map. If F is a Fredholm operator of index zero i.e., dim KerF =codim Im
F < o and there exists a non-continuous projection S: P — Q and R: V — V such
that Im S =Ker F, Im F =Ker R =Im(/ — R) then F|DomF NKerS : (I — S)X — ImF is
invertible. Let FS*1 be the inverse of F. Let ¢ be an open bounded subset of P such that
RW (@) is bounded and FS_1 (I—R)W : ¢ — P is compact then W is said to be F-compact
on ¢. Let Im R is isomorphic to Ker F, so there exists an isomorphism K : ImR — KerF.

Lemma 1.4.9. [72] Let F be a Fredholm operator with index zero and W be a F -compact
on ¢. If

(a) for each p € (0,1), each solution u of Fu = pWu is such that u ¢ 99,

(b) RWu # 0 for every u € d¢ NKerF,

(c) the Brouwer degree deg(KRW,$ NKerF,0) # 0,

then the equation Fu = Wu has atleast one solution in DomF N ¢.

9. Numerical Simulation: In every forthcoming chapter of this thesis, we perform ex-
tensive numerical simulations with the help of Mathematica/MATLAB to validate the
theoretical findings. We mainly use standard MATLAB solvers ode45 and dde23 to
solve system of ODEs and DDEs, respectively. The obtained plots help us to visualize

population dynamics with respect to the crucial ecological factors.
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Chapter 2

Bifurcation Analysis of a Leslie-Gower Prey-Predator
Model with Fear, Cooperative Hunting and Time

Delay'

2.1 Introduction

A classic use of mathematics in ecology is the study of prey-predator interactions using dif-
ferential equations. The dynamics of such systems are often altered due to various ecological
factors. Employing these factors makes the system more consistent with the real world. Many
field experiments conducted by ecologists show that the growth rate of prey is affected not only
by direct killing by its predator but also by the non-consumptive action of the predator [19, 73,
74]. According to naturalists, it comes from predation-induced fear in the prey species. Due to
this, prey exhibits various anti-predation behaviors, such as changes in habitat, foraging behav-
ior, and other physiological changes. In the long run, these actions decrease the fecundity and
survival of prey species. Wang et al. [17] proposed and analyzed the basic mathematical model
that takes into account the cost of fear, which lowers the birth rate of prey. From thereon, many
researchers studied the complex dynamics with respect to fear in various predator-prey models
[22, 75, 76]. Introducing fear may cause the interacting populations to oscillate or stabilitate
about their steady-state [20]. These oscillations are most commonly due to the occurrence of
Hopf-bifurcation [77].

In population dynamics, group defense is a common concept that describes an instance in
which prey form groups to defend against the predator, which can cut off the predation rate.
According to an experimental investigation, minnows’ shoaling behaviour reduces the risk of
predation [78]. Considering Holling type IV or Monod-Haldane type functional response is

the most frequent and accessible technique to implement group defense [79, 80]. Mishra et al.

'A considerable part of this chapter is published in Nonlinear Dynamics and Applications: Proceedings of
the ICNDA 2022, 1069-1080, 2022.
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[81] explored a Leslie-Gower prey-predator model with group defence and found that increased
prey defensive ability results in model destabilization, which can result in periodic and chaotic
variations. It is evident from the research that dominance of defense could lead to predator’s
extinction [82]. The cooperation among predators to hunt down the target significantly increase
the chances of their survival [83]. Saha and Samanta [84] extensively studied a 3-D prey-
predator model involving cooperative hunting strategy and group defense mechanism. They
observed transcritical bifurcation, saddle-node bifurcation, Hopf- bifurcation, and many other
type of bifurcations. Pal et al. [20] studied the combined effect of fear and cooperative hunt-
ing and they observed various bifurcations and bi-stability in their model. The predator often
switches to a different food to prevent extinction and becomes a generalist. The standard way
to incorporate this feature is to use the modified Leslie-Gower scheme. Many authors [7, 85,
86] remarked the persistence of species in the modified Leslie-Gower prey-predator model.

The presence of time lag is common in most natural and man-made events. This indicates
that the impact of an event occurring at a former period is perceived at the present moment,
which is mathematically represented by delay differential equations. Biological events repre-
sented by delay differential equations appear more lifelike and induce complicated dynamics
[55, 56]. In general, natural processes like gestation, maturation, incubation, etc., have a tem-
poral lag between the occurrence of an event and the visualization of its impact. Tiwari et al.
[75] investigated a non-autonomous predator-prey system implementing fear, hunting coopera-
tion, and prey refuge with multiple time delays, including fear response delay. They found that
while fear, hunting cooperation, and fear response delay destabilize the system, a larger time
lag in the fear response pushes the system back to a stable state. Based on the aforementioned
facts, ecological systems with time delays have been extensively studied [22, 87, 88, 89].

As per our knowledge, there is no work done comprising fear, fear-response delay, group
hunting, and group defense in a Leslie-Gower prey-predator model. Hence our main purpose
is to study the effects of group defense in prey, group hunting in predator and fear induced by

predator in prey on the dynamical behavior of prey-predator system.

2.2 The mathematical model

The survival of species is one of the most fundamental and significant issues in ecology. In this
section, we formulate a system of differential equations explaining the interaction of prey x(7)

and predator y(¢) at any instant of time 7 in the presence of several ecological factors.

1. The modified Leslie-Gower prey-predator model formulation is an interesting approach
in species conservation. According to this scheme, the predator acts as a generalist,

which increases their chances of survival [90]. Therefore, we assume that the predator
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can consume prey as well as other food provided, and their relationship is represented
using modified Leslie-Gower scheme.

2. The fear of predation can cause a significant reduction in the growth rate of prey [17].
So, we multiply the growth rate r with the term %Ky, a decreasing function of predator
population, where K denotes the level of fear. As the impact of the anti-predation traits
adopted by prey species on its demography is not instantaneously observed; therefore,

we consider its effect on growth rate with a fear response delay 7.

3. Since many small size predators prefer to hunt in packs to boost their success rate. We
incorporate the effect of group hunting in the attack rate by introducing a function A(y) =
o+ Ay [91], where « is the attack rate of lone predator, and A denotes the cooperation
strength.

Inspiring from aforementioned facts and pioneering literature as cited in the introduction, we

propose the following model.

dx rx ,  (a+Ay)xy

— = X — X — ——

a  1+k(i—-1) & ' a+x?

dy wy> 2.1)
— =Sy,

dt b+x

x(s) = ¢1(s) >0, y(s) = ¢(s) > 0, where s € [—7,0] and ¢;,¢, € C([—7,0],R).

In the absence of time delay, model (2.1) reduces to the following system of ordinary differential

equations.
dx rx ) (o+Ay)xy
@S Trky T T e )
dy oy’ (2.2)
i sy brx g(x,y),

x(0) > 0, y(0) > 0.

The variables and parameters involved in the model are listed in Table 2.1 with their biological

meaning and dimensions.
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Table 2.1: Biological explanation and dimension of variables/parameters employed in

model (2.2).

Variables/Parameters Biological explanation Dimensions
x Prey density Biomass
y Predator density Biomass
r Birth rate of prey Time ™!
K Cost of fear Biomass ™!
ro Prey mortality rate Time™!
r| Death rate of prey due to competition among them | Biomass ™' Time ™!
o Predation rate Biomass Time ™!
A Cooperation strength of predators Time ™!
a Half saturation constant of prey Biomass?
b Half saturation constant of predator Biomass
s Intrinsic growth rate of predator Time ™!
(0] The highest rate of predator eradication per capita Time ™!

2.3 Dynamics of the non-delayed system

The model (2.2) can be re-written as

dx dy
Z_xq)l(xay)? Z_y¢2<x7y)7
where ( N )
o (0 AY)y _ . oy
¢1(x,y) = I+ Ky o= X e P (x,y) =s bix

It follows that
x(f) = x(0)elo 91 (x(0)-(6))d6 > 3 () — ()0 92(x(6).y(6))d6 >

Hence, in R2, all (x(¢),y(¢)) solutions with the positive starting point stay positive.
Nature does not enable any species to spread rapidly due to a lack of resources. As a result,

it is critical to ensure that the solutions of the proposed model are bounded.

Theorem 2.3.1. All solutions initiating in R are contained in the domain Q = {(x,y) €

R:: 0<x<Kj, 0§y§—s(bz)K‘)}, where K| :%>O.

Proof. We may write the first equation of the model as

xX<rx—rox— r1x2.
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This implies

limsupx(r) < 7. K.

t—yoo ry
To show the boundedness of y(¢), we can write
wy?
V=Y1K 1
This entails
limsupy(z) < (b+Ky)s =K,

t—so0 w

which completes the proof. [

2.3.1 Equilibrium points

The proposed system has four feasible equilibrium points: extinction equilibrium; Ey(0,0),
predator-free equilibrium; E; (Kj,0), prey-free equilibrium; E5 (0, %) and interior equilibrium;

E*(x*,y*). Here x* is a positive root of the following quartic equation:
At + A + Asx® + Agx+As = 0, (2.3)

where
Al=rn 602SK R

Ay = a)z(roKs +ri@+riKsb) + sAK,
Az = 0*Ks(rob+ria) +3bAKs® + s 0 (A + aK) — (r—ry) @?,
Ay = (roKsa+ ria(® + Ksb))0® + 3AKb*s> + saw* + 2bs* w(A + aK),
As = AKD*s® + P’ >0 (A + aK) + bo?s(o + roaK) — (r — ro)aw’.

Since A1, A, and A4 are positive. Therefore, according to the Descartes’ rule of signs, Eq. (2.3)
will have unique, two, three or no positive root based on the sign of A3z and A5 (refer to Table
2.2 and Fig. 2.1). It is worthy to note here that when Az > 0 and A5 < 0, Eq. (2.3) has a
unique positive solution x*. On obtaining x* from Eq. (2.3), we can easily determine y* from

the relation
. s(b+ o)

Y *
X
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Table 2.2: Existence of positive root of (2.3)

A3z | As | Number of positive roots | Color
— | + 20r0 yellow
- | = 3orl red
+ | — 1 green
+ | + 0 blue
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Fig. 2.1: Different colors showing all cases of Table 2.2 in KA-plane, where r =0.6, a =
l,a=04, o=1,b=1, s=04, ro =0.05, r; =0.05.

2.3.2 Stability analysis

The local stability feature of any equilibrium can be established using eigenvalue theory. The

boundary equilibria with their local stability feature are described in Table 2.3.

Table 2.3: The local stability characteristics of system (2.2)’s boundary equilibria

Equilibrium points Stability characteristics
E(0,0) Unconditionally unstable
E|(K1,0) Always saddle point
E» (0, %) Asymptotically stable if r < (1+ l%) (ro+ W);
saddle if r > (1 2K3) (o 4 (20T AD3)bs)

Biological significance: As per the concept of the modified Leslie-Gower prey-predator
model, the predator can switch to other food when prey is absent. Moreover, predator performs

cooperative hunting and induce fear in prey. Due to all these factors, predators may not become
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extinct. Therefore, when the prey’s birth rate is less than a critical value, they might become
extinct, nevertheless, predator always persists due to their generalist nature. Hence the prey-
free equilibrium E5 (0, %) can be stable, but the extinction state Ey(0,0) and predator-free state
E|(K1,0) can never be stable.

Theorem 2.3.2. E*(x*,y*) is locally asymptotically stable if and only if By > 0 and By > 0,
where By and B; are stated in the proof.

Proof. The Jacobian matrix, computed at positive equilibrium E*(x*,y*)) is given by

x4 2(Oc+ly*)x*2y* _ rKxt (a2Ay% )X
J|E* _ 1 (2a+x*2)2 (1+Ky*)2 a+x2
wy* _oy*
(b+x*)? b+x*

The characteristic equation for the aforementioned matrix is as follows:

§*+Bi1&+B2=0, (2.4)
where
L 204y oy
B =nrnx" — > )
(a+x*%)2 b+x*
B wx*y* 2(o+ Ay*)x*y* y* ( rK N (OH—Z?Ly*))
= ri — .
2 b x* 1 (a_|_x*2)2 (b_|_x*) (1—|—Ky*>2 a+x*2

As per the Routh-Hurwitz criterion, the interior equilibrium E* (x*,y*) is locally asymptotically

stable if and only if By > 0 and B > 0. O
Remark. If r| > %, then E*(x*,y*) is locally asymptotically stable.

In a two-dimensional system, the possible attractors inside the positive invariant set could be
equilibrium points and periodic solutions. If we are able to show that no periodic solution exists,
and all boundary equilibrium points are unstable, then, in that case, all trajectories starting in
the positive invariant region will eventually converge to the interior equilibrium E™ if it exists

uniquely.

Theorem 2.3.3. Let the positive equilibrium E* exists uniquely. Then it is globally asymptoti-

cally stable under the following conditions:

(i) 7> (14 2Ks) (g 4 202D

. 3V3(a+AKy) ®
(i) ==,z < BT b+K1)*
Proof. 1f (i) holds, it directly implies EZ(O,%) is a saddle point. Now, to show the non-
existence of periodic solution, consider a function that is continuously differentiable in RZ,
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_ 1
H = o and we define

d

VZ%

d
H)+ —(gH).
(FH) + 5 (eH)
Simple calculation yields

_ o, 2x(a+dy) o
Ve T  ar o T xer

3\/§(OH-/'LK2) r )
8a\/a <Kt K (b+K1)
Hence, system (2.2) cannot have a closed trajectory in the interior of the positive xy-plane,

V remains negative if

according to the Bendixson-Dulac criteria. In such a case, all solutions starting in Q will

converge to the interior equilibrium E*, if it exists uniquely. [

2.3.3 Bifurcation analysis

Theorem 2.3.4. System (2.2) experiences a transcritical bifurcation between the axial equi-

librium E(0, %) and interior equilibrium E*(x*,y*) with respect to the fear parameter at

K=Kl = = (rzorggzﬁz(;gfﬁiﬁjzbs) if (r—ro)a®?* > (w + Abs)bs and 8 # 0, where 8 is

defined in the proof.
0 O
A - J|E2 - S2 .
© —S

v=(1,5) and w = (1,0) are the eigenvectors of matrix A and AT for the zero eigenvalue,

Proof. AtK = K,

respectively. Let F = (f,g)7, where f and g are the RHS functions of model (2.2). Now, we
define
81 = wl Fg(Ep, KUY, 8 = wT [DFx(E», K')], and 85 = w! [D?*F (E»,K))(v,v)].

Simple computation yields

rbsm
85 =086=——— <0
1=0.0 (0+ bKs)?

and
2 2 2
03 =—2r — m(maw + (o + Abs)bs)((r—ro)aw” — (ocw + Abs)bs).

If 63 # 0, then all the conditions of the Sotomayor’s Theorem [60] are satisfied. Hence, the

i iti i i _ gl — o [ (r=ro)aw’—(a@+Abs)bs
system experiences a transcritical bifurcation at K = K T Grrrasey ot between

prey-free equilibrium E, and coexistence equilibrium E*.
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Theorem 2.3.5. Let us assume that B, is positive. Then system (2.2) experiences a Hopf-
bifurcation with respect to the cooperation strength A at A = AL around the coexistence

equilibrium E*.

Proof. 1t can be noted that
(i) When B; > 0 and B, > 0, E* is locally asymptotically stable for A < A/,
(ii) When B; < 0 and B, > 0, E* is unstable for A > A/,

Here B and B, are defined in Eq. (2.4). This indicates that there is a switching of stability
when cooperative strength A crosses the critical value A = A"f]. At this point, B; = 0 and
B> > 0, which implies that the eigenvalues are purely imaginary. Furthermore, we check the

transversality condition viz.,

dB; 2x*2y*2

L — - o
d)L A=A lhf] (a—l—x*2)2

Therefore, by the Andronov-Hopf bifurcation theorem, the system undergoes Hopf-bifurcation

at A = A"/ pear the equilibrium point E*. O

2.4 Analysis of the delayed system

In this section, we discuss the effect of fear-response delay on the stability dynamics of the

proposed system. For this, we linearize system (2.1) about E*, which is given by the following

matrix.
J=P+Qe ",
where ,
ok 2o Ay )Tyt (o247 )" __ rkx*
pP—= nx 2a+x*2 a+x*? and Q = 0 (14+Ky*)?
0" — o 0 0
(b+x*)2 b+x*
are the jacobian matrices about E* in the direction of ¢ and (¢ — 7).
The characteristic equation of matrix J can be written as
E24+01E+0,4 030 5T =0, (2.5)

where @1 = rjx* —

2((x+ly*)x*2y* + a)y* @2 _ a)x*y* I 2(a+),y*)x*y* (a+2/ly*)a)x*y*2 @3 _
a+x*2 b+x* > b+x* a+x*2 (a+x*2)(b+x*)2 2

* %2

rKox*y
(b+x*)>(1+Ky*)?”
If every characteristic root of Eq. (2.5) has a negative real component, then system (2.1) is stable
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around the positive equilibrium point E£*. The characteristic root must cross the imaginary axis
to demonstrate stability switching via Hopf-bifurcation. This leads us to assume that the root of
Eq. (2.5) is iny(1m2 > 0). Substituting & = in, in Eq. (2.5), the real and imaginary components
are given by

@scos(MaT) = Ma* — @, (2.6)

BO3sin(M27) = O11M;. (2.7

On solving (2.6) and (2.7), we obtain the following expression to determine the critical value

of 7 for the occurrence of Hopf-bifurcation.

O

-6, 29

tan(Mt) =

where 1); is the positive root of the following bi-quadratic equation obtained by squaring and
adding Eqgs. (2.6) and (2.7).

M+ (07 —20;)n,* + (0, — ©3%) = 0. (2.9)

To derive the transversality condition for Hopf-bifurcation, we substitute & = 17 +in; in Eq.

(2.5). Separating real and imaginary parts, we obtain
NE =15 +©11M1 + 02+ @3¢ M cos(my7) =0, (2.10)

21’]1T]2—|—®1T]2—®3€_nlfsin(n2’5) =0. (2.11)
Now we differentiate Egs. (2.10) and (2.11) with respect to T and set 7y = 0, T = 7y (conditions
for the Hopf-bifurcation point) to get

Mini+Myno . = Ny, (2.12)

—Moni . +Min2 = Na, (2.13)

where
M1 = @1 — ®3TOCOS(T]2‘L'0),

My, =21, — ®3TOSil’l(1”[2’50),
N1 = O3mpsin(N27),

Ny, = @37‘[2608(7’]2’5()).
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Solving Egs. (2.12) and (2.13), we get

d(Re(§))
dt

_ NiMy —NoMp
- MPME

=MNi¢

T=Ty T=Tp

Therefore, the transversality condition for Hopf-bifurcation given by

d(Re(§))
dt

holds if
NiM; # NoMs.

2.5 Numerical simulation

We use MATLAB R2021a to run numerical simulations to validate our analytical results of
both models (2.1) and (2.2). The dataset we have picked is as follows:

r=06,1=07,K=0.1,a=1, ¢« =0.0005, o=1, b=1, s=0.4, ry = 0.05,
r =0.05

(2.14)

5
451
4k
> *
stable E
351
3t
25 ] | | | | |
7.4 7.5 7.6 7.7 7.8 7.9 8 8.1 8.2

X

Fig. 2.2: Trajectories of system (2.2) started from different initial conditions are con-
verging towards globally stable node E*.

In the non-delayed system (2.2), for A = 0.005 and other parameters from (2.14), the
3\@(@+le) .

predator-only state (0,0.4) is a saddle-point. As per Theorem 2.3.3, we obtain Saya
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I

[O)
K T K0k
interior equilibrium E*(7.8437,3.5374) exists uniquely, and is a globally stable focus with

= —0.002, implying that the system cannot have a closed trajectory in Ri. The

eigenvalues —0.395 £0.2044i. This phenomenon can be seen in Fig. 2.2.

0.3 T T T T T T T T 0.52
025 0.5

02F 0.48 -
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0.15F N 0.46 F
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K:K[tcl >

01r 0.44 -

0.05 0.42 -

unstable E, stable E, unstable E,

stable E,
O e el

-0.05 0.38

Fig. 2.3: System (2.2) experiences transcritical bifurcation with respect to the fear pa-
rameter K between interior and prey-free steady-states. The other parameters are from
(2.14).

As large literature demonstrates intriguing dynamics with respect to the fear parameter [88,
76, 20], we investigate model (2.2) against the fear parameter K. As per Theorem 2.3.4, we ob-
tained Kl = 6.7478 and 03 = —0.3367 # 0. All conditions of the theorem are satisfied, hence
the system undergoes a transcritical bifurcation at K = K Il The phenomenon of transcritical
bifurcation is easy to understand with the help of a bifurcation diagram. It can be depicted
from Fig. 2.3, E* is stable and E; is unstable when K < K e] In this range, the value of V
remains negative. Therefore, E* is globally stable. After crossing the threshold value of the
fear parameter, the stability of E™ is transferred to E; via a transcritical bifurcation.

The traits of the system (2.2) are not limited to transcritical bifurcation. It has been observed
that there are three positive equilibrium points, out of which two are stable, and the other is a
saddle-point for the parameters given in (2.14) with & = 0.7. The stable point £ *(1) and saddle-
point E *(2) approach towards each other with the decrease in cooperation strength. At A = A [sn],

they annihilate one another by means of a saddle-node bifurcation (see Fig. 2.4).
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Fig. 2.4: System exhibits saddle-node bifurcation for two interior equilibrium points
(one stable and one saddle) with respect to the cooperation strength A, where o = 0.7
and other parameters are same as in (2.14).

The phase portrait diagram illustrating focus-node bi-stability between two interior equilib-

rium points (E*(1)| E*3)) along with one saddle interior equilibrium E*(2) and saddle prey-free

equilibrium E; is shown in Fig. 2.5 (a). In such a case, the initial condition of the solution

decides its convergence. Here, the solutions from red color * will eventually go to the attrac-
tor £(1(0.2929,0.5171). On the other hand, if the solution begins from blue color , it will
approach E*3)(4.088,2.0352) in the future (refer to Fig. 2.5(b)).
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Fig. 2.5: (a) Bi-stability between two interior equilibrium points at &« = 0.7 and
other parameters are from (2.14). Here green and magenta color dashed curves rep-
resent the prey and predator nullclines, respectively. (b) The basin of attraction for
two stable points is shown by blue color for E*()(4.088,2.0352) and red color for
E*(1(0.2929,0.5171).
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For s = 0.2, oo = 0.7 and keeping other parameters same as in (2.14), we compute the value
of Hopf-bifurcation point A [Af] by equating B to zero, and we obtained A hf] = 3.6567. At this

value, B, = 0.0424 > 0, and % = —0.1064 < 0. Hence, according to Theorem 2.3.5,
A=Alnf]
the system experiences Hopf-bifurcation at A"/] = 3.6567 around E*(5.0208,1.2041).
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Fig. 2.6: (a) Phase portrait showing E* as stable focus at A = 3. (b) After A > A/,
stable limit cycle surrounding unstable E* at A = 3.9.
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Fig. 2.7: Stability change of system (2.2) about positive equilibrium through Hopf-
bifurcation with respect to A.

For the lower value of cooperation strength A, both species fluctuate for a finite time around
their steady-state. They eventually reach the positive equilibrium E* (see the phase portrait in
Fig2.6 (a)atA =3 < A1) When the value of A is increased, E* loses its stability with the
formation of a stable limit cycle through Hopf-bifurcation at A = A1 = 3.6567. The phase
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portrait after Hopf-bifurcation is depicted in Fig. 2.6 (b) at A = 3.9 > A"/l Furthermore,
for better visualization of the stability switching via Hopf-bifurcation, we sketch the Hopf-
bifurcation diagram in Fig. 2.7. In this figure, we plot the maximum and minimum values of
the population density in the non-transient period. For A < A1 the maximum and minimum
coincides, illustrating the stability of E*. However, both population densities oscillate between
one maximum and one minimum, showing the existence of limit cycle for A > A1 This

sudden change in the dynamics is due to the supercritical Hopf-bifurcation at A = AT,

12

A

Fig. 2.8: Hopf-bifurcation curve in AK-plane for system (2.2). The interior equilib-
rium is stable below the curve, and above the curve it becomes unstable through Hopf-
bifurcation.
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Fig. 2.9: System (2.2)’s stability change about positive equilibrium through Hopf-
bifurcation with respect to 7.
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Since our model has complex dynamics with respect to the fear and cooperation strength,
this motivates us to perform bi-parametric analysis for A and K, simultaneously. In Fig. 2.8,
for each A, we obtain a critical value of K at which the Hopf-bifurcation occurs. Joining all

these bifurcation points, we obtain a Hopf-bifurcation curve in A K-plane.

7=0.1
=5

stable E”

0.4 stable limit cycle

0.2

Fig. 2.10: Phase portrait showing the solution behavior before and after the Hopf-
bifurcation with respect to 7. The blue colored solution trajectory is going to the interior
equilibrium point at T = 0.1, and the red colored trajectory is converging towards the
stable limit cycle at T = 5.

Moving forward to the delayed system, we explore the stability traits of system (2.1) with
respect to the fear-response delay 7. For the chosen set of parameters from (2.14) with oc = 0.7,
s = 0.2 and A = 3.4, the interior equilibrium E*(5.344,1.2688) is locally asymptotically sta-
ble in the absence of time delay. With a slight increase in 7, population starts to oscillate
periodically about E* at T = 7p; = 0.2518 via a supercritical Hopf-bifurcation. These oscilla-
tions occur for a wide range of 7, and then gets controlled at T = 7y, = 22.8532. On crossing
this Hopf-point, populations converge to their positive steady-state. However, this situation
no longer stays as another Hopf-bifurcation occurs at T = 793 = 27.5091, and consequently
system becomes unstable with the generation of a stable limit cycle. The Hopf-bifurcation
diagram in Fig. 2.9 depicts the stability change multiple times due to the occurrence of super-
critical Hopf-bifurcation with respect to fear-response delay. Furthermore, to demonstrate the
solution behavior for T < 7p; and T > 7y, we plot the phase portrait diagram in Fig. 2.10.

In the presence of delay, we vary the cost of fear K for the same parameters set (see Fig.
2.11). The interior equilibrium is initially stable for very low level of fear in the region R;.

However, an increase in K causes the instability of E* through a supercritical Hopf-bifurcation
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on crossing the blue curve. Therefore, both populations oscillate periodically between one
maximum and one minimum value, showing the existence of limit cycle in the region R,. When
the fear level is comparatively high, the oscillations are controlled and limit cycle disappears
leading to the stability of E* again through another Hopf-bifurcation on crossing the red curve.

Therefore, in the region Rj3, the interior equilibrium E* is stable.

09r R

0.8  “
0.7 1
0.6
051
0.4
03
0.2

0.1

T

Fig. 2.11: Two Hopf-bifurcation curves dividing the TK-plane into three regions.

2.6 Discussion and conclusion

In the present manuscript, we proposed a modified Leslie-Gower predator-prey model employ-
ing ordinary differential equations. While formulation of the model, we considered that the
birth rate of the prey population is reduced due to the fear induced by predators. Therefore

we multiply the birth rate of the prey population with the decreasing function of the predator

1
1+Ky*

diately, it takes a fear-response delay 7. Moreover, we assumed that predators cooperate for

population size, ¢(K,y) = The effect of fear on prey population is not visible imme-
hunting a common target. This mechanism affects the predation rate significantly. Therefore,
the group hunting term « + Ay is incorporated in the functional response term. Prey species
perform group defense for their survival in this situation, which is shown in the model through
simplified Holling type IV functional response.

To ensure the biological validity of the system, we proved that all solutions are positive and
bounded in Ri. We determined all feasible equilibrium points and analyzed their stability. The
extinction state Ey(0,0) and predator-free state E| (Kj,0) are always unstable. When the prey’s

birth rate is less than a critical value, the prey-free equilibrium E; (0, %) is stable. All cases



Chapter 2. Bifurcation Analysis of a Leslie-Gower Prey-Predator Model with Fear,

34 Cooperative Hunting and Time Delay

of the existence of positive equilibrium E* are discussed. The proposed system can exhibit
at most three interior equilibrium points. We obtained sufficient conditions for the local and
global stability of E*.

It is noticed that the fear parameter K and the cooperation strength parameter A play a
crucial role in the system’s dynamics. The system experiences transcritical bifurcation for the
fear parameter. Moreover, we remarked that a high level of fear might cause the prey species
to be extinct. The system shows a feature of bi-stability between two interior points, and it
undergoes a saddle-node bifurcation with respect to A. We noticed that both species start to
fluctuate about their co-existence state when the cooperation strength A is more than a critical

hf]. Since our

value A/, This change in dynamics is due to the Hopf-bifurcation at A = Al
system has fear and cooperation strength as crucial parameters, we varied them simultaneously.
Consequently, we obtained a Hopf-bifurcation curve in A K-plane.

We further extended our study to understand the traits of the delayed system. The increase
in fear-response delay in system (2.1) caused several times stability change of the positive
equilibrium through supercritical Hopf-bifurcation. We obtained a broad range of 7, for which
both populations oscillate in a periodic manner. Furthermore, the change in stability occurs

twice through Hopf-bifurcation on adjusting the fear level in the presence of time delay.
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Chapter 3

Complex dynamics of Leslie—-Gower prey—predator
model with fear, refuge and additional food under

multiple delays !

3.1 Introduction

Understanding prey-predator interactions via differential equations is a classical application of
mathematics in ecology. It is trendy to study these interactions with different concepts like har-
vesting, functional response, a refuge for prey, time delays, additional food for predators, etc.
Employing these ideas makes the system more consistent with the real world. The dynamics
of a prey-predator system depend upon the feeding rate of a predator on prey. The predator’s
per capita feeding rate on prey is called functional response [61]. Holling type II functional
response is a function of prey abundance which serves extensive literature on prey-predator
theory [92].

Leslie [5] introduced a predator-prey model where the carrying capacity of the predator
is directly proportional to the prey density. Many researchers have widely used this concept
[9, 93, 94, 95, 96]. Aziz-Alaoui and Okiye [7] gave the first study of a prey-predator model
with modified Leslie-Gower and Holling type II schemes. This concept was further used with
delay differential equations by Nindjin ef al. [90] and with stochastic perturbation by Ji et al.
[96]. Aguirre et al. [97] obtained three limit cycles due to Hopf-bifurcation and homoclinic
bifurcation in a Leslie-Gower model with Allee effect in prey population. Chen et al. [98]
studied the Leslie-Gower model with refuge for prey. The work by Zhang et al. [10] gives an
insight into the dynamics of the modified Leslie-Gower model with nonlinear harvesting and

Holling type IV functional response.

LA considerable part of this chapter is published in International Journal of Biomathematics, 15, 2250060,
2022.
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Functional responses introduced in the system show direct killing only. But merely the
presence of a predator can affect the prey physically and mentally as well [13]. Usually, there
is a predation risk while searching for food, resulting in starvation [14]. The scared prey may
not find a suitable environment to reproduce juveniles. And this indirect effect of fear can be
more than the direct killing effect [15, 16, 17]. Experiments done by Zanette et al. [19] reflect
that fear of predators alone led to a 40% reduction in the successor of the song sparrows could
produce. Evidence of the fear effect can also be seen in snowshoe hares [18] and dugongs [99].
Sheriff et al. [18] monitored free-ranging female snowshoe hares and observed declination
in their reproduction output. Dugongs sacrifice food by staying in deeper water where the
encounter rate with tiger sharks is low [99].

The fear in prey causes declination in both species [100]. Extra food is offered to the preda-
tor to help them grow faster. Prey population increases as distraction caused by additional food
to the predator reduce the level of fear in prey. A study done by Mondal et al. [38] shows
providing additional food to the predator plays a crucial role in controlling the fear effect. Das
and Samanta [39] studied a stochastic prey-predator model with refuge for prey and additional
food for the predator. They observed that reserving prey can lead to predator extinction, but
supplying an adequate amount of extra food can prevent their extinction. Some authors [101,
102] have investigated the consequences of providing additional food to the predator in a prey-
predator system. Without the provision of additional food, prey and predator never co-exist,
and predator goes to extinction in finite time [101]. van Baalen et al. [103] explored the link
between optimal foraging theory and population dynamical consequences when foraging preda-
tors switch to alternative food either in the fine-grained environment or in the coarse-grained
environment. They concluded that alternative food shows a stabilizing effect and promotes per-
sistence. Holt [104] investigated that in the presence of supplementary food, predator increases,
and prey decreases at the equilibrium level. This predator-mediated effect of extra food on prey
density is “apparent competition” [104]. Some studies [105, 106] are available in the literature
in favor of apparent competition. But some experimental studies show that additional food
provided to the predator does not enhance the target predation [107, 108]. A recent study by
Kaur ef al. [102] shows that both populations survive at a stable level when the additional
food is available for the predator in a sufficient amount; they grow continuously. Provision
of additional food is undoubtedly beneficial for weak and struggling predators. For example,
lionesses at AENP were provided with culled warthog carcasses while they were struggling to
keep young cubs alive [37].

The work by Srinivasu et al. [109] reflects that providing the right kind of additional food
to the predator can enhance the predation effect, leading to prey elimination. Also, supplying
low-quality food at high density causes distraction to predators, and prey can be relieved from

predation pressure. A recent study by Kumar and Dubey [36] reveals that both populations
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oscillate in the absence of additional food. These oscillations can be completely controlled by
increasing the predator dependency factor on additional food. The effect of additional food in
the dynamics of a prey-predator system can also be seen in [40, 110, 111].

It is vital to consider prey refuge in the prey-predator system to maintain the ecological
balance. By providing refuge, nature can offer a certain degree of protection to the prey. It
prevents over-exploitation of prey. Increasing the amount of refuge can increase prey density.
Kar [112] and Huang et al. [113] analyzed prey-predator interaction with prey refuge. They
discovered that refugia stabilized the system. When prey is afraid of predators, Zhang et al.
[27] examined the effect of prey refuge on predator density. The authors concluded that fear
could suppress the predator population.

Every process has a time delay that cannot be ignored. The inclusion of time delay brings
realism to the scheme by demonstrating the future state’s reliance on the past state [55]. One of
the main benefits of using a time-delayed term is that it can accurately explain the dietary energy
transformation mechanism [114, 115]. The use of delay differential equations in modeling
population dynamics is currently very active [88, 116, 117, 118]. Biological processes include
time delays with various factors like maturation [119], gestation [11], prey hunting [119], anti-
predator response [88], etc. Time delay can alter the stability dynamics of the system [56]. Liu
et al. [120] examined the combined effect of maturation and gestation delay on the dynamics
of a prey-predator model. Bandopadhyay and Banerjee [121] calculated the length of a time
delay to preserve stability. The system shows richer dynamics in the presence of time delay.
Therefore, it is vital to study time lag’s impact on the system’s dynamics.

Keeping the above aspects in mind, the main focus of our present study is to explore the

following ecological issues:
1. How are the system’s dynamics affected by fear and refuge factors?
2. What are the conditions for the persistence and extinction of both species?
3. Does additional food for predators promote richer biodiversity?

4. What is the range of time delay in which the prey-predator system shows stable dynam-
ics?

In this paper, to explore the above issues, we propose a Leslie-Gower prey-predator model
to study the impact of fear, refuge, additional food, fear-response delay, and gestation delay
on the system’s dynamics in Sec. 3.2. To the best of the authors’ knowledge, such general
models are not available in the literature. Sec. 3.3 discusses the non-delayed model and its well-
posedness, equilibrium analysis, and local and global stability. Also, we show the existence of

a limit cycle here. Sec. 3.4 presents the local stability and Hopf-bifurcation analysis of the
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delayed system. We validate our analytical findings in Sec. 3.5. In the end, all the results are

summarized in Sec. 3.6.

3.2 Construction of mathematical model

Onana et al. [11] studied the following model:

dr K
> st (1- =) ).

qgo(1—m)x(t — 1)+ (1 —q)aaKy

(1= 52 )50~ a1 = maty(0) - 9 10,
(3.1)

where x(¢) and y(¢) are the number of prey population and predator population, respectively.

Using this work as inspiration, we develop a model (3.2) based on the following assumptions:

e [tis assumed that the birth rate of the prey population is reduced due to the fear induced by

predators. Therefore we multiply the birth rate of the prey population with the decreasing

1
1+Ky*

used by many authors [17, 88, 122]. In the absence of fear, the prey population grows

function of the predator population size, ¢ (K,y) = A similar fear function was

logistically.

e As the feeding rate of predators decreases with prey density due to handling and searching

time, we assume that the predators ingest prey by Holling type II functional response [9].

e Due to the fact that increment in predator population after ingesting prey is not an instan-
taneous phenomenon, we assume that a predator individual takes 7, time for gestation.
Therefore, the rate of predator change depends on the number of individuals present at
the time (1 — 1) [123].

e The fear effect can stabilize the prey-predator system and promote the co-existence of
all the populations. Due to the fear of predation risk, the birth rate of prey individuals
decreases. In order to study the effect of fear response, we consider a time delay 7; in
the specific growth rate of the prey species. This fear mechanism takes 7; units of time

to respond to changes in the prey population [88].
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With the above considerations in mind, the mathematical model integrating the fear effect,

refuge, and additional food for the predator under multiple delays is as follows:

dx rx »  qoa(l—m)xy
— = X — X — ————
dt  1+Kky(t—1) = Y avql—-mx
dy

_wli1o By(t — ) (3.2)
dt y(l qOC(l—m)x(t—Tz)-i—(l—(])aAKA)7

x(s) =@1(s) >0, y(s) = ¢a(s) >0, s € [—7,0], T=max{7), T2 }.

In the absence of both delays (7 = 7 = 0), the model (3.2) takes the following form:

dx rx »  qo(l—m)xy

— = —rpX—rx-— ————

dt  1+Ky a+q(l1—m)x

dy By (3.3)
— =usy(1— ,

dt qo(l —m)x+ (1 —q)aaKy

x(0) =0, y(0) =0.

The biological meaning of parameters used in the proposed model is given in Table 3.1.
Remark. If r < rg, then the prey population will die out. Therefore, we will consider r > ry

throughout this article to avoid this situation.

Table 3.1: Biological explication of variables/parameters used in model (3.2)

Variables/Parameters Biological explication Dimension
X Number of prey individuals Biomass
y Number of predator individuals Biomass
r Birth rate of prey Time™!
s Intrinsic growth rate of predator Time ™!
70 Natural death rate of prey Time ™!
r Death rate of prey due to competition among them Biomass ™ ! Time ™!
a Half saturation constant Biomass
K Cost of fear Biomass ™!
q Preference rate of predator for food and g € (0,1) Dimensionless
m Refuge parameter and m € (0,1) Dimensionless
oy It measures the amount of energy of the additional food
assimilate into the predator’s energy Time ™!
Ky Additional food of constant density A Biomass
o Maximum rate of per capita removal of prey species due to predation Time ™!
B Maximum rate of per capita removal of predator species Time ™!
T Fear response time delay Time
(%) Gestation delay Time
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3.3 Dynamics of non-delayed model

In this section, we look at the dynamics of the system (3.3). First, we demonstrate that our
model is biologically viable (refer to Subsec. 3.3.1). The steady-state solutions are then deter-
mined (refer to Subsec. 3.3.2), followed by the stability analysis (refer to Subsec. 3.3.3 and
3.3.6). We address the presence of a periodic solution in Subsec. 3.3.4 and then present an

analysis for transcritical bifurcation in Subsec. 3.3.5.

3.3.1 Well-posedness of model

This subsection shows that all solutions of the system (3.3) are positive and bounded. Further-

more, we demonstrate that the system is uniformly persistent under a parametric condition.

LetF:(f,g)T,
where ( )
o> 2 el mm)xy
f= 1+ Ky rormns a+q(l1—m)x
and

g=ysy <1 — Py ) .
ga(l—m)x+ (1 —q)oaKy
Since F and Jacobian(F) are continuous in R, the IVP (3.3) has a unique solution by the

standard theory of the ODE system.

Further, the model (3.3) can be re-written as

d d
d—f:x¢l(x7)’)v d_)t):yd)z(x’y)’
where
o qo (1 —m)y
0y) = gy I L s
B By
$2(x,y) = (1 ~ga(l—m)x+(1 —‘])aAKA) '

It follows that
x(1) = x(0)els 91&ds > ¢

y(t) = y(0)elo #2xds > g,

Thus, all solutions (x(z),y(¢)) with initial condition (x(0),y(0)) remain positive throughout the
region Ri.
The following lemma illustrates the boundedness of the system (3.3).
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Lemma 3.3.1. The set Q = {(x,y) : 0 <x < K;,0 <y < u}isaninvariant set for all solutions

initiated in the positive quadrant, where K; = =2 and 1 = %(qa(l —m)K;+ (1 —q)oaKy).

r

Proof. We may deduce the first equation of the model (3.3) as

d.x 2
— < rx—rix° —rox,

dt

which implies

limsupx(t) < Kj,

t—roo
where

r—ro
K= .
r

Now, the second equation of the model gives

v By
ar =% (1 ~ (qo(1—m)K; + (1 _Q)O‘AKA>> |

which yields
limsupy(t) < u,

f—roo
where .
u= B(qa(l —m)K1 + (1 —q)oaKy).

We also note that if x(z) > K; and y(¢) > u, then % <0, % <0.

This shows that all solutions of the system (3.3) starting in the region Q remain in Q for all
t > 0. [

Lemma 3.3.2. If the following condition

r>(1+Ku) (ro-l-w)

holds, then the system (3.3) is uniformly persistent.

Proof. The persistence of the system ensures that the species will not become extinct and are
present for all future time if they are present initially.

From the model (3.3) and using Lemma 3.3.1, we can write

d_xz r _ro_qa(l—m)ﬂ X,
dt 1+Ku a
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dy By
NOAEN |
dt _Sy( (l—q)OCAKA)’

1— 1
liminfx(z) > L~ ro— ga(l=muy 1 = Xg,
t—e0 1+Ku a

which implies

1
liminfy(t) > E(l —q)ouKyg =2 y,.

t—3o0

Let M, = min{xq,yq}, M, = max{K;,u} and X () = (x(t)) .
y(t)

Then it follows that
M, <liminfX (¢) <limsupX(r) < M,,.

Hence the system is uniformly persistent. [

3.3.2 Equilibrium points

It can be investigated that the model (3.3) has four types of equilibria, namely, trivial extinc-

(1-q)aaKy
0, —F

tion equilibrium E((0,0), prey-free equilibrium E| , predator-free equilibrium

Ex( rjlr 2 0), and co-existence equilibrium E*(x*,y*). The equilibria Ey, E, and E, exist uncon-

ditionally.

Existence of interior equilibrium E*(x*,y*): Here x* and y* are positive solutions of the
following equations:
r qo(1—m)y*

*
1+ Ky* Nt a+q(l—m)x*

s <1 - Py ) ~0.
ga(l—m)x*+ (1 —q)aaKa
From Eq. (3.5), we have

=0, (3.4)

(3.5)

¥ = glaa(l=m)x" +(1=g)aaky) > 0.

Substituting this value of y* in Eq. (3.4), we get

Pix + P+ P+ P, =0, (3.6)
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where

K
Pl = —”161205(1 _m)27

B
K K K K
Po=q(l—m)[ri(1+—(1—q)oaKs + —act) + —rogoe(1 —m) + —2q2063(1 —m)?],
B B B B
K 255 2
P = B[roaaq(l —m)+ Eq o (1—m)“(1—q)oaKs +rog(1 —q)(1 —m)aa Ky
, 0 2
+ar (1 —q)oaKa]+q F(l —m)“+ar;— (r—ro)q(l —m),
K o o
Py = B(l —q)aAKA[?q(l —m)(1 —q)oaKp +arg| + %(1 —q)(1 —=m)os Ky — (r—rp)a.
20 x-nullcline 20
18: y-mmei 187 E'()(16.6898,13.0248)
1 E’(41.4281,9.0569) 16}
141 i
> 10T, > 12
8 10
6: .
2t 61 E'®(1.4197,9.8181)
00 16 2‘0 36 4‘0 5‘0 6‘0 7‘0 80 ¢ (‘) 16 26 36 46 56 60
(a) (b)

(8.528,12.2137)

(©) (d)

Fig. 3.1: Nullclines showing number of interior equilibria with varying o4 when
@)y = 0.3, (b)ay = 8, (c)ay = 8.758699 and (d)ay = 9.5, fixing other parameters
asr=35 K=005 ¢g=03,1=05,r=0.0375a=1, Ky=17, a0=2, 5=
0.2, m=0.65, g =1.
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The discriminant of Eq. (3.6) is given by:
A= P;P? — AP\ P} — 4P5 Py — 2TP}P} + 18P P, PsP;.

Depending upon the sign of Ps, P4, and A, the proposed system would have none, one, or two

co-existence equilibria (refer to Fig. 3.1).

(a) Existence of unique positive equilibrium.
By Descarte’s rule of sign, Eq. (3.6) will have a unique positive solution x* if and only if
Py < 0. The value of y* can be conveniently calculated by substituting this value of x* in

Eq. (3.5). This implies that there exists a unique interior equilibrium E*(x*,y*).

(b) Existence of dual positive equilibria.
If ; <0 and Py > 0, then by Descarte’s rule of sign Eq. (3.6) will have at most two
positive roots. Additionally, if A > 0, then Eq. (3.6) will have exactly two positive roots.

(c) Existence of one positive solution of Egs. (3.4) and (3.5) with multiplicity two.
When P3 < 0, P, > 0 and A = 0, Eq. (3.6) will have a positive double root.

(d) Non-existence of interior equilibrium.

e If P and Py are positive, then Eq. (3.6) will not have a positive root.

o [fP; <0, Py >0andA <0, then the system (3.3) will not attain positive equilibrium.

Remark. In Fig. 3.1 (a), P4 is negative for a smaller value of a4 (as4 = 0.3), which implies
E (0, M%"AKA) is unstable. Therefore, species are more likely to persist at a lower value of
additional food parameter o,s. When oy is increased to larger values (see Fig. 3.1 (b), (c), (d)),
P4 becomes positive, which implies that the prey-free equilibrium E is always stable. Hence,
at higher values of oy, predators can use the additional food energy for predation, which might

cause prey’s extinction.

3.3.3 Local stability analysis

To examine the local stability behavior of the equilibrium, we compute the variational matrix
corresponding to the system (3.3) at each equilibrium point. Based upon the sign of the real

part of the eigenvalue of this matrix, we obtain the following results:

1. The equilibrium point E((0,0) is unstable.
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2. The variational matrix at E <O, M#'%KA) is given by:

sqa(1—m)

Wllm_ro—ﬂl—m)(l ~q)ouKagp 0 |
B —s

It is noted that

e [ is locally asymptotically stable if

B < <ro—|—q(1 —m)(1 —q)aAKA%> (B + KauKa(1—q)).

e [ is a saddle point if

B> (ro+q<1—m><1—q>aAz<A%) (B+KanKa(1 - ).

3 Ex( rjlr 0.0) is a saddle point with stable manifold in x direction and with unstable mani-

fold in y direction.

Remark: It should be highlighted that the system (3.3) has a unique positive equilibrium if and
only if prey-free equilibrium E is unstable.
In order to study the local stability behavior of positive equilibrium, let M|g+ be the varia-

tional matrix evaluated at E*(x*,y*). Then

. * thz(l—m)zx*y* __ rKx* qgoa(l—m)x*
M|E* _ rx -+ (a—&-q(l—;n)x*)2 (1+Ky*)2  (at+q(1—m)x*)
sBgo(1—m)y* . sBy*
(qoe(1—m)x*+(1—q)oa Ky ) (qo(1—m)x*+(1—q)aaK4)

The characteristic equation corresponding to the above matrix is

A2 +AIL+Ar =0, (3.7)
where
2 2 ko *
. ag(l—m)x"y Bsy
Al = — = —tr(M|g+),
L T g me T qal —mx+ (k] )
sBy* l . agi(1—m)ixy* ]
Az: rl.x - 2
[ga(1 —m)x* 4+ (1 — q) o K4| (a+q(1—m)x*)

sBqor(1 —m)y*2x* [ rK qga(l—m)

[qo(1 —m)x*+ (1 — q)oaKa)? | (14 Ky*)? T (a+q(1 _m)x*)] =det(M|g-).
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Using the Routh-Hurwitz criterion, all the eigenvalues of M|g+ have negative real part if and

only if the following conditions hold:
A1 >0,A,>0. (3.8)

Thus, we can state the following theorem.

Theorem 3.3.3. The positive equilibrium point E* is locally asymptotically stable in the inte-
rior of the positive quadrant of the xy-plane if and only if (3.8) holds true.

Remark: We can easily note that (3.8) holds true if

og*(1—m)?y*

(a+q(1—m)x)>

ry >

3.3.4 Limit cycle

Theorem 3.3.4. Let E* exists uniquely and any one of the following condition holds:
(i) A1 <0, A, >0,
(ii) A; <0, Ay <O.

Then the model (3.3) has a limit cycle.

Proof. From Lemma 3.3.1, it follows that int(2) is a positively invariant set. If (i) or (ii) holds,
then E* is unstable. So, it is clear that the w— limit set does not contain any stationary point.

Hence, according to the Poincare-Bendixson theorem, the system has a limit cycle. [

Now, we investigate the possibility of Hopf-bifurcation around the interior equilibrium E* by
considering the parameter o4 as the bifurcation parameter.

The interior equilibrium E* loses its stability through Hopf-bifurcation when the eigenval-
ues are complex conjugate with zero real parts. We consider o4 as the bifurcation parameter.
Let A(a4) = A (ta) +idi(04) be an eigenvalue of the characteristic equation (3.7). After sub-
stituting the value of A () in Eq. (3.7) and separating the real and imaginary parts, we get

A2 —AP+AAA+A=0 (3.9)

24:Ai+A1Ai =0 (3.10)

At the Hopf-bifurcation point oy = e, A,(o4) = 0. Therefore, we obtain

—)u,-z +A> =0, where A; € R
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and
All,' = 0, where ﬂ,,' 7& 0.

Therefore, from the above equations, we have Aj(a4) = 0, and Ax(ots) > 0.
Thus at the bifurcation point, Aj(a4) = 0 yields

* 1 Bsy* k
oy = —qgoa(l —m)x
1 —q)Ky | 2q?(1=m)?>xy*
(1=a)ky latq(—mwp — 1%

Differentiating Egs. (3.9) and (3.10) with respect to a4 and substituting A, = 0, we obtain

dA; dA, dA2

—2A; A =0
don Moy T day
dA,  dA; dA
24—+ — A 0.
“doy doy T day
Solving these equations, we get
dA dA; 42
dlr _ _A daj +2da/14 li 7£
Ao g, g A3 +422 ’

provided A, dA2 + ZdA‘ A2 #0.
Thus we can state the following result.

Theorem 3.3.5. If A, > 0 and “\%
(3.3) is locally asymptotically stable when oy < oy, and undergoes Hopf-bifurcation around

) \aA:aX # 0, then the interior equilibrium E* of the model
E* at oy = .
A

3.3.5 Transcritical bifurcation

Theorem 3.3.6. The non-delayed system undergoes a transcritical bifurcation between interior

(1-q)aa Ky
B

equilibrium E* and prey-free equilibrium E; (0, at

K:K[tc]: B d _1
(1—q)aaky <r0+%(1 —m)(1—q)ouKy

ifr>(ro+ 2 B 2(1—m)(1—q)auKy) and 83 # 0, where 8 is defined in the proof of this theorem.
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Proof. The variational matrix corresponding to the system (3.3) at E is given by

B ekl 0
H=DF(E|,K)= (B+KaAKA(lq) rosqac]($_m)m)( q) 0 AupB s>.
B f—

E| is a non-hyperbolic equilibrium at K = K el Therefore, the matrix at this point becomes

0 0
H= welim |-

The eigenvectors v = (1, W)T and w = (1,0)7 are corresponding to the eigenvalue zero
of matrix H and H' , respectively.

Let F = (f,g)T, where f and g are the same as mentioned earlier.

__y
FK — ( (1+Ky)2> ]
0

61 = WTFK(El,K[tC]> =0.

Clearly,
Now, consider

_ rﬁ(_l—Q)aAKA -0 1
st o i (L)

which yields
I’B (1 — q) oKy
(B +KIe(1 — g)onKA)?

52:_

Clearly, &, is non-zero.
Let us define

ViVI

8 = w' [D*F (Ey, K (v,v)] :<1 O) (fxx foyr Sy fyy) ViV
(El,K[’C])

8xx 8xy 8yx 8yy 2241

Vav2

= favivi + 2fxyVl vy + fny2V27
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where

2 o 201
ol By, KV) = 0y 424 (1 —m)*(1 —q)oaKa

Ba? ’
Klelp? qo(1—m)
 (Ep Kl = — r _
2sq?a® (1 —m)?
E 7K[td :07 XX E aK[tC] - - 1 5
B K =0, (1 K1) = - 2T L)
: 2sqo(1 —m) 258
w(E ;K[n] = E 7K[[C] =
elE ) (1—q)oaka s ) (1 —q)oaKy
all— 202(1 — m)2
vivi =1, vivy = ¥, Vavy = q(B—zm)’
which entails that
5o oy 21— —mPaKs 2a(l—m) KB ga(i—m)
pa? B (B+KI(1 — q)aaKy)? a '

If 03 # 0, then by the Sotomayor’s theorem as mentioned by Perko [60], the non-delayed system

experiences a transcritical bifurcation between E* and E; at K = K, [

3.3.6 Global stability analysis

Theorem 3.3.7. If {P; >0, P, >0} or {P; <0, P, >0 and A < 0}, then the prey-free equilib-
rium Ey is globally asymptotically stable.

Proof. In Lemma 3.3.1, we have proved that the solutions starting in the first quadrant are
bounded and lie in the invariant region Q. The equilibrium points Ey(0,0) and E»(K,0) are al-
ways unstable, and no positive equilibrium exists if {P3 >0, P4 >0} or {P; <0, P, >0and A <
0} (refer to Subsec. 3.3.2). Therefore, by the Poincare-Bendixson theorem, the equilibrium

point E7 is the only attractor in the first quadrant. [

Theorem 3.3.8. The system (3.3) is globally asymptotically stable around the interior equilib-
rium E* if the following inequality holds:

L? < 4L L, (3.11)

where L, L1, and L, are defined in the proof of this theorem.
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Proof. Let a positive definite Lyapunov function about E* be
X
V(x,y)=x—x" —x*ln; + [y -y —y*ln%} .

Now, along with the solutions of the model (3.3), differentiate V with regard to time ¢ to obtain

dv._ —xdx =y dy
dt x dt y dt’

Substituting the value of % and % from the model (3.3), we get

= —an(—2 P han( =)=y — -,

where
R g ol —m)’y*

P (atg(T-mpn(atg(T-m)r)’

_ sp
a = (qa(l —m)x*+ (1 —q)oaKy)’
- sBga(l —m)y _gqo(l-m) rK

27 (qa(1—m)x*+(1—q)aaKa) (qa(1 —m)x+ (1 —q)oaaKs) a+q(1—m)x  (1+Ky)(1+Ky)’
av

- 1s negative definite under condition (3.11), where

I— sBga(l —m)u _gqa(l-m) rK
(qa(1 —=m)x*+ (1 —q)oaKa)(1 —q)oaKs  a+q(1—m)Ky  (1+Ku)(1+Ky*)’
g a(l—m)’y*
ala+q(1 —m)x*)

sB
(qor(1—m)x* + (1 - q)oaKa)’

Li=r—

Y

L, =

Therefore, interior equilibrium E*(x*,y*) is globally asymptotically stable if condition (3.11)
holds. =

3.4 Dynamics of the delayed model

In this section, we will investigate the dynamics of the delayed system (3.2).
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3.4.1 Local stability and Hopf-bifurcation
The model (3.2) can be rewritten as

d¥(r)
dt

=F((P@), Y(t—1),P(t— 1)),
where
W(r) = [x(0),y(0)]", Wt — 1) = x(t — ), y(t —w)]", i=1,2.

Let the variational matrix of the model (3.2) with respect to W(z), ¥(r — 11), ¥(t — 12) at any
point (u,v) be

_ — app a2
V=P +Pe !y Ple?n = :
azr ax

where

P = 9F P = _9F P, = __9F
b alP(t> (u,v) T a‘P(z‘ - Tl) (u7v)7 o 8‘P(t - T2) (u,v) ,

r 5 aqo(1 —m)v
= —ro—2rju— :
1+kv 0 TN G+ q(1=m)u)?

ain

_qo(l—mu rKue=*™ sBga(1 —m)v2e ™

a+q(l—m)u B (14+Kv)?’ a2 = _(qOC(l —m)u+(1—¢q)aKx)?’

apn =

( Bv > sBve 0

ayyy =S¢ 1— — .
ga(l—m)u+(1—q)asKy ga(l—m)u+(1—q)asKy

Remark. In the presence of delay, the local stability behavior of all the boundary equilibria

remains unaltered. At E*, we obtain

* b% * % * —AT
N b + X7y —b1x* —bye "
- 2
ga(l —m)%e_’”2 —bze 2
where
qo(1—m) rKx* sBy*

by=—— ., bh=—""7—3,b3= .
a+q(1—m)x* (14 Ky*) qgo(1—m)x*+ (1 —q)oaKa
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The corresponding characteristic equation is

A2+ AL+ (EA+F)e 2 4 Ge Hmtn) — (3.12)

Case(1): 71 = 7o = 0. Then Eq. (3.12) becomes

A2+ (A+EA+F+G=0. (3.13)

The characteristic equation (3.13) is the same as the characteristic equation (3.7) of the non-
delayed model (3.3) studied in Subsec. 3.3.3.
All the roots of Eq. (3.13) have negative real parts if and only if
(H):A+E>0and F+G > 0.
So the interior equilibrium E*(x*,y*) is locally asymptotically stable if and only if (H}) holds.
Case(2): 71 =0, 7, > 0. Then Eq. (3.12) becomes

AP 4 AL+ (EA+F +G)e M2 =0. (3.14)

This is a transcendental equation. So stability behavior of the system (3.2) cannot be deter-
mined by Routh-Hurwitz criteria. Let us assume A = i@ (@ > 0); then the real and imaginary
components are given below
Ewsin(0n) + (F + G)cos(0) = @?, (3.15)
Ewcos(on) — (F+G)sin(on) = —Aw, (3.16)

Combining Egs. (3.15) and (3.16) leads to a quadratic equation in w? as

o*+ (A2 —EHo* - (F+G)? =0. (3.17)
If we put @*> = p, then Eq. (3.17) becomes
p*+cip+c=0,

where ¢c; = A®> —E? and c; = —(F 4+ G)?.
Remark. Since Eq. (3.17) has a unique positive root (say @), therefore, the stability of the

system (3.2) with respect to 7, cannot be switched more than once.



3.4. Dynamics of the delayed model 53

Substituting a)l2 in Eq. (3.17), we get

1 ((F+G-AE)®}\ 2nn
Tzn = —COS ) 2 y
0] E’w; + (F +G) o)

n=0,1,2,.. (3.18)

Now, we will verify the transversality condition of Hopf-bifurcation.

Put A =& +iw in Eq. (3.14), we get real and imaginary parts as follows:
E2— 0® + AE + (EE+F +G)e 5% cos(0m) + Eosin(0n)e 5™ =0, (3.19)

20E +Aw+ Ewe 2 cos(0n) — (EE+F +G)e “®sin(wn) = 0. (3.20)

Differentiating (3.19) and (3.20) with respect to 7, and substituting 7> = 17, we get
PSo, + P, =Ry, (3.21)

_P2£‘L'20 +P w‘L‘zo = R27 (322)

where

P=A+ (E — (F + G)Tz()) COS((OITQO) — ‘L'QOECOI sin(a)1 ‘L'20>,
P = (E — TQO(F—F G)) Sin((l)lfzo) +Em Ty, COS(COl‘L'zO) -2y,
F +G) oy sin(@15,) — E@f cos( Ty, ),

Ry =(
R, = (F + G)(D] COS(CO] Tzo) +E6()12 Siﬂ(ﬂ)] Tzo).
Solving (3.21) and (3.22), we get

(d(Re?L)

) _ RP—RP,
dTZ TQZTQO,l:i(Dl

= 51’20 - Plz +P22

(Hz) . R1P1 —R2P2 7£ 0.

If (H;) holds, then stability switching of E* occurs. The following theorem states the criteria

for Hopf-bifurcation near E*.

Theorem 3.4.1. For the system (3.2), T, as ordinate, assuming (H») holds, there exists a posi-
tive number Ty, such that E* is locally asymptotically stable when T, < T, and unstable when

Ty > Ty,. Furthermore, the system (3.2) undergoes a Hopf-bifurcation about E* at T, = Ty,

Case(3): 71 >0, »b =0.
We can state the following theorem under an analysis similar to Case(2).
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Theorem 3.4.2. For the system (3.2), with T\ as abscissa, the equilibrium point E* is locally
asymptotically stable when T\ < Ty, and unstable when T| > T\,. Furthermore, the system (3.2)

undergoes a Hopf-bifurcation near E* at 7| = 7, where

1t (1B

T, =
2
w5 F

0

Cased): 71 >0, ©» > 0.
We consider Eq. (3.12) keeping 7 fix in its stable range (0,7,) and 7, to vary. Let io(@ > 0)

be a root of Eq. (3.12). Separating real and imaginary parts, we obtain
@* = [F +Gcos(o1))| cos(0) + [Ew — Gsin(@T )] sin(071,), (3.23)

Aw = [F +Gcos(01))]sin(01) — [E® — Gsin(wT))]| cos(@0T). (3.24)

On eliminating 7, we get
o* + (A’ — E*)0* + (2GE sin(01))@ — (2GF cos(0T) + F* + G*) = 0. (3.25)

Without loss of generality, we can assume that there exists at least one positive root @y of Eq.
(3.25). So, rewriting Eqgs. (3.23) and (3.24) as

(Dg = B COS(CO()Tz) +B) Sin(a)()’b'z), (3.26)

Awmy = By sin(@pT,) — By cos(mp ), (3.27)

where
By =F +Gcos(apT)),

B, =FEwy— GSiIl((i)()‘L'l).

On solving Eqgs. (3.26) and (3.27), we obtain the following critical value of 7, as

1 B? —A’w? 2i
TZ;:_COS—1< ad 0 )+’—”, i=0,1,2.. (3.28)
o wyB1 +AwyB> o

Now, to verify the transversality condition for Hopf-bifurcation, put A = & +i® in Eq. (3.12)

and then separating real and imaginary parts, we get

E2— 0>+ AE+(EE+F)e 5™ cos(0n)+Emsin(0T)e °2 +Geos(0(7+ 1) )e s (112) =0,
(3.29)
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20E + A0+ Eoe 2 cos(0) — (EE + F)e 2 sin(01;) — Gsin(o(T; 4+ 1) )e 1+ 2) = 0.

(3.30)
Differentiating (3.29) and (3.30) with respect to 7, and put & = 0 (the system changes stability
when Re(A) = 0) and 7, = 1) , we obtain

Mléfﬁo -l-Mz(DTéO =N, (3.31)

— Mzgréo + M; wréo =N, (3.32)

where

My =A+(E - F1y ) cos(mTy,) — Ty Eapsin(wyts,) — G(T1 + 1, ) cos(ap(T1 + 13,)),
M, = (E — 5y, F ) sin(@Ty,) + E@y Ty, cos(@ Ty, ) — 20 — G(T1 + Ty, ) sin(wo (71 + 73,)),
Ny = Faysin(anth,) — E@j cos(amyth,) + Gopsin(an(T1 + 73,)),
N> = Faxcos(wyTy, ) +Ew sin(@y Ty, ) + Gy cos(wy(T1 + T3,))-

Solving (3.31) and (3.32), we get

( (Rel)) _e, =
A% ) gyt 2oy 2 MI+M3
(H3) ZN1M1 —NzMz 7& 0.

Theorem 3.4.3. For the system (3.2), with 7 € (0,71,) and assuming that (Hz) holds, there
exists a positive number Tﬁo such that E* is locally asymptotically stable when T, < 7:50 and
unstable when t) > ’L'éo. Furthermore, the system (3.2) undergoes a Hopf-bifurcation near E*
ar v =Ty, .

3.4.2 Direction and stability of Hopf-bifurcation

In the previous subsection, we obtained conditions under which the system experiences Hopf-
bifurcation with respect to delay parameters 7; and 7,. Here, we will determine the direction
of Hopf-bifurcation and stability of the bifurcated periodic solution at 7, = Téo and 7] = 1T} =€
(0, 71,) using center manifold theorem and normal form theory as described by Hassard et al.
[124].

Let ) = ’cé -+ U, U € R so that Hopf-bifurcation occurs at 4 = 0. Rescaling the time delay
= — the system (3.2) can be written as

U=nPU@l)+QU(r— T£)+R U(t—1)+ f(x,y)),
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where

U(r) = (x(r),y(1)".

, (P P2 (0 Qi , (0 0 B T
P_<O 0>;Q_(0 O)7R_<R21 R22)7f_(f15f2)7

such that Py = —rix* + x*y*, Pio = —b1x*, Q10 = —b3, Ry1 = ——"2, Ryo = —b3
The non-linear terms fi, fz are given by
rx(t oa(l—m)x(t)y(t
fl_ () — —I"]Xz(t)—q ( )()y(),
1+Ky(t— 1) a+q(1—m)x(r)
e sy(t)y( — 1)
qa(l —m)x(t — 1) + (1 —q)OcAKA '
In functional form, the delayed system can be written as
Lo = (20 (PO(0)+ Q0(- )+ Ro(-1) ).

0 =(¢1,02)" €C([-1,0),R?).

By the Riesz representation theorem, there exists a 2 x 2 matrix 717(6, i) such that its elements

are function of bounded variation. Therefore,

Lo =/_01 dn(0,1)9(6).

In fact, choosing

(), +1)(P'+Q +R), 6=0,
(3, +1)(Q"+R'), 6 [=1,0),
CANES S o
(T20+I*L)R’ RS (_la ™ )7
0, — 1,
for ¢ € C'([—1,0],R?), we define
49(6) ~1<06<0,

doe

A(m)9(6) =
Pildn (€. mle ), 6 =0,
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J2dn(E,0)]p(=&), s=0,

(v().0(0) = V0100~ [ [ W(E=Olan(@)0 ez,

where
n(6)=n(6,0).

We know that eigenvalues of A(0) are j:ia)*féo. Since A and A* are adjoint. Therefore, eigen-
values of A and A* are same. Now, we need to verify that

g(8) = (1,00)T e ™% (9 € [~1,0)

and .
q'(s) = 5 (1,07)e” ™ (s 0,1])
are the eigenvectors of A(0) and A* corresponding to the eigenvalue ia)*réo and —ia)*’véo, re

spectively, where

_ Ry
a1 = i0*1) ’
iw*e 20 — Ry
ia)j‘rf
T
«  (Pa+Qne ™)
& =" 0,
i0* +Rype
and .
—io* T}
= — —5 —i0*T) — - 17 5
D=1+oof+7, |Ryaje " ™0 +Rpaiofe e ™
T
29
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Following the algorithms explained by Hassard et al. [124] and using a computation process

similar to that in [125], which is used to obtain the properties of Hopf-bifurcation, we obtain

—[ P 2a01g(1—m) 2asadte "
= D|rwi(0) - 2rKaye @ —2p) — B
820 = Ty, _r 50 (0) —2rKoye I P (1 —q)0aka
) 20001g(1 —m) ZEsmzeiw*féo
! i0*Ty 1
02 ="T,.D|rW,,’ (0) —2rKaqe'™ "t —2r; — — ]
8 20 I 02 ( ) (1 _ Q)aAKA
T S S ala;+o)g(1— asou e o
g1 = 1D rWl(ll)(O) —rKae ' —rKoge'® "t —2r) — (@ + )l —m) osadie }
_ a (1—q)oaaKa
—I . . TF TF
g21 = 7D | r(=2Koq W (0)e ™" — KoaWyy (0)e® 5 + KWag) -+ 2KW) -
I 2% 2
ko - 1 1 2(X 1 —m 1 (x_] 1
+2K202eH0H 4R 0 0) — (W (0) + 2w (0)) — % (a1W1(1 )(0)+ 7W2<0> (0)
(2) — %
Wy, (0) 2) 200g(1—m) aig(l—m) 204's () (), 10" T
— 4+ W5’ (0)— — — oW/ (0 20
Ty 11 (0) p p ) (l—q)aAKA( W77 (0)e
— — — 2
01 (2) e i0°T, . 00 (2) ) ag(l—m)ayoyr  agq(l—m)aj >]
+ 2 w200 %0 + 2w (1) + WP (~1) oy — - :
2 20 ( ) 2 20 ( ) 11 ( ) (1—q>O£AKA (1—q)(XAKA
where
Wao(6) = 1820 (O)eiw*fgoe L 1802 We—iw*réoe MO B
0 0
ig02 io*t, 0 1820 —F~~ —io*t, 0 —2iw*t, 0
Wy (0) = — 0 207 — 0 20" + M. 20
02(0) 3(0*,%0 (0)e w*,cé()CI( Je +Mae )
ig11 it 0 1811 — —in*T) 0
Wi1(0) = — 0 20 ——q(0 20" + M;.
1(0) =~ ERg (00 4 01

—2iw* T, . —2iw* T, —2iw* T,
e P "0 2iw* —Rye 7 0 soclze )

o -
< 2i0* — P1; —P12—Q126_2lw Tl) <—r+r1—i—qa(1—m)oc1>

K ek _1 _
—2iow* — Py —Pr — leez"" g —r—+r +q(x(1 —m)Ot1
Mp =2 O 2iw* 2iw )

—I21 2o 2 —2i0)*—R22€ szel *120
-1 _
My =2 —Pp —P2—0n —r+r1+qa(1—m)w
—Ry —R» 50 0

Consequently, we can find g;; in terms of delay parameter and other biological parameters.

To determine characteristics of the bifurcated periodic solution, we can compute the following
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coefficients:

i |go2|2 821 Re{Cl(O)}
0) = PP AN - L L BV} = _ V)
1(0) 27, o (gzog” lgul 3 )+ 30 12 Re{A' (1))}

Im{C,(0)} +H2{1m(”(fﬁo))}.

B2 = 2Re{C1(0)} and T o

Now we are able to state the following theorem.

Theorem 3.4.4. . The sign of Uy determines the direction of the Hopf-bifurcation. If 1y >
0(< 0), then the Hopf-bifurcation is supercritical (subcritical).

2. The sign of By determines the stability of the bifurcating periodic solution. If B, > 0(< 0),

then the obtained periodic solution is unstable (stable).

3. T, determines the period of the bifurcating periodic solution. If T, > 0(< 0), then the

period increases (decreases).

3.5 Numerical simulation

In order to support the theoretical analysis, some numerical simulations are performed using
MATLAB R2020b. The set of parameters is chosen as follows:

r=35 K=1, ¢g=03, rp=0.5, r; =0.0375, a=0.1,

(3.33)
Ki=17, =2, s=0.2, m=0.65 o4 =0.3, B=1.
The corresponding equilibrium points and their stability behavior are given in Table 3.2.

Table 3.2: Equilibrium points of the proposed model and their stability behavior in the
absence of delay.

Equilibrium points Eigenvalues Stability behavior
Ep(0,0) (3,0.2) unstable
E1(0,0.357) (1.3295,-0.2) saddle point
E»(80,0) (—3,0.2) saddle point
E*(7.13,1.8543) (—0.0312+0.4175i) stable focus

3.5.1 Computation for the non-delayed system

This subsection presents the numerical simulation for the system (3.3) with parameters given in

(3.33). To examine the effect of fear, refuge, and additional food on the dynamics of the system
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(3.3), we obtain exciting results concerning parameters: K, g, m, a. The effect of fear (on

varying K) is shown in Fig. 3.2 and Fig. 3.3.
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Fig. 3.2: Time series solution for system (3.3) around E* for (a) K =1, (b) K = 1.7, (¢)
K = 4.5. (d) Combined phase portrait corresponding to (a), (b) and (c) initiated from

(1,1).

In Fig. 3.2 (a), initially, for some duration, the prey and predator population oscillate about
their steady-state, and eventually, it converges to the co-existence equilibrium. On increas-
ing the value of the fear parameter, at K = K ] = 1.3576755, the system undergoes Hopf-
bifurcation resulting in instability of E*, and a stable limit cycle is induced. At K = 1.7, the
system is unstable about E*, as shown in Fig.3.2 (b). Both populations fluctuate highly about
their mean position between their maximum and minimum values. Further increase in K makes
the system stable from periodic oscillations via Hopf-bifurcation at K = K 2] = 4.396743.
Hence at K = 4.5, the system shows stable behavior about £E*, shown in Fig. 3.2 (c). Phase
portraits corresponding to Fig. 3.2 (a), 3.2 (b), and 3.2 (¢) are shown in Fig. 3.2 (d). Therefore,
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we conclude that the stability behavior of the co-existence equilibrium of the system (3.3) is

sensitive to the fear parameter.

(]

Now, to check the transversality condition for Hopf-bifurcation at K ] and KM, using

Newton’s forward difference formula, we obtain the following results:

d(Re_()L)) =0.0671 >0
dK K=KlH]
and
d(Re(1)) 00729 <0.
dK K=KH]

Also, at both the bifurcation points
Re(A) =tr(M|g<) =0, det(M|g+) > 0,

where A is the characteristic root of Eq. (3.7). Therefore by the Andronov-Hopf-bifurcation
theorem, the system (3.3) undergoes Hopf-bifurcation at K M) and K] around the positive
equilibrium E*. At K = K} = 5.04389962, we obtain 85 = —0.3279 = 0. Therefore, according
to Theorem 3.3.6, the system (3.3) undergoes a transcritical bifurcation at K = K ]

In order to visualize Hopf-bifurcation and transcritical bifurcation with respect to the fear
parameter K, we draw a bifurcation diagram in Fig. 3.3. According to Fig. 3.2, our system
undergoes Hopf-bifurcation at K 1] and K!M2]. This situation is combinedly presented in Fig.

3.3.
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(a) (b)

Fig. 3.3: Bifurcation diagram with respect to fear parameter K and remaining parame-
ters are same as in (3.33).

In Region I, the system is locally asymptotically stable around the interior equilibrium E*
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and unstable around prey-free equilibrium E;. In Region II, E* is unstable, and a stable limit

cycle is born via Hopf-bifurcation at K = K],

The axial equilibrium Ej is also unstable
in this region. In Region III, the positive equilibrium point E* again switches its stability
through Hopf-bifurcation at K = K 2] and E; is still unstable. At K = K'Yl = 5.04389962, E*
disappears and transfers its stability to the prey-free equilibrium point E;. The aforementioned
phenomenon is transcritical bifurcation. Therefore, Region IV shows stable behavior of E, and
E* does not exist here.

To determine the direction of Hopf-bifurcation, we use the formula given in [17]. We obtain
0" | i) = —0.3148569566 and 6| _;m,) = —3.6036317012. Since these values are nega-

tive. Therefore, the direction of Hopf-bifurcation at K = K ] and K = K2l jg supercritical.

Table 3.3: Effect of g on steady state of prey and predator population when K = 0.1 and
all parameters are same as in (3.33).

value of ¢ x* y*

0.1 49.6502 3.9345
0.2 38.1714 5.752
0.3 30.7263 6.8795
0.4 25.239  7.3729
0.5 20.941 7.5843
0.6 17.4666  7.54

0.7 14.6112 7.3175
0.8 12.2463  6.96

0.9 10.2826  6.529

From Table 3.3, one can see that on increasing the preference rate of the predator, the prey
population decreases, and on consuming prey, the predator population grows. Now, for larger
values of ¢, as the predator is highly dependent on prey and prey are lesser in number, the

predator population decreases. This result justifies the negative feedback.

Effect of m: The effect of refuge parameter m is shown in Fig. 3.4. From this figure, we
note that the prey population increases with an increase in the value of the refuge parameter. In
contrast, the predator population initially increases up to m = 0.39236 and then decreases. This
shows that reserving prey is beneficial for both prey and predator up to a threshold value of the
refuge parameter. However, beyond this value, it causes a negative effect on the predator. The
rate of change in predator population y* with respect to m is determined, and we get

dv*
{dfn} =0

m=m

Predator population attain its maximum i.e., ;. = 7.5957 at m = m* = 0.39236.
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Fig. 3.4: The effect of refuge on prey and predator population, other parameters are the
same as in Eq. (3.33).

24FT
221 g 2ol
stable limit cycle
2 2
18F 187
16
> 16F 1 >
14l stable E" Lar
12
12
1k
1k
0.8
0.8 L L L L L L L L L L
0 5 10 15 20 0 5 10 15 20 25
X X
(a) (b)

Fig. 3.5: Switching of stability of E*. (a) E* is stable at a4 = 0.2 < ¢}. (b) E* is unsta-
ble at oy = 0.5 > ay.

Effect of a4: The effect of additional food parameter @4 is depicted in Fig. 3.5 and Fig. 3.6 .
From Fig. 3.5, it is observed that the positive equilibrium E* is stable initially at o¢4 = 0.2. On
increasing the value of oy, the system (3.3) undergoes Hopf-bifurcation at oy = 4™ = 0.41983,
computed by the formula derived in Sec. 3.3. After this value, E* becomes unstable, and
a stable limit cycle is born. The direction of Hopf-bifurcation is obtained from the formula
given in Wang [17], which gives o* = —0.1884045609. By Perko [60], it is a supercritical
Hopf-bifurcation as 6* < 0.

Initially, at oy = 0.48, a stable limit cycle around E* and a saddle point E| are observed

in Fig. 3.6 (a). With the increase in the value of oy, at a4 = 0.51, the limit cycle expands
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and approaches towards the saddle point Ey. This can be seen in Fig. 3.6 (b). The limit
cycle collides with saddle point £y at a4 = a;* = 0.61091, the homoclinic bifurcation point,
and a closed trajectory with an infinite period termed homoclinic orbit is formed, in which the
saddle point links itself, as seen in Fig. 3.6 (c). After homoclinic bifurcation, the limit cycle
disappears, and the prey-free equilibrium Ej is stable. Fig. 3.6 (d) shows the phase portrait after
homoclinic bifurcation at a4 = 0.63. It concludes that as we increase ¢4, the prey population

immediately collapses after homoclinic bifurcation [126].
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Fig. 3.6: Effect of a4 causes the system (3.3) to undergo a homoclinic bifurcation at
oy = o between saddle point £ and stable limit cycle around E*. The stable limit
cycle approach towards saddle point £ before the homoclinic bifurcation (a), (b). The
last vestige of the limit cycle: homoclinic orbit, is formed at the homoclinic bifurcation
(c). After bifurcation, the trajectory tends towards E; (d).

The variation of the preference rate of predator with fear parameter is shown in Fig. 3.7.

From this figure, it is observed that on increasing preference rate of the predator, the cost of
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fear in prey varies such that the stability of E* and E; is affected, which gives rise to four
different regions. In region I, E* is stable and E| is unstable. E* changes its stability via Hopf-
bifurcation, and a stable limit cycle occurs in region II. Region III represents the stability region
of E* as the system (3.3) undergoes Hopf-bifurcation again. In region IV, E is stable by means

of a transcritical bifurcation.

Region IV

ak Region Il 4

[
Region|
Region Il

Fig. 3.7: Various stability regions of the model (3.3) in the gK —plane.

We can see from Fig. 3.1 (d) that no positive equilibrium exists for the chosen set of
parameters, and P3 = —0.1274, P4 = 0.9986 and A = —1.2237 x 10~°. Furthermore, all existing
equilibria except the prey-free equilibrium are unstable. Hence by the Poincare-Bendixson’s
theorem, the equilibrium E is globally asymptotically stable (shown in Fig. 3.8). This finding
supports Theorem 3.3.7.
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10 . . . . .
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X

Fig. 3.8: E is globally asymptotically stable where the parameters are the same as in
Fig. 3.1 (d).

The co-existence between two stable attractors can be achieved using a control parameter.

This phenomenon is bi-stability. The system can converge to two different attractors depending
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upon the initial condition. Our system exhibits bi-stability between prey-free and interior equi-
librium (see Fig. 3.9 ). The black dashed curve shown here is the separatrix; it separates the
region of stability of both equilibria. It is clear from Fig. 3.9 that the trajectory (green curve)
started from below the separatrix converges to E7, and the blue curve started from above the
separatrix approaches to E;. For bi-stability, the range of oy is [7.631265,8.585380].

15 T T T ==
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E;(16.6898,13.0248)
® stable

E,(0,9.52)
13 | stable

12r

separatrix

/
O E)(1.4197,9.8181)

unstable

0 5 10 15 20 25
X

Fig. 3.9: Bi-stability phenomenon between equilibrium points Ej and E} for the system
(3.3). Here oy = 8, a =1, K = 0.05 and other parameters are from (3.33).

3.5.2 Computation for the delayed model

Here we shall perform numerical simulation for the delayed model (3.2) with the set of param-
eters (3.33). For the chosen parameters, the numerical value of equilibrium points is the same
as in Table 3.2. In the absence of delay, condition (3.8) holds, which implies that the system is
stable about the interior equilibrium E*. Upon introducing delay, we shall investigate different
cases discussed in Subsec. 3.4.1.

The effect of gestation delay: 71 =0, 7, > 0. We can verify Theorem 3.4.1 numerically. We
observe that the transversality condition (H>) holds at 7p,. This value of 75, can be determined

using (3.18). Taking n = 0, we obtain

d(Rel)

Ty, = 0.345727 and
0 T

=0.014547 # 0.

‘L'2=‘L'20

This shows Re(A) is increasing function of 7, at 7, = T,- Thus, according to Theorem 3.4.1,
the system (3.2) undergoes a Hopf-bifurcation around E* at 7, = 7, = 0.345727.
Fig. 3.10 (a) (time series curve) and Fig. 3.10 (c) (phase portrait) show that the solution

trajectory oscillates about E* at first and eventually converges to it. This behavior is the local
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asymptotic stability of E* at 7, = 0.2 < 7p,. On increasing the value of gestation delay, the
system experiences a Hopf-bifurcation near E* at 7, = 75,. Consequently, E* is no longer
stable, and a stable limit cycle is induced at 7, = 0.52 > 1, (refer to Fig. 3.10 (b), (d)).
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Fig. 3.10: When 7, = 0.2 < 1p, and 71 = 0, E* is locally asymptotically stable (a,c). At
7 =0.52 > 15, and 71 =0, E* is unstable (b, d).

To demonstrate the Hopf-bifurcation in a better way, we constructed a bifurcation diagram
in three dimensions (see Fig. 3.11). Trajectories of both populations are plotted against gesta-
tion delay. It is observed that before the critical value of 7,, the positive equilibrium is stable,
but when it crosses this value, the trajectory is attracted towards limit cycles. The colored

closed orbits shown here are stable limit cycles.
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Fig. 3.12: When 71 = 0.2 < 73, and 7, = 0, E* is locally asymptotically stable (a,c). At
71 =0.52 > 71, and 7, = 0, E* is unstable and a stable limit cycle is born (b, d).
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The effect of fear-response delay: 7, >0, 7, =0. Fig. 3.12 gives the verification of Theorem
3.4.2. This shows Hopf-bifurcation near E* at 7; = 71, = 0.489907. When the prey’s fear
response is immediate, i.e., 7] = 0, the co-existence equilibrium E* is stable. When there is a
time lag, such as 7 > 0, E* stays stable until 7| reaches 7y,. At this point, E* loses its stability,
and a stable limit cycle is born by means of a supercritical Hopf-bifurcation. This phenomenon
is better demonstrated by the bifurcation diagram in Fig. 3.13. The colored closed trajectories

shown here are the stable limit cycles.

Fig. 3.13: Bifurcation diagram showing the effect of fear response delay on E*.

How does the fear-response delay affect the system’s bi-stability (shown in Fig. 3.9)?
To find the answer to this question, we analyze the system in the presence of fear-response delay
for parametric values similar to Fig. 3.9. Bi-stability is a phenomenon that relies on the initial
condition. At 7| = 4, the system is bi-stable between E;(0,9.52) and E*(16.6898,13.0248).
If we start any trajectory inside the cyan region, it eventually converges to the co-existence
equilibrium (see the yellow spiral). This closed area denotes the set of initial values for which
the trajectory converges to E*, while any trajectory starting outside of it goes to E| (see the
green curve). The boundary of this region (black curve) forms the unstable limit cycle (see Fig.
3.14 (a)). On increasing the value of 77, the system undergoes a subcritical Hopf-bifurcation at
T = ’L'l(l) = 6.5576641808 and becomes unstable about E*. Fig. 3.14 (b) depicts instability of
E* and stability of £y at 11 = 7.1 > ’L'l(l). In this case, the amplitude of the oscillations about
E* increases and becomes so high that it touches the stable manifold of £}, resulting in almost
everywhere stability of prey-free equilibrium. On further increasing 7, the system regains its
stability via another subcritical Hopf-bifurcation at 71 = ’cl(z) = 23.30867546, and an unstable
limit cycle enclosing stable E* is generated. Fig. 3.14 (c) illustrates this behavior at 7, = 30 >
T](Z). However, the system remains no longer stable (via another subcritical Hopf-bifurcation)

when the fear-response delay crosses another critical value 7; = ’51(3) = 33.56175777054. Fig.
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3.14 (d)at 1y =35> ‘L'l(3) has the same explanation as Fig. 3.14 (b). In all these cases, the prey-
free equilibrium E; is always stable. The range of 7| for the system to be bi-stable between
E* and E;: [0, ’L'l(l)) U (’51(2),’51(3)). This multiple switching of stability with respect to the fear-
response delay can be better explained through the bifurcation diagram plotted in Fig. 3.15.

The phenomenon of bi-stability between E* and E;| remains unaffected by 7; until it reaches

the first critical value, i.e., T,

(1)

. In fact, for a lower value of 7|, E* is stable for a broader range
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Fig. 3.14: Phase portrait at (a)7; = 4 < 7., b)) < 1, =7.1 < 7%, (@7 < 1, =

3

30< 1 ) and (d)7y =35 > 1:1(3). Parametric values are same as chosen in Fig. 3.9.
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Fig. 3.15: Bifurcation diagram for y showing subcritical Hopf-bifurcation with respect
to 71, other parameters are the same as chosen in Fig. 3.9 .

The first two critical values are obtained from the formula in Theorem 3.4.2 corresponding
to o = 0.23267529 and ' = 0.11304208. 7\ is determined from the numerical simula-
tion. The solid red and green lines represent the stability of E* and E|, respectively. The blue

and red dashed line or curve shows instability (see Fig. 3.15).

Region of stabilit

Fig. 3.16: Stability region for the system (3.2) in K7} — plane, other parameters are same
as in (3.33).

Since the system shows Hopf-bifurcation regarding K and 7|, we plotted Fig. 3.16. The
values of K for which the system is stable around E* are taken on the abscissa. For each value

of such K, one can obtain a unique value of 7; at which the system starts showing oscillatory
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behavior. This divides the K7, — plane into two different regions. E* is locally asymptotically

stable in the blue region, and in the white region, it is unstable and periodic solutions occur.

Stability region [
Instability region 1 |

Hopf bifurcation curve

0
0 005 01 015 02 025 03 035 04 045 05

T1

Fig. 3.17: Region of stability and instability in 7; T —plane.

Integrated effect of fear-response delay and gestation delay: 7; > 0, 70 > 0. For each
value of 7 in its stable range [0, 7j,), a unique value of 7 in its stable range [0, Téo) is obtained
at which the system switches its stability via Hopf-bifurcation. Below this point, the system
is stable around positive equilibrium E*, and at this point, it becomes unstable with born of a
stable limit cycle. The collection of all such points forms the Hopf-bifurcation curve, as shown
in Fig. 3.17.

Taking 71 = 0.3 € (0, 7},), we obtain a critical value of gestation delay at which the Hopf-
bifurcation can occur. On substituting i = 0 in (3.28), we get réo =0.13631786. The transver-

sality condition also holds, viz.

d(Rel) = (1.2393)10* £ 0.
d‘L’z

/
Tr= ‘L'20

In the presence of fear-response delay, Fig. 3.18 (a) and (c) display the stability of positive
equilibrium E* when the value of 7, is less than its critical value Téo’ and Fig. 3.18 (b) and
(d) presents the stable limit cycle surrounding unstable E* when 7, > Téo. All of these aspects
verify Theorem 3.4.3. Hence, the system (3.2) experiences a Hopf-bifurcation in the presence
of both delays.
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Fig. 3.18: Fixing 71 = 0.3 € (0,7;,) we obtained 7, = 0.13631786 from (3.28).When
7 = 0.09 < 175, E is locally asymptotically stable (a,c). At 7, = 0.16 > 7, E* is
unstable and it is surrounded by a stable limit cycle (b,d).

3.6 Discussion and conclusion

In this article, we have studied the Leslie-Gower prey-predator model, assuming predators can
consume prey as well as the constant additional food provided, according to their choice. The
impact of prey’s fear of being victimized is also considered. For prey conservation, some are
protected, and hence the concept of refuge is taken into consideration. We have also analyzed
this system in the presence of gestation delay and fear response delay. As per our knowledge,
no literature shows dynamics for a prey-predator model with all these effects.

In the non-delayed model, we observed that when species are present initially, they will
sustain for all time if the birth rate of prey is good enough. The system exhibits four equilibria:

(1-q)oaKy
0.—F

trivial equilibrium E(0,0), prey-free equilibrium E; (0, ), predator-free equilibrium
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Ez(%, 0) and interior equilibrium E*(x*,y*). Ey and E, are always unstable. Prey-free equi-
librium is stable only when the birth rate of prey does not exceed a particular value. The
stability of this equilibrium decides the number of positive steady-states. The instability of E
guarantees the existence of a unique positive equilibrium and vice versa. When E| is stable,
the system acquires either two positive equilibria or none. When both species do not co-exist,
the prey will become extinct, and the predator will survive, resulting in the global stability of
E; (see Fig. 3.8). The stability of E* can be achieved under a necessary and sufficient con-
dition (3.8). Furthermore, we discussed the possibility of Hopf-bifurcation and transcritical
bifurcation.

Many researchers have shown that cost of fear can alter the stability of the system [76,
127]. Therefore it is essential to investigate our model concerning the fear parameter K. We
obtained fascinating results with respect to it. The system shows multiple Hopf-bifurcations and
a transcritical bifurcation on varying K. In the absence of fear, both species converge to their
positive steady-state. This behavior is unaltered until the fear reaches a certain level. At this
level, both species start oscillating about the positive equilibrium. Taking K in a specific range
can maintain the stability of the system. When prey individuals are too afraid, they may forage
less, eventually leading to extinction. Although increasing fear reduces the predator density,
they never go extinct (see Fig. 3.3). This result agrees with the recent findings demonstrated by
Mishra and Upadhyay [128]. They remarked that the fear of wolf spiders reduces the density of
insect pests and helps the plant ecosystem, strengthening the role of wolf spiders as biocontrol
agents. In our system, it has been observed that extra food provided to the predator plays a
significant role in governing the dynamics of the system.

Onana et al. [11] concluded that when predators’ preference rate increases, they decline.
On the other hand, our findings show that the increasing preference rate of predators results
in their increment. However, when predators prefer prey more, they decline. Possibly, this
diminution in predators is the consequence of the reduction in prey population (due to the lack
of their favorite food) (refer to Table 3.3). Since the system shows extensive fear parameter and
preference rate results, we divided the gK— plane into various regions based on the stability of
E* and E;. By looking at Fig. 3.7, one can determine the value of ¢ and K for which the system
attains Hopf-bifurcation and transcritical bifurcation.

The purpose of introducing refuge to prey is to control the biological imbalance. We ob-
tained a result in favor of it viz. reserving prey up to a certain level can enhance both the
species. It is also noted that predators never go extinct even when the prey refuge is strong. The
presence of extra food could be the reason for the survival of predators. A study by Ghosh et
al. [110] reveals that both species co-exist at the low value of prey refuge, but predators extinct

at strong prey refuge.
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The amount of energy obtained from additional food given to the predator can have a mas-
sive impact on the dynamics of the system. The system shows local as well as global dynamics
with respect to 4. As predators get more energy from additional food, they can consume more
prey. The decrease in prey may lead to their extinction. As shown in Fig. 3.6, at a high value of
a4, the prey population extinct, and the predator population survives via a homoclinic global
bifurcation. Prasad ef al. [111] observed that a large quantity of additional food with high
quality to predators could lead to prey eradication. Also, when both populations co-exist and
the system is oscillatory, reducing the value of a4 can stabilize the system via a supercritical
Hopf-bifurcation.

The system without delay exhibits bi-stability by adjusting the additional food parameter
4. The solution trajectory converges to two different attractors depending on the initial state.
One is the co-existence equilibrium, and the other is prey-free equilibrium. Their basin of
attraction is separated by a curve called separatrix (see Fig. 3.9 ). Also, we obtained the range
of ay, for which the system stays bi-stable between E* and E.

Destabilization of a prey-predator system with respect to time delay is frequent. To study
the dynamics of the delayed system (3.2), we investigated analytically and numerically. We
studied this model in the presence of gestation delay, fear response delay, and when both de-
lays are present. In all these cases, we observed that a stable system undergoes a supercritical
Hopf-bifurcation at a slightly high value of the delay parameter, resulting in oscillations of both
species around their co-existence equilibrium. With a different set of parameters, we examined
the effect of fear-response delay on the bi-stability of the non-delayed system. The delayed
system experiences stability switching three times through subcritical Hopf-bifurcation as 7;
varies. Consequently, we obtained a range of 7y, for which the system is bi-stable between E*
and E;. Panday er al. [88] analyzed that multiple switching of stability arises due to super-
critical Hopf-bifurcation for fear-response delay. Moreover, they also observed a bi-stability
phenomenon between interior equilibrium and limit cycle. Gestation delay introduced in the
system (7] = 0, 7, > 0) can cause at most one-time stability switching through Hopf-bifurcation.
Analytically, we determined the direction of Hopf-bifurcation and stability of the bifurcated
limit cycle. Since the system shows Hopf-bifurcation with respect to the fear parameter and
both the delays, we mapped Hopf-bifurcation curve in K7;—plane and 7;7,—plane. To under-
stand the bifurcation phenomenon clearly, bifurcation diagrams are constructed (see Figs. 3.11,
3.13 and 3.15).

Our findings might give a biological understanding of prey-predator relationships. This
research can be expanded in the future by incorporating diffusion aspects. The impact of the

reaction-diffusion effect on prey-predator interactions would be fascinating to investigate.
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Chapter 4

Bifurcations and multi-stability in an eco-epidemic

model with additional food '

4.1 Introduction

In the study of ecosystems, predator-prey interactions are a major topic of debate. Non-linear
differential equations are frequently used to express the interaction between them. Complex
phenomena such as bifurcation and chaos have been found in these sorts of dynamic systems
[129]. When prey, or predator, or both are exposed to some infectious disease, the dynamics
of the system are often altered. We direct interested readers to the pieces of literature [45, 130,
131] and relevant references therein. The study of illness in a prey-predator system falls under
the umbrella of eco-epidemiology, a specialized branch of research. The fusion of ecology and
epidemiology has made tremendous progress in recent decades. To examine the interaction
among prey and predator, plenty of mathematical models are developed [33, 128, 132, 133,
134, 135, 136]. In 1986, Anderson and May [44] discovered that the virus in a prey-predator
system is capable of changing the stability behavior. Many articles in the prior research focused
solely on parasite infection in prey [137], while some addressed predator infection through
prey consumption [138] or disease transmission in predators [139]. Recently, Majumder et
al. [140] looked at the impact of ambient noise on species persistence and extinction in an
eco-epidemic system. Due to the fact that infected preys are weak, the predator can hunt them
easily. According to Joly and Messier [141], wolf hunts on moose are more likely to succeed if
the moose is severely infested by Echinococcus granulosus. However, Saha and Samanta [84]
revealed that if a predator consumes infected prey in a large amount, the predator population
declines. This shows that feeding on sick prey can harm the predator. Several experimental
investigations have demonstrated that parasitic mortality enhances predation susceptibility in

the majority of eco-epidemic systems [142, 143]. When a predator feeds on healthy food, it

LA considerable part of this chapter is published in The European Physical Journal Plus, 137, 118, 2022.
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may do so out of fear of contracting a disease from the diseased prey. For example, dicyphus
hesperus females rejected infected nymphs 96% of the time compared to non-infected nymphs
39% of the time [144].

The healthy prey may show a defense mechanism against predation. The effect of group
defense on interacting populations is often presented through the Holling type IV functional

response: —2*— [48]. Calculations conducted by Yamauchi and Yamamura [145] showed
L tx+ta

i

that defensive evolution in prey tended to enhance harmonious cohabitation among the three
species and, depending on parameter values, lowered the amplitude of population oscillations.
A Leslie-Gower prey-predator model with group defense was investigated by Mishra et al.
[81], they determined that greater prey defensive capacity leads to destabilization of the model,
which can lead to periodic and chaotic fluctuations. In the presence of disease in prey, Bate and
Hilker [146] hypothesized that prey performs group defense and found that the prey’s sickness
can aid the predator by lowering prey numbers. Banerjee et al. [46] performed extensive
bifurcation analysis comprising local and global bifurcations for an eco-epidemic model with
herd behavior of prey. Gimmelli ef al. [147] investigated an ODE model with a sick predator
interacting with the prey showing herd behavior. They observed a heteroclinic connection
between saddle equilibrium points in the disease-free system.

An additional food given to the predators increases the density of predators which causes
a decrease in the equilibrium level of prey species. It has been observed that additional food
given to the predators may reduce or eliminate oscillations in the prey-predator system [109].
For species conservation, it is essential to eradicate the disease from a prey-predator system.
Providing additional food to the predator is one of the non-chemical approaches for this aim. It
is evident from the research done that extra food for the predator can control disease in the sys-
tem. Sahoo’s [40] numerical results indicate that in the absence of additional food, the system
can not be disease-free above a threshold of infection rate but providing food can eliminate the
disease even if the transmission rate is high. Plenty of eco-epidemiological models have been
developed and analyzed in the last several decades with the goal of controlling the disease, and
it has become a topic of great interest. Samanta et al. [148] observed that in the presence of
alternative food, enrichment plays a significant role in reducing the diseased population. Sahoo
and Poria [149] formulated a SEIP prey-predator model with disease in prey, and to control
the disease in the system; they studied the consequences of providing alternative food to the
predator. It does not matter whether the predator is infected or not, a predator species’ popula-
tion does not become extinct when they have access to an alternate food supply [45]. Providing
alternative food to one of the interacting species has become an eco-friendly method with appli-
cations in a variety of disciplines, including biological conservation, bio-remediation, resource

management, biological control, pest management, and so on. However, research shows that
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studying predator—prey dynamics in the presence of increased food accessible to the predator
alters the system’s qualitative behavior. Therefore, it is important to investigate the effect of
additional food on the dynamics of a prey-predator system.

The primary goal of the present article is to investigate the impact of additional food to
control disease in a prey-predator system. To achieve this goal, firstly, we formulate a Leslie-
Gower prey-predator initial value problem based upon some assumptions in Sect. 4.2. The
biological viability of the proposed system is demonstrated in Sect. 4.3. Next, we analyze the
disease-free subsystem substantially in Sect. 4.4. The results obtained in this section are helpful
in determining the dynamics of the full system. Sect. 4.5 deals with equilibrium point analysis,
local stability, Hopf-bifurcation, and global stability. Then, to confirm the analytical results
derived, we perform numerical simulations in Sect. 4.6. Lastly, all findings of the chapter

(theoretical and numerical) are summarized in Sect. 4.7.

4.2 The model with basic assumptions

In this section, we propose a formal model that depicts disease transmission in a prey-predator

system based on the following assumptions:

1. In the presence of infection, the prey population is divided into two basic compartments:
susceptible prey S(7) and infected prey I(¢), with the predator’s density represented by
P(t) at any time ?.

2. Only susceptible prey can compete for the resources (limited). As a result, their growth
is considered logistic growth. Infected prey, on the other hand, is supposed to be unable
to reproduce. Therefore, their population growth is solely related to the infection of
susceptible victims. The transmission among susceptible and infected classes obeys the
mass-action law [133]. Nevertheless, the prey cannot transmit this disease to the predator

in any case [150].

3. The predator cannot distinguish between healthy and infected prey, and thus predator

utilizes healthy as well as infected prey, which is reasonably significant [84].

4. Susceptible preys are healthy and can defend themselves. Hence Holling type IV func-
tional response is taken into consideration. In comparison, infected preys are not strong
enough to defend themselves against predation. Therefore, we assume that the predator

consumes infected prey employing Holling type II functional response.
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5. The residual loss in infected prey is either due to its natural death (includes death due to
infection also) or by predation, which means that the infected prey is not immune to the

disease.

6. We presume that the predator is fed extra food of constant density K4 and gains energy
in the form of biomass o4. According to the proportions given by the parameter ¢, the
predator consumes prey and the supplementary meal. Therefore, their development is
reliant on both sources, and this relationship follows the modified Leslie-Gower scheme
[11].

-2

Fig. 4.1: Schematic flow chart showing model (4.1) formulation.

In light of the preceding assumptions, the interaction between susceptible prey, infected prey,
and predators feeding on them is represented as

das S+17 SP
—=r15<1—%> _BSI_L:fl(SvlaP)v

dr S—;+S+a1
di qonIP

ar =PIt =LSLP @.1)
dt ﬁS 1 02+I fz(S, y )7

dP £p

ar P\ = £3(S,1,P

dt " ( qals+qa21+(1—q)aAKA> f3( s Ly )7

$(0) >0, 1(0) > 0 P(0) > 0.

The biological meaning and dimension of parameters and variables involved in system (4.1) are

listed in Table 4.1, and the formulation of this model is illustrated as a schematic view in Fig.
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4.1. The proposed system (4.1) is composed of two subsystems: SP model (4.2) and ST model

(4.3).

(1) In the absence of disease, i.e., I = 0, model (4.1) takes the following form:

Investigating (4.2) would be very valuable in studying the intricate dynamics of (4.1).
Model (4.2) is an interesting problem to study as it has not been addressed in the current

dP
— =nP

dt

(- s
qouS+ (1 —q)oaKy

>:hx&Pﬁ

literature. We will analyze this system in Sect. 4.4.

(i1) In the absence of predation, i.e., P = 0, model (4.1) is transformed into an epidemic

model, given by:

ds S+1
= = rlS(l — i) — BSI,

4.2)

di K 4.3)
dl
& _BSI— &1
dt
Sahoo [40] thoroughly investigated this model (4.3).
Table 4.1: Biological explication of variables/parameters used in model (4.1)
Variables/Parameters Biological explication Dimension

S Susceptible prey density Biomass

1 Infected prey density Biomass

P Predator density Biomass

T Intrinsic growth rate of susceptible prey Time ™!

K Environmental carrying capacity of prey Biomass

B Rate of disease transmission at which the susceptible prey gets infected Biomass™! Time ™!

a Maximum rate of per capita removal of susceptible prey due to predation Time ™!

ai Half saturation constant for susceptible prey Biomass

Y Measure of predator’s immunity from prey Biomass

o1 Natural death rate of infected prey + death rate due to infection Time ™!

q Preference rate of predator for food and ¢ € (0,1) Dimensionless

o Maximum rate of per capita removal of infected prey due to predation Time ™!

ar Half saturation constant for infected prey Biomass

r Intrinsic growth rate of predator Time ™!

oy It measures the amount of energy of the additional food Time ™!

assimilate into the predator’s energy
Kx Additional food of constant density A Biomass
13 Maximum rate of per capita removal of predator species Time ™!
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4.3 Positivity and boundedness of the proposed system

The other form of model (4.1) is

ds dl dP
E_S¢1(S7I?P)? E_Id)Z(SvIuP)J E_P¢3(5717P),
where
S+1 qou P qooP
SILP)=r{l——|—-B]l— ————, S, I,P)=pBS—6 — ,
nis1P) =n(1-210) < p o SR = B8 - TR

P
(P3(S,I,P):r2(1— 5 )
qouS+qonl + (1 —q)oa Ky

It follows that

S(r) = 5(0)e 91 (5(0).1(0).P(0))d0 . ¢
I(t) = ](())efé 92(5(6).1(6).P(0))d6 >
P(t) = p(())efé 93(5(0).1(6),P(6))d6 >

Thus, all solutions (S(¢),1(z),P(¢)) with the positive initial condition remain positive through-
. 3
out the region R-, .
Due to a scarcity of resources, nature does not allow any species to expand abruptly. There-

fore, it is essential to check the boundedness of the formulated model.

Theorem 4.3.1. All solutions of system (4.1) starting in Ri are confined in the region Q =
{(S,I,P)€R} : 0<S<K,0<S+1<E 0<P<pu}, where 5, and u are defined in the
proof of this theorem.

Proof. From the first equation of the model
dS S
—<nSl1——=
dr =" ( K )’

limsupS(¢) < K.

t—>oo

which implies

Combining first and second equations of the model gives

ds dli
— 4+ —<2rnS—rnS—-46I1
dt+dt_ 1’15 1”15 14,
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where 6, = min{d;,r }. This implies

limsup(S(r) +1(1)) < 2r1K'

[—yoo 5*
Now, to show the boundedness of predator population, we can write

dP
— < P

_ &p
<l me+%§Hn—@%mJ’

Using differential inequality theory, we arrive at

1 20
imsupP(0) < g (ak(an+ 2527 + (1~ ek ) =
[—oo 5 5*

Therefore, we can conclude that all solutions of system (4.1) remain attracted in the region
Q. ]

When a population is present at the beginning, it has the potential to live under certain

conditions. The following theorem determines these requirements.

Theorem 4.3.2. Assume that the following inequalities are true:

(i) 2(”1;;[31()_‘_61051# < 17

ary

.o 1 rqouKp | 261K | 2qonKu
(ii) 3( a1 51* + =08, ) <1,

then the system (4.1) persists uniformly.

Proof. If each component population survives, the system is considered to perpetuate. Analyt-

ically, the system is said to be persistent if there exists M, > 0, M} > 0 such that
M, <liminfX (¢) < limsupX(t) < M,,.

In order to prove the above condition, we manipulate the first equation of the model as

das r 2K qon 1’152
= > (= — S—
(m (h+p) 2t - 1% °

which implies
r
K

liminfS(r) > <r1 —(

f—oo

2nK qoqu\ K
—_— = —=:58,.
+ﬁ) 6* ai r ¢

Now, from first two equations of model (4.1), we can write

d(S—I—[) qouKu 261K 2qrionKu
—_— S+1)>nrS,— — — .
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Therefore,

qOClK‘LL 261K 2q062Ku _.

g

liminf(S+17)(¢) > S, —
1}221( + )()_ “ air 0. a0y

From the third equation of the model we directly obtain

1 —q)oak,
liminfP() > L —D%Ka _

f—3oo & Fa-

Let M, = min{S4,1,,P,}, M = max{K, 2:3—1:{,,11} and X (t) = (S(r),1(¢),P(t))’. If both condi-

tions mentioned in the theorem are satisfied, then it follows that
M, <liminfX(r) <limsupX(t) < M.

As a result of this, the theorem is established. ]

4.4 Dynamics of subsystem (4.2)

The boundedness of system (4.1) results into the boundedness of subsystem (4.2). The possible
four steady-states of system (4.2) are: (i)Eo(0,0), (ii)E1(K,0), (iii)Ex (O, (1—4)#)’ (iv)Ey(Ss, P.),

here (S, P,) is the unique positive solution of following equations:

r1<1—£) L (4.4)
K 57 +S+a;
1
P = E(qoc15+(1 —q)(XAKA). 4.5)
Solving Egs. (4.4) and (4.5) we obtain
BS® + B3S8* +BsS+B; =0, (4.6)

where By = 1€ >0, By =r1&(y—K), Bs = —r YK +ria1vé + > a?yK, B; = qouyK(1 —

q)0aKy —riayEK.
The possible cases for the uniqueness of E, are following:

By B3 Bs By
0+ + + -
(i) + + - -
(i) + - - -
(iv) + - + -
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e In cases (i), (if) and (iii), using the Descarte’s rule, the existence of unique positive root

of Eq. (4.6) is guaranteed.

e In case (iv), by Descarte’s rule of sign Eq. (4.6) may have three positive roots or one
positive root and two complex roots. Moreover, if the discriminant of the cubic equation,
e, A= B%B% —4B lBg — 4B§B7 — 27B%B% + 18B1B3B5B7 is negative, then it assures that

Eq. (4.6) has exactly one positive root. This provides us the next theorem.
Theorem 4.4.1. (a) Let any one of the following holds:
(i) B3 >0, Bs >0and B7 <0,
(ii) B3 >0, Bs <0and B7 <0,
(iii) B3 <0, Bs <0 and B7 <O0.

Then subsystem (4.2) has a unique positive equilibrium E. (S, P;).
(b) Let the following inequalities hold: Bz <0, Bs >0, B; < 0 and A < 0. Then E.(S.,P.)

exists uniquely.

Remark. B; < 0 is the necessary condition for the uniqueness of E, (S, Py).

Local stability: Based on the eigenvalue theory, the local stability behavior of any equilib-
rium is determined. Table 4.2 describes the boundary equilibria and their local stability behav-

ior of subsystem (4.2).

Table 4.2: The local stability behavior of boundary equilibria of subsystem (4.2)

Equilibrium point Stability behavior
(0,0) Unconditionally unstable
(K,0) Always saddle
(0, (l_q)%l{/‘) Asymptotically stable if r| < %;

: g (1-q)oaKa
saddle if r; > arl

For the stability behavior of E, (S, P), we can state the following theorem.

Theorem 4.4.2. E.(S.,P,) is locally asymptotically stable if and only if ®) > 0 and @, > 0,
where @ and O, are defined in the proof of this theorem.

Proof. The variational matrix for (4.2) about E, (S, Py) is

28
_VIS* q(XlS*P*(T/* +]) . qals*
2 2
Mg, = K (5*7+S*+a1)2 S48 +ay
s«
r2€P* q0 Vzép*

(qoy Sx+(1—q) s K )2 T qauSi+(1—q)ouKy
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The characteristic equation corresponding to above matrix is
A2+ OL+0, =0,

where @) = —tr(M|g,) and @, = det(M|g,).
According to Routh-Hurwitz criteria, E. (S, P;) is locally asymptotically stable if and only if
®; >0and ©, > 0. ]

Kqou P, (% +1 . .
M, the stability of E. (S, Py) is confirmed.
(% +Si+ar)?

Now let us discuss the global stability of subsystem (4.2) in the next theorem.

Remark. If r| >

Theorem 4.4.3. Let E.(S.,P.) exists uniquely, and it will be the global attractor if V| < 0,
where V1 is defined in the proof of this theorem.

Proof. The uniqueness of E, (S, P,) yields r; > M which implies that the prey-free

1—
ai
equilibrium is unstable. Now, the possible attractors in the positive quadrant of the SP— plane

are E, and the limit cycle. Let us consider a continuously differentiable function in Rz+ as

(£+S+a)
Hy =T .
Now,

V= a(hH)—i— a(hH)
which gives
2
v— [ gl L a r& (5 +S+ar)
O PLKy UK v K] S(goaS+(1-q)ouka)’

If Vi <0, then by the Bendixson-Dulac’s criteria, the system (4.2) can not have a limit cycle.
Therefore, in this case, E, (S, P.) will be the global attractor. O

Remark. If ¥ > K, then V is always negative.

4.5 Dynamics of the proposed system (4.1)

The equilibrium points of system (4.1) are Ey(0,0,0), Es(K,0,0), Ep(0,0, M%'LAKA), ESI(%, %,0),
Esp(Ssp,0,Psp) and E*(S*,I*, P*). The existence of Esp(Ssp,0, Psp) is same as discussed in the

previous section. The axial equilibria: Eg and Ep exist unconditionally. Eg; exists if K > ﬁ,

and the disease in this case can be eradicated if K < %
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Existence of E*(S*,I*, P*): Here (S*, I, P*) is the unique positive solution of the following

algebraic equations:

S+17 P
(1—i) iy L ——) 4.7)
S
7 TS+a
qooP
S—0]— =0 4.8
B ey Al (4.8)
EP >
I’z( qo S+ qopl + (1 — q)OCAKA 4.9)

Eq. (4.9) can be rewritten as

1
P= —(qalS+qa21+ (1 — q)(XAKA).

§

Substituting this value in (4.7) and (4.8), we obtain
A1S+ A ]+ A3SI+ Ay =0=wy(S,]), (4.10)

B1S® + ByS*I + B3S? + B4SI + BsS + Bl + B, = 0 =y (S, 1), 4.11)

where

Al =q?oqop—Baré, Ay =q* a3 +£8 >0,A3=—EB < 0,As = ES1ar+q(1 —q) 04Ky > 0,
B =r&>0,By=r&+BKE >0, Bs=r&(y—K), Bs=rY5+BYyEK >0,

Bs = —nYEK +ria1Y6 +q* oYK, Bs = ria1v§ +BarvEK + > a1 opyK > 0,

B7 =qoyyK(1 —q)ouKy —ria1ySK.

The curve v passes through (0,7;) and (S;,0), where I} = —fT‘z‘ <0and S| = —‘:—‘1‘ > 0 (if

A1 < 0), and we also assume that its slope

dI Ay +IA;
dS  Ar+SA;

is positive. The curve y, passes through (0,/;) and (S;,0), where I, = —g—z > 0, if By < 0 and

let $» be the unique positive root of the equation:
B1S® +B3S?+BsS+B7 =0.
The slope of v,

dl  3BiS*+2SIB,+25B3+ Byl + Bs
ds B»S?2 + B4S + Bg

is assumed to be negative. If S; < S,, then curves y; and y» intersect at a unique positive
point (S*,I*). Substituting it in (4.9) yields a unique positive equilibrium E*(S*,I*, P*). All
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the sufficient conditions for existence of E* are mentioned in the theorem below.

Theorem 4.5.1. The interior equilibrium E*(S*,I*,P*) of the proposed system (4.1) exists

uniquely under the following conditions: (i) A <0,

. A+IA
(ii) AZIISA?% <0,
(iii) 3B1S? +2SIB, +2SB3 + B4l + Bs > 0,
(iv) B; < 0,
(

V) §1 < .572.

To verify Theorem 4.5.1, we consider a set of parameters as
K=5r=25 a,=0.1539, ap =0.04, a1 =0.1, a2 =0.1, y=0.1, n =2, K4 = 10, g =
0.6, 6, =0.05, =03, £ =1.

For this set, all conditions in Theorem 4.5.1 are fulfilled viz., (i) —0.0919 < 0, (ii) —
51.2557 < 0, (iii)12.1502 > 0, (iv) —0.1214 < 0 and (v) condition can be verified from Fig.
4.2. As aresult, a unique interior equilibrium E*(S*,I*, P*) of system (4.1) is obtained. Here
P* is determined on substituting values of $* and 7* in Eq. (4.9). Thus, the interior equilibrium
is E*(2.154,1.778,1.6644).

Interior equilibrium
(2.154,1.778)

Fig. 4.2: Intersection of isoclines is a unique interior equilibrium (S*,7*).

4.5.1 Local stability

Local stability refers to the stability of an equilibrium point in the near vicinity. The Routh-

Hurwitz criterion and the Jacobian matrix will be used to investigate this phenomenon. The
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characteristics of extinction equilibrium E (0,0, 0), prey-only equilibrium Eg(S,0,0) and predator-

(1—9);'%191)
5

only equilibrium Ep (0,0, are the same as mentioned in Table 4.2. Now let us discuss

the stabilizing property of all feasible planar and interior equilibrium points of system (4.1).

Stability behavior of Eg;(Ss;,Is;,0):  The variational matrix about Eg; is

_ nSsi _nSsi S 9% Sy
K K %,
= TSsrtai
M = apl.
= | Bl 0 ity
0 0 rmn

The determinant of above matrix is r, s (~ [‘?’ + 8;) > 0. For the stability of Eg;, determinant

of M|g,, must be negative. Hence Eg; is always unstable.

Stability behavior of Esp(Ssp,0,Psp):  The variational matrix about Egp is

25
qouSspPsp(—5F +1)

r18sp r18sp qo Ssp
K 2 - K ﬁSSP e
M (%+Sgp+a1)2 %—O—SSP—Fal
|ESP - 0 BSSP — & — qaéfsz’ 0 ;
"25P52pqal 72§P32anz _ & Psp
(qouSsp+(1—q) oKy )? (qouSsp+(1—q) oKy )? qouSsp+(1—g)oaKy

Clearly, one eigenvalue of the above matrix is fSsp — &1 — %. The other two eigenvalues
are the roots of the characteristic equation given in Theorem 4.4.2. Therefore, for stability

conditions of Egp, we can establish the next theorem.

Theorem 4.5.2. Egp is locally asymptotically stable if the following conditions hold true:

(i) 8 > BSsp— 22

Tap
(ii) > K‘]SZIPSP(Z?P'FU.
(=5 +Ssp+ar)?
Biological meaning: The disease from the considered eco-epidemic problem can be com-
pletely eradicated if the death rate of the infected prey is greater than a threshold value. Also,
birth rate of susceptible prey must exceed a critical value so that the susceptible prey and the

predator can survive.

Remark.

(1) Ep is stable = Egp does not exist uniquely. The contrapositive of this statement is also

true.
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(ii) Egp is stable = E,(S., Py) is stable. The converse of this statement is not true.

Stability behavior of E*(S*,I*,P*): The variational matrix about E* is

myy mpy mp3
Mg = | my; myy mo3

m3p m3y Mm33

_ns 408 PR —ns _ gg __qus
K (¥+S*+a1)2 K #+S*+a1
= ﬁl* qazl*P* _ qazl* s
(ar+17)2 artT”
n&P?qm n&P?qam _ n&P”
(qouS*+qopl*+(1—q)auKa)?  (qouS*+qonl*+(1—q)oaKa)? qouS*+qonl*+(1—q)as Ky

The characteristic equation corresponding to M|g+ is
A3 —I—D17l,2 +DyA +D3 = 0,

where

Dy = —(my1 +my +m33), Dy = myymays + my1m33 + mpms3 — miomy| — m3ms| — mapmo3,
D3 = myimp3map +miomam33 + m3ms3mon — 0y 1mms3 — nianip3msy — mi3mymsy.
According to Routh-Hurwitz criteria, E*(S*,I*, P*) is locally asymptotically stable if and only
if Dy >0, D3 >0, and D{Dy — D3 > 0. In the next theorem, we study the Hopf-bifurcation
behavior of the system taking o4 as a bifurcation parameter.

Theorem 4.5.3. The system (4.1) undergoes Hopf-bifurcation at oy = Otf[‘hf ! around E* (if it
exists) where azghf Vis the unique positive root of the equation Di(as)Dy(0y) — D3(0s) =0

with Dy(ats) > 0, Dy(0s) > 0 and Dy # 1 holds.
Proof. The characteristic equation of the Jacobian matrix of E* is
23+ Dy (04)A? + Da(0a)A + D3 (o) = 0, (4.12)
For oy = af[‘hf }, the above characteristic equation is transformed as
(A2 +D2)(A+Dy) =0,
which entails A; » = +iy/D,, A3 = —D;. Differentiating Eq. (4.12) with respect to o4, we

obtain
dA D\ A*+DyA + D

doy  3A2+2DA+D,’
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Now,

dA

_ —D\D>+Dy+iDy\/D;
doy ’

A=ivD, N 2D2—2lD1\/
(=D, D3+ D,D} — D\ DyD3*) +i(D3D)y + D1 /D,D)y — DD, D3/ %)
2(D3+D3D») ’

which implies

dRe(?L) o DlD/z(\/Dz—l) 7&0
day |, a[hf] 2(D2+D7)  gy—gl
Hence, the transversality condition, i.e., dlflz(j) |a gl | # 0 holds if D, # 1. This brings the
theorem to a close. 0

Remark. With regard to any other parameter, the Hopf-bifurcation analysis will be analo-

gous to that provided in the previous Theorem 4.5.3.

4.5.2 Global stability

In this section, global stability behavior of the unique positive equilibrium E*(S*,I*,P*) is
studied. We are able to find some sufficient conditions under which E*(S*,I*, P*) is globally
asymptotically stable.

Theorem 4.5.4. E*(S*,I*, P*) is globally asymptotically stable if the following conditions hold

true:

. 4V%B2K2 r 2 r (1+K+S*)qa1P* *
N4 B2 < |1 WEKES @ | (5 pony
(i) 52 +(K +B) [K a1(¥+s*+a1) (61 —BS")

2
rzéqoczP qOQI* }’26 . %
(i) [ 1—q)oaKa(qouS*+qool*+(1-q)oyKy) — ar+I* (qK(a1+za§r1)+(1—q)aAKA)(5] Bs"),

2
(iii) ra&qanP* _qa r§ r _ (4K+8)qa P
(1-q)aaKa(qouS*+qopl*+(1—q)ouKy)  ai (qK(a1+2%")+(1—q)ocAKA) K a1(#+S*+a1) '

Proof. We consider a positive definite Lyapunov function about E*(S*,I*, P*) as

s 1 ’ P
=SS —SIn—+-(I-TI" P—P* —P*ln—).
Vi=8§-8§ SlnS*+2( )7+ ( lnP*)

Differentiating V; with respect to time along the solutions of (4.1), we obtain

. S—S*dS dl  (P—P*)dP
Vi= = (=Tt
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Further, some algebraic manipulation yields

. a a
Vi = %(S—S*)eralz(S—S*)(l—I*)+%(l—l*)z
a a
+%(1—1*)2+a23(1—1*)(P—P*)+§(P—P*)2
a a
+%(P—P*)2+a13(P—P*)(S—S*)+%(S—S*)2,
where
ri 1+S+S8")g0P* " oar P
a“:_f ) ( )SCZI , ap = S — 0 — C]I )
(%5 +8*+a)(5 +S+ar) (a2 +1)(ay +1)
a3 = — r2s ai =Bl — (2 +B)
(qouS+qonl + (1 —q)oaKy)’ K ’
ORI L r&qou P*
S+S+ar qouS+qonl+(1-q)oaka)(qonS* +qool* +(1 —g)ouKs)’
_qopl” réqo P*
azs = —

ar +1I* * qo1S+qonl 4 (1 —q)oaKy ) (gonS* + qonl* + (1 — q) oKy )

As per the Sylvester’s criterion, V) is negative definite if

a1 <0, a»n<0, ax<O0, a%z < apian, a%3 <apayz & a%3 < ay1as3.

If (i), (ii), (iii) holds, then the Sylvester’s criterion is satisfied. Hence the theorem follows. [

4.6 Numerical simulation

We begin by numerically simulating the subsystem (4.2) using the parameter values given in
Table 4.3. We construct nullclines and the system phase diagram for various values of oy.
With the increment in g4, the system changes its stability through double Hopf-bifurcation
and a transcritical bifurcation. At oy = 0.3, the system exhibits a stable focus at the positive
equilibrium E. (S, P.) (Fig. 4.3(a)). However, this stability no longer sustains as the system
undergoes Hopf-bifurcation at Ozf[‘Hﬂ = 0.667092, which causes the born of a stable limit cycle
enclosing E,. At oy = 1, the system displays a stable limit cycle around E, (Fig. 4.3(b)). The
aforementioned limit cycle vanishes when the system experiences another Hopf-bifurcation at
af[‘HZ] = 1.419495, and E,. becomes stable. For a4 = 2, the system shows stable dynamics
around the co-existence state E, (Fig. 4.3(c)). With a further rise in @4, the system experiences

[rc]

another type of bifurcation, i.e., transcritical bifurcation at OcAtC = 3.125. The positive steady-
state dissipate at this point, transferring stability to the prey-free state. Therefore, at o4 = 3.5,

the prey-free equilibrium E» is a stable node (Fig. 4.3(d)).
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Table 4.3: Data set of parameters used in (4.2) with references.

Parameters Numerical value Reference(s)

1 5 [150]
K 8.3 [48]
o 5 [40]
ap 5 Assumed
Y 1 [48]
r 2 [150]
Ky 10 Assumed
q 0.8 [11]
13 1 [150]
oy 0.3 Assumed

20 T
— a,=1
sl a,=0.3 A

16 stable limit cycle

stable E,.
14

12F

10

stable E, stable E,

(©) (d)

Fig. 4.3: Nullclines and phase portrait of SP subsystem (4.2) for different values of o4.
Green curve represent the prey nullclines and red lines represent the predator nullclines.
Two trajectories starting from different initial points are shown by magenta and blue
color.
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To visualize these bifurcations in a better way, we plotted bifurcation diagram with regard
to ay for S (left) and P (right) in Fig. 4.4. Here blue curve represents E, and oscillations about
it and red is for E»; solid curve shows stable nature and dashed curve denotes instability. At

af[‘Hl] and ocf[xHZ], ®;=0and ® >0 = Re(A) = 0. The transversality condition for Hopf-

bifurcation at & /EH‘} and o /gHﬂ can be checked using the Newton’s forward difference formula,
which results: Re(A Re(1

‘A _espma M|~ g35<0.

doy |, H] doy |, H]

0y 0y

Therefore, Re(A) is a monotonic function of @, at both the bifurcation points. All these condi-

EXH‘] and o f[‘Hﬂ.

tions verify the occurrence of Hopf-bifurcation at o

Fig. 4.4: Bifurcation diagram showing double Hopf-bifurcation and a transcritical bifur-
cation in SP subsystem (4.2) with respect to Q4.

For the set of parameters given in Table (4.3), we obtain E, (3.7697,15.6791) and the eigen-
values corresponding to it are: —0.224 4+ 1.4474i. The prey-free equilibrium (0,0.6) is a saddle
point as rj — (W) = 4.52 > 0. Furthermore, V| = —0.493 < 0 shows that system
(4.2) does not exhibit any periodic orbit. This confirms the global stability of E, (S, P.) (refer
to Theorem 4.4.3). Attraction of trajectories towards the global attractor E, is shown in Fig.

4.5.
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30

25
stable E,

20 -

10 -

Fig. 4.5: Global stability of subsystem (4.2) about E, (S., P.) for parameters set given in
Table 4.3.

Let us examine the effect of additional food parameter a4 on the dynamics of full system

(4.1) with a different set of parameters:

K=5r=25 0=0.1539, a =0.04, ay =a, =y=0.1, n =2, K4 =10, ¢ = 0.6,
01 =0.05 =03 &=1.
(4.13)

We plot a series of phase diagrams with the variation in a4 (Fig. 4.6). When the predator
does not get energy from the provided additional food, i.e., o4 = 0 in such case, the positive
steady state of the SIP system is locally asymptotically stable, and the disease-free state Egp is
saddle (Fig. 4.6 (a)). For positive values of oy, the predator-only steady-state Ep comes into
existence, and it remains saddle for initial values. With the increase in ¢4, the oscillations about
the positive equilibrium E* are turned on, i.e., a stable limit cycle occurs through a supercritical
Hopf-bifurcation at a}gl) = 0.08261. However, the disease-free equilibrium Egp remains saddle
(Fig. 4.6(b)). The limit cycle swells with the rise in o4, and gradually it connects the predator-
only saddle point Ep forming a homoclinic orbit (Fig. 4.6 (c)), which is stable. This coalesces of
limit cycle, and Ep is the homoclinic bifurcation. It occurs in our system (4.1) at (xf) =0.3739.
The homoclinic orbit surrounding E* stays for o4 € [0.3739,0.4146). After that, it integrates
another saddle point Egp into it by the heteroclinic bifurcation at ch) = 0.4146. This closed
trajectory formed connecting two saddle points Ep & Egp is the heteroclinic orbit (Fig. 4.6
(d)). The connection between the two saddles is such that the stable manifold of Ep coincides
with the unstable manifold of Esp and the period of the heteroclinic cycle becomes infinite.

Furthermore, only the predator population survives (Ep is stable) when the heteroclinic cycle
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or the saddle-saddle connection breaks at ch(f) = 0.6769. Ep’s stability promotes the formation

of another planar equilibrium, E él) , which is a saddle node (Fig. 4.6 (e)). As oy is boosted
more, the system achieves bi-stability between axial and planar equilibrium (Ep & Egp) for
oy = 4.5 (Fig. 4.6 (f)). In this case, the basin of attraction for the stable steady-states in shown
in Fig. (4.9 (a)). The critical value of a4 for which the system becomes stable about Egp is
af\s) = 1.3938. Later on, the system attains tri-stability between the axial Ep , planar Esp and
the interior equilibrium E* at (xf) =7.5238.

24 saddle E,
'SPy

saddle Eg,,
saddle Eg,,

stable limit cycle
\

stableEg,—
—>

saddle E'———>

stable heteroclinic orbit
\

) (e) ()

Fig. 4.6: Series of phase portraits with regard to ¢ts. (a) oga = 0, (b) a4 = 0.1, (c) o4 =
0.38, (d) oxa = 0.5, (e) oxq = 1, (f) ¢y = 4.5. The other parameters are same as (4.13).

Multi-stability: The concept of multi-stability between different attractors is based on their
presence and stability criteria. Ecological models may exhibit more than one interior equilib-
rium points. All feasible interior equilibrium points may have different stability behavior which
depends on the combination of model parameters. In many prey-predator systems, only one or
a few states exist where all species persist with different abundances; in most other states, some
species become extinct. The latter phases are undesirable because they result in a decrease in
biodiversity in the model system. This type of multi-stability can be linked to very convoluted
fractal basins of attraction of the various equilibria, resulting in a shift in biodiversity induced
by the transition to a state in which part of the species has died out [151]. A multi-stable sys-

tem can adopt several stable states, in the same ecological conditions. The presence of many
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stable states allows for a considerable deal of system performance flexibility without requiring
large parameter adjustments [152]. Knowlton [153] presented the experimental evidence of
conservation of marine ecosystem due to the existence of multiple attractors. Understanding
the complex behavior of interacting populations such as multi-stability pattern is an important
aspect to study for managing ecological systems. In the present work, system (4.1) is tri-stable

between predator-only equilibrium Ep, disease-free equilibrium Egp, and the positive equilib-

rium E* if all the four conditions stated below are satisfied.

. _qon(1—q)asKy
(1) rl alé < Oa

(i) &1 — BSsp+ 1252 > 0,

25

Kqou Psp(=F+1)

(i) ry —
(=5 +Ssptar)?

> 0,

(iv) D1 >0,D3 >0and D1D, —D3 > 0.

stable ESP ?

325
saddle E"
32

stable E-

31

305

30

(a)

3154

stable E"

stable EP

(b)

stable Eg,

Fig. 4.7: Multi-stability among steady-states Ep, Esp and E* at o4 = 8 and other param-

eters are taken from (4.13).

At oy = 8, the steady-states with their nature are listed as:

(4.0596,0.5655,32.388) saddle node
(1.3384,2.0965,32.1739) stable spiral
(0.2937,0,32.0271) saddle node
(4.9762,0,32.4595) stable node
(0,0,32) stable node

E*(1)
E*
(1)
Egp
Egsp
Ep
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Simple calculation yields (i) : —27.0488 < 0, (ii) : 6.3473 > 0, (iii) : 2.4764 > 0, (iv) :
Dy =2.0388 >0, D3 =0.62787 > 0, D{D; — D3 = 1.5973 > 0. This shows that the system
is tri-stable for Ep, Esp and E*. Moreover, the system (4.1) attains multi-stability for all a4 €
[7.5238,11.5438]. Beyond this value, the interior equilibrium does not exist. For a4 = 8, we
plot the phase portrait showing all steady-states (whose nature may alter) in Fig. 4.7 (a), while
Fig. 4.7 (b) displays attractors only. Since the dynamical behavior of multi-stable systems is
influenced by the initial circumstances, it is possible to find coexisting attractors by choosing
suitable initial conditions [154]. The creation of the attractor is accompanied by the emergence
of its basin of attraction, the limits of which might be smooth or fractal. A bi-stable system
with only two coexisting attractors usually has smooth boundaries of their respective basins of
attraction, whereas a multi-stable system frequently has fractal basin boundaries [152]. The
basin of attraction for the three steady-states is shown by different colors; green color for E*,

blue color for Egp and red color represent initial values for Ep in Fig. 4.10.

28 T T T T T T T T T 18.5 Stable E.

271
26 stable E,
18

251

o stable E, o
241

1751
23

22

21 1 1 1 1 1 1 1 1 1 17 1 1 1 1
4.5 4.6 4.7 4.8 4.9 5 5.1 5.2 5.3 5.4 55 -1 0 1 2 3 4 5

S

(a) b)

Fig. 4.8: Phase portrait showing stability dynamics of SP- subsystem at (a) a4 = 0.5 and
(b) ay =4.5. Here the parameters are same as in (4.13).

The dynamics of the SP subsystem are considerably different with respect to a4, for the set
(4.13). The system (4.2) is globally asymptotically stable about E.(S.P.) for a4 € [0,0.6769).
Additionally, Theorem 4.4.3 holds for the mentioned range. At oy = 0.6769 and onwards,
the system attains bi-stability between prey-free equilibrium E, and the positive equilibrium
E.. In Fig. 4.8 (a), for a4 = 0.5, trajectories starting from six different initial pairs eventually
converge to the E,(4.9982,2.46150). Corresponding to it the eigenvalues are —2.4966,—2,
Vi = —94.19904 and ry — (22409451 — 06532 > 0. Therefore, Theorem 4.4.3 holds and
E., attracts all trajectories globally in the positive quadrant of the SP— plane. In Fig. 4.8 (b), two

trajectories starting from different initial points converge to two different attractors resulting in
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bi-stability between E,(4.9865,18.46045) and E»(0,18) at a4 = 4.5. The set of initial values
for which the trajectories eventually converge to E, (blue color dots) and E; (red color dots) is
displayed in Fig. 4.9 (b).

18.5

17.5

0 0.1 02 03 0.4 05 0.6
S

(a) (b)

Fig. 4.9: Basin of attraction at oy = 4.5 for system (4.1) (left) and (4.2) (right), respec-
tively. Here red and blue dots represent initial values for which the predator-only equi-
librium is stable, whereas blue dots are corresponding to the disease-free equilibrium,
i.e., Esp (in full system) and E, (in SP subsystem). This figure is corresponding to the
Fig. 4.6 (f) and Fig. 4.8 (b), respectively.

33 4

325 |

32

o 315

314

30.5

30

S 025 2

Fig. 4.10: Basin of attraction for multi-stable equilibrium points Ep (red dots), Esp (blue
dots) and E* (green dots). This illustration is associated with Fig. 4.7.
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It can be depicted from Fig. 4.11 that for lower values of parameter ¢4 two inner equi-
librium points E* and E *(1) coexist. E* denotes a stable point, while E *(1) denotes a saddle
point. When we raise the value of o4, both equilibrium points approach towards one another
until they clash and obliterate each other via a saddle-node bifurcation at the threshold value
aj‘sn} =11.5438. For o4 > aj\sn}, neither of the interior equilibria exists. For the chosen set of pa-
rameters, at Oy = af[fn} = 11.5438 we have coexistence equilibrium E(2.7051,1.3637,46.4577)
and det(M|z) = 0.

The variational matrix around E at the saddle-node bifurcation point 0y = af[‘sn} is

—1.2419 -2.1642 —0.0032
A=M|z=| 0409 0.7095 —0.02236
0.1846 0.048 —1.9999

The eigenvectors corresponding to the eigenvalue zero of matrix A and A” are v = (1,—0.5739,0.0794)7

and w = (1,3.0535,0.0478)7, respectively. Our computation yields

0 ~0.12
Fo (E,d™y=| 0 | and D*F(E,a™)(v,v) = | 0.3208
7.9999 0.00057

(a) (b) (©)

Fig. 4.11: Saddle-node bifurcation diagram concerning .
Here F = (f1, f>, f3)7, and Fy, is the partial derivative of F' with respect to 4.
W Fo (E,0™) = 0.3824 # 0 and w” [D*F (E, ol™) (v,v)] = —1.0995 0.

Therefore, according to the Sotomayor’s theorem [60], system (4.1) undergoes saddle-node
bifurcation at a4 = a™ = 11.5438 around £((2.7051,1.3637,46.4577)).
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The effect of a4 on the dynamics of system (4.1) is presented in Fig. 4.12. Different sectors
of the circle contain various attractors. The explanation for all the sectors in the circle is sum-
marized in Table 4.4. We now study the characteristics of system (4.1) concerning the infection
rate B with o4 = 0.5 and other parameters are from (4.13). 8 does not affect the stability of
predator-only equilibrium but affects the nature of disease-free state and co-existence state of
equilibria. It is noticed from Fig. 4.13 (a) that E* and Egp are co-stable for f = 0.1. For the
initial values from the blue dots in Fig. 4.14 (a), the trajectory converges towards Esp, which
indicates that the disease can be eliminated when the trajectory is started from any blue dot.
The stability of Egp is lost at f = 0.1282, and it becomes saddle. At B = 0.13, high oscillations
occur around stable equilibrium E* for the initial time, and eventually, the trajectory goes to
the stable focus. Moreover, the trajectory experiences a pull towards stable manifold of Ep and
Egp (Fig. 4.13 (b)). On small increment in 3, the system exhibits focus-cycle bi-stability (Fig.
4.13 (c), and in between them, there is an invisible repeller (limit cycle) which separates the
basins of attraction of heteroclinic cycle and the focus steady-state £*. The basin of attraction
at B = 0.14 is plotted in Fig. 4.14. With a slight increment in f3, the interior equilibrium loses
its stability by means of a subcritical Hopf-bifurcation at § = 0.1732, while the saddle-saddle

connection remains stable. This feature is presented in Fig. 4.13 (d).

&)
o @ @

a 3
A Q:q )Q:q(4)

Nl [/

Fig. 4.12: Circle graph representing different attractors concerning o4 for all parameters
from (4.13).
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Table 4.4: A brief description of attractors based on intervals of o, as seen in Fig. 4.12.

Range of oy Attractor(s) Color(s)(respectively)
[0, af(‘l) ) E* green

(ch(‘] ), OCIL(‘Z)) limit cycle pink

(Oc/(xz), Oc/§3)) homoclinic orbit yellow

(af), 06/§4)) heteroclinic orbit aqua

(ch(;‘) : af(ls) ) Ep red

(ch(xs), Ot/gé)) Ep,Esp red, blue (circles)

(oc/§6), af[\sn]) Ep, Egp, E* red, blue, green (circles)
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57 24
\
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Fig. 4.13: The effect of disease transmission rate § on system (4.1)’s dynamics when
s = 0.5 and the parameters other than 3, & oy are same as (4.13). (a)Focus-node bi-
stability for B = 0.1, (b)stable focus E* at B = 0.13, (c)focus-cycle bi-stability for f =
0.14, (d) stable heteroclinic orbit at § = 0.18,
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The system shows complex dynamics for additional food parameter o4 and infection rate
B, which motivates us to observe the combined effect of both the parameters. The integrated
effect of B and a4 is shown in Fig. 4.15. We obtain three critical values of o4 corresponding
to a single value of B for which the system (4.1) undergoes Hopf-bifurcation twice followed
by a saddle-node bifurcation about the co-existence equilibria. As a result, the Bou- plane
is divided into various regions. In Region I, the interior equilibrium of (4.1) exists uniquely
and is locally asymptotically stable. However, it loses its stability at the first Hopf-bifurcation
point on the red-colored curve. Therefore in Region II, the interior equilibrium behaves as a
repeller, surrounded by a closed trajectory. Boosting o4 again stabilizes the system about co-
existence equilibrium by means of a supercritical Hopf-bifurcation on the blue-colored curve.
On crossing this curve, there are two interior equilibria one is stable (it was unstable in Region
II), and the other is a saddle in Region III. On increment in ¢4, these two equilibria approach
each other to perform a saddle-node bifurcation. Upon reaching the saddle-node bifurcation
curve (green), both positive equilibria destroy each other and finally disappear. Region IV has
no interior equilibrium because of this. In Fig. 4.15, the predator-only state and the disease-
free state of equilibria always exist, but their stability behavior changes from the saddle to
stable with respect to a4 (when f is fix). Below the cyan-colored dashed line, Ep is a saddle,
and above this line, Ep gains stability. Egp is a saddle in the region below the yellow-colored
dashed curve, but beyond this curve, the Esp becomes stable. Therefore, we can say that in
between the yellow (dashed) and blue curve, the system attains bi-stability about Ep and Esp,
and the system is tri-stable between Ep, Esp and E* in Region III.
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Fig. 4.14: Basins of attraction corresponding to Fig. 4.13 (a) and (c). Green dots are the
initial values for which the system is stable around E*, blue dots show the basin of pull
for Esp and magenta dots display the basin of attraction of heteroclinic cycle.
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Fig. 4.15: Bi-parametric graph showing Hopf-bifurcation curves and saddle-node curve
in the Boy- plane.

06
.
45
05
4 Esp 35 -
35 3 0.4
3 £=0.0322 25
2] - o 03f
25 2
2
15 0.2
15
1
N 01
0s e 05
. o ,
0.02 004 006 0.08 01 012 014 016 018 02 002 004 006 008 01 012 014 016 018 02 002 004 006 008 01 012 014 016 0.18 0.2
B B8 I
(a) (b) (c)
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Fig. 4.17: Effect of infection rate 8 on the population density for oy = 0.1.
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Fig. 4.18: Effect of infection rate 8 on the population density for o4 = 0.5.

In the absence of extra food oy = 0, the system can be made disease-free (Esp is stable)
only when f € [0.02,0.0322) (Fig. 4.16). The elimination of the disease for this range depends
on the initial condition. However, for a higher infection rate, the disease persists in the system
(E* is stable). If the predator receives energy from the additional meal, at a4 = 0.1, the illness
can be managed for a higher infection rate f € [0.02,0.0514) (Fig. 4.17). Furthermore, if the
predator obtains more energy from the given food, disease eradication is better. At oy = 0.5,
Esp is stable for the higher range of infection rate, i.e., § € [0.02,0.1282) (Fig. 4.18). It can
be depicted from Figs. 4.16, 4.17 and 4.18 that the population numbers remarkably vary for
B €[0.02,0.2). The susceptible population decline for ascending infection rates and is added to
the infected class simultaneously. However, the disease gets deadly for higher infection rates;
consequently, the infected prey declines. Due to the lack of the favorite food of the predator,
viz., healthy prey, predator numbers decrease significantly. There is a rapid declination in
predators when there is no provision of alternative food. However, when they gain energy from
the extra food, the decrement is not so fast. The rise in oty does not affect this behavior up
to some extent. Nevertheless, species start to oscillate about their positive steady-state for a
higher infection rate B > 0.1731 at oy = 0.5. The green curve in Figs. 4.16, 4.17 and 4.18
denotes the co-existence equilibrium E* of system (4.1), whereas magenta color line displays

the disease-free equilibrium Egp.

4.7 Discussion and conclusion

Though there are many ways to control the disease in species, mostly are the chemical ap-
proaches like treatment [155], vaccination [156], etc. In literature, a considerable amount of
work has been done on prey-predator models with additional food. However, a few demon-
strated the application of additional food to control the disease in the system [40, 149]. The
present article deals with a prey-predator model where prey develops an untreatable infectious

disease, and the predator can switch to the different food provided. Therefore, we formulated
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a Leslie-Gower model where the predator depends on more than one food source to realize
this effect. Generally, the epidemic models are divided into a finite number of compartments.
When prey catches the disease, we assumed that the whole prey population is classified into
two compartments: susceptible (S) and infected (/). Furthermore, we hypothesized that the
susceptible prey is strong enough to defend themselves from the predator. Thus, this interac-
tion is incorporated as Holling type IV functional response. Since the infected prey population
may be weak and thus the interaction between infected prey and predator is taken as Holling
type II functional response.

Firstly, we established the well-posedness of the proposed model. Then, we used the iso-
clines method to determine sufficient conditions for the uniqueness and existence of the posi-
tive steady-state. We analyzed the disease-free subsystem in order to study the proposed model
finely. Consequently, we discovered that if the prey birth rate is above a certain threshold, the
disease-free equilibrium (E, or Egp) occurs. The present article contains extensive work on
the long-term behavior of all feasible states of the system (4.1) and (4.2). We used eigenvalue
theory and Lyapunov stability theory to determine local and global stability, respectively. If
the birth rate of prey exceeds a certain threshold value and the mortality rate of infected prey
exceeds a different threshold value, in that situation, the disease can be completely eradicated
from the system. Mathematically, the Egp is stable in such a case.

Our model analysis shows that stability behavior of all feasible steady-states depends on
the value of additional food parameter. Both systems (4.1) and (4.2) show rich dynamics with
respect to the additional food parameter o4. For a considered set of parameters given in the text
and with the increment in 4, the subsystem (4.2) switches stability thrice through double Hopt-
bifurcation and a transcritical bifurcation. It is also observed that all trajectories initiated from
different points in the positive quadrant of the SP-plane converge to the positive equilibrium of
(4.2) for the same set. This global attraction towards E, is proven theoretically and numerically
as well. Now, for a different set of parameters, we discovered fascinating results regarding
additional food energy parameter. The system (4.1)’s stability about Ep, Esp and E* is not
always same. The stability dynamics of these equilibria are highly sensitive to the change in 0.
The system undergoes different types of local and global bifurcations for a4 ; Hopf-bifurcation,
saddle-node bifurcation, homoclinic and heteroclinic bifurcation. The roller-coaster of these
bifurcations makes the system bi-stable and tri-stable for different ranges of a4. The presence
of attractors of (4.1) for different values of a4 is uniquely presented through a circle graph Fig.
4.12. For the same set of parameters, subsystem (4.2) is either globally asymptotically stable
about E, or bi-stable between E, and E;. We have plotted basins of attraction whenever the
system is bi-stable or tri-stable. If any solution trajectory starts from the blue-colored point,
the system will go disease-free (see Figs. 4.9, 4.10, 4.14). Due to the disease eradication,

both healthy prey and predator will survive, resulting in the richer biodiversity of the system.
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Moreover, the flexibility provided by the multi-stability of steady-states may result in species
conservation.

The disease-transmission rate f3 is also a crucial parameter to study. It is capable of altering
system (4.1)’s kinetics. For lower values of infection rate, the system is bi-stable between co-
existence and disease-free steady-states (E* and Egp). For a greater infection rate, the system
performs a subcritical Hopf-bifurcation, and periodic oscillations occur about E*. Moreover,
these oscillations go to the stable manifolds of two saddle points, forming a stable heteroclinic
orbit.

Since the system shows captivating dynamics for a4 and 3, we constructed a bi-parametric
curve concerning it (Fig. 4.15). As a result, we found distinct regions depending on whether
the solution trajectory converges to steady-state attractor(s) or cyclic attractor on undergoing
Hopf-bifurcation and saddle-node bifurcation. We can conclude from Fig. 4.15 that the disease
elimination is achievable in the region above the yellow-dashed line in the 8 a4-plane.

When there is no additional food for the predator, the disease extermination is feasible
at lower infection rates only (refer to Fig. 4.16). However, in the presence of extra food,
the predator gains energy from it. In such a case, disease control is possible even for higher
infection rates (see Figs. 4.17 and 4.18). In this way, the disease in a prey-predator system can
be managed if the predator’s energy (obtained from additional food) is boosted more. Sahoo
[40] discovered a similar kind of strategy to control disease in the prey-predator system. The
author observed that supplying an adequate amount of extra food quantity to the predator can

make the system disease-free.
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Chapter 5

Bifurcation and chaos in a delayed eco-epidemic model

induced by prey configuration '

5.1 Introduction

Ecology and epidemiology, individually, are prominent areas of study. Nowadays, significant
research is also going on in the interdisciplinary field of eco-epidemiology. It contains assess-
ments of interactions between hosts and their viruses, parasites, and illnesses of both people
and wildlife at the population and community level. On the other hand, diseases can have a
considerable impact not only on their host populations but also on other species that interact
with them [44]. The invasion of disease has far-reaching effects on the structure and stability of
ecosystems [157]. Eco-epidemiology research aids in identifying the critical elements that con-
tribute to the spread of infectious illnesses and determining the most effective control tactics.
Studying a mathematical model of ordinary differential equations is a standard way to know an
eco-epidemic system. An eco-epidemic model hybridizes an ecological and epidemic model.
In the prey population, the link between predation and infection is multifaceted. According
to Lafferty and Morris [158], due to a fatal disease, killifish (Fundulus parvipinnis) comes to
the surface and becomes more vulnerable to predation. Infection among prey or predator or
both can regulate their co-existence as well as stability dynamics. The incidence rate plays a
crucial role in analyzing the disease transmission among prey-predator species. The incidence
rate refers to the number of infected people in a particular period (per unit of time). In classic
epidemic models, the bilinear incidence rate is widely used [159, 160]. However, the imple-
mentation of a saturated incidence rate can explain the diverse dynamics of the system [150].
The non-linear incidence function incorporates the saturation of disease transmission at high
infective levels [161]. Han et al. [162] analyzed four eco-epidemic models with standard in-

cidence and mass-action incidence. They demonstrated that when the sickness remains in the

LA considerable part of this chapter is published in Chaos Solitons and Fractals, 165, 112785, 2022.
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prey population and the predators ingest enough to survive, the disease continues in the predator
population. According to Haque et al. [163], a sufficiently significant sickness in the prey may
prevent predator extinction. Similar findings have been reported in another eco-epidemiological
model [164], in which enhanced susceptibility of diseased prey is proven to allow the predator
population to survive. Some experimental shreds of evidence show that infectious mortality
increases the chance of predation in many eco-epidemiological systems [141, 143]. Neverthe-
less, too much dependence on diseased prey can harm the predator, decreasing their number
[84]. The fear of contracting the disease diverts the predator toward the consumption of healthy
prey [144]. An ecosystem is likely to show unpredictability in real. Many ecological and eco-
epidemiological systems offer complex dynamics like bifurcation and chaos [165, 166, 167,
168]. Eilersen et al. [169] predicted chaos when the disease among prey is contagious enough
to last. Shaikh ez al. [166] detected chaos through the period-doubling route in an eco-epidemic
system with additional food.

When predation is a threat, many animals organize groups to protect themselves. There is
a plethora of research on ecological systems in which the prey population demonstrates herd
behavior [32, 80, 170]. An experimental study reveals that the shoaling behavior of Minnows
dilutes the predation risk [78]. The basic model displaying herd behavior was introduced by
Ajraldi et al. [29]. The fundamental premise is that the predator will not be able to reach the
interior prey of the herd. Therefore the predator would only target the nearest prey within the
prey group’s boundaries. Mathematically, they represented this type of interaction by using the
square root of the prey population (v/X) rather than simply the prey population (X). Such algo-
rithms are limited to 2D pack forms found in prey such as buffalos, lambs, and other animals.
However, those algorithms cannot deal with 3D herd forms like birds, fish, and other species.
In 2013, Venturino and Petrovskii [30] came up with the elementary concept of generalized
herd shape and replaced v/X with X%, where 0 < o < 1. Their study was further extended by
Xu et al.[31], and then by Bulai and Venturino [32].

Apart from using the herd behavior concept in ecology, many researchers implement it in
eco-epidemiology [171, 172]. In the presence of infectious disease, the sound prey can show
herd behavior against predation. Gupta and Dubey [80] observed fascinating dynamics in their
eco-epidemic model with herd behavior. Banerjee et al. [46] used the square root function
to show the herd behavior of prey and remarked on the impact of simultaneous feeding of
the predator on healthy and sick prey. Time delay integrated with an ODE system makes the
model more practicable. A small change in time delay can lead to bifurcation and chaos in the
associated system [173]. Moreover, the research on delayed prey-predator models with herd
behavior is gaining much attention [170]. Wu and Meng [174] constructed a model incorpo-

rating several ecological factors like herd behavior, time delay, etc. They discussed local and
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global stability and determined the basic reproduction number associated. Djilali [175] incor-
porated the concept of generalized herd shape in the classic Holling type II functional response
in a time-delayed prey-predator model. The author examined the effect of prey herd shape on
the system’s dynamics. As the prey herd shape changes, the predator’s hunting strategy also
modifies, which causes variation in both population densities.

In the physical realm, coordinated behavior by a prey herd has the potential to injure the
predator, particularly in the case of larger prey like buffaloes, elephants, and hippopotami,
which are incredibly harmful to the predator (lions and hyenas as an example). Every year,
many predators die from buffalo horns or hippopotamus bites, demonstrating the enormous
strength of the herd’s cooperative behavior, and this is the primary purpose for living in con-
gregations that prior studies had overlooked. This is only a sampling of the creatures that may
demonstrate this behavior; we can also name other living beings, such as bees, which guard the
herd and employs this cooperative method to defend the group, and the ant population, which
does the same. In an experimental study by Choh et al. [176], it was found that young prey
exposed to adult predators modifies their behavior later in life: as adults, they kill juvenile
predators at a higher rate. Djilali e al. [33] conducted the first investigation to demonstrate that
powerful prey might kill the predator. Furthermore, they believed that some time is necessary
between the injury of a predator during predation and the predator’s death. Motivated by their
work, we have the current piece of research.

It is worth noting that none of the research described above discusses the association be-
tween various aspects such as generalized herd structure, sickness, prey defense boosting preda-
tor lethality, and the time delay between predator injury and death. The current study is an
attempt to fill this void.

5.2 The eco-epidemiological framework

Mathematic modeling is commonly used to analyze population dynamics better and understand
natural occurrences. Ordinary differential equations are frequently used to study the interaction
between prey and predator, which can help with species conservation and population man-
agement. This section discusses the formulation of a three-dimensional prey-predator model,
where the prey exhibits herd behavior and has an infectious disease, predicated on the following

assumptions.

1. We assume that the diseased prey population dies quickly, and reproduction is only eval-
uated for the vulnerable prey species. However, sick prey contributes to the ecosystem’s
carrying capacity. The afflicted classes are unable to recover or develop immunity. Either

predation or natural death eliminates them. The prey is assumed to grow logistically in



112

Chapter 5. Bifurcation and chaos in a delayed eco-epidemic model induced by prey
configuration

the absence of disease and predator. Thus we have

ds S
sl =2
dr ( K ) ’
where r is the intrinsic growth rate of susceptible prey and K denotes the environmental

carrying capacity of prey.

. The fatal contagious disease divides the prey population into two sub-populations: sus-

ceptible prey (S) and infected prey (/). Direct contact is the only way for infection to

BSI
s b+S’

sion, and b is the half-saturation constant, shows the disease transmission mechanism.

spread. The saturated incidence rate, i.e. where f is the rate of disease transmis-

Therefore, the basic epidemic model exhibiting prey(S)-prey(/) interaction is given by

the set of differential equations below:

ds (1_S+1)_ BSI

o K bts

ar - BSI
a brs Ml

Here u; is the natural death rate of infected prey.

. We believe that the prey’s disease cannot be passed on to the predator. Furthermore, the

predator cannot differentiate between healthy and diseased prey; it uses both healthy and
sick prey, which is reasonable.

. The weakness in infected prey makes them highly vulnerable to predation. Due to this,

the predator’s feeding rate for infected prey is reflected by the Holling type I functional

response.

. The healthy prey population forms a herd, and so exhibits social behavior. We consider

that prey and predator individuals interact mainly around the perimeter (border) of the
pack (herd) produced in 2D space or along the whole surface area of the herd in 3D
space. When prey is herded, the interaction between prey and predator is confined to
the prey exposed on the herd’s exterior. This behavior is reflected through the modified
Holling type II functional response. Based on this concept, Djilali ef al. [33] recently
created and studied the following model :

ds S a1S%P
Cars(1-2 ) -2
dt K) 1+4a08*

dP . clalSO‘P

o
& Traose HeP- oSt
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Here « is the rate of herd shape such that @ € (0, 1).

e When o = %, the herd shape is a square or circle,

e When a = %, the herd shape is a sphere or cube.

The last term in the above model displays the role reversal of prey and predator. The

strong prey on the outer herd can injure the predator, which can result in the predator’s
death.

In this chapter, we are using this idea to show the interaction between healthy prey and

predator.
rS(l - S;g’) mil
l pSI
S b+.S I
/ ]
ai S*P
1+a,06S5% a 1P

c1adq S*P
1+a, 0S¢ cxa> I P

v

M2P 51SaP

Fig. 5.1: Schematic flowchart for model (5.1).

Fusing all the aforementioned aspects of ecology and epidemiology gives us the following
system of ordinary differential equations:

ds S+I1\ BSI  a;S*P

—=rsl1- - — = fi(S,1,P

ar ( K ) bis Traose  1SLP)

dl  BSI

— =l —alP = f(S,I,P 5.1

dP N clalSO‘P

= m—l—czaglP—uzP— 81S%P = f3(S,1,P),
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S(0) > 0, 1(0) >0 P(0) > 0.

Table 5.1 summarizes the biological meaning and dimension of the parameters and variables

used in system (5.1), and Fig. 5.1 depicts the model formulation as a schematic view.

5.3 Well-posedness of the formulated system

In the real world, neither the population number can go negative nor can they grow abruptly.

Therefore, well-posedness of the formulated system must be verified first.

Table 5.1: Biological explanation of variables/parameters used in model (5.1)

Variables/Parameters Biological explanation Dimension

S Susceptible prey density Biomass

I Infected prey density Biomass

P Predator density Biomass

B Rate of disease transmission at which the susceptible prey gets infected Time ™!

r Intrinsic growth rate of susceptible prey Time ™!

K Environmental carrying capacity of prey Biomass

aj Maximum rate of per capita removal of susceptible prey due to predation Biomass~* Time ™!
a Maximum rate of per capita removal of infected prey due to predation Biomass ™ Time ™!
o1 Mortality rate of the predator due to prey group Biomass ™ Time ™!
c Conversion rate of the healthy prey to a predator Dimensionless
c Conversion rate of the infected prey to a predator Dimensionless
o Rate of the herd shape Dimensionless

Time spent by predator in handling healthy prey Time

b Half-saturation constant for disease transmission Biomass

Ui Natural death rate of infected prey Time ™!

173 Natural death rate of predator Time ™!

Theorem 5.3.1. Every solution of system (5.1) beginning from the stated initial condition is

unique and positive in I, where I is defined in the proof.

Proof. The concept of herd behavior is based on the case in which the prey population is suffi-
ciently dense to permit a herd formation. Therefore it is biologically reasonable to consider that
susceptible prey density is far from zero. Now, we can see that the functions fi, f, and f3 in the
right-hand side (RHS) of the formulated model system (5.1) are locally Lipschitz-continuous
in the region I' = {(S,I,P) € [¢q,A] x [0,B] x [0,C]}, with ¢ is a positive real constant. In fact,
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it can easily be seen that VS, S> € T,

AGS1LP) = (2P <1151 =52l 151~ Sll5y 82+ o 51—l + LR =20
a1|P||S — S2||S¢ — S¢|
1S1 = S2|[1 +a108¢||1 +a10S5|
r([S1|+[S2 r|l Bbll
<t sl (r+ P R e s
RS
[T ar0S§[[1-+ aroSg[(51[ = 521)
< L[S1 =5,

where
Leri 2rA N rB N BbB 201A*C
= r _— _—
K K (b+g)? (A—q)

is the Lipschitz constant. Therefore, fi(S,/,P) is locally Lipschitz-continuous with respect to

>0

S. Similar explanation can be given for f> and f3. Hence the system has a unique solution in
the region I'.

Now, to show the positivity of the solutions, first we need to prove that S(¢) > 0 Vr > 0. If
it is not true, then there exist at; > 0 with #; = inf{t: S(t) =0, ¢ > 0}, such that & <0

=N
and S(r) > 0, Vt € [0,11). From the first equation of the model (5.1), we observe that

S(f1)+1(f1)) ~ BS@)I(t)  arS*(1)P(n)

ds
= rS(r1) (1 -
: (1)( K b+S(t1)  1+aioS%(n)

e =0
dt ’

=1

which contradicts the condition ‘fl—f < 0. So, S(t) >0Vt > 0.

=1
Next, the second and third equations of the model can be written as

dl dP
—=1¢0:(S,1,P), — =Pp(S,I,P
dt (pl( sy )7 dt ¢2( s 4y )7
where
ﬁS clalSO‘
S, I,P)=———u; —aP, S,I.P)= —— I —y — 8, 5%.
(Pl( 54y ) b+S U1 —arr, ¢2( sy ) 1+a,65% +craz J2%) 1

It follows that

1(t) :I(O)efé¢1(S(9)J(9),P(9))d9 >0, P(t) = p(o)efé 92(5(8),1(8),P(6))d6 > (.
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Thus, all solutions (S(¢),1(t),P(t)) with the stated initial condition remain positive Vz > 0 [177].
]

Theorem 5.3.2. All solutions of system (5.1) beginning in Ri stay enclosed in the region Q =
2 2
{(§,[,P):0<S+1I< w, 0<S+ %P < W} where My and 1M, are some real

4rm 4rnp
2
numbers satisfying 0 < np < Uy, 0 <My < Up — _(’+77i2n11(02a2_

Proof. From the first equation of the model, we can write
d
—S <rS({1-— E
dt K

limsupS(¢) < K.

t—o0

which implies that

Letz; =S+1and n; > 0. Then

dzy S+1 alSO‘P
— =rS(1— - — il —ayIP S+1
ar +tMhz =r ( K ) | +a,08% il —axlP+m(S+1)

S

2

S
< (r+n1)5—%—(u1—n1)1

rs?
< (V+Tl1)5—7, for ny < .

Define k(S) = (r+11)S — %= Then

(r+ 771)2K
S)=——"—.
'?g()f k(S) 4r
Therefore,
dz (r+n1)%K
dt Mmz = 4r ’

which implies

- (r+m)*K
] S +1() < — 2
lgsgp( () +1(t)) < I

Now, to check the boundedness of P(t), we consider 7o = S+ %P and 1 > 0. Then

d S+1 SI 5
ﬁ+n2z2:rs(1— + ) PSL 2z, Hap Oigap, gy Mp
C1

S2 I 2K
S(r—}-nz)S—r—_ &_@_M Rwherelmax:(r+n1) .
K 1 1 1 4rm
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Now, for 0 < 1 < U — cpa2l4x, WE can write

dz rS?
= < S——
gt + M2 < (r+ 772) X

which entails that

. 1 (F—I—T]z)zK
1 S(t)+ —P(t L . —
lﬁsogp( 0+ <>) <

Hence the theorem follows. ]

5.4 Equilibrium points
The proposed system has the following feasible equilibrium points:

Ey(0,0,0), E (K,0,0), Es;(Ss1,1s1,0), Esp(Ssp,0,Psp),and E*(S*,I", P"),

where Sg; = %ﬁl’ I = rb((llg((g:ﬁ;));il)b)

if the basic reproduction number | Ry = % > 1.

The disease-free equilibrium Egp has been extensively studied by Djilali ef al. [33].

. Therefore, the epidemic equilibrium exists if and only

Remark.
(1) If Ry < 1, disease cannot invade.

(i) If Ry > 1, disease may invade.

The interior equilibrium E*(S*,I*, P*) of system (5.1) is the positive solution of the following

equations:
| S+1 BI a;S¢'p
r —_ J— _ prm—
K b+S 1+ao0S8%
BS
brs HT@EED
c1a1S%

m—FCzazl—uz— 51Sa =0.

On solving these equations, we obtain

1 clalS“
I=—— 68— ———— 5.2
ertts <M2+ | 1+a1650‘>’ (5.2)
1/ BS
P=—|-""—— 53

F(8S) =A1S% T2 £ ArSOT! 1 A2 L A4S2% 1 AsS® + AgS? +A7S +AgS* ! + 49, (5.4)
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where

Al =rcyara16,A, = (r62a2a1(7(b—K) +l’(61 —cCi1a -|-,u26a1)),A3 =ra,00;,
As=(a100|(BK+rb)),As = (a1c2K(B— 1)+ (BK+rb)(8, —ci1a1 + a1 0) —rKbcraza, 6),
Ag =rcrar, A7 = (brc2a2 —rKcrar + 7‘[.12), Ag = —ajcKu1b, Ag = —rKbcrar +rbuy —l—ﬁK[.Lz.

Theorem 5.4.1. Eq. (5.4) will have a unique positive root S* if f(K) > 0 and f'(S) > 0.
Furthermore, we can obtain I'* and P* from Egs. (5.2) and (5.3), respectively.

Proof. We can easily observe that as S — 0, f(S) — —oo. Assume that f(K) is positive and
f(S) is an increasing function of S. Then f(S) will intersect at exactly one point on the positive
S- axis. For the better realization of this theorem, we consider a numerical example. We take

the following set of parameters:

r=04,K=30,a =05, 06=2, tp =0.5, a =0.1, c; = 0.85, § = 0.0145, B = 5.5,
b=12, iy =2.1,ap =2, ¢ =0.17.
(5.5)

Simple computation yields f(K) = 128.13996 > 0 and f(S) is an increasing function. With
the help of MATLAB, we obtain Fig. 5.2 showing f(S) crosses the positive S- axis exactly
once at S* = 16.8232. Corresponding to this §*, we obtain /* = 0.8145 and P* = 0.55509 from
Egs. (5.2) and (5.3), respectively.

150

f(K) 5

100 |

50

f(S)

-50

-100

150 | i

-200 . . . . .
0 5 10 15 20 25 30
S

Fig. 5.2: The plot of f(S) vs. S showing unique positive root $* of Eq. (5.4).
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Remark. It may be noted here that A, Az, A4 and Ag are positive, Ag is negative and 0 <
o < 1. By computing f/(S), it can be easily be seen that f'(S) > 0 if the following conditions
hold:

Ay >0, As > 0,and A7 > 0.

0.1 - ; .

A 11 1 0.9 0.8 0.7 0.6 0.5 S
|

Fig. 5.3: Surface plot displaying existence of E*(16.8232,0.8145,0.55509). Here
green color surface is S-nullcline (fi(S,1,P) = 0), blue surface denotes /-nullcline
(f2(S,1,P) = 0) and voilet color surface represents P-nullcline (f3(S,1,P) = 0).
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Fig. 5.4: The plot of f(S) vs. S showing two positive roots S} and S} of Eq. (5.4).
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To support a unique positive equilibrium, we have a surface plot showing the junction of
three nullclines as an interior equilibrium point E*(16.8232,0.8145,0.55509) (see Fig. 5.3).

Due to the complexity of Eq. (5.4), theoretically, it is difficult to determine the number and
nature of its roots. However, we can observe numerically that the system can have multiple
interior equilibrium points. For the parameter values from Table 5.2, Eq. (5.4) has two posi-
tive roots ST = 24.2275 and S5 = 0.6339 (see Fig. 5.4). The corresponding steady-states are
E{(24.2275,0.6513,1.1772) and E5(0.6339,0.9567,0.118).

5.5 Stability assessment

It is appropriate to check the eigenvalues of the variational matrix at each equilibrium point to

obtain the local stability requirements. Based on this, we have the following results:

e If Ry < 1and <Rg = T Glc(lof’)l(lzz 5, Ka)) < 1, then E{(K,0,0) is locally asymptotically

stable. Here ROP is the disease-free demographic reproduction number for the predator.

ﬁKISI Clalsg‘cl
(b+Ss1)* I4+a;08g
totically stable.

o Ifr>

+ coanlsy < Uy + 618§, then Egy(Ssy,Is7,0) is locally asymp-

Remark.

(1) When going through the variational matrix method, we get singularity at the extinction
equilibrium Ey. Therefore, we cannot determine the stability behavior of Ey by this
method. However, we obtained the phase portrait displaying Ey as the saddle point (see
Fig. 5.5).

saddle point
E,(0,0,0)

Fig. 5.5: Phase portrait demonstrating saddle nature of E((0,0,0) for the parameters set
(5.5).
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(i1) The existence of predator-free equilibrium Eg; directs that £ cannot be stable.
(iii)) When Rg < 1, the predator cannot capture prey.

(iv) When Rg > 1, the predator may capture prey.

Stability of £*: The variational matrix about the positive equilibrium E* is

myy mpp m3
Mg = | my my m |,

m3p msz MmM3j3

where
My = S BS*I* n aj(1—a)s*@-Vp*  aa}os o1 pr iy — 1St BS
11 — K (b+S*)2 1+a;08*@ (1+a165*a)2 s 12 — K 1S
_ 15 ___bBr —0 _ I*
m3 = —1ig05@ M21 = B2 mp =V, mp3 = —azt,

_ aclals*(“_')P* _ x(0—1) px — * —
m31 = " osaE — 0108 P*, m3y = c2a2P*, m33 = 0.

The characteristic equation corresponding to the above matrix is
A3+ B1A? +ByA +B; =0, (5.6)

where Bl = —mi, Bz = —mMp3ms3p — N13M31 — mipmy1 and B3 = —del‘(M|E*).
According to the Routh-Hurwitz criteria, E* is locally asymptotically stable if and only if B; >
0, B3 >0, and B;B, — B3 > 0.

Theorem 5.5.1. The necessary and sufficient conditions for the existence of Hopf-bifurcation
around E* at 6y = 6] are the following:

(i) B1 >0, B3 >0,
(ii) B1B, — B3 =0,

(iii) 5TR1 + 0, where R = B1B, — Bs.

8,=5;

Proof. At 8) = 0, BiB, — B3 =0, Eq. (5.6) becomes
(A +B))(A*+B,) =0.

This implies Ay » = £iy/Bs and A3 = —Bj, where B, (6;) > 0.
Differentiate Eq. (5.6) with respect to d;, we obtain

ar
d oy

B {BM%B’ZAJFBﬂ
5= L3AZ+2BIA+Ba]s s
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This implies
e __m
do; 8,=5; 2(B%+Bz)'
Thus, Re [%] . #£0if jTRl = 0. Hence the theorem follows. ]
1=0

Remark. The analysis of Hopf-bifurcation for any other parameter will be identical to that
presented in Theorem 5.5.1.

5.6 The effect of time delay on the proposed system

Djilali et al. [33] considered a time lag between injury and death of the injured predator.
Believing in their idea, we would like to see the effect of such time delay on our proposed

model. Model (5.1) in the presence of time delay reduces to the following delay differential

equations:

ds S+I1\ BSI  a;S°P

dr ( K ) b+S Ttaose NELP)

dl  BSI

— = I —alP = f,(S,1,P 5.7
dt b—|-S H1 aj fQ(Sa 5 )7 ( )
dP clalS“P

Rl et e IP — 1P — 8, (S(t —t)*P(t — ©) = f5(S.1,P

dr 1—|—alGSa+C2a2 H2 1( ( T)) ( T) f3( IER) )’

subject to the non-negative conditions S(s) = ¢;(s) > 0, I(s) = ¢2(s) >0, P(s) = ¢3(s) > 0 for
s € [—7,0], where 7 is the time duration between injury and the passing away of the predator.
System (5.7) can be written in the vector form as

WO F(wlo) w(e—)),

w(t) = [S(0),1(t),P(1)]", y(t —7) = [S(t = 7),0(t = 7),P(t —7)]" and Fy = [f1, /2, f3]".

Let the variational matrix of the delayed system with respect to y(z), y(r — t) at E*(S*,I*, P*)
be
aip app a3
V=Ui+Upe " = |an an ax |,

asy dzz dasz
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where
Ul — oF, Ul — oF;
1 — a_ y Y2 a ([—T) ’
ll/ (S*7I*7P*) Il/ (S*7I*7P*)
rS* ﬁS*I* als*a—lp*(l —a —|—a16S*°‘) rS* BS*
ajg = — apn=———
U7k T h+s)2 (1+a;05%%)2 TR T s
a1 §*% bBI 0 I
ay=——F7T"—"—"""", M = 77—, dyn = arz = —a
_ x(a—1) p* c1a1 —At _ * _ *OL [ p* —At
az| = OCS ( )P (W — 616 ), azp = C2612P , A3z = 61S (P — e )

The characteristic equation of the above matrix is given by following equation:
A3+ m A+ oA +n3 + (A% +ngd +n5)pe_M:0, (5.8)

where

2 *200—1 p* * Pk
as P bBS*I
ny = —aj —pP*, n2:CZa%I*P*+a11pP*—|—C1a1 <r ﬁ ) ﬁ

(I+aosay \K b5 ) br5)2

rS*  BS* )(bﬁpI*P* clalazaS*“ll*P*) ajarc,bBS 4TI P*

* b+5)2  (+amos9? ) b s 2 +aose)

n3:—a11c2a%I*P*—( K b—i—S*

rS* ﬁS*I* als*a_lp*(l - a"‘alGS*a) *0—1 p*
_ _ _ — as P
r B bBS*I*
s (K+b+S*)((b+S*)2 o )P =057,

System (5.7) is stable around the positive equilibrium point E*(S*, I*, P*) if all the characteristic
roots of Eq. (5.8) have a negative real component. In order to show switching of stability via
Hopf-bifurcation, the characteristic root must cross the imaginary axis. As a result, we suppose
that i (@ > 0) is the root of Eq. (5.8). Then the real and imaginary parts of Eq. (5.8) is given
by

(ns — @*)pcos(0T) + nywpsin(@t) = ny@* — n3, (5.9

pnyocos(®t) — p(ns — 0*)sin(01) = 0> —no. (5.10)
Squaring and adding the above two equations, we get the following sextic equation:

0’ + g1t +g0* +¢3 =0, (5.11)

where

q1 =ni —2m— p*, g2 = n3 — 2mnz +2nsp* —nip, g3 =nj —n3p>.
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The critical value of 7 can be determined by calculating {[Eq.(5.9)] X naw — [Eq.(5.10)] x
(ns — ®?)}, which results

1 { .1 [(nla)lz—ng,)ma)l+a)1(n2—a)|2)(n5—a)]2)

Ti = —<K SIn
/ p((ns — 0f)? +njop)

}+27rj}, j=0,1,2,... (5.12)
()]

For the positivity of 7;, the range of sin(@7) should be positive. Therefore, 7; is positive if the

following inequality holds:
(ning —ny — n5)2 < 4(nyns —n3ng).

To test the transversality criterion for Hopf-bifurcation, substitute A = & + i in Eq. (5.8), and

then separate real and imaginary components to obtain

E3 3078 + 11 (E2 — 0%) + m& +n3+ p(E2 — 0% +na& +ns)e *Tcos(wr)

(5.13)
+ pwe  Tsin(07)(2E +ny) =0,

— @ +3E%0+2mEw + o — peFsin(wt)(E2 — 0 + ngé +ns) 5.14)
+pwe *Tcos(wt)(2n3E +ng) = 0. '

When we differentiate Eqs. (5.13) and (5.14) with regard to 7 and set & = 0 (the system loses
stability when Re(4) = 0) and 7 = 19, we get

MléTO_I_MZwTO:Nla (515)

—MCr, + Mg, = N, (5.16)

where
M| = [)(’L’()(COI2 — n5) —l—n4)COS((D1 ’L'()) + pw; (2 — ’L’on4)sin(a)1 ’F()) +ny — 36012,

My = poy(—2+ tong)cos(@1 ) + p (ng + To(@F —ns))sin(®, ) — 2n1 o,
Ny =pwy(ns — a)lz)sin(a)lfo) — n4(o12cos(a)1r0),
N> = poy (ns — 0?)cos( w1 Ty) + nyofsin( o 7).
Solving Egs. (5.15) and (5.16), we obtain

d(Re(1))
dt

NiMy — N,M,
M}+M3

=& =

T=Tp
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Hence the transversality condition

d(Re(1))

dt 75 0 hOldS, if NlMl 7§ N2M2.

T=T
Theorem 5.6.1. System (5.7) undergoes Hopf-bifurcation with respect to T at T = 1p(79 > 0)
such that E* is locally asymptotically stable when T < Ty, and unstable when T > Ty, if N{M| #
NoM> at T = T.

5.7 Numerical simulation

We begin by numerically simulating system (5.1) using the parameter values given in Table
5.2. The system exhibits four equilibrium points listed in Table 5.3 with eigenvalues. Figure
5.6 displays the phase portrait diagram corresponding to the Table 5.3. It shows the bi-stability
between an interior equilibrium and a limit cycle surrounding a planar equilibrium and other

points’ stability behavior based on the eigenvalues mentioned in Table 5.3.

Table 5.2: Data set of parameters involved in (5.1) with sources.

Parameters Numerical value Source(s)

r 0.5 [33]

K 30 Assumed
ap 0.5 [175]
a 2 [130]
o 2 [175]
Ui 0.05 [80]
U 0.5 [33]

c1 0.85 [33]

) 0.17 Assumed
B 3 [178]

b 6 Assumed
01 0.0145 [33]

o 0.55 [33]
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20

Fig. 5.6: Phase portrait showing all existing steady-states for the parametric values given
in Table 5.2.

Table 5.3: Eigenvalues of equilibrium points associated with dataset given in Table 5.2.

Equilibrium points Eigenvalues
E;(24.2275,0.6513,1.1772)  —0.322, —0.005 £0.744i

E3(0.6339,0.9567,0.118)  0.012+0.4408i, 0.0336
E1(30,0,0) 0.5, 2.45, —0.2258

Es;(0.1016,0.9802,0) 0.0031£0.1564i, —0.0767

Effect of predator mortality due to prey group (6;): Initially, for low values of J;, system
(5.1) is locally asymptotically stable about the positive equilibrium E* (see Fig. 5.7 (a)). With
a slight increase in the value of J;, system (5.1) undergoes Hopf-bifurcation at 6; = 0} =
0.077446. At the Hopf-bifurcation point, E*(24.008731,0.832865, 1.150008) exists with B; =
0.3307591, B, = 0.295172175, and B3 = 0.09763095, which yields all conditions mentioned
in Theorem 5.5.1 are fulfilled. Then afterward, interior equilibrium E* is unstable, and a stable
limit cycle is observed around it for §; € (0.077446,0.219583) (see Fig. 5.7 (b)). In this range,
the oscillations in the system become so high that eventually, it touches the axis of predator-free
equilibrium Eg;(14,1.6,0) at 6;* = 0.219583. Therefore, the epidemic state Es;(14,1.6,0) is a
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stable focus for the highe