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Abstract 

 

The development of a classification device for a real-life application must meet severe 

challenges such as accuracy, cost economy, portability, and speed. Additionally, it must make 

it easier for both rural and urban public to make informed choices for a better quality of life, 

eliminating the need for human expertise and laboratory testing. 

In this thesis, we have worked on developing a portable low-cost device taking Water Quality  

Classification as the application for real-time monitoring of ground and surface water 

resources. Water pollution is a major concern globally and needs immediate attention. The 

methodology developed in this work can also be applied to other natural resource monitoring 

applications.  

Existing implementations of WQC are based on sensors for parameter measurement, which are 

expensive. They are also dependent on laboratory-based methods which are time-consuming 

and not suitable for application in regions with limited access to such well-equipped 

laboratories. Also, the majority of them are software-based implementations leading to high 

power consumption and low portability. Software-based approaches are also more complex to 

implement. Some hardware implementations also exist, but they are partly based on software 

approaches and involve conventional number representation systems for calculation. This 

increases the complexity of the design and reduces the accuracy of calculations. The 

conventional number system also increases hardware resources and power consumption in the 

case of ANN implementation. 

We have addressed the above problems and proposed a device for water quality classification 

that is accurate, smart, portable, low cost, and power and resource efficient. The device is 

designed using two ANNs. To reduce the cost of the device, a novel ANN-based data 

augmentation method has been implemented which predicts the parameters whose 

measurement techniques are expensive. The Augmentation ANN takes two parameters – pH 

and Oxidation Reduction Potential (ORP) as inputs and predicts Dissolved Oxygen (DO) and 

Electrical Conductivity (EC) based on these parameters. The second ANN (Classification 

ANN) is used for the classification of water quality based on the four parameters. The 

Classification ANN takes four parameters – pH, ORP, DO, and EC as inputs and classifies the 

water sample into one of the three categories – Potable, Agricultural, and Wastewater. To 



 
 

VI 

reduce the complexity of calculation, the Posit number system has been explored and used. For 

the hardware implementation of Posit, a novel parameterization method has been used to avoid 

unlimited hardware resource allocation. The results are compared with the standard IEEE 754 

floating point representation system. The hardware resource requirement and power 

consumption of the proposed device were reduced by 50%, and the speed increased by 13.2%. 

The WQI device implemented achieves accuracy comparable to the standard Atlas Scientific 

lab kit with a 92% reduction in cost. 

The complete design of the device has been implemented using two hardware design 

approaches – The embedded System design approach and the ASIC Design approach. The 

Embedded System approach gives faster and simpler design methodology and cheaper designs 

for low-volume production. The ASIC approach is more robust, power efficient, faster, and 

economical for mass production.  

The ANNs have been trained using a data set that was made using the readings of standardized 

equipment from Atlas Scientific lab kit, Labtronics Multiparameter Water Analyser, and YSI 

Sonde. The prediction accuracy of Augmentation ANN was 98%, and the classification 

accuracy of the classification ANN was above 97% for each class averaging at 98% overall 

against the testing data set. 

 

 

 

 

 

 

 

 

 

 



 
 

VII 

Table of Contents 
CERTIFICATE ....................................................................................................................... II 

Acknowledgement ............................................................................................................ III 

Abstract ............................................................................................................................ V 

Table of Contents ............................................................................................................ VII 

List of Figures .................................................................................................................. XIII 

List of Tables ................................................................................................................... XV 

List of Abbreviations ...................................................................................................... XVI 

1. Introduction ................................................................................................................... 1 

1.1 Design Challenges for in-situ Monitoring of Natural Resources .............................................. 1 

1.2 Water Quality Classification as a Case Study ......................................................................... 1 

1.3 Data Classification Methods and Their Challenges ................................................................. 2 

1.3.1 Conventional Methods ......................................................................................................................... 2 

1.3.2 Artificial Intelligence-Based Methods .................................................................................................. 3 

1.4 Artificial Neural Networks - Design and implementation challenges ...................................... 3 

1.5 Applications of Artificial Neural Networks ............................................................................. 3 

1.5.1 Environmental Engineering .................................................................................................................. 3 

1.5.2 Machine learning .................................................................................................................................. 4 

1.5.3 Healthcare ............................................................................................................................................ 4 

1.6 Challenges in the development of ANN Hardware ................................................................. 4 

1.6.1 Software Approach ............................................................................................................................... 5 

1.6.2 Hardware Approach ............................................................................................................................. 5 

1.6.3 Mixed Software-Hardware ANN Implementation ................................................................................ 7 

1.7 Challenges in Number Representation System for ANN Implementation ............................... 8 

1.8 Organization of Thesis ........................................................................................................... 9 

1.9 References .......................................................................................................................... 10 

2. Literature Review ......................................................................................................... 13 



 
 

VIII 

2.1 Introduction ........................................................................................................................ 13 

2.2 ANN for Water Quality Applications .................................................................................... 14 

2.3 Artificial Neural Networks (ANN) ........................................................................................ 21 

2.3.1 ANN Algorithms: ................................................................................................................................. 23 

2.4 Hardware Implementation of ANN ...................................................................................... 25 

2.4.1 Optimisations for Hardware Implementation .................................................................................... 26 

2.5 Number Representation Systems ........................................................................................ 28 

2.6 Conclusions and Gaps in Research ....................................................................................... 31 

2.7 Research Objectives ............................................................................................................ 32 

2.8 References .......................................................................................................................... 32 

3. Data Collection ............................................................................................................. 38 

3.1 Introduction ........................................................................................................................ 38 

3.2 Potential of Hydrogen (pH) ................................................................................................. 39 

3.2.1 Theory ................................................................................................................................................ 39 

3.2.2 pH Measurement ............................................................................................................................... 41 

3.2.3 pH Data ............................................................................................................................................... 46 

3.3 Oxidation-Reduction Potential (ORP) .................................................................................. 50 

3.3.1 Theory ................................................................................................................................................ 50 

3.3.2 ORP Measurement ............................................................................................................................. 51 

3.3.3 ORP Data ............................................................................................................................................ 53 

3.4 Dissolved Oxygen (DO) ........................................................................................................ 56 

3.4.1 Theory ................................................................................................................................................ 56 

3.4.2 Measurement of DO ........................................................................................................................... 56 

3.4.3 DO Data .............................................................................................................................................. 58 

3.5 Electrical Conductivity (EC) .................................................................................................. 62 

3.5.1 Theory ................................................................................................................................................ 62 

3.5.2 Measurement of EC ............................................................................................................................ 62 

3.5.3 EC Data ............................................................................................................................................... 65 



 
 

IX 

3.6 Validation of Data ............................................................................................................... 68 

3.7 Conclusion .......................................................................................................................... 69 

3.8 References .......................................................................................................................... 69 

4. Efficient ANN Hardware Implementation through Mathematical Approximation in IEEE 

754 Representation .......................................................................................................... 71 

4.1 Introduction ........................................................................................................................ 71 

4.1.1 Multilayer Perceptron Feedforward Network with Backpropagation ............................................... 71 

4.1.2 Radial Basis Function .......................................................................................................................... 71 

4.1.3 Support Vector Machines ................................................................................................................... 72 

4.1.4 Constructive C-Mantec ....................................................................................................................... 72 

4.1.5 Spiking Neural Networks .................................................................................................................... 72 

4.1.6 K-means clustering ............................................................................................................................. 73 

4.2 Modelling of MLP Architecture ............................................................................................ 73 

4.3 Methodology of Hardware Implementation ........................................................................ 74 

4.3.1 Choice of Hidden Layers and Number of Neurons ............................................................................. 74 

4.3.2 The MLP Architecture ......................................................................................................................... 75 

4.3.3 Sigmoid Activation Function Design for MLP Neuron ........................................................................ 78 

4.4 Results of Hardware MLP implementation with IEEE 754 Representation using Padé and 

Nonlinear Approximation of Sigmoid Function .................................................................... 80 

4.4.1 Sigmoid Neuron Implementation Description ................................................................................... 82 

4.5 Sigmoid Neuron Implementation Results ............................................................................ 84 

4.5.1 FPGA Implementation ........................................................................................................................ 84 

4.5.2 ASIC Implementation ......................................................................................................................... 84 

4.5.3 Backpropagation Learning Implementation Methodology ................................................................ 85 

4.6 Conclusions ......................................................................................................................... 86 

4.7 References .......................................................................................................................... 88 

5. Digital Hardware Implementation of Artificial Neural Network with Posit Representation 

of Floating-Point Numbers ............................................................................................... 91 



 
 

X 

5.1 Introduction ........................................................................................................................ 91 

5.1.1 IEEE 754 Floating Point Representation ............................................................................................. 92 

5.1.2 Universal numbers Format ................................................................................................................. 93 

5.1.3 Posit .................................................................................................................................................... 94 

5.2 Posit Representation ........................................................................................................... 94 

5.2.1 Advantages of Posit ............................................................................................................................ 97 

5.3 Posit ANN Implementation for Water Quality Classification ................................................ 97 

5.3.1 Parameterised Posit ANN (PPANN) .................................................................................................... 97 

5.4 Results and Observations of Proposed Smart Portable Water Quality Classification Device 

(WQC-Device) .................................................................................................................... 113 

5.4.1 Schematic of PPANN synthesized using TSMC 180nm technology node. ........................................ 113 

5.4.2 Comparison of the results of proposed ASIC and FPGA implementation of PPANN in IEEE 754 and 

Parameterised Posit, respectively. ............................................................................................................ 114 

5.5 Conclusion ........................................................................................................................ 116 

5.6 References ........................................................................................................................ 117 

6. Hardware Implementation of Portable Smart device for real-time Water Quality 

Classification using Data Augmentation ......................................................................... 119 

6.1 Introduction ...................................................................................................................... 119 

6.1.1 Methodology for Data Augmentation .............................................................................................. 120 

6.1.2 Mathematical Approach ................................................................................................................... 120 

6.1.3 ANN Approach .................................................................................................................................. 121 

6.2 ANN based Data Augmentation Design Flow ..................................................................... 122 

6.2.1 Water Sample Collection .................................................................................................................. 122 

6.2.2 Lab-based parameter measurement and Collection of Training and Validation data set for Data 

Augmentation ........................................................................................................................................... 122 

6.2.3 Step 1: Measurement of pH and ORP using Arduino Uno ................................................................ 123 

6.2.4 Step 2: DO and EC Prediction using Augmentation ANN .................................................................. 124 

6.3 Hardware Implementation of A-ANN ................................................................................ 125 

6.3.1 Embedded Systems Approach .......................................................................................................... 126 



 
 

XI 

6.3.2 ASIC Design Approach ...................................................................................................................... 128 

6.4 Implementation of Complete Water Quality Classification Device with Augmentation ANN(A-

ANN) and Classification ANN(C-ANN) ................................................................................ 130 

6.4.1 Embedded Design for the Complete Water Quality Classification Device ....................................... 132 

6.4.2 ASIC Design for the Complete Water Quality Classification Device ................................................. 132 

6.5 Results and Validation of Complete Water Quality Classification Device ........................... 135 

6.5.1 Results of Prediction Accuracy of A-ANN for both Embedded and ASIC approaches. ..................... 135 

6.6 Results of classification accuracy of C-ANN for both Embedded and ASIC approaches ....... 137 

6.6.1 ASIC Power, Resource utilization, and critical path delay ................................................................ 139 

6.6.2 Cost comparison of Embedded and VLSI Water Quality Classification Device with standard Water 

Testing Atlas Scientific Kit ......................................................................................................................... 139 

6.7 Conclusion ........................................................................................................................ 140 

6.8 References ........................................................................................................................ 141 

7. Conclusions and Future Work ..................................................................................... 143 

7.1 Conclusions ....................................................................................................................... 143 

7.2 Future Direction ................................................................................................................ 145 

7.3 References ........................................................................................................................ 146 

A. Appendix A ................................................................................................................ 147 

A.1. pH Data ........................................................................................................................... 147 

A.1 Oxidation Reduction Potential (ORP) Data ........................................................................ 151 

A.2 Dissolved Oxygen (DO) Data .............................................................................................. 155 

A.3 Electrical Conductivity (EC) Data ........................................................................................ 159 

A.4 Variation of DO and EC measurement in proposed device against Atlas Scientific kit. ....... 163 

A.5 All Parameter Measurements Using the Proposed Device ................................................. 166 

B. Appendix B ................................................................................................................ 170 

B.1. Verilog Code for Posit neuron. ......................................................................................... 170 

B.2. Verilog Code for IEEE 754 Nonlinear Approximation neuron ............................................ 184 



 
 

XII 

B.3. Verilog Code for IEEE 754 Padé Approximation neuron .................................................... 196 

C. Appendix C ................................................................................................................. 210 

C.1. Verilog Code for Augmentation ANN ................................................................................ 210 

C.2. Verilog Code for Classification ANN .................................................................................. 271 

C.3. Python Code for Augmentation ANN ................................................................................ 284 

C.4. Python Code for Classification ANN .................................................................................. 288 

C.5. List of Resources used in Hardware Implementation of 20 neurons ANN in IEEE 754 and Posit 

Representation ................................................................................................................. 293 

For IEEE 754 Nonlinear Approximation ..................................................................................................... 293 

For Posit number Representation ............................................................................................................. 297 

C.6. List of Resources used in Hardware Implementation for Complete WQI Device using 100 

Neurons using Posit Representation .................................................................................. 301 

C.7. FPGA Results for Reduced Complete Water Quality Classification device ......................... 305 

List of Publications ......................................................................................................... 306 

Biography of the Research Scholar ................................................................................. 307 

Biography of the Supervisors ......................................................................................... 307 

 

 

 

 

 

 

 

 

 



 
 

XIII 

List of Figures 

Figure No. Caption Page No. 

Figure 2.1 Model of a neuron of an ANN 21 

Figure 2.2 A typical ANN Architecture 22 

Figure 2.3 Format of Posit Representation 29 

Figure 3.1 A generic Glass bulb pH Electrode 42 

Figure 3.2 Combination pH Electrode 43 

Figure 3.3 pH electrode dipped in standard solution 44 

Figure 3.4 pH electrode - detailed view of the interacting glass bulb 44 

Figure 3.5  ORP Electrode used in the study 50 

Figure 3.6 ORP electrode - detailed view of the interacting Pt Electrode 50 

Figure 3.7 A schematic of Galvanic DO Probe 57 

Figure 3.8 DO electrode - detailed view of the interacting membrane 57 

Figure 3.9 DO Electrode 58 

Figure 3.10 Electrical Conductivity measurement schematic 64 

Figure 3.11 

 

EC electrode detailed view. The two plates between which the conductivity 
is measured are placed inside the eye-hole. 

64 

Figure 3.12  The EC Electrode 65 

Figure 4.1 A typical ANN Architecture 74 

Figure 4.2 Schematic Diagram of a neuron using Padé Approximation 81 

Figure 4.3 Schematic diagram of for nonlinear approximation 83 

Figure 4.4 Comparison of the two implementations of Activation Functions in FPGA-
based design using IEEE 754 

84 

Figure 4.5 Comparison of two implementations of Activation Function in ASIC 
Implementation using IEEE 754 

85 

Figure 4.6 ASIC implementation of Padé approximation 87 

Figure 4.7  ASIC Implementation of a Nonlinear Approximation of Sigmoid function 87 

Figure 4.8 Basic Structure of a Neuron 88 

Figure 5.1 Format of Posit Representation 95 

Figure 5.2  Flow diagram of IEEE 754 to Parameterized Posit Conversion 101 – 103 

Figure 5.3 Leading One/Zero Detector 106 

Figure 5.4 Flow diagram of Posit to IEEE 754 Converter 109 

Figure 5.5 Flow diagram of Posit Addition Unit 112 

Figure 5.6  Sigmoid function calculation comparison between IEEE 754 and 
Parameterized Posit representation 

113 

Figure 5.7 ASIC implementation of a neuron on Cadence RTL Encounter using TSMC 
180nm Standard Cell Library 

114 



 
 

XIV 

Figure 5.8 Comparison of proposed ASIC Implementation of ANN using - IEEE 754 
and Parameterized Posit 

115 

Figure 5.9 Comparison of proposed FPGA Implementation of ANN using - IEEE 754 
and Parameterized Posit 

115 

Figure 6.1 Design flow for Complete ANN based Data Augmentation 122 

Figure 6.2 Block diagram for representing pH and ORP readings using Arduino Uno 123 

Figure 6.3 Accuracy (𝑅!) of A-ANN 125 

Figure 6.4 Mean Square error for A-ANN 126 

Figure 6.5 Block-level diagram of Embedded System approach of Augmentation ANN 127 

Figure 6.6 Block-level diagram of Embedded System approach of Augmentation ANN 129 

Figure 6.7 Block diagram of Complete WQI device 130 

Figure 6.8 Accuracy of C-ANN for different architectures 131 

Figure 6.9 Mean Square error for C-ANN 131 

Figure 6.10 C-ANN structure 132 

Figure 6.11 Block diagram of complete Device using Embedded System Design 133 

Figure 6.12 Block diagram of complete Device using ASIC Design Approach 134 

Figure 6.13 a) Response plot of A-ANN, b) Actual vs. predicted DO value using A-
ANN 

136 

Figure 6.14  a) Response plot of A-ANN, b) Actual vs. predicted EC value using A-
ANN. 

136 

Figure 6.15 Confusion Matrix for C-ANN 138 

 

 

 

 

 

 

 

 

 

 

 



 
 

XV 

List of Tables 

Table No. Caption Page No. 

Table 2.1 A Summary of ANN Implementations for Water Quality Measurement 18 

Table 2.2 Run-length meaning k of the regime 29 

Table 2.3 The useed as a function of es 30 

Table 2.4 IEEE 754 Float and Posit dynamic ranges for the same no. of bits 30 

Table 3.1 Parameter Values for each category 39 

Table 3.2 pH measurement comparison against standard devices 46 

Table 3.3 ORP measurement comparison against standard devices 53 

Table 3.4 DO measurement comparison against standard devices 59 

Table 3.5 EC measurement comparison against standard devices 65 

Table 5.1 Run-length meaning k of the regime 95 

Table 5.2 The useed as a function of es 96 

Table 5.3 IEEE 754 Float and Posit dynamic ranges for the same no. of bits 96 

Table 5.4 Comparison of complexity of Hardware Implementation of Sigmoid 
Function 

113 

Table 6.1 Validation of proposed device for real-time water quality measurement 137 

Table 6.2 The statistical results for performance evaluation 138 

Table 6.3 ASIC Implementation Results of Complete Design 139 

Table 6.4 Cost comparison of the conventional and proposed device 139 

 

 

 

 

 

 

 

 

 

 



 
 

XVI 

List of Abbreviations 

AI    Artificial Intelligence 

WQI    Water Quality Indexing 

WQC    Water Quality Classification 

ANN    Artificial Neural Network 

BOD    Biochemical Oxygen Demand 

COD    Chemical Oxygen Demand 

IOT    Internet of Things 

LM    Levenberg Marquardt 

MLP    Multi-Layer Perceptron 

WSN    Wireless Sensor Networks 

ALVINN   An Autonomous Land Vehicle in Neural Network 

ASIC    Application-Specific Integrated Circuit 

SoC    System-On-chip 

BP    Backpropagation 

CMOS    Complementary Metal Oxide Semiconductor 

NaN    Not-a-Number 

IEEE    Institution of Electrical and Electronics Engineers 

IEEE 754   IEEE 754 Floating Point Number Representation 

DO    Dissolved Oxygen 



 
 

XVII 

EC    Electrical Conductivity 

Ah    Ampere hour 

TDS    Total Dissolved Solids 

TSS    Total Suspended Solids 

pH    Potenz/Potential of Hydrogen 

NARX    Nonlinear Autoregressive with Exogenous Input 

MCPO    Multi Classification with Probabilistic Output 

NN    Neural Network 

Unum    Universal Number 

ORP    Oxidation Reduction Potential 

mV    milli Volts 

DW    Drinking Water 

SW    Surface Water 

RBF    Radial Basis Function 

SVM    Support Vector Machine 

CoNN    Constructive Neural Networks 

C-Mantec   Competetive Neural Network trained by Error Correction 

FPGA    Field Programmable Gate Array 

IC    Integrated Circuit 

LUT    Look-up Table 



 
 

XVIII 

PPANN   Parameterised Posit ANN 

ES    Exponent Size 

Exp    Exponent 

REM    Regime, Exponent, Mantissa 

LSB    Least Significant Bit 

MSB    Most Significant Bit 

LOD    Leading One Detector 

LZD    Leading Zero Detector 

MUX    Multiplexer 

RC    Regime Check 

TSMC    Taiwan Semiconductor Manufacturing Company 

RTL    Register Transfer Level 

SWAT    Solid and Water Assessment Tools 

HSPF    Hydrological Simulation Program – Fortran 

SWMM   Stormwater Management Model 

A-ANN   Augmentation ANN 

C-ANN   Classification ANN 

RMSE    Root Mean Square Error 

MSE    Mean Square Error 

VLSI    Very Large Scale Integration 



 1 

Chapter 1 

1. Introduction 

1.1 Design Challenges for in-situ Monitoring of Natural Resources 

In addressing real-world challenges, the development of a device aimed at serving the needs of 

diverse human populations, encompassing both rural and urban areas, is paramount. Such a 

device must confront a multitude of hurdles, including accuracy, cost-effectiveness, portability, 

and speed. Of particular significance is the challenge posed by portability, which requires 

careful consideration of power consumption and compactness. Additionally, the device must 

empower individuals in both rural and urban contexts to make informed decisions, thereby 

eliminating the reliance on specialized expertise and laboratory testing. 

The pressing real-life challenges demanding urgent attention are intricately linked to the 

preservation of life-sustaining natural resources, namely air, water, and soil. 

This thesis endeavours to address these challenges by focusing on the development of a device 

tailored for real-time monitoring of ground and surface water resources, with water quality 

indexing as the primary application. Such an undertaking is poised to facilitate the judicious 

utilization of water resources across various domains. 

1.2 Water Quality Classification as a Case Study 

Water is one of the most basic resources that is required to sustain life, along with food and air. 

Thus, the availability of safe drinking water is a major concern. Water pollution caused by 

industrial and municipal wastewater discharges, agricultural and urban runoff, and other human 

activities is a major concern on a global scale [1]. Infectious such as waterborne illnesses are 

the leading cause of death for children under five worldwide, and each year, more people die 

from contaminated water than from all other types of violence, including war [2]. Each year, 

unsafe water contributes to 2.2 million fatalities, mostly children under the age of five, and 4 

billion instances of diarrhoea. This means that a child dies from diarrhoea every 15 seconds, or 

15% of all child deaths each year. Diarrhoea, which claims the lives of about 500,000 kids 

annually in India alone, is the leading cause of childhood illness and mortality [3].  

Water Quality parameters such as electrochemical, biological, etc, have varied methods of 

measurement, and the testing times can vary from instantly to up to 24 hours or even more in 
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some cases in laboratory environments. There is a need to reduce this time using a reliable 

device which does both in-situ parameter measurement as well as Water Quality Classification 

(WQC).  

A Water Quality Index is a method for summarizing a description of the quality of drinking 

water from a water supply source [4] in both urban and rural scenarios. Water Quality 

Classification is a two-step process that involves the measurement of water quality parameters 

and then indexing the water based on their measured parameter values. The development of 

the WQC device has to meet severe challenges in terms of accuracy, cost economy, portability, 

and speed. Here portability poses further challenges to the power consumption and 

compactness of the device. Additionally, it is necessary to create a WQC device that makes it 

easier for both rural and urban publics to make decisions regarding water quality classification, 

eliminating the need for human expertise and laboratory testing. 

1.3 Data Classification Methods and Their Challenges 

1.3.1 Conventional Methods 

Water quality classification is generally done using various mathematical indexing rules, such 

as the ones presented in [5] [6]. Tools such as Principal Component Analysis [7], Fuzzy Logic 

[8], etc. Mathematical and Fuzzy logic models for WQC have applications limited by the input 

parameters guidelines depending on geography, water source, intended usage, and sundry. 

Since the water quality indicators used to depict dynamic pollution sources are complex, 

multivariable, and connected nonlinearly, mathematical and fuzzy models may not be able to 

adequately represent the outcome.  

The main drawback of traditional classification methods, like moving averages, is the pre-

assumption of the linear relationship between input parameters and output classes. So, they fail 

to classify the data where the output classes depict non-linear and non-stationary 

characteristics. Hence, when applied for applications like air quality indexing, water quality 

monitoring and indexing, facial recognition, natural language processing, medical imaging 

analysis, etc., these methods lead to inaccurate classification results. Further, with an increase 

in data, classification using traditional methods becomes computationally tedious.   
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1.3.2 Artificial Intelligence-Based Methods 

Recently, Artificial intelligence technologies that analyze multivariate water quality data 

through potent visualization capabilities have replaced traditional techniques [1]. In [9], it has 

been shown that Artificial Neural Networks (ANN) have more reliability than fuzzy logic.  

ANN are a model of the Biological Neural Network which helps living beings perceive the 

patterns in their environment, classify them and learn from them to improve their response to 

subsequent stimuli. There are two methods of implementation of ANN – Software, and 

hardware. Both methods have their challenges and trade-offs.  

The present work aims to implement a hardware architecture of a WQC device with an 

emphasis on low complexity and high speed of operation. It also aims to achieve reduced cost 

and low power consumption. In developing and developed nations, the previously mentioned 

features are crucial for monitoring and indexing essential life resources. Thus, the hardware 

architecture proposed in this thesis has been optimized for low-power and low-cost water 

quality classification enabling this smart technology to reach across economic boundaries of 

society.  

1.4 Artificial Neural Networks - Design and implementation challenges 

Most commonly, ANNs are used when the mapping between the inputs and the outputs is not 

linear, e.g.: 

• Classification of input data sets into predefined classes. 

• Prediction of future output based on a set of current input-output mappings. 

• Clustering data into groups based on prior knowledge about the data. 

• An ANN can be trained to remember particular data patterns and then associate input 

data patterns with the ones in the memory or discard the data pattern. 

1.5 Applications of Artificial Neural Networks 

1.5.1 Environmental Engineering  

ANN has multiple uses in environmental engineering aspects. Since ANN help to model a 

relation between parameters that cannot be expressed through direct mathematical modelling, 

ANNs help in modelling and classifying environmental parameters that indicate the quality of 

natural resources but cannot be modelled by mathematical relations. Another usage of ANN is 

to predict the outcome of a future event based on existing data and knowledge of past events. 
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The prediction abilities of ANN are also used in Environmental engineering. Some examples 

of ANN being used as classification and indexing applications are - Water Quality 

Classification, Water Quality Monitoring, and Air Quality Indexing. The prediction abilities of 

ANN are used in applications such as Water/Air Quality Prediction, Weather forecasting. 

1.5.2 Machine learning 

ANN have found many uses through machine learning applications. With machine learning, 

ANNs impart machines the ability to learn and become more intelligent. These are machines 

that we interact with daily in our lives and provide more data to the systems with our 

interactions, making them better at understanding our behaviour and thus enabling us to help 

us in our day-to-day lives better. Some examples of ANN-based machine learning applications 

are social media which learn the type of content we interact with more and the type of content 

we do not and, over time refine our feeds to deliver to us the content that we like. Similarly, on 

e-commerce sites, the machine learning algorithm learns the products we look for more often, 

the products that we buy more often, and offers or other facilities related to such products are 

pushed to our devices just like our neighbourhood shopkeeper, who knows our buying habits. 

Some other recent examples of neural networks include image search on Google, Auto-tagging 

by Facebook or product recommendations on Amazon, and completely driverless automobiles 

from Tesla Motors.  

1.5.3 Healthcare 

ANN has found many uses in the healthcare sector. All the four functions of ANNs, vis. 

Classification, prediction, prediction, and associative memory have found many applications 

in the medical and healthcare sectors. Facial feature analysis has been used to develop pain 

management systems where patients' pain levels are monitored based on the facial expressions 

of the patients. The various imaging methods like CT scans, MRIs, X-ray imaging, etc., use 

ANN image analysis to identify abnormalities using object classification and feature extraction. 

Voice or speech recognition and improvement in hearing aids for the hearing impaired, 

Image/Video inference for visual aids for blind people, Learning enabled prosthetics, etc. 

1.6 Challenges in the development of ANN Hardware 

Major challenges faced are in reducing the cost, and lowering power consumption while 

maintaining accuracy, in a portable in-situ device implementation.  
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The Implementation of ANN on hardware with the goals mentioned above comes with some 

challenges.  

1.6.1 Software Approach 

The most common method of implementing ANNs is the Software approach. Most ANN based 

models are implemented on software using a computer. For applications based on 

environmental interactions, the data from various sensors are collected and sent to these 

computing centers. These computers then perform the ANN computations and generate the 

required output.  

The software code must decode down to a hardware level to be able to interact with the real 

world, it must go through multiple abstractions of computer architecture. This renders the 

process to become slow and limits the portable application of the ANN though it can achieve 

higher classification accuracy. 

1.6.2 Hardware Approach 

Hardware-based implementations, such as Application Specific Integrated Circuit (ASIC) or 

System-on-Chip (SoC), of an ANN algorithm make the system much more resource and time-

efficient because of the application-specific nature of the hardware. A direct hardware 

implementation also improves the speed of the system. Hardware implementation is also 

economical because of its specificity. 

While implementing logic on hardware, there are two approaches: - Analog and Digital. Morgan, 

et al [11], present the key advantages that a digital approach has over analog.  

a) Analog Implementation of ANN 

Biological neural networks which function on inaccurate components serve as models for ANN 

algorithms. Ideally, analog circuits which have an infinite resolution (continuous sampling) should 

serve as the better implementation option. Practically though, there is a limit to the representation 

of the smallest resolution on a circuit. i.e., the sampling rate of a circuit must be finite, thereby 

limiting the accuracy. Moreover, a multitude of ANN algorithms models the biological neural 

network very poorly and thus frequently need a wide dynamic range to bring about convergence to 

useful solutions. Popular stochastic algorithms such as backpropagation (BP) require 12 – 16 bit of 
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range or roughly four orders of magnitude between the largest weight value and the smallest weight 

change. The resolution required to achieve convergence cannot be obtained from analog circuits.  

Secondly, the calculation of functions can be done by device physics by clever analog designing, 

but these designs are more dependent on circuit size than scalable CMOS (Complementary Metal 

Oxide Semiconductor) digital designs. Particularly, thermal noise power can be assumed to be 

proportional to inverse of the length unit (λ). Thus, for very small circuits the noise levels can be 

very high and render the circuit unreliable. Hence, as circuit sizes decrease, the digital approach 

offers better prospects for performance improvement [11] [12]. 

Thirdly, connectivity between elements on a chip is a big limitation. Particularly, for ANNs, they 

require huge multiplexing. Multiplexing analog signals is a design and resource intensive process. 

Interconnecting analog circuits at the board level is complicated because of radiated noise, power 

supply isolation problems, crosstalk, etc [11] [12]. Digital connections, on the other hand, tend to 

be rather reliable, comparatively. Since a neural network generally consists of more than one 

neuron, crosstalk needs special consideration when implementing computational multiplexing. 

Digital circuitry demands more Silicon area. When implementing changes in the algorithm, the 

analog circuit requires major redesign efforts. Digital circuits can accommodate such changes by 

implementing a different logic array.  

Interfacing with peripheral circuits is difficult for analog implementation since most peripheral 

computational units are digital, nowadays. ANNs are subject to Amdahl’s Law, as per which, the 

speed improvements of an analog neuron will stay untapped if the remaining network is 

implemented by slower peripheral implementations. So, a digital implementation improves 

compatibility with other systems, as compared to an analog circuit. 

b) Digital Implementation of ANN 

However, since the implementation of ANN involves the implementation of complex 

mathematical structures in the neuron and learning phase, the digital hardware implementation 

of such complex mathematical structures complicates the design. In particular, the 

implementation of the activation function involves the implementation of two very complex 

algorithms – division and exponent calculation. Since, the exponent function involves infinite 

series and real numbers, encoding either using hardware becomes a challenge. Hence, we 

adopted mathematical approximation methods to implement these operations in the neurons. 

Simplifying the neuron helped us simplify the implementation of the ANN on the hardware. 

The methods adopted till this point rely on the representation of real numbers as floating-point 
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numbers in the digital domain. Most conventional systems utilise IEEE 754 Floating point 

representation as the standard representation system.  

Cost Efficieny of Design 

Another major challenge in keeping the cost of the design low for applications like water 

quality monitoring, air quality indexing, which have implications for all sections of society.   

The design cost is majorly impacted by the cost of the sensors required in real-world 

applications where the data has to be collected through interaction with the physical world. In 

such cases, most sensing technologies that can provide reliable data are generally expensive 

e.g. for water quality applications, the sensors for Dissolved Oxygen (DO), and Electrical 

Conductivity (EC). Many attempts have been made to use mathematical data augmentation to 

augment expensive sensor data using available field data [13]. Alternatively, ANN can also be 

used for data augmentation where there is no apparent mathematical relationship between the 

input and output parameters. This saves from complex operations of mathematical data 

augmentation. In this work, ANN has been used to augment the data of DO and EC of water to 

reduce the cost of design. 

1.6.3 Mixed Software-Hardware ANN Implementation 

There have been some studies about the mixed approach to reap the benefits of both hardware 

and software approaches. [14] shows one such approach where hardware and software are both 

used to design an ANN on an FPGA. The shortcomings in this approach are –  

• The FPGA-based application is not suitable for mass production since FPGA boards 

are very expensive. 

• The presence of a software module makes the design resource-intensive and less power-

efficient because it needs a full computation unit for execution. 

The preceding discussion underscores the necessity for tailoring the design of Artificial Neural 

Networks (ANNs) to align with specific application requirements. Consequently, within the 

scope of this study, directed towards the classification of water quality, a digital hardware 

implementation integrating suitable number representation techniques and data augmentation 

methodologies has been devised. This development aims to meet the demands for a low-cost, 

low-power portable ANN solution while maintaining an acceptable level of accuracy. 
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1.7 Challenges in Number Representation System for ANN Implementation 

Since 1985, IEEE 754 Floating point representation has been the only way to represent floating 

point numbers in digital hardware architecture design.  

Despite all its benefits, IEEE 754 representation has many limitations as described below: 

§ IEEE 754 has a rigid arrangement. This causes huge bit streams even for smaller 

numbers. 

§ The partitions of sign, exponent, and mantissa are fixed in size, this limits precision. 

§ Limited precision leads to rounding errors in the representation of some numbers. 

§ Additional bits have to be reserved during computations to adjust for rounding errors. 

§ Many reserved patterns are reserved for Not-a-Number(NaNs), denormals, +/- infinity, 

and other specials. 

§ Arithmetic inconsistencies occur due to reserved patterns 

Examples: - 

• One such inconsistency is the possibility of +/- 0representation. IEEE 754 

guidelines state +0 = -0, which implies +1/0 = -1/0 => + infinity = - infinity. 

• Another inconsistency is noted in case of bracketed operations – say, x = 1e30; y = 

-1e30; z = 1. Then, (x + y) + z = 1, while x + (y + z) = 0. 

• Further inconsistency appears in dot products – A = [3.2e7, 1, -1, 8.0e7], and B = 

[4.0e7, 1, -1, -1.6e7]. In IEEE 754 notation the dot product A.B = 1, while in normal 

mathematics, A.B = 2. 

§ The precise and computed results may deviate as a consequence of IEEE 754 arithmetic 

inadvertently. The majority of the time, this inaccuracy appears to be harmless and even 

acceptable (for example, energy efficiency and accuracy are trade-offs in approximate 

computing techniques. In contrast, a number of works[16, 17, 18] have produced crucial 

errors in arithmetic expressions that FP arithmetic evaluates to drastically inaccurate 

results. Moreover, neglecting rounding errors has resulted in severe errors in some real-

world instances, such as the 1991 Patriot missile battery failure.  

To overcome these challenges, many other representation methods, like Unum 1, Unum 2,  and 

Unum3, have been proposed over the years, each having its advantages and drawbacks, to 

improve or replace the IEEE 754 Floating Point representation. Thus, an optimum choice of 
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number representation through their exploration is crucial for efficient and accurate hardware 

implementation for a given application. 

1.8 Organization of Thesis 

The Thesis has been organized as follows: 

Chapter 2 presents the literature survey done for the study. 

Chapter 3 presents a discussion on the collection of various water quality parameter data 

from different water samples. The various parameters used for Water Quality Classification in 

the study and how the data for each of these parameters were collected. This discussion is 

included prior to the discussion on system design because this data has been used as the training 

and validation data for the system design. This maintains the logical flow in the organization 

of this thesis. 

Chapter 4 delves into the digital hardware implementation of Artificial Neural Networks 

(ANNs) utilizing the conventional number representation system. Within this chapter, 

mathematical approximation techniques for the sigmoid function, serving as the activation 

function for the implemented ANN, are elucidated. Herein, we identify the optimal 

implementation of an ANN employing the sigmoid activation function, leveraging the 

conventional IEEE 754 Floating Point representation system. 

Chapter 5 explores the implementation of Artificial Neural Networks (ANNs) utilizing a 

Parametrized Posit number system. Within this chapter, we delve into an examination of 

diverse floating-point number representation systems, ultimately opting to employ the Posit 

representation system for the realization of an ANN tailored to classify water quality 

parameters. 

Chapter 6 presents the comprehensive design of a Portable Smart Water Quality 

Classification device utilizing ANN-based Data Augmentation. Within this chapter, we 

expound upon the hardware implementation of two distinct ANNs integrated into the device. 

The first ANN serves the purpose of Data Augmentation, aimed at mitigating device cost. This 

segment examines the utilization of data augmentation as an alternative to costly and intricate 

Dissolved Oxygen and Electrical Conductivity sensors. Due to the absence of a direct 

correlation between these parameters and the unfeasibility of implementing mathematical 
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models, we opt for an ANN-based approach utilizing pH and Oxidation Reduction Potential as 

input parameters. 

The Data Augmentation ANN extrapolates Dissolved Oxygen and Electrical Conductivity 

values based on pH and Oxidation Reduction Potential inputs, which are readily obtainable 

through simple potential measurements. Subsequently, the second ANN is employed to classify 

water into three distinct categories: Potable, Agricultural, and Wastewater. The design 

implementation encompasses two methodologies: the Embedded Systems approach and the 

Application Specific Integrated Circuit (ASIC) design approach. 

Chapter 7 concludes the findings of the study and paves the path for future studies that can 

be done in this field. 

Appendices A, B, and C contain the Verilog and Python codes for the ANNs designed and 

implemented. 
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Chapter 2 
2. Literature Review 

This chapter provides a comprehensive review of literature pertaining to diverse 

implementations of Artificial Neural Networks (ANNs) utilized for Water Quality measurement. 

Additionally, it examines literature focusing on various hardware implementations of ANNs. 

Furthermore, the article conducts a survey of literature concerning the implementation of the 

Posit representation system. Finally, the article concludes by identifying research gaps within 

the published literature that have motivated the progression of this work. 

2.1 Introduction 

Water quality models are used extensively in research and design to enforce water quality 

regulations (that is, to ensure that the maximum/minimum permissible concentration of a 

substance in each water body is not exceeded). Many models, on the other hand, are predicated 

on the assumption of linearity functions. Different deterministic models have been used in the 

past to predict water quality in a stream under various scenarios of interest. However, because 

natural systems are sometimes too complicated for state-of-the-art deterministic modelling 

methods, the statistical accuracy of the models is frequently low in practise. ANNs are a quick 

and versatile way to create models for water quality estimation. ANNs have demonstrated 

excellent performance as regression tools in recent years, particularly when employed for 

pattern recognition and function prediction. An Artificial Neural Network (ANN) is a 

computational approach inspired by biological organisms' brain and nervous systems. ANNs 

are mathematical models that are highly idealised representations of our current understanding 

of complex systems. The ability of neural networks to learn is one of its properties. A neural 

network is not designed like a traditional computer programme; instead, it is given instances 

of the patterns, observations, and concepts, or any other form of data that it must learn. The 

neural network organises itself to develop an internal collection of features that it uses to 

classify input or data through the learning (also known as training) process. There are numerous 

advantages to using an ANN approach to problem-solving, including: (1) the application of a 

neural network does not necessitate prior knowledge of the underlying process; (2) It is possible 

that one does not recognise all the complicated relationships that exist between various 

components of the process under consideration. (3) A traditional optimisation strategy or 

statistical model only delivers a solution when allowed to run to completion, whereas a neural 
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network always converges to an optimal (sub-optimal) solution condition, and (4) In the ANN 

development, neither constraints nor an a priori solution structure are expected or tightly 

enforced. These properties make ANNs ideal instruments for dealing with a variety of 

hydrological modelling challenges [1] 

2.2 ANN for Water Quality Applications 

In the early 1990s, applications of ANN in the areas of groundwater, ecology, and 

environmental engineering were reported. In recent years, however, ANN has been widely used 

for prediction and forecasting in a variety of engineering and water-related fields, including 

water resource analysis by Liong and Sivapragasam, 2002 [2]; Muttil and Chau, 2006 [3]; El-

Shafie et al. 2008 [4]; El-Shafie et al. 2011 [5]; Noureldin et al. 2011 [6]; Najah et al. 2009 [7]; 

oceanography by Makarynska et al. 2008 [8]; and environmental engineering by Grubert, 2003 

[9]. 

Rankovic et al. (2010) [10] used ANN to forecast the concentration of dissolved oxygen (DO). 

The study's shortcoming is that the parameters involved are chemical parameters that can only 

be observed in a laboratory environment. Thus it can't be utilised for real-time monitoring. 

Gazzaz et al. (2012) [11] employed ANN to estimate WQI using 23 water quality metrics. The 

concept cannot be utilised for real-time monitoring since the price of the sensors necessary 

makes it prohibitively expensive. For continuous and remote monitoring of water quality data, 

Menon et al. (2012) [12] developed a wireless sensor network-based river water quality 

monitoring system in India. The device's wireless sensor node was designed to monitor the pH 

of water. The technology was limited in that it could not be utilised to control regional water 

contamination. Meanwhile, Ali et al. (2013) [13] used an unsupervised machine learning 

algorithm to classify water quality into three categories. The study's shortcoming is that it did 

not consider the numerous parameters that are linked to the Water Quality Classification. 

Sensor nodes employed an Arduino core, which was then used by sensor nodes to interpret 

measured data. Faustine et al. (2014) [14] created a solar-powered system for monitoring water 

quality in the Lake Victoria Basin utilising WSN. The data was then transmitted over ZigBee 

to the gateway. The gateway collected all the data and sent it to the application programme 

through GPRS. Based on field test findings, the authors showed the suggested system's proper 

functionality and deployment in the real world. Despite this, there was no capability for local 

data analysis on the device. As a result, it will be unavailable whenever a mobile network 
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outage occurs. These technologies usually operate in the 2.4 GHz ISM license's open band, 

which is frequently crowded and vulnerable to interference and security breaches. Using 

Internet of Things (IoT) technology, Vijayakumar et al. (2015) [15] created a low-cost, real-

time water quality monitoring system. The node was controlled by a Raspberry Pi model B+ 

CPU, which was coupled to many water quality sensors. This device can detect water quality 

parameters like temperature, pH, turbidity, conductivity, and dissolved oxygen. As a central 

controller, the Raspberry Pi platform was used. From experimental data, the proposed gadget 

was able to demonstrate water quality characteristics on the Internet. Due to cyber-attacks, this 

approach had weaknesses that can impair the legitimacy, reliability, and secrecy of 

measurement data. 

Kalpana et al., 2016 [16] created a water monitoring system that included conductivity, 

turbidity, and pH sensors. The Raspberry Pi3 Model B single-board computer can 

automatically detect the parameters. The data from the three sensors is received by the single-

board computer, which then sends it to the webserver through the internet. This gadget is 

suitable for both business and household use. The system can be expanded to track hydrology, 

air pollution, industrial and agricultural product development, and so on. Amruta et al. (2013) 

[17] proposed using a board aligned with the sun to create a regulated water supply system. 

The gadget consists of a centre and a base station, with the centre point connected to the base 

station by a Zigbee advance controlled by the board and controlled by daylight. The system 

would stop working if the panel in the sun could not be charged for any reason. Previous 

research employed fundamental water quality measures as a reference, such as pH, 

temperature, turbidity, and TDS, because differences in their values reflect the level of water 

pollution. As a result of overcoming this limitation, we are developing a new system that will 

require minimal work, improve, and be user-friendly.  

Gopavanitha et al., 2017 [18] used IoT to design a system for real-time monitoring and control 

of water quality. The gadget is made up of sensors that can measure temperature, turbidity, 

conductivity, pH, and flow, among other physical and chemical properties of water. The 

Raspberry Pi's output value is sent to the cloud by the sensor. The sensed data is eventually 

viewable on the cloud, thanks to cloud computing, and IoT controls the water flow in the 

pipeline. Puneeth et al., (2018) [19] suggested an application that used the WSN and IoT 

concepts to monitor metrics such as pH, turbidity, and temperature via each node, which were 

then recorded and made available on the cloud. Solar energy is used to power the system. Lin 
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et al. (2008) [20] used wireless sensor network technology and a solar panel to create a water 

quality monitoring system. The prototype device was created and deployed utilising WSN 

technology and a single node powered by a solar cell. Data from node-side sensors such as pH, 

turbidity, and oxygen density were collected and transferred to the base station through WSN. 

In an IoT setting, Kumar et al., 2019 presented a smart sensor interface device for water quality 

monitoring. Sensors such as a CO2 sensor, a temperature sensor, a pH sensor, a water level 

sensor, and a turbidity sensor were employed by the inventors. This sensor system manages the 

entire process and is managed by cloud-based wireless communication devices. The water level 

sensor detects and displays the water level in the tank. The sensors can monitor the water 

quality automatically. Amareshwar et al. (2019) [21] developed a sensor-based water quality 

monitoring system that assesses physical factors of water quality such as temperature, pH, and 

water humidity using MEMS sensors. The Raspberry Pi variant can be used as the controller 

of the central node. Finally, via API, the sensor data may be seen on the web. Demetillo et al. 

[22] created a low-cost, real-time water quality monitoring system (2019). It's suitable for 

isolated rivers, reservoirs, coastal locations, and other bodies of water. The device's nodes were 

powered by a 6 V/3.5 amp-hour (Ah) lead-acid battery. Minu et al. (2019) [23] created an IoT-

based sensor that monitors pH, temperature, conductivity, dissolved oxygen, turbidity, bacteria, 

and other parameters in a water sample. The sensors collected data and relayed it across a 

network. The information would subsequently be uploaded to the cloud by the server. The data 

will be read, and the water quality will be assessed at the remote water station. 

Using several Machine Learning methods, Ahmed et al. (2019) [24] predicted and classified 

the Water Quality of Rawal Lake, Pakistan. Alkalinity, Appearance, Calcium, Chlorides, 

Conductance, Faecal Coliforms, and Hardness as CaCO3, Nitrate as NO2-, pH, Temperature, 

Total Dissolved Solids, and Turbidity are the 12 parameters they used. In their analysis, the 

highest level of accuracy achieved by any algorithm was around 85 percent. They also didn't 

offer any suggestions about how to put the algorithms into practise in the field. ANN and 

multivariate linear regression were used by Abyaneh (2006) [25] to estimate Biological 

Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) using four parameters: pH, 

temperature, Total Suspended Solids (TSS), and Total Suspended Solids (TSS) (TS). 

On-site sampling and subsequent laboratory-based tests are both labour- and cost-intensive 

operations in traditional water quality measurement systems. The data isn't updated in real-

time. As a result, real-time monitoring of water quality for drinking applications is required to 
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reduce labour costs and time consumption. In the old approach, captured data is uploaded to 

remote data storage via Zigbee boards. It costs a lot of money to set up this technology because 

it requires additional gear. When parameters are abnormal, there is no alert indicator in such a 

system. The progress of the water sensing network is controlled by the sun board in the Solar 

Powered Water Quality Monitoring System with Remote Sensor Network. The system will not 

turn on if the sun board is not charged, which is the limitation connected with this technology. 

The technology is unable to achieve the goal of real-time water quality parameter monitoring. 

This research seeks to build and develop a low-cost Raspberry Pi and Arduino Uno-based water 

quality monitoring system with artificial intelligence for real-time monitoring. Unlike a solar-

powered water quality network monitoring system, this system is portable, the output is legible 

for those with poor or no literacy, and it will work in any location. 

Sarkar and Pandey in [1], have tested three ANNs with varying data sets to predict the values 

of Dissolved Oxygen (DO) in the waters of the Yamuna River downstream of Mathura city in 

Uttar Pradesh, India. The work shows how both underrepresented data and overrepresented 

data are detrimental to the accuracy of the ANN. In [26] the authors have shown a comparison 

between static and dynamic ANNs in predicting the concentration values of Ammonium-

Nitrogen (NH3-N) in the waters of the Dahan River in Taiwan. The output of the study shows 

the benefits of dynamic ANN, Nonlinear autoregressive with exogenous input (NARX) 

network over some other static ANNs. On the other hand, Amanollahi, et al, in [27] evaluate 

the accuracy of an ANN in predicting chlorine concentration in the Wetland Areas of Iran. The 

work considers the water quality parameters such as Turbidity, TDS, and Hardness of the water 

to make the predictions. Some other methods to predict chlorine concentration based on the 

available data is also discussed in the work mentioned. Huang, et al [28] have discussed the 

implementation of a multi-classification support vector machine for the classification of 

pollutants in the water. The work discusses how the implementation of a multi-classification 

Probabilistic Output (MCPO) Support Vector Machine reduces the dependency on the 

concentration of contaminants in the online classification application.   

Table 2.1 presents a summary of the reviewed literature on ANN implementation in Water 

Quality measurement. 
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Table2. 1: A Summary of ANN Implementations for Water Quality Measurement 

Study Methodology/Novelty 

 

Findings Performance 

Metric 

Rankovic, et 

al [10](2010) 

Implemented MLP 

architecture with 

Lavenberg-Marquadt 

learning. 

Software Approach 

Parameters involved are chemical and 

cannot be tracked in real time in the 

field 

R2 = 0.96 

Gazzaz et al 

[11](2012) 

Showed the benefits of using 

ANN for WQI compared to 

mathematical methods for 

WQI. 

Software Approach 

Utilises twenty-three parameters for 

indexing. Measurement method for 

these parameters render the device 

very costly and unsuited for real-time 

monitoring 

R2 = 0.954 

Ali, et al. 

[13](2013) 

Shows that MLP is the most 

suited architecture for 

supervised learning ANN for 

WQI. 

It is a Software based approach. 

The study takes pH as the only 

parameter for Indexing Water Quality 

Not mentioned 

in the paper 

Fausstine, et 

al. [14] (2014) 

Implemented a Sensor network 

based WQI model. 

A Hardware Approach 

Solar Powered WSN based Water 

Quality Measurement. Dependence 

on solar reduces use cases. Uses 

zigbee and Mobile data network to 

transmit data to a server for analysis. 

Thus, real time monitoring is not 

possible. 

NA 



 19 

Vijaykumar, 

Ramya [15] 

(2015) 

Used Raspberry Pi to 

implement ANN for Water 

Quality Monitoring. 

Hardware Approach 

Low-cost Raspberry Pi based device 

measures pH, DO, Turbidity and 

Conductivity in real time. Does not 

measure ORP. No implementation of 

ANN makes the device require 

frequent recalibrations. 

NA 

Gopavanitha 

et al. [18] 

(2017) 

Present a low-cost approach to 

measure water quality using 

Raspberry Pi. 

Hardware Approach 

IoT based solar powered water 

quality monitoring and control 

system. Heavily dependent on Solar 

energy, thus weather conditions.  

NA 

Ahmed et al. 

[24] (2019) 

Shows that MLP gives 

maximum accuracy for 

classification of Water Quality. 

Software Approach 

Applied multiple network topologies 

with various learning algorithms. 

They achieved the best accuracy with 

Multilayer Perceptron topology. 

Accuracy = 

0.85 

Abyaneh 

[25](2016) 

Shows that ANN is better than 

Multi Linear Regression. 

Software Approach 

ANN and multivariate linear 

regression to estimate Biological 

Oxygen Demand (BOD) and 

Chemical Oxygen Demand (COD) 

using four parameters: pH, 

temperature, Total Suspended Solids 

(TSS), and Total Suspended Solids 

(TSS) (TS). 

r = 0.75 

Sarkar and 

Pandey [1] 

(2015) 

Prediction of DO based on 

temperature, pH, and flow 

discharge using ANN. 

Software Approach. 

evaluated three ANN s with varying 

data sets to predict the values of 

Dissolved Oxygen (DO) in the waters 

of the Yamuna River downstream 

Mathura city in Uttar Pradesh, India. 

The work shows how both 

underrepresented data and 

overrepresented data are detrimental 

to the accuracy of the ANN 

R = 0.9 
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Amanollahi, et 

al, in [27] 

Predicted Turbidity, TDS, and 

TSS using ANN on Remote 

Sensing data. 

Also shows that ANN is better 

at prediction of WQI 

parameters compared to Linear 

Regression. 

Software Approach 

evaluate the accuracy of an ANN in 

predicting chlorine concentration in 

the Wetland Areas of Iran 

Predicted 

various 

parameters 

with differing 

R2 values 

 

From Table 2.1 we observe : 

i) Many studies have used ANN for various water quality applications with differing 

degrees of success. However, as compared to other methods used for indexing of 

water quality, ANNs have proven to be more accurate. 

ii) Data augmentation has been used for various applications to supplement the data of 

parameters not easily measurable. Most of the methods have used mathematical 

augmentation methods for supplementing the parameters that have a mathematical 

relationship with another measurable parameter. 

Hardware implementation of ANN is a core design element for this study. The major 

components of ANN are the algorithm, its architecture, the activation function, and the number 

representation. The performance of an ANN implementation, in terms of power and resource 

efficiency, speed, and accuracy, depends highly on the aforementioned parameters. Thus, a 

detailed exploration of methods used for their implementation in published literature is 

essential for making an appropriate decision during the design. 

In the following section we present the review of ANN Algorithms and architectures section 

2.3. This is followed by a review of the literature present regarding the Hardware 

implementation in section 2.4. Section 2.4 delves into various methods of hardware 

implementation of ANN. In section 2.4.1 presents the review of the methods to optimise the 

activation function implementation to make it suitable for hardware implementation, at 

minimal loss of accuracy of ANN. Section 2.4.2 reviews the literature on more optimisation of 
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ANN implementation by exploring the various number representation systems that have been 

proposed in the literature for hardware implementation of ANN.  

2.3 Artificial Neural Networks (ANN) 

ANNs are most commonly expected to perform one of the four tasks: 

• Classification of input data sets into predefined classes. 

• Prediction of future output based on a set of current input-output mappings. 

• Clustering data into groups based on prior knowledge about the data. 

• An ANN can be trained to remember particular data patterns and then associate input 

data pattern with the ones in the memory or discard the data pattern. 

An ANN neuron is modelled as: - 

 

Figure 2. 1: Model of a neuron of an ANN. Image Source: [5] 
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The input points on Figure 2.1 are analogous to synaptic connections on a nerve cell. For an n-

dimension input vector [𝑥1, 𝑥2, 𝑥n] each input is multiplied by a synaptic weight [𝑤!,𝑤", 

……….𝑤#]. These products are hereafter summed up in the nerve centre and the final sum is 

passed through an activation function (a threshold function, stepwise linear function, or 

sigmoid function) that defines the final output of the neuron. A multitude of such neurons form 

a layer of parallel processing centres which can work on a huge range of inputs. The outputs 

of one such layer of neurons serves as the input to many such subsequent layers of neurons, 

thus implementing a huge parallel processing capability to the system. The outputs are then 

compared with the expected outputs and the errors are measured. The weights of the synapses 

are thus altered in accordance with the error. This is the basic learning process of a neuron. 

Figure 2.2 shows a typical architecture for an ANN: - 

• Input Layer – It contains those neurons that receive the input data that is to be 

processed by the ANN. 

• Hidden Layer(s) – These are the layers of units between the input and the output layers. 

The hidden layers take the data from the input layer and perform the computations such 

that it can give useful information to the other hidden or output layer. 

• Output Layer – This consists of the neurons or units that give output depending on the 

learning that has taken place inside the ANN. 

Figure 2. 2 A typical ANN Architecture; Image Source [35] 
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While implementing logic on hardware, there are two approaches: - Analog and Digital. 

Morgan, et al. [42] present the key advantages that a digital approach has over analog.  

Biological mechanisms which function on inaccurate components serve as models for ANN 

algorithms. Thus, analog circuits having infinite resolution (continuous sampling) should serve 

as the better implementation option. Practically though, there is a limit to the representation of 

the smallest resolution on a circuit. i.e., the sampling rate of a circuit must be finite. Moreover, 

a multitude of ANN algorithms model biology very poorly and thus frequently need a wide 

dynamic range to bring about convergence to useful solutions. Popular stochastic algorithms 

such as backpropagation (BP) require a 12 – 16-bit range or roughly four orders of magnitude 

between the largest weight value and the smallest weight change [30] [31]. The resolution 

required to achieve convergence cannot be obtained from analog circuits. [42]  

When implementing changes in an algorithm, an analog circuit requires major redesign efforts. 

Digital circuits can accommodate such changes by implementing a different logic array. 

Since most other computational units are digital, nowadays. A digital circuit also improves 

compatibility with other systems, as compared to an analog circuit. Also, ANNs are subject to 

Amdahl’s Law, as per which, the speed improvements of an analog neuron will stay untapped 

if the remaining network is implemented by slower digital implementations.  

2.3.1  ANN Algorithms: 

Traditionally, ANNs have been implemented on software which requires a complete processing 

system. That means a lot of unnecessary hardware is engaged but not utilised. Also, when the 

software code must be decoded down to a hardware level to be able to interact with the real 

world, it must go through multiple abstractions of computer architecture. This renders the 

process to become time-consuming and limits the usability of the ANN. Thus, an Application 

Specific Integrated Circuit (ASIC) or System-on-Chip (SoC) based implementation of an ANN 

algorithm makes the system much more resource and time efficient because of the application 

specific nature of the hardware. A direct hardware implementation also improves the speed of 

the system. An application specific IC is also economical because of its specificity. 

Hardware implementation of ANNs offer a simpler development cycle for powerful machine 

intelligence. Application-specific nature of these hardware implementations offer better 

performance but at the cost of programmability. Moreover, physical resource (Silicon area) 
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utilisation is also minimal in this approach. The trade-off between application specificity and 

program flexibility is a part and parcel of VLSI design. 

On most neural networks, each neuron in a hidden layer is connected to each unit in the 

previous (input) layer and the subsequent (output) layers. ANNs can be implemented in several 

architectures. In 1943, McCulloch and Pitts presented the first ever model of an artificial 

neuron, called the perceptron [32]. A layer of perceptrons can perform some tasks. Thus, a 

single layer of perceptrons can form a network. We term such a network as a single-layer 

perceptron. An arrangement of a series of a Single Layer Perceptron is called a Multi-Layer 

Perceptron (MLP). MLPs are also called feedforward networks. Another architecture, where 

the activation function of the perceptron of the MLP is the Radial Basis Function, such a 

network is called the Radial Basis Function Neural Network. While the aforementioned 

networks have a structure where each perceptron sends the information only to the next 

perceptron, a network where there are self-loops on each perceptron is called the Recurrent 

Neural Network. Recurrent Neural Networks have memories and can be activated by both, 

activation functions from a lower-level perceptron and previous activation value. There are 

some other types of architectures as well, such as Long/Short Term Memory Networks, 

Hopfield Networks, Boltzmann Machine, Convolutional Neural Networks, etc. Generally, the 

architectures of these types of networks are derivatives of the four mentioned above.  

a)  Multi-Layer Perceptron (MLP) Neural Network (NN) Architecture 

It has feedforward architecture within the Input layer, hidden layers, and output layer. The input 

layer has ‘N’ units representing the N-dimensional input vector. The input units are fully 

connected to ‘I’ hidden layer units, which are further connected to ‘J’ output layer units. ‘J’ 

represents the number of output classes. If our training data contains ‘l’ pairs (𝑥$,𝑦$) where 𝑥$ 

is the pattern vector and 𝑦$ is the class of the corresponding pattern. The activity of a neuron J 

in a hidden layer is given by: - 

 𝑆" =	%𝑤"#𝑥# (1) 

𝑥$ = 𝑓(𝑠%); 𝑓 is a sigmoid function 

Where 𝑤!$ =  set of weights of neuron𝑖; 𝑏!(𝑖) = threshold; 𝑥$ = input of neuron 
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Output layer activity is: - 

 𝑆" = % 𝑤"#𝑥#
#	∈	#&'()

 (2) 

b) Training Methodology 

A neural network relies mostly on its training methodology to learn. The better the training 

methodology, the better the outputs of the network.  

Backpropagation is the most common training methodology and is simpler to implement which 

reduces the time to market and is also much more capable when it comes to supervised pattern 

matching. But backpropagation has its limitations, such as problems with convergence and the 

time cost of backpropagation hardware is hugely variable.  

The Rapid Restart method [33] has been demonstrated to be prominently suppressive of the 

heavy-tailed nature of training instances. Computational efficiency also is improved with the 

Rapid Restart Method.  

2.4  Hardware Implementation of ANN 

P Skoda, et al in [34] present an implementation framework for implementing ANN onto an 

FPGA. They make use of an LUT to implement the activation function and a ROM memory 

that serves up the weights to each neuron input. However, this approach becomes tedious to 

implement when the number of inputs increases. Also, because of the high usage of memory 

cells, the process output will become slow and resource intensive. 

Kim and Jung in [35] present a 32-bit processor with special instructions and hardware units to 

perform single precision floating point units. The processor is specifically designed to 

implement an RBF Neural Network with a Backpropagation algorithm for online learning. 

However, the implementation does not give a complete hardware-based approach and the ANN 

tasks are performed by the ALU based on the instruction set. However, the implementation 

being a processor and the operation being carried out by instruction sets renders more 

functional customisability to the hardware.  
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In the article [36], the author presents an algorithm to be implemented on ANN Hardware. It 

is a feedforward architecture that treats each neuron as a special case of Boolean functions. The 

Boolean function properties can be used to achieve compactness. 

2.4.1 Optimisations for Hardware Implementation   

There are many algorithms like the Gradient Descent Algorithm, Backpropagation, Hebb Rule, 

Kohonen Self Organising maps, etc. [37], which are used to facilitate learning for an ANN. 

Most of the activation functions and learning algorithms are very abstract mathematical 

functions, generally, nonlinear. This makes the implementation of the activation function and 

learning algorithm on ASIC very complicated. Some approximation methods like the ones 

discussed in [38] give a close enough approximation for the calculation of the output of 

activation functions. 

MLP training is dependent on the repeated presentation of sample input and desired targets, 

whence outputs and targets are compared, and errors measured. Finally, weights are adjusted 

as the error is minimised. The most crucial, resource intensive and difficult to implement part 

of any hardware implementation of ANNs is the non-linear activation function [39]. 

• Sigmoid activation function:  

Backpropagation may be applied to any number of layers, but it has been proven that a single 

layer of hidden units suffices for the approximation of any function [40]. Hence, MLP NNs 

with a single layer of hidden units with a sigmoid activation function is used most commonly. 

 𝑓(𝑎) = 	
1

1 +	𝑒*+
 (3) 

It has an easy-to-calculate derivative. 

 𝑓,(𝑎) = 𝑓(𝑎)[1 − 𝑓(𝑎)] (4) 

Implementation of activation function -  Zbigniew Hajduk proposed [38] a direct 

implementation of the functions with accuracy of the method higher compared to other 

published solutions. Here, the difficulty of implementation of activation function is transferred 
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to the approximation of the exponent function.  The hyperbolic tangent (𝑇(𝑥)) and sigmoid 

,𝑆(𝑥).	functions are represented as - 

 𝑇(𝑥) = 	
2

1 +	𝑒!"# − 1 (5) 

 𝑆(𝑥) = 	
1

1 + 𝑒!# (6) 

For the implementation of hyperbolic tangent function with high accuracy, McLaurin series 

approximation is used with exploiting the symmetry feature (i.e., tan hyperbolic of only the 

negative arguments are calculated and then properly adjusted by changing sign to obtain the 

result of the positive arguments).  

For sigmoid functions, however, symmetry does not result in improved accuracy. Here, the 

McLaurin interpolation is done by equation (7): - 

𝑒! = 1 + 𝑥
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 (7) 

 

For sigmoid functions, another approximation, Padé approximation is as given below: - 

 𝑒# =	
1680 + 840𝑥 + 180𝑥" + 20𝑥$ + 𝑥%

1680 − 840𝑥 + 180𝑥" − 20𝑥$ + 𝑥% (8) 

Padé approximation does compromise the accuracy by a small margin but reduces the number 

of floating-point operations. Taking a higher degree of McLaurin or Padé approximation does 

not improve accuracy of the activation function. The above expressions are valid only for𝑥	 ∈

(−1,1). For a wider range the value 𝑒& can be broken down as follows: - 

 𝑒& =	𝑒'() =	𝑒'. 𝑒) (9) 
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Where 𝑝 + 𝑓 = 𝑥 and𝑓	 ∈ (−1,1).  

We can thus calculate 𝑒) using any of the above two approximations and  𝑒' can be calculated 

using an LUT. We can exploit the fact that the activation function’s values become constant 

beyond a threshold value. Experimentally the number of LUTs can be limited to 35 (or 17 in 

cases where symmetry is exploited) [38]. 

2.5 Number Representation Systems 

The conventional number system used to represent floating point numbers in binary logic is 

the IEEE 754 Floating Point Representation (IEEE 754). Hardware implementation of ANN 

involves the use of floating point calculation and thus makes it imperative to use floating point 

representations. In this section, we present the literature review regarding the IEEE 754 and 

the Posit number system in brief. A detailed review of both and their comparison are presented 

in Chapter 5. 

IEEE 754 Floating point representation (IEEE 754) has been the conventional method of 

representing floating point numbers in digital computation. IEEE 754 has made the 

computation of real numbers possible in digital computing fairly accurately. It represents the 

real number akin to the scientific notation. However, IEEE 754 has a rigid representation of 

floating point numbers. This leads to many problems like rounding errors, inconsistencies in 

representation, errors in dot product calculation, the existence of two zeroes, etc. These 

problems have led to some costly mistakes like the Patriot missile misfire [42].  

Some researchers proposed a new type of number system called the universal number (Unum) 

system in 2015. So far, Unum has developed three revisions. Type-1 [43] [44] [45], Type-2 

[46] [47], and Type-3 [48] [49] are the three types. Type-3, also known as Posit, was the most 

recent revision. Unum was allegedly utilised to replace the IEEE 754-2008 floating-point 

standard [50] with greater efficiency and precision, according to its creators. Unum and Posit 

both feature several advantages over IEEE 754-2008, such as a greater dynamic range, higher 

coding space use, tapering accuracy, parameterized precision, and so on [48]. 

In 2013, John L. Gustaffson proposed a novel method called Universal Numbers (Unums). 

Gustaffson defined 2 types of Unums. Type 1 was developed as a superset to floating point 

numbers to accommodate greater range and accuracy. However, the hardware cost made it 

impractical. Type 2 was based on a positional bit pattern instead of actual data conversion. This 
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conversion was based on look-up tables. This allowed extremely fast computations but at the 

cost of operations that could be performed [48]. 

In their 2017 paper, John L. Gustaffson proposed the posit representation of floating-point 

numbers. The Oxford dictionary defines posit as “a statement that is made on the assumption 

that it will prove to be true.”  Posits are a hardware-friendly version of Unum2 with relaxations 

in 2 rules: - 

i) Reciprocals only follow the perfect reflection rule for 0, +/- infinity and integer powers 

of 2.  

ii) There are no open intervals 

The first relaxation enables one to populate the u-lattice such that finite numbers are all 

represented in the form of IEEE 754 representation of m.2k.  

The structure of the Posit Representation of Floating Point numbers is as shown in Figure 2.3. 

 

The sign bit is the same as the IEEE 754 Floating point representation: 0 for positive numbers 

and 1 for negative numbers. If the sign bit is 1, the rest of the number should be in 2’s 

complement.  

Table2. 2: Run length meaning k of the regime [25] 

Binary 0000 0001 001x 01xx 10xx 110x 1110 1111 

Numerical Meaning, k -4 -3 -2 -1 0 1 2 3 

 

Consider the binary strings shown in Table 2.2 to make sense of the regime bits. The run length 

of the bits is denoted by numerical meaning, k. These are strings of either all 0 or all 1bits. The 

Figure 2. 3: Format of Posit Representation [25] 



 30 

bits are terminated either by the opposite bit or end of the string is reached. If the bits are 0 and 

there are m bits then 𝑘	 = 	−𝑚, if the bits are 1 then 𝑘	 = 	𝑚	– 	1. The regime gives us the scale 

factor for useedk, 𝑢𝑠𝑒𝑒𝑑	 = 2"!". 𝑢𝑠𝑒𝑒𝑑 values examples are shown in Table 2.3 

Table2. 3: The useed as a function of es 

es 0 1 2 3 4 

useed 2 22 = 4 42 = 16 162 = 256 2562 = 65536 

 

The next part is the exponent, e, taken as an unsigned integer. Unlike IEEE 754 Floating points, 

there is no bias in the exponent and represents scaling by	2*. If enough bits are remaining after 

the regime, the highest number of bits the exponent can occupy is es. This is how the tapered 

accuracy of Posits is expressed. Numbers near 1 need to be presented in more accuracy than 

very large or very small numbers which are not so common in calculation. 

If more bits remain in the bit stream after regime and exponent, they are used to represent the 

fraction part of the number. The fraction part of a posit is just like that of IEEE 754 floating 

point in the format of 1.f with a hidden bit that represents the whole number part, 1. Posits have 

no subnormal numbers with a hidden bit 0 for numbers less than 1. 

There are only 2 exceptions in the posit representation, i.e., 0(all 0’s) and ±∞ (1 followed by 

all 0 bits).  

Table 2.4 shows the dynamic range offered by both posits and IEEE 754 Floating Point 

representation for some bit lengths [48]. 

Table2. 4: IEEE 754 Float and Posit dynamic ranges for the same no. of bits. 

Size, 
Bits 

IEEE Float 
Exp. Size 

Approx. IEEE Float 
Dynamic Range 

Posit es 
value 

Approx. Posit Dynamic 
Range 

16 5 6	 ×	10#$ to 7	 ×	10% 1 4	 ×	10#& to 3	 ×	10$ 

32 8 1	 ×	10#%' to 3	 ×	10($ 3 6	 ×	10#)( to 2	 ×	10)* 
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64 11 5	 ×	10#(*% to 2	 ×	10(+$ 4 2	 ×	10#*&& to 4	 ×	10*&$ 

128 15 6	 ×	10#%&,, to 1	 ×	10%&(* 7 1	 ×	10#%$'' to 1	 ×	10%$'' 

256 19 2	 ×	10#)$&$% to 2	 ×	10)$&-( 10 2	 ×	10#)$&*) to 5	 ×	10)$*&, 

 

We make use of the Posit number representation system to implement a constructive Neural 

Network architecture on Digital Hardware for water classification applications. With the aim 

of water quality study, the proposed hardware for the ANN needs to implement pattern 

recognition of input data set and comparing it with a set of prescribed data patterns and thus 

classify the water sample accordingly. Pattern localization and classification are CPU time 

intensive when normally implemented in software. They also have lower performance than 

custom implementations. With custom hardware implementation we can reap the benefits of 

real-time processing but at a higher cost and time-to-market than software implementations 

[42].  

2.6 Conclusions and Gaps in Research 

In the proposed work, the aim is to develop an ANN Classification algorithm and implement it 

onto hardware that would classify the water quality parameters based on a pre-decided 

classification parameter that would be in accordance with WHO Drinking Water Quality 

Guidelines.  

The above literature survey shows a few important areas that have not been explored properly 

in the published literature: - 

1. Most implementations in Water Quality management are for predicting certain water 

quality parameter based on its correlation with other parameters. The Literature survey 

shows very limited work where the ANN is used to classify the water based on the 

parameters input by the sensors. Implementation of such a Network has been presented 

in this thesis. 

2. All the hardware implementations mentioned in the literature survey involve a software 

part either in learning or in activation function implementation. None of the approaches 

are completely ASIC design example. The reason being the algorithms for learning and 
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activation function are heavily nonlinear and involve tedious real number calculations. 

With a good mathematical approximation method, the algorithms can be approximated 

to simpler reduced floating-point calculations making the hardware implementation 

more resource economic. 

3. Most neural network implementations use binary functions like tan hyperbolic or 

sigmoid function as activation function for classification of data. These functions 

require calculations in the floating-point number domain. The current floating point 

number representation system, i.e., IEEE 754 Floating point representation is not ideal 

for executing calculations such as exponential function. Thus, a novel number 

representation system – Posit number representation has been used for the 

implementation of activation function so that better power and area efficiency can be 

achieved.  

We have worked upon these research gaps to enhance the performance of ANN Hardware 

Implementation for Water Quality Classification applications. Work has been carried out in 

accordance research objectives as mentioned in following section. 

2.7 Research Objectives 

• Literature Survey of published ANN architectures and hardware implementations 

• Exploration of existing ANN algorithms/architectures and number representation 

systems 

• Hardware Implementations of Existing Algorithms and their optimization for meeting 

required design challenges 

• Development of novel Hardware Implementation of ANN Architecture with 

applications in Water Quality 
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Chapter 3 

3. Data Collection 

In this chapter, we explore the various parameters that have been chosen to measure using our 

electrodes to decide the water quality classification. An explanation of the importance of each 

parameter to water quality, and methods to measure their values, has been presented. The data 

collection presented in this chapter forms the ground truth for the training and validation of 

the ANNs that are discussed later in the thesis. The validation of ANN-based prediction of DO 

and EC has also been presented.  

3.1 Introduction 

Data assumes a pivotal role in the training process of an artificial neural network (ANN). The 

efficacy of an ANN in discerning the relationship between inputs and outputs is directly 

correlated with the size and diversity of the training dataset. Consequently, the collection of a 

comprehensive and dependable dataset for training purposes becomes paramount, particularly 

when the ANN is deployed in a critical application such as water quality monitoring.  

The World Health Organization (WHO) stipulates five parameters - pH, Oxidation Reduction 

Potential (ORP), Dissolved Oxygen (DO), Electrical Conductivity (EC), and Turbidity - as 

fundamental indicators for assessing water potability [1]. To measure and classify water 

quality, we focussed on four key parameters - pH, Oxidation Reduction Potential (ORP), 

Dissolved Oxygen (DO), and Electrical Conductivity (EC) - all of which are measurable using 

electrodes. These parameters exhibit correlations with several other critical variables pivotal 

for the classification of water quality into the desired three categories, namely Potable, 

Irrigation, and Wastewater. Additionally, these parameters represent the least complex 

measurements to conduct in a water sample yet provide valuable insights for various other 

essential parameters such as Total Dissolved Solids (TDS) and biological activity. 

For the present study, 1806 Ground and surface water samples have been collected from 

various locations in and around Pilani, Rajasthan, India. Out of these, 551 samples are from 

Wells, 752 from tap water, 53 samples from washroom commodes, and 451 samples from 

surface water open tanks. Testing has been carried out using these samples to measure the four 

water quality parameters that form the ground truth dataset. This dataset is used for training 

and validation of the Augmentation and Classification ANNs discussed in Chapter 6. 
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Table 3.1 gives the prescribed values of each of the four parameters associated with each of 

the three categories as per the WHO [1], Bureau of Indian Standards for Drinking [2] Water, 

and Indian Standard Guidelines for Quality of Irrigation Water [3] 

Table 3.1: Parameter values for each category 

Category pH ORP (mV) DO (mg/dl) EC (µS/cm) 

Potable 6.5 – 8.0 -225 – 50 5 - 15 < 250 

Agricultural 5.5 – 8.5 -250 – 250 Any other value 150 - 3000 

Wastewater <5.5 and >8.5 < -250 and > 250 Any other value Any other value 

 

3.2 Potential of Hydrogen (pH) 

3.2.1 Theory 

pH is one of the primary water quality indicators. The pH of a solution, product, or material is 

one of the most commonly computed and measured qualities. The pH of a solution is the 

measure of hydrogen ion concentration in the solution, which is the measurement of the acidity 

of the solution. Pure water has an equal amount of hydrogen and hydroxyl (𝑂𝐻+ ) ion 

concentration. Thus, pure water dissociates slightly into the component ions as per the chemical 

equation shown in equation 1 below –  

 𝐻!𝑂 ⟺ [𝐻]-[𝑂𝐻]* (1) 

A solution becomes acidic when it has an excess of hydrogen ions, while it becomes basic 

when it contains a dearth of 𝐻( ions or an excess of hydroxyl ions. The equilibrium constant 

for this reaction, 𝐾,, is equal to 10+!- and is the product of 𝐻( and 𝑂𝐻+concentrations. This 

relationship can be described as follows: 

 [𝐻]-[𝑂𝐻]* =	𝐾. = 10*/0 (2) 

where [𝐻]( and [𝑂𝐻]+are the concentrations of hydrogen and hydroxyl ions, respectively, in 

moles per litre. Considering Equation (1) and solving Equation (2), in pure water, where the 

concentrations of both ions are equal –  
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 [𝐻]- =	 [𝑂𝐻]* = 10*1 (3) 

Instead of as moles as per litre, we define a quantity pH as the negative logarithm of [𝐻](, so 

that: - 

 𝑝𝐻 =	−	log/2[𝐻]- =	 log/2
1

[𝐻]-
 (4) 

[𝐻]( equals 10+. in a neutral solution, or pH = 7. The pH of the solution is then 7 with higher 

hydrogen ion concentrations. If the hydrogen ion concentration is 10+-, the pH will be 4 and 

the solution will be acidic. The concentration of hydroxyl ions in this solution is 10+!-/10+- 

= 10+!/. The presence of a substantial surplus of [𝐻]( ions in the solution since 10+- ≫ 10+!/ 

confirms that it is acidic. A basic solution, with a low concentration of [𝐻]( ions have [𝐻](, 

or a pH greater than 7. Dilute solutions have a pH range of 0 (extremely acidic; 1 mole [𝐻]( 

ions per litre) to 14 (neutral) (very alkaline). Solutions having greater than 1 mole of H+ ions 

per litre have negative pH [2]. 

pH is a fundamental parameter for assessing water quality, reflecting the concentration of 

hydrogen ions (H+) and, consequently, the solution's acidity or alkalinity. In conjunction with 

EC, which measures the ability of water to conduct electricity due to dissolved ionic species, a 

qualitative estimation of water hardness can be obtained. High pH readings (above 8.5) coupled 

with elevated EC values (exceeding 200 mS/cm) are indicative of hard water, likely containing 

a high concentration of carbonate and bicarbonate ions. The synergistic analysis of pH and 

dissolved oxygen (DO) concentration can provide valuable insights into potential biological 

activity within a water sample. A low pH (below 5.5) measured alongside a high DO 

concentration (greater than 50 mg/dL) can be suggestive of biological decomposition 

processes. During decomposition, organic matter acidifies the water by releasing acidic 

byproducts, while microbial respiration consumes dissolved oxygen, leading to a temporary 

increase in DO [1].  

The pH of drinking water must be monitored and stringently controlled. Changes in the pH 

values of drinking water can indicate the presence of toxic chemicals. These can then be found 

out with further testing of the water sample. However, for drinking purposes, it can be 

confidently stated that drastic divergence from prescribed limits of pH value renders the water 
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inconsumable. One of the primary reasons for water pH changing is the presence of ionic 

impurities such as undesirable amounts of nitrates, hydroxides, et al, which may render the 

water acidic. On the other hand, another class of impurities is heavy metals, which may make 

the water unnecessarily alkaline. While water alkalinity beyond the permissible range has its 

disadvantages, the presence of heavy metals could also make such water a potential carcinogen. 

Previous studies have established a correlation between the presence of As, Pb, U, No3-, F-, Cu, 

Zn, and other heavy metals and ions and carcinogenicity [3] [4].  

pH measurement is also critical for agricultural water quality assessment because pH can affect 

the equilibrium state and rate of many reactions substantially. Many plants can only withstand 

a small pH range in the soil. A small change in blood pH can kill any animal. In many industrial 

processes, precise pH regulation is critical for high yield.  

3.2.2 pH Measurement 

pH is the measure of the concentration of Hydrogen ions in the liquid. pH indicates the acidity 

or alkalinity of the solution. To measure the pH of a there are many methods, starting with the 

simple litmus paper test. Also, we have titration-based methods, where we find out the 

concentration of the Hydrogen ion or hydroxide contributing salts, and then from there derive 

the concentration of hydrogen ion. Once we have the concentration of hydrogen ions in the 

solution, we calculate the pH of the solution using the Nernst Equation. The method we have 

used here is by using electrodes. These electrodes consist of two elements, a reference and a 

measuring element. The reference element is held inside a standardized alkaline solution, and 

the Hydrogen ion exchange across a glass bulb causes a potential difference between the two 

elements. This potential difference is directly proportional to the difference in Hydrogen ion 

concentration in the standard solution inside the electrode and the sample solution. This voltage 

then is used to calculate the pH of the sample solution. 

 

The most basic measurement technique for pH is the litmus paper test. In the litmus paper test, 

the various values of pH are colour-coded based on how the litmus paper changes colour when 

a strip of the litmus paper is dipped in the solution. Since this is not a very accurate measure of 

the pH of a solution, more accurate methods have been proposed that involve measurement of 

the concentration of each ion and a mathematical relationship is established to give the pH of 

a solution. This mathematical relationship between the concentrations of the said ions is called 
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the Nernst Equation. Nernst Equation is a relation between the concentration of the oxidation 

and reduction half-cell concentrations of a redox reaction. In the dissociation of a solution into 

[𝐻]( and [𝑂𝐻]+ ions, the atom losing [𝐻]( ion is said to be oxidized and the atom losing 

[𝑂𝐻]+ ion is said to be reduced. Equations 1 through 4 show the mathematical relationship 

between the concentration of [𝐻](ion and pH value. This relationship is thus used to measure 

the value of pH in electrode-based measurement. 

Fritz Haber and Zygmunt Klemensiewicz [5] [6] created the first glass pH electrode in 1908. 

It is commonly considered that the electrode was constructed in 1909 because the paper 

describing it was published a year later [5]. The original electrode is made of glass, filled with 

a strong electrolyte, and has an Ag/AgCl half-cell with Ag wire as a contact. The difference in 

H+ activity on both sides builds up a potential difference on the sides of thin glass in the bubble, 

which is measured with the use of reference electrodes and is known to be proportional to the 

pH on the outside of the bubble. Even today the general principle of a pH electrode hasn’t 

changed much. 

Glass electrodes are often used as pH electrodes. A typical model is a glass tube with a little 

glass bubble at the end. The electrode's interior is normally filled with a buffered chloride 

solution in which silver wire coated in silver chloride is immersed. The pH of the internal 

solution can range from 1.0 (0.1M HCl) to 7.0 (7.0M HCl) (different buffers used by different 

producers). Figure 3.1 shows the schematic of a general glass bulb pH electrode. 

 

Figure 3. 1: A generic Glass bulb pH Electrode [5] 
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The glass bubble is the electrode's active component. While the tube walls are thick and strong, 

the bubble walls are as thin as possible. Both internal and exterior solutions protonate the glass 

surface until equilibrium is reached. The adsorbed protons charge both sides of the glass, and 

this charge is what causes the potential difference. The Nernst equation describes this potential, 

which is proportional to the pH difference between the solutions on both sides of the glass. The 

majority of the commercially available pH electrodes are combination electrodes, which 

combine a glass [𝐻](ion-sensitive electrodes with an extra reference electrode in one housing. 

Figure 3.2 shows a combination pH electrode. 

 

Figure 3. 2: Combination pH Electrode [5] 

The processes that must take place when measuring pH define the construction of a 

combination electrode. In the glass electrode, we need to measure the difference in potentials 

between the two sides of the glass. We'll need a closed circuit for this. The pH meter and the 

internal and external solutions complete the circuit. However, for accurate and steady 

measurements the reference electrode must be isolated from the solution so that it does not 

cross-contaminate and connecting and isolating two solutions at the same time is not an easy 

process. The electrode body has a tiny hole via which the connection is made. Porous 

membrane or ceramic (asbestos in previous models) wicks are used to close this hole. The 

internal solution flows slowly via the junction, therefore these electrodes are referred to as 

"flowing electrodes." The internal solution is gelled in gel electrodes to reduce leaks. 
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Figures 3.3 and 3.4 show pictures of the pH electrode used for this study. In Figure 3.4 the 

detailed view of the tip of the electrode is shown, where the glass bulb can be seen. The 

potential across this glass bulb is measured as the measurement of the pH of the solution.  

 

Figure 3. 3: pH electrode dipped in standard solution 



 45 

 

Figure 3. 4: pH electrode - detailed view of the interacting glass bulb 

• The Nernst Equation 

The Nernst equation defines the potential of an electrochemical cell as a function of the 

concentration of the ions taking part in the chemical reaction. The Nernst Equation is given by 

Equation 5: - 

 𝐸 =	𝐸2 +	
𝑅𝑇
𝑛𝐹

ln(𝑄) (5) 

Where Q is the reaction quotient; R represents the Universal Gas Constant; T is the temperature 

in Kelvin; n is the number of moles of ions or electrons exchanged in the reaction; F is the 

Faraday Constant. E0 represents the standard potential of the reaction involved in the solution 

in question. E represents the reduction potential of the reaction in question. 

The pH electrode used in the project is an Ag (Silver) electrode coated with AgCl (Silver 

Chloride) dipped in a KCl (Potassium Chloride) solution.  

For the said electrode, being used at standard room temperatures, Equation 5 becomes [7]: - 

 
𝐸 =	𝐸2 − 	2.303 ∗

0.0256
𝑛

∗ 𝑝𝐻 
(6) 
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At room temperature, for 1 Molar KCl solution, n = 1, 𝐸/, 𝐸/ 	= 0.0235; 	𝐸 is the voltage 

received on the electrode [8]. 

Thus, equation 6 becomes that: 

 𝑝𝐻 = 0.0235 − 0.0256 ∗ 𝐸 (7) 

Since the pH of neutral solution is 7, an offset of 7 is given to equation 7, making the equation. 

 𝑝𝐻 = 0.0235 − 0.0256 ∗ 𝐸 + 7 (8) 

Thus Equation 8 establishes a relationship between the reference electrode potential and pH. 

This relation is then used in Arduino programming to calculate the pH of the solution.  To 

achieve that, we connect the pH electrode to the analog port of the Arduino board. In the 

program, we convert the analog readings to digital voltage. This digital voltage reading is then 

used in the equation to convert the reading into pH readings. 

There are several pH measuring kits available in the market. We have in particular, used the 

Labtronics Water Quality kit, YSI Sonde, and Atlas Scientific pH kit (paired with Arduino 

Uno) as standards against which the pH readings of the proposed device have been validated. 

3.2.3 pH Data 

Table 3.2 shows the pH measurement data of only 100 samples (out of 1806 samples) collected 

from in and around the BITS Pilani, Pilani campus. The water has been collected from various 

groundwater sources, and surface water examples have been collected from manmade water 

receptacles on the campus. Some water samples were also collected from drinking water 

sources around the campus. To remove conformity bias, the water samples were blinded and 

shuffled but not mixed.  

Table 3.2: pH measurement comparison against standard devices 

S. No. pH - Atlas Scientific electrode pH - Labtornics LT-59 

1 8.6 8.6 

2 7.8 7.8 

3 7.4 7.4 

4 7.0 7.0 

5 6.8 6.9 

6 7.3 7.3 
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7 6.5 6.5 

8 7 7 

9 6.8 6.8 

10 6.6 6.5 

11 5.7 5.7 

12 8 8 

13 6.2 6.2 

14 6.1 6.1 

15 7 7 

16 6.3 6.3 

17 6.5 6.5 

18 6.3 6.3 

19 7 7 

20 6.8 6.8 

21 8 8 

22 7 7 

23 7.4 7.4 

24 8 8 

25 6 6 

26 6.3 6.3 

27 8.5 8.5 

28 8 8 

29 5.8 5.8 

30 7 7.1 

31 5.5 5.5 

32 7 7 

33 8.5 8.5 

34 7.5 7.5 

35 6.8 6.8 

36 7 7 

37 8.2 8.2 

38 6.5 6.5 
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39 8 8 

40 6.5 6.5 

41 8.5 8.5 

42 8 8 

43 8.5 8.5 

44 8 8 

45 7.7 7.8 

46 6 6 

47 8 8 

48 7 7 

49 6.6 6.6 

50 8 8 

51 8.5 8.5 

52 8.1 8.1 

53 8.3 8.3 

54 7 7 

55 7.3 7.3 

56 8 8 

57 7.7 7.7 

58 8 8 

59 6.6 6.6 

60 7 7 

61 7 7.2 

62 8 8 

63 7 7 

64 6.8 6.8 

65 7.1 7.1 

66 7.5 7.5 

67 7.8 7.8 

68 7 7 

69 7 7 

70 7.2 7.2 



 49 

71 8.6 8.6 

72 8 8 

73 6.3 6.3 

74 7.5 7.5 

75 6.7 6.7 

76 6.2 6.2 

77 6.9 6.9 

78 7 7 

79 6.5 6.5 

80 7 7 

81 8.5 8.5 

82 6.3 6.3 

83 7.3 7.3 

84 7.5 7.5 

85 6.6 6.6 

86 7 7 

87 7.2 7.2 

88 6.2 6.2 

89 7.5 7.5 

90 6.5 6.5 

91 7 7 

92 7.6 7.6 

93 7.1 7.1 

94 8.2 8.2 

95 6.8 6.8 

96 7.4 7.4 

97 7.6 7.6 

98 7 7 

99 7 7 

100 8 8 
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3.3 Oxidation-Reduction Potential (ORP) 

3.3.1 Theory 

The Oxidation Reduction Potential (ORP or Oxidation Reduction Potential) is a measurement 

of an aqueous system's ability to release or gain electrons as a result of chemical processes. In 

the oxidation process, electrons are lost, but in the reduction process, electrons are gained. ORP 

is commonly used in water treatment to manage chlorine and chlorine dioxide disinfection in 

cooling towers, swimming pools, potable water sources, and other water applications. ORP has 

a considerable influence on the life span of bacteria in water studies. ORP values can also help 

in estimating the presence of heavy metals in the water sample. Heavy metals are present in 

ionic salt forms in water and form positive ions inside the water body, increasing the Oxidation 

potential of the water and also the Electrical Conductivity of the water. Thus, for a high value 

of ORP (ORP > 250mV) and high EC values (EC > 300µS), a heavy metal presence in the 

water can be estimated qualitatively.                                                                                                                                                                                                   

An ORP electrode, which has been used in the study, has been shown in Figure 3.5. In Figure 

3.6, a detailed close-up shot of the ORP electrode is shown. The Platinum (Pt) electrode which 

measures the potential of the Redox reaction can be seen in this close-up shot of the electrode. 

 

Figure 3. 5: ORP Electrode used in the study 
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Figure 3. 6 : ORP electrode - detailed view of the interacting Pt Electrode 

3.3.2 ORP Measurement  

The Oxidation Reduction Potential (ORP) tells whether the sampled solution is oxidising in 

nature or reducing. For an oxidising solution, we get a positive oxidation potential, meanwhile, 

for a reducing solution, we get a negative oxidation potential. The method of measurement is 

similar to that of pH as ORP is also calculated based on the concentration of oxidising ions to 

reducing ions. Neutral water with pH =7 has an ORP of 0 millivolts. 

The ORP sensor works quite similarly to a pH sensor, but it employs an inert metal (typically 

platinum) half-cell instead of a pH-sensitive glass membrane half-cell. A potentiometric 

measurement is performed using a two-electrode setup. Depending on the test solution, the 

platinum electrode acts as an electron donor or acceptor. For comparison, a reference electrode 

is utilised to provide a continuous, reliable output. A restrictive diaphragm makes electrical 

contact with an electrolyte solution (e.g., saturated potassium chloride KCl solution) from the 

reference half-cell. The Nernst equation describes the electrode behaviour [8] [9]: 

 𝐸 =	𝐸2 −	
𝑅𝑇
𝑛𝐹

ln
𝐶34
𝐶567

 (9) 

Where, 

E = Measured potential (mV) between the platinum (Pt) and the reference electrode 
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𝐸/ = Measure potential (mV) between the Pt and the reference electrode at a concentration 

𝐶0& =	𝐶1*2 

R = Universal gas constant 

T = temperature in Kelvin 

F = Faraday Constant 

n = Electrical charge of the ion 

𝐶0& = Concentration of oxidizing agent in moles/L 

𝐶1*2 = Concentration of reducing agent in moles/L 

The potential is measured against a reference electrode, commonly Ag/AgCl, using platinum 

as the indicating sensor. Other noble metals, such as gold or silver, can also be employed. 

When compared to pH measurements, ORP readings are slow. While a pH value can be 

produced in a matter of seconds, achieving a steady ORP value might take several minutes, if 

not hours. The platinum surface state has a significant impact on ORP behaviour. ORP probes 

"in use" will display different values than a new unconditioned ORP electrode. [8] 

The probe was calibrated before being used to measure a sample.  

Calculate the offset by: 

 𝐸38896) =	𝐸9)+&7+57 −	𝐸:6+9(567 (10) 

Drinking water (DW) has a low ionic strength (e.g., 80 to 200 S), which might cause issues 

with stabilisation time and final reading. After calibrating the ORP probe, rinse it with drinking 

water before transferring it to a fresh beaker containing the DW sample to be analyzed. Wait 

at least 15 minutes for the first reading, then check for stability every 5 minutes. It could take 

many hours to achieve a final reading depending on the temperature (low takes longer) and 

conductivity (low takes longer) [8]. 

Surface water (SW) has a conductivity of greater than 600 S/cm in most cases. The ORP 

measurement can be performed immediately following the calibration. Because sufficient ORP 

active species are present in rivers, reservoirs, and wells, the measurement should be steady 

within 6 minutes [8]. 
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3.3.3  ORP Data 

Table 3.3 shows the ORP measurement data of 100 samples collected from in and around the 

BITS Pilani, Pilani campus. 

Table 3. 3: ORP measurement comparison against standard devices 

S. No. ORP - Atlas Scientific Electrode ORP - Labtornics LT-59 

1 3.01 3.01 

2 0.92 0.92 

3 1.73 1.73 

4 3.28 3.28 

5 3.32 3.32 

6 2.74 2.74 

7 0.03 0.03 

8 4.22 4.22 

9 3.08 3.08 

10 2.53 2.53 

11 0.01 0.01 

12 3.39 3.39 

13 0.04 0.04 

14 0.02 0.02 

15 3.4 3.4 

16 0.15 0.15 

17 0.01 0.01 

18 0.01 0.01 

19 1.46 1.46 

20 1.58 1.58 

21 4.63 4.63 

22 0.43 0.43 

23 0.44 0.44 

24 2.83 2.83 

25 0.01 0.01 

26 0.01 0.01 



 54 

27 2.89 2.89 

28 0.07 0.07 

29 0.01 0.01 

30 7.11 7.11 

31 0.09 0.09 

32 0.06 0.06 

33 3.33 3.33 

34 3.28 3.28 

35 0.04 0.04 

36 0.22 0.22 

37 3.22 3.22 

38 0.03 0.03 

39 3.43 3.43 

40 0.13 0.13 

41 2.45 2.45 

42 4.95 4.95 

43 4.95 4.95 

44 7.9 7.9 

45 2.48 2.48 

46 0.05 0.05 

47 4.93 4.93 

48 0.08 0.08 

49 0.03 0.03 

50 3.11 3.11 

51 2.82 2.82 

52 3.12 3.12 

53 3.11 3.11 

54 0.85 0.85 

55 0.91 0.91 

56 0.91 0.91 

57 0.64 0.64 

58 1.22 1.22 
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59 0.23 0.23 

60 0.24 0.24 

61 0.23 0.23 

62 0.59 0.59 

63 0.23 0.23 

64 0.24 0.24 

65 0.28 0.28 

66 0.93 0.93 

67 1.55 1.55 

68 0.33 0.33 

69 0.49 0.49 

70 0.24 0.24 

71 1.19 1.19 

72 0.85 0.85 

73 0.24 0.24 

74 0.59 0.59 

75 0.23 0.23 

76 0.23 0.23 

77 0.23 0.23 

78 0.25 0.25 

79 0.23 0.23 

80 0.25 0.25 

81 4.34 4.34 

82 0.25 0.25 

83 0.36 0.36 

84 0.64 0.64 

85 0.25 0.25 

86 0.25 0.25 

87 0.23 0.23 

88 0.26 0.26 

89 0.9 0.9 

90 0.42 0.42 



 56 

91 0.25 0.25 

92 1.21 1.21 

93 0.24 0.24 

94 1.22 1.22 

95 0.25 0.25 

96 1.08 1.08 

97 0.49 0.49 

98 0.51 0.51 

99 0.27 0.27 

100 0.64 0.64 

 

3.4 Dissolved Oxygen (DO) 

3.4.1 Theory 

The amount of oxygen dissolved in water is referred to as dissolved oxygen (DO). The 

atmosphere and aquatic vegetation both provide oxygen to water bodies. Running water, such 

as a fast-moving stream, dissolves more oxygen than motionless water, such as that found in a 

pond or lake. When it comes to drinking water sources, the overall taste of the water is 

determined by the amount of dissolved oxygen present in the water. When DO levels are high, 

the drinking water has a superior taste to it. It's crucial to note, however, that higher DO levels 

are harmful to numerous components and systems utilised in the distribution and treatment of 

drinking water. For example, excessively high DO levels aid the corrosion of water pipelines. 

The amount of dissolved oxygen in the water is significant for various reasons. Any dissolved 

oxygen in the water will take up a certain amount of space [10]. When dissolved oxygen levels 

are high, there isn't much room in the water for other dissolved chemicals to exist. If the 

dissolved oxygen levels in the water are extremely low, minerals in the lake's bed will begin to 

dissolve in the water at a faster rate. Although a high mineral content in water may not cause 

health problems, it might alter the water's scent and taste [11]. 

3.4.2  Measurement of DO 

Dissolved oxygen levels can be measured by a basic chemical analysis method (titration 

method), an electrochemical analysis method (diaphragm electrode method), and a 
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photochemical analysis method (fluorescence method). The diaphragm electrode method is the 

most widely used method [8].  

The diaphragm electrode technology uses electrodes to monitor the amount of oxygen passing 

through an highly oxygen-permeable diaphragm. The galvanic electrode method and the 

polarographic electrode method are two ways of determining dissolved oxygen levels using 

electrodes. These methods each have their own set of benefits and drawbacks, thus the method 

that best suits the situation is chosen. 

A PTFE membrane, an anode in an electrolyte, and a cathode make up a galvanic dissolved 

oxygen probe. At a consistent rate, oxygen molecules diffuse through the probe's membrane 

(without the membrane the reaction happens rapidly). When oxygen molecules enter the 

membrane, they are reduced at the cathode, resulting in a tiny voltage. The probe will produce 

0 mV if no oxygen molecules are present. The mV output from the probe increases as the 

oxygen level rises. In the presence of oxygen, each probe will produce a distinct voltage. Only 

one thing remains constant: 0mV Equals 0 Oxygen [12].  Figure 3.7 shows a schematic of the 

galvanic DO probe. Figures 3.8 and 3.9 show the DO electrode. Figure 3.8 shows a detailed 

view of the interacting membrane of the electrode across which the DO concentration is 

measured. 

 

 

Figure 3. 7: A schematic of Galvanic DO Probe [11] 
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Figure 3. 8: DO electrode - detailed view of the interacting membrane 

 

 

Figure 3. 9: DO Electrode 

3.4.3 DO Data 

Table 3.4 shows the DO measurement data of 100 samples collected from in and around the 

BITS Pilani, Pilani campus.  
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Table 3.4: DO measurement comparison against standard devices 

S. No. DO - Atlas Scientific Electrode DO - Labtornics LT-59 

1 10 10 

2 11.5 12 

3 14.5 14.5 

4 12.5 12 

5 12 12 

6 16 16 

7 15 14.5 

8 14 14.3 

9 10.3 10.3 

10 10.4 10.4 

11 13 13 

12 16 16 

13 15.5 15.5 

14 13 13 

15 12.5 12.5 

16 13 13 

17 11.5 11.5 

18 10 10 

19 1.7 1.7 

20 10.8 10.8 

21 12 12 

22 12 12 

23 9.5 9.5 

24 11 11 

25 9 9 

26 12 12 

27 10 10 

28 8.5 8.5 

29 7.5 7.5 

30 8 8 

31 9.5 9.5 

32 10 10 

33 11 10.8 
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34 10.5 10.5 

35 9.5 9.5 

36 9.7 9.7 

37 9.8 10 

38 9 9 

39 7 7 

40 9 9 

41 10 10 

42 10.2 10 

43 8.8 8.8 

44 4.5 4.5 

45 9.8 9.8 

46 8.5 8.5 

47 5.5 5.5 

48 8.2 8.2 

49 7.5 7.5 

50 8.2 8.2 

51 7.5 7.5 

52 8.5 8.5 

53 7 7 

54 8.5 8.5 

55 9 9 

56 9 9 

57 8.5 8.5 

58 9 9 

59 8.5 8.5 

60 9.5 9.5 

61 9 8.5 

62 6 6 

63 10.2 10.2 

64 9 9 

65 7.8 7.8 

66 7.5 7.5 

67 6 6 

68 7 7 
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69 9 9 

70 9 9 

71 7.3 7.3 

72 6.5 6.5 

73 8.5 8.5 

74 8 8 

75 7.8 7.8 

76 8.6 8.6 

77 7.4 7.4 

78 8 8 

79 7.5 7.5 

80 8 8 

81 7 7 

82 7.6 7.6 

83 7.4 7.4 

84 9.5 9.5 

85 9 9 

86 7.5 7.5 

87 9.2 9.2 

88 9.5 9.5 

89 8.3 8.3 

90 8.7 8.7 

91 9.6 9.6 

92 6.4 6.4 

93 10 10 

94 7 7 

95 10.5 10.5 

96 8 8 

97 9.5 9.5 

98 8 8 

99 8 8 

100 7.5 7.5 
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3.5 Electrical Conductivity (EC) 

3.5.1  Theory 

The ability of a solution, a metal, or a gas - in other words, all materials - to pass an electric 

current is known as conductivity. Current is carried by cations and anions in solutions, but 

electrons carry it in metals. It serves as an indicator of dissolved ionic solid concentration and 

salinity in water. Compounds like calcium, magnesium, and sodium salts, which can affect the 

hardness and alkalinity of a water supply, are known as dissolved ionisable solids. High 

conductivity water does not inherently endanger human health, but it can cause corrosion in 

industrial equipment and plumbing systems, scale build-up, a mineral-like taste in drinking 

water, and dissolved solid concentration problems in agriculture. The conductivity limit for 

drinking water is 2500 micro-Siemens per centimetre (S/cm). Conductivity monitoring can 

offer information about the source and suggest whether geological conditions or pollutants are 

affecting water quality [13]. 

Moreover, the Electrical Conductivity also has almost linear relations with many other 

parameters, such as Total Dissolved Solids (TDS), Salinity, and Specific gravity. Amongst 

these, TDS is of particular interest as the TDS is one of the primary water quality parameters 

mentioned in the drinking water quality guidelines such as the WHO guidelines for Drinking 

Water Quality and the Water Quality standards published by the Bureau of Indian Standards, 

and various other local and national government guidelines. A water sample having TDS > 50 

PPM and TDS < 150 PPM is considered excellent for drinking purposes [14] [15]. Electrical 

Conductivity has a linear relationship with TDS as shown below [16]: 

 𝑇𝐷𝑆	 J
𝑚𝑔
𝑙
N = 0.65	 × 𝐸𝐶 P

𝜇𝑆
𝑐𝑚S

 (11) 

3.5.2 Measurement of EC 

A steady, alternating electrical current (I) is applied to two electrodes immersed in a solution, 

and the resulting voltage is measured (V). Cations migrate to the negative electrode, anions to 

the positive electrode, and the solution acts as an electrical conductor during this process [8].  

Conductivity is usually tested in electrolyte aqueous solutions. Electrolytes are ions containing 

substances, such as ionic salt solutions or chemicals that produce ions in the solution. The ions 

in the solution are in charge of transporting the electric current. Acids, bases, and salts are 
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examples of electrolytes, which can be strong or weak. Water has the ability to stabilize the 

ions generated through a process called solvation, hence the majority of conductive solutions 

studied are aqueous solutions [17].  

Inside the conductivity probe, two electrodes are positioned opposite each other, and an AC 

voltage is given to the electrodes, causing cations to move to the negatively charged electrode 

and anions to move to the positively charged electrode. The electrical conductivity of liquid 

increases as the amount of free electrolyte in the liquid increases. 

A conductivity probe is a very simple instrument. It consists of two conductors separated by a 

fixed distance and having a fixed surface area. The conductivity cell is the measurement of 

distance and surface area. The cells’ distance and surface area are quantified as the conductivity 

cell K constant. 

The resistance of the solution (R) can be calculated using Ohm's law 

 𝑉	 = 	𝑅	 ∗ 	𝐼	𝑜𝑟	𝑅	 = 	𝑉	/	𝐼 (12) 

Where: V = voltage (volts), I = current (amperes), R = resistance of the solution (ohms) 

Conductance (G) is defined as the reciprocal of the electrical resistance (R) of a solution 

between two electrodes. 

 𝐺	 = 	1/𝑅	(𝑆) (13) 

 [S = Siemens]  

The conductivity meter measures the conductance and displays the reading converted into 

conductivity. 

Conductivity is the ability of a solution to pass current. 

 𝜅	 = 	𝐺	 ∗ 	𝐾 (14) 

Where κ = conductivity (S/cm); G = conductance (S); K = cell constant (cm–1) [8]. 
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Figure 3.10 shows a schematic view of the process of measuring Electrical conductivity. Figure 

3.11 shows a close-up view of the eye hole where the two plates of the electrode are placed. 

An analog voltage is applied across the two plates and the conductivity of the water between 

the two plates gives us the conductivity of the water sample. Figure 3.12 shows a snapshot of 

the EC electrode. 

 

Figure 3. 10: Electrical Conductivity measurement schematic [7] 

 

 

Figure 3. 11: EC electrode detailed view. The two plates between which the conductivity is 
measured are placed inside the eye-hole 
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Figure 3. 12: The EC Electrode 

3.5.3  EC Data 

Table 3.5 shows the EC measurement data of 100 samples collected from in and around the 

BITS Pilani, Pilani campus. 

Table 3.5: EC measurement comparison against standard devices 

S. No. EC - Atlas Scientific Electrode EC - Labtornics LT-59 

1 281 281 

2 294 294 

3 277 277 

4 292 292 

5 302 302 

6 294 294 

7 298 298 

8 308 308 

9 277 277 

10 278 278 

11 270 270 

12 254 254 

13 293 293 

14 299 299 

15 283 283 
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16 298 298 

17 291 291 

18 295 295 

19 288 288 

20 257 257 

21 265 265 

22 271 271 

23 284 284 

24 259 259 

25 211 211 

26 235 235 

27 215 215 

28 245 245 

29 264 264 

30 273 273 

31 262 262 

32 263 263 

33 252 252 

34 266 266 

35 269 269 

36 273 273 

37 279 279 

38 275 275 

39 267 267 

40 277 277 

41 264 264 

42 263 263 

43 268 268 

44 254 254 

45 259 259 

46 275 275 

47 273 273 

48 280 280 

49 284 284 

50 267 267 
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51 263 263 

52 269 269 

53 248 248 

54 255 255 

55 247 247 

56 257 257 

57 260 260 

58 273 273 

59 265 265 

60 266 266 

61 271 271 

62 253 253 

63 264 264 

64 281 281 

65 258 258 

66 253 253 

67 258 258 

68 265 265 

69 255 255 

70 270 270 

71 247 247 

72 238 238 

73 278 278 

74 269 269 

75 270 270 

76 252 252 

77 271 271 

78 269 269 

79 270 270 

80 279 279 

81 238 238 

82 265 265 

83 263 263 

84 245 245 

85 267 267 
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86 278 278 

87 274 274 

88 269 269 

89 265 265 

90 282 282 

91 281 281 

92 274 274 

93 272 272 

94 256 256 

95 263 263 

96 276 276 

97 258 258 

98 266 266 

99 271 271 

100 297 297 

3.6 Validation of Data 

The data collected and presented in this chapter serves as the training set for the ANN designed 

in chapters 4, 5, and 7. A set of data values has been collected for each sensor using standard 

methods of measuring those parameters. This set has been used to validate the data predicted 

by the ANN in Chapter 7. Validation of data is necessary to ensure the proper functioning of 

the device designed to prevent any health issues for the users.  

To validate the data, the standard data has been made using 1806 samples of ground and surface 

water samples collected from various locations near the BITS Pilani campus, Vidya Vihar, 

Pilani, Rajasthan, India. These samples were measured using standardised methods and 

instruments. 100 data points from the whole data set have been presented for each parameter 

in Appendix A. An ANN has been designed to predict the values of some of the parameters, 

which are detailed in Chapter 6.  

The prediction has been made to bring down the cost of Water Quality Classification. The 

predicted parameter values have been validated against the data measured and presented in this 

chapter and the comparison tables are given in Appendix A. The results of the validation are 

presented and discussed in detail in Chapter 6. 
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3.7 Conclusion 

This chapter discusses the collection of various parameter data using standard laboratory 

methods. The data collected in this chapter is used as the ground truth for training and 

validation of Augmentation ANN and Classification ANN presented in Chapter 6. 
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                                                                                                          Chapter 4 

4. Efficient ANN Hardware Implementation through 

Mathematical Approximation in IEEE 754 Representation 

This chapter explores ANN architectures and mathematical approximations for activation 

functions suitable for digital hardware implementation.  

4.1 Introduction 

Artificial Neural Networks (ANN) have many uses in the modern world. An artificial neural 

network is very effective for certain problems, such as learning to interpret complex real-world 

sensor data. ANN learning is well-suited to problems in which the training data corresponds to 

complex sensor data, such as inputs from various sensors, which, when taken together, do not 

have an apparent relationship with output. Classification of data into classes and predicting 

future data based on system behaviour where the system behaviour cannot be modelled 

mathematically can be modelled by ANN accurately. ANN is also applicable to problems for 

which symbolic representations are often used, such as decision tree learning. [1] 

With varying applications, various architectures have been developed for ANN. A large variety 

of architectures for ANN makes it challenging to determine the architecture that suits the 

desired application. To find out which architecture suits the chosen application of Water 

Quality Classification necessitates exploration of architectures as mentioned below: - 

4.1.1 Multilayer Perceptron Feedforward Network with Backpropagation 

The most basic ANN model is the Multilayer Perceptron (MLP) model with a Feedforward 

network and Backpropagation learning algorithm. It is based on the McCulloch-Pitts model of 

Perceptron. MLP consists of many perceptrons called a neuron. MLP model can be applied to 

almost all four tasks expected from ANN. It is a supervised learning model, and the learning 

algorithms are the Backpropagation algorithms. Due to their structural and mathematical 

simplicity, MLPs are best suited for hardware implementation for supervised classification 

applications such as Water/Air Quality Indexing, Facial Recognition, and Natural Language 

Processing.  

4.1.2 Radial Basis Function 

Radial Basis Function (RBF) Neural Networks are structurally similar to MLP for supervised 

learning algorithms, but for RBF, there is only one hidden layer between the input and output 
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layers. This hidden layer is the feature layer. The number of neurons involved in the 

classification decides the number of neurons in the hidden layer. So structurally, RBF 

architecture is more predictable than ANN. However, due to the limited number of hidden 

neurons, the classification process is slow on RBF and power consuming.  

4.1.3 Support Vector Machines  

Support Vector Machines (SVM) are another type of machine learning algorithm widely used 

for classification. SVMs are widely used for classification purposes like handwriting 

recognition, face detection, gene classification, etc. But to ensure convergence, SVMs increase 

the dimensionality of the vector space, thus making it unsuitable for digital hardware 

applications. 

4.1.4 Constructive C-Mantec 

Constructive Neural Networks (CoNN) are also called second-generation ANNs. Constructive 

neural networks start with only one hidden neuron but increase the number of hidden neurons 

by generating new neurons whenever specific learning parameters are not met. One such 

Constructive neural network model is the C-Mantec (Competitive majority network trained by 

error correction) algorithm. The C-Mantec algorithm uses the thermal perceptron learning 

method to decide the number of iterations, after which training of existing neurons is to be 

stopped and a new neuron is to be added to the network. CoNN algorithms can be very power 

and resource-efficient because they generate just the optimum number of neurons required for 

the given application. However, in the hardware space, the neurons can only be generated if 

they are already coded. This feature of CoNN introduces the problem of hardware resources 

occupied by non-functional units. Also, the neuron generation process makes the operation 

slower. Such implementation can be done using a hardware-software mixed design approach 

like FPGA or Processor supported IC design but CoNNs are particularly unsuitable for 

application ASICs.  

4.1.5 Spiking Neural Networks 

Spiking neural networks are third-generational neural network architectures. The spiking 

neural networks have a muscle memory approach to learning the data. In a spiking neural 

network, the weights of the synaptic connections that fired more often due to minimum error 

are incremented, while those of the others that generate more errors are decremented. Thus, the 

network grows a path memory of the input-output path taken more often than others, while it 

forgets the path that is not used frequently. It is much the same as human muscle memory 
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related to practising one particular task and not practising others. While this closely replicates 

the biological process, the learning algorithm here is not very well suited for applications like 

classification, where all the paths must be traversed. 

4.1.6 K-means clustering 

K-means clustering is a popular and one of the simplest unsupervised algorithms for 

classification. K-means clustering is used for all classification applications where the classes 

and/or the classification rule are not pre-defined. Due to the unsupervised learning algorithm, 

k-means cannot be used for applications such as Water/Air quality classification, where the 

output classes must be supervised. 

Observation - From the above discussion, it can be observed that MLP with backpropagation 

is the suitable architecture for digital hardware implementation of supervised classification 

algorithms due to their structural and mathematical simplicity. 

4.2  Modelling of MLP Architecture 

An MLP ANN neuron is modelled as shown in Figure 2.1. Synaptic connections on a nerve 

cell are equivalent to the input points in the diagram. Each input is multiplied by a synaptic 

weight [w1, w2, ... wn] for an n-dimensional input vector [x1, x2, ... xn]. The sum of these 

products is then processed via an activation function (a threshold function, stepwise linear 

function, or sigmoid function) in the nerve centre, which determines the neuron's ultimate 

output. A layer of parallel processing centres formed by a slew of these neurons can handle a 

wide range of inputs. The outputs of one layer of neurons are used as the inputs to subsequent 

layers of numerous neurons, giving the system a massively parallel processing capability. After 

that, the outputs are compared to the expected outputs, and the errors are calculated. As a result, 

the synaptic weights are adjusted consistently with the error. This is the basic learning process 

of a neuron. Figure 4.1 shows a typical architecture for an ANN. 

• Input Layer – It contains those neurons that receive the input data to be processed by 

the ANN. 

• Hidden Layer(s) – These are the layers of units between the input and the output layers. 

The hidden layers take the data from the input layer and perform the computations to 

give useful information to the other hidden or output layers. 

• Output Layer – This consists of the neurons or units that give output depending on the 

learning that has taken place inside the ANN. 
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Figure 4.1: A typical ANN Architecture [5] 

 

4.3  Methodology of Hardware Implementation 

4.3.1 Choice of Hidden Layers and Number of Neurons 

The choice of the structure of a neural network in terms of the number of hidden layers and the 

number of neurons per layer can affect the accuracy of the neural network. The model will 

overfit the data or experience the under-fitting problem as its size increases. Both problems 

converge toward poor generalization and get trapped in local solutions if the ANN architecture 

needs to be more complex. An economical and effective ANN model is required to handle this 

issue [2]. Thus, making the right decision concerning the structure of the neural network 

becomes crucial. In our work, since the ANN must be suited to the data for water quality 

samples acquired, divided into four input and three output parameters. Many studies have tried 

to propose a system to find out the network size and structure. 

In [2], the authors have explored various techniques to select the optimum ANN structure. 

Their study found that amongst the two non-nature optimization techniques proposed in the 

literature, the Model selection algorithm had the best outcome in terms of performance metrics. 

Thus we applied the Model selection method based on classification accuracy to find the 

correct number of hidden layers and neurons per layer for the ANN. The process has been 
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detailed in Chapter 4. Through our experiments, we found that the most optimized structure for 

Water Quality classification is three hidden layers with four neurons. 

4.3.2 The MLP Architecture  

An Artificial Neural Network primarily consists of two major computational units –  

a) The Neuron 

b) Learning algorithms 

 

a) The neuron is the basic computational unit of the ANN. Three types of neurons make 

up a neural network – Input neurons, output neurons, and hidden neurons. When there 

is more than one neuron of each type, we call it a layer – input layer, hidden layer, and 

output layer. Barring the output layer neurons, all the neurons have two major 

computational units – adder and activation unit.  

While much research has been done on the architecture of adders, the activation units, 

which are the major computational blocks, need more exploration and better 

implementation strategies. Exploration of suitable activation functions and their 

implementation for chosen Water Quality Classification is described in Section 4.3.3 

Observation – From the above discussion, the Sigmoid activation function is most 

suitable for supervised classification applications like Water Quality Classification. 

 

b) Another significant component in any ANN architecture is the learning algorithm. The 

hardware architecture for learning algorithms is also complex and needs to be 

simplified. Backpropagation (BP)-based learning algorithms are primarily used in the 

training of MLP. An online neural network learning algorithm for handling time 

variable inputs [3], fast learning methods based on gradient descent of neuron space 

[4], and the Levenberg–Marquardt algorithm [5], [6] are only a few examples of BP 

learning algorithms that have been developed [7]. 

§ The Levenberg-Marquardt (LM) learning algorithm is an adaptive learning 

algorithm. The LM algorithm switches between the Gauss-Newton and 

Gradient Descent learning algorithms based on a “damping factor.” This makes 

the LM method unnecessarily complex for hardware implementation. Also, 

because of the LM learning algorithm's Gauss-Newton phase, the algorithm 

generates better accuracy curve-fitting tasks [8].  
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§ The Gradient Descent Backpropagation learning algorithm is most commonly 

used to determine the weights in supervised learning Multi-layer FNN.  

The learning algorithm for this network is chosen to be backpropagation 

gradient descent. As propounded by Rumelhart et al. [9], backpropagation aims 

to obtain a set of weights to minimise the difference between the desired output 

and the actual output of each neuron, given a particular input vector. The total 

error E is given by: 

𝐸 = 	 +
,
∑ ∑ (𝑦-,/ −	𝑑-,/),-/     (1) 

Where c indicates the case (input-output pair), j indicates the output unit, y is 

the actual state of the output unit, and d is the desired state of that output unit. 

The partial derivative of E with respect to each weight in the network is 

computed to minimise the error using the gradient descent algorithm. The partial 

derivative is simply the sum of the partial derivatives of each case. Thus, we 

calculate ∂𝐸/𝜕𝑦 for each case: 
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=	𝑦- −	𝑑-                (2) 

Applying chain rule to compute ∂𝐸/𝜕𝑥% : 
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Differentiating Eq. (10) for ∂𝑦%/𝜕𝑥% we get: 

 01
03;

=		 01
02;

. 𝑦-(1 −	𝑦-)                 (4) 

 

The total input is a linear function of the states of the previous levels and also a 

linear function of the weights on the connections. Hence, it becomes easy to 

compute how the error is affected by a change in the state and the weights. Given 

a weight, 𝑤%,$, from 𝑖 to 𝑗 the derivative is given as: 

01
04;<

=		 01
03;

. 03;
04;<

=		 01
03;

. 𝑦-              (5) 

And the contribution of ∂𝐸/	𝜕𝑦% for the 𝑖56 output unit because of the effect of 

𝑖 on 𝑗 is: 
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Considering all the synapses emanating from 𝑖, we get: 

01
02<

=	∑ 01
3;
. 𝑤-5-                  (7) 

So now we have the ∂𝐸 /	𝜕𝑦 for a unit in the penultimate layer, given the ∂𝐸 

/	𝜕𝑦 for all the output neurons. To compute this term for previous layers, we use 

the same principle successively to compute ∂𝐸 /	𝜕𝑤 for the weights. ∂𝐸 /	𝜕𝑤 is 

used to change the weights in every epoch. The ∂𝐸 /	𝜕𝑤 over the network are 

accumulated and then at the end of the epoch, we change the weights of each 

neuron by an amount proportional to the accumulated ∂𝐸 /	𝜕𝑤: 

 ∆𝑤 = 	−𝜀 01
04

                   (8) 

As stated by Rumelhart [9], the method has a low convergence rate as compared 

to methods that make use of second derivative but it is easy to implement on 

parallel hardware. The method is improvised by accelerating method where the 

current gradient modifies the velocity of the point in weight space instead of its 

position: 

∆𝑤(𝑡) = 	− 60𝐸
04(8)

+ 	𝛼∆𝑤(𝑡 − 1)            (9) 

where t denotes the time-step or epoch and 𝛼 denotes an exponential decay 

factor between 0 and 1 that controls contribution of current and previous 

gradients to the change in weights. Thus, 𝛼 is also called the learning index. 

 

The online neural network learning algorithm is particularly suited for time-series-

based applications such as weather prediction, stock market analysis, behaviour 

prediction of natural solar energy, etc. These applications are more suited to online 

learning algorithms because of the ability of online learning algorithms to learn from 

sequentially arriving data [10]. Since online learning is dependent on time-series data, 

it is not suitable for classification applications. 

Observation – The gradient descent algorithm is best suited For hardware implementations 

because of its mathematical simplicity leading to less resource requirement. 
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4.3.3 Sigmoid Activation Function Design for MLP Neuron 

The most computationally complex part of the hardware implementation of an ANN is the 

implementation of the activation function, as it involves complex non-linear mathematical 

calculations. The development of an artificial neuron and its nonlinear activation functions is 

one of the challenges of neural network hardware implementation.  

Many different functions have been used as the activation function of the neurons in MLP. The 

most notable are – the threshold function, the Sigmoid logistic function, and the hyperbolic 

tangent function.  

The threshold function is a step function that changes from 0 to 1 at a given threshold. While 

it is a very simple implementation, it cannot be used in classification applications where there 

are more than two output classes. The threshold function is also non-differentiable. Thus, its 

learning algorithm applies to classification with a learning algorithm. 

The hyperbolic tangent function is also a sigmoid function, but it has a range between -1 and 

1. Thus, it is not suited for applications where the output is probabilistic since probabilities lie 

between 0 and 1. 

Since the classification is a probability prediction indicating which of the output classes the 

input vector corresponds to, Sigmoid is apt as it is used in models when the output is a 

probability prediction with the output range 0 to 1. Also, this function has a smooth gradient 

and is differentiable, which is evident from its S-shape curve. Hence it prevents output value 

jumps during the learning process.  

Eq. (10) represents the sigmoid function:  

𝑆(𝑥) = 	 +
+:;=>

                                                 (10) 

 

Calculation of the exponent function shown in Eq. (10), in digital is not physically feasible 

because of its infinite nature. Hence, there is a need for an approximation of the function. 

1. The basic methods of approximation for exponent functions, such as the tabular method 

and the Taylor series, are used in published works on the digital implementation of 

nonlinear functions. However, the Taylor series requires a significant number of 

multiplications because the multiplication block takes up a lot of space [11]. Hence, it 
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is unsuitable for implementation on digital hardware. Inaccuracy introduced by the 

approximation is traded by the learning cycle of the network. 

2. In [12], it has been shown that piecewise linear approximation of the exponent function 

could offer better accuracy in the approximation of sigmoid functions. Bajger, et al. 

[13] present a Low-error, high-speed approximation method for the sigmoid function 

for FPGAs. However, the approximation proposed is particularly designed for FPGA 

that have functional blocks such as multipliers and adders available on-board. The 

design proposed in their work makes heavy use of the pre-existing blocks to increase 

the computational speed. This approach is not suitable for a device where area and 

power minimisation are two of the primary aims. FPGAs are comparatively large blocks 

that draw a lot of power as compared to ASICs, which has been shown in the Results 

section of this chapter. Although, the approach proposed by Bajger et al. improves 

considerably on accuracy as compared to Faiedh, et al. [12].  

3. Padé Approximation is another method for the approximation of the exponent function, 

which is shown to have less computational complexity [14]. Here the implementation 

complexity of the logistic function has been reduced at a mathematical level.  

Padé approximation Eq. (11), as proposed in [14]  has reported fairly accurate network 

outputs despite compromising marginally on mathematical accuracy as compared to 

other expansions such as the Taylor series or McLaurin series. However, the Padé 

approximation for the exponential function is valid only for the input values lying in 

the interval 0 ≤ 𝑥≤ 1. 

𝑒3 =	 +<=>:=?>3:+=>3
?:,>3@:3A

+<=>@=?>3:+=>3?@,>3@:3A
    (11) 

This limits the application of the approximation for our project.  

Because of its simplicity of computation, this approximation method has been explored 

in this work in section 4.2. Figure 4.2 shows the schematic diagram for Padé 

approximation using Lookup table (LUT) blocks of Xilinx Zynq700 board. 

4.  [15] describes a Nonlinear approximation method to approximate the entire Eq (1). 

Here, a Lookup table (LUT) based approach is followed, which is particularly suited 

for FPGA implementation of the sigmoid function. The total domain of the sigmoid 

function is broken up into shorter intervals and the curve in those intervals is 

approximated by the curve fitting method to simpler polynomials.  
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For exploration in this work, the input values have been normalised in the range of [-1, 

1]. Hence, we take up the intervals [-2, -1], (-1, 1) and [1, 2). The polynomials for the 

said intervals are given in Eq. (12), Eq. (13) and Eq. (14), respectively: 

 

𝑦 = 	0.0467𝑥" 	+ 0.1239𝑥	 + 	0.2969					       (12) 

𝑦 = 0.2383  𝑥 + 0.5       (13) 

y = −0.0467𝑥" 	+ 	0.2896	𝑥	 + 	0.4882	   (14) 
 

This method has also been explored in this present work in Section 3 because of its 

simplicity and more accurate approximation of the sigmoid function. Figure 4.3 shows 

the schematic diagram for nonlinear approximation using the LUT blocks of a Xilinx 

Zynq 7000 series board. 

It is required to cut down on computational complexity to achieve less power consumption of 

activation units of neurons. Hence, a suitable approximation method for the sigmoid logistic 

function is found after thorough exploration, as described in Section 4.4.  

4.4 Results of Hardware MLP implementation with IEEE 754 

Representation using Padé and Nonlinear Approximation of Sigmoid 

Function 

The implementation of Artificial Neural Networks (ANNs) utilizes the IEEE 754 floating point 

representation format. IEEE 754 stands as the sole floating-point representation system 

universally embraced by major manufacturers as the standard for their mainframe and 

minicomputers. In the design presented in this chapter, all the peripherals (sensor electrodes 

and circuits) are designed for IEEE 754 format as well. 

ANN implementation has been designed for the Water Quality Classification application. Here 

we have taken four parameters as input to the ANN, and the ANN classifies the water sample 

into one of the three categories – Potable, Agricultural, and Wastewater. The four parameters 

taken to measure the Water Quality are – pH, Oxidation Reduction Potential (ORP), Dissolved 

Oxygen (DO), and Electrical Conductivity (EC). 
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Alkaline solutions have a reducing nature and, hence, have a negative ORP. Acidic solutions 

are oxidising in nature and, thus, have a positive ORP. Many ionic molecules can pollute 

drinking water which cannot be detected by pH alone. For such ions, we need to measure the 

ORP of the sampled solution. 

The Dissolved Oxygen (DO) is a measure of the amount of molecular oxygen that is trapped 

inside the body of water. DO is very important for aquatic life. Furthermore, DO is necessary 

to maintain the taste of drinking water. Since DO is necessary for aquatic life, it is also an 

indicator of water quality in biological terms. Water with very low DO concentrations can be 

an indication that the water body is infested with some biological pathogen or some biological 

waste whose decomposition is hosting bacteria that are consuming the Oxygen in the water 

body. DO is measured using a membrane that is permeable to oxygen molecules only. When 

oxygen is permeated across this membrane, a potential difference is set across the membrane. 

This potential difference gives us the DO measurement in milligrams per decilitre or parts per 

million of the sampled solution. Because of the involvement of a complex chemical membrane, 

the DO electrode and the circuits accompanying the electrode are of very high sensitivity. 

Hence, the whole sensor system used for Dissolved Oxygen measurement is expensive. 

Electrical Conductivity (EC) is an important parameter because EC has a direct linear 

relationship with 3 other parameters - Total Dissolved Solids (TDS), Specific Gravity, and 

Salinity of the sampled solution. Taken together, these parameters cover a wide range of 

conditions required to ensure water quality. EC is measured using two electrodes dipped in the 

sample solution, with one of them acting as the reference electrode and the other as the 

Figure 4. 2: Schematic Diagram of a neuron using Padé Approximation 



 82 

measurement electrode. Measurement is taken by passing a voltage across these electrodes and 

measuring the resistance between the two electrodes. Resistance is converted to conductance 

and conductivity.  

The detailed apparatus of each of these parameters is discussed in Chapter 6. 

The complete hardware implementation of MLP consists of 2main parts: - 

§ Sigmoid Neuron Implementation 

§ Backpropagation learning 

The Padé approximation method is used to approximate the exponent function. However, it 

 only employs the calculation of up to the 4th power of the variable. The four powers of the 

input variable are calculated and stored in registers. The coefficients of these powers being  

4.4.1 Sigmoid Neuron Implementation Description 

Two approximation methods – Padé and Non-linear, as described in Section 4.3.3, have been 

implemented using both FPGA and ASIC methodology and their results are compared.  

a) Procedure for Implementation of Padé Approximation 

the same for the numerator and denominator, as can be seen in Eq (2), are taken as constants. 

Thus implementing Eq. (11) gives us the approximation of the exponent function of the input 

variable. The sigmoid function, as shown in Eq (1), requires the reciprocal of the exponent 

function. Thus, a division algorithm is used to find the reciprocal of the exponent function. 

Then the reciprocal is added with 1 to form the denominator of Eq. (10), and Eq. (10) is 

implemented using another division module. Thus, Padé approximation is implemented and 

helps us reduce the number of exponent calculations to just the 4th power of the input variable. 

The implementation is done using the IEEE 754 Floating Point representation method. Figure 

4.2 shows the schematic of a neuron which is hereafter implemented on both FPGA and ASIC 

platforms. The schematic contains blocks that show 4 multiplier blocks which have the neuron 

inputs and their corresponding weights as the input to the multipliers. The output of these 

multipliers is then routed to adders which add the weighted inputs. The final summation of the 

weighted inputs acts as the input to the activation block. This block implements the 

mathematical Padé approximation function to approximate the sigmoid function output, which 

is the final output of the neuron. 
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b) Procedure for Implementation of Non-Linear Approximation Method 

The Non-linear approximation method approximates the sigmoid function, unlike other 

approximation methods. In this method, we break up the domain of the function into smaller 

windows and then approximate the curve in that window using non-linear functions. The 

sigmoid function in the desired range has been approximated by the three equations as shown 

in Eqs (3 – 5). The maximum power we need to calculate for this implementation is the second 

power of the input variable. Thus mathematically, this method proves to be the most efficient. 

Further, this method removes the division algorithm from the implementation. The Schematic 

diagram of for nonlinear approximation is shown in Figure 4.3 and its FPGA and ASIC results 

are discussed in section 4.4.2. 

The implementation results are compared to the Padé approximation in Figures 4.4 and 4.5 and 

Tables 4.1 and 4.2. 

 

 

Figure 4. 3: Schematic diagram of nonlinear approximation 
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4.5  Sigmoid Neuron Implementation Results 

4.5.1 FPGA Implementation 

The algorithms have been coded in Verilog and implemented on ZynQ7000 FPGA using Xilinx 

Vivado. The results of the implementation are shown as a comparative bar chart for the various 

parameters between the two implemented architectures in Figure 4.5. The power consumption 

of the FPGA implementation was very high and can only be reduced to a certain limit as an 

FPGA is limited in terms of customizability. Thus, we synthesized the design using the ASIC 

design methodology.  

4.5.2 ASIC Implementation 

The ASIC was synthesized using the Cadence Encounter RTL Compiler tool with UMC 90 nm 

standard cell library. The power consumption of a neuron using the Padé approximation 

dropped from 5.95 Watts on FPGA to 3.75 × 10-4 Watts in ASIC synthesis. Similarly for the 

Non-linear approximation method, the power consumption of a single neuron drops from 5.3 

Watts on FPGA to 2.47 × 10-4 Watts for ASIC synthesis. Padé approximation method makes 

use of 25538 Cells covering 241897 nm2 of the library as compared to 15709 cells covering 

130575 nm2 for the nonlinear approximation method. Figure 4.5 shows the results of the ASIC 

implementation of the Activation function using the two approximation methods.  

The Verilog codes for ANN using both Padé and Non-linear approximation are given in 

Appendix B. 

 

Figure 4. 4: Comparison of the two implementations of Activation Functions in FPGA-based 
design using IEEE 754 
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Figure 4. 5: Comparison of two implementations of the Activation Function in ASIC 
Implementation using IEEE 754 

 

Observations  

From Figures 4.4 and 4.5, it is observed that Non-linear approximation is:  

• the most efficient implementation of the Sigmoid function using IEEE 754 Floating 

Point Representation.  

• It uses a lesser number of resources and consumes less power in both FPGA and ASIC 

implementation.  

• Also, It occupies 46% less Si area. 

• It is also faster by 68.3%. 

4.5.3  Backpropagation Learning Implementation Methodology 

The backpropagation learning algorithm helps the network to improve the accuracy of the 

output. In this work, an FSM is designed to generate a signal to start a backpropagation 

algorithm as the final output of one epoch is generated [16]. This algorithm measures the 

difference between the desired output and the actual output. The error in the final output is back 

propagated to all the neurons in the preceding layer while the weights of the current layer are 

updated. The control of the learning mechanism is synchronized using an FSM, which gives a 

time-multiplexed learning mechanism to reduce the switching power consumption of the 
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4.6 Conclusions 

From the discussions in this chapter, it is concluded for hardware implementation of ANN for 

Water Quality Classification using IEEE 754: - 

§ MLP is the suitable architecture.  

§ Sigmoid is suitable as the output range is between 0 and 1 which suits the probability 

prediction. 

§ A non-linear approximation of the Sigmoid function is 77% more power efficient and 

utilizes 38.5% lesser hardware resources with a 68.3 % faster Critical Delay path than 

Padé.  

§ ASIC implementation of Nonlinear approximated Sigmoid function consumes lesser 

power by at least 3 orders of magnitude than FPGA implementation. 

 

Thus, the MLP architecture with sigmoid activation function using a non-linear approximation 

method is more suited for the proposed design for water quality application that requires low 

power, low cost, high speed, and portable design.  

 On another note, ASIC implementation is more cost-effective than FPGA for mass production 

scenarios. Further, FPGAs provide the flexibility of re-programmability to the user in case the 

design has to be improved in the near future. FPGAs are much more readily available and more 

straightforward to design on the user end but at a higher cost and power consumption. 

Further, IEEE 754 has a rigid representation and several reserved bit patterns that lead to 

calculation errors. Thus, it becomes necessary to explore other representation systems to 

achieve more efficient and accurate design. This has been discussed in detail in Chapter 4. 
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Figure 4.6: ASIC implementation of Padé approximation 

 

Figure 4. 7: ASIC Implementation of a Nonlinear Approximation of Sigmoid function 
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Figure 4.8: Basic Structure of a Neuron 
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Chapter 5 

5. Digital Hardware Implementation of Artificial Neural Network 

with Posit Representation of Floating-Point Numbers 

In this chapter, we discuss the implementation of an Artificial Neural Network on an ASIC 

using the Posit Floating point representation system proposed by John Gustafson. We study 

the implementation of ANN in comparison [1] to the ANN Implemented using the Nonlinear 

Approximation function on the IEEE 754 representation system and compare the results to the 

Posit implementation. 

5.1 Introduction 

Implementation of complex mathematical functions, such as sigmoid functions, involves 

calculations of real numbers that cannot be represented using the binary number format. Thus, 

there is a need for a format to represent fractions in the binary domain.  

Representing real numbers in digital hardware architectures is a challenge. Real numbers 

constitute an important part of the number system, as most real-life calculations can only be 

represented by real numbers. Real numbers can be represented using either fixed point 

representation or floating point representation. 

The fixed point is a simple and highly effective method for representing fractional values in 

computing. Fixed point arithmetic is many orders of magnitude faster than floating point 

arithmetic because it reuses all integer arithmetic circuits. This is why it is utilized in numerous 

game and DSP applications. It has a limited range of number representation, and also the 

accuracy for larger numbers is limited [2].  

For ANN applications, the accuracy of number representation plays an important role since the 

primary processing unit of the ANN, the activation unit, relies on this calculation. In 

applications such as Water Quality Classification, it becomes even more important to have 

accuracy in the number representation system. Thus, it is necessary to use floating point 

representation for real numbers due to its higher range and resolution leading to more accurate 

representation. 

The different existing formats of floating-point representation system are described below:  
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5.1.1 IEEE 754 Floating Point Representation 

Floating point numbers have been represented in the IEEE 754 floating point representation 

format since 1985.  

• IEEE 754 can accommodate both floating point numbers and integers as well. 

• IEEE 754 supports the Not-a-Numbers (NaNs), and some special bit streams were 

reserved for some special cases. 

• IEEE 754 represents the two infinities, + infinity and – infinity, separately. 

• IEEE 754 supports the cohort representation of numbers since it was inspired by the 

scientific notation of decimal numbers. 

• It is suitable for both software and hardware implementation owing to its fixed 

representation and simple encoding and decoding principles.  

As referred to in Chapter 3, one of the prominent problems of IEEE 754 Floating Point 

Representation (referred to as Floating Point here onwards) has a rigid arrangement.  

This results in very large bit patterns to represent even small numbers. There are two majorly 

used formats of representation – single precision (32 bits) and double precision (64 bits). Thus, 

to represent small numbers, this representation occupies large amounts of resources and are 

counter-intuitive to be used for energy-efficient operation such as ASIC design. The rigid 

representation has predefined fixed-size partitions for exponent and mantissa. It limits 

precision, which is the other end of the spectrum as compared to energy efficiency. The limited 

precision may lead to rounding errors in the representation of real numbers; therefore, some 

floating-point numbers are not represented precisely. An additional 80 intermediate bits must 

be reserved to obtain the correct result for an operation to yield correct results in double 

precision format [3]. 

IEEE 754 also has different bit patterns reserved for NaNs, denormals, +/- infinity, and other 

special cases. The reservation of these patterns for special cases also leads to arithmetic 

inconsistencies. One such inconsistency is that the representation is also flawed in the 

representation of zeros as it has the possibility to represent +/- 0. Now the IEEE 754 

representation treats +0 = -0. This implies that +1/0 = -1/0, which further implies +infinity = 

infinity. More such cases are noted where the floating-point representation is inconsistent with 

algebraic rules of computation. E.g., for the values x = 1e30, y = -1e30, and z = 1; (x + y) +z = 

1, while x + (y + z) = 0. Another inconsistency is noted in the dot product calculation of vectors. 
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Let us Assume vectors A = [3.2e7, 1, -1, 8.0e7] and B = [4.0e7, 1, -1, -1.6e7]. The dot product 

A.B is calculated to be 1 while the right answer should be 2. 

Thus, designing a system for IEEE 754 Floating point representation is very cumbersome as it 

requires special considerations to be made for handling rounding of numbers, NaNs, 

denormals, etc. Secondly, verifying that design is also difficult because of the corner cases 

involved. 

Thus,  IEEE 754 is the standard accepted representation of floating point numbers but it has its 

own disadvantages. To overcome the challenges of IEEE 754, Universal Number format 

representation methods have been proposed over the years to improve or replace the IEEE 754 

Floating Point representation. 

5.1.2 Universal numbers Format 

Unum (universal number) representation has been proposed as a superset of floating-point 

representations. Unum is a variable-length representation that adapts the bit-size of the 

representation to the actual numbers being represented, and it also associates and propagates 

accurate information via arithmetic operations [4]. 

The first version of unums, technically known as Type I unum, was introduced as a superset of 

the IEEE-754 floating-point format in Gustafson's book The End of Error [5]. These 

characteristics define the Type I unum format: 

• a storage format with variable width for both the significand and exponent 

• a u-bit that indicates whether the unum represents an exact number (u = 0) or an interval 

between consecutive exact unums (u = 1) Thus, the unums encompass the complete 

extended real number line [-infinity,+infinity]. 

The "Type II" unum [6] abandons compatibility with IEEE floats, allowing for a 

mathematically clean design based on projective reals. Type II unums have many ideal 

mathematical properties, but most operations require table lookups. For 2-argument functions 

with n bits of precision, there are (in the worst case) 22n table entries, though symmetries and 

other tricks typically reduce this to a more manageable size. 
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a) Challenges of Unum Format 

But these number systems introduced new flaws into the system, and the trade-off was not 

worth changing a standardized system.  

Unum Type 1 was basically a superset of the IEEE 754 format with variable length of the 

significand and the exponent. This meant without much increase in accuracy, Unum1 

introduced computational complexity for hardware implementation of the representation 

system. 

Unum Type 2 though very robust and fast, relies on a Look-up Table-based approach, which 

severely limits the range and resolution of numbers that this format can represent. Unum Type 

2 is severely limited by the memory size available on the architecture for the range and 

resolution that it can represent. Hence, it is unsuitable for devices that need to minimize 

resource utilization and achieve maximum accuracy. 

5.1.3 Posit 

Posit representation was proposed in 2017, John L Gustafson proposed the Posit representation 

of floating numbers. The Posit representation system has proven more accurate [refer] for ANN 

implementations while also overcoming the shortcomings of IEEE 754 without introducing 

many trade-offs. Moreover, in the field of ANN, Posits are particularly useful for classification 

applications since they introduce a tapered accuracy. We have discussed the Posit number 

system in detail in Section 5.2 

5.2 Posit Representation 

In 2013, John L Gustaffson proposed a novel method called Universal Numbers (Unum). 

Gustaffson defined 2 types of Unum. Type 1 was developed as a superset to floating point 

numbers to accommodate greater range and accuracy. However, the hardware cost made it 

impractical. Type 2 was based on a positional bit pattern instead of actual data conversion. This 

conversion was based on lookup tables. This allowed extremely fast computations, but at the 

cost of operations that could be performed [3]. 

In their 2017 paper, John L Gustaffson proposed the posit representation of floating-point 

numbers. The Oxford dictionary defines posit as “a statement that is made on the assumption 
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that it will prove to e true.”  Posits are a hardware-friendly version of Unum2 with relaxations 

in 2 rules: - 

iii) Reciprocals only follow perfect reflection rule for 0, +/- infinity, and integer powers of 

2.  

iv) There are no open intervals 

The first relaxation enables one to populate the u-lattice such that finite numbers are all 

represented in the form of IEEE 754 representation of m.2k.  

The structure of a posit is shown in Figure 5.1. 

  

Figure 5. 1: Format of Posit Representation [1] 

The sign bit is the same as IEEE 754 Floating point representation: 0 for positive numbers and 

1 for negative numbers. If the sign bit is 1, the rest of the number should be in 2’s complement. 

Table 5. 1: Run-length meaning k of the regime. 

Binary 0000 0001 001x 01xx 10xx 110x 1110 1111 

Numerical Meaning, k -4 -3 -2 -1 0 1 2 3 

 

Consider the binary strings shown in Table 5.1 to make sense of the regime bits. The run length 

of the bits is denoted by numerical meaning, k. These are strings of either all 0 or all 1bits. The 

bits are terminated either by the opposite bit or the end of the string is reached. If the bits are 0 

and there are m bits, then 𝑘	 = 	−𝑚, if the bits are 1, then 𝑘	 = 	𝑚	– 	1. The regime gives us 

the scale factor for useedk, 𝑢𝑠𝑒𝑒𝑑	 = 2"!". 𝑢𝑠𝑒𝑒𝑑 values examples are shown in Table 5.2 
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Table 5. 2: The useed as a function of es 

es 0 1 2 3 4 

useed 2 22 = 4 42 = 16 162 = 256 2562 = 65536 

 

The next part is the exponent, e, taken as an unsigned integer. Unlike IEEE 754 Floating points, 

there is no bias in the exponent, and represents scaling by	2*. If there are enough bits remaining 

after the regime, the highest number of bits the exponent can occupy is es. This is how the 

tapered accuracy of Posits is expressed. Numbers near 1 need to be presented with more 

accuracy than very large or very small numbers, which are not so common in the calculation. 

If more bits remain in the bit stream after the regime and exponent, they are used to represent 

the fraction part of the number. The fraction part of a posit is just like that of IEEE 754 floating 

point in the format of 1.f with a hidden bit that represents the whole number part, 1. Posits have 

no subnormal numbers with a hidden bit 0 for numbers less than 1. 

There are only 2 exceptions in the posit representation, i.e., 0(all 0’s) and ±∞ (1 followed by 

all 0 bits).  

Table 5.3 shows the dynamic range offered by both posits and IEEE 754 Floating Point 

representation for some bit lengths [3]. 

Table 5. 3: IEEE 754 Float and Posit dynamic ranges for the same no. of bits [1] 

Size, 

Bits 

IEEE Float 

Exp. Size 

Approx. IEEE Float 

Dynamic Range 

Posit es 

value 

Approx. Posit Dynamic 

Range 
16 5 6	 ×	10#$ to 7	 ×	10% 1 4	 ×	10#& to 3	 ×	10$ 

32 8 1	 ×	10#%' to 3	 ×	10($ 3 6	 ×	10#)( to 2	 ×	10)* 

64 11 5	 ×	10#(*% to 2	 ×	10(+$ 4 2	 ×	10#*&& to 4	 ×	10*&$ 

128 15 6	 ×	10#%&,, to 1	 ×	10%&(* 7 1	 ×	10#%$'' to 1	 ×	10%$'' 

256 19 2	 ×	10#)$&$% to 2	 ×	10)$&-( 10 2	 ×	10#)$&*) to 5	 ×	10)$*&, 
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5.2.1 Advantages of Posit 

§ Posits have only two reserved patterns for zero and +/- infinity. This reduces the 

arithmetic inconsistencies that occur due to a large number of reserved patterns in IEEE 

754. 

§ Posits have tapered accuracy for numbers with very large or small exponents. This 

enables Posits to be able to represent comparable representation accuracy at a lesser 

number of bits. 

§ Since the bit widths for Regime, Exponent, and Mantissa are not rigid, many rounding-

off errors in computations can be avoided. 

§ As can be observed in Table 5.3, for a 32-bit number, the dynamic range of Posits is 

much greater than that of IEEE 754 [3]. 

Since Posits offer a tapered accuracy, they are not suitable for applications where the accuracy 

needs to be consistent across the range of represented numbers. Some applications where Posit 

are not suited due to the tapered accuracy are [7]: 

• Interfacing circuits, where the circuit has to communicate with legacy hardware 

• Physical and astronomical circuitry, where the accuracy must remain constant for all 

numbers 

• Because of trade-off, posit for processors executing general purpose applications has 

been debated. The variable bit format of posit, with changeable regime, exponent, and 

fraction bits, has prevented its use in general-purpose processors [8]. 

Posits offer a better use case where processing on the data is involved once the data has been 

normalized between a certain range. Examples of such applications include Machine Learning, 

Monte Carlo Simulations, graphics rendering, etc [7]. 

5.3 Posit ANN Implementation for Water Quality Classification 

This section focuses on a detailed explanation of the design of ANN for Water Quality 

Classification using Posit representation. The input and output parameters of the ANN for 

Water Quality Classification is already presented in Section 3.4 of Chapter 3. 

5.3.1 Parameterised Posit ANN (PPANN) 

Posit representation is a flexible representation of floating point numbers. However, when 

implementing on hardware, the flexibility has to be bounded due to the limitations of hardware 
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implementation.  The Posit has multiple parameters such as exponent size (Es), useed, etc. 

which govern the sizes of the sub-sections of the Posit bit stream – Sign bit, Regime, Exponent, 

and Mantissa. These parameters change during runtime to allow Posit to have variable bit-

length for maximum accuracy. However, for hardware implementation, we have imposed some 

limits on all the Posit parameter  to achieve desirable accuracy at a much lower bit width.  

5 design steps of  hardware implementation are as follows. 

o Step – 1: Floating Point to Parameterised Posit Conversion 

o Step – 2: Leading One/Zero Detector 

o Step – 3: Parameterised Posit to Floating Point Converter 

o Step – 4: Parameterised Posit Addition Unit 

o Step – 5: Sigmoid implementation using Parameterised Posit 

The details of each step are discussed below. 

a) Step – 1: Floating point – to – Parameterised Posit Converter 

The converter has been designed in parameterised manner to accommodate for hardware 

limitations. The converter has been divided into two major parts – Floating Point decoding and 

Posit Encoding. 

In the Floating-point decoding part, we extract the sign bit, the exponent bits and the mantissa 

bits and store them in three registers. The floating-point decoding section also checks for 

special cases such as ZERO and INFINITY. NaN’s are not checked for as posits do not have 

any encoding for NaN’s. for sub-normal cases, we normalise the floating-point numbers by 

detecting the leading true bit of the mantissa and then left shifting the mantissa by as many bits. 

We then make changes in the exponent according to the position of the leading true bit of the 

mantissa. Now we add the BIAS to the exponent and thus we get all three parts of our floating-

point number [9]. 

Next step is to encode the Posit. Encoding the posit brings in a new challenge in the form of 

variable positioning of the exponent and mantissa bits, which is decided based on the regime 

bits. The signed exponent (𝐸𝑥𝑝) is used value to determine the Regime, R0 and unsigned 

Exponent, E0 (ES bits wide) for posit. So E0 is obtained from the lowest ES bits of absolute 

Exponent, 𝐸𝑥𝑝8, and the remaining higher bits denote the regime R0. Here we check if 𝐸𝑥𝑝 >

0 and 𝐸𝑆 lowest bits of 	𝐸𝑥𝑝8 are non-zero, then the exponent 𝐸/ of posit is the 2’s complement 
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of the 𝐸𝑆 lowest bits of 	𝐸𝑥𝑝8 . For negative exponent representation, as 𝐸/ is an unsigned 

integer, the above procedure with an can be performed with an increment in corresponding 

negative 𝑅/, otherwise 𝐸/ is obtained from the lowest 𝐸𝑆 bits of absolute Exponent, 𝐸𝑥𝑝8. 

Remaining MSBs 𝐸𝑥𝑝8[𝐸 − 1 ∶ 𝐸𝑆] denote 𝑅/ if 𝐸𝑥𝑝 < 0	 and 𝐸𝑥𝑝8[𝐸𝑆 − 1 ∶ 0] = 0. Else, 

𝑅/ is the incremented value of the remaining MSBs. 

So, the Posit representation is constructed from 𝑆9: , 𝑅/, 𝐸/	 and 𝑀9:as follows: 

i. 𝑆9: denotes the sign bit 

ii. An N-bit sequence, 𝑁{! 𝐸𝑥𝑝[𝐸]}, a repetitive sequence of ! 𝐸𝑥𝑝[𝐸], gives the regime 

bits (repetitive 0’s for negative exponent, and repetitive 1’s for positive exponent)  

iii. 𝐸56bit of 𝐸𝑥𝑝 terminates the regime. 

iv. A second N-bit word {! 𝐸𝑥𝑝[𝐸], 𝐸/, 𝑀9:} with necessary 0-bits padded to the LSBs is 

combined with previous N-bit word to form a 2N – bit word {Regime, Exponent, 

Mantissa} (REM) 

v. To desired regime sequence in LSB N-bit of REM, REM is dynamic right shifted by 

𝑅/bits are 𝑆9: = 1, 2’s complement of REM is taken. Thus, 𝑅𝐸𝑀[𝑁 − 1: 1] is the final 

{Regime, Exponent, Mantissa}. Finally, we combine this with the sign bit, keeping the 

special cases of zero and infinity in mind, to get our Posit number. 

 

The process is presented as a pseudo-code algorithm in Algorithm 1 and the flow diagram is 

shown in Figure 5.2. 
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Algorithm 5. 1: IEEE 754 to Posit Conversion 

IEEE 754 (FP) to Posit Conversion 
1. Constraints 
2. N: FP/Posit Word Size 
3. E: FP Exponent Field Size 
4. BIAS = (2**(E – 1)) – 1 : FP Exponent Bias 
5. ES: Posit Exponent Field Size 
6. Input bit string : IN 

7. FP component separation: Sign-bit (SF), Exponent (EF), Mantissa (MF), Expectations ( Infinity 
(INFF), Zero (ZF) ) 

8. SF <= In [N – 1] 
9. EF <= In [N – 2 : N – 1 – E] 

10. MF <= {|EF, IN[N – 2 : N – 1 – E] } 
11. ZF <= !IN[N – 2 : 0] 
12. INFF <= &EF 
13. Pre-Normalisation of FP: 
14. Lshift <= L1D of MF 
15. MF [N − 1 : 0] <= Dynamic Left Shift of { MF, E′ b0} by Lshift 
16. Exp[E : 0] ← { EF [E − 1 : 1], EF [0]|(!(| EF))} - BIAS - Lshift 

17. Posit Component Construction: Exponent (E0 ), Regime Value (R0 ), Mantissa(M0) 
and their Packing (POS) 

18. ExpN [E − 1 : 0] <= Exp[E] ? − Exp[E − 1 : 0] : Exp[E − 1 : 0] 
19. IF (Exp[E]&(|ExpN [ES − 1 : 0])) 
20. E0 [ES − 1 : 0] <=  2’s complement of ExpN [ES − 1 : 0] 
21. ELSE 
22. E0 [ES − 1 : 0] <= ExpN [ES − 1 : 0] 
23. IF (!Exp[E]||(Exp[E]&(|ExpN [ES − 1 : 0]))) 
24. R0 [E − ES − 1 : 0] <= ExpN [E − 1 : ES] + 1 
25. ELSE 
26. R0 [E − ES − 1 : 0] <= ExpN [E − 1 : ES] 
27. POS[2 ∗ N − 1 : 0] <= {N{!Exp[E]}, Exp[E], EO , MF[N − 2 : ES]} 
28. POS <= Dynamic Right Shifted by R0 bits 
29. If (SF == 1): POS <= (2’s complement of POS) 

30. Final Output <=  {SF, LSB (N-1) of POS} 
Give Output considering INFF and ZF 
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Figure 5. 2: Flow diagram of IEEE 754 to Parameterised Posit Conversion 
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b) Step – 2: Leading One/Zero Detector 

For a 2N – bit wide posit, the LOD (Leading One Detector) consists of two parameterized 

LODs (h and l) that take MSB half N-bits and LSB half N - bits of the 2N- bit wide input and 

a MUX and OR gate. Each of these parameterized LODs consists further of LODs which take 

in inputs in the order – N, N/2, N/4, and so on until the leaf cell takes in a 2-bit input. The one 

of the outputs of these LOD’s is 𝑙𝑜𝑔"𝑁 bits wide, the other output is “vld”. At the leaf cell 

level, the output is generated by performing AND operation on the inverse of the higher bit 

with the lower bit, while “vld” is obtained by the Reduction OR of the 2 bits.  Thus, the output 

is true when there is a leading one. As we move to higher parameters, each parameterised LOD 

has 2 sub LODs for the upper half and lower half. Only the higher half consisting of the leading 

one will produce a true “vld” bit, else the lower half LOD will produce a “vl” bit. The LOD 

outputs are then given to a 2:1 MUX where the lower “vld” is concatenated with the output of 

the Lower LOD and zero is appended to the higher output. The Higher “vld” acts as the Select 

line for the MUX. So, these LODs can perform the function of both Leading One Detector and 

Leading Zero Detector in a parameterised dynamic manner. 

For dynamic left/right shifting, a parameterized barrel shifter is constructed with word width 

(N) and shifting amount (S) as parameters. A barrel shifter requires one N-bit 2:1 MUX for 

each bit of S. So, here, it requires S numbers of 2:1 MUXs each of N-bit size [9]. 

The L1D/L0D pseudo-code is presented in Algorithm 5.2 and the flow diagram is shown in 

Figure 5.3. 
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Algorithm 5. 2: Algorithm for L1D/L0D and Dynamic Left Shift operator 

Algorithm for L1D/L0D and Dynamic Left Shift operator 
1. L1D/L0D #(N) (in[N-1:0], K[S-1:0], vd): 
2. N: Word Size, S: Log2 (N) 
3. GENERATE 
4. IF (N == 2) 
5. For L1D: vd = |in, K = (!in[1]) & in[0] 
6. For L0D: vd = !(&in), K = in[1] & (!in[0]) 
7. ELSIF (N & (N-1)) 
8. LOD/LZD #(1<<S) (1<<S 1’b0 | in, K, vd) 
9. ELSE 
10. K_L[S-2:0], K_H[S-2:0], vd_L, vd_H 
11. L1D/L0D #(N>>1) (in[(N>>1)-1:0], K_L, vd_L) 
12. L1D/L0D #(N>>1) (in[N-1:N>>1], K_H, vd_H) 
13. vd = vd_L | vd_L 
14. K = vd_H ? {1’b0,K_H} : {vd_L,K_L} 
15. ENDGENERATE 
16. Left Shift Operation 
17. DLS #(N) (in[N-1:0], b[S-1:0], L1D_OUT): 
18. N: Word Size, S: Log2 (N), TMP[S-1:0][N-1:0] 
19. TMP[0] = b[0] ? in << 1 : in; 
20. GENVAR i 
21. GENERATE 
22. for (i=1; i<S; i=i+1) 
23. TMP[i] = b[i] ? (TMP[i-1] << 2**i) : TMP[i-1] 
24. end 
25. ENDGENERATE 
26. L1D_OUT = TMP[S-1] 



 106 

 

Figure 5. 3: Leading One/Zero Detector 
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c) Step – 3: Parameterised Posit–to–Floating Converter 

The first step in this conversion is to check for zero and infinity special cases. The MSB is sign 

bit of the posit. If the MSB is 1, we take a 2’s complement of the input posit number into a 

variable XIN. 

The challenge of extracting the components of a posit number, considering it’s run time 

variation, is handled by Leading One Detector, Leading Zero Detector and the Dynamic Left 

Shifter components as explained below: 

i. The (N – 2)th bit of XIN is used to check whether regime is positive or negative. This 

bit is denoted RC (Regime Check bit) 

ii. We use the LOD for (N – 1) LSB of XIN to count the number 0’s when the regime is a 

sequence of 0’s ending in 1, i.e., negative regime, and store that count value in 

temporary register K0. We use LZD for (N – 2) LSB to count the number of 1’s ending 

in 0, i.e., positive regime, and store that count value in temporary register K1. In the 

case of positive regime, 1-bit lesser is used since regime is 1 less than the actual number 

of repeating 1’s. 

iii. The absolute value of Regime (K0 or K1) is decided as per the value of RC. RC is also 

used as a select signal to determine the left shift amount of for regime. 

iv. XIN is then left shifted by (regime + 1) bits to align the exponent with the MSB of XIN. 

v. Now the most significant ES bits denote the exponent (𝐸:), remaining bits are mantissa. 

vi. The final floating-point exponent is constructed using𝐸/, RC, Regime,𝐸: and BIAS 

values. 

The pseudo-code for Posit-to-IEEE 754 conversion is shown in Algorithm 5.3 and the flow 

diagram is given in Figure 5.4. 
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Algorithm 5. 3: Posit to IEEE 754 conversion 

Posit to IEEE 754 Converter 

1.  Constrains: N, ES, E, BIAS (Similar to the Algorithm-1 definition) 

2. Input: IN 

3. Posit Component breakup:Sign (SPos ), Regime (RPos), Exponent (EPos), Mantissa (MPos), 

Exceptions (Infinity (INFPos), Zero (ZPos)) 

4. ZPos <= !IN, (All bits of IN are 0) 

5.  INFPos <= IN[N − 1]&(!IN[N − 2 : 0]), (all except MSB are 0) 

6. SPos <= IN[N − 1] 

7. INX ← SPos ? − IN : IN, (2’s complement for -ve posit) 

8. Regime Check (RC): RC <= XIN[N − 2], (0 for -ve regime, 1 for +ve regime) 

9. K1 <= L1D of XIN[N-2:0], (For -ve regime sequence) 

10. K1  L0D of XIN[N-3:0], (For +ve regime sequence) 

11. Absolute Regime Value: R <= Rc ? K1 : K0 

12. Regime Left Shift : Lshift <= RC ? K1 + 1 : K0 

14. IN_tmp[N − 1 : 2] <= INX[N − 3 : 0] << Lshift, (Dynamic left shifting) 

15. EPos [E − 1 : 0] <= XIN_tmp[N-1:N-ES] 

16. MPos [N − 1 : ES − 1] <= {|IN[N-2:0], XIN_tmp[N-ES-1:0]} 

17. FP Construction: 

18. E0 [E : 0] ← RC ? {RPos, EPos } + BIAS : {−RPoa, EPos } + BIAS 

19. IF (INFPos | E0 [E] | &E0 [E − 1 : 0]): FP0 <= Infinity 

20. ELSIF (ZPos | ( MPos [N − 1]): FP0 <= {SPos , E − 1{1′ b0}, MPos [N − 2 : E]} 

21. ELSE FP0 ← {SPos , E0 [E − 1 : 0], MPos [N − 2 : E]} 

 



 109 

 

Figure 5. 4: Flow diagram of Posit to IEEE 754 Converter 
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d) Step – 4: Parameterised Posit Addition 

For Posit Addition, first, the posits are decoded into the REM components of both the operands 

are extracted. This is followed by the arithmetic addition of the two posit numbers after 

equating the exponents and accordingly adjusting the mantissae. Here we get the sign, 

Exponent and Mantissa of the final sum. These are then recomposed to form the Sign, Regime, 

Exponent and Mantissa of the sum. Finally, the post-processing is done to round-off to the 

required accuracy, etc.  

To perform the addition operation after the data extraction step, first, the total exponents of 

both the operands are calculated using the Regime and exponent bits of respective operands. 

These exponents are then compared to delineate the greater operand and the smaller operand. 

The difference between these two operands is used to shift the mantissa of the larger operand 

dynamically right. The difference is also added to the larger exponent. Hereafter the mantissa 

is checked for overflow or underflow and added together to get the sum of the addition. Now 

we have the Sign, Exponent and Mantissa of the sum. We use the encoding process explained 

above to re-encode the sum in REM components and repackage the REM components into the 

final posit output. 

The same process is followed for the subtraction of two posit numbers. However, the subtractor 

is negated by setting the sign bit high and taking a 2’s complement of the mantissa. The flow 

diagram of Parameterised Posit Addition is shown in Figure 5.5. 

a) Step – 5: Parmaterised Posit Sigmoid 

To calculate the sigmoid function of a number efficiently in IEEE 754, we have to develop a 

complex arithmetic unit using Non-linear approximation of Sigmoid function. As proven in 

Chapter 3, the Nonlinear Approximation method is the most efficient methods of implementing 

sigmoid function using IEEE 754. Nonlinear Approximation involves 6 multiplication 

operations, and 5 addition operations to calculate the Sigmoid function. 

Posits have a tapered accuracy. This tapered accuracy is achieved because of a nonlinear 

sampling density function on the real axis [10]. When we integrate the sampling density 

function, we get the cumulative density function. The cumulative density function for Posits is 

a sigmoid function. To get the sigmoid function of a Posit we need to left shift the Posit by 2 
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bits to obtain the sigmoid function efficiently. Hence, no approximation method is not required 

here. 

The sigmoid function implemented using Posit and IEEE 754 format is shown in Figure 5.6. 

Here, the Sigmoid function was applied to real numbers ranging from -10 to +10 in both IEEE 

754 floating point representation and Posit implementation.   

For IEEE 754 represented numbers, we need to perform four exponent calculations, eight 

multiplications, and five addition operations to calculate the sigmoid of one input value. 

 For the Posit representation, for the same operation, the first bit of the posits is inverted, and 

then the bits are shifted right by 2 bits while appending 0’s on the left [3]. So it requires only 

three operations i.e. – one-bit inversion operation, one 2-bit shifting and a 0-padding operation.  

Both the outputs when plotted on the same axes overlap with each other indicating sigmoid 

representation with similar accuracy.  

The complexity of Posit implementation has been measured in terms of standard library logic 

gates required to implement the sigmoid function, and it has been compared to that of IEEE 

754. For IEEE 754, 10634 standard cells are required to implement the Sigmoid Function. 

Parameterized Posit implementation of the Sigmoid Function requires 447 standard cells. Both 

the implementations were synthesized using TSMC 180nm standard cell library on Cadence 

RTL Encounter. 

For IEEE 754, 10634 standard cells are required to implement the Sigmoid Function. 

Parameterized Posit implementation of the Sigmoid Function requires 447 standard cells. Both 

the implementations were synthesized using TSMC 180nm standard cell library on Cadence 

RTL Encounter. Table 5.4 shows the comparison of the sigmoid function hardware 

implementation complexity using IEEE 754 and Parameterised Posit. 
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Figure 5. 5: Flow diagram of Posit Addition Unit 
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Table 5. 4: Comparison of the complexity of Hardware Implementation of Sigmoid Function 

Implementation Logic Gates 

IEEE 754 Floating Point Representation 10634 

Parameterised Posit 447 

 

 

 

Figure 5. 6: Sigmoid function calculation comparison between IEEE 754 and Parameterized 
Posit representation. 

 

5.4 Results and Observations of Proposed Smart Portable Water Quality 

Classification Device (WQC-Device) 

5.4.1 Schematic of PPANN synthesized using TSMC 180nm technology node. 

In the proposed WQC device, ANN has 4 inputs and 3 outputs. It has 3 hidden layers of 

neurons, each consisting of 32 neurons, and each neuron is composed of 1 sigmoid, 4 

multiplications, and 1 addition unit.  

The snapshot of the schematic of the implemented single neuron circuit synthesised using 

TSMC 180nm technology node on Cadence RTL Compiler is shown in Figure 5.7. 
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Figure 5. 7: ASIC implementation of a neuron on Cadence RTL Encounter using TSMC 
180nm Standard Cell Library 

 

5.4.2 Comparison of the results of proposed ASIC and FPGA implementation of PPANN 

in IEEE 754 and Parameterised Posit, respectively.  

Comparison 1 – Figure 5.8: Comparison of proposed ASIC Implementation of ANN using - 

IEEE 754 and Parameterised Posit 

Comparison 2 - Figure 5.9: Comparison of proposed FPGA Implementation of ANN using - 

IEEE 754 and Parameterised Posit. 
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Figure 5. 8: Comparison of proposed ASIC Implementation of ANN using - IEEE 754 and 
Parameterized Posit 

 

 

Figure 5. 9: Comparison of proposed FPGA Implementation of ANN using - IEEE 754 and 
Parameterized Posit 
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Observations 

o It is observed that Parameterized Posit implementation consumes 50% less silicon area 

and standard cells. 

o Parameterized Posit has 50%  less power consumption  IEEE 754 floating point 

representation. 

o Parameterized Posit implementation has an advantage of 13.2% over IEEE 754 in 

Critical Path Delay.  

o Parameterized Posit has comparable accuracy to that of IEEE 754. 

5.5 Conclusion 

In this chapter, we have implemented an ANN for Water Quality Classification using 

Parameterised Posits and compared the hardware performance with the IEEE 754 

implementation of the same. 

In comparison to ANN implemented with IEEE 754The PPANN design achieves : 

• 50% lesser Resource utilisation 

• 50% lesser power consumption 

• 13% lesser critical path delay.  

• It achieves similar accuracy (presented in Figure 5.6).  

The ANN designed in this chapter has four inputs – pH, ORP, DO, and EC. The sensor 

electrodes required to measure EC and DO are expensive, leading to an increased cost. Further, 

laboratory methods like reverse osmosis for Dissolved Oxygen, are available but cannot be 

used in portable devices. Thus, Data augmentation is required, wherein, parameters like EC 

and DO, are predicted based on the data available from pH and ORP in-situ measurements.  A 

detail of the data augmentation used in this work has been presented in Chapter 6. 

The implementation of the Sigmoid function using Parameterised Posit involves 447 Logic 

units as compared to 10634 Logic Units required by IEEE 754. Thus, Parameterised Posit 

reduces the hardware complexity of the implementation of Sigmoid Function, as compared to 

the conventional method. 
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Chapter 6 

6. Hardware Implementation of Portable Smart device for real-

time Water Quality Classification using Data Augmentation 

This chapter presents the complete hardware implementation of a Portable Smart device for 

real-time Water Quality Classification using Data Augmentation. The implementation has been 

done using two design approaches – Embedded Systems and Application Specific Integrated 

Circuit (ASIC) Design. The results have been presented and compared with standard Water 

Quality Classification device. 

6.1 Introduction 

Conventional water quality measurement techniques include on-site sampling and subsequent 

laboratory-based tests; both are labour-intensive and cost-intensive processes. The 

measurements are not in real-time.  

To accurately measure WQ, multiple parameters must be measured. In this work, we have 

chosen four parameters – pH, ORP, DO, and EC, to measure the water quality. The reasons for 

selecting these four parameters have been detailed in Chapter 3.  

One of the significant challenges in making a real-time in-situ Water Quality Classification 

(WQC) device is the measurement of all the parameters that give us a complete WQ index. 

While pH and ORP can be measured easily, DO, and EC require expensive electrodes for in-

situ measurement. This drives the cost of the Water Quality Classification device high. Thus, 

we use data augmentation to predict values of DO and EC to reduce the cost of the Water 

Quality Classification device.  

Traditionally, data augmentation has been done using mathematical approaches, detailed in 

Section 6.1.1. However, ANN has proven to be more accurate in data prediction where there 

are no mathematical relations between the input and output parameters. This has been detailed 

in Section 6.1.2. 

This chapter presents a Water Quality Classification device designed with two ANNs. First 

ANN to augment the data for DO and EC using measured pH and ORP, and then uses a second 

ANN to classify the water quality into one of the three classes – Potable, Agricultural, and 

Wastewater.  
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The device has been designed using two approaches – an Embedded approach and an ASIC 

design approach. These designs have been detailed in Section 6.3 

6.1.1 Methodology for Data Augmentation 

Data Augmentation becomes necessary for Water Quality Classification devices for in-situ 

application because measuring all the parameters contributing to the Water Quality 

measurement is not economical or practical. In most cases, we have to rely on Laboratory-

based methods [1] [2] [3] constraining the portability of the device. For parameters like DO 

and EC, the cost of in-situ measurement is very high. Thus, to reduce the cost of measurement 

without any significant trade-off in Water Quality Classification performance, data 

augmentation is performed. There are two primary approaches to data augmentation – one is 

the mathematical approach, and the other is the ANN-based approach. The following 

subsections detail the two approaches. 

6.1.2 Mathematical Approach 

Data Augmentation has traditionally been done using mathematical approaches. Such 

approaches have been used for centuries, and constant development has been done in 

mathematical models to improve the accuracy of data augmentation. Numerical and statistical 

methods have been used in various fields to supplement missing data points, as described 

below. 

• Linear Interpolation 

For simplicity, linear interpolation is frequently used. However, the significant variation 

between these points can be neglected because linear interpolation simply connects adjacent 

measurements with a line. Based on causality, statistical models can supplement missing data. 

Linear Interpolation estimates the data assuming a straight line connects the two available data 

points. It ignores the possibility of local variation between the two known points on the curve. 

• Multi Linear Regression 

Numerous studies have developed and utilized regression-based models, such as multiple linear 

regression (MLR) [4].  MLR was used to effectively predict daily rainfall, discharge, and 

groundwater elevation in [5]. MLR and daily discharge were used to predict the daily nitrogen 

and phosphorous content of water in [6]. MLR is effective at predicting the average trend but 
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has limited explanatory power for estimating extreme values and focuses on a single predictor 

[4]. 

• Bayesian Regression Model 

The Bayesian piecewise regression model predicted chlorophyll-a (Chl-a) concentration more 

accurately than the process-based model [7]. However, the Bayesian Regression model works 

only when there is some mapping possible between the input and output vectors.  

• Watershed Models 

Using the outputs of a watershed model, such as the Soil and Water Assessment Tool (SWAT) 

[8], Hydrological Simulation Program–Fortran (HSPF) [9], and Stormwater Management 

Model, is an alternative way to supplement the time series for a surface water quality model 

(SWMM) [10]. Based on water balance and water quality interactions caused by precipitation, 

watershed models can predict flow rates and water quality concentrations at the outlet of 

subbasins. However, watershed models also require a large quantity of input data, including 

basic information such as topography, land use, or soil type, as well as rainfall data for each 

station or subbasin. In addition, the uncertainty in watershed models' conceptualization of 

hydrological processes, empirical equations, and estimation of various model parameters 

significantly impacts the precision of their results [11]. 

6.1.3 ANN Approach 

The artificial neural network (ANN) method can be used as an alternative to augment input 

data by learning complex relationships between water quality variables and integrating 

nonlinearities. The benefit of ANN is that it can be easily extended to multivariate cases and 

modified by altering the network architecture, which increases the model's adaptability [12]. 

Due to their broad applicability, ANNs have been utilized in a number of water quality research 

projects. Specifically, the majority of studies have attempted to predict dissolved oxygen (DO) 

in a variety of environments, including rivers, lakes, reservoirs, ponds, and coastal waters [13]. 

In addition, it has been reported that the performance of ANN in numerous studies has been 

superior to that of other statistical techniques, such as regression [14]. Hence, The use of ANN 

methods to predict environmental water quality has increased rapidly. ANN technique can be 

applied to augment Water Quality parameter data and can improve the prediction accuracy of 

the water quality. Thus, ANN techniques can be applied to improve field measurement [4]. 

The implementation of the ANN based data augmentation have been detailed in Section 3. 
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6.2 ANN based Data Augmentation Design Flow 

 

Figure 6.1 shows the proposed ANN based data augmentation design flow. 

The complete methodology of data augmentation unit is broken down into the following steps: 

• Water sample collection 

• Measurement of parameters using standard lab-based methods 

• Measurement of pH and ORP using Arduino Uno 

• Prediction of DO and EC values using Data Augmentation ANN (A-ANN)  

• Hardware Implementation of A-ANN 

Each of the aforementioned steps is discussed in the following subsections. 

6.2.1 Water Sample Collection 

1806 Ground and surface water samples have been collected from various locations in and 

around Pilani, Rajasthan, India. Based on knowledge, each sample was marked into one of the 

three categories – potable, agricultural, and wastewater. Details of Data Collection have been 

given in Chapter 3. 

6.2.2 Lab-based parameter measurement and Collection of Training and Validation data 

set for Data Augmentation 

1806 samples were tested for pH, ORP, DO, and conductivity using titration, spectroscopy, 

and solution chemistry. This is used as A-ANN and C-ANN training, testing, and validation 

data. Figure 6.2 exhibits the concept of digitisation of pH and ORP using Arduino Uno.  

Arduino Uno has been used as the sensing circuit for electrodes and the sensing and 

conditioning circuits have been removed to save costs. The Arduino Uno has a 10-bit on-board 

ADC. For 16-bit output in IEEE 754 representation, it is observed that it requires two cycles at 

Input parameters 

– pH and ORP 

MLP Architecture 

with 3 hidden layers 

of 32 neurons each 

DO and EC data 

Prediction using A-

ANN 

Figure 6. 1: Design flow for Complete ANN based Data Augmentation 



 123 

9600 baud rate (which equals 1-second pulse rate), taking 2 seconds to generate the output 

readings. 

The sensor accuracy is adjusted by the use of ANN for classification. 

 

 

Figure 6. 2: Block diagram representing pH and ORP readings using Arduino Uno 

 

6.2.3 Step 1: Measurement of pH and ORP using Arduino Uno 

a) Measurement of pH  

pH electrode voltage is read using Arduino Uno. An electrode is attached to the analog input. 

The Uno R3's 10-bit ADC transforms analog to digital. The Arduino Serial monitor shows 

digital voltages. To convert 10-bit digital pH to pH, requantise to voltage. The voltage range 

0V–5.0V is quantised into 10-bits hence, the input voltage values are multiplied by the voltage 

range and divided by the quantization value: -  

 𝑉$# = 𝑥	 ×	
5.0
1023 (1) 

Where 𝑥 represents the reading from the electrode and 𝑉$# is the corresponding digital value 

for the voltage. 

This voltage value is now converted into pH reading by the Nernst equation: - 

 
𝐸 = 	𝐸1 + f

2.303𝑅𝑇
𝑛𝐹 i log	 m

𝑢𝑛𝑘𝑛𝑜𝑤𝑛	[𝐻 +]
𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙	[𝐻 −] q 

(2) 
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Where E is the potential of reduction in a reaction, 𝐸1 is the standard or reference potential of 

oxidation/reduction reaction, 𝑅 is the universal gas constant, 𝑇 is the temperature in Kelvin, 𝑛 

is the number of electrons (in Moles), 𝐹 is Faraday Constant and 	[𝐻 −] & 	[𝐻 +] denotes the 

concentration of H+ and OH- ions in the chemical reaction, respectively.  

For our electrode equation (2) comes out to be: - 

 𝑝𝐻 =
((𝑉$# − 512) × 9.65)
8.31	 × 	2.302	 × 	298 + 7 

(3) 

Seven has been added in the above equation to offset the zero voltage to a neutral pH reading 

of seven. 

b) Measurement of Oxidation Reduction Potential (ORP) 

For the measurement of ORP, equation (1) is reused to convert digital readings into voltages 

(potentials). 2.25 is subtracted from the readings to offset the voltage readings by -225mV to 

obtain the ORP readings. 

 𝑂𝑅𝑃 = 	𝑦	 ×	
5.0
1023 − 2.25 (4) 

𝑦 denotes the digitized voltage reading from the ORP electrode. Like the pH electrode, the 

ORP electrode is also connected to the analog input of Arduino Uno. 

6.2.4 Step 2: DO and EC Prediction using Augmentation ANN 

Data Augmentation has been explored to predict the values parameters such as DO, EC, etc, in 

the literature review. These studies have been reviewed in Chapter 2. It is observed that 

augmentation has been done for parameters that have mathematical relations with some input 

parameters, such as EC and Total Dissolved Solids [15]. But parameters like EC and DO 

(output parameters) do not have an obvious mathematical relationship with pH and ORP (input 

parameters). Thus, other method needs to be explored for this purpose. 

Artificial Neural Networks (ANNs) have demonstrated efficacy in predicting data when a 

discernible mathematical relationship between the input and output vectors is not readily 

apparent. ANNs possess the capability to discern variations in the output vector relative to the 

input vector, thereby enabling the prediction of the output vector for novel input vectors. 

Exploiting this characteristic, the current study leverages ANNs to forecast the values of 

Electrical Conductivity (EC) and Dissolved Oxygen (DO), employing pH and Oxidation 

Reduction Potential (ORP) as the input vector. 
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Prediction of DO and EC based on pH and ORP data using ANN reduces device cost 

Augmentation ANN forecasts DO and EC using Arduino Uno Board. Serial port transmits 

Arduino Uno sensor readings to Raspberry Pi (Raspberry Pi Foundation, n.d.). The Raspberry 

Pi microSD card holds experiment data. RaspberryPi memory stores ANN. Training, test, and 

validation sets are experimental data. 70% of data points were randomly selected for ANN 

model training, and 15% for testing.   

6.3 Hardware Implementation of A-ANN 

Two approaches have been used to implement A-ANN on hardware – Embedded Systems and 

ASIC (Application Specific Integrated Circuit). 

The ANN architecture chosen for A-ANN was the same for both approaches. Figure 6.3 shows 

the Accuracy and Mean Square error for various architectures that were tested for the A-ANN. 

The ANNs were designed on MATLAB with chosen input and output vectors. The number of 

layers and number of neurons in each layer are varied and the accuracy and mean square error 

of the output are plotted using in-built functions of MATLAB. 

From Figure 6.3 and Figure 6.4, we can conclude that the most suitable architecture is with 3 

hidden layers with 32 neurons each because it gives maximum accuracy and minimum Mean 

Square Error. 

 

 

Figure 6. 3: Accuracy (𝑅") of A-ANN 

𝑹
𝟐  
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Figure 6. 4: Mean Square error for A-ANN 

6.3.1 Embedded Systems Approach  

The Embedded system approach involves the use of an Arduino and a Raspberry Pi board. A 

block-level representation of the system is shown in Figure 6.5 

In this approach, the pH and ORP electrodes are connected to the Arduino Uno microcontroller 

board. The electrodes measure voltages in analog mode, which are then digitized and converted 

into respective parameter readings in the Arduino board. The process is explained in detail in 

section 6.2.3. These readings are passed on to the Raspberry Pi board over a serial connection.  

Raspberry Pi board receives the pH and ORP readings over the serial board and stores the 

values in memory. These values are accessed by the Augmentation ANN python code, and the 

python code then predicts the values of DO and EC. The values of pH, ORP, DO and EC are 

added to the training data set stored in the Raspberry Pi memory. The python code and the 

memory locations for input data and training data sets are made accessible during boot to 

reduce wait time and introduce automation in the launch of ANN. 

The reason behind going for the Embedded systems approach is primarily the short time to 

market it takes for an Embedded system-based design. Also, for a small-scale operation the 

Embedded Systems approach is more economical, and the design is simpler. Further, the 

repairability for the test device is much greater than an ASIC design.  



 127 

 
 

 

 

Fi
gu

re
 6

. 5
: B

lo
ck

-le
ve

l d
ia

gr
am

 o
f E

m
be

dd
ed

 S
ys

te
m

 a
pp

ro
ac

h 
of

 A
ug

m
en

ta
tio

n 
AN

N 



 128 

6.3.2 ASIC Design Approach  

The ASIC approach involves the use of an Arduino and an IC designed using Verilog HDL 

and TSMC 180nm Standard cell library. A block level representation of the system is shown 

in Figure 6.6. 

For the ASIC-based design approach, A-ANN has been coded using Verilog HDL based on 

the Posit floating point number representation system. The pH and ORP readings are taken just 

the same way as in the Embedded approach, using an Arduino Uno microcontroller. Since, 

Arduino is designed in the legacy number format systems, the pH and ORP readings are in 

IEEE 754 format.  So, the pH and ORP readings are converted into Posit format before being 

transferred to an in-chip memory, where they are accessed by the A-ANN coded in Verilog. 

The Verilog code predicts the values of DO and EC in Posit format.  

The DO and EC readings are not converted back into IEEE 754 format because they are to be 

used by C-ANN for classification further, which is also coded in Posit floating point 

representation format. 

ASIC approach is more economical than Embedded Systems approach in masss production. 

Also, because of their very small size, and application specificity, ASICs are more power 

efficient and suitable for portable devices. ASICs also have the benefit of on-chip connections, 

leading to more reliable connections and lesser loosely connected wires. Thus, ASICs provide 

more reliable device at the cost of repairability. 
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6.4 Implementation of Complete Water Quality Classification Device with 

Augmentation ANN(A-ANN) and Classification ANN(C-ANN) 

The block diagram of the complete device with the classification ANN (C-ANN) is shown in 

Figure 6.7. 

The complete device for Water Quality Classification is also designed using the two 

approaches, Embedded and ASIC, as mentioned in section 6.3. The following subsections 

detail the two implementations in detail.  

Apart from the Embedded and ASIC approaches, the design is also implemented on an FPGA 

in order to test the functionality of the design. FPGA implementation required boards with 

large resource counts (> 235,000 logic blocks), which are expensive. Because of the limited 

number of resources available on this board, more than one FPGA board is required to 

implement the complete ANN. Thus, the cost of the FPGA implementation is driven high, 

defeating the low-cost objectives Water Quality Classification device. However, a reduced 

architecture has been implemented and the resource utilization and power figures are presented 

in Appendix C. 

Similar to A-ANN, C-ANN architecture is also chosen after testing a number of different 

architectures. The architecture that offered maximum accuracy with minimum Mean Square 

Error is chosen. The method is same as described in Section 6.3. 

Figure 6. 7: Block diagram of Complete Water Quality Classification device 
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Figure 6.8 shows the plots of accuracy, and Figure 6.9 shows the Mean square errors of the 

different C-ANN architectures tested. 

 

Figure 6. 8: Accuracy of C-ANN for different architectures 

 

 

Figure 6. 9: Mean Square error for C-ANN 

From figure 6.8 and 6.9 it can be observed that an architecture with 3 hidden layers each with 

64 neurons gives us maximum accuracy, but the Mean Square Error also increases for this 

𝑹
𝟐  
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architecture, but for 32 neurons in 3 hiddden layers, the mean square error is the lowest for the 

second highest accuracy.  

The C-ANN architecture selected has 32 neurons each for 3 hidden layers as shown in the 

MATLAB model shown in figure 6.10. 

 

Figure 6. 10: C-ANN structure 

6.4.1 Embedded Design for the Complete Water Quality Classification Device 

The Embedded Design employs Arduino Uno and Raspberry Pi boards. The Arduino Uno is 

for digitizing the pH and ORP readings. The Raspberry Pi is used for the data augmentation 

and classification. 

The A-ANN python code takes pH and ORP inputs and predicts the values of DO and EC. The 

python program for C-ANN is coded, which takes four inputs – pH, ORP, DO, and EC, and 

classifies the water sample into one of the three categories – potable, agricultural, and 

wastewater.  

Both python codes are given in Appendix C. The Block diagram for the Embedded system-

based design is shown in Figure 6.11. The results of the Embedded System-based design are 

presented in Section 6.5.   

6.4.2 ASIC Design for the Complete Water Quality Classification Device 

The ASIC based design involves the classification ANN as described in Chapter 4. The ANN 

architecture has been kept the same for both the Embedded System based design and the ASIC 

based design. Figure 6.12 shows the block diagram for the ASIC based design. 

The A-ANN Verilog code takes pH and ORP inputs and predicts the values of DO and EC. 

The Verilog code for C-ANN takes four inputs – pH, ORP, DO, and EC, and classifies the 

water sample into one of the three categories – potable, agricultural, and wastewater.  

Both Verilog codes are given in appendix C.  
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The ASIC Design is synthesized using TSMC 180nm standard cell library using Cadence RTL 

Encounter. The implementation results are presented in Section 6.5. 

 

6.5 Results and Validation of Complete Water Quality Classification Device 

The results of the complete Water Quality Classification device are presented in this section 

and observations are made. 

Section 6.5.1 presents the prediction accuracy of A-ANN for both Embedded and ASIC 

approaches. 

Section 6.5.2 presents the classification accuracy of C-ANN for both Embedded and ASIC 

approaches. 

Section 6.5.3 presents the ASIC Power, Resource utilization, and critical path delay. 

Section 6.5.4 presents the Cost comparison of Embedded and VLSI Water Quality 

Classification Devices with a standard Atlas Scientific Kit. 

6.5.1 Results of Prediction Accuracy of A-ANN for both Embedded and ASIC 

approaches. 

A total of 14 training functions are tested. From these 14 functions, only one training function 

(trainLM), has finished the work of regression plot and error plots. Using the Levenberg-

Marquardt training function and a sigmoidal activation function (logistic function), A-ANN 

with 2 hidden layers and 16 neurons in each layer was optimised (logistic function).  

Figures 6.13 and 6.14 exhibit A-ANN's DO and EC response plots. It is observed that DO and 

EC have above 97% accuracy. A-ANN architecture yields 0.98 R2 at 0.00232 RMSE. 
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Figure 6. 13: a) Response plot of A-ANN, b) Actual vs. predicted DO value using A-ANN 

 

 

 

Figure 6. 14: a) Response plot of A-ANN, b) Actual vs. predicted EC value using A-ANN. 

 

Table 6.1 compares the predicted values of 15 water samples with actual laboratory-measured 

values. The comparison validates the accuracy of 97%. 
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Table 6. 1: Validation of proposed device for real-time water quality measurement 

Sample 
No 

DO (mg/L) 
(Experimental) 

DO (mg/L) 
(Predicted using A-ANN) 

EC (𝝁𝑺/𝒄𝒎) 
(Experimental) 

EC (𝝁𝑺/𝒄𝒎) 
(Predicted Using A-ANN) 

1 9.36 9.3 1777 1745 
2 9.32 9.4 1407 1398 
3 9.35 9.5 912 918 
4 9.36 9.3 1450 1540 
5 3.81 3.3 1640 1640 
6 7.36 7.4 928 908 
7 6.82 7 1482 1502 
8 7.89 7.8 915 915 
9 7.13 7.3 1525 1500 
10 5.82 6 1225 1325 
11 6.34 6.3 1560 1524 
12 5.56 6 857 857 
13 7.31 7.3 1362 1362 
14 5.18 5.2 1090 1000 
15 8.13 8.1 1402 1492 

 

6.6 Results of classification accuracy of C-ANN for both Embedded and 

ASIC approaches 

Classification accuracy of C-ANN has been obtained in terms of four parameters - F-Score, 

Precision, Sensitivity, and Accuracy. These parameters are important because people who don't 

have access to modern technology or complex water testing kits will be able to determine 

whether the water is polluted or not, much more efficiently.  

The following Equations (5-8) are used to compute the F-Score, Precision, Sensitivity, and 

Accuracy in Table 6.2: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (5) 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (7) 

 𝐹 − 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

 (8) 



 138 

Figure 6.15 shows that overall accuracy in water classification is >97% in all three categories, 

averaging at 98%. Thus, confirming a high level of confidence in classification. The 2% error 

is because more false negatives are predicted than false positives, which is helpful in the case 

of drinking water. Table 6.2 presents the four parameters – Accuracy, Sensitivity, Precision, 

and F-score obtained from the confusion matrix of Figure 6.15. 

 

Figure 6. 15: Confusion Matrix for C-ANN 

Table 6. 2: The statistical results for performance evaluation 

Performance Measure Results 
Accuracy 0.98 
Sensitivity 0.96 
Precision 0.97 
F-Score 0.97 

The results obtained for both approaches are observed to be similar with the same classification 

accuracy value. 
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6.6.1 ASIC Power, Resource utilization, and critical path delay 

The Complete System was also implemented using the ASIC design methodology using a semi-

custom VLSI design method. The two ANNs, A-ANN and C-ANN, were coded using Verilog 

and synthesized using TSMC 180nm Standard Cell Library on Cadence RTL Encounter. The 

results of the synthesis are presented in Table 6.3. 

Table 6. 3: ASIC Implementation Results of Complete Design 

Parameter Values 
Power 139.4 mW 
Area 3.3mm2 

Standard Cell Units 443648 
Critical Path Delay 0.29ms 

 

6.6.2 Cost comparison of Embedded and VLSI Water Quality Classification Device with 

standard Water Testing Atlas Scientific Kit 

Table 6.4 shows the cost comparison of the proposed device with Atlas Scientific standard 

Electrode with Arduino Uno based Water Testing Kit. It is observed that the proposed device 

has cost reduction by 92% while achieving 98% accuracy. 

Table 6. 4: Cost comparison of the conventional and proposed device 

Component Name Measured Parameter 
Cost 

(Conventional Atlas 
Scientific  Kit) 

Cost  
(Proposed 

Embedded WQC 
Device) 

Atlas Scientific DO  Probe Dissolved Oxygen INR 21,240 [15] NA 
Atlas Scientific DO Sensor Dissolved Oxygen INR 4,299 [15] NA 

Aquasol ORP Electrode Oxidation-Reduction 
Potential 

INR 1200 INR 1200 

Atlas Scientific ORP Sensor Oxidation-Reduction 
Potential 

INR 3,739 [15] NA 

Aquasol pH Electrode pH INR 900 INR 900 
Atlas Scientific pH Sensor pH INR 3,739 [15] NA 

Atlas Scientific EC Electrode Electrical Conductivity INR 11,200 [15] NA 
Atlas Scientific EC Sensor Electrical Conductivity INR 5,600 [15] NA 

Battery Pack  INR 1,000 INR 1,000 
Memory Card  NA INR 300 

Multiplexer Board  INR 11,869 [15] NA 
Arduino Uno Board  INR 330 INR 330 

Raspberry Pi 3 Board  NA INR 3,000 
Total  INR 75,116/- INR 6,730/- 
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VLSI (ASIC) design approach reduces the cost of production for mass-produced devices. So, 

ASIC approach is most suited when there is a requirement for mass production of the device, 

even though the embedded approach gives faster time-to-market. 

Performance comparison –  

The Atlas Scientific Laboratory kit is a parametric measurement kit which only measures the 

Water Quality Classification parameters and does not classify the water sample. The output of 

the A-ANN has been measured against the readings given by the Atlas Scientific kit, as shown 

in Table 6.1.  

6.7 Conclusion 

From performance observations made in Section 6.5, the following conclusions are drawn 

regarding hardware implementations of complete Water Quality Classification Device using 

Data Augmentation: 

• A Multi-Layer Perceptron architecture with 3 hidden layers, each with 32 neurons, 

gives us optimum accuracy and the least Mean Square Error for both Augmentation 

ANN and Classification ANN implementation. 

• The hardware implementation of the Augmentation ANN design achieves 97% 

accuracy and yields an R2 of 0.98 at 0.00232 Root Mean Square Error in the prediction 

of Dissolved Oxygen and Electrical conductivity using pH and ORP input data.  

• Hardware implementation of Classification ANN achieves classification accuracy 

>97% in all three categories, averaging at 98%, with a high Sensitivity of 0.96, a 

precision of 0.97, and an F-score value of 0.97.  

• The A-ANN and C-ANN performance results obtained for both the approaches, 

Embedded and ASIC, are found to be similar. Also, the performance is identical to the 

standard Atlas Scientific lab kit for water testing. 

• The proposed portable embedded Water Quality Classification device reduces the cost 

by 92%, while achieving 98% accuracy as compared to the Atlas Scientific lab testing 

kit. 

• ASICs provide a much cheaper method for mass production of devices as compared to 

Embedded systems. 
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Chapter 7 

7. Conclusions and Future Work 

This chapter summarises the conclusions drawn throughout the study and hardware 

implementation of a portable smart Water Quality Classification Device using Data 

Augmentation. Also paves the path for future work based on the design choices made in this 

study and suggests new design enhancements. 

7.1 Conclusions 

The thesis presents a digital hardware implementation of an Artificial Neural Network for 

Water Quality Classification applications. The implementation is required to meet the 

challenges of reduced size, reduced cost, portability, and reduced power consumption while 

achieving accuracy comparable to the standard Atlas Scientific Testing Kit. The device is 

designed for in-situ water quality measurement and classification using Artificial Intelligence 

with high accuracy that can be used by people with limited to no literacy.  

The proposed device uses 2 ANNs to augment water quality parameters and make decisions 

regarding water quality classification, thus eliminating the need for human expertise and 

laboratory testing. The device has been implemented using Embedded systems as well as the 

ASIC approach. The Embedded systems approach is suitable for short development time with 

high repairability, whereas the ASIC approach leads to compact design with higher reliability.  

The important design conclusions regarding the proposed Water Quality Classification device 

obtained in the present work are discussed below: 

• Cost Reduction - ANN-based data augmentation has been used in the design for both 

approaches to lower the cost of Water Quality Classification by removing the need of 

expensive sensors and electrodes for Dissolved Oxygen and Electrical Conductivity. 

The Embedded System design approach has led to a 92% cost reduction as compared 

to to standard Atlas Scientific Lab kit.  

• In the Embedded Approach, the power consumption is controlled by the power required 

to drive the two embedded boards. For Raspberry Pi, the power consumption is 2.1 W, 

and for Arduino Uno is 0.5W. The time to generate results is also dependent on the 

baud rates of Arduino Uno and Raspberry Pi, which is 1s, for the design implemented. 
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The ASIC approach reduces the power consumption of the total device to 0.3mW and 

reduces the maximum time to process a result to 0.3 ms. 

• For the proposed hardware implementation, Multi-Layer Perceptron architecture with 

3 hidden layers with 32 neurons gives us optimum accuracy and the least Mean Square 

Error for both Augmentation ANN and Classification ANN implementation.  

• The Sigmoid activation function is suitable as the output range is between 0 and 1 which 

suits the probability prediction. A non-linear approximation of the Sigmoid function is 

77% power efficient and utilizes 38.5% lesser hardware resources with a 68.3% faster 

Critical Delay path than the Padé approximation in the IEEE 754 floating point 

representation system.  

§ ASIC implementation of the Nonlinear approximated Sigmoid function consumes 

lesser power by at least 3 orders of magnitude than FPGA implementation in IEEE 754. 

• The proposed ANN implementation using Parameterised Posit floating point 

representation is 50% more power efficient using 50% fewer resources and is 13% 

faster than the IEEE 754 floating point representation. 

• The use of data Augmentation ANN in this design helps in reducing the cost while 

achieving 97% prediction accuracy and yielding an R2 of 0.98 at 0.00232 Root Mean 

Square Error in the prediction of Dissolved Oxygen and Electrical conductivity using 

pH and ORP input data.  

• Hardware implementation of Classification ANN achieves a high classification 

accuracy above 97% in all three categories, averaging at 98%, with a high Sensitivity 

of 0.96, precision of 0.97, and an F-score value of 0.97.  

• The A-ANN and C-ANN accuracy, sensitivity, and precision results obtained for both 

the approaches, Embedded and ASIC, are found to be similar. 

• A reduced architecture of the design has been implemented on an FPGA board to test 

the functionality of the entire design prior to the complete implementation using the 

ASIC approach. The complete design has not been implemented using an FPGA board 

because it requires a large resource count (> 235,000) board(s), which are very 

expensive, defeating the low-cost objective of the research. 

The novelty of the present work lies in i) the selection of architecture, activation function, and 

use of ANN-based data augmentation, and ii) the use of the Posit number system with 

parameterization. To the best of our knowledge, these features in hardware implementation 

have been used for the first time. 
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Analysis-based selection of simple ANN architecture, suitable activation function for a 

compact design to reduce cost. The method of ANN-based data augmentation used in this thesis 

has further reduced the cost by eliminating the need for expensive sensors yet obtaining 

comparable accuracy. 

Using Posit Floating point representation system to improve accuracy with less computation 

and less hardware resource requirement. This has increased the speed of operation. To 

implement Posit on hardware, the biggest challenge is the variable bit width of the components 

of Posits. So, the technique of parametrization of Posits has been used to address this problem. 

The Parameterization process has enabled the flexibility of the Posit representation to be 

adapted as per the requirement making it application specific.  

7.2 Future Direction 

• In future work, more parameters like geographical information, topological 

information, and weather parameters, can be added to the input vectors of 

Augmentation ANN and Classification ANN. Augmentation ANN can also be used to 

predict biological and chemical contaminants based on their relationship with 

electrochemical parameters. This would make the device usable for a wider range of 

water sources, geographical locations, and wider populations within India and across 

the globe without a drastic increase in cost. 

• In the ANN architecture field, the device has been implemented using first-order Neural 

Networks. More advanced Network topologies like Constructive Neural Networks and 

Spiking Neural Networks can be adopted to increase the accuracy and efficiency of the 

device.  

• The design methodology can be used and customized further for the development of 

classification-based applications such as face recognition, air quality indexing, and 

other real-life applications at a low cost. 

• The ASIC design approach can be further developed with IO planning and floor 

planning tools for final IC fabrication.  

• The ASIC design was synthesized using TSMC 180nm standard cell library. The Si 

area and power consumption can be further reduced, and the speed of operation can be 

improved by using smaller technology nodes for standard cell libraries. 
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• The FET-based sensing technologies can be used in conjunction with the ASIC to 

implement the whole system in a Lab-on-Chip design approach. ` 

 
• Parameterization of Posit paves the path of further research on how the flexibility of 

Posit representation can be bounded and adapted to different applications, thus, 

maximizing accuracy with minimal increase in hardware resource requirement. 

In comparison to existing Patented devices CN201343453Y (D1) [1] and CN210037776U (D2) 

[2], the proposed device functions independently and does not require wifi connectivity.  The 

proposed handheld device is location independent which tests water quality without a buoy or 

carrier vehicle. It improves on previous research work/patented devices by adding portability, 

real-time monitoring, decreased reliance on external factors, use of artificial neural network 

(ANN) technology, customizable functionality, energy efficiency, rural accessibility, 

environmental awareness, cost-effectiveness, autonomous operation, and adaptability through 

artificial intelligence. 
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A. Appendix A 

The data values of the four parameters pH, ORP, DO, and EC are presented here. 100 samples 

out of the complete 1806 values are presented here. 

A.1. pH Data 

Table A. 5: pH measurement comparison against standard devices 

S. No. pH  
Proposed Device Sensor 

pH  
Atlas Scientific electrode 

pH  
Labtornics LT-59 

1 8.5 8.6 8.6 

2 8.0 7.8 7.8 

3 7.5 7.4 7.4 

4 7.0 7.0 7.0 

5 6.8 6.8 6.9 

6 7.5 7.3 7.3 

7 6.5 6.5 6.5 

8 7 7 7 

9 6.8 6.8 6.8 

10 6.6 6.6 6.5 

11 5.7 5.7 5.7 

12 8 8 8 

13 6.5 6.2 6.2 

14 6.1 6.1 6.1 

15 7 7 7 

16 6 6.3 6.3 

17 6.5 6.5 6.5 

18 6.3 6.3 6.3 

19 7 7 7 

20 6.8 6.8 6.8 

21 8 8 8 

22 7 7 7 

23 7 7.4 7.4 

24 8 8 8 

25 6 6 6 
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26 6.3 6.3 6.3 

27 8.5 8.5 8.5 

28 8 8 8 

29 5.8 5.8 5.8 

30 7 7 7.1 

31 5.5 5.5 5.5 

32 7 7 7 

33 8.5 8.5 8.5 

34 7.5 7.5 7.5 

35 6.8 6.8 6.8 

36 7 7 7 

37 8.5 8.2 8.2 

38 6.8 6.5 6.5 

39 8 8 8 

40 6.5 6.5 6.5 

41 8.5 8.5 8.5 

42 8 8 8 

43 8.7 8.5 8.5 

44 8 8 8 

45 7.7 7.7 7.8 

46 6 6 6 

47 8 8 8 

48 7 7 7 

49 6.6 6.6 6.6 

50 8 8 8 

51 8.8 8.5 8.5 

52 8.1 8.1 8.1 

53 8.3 8.3 8.3 

54 7 7 7 

55 7.6 7.3 7.3 

56 8 8 8 

57 7.7 7.7 7.7 

58 7.9 8 8 

59 6.6 6.6 6.6 
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60 6.9 7 7 

61 7 7 7.2 

62 8 8 8 

63 7 7 7 

64 6.8 6.8 6.8 

65 7.1 7.1 7.1 

66 7.5 7.5 7.5 

67 7.8 7.8 7.8 

68 6.8 7 7 

69 7 7 7 

70 7.2 7.2 7.2 

71 8.6 8.6 8.6 

72 8 8 8 

73 6.3 6.3 6.3 

74 7.5 7.5 7.5 

75 6.7 6.7 6.7 

76 6.2 6.2 6.2 

77 6.9 6.9 6.9 

78 6.5 7 7 

79 6.5 6.5 6.5 

80 7 7 7 

81 8.5 8.5 8.5 

82 6.3 6.3 6.3 

83 7.3 7.3 7.3 

84 7.5 7.5 7.5 

85 6.6 6.6 6.6 

86 7 7 7 

87 7.2 7.2 7.2 

88 6.2 6.2 6.2 

89 7.5 7.5 7.5 

90 6.5 6.5 6.5 

91 7 7 7 

92 7.6 7.6 7.6 

93 7.1 7.1 7.1 
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94 8 8.2 8.2 

95 6.8 6.8 6.8 

96 7.4 7.4 7.4 

97 7.6 7.6 7.6 

98 7 7 7 

99 6.8 7 7 

100 8 8 8 
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A.1 Oxidation Reduction Potential (ORP) Data 

Table A. 6: ORP measurement comparison against standard devices 

S. No. ORP  
Proposed Device Sensor 

ORP  
Atlas Scientific Electrode 

ORP  
Labtornics LT-59 

1 3.01 3.01 3.01 

2 0.92 0.92 0.92 

3 1.73 1.73 1.73 

4 3.28 3.28 3.28 

5 3.32 3.32 3.32 

6 2.74 2.74 2.74 

7 0.03 0.03 0.03 

8 4.22 4.22 4.22 

9 3.08 3.08 3.08 

10 2.53 2.53 2.53 

11 0.01 0.01 0.01 

12 3.39 3.39 3.39 

13 0.04 0.04 0.04 

14 0.02 0.02 0.02 

15 3.4 3.4 3.4 

16 0.15 0.15 0.15 

17 0.01 0.01 0.01 

18 0.01 0.01 0.01 

19 1.46 1.46 1.46 

20 1.58 1.58 1.58 

21 4.63 4.63 4.63 

22 0.43 0.43 0.43 

23 0.44 0.44 0.44 

24 2.83 2.83 2.83 

25 0.01 0.01 0.01 

26 0.01 0.01 0.01 

27 2.89 2.89 2.89 

28 0.07 0.07 0.07 
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29 0.01 0.01 0.01 

30 7.11 7.11 7.11 

31 0.09 0.09 0.09 

32 0.06 0.06 0.06 

33 3.33 3.33 3.33 

34 3.28 3.28 3.28 

35 0.04 0.04 0.04 

36 0.22 0.22 0.22 

37 3.22 3.22 3.22 

38 0.03 0.03 0.03 

39 3.43 3.43 3.43 

40 0.13 0.13 0.13 

41 2.45 2.45 2.45 

42 4.95 4.95 4.95 

43 4.95 4.95 4.95 

44 7.9 7.9 7.9 

45 2.48 2.48 2.48 

46 0.05 0.05 0.05 

47 4.93 4.93 4.93 

48 0.08 0.08 0.08 

49 0.03 0.03 0.03 

50 3.11 3.11 3.11 

51 2.82 2.82 2.82 

52 3.12 3.12 3.12 

53 3.11 3.11 3.11 

54 0.85 0.85 0.85 

55 0.91 0.91 0.91 

56 0.91 0.91 0.91 

57 0.64 0.64 0.64 

58 1.22 1.22 1.22 

59 0.23 0.23 0.23 

60 0.24 0.24 0.24 



 153 

61 0.23 0.23 0.23 

62 0.59 0.59 0.59 

63 0.23 0.23 0.23 

64 0.24 0.24 0.24 

65 0.28 0.28 0.28 

66 0.93 0.93 0.93 

67 1.55 1.55 1.55 

68 0.33 0.33 0.33 

69 0.49 0.49 0.49 

70 0.24 0.24 0.24 

71 1.19 1.19 1.19 

72 0.85 0.85 0.85 

73 0.24 0.24 0.24 

74 0.59 0.59 0.59 

75 0.23 0.23 0.23 

76 0.23 0.23 0.23 

77 0.23 0.23 0.23 

78 0.25 0.25 0.25 

79 0.23 0.23 0.23 

80 0.25 0.25 0.25 

81 4.34 4.34 4.34 

82 0.25 0.25 0.25 

83 0.36 0.36 0.36 

84 0.64 0.64 0.64 

85 0.25 0.25 0.25 

86 0.25 0.25 0.25 

87 0.23 0.23 0.23 

88 0.26 0.26 0.26 

89 0.9 0.9 0.9 

90 0.42 0.42 0.42 

91 0.25 0.25 0.25 

92 1.21 1.21 1.21 
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93 0.24 0.24 0.24 

94 1.22 1.22 1.22 

95 0.25 0.25 0.25 

96 1.08 1.08 1.08 

97 0.49 0.49 0.49 

98 0.51 0.51 0.51 

99 0.27 0.27 0.27 

100 0.64 0.64 0.64 
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A.2 Dissolved Oxygen (DO) Data 

Table A. 7: DO measurement comparison against standard devices 

S. No. DO  
Proposed Device Sensor 

DO  
Atlas Scientific Electrode 

DO  
Labtornics LT-59 

1 10 10 10 

2 12 11.5 12 

3 14.5 14.5 14.5 

4 12.5 12.5 12 

5 12 12 12 

6 16 16 16 

7 15 15 14.5 

8 14.3 14 14.3 

9 10.3 10.3 10.3 

10 10.4 10.4 10.4 

11 13 13 13 

12 16 16 16 

13 15.5 15.5 15.5 

14 13 13 13 

15 12.5 12.5 12.5 

16 13 13 13 

17 11.5 11.5 11.5 

18 9 10 10 

19 1.7 1.7 1.7 

20 10.8 10.8 10.8 

21 12 12 12 

22 12 12 12 

23 9.5 9.5 9.5 

24 11 11 11 

25 9 9 9 

26 12 12 12 

27 10 10 10 

28 8.5 8.5 8.5 

29 7.5 7.5 7.5 

30 8 8 8 
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31 9.5 9.5 9.5 

32 10 10 10 

33 10.8 11 10.8 

34 10.5 10.5 10.5 

35 9.5 9.5 9.5 

36 9.7 9.7 9.7 

37 9.8 9.8 10 

38 9 9 9 

39 7 7 7 

40 9 9 9 

41 10 10 10 

42 10.2 10.2 10 

43 8.8 8.8 8.8 

44 4.5 4.5 4.5 

45 9.8 9.8 9.8 

46 8.5 8.5 8.5 

47 5.5 5.5 5.5 

48 8.2 8.2 8.2 

49 7.5 7.5 7.5 

50 8.2 8.2 8.2 

51 7.5 7.5 7.5 

52 8.5 8.5 8.5 

53 7 7 7 

54 8.5 8.5 8.5 

55 9 9 9 

56 9 9 9 

57 8.5 8.5 8.5 

58 9 9 9 

59 8.5 8.5 8.5 

60 9.5 9.5 9.5 

61 8.5 9 8.5 

62 7 6 6 

63 10.2 10.2 10.2 

64 9 9 9 
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65 7.8 7.8 7.8 

66 7.5 7.5 7.5 

67 6 6 6 

68 7 7 7 

69 9 9 9 

70 9 9 9 

71 7.3 7.3 7.3 

72 6.5 6.5 6.5 

73 8.5 8.5 8.5 

74 8.2 8 8 

75 7.8 7.8 7.8 

76 8.6 8.6 8.6 

77 7.4 7.4 7.4 

78 8 8 8 

79 7.5 7.5 7.5 

80 8 8 8 

81 7 7 7 

82 7.6 7.6 7.6 

83 7.4 7.4 7.4 

84 9.5 9.5 9.5 

85 9 9 9 

86 7.5 7.5 7.5 

87 9.2 9.2 9.2 

88 9.5 9.5 9.5 

89 8.3 8.3 8.3 

90 8.7 8.7 8.7 

91 9.6 9.6 9.6 

92 6.4 6.4 6.4 

93 10 10 10 

94 7 7 7 

95 10.5 10.5 10.5 

96 8 8 8 

97 9.5 9.5 9.5 

98 8 8 8 
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99 8 8 8 

100 7.5 7.5 7.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 159 

A.3 Electrical Conductivity (EC) Data 

Table A. 8: EC measurement comparison against standard devices 

S. No. EC  
Proposed Device Sensor 

EC  
Atlas Scientific Electrode 

EC  
Labtornics LT-59 

1 281 281 281 

2 294 294 294 

3 277 277 277 

4 292 292 292 

5 302 302 302 

6 294 294 294 

7 298 298 298 

8 308 308 308 

9 277 277 277 

10 278 278 278 

11 270 270 270 

12 254 254 254 

13 293 293 293 

14 299 299 299 

15 283 283 283 

16 298 298 298 

17 291 291 291 

18 295 295 295 

19 288 288 288 

20 257 257 257 

21 265 265 265 

22 271 271 271 

23 284 284 284 

24 259 259 259 

25 211 211 211 

26 235 235 235 

27 215 215 215 

28 245 245 245 
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29 264 264 264 

30 273 273 273 

31 262 262 262 

32 263 263 263 

33 252 252 252 

34 266 266 266 

35 269 269 269 

36 273 273 273 

37 279 279 279 

38 275 275 275 

39 267 267 267 

40 277 277 277 

41 264 264 264 

42 263 263 263 

43 268 268 268 

44 254 254 254 

45 259 259 259 

46 275 275 275 

47 273 273 273 

48 280 280 280 

49 284 284 284 

50 267 267 267 

51 263 263 263 

52 269 269 269 

53 248 248 248 

54 255 255 255 

55 247 247 247 

56 257 257 257 

57 260 260 260 

58 273 273 273 

59 265 265 265 

60 266 266 266 
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61 271 271 271 

62 253 253 253 

63 264 264 264 

64 281 281 281 

65 258 258 258 

66 253 253 253 

67 258 258 258 

68 265 265 265 

69 255 255 255 

70 270 270 270 

71 247 247 247 

72 238 238 238 

73 278 278 278 

74 269 269 269 

75 270 270 270 

76 252 252 252 

77 271 271 271 

78 269 269 269 

79 270 270 270 

80 279 279 279 

81 238 238 238 

82 265 265 265 

83 263 263 263 

84 245 245 245 

85 267 267 267 

86 278 278 278 

87 274 274 274 

88 269 269 269 

89 265 265 265 

90 282 282 282 

91 281 281 281 

92 274 274 274 
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93 272 272 272 

94 256 256 256 

95 263 263 263 

96 276 276 276 

97 258 258 258 

98 266 266 266 

99 271 271 271 

100 297 297 297 
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A.4 Variation of DO and EC measurement in proposed device against Atlas 

Scientific kit. 

Table A. 9: Validation of proposed device for real-time water quality measurement 

S No DO  

 

EC 

 

Atlas Scientific kit  Measured using 

Proposed device 

Atlas Scientific Kit Measured using 

Proposed device 

1 9.36 9.3 1777 1745 

2 9.32 9.3 1407 1407 

3 9.35 9.3 912 912 

4 9.36 9.3 1450 1450 

5 3.81 3.8 1640 1640 

6 7.36 7.3 928 928 

7 6.82 6.8 1482 1482 

8 7.89 7.8 915 915 

9 7.13 7.1 1525 1525 

10 5.82 5.8 1225 1225 

11 6.34 6.3 1560 1524 

12 5.56 5.5 857 857 

13 7.31 7.3 1362 1362 

14 5.18 5.1 1090 1090 

15 8.13 8.1 1402 1402 

16 8.37 8.3 1488 1474 

17 5.13 5.1 1332 1332 

18 7.27 7.2 225 225 

19 5.82 5.8 1175 1175 

20 5.57 5.5 1036 1036 



 164 

21 6.15 6.1 1082 1082 

22 4.51 4.5 1190 1190 

23 8.37 8.3 1180 1180 

24 8.54 8.5 577 577 

25 5.32 5.3 1322 1322 

26 8.72 8.7 1321 1321 

27 5.78 5.7 1190 1190 

28 7.34 7.3 1126 1126 

29 5.76 5.7 1093 1093 

30 5.03 5.0 340 340 

31 4.41 4.4 550 550 

32 6.21 6.2 405 405 

33 5.24 5.2 390 390 

34 5.46 5.5 305 305 

35 4.99 5.0 435 435 

36 4.33 4.3 420 420 

37 4.01 4.0 555 555 

38 6.74 6.7 350 350 

39 5.95 6.0 345 345 

40 4.26 4.3 360 360 

41 5.80 5.8 450 450 

42 4.07 4.1 550 550 

43 5.06 5.1 490 490 

44 5.84 5.8 450 450 

45 6.71 6.7 410 410 

46 4.97 5.0 560 560 

47 6.76 6.7 545 545 
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48 4.69 4.6 475 475 

49 4.91 4.9 505 505 

50 6.78 6.7 515 515 
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A.5 All Parameter Measurements Using the Proposed Device 

Table A.6: Measurement of all 4 parameters using proposed device 

S. No. pH  

Proposed Device 

Sensor 

ORP  

Proposed Device Sensor 

DO  

Proposed Device 

Sensor 

EC  

Proposed Device 

Sensor 

1 8.5 3.01 10 281 

2 8 0.92 12 294 

3 7.5 1.73 14.5 277 

4 7 3.28 12.5 292 

5 6.8 3.32 12 302 

6 7.5 2.74 16 294 

7 6.5 0.03 15 298 

8 7 4.22 14.3 308 

9 6.8 3.08 10.3 277 

10 6.6 2.53 10.4 278 

11 5.7 0.01 13 270 

12 8 3.39 16 254 

13 6.5 0.04 15.5 293 

14 6.1 0.02 13 299 

15 7 3.4 12.5 283 

16 6 0.15 13 298 

17 6.5 0.01 11.5 291 

18 6.3 0.01 9 295 

19 7 1.46 1.7 288 

20 6.8 1.58 10.8 257 

21 8 4.63 12 265 

22 7 0.43 12 271 
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23 7 0.44 9.5 284 

24 8 2.83 11 259 

25 6 0.01 9 211 

26 6.3 0.01 12 235 

27 8.5 2.89 10 215 

28 8 0.07 8.5 245 

29 5.8 0.01 7.5 264 

30 7 7.11 8 273 

31 5.5 0.09 9.5 262 

32 7 0.06 10 263 

33 8.5 3.33 10.8 252 

34 7.5 3.28 10.5 266 

35 6.8 0.04 9.5 269 

36 7 0.22 9.7 273 

37 8.5 3.22 9.8 279 

38 6.8 0.03 9 275 

39 8 3.43 7 267 

40 6.5 0.13 9 277 

41 8.5 2.45 10 264 

42 8 4.95 10.2 263 

43 8.7 4.95 8.8 268 

44 8 7.9 4.5 254 

45 7.7 2.48 9.8 259 

46 6 0.05 8.5 275 

47 8 4.93 5.5 273 

48 7 0.08 8.2 280 

49 6.6 0.03 7.5 284 
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50 8 3.11 8.2 267 

51 8.8 2.82 7.5 263 

52 8.1 3.12 8.5 269 

53 8.3 3.11 7 248 

54 7 0.85 8.5 255 

55 7.6 0.91 9 247 

56 8 0.91 9 257 

57 7.7 0.64 8.5 260 

58 7.9 1.22 9 273 

59 6.6 0.23 8.5 265 

60 6.9 0.24 9.5 266 

61 7 0.23 8.5 271 

62 8 0.59 7 253 

63 7 0.23 10.2 264 

64 6.8 0.24 9 281 

65 7.1 0.28 7.8 258 

66 7.5 0.93 7.5 253 

67 7.8 1.55 6 258 

68 6.8 0.33 7 265 

69 7 0.49 9 255 

70 7.2 0.24 9 270 

71 8.6 1.19 7.3 247 

72 8 0.85 6.5 238 

73 6.3 0.24 8.5 278 

74 7.5 0.59 8.2 269 

75 6.7 0.23 7.8 270 

76 6.2 0.23 8.6 252 
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77 6.9 0.23 7.4 271 

78 6.5 0.25 8 269 

79 6.5 0.23 7.5 270 

80 7 0.25 8 279 

81 8.5 4.34 7 238 

82 6.3 0.25 7.6 265 

83 7.3 0.36 7.4 263 

84 7.5 0.64 9.5 245 

85 6.6 0.25 9 267 

86 7 0.25 7.5 278 

87 7.2 0.23 9.2 274 

88 6.2 0.26 9.5 269 

89 7.5 0.9 8.3 265 

90 6.5 0.42 8.7 282 

91 7 0.25 9.6 281 

92 7.6 1.21 6.4 274 

93 7.1 0.24 10 272 

94 8 1.22 7 256 

95 6.8 0.25 10.5 263 

96 7.4 1.08 8 276 

97 7.6 0.49 9.5 258 

98 7 0.51 8 266 

99 6.8 0.27 8 271 

100 8 0.64 7.5 297 
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B. Appendix B 

Verilog codes for ANN neuron using Posit representation system, Nonlinear approximation of 

Sigmoid function, and Padé approximation of exponent function. 

B.1. Verilog Code for Posit neuron. 

`timescale 1ns / 1ps 

module neuron_posit(in1, in2, in3, in4, n_out); 

 

    input [31:0] in1, in2, in3, in4; 

    output [31:0] n_out; 

    wire [15:0] w1, w2, w3, w4; 

    wire [15:0] m1, m2, m3, m4; 

    wire [15:0] a1, a2, add_out; 

    wire start, inf, zero, done; 

    wire [15:0] inp1, inp2, inp3, inp4; 

    wire [15:0] sig_out; 

     

    FP_to_posit INP1(in1, inp1); 

    FP_to_posit INP2(in2, inp2); 

    FP_to_posit INP3(in3, inp3); 

    FP_to_posit INP4(in4, inp4); 

     

    ///multiplying input with weights 

    posit_mult M1(inp1, w1, start, m1, inf, zero, done); 

    posit_mult M2(inp2, w2, start, m2, inf, zero, done); 

    posit_mult M3(inp3, w3, start, m3, inf, zero, done); 

    posit_mult M4(inp4, w4, start, m4, inf, zero, done); 

     

    ///adding weighted inputs 

    posit_adder A1(m1, m2, start, a1, inf, zero, done); 

    posit_adder A2(m3, m4, start, a2, inf, zero, done); 

    posit_adder A3(a1, a2, start, add_out, inf, zero, done); 

     

    assign sig_out[15] = ~add_out[15]; 

    assign sig_out[14:13] = 2'b00; 

    assign sig_out[12:0] = add_out[14:2]; 

     

     

    Posit_to_FP P2F(sig_out, n_out); 

     

     

endmodule 
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//////////////////////////////////////////////////////////////////////////////////// 

//////////////////Floating Point to Posit Conversion//////////////////////////////// 

//////////////////////////////////////////////////////////////////////////////////// 

 

module FP_to_posit(in, out); 

 

function [31:0] log2; 

input reg [31:0] value; 

 begin 

 value = value-1; 

 for (log2=0; value>0; log2=log2+1) 

         value = value>>1; 

       end 

endfunction 

 

parameter N = 16; 

parameter E = 5; 

parameter es = 3; //ES_max = E-1 

parameter M = N-E-1; 

parameter BIAS = (2**(E-1))-1; 

 

parameter Bs = log2(N); 

 

input [N-1:0] in; 

output [N-1:0] out; 

 

wire s_in = in[N-1]; 

wire [E-1:0] exp_in = in[N-2:N-1-E]; 

wire [M-1:0] mant_in = in[M-1:0]; 

wire zero_in = ~|{exp_in,mant_in}; 

wire inf_in = &exp_in; 

 

wire [M:0] mant = {|exp_in, mant_in}; 

 

wire [N-1:0] LOD_in = {mant,{E{1'b0}}}; 

wire[Bs-1:0] Lshift; 

LOD_N #(.N(N)) uut (.in(LOD_in), .out(Lshift)); 

 

wire[N-1:0] mant_tmp; 

DSR_left_N_S #(.N(N), .S(Bs)) ls (.a(LOD_in),.b(Lshift),.c(mant_tmp)); 

 

wire [E:0] exp = {exp_in[E-1:1], exp_in[0] | (~|exp_in)} - BIAS - Lshift; 

 

//Exponent and Regime Computation 

wire [E:0] exp_N = exp[E] ? -exp : exp; 

wire [es-1:0] e_o = (exp[E] & |exp_N[es-1:0]) ? exp[es-1:0] : exp_N[es-1:0]; 
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wire [E-es-1:0] r_o = (~exp[E] || (exp[E] & |exp_N[es-1:0])) ? {{Bs{1'b0}},exp_N[E-1:es]} + 
1'b1 : {{Bs{1'b0}},exp_N[E-1:es]}; 

 

//Exponent and Mantissa Packing 

wire [2*N-1:0]tmp_o = { {N{~exp[E]}}, exp[E], e_o, mant_tmp[N-2:es]}; 

 

//Including Regime bits in Exponent-Mantissa Packing 

wire [2*N-1:0] tmp1_o; 

wire [Bs-1:0] diff_b; 

generate 

 if(E-es > Bs)  assign diff_b = |r_o[E-es-1:Bs] ? {{(Bs-2){1'b1}},2'b01} : r_o[Bs-1:0]; 

 else   assign diff_b = r_o; 

endgenerate 

DSR_right_N_S #(.N(2*N), .S(Bs)) dsr2 (.a(tmp_o), .b(diff_b), .c(tmp1_o)); 

 

//Final Output 

wire [N-1:0] tmp1_oN = s_in ? -tmp1_o[N-1:0] : tmp1_o[N-1:0]; 

assign out = inf_in|zero_in|(~mant_tmp[N-1]) ? {inf_in,{N-1{1'b0}}} : {s_in, tmp1_oN[N-1:1]}; 

 

endmodule 

 

 

///////////////////////////////LOD_N/////////////////////////////////////////////////////// 

 

module LOD_N (in, out); 

 

  function [31:0] log2; 

    input reg [31:0] value; 

    begin 

      value = value-1; 

      for (log2=0; value>0; log2=log2+1) 

 value = value>>1; 

    end 

  endfunction 

 

parameter N = 64; 

parameter S = log2(N);  

input [N-1:0] in; 

output [S-1:0] out; 

 

wire vld; 

LOD #(.N(N)) l1 (in, out, vld); 

endmodule 

 

 

module LOD (in, out, vld); 
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  function [31:0] log2; 

    input reg [31:0] value; 

    begin 

      value = value-1; 

      for (log2=0; value>0; log2=log2+1) 

 value = value>>1; 

    end 

  endfunction 

 

 

parameter N = 64; 

parameter S = log2(N); 

 

   input [N-1:0] in; 

   output [S-1:0] out; 

   output vld; 

 

  generate 

    if (N == 2) 

      begin 

 assign vld = |in; 

 assign out = ~in[1] & in[0]; 

      end 

    else if (N & (N-1)) 

      LOD #(1<<S) LOD ({1<<S {1'b0}} | in,out,vld); 

    else 

      begin 

 wire [S-2:0] out_l, out_h; 

 wire out_vl, out_vh; 

 LOD #(N>>1) l(in[(N>>1)-1:0],out_l,out_vl); 

 LOD #(N>>1) h(in[N-1:N>>1],out_h,out_vh); 

 assign vld = out_vl | out_vh; 

 assign out = out_vh ? {1'b0,out_h} : {out_vl,out_l}; 

      end 

  endgenerate 

endmodule 

 

 

/////////////////////////////////////DSR_left_N_S/////////////////////////////// 

 

 

module DSR_left_N_S(a,b,c); 

        parameter N=16; 

        parameter S=4; 

        input [N-1:0] a; 

        input [S-1:0] b; 
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        output [N-1:0] c; 

 

wire [N-1:0] tmp [S-1:0]; 

assign tmp[0]  = b[0] ? a << 7'd1  : a;  

genvar i; 

generate 

 for (i=1; i<S; i=i+1)begin:loop_blk 

  assign tmp[i] = b[i] ? tmp[i-1] << 2**i : tmp[i-1]; 

 end 

endgenerate 

assign c = tmp[S-1]; 

 

endmodule 

 

////////////////////////DSR_right_N_S////////////////////////////////////////////// 

 

module DSR_right_N_S(a,b,c); 

        parameter N=16; 

        parameter S=4; 

        input [N-1:0] a; 

        input [S-1:0] b; 

        output [N-1:0] c; 

 

wire [N-1:0] tmp [S-1:0]; 

assign tmp[0]  = b[0] ? a >> 7'd1  : a;  

genvar i; 

generate 

 for (i=1; i<S; i=i+1)begin:loop_blk 

  assign tmp[i] = b[i] ? tmp[i-1] >> 2**i : tmp[i-1]; 

 end 

endgenerate 

assign c = tmp[S-1]; 

 

endmodule 

 

//////////////////////////////////////////////////////////////////////////////////// 

//////////////////////Posit Adder/////////////////////////////////////////////////// 

//////////////////////////////////////////////////////////////////////////////////// 

 

//`include "DSR_right_N_S.v"  

//`include "LOD_N.v"  

//`include "LZD_N.v"  

//`include "DSR_left_N_S.v" 

//`include "add_N.v" 

//`include "sub_N.v" 

//`include "data_extract.v"  
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//`include "add_mantovf.v" 

 

module posit_adder (in1, in2, start, out, inf, zero, done); 

 

function [31:0] log2; 

input reg [31:0] value; 

 begin 

 value = value-1; 

 for (log2=0; value>0; log2=log2+1) 

         value = value>>1; 

       end 

endfunction 

 

parameter N = 16; //Posit Word Size 

parameter Bs = log2(N);  

parameter es = 3; //Posit Exponent Size 

 

input [N-1:0] in1, in2; 

input start;  

output [N-1:0] out; 

output inf, zero; 

output done; 

 

wire start0= start; 

wire s1 = in1[N-1]; 

wire s2 = in2[N-1]; 

wire zero_tmp1 = |in1[N-2:0]; 

wire zero_tmp2 = |in2[N-2:0]; 

wire inf1 = in1[N-1] & (~zero_tmp1), 

 inf2 = in2[N-1] & (~zero_tmp2); 

wire zero1 = ~(in1[N-1] | zero_tmp1), 

 zero2 = ~(in2[N-1] | zero_tmp2); 

assign inf = inf1 | inf2, 

 zero = zero1 & zero2; 

 

//Data Extraction 

wire rc1, rc2; 

wire [Bs-1:0] regime1, regime2, Lshift1, Lshift2; 

wire [es-1:0] e1, e2; 

wire [N-es-1:0] mant1, mant2; 

wire [N-1:0] xin1 = s1 ? -in1 : in1; 

wire [N-1:0] xin2 = s2 ? -in2 : in2; 

data_extract #(.N(N),.es(es)) uut_de1(.in(xin1), .rc(rc1), .regime(regime1), .exp(e1), 
.mant(mant1), .Lshift(Lshift1)); 

data_extract #(.N(N),.es(es)) uut_de2(.in(xin2), .rc(rc2), .regime(regime2), .exp(e2), 
.mant(mant2), .Lshift(Lshift2)); 
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wire [N-es:0] m1 = {zero_tmp1,mant1},  

 m2 = {zero_tmp2,mant2}; 

 

//Large Checking and Assignment 

wire in1_gt_in2 = xin1[N-2:0] >= xin2[N-2:0] ? 1'b1 : 1'b0; 

 

wire ls = in1_gt_in2 ? s1 : s2; 

wire op = s1 ~^ s2; 

 

wire lrc = in1_gt_in2 ? rc1 : rc2; 

wire src = in1_gt_in2 ? rc2 : rc1; 

 

wire [Bs-1:0] lr = in1_gt_in2 ? regime1 : regime2; 

wire [Bs-1:0] sr = in1_gt_in2 ? regime2 : regime1; 

 

wire [es-1:0] le = in1_gt_in2 ? e1 : e2; 

wire [es-1:0] se = in1_gt_in2 ? e2 : e1; 

 

wire [N-es:0] lm = in1_gt_in2 ? m1 : m2; 

wire [N-es:0] sm = in1_gt_in2 ? m2 : m1; 

 

//Exponent Difference: Lower Mantissa Right Shift Amount 

wire [Bs:0] r_diff11, r_diff12, r_diff2; 

sub_N #(.N(Bs)) uut_sub1 (lr, sr, r_diff11);  

add_N #(.N(Bs)) uut_add1 (lr, sr, r_diff12);  

sub_N #(.N(Bs)) uut_sub2 (sr, lr, r_diff2);   

wire [Bs:0] r_diff =  lrc ? (src ? r_diff11 : r_diff12) : r_diff2; 

 

wire [es+Bs+1:0] diff; 

sub_N #(.N(es+Bs+1)) uut_sub_diff ({r_diff,le}, {{Bs+1{1'b0}},se}, diff); 

wire [Bs-1:0] exp_diff = (|diff[es+Bs:Bs]) ? {Bs{1'b1}} : diff[Bs-1:0]; 

 

//DSR Right Shifting of Small Mantissa 

wire [N-1:0] DSR_right_in; 

generate 

 if (es >= 2)  

 assign DSR_right_in = {sm,{es-1{1'b0}}}; 

 else  

 assign DSR_right_in = sm; 

endgenerate 

 

wire [N-1:0] DSR_right_out; 

wire [Bs-1:0] DSR_e_diff  = exp_diff; 

DSR_right_N_S #(.N(N), .S(Bs))  dsr1(.a(DSR_right_in), .b(DSR_e_diff), .c(DSR_right_out));  

 

//Mantissa Addition 
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wire [N-1:0] add_m_in1; 

generate 

 if (es >= 2)  

 assign add_m_in1 = {lm,{es-1{1'b0}}}; 

 else  

 assign add_m_in1 = lm; 

endgenerate 

 

wire [N:0] add_m1, add_m2; 

add_N #(.N(N)) uut_add_m1 (add_m_in1, DSR_right_out, add_m1); 

sub_N #(.N(N)) uut_sub_m2 (add_m_in1, DSR_right_out, add_m2); 

wire [N:0] add_m = op ? add_m1 : add_m2; 

wire [1:0] mant_ovf = add_m[N:N-1]; 

 

//LOD of mantissa addition result 

wire [N-1:0] LOD_in = {(add_m[N] | add_m[N-1]), add_m[N-2:0]}; 

wire [Bs-1:0] left_shift; 

LOD_N #(.N(N)) l2(.in(LOD_in), .out(left_shift)); 

 

//DSR Left Shifting of mantissa result 

wire [N-1:0] DSR_left_out_t; 

DSR_left_N_S #(.N(N), .S(Bs)) dsl1(.a(add_m[N:1]), .b(left_shift), .c(DSR_left_out_t)); 

wire [N-1:0] DSR_left_out = DSR_left_out_t[N-1] ? DSR_left_out_t[N-1:0] : {DSR_left_out_t[N-
2:0],1'b0};  

 

 

//Exponent and Regime Computation 

wire [Bs:0] lr_N = lrc ? {1'b0,lr} : -{1'b0,lr}; 

wire [es+Bs+1:0] le_o_tmp, le_o; 

sub_N #(.N(es+Bs+1)) sub3 ({lr_N,le}, {{es+1{1'b0}},left_shift}, le_o_tmp); 

add_mantovf #(es+Bs+1) uut_add_mantovf (le_o_tmp, mant_ovf[1], le_o); 

 

wire [es+Bs:0] le_oN = le_o[es+Bs] ? -le_o : le_o; 

wire [es-1:0] e_o = (le_o[es+Bs] & |le_oN[es-1:0]) ? le_o[es-1:0] : le_oN[es-1:0]; 

wire [Bs-1:0] r_o = (~le_o[es+Bs] || (le_o[es+Bs] & |le_oN[es-1:0])) ? le_oN[es+Bs-1:es] + 1'b1 
: le_oN[es+Bs-1:es]; 

 

//Exponent and Mantissa Packing 

wire [2*N-1:0]tmp_o = { {N{~le_o[es+Bs]}}, le_o[es+Bs], e_o, DSR_left_out[N-2:es]}; 

wire [2*N-1:0] tmp1_o; 

DSR_right_N_S #(.N(2*N), .S(Bs)) dsr2 (.a(tmp_o), .b(r_o), .c(tmp1_o)); 

 

//Final Output 

wire [2*N-1:0] tmp1_oN = ls ? -tmp1_o : tmp1_o; 

assign out = inf|zero|(~DSR_left_out[N-1]) ? {inf,{N-1{1'b0}}} : {ls, tmp1_oN[N-1:1]}, 

 done = start0; 
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endmodule 

 

////////////////////////////////////////////////////////////////////////////////////// 

/////////////////////////////Posit Multiplication///////////////////////////////////// 

////////////////////////////////////////////////////////////////////////////////////// 

 

module posit_mult (in1, in2, start, out, inf, zero, done); 

 

function [31:0] log2; 

input reg [31:0] value; 

 begin 

 value = value-1; 

 for (log2=0; value>0; log2=log2+1) 

         value = value>>1; 

       end 

endfunction 

 

parameter N = 16; 

parameter Bs = log2(N);  

parameter es = 3; 

 

input [N-1:0] in1, in2; 

input start;  

output [N-1:0] out; 

output inf, zero; 

output done; 

 

wire start0= start; 

wire s1 = in1[N-1]; 

wire s2 = in2[N-1]; 

wire zero_tmp1 = |in1[N-2:0]; 

wire zero_tmp2 = |in2[N-2:0]; 

wire inf1 = in1[N-1] & (~zero_tmp1), 

 inf2 = in2[N-1] & (~zero_tmp2); 

wire zero1 = ~(in1[N-1] | zero_tmp1), 

 zero2 = ~(in2[N-1] | zero_tmp2); 

assign inf = inf1 | inf2, 

 zero = zero1 & zero2; 

 

//Data Extraction 

wire rc1, rc2; 

wire [Bs-1:0] regime1, regime2, Lshift1, Lshift2; 

wire [es-1:0] e1, e2; 

wire [N-es-1:0] mant1, mant2; 

wire [N-1:0] xin1 = s1 ? -in1 : in1; 

wire [N-1:0] xin2 = s2 ? -in2 : in2; 



 179 

data_extract #(.N(N),.es(es)) uut_de1(.in(xin1), .rc(rc1), .regime(regime1), .exp(e1), 
.mant(mant1), .Lshift(Lshift1)); 

data_extract #(.N(N),.es(es)) uut_de2(.in(xin2), .rc(rc2), .regime(regime2), .exp(e2), 
.mant(mant2), .Lshift(Lshift2)); 

 

wire [N-es:0] m1 = {zero_tmp1,mant1},  

 m2 = {zero_tmp2,mant2}; 

 

//Sign, Exponent and Mantissa Computation 

wire mult_s = s1 ^ s2; 

 

wire [2*(N-es)+1:0] mult_m = m1*m2; 

wire mult_m_ovf = mult_m[2*(N-es)+1]; 

wire [2*(N-es)+1:0] mult_mN = ~mult_m_ovf ? mult_m << 1'b1 : mult_m; 

 

wire [Bs+1:0] r1 = rc1 ? {2'b0,regime1} : -regime1; 

wire [Bs+1:0] r2 = rc2 ? {2'b0,regime2} : -regime2; 

wire [Bs+es+1:0] mult_e  =  {r1, e1} + {r2, e2} + mult_m_ovf; 

 

//Exponent and Regime Computation 

wire [es+Bs:0] mult_eN = mult_e[es+Bs+1] ? -mult_e : mult_e; 

wire [es-1:0] e_o = (mult_e[es+Bs+1] & |mult_eN[es-1:0]) ? mult_e[es-1:0] : mult_eN[es-1:0]; 

wire [Bs:0] r_o = (~mult_e[es+Bs+1] || (mult_e[es+Bs+1] & |mult_eN[es-1:0])) ? mult_eN[es+Bs:es] 
+ 1'b1 : mult_eN[es+Bs:es]; 

 

//Exponent and Mantissa Packing 

wire [2*N-1:0]tmp_o = {{N{~mult_e[es+Bs+1]}},mult_e[es+Bs+1],e_o,mult_mN[2*(N-es):N-es+2]}; 

 

 

//Including Regime bits in Exponent-Mantissa Packing 

wire [2*N-1:0] tmp1_o; 

DSR_right_N_S #(.N(2*N), .S(Bs+1)) dsr2 (.a(tmp_o), .b(r_o[Bs] ? {Bs{1'b1}} : r_o), .c(tmp1_o)); 

 

 

//Final Output 

wire [2*N-1:0] tmp1_oN = mult_s ? -tmp1_o : tmp1_o; 

assign out = inf|zero|(~mult_mN[2*(N-es)+1]) ? {inf,{N-1{1'b0}}} : {mult_s, tmp1_oN[N-1:1]}, 

 done = start0; 

 

endmodule 

 

//////////////////////////////////////////////////////////////////////////////////////////////
/////////// 

////////////////////////////////////////Posit to 
FP////////////////////////////////////////////////////// 

//////////////////////////////////////////////////////////////////////////////////////////////
/////////// 

 

module Posit_to_FP (in, out); 
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function [31:0] log2; 

input reg [31:0] value; 

 begin 

 value = value-1; 

 for (log2=0; value>0; log2=log2+1) 

         value = value>>1; 

       end 

endfunction 

 

parameter N = 16; 

parameter E = 5; 

parameter es = 3; 

 

parameter M = N-E-1; 

parameter BIAS = (2**(E-1))-1; 

parameter Bs = log2(N);  

parameter EO = E > es+Bs ? E : es+Bs; 

 

input [N-1:0] in; 

output [N-1:0] out; 

 

wire s = in[N-1]; 

wire zero_tmp = |in[N-2:0]; 

wire inf_in = in[N-1] & (~zero_tmp); 

wire zero_in = ~(in[N-1] | zero_tmp); 

 

//Data Extraction 

wire rc; 

wire [Bs-1:0] rgm, Lshift; 

wire [es-1:0] e; 

wire [N-es-1:0] mant; 

wire [N-1:0] xin = s ? -in : in; 

data_extract #(.N(N),.es(es)) uut_de1(.in(xin), .rc(rc), .regime(rgm), .exp(e), .mant(mant), 
.Lshift(Lshift)); 

 

wire [N-1:0] m = {zero_tmp,mant,{es-1{1'b0}}}; 

 

//Exponent and Regime Computation 

wire [EO+1:0] e_o; 

assign e_o = {(rc ? {{EO-es-Bs+1{1'b0}},rgm} : -{{EO-es-Bs+1{1'b0}},rgm}),e} + BIAS; 

//Final Output 

assign out = inf_in|e_o[EO:E]|&e_o[E-1:0] ? {s,{E-1{1'b1}},{M{1'b0}}} : (zero_in|(~m[N-1]) ? 
{s,{E-1{1'b0}},m[N-2:E]} : { s, e_o[E-1:0], m[N-2:E]} ); 

 

 

endmodule 
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///////////////////////////LZD////////////////////////////////////////////////// 

 

module LZD_N (in, out); 

 

  function [31:0] log2; 

    input reg [31:0] value; 

    begin 

      value = value-1; 

      for (log2=0; value>0; log2=log2+1) 

 value = value>>1; 

    end 

  endfunction 

 

parameter N = 64; 

parameter S = log2(N);  

input [N-1:0] in; 

output [S-1:0] out; 

 

wire vld; 

LZD #(.N(N)) l1 (in, out, vld); 

endmodule 

 

 

module LZD (in, out, vld); 

 

  function [31:0] log2; 

    input reg [31:0] value; 

    begin 

      value = value-1; 

      for (log2=0; value>0; log2=log2+1) 

 value = value>>1; 

    end 

  endfunction 

 

 

parameter N = 64; 

parameter S = log2(N); 

 

   input [N-1:0] in; 

   output [S-1:0] out; 

   output vld; 

 

  generate 

    if (N == 2) 

      begin 
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 assign vld = ~&in; 

 assign out = in[1] & ~in[0]; 

      end 

    else if (N & (N-1)) 

      LZD #(1<<S) LZD ({1<<S {1'b0}} | in,out,vld); 

    else 

      begin 

 wire [S-2:0] out_l; 

 wire [S-2:0] out_h; 

 wire out_vl, out_vh; 

 LZD #(N>>1) l(in[(N>>1)-1:0],out_l,out_vl); 

 LZD #(N>>1) h(in[N-1:N>>1],out_h,out_vh); 

 assign vld = out_vl | out_vh; 

 assign out = out_vh ? {1'b0,out_h} : {out_vl,out_l}; 

      end 

  endgenerate 

endmodule 

 

 

//////////////////////////////////////////////LOD///////////////////////////////////////////// 

 

////module LOD_N (in, out); 

 

////  function [31:0] log2; 

////    input reg [31:0] value; 

////    begin 

////      value = value-1; 

////      for (log2=0; value>0; log2=log2+1) 

//// value = value>>1; 

////    end 

////  endfunction 

 

////parameter N = 64; 

////parameter S = log2(N);  

////input [N-1:0] in; 

////output [S-1:0] out; 

 

////wire vld; 

////LOD #(.N(N)) l1 (in, out, vld); 

////endmodule 

 

 

////module LOD (in, out, vld); 

 

////  function [31:0] log2; 

////    input reg [31:0] value; 
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////    begin 

////      value = value-1; 

////      for (log2=0; value>0; log2=log2+1) 

//// value = value>>1; 

////    end 

////  endfunction 

 

 

//parameter N = 64; 

//parameter S = log2(N); 

 

//   input [N-1:0] in; 

//   output [S-1:0] out; 

//   output vld; 

 

//  generate 

//    if (N == 2) 

//      begin 

// assign vld = |in; 

// assign out = ~in[1] & in[0]; 

//      end 

//    else if (N & (N-1)) 

//      LOD #(1<<S) LOD ({1<<S {1'b0}} | in,out,vld); 

//    else 

//      begin 

// wire [S-2:0] out_l, out_h; 

// wire out_vl, out_vh; 

// LOD #(N>>1) l(in[(N>>1)-1:0],out_l,out_vl); 

// LOD #(N>>1) h(in[N-1:N>>1],out_h,out_vh); 

// assign vld = out_vl | out_vh; 

// assign out = out_vh ? {1'b0,out_h} : {out_vl,out_l}; 

//      end 

//  endgenerate 

//endmodule 

 

 

/////////////////////////////////END////////////////////////////////// 
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B.2. Verilog Code for IEEE 754 Nonlinear Approximation neuron 

module Nonlin_sigmoid(y,x); 

output [31:0] y;  

input [31:0] x; 

 

wire [31:0] x; 

reg [31:0] yr; 

 

assign y = 32'b00000000000000000000000000000000; 

parameter a =  32'h3e7404ea ;        //0.2383 

parameter b =  32'h3f000000  ;       // .50 

parameter c =   32'h3d3f4880  ;      //0.0467 

parameter d =    32'h3dfdbf48  ;     //0.1239 

parameter e =    32'h3e980347  ;     //0.2969 

parameter f =   32'hbd3f4880   ;     //-0.0467 

parameter g =    32'h3e944674  ;     //0.2896 

parameter h =   32'h3ef9f55a   ;     //0.4882 

wire [31:0]i,j,k,l,m,n;         // for storing the internal variables 

wire [31:0]o,p,q,r,s; 

multiplier m11(x, x, i);    //   i stores x^2 

multiplier m12(a,x,j);  //j stores (.2383*x) 

multiplier m13(c,i,k) ; // k stores  (0.0467*x^2) 

multiplier m14(d,x,l);  // l stores (.1239*x) 

multiplier m15(f,i,m);  // m stores (-0.0467*x^2) 

multiplier m16(g,x,n); // n stores (0.2896*x) 

adder a11(j,b,o); //  o  stores (.2383*x +.50)          VAL OF Y for x(-1,1) 

adder a12(k,l,p);  // p stores (0.0467x^2 + .1239x) 

adder a13(p,e,q); // q stores (0.0467x^2 + .1239x+.2969)  VAL OF Y x=-1 

adder a14(m,n,r); //  r stores (-0.0467*x^2 +0.2896x) 

adder a15(r,h,s); // s stores (-0.0467*x^2 +0.2896x+0.4882) VAL of Y x=1 

// x=1  in 754 is  

always @(*) 

begin 

    if(x ==32'hbf800000) 

    begin 

        yr=q; 

    end 

    else if(x==32'h3f800000) 

    begin 

        yr=s; 

    end 

    else 

    begin 

        yr=o; 

    end 
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end 

assign y = yr; 

endmodule 

 

 

 

module fpuNEW(clk, A, B, opcode, O); 

 input clk; 

 input [31:0] A, B; 

 input [1:0] opcode; 

 output [31:0] O; 

 

 wire [31:0] O; 

 wire a_sign, b_sign; 

 wire ADD, SUB, DIV, MUL; 

 wire [7:0] a_exponent; 

 wire [23:0] a_mantissa; 

 wire [7:0] b_exponent; 

 wire [23:0] b_mantissa; 

 

 reg        o_sign; 

 reg [7:0]  o_exponent; 

 reg [24:0] o_mantissa; 

 

 

 reg [31:0] adder_a_in; 

 reg [31:0] adder_b_in; 

 wire [31:0] adder_out; 

 

 reg [31:0] multiplier_a_in; 

 reg [31:0] multiplier_b_in; 

 wire [31:0] multiplier_out; 

 

 reg [31:0] divider_a_in; 

 reg [31:0] divider_b_in; 

 wire [31:0] divider_out; 

 

 assign O[31] = o_sign; 

 assign O[30:23] = o_exponent; 

 assign O[22:0] = o_mantissa[22:0]; 

 

 assign a_sign = A[31]; 

 assign a_exponent[7:0] = A[30:23]; 

 assign a_mantissa[23:0] = {1'b1, A[22:0]}; 

 

 assign b_sign = B[31]; 
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 assign b_exponent[7:0] = B[30:23]; 

 assign b_mantissa[23:0] = {1'b1, B[22:0]}; 

 

 assign ADD = !opcode[1] & !opcode[0]; 

 assign SUB = !opcode[1] & opcode[0]; 

 assign DIV = opcode[1] & !opcode[0]; 

 assign MUL = opcode[1] & opcode[0]; 

 

 adder A1 

 ( 

  .a(adder_a_in), 

  .b(adder_b_in), 

  .out(adder_out) 

 ); 

 

 multiplier M1 

 ( 

  .a(multiplier_a_in), 

  .b(multiplier_b_in), 

  .out(multiplier_out) 

 ); 

 

 divider D1 

 ( 

  .a(divider_a_in), 

  .b(divider_b_in), 

  .out(divider_out) 

 ); 

 

 always @ (posedge clk) begin 

  if (ADD) begin 

   //If a is NaN or b is zero return a 

   if ((a_exponent == 255 && a_mantissa != 0) || (b_exponent == 0) && 
(b_mantissa == 0)) begin 

    o_sign = a_sign; 

    o_exponent = a_exponent; 

    o_mantissa = a_mantissa; 

   //If b is NaN or a is zero return b 

   end else if ((b_exponent == 255 && b_mantissa != 0) || (a_exponent == 0) 
&& (a_mantissa == 0)) begin 

    o_sign = b_sign; 

    o_exponent = b_exponent; 

    o_mantissa = b_mantissa; 

   //if a or b is inf return inf 

   end else if ((a_exponent == 255) || (b_exponent == 255)) begin 

    o_sign = a_sign ^ b_sign; 

    o_exponent = 255; 
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    o_mantissa = 0; 

   end else begin // Passed all corner cases 

    adder_a_in = A; 

    adder_b_in = B; 

    o_sign = adder_out[31]; 

    o_exponent = adder_out[30:23]; 

    o_mantissa = adder_out[22:0]; 

   end 

  end else if (SUB) begin 

   //If a is NaN or b is zero return a 

   if ((a_exponent == 255 && a_mantissa != 0) || (b_exponent == 0) && 
(b_mantissa == 0)) begin 

    o_sign = a_sign; 

    o_exponent = a_exponent; 

    o_mantissa = a_mantissa; 

   //If b is NaN or a is zero return b 

   end else if ((b_exponent == 255 && b_mantissa != 0) || (a_exponent == 0) 
&& (a_mantissa == 0)) begin 

    o_sign = b_sign; 

    o_exponent = b_exponent; 

    o_mantissa = b_mantissa; 

   //if a or b is inf return inf 

   end else if ((a_exponent == 255) || (b_exponent == 255)) begin 

    o_sign = a_sign ^ b_sign; 

    o_exponent = 255; 

    o_mantissa = 0; 

   end else begin // Passed all corner cases 

    adder_a_in = A; 

    adder_b_in = {~B[31], B[30:0]}; 

    o_sign = adder_out[31]; 

    o_exponent = adder_out[30:23]; 

    o_mantissa = adder_out[22:0]; 

   end 

  end else if (DIV) begin 

   divider_a_in = A; 

   divider_b_in = B; 

   o_sign = divider_out[31]; 

   o_exponent = divider_out[30:23]; 

   o_mantissa = divider_out[22:0]; 

  end else begin //Multiplication 

   //If a is NaN return NaN 

   if (a_exponent == 255 && a_mantissa != 0) begin 

    o_sign = a_sign; 

    o_exponent = 255; 

    o_mantissa = a_mantissa; 

   //If b is NaN return NaN 

   end else if (b_exponent == 255 && b_mantissa != 0) begin 
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    o_sign = b_sign; 

    o_exponent = 255; 

    o_mantissa = b_mantissa; 

   //If a or b is 0 return 0 

   end else if ((a_exponent == 0) && (a_mantissa == 0) || (b_exponent == 0) 
&& (b_mantissa == 0)) begin 

    o_sign = a_sign ^ b_sign; 

    o_exponent = 0; 

    o_mantissa = 0; 

   //if a or b is inf return inf 

   end else if ((a_exponent == 255) || (b_exponent == 255)) begin 

    o_sign = a_sign; 

    o_exponent = 255; 

    o_mantissa = 0; 

   end else begin // Passed all corner cases 

    multiplier_a_in = A; 

    multiplier_b_in = B; 

    o_sign = multiplier_out[31]; 

    o_exponent = multiplier_out[30:23]; 

    o_mantissa = multiplier_out[22:0]; 

   end 

  end 

 end 

endmodule 

 

module adder(a, b, out); 

  input  [31:0] a, b; 

  output [31:0] out; 

 

  wire [31:0] out; 

 reg a_sign; 

 reg [7:0] a_exponent; 

 reg [23:0] a_mantissa; 

 reg b_sign; 

 reg [7:0] b_exponent; 

 reg [23:0] b_mantissa; 

 

  reg o_sign; 

  reg [7:0] o_exponent; 

  reg [24:0] o_mantissa; 

 

  reg [7:0] diff; 

  reg [23:0] tmp_mantissa; 

  reg [7:0] tmp_exponent; 

 

 

  reg  [7:0] i_e; 
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  reg  [24:0] i_m; 

  wire [7:0] o_e; 

  wire [24:0] o_m; 

 

  addition_normaliser norm1 

  ( 

    .in_e(i_e), 

    .in_m(i_m), 

    .out_e(o_e), 

    .out_m(o_m) 

  ); 

 

  assign out[31] = o_sign; 

  assign out[30:23] = o_exponent; 

  assign out[22:0] = o_mantissa[22:0]; 

 

  always @ ( * ) begin 

  a_sign = a[31]; 

  if(a[30:23] == 0) begin 

   a_exponent = 8'b00000001; 

   a_mantissa = {1'b0, a[22:0]}; 

  end else begin 

   a_exponent = a[30:23]; 

   a_mantissa = {1'b1, a[22:0]}; 

  end 

  b_sign = b[31]; 

  if(b[30:23] == 0) begin 

   b_exponent = 8'b00000001; 

   b_mantissa = {1'b0, b[22:0]}; 

  end else begin 

   b_exponent = b[30:23]; 

   b_mantissa = {1'b1, b[22:0]}; 

  end 

    if (a_exponent == b_exponent) begin // Equal exponents 

      o_exponent = a_exponent; 

      if (a_sign == b_sign) begin // Equal signs = add 

        o_mantissa = a_mantissa + b_mantissa; 

        //Signify to shift 

        o_mantissa[24] = 1; 

        o_sign = a_sign; 

      end else begin // Opposite signs = subtract 

        if(a_mantissa > b_mantissa) begin 

          o_mantissa = a_mantissa - b_mantissa; 

          o_sign = a_sign; 

        end else begin 

          o_mantissa = b_mantissa - a_mantissa; 
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          o_sign = b_sign; 

        end 

      end 

    end else begin //Unequal exponents 

      if (a_exponent > b_exponent) begin // A is bigger 

        o_exponent = a_exponent; 

        o_sign = a_sign; 

    diff = a_exponent - b_exponent; 

        tmp_mantissa = b_mantissa >> diff; 

        if (a_sign == b_sign) 

          o_mantissa = a_mantissa + tmp_mantissa; 

        else 

           o_mantissa = a_mantissa - tmp_mantissa; 

      end else if (a_exponent < b_exponent) begin // B is bigger 

        o_exponent = b_exponent; 

        o_sign = b_sign; 

        diff = b_exponent - a_exponent; 

        tmp_mantissa = a_mantissa >> diff; 

        if (a_sign == b_sign) begin 

          o_mantissa = b_mantissa + tmp_mantissa; 

        end else begin 

     o_mantissa = b_mantissa - tmp_mantissa; 

        end 

      end 

    end 

    if(o_mantissa[24] == 1) begin 

      o_exponent = o_exponent + 1; 

      o_mantissa = o_mantissa >> 1; 

    end else if((o_mantissa[23] != 1) && (o_exponent != 0)) begin 

      i_e = o_exponent; 

      i_m = o_mantissa; 

      o_exponent = o_e; 

      o_mantissa = o_m; 

    end 

  end 

endmodule 

 

module multiplier(a, b, out); 

  input  [31:0] a, b; 

  output [31:0] out; 

 

  wire [31:0] out; 

 reg a_sign; 

  reg [7:0] a_exponent; 

  reg [23:0] a_mantissa; 

 reg b_sign; 
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  reg [7:0] b_exponent; 

  reg [23:0] b_mantissa; 

 

  reg o_sign; 

  reg [7:0] o_exponent; 

  reg [24:0] o_mantissa; 

 

 reg [47:0] product; 

 

  assign out[31] = o_sign; 

  assign out[30:23] = o_exponent; 

  assign out[22:0] = o_mantissa[22:0]; 

 

 reg  [7:0] i_e; 

 reg  [47:0] i_m; 

 wire [7:0] o_e; 

 wire [47:0] o_m; 

 

 multiplication_normaliser norm1 

 ( 

  .in_e(i_e), 

  .in_m(i_m), 

  .out_e(o_e), 

  .out_m(o_m) 

 ); 

 

 

  always @ ( * ) begin 

  a_sign = a[31]; 

  if(a[30:23] == 0) begin 

   a_exponent = 8'b00000001; 

   a_mantissa = {1'b0, a[22:0]}; 

  end else begin 

   a_exponent = a[30:23]; 

   a_mantissa = {1'b1, a[22:0]}; 

  end 

  b_sign = b[31]; 

  if(b[30:23] == 0) begin 

   b_exponent = 8'b00000001; 

   b_mantissa = {1'b0, b[22:0]}; 

  end else begin 

   b_exponent = b[30:23]; 

   b_mantissa = {1'b1, b[22:0]}; 

  end 

    o_sign = a_sign ^ b_sign; 

    o_exponent = a_exponent + b_exponent - 127; 
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    product = a_mantissa * b_mantissa; 

  // Normalization 

    if(product[47] == 1) begin 

      o_exponent = o_exponent + 1; 

      product = product >> 1; 

    end else if((product[46] != 1) && (o_exponent != 0)) begin 

      i_e = o_exponent; 

      i_m = product; 

      o_exponent = o_e; 

      product = o_m; 

    end 

  o_mantissa = product[46:23]; 

 end 

endmodule 

 

module addition_normaliser(in_e, in_m, out_e, out_m); 

  input [7:0] in_e; 

  input [24:0] in_m; 

  output [7:0] out_e; 

  output [24:0] out_m; 

 

  wire [7:0] in_e; 

  wire [24:0] in_m; 

  reg [7:0] out_e; 

  reg [24:0] out_m; 

 

  always @ ( * ) begin 

  if (in_m[23:3] == 21'b000000000000000000001) begin 

   out_e = in_e - 20; 

   out_m = in_m << 20; 

  end else if (in_m[23:4] == 20'b00000000000000000001) begin 

   out_e = in_e - 19; 

   out_m = in_m << 19; 

  end else if (in_m[23:5] == 19'b0000000000000000001) begin 

   out_e = in_e - 18; 

   out_m = in_m << 18; 

  end else if (in_m[23:6] == 18'b000000000000000001) begin 

   out_e = in_e - 17; 

   out_m = in_m << 17; 

  end else if (in_m[23:7] == 17'b00000000000000001) begin 

   out_e = in_e - 16; 

   out_m = in_m << 16; 

  end else if (in_m[23:8] == 16'b0000000000000001) begin 

   out_e = in_e - 15; 

   out_m = in_m << 15; 

  end else if (in_m[23:9] == 15'b000000000000001) begin 
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   out_e = in_e - 14; 

   out_m = in_m << 14; 

  end else if (in_m[23:10] == 14'b00000000000001) begin 

   out_e = in_e - 13; 

   out_m = in_m << 13; 

  end else if (in_m[23:11] == 13'b0000000000001) begin 

   out_e = in_e - 12; 

   out_m = in_m << 12; 

  end else if (in_m[23:12] == 12'b000000000001) begin 

   out_e = in_e - 11; 

   out_m = in_m << 11; 

  end else if (in_m[23:13] == 11'b00000000001) begin 

   out_e = in_e - 10; 

   out_m = in_m << 10; 

  end else if (in_m[23:14] == 10'b0000000001) begin 

   out_e = in_e - 9; 

   out_m = in_m << 9; 

  end else if (in_m[23:15] == 9'b000000001) begin 

   out_e = in_e - 8; 

   out_m = in_m << 8; 

  end else if (in_m[23:16] == 8'b00000001) begin 

   out_e = in_e - 7; 

   out_m = in_m << 7; 

  end else if (in_m[23:17] == 7'b0000001) begin 

   out_e = in_e - 6; 

   out_m = in_m << 6; 

  end else if (in_m[23:18] == 6'b000001) begin 

   out_e = in_e - 5; 

   out_m = in_m << 5; 

  end else if (in_m[23:19] == 5'b00001) begin 

   out_e = in_e - 4; 

   out_m = in_m << 4; 

  end else if (in_m[23:20] == 4'b0001) begin 

   out_e = in_e - 3; 

   out_m = in_m << 3; 

  end else if (in_m[23:21] == 3'b001) begin 

   out_e = in_e - 2; 

   out_m = in_m << 2; 

  end else if (in_m[23:22] == 2'b01) begin 

   out_e = in_e - 1; 

   out_m = in_m << 1; 

  end 

  end 

endmodule 

 

module multiplication_normaliser(in_e, in_m, out_e, out_m); 
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  input [7:0] in_e; 

  input [47:0] in_m; 

  output [7:0] out_e; 

  output [47:0] out_m; 

 

  wire [7:0] in_e; 

  wire [47:0] in_m; 

  reg [7:0] out_e; 

  reg [47:0] out_m; 

 

  always @ ( * ) begin 

   if (in_m[46:41] == 6'b000001) begin 

   out_e = in_e - 5; 

   out_m = in_m << 5; 

  end else if (in_m[46:42] == 5'b00001) begin 

   out_e = in_e - 4; 

   out_m = in_m << 4; 

  end else if (in_m[46:43] == 4'b0001) begin 

   out_e = in_e - 3; 

   out_m = in_m << 3; 

  end else if (in_m[46:44] == 3'b001) begin 

   out_e = in_e - 2; 

   out_m = in_m << 2; 

  end else if (in_m[46:45] == 2'b01) begin 

   out_e = in_e - 1; 

   out_m = in_m << 1; 

  end 

  end 

  endmodule 

 

module divider (a, b, out); 

  input  [31:0] a, b; 

  output [31:0] out; 

 

  wire [31:0] out; 

 reg a_sign; 

  reg [7:0] a_exponent; 

  reg [23:0] a_mantissa; 

 reg b_sign; 

  reg [7:0] b_exponent; 

  reg [23:0] b_mantissa; 

 

  reg o_sign; 

  reg [7:0] o_exponent; 

  reg [24:0] o_mantissa; 
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  always @(*) 

  begin 

    if (a_exponent >> b_exponent) 

        o_exponent = (a_exponent - b_exponent); 

    else 

        o_exponent = (b_exponent - a_exponent); 

         

    o_sign = a_sign  ^ b_sign; 

  end 

  restore_conv DIV(a_mantissa, b_mantissa, o_mantissa); 

endmodule 

 

module restore_conv(A,B,Res); 

    //the size of input and output ports of the division module is generic. 

    parameter WIDTH = 24; 

    //input and output ports. 

    input [WIDTH-1:0] A; 

    input [WIDTH-1:0] B; 

    output [WIDTH-1:0] Res; 

    //internal variables     

    reg [WIDTH-1:0] Res = 0; 

    reg [WIDTH-1:0] a1,b1; 

    reg [WIDTH:0] p1;    

    integer i; 

 

    always@ (A or B) 

    begin 

        //initialize the variables. 

        a1 = A; 

        b1 = B; 

        p1= 0; 

        for(i=0;i < WIDTH;i=i+1)    begin //start the for loop 

            p1 = {p1[WIDTH-2:0],a1[WIDTH-1]}; 

            a1[WIDTH-1:1] = a1[WIDTH-2:0]; 

            p1 = p1-b1; 

            if(p1[WIDTH-1] == 1)    begin 

                a1[0] = 0; 

                p1 = p1 + b1;   end 

            else 

                a1[0] = 1; 

        end 

        Res = a1;    

    end  

endmodule 

 

////////////////////////////////////////////////////////////////////////////////////////////// 



 196 

 

B.3. Verilog Code for IEEE 754 Padé Approximation neuron 

module Pade_Sigmoid(y,x); 

output  [31:0]y;  ///IEEE 754 NOTATION  

input   [31:0]x; 

// parametrizing the values  

parameter a =   32'h41a00000;          // Stores 20 

parameter b =   32'h43340000 ;        // stores 180 

parameter c=    32'h44520000 ;       //stores 840 

parameter d=    32'h44d20000 ;      //stores 1680 

parameter e=    32'hbddb22d1 ;       // stores -0.107 

parameter f=    32'h3c3b98c8 ;            // stores 0.01145 

parameter one = 32'h3f800000 ;      // stores one 

parameter const =32'h399c09e1;   //  stores 2.9762*10^-4 

wire [31:0]xfour,xcube,xsquare; 

 

wire [31:0]i,j,k,l,m,n,o,p,q,r,s,t; 

multiplier m19(x, x, xsquare);  // x square contains x^2 

multiplier m20(xsquare,x,xcube); // xcube contains x^3 

multiplier m21(xcube,x,xfour);  // xfour contains x^4 

multiplier m22(a,xcube,i) ;     //  i contains (20*x^3) 

multiplier m23(b,xsquare,j);  // j contains (180*x^2) 

multiplier m24(c,x,k);        // k contains  (840*x) 

multiplier m25(f,xfour,l); // l contains 0.01145*x^4 

multiplier m26(e,xsquare,m); // m contains  -0.107x^2 

// declaring Oprations 

adder   a111(xfour,i,n);    // n contains x^4+20x^3 

adder   a112(j,k,o);       // o contains 180x^2+840x 

adder  a113(o,d,p);      // p contains  180x^2+840x+1680 

adder  a114(p,n,q);   // q contains x^4+20x^3+180x^2+840x+1680  

// 1st term over  

// moving on 2nd term  

adder  a115(one,e,r);   //  r contains 1-0.107x^2 

adder a116(r,l,s);   //  s contains 1-.107x^2+0.01145x^4 // 2nd term over 

// all terms over 

multiplier PRE(const,s,t);  //  t contains  (1-.107x^2+0.01145x^4)*2.9762*10^-4 

multiplier final(q,t,y); 

//Final result is y 

endmodule 

 

module SISO_neuronPade(i,o); 

output [31:0]o; 

input [31:0]i; 

// instantiating  
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Pade_Sigmoid N1(o,i); 

endmodule 

 

module MISO_neuronPade(i1,i2,i3,i4,w1,w2,w3,w4,o); 

input [31:0]i1,i2,i3,i4,w1,w2,w3,w4; 

output [31:0]o; 

wire [31:0]A1,A2,in,m1,m2,m3,m4; 

multiplier mul1(i1,w1,m1); 

multiplier mul2(i2,w2,m2); 

multiplier mul3(i3,w3,m3); 

multiplier mul4(i4,w4,m4); 

adder N11(m1,m2,A1); 

adder N22(m3,m4,A2); 

adder N33(A1,A2,in); 

SISO_neuronPade N111(in,o); 

endmodule 

 

//// Full network//  ///TOP MODULE BECOMES Full_neuronNEW_PADE// 

module 
Full_neuronNEW_PADE(inp1,inp2,inp3,inp4,cloock,reset,layer1,layer2,layer3,layer4,layer5, 

outL1N1,outL1N2,outL1N3,outL1N4,outL2N1,outL2N2,outL2N3,outL2N4,outL3N1,outL3N2,outL3N3,outL3N
4, 

outL4N1,outL4N2,outL4N3,outL4N4,outL5N1,outL5N2,outL5N3); 

wire [31:0]Final1,Final2,Final3; 

input [31:0]inp1,inp2,inp3,inp4; 

wire [31:0]OL1,OL2,OL3,OL4; 

wire [31:0]OLL1,OLL2,OLL3,OLL4; 

wire [31:0]OLLL1,OLLL2,OLLL3,OLLL4; 

wire [31:0]OLLLL1,OLLLL2,OLLLL3,OLLLL4; 

reg [2:0]cst,nst;  // defining the current state and next state 

input layer1,layer2,layer3,layer4,layer5; // trigerring conditions for each layer 

parameter S0=3'b000; 

parameter S1=3'b001; //// parameter for defining the states binary encoding 

parameter S2=3'b010; 

parameter S3=3'b011; 

parameter S4=3'b100; 

input cloock,reset; 

output reg [31:0]outL1N1,outL1N2,outL1N3,outL1N4; // OUTPUT of LAYER1NEURON 1 TO 4; 

output reg [31:0]outL2N1,outL2N2,outL2N3,outL2N4; // OUTPUT OF LAYER2 NEURON 1 TO 4 

output reg [31:0]outL3N1,outL3N2,outL3N3,outL3N4; // OUTPUT OF LAYER 3 NEURON 1 TO 4 

output reg [31:0]outL4N1,outL4N2,outL4N3,outL4N4;  // output of layer 4 neuron  1 to 4 

output reg [31:0]outL5N1,outL5N2,outL5N3;  //  output of layer 5  neuron  1 to 3; 

////// these are variables  

/// DEFINING INPUT LAYERS 

SISO_neuronPade S111(inp1,OL1); 

SISO_neuronPade S222(inp2,OL2); 
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SISO_neuronPade S333(inp3,OL3); 

SISO_neuronPade S444(inp4,OL4); 

// DEFINING FIRST HIDDEN LAYERS 

MISO_neuronPade M1(OL1,OL2,OL3,OL4,OLL1); 

MISO_neuronPade M2(OL1,OL2,OL3,OL4,OLL2); 

MISO_neuronPade M3(OL1,OL2,OL3,OL4,OLL3); 

MISO_neuronPade M4(OL1,OL2,OL3,OL4,OLL4); 

/// DEFINING SECOND HIDDEN LAYERS 

MISO_neuronPade M5(OLL1,OLL2,OLL3,OLL4,OLLL1); 

MISO_neuronPade M6(OLL1,OLL2,OLL3,OLL4,OLLL2); 

MISO_neuronPade M7(OLL1,OLL2,OLL3,OLL4,OLLL3); 

MISO_neuronPade M8(OLL1,OLL2,OLL3,OLL4,OLLL4); 

///DEFINING THIRD LAYER 

MISO_neuronPade M9(OLLL1,OLLL2,OLLL3,OLLL4,OLLLL1); 

MISO_neuronPade M10(OLLL1,OLLL2,OLLL3,OLLL4,OLLLL2); 

MISO_neuronPade M11(OLLL1,OLLL2,OLLL3,OLLL4,OLLLL3); 

MISO_neuronPade M12(OLLL1,OLLL2,OLLL3,OLLL4,OLLLL4); 

//DEFINING  THE OUTPUT LAYER 

MISO_neuronPade M13(OLLLL1,OLLLL2,OLLLL3,OLLLL4,Final1); 

MISO_neuronPade M14(OLLLL1,OLLLL2,OLLLL3,OLLLL4,Final2); 

MISO_neuronPade M15(OLLLL1,OLLLL2,OLLLL3,OLLLL4,Final3); 

// The whole neuron structure is controlled by aN FSM  

always @(*) 

begin 

case(cst) 

S0:if(layer1==1'b1) 

begin 

nst=S1; 

outL1N1=OL1; // outputs of layer 1  neuron 1 to 4  are displayed  in first state S0 

outL1N2=OL2; 

outL1N3=OL3; 

outL1N4=OL4; 

end 

else 

begin 

nst=cst; 

end 

S1:if(layer2==1'b1) 

begin 

nst=S2; 

outL2N1=OLL1; 

outL2N2=OLL2; 

outL2N3=OLL3; 

outL2N4=OLL4; 

end 

else 
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begin 

nst=cst; 

end 

S2:if(layer3==1'b1) 

begin 

outL3N1=OLLL1; 

outL3N2=OLLL2; 

outL3N3=OLLL3; 

outL3N4=OLLL4; 

nst=S3; 

end 

else 

begin 

nst=cst; 

end 

S3:if(layer4==1'b1) 

begin 

outL4N1=OLLLL1; 

outL4N2=OLLLL2; 

outL4N3=OLLLL3; 

outL4N4=OLLLL4; 

nst=S4; 

end 

else 

begin 

nst=cst; 

end 

S4:if(layer5==1'b1) 

begin 

outL5N1=Final1; 

outL5N2=Final2; 

outL5N3=Final3; 

nst=S0; 

end 

else 

begin 

nst=cst; 

end 

default: nst = S0; 

endcase 

end 

 

always@(posedge cloock) 

          begin 

           if (reset) 

             cst <= S0; 
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           else  

             cst <= nst; 

          end 

endmodule 

 

///// 

module fpuNEW(clk, A, B, opcode, O); 

 input clk; 

 input [31:0] A, B; 

 input [1:0] opcode; 

 output [31:0] O; 

 

 wire [31:0] O; 

 wire [7:0] a_exponent; 

 wire [23:0] a_mantissa; 

 wire [7:0] b_exponent; 

 wire [23:0] b_mantissa; 

 

 reg        o_sign; 

 reg [7:0]  o_exponent; 

 reg [24:0] o_mantissa; 

 

 

 reg [31:0] adder_a_in; 

 reg [31:0] adder_b_in; 

 wire [31:0] adder_out; 

 

 reg [31:0] multiplier_a_in; 

 reg [31:0] multiplier_b_in; 

 wire [31:0] multiplier_out; 

 

 reg [31:0] divider_a_in; 

 reg [31:0] divider_b_in; 

 wire [31:0] divider_out; 

 

 assign O[31] = o_sign; 

 assign O[30:23] = o_exponent; 

 assign O[22:0] = o_mantissa[22:0]; 

 

 assign a_sign = A[31]; 

 assign a_exponent[7:0] = A[30:23]; 

 assign a_mantissa[23:0] = {1'b1, A[22:0]}; 

 

 assign b_sign = B[31]; 

 assign b_exponent[7:0] = B[30:23]; 

 assign b_mantissa[23:0] = {1'b1, B[22:0]}; 
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 assign ADD = !opcode[1] & !opcode[0]; 

 assign SUB = !opcode[1] & opcode[0]; 

 assign DIV = opcode[1] & !opcode[0]; 

 assign MUL = opcode[1] & opcode[0]; 

 

 adder A1 

 ( 

  .a(adder_a_in), 

  .b(adder_b_in), 

  .out(adder_out) 

 ); 

 

 multiplier M1 

 ( 

  .a(multiplier_a_in), 

  .b(multiplier_b_in), 

  .out(multiplier_out) 

 ); 

 

 divider D1 

 ( 

  .a(divider_a_in), 

  .b(divider_b_in), 

  .out(divider_out) 

 ); 

 

 always @ (posedge clk) begin 

  if (ADD) begin 

   //If a is NaN or b is zero return a 

   if ((a_exponent == 255 && a_mantissa != 0) || (b_exponent == 0) && 
(b_mantissa == 0)) begin 

    o_sign = a_sign; 

    o_exponent = a_exponent; 

    o_mantissa = a_mantissa; 

   //If b is NaN or a is zero return b 

   end else if ((b_exponent == 255 && b_mantissa != 0) || (a_exponent == 0) 
&& (a_mantissa == 0)) begin 

    o_sign = b_sign; 

    o_exponent = b_exponent; 

    o_mantissa = b_mantissa; 

   //if a or b is inf return inf 

   end else if ((a_exponent == 255) || (b_exponent == 255)) begin 

    o_sign = a_sign ^ b_sign; 

    o_exponent = 255; 

    o_mantissa = 0; 

   end else begin // Passed all corner cases 
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    adder_a_in = A; 

    adder_b_in = B; 

    o_sign = adder_out[31]; 

    o_exponent = adder_out[30:23]; 

    o_mantissa = adder_out[22:0]; 

   end 

  end else if (SUB) begin 

   //If a is NaN or b is zero return a 

   if ((a_exponent == 255 && a_mantissa != 0) || (b_exponent == 0) && 
(b_mantissa == 0)) begin 

    o_sign = a_sign; 

    o_exponent = a_exponent; 

    o_mantissa = a_mantissa; 

   //If b is NaN or a is zero return b 

   end else if ((b_exponent == 255 && b_mantissa != 0) || (a_exponent == 0) 
&& (a_mantissa == 0)) begin 

    o_sign = b_sign; 

    o_exponent = b_exponent; 

    o_mantissa = b_mantissa; 

   //if a or b is inf return inf 

   end else if ((a_exponent == 255) || (b_exponent == 255)) begin 

    o_sign = a_sign ^ b_sign; 

    o_exponent = 255; 

    o_mantissa = 0; 

   end else begin // Passed all corner cases 

    adder_a_in = A; 

    adder_b_in = {~B[31], B[30:0]}; 

    o_sign = adder_out[31]; 

    o_exponent = adder_out[30:23]; 

    o_mantissa = adder_out[22:0]; 

   end 

  end else if (DIV) begin 

   divider_a_in = A; 

   divider_b_in = B; 

   o_sign = divider_out[31]; 

   o_exponent = divider_out[30:23]; 

   o_mantissa = divider_out[22:0]; 

  end else begin //Multiplication 

   //If a is NaN return NaN 

   if (a_exponent == 255 && a_mantissa != 0) begin 

    o_sign = a_sign; 

    o_exponent = 255; 

    o_mantissa = a_mantissa; 

   //If b is NaN return NaN 

   end else if (b_exponent == 255 && b_mantissa != 0) begin 

    o_sign = b_sign; 

    o_exponent = 255; 
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    o_mantissa = b_mantissa; 

   //If a or b is 0 return 0 

   end else if ((a_exponent == 0) && (a_mantissa == 0) || (b_exponent == 0) 
&& (b_mantissa == 0)) begin 

    o_sign = a_sign ^ b_sign; 

    o_exponent = 0; 

    o_mantissa = 0; 

   //if a or b is inf return inf 

   end else if ((a_exponent == 255) || (b_exponent == 255)) begin 

    o_sign = a_sign; 

    o_exponent = 255; 

    o_mantissa = 0; 

   end else begin // Passed all corner cases 

    multiplier_a_in = A; 

    multiplier_b_in = B; 

    o_sign = multiplier_out[31]; 

    o_exponent = multiplier_out[30:23]; 

    o_mantissa = multiplier_out[22:0]; 

   end 

  end 

 end 

endmodule 

 

 

module adder(a, b, out); 

  input  [31:0] a, b; 

  output [31:0] out; 

 

  wire [31:0] out; 

 reg a_sign; 

 reg [7:0] a_exponent; 

 reg [23:0] a_mantissa; 

 reg b_sign; 

 reg [7:0] b_exponent; 

 reg [23:0] b_mantissa; 

 

  reg o_sign; 

  reg [7:0] o_exponent; 

  reg [24:0] o_mantissa; 

 

  reg [7:0] diff; 

  reg [23:0] tmp_mantissa; 

  reg [7:0] tmp_exponent; 

 

 

  reg  [7:0] i_e; 

  reg  [24:0] i_m; 
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  wire [7:0] o_e; 

  wire [24:0] o_m; 

 

  addition_normaliser norm1 

  ( 

    .in_e(i_e), 

    .in_m(i_m), 

    .out_e(o_e), 

    .out_m(o_m) 

  ); 

 

  assign out[31] = o_sign; 

  assign out[30:23] = o_exponent; 

  assign out[22:0] = o_mantissa[22:0]; 

 

  always @ ( * ) begin 

  a_sign = a[31]; 

  if(a[30:23] == 0) begin 

   a_exponent = 8'b00000001; 

   a_mantissa = {1'b0, a[22:0]}; 

  end else begin 

   a_exponent = a[30:23]; 

   a_mantissa = {1'b1, a[22:0]}; 

  end 

  b_sign = b[31]; 

  if(b[30:23] == 0) begin 

   b_exponent = 8'b00000001; 

   b_mantissa = {1'b0, b[22:0]}; 

  end else begin 

   b_exponent = b[30:23]; 

   b_mantissa = {1'b1, b[22:0]}; 

  end 

    if (a_exponent == b_exponent) begin // Equal exponents 

      o_exponent = a_exponent; 

      if (a_sign == b_sign) begin // Equal signs = add 

        o_mantissa = a_mantissa + b_mantissa; 

        //Signify to shift 

        o_mantissa[24] = 1; 

        o_sign = a_sign; 

      end else begin // Opposite signs = subtract 

        if(a_mantissa > b_mantissa) begin 

          o_mantissa = a_mantissa - b_mantissa; 

          o_sign = a_sign; 

        end else begin 

          o_mantissa = b_mantissa - a_mantissa; 

          o_sign = b_sign; 
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        end 

      end 

    end else begin //Unequal exponents 

      if (a_exponent > b_exponent) begin // A is bigger 

        o_exponent = a_exponent; 

        o_sign = a_sign; 

    diff = a_exponent - b_exponent; 

        tmp_mantissa = b_mantissa >> diff; 

        if (a_sign == b_sign) 

          o_mantissa = a_mantissa + tmp_mantissa; 

        else 

           o_mantissa = a_mantissa - tmp_mantissa; 

      end else if (a_exponent < b_exponent) begin // B is bigger 

        o_exponent = b_exponent; 

        o_sign = b_sign; 

        diff = b_exponent - a_exponent; 

        tmp_mantissa = a_mantissa >> diff; 

        if (a_sign == b_sign) begin 

          o_mantissa = b_mantissa + tmp_mantissa; 

        end else begin 

     o_mantissa = b_mantissa - tmp_mantissa; 

        end 

      end 

    end 

    if(o_mantissa[24] == 1) begin 

      o_exponent = o_exponent + 1; 

      o_mantissa = o_mantissa >> 1; 

    end else if((o_mantissa[23] != 1) && (o_exponent != 0)) begin 

      i_e = o_exponent; 

      i_m = o_mantissa; 

      o_exponent = o_e; 

      o_mantissa = o_m; 

    end 

  end 

endmodule 

 

module multiplier(a, b, out); 

  input  [31:0] a, b; 

  output [31:0] out; 

 

  wire [31:0] out; 

 reg a_sign; 

  reg [7:0] a_exponent; 

  reg [23:0] a_mantissa; 

 reg b_sign; 

  reg [7:0] b_exponent; 
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  reg [23:0] b_mantissa; 

 

  reg o_sign; 

  reg [7:0] o_exponent; 

  reg [24:0] o_mantissa; 

 

 reg [47:0] product; 

 

  assign out[31] = o_sign; 

  assign out[30:23] = o_exponent; 

  assign out[22:0] = o_mantissa[22:0]; 

 

 reg  [7:0] i_e; 

 reg  [47:0] i_m; 

 wire [7:0] o_e; 

 wire [47:0] o_m; 

 

 multiplication_normaliser norm1 

 ( 

  .in_e(i_e), 

  .in_m(i_m), 

  .out_e(o_e), 

  .out_m(o_m) 

 ); 

 

 

  always @ ( * ) begin 

  a_sign = a[31]; 

  if(a[30:23] == 0) begin 

   a_exponent = 8'b00000001; 

   a_mantissa = {1'b0, a[22:0]}; 

  end else begin 

   a_exponent = a[30:23]; 

   a_mantissa = {1'b1, a[22:0]}; 

  end 

  b_sign = b[31]; 

  if(b[30:23] == 0) begin 

   b_exponent = 8'b00000001; 

   b_mantissa = {1'b0, b[22:0]}; 

  end else begin 

   b_exponent = b[30:23]; 

   b_mantissa = {1'b1, b[22:0]}; 

  end 

    o_sign = a_sign ^ b_sign; 

    o_exponent = a_exponent + b_exponent - 127; 

    product = a_mantissa * b_mantissa; 
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  // Normalization 

    if(product[47] == 1) begin 

      o_exponent = o_exponent + 1; 

      product = product >> 1; 

    end else if((product[46] != 1) && (o_exponent != 0)) begin 

      i_e = o_exponent; 

      i_m = product; 

      o_exponent = o_e; 

      product = o_m; 

    end 

  o_mantissa = product[46:23]; 

 end 

endmodule 

 

module addition_normaliser(in_e, in_m, out_e, out_m); 

  input [7:0] in_e; 

  input [24:0] in_m; 

  output [7:0] out_e; 

  output [24:0] out_m; 

 

  wire [7:0] in_e; 

  wire [24:0] in_m; 

  reg [7:0] out_e; 

  reg [24:0] out_m; 

 

  always @ ( * ) begin 

  if (in_m[23:3] == 21'b000000000000000000001) begin 

   out_e = in_e - 20; 

   out_m = in_m << 20; 

  end else if (in_m[23:4] == 20'b00000000000000000001) begin 

   out_e = in_e - 19; 

   out_m = in_m << 19; 

  end else if (in_m[23:5] == 19'b0000000000000000001) begin 

   out_e = in_e - 18; 

   out_m = in_m << 18; 

  end else if (in_m[23:6] == 18'b000000000000000001) begin 

   out_e = in_e - 17; 

   out_m = in_m << 17; 

  end else if (in_m[23:7] == 17'b00000000000000001) begin 

   out_e = in_e - 16; 

   out_m = in_m << 16; 

  end else if (in_m[23:8] == 16'b0000000000000001) begin 

   out_e = in_e - 15; 

   out_m = in_m << 15; 

  end else if (in_m[23:9] == 15'b000000000000001) begin 

   out_e = in_e - 14; 
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   out_m = in_m << 14; 

  end else if (in_m[23:10] == 14'b00000000000001) begin 

   out_e = in_e - 13; 

   out_m = in_m << 13; 

  end else if (in_m[23:11] == 13'b0000000000001) begin 

   out_e = in_e - 12; 

   out_m = in_m << 12; 

  end else if (in_m[23:12] == 12'b000000000001) begin 

   out_e = in_e - 11; 

   out_m = in_m << 11; 

  end else if (in_m[23:13] == 11'b00000000001) begin 

   out_e = in_e - 10; 

   out_m = in_m << 10; 

  end else if (in_m[23:14] == 10'b0000000001) begin 

   out_e = in_e - 9; 

   out_m = in_m << 9; 

  end else if (in_m[23:15] == 9'b000000001) begin 

   out_e = in_e - 8; 

   out_m = in_m << 8; 

  end else if (in_m[23:16] == 8'b00000001) begin 

   out_e = in_e - 7; 

   out_m = in_m << 7; 

  end else if (in_m[23:17] == 7'b0000001) begin 

   out_e = in_e - 6; 

   out_m = in_m << 6; 

  end else if (in_m[23:18] == 6'b000001) begin 

   out_e = in_e - 5; 

   out_m = in_m << 5; 

  end else if (in_m[23:19] == 5'b00001) begin 

   out_e = in_e - 4; 

   out_m = in_m << 4; 

  end else if (in_m[23:20] == 4'b0001) begin 

   out_e = in_e - 3; 

   out_m = in_m << 3; 

  end else if (in_m[23:21] == 3'b001) begin 

   out_e = in_e - 2; 

   out_m = in_m << 2; 

  end else if (in_m[23:22] == 2'b01) begin 

   out_e = in_e - 1; 

   out_m = in_m << 1; 

  end 

  end 

endmodule 

module multiplication_normaliser(in_e, in_m, out_e, out_m); 

  input [7:0] in_e; 

  input [47:0] in_m; 
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  output [7:0] out_e; 

  output [47:0] out_m; 

 

  wire [7:0] in_e; 

  wire [47:0] in_m; 

  reg [7:0] out_e; 

  reg [47:0] out_m; 

 

  always @ ( * ) begin 

   if (in_m[46:41] == 6'b000001) begin 

   out_e = in_e - 5; 

   out_m = in_m << 5; 

  end else if (in_m[46:42] == 5'b00001) begin 

   out_e = in_e - 4; 

   out_m = in_m << 4; 

  end else if (in_m[46:43] == 4'b0001) begin 

   out_e = in_e - 3; 

   out_m = in_m << 3; 

  end else if (in_m[46:44] == 3'b001) begin 

   out_e = in_e - 2; 

   out_m = in_m << 2; 

  end else if (in_m[46:45] == 2'b01) begin 

   out_e = in_e - 1; 

   out_m = in_m << 1; 

  end 

  end 

endmodule 
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C. Appendix C 

C.1. Verilog Code for Augmentation ANN 

`timescale 1ns / 1ps 

//////////////////////////////////////////////////////////////////////////////////// 

/////////////////////       Augmentation ANN        //////////////////////////////// 

//////////////////////////////////////////////////////////////////////////////////// 

module AugANN(p, O, DO, EC); 

input [15:0] p, O; 

output [15:0] DO, EC; 

 

wire [15:0] pp, Op; 

wire [15:0] in1, in2; 

wire [15:0] l [1:32]; 

wire [15:0] m [1:32]; 

wire [15:0] n [1:32]; 

//wire [1:32] q [15:0]; 

 

FP2posit F2P_1(p, pp); 

FP2posit F2P_2(O, Op); 

 

sigmoid_1in I1(pp, in1); 

sigmoid_1in I2(Op, in2); 

 

neuronposit L1(in1, in2, l[1]); 

neuronposit L2(in1, in2, l[2]); 
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neuronposit L3(in1, in2, l[3]); 

neuronposit L4(in1, in2, l[4]); 

neuronposit L5(in1, in2, l[5]); 

neuronposit L6(in1, in2, l[6]); 

neuronposit L7(in1, in2, l[7]); 

neuronposit L8(in1, in2, l[8]); 

neuronposit L9(in1, in2, l[9]); 

neuronposit L10(in1, in2, l[10]); 

neuronposit L11(in1, in2, l[11]); 

neuronposit L12(in1, in2, l[12]); 

neuronposit L13(in1, in2, l[13]); 

neuronposit L14(in1, in2, l[14]); 

neuronposit L15(in1, in2, l[15]); 

neuronposit L16(in1, in2, l[16]); 

neuronposit L17(in1, in2, l[17]); 

neuronposit L18(in1, in2, l[18]); 

neuronposit L19(in1, in2, l[19]); 

neuronposit L20(in1, in2, l[20]); 

neuronposit L21(in1, in2, l[21]); 

neuronposit L22(in1, in2, l[22]); 

neuronposit L23(in1, in2, l[23]); 

neuronposit L24(in1, in2, l[24]); 

neuronposit L25(in1, in2, l[25]); 

neuronposit L26(in1, in2, l[26]); 

neuronposit L27(in1, in2, l[27]); 
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neuronposit L28(in1, in2, l[28]); 

neuronposit L29(in1, in2, l[29]); 

neuronposit L30(in1, in2, l[30]); 

neuronposit L31(in1, in2, l[31]); 

neuronposit L32(in1, in2, l[32]); 

 

genvar i; 

 

//generate 

//    for (i = 1; i <= 32; i = i + 1) begin 

//        neuronposit L(in1, in2, l[i]); 

//        end  

//endgenerate 

generate 

    for (i = 1; i <= 32 ; i = i + 1) begin 

            neuron32in M(l[1], l[2], l[3], l[4], l[5], l[6], l[7], l[8], l[9], l[10], l[11], 

l[12], l[13], l[14], l[15], l[16], l[17], l[18], l[19], l[20], l[21], l[22], l[23], l[24], 

l[25], l[26], l[27], l[28], l[29], l[30], l[31], l[32], m[i] ); 

    end 

endgenerate 

generate 

    for (i = 1; i <= 32 ; i = i + 1) begin 

            neuron32in N(m[1], m[2], m[3], m[4], m[5], m[6], m[7], m[8], m[9], m[10], m[11], 

m[12], m[13], m[14], m[15], m[16], m[17], m[18], m[19], m[20], m[21], m[22], m[23], m[24], 

m[25], m[26], m[27], m[28], m[29], m[30], m[31], m[32], n[i] ); 

    end 

endgenerate 
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//generate 

//    for (i = 1; i <= 8 ; i = i + 1) begin 

//            neuron8in P(n[1], n[2], n[3], n[4], n[5], n[6], n[7], n[8], q[i] ); 

//    end 

//endgenerate 

neuron32in D(n[1], n[2], n[3], n[4], n[5], n[6], n[7], n[8],n[9], n[10], n[11], n[12], n[13], 

n[14], n[15], n[16],n[17], n[18], n[19], n[20], n[21], n[22], n[23], n[24],n[25], n[26], n[27], 

n[28], n[29], n[30], n[31], n[32], DO);  

neuron32in E(n[1], n[2], n[3], n[4], n[5], n[6], n[7], n[8],n[9], n[10], n[11], n[12], n[13], 

n[14], n[15], n[16],n[17], n[18], n[19], n[20], n[21], n[22], n[23], n[24],n[25], n[26], n[27], 

n[28], n[29], n[30], n[31], n[32], EC);  

//genvar i; 

//generate 

//    for (i = 1; i <= 8 ; i = i + 1) begin 

//            neuron_posit L[i](in1, in2, l[i]); 

//    end 

//endgenerate 

endmodule 

 

//wire [15:0] I1L1, I1L2, I1L3, I1L4, I1L5, I1L6, I1L7, I1L8; 

//wire [15:0] I2L1, I2L2, I2L3, I2L4, I2L5, I2L6, I2L7, I2L8; 

//wire [15:0] L1M1, L1M2, L1M3, L1M4, L1M5, L1M6, L1M7, L1M8, L2M1, L2M2, L2M3, L2M4, L2M5, 

L2M6, L2M7, L2M8; 

//wire [15:0] L3M1, L3M2, L3M3, L3M4, L3M5, L3M6, L3M7, L3M8, L4M1, L4M2, L4M3, L4M4, L4M5, 

L4M6, L4M7, L4M8; 

//wire [15:0] L5M1, L5M2, L5M3, L5M4, L5M5, L5M6, L5M7, L5M8, L6M1, L6M2, L6M3, L6M4, L6M5, 

L6M6, L6M7, L6M8; 

//wire [15:0] L7M1, L7M2, L7M3, L7M4, L7M5, L7M6, L7M7, L7M8, L8M1, L8M2, L8M3, L8M4, L8M5, 

L8M6, L8M7, L8M8; 

 



 214 

//wire [15:0] M1N1, M1N2, M1N3, M1N4, M1N5, M1N6, M1N7, M1N8, M2N1, M2N2, M2N3, M2N4, M2N5, 

M2N6, M2N7, M2N8; 

//wire [15:0] M3N1, M3N2, M3N3, M3N4, M3N5, M3N6, M3N7, M3N8, M4N1, M4N2, M4N3, M4N4, M4N5, 

M4N6, M4N7, M4N8; 

//wire [15:0] M5N1, M5N2, M5N3, M5N4, M5N5, M5N6, M5N7, M5N8, M6N1, M6N2, M6N3, M6N4, M6N5, 

M6N6, M6N7, M6N8; 

//wire [15:0] M7N1, M7N2, M7N3, M7N4, M7N5, M7N6, M7N7, M7N8, M8N1, M8N2, M8N3, M8N4, M8N5, 

M8N6, M8N7, M8N8; 

//wire [15:0] N1D, N2D, N3D, N4D, N5D, N6D, N7D, N8D; 

//wire [15:0] N1EC, N2EC, N3EC, N4EC, N5EC, N6EC, N7EC, N8EC; 

//////////////////////////////////////////////////////////////////////////////////// 

//////////////////IEEE 754 to Posit Conversion////////////////////////////////////// 

//////////////////////////////////////////////////////////////////////////////////// 

module FP2posit(pos_in, pos_out); 

function [15:0] log2; 

input reg [15:0] value; 

 begin 

 value = value-1; 

 for (log2=0; value>0; log2=log2+1) 

         value = value>>1; 

       end 

endfunction 

 

parameter N = 16; 

parameter E = 5; 

parameter es = 3; //ES_max = E-1 

parameter M = N-E-1; 
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parameter BIAS = (2**(E-1))-1; 

 

parameter Bs = log2(N); 

 

input [N-1:0] pos_in; 

output [N-1:0] pos_out; 

 

wire s_in = pos_in[N-1]; 

wire [E-1:0] exp_in = pos_in[N-2:N-1-E]; 

wire [M-1:0] mant_in = pos_in[M-1:0]; 

wire zero_in = ~|{exp_in,mant_in}; 

wire inf_in = &exp_in; 

wire [M:0] mant = {|exp_in, mant_in}; 

wire [N-1:0] LOD_in = {mant,{E{1'b0}}}; 

wire[Bs-1:0] Lshift; 

LOD_N #(.N(N)) uut (.in(LOD_in), .out(Lshift)); 

wire[N-1:0] mant_tmp; 

DSR_left_N_S #(.N(N), .S(Bs)) ls (.a(LOD_in),.b(Lshift),.c(mant_tmp)); 

 

wire [E:0] exp = {exp_in[E-1:1], exp_in[0] | (~|exp_in)} - BIAS - Lshift; 

 

//Exponent and Regime Computation 

wire [E:0] exp_N = exp[E] ? -exp : exp; 

wire [es-1:0] e_o = (exp[E] & |exp_N[es-1:0]) ? exp[es-1:0] : exp_N[es-1:0]; 

wire [E-es-1:0] r_o = (~exp[E] || (exp[E] & |exp_N[es-1:0])) ? {{Bs{1'b0}},exp_N[E-1:es]} + 

1'b1 : {{Bs{1'b0}},exp_N[E-1:es]}; 
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//Exponent and Mantissa Packing 

wire [2*N-1:0]tmp_o = { {N{~exp[E]}}, exp[E], e_o, mant_tmp[N-2:es]}; 

//Including Regime bits in Exponent-Mantissa Packing 

wire [2*N-1:0] tmp1_o; 

wire [Bs-1:0] diff_b; 

generate 

 if(E-es > Bs)  assign diff_b = |r_o[E-es-1:Bs] ? {{(Bs-2){1'b1}},2'b01} : r_o[Bs-1:0]; 

 else   assign diff_b = r_o; 

endgenerate 

DSR_right_N_S #(.N(2*N), .S(Bs)) dsr2 (.a(tmp_o), .b(diff_b), .c(tmp1_o)); 

 

//Final Output 

wire [N-1:0] tmp1_oN = s_in ? -tmp1_o[N-1:0] : tmp1_o[N-1:0]; 

assign pos_out = inf_in|zero_in|(~mant_tmp[N-1]) ? {inf_in,{N-1{1'b0}}} : {s_in, tmp1_oN[N-

1:1]}; 

endmodule 

////////////////////////////////////////////////////////////////////////////////////////////// 

//////////////////////////        Neuron 32 input internal            //////////////////////// 

////////////////////////////////////////////////////////////////////////////////////////////// 

`timescale 1ns / 1ps 

module neuron32in (in1, in2, in3, in4, in5, in6, in7, in8, in9, in10, in11, in12, in13, in14, 

in15, in16, in17, in18, in19, in20, in21, in22, in23, in24, in25, in26, in27, in28, in29, in30, 

in31, in32, n_out); 

 

    input [15:0] in1, in2, in3, in4, in5, in6, in7, in8, in9, in10, in11, in12, in13, in14, 

in15, in16, in17, in18, in19, in20, in21, in22, in23, in24, in25, in26, in27, in28, in29, in30, 

in31, in32 ; 
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    output [15:0] n_out; 

    wire [15:0] IN [1:32]; 

    reg [15:0] Wt [1:32]; 

    wire [15:0] Mult [1:32]; 

    wire [15:0] a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16; 

    wire [15:0] add1, add2, add3, add4, add5, add6, add7, add8; 

    wire [15:0] add12, add34, add56, add78; 

    wire [15:0] add_out1, add_out2, add_out; 

    wire start, inf, zero, done; 

    wire [15:0] inp1, inp2; 

    wire [15:0] sig_out; 

     

//    FP2posit INP1(in1, inp1); 

//    FP2posit INP2(in2, inp2); 

    //FP_to_posit INP3(in3, inp3); 

    //FP_to_posit INP4(in4, inp4); 

     

    ///multiplying input with weights 

     

    assign IN[1] = in1; 

    assign IN[2] = in2; 

    assign IN[3] = in3; 

    assign IN[4] = in4; 

    assign IN[5] = in5; 

    assign IN[6] = in6; 
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    assign IN[7] = in7; 

    assign IN[8] = in8; 

    assign IN[9] = in9; 

    assign IN[10] = in10; 

    assign IN[11] = in11; 

    assign IN[12] = in12; 

    assign IN[13] = in13; 

    assign IN[14] = in14; 

    assign IN[15] = in15; 

    assign IN[16] = in16; 

    assign IN[17] = in17; 

    assign IN[18] = in18; 

    assign IN[19] = in19; 

    assign IN[20] = in20; 

    assign IN[21] = in21; 

    assign IN[22] = in22; 

    assign IN[23] = in23; 

    assign IN[24] = in24; 

    assign IN[25] = in25; 

    assign IN[26] = in26; 

    assign IN[27] = in27; 

    assign IN[28] = in28; 

    assign IN[29] = in29; 

    assign IN[30] = in30; 

    assign IN[31] = in31; 
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    assign IN[32] = in32; 

     

    genvar i; 

     

    generate for (i = 1; i <= 32; i = i + 1) begin 

    posit_mult M(IN[i], Wt[i], start, Mult[i], inf, zero, done); 

    end  

    endgenerate 

//    posit_mult M1(in1, w1, start, m1, inf, zero, done); 

//    posit_mult M2(in2, w2, start, m2, inf, zero, done); 

//    posit_mult M3(in3, w3, start, m3, inf, zero, done); 

//    posit_mult M4(in4, w4, start, m4, inf, zero, done); 

//    posit_mult M5(in5, w5, start, m5, inf, zero, done); 

//    posit_mult M6(in6, w6, start, m6, inf, zero, done); 

//    posit_mult M7(in7, w7, start, m7, inf, zero, done); 

//    posit_mult M8(in8, w8, start, m8, inf, zero, done); 

    ///adding weighted inputs 

 

     

    posit_adder A1(Mult[1], Mult[2], start, a1, inf, zero, done); 

    posit_adder A2(Mult[3], Mult[4], start, a2, inf, zero, done); 

    posit_adder A3(Mult[5], Mult[6], start, a3, inf, zero, done); 

    posit_adder A4(Mult[7], Mult[8], start, a4, inf, zero, done); 

    posit_adder A5(Mult[9], Mult[10], start, a5, inf, zero, done); 

    posit_adder A6(Mult[11], Mult[12], start, a6, inf, zero, done); 
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    posit_adder A7(Mult[13], Mult[14], start, a7, inf, zero, done); 

    posit_adder A8(Mult[15], Mult[16], start, a8, inf, zero, done); 

    posit_adder A9(Mult[17], Mult[18], start, a9, inf, zero, done); 

    posit_adder A10(Mult[19], Mult[20], start, a10, inf, zero, done); 

    posit_adder A11(Mult[21], Mult[22], start, a11, inf, zero, done); 

    posit_adder A12(Mult[23], Mult[24], start, a12, inf, zero, done); 

    posit_adder A13(Mult[25], Mult[26], start, a13, inf, zero, done); 

    posit_adder A14(Mult[27], Mult[28], start, a14, inf, zero, done); 

    posit_adder A15(Mult[29], Mult[30], start, a15, inf, zero, done); 

    posit_adder A16(Mult[31], Mult[32], start, a16, inf, zero, done); 

    ///////////////////////////////////////////////////////////////// 

    posit_adder A17(a1, a2, start, add1, inf, zero, done); 

    posit_adder A18(a3, a4, start, add2, inf, zero, done); 

    posit_adder A19(a5, a6, start, add3, inf, zero, done); 

    posit_adder A120(a7, a8, start, add4, inf, zero, done); 

    posit_adder A21(a9, a10, start, add5, inf, zero, done); 

    posit_adder A22(a11, a12, start, add6, inf, zero, done); 

    posit_adder A23(a13, a14, start, add7, inf, zero, done); 

    posit_adder A24(a15, a16, start, add8, inf, zero, done); 

    ////////////////////////////////////////////////////////////////// 

    posit_adder A25(add1, add2, start, add12, inf, zero, done); 

    posit_adder A26(add3, add4, start, add34, inf, zero, done); 

    posit_adder A27(add5, add6, start, add56, inf, zero, done); 

    posit_adder A28(add7, add8, start, add78, inf, zero, done); 

    ////////////////////////////////////////////////////////////////// 
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    posit_adder A29(add12, add34, start, add_out1, inf, zero, done); 

    posit_adder A30(add56, add78, start, add_out2, inf, zero, done); 

    /////////////////////////////////////////////////////////////////// 

    posit_adder Aout(add_out1, add_out2, start, add_out, inf, zero, done); 

     

    assign sig_out[15] = ~add_out[15]; 

    assign sig_out[14:13] = 2'b00; 

    assign sig_out[12:0] = add_out[14:2]; 

     

     

    Posit_to_FP P2F(sig_out, n_out);    

endmodule 

 

////////////////////////////////////////////////////////////////////////////////////////////// 

///////////////////////////////////Posit 1 Input Neuron/////////////////////////////////////// 

////////////////////////////////////////////////////////////////////////////////////////////// 

module sigmoid_1in(sig_in, sig_out); 

input [15:0] sig_in; 

output [15:0] sig_out; 

 

    assign sig_out[15] = ~sig_in[15]; 

    assign sig_out[14:13] = 2'b00; 

    assign sig_out[12:0] = sig_in[14:2]; 

 

endmodule 
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////////////////////////////////////////////////////////////////////////////////////////////// 

///////////////////////////////////Posit 2 input Neuron/////////////////////////////////////// 

////////////////////////////////////////////////////////////////////////////////////////////// 

`timescale 1ns / 1ps 

module neuronposit(in1, in2, n_out); 

    input [15:0] in1, in2; 

    output [15:0] n_out; 

    wire [15:0] w1, w2; 

    wire [15:0] m1, m2; 

    wire [15:0] add_out; 

    wire start, inf, zero, done; 

    wire [15:0] inp1, inp2; 

    wire [15:0] sig_out; 

     

//    FP2posit INP1(in1, inp1); 

//    FP2posit INP2(in2, inp2); 

    //FP_to_posit INP3(in3, inp3); 

    //FP_to_posit INP4(in4, inp4); 

     

    ///multiplying input with weights 

    posit_mult M1(in1, w1, start, m1, inf, zero, done); 

    posit_mult M2(in2, w2, start, m2, inf, zero, done); 

    //posit_mult M3(inp3, w3, start, m3, inf, zero, done); 

    //posit_mult M4(inp4, w4, start, m4, inf, zero, done); 
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    ///adding weighted inputs 

    posit_adder A1(m1, m2, start, add_out, inf, zero, done); 

    //posit_adder A2(m3, m4, start, a2, inf, zero, done); 

    //posit_adder A3(a1, a2, start, add_out, inf, zero, done); 

     

    assign sig_out[15] = ~add_out[15]; 

    assign sig_out[14:13] = 2'b00; 

    assign sig_out[12:0] = add_out[14:2]; 

     

    assign n_out = sig_out;  

    //Posit_to_FP P2F(sig_out, n_out); 

endmodule 

 

////////////////////////////////////////////////////////////////////////////////////////////// 

///////////////////////////////   Neuron 8 input internal         //////////////////////////// 

////////////////////////////////////////////////////////////////////////////////////////////// 

`timescale 1ns / 1ps 

module neuron8in (in1, in2, in3, in4, in5, in6, in7, in8, n_out); 

 

    input [15:0] in1, in2, in3, in4, in5, in6, in7, in8; 

    output [15:0] n_out; 

    wire [15:0] w1, w2, w3, w4, w5, w6, w7, w8; 

    wire [15:0] m1, m2, m3, m4, m5, m6, m7, m8; 

    wire [15:0] a1, a2, a3, a4, add1, add2, add_out; 
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    wire start, inf, zero, done; 

    wire [15:0] inp1, inp2; 

    wire [15:0] sig_out; 

     

//    FP2posit INP1(in1, inp1); 

//    FP2posit INP2(in2, inp2); 

    //FP_to_posit INP3(in3, inp3); 

    //FP_to_posit INP4(in4, inp4); 

     

    ///multiplying input with weights 

    posit_mult M1(in1, w1, start, m1, inf, zero, done); 

    posit_mult M2(in2, w2, start, m2, inf, zero, done); 

    posit_mult M3(in3, w3, start, m3, inf, zero, done); 

    posit_mult M4(in4, w4, start, m4, inf, zero, done); 

    posit_mult M5(in5, w5, start, m5, inf, zero, done); 

    posit_mult M6(in6, w6, start, m6, inf, zero, done); 

    posit_mult M7(in7, w7, start, m7, inf, zero, done); 

    posit_mult M8(in8, w8, start, m8, inf, zero, done); 

    ///adding weighted inputs 

    posit_adder A1(m1, m2, start, a1, inf, zero, done); 

    posit_adder A2(m3, m4, start, a2, inf, zero, done); 

    posit_adder A3(m5, m6, start, a3, inf, zero, done); 

    posit_adder A4(m7, m7, start, a4, inf, zero, done); 

    posit_adder A5(a1, a2, start, add1, inf, zero, done); 

    posit_adder A6(a3, a4, start, add2, inf, zero, done); 
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    posit_adder A7(add1, add2, start, add_out, inf, zero, done); 

     

    assign sig_out[15] = ~add_out[15]; 

    assign sig_out[14:13] = 2'b00; 

    assign sig_out[12:0] = add_out[14:2]; 

     

    assign n_out = sig_out; 

    //Posit_to_FP P2F(sig_out, n_out) 

endmodule 

////////////////////////////////////////////////////////////////////////////////////// 

////////////////////Floating Point to Posit Conversion//////////////////////////////// 

////////////////////////////////////////////////////////////////////////////////////// 

//module FP_to_posit(in, out); 

//function [15:0] log2; 

//input reg [15:0] value; 

// begin 

// value = value-1; 

// for (log2=0; value>0; log2=log2+1) 

//         value = value>>1; 

//       end 

//endfunction 

 

//parameter N = 16; 

//parameter E = 5; 

//parameter es = 3; //ES_max = E-1 
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//parameter BIAS = (2**(E-1))-1; 

 

//parameter Bs = log2(N); 

 

//input [N-1:0] in; 

//output [N-1:0] out; 

 

//wire s_in = in[N-1]; 

//wire [E-1:0] exp_in = in[N-2:N-1-E]; 

//wire [M-1:0] mant_in = in[M-1:0]; 

//wire zero_in = ~|{exp_in,mant_in}; 

//wire inf_in = &exp_in; 

 

//wire [M:0] mant = {|exp_in, mant_in}; 

 

//wire [N-1:0] LOD_in = {mant,{E{1'b0}}}; 

//wire[Bs-1:0] Lshift; 

//LOD_N #(.N(N)) uut (.in(LOD_in), .out(Lshift)); 

 

//wire[N-1:0] mant_tmp; 

//DSR_left_N_S #(.N(N), .S(Bs)) ls (.a(LOD_in),.b(Lshift),.c(mant_tmp)); 

 

//wire [E:0] exp = {exp_in[E-1:1], exp_in[0] | (~|exp_in)} - BIAS - Lshift; 

 

////Exponent and Regime Computation 
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//wire [E:0] exp_N = exp[E] ? -exp : exp; 

//wire [es-1:0] e_o = (exp[E] & |exp_N[es-1:0]) ? exp[es-1:0] : exp_N[es-1:0]; 

//wire [E-es-1:0] r_o = (~exp[E] || (exp[E] & |exp_N[es-1:0])) ? {{Bs{1'b0}},exp_N[E-1:es]} + 

1'b1 : {{Bs{1'b0}},exp_N[E-1:es]}; 

 

////Exponent and Mantissa Packing 

//wire [2*N-1:0]tmp_o = { {N{~exp[E]}}, exp[E], e_o, mant_tmp[N-2:es]}; 

 

////Including Regime bits in Exponent-Mantissa Packing 

//wire [2*N-1:0] tmp1_o; 

//wire [Bs-1:0] diff_b; 

//generate 

// if(E-es > Bs)  assign diff_b = |r_o[E-es-1:Bs] ? {{(Bs-2){1'b1}},2'b01} : r_o[Bs-1:0]; 

// else   assign diff_b = r_o; 

//endgenerate 

//DSR_right_N_S #(.N(2*N), .S(Bs)) dsr2 (.a(tmp_o), .b(diff_b), .c(tmp1_o)); 

 

////Final Output 

//wire [N-1:0] tmp1_oN = s_in ? -tmp1_o[N-1:0] : tmp1_o[N-1:0]; 

//assign out = inf_in|zero_in|(~mant_tmp[N-1]) ? {inf_in,{N-1{1'b0}}} : {s_in, tmp1_oN[N-1:1]}; 

 

//endmodule 

 

/////////////////////////////////LOD_N/////////////////////////////////////////////////////// 

module LOD_N (in, out); 

  function [15:0] log2; 
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    input reg [15:0] value; 

    begin 

      value = value-1; 

      for (log2=0; value>0; log2=log2+1) 

 value = value>>1; 

    end 

  endfunction 

 

parameter N = 64; 

parameter S = log2(N);  

input [N-1:0] in; 

output [S-1:0] out; 

 

wire vld; 

LOD #(.N(N)) l1 (in, out, vld); 

endmodule 

 

 

module LOD (in, out, vld); 

  function [15:0] log2; 

    input reg [15:0] value; 

    begin 

      value = value-1; 

      for (log2=0; value>0; log2=log2+1) 

 value = value>>1; 
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    end 

  endfunction 

 

 

parameter N = 64; 

parameter S = log2(N); 

 

   input [N-1:0] in; 

   output [S-1:0] out; 

   output vld; 

 

  generate 

    if (N == 2) 

      begin 

 assign vld = |in; 

 assign out = ~in[1] & in[0]; 

      end 

    else if (N & (N-1)) 

      LOD #(1<<S) LOD ({1<<S {1'b0}} | in,out,vld); 

    else 

      begin 

 wire [S-2:0] out_l, out_h; 

 wire out_vl, out_vh; 

 LOD #(N>>1) l(in[(N>>1)-1:0],out_l,out_vl); 

 LOD #(N>>1) h(in[N-1:N>>1],out_h,out_vh); 
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 assign vld = out_vl | out_vh; 

 assign out = out_vh ? {1'b0,out_h} : {out_vl,out_l}; 

      end 

  endgenerate 

endmodule 

 

/////////////////////////////////////DSR_left_N_S/////////////////////////////// 

module DSR_left_N_S(a,b,c); 

        parameter N=16; 

        parameter S=4; 

        input [N-1:0] a; 

        input [S-1:0] b; 

        output [N-1:0] c; 

 

wire [N-1:0] tmp [S-1:0]; 

assign tmp[0]  = b[0] ? a << 7'd1  : a;  

genvar i; 

generate 

 for (i=1; i<S; i=i+1)begin:loop_blk 

  assign tmp[i] = b[i] ? tmp[i-1] << 2**i : tmp[i-1]; 

 end 

endgenerate 

assign c = tmp[S-1]; 

 

endmodule 
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////////////////////////DSR_right_N_S////////////////////////////////////////////// 

module DSR_right_N_S(a,b,c); 

        parameter N=16; 

        parameter S=4; 

        input [N-1:0] a; 

        input [S-1:0] b; 

        output [N-1:0] c; 

 

wire [N-1:0] tmp [S-1:0]; 

assign tmp[0]  = b[0] ? a >> 7'd1  : a;  

genvar i; 

generate 

 for (i=1; i<S; i=i+1)begin:loop_blk 

  assign tmp[i] = b[i] ? tmp[i-1] >> 2**i : tmp[i-1]; 

 end 

endgenerate 

assign c = tmp[S-1]; 

endmodule 

//////////////////////////////////////////////////////////////////////////////////// 

//////////////////////Posit Adder/////////////////////////////////////////////////// 

//////////////////////////////////////////////////////////////////////////////////// 

//`include "DSR_right_N_S.v"  

//`include "LOD_N.v"  

//`include "LZD_N.v"  
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//`include "DSR_left_N_S.v" 

//`include "add_N.v" 

//`include "sub_N.v" 

//`include "data_extract.v"  

//`include "add_mantovf.v" 

module posit_adder (in1, in2, start, out, inf, zero, done); 

function [15:0] log2; 

input reg [15:0] value; 

 begin 

 value = value-1; 

 for (log2=0; value>0; log2=log2+1) 

         value = value>>1; 

       end 

endfunction 

parameter N = 16; //Posit Word Size 

parameter Bs = log2(N);  

parameter es = 3; //Posit Exponent Size 

 

input [N-1:0] in1, in2; 

input start;  

output [N-1:0] out; 

output inf, zero; 

output done; 

 

wire start0= start; 
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wire s1 = in1[N-1]; 

wire s2 = in2[N-1]; 

wire zero_tmp1 = |in1[N-2:0]; 

wire zero_tmp2 = |in2[N-2:0]; 

wire inf1 = in1[N-1] & (~zero_tmp1), 

 inf2 = in2[N-1] & (~zero_tmp2); 

wire zero1 = ~(in1[N-1] | zero_tmp1), 

 zero2 = ~(in2[N-1] | zero_tmp2); 

assign inf = inf1 | inf2, 

 zero = zero1 & zero2; 

 

//Data Extraction 

wire rc1, rc2; 

wire [Bs-1:0] regime1, regime2, Lshift1, Lshift2; 

wire [es-1:0] e1, e2; 

wire [N-es-1:0] mant1, mant2; 

wire [N-1:0] xin1 = s1 ? -in1 : in1; 

wire [N-1:0] xin2 = s2 ? -in2 : in2; 

data_extract #(.N(N),.es(es)) uut_de1(.in(xin1), .rc(rc1), .regime(regime1), .exp(e1), 

.mant(mant1), .Lshift(Lshift1)); 

data_extract #(.N(N),.es(es)) uut_de2(.in(xin2), .rc(rc2), .regime(regime2), .exp(e2), 

.mant(mant2), .Lshift(Lshift2)); 

 

wire [N-es:0] m1 = {zero_tmp1,mant1},  

 m2 = {zero_tmp2,mant2}; 
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//Large Checking and Assignment 

wire in1_gt_in2 = xin1[N-2:0] >= xin2[N-2:0] ? 1'b1 : 1'b0; 

wire ls = in1_gt_in2 ? s1 : s2; 

wire op = s1 ~^ s2; 

 

wire lrc = in1_gt_in2 ? rc1 : rc2; 

wire src = in1_gt_in2 ? rc2 : rc1; 

 

wire [Bs-1:0] lr = in1_gt_in2 ? regime1 : regime2; 

wire [Bs-1:0] sr = in1_gt_in2 ? regime2 : regime1; 

 

wire [es-1:0] le = in1_gt_in2 ? e1 : e2; 

wire [es-1:0] se = in1_gt_in2 ? e2 : e1; 

 

wire [N-es:0] lm = in1_gt_in2 ? m1 : m2; 

wire [N-es:0] sm = in1_gt_in2 ? m2 : m1; 

 

//Exponent Difference: Lower Mantissa Right Shift Amount 

wire [Bs:0] r_diff11, r_diff12, r_diff2; 

sub_N #(.N(Bs)) uut_sub1 (lr, sr, r_diff11);  

add_N #(.N(Bs)) uut_add1 (lr, sr, r_diff12);  

sub_N #(.N(Bs)) uut_sub2 (sr, lr, r_diff2);   

wire [Bs:0] r_diff =  lrc ? (src ? r_diff11 : r_diff12) : r_diff2; 

 

wire [es+Bs+1:0] diff; 
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sub_N #(.N(es+Bs+1)) uut_sub_diff ({r_diff,le}, {{Bs+1{1'b0}},se}, diff); 

wire [Bs-1:0] exp_diff = (|diff[es+Bs:Bs]) ? {Bs{1'b1}} : diff[Bs-1:0]; 

 

//DSR Right Shifting of Small Mantissa 

wire [N-1:0] DSR_right_in; 

generate 

 if (es >= 2)  

 assign DSR_right_in = {sm,{es-1{1'b0}}}; 

 else  

 assign DSR_right_in = sm; 

endgenerate 

 

wire [N-1:0] DSR_right_out; 

wire [Bs-1:0] DSR_e_diff  = exp_diff; 

DSR_right_N_S #(.N(N), .S(Bs))  dsr1(.a(DSR_right_in), .b(DSR_e_diff), .c(DSR_right_out));  

 

//Mantissa Addition 

wire [N-1:0] add_m_in1; 

generate 

 if (es >= 2)  

 assign add_m_in1 = {lm,{es-1{1'b0}}}; 

 else  

 assign add_m_in1 = lm; 

endgenerate 
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wire [N:0] add_m1, add_m2; 

add_N #(.N(N)) uut_add_m1 (add_m_in1, DSR_right_out, add_m1); 

sub_N #(.N(N)) uut_sub_m2 (add_m_in1, DSR_right_out, add_m2); 

wire [N:0] add_m = op ? add_m1 : add_m2; 

wire [1:0] mant_ovf = add_m[N:N-1]; 

 

//LOD of mantissa addition result 

wire [N-1:0] LOD_in = {(add_m[N] | add_m[N-1]), add_m[N-2:0]}; 

wire [Bs-1:0] left_shift; 

LOD_N #(.N(N)) l2(.in(LOD_in), .out(left_shift)); 

 

//DSR Left Shifting of mantissa result 

wire [N-1:0] DSR_left_out_t; 

DSR_left_N_S #(.N(N), .S(Bs)) dsl1(.a(add_m[N:1]), .b(left_shift), .c(DSR_left_out_t)); 

wire [N-1:0] DSR_left_out = DSR_left_out_t[N-1] ? DSR_left_out_t[N-1:0] : {DSR_left_out_t[N-

2:0],1'b0};  

//Exponent and Regime Computation 

wire [Bs:0] lr_N = lrc ? {1'b0,lr} : -{1'b0,lr}; 

wire [es+Bs+1:0] le_o_tmp, le_o; 

sub_N #(.N(es+Bs+1)) sub3 ({lr_N,le}, {{es+1{1'b0}},left_shift}, le_o_tmp); 

add_mantovf #(es+Bs+1) uut_add_mantovf (le_o_tmp, mant_ovf[1], le_o); 

 

wire [es+Bs:0] le_oN = le_o[es+Bs] ? -le_o : le_o; 

wire [es-1:0] e_o = (le_o[es+Bs] & |le_oN[es-1:0]) ? le_o[es-1:0] : le_oN[es-1:0]; 

wire [Bs-1:0] r_o = (~le_o[es+Bs] || (le_o[es+Bs] & |le_oN[es-1:0])) ? le_oN[es+Bs-1:es] + 1'b1 

: le_oN[es+Bs-1:es]; 
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//Exponent and Mantissa Packing 

wire [2*N-1:0]tmp_o = { {N{~le_o[es+Bs]}}, le_o[es+Bs], e_o, DSR_left_out[N-2:es]}; 

wire [2*N-1:0] tmp1_o; 

DSR_right_N_S #(.N(2*N), .S(Bs)) dsr2 (.a(tmp_o), .b(r_o), .c(tmp1_o)); 

 

//Final Output 

wire [2*N-1:0] tmp1_oN = ls ? -tmp1_o : tmp1_o; 

assign out = inf|zero|(~DSR_left_out[N-1]) ? {inf,{N-1{1'b0}}} : {ls, tmp1_oN[N-1:1]}, 

 done = start0; 

endmodule 

////////////////////////////////////////////////////////////////////////////////////// 

/////////////////////////////Posit Multiplication///////////////////////////////////// 

////////////////////////////////////////////////////////////////////////////////////// 

 

module posit_mult (in1, in2, start, out, inf, zero, done); 

function [15:0] log2; 

input reg [15:0] value; 

 begin 

 value = value-1; 

 for (log2=0; value>0; log2=log2+1) 

         value = value>>1; 

       end 

endfunction 
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parameter N = 16; 

parameter Bs = log2(N);  

parameter es = 3; 

 

input [N-1:0] in1, in2; 

input start;  

output [N-1:0] out; 

output inf, zero; 

output done; 

 

wire start0= start; 

wire s1 = in1[N-1]; 

wire s2 = in2[N-1]; 

wire zero_tmp1 = |in1[N-2:0]; 

wire zero_tmp2 = |in2[N-2:0]; 

wire inf1 = in1[N-1] & (~zero_tmp1), 

 inf2 = in2[N-1] & (~zero_tmp2); 

wire zero1 = ~(in1[N-1] | zero_tmp1), 

 zero2 = ~(in2[N-1] | zero_tmp2); 

assign inf = inf1 | inf2, 

 zero = zero1 & zero2; 

 

//Data Extraction 

wire rc1, rc2; 

wire [Bs-1:0] regime1, regime2, Lshift1, Lshift2; 
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wire [es-1:0] e1, e2; 

wire [N-es-1:0] mant1, mant2; 

wire [N-1:0] xin1 = s1 ? -in1 : in1; 

wire [N-1:0] xin2 = s2 ? -in2 : in2; 

data_extract #(.N(N),.es(es)) uut_de1(.in(xin1), .rc(rc1), .regime(regime1), .exp(e1), 

.mant(mant1), .Lshift(Lshift1)); 

data_extract #(.N(N),.es(es)) uut_de2(.in(xin2), .rc(rc2), .regime(regime2), .exp(e2), 

.mant(mant2), .Lshift(Lshift2)); 

 

wire [N-es:0] m1 = {zero_tmp1,mant1},  

 m2 = {zero_tmp2,mant2}; 

 

//Sign, Exponent and Mantissa Computation 

wire mult_s = s1 ^ s2; 

 

wire [2*(N-es)+1:0] mult_m = m1*m2; 

wire mult_m_ovf = mult_m[2*(N-es)+1]; 

wire [2*(N-es)+1:0] mult_mN = ~mult_m_ovf ? mult_m << 1'b1 : mult_m; 

 

wire [Bs+1:0] r1 = rc1 ? {2'b0,regime1} : -regime1; 

wire [Bs+1:0] r2 = rc2 ? {2'b0,regime2} : -regime2; 

wire [Bs+es+1:0] mult_e  =  {r1, e1} + {r2, e2} + mult_m_ovf; 

 

//Exponent and Regime Computation 

wire [es+Bs:0] mult_eN = mult_e[es+Bs+1] ? -mult_e : mult_e; 

wire [es-1:0] e_o = (mult_e[es+Bs+1] & |mult_eN[es-1:0]) ? mult_e[es-1:0] : mult_eN[es-1:0]; 
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wire [Bs:0] r_o = (~mult_e[es+Bs+1] || (mult_e[es+Bs+1] & |mult_eN[es-1:0])) ? mult_eN[es+Bs:es] 

+ 1'b1 : mult_eN[es+Bs:es]; 

 

//Exponent and Mantissa Packing 

wire [2*N-1:0]tmp_o = {{N{~mult_e[es+Bs+1]}},mult_e[es+Bs+1],e_o,mult_mN[2*(N-es):N-es+2]}; 

 

//Including Regime bits in Exponent-Mantissa Packing 

wire [2*N-1:0] tmp1_o; 

DSR_right_N_S #(.N(2*N), .S(Bs+1)) dsr2 (.a(tmp_o), .b(r_o[Bs] ? {Bs{1'b1}} : r_o), .c(tmp1_o)); 

 

//Final Output 

wire [2*N-1:0] tmp1_oN = mult_s ? -tmp1_o : tmp1_o; 

assign out = inf|zero|(~mult_mN[2*(N-es)+1]) ? {inf,{N-1{1'b0}}} : {mult_s, tmp1_oN[N-1:1]}, 

 done = start0; 

endmodule 

 

////////////////////////////////////////////////////////////////////////////////////////////// 

////////////////////////////////////////Posit to FP/////////////////////////////////////////// 

////////////////////////////////////////////////////////////////////////////////////////////// 

 

module Posit_to_FP (in, out); 

function [15:0] log2; 

input reg [15:0] value; 

 begin 

 value = value-1; 

 for (log2=0; value>0; log2=log2+1) 
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         value = value>>1; 

       end 

endfunction 

 

parameter N = 16; 

parameter E = 5; 

parameter es = 3; 

 

parameter M = N-E-1; 

parameter BIAS = (2**(E-1))-1; 

parameter Bs = log2(N);  

parameter EO = E > es+Bs ? E : es+Bs; 

 

input [N-1:0] in; 

output [N-1:0] out; 

 

wire s = in[N-1]; 

wire zero_tmp = |in[N-2:0]; 

wire inf_in = in[N-1] & (~zero_tmp); 

wire zero_in = ~(in[N-1] | zero_tmp); 

 

//Data Extraction 

wire rc; 

wire [Bs-1:0] rgm, Lshift; 

wire [es-1:0] e; 
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wire [N-es-1:0] mant; 

wire [N-1:0] xin = s ? -in : in; 

data_extract #(.N(N),.es(es)) uut_de1(.in(xin), .rc(rc), .regime(rgm), .exp(e), .mant(mant), 

.Lshift(Lshift)); 

 

wire [N-1:0] m = {zero_tmp,mant,{es-1{1'b0}}}; 

 

//Exponent and Regime Computation 

wire [EO+1:0] e_o; 

assign e_o = {(rc ? {{EO-es-Bs+1{1'b0}},rgm} : -{{EO-es-Bs+1{1'b0}},rgm}),e} + BIAS; 

//Final Output 

assign out = inf_in|e_o[EO:E]|&e_o[E-1:0] ? {s,{E-1{1'b1}},{M{1'b0}}} : (zero_in|(~m[N-1]) ? 

{s,{E-1{1'b0}},m[N-2:E]} : { s, e_o[E-1:0], m[N-2:E]} ); 

endmodule 

 

///////////////////////////LZD////////////////////////////////////////////////// 

module LZD_N (in, out); 

  function [15:0] log2; 

    input reg [15:0] value; 

    begin 

      value = value-1; 

      for (log2=0; value>0; log2=log2+1) 

 value = value>>1; 

    end 

  endfunction 
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parameter N = 64; 

parameter S = log2(N);  

input [N-1:0] in; 

output [S-1:0] out; 

 

wire vld; 

LZD #(.N(N)) l1 (in, out, vld); 

endmodule 

 

module LZD (in, out, vld); 

  function [15:0] log2; 

    input reg [15:0] value; 

    begin 

      value = value-1; 

      for (log2=0; value>0; log2=log2+1) 

 value = value>>1; 

    end 

  endfunction 

 

parameter N = 64; 

parameter S = log2(N); 

 

   input [N-1:0] in; 

   output [S-1:0] out; 

   output vld; 
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  generate 

    if (N == 2) 

      begin 

 assign vld = ~&in; 

 assign out = in[1] & ~in[0]; 

      end 

    else if (N & (N-1)) 

      LZD #(1<<S) LZD ({1<<S {1'b0}} | in,out,vld); 

    else 

      begin 

 wire [S-2:0] out_l; 

 wire [S-2:0] out_h; 

 wire out_vl, out_vh; 

 LZD #(N>>1) l(in[(N>>1)-1:0],out_l,out_vl); 

 LZD #(N>>1) h(in[N-1:N>>1],out_h,out_vh); 

 assign vld = out_vl | out_vh; 

 assign out = out_vh ? {1'b0,out_h} : {out_vl,out_l}; 

      end 

  endgenerate 

endmodule 

//////////////////////////////////////////////LOD///////////////////////////////////////////// 

////module LOD_N (in, out); 

////  function [15:0] log2; 

////    input reg [15:0] value; 
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////    begin 

////      value = value-1; 

////      for (log2=0; value>0; log2=log2+1) 

//// value = value>>1; 

////    end 

////  endfunction 

 

////parameter N = 64; 

////parameter S = log2(N);  

////input [N-1:0] in; 

////output [S-1:0] out; 

 

////wire vld; 

////LOD #(.N(N)) l1 (in, out, vld); 

////endmodule 

 

////module LOD (in, out, vld); 

////  function [15:0] log2; 

////    input reg [15:0] value; 

////    begin 

////      value = value-1; 

////      for (log2=0; value>0; log2=log2+1) 

//// value = value>>1; 

////    end 

////  endfunction 
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//parameter N = 64; 

//parameter S = log2(N); 

 

//   input [N-1:0] in; 

//   output [S-1:0] out; 

//   output vld; 

 

//  generate 

//    if (N == 2) 

//      begin 

// assign vld = |in; 

// assign out = ~in[1] & in[0]; 

//      end 

//    else if (N & (N-1)) 

//      LOD #(1<<S) LOD ({1<<S {1'b0}} | in,out,vld); 

//    else 

//      begin 

// wire [S-2:0] out_l, out_h; 

// wire out_vl, out_vh; 

// LOD #(N>>1) l(in[(N>>1)-1:0],out_l,out_vl); 

// LOD #(N>>1) h(in[N-1:N>>1],out_h,out_vh); 

// assign vld = out_vl | out_vh; 

// assign out = out_vh ? {1'b0,out_h} : {out_vl,out_l}; 
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//      end 

//  endgenerate 

//endmodule 

 

/////////////////////////////////END////////////////////////////////// 

`timescale 1ns / 1ps 

module neuron_posit(in1, in2, in3, in4, n_out); 

    input [15:0] in1, in2, in3, in4; 

    output [15:0] n_out; 

    wire [15:0] w1, w2, w3, w4; 

    wire [15:0] m1, m2, m3, m4; 

    wire [15:0] a1, a2, add_out; 

    wire start, inf, zero, done; 

    wire [15:0] inp1, inp2, inp3, inp4; 

    wire [15:0] sig_out; 

     

    FP_to_posit INP1(in1, inp1); 

    FP_to_posit INP2(in2, inp2); 

    FP_to_posit INP3(in3, inp3); 

    FP_to_posit INP4(in4, inp4); 

     

    ///multiplying input with weights 

    posit_mult M1(inp1, w1, start, m1, inf, zero, done); 

    posit_mult M2(inp2, w2, start, m2, inf, zero, done); 

    posit_mult M3(inp3, w3, start, m3, inf, zero, done); 
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    posit_mult M4(inp4, w4, start, m4, inf, zero, done); 

     

    ///adding weighted inputs 

    posit_adder A1(m1, m2, start, a1, inf, zero, done); 

    posit_adder A2(m3, m4, start, a2, inf, zero, done); 

    posit_adder A3(a1, a2, start, add_out, inf, zero, done); 

     

    assign sig_out[15] = ~add_out[15]; 

    assign sig_out[14:13] = 2'b00; 

    assign sig_out[12:0] = add_out[14:2]; 

     

     

    Posit_to_FP P2F(sig_out, n_out); 

endmodule 

 

//////////////////////////////////////////////////////////////////////////////////// 

//////////////////Floating Point to Posit Conversion//////////////////////////////// 

//////////////////////////////////////////////////////////////////////////////////// 

 

module FP_to_posit(in, out); 

function [15:0] log2; 

input reg [15:0] value; 

 begin 

 value = value-1; 

 for (log2=0; value>0; log2=log2+1) 
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         value = value>>1; 

       end 

endfunction 

 

parameter N = 16; 

parameter E = 5; 

parameter es = 3; //ES_max = E-1 

parameter M = N-E-1; 

parameter BIAS = (2**(E-1))-1; 

 

parameter Bs = log2(N); 

 

input [N-1:0] in; 

output [N-1:0] out; 

 

wire s_in = in[N-1]; 

wire [E-1:0] exp_in = in[N-2:N-1-E]; 

wire [M-1:0] mant_in = in[M-1:0]; 

wire zero_in = ~|{exp_in,mant_in}; 

wire inf_in = &exp_in; 

 

wire [M:0] mant = {|exp_in, mant_in}; 

 

wire [N-1:0] LOD_in = {mant,{E{1'b0}}}; 

wire[Bs-1:0] Lshift; 
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LOD_N #(.N(N)) uut (.in(LOD_in), .out(Lshift)); 

 

wire[N-1:0] mant_tmp; 

DSR_left_N_S #(.N(N), .S(Bs)) ls (.a(LOD_in),.b(Lshift),.c(mant_tmp)); 

 

wire [E:0] exp = {exp_in[E-1:1], exp_in[0] | (~|exp_in)} - BIAS - Lshift; 

 

//Exponent and Regime Computation 

wire [E:0] exp_N = exp[E] ? -exp : exp; 

wire [es-1:0] e_o = (exp[E] & |exp_N[es-1:0]) ? exp[es-1:0] : exp_N[es-1:0]; 

wire [E-es-1:0] r_o = (~exp[E] || (exp[E] & |exp_N[es-1:0])) ? {{Bs{1'b0}},exp_N[E-1:es]} + 

1'b1 : {{Bs{1'b0}},exp_N[E-1:es]}; 

 

//Exponent and Mantissa Packing 

wire [2*N-1:0]tmp_o = { {N{~exp[E]}}, exp[E], e_o, mant_tmp[N-2:es]}; 

 

//Including Regime bits in Exponent-Mantissa Packing 

wire [2*N-1:0] tmp1_o; 

wire [Bs-1:0] diff_b; 

generate 

 if(E-es > Bs)  assign diff_b = |r_o[E-es-1:Bs] ? {{(Bs-2){1'b1}},2'b01} : r_o[Bs-1:0]; 

 else   assign diff_b = r_o; 

endgenerate 

DSR_right_N_S #(.N(2*N), .S(Bs)) dsr2 (.a(tmp_o), .b(diff_b), .c(tmp1_o)); 

 

//Final Output 
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wire [N-1:0] tmp1_oN = s_in ? -tmp1_o[N-1:0] : tmp1_o[N-1:0]; 

assign out = inf_in|zero_in|(~mant_tmp[N-1]) ? {inf_in,{N-1{1'b0}}} : {s_in, tmp1_oN[N-1:1]}; 

endmodule 

 

///////////////////////////////LOD_N/////////////////////////////////////////////////////// 

module LOD_N (in, out); 

  function [15:0] log2; 

    input reg [15:0] value; 

    begin 

      value = value-1; 

      for (log2=0; value>0; log2=log2+1) 

 value = value>>1; 

    end 

  endfunction 

 

parameter N = 64; 

parameter S = log2(N);  

input [N-1:0] in; 

output [S-1:0] out; 

 

wire vld; 

LOD #(.N(N)) l1 (in, out, vld); 

endmodule 
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module LOD (in, out, vld); 

  function [15:0] log2; 

    input reg [15:0] value; 

    begin 

      value = value-1; 

      for (log2=0; value>0; log2=log2+1) 

 value = value>>1; 

    end 

  endfunction 

parameter N = 64; 

parameter S = log2(N); 

 

   input [N-1:0] in; 

   output [S-1:0] out; 

   output vld; 

 

  generate 

    if (N == 2) 

      begin 

 assign vld = |in; 

 assign out = ~in[1] & in[0]; 

      end 

    else if (N & (N-1)) 

      LOD #(1<<S) LOD ({1<<S {1'b0}} | in,out,vld); 

    else 
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      begin 

 wire [S-2:0] out_l, out_h; 

 wire out_vl, out_vh; 

 LOD #(N>>1) l(in[(N>>1)-1:0],out_l,out_vl); 

 LOD #(N>>1) h(in[N-1:N>>1],out_h,out_vh); 

 assign vld = out_vl | out_vh; 

 assign out = out_vh ? {1'b0,out_h} : {out_vl,out_l}; 

      end 

  endgenerate 

endmodule 

/////////////////////////////////////DSR_left_N_S/////////////////////////////// 

module DSR_left_N_S(a,b,c); 

        parameter N=16; 

        parameter S=4; 

        input [N-1:0] a; 

        input [S-1:0] b; 

        output [N-1:0] c; 

 

wire [N-1:0] tmp [S-1:0]; 

assign tmp[0]  = b[0] ? a << 7'd1  : a;  

genvar i; 

generate 

 for (i=1; i<S; i=i+1)begin:loop_blk 

  assign tmp[i] = b[i] ? tmp[i-1] << 2**i : tmp[i-1]; 

 end 
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endgenerate 

assign c = tmp[S-1]; 

endmodule 

 

////////////////////////DSR_right_N_S////////////////////////////////////////////// 

module DSR_right_N_S(a,b,c); 

        parameter N=16; 

        parameter S=4; 

        input [N-1:0] a; 

        input [S-1:0] b; 

        output [N-1:0] c; 

 

wire [N-1:0] tmp [S-1:0]; 

assign tmp[0]  = b[0] ? a >> 7'd1  : a;  

genvar i; 

generate 

 for (i=1; i<S; i=i+1)begin:loop_blk 

  assign tmp[i] = b[i] ? tmp[i-1] >> 2**i : tmp[i-1]; 

 end 

endgenerate 

assign c = tmp[S-1]; 

endmodule 
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//////////////////////////////////////////////////////////////////////////////////// 

//////////////////////Posit Adder/////////////////////////////////////////////////// 

//////////////////////////////////////////////////////////////////////////////////// 

//`include "DSR_right_N_S.v"  

//`include "LOD_N.v"  

//`include "LZD_N.v"  

//`include "DSR_left_N_S.v" 

//`include "add_N.v" 

//`include "sub_N.v" 

//`include "data_extract.v"  

//`include "add_mantovf.v" 

module posit_adder (in1, in2, start, out, inf, zero, done); 

function [15:0] log2; 

input reg [15:0] value; 

 begin 

 value = value-1; 

 for (log2=0; value>0; log2=log2+1) 

         value = value>>1; 

       end 

endfunction 

 

parameter N = 16; //Posit Word Size 

parameter Bs = log2(N);  

parameter es = 3; //Posit Exponent Size 
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input [N-1:0] in1, in2; 

input start;  

output [N-1:0] out; 

output inf, zero; 

output done; 

 

wire start0= start; 

wire s1 = in1[N-1]; 

wire s2 = in2[N-1]; 

wire zero_tmp1 = |in1[N-2:0]; 

wire zero_tmp2 = |in2[N-2:0]; 

wire inf1 = in1[N-1] & (~zero_tmp1), 

 inf2 = in2[N-1] & (~zero_tmp2); 

wire zero1 = ~(in1[N-1] | zero_tmp1), 

 zero2 = ~(in2[N-1] | zero_tmp2); 

assign inf = inf1 | inf2, 

 zero = zero1 & zero2; 

 

//Data Extraction 

wire rc1, rc2; 

wire [Bs-1:0] regime1, regime2, Lshift1, Lshift2; 

wire [es-1:0] e1, e2; 

wire [N-es-1:0] mant1, mant2; 

wire [N-1:0] xin1 = s1 ? -in1 : in1; 

wire [N-1:0] xin2 = s2 ? -in2 : in2; 
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data_extract #(.N(N),.es(es)) uut_de1(.in(xin1), .rc(rc1), .regime(regime1), .exp(e1), 

.mant(mant1), .Lshift(Lshift1)); 

data_extract #(.N(N),.es(es)) uut_de2(.in(xin2), .rc(rc2), .regime(regime2), .exp(e2), 

.mant(mant2), .Lshift(Lshift2)); 

 

wire [N-es:0] m1 = {zero_tmp1,mant1},  

 m2 = {zero_tmp2,mant2}; 

 

//Large Checking and Assignment 

wire in1_gt_in2 = xin1[N-2:0] >= xin2[N-2:0] ? 1'b1 : 1'b0; 

 

wire ls = in1_gt_in2 ? s1 : s2; 

wire op = s1 ~^ s2; 

 

wire lrc = in1_gt_in2 ? rc1 : rc2; 

wire src = in1_gt_in2 ? rc2 : rc1; 

 

wire [Bs-1:0] lr = in1_gt_in2 ? regime1 : regime2; 

wire [Bs-1:0] sr = in1_gt_in2 ? regime2 : regime1; 

 

wire [es-1:0] le = in1_gt_in2 ? e1 : e2; 

wire [es-1:0] se = in1_gt_in2 ? e2 : e1; 

 

wire [N-es:0] lm = in1_gt_in2 ? m1 : m2; 

wire [N-es:0] sm = in1_gt_in2 ? m2 : m1; 
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//Exponent Difference: Lower Mantissa Right Shift Amount 

wire [Bs:0] r_diff11, r_diff12, r_diff2; 

sub_N #(.N(Bs)) uut_sub1 (lr, sr, r_diff11);  

add_N #(.N(Bs)) uut_add1 (lr, sr, r_diff12);  

sub_N #(.N(Bs)) uut_sub2 (sr, lr, r_diff2);   

wire [Bs:0] r_diff =  lrc ? (src ? r_diff11 : r_diff12) : r_diff2; 

 

wire [es+Bs+1:0] diff; 

sub_N #(.N(es+Bs+1)) uut_sub_diff ({r_diff,le}, {{Bs+1{1'b0}},se}, diff); 

wire [Bs-1:0] exp_diff = (|diff[es+Bs:Bs]) ? {Bs{1'b1}} : diff[Bs-1:0]; 

 

//DSR Right Shifting of Small Mantissa 

wire [N-1:0] DSR_right_in; 

generate 

 if (es >= 2)  

 assign DSR_right_in = {sm,{es-1{1'b0}}}; 

 else  

 assign DSR_right_in = sm; 

endgenerate 

 

wire [N-1:0] DSR_right_out; 

wire [Bs-1:0] DSR_e_diff  = exp_diff; 

DSR_right_N_S #(.N(N), .S(Bs))  dsr1(.a(DSR_right_in), .b(DSR_e_diff), .c(DSR_right_out));  

 

//Mantissa Addition 
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wire [N-1:0] add_m_in1; 

generate 

 if (es >= 2)  

 assign add_m_in1 = {lm,{es-1{1'b0}}}; 

 else  

 assign add_m_in1 = lm; 

endgenerate 

 

wire [N:0] add_m1, add_m2; 

add_N #(.N(N)) uut_add_m1 (add_m_in1, DSR_right_out, add_m1); 

sub_N #(.N(N)) uut_sub_m2 (add_m_in1, DSR_right_out, add_m2); 

wire [N:0] add_m = op ? add_m1 : add_m2; 

wire [1:0] mant_ovf = add_m[N:N-1]; 

 

//LOD of mantissa addition result 

wire [N-1:0] LOD_in = {(add_m[N] | add_m[N-1]), add_m[N-2:0]}; 

wire [Bs-1:0] left_shift; 

LOD_N #(.N(N)) l2(.in(LOD_in), .out(left_shift)); 

 

//DSR Left Shifting of mantissa result 

wire [N-1:0] DSR_left_out_t; 

DSR_left_N_S #(.N(N), .S(Bs)) dsl1(.a(add_m[N:1]), .b(left_shift), .c(DSR_left_out_t)); 

wire [N-1:0] DSR_left_out = DSR_left_out_t[N-1] ? DSR_left_out_t[N-1:0] : {DSR_left_out_t[N-

2:0],1'b0};  
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//Exponent and Regime Computation 

wire [Bs:0] lr_N = lrc ? {1'b0,lr} : -{1'b0,lr}; 

wire [es+Bs+1:0] le_o_tmp, le_o; 

sub_N #(.N(es+Bs+1)) sub3 ({lr_N,le}, {{es+1{1'b0}},left_shift}, le_o_tmp); 

add_mantovf #(es+Bs+1) uut_add_mantovf (le_o_tmp, mant_ovf[1], le_o); 

 

wire [es+Bs:0] le_oN = le_o[es+Bs] ? -le_o : le_o; 

wire [es-1:0] e_o = (le_o[es+Bs] & |le_oN[es-1:0]) ? le_o[es-1:0] : le_oN[es-1:0]; 

wire [Bs-1:0] r_o = (~le_o[es+Bs] || (le_o[es+Bs] & |le_oN[es-1:0])) ? le_oN[es+Bs-1:es] + 1'b1 

: le_oN[es+Bs-1:es]; 

 

//Exponent and Mantissa Packing 

wire [2*N-1:0]tmp_o = { {N{~le_o[es+Bs]}}, le_o[es+Bs], e_o, DSR_left_out[N-2:es]}; 

wire [2*N-1:0] tmp1_o; 

DSR_right_N_S #(.N(2*N), .S(Bs)) dsr2 (.a(tmp_o), .b(r_o), .c(tmp1_o)); 

 

//Final Output 

wire [2*N-1:0] tmp1_oN = ls ? -tmp1_o : tmp1_o; 

assign out = inf|zero|(~DSR_left_out[N-1]) ? {inf,{N-1{1'b0}}} : {ls, tmp1_oN[N-1:1]}, 

 done = start0; 

endmodule 

 

////////////////////////////////////////////////////////////////////////////////////// 

/////////////////////////////Posit Multiplication///////////////////////////////////// 

////////////////////////////////////////////////////////////////////////////////////// 
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module posit_mult (in1, in2, start, out, inf, zero, done); 

 

function [15:0] log2; 

input reg [15:0] value; 

 begin 

 value = value-1; 

 for (log2=0; value>0; log2=log2+1) 

         value = value>>1; 

       end 

endfunction 

 

parameter N = 16; 

parameter Bs = log2(N);  

parameter es = 3; 

 

input [N-1:0] in1, in2; 

input start;  

output [N-1:0] out; 

output inf, zero; 

output done; 

 

wire start0= start; 

wire s1 = in1[N-1]; 

wire s2 = in2[N-1]; 

wire zero_tmp1 = |in1[N-2:0]; 
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wire zero_tmp2 = |in2[N-2:0]; 

wire inf1 = in1[N-1] & (~zero_tmp1), 

 inf2 = in2[N-1] & (~zero_tmp2); 

wire zero1 = ~(in1[N-1] | zero_tmp1), 

 zero2 = ~(in2[N-1] | zero_tmp2); 

assign inf = inf1 | inf2, 

 zero = zero1 & zero2; 

 

//Data Extraction 

wire rc1, rc2; 

wire [Bs-1:0] regime1, regime2, Lshift1, Lshift2; 

wire [es-1:0] e1, e2; 

wire [N-es-1:0] mant1, mant2; 

wire [N-1:0] xin1 = s1 ? -in1 : in1; 

wire [N-1:0] xin2 = s2 ? -in2 : in2; 

data_extract #(.N(N),.es(es)) uut_de1(.in(xin1), .rc(rc1), .regime(regime1), .exp(e1), 

.mant(mant1), .Lshift(Lshift1)); 

data_extract #(.N(N),.es(es)) uut_de2(.in(xin2), .rc(rc2), .regime(regime2), .exp(e2), 

.mant(mant2), .Lshift(Lshift2)); 

 

wire [N-es:0] m1 = {zero_tmp1,mant1},  

 m2 = {zero_tmp2,mant2}; 

 

//Sign, Exponent and Mantissa Computation 

wire mult_s = s1 ^ s2; 

 



 263 

wire [2*(N-es)+1:0] mult_m = m1*m2; 

wire mult_m_ovf = mult_m[2*(N-es)+1]; 

wire [2*(N-es)+1:0] mult_mN = ~mult_m_ovf ? mult_m << 1'b1 : mult_m; 

 

wire [Bs+1:0] r1 = rc1 ? {2'b0,regime1} : -regime1; 

wire [Bs+1:0] r2 = rc2 ? {2'b0,regime2} : -regime2; 

wire [Bs+es+1:0] mult_e  =  {r1, e1} + {r2, e2} + mult_m_ovf; 

 

//Exponent and Regime Computation 

wire [es+Bs:0] mult_eN = mult_e[es+Bs+1] ? -mult_e : mult_e; 

wire [es-1:0] e_o = (mult_e[es+Bs+1] & |mult_eN[es-1:0]) ? mult_e[es-1:0] : mult_eN[es-1:0]; 

wire [Bs:0] r_o = (~mult_e[es+Bs+1] || (mult_e[es+Bs+1] & |mult_eN[es-1:0])) ? mult_eN[es+Bs:es] 

+ 1'b1 : mult_eN[es+Bs:es]; 

 

//Exponent and Mantissa Packing 

wire [2*N-1:0]tmp_o = {{N{~mult_e[es+Bs+1]}},mult_e[es+Bs+1],e_o,mult_mN[2*(N-es):N-es+2]}; 

 

 

//Including Regime bits in Exponent-Mantissa Packing 

wire [2*N-1:0] tmp1_o; 

DSR_right_N_S #(.N(2*N), .S(Bs+1)) dsr2 (.a(tmp_o), .b(r_o[Bs] ? {Bs{1'b1}} : r_o), .c(tmp1_o)); 

 

 

//Final Output 

wire [2*N-1:0] tmp1_oN = mult_s ? -tmp1_o : tmp1_o; 

assign out = inf|zero|(~mult_mN[2*(N-es)+1]) ? {inf,{N-1{1'b0}}} : {mult_s, tmp1_oN[N-1:1]}, 
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 done = start0; 

 

endmodule 

 

////////////////////////////////////////////////////////////////////////////////////////////// 

////////////////////////////////////////Posit to FP ////////////////////////////////////////// 

////////////////////////////////////////////////////////////////////////////////////////////// 

 

module Posit_to_FP (in, out); 

function [15:0] log2; 

input reg [15:0] value; 

 begin 

 value = value-1; 

 for (log2=0; value>0; log2=log2+1) 

         value = value>>1; 

       end 

endfunction 

 

parameter N = 16; 

parameter E = 5; 

parameter es = 3; 

 

parameter M = N-E-1; 

parameter BIAS = (2**(E-1))-1; 

parameter Bs = log2(N);  
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parameter EO = E > es+Bs ? E : es+Bs; 

input [N-1:0] in; 

output [N-1:0] out; 

 

wire s = in[N-1]; 

wire zero_tmp = |in[N-2:0]; 

wire inf_in = in[N-1] & (~zero_tmp); 

wire zero_in = ~(in[N-1] | zero_tmp); 

 

//Data Extraction 

wire rc; 

wire [Bs-1:0] rgm, Lshift; 

wire [es-1:0] e; 

wire [N-es-1:0] mant; 

wire [N-1:0] xin = s ? -in : in; 

data_extract #(.N(N),.es(es)) uut_de1(.in(xin), .rc(rc), .regime(rgm), .exp(e), .mant(mant), 

.Lshift(Lshift)); 

 

wire [N-1:0] m = {zero_tmp,mant,{es-1{1'b0}}}; 

 

//Exponent and Regime Computation 

wire [EO+1:0] e_o; 

assign e_o = {(rc ? {{EO-es-Bs+1{1'b0}},rgm} : -{{EO-es-Bs+1{1'b0}},rgm}),e} + BIAS; 

//Final Output 

assign out = inf_in|e_o[EO:E]|&e_o[E-1:0] ? {s,{E-1{1'b1}},{M{1'b0}}} : (zero_in|(~m[N-1]) ? 

{s,{E-1{1'b0}},m[N-2:E]} : { s, e_o[E-1:0], m[N-2:E]} ); 
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endmodule 

 

///////////////////////////LZD////////////////////////////////////////////////// 

module LZD_N (in, out); 

  function [15:0] log2; 

    input reg [15:0] value; 

    begin 

      value = value-1; 

      for (log2=0; value>0; log2=log2+1) 

 value = value>>1; 

    end 

  endfunction 

 

parameter N = 64; 

parameter S = log2(N);  

input [N-1:0] in; 

output [S-1:0] out; 

 

wire vld; 

LZD #(.N(N)) l1 (in, out, vld); 

endmodule 
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module LZD (in, out, vld); 

 

  function [15:0] log2; 

    input reg [15:0] value; 

    begin 

      value = value-1; 

      for (log2=0; value>0; log2=log2+1) 

 value = value>>1; 

    end 

  endfunction 

 

parameter N = 64; 

parameter S = log2(N); 

 

   input [N-1:0] in; 

   output [S-1:0] out; 

   output vld; 

  generate 

    if (N == 2) 

      begin 

 assign vld = ~&in; 

 assign out = in[1] & ~in[0]; 

      end 

    else if (N & (N-1)) 

      LZD #(1<<S) LZD ({1<<S {1'b0}} | in,out,vld); 
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    else 

      begin 

 wire [S-2:0] out_l; 

 wire [S-2:0] out_h; 

 wire out_vl, out_vh; 

 LZD #(N>>1) l(in[(N>>1)-1:0],out_l,out_vl); 

 LZD #(N>>1) h(in[N-1:N>>1],out_h,out_vh); 

 assign vld = out_vl | out_vh; 

 assign out = out_vh ? {1'b0,out_h} : {out_vl,out_l}; 

      end 

  endgenerate 

endmodule 

 

//////////////////////////////////////////////LOD///////////////////////////////////////////// 

////module LOD_N (in, out); 

////  function [15:0] log2; 

////    input reg [15:0] value; 

////    begin 

////      value = value-1; 

////      for (log2=0; value>0; log2=log2+1) 

//// value = value>>1; 

////    end 

////  endfunction 

 

////parameter N = 64; 



 269 

////parameter S = log2(N);  

////input [N-1:0] in; 

////output [S-1:0] out; 

 

////wire vld; 

////LOD #(.N(N)) l1 (in, out, vld); 

////endmodule 

 

////module LOD (in, out, vld); 

////  function [15:0] log2; 

////    input reg [15:0] value; 

////    begin 

////      value = value-1; 

////      for (log2=0; value>0; log2=log2+1) 

//// value = value>>1; 

////    end 

////  endfunction 

 

//parameter N = 64; 

//parameter S = log2(N); 

 

//   input [N-1:0] in; 

//   output [S-1:0] out; 

//   output vld; 
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//  generate 

//    if (N == 2) 

//      begin 

// assign vld = |in; 

// assign out = ~in[1] & in[0]; 

//      end 

//    else if (N & (N-1)) 

//      LOD #(1<<S) LOD ({1<<S {1'b0}} | in,out,vld); 

//    else 

//      begin 

// wire [S-2:0] out_l, out_h; 

// wire out_vl, out_vh; 

// LOD #(N>>1) l(in[(N>>1)-1:0],out_l,out_vl); 

// LOD #(N>>1) h(in[N-1:N>>1],out_h,out_vh); 

// assign vld = out_vl | out_vh; 

// assign out = out_vh ? {1'b0,out_h} : {out_vl,out_l}; 

//      end 

//  endgenerate 

//endmodule 

 

 

/////////////////////////////////END////////////////////////////////// 
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C.2. Verilog Code for Classification ANN 

//////////////////////////////////////////////////////////////////////////////////// 

/////////////////////       Classification C-ANN        //////////////////////////// 

//////////////////////////////////////////////////////////////////////////////////// 

`timescale 1ns / 1ps 

module ClasANN(pH, ORP, DO, EC, Pot, Agri, Waste); 

 

input [15:0] pH, ORP, DO, EC; 

output [15:0] Pot, Agri, Waste; 

 

wire [15:0] in1, in2, in3, in4; 

wire [15:0] l [1:32]; 

wire [15:0] m [1:32]; 

wire [15:0] n [1:32]; 

wire [15:0] Pot_out, Agri_out, Waste_out; 

 

sigmoid_1in I1(pH, in1); 

sigmoid_1in I2(ORP, in2); 

sigmoid_1in I3(DO, in3); 

sigmoid_1in I4(EC, in4); 

 

genvar i; 

generate 

    for (i = 1; i <= 32; i = i + 1) begin 

        neuron4in L(in1, in2, in3, in4, l[i]); 
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        end  

endgenerate 

generate 

    for (i = 1; i <= 32 ; i = i + 1) begin 

            neuron32in M(l[1], l[2], l[3], l[4], l[5], l[6], l[7], l[8], l[9], l[10], l[11], 

l[12], l[13], l[14], l[15], l[16], l[17], l[18], l[19], l[20], l[21], l[22], l[23], l[24], 

l[25], l[26], l[27], l[28], l[29], l[30], l[31], l[32], m[i] ); 

    end 

endgenerate 

generate 

    for (i = 1; i <= 32 ; i = i + 1) begin 

            neuron32in N(m[1], m[2], m[3], m[4], m[5], m[6], m[7], m[8], m[9], m[10], m[11], 

m[12], m[13], m[14], m[15], m[16], m[17], m[18], m[19], m[20], m[21], m[22], m[23], m[24], 

m[25], m[26], m[27], m[28], m[29], m[30], m[31], m[32], n[i] ); 

    end 

endgenerate 

 

neuron32in P(n[1], n[2], n[3], n[4], n[5], n[6], n[7], n[8],n[9], n[10], n[11], n[12], n[13], 

n[14], n[15], n[16],n[17], n[18], n[19], n[20], n[21], n[22], n[23], n[24],n[25], n[26], n[27], 

n[28], n[29], n[30], n[31], n[32], Pot_out);  

neuron32in A(n[1], n[2], n[3], n[4], n[5], n[6], n[7], n[8],n[9], n[10], n[11], n[12], n[13], 

n[14], n[15], n[16],n[17], n[18], n[19], n[20], n[21], n[22], n[23], n[24],n[25], n[26], n[27], 

n[28], n[29], n[30], n[31], n[32], Agri_out);  

neuron32in W(n[1], n[2], n[3], n[4], n[5], n[6], n[7], n[8],n[9], n[10], n[11], n[12], n[13], 

n[14], n[15], n[16],n[17], n[18], n[19], n[20], n[21], n[22], n[23], n[24],n[25], n[26], n[27], 

n[28], n[29], n[30], n[31], n[32], Waste_out);  

 

Posit_to_FP POT(Pot_out, Pot); 

Posit_to_FP AGRI(Agri_out, Agri); 

Posit_to_FP WASTE(Waste_out, Waste); 
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endmodule 

 

////////////////////////////////////////////////////////////////////////////////////////////// 

//////////////////////////          Neuron 32 input internal            ////////////////////// 

////////////////////////////////////////////////////////////////////////////////////////////// 

`timescale 1ns / 1ps 

module neuron32in (in1, in2, in3, in4, in5, in6, in7, in8, in9, in10, in11, in12, in13, in14, 

in15, in16, in17, in18, in19, in20, in21, in22, in23, in24, in25, in26, in27, in28, in29, in30, 

in31, in32, n_out); 

 

    input [31:0] in1, in2, in3, in4, in5, in6, in7, in8, in9, in10, in11, in12, in13, in14, 

in15, in16, in17, in18, in19, in20, in21, in22, in23, in24, in25, in26, in27, in28, in29, in30, 

in31, in32 ; 

    output [31:0] n_out; 

    wire [15:0] IN [1:32]; 

    reg [15:0] Wt [1:32]; 

    wire [15:0] Mult [1:32]; 

    wire [15:0] a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16; 

    wire [15:0] add1, add2, add3, add4, add5, add6, add7, add8; 

    wire [15:0] add12, add34, add56, add78; 

    wire [15:0] add_out1, add_out2, add_out; 

    wire start, inf, zero, done; 

    wire [15:0] inp1, inp2; 

    wire [15:0] sig_out; 

     

//    FP2posit INP1(in1, inp1); 

//    FP2posit INP2(in2, inp2); 
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    //FP_to_posit INP3(in3, inp3); 

    //FP_to_posit INP4(in4, inp4); 

     

    ///multiplying input with weights 

     

    assign IN[1] = in1; 

    assign IN[2] = in2; 

    assign IN[3] = in3; 

    assign IN[4] = in4; 

    assign IN[5] = in5; 

    assign IN[6] = in6; 

    assign IN[7] = in7; 

    assign IN[8] = in8; 

    assign IN[9] = in9; 

    assign IN[10] = in10; 

    assign IN[11] = in11; 

    assign IN[12] = in12; 

    assign IN[13] = in13; 

    assign IN[14] = in14; 

    assign IN[15] = in15; 

    assign IN[16] = in16; 

    assign IN[17] = in17; 

    assign IN[18] = in18; 

    assign IN[19] = in19; 

    assign IN[20] = in20; 
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    assign IN[21] = in21; 

    assign IN[22] = in22; 

    assign IN[23] = in23; 

    assign IN[24] = in24; 

    assign IN[25] = in25; 

    assign IN[26] = in26; 

    assign IN[27] = in27; 

    assign IN[28] = in28; 

    assign IN[29] = in29; 

    assign IN[30] = in30; 

    assign IN[31] = in31; 

    assign IN[32] = in32; 

     

    genvar i; 

    generate for (i = 1; i <= 32; i = i + 1) begin 

    posit_mult M(IN[i], Wt[i], start, Mult[i], inf, zero, done); 

    end  

    endgenerate 

//    posit_mult M1(in1, w1, start, m1, inf, zero, done); 

//    posit_mult M2(in2, w2, start, m2, inf, zero, done); 

//    posit_mult M3(in3, w3, start, m3, inf, zero, done); 

//    posit_mult M4(in4, w4, start, m4, inf, zero, done); 

//    posit_mult M5(in5, w5, start, m5, inf, zero, done); 

//    posit_mult M6(in6, w6, start, m6, inf, zero, done); 

//    posit_mult M7(in7, w7, start, m7, inf, zero, done); 
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//    posit_mult M8(in8, w8, start, m8, inf, zero, done); 

    ///adding weighted inputs 

    posit_adder A1(Mult[1], Mult[2], start, a1, inf, zero, done); 

    posit_adder A2(Mult[3], Mult[4], start, a2, inf, zero, done); 

    posit_adder A3(Mult[5], Mult[6], start, a3, inf, zero, done); 

    posit_adder A4(Mult[7], Mult[8], start, a4, inf, zero, done); 

    posit_adder A5(Mult[9], Mult[10], start, a5, inf, zero, done); 

    posit_adder A6(Mult[11], Mult[12], start, a6, inf, zero, done); 

    posit_adder A7(Mult[13], Mult[14], start, a7, inf, zero, done); 

    posit_adder A8(Mult[15], Mult[16], start, a8, inf, zero, done); 

    posit_adder A9(Mult[17], Mult[18], start, a9, inf, zero, done); 

    posit_adder A10(Mult[19], Mult[20], start, a10, inf, zero, done); 

    posit_adder A11(Mult[21], Mult[22], start, a11, inf, zero, done); 

    posit_adder A12(Mult[23], Mult[24], start, a12, inf, zero, done); 

    posit_adder A13(Mult[25], Mult[26], start, a13, inf, zero, done); 

    posit_adder A14(Mult[27], Mult[28], start, a14, inf, zero, done); 

    posit_adder A15(Mult[29], Mult[30], start, a15, inf, zero, done); 

    posit_adder A16(Mult[31], Mult[32], start, a16, inf, zero, done); 

    ///////////////////////////////////////////////////////////////// 

    posit_adder A17(a1, a2, start, add1, inf, zero, done); 

    posit_adder A18(a3, a4, start, add2, inf, zero, done); 

    posit_adder A19(a5, a6, start, add3, inf, zero, done); 

    posit_adder A120(a7, a8, start, add4, inf, zero, done); 

    posit_adder A21(a9, a10, start, add5, inf, zero, done); 

    posit_adder A22(a11, a12, start, add6, inf, zero, done); 
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    posit_adder A23(a13, a14, start, add7, inf, zero, done); 

    posit_adder A24(a15, a16, start, add8, inf, zero, done); 

    ////////////////////////////////////////////////////////////////// 

    posit_adder A25(add1, add2, start, add12, inf, zero, done); 

    posit_adder A26(add3, add4, start, add34, inf, zero, done); 

    posit_adder A27(add5, add6, start, add56, inf, zero, done); 

    posit_adder A28(add7, add8, start, add78, inf, zero, done); 

    ////////////////////////////////////////////////////////////////// 

    posit_adder A29(add12, add34, start, add_out1, inf, zero, done); 

    posit_adder A30(add56, add78, start, add_out2, inf, zero, done); 

    /////////////////////////////////////////////////////////////////// 

    posit_adder Aout(add_out1, add_out2, start, add_out, inf, zero, done); 

     

    assign sig_out[15] = ~add_out[15]; 

    assign sig_out[14:13] = 2'b00; 

    assign sig_out[12:0] = add_out[14:2]; 

     

    assign n_out = sig_out; 

    //Posit_to_FP P2F(sig_out, n_out); 

endmodule 

 

////////////////////////////////////////////////////////////////////////////////////////////// 

///////////////////////////////////Posit 1 Input Neuron/////////////////////////////////////// 

////////////////////////////////////////////////////////////////////////////////////////////// 
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module sigmoid_1in(sig_in, sig_out); 

input [15:0] sig_in; 

output [15:0] sig_out; 

 

    assign sig_out[15] = ~sig_in[15]; 

    assign sig_out[14:13] = 2'b00; 

    assign sig_out[12:0] = sig_in[14:2]; 

endmodule 

 

////////////////////////////////////////////////////////////////////////////////////////////// 

///////////////////////////////////Posit 4 input Neuron/////////////////////////////////////// 

////////////////////////////////////////////////////////////////////////////////////////////// 

 

`timescale 1ns / 1ps 

module neuron4in(in1, in2, in3, in4, n_out); 

    input [31:0] in1, in2, in3, in4; 

    output [31:0] n_out; 

    wire [15:0] w1, w2, w3, w4; 

    wire [15:0] m1, m2, m3, m4; 

    wire [15:0] a1, a2, add_out; 

    wire start, inf, zero, done; 

    //wire [15:0] inp1, inp2; 

    wire [15:0] sig_out; 

     

//    FP2posit INP1(in1, inp1); 
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//    FP2posit INP2(in2, inp2); 

    //FP_to_posit INP3(in3, inp3); 

    //FP_to_posit INP4(in4, inp4); 

     

    ///multiplying input with weights 

    posit_mult M1(in1, w1, start, m1, inf, zero, done); 

    posit_mult M2(in2, w2, start, m2, inf, zero, done); 

    posit_mult M3(in3, w3, start, m3, inf, zero, done); 

    posit_mult M4(in4, w4, start, m4, inf, zero, done); 

     

    ///adding weighted inputs 

    posit_adder A1(m1, m2, start, a1_out, inf, zero, done); 

    posit_adder A2(m3, m4, start, a2, inf, zero, done); 

    posit_adder A3(a1, a2, start, add_out, inf, zero, done); 

     

    assign sig_out[15] = ~add_out[15]; 

    assign sig_out[14:13] = 2'b00; 

    assign sig_out[12:0] = add_out[14:2]; 

     

    assign n_out = sig_out; 

    //Posit_to_FP P2F(sig_out, n_out); 

endmodule 

//////////////////////////////////////////////////////////////////////////////////////////////

///////////////////////////////Neuron 8 input internal//////////////////////////////////////// 

////////////////////////////////////////////////////////////////////////////////////////////// 
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`timescale 1ns / 1ps 

module neuron8in (in1, in2, in3, in4, in5, in6, in7, in8, n_out); 

    input [31:0] in1, in2, in3, in4, in5, in6, in7, in8; 

    output [31:0] n_out; 

    wire [15:0] w1, w2, w3, w4, w5, w6, w7, w8; 

    wire [15:0] m1, m2, m3, m4, m5, m6, m7, m8; 

    wire [15:0] a1, a2, a3, a4, add1, add2, add_out; 

    wire start, inf, zero, done; 

    wire [15:0] inp1, inp2; 

    wire [15:0] sig_out; 

     

//    FP2posit INP1(in1, inp1); 

//    FP2posit INP2(in2, inp2); 

    //FP_to_posit INP3(in3, inp3); 

    //FP_to_posit INP4(in4, inp4); 

     

    ///multiplying input with weights 

    posit_mult M1(in1, w1, start, m1, inf, zero, done); 

    posit_mult M2(in2, w2, start, m2, inf, zero, done); 

    posit_mult M3(in3, w3, start, m3, inf, zero, done); 

    posit_mult M4(in4, w4, start, m4, inf, zero, done); 

    posit_mult M5(in5, w5, start, m5, inf, zero, done); 

    posit_mult M6(in6, w6, start, m6, inf, zero, done); 

    posit_mult M7(in7, w7, start, m7, inf, zero, done); 
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    posit_mult M8(in8, w8, start, m8, inf, zero, done); 

    ///adding weighted inputs 

    posit_adder A1(m1, m2, start, a1, inf, zero, done); 

    posit_adder A2(m3, m4, start, a2, inf, zero, done); 

    posit_adder A3(m5, m6, start, a3, inf, zero, done); 

    posit_adder A4(m7, m7, start, a4, inf, zero, done); 

    posit_adder A5(a1, a2, start, add1, inf, zero, done); 

    posit_adder A6(a3, a4, start, add2, inf, zero, done); 

    posit_adder A7(add1, add2, start, add_out, inf, zero, done); 

     

    assign sig_out[15] = ~add_out[15]; 

    assign sig_out[14:13] = 2'b00; 

    assign sig_out[12:0] = add_out[14:2]; 

    assign n_out = sig_out; 

    //Posit_to_FP P2F(sig_out, n_out); 

endmodule 

////////////////////////////////////////////////////////////////////////////////////// 

module add_mantovf (a,mant_ovf,c); 

parameter N=10; 

input [N:0] a; 

input mant_ovf; 

output [N:0] c; 

assign c = a + mant_ovf; 

endmodule 
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////////////////////////////////////////////////////////////////////////////////////// 

module add_N (a,b,c); 

parameter N=10; 

input [N-1:0] a,b; 

output [N:0] c; 

assign c = {1'b0,a} + {1'b0,b}; 

endmodule 

////////////////////////////////////////////////////////////////////////////////////// 

module sub_N (a,b,c); 

parameter N=10; 

input [N-1:0] a,b; 

output [N:0] c; 

assign c = {1'b0,a} - {1'b0,b}; 

endmodule 

////////////////////////////////////////////////////////////////////////////////////// 

module data_extract(in, rc, regime, exp, mant, Lshift); 

function [31:0] log2; 

input reg [31:0] value; 

 begin 

 value = value-1; 

 for (log2=0; value>0; log2=log2+1) 

         value = value>>1; 

       end 

endfunction 
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parameter N=16; 

parameter Bs=log2(N); 

parameter es = 2; 

input [N-1:0] in; 

output rc; 

output [Bs-1:0] regime, Lshift; 

output [es-1:0] exp; 

output [N-es-1:0] mant; 

 

wire [N-1:0] xin = in; 

assign rc = xin[N-2]; 

wire [Bs-1:0] k0, k1; 

LOD_N #(.N(N)) xinst_k0(.in({xin[N-2:0],1'b0}), .out(k0)); 

LZD_N #(.N(N)) xinst_k1(.in({xin[N-3:0],2'b0}), .out(k1)); 

 

assign regime = xin[N-2] ? k1 : k0; 

assign Lshift = xin[N-2] ? k1+1 : k0; 

 

wire [N-1:0] xin_tmp; 

DSR_left_N_S #(.N(N), .S(Bs)) ls (.a({xin[N-3:0],2'b0}),.b(Lshift),.c(xin_tmp)); 

assign exp= xin_tmp[N-1:N-es]; 

assign mant= xin_tmp[N-es-1:0]; 

endmodule 

 

////////////////////////////////////////////////////////////////////////////////////// 
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C.3. Python Code for Augmentation ANN 

 

#!/usr/bin/env python 

# coding: utf-8 

 

# In[58]: 

 

#import the pandas module 

import pandas as pd 

#import the numpy module 

import numpy as np 

 

colnames=['I1', 'I2', 'I3', 'T1', 'T2', 'P1', 'P2'] 

 

# In[59]: 

 

#Reading and exploring the data by coverting to pandas dataframe 

df = pd.read_excel(r'C:\Users\user\Desktop\watertesting.xlsx') 

print(df.head(5)) 

 

# In[67]: 

 

#splitting into train-test set for model training of the data from test2.tsv file (0.9 test,, 

0.1 train) 

from sklearn.model_selection import train_test_split 

y = df.drop(['I1', 'I2', 'I3', 'T1', 'T2'], axis =1) 
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X = df.drop(['T1', 'T2', 'P1', 'P2'], axis =1) 

 

X = df[['I1','I2','I3']] 

y = df[['P1','P2']] 

 

print(X.head()) 

print(y.head()) 

 

'''X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.2) 

print("\nX_train:\n") 

print(X_train.head()) 

print(X_train.shape) 

 

print("\nX_test:\n") 

print(X_test.head()) 

print(X_test.shape) 

 

print("\ny_train:\n") 

print(y_train.head()) 

print(y_train.shape) 

 

print("\ny_test:\n") 

print(y_test.head()) 

print(y_test.shape)''' 
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# In[54]: 

 

 

import keras 

import numpy as np 

import matplotlib.pyplot as plt 

from keras import layers 

from keras import optimizers 

from keras.layers import Dense, Flatten, Activation, Dropout 

from keras import applications 

from keras.models import Sequential, Model, load_model 

from keras.applications import VGG16, InceptionV3, ResNet50 

 

from skimage.io import imread,imsave 

from keras.models import Model,load_model 

from keras.optimizers import SGD,Adam 

from keras.layers import * 

from skimage.util import pad,crop 

from skimage.transform import resize 

import os 

from sklearn.model_selection import train_test_split 

from keras.callbacks import ReduceLROnPlateau,ModelCheckpoint,CSVLogger,Callback,EarlyStopping 

import tensorflow as tf 

import keras.backend as K 
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from keras.utils import plot_model 

import matplotlib.pyplot as plt 

 

# In[88]: 

 

from numpy import zeros, newaxis 

numpy_X = X.as_matrix() 

numpy_X1 = numpy_X[:, :, newaxis] 

numpy_X1.shape 

 

# In[89]: 

 

numpy_y = y.as_matrix() 

numpy_y1 = numpy_y[:, :, newaxis] 

numpy_y1.shape         

 

# In[95]: 

 

#building a neural network of 3 layers 

inputs = Input((numpy_X1.shape[0], numpy_X1.shape[1])) 

x = Dense(512, activation='relu')(inputs) 

#x = Dropout(0.5)(x) 

x = Dense(256, activation='relu')(x) 

#x = Dropout(0.5)(x) 

x = Dense(2, activation='sigmoid')(x) 
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model = Model(inputs = inputs,outputs = x) 

 

model.compile(loss='binary_crossentropy',optimizer='adam', metrics=['accuracy']) 

model.summary() 

 

# In[93]: 

 

#training or fitting the model 

model.compile(optimizer='Adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) 

 

 

# Train model 

model.fit(numpy_X1, numpy_y1, epochs=4, validation_split=0.2) 

 

# In[ ]: 

 

C.4. Python Code for Classification ANN 

 

#!/usr/bin/env python 

# coding: utf-8 

 

# In[58]: 

#import the pandas module 

import pandas as pd 
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#import the numpy module 

import numpy as np 

 

colnames=['I1', 'I2', 'I3', 'T1', 'T2', 'P1', 'P2'] 

 

# In[59]: 

#Reading and exploring the data by coverting to pandas dataframe 

df = pd.read_excel(r'C:\Users\user\Desktop\watertesting.xlsx') 

print(df.head(5)) 

 

# In[67]: 

#splitting into train-test set for model training of the data from test2.tsv file (0.9 test,, 

0.1 train) 

from sklearn.model_selection import train_test_split 

y = df.drop(['I1', 'I2', 'I3', 'T1', 'T2'], axis =1) 

X = df.drop(['T1', 'T2', 'P1', 'P2'], axis =1) 

 

X = df[['I1','I2','I3']] 

y = df[['P1','P2']] 

print(X.head()) 

print(y.head()) 

 

'''X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.2) 

print("\nX_train:\n") 

print(X_train.head()) 

print(X_train.shape) 
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print("\nX_test:\n") 

print(X_test.head()) 

print(X_test.shape) 

 

print("\ny_train:\n") 

print(y_train.head()) 

print(y_train.shape) 

 

print("\ny_test:\n") 

print(y_test.head()) 

print(y_test.shape)''' 

 

# In[54]: 

import keras 

import numpy as np 

import matplotlib.pyplot as plt 

from keras import layers 

from keras import optimizers 

from keras.layers import Dense, Flatten, Activation, Dropout 

from keras import applications 

from keras.models import Sequential, Model, load_model 

from keras.applications import VGG16, InceptionV3, ResNet50 

 

from skimage.io import imread,imsave 
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from keras.models import Model,load_model 

from keras.optimizers import SGD,Adam 

from keras.layers import * 

from skimage.util import pad,crop 

from skimage.transform import resize 

import os 

from sklearn.model_selection import train_test_split 

from keras.callbacks import ReduceLROnPlateau,ModelCheckpoint,CSVLogger,Callback,EarlyStopping 

import tensorflow as tf 

import keras.backend as K 

from keras.utils import plot_model 

import matplotlib.pyplot as plt 

 

# In[88]: 

from numpy import zeros, newaxis 

numpy_X = X.as_matrix() 

numpy_X1 = numpy_X[:, :, newaxis] 

numpy_X1.shape 

 

# In[89]: 

numpy_y = y.as_matrix() 

numpy_y1 = numpy_y[:, :, newaxis] 

numpy_y1.shape         

 

# In[95]: 
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#building a neural network of 3 layers 

inputs = Input((numpy_X1.shape[0], numpy_X1.shape[1])) 

 

x = Dense(512, activation='relu')(inputs) 

#x = Dropout(0.5)(x) 

x = Dense(256, activation='relu')(x) 

#x = Dropout(0.5)(x) 

x = Dense(2, activation='sigmoid')(x) 

 

model = Model(inputs = inputs,outputs = x) 

 

model.compile(loss='binary_crossentropy',optimizer='adam', metrics=['accuracy']) 

model.summary() 

 

# In[93]: 

#training or fitting the model 

model.compile(optimizer='Adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) 

 

 

# Train model 

model.fit(numpy_X1, numpy_y1, epochs=4, validation_split=0.2) 

 

# In[ ]: 
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C.5. List of Resources used in Hardware Implementation of 20 neurons ANN in IEEE 
754 and Posit Representation 

For IEEE 754 Nonlinear Approximation 

 

============================================================ 

  Generated by:           Encounter(R) RTL Compiler v08.10-s116_1 

  Generated on:           Jul 13 2021  11:38:45 PM 

  Module:                 Nonlin_sigmoid 

  Technology library:     fsd0k_a_generic_core_1d0vtc 2007Q2v1.3 

  Operating conditions:   _nominal_ (balanced_tree) 

  Wireload mode:          enclosed 

  Area mode:              timing library 

============================================================                                    

    Gate      Instances    Area                Library             

------------------------------------------------------------------ 

AN2B1RLX1             4     24.000    fsd0k_a_generic_core_1d0vtc  

AN2B1RLXLP          101    505.000    fsd0k_a_generic_core_1d0vtc  

AN2RLX1              38    190.000    fsd0k_a_generic_core_1d0vtc  

AN2RLXLP            229   1145.000    fsd0k_a_generic_core_1d0vtc  

AN3B1RLX1P            2     20.000    fsd0k_a_generic_core_1d0vtc  

AN3B1RLXLP            5     40.000    fsd0k_a_generic_core_1d0vtc  

AN3B2RLX1            14     98.000    fsd0k_a_generic_core_1d0vtc  

AN3B2RLXLP           38    266.000    fsd0k_a_generic_core_1d0vtc  

AN3RLX1              11     77.000    fsd0k_a_generic_core_1d0vtc  

AN3RLXLP              8     56.000    fsd0k_a_generic_core_1d0vtc  

AN4B1RLXLP            4     32.000    fsd0k_a_generic_core_1d0vtc  
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AN4B2RLXLP           16    128.000    fsd0k_a_generic_core_1d0vtc  

AN4RLX1               3     30.000    fsd0k_a_generic_core_1d0vtc  

AO112RLXLP            4     36.000    fsd0k_a_generic_core_1d0vtc  

AO12RLXLP           162   1134.000    fsd0k_a_generic_core_1d0vtc  

AO13RLXLP             1      9.000    fsd0k_a_generic_core_1d0vtc  

AO222RLX1            10    120.000    fsd0k_a_generic_core_1d0vtc  

AO222RLXLP          365   4380.000    fsd0k_a_generic_core_1d0vtc  

AO22RLXLP            14    126.000    fsd0k_a_generic_core_1d0vtc  

AOI112RLXLP          52    364.000    fsd0k_a_generic_core_1d0vtc  

AOI122RLXLP         190   1710.000    fsd0k_a_generic_core_1d0vtc  

AOI12B2RLXLP          1      9.000    fsd0k_a_generic_core_1d0vtc  

AOI12RLX1             3     18.000    fsd0k_a_generic_core_1d0vtc  

AOI12RLXLP          130    780.000    fsd0k_a_generic_core_1d0vtc  

AOI13RLXLP           47    329.000    fsd0k_a_generic_core_1d0vtc  

AOI222RLXLP         194   2134.000    fsd0k_a_generic_core_1d0vtc  

AOI22RLXLP          467   3269.000    fsd0k_a_generic_core_1d0vtc  

AOI23RLX1             1      8.000    fsd0k_a_generic_core_1d0vtc  

AOI23RLXLP          141   1128.000    fsd0k_a_generic_core_1d0vtc  

AOI33RLXLP           70    700.000    fsd0k_a_generic_core_1d0vtc  

FA1RLX1             863  25890.000    fsd0k_a_generic_core_1d0vtc  

HA1RLX1              94   1410.000    fsd0k_a_generic_core_1d0vtc  

INVCKRLXLP            6     18.000    fsd0k_a_generic_core_1d0vtc  

INVRLX1            1255   3765.000    fsd0k_a_generic_core_1d0vtc  

INVRLXLP             49    147.000    fsd0k_a_generic_core_1d0vtc  

MAO222RLXLP         295   2655.000    fsd0k_a_generic_core_1d0vtc  
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MAOI1RLXLP           37    333.000    fsd0k_a_generic_core_1d0vtc  

MAOI222RLX1         165   1320.000    fsd0k_a_generic_core_1d0vtc  

MOAI1RLXLP          472   3776.000    fsd0k_a_generic_core_1d0vtc  

MUX2RLXLP            56    504.000    fsd0k_a_generic_core_1d0vtc  

MUXB2RLXLP            2     20.000    fsd0k_a_generic_core_1d0vtc  

MXL2RLXLP           726   5082.000    fsd0k_a_generic_core_1d0vtc  

ND2RLX1              10     40.000    fsd0k_a_generic_core_1d0vtc  

ND2RLXLP            865   3460.000    fsd0k_a_generic_core_1d0vtc  

ND3RLX1               1      6.000    fsd0k_a_generic_core_1d0vtc  

ND3RLXLP            142    852.000    fsd0k_a_generic_core_1d0vtc  

NR2RLX1              46    184.000    fsd0k_a_generic_core_1d0vtc  

NR2RLX2               1      7.000    fsd0k_a_generic_core_1d0vtc  

NR2RLXLP            864   3456.000    fsd0k_a_generic_core_1d0vtc  

NR3RLX1              19    114.000    fsd0k_a_generic_core_1d0vtc  

NR3RLXLP             24    144.000    fsd0k_a_generic_core_1d0vtc  

OA112RLX1             5     45.000    fsd0k_a_generic_core_1d0vtc  

OA112RLXLP            6     54.000    fsd0k_a_generic_core_1d0vtc  

OA12RLXLP            34    238.000    fsd0k_a_generic_core_1d0vtc  

OA13RLXLP             2     16.000    fsd0k_a_generic_core_1d0vtc  

OA222RLXLP           16    192.000    fsd0k_a_generic_core_1d0vtc  

OA22RLXLP            18    162.000    fsd0k_a_generic_core_1d0vtc  

OAI112RLX1            1      7.000    fsd0k_a_generic_core_1d0vtc  

OAI112RLXLP         105    735.000    fsd0k_a_generic_core_1d0vtc  

OAI122RLXLP         126   1134.000    fsd0k_a_generic_core_1d0vtc  

OAI12RLX1             4     24.000    fsd0k_a_generic_core_1d0vtc  
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OAI12RLXLP          294   1764.000    fsd0k_a_generic_core_1d0vtc  

OAI13RLXLP           66    462.000    fsd0k_a_generic_core_1d0vtc  

OAI222RLXLP          18    198.000    fsd0k_a_generic_core_1d0vtc  

OAI22RLXLP          184   1288.000    fsd0k_a_generic_core_1d0vtc  

OAI23RLXLP           70    560.000    fsd0k_a_generic_core_1d0vtc  

OAI33RLXLP          115   1035.000    fsd0k_a_generic_core_1d0vtc  

OR2B1RLXLP          229   1145.000    fsd0k_a_generic_core_1d0vtc  

OR2RLX1               3     15.000    fsd0k_a_generic_core_1d0vtc  

OR2RLXLP             37    185.000    fsd0k_a_generic_core_1d0vtc  

OR3B1RLXLP           10     80.000    fsd0k_a_generic_core_1d0vtc  

OR3B2RLX1             1      7.000    fsd0k_a_generic_core_1d0vtc  

OR3B2RLXLP           10     70.000    fsd0k_a_generic_core_1d0vtc  

OR3RLX1              16    112.000    fsd0k_a_generic_core_1d0vtc  

OR3RLXLP              1      7.000    fsd0k_a_generic_core_1d0vtc  

OR4B1RLX1             2     16.000    fsd0k_a_generic_core_1d0vtc  

OR4B1RLXLP           54    432.000    fsd0k_a_generic_core_1d0vtc  

OR4B2RLXLP           70    560.000    fsd0k_a_generic_core_1d0vtc  

OR4RLXLP              7     70.000    fsd0k_a_generic_core_1d0vtc  

QDLAHRLX1           717   9321.000    fsd0k_a_generic_core_1d0vtc  

XNR2RLX1              5     50.000    fsd0k_a_generic_core_1d0vtc  

XNR2RLXLP            16    160.000    fsd0k_a_generic_core_1d0vtc  

XOR2RLX1             75    750.000    fsd0k_a_generic_core_1d0vtc  

------------------------------------------------------------------ 

total             10634  92942.000                                 
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   Type    Instances    Area   Area %  

-------------------------------------- 

sequential       717  9321.000   10.0  

inverter        1310  3930.000    4.2  

logic           8607 79691.000   85.7  

-------------------------------------- 

total          10634 92942.000  100.0  

 

For Posit number Representation 

 

============================================================ 

  Generated by:           Encounter(R) RTL Compiler v08.10-s116_1 

  Generated on:           Jul 28 2021  12:19:54 AM 

  Module:                 neuron_posit 

  Technology library:     fsd0k_a_generic_core_1d0vtc 2007Q2v1.3 

  Operating conditions:   _nominal_ (balanced_tree) 

  Wireload mode:          enclosed 

  Area mode:              timing library 

============================================================ 

    Gate     Instances    Area                Library             

----------------------------------------------------------------- 

AN2B1RLXLP         325   1625.000    fsd0k_a_generic_core_1d0vtc  

AN2RLX1             11     55.000    fsd0k_a_generic_core_1d0vtc  

AN2RLXLP            80    400.000    fsd0k_a_generic_core_1d0vtc  

AN3B1RLX1            2     18.000    fsd0k_a_generic_core_1d0vtc  
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AN3B1RLXLP           4     32.000    fsd0k_a_generic_core_1d0vtc  

AN3B2RLXLP          27    189.000    fsd0k_a_generic_core_1d0vtc  

AN4B1RLXLP           4     32.000    fsd0k_a_generic_core_1d0vtc  

AO112RLX1            3     27.000    fsd0k_a_generic_core_1d0vtc  

AO112RLXLP          12    108.000    fsd0k_a_generic_core_1d0vtc  

AO12RLXLP           19    133.000    fsd0k_a_generic_core_1d0vtc  

AO13RLXLP            3     27.000    fsd0k_a_generic_core_1d0vtc  

AO222RLXLP          37    444.000    fsd0k_a_generic_core_1d0vtc  

AO22RLXLP          176   1584.000    fsd0k_a_generic_core_1d0vtc  

AOI112RLXLP          7     49.000    fsd0k_a_generic_core_1d0vtc  

AOI122RLXLP        126   1134.000    fsd0k_a_generic_core_1d0vtc  

AOI12RLX1            1      6.000    fsd0k_a_generic_core_1d0vtc  

AOI12RLXLP          34    204.000    fsd0k_a_generic_core_1d0vtc  

AOI13RLXLP           3     21.000    fsd0k_a_generic_core_1d0vtc  

AOI222RLXLP         35    385.000    fsd0k_a_generic_core_1d0vtc  

AOI22RLXLP         279   1953.000    fsd0k_a_generic_core_1d0vtc  

AOI23RLXLP          13    104.000    fsd0k_a_generic_core_1d0vtc  

BUFRLX3              6     48.000    fsd0k_a_generic_core_1d0vtc  

FA1RLX1            160   4800.000    fsd0k_a_generic_core_1d0vtc  

HA1RLX1             95   1425.000    fsd0k_a_generic_core_1d0vtc  

INVCKRLXLP           1      3.000    fsd0k_a_generic_core_1d0vtc  

INVRLX1            530   1590.000    fsd0k_a_generic_core_1d0vtc  

INVRLXLP            27     81.000    fsd0k_a_generic_core_1d0vtc  

MAO222RLXLP        144   1296.000    fsd0k_a_generic_core_1d0vtc  

MAOI1RLXLP         133   1197.000    fsd0k_a_generic_core_1d0vtc  
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MAOI222RLX1        161   1288.000    fsd0k_a_generic_core_1d0vtc  

MOAI1RLX1            4     32.000    fsd0k_a_generic_core_1d0vtc  

MOAI1RLXLP         665   5320.000    fsd0k_a_generic_core_1d0vtc  

MUX2RLXLP          347   3123.000    fsd0k_a_generic_core_1d0vtc  

MUXB2RLX1            8     80.000    fsd0k_a_generic_core_1d0vtc  

MUXB2RLXLP           4     40.000    fsd0k_a_generic_core_1d0vtc  

MXL2RLXLP          677   4739.000    fsd0k_a_generic_core_1d0vtc  

ND2RLX1              4     16.000    fsd0k_a_generic_core_1d0vtc  

ND2RLXLP           380   1520.000    fsd0k_a_generic_core_1d0vtc  

ND3RLXLP             8     48.000    fsd0k_a_generic_core_1d0vtc  

NR2RLX1             26    104.000    fsd0k_a_generic_core_1d0vtc  

NR2RLXLP           286   1144.000    fsd0k_a_generic_core_1d0vtc  

NR3RLXLP             9     54.000    fsd0k_a_generic_core_1d0vtc  

NR4RLXLP             4     44.000    fsd0k_a_generic_core_1d0vtc  

OA12RLXLP           33    231.000    fsd0k_a_generic_core_1d0vtc  

OA13RLXLP            6     48.000    fsd0k_a_generic_core_1d0vtc  

OA22RLXLP           57    513.000    fsd0k_a_generic_core_1d0vtc  

OAI112RLXLP         28    196.000    fsd0k_a_generic_core_1d0vtc  

OAI122RLXLP         70    630.000    fsd0k_a_generic_core_1d0vtc  

OAI12RLX1            3     18.000    fsd0k_a_generic_core_1d0vtc  

OAI12RLXLP          75    450.000    fsd0k_a_generic_core_1d0vtc  

OAI13RLXLP           7     49.000    fsd0k_a_generic_core_1d0vtc  

OAI222RLXLP         30    330.000    fsd0k_a_generic_core_1d0vtc  

OAI22RLX1            4     28.000    fsd0k_a_generic_core_1d0vtc  

OAI22RLXLP         213   1491.000    fsd0k_a_generic_core_1d0vtc  
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OAI23RLXLP           7     56.000    fsd0k_a_generic_core_1d0vtc  

OAI33RLXLP           8     72.000    fsd0k_a_generic_core_1d0vtc  

OR2B1RLXLP         301   1505.000    fsd0k_a_generic_core_1d0vtc  

OR2RLXLP           115    575.000    fsd0k_a_generic_core_1d0vtc  

OR3B1RLXLP           3     24.000    fsd0k_a_generic_core_1d0vtc  

OR3B2RLXLP           6     42.000    fsd0k_a_generic_core_1d0vtc  

OR3RLX1              4     28.000    fsd0k_a_generic_core_1d0vtc  

OR4B1RLXLP          24    192.000    fsd0k_a_generic_core_1d0vtc  

OR4RLXLP            41    410.000    fsd0k_a_generic_core_1d0vtc  

XNR2RLX1             3     30.000    fsd0k_a_generic_core_1d0vtc  

XNR2RLXLP           54    540.000    fsd0k_a_generic_core_1d0vtc  

XOR2RLX1            80    800.000    fsd0k_a_generic_core_1d0vtc  

----------------------------------------------------------------- 

total             6052  44780.000         

                         

   Type    Instances    Area   Area %  

-------------------------------------- 

inverter         558  1674.000    3.7  

buffer             6    48.000    0.1  

unresolved        39     0.000    0.0  

logic           5488 43058.000   96.2  

-------------------------------------- 

total           6091 44780.000  100.0  
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C.6. List of Resources used in Hardware Implementation for Complete WQI Device using 
100 Neurons using Posit Representation 

 

============================================================ 

  Generated by:           Encounter(R) RTL Compiler v08.10-s116_1 

  Generated on:           Feb 23 2023  01:57:45 AM 

  Module:                 WQI 

  Technology library:     fsd0k_a_generic_core_1d0vtc 2007Q2v1.3 

  Operating conditions:   _nominal_ (balanced_tree) 

  Wireload mode:          enclosed 

  Area mode:              timing library 

============================================================ 

    Gate      Instances      Area    Library             

------------------------------------------------------------------- 

AN2B1RLXLP       14020    70100.000    fsd0k_a_generic_core_1d0vtc  

AN2RLX1            923     4615.000    fsd0k_a_generic_core_1d0vtc  

AN2RLXLP          5201    26005.000    fsd0k_a_generic_core_1d0vtc  

AN3B1RLX1          270     2430.000    fsd0k_a_generic_core_1d0vtc  

AN3B1RLXLP         283     2264.000    fsd0k_a_generic_core_1d0vtc  

AN3B2RLXLP        2028    14196.000    fsd0k_a_generic_core_1d0vtc  

AN4B1RLX1           13      104.000    fsd0k_a_generic_core_1d0vtc  

AO112RLX1          283     2547.000    fsd0k_a_generic_core_1d0vtc  

AO112RLXLP         984     8856.000    fsd0k_a_generic_core_1d0vtc  

AO12RLXLP         1607    11249.000    fsd0k_a_generic_core_1d0vtc  

AO13RLXLP          283     2547.000    fsd0k_a_generic_core_1d0vtc  

AO222RLXLP        1981    23772.000    fsd0k_a_generic_core_1d0vtc  
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AO22RLX1           534     4806.000    fsd0k_a_generic_core_1d0vtc  

AO22RLXLP        12626   113634.000    fsd0k_a_generic_core_1d0vtc  

AOI112RLXLP        611     4277.000    fsd0k_a_generic_core_1d0vtc  

AOI122RLXLP       9178    82602.000    fsd0k_a_generic_core_1d0vtc  

AOI12RLX1           51      306.000    fsd0k_a_generic_core_1d0vtc  

AOI12RLXLP        2615    15690.000    fsd0k_a_generic_core_1d0vtc  

AOI13RLXLP         283     1981.000    fsd0k_a_generic_core_1d0vtc  

AOI222RLXLP       2399    26389.000    fsd0k_a_generic_core_1d0vtc  

AOI22RLXLP       14616   102312.000    fsd0k_a_generic_core_1d0vtc  

AOI23RLXLP         849     6792.000    fsd0k_a_generic_core_1d0vtc  

BUFRLX12             8      208.000    fsd0k_a_generic_core_1d0vtc  

BUFRLX20           558    22878.000    fsd0k_a_generic_core_1d0vtc  

FA1RLX1          12744   382320.000    fsd0k_a_generic_core_1d0vtc  

HA1RLX1           8411   126165.000    fsd0k_a_generic_core_1d0vtc  

INVCKRLX1            8       24.000    fsd0k_a_generic_core_1d0vtc  

INVCKRLX2           36      144.000    fsd0k_a_generic_core_1d0vtc  

INVCKRLXLP          13       39.000    fsd0k_a_generic_core_1d0vtc  

INVRLX1          37428   112284.000    fsd0k_a_generic_core_1d0vtc  

INVRLX2           2554    10216.000    fsd0k_a_generic_core_1d0vtc  

INVRLX4           1566    10962.000    fsd0k_a_generic_core_1d0vtc  

INVRLXLP          2338     7014.000    fsd0k_a_generic_core_1d0vtc  

MAO222RLXLP      12136   109224.000    fsd0k_a_generic_core_1d0vtc  

MAOI1RLXLP        5084    45756.000    fsd0k_a_generic_core_1d0vtc  

MAOI222RLX1      13361   106888.000    fsd0k_a_generic_core_1d0vtc  

MOAI1RLX1          484     3872.000    fsd0k_a_generic_core_1d0vtc  
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MOAI1RLXLP       49572   396576.000    fsd0k_a_generic_core_1d0vtc  

MUX2RLXLP        29303   263727.000    fsd0k_a_generic_core_1d0vtc  

MUXB2RLX1          360     3600.000    fsd0k_a_generic_core_1d0vtc  

MUXB2RLXLP         640     6400.000    fsd0k_a_generic_core_1d0vtc  

MXL2RLXLP        54615   382305.000    fsd0k_a_generic_core_1d0vtc  

ND2RLXLP         26095   104380.000    fsd0k_a_generic_core_1d0vtc  

NR2RLX1           2026     8104.000    fsd0k_a_generic_core_1d0vtc  

NR2RLXLP         22227    88908.000    fsd0k_a_generic_core_1d0vtc  

NR3RLXLP           754     4524.000    fsd0k_a_generic_core_1d0vtc  

OA12RLXLP         2582    18074.000    fsd0k_a_generic_core_1d0vtc  

OA13RLXLP          566     4528.000    fsd0k_a_generic_core_1d0vtc  

OA22RLXLP         5261    47349.000    fsd0k_a_generic_core_1d0vtc  

OAI112RLXLP       1788    12516.000    fsd0k_a_generic_core_1d0vtc  

OAI122RLXLP       6033    54297.000    fsd0k_a_generic_core_1d0vtc  

OAI12RLX1          283     1698.000    fsd0k_a_generic_core_1d0vtc  

OAI12RLXLP        5524    33144.000    fsd0k_a_generic_core_1d0vtc  

OAI13RLXLP         283     1981.000    fsd0k_a_generic_core_1d0vtc  

OAI222RLXLP       2830    31130.000    fsd0k_a_generic_core_1d0vtc  

OAI22RLX1          328     2296.000    fsd0k_a_generic_core_1d0vtc  

OAI22RLXLP       16316   114212.000    fsd0k_a_generic_core_1d0vtc  

OAI23RLXLP         283     2264.000    fsd0k_a_generic_core_1d0vtc  

OAI33RLXLP         656     5904.000    fsd0k_a_generic_core_1d0vtc  

OR2B1RLXLP       20774   103870.000    fsd0k_a_generic_core_1d0vtc  

OR2RLXLP          6618    33090.000    fsd0k_a_generic_core_1d0vtc  

OR3B1RLXLP         283     2264.000    fsd0k_a_generic_core_1d0vtc  
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OR3B2RLXLP         334     2338.000    fsd0k_a_generic_core_1d0vtc  

OR3RLX1            328     2296.000    fsd0k_a_generic_core_1d0vtc  

OR4B1RLXLP        1460    11680.000    fsd0k_a_generic_core_1d0vtc  

OR4B2RLXLP         328     2624.000    fsd0k_a_generic_core_1d0vtc  

OR4RLXLP          2473    24730.000    fsd0k_a_generic_core_1d0vtc  

XNR2RLX1           127     1270.000    fsd0k_a_generic_core_1d0vtc  

XNR2RLXLP         3806    38060.000    fsd0k_a_generic_core_1d0vtc  

XOR2RLX1          6936    69360.000    fsd0k_a_generic_core_1d0vtc  

------------------------------------------------------------------- 

total           440159  3344967.000                                 

 

 

                                         

   Type    Instances     Area    Area %  

---------------------------------------- 

inverter       43943  140683.000    4.2  

buffer           566   23086.000    0.7  

unresolved      3489       0.000    0.0  

logic         395650 3181198.000   95.1  

---------------------------------------- 

total         443648 3344967.000  100.0  
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C.7. FPGA Results for Reduced Complete Water Quality Classification device 

Table C. 1: FPGA Results for Reduced Complete Water Quality Classification device 

FPGA Resource Parameter Values 

LUTs 45,024 

MUXs 100 

DSPs 56 

Power 35.836 W 
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