

Digital Hardware Implementation for Smart Portable Device

for Water Quality Classification Using ANN-based Data

Augmentation

THESIS

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

ABHEEK GUPTA

ID No. 2016PHXF0423P

Under the Supervision of

Under the Co-Supervision of

Prof. Anu Gupta

Sr. Prof. Rajiv Gupta

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

2024

II

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE

PILANI – 333 031 (RAJASTHAN) INDIA

CERTIFICATE

This is to certify that the thesis entitled “Digital Hardware Implementation for Smart

Portable Device for Water Quality Classification using ANN based Data Augmentation”

submitted by Abheek Gupta, ID No. 2016PHXF0423P for the award of Ph.D. of the

Institute, embodies original work done by him under my supervision.

___________________ ___________________

Signature of the Supervisor Signature of the Co-Supervisor

Name: Prof. Anu Gupta Name: Prof. Rajiv Gupta

Designation: Professor Designation: Senior Professor

Date:

III

Acknowledgement

I express sincere gratitude and indebtedness to my supervisor, Prof. Anu Gupta, Professor,

Department of Electrical and Electronics Engineering, BITS Pilani, and co-supervisor Prof.

Rajiv Gupta, Senior Professor, Department of Civil Engineering, BITS Pilani, Pilani Campus.

They have been a constant source of inspiration throughout my work. The enthusiasm, moral

support, and advice that they have given me will stimulate me to be the best in my endeavours.

I sincerely acknowledge the help rendered by them at all times.

I express my profound sense of gratitude and indebtedness to the Principal Investigator of the

WTI DST Project, Sr. Prof. Rajiv Gupta, Senior Professor, Department of Civil Engineering,

BITS Pilani, Pilani Campus, for his valuable guidance and suggestions to do my research and

the help he provided to me in the formulation of ideas for my thesis. I gratefully acknowledge

the Department of Science and Technology, MHRD, Govt. of India, for the financial support

in the form of a Junior Research Fellowship.

I express my heartfelt appreciation to BITS Pilani for providing all the necessary facilities and

support to complete the research work. My special thanks to Prof. V. Ramgopal Rao, Vice-

Chancellor of the University, and Prof. S. K. Barai, Director, BITS-Pilani, Pilani Campus, for

allowing me to pursue my research work successfully. I also express my gratitude to Prof. S.

K. Verma, Dean of Academic Research, and other faculty members of AGSRD for providing

valuable support throughout the program.

I would like to take this opportunity to express my gratefulness to Dr Chandra Shekhar and Dr

Arnab Hazra, who are members of the Doctoral Advisory Committee (DAC), for their kind

suggestions, motivation, and moral support throughout the program, both technically and

personally. I would like to thank Dr V. K. Chaubey, Ex-HoD, Department of Electrical and

Electronics Engineering, Dr H. D. Mathur, Ex-HoD, Department of Electrical and Electronics

Engineering, and Dr Navneet Gupta, HoD, Department of Electrical and Electronics

Engineering, for their motivation during difficult times.

IV

I am also thankful to all my professors for their support and motivation throughout my studies

at BITS-Pilani, Pilani Campus. I would like to extend my thanks, to Dr. Navin Singh, Ex-Chief

Warden, and Dr. Shibashish Choudhury, Ex-Chief Warden. Gratitudes are also due to all the

non-teaching staff of the Department of Electrical and Electronics Engineering and Civil

Engineering Mr. Tulsi Ram Sharma, Mr. Manoj Kumar, Mr. Mahesh Saini, Mr. Surrendar

Kumar, Kamalji, Shivpalji, Sureshji, Shivratanji, Rameshji and Sultanji for their constant co-

operation throughout my work. I also thank all my friends and colleagues, especially Dr.

Dhananjay Kumar Mishra, Dr. Heema Dave, Dr. Puneet Khatri, Dr. Prateek Bindra, Dr. Ziaur

Rahman, Dr. Gaurav Kumar, Dr. Farhan M Khan, Dr Soumya Kar, Dr Raya Raghavendra

Kumar, Dr. Kanika, Mr. Girish Salaka, Dr Varun Jain, Dr Dhritabara Pal, Dr. Moyna Das, Dr.

Pracheta Sengupta, Mrs. Bijoya Das, Dr Arghya Maiti, Ms. Soumana Joardar, Mr Utsav Jana

and all others whose name are not here and have helped me during my Ph.D. Thanks are also

due to all faculty and staff members of BITS-Pilani, Pilani Campus, for helping me out at

various times.

I express my hearty gratitude and dedicate this thesis to my mother Late Mrs. Jayashree Gupta,

who has been the sole motivation, influence, and reason for my Ph.D. My late Grandfather Dr.

Nirendra Nath Sen, has been the motivation to pursue a Ph.D. My late aunt Mrs. Suparna

Dasgupta stood as a pillar for me during the most difficult phase of the Ph.D. My father Mr

Sisir Gupta, the most beautiful constant in my life. I would like to extend my thanks to all my

friends in Pilani for their care and affection shown towards me in undertaking this journey. I

owe thanks to my family for their love, encouragement and moral support, without which this

work would have been an impossible task. My parents have always been supportive and their

encouragement in all my endeavours from the beginning has always been a source of

inspiration for me. I would cherish the happy moments spent at the BITS Pilani campus for my

whole life.

Abheek Gupta

V

Abstract

The development of a classification device for a real-life application must meet severe

challenges such as accuracy, cost economy, portability, and speed. Additionally, it must make

it easier for both rural and urban public to make informed choices for a better quality of life,

eliminating the need for human expertise and laboratory testing.

In this thesis, we have worked on developing a portable low-cost device taking Water Quality

Classification as the application for real-time monitoring of ground and surface water

resources. Water pollution is a major concern globally and needs immediate attention. The

methodology developed in this work can also be applied to other natural resource monitoring

applications.

Existing implementations of WQC are based on sensors for parameter measurement, which are

expensive. They are also dependent on laboratory-based methods which are time-consuming

and not suitable for application in regions with limited access to such well-equipped

laboratories. Also, the majority of them are software-based implementations leading to high

power consumption and low portability. Software-based approaches are also more complex to

implement. Some hardware implementations also exist, but they are partly based on software

approaches and involve conventional number representation systems for calculation. This

increases the complexity of the design and reduces the accuracy of calculations. The

conventional number system also increases hardware resources and power consumption in the

case of ANN implementation.

We have addressed the above problems and proposed a device for water quality classification

that is accurate, smart, portable, low cost, and power and resource efficient. The device is

designed using two ANNs. To reduce the cost of the device, a novel ANN-based data

augmentation method has been implemented which predicts the parameters whose

measurement techniques are expensive. The Augmentation ANN takes two parameters – pH

and Oxidation Reduction Potential (ORP) as inputs and predicts Dissolved Oxygen (DO) and

Electrical Conductivity (EC) based on these parameters. The second ANN (Classification

ANN) is used for the classification of water quality based on the four parameters. The

Classification ANN takes four parameters – pH, ORP, DO, and EC as inputs and classifies the

water sample into one of the three categories – Potable, Agricultural, and Wastewater. To

VI

reduce the complexity of calculation, the Posit number system has been explored and used. For

the hardware implementation of Posit, a novel parameterization method has been used to avoid

unlimited hardware resource allocation. The results are compared with the standard IEEE 754

floating point representation system. The hardware resource requirement and power

consumption of the proposed device were reduced by 50%, and the speed increased by 13.2%.

The WQI device implemented achieves accuracy comparable to the standard Atlas Scientific

lab kit with a 92% reduction in cost.

The complete design of the device has been implemented using two hardware design

approaches – The embedded System design approach and the ASIC Design approach. The

Embedded System approach gives faster and simpler design methodology and cheaper designs

for low-volume production. The ASIC approach is more robust, power efficient, faster, and

economical for mass production.

The ANNs have been trained using a data set that was made using the readings of standardized

equipment from Atlas Scientific lab kit, Labtronics Multiparameter Water Analyser, and YSI

Sonde. The prediction accuracy of Augmentation ANN was 98%, and the classification

accuracy of the classification ANN was above 97% for each class averaging at 98% overall

against the testing data set.

VII

Table of Contents
CERTIFICATE ... II

Acknowledgement .. III

Abstract .. V

Table of Contents .. VII

List of Figures .. XIII

List of Tables ... XV

List of Abbreviations .. XVI

1. Introduction ... 1

1.1 Design Challenges for in-situ Monitoring of Natural Resources .. 1

1.2 Water Quality Classification as a Case Study ... 1

1.3 Data Classification Methods and Their Challenges ... 2

1.3.1 Conventional Methods ... 2

1.3.2 Artificial Intelligence-Based Methods .. 3

1.4 Artificial Neural Networks - Design and implementation challenges 3

1.5 Applications of Artificial Neural Networks ... 3

1.5.1 Environmental Engineering .. 3

1.5.2 Machine learning .. 4

1.5.3 Healthcare .. 4

1.6 Challenges in the development of ANN Hardware ... 4

1.6.1 Software Approach ... 5

1.6.2 Hardware Approach ... 5

1.6.3 Mixed Software-Hardware ANN Implementation .. 7

1.7 Challenges in Number Representation System for ANN Implementation 8

1.8 Organization of Thesis ... 9

1.9 References .. 10

2. Literature Review ... 13

VIII

2.1 Introduction .. 13

2.2 ANN for Water Quality Applications .. 14

2.3 Artificial Neural Networks (ANN) .. 21

2.3.1 ANN Algorithms: ... 23

2.4 Hardware Implementation of ANN .. 25

2.4.1 Optimisations for Hardware Implementation .. 26

2.5 Number Representation Systems .. 28

2.6 Conclusions and Gaps in Research ... 31

2.7 Research Objectives .. 32

2.8 References .. 32

3. Data Collection ... 38

3.1 Introduction .. 38

3.2 Potential of Hydrogen (pH) ... 39

3.2.1 Theory .. 39

3.2.2 pH Measurement ... 41

3.2.3 pH Data ... 46

3.3 Oxidation-Reduction Potential (ORP) .. 50

3.3.1 Theory .. 50

3.3.2 ORP Measurement ... 51

3.3.3 ORP Data .. 53

3.4 Dissolved Oxygen (DO) .. 56

3.4.1 Theory .. 56

3.4.2 Measurement of DO ... 56

3.4.3 DO Data .. 58

3.5 Electrical Conductivity (EC) .. 62

3.5.1 Theory .. 62

3.5.2 Measurement of EC .. 62

3.5.3 EC Data ... 65

IX

3.6 Validation of Data ... 68

3.7 Conclusion .. 69

3.8 References .. 69

4. Efficient ANN Hardware Implementation through Mathematical Approximation in IEEE

754 Representation .. 71

4.1 Introduction .. 71

4.1.1 Multilayer Perceptron Feedforward Network with Backpropagation ... 71

4.1.2 Radial Basis Function .. 71

4.1.3 Support Vector Machines ... 72

4.1.4 Constructive C-Mantec ... 72

4.1.5 Spiking Neural Networks .. 72

4.1.6 K-means clustering ... 73

4.2 Modelling of MLP Architecture .. 73

4.3 Methodology of Hardware Implementation .. 74

4.3.1 Choice of Hidden Layers and Number of Neurons ... 74

4.3.2 The MLP Architecture ... 75

4.3.3 Sigmoid Activation Function Design for MLP Neuron .. 78

4.4 Results of Hardware MLP implementation with IEEE 754 Representation using Padé and

Nonlinear Approximation of Sigmoid Function .. 80

4.4.1 Sigmoid Neuron Implementation Description ... 82

4.5 Sigmoid Neuron Implementation Results .. 84

4.5.1 FPGA Implementation .. 84

4.5.2 ASIC Implementation ... 84

4.5.3 Backpropagation Learning Implementation Methodology .. 85

4.6 Conclusions ... 86

4.7 References .. 88

5. Digital Hardware Implementation of Artificial Neural Network with Posit Representation

of Floating-Point Numbers ... 91

X

5.1 Introduction .. 91

5.1.1 IEEE 754 Floating Point Representation ... 92

5.1.2 Universal numbers Format ... 93

5.1.3 Posit .. 94

5.2 Posit Representation ... 94

5.2.1 Advantages of Posit .. 97

5.3 Posit ANN Implementation for Water Quality Classification .. 97

5.3.1 Parameterised Posit ANN (PPANN) .. 97

5.4 Results and Observations of Proposed Smart Portable Water Quality Classification Device

(WQC-Device) .. 113

5.4.1 Schematic of PPANN synthesized using TSMC 180nm technology node. .. 113

5.4.2 Comparison of the results of proposed ASIC and FPGA implementation of PPANN in IEEE 754 and

Parameterised Posit, respectively. .. 114

5.5 Conclusion .. 116

5.6 References .. 117

6. Hardware Implementation of Portable Smart device for real-time Water Quality

Classification using Data Augmentation ... 119

6.1 Introduction .. 119

6.1.1 Methodology for Data Augmentation .. 120

6.1.2 Mathematical Approach ... 120

6.1.3 ANN Approach .. 121

6.2 ANN based Data Augmentation Design Flow ... 122

6.2.1 Water Sample Collection .. 122

6.2.2 Lab-based parameter measurement and Collection of Training and Validation data set for Data

Augmentation ... 122

6.2.3 Step 1: Measurement of pH and ORP using Arduino Uno .. 123

6.2.4 Step 2: DO and EC Prediction using Augmentation ANN .. 124

6.3 Hardware Implementation of A-ANN .. 125

6.3.1 Embedded Systems Approach .. 126

XI

6.3.2 ASIC Design Approach .. 128

6.4 Implementation of Complete Water Quality Classification Device with Augmentation ANN(A-

ANN) and Classification ANN(C-ANN) .. 130

6.4.1 Embedded Design for the Complete Water Quality Classification Device 132

6.4.2 ASIC Design for the Complete Water Quality Classification Device ... 132

6.5 Results and Validation of Complete Water Quality Classification Device 135

6.5.1 Results of Prediction Accuracy of A-ANN for both Embedded and ASIC approaches. 135

6.6 Results of classification accuracy of C-ANN for both Embedded and ASIC approaches 137

6.6.1 ASIC Power, Resource utilization, and critical path delay .. 139

6.6.2 Cost comparison of Embedded and VLSI Water Quality Classification Device with standard Water

Testing Atlas Scientific Kit ... 139

6.7 Conclusion .. 140

6.8 References .. 141

7. Conclusions and Future Work ... 143

7.1 Conclusions ... 143

7.2 Future Direction .. 145

7.3 References .. 146

A. Appendix A .. 147

A.1. pH Data ... 147

A.1 Oxidation Reduction Potential (ORP) Data .. 151

A.2 Dissolved Oxygen (DO) Data .. 155

A.3 Electrical Conductivity (EC) Data .. 159

A.4 Variation of DO and EC measurement in proposed device against Atlas Scientific kit. 163

A.5 All Parameter Measurements Using the Proposed Device ... 166

B. Appendix B .. 170

B.1. Verilog Code for Posit neuron. ... 170

B.2. Verilog Code for IEEE 754 Nonlinear Approximation neuron .. 184

XII

B.3. Verilog Code for IEEE 754 Padé Approximation neuron .. 196

C. Appendix C ... 210

C.1. Verilog Code for Augmentation ANN .. 210

C.2. Verilog Code for Classification ANN .. 271

C.3. Python Code for Augmentation ANN .. 284

C.4. Python Code for Classification ANN .. 288

C.5. List of Resources used in Hardware Implementation of 20 neurons ANN in IEEE 754 and Posit

Representation ... 293

For IEEE 754 Nonlinear Approximation ... 293

For Posit number Representation ... 297

C.6. List of Resources used in Hardware Implementation for Complete WQI Device using 100

Neurons using Posit Representation .. 301

C.7. FPGA Results for Reduced Complete Water Quality Classification device 305

List of Publications ... 306

Biography of the Research Scholar ... 307

Biography of the Supervisors ... 307

XIII

List of Figures

Figure No. Caption Page No.

Figure 2.1 Model of a neuron of an ANN 21

Figure 2.2 A typical ANN Architecture 22

Figure 2.3 Format of Posit Representation 29

Figure 3.1 A generic Glass bulb pH Electrode 42

Figure 3.2 Combination pH Electrode 43

Figure 3.3 pH electrode dipped in standard solution 44

Figure 3.4 pH electrode - detailed view of the interacting glass bulb 44

Figure 3.5 ORP Electrode used in the study 50

Figure 3.6 ORP electrode - detailed view of the interacting Pt Electrode 50

Figure 3.7 A schematic of Galvanic DO Probe 57

Figure 3.8 DO electrode - detailed view of the interacting membrane 57

Figure 3.9 DO Electrode 58

Figure 3.10 Electrical Conductivity measurement schematic 64

Figure 3.11

EC electrode detailed view. The two plates between which the conductivity
is measured are placed inside the eye-hole.

64

Figure 3.12 The EC Electrode 65

Figure 4.1 A typical ANN Architecture 74

Figure 4.2 Schematic Diagram of a neuron using Padé Approximation 81

Figure 4.3 Schematic diagram of for nonlinear approximation 83

Figure 4.4 Comparison of the two implementations of Activation Functions in FPGA-
based design using IEEE 754

84

Figure 4.5 Comparison of two implementations of Activation Function in ASIC
Implementation using IEEE 754

85

Figure 4.6 ASIC implementation of Padé approximation 87

Figure 4.7 ASIC Implementation of a Nonlinear Approximation of Sigmoid function 87

Figure 4.8 Basic Structure of a Neuron 88

Figure 5.1 Format of Posit Representation 95

Figure 5.2 Flow diagram of IEEE 754 to Parameterized Posit Conversion 101 – 103

Figure 5.3 Leading One/Zero Detector 106

Figure 5.4 Flow diagram of Posit to IEEE 754 Converter 109

Figure 5.5 Flow diagram of Posit Addition Unit 112

Figure 5.6 Sigmoid function calculation comparison between IEEE 754 and
Parameterized Posit representation

113

Figure 5.7 ASIC implementation of a neuron on Cadence RTL Encounter using TSMC
180nm Standard Cell Library

114

XIV

Figure 5.8 Comparison of proposed ASIC Implementation of ANN using - IEEE 754
and Parameterized Posit

115

Figure 5.9 Comparison of proposed FPGA Implementation of ANN using - IEEE 754
and Parameterized Posit

115

Figure 6.1 Design flow for Complete ANN based Data Augmentation 122

Figure 6.2 Block diagram for representing pH and ORP readings using Arduino Uno 123

Figure 6.3 Accuracy (𝑅!) of A-ANN 125

Figure 6.4 Mean Square error for A-ANN 126

Figure 6.5 Block-level diagram of Embedded System approach of Augmentation ANN 127

Figure 6.6 Block-level diagram of Embedded System approach of Augmentation ANN 129

Figure 6.7 Block diagram of Complete WQI device 130

Figure 6.8 Accuracy of C-ANN for different architectures 131

Figure 6.9 Mean Square error for C-ANN 131

Figure 6.10 C-ANN structure 132

Figure 6.11 Block diagram of complete Device using Embedded System Design 133

Figure 6.12 Block diagram of complete Device using ASIC Design Approach 134

Figure 6.13 a) Response plot of A-ANN, b) Actual vs. predicted DO value using A-
ANN

136

Figure 6.14 a) Response plot of A-ANN, b) Actual vs. predicted EC value using A-
ANN.

136

Figure 6.15 Confusion Matrix for C-ANN 138

XV

List of Tables

Table No. Caption Page No.

Table 2.1 A Summary of ANN Implementations for Water Quality Measurement 18

Table 2.2 Run-length meaning k of the regime 29

Table 2.3 The useed as a function of es 30

Table 2.4 IEEE 754 Float and Posit dynamic ranges for the same no. of bits 30

Table 3.1 Parameter Values for each category 39

Table 3.2 pH measurement comparison against standard devices 46

Table 3.3 ORP measurement comparison against standard devices 53

Table 3.4 DO measurement comparison against standard devices 59

Table 3.5 EC measurement comparison against standard devices 65

Table 5.1 Run-length meaning k of the regime 95

Table 5.2 The useed as a function of es 96

Table 5.3 IEEE 754 Float and Posit dynamic ranges for the same no. of bits 96

Table 5.4 Comparison of complexity of Hardware Implementation of Sigmoid
Function

113

Table 6.1 Validation of proposed device for real-time water quality measurement 137

Table 6.2 The statistical results for performance evaluation 138

Table 6.3 ASIC Implementation Results of Complete Design 139

Table 6.4 Cost comparison of the conventional and proposed device 139

XVI

List of Abbreviations

AI Artificial Intelligence

WQI Water Quality Indexing

WQC Water Quality Classification

ANN Artificial Neural Network

BOD Biochemical Oxygen Demand

COD Chemical Oxygen Demand

IOT Internet of Things

LM Levenberg Marquardt

MLP Multi-Layer Perceptron

WSN Wireless Sensor Networks

ALVINN An Autonomous Land Vehicle in Neural Network

ASIC Application-Specific Integrated Circuit

SoC System-On-chip

BP Backpropagation

CMOS Complementary Metal Oxide Semiconductor

NaN Not-a-Number

IEEE Institution of Electrical and Electronics Engineers

IEEE 754 IEEE 754 Floating Point Number Representation

DO Dissolved Oxygen

XVII

EC Electrical Conductivity

Ah Ampere hour

TDS Total Dissolved Solids

TSS Total Suspended Solids

pH Potenz/Potential of Hydrogen

NARX Nonlinear Autoregressive with Exogenous Input

MCPO Multi Classification with Probabilistic Output

NN Neural Network

Unum Universal Number

ORP Oxidation Reduction Potential

mV milli Volts

DW Drinking Water

SW Surface Water

RBF Radial Basis Function

SVM Support Vector Machine

CoNN Constructive Neural Networks

C-Mantec Competetive Neural Network trained by Error Correction

FPGA Field Programmable Gate Array

IC Integrated Circuit

LUT Look-up Table

XVIII

PPANN Parameterised Posit ANN

ES Exponent Size

Exp Exponent

REM Regime, Exponent, Mantissa

LSB Least Significant Bit

MSB Most Significant Bit

LOD Leading One Detector

LZD Leading Zero Detector

MUX Multiplexer

RC Regime Check

TSMC Taiwan Semiconductor Manufacturing Company

RTL Register Transfer Level

SWAT Solid and Water Assessment Tools

HSPF Hydrological Simulation Program – Fortran

SWMM Stormwater Management Model

A-ANN Augmentation ANN

C-ANN Classification ANN

RMSE Root Mean Square Error

MSE Mean Square Error

VLSI Very Large Scale Integration

 1

Chapter 1

1. Introduction

1.1 Design Challenges for in-situ Monitoring of Natural Resources

In addressing real-world challenges, the development of a device aimed at serving the needs of

diverse human populations, encompassing both rural and urban areas, is paramount. Such a

device must confront a multitude of hurdles, including accuracy, cost-effectiveness, portability,

and speed. Of particular significance is the challenge posed by portability, which requires

careful consideration of power consumption and compactness. Additionally, the device must

empower individuals in both rural and urban contexts to make informed decisions, thereby

eliminating the reliance on specialized expertise and laboratory testing.

The pressing real-life challenges demanding urgent attention are intricately linked to the

preservation of life-sustaining natural resources, namely air, water, and soil.

This thesis endeavours to address these challenges by focusing on the development of a device

tailored for real-time monitoring of ground and surface water resources, with water quality

indexing as the primary application. Such an undertaking is poised to facilitate the judicious

utilization of water resources across various domains.

1.2 Water Quality Classification as a Case Study

Water is one of the most basic resources that is required to sustain life, along with food and air.

Thus, the availability of safe drinking water is a major concern. Water pollution caused by

industrial and municipal wastewater discharges, agricultural and urban runoff, and other human

activities is a major concern on a global scale [1]. Infectious such as waterborne illnesses are

the leading cause of death for children under five worldwide, and each year, more people die

from contaminated water than from all other types of violence, including war [2]. Each year,

unsafe water contributes to 2.2 million fatalities, mostly children under the age of five, and 4

billion instances of diarrhoea. This means that a child dies from diarrhoea every 15 seconds, or

15% of all child deaths each year. Diarrhoea, which claims the lives of about 500,000 kids

annually in India alone, is the leading cause of childhood illness and mortality [3].

Water Quality parameters such as electrochemical, biological, etc, have varied methods of

measurement, and the testing times can vary from instantly to up to 24 hours or even more in

 2

some cases in laboratory environments. There is a need to reduce this time using a reliable

device which does both in-situ parameter measurement as well as Water Quality Classification

(WQC).

A Water Quality Index is a method for summarizing a description of the quality of drinking

water from a water supply source [4] in both urban and rural scenarios. Water Quality

Classification is a two-step process that involves the measurement of water quality parameters

and then indexing the water based on their measured parameter values. The development of

the WQC device has to meet severe challenges in terms of accuracy, cost economy, portability,

and speed. Here portability poses further challenges to the power consumption and

compactness of the device. Additionally, it is necessary to create a WQC device that makes it

easier for both rural and urban publics to make decisions regarding water quality classification,

eliminating the need for human expertise and laboratory testing.

1.3 Data Classification Methods and Their Challenges

1.3.1 Conventional Methods

Water quality classification is generally done using various mathematical indexing rules, such

as the ones presented in [5] [6]. Tools such as Principal Component Analysis [7], Fuzzy Logic

[8], etc. Mathematical and Fuzzy logic models for WQC have applications limited by the input

parameters guidelines depending on geography, water source, intended usage, and sundry.

Since the water quality indicators used to depict dynamic pollution sources are complex,

multivariable, and connected nonlinearly, mathematical and fuzzy models may not be able to

adequately represent the outcome.

The main drawback of traditional classification methods, like moving averages, is the pre-

assumption of the linear relationship between input parameters and output classes. So, they fail

to classify the data where the output classes depict non-linear and non-stationary

characteristics. Hence, when applied for applications like air quality indexing, water quality

monitoring and indexing, facial recognition, natural language processing, medical imaging

analysis, etc., these methods lead to inaccurate classification results. Further, with an increase

in data, classification using traditional methods becomes computationally tedious.

 3

1.3.2 Artificial Intelligence-Based Methods

Recently, Artificial intelligence technologies that analyze multivariate water quality data

through potent visualization capabilities have replaced traditional techniques [1]. In [9], it has

been shown that Artificial Neural Networks (ANN) have more reliability than fuzzy logic.

ANN are a model of the Biological Neural Network which helps living beings perceive the

patterns in their environment, classify them and learn from them to improve their response to

subsequent stimuli. There are two methods of implementation of ANN – Software, and

hardware. Both methods have their challenges and trade-offs.

The present work aims to implement a hardware architecture of a WQC device with an

emphasis on low complexity and high speed of operation. It also aims to achieve reduced cost

and low power consumption. In developing and developed nations, the previously mentioned

features are crucial for monitoring and indexing essential life resources. Thus, the hardware

architecture proposed in this thesis has been optimized for low-power and low-cost water

quality classification enabling this smart technology to reach across economic boundaries of

society.

1.4 Artificial Neural Networks - Design and implementation challenges

Most commonly, ANNs are used when the mapping between the inputs and the outputs is not

linear, e.g.:

• Classification of input data sets into predefined classes.

• Prediction of future output based on a set of current input-output mappings.

• Clustering data into groups based on prior knowledge about the data.

• An ANN can be trained to remember particular data patterns and then associate input

data patterns with the ones in the memory or discard the data pattern.

1.5 Applications of Artificial Neural Networks

1.5.1 Environmental Engineering

ANN has multiple uses in environmental engineering aspects. Since ANN help to model a

relation between parameters that cannot be expressed through direct mathematical modelling,

ANNs help in modelling and classifying environmental parameters that indicate the quality of

natural resources but cannot be modelled by mathematical relations. Another usage of ANN is

to predict the outcome of a future event based on existing data and knowledge of past events.

 4

The prediction abilities of ANN are also used in Environmental engineering. Some examples

of ANN being used as classification and indexing applications are - Water Quality

Classification, Water Quality Monitoring, and Air Quality Indexing. The prediction abilities of

ANN are used in applications such as Water/Air Quality Prediction, Weather forecasting.

1.5.2 Machine learning

ANN have found many uses through machine learning applications. With machine learning,

ANNs impart machines the ability to learn and become more intelligent. These are machines

that we interact with daily in our lives and provide more data to the systems with our

interactions, making them better at understanding our behaviour and thus enabling us to help

us in our day-to-day lives better. Some examples of ANN-based machine learning applications

are social media which learn the type of content we interact with more and the type of content

we do not and, over time refine our feeds to deliver to us the content that we like. Similarly, on

e-commerce sites, the machine learning algorithm learns the products we look for more often,

the products that we buy more often, and offers or other facilities related to such products are

pushed to our devices just like our neighbourhood shopkeeper, who knows our buying habits.

Some other recent examples of neural networks include image search on Google, Auto-tagging

by Facebook or product recommendations on Amazon, and completely driverless automobiles

from Tesla Motors.

1.5.3 Healthcare

ANN has found many uses in the healthcare sector. All the four functions of ANNs, vis.

Classification, prediction, prediction, and associative memory have found many applications

in the medical and healthcare sectors. Facial feature analysis has been used to develop pain

management systems where patients' pain levels are monitored based on the facial expressions

of the patients. The various imaging methods like CT scans, MRIs, X-ray imaging, etc., use

ANN image analysis to identify abnormalities using object classification and feature extraction.

Voice or speech recognition and improvement in hearing aids for the hearing impaired,

Image/Video inference for visual aids for blind people, Learning enabled prosthetics, etc.

1.6 Challenges in the development of ANN Hardware

Major challenges faced are in reducing the cost, and lowering power consumption while

maintaining accuracy, in a portable in-situ device implementation.

 5

The Implementation of ANN on hardware with the goals mentioned above comes with some

challenges.

1.6.1 Software Approach

The most common method of implementing ANNs is the Software approach. Most ANN based

models are implemented on software using a computer. For applications based on

environmental interactions, the data from various sensors are collected and sent to these

computing centers. These computers then perform the ANN computations and generate the

required output.

The software code must decode down to a hardware level to be able to interact with the real

world, it must go through multiple abstractions of computer architecture. This renders the

process to become slow and limits the portable application of the ANN though it can achieve

higher classification accuracy.

1.6.2 Hardware Approach

Hardware-based implementations, such as Application Specific Integrated Circuit (ASIC) or

System-on-Chip (SoC), of an ANN algorithm make the system much more resource and time-

efficient because of the application-specific nature of the hardware. A direct hardware

implementation also improves the speed of the system. Hardware implementation is also

economical because of its specificity.

While implementing logic on hardware, there are two approaches: - Analog and Digital. Morgan,

et al [11], present the key advantages that a digital approach has over analog.

a) Analog Implementation of ANN

Biological neural networks which function on inaccurate components serve as models for ANN

algorithms. Ideally, analog circuits which have an infinite resolution (continuous sampling) should

serve as the better implementation option. Practically though, there is a limit to the representation

of the smallest resolution on a circuit. i.e., the sampling rate of a circuit must be finite, thereby

limiting the accuracy. Moreover, a multitude of ANN algorithms models the biological neural

network very poorly and thus frequently need a wide dynamic range to bring about convergence to

useful solutions. Popular stochastic algorithms such as backpropagation (BP) require 12 – 16 bit of

 6

range or roughly four orders of magnitude between the largest weight value and the smallest weight

change. The resolution required to achieve convergence cannot be obtained from analog circuits.

Secondly, the calculation of functions can be done by device physics by clever analog designing,

but these designs are more dependent on circuit size than scalable CMOS (Complementary Metal

Oxide Semiconductor) digital designs. Particularly, thermal noise power can be assumed to be

proportional to inverse of the length unit (λ). Thus, for very small circuits the noise levels can be

very high and render the circuit unreliable. Hence, as circuit sizes decrease, the digital approach

offers better prospects for performance improvement [11] [12].

Thirdly, connectivity between elements on a chip is a big limitation. Particularly, for ANNs, they

require huge multiplexing. Multiplexing analog signals is a design and resource intensive process.

Interconnecting analog circuits at the board level is complicated because of radiated noise, power

supply isolation problems, crosstalk, etc [11] [12]. Digital connections, on the other hand, tend to

be rather reliable, comparatively. Since a neural network generally consists of more than one

neuron, crosstalk needs special consideration when implementing computational multiplexing.

Digital circuitry demands more Silicon area. When implementing changes in the algorithm, the

analog circuit requires major redesign efforts. Digital circuits can accommodate such changes by

implementing a different logic array.

Interfacing with peripheral circuits is difficult for analog implementation since most peripheral

computational units are digital, nowadays. ANNs are subject to Amdahl’s Law, as per which, the

speed improvements of an analog neuron will stay untapped if the remaining network is

implemented by slower peripheral implementations. So, a digital implementation improves

compatibility with other systems, as compared to an analog circuit.

b) Digital Implementation of ANN

However, since the implementation of ANN involves the implementation of complex

mathematical structures in the neuron and learning phase, the digital hardware implementation

of such complex mathematical structures complicates the design. In particular, the

implementation of the activation function involves the implementation of two very complex

algorithms – division and exponent calculation. Since, the exponent function involves infinite

series and real numbers, encoding either using hardware becomes a challenge. Hence, we

adopted mathematical approximation methods to implement these operations in the neurons.

Simplifying the neuron helped us simplify the implementation of the ANN on the hardware.

The methods adopted till this point rely on the representation of real numbers as floating-point

 7

numbers in the digital domain. Most conventional systems utilise IEEE 754 Floating point

representation as the standard representation system.

Cost Efficieny of Design

Another major challenge in keeping the cost of the design low for applications like water

quality monitoring, air quality indexing, which have implications for all sections of society.

The design cost is majorly impacted by the cost of the sensors required in real-world

applications where the data has to be collected through interaction with the physical world. In

such cases, most sensing technologies that can provide reliable data are generally expensive

e.g. for water quality applications, the sensors for Dissolved Oxygen (DO), and Electrical

Conductivity (EC). Many attempts have been made to use mathematical data augmentation to

augment expensive sensor data using available field data [13]. Alternatively, ANN can also be

used for data augmentation where there is no apparent mathematical relationship between the

input and output parameters. This saves from complex operations of mathematical data

augmentation. In this work, ANN has been used to augment the data of DO and EC of water to

reduce the cost of design.

1.6.3 Mixed Software-Hardware ANN Implementation

There have been some studies about the mixed approach to reap the benefits of both hardware

and software approaches. [14] shows one such approach where hardware and software are both

used to design an ANN on an FPGA. The shortcomings in this approach are –

• The FPGA-based application is not suitable for mass production since FPGA boards

are very expensive.

• The presence of a software module makes the design resource-intensive and less power-

efficient because it needs a full computation unit for execution.

The preceding discussion underscores the necessity for tailoring the design of Artificial Neural

Networks (ANNs) to align with specific application requirements. Consequently, within the

scope of this study, directed towards the classification of water quality, a digital hardware

implementation integrating suitable number representation techniques and data augmentation

methodologies has been devised. This development aims to meet the demands for a low-cost,

low-power portable ANN solution while maintaining an acceptable level of accuracy.

 8

1.7 Challenges in Number Representation System for ANN Implementation

Since 1985, IEEE 754 Floating point representation has been the only way to represent floating

point numbers in digital hardware architecture design.

Despite all its benefits, IEEE 754 representation has many limitations as described below:

§ IEEE 754 has a rigid arrangement. This causes huge bit streams even for smaller

numbers.

§ The partitions of sign, exponent, and mantissa are fixed in size, this limits precision.

§ Limited precision leads to rounding errors in the representation of some numbers.

§ Additional bits have to be reserved during computations to adjust for rounding errors.

§ Many reserved patterns are reserved for Not-a-Number(NaNs), denormals, +/- infinity,

and other specials.

§ Arithmetic inconsistencies occur due to reserved patterns

Examples: -

• One such inconsistency is the possibility of +/- 0representation. IEEE 754

guidelines state +0 = -0, which implies +1/0 = -1/0 => + infinity = - infinity.

• Another inconsistency is noted in case of bracketed operations – say, x = 1e30; y =

-1e30; z = 1. Then, (x + y) + z = 1, while x + (y + z) = 0.

• Further inconsistency appears in dot products – A = [3.2e7, 1, -1, 8.0e7], and B =

[4.0e7, 1, -1, -1.6e7]. In IEEE 754 notation the dot product A.B = 1, while in normal

mathematics, A.B = 2.

§ The precise and computed results may deviate as a consequence of IEEE 754 arithmetic

inadvertently. The majority of the time, this inaccuracy appears to be harmless and even

acceptable (for example, energy efficiency and accuracy are trade-offs in approximate

computing techniques. In contrast, a number of works[16, 17, 18] have produced crucial

errors in arithmetic expressions that FP arithmetic evaluates to drastically inaccurate

results. Moreover, neglecting rounding errors has resulted in severe errors in some real-

world instances, such as the 1991 Patriot missile battery failure.

To overcome these challenges, many other representation methods, like Unum 1, Unum 2, and

Unum3, have been proposed over the years, each having its advantages and drawbacks, to

improve or replace the IEEE 754 Floating Point representation. Thus, an optimum choice of

 9

number representation through their exploration is crucial for efficient and accurate hardware

implementation for a given application.

1.8 Organization of Thesis

The Thesis has been organized as follows:

Chapter 2 presents the literature survey done for the study.

Chapter 3 presents a discussion on the collection of various water quality parameter data

from different water samples. The various parameters used for Water Quality Classification in

the study and how the data for each of these parameters were collected. This discussion is

included prior to the discussion on system design because this data has been used as the training

and validation data for the system design. This maintains the logical flow in the organization

of this thesis.

Chapter 4 delves into the digital hardware implementation of Artificial Neural Networks

(ANNs) utilizing the conventional number representation system. Within this chapter,

mathematical approximation techniques for the sigmoid function, serving as the activation

function for the implemented ANN, are elucidated. Herein, we identify the optimal

implementation of an ANN employing the sigmoid activation function, leveraging the

conventional IEEE 754 Floating Point representation system.

Chapter 5 explores the implementation of Artificial Neural Networks (ANNs) utilizing a

Parametrized Posit number system. Within this chapter, we delve into an examination of

diverse floating-point number representation systems, ultimately opting to employ the Posit

representation system for the realization of an ANN tailored to classify water quality

parameters.

Chapter 6 presents the comprehensive design of a Portable Smart Water Quality

Classification device utilizing ANN-based Data Augmentation. Within this chapter, we

expound upon the hardware implementation of two distinct ANNs integrated into the device.

The first ANN serves the purpose of Data Augmentation, aimed at mitigating device cost. This

segment examines the utilization of data augmentation as an alternative to costly and intricate

Dissolved Oxygen and Electrical Conductivity sensors. Due to the absence of a direct

correlation between these parameters and the unfeasibility of implementing mathematical

 10

models, we opt for an ANN-based approach utilizing pH and Oxidation Reduction Potential as

input parameters.

The Data Augmentation ANN extrapolates Dissolved Oxygen and Electrical Conductivity

values based on pH and Oxidation Reduction Potential inputs, which are readily obtainable

through simple potential measurements. Subsequently, the second ANN is employed to classify

water into three distinct categories: Potable, Agricultural, and Wastewater. The design

implementation encompasses two methodologies: the Embedded Systems approach and the

Application Specific Integrated Circuit (ASIC) design approach.

Chapter 7 concludes the findings of the study and paves the path for future studies that can

be done in this field.

Appendices A, B, and C contain the Verilog and Python codes for the ANNs designed and

implemented.

1.9 References

[1] S. Wechmongkhonkon, N. Poomtong and S. Areerachakul, “Application of Artificial
Neural Network to Classification Surface Water Quality,” World Academy of Science,
Engineering and Technology, vol. 6, no. 9, pp. 199 - 203, 2012.

[2] World Health Organisation, “The World Health Report 2002: Reducing Risks, Promoting
Healthy Life,” The World health Organisation, Geneva, 2002.

[3] World Health Organisation and United Nations Children's Fund, “Global water supply
and sanitation assessment 2000 report,” WHO and UNICEF Joint Monitoring
Programme for Water Supply and Sanitation, 2000.

[4] G. o. N. a. Labrador, “Drinking Water Quality Index - Environment and Climate
Change,” Government of Newfoundland and Labrador, Canada, 2022. [Online].
Available: https://www.gov.nl.ca/ecc/waterres/quality/drinkingwater/dwqi/. [Accessed
13 February 2023].

[5] R. O. A. Adelagun, E. E. Etim and O. E. Godwin, “Application of Water Quality Index
for the Assessment of Water from Different Sources in Nigeria,” in Promising
Techniques for Wastewater Treatment and Water Quality Assessment, IntechOpen, 2021.

[6] M. G. Uddin, S. Nash and A. I. Olbert, “A review of water quality index models and their
use for assessing surface water quality,” Ecological Indicators, vol. 122, no. 107218,
2021.

[7] M. Tripathi and S. K. Singal, “Use of Principal Component Analysis for parameter
selection for development of a novel Water Quality Index: A case study of river Ganga
India,” Ecological Indicators, vol. 96, no. 1, pp. 430 - 436, 2019.

 11

[8] B. V. Raman, R. Bouwmeester and S. Mohan, “Fuzzy Logic Water Quality Index and
Importance of Water Quality Parameters,” Air, Soil and Water Research, vol. 2, pp. 51 -
59, 2009.

[9] R. Trach, Y. Trach, A. Kiersnowska, A. Markiewicz, M. Lendo-Siwicka and K. Rusakov,
“A Study of Assessment and Prediction of Water Quality Index Using Fuzzy Logic and
ANN Models,” Sustainability, vol. 14, no. 9, p. 5656, 2022.

[10] D. A. Pomerleau, “ALVINN: An Autonomous Land Vehicle in a Neural Network,” in
Advances in Neural Information Processing Systems, Morgan-Kaufmann, 1988, pp. 305
- 313.

[11] N. Morgan, Considerations for Electronic Implementation of Artificial Neural Networks,
Berkley, California: International Computer Science Institute, 1990.

[12] N. Morgan, K. Asanovic, B. Kingsbury and J. Wawrzynek, “Developments in Digital
VLSI Design for Artificial Neural Networks,” University of California, Berkley, Berkley,
California, 1990.

[13] J. Kim, D. Seo, M. Jang and J. Kim, “Augmentation of limited input data using an
artificial neural network method to improve the accuracy of water quality modeling in a
large lake,” Journal of Hydrology, vol. 602, no. 126817, 2021.

[14] S. Nambi, S. Ullah, S. S. Sahoo, A. Lohana, F. Merchant and A. Kumar, “ExPAN(N)D:
Exploring Posits for Efficient Artificial Neural Network Design in FPGA-Based
Systems,” IEEE Access, vol. 9, pp. 103691 - 103708, 2021.

[15] P. Gerald, “Water science. University of Washington.,” PMC [serial on the internet],
2011.

[16] D. Molden, Water for Food Water for Life: A Comprehensive Assessment of Water
Management in Agriculture, London: Routeledge, 2007.

[17] M. M. David and B. E. Haggard, “Development of Regression-Based Models to Predict
Fecal Bacteria Numbers at Select Sites within the Illinois River Watershed, Arkansas and
Oklahoma, USA,” Water, Air, and Soil Pollution, vol. 215, pp. 525 - 547, 2011.

[18] World Health Organisation, “Guidelines for Drinking-water Quality (Fourth,” World
Health Organisation, Geneva, Switzerland, 2017.

[19] “Introduction to Artificial Neural Networks (ANN): Secret mincontrol in Sweden and
worldwide,” mindcontrolinsweden.wordpress.com, 30 01 2015. [Online]. Available:
https://mindcontrolinsweden.wordpress.com/2015/01/30/introduction-to-artificial-
neural-networks..

[20] E. Morancho, “Unum: Adaptive Floating-Point Arithmetic,” in 2016 Euromicro
Conference on Digital System Design (DSD), Limassol, Cyprus, 2016.

[21] J. Han and M. Orshansky, “Approximate computing: An emerging paradigm for energy-
efficient design,” in 2013 18th IEEE European Test Symposium (ETS), Avignon, France,
2013.

[22] Q. Xu, T. Mytkowicz and N. S. Kim, “Approximate Computing: A Survey,” IEEE Design
& Test , vol. 33, no. 1, pp. 8 - 22, 2016.

[23] W. Kahan, “How futile are mindless assessments of roundoff in floating-point
computation?,” Preprint, University of California, Berkeley , Berkeley, 2006.

[24] U. W. Kulisch and W. L. Miranker, “The Arithmetic of the Digital Computer: A New
Approach,” SIAM review, vol. 28, no. 1, 1986.

 12

[25] S. M. Rump , “Algebraic computation, numerical computation and verified inclusions,”
in Trends in Computer Algebra. Lecture Notes in Computer Science, Vol 296, Heidelberg,
Berlin, Springer, 2005, pp. 177 - 197.

[26] U. G. A. Office, “Patriot Missile Defense. Software Problem Led to System Failure at
Dharan Saudi Arabia,” U. G. A. Office, 1992.

[27] J. L. Gustafon and I. . T. Yonemoto , “Beating Floating Point at its Own Game: Posit
Arithmetic,” Supercomputing Frontiers and Innovations, vol. 4, no. 2, p. 71–86, 2017.

[28] K. J. Setshedi, N. Mutingwende and N. Ngqwala, “The Use of Artificial Neural Networks
to Predict the Physicochemical Characteristics of Water Quality in Three District
Municipalities, Eastern Cape Province, South Africa,” International Journal of
Environmental Research and Public Health, vol. 18, no. 10, p. 5248, 2021.

 13

Chapter 2
2. Literature Review

This chapter provides a comprehensive review of literature pertaining to diverse

implementations of Artificial Neural Networks (ANNs) utilized for Water Quality measurement.

Additionally, it examines literature focusing on various hardware implementations of ANNs.

Furthermore, the article conducts a survey of literature concerning the implementation of the

Posit representation system. Finally, the article concludes by identifying research gaps within

the published literature that have motivated the progression of this work.

2.1 Introduction

Water quality models are used extensively in research and design to enforce water quality

regulations (that is, to ensure that the maximum/minimum permissible concentration of a

substance in each water body is not exceeded). Many models, on the other hand, are predicated

on the assumption of linearity functions. Different deterministic models have been used in the

past to predict water quality in a stream under various scenarios of interest. However, because

natural systems are sometimes too complicated for state-of-the-art deterministic modelling

methods, the statistical accuracy of the models is frequently low in practise. ANNs are a quick

and versatile way to create models for water quality estimation. ANNs have demonstrated

excellent performance as regression tools in recent years, particularly when employed for

pattern recognition and function prediction. An Artificial Neural Network (ANN) is a

computational approach inspired by biological organisms' brain and nervous systems. ANNs

are mathematical models that are highly idealised representations of our current understanding

of complex systems. The ability of neural networks to learn is one of its properties. A neural

network is not designed like a traditional computer programme; instead, it is given instances

of the patterns, observations, and concepts, or any other form of data that it must learn. The

neural network organises itself to develop an internal collection of features that it uses to

classify input or data through the learning (also known as training) process. There are numerous

advantages to using an ANN approach to problem-solving, including: (1) the application of a

neural network does not necessitate prior knowledge of the underlying process; (2) It is possible

that one does not recognise all the complicated relationships that exist between various

components of the process under consideration. (3) A traditional optimisation strategy or

statistical model only delivers a solution when allowed to run to completion, whereas a neural

 14

network always converges to an optimal (sub-optimal) solution condition, and (4) In the ANN

development, neither constraints nor an a priori solution structure are expected or tightly

enforced. These properties make ANNs ideal instruments for dealing with a variety of

hydrological modelling challenges [1]

2.2 ANN for Water Quality Applications

In the early 1990s, applications of ANN in the areas of groundwater, ecology, and

environmental engineering were reported. In recent years, however, ANN has been widely used

for prediction and forecasting in a variety of engineering and water-related fields, including

water resource analysis by Liong and Sivapragasam, 2002 [2]; Muttil and Chau, 2006 [3]; El-

Shafie et al. 2008 [4]; El-Shafie et al. 2011 [5]; Noureldin et al. 2011 [6]; Najah et al. 2009 [7];

oceanography by Makarynska et al. 2008 [8]; and environmental engineering by Grubert, 2003

[9].

Rankovic et al. (2010) [10] used ANN to forecast the concentration of dissolved oxygen (DO).

The study's shortcoming is that the parameters involved are chemical parameters that can only

be observed in a laboratory environment. Thus it can't be utilised for real-time monitoring.

Gazzaz et al. (2012) [11] employed ANN to estimate WQI using 23 water quality metrics. The

concept cannot be utilised for real-time monitoring since the price of the sensors necessary

makes it prohibitively expensive. For continuous and remote monitoring of water quality data,

Menon et al. (2012) [12] developed a wireless sensor network-based river water quality

monitoring system in India. The device's wireless sensor node was designed to monitor the pH

of water. The technology was limited in that it could not be utilised to control regional water

contamination. Meanwhile, Ali et al. (2013) [13] used an unsupervised machine learning

algorithm to classify water quality into three categories. The study's shortcoming is that it did

not consider the numerous parameters that are linked to the Water Quality Classification.

Sensor nodes employed an Arduino core, which was then used by sensor nodes to interpret

measured data. Faustine et al. (2014) [14] created a solar-powered system for monitoring water

quality in the Lake Victoria Basin utilising WSN. The data was then transmitted over ZigBee

to the gateway. The gateway collected all the data and sent it to the application programme

through GPRS. Based on field test findings, the authors showed the suggested system's proper

functionality and deployment in the real world. Despite this, there was no capability for local

data analysis on the device. As a result, it will be unavailable whenever a mobile network

 15

outage occurs. These technologies usually operate in the 2.4 GHz ISM license's open band,

which is frequently crowded and vulnerable to interference and security breaches. Using

Internet of Things (IoT) technology, Vijayakumar et al. (2015) [15] created a low-cost, real-

time water quality monitoring system. The node was controlled by a Raspberry Pi model B+

CPU, which was coupled to many water quality sensors. This device can detect water quality

parameters like temperature, pH, turbidity, conductivity, and dissolved oxygen. As a central

controller, the Raspberry Pi platform was used. From experimental data, the proposed gadget

was able to demonstrate water quality characteristics on the Internet. Due to cyber-attacks, this

approach had weaknesses that can impair the legitimacy, reliability, and secrecy of

measurement data.

Kalpana et al., 2016 [16] created a water monitoring system that included conductivity,

turbidity, and pH sensors. The Raspberry Pi3 Model B single-board computer can

automatically detect the parameters. The data from the three sensors is received by the single-

board computer, which then sends it to the webserver through the internet. This gadget is

suitable for both business and household use. The system can be expanded to track hydrology,

air pollution, industrial and agricultural product development, and so on. Amruta et al. (2013)

[17] proposed using a board aligned with the sun to create a regulated water supply system.

The gadget consists of a centre and a base station, with the centre point connected to the base

station by a Zigbee advance controlled by the board and controlled by daylight. The system

would stop working if the panel in the sun could not be charged for any reason. Previous

research employed fundamental water quality measures as a reference, such as pH,

temperature, turbidity, and TDS, because differences in their values reflect the level of water

pollution. As a result of overcoming this limitation, we are developing a new system that will

require minimal work, improve, and be user-friendly.

Gopavanitha et al., 2017 [18] used IoT to design a system for real-time monitoring and control

of water quality. The gadget is made up of sensors that can measure temperature, turbidity,

conductivity, pH, and flow, among other physical and chemical properties of water. The

Raspberry Pi's output value is sent to the cloud by the sensor. The sensed data is eventually

viewable on the cloud, thanks to cloud computing, and IoT controls the water flow in the

pipeline. Puneeth et al., (2018) [19] suggested an application that used the WSN and IoT

concepts to monitor metrics such as pH, turbidity, and temperature via each node, which were

then recorded and made available on the cloud. Solar energy is used to power the system. Lin

 16

et al. (2008) [20] used wireless sensor network technology and a solar panel to create a water

quality monitoring system. The prototype device was created and deployed utilising WSN

technology and a single node powered by a solar cell. Data from node-side sensors such as pH,

turbidity, and oxygen density were collected and transferred to the base station through WSN.

In an IoT setting, Kumar et al., 2019 presented a smart sensor interface device for water quality

monitoring. Sensors such as a CO2 sensor, a temperature sensor, a pH sensor, a water level

sensor, and a turbidity sensor were employed by the inventors. This sensor system manages the

entire process and is managed by cloud-based wireless communication devices. The water level

sensor detects and displays the water level in the tank. The sensors can monitor the water

quality automatically. Amareshwar et al. (2019) [21] developed a sensor-based water quality

monitoring system that assesses physical factors of water quality such as temperature, pH, and

water humidity using MEMS sensors. The Raspberry Pi variant can be used as the controller

of the central node. Finally, via API, the sensor data may be seen on the web. Demetillo et al.

[22] created a low-cost, real-time water quality monitoring system (2019). It's suitable for

isolated rivers, reservoirs, coastal locations, and other bodies of water. The device's nodes were

powered by a 6 V/3.5 amp-hour (Ah) lead-acid battery. Minu et al. (2019) [23] created an IoT-

based sensor that monitors pH, temperature, conductivity, dissolved oxygen, turbidity, bacteria,

and other parameters in a water sample. The sensors collected data and relayed it across a

network. The information would subsequently be uploaded to the cloud by the server. The data

will be read, and the water quality will be assessed at the remote water station.

Using several Machine Learning methods, Ahmed et al. (2019) [24] predicted and classified

the Water Quality of Rawal Lake, Pakistan. Alkalinity, Appearance, Calcium, Chlorides,

Conductance, Faecal Coliforms, and Hardness as CaCO3, Nitrate as NO2-, pH, Temperature,

Total Dissolved Solids, and Turbidity are the 12 parameters they used. In their analysis, the

highest level of accuracy achieved by any algorithm was around 85 percent. They also didn't

offer any suggestions about how to put the algorithms into practise in the field. ANN and

multivariate linear regression were used by Abyaneh (2006) [25] to estimate Biological

Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) using four parameters: pH,

temperature, Total Suspended Solids (TSS), and Total Suspended Solids (TSS) (TS).

On-site sampling and subsequent laboratory-based tests are both labour- and cost-intensive

operations in traditional water quality measurement systems. The data isn't updated in real-

time. As a result, real-time monitoring of water quality for drinking applications is required to

 17

reduce labour costs and time consumption. In the old approach, captured data is uploaded to

remote data storage via Zigbee boards. It costs a lot of money to set up this technology because

it requires additional gear. When parameters are abnormal, there is no alert indicator in such a

system. The progress of the water sensing network is controlled by the sun board in the Solar

Powered Water Quality Monitoring System with Remote Sensor Network. The system will not

turn on if the sun board is not charged, which is the limitation connected with this technology.

The technology is unable to achieve the goal of real-time water quality parameter monitoring.

This research seeks to build and develop a low-cost Raspberry Pi and Arduino Uno-based water

quality monitoring system with artificial intelligence for real-time monitoring. Unlike a solar-

powered water quality network monitoring system, this system is portable, the output is legible

for those with poor or no literacy, and it will work in any location.

Sarkar and Pandey in [1], have tested three ANNs with varying data sets to predict the values

of Dissolved Oxygen (DO) in the waters of the Yamuna River downstream of Mathura city in

Uttar Pradesh, India. The work shows how both underrepresented data and overrepresented

data are detrimental to the accuracy of the ANN. In [26] the authors have shown a comparison

between static and dynamic ANNs in predicting the concentration values of Ammonium-

Nitrogen (NH3-N) in the waters of the Dahan River in Taiwan. The output of the study shows

the benefits of dynamic ANN, Nonlinear autoregressive with exogenous input (NARX)

network over some other static ANNs. On the other hand, Amanollahi, et al, in [27] evaluate

the accuracy of an ANN in predicting chlorine concentration in the Wetland Areas of Iran. The

work considers the water quality parameters such as Turbidity, TDS, and Hardness of the water

to make the predictions. Some other methods to predict chlorine concentration based on the

available data is also discussed in the work mentioned. Huang, et al [28] have discussed the

implementation of a multi-classification support vector machine for the classification of

pollutants in the water. The work discusses how the implementation of a multi-classification

Probabilistic Output (MCPO) Support Vector Machine reduces the dependency on the

concentration of contaminants in the online classification application.

Table 2.1 presents a summary of the reviewed literature on ANN implementation in Water

Quality measurement.

 18

Table2. 1: A Summary of ANN Implementations for Water Quality Measurement

Study Methodology/Novelty

Findings Performance

Metric

Rankovic, et

al [10](2010)

Implemented MLP

architecture with

Lavenberg-Marquadt

learning.

Software Approach

Parameters involved are chemical and

cannot be tracked in real time in the

field

R2 = 0.96

Gazzaz et al

[11](2012)

Showed the benefits of using

ANN for WQI compared to

mathematical methods for

WQI.

Software Approach

Utilises twenty-three parameters for

indexing. Measurement method for

these parameters render the device

very costly and unsuited for real-time

monitoring

R2 = 0.954

Ali, et al.

[13](2013)

Shows that MLP is the most

suited architecture for

supervised learning ANN for

WQI.

It is a Software based approach.

The study takes pH as the only

parameter for Indexing Water Quality

Not mentioned

in the paper

Fausstine, et

al. [14] (2014)

Implemented a Sensor network

based WQI model.

A Hardware Approach

Solar Powered WSN based Water

Quality Measurement. Dependence

on solar reduces use cases. Uses

zigbee and Mobile data network to

transmit data to a server for analysis.

Thus, real time monitoring is not

possible.

NA

 19

Vijaykumar,

Ramya [15]

(2015)

Used Raspberry Pi to

implement ANN for Water

Quality Monitoring.

Hardware Approach

Low-cost Raspberry Pi based device

measures pH, DO, Turbidity and

Conductivity in real time. Does not

measure ORP. No implementation of

ANN makes the device require

frequent recalibrations.

NA

Gopavanitha

et al. [18]

(2017)

Present a low-cost approach to

measure water quality using

Raspberry Pi.

Hardware Approach

IoT based solar powered water

quality monitoring and control

system. Heavily dependent on Solar

energy, thus weather conditions.

NA

Ahmed et al.

[24] (2019)

Shows that MLP gives

maximum accuracy for

classification of Water Quality.

Software Approach

Applied multiple network topologies

with various learning algorithms.

They achieved the best accuracy with

Multilayer Perceptron topology.

Accuracy =

0.85

Abyaneh

[25](2016)

Shows that ANN is better than

Multi Linear Regression.

Software Approach

ANN and multivariate linear

regression to estimate Biological

Oxygen Demand (BOD) and

Chemical Oxygen Demand (COD)

using four parameters: pH,

temperature, Total Suspended Solids

(TSS), and Total Suspended Solids

(TSS) (TS).

r = 0.75

Sarkar and

Pandey [1]

(2015)

Prediction of DO based on

temperature, pH, and flow

discharge using ANN.

Software Approach.

evaluated three ANN s with varying

data sets to predict the values of

Dissolved Oxygen (DO) in the waters

of the Yamuna River downstream

Mathura city in Uttar Pradesh, India.

The work shows how both

underrepresented data and

overrepresented data are detrimental

to the accuracy of the ANN

R = 0.9

 20

Amanollahi, et

al, in [27]

Predicted Turbidity, TDS, and

TSS using ANN on Remote

Sensing data.

Also shows that ANN is better

at prediction of WQI

parameters compared to Linear

Regression.

Software Approach

evaluate the accuracy of an ANN in

predicting chlorine concentration in

the Wetland Areas of Iran

Predicted

various

parameters

with differing

R2 values

From Table 2.1 we observe :

i) Many studies have used ANN for various water quality applications with differing

degrees of success. However, as compared to other methods used for indexing of

water quality, ANNs have proven to be more accurate.

ii) Data augmentation has been used for various applications to supplement the data of

parameters not easily measurable. Most of the methods have used mathematical

augmentation methods for supplementing the parameters that have a mathematical

relationship with another measurable parameter.

Hardware implementation of ANN is a core design element for this study. The major

components of ANN are the algorithm, its architecture, the activation function, and the number

representation. The performance of an ANN implementation, in terms of power and resource

efficiency, speed, and accuracy, depends highly on the aforementioned parameters. Thus, a

detailed exploration of methods used for their implementation in published literature is

essential for making an appropriate decision during the design.

In the following section we present the review of ANN Algorithms and architectures section

2.3. This is followed by a review of the literature present regarding the Hardware

implementation in section 2.4. Section 2.4 delves into various methods of hardware

implementation of ANN. In section 2.4.1 presents the review of the methods to optimise the

activation function implementation to make it suitable for hardware implementation, at

minimal loss of accuracy of ANN. Section 2.4.2 reviews the literature on more optimisation of

 21

ANN implementation by exploring the various number representation systems that have been

proposed in the literature for hardware implementation of ANN.

2.3 Artificial Neural Networks (ANN)

ANNs are most commonly expected to perform one of the four tasks:

• Classification of input data sets into predefined classes.

• Prediction of future output based on a set of current input-output mappings.

• Clustering data into groups based on prior knowledge about the data.

• An ANN can be trained to remember particular data patterns and then associate input

data pattern with the ones in the memory or discard the data pattern.

An ANN neuron is modelled as: -

Figure 2. 1: Model of a neuron of an ANN. Image Source: [5]

 22

The input points on Figure 2.1 are analogous to synaptic connections on a nerve cell. For an n-

dimension input vector [𝑥1, 𝑥2, 𝑥n] each input is multiplied by a synaptic weight [𝑤!,𝑤",

……….𝑤#]. These products are hereafter summed up in the nerve centre and the final sum is

passed through an activation function (a threshold function, stepwise linear function, or

sigmoid function) that defines the final output of the neuron. A multitude of such neurons form

a layer of parallel processing centres which can work on a huge range of inputs. The outputs

of one such layer of neurons serves as the input to many such subsequent layers of neurons,

thus implementing a huge parallel processing capability to the system. The outputs are then

compared with the expected outputs and the errors are measured. The weights of the synapses

are thus altered in accordance with the error. This is the basic learning process of a neuron.

Figure 2.2 shows a typical architecture for an ANN: -

• Input Layer – It contains those neurons that receive the input data that is to be

processed by the ANN.

• Hidden Layer(s) – These are the layers of units between the input and the output layers.

The hidden layers take the data from the input layer and perform the computations such

that it can give useful information to the other hidden or output layer.

• Output Layer – This consists of the neurons or units that give output depending on the

learning that has taken place inside the ANN.

Figure 2. 2 A typical ANN Architecture; Image Source [35]

 23

While implementing logic on hardware, there are two approaches: - Analog and Digital.

Morgan, et al. [42] present the key advantages that a digital approach has over analog.

Biological mechanisms which function on inaccurate components serve as models for ANN

algorithms. Thus, analog circuits having infinite resolution (continuous sampling) should serve

as the better implementation option. Practically though, there is a limit to the representation of

the smallest resolution on a circuit. i.e., the sampling rate of a circuit must be finite. Moreover,

a multitude of ANN algorithms model biology very poorly and thus frequently need a wide

dynamic range to bring about convergence to useful solutions. Popular stochastic algorithms

such as backpropagation (BP) require a 12 – 16-bit range or roughly four orders of magnitude

between the largest weight value and the smallest weight change [30] [31]. The resolution

required to achieve convergence cannot be obtained from analog circuits. [42]

When implementing changes in an algorithm, an analog circuit requires major redesign efforts.

Digital circuits can accommodate such changes by implementing a different logic array.

Since most other computational units are digital, nowadays. A digital circuit also improves

compatibility with other systems, as compared to an analog circuit. Also, ANNs are subject to

Amdahl’s Law, as per which, the speed improvements of an analog neuron will stay untapped

if the remaining network is implemented by slower digital implementations.

2.3.1 ANN Algorithms:

Traditionally, ANNs have been implemented on software which requires a complete processing

system. That means a lot of unnecessary hardware is engaged but not utilised. Also, when the

software code must be decoded down to a hardware level to be able to interact with the real

world, it must go through multiple abstractions of computer architecture. This renders the

process to become time-consuming and limits the usability of the ANN. Thus, an Application

Specific Integrated Circuit (ASIC) or System-on-Chip (SoC) based implementation of an ANN

algorithm makes the system much more resource and time efficient because of the application

specific nature of the hardware. A direct hardware implementation also improves the speed of

the system. An application specific IC is also economical because of its specificity.

Hardware implementation of ANNs offer a simpler development cycle for powerful machine

intelligence. Application-specific nature of these hardware implementations offer better

performance but at the cost of programmability. Moreover, physical resource (Silicon area)

 24

utilisation is also minimal in this approach. The trade-off between application specificity and

program flexibility is a part and parcel of VLSI design.

On most neural networks, each neuron in a hidden layer is connected to each unit in the

previous (input) layer and the subsequent (output) layers. ANNs can be implemented in several

architectures. In 1943, McCulloch and Pitts presented the first ever model of an artificial

neuron, called the perceptron [32]. A layer of perceptrons can perform some tasks. Thus, a

single layer of perceptrons can form a network. We term such a network as a single-layer

perceptron. An arrangement of a series of a Single Layer Perceptron is called a Multi-Layer

Perceptron (MLP). MLPs are also called feedforward networks. Another architecture, where

the activation function of the perceptron of the MLP is the Radial Basis Function, such a

network is called the Radial Basis Function Neural Network. While the aforementioned

networks have a structure where each perceptron sends the information only to the next

perceptron, a network where there are self-loops on each perceptron is called the Recurrent

Neural Network. Recurrent Neural Networks have memories and can be activated by both,

activation functions from a lower-level perceptron and previous activation value. There are

some other types of architectures as well, such as Long/Short Term Memory Networks,

Hopfield Networks, Boltzmann Machine, Convolutional Neural Networks, etc. Generally, the

architectures of these types of networks are derivatives of the four mentioned above.

a) Multi-Layer Perceptron (MLP) Neural Network (NN) Architecture

It has feedforward architecture within the Input layer, hidden layers, and output layer. The input

layer has ‘N’ units representing the N-dimensional input vector. The input units are fully

connected to ‘I’ hidden layer units, which are further connected to ‘J’ output layer units. ‘J’

represents the number of output classes. If our training data contains ‘l’ pairs (𝑥$,𝑦$) where 𝑥$

is the pattern vector and 𝑦$ is the class of the corresponding pattern. The activity of a neuron J

in a hidden layer is given by: -

 𝑆" =	%𝑤"#𝑥# (1)

𝑥$ = 𝑓(𝑠%); 𝑓 is a sigmoid function

Where 𝑤!$ = set of weights of neuron𝑖; 𝑏!(𝑖) = threshold; 𝑥$ = input of neuron

 25

Output layer activity is: -

 𝑆" = % 𝑤"#𝑥#
#	∈	#&'()

 (2)

b) Training Methodology

A neural network relies mostly on its training methodology to learn. The better the training

methodology, the better the outputs of the network.

Backpropagation is the most common training methodology and is simpler to implement which

reduces the time to market and is also much more capable when it comes to supervised pattern

matching. But backpropagation has its limitations, such as problems with convergence and the

time cost of backpropagation hardware is hugely variable.

The Rapid Restart method [33] has been demonstrated to be prominently suppressive of the

heavy-tailed nature of training instances. Computational efficiency also is improved with the

Rapid Restart Method.

2.4 Hardware Implementation of ANN

P Skoda, et al in [34] present an implementation framework for implementing ANN onto an

FPGA. They make use of an LUT to implement the activation function and a ROM memory

that serves up the weights to each neuron input. However, this approach becomes tedious to

implement when the number of inputs increases. Also, because of the high usage of memory

cells, the process output will become slow and resource intensive.

Kim and Jung in [35] present a 32-bit processor with special instructions and hardware units to

perform single precision floating point units. The processor is specifically designed to

implement an RBF Neural Network with a Backpropagation algorithm for online learning.

However, the implementation does not give a complete hardware-based approach and the ANN

tasks are performed by the ALU based on the instruction set. However, the implementation

being a processor and the operation being carried out by instruction sets renders more

functional customisability to the hardware.

 26

In the article [36], the author presents an algorithm to be implemented on ANN Hardware. It

is a feedforward architecture that treats each neuron as a special case of Boolean functions. The

Boolean function properties can be used to achieve compactness.

2.4.1 Optimisations for Hardware Implementation

There are many algorithms like the Gradient Descent Algorithm, Backpropagation, Hebb Rule,

Kohonen Self Organising maps, etc. [37], which are used to facilitate learning for an ANN.

Most of the activation functions and learning algorithms are very abstract mathematical

functions, generally, nonlinear. This makes the implementation of the activation function and

learning algorithm on ASIC very complicated. Some approximation methods like the ones

discussed in [38] give a close enough approximation for the calculation of the output of

activation functions.

MLP training is dependent on the repeated presentation of sample input and desired targets,

whence outputs and targets are compared, and errors measured. Finally, weights are adjusted

as the error is minimised. The most crucial, resource intensive and difficult to implement part

of any hardware implementation of ANNs is the non-linear activation function [39].

• Sigmoid activation function:

Backpropagation may be applied to any number of layers, but it has been proven that a single

layer of hidden units suffices for the approximation of any function [40]. Hence, MLP NNs

with a single layer of hidden units with a sigmoid activation function is used most commonly.

 𝑓(𝑎) = 	
1

1 +	𝑒*+
 (3)

It has an easy-to-calculate derivative.

 𝑓,(𝑎) = 𝑓(𝑎)[1 − 𝑓(𝑎)] (4)

Implementation of activation function - Zbigniew Hajduk proposed [38] a direct

implementation of the functions with accuracy of the method higher compared to other

published solutions. Here, the difficulty of implementation of activation function is transferred

 27

to the approximation of the exponent function. The hyperbolic tangent (𝑇(𝑥)) and sigmoid

,𝑆(𝑥).	functions are represented as -

 𝑇(𝑥) = 	
2

1 +	𝑒!"# − 1 (5)

 𝑆(𝑥) = 	
1

1 + 𝑒!# (6)

For the implementation of hyperbolic tangent function with high accuracy, McLaurin series

approximation is used with exploiting the symmetry feature (i.e., tan hyperbolic of only the

negative arguments are calculated and then properly adjusted by changing sign to obtain the

result of the positive arguments).

For sigmoid functions, however, symmetry does not result in improved accuracy. Here, the

McLaurin interpolation is done by equation (7): -

𝑒! = 1 + 𝑥

⎝

⎜⎜
⎜
⎛
1 +	

𝑥
2

⎝

⎜
⎜
⎛
1 +	

𝑥
3

⎝

⎜⎜
⎛
1 +	

𝑥
4

⎝

⎜
⎛
1 +	

𝑥
5.1 +	

𝑥
601 +	

𝑥
721 +	

𝑥
841 +	

𝑥
9 61 +	

𝑥
1089:;<

⎠

⎟
⎞

⎠

⎟⎟
⎞

⎠

⎟
⎟
⎞

⎠

⎟⎟
⎟
⎞

 (7)

For sigmoid functions, another approximation, Padé approximation is as given below: -

 𝑒# =	
1680 + 840𝑥 + 180𝑥" + 20𝑥$ + 𝑥%

1680 − 840𝑥 + 180𝑥" − 20𝑥$ + 𝑥% (8)

Padé approximation does compromise the accuracy by a small margin but reduces the number

of floating-point operations. Taking a higher degree of McLaurin or Padé approximation does

not improve accuracy of the activation function. The above expressions are valid only for𝑥	 ∈

(−1,1). For a wider range the value 𝑒& can be broken down as follows: -

 𝑒& =	𝑒'() =	𝑒'. 𝑒) (9)

 28

Where 𝑝 + 𝑓 = 𝑥 and𝑓	 ∈ (−1,1).

We can thus calculate 𝑒) using any of the above two approximations and 𝑒' can be calculated

using an LUT. We can exploit the fact that the activation function’s values become constant

beyond a threshold value. Experimentally the number of LUTs can be limited to 35 (or 17 in

cases where symmetry is exploited) [38].

2.5 Number Representation Systems

The conventional number system used to represent floating point numbers in binary logic is

the IEEE 754 Floating Point Representation (IEEE 754). Hardware implementation of ANN

involves the use of floating point calculation and thus makes it imperative to use floating point

representations. In this section, we present the literature review regarding the IEEE 754 and

the Posit number system in brief. A detailed review of both and their comparison are presented

in Chapter 5.

IEEE 754 Floating point representation (IEEE 754) has been the conventional method of

representing floating point numbers in digital computation. IEEE 754 has made the

computation of real numbers possible in digital computing fairly accurately. It represents the

real number akin to the scientific notation. However, IEEE 754 has a rigid representation of

floating point numbers. This leads to many problems like rounding errors, inconsistencies in

representation, errors in dot product calculation, the existence of two zeroes, etc. These

problems have led to some costly mistakes like the Patriot missile misfire [42].

Some researchers proposed a new type of number system called the universal number (Unum)

system in 2015. So far, Unum has developed three revisions. Type-1 [43] [44] [45], Type-2

[46] [47], and Type-3 [48] [49] are the three types. Type-3, also known as Posit, was the most

recent revision. Unum was allegedly utilised to replace the IEEE 754-2008 floating-point

standard [50] with greater efficiency and precision, according to its creators. Unum and Posit

both feature several advantages over IEEE 754-2008, such as a greater dynamic range, higher

coding space use, tapering accuracy, parameterized precision, and so on [48].

In 2013, John L. Gustaffson proposed a novel method called Universal Numbers (Unums).

Gustaffson defined 2 types of Unums. Type 1 was developed as a superset to floating point

numbers to accommodate greater range and accuracy. However, the hardware cost made it

impractical. Type 2 was based on a positional bit pattern instead of actual data conversion. This

 29

conversion was based on look-up tables. This allowed extremely fast computations but at the

cost of operations that could be performed [48].

In their 2017 paper, John L. Gustaffson proposed the posit representation of floating-point

numbers. The Oxford dictionary defines posit as “a statement that is made on the assumption

that it will prove to be true.” Posits are a hardware-friendly version of Unum2 with relaxations

in 2 rules: -

i) Reciprocals only follow the perfect reflection rule for 0, +/- infinity and integer powers

of 2.

ii) There are no open intervals

The first relaxation enables one to populate the u-lattice such that finite numbers are all

represented in the form of IEEE 754 representation of m.2k.

The structure of the Posit Representation of Floating Point numbers is as shown in Figure 2.3.

The sign bit is the same as the IEEE 754 Floating point representation: 0 for positive numbers

and 1 for negative numbers. If the sign bit is 1, the rest of the number should be in 2’s

complement.

Table2. 2: Run length meaning k of the regime [25]

Binary 0000 0001 001x 01xx 10xx 110x 1110 1111

Numerical Meaning, k -4 -3 -2 -1 0 1 2 3

Consider the binary strings shown in Table 2.2 to make sense of the regime bits. The run length

of the bits is denoted by numerical meaning, k. These are strings of either all 0 or all 1bits. The

Figure 2. 3: Format of Posit Representation [25]

 30

bits are terminated either by the opposite bit or end of the string is reached. If the bits are 0 and

there are m bits then 𝑘	 = 	−𝑚, if the bits are 1 then 𝑘	 = 	𝑚	– 	1. The regime gives us the scale

factor for useedk, 𝑢𝑠𝑒𝑒𝑑	 = 2"!". 𝑢𝑠𝑒𝑒𝑑 values examples are shown in Table 2.3

Table2. 3: The useed as a function of es

es 0 1 2 3 4

useed 2 22 = 4 42 = 16 162 = 256 2562 = 65536

The next part is the exponent, e, taken as an unsigned integer. Unlike IEEE 754 Floating points,

there is no bias in the exponent and represents scaling by	2*. If enough bits are remaining after

the regime, the highest number of bits the exponent can occupy is es. This is how the tapered

accuracy of Posits is expressed. Numbers near 1 need to be presented in more accuracy than

very large or very small numbers which are not so common in calculation.

If more bits remain in the bit stream after regime and exponent, they are used to represent the

fraction part of the number. The fraction part of a posit is just like that of IEEE 754 floating

point in the format of 1.f with a hidden bit that represents the whole number part, 1. Posits have

no subnormal numbers with a hidden bit 0 for numbers less than 1.

There are only 2 exceptions in the posit representation, i.e., 0(all 0’s) and ±∞ (1 followed by

all 0 bits).

Table 2.4 shows the dynamic range offered by both posits and IEEE 754 Floating Point

representation for some bit lengths [48].

Table2. 4: IEEE 754 Float and Posit dynamic ranges for the same no. of bits.

Size,
Bits

IEEE Float
Exp. Size

Approx. IEEE Float
Dynamic Range

Posit es
value

Approx. Posit Dynamic
Range

16 5 6	 ×	10#$ to 7	 ×	10% 1 4	 ×	10#& to 3	 ×	10$

32 8 1	 ×	10#%' to 3	 ×	10($ 3 6	 ×	10#)(to 2	 ×	10)*

 31

64 11 5	 ×	10#(*% to 2	 ×	10(+$ 4 2	 ×	10#*&& to 4	 ×	10*&$

128 15 6	 ×	10#%&,, to 1	 ×	10%&(* 7 1	 ×	10#%$'' to 1	 ×	10%$''

256 19 2	 ×	10#)$&$% to 2	 ×	10)$&-(10 2	 ×	10#)$&*) to 5	 ×	10)$*&,

We make use of the Posit number representation system to implement a constructive Neural

Network architecture on Digital Hardware for water classification applications. With the aim

of water quality study, the proposed hardware for the ANN needs to implement pattern

recognition of input data set and comparing it with a set of prescribed data patterns and thus

classify the water sample accordingly. Pattern localization and classification are CPU time

intensive when normally implemented in software. They also have lower performance than

custom implementations. With custom hardware implementation we can reap the benefits of

real-time processing but at a higher cost and time-to-market than software implementations

[42].

2.6 Conclusions and Gaps in Research

In the proposed work, the aim is to develop an ANN Classification algorithm and implement it

onto hardware that would classify the water quality parameters based on a pre-decided

classification parameter that would be in accordance with WHO Drinking Water Quality

Guidelines.

The above literature survey shows a few important areas that have not been explored properly

in the published literature: -

1. Most implementations in Water Quality management are for predicting certain water

quality parameter based on its correlation with other parameters. The Literature survey

shows very limited work where the ANN is used to classify the water based on the

parameters input by the sensors. Implementation of such a Network has been presented

in this thesis.

2. All the hardware implementations mentioned in the literature survey involve a software

part either in learning or in activation function implementation. None of the approaches

are completely ASIC design example. The reason being the algorithms for learning and

 32

activation function are heavily nonlinear and involve tedious real number calculations.

With a good mathematical approximation method, the algorithms can be approximated

to simpler reduced floating-point calculations making the hardware implementation

more resource economic.

3. Most neural network implementations use binary functions like tan hyperbolic or

sigmoid function as activation function for classification of data. These functions

require calculations in the floating-point number domain. The current floating point

number representation system, i.e., IEEE 754 Floating point representation is not ideal

for executing calculations such as exponential function. Thus, a novel number

representation system – Posit number representation has been used for the

implementation of activation function so that better power and area efficiency can be

achieved.

We have worked upon these research gaps to enhance the performance of ANN Hardware

Implementation for Water Quality Classification applications. Work has been carried out in

accordance research objectives as mentioned in following section.

2.7 Research Objectives

• Literature Survey of published ANN architectures and hardware implementations

• Exploration of existing ANN algorithms/architectures and number representation

systems

• Hardware Implementations of Existing Algorithms and their optimization for meeting

required design challenges

• Development of novel Hardware Implementation of ANN Architecture with

applications in Water Quality

2.8 References

[1] A. Sarkar and P. Pandey, “River Water Quality Modelling using Artificial Neural
Network Technique,” Aquatic Procedia, vol. 4, pp. 1070 - 1077, 2015.

[2] S.-Y. Liong and C. Sivapragasam, “FLOOD STAGE FORECASTING WITH SUPPORT
VECTOR MACHINES,” Journal of American Water Resource Association, vol. 38, no.
1, pp. 173 - 186, 2007.

 33

[3] N. Muttil and K.-W. Chau, “Neural network and genetic programming for modelling
coastal algal blooms,” International Journal of Environment and Pollution, vol. 28, no.
3 - 4, pp. 223-238, 2006.

[4] A. El-Shafie, A. Noureldin, M. Taha and H. Basri, “Neural Network Model for Nile River
Inflow Forecasting Based on Correlation Analysis of Historical Inflow Data,” Journal of
Applied Sciences, vol. 8, pp. 4487-4499, 2008.

[5] A. El-shafie, M. Mukhlisin, A. A. Najah and M. R. Taha, “Performance of artificial neural
network and regression techniques for rainfall-runoff prediction,” International Journal
of the Physical Sciences, vol. 6, no. 8, pp. 1997-2003, 2011.

[6] A. Noureldin, A. El-Shafie and M. Bayoumi, “GPS/INS integration utilizing dynamic
neural networks for vehicular navigation,” Information Fusion, vol. 12, no. 1, pp. 48 -57,
2011.

[7] A. Najah, A. Elshafie, O. . A. Karim and O. Jaffar, “Prediction of Johor River Water
Quality Parameters Using Artificial Neural Networks,” European Journal of Scientific
Research, vol. 28, no. 3, pp. 422-435, 2009.

[8] D. Makarynska and O. Makarynskyy, “Predicting sea-level variations at the Cocos
(Keeling) Islands with artificial neural networks,” Computers & Geosciences, vol. 34,
no. 12, pp. 1910-1917, 2008.

[9] J. . P. Grubert, “Acid deposition in the eastern United States and neural network
predictions for the future,” Journal of Environmental Engineering and Science, vol. 2,
no. 2, pp. 99-109, 2003.

[10] V. Ranković, J. Radulović , I. Radojević, A. Ostojić and L. Čomić , “Neural network
modeling of dissolved oxygen in the Gruža reservoir, Serbia,” Ecological Modelling, vol.
221, no. 8, pp. 1239 - 1244, 2010.

[11] N. M. Gazzaz, . M. K. Yusoff, A. Z. Aris , H. Juahir and M. F. Ramli, “Artificial neural
network modeling of the water quality index for Kinta River (Malaysia) using water
quality variables as predictors,” Marine Pollution Bulletin, vol. 64, no. 11, pp. 2409 -
2420, 2012.

[12] K. U. Menon, P. Divya and M. V. Ramesh, “Wireless sensor network for river water
quality monitoring in India,” in 2012 Third International Conference on Computing,
Communication and Networking Technologies (ICCCNT'12), Coimbatore, India, 2012.

[13] M. Ali and A. M. Qamar, “Data analysis, quality indexing and prediction of water quality
for the management of rawal watershed in Pakistan,” in Eighth International Conference
on Digital Information Management (ICDIM 2013), Islamabad, Pakistan, 2014.

[14] A. Faustine, A. M. Mvuma, H. J. Mongi, M. C. Gabriel, A. J. Tenge and S. B. Kucel,
“Wireless Sensor Networks for Water Quality Monitoring and Control within Lake
Victoria Basin: Prototype Development,” Wireless Sensor Network, vol. 6, no. 12, pp.
281-290, 2014.

[15] N. N. Vijayakumar and R. Ramya, “The real time monitoring of water quality in IoT
environment,” in 2015 International Conference on Circuit, Power and Computing
Technologies [ICCPCT], Coimbatore, India, 2015.

[16] M. B. KALPANA, “Online Monitoring Of Water Quality Using Raspberry Pi3 Model
B,” (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND
RESEARCH, vol. 4, no. 6, pp. 4790-4795, 2016.

[17] M. K. Amruta and M. T. Satish, “Solar powered water quality monitoring system using
wireless sensor network,” in 2013 International Mutli-Conference on Automation,

 34

Computing, Communication, Control and Compressed Sensing (iMac4s), Kottayam,
India, 2013.

[18] K. Gopavanitha and S. Nagaraju, “A low cost system for real time water quality
monitoring and controlling using IoT,” in 2017 International Conference on Energy,
Communication, Data Analytics and Soft Computing (ICECDS), Chennai, India, 2017.

[19] K. M. Puneeth, S. Bipin, C. Prasad, R. J. Kumar and M. K. Urs, “Real-time Water Quality
Monitoring using WSN,” in 2018 3rd IEEE International Conference on Recent Trends
in Electronics, Information & Communication Technology (RTEICT), Bangalore, India,
2018.

[20] J.-S. Lin and C.-Z. Liu, “A monitoring system based on wireless sensor network and an
SoC platform in precision agriculture,” in 2008 11th IEEE International Conference on
Communication Technology, Hangzhou, 2008.

[21] S. Jahan, E. Amareshwar, S. Prasad and A. T. S, “Raspberry Pi Based Water Quality
Monitoring and Flood Alerting System Using Iot,” International Journal of Recent
Technology and Engineering (IJRTE), vol. 7, no. 6S4, pp. 640 - 643, 2019.

[22] . A. T. Demetillo, M. V. Japitana and E. B. Taboada, “A system for monitoring water
quality in a large aquatic area using wireless sensor network technology,” Sustainable
Environment Research, vol. 29, no. 1, pp. 1 - 9, 2019.

[23] M. Minu, P. Kumari, A. K. Singh and S. Avinash , “Wired Sensor Systems for Water
Quality Monitoring,” International Journal of Recent Technology and Engineering
(IJRTE), vol. 8, no. 4, pp. 847 - 852, 2019.

[24] U. Ahmed, R. Mumtaz, H. Anwar, A. A. Shah, R. Irfan and J. García-Nieto, “Efficient
Water Quality Prediction Using Supervised Machine Learning,” Water, vol. 11, no. 11,
p. 2210, 2019.

[25] H. Z. Abyaneh, “Evaluation of multivariate linear regression and artificial neural
networks in prediction of water quality parameters,” Journal of Health Science and
Engineering, vol. 12, no. 1, p. 40, 2014.

[26] F.-J. Chang, Y.-H. Tsai, P.-A. Chen, A. Coynel and G. Vachaud, “Modelling water
quality in an Urban River using Hydrological Factors - Data driven approaches,” Journal
of Environmental Management, vol. 151, pp. 87 - 96, 2015.

[27] J. Amanollahi, S. Kaboodvandpour and H. Majidi, “Evaluating the accuracy of ANN and
LR Models to Estimate the Water Quality in Zarivar International Wetland, Iran,”
Natural Hazards, vol. 85, no. 3, pp. 1511 - 1527, 2017.

[28] P. Huang, Y. Jin, D. Hou, D. Tu, Y. Cao and G. Zhang, “Online Classification of
Contaminants Based on Multi-Classification Support Vector Machine Using
Conventional Water Quality Sensors,” Sensors, vol. 17, no. 3, p. 581, 2017.

[29] N. Morgan, K. Asanovic, B. Kingsbury and J. Wawrzynek, “Developmets in Digital
VLSI Design for Artificial Neural Networks,” University of California at Berkeley,
Berkeley, California, 1990.

[30] N. Morgan, Artificial Neural Networks: Electronic Implementations, Washington, D.C.:
Computer Society Press of the IEEE, 1990.

[31] T. Baker and D. Hammerstrom, “Modifications to Artificial Neural Networks Models for
Digitial Hardware Implementation,” Department of Computer Science and Engineering,
Oregon Graduate Centre, Washington County, Oregon, USA, 1988.

[32] W. S. McCulloch and W. Pitts, “A logical calculus of ideas immanent in nervous
activity,” The Bulletin of Mathematical Biolphysics, vol. 5, no. 4, pp. 115 - 133, 1943.

 35

[33] F. Smach, M. Atri, J. Miteran and M. Abid, “Design of a Neural Network Classifier for
Face Detection,” Matrix, vol. 15, pp. 124 - 127, 2006.

[34] P. Skoda, T. Lipic, A. Srp, R. B. Medved, K. Skala and F. Vajda, “Implementation
Framework for Artificial Neural Networks on FPGA,” in MIPRO, 2011 Proceedings of
the 34th International Convention, Opatija, Croatia, 2011.

[35] J. S. Kim and S. Jung, “Implementation of the RBF neural chip with the back-propagation
algorithm for on-line learning,” Applied Soft Computing , vol. 29, pp. 233 - 244, 2015.

[36] A. Dinu, M. N. Cirstea and S. E. Cirstea, “Direct Neural-Network Hardware-
Implementation Algorithm,” IEEE Transactions on Industrial Electronics, vol. 57, no. 7,
pp. 1845 - 1848, 2010.

[37] L. Fausett, Fundamentals of Neural Networks : Architectures, Algorithms and
Applications, Prentice-Hall, 1994.

[38] Z. Hajduk, “High accuracy FPGA activation function implementation for neural
networks,” Neurocomputing, vol. 247, pp. 59 - 61, 2017.

[39] V. Tiwari and N. Khare, “Hardware implementation of neural network with Sigmoidal
activation functions using CORDIC,” Microprocessors and Microsystems, vol. 39, no. 6,
pp. 373 - 381, 2015.

[40] F. Yang and M. Paindavoine, “Prefiltering for pattern recognition using Wavelet
Transform and Neural Networks,” Advances in Imaging and Electron Physics, vol. 127,
pp. 125 - 206, 2003.

[41] H. V. H. Ayala, D. M. Munoz, C. H. Llanos and L. d. S. Coelho, “Efficient hardware
implementation of radial basis function neural network with customized-precision
floating-point operations,” Control Engineering Practice, vol. 60, pp. 124 - 132, 2017.

[42] “Some disasters attributable to bad numerical computing,” University of Montreal,
[Online]. Available: https://www.iro.umontreal.ca/~mignotte/IFT2425/Disasters.html.
[Accessed December 2022].

[43] J. L. Gustafson, The End of Error Unum Computing, New York: Chapman and
Hall/CRC, 2015.

[44] W. Tichy, “The end of (numeric) error: An interview with John L. Gustafson.,” Ubiquity,
pp. 1 - 14, 2016.

[45] R. Brueckner, “Slidecast: John Gustafson Explains Energy Efficient Unum Computing.,”
Inside HPC, 2015. [Online]. Available: https://insidehpc.com/2015/03/slidecast-john-
gustafson-explains-energy-efficient-unum-computing/.

[46] J. L. Gustafson, “A radical approach to computation with real numbers.,”
Supercomputing frontiers and innovations, vol. 3, no. 2, pp. 38-53, 2016.

[47] W. Tichy, “ Unums 2.0: An interview with John L. Gustafson,” Ubiquity, vol. 1, 2016.
[48] J. L. Gustafson and I. T. Yonemoto, “Beating Floating Point at its Own Game: Posit

Arithmetic,” 2017. [Online]. Available:
http://www.johngustafson.net/pdfs/BeatingFloatingPoint.pdf.

[49] J. L. Gustafson, “Beyond Floating Point: Next Generation Computer Arithmetic,” in
Stanford EE Computer Systems Colloquium., 2017.

[50] IEEE, ““IEEE Standard for Floating-Point Arithmetic,,” IEEE Std 754-200829, August
2008. [Online]. Available: https://ieeexplore.ieee.org/document/4610935.

[51] mindcontrolinsweden, “Introduction to Artificial Neural Network (ANN) | secret mind
control in sweden and wordwide,” wordpress.com, 30 January 2015. [Online]. Available:

 36

https://mindcontrolinsweden.wordpress.com/2015/01/30/introduction-to-artificial-
neural-networks/. [Accessed 13 October 2017].

[52] J. Misra and I. Saha, “Artificial neural networks in hardware: A survey of two decades
of progress,” Neurocomputing, vol. 74, no. 1 - 3, pp. 239 - 255, 2010.

[53] D. M. Munoz, D. F. Sanchez, C. H. Llanos and M. Ayala-Rincon, “FPGA based floating
point library for CORDIC algorithms,” in IEEE Proceedings of the 2010 VI Southern
Programmable Logic Conference, Ipojuca Port de Galinhas, Brazil, 2010.

[54] D. M. Munoz, D. F. Sanchez, C. H. Llanos and M. Ayala-Rincon, “Tradeoff of FPGA
design of a floating-point library for arithematic operators,” International Journal of
Integrated Circuits and Systems, vol. 5, no. 1, pp. 42 - 52, 2010.

[55] J. Gomez-Ortega and E. F. Camacho, “Neural Network MBPC for mobile robot path
tracking,” Robotics and Computer - Integrated Manufacturing, vol. 11, no. 4, pp. 271 -
278, 1994.

[56] A. Alessandri, M. Baglietto and G. Battistelli, “Moving-horizon state estimation for
nonlinear discrete-time systems,” Automatica, vol. 44, no. 7, pp. 1753 - 1765, 2008.

[57] J. V. Frances-Villora, A. Rosado-Munoz, J. M. Martinez-Villena, M. Bataller-Mompean,
J. F. Guerrero and M. Wegrzyn, “Hardware implementation of real-time Extreme
Learning Machine in FPGA: Analysis of precision, resource occupation and
performance,” Computers and Electrical Engineering, vol. 51, pp. 139 - 156, 2016.

[58] M. T. Mitchell, “Machine Learning,” in Machine Learning, Chennai, McGraw Hill
Education (India), 2013, pp. 81 - 124.

[59] D. A. Pomerleau, “ALVINN : An Autonomous Land Vehicle In a Neural Network,”
Carnegie Mellon University, Pittsburg, USA, 1989.

[60] Jagreet, “Overview of Artificial Neural Networks and its Applications,” Xenonstack: A
Stack Innovator, 5 May 2017. [Online]. Available:
https://www.xenonstack.com/blog/overview-of-artificial-neural-networks-and-its-
applications. [Accessed 1 October 2017].

[61] C. M. Bishop, Neural Networks for Pattern Recognition, Oxford: Clarendon Press, 1995.
[62] W. H. Organisation, “Guidlines for drinking-water quality Surveilleance and Control of

community supplies,” Word Health Organisation, Geneva, 1997.
[63] M. Nielsen, “Neural Networks and Deep Learning,” Michael Nielsen, August 2017.

[Online]. Available: http://neuralnetworksanddeeplearning.com/. [Accessed 29 09 2017].
[64] A. Deshpande, “A Beginner's Guide to Understanding Convolutional Neural Networks,”

Adit Deshpande, 20 July 2016. [Online]. Available: https://adeshpande3.github.io/A-
Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/. [Accessed
29 September 2017].

[65] D. A. Patterson and J. L. Hennessey, Computer Architecture A Quantitative Approach,
Waltham, MA: Morgan Kaufmann, 2011.

[66] World Health Organization, “Guidlines for Drinking-water Quality | Incorporating the
First Addendum,” World Health Organization, Geneva, Switzerland, 2017.

[67] Z.-H. Zhou, N. V. Chawla, Y. Jin and G. J. Williams, “Big Data Opportunities and
Challenges:Discussions from Data Analytics Perspectives,” IEEE Computational
Intelligence Magazine, vol. 9, no. 4, pp. 62-74, Nov. 2014.

[68] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis, Cambridge:
Springer, 2004.

 37

[69] F. Bach, “Sharp analysis of low-rank kernel matrix approximations,” ArXiv, vol.
1208.2015, 2013.

[70] S. Fine and K. Scheinberg, “Efficient SVM Training Using Low-Rank Kernel
Representations”.

[71] S.-B. Lin and D.-X. Zhou, “Distributed Kernel-Based Gradient Descent Algorithms,”
Constructive Approximation, vol. 47, pp. 249 - 276, 2018.

[72] M. T. Hagan, H. B. Demuth, M. H. Beale and O. De Jesus, Neural Network Design,
Boston, MA, USA: PWS, 1996.

[73] M. Frean, “The Upstart Algorithm: A Method for Constructing and Training Feedforward
Neural Networks,” Neural Computation, vol. 2, no. 2, pp. 198 - 209, 1990.

[74] M. Frean, “A "Thermal" Perceptron Learning Rule,” Neural Computation, vol. 4, no. 6,
pp. 946 - 957, 1992.

[75] F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain
Mechanisms, Washington DC: Spartan Books, 1962.

[76] J. L. Gustafson, Interviewee, The end of (numeric) error: An interview with John L.
Gustafson.. [Interview]. April 2016.

[77] J. L. Gustafon and I. . T. Yonemoto , “Beating Floating Point at its Own Game: Posit
Arithmetic,” Supercomputing Frontiers and Innovations, vol. 4, no. 2, p. 71–86, 2017.

 38

Chapter 3

3. Data Collection

In this chapter, we explore the various parameters that have been chosen to measure using our

electrodes to decide the water quality classification. An explanation of the importance of each

parameter to water quality, and methods to measure their values, has been presented. The data

collection presented in this chapter forms the ground truth for the training and validation of

the ANNs that are discussed later in the thesis. The validation of ANN-based prediction of DO

and EC has also been presented.

3.1 Introduction

Data assumes a pivotal role in the training process of an artificial neural network (ANN). The

efficacy of an ANN in discerning the relationship between inputs and outputs is directly

correlated with the size and diversity of the training dataset. Consequently, the collection of a

comprehensive and dependable dataset for training purposes becomes paramount, particularly

when the ANN is deployed in a critical application such as water quality monitoring.

The World Health Organization (WHO) stipulates five parameters - pH, Oxidation Reduction

Potential (ORP), Dissolved Oxygen (DO), Electrical Conductivity (EC), and Turbidity - as

fundamental indicators for assessing water potability [1]. To measure and classify water

quality, we focussed on four key parameters - pH, Oxidation Reduction Potential (ORP),

Dissolved Oxygen (DO), and Electrical Conductivity (EC) - all of which are measurable using

electrodes. These parameters exhibit correlations with several other critical variables pivotal

for the classification of water quality into the desired three categories, namely Potable,

Irrigation, and Wastewater. Additionally, these parameters represent the least complex

measurements to conduct in a water sample yet provide valuable insights for various other

essential parameters such as Total Dissolved Solids (TDS) and biological activity.

For the present study, 1806 Ground and surface water samples have been collected from

various locations in and around Pilani, Rajasthan, India. Out of these, 551 samples are from

Wells, 752 from tap water, 53 samples from washroom commodes, and 451 samples from

surface water open tanks. Testing has been carried out using these samples to measure the four

water quality parameters that form the ground truth dataset. This dataset is used for training

and validation of the Augmentation and Classification ANNs discussed in Chapter 6.

 39

Table 3.1 gives the prescribed values of each of the four parameters associated with each of

the three categories as per the WHO [1], Bureau of Indian Standards for Drinking [2] Water,

and Indian Standard Guidelines for Quality of Irrigation Water [3]

Table 3.1: Parameter values for each category

Category pH ORP (mV) DO (mg/dl) EC (µS/cm)

Potable 6.5 – 8.0 -225 – 50 5 - 15 < 250

Agricultural 5.5 – 8.5 -250 – 250 Any other value 150 - 3000

Wastewater <5.5 and >8.5 < -250 and > 250 Any other value Any other value

3.2 Potential of Hydrogen (pH)

3.2.1 Theory

pH is one of the primary water quality indicators. The pH of a solution, product, or material is

one of the most commonly computed and measured qualities. The pH of a solution is the

measure of hydrogen ion concentration in the solution, which is the measurement of the acidity

of the solution. Pure water has an equal amount of hydrogen and hydroxyl (𝑂𝐻+) ion

concentration. Thus, pure water dissociates slightly into the component ions as per the chemical

equation shown in equation 1 below –

 𝐻!𝑂 ⟺ [𝐻]-[𝑂𝐻]* (1)

A solution becomes acidic when it has an excess of hydrogen ions, while it becomes basic

when it contains a dearth of 𝐻(ions or an excess of hydroxyl ions. The equilibrium constant

for this reaction, 𝐾,, is equal to 10+!- and is the product of 𝐻(and 𝑂𝐻+concentrations. This

relationship can be described as follows:

 [𝐻]-[𝑂𝐻]* =	𝐾. = 10*/0 (2)

where [𝐻](and [𝑂𝐻]+are the concentrations of hydrogen and hydroxyl ions, respectively, in

moles per litre. Considering Equation (1) and solving Equation (2), in pure water, where the

concentrations of both ions are equal –

 40

 [𝐻]- =	 [𝑂𝐻]* = 10*1 (3)

Instead of as moles as per litre, we define a quantity pH as the negative logarithm of [𝐻](, so

that: -

 𝑝𝐻 =	−	log/2[𝐻]- =	 log/2
1

[𝐻]-
 (4)

[𝐻](equals 10+. in a neutral solution, or pH = 7. The pH of the solution is then 7 with higher

hydrogen ion concentrations. If the hydrogen ion concentration is 10+-, the pH will be 4 and

the solution will be acidic. The concentration of hydroxyl ions in this solution is 10+!-/10+-

= 10+!/. The presence of a substantial surplus of [𝐻](ions in the solution since 10+- ≫ 10+!/

confirms that it is acidic. A basic solution, with a low concentration of [𝐻](ions have [𝐻](,

or a pH greater than 7. Dilute solutions have a pH range of 0 (extremely acidic; 1 mole [𝐻](

ions per litre) to 14 (neutral) (very alkaline). Solutions having greater than 1 mole of H+ ions

per litre have negative pH [2].

pH is a fundamental parameter for assessing water quality, reflecting the concentration of

hydrogen ions (H+) and, consequently, the solution's acidity or alkalinity. In conjunction with

EC, which measures the ability of water to conduct electricity due to dissolved ionic species, a

qualitative estimation of water hardness can be obtained. High pH readings (above 8.5) coupled

with elevated EC values (exceeding 200 mS/cm) are indicative of hard water, likely containing

a high concentration of carbonate and bicarbonate ions. The synergistic analysis of pH and

dissolved oxygen (DO) concentration can provide valuable insights into potential biological

activity within a water sample. A low pH (below 5.5) measured alongside a high DO

concentration (greater than 50 mg/dL) can be suggestive of biological decomposition

processes. During decomposition, organic matter acidifies the water by releasing acidic

byproducts, while microbial respiration consumes dissolved oxygen, leading to a temporary

increase in DO [1].

The pH of drinking water must be monitored and stringently controlled. Changes in the pH

values of drinking water can indicate the presence of toxic chemicals. These can then be found

out with further testing of the water sample. However, for drinking purposes, it can be

confidently stated that drastic divergence from prescribed limits of pH value renders the water

 41

inconsumable. One of the primary reasons for water pH changing is the presence of ionic

impurities such as undesirable amounts of nitrates, hydroxides, et al, which may render the

water acidic. On the other hand, another class of impurities is heavy metals, which may make

the water unnecessarily alkaline. While water alkalinity beyond the permissible range has its

disadvantages, the presence of heavy metals could also make such water a potential carcinogen.

Previous studies have established a correlation between the presence of As, Pb, U, No3-, F-, Cu,

Zn, and other heavy metals and ions and carcinogenicity [3] [4].

pH measurement is also critical for agricultural water quality assessment because pH can affect

the equilibrium state and rate of many reactions substantially. Many plants can only withstand

a small pH range in the soil. A small change in blood pH can kill any animal. In many industrial

processes, precise pH regulation is critical for high yield.

3.2.2 pH Measurement

pH is the measure of the concentration of Hydrogen ions in the liquid. pH indicates the acidity

or alkalinity of the solution. To measure the pH of a there are many methods, starting with the

simple litmus paper test. Also, we have titration-based methods, where we find out the

concentration of the Hydrogen ion or hydroxide contributing salts, and then from there derive

the concentration of hydrogen ion. Once we have the concentration of hydrogen ions in the

solution, we calculate the pH of the solution using the Nernst Equation. The method we have

used here is by using electrodes. These electrodes consist of two elements, a reference and a

measuring element. The reference element is held inside a standardized alkaline solution, and

the Hydrogen ion exchange across a glass bulb causes a potential difference between the two

elements. This potential difference is directly proportional to the difference in Hydrogen ion

concentration in the standard solution inside the electrode and the sample solution. This voltage

then is used to calculate the pH of the sample solution.

The most basic measurement technique for pH is the litmus paper test. In the litmus paper test,

the various values of pH are colour-coded based on how the litmus paper changes colour when

a strip of the litmus paper is dipped in the solution. Since this is not a very accurate measure of

the pH of a solution, more accurate methods have been proposed that involve measurement of

the concentration of each ion and a mathematical relationship is established to give the pH of

a solution. This mathematical relationship between the concentrations of the said ions is called

 42

the Nernst Equation. Nernst Equation is a relation between the concentration of the oxidation

and reduction half-cell concentrations of a redox reaction. In the dissociation of a solution into

[𝐻](and [𝑂𝐻]+ ions, the atom losing [𝐻](ion is said to be oxidized and the atom losing

[𝑂𝐻]+ ion is said to be reduced. Equations 1 through 4 show the mathematical relationship

between the concentration of [𝐻](ion and pH value. This relationship is thus used to measure

the value of pH in electrode-based measurement.

Fritz Haber and Zygmunt Klemensiewicz [5] [6] created the first glass pH electrode in 1908.

It is commonly considered that the electrode was constructed in 1909 because the paper

describing it was published a year later [5]. The original electrode is made of glass, filled with

a strong electrolyte, and has an Ag/AgCl half-cell with Ag wire as a contact. The difference in

H+ activity on both sides builds up a potential difference on the sides of thin glass in the bubble,

which is measured with the use of reference electrodes and is known to be proportional to the

pH on the outside of the bubble. Even today the general principle of a pH electrode hasn’t

changed much.

Glass electrodes are often used as pH electrodes. A typical model is a glass tube with a little

glass bubble at the end. The electrode's interior is normally filled with a buffered chloride

solution in which silver wire coated in silver chloride is immersed. The pH of the internal

solution can range from 1.0 (0.1M HCl) to 7.0 (7.0M HCl) (different buffers used by different

producers). Figure 3.1 shows the schematic of a general glass bulb pH electrode.

Figure 3. 1: A generic Glass bulb pH Electrode [5]

 43

The glass bubble is the electrode's active component. While the tube walls are thick and strong,

the bubble walls are as thin as possible. Both internal and exterior solutions protonate the glass

surface until equilibrium is reached. The adsorbed protons charge both sides of the glass, and

this charge is what causes the potential difference. The Nernst equation describes this potential,

which is proportional to the pH difference between the solutions on both sides of the glass. The

majority of the commercially available pH electrodes are combination electrodes, which

combine a glass [𝐻](ion-sensitive electrodes with an extra reference electrode in one housing.

Figure 3.2 shows a combination pH electrode.

Figure 3. 2: Combination pH Electrode [5]

The processes that must take place when measuring pH define the construction of a

combination electrode. In the glass electrode, we need to measure the difference in potentials

between the two sides of the glass. We'll need a closed circuit for this. The pH meter and the

internal and external solutions complete the circuit. However, for accurate and steady

measurements the reference electrode must be isolated from the solution so that it does not

cross-contaminate and connecting and isolating two solutions at the same time is not an easy

process. The electrode body has a tiny hole via which the connection is made. Porous

membrane or ceramic (asbestos in previous models) wicks are used to close this hole. The

internal solution flows slowly via the junction, therefore these electrodes are referred to as

"flowing electrodes." The internal solution is gelled in gel electrodes to reduce leaks.

 44

Figures 3.3 and 3.4 show pictures of the pH electrode used for this study. In Figure 3.4 the

detailed view of the tip of the electrode is shown, where the glass bulb can be seen. The

potential across this glass bulb is measured as the measurement of the pH of the solution.

Figure 3. 3: pH electrode dipped in standard solution

 45

Figure 3. 4: pH electrode - detailed view of the interacting glass bulb

• The Nernst Equation

The Nernst equation defines the potential of an electrochemical cell as a function of the

concentration of the ions taking part in the chemical reaction. The Nernst Equation is given by

Equation 5: -

 𝐸 =	𝐸2 +	
𝑅𝑇
𝑛𝐹

ln(𝑄) (5)

Where Q is the reaction quotient; R represents the Universal Gas Constant; T is the temperature

in Kelvin; n is the number of moles of ions or electrons exchanged in the reaction; F is the

Faraday Constant. E0 represents the standard potential of the reaction involved in the solution

in question. E represents the reduction potential of the reaction in question.

The pH electrode used in the project is an Ag (Silver) electrode coated with AgCl (Silver

Chloride) dipped in a KCl (Potassium Chloride) solution.

For the said electrode, being used at standard room temperatures, Equation 5 becomes [7]: -

𝐸 =	𝐸2 − 	2.303 ∗

0.0256
𝑛

∗ 𝑝𝐻
(6)

 46

At room temperature, for 1 Molar KCl solution, n = 1, 𝐸/, 𝐸/ 	= 0.0235; 	𝐸 is the voltage

received on the electrode [8].

Thus, equation 6 becomes that:

 𝑝𝐻 = 0.0235 − 0.0256 ∗ 𝐸 (7)

Since the pH of neutral solution is 7, an offset of 7 is given to equation 7, making the equation.

 𝑝𝐻 = 0.0235 − 0.0256 ∗ 𝐸 + 7 (8)

Thus Equation 8 establishes a relationship between the reference electrode potential and pH.

This relation is then used in Arduino programming to calculate the pH of the solution. To

achieve that, we connect the pH electrode to the analog port of the Arduino board. In the

program, we convert the analog readings to digital voltage. This digital voltage reading is then

used in the equation to convert the reading into pH readings.

There are several pH measuring kits available in the market. We have in particular, used the

Labtronics Water Quality kit, YSI Sonde, and Atlas Scientific pH kit (paired with Arduino

Uno) as standards against which the pH readings of the proposed device have been validated.

3.2.3 pH Data

Table 3.2 shows the pH measurement data of only 100 samples (out of 1806 samples) collected

from in and around the BITS Pilani, Pilani campus. The water has been collected from various

groundwater sources, and surface water examples have been collected from manmade water

receptacles on the campus. Some water samples were also collected from drinking water

sources around the campus. To remove conformity bias, the water samples were blinded and

shuffled but not mixed.

Table 3.2: pH measurement comparison against standard devices

S. No. pH - Atlas Scientific electrode pH - Labtornics LT-59

1 8.6 8.6

2 7.8 7.8

3 7.4 7.4

4 7.0 7.0

5 6.8 6.9

6 7.3 7.3

 47

7 6.5 6.5

8 7 7

9 6.8 6.8

10 6.6 6.5

11 5.7 5.7

12 8 8

13 6.2 6.2

14 6.1 6.1

15 7 7

16 6.3 6.3

17 6.5 6.5

18 6.3 6.3

19 7 7

20 6.8 6.8

21 8 8

22 7 7

23 7.4 7.4

24 8 8

25 6 6

26 6.3 6.3

27 8.5 8.5

28 8 8

29 5.8 5.8

30 7 7.1

31 5.5 5.5

32 7 7

33 8.5 8.5

34 7.5 7.5

35 6.8 6.8

36 7 7

37 8.2 8.2

38 6.5 6.5

 48

39 8 8

40 6.5 6.5

41 8.5 8.5

42 8 8

43 8.5 8.5

44 8 8

45 7.7 7.8

46 6 6

47 8 8

48 7 7

49 6.6 6.6

50 8 8

51 8.5 8.5

52 8.1 8.1

53 8.3 8.3

54 7 7

55 7.3 7.3

56 8 8

57 7.7 7.7

58 8 8

59 6.6 6.6

60 7 7

61 7 7.2

62 8 8

63 7 7

64 6.8 6.8

65 7.1 7.1

66 7.5 7.5

67 7.8 7.8

68 7 7

69 7 7

70 7.2 7.2

 49

71 8.6 8.6

72 8 8

73 6.3 6.3

74 7.5 7.5

75 6.7 6.7

76 6.2 6.2

77 6.9 6.9

78 7 7

79 6.5 6.5

80 7 7

81 8.5 8.5

82 6.3 6.3

83 7.3 7.3

84 7.5 7.5

85 6.6 6.6

86 7 7

87 7.2 7.2

88 6.2 6.2

89 7.5 7.5

90 6.5 6.5

91 7 7

92 7.6 7.6

93 7.1 7.1

94 8.2 8.2

95 6.8 6.8

96 7.4 7.4

97 7.6 7.6

98 7 7

99 7 7

100 8 8

 50

3.3 Oxidation-Reduction Potential (ORP)

3.3.1 Theory

The Oxidation Reduction Potential (ORP or Oxidation Reduction Potential) is a measurement

of an aqueous system's ability to release or gain electrons as a result of chemical processes. In

the oxidation process, electrons are lost, but in the reduction process, electrons are gained. ORP

is commonly used in water treatment to manage chlorine and chlorine dioxide disinfection in

cooling towers, swimming pools, potable water sources, and other water applications. ORP has

a considerable influence on the life span of bacteria in water studies. ORP values can also help

in estimating the presence of heavy metals in the water sample. Heavy metals are present in

ionic salt forms in water and form positive ions inside the water body, increasing the Oxidation

potential of the water and also the Electrical Conductivity of the water. Thus, for a high value

of ORP (ORP > 250mV) and high EC values (EC > 300µS), a heavy metal presence in the

water can be estimated qualitatively.

An ORP electrode, which has been used in the study, has been shown in Figure 3.5. In Figure

3.6, a detailed close-up shot of the ORP electrode is shown. The Platinum (Pt) electrode which

measures the potential of the Redox reaction can be seen in this close-up shot of the electrode.

Figure 3. 5: ORP Electrode used in the study

 51

Figure 3. 6 : ORP electrode - detailed view of the interacting Pt Electrode

3.3.2 ORP Measurement

The Oxidation Reduction Potential (ORP) tells whether the sampled solution is oxidising in

nature or reducing. For an oxidising solution, we get a positive oxidation potential, meanwhile,

for a reducing solution, we get a negative oxidation potential. The method of measurement is

similar to that of pH as ORP is also calculated based on the concentration of oxidising ions to

reducing ions. Neutral water with pH =7 has an ORP of 0 millivolts.

The ORP sensor works quite similarly to a pH sensor, but it employs an inert metal (typically

platinum) half-cell instead of a pH-sensitive glass membrane half-cell. A potentiometric

measurement is performed using a two-electrode setup. Depending on the test solution, the

platinum electrode acts as an electron donor or acceptor. For comparison, a reference electrode

is utilised to provide a continuous, reliable output. A restrictive diaphragm makes electrical

contact with an electrolyte solution (e.g., saturated potassium chloride KCl solution) from the

reference half-cell. The Nernst equation describes the electrode behaviour [8] [9]:

 𝐸 =	𝐸2 −	
𝑅𝑇
𝑛𝐹

ln
𝐶34
𝐶567

 (9)

Where,

E = Measured potential (mV) between the platinum (Pt) and the reference electrode

 52

𝐸/ = Measure potential (mV) between the Pt and the reference electrode at a concentration

𝐶0& =	𝐶1*2

R = Universal gas constant

T = temperature in Kelvin

F = Faraday Constant

n = Electrical charge of the ion

𝐶0& = Concentration of oxidizing agent in moles/L

𝐶1*2 = Concentration of reducing agent in moles/L

The potential is measured against a reference electrode, commonly Ag/AgCl, using platinum

as the indicating sensor. Other noble metals, such as gold or silver, can also be employed.

When compared to pH measurements, ORP readings are slow. While a pH value can be

produced in a matter of seconds, achieving a steady ORP value might take several minutes, if

not hours. The platinum surface state has a significant impact on ORP behaviour. ORP probes

"in use" will display different values than a new unconditioned ORP electrode. [8]

The probe was calibrated before being used to measure a sample.

Calculate the offset by:

 𝐸38896) =	𝐸9)+&7+57 −	𝐸:6+9(567 (10)

Drinking water (DW) has a low ionic strength (e.g., 80 to 200 S), which might cause issues

with stabilisation time and final reading. After calibrating the ORP probe, rinse it with drinking

water before transferring it to a fresh beaker containing the DW sample to be analyzed. Wait

at least 15 minutes for the first reading, then check for stability every 5 minutes. It could take

many hours to achieve a final reading depending on the temperature (low takes longer) and

conductivity (low takes longer) [8].

Surface water (SW) has a conductivity of greater than 600 S/cm in most cases. The ORP

measurement can be performed immediately following the calibration. Because sufficient ORP

active species are present in rivers, reservoirs, and wells, the measurement should be steady

within 6 minutes [8].

 53

3.3.3 ORP Data

Table 3.3 shows the ORP measurement data of 100 samples collected from in and around the

BITS Pilani, Pilani campus.

Table 3. 3: ORP measurement comparison against standard devices

S. No. ORP - Atlas Scientific Electrode ORP - Labtornics LT-59

1 3.01 3.01

2 0.92 0.92

3 1.73 1.73

4 3.28 3.28

5 3.32 3.32

6 2.74 2.74

7 0.03 0.03

8 4.22 4.22

9 3.08 3.08

10 2.53 2.53

11 0.01 0.01

12 3.39 3.39

13 0.04 0.04

14 0.02 0.02

15 3.4 3.4

16 0.15 0.15

17 0.01 0.01

18 0.01 0.01

19 1.46 1.46

20 1.58 1.58

21 4.63 4.63

22 0.43 0.43

23 0.44 0.44

24 2.83 2.83

25 0.01 0.01

26 0.01 0.01

 54

27 2.89 2.89

28 0.07 0.07

29 0.01 0.01

30 7.11 7.11

31 0.09 0.09

32 0.06 0.06

33 3.33 3.33

34 3.28 3.28

35 0.04 0.04

36 0.22 0.22

37 3.22 3.22

38 0.03 0.03

39 3.43 3.43

40 0.13 0.13

41 2.45 2.45

42 4.95 4.95

43 4.95 4.95

44 7.9 7.9

45 2.48 2.48

46 0.05 0.05

47 4.93 4.93

48 0.08 0.08

49 0.03 0.03

50 3.11 3.11

51 2.82 2.82

52 3.12 3.12

53 3.11 3.11

54 0.85 0.85

55 0.91 0.91

56 0.91 0.91

57 0.64 0.64

58 1.22 1.22

 55

59 0.23 0.23

60 0.24 0.24

61 0.23 0.23

62 0.59 0.59

63 0.23 0.23

64 0.24 0.24

65 0.28 0.28

66 0.93 0.93

67 1.55 1.55

68 0.33 0.33

69 0.49 0.49

70 0.24 0.24

71 1.19 1.19

72 0.85 0.85

73 0.24 0.24

74 0.59 0.59

75 0.23 0.23

76 0.23 0.23

77 0.23 0.23

78 0.25 0.25

79 0.23 0.23

80 0.25 0.25

81 4.34 4.34

82 0.25 0.25

83 0.36 0.36

84 0.64 0.64

85 0.25 0.25

86 0.25 0.25

87 0.23 0.23

88 0.26 0.26

89 0.9 0.9

90 0.42 0.42

 56

91 0.25 0.25

92 1.21 1.21

93 0.24 0.24

94 1.22 1.22

95 0.25 0.25

96 1.08 1.08

97 0.49 0.49

98 0.51 0.51

99 0.27 0.27

100 0.64 0.64

3.4 Dissolved Oxygen (DO)

3.4.1 Theory

The amount of oxygen dissolved in water is referred to as dissolved oxygen (DO). The

atmosphere and aquatic vegetation both provide oxygen to water bodies. Running water, such

as a fast-moving stream, dissolves more oxygen than motionless water, such as that found in a

pond or lake. When it comes to drinking water sources, the overall taste of the water is

determined by the amount of dissolved oxygen present in the water. When DO levels are high,

the drinking water has a superior taste to it. It's crucial to note, however, that higher DO levels

are harmful to numerous components and systems utilised in the distribution and treatment of

drinking water. For example, excessively high DO levels aid the corrosion of water pipelines.

The amount of dissolved oxygen in the water is significant for various reasons. Any dissolved

oxygen in the water will take up a certain amount of space [10]. When dissolved oxygen levels

are high, there isn't much room in the water for other dissolved chemicals to exist. If the

dissolved oxygen levels in the water are extremely low, minerals in the lake's bed will begin to

dissolve in the water at a faster rate. Although a high mineral content in water may not cause

health problems, it might alter the water's scent and taste [11].

3.4.2 Measurement of DO

Dissolved oxygen levels can be measured by a basic chemical analysis method (titration

method), an electrochemical analysis method (diaphragm electrode method), and a

 57

photochemical analysis method (fluorescence method). The diaphragm electrode method is the

most widely used method [8].

The diaphragm electrode technology uses electrodes to monitor the amount of oxygen passing

through an highly oxygen-permeable diaphragm. The galvanic electrode method and the

polarographic electrode method are two ways of determining dissolved oxygen levels using

electrodes. These methods each have their own set of benefits and drawbacks, thus the method

that best suits the situation is chosen.

A PTFE membrane, an anode in an electrolyte, and a cathode make up a galvanic dissolved

oxygen probe. At a consistent rate, oxygen molecules diffuse through the probe's membrane

(without the membrane the reaction happens rapidly). When oxygen molecules enter the

membrane, they are reduced at the cathode, resulting in a tiny voltage. The probe will produce

0 mV if no oxygen molecules are present. The mV output from the probe increases as the

oxygen level rises. In the presence of oxygen, each probe will produce a distinct voltage. Only

one thing remains constant: 0mV Equals 0 Oxygen [12]. Figure 3.7 shows a schematic of the

galvanic DO probe. Figures 3.8 and 3.9 show the DO electrode. Figure 3.8 shows a detailed

view of the interacting membrane of the electrode across which the DO concentration is

measured.

Figure 3. 7: A schematic of Galvanic DO Probe [11]

 58

Figure 3. 8: DO electrode - detailed view of the interacting membrane

Figure 3. 9: DO Electrode

3.4.3 DO Data

Table 3.4 shows the DO measurement data of 100 samples collected from in and around the

BITS Pilani, Pilani campus.

 59

Table 3.4: DO measurement comparison against standard devices

S. No. DO - Atlas Scientific Electrode DO - Labtornics LT-59

1 10 10

2 11.5 12

3 14.5 14.5

4 12.5 12

5 12 12

6 16 16

7 15 14.5

8 14 14.3

9 10.3 10.3

10 10.4 10.4

11 13 13

12 16 16

13 15.5 15.5

14 13 13

15 12.5 12.5

16 13 13

17 11.5 11.5

18 10 10

19 1.7 1.7

20 10.8 10.8

21 12 12

22 12 12

23 9.5 9.5

24 11 11

25 9 9

26 12 12

27 10 10

28 8.5 8.5

29 7.5 7.5

30 8 8

31 9.5 9.5

32 10 10

33 11 10.8

 60

34 10.5 10.5

35 9.5 9.5

36 9.7 9.7

37 9.8 10

38 9 9

39 7 7

40 9 9

41 10 10

42 10.2 10

43 8.8 8.8

44 4.5 4.5

45 9.8 9.8

46 8.5 8.5

47 5.5 5.5

48 8.2 8.2

49 7.5 7.5

50 8.2 8.2

51 7.5 7.5

52 8.5 8.5

53 7 7

54 8.5 8.5

55 9 9

56 9 9

57 8.5 8.5

58 9 9

59 8.5 8.5

60 9.5 9.5

61 9 8.5

62 6 6

63 10.2 10.2

64 9 9

65 7.8 7.8

66 7.5 7.5

67 6 6

68 7 7

 61

69 9 9

70 9 9

71 7.3 7.3

72 6.5 6.5

73 8.5 8.5

74 8 8

75 7.8 7.8

76 8.6 8.6

77 7.4 7.4

78 8 8

79 7.5 7.5

80 8 8

81 7 7

82 7.6 7.6

83 7.4 7.4

84 9.5 9.5

85 9 9

86 7.5 7.5

87 9.2 9.2

88 9.5 9.5

89 8.3 8.3

90 8.7 8.7

91 9.6 9.6

92 6.4 6.4

93 10 10

94 7 7

95 10.5 10.5

96 8 8

97 9.5 9.5

98 8 8

99 8 8

100 7.5 7.5

 62

3.5 Electrical Conductivity (EC)

3.5.1 Theory

The ability of a solution, a metal, or a gas - in other words, all materials - to pass an electric

current is known as conductivity. Current is carried by cations and anions in solutions, but

electrons carry it in metals. It serves as an indicator of dissolved ionic solid concentration and

salinity in water. Compounds like calcium, magnesium, and sodium salts, which can affect the

hardness and alkalinity of a water supply, are known as dissolved ionisable solids. High

conductivity water does not inherently endanger human health, but it can cause corrosion in

industrial equipment and plumbing systems, scale build-up, a mineral-like taste in drinking

water, and dissolved solid concentration problems in agriculture. The conductivity limit for

drinking water is 2500 micro-Siemens per centimetre (S/cm). Conductivity monitoring can

offer information about the source and suggest whether geological conditions or pollutants are

affecting water quality [13].

Moreover, the Electrical Conductivity also has almost linear relations with many other

parameters, such as Total Dissolved Solids (TDS), Salinity, and Specific gravity. Amongst

these, TDS is of particular interest as the TDS is one of the primary water quality parameters

mentioned in the drinking water quality guidelines such as the WHO guidelines for Drinking

Water Quality and the Water Quality standards published by the Bureau of Indian Standards,

and various other local and national government guidelines. A water sample having TDS > 50

PPM and TDS < 150 PPM is considered excellent for drinking purposes [14] [15]. Electrical

Conductivity has a linear relationship with TDS as shown below [16]:

 𝑇𝐷𝑆	 J
𝑚𝑔
𝑙
N = 0.65	 × 𝐸𝐶 P

𝜇𝑆
𝑐𝑚S

 (11)

3.5.2 Measurement of EC

A steady, alternating electrical current (I) is applied to two electrodes immersed in a solution,

and the resulting voltage is measured (V). Cations migrate to the negative electrode, anions to

the positive electrode, and the solution acts as an electrical conductor during this process [8].

Conductivity is usually tested in electrolyte aqueous solutions. Electrolytes are ions containing

substances, such as ionic salt solutions or chemicals that produce ions in the solution. The ions

in the solution are in charge of transporting the electric current. Acids, bases, and salts are

 63

examples of electrolytes, which can be strong or weak. Water has the ability to stabilize the

ions generated through a process called solvation, hence the majority of conductive solutions

studied are aqueous solutions [17].

Inside the conductivity probe, two electrodes are positioned opposite each other, and an AC

voltage is given to the electrodes, causing cations to move to the negatively charged electrode

and anions to move to the positively charged electrode. The electrical conductivity of liquid

increases as the amount of free electrolyte in the liquid increases.

A conductivity probe is a very simple instrument. It consists of two conductors separated by a

fixed distance and having a fixed surface area. The conductivity cell is the measurement of

distance and surface area. The cells’ distance and surface area are quantified as the conductivity

cell K constant.

The resistance of the solution (R) can be calculated using Ohm's law

 𝑉	 = 	𝑅	 ∗ 	𝐼	𝑜𝑟	𝑅	 = 	𝑉	/	𝐼 (12)

Where: V = voltage (volts), I = current (amperes), R = resistance of the solution (ohms)

Conductance (G) is defined as the reciprocal of the electrical resistance (R) of a solution

between two electrodes.

 𝐺	 = 	1/𝑅	(𝑆) (13)

 [S = Siemens]

The conductivity meter measures the conductance and displays the reading converted into

conductivity.

Conductivity is the ability of a solution to pass current.

 𝜅	 = 	𝐺	 ∗ 	𝐾 (14)

Where κ = conductivity (S/cm); G = conductance (S); K = cell constant (cm–1) [8].

 64

Figure 3.10 shows a schematic view of the process of measuring Electrical conductivity. Figure

3.11 shows a close-up view of the eye hole where the two plates of the electrode are placed.

An analog voltage is applied across the two plates and the conductivity of the water between

the two plates gives us the conductivity of the water sample. Figure 3.12 shows a snapshot of

the EC electrode.

Figure 3. 10: Electrical Conductivity measurement schematic [7]

Figure 3. 11: EC electrode detailed view. The two plates between which the conductivity is
measured are placed inside the eye-hole

 65

Figure 3. 12: The EC Electrode

3.5.3 EC Data

Table 3.5 shows the EC measurement data of 100 samples collected from in and around the

BITS Pilani, Pilani campus.

Table 3.5: EC measurement comparison against standard devices

S. No. EC - Atlas Scientific Electrode EC - Labtornics LT-59

1 281 281

2 294 294

3 277 277

4 292 292

5 302 302

6 294 294

7 298 298

8 308 308

9 277 277

10 278 278

11 270 270

12 254 254

13 293 293

14 299 299

15 283 283

 66

16 298 298

17 291 291

18 295 295

19 288 288

20 257 257

21 265 265

22 271 271

23 284 284

24 259 259

25 211 211

26 235 235

27 215 215

28 245 245

29 264 264

30 273 273

31 262 262

32 263 263

33 252 252

34 266 266

35 269 269

36 273 273

37 279 279

38 275 275

39 267 267

40 277 277

41 264 264

42 263 263

43 268 268

44 254 254

45 259 259

46 275 275

47 273 273

48 280 280

49 284 284

50 267 267

 67

51 263 263

52 269 269

53 248 248

54 255 255

55 247 247

56 257 257

57 260 260

58 273 273

59 265 265

60 266 266

61 271 271

62 253 253

63 264 264

64 281 281

65 258 258

66 253 253

67 258 258

68 265 265

69 255 255

70 270 270

71 247 247

72 238 238

73 278 278

74 269 269

75 270 270

76 252 252

77 271 271

78 269 269

79 270 270

80 279 279

81 238 238

82 265 265

83 263 263

84 245 245

85 267 267

 68

86 278 278

87 274 274

88 269 269

89 265 265

90 282 282

91 281 281

92 274 274

93 272 272

94 256 256

95 263 263

96 276 276

97 258 258

98 266 266

99 271 271

100 297 297

3.6 Validation of Data

The data collected and presented in this chapter serves as the training set for the ANN designed

in chapters 4, 5, and 7. A set of data values has been collected for each sensor using standard

methods of measuring those parameters. This set has been used to validate the data predicted

by the ANN in Chapter 7. Validation of data is necessary to ensure the proper functioning of

the device designed to prevent any health issues for the users.

To validate the data, the standard data has been made using 1806 samples of ground and surface

water samples collected from various locations near the BITS Pilani campus, Vidya Vihar,

Pilani, Rajasthan, India. These samples were measured using standardised methods and

instruments. 100 data points from the whole data set have been presented for each parameter

in Appendix A. An ANN has been designed to predict the values of some of the parameters,

which are detailed in Chapter 6.

The prediction has been made to bring down the cost of Water Quality Classification. The

predicted parameter values have been validated against the data measured and presented in this

chapter and the comparison tables are given in Appendix A. The results of the validation are

presented and discussed in detail in Chapter 6.

 69

3.7 Conclusion

This chapter discusses the collection of various parameter data using standard laboratory

methods. The data collected in this chapter is used as the ground truth for training and

validation of Augmentation ANN and Classification ANN presented in Chapter 6.

3.8 References

[1] “Water on the Web | Understanding | Water Quality | Parameters | pH,” Water On The
Web, 17 January 2008. [Online]. Available:
https://waterontheweb.org/under/waterquality/ph.html. [Accessed April 2018].

[2] J. J. Pierce, R. F. Weiner and P. A. Vesilind, “Measurement of Water Quality,” in
Environmental Pollution and Control, 1998, pp. 57 - 76.

[3] G. Kaur, R. Kumar, S. Mittal, P. K. Sahoo and U. Vaid, “Ground/drinking water
contaminants and cancer incidence: A case study of rural areas of South West Punjab,
India,” Human and Ecological Risk Assessment: An International Journal, vol. 27, no. 1,
pp. 205-226, 2019.

[4] B. S. Bajwa, S. Kumar, S. Singh, S. K. Sahoo and R. M. Tripathi, “Uranium and other
heavy toxic elements distribution in the drinking water samples of SW-Punjab, India,”
Journal of Radiation Research and Applied Sciences, vol. 10, no. 1, pp. 13 - 19, 2017.

[5] F. Haber and Z. Hlemensiewicz , “Über elektrische Phasengrenzkräfte,” Zeitschrift für
Physikalische Chemie, vol. 67U, no. 1, pp. 385 - 431, 1909.

[6] ph-meter.info, “ph-meter.info,” ph meter, [Online]. Available: http://www.ph-meter.info.
[Accessed 10 May 2022].

[7] Drinking Water Sectional Committee, Food and Agricultural Division, “Indian Standard
Drinking Water - Specification (Second Revision),” Bureau of Indian Standards, New
Delhi, 2012.

[8] D. A. Bier, Electrochemistry: Theory and Practice, 2018: HACH .

[9] M. Chaplin, “Water Redox,” Water Structure and Science, 5 November 2021. [Online].
Available: https://water.lsbu.ac.uk/water/water_redox.html. [Accessed 12 May 2022].

[10] Sensorex, “The Importance of Dissolved Oxygen in Water and Water Systems -
Sensorex,” Sensorex - A Halma Company, 17 November 2020. [Online]. Available:
https://sensorex.com/2020/11/17/importance-of-dissolved-oxygen/. [Accessed 15 May
2022].

[11] United States Environmental Protection Agency, “Indicators: Dissolved Oxygen | US
EPA,” United States Environmental Protection Agency, 7 July 2021. [Online]. Available:
https://www.epa.gov/national-aquatic-resource-surveys/indicators-dissolved-oxygen.
[Accessed 15 May 2022].

[12] Atlas Scientific, “Atlas Scientific Lab Grade D. O. Probe,” Atlas Scientific, 2021.

[13] S. Jones, “Consuctivity in Drinking Water - Water Library | Acorn Water -
H2OLabCheck,” Acorn Water - H2OLabCheck, 2 January 2020. [Online]. Available:
https://www.h2olabcheck.com/blog/view/conductivity. [Accessed 17 May 2022].

 70

[14] World Health Organisation, “Guidelines for Drinking-water Quality (Fourth,” World
Health Organisation, Geneva, Switzerland, 2017.

[15] Central Bureau of Health Intelligence, “NationalHealth Profile 2018,” Ministry of Health
and Family Welfare, Government of India, New Delhi, 2018.

[16] A. . F. Rusydi, “Correlation between conductivity and total dissolved solid in various
type of water: A review,” in IOP Conference Series: Earth and Environmental Science,
Volume 118, Global Colloquium on GeoSciences and Engineering 201718–19 October
2017, Bandung, Indonesia, 2017.

[17] A. Scientific, “Conductivity K1.0 Kit | Atlas Scientific,” September 2021. [Online].
Available: https://files.atlas-scientific.com/EC_K_1.0_probe.pdf. [Accessed 17 May
2022].

[18] Organisation, World Health, “Diarrhoeal Disease,” World Health Organisation, 2017.

 71

 Chapter 4

4. Efficient ANN Hardware Implementation through

Mathematical Approximation in IEEE 754 Representation

This chapter explores ANN architectures and mathematical approximations for activation

functions suitable for digital hardware implementation.

4.1 Introduction

Artificial Neural Networks (ANN) have many uses in the modern world. An artificial neural

network is very effective for certain problems, such as learning to interpret complex real-world

sensor data. ANN learning is well-suited to problems in which the training data corresponds to

complex sensor data, such as inputs from various sensors, which, when taken together, do not

have an apparent relationship with output. Classification of data into classes and predicting

future data based on system behaviour where the system behaviour cannot be modelled

mathematically can be modelled by ANN accurately. ANN is also applicable to problems for

which symbolic representations are often used, such as decision tree learning. [1]

With varying applications, various architectures have been developed for ANN. A large variety

of architectures for ANN makes it challenging to determine the architecture that suits the

desired application. To find out which architecture suits the chosen application of Water

Quality Classification necessitates exploration of architectures as mentioned below: -

4.1.1 Multilayer Perceptron Feedforward Network with Backpropagation

The most basic ANN model is the Multilayer Perceptron (MLP) model with a Feedforward

network and Backpropagation learning algorithm. It is based on the McCulloch-Pitts model of

Perceptron. MLP consists of many perceptrons called a neuron. MLP model can be applied to

almost all four tasks expected from ANN. It is a supervised learning model, and the learning

algorithms are the Backpropagation algorithms. Due to their structural and mathematical

simplicity, MLPs are best suited for hardware implementation for supervised classification

applications such as Water/Air Quality Indexing, Facial Recognition, and Natural Language

Processing.

4.1.2 Radial Basis Function

Radial Basis Function (RBF) Neural Networks are structurally similar to MLP for supervised

learning algorithms, but for RBF, there is only one hidden layer between the input and output

 72

layers. This hidden layer is the feature layer. The number of neurons involved in the

classification decides the number of neurons in the hidden layer. So structurally, RBF

architecture is more predictable than ANN. However, due to the limited number of hidden

neurons, the classification process is slow on RBF and power consuming.

4.1.3 Support Vector Machines

Support Vector Machines (SVM) are another type of machine learning algorithm widely used

for classification. SVMs are widely used for classification purposes like handwriting

recognition, face detection, gene classification, etc. But to ensure convergence, SVMs increase

the dimensionality of the vector space, thus making it unsuitable for digital hardware

applications.

4.1.4 Constructive C-Mantec

Constructive Neural Networks (CoNN) are also called second-generation ANNs. Constructive

neural networks start with only one hidden neuron but increase the number of hidden neurons

by generating new neurons whenever specific learning parameters are not met. One such

Constructive neural network model is the C-Mantec (Competitive majority network trained by

error correction) algorithm. The C-Mantec algorithm uses the thermal perceptron learning

method to decide the number of iterations, after which training of existing neurons is to be

stopped and a new neuron is to be added to the network. CoNN algorithms can be very power

and resource-efficient because they generate just the optimum number of neurons required for

the given application. However, in the hardware space, the neurons can only be generated if

they are already coded. This feature of CoNN introduces the problem of hardware resources

occupied by non-functional units. Also, the neuron generation process makes the operation

slower. Such implementation can be done using a hardware-software mixed design approach

like FPGA or Processor supported IC design but CoNNs are particularly unsuitable for

application ASICs.

4.1.5 Spiking Neural Networks

Spiking neural networks are third-generational neural network architectures. The spiking

neural networks have a muscle memory approach to learning the data. In a spiking neural

network, the weights of the synaptic connections that fired more often due to minimum error

are incremented, while those of the others that generate more errors are decremented. Thus, the

network grows a path memory of the input-output path taken more often than others, while it

forgets the path that is not used frequently. It is much the same as human muscle memory

 73

related to practising one particular task and not practising others. While this closely replicates

the biological process, the learning algorithm here is not very well suited for applications like

classification, where all the paths must be traversed.

4.1.6 K-means clustering

K-means clustering is a popular and one of the simplest unsupervised algorithms for

classification. K-means clustering is used for all classification applications where the classes

and/or the classification rule are not pre-defined. Due to the unsupervised learning algorithm,

k-means cannot be used for applications such as Water/Air quality classification, where the

output classes must be supervised.

Observation - From the above discussion, it can be observed that MLP with backpropagation

is the suitable architecture for digital hardware implementation of supervised classification

algorithms due to their structural and mathematical simplicity.

4.2 Modelling of MLP Architecture

An MLP ANN neuron is modelled as shown in Figure 2.1. Synaptic connections on a nerve

cell are equivalent to the input points in the diagram. Each input is multiplied by a synaptic

weight [w1, w2, ... wn] for an n-dimensional input vector [x1, x2, ... xn]. The sum of these

products is then processed via an activation function (a threshold function, stepwise linear

function, or sigmoid function) in the nerve centre, which determines the neuron's ultimate

output. A layer of parallel processing centres formed by a slew of these neurons can handle a

wide range of inputs. The outputs of one layer of neurons are used as the inputs to subsequent

layers of numerous neurons, giving the system a massively parallel processing capability. After

that, the outputs are compared to the expected outputs, and the errors are calculated. As a result,

the synaptic weights are adjusted consistently with the error. This is the basic learning process

of a neuron. Figure 4.1 shows a typical architecture for an ANN.

• Input Layer – It contains those neurons that receive the input data to be processed by

the ANN.

• Hidden Layer(s) – These are the layers of units between the input and the output layers.

The hidden layers take the data from the input layer and perform the computations to

give useful information to the other hidden or output layers.

• Output Layer – This consists of the neurons or units that give output depending on the

learning that has taken place inside the ANN.

 74

Figure 4.1: A typical ANN Architecture [5]

4.3 Methodology of Hardware Implementation

4.3.1 Choice of Hidden Layers and Number of Neurons

The choice of the structure of a neural network in terms of the number of hidden layers and the

number of neurons per layer can affect the accuracy of the neural network. The model will

overfit the data or experience the under-fitting problem as its size increases. Both problems

converge toward poor generalization and get trapped in local solutions if the ANN architecture

needs to be more complex. An economical and effective ANN model is required to handle this

issue [2]. Thus, making the right decision concerning the structure of the neural network

becomes crucial. In our work, since the ANN must be suited to the data for water quality

samples acquired, divided into four input and three output parameters. Many studies have tried

to propose a system to find out the network size and structure.

In [2], the authors have explored various techniques to select the optimum ANN structure.

Their study found that amongst the two non-nature optimization techniques proposed in the

literature, the Model selection algorithm had the best outcome in terms of performance metrics.

Thus we applied the Model selection method based on classification accuracy to find the

correct number of hidden layers and neurons per layer for the ANN. The process has been

𝑥!

𝑥"

𝑥3

𝑥#

.

.

.

 75

detailed in Chapter 4. Through our experiments, we found that the most optimized structure for

Water Quality classification is three hidden layers with four neurons.

4.3.2 The MLP Architecture

An Artificial Neural Network primarily consists of two major computational units –

a) The Neuron

b) Learning algorithms

a) The neuron is the basic computational unit of the ANN. Three types of neurons make

up a neural network – Input neurons, output neurons, and hidden neurons. When there

is more than one neuron of each type, we call it a layer – input layer, hidden layer, and

output layer. Barring the output layer neurons, all the neurons have two major

computational units – adder and activation unit.

While much research has been done on the architecture of adders, the activation units,

which are the major computational blocks, need more exploration and better

implementation strategies. Exploration of suitable activation functions and their

implementation for chosen Water Quality Classification is described in Section 4.3.3

Observation – From the above discussion, the Sigmoid activation function is most

suitable for supervised classification applications like Water Quality Classification.

b) Another significant component in any ANN architecture is the learning algorithm. The

hardware architecture for learning algorithms is also complex and needs to be

simplified. Backpropagation (BP)-based learning algorithms are primarily used in the

training of MLP. An online neural network learning algorithm for handling time

variable inputs [3], fast learning methods based on gradient descent of neuron space

[4], and the Levenberg–Marquardt algorithm [5], [6] are only a few examples of BP

learning algorithms that have been developed [7].

§ The Levenberg-Marquardt (LM) learning algorithm is an adaptive learning

algorithm. The LM algorithm switches between the Gauss-Newton and

Gradient Descent learning algorithms based on a “damping factor.” This makes

the LM method unnecessarily complex for hardware implementation. Also,

because of the LM learning algorithm's Gauss-Newton phase, the algorithm

generates better accuracy curve-fitting tasks [8].

 76

§ The Gradient Descent Backpropagation learning algorithm is most commonly

used to determine the weights in supervised learning Multi-layer FNN.

The learning algorithm for this network is chosen to be backpropagation

gradient descent. As propounded by Rumelhart et al. [9], backpropagation aims

to obtain a set of weights to minimise the difference between the desired output

and the actual output of each neuron, given a particular input vector. The total

error E is given by:

𝐸 = 	 +
,
∑ ∑ (𝑦-,/ −	𝑑-,/),-/ (1)

Where c indicates the case (input-output pair), j indicates the output unit, y is

the actual state of the output unit, and d is the desired state of that output unit.

The partial derivative of E with respect to each weight in the network is

computed to minimise the error using the gradient descent algorithm. The partial

derivative is simply the sum of the partial derivatives of each case. Thus, we

calculate ∂𝐸/𝜕𝑦 for each case:

 01
02;

=	𝑦- −	𝑑- (2)

Applying chain rule to compute ∂𝐸/𝜕𝑥% :

!"
!#!

=	 !"
!$!

. !$!
!#!

 (3)

Differentiating Eq. (10) for ∂𝑦%/𝜕𝑥% we get:

 01
03;

=		 01
02;

. 𝑦-(1 −	𝑦-) (4)

The total input is a linear function of the states of the previous levels and also a

linear function of the weights on the connections. Hence, it becomes easy to

compute how the error is affected by a change in the state and the weights. Given

a weight, 𝑤%,$, from 𝑖 to 𝑗 the derivative is given as:

01
04;<

=		 01
03;

. 03;
04;<

=		 01
03;

. 𝑦- (5)

And the contribution of ∂𝐸/	𝜕𝑦% for the 𝑖56 output unit because of the effect of

𝑖 on 𝑗 is:

 77

01
03;

. 03;
02<

=	 01
3;
. 𝑤-5 (6)

Considering all the synapses emanating from 𝑖, we get:

01
02<

=	∑ 01
3;
. 𝑤-5- (7)

So now we have the ∂𝐸 /	𝜕𝑦 for a unit in the penultimate layer, given the ∂𝐸

/	𝜕𝑦 for all the output neurons. To compute this term for previous layers, we use

the same principle successively to compute ∂𝐸 /	𝜕𝑤 for the weights. ∂𝐸 /	𝜕𝑤 is

used to change the weights in every epoch. The ∂𝐸 /	𝜕𝑤 over the network are

accumulated and then at the end of the epoch, we change the weights of each

neuron by an amount proportional to the accumulated ∂𝐸 /	𝜕𝑤:

 ∆𝑤 = 	−𝜀 01
04

 (8)

As stated by Rumelhart [9], the method has a low convergence rate as compared

to methods that make use of second derivative but it is easy to implement on

parallel hardware. The method is improvised by accelerating method where the

current gradient modifies the velocity of the point in weight space instead of its

position:

∆𝑤(𝑡) = 	− 60𝐸
04(8)

+ 	𝛼∆𝑤(𝑡 − 1) (9)

where t denotes the time-step or epoch and 𝛼 denotes an exponential decay

factor between 0 and 1 that controls contribution of current and previous

gradients to the change in weights. Thus, 𝛼 is also called the learning index.

The online neural network learning algorithm is particularly suited for time-series-

based applications such as weather prediction, stock market analysis, behaviour

prediction of natural solar energy, etc. These applications are more suited to online

learning algorithms because of the ability of online learning algorithms to learn from

sequentially arriving data [10]. Since online learning is dependent on time-series data,

it is not suitable for classification applications.

Observation – The gradient descent algorithm is best suited For hardware implementations

because of its mathematical simplicity leading to less resource requirement.

 78

4.3.3 Sigmoid Activation Function Design for MLP Neuron

The most computationally complex part of the hardware implementation of an ANN is the

implementation of the activation function, as it involves complex non-linear mathematical

calculations. The development of an artificial neuron and its nonlinear activation functions is

one of the challenges of neural network hardware implementation.

Many different functions have been used as the activation function of the neurons in MLP. The

most notable are – the threshold function, the Sigmoid logistic function, and the hyperbolic

tangent function.

The threshold function is a step function that changes from 0 to 1 at a given threshold. While

it is a very simple implementation, it cannot be used in classification applications where there

are more than two output classes. The threshold function is also non-differentiable. Thus, its

learning algorithm applies to classification with a learning algorithm.

The hyperbolic tangent function is also a sigmoid function, but it has a range between -1 and

1. Thus, it is not suited for applications where the output is probabilistic since probabilities lie

between 0 and 1.

Since the classification is a probability prediction indicating which of the output classes the

input vector corresponds to, Sigmoid is apt as it is used in models when the output is a

probability prediction with the output range 0 to 1. Also, this function has a smooth gradient

and is differentiable, which is evident from its S-shape curve. Hence it prevents output value

jumps during the learning process.

Eq. (10) represents the sigmoid function:

𝑆(𝑥) = 	 +
+:;=>

 (10)

Calculation of the exponent function shown in Eq. (10), in digital is not physically feasible

because of its infinite nature. Hence, there is a need for an approximation of the function.

1. The basic methods of approximation for exponent functions, such as the tabular method

and the Taylor series, are used in published works on the digital implementation of

nonlinear functions. However, the Taylor series requires a significant number of

multiplications because the multiplication block takes up a lot of space [11]. Hence, it

 79

is unsuitable for implementation on digital hardware. Inaccuracy introduced by the

approximation is traded by the learning cycle of the network.

2. In [12], it has been shown that piecewise linear approximation of the exponent function

could offer better accuracy in the approximation of sigmoid functions. Bajger, et al.

[13] present a Low-error, high-speed approximation method for the sigmoid function

for FPGAs. However, the approximation proposed is particularly designed for FPGA

that have functional blocks such as multipliers and adders available on-board. The

design proposed in their work makes heavy use of the pre-existing blocks to increase

the computational speed. This approach is not suitable for a device where area and

power minimisation are two of the primary aims. FPGAs are comparatively large blocks

that draw a lot of power as compared to ASICs, which has been shown in the Results

section of this chapter. Although, the approach proposed by Bajger et al. improves

considerably on accuracy as compared to Faiedh, et al. [12].

3. Padé Approximation is another method for the approximation of the exponent function,

which is shown to have less computational complexity [14]. Here the implementation

complexity of the logistic function has been reduced at a mathematical level.

Padé approximation Eq. (11), as proposed in [14] has reported fairly accurate network

outputs despite compromising marginally on mathematical accuracy as compared to

other expansions such as the Taylor series or McLaurin series. However, the Padé

approximation for the exponential function is valid only for the input values lying in

the interval 0 ≤ 𝑥≤ 1.

𝑒3 =	 +<=>:=?>3:+=>3
?:,>3@:3A

+<=>@=?>3:+=>3?@,>3@:3A
 (11)

This limits the application of the approximation for our project.

Because of its simplicity of computation, this approximation method has been explored

in this work in section 4.2. Figure 4.2 shows the schematic diagram for Padé

approximation using Lookup table (LUT) blocks of Xilinx Zynq700 board.

4. [15] describes a Nonlinear approximation method to approximate the entire Eq (1).

Here, a Lookup table (LUT) based approach is followed, which is particularly suited

for FPGA implementation of the sigmoid function. The total domain of the sigmoid

function is broken up into shorter intervals and the curve in those intervals is

approximated by the curve fitting method to simpler polynomials.

 80

For exploration in this work, the input values have been normalised in the range of [-1,

1]. Hence, we take up the intervals [-2, -1], (-1, 1) and [1, 2). The polynomials for the

said intervals are given in Eq. (12), Eq. (13) and Eq. (14), respectively:

𝑦 = 	0.0467𝑥" 	+ 0.1239𝑥	 + 	0.2969					 (12)

𝑦 = 0.2383 𝑥 + 0.5 (13)

y = −0.0467𝑥" 	+ 	0.2896	𝑥	 + 	0.4882	 (14)

This method has also been explored in this present work in Section 3 because of its

simplicity and more accurate approximation of the sigmoid function. Figure 4.3 shows

the schematic diagram for nonlinear approximation using the LUT blocks of a Xilinx

Zynq 7000 series board.

It is required to cut down on computational complexity to achieve less power consumption of

activation units of neurons. Hence, a suitable approximation method for the sigmoid logistic

function is found after thorough exploration, as described in Section 4.4.

4.4 Results of Hardware MLP implementation with IEEE 754

Representation using Padé and Nonlinear Approximation of Sigmoid

Function

The implementation of Artificial Neural Networks (ANNs) utilizes the IEEE 754 floating point

representation format. IEEE 754 stands as the sole floating-point representation system

universally embraced by major manufacturers as the standard for their mainframe and

minicomputers. In the design presented in this chapter, all the peripherals (sensor electrodes

and circuits) are designed for IEEE 754 format as well.

ANN implementation has been designed for the Water Quality Classification application. Here

we have taken four parameters as input to the ANN, and the ANN classifies the water sample

into one of the three categories – Potable, Agricultural, and Wastewater. The four parameters

taken to measure the Water Quality are – pH, Oxidation Reduction Potential (ORP), Dissolved

Oxygen (DO), and Electrical Conductivity (EC).

 81

Alkaline solutions have a reducing nature and, hence, have a negative ORP. Acidic solutions

are oxidising in nature and, thus, have a positive ORP. Many ionic molecules can pollute

drinking water which cannot be detected by pH alone. For such ions, we need to measure the

ORP of the sampled solution.

The Dissolved Oxygen (DO) is a measure of the amount of molecular oxygen that is trapped

inside the body of water. DO is very important for aquatic life. Furthermore, DO is necessary

to maintain the taste of drinking water. Since DO is necessary for aquatic life, it is also an

indicator of water quality in biological terms. Water with very low DO concentrations can be

an indication that the water body is infested with some biological pathogen or some biological

waste whose decomposition is hosting bacteria that are consuming the Oxygen in the water

body. DO is measured using a membrane that is permeable to oxygen molecules only. When

oxygen is permeated across this membrane, a potential difference is set across the membrane.

This potential difference gives us the DO measurement in milligrams per decilitre or parts per

million of the sampled solution. Because of the involvement of a complex chemical membrane,

the DO electrode and the circuits accompanying the electrode are of very high sensitivity.

Hence, the whole sensor system used for Dissolved Oxygen measurement is expensive.

Electrical Conductivity (EC) is an important parameter because EC has a direct linear

relationship with 3 other parameters - Total Dissolved Solids (TDS), Specific Gravity, and

Salinity of the sampled solution. Taken together, these parameters cover a wide range of

conditions required to ensure water quality. EC is measured using two electrodes dipped in the

sample solution, with one of them acting as the reference electrode and the other as the

Figure 4. 2: Schematic Diagram of a neuron using Padé Approximation

 82

measurement electrode. Measurement is taken by passing a voltage across these electrodes and

measuring the resistance between the two electrodes. Resistance is converted to conductance

and conductivity.

The detailed apparatus of each of these parameters is discussed in Chapter 6.

The complete hardware implementation of MLP consists of 2main parts: -

§ Sigmoid Neuron Implementation

§ Backpropagation learning

The Padé approximation method is used to approximate the exponent function. However, it

 only employs the calculation of up to the 4th power of the variable. The four powers of the

input variable are calculated and stored in registers. The coefficients of these powers being

4.4.1 Sigmoid Neuron Implementation Description

Two approximation methods – Padé and Non-linear, as described in Section 4.3.3, have been

implemented using both FPGA and ASIC methodology and their results are compared.

a) Procedure for Implementation of Padé Approximation

the same for the numerator and denominator, as can be seen in Eq (2), are taken as constants.

Thus implementing Eq. (11) gives us the approximation of the exponent function of the input

variable. The sigmoid function, as shown in Eq (1), requires the reciprocal of the exponent

function. Thus, a division algorithm is used to find the reciprocal of the exponent function.

Then the reciprocal is added with 1 to form the denominator of Eq. (10), and Eq. (10) is

implemented using another division module. Thus, Padé approximation is implemented and

helps us reduce the number of exponent calculations to just the 4th power of the input variable.

The implementation is done using the IEEE 754 Floating Point representation method. Figure

4.2 shows the schematic of a neuron which is hereafter implemented on both FPGA and ASIC

platforms. The schematic contains blocks that show 4 multiplier blocks which have the neuron

inputs and their corresponding weights as the input to the multipliers. The output of these

multipliers is then routed to adders which add the weighted inputs. The final summation of the

weighted inputs acts as the input to the activation block. This block implements the

mathematical Padé approximation function to approximate the sigmoid function output, which

is the final output of the neuron.

 83

b) Procedure for Implementation of Non-Linear Approximation Method

The Non-linear approximation method approximates the sigmoid function, unlike other

approximation methods. In this method, we break up the domain of the function into smaller

windows and then approximate the curve in that window using non-linear functions. The

sigmoid function in the desired range has been approximated by the three equations as shown

in Eqs (3 – 5). The maximum power we need to calculate for this implementation is the second

power of the input variable. Thus mathematically, this method proves to be the most efficient.

Further, this method removes the division algorithm from the implementation. The Schematic

diagram of for nonlinear approximation is shown in Figure 4.3 and its FPGA and ASIC results

are discussed in section 4.4.2.

The implementation results are compared to the Padé approximation in Figures 4.4 and 4.5 and

Tables 4.1 and 4.2.

Figure 4. 3: Schematic diagram of nonlinear approximation

M

U

X

 84

4.5 Sigmoid Neuron Implementation Results

4.5.1 FPGA Implementation

The algorithms have been coded in Verilog and implemented on ZynQ7000 FPGA using Xilinx

Vivado. The results of the implementation are shown as a comparative bar chart for the various

parameters between the two implemented architectures in Figure 4.5. The power consumption

of the FPGA implementation was very high and can only be reduced to a certain limit as an

FPGA is limited in terms of customizability. Thus, we synthesized the design using the ASIC

design methodology.

4.5.2 ASIC Implementation

The ASIC was synthesized using the Cadence Encounter RTL Compiler tool with UMC 90 nm

standard cell library. The power consumption of a neuron using the Padé approximation

dropped from 5.95 Watts on FPGA to 3.75 × 10-4 Watts in ASIC synthesis. Similarly for the

Non-linear approximation method, the power consumption of a single neuron drops from 5.3

Watts on FPGA to 2.47 × 10-4 Watts for ASIC synthesis. Padé approximation method makes

use of 25538 Cells covering 241897 nm2 of the library as compared to 15709 cells covering

130575 nm2 for the nonlinear approximation method. Figure 4.5 shows the results of the ASIC

implementation of the Activation function using the two approximation methods.

The Verilog codes for ANN using both Padé and Non-linear approximation are given in

Appendix B.

Figure 4. 4: Comparison of the two implementations of Activation Functions in FPGA-based
design using IEEE 754

15

35.78

18

59.5

14

31.44

12

53

0

10

20

30

40

50

60

70

MUX LUT (x100) DSP Power (x100mW)

FPGA Implementation

 Padé approximation Non-linear approximation

Pa
ra

m
et

er
 V

al
ue

s

 85

Figure 4. 5: Comparison of two implementations of the Activation Function in ASIC
Implementation using IEEE 754

Observations

From Figures 4.4 and 4.5, it is observed that Non-linear approximation is:

• the most efficient implementation of the Sigmoid function using IEEE 754 Floating

Point Representation.

• It uses a lesser number of resources and consumes less power in both FPGA and ASIC

implementation.

• Also, It occupies 46% less Si area.

• It is also faster by 68.3%.

4.5.3 Backpropagation Learning Implementation Methodology

The backpropagation learning algorithm helps the network to improve the accuracy of the

output. In this work, an FSM is designed to generate a signal to start a backpropagation

algorithm as the final output of one epoch is generated [16]. This algorithm measures the

difference between the desired output and the actual output. The error in the final output is back

propagated to all the neurons in the preceding layer while the weights of the current layer are

updated. The control of the learning mechanism is synchronized using an FSM, which gives a

time-multiplexed learning mechanism to reduce the switching power consumption of the

complete network.

2418.97 2553.8

3747.47

1376.921305.75
1570.9

880.04 818.03

0
500

1000
1500
2000
2500
3000
3500
4000

Area (100 um2) Netlist Instances
(x 10)

Total Power (10
uW)

Critical Path
Delay (100 ps)

ASIC Implementation

 Padé approximation Non-linear approximation

Pa
ra

m
et

er
 V

al
ue

s

 86

4.6 Conclusions

From the discussions in this chapter, it is concluded for hardware implementation of ANN for

Water Quality Classification using IEEE 754: -

§ MLP is the suitable architecture.

§ Sigmoid is suitable as the output range is between 0 and 1 which suits the probability

prediction.

§ A non-linear approximation of the Sigmoid function is 77% more power efficient and

utilizes 38.5% lesser hardware resources with a 68.3 % faster Critical Delay path than

Padé.

§ ASIC implementation of Nonlinear approximated Sigmoid function consumes lesser

power by at least 3 orders of magnitude than FPGA implementation.

Thus, the MLP architecture with sigmoid activation function using a non-linear approximation

method is more suited for the proposed design for water quality application that requires low

power, low cost, high speed, and portable design.

 On another note, ASIC implementation is more cost-effective than FPGA for mass production

scenarios. Further, FPGAs provide the flexibility of re-programmability to the user in case the

design has to be improved in the near future. FPGAs are much more readily available and more

straightforward to design on the user end but at a higher cost and power consumption.

Further, IEEE 754 has a rigid representation and several reserved bit patterns that lead to

calculation errors. Thus, it becomes necessary to explore other representation systems to

achieve more efficient and accurate design. This has been discussed in detail in Chapter 4.

 87

Figure 4.6: ASIC implementation of Padé approximation

Figure 4. 7: ASIC Implementation of a Nonlinear Approximation of Sigmoid function

 88

Figure 4.8: Basic Structure of a Neuron

4.7 References

[1] T. M. Mitchell, Machine Learning, McGraw-Hill Science Sciece/Engineering/Math,
1997.

[2] T. K. Gupta and K. Raza, “Chapter 7 - Optimization of ANN Architecture: A Review on
Nature-Inspired Techniques,” in Machine Learning in Bio-Signal Analysis and
Diagnostic Imaging, Academic Press, 2019, pp. 159 - 182.

[3] X. Yu, B. Wang, B. Batbayar, L. Wang and Z. Man, “An improved training algorithm
for feedforward neural network learning based on terminal attractors,” Journal of Global
Optimization , vol. 51, pp. 271 - 284, 2010.

[4] G. Zhou and J. Si, “Advanced neural-network training algorithm with reduced
complexity based on Jacobian deficiency,” IEEE Transactions on Neural Networks, vol.
9, no. 3, pp. 448 - 453, 1998.

[5] R. Parisi, E. D. Di Claudio, G. Orlandi and B. D. Rao, “A generalized learning paradigm
exploiting the structure of feedforward neural networks,” IEEE Transactions on Neural
Networks, vol. 7, no. 6, pp. 1450 - 1460, 1996.

[6] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with the Marquardt
algorithm,” IEEE Transactions on Neural Networks , vol. 5, no. 6, pp. 989 - 993, 1994.

[7] X. Yu, M. O. Efe and O. Kaynal, “A general backpropagation algorithm for feedforward
neural networks learning,” IEEE Transactions on Neural Networks, vol. 13, no. 1, pp.
251 - 254, 2002.

[8] H. P. Gavin, The Levenberg-Marquardt algorithm for, Duke University: Department of
Civil and Environmental Engineering, 2019.

[9] D. E. Rumelhart, G. E. Hinton and R. J. Williams, “Learning representations by back-
propagating errors,” Nature, vol. 323, pp. 533 - 536, 1986.

 89

[10] H. T. Huynh and Y. Won, “Regularized online sequential learning algorithm for single-
hidden layer feedforward neural networks,” Pattern Recognition Letters, vol. 32, no. 14,
pp. 1930 - 1935, 2011.

[11] V. Shymkovych, . S. Telenyk and P. Kravets, “Hardware implementation of radial-basis
neural networks with Gaussian activation functions on FPGA,” Neural Computing and
Applications volume, vol. 33, pp. 9467 - 9479, 2021.

[12] A. Armato, L. Fanucci, E. P. Sciligno and D. De Rossi, “Low-error digital hardware
implementation of artificial neuron activation functions and their derivative,”
Microprocessors and Microsystems, vol. 35, pp. 557 - 567, 2011.

[13] M. Bajger and A. Omondi, “Low-error, High-speed Approximation of the Sigmoid
Function for Large FPGA Implementations,” Journal of Signal Processing Systems , vol.
52, pp. 137 - 151, 2007.

[14] Z. Hajduk, “High accuracy FPGA activation function implementation for neural
networks,” Neurocomputing, vol. 247, pp. 59-61, 2017.

[15] X. Zhen-zhen and Z. Su-yu, “A Non-linear Approximation of the Sigmoid Function
Based FPGA,” in Cybernetics, and Computer Engineering (ICCE2011) November 19–
20, 2011, Melbourne, Australia, Melbourne, 2011.

[16] A. Savich, M. Moussa and S. Akreibi, “A scalable pipelined architecture for real-time
computation of MLP-BP neural networks,” Microprocessors and Microsystems, vol. 36,
no. 2, pp. 138 - 150, 2012.

[17] P. Ferreira, P. Ribeiro, A. Antunes and F. M. Dias, “Artificial Neural Networks Processor
- A Hardware Implementation Using a FPGA,” in Field Programmable Logic and
Application. FPL 2004. Lecture Notes in Computer Science, Berlin, 2004.

[18] H. Faiedh, C. Souani, K. Torki and K. Besbes, “Digital Hardware Implementation of a
Neural System Used for Nonlinear Adaptive Prediction,” Journal of Computer Science,
vol. 2, no. 4, pp. 355 - 362, 2006.

[19] Central Bureau of Health Intelligence, “NationalHealth Profile 2018,” Ministry of Health
and Family Welfare, Government of India, New Delhi, 2018.

[20] Organisation, World Health, “Diarrhoeal Disease,” World Health Organisation, 2017.

[21] World Health Organisation, “Guidelines for Drinking-water Quality (Fourth,” World
Health Organisation, Geneva, Switzerland, 2017.

[22] “Introduction to Artificial Neural Network (ANN),” secret mind control in Sweden and
worldwide mindcontrolinsweden.wordpress.com, 30 01 2015. [Online]. Available:
https://mindcontrolinsweden.wordpress.com/2015/01/30/introduction-to-artificial-
neural-networks. [Accessed 02 2017].

[23] N. Morgan, K. Asanovic, B. Kingsbury and J. Wawrzynek, “Developments in Digital
VLSI Design for Artificial Neural Networks,” International Computer Science Institute,
1990.

[24] N. Morgan, Artificial Neural Networks: Electronic Implementations, Washington DC:
IEEE Computer Society Press, 1990.

[25] T. Baker and D. Hammerstrom, “Modifications to Artificial Neural Networks Models for
Digital Hardware Implementation,” Department of Computer Science Engineering
Oregon Graduate Center, Oregon, 1988.

[26] W. S. McCulloch and Walter Pitts, “A logical calculus of the ideas immanent in nervous
activity,” The bulletin of mathematical biophysics , vol. 5, pp. 115 - 133, 1943.

 90

[27] N. S. Gill, “Overview of Artificial Neural,” Xenonstack: A Stack Innovator, 2017.
[Online]. Available: https://www.xenonstack.com/blog/artificial-neural-network-
applications. [Accessed 2017].

[28] J. M. Zurada, Introduction to Artificial Neural Systems, St Paul, MN: West Publishing
Company, 1992.

[29] P. Mehra and B. W. Wah, Artificial neural networks: Concepts and Theory, IEEE
Computer Society Press, 1992.

[30] C. Alippui and G. Storti-Gajani, “Simple approximation of sigmoidal functions: realistic
design of digital neural networks capable of learning,” in 1991 IEEE International
Sympoisum on Circuits and Systems, Singapore, 1991.

[31] S. Oh, Y. Shi, J. del Valle, P. Salev, Y. Lu, Z. Huang, Y. Kalchiem, I. K. Schuller and D.
Kuzum, “Energy-efficient Mott activation neuron for full-hardware implementation of
neural networks,” Nature Nanotechnology, vol. 16, pp. 680 - 687, 2021.

[32] Y. van de Burgt, J. F. liot, S. T. Keene, G. C. Faria, S. Agarwal, M. J. Marinella, A. A.
Talin and A. Salleo, “A non-volatile organic electrochemical device as a low-voltage
artificial synapse for neuromorphic computing,” Nature Materials, vol. 16, pp. 414 - 418,
2017.

[33] T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y.
Tachibana, W. Yukita, M. Koizumi and T. Someya, “Ultraflexible organic photonic
skin,” Science Advances, vol. 2, no. 4, 2016.

[34] G. W. Burr, R. M. Shelby, S. Sidler, C. di Nolfo, J. Jang, I. Boybat, R. S. Shenoy, P.
Narayanan, K. Virwani, E. U. Giqacometti, B. N. Kurdi and H. Hwang, “Experimental
Demonstration and Tolerancing of a Large-Scale Neural Network (165 000 Synapses)
Using Phase-Change Memory as the Synaptic Weight Element,” IEEE Transactions on
Electron Devices, vol. 62, no. 11, pp. 3498 - 3507, 2015.

[35] S. Oh, Z. Huang, Y. Shi and D. Kuzum, “The Impact of Resistance Drift of Phase Change
Memory (PCM) Synaptic Devices on Artificial Neural Network Performance,” IEEE
Electron Device Letters, vol. 40, no. 8, pp. 1325 - 1328, 2019.

 91

Chapter 5

5. Digital Hardware Implementation of Artificial Neural Network

with Posit Representation of Floating-Point Numbers

In this chapter, we discuss the implementation of an Artificial Neural Network on an ASIC

using the Posit Floating point representation system proposed by John Gustafson. We study

the implementation of ANN in comparison [1] to the ANN Implemented using the Nonlinear

Approximation function on the IEEE 754 representation system and compare the results to the

Posit implementation.

5.1 Introduction

Implementation of complex mathematical functions, such as sigmoid functions, involves

calculations of real numbers that cannot be represented using the binary number format. Thus,

there is a need for a format to represent fractions in the binary domain.

Representing real numbers in digital hardware architectures is a challenge. Real numbers

constitute an important part of the number system, as most real-life calculations can only be

represented by real numbers. Real numbers can be represented using either fixed point

representation or floating point representation.

The fixed point is a simple and highly effective method for representing fractional values in

computing. Fixed point arithmetic is many orders of magnitude faster than floating point

arithmetic because it reuses all integer arithmetic circuits. This is why it is utilized in numerous

game and DSP applications. It has a limited range of number representation, and also the

accuracy for larger numbers is limited [2].

For ANN applications, the accuracy of number representation plays an important role since the

primary processing unit of the ANN, the activation unit, relies on this calculation. In

applications such as Water Quality Classification, it becomes even more important to have

accuracy in the number representation system. Thus, it is necessary to use floating point

representation for real numbers due to its higher range and resolution leading to more accurate

representation.

The different existing formats of floating-point representation system are described below:

 92

5.1.1 IEEE 754 Floating Point Representation

Floating point numbers have been represented in the IEEE 754 floating point representation

format since 1985.

• IEEE 754 can accommodate both floating point numbers and integers as well.

• IEEE 754 supports the Not-a-Numbers (NaNs), and some special bit streams were

reserved for some special cases.

• IEEE 754 represents the two infinities, + infinity and – infinity, separately.

• IEEE 754 supports the cohort representation of numbers since it was inspired by the

scientific notation of decimal numbers.

• It is suitable for both software and hardware implementation owing to its fixed

representation and simple encoding and decoding principles.

As referred to in Chapter 3, one of the prominent problems of IEEE 754 Floating Point

Representation (referred to as Floating Point here onwards) has a rigid arrangement.

This results in very large bit patterns to represent even small numbers. There are two majorly

used formats of representation – single precision (32 bits) and double precision (64 bits). Thus,

to represent small numbers, this representation occupies large amounts of resources and are

counter-intuitive to be used for energy-efficient operation such as ASIC design. The rigid

representation has predefined fixed-size partitions for exponent and mantissa. It limits

precision, which is the other end of the spectrum as compared to energy efficiency. The limited

precision may lead to rounding errors in the representation of real numbers; therefore, some

floating-point numbers are not represented precisely. An additional 80 intermediate bits must

be reserved to obtain the correct result for an operation to yield correct results in double

precision format [3].

IEEE 754 also has different bit patterns reserved for NaNs, denormals, +/- infinity, and other

special cases. The reservation of these patterns for special cases also leads to arithmetic

inconsistencies. One such inconsistency is that the representation is also flawed in the

representation of zeros as it has the possibility to represent +/- 0. Now the IEEE 754

representation treats +0 = -0. This implies that +1/0 = -1/0, which further implies +infinity =

infinity. More such cases are noted where the floating-point representation is inconsistent with

algebraic rules of computation. E.g., for the values x = 1e30, y = -1e30, and z = 1; (x + y) +z =

1, while x + (y + z) = 0. Another inconsistency is noted in the dot product calculation of vectors.

 93

Let us Assume vectors A = [3.2e7, 1, -1, 8.0e7] and B = [4.0e7, 1, -1, -1.6e7]. The dot product

A.B is calculated to be 1 while the right answer should be 2.

Thus, designing a system for IEEE 754 Floating point representation is very cumbersome as it

requires special considerations to be made for handling rounding of numbers, NaNs,

denormals, etc. Secondly, verifying that design is also difficult because of the corner cases

involved.

Thus, IEEE 754 is the standard accepted representation of floating point numbers but it has its

own disadvantages. To overcome the challenges of IEEE 754, Universal Number format

representation methods have been proposed over the years to improve or replace the IEEE 754

Floating Point representation.

5.1.2 Universal numbers Format

Unum (universal number) representation has been proposed as a superset of floating-point

representations. Unum is a variable-length representation that adapts the bit-size of the

representation to the actual numbers being represented, and it also associates and propagates

accurate information via arithmetic operations [4].

The first version of unums, technically known as Type I unum, was introduced as a superset of

the IEEE-754 floating-point format in Gustafson's book The End of Error [5]. These

characteristics define the Type I unum format:

• a storage format with variable width for both the significand and exponent

• a u-bit that indicates whether the unum represents an exact number (u = 0) or an interval

between consecutive exact unums (u = 1) Thus, the unums encompass the complete

extended real number line [-infinity,+infinity].

The "Type II" unum [6] abandons compatibility with IEEE floats, allowing for a

mathematically clean design based on projective reals. Type II unums have many ideal

mathematical properties, but most operations require table lookups. For 2-argument functions

with n bits of precision, there are (in the worst case) 22n table entries, though symmetries and

other tricks typically reduce this to a more manageable size.

 94

a) Challenges of Unum Format

But these number systems introduced new flaws into the system, and the trade-off was not

worth changing a standardized system.

Unum Type 1 was basically a superset of the IEEE 754 format with variable length of the

significand and the exponent. This meant without much increase in accuracy, Unum1

introduced computational complexity for hardware implementation of the representation

system.

Unum Type 2 though very robust and fast, relies on a Look-up Table-based approach, which

severely limits the range and resolution of numbers that this format can represent. Unum Type

2 is severely limited by the memory size available on the architecture for the range and

resolution that it can represent. Hence, it is unsuitable for devices that need to minimize

resource utilization and achieve maximum accuracy.

5.1.3 Posit

Posit representation was proposed in 2017, John L Gustafson proposed the Posit representation

of floating numbers. The Posit representation system has proven more accurate [refer] for ANN

implementations while also overcoming the shortcomings of IEEE 754 without introducing

many trade-offs. Moreover, in the field of ANN, Posits are particularly useful for classification

applications since they introduce a tapered accuracy. We have discussed the Posit number

system in detail in Section 5.2

5.2 Posit Representation

In 2013, John L Gustaffson proposed a novel method called Universal Numbers (Unum).

Gustaffson defined 2 types of Unum. Type 1 was developed as a superset to floating point

numbers to accommodate greater range and accuracy. However, the hardware cost made it

impractical. Type 2 was based on a positional bit pattern instead of actual data conversion. This

conversion was based on lookup tables. This allowed extremely fast computations, but at the

cost of operations that could be performed [3].

In their 2017 paper, John L Gustaffson proposed the posit representation of floating-point

numbers. The Oxford dictionary defines posit as “a statement that is made on the assumption

 95

that it will prove to e true.” Posits are a hardware-friendly version of Unum2 with relaxations

in 2 rules: -

iii) Reciprocals only follow perfect reflection rule for 0, +/- infinity, and integer powers of

2.

iv) There are no open intervals

The first relaxation enables one to populate the u-lattice such that finite numbers are all

represented in the form of IEEE 754 representation of m.2k.

The structure of a posit is shown in Figure 5.1.

Figure 5. 1: Format of Posit Representation [1]

The sign bit is the same as IEEE 754 Floating point representation: 0 for positive numbers and

1 for negative numbers. If the sign bit is 1, the rest of the number should be in 2’s complement.

Table 5. 1: Run-length meaning k of the regime.

Binary 0000 0001 001x 01xx 10xx 110x 1110 1111

Numerical Meaning, k -4 -3 -2 -1 0 1 2 3

Consider the binary strings shown in Table 5.1 to make sense of the regime bits. The run length

of the bits is denoted by numerical meaning, k. These are strings of either all 0 or all 1bits. The

bits are terminated either by the opposite bit or the end of the string is reached. If the bits are 0

and there are m bits, then 𝑘	 = 	−𝑚, if the bits are 1, then 𝑘	 = 	𝑚	– 	1. The regime gives us

the scale factor for useedk, 𝑢𝑠𝑒𝑒𝑑	 = 2"!". 𝑢𝑠𝑒𝑒𝑑 values examples are shown in Table 5.2

 96

Table 5. 2: The useed as a function of es

es 0 1 2 3 4

useed 2 22 = 4 42 = 16 162 = 256 2562 = 65536

The next part is the exponent, e, taken as an unsigned integer. Unlike IEEE 754 Floating points,

there is no bias in the exponent, and represents scaling by	2*. If there are enough bits remaining

after the regime, the highest number of bits the exponent can occupy is es. This is how the

tapered accuracy of Posits is expressed. Numbers near 1 need to be presented with more

accuracy than very large or very small numbers, which are not so common in the calculation.

If more bits remain in the bit stream after the regime and exponent, they are used to represent

the fraction part of the number. The fraction part of a posit is just like that of IEEE 754 floating

point in the format of 1.f with a hidden bit that represents the whole number part, 1. Posits have

no subnormal numbers with a hidden bit 0 for numbers less than 1.

There are only 2 exceptions in the posit representation, i.e., 0(all 0’s) and ±∞ (1 followed by

all 0 bits).

Table 5.3 shows the dynamic range offered by both posits and IEEE 754 Floating Point

representation for some bit lengths [3].

Table 5. 3: IEEE 754 Float and Posit dynamic ranges for the same no. of bits [1]

Size,

Bits

IEEE Float

Exp. Size

Approx. IEEE Float

Dynamic Range

Posit es

value

Approx. Posit Dynamic

Range
16 5 6	 ×	10#$ to 7	 ×	10% 1 4	 ×	10#& to 3	 ×	10$

32 8 1	 ×	10#%' to 3	 ×	10($ 3 6	 ×	10#)(to 2	 ×	10)*

64 11 5	 ×	10#(*% to 2	 ×	10(+$ 4 2	 ×	10#*&& to 4	 ×	10*&$

128 15 6	 ×	10#%&,, to 1	 ×	10%&(* 7 1	 ×	10#%$'' to 1	 ×	10%$''

256 19 2	 ×	10#)$&$% to 2	 ×	10)$&-(10 2	 ×	10#)$&*) to 5	 ×	10)$*&,

 97

5.2.1 Advantages of Posit

§ Posits have only two reserved patterns for zero and +/- infinity. This reduces the

arithmetic inconsistencies that occur due to a large number of reserved patterns in IEEE

754.

§ Posits have tapered accuracy for numbers with very large or small exponents. This

enables Posits to be able to represent comparable representation accuracy at a lesser

number of bits.

§ Since the bit widths for Regime, Exponent, and Mantissa are not rigid, many rounding-

off errors in computations can be avoided.

§ As can be observed in Table 5.3, for a 32-bit number, the dynamic range of Posits is

much greater than that of IEEE 754 [3].

Since Posits offer a tapered accuracy, they are not suitable for applications where the accuracy

needs to be consistent across the range of represented numbers. Some applications where Posit

are not suited due to the tapered accuracy are [7]:

• Interfacing circuits, where the circuit has to communicate with legacy hardware

• Physical and astronomical circuitry, where the accuracy must remain constant for all

numbers

• Because of trade-off, posit for processors executing general purpose applications has

been debated. The variable bit format of posit, with changeable regime, exponent, and

fraction bits, has prevented its use in general-purpose processors [8].

Posits offer a better use case where processing on the data is involved once the data has been

normalized between a certain range. Examples of such applications include Machine Learning,

Monte Carlo Simulations, graphics rendering, etc [7].

5.3 Posit ANN Implementation for Water Quality Classification

This section focuses on a detailed explanation of the design of ANN for Water Quality

Classification using Posit representation. The input and output parameters of the ANN for

Water Quality Classification is already presented in Section 3.4 of Chapter 3.

5.3.1 Parameterised Posit ANN (PPANN)

Posit representation is a flexible representation of floating point numbers. However, when

implementing on hardware, the flexibility has to be bounded due to the limitations of hardware

 98

implementation. The Posit has multiple parameters such as exponent size (Es), useed, etc.

which govern the sizes of the sub-sections of the Posit bit stream – Sign bit, Regime, Exponent,

and Mantissa. These parameters change during runtime to allow Posit to have variable bit-

length for maximum accuracy. However, for hardware implementation, we have imposed some

limits on all the Posit parameter to achieve desirable accuracy at a much lower bit width.

5 design steps of hardware implementation are as follows.

o Step – 1: Floating Point to Parameterised Posit Conversion

o Step – 2: Leading One/Zero Detector

o Step – 3: Parameterised Posit to Floating Point Converter

o Step – 4: Parameterised Posit Addition Unit

o Step – 5: Sigmoid implementation using Parameterised Posit

The details of each step are discussed below.

a) Step – 1: Floating point – to – Parameterised Posit Converter

The converter has been designed in parameterised manner to accommodate for hardware

limitations. The converter has been divided into two major parts – Floating Point decoding and

Posit Encoding.

In the Floating-point decoding part, we extract the sign bit, the exponent bits and the mantissa

bits and store them in three registers. The floating-point decoding section also checks for

special cases such as ZERO and INFINITY. NaN’s are not checked for as posits do not have

any encoding for NaN’s. for sub-normal cases, we normalise the floating-point numbers by

detecting the leading true bit of the mantissa and then left shifting the mantissa by as many bits.

We then make changes in the exponent according to the position of the leading true bit of the

mantissa. Now we add the BIAS to the exponent and thus we get all three parts of our floating-

point number [9].

Next step is to encode the Posit. Encoding the posit brings in a new challenge in the form of

variable positioning of the exponent and mantissa bits, which is decided based on the regime

bits. The signed exponent (𝐸𝑥𝑝) is used value to determine the Regime, R0 and unsigned

Exponent, E0 (ES bits wide) for posit. So E0 is obtained from the lowest ES bits of absolute

Exponent, 𝐸𝑥𝑝8, and the remaining higher bits denote the regime R0. Here we check if 𝐸𝑥𝑝 >

0 and 𝐸𝑆 lowest bits of 	𝐸𝑥𝑝8 are non-zero, then the exponent 𝐸/ of posit is the 2’s complement

 99

of the 𝐸𝑆 lowest bits of 	𝐸𝑥𝑝8 . For negative exponent representation, as 𝐸/ is an unsigned

integer, the above procedure with an can be performed with an increment in corresponding

negative 𝑅/, otherwise 𝐸/ is obtained from the lowest 𝐸𝑆 bits of absolute Exponent, 𝐸𝑥𝑝8.

Remaining MSBs 𝐸𝑥𝑝8[𝐸 − 1 ∶ 𝐸𝑆] denote 𝑅/ if 𝐸𝑥𝑝 < 0	 and 𝐸𝑥𝑝8[𝐸𝑆 − 1 ∶ 0] = 0. Else,

𝑅/ is the incremented value of the remaining MSBs.

So, the Posit representation is constructed from 𝑆9: , 𝑅/, 𝐸/	 and 𝑀9:as follows:

i. 𝑆9: denotes the sign bit

ii. An N-bit sequence, 𝑁{! 𝐸𝑥𝑝[𝐸]}, a repetitive sequence of ! 𝐸𝑥𝑝[𝐸], gives the regime

bits (repetitive 0’s for negative exponent, and repetitive 1’s for positive exponent)

iii. 𝐸56bit of 𝐸𝑥𝑝 terminates the regime.

iv. A second N-bit word {! 𝐸𝑥𝑝[𝐸], 𝐸/, 𝑀9:} with necessary 0-bits padded to the LSBs is

combined with previous N-bit word to form a 2N – bit word {Regime, Exponent,

Mantissa} (REM)

v. To desired regime sequence in LSB N-bit of REM, REM is dynamic right shifted by

𝑅/bits are 𝑆9: = 1, 2’s complement of REM is taken. Thus, 𝑅𝐸𝑀[𝑁 − 1: 1] is the final

{Regime, Exponent, Mantissa}. Finally, we combine this with the sign bit, keeping the

special cases of zero and infinity in mind, to get our Posit number.

The process is presented as a pseudo-code algorithm in Algorithm 1 and the flow diagram is

shown in Figure 5.2.

 100

Algorithm 5. 1: IEEE 754 to Posit Conversion

IEEE 754 (FP) to Posit Conversion
1. Constraints
2. N: FP/Posit Word Size
3. E: FP Exponent Field Size
4. BIAS = (2**(E – 1)) – 1 : FP Exponent Bias
5. ES: Posit Exponent Field Size
6. Input bit string : IN

7. FP component separation: Sign-bit (SF), Exponent (EF), Mantissa (MF), Expectations (Infinity
(INFF), Zero (ZF))

8. SF <= In [N – 1]
9. EF <= In [N – 2 : N – 1 – E]

10. MF <= {|EF, IN[N – 2 : N – 1 – E] }
11. ZF <= !IN[N – 2 : 0]
12. INFF <= &EF
13. Pre-Normalisation of FP:
14. Lshift <= L1D of MF
15. MF [N − 1 : 0] <= Dynamic Left Shift of { MF, E′ b0} by Lshift
16. Exp[E : 0] ← { EF [E − 1 : 1], EF [0]|(!(| EF))} - BIAS - Lshift

17. Posit Component Construction: Exponent (E0), Regime Value (R0), Mantissa(M0)
and their Packing (POS)

18. ExpN [E − 1 : 0] <= Exp[E] ? − Exp[E − 1 : 0] : Exp[E − 1 : 0]
19. IF (Exp[E]&(|ExpN [ES − 1 : 0]))
20. E0 [ES − 1 : 0] <= 2’s complement of ExpN [ES − 1 : 0]
21. ELSE
22. E0 [ES − 1 : 0] <= ExpN [ES − 1 : 0]
23. IF (!Exp[E]||(Exp[E]&(|ExpN [ES − 1 : 0])))
24. R0 [E − ES − 1 : 0] <= ExpN [E − 1 : ES] + 1
25. ELSE
26. R0 [E − ES − 1 : 0] <= ExpN [E − 1 : ES]
27. POS[2 ∗ N − 1 : 0] <= {N{!Exp[E]}, Exp[E], EO , MF[N − 2 : ES]}
28. POS <= Dynamic Right Shifted by R0 bits
29. If (SF == 1): POS <= (2’s complement of POS)

30. Final Output <= {SF, LSB (N-1) of POS}
Give Output considering INFF and ZF

 101

 102

 103

Figure 5. 2: Flow diagram of IEEE 754 to Parameterised Posit Conversion

 104

b) Step – 2: Leading One/Zero Detector

For a 2N – bit wide posit, the LOD (Leading One Detector) consists of two parameterized

LODs (h and l) that take MSB half N-bits and LSB half N - bits of the 2N- bit wide input and

a MUX and OR gate. Each of these parameterized LODs consists further of LODs which take

in inputs in the order – N, N/2, N/4, and so on until the leaf cell takes in a 2-bit input. The one

of the outputs of these LOD’s is 𝑙𝑜𝑔"𝑁 bits wide, the other output is “vld”. At the leaf cell

level, the output is generated by performing AND operation on the inverse of the higher bit

with the lower bit, while “vld” is obtained by the Reduction OR of the 2 bits. Thus, the output

is true when there is a leading one. As we move to higher parameters, each parameterised LOD

has 2 sub LODs for the upper half and lower half. Only the higher half consisting of the leading

one will produce a true “vld” bit, else the lower half LOD will produce a “vl” bit. The LOD

outputs are then given to a 2:1 MUX where the lower “vld” is concatenated with the output of

the Lower LOD and zero is appended to the higher output. The Higher “vld” acts as the Select

line for the MUX. So, these LODs can perform the function of both Leading One Detector and

Leading Zero Detector in a parameterised dynamic manner.

For dynamic left/right shifting, a parameterized barrel shifter is constructed with word width

(N) and shifting amount (S) as parameters. A barrel shifter requires one N-bit 2:1 MUX for

each bit of S. So, here, it requires S numbers of 2:1 MUXs each of N-bit size [9].

The L1D/L0D pseudo-code is presented in Algorithm 5.2 and the flow diagram is shown in

Figure 5.3.

 105

Algorithm 5. 2: Algorithm for L1D/L0D and Dynamic Left Shift operator

Algorithm for L1D/L0D and Dynamic Left Shift operator
1. L1D/L0D #(N) (in[N-1:0], K[S-1:0], vd):
2. N: Word Size, S: Log2 (N)
3. GENERATE
4. IF (N == 2)
5. For L1D: vd = |in, K = (!in[1]) & in[0]
6. For L0D: vd = !(&in), K = in[1] & (!in[0])
7. ELSIF (N & (N-1))
8. LOD/LZD #(1<<S) (1<<S 1’b0 | in, K, vd)
9. ELSE
10. K_L[S-2:0], K_H[S-2:0], vd_L, vd_H
11. L1D/L0D #(N>>1) (in[(N>>1)-1:0], K_L, vd_L)
12. L1D/L0D #(N>>1) (in[N-1:N>>1], K_H, vd_H)
13. vd = vd_L | vd_L
14. K = vd_H ? {1’b0,K_H} : {vd_L,K_L}
15. ENDGENERATE
16. Left Shift Operation
17. DLS #(N) (in[N-1:0], b[S-1:0], L1D_OUT):
18. N: Word Size, S: Log2 (N), TMP[S-1:0][N-1:0]
19. TMP[0] = b[0] ? in << 1 : in;
20. GENVAR i
21. GENERATE
22. for (i=1; i<S; i=i+1)
23. TMP[i] = b[i] ? (TMP[i-1] << 2**i) : TMP[i-1]
24. end
25. ENDGENERATE
26. L1D_OUT = TMP[S-1]

 106

Figure 5. 3: Leading One/Zero Detector

 107

c) Step – 3: Parameterised Posit–to–Floating Converter

The first step in this conversion is to check for zero and infinity special cases. The MSB is sign

bit of the posit. If the MSB is 1, we take a 2’s complement of the input posit number into a

variable XIN.

The challenge of extracting the components of a posit number, considering it’s run time

variation, is handled by Leading One Detector, Leading Zero Detector and the Dynamic Left

Shifter components as explained below:

i. The (N – 2)th bit of XIN is used to check whether regime is positive or negative. This

bit is denoted RC (Regime Check bit)

ii. We use the LOD for (N – 1) LSB of XIN to count the number 0’s when the regime is a

sequence of 0’s ending in 1, i.e., negative regime, and store that count value in

temporary register K0. We use LZD for (N – 2) LSB to count the number of 1’s ending

in 0, i.e., positive regime, and store that count value in temporary register K1. In the

case of positive regime, 1-bit lesser is used since regime is 1 less than the actual number

of repeating 1’s.

iii. The absolute value of Regime (K0 or K1) is decided as per the value of RC. RC is also

used as a select signal to determine the left shift amount of for regime.

iv. XIN is then left shifted by (regime + 1) bits to align the exponent with the MSB of XIN.

v. Now the most significant ES bits denote the exponent (𝐸:), remaining bits are mantissa.

vi. The final floating-point exponent is constructed using𝐸/, RC, Regime,𝐸: and BIAS

values.

The pseudo-code for Posit-to-IEEE 754 conversion is shown in Algorithm 5.3 and the flow

diagram is given in Figure 5.4.

 108

Algorithm 5. 3: Posit to IEEE 754 conversion

Posit to IEEE 754 Converter

1. Constrains: N, ES, E, BIAS (Similar to the Algorithm-1 definition)

2. Input: IN

3. Posit Component breakup:Sign (SPos), Regime (RPos), Exponent (EPos), Mantissa (MPos),

Exceptions (Infinity (INFPos), Zero (ZPos))

4. ZPos <= !IN, (All bits of IN are 0)

5. INFPos <= IN[N − 1]&(!IN[N − 2 : 0]), (all except MSB are 0)

6. SPos <= IN[N − 1]

7. INX ← SPos ? − IN : IN, (2’s complement for -ve posit)

8. Regime Check (RC): RC <= XIN[N − 2], (0 for -ve regime, 1 for +ve regime)

9. K1 <= L1D of XIN[N-2:0], (For -ve regime sequence)

10. K1 L0D of XIN[N-3:0], (For +ve regime sequence)

11. Absolute Regime Value: R <= Rc ? K1 : K0

12. Regime Left Shift : Lshift <= RC ? K1 + 1 : K0

14. IN_tmp[N − 1 : 2] <= INX[N − 3 : 0] << Lshift, (Dynamic left shifting)

15. EPos [E − 1 : 0] <= XIN_tmp[N-1:N-ES]

16. MPos [N − 1 : ES − 1] <= {|IN[N-2:0], XIN_tmp[N-ES-1:0]}

17. FP Construction:

18. E0 [E : 0] ← RC ? {RPos, EPos } + BIAS : {−RPoa, EPos } + BIAS

19. IF (INFPos | E0 [E] | &E0 [E − 1 : 0]): FP0 <= Infinity

20. ELSIF (ZPos | (MPos [N − 1]): FP0 <= {SPos , E − 1{1′ b0}, MPos [N − 2 : E]}

21. ELSE FP0 ← {SPos , E0 [E − 1 : 0], MPos [N − 2 : E]}

 109

Figure 5. 4: Flow diagram of Posit to IEEE 754 Converter

 110

d) Step – 4: Parameterised Posit Addition

For Posit Addition, first, the posits are decoded into the REM components of both the operands

are extracted. This is followed by the arithmetic addition of the two posit numbers after

equating the exponents and accordingly adjusting the mantissae. Here we get the sign,

Exponent and Mantissa of the final sum. These are then recomposed to form the Sign, Regime,

Exponent and Mantissa of the sum. Finally, the post-processing is done to round-off to the

required accuracy, etc.

To perform the addition operation after the data extraction step, first, the total exponents of

both the operands are calculated using the Regime and exponent bits of respective operands.

These exponents are then compared to delineate the greater operand and the smaller operand.

The difference between these two operands is used to shift the mantissa of the larger operand

dynamically right. The difference is also added to the larger exponent. Hereafter the mantissa

is checked for overflow or underflow and added together to get the sum of the addition. Now

we have the Sign, Exponent and Mantissa of the sum. We use the encoding process explained

above to re-encode the sum in REM components and repackage the REM components into the

final posit output.

The same process is followed for the subtraction of two posit numbers. However, the subtractor

is negated by setting the sign bit high and taking a 2’s complement of the mantissa. The flow

diagram of Parameterised Posit Addition is shown in Figure 5.5.

a) Step – 5: Parmaterised Posit Sigmoid

To calculate the sigmoid function of a number efficiently in IEEE 754, we have to develop a

complex arithmetic unit using Non-linear approximation of Sigmoid function. As proven in

Chapter 3, the Nonlinear Approximation method is the most efficient methods of implementing

sigmoid function using IEEE 754. Nonlinear Approximation involves 6 multiplication

operations, and 5 addition operations to calculate the Sigmoid function.

Posits have a tapered accuracy. This tapered accuracy is achieved because of a nonlinear

sampling density function on the real axis [10]. When we integrate the sampling density

function, we get the cumulative density function. The cumulative density function for Posits is

a sigmoid function. To get the sigmoid function of a Posit we need to left shift the Posit by 2

 111

bits to obtain the sigmoid function efficiently. Hence, no approximation method is not required

here.

The sigmoid function implemented using Posit and IEEE 754 format is shown in Figure 5.6.

Here, the Sigmoid function was applied to real numbers ranging from -10 to +10 in both IEEE

754 floating point representation and Posit implementation.

For IEEE 754 represented numbers, we need to perform four exponent calculations, eight

multiplications, and five addition operations to calculate the sigmoid of one input value.

 For the Posit representation, for the same operation, the first bit of the posits is inverted, and

then the bits are shifted right by 2 bits while appending 0’s on the left [3]. So it requires only

three operations i.e. – one-bit inversion operation, one 2-bit shifting and a 0-padding operation.

Both the outputs when plotted on the same axes overlap with each other indicating sigmoid

representation with similar accuracy.

The complexity of Posit implementation has been measured in terms of standard library logic

gates required to implement the sigmoid function, and it has been compared to that of IEEE

754. For IEEE 754, 10634 standard cells are required to implement the Sigmoid Function.

Parameterized Posit implementation of the Sigmoid Function requires 447 standard cells. Both

the implementations were synthesized using TSMC 180nm standard cell library on Cadence

RTL Encounter.

For IEEE 754, 10634 standard cells are required to implement the Sigmoid Function.

Parameterized Posit implementation of the Sigmoid Function requires 447 standard cells. Both

the implementations were synthesized using TSMC 180nm standard cell library on Cadence

RTL Encounter. Table 5.4 shows the comparison of the sigmoid function hardware

implementation complexity using IEEE 754 and Parameterised Posit.

 112

Figure 5. 5: Flow diagram of Posit Addition Unit

 113

Table 5. 4: Comparison of the complexity of Hardware Implementation of Sigmoid Function

Implementation Logic Gates

IEEE 754 Floating Point Representation 10634

Parameterised Posit 447

Figure 5. 6: Sigmoid function calculation comparison between IEEE 754 and Parameterized
Posit representation.

5.4 Results and Observations of Proposed Smart Portable Water Quality

Classification Device (WQC-Device)

5.4.1 Schematic of PPANN synthesized using TSMC 180nm technology node.

In the proposed WQC device, ANN has 4 inputs and 3 outputs. It has 3 hidden layers of

neurons, each consisting of 32 neurons, and each neuron is composed of 1 sigmoid, 4

multiplications, and 1 addition unit.

The snapshot of the schematic of the implemented single neuron circuit synthesised using

TSMC 180nm technology node on Cadence RTL Compiler is shown in Figure 5.7.

𝑦
=
	

1
1
+
	𝑒
+
&

𝑥

 114

Figure 5. 7: ASIC implementation of a neuron on Cadence RTL Encounter using TSMC
180nm Standard Cell Library

5.4.2 Comparison of the results of proposed ASIC and FPGA implementation of PPANN

in IEEE 754 and Parameterised Posit, respectively.

Comparison 1 – Figure 5.8: Comparison of proposed ASIC Implementation of ANN using -

IEEE 754 and Parameterised Posit

Comparison 2 - Figure 5.9: Comparison of proposed FPGA Implementation of ANN using -

IEEE 754 and Parameterised Posit.

 115

Figure 5. 8: Comparison of proposed ASIC Implementation of ANN using - IEEE 754 and
Parameterized Posit

Figure 5. 9: Comparison of proposed FPGA Implementation of ANN using - IEEE 754 and
Parameterized Posit

92942

10634
4570

49958
44780

6091
2200

43361

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Total Silicon Area
(um^2)

Total Standard Library
Gates

Total Power Consumed
(nW)

Maximum Path (ps)

IEEE 754 Floating Point

Posit representation

53

14
18

31.44

22.54

3 4

25.64

0

10

20

30

40

50

60

Total Power Consumed
(W)

Number of MUX Number of DSP blocks Number of LUTs (x100)

IEEE 754 Floating Point

Posit representation

Pa
ra

m
et

er
 V

al
ue

s
Pa

ra
m

et
er

 V
al

ue
s

 116

Observations

o It is observed that Parameterized Posit implementation consumes 50% less silicon area

and standard cells.

o Parameterized Posit has 50% less power consumption IEEE 754 floating point

representation.

o Parameterized Posit implementation has an advantage of 13.2% over IEEE 754 in

Critical Path Delay.

o Parameterized Posit has comparable accuracy to that of IEEE 754.

5.5 Conclusion

In this chapter, we have implemented an ANN for Water Quality Classification using

Parameterised Posits and compared the hardware performance with the IEEE 754

implementation of the same.

In comparison to ANN implemented with IEEE 754The PPANN design achieves :

• 50% lesser Resource utilisation

• 50% lesser power consumption

• 13% lesser critical path delay.

• It achieves similar accuracy (presented in Figure 5.6).

The ANN designed in this chapter has four inputs – pH, ORP, DO, and EC. The sensor

electrodes required to measure EC and DO are expensive, leading to an increased cost. Further,

laboratory methods like reverse osmosis for Dissolved Oxygen, are available but cannot be

used in portable devices. Thus, Data augmentation is required, wherein, parameters like EC

and DO, are predicted based on the data available from pH and ORP in-situ measurements. A

detail of the data augmentation used in this work has been presented in Chapter 6.

The implementation of the Sigmoid function using Parameterised Posit involves 447 Logic

units as compared to 10634 Logic Units required by IEEE 754. Thus, Parameterised Posit

reduces the hardware complexity of the implementation of Sigmoid Function, as compared to

the conventional method.

 117

5.6 References

[1] A. Gupta, A. Gupta and R. Gupta, “Efficient ASIC Implementation of Artificial Neural
Network with Posit representation of Floating-Point Numbers,” in International
Conference on Next Generation Systems and Networks, Pilani, 2022.

[2] H. So, “Introduction to Fixed Point Number Representation,” UC Berkley, 28 02 2006.
[Online]. Available: https://inst.eecs.berkeley.edu/~cs61c/sp06/handout/fixedpt.html.
[Accessed 20 01 2023].

[3] J. L. Gustafon and I. . T. Yonemoto , “Beating Floating Point at its Own Game: Posit
Arithmetic,” Supercomputing Frontiers and Innovations, vol. 4, no. 2, p. 71–86, 2017.

[4] E. Morancho, “Unum: Adaptive Floating-Point Arithmetic,” in 2016 Euromicro
Conference on Digital System Design (DSD), Limassol, Cyprus, 2016.

[5] J. L. Gustafson, The End of Error: Unum computing, Chapman & Hall/CRC
Computational Science, 2015.

[6] J. . L. Gustafson, “A radical approach to computation with real numbers,”
Supercomputing Frontiers and Innovations, vol. 3, no. 2, pp. 38 - 53, 2016.

[7] F. d. Dinechin, L. Forget, J.-. M. Muller and Y. Uguen, “Posits: the good, the bad and the
ugly,” in CoNGA'19: Proceedings of the Conference for Next Generation Arithmetic
2019, Singapore, 2019.

[8] V. Gohil, S. Walia, J. Mekie and M. Awasthi, “Fixed-Posit: A Floating-Point
Representation for Error-Resilient Applications,” arXiv:2014.04763v1 [cs.AR], 2021.

[9] M. K. Jaiswal and H. S. K. -. Hayden, “Universal number posit arithmetic generator on
FPGA,” in 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE),
Dresden, Germany, 2018.

[10] F. Xiao, F. Liang, B. Wu, J. Liang, S. Cheng and G. Zhang, “Posit Arithmetic Hardware
Implementations with The Minimum Cost Divider and SquareRoot,” Electronics, vol. 9,
no. 10, 2020.

[11] J. Johnson, “Rethinking Floating Point for deep learning,” arXiv preprint, p.
https://arxiv.org/pdf/1811.01721.pdf, 2018.

[12] A. Gupta, A. Gupta and R. Gupta, “Power and Area Efficient Intelligent Hardware
Design for Water Quality Applications,” in 1st International Conference on on
Microelectronic Devices and Technologies (MicDAT '2018) 20-22 June 2018, Bacelona,
2018.

[13] X. Zhen-zhen and Z. Su-yu, “A Non-linear Approximation of the Sigmoid Function
Based FPGA,” in Cybernetics, and Computer Engineering (ICCE2011) November 19–
20, 2011, Melbourne, Australia, Melbourne, 2011.

[14] Z. Hajduk, “High accuracy FPGA activation function implementation for neural
networks,” Neurocomputing, vol. 247, pp. 59-61, 2017.

[15] S. H. F. Langroudi, T. Pandit and D. Kudithipudi, “Deep Learning Inference on
Embedded Devices: Fixed-Point vs Posit,” in 2018 1st Workshop on Energy Efficient
Machine Learning and Cognitive Computing for Embedded Applications (EMC2),
Williamsburg, VA, USA, 2018.

 118

[16] S. Nambi, S. Ullah, S. S. Sahoo, A. Lohana, F. Merchant and A. Kumar, “ExPAN(N)D:
Exploring Posits for Efficient Artificial Neural Network Design in FPGA-Based
Systems,” IEEE Access, vol. 9, pp. 103691 - 103708, 20 July 2021.

[17] A. Gupta, F. M. Khan, A. Gupta and R. Gupta, “Portable Hand Held Smart device for
real time Water Quality Measurement and Water Quality Classification”. India Patent
Application No. - 202111017453, 14 04 2021.

[18] J. Kim, D. Seo, M. Jang and J. Kim, “Augmentation of limited input data using an
artificial neural network method to improve the accuracy of water quality modeling in a
large lake,” Journal of Hydrology, vol. 602, no. 126817, 2021.

[19] N. A. Cloete, R. Malekian and L. Nair, “Design of Smart Sensors for Real-Time Water
Quality Monitoring,” IEEE Access, vol. 4, pp. 3975 - 3990, 2016.

[20] S. Nambi, S. Ullah, S. S. Sahoo, A. Lohana, F. Merchant and A. Kumar, “ExPAN(N)D:
Exploring Posits for Efficient Artificial Neural Network Design in FPGA-Based
Systems,” IEEE Access, vol. 9, pp. 103691 - 103708, 2021.

[21] M. Cococcioni, F. Rossi, E. Ruffaldi and S. Saponara, “Novel Arithmetics to Accelerate
Machine LearningClassifiers in Autonomous Driving Applications,” in 2019 26th IEEE
International Conference on Electronics, Circuits and Systems (ICECS), Genoa, Italy,
2019.

[22] S. M. Mishra, A. Tiwari, H. S. Shekhawat, P. Guha, G. Trivedi, P. Jan and Z. Nemec,
“Comparison of Floating-point Representations for the Efficient Implementation of
Machine Learning Algorithms,” in 32nd International Conference Radioelectronika
(RADIOELECTRONIKA), Kosice, Slovakia, 2022.

[23] Z. Carmichael, H. F. Langroudi, C. Khazanov, J. Lillie, J. L. Gustafson and D.
Kudithipudi, “Deep Positron: A Deep Neural Network Using the Posit Number System,”
arXiv:1812.01762v2, 2019.

[24] J. Lu, C. Fang, M. Xu, J. Lin and Z. Wang, “Evaluations on Deep Neural Networks
Training Using Posit Number System,” IEEE Transacrions on Computers, vol. 70, no. 2,
pp. 174 - 187, 2021.

 119

Chapter 6

6. Hardware Implementation of Portable Smart device for real-

time Water Quality Classification using Data Augmentation

This chapter presents the complete hardware implementation of a Portable Smart device for

real-time Water Quality Classification using Data Augmentation. The implementation has been

done using two design approaches – Embedded Systems and Application Specific Integrated

Circuit (ASIC) Design. The results have been presented and compared with standard Water

Quality Classification device.

6.1 Introduction

Conventional water quality measurement techniques include on-site sampling and subsequent

laboratory-based tests; both are labour-intensive and cost-intensive processes. The

measurements are not in real-time.

To accurately measure WQ, multiple parameters must be measured. In this work, we have

chosen four parameters – pH, ORP, DO, and EC, to measure the water quality. The reasons for

selecting these four parameters have been detailed in Chapter 3.

One of the significant challenges in making a real-time in-situ Water Quality Classification

(WQC) device is the measurement of all the parameters that give us a complete WQ index.

While pH and ORP can be measured easily, DO, and EC require expensive electrodes for in-

situ measurement. This drives the cost of the Water Quality Classification device high. Thus,

we use data augmentation to predict values of DO and EC to reduce the cost of the Water

Quality Classification device.

Traditionally, data augmentation has been done using mathematical approaches, detailed in

Section 6.1.1. However, ANN has proven to be more accurate in data prediction where there

are no mathematical relations between the input and output parameters. This has been detailed

in Section 6.1.2.

This chapter presents a Water Quality Classification device designed with two ANNs. First

ANN to augment the data for DO and EC using measured pH and ORP, and then uses a second

ANN to classify the water quality into one of the three classes – Potable, Agricultural, and

Wastewater.

 120

The device has been designed using two approaches – an Embedded approach and an ASIC

design approach. These designs have been detailed in Section 6.3

6.1.1 Methodology for Data Augmentation

Data Augmentation becomes necessary for Water Quality Classification devices for in-situ

application because measuring all the parameters contributing to the Water Quality

measurement is not economical or practical. In most cases, we have to rely on Laboratory-

based methods [1] [2] [3] constraining the portability of the device. For parameters like DO

and EC, the cost of in-situ measurement is very high. Thus, to reduce the cost of measurement

without any significant trade-off in Water Quality Classification performance, data

augmentation is performed. There are two primary approaches to data augmentation – one is

the mathematical approach, and the other is the ANN-based approach. The following

subsections detail the two approaches.

6.1.2 Mathematical Approach

Data Augmentation has traditionally been done using mathematical approaches. Such

approaches have been used for centuries, and constant development has been done in

mathematical models to improve the accuracy of data augmentation. Numerical and statistical

methods have been used in various fields to supplement missing data points, as described

below.

• Linear Interpolation

For simplicity, linear interpolation is frequently used. However, the significant variation

between these points can be neglected because linear interpolation simply connects adjacent

measurements with a line. Based on causality, statistical models can supplement missing data.

Linear Interpolation estimates the data assuming a straight line connects the two available data

points. It ignores the possibility of local variation between the two known points on the curve.

• Multi Linear Regression

Numerous studies have developed and utilized regression-based models, such as multiple linear

regression (MLR) [4]. MLR was used to effectively predict daily rainfall, discharge, and

groundwater elevation in [5]. MLR and daily discharge were used to predict the daily nitrogen

and phosphorous content of water in [6]. MLR is effective at predicting the average trend but

 121

has limited explanatory power for estimating extreme values and focuses on a single predictor

[4].

• Bayesian Regression Model

The Bayesian piecewise regression model predicted chlorophyll-a (Chl-a) concentration more

accurately than the process-based model [7]. However, the Bayesian Regression model works

only when there is some mapping possible between the input and output vectors.

• Watershed Models

Using the outputs of a watershed model, such as the Soil and Water Assessment Tool (SWAT)

[8], Hydrological Simulation Program–Fortran (HSPF) [9], and Stormwater Management

Model, is an alternative way to supplement the time series for a surface water quality model

(SWMM) [10]. Based on water balance and water quality interactions caused by precipitation,

watershed models can predict flow rates and water quality concentrations at the outlet of

subbasins. However, watershed models also require a large quantity of input data, including

basic information such as topography, land use, or soil type, as well as rainfall data for each

station or subbasin. In addition, the uncertainty in watershed models' conceptualization of

hydrological processes, empirical equations, and estimation of various model parameters

significantly impacts the precision of their results [11].

6.1.3 ANN Approach

The artificial neural network (ANN) method can be used as an alternative to augment input

data by learning complex relationships between water quality variables and integrating

nonlinearities. The benefit of ANN is that it can be easily extended to multivariate cases and

modified by altering the network architecture, which increases the model's adaptability [12].

Due to their broad applicability, ANNs have been utilized in a number of water quality research

projects. Specifically, the majority of studies have attempted to predict dissolved oxygen (DO)

in a variety of environments, including rivers, lakes, reservoirs, ponds, and coastal waters [13].

In addition, it has been reported that the performance of ANN in numerous studies has been

superior to that of other statistical techniques, such as regression [14]. Hence, The use of ANN

methods to predict environmental water quality has increased rapidly. ANN technique can be

applied to augment Water Quality parameter data and can improve the prediction accuracy of

the water quality. Thus, ANN techniques can be applied to improve field measurement [4].

The implementation of the ANN based data augmentation have been detailed in Section 3.

 122

6.2 ANN based Data Augmentation Design Flow

Figure 6.1 shows the proposed ANN based data augmentation design flow.

The complete methodology of data augmentation unit is broken down into the following steps:

• Water sample collection

• Measurement of parameters using standard lab-based methods

• Measurement of pH and ORP using Arduino Uno

• Prediction of DO and EC values using Data Augmentation ANN (A-ANN)

• Hardware Implementation of A-ANN

Each of the aforementioned steps is discussed in the following subsections.

6.2.1 Water Sample Collection

1806 Ground and surface water samples have been collected from various locations in and

around Pilani, Rajasthan, India. Based on knowledge, each sample was marked into one of the

three categories – potable, agricultural, and wastewater. Details of Data Collection have been

given in Chapter 3.

6.2.2 Lab-based parameter measurement and Collection of Training and Validation data

set for Data Augmentation

1806 samples were tested for pH, ORP, DO, and conductivity using titration, spectroscopy,

and solution chemistry. This is used as A-ANN and C-ANN training, testing, and validation

data. Figure 6.2 exhibits the concept of digitisation of pH and ORP using Arduino Uno.

Arduino Uno has been used as the sensing circuit for electrodes and the sensing and

conditioning circuits have been removed to save costs. The Arduino Uno has a 10-bit on-board

ADC. For 16-bit output in IEEE 754 representation, it is observed that it requires two cycles at

Input parameters

– pH and ORP

MLP Architecture

with 3 hidden layers

of 32 neurons each

DO and EC data

Prediction using A-

ANN

Figure 6. 1: Design flow for Complete ANN based Data Augmentation

 123

9600 baud rate (which equals 1-second pulse rate), taking 2 seconds to generate the output

readings.

The sensor accuracy is adjusted by the use of ANN for classification.

Figure 6. 2: Block diagram representing pH and ORP readings using Arduino Uno

6.2.3 Step 1: Measurement of pH and ORP using Arduino Uno

a) Measurement of pH

pH electrode voltage is read using Arduino Uno. An electrode is attached to the analog input.

The Uno R3's 10-bit ADC transforms analog to digital. The Arduino Serial monitor shows

digital voltages. To convert 10-bit digital pH to pH, requantise to voltage. The voltage range

0V–5.0V is quantised into 10-bits hence, the input voltage values are multiplied by the voltage

range and divided by the quantization value: -

 𝑉$# = 𝑥	 ×	
5.0
1023 (1)

Where 𝑥 represents the reading from the electrode and 𝑉$# is the corresponding digital value

for the voltage.

This voltage value is now converted into pH reading by the Nernst equation: -

𝐸 = 	𝐸1 + f

2.303𝑅𝑇
𝑛𝐹 i log	 m

𝑢𝑛𝑘𝑛𝑜𝑤𝑛	[𝐻 +]
𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙	[𝐻 −] q

(2)

 124

Where E is the potential of reduction in a reaction, 𝐸1 is the standard or reference potential of

oxidation/reduction reaction, 𝑅 is the universal gas constant, 𝑇 is the temperature in Kelvin, 𝑛

is the number of electrons (in Moles), 𝐹 is Faraday Constant and 	[𝐻 −] & 	[𝐻 +] denotes the

concentration of H+ and OH- ions in the chemical reaction, respectively.

For our electrode equation (2) comes out to be: -

 𝑝𝐻 =
((𝑉$# − 512) × 9.65)
8.31	 × 	2.302	 × 	298 + 7

(3)

Seven has been added in the above equation to offset the zero voltage to a neutral pH reading

of seven.

b) Measurement of Oxidation Reduction Potential (ORP)

For the measurement of ORP, equation (1) is reused to convert digital readings into voltages

(potentials). 2.25 is subtracted from the readings to offset the voltage readings by -225mV to

obtain the ORP readings.

 𝑂𝑅𝑃 = 	𝑦	 ×	
5.0
1023 − 2.25 (4)

𝑦 denotes the digitized voltage reading from the ORP electrode. Like the pH electrode, the

ORP electrode is also connected to the analog input of Arduino Uno.

6.2.4 Step 2: DO and EC Prediction using Augmentation ANN

Data Augmentation has been explored to predict the values parameters such as DO, EC, etc, in

the literature review. These studies have been reviewed in Chapter 2. It is observed that

augmentation has been done for parameters that have mathematical relations with some input

parameters, such as EC and Total Dissolved Solids [15]. But parameters like EC and DO

(output parameters) do not have an obvious mathematical relationship with pH and ORP (input

parameters). Thus, other method needs to be explored for this purpose.

Artificial Neural Networks (ANNs) have demonstrated efficacy in predicting data when a

discernible mathematical relationship between the input and output vectors is not readily

apparent. ANNs possess the capability to discern variations in the output vector relative to the

input vector, thereby enabling the prediction of the output vector for novel input vectors.

Exploiting this characteristic, the current study leverages ANNs to forecast the values of

Electrical Conductivity (EC) and Dissolved Oxygen (DO), employing pH and Oxidation

Reduction Potential (ORP) as the input vector.

 125

Prediction of DO and EC based on pH and ORP data using ANN reduces device cost

Augmentation ANN forecasts DO and EC using Arduino Uno Board. Serial port transmits

Arduino Uno sensor readings to Raspberry Pi (Raspberry Pi Foundation, n.d.). The Raspberry

Pi microSD card holds experiment data. RaspberryPi memory stores ANN. Training, test, and

validation sets are experimental data. 70% of data points were randomly selected for ANN

model training, and 15% for testing.

6.3 Hardware Implementation of A-ANN

Two approaches have been used to implement A-ANN on hardware – Embedded Systems and

ASIC (Application Specific Integrated Circuit).

The ANN architecture chosen for A-ANN was the same for both approaches. Figure 6.3 shows

the Accuracy and Mean Square error for various architectures that were tested for the A-ANN.

The ANNs were designed on MATLAB with chosen input and output vectors. The number of

layers and number of neurons in each layer are varied and the accuracy and mean square error

of the output are plotted using in-built functions of MATLAB.

From Figure 6.3 and Figure 6.4, we can conclude that the most suitable architecture is with 3

hidden layers with 32 neurons each because it gives maximum accuracy and minimum Mean

Square Error.

Figure 6. 3: Accuracy (𝑅") of A-ANN

𝑹
𝟐

 126

Figure 6. 4: Mean Square error for A-ANN

6.3.1 Embedded Systems Approach

The Embedded system approach involves the use of an Arduino and a Raspberry Pi board. A

block-level representation of the system is shown in Figure 6.5

In this approach, the pH and ORP electrodes are connected to the Arduino Uno microcontroller

board. The electrodes measure voltages in analog mode, which are then digitized and converted

into respective parameter readings in the Arduino board. The process is explained in detail in

section 6.2.3. These readings are passed on to the Raspberry Pi board over a serial connection.

Raspberry Pi board receives the pH and ORP readings over the serial board and stores the

values in memory. These values are accessed by the Augmentation ANN python code, and the

python code then predicts the values of DO and EC. The values of pH, ORP, DO and EC are

added to the training data set stored in the Raspberry Pi memory. The python code and the

memory locations for input data and training data sets are made accessible during boot to

reduce wait time and introduce automation in the launch of ANN.

The reason behind going for the Embedded systems approach is primarily the short time to

market it takes for an Embedded system-based design. Also, for a small-scale operation the

Embedded Systems approach is more economical, and the design is simpler. Further, the

repairability for the test device is much greater than an ASIC design.

 127

Fi
gu

re
 6

. 5
: B

lo
ck

-le
ve

l d
ia

gr
am

 o
f E

m
be

dd
ed

 S
ys

te
m

 a
pp

ro
ac

h
of

 A
ug

m
en

ta
tio

n
AN

N

 128

6.3.2 ASIC Design Approach

The ASIC approach involves the use of an Arduino and an IC designed using Verilog HDL

and TSMC 180nm Standard cell library. A block level representation of the system is shown

in Figure 6.6.

For the ASIC-based design approach, A-ANN has been coded using Verilog HDL based on

the Posit floating point number representation system. The pH and ORP readings are taken just

the same way as in the Embedded approach, using an Arduino Uno microcontroller. Since,

Arduino is designed in the legacy number format systems, the pH and ORP readings are in

IEEE 754 format. So, the pH and ORP readings are converted into Posit format before being

transferred to an in-chip memory, where they are accessed by the A-ANN coded in Verilog.

The Verilog code predicts the values of DO and EC in Posit format.

The DO and EC readings are not converted back into IEEE 754 format because they are to be

used by C-ANN for classification further, which is also coded in Posit floating point

representation format.

ASIC approach is more economical than Embedded Systems approach in masss production.

Also, because of their very small size, and application specificity, ASICs are more power

efficient and suitable for portable devices. ASICs also have the benefit of on-chip connections,

leading to more reliable connections and lesser loosely connected wires. Thus, ASICs provide

more reliable device at the cost of repairability.

 129

Fi
gu

re
 6

. 6
: B

lo
ck

-le
ve

l d
ia

gr
am

 o
f E

m
be

dd
ed

 S
ys

te
m

 a
pp

ro
ac

h
of

 A
ug

m
en

ta
tio

n
AN

N

 130

6.4 Implementation of Complete Water Quality Classification Device with

Augmentation ANN(A-ANN) and Classification ANN(C-ANN)

The block diagram of the complete device with the classification ANN (C-ANN) is shown in

Figure 6.7.

The complete device for Water Quality Classification is also designed using the two

approaches, Embedded and ASIC, as mentioned in section 6.3. The following subsections

detail the two implementations in detail.

Apart from the Embedded and ASIC approaches, the design is also implemented on an FPGA

in order to test the functionality of the design. FPGA implementation required boards with

large resource counts (> 235,000 logic blocks), which are expensive. Because of the limited

number of resources available on this board, more than one FPGA board is required to

implement the complete ANN. Thus, the cost of the FPGA implementation is driven high,

defeating the low-cost objectives Water Quality Classification device. However, a reduced

architecture has been implemented and the resource utilization and power figures are presented

in Appendix C.

Similar to A-ANN, C-ANN architecture is also chosen after testing a number of different

architectures. The architecture that offered maximum accuracy with minimum Mean Square

Error is chosen. The method is same as described in Section 6.3.

Figure 6. 7: Block diagram of Complete Water Quality Classification device

 131

Figure 6.8 shows the plots of accuracy, and Figure 6.9 shows the Mean square errors of the

different C-ANN architectures tested.

Figure 6. 8: Accuracy of C-ANN for different architectures

Figure 6. 9: Mean Square error for C-ANN

From figure 6.8 and 6.9 it can be observed that an architecture with 3 hidden layers each with

64 neurons gives us maximum accuracy, but the Mean Square Error also increases for this

𝑹
𝟐

 132

architecture, but for 32 neurons in 3 hiddden layers, the mean square error is the lowest for the

second highest accuracy.

The C-ANN architecture selected has 32 neurons each for 3 hidden layers as shown in the

MATLAB model shown in figure 6.10.

Figure 6. 10: C-ANN structure

6.4.1 Embedded Design for the Complete Water Quality Classification Device

The Embedded Design employs Arduino Uno and Raspberry Pi boards. The Arduino Uno is

for digitizing the pH and ORP readings. The Raspberry Pi is used for the data augmentation

and classification.

The A-ANN python code takes pH and ORP inputs and predicts the values of DO and EC. The

python program for C-ANN is coded, which takes four inputs – pH, ORP, DO, and EC, and

classifies the water sample into one of the three categories – potable, agricultural, and

wastewater.

Both python codes are given in Appendix C. The Block diagram for the Embedded system-

based design is shown in Figure 6.11. The results of the Embedded System-based design are

presented in Section 6.5.

6.4.2 ASIC Design for the Complete Water Quality Classification Device

The ASIC based design involves the classification ANN as described in Chapter 4. The ANN

architecture has been kept the same for both the Embedded System based design and the ASIC

based design. Figure 6.12 shows the block diagram for the ASIC based design.

The A-ANN Verilog code takes pH and ORP inputs and predicts the values of DO and EC.

The Verilog code for C-ANN takes four inputs – pH, ORP, DO, and EC, and classifies the

water sample into one of the three categories – potable, agricultural, and wastewater.

Both Verilog codes are given in appendix C.

 133

Fi
gu

re
 6

. 1
1:

 B
lo

ck
 d

ia
gr

am
 o

f c
om

pl
et

e
D

ev
ic

e
us

in
g

Em
be

dd
ed

 S
ys

te
m

 D
es

ig
n

 134

Fi
gu

re
 6

. 1
2:

 B
lo

ck
 d

ia
gr

am
 o

f c
om

pl
et

e
D

ev
ic

e
us

in
g

AS
IC

 D
es

ig
n

Ap
pr

oa
ch

n

 135

The ASIC Design is synthesized using TSMC 180nm standard cell library using Cadence RTL

Encounter. The implementation results are presented in Section 6.5.

6.5 Results and Validation of Complete Water Quality Classification Device

The results of the complete Water Quality Classification device are presented in this section

and observations are made.

Section 6.5.1 presents the prediction accuracy of A-ANN for both Embedded and ASIC

approaches.

Section 6.5.2 presents the classification accuracy of C-ANN for both Embedded and ASIC

approaches.

Section 6.5.3 presents the ASIC Power, Resource utilization, and critical path delay.

Section 6.5.4 presents the Cost comparison of Embedded and VLSI Water Quality

Classification Devices with a standard Atlas Scientific Kit.

6.5.1 Results of Prediction Accuracy of A-ANN for both Embedded and ASIC

approaches.

A total of 14 training functions are tested. From these 14 functions, only one training function

(trainLM), has finished the work of regression plot and error plots. Using the Levenberg-

Marquardt training function and a sigmoidal activation function (logistic function), A-ANN

with 2 hidden layers and 16 neurons in each layer was optimised (logistic function).

Figures 6.13 and 6.14 exhibit A-ANN's DO and EC response plots. It is observed that DO and

EC have above 97% accuracy. A-ANN architecture yields 0.98 R2 at 0.00232 RMSE.

 136

Figure 6. 13: a) Response plot of A-ANN, b) Actual vs. predicted DO value using A-ANN

Figure 6. 14: a) Response plot of A-ANN, b) Actual vs. predicted EC value using A-ANN.

Table 6.1 compares the predicted values of 15 water samples with actual laboratory-measured

values. The comparison validates the accuracy of 97%.

El
ec

tro
de

 R
es

po
ns

e

Number of Samples

El
ec

tro
de

 R
es

po
ns

e

Number of Samples

No. of Samples

No. of Samples

 137

Table 6. 1: Validation of proposed device for real-time water quality measurement

Sample
No

DO (mg/L)
(Experimental)

DO (mg/L)
(Predicted using A-ANN)

EC (𝝁𝑺/𝒄𝒎)
(Experimental)

EC (𝝁𝑺/𝒄𝒎)
(Predicted Using A-ANN)

1 9.36 9.3 1777 1745
2 9.32 9.4 1407 1398
3 9.35 9.5 912 918
4 9.36 9.3 1450 1540
5 3.81 3.3 1640 1640
6 7.36 7.4 928 908
7 6.82 7 1482 1502
8 7.89 7.8 915 915
9 7.13 7.3 1525 1500
10 5.82 6 1225 1325
11 6.34 6.3 1560 1524
12 5.56 6 857 857
13 7.31 7.3 1362 1362
14 5.18 5.2 1090 1000
15 8.13 8.1 1402 1492

6.6 Results of classification accuracy of C-ANN for both Embedded and

ASIC approaches

Classification accuracy of C-ANN has been obtained in terms of four parameters - F-Score,

Precision, Sensitivity, and Accuracy. These parameters are important because people who don't

have access to modern technology or complex water testing kits will be able to determine

whether the water is polluted or not, much more efficiently.

The following Equations (5-8) are used to compute the F-Score, Precision, Sensitivity, and

Accuracy in Table 6.2:

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (5)

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6)

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (7)

 𝐹 − 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

 (8)

 138

Figure 6.15 shows that overall accuracy in water classification is >97% in all three categories,

averaging at 98%. Thus, confirming a high level of confidence in classification. The 2% error

is because more false negatives are predicted than false positives, which is helpful in the case

of drinking water. Table 6.2 presents the four parameters – Accuracy, Sensitivity, Precision,

and F-score obtained from the confusion matrix of Figure 6.15.

Figure 6. 15: Confusion Matrix for C-ANN

Table 6. 2: The statistical results for performance evaluation

Performance Measure Results
Accuracy 0.98
Sensitivity 0.96
Precision 0.97
F-Score 0.97

The results obtained for both approaches are observed to be similar with the same classification

accuracy value.

 139

6.6.1 ASIC Power, Resource utilization, and critical path delay

The Complete System was also implemented using the ASIC design methodology using a semi-

custom VLSI design method. The two ANNs, A-ANN and C-ANN, were coded using Verilog

and synthesized using TSMC 180nm Standard Cell Library on Cadence RTL Encounter. The

results of the synthesis are presented in Table 6.3.

Table 6. 3: ASIC Implementation Results of Complete Design

Parameter Values
Power 139.4 mW
Area 3.3mm2

Standard Cell Units 443648
Critical Path Delay 0.29ms

6.6.2 Cost comparison of Embedded and VLSI Water Quality Classification Device with

standard Water Testing Atlas Scientific Kit

Table 6.4 shows the cost comparison of the proposed device with Atlas Scientific standard

Electrode with Arduino Uno based Water Testing Kit. It is observed that the proposed device

has cost reduction by 92% while achieving 98% accuracy.

Table 6. 4: Cost comparison of the conventional and proposed device

Component Name Measured Parameter
Cost

(Conventional Atlas
Scientific Kit)

Cost
(Proposed

Embedded WQC
Device)

Atlas Scientific DO Probe Dissolved Oxygen INR 21,240 [15] NA
Atlas Scientific DO Sensor Dissolved Oxygen INR 4,299 [15] NA

Aquasol ORP Electrode Oxidation-Reduction
Potential

INR 1200 INR 1200

Atlas Scientific ORP Sensor Oxidation-Reduction
Potential

INR 3,739 [15] NA

Aquasol pH Electrode pH INR 900 INR 900
Atlas Scientific pH Sensor pH INR 3,739 [15] NA

Atlas Scientific EC Electrode Electrical Conductivity INR 11,200 [15] NA
Atlas Scientific EC Sensor Electrical Conductivity INR 5,600 [15] NA

Battery Pack INR 1,000 INR 1,000
Memory Card NA INR 300

Multiplexer Board INR 11,869 [15] NA
Arduino Uno Board INR 330 INR 330

Raspberry Pi 3 Board NA INR 3,000
Total INR 75,116/- INR 6,730/-

 140

VLSI (ASIC) design approach reduces the cost of production for mass-produced devices. So,

ASIC approach is most suited when there is a requirement for mass production of the device,

even though the embedded approach gives faster time-to-market.

Performance comparison –

The Atlas Scientific Laboratory kit is a parametric measurement kit which only measures the

Water Quality Classification parameters and does not classify the water sample. The output of

the A-ANN has been measured against the readings given by the Atlas Scientific kit, as shown

in Table 6.1.

6.7 Conclusion

From performance observations made in Section 6.5, the following conclusions are drawn

regarding hardware implementations of complete Water Quality Classification Device using

Data Augmentation:

• A Multi-Layer Perceptron architecture with 3 hidden layers, each with 32 neurons,

gives us optimum accuracy and the least Mean Square Error for both Augmentation

ANN and Classification ANN implementation.

• The hardware implementation of the Augmentation ANN design achieves 97%

accuracy and yields an R2 of 0.98 at 0.00232 Root Mean Square Error in the prediction

of Dissolved Oxygen and Electrical conductivity using pH and ORP input data.

• Hardware implementation of Classification ANN achieves classification accuracy

>97% in all three categories, averaging at 98%, with a high Sensitivity of 0.96, a

precision of 0.97, and an F-score value of 0.97.

• The A-ANN and C-ANN performance results obtained for both the approaches,

Embedded and ASIC, are found to be similar. Also, the performance is identical to the

standard Atlas Scientific lab kit for water testing.

• The proposed portable embedded Water Quality Classification device reduces the cost

by 92%, while achieving 98% accuracy as compared to the Atlas Scientific lab testing

kit.

• ASICs provide a much cheaper method for mass production of devices as compared to

Embedded systems.

 141

6.8 References

[1] R. T. Wilkin, M. S. McNeil, C. J. Adair and J. T. Wilson, "Field Measurement of
Dissolved Oxygen: A Comparison of Methods," Groundwater Monitoring and
Remediation, vol. 21, no. 4, pp. 124 - 132, 2007.

[2] A. Patulea, N. Baran and I. M. Calusaru, "Measurements of Dissolved Oxygen
Concentration in Stationary Water," World Environment, vol. 2, no. 5, pp. 104 - 109,
2012.

[3] R. G. Jones, "Measurements of the electrical conductivity of water," IEE Proceedings -
Science, Measurement, and Technology, vol. 149, no. 6, pp. 320 - 322, 2002.

[4] J. Kim, D. Seo, M. Jang and J. Kim, "Augmentation of limited input data using an
artificial neural network method to improve the accuracy of water quality modeling in a
large lake," Journal of Hydrology, vol. 602, no. 126817, 2021.

[5] B. He and K. Takase, "Application of the Artificial Neural Network Method to Estimate
the Missing Hydrologic Data," J. Japan Soc. Hydrol. & Water Resour., vol. 19, no. 4, pp.
249 - 257, 2006.

[6] R. M. Hirsch, D. L. Moyer and S. A. Archfield, "Weighted Regressions on Time,
Discharge, and Season (WRTDS), with an Application to Chesapeake Bay River Inputs,"
Journal of the American Water Resources Association (JAWRA), vol. 46, no. 5, pp. 857
- 880, 2010.

[7] A. Kaitin, D. D. Giudice, N. S. Hall, H. W. Paerl and D. R. Obenour, "Simulating algal
dynamics within a Bayesian framework to evaluate controls on estuary productivity,"
Ecological Modelling, vol. 447, no. Article No. 109497, 2021.

[8] S. L. Neitsch, J. G. Arnold, J. R. Kiniry and J. R. Williams, "Soil and water assessment
tool theoretical documentation version 2009," Texas Water Resources Institute (2011),
Temple, Texas, 2011.

[9] B. R. Bicknell, J. C. Imhoff, J. L. Kittle Jr., A. S. Donigian Jr. and R. C. Johanson,
"Hydrological simulation program—FORTRAN user’s manual for version 11.,"
Environmental Protection Agency Report, No. EPA/600/R-97/080, US Environmental
Protection Agency, Athens, Ga (1997), Athens, GA, 1997.

[10] L. A. Rossman, "Storm water management model user's manual, version 5.0.," National
Risk Management Research Laboratory, Office of Research and Development, US
Environmental Protection Agency., Ohio, 2010.

[11] E. B. Daniel, J. V. Camp, E. J. LeBoeuf, J. R. Penrod, J. P. Dobbins and M. D. Abkowitz,
"Watershed modeling and its applications: A state-of-the-art review.," The Open
Hydrology Journal, vol. 5, no. 1, pp. 26 - 50, 2011.

[12] H. R. Maier and G. C. Dandy, "Application of artificial neural networks to forecasting of
surface water quality variables: issues, applications and challenges," in Artificial Neural
Networks in Hydrology. Water Science and Technology Library, , vol 36, Springer, 2000,
p. 287–309.

[13] Y. Chen, L. Song, Y. Liu, L. Yang and D. Ling, "A Review of the Artificial Neural
Network Models for Water Quality Prediction," Applied Sciences, vol. 10, no. 17, p.
5776, 2020.

[14] M. Paliwal and U. A. Kumar, "Neural networks and statistical techniques: A review of
applications," Expert Systems with Applications, vol. 36, no. 1, pp. 2 - 17, 2009.

 142

[15] Atlas Scientific, "Atlas Scientific | Environmental Robotics," Atlas Scientific, [Online].
Available: https://atlas-scientific.com/#. [Accessed 01 March 2021].

[16] Arduino Inc., "Arduio - Products," Arduino incorporated, [Online]. Available:
https://www.arduino.cc/en/Main/Products. [Accessed 04 March 2021].

 143

Chapter 7

7. Conclusions and Future Work

This chapter summarises the conclusions drawn throughout the study and hardware

implementation of a portable smart Water Quality Classification Device using Data

Augmentation. Also paves the path for future work based on the design choices made in this

study and suggests new design enhancements.

7.1 Conclusions

The thesis presents a digital hardware implementation of an Artificial Neural Network for

Water Quality Classification applications. The implementation is required to meet the

challenges of reduced size, reduced cost, portability, and reduced power consumption while

achieving accuracy comparable to the standard Atlas Scientific Testing Kit. The device is

designed for in-situ water quality measurement and classification using Artificial Intelligence

with high accuracy that can be used by people with limited to no literacy.

The proposed device uses 2 ANNs to augment water quality parameters and make decisions

regarding water quality classification, thus eliminating the need for human expertise and

laboratory testing. The device has been implemented using Embedded systems as well as the

ASIC approach. The Embedded systems approach is suitable for short development time with

high repairability, whereas the ASIC approach leads to compact design with higher reliability.

The important design conclusions regarding the proposed Water Quality Classification device

obtained in the present work are discussed below:

• Cost Reduction - ANN-based data augmentation has been used in the design for both

approaches to lower the cost of Water Quality Classification by removing the need of

expensive sensors and electrodes for Dissolved Oxygen and Electrical Conductivity.

The Embedded System design approach has led to a 92% cost reduction as compared

to to standard Atlas Scientific Lab kit.

• In the Embedded Approach, the power consumption is controlled by the power required

to drive the two embedded boards. For Raspberry Pi, the power consumption is 2.1 W,

and for Arduino Uno is 0.5W. The time to generate results is also dependent on the

baud rates of Arduino Uno and Raspberry Pi, which is 1s, for the design implemented.

 144

The ASIC approach reduces the power consumption of the total device to 0.3mW and

reduces the maximum time to process a result to 0.3 ms.

• For the proposed hardware implementation, Multi-Layer Perceptron architecture with

3 hidden layers with 32 neurons gives us optimum accuracy and the least Mean Square

Error for both Augmentation ANN and Classification ANN implementation.

• The Sigmoid activation function is suitable as the output range is between 0 and 1 which

suits the probability prediction. A non-linear approximation of the Sigmoid function is

77% power efficient and utilizes 38.5% lesser hardware resources with a 68.3% faster

Critical Delay path than the Padé approximation in the IEEE 754 floating point

representation system.

§ ASIC implementation of the Nonlinear approximated Sigmoid function consumes

lesser power by at least 3 orders of magnitude than FPGA implementation in IEEE 754.

• The proposed ANN implementation using Parameterised Posit floating point

representation is 50% more power efficient using 50% fewer resources and is 13%

faster than the IEEE 754 floating point representation.

• The use of data Augmentation ANN in this design helps in reducing the cost while

achieving 97% prediction accuracy and yielding an R2 of 0.98 at 0.00232 Root Mean

Square Error in the prediction of Dissolved Oxygen and Electrical conductivity using

pH and ORP input data.

• Hardware implementation of Classification ANN achieves a high classification

accuracy above 97% in all three categories, averaging at 98%, with a high Sensitivity

of 0.96, precision of 0.97, and an F-score value of 0.97.

• The A-ANN and C-ANN accuracy, sensitivity, and precision results obtained for both

the approaches, Embedded and ASIC, are found to be similar.

• A reduced architecture of the design has been implemented on an FPGA board to test

the functionality of the entire design prior to the complete implementation using the

ASIC approach. The complete design has not been implemented using an FPGA board

because it requires a large resource count (> 235,000) board(s), which are very

expensive, defeating the low-cost objective of the research.

The novelty of the present work lies in i) the selection of architecture, activation function, and

use of ANN-based data augmentation, and ii) the use of the Posit number system with

parameterization. To the best of our knowledge, these features in hardware implementation

have been used for the first time.

 145

Analysis-based selection of simple ANN architecture, suitable activation function for a

compact design to reduce cost. The method of ANN-based data augmentation used in this thesis

has further reduced the cost by eliminating the need for expensive sensors yet obtaining

comparable accuracy.

Using Posit Floating point representation system to improve accuracy with less computation

and less hardware resource requirement. This has increased the speed of operation. To

implement Posit on hardware, the biggest challenge is the variable bit width of the components

of Posits. So, the technique of parametrization of Posits has been used to address this problem.

The Parameterization process has enabled the flexibility of the Posit representation to be

adapted as per the requirement making it application specific.

7.2 Future Direction

• In future work, more parameters like geographical information, topological

information, and weather parameters, can be added to the input vectors of

Augmentation ANN and Classification ANN. Augmentation ANN can also be used to

predict biological and chemical contaminants based on their relationship with

electrochemical parameters. This would make the device usable for a wider range of

water sources, geographical locations, and wider populations within India and across

the globe without a drastic increase in cost.

• In the ANN architecture field, the device has been implemented using first-order Neural

Networks. More advanced Network topologies like Constructive Neural Networks and

Spiking Neural Networks can be adopted to increase the accuracy and efficiency of the

device.

• The design methodology can be used and customized further for the development of

classification-based applications such as face recognition, air quality indexing, and

other real-life applications at a low cost.

• The ASIC design approach can be further developed with IO planning and floor

planning tools for final IC fabrication.

• The ASIC design was synthesized using TSMC 180nm standard cell library. The Si

area and power consumption can be further reduced, and the speed of operation can be

improved by using smaller technology nodes for standard cell libraries.

 146

• The FET-based sensing technologies can be used in conjunction with the ASIC to

implement the whole system in a Lab-on-Chip design approach. `

• Parameterization of Posit paves the path of further research on how the flexibility of

Posit representation can be bounded and adapted to different applications, thus,

maximizing accuracy with minimal increase in hardware resource requirement.

In comparison to existing Patented devices CN201343453Y (D1) [1] and CN210037776U (D2)

[2], the proposed device functions independently and does not require wifi connectivity. The

proposed handheld device is location independent which tests water quality without a buoy or

carrier vehicle. It improves on previous research work/patented devices by adding portability,

real-time monitoring, decreased reliance on external factors, use of artificial neural network

(ANN) technology, customizable functionality, energy efficiency, rural accessibility,

environmental awareness, cost-effectiveness, autonomous operation, and adaptability through

artificial intelligence.

7.3 References

[1] X. Z. W. Y. X. Chengbin, “Automatic continuous measuring and controlling instrument
for ultraviolet-oxidized water online temperature/electric conductance/total organic
carbon”. China Patent CN201343453Y, 2009.

[2] Hadano, “Water quality monitoring system”. China Patent CN210037776U, 2019.

 147

A. Appendix A

The data values of the four parameters pH, ORP, DO, and EC are presented here. 100 samples

out of the complete 1806 values are presented here.

A.1. pH Data

Table A. 5: pH measurement comparison against standard devices

S. No. pH
Proposed Device Sensor

pH
Atlas Scientific electrode

pH
Labtornics LT-59

1 8.5 8.6 8.6

2 8.0 7.8 7.8

3 7.5 7.4 7.4

4 7.0 7.0 7.0

5 6.8 6.8 6.9

6 7.5 7.3 7.3

7 6.5 6.5 6.5

8 7 7 7

9 6.8 6.8 6.8

10 6.6 6.6 6.5

11 5.7 5.7 5.7

12 8 8 8

13 6.5 6.2 6.2

14 6.1 6.1 6.1

15 7 7 7

16 6 6.3 6.3

17 6.5 6.5 6.5

18 6.3 6.3 6.3

19 7 7 7

20 6.8 6.8 6.8

21 8 8 8

22 7 7 7

23 7 7.4 7.4

24 8 8 8

25 6 6 6

 148

26 6.3 6.3 6.3

27 8.5 8.5 8.5

28 8 8 8

29 5.8 5.8 5.8

30 7 7 7.1

31 5.5 5.5 5.5

32 7 7 7

33 8.5 8.5 8.5

34 7.5 7.5 7.5

35 6.8 6.8 6.8

36 7 7 7

37 8.5 8.2 8.2

38 6.8 6.5 6.5

39 8 8 8

40 6.5 6.5 6.5

41 8.5 8.5 8.5

42 8 8 8

43 8.7 8.5 8.5

44 8 8 8

45 7.7 7.7 7.8

46 6 6 6

47 8 8 8

48 7 7 7

49 6.6 6.6 6.6

50 8 8 8

51 8.8 8.5 8.5

52 8.1 8.1 8.1

53 8.3 8.3 8.3

54 7 7 7

55 7.6 7.3 7.3

56 8 8 8

57 7.7 7.7 7.7

58 7.9 8 8

59 6.6 6.6 6.6

 149

60 6.9 7 7

61 7 7 7.2

62 8 8 8

63 7 7 7

64 6.8 6.8 6.8

65 7.1 7.1 7.1

66 7.5 7.5 7.5

67 7.8 7.8 7.8

68 6.8 7 7

69 7 7 7

70 7.2 7.2 7.2

71 8.6 8.6 8.6

72 8 8 8

73 6.3 6.3 6.3

74 7.5 7.5 7.5

75 6.7 6.7 6.7

76 6.2 6.2 6.2

77 6.9 6.9 6.9

78 6.5 7 7

79 6.5 6.5 6.5

80 7 7 7

81 8.5 8.5 8.5

82 6.3 6.3 6.3

83 7.3 7.3 7.3

84 7.5 7.5 7.5

85 6.6 6.6 6.6

86 7 7 7

87 7.2 7.2 7.2

88 6.2 6.2 6.2

89 7.5 7.5 7.5

90 6.5 6.5 6.5

91 7 7 7

92 7.6 7.6 7.6

93 7.1 7.1 7.1

 150

94 8 8.2 8.2

95 6.8 6.8 6.8

96 7.4 7.4 7.4

97 7.6 7.6 7.6

98 7 7 7

99 6.8 7 7

100 8 8 8

 151

A.1 Oxidation Reduction Potential (ORP) Data

Table A. 6: ORP measurement comparison against standard devices

S. No. ORP
Proposed Device Sensor

ORP
Atlas Scientific Electrode

ORP
Labtornics LT-59

1 3.01 3.01 3.01

2 0.92 0.92 0.92

3 1.73 1.73 1.73

4 3.28 3.28 3.28

5 3.32 3.32 3.32

6 2.74 2.74 2.74

7 0.03 0.03 0.03

8 4.22 4.22 4.22

9 3.08 3.08 3.08

10 2.53 2.53 2.53

11 0.01 0.01 0.01

12 3.39 3.39 3.39

13 0.04 0.04 0.04

14 0.02 0.02 0.02

15 3.4 3.4 3.4

16 0.15 0.15 0.15

17 0.01 0.01 0.01

18 0.01 0.01 0.01

19 1.46 1.46 1.46

20 1.58 1.58 1.58

21 4.63 4.63 4.63

22 0.43 0.43 0.43

23 0.44 0.44 0.44

24 2.83 2.83 2.83

25 0.01 0.01 0.01

26 0.01 0.01 0.01

27 2.89 2.89 2.89

28 0.07 0.07 0.07

 152

29 0.01 0.01 0.01

30 7.11 7.11 7.11

31 0.09 0.09 0.09

32 0.06 0.06 0.06

33 3.33 3.33 3.33

34 3.28 3.28 3.28

35 0.04 0.04 0.04

36 0.22 0.22 0.22

37 3.22 3.22 3.22

38 0.03 0.03 0.03

39 3.43 3.43 3.43

40 0.13 0.13 0.13

41 2.45 2.45 2.45

42 4.95 4.95 4.95

43 4.95 4.95 4.95

44 7.9 7.9 7.9

45 2.48 2.48 2.48

46 0.05 0.05 0.05

47 4.93 4.93 4.93

48 0.08 0.08 0.08

49 0.03 0.03 0.03

50 3.11 3.11 3.11

51 2.82 2.82 2.82

52 3.12 3.12 3.12

53 3.11 3.11 3.11

54 0.85 0.85 0.85

55 0.91 0.91 0.91

56 0.91 0.91 0.91

57 0.64 0.64 0.64

58 1.22 1.22 1.22

59 0.23 0.23 0.23

60 0.24 0.24 0.24

 153

61 0.23 0.23 0.23

62 0.59 0.59 0.59

63 0.23 0.23 0.23

64 0.24 0.24 0.24

65 0.28 0.28 0.28

66 0.93 0.93 0.93

67 1.55 1.55 1.55

68 0.33 0.33 0.33

69 0.49 0.49 0.49

70 0.24 0.24 0.24

71 1.19 1.19 1.19

72 0.85 0.85 0.85

73 0.24 0.24 0.24

74 0.59 0.59 0.59

75 0.23 0.23 0.23

76 0.23 0.23 0.23

77 0.23 0.23 0.23

78 0.25 0.25 0.25

79 0.23 0.23 0.23

80 0.25 0.25 0.25

81 4.34 4.34 4.34

82 0.25 0.25 0.25

83 0.36 0.36 0.36

84 0.64 0.64 0.64

85 0.25 0.25 0.25

86 0.25 0.25 0.25

87 0.23 0.23 0.23

88 0.26 0.26 0.26

89 0.9 0.9 0.9

90 0.42 0.42 0.42

91 0.25 0.25 0.25

92 1.21 1.21 1.21

 154

93 0.24 0.24 0.24

94 1.22 1.22 1.22

95 0.25 0.25 0.25

96 1.08 1.08 1.08

97 0.49 0.49 0.49

98 0.51 0.51 0.51

99 0.27 0.27 0.27

100 0.64 0.64 0.64

 155

A.2 Dissolved Oxygen (DO) Data

Table A. 7: DO measurement comparison against standard devices

S. No. DO
Proposed Device Sensor

DO
Atlas Scientific Electrode

DO
Labtornics LT-59

1 10 10 10

2 12 11.5 12

3 14.5 14.5 14.5

4 12.5 12.5 12

5 12 12 12

6 16 16 16

7 15 15 14.5

8 14.3 14 14.3

9 10.3 10.3 10.3

10 10.4 10.4 10.4

11 13 13 13

12 16 16 16

13 15.5 15.5 15.5

14 13 13 13

15 12.5 12.5 12.5

16 13 13 13

17 11.5 11.5 11.5

18 9 10 10

19 1.7 1.7 1.7

20 10.8 10.8 10.8

21 12 12 12

22 12 12 12

23 9.5 9.5 9.5

24 11 11 11

25 9 9 9

26 12 12 12

27 10 10 10

28 8.5 8.5 8.5

29 7.5 7.5 7.5

30 8 8 8

 156

31 9.5 9.5 9.5

32 10 10 10

33 10.8 11 10.8

34 10.5 10.5 10.5

35 9.5 9.5 9.5

36 9.7 9.7 9.7

37 9.8 9.8 10

38 9 9 9

39 7 7 7

40 9 9 9

41 10 10 10

42 10.2 10.2 10

43 8.8 8.8 8.8

44 4.5 4.5 4.5

45 9.8 9.8 9.8

46 8.5 8.5 8.5

47 5.5 5.5 5.5

48 8.2 8.2 8.2

49 7.5 7.5 7.5

50 8.2 8.2 8.2

51 7.5 7.5 7.5

52 8.5 8.5 8.5

53 7 7 7

54 8.5 8.5 8.5

55 9 9 9

56 9 9 9

57 8.5 8.5 8.5

58 9 9 9

59 8.5 8.5 8.5

60 9.5 9.5 9.5

61 8.5 9 8.5

62 7 6 6

63 10.2 10.2 10.2

64 9 9 9

 157

65 7.8 7.8 7.8

66 7.5 7.5 7.5

67 6 6 6

68 7 7 7

69 9 9 9

70 9 9 9

71 7.3 7.3 7.3

72 6.5 6.5 6.5

73 8.5 8.5 8.5

74 8.2 8 8

75 7.8 7.8 7.8

76 8.6 8.6 8.6

77 7.4 7.4 7.4

78 8 8 8

79 7.5 7.5 7.5

80 8 8 8

81 7 7 7

82 7.6 7.6 7.6

83 7.4 7.4 7.4

84 9.5 9.5 9.5

85 9 9 9

86 7.5 7.5 7.5

87 9.2 9.2 9.2

88 9.5 9.5 9.5

89 8.3 8.3 8.3

90 8.7 8.7 8.7

91 9.6 9.6 9.6

92 6.4 6.4 6.4

93 10 10 10

94 7 7 7

95 10.5 10.5 10.5

96 8 8 8

97 9.5 9.5 9.5

98 8 8 8

 158

99 8 8 8

100 7.5 7.5 7.5

 159

A.3 Electrical Conductivity (EC) Data

Table A. 8: EC measurement comparison against standard devices

S. No. EC
Proposed Device Sensor

EC
Atlas Scientific Electrode

EC
Labtornics LT-59

1 281 281 281

2 294 294 294

3 277 277 277

4 292 292 292

5 302 302 302

6 294 294 294

7 298 298 298

8 308 308 308

9 277 277 277

10 278 278 278

11 270 270 270

12 254 254 254

13 293 293 293

14 299 299 299

15 283 283 283

16 298 298 298

17 291 291 291

18 295 295 295

19 288 288 288

20 257 257 257

21 265 265 265

22 271 271 271

23 284 284 284

24 259 259 259

25 211 211 211

26 235 235 235

27 215 215 215

28 245 245 245

 160

29 264 264 264

30 273 273 273

31 262 262 262

32 263 263 263

33 252 252 252

34 266 266 266

35 269 269 269

36 273 273 273

37 279 279 279

38 275 275 275

39 267 267 267

40 277 277 277

41 264 264 264

42 263 263 263

43 268 268 268

44 254 254 254

45 259 259 259

46 275 275 275

47 273 273 273

48 280 280 280

49 284 284 284

50 267 267 267

51 263 263 263

52 269 269 269

53 248 248 248

54 255 255 255

55 247 247 247

56 257 257 257

57 260 260 260

58 273 273 273

59 265 265 265

60 266 266 266

 161

61 271 271 271

62 253 253 253

63 264 264 264

64 281 281 281

65 258 258 258

66 253 253 253

67 258 258 258

68 265 265 265

69 255 255 255

70 270 270 270

71 247 247 247

72 238 238 238

73 278 278 278

74 269 269 269

75 270 270 270

76 252 252 252

77 271 271 271

78 269 269 269

79 270 270 270

80 279 279 279

81 238 238 238

82 265 265 265

83 263 263 263

84 245 245 245

85 267 267 267

86 278 278 278

87 274 274 274

88 269 269 269

89 265 265 265

90 282 282 282

91 281 281 281

92 274 274 274

 162

93 272 272 272

94 256 256 256

95 263 263 263

96 276 276 276

97 258 258 258

98 266 266 266

99 271 271 271

100 297 297 297

 163

A.4 Variation of DO and EC measurement in proposed device against Atlas

Scientific kit.

Table A. 9: Validation of proposed device for real-time water quality measurement

S No DO

EC

Atlas Scientific kit Measured using

Proposed device

Atlas Scientific Kit Measured using

Proposed device

1 9.36 9.3 1777 1745

2 9.32 9.3 1407 1407

3 9.35 9.3 912 912

4 9.36 9.3 1450 1450

5 3.81 3.8 1640 1640

6 7.36 7.3 928 928

7 6.82 6.8 1482 1482

8 7.89 7.8 915 915

9 7.13 7.1 1525 1525

10 5.82 5.8 1225 1225

11 6.34 6.3 1560 1524

12 5.56 5.5 857 857

13 7.31 7.3 1362 1362

14 5.18 5.1 1090 1090

15 8.13 8.1 1402 1402

16 8.37 8.3 1488 1474

17 5.13 5.1 1332 1332

18 7.27 7.2 225 225

19 5.82 5.8 1175 1175

20 5.57 5.5 1036 1036

 164

21 6.15 6.1 1082 1082

22 4.51 4.5 1190 1190

23 8.37 8.3 1180 1180

24 8.54 8.5 577 577

25 5.32 5.3 1322 1322

26 8.72 8.7 1321 1321

27 5.78 5.7 1190 1190

28 7.34 7.3 1126 1126

29 5.76 5.7 1093 1093

30 5.03 5.0 340 340

31 4.41 4.4 550 550

32 6.21 6.2 405 405

33 5.24 5.2 390 390

34 5.46 5.5 305 305

35 4.99 5.0 435 435

36 4.33 4.3 420 420

37 4.01 4.0 555 555

38 6.74 6.7 350 350

39 5.95 6.0 345 345

40 4.26 4.3 360 360

41 5.80 5.8 450 450

42 4.07 4.1 550 550

43 5.06 5.1 490 490

44 5.84 5.8 450 450

45 6.71 6.7 410 410

46 4.97 5.0 560 560

47 6.76 6.7 545 545

 165

48 4.69 4.6 475 475

49 4.91 4.9 505 505

50 6.78 6.7 515 515

 166

A.5 All Parameter Measurements Using the Proposed Device

Table A.6: Measurement of all 4 parameters using proposed device

S. No. pH

Proposed Device

Sensor

ORP

Proposed Device Sensor

DO

Proposed Device

Sensor

EC

Proposed Device

Sensor

1 8.5 3.01 10 281

2 8 0.92 12 294

3 7.5 1.73 14.5 277

4 7 3.28 12.5 292

5 6.8 3.32 12 302

6 7.5 2.74 16 294

7 6.5 0.03 15 298

8 7 4.22 14.3 308

9 6.8 3.08 10.3 277

10 6.6 2.53 10.4 278

11 5.7 0.01 13 270

12 8 3.39 16 254

13 6.5 0.04 15.5 293

14 6.1 0.02 13 299

15 7 3.4 12.5 283

16 6 0.15 13 298

17 6.5 0.01 11.5 291

18 6.3 0.01 9 295

19 7 1.46 1.7 288

20 6.8 1.58 10.8 257

21 8 4.63 12 265

22 7 0.43 12 271

 167

23 7 0.44 9.5 284

24 8 2.83 11 259

25 6 0.01 9 211

26 6.3 0.01 12 235

27 8.5 2.89 10 215

28 8 0.07 8.5 245

29 5.8 0.01 7.5 264

30 7 7.11 8 273

31 5.5 0.09 9.5 262

32 7 0.06 10 263

33 8.5 3.33 10.8 252

34 7.5 3.28 10.5 266

35 6.8 0.04 9.5 269

36 7 0.22 9.7 273

37 8.5 3.22 9.8 279

38 6.8 0.03 9 275

39 8 3.43 7 267

40 6.5 0.13 9 277

41 8.5 2.45 10 264

42 8 4.95 10.2 263

43 8.7 4.95 8.8 268

44 8 7.9 4.5 254

45 7.7 2.48 9.8 259

46 6 0.05 8.5 275

47 8 4.93 5.5 273

48 7 0.08 8.2 280

49 6.6 0.03 7.5 284

 168

50 8 3.11 8.2 267

51 8.8 2.82 7.5 263

52 8.1 3.12 8.5 269

53 8.3 3.11 7 248

54 7 0.85 8.5 255

55 7.6 0.91 9 247

56 8 0.91 9 257

57 7.7 0.64 8.5 260

58 7.9 1.22 9 273

59 6.6 0.23 8.5 265

60 6.9 0.24 9.5 266

61 7 0.23 8.5 271

62 8 0.59 7 253

63 7 0.23 10.2 264

64 6.8 0.24 9 281

65 7.1 0.28 7.8 258

66 7.5 0.93 7.5 253

67 7.8 1.55 6 258

68 6.8 0.33 7 265

69 7 0.49 9 255

70 7.2 0.24 9 270

71 8.6 1.19 7.3 247

72 8 0.85 6.5 238

73 6.3 0.24 8.5 278

74 7.5 0.59 8.2 269

75 6.7 0.23 7.8 270

76 6.2 0.23 8.6 252

 169

77 6.9 0.23 7.4 271

78 6.5 0.25 8 269

79 6.5 0.23 7.5 270

80 7 0.25 8 279

81 8.5 4.34 7 238

82 6.3 0.25 7.6 265

83 7.3 0.36 7.4 263

84 7.5 0.64 9.5 245

85 6.6 0.25 9 267

86 7 0.25 7.5 278

87 7.2 0.23 9.2 274

88 6.2 0.26 9.5 269

89 7.5 0.9 8.3 265

90 6.5 0.42 8.7 282

91 7 0.25 9.6 281

92 7.6 1.21 6.4 274

93 7.1 0.24 10 272

94 8 1.22 7 256

95 6.8 0.25 10.5 263

96 7.4 1.08 8 276

97 7.6 0.49 9.5 258

98 7 0.51 8 266

99 6.8 0.27 8 271

100 8 0.64 7.5 297

 170

B. Appendix B

Verilog codes for ANN neuron using Posit representation system, Nonlinear approximation of

Sigmoid function, and Padé approximation of exponent function.

B.1. Verilog Code for Posit neuron.

`timescale 1ns / 1ps

module neuron_posit(in1, in2, in3, in4, n_out);

 input [31:0] in1, in2, in3, in4;

 output [31:0] n_out;

 wire [15:0] w1, w2, w3, w4;

 wire [15:0] m1, m2, m3, m4;

 wire [15:0] a1, a2, add_out;

 wire start, inf, zero, done;

 wire [15:0] inp1, inp2, inp3, inp4;

 wire [15:0] sig_out;

 FP_to_posit INP1(in1, inp1);

 FP_to_posit INP2(in2, inp2);

 FP_to_posit INP3(in3, inp3);

 FP_to_posit INP4(in4, inp4);

 ///multiplying input with weights

 posit_mult M1(inp1, w1, start, m1, inf, zero, done);

 posit_mult M2(inp2, w2, start, m2, inf, zero, done);

 posit_mult M3(inp3, w3, start, m3, inf, zero, done);

 posit_mult M4(inp4, w4, start, m4, inf, zero, done);

 ///adding weighted inputs

 posit_adder A1(m1, m2, start, a1, inf, zero, done);

 posit_adder A2(m3, m4, start, a2, inf, zero, done);

 posit_adder A3(a1, a2, start, add_out, inf, zero, done);

 assign sig_out[15] = ~add_out[15];

 assign sig_out[14:13] = 2'b00;

 assign sig_out[12:0] = add_out[14:2];

 Posit_to_FP P2F(sig_out, n_out);

endmodule

 171

//

//////////////////Floating Point to Posit Conversion////////////////////////////////

//

module FP_to_posit(in, out);

function [31:0] log2;

input reg [31:0] value;

 begin

 value = value-1;

 for (log2=0; value>0; log2=log2+1)

 value = value>>1;

 end

endfunction

parameter N = 16;

parameter E = 5;

parameter es = 3; //ES_max = E-1

parameter M = N-E-1;

parameter BIAS = (2**(E-1))-1;

parameter Bs = log2(N);

input [N-1:0] in;

output [N-1:0] out;

wire s_in = in[N-1];

wire [E-1:0] exp_in = in[N-2:N-1-E];

wire [M-1:0] mant_in = in[M-1:0];

wire zero_in = ~|{exp_in,mant_in};

wire inf_in = &exp_in;

wire [M:0] mant = {|exp_in, mant_in};

wire [N-1:0] LOD_in = {mant,{E{1'b0}}};

wire[Bs-1:0] Lshift;

LOD_N #(.N(N)) uut (.in(LOD_in), .out(Lshift));

wire[N-1:0] mant_tmp;

DSR_left_N_S #(.N(N), .S(Bs)) ls (.a(LOD_in),.b(Lshift),.c(mant_tmp));

wire [E:0] exp = {exp_in[E-1:1], exp_in[0] | (~|exp_in)} - BIAS - Lshift;

//Exponent and Regime Computation

wire [E:0] exp_N = exp[E] ? -exp : exp;

wire [es-1:0] e_o = (exp[E] & |exp_N[es-1:0]) ? exp[es-1:0] : exp_N[es-1:0];

 172

wire [E-es-1:0] r_o = (~exp[E] || (exp[E] & |exp_N[es-1:0])) ? {{Bs{1'b0}},exp_N[E-1:es]} +
1'b1 : {{Bs{1'b0}},exp_N[E-1:es]};

//Exponent and Mantissa Packing

wire [2*N-1:0]tmp_o = { {N{~exp[E]}}, exp[E], e_o, mant_tmp[N-2:es]};

//Including Regime bits in Exponent-Mantissa Packing

wire [2*N-1:0] tmp1_o;

wire [Bs-1:0] diff_b;

generate

 if(E-es > Bs) assign diff_b = |r_o[E-es-1:Bs] ? {{(Bs-2){1'b1}},2'b01} : r_o[Bs-1:0];

 else assign diff_b = r_o;

endgenerate

DSR_right_N_S #(.N(2*N), .S(Bs)) dsr2 (.a(tmp_o), .b(diff_b), .c(tmp1_o));

//Final Output

wire [N-1:0] tmp1_oN = s_in ? -tmp1_o[N-1:0] : tmp1_o[N-1:0];

assign out = inf_in|zero_in|(~mant_tmp[N-1]) ? {inf_in,{N-1{1'b0}}} : {s_in, tmp1_oN[N-1:1]};

endmodule

///////////////////////////////LOD_N///

module LOD_N (in, out);

 function [31:0] log2;

 input reg [31:0] value;

 begin

 value = value-1;

 for (log2=0; value>0; log2=log2+1)

 value = value>>1;

 end

 endfunction

parameter N = 64;

parameter S = log2(N);

input [N-1:0] in;

output [S-1:0] out;

wire vld;

LOD #(.N(N)) l1 (in, out, vld);

endmodule

module LOD (in, out, vld);

 173

 function [31:0] log2;

 input reg [31:0] value;

 begin

 value = value-1;

 for (log2=0; value>0; log2=log2+1)

 value = value>>1;

 end

 endfunction

parameter N = 64;

parameter S = log2(N);

 input [N-1:0] in;

 output [S-1:0] out;

 output vld;

 generate

 if (N == 2)

 begin

 assign vld = |in;

 assign out = ~in[1] & in[0];

 end

 else if (N & (N-1))

 LOD #(1<<S) LOD ({1<<S {1'b0}} | in,out,vld);

 else

 begin

 wire [S-2:0] out_l, out_h;

 wire out_vl, out_vh;

 LOD #(N>>1) l(in[(N>>1)-1:0],out_l,out_vl);

 LOD #(N>>1) h(in[N-1:N>>1],out_h,out_vh);

 assign vld = out_vl | out_vh;

 assign out = out_vh ? {1'b0,out_h} : {out_vl,out_l};

 end

 endgenerate

endmodule

/////////////////////////////////////DSR_left_N_S///////////////////////////////

module DSR_left_N_S(a,b,c);

 parameter N=16;

 parameter S=4;

 input [N-1:0] a;

 input [S-1:0] b;

 174

 output [N-1:0] c;

wire [N-1:0] tmp [S-1:0];

assign tmp[0] = b[0] ? a << 7'd1 : a;

genvar i;

generate

 for (i=1; i<S; i=i+1)begin:loop_blk

 assign tmp[i] = b[i] ? tmp[i-1] << 2**i : tmp[i-1];

 end

endgenerate

assign c = tmp[S-1];

endmodule

////////////////////////DSR_right_N_S//

module DSR_right_N_S(a,b,c);

 parameter N=16;

 parameter S=4;

 input [N-1:0] a;

 input [S-1:0] b;

 output [N-1:0] c;

wire [N-1:0] tmp [S-1:0];

assign tmp[0] = b[0] ? a >> 7'd1 : a;

genvar i;

generate

 for (i=1; i<S; i=i+1)begin:loop_blk

 assign tmp[i] = b[i] ? tmp[i-1] >> 2**i : tmp[i-1];

 end

endgenerate

assign c = tmp[S-1];

endmodule

//

//////////////////////Posit Adder///

//

//`include "DSR_right_N_S.v"

//`include "LOD_N.v"

//`include "LZD_N.v"

//`include "DSR_left_N_S.v"

//`include "add_N.v"

//`include "sub_N.v"

//`include "data_extract.v"

 175

//`include "add_mantovf.v"

module posit_adder (in1, in2, start, out, inf, zero, done);

function [31:0] log2;

input reg [31:0] value;

 begin

 value = value-1;

 for (log2=0; value>0; log2=log2+1)

 value = value>>1;

 end

endfunction

parameter N = 16; //Posit Word Size

parameter Bs = log2(N);

parameter es = 3; //Posit Exponent Size

input [N-1:0] in1, in2;

input start;

output [N-1:0] out;

output inf, zero;

output done;

wire start0= start;

wire s1 = in1[N-1];

wire s2 = in2[N-1];

wire zero_tmp1 = |in1[N-2:0];

wire zero_tmp2 = |in2[N-2:0];

wire inf1 = in1[N-1] & (~zero_tmp1),

 inf2 = in2[N-1] & (~zero_tmp2);

wire zero1 = ~(in1[N-1] | zero_tmp1),

 zero2 = ~(in2[N-1] | zero_tmp2);

assign inf = inf1 | inf2,

 zero = zero1 & zero2;

//Data Extraction

wire rc1, rc2;

wire [Bs-1:0] regime1, regime2, Lshift1, Lshift2;

wire [es-1:0] e1, e2;

wire [N-es-1:0] mant1, mant2;

wire [N-1:0] xin1 = s1 ? -in1 : in1;

wire [N-1:0] xin2 = s2 ? -in2 : in2;

data_extract #(.N(N),.es(es)) uut_de1(.in(xin1), .rc(rc1), .regime(regime1), .exp(e1),
.mant(mant1), .Lshift(Lshift1));

data_extract #(.N(N),.es(es)) uut_de2(.in(xin2), .rc(rc2), .regime(regime2), .exp(e2),
.mant(mant2), .Lshift(Lshift2));

 176

wire [N-es:0] m1 = {zero_tmp1,mant1},

 m2 = {zero_tmp2,mant2};

//Large Checking and Assignment

wire in1_gt_in2 = xin1[N-2:0] >= xin2[N-2:0] ? 1'b1 : 1'b0;

wire ls = in1_gt_in2 ? s1 : s2;

wire op = s1 ~^ s2;

wire lrc = in1_gt_in2 ? rc1 : rc2;

wire src = in1_gt_in2 ? rc2 : rc1;

wire [Bs-1:0] lr = in1_gt_in2 ? regime1 : regime2;

wire [Bs-1:0] sr = in1_gt_in2 ? regime2 : regime1;

wire [es-1:0] le = in1_gt_in2 ? e1 : e2;

wire [es-1:0] se = in1_gt_in2 ? e2 : e1;

wire [N-es:0] lm = in1_gt_in2 ? m1 : m2;

wire [N-es:0] sm = in1_gt_in2 ? m2 : m1;

//Exponent Difference: Lower Mantissa Right Shift Amount

wire [Bs:0] r_diff11, r_diff12, r_diff2;

sub_N #(.N(Bs)) uut_sub1 (lr, sr, r_diff11);

add_N #(.N(Bs)) uut_add1 (lr, sr, r_diff12);

sub_N #(.N(Bs)) uut_sub2 (sr, lr, r_diff2);

wire [Bs:0] r_diff = lrc ? (src ? r_diff11 : r_diff12) : r_diff2;

wire [es+Bs+1:0] diff;

sub_N #(.N(es+Bs+1)) uut_sub_diff ({r_diff,le}, {{Bs+1{1'b0}},se}, diff);

wire [Bs-1:0] exp_diff = (|diff[es+Bs:Bs]) ? {Bs{1'b1}} : diff[Bs-1:0];

//DSR Right Shifting of Small Mantissa

wire [N-1:0] DSR_right_in;

generate

 if (es >= 2)

 assign DSR_right_in = {sm,{es-1{1'b0}}};

 else

 assign DSR_right_in = sm;

endgenerate

wire [N-1:0] DSR_right_out;

wire [Bs-1:0] DSR_e_diff = exp_diff;

DSR_right_N_S #(.N(N), .S(Bs)) dsr1(.a(DSR_right_in), .b(DSR_e_diff), .c(DSR_right_out));

//Mantissa Addition

 177

wire [N-1:0] add_m_in1;

generate

 if (es >= 2)

 assign add_m_in1 = {lm,{es-1{1'b0}}};

 else

 assign add_m_in1 = lm;

endgenerate

wire [N:0] add_m1, add_m2;

add_N #(.N(N)) uut_add_m1 (add_m_in1, DSR_right_out, add_m1);

sub_N #(.N(N)) uut_sub_m2 (add_m_in1, DSR_right_out, add_m2);

wire [N:0] add_m = op ? add_m1 : add_m2;

wire [1:0] mant_ovf = add_m[N:N-1];

//LOD of mantissa addition result

wire [N-1:0] LOD_in = {(add_m[N] | add_m[N-1]), add_m[N-2:0]};

wire [Bs-1:0] left_shift;

LOD_N #(.N(N)) l2(.in(LOD_in), .out(left_shift));

//DSR Left Shifting of mantissa result

wire [N-1:0] DSR_left_out_t;

DSR_left_N_S #(.N(N), .S(Bs)) dsl1(.a(add_m[N:1]), .b(left_shift), .c(DSR_left_out_t));

wire [N-1:0] DSR_left_out = DSR_left_out_t[N-1] ? DSR_left_out_t[N-1:0] : {DSR_left_out_t[N-
2:0],1'b0};

//Exponent and Regime Computation

wire [Bs:0] lr_N = lrc ? {1'b0,lr} : -{1'b0,lr};

wire [es+Bs+1:0] le_o_tmp, le_o;

sub_N #(.N(es+Bs+1)) sub3 ({lr_N,le}, {{es+1{1'b0}},left_shift}, le_o_tmp);

add_mantovf #(es+Bs+1) uut_add_mantovf (le_o_tmp, mant_ovf[1], le_o);

wire [es+Bs:0] le_oN = le_o[es+Bs] ? -le_o : le_o;

wire [es-1:0] e_o = (le_o[es+Bs] & |le_oN[es-1:0]) ? le_o[es-1:0] : le_oN[es-1:0];

wire [Bs-1:0] r_o = (~le_o[es+Bs] || (le_o[es+Bs] & |le_oN[es-1:0])) ? le_oN[es+Bs-1:es] + 1'b1
: le_oN[es+Bs-1:es];

//Exponent and Mantissa Packing

wire [2*N-1:0]tmp_o = { {N{~le_o[es+Bs]}}, le_o[es+Bs], e_o, DSR_left_out[N-2:es]};

wire [2*N-1:0] tmp1_o;

DSR_right_N_S #(.N(2*N), .S(Bs)) dsr2 (.a(tmp_o), .b(r_o), .c(tmp1_o));

//Final Output

wire [2*N-1:0] tmp1_oN = ls ? -tmp1_o : tmp1_o;

assign out = inf|zero|(~DSR_left_out[N-1]) ? {inf,{N-1{1'b0}}} : {ls, tmp1_oN[N-1:1]},

 done = start0;

 178

endmodule

//

/////////////////////////////Posit Multiplication/////////////////////////////////////

//

module posit_mult (in1, in2, start, out, inf, zero, done);

function [31:0] log2;

input reg [31:0] value;

 begin

 value = value-1;

 for (log2=0; value>0; log2=log2+1)

 value = value>>1;

 end

endfunction

parameter N = 16;

parameter Bs = log2(N);

parameter es = 3;

input [N-1:0] in1, in2;

input start;

output [N-1:0] out;

output inf, zero;

output done;

wire start0= start;

wire s1 = in1[N-1];

wire s2 = in2[N-1];

wire zero_tmp1 = |in1[N-2:0];

wire zero_tmp2 = |in2[N-2:0];

wire inf1 = in1[N-1] & (~zero_tmp1),

 inf2 = in2[N-1] & (~zero_tmp2);

wire zero1 = ~(in1[N-1] | zero_tmp1),

 zero2 = ~(in2[N-1] | zero_tmp2);

assign inf = inf1 | inf2,

 zero = zero1 & zero2;

//Data Extraction

wire rc1, rc2;

wire [Bs-1:0] regime1, regime2, Lshift1, Lshift2;

wire [es-1:0] e1, e2;

wire [N-es-1:0] mant1, mant2;

wire [N-1:0] xin1 = s1 ? -in1 : in1;

wire [N-1:0] xin2 = s2 ? -in2 : in2;

 179

data_extract #(.N(N),.es(es)) uut_de1(.in(xin1), .rc(rc1), .regime(regime1), .exp(e1),
.mant(mant1), .Lshift(Lshift1));

data_extract #(.N(N),.es(es)) uut_de2(.in(xin2), .rc(rc2), .regime(regime2), .exp(e2),
.mant(mant2), .Lshift(Lshift2));

wire [N-es:0] m1 = {zero_tmp1,mant1},

 m2 = {zero_tmp2,mant2};

//Sign, Exponent and Mantissa Computation

wire mult_s = s1 ^ s2;

wire [2*(N-es)+1:0] mult_m = m1*m2;

wire mult_m_ovf = mult_m[2*(N-es)+1];

wire [2*(N-es)+1:0] mult_mN = ~mult_m_ovf ? mult_m << 1'b1 : mult_m;

wire [Bs+1:0] r1 = rc1 ? {2'b0,regime1} : -regime1;

wire [Bs+1:0] r2 = rc2 ? {2'b0,regime2} : -regime2;

wire [Bs+es+1:0] mult_e = {r1, e1} + {r2, e2} + mult_m_ovf;

//Exponent and Regime Computation

wire [es+Bs:0] mult_eN = mult_e[es+Bs+1] ? -mult_e : mult_e;

wire [es-1:0] e_o = (mult_e[es+Bs+1] & |mult_eN[es-1:0]) ? mult_e[es-1:0] : mult_eN[es-1:0];

wire [Bs:0] r_o = (~mult_e[es+Bs+1] || (mult_e[es+Bs+1] & |mult_eN[es-1:0])) ? mult_eN[es+Bs:es]
+ 1'b1 : mult_eN[es+Bs:es];

//Exponent and Mantissa Packing

wire [2*N-1:0]tmp_o = {{N{~mult_e[es+Bs+1]}},mult_e[es+Bs+1],e_o,mult_mN[2*(N-es):N-es+2]};

//Including Regime bits in Exponent-Mantissa Packing

wire [2*N-1:0] tmp1_o;

DSR_right_N_S #(.N(2*N), .S(Bs+1)) dsr2 (.a(tmp_o), .b(r_o[Bs] ? {Bs{1'b1}} : r_o), .c(tmp1_o));

//Final Output

wire [2*N-1:0] tmp1_oN = mult_s ? -tmp1_o : tmp1_o;

assign out = inf|zero|(~mult_mN[2*(N-es)+1]) ? {inf,{N-1{1'b0}}} : {mult_s, tmp1_oN[N-1:1]},

 done = start0;

endmodule

//
///////////

//Posit to
FP//

//
///////////

module Posit_to_FP (in, out);

 180

function [31:0] log2;

input reg [31:0] value;

 begin

 value = value-1;

 for (log2=0; value>0; log2=log2+1)

 value = value>>1;

 end

endfunction

parameter N = 16;

parameter E = 5;

parameter es = 3;

parameter M = N-E-1;

parameter BIAS = (2**(E-1))-1;

parameter Bs = log2(N);

parameter EO = E > es+Bs ? E : es+Bs;

input [N-1:0] in;

output [N-1:0] out;

wire s = in[N-1];

wire zero_tmp = |in[N-2:0];

wire inf_in = in[N-1] & (~zero_tmp);

wire zero_in = ~(in[N-1] | zero_tmp);

//Data Extraction

wire rc;

wire [Bs-1:0] rgm, Lshift;

wire [es-1:0] e;

wire [N-es-1:0] mant;

wire [N-1:0] xin = s ? -in : in;

data_extract #(.N(N),.es(es)) uut_de1(.in(xin), .rc(rc), .regime(rgm), .exp(e), .mant(mant),
.Lshift(Lshift));

wire [N-1:0] m = {zero_tmp,mant,{es-1{1'b0}}};

//Exponent and Regime Computation

wire [EO+1:0] e_o;

assign e_o = {(rc ? {{EO-es-Bs+1{1'b0}},rgm} : -{{EO-es-Bs+1{1'b0}},rgm}),e} + BIAS;

//Final Output

assign out = inf_in|e_o[EO:E]|&e_o[E-1:0] ? {s,{E-1{1'b1}},{M{1'b0}}} : (zero_in|(~m[N-1]) ?
{s,{E-1{1'b0}},m[N-2:E]} : { s, e_o[E-1:0], m[N-2:E]});

endmodule

 181

///////////////////////////LZD//

module LZD_N (in, out);

 function [31:0] log2;

 input reg [31:0] value;

 begin

 value = value-1;

 for (log2=0; value>0; log2=log2+1)

 value = value>>1;

 end

 endfunction

parameter N = 64;

parameter S = log2(N);

input [N-1:0] in;

output [S-1:0] out;

wire vld;

LZD #(.N(N)) l1 (in, out, vld);

endmodule

module LZD (in, out, vld);

 function [31:0] log2;

 input reg [31:0] value;

 begin

 value = value-1;

 for (log2=0; value>0; log2=log2+1)

 value = value>>1;

 end

 endfunction

parameter N = 64;

parameter S = log2(N);

 input [N-1:0] in;

 output [S-1:0] out;

 output vld;

 generate

 if (N == 2)

 begin

 182

 assign vld = ~∈

 assign out = in[1] & ~in[0];

 end

 else if (N & (N-1))

 LZD #(1<<S) LZD ({1<<S {1'b0}} | in,out,vld);

 else

 begin

 wire [S-2:0] out_l;

 wire [S-2:0] out_h;

 wire out_vl, out_vh;

 LZD #(N>>1) l(in[(N>>1)-1:0],out_l,out_vl);

 LZD #(N>>1) h(in[N-1:N>>1],out_h,out_vh);

 assign vld = out_vl | out_vh;

 assign out = out_vh ? {1'b0,out_h} : {out_vl,out_l};

 end

 endgenerate

endmodule

//LOD///

////module LOD_N (in, out);

//// function [31:0] log2;

//// input reg [31:0] value;

//// begin

//// value = value-1;

//// for (log2=0; value>0; log2=log2+1)

//// value = value>>1;

//// end

//// endfunction

////parameter N = 64;

////parameter S = log2(N);

////input [N-1:0] in;

////output [S-1:0] out;

////wire vld;

////LOD #(.N(N)) l1 (in, out, vld);

////endmodule

////module LOD (in, out, vld);

//// function [31:0] log2;

//// input reg [31:0] value;

 183

//// begin

//// value = value-1;

//// for (log2=0; value>0; log2=log2+1)

//// value = value>>1;

//// end

//// endfunction

//parameter N = 64;

//parameter S = log2(N);

// input [N-1:0] in;

// output [S-1:0] out;

// output vld;

// generate

// if (N == 2)

// begin

// assign vld = |in;

// assign out = ~in[1] & in[0];

// end

// else if (N & (N-1))

// LOD #(1<<S) LOD ({1<<S {1'b0}} | in,out,vld);

// else

// begin

// wire [S-2:0] out_l, out_h;

// wire out_vl, out_vh;

// LOD #(N>>1) l(in[(N>>1)-1:0],out_l,out_vl);

// LOD #(N>>1) h(in[N-1:N>>1],out_h,out_vh);

// assign vld = out_vl | out_vh;

// assign out = out_vh ? {1'b0,out_h} : {out_vl,out_l};

// end

// endgenerate

//endmodule

/////////////////////////////////END//////////////////////////////////

 184

B.2. Verilog Code for IEEE 754 Nonlinear Approximation neuron

module Nonlin_sigmoid(y,x);

output [31:0] y;

input [31:0] x;

wire [31:0] x;

reg [31:0] yr;

assign y = 32'b00000000000000000000000000000000;

parameter a = 32'h3e7404ea ; //0.2383

parameter b = 32'h3f000000 ; // .50

parameter c = 32'h3d3f4880 ; //0.0467

parameter d = 32'h3dfdbf48 ; //0.1239

parameter e = 32'h3e980347 ; //0.2969

parameter f = 32'hbd3f4880 ; //-0.0467

parameter g = 32'h3e944674 ; //0.2896

parameter h = 32'h3ef9f55a ; //0.4882

wire [31:0]i,j,k,l,m,n; // for storing the internal variables

wire [31:0]o,p,q,r,s;

multiplier m11(x, x, i); // i stores x^2

multiplier m12(a,x,j); //j stores (.2383*x)

multiplier m13(c,i,k) ; // k stores (0.0467*x^2)

multiplier m14(d,x,l); // l stores (.1239*x)

multiplier m15(f,i,m); // m stores (-0.0467*x^2)

multiplier m16(g,x,n); // n stores (0.2896*x)

adder a11(j,b,o); // o stores (.2383*x +.50) VAL OF Y for x(-1,1)

adder a12(k,l,p); // p stores (0.0467x^2 + .1239x)

adder a13(p,e,q); // q stores (0.0467x^2 + .1239x+.2969) VAL OF Y x=-1

adder a14(m,n,r); // r stores (-0.0467*x^2 +0.2896x)

adder a15(r,h,s); // s stores (-0.0467*x^2 +0.2896x+0.4882) VAL of Y x=1

// x=1 in 754 is

always @(*)

begin

 if(x ==32'hbf800000)

 begin

 yr=q;

 end

 else if(x==32'h3f800000)

 begin

 yr=s;

 end

 else

 begin

 yr=o;

 end

 185

end

assign y = yr;

endmodule

module fpuNEW(clk, A, B, opcode, O);

 input clk;

 input [31:0] A, B;

 input [1:0] opcode;

 output [31:0] O;

 wire [31:0] O;

 wire a_sign, b_sign;

 wire ADD, SUB, DIV, MUL;

 wire [7:0] a_exponent;

 wire [23:0] a_mantissa;

 wire [7:0] b_exponent;

 wire [23:0] b_mantissa;

 reg o_sign;

 reg [7:0] o_exponent;

 reg [24:0] o_mantissa;

 reg [31:0] adder_a_in;

 reg [31:0] adder_b_in;

 wire [31:0] adder_out;

 reg [31:0] multiplier_a_in;

 reg [31:0] multiplier_b_in;

 wire [31:0] multiplier_out;

 reg [31:0] divider_a_in;

 reg [31:0] divider_b_in;

 wire [31:0] divider_out;

 assign O[31] = o_sign;

 assign O[30:23] = o_exponent;

 assign O[22:0] = o_mantissa[22:0];

 assign a_sign = A[31];

 assign a_exponent[7:0] = A[30:23];

 assign a_mantissa[23:0] = {1'b1, A[22:0]};

 assign b_sign = B[31];

 186

 assign b_exponent[7:0] = B[30:23];

 assign b_mantissa[23:0] = {1'b1, B[22:0]};

 assign ADD = !opcode[1] & !opcode[0];

 assign SUB = !opcode[1] & opcode[0];

 assign DIV = opcode[1] & !opcode[0];

 assign MUL = opcode[1] & opcode[0];

 adder A1

 (

 .a(adder_a_in),

 .b(adder_b_in),

 .out(adder_out)

);

 multiplier M1

 (

 .a(multiplier_a_in),

 .b(multiplier_b_in),

 .out(multiplier_out)

);

 divider D1

 (

 .a(divider_a_in),

 .b(divider_b_in),

 .out(divider_out)

);

 always @ (posedge clk) begin

 if (ADD) begin

 //If a is NaN or b is zero return a

 if ((a_exponent == 255 && a_mantissa != 0) || (b_exponent == 0) &&
(b_mantissa == 0)) begin

 o_sign = a_sign;

 o_exponent = a_exponent;

 o_mantissa = a_mantissa;

 //If b is NaN or a is zero return b

 end else if ((b_exponent == 255 && b_mantissa != 0) || (a_exponent == 0)
&& (a_mantissa == 0)) begin

 o_sign = b_sign;

 o_exponent = b_exponent;

 o_mantissa = b_mantissa;

 //if a or b is inf return inf

 end else if ((a_exponent == 255) || (b_exponent == 255)) begin

 o_sign = a_sign ^ b_sign;

 o_exponent = 255;

 187

 o_mantissa = 0;

 end else begin // Passed all corner cases

 adder_a_in = A;

 adder_b_in = B;

 o_sign = adder_out[31];

 o_exponent = adder_out[30:23];

 o_mantissa = adder_out[22:0];

 end

 end else if (SUB) begin

 //If a is NaN or b is zero return a

 if ((a_exponent == 255 && a_mantissa != 0) || (b_exponent == 0) &&
(b_mantissa == 0)) begin

 o_sign = a_sign;

 o_exponent = a_exponent;

 o_mantissa = a_mantissa;

 //If b is NaN or a is zero return b

 end else if ((b_exponent == 255 && b_mantissa != 0) || (a_exponent == 0)
&& (a_mantissa == 0)) begin

 o_sign = b_sign;

 o_exponent = b_exponent;

 o_mantissa = b_mantissa;

 //if a or b is inf return inf

 end else if ((a_exponent == 255) || (b_exponent == 255)) begin

 o_sign = a_sign ^ b_sign;

 o_exponent = 255;

 o_mantissa = 0;

 end else begin // Passed all corner cases

 adder_a_in = A;

 adder_b_in = {~B[31], B[30:0]};

 o_sign = adder_out[31];

 o_exponent = adder_out[30:23];

 o_mantissa = adder_out[22:0];

 end

 end else if (DIV) begin

 divider_a_in = A;

 divider_b_in = B;

 o_sign = divider_out[31];

 o_exponent = divider_out[30:23];

 o_mantissa = divider_out[22:0];

 end else begin //Multiplication

 //If a is NaN return NaN

 if (a_exponent == 255 && a_mantissa != 0) begin

 o_sign = a_sign;

 o_exponent = 255;

 o_mantissa = a_mantissa;

 //If b is NaN return NaN

 end else if (b_exponent == 255 && b_mantissa != 0) begin

 188

 o_sign = b_sign;

 o_exponent = 255;

 o_mantissa = b_mantissa;

 //If a or b is 0 return 0

 end else if ((a_exponent == 0) && (a_mantissa == 0) || (b_exponent == 0)
&& (b_mantissa == 0)) begin

 o_sign = a_sign ^ b_sign;

 o_exponent = 0;

 o_mantissa = 0;

 //if a or b is inf return inf

 end else if ((a_exponent == 255) || (b_exponent == 255)) begin

 o_sign = a_sign;

 o_exponent = 255;

 o_mantissa = 0;

 end else begin // Passed all corner cases

 multiplier_a_in = A;

 multiplier_b_in = B;

 o_sign = multiplier_out[31];

 o_exponent = multiplier_out[30:23];

 o_mantissa = multiplier_out[22:0];

 end

 end

 end

endmodule

module adder(a, b, out);

 input [31:0] a, b;

 output [31:0] out;

 wire [31:0] out;

 reg a_sign;

 reg [7:0] a_exponent;

 reg [23:0] a_mantissa;

 reg b_sign;

 reg [7:0] b_exponent;

 reg [23:0] b_mantissa;

 reg o_sign;

 reg [7:0] o_exponent;

 reg [24:0] o_mantissa;

 reg [7:0] diff;

 reg [23:0] tmp_mantissa;

 reg [7:0] tmp_exponent;

 reg [7:0] i_e;

 189

 reg [24:0] i_m;

 wire [7:0] o_e;

 wire [24:0] o_m;

 addition_normaliser norm1

 (

 .in_e(i_e),

 .in_m(i_m),

 .out_e(o_e),

 .out_m(o_m)

);

 assign out[31] = o_sign;

 assign out[30:23] = o_exponent;

 assign out[22:0] = o_mantissa[22:0];

 always @ (*) begin

 a_sign = a[31];

 if(a[30:23] == 0) begin

 a_exponent = 8'b00000001;

 a_mantissa = {1'b0, a[22:0]};

 end else begin

 a_exponent = a[30:23];

 a_mantissa = {1'b1, a[22:0]};

 end

 b_sign = b[31];

 if(b[30:23] == 0) begin

 b_exponent = 8'b00000001;

 b_mantissa = {1'b0, b[22:0]};

 end else begin

 b_exponent = b[30:23];

 b_mantissa = {1'b1, b[22:0]};

 end

 if (a_exponent == b_exponent) begin // Equal exponents

 o_exponent = a_exponent;

 if (a_sign == b_sign) begin // Equal signs = add

 o_mantissa = a_mantissa + b_mantissa;

 //Signify to shift

 o_mantissa[24] = 1;

 o_sign = a_sign;

 end else begin // Opposite signs = subtract

 if(a_mantissa > b_mantissa) begin

 o_mantissa = a_mantissa - b_mantissa;

 o_sign = a_sign;

 end else begin

 o_mantissa = b_mantissa - a_mantissa;

 190

 o_sign = b_sign;

 end

 end

 end else begin //Unequal exponents

 if (a_exponent > b_exponent) begin // A is bigger

 o_exponent = a_exponent;

 o_sign = a_sign;

 diff = a_exponent - b_exponent;

 tmp_mantissa = b_mantissa >> diff;

 if (a_sign == b_sign)

 o_mantissa = a_mantissa + tmp_mantissa;

 else

 o_mantissa = a_mantissa - tmp_mantissa;

 end else if (a_exponent < b_exponent) begin // B is bigger

 o_exponent = b_exponent;

 o_sign = b_sign;

 diff = b_exponent - a_exponent;

 tmp_mantissa = a_mantissa >> diff;

 if (a_sign == b_sign) begin

 o_mantissa = b_mantissa + tmp_mantissa;

 end else begin

 o_mantissa = b_mantissa - tmp_mantissa;

 end

 end

 end

 if(o_mantissa[24] == 1) begin

 o_exponent = o_exponent + 1;

 o_mantissa = o_mantissa >> 1;

 end else if((o_mantissa[23] != 1) && (o_exponent != 0)) begin

 i_e = o_exponent;

 i_m = o_mantissa;

 o_exponent = o_e;

 o_mantissa = o_m;

 end

 end

endmodule

module multiplier(a, b, out);

 input [31:0] a, b;

 output [31:0] out;

 wire [31:0] out;

 reg a_sign;

 reg [7:0] a_exponent;

 reg [23:0] a_mantissa;

 reg b_sign;

 191

 reg [7:0] b_exponent;

 reg [23:0] b_mantissa;

 reg o_sign;

 reg [7:0] o_exponent;

 reg [24:0] o_mantissa;

 reg [47:0] product;

 assign out[31] = o_sign;

 assign out[30:23] = o_exponent;

 assign out[22:0] = o_mantissa[22:0];

 reg [7:0] i_e;

 reg [47:0] i_m;

 wire [7:0] o_e;

 wire [47:0] o_m;

 multiplication_normaliser norm1

 (

 .in_e(i_e),

 .in_m(i_m),

 .out_e(o_e),

 .out_m(o_m)

);

 always @ (*) begin

 a_sign = a[31];

 if(a[30:23] == 0) begin

 a_exponent = 8'b00000001;

 a_mantissa = {1'b0, a[22:0]};

 end else begin

 a_exponent = a[30:23];

 a_mantissa = {1'b1, a[22:0]};

 end

 b_sign = b[31];

 if(b[30:23] == 0) begin

 b_exponent = 8'b00000001;

 b_mantissa = {1'b0, b[22:0]};

 end else begin

 b_exponent = b[30:23];

 b_mantissa = {1'b1, b[22:0]};

 end

 o_sign = a_sign ^ b_sign;

 o_exponent = a_exponent + b_exponent - 127;

 192

 product = a_mantissa * b_mantissa;

 // Normalization

 if(product[47] == 1) begin

 o_exponent = o_exponent + 1;

 product = product >> 1;

 end else if((product[46] != 1) && (o_exponent != 0)) begin

 i_e = o_exponent;

 i_m = product;

 o_exponent = o_e;

 product = o_m;

 end

 o_mantissa = product[46:23];

 end

endmodule

module addition_normaliser(in_e, in_m, out_e, out_m);

 input [7:0] in_e;

 input [24:0] in_m;

 output [7:0] out_e;

 output [24:0] out_m;

 wire [7:0] in_e;

 wire [24:0] in_m;

 reg [7:0] out_e;

 reg [24:0] out_m;

 always @ (*) begin

 if (in_m[23:3] == 21'b000000000000000000001) begin

 out_e = in_e - 20;

 out_m = in_m << 20;

 end else if (in_m[23:4] == 20'b00000000000000000001) begin

 out_e = in_e - 19;

 out_m = in_m << 19;

 end else if (in_m[23:5] == 19'b0000000000000000001) begin

 out_e = in_e - 18;

 out_m = in_m << 18;

 end else if (in_m[23:6] == 18'b000000000000000001) begin

 out_e = in_e - 17;

 out_m = in_m << 17;

 end else if (in_m[23:7] == 17'b00000000000000001) begin

 out_e = in_e - 16;

 out_m = in_m << 16;

 end else if (in_m[23:8] == 16'b0000000000000001) begin

 out_e = in_e - 15;

 out_m = in_m << 15;

 end else if (in_m[23:9] == 15'b000000000000001) begin

 193

 out_e = in_e - 14;

 out_m = in_m << 14;

 end else if (in_m[23:10] == 14'b00000000000001) begin

 out_e = in_e - 13;

 out_m = in_m << 13;

 end else if (in_m[23:11] == 13'b0000000000001) begin

 out_e = in_e - 12;

 out_m = in_m << 12;

 end else if (in_m[23:12] == 12'b000000000001) begin

 out_e = in_e - 11;

 out_m = in_m << 11;

 end else if (in_m[23:13] == 11'b00000000001) begin

 out_e = in_e - 10;

 out_m = in_m << 10;

 end else if (in_m[23:14] == 10'b0000000001) begin

 out_e = in_e - 9;

 out_m = in_m << 9;

 end else if (in_m[23:15] == 9'b000000001) begin

 out_e = in_e - 8;

 out_m = in_m << 8;

 end else if (in_m[23:16] == 8'b00000001) begin

 out_e = in_e - 7;

 out_m = in_m << 7;

 end else if (in_m[23:17] == 7'b0000001) begin

 out_e = in_e - 6;

 out_m = in_m << 6;

 end else if (in_m[23:18] == 6'b000001) begin

 out_e = in_e - 5;

 out_m = in_m << 5;

 end else if (in_m[23:19] == 5'b00001) begin

 out_e = in_e - 4;

 out_m = in_m << 4;

 end else if (in_m[23:20] == 4'b0001) begin

 out_e = in_e - 3;

 out_m = in_m << 3;

 end else if (in_m[23:21] == 3'b001) begin

 out_e = in_e - 2;

 out_m = in_m << 2;

 end else if (in_m[23:22] == 2'b01) begin

 out_e = in_e - 1;

 out_m = in_m << 1;

 end

 end

endmodule

module multiplication_normaliser(in_e, in_m, out_e, out_m);

 194

 input [7:0] in_e;

 input [47:0] in_m;

 output [7:0] out_e;

 output [47:0] out_m;

 wire [7:0] in_e;

 wire [47:0] in_m;

 reg [7:0] out_e;

 reg [47:0] out_m;

 always @ (*) begin

 if (in_m[46:41] == 6'b000001) begin

 out_e = in_e - 5;

 out_m = in_m << 5;

 end else if (in_m[46:42] == 5'b00001) begin

 out_e = in_e - 4;

 out_m = in_m << 4;

 end else if (in_m[46:43] == 4'b0001) begin

 out_e = in_e - 3;

 out_m = in_m << 3;

 end else if (in_m[46:44] == 3'b001) begin

 out_e = in_e - 2;

 out_m = in_m << 2;

 end else if (in_m[46:45] == 2'b01) begin

 out_e = in_e - 1;

 out_m = in_m << 1;

 end

 end

 endmodule

module divider (a, b, out);

 input [31:0] a, b;

 output [31:0] out;

 wire [31:0] out;

 reg a_sign;

 reg [7:0] a_exponent;

 reg [23:0] a_mantissa;

 reg b_sign;

 reg [7:0] b_exponent;

 reg [23:0] b_mantissa;

 reg o_sign;

 reg [7:0] o_exponent;

 reg [24:0] o_mantissa;

 195

 always @(*)

 begin

 if (a_exponent >> b_exponent)

 o_exponent = (a_exponent - b_exponent);

 else

 o_exponent = (b_exponent - a_exponent);

 o_sign = a_sign ^ b_sign;

 end

 restore_conv DIV(a_mantissa, b_mantissa, o_mantissa);

endmodule

module restore_conv(A,B,Res);

 //the size of input and output ports of the division module is generic.

 parameter WIDTH = 24;

 //input and output ports.

 input [WIDTH-1:0] A;

 input [WIDTH-1:0] B;

 output [WIDTH-1:0] Res;

 //internal variables

 reg [WIDTH-1:0] Res = 0;

 reg [WIDTH-1:0] a1,b1;

 reg [WIDTH:0] p1;

 integer i;

 always@ (A or B)

 begin

 //initialize the variables.

 a1 = A;

 b1 = B;

 p1= 0;

 for(i=0;i < WIDTH;i=i+1) begin //start the for loop

 p1 = {p1[WIDTH-2:0],a1[WIDTH-1]};

 a1[WIDTH-1:1] = a1[WIDTH-2:0];

 p1 = p1-b1;

 if(p1[WIDTH-1] == 1) begin

 a1[0] = 0;

 p1 = p1 + b1; end

 else

 a1[0] = 1;

 end

 Res = a1;

 end

endmodule

//

 196

B.3. Verilog Code for IEEE 754 Padé Approximation neuron

module Pade_Sigmoid(y,x);

output [31:0]y; ///IEEE 754 NOTATION

input [31:0]x;

// parametrizing the values

parameter a = 32'h41a00000; // Stores 20

parameter b = 32'h43340000 ; // stores 180

parameter c= 32'h44520000 ; //stores 840

parameter d= 32'h44d20000 ; //stores 1680

parameter e= 32'hbddb22d1 ; // stores -0.107

parameter f= 32'h3c3b98c8 ; // stores 0.01145

parameter one = 32'h3f800000 ; // stores one

parameter const =32'h399c09e1; // stores 2.9762*10^-4

wire [31:0]xfour,xcube,xsquare;

wire [31:0]i,j,k,l,m,n,o,p,q,r,s,t;

multiplier m19(x, x, xsquare); // x square contains x^2

multiplier m20(xsquare,x,xcube); // xcube contains x^3

multiplier m21(xcube,x,xfour); // xfour contains x^4

multiplier m22(a,xcube,i) ; // i contains (20*x^3)

multiplier m23(b,xsquare,j); // j contains (180*x^2)

multiplier m24(c,x,k); // k contains (840*x)

multiplier m25(f,xfour,l); // l contains 0.01145*x^4

multiplier m26(e,xsquare,m); // m contains -0.107x^2

// declaring Oprations

adder a111(xfour,i,n); // n contains x^4+20x^3

adder a112(j,k,o); // o contains 180x^2+840x

adder a113(o,d,p); // p contains 180x^2+840x+1680

adder a114(p,n,q); // q contains x^4+20x^3+180x^2+840x+1680

// 1st term over

// moving on 2nd term

adder a115(one,e,r); // r contains 1-0.107x^2

adder a116(r,l,s); // s contains 1-.107x^2+0.01145x^4 // 2nd term over

// all terms over

multiplier PRE(const,s,t); // t contains (1-.107x^2+0.01145x^4)*2.9762*10^-4

multiplier final(q,t,y);

//Final result is y

endmodule

module SISO_neuronPade(i,o);

output [31:0]o;

input [31:0]i;

// instantiating

 197

Pade_Sigmoid N1(o,i);

endmodule

module MISO_neuronPade(i1,i2,i3,i4,w1,w2,w3,w4,o);

input [31:0]i1,i2,i3,i4,w1,w2,w3,w4;

output [31:0]o;

wire [31:0]A1,A2,in,m1,m2,m3,m4;

multiplier mul1(i1,w1,m1);

multiplier mul2(i2,w2,m2);

multiplier mul3(i3,w3,m3);

multiplier mul4(i4,w4,m4);

adder N11(m1,m2,A1);

adder N22(m3,m4,A2);

adder N33(A1,A2,in);

SISO_neuronPade N111(in,o);

endmodule

//// Full network// ///TOP MODULE BECOMES Full_neuronNEW_PADE//

module
Full_neuronNEW_PADE(inp1,inp2,inp3,inp4,cloock,reset,layer1,layer2,layer3,layer4,layer5,

outL1N1,outL1N2,outL1N3,outL1N4,outL2N1,outL2N2,outL2N3,outL2N4,outL3N1,outL3N2,outL3N3,outL3N
4,

outL4N1,outL4N2,outL4N3,outL4N4,outL5N1,outL5N2,outL5N3);

wire [31:0]Final1,Final2,Final3;

input [31:0]inp1,inp2,inp3,inp4;

wire [31:0]OL1,OL2,OL3,OL4;

wire [31:0]OLL1,OLL2,OLL3,OLL4;

wire [31:0]OLLL1,OLLL2,OLLL3,OLLL4;

wire [31:0]OLLLL1,OLLLL2,OLLLL3,OLLLL4;

reg [2:0]cst,nst; // defining the current state and next state

input layer1,layer2,layer3,layer4,layer5; // trigerring conditions for each layer

parameter S0=3'b000;

parameter S1=3'b001; //// parameter for defining the states binary encoding

parameter S2=3'b010;

parameter S3=3'b011;

parameter S4=3'b100;

input cloock,reset;

output reg [31:0]outL1N1,outL1N2,outL1N3,outL1N4; // OUTPUT of LAYER1NEURON 1 TO 4;

output reg [31:0]outL2N1,outL2N2,outL2N3,outL2N4; // OUTPUT OF LAYER2 NEURON 1 TO 4

output reg [31:0]outL3N1,outL3N2,outL3N3,outL3N4; // OUTPUT OF LAYER 3 NEURON 1 TO 4

output reg [31:0]outL4N1,outL4N2,outL4N3,outL4N4; // output of layer 4 neuron 1 to 4

output reg [31:0]outL5N1,outL5N2,outL5N3; // output of layer 5 neuron 1 to 3;

////// these are variables

/// DEFINING INPUT LAYERS

SISO_neuronPade S111(inp1,OL1);

SISO_neuronPade S222(inp2,OL2);

 198

SISO_neuronPade S333(inp3,OL3);

SISO_neuronPade S444(inp4,OL4);

// DEFINING FIRST HIDDEN LAYERS

MISO_neuronPade M1(OL1,OL2,OL3,OL4,OLL1);

MISO_neuronPade M2(OL1,OL2,OL3,OL4,OLL2);

MISO_neuronPade M3(OL1,OL2,OL3,OL4,OLL3);

MISO_neuronPade M4(OL1,OL2,OL3,OL4,OLL4);

/// DEFINING SECOND HIDDEN LAYERS

MISO_neuronPade M5(OLL1,OLL2,OLL3,OLL4,OLLL1);

MISO_neuronPade M6(OLL1,OLL2,OLL3,OLL4,OLLL2);

MISO_neuronPade M7(OLL1,OLL2,OLL3,OLL4,OLLL3);

MISO_neuronPade M8(OLL1,OLL2,OLL3,OLL4,OLLL4);

///DEFINING THIRD LAYER

MISO_neuronPade M9(OLLL1,OLLL2,OLLL3,OLLL4,OLLLL1);

MISO_neuronPade M10(OLLL1,OLLL2,OLLL3,OLLL4,OLLLL2);

MISO_neuronPade M11(OLLL1,OLLL2,OLLL3,OLLL4,OLLLL3);

MISO_neuronPade M12(OLLL1,OLLL2,OLLL3,OLLL4,OLLLL4);

//DEFINING THE OUTPUT LAYER

MISO_neuronPade M13(OLLLL1,OLLLL2,OLLLL3,OLLLL4,Final1);

MISO_neuronPade M14(OLLLL1,OLLLL2,OLLLL3,OLLLL4,Final2);

MISO_neuronPade M15(OLLLL1,OLLLL2,OLLLL3,OLLLL4,Final3);

// The whole neuron structure is controlled by aN FSM

always @(*)

begin

case(cst)

S0:if(layer1==1'b1)

begin

nst=S1;

outL1N1=OL1; // outputs of layer 1 neuron 1 to 4 are displayed in first state S0

outL1N2=OL2;

outL1N3=OL3;

outL1N4=OL4;

end

else

begin

nst=cst;

end

S1:if(layer2==1'b1)

begin

nst=S2;

outL2N1=OLL1;

outL2N2=OLL2;

outL2N3=OLL3;

outL2N4=OLL4;

end

else

 199

begin

nst=cst;

end

S2:if(layer3==1'b1)

begin

outL3N1=OLLL1;

outL3N2=OLLL2;

outL3N3=OLLL3;

outL3N4=OLLL4;

nst=S3;

end

else

begin

nst=cst;

end

S3:if(layer4==1'b1)

begin

outL4N1=OLLLL1;

outL4N2=OLLLL2;

outL4N3=OLLLL3;

outL4N4=OLLLL4;

nst=S4;

end

else

begin

nst=cst;

end

S4:if(layer5==1'b1)

begin

outL5N1=Final1;

outL5N2=Final2;

outL5N3=Final3;

nst=S0;

end

else

begin

nst=cst;

end

default: nst = S0;

endcase

end

always@(posedge cloock)

 begin

 if (reset)

 cst <= S0;

 200

 else

 cst <= nst;

 end

endmodule

/////

module fpuNEW(clk, A, B, opcode, O);

 input clk;

 input [31:0] A, B;

 input [1:0] opcode;

 output [31:0] O;

 wire [31:0] O;

 wire [7:0] a_exponent;

 wire [23:0] a_mantissa;

 wire [7:0] b_exponent;

 wire [23:0] b_mantissa;

 reg o_sign;

 reg [7:0] o_exponent;

 reg [24:0] o_mantissa;

 reg [31:0] adder_a_in;

 reg [31:0] adder_b_in;

 wire [31:0] adder_out;

 reg [31:0] multiplier_a_in;

 reg [31:0] multiplier_b_in;

 wire [31:0] multiplier_out;

 reg [31:0] divider_a_in;

 reg [31:0] divider_b_in;

 wire [31:0] divider_out;

 assign O[31] = o_sign;

 assign O[30:23] = o_exponent;

 assign O[22:0] = o_mantissa[22:0];

 assign a_sign = A[31];

 assign a_exponent[7:0] = A[30:23];

 assign a_mantissa[23:0] = {1'b1, A[22:0]};

 assign b_sign = B[31];

 assign b_exponent[7:0] = B[30:23];

 assign b_mantissa[23:0] = {1'b1, B[22:0]};

 201

 assign ADD = !opcode[1] & !opcode[0];

 assign SUB = !opcode[1] & opcode[0];

 assign DIV = opcode[1] & !opcode[0];

 assign MUL = opcode[1] & opcode[0];

 adder A1

 (

 .a(adder_a_in),

 .b(adder_b_in),

 .out(adder_out)

);

 multiplier M1

 (

 .a(multiplier_a_in),

 .b(multiplier_b_in),

 .out(multiplier_out)

);

 divider D1

 (

 .a(divider_a_in),

 .b(divider_b_in),

 .out(divider_out)

);

 always @ (posedge clk) begin

 if (ADD) begin

 //If a is NaN or b is zero return a

 if ((a_exponent == 255 && a_mantissa != 0) || (b_exponent == 0) &&
(b_mantissa == 0)) begin

 o_sign = a_sign;

 o_exponent = a_exponent;

 o_mantissa = a_mantissa;

 //If b is NaN or a is zero return b

 end else if ((b_exponent == 255 && b_mantissa != 0) || (a_exponent == 0)
&& (a_mantissa == 0)) begin

 o_sign = b_sign;

 o_exponent = b_exponent;

 o_mantissa = b_mantissa;

 //if a or b is inf return inf

 end else if ((a_exponent == 255) || (b_exponent == 255)) begin

 o_sign = a_sign ^ b_sign;

 o_exponent = 255;

 o_mantissa = 0;

 end else begin // Passed all corner cases

 202

 adder_a_in = A;

 adder_b_in = B;

 o_sign = adder_out[31];

 o_exponent = adder_out[30:23];

 o_mantissa = adder_out[22:0];

 end

 end else if (SUB) begin

 //If a is NaN or b is zero return a

 if ((a_exponent == 255 && a_mantissa != 0) || (b_exponent == 0) &&
(b_mantissa == 0)) begin

 o_sign = a_sign;

 o_exponent = a_exponent;

 o_mantissa = a_mantissa;

 //If b is NaN or a is zero return b

 end else if ((b_exponent == 255 && b_mantissa != 0) || (a_exponent == 0)
&& (a_mantissa == 0)) begin

 o_sign = b_sign;

 o_exponent = b_exponent;

 o_mantissa = b_mantissa;

 //if a or b is inf return inf

 end else if ((a_exponent == 255) || (b_exponent == 255)) begin

 o_sign = a_sign ^ b_sign;

 o_exponent = 255;

 o_mantissa = 0;

 end else begin // Passed all corner cases

 adder_a_in = A;

 adder_b_in = {~B[31], B[30:0]};

 o_sign = adder_out[31];

 o_exponent = adder_out[30:23];

 o_mantissa = adder_out[22:0];

 end

 end else if (DIV) begin

 divider_a_in = A;

 divider_b_in = B;

 o_sign = divider_out[31];

 o_exponent = divider_out[30:23];

 o_mantissa = divider_out[22:0];

 end else begin //Multiplication

 //If a is NaN return NaN

 if (a_exponent == 255 && a_mantissa != 0) begin

 o_sign = a_sign;

 o_exponent = 255;

 o_mantissa = a_mantissa;

 //If b is NaN return NaN

 end else if (b_exponent == 255 && b_mantissa != 0) begin

 o_sign = b_sign;

 o_exponent = 255;

 203

 o_mantissa = b_mantissa;

 //If a or b is 0 return 0

 end else if ((a_exponent == 0) && (a_mantissa == 0) || (b_exponent == 0)
&& (b_mantissa == 0)) begin

 o_sign = a_sign ^ b_sign;

 o_exponent = 0;

 o_mantissa = 0;

 //if a or b is inf return inf

 end else if ((a_exponent == 255) || (b_exponent == 255)) begin

 o_sign = a_sign;

 o_exponent = 255;

 o_mantissa = 0;

 end else begin // Passed all corner cases

 multiplier_a_in = A;

 multiplier_b_in = B;

 o_sign = multiplier_out[31];

 o_exponent = multiplier_out[30:23];

 o_mantissa = multiplier_out[22:0];

 end

 end

 end

endmodule

module adder(a, b, out);

 input [31:0] a, b;

 output [31:0] out;

 wire [31:0] out;

 reg a_sign;

 reg [7:0] a_exponent;

 reg [23:0] a_mantissa;

 reg b_sign;

 reg [7:0] b_exponent;

 reg [23:0] b_mantissa;

 reg o_sign;

 reg [7:0] o_exponent;

 reg [24:0] o_mantissa;

 reg [7:0] diff;

 reg [23:0] tmp_mantissa;

 reg [7:0] tmp_exponent;

 reg [7:0] i_e;

 reg [24:0] i_m;

 204

 wire [7:0] o_e;

 wire [24:0] o_m;

 addition_normaliser norm1

 (

 .in_e(i_e),

 .in_m(i_m),

 .out_e(o_e),

 .out_m(o_m)

);

 assign out[31] = o_sign;

 assign out[30:23] = o_exponent;

 assign out[22:0] = o_mantissa[22:0];

 always @ (*) begin

 a_sign = a[31];

 if(a[30:23] == 0) begin

 a_exponent = 8'b00000001;

 a_mantissa = {1'b0, a[22:0]};

 end else begin

 a_exponent = a[30:23];

 a_mantissa = {1'b1, a[22:0]};

 end

 b_sign = b[31];

 if(b[30:23] == 0) begin

 b_exponent = 8'b00000001;

 b_mantissa = {1'b0, b[22:0]};

 end else begin

 b_exponent = b[30:23];

 b_mantissa = {1'b1, b[22:0]};

 end

 if (a_exponent == b_exponent) begin // Equal exponents

 o_exponent = a_exponent;

 if (a_sign == b_sign) begin // Equal signs = add

 o_mantissa = a_mantissa + b_mantissa;

 //Signify to shift

 o_mantissa[24] = 1;

 o_sign = a_sign;

 end else begin // Opposite signs = subtract

 if(a_mantissa > b_mantissa) begin

 o_mantissa = a_mantissa - b_mantissa;

 o_sign = a_sign;

 end else begin

 o_mantissa = b_mantissa - a_mantissa;

 o_sign = b_sign;

 205

 end

 end

 end else begin //Unequal exponents

 if (a_exponent > b_exponent) begin // A is bigger

 o_exponent = a_exponent;

 o_sign = a_sign;

 diff = a_exponent - b_exponent;

 tmp_mantissa = b_mantissa >> diff;

 if (a_sign == b_sign)

 o_mantissa = a_mantissa + tmp_mantissa;

 else

 o_mantissa = a_mantissa - tmp_mantissa;

 end else if (a_exponent < b_exponent) begin // B is bigger

 o_exponent = b_exponent;

 o_sign = b_sign;

 diff = b_exponent - a_exponent;

 tmp_mantissa = a_mantissa >> diff;

 if (a_sign == b_sign) begin

 o_mantissa = b_mantissa + tmp_mantissa;

 end else begin

 o_mantissa = b_mantissa - tmp_mantissa;

 end

 end

 end

 if(o_mantissa[24] == 1) begin

 o_exponent = o_exponent + 1;

 o_mantissa = o_mantissa >> 1;

 end else if((o_mantissa[23] != 1) && (o_exponent != 0)) begin

 i_e = o_exponent;

 i_m = o_mantissa;

 o_exponent = o_e;

 o_mantissa = o_m;

 end

 end

endmodule

module multiplier(a, b, out);

 input [31:0] a, b;

 output [31:0] out;

 wire [31:0] out;

 reg a_sign;

 reg [7:0] a_exponent;

 reg [23:0] a_mantissa;

 reg b_sign;

 reg [7:0] b_exponent;

 206

 reg [23:0] b_mantissa;

 reg o_sign;

 reg [7:0] o_exponent;

 reg [24:0] o_mantissa;

 reg [47:0] product;

 assign out[31] = o_sign;

 assign out[30:23] = o_exponent;

 assign out[22:0] = o_mantissa[22:0];

 reg [7:0] i_e;

 reg [47:0] i_m;

 wire [7:0] o_e;

 wire [47:0] o_m;

 multiplication_normaliser norm1

 (

 .in_e(i_e),

 .in_m(i_m),

 .out_e(o_e),

 .out_m(o_m)

);

 always @ (*) begin

 a_sign = a[31];

 if(a[30:23] == 0) begin

 a_exponent = 8'b00000001;

 a_mantissa = {1'b0, a[22:0]};

 end else begin

 a_exponent = a[30:23];

 a_mantissa = {1'b1, a[22:0]};

 end

 b_sign = b[31];

 if(b[30:23] == 0) begin

 b_exponent = 8'b00000001;

 b_mantissa = {1'b0, b[22:0]};

 end else begin

 b_exponent = b[30:23];

 b_mantissa = {1'b1, b[22:0]};

 end

 o_sign = a_sign ^ b_sign;

 o_exponent = a_exponent + b_exponent - 127;

 product = a_mantissa * b_mantissa;

 207

 // Normalization

 if(product[47] == 1) begin

 o_exponent = o_exponent + 1;

 product = product >> 1;

 end else if((product[46] != 1) && (o_exponent != 0)) begin

 i_e = o_exponent;

 i_m = product;

 o_exponent = o_e;

 product = o_m;

 end

 o_mantissa = product[46:23];

 end

endmodule

module addition_normaliser(in_e, in_m, out_e, out_m);

 input [7:0] in_e;

 input [24:0] in_m;

 output [7:0] out_e;

 output [24:0] out_m;

 wire [7:0] in_e;

 wire [24:0] in_m;

 reg [7:0] out_e;

 reg [24:0] out_m;

 always @ (*) begin

 if (in_m[23:3] == 21'b000000000000000000001) begin

 out_e = in_e - 20;

 out_m = in_m << 20;

 end else if (in_m[23:4] == 20'b00000000000000000001) begin

 out_e = in_e - 19;

 out_m = in_m << 19;

 end else if (in_m[23:5] == 19'b0000000000000000001) begin

 out_e = in_e - 18;

 out_m = in_m << 18;

 end else if (in_m[23:6] == 18'b000000000000000001) begin

 out_e = in_e - 17;

 out_m = in_m << 17;

 end else if (in_m[23:7] == 17'b00000000000000001) begin

 out_e = in_e - 16;

 out_m = in_m << 16;

 end else if (in_m[23:8] == 16'b0000000000000001) begin

 out_e = in_e - 15;

 out_m = in_m << 15;

 end else if (in_m[23:9] == 15'b000000000000001) begin

 out_e = in_e - 14;

 208

 out_m = in_m << 14;

 end else if (in_m[23:10] == 14'b00000000000001) begin

 out_e = in_e - 13;

 out_m = in_m << 13;

 end else if (in_m[23:11] == 13'b0000000000001) begin

 out_e = in_e - 12;

 out_m = in_m << 12;

 end else if (in_m[23:12] == 12'b000000000001) begin

 out_e = in_e - 11;

 out_m = in_m << 11;

 end else if (in_m[23:13] == 11'b00000000001) begin

 out_e = in_e - 10;

 out_m = in_m << 10;

 end else if (in_m[23:14] == 10'b0000000001) begin

 out_e = in_e - 9;

 out_m = in_m << 9;

 end else if (in_m[23:15] == 9'b000000001) begin

 out_e = in_e - 8;

 out_m = in_m << 8;

 end else if (in_m[23:16] == 8'b00000001) begin

 out_e = in_e - 7;

 out_m = in_m << 7;

 end else if (in_m[23:17] == 7'b0000001) begin

 out_e = in_e - 6;

 out_m = in_m << 6;

 end else if (in_m[23:18] == 6'b000001) begin

 out_e = in_e - 5;

 out_m = in_m << 5;

 end else if (in_m[23:19] == 5'b00001) begin

 out_e = in_e - 4;

 out_m = in_m << 4;

 end else if (in_m[23:20] == 4'b0001) begin

 out_e = in_e - 3;

 out_m = in_m << 3;

 end else if (in_m[23:21] == 3'b001) begin

 out_e = in_e - 2;

 out_m = in_m << 2;

 end else if (in_m[23:22] == 2'b01) begin

 out_e = in_e - 1;

 out_m = in_m << 1;

 end

 end

endmodule

module multiplication_normaliser(in_e, in_m, out_e, out_m);

 input [7:0] in_e;

 input [47:0] in_m;

 209

 output [7:0] out_e;

 output [47:0] out_m;

 wire [7:0] in_e;

 wire [47:0] in_m;

 reg [7:0] out_e;

 reg [47:0] out_m;

 always @ (*) begin

 if (in_m[46:41] == 6'b000001) begin

 out_e = in_e - 5;

 out_m = in_m << 5;

 end else if (in_m[46:42] == 5'b00001) begin

 out_e = in_e - 4;

 out_m = in_m << 4;

 end else if (in_m[46:43] == 4'b0001) begin

 out_e = in_e - 3;

 out_m = in_m << 3;

 end else if (in_m[46:44] == 3'b001) begin

 out_e = in_e - 2;

 out_m = in_m << 2;

 end else if (in_m[46:45] == 2'b01) begin

 out_e = in_e - 1;

 out_m = in_m << 1;

 end

 end

endmodule

 210

C. Appendix C

C.1. Verilog Code for Augmentation ANN

`timescale 1ns / 1ps

//

///////////////////// Augmentation ANN ////////////////////////////////

//

module AugANN(p, O, DO, EC);

input [15:0] p, O;

output [15:0] DO, EC;

wire [15:0] pp, Op;

wire [15:0] in1, in2;

wire [15:0] l [1:32];

wire [15:0] m [1:32];

wire [15:0] n [1:32];

//wire [1:32] q [15:0];

FP2posit F2P_1(p, pp);

FP2posit F2P_2(O, Op);

sigmoid_1in I1(pp, in1);

sigmoid_1in I2(Op, in2);

neuronposit L1(in1, in2, l[1]);

neuronposit L2(in1, in2, l[2]);

 211

neuronposit L3(in1, in2, l[3]);

neuronposit L4(in1, in2, l[4]);

neuronposit L5(in1, in2, l[5]);

neuronposit L6(in1, in2, l[6]);

neuronposit L7(in1, in2, l[7]);

neuronposit L8(in1, in2, l[8]);

neuronposit L9(in1, in2, l[9]);

neuronposit L10(in1, in2, l[10]);

neuronposit L11(in1, in2, l[11]);

neuronposit L12(in1, in2, l[12]);

neuronposit L13(in1, in2, l[13]);

neuronposit L14(in1, in2, l[14]);

neuronposit L15(in1, in2, l[15]);

neuronposit L16(in1, in2, l[16]);

neuronposit L17(in1, in2, l[17]);

neuronposit L18(in1, in2, l[18]);

neuronposit L19(in1, in2, l[19]);

neuronposit L20(in1, in2, l[20]);

neuronposit L21(in1, in2, l[21]);

neuronposit L22(in1, in2, l[22]);

neuronposit L23(in1, in2, l[23]);

neuronposit L24(in1, in2, l[24]);

neuronposit L25(in1, in2, l[25]);

neuronposit L26(in1, in2, l[26]);

neuronposit L27(in1, in2, l[27]);

 212

neuronposit L28(in1, in2, l[28]);

neuronposit L29(in1, in2, l[29]);

neuronposit L30(in1, in2, l[30]);

neuronposit L31(in1, in2, l[31]);

neuronposit L32(in1, in2, l[32]);

genvar i;

//generate

// for (i = 1; i <= 32; i = i + 1) begin

// neuronposit L(in1, in2, l[i]);

// end

//endgenerate

generate

 for (i = 1; i <= 32 ; i = i + 1) begin

 neuron32in M(l[1], l[2], l[3], l[4], l[5], l[6], l[7], l[8], l[9], l[10], l[11],

l[12], l[13], l[14], l[15], l[16], l[17], l[18], l[19], l[20], l[21], l[22], l[23], l[24],

l[25], l[26], l[27], l[28], l[29], l[30], l[31], l[32], m[i]);

 end

endgenerate

generate

 for (i = 1; i <= 32 ; i = i + 1) begin

 neuron32in N(m[1], m[2], m[3], m[4], m[5], m[6], m[7], m[8], m[9], m[10], m[11],

m[12], m[13], m[14], m[15], m[16], m[17], m[18], m[19], m[20], m[21], m[22], m[23], m[24],

m[25], m[26], m[27], m[28], m[29], m[30], m[31], m[32], n[i]);

 end

endgenerate

 213

//generate

// for (i = 1; i <= 8 ; i = i + 1) begin

// neuron8in P(n[1], n[2], n[3], n[4], n[5], n[6], n[7], n[8], q[i]);

// end

//endgenerate

neuron32in D(n[1], n[2], n[3], n[4], n[5], n[6], n[7], n[8],n[9], n[10], n[11], n[12], n[13],

n[14], n[15], n[16],n[17], n[18], n[19], n[20], n[21], n[22], n[23], n[24],n[25], n[26], n[27],

n[28], n[29], n[30], n[31], n[32], DO);

neuron32in E(n[1], n[2], n[3], n[4], n[5], n[6], n[7], n[8],n[9], n[10], n[11], n[12], n[13],

n[14], n[15], n[16],n[17], n[18], n[19], n[20], n[21], n[22], n[23], n[24],n[25], n[26], n[27],

n[28], n[29], n[30], n[31], n[32], EC);

//genvar i;

//generate

// for (i = 1; i <= 8 ; i = i + 1) begin

// neuron_posit L[i](in1, in2, l[i]);

// end

//endgenerate

endmodule

//wire [15:0] I1L1, I1L2, I1L3, I1L4, I1L5, I1L6, I1L7, I1L8;

//wire [15:0] I2L1, I2L2, I2L3, I2L4, I2L5, I2L6, I2L7, I2L8;

//wire [15:0] L1M1, L1M2, L1M3, L1M4, L1M5, L1M6, L1M7, L1M8, L2M1, L2M2, L2M3, L2M4, L2M5,

L2M6, L2M7, L2M8;

//wire [15:0] L3M1, L3M2, L3M3, L3M4, L3M5, L3M6, L3M7, L3M8, L4M1, L4M2, L4M3, L4M4, L4M5,

L4M6, L4M7, L4M8;

//wire [15:0] L5M1, L5M2, L5M3, L5M4, L5M5, L5M6, L5M7, L5M8, L6M1, L6M2, L6M3, L6M4, L6M5,

L6M6, L6M7, L6M8;

//wire [15:0] L7M1, L7M2, L7M3, L7M4, L7M5, L7M6, L7M7, L7M8, L8M1, L8M2, L8M3, L8M4, L8M5,

L8M6, L8M7, L8M8;

 214

//wire [15:0] M1N1, M1N2, M1N3, M1N4, M1N5, M1N6, M1N7, M1N8, M2N1, M2N2, M2N3, M2N4, M2N5,

M2N6, M2N7, M2N8;

//wire [15:0] M3N1, M3N2, M3N3, M3N4, M3N5, M3N6, M3N7, M3N8, M4N1, M4N2, M4N3, M4N4, M4N5,

M4N6, M4N7, M4N8;

//wire [15:0] M5N1, M5N2, M5N3, M5N4, M5N5, M5N6, M5N7, M5N8, M6N1, M6N2, M6N3, M6N4, M6N5,

M6N6, M6N7, M6N8;

//wire [15:0] M7N1, M7N2, M7N3, M7N4, M7N5, M7N6, M7N7, M7N8, M8N1, M8N2, M8N3, M8N4, M8N5,

M8N6, M8N7, M8N8;

//wire [15:0] N1D, N2D, N3D, N4D, N5D, N6D, N7D, N8D;

//wire [15:0] N1EC, N2EC, N3EC, N4EC, N5EC, N6EC, N7EC, N8EC;

//

//////////////////IEEE 754 to Posit Conversion//////////////////////////////////////

//

module FP2posit(pos_in, pos_out);

function [15:0] log2;

input reg [15:0] value;

 begin

 value = value-1;

 for (log2=0; value>0; log2=log2+1)

 value = value>>1;

 end

endfunction

parameter N = 16;

parameter E = 5;

parameter es = 3; //ES_max = E-1

parameter M = N-E-1;

 215

parameter BIAS = (2**(E-1))-1;

parameter Bs = log2(N);

input [N-1:0] pos_in;

output [N-1:0] pos_out;

wire s_in = pos_in[N-1];

wire [E-1:0] exp_in = pos_in[N-2:N-1-E];

wire [M-1:0] mant_in = pos_in[M-1:0];

wire zero_in = ~|{exp_in,mant_in};

wire inf_in = &exp_in;

wire [M:0] mant = {|exp_in, mant_in};

wire [N-1:0] LOD_in = {mant,{E{1'b0}}};

wire[Bs-1:0] Lshift;

LOD_N #(.N(N)) uut (.in(LOD_in), .out(Lshift));

wire[N-1:0] mant_tmp;

DSR_left_N_S #(.N(N), .S(Bs)) ls (.a(LOD_in),.b(Lshift),.c(mant_tmp));

wire [E:0] exp = {exp_in[E-1:1], exp_in[0] | (~|exp_in)} - BIAS - Lshift;

//Exponent and Regime Computation

wire [E:0] exp_N = exp[E] ? -exp : exp;

wire [es-1:0] e_o = (exp[E] & |exp_N[es-1:0]) ? exp[es-1:0] : exp_N[es-1:0];

wire [E-es-1:0] r_o = (~exp[E] || (exp[E] & |exp_N[es-1:0])) ? {{Bs{1'b0}},exp_N[E-1:es]} +

1'b1 : {{Bs{1'b0}},exp_N[E-1:es]};

 216

//Exponent and Mantissa Packing

wire [2*N-1:0]tmp_o = { {N{~exp[E]}}, exp[E], e_o, mant_tmp[N-2:es]};

//Including Regime bits in Exponent-Mantissa Packing

wire [2*N-1:0] tmp1_o;

wire [Bs-1:0] diff_b;

generate

 if(E-es > Bs) assign diff_b = |r_o[E-es-1:Bs] ? {{(Bs-2){1'b1}},2'b01} : r_o[Bs-1:0];

 else assign diff_b = r_o;

endgenerate

DSR_right_N_S #(.N(2*N), .S(Bs)) dsr2 (.a(tmp_o), .b(diff_b), .c(tmp1_o));

//Final Output

wire [N-1:0] tmp1_oN = s_in ? -tmp1_o[N-1:0] : tmp1_o[N-1:0];

assign pos_out = inf_in|zero_in|(~mant_tmp[N-1]) ? {inf_in,{N-1{1'b0}}} : {s_in, tmp1_oN[N-

1:1]};

endmodule

//

////////////////////////// Neuron 32 input internal ////////////////////////

//

`timescale 1ns / 1ps

module neuron32in (in1, in2, in3, in4, in5, in6, in7, in8, in9, in10, in11, in12, in13, in14,

in15, in16, in17, in18, in19, in20, in21, in22, in23, in24, in25, in26, in27, in28, in29, in30,

in31, in32, n_out);

 input [15:0] in1, in2, in3, in4, in5, in6, in7, in8, in9, in10, in11, in12, in13, in14,

in15, in16, in17, in18, in19, in20, in21, in22, in23, in24, in25, in26, in27, in28, in29, in30,

in31, in32 ;

 217

 output [15:0] n_out;

 wire [15:0] IN [1:32];

 reg [15:0] Wt [1:32];

 wire [15:0] Mult [1:32];

 wire [15:0] a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16;

 wire [15:0] add1, add2, add3, add4, add5, add6, add7, add8;

 wire [15:0] add12, add34, add56, add78;

 wire [15:0] add_out1, add_out2, add_out;

 wire start, inf, zero, done;

 wire [15:0] inp1, inp2;

 wire [15:0] sig_out;

// FP2posit INP1(in1, inp1);

// FP2posit INP2(in2, inp2);

 //FP_to_posit INP3(in3, inp3);

 //FP_to_posit INP4(in4, inp4);

 ///multiplying input with weights

 assign IN[1] = in1;

 assign IN[2] = in2;

 assign IN[3] = in3;

 assign IN[4] = in4;

 assign IN[5] = in5;

 assign IN[6] = in6;

 218

 assign IN[7] = in7;

 assign IN[8] = in8;

 assign IN[9] = in9;

 assign IN[10] = in10;

 assign IN[11] = in11;

 assign IN[12] = in12;

 assign IN[13] = in13;

 assign IN[14] = in14;

 assign IN[15] = in15;

 assign IN[16] = in16;

 assign IN[17] = in17;

 assign IN[18] = in18;

 assign IN[19] = in19;

 assign IN[20] = in20;

 assign IN[21] = in21;

 assign IN[22] = in22;

 assign IN[23] = in23;

 assign IN[24] = in24;

 assign IN[25] = in25;

 assign IN[26] = in26;

 assign IN[27] = in27;

 assign IN[28] = in28;

 assign IN[29] = in29;

 assign IN[30] = in30;

 assign IN[31] = in31;

 219

 assign IN[32] = in32;

 genvar i;

 generate for (i = 1; i <= 32; i = i + 1) begin

 posit_mult M(IN[i], Wt[i], start, Mult[i], inf, zero, done);

 end

 endgenerate

// posit_mult M1(in1, w1, start, m1, inf, zero, done);

// posit_mult M2(in2, w2, start, m2, inf, zero, done);

// posit_mult M3(in3, w3, start, m3, inf, zero, done);

// posit_mult M4(in4, w4, start, m4, inf, zero, done);

// posit_mult M5(in5, w5, start, m5, inf, zero, done);

// posit_mult M6(in6, w6, start, m6, inf, zero, done);

// posit_mult M7(in7, w7, start, m7, inf, zero, done);

// posit_mult M8(in8, w8, start, m8, inf, zero, done);

 ///adding weighted inputs

 posit_adder A1(Mult[1], Mult[2], start, a1, inf, zero, done);

 posit_adder A2(Mult[3], Mult[4], start, a2, inf, zero, done);

 posit_adder A3(Mult[5], Mult[6], start, a3, inf, zero, done);

 posit_adder A4(Mult[7], Mult[8], start, a4, inf, zero, done);

 posit_adder A5(Mult[9], Mult[10], start, a5, inf, zero, done);

 posit_adder A6(Mult[11], Mult[12], start, a6, inf, zero, done);

 220

 posit_adder A7(Mult[13], Mult[14], start, a7, inf, zero, done);

 posit_adder A8(Mult[15], Mult[16], start, a8, inf, zero, done);

 posit_adder A9(Mult[17], Mult[18], start, a9, inf, zero, done);

 posit_adder A10(Mult[19], Mult[20], start, a10, inf, zero, done);

 posit_adder A11(Mult[21], Mult[22], start, a11, inf, zero, done);

 posit_adder A12(Mult[23], Mult[24], start, a12, inf, zero, done);

 posit_adder A13(Mult[25], Mult[26], start, a13, inf, zero, done);

 posit_adder A14(Mult[27], Mult[28], start, a14, inf, zero, done);

 posit_adder A15(Mult[29], Mult[30], start, a15, inf, zero, done);

 posit_adder A16(Mult[31], Mult[32], start, a16, inf, zero, done);

 ///

 posit_adder A17(a1, a2, start, add1, inf, zero, done);

 posit_adder A18(a3, a4, start, add2, inf, zero, done);

 posit_adder A19(a5, a6, start, add3, inf, zero, done);

 posit_adder A120(a7, a8, start, add4, inf, zero, done);

 posit_adder A21(a9, a10, start, add5, inf, zero, done);

 posit_adder A22(a11, a12, start, add6, inf, zero, done);

 posit_adder A23(a13, a14, start, add7, inf, zero, done);

 posit_adder A24(a15, a16, start, add8, inf, zero, done);

 //

 posit_adder A25(add1, add2, start, add12, inf, zero, done);

 posit_adder A26(add3, add4, start, add34, inf, zero, done);

 posit_adder A27(add5, add6, start, add56, inf, zero, done);

 posit_adder A28(add7, add8, start, add78, inf, zero, done);

 //

 221

 posit_adder A29(add12, add34, start, add_out1, inf, zero, done);

 posit_adder A30(add56, add78, start, add_out2, inf, zero, done);

 ///

 posit_adder Aout(add_out1, add_out2, start, add_out, inf, zero, done);

 assign sig_out[15] = ~add_out[15];

 assign sig_out[14:13] = 2'b00;

 assign sig_out[12:0] = add_out[14:2];

 Posit_to_FP P2F(sig_out, n_out);

endmodule

//

///////////////////////////////////Posit 1 Input Neuron///////////////////////////////////////

//

module sigmoid_1in(sig_in, sig_out);

input [15:0] sig_in;

output [15:0] sig_out;

 assign sig_out[15] = ~sig_in[15];

 assign sig_out[14:13] = 2'b00;

 assign sig_out[12:0] = sig_in[14:2];

endmodule

 222

//

///////////////////////////////////Posit 2 input Neuron///////////////////////////////////////

//

`timescale 1ns / 1ps

module neuronposit(in1, in2, n_out);

 input [15:0] in1, in2;

 output [15:0] n_out;

 wire [15:0] w1, w2;

 wire [15:0] m1, m2;

 wire [15:0] add_out;

 wire start, inf, zero, done;

 wire [15:0] inp1, inp2;

 wire [15:0] sig_out;

// FP2posit INP1(in1, inp1);

// FP2posit INP2(in2, inp2);

 //FP_to_posit INP3(in3, inp3);

 //FP_to_posit INP4(in4, inp4);

 ///multiplying input with weights

 posit_mult M1(in1, w1, start, m1, inf, zero, done);

 posit_mult M2(in2, w2, start, m2, inf, zero, done);

 //posit_mult M3(inp3, w3, start, m3, inf, zero, done);

 //posit_mult M4(inp4, w4, start, m4, inf, zero, done);

 223

 ///adding weighted inputs

 posit_adder A1(m1, m2, start, add_out, inf, zero, done);

 //posit_adder A2(m3, m4, start, a2, inf, zero, done);

 //posit_adder A3(a1, a2, start, add_out, inf, zero, done);

 assign sig_out[15] = ~add_out[15];

 assign sig_out[14:13] = 2'b00;

 assign sig_out[12:0] = add_out[14:2];

 assign n_out = sig_out;

 //Posit_to_FP P2F(sig_out, n_out);

endmodule

//

/////////////////////////////// Neuron 8 input internal ////////////////////////////

//

`timescale 1ns / 1ps

module neuron8in (in1, in2, in3, in4, in5, in6, in7, in8, n_out);

 input [15:0] in1, in2, in3, in4, in5, in6, in7, in8;

 output [15:0] n_out;

 wire [15:0] w1, w2, w3, w4, w5, w6, w7, w8;

 wire [15:0] m1, m2, m3, m4, m5, m6, m7, m8;

 wire [15:0] a1, a2, a3, a4, add1, add2, add_out;

 224

 wire start, inf, zero, done;

 wire [15:0] inp1, inp2;

 wire [15:0] sig_out;

// FP2posit INP1(in1, inp1);

// FP2posit INP2(in2, inp2);

 //FP_to_posit INP3(in3, inp3);

 //FP_to_posit INP4(in4, inp4);

 ///multiplying input with weights

 posit_mult M1(in1, w1, start, m1, inf, zero, done);

 posit_mult M2(in2, w2, start, m2, inf, zero, done);

 posit_mult M3(in3, w3, start, m3, inf, zero, done);

 posit_mult M4(in4, w4, start, m4, inf, zero, done);

 posit_mult M5(in5, w5, start, m5, inf, zero, done);

 posit_mult M6(in6, w6, start, m6, inf, zero, done);

 posit_mult M7(in7, w7, start, m7, inf, zero, done);

 posit_mult M8(in8, w8, start, m8, inf, zero, done);

 ///adding weighted inputs

 posit_adder A1(m1, m2, start, a1, inf, zero, done);

 posit_adder A2(m3, m4, start, a2, inf, zero, done);

 posit_adder A3(m5, m6, start, a3, inf, zero, done);

 posit_adder A4(m7, m7, start, a4, inf, zero, done);

 posit_adder A5(a1, a2, start, add1, inf, zero, done);

 posit_adder A6(a3, a4, start, add2, inf, zero, done);

 225

 posit_adder A7(add1, add2, start, add_out, inf, zero, done);

 assign sig_out[15] = ~add_out[15];

 assign sig_out[14:13] = 2'b00;

 assign sig_out[12:0] = add_out[14:2];

 assign n_out = sig_out;

 //Posit_to_FP P2F(sig_out, n_out)

endmodule

//

////////////////////Floating Point to Posit Conversion////////////////////////////////

//

//module FP_to_posit(in, out);

//function [15:0] log2;

//input reg [15:0] value;

// begin

// value = value-1;

// for (log2=0; value>0; log2=log2+1)

// value = value>>1;

// end

//endfunction

//parameter N = 16;

//parameter E = 5;

//parameter es = 3; //ES_max = E-1

 226

//parameter BIAS = (2**(E-1))-1;

//parameter Bs = log2(N);

//input [N-1:0] in;

//output [N-1:0] out;

//wire s_in = in[N-1];

//wire [E-1:0] exp_in = in[N-2:N-1-E];

//wire [M-1:0] mant_in = in[M-1:0];

//wire zero_in = ~|{exp_in,mant_in};

//wire inf_in = &exp_in;

//wire [M:0] mant = {|exp_in, mant_in};

//wire [N-1:0] LOD_in = {mant,{E{1'b0}}};

//wire[Bs-1:0] Lshift;

//LOD_N #(.N(N)) uut (.in(LOD_in), .out(Lshift));

//wire[N-1:0] mant_tmp;

//DSR_left_N_S #(.N(N), .S(Bs)) ls (.a(LOD_in),.b(Lshift),.c(mant_tmp));

//wire [E:0] exp = {exp_in[E-1:1], exp_in[0] | (~|exp_in)} - BIAS - Lshift;

////Exponent and Regime Computation

 227

//wire [E:0] exp_N = exp[E] ? -exp : exp;

//wire [es-1:0] e_o = (exp[E] & |exp_N[es-1:0]) ? exp[es-1:0] : exp_N[es-1:0];

//wire [E-es-1:0] r_o = (~exp[E] || (exp[E] & |exp_N[es-1:0])) ? {{Bs{1'b0}},exp_N[E-1:es]} +

1'b1 : {{Bs{1'b0}},exp_N[E-1:es]};

////Exponent and Mantissa Packing

//wire [2*N-1:0]tmp_o = { {N{~exp[E]}}, exp[E], e_o, mant_tmp[N-2:es]};

////Including Regime bits in Exponent-Mantissa Packing

//wire [2*N-1:0] tmp1_o;

//wire [Bs-1:0] diff_b;

//generate

// if(E-es > Bs) assign diff_b = |r_o[E-es-1:Bs] ? {{(Bs-2){1'b1}},2'b01} : r_o[Bs-1:0];

// else assign diff_b = r_o;

//endgenerate

//DSR_right_N_S #(.N(2*N), .S(Bs)) dsr2 (.a(tmp_o), .b(diff_b), .c(tmp1_o));

////Final Output

//wire [N-1:0] tmp1_oN = s_in ? -tmp1_o[N-1:0] : tmp1_o[N-1:0];

//assign out = inf_in|zero_in|(~mant_tmp[N-1]) ? {inf_in,{N-1{1'b0}}} : {s_in, tmp1_oN[N-1:1]};

//endmodule

/////////////////////////////////LOD_N///

module LOD_N (in, out);

 function [15:0] log2;

 228

 input reg [15:0] value;

 begin

 value = value-1;

 for (log2=0; value>0; log2=log2+1)

 value = value>>1;

 end

 endfunction

parameter N = 64;

parameter S = log2(N);

input [N-1:0] in;

output [S-1:0] out;

wire vld;

LOD #(.N(N)) l1 (in, out, vld);

endmodule

module LOD (in, out, vld);

 function [15:0] log2;

 input reg [15:0] value;

 begin

 value = value-1;

 for (log2=0; value>0; log2=log2+1)

 value = value>>1;

 229

 end

 endfunction

parameter N = 64;

parameter S = log2(N);

 input [N-1:0] in;

 output [S-1:0] out;

 output vld;

 generate

 if (N == 2)

 begin

 assign vld = |in;

 assign out = ~in[1] & in[0];

 end

 else if (N & (N-1))

 LOD #(1<<S) LOD ({1<<S {1'b0}} | in,out,vld);

 else

 begin

 wire [S-2:0] out_l, out_h;

 wire out_vl, out_vh;

 LOD #(N>>1) l(in[(N>>1)-1:0],out_l,out_vl);

 LOD #(N>>1) h(in[N-1:N>>1],out_h,out_vh);

 230

 assign vld = out_vl | out_vh;

 assign out = out_vh ? {1'b0,out_h} : {out_vl,out_l};

 end

 endgenerate

endmodule

/////////////////////////////////////DSR_left_N_S///////////////////////////////

module DSR_left_N_S(a,b,c);

 parameter N=16;

 parameter S=4;

 input [N-1:0] a;

 input [S-1:0] b;

 output [N-1:0] c;

wire [N-1:0] tmp [S-1:0];

assign tmp[0] = b[0] ? a << 7'd1 : a;

genvar i;

generate

 for (i=1; i<S; i=i+1)begin:loop_blk

 assign tmp[i] = b[i] ? tmp[i-1] << 2**i : tmp[i-1];

 end

endgenerate

assign c = tmp[S-1];

endmodule

 231

////////////////////////DSR_right_N_S//

module DSR_right_N_S(a,b,c);

 parameter N=16;

 parameter S=4;

 input [N-1:0] a;

 input [S-1:0] b;

 output [N-1:0] c;

wire [N-1:0] tmp [S-1:0];

assign tmp[0] = b[0] ? a >> 7'd1 : a;

genvar i;

generate

 for (i=1; i<S; i=i+1)begin:loop_blk

 assign tmp[i] = b[i] ? tmp[i-1] >> 2**i : tmp[i-1];

 end

endgenerate

assign c = tmp[S-1];

endmodule

//

//////////////////////Posit Adder///

//

//`include "DSR_right_N_S.v"

//`include "LOD_N.v"

//`include "LZD_N.v"

 232

//`include "DSR_left_N_S.v"

//`include "add_N.v"

//`include "sub_N.v"

//`include "data_extract.v"

//`include "add_mantovf.v"

module posit_adder (in1, in2, start, out, inf, zero, done);

function [15:0] log2;

input reg [15:0] value;

 begin

 value = value-1;

 for (log2=0; value>0; log2=log2+1)

 value = value>>1;

 end

endfunction

parameter N = 16; //Posit Word Size

parameter Bs = log2(N);

parameter es = 3; //Posit Exponent Size

input [N-1:0] in1, in2;

input start;

output [N-1:0] out;

output inf, zero;

output done;

wire start0= start;

 233

wire s1 = in1[N-1];

wire s2 = in2[N-1];

wire zero_tmp1 = |in1[N-2:0];

wire zero_tmp2 = |in2[N-2:0];

wire inf1 = in1[N-1] & (~zero_tmp1),

 inf2 = in2[N-1] & (~zero_tmp2);

wire zero1 = ~(in1[N-1] | zero_tmp1),

 zero2 = ~(in2[N-1] | zero_tmp2);

assign inf = inf1 | inf2,

 zero = zero1 & zero2;

//Data Extraction

wire rc1, rc2;

wire [Bs-1:0] regime1, regime2, Lshift1, Lshift2;

wire [es-1:0] e1, e2;

wire [N-es-1:0] mant1, mant2;

wire [N-1:0] xin1 = s1 ? -in1 : in1;

wire [N-1:0] xin2 = s2 ? -in2 : in2;

data_extract #(.N(N),.es(es)) uut_de1(.in(xin1), .rc(rc1), .regime(regime1), .exp(e1),

.mant(mant1), .Lshift(Lshift1));

data_extract #(.N(N),.es(es)) uut_de2(.in(xin2), .rc(rc2), .regime(regime2), .exp(e2),

.mant(mant2), .Lshift(Lshift2));

wire [N-es:0] m1 = {zero_tmp1,mant1},

 m2 = {zero_tmp2,mant2};

 234

//Large Checking and Assignment

wire in1_gt_in2 = xin1[N-2:0] >= xin2[N-2:0] ? 1'b1 : 1'b0;

wire ls = in1_gt_in2 ? s1 : s2;

wire op = s1 ~^ s2;

wire lrc = in1_gt_in2 ? rc1 : rc2;

wire src = in1_gt_in2 ? rc2 : rc1;

wire [Bs-1:0] lr = in1_gt_in2 ? regime1 : regime2;

wire [Bs-1:0] sr = in1_gt_in2 ? regime2 : regime1;

wire [es-1:0] le = in1_gt_in2 ? e1 : e2;

wire [es-1:0] se = in1_gt_in2 ? e2 : e1;

wire [N-es:0] lm = in1_gt_in2 ? m1 : m2;

wire [N-es:0] sm = in1_gt_in2 ? m2 : m1;

//Exponent Difference: Lower Mantissa Right Shift Amount

wire [Bs:0] r_diff11, r_diff12, r_diff2;

sub_N #(.N(Bs)) uut_sub1 (lr, sr, r_diff11);

add_N #(.N(Bs)) uut_add1 (lr, sr, r_diff12);

sub_N #(.N(Bs)) uut_sub2 (sr, lr, r_diff2);

wire [Bs:0] r_diff = lrc ? (src ? r_diff11 : r_diff12) : r_diff2;

wire [es+Bs+1:0] diff;

 235

sub_N #(.N(es+Bs+1)) uut_sub_diff ({r_diff,le}, {{Bs+1{1'b0}},se}, diff);

wire [Bs-1:0] exp_diff = (|diff[es+Bs:Bs]) ? {Bs{1'b1}} : diff[Bs-1:0];

//DSR Right Shifting of Small Mantissa

wire [N-1:0] DSR_right_in;

generate

 if (es >= 2)

 assign DSR_right_in = {sm,{es-1{1'b0}}};

 else

 assign DSR_right_in = sm;

endgenerate

wire [N-1:0] DSR_right_out;

wire [Bs-1:0] DSR_e_diff = exp_diff;

DSR_right_N_S #(.N(N), .S(Bs)) dsr1(.a(DSR_right_in), .b(DSR_e_diff), .c(DSR_right_out));

//Mantissa Addition

wire [N-1:0] add_m_in1;

generate

 if (es >= 2)

 assign add_m_in1 = {lm,{es-1{1'b0}}};

 else

 assign add_m_in1 = lm;

endgenerate

 236

wire [N:0] add_m1, add_m2;

add_N #(.N(N)) uut_add_m1 (add_m_in1, DSR_right_out, add_m1);

sub_N #(.N(N)) uut_sub_m2 (add_m_in1, DSR_right_out, add_m2);

wire [N:0] add_m = op ? add_m1 : add_m2;

wire [1:0] mant_ovf = add_m[N:N-1];

//LOD of mantissa addition result

wire [N-1:0] LOD_in = {(add_m[N] | add_m[N-1]), add_m[N-2:0]};

wire [Bs-1:0] left_shift;

LOD_N #(.N(N)) l2(.in(LOD_in), .out(left_shift));

//DSR Left Shifting of mantissa result

wire [N-1:0] DSR_left_out_t;

DSR_left_N_S #(.N(N), .S(Bs)) dsl1(.a(add_m[N:1]), .b(left_shift), .c(DSR_left_out_t));

wire [N-1:0] DSR_left_out = DSR_left_out_t[N-1] ? DSR_left_out_t[N-1:0] : {DSR_left_out_t[N-

2:0],1'b0};

//Exponent and Regime Computation

wire [Bs:0] lr_N = lrc ? {1'b0,lr} : -{1'b0,lr};

wire [es+Bs+1:0] le_o_tmp, le_o;

sub_N #(.N(es+Bs+1)) sub3 ({lr_N,le}, {{es+1{1'b0}},left_shift}, le_o_tmp);

add_mantovf #(es+Bs+1) uut_add_mantovf (le_o_tmp, mant_ovf[1], le_o);

wire [es+Bs:0] le_oN = le_o[es+Bs] ? -le_o : le_o;

wire [es-1:0] e_o = (le_o[es+Bs] & |le_oN[es-1:0]) ? le_o[es-1:0] : le_oN[es-1:0];

wire [Bs-1:0] r_o = (~le_o[es+Bs] || (le_o[es+Bs] & |le_oN[es-1:0])) ? le_oN[es+Bs-1:es] + 1'b1

: le_oN[es+Bs-1:es];

 237

//Exponent and Mantissa Packing

wire [2*N-1:0]tmp_o = { {N{~le_o[es+Bs]}}, le_o[es+Bs], e_o, DSR_left_out[N-2:es]};

wire [2*N-1:0] tmp1_o;

DSR_right_N_S #(.N(2*N), .S(Bs)) dsr2 (.a(tmp_o), .b(r_o), .c(tmp1_o));

//Final Output

wire [2*N-1:0] tmp1_oN = ls ? -tmp1_o : tmp1_o;

assign out = inf|zero|(~DSR_left_out[N-1]) ? {inf,{N-1{1'b0}}} : {ls, tmp1_oN[N-1:1]},

 done = start0;

endmodule

//

/////////////////////////////Posit Multiplication/////////////////////////////////////

//

module posit_mult (in1, in2, start, out, inf, zero, done);

function [15:0] log2;

input reg [15:0] value;

 begin

 value = value-1;

 for (log2=0; value>0; log2=log2+1)

 value = value>>1;

 end

endfunction

 238

parameter N = 16;

parameter Bs = log2(N);

parameter es = 3;

input [N-1:0] in1, in2;

input start;

output [N-1:0] out;

output inf, zero;

output done;

wire start0= start;

wire s1 = in1[N-1];

wire s2 = in2[N-1];

wire zero_tmp1 = |in1[N-2:0];

wire zero_tmp2 = |in2[N-2:0];

wire inf1 = in1[N-1] & (~zero_tmp1),

 inf2 = in2[N-1] & (~zero_tmp2);

wire zero1 = ~(in1[N-1] | zero_tmp1),

 zero2 = ~(in2[N-1] | zero_tmp2);

assign inf = inf1 | inf2,

 zero = zero1 & zero2;

//Data Extraction

wire rc1, rc2;

wire [Bs-1:0] regime1, regime2, Lshift1, Lshift2;

 239

wire [es-1:0] e1, e2;

wire [N-es-1:0] mant1, mant2;

wire [N-1:0] xin1 = s1 ? -in1 : in1;

wire [N-1:0] xin2 = s2 ? -in2 : in2;

data_extract #(.N(N),.es(es)) uut_de1(.in(xin1), .rc(rc1), .regime(regime1), .exp(e1),

.mant(mant1), .Lshift(Lshift1));

data_extract #(.N(N),.es(es)) uut_de2(.in(xin2), .rc(rc2), .regime(regime2), .exp(e2),

.mant(mant2), .Lshift(Lshift2));

wire [N-es:0] m1 = {zero_tmp1,mant1},

 m2 = {zero_tmp2,mant2};

//Sign, Exponent and Mantissa Computation

wire mult_s = s1 ^ s2;

wire [2*(N-es)+1:0] mult_m = m1*m2;

wire mult_m_ovf = mult_m[2*(N-es)+1];

wire [2*(N-es)+1:0] mult_mN = ~mult_m_ovf ? mult_m << 1'b1 : mult_m;

wire [Bs+1:0] r1 = rc1 ? {2'b0,regime1} : -regime1;

wire [Bs+1:0] r2 = rc2 ? {2'b0,regime2} : -regime2;

wire [Bs+es+1:0] mult_e = {r1, e1} + {r2, e2} + mult_m_ovf;

//Exponent and Regime Computation

wire [es+Bs:0] mult_eN = mult_e[es+Bs+1] ? -mult_e : mult_e;

wire [es-1:0] e_o = (mult_e[es+Bs+1] & |mult_eN[es-1:0]) ? mult_e[es-1:0] : mult_eN[es-1:0];

 240

wire [Bs:0] r_o = (~mult_e[es+Bs+1] || (mult_e[es+Bs+1] & |mult_eN[es-1:0])) ? mult_eN[es+Bs:es]

+ 1'b1 : mult_eN[es+Bs:es];

//Exponent and Mantissa Packing

wire [2*N-1:0]tmp_o = {{N{~mult_e[es+Bs+1]}},mult_e[es+Bs+1],e_o,mult_mN[2*(N-es):N-es+2]};

//Including Regime bits in Exponent-Mantissa Packing

wire [2*N-1:0] tmp1_o;

DSR_right_N_S #(.N(2*N), .S(Bs+1)) dsr2 (.a(tmp_o), .b(r_o[Bs] ? {Bs{1'b1}} : r_o), .c(tmp1_o));

//Final Output

wire [2*N-1:0] tmp1_oN = mult_s ? -tmp1_o : tmp1_o;

assign out = inf|zero|(~mult_mN[2*(N-es)+1]) ? {inf,{N-1{1'b0}}} : {mult_s, tmp1_oN[N-1:1]},

 done = start0;

endmodule

//

//Posit to FP///

//

module Posit_to_FP (in, out);

function [15:0] log2;

input reg [15:0] value;

 begin

 value = value-1;

 for (log2=0; value>0; log2=log2+1)

 241

 value = value>>1;

 end

endfunction

parameter N = 16;

parameter E = 5;

parameter es = 3;

parameter M = N-E-1;

parameter BIAS = (2**(E-1))-1;

parameter Bs = log2(N);

parameter EO = E > es+Bs ? E : es+Bs;

input [N-1:0] in;

output [N-1:0] out;

wire s = in[N-1];

wire zero_tmp = |in[N-2:0];

wire inf_in = in[N-1] & (~zero_tmp);

wire zero_in = ~(in[N-1] | zero_tmp);

//Data Extraction

wire rc;

wire [Bs-1:0] rgm, Lshift;

wire [es-1:0] e;

 242

wire [N-es-1:0] mant;

wire [N-1:0] xin = s ? -in : in;

data_extract #(.N(N),.es(es)) uut_de1(.in(xin), .rc(rc), .regime(rgm), .exp(e), .mant(mant),

.Lshift(Lshift));

wire [N-1:0] m = {zero_tmp,mant,{es-1{1'b0}}};

//Exponent and Regime Computation

wire [EO+1:0] e_o;

assign e_o = {(rc ? {{EO-es-Bs+1{1'b0}},rgm} : -{{EO-es-Bs+1{1'b0}},rgm}),e} + BIAS;

//Final Output

assign out = inf_in|e_o[EO:E]|&e_o[E-1:0] ? {s,{E-1{1'b1}},{M{1'b0}}} : (zero_in|(~m[N-1]) ?

{s,{E-1{1'b0}},m[N-2:E]} : { s, e_o[E-1:0], m[N-2:E]});

endmodule

///////////////////////////LZD//

module LZD_N (in, out);

 function [15:0] log2;

 input reg [15:0] value;

 begin

 value = value-1;

 for (log2=0; value>0; log2=log2+1)

 value = value>>1;

 end

 endfunction

 243

parameter N = 64;

parameter S = log2(N);

input [N-1:0] in;

output [S-1:0] out;

wire vld;

LZD #(.N(N)) l1 (in, out, vld);

endmodule

module LZD (in, out, vld);

 function [15:0] log2;

 input reg [15:0] value;

 begin

 value = value-1;

 for (log2=0; value>0; log2=log2+1)

 value = value>>1;

 end

 endfunction

parameter N = 64;

parameter S = log2(N);

 input [N-1:0] in;

 output [S-1:0] out;

 output vld;

 244

 generate

 if (N == 2)

 begin

 assign vld = ~∈

 assign out = in[1] & ~in[0];

 end

 else if (N & (N-1))

 LZD #(1<<S) LZD ({1<<S {1'b0}} | in,out,vld);

 else

 begin

 wire [S-2:0] out_l;

 wire [S-2:0] out_h;

 wire out_vl, out_vh;

 LZD #(N>>1) l(in[(N>>1)-1:0],out_l,out_vl);

 LZD #(N>>1) h(in[N-1:N>>1],out_h,out_vh);

 assign vld = out_vl | out_vh;

 assign out = out_vh ? {1'b0,out_h} : {out_vl,out_l};

 end

 endgenerate

endmodule

//LOD///

////module LOD_N (in, out);

//// function [15:0] log2;

//// input reg [15:0] value;

 245

//// begin

//// value = value-1;

//// for (log2=0; value>0; log2=log2+1)

//// value = value>>1;

//// end

//// endfunction

////parameter N = 64;

////parameter S = log2(N);

////input [N-1:0] in;

////output [S-1:0] out;

////wire vld;

////LOD #(.N(N)) l1 (in, out, vld);

////endmodule

////module LOD (in, out, vld);

//// function [15:0] log2;

//// input reg [15:0] value;

//// begin

//// value = value-1;

//// for (log2=0; value>0; log2=log2+1)

//// value = value>>1;

//// end

//// endfunction

 246

//parameter N = 64;

//parameter S = log2(N);

// input [N-1:0] in;

// output [S-1:0] out;

// output vld;

// generate

// if (N == 2)

// begin

// assign vld = |in;

// assign out = ~in[1] & in[0];

// end

// else if (N & (N-1))

// LOD #(1<<S) LOD ({1<<S {1'b0}} | in,out,vld);

// else

// begin

// wire [S-2:0] out_l, out_h;

// wire out_vl, out_vh;

// LOD #(N>>1) l(in[(N>>1)-1:0],out_l,out_vl);

// LOD #(N>>1) h(in[N-1:N>>1],out_h,out_vh);

// assign vld = out_vl | out_vh;

// assign out = out_vh ? {1'b0,out_h} : {out_vl,out_l};

 247

// end

// endgenerate

//endmodule

/////////////////////////////////END//////////////////////////////////

`timescale 1ns / 1ps

module neuron_posit(in1, in2, in3, in4, n_out);

 input [15:0] in1, in2, in3, in4;

 output [15:0] n_out;

 wire [15:0] w1, w2, w3, w4;

 wire [15:0] m1, m2, m3, m4;

 wire [15:0] a1, a2, add_out;

 wire start, inf, zero, done;

 wire [15:0] inp1, inp2, inp3, inp4;

 wire [15:0] sig_out;

 FP_to_posit INP1(in1, inp1);

 FP_to_posit INP2(in2, inp2);

 FP_to_posit INP3(in3, inp3);

 FP_to_posit INP4(in4, inp4);

 ///multiplying input with weights

 posit_mult M1(inp1, w1, start, m1, inf, zero, done);

 posit_mult M2(inp2, w2, start, m2, inf, zero, done);

 posit_mult M3(inp3, w3, start, m3, inf, zero, done);

 248

 posit_mult M4(inp4, w4, start, m4, inf, zero, done);

 ///adding weighted inputs

 posit_adder A1(m1, m2, start, a1, inf, zero, done);

 posit_adder A2(m3, m4, start, a2, inf, zero, done);

 posit_adder A3(a1, a2, start, add_out, inf, zero, done);

 assign sig_out[15] = ~add_out[15];

 assign sig_out[14:13] = 2'b00;

 assign sig_out[12:0] = add_out[14:2];

 Posit_to_FP P2F(sig_out, n_out);

endmodule

//

//////////////////Floating Point to Posit Conversion////////////////////////////////

//

module FP_to_posit(in, out);

function [15:0] log2;

input reg [15:0] value;

 begin

 value = value-1;

 for (log2=0; value>0; log2=log2+1)

 249

 value = value>>1;

 end

endfunction

parameter N = 16;

parameter E = 5;

parameter es = 3; //ES_max = E-1

parameter M = N-E-1;

parameter BIAS = (2**(E-1))-1;

parameter Bs = log2(N);

input [N-1:0] in;

output [N-1:0] out;

wire s_in = in[N-1];

wire [E-1:0] exp_in = in[N-2:N-1-E];

wire [M-1:0] mant_in = in[M-1:0];

wire zero_in = ~|{exp_in,mant_in};

wire inf_in = &exp_in;

wire [M:0] mant = {|exp_in, mant_in};

wire [N-1:0] LOD_in = {mant,{E{1'b0}}};

wire[Bs-1:0] Lshift;

 250

LOD_N #(.N(N)) uut (.in(LOD_in), .out(Lshift));

wire[N-1:0] mant_tmp;

DSR_left_N_S #(.N(N), .S(Bs)) ls (.a(LOD_in),.b(Lshift),.c(mant_tmp));

wire [E:0] exp = {exp_in[E-1:1], exp_in[0] | (~|exp_in)} - BIAS - Lshift;

//Exponent and Regime Computation

wire [E:0] exp_N = exp[E] ? -exp : exp;

wire [es-1:0] e_o = (exp[E] & |exp_N[es-1:0]) ? exp[es-1:0] : exp_N[es-1:0];

wire [E-es-1:0] r_o = (~exp[E] || (exp[E] & |exp_N[es-1:0])) ? {{Bs{1'b0}},exp_N[E-1:es]} +

1'b1 : {{Bs{1'b0}},exp_N[E-1:es]};

//Exponent and Mantissa Packing

wire [2*N-1:0]tmp_o = { {N{~exp[E]}}, exp[E], e_o, mant_tmp[N-2:es]};

//Including Regime bits in Exponent-Mantissa Packing

wire [2*N-1:0] tmp1_o;

wire [Bs-1:0] diff_b;

generate

 if(E-es > Bs) assign diff_b = |r_o[E-es-1:Bs] ? {{(Bs-2){1'b1}},2'b01} : r_o[Bs-1:0];

 else assign diff_b = r_o;

endgenerate

DSR_right_N_S #(.N(2*N), .S(Bs)) dsr2 (.a(tmp_o), .b(diff_b), .c(tmp1_o));

//Final Output

 251

wire [N-1:0] tmp1_oN = s_in ? -tmp1_o[N-1:0] : tmp1_o[N-1:0];

assign out = inf_in|zero_in|(~mant_tmp[N-1]) ? {inf_in,{N-1{1'b0}}} : {s_in, tmp1_oN[N-1:1]};

endmodule

///////////////////////////////LOD_N///

module LOD_N (in, out);

 function [15:0] log2;

 input reg [15:0] value;

 begin

 value = value-1;

 for (log2=0; value>0; log2=log2+1)

 value = value>>1;

 end

 endfunction

parameter N = 64;

parameter S = log2(N);

input [N-1:0] in;

output [S-1:0] out;

wire vld;

LOD #(.N(N)) l1 (in, out, vld);

endmodule

 252

module LOD (in, out, vld);

 function [15:0] log2;

 input reg [15:0] value;

 begin

 value = value-1;

 for (log2=0; value>0; log2=log2+1)

 value = value>>1;

 end

 endfunction

parameter N = 64;

parameter S = log2(N);

 input [N-1:0] in;

 output [S-1:0] out;

 output vld;

 generate

 if (N == 2)

 begin

 assign vld = |in;

 assign out = ~in[1] & in[0];

 end

 else if (N & (N-1))

 LOD #(1<<S) LOD ({1<<S {1'b0}} | in,out,vld);

 else

 253

 begin

 wire [S-2:0] out_l, out_h;

 wire out_vl, out_vh;

 LOD #(N>>1) l(in[(N>>1)-1:0],out_l,out_vl);

 LOD #(N>>1) h(in[N-1:N>>1],out_h,out_vh);

 assign vld = out_vl | out_vh;

 assign out = out_vh ? {1'b0,out_h} : {out_vl,out_l};

 end

 endgenerate

endmodule

/////////////////////////////////////DSR_left_N_S///////////////////////////////

module DSR_left_N_S(a,b,c);

 parameter N=16;

 parameter S=4;

 input [N-1:0] a;

 input [S-1:0] b;

 output [N-1:0] c;

wire [N-1:0] tmp [S-1:0];

assign tmp[0] = b[0] ? a << 7'd1 : a;

genvar i;

generate

 for (i=1; i<S; i=i+1)begin:loop_blk

 assign tmp[i] = b[i] ? tmp[i-1] << 2**i : tmp[i-1];

 end

 254

endgenerate

assign c = tmp[S-1];

endmodule

////////////////////////DSR_right_N_S//

module DSR_right_N_S(a,b,c);

 parameter N=16;

 parameter S=4;

 input [N-1:0] a;

 input [S-1:0] b;

 output [N-1:0] c;

wire [N-1:0] tmp [S-1:0];

assign tmp[0] = b[0] ? a >> 7'd1 : a;

genvar i;

generate

 for (i=1; i<S; i=i+1)begin:loop_blk

 assign tmp[i] = b[i] ? tmp[i-1] >> 2**i : tmp[i-1];

 end

endgenerate

assign c = tmp[S-1];

endmodule

 255

//

//////////////////////Posit Adder///

//

//`include "DSR_right_N_S.v"

//`include "LOD_N.v"

//`include "LZD_N.v"

//`include "DSR_left_N_S.v"

//`include "add_N.v"

//`include "sub_N.v"

//`include "data_extract.v"

//`include "add_mantovf.v"

module posit_adder (in1, in2, start, out, inf, zero, done);

function [15:0] log2;

input reg [15:0] value;

 begin

 value = value-1;

 for (log2=0; value>0; log2=log2+1)

 value = value>>1;

 end

endfunction

parameter N = 16; //Posit Word Size

parameter Bs = log2(N);

parameter es = 3; //Posit Exponent Size

 256

input [N-1:0] in1, in2;

input start;

output [N-1:0] out;

output inf, zero;

output done;

wire start0= start;

wire s1 = in1[N-1];

wire s2 = in2[N-1];

wire zero_tmp1 = |in1[N-2:0];

wire zero_tmp2 = |in2[N-2:0];

wire inf1 = in1[N-1] & (~zero_tmp1),

 inf2 = in2[N-1] & (~zero_tmp2);

wire zero1 = ~(in1[N-1] | zero_tmp1),

 zero2 = ~(in2[N-1] | zero_tmp2);

assign inf = inf1 | inf2,

 zero = zero1 & zero2;

//Data Extraction

wire rc1, rc2;

wire [Bs-1:0] regime1, regime2, Lshift1, Lshift2;

wire [es-1:0] e1, e2;

wire [N-es-1:0] mant1, mant2;

wire [N-1:0] xin1 = s1 ? -in1 : in1;

wire [N-1:0] xin2 = s2 ? -in2 : in2;

 257

data_extract #(.N(N),.es(es)) uut_de1(.in(xin1), .rc(rc1), .regime(regime1), .exp(e1),

.mant(mant1), .Lshift(Lshift1));

data_extract #(.N(N),.es(es)) uut_de2(.in(xin2), .rc(rc2), .regime(regime2), .exp(e2),

.mant(mant2), .Lshift(Lshift2));

wire [N-es:0] m1 = {zero_tmp1,mant1},

 m2 = {zero_tmp2,mant2};

//Large Checking and Assignment

wire in1_gt_in2 = xin1[N-2:0] >= xin2[N-2:0] ? 1'b1 : 1'b0;

wire ls = in1_gt_in2 ? s1 : s2;

wire op = s1 ~^ s2;

wire lrc = in1_gt_in2 ? rc1 : rc2;

wire src = in1_gt_in2 ? rc2 : rc1;

wire [Bs-1:0] lr = in1_gt_in2 ? regime1 : regime2;

wire [Bs-1:0] sr = in1_gt_in2 ? regime2 : regime1;

wire [es-1:0] le = in1_gt_in2 ? e1 : e2;

wire [es-1:0] se = in1_gt_in2 ? e2 : e1;

wire [N-es:0] lm = in1_gt_in2 ? m1 : m2;

wire [N-es:0] sm = in1_gt_in2 ? m2 : m1;

 258

//Exponent Difference: Lower Mantissa Right Shift Amount

wire [Bs:0] r_diff11, r_diff12, r_diff2;

sub_N #(.N(Bs)) uut_sub1 (lr, sr, r_diff11);

add_N #(.N(Bs)) uut_add1 (lr, sr, r_diff12);

sub_N #(.N(Bs)) uut_sub2 (sr, lr, r_diff2);

wire [Bs:0] r_diff = lrc ? (src ? r_diff11 : r_diff12) : r_diff2;

wire [es+Bs+1:0] diff;

sub_N #(.N(es+Bs+1)) uut_sub_diff ({r_diff,le}, {{Bs+1{1'b0}},se}, diff);

wire [Bs-1:0] exp_diff = (|diff[es+Bs:Bs]) ? {Bs{1'b1}} : diff[Bs-1:0];

//DSR Right Shifting of Small Mantissa

wire [N-1:0] DSR_right_in;

generate

 if (es >= 2)

 assign DSR_right_in = {sm,{es-1{1'b0}}};

 else

 assign DSR_right_in = sm;

endgenerate

wire [N-1:0] DSR_right_out;

wire [Bs-1:0] DSR_e_diff = exp_diff;

DSR_right_N_S #(.N(N), .S(Bs)) dsr1(.a(DSR_right_in), .b(DSR_e_diff), .c(DSR_right_out));

//Mantissa Addition

 259

wire [N-1:0] add_m_in1;

generate

 if (es >= 2)

 assign add_m_in1 = {lm,{es-1{1'b0}}};

 else

 assign add_m_in1 = lm;

endgenerate

wire [N:0] add_m1, add_m2;

add_N #(.N(N)) uut_add_m1 (add_m_in1, DSR_right_out, add_m1);

sub_N #(.N(N)) uut_sub_m2 (add_m_in1, DSR_right_out, add_m2);

wire [N:0] add_m = op ? add_m1 : add_m2;

wire [1:0] mant_ovf = add_m[N:N-1];

//LOD of mantissa addition result

wire [N-1:0] LOD_in = {(add_m[N] | add_m[N-1]), add_m[N-2:0]};

wire [Bs-1:0] left_shift;

LOD_N #(.N(N)) l2(.in(LOD_in), .out(left_shift));

//DSR Left Shifting of mantissa result

wire [N-1:0] DSR_left_out_t;

DSR_left_N_S #(.N(N), .S(Bs)) dsl1(.a(add_m[N:1]), .b(left_shift), .c(DSR_left_out_t));

wire [N-1:0] DSR_left_out = DSR_left_out_t[N-1] ? DSR_left_out_t[N-1:0] : {DSR_left_out_t[N-

2:0],1'b0};

 260

//Exponent and Regime Computation

wire [Bs:0] lr_N = lrc ? {1'b0,lr} : -{1'b0,lr};

wire [es+Bs+1:0] le_o_tmp, le_o;

sub_N #(.N(es+Bs+1)) sub3 ({lr_N,le}, {{es+1{1'b0}},left_shift}, le_o_tmp);

add_mantovf #(es+Bs+1) uut_add_mantovf (le_o_tmp, mant_ovf[1], le_o);

wire [es+Bs:0] le_oN = le_o[es+Bs] ? -le_o : le_o;

wire [es-1:0] e_o = (le_o[es+Bs] & |le_oN[es-1:0]) ? le_o[es-1:0] : le_oN[es-1:0];

wire [Bs-1:0] r_o = (~le_o[es+Bs] || (le_o[es+Bs] & |le_oN[es-1:0])) ? le_oN[es+Bs-1:es] + 1'b1

: le_oN[es+Bs-1:es];

//Exponent and Mantissa Packing

wire [2*N-1:0]tmp_o = { {N{~le_o[es+Bs]}}, le_o[es+Bs], e_o, DSR_left_out[N-2:es]};

wire [2*N-1:0] tmp1_o;

DSR_right_N_S #(.N(2*N), .S(Bs)) dsr2 (.a(tmp_o), .b(r_o), .c(tmp1_o));

//Final Output

wire [2*N-1:0] tmp1_oN = ls ? -tmp1_o : tmp1_o;

assign out = inf|zero|(~DSR_left_out[N-1]) ? {inf,{N-1{1'b0}}} : {ls, tmp1_oN[N-1:1]},

 done = start0;

endmodule

//

/////////////////////////////Posit Multiplication/////////////////////////////////////

//

 261

module posit_mult (in1, in2, start, out, inf, zero, done);

function [15:0] log2;

input reg [15:0] value;

 begin

 value = value-1;

 for (log2=0; value>0; log2=log2+1)

 value = value>>1;

 end

endfunction

parameter N = 16;

parameter Bs = log2(N);

parameter es = 3;

input [N-1:0] in1, in2;

input start;

output [N-1:0] out;

output inf, zero;

output done;

wire start0= start;

wire s1 = in1[N-1];

wire s2 = in2[N-1];

wire zero_tmp1 = |in1[N-2:0];

 262

wire zero_tmp2 = |in2[N-2:0];

wire inf1 = in1[N-1] & (~zero_tmp1),

 inf2 = in2[N-1] & (~zero_tmp2);

wire zero1 = ~(in1[N-1] | zero_tmp1),

 zero2 = ~(in2[N-1] | zero_tmp2);

assign inf = inf1 | inf2,

 zero = zero1 & zero2;

//Data Extraction

wire rc1, rc2;

wire [Bs-1:0] regime1, regime2, Lshift1, Lshift2;

wire [es-1:0] e1, e2;

wire [N-es-1:0] mant1, mant2;

wire [N-1:0] xin1 = s1 ? -in1 : in1;

wire [N-1:0] xin2 = s2 ? -in2 : in2;

data_extract #(.N(N),.es(es)) uut_de1(.in(xin1), .rc(rc1), .regime(regime1), .exp(e1),

.mant(mant1), .Lshift(Lshift1));

data_extract #(.N(N),.es(es)) uut_de2(.in(xin2), .rc(rc2), .regime(regime2), .exp(e2),

.mant(mant2), .Lshift(Lshift2));

wire [N-es:0] m1 = {zero_tmp1,mant1},

 m2 = {zero_tmp2,mant2};

//Sign, Exponent and Mantissa Computation

wire mult_s = s1 ^ s2;

 263

wire [2*(N-es)+1:0] mult_m = m1*m2;

wire mult_m_ovf = mult_m[2*(N-es)+1];

wire [2*(N-es)+1:0] mult_mN = ~mult_m_ovf ? mult_m << 1'b1 : mult_m;

wire [Bs+1:0] r1 = rc1 ? {2'b0,regime1} : -regime1;

wire [Bs+1:0] r2 = rc2 ? {2'b0,regime2} : -regime2;

wire [Bs+es+1:0] mult_e = {r1, e1} + {r2, e2} + mult_m_ovf;

//Exponent and Regime Computation

wire [es+Bs:0] mult_eN = mult_e[es+Bs+1] ? -mult_e : mult_e;

wire [es-1:0] e_o = (mult_e[es+Bs+1] & |mult_eN[es-1:0]) ? mult_e[es-1:0] : mult_eN[es-1:0];

wire [Bs:0] r_o = (~mult_e[es+Bs+1] || (mult_e[es+Bs+1] & |mult_eN[es-1:0])) ? mult_eN[es+Bs:es]

+ 1'b1 : mult_eN[es+Bs:es];

//Exponent and Mantissa Packing

wire [2*N-1:0]tmp_o = {{N{~mult_e[es+Bs+1]}},mult_e[es+Bs+1],e_o,mult_mN[2*(N-es):N-es+2]};

//Including Regime bits in Exponent-Mantissa Packing

wire [2*N-1:0] tmp1_o;

DSR_right_N_S #(.N(2*N), .S(Bs+1)) dsr2 (.a(tmp_o), .b(r_o[Bs] ? {Bs{1'b1}} : r_o), .c(tmp1_o));

//Final Output

wire [2*N-1:0] tmp1_oN = mult_s ? -tmp1_o : tmp1_o;

assign out = inf|zero|(~mult_mN[2*(N-es)+1]) ? {inf,{N-1{1'b0}}} : {mult_s, tmp1_oN[N-1:1]},

 264

 done = start0;

endmodule

//

//Posit to FP //

//

module Posit_to_FP (in, out);

function [15:0] log2;

input reg [15:0] value;

 begin

 value = value-1;

 for (log2=0; value>0; log2=log2+1)

 value = value>>1;

 end

endfunction

parameter N = 16;

parameter E = 5;

parameter es = 3;

parameter M = N-E-1;

parameter BIAS = (2**(E-1))-1;

parameter Bs = log2(N);

 265

parameter EO = E > es+Bs ? E : es+Bs;

input [N-1:0] in;

output [N-1:0] out;

wire s = in[N-1];

wire zero_tmp = |in[N-2:0];

wire inf_in = in[N-1] & (~zero_tmp);

wire zero_in = ~(in[N-1] | zero_tmp);

//Data Extraction

wire rc;

wire [Bs-1:0] rgm, Lshift;

wire [es-1:0] e;

wire [N-es-1:0] mant;

wire [N-1:0] xin = s ? -in : in;

data_extract #(.N(N),.es(es)) uut_de1(.in(xin), .rc(rc), .regime(rgm), .exp(e), .mant(mant),

.Lshift(Lshift));

wire [N-1:0] m = {zero_tmp,mant,{es-1{1'b0}}};

//Exponent and Regime Computation

wire [EO+1:0] e_o;

assign e_o = {(rc ? {{EO-es-Bs+1{1'b0}},rgm} : -{{EO-es-Bs+1{1'b0}},rgm}),e} + BIAS;

//Final Output

assign out = inf_in|e_o[EO:E]|&e_o[E-1:0] ? {s,{E-1{1'b1}},{M{1'b0}}} : (zero_in|(~m[N-1]) ?

{s,{E-1{1'b0}},m[N-2:E]} : { s, e_o[E-1:0], m[N-2:E]});

 266

endmodule

///////////////////////////LZD//

module LZD_N (in, out);

 function [15:0] log2;

 input reg [15:0] value;

 begin

 value = value-1;

 for (log2=0; value>0; log2=log2+1)

 value = value>>1;

 end

 endfunction

parameter N = 64;

parameter S = log2(N);

input [N-1:0] in;

output [S-1:0] out;

wire vld;

LZD #(.N(N)) l1 (in, out, vld);

endmodule

 267

module LZD (in, out, vld);

 function [15:0] log2;

 input reg [15:0] value;

 begin

 value = value-1;

 for (log2=0; value>0; log2=log2+1)

 value = value>>1;

 end

 endfunction

parameter N = 64;

parameter S = log2(N);

 input [N-1:0] in;

 output [S-1:0] out;

 output vld;

 generate

 if (N == 2)

 begin

 assign vld = ~∈

 assign out = in[1] & ~in[0];

 end

 else if (N & (N-1))

 LZD #(1<<S) LZD ({1<<S {1'b0}} | in,out,vld);

 268

 else

 begin

 wire [S-2:0] out_l;

 wire [S-2:0] out_h;

 wire out_vl, out_vh;

 LZD #(N>>1) l(in[(N>>1)-1:0],out_l,out_vl);

 LZD #(N>>1) h(in[N-1:N>>1],out_h,out_vh);

 assign vld = out_vl | out_vh;

 assign out = out_vh ? {1'b0,out_h} : {out_vl,out_l};

 end

 endgenerate

endmodule

//LOD///

////module LOD_N (in, out);

//// function [15:0] log2;

//// input reg [15:0] value;

//// begin

//// value = value-1;

//// for (log2=0; value>0; log2=log2+1)

//// value = value>>1;

//// end

//// endfunction

////parameter N = 64;

 269

////parameter S = log2(N);

////input [N-1:0] in;

////output [S-1:0] out;

////wire vld;

////LOD #(.N(N)) l1 (in, out, vld);

////endmodule

////module LOD (in, out, vld);

//// function [15:0] log2;

//// input reg [15:0] value;

//// begin

//// value = value-1;

//// for (log2=0; value>0; log2=log2+1)

//// value = value>>1;

//// end

//// endfunction

//parameter N = 64;

//parameter S = log2(N);

// input [N-1:0] in;

// output [S-1:0] out;

// output vld;

 270

// generate

// if (N == 2)

// begin

// assign vld = |in;

// assign out = ~in[1] & in[0];

// end

// else if (N & (N-1))

// LOD #(1<<S) LOD ({1<<S {1'b0}} | in,out,vld);

// else

// begin

// wire [S-2:0] out_l, out_h;

// wire out_vl, out_vh;

// LOD #(N>>1) l(in[(N>>1)-1:0],out_l,out_vl);

// LOD #(N>>1) h(in[N-1:N>>1],out_h,out_vh);

// assign vld = out_vl | out_vh;

// assign out = out_vh ? {1'b0,out_h} : {out_vl,out_l};

// end

// endgenerate

//endmodule

/////////////////////////////////END//////////////////////////////////

 271

C.2. Verilog Code for Classification ANN

//

///////////////////// Classification C-ANN ////////////////////////////

//

`timescale 1ns / 1ps

module ClasANN(pH, ORP, DO, EC, Pot, Agri, Waste);

input [15:0] pH, ORP, DO, EC;

output [15:0] Pot, Agri, Waste;

wire [15:0] in1, in2, in3, in4;

wire [15:0] l [1:32];

wire [15:0] m [1:32];

wire [15:0] n [1:32];

wire [15:0] Pot_out, Agri_out, Waste_out;

sigmoid_1in I1(pH, in1);

sigmoid_1in I2(ORP, in2);

sigmoid_1in I3(DO, in3);

sigmoid_1in I4(EC, in4);

genvar i;

generate

 for (i = 1; i <= 32; i = i + 1) begin

 neuron4in L(in1, in2, in3, in4, l[i]);

 272

 end

endgenerate

generate

 for (i = 1; i <= 32 ; i = i + 1) begin

 neuron32in M(l[1], l[2], l[3], l[4], l[5], l[6], l[7], l[8], l[9], l[10], l[11],

l[12], l[13], l[14], l[15], l[16], l[17], l[18], l[19], l[20], l[21], l[22], l[23], l[24],

l[25], l[26], l[27], l[28], l[29], l[30], l[31], l[32], m[i]);

 end

endgenerate

generate

 for (i = 1; i <= 32 ; i = i + 1) begin

 neuron32in N(m[1], m[2], m[3], m[4], m[5], m[6], m[7], m[8], m[9], m[10], m[11],

m[12], m[13], m[14], m[15], m[16], m[17], m[18], m[19], m[20], m[21], m[22], m[23], m[24],

m[25], m[26], m[27], m[28], m[29], m[30], m[31], m[32], n[i]);

 end

endgenerate

neuron32in P(n[1], n[2], n[3], n[4], n[5], n[6], n[7], n[8],n[9], n[10], n[11], n[12], n[13],

n[14], n[15], n[16],n[17], n[18], n[19], n[20], n[21], n[22], n[23], n[24],n[25], n[26], n[27],

n[28], n[29], n[30], n[31], n[32], Pot_out);

neuron32in A(n[1], n[2], n[3], n[4], n[5], n[6], n[7], n[8],n[9], n[10], n[11], n[12], n[13],

n[14], n[15], n[16],n[17], n[18], n[19], n[20], n[21], n[22], n[23], n[24],n[25], n[26], n[27],

n[28], n[29], n[30], n[31], n[32], Agri_out);

neuron32in W(n[1], n[2], n[3], n[4], n[5], n[6], n[7], n[8],n[9], n[10], n[11], n[12], n[13],

n[14], n[15], n[16],n[17], n[18], n[19], n[20], n[21], n[22], n[23], n[24],n[25], n[26], n[27],

n[28], n[29], n[30], n[31], n[32], Waste_out);

Posit_to_FP POT(Pot_out, Pot);

Posit_to_FP AGRI(Agri_out, Agri);

Posit_to_FP WASTE(Waste_out, Waste);

 273

endmodule

//

////////////////////////// Neuron 32 input internal //////////////////////

//

`timescale 1ns / 1ps

module neuron32in (in1, in2, in3, in4, in5, in6, in7, in8, in9, in10, in11, in12, in13, in14,

in15, in16, in17, in18, in19, in20, in21, in22, in23, in24, in25, in26, in27, in28, in29, in30,

in31, in32, n_out);

 input [31:0] in1, in2, in3, in4, in5, in6, in7, in8, in9, in10, in11, in12, in13, in14,

in15, in16, in17, in18, in19, in20, in21, in22, in23, in24, in25, in26, in27, in28, in29, in30,

in31, in32 ;

 output [31:0] n_out;

 wire [15:0] IN [1:32];

 reg [15:0] Wt [1:32];

 wire [15:0] Mult [1:32];

 wire [15:0] a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16;

 wire [15:0] add1, add2, add3, add4, add5, add6, add7, add8;

 wire [15:0] add12, add34, add56, add78;

 wire [15:0] add_out1, add_out2, add_out;

 wire start, inf, zero, done;

 wire [15:0] inp1, inp2;

 wire [15:0] sig_out;

// FP2posit INP1(in1, inp1);

// FP2posit INP2(in2, inp2);

 274

 //FP_to_posit INP3(in3, inp3);

 //FP_to_posit INP4(in4, inp4);

 ///multiplying input with weights

 assign IN[1] = in1;

 assign IN[2] = in2;

 assign IN[3] = in3;

 assign IN[4] = in4;

 assign IN[5] = in5;

 assign IN[6] = in6;

 assign IN[7] = in7;

 assign IN[8] = in8;

 assign IN[9] = in9;

 assign IN[10] = in10;

 assign IN[11] = in11;

 assign IN[12] = in12;

 assign IN[13] = in13;

 assign IN[14] = in14;

 assign IN[15] = in15;

 assign IN[16] = in16;

 assign IN[17] = in17;

 assign IN[18] = in18;

 assign IN[19] = in19;

 assign IN[20] = in20;

 275

 assign IN[21] = in21;

 assign IN[22] = in22;

 assign IN[23] = in23;

 assign IN[24] = in24;

 assign IN[25] = in25;

 assign IN[26] = in26;

 assign IN[27] = in27;

 assign IN[28] = in28;

 assign IN[29] = in29;

 assign IN[30] = in30;

 assign IN[31] = in31;

 assign IN[32] = in32;

 genvar i;

 generate for (i = 1; i <= 32; i = i + 1) begin

 posit_mult M(IN[i], Wt[i], start, Mult[i], inf, zero, done);

 end

 endgenerate

// posit_mult M1(in1, w1, start, m1, inf, zero, done);

// posit_mult M2(in2, w2, start, m2, inf, zero, done);

// posit_mult M3(in3, w3, start, m3, inf, zero, done);

// posit_mult M4(in4, w4, start, m4, inf, zero, done);

// posit_mult M5(in5, w5, start, m5, inf, zero, done);

// posit_mult M6(in6, w6, start, m6, inf, zero, done);

// posit_mult M7(in7, w7, start, m7, inf, zero, done);

 276

// posit_mult M8(in8, w8, start, m8, inf, zero, done);

 ///adding weighted inputs

 posit_adder A1(Mult[1], Mult[2], start, a1, inf, zero, done);

 posit_adder A2(Mult[3], Mult[4], start, a2, inf, zero, done);

 posit_adder A3(Mult[5], Mult[6], start, a3, inf, zero, done);

 posit_adder A4(Mult[7], Mult[8], start, a4, inf, zero, done);

 posit_adder A5(Mult[9], Mult[10], start, a5, inf, zero, done);

 posit_adder A6(Mult[11], Mult[12], start, a6, inf, zero, done);

 posit_adder A7(Mult[13], Mult[14], start, a7, inf, zero, done);

 posit_adder A8(Mult[15], Mult[16], start, a8, inf, zero, done);

 posit_adder A9(Mult[17], Mult[18], start, a9, inf, zero, done);

 posit_adder A10(Mult[19], Mult[20], start, a10, inf, zero, done);

 posit_adder A11(Mult[21], Mult[22], start, a11, inf, zero, done);

 posit_adder A12(Mult[23], Mult[24], start, a12, inf, zero, done);

 posit_adder A13(Mult[25], Mult[26], start, a13, inf, zero, done);

 posit_adder A14(Mult[27], Mult[28], start, a14, inf, zero, done);

 posit_adder A15(Mult[29], Mult[30], start, a15, inf, zero, done);

 posit_adder A16(Mult[31], Mult[32], start, a16, inf, zero, done);

 ///

 posit_adder A17(a1, a2, start, add1, inf, zero, done);

 posit_adder A18(a3, a4, start, add2, inf, zero, done);

 posit_adder A19(a5, a6, start, add3, inf, zero, done);

 posit_adder A120(a7, a8, start, add4, inf, zero, done);

 posit_adder A21(a9, a10, start, add5, inf, zero, done);

 posit_adder A22(a11, a12, start, add6, inf, zero, done);

 277

 posit_adder A23(a13, a14, start, add7, inf, zero, done);

 posit_adder A24(a15, a16, start, add8, inf, zero, done);

 //

 posit_adder A25(add1, add2, start, add12, inf, zero, done);

 posit_adder A26(add3, add4, start, add34, inf, zero, done);

 posit_adder A27(add5, add6, start, add56, inf, zero, done);

 posit_adder A28(add7, add8, start, add78, inf, zero, done);

 //

 posit_adder A29(add12, add34, start, add_out1, inf, zero, done);

 posit_adder A30(add56, add78, start, add_out2, inf, zero, done);

 ///

 posit_adder Aout(add_out1, add_out2, start, add_out, inf, zero, done);

 assign sig_out[15] = ~add_out[15];

 assign sig_out[14:13] = 2'b00;

 assign sig_out[12:0] = add_out[14:2];

 assign n_out = sig_out;

 //Posit_to_FP P2F(sig_out, n_out);

endmodule

//

///////////////////////////////////Posit 1 Input Neuron///////////////////////////////////////

//

 278

module sigmoid_1in(sig_in, sig_out);

input [15:0] sig_in;

output [15:0] sig_out;

 assign sig_out[15] = ~sig_in[15];

 assign sig_out[14:13] = 2'b00;

 assign sig_out[12:0] = sig_in[14:2];

endmodule

//

///////////////////////////////////Posit 4 input Neuron///////////////////////////////////////

//

`timescale 1ns / 1ps

module neuron4in(in1, in2, in3, in4, n_out);

 input [31:0] in1, in2, in3, in4;

 output [31:0] n_out;

 wire [15:0] w1, w2, w3, w4;

 wire [15:0] m1, m2, m3, m4;

 wire [15:0] a1, a2, add_out;

 wire start, inf, zero, done;

 //wire [15:0] inp1, inp2;

 wire [15:0] sig_out;

// FP2posit INP1(in1, inp1);

 279

// FP2posit INP2(in2, inp2);

 //FP_to_posit INP3(in3, inp3);

 //FP_to_posit INP4(in4, inp4);

 ///multiplying input with weights

 posit_mult M1(in1, w1, start, m1, inf, zero, done);

 posit_mult M2(in2, w2, start, m2, inf, zero, done);

 posit_mult M3(in3, w3, start, m3, inf, zero, done);

 posit_mult M4(in4, w4, start, m4, inf, zero, done);

 ///adding weighted inputs

 posit_adder A1(m1, m2, start, a1_out, inf, zero, done);

 posit_adder A2(m3, m4, start, a2, inf, zero, done);

 posit_adder A3(a1, a2, start, add_out, inf, zero, done);

 assign sig_out[15] = ~add_out[15];

 assign sig_out[14:13] = 2'b00;

 assign sig_out[12:0] = add_out[14:2];

 assign n_out = sig_out;

 //Posit_to_FP P2F(sig_out, n_out);

endmodule

//

///////////////////////////////Neuron 8 input internal//

//

 280

`timescale 1ns / 1ps

module neuron8in (in1, in2, in3, in4, in5, in6, in7, in8, n_out);

 input [31:0] in1, in2, in3, in4, in5, in6, in7, in8;

 output [31:0] n_out;

 wire [15:0] w1, w2, w3, w4, w5, w6, w7, w8;

 wire [15:0] m1, m2, m3, m4, m5, m6, m7, m8;

 wire [15:0] a1, a2, a3, a4, add1, add2, add_out;

 wire start, inf, zero, done;

 wire [15:0] inp1, inp2;

 wire [15:0] sig_out;

// FP2posit INP1(in1, inp1);

// FP2posit INP2(in2, inp2);

 //FP_to_posit INP3(in3, inp3);

 //FP_to_posit INP4(in4, inp4);

 ///multiplying input with weights

 posit_mult M1(in1, w1, start, m1, inf, zero, done);

 posit_mult M2(in2, w2, start, m2, inf, zero, done);

 posit_mult M3(in3, w3, start, m3, inf, zero, done);

 posit_mult M4(in4, w4, start, m4, inf, zero, done);

 posit_mult M5(in5, w5, start, m5, inf, zero, done);

 posit_mult M6(in6, w6, start, m6, inf, zero, done);

 posit_mult M7(in7, w7, start, m7, inf, zero, done);

 281

 posit_mult M8(in8, w8, start, m8, inf, zero, done);

 ///adding weighted inputs

 posit_adder A1(m1, m2, start, a1, inf, zero, done);

 posit_adder A2(m3, m4, start, a2, inf, zero, done);

 posit_adder A3(m5, m6, start, a3, inf, zero, done);

 posit_adder A4(m7, m7, start, a4, inf, zero, done);

 posit_adder A5(a1, a2, start, add1, inf, zero, done);

 posit_adder A6(a3, a4, start, add2, inf, zero, done);

 posit_adder A7(add1, add2, start, add_out, inf, zero, done);

 assign sig_out[15] = ~add_out[15];

 assign sig_out[14:13] = 2'b00;

 assign sig_out[12:0] = add_out[14:2];

 assign n_out = sig_out;

 //Posit_to_FP P2F(sig_out, n_out);

endmodule

//

module add_mantovf (a,mant_ovf,c);

parameter N=10;

input [N:0] a;

input mant_ovf;

output [N:0] c;

assign c = a + mant_ovf;

endmodule

 282

//

module add_N (a,b,c);

parameter N=10;

input [N-1:0] a,b;

output [N:0] c;

assign c = {1'b0,a} + {1'b0,b};

endmodule

//

module sub_N (a,b,c);

parameter N=10;

input [N-1:0] a,b;

output [N:0] c;

assign c = {1'b0,a} - {1'b0,b};

endmodule

//

module data_extract(in, rc, regime, exp, mant, Lshift);

function [31:0] log2;

input reg [31:0] value;

 begin

 value = value-1;

 for (log2=0; value>0; log2=log2+1)

 value = value>>1;

 end

endfunction

 283

parameter N=16;

parameter Bs=log2(N);

parameter es = 2;

input [N-1:0] in;

output rc;

output [Bs-1:0] regime, Lshift;

output [es-1:0] exp;

output [N-es-1:0] mant;

wire [N-1:0] xin = in;

assign rc = xin[N-2];

wire [Bs-1:0] k0, k1;

LOD_N #(.N(N)) xinst_k0(.in({xin[N-2:0],1'b0}), .out(k0));

LZD_N #(.N(N)) xinst_k1(.in({xin[N-3:0],2'b0}), .out(k1));

assign regime = xin[N-2] ? k1 : k0;

assign Lshift = xin[N-2] ? k1+1 : k0;

wire [N-1:0] xin_tmp;

DSR_left_N_S #(.N(N), .S(Bs)) ls (.a({xin[N-3:0],2'b0}),.b(Lshift),.c(xin_tmp));

assign exp= xin_tmp[N-1:N-es];

assign mant= xin_tmp[N-es-1:0];

endmodule

//

 284

C.3. Python Code for Augmentation ANN

#!/usr/bin/env python

coding: utf-8

In[58]:

#import the pandas module

import pandas as pd

#import the numpy module

import numpy as np

colnames=['I1', 'I2', 'I3', 'T1', 'T2', 'P1', 'P2']

In[59]:

#Reading and exploring the data by coverting to pandas dataframe

df = pd.read_excel(r'C:\Users\user\Desktop\watertesting.xlsx')

print(df.head(5))

In[67]:

#splitting into train-test set for model training of the data from test2.tsv file (0.9 test,,

0.1 train)

from sklearn.model_selection import train_test_split

y = df.drop(['I1', 'I2', 'I3', 'T1', 'T2'], axis =1)

 285

X = df.drop(['T1', 'T2', 'P1', 'P2'], axis =1)

X = df[['I1','I2','I3']]

y = df[['P1','P2']]

print(X.head())

print(y.head())

'''X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.2)

print("\nX_train:\n")

print(X_train.head())

print(X_train.shape)

print("\nX_test:\n")

print(X_test.head())

print(X_test.shape)

print("\ny_train:\n")

print(y_train.head())

print(y_train.shape)

print("\ny_test:\n")

print(y_test.head())

print(y_test.shape)'''

 286

In[54]:

import keras

import numpy as np

import matplotlib.pyplot as plt

from keras import layers

from keras import optimizers

from keras.layers import Dense, Flatten, Activation, Dropout

from keras import applications

from keras.models import Sequential, Model, load_model

from keras.applications import VGG16, InceptionV3, ResNet50

from skimage.io import imread,imsave

from keras.models import Model,load_model

from keras.optimizers import SGD,Adam

from keras.layers import *

from skimage.util import pad,crop

from skimage.transform import resize

import os

from sklearn.model_selection import train_test_split

from keras.callbacks import ReduceLROnPlateau,ModelCheckpoint,CSVLogger,Callback,EarlyStopping

import tensorflow as tf

import keras.backend as K

 287

from keras.utils import plot_model

import matplotlib.pyplot as plt

In[88]:

from numpy import zeros, newaxis

numpy_X = X.as_matrix()

numpy_X1 = numpy_X[:, :, newaxis]

numpy_X1.shape

In[89]:

numpy_y = y.as_matrix()

numpy_y1 = numpy_y[:, :, newaxis]

numpy_y1.shape

In[95]:

#building a neural network of 3 layers

inputs = Input((numpy_X1.shape[0], numpy_X1.shape[1]))

x = Dense(512, activation='relu')(inputs)

#x = Dropout(0.5)(x)

x = Dense(256, activation='relu')(x)

#x = Dropout(0.5)(x)

x = Dense(2, activation='sigmoid')(x)

 288

model = Model(inputs = inputs,outputs = x)

model.compile(loss='binary_crossentropy',optimizer='adam', metrics=['accuracy'])

model.summary()

In[93]:

#training or fitting the model

model.compile(optimizer='Adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

Train model

model.fit(numpy_X1, numpy_y1, epochs=4, validation_split=0.2)

In[]:

C.4. Python Code for Classification ANN

#!/usr/bin/env python

coding: utf-8

In[58]:

#import the pandas module

import pandas as pd

 289

#import the numpy module

import numpy as np

colnames=['I1', 'I2', 'I3', 'T1', 'T2', 'P1', 'P2']

In[59]:

#Reading and exploring the data by coverting to pandas dataframe

df = pd.read_excel(r'C:\Users\user\Desktop\watertesting.xlsx')

print(df.head(5))

In[67]:

#splitting into train-test set for model training of the data from test2.tsv file (0.9 test,,

0.1 train)

from sklearn.model_selection import train_test_split

y = df.drop(['I1', 'I2', 'I3', 'T1', 'T2'], axis =1)

X = df.drop(['T1', 'T2', 'P1', 'P2'], axis =1)

X = df[['I1','I2','I3']]

y = df[['P1','P2']]

print(X.head())

print(y.head())

'''X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.2)

print("\nX_train:\n")

print(X_train.head())

print(X_train.shape)

 290

print("\nX_test:\n")

print(X_test.head())

print(X_test.shape)

print("\ny_train:\n")

print(y_train.head())

print(y_train.shape)

print("\ny_test:\n")

print(y_test.head())

print(y_test.shape)'''

In[54]:

import keras

import numpy as np

import matplotlib.pyplot as plt

from keras import layers

from keras import optimizers

from keras.layers import Dense, Flatten, Activation, Dropout

from keras import applications

from keras.models import Sequential, Model, load_model

from keras.applications import VGG16, InceptionV3, ResNet50

from skimage.io import imread,imsave

 291

from keras.models import Model,load_model

from keras.optimizers import SGD,Adam

from keras.layers import *

from skimage.util import pad,crop

from skimage.transform import resize

import os

from sklearn.model_selection import train_test_split

from keras.callbacks import ReduceLROnPlateau,ModelCheckpoint,CSVLogger,Callback,EarlyStopping

import tensorflow as tf

import keras.backend as K

from keras.utils import plot_model

import matplotlib.pyplot as plt

In[88]:

from numpy import zeros, newaxis

numpy_X = X.as_matrix()

numpy_X1 = numpy_X[:, :, newaxis]

numpy_X1.shape

In[89]:

numpy_y = y.as_matrix()

numpy_y1 = numpy_y[:, :, newaxis]

numpy_y1.shape

In[95]:

 292

#building a neural network of 3 layers

inputs = Input((numpy_X1.shape[0], numpy_X1.shape[1]))

x = Dense(512, activation='relu')(inputs)

#x = Dropout(0.5)(x)

x = Dense(256, activation='relu')(x)

#x = Dropout(0.5)(x)

x = Dense(2, activation='sigmoid')(x)

model = Model(inputs = inputs,outputs = x)

model.compile(loss='binary_crossentropy',optimizer='adam', metrics=['accuracy'])

model.summary()

In[93]:

#training or fitting the model

model.compile(optimizer='Adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

Train model

model.fit(numpy_X1, numpy_y1, epochs=4, validation_split=0.2)

In[]:

 293

C.5. List of Resources used in Hardware Implementation of 20 neurons ANN in IEEE
754 and Posit Representation

For IEEE 754 Nonlinear Approximation

==

 Generated by: Encounter(R) RTL Compiler v08.10-s116_1

 Generated on: Jul 13 2021 11:38:45 PM

 Module: Nonlin_sigmoid

 Technology library: fsd0k_a_generic_core_1d0vtc 2007Q2v1.3

 Operating conditions: _nominal_ (balanced_tree)

 Wireload mode: enclosed

 Area mode: timing library

==

 Gate Instances Area Library

--

AN2B1RLX1 4 24.000 fsd0k_a_generic_core_1d0vtc

AN2B1RLXLP 101 505.000 fsd0k_a_generic_core_1d0vtc

AN2RLX1 38 190.000 fsd0k_a_generic_core_1d0vtc

AN2RLXLP 229 1145.000 fsd0k_a_generic_core_1d0vtc

AN3B1RLX1P 2 20.000 fsd0k_a_generic_core_1d0vtc

AN3B1RLXLP 5 40.000 fsd0k_a_generic_core_1d0vtc

AN3B2RLX1 14 98.000 fsd0k_a_generic_core_1d0vtc

AN3B2RLXLP 38 266.000 fsd0k_a_generic_core_1d0vtc

AN3RLX1 11 77.000 fsd0k_a_generic_core_1d0vtc

AN3RLXLP 8 56.000 fsd0k_a_generic_core_1d0vtc

AN4B1RLXLP 4 32.000 fsd0k_a_generic_core_1d0vtc

 294

AN4B2RLXLP 16 128.000 fsd0k_a_generic_core_1d0vtc

AN4RLX1 3 30.000 fsd0k_a_generic_core_1d0vtc

AO112RLXLP 4 36.000 fsd0k_a_generic_core_1d0vtc

AO12RLXLP 162 1134.000 fsd0k_a_generic_core_1d0vtc

AO13RLXLP 1 9.000 fsd0k_a_generic_core_1d0vtc

AO222RLX1 10 120.000 fsd0k_a_generic_core_1d0vtc

AO222RLXLP 365 4380.000 fsd0k_a_generic_core_1d0vtc

AO22RLXLP 14 126.000 fsd0k_a_generic_core_1d0vtc

AOI112RLXLP 52 364.000 fsd0k_a_generic_core_1d0vtc

AOI122RLXLP 190 1710.000 fsd0k_a_generic_core_1d0vtc

AOI12B2RLXLP 1 9.000 fsd0k_a_generic_core_1d0vtc

AOI12RLX1 3 18.000 fsd0k_a_generic_core_1d0vtc

AOI12RLXLP 130 780.000 fsd0k_a_generic_core_1d0vtc

AOI13RLXLP 47 329.000 fsd0k_a_generic_core_1d0vtc

AOI222RLXLP 194 2134.000 fsd0k_a_generic_core_1d0vtc

AOI22RLXLP 467 3269.000 fsd0k_a_generic_core_1d0vtc

AOI23RLX1 1 8.000 fsd0k_a_generic_core_1d0vtc

AOI23RLXLP 141 1128.000 fsd0k_a_generic_core_1d0vtc

AOI33RLXLP 70 700.000 fsd0k_a_generic_core_1d0vtc

FA1RLX1 863 25890.000 fsd0k_a_generic_core_1d0vtc

HA1RLX1 94 1410.000 fsd0k_a_generic_core_1d0vtc

INVCKRLXLP 6 18.000 fsd0k_a_generic_core_1d0vtc

INVRLX1 1255 3765.000 fsd0k_a_generic_core_1d0vtc

INVRLXLP 49 147.000 fsd0k_a_generic_core_1d0vtc

MAO222RLXLP 295 2655.000 fsd0k_a_generic_core_1d0vtc

 295

MAOI1RLXLP 37 333.000 fsd0k_a_generic_core_1d0vtc

MAOI222RLX1 165 1320.000 fsd0k_a_generic_core_1d0vtc

MOAI1RLXLP 472 3776.000 fsd0k_a_generic_core_1d0vtc

MUX2RLXLP 56 504.000 fsd0k_a_generic_core_1d0vtc

MUXB2RLXLP 2 20.000 fsd0k_a_generic_core_1d0vtc

MXL2RLXLP 726 5082.000 fsd0k_a_generic_core_1d0vtc

ND2RLX1 10 40.000 fsd0k_a_generic_core_1d0vtc

ND2RLXLP 865 3460.000 fsd0k_a_generic_core_1d0vtc

ND3RLX1 1 6.000 fsd0k_a_generic_core_1d0vtc

ND3RLXLP 142 852.000 fsd0k_a_generic_core_1d0vtc

NR2RLX1 46 184.000 fsd0k_a_generic_core_1d0vtc

NR2RLX2 1 7.000 fsd0k_a_generic_core_1d0vtc

NR2RLXLP 864 3456.000 fsd0k_a_generic_core_1d0vtc

NR3RLX1 19 114.000 fsd0k_a_generic_core_1d0vtc

NR3RLXLP 24 144.000 fsd0k_a_generic_core_1d0vtc

OA112RLX1 5 45.000 fsd0k_a_generic_core_1d0vtc

OA112RLXLP 6 54.000 fsd0k_a_generic_core_1d0vtc

OA12RLXLP 34 238.000 fsd0k_a_generic_core_1d0vtc

OA13RLXLP 2 16.000 fsd0k_a_generic_core_1d0vtc

OA222RLXLP 16 192.000 fsd0k_a_generic_core_1d0vtc

OA22RLXLP 18 162.000 fsd0k_a_generic_core_1d0vtc

OAI112RLX1 1 7.000 fsd0k_a_generic_core_1d0vtc

OAI112RLXLP 105 735.000 fsd0k_a_generic_core_1d0vtc

OAI122RLXLP 126 1134.000 fsd0k_a_generic_core_1d0vtc

OAI12RLX1 4 24.000 fsd0k_a_generic_core_1d0vtc

 296

OAI12RLXLP 294 1764.000 fsd0k_a_generic_core_1d0vtc

OAI13RLXLP 66 462.000 fsd0k_a_generic_core_1d0vtc

OAI222RLXLP 18 198.000 fsd0k_a_generic_core_1d0vtc

OAI22RLXLP 184 1288.000 fsd0k_a_generic_core_1d0vtc

OAI23RLXLP 70 560.000 fsd0k_a_generic_core_1d0vtc

OAI33RLXLP 115 1035.000 fsd0k_a_generic_core_1d0vtc

OR2B1RLXLP 229 1145.000 fsd0k_a_generic_core_1d0vtc

OR2RLX1 3 15.000 fsd0k_a_generic_core_1d0vtc

OR2RLXLP 37 185.000 fsd0k_a_generic_core_1d0vtc

OR3B1RLXLP 10 80.000 fsd0k_a_generic_core_1d0vtc

OR3B2RLX1 1 7.000 fsd0k_a_generic_core_1d0vtc

OR3B2RLXLP 10 70.000 fsd0k_a_generic_core_1d0vtc

OR3RLX1 16 112.000 fsd0k_a_generic_core_1d0vtc

OR3RLXLP 1 7.000 fsd0k_a_generic_core_1d0vtc

OR4B1RLX1 2 16.000 fsd0k_a_generic_core_1d0vtc

OR4B1RLXLP 54 432.000 fsd0k_a_generic_core_1d0vtc

OR4B2RLXLP 70 560.000 fsd0k_a_generic_core_1d0vtc

OR4RLXLP 7 70.000 fsd0k_a_generic_core_1d0vtc

QDLAHRLX1 717 9321.000 fsd0k_a_generic_core_1d0vtc

XNR2RLX1 5 50.000 fsd0k_a_generic_core_1d0vtc

XNR2RLXLP 16 160.000 fsd0k_a_generic_core_1d0vtc

XOR2RLX1 75 750.000 fsd0k_a_generic_core_1d0vtc

--

total 10634 92942.000

 297

 Type Instances Area Area %

sequential 717 9321.000 10.0

inverter 1310 3930.000 4.2

logic 8607 79691.000 85.7

total 10634 92942.000 100.0

For Posit number Representation

==

 Generated by: Encounter(R) RTL Compiler v08.10-s116_1

 Generated on: Jul 28 2021 12:19:54 AM

 Module: neuron_posit

 Technology library: fsd0k_a_generic_core_1d0vtc 2007Q2v1.3

 Operating conditions: _nominal_ (balanced_tree)

 Wireload mode: enclosed

 Area mode: timing library

==

 Gate Instances Area Library

AN2B1RLXLP 325 1625.000 fsd0k_a_generic_core_1d0vtc

AN2RLX1 11 55.000 fsd0k_a_generic_core_1d0vtc

AN2RLXLP 80 400.000 fsd0k_a_generic_core_1d0vtc

AN3B1RLX1 2 18.000 fsd0k_a_generic_core_1d0vtc

 298

AN3B1RLXLP 4 32.000 fsd0k_a_generic_core_1d0vtc

AN3B2RLXLP 27 189.000 fsd0k_a_generic_core_1d0vtc

AN4B1RLXLP 4 32.000 fsd0k_a_generic_core_1d0vtc

AO112RLX1 3 27.000 fsd0k_a_generic_core_1d0vtc

AO112RLXLP 12 108.000 fsd0k_a_generic_core_1d0vtc

AO12RLXLP 19 133.000 fsd0k_a_generic_core_1d0vtc

AO13RLXLP 3 27.000 fsd0k_a_generic_core_1d0vtc

AO222RLXLP 37 444.000 fsd0k_a_generic_core_1d0vtc

AO22RLXLP 176 1584.000 fsd0k_a_generic_core_1d0vtc

AOI112RLXLP 7 49.000 fsd0k_a_generic_core_1d0vtc

AOI122RLXLP 126 1134.000 fsd0k_a_generic_core_1d0vtc

AOI12RLX1 1 6.000 fsd0k_a_generic_core_1d0vtc

AOI12RLXLP 34 204.000 fsd0k_a_generic_core_1d0vtc

AOI13RLXLP 3 21.000 fsd0k_a_generic_core_1d0vtc

AOI222RLXLP 35 385.000 fsd0k_a_generic_core_1d0vtc

AOI22RLXLP 279 1953.000 fsd0k_a_generic_core_1d0vtc

AOI23RLXLP 13 104.000 fsd0k_a_generic_core_1d0vtc

BUFRLX3 6 48.000 fsd0k_a_generic_core_1d0vtc

FA1RLX1 160 4800.000 fsd0k_a_generic_core_1d0vtc

HA1RLX1 95 1425.000 fsd0k_a_generic_core_1d0vtc

INVCKRLXLP 1 3.000 fsd0k_a_generic_core_1d0vtc

INVRLX1 530 1590.000 fsd0k_a_generic_core_1d0vtc

INVRLXLP 27 81.000 fsd0k_a_generic_core_1d0vtc

MAO222RLXLP 144 1296.000 fsd0k_a_generic_core_1d0vtc

MAOI1RLXLP 133 1197.000 fsd0k_a_generic_core_1d0vtc

 299

MAOI222RLX1 161 1288.000 fsd0k_a_generic_core_1d0vtc

MOAI1RLX1 4 32.000 fsd0k_a_generic_core_1d0vtc

MOAI1RLXLP 665 5320.000 fsd0k_a_generic_core_1d0vtc

MUX2RLXLP 347 3123.000 fsd0k_a_generic_core_1d0vtc

MUXB2RLX1 8 80.000 fsd0k_a_generic_core_1d0vtc

MUXB2RLXLP 4 40.000 fsd0k_a_generic_core_1d0vtc

MXL2RLXLP 677 4739.000 fsd0k_a_generic_core_1d0vtc

ND2RLX1 4 16.000 fsd0k_a_generic_core_1d0vtc

ND2RLXLP 380 1520.000 fsd0k_a_generic_core_1d0vtc

ND3RLXLP 8 48.000 fsd0k_a_generic_core_1d0vtc

NR2RLX1 26 104.000 fsd0k_a_generic_core_1d0vtc

NR2RLXLP 286 1144.000 fsd0k_a_generic_core_1d0vtc

NR3RLXLP 9 54.000 fsd0k_a_generic_core_1d0vtc

NR4RLXLP 4 44.000 fsd0k_a_generic_core_1d0vtc

OA12RLXLP 33 231.000 fsd0k_a_generic_core_1d0vtc

OA13RLXLP 6 48.000 fsd0k_a_generic_core_1d0vtc

OA22RLXLP 57 513.000 fsd0k_a_generic_core_1d0vtc

OAI112RLXLP 28 196.000 fsd0k_a_generic_core_1d0vtc

OAI122RLXLP 70 630.000 fsd0k_a_generic_core_1d0vtc

OAI12RLX1 3 18.000 fsd0k_a_generic_core_1d0vtc

OAI12RLXLP 75 450.000 fsd0k_a_generic_core_1d0vtc

OAI13RLXLP 7 49.000 fsd0k_a_generic_core_1d0vtc

OAI222RLXLP 30 330.000 fsd0k_a_generic_core_1d0vtc

OAI22RLX1 4 28.000 fsd0k_a_generic_core_1d0vtc

OAI22RLXLP 213 1491.000 fsd0k_a_generic_core_1d0vtc

 300

OAI23RLXLP 7 56.000 fsd0k_a_generic_core_1d0vtc

OAI33RLXLP 8 72.000 fsd0k_a_generic_core_1d0vtc

OR2B1RLXLP 301 1505.000 fsd0k_a_generic_core_1d0vtc

OR2RLXLP 115 575.000 fsd0k_a_generic_core_1d0vtc

OR3B1RLXLP 3 24.000 fsd0k_a_generic_core_1d0vtc

OR3B2RLXLP 6 42.000 fsd0k_a_generic_core_1d0vtc

OR3RLX1 4 28.000 fsd0k_a_generic_core_1d0vtc

OR4B1RLXLP 24 192.000 fsd0k_a_generic_core_1d0vtc

OR4RLXLP 41 410.000 fsd0k_a_generic_core_1d0vtc

XNR2RLX1 3 30.000 fsd0k_a_generic_core_1d0vtc

XNR2RLXLP 54 540.000 fsd0k_a_generic_core_1d0vtc

XOR2RLX1 80 800.000 fsd0k_a_generic_core_1d0vtc

total 6052 44780.000

 Type Instances Area Area %

inverter 558 1674.000 3.7

buffer 6 48.000 0.1

unresolved 39 0.000 0.0

logic 5488 43058.000 96.2

total 6091 44780.000 100.0

 301

C.6. List of Resources used in Hardware Implementation for Complete WQI Device using
100 Neurons using Posit Representation

==

 Generated by: Encounter(R) RTL Compiler v08.10-s116_1

 Generated on: Feb 23 2023 01:57:45 AM

 Module: WQI

 Technology library: fsd0k_a_generic_core_1d0vtc 2007Q2v1.3

 Operating conditions: _nominal_ (balanced_tree)

 Wireload mode: enclosed

 Area mode: timing library

==

 Gate Instances Area Library

AN2B1RLXLP 14020 70100.000 fsd0k_a_generic_core_1d0vtc

AN2RLX1 923 4615.000 fsd0k_a_generic_core_1d0vtc

AN2RLXLP 5201 26005.000 fsd0k_a_generic_core_1d0vtc

AN3B1RLX1 270 2430.000 fsd0k_a_generic_core_1d0vtc

AN3B1RLXLP 283 2264.000 fsd0k_a_generic_core_1d0vtc

AN3B2RLXLP 2028 14196.000 fsd0k_a_generic_core_1d0vtc

AN4B1RLX1 13 104.000 fsd0k_a_generic_core_1d0vtc

AO112RLX1 283 2547.000 fsd0k_a_generic_core_1d0vtc

AO112RLXLP 984 8856.000 fsd0k_a_generic_core_1d0vtc

AO12RLXLP 1607 11249.000 fsd0k_a_generic_core_1d0vtc

AO13RLXLP 283 2547.000 fsd0k_a_generic_core_1d0vtc

AO222RLXLP 1981 23772.000 fsd0k_a_generic_core_1d0vtc

 302

AO22RLX1 534 4806.000 fsd0k_a_generic_core_1d0vtc

AO22RLXLP 12626 113634.000 fsd0k_a_generic_core_1d0vtc

AOI112RLXLP 611 4277.000 fsd0k_a_generic_core_1d0vtc

AOI122RLXLP 9178 82602.000 fsd0k_a_generic_core_1d0vtc

AOI12RLX1 51 306.000 fsd0k_a_generic_core_1d0vtc

AOI12RLXLP 2615 15690.000 fsd0k_a_generic_core_1d0vtc

AOI13RLXLP 283 1981.000 fsd0k_a_generic_core_1d0vtc

AOI222RLXLP 2399 26389.000 fsd0k_a_generic_core_1d0vtc

AOI22RLXLP 14616 102312.000 fsd0k_a_generic_core_1d0vtc

AOI23RLXLP 849 6792.000 fsd0k_a_generic_core_1d0vtc

BUFRLX12 8 208.000 fsd0k_a_generic_core_1d0vtc

BUFRLX20 558 22878.000 fsd0k_a_generic_core_1d0vtc

FA1RLX1 12744 382320.000 fsd0k_a_generic_core_1d0vtc

HA1RLX1 8411 126165.000 fsd0k_a_generic_core_1d0vtc

INVCKRLX1 8 24.000 fsd0k_a_generic_core_1d0vtc

INVCKRLX2 36 144.000 fsd0k_a_generic_core_1d0vtc

INVCKRLXLP 13 39.000 fsd0k_a_generic_core_1d0vtc

INVRLX1 37428 112284.000 fsd0k_a_generic_core_1d0vtc

INVRLX2 2554 10216.000 fsd0k_a_generic_core_1d0vtc

INVRLX4 1566 10962.000 fsd0k_a_generic_core_1d0vtc

INVRLXLP 2338 7014.000 fsd0k_a_generic_core_1d0vtc

MAO222RLXLP 12136 109224.000 fsd0k_a_generic_core_1d0vtc

MAOI1RLXLP 5084 45756.000 fsd0k_a_generic_core_1d0vtc

MAOI222RLX1 13361 106888.000 fsd0k_a_generic_core_1d0vtc

MOAI1RLX1 484 3872.000 fsd0k_a_generic_core_1d0vtc

 303

MOAI1RLXLP 49572 396576.000 fsd0k_a_generic_core_1d0vtc

MUX2RLXLP 29303 263727.000 fsd0k_a_generic_core_1d0vtc

MUXB2RLX1 360 3600.000 fsd0k_a_generic_core_1d0vtc

MUXB2RLXLP 640 6400.000 fsd0k_a_generic_core_1d0vtc

MXL2RLXLP 54615 382305.000 fsd0k_a_generic_core_1d0vtc

ND2RLXLP 26095 104380.000 fsd0k_a_generic_core_1d0vtc

NR2RLX1 2026 8104.000 fsd0k_a_generic_core_1d0vtc

NR2RLXLP 22227 88908.000 fsd0k_a_generic_core_1d0vtc

NR3RLXLP 754 4524.000 fsd0k_a_generic_core_1d0vtc

OA12RLXLP 2582 18074.000 fsd0k_a_generic_core_1d0vtc

OA13RLXLP 566 4528.000 fsd0k_a_generic_core_1d0vtc

OA22RLXLP 5261 47349.000 fsd0k_a_generic_core_1d0vtc

OAI112RLXLP 1788 12516.000 fsd0k_a_generic_core_1d0vtc

OAI122RLXLP 6033 54297.000 fsd0k_a_generic_core_1d0vtc

OAI12RLX1 283 1698.000 fsd0k_a_generic_core_1d0vtc

OAI12RLXLP 5524 33144.000 fsd0k_a_generic_core_1d0vtc

OAI13RLXLP 283 1981.000 fsd0k_a_generic_core_1d0vtc

OAI222RLXLP 2830 31130.000 fsd0k_a_generic_core_1d0vtc

OAI22RLX1 328 2296.000 fsd0k_a_generic_core_1d0vtc

OAI22RLXLP 16316 114212.000 fsd0k_a_generic_core_1d0vtc

OAI23RLXLP 283 2264.000 fsd0k_a_generic_core_1d0vtc

OAI33RLXLP 656 5904.000 fsd0k_a_generic_core_1d0vtc

OR2B1RLXLP 20774 103870.000 fsd0k_a_generic_core_1d0vtc

OR2RLXLP 6618 33090.000 fsd0k_a_generic_core_1d0vtc

OR3B1RLXLP 283 2264.000 fsd0k_a_generic_core_1d0vtc

 304

OR3B2RLXLP 334 2338.000 fsd0k_a_generic_core_1d0vtc

OR3RLX1 328 2296.000 fsd0k_a_generic_core_1d0vtc

OR4B1RLXLP 1460 11680.000 fsd0k_a_generic_core_1d0vtc

OR4B2RLXLP 328 2624.000 fsd0k_a_generic_core_1d0vtc

OR4RLXLP 2473 24730.000 fsd0k_a_generic_core_1d0vtc

XNR2RLX1 127 1270.000 fsd0k_a_generic_core_1d0vtc

XNR2RLXLP 3806 38060.000 fsd0k_a_generic_core_1d0vtc

XOR2RLX1 6936 69360.000 fsd0k_a_generic_core_1d0vtc

total 440159 3344967.000

 Type Instances Area Area %

--

inverter 43943 140683.000 4.2

buffer 566 23086.000 0.7

unresolved 3489 0.000 0.0

logic 395650 3181198.000 95.1

--

total 443648 3344967.000 100.0

 305

C.7. FPGA Results for Reduced Complete Water Quality Classification device

Table C. 1: FPGA Results for Reduced Complete Water Quality Classification device

FPGA Resource Parameter Values

LUTs 45,024

MUXs 100

DSPs 56

Power 35.836 W

 306

List of Publications
Published/Accepted: -
1. Abheek Gupta, Anu Gupta, and Rajiv Gupta, " Power and Area Efficient Intelligent Hardware

Design for Water Quality Applications", Sensors and Transducers Journal, 2018, Vol 227(11), pp
67 - 78. Status – Published. Scopus Indexed

2. Abheek Gupta, Anu Gupta, and Rajiv Gupta, "Efficient ASIC Implementation of Artificial Neural
Network with Posit representation of Floating-Point Numbers", International Conference on Next
Generation Systems and Networks (BITS EEECon 2022), 4 – 5 November 2022, BITS Pilani, Pilani,
India; considered for publication in Scopus Indexed Springer book series “Lecture Notes in
Networks and Systems”. Status – Published. Scopus Indexed

3. Abheek Gupta, Anu Gupta, and Rajiv Gupta, "Low-cost Artificial Intelligence Enhanced Hardware
Design for Data Augmentation", The 3rd International Conference on Electrical, Computer,
Communications and Mechatronics Engineering, Tenerife, Spain, to be included in the final
proceedings for the submission to the IEEE Xplore. Status – Accepted. Scopus Indexed

4. Abheek Gupta, Anu Gupta, and Rajiv Gupta, “High speed and Power efficient Digital VLSI
Architecture of Artificial Neural Network for reliable in-situ Water Quality Application”,
Sustainable Water Resources Management, 2024, Status – Under Review. SCIe Indexed.

Communicated: -
1. Abheek Gupta, Anu Gupta, and Rajiv Gupta, “High speed and Power efficient Digital VLSI

Architecture of Artificial Neural Network for reliable in-situ Water Quality Application”,
Sustainable Water Resources Management, 2024. Status – 1st Review completed. SCIe Journal

2. Abheek Gupta, Anu Gupta, Rajiv Gupta, Chandra Shekhar, " A Low-cost Embedded Instrument for
Smart Water Quality Classification using ANN based Data Augmentation", Communicated to
Sustainable Water Resources Management, Springer Nature, SCIe Indexed, Paper Under Review

3. Abheek Gupta, Anu Gupta, Rajiv Gupta, Chandra Shekhar, "Low-Cost Power Efficient VLSI
Implementation of Artificial Neural Network with Bounded Posit Floating-Point Format";
Communicated to IETE Technical Review, Taylor and Francis, SCIe Indexed, Paper under review.

4. Abheek Gupta, Anu Gupta, Rajiv Gupta, Chandra Shekhar, "A Low-cost Embedded System Design
for Intelligent Water Classification using ANN based Data Augmentation" Communicated to IETE
Journal of Research, Taylor and Francis, SCIe Indexed Paper Under Review.

5. Abheek Gupta, Anu Gupta, Rajiv Gupta, "High speed and Power efficient Digital VLSI Architecture
of Artificial Neural Network for Portable Water Quality Classification" Communicated to
"Integration: A VLSI Journal", Elsevier, SCI Indexed.

6. Abheek Gupta, Anu Gupta, Rajiv Gupta, "Water quality monitoring using artificial neural network
for sustainable development: A case study of Jhunjhunu City, Rajasthan", Communicated to Iranian
Journal of Science and Technology, Transactions of Electrical Engineering, Springer, SCIe
Indexed.

Patent: -
1. A Portable Real-Time Colorimetric Detection Device and Method Of Using The Same”, The patent

application 202111017453 (filed on 14 April 2021). Status - FER Generated.

 307

Biography of the Research Scholar

1. Abheek Gupta is a research scholar at Birla Institute of Science and Technology,

Pilani, Rajasthan. He did his Master of Technology in Microelectronics from Manipal

University, Jaipur, Rajasthan and his Bachelor of Technology in Electronics and

Communication Engineering from ICFAI University, Dehradun, Uttarakhand. His

research interests include Digital VLSI Design, Digital VLSI Architectures, Artificial

Neural Networks, Water Quality Monitoring and Management.

Biography of the Supervisors

1. Prof. Anu Gupta is a Professor at Birla Institute of Technology and Science (BITS)

Pilani, Rajasthan. Since joining the institute, she is involved in research in high-

performance, low-power, and digital, analog and mixed-signal design for FPGA and

ASIC applications. She has published over 100 research Papers and guided 3 PhD

scholars. Prof. Anu Gupta is the Supervisor of this thesis.

2. Sr. Prof. Rajiv Gupta is Senior Professor of Civil Engineering at BITS, Pilani. He has

completed his B.E., M.E and Ph.D. from BITS, Pilani. In his last 30 years of teaching

and research, he has published more than 150 research papers in peer-reviewed journals

and presented in conferences in India and abroad and authored a number of books and

course development material. He has guided more than 10 Ph.D. scholars apart from

being involved in teaching around 30 courses and reviewed more than 125 books,

projects, and papers in reputed journals. His fields of interest are Water-Energy

conservation, GIS and RS, the Application of Artificial Intelligence, and Concrete

Technology. He is involved in a number of research and development projects worth

more than Rs. 650 lacs of World Bank, UGC, DST, University of Virginia, and other

sponsored organizations. He has also worked in different capacities of administration

like Warden, Head of Department, and Dean of Engineering Services and Hardware.

He was instrumental in developing a number of infrastructure facilities at Pilani, Goa,

and Hyderabad campuses. Sr. Prof. Rajiv Gupta is the co-supervisor of this thesis.

