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Abstract

This thesis delves into the mathematical modelling and solution of fluid flow issues
concerning Newtonian and non-Newtonian fluids. The primary objective is to explore the
hemodynamic properties of blood flow in stenosed arteries. The research aims to discern
hemodynamic patterns in arteries with diverse shapes, taking into account the variable vis-
cosity of blood and the characteristics of nanoparticles to replicate the realistic nature of
blood flow. Additionally, this thesis investigates the two-phase nature of blood flow within
arteries affected by different stenosis types. The problems addressed in this study hold
potential applications in analyzing blood flow through arteries impacted by various patho-
logical conditions, including stenosis, thrombosis, and aneurysms. The thesis comprises
eight chapters, and a detailed summary of each chapter is provided:

The first chapter concisely outlines the key concepts in bio-fluid dynamics, blood rheol-
ogy, physical parameters, numerical methodologies, and research gaps.

In the second chapter, an examination is carried out on magnetohydrodynamic (MHD)
blood flow within a catheterized artery under pathological conditions, including multi-stenosis
and thrombosis. The study treats blood as the base fluid and forms a hybrid nano-blood sus-
pension by suspending Au and GO nanoparticles. A comprehensive hemodynamic mathe-
matical model is developed to accurately simulate blood flow within the artery, accounting
for various factors such as Joule heating, thermal radiation, Hall, and ion slip effects. The
model also takes into consideration the influence of nanoparticle shape and variable viscos-
ity based on hematocrit levels. By employing a curvilinear coordinate system and assuming
mild stenosis, the study derives closed-form solutions. These reduced governing equations
are effectively solved using the Crank-Nicolson scheme, enabling a detailed visualization of
the impact of relevant parameters on flow patterns.

In the third chapter, an entropy generation analysis has been conducted on the flow of an
electrically conductive fluid (blood) containing Al2O3-suspended nanoparticles through an
irregular stenosed artery with thrombosis in the presence of a catheter. The fluid flow is in-
fluenced by various physical phenomena, including electroosmosis, radiation, Joule heating,
and a uniform radial magnetic field. Different shapes and sizes of nanoparticles are consid-
ered using the Crocine model. The velocity, temperature, and concentration distributions
are calculated using the Crank-Nicolson method within the framework of the Debye-Huckel
linearization approximation.
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In the fourth chapter, the influence of electroosmotic blood flow is explored in an Al2O3-
Cu/Blood hybrid nanofluid containing gyrotactic microorganisms passing through a bifur-
cated artery. The overlapping stenosis in the parent artery and irregular stenosis in the daugh-
ter artery are taken into account. The flow experiences the effects of a uniform magnetic
field, viscous dissipation, heat source, and electroosmotic force. The governing equations
are normalized and transformed into a non-dimensional form, with a coordinate transfor-
mation applied to regularize the irregular boundaries. The resulting system of equations is
solved utilizing the Crank–Nicolson method.

In the fifth chapter, an investigation is conducted on the flow characteristics and entropy
analysis within a bifurcated artery system afflicted by pathological conditions. Specifically,
aneurysm and stenosis are considered in the parent and daughter arteries, respectively. The
governing equations are non-dimensionalized, and a coordinate transformation is applied
to regularize the irregular boundaries. The Crank-Nicolson scheme models blood flow in
the presence of a ternary hybrid nanofluid (Au-CuO-GO/Blood) within the arterial domain.
The research sheds light on the intricate interplay involving stenosis, magnetohydrodynamic
(MHD) flow, aneurysms, Joule heating, and the ternary hybrid nanofluid, providing valuable
insights into these complex phenomena.

The sixth chapter presents an investigation into the two-phase nanofluid flow of blood
through a stenosed artery influenced by magnetohydrodynamics. The study employs a two-
phase fluid model, where the core region is modelled as a Power-law fluid and the plasma
region as a Newtonian fluid. Furthermore, the analysis incorporates thermophoresis, Brow-
nian motion, and activation energy. The primary focus of this research lies in exploring
the potential of utilizing Al2O3 nanoparticles suspended in the blood as carriers for drug
delivery due to their biocompatible and chemically stable properties. The governing equa-
tions, developed under the mild stenosis assumption, are solved using the Method of Lines
approach, a versatile numerical methodology known for its precision and adaptability in ad-
dressing complex partial differential equations. This methodology serves as a valuable tool
for the academic and scientific community.

In the seventh chapter, the effectiveness of targeted drug delivery mechanisms in the
context of unsteady blood flow is investigated by introducing the infusion of Fe3O4 magnetic
nanoparticles into a stenosed artery. This study utilizes a two-phase mathematical model,
incorporating a power law fluid model for the core region and a Newtonian model for the
plasma regions. Various crucial parameters are systematically examined, including Hall
and ion effects, radiation, and viscous dissipation, to assess their impact on the diseased
arterial segment. The governing equations are discretized and solved using the Method of
Lines (MOL) approach, which transforms spatial and time variables into coupled ordinary
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differential equations (ODEs) in the time domain.
At the conclusion of this comprehensive study, the summarized findings of the thesis

and the potential avenues for future research are presented in the eighth chapter.
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Chapter 1

Introduction

Biofluid mechanics is a captivating interdisciplinary field that combines fluid dynamics and
biology principles to understand the fluid behaviour within biological systems. In the hu-
man body, fluids such as blood, cerebrospinal fluid and lymph play a crucial role in the
physiological process, and the study of biofluid mechanics explains the forces’ interaction
between the fluid and biological tissues. The application of fluid dynamics in biological sys-
tems has significantly advanced medicine and bioengineering. The study of different factors
like shear stress, pressure distribution and flow patterns within the cardiovascular system led
scientists and researchers to gain insight into the functioning of the organs, the progression
of diseases and the designing of medical devices. In the human body, the physiological cir-
culation of biological fluid plays a pivotal role in sustaining life. The cardiovascular system,
comprising three fundamental components—the heart, blood, and blood vessels—forms an
intricate network that efficiently distributes oxygen, nutrients, hormones, and waste prod-
ucts throughout the body. This vital process is indispensable for the survival of every cell
and organ, as it provides the essential substances necessary for energy production, growth,
repair, and the elimination of waste.

1.1 Cardiovascular System

1.1.1 Heart

At the core of this system lies the heart, a hollow muscular organ serving as the central hub
of the circulatory system. Its primary function is to tirelessly pump blood to all body parts
through an extensive network of blood vessels. The heart generates electrical impulses that
orchestrate its muscles’ precise contraction and relaxation. This synchronization ensures a
consistent heartbeat that adjusts according to the body’s requirements, reflecting the remark-
able precision of the cardiovascular system. Starting in the body tissues, the deoxygenated
blood laden with waste enters the heart’s right atrium. From here, it is propelled to the
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right ventricle and then into the pulmonary artery, where it is transported to the lungs to
release carbon dioxide and absorb life-giving oxygen. This oxygenated blood is transported
from the lungs to the left atrium via the pulmonary artery and, subsequently, the left ven-
tricle. Through powerful contraction, the heart expels this oxygenated blood into the aorta,
commencing a journey that disseminates life-sustaining vitality to every corner of the body.

1.1.2 Blood and Its Components

Blood, the essential fluid flowing through the human body, is a remarkable and crucial el-
ement that profoundly contributes to sustaining health and balance. The heart pumps this
bodily fluid to all parts of the body. The three major functions of blood are transportation,
protection and regulation. Blood, the life-sustaining fluid that flows throughout our bodies,
is a remarkable combination of cells, proteins, and other chemicals that support numerous
biological activities. Blood protects the body from pathological diseases and kills microor-
ganisms with the help of antibodies and other proteins. Additionally, blood has the property
to coagulate itself to form a clot to prevent blood loss in situations like operations, accidents
or injuries. Blood also regulates its pH value by interacting with various acids and bases to
maintain the optimum heat and fluid essential for our body’s functioning.

Figure 1.1: Blood and its constitutes

At its most fundamental level, blood comprises two primary constituents: formed el-
ements and plasma. Plasma, a yellowish fluid present in blood, serves as the conduit for
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transporting cells and various chemicals. It facilitates the circulation of vital nutrients, hor-
mones, electrolytes, and waste products, ensuring an uninterrupted flow of essential sub-
stances required by the body. In a typical circulatory system, formed elements account for
about 45% of the blood’s composition, while plasma constitutes the remaining 55%, all
within a total blood volume of 2.7-3.0 litres. The formed element of blood consists of cells
and platelets (thrombocytes). At its core, blood consists of several key components, with
each distinctive functioning. Red blood cells, or erythrocytes, dominate the bloodstream
and transport oxygen from the lungs to tissues throughout the body. Their rich iron content
gives blood its characteristic red colour and facilitates oxygen binding and release. White
blood cells, or leukocytes, represent another vital component. They play a pivotal role in
combating foreign substances within the body, contributing to the body’s immune response
and defence mechanisms.

1.1.3 Blood Vessels

Arteries serve as robust and resilient channels within the circulatory system, carrying oxy-
genated blood away from the heart to every part of the body. These vessels exhibit remark-
able strength and flexibility, designed to withstand the powerful force exerted by the heart
as it propels blood under high pressure. Arteries further divide into smaller vessels known
as arterioles, all possessing muscular walls capable of adjusting their diameter to regulate
blood flow in specific body areas. Conversely, blood from the body travels through cap-
illaries to venules, which are tiny veins, and then into larger veins before returning to the
heart. Unlike arteries, veins are crucial in transporting oxygen-depleted blood back to the
heart for reoxygenation and recirculation. Veins can be distinguished from arteries by their
thinner walls, lower pressure, and often appear blue or green due to the deoxygenated blood
they carry. This intricate network ensures the continuous flow of blood, supporting various
bodily functions and maintaining the delicate balance required for optimal health.

1.2 Fundamental Concept of Fluid Dynamics

The fundamental definition of a fluid asserts that it continuously deforms under the influence
of tangential or shear stress, regardless of how minute the applied stress may be. Fluid
dynamics, a sub-discipline of fluid mechanics, elucidates the behaviour of fluids and the
forces acting upon them. Solids and fluids exhibit distinct behaviours when subjected to
external forces. Unlike solids, where molecules are densely packed, fluid molecules are
more loosely arranged. When shear stress is applied to a solid body, it breaks completely or
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undergoes a specific angular deformation (say η). In contrast, in the case of fluids, there is
no fixed η even for an infinitesimally small shear stress.

1.2.1 Continumm Hypothesis

A fluid or any substance in the matter comprises numerous minute particles in constant
motion, undergoing continuous collisions. In principle, it is possible to study matter at
the microscopic or discrete scales, as applied in kinetic theory or statistical mechanisms.
This perspective, examining matter, is referred to as the microscopic viewpoint, wherein the
primary emphasis is placed on the averaged behaviour of individual molecules within the
substance. In general, our focus is observing the overall manifestation of molecular mo-
tion or the macroscopic behaviour of the fluid. In a macroscopic view, fluid behaviour is
considered to conform to the continuum hypothesis when the Knudsen number, denoted as
(Kn= λ

L ) and calculated as the dimensionless ratio of the molecular mean free path (λ ), rep-
resenting the average distance travelled by a molecule between collisions, to a characteristic
length scale (L) pertinent to the system, falls within the range of 0 to 0.01. This hypothesis
essentially posits that the fluid is continuous and homogeneous. The continuum hypothe-
sis allows the fluid to be treated as continuous or homogenous, meaning that its properties,
such as density, velocity, and pressure, vary continuously from one point to another within
the fluid. Consequently, this continuum assumption permits the utilization of differential
equations and mathematical models to elucidate and anticipate fluid behaviour. Importantly,
these models are formulated without needing to account for individual molecules’ discrete,
particle-based nature.

1.2.2 Blood Rheology

Blood rheology constitutes a crucial field of study in understanding blood flow, deformation
behaviour, and its constituents under different physiological circumstances. The distinc-
tive rheological properties of blood bear substantial implications for cardiovascular health,
as any deviations in blood viscosity can significantly impact blood circulation, potentially
leading to conditions such as thrombosis, atherosclerosis, and hypertension. Thus, it is nec-
essary to understand the blood nature. The nature of the blood as a fluid is described below:

1.2.3 Newtonian Fluid

Viscosity is an intrinsic property of a fluid that quantifies the internal resistance encountered
by its molecules as they undergo relative motion. According to Newton’s hypothesis, a
Newtonian fluid is characterized by a linear relationship between shearing stress and the
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strain rate, with the proportionality constant designated as viscosity.

τ = µ

(
∂u
∂y

)
, (1.1)

where τ , µ , and ∂u
∂y are shear stress, viscosity and the velocity gradient, respectively. The

blood depicts the Newtonian nature when it flows through the larger diameter arteries (>

1mm) at, the higher shear rates (about 100/sec).

1.2.4 Non-Newtonian Fluid

Non-Newtonian fluids are a class of fluids that do not obey the linear relationship between
the shear stress and strain rate, characteristic of Newtonian fluids. The fluid’s viscosity is
given by µ , which is treated as apparent viscosity. Non-Newtonian fluids exhibit varying
viscosity under different conditions, making their flow behaviour more complex and diverse.

Some of the non-Newtonian fluid models to depict the blood characteristics are listed:

1.2.4.1 Power-Law Fluid

The mathematical model for the power law model is given as follows:

τ(
∂u
∂y

) = m
(

∂u
∂y

)n−1

, (1.2)

where, m and n represent the flow consistency and behaviour index, respectively.

• If n < 1, the fluid demonstrates shear-thinning behaviour, characterized as a pseudo-
plastic fluid. In this case, the apparent viscosity decreases as the shear rate increases.

• If n = 1, the fluid becomes the Newtonian fluid.

• If n > 1, the fluid exhibits the shear thickening property and is known as dilant fluid,
in which the apparent viscosity increases with enhancement in the shear rate.
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1.2.4.2 Casson Fluid

The rheological equation of state for incompressible flow in the context of the Casson fluid
model is expressed as follows:

τ
∗
i j =


2
(

µ∗
b +

p∗y√
2π∗

)
e∗i j, π∗ > π∗

c ,

2
(

µ∗
b +

p∗y√
2π∗

c

)
e∗i j, π∗ ≤ π∗

c ,
(1.3)

where π∗ = e∗i j.e
∗
i j represent the multiplication of the deformation rate with itself , µ∗

b signi-
fies the viscosity of the non-Newtonian fluid, p∗y represents the yield stress of the fluid, and
π∗

c denotes a critical value derived from the non-Newtonian model.
Equation (1.3) converted to the following form when π∗ ≤ π∗

c :

τ
∗
i j = 2µ

∗
b

(
1+

1
β1

)
e∗i j, (1.4)

where β1 =
µ∗

b

√
2π∗

c
p∗y

denotes the Casson fluid parameter.
The nine quantities of rate strain components e∗i j(i, j = r,θ ,z) may be arranged as fol-

lows:

e∗ =

e∗rr e∗rθ
e∗rz

e∗
θr e∗

θθ
e∗

θz

e∗zr e∗zθ
e∗zz

 (1.5)

Similarly the stress comonents τ∗i j(i, j = r,θ ,z) may be arranged as follows:

τ
∗ =

τ∗rr τ∗rθ
τ∗rz

τ∗
θr τ∗

θθ
τ∗

θz

τ∗zr τ∗zθ
τ∗zz

 (1.6)

1.3 Mathematical Modeling

Mathematical modelling constitutes a precise method for describing real-world phenomena
in the language of mathematics. These models are constructed based on a foundation of
knowledge about the system and can be categorized as (i) Experimental, (ii) Theoretical,
or (iii) a combination of both experimental and theoretical approaches. The relationships
among the quantities employed in these models reflect essential phenomena relevant to the
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intended purposes and are expected to hold true under diverse circumstances. A comprehen-
sive comprehension of physiological systems empowers researchers to formulate mathemat-
ical models, enabling predictions about the system’s behaviour under specific assumptions,
utilizing carefully formulated concepts and data. Given biological organs’ irregular and in-
tricate shapes, explaining them accurately through mathematical means is challenging. In
such instances, specific mathematical assumptions become necessary, guided by the inherent
nature of the problem and justified within the research context.

1.3.1 Governing Equations of Fluid Dynamics

1.3.1.1 Continuity Equation or Conservation of Mass

The principle of the conservation of mass postulates that mass cannot be generated nor oblit-
erated within an enclosed system. The aggregate mass within such a closed system remains
constant over time. This concept is expressed mathematically through the equation of con-
tinuity, which asserts that the augmentation of mass within a closed surface is equivalent to
the net mass flows into or out of that system.

∂ρ

∂ t
+∇ · (ρV) = 0, (1.7)

where, ρ,V = (u,v,w) and ∇ are the density of the fluid, velocity vector and vector
differential operator, respectively.

1.3.1.2 Conservation of Momentum

Every fluid particle at rest or in motion obeys Newton’s second law of motion, which states
that the time rate of change of momentum equals the external forces. The movement of the
fluid is explained by the Navier-stokes equations, which are derived from the principle of
Newton’s second law of motion. The mathematical equation in the vector notation is written
as:

ρ

(
∂V
∂ t

+(V ·∇)V
)
=−∇p+µ∇

2V+ρF, (1.8)

where, ∇p,F and ∇2 are pressure gradient, external forces and Laplacian operator, re-
spectively.

1.3.1.3 Conservation of Energy

The principle of energy conservation is a fundamental idea that the total energy within a
closed system remains constant if no external work is applied to the system and no losses
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occur due to friction, viscous dissipation, or other dissipative phenomena. It asserts mechan-
ically that the rate of change of fluid energy inside a given volume V is equal to the negative
outward flow of energy plus the work performed by different forces such as body forces,
surface forces, thermal conduction, and chemical processes, if applicable. The following is
the mathematical depiction of energy conservation for an incompressible fluid:

ρCp

(
∂T
∂ t

+(T ·∇)T
)
= κ∇

2T +
∂Q
∂ t

. (1.9)

1.3.1.4 Conservation of Concentrated Species

Mass transfer is an essential phenomenon that is crucial for the transportation of mass from
one location to another. It serves as a fundamental cornerstone within the domain of trans-
port phenomena. When the principle of mass conservation is applied to a fluid with variable
density, particularly when the fluid consists of two or more distinct fluids, it becomes nec-
essary to extend this principle to the discrete constituents of the mixture. This extension
allows for the application of mass transfer theory to compute the mass flux within the sys-
tem and the distribution of species across both temporal and spatial dimensions within the
system. The mathematical expression for the law of concentration conservation is expressed
as follows:

∂C
∂ t

+(C ·∇)C = DB∇
2C+Rc, (1.10)

where C,DB and Rc represent the concentrations of components in the mixture, molecular
diffusivity, and the chemical reaction parameter, respectively.

1.4 Dimensionless Parameter

Dimensionless parameters, also known as dimensionless numbers, represent physical quan-
tities that illustrate the relationships among various variables used within a system. Unlike
regular physical quantities, these parameters lack specific units. Scientists and engineers
find them invaluable as they enable comparisons across different phenomena, eliminating
the need to consider specific measurement units. Consequently, several dimensionless pa-
rameters exist to assist in rescaling problems as necessary. In this discussion, we will provide
a brief overview of some of these parameters:

1.4.1 Reynolds Number (Re)

The Reynolds number, a dimensionless quantity, is defined as the ratio of inertial to vis-
cous forces. This parameter is instrumental in predicting the flow regime, differentiating
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between laminar and turbulent flows. In cases of low Reynolds numbers, the flow exhibits
a laminar nature, where viscous forces prevail. Conversely, the flow becomes turbulent at
higher Reynolds numbers, indicating the dominance of inertial forces. Mathematically, the
Reynolds number is defined as follows:

Re =
inertial forces
viscous forces

=
ρvd
µ

, (1.11)

where, v is the fluid velocity, d is the charaacteristic lenght, ρ and µ represents the fluid
density and viscosity, respectivley.

1.4.2 Prandtl Number (Pr)

The Prandtl number is a dimensionless parameter that quantifies the relationship between a
fluid’s momentum and thermal diffusivity. It is mathematically represented as:

Pr =
µCp

κ
. (1.12)

In this equation, Cp represents the specific heat capacity at constant pressure, and κ denotes
the thermal conductivity of the fluid.

1.4.3 Brinkmann Number

The Brinkmann number signifies the correlation between heat transferred through molecu-
lar conduction and the heat generated by viscous dissipation. It operates such that a higher
Brinkmann number elevates the fluid temperature due to heat generation from viscous dis-
sipation, as described by the equation:

Br =
µv2

κ(Tw −T0)
, (1.13)

where Tw and T0 represent the temperatures at the walls and the bulk temperature of the
fluid, respectively.

1.4.4 Nusselt Number

The Nusselt number is a dimensionless parameter employed in heat transfer analysis to
quantify the relationship between convective and conductive heat transfer within a boundary
layer. Studying the Nusselt number holds significant value for researchers and scientists,
providing insights into the blood flow patterns that directly impact heat transfer within blood
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vessels.
Nu =

h
κ/L

=
hL
κ
, (1.14)

where, h is the convective heat transfer coefficient.

1.4.5 Sherwood Number

Sherwood number is analogous to Nusselt number and is defined as the ratio of the mass
transfer from convection to mass transfer by diffusion. This parameter holds significant
relevance in biological contexts, elucidating the mass exchange between fluid and solid
surfaces, which is crucial for studying the transportation phenomena of nutrients and other
substances across biological membranes.

Sh =
h

DB/L
=

hL
DB

, (1.15)

where, h is the convective mass transfer coefficient and DB is the mass diffusivity.

1.5 Pathological Condtions

1.5.1 Cardiovascular Disease (CVD)

Cardiovascular disease (CVD) is a major public health concern due to its high morbidity and
mortality rates [19]. This rates upshots in both developed and developing countries due to
obesity and poor lifestyle. CVD encompasses a wide range of disorders, including cardiac
muscle and vascular system diseases. It is widely recognised that arterial pathologies arise
due to the degradation mechanisms involving cholesterol, lipoproteins, and diverse chemical
components. These processes predominantly occur at the curvatures or bifurcation points of
the arterial wall. Many researchers pointed out that hemodynamic factors play a significant
role in the formation and progression of these diseases. Walsh and McLachlan [20] ex-
plained that stenosis and thrombosis result from vascular injury and inflammation. The clot
develops due to internal damage to the arterial lumen, and additional clot formation results
in stenosis or emboli. The shear stress and hemodynamic parameters affecting stenosis and
thrombosis were investigated by Strony et al. [21]. They found that the shape of stenosis had
a significant impact on platelet activation and thrombosis development in a diseased artery.
Tanveer et al. [22] investigated the MHD (magneto hydrodynamics) Jeffery nanofluid in
curved channel with convective boundary conditions. Ahmed and Nadeem [23] analysed
the shape effect of copper nanoparticles through curved stenosed artery. The study con-
ducted by Shahzadi and Kousar [24] focused on the development of a mathematical model
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for analysing the behaviour of a bifurcated stenosed artery, with particular emphasis on in-
corporating slip effects into the model. The research findings indicated that the angle of
bifurcation played a significant role in improving the distribution of shear stress within the
main artery. Conversely, the daughter artery exhibited a contrasting pattern, with a decrease
in shear stress as the bifurcation angle increased.

1.5.2 Magnetohydrodynamic (MHD)

MHD (magnetohydrodynamic) is a mathematical-physical framework encompassing a broad
spectrum of physical phenomena, from liquid metal to space plasma. When a conductor
moves into a magnetic field, the magnetic field is disturbed, resulting in an induced electric
current. As a result, this action produces an internal magnetic field in the conductor that
resists the external magnetic field. Conversely, when the magnetic field encourages the con-
ductor to move in and out, the magnetic field is amplified. Reddy et al. (2016) interlinked the
study of MHD and nanofluid on the boundary layer problem. They examined the effect of
different shapes and size parameters of nanofluid on the boundary layer problem by consid-
ering the viscosity and conductivity as the function of the volume fraction of nanoparticles.
Changdar and De [25] evaluated the discrete model on irregularly shaped stenosis artery
to investigate the effect of gold nanoparticles on MHD blood flow. MHD blood flow was
examined by Alghamdi et al. [26] using two parallel channels that resembled the microcir-
culatory system. They employed Cu/blood and Cu-Cuo/blood hybrid nanofluid that can be
used for drug delivery in medical procedures. Sharma et al. [27] took into account MHD
two-phase blood flow by looking at the core and plasma regions. They discovered that wall
permeability and curvature increase the likelihood of atherosclerosis development, but heat
source reduces it. Kumawat et al. [28] further extended the study by examining the entropy
generation on the MHD two-phase blood with heat and mass transfer.

1.5.3 Electrokinetics

Electrokinetics refers to the phenomenon wherein particles are propelled in response to elec-
trical potential differences. Electroosmosis is an electrokinetic phenomenon that arises from
applying an external electric field to a charged surface. The flow of an electrically conduc-
tive fluid within the blood vessels establishes a net charge at the vessel walls. This, in turn,
leads to the development of an opposite charge due to the principle of electro-neutrality
within the electrical double layer in close proximity to the walls. The investigation con-
ducted by Mekheimer et al. [29] focused on analysing the impact of electroosmotic and
bifurcation effects on the hemodynamic flow in a bifurcated artery with stenosis along the
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parent artery. Hybrid nanofluid flow through a diseased artery with aneurysmal and stenosed
segments at the walls was discussed by Abdelsalam et al. [30]. The study’s findings indicate
a correlation between the nanoparticles shape factor and the fluid velocity profile. The study
suggests that this information can be applied to improve drug delivery systems. Akhtar et al.
[31] elucidated the electroosmotic modulated flow through an artery with multiple stenoses.
The dependence of trapping symmetry on the symmetry of multiple stenoses and regulat-
ing fluid velocity, temperature, and velocity through electro-osmosis are notable findings
in this study. In their research, Akram et al. [32] compared the Tiwari-Das model and
the modified Buongiorno model to investigate the electroosmotic nanofluid flow under peri-
staltic pumping. In their study, Khanduri et al. [33] conducted a sensitivity analysis on
the MHD fluid flow through a curved artery with stenosis at the wall and thrombosis at the
catheter. The WSS profile exhibits a negatively correlated with the Debye-Huckel parame-
ter and Hartmann number, whereas the impedance profile displays an opposite trend. The
EMHD micropolar fluid was analysed by Manchi and Ponalagusamy [34] in the context of
a bifurcated artery, taking into account the effects of Joule heating and body acceleration.
The topic of discussion by Zaher et al. [35] pertained to the flow of non-Newtonian fluid
with microorganisms in the presence of electroosmotic flow within the boundary layer. In
non-Darcian fluid, the velocity is observed to be lower when compared to that of Darcian
fluid.

1.5.4 Nanoparticles

Nanoparticles are microscopic particles with diameters ranging from 1 to 100 nanometers.
These nanoparticles can be split into two categories. The first one is those made out of
organic molecules such as liposomes, dendrites, etc. The second one is linked to inorganic
molecules like metals and metal oxides. Nanofluids are the suspension of the nano-sized
particles like liposomes, metals, nitrides, etc with the base fluid. This way it increases the
thermal conductivity and heat transfer rate of the nanofluids as compared to the base fluid.
By reengeering the nanoparticles properties, nanofluid can be used in any kind of diseases.
Due to its small size, high efficacy, and higher thermal conductivity several researchers are
paying more attention to it. Lee and Choi [36] were the first one to introduced the new class
of engineered fluid and coined it as nanofluids. The impact of copper (Cu) nanoparticles
with water as the base fluid on a stenosis artery with a permeable wall was studied by Akbar
and Butt [37]. They discovered that pure water had a higher velocity than Cu-water due
to the presence of Cu, which makes the arteries more flexible. Ahmed and Nadeem [23]
investigated the effect of different shapes of Cu nanoparticles on the catheterized stenosis
artery, such as bricks, cylinders, and platelets. They investigated the nanofluid’s velocity,
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impedance, and wall shear stress distribution using the perturbation approximation method
with the variant curvature parameter. Shahzad et al. [38] developed a mathematical model
to study the effect of entropy generation on the stenosis artery with permeable walls having
single-wall and multiple-wall carbon nanotubes inside the blood (base fluid). Gandhi et al.
[39] considered the bell-shaped artery to explore the effect of hybrid nanoparticles (Au-
Al2O3) on the blood flow subject to temperature-dependent viscosity. Further, Sharma et
al. [40] explored the entropy analysis on the MHD slip flow with tapered multiple-stenosis
artery.

1.5.5 Entropy

In the biological system, metabolism is the central process, providing the energy needed
to sustain life. The heat transfer and energy losses are incurred in this process causing
the disorders (entropy). The entropy generation is associated with the thermodynamic irre-
versibility process that is associated with the second law of thermodynamics. The mitigation
or reduction of the energy losses is desirable and one of the focus area in bio-inspired engi-
neering system. The entropy generation is classified in two physical framework: reversible
and irreversible process. The reversible process are those where change of entropy is zero
and non-zero change in entropy signifies the irreversible process. Although, all the pro-
cesses that occurs in nature are irreversible. Several factors associated in the biological
process for production of entropy such as (viscosity) fluid friction, exposure to radiation
and magnetic field (associated with iron particle present in hemoglobin molecule), electric
field (associated with ions), etc. Bejan [41] pioneered the entropy analysis by studying the
four fundamental way of heat conductive process. According to their study the thermal ef-
ficiency of the system can be optimized by reducing the overall entropy. Moreover, they
concluded that the viscous dissipation and heat transfer were the crucial one for entropy
generation in the system. Aoki [42] investigated the human body’s entropy production at
the basal conditions and calculated using the energetic data obtained from the respiration
calorimeter. They determined that the impacts of the forced air current and clothes did not
influence entropy creation. It’s conceivable that there are physiological systems that can
keep the body’s entropy production at constant levels. For the analysis of entropy produc-
tion utilising a ferromagnetic nanofluid, Akbar and Butt [43] employed the mathematical
model of composite stenosis arteries with permeable walls. Gandhi et al. [44] took into
account the various nanoparticle shapes effect on the multi-stenosed artery exposed to heat
radiation to conduct their entropy study. Further theoretical investigation of the MHD two-
phase across a permeable curved artery with varying viscosity and radiation was reported by
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Kumawat et al. [28]. They found that arterial wall permeability and curvature are the most
critical risk factors for atherosclerosis.

1.5.6 Two-Phase Blood Flow

Blood flow shows various features; one of its basic characteristics is the volume content of
erythrocytes in the blood (hematocrit level). The blood rheological properties vary both in
vivo and in vitro analysis as explained by:

1. Fåhræus Effect This phenomenon illustrates that blood viscosity diminishes in smaller
blood vessels relative to larger ones, occurring in vessels larger than capillaries but
smaller than major arteries or veins. It clarifies that the hematocrit level decreases
when blood flows from wider-diameter vessels to narrower ones.

2. Fåhræus-Lindqvist Effect This phenomenon pertains to the reduction in blood vis-
cosity observed in minuscule vessels like capillaries, where the diameter matches or
is smaller than that of red blood cells. In these tiny vessels, the small size of red blood
cells causes them to migrate towards the vessel wall, creating a central flow primarily
composed of plasma with fewer red blood cells. As plasma has lower viscosity than
whole blood, this alignment substantially decreases blood viscosity within these small
vessels.

In small blood vessels, the Haynes [45] marginal theory elucidates the two-phase nature
of blood flow. According to this theory, in two-phase blood flow, red blood cells (RBCs)
tend to accumulate at the centre of the vessel, while plasma, devoid of RBCs, gathers at
the vessel’s periphery. Several mathematical models have been developed to investigate
this phenomenon. Chebbi [46] expanded upon Haynes’ work by directly comparing ex-
perimental data without adjusting any parameters for computation. His study sheds light on
decreased apparent viscosity, reducing microvascular resistance and, subsequently, lowering
blood pressure.

1.6 Methodology

Blood flow dynamics are primarily governed by the non-linear Navier-Stokes equations,
constituting a set of complex partial differential equations. Due to their inherent non-
linearity and the coupling of equations, deriving analytical solutions for these equations
proves to be a formidable challenge. Therefore, numerical methods are employed as a reli-
able means of providing solutions to the governing equations.
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1.6.1 Finite Difference Method (FDM)

In pursuing numerical solutions for the Navier-Stokes equation, the continuous data inher-
ent in the exact solutions of partial differential equations (PDEs) are converted into the
discretized form. The finite difference method approximates derivatives using finite differ-
ence equations derived from truncated Taylor series expansions. The endeavour to solve
differential equations using difference equations was first undertaken by Euler. Today, with
the advent of high-speed computers, sophisticated schemes have been developed to address
the intricacies associated with solving nonlinear hydrodynamic equations and their corre-
sponding boundary conditions. These advanced methods aim to minimize the error in the
approximate solutions to fulfil the stability criteria, ensuring accuracy and reliability in com-
putational fluid dynamics simulations.

Its ability to provide numerical solutions to a wide array of differential equations makes
it an indispensable tool in the realm of computational science and engineering. In FDM, the
spatial and time derivatives (if applicable) are finitely divided into grid/nodal points. The
distance between the consecutive grid points is the step size, and the total number of grid
points varies according to the step size and length of the domain into consideration. The
finite difference method is applied to discretize the required differential equation at these
grid points using Taylor’s series expansion. The Taylor’s series expansion of wi+1, j at the
point (i, j) with step size of ∆x is written as follows-

wi+1, j = wi, j +

(
∂w
∂x

)
i, j

∆x+
(

∂ 2w
∂x2

)
i, j

(∆x)2

2!
+

(
∂ 3w
∂x3

)
i, j

(∆x)3

3!
+ . . . , (1.16)

From the equation (1.16), the first derivatice at (i, j) can be written as -

(
∂w
∂x

)
i, j

=
wi+1, j −wi, j

∆x︸ ︷︷ ︸
Finite-diffrence representation

−
(

∂ 2w
∂x2

)
i, j

(∆x)
2!

−
(

∂ 3w
∂x3

)
i, j

(∆x)2

3!
− . . .︸ ︷︷ ︸

Truncation error

, (1.17)

and, (
∂w
∂x

)
i, j

≈
wi+1, j −wi, j

∆x
, (1.18)

where, the equation (1.18) is the first-order accurate with Taylor’s series. The other repre-
sentation for first-order differential equations is :
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(
∂w
∂x

)
i, j

=


wi+1, j−wi, j

∆x +O(∆x) Forward Difference,
wi, j−wi−1, j

∆x +O(∆x) Backward Difference,
wi+1, j−wi−1, j

2∆x +O(∆x)2 Central Difference.

(1.19)

Using the Taylor’s series, the second order derivative
(

∂ 2w
∂x2

)
i, j

can also be derived as:(
∂ 2w
∂x2

)
i, j

=
wi+1, j −2wi, j +wi−1, j

(∆x)2 +O(∆x)2. (1.20)

In a similar manner, higher-order derivatives may be ascertained via Taylor’s series ex-
pansion. After implementing the finite difference scheme in place of the derivative at dis-
crete grid points, a system of algebraic equations emerges, which can be resolved using
the tridiagonal matrix algorithm (TDMA) to obtain numerical solutions at these grid points.
If the system of algebraic equations exhibits nonlinearity, the Newton-Raphson method is
employed to address the corresponding equations, followed by the utilization of TDMA to
procure numerical solutions.

1.6.1.1 Crank-Nicolson Method

The Crank-Nicolson method and its modified versions play a crucial role in CFD as a promi-
nent numerical technique for obtaining finite-difference solutions to the boundary layer
equations. This numerical technique, well-known for its numerical stability, was first in-
troduced during the mid-20th century by John Crank and Phyllis Nicolson.

To elucidate the fundamental methodology of the Crank-Nicolson method, this discus-
sion delves into the numerical solution of heat equations along with their corresponding
boundary conditions.

∂w
∂ t

=
∂ 2w
∂x2 , (1.21)

where, the initial and boundary conditions are given as
w(x,0) = sin(πx),
∂w
∂x = πe−π2t for x=0,

w(x, t) = 0. for x=1.

(1.22)

The exact solution of the equation (1.21) with initial and boundary conditions (1.22) is
expressed as w(x, t) = sin(πx)e−π2t . The right-hand side (RHS) of the equation (1.21) is



1.6. Methodology 17

discretised using the spatial difference in terms of averaged properties of time levels n and
n+1. The discretised form is given as:

wn+1
i −wn

i
∆t

=
1
2

[
wn+1

i+1 −2wn+1
i +wn+1

i−1

(∆x)2 +
wn

i+1 −2wn
i +wn

i−1

(∆x)2

]
. (1.23)

Let r = ∆t
2(∆x)2 , then the equation (1.23) becomes

−rwn+1
i+1 +(1+2r)wn+1

i − rwn+1
i−1 = rwn

i+1 +(1−2r)wn
i + rwn

i−1. (1.24)

The equations on the RHS are known and subsequently refined by incorporating bound-
ary conditions. The resulting equations formed a tridiagonal structure, allowing for the
straightforward solution of wn+1

i by employing the Tridiagonal Matrix Algorithm (TDMA)
approach.

1.6.1.2 Method of Lines (MOL)

The MOL is a powerful technique that transforms the PDE with two independent vari-
ables into the system of adjoint ODE in one of the independent variables. Especially in
the parabolic equations, the spatial variable is discretized using the finite difference method
while leaving the other spatial partial derivative or time partial derivative in continuous form.

Furthermore, the initial condition stated in equation (1.22) is rewritten in discrete form
to be compatible with equation (1.21) as follows

The equation (1.21) after discretization in the spatial variable (x) takes the adjoint system
of ODEs of the first order at ith line.

dwi

dt
=

wi+1 −2wi +wi−1

(∆x)2 for i = 2 to N. (1.25)

1. At the first straight line i = 1 ,

dw1

dt
=

w2 −2w1 +w0

(∆x)2 . (1.26)

By introducing the BC at line i = 1, equation (1.26) becomes

dw1

dt
=

2w2 −2w1 −2∆xπe−π2t

(∆x)2 . (1.27)

2. At the second straight line i = 2 ,
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dw2

dt
=

w3 −2w2 +w1

(∆x)2 . (1.28)

3. At the straight line i = N ,

dwN

dt
=

−2wN +wN−1

(∆x)2 . (1.29)

4. At the straight line i = N +1 ,
wN+1 = 0. (1.30)

The resultant system of ODEs can be solved by the RK-4 method, Euler, etc. The
solution of the equation (1.21) with corresponding BCs (1.22) with both the method are
shown in figure 1.2.
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Figure 1.2: Solution of heat equation using Crank-Nicolson and MOL method

1.7 Research Gaps

As per the literature mentioned earlier and from many research articles, it is widely ac-
knowledged that Cardiovascular Disease (CVD) remains a significant global health concern,
leading to substantial morbidity and mortality. Its occurrence is frequently attributed to var-
ious factors, notably high blood pressure, elevated cholesterol levels, smoking, obesity, and
diabetes. CVD encompasses a spectrum of disorders affecting the heart and blood vessels,
including conditions such as heart disease, stroke, and heart failure.
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Despite considerable research efforts in the biomedical field, particularly in investigat-
ing hemodynamic flow through stenosed arteries as documented in prior literature, the depth
of knowledge in this area still needs to be improved. Developing theoretical or experimen-
tal models becomes imperative to comprehensively grasp the dynamic behaviour of blood
flow. In this thesis, we have formulated mathematical models to explore the rheology of
blood, incorporating key physical parameters such as magnetic field intensity, Joule heat-
ing, thermophoresis, Brownian motion, and magnetic drug targeting. It has been observed
that certain aspects of blood flow have not been previously investigated:

1. Less attention has been given to the flow with hybrid nanofluid (Au-GO/Blood) flow
through curved catheterized stenosed artery with thrombosis.

2. Earlier work has not paid much attention to the entropy generation optimization for
the electroosmotic MHD flow on the catheterized stenosed artery with thrombosis.

3. Not much attention has been given to the hybrid nanofluid flow through the stenosed
bifurcated artery containing gyrotactic microorganisms.

4. Less attention has been paid to the entropy generation analysis for the ternary hybrid
nanofluid flow through the bifurcated artery with stenosis and aneurysm.

5. The effect of thermophoresis, Brownian motion and activation energy on the Two-
phase blood model has not been covered so much.

6. Less attention has been given to magnetic targeting drug delivery on the two-phase
blood flow model.

This thesis presents a comprehensive computational model that investigates blood flow
dynamics within arteries across various physiological scenarios. The research focuses on
understanding hemodynamic flow within arteries affected by different pathological condi-
tions, including stenosis, thrombosis, and aneurysm. The study delves into the intricate
behavior of blood, encompassing both Newtonian and non-Newtonian properties. The Cas-
son fluid and power law fluid models have been employed to account for non-Newtonian
characteristics. To underscore the varying viscosity of blood, various models are employed,
such as hematocrit-dependent and temperature-dependent viscosity models. Additionally,
the study explores the influence of nanoparticle shape and size on stenosed arteries, an area
with limited existing research. Furthermore, the study includes an examination of a two-
phase model. The hemodynamic flow model through diseased arteries is solved using the
Method of Lines (MOL) technique, which has not been previously explored in this context.
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This technique is valuable due to its robustness and effectiveness in solving the partial differ-
ential equations (PDEs) arising from the governing equations of the mathematical models.

The presented problem in the thesis are the theoretical model for which the experi-
ment should be carried out to validate with the current model. Some of the findings from
this thesis are compared with previous literature experiments, such as the utilization of the
hematocrit-dependent viscosity model. In Chapters 2 and 3 of the thesis, a decreasing pat-
tern in the velocity profile has been observed alongside an enhancement in the hematocrit
parameter. This phenomenon is elucidated by the findings of [47] work, wherein it was
demonstrated that viscosity increases with higher levels of hematocrit in the blood. Chap-
ter 6 focuses on studying magnetic drug targeting in diseased arteries. Experimental data
provided in [48] demonstrates that both fluid and particle velocity profiles decrease with an
increase in the magnetic field parameter. Our computed results show similar outcomes.

The various types of nanoparticles, such as Au, GO, Al2O3, and CuO, have been se-
lectively utilized based on their distinct physical properties. Au nanoparticles are favored
for their inertness, low toxicity, and ease of fabrication, while GO nanoparticles exhibit
potential in biomedical treatments. The incorporation of aluminum oxide nanoparticles in
this study offers numerous applications in biomedicine and biosensing. Surface engineering
techniques can enhance their stability, biocompatibility, and reactivity, rendering them ef-
fective for DNA sensing. The entropy generation has been studied in the present work that
can be useful in the biomedical field showing the intricate complexities and behaviours in-
hernt in the biological system. Thus, can be utilized as a metric to quantitatively assesss the
intrincsic randomness and disorder manifesting within the system. This research may also
benefit radiological investigations like magnetic resonance angiography (MRA) for detect-
ing arterial abnormalities. Thus, this work address the existing knowledge gaps and deepen
our comprehension of magnetic drug targeting mechanisms within the complex dynamics
of stenosed arteries. By doing so, we aim to provide valuable insights into biomedical fluid
dynamics.
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Chapter 2

Hall and Ion Slip Effects on Hybrid Nanoparti-
cles (Au-GO/Blood) Flow Through a Catheterized
Stenosed Artery with Thrombosis 1

2.1 Introduction

According to WHO statistics [19] cardiovascular diseases are responsible for morbidity and
mortality across the world. This led to an increasing trend to know the pathological blood
flow behaviour in arteries, veins, and cardiovascular systems. Atherosclerosis is a condition
that occurs due to the accrual of cholesterol and lipo-proteins inside the artery, leading to
the formation of lesions that reduce blood flow. When this lesion further grows and narrows
the blood flow. Then this term is known as stenosis. Deep vein thrombosis is a condition
in which blood clots form in the veins that include areas like the lower legs, pelvis, and
thighs, although blood clots can be formed at any other place in the body. The primary issue
is the detachment of this clot and its possibility to move to different body organs leading
to severe organ damage, renal failure, heart attack, strokes etc. The formation of stenosis
and thrombosis (blood clot) are the result of vascular injuries. Doffin and Chagneau [49]
developed an experimental model to demonstrate the oscillatory flow of blood between the
stenosis and the clot model. In this model, he considered axisymmetrical stenosis with
a blood clot at different positions on the centre of a small metallic rod. He concluded
that the steady streaming could be a possible mechanism for the clotting effect that occurs
due to the contact of the red blood cell and platelets with the walls or the obstacle at the
centre. Vanherweghem [50] investigated that 35% of patients receiving subclavian dialysis
catheters are more likely affected by stenosis or thrombosis in hemodialysis. In subclavian
dialysis, oedema has occurred on the hand of the patient, leading to stenosis or thrombosis,

1A considerable part of this chapter is published in Proceedings of the Institution of Mechanical Engineers,
Part C: Journal of Mechanical Engineering Science, 237(10), 2256–2278, 2023.
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which can be removed by giving an anticoagulant with heparin. Walsh and McLachlan
[20] studied that the endothelial cells exposed to low shear stress are responsible for these
diseases. Elnaqeeb et al. [51] explored the effect of Cu nanoparticles on the catheterized
stenotic artery with a varying shape parameter for the stenosis. Ahmed and Nadeem [52]
investigated the Carreau nanofluid flow across an inclined artery with overlapping stenosis
using the "homotopy perturbation" approach. Bhatti et al. [53] created a mathematical
model of a blood clot and investigated the effects of viscosity and heat transfer. Saleem et
al. [54] discussed the hemodynamic flow over the catherized artery having mild stenosis
and clot at the center. Further, Akhtar et al. [55] examined the flow of Jeffery fluid within a
tube with multiple thromboses to mimic the blood flow inside an artery. In this model, they
considered the Peristaltic motion and viscous dissipation effects. Akhtar et al. [31] studied
the electroosmotic effects on the stenosed artery. They considered the Casson flow model,
and their study revealed that the enhancement in flow velocity is low for non-uniform shapes
compared to uniform-shaped multiple stenoses. Further, Saleem et al. [56] studied the effect
of Joule heating on the electro-osmotically flow over the symmetric and non-symmetric
stenosed artery. Zidan et al. [57] explicated a study to show the effect of entropy generation
in the artery having multiple stenoses at the outer wall and a thrombus at the centre. Further,
Saleem et al. [58] explored the irreversibility impact of entropy by taking into account
single-wall and multiple-wall carbon nanotubes inside an artery with thrombosis.

The importance of nanoparticles in the field of biomedicine has been emphasised by a
combination of theoretical studies and empirical data. The studies shows the importance of
nanoparticles to enhance the administration of diagnostic and therapeutic substances. Thus,
numerous investigations have been conducted to explore molecular-level functionalities of
nanoparticles in the field of life sciences. Shahzadi and Nadeem [59] conducted a series
of studies to investigate the simulation of metallic nanoparticles located within eccentric
annuli, while being subjected to the effects of a radial magnetic field. Moreover, a compar-
ative analysis of copper nanoparticles was conducted in a separate study [60]. The study
specifically examined the slip effect in oblique cylinders. Furthermore, Shahzadi et al. [61]
conducted a study to examine the influence of different shapes of Ag nanoparticles, includ-
ing platelets, bricks, and cylinders, within a curved artery. The results indicated that there
was an increase in the velocity field as the curvature parameter was raised. In their study,
Kumar et al. [62] performed an investigation on the features of flow and heat transfer within
a porous medium, specifically focusing on the application of various hybrid nanofluids. On
the other hand, the study conducted by Imran et al. [63] centred on the analysis of the
flow of an incompressible Jeffrey nanofluid through a vertical tube. The results of their
study revealed a positive relationship between velocity and nanoparticle concentration with
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thermophysical parameters, while temperature showed a negative association. Jamil et al.
[64], employed Caputo-Fabrizio fractional derivatives to examine the flow characteristics of
Casson fluid within a constricted artery. The researchers observed that an increase in the
Hartmann number resulted in an elevation of the concentration of magnetic particles, conse-
quently leading to an augmentation of fluid viscosity and a decrease in fluid velocity. Hassan
et al. [65] conducted an independent study to examine the characteristics of the boundary
layer flow of nanofluid over a movable wedge. A decrease in the velocity field was observed
as the nanoparticle volume fraction increased. Among the other nanoparticles, gold nanopar-
ticles are proven to be helpful in biomedical treatment and diagnosis. Gold nanoparticles are
inert, making them compatible with biological systems, and their use in small amounts has
no noticeable adverse effects. Elnaqeeb et al. [66] analyzed the hemodynamic performance
of gold nanoparticles in the stenosed artery. They found that fluid velocity increases in the
Au blood model compared to TiO2 and Cu blood model. Further, Sarwar and Hussain [67]
investigated the effect of the gold nanoparticles shape on the stenosed artery and compared
the results with Cu and Al2O3-nanoparticles. Bhatti and Abdelsalam [68] investigated the
peristaltic flow with Tantalum (Ta) and Gold (Au) nanoparticles (NPs) in a symmetric chan-
nel under the influence of thermal radiation and magnetic field effect. They discovered that
the Tantalum and gold NPs size enhance the temperature profile. Khazayinejad et al. [69]
developed a mathematical model to study the peristaltic motion of graphene-blood nanofluid
in a wavy channel. Ocsoy et al. [70] created DNA-guided nanoparticles that are adsorbed on
the surface of GO (graphene oxide) and can be modified by changing their shape and size.
Some functional and biocompatible formations are Au-GO, Cu-GO, Ag-GO, etc. Kim et al.
[71] studied the Au-GO nanomaterial composite to develop a diagnostic technique for virus
detection. Kang et al. [72] formed the hybrid sheet of Au-GO nanoparticles to enhance the
photothermic effect helpful in cancer therapy.

Generally, Ohm’s law is neglected in the MHD flow due to the tenuous magnetic field.
However, the influence of Hall and ion slip cannot be disregarded in the presence of a strong
magnetic field. Blood contains ionized particles, and the existence of a strong electromotive
force creates the induced electric current across the applied electric field. The three crucial
factors that affect the ionised fluid are the magnetic force, the collision of the electron gener-
ating the Hall force, and the collision of the ions that produce the ion slip force. Mekheimer
and Kot [73] studied the Hall effect on the MHD flow of blood over mild stenosis by varying
the stenosis shape parameter. Using the implicit finite difference technique, Anika et al. [74]
investigated the Hall and ion slip effects on the MHD Micropolar fluid on a vertical plate.
Further, Mishra and Ghosh [75] introduced a mathematical framework to comprehend blood
circulation dynamics from the parent artery to the capillary network, considering different
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entry angles. The primary focus of the investigation revolved around the phenomenon of
hematocrit reduction via plasma skimming and the mass flux occurring within the capillary
system. The study’s results highlighted that the lowest quantity of red blood cells passing
from the main artery to the smaller capillary is observed when both vessels are positioned
at a right angle. Ramzan et al. [76] investigated the three-dimensional nanofluid flow by
considering the effect of Arrhenius activation energy, Cattaneo-Christov heat flux, and Hall
and ion slip. Recently, Das et al. [77] used the Casson fluid model to show the rheology
of blood, taking silver and aluminium oxide nanoparticles in the base fluid (blood) to con-
struct a homogeneous ionised blood system and examine the Hall and ion slip effects. In
the human circulatory system, blood flow is greatly influenced by pressure, viscosity, and
other external or internal factors. The hemodynamic characteristic of blood continuously
changes due to its shear-thinning property. As a result, blood viscosity cannot be considered
to remain constant. Syndar [78] experimented on the lizard to study the influence of tem-
perature and hemodynamic viscosity. The lizard was used for this experiment because it is
easier to perceive temperature fluctuations in the lizard’s body. Mishra et al. [75] developed
a mathematical model by considering the Casson fluid to study the deprivation of hemat-
ocrit in the blood by the plasma skimming phenomena. Shit et al. [79] analytically solved
the governing equations for blood flow through a stenotic artery with hematocrit dependent
viscosity. They found that the composition of RBCs generates non-constant blood viscosity,
which is reflected by the function of erythrocytes. Tripathi and Sharma [80] explored the
effect of inclination with hematocrit dependent viscosity on the heat and mass characteristic
of the MHD-blood flow. In addition, Kumawat et al. [12] conducted a mathematical study
to investigate the influence of hematocrit dependent viscosity on two-phase blood flow. Ac-
cording to their findings, radial curvature raises the risk of atherosclerosis, whereas heat
radiation lowers it.

The motivation of the present study is to analyze the effect of Hall and ion slips on the
MHD blood flow through a multiple stenotic artery with clot at its center. The curvilinear
coordinate system is adopted and the hematocrit dependent viscosity is considered to rep-
resent the more realistic situation of blood flow. The Au nanoparticles are utilized due to
the their inert nature, low toxicity and easy fabrication property along with GO nanopar-
ticles that can be applied in biomedical treatment. The present study may be helpful in
radiological investigations such as magnetic resonance angiography (MRA) to capture the
abnormalities of the artery. The effects of various pertinent parameter like radiation, Joule
heating along with different shapes of nanoparticles are studied using the numerical tech-
nique. The governing equations representing the mathematical model is discretized and then
solved by Crank-Nicolson method. The present investigation can help scientist and clinical
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researchers to understand the effects of these parameter on stenotic artery with thrombosis.

The novelty of the present work includes:

• The influence of (Au-GO/blood) hybrid nanoparticles on the diseased segments con-
taining both multiple stenosis and thrombosis has been discussed in this study.

• The hematocrit-dependent viscosity model and combined effects of thermal radiation,
Joule heating, Hall and ion slip effect have been considered on the curved artery.

• The effect of arterial curvature and body acceleration in the velocity profile has been
analyzed.

2.2 Mathematical Formulation

2.2.1 Geometry of the Model

Consider the flow of hybrid nanoparticles (Au-GO) in an incompressible, laminar blood
flow inside two coaxial curved tubes of length L and radius R0 from the point O. The flow
is assumed to be Newtonian, and the curvilinear coordinate (r̃, θ̃ , z̃) is chosen as depicted in
figure 2.1. The flow is independent in θ direction due to axi-symmetry blood flow in the
artery. The magnetic Reynold is assumed to be small compared to the applied magnetic field
so that induced magnetic field can be neglected. The outer tube has stenosis of radius R∗(z̃),
whereas the inner tube contains a clot of radius R∗

1(z̃), and the mathematical expression for
stenosed artery is given as [40]:

R∗(z̃) =



R0 −2δ ∗

L0
(z̃−L0), d̃ ≤ z̃ ≤ d̃ + L0

2 ,

R0 +2δ ∗

L0
(z̃− d̃ −L0), d̃ + L0

2 ≤ z̃ ≤ d̃ +L0,

R0 +
δ ∗

L0
Sin(π(z̃− d̃)), d̃ +L0 ≤ z̃ ≤ d̃ +2L0,

R0, otherwise.

(2.1)

The geometry of the clot is given as [51]:

R∗
1(z̃) =

R0(c+σc exp(−π2

L2
0
(z̃− z̃d −0.5)2)), d̃ < z̃ < d̃ + 3L0

2 ,

cR0, otherwise.
(2.2)

Where, σ is the maximum height of the clot at the axial position z̃d , cR0 is the radius
of the inner tube with c << 1. In equation (2.1), δ ∗ represents the maximum height of the
stenosis, d̃ is the location of diseased segment.
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Figure 2.1: Diseased artery segment

2.2.2 Magnetohydrodynamics

Blood is the most complex biological fluid, comprising white blood cells, plasma, red blood
cells, and other ionic components. The presence of hemoglobin in red blood cells makes
it act like a magnetic fluid that may be regulated further using a magnetic field. Consider
a flow subjected to a radial magnetic field B = (0, R∗B0

r̃+R∗ ,0), where, B0 is constant. In the
presence of ion slip and the Hall effect, the generalized Ohm law is given as:

J = σhn f (E+q×B)− βe
R∗B0
r̃+R∗

(J×B)+
βeβi

B2
0
[(J×B)×B], (2.3)

where q,E, J,B,βi,βe denotes the velocity vector, the induced electric field vector, the
current density vector, the magnetic field vector, ion slip parameter and Hall effect parame-
ter.

The maxwell equations are given as [77]:

∇×E =−∂B
∂ t

, ∇ ·B = 0, ∇ ·J = 0. (2.4)
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Using the above equation in equation (2.3) yields [77]

(1+βeβi)Jz̃ +βeJr̃ = σhn f

(
Ez̃ + ũ

R∗B0

(r̃+R∗)

)
(2.5)

(1+βeβi)Jr̃ −βeJz̃ = σhn f

(
Er̃ − w̃

R∗B0

(r̃+R∗)

)
. (2.6)

Where, (ũ, ṽ, w̃) are velocity component, (Jr̃,Jθ̃
,Jz̃) are current density components, and

(Er̃,Eθ̃
,Ez̃) are electric field components in r̃-direction, θ̃ -direction and z̃-direction, respec-

tively. Assuming the induced magnetic field is very small which gives E = 0. In the absence
of external electric field, the expression for Lorentz force and current density as [77],[81]:

J×B =

(
−

σhn f B2
0R∗2(αeũ+βew̃)

(α2
e +β 2

e )(r̃+R∗)2 ,0,
σhn f B2

0(R
∗)2(βeũ−αew̃)

(α2
e +β 2

e )(r̃+R∗)2

)
, (2.7)

J ·J
σhn f

=
σhn f B2

0(R
∗)2(ũ2 + w̃2)

(α2
e +β 2

e ).(r̃+R∗)2 , (2.8)

where αe = 1+βeβi and βe denotes the Hall parameter.

2.2.3 Governing Equations

Subject to the above mention assumption with the MHD flow interaction, the resultant gov-
erning equations becomes [22],[82]:

Continuity
∂ ũ
∂ r̃

+
ũ

r̃+R∗ +
R∗

r̃+R∗
∂ w̃
∂ z̃

= 0. (2.9)

Momentum ( r̃-direction)

ρhn f

[
∂ ũ
∂ t̃

+ ũ
∂ ũ
∂ r̃

+
w̃R∗

r̃+R∗
∂ ũ
∂ z̃

− w̃2

r̃+R∗

]
=−∂ p̃

∂ r̃
+µhn f

(
∇

2ũ− ũ
(r̃+R∗)2 −

2R∗

(r̃+R∗)2
∂ w̃
∂ z̃

)

+

(
4
3

∂ ũ
∂ r̃

− 2
3

(
R∗

R∗+ r̃
∂ w̃
∂ z̃

+
ũ

R∗+ r̃

))
∂ µhn f

∂ r̃
−

σhn f B2
0R∗2(αeũ+βew̃)

(α2
e +β 2

e )(r̃+R∗)2 . (2.10)



28
Chapter 2. Hall and Ion Slip Effects on Hybrid Nanoparticles (Au-GO/Blood) Flow

Through a Catheterized Stenosed Artery with Thrombosis

Momentum ( z̃-direction)

ρhn f

[
∂ w̃
∂ t̃

+ ũ
∂ w̃
∂ r̃

+
R∗w̃

r̃+R∗
∂ w̃
∂ z̃

+
ũw̃

r̃+R∗

]
=−

(
R∗

r̃+R∗

)
∂ p̃
∂ z̃

+µhn f

(
∇

2w̃− w̃
(r̃+R∗)2

+
2R∗

(r̃+R∗)2
∂ ũ
∂ z̃

)
+

(
R∗

R∗+ r̃
∂ ũ
∂ z̃

+
∂ w̃
∂ r̃

− w̃
R∗+ r̃

)
∂ µhn f

∂ r̃
+g(ρβ )hn f (T̃ − T̃0)

+G(t̃)−
µhn f

K1
w̃+

σhn f B2
0(R

∗)2(βeũ−αew̃)
(α2

e +β 2
e )(r̃+R∗)2 . (2.11)

Temperature Equation

(ρcp)hn f

[
∂ T̃
∂ t̃

+ ũ
∂ T̃
∂ r̃

+
R∗

r̃+R∗ w̃
∂ T̃
∂ z̃

]
= κhn f ∇

2T̃ +
σhn f B2

0(ũ
2 + w̃2)

(α2
e +β 2

e )

(
R∗

r̃+R∗

)2

− 1
r̃+R∗

[
∂

∂ r̃
({r̃+R∗}qr)

]
. (2.12)

Where, ∇2 := ∂ 2

∂ r̃2 +
1

r̃+R∗
∂

∂ r̃ +
(

R∗

r̃+R∗

)2
∂ 2

∂ z̃2 .

The associate dimensional boundary conditions are:w̃ = T̃ = 0 at t̃ = 0,

w̃ = 0, T̃ = T̃w at r̃ = R∗(z̃) and r̃ = R∗
1(z̃).

(2.13)

The expression for axial pressure gradient is represented as:

−∂ p̃
∂ z̃

= A0 +A1 cos(ωpt̃), t̃ > 0. (2.14)

Where, ωp = 2π fp with fp as frequency, A0 and A1 represents the mean and pulsatile
component of pressure gradient, respectively. The extrinsic body force acting on the axial
direction is given by:

G(t̃) = B0 cos(ωqt̃ +ψ), (2.15)

where, ψ is the phase angle, ωq = 2π fq with fq as frequency and B0 as the amplitude for
body acceleration, respectively.
The hematocrit-dependent viscosity is considered in the model to account for the spatial
variation of RBC present in blood and it is represented as( see [11], [83],[84]):

µb f = µ f [1+β
∗
1 h(r̃)], (2.16)
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Where, h(r̃) = hm[1−( r̃
R0
)m], hm represent the maximum hematocrit with β ∗

1 as constant.
Table 2.1 represents the thermophysical parameters for nanofluid and hybrid nanofluid .
The radiative heat flux qr is defined as [85]:

qr =−4σe

3ke

∂ T̃ 4

∂ r̃
, (2.17)

where ke and σe are the mean absorption coefficient and the Stefan-Boltzmann constant.

Table 2.1: Thermophysical parameters of nanofluid and hybrid nanofluid

Properties Mathematical expression for nanofluid and
hybrid nanofluid

Viscosity µn f =
µb f

(1−φ1)2.5

µhn f =
µb f

(1−φ1)2.5(1−φ2)2.5

Density ρn f = (1−φ1)ρ f +φ1ρs1

ρhn f = [(1−φ2){(1−φ1)ρ f +φ1ρs1}]+φ2ρs2

Heat Capacity (ρCp)n f = (1−φ1)(ρCp) f +φ1(ρCp)s1

(ρCp)hn f = [(1−φ2){(1−φ1)(ρCp) f +φ1(ρCp)s1}]
Thermal Conductivity kn f

k f
=

ks1+(m−1)k f−(m−1)φ1(k f−ks1)

ks1+(m−1)k f+φ1(k f−ks1)
khn f
kb f

=
ks2+(m−1)k f−(m−1)φ2(k f−ks2)

ks2+(m−1)k f+φ2(k f−ks2)

where kb f
k f

=
ks1+(m−1)k f−(m−1)φ1(k f−ks1)

ks1+(m−1)k f+φ1(k f−ks1)

Electrical Conductivity σn f
σ f

=
σs1+(m−1)σ f−(m−1)φ1(σ f−σs1)

σs1+(m−1)σ f+φ1(σ f−σs1)
σhn f
σb f

=
σs2+(m−1)σ f−(m−1)φ2(σ f−σs2)

σs2+(m−1)σ f+φ2(σ f−σs2)

where σb f
σ f

=
σs1+(m−1)σ f−(m−1)φ1(σ f−σs1)

σs1+(m−1)σ f+φ1(σ f−σs1)

Thermal Expansion Coefficient βn f = (1−φ1)γ f +φ1βs1

βhn f = [(1−φ2){(1−φ1)β f +φ1βs1}]+φ2βs2

We assume the temperature differences within the flow are sufficiently small such that
T̃ 4 may be expressed as a linear function of temperature.

T̃ 4 = T̃0
3(4T̃ −3T̃0). (2.18)
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Making use of equation (2.18) in equation (2.17), we obtain

qr =−16σeT̃0
3

3ke

∂ T̃
∂ r̃

, (2.19)

2.2.4 Non-Dimensional and Mild Stenosis Simplification

The governing equations are transformed into non-dimensionalize form by using the non-
dimensionalize parameters discussed in the table 2.2. The non-dimensionalize form of dis-
eased artery is given as follows (see [2],[40], [51]):
Stenosis Region:

R∗(z) =



1−2δ (z−d), d ≤ z ≤ d + 1
2 ,

1+2δ (z−d −1), d + 1
2 ≤ z ≤ d +1,

1+δ sin(π(z−d)), d +1 ≤ z ≤ d +2,

1, otherwise.

(2.20)

Clot Region:

R∗
1(z) =

c+σc exp(−π2(z− zd−0.5
L0

)2), d < z < d +3/2,

c, otherwise.
(2.21)

Table 2.2: Dimensionless parameters

r = r̃
R0

z = z̃
L0

u = L0ũ
δ ∗U0

w = w̃
U0

T = T̃−T̃0
T̃w−T̃0

t = U0t̃
R0

Rc =
R∗

R0
p =

R2
0 p̃

µ f U0L0

δ = δ ∗

R0
M2 =

σ f B2
0R2

0
µ f

Gr = g(ρβ ) f R2
0(T̃w−T̃0)

µ f U0
βe = ωeτe

αe = 1+βeβi Pr = µ f Cp
κ f

Re = U0ρ f R0
µ f

Nr = 16σeT̃0
3

3κ f κe

Ec = U2
0

cp(T̃w−T̃0)
Br = EcPr = µ f U2

0
κ f (T̃w−T̃0)

Da = K1
R2

0
−−

Using the above non-dimensional parameters, neglecting the bar and assuming the as-
sumption of fully developed flow, mild stenosis (δ << 1) with O(1) = α = R0

L , the govern-
ing equations become:
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∂ p
∂ r

= 0, (2.22)

ρhn f

ρ f
Re

∂w
∂ t

=− Rc

Rc + r
∂ p
∂ z

+
µhn f

µ f

(
∂ 2w
∂ r2 +

1
r+Rc

∂w
∂ r

− w
(r+Rc)2

)
−
(

∂w
∂ r

+
w

Rc + r

)
mβ ∗

1 hmrm−1

(1−φ1)2.5(1−φ2)2.5 +
(ρβ )hn f

(ρβ ) f
GrT −

σhn f

σ f

(
Rc

r+Rc

)2(
αe

α2
e +β 2

e

)
M2w

+G(t)−
µhn f

µ f

w
Da

, (2.23)

(ρCp)hn f

(ρCp) f

κ f

κhn f
PrRe

∂T
∂ t

=
∂ 2T
∂ r2 +

1
r+Rc

∂T
∂ r

+
σhn f

σ f

κ f

κhn f

(
Rc

r+Rc

)2( Br
α2

e +β 2
e

)
M2w2

+
κ f

κhn f
Nr
[

∂ 2T
∂ r2 +

1
Rc + r

∂T
∂ r

]
. (2.24)

The associate boundary conditions are:w = T = 0 at t = 0,

w = 0, T = 1 at r = R∗(z) and r = R∗
1(z).

(2.25)

Figure 2.2: Various shapes of the Au-GO/blood hybrid nanoparticles

The non-dimensionalize formed for pressure gradient and body acceleration are given as
follows:
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−∂ p
∂ z = B1(1+ecos(c1t)), G(t) = B2 cos(c2t+χ), where B1 =

A0R2
0

µ f U0
,e= A1

A0
,B2 =

A0R2
0

µ f U0
,c2 =

ωqR0
U0

,c1 =
ωpR0

U0
.

The mathematical expression for important hemodynamical factors such as wall shear
stress, flow rate and resistive impedance are illustrated as [39]:

τw =−
(

∂w
∂ r

)
r=R∗

, (2.26)

Q f = 2π

∫ R∗

R∗
1

wrdr, (2.27)

λ =
L(−∂ p

∂ z )

Q f . (2.28)

2.3 Numerical Solution

2.3.1 Significance of Numerical Results

The governing equations (2.22) and (2.24) are non-linear coupled partial differential equa-
tions. In general, these equations don’t admit exact solutions except in a few simple cases.
Therefore, to solve these equations, various types of numerical methods have been designed.
The usage of such technique is easier, handy and most importantly accurate due to availabil-
ity of high speed computers and commercially available state of art softwares. As a result,
the numerical approach should be used to deal with these equations. The Crank-Nicolson
approach is an implicit strategy that has been proposed by various scholars in their research.
It is the combination of the forward and backward Euler scheme at the nth and (n+1)th level.
Furthermore, it is second-order convergent in both space and time. After discretization and
solving the resultant algebraic equations, we will get the velocity and temperature at the
nodal points. Figures 2.2 depicts the Various shapes of the Au-GO/blood hybrid nanoparti-
cles [86, 87].

Default values of parameters and thermodynamical properties of nanoparticles used in the
present study are depicted in table 2.3 and the table 2.4 respectively.

Table 2.3: Default values of dimensionless parameters

parameter B2 Da δ hm Gr Pr Nr Re M Rc Br βi βe e B1
Value 5 3 0.1 1 1 23 2 1 2 3 0.5 0.9 0.5 0.2 0.25
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Table 2.4: Thermophysical Properties

Thermophysical Properties Blood Gold Graphene
Density [ρ(Kg/m3)] 1063 19320 1800
Electrical Conductivity [σ(S/m)] 6.67×10−1 4.52×107 6.3×107

Thermal Expansion Coefficient [γ ∗10−5(K−1)] 0.18 1.4 28.4
Thermal conductivity [κ(W/mK)] 0.492 314 5000
Heat Capacity [cp(J/KgK)] 3594 129 717

2.3.2 Discretization of Governing Equations

The governing equations are discretized as illustrated below:
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The boundary and initial conditions associated with the governing equations are discretized
as follows:

wk+1
1 = 0, T k+1

1 = 1, wk+1
N+1 = 0, T k+1

N+1 = 1,w1
i = 0, T 1

i = 0. (2.31)

The domain is divided into N +1×M+1 grid points. The spatial variable is uniformly
discretized into N+1 points as xi(i = 1,2, ...,N +1) with step-size of ∆x = 1/(N +1) . Sim-
ilarly, time level is discretized into M + 1 points as tk = (k − 1)∆t with the time step as
∆t = 1/(M + 1). Although, this method is unconditionally stable for both value of ∆x and
∆t but we have chosen the step size as ∆t = 10−4 and ∆x = 10−4. The tridiagonal sys-
tem of equations are obtained after implementing CN scheme, which is solved using the
Tri-diagonal Matrix Algorithm (TDMA).

Eqn. (2.29) written in tri-diagonal system as:

Rk
i wk+1

i−1 +Sk
i wk+1

i +Uk
i wk+1

i+1 = R
′k
i wk

i−1 +S
′k
i wk

i +U
′k
i wk

i+1 +Fk
i , (2.32)
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The tri-diagonal system corresponding to equation (2.30) is obtained as:
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2.4 Results & Discussion

The current study is validated using the published work of Elnaqeeb et al. [51], as shown in
figure 2.3 and figure 2.4. To validate the current study, the effect of radiation and multiple
stenoses was ignored. The copper blood flow model is considered under the condition of a
straight artery (Rc = 0).
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Figure 2.3: Velocity profile for Gr = 5
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Figure 2.4: Temperature profile for σ = 0.3

The temperature at the clot is assumed to be the same as the stenosis wall. The velocity
and temperature profiles are drawn by assuming the same set of values as in [51]. Figure 2.3
depicts the velocity profile for Gr = 5, and figure 2.4 replicates the validation of the present
study for the temperature profile at clot height σ = 0.3. Both the figures in the present study
are in good agreement with the [51] work.
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2.4.1 Axial Velocity

The fluctuation of a velocity profile for different values of hematocrit viscosity is depicted in
figure 2.5. In the physiological system, blood viscosity varies depending on the hematocrit
level due to the composition of red blood cells. From the figure, it can be observed that
the fluid velocity reduces as the hematocrit level increases. For a change of hematocrit
level hm = 0.7 to hm = 1, blood velocity reduces to 24.81 % and 23.81 % at the maximum
position r = 0.5 for stenosis and clot respectively. The influence of radius of curvature on
velocity profile is seen in figure 2.6. Initially, the effect of curvature not comes into the
picture till z = 0.3, after it the fluid velocity increases with the increase in its radius of
curvature. The reason for this behaviour is that the curved channel shrinks to the straight
tube as the value of Rc increases. The higher the value of Rc, the less obstruction comes into
the fluid path, resulting in a higher fluid velocity. Figure 2.7 illustrates the declining effect
of the magnetic field on the velocity profile. As the magnetic field parameter increases, it
causes the magnetized particle present in the blood to flow in the rotational motion. The
viscosity in blood plasma is suspended due to this irrotational motion of red blood cells,
resulting in the formation of a resistive force known as Lorentz force. The shift in the
velocity profile for both the hall and ion slip parameters is seen in figures 2.8 and 2.9. Both
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Figure 2.5: Velocity profile for varying hm
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Figure 2.6: Velocity profile for varying Rc

parameters are inversely affected by the strength of the resistive Lorentzian drag due to the
enhancement in the cyclotron frequency that result in an increase in the velocity profile.
The influence of nanoparticle concentration on the velocity profile is seen in figure 2.10.
The Au-GO/blood hybrid nanofluid has a higher velocity than the Au/blood and GO/blood
nanofluids, indicating that the inclusion of additional nanoparticles can assist surgeons in
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controlling blood flow. It can be inferred from the figure that the velocity profile enhances
by 97.27% if only an Au nanoparticle is added to the base fluid (blood), while the change
is approximately 200% for the GO nanoparticle. If both nanoparticles are added to the base
fluid, then the velocity profile enhances by nearly 300%. This results reveals new insights
for assessing the accuracy of theoretical studies of more complex in nature and to understand
that how the particular nature of blood influences with different nanoparticle.
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Figure 2.9: Velocity profile for varying βi
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2.4.2 Temperature Profile

Figure 2.11 shows the effect of radiation on the temperature profile for both clot and stenotic
region. From the figure, it can be observed that the temperature enhances if the radiation
parameter is taken into consideration.
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Figure 2.13: Temperature profile for
varying nanoparticle shape parameter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Non-dimensional radius

0.75

0.8

0.85

0.9

0.95

1
te

m
p

e
ra

tu
re

e
=1

e
=2

e
=3

e
=1

e
=2

e
=3

Stenosis

Clot
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The increment in temperature profile by 130% can be observed if the radiation effect
is considered in the comparison of without radiation effect. The reason for this increase
in the temperature profile is due to the generation of more thermal energy. Thus, it shows
that the radiation parameter is an essential factor influencing the temperature profile. The
outcome will be useful for measuring the rise of temperature during hyperthermia treatment
of tumour and magnetic modified nanoparticles drug delivery system in diseased artery. In
pathological circumstances, increasing the radiation dosage can assist surgeons in raising
the temperature profile to eliminate cancerous cells while sparing healthy cells. Figure 2.12
illustrates the temperature profile for varying Br numbers. It is noted that the temperature
profile enhances with an increase in the Br number. The Brinkman number is the ratio of
heat generated by the viscous dissipation and heat produced by molecular conduction. So,
for higher values of Br number, the heat generated by viscous dissipation is very small and
slows the heat conduction, thus, raising the temperature profile. The advantage of nanotech-
nology is the ability to design and optimise nanoparticles to increase their functionalities and
properties to meet different requirements. Nanotherapeutics rely on effective cellular uptake
and tumour permeability of nanoparticles, both of which are affected by nanoparticle shape
and size. A nanoparticle’s optimal shape is also determined by the specific location and
type of targeted tissue. Figure 2.13 illustrates how nanoparticle shape parameters (n = 3
sphere, n = 4.9 cylinder, n = 5.7 platelets, and n = 8.6 brick see figure 2.2) effect the tem-
perature profiles in clot and stenotic arteries. The temperature profile will grow as the size
of the nanoparticles rises due to the increase in its thermal conductivity. The significance of
the role of shape of nanoparticles is shown graphically and it is observed that the tempera-
ture profile enhances by only 1.64% if cylindrical nanoparticles used in place of spherical
nanoparticle shape, while, there is 4.85% enhancement is observed if the blade shape of
the nanoparticles is taken in place of spherical nanoparticle. The impact of Hall and ion
slip parameters on temperature profile are illustrated in figure 2.14 and figure 2.15, respec-
tively. Due to the magnetic damping force, both parameters show the opposite effect with
the temperature profile. Figure 2.16 illustrates the relationship between the nanoparticles
and hybrid nanoparticles on the temperature profile. The temperature profile for pure blood
is lower, but its temperature increases as the nanoparticles are added. The temperature pro-
file for Au is lower than GO, and it gets further increases if hybrid nanoparticles are injected
into the bloodstream. As a result, the surgeon will be able to regulate the blood flow during
the surgical procedure.
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Figure 2.17: Flow rate and Impedance for varying hm, (a) without clot, (b) without steno-
sis, (c) both clot and stenosis present, (d) without clot, (e) without stenosis, (f) both clot
and stenosis present.
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Figure 2.18: Flow rate and Impedance for Gr, (a) without clot, (b) without stenosis, (c)
both clot and stenosis present, (d) without clot, (e) without stenosis, (f) both clot and
stenosis present.
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2.4.3 Resistance Impedence and Flow Rate

As given in equation (2.27), the volumetric flow rate is the quantity of fluid (blood) that
goes through the bloodstream in a given amount of time. Due to the obstacles present in the
artery, blood flow experiences resistance, known as resistance impedance, which impedes
its flow. It is defined as the ratio of pressure drop to flow rate, essential for the body organs
to regulate the blood flow. Figures 2.17(a)- 2.17(c) illustrate the relationship between flow
rate and hematocrit dependent viscosity. From the figures, it can be observed that the flow
rate decreases as the parameter hm increases from 0 to 1. Figure 2.17(c) shows the flow
rate in the presence of both clot and stenosis, whereas figures 2.17(a) and 2.17(b) show
the flow rate in the absence of clot and stenosis, respectively. Flow rate decreases in the
presence of both clot and stenosis compared to the other two cases. The flow rate decreases
as the parameter hm increases from 0 to 1. This increase in parameter hm signifies a more
concentration of red blood cells, which will increase its viscosity. Thus, it reduces the
blood flow rate by offering more resistance to the flow; therefore, the resistance impedance
increases as hm increases, as shown in figures 2.17(d)-2.17(f). For increasing the value of
Gr, 2.18(a)-2.18(c) and 2.18(d)-2.18(f) show the growing flow rate pattern and decreasing
impedance profile, respectively. Consider the figures 2.18(c) and 2.18(f) for a particular
value of Gr = 1. Initially, the flow rate and Impedance will be the same for all three cases
until z = 2; afterwards, it changes due to a clot presence in the region z = 2 to z = 3. And
the flow rate becomes the same again after z = 4. The concentration of nanoparticles in the
bloodstream fluctuates, and an increase in Gr tends to increase buoyancy, which will lead to
less resistance to the flow and thus, flow rate increases.

2.4.4 Wall Shear Stress

In an arterial flow, the force exerted by the wall on the per unit area of the fluid along the
tangential direction is known as Wall shear stress (WSS). The disturbance in the normal
hemodynamic flow is the primary cause of arterial diseases, for example, hypertension,
cerebral strokes etc. Thus, it is essential to know blood flow behaviour at the walls and
can easily be calculated by interpreting the velocity pattern along the arterial walls using
equation 2.26. Figure 2.19 (a) depicts the WSS profile for hemodynamic viscosity parameter
hm. In the present study, both cases constant viscosity hm = 0 and variable viscosity hm ̸= 0
are considered. The WSS profile decreases as the parameter hm increases from 0 to 1. The
sudden decrease in the WSS profile can be seen for a change of constant viscosity hm = 0 to
non-constant viscosity hm = 0.3.
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Figure 2.19: WSS of stenosis for different values of parameters, (a) Variation in WSS
with hm, (b) Variation in WSS with M and δ , (c) Variation in WSS with varying Rc , (c)
Variation in WSS with varying B2.

This sudden change is due to the shift in hematocrit level present in the blood, which causes
the change in its viscosity that impedes its flow and is further responsible for the decline in
the WSS profile. Figure 2.19 (b) portrays the declining profile for increasing values of M as
well as stenotic depth. As the magnetic field parameter M increases, the resistive Lorentz
force comes into the picture and resists the fluid flow. Similarly, with stenotic depth, the
flow will experience more resistance in its path resulting in a decline in the WSS profile.
Figure 2.19 (c) illustrates the time series graph for varying Rc. Initially, the WSS increases
and afterwards, it shows the periodic pattern for different values of Rc. The WSS grows
as the value of the Rc parameter increases, indicating that the curve artery will become a
straight artery as the value of Rc increases. This change in artery shape shows the increased
velocity along the arterial wall for the higher value of Rc, indicating that the WSS profile
rises with an increase in Rc. Figure 2.19 (d) demonstrates the effect of body acceleration
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on the WSS profile. The fluctuation in amplitude increases about the mean position as the
parameter B2 increases, as depicted in the graph, which shows the increasing WSS profile
with an increase in the body acceleration term B2 from 0 to 5. This rise in the WSS profile
along the axial direction is caused by the higher velocity profile near the surface.

2.4.5 Velocity Contour

In this section, the velocity contour is drawn by varying different parameters. These con-
tours give a pictorial representation of blood flow inside an artery, helpful in understanding
the hemodynamic characteristics of the blood. Figure 2.20 show the velocity contour by
changing the height of the clot and stenosis.
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Figure 2.20: Variation in blood flow patterns for diseased artery segment (a) σ = 0.1,δ =
0.2, (b) σ = 0.2,δ = 0.1 (c) σ = 0.2,δ = 0.2.
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Figure 2.21: Variation in blood flow patterns for different values of radiation parameter,
(a) Nr = 0, (b) Nr = 2, (c) Nr = 5.
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The figure shows that the velocity profile decreases with increased clot and stenosis size.
In all three cases, the maximum velocity attains by the blood is the same, which is 0.007.
However, as we increase clot and stenosis size, the velocity profile decreases in the central
region between clot and stenosis. Figure 2.20 (c) displays the velocity contour for the height
of clot and stenosis with σ = 0.2 and δ = 0.2, respectively.
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Figure 2.22: Variation in blood flow patterns for different volume fractions of nanoparti-
cles, (a) φ1 = 0,φ2 = 0, (b) φ1 = 0,φ2 = 0.02, (c) φ1 = 0.02,φ2 = 0.02.
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Figure 2.23: Variation in blood flow patterns for different magnetic field parameter, (a)
M = 0, (b) M = 2, (c) M = 4.

From the comparison of velocity contour 2.20 (c) with 2.20 (a) and 2.20 (b), it is clearly
noted that increasing the height of the clot and delta provides resistance to the flow and
reduces the blood velocity. Figure 2.21 portrays the velocity contour for varying values of
radiation parameter Nr. The maximum fluid velocity increases from 0.005 to 0.009. The
fluctuation in the velocity pattern is caused by Nr indirect influence on the momentum equa-
tion. It can also be noticed from the figure that the stenosis and clot shape cause resistance
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in the flow pattern. Figure 2.22 illustrates the velocity contour for varying concentrations
of nanoparticles. Figure 2.22 displays the velocity pattern of pure blood, and the velocity
pattern increases when the Au nanoparticle is added to the blood. Furthermore, the addition
of second nanoparticles GO improves the flow pattern, as seen in figure 2.22 . Figure 2.23
depicts the decrease in velocity pattern as the magnetic field value M increases, which is
consistent with figure 2.7. The maximum fluid velocity for M = 0 is 0.007, which decreases
to 0.0045. The declination in the velocity profile results from the resistive Lorentz force.

2.5 Conclusion

A mathematical model portraying the multiple stenosis with thrombosis at the center of the
artery has been analyzed in this paper. The flow is subjected to the strong magnetic field,
and thermal radiation, Joule heating, Hall and ion slip effect have been considered. Au and
GO nanoparticles are added along with the base fluid (blood). The hybrid nanoparticles
are formed by integrating the multiple nanoparticles in the base fluid. The Au-GO hybrid
nanoparticles and their different shapes have been considered in this study. The governing
mathematical equations are simplified using the mild stenosis assumption and neglecting the
induced magnetic field. The resulting equations are discretized and solved using the Crank-
Nicolson method. The effect of different pertinent parameters on velocity, temperature, wall
shear stress, Impedance and velocity contour is displayed. The significant outcomes of the
study are summarized below:

• The velocity profile declines with an increase in the hematocrit dependent viscosity,
Hall and ion slips parameter, whereas it shows the declining nature for radius of cur-
vature and magnetic field parameter.

• The hybrid nanoparticles Au-GO/blood has higher temperature profile as compared
to pure blood and unitary nanopartices as the thermal conductivity increases with an
increase in nanoparticles concentration.

• Increasing the Grashof number Gr increases the fluid velocity, whereas the opposite
trend is observed with Impedance.

• The significant decline in flow velocity is observed for an increase in the stenosis and
clot height.

• Increasing the Hall and ion slips parameter causes the increment in the fluid velocity
due to an enhancement in the cyclotron frequency of the particles.
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• The thermal conductivity increases with an increase in the nanoparticles shapes, re-
sulting in a higher temperature profile.

The present study may be helpful in radiological investigations such as magnetic reso-
nance angiography (MRA) to capture the abnormalities of the artery. The hybrid nanopar-
ticles Au-GO/blood have been considered due to their application in nanomedicine and the
biomedical field. The Au nanoparticles have numerous applications due to their inert nature,
stability, and anti-bacterial properties. Along with, the graphene oxide (GO) nanoparticles
have been used, which has high drug loading efficiency, large surface area, and better con-
trolled released property. These properties make the GO nanoparticles act like nanocarriers.
The non-invasive nature of the strong magnetic field can guide the nanoparticles to reach
the desired location. Thus, the present study gives insight into the treatment of stenosis and
other abnormalities without surgery and reduces post-surgical complications.
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Chapter 3

Entropy Generation Optimization for Electroos-
motic MHD Fluid Flow over the Curved Stenosed
Artery in the Presence of Thrombosis 1

Young [88] analyzed the deposition of plaque along the lumen of the artery disturbed the
blood flow and led to mechanical processes advancing in intimal cell proliferation. Flow
separation is the main factor in the development of vascular disorders, suggested by Mustapha
et al. [89] . They analyzed the unsteady MHD fluid flow through an irregular multi-stenosed
arteries and concluded that the flow separation zone shrank with increasing the Hartmann
number value. Changdar and De [25] discussed the nanoparticle application as drug delivery
in the blood flow through an irregular stenosed artery by considering single- and discrete-
phase models. Gandhi et al. [90] discussed magnetic hybrid nanoparticle (Au-Al2O3/blood)
based drug delivery through a bell-shaped occluded artery with joule heating, viscous dissi-
pation and variable viscosity. The application of blood with the applied magnetic field has
extensive applications in the biomedical and engineering fields. Kolin [91] first introduced
the concept of MHD in the medical field. The experimental results indicate that when a
conducting fluid, such as human blood, is exposed to a magnetic field strength of 10 T, it
experiences a retarding force that leads to a 30% decrease in flow. Moreover, the application
of an external electric field results in the emergence of an electro-osmotic force, which in
turn causes the migration of an electrolyte within a specific conduit. When the conduit is
placed in an electrolytic medium, it induces an electrostatic response in which positively
charged particles are drawn towards its surface. In contrast, negatively charged ions are
pushed away. The Electric Double Layer (EDL) formation occurs due to this phenomenon.
Initially, Melcher and Woodson [92] investigated electrically charged fluid dynamics, also
known as electrokinetics or Electrohydrodynamics (EHD). The focus of their study lies in

1A considerable part of this chapter is published in Scientific Reports. 18;13(1):15441
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the examination of the behaviour and relationships between ionised particles and the sur-
rounding fluids. Additionally, they investigate the mechanisms that facilitate the movement
of fluids, including electrostatics, electrophoresis, and electro-osmosis, among other related
phenomena. Rice and Whitehead [93] applied the Debye-Huckel approximation for the
electrokinetic flow through narrow capillaries. In a recent study, Nooren et al. [94] looked
at how Joule heating and various zeta functions affected MHD nanofluid in a microchannel.
Their study revealed that increases in the zeta potential retard fluid motion, an essential med-
ical phenomenon, regulating blood flow. This retarding nature occurs due to the presence of
impregnable EDL.

Abdelsalam et al. [30] investigated the hemodynamic characteristics of nanofluid flow in
a diseased artery affected by both stenosis and aneurysm. The study also considered the in-
fluence of electroosmotic forces and the size of the nanoparticles. The study by Akram et al.
[32] aimed to investigate the electroosmosis impact by comparing the modified Buongiorno
and Tiwari-Das model. The investigation demonstrated that the modified Buongiorno model
exhibits superior performance as a viscosity model compared to the Tiwari-Das model.
Shahzadi et al. [95] conducted a study that aimed to examine the impact of electroosmotic
force on the oblique stenosed aneurysmal artery. The researchers utilised a fractional model
based on second-grade principles, incorporating ternary nano particles. They placed partic-
ular emphasis on the potential advantages of their study in augmenting drug transportation.

Blood is a very complex and marvellous fluid that nurtures life. Over the past few
decades, scientists and researchers have been studying to uncover the perplexing behaviour
of blood. It is essential to know the behaviour of blood to deal with the pathological condi-
tions faced by animals and human beings. Examining fluid dynamics in a curved conduit is
significant in biomedicine due to its ability to closely replicate the complex flow patterns ob-
served in arterial blood vessels. These investigations are of great value in managing patients
with coronary pathologies. In the study by Mekheimer and Kot [9], an examination was
carried out to analyse the hemodynamic properties of fluid flow in a curved artery, specifi-
cally in the context of catheterisation. The researchers’ study clarified that narrower arteries
exhibit higher fluidic resistance than wider arteries. Additionally, they found that the veloc-
ity profile in non-curved arteries is more significant than that observed in curved arteries.
Zaman et al. [96] examined the effect of different types of nanoparticles through curved
stenosed channels. Their study exhibited that the curvature parameter influences the veloc-
ity profile, and the symmetric patterns reduce for a higher value of the curvature parameter.
Sharma et al. [97] studied the MHD blood flow through a curved artery by considering the
effect of heat transfer and body acceleration. Several other researchers [12, 27] scrutinized
the blood flow through the curved stenosed artery. Majorly, researchers considered the blood
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viscosity a constant, but in reality, it gets influenced by different factors like pressure, tem-
perature and flow rate. Lih et al. [98] examined that blood viscosity at the low-shear region
vary according to hematocrit and blood vessel diameter. The variable viscosity is essential
whenever blood through a tube or channel is studied. Baskurt et al. [99] emphasized the
variation in blood viscosity are influenced by hematocrit, RBCs (red blood cells) aggrega-
tion, shear stress and mechanical properties of RBCs. Ponalagusamy and Priyadharshini
[11] developed the mathematical model of the two-fluid model in tapered arterial stenosis.
They considered micropolar fluid in the core region and Newtonian fluid in the peripheral
plasma region with variable viscosity.

Inspired by the aforementioned studies, the present research endeavours to investigate
a previously unexplored domain, specifically examining the combined effects of nanopar-
ticles’ shape and size, alongside Joule heating, electroosmosis, radial magnetic fields, and
radiation, on the blood flow dynamics within a curved stenosed artery with thrombosis. To
fill this void in the existing research, we examined the flow of blood containing suspended
Al2O3 nanoparticles through irregular stenosis while also considering the presence of throm-
bosis on the catheter walls. The nanoparticles under consideration are categorised as porous
metallic oxides, known for their significant surface areas and impressive resistance to chem-
ical and mechanical disturbances. The extensive accessibility of these nanoscale entities
makes them economically feasible for incorporation into diverse biomedical applications.

This study examines the impact of a uniform radial magnetic field, electroosmosis , and
radiation on a system. The hematocrit dependent viscosity model is taken into the consid-
eration. In this study, we have chosen to adopt a curvilinear coordinate system along with
mild stenosis assumptions to reduced the complexity of the governing equations. These
governing equations are discretized using the Crank–Nicolson method and further solved in
the MatLab under the appropriate boundary conditions.

The salient contributions of this research are as follows:

• Investigation of the impact of nanoparticle shape and size on the flow behavior within
a curved artery.

• To investigate the impact of variable viscosity on the flow dynamics within a stenosed
artery with thrombosis at the centre of the catheter wall, specifically by considering
the hematocrit-dependent viscosity model.

• Entropy generation analyzation on the diseased artery by considering the combined
effects of Joule heating, electro-osmosis, radial magnetic field and radiation.
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3.1 Mathematical Formulation

A study is undertaken to examine the hemodynamics of blood flow in a pathological ar-
terial segment that exhibits irregular stenoses and thrombosis at the central region of the
catheterised tube. The flow is characterised by being unsteady, laminar, incompressible and
fully developed, exhibiting an axisymmetric configuration. To enhance the analysis, a curvi-
linear coordinate system is employed, where the radial and axial coordinates are represented
as r̃ and z̃ respectively. The adoption of axisymmetry enables the elimination of any depen-
dence on the variable θ̃ in the flow. The assumption is made that the induced magnetic
field is very small, as it is considered insignificant in comparison with an applied magnetic
field. As a component of the research, the introduction of aluminium oxide nanoparticles
into the bloodstream is conducted to investigate their impact on the flow dynamics as they
pass through the afflicted arterial vessel.

3.1.1 Geometrical Representation of the Model

The visual representation of the affected arterial structure is depicted in Figure 3.1. The
depiction of the arterial configuration involves the use of two concentric tubes, where the
radius is represented as R∗, originating from the central point O. The geometric characteri-
zation pertains to an irregularly shaped stenotic condition is given as follows: [44, 100]:

R∗(z̃) =

R0 −2δ

[
cos(2π

L0
( z̃−d̃

2 − L0
4 )−

7
100 cos(32π

L0
(z̃− d̃ − L0

2 ))
]

d̃ ≤ z̃ ≤ d̃ +L0,

R0 otherwise ,

(3.1)
Let R∗

1 denote the radius of the stenotic segment, which possesses a length denoted by
L. Additionally, d represents the distance of the stenotic segment from the initial position P.
The geometric characteristics of the clot are described as follows:

R∗
1(z̃) =

R0(c+σ exp(−π2

L2
0
(z̃− z̃d −0.5L0)

2)), d̃ < z̃ ≤ d̃ + 3
2L0,

cR0, otherwise,
(3.2)

where, cR0 denotes the radius of the inner tube, or catheter, wherein the parameter c is
significantly smaller than unity (c << 1). The clot axial displacement , with its utmost
elevation denoted by σ , is represented by the variable z̃d .
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Figure 3.1: Physical sketch of the irregular-shaped constricted artery with Al2O3
nanoparticles.

3.1.2 Mathematical Formulation

3.1.2.1 Electrohydrodynamics (EHD)

Blood encompasses various ionic constituents like atoms or molecules that gain or lose
electrons and thus carry an electric charge, which confers the properties of an electrically
conducting fluid upon it. In consideration of this, we investigated the effects of introducing
an electric field (0,0,E0) and an external magnetic field B = ( R∗B0

r̃+R∗ ,0,0) subjected to the
blood flow in the afflicted arterial, where B0 remains constant. The current density and
Lorentz force is given as [101]:

J.J
σn f

=σn f

(
R∗B0

r̃+R∗

)2

(w̃2)+σn f E2
0 , (3.3)

J×B =

(
0,σn f

(
R∗

r̃+R∗

)
B0E0,−σn f

(
R∗B0

r̃+R∗

)2

w̃

)
, (3.4)

where σn f and J signifies the electric conductivity and current density vector , respec-
tively. The phenomenon of electroosmosis occurs in the present case as the solid conduct,
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such as an arterial walls or a catheter, interfaces with an electrolyte solution, such as blood.
The occurrence of this interaction results in the formation of an electrical double layer (EDL)
in the proximity of the solid surface as a consequence of disparities in ion concentrations.
The mathematical representation of the electroosmotic potential is given by the Poisson-
Boltzmann equation as [29, 34]:

∇
2
Φ̃ =−ρe

ε
, (3.5)

where, Φ̃ denotes the electro-osmotic function, while ε represents the dielectric constant.
The variable ρe is explicitly expressed as follows:

ρe = (n+−n−)e0z0. (3.6)

The number density of cations and anions can be characterized by the Boltzmann distri-
bution which is given as:

n± = n0 exp(∓ e0z0Φ̃

kBTavg
), (3.7)

where, kB is Boltzmann constant , e0 is electric constant, z0 is the charge balance .
Combining equations (3.6) and (3.7) and using the Debye-Huckel linearizion, we get:

ρe =−
2e2

0z2
0n0

kBTavg
Φ̃. (3.8)

By using equations (3.5) and (3.8) , the Poisson equation takes the form:(
∂ 2

∂ r̃2 +
1

r̃+R∗
∂

∂ r̃
+

(
R∗

r̃+R∗

)2
∂ 2

∂ z̃2

)
Φ̃ =

Φ̃

q2
m
, (3.9)

where qm = 1
e0z0

√
εkBTavg

2n0
.

3.1.2.2 Viscosity Model

Corcione [102] introduced a theoretical framework for investigating the interrelation be-
tween the diameters of nanoparticles (dp) with nanofluid viscosity µn f .

µn f

µb f
=

1

1−34.87(dp
d f
)−0.3φ 1.03

n

, (3.10)

where, φn denots the volumetric concentration of nanoparticles, molecular diameter d f

of the base fluid is provided as follows:
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d f =

[
6M1

N1πρ f0

] 1
3

. (3.11)

N1 represents the Avogadro constant (6.022 ∗ 1023), applicable to nanoparticles within the
size range of 25 to 200 nm and concentrations spanning from 0.01% to 7.1%.

The abundance of suspended entities within the circulatory system is primarily due to
erythrocytes, also known as red blood cells or RBCs. These cells significantly impact the
biomechanical properties of blood. The variability of blood viscosity is influenced by the
spatial arrangement of its particles, which is a crucial factor examined in the subsequent
model proposed in this study [82].

µb f = µ f [1+β
∗
1 h(r̃)], (3.12)

where, h(r̃) = hm[1− ( r̃
R0
)m], hm signifies the maximum level of hematocrit with β ∗

1 as
constant.

3.1.2.3 Governing Equations

Based on the previously mentioned assumption regarding magnetohydrodynamic (MHD)
interaction, the governing equations are provided as follows [82, 103]:

Continuity Equation

∂ ũ
∂ r̃

+
ũ

r̃+R∗ +
R∗

r̃+R∗
∂ w̃
∂ z̃

= 0. (3.13)

Momentum (in r∗1-direction)

ρn f

[
D̃
dt̃

ũ− w̃2

r̃+R∗

]
=−∂ p̃

∂ r̃
+µn f

(
∇

2ũ− ũ
(r̃+R∗)2 −

2R∗

(r̃+R∗)2
∂ w̃
∂ z̃

)

+

(
4
3

∂ ũ
∂ r̃

− 2
3

(
R∗

R∗+ r̃
∂ w̃
∂ z̃

+
ũ

R∗+ r̃

))
∂ µn f

∂ r̃
. (3.14)
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Momentum (in z∗1-direction)

ρn f

[
D̃
dt̃

w̃+
ũw̃

r̃+R∗

]
=−

(
R∗

r̃+R∗

)
∂ p̃
∂ z̃

+µn f

(
∇

2w̃− w̃
(r̃+R∗)2 +

2R∗

(r̃+R∗)2
∂ ũ
∂ z̃

)

+g(ρβ )n f (T̃ − T̃0)+g(ρβ )n f (C̃−C̃0)+

(
R∗

R∗+ r̃
∂ ũ
∂ z̃

+
∂ w̃
∂ r̃

− w̃
R∗+ r̃

)
∂ µn f

∂ r
+ρeE0

−σn f B2
0w̃
(

R∗

r̃+R∗

)2

. (3.15)

Temperature Equation

(ρCp)n f
D̃T̃
dt̃

= κn f ∇
2T̃ +σn f

(
R∗B0

r̃+R∗

)2

(w̃2)+σn f E2
0 +Fvd −

1
r̃+R∗

[
∂

∂ r̃
({r̃+R∗}qr)

]
.

(3.16)
Concentration Equation

D̃C̃
dt̃

= Dm∇
2C̃−Rc(C̃−C̃w). (3.17)

Electroosmotic Equation

∇
2
Φ̃ =− Φ̃

q2
m
, (3.18)

where ∇2 := ∂ 2

∂ r̃2 +
1

r̃+R∗
∂

∂ r̃ +
(

R∗

r̃+R∗

)2
∂ 2

∂ z̃2 , the material derivative is D̃
dt̃ := ∂

∂ t̃ + ũ ∂

∂ r̃ +
w̃R∗

r̃+R∗
∂

∂ z̃

and the viscous dissipation term Fvd is given as:

Fvd = µn f

[
2
(

∂ ũ
∂ r̃

)2

+2
(

R∗

r̃+R∗
∂ w̃
∂ z̃

+
ũ

r̃+R∗

)2

+

(
∂ w̃
∂ r̃

− w̃
r̃+R∗ +

R∗

r̃+R∗
∂ ũ
∂ z̃

)2]
. (3.19)

The boundary conditions are given as:w̃ = 0, T̃ = T̃0, C̃ = C̃0 at t̃ = 0,

w̃ = 0, T̃ = T̃w, C̃ = C̃w at r̃ = R∗(z̃) and r̃ = R∗
1(z̃).

(3.20)

The specification of boundary conditions pertaining to the potential function is as follows:

Φ̃ = ζ̃2 on r̃ = R∗(z̃), (3.21)

Φ̃ = ζ̃1 on r̃ = R∗
1(z̃),

where, zeta potential functions represented by ζ̃1 and ζ̃2 are specifically denoted with
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respect to the arterial and catheter wall, respectively.

The pulsatile nature of blood flow is an inherent characteristic, primarily resulting from
the continuous pumping action of the heart. The aforementioned phenomenon can be math-
ematically characterised in the subsequent manner [7, 104]:

−∂ p̃
∂ z̃

= A0 +A1 cos(ωpt̃), t̃ > 0, (3.22)

where, A0 denotes the amplitude of the pressure gradient corresponding to the steady-state
condition, while A1 signifies the amplitude of the pressure gradient associated with the pul-
satile state. The term ωp = 2π fp denotes the angular frequency pertaining to the heart.

Table 3.1: Dimensionless parameters

r = r̃
R0

z = z̃
L0

u = L0ũ
δ ∗U0

w = w̃
U0

T = T̃−T̃0
T̃w−T̃0

t = U0t̃
R0

Rc =
R∗

R0
p =

R2
0 p̃

µ f U0L0

δ = δ ∗

R0
M2 =

σ f B2
0R2

0
µ f

Gr = g(ρβ ) f R2
0(T̃w−T̃0)

µ f U0
E1 =

R0√
µ0U0

E0

Sc = ν

Dm
Pr = µ f Cp

κ f
Re = U0ρ f R0

µ f
Nr = 16σeT̃0

3

3κ f κe

Ec = U2
0

cp(T̃w−T̃0)
Br = µ f U2

0
κ f (T̃w−T̃0)

Da = K1
R2

0
Uhs =

ζ εE0
µ f U0

ξ =
Rcρ f R2

0
µ0

qe =
R0
qm

Λ = C̃
(C̃w−C̃0)

Ω = T̃
(T̃w−T̃0)

3.1.3 Non-Dimensionalization

In consideration of the dimensionless parameters delineated in the nomenclature, the perti-
nent equations ((3.13)-(3.21)) that govern the model under the assumption of mild stenosis
(δ << 1) and the condition O(1) = α = R0

L0
can be expressed as follows [82]:

∂ p
∂ r

= 0, (3.23)
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ρn f

ρ f
Re

∂w
∂ t

=− Rc

Rc + r
∂ p
∂ z

+
µn f

µ0

(
∂ 2w
∂ r2 +

1
r+Rc

∂w
∂ r

− w
(r+Rc)2

)
+Uhsq2

eΦ

+
(ρβ )n f

(ρβ ) f
(GrT +GcC)−

mβ ∗
1 hmr∗m−1

(1−34.87(dp
d f
)−0.3φ 1.03)

(
∂w
∂ r

− w
Rc + r

)
−

σn f

σ f

(
Rc

r+Rc

)2

M2w,

(3.24)

(ρCp)n f

(ρCp) f

κ f

κn f
PrRe

∂T
∂ t

=
∂ 2T
∂ r2 +

1
r+Rc

∂T
∂ r

+
σn f

σ f

κ f

κn f

[(
Rc

r+Rc

)2

BrM2w2 +Sz

]

+
κ f

κhn f
Nr
[

∂ 2T
∂ r2 +

1
Rc + r

∂T
∂ r

]
+

(
κ f

κn f

)(
µn f

µ0

)
Br
[

∂w
∂ r

− w
r+Rc

]
. (3.25)

ReSc
∂C
∂ t

=
∂ 2C
∂ r2 +

1
Rc + r

∂C
∂ r

−ScξC, (3.26)

∂ 2Φ

∂ r2 +
1

Rc + r
∂Φ

∂ r
= q2

eΦ. (3.27)

Associate boundary conditions are as follows:w = T =C = 0 at t = 0,

w = 0,T = 1,C = 1 at r = R∗
2(z) and r = R∗

1(z).
(3.28)

Boundary condtion for electroosmotic function:

Φ = 0.1 on r = R∗
1(z), (3.29)

Φ = 0.3 on r = R∗(z).

The dimensionless expressions corresponding to the diseased artery are provided as:
Clot Region:

R∗
1(z) =

c+σ exp(−π2(z− zd −1/2)2), d < z < d +3/2,

c, otherwise ,
(3.30)

Stenosis Region:

R∗
2(z) =

1−2δ
[
cos(2π( z−d

2 − 1
4)−

7
100 cos(32π(z−d − 1

2))
]

d ≤ z ≤ d +1,

1 otherwise ,
(3.31)
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Parameters Ranges Sources
Thermal Grashof number (Gr) 0-6 [105, 106]

Nanoparticle shape parameter (n) 3-8.6 [23, 107]

Prandtl number (Pr) 0-4 [90, 107]

Radiation parameter (Nr) 0-3 [106, 108]

hematocrit parameter (hm) 0-1 [11, 12]

Magnetic Number (M) 0-4 [1, 2]

Brinkmann number (Br) 0.1-2 [22, 107]

Table 3.2: Values of the physical parameters with their sources

where, σ represents the maximum clot height at the axial location zd , while the inner tube
radius is denoted as cR0, where c is a considerably small value (c << 1). Additionally, the
maximum height of the stenosis is symbolized by parameter δ in equation (3.31), and the
specific location of the affected segment is represented by the variable d.
The pressure component in dimensionless form is given as [82]:

−∂ p
∂ z

= B1(1+ ecos(c1t)), (3.32)

where, B1 =
A0R2

0
µ f U0

,e = A1
A0
, and c1 =

2πR0 fp
U0

.
The volumetric flow rate is defined as [107]:

Q f = 2π

∫ R∗

R∗
1

wrdr. (3.33)

In the afflicted arterial system, the impedance encountered by the blood flow is expressed as
[107]:

λ =
L(−∂ p

∂ z )

Q f . (3.34)

Finally, the shear stress profile is given as [33]:

τw =−
(

∂w
∂ r

)
r=R∗

. (3.35)

3.1.4 Entropy

Entropy is the measured of the irreversibility present in the system. The entropy is attribute
to the change in the system cause by mass and thermal exchange. The overall entropy is the
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sum of entropy produces by each individual process. The dimensional volumetric entropy
generation is defined as [57, 109]:

Eg =
κ f

T̃ 2
0

[
κn f

κ f
+

16σeT̃0
3

3keκ f

](
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(
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((
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)
B2

0w̃2 +E2
0

)
+

Db

C̃w

(
∂C̃
∂ r̃

)2

.

(3.36)
There are four components in the above equations. The first term on right hand side

depicts the irreversibility due to heat transfer , the second term for the hydromagnetic, third
term for the fluid friction and the last term for solute irreversibility. We simplified the above
equation further, to get;

Eg =
κ f

T̃ 2
0

(T̃w − T̃0)
2

R2
0

{[
κn f

κ f
+

16σeT̃ 3
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(
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)2 T̃ 2
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(
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∂ r

)2}
. (3.37)

The dimensionless Ns defined as the ratio of total entropy generation to characteristic
entropy transfer. It is defined as Ns =

T̃ 2
0 R2

0
κ f (∆T̃ )2 ×Eg. Using equation above, we have

Ns =

[
κn f

κ f
+Nr

](
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∂ r

)2
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µn f
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{(
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∂ r

)2
}

Br
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M2Br
Ω

((
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)2

w2 +E2
1

)
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ΛΓ

Ω

(
∂C
∂ r

)2

, (3.38)

where, Γ = DbT̃0∆C̃
κ f ∆T̃ . The Bejan number is defined as the ratio of heat transfer irreversibil-

ity to total irreversibility. So, we have

Be =
N
Ns

,

=

[
κn f
κ f

+Nr
]
(∂T

∂ r )
2

[
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{(
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Br
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σ f

M2Br
Ω

((
Rc

r+Rc

)2
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1

)
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Ω

(
∂C
∂ r

)2
.

(3.39)
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3.2 Numerical Methodology

The mathematical model under consideration yields a set of non-linear coupled PDEs (par-
tial differential equations), for which obtaining exact solutions proves to be challenging. In
all but a few very basic circumstances, accurate solutions to these equations are impossible.
As a result, several different numerical techniques have been developed to address these
problems.

Figure 3.2: Grid for the Crank-Nicolson scheme

With today’s fast computers and cutting-edge commercial software, such methods have
become more straightforward and accurate. There have been a number of researchers that
have suggested the Crank-Nicolson technique as an implicit strategy. It is second-order con-
vergent in time. This method uses the finite difference grid as shown in figure 3.2 , replacing
the spatial derivative at

(
tn−1/2,x j

)
by taking the average of upstream and downstream values

at tn−1 and tn, respectively. In a similar manner, the time derivative can be substituted with
the central difference formula at the point

(
tn−1/2,x j

)
.

3.2.1 Discretization of Governing Equations

In this study, we utilized the dimensional parameter and thermophysical parameters speci-
fied in table 3.1 and table 2.1, respectively. Additionally, the thermophysical properties of
blood and nanoparticles, as presented in Figure 3.3, were taken into consideration, along
with the physical parameters from table 3.2. The resulting discretized governing equations
are displayed as follows:
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Φi+1 −2Φi +Φi−1

h2 +
1

Rc + r(i)
{Φi+1 −Φi−1

2h
}= q2

eΦi. (3.43)

Here, φ1 denotes the nanoparticles volumetric concentration. The discretized equations for
the initial and boundary conditions are given as:

wk+1
1 = 0,T k+1

1 = 1,Ck+1
1 = 1, wk+1

N+1 = 0,T k+1
N+1 = 1,Ck+1

N+1 = 1, (3.44)

w1
i = 0,T 1

i = 0,C1
i = 0, Φ1 = 0.1,ΦN+1 = 0.3. (3.45)
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The tri-diagonal system obtained from Eqn. (3.40) is written as:
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Using equation ((3.41)), we may derive the tridiagonal system:
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Using equation ((3.42)), we may derive the tridiagonal system as:
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The flow region has been partitioned into a grid composed of (N +1)× (M+1) points.
In our analysis, we have chosen to utilise temporal and spatial discretization with step sizes
∆t = 0.01 and ∆x = 0.001, respectively, while considering the Crank-Nicolson method,
which is renowned for its second-order convergence.

Figure 3.3: Thermophysical properties of blood and nanoparticle
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In order to enhance the precision of our results, we have implemented a meshing scheme
that ensures the attainment of a convergent solution. In order to perform numerical compu-
tations, a custom MATLAB code has been developed to solve for the distribution of veloc-
ity, temperature, electroosmotic, and concentration fields within the specified domain. It is
worth noting that the electroosmotic equation is unaffected by changes in time, enabling us
to effectively create a specialised function file that includes it in each temporal iteration.

3.3 Result & Discussion

3.3.1 Validation

This study aims to validate our model by comparing it to the previously published research
conducted by Elnaqeeb et al. [51]. For the validation process, the radiation conditions and
irregular stenosis were not considered.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Non-dimensional radius

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

n
-d

im
e

n
s
io

n
a

l 
te

m
p

e
ra

tu
re

Present study

Elnaqeeb et al. [49]

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Non-dimensional radius

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

N
o

n
-d

im
e

n
s
io

n
a

l 
v
e

lo
c
it
y

Present work

Elnaqeeb et al. [49]

(b)

Figure 3.4: Comparision for (a) Temperature distribution for σ = 0.2 , (b) Velocity
distribution for Gr = 5

To validate the findings, the primary objective was to analyse the behaviour of copper
nanoparticles within the bloodstream when subjected to a straight artery (Rc ̸= 0) while
accounting for the source term in place of radiation. The boundary conditions utilised in this
study for validation process were derived from the previously mentioned research conducted
by Elnaqeeb et al. [51]. The temperature and velocity profiles for the fixed parameters
σ = 0.2 and Gr = 5 are illustrated in Figures 3.4a and 3.4b, correspondingly. Significantly,
the findings derived from this investigation demonstrate a substantial degree of concurrence
with the outcomes presented in the research conducted by Elnaqeeb et al. [51].
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3.3.2 Velocity Profile

Figure 3.5 depicts the impact of the different parameters on the velocity profile. The impact
of magnetic field parameters and electric kinetic potential between the clot and stenotic zone
is depicted in Fig. 3.5a. The analysis reveals that an increase in the magnetic field param-
eter leads to a decrease in the velocity profile, whereas a contrasting trend is observed in
relation to the parameter qe. The Debye-Huckel parameter qe exerts a substantial influence
on the fluid motion throughout the entire region being analysed. It is worth mentioning that
an augmentation in the electro-kinetic parameter, which corresponds to a decrease in the
electrical double layer (EDL) thickness, enhances the movement of fluid by reducing the
drag force acting on it. The bulk fluid moves proportionately to the charged surface due
to the applied electric field. Increasing the magnetic field parameter from M = 0 to M = 4
resists the fluid motion due to resistive Lorentz force. Figure 3.5b elucidates the effect of the
shape and size of the nanoparticles on the velocity profile. According to several researchers,
the velocity profile increases as particle size grows from 23 nm to 110 nm. The surface
area ratio of a nanoparticle increases with nanoparticle size. Thus, reducing the nanoparti-
cle size enhances the fluid’s viscosity and impedes the fluid flow. Figure 3.5c depicts the
increasing trend of the velocity profile for an enhancing Gc parameter (Gc = 0,1,2,3). The
concentration profile is coupled with the velocity profile as seen in equation (3.24).

The solutal Grashof paramter is the ratio of solutal buoyancy with the hemodynamic
viscous force. The buoyancy force depicts the dominant behavior as the value of Gc param-
eter increases and thus, shows the increasing the velocity profile. Figure 3.5d demonstrates
the effect of radius of curvature on the velocity profile. It is observed from the graph that
the velocity enhances as the radius of curvature parameter increases from 0 to 5. This phe-
nomenon indicates that as the radius of curvature parameter increases, the artery tends to
transform into a straight channel, resulting in reduced fluid obstruction near the wall and fa-
cilitating fluid motion. Figure 3.5e illustrates the velocity profile by varying the hematocrit
dependent viscosity parameter. In the current study, the figure illustrates both scenarios, one
with negligible viscosity (hm = 0) and the other with varying viscosity (hm ̸= 0). The ve-
locity profile demonstrates a decrease as the hematocrit parameter increases, primarily due
to the concurrent increase in fluid viscosity. The velocity profile, as depicted in Figure 3.5f,
showcases the cumulative effect of nanoparticle volumetric concentration and the Grashof
number (Gr). It presents a comparative analysis between the velocity profiles of pure blood
(devoid of any added nanoparticles) and Al2O3-blood (containing integrated nanoparticles).
One can observed from the figure that the velocity distribution improves as the Grashof num-
ber or nanoparticles concentration enhances in the blood. Enhancing the Grashof number
increases the velocity profile due to the dominating buoyancy force over the viscous force.
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Figure 3.5: Velocity profile by varying (a) M and qe, (b) dp and n, (c) Gc, (d) Rc,
(e) hm, (f) Gr and nanoparticle concentration φ1
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3.3.3 Temperature Profile & Concentration profile

The temperature profile enhancement is depicted in Figure 3.6a, illustrating its dependence
on the nanoparticle size dp and the shape parameter. The shape parameter is denoted by
n, where n = 3 corresponds to spheres, n = 5.7 and n = 8.6 represents for platelets and
bricks, respectively. The findings suggest that the shape parameter significantly affects the
temperature profile, while the size parameter has a relatively minimal impact. It is worth
noting that an augmentation in the shape parameter enhances thermal conductivity, thereby
resulting in an elevated temperature profile. The investigation focuses on the influence of
two key parameters, namely the Prandtl number (Pr) and the radiation parameter (Nr), on
the temperature profile within the context of Figures 3.6b. The provided figures demon-
strate a noticeable increase in the temperature distribution as the radiation parameter (Nr)
progresses from Nr = 0 (representing the absence of radiation) to Nr = 2. The observed
escalation in temperature distribution can be ascribed to an accompanying surge in the gen-
eration of thermal energy, thereby contributing to an upward trajectory in the temperature
profile. Therefore, Nr is considered to be a critical factor in determining the temperature pro-
file. The implications of the findings presented in this study are of considerable importance
across multiple domains. These endeavours encompass the observation of temperature ele-
vations during hyperthermia therapy for cancer and the advancement of drug administration
mechanisms that employ magnetically altered nanoparticles for damaged arterial structures.
In certain pathological scenarios, surgeons may opt to administer a heightened dosage of ra-
diation to enhance the thermal distribution, thereby selectively focusing on malignant cells
while safeguarding the integrity of healthy ones. Moreover, the analysis presented in Figure
3.6b demonstrates that an augmentation in the Prandtl number (Pr) from 19 to 25 leads to a
more advantageous thermal profile. The observed occurrence can be ascribed to the inverse
correlation between the Prandtl number and the effective thermal conductivity. It may be
noted that the rate at which heat is transmitted from the artery walls to the surrounding fluid
(blood) is reduced for higher Prandtl numbers. This particular observation has the potential
to play a crucial role in enhancing the efficiency of heat transfer mechanisms within a range
of biomedical contexts.
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Figure 3.6: Temperature profile by varying (a) dp and n, (b) Pr and Nr; Variation in
concentration profile by varying (c) ξ , (d) Sc

The fact that the concentration profile has a suppressing effect for an increasing value
in the chemical reaction parameter may be gleaned from figure 3.6c, as shown. This has
occurred as a consequence of the low molecular diffusivity that rises as the value of ξ in-
creases; as a result, less fluid diffuses through the artery wall. Therefore, this behaviour
manifests itself everywhere across the flow field. The effect of Schmidt number on the con-
centration profile is illustrated in figure 3.6d. It is possible to deduce from the figure that
the concentration profile will get lower as the Schmidt number gets higher. As the Schmidt
number increases, there will be less mass diffusion, resulting in a lower concentration pro-
file.
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3.3.4 Flow Rate & Impedance

The present study illustrates the influence of the hematocrit parameter on the flow rate
through the utilization of Figures 3.7a and 3.7b. In Figure 3.7a, the first scenario is de-
picted, wherein the clot is positioned on the left side of the stenosis. Conversely, Figure
3.7b portrays the second scenario, wherein both the clot’s axial position and location remain
consistent. Clearly, from the figures, it can be seen that the flow rate is less in figure 3.7a as
compared to figure 3.7b at the axial position z1 = 2 to z1 = 3. This has happened due to hin-
drance observed by the flow from both clot and stenosis simultaneously, while the flow rate
in figure 3.7a first reduces due to clot presence and then decreases due to stenosis presence.
In both depicted illustrations, a noticeable decrement in the flow rate, accompanied by an
enhancement in the hematocrit parameter. The observed phenomenon can be elucidated by
the simultaneous increase in fluid viscosity resulting from higher levels of hematocrit con-
centrations in the blood. Similarly, from the figures 3.7c and 3.7d, we can observed that the
impedance profile is higher for the case 2 as compared to case 1. In first case, fluid first ex-
perience the obstruction due to clot placed at the catheter, then due to stenosis at the arterial
wall. In the second case, as the stenosis and clot are located at z = 2.5 (positioned at same
axial position), so the fluid (blood) experience more hindrance due to their combined effect
as compared to first case, where the hindrance in fluid path exists independently. In both the
figures, the impedance profile shows increasing nature with respect to the hematocrit param-
eter. The fluid viscosity increases with an enhancement in the hematocrit parameter leading
to show declination in the fluid velocity due to hindrance in its path. Figures 3.7e and 3.7f
potrayed the flow rate and impedance profile for the distinct nanoparticle size , respectively.
Clearly, from the figure, it can be inferred that flow rate increases as the nanoparticle size
enhances as observed in the figure 3.7e, while shows the declining nature in the impedance
profile as depicted by figure 3.7f. The smaller the size of the nanoparticle then fluid has
more viscosity. Thus, increasing the nanoparticle size reduces the fluid viscosity leading
to increasing the flow rate profile whereas decreasing impedance profile as less hindrance
comes to the fluid path.

3.3.5 Nusselt Profile & Wall Shear Stress (WSS)

The profile of the Nusselt number for flow parameters like the Prandtl number and the ra-
diation parameter are depicted in figure 3.8a and 3.8b, respectively. It may be noted from
the figure 3.8a that the Nusselt profile at axial position z1 = 2.5(peak value of stenosis), the
change in Nusselt profile is nearly 65% for change in Pr from 19 to 23.
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Figure 3.7: Flow rate by varying (a) hm, (b) hm, Impedance profile by varying (c)
hm, (d) hm, (e)Flow rate by varying dp, (f) Impedance profile by varying dp
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While, the enhancement is nearly 200% for change of Pr from 25 to 27. Similarly, we
can observed from the graph that near the clot region (clot position shifted left of stenosis)
at z1 = 1.5, the change is nearly 300% for Pr ranging from 19 to 23 and nearly 35% for Pr

ranging from 25 to 27. Also, we can inferred that the Nusselt profile rises to a higher level as
the value of Pr is increased. It may be justified since there has been a drop in the thickness
of the thermal boundary layer. The reduced temperature profile is the consequence of the
reduction in thermal conductivity. As a result, the coefficient of heat transmission through
the wall increases. The decrease in thermal conductivity that can be seen in figure 3.8b is
shown to occur when the radiation parameter is increased. The reversal trend is seen as a
result of an increase in the thickness of the thermal boundary layer close to the wall as Nr
increases. Therefore, Nr brings about a decrease in the heat transmission coefficient. From
the figure, we can observed that at the stenosis peak, the change in heat transfer profile is
nearly 69% and nearly 300% for change in Nr from 0 to 1 and 2 to 3, respectively. While,
near the clot region, the change in heat transfer profile is nearly 53% and nearly 200% for
change in Nr from 0 to 1 and 2 to 3, respectively. The change in percentage value for both
the figures can be occur due to amplifying nature of irregular stenosis and clot with change
in the parameter values.

Fig. 3.8c shows how the size of the nanoparticles affects the WSS distribution. As the
value of parameter dp grows, a rising trend is seen in the WSS profile. This is because
reducing the nanoparticles size has lowered down the fluid’s viscosity, which has increased
fluid flow and rendered WSS a growing function of nanoparticle size. When both the stenotic
depth and the magnetic field parameter increase, the WSS profile decreases, as seen in Figure
3.8d. The fluid’s velocity slows as a result of Lorentz force acting against it. As well as
increasing the stenotic depth decreases the fluid velocity as it experiences hindrance in its
path with an increase in the size of the stenosis. Grashof number’s influence on the shear
stress profile is seen in figure 3.8e. The amplitude develops slowly at first and then oscillates
at regular intervals. As Gr increases from 0 to 2, the fluid flow enhances due to the generation
of thermo buoyancy force.

3.3.6 Velocity Contour

The velocity contour provides a visual depiction of the flow, which may be used to analyse
the effect of various parameters on the flow field. Velocity contours display the velocity
magnitude at different arterial locations by the series of color-coded regions. The contour
for a range of hematocrit values, from hm = 0 to hm = 1, is portrayed in figure 3.9a - 3.9c.
The artery section consider here lies in the region of z = 0.5 to z = 5.
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(g) Clot at bottom of stenosis

Clot and stenosis at same location
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(h) Clot and stenosis at same axial
position
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(i) Clot at top of stenosis
n
=0 (Pure blood)
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(l) φ1 = 0.03

Figure 3.9: Velocity contour by varying hematocrit parameter, by varying stenosis and
clot size, by varying the position of the clot, by varying nanoparticle concentration
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It can be concluded from the figure that the velocity of the fluid reduces from 0.0055 to
0.0025. This declination is justified from the figure 3.9a, 3.9b and 3.9c as the magnitude
of hematocrit parameter augmented the fluid viscosity also enhances that is depicted by the
reduction in the flow rate. Figure 3.9d - 3.9f portrays the role of the size of the stenosis and
clot on the hemodynamic flow. The fluid velocity reduces as the size of the stenosis or clot
increases as depicted in the figure. If the figure 3.9d and 3.9e are compared with figure 3.9f,
the reduction in the velocity can be observed near the region occupying the clot and stenosis
in the span of z = 2 to z = 3.

The hindrance comes in the fluid path can be catastrophic as it reduced the blood flow
through artery which is necessary for the basic functions of the body. Thus, it is necessary
to address this behavior and proper cure for the disease at a right time. The impact of the
clot location on the hemodynamic flow issue is shown in figure 3.9g - 3.9i. Although the
maximum flow velocity remains the same in all three conditions, but the change in flow
velocity in a certain region can be observed from the figure. In figure 3.9g, the position
of the clot comes first afterwards, the stenosis. Similarly, in figure 3.9i, the position of
the stenosis comes first afterwards the clot, while in figure 3.9h, the stenosis and clot are
centered at the same axial position. In figure 3.9h, the stenosis and clot are centered at the
same axial position. Compared to the other two situations, the flow velocity is lower in
scenario 3.9h because the clot and stenosis act together to provide a multiplicative effect
on the resistance to blood flow. Figure 3.9j - 3.9l depicts the velocity profile for different
nanoparticle concentrations from 0 to 0.03. Figure 3.9j represents the arterial section when
no nanoparticle is mixed with the blood, while the other two cases (see 3.9k and 3.9l) are
for nanoparticle concentrations 0.02 and 0.03. As the concentration of nanoparticles in the
blood increases, the velocity profile decreases. These methods may be beneficial for medical
professionals and surgeons to slow the body’s blood circulation.

3.3.7 Entropy

Figures 3.10a and 3.10b depict the effect of magnetic field parameter on the entropy gen-
eration NG and Bejan number Be, respectively. The figure demonstrates a pattern in which
the entropy initially decreases, followed by an increase, and ultimately reduces again as the
magnetic field parameter is enhanced. While, the reversed behavior is observed with the
Bejan number profile as depicted in figure 3.10b. It is noticed from figure 3.10a that the en-
tropy generation profile decreases as the magnetic field parameter enhances near the arterial
wall and catheter tube. This has happened due to the fluid friction irreversibility arises from
the resistive Lorentz force.
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Figure 3.10: Entropy by varying (a) M, Bejan number by varying (b) M, Entropy by
varying (c) Br, Bejan number by varying (d) Br

As, we move away from the walls near the center of the artery, the heat transfer irre-
versibility dominates due to presence of strong magnetic field which raises the temperature
due to Ohmic heating. Hence, the entropy generation enhances near the center. Figure 3.10c
elaborates the entropy generation profile for different values of the Brinkmann number Br.
Brinkmann number is the ratio of heat generated due to viscous dissipation and heat trans-
ported by the molecular conduction. It is evident from the figure that there is a discernible
correlation between the Brinkmann number and the enhancement of the entropy profile.
This has happened due to the less prominent effect of viscous dissipation as compared heat
transfer by molecular conduction. The substantial amount of heat generated between the
layer of the fluid causing an enhancement in the entropy profile. The reverse behavior is
observed in the Bejan number profile as depicted in the figure 3.10d. The declination in
the Bejan profile can be explained by the fact that the less dominant effect of the molecular
conduction as compared to viscous dissipation effect.
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3.4 Conclusion

The present mathematical model provides the deep insight into the rheology of blood sub-
ject to pathological conditions such as stenosis and thrombosis and further helps scientists
and researchers to understand the blood flow characteristics. The reduced form of govern-
ing equations are discretized using the Crank-Nicolson method and the relevant profile are
computed. The salient findings are delineated as follows:

• The velocity distribution demonstrates an increase with an escalation in the nanoparti-
cles volumetric concentration or the Grashof number, primarily due to the intensified
effect of buoyant forces .

• The decrement in the WSS profile is observed with an increment in stenotic depth or
the magnetic field parameter M.

• The velocity profile exhibits a negative correlation with the magnetic field intensity,
while a positive correlation is observed between the velocity profile and the Debyle
length parameter.

• Increasing the Brinkmann paramter Br enhances the entropy generation profile but
shows the reverse trend with the Bejan number.

The current investigation entails the incorporation of aluminium oxide nanoparticles (Al-
NPs) into the base fluid medium. The nanoscale entities are categorized as porous metallic
oxides, which possess significant surface areas and strongly resist chemical and mechanical
disturbances. The extensive accessibility of these technologies makes them economically
feasible for integration into the field of biomedical applications. In addition, the aluminium
nanoparticles (AlNPs) exhibit significant chemical stability even under exposure to abrasive
environments. Examining various dimensions and configurations of nanoparticles within
the curved artery facilitates researchers in acquiring knowledge pertaining to the customiza-
tion and production of pharmaceuticals to enhance drug delivery systems’ efficacy. Entropy
analysis allows researchers to quantitatively assess the degree of disorder or randomness
displayed by flow patterns and evaluate energy dissipation within the system. The present
study has primarily focused on standard wall conditions. It is imperative to extend the in-
vestigation by considering the permeable wall conditions to advance the research in this
domain. To utilize the magnetic drug targeting to treat stenosed arteries with aneurysms and
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other pathological conditions. The current study has yet to delve into the complexities of
two-phase blood flow modelling. Incorporating the two-phase blood flow model to analyze
the fluid flow and heat transfer in a curved tube with time-variant stenosis can significantly
broaden the research.
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Chapter 4

Simulation of Al2O3-Cu/Blood Hybrid Nanofluid
Containing Gyrotactic Microorganisms Through
the Multi-Stenosed Bifurcated Artery

4.1 Introduction

Numerous studies have been conducted to analyse the hemodynamic characteristics of blood
flow through channels, pipes and tubes to understand the pathological mechanism that arises
in the stenotic artery. The study provides researchers with insights into hemodynamic flow
and facilitates the development of more effective preventative treatments for diseases. Ar-
teriosclerosis, also known as stenosis, is a pathological phenomenon characterised by the
accumulation of various substances such as lipids, proteins, fatty compounds, calcium, and
other cellular debris along the walls of arteries. This accumulation can result in partial oc-
clusion or complete blockage of the affected blood vessel. A mathematical model was de-
veloped by Young [88] to investigate the Newtonian flow within a time-dependent stenosed
tube. The findings of the study indicate that the occurrence of stenosis within the artery
disrupts the physiological processes of the cardiovascular system, ultimately resulting in
severe pathological consequences. The study by Akbar et al. [110] delved into the intrica-
cies of the non-Newtonian fluid model, specifically concerning blood flow within a tapered
stenosed artery. The authors approached this investigation by considering blood as a Jeffery
fluid. Shit and Roy [111] conducted a study on micropolar fluid to investigate the impact
of induced magnetic fields on blood flow through the constricted artery. The study’s find-
ings indicate a positive correlation between the Hartman number and stenosis height with
an enhancement in microcirculation. Tripathi and Sharma [17] developed a mathematical
model to analyse the two-phase hemodynamic flow through a stenosed artery, incorporating
chemical reactions and radiation effects. The study illustrated a reduction in blood velocity
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adjacent to the arterial wall, as evidenced by the distortion of the velocity contour down-
stream and the shift of the tapering bolus towards the arterial wall. The study conducted by
Khanduri and Sharma [107, 112] pertained to the examination of the impact of Hall effects
on the flow of MHD fluid through a stenosed artery that has been affected by thrombo-
sis. The study’s findings indicate a decline in the WSS profile as the Hartman number and
stenotic depth increase. This phenomenon is caused by a reduction in blood flow near the
arterial walls.

The study revealed that atherosclerotic plaque, which obstructs blood flow in arteries,
tends to manifest in regions of complex geometry, such as those proximal to bifurcations,
junctions, or areas of high curvature. The presence of arterial curvature and variations in
the size of the cross-section both had a role in the preferred localization of the plaque at the
arterial walls. Tan et al. [113] explored the blood flow through the bifurcated artery under
the gravity effect and irregular stenosis at the parent artery. Srinivasacharya and Rao [114]
have designed a mathematical model to investigate the hemodynamic behaviour of blood
flow containing copper nanoparticles within a constricted bifurcated artery. The study’s
findings indicate a notable alteration in the flow rate and impedance in the vicinity of the
apex. This phenomenon is attributed to the occurrence of backflow at the junction and the
presence of secondary flow in the region proximal to the apex. Moreover, the researchers
[115] proceeded with their investigation by examining the behaviour of a couple’s stress
fluid within a bifurcated artery. Shahzadi et al. [13] conducted a theoretical investigation
to examine the bio-nanofluid containing copper nanoparticles as a therapeutic agent in the
bifurcated artery with compliant walls. The non-Newtonian Casson fluid was investigated
by Shahzad et al. [116] in the context of a bifurcated channel featuring stenosis and elastic
walls.

The study of blood rheology is affected by the application of external magnetic and
electric fields, resulting in the reduction of the fluid flow, and such type of flow is com-
monly referred to as electro-magneto hydrodynamics (EMHD) flow. Kolin [91] introduced
the concept of MHD in his medical research. The experiments demonstrate that applying a
transverse magnetic field to an electrical field decelerates fluid motion. The empirical find-
ing indicated a decrease of 30% in the volumetric blood flux within the duct subject to a high
magnetic field of 10 Tesla. Ahmed and Nadeem [2] have constructed a mathematical model
encompassing six distinct types of stenosis and have subsequently conducted an investiga-
tion on the effect of MHD and hybrid nanoparticles on micropolar fluid. The study revealed
an increase in velocity and wall shear stress (WSS) with an enhancement in nanoparticle
concentrations, while an inverse trend was observed for the impedance profile. The MHD
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fluid flow in an artery was explored numerically by Joshua et al. [117] by employing a
non-Newtonian Cross-rheological model. The researchers have considered the presence of
multiple stenoses along the arterial walls and have conducted a comprehensive investigation
by varying the magnetic parameter, Reynolds number, and stenosis height throughout the
entire length of the artery. Kumar et al. [118] analysed MHD fluid flow in a bifurcated
artery with permeability, considering the effect of heat source and chemical reaction. The
EMHD flow of Au-blood through the inclined constricted artery under periodic body accel-
eration was investigated by Manchi and Ponalagusamy [119]. The researchers also placed
emphasis on the shape of nanoparticles and concluded that the spherical nanoparticles ex-
hibit a greater heat flux at the arterial walls in comparison with other nanoparticles shapes
. Sharma et al. [27] formulated the MHD two-phase blood flow model by considering
the variable viscosity in a curved artery. The study’s findings suggest that atherosclerosis
formation positively correlates with curvature and permeability, whereas the heat source pa-
rameter reduces the risk of atherosclerosis formation. The study conducted by Mishra et al.
[120] delved into the characteristics of magnetohydrodynamic (MHD) nanofluid as it flows
through a constricted artery while considering the Soret and Dufour effects. The optimisa-
tion of heat transfer in nanofluid blood flow through the stenosed artery was discussed by
Sharma et al. [121]. The authors examined the hematocrit-dependent viscosity model and
demonstrated that increased hematocrit level and stenotic depth leads to a reduction in the
fluid velocity.

Both theoretical and experimental results have underscored the significance of nanopar-
ticles in the biomedical domain, as they have been shown to augment the efficacy of deliv-
ering diagnostic and therapeutic agents. Numerous investigations have been undertaken to
examine the novel potential of nanoparticles at the molecular scale within the realm of life
sciences. The successful delivery of nanoparticles into the artery is primarily determined
by their physical characteristics, including shape, size, and surface absorption properties.
Nanofluid refers to a suspension of nanoparticles in a base fluid, whereas hybrid nanofluid
pertains to a suspension of two or more types of nanoparticles in the base fluid. Synthesis
of hybrid nanofluids offers the advantage of incorporating diverse materials’ physical and
thermal properties into a singular, homogeneous phase. This results in remarkable physic-
ochemical properties in the resulting synthetic hybrid nanofluid. The hemodynamic flow
through permeable walls was investigated by Ellahi et al. [122], employing the homotopy
analysis method. The hybrid nanofluid flow through a stenosed artery was analysed by
Gandhi et al. [39] in the presence of Joule heating and viscous dissipation. The findings of
their research indicate that an increase in the Darcy number results in an enhancement of the
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velocity profile. This can be attributed to the lower resistance offered by the medium perme-
ability. The researcher, Basha et al. [123], analysed the inclined, uneven,and stenosed artery
to investigate the biomagnetic blood flow of Au-Cu. The study conducted by Gandhi and
Sharma [124] involved an investigation of the behaviour of Au-Cu hybrid nanoparticles in
the context of blood flow through an artery with overlapping stenosis at the walls. The study
revealed that an augmentation in the Casson fluid parameter results in the enhancement of
both velocity and temperature. The researchers suggest that their findings may have po-
tential applications in nano-pharmacology and biomedical sciences. In this study, we have
selected Al203-Cu nanoparticles for their remarkable anti-bacterial and anti-viral properties,
which could be utilized in the biomedical field. The chemical stability and easy accessibility
of these nanoparticles make them a perfect choice for our research.
Bioconvection refers to the phenomenon whereby the macroscopic motion of microorgan-
isms occurs due to spatial variations in density. Microorganisms exhibit self-propulsion,
whereas nanoparticles lack this capability. The phenomenon of bioconvection can be ob-
served under conditions where the concentration of nanoparticles is relatively low. The
phenomenon of bioconvection is observed due to the instability caused by spatial variation,
which leads to the upward movement of microorganisms and the formation of a dense layer
at the surface. This layer becomes unstable and results in the crumbling of microorganisms,
further enhancing the bioconvection process. Bhatti et al. [125] have presented a discussion
on the peristaltic motion of Jeffery nanofluid in the presence of microorganisms and a vari-
able magnetic field. The bioconvection movement of microorganisms in a hybrid nanofluid
through a porous stretching sheet was investigated by Alharbi et al. [126] . The study con-
ducted by Sharma et al. [1] delved into the dynamics of magnetohydrodynamic (MHD) fluid
flow in the presence of microorganisms over an inclined stretching sheet. Mekheimer et al.
[127] conducted a study on the delivery of drugs via nanoparticles in the presence of hemo-
dynamic flow within diseased organs. The study conducted by Mostapha and EL-Dabe
[128] was a theoretical investigation of the flow of peristaltic-induced nanofluid, wherein
motile gyrotactic microorganisms are observed to move through an endoscope. The study
considered the effects of radiation and chemical interaction while incorporating the Soret
and Dufour scheme.

The aforementioned study has served as inspiration and a basis for our current research
on the hemodynamic behaviour of hybrid nanofluids in bifurcated arteries with mild steno-
sis in both parent and daughter arteries. This study presents a model that examines blood
flow behaviour containing suspended nanoparticles of Al2O3-Cu, in the presence of gy-
rotactic microorganisms and electroosmotic force.The governing equations were rendered
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non-dimensional and subsequently solved utilising the Crank-Nicolson scheme. The en-
suing outcomes were analysed, and the effects of various parameters were elucidated by
plotting velocity, temperature, concentration, microorganisms, flow rate, and WSS profiles.

4.2 Model Formulation

Consider a fully developed, unsteady, laminar, incompressible two-dimensional MHD blood
flow passing through the stenosed bifurcated artery. The arteries are assumed to be straight,
circular cylinder passing the center line of the parent artery. The bifurcated artery has over-
lapping stenosis at the parent artery while the irregular stenosis at the daughter arteries as
shown in figure 4.1 . Let assumed the cylindrical coordinate system r̃, θ̃ and z̃ to represent
the material point in which z̃ is along the centerline of the parent artery and r̃ and θ are
assumed to be radial and circumferential directions, respectively. The flow is assumed to be
antisymmetric so all the variables are independent of θ̃ . A uniform magnetic field denoted
by B = (B0,0,0) and an electric field denoted by E = (0,0,E0) are applied to the flow of
blood, where B0 is constant. The gravitational force acts in the downward direction and
induced magnetic field assumed to be negligible due to low magnetic Reynold’s number
assumption. The potential for a flow separation zone is eliminated with the incorporation of
curvature at the lateral junction and bifurcation’s apex.

      Copper nanoparticles

Aluminium oxide nanoparticles

Figure 4.1: Representation of bifurcated stenosed artery
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The geometry of the bifurcated artery with multi-stenosis in the parent artery and an
overlapping stenosis in the daughter artery is expressed as follows [13]:

˜̂R∗
1(z̃) =



R0, 0 < z̃ ≤ d̃

R0 −B∗, d̃ < z̃ ≤ d̃ +L0

R0, d̃ +L0 < z̃ ≤ z̃1

R0 + r̃1 −

√(
r̃2

1 −
R2

0
L2

0
(z̃− z̃1)2

)
z̃1 < z̃ ≤ z̃2

2r0secη1 +
R0
L0

(
z̃− z̃2

)
tanη1 z̃2 < z̃ ≤ z̃4 +0.5L0

2r0secη1 +
R0
L0

(
z̃− z̃2

)
tanη1 −A∗ z̃4 +0.5L0 < z̃ ≤ z̃4 +2.5L0,

2r0secη1 ++R0
L0

(
z̃− z̃2

)
tanη1, z̃4 +2.5L0 < z̃ ≤ zmax

(4.1)

Where,

A∗ = 2δ1

{
cos
(

2π

L0

(
z̃− d̃

4

)
−0.25

)
−0.07cos

(
128π

L0

(
z̃− d̃ −0.5L0

))}
tan(η1),

B∗ =
6

5L4
0

δ (11(z̃− d̃)L3
0 −47(z̃− d̃)2L2

0 +72(z̃− d̃)3L0 −36(z̃− d̃)4)

And, Kroncecker delta function is defined as:

δi j =

0 for 0 < z̃ ≤ z̃3,

1 for z̃3 < z̃ ≤ z̃max,
(4.2)

The inner wall is represent as:

˜̂R∗
2(z̃) =


0, 0 < z̃ ≤ z̃3,√

˜̃r∗1
2 −
(

R0

(
z̃−z̃3
L0

)
− ˜̃r∗1

)2

, z̃3 < z̃ ≤ z̃4,

R0
L0
(z̃− z̃2) tanη1, z̃4 < z̃ ≤ z̃max.

(4.3)

Where, d̃ represent location of stenosis, z̃1 denotes the location of insert lateral junction,
z̃max signifies the maximum length of stenosis; r̃1 denotes the daughter artery radius; The
radii of curvature at the flow divider and at lateral junction is represented by:
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˜̃r∗1 =
(z̃3 − z̃2)R0 sinη1

L0(1− sinη1)
, r̃1 =

R0 −2r0 secη1

cosη1 −1
, , (4.4)

The positional of the lateral junction offset, apex, and curvature offset at the inner wall
are presented as follows:

z̃2 = z̃1 + r̃1

(
L0

R0

)
sinη1, (4.5)

z̃3 = z̃2 +q1L0, (4.6)

z̃4 = z̃3 + ˜̃r∗1

(
L0

R0

)
(1− sinη1). (4.7)

Where η1 is half of the bifurcation angle and value of q1 lies between 0.1 and 0.5, zmax

represents the finite length of the bifurcated artery.

4.2.1 Governing Equations

Assuming the aforementioned conditions and utilising the Boussinesq approximation, the
equations dictating the flow can be expressed as follows [124]:

Continuity Equation:

∂ ũ
∂ r̃

+
ũ
r̃
+

∂ w̃
∂ z̃

= 0, (4.8)

Momentum Equation:
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1
2

∂

∂ z̃

[
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(
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)]
−µhn f

ũ
r̃2 ,

(4.9)
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z̃-direction:
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+

∂

∂ z̃

[
µhn f

∂ w̃
∂ z̃

]
+(ρβ )hn f g

[
(T̃ − T̃0)+(C̃−C̃0)− (ñ∗− ñ∗1)

]
cos(η1δi j)+G(t̃)+ρeE0 −σhn f B2

0w̃,

(4.10)

Energy Equation:

(ρCp)hn f

[
∂ T̃
∂ t̃

+ ũ
∂ T̃
∂ r̃

+w̃
∂ T̃
∂ z̃

]
= khn f

[
∂ 2T̃
∂ r̃2 +

1
r̃

∂ T̃
∂ r̃

+
∂ 2T̃
∂ z̃2

]
+Q̃0+σhn f B2

0w̃2+σn f E2
0 +φ

∗,

(4.11)
where,

φ
∗ = 2µhn f

[(
∂ ũ
∂ r̃

)2

+

(
ũ
r̃

)2

+

(
∂ w̃
∂ z̃

)2

+
1
2

(
∂ ũ
∂ z̃

+
∂ w̃
∂ r̃

)2]
.

Concentration Equation:

∂C̃
∂ t̃

+ ũ
∂C̃
∂ r̃

+ w̃
∂C̃
∂ z̃

= Db

[
∂ 2C̃
∂ r̃2 +

1
r̃

∂C̃
∂ r̃

+
∂ 2C̃
∂ z̃2

]
−Rc(C̃−C̃0) (4.12)

Microorganism Equation:

∂ ñ∗

∂ t̃
+ ũ

∂ ñ∗

∂ r̃
+ w̃

∂ ñ∗

∂ z̃
+

bWc

C̃0 −C̃w

[
∂

∂ r̃

(
ñ∗∂C̃

∂ r̃
+

∂

∂ z̃

(
ñ∗∂C̃

∂ z̃

)]
= Dn

[
∂ 2ñ∗

∂ r̃2 +
1
r̃

∂ ñ∗

∂ r̃
+

∂ 2ñ∗

∂ z̃2

]
(4.13)

The boundary conditions are:

w̃ = 0, T̃ = T̃w, C̃ = C̃w, ñ∗ = ñ∗w, at r̃ = ˜̂R∗
1(z̃) for all z̃, (4.14)

∂ w̃
∂ r̃

= 0,
∂ T̃
∂ r̃

= 0,
∂C̃
∂ r̃

= 0,
∂ ñ∗

∂ r̃
= 0, at r̃ = 0 for 0 ≤ z̃ ≤ z̃3, (4.15)

w̃ = 0, T̃ = T̃w, C̃ = C̃w, ñ∗ = ñ∗w at r̃ = ˜̂R∗
2(z̃) for z̃3 ≤ z̃ ≤ z̃max. (4.16)
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The initial condition regarding velocity, temperature, concentration and microorganisms are
considered as:

w̃ = 0, T̃ = 0, C̃ = 0, ñ∗ = 0 at t̃ = 0. (4.17)

The body acceleration and pressure gradient terms are given as;

G(t̃) =B0 cos(ωqt̃ +ψ) (4.18)

−∂ p̃
∂ z̃

=A0 +A1 cos(ωpt̃) (4.19)

Here, A0 and A1 are steady-state and amplitude of fluctuating component of pressure
gradient, respectively. Where, ωp = 2π fp, fp is pulse frequency, B0 is the body acceleration
term, ωq = 2π fq, fq is frequency of body acceleration with ψ as a phase angle.

4.2.1.1 Electrohydrodynamics (EHD)

Blood is a complex physiological fluid consisting of haemoglobin, plasma, white blood
cells, and various ionic components. Its unique composition enables it to function as an
electrically conductive fluid. When the arterial walls are exposed to an electrolyte solution, a
net charge is generated at the arterial walls. This leads blood to take the opposite charge near
the arterial walls. Upon applying an electric field, the charged ion undergoes movement and
subsequently induces fluid motion in its vicinity. This phenomenon is commonly referred
to as electro-osmotic flow. The Poisson-Boltzmann equation provides the electro-osmotic
potential function, as stated in work by Manchi et al. [34]:

∇
2
Φ̃ =−ρe

ε
, (4.20)

where, Φ̃ is the electro-osmotic function, ε is dielectric constant, and ρe is given as:

ρe = (n+−n−)e0z0. (4.21)

The Boltzmann distribution can effectively describe the determination of the number
density of cations and anions as:

n± = n0 exp
(
∓ e0z0Φ̃

kBTavg

)
, (4.22)

where, z0 is the charge balance, e0 is electric constant, kB is Boltzmann constant.
Using the Debye-Huckel linearizion, the Poisson equation takes the form:
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(
∂ 2

∂ r̃2 +
1
r̃

∂

∂ r̃
+

∂ 2

∂ z̃2

)
Φ̃ =

Φ̃

q2
m
, (4.23)

where qm = 1
e0z0

√
εkBTavg

2n0
.

The boundary conditions for electro-osmotic equation are:
Φ̃ = ζ̃1, at r̃ = ˜̂R∗

1(z̃) for all z̃,
∂ Φ̃

∂ r̃ = 0, at r̃ = 0 for 0 ≤ z̃ ≤ z̃3,

Φ̃ = ζ̃2, at r̃ = ˜̂R∗
2(z̃) for z̃3 ≤ z̃ ≤ zmax.

(4.24)

4.2.2 Non-Dimensionalization

It is necessary to convert the governing equations presented in (4.8)-(4.13) into dimension-
less form in order to obtain a numerical solution. The introduction of non-dimensional
variables is performed in the following manner:

u =
L0ũ

δ ∗U0
, t =

U0t̃
R0

,z =
z̃

L0
, p =

R2
0 p̃

U0L0µ0
,r =

r̃
R0

,w =
w̃
U0

,T =
T̃ − T̃0

T̃w − T̃0
,C =

C̃−C̃0

C̃w −C̃0
,

χ̃1
∗ =

ñ∗− ñ∗1
ñ∗w − ñ∗1

, R̂∗
i =

˜̂R∗
i

R0
(i = 1,2),d =

d̃
L0

,r0 =
r̃0

R0
,zi =

z̃i

L0
(i = 1, ..,4),r1 =

r̃1

R0
,

r̃1
∗ =

˜̃r∗1
R0

,Re =
U0ρ f R0

µ f
,M2 =

σ f B2
0R2

0
µ f

,E∗
1 =

E0

B0U0
,Gr =

ρ f R2
0gβ f (T̃w − T̃0)

µ fU0
,

Gc =
ρ f R2

0gβ f (C̃w −C̃0)

µ fU0
,Rb =

ρ f R2
0gβ f (ñ∗w − ñ∗1)

µ fU0
,Ec =

U2
0

Cp(T̃w − T̃0)
,Pr =

µ fCp

k f
,

Q̃ =
Q̃0R2

0
κ f (T̃w − T̃0)

,Sz =
σ f

κ f

R2
0E2

0
(T̃w − T̃0)

,qe =
qm

R0
,Sc =

ν

Dm
,Pe =

bWc

Dn
,σ1 =

ñ∗

(ñ∗w − ñ∗1)
,

ξ =
Rcρ f R2

0
µ f

, Uhs =−ζ εE0

µ fU0
, R(z) = R̂∗

1 − R̂∗
2 . (4.25)

The aforementioned non-dimensional parameters mentioned in equation (4.25) are inserted
into the governing equations (4.8)-(4.13). The mild stenotic hypotheses are applied, i.e.,
δ (= δ ∗/R0)<< 1, and ε(= R0/L0) = O(1). As a consequence of the aforementioned pro-
cess, the governing equations (4.8)-(4.13) undergo modifications, which can be expressed
as follows:
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Momentum Equation:
r1-direction:

∂ p
∂ r

= 0, (4.26)

z1-direction:

Re
ρhn f

ρ f

∂w
∂ t

=−∂ p
∂ z

+
1
2r

∂

∂ r

[
µhn f

µ f
r

∂w
∂ r

]
+
(ρβ )hn f

(ρβ ) f

[
GrT +GcC−Rbχ̃1

]
cosη1δi j+Uhsq2

eΦ

−
σhn f

σ f
M2w. (4.27)

Energy Equation:

(ρCp)hn f

(ρCp) f

∂T
∂ t

=
1

RePr
khn f

k f

[
∂ 2T
∂ r2 +

1
r

∂T
∂ r

]
+

σhn f

σ f

[
EcM2

Re
w2+

(Sz + Q̃)

RePr

]
+

µhn f

µ f

Ec
Re

[(
∂w
∂ r

)2]
.

(4.28)
Concentration Equation:

ReSc
∂C
∂ t

=
∂ 2C
∂ r2 +

1
r

∂C
∂ r

−ScξC, (4.29)

Microorganism Equation:

ReSb
∂ χ̃1

∂ t
=

∂ 2χ̃1

∂ r2 +
1
r

∂ χ̃1

∂ r
−Peσ1

(
∂ χ̃1

∂ r
∂C
∂ r

+(σ1 + χ̃1)
∂ 2C
∂ r2

)
, (4.30)

Electroosmotic Equation:
∂ 2Φ

∂ r2 +
1
r

∂Φ

∂ r
= qe

2
Φ. (4.31)

Here, Reynold’s viscosity model [129] has been utilised to illustrate the temperature-dependent
viscosity. The model is expressed as follows:

µb f (T ) = µ f e−β0T = µ f [1−β0T ] where β0 << 1 (4.32)

Upon substituting dimensionless variables in equation (4.25), the resulting modified equa-
tion for the pressure gradient can be written as:

−∂ p
∂ z

= B1[1+ ecos(c1t)], (4.33)

where

e =
A1

A0
, B1 =

A0R2
0

µ fU0
, c1 =

2πR0 fp

U0
.
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Upon applying non-dimensional values to the body acceleration Eqn (4.19), the terms
B2 =

A0R2
0

µ f U0
and c2 =

wqR0
U0

has taken the following form. The resulting form of the equation,
by removing the bars, is as follows.

G(t) = B2 cos(c2t +ψ), t > 0, (4.34)

The dimensionless form of the arterial outer wall is expressed as follows:

R̂∗
1(z)=



1, 0 < z ≤ d

1− 6δ ∗

5 (11(z−d)−47(z−d)2 +72(z−d)3 −36(z−d)4), d < z ≤ d +1

1, d +1 < z ≤ z1,

1+ r1 −

√(
r2

1 − (z− z1)2
)
, z1 < z ≤ z2,

2r0 secη1 +

(
z− z2

)
tanη1, z2 < z ≤ z4 +0.5,

2r0 secη1 +

(
z− z2

)
tanη1 −A∗, z4 +0.5 < z ≤ z4 +2.5,

2r0 secη1 +

(
z− z2

)
tanη1, z4 +2.5 ≤ z ≤ zmax.

(4.35)

Where A∗ = 2δ ∗
1

{
cos
(

2π

(
z−d

4

)
−0.25

)
−0.07cos

(
128π

(
z−d −0.5

))}
tan(η1).

The inner wall is represent as:

R̂∗
2(z) =


0, 0 < z ≤ z3,√

r̃∗1
2 −
(
(z− z3))− r̃∗1

)2

, z3 < z ≤ z4,

(z− z2) tanη1, z4 < z ≤ zmax.

(4.36)

The lateral junction curvature r1 and the flow divider radius r̃1 in the dimensionless form

(after ignoring bars) are given as:

r1 =
1−2r0 secη1

cosη1 −1
, (4.37)

r̃∗1 =
(z3 − z2)sinη1

(1− sinη1)
, (4.38)
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where z2, z3 and z4 in the dimensionless form are specified as:

z2 = z1 + r1 sinη1, (4.39)

z3 = z2 +q1, (4.40)

and
z4 = z3 + r̃∗1(1− sinη1). (4.41)

4.2.3 Radial Coordinate Transformation

In order to obtain a rectangular domain, it is necessary to apply the transformation
(

x1 =

r−R̂∗
2(z)

R(z)

)
to the geometry under consideration. Upon implementation of the aforementioned

transformation, the equations denoted by (4.27) through (4.31) undergo a modification as
follows:

Re
ρhn f

ρ f

∂w
∂ t

= B1[1+ ecos(c1t)]+
1
2

(
1−β0T

(1−φ1)2.5(1−φ2)2.5

)[
1

R2
∂ 2w
∂x2

1
+

(
1

x1R+R2

)
(

1
R

∂w
∂x1

)]
− β0

2R2((1−φ1)2.5(1−φ2)2.5)

∂w
∂x1

∂T
∂x1

+
(ρβ )hn f

(ρβ ) f

[
GrT +GcC−Rbχ̃1

]
cos(η1δi j)

+Uhsq2
eΦ−

σhn f

σ f
M2w+G(t), (4.42)

(ρCp)hn f

(ρCp) f

∂T
∂ t

=
1

RePr
khn f

k f

[
1

R2
∂ 2T
∂x2

1
+

(
1

x1R+R2

)(
1
R

∂T
∂x1

)]
+

σhn f

σ f

[
EcM2

Re
w2+

Sz + Q̃
RePr

]
+

1
R2

(
1−β0T

(1−φ1)2.5(1−φ2)2.5

)
Ec
Re

[(
∂w
∂x1

)2]
, (4.43)

ReSc
∂C
∂ t

=
1

R2
∂ 2C
∂x2

1
+

(
1

x1R+R2

)
1
R

∂C
∂x1

−ScξC, (4.44)

ReSb
∂ χ̃1

∂ t
=

1
R2

∂ 2χ̃1

∂x2
1
+

(
1

x1R+R2

)
1
R

∂ χ̃1

∂x1
− Peσ1

R2

(
∂ χ̃1

∂x1

∂C
∂x1

+(σ1 + χ̃1)
∂ 2C
∂x2

1

)
, (4.45)

1
R2

∂ 2Φ

∂x2
1
+

(
1

x1R+R2

)
1
R

∂Φ

∂x1
= qe

2
Φ. (4.46)



94
Chapter 4. Simulation of Al2O3-Cu/Blood Hybrid Nanofluid Containing Gyrotactic

Microorganisms Through the Multi-Stenosed Bifurcated Artery

The boundary conditions specified in equations (4.14) and (4.17) have been reduced in the
following manner:

w = 0, T = 1, C = 1, χ̃1 = 1, at x1 = 1 for all z, (4.47)

∂w
∂x1

= 0,
∂T
∂x1

= 0,
∂C
∂x1

= 0,
∂ χ̃1

∂x1
= 0 at x1 = 0 for 0 ≤ z ≤ z3, (4.48)

w = 0, T = 1, C = 1, χ̃1 = 1, at x1 = 0 for z3 ≤ z ≤ zmax. (4.49)

The wall shear stress at the outer wall of the bifurcated artery is given as below:

τw =− 1
R

(
∂w
∂x1

)
x1=1

, (4.50)

The flow rate for the parent artery and daughter artery is defined as follows:

Q f
d = 2πR

∫ 1

0
w(x1R+R2)dx1. (4.51)

Q f
p = πR

∫ 1

0
w(x1R+R2)dx1. (4.52)

The resistance impedance for the the parent artery and daughter artery is given by:

λp =

∣∣∣∣∣∣∣∣
z3

(
− ∂ p

∂ z

)
Q f

p

∣∣∣∣∣∣∣∣ , for z < z3, (4.53)

λd =

∣∣∣∣∣∣∣∣
(zmax − z3)

(
− ∂ p

∂ z

)
Q f

d

∣∣∣∣∣∣∣∣ , for z ≥ z3. (4.54)

The Nusselt number at the outer wall of the bifurcated artery is computed as follows:

Nux =− 1
R

(
∂T
∂x1

)
x1=1

. (4.55)

Similarly, the Sherwood number is given as:
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Shx =− 1
R

(
∂C
∂x1

)
x1=1

. (4.56)

4.3 Solution Process

It is well established fact that there are several numerical technique to compute the partial
differential equations but the finite difference scheme is the easiest and efficient technique
for finding the solution these equations. In order to solve the PDEs, we adopted the Crank
Nicolson scheme and taken step size of ∆x in the radial direction with time step of ∆t = 0.001
to acheive the convergence of the numerical scheme. It is also observed that further change
in ∆x and ∆t doesn’t bring any substantial changes in the results.

4.3.1 Discretization

The governing equations are discretized as:

[
(1−φ2)

[
(1−φ1)+φ1

ρs1

ρ f

]
+φ2

ρs2

ρ f

]
Re
[

wk+1
i −wk

i
dt

]
= B1[1+ ecos(c1tk)]

1
2

{
1−β0T

(1−φ1)2.5(1−φ2)2.5

}[
1

R2

(
wk+1

i+1 −2wk+1
i +wk+1

i−1

dx2 +
wk

i+1 −2wk
i +wk

i−1

dx2

)
+

1
R

1
Rxi +R2(

wk+1
i+1 −wk+1

i−1

2dx
+

wk
i+1 −wk

i−1

2dx

)]
− 1

2R2

{
β0

(1−φ1)2.5(1−φ2)2.5

}[(
wk+1

i+1 −wk+1
i−1

2dx

+
wk

i+1 −wk
i−1

2dx

)(
T k

i+1 −T k
i−1

2dx

)]
+Uhsq2

eΦ+Fbcos(c2tk+ψ)+

[
(1−φ2)

{
(1−φ1)+φ1

(ρβ )s1

(ρβ ) f

}
+φ2

(ρβ )s2

(ρβ ) f

](
GrT k

i +GcCk
i −Rbχ̃1

k
i

)
cos(η1δi j)−

1
2

σn f

σ f
M2(wk

i +wk+1
i ), (4.57)

[
(1−φ2)

{
(1−φ1)+φ1

(ρCp)s1

(ρCp) f

}
+φ2

(ρCp)s2

(ρCp) f

][
T k+1

i −T k
i

dt

]
=

1
RePr

khn f

k f

[
1

2R2(
T k+1

i+1 −2T k+1
i +T k+1

i−1

dx2 +
T k

i+1 −2T k
i +T k

i−1

dx2

)
+

1
2(Rxi +R2)

(
T k+1

i+1 −T k+1
i−1

2dx
+

T k
i+1 −T k

i−1

2dx

)]
+

1
R2

{
1− β0

2 (T
k+1

i +T k
i )

(1−φ1)2.5(1−φ2)2.5

}
Ec
Re

[
1
2

(
wk+1

i+1 −wk+1
i−1

2dx
+

wk
i+1 −wk

i−1

2dx

)]2

+
σhn f

σ f

[(
1
2

EcM2

Re

(
wk+1

i +wk
i

))2

+
Sz + Q̃
RePr

]
, . (4.58)
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ReSc
[

Ck+1
i −Ck

i
dt

]
=

[
1

2R2

(
Ck+1

i+1 −2Ck+1
i +Ck+1

i−1

dx2 +
Ck

i+1 −2Ck
i +Ck

i−1

dx2

)
+

1
2(Rxi +R2)

(
Ck+1

i+1 −Ck+1
i−1

2dx
+

Ck
i+1 −Ck

i−1

2dx

)]
− Scξ

2

[
Ck+1

i +Ck
i

]
, (4.59)

ReSb
[

χ̃1
k+1
i − χ̃1

k
i

dt

]
=

[
1

2R2

(
χ̃1

k+1
i+1 −2χ̃1

k+1
i + χ̃1

k+1
i−1

dx2 +
χ̃1

k
i+1 −2χ̃1

k
i + χ̃1

k
i−1

dx2

)
+

1
2(Rxi +R2)

(
χ̃1

k+1
i+1 − χ̃1

k+1
i−1

2dx
+

Ck
i+1 −Ck

i−1

2dx

)]
− Peσ1

2

[{
χ̃1

k+1
i+1 + χ̃1

k+1
i−1

2dx

+
χ̃1

k
i+1 + χ̃1

k
i−1

2dx

}(
Ck

i+1 −Ck
i−1

2dx

)
+

{
σ1 +

χ̃1
k+1
i + χ̃1

k
i

2

}(
Ck

i+1 −2Ck
i −Ck

i−1

dx2

)]
, (4.60)

Φi+1 −2Φi +Φi−1

dx2 +
1

(Rxi +R2)

{
Φi+1 −Φi−1

2dx

}
= q2

eΦi. (4.61)

The discretized governing equations (4.57) and (4.61) are then converted to a tri-diagonal
system of equations which is subsequently solved through the utilization of the Tri-Diagonal
Matrix Algorithm (TDMA).

4.4 Results and Graphical Analysis

A MATLAB-based computer code was developed to gain insight into the mathematical and
physical aspects of the current problem being considered. The code was designed to gener-
ate graphical representations of velocity, temperature, concentration, microorganisms, flow
rate, impedance, Nusselt, and Sherwood profiles. This study examines the hemodynamic
characteristics and blood rheology in the presence of pathological conditions such as steno-
sis on the arterial walls of bifurcated arteries. The thermophysical characteristics of nanopar-
ticles and the parameters of nanofluids are shown in Tables 4.1 and 4.2, respectively. Table
4.3 shows the possible values explored for the different flow parameters.

4.4.1 Validation

The validation of our work is consummated with the published work of Tripathi et al. [100].
The present study employs a finite difference methodology, specifically the Crank-Nicolson
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Properties Mathematical Expression for Nanofluid and Hybrid Nanofluid

Viscosity µn f =
µ f

(1−φ1)2.5

µhn f =
µ f

(1−φ1)2.5(1−φ2)2.5

Density ρn f = (1−φ1)ρ f +φ1ρs1

ρhn f = [(1−φ2){(1−φ1)ρ f +φ1ρs1}]+φ2ρs2

Heat Capacity (ρCp)n f = (1−φ1)(ρCp) f +φ1(ρCp)s1

(ρCp)hn f = [(1−φ2){(1−φ1)(ρCp) f +φ1(ρCp)s1}+φ2(ρCp)s2 ]

Thermal Conductivity
kn f

k f
=

ks1 +(m−1)k f − (m−1)φ1(k f − ks1)

ks1 +(m−1)k f +φ1(k f − ks1)

khn f

kn f
=

ks2 +(m−1)kn f − (m−1)φ2(kn f − ks2)

ks2 +(m−1)kn f +φ2(kn f − ks2)

Electrical Conductivity
σn f

σ f
=

σs1 +(m−1)σ f − (m−1)φ1(σ f −σs1)

σs1 +(m−1)σ f +φ1(σ f −σs1)

σhn f

σn f
=

σs2 +(m−1)σn f − (m−1)φ2(σn f −σs2)

σs2 +(m−1)σn f +φ2(σn f −σs2)

Thermal Expansion
(ρβ )n f

(ρβ ) f
= [(1−φ1)+φ1

(ρβ )s1
(ρβ ) f

]

Coefficient
(ρβ )hn f

(ρβ )n f
= (1−φ2)[(1−φ1)+φ1

(ρβ )s1
(ρβ ) f

]+φ2
(ρβ )s2
(ρβ ) f

Table 4.1: Thermophysical parameters of nanofluid and hybrid nanofluid
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Thermophysical Properties Blood Al2O3 Cu
Density [ρ(kg/m3)] 1060 3970 8933
Thermal Expansion Coefficient [β ×10−5(K−1)] 0.18 0.85 5
Electrical Conductivity [σ(S/m)] 0.667 3.5 ×107 10×10−10

Thermal Conductivity [K(W/mK)] 0.492 40 314
Heat Capacitance [Cp(J/kgK)] 3770 3970 8933

Table 4.2: Thermophysical properties of nanoparticles

Parameters Values Refrences
Magnetic field (M2) 0-5 [106, 112]
Grashof number (Gr) 0-5 [6, 108]
Rayleigh number (Rb) 0-6 [1, 125]
Prandtl number (Pr) 14-25 [130]
Heat source parameter (Q̃) 0-1 [13, 14]

Table 4.3: Default values of emerging parameters with their sources

method, to compute the governing equations. In contrast, the previously published work of
[100] utilised the FTCS scheme.
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Figure 4.2: Velocity profile for pure blood
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Figure 4.3: Temperature profile for pure blood

The present study compares two research works by analysing the impact of different
parameters, namely Solutal Grashof number (Gc = 0), Rayleigh number (Rb = 0), mag-
netic field parameter (M = 0), Debye-Huckel parameter (qe = 0), heat source (Q̃ = 0),
Eckert number (Ec = 0), and Joule heating parameter (Sz = 0). Additionally, the inner
wall (R2(z) = 0) has been considered. The velocity and temperature profile for pure blood
(without the presence of nanoparticles) are illustrated in Figures 4.2 and 4.3, respectively.
The graphical representations illustrate a high degree of concurrence between our study and
prior research [100] concerning velocity and temperature profiles.
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4.4.2 Velocity Profile

The composition of blood is multifaceted, encompassing haemoglobin, plasma, white blood
cells, and diverse ionic constituents. The human circulatory system consists of millions of
red blood cells and other ionic components, which render it capability to exhibit the bio-
magnetic properties. The primary objective of red blood cells (RBCs) is to transport oxygen
to different tissues and organs within the human body. A comparative study was conducted
to explored the impact of magnetic field parameters on the stenosed artery, motivated by its
blood magnetic property. Figure 4.4a depicts the velocity profile variation for different mag-
netic field parameter values in both parent and daughter arteries. The maximum velocity of
the fluid is achieved in the absence of the magnetic field that is (M = 0), which reduces as
the strength of the magnetic field enhances from M = 0 to M =

√
5. This has occurred due

to the application of a transversal magnetic field in the direction of the flow, which produces
the resistance Lorentz force and slows the fluid motion. The profile of the velocity for a
variable electro-kinetic parameter, or Debye Huckel parameter qe, is shown in Figure 4.4b.
The enhancement in the velocity profile can be explained by the electro-kinetic acceleration
term present in the momentum equation, i.e. Uhsq2

eΦ. The parameter known as the Debey
Huckel parameter is expressed as the quotient of the radius of the tube denoted by R0 and
the Debye length represented by qe. It has been observed that the Debey Huckel param-
eter exhibits an inverse relationship with the thickness of the electric double layer (EDL).
Hence, raising the value of the Debey Huckel parameter reduces the EDL width, increasing
the electro-osmotic forces that counteract fluid drag and boost fluid velocity. Bioconvection
phenomena can be attributed to the upward swimming of motile microorganisms in a hybrid
nanofluid solution. Typically, the density of microorganisms exhibits a slightly higher value
than that of the hybrid nanofluid solution, resulting in the migration of microorganisms to-
wards the upper surface of the solution. The observed phenomenon involves the generation
of an uneven and unstable solution, resulting in the downward displacement of microor-
ganisms and the subsequent initiation of a bioconvection process. The association between
the bioconvection Rayleigh number and the momentum equation substantially impacted the
velocity profile, as seen in Figure 4.4c. The increase in the Rayleigh number strengthens
the microorganism’s convection, which works against the buoyancy force acting on the fluid
particles. This results in a decrement in the velocity profile. The variation in velocity pro-
file by varying nanoparticle concentration is depicted in figure 4.4d. Nanoparticles play a
critical role in the targeted delivery of therapeutic agents to affected tissues via the circula-
tory system, thereby enabling the treatment of a diverse array of medical ailments. Upon
injection into the bloodstream, the copper oxide nanoparticles induce an increase in flow
velocity, resulting in a heightened velocity profile relative to that of unadulterated blood.
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(a) Velocity profile by varying M
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(b) Velocity profile by varying qe
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(c) Velocity profile by varying Rb
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(d) Velocity profile by varying nanoparticle con-
centration
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(e) Velocity profile by varying B1
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Figure 4.4: Velocity profile
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(a) Temperature profile by varying Pr
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(b) Temperature profile by varying Q̃
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(c) Concentration profile by varying Sc
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(d) Concentration profile by varying ξ
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(e) Microorganisms profile by varying Pe
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Figure 4.5: Temperature, Concentration and Microorganisms profile
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It may be deduced from the figure that the velocity profile attains its highest magnitude
upon the introduction of copper nanoparticles into the circulatory system, while the lowest
velocity profile is observed for aluminium oxide nanoparticles. Figure 4.4e illustrates the
velocity profile of parent and daughter arteries by considering the different artery diameters.
In particular, the value of B1 = 1.41 corresponds to the coronary artery, whereas the value
of B1 = 6.6 is indicative of the femoral artery. At the stenotic position, the velocity profile
displays an augmentation in its profile for increasing artery diameter. The combined effect
of the Grashof number and the solutal Grashof number is depicted in Figure 4.4f. Grashof
number represent the ratio of buoyant force to viscous force. Clearly, it can be deduced that
the fluid velocity enhances with an increment of Gr from 0 to 1. This has happened due to
enhancement in the buoyant forces as compare to viscous forces which accelerates the fluid
velocity. Similar trend is observed for solutal Grashof number Gc.

4.4.3 Temperature, Concentration and Microorganisms Profile

The variation in temperature for varying Prandtl number is depicted in figure 4.5a. In both
parent and daughter artery, as the value of Pr enhances from 19 to 23, the temperature distri-
bution decreases. Prandtl number represents the ratio of momentum and thermal diffusivity.
The prandtl value for pure blood is 21, which is higher as compared to water and other base
fluids. The smaller Prandtl number has higher thermal condutivity which signifies the heat
transmitted faster from arterial wall as compared for higher-Pr fluids. Figure 4.5b signi-
fies the argumentation in the temperature profile for an increasing heat source parameter.
The enhancement is occur due to addition heat produces by the heat source that raises the
temperature profile. The result of figure 4.5b may be serve as a promising application in
the drug delivery system where the metallic nanoparticles can be used as carriers to treat
cancerous cell. The tumor cell present in the downstream of the stenotic region can be
treated by enhancing the temperature. Figure 4.5c and 4.5d depict the concentration pro-
file for Schmidt and chemical reaction parameter, respectively. The concentration profile
illustrates how a growing Schmidt number leads to a decreasing concentration. Sc denotes
the ratio of the kinematic viscosity to the molecular diffusion coefficient. Since diffusivity
is inversely proportional to Sc, this indicates that a lower Sc number leads to higher diffu-
sivity. The more highly diffusive species have a more noticeable impact of slowing down
the concentration distribution. As the parameter for the chemical reaction is increased, the
concentration profile begins to fall. This has happened due to the consumption of additional
species will lead to the suppressed concentration profile. The impact of bioconvective Pe
on the microorganism’s distribution is seen in Figure 4.5e. The Peclet number is the most
prominent component that highly influences the density of microorganisms in the blood. Pe
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was defined as the ratio of the maximal swimming speed of a cell to the diffusion rate of
microorganisms. The process by which a substance moves from an area of higher concen-
tration to a lower concentration is commonly known as diffusion. From the figure, there is
a direct correlation between the rise in the Pe value from 0 to 3, which results in a reduction
in the microbes’ overall dispersion. It has been discovered that an increase in the biocon-
vective Peclet number results in an increase in the speed of motile microorganisms, which
decreases the density of microorganisms. The combined impact of the bioconvective Lewis
number and the microbial concentration differences parameter on the dispersion of microor-
ganisms is shown in Figure 4.5f. The figure shows that the density decreases for an upsurge
in magnitude of parameter σ1. This results from a more significant density differential being
formed between the gyrotactic microorganisms and the base fluid, which causes the gyro-
tactic bacteria to flow back and suppresses the concentration profile. The mounting value
of Sb reduces the motile density of the fluid, and this has happened due to a decrease in the
microorganism’s diffusivity process. This shows that the microorganism’s density reduces
in both section of the bifurcated artery (parent and daughter arteries) as the magnitude of Sb
and σ1 enhances.

4.4.4 Flow Rate & Impedance Profile

In stenotic condition, the hemodynamic factors play a crucial role in assessing the risk of
atherosclerosis progression induced by flow disorders. Thus, it is essential to study these
factors to reduced its risk and addressed it at a correct time for better treatment. The volu-
metric flow rate is defined as the amount of fluid that passes through the arteries in a given
amount of time whereas fluid resistance also known as Impedance is determined by the ratio
of pressure drop to flow rate. Figure 4.6a shows the flow rate profile for varying magnetic
field parameter. The flow rate profile depicts the declining nature as the magnetic field pa-
rameter enhances from M = 0 to M =

√
5. The flow rate is maximum in the absence of

magnetic field (M = 0) which clearly shows that the flow rate can be regulated by the mag-
netic field. The fluid experiences the resistive Lorentz force that retard the fluid motion and
from the figure, it can also be interpret that the fluid experiences the disturbance at the bifur-
cated point. Figure 4.6b illustrates the change in flow rate that occurs when the bifurcation
angle is changed from π/12 to π/6. According to the inferences drawn from the figure, the
flow rate profile remains unchanged in the parent artery but undergoes substantial changes
following the bifurcation. The daughter artery’s flow rate profile increases with enhance-
ment in the bifurcation angle. The flow rate as a function of the Grashof number is seen in
Figure 4.6c.
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(e) Impedance profile by varying η1

0 1 2 3 4 5 6 7 8 9 10

z

0

10

20

30

40

50

60

Im
p

e
d

a
n

c
e

Rb=0

Rb=0.5

Rb=1

(f) Impedance profile by varying Rb

Figure 4.6: Flow rate and Impedance profile
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This is the result of an increase in the temperature differential between the two regions,
which has caused the buoyant force to predominate compared to the viscous forces. As a
consequence, there has been an increase in the flow rate profile. The decrease in flow rate
that occurs when the value of the Schmidt number grows from 0.5 to 1.5 is seen in Figure
4.6d. The reduction in molecular diffusion is shown physically by an increase in the value
of Sc, whereas a reversal of behaviour was seen concerning the velocity profile, which led to
a drop in the flow rate profile. Figure 4.6e illustrates the decrement in the velocity profile as
the bifurcated angle increases from π/12 to π/6. Clearly, it can be observed that for change
in the bifurcation angle, the impedance profile depicts no change in the parent artery but
show the changes in the daughter artery as the bifurcated angle caused the fluid to change
its behaviour and led the decreasing profile for an increasing bifurcation angle. Figure 4.6f
shows the growing nature of the impedance profile by enhancing the Rayleigh number. The
impedance profile is minimum when Rb = 0 and increases for a positive value of Rb. It has
been noticed that the convection produced by microorganisms lowers the buoyant force that
hinders the mobility of the fluid and raises the impedance distribution.

4.4.5 WSS, Nusselt Number and Sherwood Number

Wall shear stress (WSS) is defined as the force per unit area on the fluid produced by the
arterial wall along the tangential direction. The research concluded that WSS is a critical
component in the biomedical industry for elucidating the pattern of atherosclerotic lesion
development. This research has clinical potential for assessing WSS’s temporal and spatial
distribution, which may aid in the early diagnosis of stenosis. Figure 4.7a depicts the WSS
distribution by illustrating the effect of varying the stenotic depth in the bifurcated artery.
In both sections of the arteries (parent and daughter arteries), the WSS profile decreases
as the stenotic depth increases. The findings of this research corroborate those of Zhang’s
experimental work [131], which also found that arterial lesion development decreased WSS.
Figure 4.7b indicates the influence of the solutal Grashof number on the WSS profile. The
study reveals that the WSS profile rises as the parameter Gc increase from 0 to 1. WSS
profile shows the minimum profile when Gc = 0 and increases as the Gc enhances, leading
to the emergence of buoyant force that improves the flow near the arterial wall and enhances
the WSS profile. The ratio of convective heat transmission to conductive heat transfer in
the arterial walls is represented by the dimensionless Nusselt number. The decrease in the
Nusselt number that occurs with an increasing Prandtl number is seen in Figure 4.7c. It can
be inferred from the figure that the efficiency of transferring heat from the arterial wall to
blood reduces as the Pr value enhances.
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Figure 4.7: WSS, Nusselt number and Sherwood profile
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This has happened due to the low thermal conductivity of higher-Pr fluids. Figure 4.7c
visually represents the relationship between the Nusselt number and the Prandtl number.
The figure demonstrates that as the Prandtl number increases, there is a notable decrease
in the Nusselt number. The observed pattern indicates that the efficiency of heat transfer
from the arterial wall to the blood decreases as the Prandtl values increase. In the con-
text of arterial heat transfer, it has been observed that fluids with higher Prandtl numbers
tend to demonstrate diminished efficacy in the conduction of heat when compared to flu-
ids possessing lower Prandtl numbers. Consequently, the Nusselt number decreases with
increasing Prandtl number, indicating a reduced ability to transfer heat from the arterial
wall to the blood. Figure 4.7d depicts the relation between the heat source parameter and
Nusselt profile. The utilisation of a heat source has been found to have potential applica-
tions in therapeutic procedures. By selectively targeting the affected region, heat energy
can be generated without causing harm to nearby tissues. This localised heating can serve
multiple purposes, including the dilation of arteries to facilitate increased blood flow to the
affected area. Therefore, it can be utilised as a potential intervention to mitigate stenosis.
The reverse trend is observed in Figure 4.7d for the heat source parameter signifying that
the higher Nusselt profile trend is observed with an increase in the heat source parameter.
An increase in the heat source parameter from 0 to 1 induces a rise in the heat generation
rate within the blood, thereby causing an escalation in the temperature leading to enhancing
Nusselt number profile.

Thermal treatment is one of the finest ways to expose blood tissue and cancerous cells
to high temperatures in biomedical area; nevertheless, it must be performed under safety
recommendations to prevent damage to healthy tissues. The effect of the chemical reaction
parameter and Schmidt number on the Sherwood profile is demonstrated in Figures 4.7e and
4.7f, respectively. The statistics suggest that nature is deteriorating, with a rise in ξ and Sc.
This pattern may be described by the fact that the molecular diffusivity lowers, indicating
a lesser mass transfer across the wall, which leads to a diminishing nature in the Sherwood
profile.

4.4.6 Velocity Contour

This section presents visual representations of the velocity pattern as influenced by various
parameters. This facilitates an enhanced visual and comprehensive depiction of the hemo-
dynamic flow in close proximity to the constricted area along the walls of the bifurcated
artery. The velocity contour for varying Grashof numbers is depicted in figure 4.8a-4.8c.
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Figure 4.8: Velocity contour for Grashof number and Magnetic field parameter
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(a) Rb = 0 (b) Rb = 0.3

(c) Rb = 0.5 (d) Cu = 0,Al2O3 = 0 (Pure blood)

(e) Cu = 0,Al2O3 = 0.02 (f) Cu = 0.02,Al2O3 = 0.02

Figure 4.9: Blood flow patttern for Rayleigh number and nanoparticle volumetric con-
centration.
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The figure demonstrates a positive correlation between the elevation of the trapping bo-
lus and the magnitude of Gr. The maximum velocity achieved is 0.35 for both scenarios
when the Grashof number (Gr) is equal to 0 and 0.5. Additionally, a maximum velocity of
0.25 is explicitly observed for the case when Gr is equal to 0. The maximum fluid speed
is observed to occur in the parent region for all three cases. This phenomenon is attributed
to the reduction in the value of Gr in the daughter artery, which is caused by the inclination
angle η1/2. The velocity contour demonstrates the relationship between the augmentation
in velocity and the accompanying elevation in Gr, which can be ascribed to the amplifica-
tion of the buoyant thermal force and its subsequent influence on the velocity profile. The
effect of the magnetic field on the velocity contour is seen in Figure 4.8. Figure 4.8d – 4.8f
show that the velocity field decreases when the magnetic field parameter increases. Without
a magnetic field, the fluid can only reach a maximum speed of 0.5 , but when the magnetic
field parameter is enhances, the fluid’s speed reduces. The resistive Lorentz force is respon-
sible for the declination in the velocity, which can be predicted by the velocity contour. The
velocity contour for different values of Rb is depicted in Figure 4.9a-4.9c. The data suggest
a negative correlation between velocity and Rb, indicating that an increase in Rb results in
a decrease in velocity. In the context of Rb deficiency, it has been noted that the maximum
velocity profile is achieved in both the parent and daughter arteries. According to our find-
ings, maximum resistance resulting from the overlapping stenosis occurs at Rb = 0.3. In the
region pertaining to the daughter, a decrease in the quantity of trapped bolus is observed as
the value of Rb varies from 0.3 to 0.5. The presence of overlapping and irregular stenosis
is observed to cause resistance and decrease fluid velocity in the vicinity of the affected
segments. The observed decrease in velocity profile can be attributed to the strengthening
of Rb, which resulted in the microorganism’s convection counteracting the buoyancy force
exerted on the fluid particles.

Figure 4.9d-4.9f displays the velocity contour related to manipulating volumetric nanopar-
ticle concentration. The maximum velocity achievable by pure blood has been found to be
0.4. Additionally, the presence of trapped bolus can be observed in the vicinity of overlap-
ping stenosis. Upon insertion of the copper nanoparticle into the bloodstream, there is an
observed increase in the maximum velocity of the fluid, as illustrated in the Figure 4.9e.
Figure 4.9f depicts the velocity contour of copper and aluminium oxide suspended in the
base fluid (blood) . Although the maximum velocity remains constant in both cases 4.9e
and 4.9f, the velocity profile is reduced when aluminium oxide nanoparticles are doped in
copper/blood solution. These findings provide novel insights for evaluating the precision of
theoretical investigations on complex systems and comprehending the impact of blood prop-
erties on diverse nanoparticles. Consequently, the surgeon surgeon possesses the ability to
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regulate the blood flow during the surgical intervention.

4.5 Conclusion

The current study presents a mathematical model describing the hemodynamic flow through
a bifurcated artery with overlapping and irregular stenosis at the parent and daughter ar-
teries, respectively. The investigation has focused on implementing the Al2O3-Cu/Blood
hybrid nanofluid in conjunction with electroosmotic force, a heat source, and microorgan-
isms. Nanoparticles are colloidal suspensions composed of microscopic-shaped substances
dispersed in a base fluid. The favourable heat transfer capabilities and stability of nanofluids
make them an ideal choice for applications in the biomedical field. The pursuit of stable,
non-aggregating, and bio-compatible medicines is a primary objective of researchers. The
antibacterial and antiviral properties of copper nanoparticles are attributed to their large sur-
face area-to-volume ratio. The chemical stability of aluminium oxide nanoparticles (AlNPs)
in abrasive environments, their low cost, and ease of acquisition render them a viable option
for application in biomedicine. The favourable characteristics exhibited by the nanoparti-
cles have prompted us to investigate the potential of utilising the Al2O3-Cu/Blood hybrid
nanofluid in the context of the bifurcated artery. The significant outcomes are outlined be-
low:

• It is noticed that the velocity profile decreases in both parent and daughter artery with
enhancement in magentic field parameter while reverse trend is observed for Debye-
Huckel parameter.

• Temperature profile enhances with an upsurge in the heat source parameter.

• The mounting value of Sb reduces the motile density of the fluid, attributed to a re-
duction in microorganism diffusivity.

• Nusselt number profile decline with an enhancement in Pr while the opposite be-
haviour is observed for heat source parameter.

• Sherwood profile decreases with an enhancement in both chemical reaction parameter
and Schmidt number due to lower molecular diffusivity.
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Chapter 5

Entropy Generation Analysis of a Ternary Hybrid
Nanofluid (Au-CuO-GO/Blood) Containing Gyro-
tactic Microorganisms in Bifurcated Artery 1

5.1 Introduction

Stenosis and aneurysm are two distinct medical conditions of significant importance, as they
can impact various human body regions. The presence of these abnormalities often results in
the manifestation of a typical configurations within the vasculature, which can subsequently
give rise to a range of health implications that may carry significant clinical significance
[132]. Stenosis is a pathological condition characterised by the constriction or narrowing
of blood vessels, primarily caused by the accumulation of various substances such as fatty
plaques, cholesterol, cellular debris, and calcium on the inner lining of arteries [133]. On
the contrary, an aneurysm denotes a condition characterised by the dilation or expansion
of a blood vessel, which may heighten the likelihood of rupture, resulting in significant
haemorrhaging and potential mortality [134]. The study conducted by Ahmed and Nadeem
[2] seeks to explore the flow characteristics of the micropolar fluid and hybrid nanofluid
through six different types of stenosis. This comparative study elucidates discernible varia-
tions in microrotation levels across different stenosis configurations. This comparative study
revealed that irregular symmetric stenosis exhibits a higher microrotation than bell-shaped
stenosis in micropolar fluid and hybrid nanofluid. Joshua et al. [117] comprehensively
investigated unsteady blood flow characteristics in an inclined multiple stenosis configura-
tion. The study encompassed the manipulation of numerous crucial parameters, precisely
the Hartmann number, severity of stenosis, Power Law index, and Reynolds number. The
study performed by Mishra et al. [120] focused on investigating the impact of the Soret and

1A considerable part of this chapter is published in International Journal of Numerical Methods for Heat
& Fluid Flow , Vol. 34 No. 2, pp. 980-1020



114
Chapter 5. Entropy Generation Analysis of a Ternary Hybrid Nanofluid

(Au-CuO-GO/Blood) Containing Gyrotactic Microorganisms in Bifurcated Artery

Dufour effects on a MHD (magnetohydrodynamic) nanofluid with varying viscosity as it
flows through a stenosed artery. Poonam et al. [82] conducted a numerical investigation to
analyse the transport characteristics of a hybrid nanofluid within a curved artery with steno-
sis and aneurysm. The study incorporated multiple factors, such as hematocrit-dependent
viscosity, external body acceleration, viscous dissipation, and Joule heating. The results of
their study demonstrated that an elevation in the Hartmann number corresponded to a reduc-
tion in both wall shear stress and blood velocity. The investigation conducted by Shahzadi
et al. [95] examined the impact of electroosmotic forces and slip conditions on the flow of
a ternary nanofluid through an oblique stenosed aneurysmal artery. Numerous prior inves-
tigations [33, 121, 135, 136] have also examined the effects of MHD nanofluids related to
arterial dieseases such as stenosis or aneurysms.

In recent years, MHD play a crucial role in the biomedical field. The human blood
contains the ions and electrolytes which make them suitable to behave like an electrically
conducting fluid. MHD is the interaction of the electric and magnetic field acting transver-
sally to each other. While, electroosmosis is the interaction of charged particles on the action
of an applied electric field. A thorough investigations helps the researchers to understand the
application of MHD in the arterial diseases and open up new avenue for non-invasive and
therapeutic interventions. Majee and Shit [137] performed a numerical investigation to ex-
amine the MHD flow within a stenosed artery. The findings of their investigation unveiled
the existence of a region with reduced shear stress in the close vicinity of the stenosis’s
downstream area, suggesting a heightened probability of subsequent plaque accumulation.
The research conducted by Abbas et al. [138] was centred on the study of MHD pulsatile
flow through overlapping stenosis, taking into account body acceleration effects. Gandhi et
al. [139] discussed Casson fluid’s unsteady electromagnetic MHD flow through an irreg-
ular stenosed permeable artery. In their study, nanofluids’ effective viscosity and thermal
conductivity were determined using the Koo-Kleinstreuer-Li model, which incorporates the
Brownian motion of nanoparticles. Sharma et al. [97] presented a comprehensive analysis
of MHD blood flow within a curved arterial geometry, including the influence of heat trans-
fer, body acceleration, and hybrid nanoparticles. In addition, the study integrated a viscosity
model dependent on hematocrit levels to replicate the blood flow characteristics effectively.
Dubey et al. [140] employed the finite element method to numerically investigate MHD
fluid dynamics within a bifurcated artery containing a saccular aneurysm. Their findings
indicated a reduction in the velocity profile with the rise in the magnitude of the magnetic
field parameter , resulting in a drag force observed both at the saccular aneurysm and near
the throat of the aneurysm.

The bifurcated artery is characterised by the anatomical phenomenon wherein the parent
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artery undergoes division, forming branch-like structures referred to as daughter arteries.
The bifurcated artery is a crucial component in the distribution of oxygen to different re-
gions of the human body. It is present in key locations such as the aorta, carotid arteries,
and coronary arteries. The present study primary focus to investigate Casson fluid’s flow
characteristics within a bifurcated artery configuration. Specifically, we examine scenarios
where the parent artery contains an aneurysm while the daughter arteries exhibit mild over-
lapping stenosis. Vascular studies of this nature facilitate the examination and analysis of
hemodynamic flow within diseased arteries, thereby contributing to the diagnostic process
of various pathological conditions. Ponalagusamy and Priyadharshini [104] investigated the
utilisation of the Casson fluid model in replicating the hemodynamic flow characteristics
within a bifurcated artery having the permeable walls. The researchers analysed the transi-
tion from the Newtonian to the non-Newtonian blood flow model. Their findings indicate
that this transition enhanced the flow rate and wall shear stress (WSS) profile. Shahzad et al.
[116] constructed a mathematical model to investigate the phenomenon of fluid-structure in-
teraction. Specifically, they focused on Casson fluid flow through elastic arterial walls. The
observed trend indicates that an increase in both Bingham and Hartmann numbers corre-
sponds to an increase in the load exerted on the walls. Hossain [141] explored the influence
of a magnetic field on the flow of a two-phase bio-nanofluid through a bifurcated artery. The
study highlighted that the presence of a magnetic source led to irregular flow patterns within
the bifurcated artery. Manchi and Ponalagusamy [34] conducted a comprehensive investi-
gation on the electromagnetic hydrodynamics (EMHD) micropolar fluid flowing through a
porous bifurcated artery under the influence of body acceleration and Joule heating. Their
study compared the heat transfer characteristics between two types of nanofluids: Ag/blood
nanofluid and Ag-TiO2 hybrid nanofluid. The authors observed that the heat transfer rate in-
creased with the Grashof number and decreased with increasing stenosis severity. Zain and
Ismail [142] investigated the effects of MHD on blood flow through a bifurcated artery with
overlapping-shaped stenosis. The authors suggested that an increase in the magnetic field
parameter reduced the wall shear stress occurring at the constricted section of the stenosis
throat. These findings contribute to the understanding of arterial flow dynamics and have
implications for biomedical applications and the design of medical devices.

The concept of nanofluid entails the utilisation of minuscule nanoparticles that are evenly
distributed within the base fluid, thereby exemplifying a pioneering technological advance-
ment. The shape, size, and efficiency of nanoparticles play a significant role in the biomedi-
cal field as they contribute to the effectiveness of targeted drug delivery. Nanofluid flow via
composite stenosis in permeable artery walls was studied by Ellahi et al. [143]. Sharifi et
al. [144] proposed using nanofluid flow as a means of targeted drug delivery, specifically
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within aneurysmal blood vessels, by employing a magnetic field. Therefore, the improve-
ment of treatment protocols without the occurrence of adverse effects. Sowmya et al. [145]
discussed the different shapes of nanoparticles through the radial porous fin. Their study
revealed the enhancement in the heat transfer property by using the nanofluid. Gürbüz et
al. [146] experimentally and numerically performed the simulation of CuO-Al2O3 water
hybrid nanofluid through the U-type heat exchanger. The study suggested that adding fins
and hybrid nanofluid can enhance the heat transfer rate in the heat exchanger. Sarwar and
Hussain [67] examined the hemodynamic properties of a hybrid nanofluid comprising gold
nanoparticles as it traverses a stenotic artery. This model presents the therapeutic application
of gold nanoparticles in treating vascular diseases. Khanduri et al. [107, 112] examined the
impact of Hall’s effects on the stenotic artery. They specifically focused on utilising hybrid
nanoparticles and a viscosity model that considers the dependence on hematocrit levels in
the blood. The authors revealed that thrombosis within the catheterised artery impacts the
hemodynamic flow characteristics.

Ternary hybrid nanoparticles, which have improved thermal conductivity and bio-stability
over conventional nanofluids, provide a new opportunity for diagnosing and treating patho-
logical disorders in the medical area. The combination of three distinct nanoparticles in
a base fluid constitutes a ternary hybrid nanofluid. Therefore, by integrating these three
characteristics of nanofluids, they may be employed as the targeted delivery drug. Com-
parative research between ternary hybrid nanofluids and hybrid and conventional nanofluids
was conducted by Mahmood et al. [147]. The flow of ternary hybrid fluid passed through
the stretching sheet under the influence of a magnetic field, suction and a heat source. Al-
nahdi et al. [148] discovered the influence of the flow characteristics of Casson fluid flow
through the capillary tube and the governing equations arising from the model are computed
using the homotopy analysis method. Their study predicted that the heat transfer rate in-
creases with augmentation in the radiation parameter. In contrast, with an enhancement in
the magnetic field parameter, a reverse trend is observed for the velocity profile. Fluid flow
via the catheterized stenosed artery was explored by Dolui et al. [149], who looked at the
impact of the induced magnetic field and radiation. The ternary hybrid nanoparticles are
used in the composite stenosed artery and graphically portray the influence of different per-
tinent parameters. According to the investigation results, heat transfer and flow behaviour
are improved within the stenotic artery. Thus, promising use of ternary hybrid nanofluids in
healthcare and advancing state-of-the-art biomedical technologies.

Bioconvection is a naturally occurring phenomenon that arises as a result of density
differences caused by the upward movement of microorganisms. The upward motion of
microorganisms towards the surface led to an increased concentration of microorganisms in
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that region, subsequently causing the downward movement of microorganisms due to the
influence of gravity. Consequently, the phenomenon of bioconvection arises within the sys-
tem. It is worth noting that microorganisms possess the ability to propel themselves through
swimming, a characteristic that is absent in nanoparticles. In response to the aforemen-
tioned phenomena, Bhatti et al. [125] conducted a study to investigate the peristaltic motion
of the Jeffery nanofluid within a system consisting of two coaxial tubes. The fluid flow is
subjected to a significant magnetic field, and it has been observed that the density of motile
microorganisms decreases as the Peclet number increases. Alharbi et al. [126]considered
the porous stretching sheet to exhibit the microorganism’s bioconvection phenomena in a
hybrid nanofluid. The research conducted by Sharma et al. [1] delved into the intricate
dynamics of magnetohydrodynamic (MHD) fluid flow when microorganisms are present in
the vicinity of an inclined stretching sheet. The study conducted by Mekheimer et al. [127]
focused on investigating the utilisation of nanoparticles for drug delivery in the context of
hemodynamic flow within diseased organs. In their seminal work, Mostapha and EL-Dabe
[128] conducted a comprehensive theoretical analysis to examine the intricate dynamics of
nanofluid flow induced by peristalsis. Notably, their investigation considered the intriguing
phenomenon of motile gyrotactic microorganisms within an endoscope. In addition to con-
sidering the impact of radiation and chemical interaction, the study also incorporated the
Soret and Dufour scheme.

Entropy is a fundamental concept within the biomedical field, facilitating comprehension
of the intricate complexities and behaviours inherent in biological systems. Amidst a dy-
namic environment, biological systems exhibit constant fluctuations, thereby warranting the
utilization of entropy as a metric to quantitatively assess the intrinsic randomness and dis-
order manifesting within these systems [150]. Akbar et al. [151] explored the phenomenon
of entropy in the peristaltic flow of a base fluid containing copper nanoparticles, consid-
ering the influence of an induced magnetic field. Tayebi and Chamkha [152] addressed
the entropy analysis of MHD hybrid nanofluid in the wavy solid block under the influence
of magnetic field. Marzougui et al. [153] discussed the entropy analysis of copper water
nanofluid under the influence of magnetic field and nanoparticle volume fraction through
porous medium. Zidan et al. [57] elucidated the concept of entropy generation and its rela-
tionship to the response surface methodology in blood flow through a catheterized arteries
containing multiple stenoses. The authors aimed to understand how entropy is generated
and distributed in the presence of these obstructions. Zaman et al. [96] addressed the topic
of entropy generation in the presence of multiple stenoses in curved arteries, utilizing the
Cross fluid model to represent blood flow. Algehyne et al. [154] focused on applying mag-
netized nanoparticles for drug delivery in composite stenosed arteries. The authors explored
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the effects of magnetization on the behaviour of nanoparticles within the stenosed artery,
explicitly investigating their potential for targeted drug delivery. Furthermore, Sharma et al.
[109] conducted a numerical investigation on the entropy generation in a MHD power-law
fluid flowing through a curved artery, considering the Hall effect and radiation. The au-
thors discovered that entropy increases within the stenosed curved artery when the thermal
radiation parameter is enhanced, suggesting that thermal radiation in therapies could po-
tentially reduce the deposition of arteriosclerosis. Through diligent examination of entropy
within the biomedical realm, researchers are empowered to garner invaluable insights into
the efficiency, organization, and stability of various biological processes.

In light of the abovementioned study, a mathematical model was developed to ana-
lyze Casson fluid flow through a bifurcated artery, incorporating gyrotactic microorgan-
isms. The study considers the presence of an aneurysm in the parent artery and stenosis
in the daughter artery. The primary focus of this research revolves around examining the
influence of entropy generation on the flow characteristics of a ternary hybrid nanofluid
(Au-CuO-GO/Blood). Furthermore, the effects of viscous dissipation, Joule heating, and
electroosmosis have been incorporated into the model. By incorporating these phenomena
comprehensively, this study has achieved a deeper understanding of the multiphysics aspects
associated with flow in bifurcated arteries. The insights gained hold significant implications
for clinical settings and therapeutic interventions.

5.2 Model Formulation

In this study, we consider the analysis of a fully developed, unsteady, laminar, incompress-
ible two-dimensional magnetohydrodynamic (MHD) blood flow within a stenosed bifur-
cated artery. The arterial system under investigation comprises straight, circular cylinders
aligned along the centerline of the parent artery, exhibiting irregular aneurysm in the parent
artery and overlapping stenosis in the daughter arteries (refer to Figure 5.1). To describe the
system mathematically, we introduce a cylindrical coordinate system denoted by r̃, θ̃ , and
z̃, where z̃ represents the coordinate along the centerline of the parent artery, while r̃ and θ̃

denote the radial and circumferential directions, respectively. The flow characteristics are
assumed to be antisymmetric, implying that all variables are independent of θ̃ . Furthermore,
a uniform magnetic field B = (B0,0,0) and an electric field E = (0,0,E0) are applied to the
blood flow, with B0 representing a constant magnetic field strength.

Considering the gravitational force acting in the downward direction, we neglect the
contribution of the induced magnetic field due to the assumption of a low magnetic Reynolds
number. In order to eliminate the potential for flow separation zones, curvature is introduced
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Figure 5.1: Representation of bifurcated artery with irregular aneurysm in the parent
artery and overlapping stenosis in the daughter artery

at the lateral junction and the apex of the bifurcation. The geometry of the bifurcated artery
with irregular aneurysm in the parent artery and an overlapping stenosis in the daughter
artery is expressed as follows [13]:

˜̂R∗
1(z̃) =



R0, 0 < z̃ ≤ d̃,

R0 +A∗, d̃ < z̃ ≤ d̃ +2L0
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R2

0
L2

0
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)
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(
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z̃− z̃2

)
tanη1 −B∗, z̃5 < z̃ ≤ z̃5 +L0,
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R0
L0

(
z̃− z̃2

)
tanη1, z̃5 +L0 < z̃ ≤ z̃max.

(5.1)
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Where,
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And, Kroncecker delta function is defined as:

δi j =

0 for 0 ≤ z̃ ≤ z̃3,

1 for z̃3 ≤ z̃ ≤ z̃max,
(5.2)

The inner wall is represent as:

˜̂R∗
2(z̃) =


0, 0 < z̃ ≤ z̃3,√

˜̃r∗1
2 −
(

R0

(
z̃−z̃3
L0

)
− ˜̃r∗1

)2

, z̃3 < z̃ ≤ z̃4,

R0
L0
(z̃− z̃2) tanη1, z̃4 < z̃ ≤ zmax.

(5.3)

Where, d̃ represent location of stenosis, z̃1 denotes the location of insert lateral junction,
z̃max signifies the maximum length of stenosis; r̃1 denotes the daughter artery radius; The
radii of curvature at lateral junction and at the flow divider is represented by:

r̃1 =
R0 −2r0 secη1

cosη1 −1
, ˜̃r∗1 =

(z̃3 − z̃2)R0 sinη1

L0(1− sinη1)
, (5.4)

The spatial coordinates of the lateral junction offset, apex, and offset of curvature along
the inner wall are expressed as follows:

z̃2 = z̃1 + r̃1

(
L0

R0

)
sinη1, (5.5)

z̃3 = z̃2 +q1L0, (5.6)

z̃4 = z̃3 + ˜̃r∗1

(
L0

R0

)
(1− sinη1) (5.7)

z̃5 = z̃4 +0.5L0. (5.8)

Where η1 is half of the bifurcation angle and value of q1 lies between 0.1 and 0.5,
d̃ = 1,δ1 = 0.2,δ = 0.5 and z̃max is the finite length of the bifurcated artery.
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The rheological equation of state for incompressible flow in the context of the Casson fluid
model is expressed as follows:

τ
∗
i j =


2
(

µ∗
b +

p∗y√
2π∗

)
e∗i j, π∗ > π∗

c ,

2
(

µ∗
b +

p∗y√
2π∗

c

)
e∗i j, π∗ ≤ π∗

c ,
(5.9)

where π∗ = e∗i j.e
∗
i j represent the multiplication of the deformation rate with itself , µ∗

b signi-
fies the viscosity of the non-Newtonian fluid, p∗y represents the yield stress of the fluid, and
π∗

c denotes a critical value derived from the non-Newtonian model.
Equation (5.9) converted to the following form when π∗ ≤ π∗

c :

τ
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b

(
1+

1
β1

)
e∗i j, (5.10)

where β1 =
µ∗

b

√
2π∗

c
p∗y

denotes the Casson fluid parameter.

5.2.1 Governing Equations

Given the aforementioned assumptions and with the application of the Boussinesq approxi-
mation, the governing equations that describe the flow can be expressed as follows:
Continuity Equation:
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= 0, (5.11)

Momentum Equation:
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∂ z̃

)]
−µthn f

(
1+

1
β1

)
ũ
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z̃-direction:
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Energy Equation:
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Concentration Equation:
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∂C̃
∂ r̃

+ w̃
∂C̃
∂ z̃

= DB

[
∂ 2C̃
∂ r̃2 +

1
r̃

∂C̃
∂ r̃

+
∂ 2C̃
∂ z̃2

]
−Rc(C̃−C̃0) (5.15)

Microorganism Equation:
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The boundary conditions are:

w̃ = 0, T̃ = T̃w C̃ = C̃w ñ∗ = ñ∗w at r̃ = ˜̂R1(z̃) for all z̃, (5.17)

∂ w̃
∂ r̃

= 0,
∂ T̃
∂ r̃

= 0
∂C̃
∂ r̃

= 0
∂ ñ∗

∂ r̃
= 0 at r̃ = 0 for 0 ≤ z̃ ≤ z̃3, (5.18)

w̃ = 0, T̃ = T̃w, C̃ = C̃w, ñ∗ = ñ∗w at r̃ = ˜̂R2(z̃) for z̃3 ≤ z̃ ≤ z̃max. (5.19)

The initial conditions regarding velocity, temperature, concentration and microorganisms
are considered as:

w̃ = 0, T̃ = 0, C̃ = 0, ñ∗ = 0 at t̃ = 0. (5.20)

The pulsatile nature of pressure gradient and body acceleration terms are given as;

G(t̃) =B0 cos(ωqt̃ +ψ), (5.21)

−∂ p̃
∂ z̃

=A0 +A1 cos(ωpt̃). (5.22)

Here, A0 and A1 are steady-state and amplitude of fluctuating component of pressure
gradient, respectively. Where, ωp = 2π fp, fp is pulse frequency, B0 is the body acceleration
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term, ωq = 2π fq, fq is frequency of body acceleration with ψ as a phase angle.

5.2.1.1 Electrohydrodynamics (EHD)

Blood, a complex fluid composed of components such as haemoglobin, plasma, white blood
cells, and various ions, exhibits unique electrical conductivity. In the presence of an elec-
trolyte solution, the arterial walls experience generating a net charge, establishing opposite
charge distribution in the blood near the walls. Applying an electric field induces the move-
ment of charged ions, subsequently causing fluid motion in the vicinity of the walls. This
phenomenon is commonly known as electro-osmotic flow. The electro-osmotic potential
function is described by the Poisson-Boltzmann equation, as detailed in the research con-
ducted by Manchi et al. [34]:

∇
2
Φ̃ =−ρe

ε
, (5.23)

where, Φ̃ denotes the electro-osmotic function, ε is dielectric constant, and ρe is given
as:

ρe = (n+−n−)e0z0. (5.24)

The number density of cation and anion can be defined by the Boltzmann distribution
as:

n± = n0 exp
(
∓ e0z0Φ̃

kBTavg

)
, (5.25)

where, z0 is the charge balance, e0 is electric constant, kB is Boltzmann constant.
Using the Debye-Huckel linearizion, the Poisson equation takes the form:(

∂ 2

∂ r̃2 +
1
r̃

∂

∂ r̃
+

∂ 2

∂ z̃2

)
Φ̃ =

Φ̃

q2
m
, (5.26)

where qm = 1
e0z0

√
εkBTavg

2s0
.

The boundary conditions for electro-osmotic equation are:
Φ̃ = 0.3ζ , at r̃ = ˜̂R1(z̃) for all z̃,
∂ Φ̃

∂ r̃ = 0, at r̃ = 0 for 0 ≤ z̃ ≤ z̃3,

Φ̃ = 0.1ζ , at r̃ = ˜̂R2(z̃) for z̃3 ≤ z̃ ≤ zmax.

(5.27)
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5.2.2 Non-Dimensionalization

It is necessary to convert the governing equations presented in (5.11)-(5.16) into dimen-
sionless form in order to obtain a numerical solution. The introduction of non-dimensional
variables is performed in the following manner:

u =
L0ũ

δ ∗U0
, t =

U0t̃
R0

,z =
z̃

L0
, p =

R2
0 p̃

U0L0µ0
,r =

r̃
R0

,w =
w̃
U0

,T =
T̃ − T̃0

T̃w − T̃0
,C =

C̃−C̃0

C̃w −C̃0
,

χ̃1
∗ =

ñ∗− ñ∗1
ñ∗w − ñ∗1

, R̂∗
i =

˜̂R∗
i

R0
(i = 1,2),d =

d̃
L0

,r0 =
r̃0

R0
,zi =

z̃i

L0
(i = 1, ..,4),r1 =

r̃1

R0
,

r̃1
∗ =

˜̃r∗1
R0

,Re =
U0ρ f R0

µ f
,M2 =

σ f B2
0R2

0
µ f

,E∗
1 =

E0

B0U0
,Gr =

ρ f R2
0gβ f (T̃w − T̃0)

µ fU0
,

Gc =
ρ f R2

0gβ f (C̃w −C̃0)

µ fU0
,Rb =

ρ f R2
0gβ f (ñ∗w − ñ∗1)

µ fU0
,Ec =

U2
0

Cp(T̃w − T̃0)
,Pr =

µ0Cp

k f
,

Q̃ =
Q̃0R2

0
κ f (T̃w − T̃0)

,Sz =
σ f

κ f

R2
0E2

0
(T̃w − T̃0)

,qe =
qm

R0
,Sc =

ν

Dm
,Pe =

bWc

Dn
,σ1 =

ñ∗

(ñ∗w − ñ∗1)
,

Pe =
bWc

Dn
, ξ =

Rcρ f R2
0

µ f
, Uhs =−ζ εE0

µ fU0
. (5.28)

The aforementioned non-dimensional parameters mentioned in equation (5.28) are inserted
into the governing equations (5.11)-(5.16) . The mild stenotic assumptions are employed,
characterized by a maximal stenosis height that is significantly smaller than the radius of
the artery, denoted as δ (= δ ∗/R0) << 1, a proportional relationship between the artery’s
radius and the length of the stenotic region, expressed as ε(= R0/L0) = O(1). The govern-
ing equations (5.11)-(5.16) undergoes the modifications, which can be expressed as follows:

Momentum Equation:
r-direction:

∂ p
∂ r

= 0, (5.29)

z-direction:

Re
ρthn f

ρ f

∂w
∂ t

=−∂ p
∂ z

+
1
2r

∂

∂ r

[
µthn f

µ f

(
1+

1
β1

)
r

∂w
∂ r

]
−

σthn f

σ f
M2w

+
(ρβ )thn f

(ρβ ) f
[GrT +GcC+Rbχ̃1]cos(η1δi j)+Uhsq2

eΦ. (5.30)
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Energy Equation:

(ρCp)thn f

(ρCp) f

∂T
∂ t

=
1

RePr
kthn f

k f

[
∂ 2T
∂ r2 +

1
r

∂T
∂ r

]
+

σthn f

σ f

[
EcM2

Re
w2 +

Sz + Q̃
RePr

]
+

µthn f

µ f

(
1+

1
β1

)
Ec
Re

[(
∂w
∂ r

)2]
. (5.31)

Concentration Equation:

ReSc
∂C
∂ t

=
∂ 2C
∂ r2 +

1
r

∂C
∂ r

−ScξC, (5.32)

Microorganism Equation:

ReSb
∂ χ̃1

∂ t
=

∂ 2χ̃1

∂ r2 +
1
r

∂ χ̃1

∂ r
−Peσ1

(
∂ χ̃1

∂ r
∂C
∂ r

+(σ1 + χ̃1)
∂ 2C
∂ r2

)
, (5.33)

Electroosmotic Equation:
∂ 2Φ

∂ r2 +
1
r

∂Φ

∂ r
= qe

2
Φ. (5.34)

Here, Reynold’s viscosity model [129] has been utilised to illustrate the temperature-dependent
viscosity. The model is expressed as follows:

µb f (T ) = µ f e−β0T = µ f [1−β0T ] where β0 << 1 (5.35)

Upon substituting dimensionless variables in equation (5.28), the resulting modified equa-
tion for the pressure gradient can be formulated as follows:

−∂ p
∂ z

= B1[1+ ecos(c1t)], (5.36)

where

e =
A1

A0
, B1 =

A0R2
0

µ fU0
, c1 =

2πR0 fp

U0
.

Upon applying non-dimensional values to the body acceleration Eqn (5.22), the terms
B2 =

A0R2
0

µ f U0
and c2 =

wqR0
U0

has taken the following form. The resulting form of the equation,
by removing the bars, is as follows.

G(t) = B2 cos(c2t +ψ), t > 0 (5.37)
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The dimensionless form of the stenosis geometry is expressed as follows:

R̂∗
1(z) =



1, 0 < z ≤ d

1+A∗, d < z ≤ d +2

1, d +2 < z ≤ z1,

1+ r1 −

√(
r2

1 − (z− z1)2
)
, z1 < z ≤ z2,

2r0 secη1 +

(
z− z2

)
tanη1, z2 < z ≤ z5,

2r0 secη1 +

(
z− z2

)
tanη1 −B∗, z5 < z ≤ z5 +1,

2r0 secη1 +

(
z− z2

)
tanη1, z5 +1 < z ≤ zmax,

(5.38)

where,

A∗ =2δ1

{
cos
(

2π

(
z−d

4

)
−0.25

)
−0.07cos

(
128π

(
z−d −0.5

))}
tan(η1),

B∗ =
6δ

5
(11(z− z5)−47(z− z5)

2 +72(z− z5)
3 −36(z− z5)

4)

The inner wall is represent as:

R̂∗
2(z) =


0, 0 < z ≤ z3,√

r̃∗1
2 −
(
(z− z3))− r̃∗1

)2

, z3 < z ≤ z4,

(z− z2) tanη1, z4 < z ≤ zmax.

(5.39)

The lateral junction curvature r1 and the flow divider radius r̃1 in the dimensionless form
(after ignoring bars) are given as:

r1 =
1−2r0 secη1

cosη1 −1
, (5.40)

r̃∗1 =
(z3 − z2)sinη1

(1− sinη1)
, (5.41)

where z2, z3 and z4 in the dimensionless form are specified as:

z2 = z1 + r1 sinη1, (5.42)

z3 = z2 +q1, (5.43)
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and
z4 = z3 + r̃∗1(1− sinη1). (5.44)

5.2.3 Radial Coordinate Transformation

In order to obtain a rectangular domain, it is necessary to apply the transformation
(

x1 =

r−R̂∗
2(z)

R(z)

)
to the geometry under consideration. Upon implementation of the aforementioned

transformation, the equations denoted by (5.30) through (5.34) undergo a modification as
follows:

Re
ρthn f

ρ f

∂w
∂ t

= B1[1+ ecos(c1t)]+
1
2

(
1−β0T

(1−φ1)2.5(1−φ2)2.5(1−φ3)2.5

)(
1+

1
β1

)[
1

R2

∂ 2w
∂x2

1
+

(
1

x1R+R2

)(
1
R

∂w
∂x1

)]
− β0

2R2((1−φ1)2.5(1−φ2)2.5(1−φ3)2.5)

∂w
∂x1

∂T
∂x1

+

(ρβ )thn f

(ρβ ) f

[
GrT +Gcφ̃ −Rbχ̃1

]
cos(η1δi j)+Uhsq2

eΦ−
σthn f

σ f
M2w+G(t), (5.45)

(ρCp)thn f

(ρCp) f

∂T
∂ t

=
1

RePr
kthn f

k f

[
1

R2
∂ 2T
∂x2

1
+

(
1

x1R+R2

)(
1
R

∂T
∂x1

)]
+

σthn f

σ f

[
EcM2

Re
w2+

Sz + Q̃
RePr

]
+

1
R2

(
1−β0T

(1−φ1)2.5(1−φ2)2.5(1−φ3)2.5

)(
1+

1
β1

)
Ec
Re

[(
∂w
∂x1

)2]
, (5.46)

ReSc
∂C
∂ t

=
1

R2
∂ 2C
∂x2

1
+

(
1

x1R+R2

)
1
R

∂C
∂x1

−ScξC, (5.47)

ReSb
∂ χ̃1

∂ t
=

1
R2

∂ 2χ̃1

∂x2
1
+

(
1

x1R+R2

)
1
R

∂ χ̃1

∂x1
− Peσ1

R2

(
∂ χ̃1

∂x1

∂C
∂x1

+(σ1 + χ̃1)
∂ 2C
∂x2

1

)
, (5.48)

1
R2

∂ 2Φ

∂x2
1
+

(
1

x1R+R2

)
1
R

∂Φ

∂x1
= qe

2
Φ. (5.49)

The boundary conditions specified in equations (5.17) and (5.20) have been reduced in the
following manner:

w = 0, T = 1, C = 1, χ̃1 = 1, at x1 = 1 for all z, (5.50)
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∂w
∂x1

= 0,
∂T
∂x1

= 0,
∂C
∂x1

= 0,
∂ χ̃1

∂x1
= 0 at x1 = 0 for 0 ≤ z ≤ z3, (5.51)

w = 0, T = 1, C = 1, χ̃1 = 1, at x1 = 0 for z3 ≤ z ≤ zmax. (5.52)

The wall shear stress at the outer wall of the bifurcated artery is given as below:

τw =− 1
R

(
∂w
∂x1

)
x1=1

, (5.53)

The flow rate for the parent artery and daughter artery is defined as follows:

Q f
d = 2πR

∫ 1

0
w(x1R+R2)dx1. (5.54)

Q f
p = πR

∫ 1

0
w(x1R+R2)dx1. (5.55)

The resistance impedance for the the parent artery and daughter artery is given by:

λp =

∣∣∣∣∣∣∣∣
z3

(
− ∂ p

∂ z

)
Q f

p

∣∣∣∣∣∣∣∣ , for z < z3, (5.56)

λd =

∣∣∣∣∣∣∣∣
(zmax − z3)

(
− ∂ p

∂ z

)
Q f

d

∣∣∣∣∣∣∣∣ , for z ≥ z3. (5.57)

The Nusselt number at the outer wall of the bifurcated artery is computed as follows:

Nux =− 1
R

(
∂T
∂x1

)
x1=1

. (5.58)

Similarly, the Sherwood number is given as:

Shx =− 1
R

(
∂C
∂x1

)
x1=1

. (5.59)
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5.3 Solution Process

It is widely acknowledged that there exist numerous numerical techniques for solving partial
differential equations. Among these techniques, the finite difference scheme stands out as
a remarkably accessible and efficient approach for solving such equations. We have imple-
mented the Crank-Nicolson scheme to address the partial differential equations (PDEs) at
hand. Specifically, we have chosen a step size of ∆x in the radial direction while employing
a time step of ∆t = 0.001. This selection of parameters has been made to achieve conver-
gence within the numerical scheme. It has been observed that additional variations in the
values of ∆x and ∆t do not yield significant alterations in the outcomes.

5.3.1 Discretization

The governing equations are discretized as:

[
(1−φ3)

{
(1−φ2)

[
(1−φ1)+φ1

ρs1

ρ f

]
+φ2

ρs2

ρ f

}
+φ3

ρs3

ρ f

]
Re
[

wk+1
i −wk

i
dt

]
=B1[1+ecos(c1tk)]

+
1
2

{
1−β0T

(1−φ1)2.5(1−φ2)2.5(1−φ3)2.5

}(
1+

1
β1

)[
1

R2

(
wk+1

i+1 −2wk+1
i +wk+1

i−1

dx2

+
wk

i+1 −2wk
i +wk

i−1

dx2

)
+

1
R

1
Rxi +R2

(
wk+1

i+1 −wk+1
i−1

2dx
+

wk
i+1 −wk

i−1

2dx

)]
− 1

2R2

{
β0

(1−φ1)2.5(1−φ2)2.5(1−φ3)2.5

}(
1+

1
β1

)[(
wk+1

i+1 −wk+1
i−1

2dx
+

wk
i+1 −wk

i−1

2dx

)
(

T k
i+1 −T k

i−1

2dx

)]
+Uhsq2

eΦ+Fb cos(c2tk +ψ)

+

[
(1−φ3)

{
(1−φ2)

(
(1−φ1)+φ1

(ρβ )s1

(ρβ ) f

)
+φ2

(ρβ )s2

(ρβ ) f

}
+φ3

(ρβ )s3

(ρβ ) f

]
(

GrT k
i +GcCk

i −Rbχ̃1
k
i

)
cos(η1δi j)−

1
2

σn f

σ f
M2(wk

i +wk+1
i ) (5.60)
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[
(1−φ3)

{
(1−φ2)

{
(1−φ1)+φ1

(ρCp)s1

(ρCp) f

}
+φ2

(ρCp)s2

(ρCp) f

}
+φ3

(ρCp)s3

(ρCp) f

][
T k+1

i −T k
i

dt

]
=

1
RePr

kthn f

k f

[
1

2R2

(
T k+1

i+1 −2T k+1
i +T k+1

i−1

dx2 +
T k

i+1 −2T k
i +T k

i−1

dx2

)
+

1
2(Rxi +R2)

(
T k+1

i+1 −T k+1
i−1

2dx

+
T k

i+1 −T k
i−1

2dx

)]
+

1
R2

{
1− β0

2 (T
k+1

i +T k
i )

(1−φ1)2.5(1−φ2)2.5(1−φ3)2.5

}(
1+

1
β1

)
Ec
Re

[
1
2

(
wk+1

i+1 −wk+1
i−1

2dx

+
wk

i+1 −wk
i−1

2dx

)]2

+
σthn f

σ f

[(
1
2

EcM2

Re

(
wk+1

i +wk
i

))2

+
Sz + Q̃
RePr

]
. (5.61)

ReSc
[

Ck+1
i −Ck

i
dt

]
=

[
1

2R2

(
Ck+1

i+1 −2Ck+1
i +Ck+1

i−1

dx2 +
Ck

i+1 −2Ck
i +Ck

i−1

dx2

)
+

1
2(Rxi +R2)(

Ck+1
i+1 −Ck+1

i−1

2dx
+

Ck
i+1 −Ck

i−1

2dx

)]
− Scξ

2

[
Ck+1

i +Ck
i

]
(5.62)

ReSb
[

χ̃1
k+1
i − χ̃1

k
i

dt

]
=

[
1

2R2

(
χ̃1

k+1
i+1 −2χ̃1

k+1
i + χ̃1

k+1
i−1

dx2 +
χ̃1

k
i+1 −2χ̃1

k
i + χ̃1

k
i−1

dx2

)
+

1
2(Rxi +R2)

(
χ̃1

k+1
i+1 − χ̃1

k+1
i−1

2dx
+

Ck
i+1 −Ck

i−1

2dx

)]
−Peσ1

2

[{
χ̃1

k+1
i+1 + χ̃1

k+1
i−1

2dx
+

χ̃1
k
i+1 + χ̃1

k
i−1

2dx

}
(

Ck
i+1 −Ck

i−1

2dx

)
+

{
σ1 +

χ̃1
k+1
i + χ̃1

k
i

2

}(
Ck

i+1 −2Ck
i −Ck

i−1

dx2

)]
(5.63)

Φi+1 −2Φi +Φi−1

dx2 +
1

(Rxi +R2)

{
Φi+1 −Φi−1

2dx

}
= q2

eΦi (5.64)

The discretized governing equations (5.60) and (5.64) are then converted to a tri-diagonal
system of equations and solved using Tri-Diagonal Matrix Algorithm (TDMA).

5.4 Entropy Generation

Entropy is a measure used to quantify the degree of irreversibility present in a given system.
The concept of entropy is closely associated with changes occurring within a system due
to the transfer of mass and thermal energy. The precise definition of dimensional entropy
generation is as follows:
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Eg =
k f

T̃ ∗2
1

(
kthn f

k f

)(
∂ T̃
∂ r̃

)2

︸ ︷︷ ︸
Thermal irreversibility

+
µthn f

T̃ ∗
1

(
1+

1
β1

)(
∂ w̃
∂ r̃

)2

︸ ︷︷ ︸
Viscous irreversibility

+
σthn f

T̃ ∗
1

(B0w̃2 +E2
0)︸ ︷︷ ︸

Joule heating irreversibility

+
DB

C̃1

(
∂C̃
∂ r̃

)2

︸ ︷︷ ︸
Solute irreversibility

(5.65)
The dimensionless variables mentioned in Equation (5.28) are substituted in Equation (5.65)
to obtain:

Eg =
k f

T̃ 2
0

(T̃w − T̃0)
2

R2
0

(
kthn f

k f

)(
∂T
∂ r

)2

+
µthn fU2

0

T̃0R2
0

(
1+

1
β1

)(
∂w
∂ r

)2

+
σthn f R2

0

T̃0
(U0B0w2+E2

0)

+
Db

C̃0

(
(C̃w −C̃0)

R0

)2(
∂C
∂ r

)2

(5.66)

The non-dimensional form of entropy generation number is defined as Ns =
T̃ 2

0 R2
0

k f (T̃w−T̃0)2 Eg.
Then on using Equation (5.66), we have:

Ns =

(
kthn f

k f

)(
∂T
∂ r

)2

+
µthn f

µ f

(
1+

1
β1

)
Br
Ω

(
∂w
∂ r

)2

+
σthn f

σ f

M2Br
Ω

(w2+E2
1)+

ΛΓ

Ω

(
∂C
∂ r

)2

(5.67)
On employing coordinate transformation as defined earlier, the expression for entropy gen-
eration is:

Ns =

(
kthn f

k f

)(
1

R2

)(
∂T
∂x1

)2

+
µthn f

µ f

(
1+

1
β1

)
Br
Ω

(
1

R2

)(
∂w
∂x1
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(5.68)

The mathematical expression for Bejan number is given as:

Be =
N
Ns

, (5.69)

where, N =

(
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.
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Thermophysical Properties Blood Au CuO GO
Density [ρ(kg/m3)] 1060 19320 6500 1800
Thermal Conductivity [K(W/mK)] 0.492 314 18 5000
Electrical Conductivity [σ(S/m)] 0.667 4.10 ×107 1×10−10 6.3×107

Thermal Expansion Coefficient [β ×10−5(K−1)] 0.18 1.4 0.5 28.4
Heat Capacitance [Cp(J/kgK)] 3770 129 540 717

Table 5.1: Thermophysical properties of nanoparticles

Parameters Values Refrences
Magnetic field (M2) 0-5 [106, 112]
Grashof number (Gr) 0-5 [108]
Prandtl number (Pr) 14-25 [130]
Casson fluid parameter (β1) 0.1-10 [155]
Rayleigh number (Rb) 0-6 [1, 125]

Table 5.2: Default values of emerging parameters with their sources

5.5 Results and Graphical Analysis

This section illustrates the influence of different parameters on the hemodynaimc flow through
a bifurcated artery. The Crank-Nicolson scheme is employed to discretize the governing
equations and MATLAB code is developed to perform full investigation of the pertinent
parameters on the velocity, temperature, concentration, microorganisms, flow rate, Nusselt
and Sherwood profile. The thermophysical parameters and properties of nanofluid and the
nanoparticles are shown in Tables 4.1 and 5.1, respectively. Table 5.2 shows the possible
values explored for the different flow parameters with their sources.

5.5.1 Validation

The validation of this work is accomplished through a comparison with the published study
conducted by Tripathi et al. [100]. The Crank-Nicolson technique, a finite difference
methodology, is employed in this study to solve the governing equations, while Tripathi
et al. [100] used the FTCS scheme. By analyzing the impact of various pertinent parame-
ters, including the Solutal Grashof number (Gc = 0), Rayleigh number (Rb = 0), magnetic
field parameter (M = 0), Debye-Huckel parameter (q= 0), heat source (Q= 0), Eckert num-
ber (Ec = 0), Joule heating parameter (Sz = 0), and considering the inner wall (R2(z) = 0),
a comparison is made between the present study and the previous work [100]. The velocity
and temperature profiles for pure blood (without the presence of nanoparticles) are depicted
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in Figures 5.2 and 5.3, respectively. The graphical representations demonstrate a high de-
gree of agreement between this study and the prior research by Tripathi et al. [100] for the
velocity and temperature profiles.
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Figure 5.2: Velocity profile for pure blood
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Figure 5.3: Temperature profile for pure blood

5.5.2 Velocity Profile

The influence of a magnetic field on fluid velocity is particularly noteworthy in the case
of electrically conductive fluids. The observed phenomenon under discussion is commonly
referred to as MHD.

It encompasses the intricate interplay between magnetic fields and the dynamic be-
haviour of conductive fluids. In the realm of MHD, the motion of the fluid is subject to
the influence of the Lorentz force. This force emerges as a consequence of the interplay be-
tween the magnetic field and the electrically charged particles present within the fluid. The
Lorentz force has the potential to serve as an additional force that either propels or hinders
the fluid, thereby modifying its velocity profile. Figure 5.4a depicts the influence of mag-
netic field parameter on the velocity profile in both parent and daughter artery. The compar-
isional study has been performed to show the velocity distribution in both Au-CuO hybrid
nanofluid and Au-CuO-GO ternary hybrid nanofluid. It can be observed from the figure
that the velocity enhances in the ternary hybrid nanofluid as compared to hybrid nanofluid.
The fluid velocity declines as the magnetic field parameter enhances due to the resisitive
Lorentz force which resists the fluid motion and depicts the declining nature for the velocity
profile. The drag force experienced by an object moving through a fluid can be described as
directly proportional to several key factors, namely the velocity of the fluid, the strength of
the magnetic field, and the electrical conductivity of the fluid. The fluid velocity enhances as
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(a) Velocity profile by varying M
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(b) Velocity profile by varying qe
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(c) Velocity profile by varying Rb
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(d) Velocity profile by varying Casson fluid pa-
rameter
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Figure 5.4: Velocity profile
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the Debye-Hückel parameter enhaces from qe = 0 to qe = 2 as depicted in figure 5.4b. The
Debye-Hückel parameter, denoted as qe, is a dimensionless parameter widely employed in
scientific research to elucidate the impact of ionic strength on the behaviour of charged par-
ticles within a given solution. When the Debye-Hückel parameter is observed to increase,
it signifies a higher concentration of charged particles within the solution. Consequently,
this leads to an augmentation in the electric conductivity of the fluid, as a larger number
of ions become available to facilitate the conduction of electric current. The modification
of intermolecular forces has the potential to exert an impact on the flow characteristics of
the fluid, potentially resulting in an augmentation of its velocity. Bioconvection is a phe-
nomenon characterised by the coordinated movement of microorganisms or biological par-
ticles, leading to the emergence of well-organised patterns or structures in a fluid medium.
The occurrence of this phenomenon is frequently documented in microbial suspensions or
ecosystems, wherein the existence of motile microorganisms instigates the formation of
convective flow patterns. The fundamental mechanism underlying bioconvection is predi-
cated upon the intricate interplay between the swimming behaviour of microorganisms and
their surrounding fluid environment. The association between the bioconvection Rayleigh
number and the momentum equation substantially impacted the velocity profile, as seen in
Figure 5.4c. The increase in the Rayleigh number strengthens the microorganism’s con-
vection, which works against the buoyancy force acting on the fluid particles. This results
in a decrement in the velocity profile. The effect of Casson fluid parameter is depicted
in the figure 5.4d. It can be observed from the figure that the fluid velocity increases as
the Casson fluid parameter enhances from β1 = 2 to β1 = ∞. The Casson fluid model is
a well-established framework within non-Newtonian fluid dynamics. It is specifically de-
signed to capture the unique characteristics of specific fluid systems that demonstrate yield
stress behaviour. As the magnitude of the coefficient β1 tends towards infinity, the observed
behaviour will exhibit Newtonian characteristics. The findings of the comparative analy-
sis conducted on Au-CuO/Blood hybrid nanofluid and Au-CuO-GO/Blood ternary hybrid
nanofluid indicate that the inclusion of GO nanoparticles in the Au-CuO/Blood solution
leads to an enhancement in fluid velocity. The potential utility of this innovation lies in its
capacity to enable surgeons and researchers to modulate blood flow within the human body
effectively. Blood flow regulation is a complex and multidimensional field of study that
encompasses a wide range of applications. Through acquiring an enhanced comprehension
of the intricate mechanisms and multifaceted factors implicated in regulating blood flow, re-
searchers endeavour to cultivate groundbreaking interventions to diagnose, treat, and averter
a diverse array of cardiovascular and circulatory disorders. This collective pursuit ultimately
aspires to ameliorate the overall state of human health and well-being. Figures 5.4e and 5.4f
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illustrate the velocity profile under different conditions of the Grashof number and solutal
Grashof number, respectively. The Grashof number (Gr), a dimensionless parameter in the
field of fluid dynamics, serves as a quantitative measure of the relative significance of buoy-
ancy forces compared to viscous forces within a fluid flow. The utilisation of this method
is frequently observed in examining and projecting natural convection phenomena, wherein
fluid movement is propelled by variances in density resulting from temperature fluctuations.
The Grashof number is a crucial parameter that notably influences natural convection phe-
nomena. The empirical evidence consistently indicates a positive correlation between the
fluid velocity and the magnitude of the Grashof number. As the Grashof number increases,
there is an observed increase in flow circulation. This can be attributed to the prevailing
influence of buoyancy forces over viscous forces. It is imperative to acknowledge that
the precise correlation between the Grashof number and the velocity profile is contingent
upon the particular geometric configuration, boundary conditions, and fluid characteristics
inherent to the given system. The comprehensive examination of velocity profiles in com-
plex scenarios necessitates the utilisation of numerical simulations or experimental inquiries
specifically designed to address the unique characteristics of the given situation. Similarly,
when the solutal Grashof number increases, it signifies an escalation in the magnitude of
buoyancy-driven convection owing to amplified disparities in solute concentration. In the
domain of fluid dynamics, it is worth noting that an augmentation in the solutal Grashof
number can induce alterations in the velocity profile. Buoyancy-driven convection is a phe-
nomenon characterised by the fluid motion that emerges due to density variations induced
by concentration differences. As the solutal Grashof number experiences an increase, it is
observed that the buoyancy force exhibits a heightened strength in comparison to the viscous
forces. This phenomenon subsequently results in a more prominent convective flow pattern,
as visually represented in figure 5.4f.

5.5.3 Temperature, Concentration & Microorganisms Profile

The impact of the Prandtl number (Pr) on the temperature profile is visually depicted in
figure 5.5a. The Prandtl number, a frequently used dimensionless parameter in fluid me-
chanics, evaluates the relative importance of momentum diffusivity (viscosity) and thermal
diffusivity (thermal conductivity) within a fluid. A higher Prandtl number indicates a sce-
nario where thermal diffusivity assumes a more prominent role than momentum diffusivity.
In alternative terms, the fluid exhibits a higher degree of effectiveness in facilitating heat
conduction than momentum transfer. The manifestation of this particular attribute becomes
apparent upon scrutinising the temperature distribution of the fluid. As depicted in figure
5.5a, it can be observed that there is a decrement in temperature profile as the magnitude of



5.5. Results and Graphical Analysis 137

Prandtl number enhances within the range of 19 to 25. This observation suggests that the
fluid exhibits enhanced efficacy in transmitting momentum, a phenomenon primarily driven
by its flow or motion, as opposed to its ability to transfer heat. As a result, the tempera-
ture gradient, which refers to the rate of temperature change within the fluid, becomes less
prominent.

The observed trend in the temperature profile, as depicted in figure 5.5b, indicates the
positive correlation between the heat source and the Casson fluid parameter. Specifically,
an increase in both factors leads to a rise in the temperature profile. The confluence of the
thermal energy source and the augmented Casson fluid parameter synergistically facilitates
the enhancement of convective heat transfer. The convection of heat within the fluid is fa-
cilitated by the enhanced fluid flow and improved mixing, in addition to the temperature
gradient generated by the heat source. In the context of stenosis, the targeted temperature
elevation can be accomplished by applying a heat source in the constricted area. Various
methods can be employed to achieve this objective, including laser ablation, radiofrequency
ablation, and thermal therapy techniques. The primary objective of localised heating is to
achieve precise and targeted thermal treatment in the stenotic region while concurrently
ensuring the preservation of the structural and functional integrity of the adjacent healthy
tissues. Figure 5.5c depicts the influence of nanoparticles shape on the temperature profile.
Nanoparticles with intricate or irregular shapes have larger surface areas than simpler ones,
facilitating stronger interactions with the surrounding fluid or medium. However, the addi-
tional thermal resistance introduced can affect overall thermal performance. The presence
of irregularities within the system hinders efficient heat transfer, leading to a decline in the
temperature profile. This hindrance is caused by pockets or barriers within complex shapes
that impede heat transfer effectiveness. In summary, intricate or irregular-shaped nanopar-
ticles have increased surface area, enhancing interactions with the medium but introducing
thermal resistance that affects heat transfer efficiency. The presence of pockets or barriers
within complex shapes further impedes heat flow, resulting in a decreased temperature pro-
file. The trend in fluid temperature is directly impacted by the increase in both the Eckert
number (Ec) and Joule heating parameter, as shown in figure 5.5d. The Eckert number is a
dimensionless parameter that quantifies the correlation between kinetic energy and enthalpy
change in fluid flow. When the Eckert number increases, it signifies a higher proportion of
kinetic energy relative to the enthalpy change depicting that kinetic energy converted into
thermal energy as the Eckert number rises. Consequently, this transformation results in an
evident enhancement of the temperature distribution within the fluid. The excess kinetic en-
ergy is converted into thermal energy, leading to an overall increase in temperature profile.
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Figure 5.5: Temperature, Concentration and Microorganisms profile
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The temperature distribution is further influenced by the Joule heating parameter, which
takes into account thermal generation. The presence of thermal gradients and variations in
the fluid contributes to an appreciable improvement in the temperature profile.

The concentration profile in a fluid is observed to increase as the Schmidt number in-
creases, as depicted in figure 5.5e. The Schmidt number, denoted as Sc, is a dimensionless
quantity that characterises the relative importance of momentum diffusivity (kinematic vis-
cosity) to mass diffusivity (molecular diffusivity) in a fluid. The Schmidt number, denoted
as Sc, is a dimensionless quantity used in fluid dynamics to characterise the relative rates
of mass transfer and momentum transfer in a fluid system. A higher value of Sc indicates
that the mass transfer process is comparatively faster than the momentum transfer process.
The observed phenomenon indicates that the fluid’s capacity for momentum transport via
convection or flow is more prominent compared to its capacity for mass or concentration
transport. Consequently, the concentration gradient within the fluid experiences a reduction
in its steepness, resulting in a decrease observed in the concentration profile. The diminution
of the concentration profile becomes apparent as the chemical reaction parameter undergoes
augmentation, transitioning from a value of 1.5 to 3. The augmentation of a parameter in
a chemical reaction can engender a decline in the concentration profile of specific species.
The decline in concentration is a consequence of the heightened reaction rate, which leads
to the utilisation of supplementary species. Bioconvection refers to the fluid motion that
occurs due to density gradients caused by the collective behaviour of microorganisms. The
bioconvective Lewis number is a crucial parameter that quantifies the significance of ther-
mal and mass diffusion processes in a given system. A higher bioconvective Lewis number
implies that thermal diffusion is more significant than mass diffusion. In contrast, a lower
bioconvective Lewis number indicates a greater significance of mass diffusion than thermal
diffusion. The figure 5.5f demonstrates a consistent decrease in density as parameter σ1 in-
creases. The decrease observed can be explained by an increase in σ1, resulting in a greater
density contrast between the gyrotactic microorganisms and the surrounding fluid medium.
The density difference among gyrotactic bacteria leads to a flow reversal, suppressing mi-
croorganisms’ concentration profile. In contrast, an increase in the bioconvective Lewis
number (Sb) reduces the density of motile entities in the fluid. The decrease in density is
due to a reduction in the diffusivity process of the microorganisms. The density of microor-
ganisms decreases in both the parent and daughter arteries as Sb and σ1 increase.

5.5.4 Flow Rate & Impedance Profile

The influence of the Casson fluid parameter on the flow rate profile is depicted in figure 5.6a.
The experimental findings indicate that the Casson fluid demonstrates increased resistance



140
Chapter 5. Entropy Generation Analysis of a Ternary Hybrid Nanofluid

(Au-CuO-GO/Blood) Containing Gyrotactic Microorganisms in Bifurcated Artery

under low shear rates. However, once the critical shear rate is attained, its behaviour starts
to resemble that of a Newtonian fluid. The observed transition is concomitant with a notable
reduction in the apparent viscosity, leading to a corresponding augmentation in the flow
rate, as visually depicted in Figure 5.6a. The parameter β1, known as the Casson fluid
parameter, exhibits a range of values from 2, which signifies non-Newtonian behaviour, to
β1 → ∞, indicating a Newtonian fluid. This parameter directly impacts the flow rate profile,
increasing its magnitude.

The bifurcation angle refers to the angle of division at which a blood vessel or pipe
separates into multiple branches. It has a notable impact on the flow characteristics in the
bifurcation system. Understanding and analysing fluid dynamics in branching systems ne-
cessitates thoroughly considering this crucial aspect. Figure 5.6b presents a graphical repre-
sentation of the influence of the bifurcation angle on the flow rate. The figure suggests that
the flow rate also increases as the bifurcation angle increases from η1 = π/12 to η1 = π/6.
The aforementioned observation suggests a direct correlation between modifications in the
bifurcation angle and the resultant flow rate. Upon conducting a more comprehensive ex-
amination, it has been ascertained that the flow rate profile exhibits a sustained level of
consistency within the parent artery. However, notable fluctuations in the flow characteris-
tics become apparent subsequent to the occurrence of bifurcation. In accordance with the
fundamental principle of conservation of mass, it is imperative to ensure that the volume
of flow originating from the parent artery remains constant as it is distributed among the
daughter arteries. As a result, it can be observed that the cross-sectional area of the daughter
arteries exhibits an increase in proportion to the increment of the bifurcation angle. The
observed phenomenon of increased flow rate profile can be attributed to the expansion in the
cross-sectional area, which occurs in conjunction with an increase in the bifurcation angle.
Hence, it is imperative to acknowledge the significant influence exerted by the bifurcation
angle on the intricate interplay of flow dynamics and the subsequent dispersion of flow
throughout the branching network. The impact of the Grashof number (Gr) on the flow rate
profile is visually depicted in figure 5.6c. The observed phenomenon can be ascribed to the
relatively prevailing impact of buoyancy forces in relation to viscous forces. Consequently,
with an increase in the Grashof number (Gr), the resultant temperature variation initiates
density disparities, which act as propelling factors and enhance the flow rate distribution, as
depicted in figure 5.6c. The exploration of employing a magnetic field within a constricted
artery to study the kinetics of blood flow and the characteristics of magnetic particles within
the circulatory system is a crucial topic in the research field. Blood is a complex mixture of
different components, one of which is haemoglobin.
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Figure 5.6: Flow rate and impedance profile
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Haemoglobin exhibits properties similar to those of small magnetic particles and is sus-
ceptible to the influence of magnetic fields. The impedance profile illustrated in figure 5.6d
portrays the impact of altering the magnetic field parameter. Upon careful examination of
the provided figure, it is evident that the impedance profile exhibits a noticeable augmenta-
tion as the magnetic field parameter number progressively escalates from M = 0 to M =

√
3.

Clearly, the observed phenomenon can be ascribed to the manifestation of the Lorentz force
exerted by the magnetic field upon the conductive fluid. The counteracting force exerted by
the Lorentz force contributes to an increased level of resistance and elevates the impedance
profile within a stenosis. The impact of the Debye-Huckel parameter on the impedance
profile illustrated in figure 5.6e is being examined. The impedance profile exhibits a nega-
tive correlation with the Debye-Huckel parameter, as the latter experience an increase. This
phenomenon can be attributed to amplifying the screening effect within the solution. The
observed increase in the screening effect results in a reduction of the strength of interac-
tions between the charged particles, ultimately causing a decrease in the impedance profile.
The illustration presented in figure 5.6f showcases the influence of Rb on the impedance
characteristics while conducting a comparative analysis between the hybrid nanofluid com-
posed of Au-CuO and blood and the ternary hybrid nanofluid consisting of Au-CuO-GO
and blood. The figure reveals the increment in the impedance profile as the magnitude of Rb
enhances from 0 to 1. The augmentation of the Rayleigh number amplifies the convective
behaviour of the microorganism, thereby counteracting the buoyancy force exerted on the
fluid particles. The observed outcome leads to a reduction in the velocity profile. Hence, the
resistance encountered by the blood flow is heightened, escalating the impedance profile.

5.5.5 WSS, Nusselt & Sherwood Number

The investigation of wall shear stress (WSS) is essential in comprehending the hemody-
namic flow dynamics and pathological manifestations of stenosis. The endothelium, which
refers to the cellular layer lining the interior of blood vessels, is commonly impacted by
WSS. The endothelial cells are subjected to and react to the mechanical forces exerted by
the blood flow, such as WSS. The presence of an aberrant WSS induces endothelial dys-
function, thereby facilitating the development of atherosclerotic plaque. Therefore, it is
imperative to investigate the impact of WSS on the hemodynamics of blood flow. Figure
5.7a illustrates the effects of the magnetic field parameter on the wall shear stress (WSS)
profile. Evidently, the observed phenomenon demonstrates a decrease in the WSS profile as
the magnetic field strength is increased.



5.5. Results and Graphical Analysis 143

0 1 2 3 4 5 6 7 8 9 10

z

3

3.5

4

4.5

5

5.5

6

6.5

W
S

S

(a) WSS profile by varying M

0 1 2 3 4 5 6 7 8 9 10

z

5

5.5

6

6.5

7

7.5

8

W
S

S

=0.1,  
1
=0.3

=0.15,  
1
=0.4

=0.2,  
1
=0.5Aneurysm

Stenosis

(b) WSS profile by varying stenotic depth and
aneurysm height

0 1 2 3 4 5 6 7 8 9 10

z

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

N
u
s
s
e
lt

Bifurcating Zone

-------  Au-CuO Hnf

           Au-CuO-GO Thnf

(c) Nusselt profile by varying Q

0 1 2 3 4 5 6 7 8 9 10

z

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

N
u
s
s
e
lt

Pr=19

Pr=23

Pr=25

Bifurcating Zone

-------  Au-CuO Hnf

           Au-CuO-GO Thnf

(d) Nusselt profile by varying Pr

0 1 2 3 4 5 6 7 8 9 10

z

-1.8

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-1

S
h
e
r
w

o
o
d

=2

=2.5

=3

(e) Sherwood profile by varying ξ

0 1 2 3 4 5 6 7 8 9 10

z

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

S
h
e
r
w

o
o
d

Sc=0.5

Sc=1

Sc=1.5

(f) Sherwood profile by varying Sc

Figure 5.7: WSS, Nusselt and Sherwood profile
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The increment of the Hartman number yields an increase in the Lorentz force, which
subsequently causes the redirection of the fluid flows away from the stenotic region. This
redirection ultimately leads to a reduction in the WSS profile. The distribution of WSS
is depicted in figure 5.7b, which investigates the consequences of modifying the stenotic
and aneurysm depth in the arterial segment. Significantly, the WSS profile demonstrates
the inverse correlation with the progressive increase in stenotic depth observed in the arte-
rial sections, while the reverse trend is observed for aneurysm. The observations made in
this study are consistent with the previous experimental investigations conducted by Zhang
[131], which similarly documented a decrease in WSS as a consequence of the development
of arterial lesions. The concurrence observed between the present study and Zhang’s re-
search provides additional substantiation for the hypothesis that augmented stenotic depth
is a contributing factor to diminished WSS levels. Figure 5.7c illustrates the impact of the
heat source parameter Q on the Nusselt profile while presenting a comparative analysis con-
ducted between hybrid and ternary hybrid nanofluids. The comparative analysis reveals that
the Nusselt number profile exhibits greater magnitudes for ternary hybrid nanofluids than
hybrid nanofluids. The heat source parameter indicates the elevated heat production within
the system, resulting in amplified temperature differences between the heated surface and
the adjacent fluids. This phenomenon generates a strong convective force and amplifies the
Nusselt number profile. Figure 5.7d visually represents the relationship between the Nus-
selt number and the Prandtl number. The figure demonstrates that as the Prandtl number
increases, there is a notable decrease in the Nusselt number. The observed pattern indi-
cates that the efficiency of heat transfer from the arterial wall to the blood decreases as the
Prandtl values increase. In the context of arterial heat transfer, it has been observed that
fluids with higher Prandtl numbers tend to demonstrate diminished efficacy in the conduc-
tion of heat when compared to fluids possessing lower Prandtl numbers. Consequently, the
Nusselt number decreases with increasing Prandtl number, indicating a reduced ability to
transfer heat from the arterial wall to the blood. Figure 5.7e illustrates the chemical reaction
parameter’s influence on the Sherwood profile. The augmentation of the Sherwood profile
becomes apparent as the chemical reaction parameter undergoes an increase from 2 to 3.
The observed phenomenon can be attributed to alterations in the concentration gradients,
which serve as the driving force for mass transfer. As the value of ξ decreases, the rate of
mass transfer also decreases, resulting in a decline in the Sherwood profile. The Sherwood
profile exhibits a decreasing trend with increasing Schmidt number, as illustrated in figure
5.7f. The enhancement in Sc results in a decrease in mass transfer rate relative to diffusivity.
Thus, the concentration is not fully exploited, which leads to a lower mass transfer rate and
a decline in the Sherwood profile.
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5.5.6 Velocity Contour

The analysis of velocity contours holds great importance within scientific research, as it
enables researchers to effectively visualise and map blood flow distribution along the inner
surface of blood vessels. This technology can facilitate diagnosing, evaluating, and strate-
gising treatment plans for stenotic lesions. The contour analysis yields qualitative outcomes
for computational simulations and provides further insight into the complex flow within the
stenotic vessel. The impact of the Casson fluid parameter on the velocity contour is depicted
in figure 5.8 . From figure 5.8a, we can inferred that the more trapped bolus formed near the
aneurysm region and the maximum velocity attain by the fluid is 0.5 which further increases
after it enters in the parent artery. Although, the maximum velocity remain same in both
figures 5.8b and 5.8c but trapped bolous increases as the Casson fluid parameter enhances
from β1 = 10 to β1 → ∞.

(a) (b) (c)

Figure 5.8: Velocity contour for varying Casson fluid parameter (a) β1 = 2 (b) β1 =
10 (c) β1 → ∞

Figure 5.9 illustrates the influence of bifurcation angle in the velocity contour profile.
Clearly, it can be observed from the figure also that the flow behavior remains the same in
parent artery for all the three cases but varies as it enters in the daughter artery. According
to the principle of conservation of mass, the volume of flow from the parent artery must be
conserved in the daughter arteries. Consequently, the cross-sectional area of the daughter
arteries increases with an increasing bifurcation angle. This expansion in the cross-sectional
area leads to an enhanced flow rate profile as the bifurcation angle increases.
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(a) (b) (c)

Figure 5.9: Velocity contour for varying bifurcating angle (a) η1 = π/12 (b) η1 =
π/8 (c) η1 = π/6
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The velocity contour for the enhancement in the magnetic field parameter from 0 to
√

3
is depicted in figure 5.10. In the absence of a magnetic field, the fluid achieves a maximum
velocity of 0.6, as illustrated in figure 5.10a. Based on the observations made in figures
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5.10b and 5.10c, it can be deduced that the maximum velocities achieved are 0.5 and 0.4,
respectively. The observed phenomenon exhibits a correlation between the augmentation
of the magnetic field parameter and the subsequent manifestation of a diminished veloc-
ity profile. The empirical occurrence can be ascribed to the manifestation of the Lorentz
force exerted by the magnetic field upon the conductive fluid. The Lorentz force, when ap-
plied, exerts a counteracting influence that leads to a reduction in the velocity field. This
phenomenon becomes more pronounced as the magnetic field parameter increases.

5.5.7 Entropy

Entropy is a fundamental thermodynamic property that provides insight into the degree of
randomness and disorder within the blood vessel. The phenomenon of entropy generation
arises due to the conversion of kinetic energy into heat, which occurs due to viscous dissipa-
tion or flow disturbances. Stenosis refers to the pathological condition characterised by the
constriction or narrowing of a blood vessel. On the other hand, an aneurysm is an abnormal
dilation or bulging formation that occurs within an artery, leading to disruptions in the nor-
mal flow pattern and an increase in resistance along the flow pathway. The aforementioned
disruption has the potential to induce alterations in the generation of entropy within the sys-
tem. Figures 5.11a and 5.11b depict the influence of Brinkmann number on the Entropy
generation profile NG on parent and daughter artery, respectively. Form the figure it can be
inferred that the NG profile show the increasing trend as the magnitude of the parameter Br

enhances from 6.65 to 8.75. This has happened due to dominant effect of viscous dissipation
over the thermal conduction which results in conversion of orderly energy into disordered
energy and further lead to development of entropy generation profile. The influence of Br
on the Bejan profile in the parent artery is illustrated in figure 5.11c. The Bejan number is
a dimensionless parameter that quantifies the relative significance of convective heat trans-
fer compared to conductive heat transfer within a given system. As the Brinkman number
(Br) increases, a noticeable transition occurs where the influence of viscous dissipation be-
comes increasingly dominant compared to thermal conduction. The prevalence of viscous
effects in this scenario gives rise to intensified convective processes, thereby leading to an
augmented Bejan profile. Figure 5.11d demonstrates the impact of Br on the Bejan profile
in the daughter artery. Analysis of the figure reveals distinct trends based on the proximity
to the artery walls and the central region. The Bejan profile increases with Br in the vicinity
of the arterial walls, but the reverse trend is observed at the centre. This behaviour can be
attributed to the dominant influence of viscous dissipation in the vicinity of the walls that
led to enhancement in the convective heat transfer process and further enhanced the Be pro-
file. Conversely, the central region of the daughter artery exhibits a reverse trend as viscous
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Figure 5.11: Entropy and Bejan number by varying different parameters
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dissipation’s dominance weakens compared to thermal conduction, leading to decreasing Be
profile. The influence of magnetic field parameter on the Be profile in the parent and daugh-
ter artery is depicted in figure 5.11e and 5.11f, respectively. In the vicinity of the arterial
walls, the prevalence of the magnetic field results in a generation of resistive Lorentz forces,
leading to a reduction in the NG profile. Conversely, towards the centre, the magnetic field
may weaken, thereby enabling the manifestation of dominance effects through viscous dis-
sipation or thermal conduction. In instances of this nature, it is plausible for the entropy to
demonstrate a counteractive pattern, wherein it may escalate with an augmenting magnetic
field parameter. The Bejan profile trends near the arterial walls and at the centre in response
to the magnetic field parameter are illustrated in figures 5.11g and 5.11h, respectively. In
both the parent and daughter arteries, there is an observed increasing trend in proximity to
the arterial walls, while a reverse trend is observed towards the central region. The observed
behaviour can be attributed to the prominent effect of the magnetic field parameter close to
the walls, which gradually diminishes its strength towards the centre. The convective heat
transfer process is enhanced by a magnetic field, leading to an increase in the Bejan profile
close to the walls. In contrast, it is worth noting that the prevalence of viscous dissipation in
the central region results in a decrease in the Bejan profile.

5.5.8 Conclusion

The present study investigates pathological conditions such as stenosis and aneurysms in the
bifurcated artery. The Casson fluid model is employed instead of the Newtonian fluid model
to simulate blood flow properties like viscosity and flow rate accurately. Furthermore, the
study examines the influence of entropy generation on flow attributes by utilizing a ternary
hybrid nanofluid. The governing equations are simplified by applying the mild stenosis
assumption, followed by discretization using the Crank-Nicolson scheme. This discretized
model allows for the graphical representation of the influence of relevant parameters on the
flow distribution. The findings obtained from this study are as follows:

• Enhanced Brinkmann number (Br) increases entropy generation by promoting domi-
nant viscous dissipation over thermal conduction, leading to the conversion of ordered
energy into disordered energy.

• The WSS profile decreases with the augmentation with the stenosis size .

• The velocity contour depicts the decreasing pattern in the velocity profile with en-
hancing values of magnetic field parameter.
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• Nusselt number profile exhibits greater magnitudes for ternary hybrid nanofluids than
hybrid nanofluids.

• Enhancement in the Eckert number and Joule heating parameter facilitates the con-
version of surplus kinetic energy into thermal energy, consequently causing a rise in
the temperature profile.

The ternary hybrid nanofluid (Au-CuO-GO/Blood) offers several advantages, includ-
ing enhanced thermal conductivity and biocompatibility, which make it suitable for various
applications such as diagnosis, drug delivery, bioimaging, and tissue engineering. Owing
to these characteristics, the ternary hybrid nanofluid holds great potential for advancing
biomedical research and clinical practices. Furthermore, entropy is a fundamental concept
within biomedicine, enabling a deeper understanding of biological systems’ intricate com-
plexities and behaviours. By carefully examining entropy in the context of biomedicine,
researchers gain valuable insights into the efficiency, organization, and stability of diverse
biological processes.
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Chapter 6

Method of Lines Analysis of MHD Two-Phase Blood
Flow with Al2O3 Nanofluid Through Overlapping
Stenosed Artery with Activation Energy

6.1 Introduction

Within the domain of numerical analysis and computational mathematics, the Method of
Lines (MOL) emerges as a potent and adaptable approach for resolving partial differen-
tial equations (PDEs). Partial differential equations (PDEs) are widely used mathematical
models that describe various natural phenomena accurately. These equations have proven
invaluable tools in various scientific disciplines, such as physics, biophysics, fluid dynamics,
and chemistry. The elucidation of partial differential equations (PDEs) provides a compre-
hensive framework for comprehending many phenomena that necessitate analytical or nu-
merical solutions to these equations. The inherent intricacy and non-linearity of partial dif-
ferential equations (PDEs) make solving them quite formidable. In this context, the Method
of Lines offers a valuable tool owing to its intrinsic versatility, adaptability, and precision,
affording a practical avenue for addressing complex PDEs within the academic and scientific
community [156]. Nowak et al. [157] adopted the MOL method to solve the mathemati-
cal equations arising from the problem associated with reverse flow in the fixed bed reactor
and initialization process of automobile catalytic converters. They adopted the adaptive al-
gorithm to solve the problem as it relieves the user from manually selecting the necessary
quantity of grid points and meticulously adjusting the tuning parameters. The application
of the Method of Lines (MOL) as a computational technique was explored by Subramanian
and White [158]. They utilised this method to solve a non-linear elliptical equation that
emerged from mathematical modelling related to the steady-state mass and energy transport
phenomena occurring within solid materials. Ozen and Selçuk [159] employed the MOL to
get the efficient solutions for the wall fluxes and source term distributions in the fluidized
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bed combustors containing particle laden combustion gases. Pantoleontos et al. [160] con-
sidered the mass-continuity equations associated with laminar flow within a membrane con-
tractor, focusing specifically on lumen boundary conditions. Their inquiry concentrates on
utilising a carbon-capture membrane-based gas absorption technique, which involves con-
sidering different boundary conditions to accommodate the wide range of membrane-based
processes. To effectively handle the inherent non-linearity of the given boundary conditions,
the application of the Method of Lines (MOL) approach was employed by the researchers.

Stenosis is a medical condition characterised by fatty acids, lipids, and cholesterol ac-
cumulating within the walls of arteries, leading to the eventual blockage of blood flow. The
aforementioned medical condition represents a significant and urgent matter of public health
that necessitates immediate attention and intervention. An investigation was conducted by
Misra and Chakravarty [161] to explore the hemodynamic phenomena occurring in arterial
segments affected by stenosis. In this study, the arterial wall was represented as an elas-
tic tube, while blood was assumed to exhibit Newtonian fluid behaviour. Siddiqui et al.
[162] undertook a comprehensive investigation that centred on the dynamics of the pulsatile
flow of Casson fluid within an artery afflicted with stenosis. The study conducted by the
researchers placed considerable emphasis on elucidating the oscillatory characteristics of
wall shear stress that can give rise to fatigue and, eventually, loss of the permeability and
elasticity of walls. The influence of a magnetic field on composite stenosis with permeable
walls was investigated by Akbar and Butt [37]. Their research unveiled that the velocity
profile increased when copper nanoparticles were introduced into the base fluid. Shit and
Roy [111] delved into the effects of an induced magnetic field on blood flow through a
constricted artery. Their findings demonstrated that microcirculation increased with higher
magnetic field strength and stenosis height, shedding light on the interplay between mag-
netic fields and arterial hemodynamics. Zaman et al. [163] investigated the influence of
entropy generation and magnetohydrodynamics (MHD) in channels with curved stenosis.
Their findings demonstrated that applying a magnetic field resulted in a notable decrease in
the velocity profile. The Hall effect on the magnetohydrodynamic (MHD) nanofluid flow
through the stenosed artery was investigated by Sharma et al. [121]. The study encompassed
a thorough sensitivity analysis to elucidate the influence of the Brinkmann number and the
Hall parameter on the Nusselt number and the shear stress profile within the system.

Nanofluid have emerged as a groundbreaking class of heat transfer fluid that garnered the
attention of various researchers and scientist. The nanoparticles are the colloidal suspension
of nanoparticles ,ranging from 1 to 100 nanometer in size dispersed in the base fluid such as
glycol, water or oil etc. The small size of nanoparticles allow it for suitably used for improv-
ing image resolution and drug delivery precision. Ponalagusamy and Priyadharshini [164]
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undertook an investigation with the objective of evaluating the impact of a magnetic field
and body acceleration on the pulsatile flow characteristics of a Casson nanofluid within an
inclined stenosed artery. Majee and Shit [165] have undertaken a study wherein they formu-
lated a mathematical model to investigate the potential application of magnetic nanoparticles
in targeted drug delivery, specifically within stenosed arteries. The study’s findings demon-
strated a positive correlation between the concentration of nanoparticles and the Nusselt
number. This observation holds potential implications in the field of biomedicine, partic-
ularly in treating tumour and cancer cells. Zaman et al. [166] undertook simulations to
investigate the behaviour of hybrid nanoparticles (Ag, Al2O3) within stenosed arteries. The
researchers aimed to provide a comparative analysis between these hybrid nanoparticles and
silver (Ag) nanoparticles. The present study yielded valuable insights into the efficacy of
these nanoparticles within the realm of biomedicine. Dubey et al. [6] explored the effect of
metallic nanoparticle within the hemodynamic flow through the dieseased artery subject to
thermophoresis and Brownian motion. Their study revelaed that the study may be beneficial
for transport phenomena in pharmacology and in nano-drug delivery. Varmazyar et al. [167]
utilised magnetic nanoparticles (MNP) as a means of drug delivery. The researchers injected
the drug at locations preceding the plaque and tumour sites. It has been determined that the
drug becomes entrapped in close proximity to the plaque, resulting in a diminished efficacy
of drug delivery to the tumour site. The investigation conducted by Khanduri and Sharma
[107] delved into the intricate realm of the influence exerted by Hall and ion slip effects
on hybrid nanoparticles within a catheterized stenosed artery with thrombosis. To replicate
the inherent properties of blood, the researchers opted to employ the hematocrit-dependent
viscosity model. Additionally, Khanduri et al. [33] conducted a sensitivity analysis on the
magnetohydrodynamic (MHD) fluid flow within a curved stenosed artery, considering the
influence of electroosmosis and radiation effects. Several researchers [143, 168, 23, 120,
154] explored the study of nanofluid through the stenosed artery.

The blood circulation within the intricate networks of microvessels, including arteri-
oles, capillaries, and venules, demonstrates discernible characteristics when contrasted with
the larger conduits found in the circulatory system. The interactions of different micro-
scopic properties of blood affect the nature of blood flowing through these microvessels.
Investigating this phenomenon, researchers have delved into the dual-phase nature of blood
flow within these vessels. Specifically, the plasma-rich region demonstrates Newtonian be-
haviour, while the core region displays non-Newtonian characteristics, shedding light on the
complex rheological properties of blood within the microvascular system. An investigation
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was conducted by Sachin and Murthy [169] to examine the trajectory of drug-bound mag-
netic nanoparticles in a two-phase fluid environment within microvessels, where the dynam-
ics were influenced by an external magnetic field. Tiwari and Chauhan [84], in a separate
study, employed a two-phase fluid model to explore the pulsatile behavior of blood with
varying viscosity within blood vessels. Tripathi et al. [7] conducted a comprehensive exam-
ination of magnetohydrodynamic (MHD) two-phase blood flow through stenosed arteries,
considering the effects of viscous dissipation, Joule heating, and k-th order chemical reac-
tions. Their study also accounted for temperature-dependent viscosity in the core region and
constant viscosity in the plasma region. Kumawat et al. [12] delved into the topic of two-
phase blood flow within curved stenosed arteries, where the viscosity of the core region was
dependent on hematocrit levels, and the viscosity of the plasma region varied with tempera-
ture. Furthermore, Sharma et al. [109] undertook a numerical investigation into the study of
two-phase MHD power-law fluid flow within stenosed arteries, considering the presence of
the Hall effect and a magnetic field. These scholarly inquiries collectively contribute to our
understanding of complex fluid dynamics in various biomedical and engineering contexts.

The biomedical field encompasses a significant research domain centred around ther-
mophoresis and Brownian motion. Within the context of drug delivery, these phenomena
hold notable potential for the targeted transport of drug carriers, specifically nanoparticles,
to precise anatomical sites or for the controlled dispersion of pharmaceutical agents at desig-
nated locales. Nadeem and Ijaz [170] investigated blood flow through overlapping stenoses
under the influence of thermophoresis and Brownian motion. Additionally, Ponalagusamy
and Priyadharshini [164] explored the intricate interplay of magnetic fields and body accel-
eration in the pulsatile flow of Casson fluid within inclined arteries. Their research illumi-
nated an augmentation in temperature and concentration profiles with increasing Brownian
motion parameters. Prasad and Yasa [171] developed a theoretical model to investigate
micropolar fluid behaviour in arteries afflicted by multiple stenoses. Their findings under-
scored an enhancement in wall shear stress with increasing Brownian parameters, while a
converse trend was observed concerning thermophoresis parameters. In a more recent study,
Hussain et al. [172] delved into the effects of these parameters on pulsatile nanofluid flow
within curved arteries, contributing to our understanding of their implications in biomedical
contexts. Chemical reactions within the bloodstream have emerged as a critical factor, influ-
encing phenomena such as blood clot formation (thrombosis) and playing a pivotal role in
drug delivery applications, especially within stenosed arteries. A minimum energy thresh-
old, known as activation energy, must be exceeded to initiate chemical reactions. Ibrahim
et al. [173] recently explored the impact of activation energy on hemodynamic flow. Their
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investigations unveiled the notable effect of activation energy in enhancing nanoparticle ve-
locity, thereby facilitating their transport to the cervical canal. Saleem et al. [10] undertook
a comprehensive study examining entropy generation in the context of nanoparticle-laden
fluid flow within ciliated channels, accounting for the influence of activation energy and
magnetic fields.

Inspired by the insightful investigation mentioned above, the present work delves into
an in-depth exploration of Magnetohydrodynamic (MHD) two-phase blood flow within a
stenosed arterial conduit. In our study, we model the core region of the fluid as an Ostwald-
DeWaele power-law fluid, while the plasma region is represented as a Newtonian fluid. This
choice of modeling reflects the complex rheological characteristics exhibited by blood in
real physiological scenarios. Furthermore, the present study aims to broaden the investiga-
tion by integrating the impact of thermophoresis, Brownian motion, and activation energy
into the analysis of flow dynamics. This approach acknowledges the crucial role of these
factors in comprehending the intricate transport phenomena occurring within biological sys-
tems. In order to address the complex network of partial differential equations that emerge
from these considerations, the Method of Lines is employed as a robust and versatile ap-
proach for numerical solution, ensuring the accuracy and reliability of our results.

6.2 Mathematical Model

Consider the continuous model of unsteady, laminar, incompressible blood flow through a
stenosed artery of length L, as depicted in Figure 1. We simulate the blood flow model
using the Ostwald-DeWaele power-law fluid model. In this two-phase blood flow model,
the core region contains erythrocytes (a suspension with a uniform hematocrit of viscosity
(µ f )c), while the viscosity of the cell-depleted plasma layer in the plasma region is denoted
as (µ f )p. A cylindrical coordinate system (r̃, θ̃ , z̃) is adopted, assuming axi-symmetric flow,
which results in the independence of all variables with respect to θ̃ . An external magnetic
field B0, applied perpendicular to the flow, leads to the neglect of the induced magnetic field
ReM << 1 due to its significantly lower magnitude compared to the applied magnetic field.

6.2.1 Geometry

The geometry of the stenosis in the core region is considered as [28, 34]:

R̃(z̃) =

R0 − 6δ ∗

5L4
0
A∗, for d̃ < z̃ ≤ d̃ +L0

R0, otherwise
(6.1)
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Figure 6.1: Pictorial representation of diseased artery

The geometry of the stenosis in the plasma region is considered as:

R̃1(z̃) =

β̄R0 − 6δ ∗

5L4
0
A∗, for d̃ < z̃ ≤ d̃ +L0

β̄R0, otherwise
(6.2)

where, R(z) represent the radius of the artery, R0 is the radius of normal artery, L0 signifies
the length of the stenosis, d is the location of stenosis and δ ∗ is the stenosis height. Further-
more, the term A∗ is defined as A∗ = 11(z̃− d̃)L3

0−47(z̃− d̃)2L2
0+72(z̃− d̃)3L0−36(z̃− d̃)4.

6.2.1.1 Governing Equations

Consider the blood flow through an artery as bidirectional and unsteady. The velocity along
the radial r̃ and axial direction z̃ are represented as ũ℘ and w̃℘, respectively. The governing
mathematical equations are given as:

Continuity:

∂ ũ℘

∂ r̃
+

ũ℘

r̃
+

∂ w̃℘

∂ z̃
= 0. (6.3)



6.2. Mathematical Model 157

Energy Equation:

((ρCp)n f )℘

[
DT̃℘

Dt̃

]
=(κn f )℘

[
∇

2T̃℘

]
+(ρCp)s

[
(DB)℘

{(
∂C̃℘

∂ r̃
∂ T̃℘

∂ r̃

)
+

(
∂C̃℘

∂ z̃
∂ T̃℘

∂ z̃

)}
+
(DT )℘

T̃0

((
∂ T̃℘

∂ r̃

)2

+

(
∂ T̃℘

∂ z̃

)2
)]

+σn f B2
0w̃2

℘− 1
r̃

{
∂

∂ r̃
(r̃qr)

}
+φ

∗,

(6.4)

where, the radiation term [33, 174],

qr =−
16σeT̃ 3

0
3ke

∂ T̃℘

∂ r̃
(6.5)

and, viscous dissipation term is defined as:

φ
∗ = (µn f )℘

[
2
(

∂ ũ℘

∂ r̃

)2

+

(
∂ ũ℘

∂ z̃
+

∂ w̃℘

∂ r̃

)2

+2
(

∂ w̃℘

∂ z̃

)2
]
, (6.6)

Concentration Equation:

[
DC̃℘

Dt̃

]
= (DB)℘

[
∇

2C̃℘

]
+

(DT )℘

T̃0

[
∇

2T̃℘

]
− k2

r
T̃℘

T̃0

(
C̃℘−C̃0

)
e

(
− Ea

kT̃℘

)
, (6.7)

Here, the operators D
Dt̃ ≡

[
∂

∂ t̃ + ũ℘
∂

∂ r̃ + w̃℘
∂

∂ z̃

]
and ∇2 ≡

[
∂ 2

∂ r̃2 +
1
r̃

∂

∂ r̃ +
∂ 2

∂ z̃2

]
.

The paramter ℘ is represented as:

℘=

c, if 0 < r̃ ≤ R̃1(z̃) (Core region)

p, if R̃1(z̃)< r̃ ≤ R̃(z̃) (Plasma region)
(6.8)

For core region:
Momentum (r̃-direction):

(ρn f )c

[
D̃ũc

D̃t̃

]
=−∂ p̃c

∂ r̃
+

[
1
r̃

∂

∂ r̃
(r̃Sr̃r̃)+

∂

∂ z̃
(Sr̃z̃)

]
. (6.9)

Momentum (z̃-direction):

(ρn f )c

[
D̃w̃c

D̃t̃

]
=−∂ p̃c

∂ z̃
+

[
1
r̃

∂

∂ r̃
(r̃Sr̃z̃)+

∂

∂ z̃
(Sz̃z̃)

]
+ F̃ (6.10)
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For plasma region:
Momentum (r̃-direction):

(ρn f )p

[
D̃ũp

D̃t̃

]
=−

∂ p̃p

∂ r̃
+

1
r̃

∂

∂ r̃

{
µn f

∂ ũp

∂ r̃

}
+

∂

∂ z̃

{
µn f

(
∂ ũp

∂ z̃
+

∂ w̃p

∂ r̃

)}
−2µn f

ũp

r̃2 (6.11)

Momentum (z̃-direction):

(ρn f )p

[
D̃w̃p

D̃t̃

]
=−

∂ p̃p

∂ z̃
+

1
r̃

∂

∂ r̃

{
r̃µn f

(
∂ ũp

∂ z̃
+

∂ w̃p

∂ r̃

)}
+

∂

∂ z̃

{
2µn f

(
∂ w̃p

∂ z̃

)}
+ F̃

(6.12)

The body force term F̃ defined in the equations (6.10) and (6.12) is expressed as:

F̃ =−(σn f )℘B2
0w̃℘+((ρβ )n f )℘g(T̃℘− T̃0)+((ρβ )n f )℘g(C̃℘−C̃0)−

(µn f )℘
K1

. (6.13)

The blood flow has the pulsatile nature due to the pumping action of the blood. There-
fore, the pressure gradient can be taken in the following form:

−∂ p̃
∂ z̃

= A0 +A1 cos(ωpt̃), t̃ > 0. (6.14)

Where, ωp = 2π fp , the terms A0 and A1 signifies the amplitude of steady-state and
pulsatile component. The term fp signifies for heart pulse frequency. Figure 6.2 depicts the
pictorial representation in formation of the Al2O3-Blood Nanofluid.

6.2.1.2 Non-Newtonian Fluid Model (Power Law Fluid)

The Cauchy stress tensor for a power law fluid is given as [18]:

T ∗ =−pI +(µn f )℘(ΓΠ)n−1A1. (6.15)

Here p represents the pressure, I is the identity tensor, n represents the rheological
power-law index (n= 1 for Newtonian fluid, n< 1 for pseudoplastic blood, n> 1 for dilatant
blood). The first Rivlin-Ericksen tensor is defined as A1 = ∇V +(∇V )T and Π =

√
1
2tr(A1).

Use equations (6.15) and the above terms to get the stress tensor components are ex-
pressed as:
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Figure 6.2: Formation of Al2O3-Blood Nanofluid by integration of Al2O3 nanoparticle
with blood.

Table 6.1: Dimensionless parameters

r = r̃
R0

z = z̃
L0

uc =
L0ũ1
δ ∗U0

R1 =
R̃1
R0

p =
R2

0 p̃
(µ f )pU0L0

Cc =
C̃c−C̃0
C̃w−C̃0

Tc =
T̃c−T̃0
T̃w−T̃0

Tp =
T̃p−T̃0
T̃w−T̃0

wc =
w̃c
U0

Gr = g(ρ f )pβ f R2
0∆T̃

U0(µ f )p
Re = (ρ f )pR0U0

(µ f )p
k0 =

(κ f )p
(κ f )c

M2 =
σ f B2

0R2
0

(µ f )p
Sc = (µ f )p

(DB)p(ρ f )p
Nr = 16σeT̃1

3(κ f )pke
Nt =

(ρC)s(DB)p∆T̃
T̃0(κ f )p

Br = EcPr (DB)0 =
(DB)p
(DB)c

(DT )0 =
(DT )p
(DT )c

Gc = g(ρ f )pβ f R2
0(C̃w−C̃0)

U0(µ f )p

∆T̃ = T̃w − T̃0 Da = K
R2

0
Sz̃z̃ =

U0(µ f )p
L0

Szz Sr̃z̃ =
U0(µ f )p

R0
Srz

We = ΓU0
R0

∆C̃ = C̃w −C̃0 ξ =
k2

r R2
0(ρ f )p

(µ f )p
Ω = ∆T̃

T̃0

µ0 =
(µ f )p
(µ f )c

Cp =
C̃p−C̃0
C̃w−C̃0

t = U0t̃
R0

wp =
w̃p
U0

ρ0 =
(ρ f )p
(ρ f )c

Pr = Cp(µ f )p
(κ f )p

Sr̃r̃ =
U0(µ f )p

L0
Srr Nb =

(ρC)s(DB)p∆C̃
(κ f )p

E∗ = Ea
T̃0
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Sr̃r̃ =(µn f )℘

{
ζ
∗∂ ũ℘

∂ r̃

}
, (6.16)

Sz̃z̃ =(µn f )℘

{
ζ
∗∂ w̃℘

∂ z̃

}
, (6.17)

Sr̃z̃ =(µn f )℘

{
ζ
∗
(

∂ w̃℘

∂ r̃
+

∂ ũ℘

∂ z̃

)}
. (6.18)

Here, ζ ∗ is defined as:

ζ
∗ =(ΓΠ)n−1

=


∣∣∣∣∣∣Γ
(

2
(

∂ ũ℘

∂ r̃

)2

+2
(

∂ w̃℘

∂ z̃

)2

+2
(

ũ℘

r̃

)2

+

(
∂ ũ℘

∂ z̃
+

∂ w̃℘

∂ r̃

)2
) 1

2
∣∣∣∣∣∣
n−1
 . (6.19)

6.3 Non-Dimensional Equations

By using the non-dimensionalize parameters mentioned in table 6.1 and mild-stenosis as-
sumption (δ << 1) with O(1) = ε = R0

L0
, the governing equations reduced to:

For core region 0 < r ≤ R1(z)

∂ p
∂ r

= 0, (6.20)

ρn f

ρ f

1
ρ0

Re
∂wc

∂ t
=−∂ p

∂ z
+

[
1
r

∂

∂ r
(rSrz)

]
+
(ρβ )n f

(ρβ f )

1
ρ0

GrTc+
(ρβ )n f

(ρβ f )

1
ρ0

GcCc−
(µn f )p

µ f

1
µ0

wc

Da

−
σn f

σ f
M2wc, (6.21)

RePr
k0

ρ0s0

{
κ f

κn f

(ρCp)n f

(ρCp) f

}
∂Tc

∂ t
=

∂ 2Tc

∂ r2 +
1
r

∂Tc

∂ r
+κ0

(
κ f

κn f

){
Nb

(DB)0

∂Tc

∂ r
∂Cc

∂ r
+

Nt

(DT )0

(
∂Tc

∂ r

)2

+Nr
(

∂ 2Tc

∂ r2 +
1
r

∂Tc

∂ r

)
+

µn f

µ f

1
µ0

Br
(

∂wc

∂ r

)2

+
σn f

σ f
M2Brw2

c

}
,

(6.22)
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ReSc(DB)0
∂Cc

∂ t
=

∂ 2Cc

∂ r2 +
1
r

∂Cc

∂ r
+
(DB)0

(DT )0

Nt

Nb

(
∂ 2Tc

∂ r2 +
1
r

∂Tc

∂ r

)
−ξ Sc(DB)0(1+ΩTc)

m1e−
E∗

1+ΩTc Cc.

(6.23)
For plasma region R1(z)< r ≤ R(z)

∂ p
∂ r

= 0, (6.24)

ρn f

ρ f
Re

∂wp

∂ t
=−∂ p

∂ z
+

µn f

µ f

[
1
r

∂

∂ r

(
r

∂wp

∂ r

)]
+
(ρβ )n f

(ρβ f )
GrTp+

(ρβ )n f

(ρβ f )
GcCp−

µn f

µ f

wp

Da
−

σn f

σ f
M2wp,

(6.25)

RePr
{

κ f

κn f

(ρCp)n f

(ρCp) f

}
∂Tp

∂ t
=

∂ 2Tp

∂ r2 +
1
r

∂Tp

∂ r
+

(
κ f

κn f

){
Nb

∂Tp

∂ r
∂Cp

∂ r
+Nt

(
∂Tp

∂ r

)2

+Nr
(

∂ 2Tp

∂ r2 +
1
r

∂Tp

∂ r

)
+

µn f

µ f
Br
(

∂wp

∂ r

)2

+
σn f

σ f
M2Brw2

p

}
,

(6.26)

ReSc
∂Cp

∂ t
=

∂ 2Cp

∂ r2 +
1
r

∂Cp

∂ r
+

Nt

Nb

(
∂ 2Tp

∂ r2 +
1
r

∂Tp

∂ r

)
−ξ Sc(1+ΩTp)

m1e−
E∗

1+ΩTp Cp. (6.27)

The constant ζ ∗ is given as:

ζ
∗ =

{∣∣∣∣∣Γ
(

2
(

δ ∗U0

R0L0

)2(
∂u℘

∂ r

)2

+2
(

U0

L0

)2(
∂w℘

∂ z

)2

+2
(

δ ∗U0

R0L0

)2(u℘

r

)2
(6.28)

+

(
δ ∗U0

L2
0

∂u℘

∂ z
+

U0

R0

∂w℘

∂ r

)2
) 1

2
∣∣∣∣∣∣
n−1


=


∣∣∣∣∣∣Γ
(

U0

R0

)(
2(δε)2

(
∂u℘

∂ r

)2

+2(ε)2
(

∂w℘

∂ z

)2

+2(δε)2
(u℘

r

)2
+

(
δε

∂u℘

∂ z
+

∂w℘

∂ r

)2
) 1

2
∣∣∣∣∣∣
n−1


(6.29)
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The non-dimensionalize shear stress component Srz is written as:

Srz =
(µn f )℘
(µ f )p

{
ζ
∗
(

∂w℘

∂ r

)}

=
(µn f )℘
(µ f )p

{
We2

∣∣∣∣∂w℘

∂ r

∣∣∣∣2
}( n−1

2 )
∂w℘

∂ r
(6.30)

Use equation (6.28) and (6.30) to get the momentum equations in core region as:

ρn f

ρ f

1
ρ0

Re
∂wc

∂ t
=− ∂ p

∂ z
+

µn f

µ f

1
µ0

1
r

∂

∂ r

r

{(We)2
∣∣∣∣∂wc

∂ r

∣∣∣∣2
} n−1

2 (
∂wc

∂ r

)


+
(ρβ )n f

(ρβ ) f

1
ρ0

GrTc +
(ρβ )n f

(ρβ ) f

1
ρ0

GcCc −
µn f

µ f

1
µ0

wc

Da
−

σn f

σ f
M2wc, (6.31)

The dimensionless formulation of boundary conditions are described as:



w℘ = T℘ =C℘ = 0 at t = 0,
∂wc
∂ r = 0, ∂Tc

∂ r = 0, ∂Cc
∂ r = 0, at r = 0,

wc = wp, Tc = Tp, Cc =Cp at r = R1(z),

τc = τp,
∂Tc
∂ r =

∂Tp
∂ r ,

∂Cc
∂ r =

∂Cp
∂ r at r = R1(z),

wp = 0, Tp = 1, Cp = 1 at r = R(z).

(6.32)

The dimensionless pressure gradient is written as:

−∂ p
∂ z

= B1(1+ ecos(c1t)), (6.33)

where, B1 =
A0R2

0
(µ f )pU0

,e = A1
A0

and c1 =
2πR0ωp

U0
.
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6.3.1 Non-Dimensional Form for Geometry of Diseased Arterial Seg-
ment

The geometry of the stenosis in the core region is considered as:

R(z)=

1− 6δ

5

{
11(z−d)3 −47(z−d)2 +72(z−d)−36(z−d)4} , for d < z ≤ d +1,

1, otherwise
(6.34)

The geometry of the stenosis in the plasma region is considered as:

R1(z)=

β̄ − 6δ

5

{
11(z−d)3 −47(z−d)2 +72(z−d)−36(z−d)4} , for d < z ≤ d +1,

β̄ , otherwise
(6.35)

6.3.2 Quantities of Physical Interest

The radial transformation, denoted as x1 =
r

R(z) , is employed within the governing equations
for restraining the geometric effects. Then, the volumetric flow rate is defined as [109]:

Q f =R2
∫ 1

0

∫
π

0
x1wdx1dθ (6.36)

=R2

(∫
β̄

0

∫
π

0
x1wcdx1dθ +

∫ 1

β̄

∫
π

0
x1wpdx1dθ

)
.

Here, β̄ = 0.75 is the interface between the plasma and core region. The resistance
impedance is given as:

λ =

∫ L
0 (−

∂ p
∂ z )dz

Q f . (6.37)

The WSS, Nusselt (Nu) and Sherwood (Sh) are given as:

τw =− 1
R

(
∂w
∂x1

)
x1=1

, Nu =− 1
R

(
∂T
∂x1

)
x1=1

Sh =− 1
R

(
∂C
∂x1

)
x1=1

(6.38)

6.4 Numerical Method

The Method of Lines (MOL) represents a prominent numerical approach employed for the
resolution of partial differential equations (PDEs) by discretizing along the spatial coordi-
nates resulting into a system of ordinary differential equations (ODEs) which can be further
solved by time-stepping methods [158, 160]. This particular approach, characterized by
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the exclusive discretization of spatial coordinates while keeping the temporal domain con-
tinuous, is conventionally referred to as ’semi-discretization’ method. The relevant partial
differentials are defined as:

∂ f
∂x

=
fi+1 − fi−1

2h
(6.39)

∂ 2 f
∂x2 =

fi+1 −2 fi + fi−1

h2 (6.40)

The Method of Lines (MOL) substitutes the exact or analytical solutions for the func-
tions w(r, t), T (r, t), and C(r, t) in the spatial domain with an approximate solution denoted
as w(t), T (t), and C(t) for a specific range of indices i = 1,2, ...,N +1. This approximation
is computed along a finite set of straight lines, as illustrated in Figure 6.3.

Figure 6.3: Computational domain for Method of Lines (MOL)

The radial transformation, denoted as x1 =
r

R(z) , is employed within the governing equa-
tions for restraining the geometric effects. This transformation is subsequently applied to
equations (6.20) - (6.32). Afterward, equations (6.39) and (6.40) are introduced into the re-
sulting equations, leading to the formulation of a system of first-order ordinary differential
equations (ODEs) along the straight line i, where i ranges from 2 to N.

For core region (0 < x1 ≤ 0.75),



6.4. Numerical Method 165

dwi

dt
=

1
Re

ρ0ρ f

ρn f

[
µn f

µ f

1
µ0

1
Rn+1

{
1

x1i

(
We
∣∣∣∣wi+1 −wi−1

2h

∣∣∣∣)n−1(wi+1 −wi−1

2h

)

+

(
wi+1 −2wi +wi−1

h2

){(
We
∣∣∣∣wi+1 −wi−1

2h

∣∣∣∣)n−1

+(n−1)Wen−1
(∣∣∣∣wi+1 −wi−1

2h

∣∣∣∣)n−2

wi+1 −wi−1

2h

}}]
+

1
Re

(β )n f

(β ) f
GrTi +

1
Re

(β )n f

(β ) f
GcCi +

(
1

Re
ρ0ρ f

ρn f

){
−

µn f

µ f

1
µ0

wi

Da

+Ep(1+ ecos(c1t))−
σn f

σ f
M2wi

}
(6.41)

dTi

dt
=

(
ρ0s0

k0

1
RePr

κn f

κ f

(ρCp) f

(ρCp)n f

)
1

R2

{
Ti+1 −2Ti +Ti−1

h2 +
1

x1i

Ti+1 −Ti−1

2h

}
+

(ρ0s0)

RePr
Nb

(DB)0

1
R2

(ρCp) f

(ρCp)n f

{
Ti+1 −Ti−1

2h
· Ci+1 −Ci−1

2h

}
+

(ρ0s0)

RePr
1

R2 Nt
(ρCp) f

(ρCp)n f

1
(DT )0

{(
Ti+1 −Ti−1

2h

)2
}

+

(
1

R2
ρ0s0

RePr
(ρCp) f

(ρCp)n f

)[
Nr
{

Ti+1 −2Ti +Ti−1

h2 +
1

x1i

Ti+1 −Ti−1

2h

}
+

µn f

µ f

1
µ0

Br

(6.42)(
wi+1 −wi−1

2h

)2
]
+

(
ρ0s0

RePr
(ρCp) f

(ρCp)n f

)
σn f

σ f
M2Brw2

i ,

dCi

dt
=

1
R2

1
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For plasma region (0.75 < x1 ≤ 1),

dwi
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1
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(6.44)
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dTi

dt
=

(
1

RePr
κn f

κ f

(ρCp) f

(ρCp)n f

)
1

R2

{
Ti+1 −2Ti +Ti−1

h2 +
1

x1i

Ti+1 −Ti−1

2h

}
+

1
RePr

Nb
1

R2
(ρCp) f

(ρCp)n f{
Ti+1 −Ti−1

2h
· Ci+1 −Ci−1

2h

}
+

1
RePr

1
R2 Nt

(ρCp) f

(ρCp)n f

{(
Ti+1 −Ti−1

2h

)2
}

+

(
1

R2
1

RePr
(ρCp) f

(ρCp)n f

)[
Nr
{

Ti+1 −2Ti +Ti−1

h2 +
1

x1i

Ti+1 −Ti−1

2h

}
(6.45)
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Furthermore, the initial conditions for ODEs mention from (6.41)-(6.46) is written in
discrete form as:

wi(0) = 0, Ti(0) = 0, Ci(0) = 0 (6.47)

Boundary Conditions:

The three-point forward finite difference formula for function f at i = 1(x = 0) is given
as:

∂ f
∂x

=
− f (3)+4 f (2)−3 f (1)

2h
(6.48)

Use equation (6.32) and (6.48) to write the function w,T and C at i = 1 as given below:

w1 =
4w2 −w3

3
, T1 =

4T2 −T3

3
, C1 =

4C2 −C3

3
. (6.49)

At i = N +1,
wN+1 = 0, TN+1 = 0, CN+1 = 0. (6.50)
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Parameters Ranges Sources

Thermophoresis parameter (Nt) 0.1-0.8 [15, 16]

Brownian parameter (Nb) 0.1-0.8 [10, 15]

Schmidt number (Sc) 0-3 [1]

Ratio of density in core and plasma region (ρ0) 1.05 [4, 5]

Ratio of viscosity in core and plasma region (µ0) 1.2 [3, 4]

Magnetic field parameter (M) 0-
√

5 [33, 175]

Activation energy parameter (Ea) 0.08-1.8 [1, 10]

Weissenberg number (We) 1.5-3.5 [18]

Table 6.2: Values of the physical parameters with their sources

Parameters φ1 B1 Gr Gc Ea n Da−1 Re (DT )0 (DB)0 m1 ξ Nr

Ranges 0.02 1.4 2 0.5 0.5 0.7 0.2 2 0.8 0.8 0.6 0.5 2

Table 6.3: Default value of emerging parameters

Figure 6.4: Thermophysical properties of blood and nanoparticle

The resulting system of ODEs are initial value problems (IVPs). In order to solve the
system of ODEs , we employed the inbuilt MATLAB function ’ode15s,’ which operates
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through the utilization of a semi-implicit approach recognized as the ’stiff’ ODE solver
method. Figure 6.4 depicts the thermophysical properties of blood and nanoparticle.

Table 6.4: Thermophysical properties of nanofluid

Properties Mathematical Expression for Nanofluid

Viscosity µn f =
µ f

(1−φ1)2.5

Density ρn f = (1−φ1)ρ f +φ1ρs1

Heat Capacity (ρCp)n f = (1−φ1)(ρCp) f +φ1(ρCp)s1

Thermal Conductivity kn f
k f

=
ks1+2k f−2φ1(k f−ks1)

ks1+2k f+φ1(k f−ks1)

Electrical Conductivity σn f
σ f

=
σs1+2σ f−2φ1(σ f−σs1)

σs1+2σ f+φ1(σ f−σs1)

Thermal Expansion Coefficient βn f = (1−φ1)β f +φ1βs1

6.5 Results and Graphical Analysis

In this section, we comprehensively explored the dynamic of the blood flow phenomena
by delving into the graphical illustration and physical significance of different emerging
parameters. This study helps in the providing the significant step for understanding the
complex physiological phenomena. The present study focuses on the two-phase blood flow
in the overlapping stenosed artery. The power law fluid model is adopted to simulate the
blood flow in the core region and non-newtonian characteristic of blood has been considered
in the plasma region. The Method of Lines (MOL) has been employed to simulate the
numerical code. The numerical values of various emerging parameters are presented in
table 6.2 and 6.3. The thermo-physical properties of nanofluid is displayed in table 6.4.
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6.5.1 Validation

The validation of our work is complemented by the study conducted by Tripathi et al. [176]
on two-phase MHD blood flow through a stenosed artery.
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By making appropriate assumptions, we have substantiated the velocity and temperature
profiles of our current research through a comparative analysis with the findings of Tripathi
et al. [176], as shown in figure 6.5a and 6.5b. Notably, Tripathi et al.[176] employed an
analytical methodology to derive solutions for the dimensionless governing equations in
their investigation, resulting in exact solutions. In contrast, our study used the Method of
Lines (MOL) approach. The ensuing graphical representations demonstrate a noteworthy
agreement between our study and the earlier research, thus affirming the consistency of our
velocity and temperature profiles with the established literature.

6.5.2 Axial Velocity Profiles

Blood contains iron, primarily in the form of haemoglobin. The presence of a magnetic field
exerts a notable influence on the behaviour of blood, primarily attributed to the alignment
of iron atoms within the protein molecule known as haemoglobin. The investigation of the
influence of the magnetic field parameter M on the velocity profile is motivated by the ob-
served phenomenon, as depicted in Figure 6.6a. The velocity profile exhibits a discernible
pattern wherein a decreasing trend is observed as the magnetic field strength increases within
the range of 0 to

√
5. This behaviour can be explained by the presence of a strong external

magnetic field, which results in the generation of a resistive drag force known as the Lorentz
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force, thereby retarding the fluid motion. This effect of magnetic fields on blood properties
has notable applications in the biomedical field. A prominent example is magnetic reso-
nance imaging (MRI) machines, which utilize strong magnetic fields to generate images of
diseased arteries, including those affected by stenosis.
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Figure 6.6: Velocity profile

Figure 6.6b depicts the manifestation of the velocity profile’s fluctuation as a function
of the Weissenberg number within the context of two-phase blood flow. The relationship
between a material’s relaxation time and deformation time scale is characterised by a di-
mensionless parameter known as the Weissenberg number. As depicted in the provided
figure, it is evident that for a given value of n = 1.5, the velocity profile exhibits a noticeable
pattern of diminishing magnitude with increasing Weissenberg number (We). The empirical
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evidence gathered from the observations strongly indicates a positive correlation between
the rise in resistance to deformation and the concurrent elevation in the Weissenberg num-
ber. In the realm of shear-thickening fluids, which exhibit a power-law index of n = 1.5, it
has been noted that as the applied shear stress or strain rate increases, the fluid’s resistance
to flow becomes increasingly prominent.

In the context of a shear-thinning fluid exhibiting power-law behaviour with an expo-
nent of n = 0.7, it has been observed that the velocity profile shows a discernible inclination
towards higher values as the Weissenberg number is increased. The observed phenomenon
can be ascribed to the distinctive attributes of shear-thickening fluids, which manifest di-
minished opposition to deformation. As a result, this phenomenon allows for enhanced
fluid flow under conditions of increased stress or strain rates.

The impact of the Grashof number on the velocity profile is illustrated in Figure 6.6c. It
is observed that the velocity profile exhibits a decreasing trend as the Grashof number (Gr)
increases from 0 to 3. The observed phenomenon aligns with an increase in the prevalence
of buoyancy forces in the constricted artery, which arises due to temperature fluctuations.
The investigation examines the influence of two key parameters, namely the concentration
gradient (Gc) and the inverse of the Darcy number (Da−1), on the velocity profile. The vi-
sualisation of this relationship is presented in Figure 6.6d. The observed trend indicates that
the velocity profile increases as the parameter Gc is augmented while concurrently display-
ing a decrease as the inverse Darcy number Da−1 rises. According to the study’s findings, it
has been proposed that the presence of a porous medium within the flow contributes to the
resistance experienced by the fluid during its movement. Furthermore, in the scenario where
(Da → ∞), the porosity of the medium becomes negligible or effectively disappears. The
inverse of the Darcy number, Da−1, reflects the resistance offered by the porous medium.
As Da−1 increases, the resistance intensifies, decreasing the velocity profile. On the other
hand, increasing the Grashof number (Gc) from 0 to 0.5 results in a heightened concen-
tration gradient within the fluid. The observed phenomenon of an increase in the velocity
profile can be attributed to an amplified concentration gradient.

6.5.3 Temperature Profile

The investigation aims to analyse the impact of various parameters, precisely the Prandtl
number (Pr), Radiation parameter (Nr), Thermophoresis parameter (Nt), and Brownian pa-
rameter (Nb), on the temperature profile, as illustrated in figure 6.7. The temperature profile
shown in Figure 6.7a significantly decreases as the Prandtl number (Pr) increases from 19 to
27. The aforementioned tool is valuable in characterising the intricate relationship between
momentum transport and thermal diffusivity within a fluid system.
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Figure 6.7: Temperature profile

A higher Prandtl number indicates a comparatively lower thermal conductivity compared
to a smaller Prandtl number. The empirical evidence gathered from this observation suggests
a positive correlation between the Prandtl number and the temperature profiles exhibited by
fluids. Specifically, fluids with smaller Prandtl numbers exhibit higher temperature profiles
than those with larger Prandtl numbers. The correlation between the radiation parameter and
the temperature profile is elucidated in Figure 6.7b. Based on the available evidence, it can
be deduced that the presence of radiation serves as a catalyst for the generation of thermal
energy, leading to a discernible elevation in the overall temperature profile. The utilization
of radiation in biomedicine, particularly in the discipline of radiation therapy, entails the
strategic deployment of this energy to manipulate the temperature distribution to eradicate
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malignant cells with optimal efficacy. The observed phenomenon of the temperature pro-
file increment is elucidated by the graphical representation provided in Figure 6.7c. This
increment is directly correlated with the increase in the parameter Nt . As the value of the
parameter Nt is incremented, a corresponding effect is observed in the motion of particles,
which is driven by the temperature gradient. Consequently, this phenomenon gives rise to
an elevation in the temperature profile. Figure 6.7d illustrates the diminishing characteristic
of the temperature profile with the parameter Nb. An elevation in the Brownian parameter is
directly associated with an amplification in the thermal conductivity of the fluid. This aug-
mentation leads to a more balanced dispersion of thermal energy within the fluid, resulting
in a reduced temperature gradient.

6.5.4 Concentration Profile

The concentration profile is illustrated in Figure 6.8, showcasing the impact of variables
such as E, ξ , Nt , and Nb. The concept of activation energy refers to the minimum amount
of energy that must be surpassed to initiate a chemical reaction. Thus, it is an important
decisive factor in regulating the chemical reaction. The solutal chemical reaction exhibits
a decrease in response to an increase in the variable E, thereby resulting in an augmenta-
tion of solute concentration as depicted in figure 6.8a. The influence of chemical reaction
parameter on the concentration profile is illustrated in the figure 6.8b. The higher value of
ξ associated with reduced molecular diffusion. The observed relationship between the pa-
rameter ξ and the molecular diffusivity of chemical species within a system suggests that
an increase in ξ is associated with a decrease in diffusivity. Consequently, this leads to a re-
duction in the overall diffusion process, thus, lead to reduction in concentration profile. The
concentration profile in the stenotic region for Nt is depicted in Figure 6.8c. The analysis
of the figure reveals that there is a noticeable decrease in the concentration profile within
both the core and plasma regions as the thermophoresis parameter increases from 0.15 to
0.4. The increase in the parameter Nt results in an elevation of the temperature gradient,
which subsequently induces the accumulation of particles towards the region of higher tem-
perature. This accumulation ultimately leads to an increase in the concentration profile. The
concentration profile for Nb exhibits an opposite trend. An increase in the Brownian motion
parameter results in a reduction in the concentration gradient, leading to the formation of a
more uniform concentration profile.
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Figure 6.8: Concentration profile

6.5.5 Wall Shear Stress (WSS)

WSS is the frictional force acting tangentially to the surface. It is the key factors to under-
stand the hemodynamic flow around the wall of the stenotic region. In biomedical field, the
study of WSS helps the researchers to get insight to the mechanical force experienced by
endothelial cells at the arterial wall. 6.9a potrays the influence of magnetic field parameter
on the WSS profile. The WSS profile shows the declining nature for the increasing magnetic
field parameter M.
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Figure 6.9: WSS profile

On enhancing the magnetic field the blood experience the resistive Lorentz flow that
impede the fluid flow along the arterial wall and reduces the WSS profile. Figures 6.9b
and 6.9c depict the influence of We on the time-series graph of the WSS profile for shear-
thinning fluid and shear-thickening. The WSS profile increases for n= 0.5 and decreases for
n= 1.5 as the We number increases from 1.5 to 3.5. respectively. This contrasting behaviour
can be attributed to the varying rates of deformation concerning changes in We, which, for
n = 1.5, lead to heightened deformation rates, while the opposite holds for n = 0.5.
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Figure 6.10: Flow rate and Impedance Profile
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Consequently, these alterations in WSS profiles have implications for hemodynamic be-
haviour, potentially resulting in altered blood flow patterns near arterial walls. Figure 6.9d
depict the influence of Nt on the WSS profile. Clearly, it can be observed form the figure
that the WSS profile decreases as the magnitude of Nt increases from 0.15 to 0.40.

6.5.6 Flow Rate and Impedance

Flow rate is the amount of fluid that passes through the conduit (artery) per unit time. The
influence of Da−1,Nb,Nt and φ1 on the flow rate profile. The influence of (Da−1) on the
flow rate is depicted in Figure 6.10a. This illustrates that the flow rate profile decreases as
Da−1 decreases from 0 to 2. Permeability is a fundamental parameter used to measure the
degree of ease with which blood can pass through a porous medium. As (Da−1) increases,
there is a corresponding decrease in permeability. This decrease in permeability reduces
blood flow through stenotic regions, reducing the flow rate profile. The influence of the
parameter φ1 on the temporal progression of flow rate within a system is depicted in Figure
6.10b. The results described in the analysis showcase a notable trend in which the velocity
of blood increases as the concentration of nanoparticles varies within the range of 0 to 0.02.
It is worth noting that the fluid within the system exhibits a significant characteristic in its
central region, as it conforms to a power law pattern with a power-law index denoted as
n = 0.7.

This specific parameter n= 0.7 signifies the shear-thinning property of the fluid, wherein
the viscosity of the fluid diminishes with an escalation in the shear rate. As a result, it can be
observed that an increase in the concentration of nanoparticles leads to a corresponding de-
crease in the viscosity of the fluid and an improvement in the flow rate profile. Figure 6.10c
portrays the decrement profile of flow rate with enhancement in Brownian motion parameter
Nb while the reverse trend is observed for Nt as shown in 6.10c. A higher value of the vari-
able Nb corresponds to a concomitant decrease in the nanoparticle’s size; conversely, a lower
value of Nb corresponds to an increase in nanoparticle size. The presence of these diminu-
tive nanoparticles serves to decelerate the flow rate profile. The figure 6.10d illustrates the
influence exerted by the thermophoresis parameter Nt on the blood flow velocity. In contrast
to the prevailing trend resulting from the increase in the Brownian motion parameter, it is
observed that the velocity profile experiences a significant enhancement as the thermophore-
sis parameter is elevated. The thermophoretic body force propels nanoparticles in response
to a temperature gradient. The phenomenon mentioned above facilitates the progression of
momentum, expedites the fluid motion and enhances the flow rate profile. Impedance is
defined as the resistive force that a fluid experiences as it flows through a surface or body.
Clearly, from figure 6.10e, it can be inferred that the impedance profile increases as the
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magnetic field parameter increases. The composition of blood includes minute magnetic
iron particles that are evenly dispersed throughout its plasma. The phenomenon of electro-
motive activity in blood gives rise to the rotational motion of charged particles in tandem
with the magnetic components present within the blood. The aforementioned phenomenon
induces the suspension of electrically charged particles as well as erythrocytes within the
circulatory fluid, thereby leading to an elevation in its viscosity. Hence, the Lorentz force
that arises from the interaction between moving particles and the applied magnetic field
counteracts the velocity of blood, thereby augmenting the Impedance profile. Figure 6.10f
exhibits a discernible trend of decline in the impedance profile as the value of Nb increases
from 0.15 to 0.4. The observed phenomenon can be attributed to the simultaneous rise in
resistive forces, ascribed to the reduction in size of the nanoparticles.

6.5.7 Velocity Contour

This section illustrates the velocity contours, which serve as visual representations of the
velocity field inside a constricted artery. The presented contours give significant insights
into the spatial fluctuations of velocity within the fluid, providing a complete comprehen-
sion of the velocity variations at various positions inside the artery. Figure 6.11 illustrates
the influence of the magnetic field parameter, denoted as M, on the velocity contour pro-
file. Notably, the fluid velocity shows a diminishing trend as the magnetic field strength
increases, as shown in figures 6.11a - 6.11c. Specifically, the highest fluid velocity, reaching
0.6, is observed in the absence of a magnetic field, as depicted in figure 6.11a. Subsequently,
as the magnetic field strength escalates from M = 1 to M = 3, a discernible reduction in the
velocity field pattern within the contour becomes apparent. The observed decrease in veloc-
ity can be ascribed to the resistive Lorentz force exerted within the system, highlighting the
complex interaction between magnetic fields and fluid dynamics within the framework of
this investigation.

Figure 6.12 illustrates the influence of Da−1 on the velocity contour. The fluid velocity
pattern decreases as The bolous reduces as Da−1 increases from 0 to 2. This has happened
due to the dominance of the viscous forces over the inertial force. This results in the decre-
ment in the velocity field as shwown in figure 6.12. The influence of varying nanoparticle
concentration on the observed velocity patterns is visually depicted in figure 6.13. Nanopar-
ticles have garnered considerable attention in biomedicine due to their small size, large
surface area, and ability to be tailored with specific surface chemistry. These characteristics
collectively enable the adequate transportation of therapeutic payloads.

In the current study, the utilisation of Al2O3 nanoparticles has been implemented to
examine their impact on the dynamics of two-phase blood flow. The utilisation of Al2O3
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(a) (b) (c)

Figure 6.11: Velocity contour for M

(a) (b) (c)

Figure 6.12: Velocity contour for Da−1

(a) (b) (c)

Figure 6.13: Velocity contour for nanoparticle concentration φ1
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nanoparticles has been explored for their potential in carrying therapeutic substances, in-
cluding pharmaceuticals and genetic material. This unique characteristic allows for precise
and targeted drug delivery, specifically to stenotic sites.

The utilisation of this particular approach serves to mitigate the occurrence of systemic
side effects while concurrently enhancing the therapeutic efficacy. The blood flow within
a stenosed artery devoid of nanoparticles is depicted in figure 6.13a. On the other hand,
figures 6.13b and 6.13c offer valuable information regarding the velocity distribution in the
artery with different concentrations of nanoparticles, ranging from 0 to 0.05. The increased
fluid velocity observed can be attributed to a corresponding increase in the concentration
of nanoparticles within the stenotic artery. This increase in concentration leads to localised
temperature variations, contributing to the observed augmentation in fluid velocity. The
aforementioned variations give rise to temperature gradients, which induce flow through
buoyancy effects, ultimately boosting fluid velocity.

6.6 Conclusion

This research paper investigates the complex realm of magnetohydrodynamic (MHD) two-
phase blood flow through a stenosed artery. The study incorporates different fluid models,
with the core region modeled as a Power-law fluid and the plasma region as a Newtonian
fluid. The study focuses on the potential of suspended Al2O3 nanoparticles in the base fluid
(blood) as carriers for drug delivery applications. The nanoparticles are biocompatible and
chemically stable, making them viable for long-term use in the medical field. The Method
of Lines approach is effectively used to solve the governing equations within the proposed
model, demonstrating its versatility, adaptability, and precision. This approach offers a prac-
tical and valuable avenue for addressing the complexities of partial differential equations,
advancing our knowledge of multifaceted fluid dynamics and their applications in the med-
ical domain. It is observed that the temperature profile increases as the thermophoresis
and Brownian motion parameter enhances. In shear thinning fluid, the velocity profile de-
picts the declining nature for enhancemetn in the value of Weissenberg parameter We, while
shows the reverse trend for shear thickening fluid. The velcoity profile shows the increasing
trend for solutal Grashof number but decreases with an increase in the inverse Darcy num-
ber Da−1. The concentration profile shows the increasing trend for activation parameter E,
while depicts the reverse trend for reaction parameter ξ .
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Chapter 7

Magnetically Targeted Drug Delivery for Two-Phase
Blood Flow Through Composite Stenotic Artery
Under the Influence of Hall and Ion Effects Using
Method of Line Approach

7.1 Introduction

Targeted drug delivery, involving the binding of drugs to nanoparticles, represents an inno-
vative approach in medicine. This method stands in contrast to conventional drug delivery
practices, where drugs are diffused throughout the body, often resulting in reduced therapeu-
tic efficacy and potential harm to healthy tissues. A notable technique in this domain is mag-
netically controlled drug delivery, where drugs are conjugated with magnetic nanoparticles
and guided externally to specific target sites, as seen in applications such as stenosis. This
approach provides a viable solution by enabling the precise delivery of therapeutic agents
to afflicted areas, thereby augmenting treatment efficacy and curtailing adverse effects [177,
178]. Furlani et al. [179] formulated a mathematical model to analyse the magnetic drug tar-
geting (MDT) process at the tumour sites. The model considered the influence of magnetic
and fluidic forces on particles, enabling the prediction of their trajectory during the MDT
process. In a study conducted by Shaw and Murthy [169], an investigation was undertaken to
examine several factors that influence the targeted delivery of carrier particles. These factors
encompass arterial inner wall permeability, carrier particle size, and microvessel diameter.
Majee and Shit [165] focused on nanoparticle aggregation and flow patterns in targeted drug
delivery (TDD) within stenosed arteries, discovering increased nanoparticle concentration
downstream of stenosis, and forming vigorous flow circulation zones. In a study by Sharma
et al. [48], the researchers examined the effects of an external magnetic field on various
parameters related to blood and magnetic particle flow within a cylindrical tube. The exper-
imental findings presented in their study provide evidence of reduced velocities observed in
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both blood and magnetic particles when subjected to the external magnetic field. In a study
by Ali et al. [180], a fractional model was formulated to describe the flow behaviour of Cas-
son fluid within a cylindrical tube under the influence of an oscillating pressure gradient.
This model aimed to provide a comprehensive understanding of the fluid dynamics in such
systems. In a more recent investigation by Maiti et al. [181], a fractional-order model was
proposed to analyse drug delivery processes involving the utilisation of magnetic nanopar-
ticles by applying the fractional order model. The findings of their investigation revealed a
notable augmentation in the Nusselt profile when subjected to intensified thermal radiation.

The quantitative analysis of blood flow necessitates a comprehensive understanding of
the rheological properties of blood. Among the crucial characteristics of blood, the volume
percentage of erythrocytes plays a pivotal role. Existing literature, derived from both in vivo
and in vitro experiments, indicates the presence of a cell-free plasma layer near the arterial
wall, attributed to the Fahraeus effect, especially in the context of blood flow through narrow
arteries [4, 182]. Researchers such as Srivastava and Saxena [183] have proposed a two-
phase blood flow model, wherein the core region is described as a Casson fluid enveloped
by a peripheral layer of plasma governed by Newtonian fluid dynamics. Additionally, Pon-
alagusamy and Selvi [184] have delved into the complexities of two-phase blood flow in
stenosed arteries, considering varying slip conditions at the arterial wall. Sharma and Yadav
[8] have explored the dynamics of two-layer blood flow in constricted arteries, modeling the
system as a circular tube surrounded by a two-layer porous region. Ranjit et al. [185] have
investigated entropy generation and Joule heating effects in the context of electroosmotic
flow of a two-layer fluid through micro-channels. Meanwhile, Kumawat et al. [28] have fo-
cused on entropy generation in two-phase blood flow, where the core region exhibits variable
viscosity while the plasma region maintains constant viscosity. Their research findings have
unveiled critical insights; specifically, factors like curvature and permeability can exacerbate
the risk of atherosclerosis formation, whereas the presence of a heat source demonstrates a
contrary effect, potentially mitigating this risk.

In the intricate landscape of biological systems, magnetohydrodynamics (MHD) emerges
as a promising field, illuminating unique perspectives and avenues for exploration. Rao et
al. delved into the magnetic field’s impact on biological systems, revealing its profound
influence. In a similar vein, Abbas et al. [138] scrutinized pulsatile MHD fluid flow through
stenosed arteries, considering the presence of body acceleration. Their research unveiled a
decline in velocity profile with increasing stenotic depth and magnetic field parameter, con-
trasting with the upward trend observed for the body acceleration parameter. Ponalagusamy
and Priyadharshini [104] extended this exploration to the MHD flow of Casson fluid through
bifurcated stenosed arteries. Subsequently, Kumar et al. [118] investigated MHD fluid flow
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through permeable bifurcated arteries, accounting for magnetic field effects, heat source,
and chemical reactions. Poonam et al. [82] delved into MHD fluid flow with Au-Al2O3 hy-
brid nanoparticles through curved stenosed arteries with aneurysms. Their study highlighted
the potential use of radiation in thermal therapies, effectively mitigating arteriosclerosis and
elevating fluid temperatures. Furthermore, Khanduri et al. [186] undertook a study on elec-
troosmotic MHD flow through curved arteries afflicted with stenosis along the wall and
thrombosis at the catheter’s center. Numerous other researchers [118, 187, 33, 120] have
also contributed to the understanding of MHD fluid flow through diseased arteries, collec-
tively enhancing our comprehension of these intricate biological phenomena.

In recent years, researchers have delved into the various factors influencing blood flow
patterns. Among these phenomena, the Hall and ion effects emerge as critical determinants
shaping blood flow dynamics. The Hall effect arises from the interaction between the mag-
netic field and moving charged particles, while the ion effect plays a pivotal role in the
electrochemical properties of blood. Mekheimer and El Kot [73] studied micropolar fluid
flow through stenosed arteries, incorporating the Hall and magnetic field effects . Hayat
et al. [188] investigated the impact of Hall and ion slip on Jeffery nanofluid in channels,
revealing that velocity increases while temperature profiles decrease with Hall and ion slip
parameters. Das et al. [189] utilized the homotopy analysis method to examine nanofluid
flow in inclined stenosed arteries. Their findings indicated a decrease in wall shear stress
profile with an increase in the Hall parameter. Moreover, Das et al. [77] extended their
research by incorporating ion slip effects into electromagnetic blood flow hybrid nanopar-
ticles. Numerous researchers [190, 191, 112, 121] have endeavoured to comprehend the
influence of Hall and ion slip effects on blood flow, aiming to explore their biomedical ap-
plications. These studies contribute significantly to our understanding of the complexities
involved in blood flow patterns, paving the way for innovative applications in the biomedical
field.

In the previously mentioned studies, a noteworthy research gap emerges as there has
been an absence of investigations pertaining to magnetic drug targeting in the stenosed
artery within the framework of a two-phase blood flow model that incorporates essential
factors such as Hall and ion effects, radiation, and viscous dissipation. Limited attention
has been given to solving the resulting governing equations utilizing the Method of Lines
approach, renowned for its robustness, accuracy, and precision. To fill the above-mentioned
gaps, this study delves into the hemodynamic flow within a composite stenosed artery with
radiation, viscous dissipation, Hall and ion effects, specifically emphasizing the application
of magnetic drug targeting. The proposed model incorporates a two-phase system, where
a power law fluid model characterizes the core region, and the plasma region is defined
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using a Newtonian fluid model. The discretization of the governing equations and their sub-
sequent solution through the Method of Lines form the fundamental methodology of this
research effort. This approach is chosen for its well-documented effectiveness in handling
complex fluid dynamics scenarios. Through this rigorous investigation, our study aims to
bridge the existing knowledge gaps and enhance our understanding of magnetic drug tar-
geting mechanisms within the intricate dynamics of stenosed arteries, thereby contributing
valuable insights to biomedical fluid dynamics.

The novelty of the current research lies in the following aspects:

• Implementation of magnetic drug targeting within a stenosed artery.

• Adoption of a two-phase model incorporating various influencing factors such as Joule
heating, viscous dissipation, Hall, and ion effects.

• Demonstrating the advanced computational prowess of the Method of Lines approach
in solving the discretized governing equations, thereby elevating precision and accu-
racy in the analysis.

7.2 Mathematical Model

In this paper, we considered an unsteady, laminar, two dimensional incompressible blood
flow through the stenosed artery as depicted in figure 7.1. The magnetic nanoparticles Fe3O4

is doped in the blood and uniformly distributed throughout the blood. The magnetic field
is applied perpendicular to sheet. The magnetic Reynold number is asumed to be small to
neglect the effect of induced magnetic field. The two-phase blood flow model is assumed
where fluid nature in core region is represented by Ostwald-DeWaele power-law fluid model
and the suspended peripheral layer of plamsa is assumed to be Newtonian. The viscosity of
the blood in core and plasma region is represented as µc and µp, receptively.

7.2.1 Geometry

The geometry of the stenosis in the core region is considered as [40]:

R̃(z̃) =



R0 − 2δ ∗

L0
(z̃− d̃), for d̃ < z̃ ≤ d̃ + L0

2 ,

R0 +
2δ ∗

L0
(z̃− d̃ −L0), for d̃ + L0

2 < z̃ ≤ d̃ +L0,

R0 +
δ ∗

L0
sin(π(z̃− d̃)), for d̃ +L0 < z̃ ≤ d̃ +2L0,

R0, otherwise

(7.1)
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Core Region

Plasma Region

Figure 7.1: Pictorial representation of diseased artery

The geometry of the stenosis in the plasma region is considered as:

R̄1(z̃) =



β̄R0 − 2δ ∗

L0
(z̃− d̃), for d̃ < z̃ ≤ d̃ + L0

2 ,

β̄R0 +
2δ ∗

L0
(z̃− d̃ −L0), for d̃ + L0

2 < z̃ ≤ d̃ +L0,

β̄R0 +
δ ∗

L0
sin(π(z̃− d̃)), for d̃ +L0 < z̃ ≤ d̃ +2L0,

β̄R0, otherwise,

(7.2)

where, R̃(z̃) represent the radius of the artery, R̃1(z̃) represent the radius of core region, R0

is the radius of normal artery, L0 signifies the length of the stenosis, d is the location of
stenosis and δ ∗ is the stenosis height.

7.2.2 Electrohydrodynamics (EHD)

The composition of blood is characterised by its intricate combination of ions, proteins,
cellular components, and electrolytes. This unique composition makes blood an exceptional
conductor of electrical current. The application of an external electric field to the fluid,
specifically blood in this context, induces kinetic motion in its constituents. The occurrence
of this motion encounters opposition from electrically charged particles that are distributed
throughout the fluid, resulting in the dissipation of energy. This phenomenon is commonly
referred to as Joule heating. This section illustrates the velocity contours, which represent
the velocity field inside a constricted artery. The presented contours give significant insights
into the spatial fluctuations of velocity within the fluid, providing a complete comprehension
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of the velocity variations at various positions inside the artery. The generalized Ohm law is
given as [77, 107]:

J = σn f (E+V×B)− βe

B0
(J×B)+

βeβi

B2
0
[(J×B)×B], (7.3)

where q,σn f ,B,J,βe,βi are the velocity vector, effective electric conductivity of hybrid
nanofluid, magnetic field vector, current density vector, Hall and ion slip parameter, respec-
tively.

The maxwell equation is given as:

∇×E =−∂B
∂ t

, ∇ ·B = 0, ∇ ·J = 0. (7.4)

The induced magnetic field is negligible due to the small magnetic Reynold number. In
the absence of magnetic field and using the equation (7.4), the equation (7.3) reduced to:

Jr̃(1+βeβi)−βeJz̃ =−σn f B0w̃ρ , (7.5)

Jz̃(1+βeβi)+βeJr̃ =−σn f B0ũρ . (7.6)

Solving the equations (7.5) and (7.6) gives:

Jr̃ =
σn f B0

α2
e +β 2

e
[ũρβe − w̃ραe], (7.7)

Jz̃ =
σn f B0

α2
e +β 2

e
[ũραe + w̃ρβe]. (7.8)

(7.9)

Here, αe = 1+βeβi and βe =ωete is the Hall parameter. The current density and Lorentz
force is given as:

J ·J
σn f

=
σn f B2

0
α2

e +β 2
e

[
ũ2

ρ + w̃2
ρ

]
, (7.10)

J×B =

(
−

σn f B2
0

α2
e +β 2

e

{
ũραe + w̃ρβe

}
,0,

σn f B2
0

α2
e +β 2

e

{
ũρβe − w̃ραe

})
.
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7.2.3 Fluidic Force Formulation

Magnetic nanoparticles exhibit inherent non-invasive characteristics, which make them suit-
able for various applications such as drug binding and external manipulation using mag-
netic forces. Within the context of this investigation, our primary focus has been directed
towards magnetite (Fe3O4) as the preferred magnetic nanoparticle for the purpose of accu-
rately targeting drugs within affected arterial regions. The motion of these nanoparticles
is determined by a combination of various forces, namely magnetic forces, inter-particle
interactions, fluidic forces, inertial forces, and buoyant forces. The current flow regime
exhibits a low Reynolds number, which consequently diminishes the impact of Brownian
motion effects on the magnetic nanoparticles. The system dynamics are primarily governed
by magnetic and viscous forces. Consequently, we formulate the equations of motion for
the nanoparticles based on Newton’s second law as follows:

m
∂ ṽpr

∂ t
=Fmr +Ff r +Fgr, (7.11)

m
∂ ṽpz

∂ t
=Fmz +Ff z +Fgz, (7.12)

where, m is the mass of the nanoparticle, Ff r,Ff z,Fmr,Fmz,Fgr,Fgz are the fluidic, mag-
netic and graviataional forces along the radial and axial direction, certain assumptions are
made based on the low magnetic Reynolds number hypothesis. Specifically, the magnetic
forces are considered negligible, leading to the conditions Fmr = 0 and due to sub-micron
size of the nano-magnetic particles the gravitational force can be neligible Fgr = 0.

The equations (7.11) and (7.12) becomes Fmr + Ff r + Fgr = 0 and Fmz + Ff z + Fgz =

0 when the interial forces are neglected due to nanoparticle sub-micron size. The fluidic
force imposed by a nanoparticle is determined through the application of Stokes’ law, which
describes the viscous drag acting upon the spherical object as follows:

Ff r =−6πµ f R̃p fDP(ṽpr − ũρ), (7.13)

Ff z =−6πµ f R̃p fDP(ṽpz − w̃ρ), (7.14)

where, µ f is the static viscosity, fDP is drag coefficient and R̃p is the radius of nanopar-
ticle.

In this work, we have neglected the gravitational impact on submicron nanoparticles,
primarily focusing on investigating the magnetic and fluidic forces. Equations (7.11) and
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Figure 7.2: Formation of Fe3O4-Blood nanofluid through the integration of Fe3O4
nanoparticles with blood.

(7.12) can be simplified when the fluidic environment mainly influences the nanoparticle,
resulting in subsequent expressions as [165]:

m
∂ ṽpr

∂ t̃
=Ks(ũρ − ṽpr), (7.15)

m
∂ ṽpz

∂ t̃
=Ks(w̃ρ − ṽpz), (7.16)

where, Ks = 6πµR̃p fDP is the Stroke’s constant, fDP =
2FD

ρu2A is drag coefficient, where FD

is drag coefficient and R̄p = 2.5×107 is effective hydrodynamics nanoparticle radius. Figure
7.2 shows the Fe3O4 nanoparticles doped with Blood to form the Fe3O4-Blood nanofluid.

7.2.4 Governing Equations

The blood flow model is designed in the cylindrical coordinate system, where velocity u and
w are considered along the radial r and axial direction z, respectively. The azimuthal direc-
tion θ is neglected as blood flow is assumed to be axi-symmetrical. Under the assumption
mentioned above and using the Boussinesq approximation, the resultant flow equations are
given as [18]:

Continuity:
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∂ ũρ

∂ r̃
+

ũρ

r̃
+

∂ w̃ρ

∂ z̃
= 0. (7.17)

For core region:
Momentum (r̃-direction):

(ρn f )c

[
D̃ũc

D̃t̃

]
=−∂ p̃

∂ r̃
+

[
1
r̃

∂

∂ r̃
(r̃Sr̃r̃)+

∂

∂ z̃
(Sr̃z̃)

]
+ G̃. (7.18)

Momentum (z̃-direction):

(ρn f )c

[
D̃w̃c

D̃t̃

]
=−∂ p̃

∂ z̃
+

[
1
r̃

∂

∂ r̃
(r̃Sr̃z̃)+

∂

∂ z̃
(Sz̃z̃)

]
+ F̃ (7.19)

For plasma region:
Momentum (r̃-direction):

(ρn f )p

[
D̃ũp

D̃t̃

]
=− ∂ p̃

∂ r̃
+

1
r̃

∂

∂ r̃

{
(µn f )p

∂ ũp

∂ r̃

}
+

∂

∂ z̃

{
(µn f )p

(
∂ ũp

∂ z̃
+

∂ w̃p

∂ r̃

)}
−2(µn f )p

ũp

r̃2 + G̃.

(7.20)

Momentum (z̃-direction):

(ρn f )p

[
D̃w̃p

D̃t̃

]
=−∂ p̃

∂ z̃
+

1
r̃

∂

∂ r̃

{
r̃(µn f )p

(
∂ ũp

∂ z̃
+

∂ w̃p

∂ r̃

)}
+

∂

∂ z̃

{
2(µn f )p

(
∂ w̃p

∂ z̃

)}
+ F̃ .

(7.21)

The body force term G̃ defined in the equations (7.18) and (7.20) and F̃ in equations
(7.19) and (7.21) are expressed as:

F̃ =
σn f B2

0
α2

e +β 2
e

{
ũρβe − w̃ραe

}
+((ρβ )n f )ρg(T̃ρ − T̃0)−

(µn f )ρ

K
w̃ρ +KsN(ṽpz − w̃ρ),

(7.22)

G̃ =−
σn f B2

0
α2

e +β 2
e

{
ũραe + w̃ρβe

}
+KsN(ṽpr − w̃ρ). (7.23)
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Energy equation:

((ρCp)n f )ρ

[
D̃T̃ρ

D̃t̃

]
=(κn f )ρ

[
∇

2T̃ρ

]
+

σn f B2
0

α2
e +β 2

e

[
u2

ρ +w2
ρ

]
− 1

r̃

{
∂

∂ r̃
(r̃qr)

}
+φ

∗ (7.24)

where, the radiation term [33, 174],

qr =−
16σeT̃ 3

0
3ke

∂ T̃ρ

∂ r̃
, (7.25)

and, viscous dissipation term is defined as:

φ
∗ = (µn f )ρ

[
2
(

∂ ũρ

∂ r̃

)2

+

(
∂ ũρ

∂ z̃
+

∂ w̃ρ

∂ r̃

)2

+2
(

∂ w̃ρ

∂ z̃

)2
]
. (7.26)

Here, the operators D̃
D̃t̃ ≡

[
∂

∂ t̃ + ũ℘
∂

∂ r̃ + w̃℘
∂

∂ z̃

]
and ∇2 ≡

[
∂ 2

∂ r̃2 +
1
r̃

∂

∂ r̃ +
∂ 2

∂ z̃2

]
.

The paramter ρ is represented as:

ρ =

c, if 0 < r̃ ≤ R1(z̃) (Core region),

p, if R1(z̃)< r̃ ≤ R(z̃) (Plasma region).
(7.27)

The blood flow has the pulsatile nature due to the pumping action of the blood. There-
fore, the pressure gradient can be taken in the following form [138]:

−∂ p̃
∂ z̃

= A0 +A1 cos(ωpt̃), t̃ > 0. (7.28)

Where, ωp = 2π fp , the terms A0 and A1 signifies the amplitude of steady-state and
pulsatile component. The term fp signifies for heart pulse frequency.

Moreover, the non-dimensional form of equation (7.16) is given as:

G
∂vpz

∂ t
=wρ − vpz, (7.29)

where G = mU0
KsR0

is the particle mas parameter.

7.2.4.1 Non-Newtonian Fluid Model (Power Law Fluid)

The Cauchy stress tensor for a power law fluid is given as [18, 192]:

T ∗ =−pI +µ(ΓΠ)n−1À1. (7.30)
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Here p represents the pressure, I is the identity tensor, n represents the rheological
power-law index (n= 1 for Newtonian fluid, n< 1 for pseudoplastic blood, n> 1 for dilatant
blood). The first Rivlin-Ericksen tensor is defined as À1 = ∇V+(∇V)T and Π =

√
1
2tr(À1).

Use equations (7.30) and the above terms to get the stress tensor components are ex-
pressed as:

Sr̃r̃ =(µn f )ρ

{
ζ
∗∂ ũρ

∂ r̃

}
, (7.31)

Sz̃z̃ =(µn f )ρ

{
ζ
∗∂ w̃ρ

∂ z̃

}
, (7.32)

Sr̃z̃ =(µn f )℘

{
ζ
∗
(

∂ w̃ρ

∂ r̃
+

∂ ũρ

∂ z̃

)}
. (7.33)

Here, ζ ∗ is defined as:

ζ
∗ =(ΓΠ)n−1

=


∣∣∣∣∣∣Γ
(

2
(

∂ ũρ

∂ r̃

)2

+2
(

∂ w̃ρ

∂ z̃

)2

+2
(

ũρ

r̃

)2

+

(
∂ ũρ

∂ z̃
+

∂ w̃ρ

∂ r̃

)2
) 1

2
∣∣∣∣∣∣
n−1
 (7.34)

7.3 Non-Dimensional Equations

By using the non-dimensionalize parameters mentioned in table 7.1 and mild-stenosis as-
sumption (δ << 1) with O(1) = ε = R0

L0
, the governing equations reduced to:

For core region 0 < r ≤ R1(z)

∂ p
∂ r

= 0, (7.35)

ρn f

ρ f

1
ρ0

Re
∂wc

∂ t
=−∂ p

∂ z
+

[
1
r

∂

∂ r
(rSrz)

]
+

{
(ρβ )n f

(ρβ f )

}
1
ρ0

GrTc −
{

µn f

µ f

}
1
µ0

wc

Da

−
σn f

σ f

αe

α2
e +β 2

e
M2wc +Rp(vpz −wc), (7.36)
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RePr
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ρ0s0

{
κ f

κn f

(ρCp)n f

(ρCp) f

}
∂Tc

∂ t
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∂ 2Tc

∂ r2 +
1
r

∂Tc

∂ r
+κ0

(
κ f

κn f

){
Nr
(

∂ 2Tc

∂ r2 +
1
r

∂Tc

∂ r

)
+

µn f

µ f

1
µ0

Br
(

∂wc

∂ r

)2

+
σn f

σ f

αe

α2
e +β 2

e
M2Brw2

c

}
. (7.37)

For plasma region R1(z)< r ≤ R(z)

∂ p
∂ r

= 0, (7.38)

ρn f

ρ f
Re

∂wp

∂ t
=− ∂ p

∂ z
+

µn f

µ f

[
1
r

∂

∂ r

(
r

∂wp
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(ρβ )n f

(ρβ f )
GrTp −

µn f

µ f

wp

Da

−
σn f

σ f

αe

α2
e +β 2

e
M2wp +Rp(vpz −wp), (7.39)
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. (7.40)

The constant ζ ∗ is given as:

ζ
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(7.41)

+
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 . (7.42)
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The non-dimensionalize shear stress component Srz is written as:

Srz =
(µn f )℘
(µ f )p

{
ζ
∗
(

∂w℘

∂ r

)}

=
(µn f )℘
(µ f )p

{
We2
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∂ r
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}( n−1

2 )
∂w℘

∂ r
. (7.43)

Use equation (7.41) and (7.43) to get the momentum equations in core region as:
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ρ f

1
ρ0
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∂ t
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∂ z
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µ f

1
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1
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(ρβ ) f

1
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µn f

µ f

1
µ0

wc

Da
−

σn f

σ f

αe

α2
e +β 2

e
M2wc, (7.44)

Table 7.1: Dimensionless parameters

r = r̃
R0

z = z̃
L0

uc =
L0ũc
δ ∗U0

R1 =
R̃1
R0

t = U0t̃
R0

p =
R2

0 p̃
(µ f )pU0L0

up =
L0ũp
δ ∗U0

Tc =
T̃c−T̃0
T̃w−T̃0

Tp =
T̃p−T̃0
T̃w−T̃0

wp =
w̃p
U0

wc =
w̃c
U0

Gr = g(ρ f )pβ f R2
0∆T̃

U0(µ f )p
Re = (ρ f )pR0U0

(µ f )p
k0 =

(κ f )p
(κ f )c

vpr =
ṽpr
U0

M2 =
σ f B2

0R2
0

(µ f )p
vpz =

ṽpz
U0

Nr = 16σeT̃0
3(κ f )pke

Rp =
KsNR2

0
(u f )p

ρ0 =
(ρ f )p
(ρ f )c

Br = EcPr µ0 =
(µ f )p
(µ f )c

We = ΓU0
R0

s0 =
(Cp f )p
(Cp f )c

Pr = Cp(µ f )p
(κ f )p

∆T̃ = T̃w − T̃0 Da = K
R2

0
Sz̃z̃ =

U0(µ f )p
L0

Szz Sr̃z̃ =
U0(µ f )p

R0
Srz Sr̃r̃ =

U0(µ f )p
L0

Srr

R = R̃
R0

R1 =
R̃1
R0

The dimensionless formulation of boundary conditions are described as:
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wρ = vpρ
= Tρ = 0 at t = 0,

∂wc
∂ r = 0, ∂Tc

∂ r = 0, ∂vpc
∂ r = 0, at r = 0,

wc = wp, vpc = vp p, Tc = Tp at r = R1(z),

τc = τp,
∂Tc
∂ r =

∂Tp
∂ r ,

∂vpc
∂ r =

∂vp p
∂ r at r = R1(z),

wp = 0, vp p = 1, Tp = 1 at r = R(z).

(7.45)

The dimensionless pressure gradient is written as:

−∂ p
∂ z

= B1(1+ ecos(c1t)), (7.46)

where, B1 =
A0R2

0
(µ f )pU0

,e = A1
A0

and c2 =
2πR0ωb

U0
.

7.3.1 Non-Dimension Form for Geometry of Stenosis

The geometry of the stenosis in the core region is considered as [40]:

R(z) =



1−2δ (z−d), for d < z ≤ d + 1
2 ,

1+2δ (z−d −1), for d + 1
2 < z ≤ d +1,

1+δ sin(π(z−d)), for d +1 < z ≤ d +2,

1, otherwise.

(7.47)

The geometry of the stenosis in the plasma region is considered as:

R1(z) =



β̄ −2δ (z−d), for d < z ≤ d + 1
2 ,

β̄ +2δ (z−d −1), for d + 1
2 < z ≤ d +1,

β̄ +δ sin(π(z−d)), for d +1 < z ≤ d +2,

β̄ , otherwise.

(7.48)

7.3.2 Quantities of Physical Interest

In order to address the potential impact of geometric effects, a radial transformation is in-
troduced, represented by the equation x1 =

r
R(z) . Then, the volumetric flow rate is defined
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as:

Q f =R2
∫ 1

0

∫
π

0
x1wdx1dθ (7.49)

=R2

(∫
β̄

0

∫
π

0
x1wcdx1dθ +

∫ 1

β̄

∫
π

0
x1wpdxdθ

)
.

Here, β̄ = 0.75 is the interface between the plasma and core region. The resistance
impedance is given as:

λ =

∫ L
0 (−

∂ p
∂ z )dz

Q f , (7.50)

The WSS and Nusselt (Nux) are given as:

WSS =− 1
R

(
∂w
∂x1

)
x1=1

, Nux =− 1
R

(
∂T
∂x1

)
x1=1

. (7.51)

7.3.3 Numerical Methodology

The commonly employed technique referred to as the ’semi-discretization’ approach en-
tails discretizing only the spatial coordinates while preserving continuity in the temporal
domain. This method, termed the Method of Lines (MOL), serves as a prominent numerical
technique employed in the resolution of partial differential equations (PDEs) [159, 160].
The achievement of the aforementioned objective is facilitated through the process of dis-
cretization along the spatial coordinates.

Figure 7.3: Computational domain for Method of Lines (MOL)
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This discretization leads to the formulation of a system of ordinary differential equations
(ODEs), which can then be effectively solved by employing time-stepping methods. The
pertinent partial differentials are mathematically defined as follows:

∂ f
∂x

=
fi+1 − fi−1

2h
, (7.52)

∂ 2 f
∂x2 =

fi+1 −2 fi + fi−1

h2 . (7.53)

The Method of Lines (MOL) is a technique that entails substituting the precise or an-
alytical solutions for the functions w(r, t), T (r, t), and C(r, t) in the spatial domain with an
approximate solution denoted as w(t), T (t), and C(t). This approximation is subject to cer-
tain limitations, as it is confined within a defined range of indices, namely i = 1,2, ...,N+1.
The determination of this approximation is based on a finite set of straight lines, as illustrated
in Figure 7.3.

Incorporating equations (7.52) and (7.53) into the governing equations results in a sys-
tem of first-order ordinary differential equations (ODEs) being formulated along a straight
line marked as i, where i changes from 2 to N. In order to address the potential impact of ge-
ometric effects, a radial transformation is introduced, represented by the equation x1 =

r
R(z) .

Following the preceding steps, the aforementioned transformation is then implemented on
the equations denoted as (7.35) -(7.46).

For core region (0 < x1 ≤ 0.75),
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, (7.54)

dvpi
dt

=
(wi − vpi)

G
. (7.55)
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For plasma region (0.75 < x1 ≤ 1),
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dvpi
dt

=
(wi − vpi)

G
. (7.58)
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Furthermore, the initial conditions for ODEs mention from (7.54)-(7.59) is written in
discrete form as:

wi(0) = 0, vpi = 0, Ti(0) = 0. (7.60)

Boundary Conditions:

The three-point forward finite difference formula for function f at i = 1(x = 0) is given
as:

∂ f
∂x

=
− f (3)+4 f (2)−3 f (1)

2h
. (7.61)
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Use equation (7.45) and (7.61) to write the function w,T and φ at i = 1 as given below:

w1 =
4w2 −w3

3
, vp1 =

4vp2 − vp3
3

, T1 =
4T2 −T3

3
. (7.62)

At i = N +1,
wN+1 = 0, vpN+1 = 0, TN+1 = 0. (7.63)

The ensuing set of ODEs constitutes initial value problems (IVPs). To tackle the given
system of ODEs, we have utilised the built-in MATLAB function ’ode15s.’ This numeri-
cal solver is well-known for implementing a semi-implicit methodology, which is widely
recognised as the ’stiff’ ODE solver technique. The thermophysical characteristics of blood
and nanoparticles are depicted in Figure 7.4.

Figure 7.4: Thermophysical properties of blood and nanoparticle

The numerical values of various emerging parameters are presented in table 7.2 and 7.3.
The thermo-physical properties of nanofluid is displayed in table 6.4.

7.4 Results and Graphical Analysis

In this segment, we extensively examined the dynamics of blood flow phenomena by ana-
lyzing graphical representations and the physical implications of various emerging parame-
ters. This research serves as a crucial stride toward comprehending intricate physiological
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processes. Specifically, our investigation centers on the two-phase blood flow within over-
lapping stenosed arteries. To simulate the blood flow in the core region, we employed the
power law fluid model, while the non-Newtonian nature of blood was accounted for in the
plasma region. The numerical code was simulated using the Method of Lines (MOL).

Parameters Ranges Sources

Rp 0.005-0.9 [180, 193]

G 0.02-0.9 [193]

Nr 0-5 [194]

Ratio of density in core and plasma region (ρ0) 1.05 [4, 5]

Ratio of viscosity in core and plasma region (µ0) 1.2 [3, 4]

Magnetic field parameter (M) 0-
√

5 [40, 121]

Weissenberg number (We) 1.5-3.5 [18]

Table 7.2: Values of the physical parameters with their sources

Parameters φ1 B1 Gr βe βi n Da−1 Re Ec κ0

Ranges 0.02 1.4 2 0.5 0.7 0.7 0.2 5 0.5 0.5

Table 7.3: Default value of emerging parameters

7.4.1 Validation

The validation of our research is supported by a study conducted by Tripathi et al. [176] on
two-phase magnetohydrodynamic (MHD) blood flow through a stenosed artery. Through
appropriate assumptions, we have corroborated the velocity and temperature profiles of our
current research by comparing them with the findings of Tripathi et al. [176], as depicted
in figures 7.5a and 7.5b. It is worth noting that Tripathi et al. [176] utilized an analytical
methodology to obtain exact solutions for the dimensionless governing equations in their
study. In contrast, our research employed the Method of Lines (MOL) approach. The re-
sulting graphical representations exhibit a significant agreement between our study and the
prior research, confirming the consistency of our velocity and temperature profiles with the
established literature.
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Figure 7.5: Validation for velocity and temperature profile for Gr = 2 and Nr = 9

7.4.2 Velocity Profile

Figures 7.6 and 7.7 depict the velocity profile for nanofluid (Fe3O4-Blood) and nanoparti-
cle flowing though the stenosed artery. Figures 7.6a and 7.7a depict the velocity profile by
varying Particle mass parameter G on both the nanofluid and nanoparticles velocity. The ve-
locity profile in nanofluid is relatively more as compared to nanoparticle velocity in which
both profile show the declining nature with increasing G. In targeting drug delivery both
the nanoparticle and nanofluid influenced by the interaction of magnetic and viscous forces.
The nanofluid (fluid with nanoparticles) will have a higher velocity compared to individual
nanoparticles within it. This is because the nanoparticle experiences the drag force due to
viscous resistance of the fluid while the fluid is less affected by this drag force and move
freely. As Particle mass parameter G increases, it signifies the drag force experienced by the
nanoparticle become more significant and they are less able to accelerate through influence
of magnetic field resulting in the decline of nanoparticle velocity. The nanofluid velocity
decreases as G increases due to the enhancement in the fluid viscosity which hinder the flow
of the fluid more significantly due to their size and mass. Figures 7.6b and 7.7b depict the
variation of Weissenberg number We on both the nanofluid and nanoparticles velocity. Both
figures illustrate the variation in the velocity profile as a function of the Weissenberg number
in the context of two-phase blood flow. The Weissenberg number, a dimensionless parame-
ter representing the relationship between a material’s relaxation time and deformation time
scale, governs the material’s behavior.
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Figure 7.6: Blood flow velocity (a) Particle mass parameter G, (b) Weisenberg number
We, (c) Ion parameter (d) Particle concentration parameter Rp

The provided figure demonstrates that, for a fixed value of n = 1.5, the velocity profile
exhibits a distinct trend of decreasing magnitude with the increasing Weissenberg number
(We). This trend implies a strong positive correlation between heightened resistance to de-
formation and an elevated Weissenberg number. In the domain of shear-thickening fluids
characterized by a power-law index of n = 1.5 it has been observed that as the applied shear
stress or strain rate increases, the fluid’s resistance to flow becomes more pronounced. Con-
versely, in the case of a shear-thinning fluid exhibiting power-law behavior with an exponent
of n = 0.7, an inclination towards higher velocity values is discernible as the Weissenberg
number is augmented. This phenomenon can be attributed to the unique properties of shear-
thinning fluids, which display reduced resistance to deformation. Consequently, this behav-
ior facilitates enhanced fluid flow under conditions of escalated stress or strain rates.
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Figure 7.7: Nanoparticle velocity for (a) Particle mass parameter G, (b) Weisenberg
number We, (c) Ion parameter (d) Particle concentration parameter Rp

Figures 7.6c and 7.7c illustrate the effect of Hall parameter βe and inverse Darcy number
Da−1 on the nanofluid and nanoparticle velocity, respectively. The velocity profile in both
the cases increases as βi increases from 0 to 1, while reverse trend is observed for Da−1. The
enhancement in the magnitude of βe signifies the stonger electromagnetic force which assists
the fluid motion, thus overpowering the viscous drag forces. The stronger electromotive
forces on both the nanoparticle and surrounding fluid leads to enhancement in the fluid
velocity. Thus, the combined effect of individual nanoparticle acceleration and the enhanced
fluidic behavior results in a higher nanofluid velocity compared to the velocity of individual
nanoparticles within the fluid. In both the figure , the velocity profile declines as Da−1

increases from 0 to 5. This has happened due the dominant effect of viscous forces over the
inertial forces leading to a decline in the velocity profile.
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Figures 7.6d and 7.7d illustrate the influence of particle concentration parameter Rp on
the velocity profile of nanofluid and nanoparicles. In both the figure the velocity shows
the declining nature as Rp increases from 0 to 1. The enhancement in Rp results in the
overall increase in the viscosity of fluid. Thus, reducing the nanofluid velocity and the
resulting drag force on the nanoparticle enhances that lead in decrement of the nanoparticle
velocity profile. While individual nanoparticles experience reduced velocities, the nanofluid
can maintain a relatively higher overall velocity due to its collective fluidic behavior. This
contrast in velocities is a result of the complex interplay between interparticle interactions,
fluid viscosity, and the behavior of particles in the magnetic drug targeting process.

7.4.3 Temperature Profile

Figure 7.8 depicts the temperature profile for the two phase blood flow thorugh stensoed
artery by varying the Prandtl number Pr , magnetic field parameter M, Hall parameter βe

and radiation parameter Nr. The temperature profile, illustrated in Figure 7.8a, demon-
strates a noticeable decline as the Prandtl number (Pr) increases within the range of 19
to 27. A higher Prandtl number, Pr, implies lower thermal conductivity within the fluid
when compared to smaller Prandtl numbers. Smaller Prandtl numbers facilitate more ef-
ficient heat conduction, yielding steeper temperature gradients and, consequently, elevated
temperature profiles. In contrast, higher Prandtl numbers correspond to decreased thermal
conductivity, leading to less effective heat propagation and lower temperature gradients and,
consequently, reduced temperature profiles. Figure 7.8b demonstrate the declining nature of
the temperature profile with increase in the magnetic field parameter M. This has happened
due to the enhancement in the thermal conductivity of the fluid that facilitate the conduction
of heat away from the stenosed region leading to the decrement in the temperature profile.
In the MDT , the targeted nanoparticle is guided by the external magnetic field which lead
to providing medicine to particular targeted region. This could be beneficial for the medica-
tion of the temperature sensitive drug as lower temperature could enhance the stability and
efficacy of drug on arrival at the particular site. Figure 7.8c potrayed the temperature profile
for varying Hall parameter βe. The Hall effect arises due to the interaction of the magnetic
field and the motion of the charged particle. The enhancement in the Hall parameter leads
to the transfer of the energy from the higher to cooler region. Additionally, the enhanced
heat conduction facilitated from the enhancement of the Hall parameter lead to decline in
the temperature profile. Also, it has been obeserved that the temperature profile decreases
as the magntiude of Reynold number Re increases from 2 to 5. Figure 7.8d illustrates the
enhancement in the temperature profile with both the radiation parameter Nr and Eckert
number Ec. This has happened due to the generation of additional thermal energy as Nr
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increases from 0 to 5. This ionized radiation can be beneficial in MDT by temporarly alter-
ing the permeability of the arterial wall making it easier for the drug-loaded nanoparticles
to penetrate the stenosed artery.
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Figure 7.8: Temperature profile for (a) Prandtl number Pr, (b) Magnetic field parameter
M, (c) Hall parameter βe (d) Radiation parameter Nr

As the Ec increases from 0.5 to 3, this leads to the enahncemetn of the temperature
profile as the kinetic energy get converted into thermal energy due to viscous dissipation.

7.4.4 Nusselt Profile

Figure 7.9 demonstrates the Nusselt profile, varying the magnetic field parameter M and
radiation parameter Nr. Analyzing Figure 7.9a, it is evident that the Nux profile diminishes
with an increase in the magnetic field strength from 0 to 2. This decline is attributed to the



7.4. Results and Graphical Analysis 205

emergence of Lorentz forces, impeding fluid motion near the surface. Consequently, this
resistance diminishes convective heat transfer, leading to a reduction in the Nusselt profile.
Conversely, Figure 7.9b indicates a rising trend in the Nux profile as Nr escalates from 0
to 2. A higher radiation parameter signifies the prevalence of radiative heat transfer over
convective heat transfer.
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Figure 7.9: Nusselt profile

Radiative heat transfer aids in redistributing heat within the fluid. Areas with elevated
temperatures, such as stenosis, lose heat through radiation, while cooler regions absorb en-
ergy from radiation. This redistribution results in a more uniform temperature distribution,
enhancing both heat transfer and the Nusselt profile. In the realm of medical diagnostics,
professionals can discern conditions related to blood flow, inflammation, and skin tempera-
ture disorders by analyzing radiation patterns dependent on temperature distribution. Vari-
ous heat transfer mechanisms, including radiation, influence these temperature profiles.

7.4.5 Flow Rate and Impedance

The circulatory system, a marvel bioengineering example which ensures the delivery of oxy-
gen and nutrients to tissue and organ throughout the human body. A critical determinability
of its proper functioning is flow rate and impedance that influence the vascular health and
play a crucial role in understanding and managing the circulatory diseases. Figure 7.10a
illustrates the influence of magnetic field parameter M on the flow rate profile. From the
figure, we can observed that the flow rate profile decreases for M and near the stenotic zone.
This behaviour is occured as a result of reistance offered by the Lorentz force.
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Figure 7.10: Flow rate profile for (a) Magnetic field parameter M, (b) Ion parameter
βi, (c) Hall parameter βe (d) Weissenberg number We Impedance profile for (e)
Magnetic field parameter M, (f) Hall parameter βe
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This additional force opposes the flow of blood, making it the lower movement of blood
to pass through the stenosed artery. The magnetic field hinders the movement of blood
creating a localized effect which is beneficial for the targeted drug delivery. Figure 7.10b
shows the influence of βi and Re on the flow rate profile. The flow rate profile falls down
from 0.15 to 0.09 in the absence of ion effect βi = 0 for increasing Re from 2 to 5. It
can be inferred from the figure that flow rate profile increases as the value of βi increases
from 0 to 0.08. This leads to increasing ion effect which makes the higher conductivity
of the fluid. The response to applied magnetic field becomes stronger as the concentration
of ions (carriers) increases in the solution. Thus, this leads to further increase in the flow
rate in the stenosed artery. Similarly, we can observed the enhancement in the flow rate
profile for Hall parameter βe. The magnetic force extered on the fluid become stronger in
comparison with viscous forces as the Hall parameter increases from 0 to 1. This increase
in the fluid velocity leads to enhancement of the flow rate. Figure 7.10d shows the time
series graph of flow rate profile for Weisenber number We. In this case, we have consider
shear thickening fluid n = 1.5 and plot the time series graph of flow rate profile, clearly, it
can be seen that the flow rate profile decreases as We varies from 1.5 to 3.5. The elastic
stress becomes predominant for higher value of Weissenberg number We > 1. The shear-
thicknenig fluid tend to resist deformation under stress due to their increased viscosity with
higher shear rates. The resistance occurs due the deformation results in a decrease in the
flow rate profile. Figure 7.10e demonstrate the declining nature for the increasing strength
of the magnetic field. As discussed in the figure 7.10a, the resistive force comes into the
picture and resist the fluid motion which leads to the enhancement in the Impedance profile.
Figure 7.10f depict the declining nature in the impedance profile for enhancing value of
Hall parameter βe. The dominance of the magnetic forces over the viscous forces leads to
enhancement in the fluid velocity depicting the reverse trend on the Impedance profile. In
magnetic drug targeting, an increases in the Hall parameter llow for more precise control
over the movement of the magnetic particles carrying therapeutic agents.

7.4.6 Wall Shear Stress (WSS)

This improved control can be helpful in guiding the particle to be targeted more efficiently
at the targeted sites such as stenosis, thrombosis and cancerous cells. WSS is one of the
influential parameter to be study in the stenosed artery due to its impact on the vascular
health, tissue remodeling and progression of arterial diseases . It is defined as the frictional
force per unit area exerted on the flowing blood on the endothelial lining of the blood vessel.
Figure 7.11a illustrates the WSS profile for the variation of magnetic field parameter and
Grashof number Gr.
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Figure 7.11: WSS profile for (a) Grashof number Gr, (b) Inverse Darcy number
Da−1, (c) Weissenberg number We (d) Ion parameter βi

Enhancement in the value of Gr leads to the dominance of buoyancy forces over viscous
forces. This lead to the increase in the velocity of fluid near the arterial wall and enhanced
the WSS profile. While, it can be observed from the figure that the WSS profile shows
the declining nature with enhancement in the value of magnetic field parameter M. The
dominance of the magnetic field results in the reduction of the velocity gradient and shear
within the fluid. As a result WSS profile decreases with increasing M. Figure 7.11b depict
the variation in the time series graph of WSS profile with the inverse Darcy number Da−1.
The enhancement in the value of Da−1 represent the dominance of the viscous forces relative
to the inertial forces. This lead to decrement in the velocity of fluid near the wall and
decrease in WSS profile. Figure 7.11c shows the declining nature of the time series graph
of WSS profile for increasing Weissenberg number. For n = 1.5, the fluid shows the shear
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thinning nature where viscosity decreases with increase in the magnitude of We from 1.5 to
3.5. This results in the enhancement of the fluid velocity and WSS profile. Figure 7.11d
depicts the wall shear stress (WSS) profile concerning the ion parameter βi in relation to
stenotic depth. The graph clearly illustrates that the WSS profile exhibits a declining trend
as the stenotic depth values increase from 0 to 0.03. In the absence of stenosis, the WSS
profile reaches its peak, registering values of 0.848, 0.838, and 0.827 for βi values of 0, 0.5,
and 1, respectively. Furthermore, the WSS profile displays an increasing pattern with higher
values of βi. This phenomenon arises due to the induced velocity gradient within the fluid,
a consequence of the presence of a magnetic field. The velocity gradient becomes more
pronounced with higher ion parameter values, a characteristic that is reflected in the WSS
profile.

7.4.7 Contour

Velocity contour are the valuable tools in fluid dynamics that visually represent the distribu-
tion of velocity field within the given domain. In our case, it demonstrates the magnitude and
direction of the fluid velocity around the stenosed artery. Moreover, the contour provides the
valuable insights like recirculation zones and areas of low velcoity, highlighting the region
prone to thrombus formation and artherosclerotic plaque formation. Figures7.12a-7.12c il-
lustrate the velocity contour for variation in the magnetic field parameter M. The figure
illustrates the decrement in the velocity pattern. Figure 7.12a eludicate the velocity field in
the stenosed artery for M = 0 (absence of magnetic field). The maximum velocity attain
by the fluid is 0.18 in the central part of the artery with no-slip boundary condition at the
arterial walls. Although the maximum velocity attain by the fluid is same that is 0.14 in both
the figure 7.12b and 7.12c but the central region occupied by the maximum velocity vary in
both the case.

The reduction of the velocity field is due to the Lorentz force which comes into picture
due to the interaction of the magnetic and electric field. This resistive force retard the fluid
motion as depicted in the velocity contours. Figures 7.12d- 7.12f depict the nanoparticle
velocity contour for particle concentration parameter Rp. Figure 7.12d shows the velocity
field in the absence of particle concentration parameter Rp. Clearly, it can be observed from
the figures 7.12d- 7.12f that the velocity decreases with increase in Rp from 0 to 1. If we
compare all these three figures, we can intercept that the region occupied by the maximum
nanoparticle velocity reduces from 7.12d to 7.12e, while it further reduces to 0.7 for Rp = 1
as depicted in the figure 7.12f. Researchers aim to optimize the particle concentration to
achieve the balance between the effective drug delivery and maintaining an acceptable flow
velocity.
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Figure 7.12: Nanofluid velocity contour for (a) Magnetic field parameter M , Nanopar-
ticle velocity contour for (b)Particle concentration parameter Rp, (c) volumetric concen-
tration of nanoparticle φ1.

Too high a particle concnetration might impede the fluid flow excessively, while too
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low a concentration might result in inadequate drug targeting efficiency. The nanoparticle
velocity contour are depicted in the figures 7.12g-7.12i. Figure 7.12g shows the nanoparticle
velocity contour in the absence of nanoparticle (Pure blood case). The maximum velocity
is 0.08 which occupied the central region of the stenosed artery. This region is further
decreased while the maximum velocity remain the same. In both the cases a trapped bolus
formed in the central part of the stenosed artery. From the figure 7.12i , it can be inferred that
the maximum velocity reduces to 0.07 and the trapped bolus in the central part also disapper
for φ1 = 0.03. This demonstrate that the enhancement in the nanoparticle concentration
reducers the nanoparticle velocity.

7.4.8 Conclusion

This study delves into the hemodynamic flow characteristics involving the suspension of
magnetite (Fe2O3) nanoparticles within blood flowing through stenosed arteries. The re-
search employs a two-phase blood flow model, considering the core region’s fluid nature
using the Ostwald-DeWaele power-law fluid model and the peripheral layer of plasma as
Newtonian. Specifically, the study focuses on the (Fe2O3-Blood) nanofluid, with direct ap-
plications in magnetic drug targeting. Important key findings emerge from this investigation:

• The velocities of both nanoparticles and the nanofluid decrease as the particle mass
parameter G increases.

• Temperature profiles exhibit enhancement with rising radiation parameter Nr, while
showcasing an inverse trend with the Prandtl number Pr.

• Wall shear stress (WSS) profiles decline with increasing stenotic depth but exhibit the
opposite trend with the ion parameter βi.

• The time series graph of flow rate profiles illustrates a declining trend for the Weis-
senberg parameter We concerning shear thickening fluid.

• Impedance profiles increase with a rise in the magnetic field parameter M due to the
generation of the resistive Lorentz force.

These insights are not only valuable for understanding the fundamental dynamics of
nanofluid flow in stenosed arteries but also hold significant promise in the biomedical field.
The findings suggest practical applications, particularly in the realm of magnetic drug tar-
geting delivery. By harnessing magnetite nanoparticles, this research paves the way for
innovative approaches to targeted drug delivery, potentially revolutionizing treatments in
the biomedical arena.
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Chapter 8

Conclusions and Future work

This chapter discusses the primary findings of the thesis in the conclusion section and ex-
plores potential avenues for future research in the future work section.

8.1 Conclusions

The main motivation of this work is to explore the hemodynamic flow and its interaction
with different physical phenomena through the stenosed artery. We have considered the dif-
ferent types of arterial geometry, the Newtonian and non-Newtonian fluid properties, the
effect of nanoparticle shape and size and different types of pathological conditions like
stenosis, thrombosis and aneurysm. Chapter 1 briefly explained the bio-fluid mechanics,
pathological conditions, physical parameters and the numerical methodology. In Chapter 2,
the study focuses on the flow of MHD hybrid nanofluid (Au-GO/blood) through a curved
artery. The mathematical model is presented in the curvilinear coordinate system, consider-
ing the effects of Hall and ion slip, Joule heating, thermal radiation, and a viscosity model
dependent on hematocrit. The results illustrate that the hybrid nanoparticles Au-GO exhibit
a higher temperature profile compared to pure and individual nanoparticles. This increase is
due to the heightened thermal conductivity with a rise in nanoparticle concentration. Chap-
ter 3 delves into entropy generation optimisation in electroosmotic MHD fluid flow through
a curved artery. The research explores blood flow containing suspended Al2O3 nanoparticles
in irregular stenosis with thrombosis on catheter walls. The study investigates the impact
of nanoparticle shape and size using the Crocine model. It is observed that the temperature
profile rises with an increase in the nanoparticle shape parameter, attributed to the enhanced
thermal conductivity. Moreover, as nanoparticle size increases, the velocity profile also rises
due to the increase in surface area ratio. Consequently, fluid flow reduction occurs with a
decrease in nanoparticle size due to the enhanced fluid velocity.
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The human circulatory system is incredibly complex, comprising arteries that are not
just straight or curved but also frequently bifurcated, meaning they split into two smaller
branches. The stenosis and aneurysm usually occur at the bifurcation site; thus, understand-
ing the flow dynamics in these bifurcations is critical for diagnosing and treating vascular
diseases. Motivated by an issue regarding these physiological conditions, in chapter 4, we
have discussed the hybrid nanofluid (Al2O3-Cu/Blood) flow through the bifurcated artery
containing the gyrotactic microorganisms. In both sections of the bifurcated artery (Parent
and daughter artery), mild stenosis is considered where the overlapping stenosis at the par-
ent artery and irregular stenosis on the daughter artery. The effect of electroosmotic force,
heat source, magnetic field and chemical reaction are studied on the blood flow through
the bifurcated artery. It has been discovered that for change in the bifurcation angle, the
impedance profile depicts no change in the parent artery but shows changes in the daughter
artery as the bifurcated angle caused the fluid to change its behaviour and led the decreas-
ing profile for an increasing bifurcation angle. The rise in the bioconvective Peclet number
results in an increase in the speed of motile microorganisms, which decreases the density
of microorganisms. In Chapter 5, the study delves deeper into entropy generation within
bifurcated arteries during blood flow. The Casson fluid model depicts blood behaviour, con-
sidering pathological conditions like aneurysms and overlapping stenosis in both parent and
daughter arteries. The research explores ternary hybrid nanoparticles (Au-CuO-GO), of-
fering superior stability and prolonged circulation in the bloodstream. Notably, the ternary
hybrid nanofluid (Au-CuO-GO) exhibits a higher velocity profile compared to the hybrid
nanofluid (Au-CuO). This chapter also states that the entropy generation profile increases as
the magnitude of Brinkmann number Br increases.

We have utilised a two-phase blood model outlined in Chapter 6 to depict the inher-
ent characteristics of blood accurately. According to Haynes’ theory, this model illustrates
the tendency of red blood cells (RBCs) to concentrate at the centre of the vessel, leaving
plasma, devoid of RBCs, to accumulate at the vessel’s periphery. Our investigation focuses
on the dynamics of two-phase nanofluid flow in the blood through a stenosed artery. This
model incorporates a Power-law fluid characterisation for the core region and a Newtonian
fluid description for the plasma region. Moreover, our analysis includes the integration of
thermophoresis, Brownian motion, and activation energy into the flow analysis. The study
emphasises explicitly the potential of suspended Al2O3 nanoparticles in the blood due to
their biocompatible and chemically stable nature. The governing equations, derived under
the assumption of mild stenosis, have been solved using the Method of Lines approach, a
precise and adaptable numerical methodology known for its efficacy in addressing complex
partial differential equations. Our findings indicate that introducing Al2O3 nanoparticles
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into the blood enhances fluid velocity. Additionally, our investigation reveals a significant
reduction in the concentration profile concerning the Thermophoresis parameter, while a
reverse effect is observed for the Brownian motion parameter.

In Chapter 7, we investigated the effectiveness of targeted drug delivery mechanisms in
unsteady blood flow by introducing the infusion of Fe3O4 magnetic nanoparticles within
a stenosed artery. Conventional systemic drug delivery methods often lack efficiency in
such situations due to limited drug targeting and high systemic toxicity. Magnetic drug
targeting, however, offers an improved treatment approach without compromising healthy
tissues. Motivated by the potential of targeted drug delivery, our study focused on incor-
porating Fe3O4 magnetic nanoparticles within a stenosed artery to explore their impact on
unsteady blood flow. The study employed a two-phase mathematical model, incorporating
a power law fluid model in the core region and a Newtonian model in plasma regions. Our
findings revealed that an increase in the particle mass parameter (G) led to a reduction in
both nanoparticle and nanofluid velocities. Moreover, a comprehensive time series analysis
of flow rate profiles demonstrated a decreasing trend in the Weissenberg parameter (We),
particularly in the context of shear-thickening fluid. This research significantly enhances
our understanding of magnetic drug targeting, contributing valuable insights to biomedical
fluid dynamics. These findings have substantial implications for developing targeted drug
delivery systems and their potential applications in healthcare.

8.2 Future Scope

The mathematical model examined in this study focused on the different types of geom-
etry for both stenosis and artery. The blood is represented by both Newtonian and non-
Newtonian fluid model. In the clinical point of view, the following aspects of research work
could be explore in the future course:

• Exploring the analysis of solute dispersion in two-phase blood flow through curved
arteries.

• Investigating the fluid-structure interaction of non-Newtonian Power law fluids in bi-
furcated channels with stenosis and elastic walls.

• Extending the research presented in Chapter 6 to include magnetic drug-targeted blood
flow in curved artery. This extension involves incorporating variable viscosity in both
the core and plasma regions.

• Investigate nanofluid blood flow in stenosed bifurcated arteries and curved arteries
with compliant walls using the vorticity-stream function approach.
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• Examining the impact of drug carrier characteristics such as shape, size, porosity,
and blood rheology on magnetic nanoparticle-based drug delivery within curved and
bifurcated arteries.



217

Bibliography

[1] B. K. Sharma, U. Khanduri, N. K. Mishra, and A. J. Chamkha, “Analysis of ar-
rhenius activation energy on magnetohydrodynamic gyrotactic microorganism flow
through porous medium over an inclined stretching sheet with thermophoresis and
brownian motion,” Proceedings of the Institution of Mechanical Engineers, Part E:

Journal of Process Mechanical Engineering, p. 09 544 089 221 128 768, 2022.

[2] A. Ahmed and S. Nadeem, “Effects of magnetohydrodynamics and hybrid nanopar-
ticles on a micropolar fluid with 6-types of stenosis,” Results in physics, vol. 7,
pp. 4130–4139, 2017.

[3] M. Sharan and A. S. Popel, “A two-phase model for flow of blood in narrow tubes
with increased effective viscosity near the wall,” Biorheology, vol. 38, no. 5-6,
pp. 415–428, 2001.

[4] A. Medvedev and V. Fomin, “Two-phase blood-flow model in large and small ves-
sels,” in Doklady Physics, SP MAIK Nauka/Interperiodica, vol. 56, 2011, pp. 610–
613.

[5] B. Tripathi and B. K. Sharma, “Influence of heat and mass transfer on two-phase
blood flow with joule heating and variable viscosity in the presence of variable
magnetic field,” International Journal of Computational Methods, vol. 17, no. 03,
p. 1 850 139, 2020.

[6] A. Dubey, B Vasu, O Anwar Bég, R. S. Gorla, and A. Kadir, “Computational fluid
dynamic simulation of two-fluid non-newtonian nanohemodynamics through a dis-
eased artery with a stenosis and aneurysm,” Computer Methods in Biomechanics

and Biomedical Engineering, vol. 23, no. 8, pp. 345–371, 2020.

[7] B. Tripathi, B. K. Sharma, and M. Sharma, “Modeling and analysis of MHD two-
phase blood flow through a stenosed artery having temperature-dependent viscos-
ity,” The European Physical Journal Plus, vol. 134, no. 9, p. 466, 2019.



218 Bibliography

[8] B. D. Sharma and P. K. Yadav, “A two-layer mathematical model of blood flow in
porous constricted blood vessels,” Transport in Porous Media, vol. 120, pp. 239–
254, 2017.

[9] K. S. Mekheimer and M. El Kot, “Suspension model for blood flow through catheter-
ized curved artery with time-variant overlapping stenosis,” Engineering Science and

Technology, an International Journal, vol. 18, no. 3, pp. 452–462, 2015.

[10] N. Saleem, S. Munawar, and D. Tripathi, “Thermal analysis of double diffusive elec-
trokinetic thermally radiated tio2-ag/blood stream triggered by synthetic cilia under
buoyancy forces and activation energy,” Physica Scripta, vol. 96, no. 9, p. 095 218,
2021.

[11] R Ponalagusamy and S Priyadharshini, “Numerical investigation on two-fluid model
(micropolar-newtonian) for pulsatile flow of blood in a tapered arterial stenosis with
radially variable magnetic field and core fluid viscosity,” Computational and Applied

Mathematics, vol. 37, no. 1, pp. 719–743, 2018.

[12] C. Kumawat, B. Sharma, and K. Mekheimer, “Mathematical analysis of two-phase
blood flow through a stenosed curved artery with hematocrit and temperature de-
pendent viscosity,” Physica Scripta, vol. 96, no. 12, p. 125 277, 2021.

[13] I. Shahzadi, S. Suleman, S. Saleem, and S. Nadeem, “Utilization of cu-nanoparticles
as medication agent to reduce atherosclerotic lesions of a bifurcated artery hav-
ing compliant walls,” Computer methods and programs in biomedicine, vol. 184,
p. 105 123, 2020.

[14] P. Jalili, A. Sadeghi Ghahare, B. Jalili, and D. Domiri Ganji, “Analytical and numer-
ical investigation of thermal distribution for hybrid nanofluid through an oblique
artery with mild stenosis,” SN Applied Sciences, vol. 5, no. 4, p. 95, 2023.

[15] N. Saleem and S. Munawar, “Significance of synthetic cilia and arrhenius energy
on double diffusive stream of radiated hybrid nanofluid in microfluidic pump under
ohmic heating: An entropic analysis,” Coatings, vol. 11, no. 11, p. 1292, 2021.

[16] B. Sharma, U. Khanduri, N. K. Mishra, and K. S. Mekheimer, “Combined effect
of thermophoresis and brownian motion on mhd mixed convective flow over an in-
clined stretching surface with radiation and chemical reaction,” International Jour-

nal of Modern Physics B, vol. 37, no. 10, p. 2 350 095, 2023.

[17] B. Tripathi and B. K. Sharma, “Two-phase analysis of blood flow through a stenosed
artery with the effects of chemical reaction and radiation,” Ricerche di Matematica,
pp. 1–27, 2021.



Bibliography 219

[18] J. Tripathi, B Vasu, O. A. Bég, B. R. Mounika, and R. S. R. Gorla, “Numerical
simulation of the transport of nanoparticles as drug carriers in hydromagnetic blood
flow through a diseased artery with vessel wall permeability and rheological effects,”
Microvascular research, vol. 139, p. 104 241, 2022.

[19] M. J. Sarnak and A. S. Levey, “Cardiovascular disease and chronic renal disease:
A new paradigm,” American journal of kidney diseases, vol. 35, no. 4, S117–S131,
2000.

[20] P. Walsh and C. McLachlan, “Stenosis and thrombosis,” Wiley Encyclopedia of

Biomedical Engineering, 2006.

[21] J. Strony, A. Beaudoin, D. Brands, and B. Adelman, “Analysis of shear stress and
hemodynamic factors in a model of coronary artery stenosis and thrombosis,” Ameri-

can Journal of Physiology-Heart and Circulatory Physiology, vol. 265, no. 5, H1787–
H1796, 1993.

[22] A. Tanveer, T. Hayat, and A. Alsaedi, “Peristaltic flow of MHD jeffery nanofluid in
curved channel with convective boundary conditions: A numerical study,” Neural

Computing and Applications, vol. 30, no. 2, pp. 437–446, 2018.

[23] A. Ahmed and S. Nadeem, “Shape effect of Cu-nanoparticles in unsteady flow
through curved artery with catheterized stenosis,” Results in physics, vol. 7, pp. 677–
689, 2017.

[24] I. Shahzadi and N Kousar, “Hybrid mediated blood flow investigation for atheroscle-
rotic bifurcated lesions with slip, convective and compliant wall impacts,” Computer

Methods and Programs in Biomedicine, vol. 179, p. 104 980, 2019.

[25] S. Changdar and S. De, “Analytical investigation of nanoparticle as a drug carrier
suspended in a MHD blood flowing through an irregular shape stenosed artery,”
Iranian Journal of Science and Technology, Transactions A: Science, vol. 43, no. 3,
pp. 1259–1272, 2019.

[26] W. Alghamdi, A. Alsubie, P. Kumam, A. Saeed, and T. Gul, “MHD hybrid nanofluid
flow comprising the medication through a blood artery,” Scientific Reports, vol. 11,
no. 1, pp. 1–13, 2021.

[27] B. Sharma, C. Kumawat, and O. Makinde, “Hemodynamical analysis of MHD two
phase blood flow through a curved permeable artery having variable viscosity with
heat and mass transfer,” Biomechanics and Modeling in Mechanobiology, pp. 1–29,
2022.



220 Bibliography

[28] C. Kumawat, B. Sharma, Q. M. Al-Mdallal, and M. Rahimi-Gorji, “Entropy gen-
eration for MHD two phase blood flow through a curved permeable artery having
variable viscosity with heat and mass transfer,” International Communications in

Heat and Mass Transfer, vol. 133, p. 105 954, 2022.

[29] K. S. Mekheimer, I. Shahzadi, S Nadeem, A. Moawad, and A. Zaher, “Reactivity
of bifurcation angle and electroosmosis flow for hemodynamic flow through aortic
bifurcation and stenotic wall with heat transfer,” Physica Scripta, vol. 96, no. 1,
p. 015 216, 2020.

[30] S. I. Abdelsalam, K. S. Mekheimer, and A. Zaher, “Alterations in blood stream by
electroosmotic forces of hybrid nanofluid through diseased artery: Aneurysmal/stenosed
segment,” Chinese Journal of Physics, vol. 67, pp. 314–329, 2020.

[31] S. Akhtar, L. B. McCash, S. Nadeem, S. Saleem, and A. Issakhov, “Mechanics of
non-newtonian blood flow in an artery having multiple stenosis and electroosmotic
effects,” Science Progress, vol. 104, no. 3, p. 00 368 504 211 031 693, 2021.

[32] J. Akram, N. S. Akbar, and D. Tripathi, “Analysis of electroosmotic flow of silver-
water nanofluid regulated by peristalsis using two different approaches for nanofluid,”
Journal of Computational Science, vol. 62, p. 101 696, 2022.

[33] U. Khanduri, B. K. Sharma, M. Sharma, N. K. Mishra, and N. Saleem, “Sensitiv-
ity analysis of electroosmotic magnetohydrodynamics fluid flow through the curved
stenosis artery with thrombosis by response surface optimization,” Alexandria En-

gineering Journal, vol. 75, pp. 1–27, 2023.

[34] R. Manchi and R Ponalagusamy, “Pulsatile flow of emhd micropolar hybrid nanofluid
in a porous bifurcated artery with an overlapping stenosis in the presence of body
acceleration and joule heating,” Brazilian Journal of Physics, vol. 52, no. 2, pp. 1–
25, 2022.

[35] A. Zaher, K. K. Ali, and K. S. Mekheimer, “Electroosmosis forces eof driven bound-
ary layer flow for a non-newtonian fluid with planktonic microorganism: Darcy
forchheimer model,” International Journal of Numerical Methods for Heat & Fluid

Flow, vol. 31, no. 8, pp. 2534–2559, 2021.

[36] S. Lee and S. U. Choi, “Application of metallic nanoparticle suspensions in ad-
vanced cooling systems,” Argonne National Lab.(ANL), Argonne, IL (United States),
Tech. Rep., 1996.



Bibliography 221

[37] N. S. Akbar and A. W. Butt, “Magnetic field effects for copper suspended nanofluid
venture through a composite stenosed arteries with permeable wall,” Journal of

Magnetism and magnetic materials, vol. 381, pp. 285–291, 2015.

[38] M. H. Shahzad, A. U. Awan, S. Akhtar, and S. Nadeem, “Entropy and stability anal-
ysis on blood flow with nanoparticles through a stenosed artery having permeable
walls,” Science Progress, vol. 105, no. 2, p. 00 368 504 221 096 000, 2022.

[39] R. Gandhi, B. Sharma, C. Kumawat, and O. A. Bég, “Modeling and analysis of
magnetic hybrid nanoparticle Au-Al2 O 3/blood based drug delivery through a bell-
shaped occluded artery with Joule heating, viscous dissipation and variable viscosity
effects,” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of

Process Mechanical Engineering, p. 09 544 089 221 080 273, 2022.

[40] B. Sharma, R. Gandhi, and M. M. Bhatti, “Entropy analysis of thermally radiating
MHD slip flow of hybrid nanoparticles Au-Al2O3/blood) through a tapered multi-
stenosed artery,” Chemical Physics Letters, p. 139 348, 2022.

[41] A. Bejan, “A study of entropy generation in fundamental convective heat transfer,”
1979.

[42] I. Aoki, “Entropy flow and entropy production in the human body in basal condi-
tions,” Journal of theoretical biology, vol. 141, no. 1, pp. 11–21, 1989.

[43] N. S. Akbar and A. W. Butt, “Entropy generation analysis in convective ferromag-
netic nano blood flow through a composite stenosed arteries with permeable wall,”
Communications in Theoretical Physics, vol. 67, no. 5, p. 554, 2017.

[44] R. Gandhi, B. K. Sharma, and O. D. Makinde, “Entropy analysis for mhd blood flow
of hybrid nanoparticles (au–al2o3/blood) of different shapes through an irregular
stenosed permeable walled artery under periodic body acceleration: Hemodynami-
cal applications,” ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift

für Angewandte Mathematik und Mechanik, e202100532, 2022.

[45] R. H. Haynes, “Physical basis of the dependence of blood viscosity on tube radius,”
American Journal of Physiology-Legacy Content, vol. 198, no. 6, pp. 1193–1200,
1960.

[46] R. Chebbi, “Dynamics of blood flow: Modeling of the fåhræus–lindqvist effect,”
Journal of biological physics, vol. 41, pp. 313–326, 2015.

[47] R. E. Wells, E. W. Merrill, et al., “Influence of flow properties of blood upon viscosity-
hematocrit relationships,” The Journal of clinical investigation, vol. 41, no. 8, pp. 1591–
1598, 1962.



222 Bibliography

[48] S. Sharma, U. Singh, and V. Katiyar, “Magnetic field effect on flow parameters of
blood along with magnetic particles in a cylindrical tube,” Journal of Magnetism

and Magnetic materials, vol. 377, pp. 395–401, 2015.

[49] J Doffin and F Chagneau, “Oscillating flow between a clot model and a stenosis,”
Journal of biomechanics, vol. 14, no. 3, pp. 143–148, 1981.

[50] J. Vanherweghem, “Thrombosis and stenosis of central venous access in hemodial-
ysis,” Nephrologie, vol. 15, no. 2, pp. 117–121, 1994.

[51] T. Elnaqeeb, K. S. Mekheimer, and F. Alghamdi, “Cu-blood flow model through
a catheterized mild stenotic artery with a thrombosis,” Mathematical Biosciences,
vol. 282, pp. 135–146, 2016.

[52] A. Ahmed and S. Nadeem, “Biomathematical study of time-dependent flow of a
Carreau nanofluid through inclined catheterized arteries with overlapping stenosis,”
Journal of Central South University, vol. 24, no. 11, pp. 2725–2744, 2017.

[53] M. M. Bhatti, A. Zeeshan, and R. Ellahi, “Heat transfer analysis on peristaltically in-
duced motion of particle-fluid suspension with variable viscosity: Clot blood model,”
Computer Methods and Programs in Biomedicine, vol. 137, pp. 115–124, 2016.

[54] A. Saleem, S. Akhtar, S. Nadeem, A. Issakhov, and M. Ghalambaz, “Blood flow
through a catheterized artery having a mild stenosis at the wall with a blood clot at
the centre,” Computer Modeling in Engineering & Sciences, vol. 125, no. 2, pp. 565–
577, 2020.

[55] S. Akhtar, L. McCash, S. Nadeem, and A. Saleem, “Scientific breakdown for physi-
ological blood flow inside a tube with multi-thrombosis,” Scientific reports, vol. 11,
no. 1, pp. 1–14, 2021.

[56] A. Saleem, S. Akhtar, S. Nadeem, and M. Ghalambaz, “Microphysical analysis for
peristaltic flow of swcnt and mwcnt carbon nanotubes inside a catheterised artery
having thrombus: Irreversibility effects with entropy,” Int J Exergy, vol. 34, pp. 301–
314, 2021.

[57] A. Zidan, L. McCash, S. Akhtar, A. Saleem, A. Issakhov, and S. Nadeem, “Entropy
generation for the blood flow in an artery with multiple stenosis having a catheter,”
Alexandria Engineering Journal, vol. 60, no. 6, pp. 5741–5748, 2021.

[58] A. Saleem, S. Akhtar, and S. Nadeem, “Bio-mathematical analysis of electro-osmotically
modulated hemodynamic blood flow inside a symmetric and nonsymmetric stenosed
artery with joule heating,” International Journal of Biomathematics, vol. 15, no. 02,
p. 2 150 071, 2022.



Bibliography 223

[59] I. Shahzadi and S Nadeem, “Stimulation of metallic nanoparticles under the im-
pact of radial magnetic field through eccentric cylinders: A useful application in
biomedicine,” Journal of Molecular Liquids, vol. 225, pp. 365–381, 2017.

[60] I. Shahzadi and S Nadeem, “A comparative study of cu nanoparticles under slip ef-
fects through oblique eccentric tubes, a biomedical solicitation examination,” Cana-

dian Journal of Physics, vol. 97, no. 1, pp. 63–81, 2019.

[61] I. Shahzadi and S Nadeem, “Analysis of ag/blood-mediated transport in curved
annulus with exclusive nature of convective boundary,” Physica Scripta, vol. 94,
no. 11, p. 115 011, 2019.

[62] K. G. Kumar, M. G. Reddy, A. Aldalbahi, M. Rahimi-Gorji, M. Rahaman, et al.,
“Application of different hybrid nanofluids in convective heat transport of carreau
fluid,” Chaos, Solitons & Fractals, vol. 141, p. 110 350, 2020.

[63] M. Imran, A Shaheen, E.-S. M. Sherif, M. Rahimi-Gorji, and A. H. Seikh, “Analysis
of peristaltic flow of jeffrey six constant nano fluid in a vertical non-uniform tube,”
Chinese Journal of Physics, vol. 66, pp. 60–73, 2020.

[64] D. F. Jamil et al., “Analysis of non-newtonian magnetic casson blood flow in an in-
clined stenosed artery using caputo-fabrizio fractional derivatives,” Computer Meth-

ods and Programs in Biomedicine, vol. 203, p. 106 044, 2021.

[65] M. Hassan, E. R. El-Zahar, S. U. Khan, M. Rahimi-Gorji, and A. Ahmad, “Boundary
layer flow pattern of heat and mass for homogenous shear thinning hybrid-nanofluid:
An experimental data base modeling,” Numerical Methods for Partial Differential

Equations, vol. 37, no. 2, pp. 1234–1249, 2021.

[66] T. Elnaqeeb, N. A. Shah, and K. S. Mekheimer, “Hemodynamic characteristics
of gold nanoparticle blood flow through a tapered stenosed vessel with variable
nanofluid viscosity,” BioNanoScience, vol. 9, no. 2, pp. 245–255, 2019.

[67] L. Sarwar and A. Hussain, “Flow characteristics of Au-blood nanofluid in stenotic
artery,” International Communications in Heat and Mass Transfer, vol. 127, p. 105 486,
2021.

[68] M. M. Bhatti and S. I. Abdelsalam, “Bio-inspired peristaltic propulsion of hybrid
nanofluid flow with tantalum (ta) and gold (au) nanoparticles under magnetic ef-
fects,” Waves in Random and Complex Media, pp. 1–26, 2021.

[69] M. Khazayinejad, M. Hafezi, and B. Dabir, “Peristaltic transport of biological graphene-
blood nanofluid considering inclined magnetic field and thermal radiation in a porous
media,” Powder Technology, vol. 384, pp. 452–465, 2021.



224 Bibliography

[70] I. Ocsoy et al., “DNA-guided metal-nanoparticle formation on graphene oxide sur-
face,” Advanced Materials, vol. 25, no. 16, pp. 2319–2325, 2013.

[71] J.-W. Kim, M. Kim, K. K. Lee, K. H. Chung, and C.-S. Lee, “Effects of graphene
oxide-gold nanoparticles nanocomposite on highly sensitive foot-and-mouth disease
virus detection,” Nanomaterials, vol. 10, no. 10, p. 1921, 2020.

[72] S. Kang et al., “Gold nanoparticle/graphene oxide hybrid sheets attached on mes-
enchymal stem cells for effective photothermal cancer therapy,” Chemistry of Mate-

rials, vol. 29, no. 8, pp. 3461–3476, 2017.

[73] K. S. Mekheimer and M. El Kot, “Influence of magnetic field and Hall currents on
blood flow through a stenotic artery,” Applied Mathematics and Mechanics, vol. 29,
no. 8, pp. 1093–1104, 2008.

[74] N. N. Anika, M. M. Hoque, S. I. Hossain, and M. M. Alam, “Thermal diffusion
effect on unsteady viscous MHD micropolar fluid flow through an infinite vertical
plate with Hall and ion-slip current,” Procedia Engineering, vol. 105, pp. 160–166,
2015.

[75] J. Misra and S. Ghosh, “Flow of a Casson fluid in a narrow tube with a side branch,”
International journal of engineering science, vol. 38, no. 18, pp. 2045–2077, 2000.

[76] M. Ramzan, H. Gul, J. D. Chung, S. Kadry, and Y.-M. Chu, “Significance of Hall
effect and ion slip in a three-dimensional bioconvective tangent hyperbolic nanofluid
flow subject to Arrhenius activation energy,” Scientific Reports, vol. 10, no. 1, pp. 1–
15, 2020.

[77] S Das, B Barman, R. Jana, and O. Makinde, “Hall and ion slip currents’ impact on
electromagnetic blood flow conveying hybrid nanoparticles through an endoscope
with peristaltic waves,” BioNanoScience, vol. 11, no. 3, pp. 770–792, 2021.

[78] G. K. Snyder, “Influence of temperature and hematocrit on blood viscosity,” Ameri-

can Journal of Physiology-Legacy Content, vol. 220, no. 6, pp. 1667–1672, 1971.

[79] G. Shit, M Roy, and A Sinha, “Mathematical modelling of blood flow through a
tapered overlapping stenosed artery with variable viscosity,” Applied Bionics and

Biomechanics, vol. 11, no. 4, pp. 185–195, 2014.

[80] B Tripathi and B. Sharma, “Effect of variable viscosity on MHD inclined arterial
blood flow with chemical reaction,” International Journal of Applied Mechanics

and Engineering, vol. 23, no. 3, 2018.



Bibliography 225

[81] J. Akram, N. S. Akbar, and D. Tripathi, “Thermal analysis on MHD flow of ethylene
glycol-based bnnts nanofluids via peristaltically induced electroosmotic pumping in
a curved microchannel,” Arabian Journal for Science and Engineering, pp. 1–17,
2021.

[82] Poonam, B. Sharma, C. Kumawat, and K. Vafai, “Computational biomedical sim-
ulations of hybrid nanoparticles (au-al2o3/blood-mediated) transport in a stenosed
and aneurysmal curved artery with heat and mass transfer: Hematocrit dependent
viscosity approach,” Chemical Physics Letters, p. 139 666, 2022.

[83] M. K. Sharma, K. Bansal, and S. Bansal, “Pulsatile unsteady flow of blood through
porous medium in a stenotic artery under the influence of transverse magnetic field,”
Korea-Australia Rheology Journal, vol. 24, no. 3, pp. 181–189, 2012.

[84] A. Tiwari and S. S. Chauhan, “Effect of varying viscosity on two-layer model of
pulsatile flow through blood vessels with porous region near walls,” Transport in

Porous Media, vol. 129, no. 3, pp. 721–741, 2019.

[85] F. Ishtiaq, R. Ellahi, M. M. Bhatti, and S. Z. Alamri, “Insight in thermally radiative
cilia-driven flow of electrically conducting non-newtonian jeffrey fluid under the
influence of induced magnetic field,” Mathematics, vol. 10, no. 12, p. 2007, 2022.

[86] N. Ahmed, U. Khan, S. T. Mohyud-Din, et al., “Influence of shape factor on flow of
magneto-nanofluid squeezed between parallel disks,” Alexandria engineering jour-

nal, vol. 57, no. 3, pp. 1893–1903, 2018.

[87] S Ijaz and S Nadeem, “Shape factor and sphericity features examination of Cu and
Cu-Al2O3/blood through atherosclerotic artery under the impact of wall character-
istic,” Journal of Molecular Liquids, vol. 271, pp. 361–372, 2018.

[88] D. Young, “Effect of a time-dependent stenosis on flow through a tube,” 1968.

[89] N. Mustapha, N. Amin, S. Chakravarty, and P. K. Mandal, “Unsteady magneto-
hydrodynamic blood flow through irregular multi-stenosed arteries,” Computers in

Biology and Medicine, vol. 39, no. 10, pp. 896–906, 2009.

[90] R Ghandi, B. Sharma, C Kumawat, O. Beg, et al., “Modeling and analysis of mag-
netic hybrid nanoparticle (au-al2o3/blood) based drug delivery through a bell-shaped
occluded artery with joule heating, viscous dissipation and variable viscosity ef-
fects,” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of

Process Mechanical Engineering, 2022.



226 Bibliography

[91] A Kolin, “An electromagnetic flowmeter. principle of the method and its application
to bloodflow measurements,” Proceedings of the Society for Experimental Biology

and Medicine, vol. 35, no. 1, pp. 53–56, 1936.

[92] J. R. Melcher and H. H. Woodson, “Electromechanical dynamics,” Part I: Discrete

Systems; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1968.

[93] C. L. Rice and R. Whitehead, “Electrokinetic flow in a narrow cylindrical capillary,”
The Journal of Physical Chemistry, vol. 69, no. 11, pp. 4017–4024, 1965.

[94] S Noreen, S Waheed, and A Hussanan, “Peristaltic motion of mhd nanofluid in an
asymmetric micro-channel with joule heating, wall flexibility and different zeta po-
tential,” Boundary Value Problems, vol. 2019, no. 1, pp. 1–23, 2019.

[95] I. Shahzadi, F. Z. Duraihem, S Ijaz, C. Raju, and S Saleem, “Blood stream alterna-
tions by mean of electroosmotic forces of fractional ternary nanofluid through the
oblique stenosed aneurysmal artery with slip conditions,” International Communi-

cations in Heat and Mass Transfer, vol. 143, p. 106 679, 2023.

[96] A Zaman, A. A. Khan, and N. Kousar, “Simulation of magneto-hydrodynamics ef-
fects on cross fluid (blood) model with entropy generations in multiple stenosed
(aneurysm) curved channel,” Chinese Journal of Physics, 2022.

[97] B. K. Sharma, Poonam, and A. J. Chamkha, “Effects of heat transfer, body accel-
eration and hybrid nanoparticles (au–al2o3) on mhd blood flow through a curved
artery with stenosis and aneurysm using hematocrit-dependent viscosity,” Waves in

Random and Complex Media, pp. 1–31, 2022.

[98] M. M.-S. Lih et al., Transport phenomena in medicine and biology. Wiley, 1975.

[99] O. K. Baskurt and H. J. Meiselman, “Blood rheology and hemodynamics,” in Sem-

inars in thrombosis and hemostasis, Copyright© 2003 by Thieme Medical Publish-
ers, Inc., 333 Seventh Avenue, New . . ., vol. 29, 2003, pp. 435–450.

[100] J. Tripathi, B Vasu, and O. A. Bég, “Computational simulations of hybrid medi-
ated nano-hemodynamics (ag-au/blood) through an irregular symmetric stenosis,”
Computers in Biology and Medicine, vol. 130, p. 104 213, 2021.

[101] J. Akram, N. S. Akbar, and D. Tripathi, “Thermal analysis on mhd flow of ethylene
glycol-based bnnts nanofluids via peristaltically induced electroosmotic pumping in
a curved microchannel,” Arabian Journal for Science and Engineering, pp. 1–17,
2022.



Bibliography 227

[102] M. Corcione, “Empirical correlating equations for predicting the effective thermal
conductivity and dynamic viscosity of nanofluids,” Energy conversion and manage-

ment, vol. 52, no. 1, pp. 789–793, 2011.

[103] A. Zaman, N. Ali, and M. Sajjad, “Effects of nanoparticles (cu, tio2, al2o3) on un-
steady blood flow through a curved overlapping stenosed channel,” Mathematics

and Computers in Simulation, vol. 156, pp. 279–293, 2019.

[104] R Ponalagusamy and S Priyadharshini, “Pulsatile mhd flow of a casson fluid through
a porous bifurcated arterial stenosis under periodic body acceleration,” Applied Math-

ematics and Computation, vol. 333, pp. 325–343, 2018.

[105] B. K. Sharma and C. Kumawat, “Impact of temperature dependent viscosity and
thermal conductivity on mhd blood flow through a stretching surface with ohmic
effect and chemical reaction,” Nonlinear Engineering, vol. 10, no. 1, pp. 255–271,
2021.

[106] B. Sharma, U. Khanduri, N. K. Mishra, and K. S. Mekheimer, “Combined effect
of thermophoresis and brownian motion on mhd mixed convective flow over an in-
clined stretching surface with radiation and chemical reaction,” International Jour-

nal of Modern Physics B, p. 2 350 095, 2022.

[107] U. Khanduri and B. K. Sharma, “Hall and ion slip effects on hybrid nanoparticles
(au-go/blood) flow through a catheterized stenosed artery with thrombosis,” Pro-

ceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical

Engineering Science, vol. 237, no. 10, pp. 2256–2278, 2023.

[108] U. Khanduri and B. K. Sharma, “Entropy analysis for mhd flow subject to temperature-
dependent viscosity and thermal conductivity,” in Nonlinear Dynamics and Appli-

cations, Springer, 2022, pp. 457–471.

[109] B. K. Sharma, C. Kumawat, U. Khanduri, and K. S. Mekheimer, “Numerical inves-
tigation of the entropy generation analysis for radiative mhd power-law fluid flow
of blood through a curved artery with hall effect,” Waves in Random and Complex

Media, pp. 1–38, 2023.

[110] N. S. Akbar, S Nadeem, T Hayat, and A. A. Hendi, “Effects of heat and chemical
reaction on jeffrey fluid model with stenosis,” Applicable Analysis, vol. 91, no. 9,
pp. 1631–1647, 2012.

[111] G. Shit and M Roy, “Effect of induced magnetic field on blood flow through a con-
stricted channel: An analytical approach,” Journal of Mechanics in Medicine and

Biology, vol. 16, no. 03, p. 1 650 030, 2016.



228 Bibliography

[112] U. Khanduri and B. Sharma, “Mathematical analysis of hall effect and hematocrit
dependent viscosity on au/go-blood hybrid nanofluid flow through a stenosed catheter-
ized artery with thrombosis,” in International workshop of Mathematical Modelling,

Applied Analysis and Computation, Springer, 2022, pp. 121–137.

[113] Y. B. Tan, N. Mustapha, and Sarifuddin, “Blood flow through a stenosed artery bi-
furcation under the effects of gravity,” in AIP Conference Proceedings, American
Institute of Physics, vol. 1635, 2014, pp. 241–248.

[114] D Srinivasacharya and G Madhava Rao, “Modeling of blood flow through a bifur-
cated artery using nanofluid,” BioNanoScience, vol. 7, pp. 464–474, 2017.

[115] D Srinivasacharya and G. M. Rao, “Pulsatile flow of couple stress fluid through a
bifurcated artery,” Ain Shams Engineering Journal, vol. 9, no. 4, pp. 883–893, 2018.

[116] H. Shahzad et al., “Fluid structure interaction study of non-newtonian casson fluid in
a bifurcated channel having stenosis with elastic walls,” Scientific Reports, vol. 12,
no. 1, p. 12 219, 2022.

[117] T. M. Joshua, K Anwar, and N Abdullah, “Numerical study of magnetohydrody-
namic blood flow through an artery with multiple stenosis,” in IOP Conference Se-

ries: Materials Science and Engineering, IOP Publishing, vol. 864, 2020, p. 012 199.

[118] D. Kumar, B Satyanarayana, R. Kumar, S. Kumar, and N. Deo, “Application of
heat source and chemical reaction in mhd blood flow through permeable bifurcated
arteries with inclined magnetic field in tumor treatments,” Results in Applied Math-

ematics, vol. 10, p. 100 151, 2021.

[119] R. Manchi and R Ponalagusamy, “Modeling of pulsatile emhd flow of au-blood in
an inclined porous tapered atherosclerotic vessel under periodic body acceleration,”
Archive of Applied Mechanics, vol. 91, no. 7, pp. 3421–3447, 2021.

[120] N. K. Mishra, M. Sharma, B. Sharma, and U. Khanduri, “Soret and dufour effects
on mhd nanofluid flow of blood through a stenosed artery with variable viscosity,”
International Journal of Modern Physics B, p. 2 350 266, 2023.

[121] M. Sharma, B. K. Sharma, U. Khanduri, N. K. Mishra, S. Noeiaghdam, and U.
Fernandez-Gamiz, “Optimization of heat transfer nanofluid blood flow through a
stenosed artery in the presence of hall effect and hematocrit dependent viscosity,”
Case Studies in Thermal Engineering, p. 103 075, 2023.

[122] R Ellahi, S. U. Rahman, S. Nadeem, and N. S. Akbar, “Blood flow of nanofluid
through an artery with composite stenosis and permeable walls,” Applied Nanoscience,
pp. 919–926, 2014.



Bibliography 229

[123] H. T. Basha, K. Rajagopal, N. A. Ahammad, S Sathish, and S. R. Gunakala, “Finite
difference computation of au-cu/magneto-bio-hybrid nanofluid flow in an inclined
uneven stenosis artery,” Complexity, vol. 2022, pp. 1–18, 2022.

[124] R. Gandhi and B. Sharma, “Modelling pulsatile blood flow using casson fluid model
through an overlapping stenotic artery with au-cu hybrid nanoparticles: Varying vis-
cosity approach,” in International workshop of Mathematical Modelling, Applied

Analysis and Computation, Springer, 2022, pp. 155–176.

[125] M. Bhatti, A Zeeshan, and R Ellahi, “Simultaneous effects of coagulation and vari-
able magnetic field on peristaltically induced motion of jeffrey nanofluid containing
gyrotactic microorganism,” Microvascular research, vol. 110, pp. 32–42, 2017.

[126] F. Alharbi, M. Naeem, M. Zubair, M. Jawad, W. U. Jan, and R. Jan, “Bioconvection
due to gyrotactic microorganisms in couple stress hybrid nanofluid laminar mixed
convection incompressible flow with magnetic nanoparticles and chemical reaction
as carrier for targeted drug delivery through porous stretching sheet,” Molecules,
vol. 26, no. 13, p. 3954, 2021.

[127] K. S. Mekheimer, R. Abo-Elkhair, S. I. Abdelsalam, K. K. Ali, and A. Moawad,
“Biomedical simulations of nanoparticles drug delivery to blood hemodynamics in
diseased organs: Synovitis problem,” International Communications in Heat and

Mass Transfer, vol. 130, p. 105 756, 2022.

[128] D. R. Mostapha and N. T. El-Dabe, “Peristaltic transfer of nanofluid with motile gy-
rotactic microorganisms with nonlinear thermic radiation,” Scientific Reports, vol. 13,
no. 1, p. 7054, 2023.

[129] R. Ellahi, M. Raza, and K. Vafai, “Series solutions of non-newtonian nanofluids with
reynolds’ model and vogel’s model by means of the homotopy analysis method,”
Mathematical and Computer Modelling, vol. 55, no. 7-8, pp. 1876–1891, 2012.

[130] B Vasu, A. Dubey, O. A. Bég, and R. S. R. Gorla, “Micropolar pulsatile blood flow
conveying nanoparticles in a stenotic tapered artery: Non-newtonian pharmacody-
namic simulation,” Computers in Biology and Medicine, vol. 126, p. 104 025, 2020.

[131] B. Zhang, J. Gu, M. Qian, L. Niu, H. Zhou, and D. Ghista, “Correlation between
quantitative analysis of wall shear stress and intima-media thickness in atherosclero-
sis development in carotid arteries,” BioMedical Engineering OnLine, vol. 16, no. 1,
pp. 1–17, 2017.



230 Bibliography

[132] H. A. Hogan and M. Henriksen, “An evaluation of a micropolar model for blood flow
through an idealized stenosis,” Journal of biomechanics, vol. 22, no. 3, pp. 211–218,
1989.

[133] I. Marshall, S. Zhao, P. Papathanasopoulou, P. Hoskins, and X. Y. Xu, “Mri and cfd
studies of pulsatile flow in healthy and stenosed carotid bifurcation models,” Journal

of biomechanics, vol. 37, no. 5, pp. 679–687, 2004.

[134] A. Raptis, M. Xenos, E. Tzirtzilakis, and M. Matsagkas, “Finite element analysis of
magnetohydrodynamic effects on blood flow in an aneurysmal geometry,” Physics

of Fluids, vol. 26, no. 10, 2014.

[135] O. U. Mehmood, S. Bibi, A. Zeeshan, M. M. Maskeen, and F. Alzahrani, “Electroos-
motic impacts on hybrid antimicrobial blood stream through catheterized stenotic
aneurysmal artery,” The European Physical Journal Plus, vol. 137, no. 5, p. 585,
2022.

[136] I. Cherkaoui, S. Bettaibi, A. Barkaoui, and F. Kuznik, “Magnetohydrodynamic blood
flow study in stenotic coronary artery using lattice boltzmann method,” Computer

Methods and Programs in Biomedicine, vol. 221, p. 106 850, 2022.

[137] S. Majee and G. Shit, “Numerical investigation of mhd flow of blood and heat trans-
fer in a stenosed arterial segment,” Journal of Magnetism and Magnetic Materials,
vol. 424, pp. 137–147, 2017.

[138] Z Abbas, M. Shabbir, and N Ali, “Numerical study of magnetohydrodynamic pul-
satile flow of sutterby fluid through an inclined overlapping arterial stenosis in the
presence of periodic body acceleration,” Results in Physics, vol. 9, pp. 753–762,
2018.

[139] R. Gandhi, B. K. Sharma, N. K. Mishra, and Q. M. Al-Mdallal, “Computer simula-
tions of emhd casson nanofluid flow of blood through an irregular stenotic perme-
able artery: Application of koo-kleinstreuer-li correlations,” Nanomaterials, vol. 13,
no. 4, p. 652, 2023.

[140] A. Dubey, B Vasu, O. A. Bég, and R. Gorla, “Finite element computation of magneto-
hemodynamic flow and heat transfer in a bifurcated artery with saccular aneurysm
using the carreau-yasuda biorheological model,” Microvascular Research, vol. 138,
p. 104 221, 2021.

[141] S. C. Hossain, M. Ferdows, M. Z. I. Bangalee, and M. S. Alam, “Two-phase bio-
nanofluid flow through a bifurcated artery with magnetic field interaction,” Interna-

tional Journal of Thermofluids, vol. 15, p. 100 194, 2022.



Bibliography 231

[142] N. M. Zain and Z. Ismail, “Numerical solution of magnetohydrodynamics effects on
a generalised power law fluid model of blood flow through a bifurcated artery with
an overlapping shaped stenosis,” Plos one, vol. 18, no. 2, e0276576, 2023.

[143] R Ellahi, S. Rahman, S Nadeem, and N. S. Akbar, “Blood flow of nanofluid through
an artery with composite stenosis and permeable walls,” Applied Nanoscience, vol. 4,
pp. 919–926, 2014.

[144] A. Sharifi, S. Y. Motlagh, and H. Badfar, “Numerical investigation of magnetic drug
targeting using magnetic nanoparticles to the aneurysmal vessel,” Journal of Mag-

netism and Magnetic Materials, vol. 474, pp. 236–245, 2019.

[145] G. BJ and P. BC, “Scrutinization of different shaped nanoparticle of molybdenum
disulfide suspended nanofluid flow over a radial porous fin,” International Journal

of Numerical Methods for Heat & Fluid Flow, vol. 30, no. 7, pp. 3685–3699, 2020.
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