

Performance-aware Energy
Management for Next Generation
Processor and Cloud Computing

Systems

Thesis

Submitted in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

Diyanesh Babu C. V.

ID No. 2013PHXF0507H

Under the supervision of

Prof. M.B. Srinivas

&

Under the Co-supervision of

Prof. Subhendu Kumar Sahoo

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE PILANI

2024

https://www.bits-pilani.ac.in/hyderabad/EEE/

BIRLA INSTITUTE OF TECHNOLOGY

AND SCIENCE PILANI

CERTIFICATE

This is to certify that the thesis entitled, “Performance Aware Energy Management for

Next Generation Processor and Cloud Computing Systems” and submitted by

DIYANESH BABU C. V. ID No. 2013PHXF0507H in partial fulfillment of the

requirements of Ph.D. of the Institute embodies original work done by him under my

supervision.

 Signature of the Supervisor:

Name in capital letters: M. B. SRINIVAS

Designation: PROFESSOR

Date: May 10, 2024

 Signature of the Co-supervisor:

Name in capital letters: SUBHENDU KUMAR SAHOO

Designation: PROFESSOR

Date: May 10, 2024

https://www.bits-pilani.ac.in/hyderabad/EEE/
https://www.bits-pilani.ac.in/hyderabad/EEE/

“The difference between impossible and possible lies in a
person's determination.”

Swami Vivekananda

“The mind that opens up to a new idea never returns to its original size.”

Albert Einstein

“Innovation distinguishes between a leader and a follower.”

Steve Jobs

Acknowledgements

First and foremost, I would like to express sincere gratitude to my supervisor, Prof. Dr. M.B.

Srinivas for his help and valuable guidance, without which this work would not have been

accomplished. Whenever I have required support or have hit a barrier in my research, his

doors have always been open for advice. His unwavering support throughout the journey has

been a constant source of encouragement. I would also like to thank my Co-supervisor, Prof.

Dr. Subhendu Kumar Sahoo, Doctoral Advisory Committee (DAC), Prof. Dr. Subhendu

Kumar Sahoo and Prof. Dr. Tathagata Ray, for their timely feedback and insightful

comments. I also take this opportunity to thank Head of the Department of Electrical Engineering,

Associate Prof. Dr. Alivelu Manga Parimi for the support and help extended to me.

I would like to express sincere thanks to co-authors Dr. Karthick Rajamani from IBM Cloud

Infrastructure Operations group and Dr. Venkata Kalyan Tavva from IIT Ropar for their

perseverance to work with me from the start and spending personal time. Life outside the

campus is an important ingredient of PhD life and in this respect, I express my gratitude to

my friend, colleague and PhD mate, Saravanan Sethuraman for his great support right from

day one and during tough times.

Finally, my family has been my pillar of strength during these years. My deepest gratitude

goes out to my father, mother, wife, my daughter and son, who have stood by me through

thick and thin. I would like to express special thanks to my lovely wife Aswini, for her care,

love and continued support has made this journey memorable.

Abstract

Cloud computing has become an indispensable component of modern computing

infrastructure, offering flexible and scalable services to users. However, the rapid growth of

cloud computing has also led to concerns regarding energy consumption and carbon dioxide

(CO2) emissions. The energy consumption of cloud data centers has a significant impact on

CO2 emissions, as majority of electricity generation still relies on fossil fuels. According to a

report by the International Energy Agency, data centers consumed around 200 TWh of

electricity in 2018, accounting for around 1% of global electricity consumption [39]. The report

also notes that data center energy consumption is expected to double by 2030 if no action is

taken to improve energy efficiency. According to a study by A. Vakilinia and R. Buyya, cloud

data centers are responsible for a significant portion of global CO2 emissions, with emissions

expected to reach 3.2 gigatons by 2025 [40]. These trends highlight the need for energy-

efficient cloud data center design and operation to mitigate the impact on the environment. In

this thesis, we consider methodologies to address CPU and memory energy management

challenges in cloud computing environments.

In first part of the thesis related to processor energy management, we present a highly accurate

performance estimation methodology that accounts for architecture slack in workloads. Our

work leverages the advanced instrumentation available in POWER8 processor that monitors

core pipeline activity in relation to off-core memory accesses to build metrics for architecture

slack characterization for workloads. Using these metrics, we construct a workload classifier

that classifies workloads as core-bound and memory-bound and propose a performance

prediction model for change in processor frequency for each class of workload - cPerf and

mPerf, respectively. We evaluate these models with SPECCPU and PARSEC benchmark suites

on a POWER8 based OpenPOWER system. We observe that the predicted performance with

our models have high accuracy (97%) for both CPU and memory intensive benchmarks. We

validate that the classifier is suitable to accurately classify phase of workloads during execution

intervals. We propose an algorithm that uses classifier for phase classification and prediction

models for performance estimation at runtime. We leverage this algorithm and evaluate the

execution time impacts of CPU and memory classified benchmarks. Overall, our methods based

on architecture slack as key metric can be adopted by newer DVFS algorithms for phase

classification and performance estimation at runtime, with a very high accuracy.

Memory subsystems in cloud computing are also a significant contributor to energy

consumption. A key research gap is the need for more efficient use of DRAM. DRAM is a key

component of cloud computing systems, but it also consumes a significant amount of energy.

In second part of the thesis related to memory energy management, we propose a new power

mode as Voltage Reduced Self-Refresh (VRSR), which is basically reduced DRAM voltage

operation in self-refresh. Our simulation results show that there is a maximum of ~12.4% and

an average of ~4% workload energy savings, with less than 0.7% performance loss across all

benchmarks, for an aggressive voltage reduction of 150 mV. We perform a detailed study of

reducing self-refresh energy by reducing the supply voltage. PARSEC benchmarks in Gem5

full-system mode are used to quantify the merit of self-refresh energy savings at reduced

voltages for normal, reduced, and extended temperature ranges. The latency impacts of basic

operations involved in self-refresh operation are evaluated using the 16 nm SPICE model.

Possible limitations in extending the work to real hardware are also discussed. As a potential

opportunity to motivate for future implementation, DRAM architectural changes, additional

low power states and entry/exit flow to exercise reduced voltage operation in self-refresh mode

are proposed.

Table of Contents

Table of Contents

Table of Contents .. 8

List of Tables ... 11

List of Figures ... 12

Abbreviations .. 14

Introduction .. 16

1.1 Processor Energy Management ... 17

1.2 Memory Energy Management ... 20

1.3 Background .. 24

1.4 Motivation .. 28

1.5 Organization of the Thesis ... 31

Literature Survey .. 33

2.1 Workload Classification, Phase Classification and Performance
Estimation .. 33

2.2 Reducing DRAM Refresh Power Consumption 34

Experimental Setup ... 37

3.1 Experimental Setup for Architecture Slack Exploitation 37

3.2 Experimental Setup for Study of Self-Refresh Energy Savings 38

Architecture Slack Exploitation for Phase Classification and Performance
Estimation .. 41

4.1 Workload Classification of Benchmarks .. 41

4.2 Performance Estimation Models .. 47

4.3 Phase Classification at Runtime ... 49

4.4 Performance Evaluation of Benchmarks .. 50

4.5 Results and Discussion ... 53

Voltage Reduced Self Refresh (VRSR) for Optimized Energy Savings in DRAM
Memories ... 62

5.1 Impact of Reduced Voltage and Temperature on Self-refresh 62

5.2 Latency Evaluation with SPICE Model ... 68

5.3 Proposed architectural changes for practical implementation 70

5.4 Quantitative evaluation of performance overhead due to voltage reduced
self-refresh .. 73

5.1 Results and Discussion .. 76

Conclusion and Future Work .. 80

6.1 Architecture Slack Exploitation for Phase Classification and Performance
Estimation ... 80

6.2 Voltage Reduced Self Refresh (VRSR) for Optimized Energy Savings in DRAM
Memories... 82

Bibliography ... 83

List of Publications .. 95

Brief Biography of the Candidate ... 96

Brief Biography of the Supervisor .. 97

Brief Biography of the Co-Supervisor .. 98

List of Tables

Table 1.1: Power saving features in self-refresh mode ... 25

Table 3.1: Simulation setup ... 39

Table 3.2: Power and timing parameters based on DDR4-2400 8 Gbit device [42] 39

Table 3.3: DRAM energy components ... 40

Table 4.1: Events tracked for Performance Management .. 41

Table 4.2: Parameters mipsr(normalized), Wb(normalized) values ... 47

Table 4.3: Benchmarks – Performance impact study ... 53

Table 5.1: Resistances and capacitances in DRAM [41] .. 68

Table 5.2: Summary of resistance and capacitor changes ... 69

Table 5.3: Summary of 45 nm and 16 nm transistor dimensions ... 69

Table 5.4: Latency values obtained from 16 nm SPICE model simulation 70

Table 5.5: Mode register setting to select self-refresh mode .. 71

Table 5.6: Refresh cycle time for reduced voltages ... 74

Table 5.7: Refresh cycle time and exit latency for reduced voltages .. 75

Table 5.8: Execution time increase of benchmarks at reduced voltage (1.050 V) compared to

nominal voltage (1.2 V) ... 77

Table 5.9: Maximum self-refresh energy savings (mJ) at 150 mV voltage reduction 78

List of Figures

Figure 1.1: Self-refresh current (IDD6) increase trend in DDR4x devices 22

Figure 1.2: DRAM cell and charge access scheme .. 30

Figure 1.3: Storage node, bit line and charge sharing voltages .. 30

Figure 3.1: Measurement setup .. 37

Figure 4.1: Hardware implementation of cIdle counter .. 42

Figure 4 .2: Wb (MIPS to stalls ratio) for custom core-bound benchmarks 44

Figure 4 .3: Detailed Wb trend for sqroot core-bound benchmark ... 44

Figure 4 .4: Detailed Wb trend for fma core-bound benchmark ... 45

Figure 4 .5: Wb (MIPS to stalls ratio) for custom memory-bound benchmarks 45

Figure 4.6: Compute and memory regression models for mipsr estimate at 3.5 GHz target

frequency ... 48

Figure 4.7: Compute and memory regression models for mipsr estimate at 2 GHz target frequency

 ... 48

Figure 4.8: Performance prediction scheme .. 51

Figure 4.9: MIPS predicted (using models) vs measured error at 3.5 GHz 55

Figure 4.10: MIPS predicted (using models) vs measured error at 2 GHz 55

Figure 4.11: Runtime phase characteristics of 400.perlbench, 471.omnetpp and 433.milc

benchmarks ... 58

Figure 4.12: MIPS, NotBusy & Wb characteristics of core-benchmarks (456.hmmer, 464.h264ref

and 416.gamess) .. 59

Figure 4.13: MIPS, NotBusy & Wb characteristics of memory-benchmarks (410.bwaves, 450.soplex

and 459.GemsFDTD) ... 60

Figure 4.14: MIPS predicted vs measured for 400.perlbench and 471.omnetpp benchmarks 61

Figure 5 .1: Timing parameters associated with refresh operation of a row 62

Figure 5.2: Internal voltages in DRAM [46] ... 63

Figure 5 .3: Refresh rates associated with temperature ranges in LPASR [42] 64

Figure 5 .4: Self-refresh power trend in DDR4 devices at different capacities [42], [8-10] 65

Figure 5 .5: Comparison of energy breakdown between active and power-down modes................. 67

Figure 5 .6: Memory throughput comparison .. 67

Figure 5.7: Proposed DRAM architecture changes for reduced DRAM voltage operation in self-

refresh mode ... 71

Figure 5.8: State diagram of DRAM commands for low-Power modes, according to JEDEC

(proposed modes are highlighted in grey) .. 72

Figure 5.9: Refresh cycle time (tRFC_VR) in VRSR scheme ... 73

Figure 5.10: Exit timing latency of VRSR (tXS_VR) with reference to self-refresh [42] 74

Figure 5.11: DRAM energy breakdown for PARSEC benchmarks .. 76

Figure 5.12: Self-refresh energy (%) contribution to total energy ... 76

Figure 5.13: Self-refresh energy at reduced voltages and different temperature ranges 77

Figure 5.14: Self-refresh energy savings with voltage reduction .. 77

Figure 5.15: Maximum benchmark energy savings .. 77

Abbreviations

AVATAR - A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems

BL - Bit Line

CLARA - Circular Linked-List Auto and Self Refresh Architecture

CPU – Central Processing Unit

DDR3L - Double Data Rate 3 Low Voltage

DDR4 - Double Data Rate 4

DIMM - Dual In line Memory Module

DPD - Data Pattern Dependencies

DPD - Deep Power-Down

DRAM - Dynamic Random-Access Memory

DSR - Deep Self-Refresh

DVFS - Dynamic Voltage and Frequency Scaling

eDRAM - Embedded Dynamic Random Access Memory

JEDEC - Joint Electron Device Engineering Council

LPASR - Low Power Auto Self Refresh

LPDDR - Low Power Double Data Rate

LSR - Long latency Self-Refresh

MIPS - Millions of Instructions Per Second

MRPI - Memory Reads Per Instruction

MRS - Mode Register Set

PDNA - Active Power-Down

PDNP - Precharge Power-Down

PMU - Performance Monitoring Unit

PTM - Predictive Technology Model

RAIDR - Retention-Aware Intelligent DRAM Refresh

RAPID - Retention-aware intelligent DRAM refresh

RDIMM - Registered Dual In-Line Memory Module

SRAM - Static Random-Access Memory

SREF - Self-Refresh

TCSR - Temperature Compensated Self Refresh

tRAS – Active to Precharge Delay

tRFC - Refresh cycle time

VID - Voltage ID

VRT - Variable Retention Time

WL - Word Line

Dedicate this to my parents, wife, daughter,
and son

16

Chapter 1

Introduction

In this chapter, we provide a brief introduction about processor and memory energy

management in the context of cloud computing domain. We discuss their significance in

reducing energy consumption and optimizing performance of systems.

Processor energy management is a critical aspect of cloud computing. In a cloud computing

environment, multiple virtual machines run on a single physical server, and managing the

energy consumption of each processor is crucial to maintain the overall system's efficiency.

Processor energy management techniques can be classified into two categories: dynamic

voltage and frequency scaling (DVFS) and workload consolidation. DVFS adjusts the voltage

and frequency of the processor to match the workload's requirements, while workload

consolidation consolidates multiple workloads onto a single processor. DVFS can

significantly reduce energy consumption by lowering the processor's voltage and frequency

when the workload is low and increasing them when the workload is high. However, it can

also affect the system's performance if the processor's frequency is reduced too much.

Workload consolidation, on the other hand, can reduce energy consumption by consolidating

multiple workloads onto a single processor, but it can also increase the system's response

time.

First part of work focus on how architecture slack of workloads can be exploited for accurate

performance management using DVFS technique.

Memory energy management is a critical aspect of cloud computing systems, as memory

17

accounts for a significant portion of a system's energy consumption. Dynamic random-access

memory (DRAM) is the primary type of memory used in modern cloud computing systems,

and DRAM self-refresh will be effective to maintain data integrity when the DRAM memory

cells were not accessed. However, DRAM self-refresh also consumes a significant amount of

energy and managing its energy consumption is crucial for reducing overall system energy

consumption.

There are several primary techniques are commonly used to reduce DRAM self-refresh

energy consumption in cloud computing systems, including:

Power Gating: Power gating is a technique that shuts off power to unused portions of the

DRAM chip. This technique can significantly reduce DRAM self-refresh energy consumption

by reducing power consumption in idle memory areas.

Temperature-aware Self-refresh: Temperature-aware self-refresh is a technique that adjusts

the self-refresh rate of the DRAM based on the memory temperature. This technique can

reduce DRAM self-refresh energy consumption by reducing the number of self-refresh

operations needed at lower temperatures.

Adaptive Self-refresh: Adaptive self-refresh is a technique that adjusts the self-refresh rate of

the DRAM based on the memory's usage patterns. This technique can reduce DRAM self-

refresh energy consumption by reducing the number of unnecessary self-refresh operations.

Data Compression: Data compression is a technique that reduces the amount of data stored

in memory by compressing it. This technique can reduce DRAM self-refresh energy

consumption by reducing the amount of data that needs to be refreshed.

Second part of work focus on achieving self-refresh energy savings at reduced DRAM

voltages.

1.1 Processor Energy Management

In recent years, power and thermal issues have become primary design constraints for high-

performance system designs. Restrictions arise from increased transistor densities and clock

18

speeds, hindering the potential performance improvements and escalating expenses in

development, acquisition, and operations. Consequently, there is a growing emphasis on

effectively managing energy consumption and heat dissipation in high-performance

computer systems [9,20,28].

Energy and thermal management are important for many reasons. First, to avoid employing

performance crippling conservative designs to ensure that power and thermal caps are never

exceeded, high-end systems employ active power and thermal management. Increasingly the

cost of providing the power and cooling infrastructure for a datacenter or supercomputer

approaches or exceeds the cost of the machines themselves. In many locations, electric

utilities are unwilling to provide the additional power needed to add new machines to

datacenters. Organizations also face external pressures to become “greener”. In the United

States, both the Environmental Protection Agency and Department of Energy are issuing

guidelines for energy-efficient systems and data centers [35,36]. An increasing number of

customers insists that computers be energy-efficient [38], while still expecting performance

improvements.

As the goal is to balance high performance with energy efficiency, power management

becomes a strategic approach that involves leveraging opportunities to operate system

components at lower power states without compromising performance. "Slack" refers to any

characteristic that enables a system to operate a certain portion of itself at a lower power

state while still meeting predefined performance objectives.

There are three forms of slack present in server computing environments: workload slack,

user-demand slack, and architecture slack.

• Workload slack occurs when the workload is waiting on I/O or CPU does not have

instructions to execute. It can be readily measured by monitoring the number of

cycles in a given interval that the core is not yielded by the workload or operating

system.

• User-demand slack occurs when systems can be run at less than full speed, but

still achieve user performance requirements. It needs to be explicitly communicated

19

to the system (low-power mode, favor energy savings etc).

• Architecture slack arises when a workload’s performance is bounded at least

partially by a resource other than the processor clock frequency, e.g., by limited

memory bandwidth. In this work, we focus on architecture slack present in server

computing environments.

In a high-performance server system, it is common to find multiple processors that facilitate

the simultaneous execution of multiple workloads. In both commercial and technical

computing environments, one key objective is to maximize processor usage to speed up the

execution of workloads for effective utilization of hardware resources. Another equally

important key objective is to minimize energy usage, while maintaining high performance of

workloads under execution.

Typically, a server class processor has many cores, and each core can support multiple

hardware threads (multi-threading) for concurrent execution of workloads. Each process

running on a hardware thread can have following different performance characteristics

related to its current operating frequency: compute, memory, or moderate bound. For

compute-bound processes, performance tracks linearly with processor core frequency and

therefore limited by CPU speed. In the case of memory-bound processes, performance is

unaffected by the frequency of the processor core. Instead, it is constrained by factors such as

memory bandwidth and latency, which are not directly related to the speed of the CPU.

When a process runs on a hardware thread, it can execute core-bound or memory-intensive

operations within a specific timeframe, referred to as a "phase." Core-bound operations can

be completed within the core itself, without needing external resources. On the other hand,

non-core-bound operations rely on external resources for completion. Typically, core-bound

operations involve high-latency instructions that have a higher chance of causing processor

pipeline delays. For example, retrieving data from on-chip L2 and L3 caches can have

moderately long latencies of 8-60 cycles, while accessing DRAM can result in even longer

latencies (e.g., 200+ cycles). To enhance performance during such scenarios, instruction-

level parallelism (ILP) allows overlapping execution of multiple instructions using the same

20

circuitry. However, there are cases where an instruction in the pipeline depends on the

completion of a previous instruction, creating dependencies. Due to this, the core must wait

until producer instruction is completed and this leads to idle cycles or stalls. There can be

many such idle scenarios in modern pipelines that support simultaneous multi-threading

(SMT). SMT refers to the capability of a single physical processor core to execute instructions

from multiple hardware thread contexts concurrently. This allows the processor core to read

and execute instructions in parallel, enabling scheduling of multiple applications

simultaneously on the same core. In one situation, if a core is waiting for the outcome of

memory access requests from outside the core and is not executing any operations from

other threads, it is considered idle. In another scenario, if a core is waiting for the result of

memory access requests from outside the core and not completing any execution threads

during a cycle, the processor core is deemed idle and non-operational. When a core is both

idle and waiting for off-core memory access, it indicates that there is available capacity or

slack within the computer system. The presence of slack results in idle cycles, and if the

processor is already operating at its maximum frequency, these cycles are essentially lost.

These unused cycles are known as the "architectural slack" of the processor. To optimize

performance, frequency reductions can be applied during these cycles without impacting

overall performance.

1.2 Memory Energy Management

Data centers rank among the largest consumers of electrical power, accounting for around

200 terawatt-hours (TWh) of electricity consumption, which is nearly 1% of the global

electricity demand. This substantial energy usage contributes to approximately 0.3% of

global CO2 emissions [85]. Be it on-premise or in the cloud, demand for servers has been

skyrocketing due to ever growing computing needs and big data explosion. However, around

30 percent of servers are either underutilized or completely idle, as per previous research

performed by the uptime institute [86].

Currently, the CPU stands as the most power-intensive element within a server, while

memory holds the position as the server's second most significant consumer of power [87].

21

In a server, main memory capacity and bandwidth requirements continue to grow, year over

year. Modern data intensive applications from emerging areas like cloud computing, artificial

intelligence, machine learning, augmented reality, geonomics and accelerated computing

have clearly necessitated high capacity and low latency memory for superior performance.

Due to its distinct benefits of low latency, high density, and well-established fabrication

process, DRAM technology remains the favored option for main memory. DRAM energy

usage makes up approximately 46% of the total energy consumption in a system [57, 88].

Specifically, in a multicore processor executing a collection of parallel applications with high

memory demands, the DRAM core alone consumes roughly 20% of the overall system energy

[50].

A DRAM cell consists of an access transistor and a capacitor, where the capacitor serves as a

storage unit for data in the form of electrical charge. However, it is important to note that the

capacitor gradually loses charge over time due to leakage. Refresh is an essential operation to

ensure data retention in DRAM memories. However, it adversely impacts power dissipation

and performance. With growing DRAM chip density, refresh power consumption has become

significant portion of the total device energy [41].

Industry standard DRAM devices support auto-refresh and self-refresh modes to perform the

refresh operation, during active and idle scenarios respectively. Memory controller must

issue refresh commands periodically interleaved with the core’s read & write data to the

DRAM device and it is referred to as auto-refresh.

Once the read and write queues of the controller remain empty for a specific duration, it

instructs the DRAM to transition into a low power mode. Self-refresh is an energy-saving

mode that can be achieved without compromising the integrity of the data, making it the

most power-efficient state. In this mode, the DRAM device performs refresh operation using

an inbuilt timer, whereas DLL, clocks and IO pins are all turned off to save the background

power. This mode can be exercised to achieve good energy savings during moderate or long

idle phases of workloads.

With the growing size of DRAM devices, the power impact of self-refresh becomes

22

increasingly significant. A review of literature reveals that in DDR4x devices (as depicted in

Figure 1.1), when memory size doubles, such as from 4 Gb to 8 Gb, 8 Gb to 16 Gb, and 16 Gb

to 32 Gb, there is a corresponding increase in self-refresh current (IDD6) of 50%, 89%, and

118% respectively [42], [48-50].

Figure 1.1: Self-refresh current (IDD6) increase trend in DDR4x devices

Extensive research has been conducted to minimize power consumption during refresh

operations. Chang et al. [43] conducted a thorough investigation focusing on DDR3L

DRAMs. Their study primarily involved characterizing the behavior of the DRAM chip when

operated at reduced voltages below the nominal value. They examined the impact of low

DRAM supply voltages of 1.2 V and 1.15 V, compared to the nominal value of 1.35 V, across

various retention times (64 ms, 128 ms, 256 ms, 512 ms, 1024 ms, 1536 ms, and 2048 ms) on

DDR3L DIMMs at temperatures of 20℃ and 70℃. The study revealed that no weak cells

were observed when the supply voltage was reduced up to a retention time of 512 ms, which

is eight times the standard refresh interval of 64 ms. Consequently, the researchers

concluded that at these temperatures, a reduction in supply voltage does not necessitate any

modifications to the standard refresh interval. Furthermore, their work demonstrated that

bit errors resulting from reduced voltage operation could be mitigated by increasing the

latency of row activation (tRAS), restoration (tRCD), and precharge (tRP) operations.

Pardeik et al. have proposed to minimize the refresh power consumption by increasing the

refresh rate and reducing the DRAM supply voltage during long idle scenarios [44]. Their

work involved power evaluation of 16 GB & 32 GB DDR4 RDIMM modules at different

refresh rates 2x, 4x, 8x and multiple voltages 1.25 V, 1.2 V, 1.15 V, 1.1 V, 1.05 V, 1 V. Their

24
36

68

148

0

50

100

150

200

4 Gb 8 Gb 16 Gb 32 Gb

Se
lf

 r
ef

re
sh

 c
u

rr
en

t
(m

A
)

Device size

23

characterization results revealed a key finding that, on both 16 GB and 32 GB DIMMs, the

voltage reduction of 200 mV, 1.25 V nominal to 1.05 V yielded significant power savings,

despite of increased refresh rates. They observed 30%, 28%, 26%, 24% power savings for

different refresh rates 7.8(1x), 3.9(2x), 1.94(3x), 0.96(4x) respectively, without any data

integrity errors.

Byoungchan et al. [60] conducted a study where they observed that DRAM cells in the self-

refresh mode operate in two distinct modes: static (idle) and dynamic (refreshing), and the

transition between these modes follows a predictable pattern. They proposed a novel

approach to optimize the leakage current of DRAM cells by aligning the word-line and body

voltage levels with the cell's state. Their objective was to enhance the power efficiency of

DRAM, leading to the introduction of two new self-refresh modes: Enhanced Self-Refresh

(ESR) and Long Latency Self-Refresh (LSR). Through simulations, they demonstrated that

the retention time of DRAM cells improved by 2.42 times in the ESR mode and 3.58 times in

the LSR mode. Leveraging the extended retention time, their approach involved applying a

reduced refresh rate while maintaining improved leakage current. The ESR mode could

directly replace the original self-refresh mode without requiring modifications to the

memory controller. It employed a selective word-line bias technique, which necessitated two

transistors per sub-array to independently control the voltage level of individual sub-arrays.

On the other hand, the LSR mode represented a new power-saving mode with even higher

efficiency than the ESR mode. However, due to its distinct exit latency compared to self-

refresh, it required adjustments to the memory controller. In addition to selective word-line

bias, the LSR mode employed selective body biasing to achieve further power savings.

Existing literature [43, 44] motivates us to investigate energy savings in self-refresh mode at

lower DRAM voltages. We observe that the basic idea in [43] explores energy saving

opportunities with auto-refresh during memory mainline read & write operation, while our

work is orthogonal that focus on self-refresh mode exercised during long idle times. In

contrast to [44], we further extend our studies to lower voltage operation at reduced and

increased self-refresh rates associated with wider temperature ranges, as supported by DDR

24

standards. For lowering DRAM voltage during self-refresh, we consider the implementation

of varying array voltage (Varray) in step sizes without modifying standard refresh rates,

which is orthogonal to work [60] that uses selective body bios and selective word-line bios

controls to attain the increased retention time thereby to lower the refresh rates for energy

savings. Reducing voltage during self-refresh needs additional latency cycles of tRAS and tRP

parameters for error free operation [43]. We quantify the performance impact seen by

workloads with such increased latency cycles.

In our research, we investigate the necessary modifications to both the DRAM and controller

to implement the proposed energy-saving feature. We provide a comprehensive description

of the interaction flow between the controller and DRAM, focusing on the newly suggested

architectural changes. To maximize the effectiveness of our approach, it can be combined

with the findings of previous studies, such as [43] and [60]. As a result, we introduce a new

low power mode for DRAM called "voltage reduced self-refresh operation (VRSR)."

1.3 Background

1.3.1 Processor – Architecture slack exploitation for performance

management

While previous research [5,10,18,32,33] extensively explores the utilization of slack and its

applications, we have identified a gap in leveraging architecture slack for performance

management. Fields et al. [10] introduce the concept of slack and its exploitation in the design

of a processor with heterogeneous pipeline implementations. Our work complements theirs

by developing methods for highly accurate performance prediction. Liang et al. [18] propose a

cache-miss based prediction model for energy and performance degradation, while

Spiliopoulos et al. [32] present a slack time-based model. However, these approaches do not

consider architecture slack. In contrast, Hari et al. [5] propose a method to exploit timing

slack in embedded applications. Their approach relies on the execution of an application that

avoids the processor's static critical paths, enabling energy savings by scaling down the

processor's voltage while maintaining the same frequency until the longest active paths meet

25

the timing constraints. However, this approach requires profiling applications prior to

execution, resulting in significant overhead. Similarly, Sharanyan et al. [33] propose a

multicore CPU scheduler that combines traffic sources, latency tolerance, and computational

resource requirements. They utilize "CPU stall cycles on cache misses" as a key metric to co-

locate threads on the same socket or physical core for improved parallel efficiency. Our work

aims to bridge the gap by focusing on exploiting architectural slack for performance

management, providing a novel approach that complements existing research in this area.

We refer “workload classification” as detecting whether the workload is compute-bound or

memory-bound. In our current work, we propose a fixed interval-based online “phase

classification” scheme that uses microarchitecture-dependent metrics (instruction

throughput and not-busy cycles) obtained from hardware counters. “Performance estimation”

is a measure of frequency-performance relationship at target frequency with respect to its

current frequency-performance setting, for a given workload under execution.

1.3.2 Memory – Voltage Reduced Self-Refresh operation

JEDEC (Joint Electron Device Engineering Council) supports many features to optimize self-

refresh power (Table 1.1). Low-Power Auto Self Refresh (LPASR) and Temperature

Compensated Self Refresh (TCSR) are features that adjusts refresh rate depending on the

ambient temperature in DDR4x and mobile LPDDRx devices respectively. The Partial Array

Self Refresh (PASR) feature allows the controller to choose the specific portion of memory

arrays that need to be refreshed during self-refresh in LPDDRx. By combining the TCSR and

PASR features, even more significant power savings can be achieved [41].

Counter Description Technique

DDR4x Low-Power Auto Self
Refresh (LPASR) [42]

Refresh rate is adjusted
based on temperature

Low Power DDRx
(LPDDRx)

Temperature Compensated
Self Refresh (TCSR) [47]

Refresh rate is adjusted
based on temperature

LPDDRx Partial Array Self Refresh
(PASR) [47]

Refresh operation is limited
to portion of the memory’s
array where data is stored

Table 1.1: Power saving features in self-refresh mode

26

The JEDEC standard defines the Deep Power-Down (DPD) mode as the most extreme power-

saving state, where the entire memory array in the device is shut down. In DPD mode, all

internal voltage generators are halted, resulting in the loss of all data stored in the memory.

This mode proves beneficial in mobile applications where continuous data retention in DRAM

is not necessary for most of the time. Additionally, a technique called Deep Self-Refresh

(DSR) exists, which combines the power-saving advantages of Partial Array Self Refresh

(PASR) and DPD [51]. While PASR keeps the internal voltage generators of the DRAM in a

low-power mode, DSR allows the unused banks of memory cells to enter the DPD state. It is

important to note that although DPD offers even lower energy consumption in self-refresh

mode compared to PASR, it is not included in the JEDEC standard. In our work, we focus on

reducing DRAM energy consumption by lowering the DRAM supply voltage in the normal

self-refresh mode, without the need for additional power-saving modes like DPD or DSR. Our

work reported has the following key take aways:

(a) A survey of current techniques to optimize power in self-refresh mode is initially

presented. The main cause for power consumption in self-refresh is also described. Further,

voltage is proposed as a potential knob to minimize the power consumption. Some of the

recent work [43, 44] on comprehensive study & characterization of DRAM data retention

ability at lower voltages, wide temperature ranges and refresh rates are presented and

discussed. The self-refresh energy scaling trends in modern devices [42] with respect to wider

temperature ranges and currently supported adaptive refresh rate techniques are studied in

detail. Two key aspects are considered in our study of self-refresh energy savings at lower

voltages and different refresh rates. They are (a) Increasing DRAM row activation (tRAS) and

precharge (tRP) latencies at reduced voltages to ensure data retention (b) Latency increase in

tRAS and tRP parameters are quantified using open-source model, after adapting it for 16nm

DDR4 technology and these new latency values are used in simulation for energy and

performance study.

(b) To assess the energy-saving effects of self-refresh at reduced voltages, we employ a set

of eight PARSEC benchmarks for evaluation purposes. The simulation and measurement

27

setup to quantify the DRAM energy consumption are described in detail. Based on full-system

simulations, a detailed study of self-refresh energy savings for a set of 6 reduced voltage

points, from 25 mV through 150 mV with a step size of 25 mV, at normal (1x standard

refresh), extended (2x refresh) and reduced (0.5x refresh) temperature ranges are performed.

(c) Increase of row refresh cycle time (tRFC) due to prolonged tRAS and tRP latencies at

reduced voltage levels is discussed. This increased latency presents an overhead in exit

latency of VRSR scheme and its impact on workload performance is analyzed.

(d) Subsequently, simulation results are presented and discussed to evaluate the potential

energy savings across six reduced voltage points and the corresponding performance impact

due to exit latency overhead. These discussions encompass all eight PARSEC benchmarks,

providing insights into the effects of an aggressive voltage reduction of 150 mV.

(e) Some of the challenges and limitations in expanding our work to get detailed hardware

measurements are discussed. DRAM architectural changes and additional power modes to

exercise reduced voltage operation in self-refresh mode are proposed. Based on this proposal,

the key open areas are presented to motivate researchers for future exploration with a goal to

realize a full-scale solution.

28

1.4 Motivation

1.4.1 Processor – Performance Aware Energy Management

Dynamic Voltage and Frequency Scaling (DVFS) is a widely recognized and commonly

utilized technique that enhances the energy efficiency of computing systems by dynamically

adjusting the voltage and frequency based on the current utilization of processor cores. The

primary objective of DVFS methodology is to develop a scheduling scheme for the usage of

processor clock frequency-voltage settings over time, aiming to minimize processor power

consumption while minimizing any performance degradation. To achieve this, a DVFS

scheduling algorithm must determine the appropriate timing for adjusting the current

frequency-voltage setting (scaling point) and identify the optimal new frequency-voltage

setting (scaling factor).

In traditional approaches, metrics such as instruction retired and cache miss have been

utilized for performance management [16, 21, 27]. Many existing DVFS algorithms rely on

metrics like instructions retired or executed, assuming that an application's performance

scales proportionally with the processor clock frequency. According to this assumption,

halving the processor clock frequency would halve the computing system's performance.

However, in reality, the execution time might only double in worst-case scenarios when the

processor clock frequency is halved. Consequently, a DVFS scheduling algorithm based on

this model might prioritize scheduling tasks at a faster processor clock frequency, potentially

completing them well ahead of their deadlines (leading to a "race to halt" situation).

Conversely, a slower processor clock frequency could be scheduled, meeting the performance

deadline while consuming less power. Nevertheless, making decisions about "scaling factor"

requires accurate runtime prediction of the operational relationship between frequency and

performance. While cache miss is another common metric used to measure memory

boundedness, it alone cannot guide frequency scaling decisions while accounting for the

impact on performance. Hence, there is a clear need for a metric in DVFS that can evaluate

the actual performance impact of frequency changes based on the runtime conditions.

29

To address this requirement, we conduct an evaluation of the instrumentation features

available in various processor families to identify the performance monitoring unit (PMU)

events that can effectively track the relationship between frequency and performance during

runtime. Through our analysis, we have discovered that the POWER8 core [30] possesses a

specific counter capable of monitoring the pipelined activity during off-core memory

accesses, serving as a reliable indicator of architecture slack. In our work, we develop

methods to exploit architecture slack-based counter in the POWER8 core, as this being the

first core that offers such a capability. However, next generation POWER9 core also has this

counter [3]. Therefore, for any related or future exploration, same methods and approaches

can be extended to POWER9 and any other pipelined architectures (Intel, AMD processors)

that offer such a capability for measurement of the architecture slack.

1.4.2 Memory – Performance Aware Energy Management

Figure 1.2a shows a DRAM cell arrangement and each cell, has a storage capacitor Cs which

stores electrical charge. Data in a memory cell is stored as either the presence or absence of

charge. To access the data, a transistor, represented as T, is used. The word line (WL)

connects to the transistor's gate and is responsible for accessing the data. On the other hand,

the bit line (BL) transfers data to or from the storage capacitor (Cs) and is connected to the

transistor's drain. One plate of Cs is linked to the transistor's source, while the other electrode

is biased at the cell plate voltage, denoted as Vp. The bit line is typically connected to multiple

cells organized in a column, while the word line is connected to multiple cells arranged in a

row. However, bit lines have relatively large parasitic capacitance Cbl since they connect all of

the transistors in a column.

30

Figure 1.2: DRAM cell and charge access scheme

As illustrated in Figure 1.2b, when the word line is driven high, the charge redistribution occurs,

and this creates a small difference between bit line voltages. A sense amplifier as shown in Figure

1.8a, which is associated with each bit line pair is used to detect the small voltage differences that

occur during charge sharing. These bit lines must be pre charged with Vcc/2 before any read

operation.

Figure 1.3: Storage node, bit line and charge sharing voltages

As illustrated in Figure 1.3, voltage at storage node (VC) can be either 1 or 0. During word line

activation (access operation), when a DRAM cell is connected to bit line (BL), it loses majority of its

charge from Vcc to (Vcc/2 + Vs) when storing ‘1’ or it is charged up from 0 to (Vcc/2 - Vs) when

storing ‘0’, where Vs is given by equation (1.1). This is due to Cs charge sharing with large bit line

capacitor Cbl. This generates a small “readout” ∆V which drives the input of the amplifier latch to

one of the stable points 1 or 0, depending on the sign of ∆V (sense operation). Both access and

sense operations are combinedly referred as row activation.

𝑉𝑆 = (𝑉𝑐𝑐/2) / (1 +
𝐶𝑏𝑙

𝐶𝑠
) (1.1)

Bit line (BL)

Word line (WL)

𝐶s 𝐶𝑏𝑙

𝑉𝑝
𝐶s 𝐶𝑏𝑙

𝑉𝑐𝑐/2

𝑉𝑏𝑙 𝑉𝑐

WL

BL

𝐶𝑏𝑙

Sense
amplifier

Precharge

𝑇

(a) DRAM cell arrangement (b) Charge sharing during sensing

𝑽(𝟏) = 𝑽𝒄𝒄

𝑽𝒄𝒄/𝟐

(𝑽𝒄) (𝑽𝒃𝒍)

𝑽𝒔

𝑽𝒔

(∆𝑽)

𝑽(𝟎) = 𝟎

Voltage at
storage node

Precharge
voltage at BL

Voltage after
charge sharing

Word line
activation

Sense amplifier

activation

31

As the word line remains active, write back (restore operation) occurs, Cs is recharged back to Vcc

level from (Vcc/2 + Vs), when storing ‘1’. Similarly, (BL) ̅ will also charge up from (Vcc/2 - Vs) to

Vcc and Cs will be discharged from (Vcc/2 - Vs) to 0, when storing ‘0’. As a result, refresh power is

mostly accounted for cells storing “1” due to recharging of cells from (Vcc/2 + Vs) to Vcc back and

charging (BL) ̅ capacitance Cbl from (Vcc/2 - Vs) to Vcc level. For stored data ‘1’ and ‘0’, refresh

power consumed P1 and P2, can be given as per equations (1.2) and (1.3) respectively.

𝑃1 = 0.5 ∗ (𝐶𝑆) ∗ (
𝑉𝑐𝑐

2
− 𝑉𝑆)

2

∗ 𝑓 (1.2)

𝑃2 = 0.5 ∗ (𝐶𝑏𝑙) ∗ (
𝑉𝑐𝑐

2
+ 𝑉𝑆)

2

∗ 𝑓 (1.3)

where f = refresh rate and total refresh power, P = P1 + P2. Equations (1.2) & (1.3) clearly show that

voltage is a potential knob to exercise power reduction during refresh. Self-refresh power also

increases proportionately with respect to the number of cells to be refreshed. Therefore, in higher

density devices, it contributes to a significant fraction of the total energy consumption.

1.5 Organization of the Thesis

This thesis is organized as follows.

Chapter 1 gave a brief introduction about the importance of processor and memory energy

management to reduce energy consumption:

• Specific to processor sub-system, given the dynamic workload nature in cloud

computing environments, how workload architecture slack can be exploited to

develop accurate models for performance management.

• Specific to memory sub-system, given the increasing DRAM energy consumption, the

motivation towards reducing energy consumption by reducing voltage during self-

refresh mode.

Chapter 2 summarizes literature survey on the following topics:

• Architecture slack exploitation for workload classification, phase classification and

performance estimation.

• Studies to reduce DRAM refresh power consumption.

32

Chapter 3 covers the following:

• Experimental setup comprising hardware platform, SPECCPU 2006 and PARSEC

benchmarks, tools to measure architecture slack and performance parameters of

workloads for architecture slack exploitation

• Experimental setup including GEM5 full system simulator and PARSEC benchmarks

for measuring DRAM energy consumption at reduced voltages

Chapter 4 covers the following:

• Methodology and evaluation of using architecture slack for workload classification of

benchmarks, development of compute and memory regression models, phase

classification at runtime, performance evaluation of benchmarks using a custom

algorithm

Chapter 5 covers the following:

• Methodology of latency evaluation of timing parameters at reduced voltage DRAM

operation using SPICE model, controller & DRAM architectural changes for practical

implementation, Quantitative evaluation of performance overhead due to voltage

reduced self-refresh

Chapter 6 presents the conclusions and the future work.

Chapter 2. Literature Survey 33

Chapter 2

Literature Survey

2.1 Workload Classification, Phase Classification and
Performance Estimation

The exploration of architecture slack in server computing environments is a burgeoning field

with significant implications for performance management and optimization. Our work is

positioned at the forefront of this research, aiming to develop methods that leverage

architecture slack for workload classification, phase classification, and performance

estimation. This endeavor is underscored by the introduction of a novel metric that measures

architecture slack through core instruction throughput and not-busy cycles. The utility of this

metric is demonstrated through its application in CPU and memory microbenchmarks,

SPECCPU 2006, and PARSEC benchmarks on a POWER8 server processor.

Prior work in the realm of workload classification has predominantly focused on

distinguishing between compute-bound and memory-bound workloads. Basireddy et al. [2]

utilized the Memory Reads Per Instruction (MRPI) metric on a heterogeneous multi-core

platform to classify workloads and optimize energy consumption through voltage-frequency

settings. Similarly, Robert et al. [27] employed hardware performance counters to gauge CPU

load influenced by main memory accesses, guiding frequency scaling decisions. Chung-Hsing

et al. [12] introduced a Dynamic Voltage Scaling (DVS) algorithm, "β-Adaptation," which

adjusts core frequency based on the MIPS rate, highlighting the importance of instruction

metrics over CPU cycles for workload requirement determination. These studies [2,12,27]

underscore the significance of hardware metrics in workload classification but do not address

architecture slack directly.

Phase classification [14,15,29,37] and its applications have been well studied in many prior

works [6,25,34]. In the domain of phase classification, extensive research has been conducted

Chapter 2. Literature Survey 34

to identify program phases and optimize performance. Srinivasan et al. [34] introduced an

online program phase classification scheme utilizing a bottleneck type vector (BTV) to

enhance performance per watt. Chesta et al. [6] proposed a phase detection approach using

execution vectors (EVs) derived from hardware counters. Rodrigues et al. [25] demonstrated

the efficacy of combining online phase classification with dynamic core morphing in

asymmetric multicore processors. These studies [6,25,34] highlight the potential of

microarchitecture-dependent metrics in phase classification but do not specifically explore

the role of architecture slack.

Performance estimation, a critical aspect of performance management, has been well studied

[1,7,17,24]. Shoaib et al. [1] developed a performance prediction model, DEP+BURST, for

multithreaded managed applications, significantly reducing performance estimation error.

Rajamani et al. [24] and Contreras and Martonosi [7] utilized hardware counters for power

management, while Sang-Jeong et al. [17] employed regression analysis based on CPI and

memory accesses for runtime performance projection. These studies [1,7,17,24] emphasize

the importance of hardware counters in performance prediction but do not leverage

architecture slack for this purpose.

Our work distinguishes itself by focusing on architecture slack as a novel metric for workload

classification, phase classification, and performance estimation. By leveraging instruction

throughput and not-busy cycles, we aim to provide a more nuanced understanding of server

computing environments. This approach not only builds upon the foundational work of prior

studies [2,12,27,34,6,25,1,7,17,24] but also introduces a new dimension to performance

management strategies. Through the characterization of our metric and the development of

performance estimation models, we contribute to the ongoing discourse on optimizing server

performance, marking a significant advancement in the field.

2.2 Reducing DRAM Refresh Power Consumption

The quest to reduce DRAM refresh power consumption has been a focal point of numerous

studies, each contributing unique insights and methodologies to address this challenge. The

journey begins with the work of Byoungchan et al. [60], who introduced Enhanced Self-

Chapter 2. Literature Survey 35

Refresh (ESR) and Long Latency Self-Refresh (LSR) modes. These modes innovatively

applied selective voltage levels to DRAM cell transistors based on their activity state,

optimizing leakage current and significantly improving power efficiency. The ESR mode,

requiring minimal modifications, and the LSR mode, which achieved greater power reduction

at the cost of increased latency, laid the groundwork for subsequent research in DRAM power

efficiency.

Building on these foundational concepts, RAIDR [61] exploited the variability in DRAM

retention times [64] by grouping rows into bins with specific refresh rates, thereby enhancing

system performance and reducing memory energy consumption. In a different study [62], a

profiling mechanism is used to detect retention failures when the memory module enters

self-refresh mode. This approach, however, faced challenges due to Variable Retention Time

(VRT) failures, a problem that Qureshi et al. [65] aimed to address with AVATAR. AVATAR's

dynamic adjustment of refresh periods sought to mitigate bit errors caused by VRT, though it

could not guarantee the detection of all failing cells due to data pattern dependence. This

limitation prompted the development of REAPER [66], which employed testing with multiple

data patterns to identify failing cells more effectively.

Das et al. [67] proposed a mechanism that only fully refreshes DRAM cells when necessary,

using low-latency partial refresh operations to maintain data integrity. This approach,

validated through real workload memory traces, demonstrated a significant reduction in

refresh performance overhead, marking a step forward in efficient DRAM management.

Further innovations came from Liu et al. [68] with the Flikker technique, which

differentiated between critical and non-critical data for refresh rate adjustments, and the

DIMMer approach [69], which powered off unused memory capacity to save energy. RAPID

[70] and CLARA [71] introduced software and hardware solutions, respectively, to optimize

refresh operations based on retention time variations, highlighting the complexity of

addressing DRAM refresh power consumption.

Jung et al. [72] explored power-down mode policies in 3D-DRAMs, demonstrating

significant energy savings through adaptive refresh periods based on temperature data. This

Chapter 2. Literature Survey 36

study underscored the potential of temperature-aware refresh strategies in reducing DRAM

power consumption.

The literature reveals a consistent theme: the challenge of profiling DRAM cells for retention

times due to VRT and Data Pattern Dependencies (DPD), as highlighted by Liu et al. [63].

These phenomena, which cause cells to exhibit unpredictable retention states, complicate the

development of efficient refresh strategies.

In response to these challenges, recent work [73-78] has introduced algorithmic changes,

new DRAM refresh commands, and device-level refresh mechanisms. These innovations aim

to improve performance and energy consumption by dynamically adjusting refresh

operations to the retention characteristics of DRAM cells. For instance, the proposal to

replace the NMOS transistor in 3T eDRAM with a relay [77] and the introduction of a

retention-aware refresh technique called elaborate-refresh [78] represent significant

advancements in DRAM technology.

In summary, the body of literature on reducing DRAM refresh power consumption highlights

a progression from initial strategies focusing on selective voltage application and grouping

based on retention times to more sophisticated hardware and software approaches that

address the challenges posed by VRT and DPD. These studies collectively underscore the

critical need for efficient DRAM refresh mechanisms that can adapt to the varying retention

characteristics of cells, thereby reducing power consumption without compromising system

performance or data reliability. This evolving landscape of DRAM refresh strategies forms

the basis of the current problem statement, which seeks to develop more effective refresh

techniques that dynamically adjust to retention time variability and dependencies.

 37

Chapter 3

Experimental Setup

3.1 Experimental Setup for Architecture Slack Exploitation

We have used Amester tool [22,26] to collect run time traces of a workload under

measurement, on a 1-socket POWER8 hardware platform. Figure 3.1 depicts the

measurement setup. POWER8 platform used for this work comprises an 8-core processor

and has 128 GB of main memory. A measurement system runs Amester (Automated

Measurement of Systems for Energy and Temperature Reporting) tool and connects to host

system for data collection. Amester is an out-of-band tool which can collect parameters of

interest, without impacting the workload performance that runs on host system.

Figure 3.1: Measurement setup

POWER8 processor has a piece of hardware & associated firmware called the On-Chip

Controller (OCC) [13]. The OCC (On-Chip Controller) is a separate processor integrated on

the chip alongside the main POWER processor cores. It has its own dedicated 512K SRAM

Main
memory

Host
OS

On Chip Controller

CPU

Bare metal
console

POWER8
System

Measurement &
out-of-band control

 38

and can access main memory. The OCC firmware operates in a continuous loop with a

duration of 250 microseconds, constantly gathering system data. It can collect detailed

information on temperature, performance, power, and utilization, and has the ability to

control processor frequency and memory bandwidth. We have leveraged the OCC's

measurement capabilities to collect performance and not-busy stall traces for workload

analysis, and its frequency control capability to adjust frequencies using a max-min

performance threshold algorithm.

To determine the workload boundedness and leverage the Wb to mipsr correlation, we

employed SPEC CPU2006 [31] and PARSEC [23] benchmarks in our study. The POWER8

architecture comprises 12 cores, and each core has the capability to handle eight hardware

threads concurrently (SMT8).

Our experimental setting was a single core configured in SMT8 mode. Our goal was to study

architecture slack with diverse set of both serial and parallel benchmarks. We identified

SPECCPU 2006 as one workload set, as it offered a diverse set of serial benchmarks. We

found PARSEC as another workload set for multi-threaded workloads, as their programs

have been parallelized to take advantage of multiprocessor computers with shared memory.

Together, these benchmarks exhibit a variety of performance sensitivities to changes in CPU

frequency, which was an essential aspect for our investigation. We acknowledge that

SPECCPU underwent revisions in 2017, introducing enhanced features, improved

applications, multi-threading options for select applications, and an optional power

consumption measurement metric [19]. However, since our study and results are not

significantly impacted by these features, we opted to continue using SPECCPU 2006.

3.2 Experimental Setup for Study of Self-Refresh Energy Savings

We utilized a full system model based on GEM5 [52] to simulate a dual-core X86 ISA

processor model, as presented in Table 3.1. The simulated DDR4 subsystem is connected to

the controller via a single DDR4-2400 64-bit channel. This subsystem comprises 16 DRAMs,

with 8 per rank, and each DRAM has an 8-bit interface (×8). Timings and key current values

are based on the Micron DDR4-2400 8 Gbit datasheet (Micron MT40A2G4) as presented in

 39

Table 3.2. To calculate the energy components, we employed the timings and key current

values based on the Micron DDR4-2400 8 Gbit datasheet (Micron MT40A2G4) [42], which

were utilized by the DRAMPower tool [53, 54] integrated within gem5. During simulation,

the commands and timestamps are provided to DRAMPower at runtime. The DRAM

subsystem consists of 16 banks, and the buffer that holds incoming requests for all banks is

divided into separate read and write queues. The controller reorders the requests, and its

scheduling policy follows the principle of First Ready - First Come First Served (FR-FCFS).

The page policy employed is open adaptive, meaning that a specific bank's page is closed if

there are no row hits (but row misses occur), and it remains open if there are no requests

directed to that bank.

Processor X86 ISA, Dual Core, 4GHz, TimingSimpleCPU
L1 I-Cache 32KB private, 4-way, 64B line, 2 cycle access time
L1 D-Cache 32KB private, 4-way, 64B line, 2 cycle access time
L2 D-Cache 128KB shared, 8-way, 64B line, 20 cycle access time

Memory
controller

FR-FCFS, open-adaptive, address mapping RoRaBaCoCh, 128B write buffer, 64B read buffer,
64B cache line

Main memory DDR4 1Gbx8 device, 16 banks, 1 Channel, 2 Ranks per channel, 1200 MHz, BL8, Page size 1 KB

PARSEC blackscholes, bodytrack, dedup, fluidanimate, freqmine, streamcluster, swaptions, x264

Table 3.1: Simulation setup

Current Values

(mA)
 Timing Values

(ns)
IDD0 48 tCK 0.833
IDD1 60 tRAS 32
IDD4R 135 tRCD 14.16
IDD4W 123 tREFI 7800
IDD5R 53 tRP 14.16
IDD3N 43

IDD2N 34 Voltage Values (V)
IDD3P 37 VDD 1.2
IDD2P 25 VPP 2.5
IDD6N 30

IDD6E 35

IDD6R 20

Table 3.2: Power and timing parameters based on DDR4-2400 8
Gbit device [42]

Our intent is to study self-refresh energy savings with realistic workloads. The PARSEC

benchmarks [23] are selected for this purpose, that generate parse traffic to memory with

long idle times, thereby exercises the memory device to be in self-refresh mode for most of

the times. We utilized the staggered power-down strategy implemented in DRAMPower [54].

This approach enables the memory controller to transition from active power-down mode to

 40

precharge power-down mode and subsequently enter self-refresh mode in a staggered

manner, reducing the energy consumption of the DRAM. The staggered power-down

strategy, developed by Jung et al. [55], aims to achieve additional energy savings by

eliminating unnecessary self-refresh entries [56].

In our study, all the active, idle & power-down energy components of the DRAM device are

measured. All energy components are categorized into 4 groups, as shown in Table 3.3. G4 is

the self-refresh energy, which is of primary interest for us to investigate energy savings with

respect to reduced DRAM array voltage at normal (0- 85°C), extended (0- 95°C) and reduced

(0- 45°C) temperatures in LPASR mode. Array voltage is reduced up to 150 mV at 25 mV

granularity from 1.20 V nominal (i.e. 1.175 V, 1.150 V, 1.125 V, 1.100 V, 1.075 V, 1.050 V) and

quantify self-refresh energy savings at three temperature ranges (IDD6N/IDD6E/IDD6N).

Group DRAM energy breakdown

G1 act/pre IDD0: One bank ACTIVATE-to-PRECHARGE current
IDD1: One bank ACTIVATE-to-READ-to-
PRECHARGE current

Read IDD4R: Burst read current

Write IDD4W: Burst write current

refresh IDD5R: Distributed refresh current (1X REF)

G2 actBack IDD3N: Active standby current

preBack IDD2N: Precharge standby current

G3 actPowerDown IDD3P: Active power-down current

prePowerDown IDD2P: Precharge power-down current

G4 selfRefresh IDD6N: Self refresh current

Table 3.3: DRAM energy components

 41

Chapter 4

Architecture Slack Exploitation for
Phase Classification and
Performance Estimation

4.1 Workload Classification of Benchmarks

Exploiting slack, when the processor core is busy executing programs, requires a very close

activity monitoring of execution units. Our goal is to exploit such slack cycles, combined with

other metrics for workload classification and performance estimation.

Counter Description

Instruction
throughput (cIPS)

Completed instructions per second
throughput of a core

Stall cycles (cIdle)

Execution pipeline stall cycles (Not Busy)
with outstanding L3 miss

Table 4.1: Events tracked for Performance Management

Table 4.1 lists the counters available in POWER8 that are accessed by our implementations.

While the Instruction throughput counters are widely available across different processor

families, the cIdle counter is a novel counter introduced in POWER8 especially for facilitating

the tracking of idleness in the core when waiting on data from memory. cIPS measures the

rate of completed ‘millions of instructions per second (MIPS)’ i.e., instruction throughput in a

core pipeline that is a direct measure of the performance. cIdle measures ‘not busy’ cycles of a

core, when execution units are not busy, while there is at least one L3 cache miss pending,

which is a direct measure of the execution pipeline stall cycles.

 42

Figure 4.1: Hardware implementation of cIdle counter

The POWER8 core pipeline has both single-cycle and multiple-cycle execution units. Figure

4.1 illustrates the hardware implementation of the cIdle counter [11]. This counter increases

during each execution cycle when at least one thread is waiting for off-core memory access

and no threads are actively working, indicating that at least one processor core is not in use.

The cIdle counter performs a logical AND operation between the finish signals of single-cycle

units, the delayed busy signals of multi-cycle units, and the logical OR operation of L3 miss

signals from all threads. The output signal is activated when all pipelines are not busy,

meaning there are no finishes from single-cycle units or no delayed busy signals from multi-

cycle units. Accumulating this metric over millions of cycles reveals insights into pipeline

activity trends during periods of off-core memory access.

We identify that the instruction throughput (MIPS) and not-busy cycles (stalls) as providing

measures, which are complementary in nature to understand the fast or slow execution

behavior of pipeline. With this intuition, we propose to combine these metrics to characterize

the architecture slack and leverage for workload classification, phase classification and

performance estimation.

Workload classification can infer how the performance of a workload is bounded to frequency

changes. We propose a compounded metric Wb (workload bound) for this classification

purpose, which basically is “MIPS to Stalls” ratio, as shown in Equation 4.1. It is measured in

millions of instructions per second to million cycles of idle stalls. Wb metric is sensitive to

Logical
NOR

Logical
AND

Busy signal from
Multiple

Cycle Units

Finish signal
from Single
Cycle Units

L3 miss pending
for every thread

Logical
OR

Accumulator

cIdle Counter

 43

frequency changes, as measures of both instruction throughput and stall cycles are impacted

directly by frequency. It is a measure of architecture slack of workloads.

Performance estimation by a DVFS algorithm require accurate prediction of operational

relationship between frequency and performance at current and target frequency points

(frequency sensitivity), at run-time. It is essentially a measure of “architecture slack” present

in the workloads to indicate how many wasted cycles can be eliminated, by lowering the

frequency with minimal impact on performance. mipsr (ratio of MIPS between target and

current frequency) is a direct measure of frequency sensitivity accounting for architecture

slack, between two frequency points. However, measuring mipsr at runtime, has the

following drawbacks (a) DVFS algorithms need performance measurement at current and

target frequency to determine the sensitivity. This necessitates DVFS controller to slew

frequency from current frequency to target frequency point and (b) It must be calibrated

periodically to account for phase changes that occurs during runtime. Both (a) and (b) are

huge overhead for a performance control algorithm. One important motivation of our work is

to evaluate how Wb can be leveraged as proxy to mipsr, by exploiting the relationship

between these parameters. This is mainly to address the above-mentioned drawbacks. The

intuition behind this approach is that both parameters provide similar measure of frequency

sensitivity accounted for architecture slack of workloads.

𝑊𝑏 = (
𝑐𝐼𝑃𝑆

𝑐𝐼𝑑𝑙𝑒
) 𝑚𝑖𝑝𝑠/𝑚𝑐𝑦𝑐 (4.1)

Equation 4.1 is based on the following simple intuition. For a compute intensive workload,

instruction throughput measured by cIPS will be high and not-busy cycles measured by cIdle

will be low. Such trend will be exactly opposite for a memory-bound workload. Therefore,

higher bound Wb(high) indicates, more performance impact (more throughput and less

stalls) which is tightly bounded to frequency change implying a core-bound workload. Lower

bound Wb(low) indicates, less performance impact (less throughput and more stalls) which is

loosely bounded to frequency change, implying a memory-bound workload. We have

validated “Wb” behavior for a 1.5 GHz broader frequency range, from 2 to 3.5 GHz, at 100

 44

MHz granularity using four custom micro benchmarks: sqroot, fma, mcopy and mlr. sqroot &

fma are CPU intensive benchmarks, whereas mcopy & mlr are memory intensive

benchmarks.

Figure 4 .2: Wb (MIPS to stalls ratio) for custom core-bound benchmarks

Figure 4 .3: Detailed Wb trend for sqroot core-bound benchmark

0%

20%

40%

60%

80%

100%

W
b

 (
%

)

Frequency (MHz)

sqroot fma

2375
2490

2606
2723

2845
2961

3076
3195 3311

3427
3544

3661
3777

3897
4011

4131

7 7 8 9 10 12 15 16 19 21 22 24 26 27 31 32

362 359
341

316
289

255

204 196

175
166 159 153 143 142 131 128

0

50

100

150

200

250

300

350

400

2000

2500

3000

3500

4000

4500

N
o

tB
u

sy
 c

yc
le

s,
 W

b

M
IP

S

sqroot (Wb trend)

MIPS NotBusy Wb=(MIPS/NB)

 45

Figure 4 .4: Detailed Wb trend for fma core-bound benchmark

Figure 4 .5: Wb (MIPS to stalls ratio) for custom memory-bound benchmarks

The behavior of Wb for these four benchmarks, from 2 GHz to 3.5 GHz, is shown in Figures

4.2 & 4.5. Wb-values shown have been normalized to the peak value which is the value for

sqroot at 3.5 GHz. Figures 4.3 and 4.4 illustrate the detailed Wb trend along with MIPS and

Not busy cycles, across the 2 to 3.5 GHz full frequency range for sqroot & fma respectively. It

is observed that both MIPS & Not busy cycles are impacted at each measurement point of 100

MHz granularity step size, resulted in overall trend of Wb metric at each frequency point.

This shows that measure of these two metrics (MIPS, not-busy cycles) is impacted directly by

frequency and hence Wb inherently accounts for the same.

In sqroot and fma benchmarks, Wb(high) consistently exceeds 10% across all frequencies,

indicating a significantly higher instruction throughput than stalls. On the other hand, in

mload and mlr benchmarks, Wb(low) remains below 0.2%, suggesting a considerably higher

4369
4589

4825
5023

5241
5462

5678

5898

6116
6334

6552
6769

6989
7205

7426

7641

78 80

89 86
93 91 94

102 105 106 108

117 118 120
128 128

56 58 54
58 56

60 60

58

58 60
61 58 59 60 58 60

0

20

40

60

80

100

120

140

4000

5000

6000

7000

8000

N
b

o
tB

u
sy

 c
yc

le
s,

 W
b

M
IP

S
fma (Wb trend)

MIPS NotBusy Wb=(MIPS/NB)

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

W
b

 (
%

)

Frequency (MHz)

mload mlr

 46

occurrence of stalls compared to instruction throughput. This substantial disparity in the

normalized Wb metric value demonstrates its effectiveness in distinguishing between core-

bound and memory-bound workloads.

For a given workload set, either one of the bound Wb(high) or Wb(low) can be used as a

threshold for demarcation. In one scenario, a classification algorithm can classify workloads

that have Wb above Wb(high) as core-bound workloads and workloads that have Wb below

Wb(high) as memory-bound workloads. In another scenario, a classification algorithm can

classify workloads that have Wb below Wb(low) as memory-bound workloads and workloads

that have Wb above Wb(low) as core-bound workloads. For a given workload or an

application set, the Wb(high) and Wb(low) bounds can be learnt over time, based on which

control algorithm can decide, what Wb bound to use for demarcation given the optimization

targets. In one optimization, Wb(high) can be used a threshold to prioritize core-workloads to

guide frequency scaling decisions towards faster completion (favor performance). In another

optimization, Wb(low) can be used as a threshold to prioritize memory-workloads to guide

frequency scaling decisions towards frequency reduction, with minimal impact in

performance (favor energy).

In order to classify workload boundedness and exploit Wb to mipsr correlation, we used SPEC

CPU2006 [31] and PARSEC [23] benchmarks in this work. There are total of 38 benchmarks

(29 SPECCPU 2006 and 9 PARSEC). We collected traces of MIPS and stalls for all these

benchmarks for the entire runtime duration, at 2 GHz and 3.5 GHz frequencies. We computed

MIPS ratio (mipsr) and Wb at these two frequency points, as shown in Table 4.2. mipsr(norm)

is the mipsr normalized to frequency ratio. Wb(norm) are measured Wb values normalized

with current its GHz frequency for 3.5 GHz and 2 GHz frequency bounds.

For workload classification, we have used lower bound of Wb which is Wb(low) as threshold to

set memory boundedness as classification criteria. Based on Wb characterization learning with

custom benchmarks in section 3, we have leveraged Wb(low) as 0.2% of maximum

boundedness. Considering max Wb at 3.5 GHz for these benchmarks, this threshold translates

to ~5 (0.2% of 2615). This means, benchmarks with Wb above 5 are determined as core-bound

 47

and benchmarks with Wb below 5 are determined as memory-bound. Based on this Wb(low)

threshold, there are 23 SPEC CPU2006 and 9 PARSEC benchmarks identified as core-bound

workloads and there are 6 SPEC CPU2006 identified as memory-bound workloads, as shown

in Table 4.2.

Table 4.2: Parameters mipsr(normalized), Wb(normalized)
values

4.2 Performance Estimation Models

For performance prediction, we have developed compute and memory regression models,

which are shown in figures 4.1 and 4.2 respectively. These models exploit the relationship

between Wb and mipsr across all benchmarks, at 3.5 GHz and 2 GHz frequency bounds. They

provide mipsr performance estimate, at target frequency using Wb measured at current

frequency. These models are developed using the following 19 benchmarks (out of 38 total)

as training set: (429.mcf, 450.soplex, 433.milc, 410.bwaves, 436.cactusADM, 403.gcc,

434.zeusmp, 437.leslie3d, 453.povray, 447.dealII, 458.sjeng, 445.gobmk, 435.gromacs,

454.calculix, 401.bzip2, 400.perlbench, 416.gamess, 444.namd, 456.hmmer). The remaining

19 benchmarks are used to validate these models (as validation set): (459.GemsFDTD,

471.omnetpp, 482.sphinx3, 462.libquantum, 481.wrf, 483.xalancbmk, streamcluster,

Benchmarks

mipsr
(norm)

Wb(norm),

3.5 GHz

Wb(norm),
2 GHz

Benchmarks

mipsr
(norm)

Wb(norm),

3.5 GHz

Wb(norm),
2 GHz

Core bound (Wb > Wb(low))

447.dealII

95.5%

114

88
 Vips

99.4%

2615

1288

453.povray

98.6%

100

59
 x264

99.6%

1588

921

473.astar

97.5%

48

41
 456.hmmer

98.5%

1490

840

facesim

97.0%

47

36
 464.h264ref

99.4%

1418

967

437.leslie3d

96.6%

43

33
 freqmine

99.3%

970

465

483.xalancbmk

97.4%

38

29
 444.namd

99.3%

948

632

streamcluster

98.1%

36

32
 Ferret

98.3%

721

461

462.libquantum

97.4%

33

19
 416.gamess

98.8%

703

448

434.zeusmp

98.4%

30

25
 465.tonto

99.4%

584

353

481.wrf

97.0%

28

29
 400.perlbench

98.5%

464

374

403.gcc

95.1%

18

16
 401.bzip2

98.4%

291

258

482.sphinx3

96.5%

16

13
 454.calculix

99.6%

282

194

436.cactusADM

95.8%

10

11
 435.gromacs

99.4%

245

165

Memory bound (Wb < Wb(low))

 445.gobmk

99.5%

218

152

410.bwaves

85.9%

4

3
 bodytrack

98.3%

178

158

471.omnetpp

83.5%

3

3
 470.lbm

97.2%

158

145

433.milc

86.3%

3

3
 blackscholes

99.2%

157

98

450.soplex

84.0%

2

2
 458.sjeng

98.6%

153

125

459.GemsFDTD

82.5%

2

2
 fluidanimate

98.8%

123

117

429.mcf

81.8%

2

1

 48

facesim, 473.astar, blackscholes, fluidanimate, 470.lbm, bodytrack, 465.tonto, ferret,

freqmine, x264, 464.h264ref, vips).

Figure 4.6: Compute and memory regression models for mipsr estimate at 3.5
GHz target frequency

Figure 4.7: Compute and memory regression models for mipsr estimate at 2
GHz target frequency

Based on measurements of these 19 training benchmarks, 15 benchmarks whose Wb values

are above Wb(low) are identified as core-bound workloads and 4 benchmarks whose Wb

values are below Wb(low) are identified as memory-bound workloads. Such identified 15

core-bound and 4 memory-bound benchmarks, are used to realize compute and memory

regression models. Figure 4.6 shows the mipsr and Wb relationship for core-bound and

memory-bound benchmarks at 3.5 GHz target frequency, using 2 GHz measurements and

their models are shown in Equations 4.2 & 4.3. Figure 4.7 shows the mipsr and Wb

y = 0.0077ln(x) + 0.9439

R² = 0.4594

y = 0.0537ln(x) + 0.7991

R² = 0.8681

80.0%

82.0%

84.0%

86.0%

88.0%

90.0%

92.0%

94.0%

96.0%

98.0%

100.0%

1 10 100 1000

m
ip

sr
(n

o
rm

)

Wb 2 GHz (Norm)

Wb(low)

y = 0.0523ln(x) + 0.7971

R² = 0.8699

y = 0.0072ln(x) + 0.9443

R² = 0.482

80.0%

82.0%

84.0%

86.0%

88.0%

90.0%

92.0%

94.0%

96.0%

98.0%

100.0%

1 10 100 1000

m
ip

sr
(n

o
rm

)

Wb 3.5 GHz(Norm)

Memory Compute

Wb(low)

 49

relationship for core-bound and memory-bound benchmarks at 2 GHz target frequency,

using 3.5 GHz measurements and their models are shown in Equations 4.4 & 4.5.

𝑐𝑝𝑒𝑟𝑓(3.5 𝐺𝐻𝑧) ≈ [0.0077 𝑙𝑛(𝑊𝑏@2𝐺𝐻𝑧) + 0.9439] (4.2)

𝑚𝑝𝑒𝑟𝑓(3.5 𝐺𝐻𝑧) ≈ [0.0537 𝑙𝑛(𝑊𝑏@2𝐺𝐻𝑧) + 0.7991] (4.3)

𝑐𝑝𝑒𝑟𝑓(2 𝐺𝐻𝑧) ≈ [0.0072 𝑙𝑛(𝑊𝑏@3.5𝐺𝐻𝑧) + 0.9443] (4.4)

𝑚𝑝𝑒𝑟𝑓(2 𝐺𝐻𝑧) ≈ [0.0523 𝑙𝑛(𝑊𝑏 @3.5𝐺𝐻𝑧) + 0.7971] (4.5)

All 38 benchmarks (including both validation and training sets) are used to validate compute

and memory regression models for their performance prediction accuracy and detailed

results are presented later in section 5.

4.3 Phase Classification at Runtime

Classifying a workload on an interval by interval during runtime, is important to detect its

boundedness, based on which frequency scaling-factor can be determined for performance

management. We define this as “phase”, which is essentially the estimate of Wb for a given

interval of measurement. A phase transition or change can be determined based on Wb value

transition from high to low (compute to memory) or from low to high (memory to compute).

For phase classification, we have defined a fixed interval of 1 second. We accumulated Wb

over this interval and evaluated phase of three benchmarks having distinctive phase

characteristics: compute bound (400.perlbench), memory bound (471.omnetpp) and mixed

bound (433.milc). Here mixed bound implies, the compute phases (Wb above Wb(low)) and

memory phases (Wb below Wb(low)) alternate during runtime. We characterized phase

behavior for entire duration of the runtime at four different frequency points (3.5/3/2.5/2

GHz) to verify its consistency across broader operating frequency ranges, as shown in Figure

4.5.

 50

4.4 Performance Evaluation of Benchmarks

Performance estimation is done by DVFS algorithms to support frequency scaling.

Essentially, it is a measure of frequency-performance relationship at target frequency with

respect to its current frequency-performance setting, as shown in Equation 4.6.

𝑚𝑖𝑝𝑠(𝑡𝑎𝑟𝑔𝑒𝑡) = (
𝑓𝑟𝑒𝑞(𝑡𝑎𝑟𝑔𝑒𝑡)

𝑓𝑟𝑒𝑞(𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
) ∗ 𝑚𝑖𝑝𝑠(𝑐𝑢𝑟𝑒𝑛𝑡) ∗ (1 − 𝛽) (4.6)

In Equation 4.6, β refers to the memory boundedness of a workload. For an ideal compute

bound workload, (β=0), performance will track linearly with frequency. However, for any

practical workload, performance will track non-linearly, as there will be certain amount of

memory transactions involved, as shown by mipsr in Equation 4.7.

𝑚𝑖𝑝𝑠𝑟 𝛼
𝑚𝑖𝑝𝑠(𝑡𝑎𝑟𝑔𝑒𝑡)

𝑚𝑖𝑝𝑠(𝑐𝑢𝑟𝑒𝑛𝑡)∗(1− 𝛽)
 (4.7)

For establishing the relationship between Wb and mipsr, we have developed regression

models at two extreme frequency points, 2 GHz and 3.5 GHz, using SPECCPU 2006 and

PARSEC benchmarks suite. It has mix of CPU and memory intensive benchmarks, therefore

there are two models realized, cPerf and mPerf to estimate mipsr for compute and memory

bound workloads. These models can give an estimate of mipsr at target frequency, using Wb

at current frequency.

We summarize all above stated methods and propose the overall performance management

scheme as shown in Figure 4.8. It comprises three major steps (a) Workload bound detection

(b) Workload or phase classification and (c) Performance estimation.

 51

Figure 4.8: Performance prediction scheme

We have used this scheme to build accurate performance predictors. In first part of our work,

we have developed offline regression models to exploit correlation of Wb and mipsr

parameters, using a subset of benchmark suite (training set). Here offline refers to

measurement of these parameters for entire runtime of these benchmarks. To assess the

accuracy of our prediction models, we conducted validation using the remaining benchmarks

in our dataset. In the second part of our study, we devised an online interval-based approach

for classifying phases of benchmarks based on their unique characteristics. These phases

include compute bound, memory bound, and mixed bound workloads. We have verified

runtime performance prediction accuracy of few benchmarks using cPerf and mPerf models

with measured performance traces. We have also developed an algorithm to determine

compute or memory phases at runtime to guide frequency scaling decisions and evaluated

execution time impact of all benchmarks.

We implemented a max-min performance-threshold algorithm for performance

management. We studied the performance impact by comparing execution times of all

benchmarks, between max-min and "Dynamic Power Saver, Favor Performance (DPS-FP)"

algorithm in POWER8 [4].

Max-min algorithm collects MIPS and not-busy cycle traces to compute Wb for the current

phase interval of 1 second duration. Using computed Wb, it determines the compute or

memory phase, based on whether Wb is above or below Wb(low) respectively. It then drives

Workload or phase classifier

𝒘𝑪𝒍𝒂𝒔𝒔 = ൜
 𝐻𝑖𝑔ℎ 𝑊𝑏 , 𝑖𝑛𝑓𝑒𝑟𝑠 core bound
𝐿𝑜𝑤 𝑊𝑏 , 𝑖𝑛𝑓𝑒𝑟𝑠 memory bound

Core – performance predictor

c𝑃𝑒𝑟𝑓(𝑡𝑎𝑟𝑔𝑒𝑡) ≈ 𝑓𝑛൫Wb(𝑐𝑢𝑟𝑟𝑒𝑛𝑡)൯

Workload bound detector
𝑊𝑏 = (𝑐𝐼𝑃𝑆/𝑐𝐼𝑑𝑙𝑒)

Memory

Core

Memory – performance predictor

𝑚𝑃𝑒𝑟𝑓(𝑡𝑎𝑟𝑔𝑒𝑡) ≈ 𝑓𝑛൫Wb(current)൯

 52

the frequency to freq(min) for memory phase and freq(max) for compute phase. We have set

freq(min) threshold to 2 GHz for memory phase to guide towards minimum frequency and

freq(max) threshold to 3.5 GHz for compute phase to guide towards maximum frequency.

ALGORITHM 1: MAX-MIN PERFORMANCE THRESHOLD

Input: All 38 benchmarks, Wb

Output: Slew frequency to max or min frequency depends on compute or memory phase respectively

1. Initialization: freq(min)= 2 GHz, freq(max)= 3.5 GHz, Wb = Wb(low)(5), Phase duration = 1 sec, interval i = 0;

2. While (1) do

3. Collect MIPS and not-busy cycles for for 1 sec intervals (i)

4. Compute Wb(i) for every ith interval

5. if (Wb(i) > Wb(low))

6. Compute MIPS using (Wb(i), cPerf)

7. Increment i++ /*Next interval*/

8. Slew to freq(max) for Wb(i) /*Increase performance */

9. else

10. if (Wb(i) <= Wb(low))

11. Compute MIPS using (Wb(i), mPerf)

12. Increment i++ /*Next interval*/

13. Slew to freq(min) for Wb(i) /* Eliminate wasteful stall cycles waiting on memory resources*/

14. end if

15. end while

DPS-FP is a DVFS algorithm specifically designed for POWER8 to optimize performance. It

utilizes MIPS throughput to determine the level of core utilization and adjusts the frequency

accordingly. When the core is moderately or heavily utilized, the frequency is increased to the

maximum (3.5 GHz) to maximize performance. On the other hand, if the core is lightly

utilized or idle, the frequency is lowered to the minimum (2 GHz) to conserve power.

Table 4.3 shows the comparison of benchmarks execution time between max-min and DPS-

FP algorithms. Column A lists all the core and memory benchmarks. Columns B and C list

the runtime (seconds) of all benchmarks measured with DPS-FP and max-min algorithms

respectively. Column D shows the comparison of runtime differences (decrease or increase)

across all benchmarks.

 53

A B C D

Benchmarks DPS-FP
Algo

(default)

 (2-3.5) GHz
Min-Max

Algo

Runtime
decrease/

increase (%)

CPU Benchmarks

Vips 406 405 -0.2%

x264 465 463 -0.4%

456.hmmer 487 485 -0.4%

464.h264ref 1360 1353 -0.5%

freqmine 969 968 -0.1%

444.namd 716 714 -0.3%

Ferret 485 483 -0.4%

416.gamess 2487 2482 -0.2%

465.tonto 746 743 -0.4%

400.perlbench 1025 1020 -0.5%

401.bzip2 1576 1572 -0.3%

454.calculix 1066 1063 -0.3%

435.gromacs 677 676 -0.1%

445.gobmk 1704 1700 -0.2%

bodytrack 460 458 -0.4%

470.lbm 206 205 -0.5%

blackscholes 331 330 -0.3%

458.sjeng 2441 2438 -0.1%

fluidanimate 855 851 -0.5%

447.dealII 1258 1253 -0.4%

453.povray 656 654 -0.3%

473.astar 1204 1199 -0.4%

Facesim 476 474 -0.4%

437.leslie3d 149 149 0.0%

483.xalancbmk 774 771 -0.4%

streamcluster 530 528 -0.4%

462.libquantum 188 188 0.0%

434.zeusmp 775 772 -0.4%

481.wrf 825 822 -0.4%

403.gcc 864 861 -0.3%

482.sphinx3 977 973 -0.4%

436.cactusADM 290 289 -0.3%

Memory Benchmarks

410.bwaves 185 201 8.1%

471.omnetpp 814 877 7.2%

433.milc 434 466 6.9%

450.soplex 516 559 7.8%

459.GemsFDTD 506 546 7.4%

429.mcf 475 509 6.6%

Table 4.3: Benchmarks – Performance impact study

4.5 Results and Discussion

MIPS prediction accuracy is a critical metric in evaluating the performance of computer

processors, particularly in the context of estimating the processor's capability to execute a

given number of instructions per second at various frequencies. This accuracy is determined

by comparing the MIPS estimated through computational models, such as cPerf and mPerf,

against the MIPS actually measured on the hardware for a target frequency, as shown in

Equation 4.8. The process of estimating MIPS involves specific steps outlined in an

algorithm, where lines 6 and 11 play a pivotal role in generating the MIPS estimate.

Essentially, this comparison between estimated and measured MIPS allows for the

assessment of the precision of the models used in predicting processor performance under

 54

different operational conditions.

The accuracy of MIPS prediction was evaluated through empirical measurements conducted

on hardware running at frequencies of 2 GHz and 3.5 GHz. These measurements were taken

over the entire runtime duration of the processor while executing benchmark suites like

SPEC CPU2006 and PARSEC, which are widely recognized for their ability to simulate real-

world computing environments and workloads. During these tests, both the MIPS and the

not-busy cycles - periods when the processor is not executing any instructions - were

meticulously recorded. Furthermore, a metric known as Wb was calculated based on the data

collected from these measurements. The Wb metric, derived from the measured MIPS and

not-busy cycle traces at the two specified frequency points, serves as an additional parameter

in evaluating the processor's efficiency and the accuracy of MIPS predictions, thereby

providing a comprehensive view of the processor's performance characteristics.

𝑀𝐼𝑃𝑆 (𝑒𝑟𝑟𝑜𝑟) = (𝑀𝐼𝑃𝑆(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) ~ 𝑀𝐼𝑃𝑆(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)) (4.8)

In the realm of computing performance evaluation, the concept of using Wb as a proxy for

MIPS has been explored with promising results. Specifically, Wb values computed at a base

frequency of 2 GHz were utilized to forecast MIPS at a higher target frequency of 3.5 GHz.

This prediction was facilitated by employing specific prediction models, as detailed in

Equations 4.1 and 4.2 found in section 4.2 of the referenced document. The accuracy of these

predictions was then assessed by comparing the predicted MIPS values against the actual

MIPS measurements obtained at the 3.5 GHz frequency. The comparison, illustrated in

Figure 4.9, revealed that the discrepancy between the predicted and actual MIPS values was

within a narrow margin of error, not exceeding 3% across various benchmarks. This outcome

underscores the efficacy of using Wb as a reliable indicator for MIPS rates across different

frequencies, thereby supporting its potential as a versatile tool in performance evaluation.

Further extending this methodology, the study also investigated the reverse scenario where

Wb values computed at the higher frequency of 3.5 GHz were used to predict MIPS at the

lower target frequency of 2 GHz. This prediction process was guided by another set of

 55

prediction models, encapsulated in Equations 4.3 and 4.4, as outlined in the same section

4.2. The fidelity of these predictions was similarly evaluated by comparing the predicted

MIPS against the actual MIPS measurements at the 2 GHz frequency, with the findings

depicted in Figure 4.10. Remarkably, the error margin between the predicted and measured

MIPS values remained within the 3% threshold across all benchmarks in this scenario as

well. This consistency in prediction accuracy across both directions of frequency change

further validates the robustness of Wb as a proxy for MIPS, demonstrating its applicability

over a broad spectrum of frequencies in computing performance assessments.

Figure 4.9: MIPS predicted (using models) vs measured error at 3.5 GHz

Figure 4.10: MIPS predicted (using models) vs measured error at 2 GHz

In the realm of online phase classification, the metric Wb over a one-second duration serves

as a pivotal unit of measurement for analyzing the runtime phase characteristics of various

0
.2

%

0
.2

%

0
.3

%

1
.3

%

2
.9

%

0
.7

%

0
.4

%

0
.1

%

1
.5

%

0
.8

%

1
.6

%

0
.0

% 0
.4

%

0
.5

%

1
.1

%

0
.2

%

0
.3

%

1
.1

%

2
.4

%

1
.3

%

0
.7

%

0
.5

% 1
.0

%

1
.3

%

0
.0

%

1
.1

%

1
.1

%

0
.2

% 0
.5

%

0
.4

%

0
.3

%

0
.8

%

0
.2

%

0
.1

%

1
.1

%

0
.0

%

0
.2

%

0
.5

%

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

Er
ro

r
(%

)

0
.3

%

0
.2

%

0
.1

%

1
.2

%

2
.5

%

0
.8

%

0
.2

%

0
.0

%

1
.5

%

0
.5

%

1
.6

%

0
.1

% 0
.4

%

0
.5

%

1
.2

%

0
.3

%

0
.3

%

0
.9

%

2
.4

%

1
.2

%

0
.9

%

0
.6

% 0
.9

% 1
.2

%

0
.1

%

1
.1

%

1
.1

%

0
.1

% 0
.4

%

0
.3

%

0
.4

%

0
.9

%

0
.0

%

0
.1

%

1
.2

%

0
.1

%

0
.2

% 0
.7

%

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

Er
ro

r
(%

)

 56

benchmarks. Specifically, Figure 4.11 delves into the examination of three distinct

benchmarks—400.perlbench, 471.omnetpp, and 433.milc—across four varying frequencies:

3.5 GHz, 3 GHz, 2.5 GHz, and 2 GHz. The analysis reveals that 400.perlbench consistently

maintains a Wb value above the designated low threshold (Wb(low)), indicating its highly

compute-bound nature throughout its runtime. Conversely, 471.omnetpp demonstrates a Wb

value significantly below the Wb(low) threshold, categorizing it as highly memory-bound

during its entire runtime. Meanwhile, 433.milc presents a more complex scenario, with its

Wb value fluctuating above and below the Wb(low) threshold, thereby showcasing a transient

behavior with mixed phases of compute and memory-bound characteristics.

This intricate analysis underscores a crucial observation: the phase classification, as

determined by the Wb value, remains consistent across different frequency settings, whether

the value stays above or below the threshold. This consistency in behavior, irrespective of the

frequency variations, suggests that the utilization of Wb for phase classification is not only

effective but also versatile, capable of adapting to a broad spectrum of frequency ranges.

Such a revelation is instrumental in understanding the inherent characteristics of

benchmarks, enabling a more nuanced approach to optimizing performance across diverse

computational environments. The ability to accurately classify phases based on Wb values,

therefore, holds significant promise for enhancing the efficiency and adaptability of

computing systems, paving the way for more sophisticated performance optimization

strategies that can cater to the specific demands of various benchmarks.

The comparison between the max-min threshold algorithm and the conventional DPS-FP

algorithm offers insightful revelations about their efficacy across different types of

benchmarks. The max-min threshold algorithm dynamically adjusts the processor frequency

to 3.5 GHz for compute-intensive phases and to 2 GHz for memory-intensive phases,

contingent upon Wb surpassing or not surpassing a predefined low threshold (Wb(low)).

Conversely, the DPS-FP algorithm maintains a frequency of 3.5 GHz for moderate to high

core utilization scenarios and reduces it to 2 GHz under conditions of minimal core activity

or idleness. This distinction in frequency management is particularly pronounced in core

 57

benchmarks, where the prevalence of compute phases over memory phases for the majority

of the workload runtime is substantiated by high Wb values as documented in Table 4.2, and

further illustrated by the high MIPS) and low Not Busy cycles of three core benchmarks

depicted in Figure 4.12. Despite the high MIPS and Wb leading both algorithms to operate at

3.5 GHz for most of the workload runtime, the observed runtime difference between the two

algorithms across all core benchmarks is marginal, at merely 0.5%.

In contrast, the behavior of these algorithms diverges more significantly in memory

benchmarks, characterized predominantly by memory phases over compute phases

throughout the workload runtime. This scenario is corroborated by the low Wb values

presented in Table 4.2 and the corresponding low MIPS and high Not Busy cycles of three

memory benchmarks, as demonstrated in Figure 4.13. The DPS-FP algorithm's propensity to

elevate the frequency to 3.5 GHz even with moderate core activity results in expedited

execution. However, the max-min threshold algorithm, guided by the Wb value, reduces the

frequency to 2 GHz, effectively minimizing wasteful cycles that would otherwise be spent in

stalls awaiting memory resources during memory phases. This frequency adjustment strategy

by the max-min algorithm leads to a notable performance improvement, with an average

increase of approximately 7.3% across all memory benchmarks, and a peak increase of about

8.1% for the 410.bwaves benchmark.

Further validation of these algorithm’s performance was conducted through the evaluation of

predicted versus measured runtime performance for both compute-bound (400.perlbench)

and memory-bound (471.omnetpp) benchmarks within a frequency range of 2-3.5 GHz. The

comparison, as depicted in Figure 4.14, showcases the close alignment between the predicted

performance, derived from cPerf and mPerf models, and the actual measured performance,

with a deviation within a 3% error margin. This congruence underscores the reliability of the

max-min threshold algorithm in optimizing performance by judiciously managing processor

frequencies based on the nature of the workload, thereby affirming its potential as a superior

alternative to the conventional DPS-FP algorithm for certain benchmark categories.

 58

Figure 4.11: Runtime phase characteristics of 400.perlbench, 471.omnetpp
and 433.milc benchmarks

1

10

100

1000

10000

100000

1 101 201 301 401 501 601 701 801 901 1001 1101 1201 1301 1401 1501 1601 1701

W
b

Time (seconds)

400.perlbench

Wb_3.5GHz Wb_3GHz Wb_2.5GHz Wb_2GHz

0

1

10

100

1000

1 101 201 301 401 501 601 701 801 901 1001 1101 1201

W
b

Time (seconds)

471.omnetpp

0

1

10

100

1000

1 101 201 301 401 501 601

W
b

Time (seconds)

433.milc

Wb(low)

Wb(low)

Wb(low)

Compute phases

Memory phases

 59

Figure 4.12: MIPS, NotBusy & Wb characteristics of core-benchmarks

(456.hmmer, 464.h264ref and 416.gamess)

0

500

1000

1500

2000

2500

0

2000

4000

6000

8000

10000

12000

1 101 201 301 401 501 601 701

W
b

M
IP

S,
 N

o
tB

u
sy

 c
yc

le
s

Time (sec)

456.hmmer

MIPS NotBusy Wb

0

200

400

600

800

1000

1200

0

2000

4000

6000

8000

10000

12000

14000

1
1

0
1

2
0

1
3

0
1

4
0

1
5

0
1

6
0

1
7

0
1

8
0

1
9

0
1

1
0

01
1

1
01

1
2

01
1

3
01

1
4

01
1

5
01

1
6

01
1

7
01

1
8

01
1

9
01

2
0

01
2

1
01

2
2

01
2

3
01

2
4

01
2

5
01

2
6

01
2

7
01

2
8

01
2

9
01

3
0

01
3

1
01

3
2

01
3

3
01

3
4

01
3

5
01

3
6

01
3

7
01

3
8

01
3

9
01

4
0

01
4

1
01

W
b

M
IP

S,
 N

o
tB

u
sy

 c
yc

le
s

Time (sec)

416.gamess

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0

2000

4000

6000

8000

10000

12000

14000

1 101 201 301 401 501 601 701 801 901 1001110112011301140115011601170118011901200121012201

W
b

M
IP

S,
 N

o
tB

u
sy

 c
yc

le
s

Time (sec)

464.h264ref

 60

Figure 4.13: MIPS, NotBusy & Wb characteristics of memory-benchmarks
(410.bwaves, 450.soplex and 459.GemsFDTD)

0

50

100

150

200

250

300

350

400

0

2000

4000

6000

8000

10000

12000

14000

16000

1 101 201 301 401 501 601 701 801

W
b

M
IP

S,
 N

o
tB

u
sy

 c
yc

le
s

Time (sec)

450.soplex

0

100

200

300

400

500

600

700

0

5000

10000

15000

20000

25000

30000

1 101 201 301 401 501 601 701 801

W
b

M
IP

S,
 N

o
tB

u
sy

 c
yc

le
s

Time (sec)

459.GemsFDTD

0

50

100

150

200

250

300

350

400

450

500

0

2000

4000

6000

8000

10000

12000

14000

16000

1 101 201

W
b

M
IP

S,
 N

o
tB

u
sy

 c
yc

le
s

Time (sec)

410.bwaves

MIPS NotBusy Wb

 61

Figure 4.14: MIPS predicted vs measured for 400.perlbench and
471.omnetpp benchmarks

0

2000

4000

6000

8000

10000

12000

14000

1 101 201 301 401 501 601 701 801 901 1001

M
IP

S

Time (seconds)

400.perlbench

MIPS_Measured_hardware MIPS_Predicted_model

0

1000

2000

3000

4000

5000

6000

7000

8000

1 101 201 301 401 501 601 701 801

M
IP

S

Time (seconds)

471.omnetpp

 62

Chapter 5

Voltage Reduced Self Refresh (VRSR)
for Optimized Energy Savings in
DRAM Memories

5.1 Impact of Reduced Voltage and Temperature on Self-refresh

Refresh essentially requires activation, restore and precharge operations of every row periodically,

as shown in Figure 5.1. Before every row activation, the bit lines and sense amplifiers of the

selected bank must be properly precharged. The precharge time (tRP) represents the duration,

measured in clock cycles, required to end access to an open row of memory and precharge the

bitline (BL). Row activation necessitates a specific number of clock cycles (tRCD) for data to

become available at the sense amplifiers, although it has not yet been restored to the DRAM cells.

Following the activation process, the data restoration operation is completed after a time period of

tRAS, starting from the beginning of the activation process. Once this process is finished, the

DRAM device is ready to receive a precharge command. The latency of these three crucial

operations (tRP, tRCD, and tRAS) depends on factors such as the cell capacitance, bitline

capacitance, and array voltage [45].

Figure 5 .1: Timing parameters associated with refresh operation of a row

Data
ready

Precharge Activation Activation

tRCD

tRAS tRP

63

Commodity DRAM devices necessitate the refreshing of each cell within a specific retention period,

typically every 32ms or 64ms. The retention time of a cell refers to the duration it can retain

sufficient charge for the sense amplifiers to detect either '0' or '1', and it is directly influenced by the

supply voltage of the DRAM array. Lowering the supply voltage reduces the amount of charge

stored in a cell, resulting in a decreased retention time. In typical DRAM configurations, internal

voltage generators are utilized to enable operation with a single external power supply voltage

(VDD), as illustrated in Figure 5.2. The memory array voltage-down converters (Varray) and the

DRAM control and logic circuitry voltage-down converters (Vccp) generate the necessary voltage

levels. The memory cell array is subjected to negative back bias voltage (Vbb), bit line precharge

voltage (Vbl), and cell plate voltage (Vcp). The boosted word line voltage (Vpp) applied to the word

line driver enhances random row access time. In modern DRAM systems [79], to reduce idle power

consumption during self-refresh mode, the peripheral circuitry (interface and delay locked loop) is

deactivated. Furthermore, the memory controller is disconnected, and refresh operations are

autonomously performed by the internal counter. Consequently, decreasing the supply voltage

(VDD) solely impacts the reliability, latency, and data retention characteristics of the DRAM array.

Figure 5.2: Internal voltages in DRAM [46]

The temperature has a significant impact on data retention in DRAM devices [80]. Higher

temperatures lead to increased leakage current, requiring higher refresh rates to ensure data

Gates

Flip-Flops

Voltage down
converter

Voltage down
converter

Word
driver

Sense
amplifier

Equalizer

Memory
cell

𝑽𝒑𝒑

𝑽𝒃𝒍

𝑽𝒃𝒃

𝑽𝒄𝒑

Bit line

Memory cell array Word
driver

DRAM control and
logic

𝑽𝑫𝑫

Varray Vccp

 64

integrity. On the other hand, at lower temperatures, refresh rates can be reduced to minimize

power consumption while still maintaining data integrity. JEDEC has introduced the LPASR (Low

Power Auto Self Refresh) feature to optimize the refresh current based on the temperature range.

In this mode, the DRAM adjusts its self-refresh rate according to the operating temperature,

reducing it at low temperatures and increasing it at high temperatures [42]. The DRAM device

autonomously manages the entry into self-refresh mode within the supported temperature range.

Figure 5.3 demonstrates that for the normal temperature range of 45°C to 85°C, the device

maintains a 1X refresh rate. For the extended temperature range of 85°C to 105°C, it maintains a

2X refresh rate, while for the reduced temperature range of -40°C to 45°C, it maintains a 1/2X

refresh rate.

Figure 5 .3: Refresh rates associated with temperature ranges in LPASR [42]

The self-refresh current at extended and reduced temperatures are denoted as IDD6E and IDD6R

respectively. Due to increased refresh rate at extended temperature, the IDD6E increases

significantly. Conversely, due to lower refresh rate at reduced temperature, the IDD6R decreases

significantly.

65

Figure 5 .4: Self-refresh power trend in DDR4 devices at different capacities
[42], [8-10]

In this work, an attempt has been made to understand the self-refresh power increase trend and

how IDD6E, IDD6R vary compared to IDD6, across different capacity devices. For this purpose,

4/8/16/32 Gb DDR4 devices have been considered. Our study leads to a key observation i.e., as

device capacity grows (4 Gb to 32 Gb), the IDD6R, IDD6N, IDD6E increase by ~3x, ~6x, ~10x

respectively, as shown in Figure 5.4. Owing to the fact that, the refresh rate is doubled at high

temperatures, the increasing trend in IDD6E strongly motivates us to investigate power savings at

reduced DRAM supply voltages.

We are the first to present the detailed empirical study of energy savings at reduced voltages across

different supported temperature ranges, during "self-refresh" mode of operation in DDR4 DRAMs.

At reduced supply voltages, the internal operations (tRP, tRAS & tRCD) require extra time to

finish, and this introduces additional latency cycles. In self-refresh mode, these operations are

managed internally by the DRAM without the involvement of memory controller. Since there is no

data read from a column involved, tRCD is not of significance for our study. The latency impacts of

tRAS and tRP operations are measured with the help of SPICE model. For this purpose, the sense

amplifier design from 45 nm SPICE model [43] is updated appropriately for the 16 nm transistor

model. With these increased latency values identified for a range of six reduced voltage levels,

energy savings are quantified at normal (1x standard refresh), extended (2x refresh) and reduced

(0.5x refresh) temperature ranges, as supported in LPASR modes.

Eight PARSEC benchmarks as a workload set. To quantify the idle times, we have compared the

 66

energy between active and power-down modes which are grouped into G1 and G2 respectively.

G1 group:

• Active: At least one bank is operational, meaning there is no power-down mode (cke=1), and

the internal refresh is not performed automatically (the DRAM controller must schedule

refresh commands).

G2 Group:

• Precharge Power-Down (PDNP) state: In this state, all banks are closed and precharged,

which occurs when the DRAM is in the IDLE state and cke=0. There is no internal refresh

operation.

• Active Power-Down (PDNA) state: In this state, at least one bank is active, indicated by the

cke=0 signal, while the other banks remain closed and precharged. There is no internal

refresh operation.

• Self-Refresh (SREF) state: In this state, all banks are precharged and closed, and the DRAM

initiates its internal self-timed refresh process. The cke=0 signal is used to trigger this self-

refresh operation.

As shown in Figure 5.5 Energy in power-down modes (G2) dominates significantly over active state

(G1) and this clearly indicates low traffic generated across benchmarks. Same observation has been

validated with memory throughput metric, as shown in Figure 5.6. This ensures that PARSEC

benchmarks generate very low traffic are used as a workload set to exercise long idle times. During

run time, memory controller will detect idle times present in such low traffic scenarios and

command DRAM to enter into self-refresh mode. The benchmarks are simulated using Gem5 [52]

and the IDD6 power pertaining to different temperature ranges at reduced voltages is measured

using the DRAMPower [54].

67

Figure 5 .5: Comparison of energy breakdown between active and power-down
modes

These increased tRAS & tRP latencies also increase row refresh cycle time (tRFC) in self-refresh

mode and creates a time overhead in the exit latency. As vendors do not disclose their specific

implementation of self-refresh scheme, the detailed quantitative evaluation of workload

performance impact due to tRFC refresh overhead is studied with auto-refresh scheme as a

baseline. Also, given the unavailability of HW setup & lack of voltage control capabilities (DRAM

array), our current work focus on the simulation to quantify the energy savings.

Figure 5 .6: Memory throughput comparison

6679 7141
2601 588 1338 4529

1565
11

18934 21173
9860 2359 6199 21239

19609
8263

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

streamcluster x264 bodytrack blackscholes fluidanimate dedup freqmine swaptions

En
er

gy
 c

o
n

su
m

p
ti

o
n

 b
re

ak
d

o
w

n

G1 (act/pre/read/write/refresh) G3 (actPD/prePD/selfRefresh)

18.19

12.18

15.84

12.82

10.09

3.77

2.36

0.03

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

streamcluster x264 bodytrack blackscholes fluidanimate dedup freqmine swaptions

M
em

o
ry

 t
h

ro
u

gh
p

u
t (

M
B

/s
ec

)

 68

5.2 Latency Evaluation with SPICE Model

In order to study the latency impacts of tRAS and tRP parameters at lower voltages, we have

used 45 nm open-sourced model [58] as a baseline. As our work is based on DDR4 memory, we

select 16 nm as a technology for SPICE simulation, mainly for two reasons (a) DDR4 intercept to

market is based < 20 nm technology node [82] and (b) PTM has model availability for 16 nm

[59]. We leveraged the same DRAM cell array model from [58] and updated the 16 nm

technology parameters from PTM [59].

We have selected a 512x512 array as it is a commonly used configuration in modern DRAM

chips. The latency of DRAM operations accessing a cell array is significantly influenced by the

parasitic resistance and capacitance present on the bit lines and word lines [83]. For our analysis,

we assumed specific values for the cell and bit capacitances, namely 24 fF and 144 fF

respectively, based on a 45 nm model. To account for scaling trends, we referenced Table 5.1 [81]

to estimate the values of the storage capacitor (Cs), storage resistor (Rs), bit-line capacitor (Cb),

and bit-line resistor (Rb) for feature sizes ranging from 40 nm to 20 nm. The changes and

corresponding values are summarized in Table 5.2.

F, nm 90 70 60 50 40 20 10

Rs (Ohm) 210 527 928 1840 4380 1.15 x 105 1.37 x 108
Rb (Ohm) 144 192 228 284 374 932 2600

Table 5.1: Resistances and capacitances in DRAM [41]

• Rs scales very high from 4380 ohm (40nm) to 115 Kohm (20nm), which is ~27x times.

We have assumed 150x increase with respect to Cs value of 45 nm, which is 150 Kohm.

This very high Rs would impact the latency timings, which is quantified in the simulation.

• Rb scales high from 374 ohm (40nm) to 932 ohm (20nm), which is ~3x times. We have

assumed 3x time with respect to Rb of 45 nm, which is 30 Kohm.

• Considering DRAM scaling at traditional pace which is roughly 30% at each node, we

have assumed Cs and Cb to be 7 fF and 43 fF respectively [51] for 16 nm. These values are

~70% reductions compared to 45 nm.

69

Feature 16 nm 45 nm

Storage capacitor (Cs) 24 24
Storage resistor (Rs) 150000 1000
Bit-line capacitor (Cb) 43 144
Bit-line resistor (Rb) 30000 10000

Table 5.2: Summary of resistance and capacitor changes

We have utilized the 16 nm low-power applications (PTM LP) model from PTM, which

incorporates high-k/metal gate and stress effects. It is crucial to maintain sufficient storage

capacitance and ensure satisfactory performance of the cell transistor in order to preserve the

retention time characteristic of a DRAM cell [84]. For the access transistor in the 16 nm model,

we have selected moderate dimensions in comparison to the 45 nm model. Specifically, we

assumed a length of 0.030 um and a width of 0.220 um for the access transistor, representing

reductions of 35% and 40% respectively when compared to the 45 nm access transistor

dimensions. Table 5.3 provides a summary of the dimension details for the transistors in the

DRAM cell. The access transistors are denoted as M7 and M8, while the dimensions of the sense

amplifier and other transistors remain unchanged. To ensure reliable DRAM operation, the

following factors are taken into consideration for the bitline measurements to determine the

minimum values for tRAS and tRP: (a) the ready-to-precharge voltage, assumed to be 95% of

Varray, and (b) the ready-to-activate voltage, assumed to be within 2% of Varray /2. In our

revised measurements, we conservatively include the same latency guardband (i.e., 38%)

employed by manufacturers for the latency value [43].

16 nm model 45 nm model
FET
ID

Name Length
(um)

Width
(um)

FET
ID

Name Length
(um)

Width
(um)

M7 nmos16lp 0.030 0.220 M7 nmos45lp 0.085 0.555
M9 pmos16lp 0.27 0.22 M9 pmos45lp 0.27 0.22
M11 pmos16hp 0.16 tw M11 pmos45hp 0.16 tw
M10 pmos16hp 0.16 tw M10 pmos45hp 0.16 tw
M4 nmos16hp 0.16 prentw M4 nmos45hp 0.16 prentw
M5 nmos16hp 0.16 prentw M5 nmos45hp 0.16 prentw
M6 nmos16hp 0.16 prentw M6 nmos45hp 0.16 prentw
M12 pmos16hp 0.16 pretw M12 pmos45hp 0.16 pretw
M13 pmos16hp 0.16 pretw M13 pmos45hp 0.16 pretw
M3 nmos16hp 0.16 ntw M3 nmos45hp 0.16 ntw
M2 nmos16hp 0.16 ntw M2 nmos45hp 0.16 ntw
M1 nmos16lp 0.27 0.22 M1 nmos45lp 0.27 0.22
M8 nmos16lp 0.030 0.220 M8 nmos45lp 0.085 0.555

Table 5.3: Summary of 45 nm and 16 nm transistor dimensions

 70

Table 5.4 lists the latency values obtained from the 16 nm SPICE model, at nominal and reduced

voltage points. The latency guardband of 38% is added to account for manufacturing process

variation [43].

Voltage Time taken
(ns)

GB (38%
added)

tRAS tRP tRAS tRP
1.175 19.95 60.04 27.5 13.9
1.150 21.22 60.81 29.3 14.9

1.125 21.50 60.27 29.7 14.2
1.100 21.86 61.00 30.2 15.2
1.075 22.18 60.54 30.6 14.5
1.050 22.50 61.54 31.1 15.9

Table 5.4: Latency values obtained from 16 nm SPICE model
simulation

5.3 Proposed architectural changes for practical
implementation

Our current work mainly focuses on simulation aspects to quantify energy savings at reduced

voltages of self-refresh operation. Validation of the energy savings in real hardware needs a

capability to reduce voltage only during self-refresh in DRAM. The existing architecture lacks

this ability and hence it becomes a real limitation for validation. However, as a first step, we

propose the high-level architecture changes required on DRAM as shown in Figure 5.1, to

discuss and motivate for basic implementation.

Our proposed idea requires reduced DRAM array voltage in self-refresh mode to realize

energy savings. The extent of voltage reduction purely depends on the design, circuit

architectures and process technologies used in the DRAM manufacturing. Hence, each

vendor may have a specific voltage point where self-refresh operation can function reliably.

We denote this optimal reduced voltage point as VID (Voltage ID).

We propose the scheme as voltage reduced self-refresh (VRSR) mode to be leveraged by the

memory controller as an extension to deeper low power modes beyond self-refresh, as shown

in Figure 5.8. A mode register set (MRS) register setting in DRAM can determine the mode

of self-refresh operation, as shown in Table 5.5. Memory boot initialization flow can program

mode register set (MSR) to enable or disable VRSR mode of self-refresh operation. If

disabled, the DRAM will select 1.2 V nominal voltage for self-refresh operation. If enabled,

the DRAM will select reduced voltage (VID < 1.2 V) for self-refresh operation.

71

MRx[0] Self-refresh mode

0 Default (@ 1.2 V)

1 Voltage reduced (@ VID)

Table 5.5: Mode register setting to select self-refresh mode

We have recommended changes on the DRAM architecture to support this setting of voltage

and latency parameters, as shown in Figure 5.7. (i) A bit field of a MRS register to determine

the voltage setting during self-refresh operation (ii) A voltage generator that generates VID

and it is fed to a multiplexer (iii) A multiplexer that has 1.2 V as one input and VID as

another input and selects one among them, based on MRS setting (iv) A latency profile

selector that holds tRAS and tRP to be applied during self-refresh operation, based on MRS

setting.

Figure 5.7: Proposed DRAM architecture changes for reduced DRAM voltage
operation in self-refresh mode

For DRAMs without internal voltage regulator, an external regulator can deliver voltage,

which can be programmed through the serial interface. For DRAMs with internal voltage

regulator, the voltage programming can occur with help of MRS register commands along

with multiplexer, through the host interface.

MRx[0]=0 enables default mode of self-refresh operation, which is the power-on default

 72

setting. For this mode setting, multiplexer will source 1.2 V nominal voltage for Varray.

Latency profiler will apply default tRAS and tRP parameters corresponding to 1.2 V.

MRx[0]=1 enables voltage reduced mode of self-refresh operation, which is to be set during

boot initialization. For this mode setting, multiplexer will source VID for Varray. Latency

profiler will apply default tRAS and tRP parameters corresponding to VID.

Figure 5.8: State diagram of DRAM commands for low-Power modes,

according to JEDEC (proposed modes are highlighted in grey)

During runtime, the controller will select the VRSR mode by sending the entry command

(VRSREN). Once the entry command is registered and decoded by DRAM, it will direct the

multiplexer to source VID for Varray. It will direct the latency profiler to apply tRAS and tRP

corresponding to VID. After this, the self-fresh controller must finish refreshes for all rows

at least once, with the modified voltage & latency profiles. This concludes the VRSRx entry

operation. Once the exit command is registered and decoded by DRAM, it will direct the

multiplexer to revert voltage to 1.2 V for Varray. It will also direct the latency profiler to

revert tRAS and tRP corresponding to 1.2 V. This summarizes the VRSR entry operation.

While DRAM is in VRSR mode, the performance of the workloads will not be impacted, as

there are no mainline read & write operations involved. However, during exit of VRSR

modes, there would be additional latencies associated with restoration of voltage and timing

settings back to nominal values and this will impact performance. We have quantified the

performance impact seen by the workloads incurred due to exit latency of VRSR modes, in

the next section.

73

5.4 Quantitative evaluation of performance overhead due to
voltage reduced self-refresh

In a DRAM, it is necessary to refresh each row once every 64 ms (tRET) within the normal

temperature range (< 85 C) according to DDR standards. The time interval between refresh

requests to a bank is calculated by dividing 64 ms by the number of rows. In the auto-refresh

scheme, the memory controller sends 8192 refresh commands to a DRAM bank at an interval

of 7.8 uS (tREFI). The value of tREFI remains constant at 8192, regardless of the number of

rows per bank, which has increased significantly with higher device densities. As a result, the

DRAM needs to refresh multiple rows (M) for each request. Each refresh request has a

duration of the refresh cycle time (tRFC), which includes the time to refresh M rows,

precharge the bank, and recover the charge pump (tREC). This can be calculated using

equation (5.1). The refresh cycle time for a single row (tRC) is equal to the row activate time

(tRAS) plus the row precharge time (tRP).

Figure 5.9: Refresh cycle time (tRFC_VR) in VRSR scheme

𝑡𝑅𝐹𝐶 = (𝑀 ∗ 𝑡𝑅𝐶) + 𝑡𝑅𝐸𝐶 (5.1)

𝑡𝑅𝐹𝐶_𝑉𝑅 = [൫𝑀 ∗ 𝑡𝑅𝐶_𝑉𝑅൯ + 𝑡𝑅𝐸𝐶] (5.2)

Prior work [71] found that multiple rows in different subarrays, are refreshed in parallel

when M > 4. Therefore, there is a time compression (tCMPR) achieved through this

implementation that optimizes the overall refresh time. For quantitative evaluation of the

refresh overhead due to increased latencies of tRAS and tRP in VRSR scheme, the auto-

refresh scheme is considered as a baseline to derive some key insights and tCMPR. Refresh

 74

cycle time (tRFC_VR) due to reduced voltage accounting for tCMPR can be given as per

equation (5.2), where tRC_VR is the row cycle (tRAS_VR + tRP_VR) at reduced voltage).

Voltage
(V)

tRAS_VR
(ns)

tRP_VR
(ns)

tRC_VR
(ns)

tRFC_VR
(ns)

1.175 27.5 13.9 41.4 391
1.150 29.3 14.9 44.2 414
1.125 29.7 14.2 43.8 411
1.100 30.2 15.2 45.3 423
1.075 30.6 14.5 45.2 421
1.050 31.1 15.9 47.0 436

Table 5.6: Refresh cycle time for reduced voltages

For DDR4-1600 (17-17-17) device used in our evaluation, tRFC calculated is 430 ns, given

tRAS and tRP to be 32 ns and 13.75 ns respectively [42] and tREC is considered to be 60 ns.

However, actual tRFC is 350 ns as per the device datasheet [42]. It shows that the parallel

refresh scheme compresses the overall time by 18%, compared to serial refresh. Table 5.6

shows the increased refresh cycle time (tRFC_VR) due to reduced voltage level as per

equation (5.2).

Figure 5.10: Exit timing latency of VRSR (tXS_VR) with reference to self-refresh [42]

The increased delay in tRFC_VR adds time overhead (tOVHD) in the overall refresh cycle. It

is due to additional latency cycles in row refresh time (tRC_VR) of M rows at reduced voltage

compared to refresh time at 1.2V nominal voltage (tRC), as shown in equation (5.3).

𝑡𝑂𝑉𝐻𝐷 = ൫𝑀 ∗ (𝑡𝑅𝐶_𝑉𝑅
− 𝑡𝑅𝐶)൯ ∗ 𝑡𝐶𝑀𝑃𝑅 (5.3)

Vendors do not provide detailed information about the specific implementation of their auto-

refresh or self-refresh schemes. Figure 5.9 illustrates the analysis of performance overhead

for the VRSR scheme, comparing it to the auto-refresh protocol and timing specifications.

75

Auto-refresh operations can impact regular memory operations and result in performance

degradation. On the other hand, with self-refresh, the DRAM internally handles refresh

operations without requiring any intervention from the memory controller.

Voltage
(V)

tXS_VR
(ns)

1.175 406
1.150 429
1.125 426
1.100 438
1.075 436
1.050 451

Table 5.7: Refresh cycle time and exit latency for reduced voltages

VRSR is a variant of self-refresh, but with reduced voltage level and increased timing

latencies (tRC_VR) to allow row activation and pre-charge operations to complete at such

reduced voltage. As there are no read & write operations involved, the overhead (tOVHD)

due to these increased latencies will not have impact any performance impact. However,

tOVHD will have impact on the exit latency.

The impact of VRSR on exit latency is evaluated by comparing it to the baseline of self-

refresh exit latency, as shown in Figure 5.10. In order to enter self-refresh mode, the memory

controller must ensure that the device is idle with all banks in the precharge state and tRP

satisfied. Once the self-refresh entry command (SRE) is issued, the device remains in self-

refresh mode as long as CKE is held low, with a minimum pulse width of tCKESR. To exit

self-refresh mode, a sequence of events must occur. First, the clock must be stable before

CKE is raised back to HIGH. Once the self-refresh exit command (SRX) is registered, the

timing delay of tXS must be satisfied. When using self-refresh mode, there is a possibility of

missing an internally timed refresh event when CKE is raised for exit. After exiting self-

refresh mode, the device requires a minimum of one additional REFRESH command before

it can be put back into self-refresh mode. Therefore, the exit latency, tXS, is defined as "tRFC

+ 10 ns" according to [42]. In the case of VRSR, the device requires 2 tVCHNG transitions to

reduce voltage before the refresh begins, and then revert the voltage back to nominal (1.2V)

once the refresh is complete. Therefore, the required exit latency for VRSR is determined by

the equation (5.4).

 76

0.6% 2.7%

15.5% 17.1%

25.9% 27.3%

67.9%

99.4%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

se
lf

-r
ef

re
sh

 e
n

er
gy

 c
o

n
su

m
p

ti
o

n
 (

%
)

streamcluster x264 bodytrack blackscholes fluidanimate dedup freqmine swaptions

𝑡𝑋𝑆_𝑉𝑅 = 𝑡𝑅𝐹𝐶_𝑉𝑅
+ 2 𝑡𝑉𝐶𝐻𝑁𝐺 + 10 𝑛𝑠 (5.4)

tVCHNG requires Varray to be switched at the output of the multiplexer as shown in Figure

5.1 and is considered as 2.5 ns. Table 5.7 shows the exit latency for reduced voltage level

calculated as per the equation (5.4).

We have evaluated the performance (execution time of benchmarks) impact due to increased

tXS_VR latency at lowest voltage (1.050 V) baselined to nominal voltage (1.2 V) in section IV.

5.1 Results and Discussion

Figure 5.11: DRAM energy breakdown for PARSEC benchmarks

Figure 5.12: Self-refresh energy (%) contribution to total energy

6679 7141 2601 588 1338 4529
1565

11

5169 5224
1655 235 842 3495

1148

6

18736 20264

7679
1815

4024 13238

4462
32

198
908

2181 545
2174 8000

15148

8231

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

streamcluster x264 bodytrack blackscholes fluidanimate dedup freqmine swaptions

En
er

gy
 c

o
n

su
m

p
ti

o
n

 b
re

ak
d

o
w

n

G1 (act/pre/read/write/refresh) G2 (actBack/preBack) G3 (actPD/prePD) G4 (selfRefresh)

77

Figure 5.13: Self-refresh energy at reduced voltages and different temperature ranges

Figure 5.14: Self-refresh energy savings with voltage reduction

Figure 5.15: Maximum benchmark energy savings

Table 5.8: Execution time increase of benchmarks at reduced
voltage (1.050 V) compared to nominal voltage (1.2 V)

The analysis of energy consumption across various benchmarks reveals a nuanced landscape

of self-refresh energy (G4) usage in relation to other energy components (G1/G2/G3). This

13
7

19
8

22
9

69
7 90

8 10
14

15
61

21
81

24
91

38
9 54

5 62
3

15
17 21

74

25
03

55
62

80
00 92

20 10
14

1

15
14

8 17
65

1

54
89

82
31 96

02

12
0

17
3

20
0

60
9 79

4 88
6

13
65

19
07

21
79

34
0 47

6

54
5

13
27 19

02

21
89

48
64

69
98 80

65 88
73

13
25

4 15
44

4

48
03

72
02 84

02

0.0

0.2

0.4

0.6

0.8

1.0

1.2

idd6r idd6n idde idd6r idd6n idde idd6r idd6n idde idd6r idd6n idde idd6r idd6n idde idd6r idd6n idde idd6r idd6n idde idd6r idd6n idde

streamcluster x264 bodytrack blackscholes fluidanimate dedup freqmine swaptions

N
o

rm
al

iz
e

d
 s

e
lf

-r
ef

re
sh

 e
n

er
gy

 c
o

n
su

m
p

ti
o

n

1.200 (nom) 1.175 1.150 1.125 1.100 1.075 1.050

2.1%

4.2%

6.3%

8.3%

10.4%

12.5%

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

16.0%

25 50 75 100 125 150

Se
lf

-r
e

fr
e

sh
 e

n
e

rg
y

sa
vi

n
gs

 (%
)

Voltage reduction (mV)

0.
1%

0.
1%

0.
1%

0.
3%

0.
3%

0.
4%

1.
5% 1.

9% 2.
2%

1.
6% 2.

1% 2.
4%

2.
5% 3.

3% 3.
6%

2.
6% 3.

4% 3.
8%

7.
3%

8.
5% 8.

9
%

12
.4

%

12
.4

%

12
.4

%

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

IDD6R max savings IDD6N max savings IDD6E max savings

To
ta

l b
en

ch
m

ar
k

en
er

gy
 s

av
in

gs
 (

%
)

streamcluster x264 bodytrack blackscholes fluidanimate dedup freqmine swaptions

Metrics streamcluste
r

x264 bodytrack blackschole
s

fluidanima
te

dedup freqmi
ne

swaption
s

1.200 V 32.639 37.142 16.860 4.144 10.844 38.003 34.127 14.344
1.050 V 32.772 37.386 16.903 4.152 10.855 38.103 34.194 14.347

 Time Increase (%) 0.41% 0.66% 0.25% 0.18% 0.10% 0.26% 0.20% 0.02%
Energy savings

(Max)
0.1% 0.4% 2.2% 2.4% 3.6% 3.8% 8.9% 12.4%

 78

differentiation is crucial for understanding the energy dynamics within DRAM operations.

Specifically, the benchmark named streamcluster exhibits the lowest G4 consumption at 198

millijoules (mJ), contributing minimally to its total energy footprint of 20,782 mJ.

Conversely, swaptions demonstrates a stark contrast with a G4 consumption of 8,231 mJ,

nearly matching its total energy usage of 8,280 mJ. This stark variance in G4 consumption

across benchmarks is visually represented in Figure 5.11, providing a clear comparative

analysis.

Benchmarks IDD6R IDD6N IDD6E
streamcluster 17 25 29
x264 88 115 128
bodytrack 196 274 313
blackscholes 49 68 78
fluidanimate 190 273 314
Dedup 698 1003 1155
freqmine 1268 1894 2207
swaptions 686 1029 1200

Table 5.9: Maximum self-refresh energy savings (mJ) at 150 mV
voltage reduction

Delving deeper into the energy consumption patterns, Figure 5.12 offers a graphical representation

of the G4 to total DRAM energy ratio for each benchmark. The data points range significantly, with

streamcluster at the lower end, contributing only 0.6% to its total energy, and swaptions at the

upper end, with a staggering 99.4% contribution. This wide spectrum of G4 consumption ratios

underscores the potential for energy savings across diverse workload scenarios when implementing

reduced voltage strategies, as proposed in our approach.

Figure 5.13 further explores the energy savings landscape by showcasing the normalized self-

refresh consumption savings across three distinct temperature ranges (IDDR/IDD6N/IDD6E) for

each benchmark at five reduced voltage points, cumulatively amounting to a 150 mV reduction

from a nominal 1.2 V, in 25 mV increments. This figure not only highlights the absolute energy

values at 1.2 V and 1.05 V but also elucidates the consumption patterns across temperature ranges,

attributing the highest, moderate, and lowest energy consumption to IDD6E, IDD6N, and IDDR,

respectively. The adaptive refresh rate requirement, which varies with operating temperature, is a

key factor influencing these patterns. Specifically, IDD6E exhibits 12% to 17% higher consumption

at elevated temperatures, while IDD6R demonstrates 23% to 33% lower consumption at reduced

temperatures, compared to IDD6N.

79

The efficacy of voltage reduction as a strategy for energy savings is quantitatively assessed in Figure

5.14, which illustrates the percentage of G4 savings achieved at various reduced voltages,

benchmarked against the G4 consumption at a nominal 1.2 V. The findings indicate that even a

minimal reduction of 25 mV can yield a 2.1% savings, with the savings potential escalating to 12.5%

at a 150 mV reduction.

Expanding on the theme of energy savings, Figure 5.15 categorizes the benchmarks based on their

maximum G4 savings at an aggressive 150 mV voltage reduction, relative to the energy

consumption at 1.2 V. The benchmarks are segmented into three groups based on their savings

potential: low (below 1%), moderate (between 1% and 4%), and high (9% and 12%). This

segmentation reveals an average G4 savings of 3.5%, 4.0%, and 4.2% for IDD6R, IDD6N, and

IDD6E, respectively, across all benchmarks.

The performance implications of voltage reduction are meticulously documented in Table 5.8,

which compares the execution times of benchmarks at the lowest voltage of 1.050 V against the

nominal voltage of 1.2 V. The performance impact is remarkably minimal, with swaptions

experiencing a negligible increase of 0.02%, and x264 facing the highest impact of 0.66%. This

uniform performance stability, within a 0.7% range for a substantial 150 mV reduction, coupled

with the observed energy savings, highlights the feasibility of achieving significant energy efficiency

with minimal performance trade-offs, particularly for benchmarks like freqmine and swaptions.

Lastly, Table 5.9 consolidates the absolute G4 energy savings across all benchmarks, reinforcing

the conclusion that workloads with a substantial proportion of self-refresh energy consumption

stand to benefit markedly from reduced voltage strategies, thereby achieving considerable energy

savings. This analysis not only underscores the potential for energy efficiency improvements but

also emphasizes the importance of tailored voltage reduction strategies to optimize both energy

savings and performance across diverse workload scenarios.

 80

Chapter 6

Conclusion and Future Work

6.1 Architecture Slack Exploitation for Phase Classification and
Performance Estimation

In this work, we contributed to the following:

(a) We proposed a novel metric to measure architecture slack of workloads and evaluated

its application for workload classification over a broader frequency range of 3.5 GHz, using

micro benchmarks.

(b) We developed performance estimation models based on this metric and evaluated their

prediction accuracy, using SPECCPU 2006 and PARSEC benchmarks, at 2 GHz and 3.5 GHz

frequency bounds. It is promising to observe the prediction accuracy is 97% for all

benchmarks. We realize that the performance models were regression based which needed

offline profiling of benchmarks. We used 19 benchmarks for training the models. These

models provided very high prediction accuracy for 19 remaining benchmarks (unseen

workloads) and this highly encourages to explore further on realizing accurate online

estimation models. As memory phases of workloads possesses significant architecture slack,

they can be aggressively exploited for energy savings. It also depends on how much user-

demand slack is available to be exploited i.e., a user or software workload manager to specify

a performance floor as a percentage of the workload’s performance at the maximum

processor frequency. With the exception of extremely memory-bound applications, the

absence of user-demand slack disallows exploitation of architecture slack.

(c) We also expanded application of this metric for online phase classification of

benchmarks having different phase characteristics.

(d) We developed an algorithm to guide dynamic frequency scaling decisions during

81

execution and evaluated runtime impacts of all benchmarks.

In summary, we have developed methods based on architecture slack as key metric, which

can be adopted by newer DVFS algorithms for phase classification and performance

estimation at runtime. We acknowledge that there is a need for further research and

development in the area of online prediction models and algorithms that can effectively

utilize architecture slack while considering user-demand slack requirements. In our future

exploration, we plan to evaluate performance management along with energy saving benefits,

with HPC and server workloads.

Chapter 6. Conclusion and Future Work 82

6.2 Voltage Reduced Self Refresh (VRSR) for Optimized Energy

Savings in DRAM Memories

This paper provided a first detailed study of self-refresh energy savings at reduced voltages.

Self-refresh energy savings was quantified with 8 PARSEC benchmarks using DDR4 DRAMs, at

six reduced voltage points (up to 150 mV reduction from 1.2 V nominal) and different refresh

rates pertaining to broader temperature ranges. The latency increase of row activation and

precharge operations was evaluated using 16 nm model. We measured execution time of

benchmarks and evaluated the performance impact due to additional latencies, at lowest

setting of 1.05 V baselined to 1.2 V nominal voltage.

We used Gem full-system simulations for measurements of energy savings and performance.

Our simulation results demonstrated that there is a maximum of ~12.4% workload energy

savings realized with one benchmark and an average of ~4% workload energy savings across all

benchmarks, for an aggressive voltage reduction of 150 mV. This finding revealed that the

workload energy savings clearly depends on two key factors. First is the extent of voltage

reduction and second is the proportion of self-refresh energy to the total energy for a given

workload. It also revealed that that the performance increase due to increased row activation

and precharge latencies, was well within 1% for the lowest setpoint at 1.05 V (150 mV

reduction), across all benchmarks.

Finally, some key limitations in extending our work to real hardware have also been discussed.

Further to motivate researchers in order to realize a full-scale solution in future, we proposed

DRAM architectural changes and additional power modes to exercise reduced voltage operation

in self-refresh mode. Combining both, we introduced this new DRAM lower power mode as

Voltage Reduced Self-Refresh (VRSR) operation and the simulation results demonstrated

significant energy savings with the proposed approach.

Bibliography 83

Bibliography

1) Shoaib Akram, Jennifer B. Sartor, Lieven Eeckhout, DVFS performance prediction for managed

multithreaded applications, in: ISPASS 2016, 2016, pp. 12–23.

2) Basireddy Karunakar Reddy, D. Singh, G.V. Biswas, B. Merrett, Inter-cluster thread-to-core

mapping and DVFS on heterogeneous multi-cores, IEEE Trans. Multi-Scale Comput. Syst. 4 (3)

(2017) 369–382.

3) James M. Brandt, HPC monitoring & analysis + power 9 specifics, in: Conference Presentation

at the Oak Ridge National Lab Monitoring, August 2019,

https://www.osti.gov/servlets/purl/1645803.

4) M. Broyles, C.J. Cain, T. Rosedahl, G.J. Silva, IBM EnergyScale for POWER8 processor-based

systems, IBM, Tech. Rep., Nov. 2015.

5) Hari Cherupalli, Rakesh Kumar, John Sartori, Exploiting dynamic timing slack for energy

efficiency in ultra-low-power embedded systems, in: 2016 43th Annual International

Symposium on Computer Architecture, ISCA, IEEE, 2016.

6) G.L.T. Chetsa, L. Lefevre, J.-M. Pierson, P. Stolf, G. DaCosta, A user friendly phase detection

methodology for HPC systems’ analysis, in: Proc. IEEE Int. Conf. Green Comput. Commun.

IEEE Internet Things IEEE Cyber Phys. Social Comput., 2013, pp. 118–125.

7) G. Contreras, M. Martonosi, Power prediction of intel xscale processors using performance

monitoring unit events, in: 2005 International Symposium on Low Power Electronics and

Design, August 2005.

8) Keeley Criswell, Tosiron Adegbija, A survey of phase classification techniques for characterizing

variable application behavior, IEEE Trans. Parallel Distrib. Syst. 31 (1) (Jan. 1 2020).

Bibliography 84

9) Rado Danilak, Why energy is a big and rapidly growing problem for data centers,

https://www.forbes.com/sites/forbestechcouncil/2017/12/15/why-energyis-a-big-and-rapidly-

growing-problem-for-data-centers, December 2017.

10) B. Fields, R. Bodik, M. Hill, Slack: maximizing performance under technological constraints, in:

Proceedings of the 29th International Symposium on Computer Architecture, ISCA 2002, May

2002.

11) Heather L. Hanson, Venkat R. Indukuru, Francis P. O’Connell, Karthick Rajamani, Tracking

pipelined activity during off-core memory accesses to evaluate the impact of processor core

frequency changes, U.S. Patent 9600392 B2, Available:

https://patents.google.com/patent/US9600392B2, Mar. 21, 2017.

12) Chung-Hsing Hsu, Wu-Chun Feng, Effective dynamic voltage scaling through CPU-

boundedness detection, in: Power-Aware Computer Systems, PACS, 2004.

13) IBM power systems E870 and E880, Technical overview and introduction (REDP-5137-00), An

IBM Redpaper publication, http://www.redbooks.ibm.com/abstracts/redp5137.html.

14) Canturk Isci, Margaret Martonosi, Phase characterization for power: evaluating control-flow-

based and event-counter-based techniques, in: Proc. 12th IEEE Int. Symp. High Perf. Comput.

Arch., HPCA-12, February 2006, pp. 121–132.

15) Canturk Isci, Gilberto Contreras, Margaret Martonosi, Live, runtime phase monitoring and

prediction on real systems with application to dynamic power management, in: Proc. 39th

ACM/IEEE Int. Symp. Microarch., MICRO-39, December 2006, pp. 359–370.

16) R. Kotla, S. Ghiasi, T. Keller, F. Rawson, Scheduling processor voltage and frequency in server

and cluster systems, in: Proc. IEEE Int. Parallel Distrib. Process. Symp., vol. 12, 2005, 234b.

17) Sang Jeong Lee, Hae-Kag Lee, Pen-Chung Yew, Runtime performance projection model for

dynamic power management, in: Advances in Comput. Syst. Arch. 12th Asia-Pacific Conf.

(ACSAC 2007) Proc., in: Lecture Notes in Computer Science, vol. 4697, Springer-Verlag,

August 2007, pp. 186–197.

http://www.redbooks.ibm.com/abstracts/redp5137.html

Bibliography 85

18) W. Liang, S. Chen, Y. Chang, J. Fang, Memory-aware dynamic voltage and frequency prediction

for portable devices, in: 14th IEEE International Conference on Embedded and Real-Time

Computing Systems and Applications, 2008, RTCSA ’08, Aug. 2008, pp. 229–236.

19) Ankur Limaye, Tosiron Adegbija, A workload characterization of the SPEC CPU2017

benchmark suite, in: Proceedings of the IEEE International Symposium on Performance

Analysis of Systems and Software, ISPASS’18, 2018, pp. 149–158.

20) Ali Marashi, Improving data center power consumption & energy efficiency,

https://www.vxchnge.com/blog/growing-energy-demands-of-data-centers, February 2020.

21) D. Molka, R. Schone, D. Hackenberg, W.E. Nagel, Detecting memory boundedness with

hardware performance counters, in: Proceedings of the 8th ACM/SPEC on International

Conference on Performance Engineering, ser. ICPE 17, Association for Computing Machinery,

New York, NY, USA, 2017, p. 2738.

22) OpenPOWER, On chip controller (OCC), http://openpowerfoundation.org/blogs/on-chip-

controller-occ/.

23) PARSEC, https://parsec.cs.princeton.edu/.

24) K. Rajamani, H. Hanson, J. Rubio, S. Ghiasi, F. Rawson, Application-aware power

management, in: Proceedings of the 2006 IEEE International Symposium of Workload

Characterization, IISWC-2006, October 2006.

25) R. Rodrigues, et al., Improving performance per watt of asymmetric multi-core processors via

online program phase classification and adaptive core morphing, ACM Trans. Des. Autom.

Electron. Syst. 18 (1) (Jan. 2013) 5:1–5:23.

26) Todd Rosedahl, Charles Lefurgy, POWER8 on chip controller, Online, HPC power

management: knowledge discovery, http://hpm.ornl.gov/documents/HPM2015Rosedahl.pdf,

September 2015.

27) R. Schöne, D. Hackenberg, On-line analysis of hardware performance events for workload

Bibliography 86

characterization and processor frequency scaling decisions, in: Proceeding of the Second Joint

WOSP/SIPEW International Conference on Performance Engineering, ICPE ’11, ACM, 2011.

28) Dror Shenkar, Shahar Belkin, Data centers feeling the heat! The history and future of data

center cooling, https://datacenterfrontier.com/history-future-datacenter-cooling, May 2020.

29) Timothy Sherwood, Suleyman Sair, Brad Calder, Phase tracking and prediction, in: Proc. 30th

Int. Symp. Comput. Arch., ISCA 2003, San Diego, California, June 2003, pp. 336–347.

30) B. Sinharoy, J.A. Van Norstrand, R.J. Eickemeyer, H.Q. Le, J. Leenstra, D.Q. Nguyen, B.

Konigsburg, K. Ward, M.D. Brown, J.E. Moreira, D. Levitan, S. Tung, D. Hrusecky, J.W.

Bishop, M. Gschwind, M. Boersma, M. Kroener, M. Kaltenbach,T. Karkhanis, K.M. Fernsler,

IBM POWER8 processor core microarchitecture, IBM J. Res. Dev. 59 (2015) 2:1–2:21.

31) SPEC CPU2006, http://www.spec.org/cpu2006.

32) V. Spiliopoulos, S. Kaxiras, G. Keramidas, Green governors: a framework for continuously

adaptive DVFS, in: 2011 International Green Computing Conference and Workshops, IGCC,

July 2011, pp. 1–8.

33) Sharanyan Srikanthan, Sandhya Dwarkadas, Kai Shen, Coherence stalls or latency tolerance:

informed CPU scheduling for socket and core sharing, in: Proceedings of USENIX Annual

Technical Conference, USENIX ATC, 2016.

34) S. Srinivasan, I. Koren, S. Kundu, Improving performance per watt of nonmonotonic multicore

processors via bottleneck based online program phase classification, in: Proc. IEEE 34th Int.

Conf. Comput. Des., 2016, pp. 528–535.

35) U.S. Department of Energy, Data center energy efficiency,

https://www.energy.gov/sites/default/files/2019/03/f60/femp-data-center-energy-

efficiency.pdf,February 2019.

36) U.S. Environmental Protection Agency, ENERGY STAR program requirements for computer

servers,

Bibliography 87

https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Version%203.0%20Co

mputer%20Servers%20Program%20Requirements_0.pdf, September 2018.

37) Frederik Vandeputte, Lieven Eeckhout, Koen De Bosschere, A detailed study on phase

predictors, in: Proc. 11th Int. Euro-Par Conf. Parallel Process., Euro-Par 2005, August 2005,

pp. 571–581.

38) David Wood, Rathijit Sen, Article, energy-proportional computing: a new definition,

https://www.researchgate.net/publication/318844704_EnergyProportional_Computing_A_N

ew_Definition, January 2017.

39) International Energy Agency. (2020). The Growing Role of Data Centres in Electricity Demand

and Carbon Emissions.

40) Vakilinia, A., & Buyya, R. (2021). Energy consumption and carbon dioxide emissions of cloud

computing: A review. ACM Computing Surveys, 54(1), 1-38.

41) I. Bhati et al., “DRAM Refresh Mechanisms, Penalties, and Trade-Offs”, IEEE Transactions on

Computers, vol. 65, no. 1, pp. 108–121, Jan 2016.

42) Micron Technology, “8Gb: x4, x8, x16 DDR4 SDRAM Datasheet”, Tech. Rep. MT40A2G4, 2015.

43) K. K. Chang et al., “Understanding Reduced-Voltage Operation in Modern DRAM Devices:

Experimental Characterization, Analysis, and Mechanisms”, SIGMETRICS, 2017.

44) Michael D. Pardeik et al., “Implementing DRAM refresh power optimization during long idle

mode”, U.S. Patent, 10304501, 2019.

45) B. Keeth et al., “DRAM Circuit Design: A Tutorial”, Wiley, 2001.

46) Tadaaki Yamauchi et al., “Design of High-Performance Microprocessor Circuits”, IEEE Press,

Piscataway NJ, 2001.

47) Micron Technology, “TN-46-12. Mobile dram power-saving features and power calculations”,

Tech. Note. TN-46-12, 2009.

Bibliography 88

48) Micron Technology, “4Gb DDR4 SDRAM Datasheet”, MT40A1G4, 2020.

49) Micron Technology, “16Gb DDR4 SDRAM Datasheet”, MT40A1G16, 2018.

50) Micron Technology, “32Gb DDR4 SDRAM Datasheet”, MT40A2G16, 2019.

51) Winbond, “Combining deep power-down with self-refresh mode”, Technical Article, 2018.

52) Nathan Binkert et al., “The Gem5 simulator”, ACM SIGARCH Computer Architecture News,

May 2011

53) Chandrasekar, K. et al., “Improved Power Modeling of DDR SDRAMs”, In Proceedings of the

2011 14th Euromicro Conference on Digital System Design, Oulu, Finland, pp. 99–108, 31

August–2 September 2011

54) Karthik Chandrasekar et al., “DRAMPower: Opensource DRAM power & energy estimation

tool”, http://www.drampower.info

55) M. Jung et al., “Optimized active and power-down mode refresh control in 3D-DRAMs”, In

VLSI-SoC, 2014 22nd International Conference on. 1–6. https://doi.org/10.1109/VLSI-

SoC.2014.7004159.

56) Radhika Jagtap et al., “Integrating DRAM power-down modes in gem5 and quantifying their

impact”, In Proceedings of the International Symposium on Memory Systems. ACM, 86–95.

57) L. A. Barroso and U. Holzle, “The datacenter as a computer: An introduction to the design of

warehouse-scale machines,” Synthesis lectures on computer architecture, vol. 4, no. 1, pp. 1–

108, 2009.

58) “DRAM Voltage Study”, https://github.com/CMU-SAFARI/ DRAM-Voltage-Study, 2017.

59) “Predictive Technology Model”, 2012.

60) Byoungchan Oh et al., “Enhancing DRAM Self-Refresh for Idle Power Reduction’’, in ISLPED,

2016.

61) Jamie et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh”, in ISCA, 2012.

Bibliography 89

62) Jin-Hong Ahn et al. “Adaptive self-refresh scheme for battery operated high-density mobile

DRAM applications”, in ASSCC, 2006.

63) Jamie Liu et al., “An Experimental Study of Data Retention Behavior in Modern DRAM

Devices: Implications for Retention Time Profiling Mechanisms”, in ISCA, 2013.

64) S. Khan et al., “The efficacy of error mitigation techniques for DRAM retention failures: A

comparative experimental study”, in SIGMETRICS, 2014.

65) Moinuddin Qureshi et al., “AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for

DRAM Systems”, in DSN, 2015.

66) Minesh Patel et al., “The Reach Profiler (REAPER): Enabling the Mitigation of DRAM

Retention Failures via Profiling at Aggressive Conditions”, in ISCA, 2017.

67) Anup Das et al., “VRL-DRAM: Improving DRAM Performance via Variable Refresh Latency”, in

DAC, 2018.

68) Song Liu et al., “Flikker: Saving DRAM Refresh-Power through Critical Data Partitioning”, in

ASPLOS 2011.

69) Dongli Zhang et al., “DIMMer: A Case for Turning Off DIMMs in Clouds”, in SoCC, 2014.

70) R. K. Venkatesan et al., “Retention-aware placement in DRAM (RAPID): software methods for

quasi-non-volatile DRAM”, in HPCA, 2006.

71) Aditya Agrawal et al., “CLARA: Circular Linked-List Auto and Self Refresh Architecture”, in

MEMSYS, 2016.

72) Matthias Jung et al., “Optimized active and power-down mode refresh control in 3D-DRAMs”,

in VLSI-SoC, 2014.

73) Konstantinos Tovletoglou et al., “Relaxing DRAM refresh rate through access pattern

scheduling: A case study on stencil-based algorithms”, in IOLTS, 2017.

74) Xing Pan et al., “The Colored Refresh Server for DRAM”, in RTSS, 2019.

Bibliography 90

75) Eder Zulian et al., “Access-Aware Per-Bank DRAM Refresh for Reduced DRAM Refresh

Overhead”, in ISCAS, 2020.

76) Yuhai Cao et al., “DR Refresh: Releasing DRAM Potential by Enabling Read Accesses Under

Refresh”, in IEEE TC, 2019.

77) Hongtao Zhong et al., “One-Shot Refresh: A Low-Power Low-Congestion Approach for

Dynamic Memories”, in IEEE TCS, 2020.

78) Hoseok Seol et al., "Elaborate Refresh: A Fine Granularity Retention Management for Deep

Submicron DRAMs", in IEEE TC, 2018.

79) "JEDEC standard for DDR/DDR2/DDR3/DDR3L/DDR4 SDRAM. ",

http://www.jedec.org/standards-documents.

80) D. Shim et al. , “A process-variation-tolerant on-chip CMOS thermometer for auto temperature

compensated self-refresh of low-power mobile DRAM. ”, Solid-State Circuits, IEEE Journal of

2013.

81) V. V. Zhirnov and M. J. Marinella, “Memory Technologies: Status and Perspectives”, in

Emerging Nanoelectronic Devices, Wiley 2015.

82) “Micron D1α, '14 nm'! The Most Advanced Node Ever on DRAM!”, Semiconductor engineering,

Article 2018, https://semiengineering.com/micron-d1%CE%B1-the-most-advanced-node-yet-

on-dram/

83) T. Vogelsang, “Understanding the Energy Consumption of Dynamic Random Access

Memories,” in MICRO, 2010.

84) “International Roadmap for Devices and Systems, 2022”,

https://irds.ieee.org/images/files/pdf/2022/2022IRDS_ES.pdf

85) Kamiya George, “Data Centres and Data Transmission Networks.”, International Energy

Association, November 2021, https://www.iea.org/reports/data-centres-and-data-

transmission-networks

Bibliography 91

86) Ben Kepes, “30% Of Servers Are Sitting "Comatose" According To Research”, Jun 2015,

https://www.forbes.com/sites/benkepes/2015/06/03/30-of-servers-are-sitting-comatose-

according-to-research/?sh=7c0448f959c7

87) Katal, A., Dahiya, S. & Choudhury, T., “Energy efficiency in cloud computing data center: a

survey on hardware technologies.”, Cluster Comput 25, 675–705 (2022).

https://doi.org/10.1007/s10586-021-03431

88) R. Elmore, K. Gruchalla, C. Phillips, A. Purkayastha, and N. Wunder, “Analysis of application

power and schedule composition in a high performance computing environment,” tech. rep.,

National Renewable Energy Lab.(NREL), Golden, CO (United States), 2016.

List of Publications 95

List of Publications

[1] Diyanesh Chinnakkonda, Karthick Rajamani, M.B. Srinivas. “Architecture slack

exploitation for phase classification and performance estimation in server-class

processors,” in Journal of Parallel and Distributed Computing, Elsevier, Volume 169,

2022, Pages 157-170, ISSN 0743-7315, https://doi.org/10.1016/j.jpdc.2022.06.017.

(https://www.sciencedirect.com/science/article/pii/S0743731522001526).

[2] Diyanesh Chinnakkonda, Venkata Kalyan Tavva, and M. B. Srinivas. "Voltage

Reduced Self Refresh (VRSR) for Optimized Energy Savings in DRAM Memories", in

Memories - Materials, Devices, Circuits and Systems, Elsevier.

Article published – DOI: https://doi.org/10.1016/j.memori.2023.100058

https://www.sciencedirect.com/science/article/pii/S0743731522001526
https://doi.org/10.1016/j.memori.2023.100058

Brief Biography of the Candidate 96

Brief Biography of the Candidate

Diyanesh Chinnakkonda is currently pursuing his Ph.D. in the Department of Electrical

and Electronics Engineering at Birla Institute of Technology and Science (BITS) University,

Pilani. Prior to this he was an Advisory Research Engineer in the POWER server systems

development team, part of India Systems Development Lab, IBM India Pvt. Ltd. Bangalore.

He received his M.S. degree from BITS University in 2004. His current research interest

includes computer architecture, energy & performance management for cloud & next

generation computing and future memory technologies. He holds 123 issued patents and has

published papers in IEEE conferences.

Brief Biography of the Supervisor 97

Brief Biography of the Supervisor

Dr. M.B. Srinivas received his Ph.D from the Indian Institute of Science, Bangalore, India.

He is currently a Professor in the Department of Electrical and Electronics Engineering at Birla

Institute of Technology and Science (BITS) University, Pilani. His research interests include

nano-scale circuit design, VLSI arithmetic, data converters and ICT for healthcare. He is an

active member of IEEE and has served as Chairman of IEEE Hyderabad Section during 2007

and 2008 and founding Chairman CAS/EDS Joint Chapter, Hyderabad Section, during 2012

and 2013. He is a recipient of Microsoft Research ’Digital Inclusion’ award in 2006 and Stanford

Medicine ’MedTech Innovation’ award in 2016.

Brief Biography of the Co-Supervisor 98

Brief Biography of the Co-Supervisor

Subhendu Kumar Sahoo completed his B.E. in Electronics and telecommunication engineering

from Utakal University, Odisha, India, with honors securing the fifth position in the university.

He obtained his M.E. in Electronic Systems and Communication from R.E.C.(NIT) Rourkela.

He received the Ph. D. degree in electrical engineering from Birla Institute of Technology and

Science, Pilani, in 2006. He is working as a faculty in the Electrical and Electronics Engineering

department of Birla Institute of Technology and Science, Pilani, since 2006. Presently he is a

Professor at Birla Institute of Technology and Science, Pilani-Hyderabad Campus, India. His

research areas are high-performance arithmetic circuits, VLSI Circuits, and architecture for

Digital Signal Processing applications.

