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ABSTRACT 
 

The future potential of offshore microgrid systems as a means of meeting the energy 

needs of remote and offshore installations is explored with the design and simulation of an 

offshore microgrid system that integrates Submerged Solar Photovoltaics (SSPV) and 

Wind Energy Conversion System (WECS) with Energy Efficient Storage System (EESS) 

to meet the electricity demand of a remote island. The system is designed to minimize the 

use of fossil fuels and carbon emissions while ensuring a stable and continuous power 

supply with the Renewable Energy Sources (RES). As the world moves towards renewable 

resources to meet the heaping power demand, the dependence on Photo Voltaic (PV) panel-

based power generation has globally touched 1000TWh in 2021. In the current scenario of 

power crisis, solar photovoltaic (PV) power generation systems are favored as a long-

endurance source of power for many of the applications like local utility grid connection, 

battery storage, backup generator power, small home applications and hybrid power 

systems. But the effect of temperature on PV cells drastically reduces their efficiency.  

As a betterment to this problem, solar panel cooling technology using a variety of 

cooling liquids are existing. However, one of the cheaper solutions to the said problem is, 

using the PV cells in the underwater environment. Several studies are being done in this 

area during the past few decades and it is one of the emerging areas in the renewable energy 

sector. The solar irradiation above the earth’s surface is a mix of the entire solar spectrum, 

whereas, inside the water, different irradiations will be absorbed at different depths. When 

light passes through the atmosphere, it scatters, but while passing through a liquid like 

water it gets absorbed too. Rather than having a proportional dependence with wavelength, 

water chooses to absorb ultraviolet light, infrared light, and red visible light whereas the 

light wavelengths for deepest blues have the more probability of getting re-emitted back 

and reflected out in water. 

The sun's filtered spectrum in underwater is biased toward the green/blue portion 

of the spectrum with useful power to harvest at different depths. This thesis mainly focuses 

on detailing the different technologies available, by decreasing the surface temperature of 

the cells, to improve the PV cells efficiency. It also emphasizes on the recent developed 

technology of using solar panels in the underwater environment SSPV for improved 

efficiency. Further, the mathematical and Multiphysics modelling of the SSPV is required. 
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These SSPV panels made up of different materials, such as Germanium (Ge), Silicon (Si), 

Indium Phosphide (InP), and Gallium Arsenide (GaAs), work in wider applications ranging 

from earth to space. But in real-time environmental conditions, these materials exhibit only 

11 to 15 % efficiency, mainly due to thermal loss and exposure to variable irradiation and 

temperature conditions. Thus, in the current research, the PV cell/panel is modeled in an 

experimentally validated Multiphysics environment at temperatures from – 45 0C to +51 

0C using Ge, Si, InP, and GaAs as materials from earth surface to submerged condition.  

The efficiency of the PV cell/panel is estimated in the current research based on the 

thermal losses within the material, the width of the bandgap, and the thickness of the cell. 

To analyze the thermal losses, joule heat generation of PV cell/panels made of all different 

materials is obtained. It is observed that at ambient temperature, although the GaAs and 

InP have an energy bandgap of 1.42eV and 1.34eV, respectively, the joule heating effect is 

minimum (3.95 KW/m3- InP, 5.05 KW/m3- GaAs) when compared to Si (61 KW/m3) and 

Ge (234 KW/m3).  But InP showed lower efficiency due to the thickness of the cell, which 

prevents the penetration of photons deeper into the inner layers. Further, in this research, 

the effect of real-time temperature conditions is obtained for all the PV panels by modeling 

them at -45 0C, 0 0C, 25 0C, and 51 0C.  

Parameters such as short circuit current (Isc), open circuit voltage (Voc), Fill Factor 

(FF), and maximum power (Pmax) are enumerated along with the efficiency. Similarly, for 

SSPV the GaAs is providing more efficiency compared to Si at different water depths till 

1 m with 0.2 cm variations. For a faster parametric analysis at all possible real-time 

temperature conditions in Indian climatic scenario, in this research, an ML based prediction 

model is developed using Kernel Ridge Regression (KRR), Polynomial Regression (PR), 

Linear Regression (LR), and Support Vector Regression (SVR). It is observed that, the 

KRR algorithm can give faster (in few seconds), effective, and error-free prediction (92.23 

% of accuracy). The prediction results are validated with the Multiphysics environment, 

data sheet, and experimental data. 

 In the past few decades, it has been observed that RES like solar PV cells coupled 

with a grid is a potential option for fulfilling the fast-growing load demand. However, the 

intermittent nature of Renewable Energy Resources (RER) limits the performance of RES 

and prevents it from being properly utilized. This results in power quality issues and grid 

system instability. To address this issue, it is a common practice to combine RES with 
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effective energy storage technologies, including the latest storage system based on Lithium-

Ion Batteries (LIB) and Super Capacitors (SC). However, the fast charging of LIB and slow 

discharging of SC are still debatable. Time taken for charging LIB is usually sky-high that 

the Cost of Energy (CoE) becomes unprofitable. On the other side, although the charging 

of SC is faster, but undergoes quick discharging. Hence, in this paper, a cutting-edge model 

of LIB, i.e., an extreme Fast Charging LIB (FCLIB) is developed, where LIB is integrated 

with fast charging SC. This reduces the charging time of storage systems in comparison 

with conventional systems.  

In the current thesis, six alternative topologies of FCLIB are developed and 

analyzed for CoE estimation, using real commercial load profiles and resource data. It is 

observed that the proposed FCLIB with the best topology is achieving 80 % of its State of 

Charge (SoC) in 5.84 min and 100 % of SoC in 13.5 min. The Optimized Electric 

Renewable Model (OERM) was employed to analyze the techno-economic analysis of the 

proposed FCLIB. It is estimated that the proposed topology of FCLIB has a CoE of 

0.32$/kWh with fast charging, which is approximately equal to the CoE of a conventional 

slow charging LIB (estimated as 0.33$/kWh). Thus, the designed FCLIB provides an 

optimal storage solution for RES to overcome the intermittent nature of RER to meet the 

load demand. 

The RER also include WECS with the conversion of wind speed into electricity. 

The WECS is the combination of wind turbine and Doubly Fed Induction Generator 

(DFIG). The WECS at offshore environment is exposed to harmful wind speeds which 

causes damage to wind turbine and DFIG. The DFIG exhibits stator and rotor faults where 

as finding the rotor fault like Broken Rotor Bar (BRB) by visually is difficult. So, the 

current signature analysis of the stator currents with/without the BRB fault by making 

DFIG as faulty and healthy is required. The DFIG with/without BRB fault is modeled in 

software and in experiment set-up to find the stator current variations with different 

percentage of faults (0%, 25%, 50% and 75%) and the load is also considered at no-load, 

half load and 1/4th load conditions.  

The stator current data is collected from experimental set up via Data Acquisition 

(DAQ) system and from the obtained data, the features are extracted using five AI/ML 

techniques like Decision Trees (DT), Random Forest (RF), Logistics Regression (LR), 

Support Vector Machine (SVM)and K Nearest Neighbors (KNN). With the best 
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hyperparameters, the KNN gave 96 % accuracy making efficient prediction. The DFIG is 

then integrated with the SSPV, and EESS system to create an offshore microgrid in 

simulation and experimental model. The performance of the offshore microgrid is 

measured and obtained stable voltage and current performance with/without the fault 

consideration because of the control strategies. 

Keywords: Joule Heating, Machine Learning (ML) algorithms, Multiphysics simulation 

design, parameter prediction, Fast Charging Li-Ion Battery (FCLIB), Li-Ion Battery (LIB), 

Renewable Energy System (RES), Super Capacitor (SC), Temperature effects, Techno-

economic analysis, Broken Rotor Bar (BRB) fault, Wind Energy Conversion System 

(WECS), Doubly Fed Induction Generator (DFIG). 
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CHAPTER 1  

INTRODCUTION 

1.1 Background and Motivation 

The global population increase is leading to an increased reliance on fossil fuels 

that release greenhouse gases [1], [2]. Future power and energy requirements in the world 

are at risk due to the potential shortage of fossil fuels. According to recent research, the 

existing reserves of natural gas and oil are anticipated to deplete within the next 40 and 70 

years, respectively [3]. This intensifies the already ominous effects of climate change, 

prompting urgent action to reduce greenhouse gas emissions. So, finding the alternative 

energy sources to meet the energy and power demand is usage of renewable energy 

resources (RER) by achieving the goal of net zero emissions with effective storage 

solutions [4]. The increased use of RER in remote areas highly relies on the microgrid 

development as a solution for the reliable integration.  

The marine/earth environment provides numerous RER, in the form of thermal, 

wind, tidal, solar energy etc., which if efficiently tapped can be used for many on shore and 

off-shore applications. Among these resources, wind and solar resources for power 

production are in most demand with more emerging infrastructure and storage technologies 

[5], [6]. The fundamental qualities of solar energy are geometric depth below the surface 

of water, light wavelength, photon travel polar angle, optical depth below the surface of 

water, polar angle cosine, solid angle, photon travel azimuthal angle, and scattering angle. 

The solar energy can be converted into electrical energy by using semiconductor device 

called Photovoltaic (PV) cells and being in use from 1839, when French scientist E. 

Becquerel [7] while experimenting on an electrolytic cell, discovered the PV effect. The 

PV cells are further improved and classified depending on the cell technology, type of top 

layer, and number of junctions as 1st, 2nd and 3rdgeneration solar cells.  The PV cells of 

different materials are considered but Silicon (Si) solar cells are the most commercialized 

PV cells [8]–[13].  

The mounting of PV cells is of two ways one is earth/roof-top, and other is water-

based mounting. The earth/roof-top mounting is emerged in the world more in terms of 

research, commercial utilization and implementation [13]. The PV cell efficiency is limited 
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and is ranging between 15% to 20% due to the Shockley-Read-Hall (SRH) recombination, 

bandgap, type of material, irradiation intensity, and temperature conditions [14]–[19].  

To improve the efficiency of solar cells, cooling techniques and water-based 

mounting are implemented. The cooling techniques are again classified as active, passive, 

nano-fluid and thermo electric cooling technologies and the water-based mounting includes 

floating PV and submerged PV [20]–[25]. Figure 1.1 shows the co-occurrence of 

photovoltaic system three major clusters, cooling, materials, and sustainable development 

with network visualization from Scopus database and the Figure 1.2 shows the state of the 

art of the PV cell research overlay visualization from Scopus database from 2012 to 2023. 

 Figure 1.1 The co-occurrence of PV system clusters with network visualization from 

Scopus database (made in VOS viewer) 

Present days research focus is on water based floating/submerged solar mounting 

cells is upcoming as the land  required for earth mounted solar cells is more and also to 

improve efficiency of solar cells [24], [26]–[32]. Remarkably, despite the challenging 

weather conditions in which the experiment is conducted [23], [33], the PV panels 

displayed an impressive average maximum efficiency of 21.6% in an underwater (UW) 

environment, with various parameter variations. An analysis of the UW environment is 

presented in [34], which highlights the significant advantages of organic photovoltaic 

(OPV) for UW operation. The hydro-optical characteristics of water and the solar cell 

performance at different conditions are explored in [35]–[37].  
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The captured energy from earth/water based mounting PV needs to be stored 

efficiently to have reliable power supply to the load which ensures sustainability called as 

energy storage systems (ESS). 

 

Figure 1.2 The state of the art of the PV cell research overlay visualization from 

Scopus database (made in VOS viewer) 

 The ESS are classified as superconducting magnetic energy storage, battery and 

hybrid ESS where the power obtained from all various RERs can be stored and delivered 

effectively to the load as per the demand. Wang et al in 2014 [38], proposed a 1-MW grid-

connected solar PV power plant and a power smoothing strategy. A vanadium redox battery 

and a super capacitor bank composed Hybrid Energy Storage System (HESS) is used to 

smooth the fluctuating power output of the PV. The PV plant is modeled using 

MATLAB/SIMULINK and PLECS software environment including the HESS.  

A novel grid ESS is proposed in [39], where the battery charging and discharging 

are carried out for large-scale PV systems through an AC voltage regulator which is 

connected in series to the line. For this system, a high-power application with cascaded H-

Bridge based PV - inverter is selected. A review on hybrid EESS for renewable applications 

are suggested by different researchers with different combinations of Efficient Energy 

Storage System (EESS) [40]–[43]. 
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In recent times, the requirement for fast charging is emerging and the 

implementations of different control topologies are increased at converter side. As the ESS 

evolves, the utilization of EESS are required for integrating with RERs which is the 

combination of the different sources called as microgrid [39]. PV alone and ESS storage 

are not sufficient to meet the load demand. So, the wind energy can also be utilized further 

to form a microgrid. In micro-grids, the most utilized combination of renewable resources 

is solar and wind energy [44]–[46]. Micro-grid integration, involves integrating a solar 

panel, and battery system with wind turbine.  

The integration of RER exhibits different harmonic production, impedance 

mismatch problems [47]–[50]. When wind energy alone considered it exhibits different 

levels of stator and rotor failure conditions with varied wind flows on wind Energy 

Conversion System (WECS) [51], [52]. The diagnosis of the fault in WECS require 

signature analysis and the condition monitoring of the DFIG with the use of different 

sensing elements [53].It is important to note that while RERs and EESS hold great potential 

for providing a reliable power supply, there are still numerous challenges and barriers that 

need to be addressed [54], [55]. These obstacles are the focus of much research and effort, 

with significant consideration being given to develop, strengthen, and identify enablers to 

conquer the barriers [56], [57]. Figure 1.3 categorizes the main barriers to deploy RER 

which include technical, economic, institutional and social factors [58]–[60]. 

 

Figure 1.3 Categorization of the main barriers to deploy RER [2] 
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1.2 Aim and Scope 

The increasing demand for energy and the need to reduce carbon emissions has led 

to the development of RER such as PV and wind energy. Offshore microgrid systems have 

the potential to integrate these renewable resources and provide a reliable and sustainable 

energy supply to remote areas [61].The microgrids can perform both in standalone and grid-

connected modes [62]. The RERs include PV and the development of PV at offshore 

conditions is a major concern. The irradiation above the earth surface is mix of entire solar 

spectrum but inside the water the solar irradiance will be absorbed at different depths. In 

the ocean water depths, the scattering physics is a little different. The primary role of the 

atmosphere is to scatter light when light passes through it, but water primarily absorbs light 

rather than scattering. Water molecules, prefers the wavelengths absorb, rather than having 

a straight forward wavelength dependence, it can easily absorb infrared, ultraviolet, and red 

visible light. Heading down a little deeper, the orange light goes away, too. The green, 

violet, and yellow gets disappeared further deeper. On heading down to depths of multiple 

Kms in water, finally the blue light disappears as well, although it’s the last to do so. All 

the other wavelengths get absorbed hence the deepest ocean depths appear dark deep blue. 

 

Figure 1.4 Electromagnetic spectrum(courtesy to UTAH department of 

environmental quality) 

 The deepest blues, unique among all the light wavelengths in water, have the 

maximum possibility of getting re-emitted back and reflected. PV cells are favored as a 

long-endurance power source for many of the applications like local utility grid connection, 

battery storage, backup generator power, small home applications and connecting as a 

hybrid power system. In submerged conditions, there is solar power to harvest and use at 

water depth of 9.1 m. The filtered spectrum of the sun under water (UW) is biased toward 

the blue/green portion of the spectrum, and thus, higher bandgap cells, such as InGaP, 

perform much better than conventional silicon cells [63]. 

file:///C:/Users/Fault%20Monitoring/AppData/Roaming/Microsoft/Non-ionizing%20Radiation%20-%20Utah%20Department%20of%20Environmental%20Quality.html
file:///C:/Users/Fault%20Monitoring/AppData/Roaming/Microsoft/Non-ionizing%20Radiation%20-%20Utah%20Department%20of%20Environmental%20Quality.html
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The different parameters variation of a PV panel in an UW environment, with an 

average of about 15.6% maximum efficiency, for which the experiment is performed [23] 

at remarkable weather conditions. In [34], an analysis of the submerged solar PV (SSPV) 

environment is presented which highlights the significant advantages of organic 

photovoltaic (OPV) for UW operation. The hydro-optical characteristics of water and the 

PV performance at different conditions are explored [35]–[37]. Designing of mathematical 

and Multiphysics modeling of the SSPV is one of the aims of this research. 

 Tina et.al [64], presented a review about the applications of Machine Learning (ML) 

techniques in different fields of PV.  ML-based models are mostly proposed for the field 

of PV production forecasting. Berny Carrera and Kwanho Kim [65], presented linear 

regression (LR) and Polynomial Regression (PR) with different ANN techniques for 36Hrs 

prediction of PV power production with weather forecast and observations. A review based 

on Deep Learning (DL) techniques to forecast different cell technologies and utilization of 

them for the prediction of PV power is available in [66]–[68] and solar irradiance in [69], 

[70]. The Mean Square Error (MSE), RMSE, Mean Absolute Error (MAE) and Mean 

Absolute Percentage Error (MAPE) are considered as metrics and measured to find 

accuracy. 

 The design of HESS is considered in many of the research works to store the energy 

captured from RERs. The HESS is the combination of battery, pumped hydro storage and 

capacitors. In most of the cases, the demand for energy varies from day to day, and from 

season to time. Moreover, between day and night there is a major difference in the peak to 

valley [71]. Therefore, the generated power needs to be stored and available energy is 

provided during peak loads by peak shaving and load leveling [72]. Utilities are shifted to 

utilize RER to meet the rapidly increasing load demand. However, due to intermittent 

nature of these RER, the grid may experience instability and power quality issues [73] like 

harmonic distortion, phase unbalance and voltage drop. This significant increases in 

demand for RER, as well as the intermittent nature of RER, has promoted and necessitated 

the development of electrical  ESS [74], [75]. The ESS like batteries and SC can effectively 

store renewable energy generated [76], [77] and deliver energy to the load demand during 

peak leveling. 

 Offshore microgrid systems with PV and WECS integration face various 

challenges. One of the primary challenges is the harsh environment, which can damage the 

components and affect system performance [78].The importance of reliability analysis for 

offshore WECS has increased with the development of offshore wind power generation, as 
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these systems operate in harsh conditions and exhibit complex behaviors that can have 

significant negative impacts [51], [52]. It is therefore crucial to thoroughly analyze the 

reliability of offshore wind turbines to ensure their safe and efficient operation. In [79], The 

WECS typically consists of wind turbines, generators, and a control system are explained 

and the failures are incorporated with fault tree analysis. Offshore, the wind blows at higher 

speeds and rotates the turbine blades which rotates the generator rotor via the gearbox. The 

Doubly-Fed Induction Generators (DFIG) are mostly preferred generators for offshore 

WECS due to higher wind speeds. The DFIG exhibit faults in the stator and rotor 

construction, like Broken Rotor Bar (BRB), Stator Inter Turn Faults (SITF), line faults 

etc.,[78], [80]. 

 The DFIG exhibits almost 9-10 % of BRB fault while used as industrial machines 

and in the offshore environment, it is double the fault on land. The diagnosis of the incipient 

BRB fault in the WECS is the major concern to increase the reliability of the offshore 

micro-grid system [81], [82]. Different fault detection techniques in the experimental 

condition and with signature analysis are performed via Deep learning techniques using 

Convolution Neural Networks are performed with IR images, voltage, and frequency 

variation detection [82]–[87]. 

1.3 Research Gaps Identified 

 In order to study the physics of PV cell/panel, mathematical, and Multiphysics 

modeling of PV cell/panel is needed where all the PV parameter variations can be observed. 

In such case the modeled PV cell has to perform similar to the commercially available cell, 

and can be utilized further for different material coatings and environmental conditions. 

Similarly, the analysis of SSPV performance at different intervals of temperatures with 

standard irradiation in mathematical and Multiphysics environment is needed. But 

Multiphysics modeling requires large time for computations and the time can be reduced 

by predicting PV and SSPV performance using AI based ML prediction techniques in less 

time. 

 In order to overcome the variable power distribution, voltage and frequency 

instability, fast charging of Li-ion Battery (LIB) with Supercapacitor (SC) is the need of 

the hour. On the other hand, due to its RER high initial cost, there is an argument on the 

extensive and efficient utilization of LIBs and SCs. Hence, the techno-economic analysis 

and characteristics of LIB and SC are needed to be investigated for finding economically 

feasible fast charging technology [88]–[91]. Hence, designing of fast charging Li-ion 
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battery with the best identified characteristics such as life cycles, charge/discharge time, 

internal resistance and power/energy densities of both LIB and SC is needed. 

The intermittent nature of PV leads to insufficient energy supply to the load demand 

even after integrating with the EESS. Hence, addition of high energy source like wind is 

required. So, with techno-economic analysis of integrated PV and EESS, the WECS is 

combined forming a small scale microgrid. The importance of reliability analysis for 

offshore microgrid with the detection of WECS failures is more important. The design of 

offshore microgrid with the integration of SSPV, EESS with WECS need to be considered 

with/without BRB fault consideration (healthy, unhealthy) via mathematical modeling, and 

experimental setup of DFIG. From the literature, the research objectives framed for 

offshore microgrid design with the below research gaps: 

✓ The mathematical/ Multiphysics modelling of SSPV cell/panel under different 

depths of water and prediction of SSPV performance at more depths via AI/ML 

techniques are not implemented 

✓ Mathematical modelling of a suitable EESS with the fast charging of LIB (FCLIB) 

and slow discharging of SC. 

✓ Integrating SSPV with EESS by creating offshore microgrid and its techno-

economic analysis and modelling of WECS and integrating with the combined 

SSPV and EESS model. 

✓ Mathematical modelling of offshore WECS with the consideration of DFIG BRB 

fault and its condition monitoring by using AI/ML techniques and integrating with 

the SSPV and EESS. 

1.4 Objectives of the Research 

 The objectives of the proposed research work are shown in Figure 1.5 include:  

➢ Mathematical simulation and Multiphysics modelling of PV at cell/ panel level, and 

SSPV and validation of PV using I-V and P-V performance characteristics. The PV 

cell performance characteristics will be obtained with different temperatures, 

irradiation conditions and material variations using COMSOL Multiphysics 

modeling. Validation of modeling with the experimental values, and data sheet. 

Implementation of AI/ML techniques for the prediction of PV cell performance 

with different materials at different levels of water depths, and temperatures. 
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➢ Numerical modeling of EESS with the integration of fast charging LIB (FCLIB) 

and slow discharging SC. As the energy from the RER is intermittent, it has to be 

stored efficiently and effectively hence, the design of different topologies of FCLIB 

is simulated with the respective charging and discharging times plots at different 

internal resistance variations and temperature variations. 

➢ Techno-economic analysis of off-shore micro-grid system with the integration of 

submerged PV system and EESS in Homer-Pro software for validation considering 

load demand. The offshore microgrid is further extended with the integration of 

WECS in simulation to provide continuous reliable power supply to the load 

demand. 

➢ Simulation of WECS with BRB faults and integrating with the off-shore micro-grid 

system modeled using MATLAB/SIMULINK. Experimental set-up of offshore 

microgrid system with the integration of SSPV, EESS and WECS is developed with 

the DFIG BRB fault. For acquiring the healthy/faulty data of DFIG Hardware In-

Loop (HIL) is considered and for Condition monitoring of DFIG with performance 

prediction and validation AI/ML techniques are implemented. 

 

 

Figure 1.5 Different phases of objective research 
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1.5 Organization of the Research 

 There are seven chapters in total based on the research objectives and they are 

outlined as follows: 

 Chapter 1: This chapter gives a brief discussion about the background of research 

and the main scope of the work. The research motivation, Gaps identified, objectives and 

the organization of research are included in this chapter. 

 Chapter 2: This chapter presents an extensive literature survey on the earlier work 

which lead to SSPV design. The reasons for the decrease in PV efficiency are discussed 

and methods used to improve it are also discussed in this chapter.  

Chapter 3: The modeling and simulation of SSPV is implemented in this chapter. 

This chapter details the numerical and Multiphysics modeling of SSPV panel and 

performance characteristics plotting at different levels of water depth and material 

variations. Firstly, the mathematical, Multiphysics modeling of PV at cell/ panel level and 

validation of PV with performance characteristics different temperature, irradiation 

conditions and material variations is presented. Then validation of modeling with the 

experimental values, and data sheet are observed and emerging into SSPV design is also 

presented. AI/ML techniques for the prediction of PV/ SSPV performance with different 

materials at different levels of water depths, and temperatures is also presented in this 

chapter. 

Chapter 4: This chapter has presented storage of the energy received form the SSPV 

design, where the design of LIB and SC are presented. Multiphysics modeling of LIB with 

different materials, temperature and C-rates with the data sheet validation of model. The 

mathematical modeling of LIB and SC considering equivalent circuits with 

charge/discharge characteristics at different C-ratings. Numerical modeling of EESS with 

the integration of fast charging LIB and slow discharging SC is discussed in this chapter. 

Design of different topologies of EESS with their respective charging and discharging 

times at different internal resistance variations is also presented in this chapter. 

Chapter 5: This chapter briefs the integration of SSPV with EESS with the use of 

HOMER-Pro software and presents the techno-economic analysis of the offshore 

microgrid. The present net cost (PNC) analysis is also presented in comparison with 

commercial equipment and is included in this chapter. The simulation design of WECS 

with the turbine and DFIG system is also discussed in this chapter and the integration to 

the SSPV and EESS is also explained.  
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Chapter 6: The harsh environment at offshore conditions creates faults in the WECS 

so here BRB fault of DFIG is considered. The WECS with/without the BRB fault of DFIG 

is modeled and integrated with the designed off-shore microgrid system. The performance 

of the total offshore microgrid is measured both in modeling and experimental set up. 

Acquired the healthy/faulty data from experimental DFIG system with the sensors via data 

acquisition (DAQ) and implemented AI/ML techniques for Condition monitoring of DFIG 

with performance prediction. 

Chapter 7: Eventually, this chapter has concluded the thesis work and gives insight 

into the future scope. Also, it includes the limitations of the current thesis work. 

Every chapter starts with an introduction, ends with a summary of the chapter, and 

addresses the reason for the next chapter. 
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CHAPTER 2  

EVOLUTION OF THE PERFORMANCE OF 

SOLAR PHOTOVOLTAIC SYSTEMS IN THE 

SUBMERGED ENVIRONMENT 

2.1 Introduction 

The World’s energy needs and future energy supply are under risk because of the 

scarcity of fossil fuels. Many researchers predicted that the current reserves of natural gas 

and oil diminish within 70 and 40 years respectively. Also, the carbon emissions are 

increasing at a rate more than 3% per year, increasing the amount of fossil fuels like carbon 

monoxide and carbon dioxide gases in the atmosphere [92]. Here is a great need to utilize 

energy resources that are renewable in nature to meet the current energy demand. The 

energy resources like solar, wind, tidal, geothermal etc., are the RERs and among them 

solar energy plays a major role and it contributes to 70 % of the total energy. The utilization 

of solar energy begun in the era of 7th century B.C and it is used for different applications 

but the conversion of solar energy into electricity begun after the discovery of PV effect. 

 In 1839, French scientist Becquerel [7] while experimenting on an electrolytic cell, 

discovered the PV effect. He found that solar energy can be captured by a semiconductor 

device through the PV effect and the device was thus named as PV cell. Significant research 

on various semiconductor materials were performed for observing PV effect, in 1948, June 

15, Bell telephone laboratories patented “Light-Sensitive Electric Device Including 

Silicon”. This achievement initiated the usage of silicon solar cells. Silicon solar cells have 

higher conversion efficiencies ranging between 15 to 18 % compared to other PV materials 

[15].  

 Essig et al, in the year, 2015, [93], proved that the silicon cell efficiency can be 

raised to 30 % by decreasing the surface temperature of silicon PV cell using a mechanism  

to cool the cell surface. As such, most commercialized solar cells are made up of silicon 

materials and water is utilized as a cooling liquid to decrease surface temperature and 

acquire higher efficiency from the solar cell. Water is preferred as a cooling agent because 
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of its non-toxicity, stability, high heat transfer capacity, low cost, and abundant availability.  

Mauddi et al., in the year 1991, stated that the solar cell spectral response matches 

with the absorption coefficient of the sunlight in water [94].  As 71% of the total surface of 

earth is covered with water and of which 96.5% is contributed by oceans [95], the marine 

or ocean environment provides number of RERs, such tidal energy, thermal energy, wind 

energy, light energy, etc., These renewable energy resources, if efficiently tapped, can be 

used for many onshore and off-shore applications [26]. In this chapter, the solar PV cells 

and SSPV1 cells design consideration are explained in detail for efficiency improvement. 

The ocean environments and its irradiation variation in different depths of water are also 

detailed.  

2.2 A Review on Performance Analysis of Solar PV Cell 

 As mentioned in the section 2.1, Becquerel [7] found in the year 1839 that solar 

energy can be captured by a semiconductor device through the PV effect forming the  solar 

cells. The collection of solar cells arranged into a framework, known as a solar panel or PV 

panel. Wurfel in the year 2007 reported in his book [96] that, when photons fall on the PV 

cells surface, the energy of photon will undergo three main processes:                         

1. The absorption of the incident radiation energy: As photons fall over solar cell, all 

photons aren't absorbed by the cell. Photons that have sufficient energy to move it from 

valence band to the conduction band by excitation of an electron and cause the current 

to flow, will be absorbed.  Any photon with lesser energy than the energy of bandgap 

will not be absorbed by the photovoltaic cells and cannot excite the electrons, it will be 

either transmitted or reflected.                

2. The hole-electron pair thermalization: In thermalization, the heat energy from sun is 

converted to chemical energy through the heating process of electrons and holes causes 

bombarding and creating electron-hole pairs at the P-N junction. 

3. Energy Conversion: The conversion into electrical energy from chemical energy is 

known as energy conversion, where holes are moved to P-type and electrons are moved 

 
 

1C. S. Durganjali, S. Radhika, R. N. Ponnalagu, and S. Goel, “A Study on the Performance of Solar 

Photovoltaic Systems in the Underwater Environment,” in Microelectronics and Signal Processing, CRC 

Press, 2021, pp. 203–226. 
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to N-type and get segregated. When these two ends are connected through an external 

circuit we can see movement of electrons and the obtained current is known as PV 

current.  

If irradiation falls on a solar cell surface, the PV current can be observed and the 

maximum current obtained from a solar cell depends on its type of construction. The solar 

cell construction depends on cell technology, type of top layer and number of junctions in 

the solar cell. Based on all the above-mentioned parameters, the solar PV cells are classified 

again as shown in Figure 2.1. 

2.2.1 Classification of Solar PV Cells 

 

Figure 2.1 Classification of solar PV cells 

2.2.2 PV Cell Characteristics 

 The performance of solar cells can be estimated from its electrical and thermal 

characteristics. The electrical characteristics include I-V and P-V (Power- “P”, Current- “I” 

and Voltage- “V”) characteristics through which the PV cell efficiency can be deliberated. 

From the I-V characteristics, the open circuit voltage (Voc) and short circuit current (Isc) are 

noted. From P-V characteristics, the maximum output power (Pmax) from the PV cell can 

be obtained, from which the PV cell efficiency can be calculated. Irradiation from the sun 

is the source for a solar cell and temperature is an element that affects the performance of 

PV cells. Depending on irradiation, temperature and type of cell materials, the analysis of 

PV cell performance is further carried-out. 
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2.2.2.1 Irradiation dependence on PV cell characteristics 

 When the irradiation intensity on a PV cell increases, Isc will increase and vice versa. 

But Voc of solar cells will mostly remain constant irrespective of radiation. As intensity of 

radiation varies, depending on the electrons and holes’ generation rate, the current output 

from the PV cell varies which in turn varies the power output. In general, with the surge in 

irradiation, the solar cell's Isc escalates, because of this the power production also increases. 

At maximum irradiation point (1000W/m2) and 250C temperature conditions i.e., at the 

standard test conditions (STC), it's possible to enhance the power produced from the PV 

cell. 

         The Voc of the cell is constant and depends on the material used. To obtain a large 

Voc, the solar cells are connected in parallel and series. If the irradiation that falls over a 

solar cell is continuous, then temperature on the top of the solar cell increases even though 

the environmental temperature is less. Werner Luft [12] compared experimentally, the 

performance of 5-grid and 13-grid silicon (Si) and gallium arsenide (GaAs) solar cells at 

different temperature ranging from 30 0C to 150 0C and radiation intensities ranging from 

0.07 W/cm2 to 2.8 W/cm2 and concluded that, compared to GaAs solar cells, the 3-grid 

silicon solar cell showed a better performance. 

2.2.2.2 Temperature dependence on the PV cell characteristics 

 Performance of a PV cell under different temperature and irradiation conditions will 

vary depending on the cell type. For example, an anomalous behavior is observed at less 

temperatures in the “N on P” cells; namely, the Voc becomes nearly self-reliant of 

temperature beneath a transition temperature depending on the sunlight intensity. Smith et 

al. [97] explained the working of “N-on-P” solar cell and its characteristics when it is used 

in a spacecraft application. Kennerud [98] experimentally determined the values of Voc, Isc, 

and Pmax for “N on P” and “P on N” silicon solar cells from -177 0C to +50 0C temperature 

ranges under equivalent sunlight intensity of 58 mW/cm2 and the I-V characteristics are 

shown in Figure 2.2 (a) and 2.2 (b) respectively. It is detected from the I-V characteristics 

that Voc lessens in a linear fashion with temperature, while Isc increases. 
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a.                                                                              b. 

Figure 2.2 (a) I-V characteristics of silicon “N on P” solar cell and (b) I-V 

characteristics of “P on N” silicon solar cell at temperatures ranging from -177 0C to 

+50 0C [98], [99] 

Durganjali et al. [100]2 made a mathematical modelling of a solar cell which will 

work in both positive and negative temperature conditions. It is perceived that performance 

of a PV cell with the varying temperature (-450C to +500C) levels and at different 

irradiations (600W/m2, 1000W/m2 and 200W/m2) is analyzed and at 600W/m2 the I-V and 

P-V characteristics analysis is shown in Figure 2.3 (a) and 2.3 (b). 

The research is concentrated around PV cells performance during different 

temperatures. The electrical parameters include Pmax, Voc and Isc are measured at greater 

than the absolute zero Kelvin temperature. The preferred test conditions (STC), top and 

truncated temperatures recorded in India, are taken into consideration for PV cell 

performance comparison. The electrical parameters under different irradiation and 

temperature variations are obtained from simulations in MATLAB/SIMULINK. As the 

temperature increases, the efficiency, Pmax, Voc falls and Isc increases simultaneously. 

Similarly, as the material changes, the PV cell efficiency also changes due to the bandgap 

variation of the material utilised.  

 
 

2 C. S. Durganjali and R. Sudha, “PV Cell Performance with Varying Temperature Levels,” 2019 Glob. Conf. 

Adv. Technol. GCAT 2019, pp. 1–5, 2019, doi: 10.1109/GCAT47503.2019.8978302. 
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a) 

 
b) 

Figure 2.3 (a) I-V and (b) P-V characteristics of solar cell at 600W/m2 for four 

different temperatures such as -45 0C, 0 0C, 25 0C and 51 0C 

2.2.2.3 Material dependence on PV cell characteristics 

The material utilised for the construction of solar cells plays a vital role. Different 

materials used for making solar cells are: Silicon (Si), copper indium gallium selenide 

(CIGS), Germanium (Ge), Gallium Arsenide (GaAs), thin-film solar cells, Cadmium 

Telluride (CdTe) etc. The majority of solar cells are fabricated using silicon as material and 

the efficiency of commercialised Silicon solar cells are 15 to 21 % and the experimental 

solar cells have more than 20 % and reach up to 30 % of conversion efficiency and is 

described in detail in the section 2.2.3. 
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Solar cell conversion rate or efficiency, refers to the rate of conversion of the inward 

flow of solar energy into the electrical power. Typically, the commercialised solar panels 

operate in the range of 15-21 % [15] of efficiency.  Experiments are going on to improve 

the cell efficiency with different types of fabrications. In that Metal Wrap Through (MWT), 

Upgraded Metallurgical Grade (UMG), Passivated Emitter Rear and Totally diffused Rear-

Junction (PERT_RJ) and Passivated emitter and rear solar cells (PERC) are reaching 

conversion or quantum efficiency of up to 30 % but these are not commercialised yet. Some 

of the fabrications and inventions made by different researchers are explained below with 

their respective efficiencies also listed in Table 2.1. 

Table 2.1 List of different silicon solar cells and their efficiencies 

Type of Silicon (Si) solar cell Conversion Efficiency 

Triple Junction-High Frequency 11 to 12 % [14] 

MWT 19 to 19.6 % [101] 

Bifacial N-type solar cell > 20 % [102] 

PERC Solar cell 20 % [103] 

Boron-doped p-type mono-crystalline Cz silicon 

wafers 
20 to 21 % [104] 

Selective FSF n-type rear-junction laser-doped 

solar cells 
20 to 21 % [11] 

p-type multi-crystalline silicon 20 to 22 % [105] 

From 100% UMG silicon feedstock n-type 

Czochralski-grown silicon solar cell 
> 21 % [10] 

n-PERT_RJ 22 to 23 % [106] 

Hetero Junction (HJ) >  24 % [107] 

2.2.3 Factors Affecting the Solar Cell Efficiency 

One of the main reasons for reduced solar PV cell efficiency, lies in the sun's 

physical conversion energy. The fundamental principle of the solar PV industry is a study 

by Queisser and Shockley developed in 1961. The maximum efficiency of 33.7 % is 

possible based on a theory by which a PV cell can achieve from a light source to obtain 

electricity. This theory is called the Shockley-Queisser limit [14]. This is related with the 

process of photon absorption to generate an electron (e-) and then pass it to the conduction 

http://ph.qmul.ac.uk/sites/default/files/u75/Solar%20cells_environmental%20impact.pdf
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band [18]. There is no specific technology or manufacturing process development which 

can change the limitation fact. This Shockley-Queisser limit is computed as energy 

conversion efficiency of a solar cell with the maximum theoretical boundary. Few 

environmental and material factors affecting solar cell efficiency are listed below:  

1. Snow, ice, dust and humidity 

2. Insulation resistance 

3. Temperature 

4. Solar cell type (crystalline, amorphous, thin-film & perovskite) and  

5. Design configuration 

 By observing the I-V characteristics of P on N and N on P solar cells as shown in 

Figure 2.2 a) and b) and also with lithium doped solar cells, the surface effects in solar cells 

can be analysed. Lithium doped solar cells performance with respect to variation in 

temperature  indicates that lithium (Li) in the region of n-type “P on N" silicon solar cells 

interact by 1 MeV electrons (e-) or 16.8 MeV protons [108] exposure with induced radiation 

damage. At low radiation rates and room temperature, the PV cell power output does not 

decreases and at high radiation rates and temperature, the output from cell decreases even 

then it retrieves after irradiation degradation, i.e. the Lithium doped PV cells acts as self-

healing summarized by Wysocki [108]. Proton-induced humiliation of the cell 

characteristics can be summarised before, after and during proton exposure. Anomalous 

damage, including significant losses of Pmax, and partially recoverable losses of Voc can be 

identified within different regions of the PV cells with the penetration of proton into depths 

by correlation [109]. 

 Tallent et al in the year 2013 [110] tested silicon solar cell performance with 

Archimedes array of mirrors which are capable of concentrating the sun's energy. The I-V 

characteristics are obtained at 40 0C temperature and at different illumination levels. 

Concentrating the sun's energy increased the output but with raise in the temperature, the 

cell's efficiency is decreased and it increases heat on solar cell's surface damaging the cell. 

In practical terms, the energy conversion efficiency can be affected by one of the major 

factors by temperature as discussed earlier in section 2.2. The temperature effect could be 

decreased by using cooling methods, which in turn improves the efficiency of solar cell. 

https://greentumble.com/why-are-solar-panels-inefficient/#snow
https://greentumble.com/why-are-solar-panels-inefficient/#insulation
https://greentumble.com/why-are-solar-panels-inefficient/#type
https://greentumble.com/why-are-solar-panels-inefficient/#design
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2.3 Efficiency Improvement of Solar Cells 

 The efficiency of PV cell decreases due to temperature elevation. The temperature 

degradation rate varies within 0.25 % to 0.5 % per 0C, based on the type of material used 

for PV cell. Specifically, in case of concentrated PV (CPV) cells, which utilize focused 

sunlight and provides large output power with low-cost PV equipment. It is also evident 

that operating at high temperatures significantly reduces the life time of the CPV systems. 

The effect of temperature on PV cells can be reduced by adapting cooling techniques and 

there are two types of cooling techniques used which are forced and natural cooling. The 

forced cooling systems are further subdivided into active cooling, passive cooling, thermo-

electric cooling and nano-fluid cooling. The natural cooling system includes floating PV 

(FPV) systems which use natural water as a cooling liquid. The subsections 2.3.1 and 2.3.2 

discuss the respective techniques and their advantages in detail. 

The temperature effect can be decreased with the below technical methods: 

1. Forced cooling systems 

2. Natural cooling systems 

2.3.1 Forced cooling systems 

 The forced cooling system uses additional equipment like pipes, motor drives etc., 

to force the cooling liquid to flow in the front side, backside and on both of the sides of PV 

panels and the coolant used may be air, water, metal oxides, organic or inorganic liquids. 

The different types of forced cooling mechanisms are discussed in [111]–[114], [115]. A  

5 % increase in output power is obtained by using cooling techniques in [116]. 

Nevertheless, 87 % of irradiated energy will convert into heat and the waste heat is 

harnessed into useful thermal energy in recent developments. In general, hybrid elements 

which mobilize both thermal and electrical power of solar are known as PV- thermal units 

(PV/T unit). These PV/T units generally have lower specific efficiency but higher overall 

efficiency when collated with solar collectors and stand-alone PV [117]. Early in PV 

exploitation cooling techniques for heat applications are proposed [118] with the 

commonly used forced cooling techniques like passive cooling and active cooling and this 

classification is relied on whether power is consumed during the cooling process or not.   



Chapter 2. Evolution of the performance of solar PV systems in the submerged environment 

 

21 
 

2.3.1.1 Active cooling method 

         Active cooling methods consume power continuously to force the coolant (air or 

water) through the panel sides. The primary power consumption unit is either a pump or 

fan which is used for circulating the fluid. In [119], the active cooling technique is adopted 

and the coolant is forced to flow into both front and backside. The flow rate of water is 

0.0625 kg/s which is the maximum value that can be pumped using a pump. A water jet is 

used there for forced cooling which further increased the effect of cooling on solar panels. 

The disadvantage in this method is that the power consumed by pump will be more than 

that of the power being generated from the PV panels.  

2.3.1.2 Passive cooling method 

 Passive cooling method utilizes the conduction/convection techniques to eliminate 

heat naturally. The passive methods of cooling are categorized into three main types as 

conductive cooling, water cooling, and air cooling. The conductive cooling is similar to air 

cooling but a significant difference in the heat transfer mechanism from solar cells is 

conductive. Phase Change Material (PCM) cooling is a selective type of passive conductive 

cooling. The PCM in the strict sense can’t be observed as cooling, it helps in maintaining 

a less steady temperature. PCM cooling can be considered as a passive cooling technique 

because in this method no additional power is needed, and the heat dissipation is conductive 

in nature. 

 Smith et al. The global potential of PCM observed in [120]. Han et al.[121] 

proposed immersing PV cell in different types of cooling fluids. The three different 

immersion liquids are isolation liquid, organic liquids, and deionized water. The irradiance 

considered is 10, 20, and 30 suns, where one sun is equal to 1000 W/m2. The efficiency is 

15 % under one sun but under 10, 20 and 30 suns are quite higher than single sun but 

thermal effects observed are again increased. In practical more than one sun is not possible 

to act on surface of solar panel. 

The heat pipe cooling is a combination of PCM in conjunction with the convection 

mechanism of cooling and it is one of the types of passive cooling. This type of cooling 

uses an additional setting of pipes. Cooling medium on one side expands and evaporates 

(or rises, depending on the type) at one side taking up the heat. The cooling medium 



Chapter 2. Evolution of the performance of solar PV systems in the submerged environment 

 

22 
 

residing over other side releases and condensates heat to surroundings. The cooling material 

via capillary tubes travels back as liquid and it evaporates, completing one cycle. Some of 

the references listed in Table 2.2 used heat pipe cooling technique. 

2.3.1.3 Nano fluids cooling method 

         Nano fluids are the combination of solid nano-particles such as Al2O3, CuO etc., 

and cooling fluid. The particle's weight is between 0.10 to 2.00 % and experiences 

Brownian motion throughout the cooling material. The important advantages of nano-fluids 

are reasonably higher heat capacity and their excellent thermal conductivity [122]. A 5 % 

increase in efficiency is obtained after utilizing nano-fluids as cooling mechanism in solar 

thermal collectors. 

2.3.1.4 Thermoelectric cooling method 

         The thermoelectric cooling depends on the Peltier effect, and can be observed at a 

junction where electrification occurs when heat flows in a particular direction [123] which 

results in cooling effect on one side, while on the other side it produces heat. The heating 

or cooling strength depends on the variation in temperature as well as the voltage or current 

intensity. The thermoelectric cooling requires more electricity. 

 A review on different cooling methods is presented by Kalaiselvan et al.[25]. They 

have also compared the active and passive cooling methods on various parameters and 

presented in their article. Saadodeh et al.[20] in their work used water as the cooling liquid 

and obtained increased efficiency. Through experimental results, the loss of heat between 

the water and PV panel’s upper surface by convection causes an increase in efficiency of 

about 15 % is achieved as output at maximum irradiation conditions. Table 2.2 provides 

details about various types of forced cooling mechanisms that are used to improve 

efficiency of solar panels from the selected literature.  

Active cooling techniques produce more accessible thermal energy and power, but 

the power produced itself is sufficient to drive the cooling equipment used to cool the PV 

cell. Whereas, When CPV cells are used, this type of cooling method can comfortably be 

availed because of the able usage of less cooling fluid and less fluid-to-cell mass ratio. 

Thus, very little power is needed to maintain the CPV system. The main disadvantage of 
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nano fluid cooling is the overall change in flow regime, and pumping process i.e., at 

different speeds and geometries, natural turbulent flow occurs, when compared with regular 

fluids. Water is an economic liquid and has higher thermal capacity hence we can ensure 

that the passive water cooling is more efficient compared to the other cooling methods.  

Table 2.2 List of Some references used forced cooling methods 

Cooling 

method 

Type of Si solar 

cell 

Area 

(m2) 

Coolant used and 

mechanism 

Temperature 

decrease (0C) 

Efficiency 

improvement 

(%) 

Author & 

reference 

Active 
polycrystalline 

solar PV module 
0.924 

Water & Aluminium 

casing on the backside 

to act as a flow channel 

12  8.9 
Farhana et al. 

[124] 

Active 
Mono-crystalline 

solar PV module 
0.152 

Water 

Backside cooling via 

two aluminum pipes 

10 (peak 

temperature 60 

°C) 

0.8 Du et al.[125] 

Active 
Mono-crystalline 

solar PV module 
1.24 

Water 

Backside cooling via 

closed casing 

10 2.8 
Bahaidarah et 

al.[126] 

Active PV module 374 
Water 

Both front and back side 
15 to 26 

Back side-14.8, 

front side-19.1, 

Both sides-20.4 

Rahimi et al. 

[127] 

Passive 
Mono-crystalline 

PV module 
- 

Thermosyphon effect is 

used with PCM 
- 19 

El-Seesy et 

al.[128] 

Passive 
Mono-crystalline 

PV module 
0.36 

Water 

At the rear side of the 

module cotton wick 

structures wrapped 

spirally 

- 1.4 
Chandrasekar 

et al. [129] 

Passive 
Mono-crystalline 

PV module 
0.150 

Water 

Heat pipes are 

constructed 

13 6 
Nowee et 

al.[130] 

Nano fluid- 

cooling 

Crystalline and 

thin film PV 

modules 

- 

Metal oxides & 

Brownian motion of 

nano-particles 

10-30 
6-12 (minimum 5 

%) 

A. N. Al-

Shamani et 

al.[122] 

 Even though forced cooling systems improve efficiency it has certain disadvantages 

like, requirement of a separate setup to take out heat from the solar cells, the construction 

and maintenance of such setup is expensive and the cost of maintaining the system 

outweighs the advantages of the electrical output improvement. Hence another way of 

improving efficiency by cooling is by natural cooling which includes the use of solar panels 

on water surfaces. It can be in two ways either floating PV (FPV) panels and 

immersed/submerged PV panels. The major disadvantages of forced cooling systems are 

overcome by the FPV system and FPV systems are tested and studied in different 
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environments [22], [24], [29], [131]–[137] and water types. Environment conditions like 

high/ low tide, wind speed, summer, winter and rainy seasons involve variation of 

irradiation and temperature falling on solar panels. Water types like ocean water, lake 

water, distilled water which have the variation in salinity, turbidity, algae formation is 

considered because of the variation in irradiation and temperature transmission into the 

water bodies.  

2.3.2 Floating Solar Photovoltaic Panels 

         FPV systems install PV modules on water bodies, in general on human-constructed 

water bodies like irrigation, storage, retention lakes or reservoirs and ponds, and the 

capacity of plant varies from 4 kW to 20 MW [31].  By placing PV modules over water 

bodies, on one hand, power output from the PV module increases by 5.9 % due to the 

backwater cooling of modules [28] while on the other side, water conservation increases as 

the evaporation of water reduces up to 70 % from water bodies  [138]. The first FPV system 

was installed in California, in 2007, USA and the other FPV systems existing in different 

regions of the world are mostly established after 2014. Worldwide, the installed capacity 

of FPV is almost 94 MW, and the plants installed in Japan contribute the most in that. The 

construction of FPV system with the different basic components 

 

Figure 2.4 FPV system model with basic components 

2.3.2.1 Construction of FPV System 

 The basic components/parts of an FPV system as shown in Figure 2.4, are mooring 

system, floating system, PV panel and the connecting cables. These components can also 

be used for all different types of floating systems. The floating system comprises of a mixer 

of floater and structure and the PV panel is placed above it. Mooring system is a 
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construction, to which a vessel may be attached by means of anchor or cables. It prevents 

the installed PV modules from floating away or turning. The PV system has the power 

conditioning devices and solar modules which converts into electrical energy from solar 

energy. In general, crystalline PV cells are utilized in FPVs, but in PV modules fabrication 

research is needed that will adapt to the water bodies or reservoir atmosphere. Underground 

cables are required to transmit the generated electrical energy from the FPV’s to land. Later 

the power can be stored in batteries or can be fed to the grid [139]. 

2.3.2.2 Classification and advantages of FPV System 

 FPV systems are classified into different types based on the module tracking system 

and the floating system used and the classification is shown in Figure 2.5.  

 

Figure 2.5 Classification of FPV System 

In a fixed type FPV system, at a certain angle, PV modules are fixed. Fixed system 

has a normal design but to avoid turning away of PV module, the mooring should be 

constructed precisely. The main advantage with fixed FPV systems is that the PV system 

weight used can be less, which ease in selecting a less mechanical strength flotation 

structure [140]. In tracking type FPV, to track the altitude of the sun and azimuth angle, 

a tracking system is installed. Choi et al. [140] have proposed an algorithm for 100 kW 

floating plant and by using both passive and active tracking systems, the azimuth angle 

tracking is attained. Fiber Reinforced plastic polymer membrane used as a round rotary 
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material and it detected to be more stable and durable than aluminium and steel [141]. 25 

% efficiency increment is achieved after utilizing vertical axis system tracking stated by 

Cazzaniga et al. [142]. In general tracking type floating systems have power output 60-70 

% greater than a fixed plant [143].  

 Based on the type of floating, FPVs are classified as pontoon, flexible and 

submerged PV systems. A pontoon has good buoyancy enough to float on itself with high 

load and is referred as floating device. Most of the FPV systems that are preinstalled are 

pontoon based. Pontoons are manufactured by rotational moulding and are usually made 

from polyethylene which has medium density. The main drawback of pontoons is that they 

cannot withstand drastic environmental conditions and they also create a limitation on the 

size of the plant.  

 Flexible FPV is a thin-film concept stated to have more reliability, with the 

significant system performance. The performance of a flexible FPV system is compared 

against a ground-mounted PV system by Trapani et al. [144]. They reported increase in 

electrical power an average of 5% due to the effect of cooling the water. Flexible FPVs can 

simply distort with the wave motion and the infrastructure requirement is also less. The 

radiation will fall with several angles of incident on the surface of solar cells and to maintain 

the close contact of PV array with the water surface the surface tension is used [144]. If the 

depth of water on the surface of PV is increases it is called as SSPV. 

Submerged Solar PV System (SSPV): 

 In PV system which is submerged, solar panels are immersed in the shallow water. 

Solar panels are more vulnerable to thermal degradation at more than the critical 

temperature value. For efficiency improvement, one of the options is temperature 

reduction. At various water flow rates and different depths in an underwater environment, 

the performance can be achieved better with the irradiation presence in depth of water 

which is also called a submerged PV system. The performance of PV solar panels in 

submerged systems is affected due to the change of the radiation spectrum and by the 

decrease in utilizing temperature of PV modules. The factors that affect the performance of 

submerged panels depend on solar cell technology, environmental conditions, and the depth 

of water.  
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 Tina et al.[30] explored the submerged PV panels energy advantages by studying 

its thermal and optical behaviour at a depth of 1 cm, 5 cm, 10 cm, and 15 cm water. From 

submerged PV panels there is a sizable increment in the power output due to two main 

reasons: absence of thermal drift and reduction of light reflection. Lanzafame et al. [33] 

examined electrical as well as thermal ways of a mono-crystalline module which is 

submerged by changing the water  depth from 1 cm to 15 cm. 10 to 20 % increase in 

efficiency is obtained from a depth of  8 to 10 cm water. They analysed a best depth of 

water that exist till which the module efficiency rises. Scienza Industria Technologia 

(SCINTEC) designed solar cell which will work under 0 to 2 mm of water as shown in 

Figure 2.6 and is also known as submergible PV concept [145]. 

 

Figure 2.6 SCINTEC SSPV concept [145] 

2.3.3 Advantages of FPV System 

 There are several advantages of the FPV system and a few are listed here. As the 

FPV system does not require any foundation work it can be easily deployed and maintained. 

Placement of PV modules over the aquatic surface and in water body reduces the 

evaporation of water, algae growth on water bodies and also conserves land space. Dust 

accumulation and its impact on the PV panels will be reduced which will improve the 

efficiency and another major reason for increase in efficiency of PV systems is because of 

the cooling effect of water present in the water bodies. But as discussed in sections 3.1 and 

3.2 the liquid used for cooling the PV panels needs to satisfy the following requirements 

such as good heat conduction, non-toxic, good chemical stability, economical and easily 
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available. Also, the absorption of sunlight by the liquid should match the spectral response 

of solar cells. Considering all these factors water is the most suitable liquid as it has a high 

thermal capacity and ensures passive cooling which improves the efficiency of PV panels. 

 Above specified data indicates about solar panel improved performance under 

different water environmental conditions. With various designs and structural materials 

specified above improves the performance of PV system. The issues encountered in an 

offshore environment, and design complexity, prevents implementation of the large-scale 

FPV system. Even though, the natural evaporative cooling and reflection of light from the 

water can uphold the temperatures lesser than land-based PV panel and therefore increases 

efficiency. The FPV system contributes shading over the water surface and decreases 

evaporation. FPV system provides shading over the water surface and reduces evaporation. 

The reduced photosynthesis and algae growth lead to better water quality. Generally, areas 

with more potential of solar energy lean to be arid and dusty, therefore compared to ground-

mounted system, FPV systems can work in a less dust ambience. It conserves precious area 

for tourism, mining, agricultural, and other land-impulsive actions and turns non-profits 

generating and unexploited surface of water into profit-oriented PV power plants. 

2.4 Hydro-optical Characteristics of Water and its Suitability for Solar Cells 

 Natural waters, both saline and fresh, are of diffused and contains impure matter. 

The solutes and particles are both highly variable and optically significant in concentration 

and type. The hydro-optical properties of waters show more spatial and temporal variations 

and resemble those of pure water. The water large-scale optical properties are divided into 

two unique classes mutually: one is inherent and the other is apparent [146]–[149]. 

 Inherent optical properties (IOP's) rely solely on the medium, and are not dependent 

on the field of "ambient light" inside the medium. The main IOPs are the volume scattering 

function and the absorption coefficient. Other IOPs contain the beam attenuation 

coefficient, the single-scattering albedo, and the index of refraction. Apparent optical 

properties (AOPs) depend both on the "geometric (directional) structure" and on the 

medium of the "ambient light field", and that shows ample stability and regular 

characteristics to be useful descriptors of water body. General AOPs used are various 

diffuse attenuation coefficients, the average cosines, and the irradiance reflectance. 
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 Radiative transfer theory came up with the connection between the AOPs and the 

IOP's. The water body physical territory –the incident radiance from the sky, waves on its 

surface, the character of its bottom –via the boundary conditions enters the theory to have 

solution for the equations arising within the theory. The IOPs specify the need of radiative 

transfer theory through the optical properties of natural waters. 

The inherent optical properties (IOP) include: 

a. Index of refraction 

b. Volume scattering function 

c. Scattering phase function 

d. Absorption coefficient 

e. Beam attenuation coefficient 

f. Single-scattering albedo 

g. Scattering coefficient 

i. Forward scattering coefficient 

ii. Backward scattering coefficient 

The Apparent optical properties (AOP) include: 

a. Distribution function 

b. Remote sensing reflectance 

c. Average cosine of light field of 

i. Downwelling light dimensionless 

ii. Upwelling light dimensionless 

d. Irradiance reflectance 

e. Diffuse attenuation (vertical) coefficients of 

i. Downward irradiance 

ii. Upward irradiance 

iii. Downward scalar irradiance 

iv. Upward scalar irradiance 

v. Total scalar irradiance 

vi. Photosynthetically Available Radiation (PAR) 

         The seawater created by Ions resulting from the dissolved salts, a better electricity 

conductor than pure water. The seawater conductivity is more than one million times when 

compared with pure water. The absorption at wavelengths cannot be affected by ions. 
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However, the conductor behaviour of sea water gives it a higher absorption than pure water 

at very long wavelengths. The electromagnetic (EM) radiation wavelength is in the order 

of thousands of Kilo meters (KM) and the sea water have an equitable absorption at visible 

wavelengths to the low values. 

2.4.1 Solar Irradiation Inside Ocean Water at Different Depths           

         If we take the planet as a whole, we will be able to notice that all water bodies are 

not a uniform blue and preferably vary in shade based on the depth of water. The deeper 

waters are darker blue and lighter blue at shallower waters. In presence of natural light 

without any artificial source of light, is we take a picture, everything takes on a bluish hue, 

further if we go down and reach 30 meters, 100 meters, 200 meters and more water depths, 

everything appears blue. When light passes through the atmosphere it primarily absorbs 

instead of scattering. Water is like atmosphere, it is made out of a finite size molecule: 

smaller than the visible light wavelengths. Rather than a straight forward wavelength 

dependence, the water absorbs ultraviolet light, infrared light, and red visible light.  When 

go down to a moderate depth, the Sun’s warmth won’t be experienced, things will start to 

turn blue, and will be protected from UV radiation as the red light is taken away. Headed 

little down, the orange then the yellows, violets and greens start to disappear. As go to 

depths down of multiple kilometres, the blue light finally disappears as well. That's why 

the deepest ocean appears a dark blue: as all the wavelengths other than blue get absorbed. 

         In water, among all the wavelengths of light, the deepest blue is unique and has the 

more probability of getting re-emitted and reflected. The reflectivity or global average 

albedo of our planet is 0.30, which means the incident light reflected back into the space is 

30 %. But if the earth considered is totally a deep-water ocean, the albedo would be just 

0.11 as the ocean absorbs more sunlight [150]. About 2 % of the incident solar energy at 

the air-water interface is reflected to atmosphere, the remaining is transmitted. The solar 

energy reflected fraction at the interface is more in the area of the solar spectrum short-

wavelength part. The deletion of scattering centres due to dust particles and colloid 

materials makes seawater similar in its properties of light transmission in the pure water. 

In seawater, the dissolved salts of 3.5 % by weight make no contribution for the process of 

solar energy absorption, but they enhance the seawater scattering coefficient by a 

significant amount. Solar energy inside water depth does not show trend of an exponential 

decrease with depth. 
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The solar radiation, at depth more than 3 meters in water, beam behaves as a mono-

energetic radiation beam. The 3 m of water depth acts as a filter and separates the lower 

energy part of the spectrum. At lower energy part, the extinction coefficient is high. A 

considerable fraction of absorption is noticed by Jamal et al.[151] in the first one cm of 

water and is about 27 %, of the energy transmitted by solar, and in the first 3 m, about 70 

% and predicted absorption at a depth of 100 m is about 0.25 % of the energy is transmitted. 

Solar spectrum transmitted in pure water exhibits different interesting characteristics. At 

first centimetre, above 1300 nm wavelength photons are absorbed by the water and fully 

detached from the spectrum. The spectral distribution becomes limited at a depth more than 

2 m, i.e., to the visible region only.  

The solar energy beam steadily loses its heterogeneity with depth of water. In the 

solar spectrum IR region, selective absorption grabs place because of the active vibration 

modes of the water molecules inside the water. In the spectral range of 300 to 2500 nm, 

ionization cannot take place in pure water as the energy of photons are lesser than 12.6 eV 

which is the initial potential ionization of water. The seawater transparency is less than pure 

water delinquent to the particulate substances scattering at which it acts as soothe agents. 

The seawater will have optical properties which are similar as pure water, by removing the 

scattering centres explained by Mauddi et al. in [94]. 

2.5 Recent Usage of SSPV concept 

         Remote marine sensing systems like telemetry tags or underwater autonomous 

vehicles, are limited in deployment duration and collection of data because of the finite 

energy available from the battery placed onboard. With limited power available, 

maintaining a high data resolution, and migrating to large distances over deep-routed 

deployments is difficult and such systems often yield non-ideal data sets. The application 

of solar PV panels on such marine systems and harvesting energy could improve the tag 

longevity and/or collected data fidelity.  

Hahn et al [36] presented a model assessment which evaluates the output energy of 

a migrating or stationary solar cell below or above the surface of ocean water. The 

assumptions and theory beyond the model are explained in detail which includes review 

concepts established for the purpose of variable consistency and consolidation.  
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 Jenkins et al. [63] demonstrated that maximum utilized power is procured at a water 

depth of 9.1 m utilizing high-band gap InGaP solar cells. These solar cells absorb the “blue” 

segment of the spectrum and light persisting is transmitted. The light absorption done by 

the N-contact of the solar cell is having decreased band gap. At the greatest depth of 9.1 m, 

the output power obtained was 7 W/m2 of solar cells which will be sufficient for sensor 

systems used in modern electronics. 

         Sheeba et al. [23] conducted experiments at Center for Energy and Environmental 

Science and Technology (CEESAT), a India-UK- Renewable Energy Corporation project 

at the National Institute of Technology-Trichy, India, in both continuous and batch mode. 

Most of the investigations aimed at assessing the efficiency deviation of an amorphous-

silicon PV panel by changing the depth of water in the range of 2 to 20 cm in submersed 

condition. The efficiency deviation with various water flow rates of 20, 30, and 40 ml/s is 

also considered for the optimal depth. 

         Walters in 2015 presented the pattern design of a novel organic PV device tailored 

for UW operation. The organic PV cell is multi-junction design with same spectral response 

of two absorber layers. The UW environment analysis is also presented highlighting the 

advantage of OPV cells. An OPV enabled efficient conversion of the narrow UW spectrum 

resulting in high voltage output. 

         Mol’kov et al. [35] determined the inherent hydro-optical performance of water 

utilizing the vision means in UW environment. The analytical methods of the solar UW 

path, framed by single and multiple scattered light, and direct light are suggested. The 

optical depths at which the water-scattered light the contribution is predominant are 

estimated using numerical simulation. Algorithms for attenuation coefficients and 

rejuvenating the water scattering from the underwater sculpture of solar path are also 

suggested. 

         Tina et al. [37] designed the feasibility to utilize PV modules under a layer of water. 

They considered PV cell under different conditions: submerged, under a translucent box 

that carries water, and covered by a water layer. In common, all the above test conditions 

have the benefits of water as a filter for solar radiation spectrum and to decrease the heating 

of the PV cells. Highly depending on the PV cell technology, the effect of the radiation 

spectrum varies on the PV cells. 
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         Rosa-Clot et al.[27] to cool the mono-crystalline module used a technique to cool 

in the submerged water conditions. The temperature at 30 °C, yielded an increase in 

efficiency of 20 %, but irradiation intensity decreases with water depth. The relative 

efficiency is increased by 11 % at a depth of 4 cm.  

Abdulgafar et al.[21] compared 0.12 Watts and 15 cm2 polycrystalline solar cells 

efficiencies drenched in deionised depths of water. At the lowest depth of 1 cm, the overall 

power gained is high. However, at a depth of 6 cm, the greatest efficiency of 22 % was 

achieved. 

2.6 Summary and Conclusion 

 From the literature survey, it has been observed that by decreasing the temperature 

on the surface of PV cells, efficiency of the cells can be improved tremendously. The 

temperature of PV panel can be decreased by using two cooling techniques: forced cooling 

and natural cooling. Forced cooling systems require additional electrical equipment to force 

the cooling liquid which consumes more power than the generated power and natural 

cooling technique has different construction for installation of PV panels. It is also observed 

that while comparing the literature based on forced and natural cooling techniques, the 

natural cooling techniques were mostly preferred with the PV systems. This is mainly due 

to less cost factor involved and the effective operation of PV cells under natural cooling 

techniques.  

The natural cooling system involves FPV systems and among the FPV systems, the 

SSPV systems are mostly considered. The factors affecting the PV cell efficiency are 

majorly eliminated in case of SSPV systems. Because of the two types of optical properties 

of water, the inherent and apparent optical properties, there is difference in the presence of 

irradiation at different water depths. The spectrum has different wavelengths and the 

distribution of wavelengths inside water also varies with the presence of particulate matter 

and type of water (normal, ocean, lake, organic etc.,).  

At different depths, the optical properties of solar cells vary with the environmental 

conditions but are suitable for SSPV systems to operate and produce electricity. SSPV save 

valuable land for tourism, mining, agricultural, and other land-impulse actions and turns 

non-profit generating and unexploited surface of water into profit-oriented PV power 



Chapter 2. Evolution of the performance of solar PV systems in the submerged environment 

 

34 
 

plants. The hydro-optical characteristics of water proves the irradiation presence inside the 

water and the physical properties of water makes decrease in temperature by increasing the 

efficiency of submerged PV cells. On the whole, mentioned above advantages will allow 

SSPV system, suitable for an efficient energy generation which is the need of the hour.
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CHAPTER 3  

SUBMERGED SOLAR PHOTOVOLTAIC (SSPV) 

MODELING 

3.1 Introduction 

To solve the overwhelming energy crisis, the world is steadily shifting its power 

generation and usage to renewable energy sources (RES) [152], [153]. Among the available 

RES, solar power generation has proven to be the leader by primarily employing PV cells 

to convert solar energy into electrical energy. However, the huge available solar energy 

potential remains still untapped due to the lack of efficient design of PV cells and lack of 

better efficiency in solar cells due to heat losses. 

The PV effect, found while experimenting on an electrolytic cell in 1839, captured 

solar energy by a semiconductor device and in 1894, Fritts created the first PV cell with an 

efficiency of 1 % [154].  Later on due to improvements in PV technologies [155], like 

optical shifting frequency, CPV system [156] and multi-junction PV cells [157], the 

efficiency of PV cells improved to 22 % to 23 % [106]. Even with this benchmarked 

improved efficiency, the Solar PV technologies [158], [159] are expensive, both in terms 

of maintenance and acquisition [160]. There are also mono-junction Si-PV cells that have 

reported a maximum efficiency of 23 % [161] and used widely. However, Mono-junction 

PV cells are limited theoretically to 19.4 % [162]conversion efficiency, while multi-

junction III-V material PV cells reached efficiency up to 18.8 % [163], [164] under 1-sun 

condition experimentally.  

The III-V PV cell material junction includes: GaAs, InP, InGaAs, and similar 

compounds with a direct band gap. These PV cells cost is high so its applications include 

terrestrial flat plate-modules and space [165]. Because of this, the Si, Ge and III-V multi-

junction PV cells are receiving increased demand in the PV community. The PV cells can 

work both in hot and cold regions with the direct and diffuse radiation availability. The 

increase in temperature is the major reason for the drastic decrease in efficiency which 

varies from place to place. In Himalayas, the annual average Global Horizontal Insolation 

(GHI) is around 4.5 kWh/m2/day [166], which is more than the Standard Test Conditions 

(STC) of PV cell. Also, the temperatures like -18 0C and +15 0C are possible in cold regions 

and southern regions of India respectively. The lowest recorded temperature in India was -

450C in Kashmir at coordinates 33.2778 0 N, 75.3412 0 E, and the highest temperature was 



Chapter 3. Submerged Solar Photovoltaic SSPV cell/panel modeling 

36 
 

51 0C in Phalodi at coordinates 27.1312 0N, 72.3589 0E, Rajasthan [100]. For increasing 

the efficiency to certain level, different types of cooling technologies can be implemented 

with the variety of cooling liquids available [167].  

Another reason for the lower efficiency in PV cell is the fact that only a fraction of 

solar energy can be absorbed by a typical solar cell which gets converted into electricity 

and the rest remains untapped as thermal loss [168], [169]. The thermal loss varies with the 

difference in temperatures, optical characteristics of material used, photon generation and 

recombination by the solar cell and environmental conditions. These issues can be 

investigated and later incorporated during manufacturing if a practical solar cell is modeled 

in a 3-dimensional (3-D) perspective with a coupled optical and thermal module [170]. 

The prediction of PV performance at different temperatures is required by 

decreasing the experimental cost. V.N. Vapnik [171] has predicted the performance using 

the popular tool of Artificial Intelligence (AI) technique,  the Support Vector Machine 

(SVM). From SVM, the Support Vector Regression (SVR) tool is extended and is intended 

for the load forecasting [172]. SVR uses four kernels namely: Polynomial, Linear, sigmoid 

and Radial Basis Function (RBF) kernels. It is developed for the global horizontal radiation 

estimation by P. Bhola and S. Bhardwaj [173]. The Root Mean Square Error (RMSE) is 

considered as the performance metric for estimation using the data from the National 

Institute of Solar Energy (NISE) for predicting the radiation. The SVR model's findings 

were evaluated and found to be superior to other cutting-edge models such as the Artificial 

Neural Networks, and Hidden Markov Model. According to the result analysis [173], 

temperature is the most critical performance indicator, followed by relative humidity, air 

pressure, and wind speed. In [174], [175] also, the SVR and KRR is observed as a best 

regression technique for power prediction compared to other techniques. 

Tina et.al [64], presented a review about the applications of Machine Learning (ML) 

techniques in different fields of PV. ML-based models are mostly proposed for the field of 

PV production forecasting. Berny Carrera and Kwanho Kim [65], presented linear 

regression (LR) and Polynomial Regression (PR) with different ANN techniques for 36Hrs 

prediction of PV power production with weather forecast and observations. A review based 

on Deep Learning (DL) techniques to forecast different cell technologies and utilization of 

them for the prediction of PV power is available in [66]–[68] and solar irradiance in [69], 

[70]. The Mean Square Error (MSE), Mean Absolute Error (MAE), RMSE, and Mean 

Absolute Percentage Error (MAPE) are considered as metrics and measured to find 



Chapter 3. Submerged Solar Photovoltaic SSPV cell/panel modeling 

37 
 

accuracy. As per the references cited above, the data points for the LR, PR, KRR and SVR 

are medium for the power prediction and are effectively implemented. 

 In order to study the physics of PV cell/panel, Multiphysics modeling of PV 

cell/panel is needed where all the PV parameters variations can be observed. In such case 

the modeled PV cell has to perform similar to the commercially available cell, which can 

be utilized further for different material coatings and environmental conditions. Similarly, 

the analysis of PV performance at different intervals of temperatures with standard 

irradiation take more time through modeling and can be predicted with the AI based ML 

prediction techniques in less time.  

Objectives of research and key contributions: 

 The four main objectives of this research include Mathematical/ Multiphysics 

modeling of PV cell/panel using different materials under different environmental 

conditions, implementation of SSPV in mathematical/ Multiphysics modeling and using 

ML techniques for predicting the PV cell/panel performance. In this work,  

1) The mathematical modelling of PV cell/ Panel in MATLAB environment via non-

ideal conditions like temperature variations, irradiation variation, equivalent circuit 

at single and double diode conditions via the consideration of series and parallel 

resistances. 

2) A Mono-crystalline Si PV is modeled both in cell level and panel level with 3-D 

geometry via coupled semiconductor, optical, and thermal Multiphysics modules 

by using Finite Volume Discretization Method (FVDM).  

3) The I-V and P-V characteristics of the modeled PV cell and panel are validated with 

the commercially available mono-crystalline Si cell/panel, both with the data sheet 

and experimental data. 

4) The temperature distribution, recombination of Shockley-Read-Hall (SRH) and 

Joule heating via absorption of sunlight at constant irradiation levels are analyzed 

for the modeled PV cell. The Joule heating distribution analysis is also performed 

for the PV cell/panel modeled using Ge, GaAs and InP and efficiency is estimated.  

5) The parameters of PV -like Voc, Isc, and Pmax, efficiency and FF are obtained at 

different temperatures and tabulated.  

6) In this chapter, the LR, PR, SVR and KRR algorithms are implemented and trained 

with the obtained mono-crystalline Si simulation data at temperatures 0 0C, 51 0C, 
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-45 0C and the values are predicted for 25 0C. The predicted data is compared with 

the datasheet/modeling data at 25 0C temperature and best model is selected. With 

the addition of 25 0C temperature data in training, the performance of PV cell is 

evaluated at the15 0C and -18 0C [176], the maximum and minimum temperatures  

of Indian Himalayan region with Si, Ge, GaAs, and InP materials. 

7) Implementation of SSPV both in mathematical and Multiphysics modelling with 

the variation of water depth, materials, temperatures and PV cell material 

parameters with the performance measurement having I-V and P-V characteristics. 

8) The suitable material with higher efficiency, good RMSE, MAE, MAPE and 

coefficient of determination (R2-Score) is predicted using the best ML algorithm at 

different temperature conditions.  

3.2 Mathematical Modeling of PV Cell/Panel Using MATLAB/SIMULINK 

The mathematical modeling of PV cell/ panel is based on the electrical equivalent 

circuit of PV and are divided in to ideal and practical equivalent circuits where the series 

and parallel resistances of the PV are taken as zero for ideal which is practically not 

possible. So here, the equivalent electrical diode circuit is used to derive mathematical 

modeling of PV solar cell as shown in Figure 3.1 with the consideration of series and 

parallel resistances. PV cell STC values are given as temperature 25 0C, irradiance 1000 

W/m² and air mass 1.5. Current developed from the PV cell to the load is represented as I 

and the equations (3.1) to (3.10) are specified for the load current calculation and to find 

the maximum power obtained from the PV with efficiency. 

 

Figure 3.1 Electrical equivalent circuit of PV cell3 

 
 

➢ 3C. S. Durganjali and R. Sudha, “PV Cell Performance with Varying Temperature Levels,” 2019 Glob. 

Conf. Adv. Technol. GCAT 2019, pp. 1–5, 2019, doi:10.1109/GCAT47503.2019.8978302 
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From Figure 3.1, the load current (I) is given as equation (3.1),  

𝐼 = {(𝐼𝑝ℎ ∗ 𝑁𝑝) − 𝐼𝑑 − 𝐼𝑠ℎ}        3.1 

Where 

Photon current Iph is given by equation 3.2, 

𝐼𝑝ℎ = [𝐼𝑠 + 𝐾𝑖(𝑇𝑜𝑝 − 𝑇𝑟𝑒𝑓)] ∗ (
𝜆

1000
)       3.2 

Saturation current Is 

𝐼𝑠 = 𝐼𝑟𝑠 ∗ (𝑇𝑜𝑝 𝑇𝑟𝑒𝑓⁄ )
3
∗ 𝑒

[(𝑞∗𝐸𝑔0∗[(
1

𝑇𝑜𝑝
)−(

1

𝑇𝑟𝑒𝑓
)])(𝑛∗𝐾)]

    3.3 

Reverse saturation current 

𝐼𝑟𝑠 = 𝐼𝑠 {𝑒
[(𝑞∗𝑉𝑜𝑐) (𝑛∗𝐾∗𝑁𝑠∗𝑇𝑜𝑝)⁄ ] − 1}⁄        3.4 

Diode current 

𝐼𝑑 = 𝐼𝑠 ∗ 𝑁𝑝{𝑒
[(𝑉𝑜𝑐+𝐼∗𝑅𝑠)𝑞 (𝑛∗𝐾∗𝑇∗𝑁𝑠)⁄ ] − 1}      3.5 

Shunt current 

𝐼𝑠ℎ = (𝑉 + 𝐼 ∗ 𝑅𝑠) 𝑅𝑠ℎ⁄         3.6 

Thermal voltage 

𝑉𝑡 = (𝐾 ∗ 𝑇𝑜𝑝) 𝑞⁄          3.7 

The conversion efficiency (η) is given as, 

𝜂 = (𝑉𝑚 ∗ 𝐼𝑚 𝐼 ∗ 𝑆⁄ ) 100%        3.8 

The fill factor of a solar panel is given by, 

𝐹𝑖𝑙𝑙𝐹𝑎𝑐𝑡𝑜𝑟 (𝑓𝑓) = 𝑉𝑚 ∗ 𝐼𝑚 𝑉𝑜𝑐 ∗ 𝐼𝑠𝑐⁄        3.9 

Maximum power obtained from the panel is, 

𝑃𝑚 = 𝑉𝑚 ∗ 𝐼𝑚 = 𝑉𝑜𝑐 ∗ 𝐼𝑠𝑐 ∗ 𝑓𝑓       3.10 

At STC values of 223mW PV cell and 20W PV panel has specifications as shown in Table 

3.1. 
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Table 3.1 Parameter specifications of solar PV cell 

Parameter 22.3mW PV cell 10 PV cells 20W PV panel 

Maximum power (Pmax) 22.3 mW 223 mW 20.0 W 

Open circuit voltage (Voc) 0.63 V 6.3 V 22.0 V 

Short circuit current (Isc) 5 mA 50 mA 1.30 A 

Voltage maximum power (Vmp) 0.5 V 5 V 18.0 V 

Current at maximum power (Imp) 4.46 mA 44.6 mA 1.12 A 

Cell temperature 25 0C 25 0C 25 0C 

Irradiation 1000 W/m2 1000 W/m2 1000 W/m2 

3.2.1 MATLAB/SIMULINK Model for The Electrical Equivalent Circuit 

The equation (3.1) to (3.7), of PV cell are represented as shown in Figure 3.2 to 

Figure 3.8 respectively modeled in MATLAB/SIMULINK. 

 

Figure 3.2 Load current 

 

Figure 3.3 Phase current 
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Figure 3.4 Saturation current 

 

Figure 3.5 Reverse saturation current 

 

Figure 3.6 Diode current 
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Figure 3.7 Shunt current 

 

Figure 3.8 Thermal voltage 

 The combined model for all the models from Figure 3.2 to 3.8 is represented as 

shown in Figure 3.9 from which, the total load current, FF, conversion efficiency can be 

calculated with variation of temperature and irradiance at a time. 

 

Figure 3.9 PV cell/panel mathematical modeling via MATLAB/SIMULINK 
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3.3 Multiphysics Modeling of PV Cell/Panel Using COMSOL 

The flow diagram shown in Figure 3.10 details the steps involved in the proposed 

work.  First a PV cell is modeled in the multi physics environment in line with the 

commercially available mono-crystalline Si cell and validated. After its performance 

parameters validation, many such cells are connected in series and parallel to obtain the 

model of the PV panel. PV cell and panel are also modeled using different other materials 

such as Ge, GaAs and InP and their performance parameters are obtained at four different 

temperature conditions.  

The obtained data is used for training and testing of the developed ML algorithms 

for predicting PV parameters. The following subsections describe in detail about the steps 

involved in the modeling of the PV cell, panel and prediction of performance of panel 

parameters using four different ML algorithms. 

 

Figure 3.10 Evolution of the work flow 

3.3.1 PV Cell Modeling 

Modeling of PV cell involves cell geometry selection, material selection, and 

meshing with physics selection and is discussed in the following subsection. The PV model 

implementation flow diagram is represented in Figure 3.11 with the explanation of each 

section as sub topics below. 
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3.3.1.1 Solar Cell Geometry and Physics Selection 

3.3.1.1.1 Geometry Selection 

As shown in Figure 3.12 (a) and (b), an existing or practical mono-crystalline Si PV 

cell has been designed in 3-D scheme. The cell dimensions were considered to be 20 mm 

× 6.16 mm × 2 mm matching with the single PV cell in the datasheet that is used for 

validation [177]. The different layers of modeled PV cell are shown in Figure 3.13 and 

include: Aluminium (Al) frame, anti-reflection coating (tempered glass), Ethylene Vinyl 

Acetate (EVA) on top and bottom of solar cell with p-layer and n-layer to form junction 

and back contact. 

 

Figure 3.11 Processes involved in Multiphysics modeling of PV cell 

 While modeling the mono-crystalline Si PV cell using FVDM at STC conditions 

used are irradiation of 1 Sun = 1000W/m2, air mass 1.5, and temperature250C (298.15K). 

The thermal conduction coefficient values also used as the parameters and the cells were 

initially considered to be at room temperature (Troom = 298.15 K) and later the temperature 

is varied for different testing conditions. 
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(a)                                   (b) 

Figure 3.12 a) Geometry of solar cell b) Penetration of energy in mono-crystalline Si 

cell layer 

 

Figure 3.13 Layers of modeled PV cell 

3.3.1.1.2 Physics Selection 

In the process of modeling, the physics selection involves the combination of 

semiconductor, optical and thermal modules to resemble the commercial PV cell. These 

module selections include optical transmission, photon generation and recombination, 

charge transport physics selection within the modeled PV cell. After coupling the modules, 

the boundary conditions are decided considering the optical profile of cell. The electric 

potential formation with the hole-electron pair thermalization is possible during electron – 

hole pair formation. The thermalization causes chemical energy which gets converted into 

electrical energy with the flow of electrons from external circuit connected at two ends and 

is called as the PV current. The optical behavior of PV cell varies with different materials 

and their energy bandgap. 
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a) Optical transmission: 

The optical absorption, spontaneous emission and stimulation of the mono-

crystalline Si cell can be modeled using the optical transition feature. The electromagnetic 

wave can produce absorption or stimulated emission between two quantum states when a 

transition takes place in the presence of electric field oscillation. In the valence band, when 

an electron absorbs photon and transmits to conduction band, it results in coherent light 

absorption. The non-linearity and the carrier energy distribution at a given temperature can 

be assumed using Maxwell-Boltzmann carrier statistics for non-degenerated 

semiconductors. On the other hand, the Fermi-Dirac statistics can be used for degenerated 

semiconductors at lower temperatures. In the model, for carrier statistics and solution 

variables, the in-built model properties are utilized.  

Carrier Statistics: 

• When both the electron and hole Fermi levels are within the band gap and away 

from edges of band then Maxwell-Boltzmann statistics can be applied. 

• When some of the quasi-Fermi levels are near to the edges of band or inside the 

band gap, the Fermi-Dirac statistics play a major role to simulate degenerated semi-

conductors. 

In this work to model the PV cell, the frequency domain Maxwell equations which are 

given in (3.11) and (3.12) are considered. 

𝛻 ×𝐻𝑜𝑝𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑗2𝜋𝜀𝑟𝜀0 𝐸𝑜𝑝𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗          3.11 

𝛻 × 𝐸𝑜𝑝𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = −𝑗2𝜋𝑣𝜇0𝐻𝑜𝑝𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗          3.12 

where, 𝐻𝑜𝑝𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is the magnetic field vector, 𝐸𝑜𝑝𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is the electric field vector, 𝑣 is frequency, 𝜀𝑟 

is relative permittivity and 𝜀0 is permittivity of free space 

b) Photon generation and carrier recombination: 

For electric field generation in frequency domain, the Helmholtz equation is used. 

These equations are part of Maxwell-Boltzmann equations. The module output is the 

photon-generation rate across thickness of the device for the absolute spectrum at each 

frequency 𝑣and position (x,y,z) and is given in equation (3.13) [178], [179]. 
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𝐺(𝑣, 𝑥, 𝑦, 𝑧) =  
𝑄

ℎ𝑣
=

𝜋𝜀𝑟𝜀0

ℎ
𝐸𝑜𝑝𝑡
2        3.13 

Integration of frequency dependent G over the AM 1.5G solar spectrum is given by (3.14) 

𝐺𝑡𝑜𝑡(𝑥, 𝑦, 𝑧) = ∫ 𝐺(𝑣, 𝑥, 𝑦, 𝑧)𝑆(𝑣)𝑑𝑣
𝐺

𝐴𝑀 1.5𝐺
      3.14 

Where 𝑆(𝑣) is spectral density of the AM 1.5G solar spectrum, ℎ is plank's constant, 𝑄 is 

charge density and 𝐺 is irradiation distribution with spectrum wavelength. 

C) Charge transport: 

The charge transport in the semiconductor material depends on the Poisson's 

equation with drift and diffusion equation into consideration. At steady state, the Poisson's 

equation is written as continuity equation as derived in the equations (3.15) to (3.19). 

The drift and diffusion equations are: 

𝐽𝑛 = −𝑒𝑛𝑓𝜇𝑛𝛻𝑉 + 𝑒𝐷𝑛𝛻𝑛𝑓        3.15 

𝐽𝑝 = −𝑒𝑝𝑓𝜇𝑝𝛻𝑉 + 𝑒𝐷𝑝𝛻𝑝𝑓        3.16 

The Poisson's equation is considered as, 

𝛻2𝑉 =
𝑞

𝜀0𝜀𝑟
(𝑛𝑓 + 𝑛𝑡 − 𝑝𝑓 − 𝑝𝑡)       3.17 

and at the steady state current continuity equations for electron and holes are given by 

equations 3.18 to 3.19. 

𝑑𝑛

𝑑𝑡
=

1

𝑞
𝛻𝐽𝑛 + 𝑘𝑑𝑋 − 𝑅𝑛 = 0 (Steady state)      3.18 

𝑑𝑝

𝑑𝑡
=

1

𝑞
𝛻𝐽𝑝 + 𝑘𝑑𝑋 − 𝑅𝑝 = 0 (Steady state)      3.19 

where, 𝐽𝑛 𝑎𝑛𝑑 𝐽𝑝are current densities of electrons and holes, 𝜇𝑛(𝑝)is mobility of electrons 

(holes), 𝑛𝑓(𝑝𝑓) is free electron (hole) concentration, 𝑛𝑡(𝑝𝑡) is electron (hole) trapped 

concentration, 𝑅𝑛(𝑅𝑝) is recombination rate of electron (hole) and 𝐷𝑛 (𝐷𝑝) = Electron 
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(hole) impact ionization. The charge transport in the cell require insulation at boundary 

conditions of the cell with its metal contact representation. 

d) Boundary conditions with coupling of modules: 

By interfacing semiconductor module, appropriate boundary conditions are included 

for the PV model material as a feature. Separate boundary conditions have to be included 

if insulating regions are added by charge conversion feature. The boundary conditions are 

selected for three different profiles, such as: 

• Doping profile 

• Metal Contacts 

• Trap density 

3.3.1.2 Material Selection 

The Modeled PV has layers of Al frame, Glass, EVA and solar PV cell with back 

contact. The material properties of the different layers are listed in Table 3.2. 

Table 3.2 Properties of materials used for different layers of PV cell model [12], [98], 

[180] 

Parameter 
Aluminium 

(Al) 
Glass EVA Silver 

Density [kg/m3] 2700 2200 935 10500 

Thermal conductivity [W/(m×K)] 210 1.1 0.34 429 

Heat capacity at constant pressure 

[J/(kg×K)] 
900 480 480 235 

Electrical conductivity [S/m] 3.5×107 10-14 - 6.16×107 

Relative permittivity 10 4.2 - 11.7 

Refractive index - 1.5 1.5 - 

Emissivity - - - 0.01 

The limiting parameters of crystalline Si PV cell [162] are temperature, Shockley - 

Queisser limit, anti-reflection coating/cover glass effects and internal resistance variations. 
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3.3.1.3 Meshing 

After the complete geometrical design is done, meshing is performed and then the 

model is analysed. Various types of analysis can be performed using the Multiphysics 

software, which include:  

• Linear and non-linear analysis 

• Stationary and transient analysis and 

• Eigen frequency response analysis 

In this work, linear analysis is considered to obtain better characteristics of the solar 

cell [181].  

The coupled model by FVDM can be solved numerically with the different element size 

of mesh for total cell structure. The structured mesh is shown in Figure 3.14 Two types of 

meshing can be done, where one is physics-controlled meshing and the other is user-

controlled meshing. In this work physics-controlled meshing has been adopted. The 

minimum and maximum size of element for total sequence of meshing was set to 0.1mm 

and 0.5 mm respectively, which makes cell into a finer mesh and easy to analyze each and 

every element of the solar cell. At curvature factor of 0.5, the maximum growth rate of 

element is set to 1.13, to make curved boundary into swept mesh. With the use of swept 

mesh, the size of the model and computational complexity is reduced for every component 

in the overall structure. 

 

 

Figure 3.14 Meshing of PV cell model 
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3.3.1.4 Joule heating distribution 

Typically, thermal distribution in the cell is based on heat transfer through 

convection, radiation, and conduction. The thermal dissipation occurs when two objects 

with different temperatures kept in the same environment undergo electric current passage, 

which is called joule heating. To calculate the PV cell temperature profile and heat 

dispersion, in Multiphysics, heat transfer in solids module is preferably utilized. As shown 

in Table 3.2, several parameters like heat capacity, heat transfer coefficient, and thermal 

conductivity of each layer are chosen. The heat transmits from higher temperature region 

to lower following thermodynamic laws.  

Every material generates its own heat and it increases with the increase in 

temperature on the top of the PV cell. Hence to observe  the joule heat in the PV cell, heat 

transfer module is considered in the design of mono-crystalline Si cell. Heat conduction 

takes place when electron carries heat in metals and semi-conductors. In other materials, 

heat conduction occurs through lattice vibration which is also called molecular motion.  

The temperature gradient is always proportional to heat flux. To control the temperature 

profile, internal heat generation has to be maintained in limits and at steady state the internal 

generation of heat is calculated using partial differential equation as given in (3.20). 

−𝑠𝛻2𝑇 + 𝑄 = 𝜌𝑝𝐶𝑝
𝑑𝑇

𝑑𝑡
        3.20 

where, 𝑠 is the semi-conductor material thermal conductivity [W/(m*K)], 𝜌𝑝 is the density, 

Cp is specific heat of material [J/(kg*K)], and Q is the generation of heat rate which controls 

the absorption of light on surface. 

The different sources of thermal generation like joule heat, thermalization, Peltier 

heat, bulk and surface recombination with their roles have been presented by Shang and Li, 

2017 [182], for solar cell analysis. Out of 1000 W/m2 of the incident light, 122 W/m2 get 

converted to Joule heat, 157 W/m2goesfor thermalization, 15 W/m2 is utilized for heat 

generation and the remaining as Peltier heat at interfaces of metals and loss of reflection 

[182]. The generation of heat for Joule effects (HJoule) and SRH (HSRH) is given by (3.21) 

and (3.22).  

Joule heat, 𝐻𝐽𝑜𝑢𝑙𝑒 = 𝐽 × 𝐸        3.21 
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SRH heat,𝐻𝑆𝑅𝐻 = (𝐸𝑔 + 3𝑘𝑇) × (𝑈𝑆𝑅𝐻 + 𝑈𝐴𝑢𝑔)     3.22 

here, 𝑈𝐴𝑢𝑔 is Auger recombination rate, 𝑈𝑆𝑅𝐻 is Shokley-Read-Hall recombination rate, 𝐸𝑔 

is band gap of semi-conductor material and J is the Conducting current density in the cell. 

The Joule heating is one of the most common examples of Multiphysics coupling 

where a conductive material with the flow of electrical current leads to heat losses, which 

in turn leads to a rise in the temperature. The thermal conductivity and Joule heating 

distribution were analyzed in results section for different temperatures. The different 

temperatures include: the maximum and minimum temperatures occurred in India (51 0C, 

-45 0C), ambient temperature (25 0C), 0 0C and temperatures -18 0C and +15 0C in cold 

regions and southern regions of India respectively. 

3.3.1.5 Characteristics of PV cell 

 

Figure 3.15 P-V and I-V characteristics of simulated solar cell 

From Figure 3.15, the I-V and P-V characteristics of the modeled Mono-crystalline 

Si PV cell can be observed. With the consideration of different material properties and 

thermal co-efficient as specified in Table 3.3, the values of the different parameters 

obtained from modeled solar cell are Isc= 45.69 mA, Voc= 0.62 V, maximum current (Imax) 

39.39 mA, maximum voltage (Vmax) 0.50 V, and the Pmax =19.77 mW. The efficiency of 

the modeled PV cell is approximately 19.69 % with a FF of 0.69. The cells can be connected 

in series and parallel to make a panel depending on the voltage and current requirements. 
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3.3.2 PV Panel modeling 

3.3.2.1 PV panel geometry 

 The PV panel is obtained by connecting PV cells in series and parallel. The PV 

panel modeled in this work is similar to the IXOLARTM SLMD121H10L and it is an IXYS 

product line of solar module made of mono-crystalline Si, high efficiency solar cell [177]. 

The panel dimensions are 42.0 × 35.0 × 2.0 mm in 3-Dimensions top view and is shown in 

Figure 3.16 and the 3-D image is as shown in Appendix: A – Fig.A1. The physics, meshing 

and layer properties of PV panel are considered as discussed in Section 4.3 of modeling of 

PV cell.  

 

Figure 3.16 3-D top view of PV solar panel 

3.3.2.2 PV panel material selection 

The solar cell in this work is modeled using materials like mono-crystalline Si, Ge, 

GaAs, and InP. The impurity doping profile for the PV panel is N-type as donor and P-type 

as acceptor. The junction depth of the panel is 5𝜇m and the generation rate of the panel is 

considered as 11× 1020 ([1/(cm3×s)] ×exp(-x/1[µm])) at different temperatures like 0 0C, 25 0C, 

51 0C, and -45 0C as specified in section 3.1. General element mesh size is considered as 

0.1mm at p-doping and finer mesh throughout the solar panel. The material for the solar 

cell can be included from the library or physically including material properties like 

absorption and scattering. The design parameters and properties of the different materials 

used for modeling are listed in Table 3.3. 
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Table 3.3 Material properties of PV cell considered for modeling 

Parameter 
Mono-crystalline Si 

[180], [183] 
Ge [14] 

GaAs [12], 

[17] 

InP [163], [184], 

[185] 

Relative permittivity 11.7 16.2 12.9 12.5 

Electron lifetime, SRH 10[µs] 10[ms] 50[ns] 2[ns] 

Hole lifetime, SRH 10[µs] 10[ms] 30[ns] 3[µs] 

Electron mobility (cm2/(V×s)) 1450 3900 8500 5400 

Hole mobility (cm2/(V×s)) 500 1900 400 200 

Band gap (eV) 1.12 0.67 1.424 1.344 

The efficiency of the materials is different because of their material properties and 

limit variations as specified in Appendix: A - Fig.A2. The GaAs has high external quantum 

efficiency in the visible spectrum compared to both Si and InP. Due to less joule heat 

production and high temperature resistance, GaAs material is mostly used for space 

applications irrespective of its cost. Detailed discussion of parameters of materials along 

with performance characteristics is presented in Section 4.4.  

The characteristics of PV solar panel is obtained for all the materials and are 

tabulated, plotted and presented in the results section. The efficiency of PV panels at 

different temperatures like 0 0C, 51 0C, -45 0C, 15 0C, 25 0C and -18 0C are obtained for 

mono-crystalline Si and at temperatures: 0 0C, 51 0C, -45 0C, and 25 0C for other materials 

(Ge, GaAs, and InP) to select the suitable material at variable temperature conditions. These 

obtained results are used as training data for predicting the performance at 15 0C, and -18 

0C as specified in section 3.1. 

3.3.2.3 Experimental set up 

In the experimental setup, for creating the STC, solar simulator is used and the 

irradiation is measured using a LUX meter. The solar simulator is shown in Figure 3.17 (a) 

and experimental setup is as shown in Figure 3.17 (b) and (c).  
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Figure 3.17 a) Solar simulator providing STC b) Experimental setup of mono-

crystalline solar cell under solar simulator c) Experimental setup of mono-

crystalline Si cell under sun at 12 PM with >1000 W/m2 

 The characteristics of the data sheet and experimental result are considered for 

validating the modeled PV cell. 

3.3.3 ML algorithms implementation 

In this chapter, the I-V and P-V characteristics of the PV cell modeled using four 

different materials is predicted using four different ML algorithms at both positive and 

negative temperature levels. The ML algorithms used are: LR, PR, SVR and KRR using 

Scikit-Learn software package and Python programming language. Firstly, mono-

crystalline Si is tested and from the results, the optimum parameters are selected for 

prediction of performance of other materials with ML algorithms. This is because Si is 

mostly available and used PV material.  

The PV cell/panel materials voltage, current and power data acquired from 

modeling in section 3.2.1 and 3.2.2 are utilized as train data and predicted the data for (150C 

and -180C) after testing the data at 250C. The flow chart detailing the steps involved in the 

prediction of performance parameters using ML algorithms is shown in Figure 3.18. The 

obtained datasets from sections 3.2.1 and 3.2.2 are segregated into input and output 

features. The input features are temperature (T) and voltage (V) and the output features are 

current (I) and power (P).  
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Figure 3.18 Flow chart depicting the process of prediction of PV cell/model 

performance parameters using ML Algorithms 

3.3.3.1 Linear Regression (LR) 

The most commonly used ML algorithm is LR. Training data is used to find the 

relation between the input and output features. The algorithm generally tries to find the line 

of best fit by using the training data. The model tries to find a generalized line which can 

be used to predict outputs for outside data. The form of LR is straight line, which can be 

represented as in (3.23). 
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𝑎 = 𝑚𝑏 + 𝐶          3.23 

Where, m is the slope, 𝐶 is the intercept of a, 𝑏 is the independent variable, and a is the 

dependent variable. The most crucial point is to figure out how the LR model finds the line 

of best fit. Generally, LR algorithm tries its best to fit a line on the training data, reducing 

the error between the actual and predicted values. They use a method called the “least 

squares” method. In terms of machine learning, equation (3.23) is represented with weights 

as in (3.24) 

𝑎 = 𝑤0 + 𝑤1𝑏          3.24 

 here w0 and w1 are weights, b is the input, and a is the output.  

LR tries to get the best possible values of the weights, namely w0 and w1, which 

helps to get the line of best fit for the input features “b” to map to the output features “a”. 

In LR, there is a cost function which helps in finding how good the model has performed. 

For LR, cost function is nothing but RMSE from which correlation factor (R2_Score) can 

be determined.  

3.3.3.2 Polynomial Regression (PR) 

PR helps to find the relation between the simulation data and features by trying to 

find the best curve fit. Before training the model, first transform the input data into 

polynomial features, which then can be trained. The degree of a polynomial is a parameter 

which does not have a fixed value, and the value keeps changing based on application and 

the data which is provided for training. The general equation of polynomial regression is 

given in (25). 

𝑏 = 𝑤0 + 𝑤1𝑎 + 𝑤2𝑥
2……… ..       3.25 

where w0, w1, w2 …are the weights of polynomial, a is the input and b is the output. 

 Finding the optimal parameter is the most challenging task in polynomial 

regression. If the degree of polynomial is high, the data may tend to get over / under fitted. 

In general, the best degree of the polynomial for the provided data is the one which gives 

the lowest RMSE value and the highest R2_score for the test data.  
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3.3.3.3 Support Vector Regression (SVR) 

The prediction of discrete values is possible through SVR which is a supervised 

learning algorithm. It is a popular prediction technique in regression which tries to model 

a hyperplane in a higher dimensional space which best fits the training data provided 

accurately [186], [187]. The best fit line has the hyperplane which has the maximum points 

that lies inside and outside of the margin and is represented with threshold epsilon (ε). SVR 

uses kernels (ϕ) to map data points from lower dimension to a higher dimension and 

constructs hyperplane. Four steps involved in SVR before utilizing it for prediction are: 

1. Data visualization 

2. Extraction of features 

3. Model fitting 

Once the model is fit, then the ML technique is ready to predict the values and 

further study. SVR has advantages like: decision model easy updating, quick 

implementation, excellent capability of generalization with improved prediction accuracy 

and robustness to outliers. SVR is not suitable for large data sets and also its performance 

decreases if the number of training data samples is less than the number of features for each 

data point.  

The mathematical formulation for SVR can be expressed as an optimization 

problem shown in (3.26), (3.27). Given a set of training data points (x1, y1), (x2, y2), …..,(xn, 

yn), then the function f(xi) best fits the data and minimizes the residual sum of squares 

(3.28). 

The optimization problem can be written as follows: 

𝑀𝑖𝑛 [
1

2
‖𝑤‖2 + 𝐶 ∗ ∑ |𝑦𝑖 − 𝑓(𝑥𝑖)|

2𝑛
𝑖=1 ]      3.26 

Constraints: 

𝑦𝑖 − 𝑓(𝑥𝑖) >= 𝜀, 𝑎𝑛𝑑𝑦𝑖 − 𝑓(𝑥𝑖) >= −𝜀      3.27 
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Where, w is the weight vector, C is a regularization parameter that controls the 

trade-off between fitting the data and allowing for noise, ε is the insensitive loss function 

that allows for some error or tolerance in the prediction. 

𝑓(𝑥𝑖) = ∑(∝𝑖∗ 𝑦𝑖 ∗ 𝑘(𝑥, 𝑥𝑖)) + 𝑏0       3.28 

where, k(x, xi) is a kernel function that transforms the input data into a higher 

dimensional space to allow for non-linear modeling and b0 is the bias. 

SVR allows the freedom to determine how much inaccuracy in the model is 

acceptable and will define an approximate hyper plane that best fits the data. It specifies 

the epsilon-tube in the training loss function where no penalty is associated with points 

predicted within an epsilon (ε) distance of the actual value. Gamma (γ) refers to the kernel 

coefficient for Radial Basis Function (RBF), polynomial and sigmoid functions. To 

develop SVR, the data is scaled between 0 and 1 and is used for training and testing where 

the hyper parameters are initialized randomly. The random initialization takes more time 

so the grid search Cross-Validation (CV) is implemented and the hyper parameters for both 

I-V and P-V are fitted with k-fold cross validation. 

In SVR prediction, grid search CV is utilized and tries out various models using all 

possible combinations of hyper parameters. In order to evaluate these models, the library 

uses a technique called k-fold CV and divides the data into k parts, each part acts as a 

testing and the training data. The final accuracy of the model is the accuracy over all these 

k testing sets, and is a popular method to test the strength of a model. The hyper 

parameters are alpha (α) and gamma (γ) which varies depending on the type of kernel used 

and data sets for feature extraction [186]–[189]. An additional hyper 

parameter, regularization (C), is also preferred for tuning. The tolerance value for points 

outside of ϵ increases with increase in C. The equation collapses into the 

simplified (infeasible sometimes) one and the tolerance approaches to “0” with the “0” 

reaching point of C. The flow chart for SVR is as shown in Appendix: A - Fig.A3.  

3.3.3.4 Kernel Ridge Regression (KRR) 

 KRR is a regression technique used for prediction and is capable of modeling non-

linear and linear affiliation between the input and output variables which are also called 
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predictor variables and predicted variables respectively. KRR performs ridge regression on 

the data in a higher space induced by the kernel. Here, hyper parameters refer to the gamma 

used for RBF and polynomial kernel functions, and alpha used for the regularization 

strength. The simulated data is split into training and testing where 20 % is used as testing 

data and 80 % is used for training data. 

The mathematical formulation for KRR can be expressed as an optimization 

problem in (3.29). Given a set of training data points (x1, y1), (x2, y2), …..,(xn, yn), then the 

function f(x) best fits the data and minimizes the residual sum of squares given in (3.30). 

The optimization problem can be written as follows: 

𝑀𝑖𝑛 [
1

2
‖𝑓(𝑥) − 𝑦‖2 +

𝜆

2
∗ ‖𝑓(𝑥)‖2]       3.29 

Subject to constraints: 

𝑓(𝑥) =  ∑(𝛼𝑖 ∗ 𝑦𝑖 ∗ 𝑘(𝑥, 𝑥𝑖)) + 𝑏0       3.30 

Where, λ is a regularization parameter that controls the trade-off between fitting the 

data and allowing for noise, ‖𝑓(𝑥) − 𝑦‖2 is the MSE between the predicted values and the 

actual values, ‖𝑓(𝑥)‖2 is the L2 regularization term that penalizes the complexity of the 

model, k(x, xi) is a kernel function that transforms the input data into a higher dimensional 

space to allow for non-linear modeling, αi are the weights of the model and b0 is the bias. 

Table 3.4 Comparison between KRR and SVR 

S.No. KRR SVR 

1 12-norm regularization 12-norm regularization 

2 Uses squared error loss Sigma-intensive loss 

3 Faster for medium size data set Faster for large size data set 

4 Non-sparse Sparse for sigma >0 

5 
Built in support for multi variant 

regression 

Supports for multivariate 

Regression 

Similar to SVR, in KRR also grid search CV is utilized through K-fold CV to find 

the best hyper parameters and to predict current and power output from PV cell. Comparison 
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between KRR and SVR is given in Table 3.4, and the kernels used for both KRR and SVR 

are explained below. 

Kernels used in general in both KVR and SVR are Linear, RBF, polynomial and 

sigmoid kernel [188], [189]. In this work, the most utilized RBF and polynomial kernels 

are preferred for studying the non-linearity PV cell characteristics in both SVR and KRR 

algorithms.  

 All ML algorithms discussed have two sections in common: Data import and 

training, and prediction implementation till plotting the data. The flow of data import and 

training is shown in Appendix: A - Fig.A4. Similarly, Appendix: A - Fig.A5 shows the 

result flow of prediction implementation.  

 The performance metrics used to find the best fitted model for the PV characteristics 

performance prediction are co-efficient of determination (R2_score or correlation factor), 

MAE, RMSE, and MAPE. The equations of the performance metrics are expressed in 

(3.21) to (3.24). If 𝑥𝑘̂ is the kth sample predicted value, and 𝑥𝑘 is the subsequent true value, 

then the MAE, RMSE, and MAPE estimated over N samples are defined as in (3.31), (3.32) 

and (3.33). 

MAE = 
1

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∑ |𝑥𝑘 − 𝑥𝑘̂|
𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑘=0       3.31 

RMSE = √
∑ (𝑥𝑘−𝑥𝑘̂)

2
𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑘=0

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠
        3.32 

MAPE = 
100

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∑

|𝑥𝑘−𝑥𝑘̂|

𝑚𝑎𝑥 (∈,|𝑥𝑘|

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑘=0       3.33 

In (3.33), ϵ is selected as an arbitrary small positive number to avoid errors when x is zero. 

The correlation factor is expressed in (3.34) 

R2_score = 1 −
∑ (𝑥𝑘−𝑥𝑘̂)

2𝑁
𝑘=1

∑ (𝑥𝑘−𝑥̅)
2𝑁

𝑘=1

        3.34 

where, 𝑥̅ =
1

𝑁
∑ 𝑥𝑘
𝑁
𝑘=1  and ∑ (𝑥𝑘 − 𝑥𝑘̂)

2 = ∑ ∈𝑘
2𝑁

𝑘=1
𝑁
𝑘=1  
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 All the metrics discussed are used further for analyzing the performance of the four 

ML algorithms. 

3.4 SSPV Panel Modeling Mathematical/Multi-physics 

The SSPV modeling is also developed in mathematical and Multiphysics modeling, 

where the performance characteristics of the PV panel are obtained. The validation of the 

models is done with the experimental data parameters characteristics. 

3.4.1 Mathematical modeling of SSPV panel 

Consider a semiconductor device which work as solar cell by converting photon (light) 

energy into electrical energy. The potential difference of pn-junction is the result of the 

electrochemical equilibrium of the electrons in the n and p- regions i.e., φn-φp. With the 

distribution of charge density (𝜌𝑄) the distribution of potential difference is explained 

below. 

The density of the space charge in the n-region is 

𝜌𝑄
𝑛(𝑥) = 𝑒(𝑛𝐷

+ − 𝑛𝑒(𝑥)) = 𝑒𝑛𝐷
+ (1 − 𝑒𝑥𝑝 {

𝑒[𝜑(𝑥)−𝜑𝑛]

𝐾𝑇
})    3.35 

Similarly, for p-region is also considered. 

 To compensate positive and negative space charge in the n and p-regions with 

depths ωn  & ωp the density is, 

𝜌𝑄
𝑛 = 𝑒𝑛𝐷

+ ≈ 𝑒𝑛𝐷           𝑓𝑜𝑟  − 𝜔𝑛 < 𝑥 ≤ 0and 

𝜌𝑄
𝑝 = −𝑒𝑛𝐴

− ≈ −𝑒𝑛𝐴       𝑓𝑜𝑟  0 ≤ 𝑥 < 𝜔𝑝 

 The sum of charges 𝑄𝑛 + 𝑄𝑝 = 0. Where 𝑄𝑛 = 𝑒𝑛𝐷𝜔𝑛 in n-region, 𝑄𝑝 = −𝑒𝑛𝐴𝜔𝑝 

in p-region. From sum of charges depth is expressed as, 

𝜔𝑝 =
𝑛𝐷

𝑛𝐴
𝜔𝑛          3.36 

The thickness of space charge layer is, 

𝜔 = 𝜔𝑛 + 𝜔𝑝 = (1 +
𝑛𝐷

𝑛𝐴
)𝜔𝑛        3.37 

For the boundary conditions E(-ωn) = 0 for the electric field and φ(-ωn) = φn for the electrical 

potential in the region −𝜔𝑛 < 𝑥 ≤ 0 of the n-region yields 
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𝜑𝑛(𝑥) = −
𝑒𝑛𝐷

2𝜀𝜀0
(𝑥 + 𝜔𝑛)

2 + 𝜑𝑛       3.38 

and for the boundary conditions E(wp) = 0 and φ(ωp) = φp in the range 0 ≤ 𝑥 < 𝜔𝑝 of the 

p-region yields 

𝜑𝑝(𝑥) = −
𝑒𝑛𝐴

2𝜀𝜀0
(𝑥 − 𝜔𝑝)

2
+ 𝜑𝑝       3.39 

Considering equal charge distribution, from φn(0) = φp(0) even at x=0, then, 

𝜑𝑛 − 𝜑𝑝 =
𝑒

2𝜀𝜀0
(𝑛𝐷𝜔𝑛

2 + 𝑛𝐴𝜔𝑝
2)       3.40 

From Equations (3.36) and (3.37), total thickness of the space charge layer is given as, 

𝜔 = √
2𝜀𝜀0

𝑒

𝑛𝐴+𝑛𝐷

𝑛𝐴𝑛𝐷
(𝜑𝑛 − 𝜑𝑝)        3.41 

The band gap energy of a metal is deriving by the thickness of the space charge 

layer and the acceptor and donor concentrations (𝑛𝐷&𝑛𝐴). The charge current rate with the 

rate of recombination and generation Gh also the concentration of electron and holes 

(𝜂𝑒 , 𝜂ℎ) is, 

𝑗𝑄 = −𝑒 ∫ {𝐺ℎ
0 [1 − 𝑒𝑥𝑝 (

𝜂𝑒+𝜂ℎ

𝐾𝑇
) + ∆𝐺ℎ]} 𝑑𝑥

𝐿𝑒
𝐿ℎ

     3.42 

From Equation (3.42) the short circuit current at V=0 is given by equation (3.43), 

𝑗𝑠𝑐 = −𝑒 ∫ 𝑎(ℎ𝜔, 𝐿𝑒)𝑑𝑗𝛾(ℎ𝜔, 0)
∞

0
       3.43 

From Eq (3.44), charge current  

𝑗𝑄 = 𝑗𝑠 [𝑒𝑥𝑝 (
𝑒𝑉𝑜𝑐

𝐾𝑇
) − 1] + 𝑗𝑠𝑐        3.44 

The open circuit voltage from Equation (3.45), 

𝑉𝑜𝑐 =
𝐾𝑇

𝑒
𝑙𝑛 (1 −

𝑗𝑠𝑐

𝑗𝑠
)         3.45 

Where js is the saturation current of solar cell as represented in equation (3.46), 

𝑗𝑠 = 𝑒𝑛𝑖
2 (

𝐷𝑒

𝑛𝐴𝐿𝑒
+

𝐷ℎ

𝑛𝐷𝐿ℎ
)        3.46 
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The solar cell junction depth can be found from Eq (3.41) in order to calculate the 

band gap energy of a material (like silicon (Si), GaInP, CGS, CdTe, etc.,) utilized. The 

characteristics of solar cells like Voc and Jsc are plotted from Eqs (3.43), (3.44), (3.45) and 

(3.46). The solar PV cell in under water conditions from radiation transmitted inside the 

water layer is developed with Snell’s law [27]. The reflection and refraction of the radiation 

is explained by Fresnel’s law and Snell’s law respectively. The angle of reflection is equal 

to the angle of incidence. The proportion of the light which is reflected is described by 

Fresnel's law. The Snell’s law is  
sin𝛼

sin𝛽
= 𝜂 where α is the angle of incident light, β is the 

angle of transmitted light and 𝜂 is the refractive index of water (approx. 1.33) [27], [30], 

[32]. The transmitted and attenuation of transmitted light inside the water is explained by 

absorbed, scattered and attenuation constants. 

Attenuation with depth: Light intensity decreases with depth because of absorption 

and scatter. The attenuation of light may be described by: 

𝐼𝑍 = 𝐼0𝑒
−𝑘𝑧          3.47 

Where, 

IZ = light intensity at depth Z, I0 = light intensity at the surface, and k = the extinction 

coefficient of the water.  

(a) Effect of water on light transmission. 

Water scatters light proportional to the inverse 4th power of the wavelength. That is, scatter 

light ∝ 1/λ4 where λ is the wavelength.  

(b) Effect of particles and dissolved coloured materials. 

𝐼𝑧 = 𝐼𝑜𝑒
−(𝑘𝑤+𝑘𝑝+𝑘𝑑)𝑧         3.48 

Where, kw= extinction due to scatter and absorption due to water, kp= extinction due to 

scatter and absorption due to particles, and kd= extinction due to scatter and absorption due 

to dissolved color. Total extinction is due to the sum of the three. 

 From Equations (3.47 and 3.48) the transmitted radiation to the surface of different 

solar cell is calculated. This value is substituted to calculate Equations (3.42), (3.43), (3.44), 

(3.45), and (3.46) through which the performance of the solar cell underwater is calculated. 

Similarly, by considering the water turbulence effect the performance measurement of the 

solar cell is obtained. 
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3.4.2 Multiphysics modeling of SSPV panel 

The PV panel designed in section 3.3.2 is considered for the submerging into water 

at different depths in a tank to make SSPV panel. The geometry of the are 42.0 × 35.0 × 

2.0 mm in 3-Dimensions top view and is shown in Figure 3.16 and the dimensions of the 

tank are 10.0 × 10.0 ×100 cm as shown in Figure 3.19.  

 

Figure 3.19 Dimensions of the tank 

Now combining the Figure 3.16 and Figure 3.19 together, the SSPV is created and 

is as shown in Figure 3.20 a) and the top view is provided in Figure 3.20.b).  

 

a)     b) 

Figure 3.20 a) SSPV design geometry b) top view of SSPV at cross section of 10 cm 

The tank is filled with water and at top of the tank, the flow of air at 25 m/s is 

considered to create turbulence on the surface of the water which in turn creates the change 
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in irradiation with respect to the depth of the water as shown in Figure 3.21. The height of 

the tank is considered as 1 meter and at each 2 cm variation, the solar panel is moved to 

find the I-V and P-V characteristics of the panel at each interval. The meshing of the tank 

is considered at 0.1 mm to incorporate finer mesh and the meshing for the panel is similar 

to the Figure 3.14 for each solar cell. 

 

Figure 3.21 SSPV with air as medium on top of the tank 

The different layers like Al frame, Glass, EVA and solar PV cell with back contact 

of the PV cell properties are considered as specified in Table 3.2. The material properties 

of the solar cell are changed to Si, Ge, GaAs and InP as specified in Table 3.3 so that the 

performance characteristics of all the materials are calculated at 2 cm each till 20 cm and 

then directly measured at 1 m depth to eliminate computational delay because of the finer 

mesh created for FVDM. The physics included in the modeling CFD additionally to 

incorporate, flow of water and air. The other modules are similar to the modules used in 

the PV cell designing specified in section 3.3. 

3.5 Results and Discussion 

The results presented in this chapter include PV cell/Panel performance 

characteristics with mathematical modeling by changing irradiation and temperature. Also, 

using different materials at different temperatures, joule heating of materials developed, 
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ML techniques implementation and finding best material with efficiency calculations. The 

SSPV performance with different materials at different depths is estimated and the best ML 

is applied to find the performance characteristics with different materials and depths. 

The flow of result section is developed in four steps and is as follows: 

1. PV characteristics at different temperature and irradiations 

2. PV cell modeling characteristics 

3. PV characteristics for different materials 

4. PV characteristics for different temperatures 

5. ML based prediction of PV characteristics 

6. SSPV performance characteristics and validation 

7. ML based prediction of SSPV characteristics 

3.5.1 PV characteristics at different temperatures and irradiations 

At STC values, a 20W PV solar panel has specifications as shown in Table 3.1. The 

zero-circuit voltage is observed when the circuit is shorted i.e., there is no resistance across 

the diode and the current at short circuit condition becomes maximum. So, in this 

mathematical modeling, there is a presence of very less shunt and series resistance. 

Depending on the voltage-temperature at P-N junction causes a negative co-efficient of 

temperature in open circuit voltage and positive co-efficient of temperature in output 

current, this generates larger photon current. 

 

 

Figure 3.22 a) I-V curves at 1000 W/m2 and different temperature levels b) P-V 

curves at 1000 W/m2 and different temperature levels 
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Figure 3.23 a) I-V curves at 600 W/m2 and different temperature levels b) P-V 

curves at 600 W/m2 and different temperature levels 

 

Figure 3.24 a) I-V curves at 200 W/m2 and different temperature levels b) P-V 

curves at 200 W/m2 and different temperature levels 

The authentic MATLAB/SIMULINK software is preferred for modeling and 

simulation. The 20W panel is designed with the mathematical equations for obtaining the 

characteristics of a solar panel. The solar PV cell is designed in MATLAB/SIMULINK 

with mathematical equations as above specified in section 3.2. The I-V and P-V 

characteristics of PV cell are taken at different levels of temperatures like -45 0C, 0 0C, 25 

0C, 51 0C and also at different irradiations like 1000 W/m2, 600 W/m2, 200 W/m2 by using 

MATLAB simulation. These electrical characteristics are exhibited below as shown from 

Figure 3. 22 to Figure 3.24. 

The Figure 3.22 (a) shows the I-V characteristics and Figure 3.22 (b)shows the P-

V characteristics of PV panel at irradiation1000 W/m2 and at distinctive temperatures like 

-45 0C, 0 0C,25 0C, 51 0C. Figure 3.23 (a) and (b) gives the I-V and P-V characteristics of 
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a panel at distinctive temperatures and at irradiation of 600 W/m2. Similarly Figure 3.24 

(a) & (b) shows the I-V and P-V characteristics of a panel at irradiation200 W/m2 and at 

different temperatures. From simulation outputs, it is realized that the increase in 

temperature levels makes the voltage output (Voc) decrease and the output current (Isc) 

increase. The increase in temperature coefficient is positive for current and negative for 

voltage. 

3.5.2 PV Cell Modeling Characteristics 

3.5.2.1 Electron - hole concentration of mono- crystalline Si 

The log of electron and hole concentration throughout the volume is shown in 

Figure 3.25 a) and Figure 3.10 b) respectively.  

 

a)      b) 

Figure 3.25 a) Electron concentration throughout the PV cell b) Hole concentration 

throughout the PV cell 

The electron accumulation at the junction barrier for electron-hole pair formation is 

shown in Figure 3.25. (a) with more than the cut off voltage of Si, while Figure 3.25. (b) 

shows the hole concentration and transportation with the irradiation reflection, refraction 

and absorption within the mono-crystalline Si PV cell. The electron - hole concentration of 

Mono-crystalline Si cell is plotted in Figure 3.26 showing the depth of PV cell model on x-

axis and log of electron – hole concentration on y-axis. The electron distribution throughout 

the PV cell is constant within all the layers of design and the hole concentration is 

decreasing with the increase in depth of irradiation penetration. 
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Figure 3.26 Electron-hole concentration through the depth of mono-crystalline Si 

3.5.2.2 Joule heating of mono-crystalline Si 

 The series as well as shunt resistance of the PV panel causes this parasitic effect as 

discussed in section 3.2.3. The joule heat generation throughout the 2 mm depth of PV cell 

is plotted and presented in Figure 3.27. 

 

Figure 3.27 Joule heat distribution of mono-crystalline Si 

From the graph it can be observed that the top layer of the design, the joule heat 

increases towards the top layer and then decreases throughout the P-N junction, because of 

the Si layer. Again, at back contact and EVA layer, the heat is decreased when compared 

to the top layer of the P-N junction. From Figure 3.27, the joule heat generated for mono-

crystalline Si is 61kW/m3. 

3.5.2.3 Validation and calibration of simulated PV cell with experimental data 

The modeled PV cell is compared with the PV cell/slice of practical 

SLMD121H10L, Mono-crystalline Si solar cell module having dimensions of 6.16 mm×20 

mm×2 mm (Figure 3.12. (a) and (b)) using semiconductor, optical and thermal modules. 

The characteristics of the designed model, datasheet and experimental Si PV cell are plotted 
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and shown in Figure 3.28. (a) and (b). With the consideration of Si material properties and 

thermal co-efficient values specified in Table 3.1 and 3.2, the performance characteristics 

of modeled PV cell are plotted using FVDM and by considering input power as100 W. 

 

a)      b) 

Figure 3.28 a) I-V characteristics of simulation, data sheet and experimental data of 

mono-crystalline Si b) P-V characteristics of simulation, data sheet and experimental 

data of mono-crystalline Si4 

Table 3.5 Mono-crystalline Si parameters (obtained from Figure 3.13. a) and b)) 

PV cell 

Voc 

(V) 

Isc 

(mA) 

Vmax 

(V) 

Imax 

(mA) 

Pmax 

(mW) 

FF 

Pin 

(W) 

Efficiency 

(%) 

Mono-crystalline Silicon 

(Simulated design) 
0.62 45.69 0.50 39.39 19.69 0.69 100 19.69 

Mono-crystalline Silicon 

(commercial Si data sheet) 
0.62 44.57 0.50 39.39 19.69 0.69 100 19.69 

Mono-crystalline Silicon 

(Experimental setup) 
0.61 44.12 0.51 40.22 20.15 0.71 100 20.01 

Table 3.5 shows the parameters of the simulated PV cell, commercially available 

PV cell and the parameters obtained from the experimental setup. The parameter values of 

the simulated cells are the same as the data sheet of practical solar cell and experimental 

 
 

4C. S. Durganjali, G. Avinash, K. Megha, R. N. Ponnalagu, S. Goel, and S. Radhika, “Prediction of PV cell 

parameters at different temperatures via ML algorithms and comparative performance analysis in 

Multiphysics environment,” Energy Convers. Manag., vol. 282, p. 116881, 2023, doi: 

https://doi.org/10.1016/j.enconman.2023.116881. 
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data (performance characteristics shown Figure 3.28 (a) and (b)). The maximum efficiency 

value of the commercially available solar cell obtained from data sheet is 19.69 % and the 

maximum efficiency of modeled solar cell is 19.69 % (Figure 3.13. (a) and (b)). 

It can be observed that the difference between the efficiency of the practical and 

simulated solar cell is small (only 0.00005 %) showing the workability of the model. The 

efficiency of the PV cell obtained from the experimental setup is slightly higher (0.005 %) 

when compared to both modeled and data sheet. This may be due to the direct irradiation 

of 1000 W/m2 without diffusion for experimental work through solar simulator. 

3.5.3 PV Cell Characteristics for Different Materials 

3.5.3.1 Characteristics of modeled PV Cell 

The validated PV cell which is designed of Mono-crystalline Si material and 

extended to panel with material change from Si to Ge, GaAs and InP with the different 

properties of the material listed in Table 3.2. 

 

a)      b) 

Figure 3.29 (a) I-V characteristics of PV cell modeled using Si, Ge, GaAs and InP b) 

P-V characteristics of PV cell modeled using Si, Ge, GaAs, and InP 

Figure 3.29 (a) and (b) shows the I-V and P-V characteristics of PV cell modeled 

using four different materials such as Si, Ge, GaAs and InP. The plots are obtained at STC. 

From Figure 3.29 (a) and (b), it can be observed that, mono-crystalline Si gives maximum 

current and power but the efficiency of GaAs is high at STC when compared to other 

materials because of the high Voc. The PV cell parameters including efficiency and FF for 

the PV cell modeled using four different materials are listed in Table 3.6. 
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Table 3.6 PV cell efficiency of the materials with the parameter findings at STC 

Parameter Mono-Crystalline Si Ge GaAs InP 

Pmax (mW) 19.69 2.07 20.04 10.37 

Vmax (V) 0.50 0.20 0.90 0.75 

Imax (mA) 39.39 10.36 22.82 13.83 

Voc (V) 0.62 0.30 1.00 0.92 

Isc (mA) 45.68 14.98 30.22 22.93 

FF 0.69 0.46 0.68 0.492 

Efficiency (%) 19.69 2.07 20.03 10.38 

 

3.5.3.2 Characteristics of modeled PV panel 

 By connecting 10 of the modeled PV cells in series, model of the PV panel is 

obtained, and its performance characteristics obtained are shown in Figure 3.30 a) and b).  

 

a)             b) 

Figure 3.30 (a) I-V characteristics of PV panel modeled using Si, Ge, GaAs, and InP  

b) P-V characteristics of PV panel modeled using of Si, Ge, GaAs, and InP 

From the Figure 3.30 (a) and (b), it can be observed that, mono-crystalline Si 

generates maximum current and power but the efficiency of GaAs panel is 3.6 % more than 

Si and it is because of the high Voc. The PV panel parameters with all these materials are 

listed in Table 3.6 with efficiency calculation. As the panel is modeled by connecting 10 

PV cells in series the voltage Voc (V) is 10 times the Voc obtained from the single PV cell 

and the current Imax (mA) is same both in cell and panel level but the representation will 

vary from mA/m2 in cell level to mA in panel level as shown in Figure 3.14 (a) and Figure 

3.15 (c). 
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Table 3.7 PV panel efficiency of the materials with the parameter findings at STC 

Parameter 
Mono-

Crystalline Si 
Ge GaAs InP 

Pmax (mW) 196.97 20.72 210.54 103.07 

Vmax (V) 5.00 2.00 9.00 7.50 

Imax (mA) 39.39 10.36 25.86 13.83 

Voc (V) 6.20 3.00 10.00 9.20 

Isc (mA) 45.59 14.98 30.22 22.93 

FF 0.69 0.46 0.77 0.49 

Efficiency 

(%) 
19.69 2.07 23.27 10.38 

3.5.3.3 Joule heating distribution 

 The series and shunt resistance of the PV panel causes this parasitic effect as 

discussed in section 3.1.4. Every material generates its own heat and it increases with the 

increase in temperature on the top of the PV. To observe the joule heat in the PV 

panelrepeatedly, heat transfer module is considered in the design model of mono-crystalline 

Si cell and the same is done in case of Ge, GaAs and InP. The joule heat distribution 

throughout the 2 mm depth of panel is plotted and is shown in Figure 3.31 for all the four 

different materials at 25 0C. The individual material joule heat distribution is presented in 

Appendix: A - Fig.A6  a), b), and c) with a consideration of cutline in the geometry across 

the axis of depth. 

Table 3.8 Joule heat of different materials 

Material Joule Heat generation (kW/m3) 

Si 61 

Ge 234 

GaAs 5.05 

InP 3.95 

If a cutline is drawn in 3D-axis, the joule heat across the cell is as shown in 

Appendix A - Fig. A7. (a) for all the materials. The InP shows less joule heat generation 

and Ge provides higher joule heat generation which is possible at 25 0C and the values are  

tabulated in Table 3.7. The Si and GaAs shows moderate production of joule heat.  
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From this, it can be noted that at higher temperatures, InP can be utilised with less 

heat loss of PV cell. The 3-D images of joule heat generation are shown in Appendix: A - 

Fig.A7 (b). 

 

Figure 3.31 Joule heat generation in Si, Ge, GaAs and InP at 25 0C 

3.5.4 PV panel characteristics at different temperatures 

Initially the temperature is considered as 25 0C and is then changed to 0 0C, 51 0C 

and -45 0C to obtain the performance at extreme temperature conditions. Temperatures 51 

0C and -45 0C are the maximum and minimum temperatures occurred in India at different 

seasons and days.  

For better understanding of the characteristics at different temperatures, Figure 3.32 

(a) and (b) are presented which shows the I-V and P-V characteristics of mono-crystalline 

Si PV cell at 25 0C, 0 0C, 51 0C and -45 0C. Similarly, for other materials, the I-V 

characteristics and P-V characteristics are drawn and are shown in Figure 3.32 (c) to (h). 

The efficiency and other parameters of the PV cell modeled using the four different 

materials are measured and tabulated in Table 3.9. 

From Figure 3.32, it is observed that, as the temperature decreases, the performance 

of the solar cell increases with increase in Voc and decrease in Isc. For every 0C temperature, 

the PV cell will have 0.05 % increase in Voc. The efficiency variation is possible by varying 

the temperature on the PV. The efficiency and other parameters of the PV panel modeled 

using the four different materials are measured and tabulated in Table 3.10. 
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Table 3.9 PV cell material parameters at different temperatures (25 0C, 0 0C, 51 0C, 

and -45 0C) 

Material Parameter -45 0C 0 0C 25 0C 51 0C 

Si 

Voc (V) 

0.68 0.65 0.62 0.61 

Ge 0.37 0.35 0.30 0.22 

GaAs 1.06 1.04 1.00 0.96 

InP 1.00 0.95 0.92 0.85 

Si 

Isc (mA) 

44.19 44.94 45.59 46.43 

Ge 14.77 14.94 14.98 14.75 

GaAs 41.76 30.21 30.22 24.44 

InP 23.05 22.97 22.93 22.85 

Si 

Pmax (mW) 

20.26 19.97 19.69 19.01 

Ge 3.12 2.36 2.07 1.51 

GaAs 24.65 22.52 20.03 19.24 

InP 10.63 10.46 10.37 10.08 

Si 

Efficiency (%) 

20.256 19.972 19.686 19.02 

Ge 3.126 2.362 2.072 1.51 

GaAs 24.66 22.51 20.03 19.22 

InP 10.64 10.47 10.38 10.09 

 While the temperature decreases, the efficiency of PV cell/panel increases 

irrespective the type of material. But when compared to Si, the GaAs is giving better 

efficiency which is approximately 4 % more at the cell level and 7% more at the panel 

level. Ge gives less efficiency compared to other 3 materials. Mostly, GaAs and Si gives 

good efficiency to use in most of the applications. 

Through modeling, the time taken for the computation is high for each temperature 

values hence it is better to use ML algorithms for prediction of PV performance at different 

temperatures and materials. The major change is in Voc which is 10 times for panel 

compared to PV cell because of series connection of 10 cells. So further for prediction, the 

cell level data is considered by decreasing the computation time and to predict the 

performance at 15 0C and -18 0C. To find best ML algorithm for parameters prediction 25 

0C is used for validation. 
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a) b) 

 

c)    d) 

 

e)            f) 

 

 g)             h) 

Figure 3.32 (a), (c), (e) and g) I-V characteristics of mono-crystalline Si, Ge, GaAs 

and InP at different temperatures (25 0C, 0 0C, 51 0C and -45 0C) at cell level (b), (d), 

(f) and (h) P-V characteristics of mono-crystalline Si, Ge, GaAs and InP at different 

temperature 
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Table 3.10 PV panel material parameters at different temperatures (25 0C, 0 0C, 51 

0C, and -45 0C) 

Material Parameter -45 0C 0 0C 25 0C 51 0C 

Si 

Voc (V) 

6.80 6.50 6.20 6.10 

Ge 3.70 3.50 3.00 2.20 

GaAs 10.60 10.40 10.00 9.55 

InP 10.00 9.52 9.20 8.50 

Si 

Isc (mA) 

44.19 44.94 45.59 46.43 

Ge 14.77 14.95 14.98 14.75 

GaAs 41.77 30.22 30.22 24.44 

InP 23.05 22.97 22.93 22.85 

Si 

Pmax (mW) 

20.26 19.97 19.69 19.02 

Ge 3.12 2.36 2.07 1.52 

GaAs 28.57 26.18 21.28 18.94 

InP 10.63 10.46 10.37 10.09 

Si 

Efficiency (%) 

20.26 19.97 19.69 19.02 

Ge 3.13 2.36 2.07 1.52 

GaAs 28.57 26.15 21.27 18.92 

InP 10.64 10.47 10.38 10.09 

3.5.5 ML based prediction of solar PV characteristics 

 While using ML algorithms for predicting the performance of PV cell/panel, the 

values obtained from the simulation are considered as input data at all different 

temperatures. The data is subsequently divided into training and testing (80 % and 20 %) 

and the data for 15 0C and -18 0C are predicted. The mono-crystalline Si, I-V and P-V 

characteristic values at 0 0C, 51 0C and -45 0C are considered as training data and the 25 0C 

is considered for testing as the data sheet (I-V & P-V) values are available for that.  

After testing, with the metrics, hyper parameters are found and then the best hyper 

parameters with respective ML technique are used for prediction of I-V characteristics and 

P-V characteristics at temperatures 15 0C and -18 0C and are compared with the Si 

simulated data. The Appendix: A, Fig. A8 flow diagram is used for ML techniques 

procedure for Si step by step and the same is implemented with best hyper parameters to 

Ge, GaAs, and InP for prediction of 15 0C and -18 0C.  
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3.5.5.1 Prediction algorithms for mono-crystalline Si at different temperatures 

3.5.5.1.1 Linear Regression (LR) 

LR is used to find the coefficients of the data line and are determined by the train 

data, and it trains upon it to give the best line. The data obtained has been divided into 80 

% for training and 20 % for testing. Within the training data, the metrics obtained for I-V 

curve are RMSE: 0.151 and R2_SCORE: 0.617. Now, the 25 0C data is predicted for 

characteristics of I-V, P-V and compared with the simulation and data sheet data of I-V and 

P-V at 25 0C are as shown in Figure 3.33 (a) and (b) respectively. The graphs for 15 0C and 

-18 0C are presented in Appendix: A, Fig.A9 and A10. 

3.5.5.1.2 Polynomial Regression (PR) 

PR is used to locate the optimal degree of the polynomial from the first 10 degrees, 

the data is trained, and obtained the RMSE for each degree. The graphs representing the 

RMSE and R2-score are shown in Appendix: A - Fig.A11 (a), (c), (b) and (d) for I-V data 

and P-V data at an interval of 1 to 7 as degree of freedom. It can be observed that lesser the 

RMSE value and higher R2-score then that polynomial degree gives better result. In the 

proposed work the degree 4 is giving lesser RMSE = 0.05 and higher R2-score = 0.93 for 

I-V and RMSE = 0.07 and higher R2-score = 0.95 for P-V. 

The degree 4 is considered as hyper parameter for the PR further and predicted the 

values of I and Pat 25 0C, 15 0C and -18 0C. For 25 0C, the values of simulated data and 

data sheet data both are available to validate the PR prediction results and are shown in 

Figure 3.33 (c) and (d) as I-V and P-V characteristics. Similarly, for 15 0C and -18 0C, Fig. 

A12 in Appendix: A, shows the I-V and P-V characteristics prediction through PR at 15 0C 

and -180C. The PR predictions values are almost similar to the simulated data and the 

efficiency of mono-crystalline Si at 25 0C. 

3.5.5.1.3 Support Vector Regression (SVR) 

The best fit hyper parameters for I-V characteristics are C = 1000, ϵ = 0.01 and γ 

(for RBF kernel) = 1 and for P-V characteristics C = 1000, ϵ = 0.1 and γ (for RBF kernel) 

= 1. With the best parameters, the characteristics are drawn for 25 0C, the values of 

simulated data and data sheet both are available to validate the SVR prediction results and 
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are shown in Figure 3.33 (e) and (f) as I-V and P-V characteristics. Similarly, 15 0C and -

18 0C are as shown in Appendix: A - Fig.A13. (a) to (d).  

 
a)    b) 

 
c)            d) 

 
e)      f) 

 
g)      h) 

Figure 3.33 (a), (c), (e) and (g) I-V characteristics (b), (d), (f) and (h) P-V 

characteristics of mono-crystalline Si at 25 0C with Simulated, predicted and data 

sheet data by LR, PR, SVR and KRR algorithms respectively 
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Table 3.11 Mono-crystalline Si performance prediction at different temperatures 

with different ML algorithms 

ML Parameter 25 0C 15 0C -18 0C 

PR 
Efficiency  

(%) 

19.32 20.11 20.92 

SVR 19.99 19.77 20.75 

KRR 19.23 19.43 19.75 

PR 

Voc 

0.62 0.63 0.66 

SVR 0.62 0.63 0.66 

KRR 0.62 0.63 0.66 

PR 

Isc 

46.22 45.79 44.96 

SVR 46.58 44.56 45.82 

KRR 47.04 46.14 44.95 

PR 

Pmax 

19.46 20.32 21.12 

SVR 19.55 21.09 22.51 

KRR 18.70 19.24 19.98 

PR 

Vmax 

0.47 0.48 0.52 

SVR 0.47 0.49 0.52 

KRR 0.44 0.45 0.48 

PR 

Imax 

41.12 41.90 40.22 

SVR 42.53 40.35 39.38 

KRR 43.69 43.18 41.14 

PR 

FF 

0.67 0.69 0.71 

SVR 0.69 0.70 0.68 

KRR 0.66 0.67 0.67 

3.5.5.1.4 Kernel Ridge Regression (KRR) 

To find best fit hyper parameters, grid-search CV is utilized and the best hyper 

parameters for I-V characteristics are alpha (α) = 0.001 and gamma (γ) =1.0, using RBF 

kernel and similarly for P-V, alpha (α) = 0.1 and gamma (γ) = 100.0, using polynomial 

kernel. The best hyper parameters are used as best fit for the simulated data and the 

characteristics of I-V and P-V are plotted at 25 0C as shown in Fig 3.33 (g) and (h). 

Similarly, 15 0C and -18 0C and are represented in Appendix: A - Fig. A14 (a) to (d). 
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From Figure 3.33, the parameters of mono-crystalline Si by PR, SVR, and KRR 

prediction algorithms are plotted and obtained PV parameters are tabulated in Table 3.11 

with efficiency calculations. The LR prediction is a straight line (linear) so unable to 

calculate parameters of Si. Figure 3.34 a), and b) depicts the bar charts for I-V and P-V 

prediction metrics using the four ML algorithms respectively, where the less RMSE, MAE, 

and MAPE have the higher chance of predicting the fine values with higher R2-score.  

 

a)     b) 

Figure 3.34 a) Metrics for I-V characteristics prediction at 25 0C b) Metrics for P-V 

characteristics prediction at 25 0C 

 The RMSE, MAE, MAPE and R2- score metrics obtained from the four ML 

techniques at 25 0C, 15 0C and -18 0C are listed in Table 3.12. It can be observed that except 

LR model, the other PR, SVR, KRR techniques results in better performance. 

3.5.5.2 Prediction algorithms for different materials at different temperatures 

Now, the ML algorithms are implemented for Ge, GaAs and InP too in the sections 

below. The 25 0C data are predicted and the metrics for Ge, GaAs and InP are listed in 

Table 3.13 and the performance of Ge, GaAs and InP at 15 0C and -18 0C are also predicted 

and listed in the same. The I-V and P-V prediction and simulated data for Ge with LR, PR, 

SVR and KRR are represented in Appendix: A- Fig. A15 (a) to (h). The MAE, MAPE, 

RMSE and R2-score metrics are measured at 25 0C and tabulated in Appendix: A – Table 

A1. The I-V and P-V of GaAs with LR, PR, SVR, and KRR ML techniques are shown in 

Appendix: A - Fig. A16 (a) to (h), and the corresponding MAE, MAPE, RMSE and R2-

score metrics are measured at 25 0C and tabulated in Appendix: A – Table A2. I-V and P-

V of InP with LR, PR, SVR and KRR ML techniques are shown in Appendix: A - Fig. A17 

(a) to (h). Also, from the prediction, the MAE, MAPE, RMSE and R2-score metrics are 
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measured at 25 0C and tabulated in Appendix: A – Table A3. The bar charts for Ge, GaAs 

and InP are shown in Fig 3.35 (a), (b) and (c) for I-V characteristics and (d), (e) and (f) for 

P-V characteristics of Ge, GaAs and InP. 

   
a)     b) 

   
c)     d) 

 
e)     f) 

Figure 3.35 (a) and (d) Metrics of Ge (b) and (e) Metrics of GaAs (c) and (f) Metrics 

of InP for I-V and P-V performance characteristics respectively at 25 0C 

From Figure 3.35, it can be seen that KRR algorithm is giving better performance 

at less time with best R2-score which represents the best ML algorithm for PV parameter 

and efficiency prediction. Due to non-linearity, the PR gives good result at degree 4 but as 

the data increases, the degree of freedom for PR varies which will affect the prediction 

parameters with data limit. LR is not at all a fit for the PV parameter prediction. SVR is 

less efficient when compared to KRR with its best hyper parameters. 
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Table 3.12 List of metrics for ML techniques of mono-crystalline Si at 25 0C 15 0C, 

and -18 0C 
 

Metric Temperature 
LR PR SVR KRR 

IV PV IV PV IV PV IV PV 

RMSE 

25 0C 

0.142 0.208 0.051 0.073 0.052 0.080 0.055 0.102 

MAE 0.098 0.147 0.034 0.048 0.036 0.057 0.034 0.075 

MAPE 0.245 0.612 0.082 0.138 0.098 0.219 0.093 0.231 

R2-Score 0.429 0.564 0.927 0.947 0.924 0.935 0.915 0.895 

RMSE 

15 0C 

0.131 0.195 0.039 0.060 0.046 0.081 0.046 0.091 

MAE 0.092 0.138 0.026 0.040 0.020 0.067 0.029 0.068 

MAPE 4.540 5.106 1.267 1.425 2.123 1.596 1.582 2.165 

R2-Score 0.459 0.606 0.952 0.963 0.932 0.932 0.933 0.914 

RMSE 

-18 0C 

0.115 0.182 0.045 0.069 0.060 0.105 0.049 0.098 

MAE 0.079 0.122 0.033 0.049 0.041 0.082 0.029 0.076 

MAPE 
30.86

8 
34.163 10.836 11.649 18.136 15.181 15.018 15.421 

R2-Score 0.511 0.656 0.924 0.950 0.864 0.885 0.910 0.901 

 

Table 3.13Parameter listing of Ge, GaAs, InP at 25 0C, 15 0C, and -18 0C with PR, 

SVR, and KRR 
 

Parameter ML 
Ge GaAs InP 

25 0C 15 0C -18 0C 25 0C 15 0C -18 0C 25 0C 15 0C -18 0C 

PR 
Efficiency 

(%) 

1.93 2.28 2.56 20.52 21.23 24.97 10.37 10.71 10.99 

SVR 1.86 2.01 2.46 17.36 19.70 24.56 10.32 10.46 10.87 

KRR 1.86 2.17 2.68 17.16 18.92 22.74 10.04 10.16 10.35 

PR 

Voc 

0.30 0.30 0.30 1.00 1.00 1.00 0.90 0.90 0.90 

SVR 0.30 0.30 0.30 1.00 1.00 1.00 0.90 0.90 0.90 

KRR 0.30 0.30 0.30 1.00 1.00 1.00 0.90 0.90 0.90 

PR 

Isc 

14.95 15.05 14.92 31.46 32.72 39.61 22.93 22.73 22.77 

SVR 14.93 15.05 15.13 30.29 31.54 40.07 23.25 22.86 22.85 

KRR 14.99 15.05 14.67 30.78 35.12 41.17 23.42 23.47 23.58 

PR 

Pmax 

1.91 2.32 2.56 19.09 20.70 25.68 10.37 10.86 11.12 

SVR 1.60 2.21 2.74 19.48 21.30 26.89 11.18 11.16 11.85 

KRR 1.91 2.18 2.69 17.17 19.38 22.87 9.88 10.29 10.54 

PR 

Vmax 

0.20 0.20 0.25 0.80 0.80 0.80 0.75 0.70 0.75 

SVR 0.20 0.15 0.20 0.75 0.80 0.85 0.65 0.70 0.75 

KRR 0.20 0.20 0.25 0.75 0.75 0.75 0.60 0.65 0.65 

PR 

Imax 

9.65 11.41 10.26 23.55 25.47 31.22 13.83 15.29 14.66 

SVR 9.31 13.39 12.30 23.15 24.63 28.89 15.87 14.94 14.49 

KRR 9.31 10.87 10.72 22.87 25.23 30.32 16.74 15.62 15.93 

PR 

FF 

0.43 0.51 0.57 0.59 0.62 0.63 0.50 0.52 0.54 

SVR 0.42 0.45 0.54 0.57 0.63 0.61 0.49 0.51 0.53 

KRR 0.41 0.48 0.61 0.56 0.54 0.55 0.48 0.48 0.49 

 

3.5.6 SSPV performance characteristics and validation 

From section 3.5.4, it is observed that, GaAs and Si are performing better at 

different temperature conditions with an efficiency of 20-25%. The same materials are 
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implemented in SSPV design to find the performance characteristics at different depths of 

water. The Si and GaAs are considered as shown in Figure 3.21, and the performance 

characteristics are as shown below. The I-V and P-V characteristics of Si at 0 cm to 20 cm 

at 2 cm interval obtained and at 1m depth is also obtained and plotted as shown in Figure 

3.36 a) and b). Similarly, the GaAs material is considered in the Figure 3.21 and the I-V 

and P-V characteristics are plotted as shown in Figure 3.37 a) and b).  

 

a)       b) 

Figure 3.36 a) I-V characteristics of Si at different depths of water level b) P-V 

characteristics of Si at different depths of water level 

 

a)      b) 

Figure 3.37 a) I-V characteristics of GaAs at different depths of water level b) P-V 

characteristics of GaAs at different depths of water level 

It is observed that, as the depth increases, the performance of PV panel decreases 

with the decrease in Voc and Isc which in turn decreases the Pmax causing decrease in 

efficiency but it exhibits presence of irradiation at 1m depth also. The energy obtained is 

less at 1m depth when compared to 0 cm depth which is floating on water surface. 
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Further to compare the Si performance of SSPV panel with FPV panel, the depth of 

the water level varied with 0.1 cm variation till 0.5 cm as specified in reference [37] with a 

water layer. The performance of PV panel increases at a depth of 0.5 cm and the 

performance characteristics are as shown in Figure 3.38 a) and b) at an interval of 0.1 cm. 

 
a)      b) 

Figure 3.38 a) I-V characteristics of Si at different water depths at an interval of 0.1 

cm b) P-V characteristics of Si at different water depths at an interval of 0.1 cm 

 

Figure 3.39 a) solar spectrum response of IXYS Si solar cell at different water 

depths b) Solar spectrum response of the Si solar cell at different water depths via 

Multiphysics modeling [36] 

3.5.7 ML based performance characteristics prediction 

From section 3.5.5, it is observed that, KRR and SVR are the best ML algorithms 

used for prediction of I-V and P-V characteristics at all metrices findings. Now, in SSPV 

also, the prediction of performance characteristics validation is done at 0.3 cm by 

considering the performance at 0cm, 0.1 cm, 0.2 cm, 0.4 cm and 0.5 cm as training data. 

The ML algorithm SVR gave 89 % prediction and the KRR gave around 92 % of prediction 

efficiency via training. While validating at 0.3 cm, the metrices of the ML algorithms are 

obtained and listed in Table 3.14.  
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Table 3.14 Parameter metrics for Si with SVR and KRR algorithms at 0.3 cm of 

water depth 

Metrics 

SVR KRR 

IV PV IV PV 

RMSE 0.0609 0.082 0.072 0.1133 

MAE 0.0303 0.072 0.043 0.083 

MAPE 0.2486 0.355 0.289 0.486 

R2 Score 0.915 0.927 0.895 0.862 

The parameters of SVR to predict current is fixed at C = 1000, ϵ = 0.01 and γ (for 

RBF kernel) = 1. The parameters of SVR to predict power is fixed at C = 1000, ϵ = 0.1 and 

γ (for RBF kernel) = 1. The best hyperparameters to predict currents through a solar panel 

using voltage and depth using KRR is alpha = 0.01 and gamma =1.0, using RBF kernel. 

The best hyperparameters to predict powers using through a solar panel using voltage and 

depth using KRR is alpha = 0.001 and gamma = 100.0, using polynomial kernel. One thing 

to note is that during the calculation of MAPE, the least datapoint has been omitted, as 

when it is scaled down (using Min Max Scaler), it results in a 0. Any 0 datapoint in the 

calculation of MAPE leads to an arbitrarily large value. 

 

 

a)       b) 

Figure 3.40 a) I-V characteristics b) P-V characteristics of the SVR prediction at 0.3 

cm depth 
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Figure 3.41 a) I-V characteristics b) P-V characteristics of the KRR prediction at 0.3 

cm depth 

The Figure 3.40 a) and b) shows the I-V and P-V characteristics of the SVR 

prediction at 0.3 cm depth, and the Figure 3.41 a) and b) shows the I-V and P-V 

characteristics of the KRR prediction at 0.3cm depth. The SVR gave best prediction of 

power at different water depths when compared to KRR, and KRR gave best prediction 

performance of current at different water depths when compared to SVR from the SSPV 

output performance characteristics. 

 

3.6 Conclusion 

The PV cell/panel is designed mathematically and obtained the characteristics at 

different irradiations and temperatures, where the PV cell/panel is having higher Voc and 

lesser Isc creating higher Pmax with the decrease in temperature (0, 25, 51 and -45 0C) and 

irradiation (1000, 600, 200 W/m2). The mono-crystalline Si PV cell/panel is modeled as 

shown in Figure 3.12 / Figure 3.16 in an experimentally validated Multiphysics 

environment, and the I-V and P-V performance characteristics are plotted as shown in 

Figure 3.28 (a) and (b). The efficiency of the simulated PV cell is 19.69 % which is almost 

equal to the efficiency of the commercially available mono-crystalline Si (19.69 %) 

experimental and data sheet data as tabulated in Table 3.4. The PV cell is also modeled 

using Ge, GaAs, and InP materials, as discussed in section 3.2.2, at 25 0C at both cell/panel 

level and at the cell level, the GaAs have 20.53 % efficiency while the mono-crystalline Si 

has 19.69 % efficiency.  
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The cell level model is extended to the panel level with material and temperature 

variations where GaAs have achieved 23.27 % (3 % increase) efficiency while Si has 19.69 

% efficiency, the same as a cell. The materials efficiency at STC is as follows: GaAs > 

mono-crystalline Si > InP > Ge and the GaAs exhibit 28.57 % at -45 0C. The efficiency of 

the PV cell/panel is estimated based on the thermal losses, bandgap, and thickness of the 

model. It is observed that the Joule heat distribution is more in Ge, and the order of Joule 

heat distribution is Ge (234 KW/m3) > Si (61 KW/m3) > GaAs (5.05 KW/m3)> InP (3.95 

KW/m3) representing less joule heat in InP throughout due to the thickness of PV. 

The prediction is done to predict the values of current and power to obtain I-V and 

P-V characteristics of PV cells with all the other parameters and also to obtain efficiency. 

The LR, PR, SVR, and KRR algorithms are chosen for the prediction due to data points 

availability from low to medium and the popularity of algorithms for the characteristics. 

LR provides less accuracy because of the non-linearity in the characteristics, which is 

almost less than 80 % of the R2-score. Similarly, PR and KRR resulted in > 85 % R2-score. 

The degree 4 is the best hyper parameter of PR, the best fit hyper parameters for I-V 

characteristics are C = 1000, ϵ = 0.01 and γ (for RBF kernel) = 1 and for P-V characteristics 

C = 1000, ϵ = 0.10 and γ (for RBF kernel) =1 in SVR prediction. Similarly, for KRR, the 

best hyper parameters for I-V characteristics are alpha (α) = 0.001 and gamma (γ) = 1.0, 

using RBF kernel, and similarly for P-V, alpha (α) = 0.1 and gamma (γ) = 100.0, using a 

polynomial kernel.   

The GaAs efficiency is 20.52 % at 25 0C, 21.23 % at 15 0C, and 24.97 % at -18 0C, 

and the mono-crystalline Si has 19.32 % efficiency at 25 0C, 20.11 % at 15 0C, and 20.92 

% at -18 0C both using PR and KRR ML algorithms. From this, it can be observed that 

GaAs provides higher efficiency at all levels of temperatures through modeling and 

prediction. In materials point of view, GaAs is capable of providing higher efficiency 

(28.57 % at -45 0C) under different environmental conditions. With temperature variations, 

GaAs and Si materials are capable of higher efficiency with the decrease in temperature 

from +51 0C to -45 0C via modeling. With ML techniques, the PR is capable of predicting 

the data with less data provision by eliminating over/under fit of data, but the degree of 

polynomial is not fixed, and KRR is capable of predicting (92.23 %) the data at different 

intervals of temperatures for different materials with higher data input for training and 

testing. 
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Implementing SSPV with Si and GaAs materials is done both mathematical and 

Multiphysics modeling and the performance characteristics are obtained as shown in 

section 3.5.6. The KRR and SVR ML algorithms are implemented for SSPV till 0.5 cm and 

validated at 0.3 cm of water depth which gave better efficiency. The GaAs is giving better 

efficiency compared to Si at different depths of water and KRR is giving more efficiency 

at both current and power prediction when compared to SVR. 
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CHAPTER 4  

EFFICIENT ENERGY STORAGE SYSTEM (EESS) 

WITH FAST CHARGING OF LI-ION BATTERY 

(LIB) AND SLOW DISCHARGING OF SUPER 

CAPACITOR (SC) 

4.1 Introduction 

The captured energy from the RER like PV or SSPV must be stored efficiently to 

meet the energy demand. The demand for energy varies from day to day, from season to 

time. Moreover, between day and night there is a major difference in the peak to valley 

[71]. Therefore, the generated power needs to be stored and vacant energy is provided 

during peak loads by peak shaving and load leveling [72]. Utilities are shifted to utilize 

RER to meet the rapidly increasing load demand. However, due to intermittent nature of 

these RER, the grid may experience instability and power quality issues [73] like harmonic 

distortion, phase unbalance and voltage drop. This significant increases in demand for RER, 

as well as the intermittent nature of renewable energy resources, have promoted and 

necessitated the development of electrical  energy storage systems [74], [75]. The energy 

storage systems like batteries and SC can effectively store renewable energy generated [76], 

[77] to deliver the energy to load demand during peak leveling. The most commonly used 

energy storage technologies are lithium-ion (Li-ion) and lead-acid battery storage systems. 

Compared to lead-acid battery technology, LIBs have the advantages of high energy 

and power density, less maintenance requirements, and more cycles number [190]–[192]. 

LIBs require higher charging time because of their variable power and energy densities. 

There are several battery alternatives available, one of which is the SC. The SCs are large 

capacitance special capacitors that combine the properties of batteries and capacitors into 

a single device. SC has significantly evolved in recent years and has demonstrated the 

potential to provide advances in energy storage systems [193], [194]. The charging time of 

a SC is much shorter than that of a conventional battery or capacitor, and it can discharge 

like a regular battery. These are lightweight and environmentally friendly in comparison.  

The LIB and SC are widely used in applications of small electronic devices to 

Electric Vehicles (EV). The performance and capability of energy storage elements 

changes depending upon the different applications. When using a storage element in EV 
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applications, durability, long life, fast charging and slow discharging  are preferred [195], 

[196] . LIBs are good choice for the energy storage solution for EV due to the parameters 

like  high energy (≈705 Wh/L) and power density ( ≈10,000 W/L), longer cycle life, low 

self-discharge, fast charging, high capacity and efficiency when compared to lead acid 

battery [197]–[200].  Among all the above factors against the widespread adoption of EVs, 

the long charging time is relatively one of the most difficult parameters for consumers. 

Achieving fast charge of LIB [201], [202] has been deemed as one of the most important 

directions for the progression of EVs in the field of battery technology. The electrical model 

[203], lumped thermal model [204], and electro-chemical models [205] of LIB are designed 

and characteristics of LIB are provided in different conditions.  

 The available fast charging strategies, which determine how the current density is 

varied during the charging process, are an important category of such solutions. An off-

board fast charging is cable to recharge a battery completely in less than 1 hour [206] 

through fast charger with charging at different levels. The rapid power refueling is 

extensively approved, though the fast-charging high-power load is a challenge to grid. The 

distribution transformer losses, harmonic distortion, and increasing demand voltage 

deviations caused by fast charging are analyzed in [207]–[210]. The power electronics 

technologies such as harmonic elimination, active correction of power factor, and the 

problems of the load non-linearity can be decreased to quench the grid [211]. However, the 

modification of power electronic charging topology does not have any effect on the fast 

charging with the increase in active power demand.  

While performing power-flow analysis, voltage sag and swell occurs even when a 

2 MW charging load with 0.99 power factor fed into the grid [212]. This sag and swell exist 

because of a large number of fast chargers that are installed at the grid. The impact on 

voltage and frequency stability by fast charging causes limitations in the capacity of grid 

while connecting it to fast charger. To eliminate this impact without interrupting the fast 

chargers, load compensation is done by an energy storage system such as flywheel as 

presented by Mauri et.al, in 2020 [209]and Dragicevic in 2014 [213]. However, application 

of this flywheel-storage system in practice is limited due to its low energy density. This 

limitation of flywheel system is overcome by the introduction of hybrid energy storage 

systems [214]. These hybrid energy storage systems having battery and SCs, performance 

was limited due the allocation of variable power to load.  
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Wang et al. in 2015 [215] modified this system to  effectively allocate power 

between two units of hybrid storage system by the fuzzy logic control strategy. However, 

the output characteristics of the energy storage system and fast charging technology are not 

considered.  In order to overcome the variable power distribution, voltage and frequency 

instability, fast charging of LIB with SC is the need of the hour. On the other hand, due to 

its initial high-cost necessity of RER, there is an argument on the extensive and efficient 

utilization of LIBs and SCs. So, the techno-economic analysis and characteristics of LIB 

and SC are investigated for finding economically feasible fast charging technology [88]–

[91]. Hence, in this chapter, FCLIB is designed with the best identified characteristics such 

as life cycles, charge/discharge time, internal resistance and power/energy densities of both 

LIB and SC forming as an EESS. In the current research, six different power electronic 

circuit topologies for fast charging are designed with the inter connection of both LIB and 

SCs. Among these six, the best topology of extreme fast FCLIB is identified and analyzed 

with optimum CoE estimation for 80 % as well as 100 % of SOC.  

4.2 Basics of Energy Storage System (ESS) 

 A battery is a grouping of cells with the management energy system. Even a tiny 

battery is capable of managing the energy as per the utility system. Depending on the 

tolerance levels, the capability of every battery varies. Batteries are made up of two 

electrodes (positive & negative) with an electrolyte as separator between and converts 

chemical energy into electrical energy. Depending on the conversion capability, batteries 

are divided into two types. They are,  

1) Primary batteries (not rechargeable): Converts chemical energy into electrical energy 

only. Once the energy of the battery completes, the battery cannot be utilized again because 

of non-conversion probability from electrical energy to chemical energy. 

2) Secondary batteries (rechargeable): Converts chemical energy into electrical energy 

and vice versa. These batteries can be utilized again and again depending on the life cycle. 

After completion of life cycles, these batteries give degraded performance. 

 Before the introduction of Lithium batteries, Lead acid batteries are mostly 

preferred with rechargeable capability because of the material availability. After EV 

implementation, LIBs are coming into usage with varied range of storage applications 

mainly because of its high specific energy, excessive power density and flat discharge 
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profile compared to lead acid battery. The energy restored into the LIB by forcing electric 

current into the battery, called as recharging of battery.  

4.3 Design of LIB 

The design of LIB includes three sections namely, mathematical, Multiphysics and 

temperature modeling. 

4.3.1 Mathematical Modeling of LIB 

 A precise battery model is the first step in the development to build and 

parameterize an equivalent circuit that reflects the battery behavior. The modeled LIB is 

combination of cells and used to find the different charging and discharging conditions of 

LIB. Figure 4.1. shows, the mathematical design of LIB having input parameters as nominal 

voltage, rated capacity in Ah, initial state of charge and response time of the battery. By 

giving the input parameters, the modeled LIB determines its cutoff voltage, maximum 

capacity and nominal discharge current.  

 

Figure 4.1 Mathematical design of LIB 

For designing Figure 4.1, the mathematical analysis [216] is followed from equation (4.1) 

to equation (4.10) by the equivalent circuit as shown in Figure 4.2.  

 

Figure 4.2 Equivalent circuit of battery 
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The open circuit voltage of battery (𝑉𝐵𝑜𝑐) is given by, 

𝑉𝐵𝑜𝑐 = 𝑓(𝑆𝑜𝐶)         4.1 

where, f(SoC) is a function of state of charge and the internal resistance of battery (RBi) is 

represented as, 

𝑅𝐵𝑖 = 𝑓(𝑇, 𝑆𝑜𝐶)         4.2 

where, T represents temperature of battery. The total calculated voltage (𝑉𝑇𝑜𝑡𝑎𝑙) of battery 

is given below in eqn (4.3),  

𝑉𝑇𝑜𝑡𝑎𝑙 = 𝑉𝐵𝑜𝑐 + 𝐼𝐵𝑅𝐵𝑖        4.3 

where, 𝑅𝐵𝑖 is the internal battery resistance and 𝐼𝐵 is the battery current, which is 

represented as, 

𝐼𝐵 =
𝐼𝐶

𝑁𝑝
          4.4 

Here, Ic is current through the capacitor and 𝑁𝑝 is the number of cells in parallel. The 

combined battery voltage output (𝑉𝐵𝑜𝑢𝑡) is given by, 

𝑉𝐵𝑜𝑢𝑡 = {
𝑁𝑠𝑉𝑇𝑜𝑡𝑎𝑙 ,    𝑢𝑛𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑
𝑉𝐵𝑜𝑢𝑡

𝜏𝑠+1
,      𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑  

}       4.5 

Where, 𝑁𝑠 is number of cells in series and 𝐶𝐵 is capacity of battery, and 𝜏 is the transfer 

function variable 

Battery State of Charge (SoC) is calculated using equation (4.6) 

𝑆𝑜𝐶 =  
1

𝐶𝐵
∫ 𝐼𝐵 𝑑𝑡
𝑡

0
         4.6 

In equation (4.6), 𝐶𝐵 is capacity of battery. 

Energy of battery, 𝐸𝐵 = ∫ 𝑃𝐵 𝑑𝑡
𝑡

0
       4.7 

Battery power, 𝑃𝐵 = 𝑉𝐵𝑜𝑢𝑡𝐼𝐵        4.8 

Total power loss in battery, 𝑃𝐵𝑙 = −𝑁𝑝𝑁𝑠𝐼𝐵
2𝑅𝐵𝑖     4.9 

The entire power stored, 𝑃𝐵𝑠 = 𝑃𝐵 + 𝑃𝐵𝑙      4.10 
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4.3.2 Multiphysics Modeling of LIB 

A battery has three essential components- the positive electrode, negative 

electrode and an electrolyte. In addition to that, there is a micro porous polymer separator, 

that prevents the short circuit of the battery, by separating the electrodes. 

 

Figure 4.3 Working principle of a Li-Ion Battery (LIB)5 

Figure 4.3 describes the cell chemistry of a battery. During charging, lithium ions 

move from cathode to anode internally (via the polymer electrolyte and separator), 

electrons move from cathode to anode externally. During discharging, lithium ions move 

from anode to cathode internally, whereas the electrons move in the same direction, but 

externally. The discussion for this section involves two parts - (a) The description of the 

materials for the 2D model, and (b) The description of the 3D model. 

4.3.2.1 Two-Dimensional (2D) Model 

 A planar cross-section of the battery cell shown in Figure 4.4 was modeled. This 

geometry is not that of a realistic battery, it was chosen for easy representation of the 

electrochemistry of a battery. The porous positive electrode material was varied to obtain 

the cell discharge characteristic, and hence find which of the materials performs best. 

The negative electrode used was Lithium metal and the electrolyte was Lithium 

hexafluoro Phosphate (LiP𝐹6) in 1:2 Ethylene Carbonate: Dimethyl Carbonate (EC: DMC) 

and p(VdF-HFP) solution. The positive electrodes used were 𝐿𝑖𝑀𝑛2𝑂4 𝑆𝑝𝑖𝑛𝑒𝑙(LMO), 

𝐿𝑖𝐹𝑒𝑃𝑂4 (LFP), 𝐿𝑖𝐶𝑜𝑂2(LCO) and 𝐿𝑖𝑁𝑖0.8𝐶𝑜0.15𝐴𝑙0.05𝑂2(NCA). Although the negative 

electrode Lithium, has some dimension, it has been modeled as a surface. This 

approximation is valid because Lithium has a high conductivity, and only the reactions at 

 
 

5C. S. Durganjali, H. Raghavan, and S. Radhika, “Modelling and Performance Analysis of Different Types 

of Li-Ion Battery,” in Volume 8: Energy, Nov. 2020, vol. 8, pp. 2–8. doi: 10.1115/IMECE2020-24404 
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the surface in contact with the electrolyte will matter. This approximation is not valid in 

the case of any other electrode. 

 

a)       b) 

Figure 4.4 a) 3-D Li-Ion geometry b) 2D cross-sectional model geometry with the 

thickness of the negative lithium metal electrode neglected 

 The exact dimensions of each component are as shown in Figure 4.5. The study was 

set as “Time Dependent with Initialization” and the mesh used was a normal mesh. The 

parameters studied were State of Charge (SoC), Depth of Discharge (DoD) and the cell 

voltage. It should be noted that the SoC and DoD are complementary terms, which 

represent the level of charge in the cell relative to its capacity. 

𝐷𝑜𝐷 = 1 − 𝑆𝑜𝐶         4.11 

 

Figure 4.5 Dimensions of the cell as taken in the model 

 SoC can be defined in multiple ways, in this chapter it is defined as the ratio of the 

concentration of lithium ions, as in equation (4.11). 

𝑆𝑜𝐶 =
𝑐𝑠,𝐿𝑖
𝑠𝑢𝑟𝑓

𝑐𝑠,𝐿𝑖
𝑚𝑎𝑥         4.12 
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 In the below sub-sections, we list the variables, constants and equations solved at 

the electrodes and the electrolyte. The list of variables and constants used while solving 

electrolyte region are listed in Table 4.1. 

4.3.2.1.1 Electrolyte 

 The equations solved for the electrolyte phase assuming current distribution 

initialization are (subscript 𝑙 represents the solution phase) given from equation (4.13) to 

(4.16) 

𝛻.𝑁𝑙 = 𝑅𝑙          4.13 

𝛻. 𝑖𝑙 = 𝑄𝑙          4.14 

The equations solved assuming time dependent initialization are  

𝜕𝑐𝑙

𝜕𝑡
+  𝛻.𝑁𝑙 = 𝑅𝑙         4.15 

𝛻. 𝑖𝑙 = 𝑄𝑙          4.16 

Where, 𝑁𝑙 = −𝐷𝑙𝛻𝑐𝑙 +
𝑖𝑙𝑡+

𝐹
 and the current density insolution phase 𝑖𝑙 is given as,   

𝑖𝑙 = −𝜎𝑙𝛻𝜙𝑙 +
2𝜎𝑙𝑅𝑇

𝐹
(1 +

𝜕𝑙𝑛𝑓

𝜕𝑙𝑛𝑐𝑙
) (1 − 𝑡+)𝛻𝑙𝑛𝑐𝑙 

Table 4.1 Variables and constants in equations solved at the electrolyte region 

Symbol Parameter Value Unit 

𝐷 Diffusion Coefficient 7.5 × 10−11 m/s2 

𝑡+ Transport Number 0.363 1 

(
𝜕𝑙𝑛𝑓

𝜕𝑙𝑛𝑐𝑙
) Activity dependence 0 1 

𝑐𝑙,𝑟𝑒𝑓 Salt concentration reference value 1000 mol/m3 

𝜙 

Electrolyte potential (initialized to 

zero throughout) 

- V 

𝜎 Ionic conductivity - S/m 
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4.3.2.1.2 Negative Electrode (Li) 

 With the equilibrium potential and its temperature derivative set to zero, and the 

electrode kinetics defined as in the table below, the equations (4.17) and (4.18) are solved 

for the cathode called as negative electrode. 

𝑛. 𝑖𝑙 = 𝑖𝑡𝑜𝑡𝑎𝑙          4.17 

𝑛.𝑁𝑙 = −∑
𝛾𝐿𝑖+,𝑚𝑖𝑙𝑜𝑐,𝑚

𝐹
−
𝛾𝐿𝑖+𝑖𝑑𝑙

𝑛𝑚𝐹
𝑚        4.18 

Where 𝑖𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑖𝑙𝑜𝑐,𝑚 + 𝑖𝑑𝑙𝑚 , 

𝑖𝑙𝑜𝑐 = 𝑖0 (𝑒𝑥𝑝 (
𝛼𝑎𝐹𝜂

𝑅𝑇
) − 𝑒𝑥𝑝 (−

𝛼𝑐𝐹𝜂

𝑅𝑇
)), and 𝑖0 = 𝐹(𝑘𝑎)

𝛼𝑐(𝑘𝑐)
𝛼𝑎 (

𝑐𝑙

𝑐𝑙,𝑟𝑒𝑓
)
𝛼𝑎

 

The list of variables and constants used while solving negative electrode are listed 

in Table 4.2. 

Table 4.2 Variables and constants in equations solved at negative electrode 

Symbol Parameter Value Unit 

𝛼𝑎 Anodic transfer coefficient 0.5 1 

𝛼𝑐 Cathodic transfer coefficient 0.5 1 

𝑘𝑎 Anodic rate constant 10−3 m/s 

𝑘𝑐 Cathodic rate constant 10−3 m/s 

𝑛 Number of participating electrons 1 1 

𝛾𝐿𝑖+ Stoichiometric coefficient -1 1 

𝜂 Electrode potential (ϕsolid matrix − ϕsolution phase) - V 

𝑖0 Exchange current density - A/m2 

4.3.2.1.3 Positive Electrode 

 For the positive electrode, a porous electrode setting was used with the following 

initializations. The subscript l denotes the electrolyte property and the subscript s denotes 

the electrode property. The list of variables and constants used while solving positive 

electrode are listed in Table 4.3. 

Table 4.3 Variables and constants in equations solved at positive electrode 

Symbol Parameter Value Unit 

αa Anodic transfer coefficient 0.5 1 

αc Cathodic transfer coefficient 0.5 1 

ka Anodic rate constant 2 × 10−11 m/s 

kc Cathodic rate constant 2 × 10−11 m/s 
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 The equations solved for electrode kinetics are the same as in section 4.3.2.1.2. In 

addition to that, the following equations (4.19) to (4.23) are also solved (assuming current 

distribution initialization): 

𝛻.𝑁𝑙 = 𝑅𝑙          4.19 

Where 𝑅𝑙 = −∑
𝛾𝐿𝑖+,𝑚𝑖𝑣,𝑚

𝐹𝑚 + 𝑅𝑙,𝑠𝑟𝑐  and  𝑁𝑙 = −𝐷𝑙,𝑒𝑓𝑓𝛻𝑐𝑙 +
𝑖𝑙𝑡+

𝐹
. 

𝛻. 𝑖𝑙 = 𝑖𝑣,𝑡𝑜𝑡𝑎𝑙 + 𝑄𝑙         4.20 

𝛻. 𝑖𝑠 = −𝑖𝑣,𝑡𝑜𝑡𝑎𝑙 + 𝑄𝑠         4.21 

Where 𝑖𝑠 = −𝜎𝑠,𝑒𝑓𝑓𝛻𝜙𝑠 and 𝑖𝑙 = −𝜎𝑙,𝑒𝑓𝑓𝛻𝜙𝑙 +
2𝜎𝑙,𝑒𝑓𝑓𝑅𝑇

𝐹
(1 +

𝜕𝑙𝑛𝑓

𝜕𝑙𝑛𝑐𝑙
) (1 − 𝑡+)𝛻𝑙𝑛𝑐𝑙. 

Here, 𝐷𝑙,𝑒𝑓𝑓 = 𝜖𝑙
1.5𝐷𝑙, 𝜎𝑙,𝑒𝑓𝑓 = 𝜖𝑙

1.5𝜎𝑙 and 𝜎𝑠,𝑒𝑓𝑓 = 𝜖𝑠
1.5𝜎𝑠. 

The only difference when time dependence is assumed, that Equation (4.19) becomes  

𝜕𝜖𝑙𝑐𝑙

𝜕𝑡
+ 𝛻.𝑁𝑙 = 𝑅𝑙         4.22 

Where Rl now is defined as  

𝑅𝑙 = −∑
𝛾𝐿𝑖+,𝑚𝑖𝑣,𝑚

𝐹𝑚 −
𝛾𝐿𝑖+𝑖𝑣,𝑑𝑙

𝑛𝑚𝐹
+ 𝑅𝑙,𝑠𝑟𝑐      4.23 

The values of the constants used for the different electrodes are listed in the Table 4.4. 

Table 4.4 Values of constants used in equations- for different electrode materials 

Property LMO LCO LFP NCA LNO 

Diffusion coefficient (Ds) (10
−13m2/s) 0.1 5 3.2 0.0015 100 

Electrical conductivity (σs)(S/m) 3.8 0.113 91 91 100 

Density (ρ) (kg/m3) 4140 4678 3600 4740 4100 

SoC, max 0.995 1 0.99 0.98 1 

SoC, min 0.175 0.43 0.01 0.23 0.45 

4.3.2.2 Three dimensional (3-D) model 

LIB can be analyzed with the depth analysis, using multiphysics model to study its 

behavior with different temperature conditions. The multiphysics model is designed by 

coupling the battery chemistry modeled in one dimensional (1D) as shown in Figure 4.6, 
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with the geometry and thermal effects modeled in 3 dimensional (3D) as shown in Figure 

4.7. The 1D model was defined by taking the ideas presented in [217] into consideration.  

 

Figure 4.6 Battery chemistry with geometry parameters of LIB-1D model 

 

Figure 4.7 Geometry of LIB-Data sheet [218] 

 The length of the positive electrode (δ+), the length of the negative electrode (δ-) 

and the length of the electrolyte section (δs) were considered 183 μm, 100 μm, and 52 μm 

respectively from Figure 4.6. The parameters required to model a cell mathematically is 

given as 3 types: 

 

1. Design adjustable parameters (like the electrode thickness, volume fraction, particle 

size, separator thickness, salt concentration and initial cell temperature), 

2. Transport parameters (includes conductivity, diffusion coefficients and transport 

parameters)  

3. Thermodynamic and Kinetic data (includes exchange current density and Open 

Circuit Voltage) 
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 The maximum voltage capacity is given by open circuit voltage of the cell, and it 

depends heavily on the initial SoC values of the electrodes. Figure 4.8 shows the 

Multiphysics model of the LIB by coupling Figure 4.6 and Figure 4.7. The Li-ion cell 

dimensions were considered matching with the Duracell 3.2 V Lithium battery in the 

datasheet [218]. The positive electrode and negative electrodes are designed with Li-ion 

composition [219]. The electrolyte was Lithium hexafluoro Phosphate (LiPF6) with 1:2 

Ethylene Carbonate: Dimethyl Carbonate (EC: DMC) solution. The 3D and 1D model were 

coupled by the generated heat source and the average temperature. The initial cell 

temperature was taken as 298.15 K for the positive and negative electrode, respectively.  

These small batteries can be connected in series and parallel connections as shown in Figure 

4.9, to make a larger capacity battery also called as battery pack.  

 

Figure 4.8 Geometry selection of LIB-3D model6 

 

Figure 4.9 Lithium Battery pack design 

 
 

6C. S. Durganjali, V. Chawla, H. Raghavan, and S. Radhika, “Design, development, and techno-economic 

analysis of extreme fast charging topologies using Super Capacitor and Li-Ion Battery combinations,” J. 

Energy Storage, vol. 56, p. 106140, Dec. 2022, https://doi.org/10.1016/j.est.2022.106140. 

https://doi.org/10.1016/j.est.2022.106140
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4.3.3 Thermal Management of LIB 

 As the rate of discharge (C-rate) of battery increases, the heat on the battery shell 

increases. To maintain the stability of the battery, thermal management is required, which 

is designed as shown in Figure 4.10.  

 

Figure 4.10 Thermal management of LIB 

For a LIB having 3.3 V nominal voltage and 2.3 Ah rated capacity at 100 % SoC 

input parameters, the fully charged voltage becomes 3.84 V, maximum capacity as 2.3 Ah 

and the cut-off voltage becomes 3.475 V at 1 C-rate. The SoC characteristics with voltage 

and current waveform at 1 C- rate is as shown in Figure 4.11. Where the battery discharged 

to 77 % and battery voltage decreased from 3.84 V to 3.52 V in 1000 seconds. The 

discharge is at 1 C-rate so the maximum 2 A current is drawn constantly. 

 

Figure 4.11 Discharge characteristics of LIB at 1C rate 
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The two main disadvantages of using just a battery for energy storage are 

a. Low power densities – Batteries have excellent energy densities and are excellent 

for storing energy. However, due to their low power density, enough power cannot 

be provided to the load during peak hours and hence the model does not work 

properly. 

b. Low charging rate – Batteries require much time to get completely charged and 

hence using them is not feasible where time is a constraint. 

 To overcome these issues and limitations [220], LIBs along with SCs can be used. 

A SC can store million times more charge than an ordinary capacitor. Being a capacitor, it 

provides a high energy density compared to the LIBs. This energy can be provided quickly 

to the load in case of peak power demand with the SCs full charge capacity in few seconds. 

4.4 Design of SC 

 A SC like a capacitor is used to store extremely large amounts of electrical charge. 

It differs from an ordinary capacitor in two important ways: 

a. Double-layer capacitance (is electrostatic in origin) and 

b. Pseudo capacitance (electrochemical) 

It can be inferred that SC combine the working of normal capacitors with that of an 

ordinary battery. They exhibit high power density and low energy density. SCs usage is 

ideal when a quick charge is required, whereas batteries are used to provide long-term 

energy. The combination of the two technologies into a hybrid will ideally satisfy both 

purposes and reduce battery stress, for a longer service life. Rapid charging for regenerative 

braking and high current for acceleration are ideal for hybrid vehicle applications. Broad 

temperature range and longer shelf life offer an advantage over the battery. 

4.4.1 Mathematical Modeling of SC 

The SC is modeled with mathematical equations as shown below from equation 

(4.24) to equation (4.28) from equivalent circuit model as shown in Figure 4.12. 

The equations are as follows, 

The total electric charge of SC (𝑄𝑆𝑐𝑇) is given by equation (4.24), 

𝑄𝑆𝑐𝑇 = ∫ 𝑖𝑆𝑐
𝑡

0
𝑑𝑡         4.24 
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Figure 4.12 SC equivalent circuit with self-discharge characteristics 

When self-discharge of SC (iself_discharge) is considered as given in equation (4.25),  

𝑄𝑆𝑐𝑇 = ∫ 𝑖𝑠𝑒𝑙𝑓_𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑑𝑡
𝑡

0
        4.25 

where,  

𝑖𝑠𝑒𝑙𝑓_𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 =

{
 
 

 
 

𝐶𝑇𝛼1

1+𝑠𝑅𝑆𝑐𝐶𝑇
, 𝑡𝑖𝑚𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑜𝑝𝑒𝑛𝑐𝑖𝑟𝑐𝑢𝑖𝑡

𝐶𝑇𝛼2

1+𝑠𝑅𝑆𝑐𝐶𝑇
, 𝑡𝑖𝑚𝑒 𝑑𝑢𝑟𝑖𝑛𝑔 𝑜𝑝𝑒𝑛𝑐𝑖𝑟𝑐𝑢𝑖𝑡

𝐶𝑇𝛼3

1+𝑠𝑅𝑆𝑐𝐶𝑇
, 𝑡𝑖𝑚𝑒 𝑎𝑓𝑡𝑒𝑟 𝑜𝑝𝑒𝑛𝑐𝑖𝑟𝑐𝑢𝑖𝑡

    4.26 

now the total SC voltage (VScT) is given as, 

𝑉𝑆𝑐𝑇 =
𝑁𝑠𝑄𝑆𝑐𝑇𝑑

𝑁𝑝𝑁𝑒𝜀𝜀0𝐴𝑖
+
2𝑁𝑒𝑁𝑠𝐺𝑇

𝐹𝐶
𝑠𝑖𝑛ℎ−1 (

𝑄𝑆𝑐𝑇

𝑁𝑝𝑁𝑒
2𝐴𝑖√8𝐺𝑇𝜀𝜀0𝐶

) − 𝑅𝑖𝑛𝑡𝑖𝑆𝑐   4.27 

where,  

𝐴𝑖 is Interfacial area between electrodes and electrolyte (m2), 𝐹𝐶 is Faraday constant, 𝐶 is 

Molar concentration (mol/m3) equal to 𝐶 = 1/(8NAr3), r is molecular radius (m), 𝑁𝐴 is 

Avogadro constant, iSc SC current (A), 𝑅𝑖𝑛𝑡 is total internal resistance (ohms), 𝑁𝑒 is number 

of electrode layers, d is the molecular radius, 𝑄𝑆𝑐𝑇 is the total SC charge, T is operating 

temperature (K), 𝜀 is permittivity of material, ε0 is permittivity of free space, G is ideal gas 

constant, CT is total capacitance (F), 𝑁𝑝 is number of parallel supercapacitors and 𝑁𝑠 is 

number of supercapacitors in series. 

SCs are placed between batteries and capacitors in the taxonomy of electronic 

components [193]. A single SC stores a lot more energy than a capacitor of a conventional 

design, with a solid dielectric. Other advantages of SCs are instantaneous turn on, take 

significantly less time to charge and require reasonably simple charging circuits. When they 

can store enough energy required for the application of the system, they prove to be an 
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attractive choice for designing energy storage systems. However, LIBs have more storage 

capacity compared to SCs. The SC is mathematically modeled from above equation (4.24) 

to (4.28) and is as shown in Figure 4.13. 

 

Figure 4.13 Mathematical design of SC 

The state of charge of SC is given by, 

𝑆𝑜𝐶 =
𝑄𝑖𝑛𝑖𝑡𝑖𝑎𝑙−∫ 𝑖(𝑡)

𝑡
0 𝑑𝑡

𝑄𝑆𝑐𝑇
× 100        4.28 

where, Q
initial

 is the initial charge of SC. 

4.4.2 Charge/ Discharge Characteristics of SC 

The charge and discharge characteristics of SC are as shown in Figure 4.14 and Figure 4.15. 

Where the SC charges and discharges very fastly. The charge characteristics of the 

supercapacitor happens fastly to the current increment. In Figure 4.14, it can be observed 

that at high ampere rating (500A), the supercapacitor is charged very fastly and at less 

ampere rating (10A), the charge time for a supercapacitor is more than 550 seconds. From 

the charge characteristics, higher current rating makes fast charging of supercapacitor. 

 

Figure 4.14 Charge characteristics of supercapacitor 
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Figure 4.15 Super capacitor self-discharge characteristics (Voltage, Current and % 

SoC) 

 SC has faster charging and faster discharging capability. Where faster charging is 

considered as an advantage and faster discharging is considered as disadvantage of SC. The 

self-discharge is due to internal resistance of the SC. If the internal resistance of the SC 

increases, the self-discharge will be faster which is a disadvantage during non-working 

condition. The SC used for design is 11 V and its internal DC resistance is 8.9×10-3 ohm. 

The time for total self-discharge of SC is 2500 Seconds (41.67 minutes) as shown in Figure 

4.12. At the time of full self-discharge, the voltage of the battery also reaches zero volts. 

During self-discharge, the SC current is constant and at full self-discharge, the current 

moves from -0.02 A suddenly and reaches to zero currents. 

4.5 Comparison of Commercially Available Li-Ion Capacitor (LIC) with 

LIB, SC and FCLIB 

 The LIC is the combination of graphite pre-doped Li ion and activated carbon (AC) 

electrode with electrolyte as LiPF6 [221], [222]. LIC works with anion and cation 

consuming reaction, which is unlike with FCLIB having rocking chair reaction. However, 

high voltage and efficient performance is possible at high temperature condition which is 

also possible in FCLIB. In general, at the negative graphite electrode, instead of high energy 

density achievement, an electrolyte decomposition occurs due to high working voltage, but 

a FCLIB has high energy density compared to LIC, LIB and SC. This electrolyte 

decomposition in LIC leads to high impedance interface eventually creating deterioration 

in the performance of power over longer cycles.  
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If a LIC with large capacity is considered, the Li+ pre-doping takes longer duration 

and require more research to protect Li+ decomposition during working condition. 

However, the LIC system has poor performance at low temperatures due to metal 

decomposition and at high voltage/current regenerative breaking which is eventually 

overcome by FCLIB system with fast charging capability. When coming to the cost, the 

LIC costs approximately $0.9/piece but the fast charge for LIC is not commercially 

available, and is still in research [223] which will increase its cost. This intern makes 

FCLIB with fast charging topology is more advantageous than LIC which is commercially 

available at both low and high temperature conditions with effective cost. 

4.5.1 FCLIB Parameter Selection 

There are various methodologies to charge both LIB and SC individually. Constant 

current/constant voltage (CC/CV) is the more commonly used and the preferred method 

[200]. In the CCCV algorithm, a constant current is given to charge the LIB/SC until its 

voltage moves up to a specified maximum voltage. When the LIB/SC reaches a target 

voltage, constant voltage loop becomes active, and the current is decreased. This process 

halts when the current comes down to a specified low current.  

A LIB takes minutes - hours to charge depending on the rating of LIB and type of 

charging topology utilized. LIBs are at risk of being overcharged so full charge monitoring 

is required.  A SC takes a few seconds - minutes to charge. The magnitude of the charging 

current greatly affected by the charger utilized. Almost the entire charging process is 

completed in a few seconds, with just the topping charge taking additional time. There is 

an inrush current which should be accounted for, taking the necessary precautions to restrict 

the same. SCs, unlike LIBs are not at risk of being overcharged and hence there is no 

requirement for full charge monitoring. 

The time taken for SC to discharge till 50 % is around a month whereas LIBs take 

about 5 % per month. However, when it comes to the life cycle of a SC, it can undergo an 

infinite number of cycles of charging and discharging. Unlike LIBs, there is minimal 

depreciation in SCs with an exception of when they have an applied voltage greater than 

the allowed voltage. Under normal conditions, a SC fades from 100 % to 80 % capacity in 

10 years. Applying higher voltages rather than the specified voltages, shortens the life and 

duration of discharge. When a SC is used to run an appliance, its voltage at terminals goes 

down. Converters are used to maintain a constant output voltage for the appliance for a 

sizable drop at terminals of the SC, for instance from 100 % to 50 % of the rated values. 
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A LIB maintains a steady voltage in most of its applications with little change. 

However, the terminal voltage of the SC decreases on a linear scale, reducing the usable 

power spectrum. As discussed above, an elective DC-DC converter assists to improve the 

energy at low voltage band, but this will be expensive and might result in energy losses as 

well. The self-discharge of a SC compared to an electrostatic capacitor and a battery is 

somewhere in between the two; due to the presence of the organic electrolyte. The 

characteristics of LIB, SC, and Lithium-Ion Capacitor (LIC) which are commercially 

available with FCLIB parameter selection is tabulated in Table 4.5. In later section, the 

comparison of LIC with FCLIB is given in terms of performance and cost. 

Table 4.5 FCLIB parameter selection from LIB, SC and LIC 

LIB characteristics SC characteristics 
LIC [221], [222] 

FCLIB 

parameter 

selection 

Charge-in minutes to hour 
Charge- in seconds to 

minutes 
Charge in minutes 

Charge -in 

less minutes 

Number of cycles <10,000 Number of cycles >50,000 
Number of cycles decreases 

with increase in voltage 

Increase in 

cycles 

High energy density 

compared to SC 

Low energy density 

compared to LIB 

Instead of high energy 

density, electrolyte 

decomposition occurs 

High energy 

density 

Slow discharge Fast discharge Nominal discharge 
Slow 

discharge 

High storage capacity 
Low storage capacity 

compared to LIB 
High storage capacity 

High storage 

capacity 

Need additional storage 

system for fast charging 

Need DC-DC converter for 

fast charging circuit 

Need extra fast charging 

circuit 

Efficient 

storage with 

fast charging 

Resistor and Capacitor are 

connected in parallel 

circuit and series 

connection of different 

number of RCs is 

considered for equivalent 

model as shown in Fig.3. 

Resistor and Capacitor are 

connected in series circuit 

and parallel connection of 

different number of RCs is 

considered for equivalent 

model as shown in Fig.10 

graphite pre-doped Li ion 

and activated carbon (AC) 

electrode with electrolyte as 

LiPF6 are used for LIC 

designing 

Parallel 

connection 

of LIB and 

SC can 

consider for 

design 

development 

Low internal resistance High internal resistance 

Nominal internal resistance 

which fails at negative 

temperatures totally 

Variable 

resistance for 

fast charging 
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All these characteristics of LIB and SC lead to failures in the energy storage system 

when used alone. So, the combination of LIB and SC is preferred, with the useful 

characteristics of LIB like slow discharge at less power energy densities and the SC with 

fast charging capability to decrease the charging time of LIB. 

4.6 Different Topologies for Fast Charging of LIB with Slow Discharging of 

SC 

 In this chapter, fast charging of LIB with direct SC is considered. The use of direct 

SC for FC should have higher energy density compared to the LIB [224]–[226]. The 

internal resistance of the SC should be minimum in order to deliver the energy to LIB. Here 

in this section, the parallel connection of SC with LIB having different energy densities and 

internal resistances are considered. The FCLIB is designed from the parameters selected 

from Table. 4.5 is as shown in Figure 4.16.  

The SC and LIB are interconnected to form a renewable energy storage system. If, 

SC with less energy density and LIB with higher energy density considered, the SC will 

not be capable of charging the LIB. The 0 % SoC of LIB and 100 % SoC of SC is considered 

initially. So, both SC and LIB at equal energy storage or SC with high energy and lesser 

LIB energy can be used for FCLIB efficiently. The internal resistance of SC is a major 

parameter, which makes a difference in charging the LIB slowly or quickly [38], [40], [48]. 

.  

Figure 4.16 FCLIB design with parallel connection of LIB and SC 

 Six different topologies are explored for LIB charging with different SC internal 

resistances and energy densities. The six topologies are performed as shown in Figure 4.17. 
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Figure 4.17 Flow chart of FCLIB with all combinations 

Topologies in the list include:  

1. The energy of SC is less than the energy of battery (1B parallel to 1S): This topology 

is designed with one LIB and one SC in parallel at SC less energy density compared 

to LIB as shown in Figure 4.16. Due to less energy state, LIB charging will be very 

slow by SC, so this topology is not specified for fast charging. 

2. The energy of both the SC and the LIB is equal, (1B parallel to 1S, internal 

resistance at 8.9×10-3, 89×10-3, 0.5): One LIB in parallel to one SC is connected in 

parallel at different internal resistance and charge/discharge characteristics are 

analyzed for both storage systems similar to Figure 4.16. In this, the energy density 

of LIB and SC are equal, and SC is at 100%SoC and LIB is at 0% SoC. LIB starts 

charging from 0% to 100% and SC discharges from 100% to different levels 

depending on the internal resistance. 

3. The energy of a SC is greater than the energy of a LIB (1S parallel to 1B, internal 

resistance at 8.9×10-3, 89×10-3, 0.5): In this topology, SC is at higher energy density 

compared to single LIB and the design is similar to Figure 4.16. Here, depending 

on the internal resistance, the fast charging of LIB can be achieved at different 

times. Less internal resistance takes more time to charge, compared to higher 

internal resistance. Similarly, higher internal resistance causes sudden peak 

voltages at starting and then stabilizes after some time. 
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4. Parallel connection of a higher energy SC to two LIBs (2B1S internal resistance at 

8.9×10-3): Two LIBs are connected in parallel to one SC at higher energy density 

of SC compared to single LIB as shown in Figure 4.18. The charging will be faster 

and leakage currents also decreases due to two LIBs acting as load for single SC. 

This topology takes more time to charge compared to topology 3. 

 

Figure 4.18 Model of 2B1S with internal resistance at 8.9×10-3 

5. Parallel connection of a higher energy SC to three LIBs (3B1S, internal resistance 

at 89×10-3): In this topology, three LIBs are connected in parallel to one SC at 

89×10-3 as internal resistance as shown in Figure 4.19. This internal resistance is 

considered as best internal resistance from topology 3. At this topology, the LIB 

and SC peak current and voltages decreases but time taken to charge three batteries 

is very high due to load sharing among them by SC. 

 

Figure 4.19 Model of 3B1S with internal resistance at 89×10-3 
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6. Parallel connection of two SCs to a one battery (2S1B, internal resistance at 8.9*10-

3, 89*10-3): This topology has two SC in parallel to one LIB at two levels of internal 

resistance as in Figure 4.20. The charge/discharge characteristics are analyzed for 

both SC and LIB. 

 

Figure 4.20 Model of 1B2S with internal resistance at 8.9*10-3 and 89×10-3 

4.7 Results and Discussion 

4.7.1 2D Model with Material Variation 

From the 2D model design the plots obtained for different positive electrodes in 

combination with lithium metal cathode 𝐿𝑖𝑃𝐹6𝑖𝑛 1: 2 𝐸𝐶: 𝐷𝑀𝐶 (𝑉𝑑𝐹 −𝐻𝐹𝑃) electrolyte, 

are   attached   in   below   Figures. The positive electrodes studied are 𝐿𝑖𝑀𝑛2𝑂4 𝑆𝑝𝑖𝑛𝑒𝑙 

(LMO), 𝐿𝑖𝐹𝑒𝑃𝑂4 (LFP), 𝐿𝑖𝐶𝑜𝑂2 (LCO), 𝐿𝑖𝑁𝑖0.8𝐶𝑜0.15𝐴𝑙0.05𝑂2 (NCA) and 𝐿𝑖𝑁𝑖𝑂2 

(LNO). Here output SoC of porous electrode and electric potential at current collector 

surface for the LMO, LCO, LFP, NCA and LNO are presented in Figures 4.5 to 4.14. A 

comparison table for all the materials simulated is represented in Table 4.6. 

a) 𝑳𝒊𝑴𝒏𝟐𝑶𝟒𝑺𝒑𝒊𝒏𝒆𝒍 (LMO) 

 Figure 4.21 a) and b) represents the electric potential and average SoC of 

Li-ion battery with positive electrode as LMO, negative electrode as Lithium, and 

electrolyte as LiPF6. By joining the points of inverse slope of average SoC gives the plot 

of average DoD of porous electrode. From Figure 4.21 a), it can be observed that, the 

electrical potential of LMO is at 4.02 V at initial state and then decreased gradually to 

3.7 V at 1-C rate and the average SoC increases linearly with time as shown in Figure 

4.21 b).  
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Figure 4.21 a) Cell Voltage Vs Time- LMO/Li b) Average Soc Variation with Time 

For LMO/Li 

b) 𝑳𝒊𝑪𝒐𝑶𝟐 (LCO) 

 Now considering the positive electrode as LCO, Lithium metal as cathode and 

electrolyte as LiPF6 the output plots are obtained and are shown in Figure 4.22 a) and 

b). The Figure 4.22 a) represents the electric potential at boundary of LCO and Figure 

4.22 b) represents the average SoC of porous electrode.  

 

Figure 4.22 a) Cell Voltage Vs Time- LCO/Li b) Average Soc Variation with Time 

For LCO/Li 

From Figure 4.22 a), it can be observed that, the electrical potential of LCO is at 

4.65 V at initial state and then decreased gradually to 3.95 V at 1-C rate and the average 

SoC increases linearly with time as shown in Figure 4.22 b). 

c) 𝐿𝑖𝐹𝑒𝑃𝑂4 (LFP) 

 Now considering the positive electrode as LCO, Lithium metal as cathode and 

electrolyte as LiPF6 the output plots are obtained and are shown in Figure 4.23 a) and b). 

The Figure 4.23 a) represents the electric potential at boundary of LNO and Figure 4.23 
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b) represents the average SoC of porous electrode. From Figure 4.22 a), it can be observed 

that, the electrical potential of LFP is at 3.37 V at initial state and then decreased gradually 

to 3.29 V at 1-C rate and the average SoC increases linearly with time as shown in Figure 

4.23 b). 

 

Figure 4.23 a) Cell Voltage Vs Time- LFP/Li b) Average Soc Variation with Time 

For LFP/Li 

d) 𝐿𝑖𝑁𝑖0.8𝐶𝑜0.15𝐴𝑙0.05𝑂2 (NCA) 

 Now considering the positive electrode as NCA, Lithium metal as cathode and 

electrolyte as LiPF6 the output plots are obtained and are shown in Figure 4.24 a) and b). 

The Figure 4.24 a) represents the electric potential at boundary of NCA and Figure 4.24 

b) represents the average SoC of porous electrode. 

 

Figure 4.24 a) Cell Voltage Vs Time- NCA/Li b) Average Soc Variation with Time 

For NCA/Li 

From Figure 4.24 a), it can be observed that, the electrical potential of NCA is at 

4.02 V at initial state and then decreased gradually to 3.5 V at 1-C rate and the average SoC 

increases linearly with time as shown in Figure 4.24 b). 
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e) 𝐿𝑖𝑁𝑖𝑂2 (LNO) 

 Now considering the positive electrode as LCO, Lithium metal as cathode and 

electrolyte as LiPF6 the output plots are obtained and are shown in Figure 4.25 a) and b). 

The Figure 4.25 a) represents the electric potential at boundary of LNO and Figure 4.25 

b) represents the average SoC of porous electrode. 

 

Figure 4.25 a) Cell Voltage Vs Time- LNO/Li b) Average Soc Variation with Time 

For LNO/Li 

From Figure 4.25 a), it can be observed that, the electrical potential of LNO is at 

4.1 V at initial state and then decreased gradually to 3.3 V and then suddenly rises to 5V 

because of the internal resistance variations at 1-C rate and the average SoC increases 

linearly with time as shown in Figure 4.25 b). 

Table 4.6 Comparison of Different Positive Electrode Materials 

Electrode 

Material 

Maximum Battery 

Voltage (V) 

Slope of SoC graph 

(× 𝟏𝟎−𝟓) 

Inverse of Slope of SoC 

graph 

LMO 4.0313 13.00 7692 

LCO 4.6520 5.22 19157 

LFP 3.3714 13.62 7342 

NCA 4.0109 8.60 11628 

LNO 4.1149 12.89 7752 

 Table 4.6 summarizes the data extracted from the graphs. We see that the value of 

the maximum cell voltage is between 3-4 V, in keeping with studies that validate this for 

lithium-ion batteries. The general trend for the cell voltage versus time curve was a 

decrease to 0 V within 2700 seconds. For the last case alone (LNO), a singularity error was 

encountered, hence the deviation from the general gradual decrease. This may be because 

of the choice of the average current density at the current collector boundary which was 

set at 1 A/m2 for all the cases. 
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4.7.2 3D Model Output Characteristics 

 The 3D model as shown in Figure 4.8 is prepared with the geometry selection from 

Figure 4.6 and Figure 4.7 and considers the thermal effects due to adjacent batteries (Figure 

4.10) in a hypothetical battery pack (Figure 4.9). The Figure 4.11 represents the discharge 

characteristics of LIB at only 1C-rate. By considering the thermal management with air as 

a medium the battery potential is increased to 3.67 V at 0.1C-rate. Similarly, at different C-

rate the electric potential will vary. These variations in electric potential with different C-

rates (0.1C, 1C, 2C, 4C) are as shown in Figure 4.26. As the C-rate of battery increases, the 

potential discharge of the battery is faster. Compared to the 0.1 C-rate, the initial electrical 

potential is less in 1C, 2C, 4C rates. At 0.1 C-rate, the discharge time is more than one hour 

and at 4C-rate, the discharge time is less than one hour which is less compared to 0.1C-

rate. The x-axis of the Figure 4.26 is represented with (t[s]/1[h]) *i_app_p (C/m2) which is 

Ampere hours (Ah)/ m2. 

 

Figure 4.26 Discharge curves of LIB at different C-rates (0.1C, 1C, 2C, 4C) 

 

Figure 4.27 LIB discharge and battery load at 1C-rate 
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Figure 4.27. shows the discharge rate for a single load cycle and the battery load 

distribution throughout the cell potential at 1 C-rate. From Figure 4.28 it is observed that, 

after 1 hr, the LIB is discharged almost 44.44 % at 1 C-rate. The cell potential decreased 

from 3.6 V to 2 V with the battery load (1C-rate). 

4.7.3 Validation of Battery Design with Discharge Curves 

  

a) b) 

Figure 4.28 a) Battery datasheet Discharge curves b) Modeled battery discharge 

curves at discharge current 10 mA, 50 mA,100 mA, 250 mA, 500 mA, 750 mA, 1000 

mA respectively 

 Figure 4.28 a) shows the discharge voltage curves at discharge currents of 10 mA, 

50 mA, 100 mA, 250 mA, 500 mA, 750 mA, 1000 mA respectively in a log scale. Similarly, 

the designed battery discharge curves are plotted as shown in Figure 4.28.b). 

The temperature is considered as -55 0C and +55 0C in order to match Indian climate 

conditions at Himalayas [176] and Rajasthan [227] which are the coldest and hottest states. 

The increase in current makes the battery to discharge faster. From Figure 4.28. a) and b), 

the 10 mA load is having full voltage discharge more than 102 in log scale and 1000 mA is 

having full discharge below 10 in log scale representation. The initial voltage is suddenly 

dropped because of high initial load in both data sheet and simulation. The discharge curves 

of the battery for datasheet and the modeling are slightly deviated because of the series of 

factors such as discharge current density, electrolyte concentration and temperature, depth 

of discharge, internal resistance and temperature variations. 

4.7.4 The Temperature Effects 

The temperature on surroundings of battery was considered at normal room 

temperature, which is 298.15 [K] (25 0C).  The steam line velocity on battery is shown in 

Figure 4.29 at standard temperature. 
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Figure 4.29 Streamline velocity field at temperature 298.15 K (25 0C) 

Similarly, if both low and higher temperature ranges considered, the fast discharge 

characteristics of battery will be observed at different C-rates rather than 1C-rate. The 

discharge characteristics of LIB at +55 0C, and -55 0C are shown in Figure 4.30 a), b), c), 

and d) at different C-rates (0.1C, 1C, 2C and 4C) with respect to (w.r.to) capacity (C/m2) 

and time (min). At 25 0C, the discharge capacity is normal and now abnormal behaviors 

are observed. The capacity in modeling is taken as (t[s]/1[h]) * i_app_p and the units are 

Ah/m2 and is also represented as C/m2. 

 
a)       b) 

 
c)      d) 

Figure 4.30 a) Discharge characteristics of LIB at +55 0C w.r.to capacity (C/m2) b) 

Discharge characteristics of LIB at -55 0C w.r.to capacity (C/m2) c) Discharge 

characteristics of LIB at +55 0C w.r.to time (min) d) Discharge characteristics of 

LIB at -55 0C w.r.to time (min) [(C-rate_0.1C, 1C, 2C & 4C)] 
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From Figure 4.30.a, the LIB capacity is approximately 1.1 C/m2 at +55 0C, and from 

Figure 4.22 b), the LIB capacity is approximately 0.04 C/m2 at almost all C-rates. The LIB 

exhibits almost 96.36 % of the drop-in capacity (Which is almost nil capacity) from +55 

0C to -55 0C temperature change. Similarly, Figure 4.22 c) and d) show the time taken for 

discharge of capacity in minutes (min) where at +55 0C, and 0.1 C, the time taken for 

discharge is 56 min, and at -55 0C, and 0.1 C, the time taken for discharge is 2.06 min. The 

time taken for discharge at all C-rates and at +55 0C and -55 0C are listed in Table 4.7. 

Table 4.7 Discharge time with respect to C-rate at +55 0C and -55 0C 

C-rate 

Discharge Time (min) 

At + 55 0C At - 55 0C 

0.1C 56 2.06 

1C 5.5 0.18 

2C 2.7 0.09 

4C 1.3 0.04 (approximately zero) 

 

From Table 4.7, at -55 0C, the internal resistance of the LIB is increased and exhibits 

a 96.36 % drop in capacity (0.04 C/m2) when compared to the LIB at + 55 0C (1.1 C/m2). 

The discharge time of the LIB at - 55 0C is 0.04 min (2.4 seconds) because of the nil 

capacity, and at +55 0C, the battery discharge time is 1.3 min (78 seconds), and this 

variation is represented as shown in Figure 4.31 at 4 C-rate. 

 

Figure 4.31 Discharge characteristics of LIB at + 55 0C, and - 55 0C w.r.to time (min) 

at 4 C rate 
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 At negative temperatures, the LIB electrolyte performance degrades with fewer 

chemical reactions, which causes faster discharge even at a 0.1 C rate. As the LIB load (C-

rate) increases, the draw of currents from LIB also increases. Also, the negative 

temperatures cause an increase in internal resistance, which decreases the discharge time 

of LIB with a capacity decrease. 

4.7.5 FCLIB Topologies with SoC of LIB and SC 

 The summarization of the topologies is consolidated in Table 4.8. The parameters 

of both SC and LIB are given in Table 4.5. Those parameters are utilized during the 

topologies design and SoC of LIB and SC are measured at each stage and tabulated with 

all percentage levels. From Table 4.8, all the topologies are observed with different 

charging time of LIB. When we consider time, 1B 2S topology with 8.9×10-3 internal 

resistance gives very less time which is 3.38 minutes only, but it has high peak currents 

which cause heating and failure of battery.  

 If peak current, voltage and time are considered as effective parameters of LIB, 

1B1S topology with high energy SC than LIB and 89×10-3 internal resistance gives fast 

charge of LIB within 13.67 minutes (820 seconds). 1B1S with 89×10-3 internal resistance 

and 18V SC gives 100 % SOC of LIB with minor effects in 13.67 minutes and 80 % in 6.7 

minutes only. In this topology, the SC discharged till 40 % from 100 %. The discharge of 

SC is constant after 40 % at 8.3 minutes and till 100 % of LIB charging. All the topologies 

are summarized in Table. 3 with charge/discharge time of LIB/SC, peak voltage, peak 

current, with different % of SoC at different internal resistances of SC. At high 0.5 internal 

resistance of SC, both LIB and SC gives abnormal response of voltage and current response 

with charge characteristics of SC and discharge characteristics of LIB after some time as 

represented in Table 4.8. 

From Figure 4.32, time taken for two SCs in parallel to one LIB is 3.38 minutes 

which is very much lesser, but the voltage and current at starting charging reaches to double 

the rated voltage and 110 A current. Remaining topologies are also having similar issues, 

but good performance is achieved at higher energy SC compared to LIB with 1B1S 

topology at 89×10-3 internal resistance, considering as best topology.  
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Table 4.8 Summarization of all the topologies used 

Rating 
LIB-3.9 V, 2.2 Ah, 0 % initial SoC LIB-3.9 V, 2.2 Ah, 0 % initial SoC 

SC- 11 V, 500 F, 100 % initial SoC SC- 18 V, 500 F, 100 % initial SoC 

Internal 

DC 

resistance 

of SC 

(ohm) 

8.9e-3 89e-3 0.5 8.9e-3 89e-3 0.5 

Topology 

used 

1B 

1S 
1B 1S 1B 1S 

1B 

1S 

2B 

1S 

3B 

1S 

1B 

2S 

1B 

1S 
1B 2S 1B 1S 

LIB SOC 

(%) 
35 50 80 100 50 80 100 79.5 41 26.2 100 100 100 100 

Time 

(minutes) 
3.67 9.42 24.67 36.67 8.3 11.3 13.67 7.67 6.33 5.33 3.38 13.67 3.8 9.67 

LIB Peak 

voltage(V) 
4.8 4.5 

8.2 (Double the 

rated Voltage) 
6 5.5 4.6 7.8 5.4 8.1 

8.2 (Double the 

rated Voltage) 

LIB Peak 

current 

(A) 

55 33 32 110 70 40 110 70 84 21 

Saturated 

Voltage 
3.9 4.2 

8.2 (Double the 

rated Voltage) 
4 3.9 3.9 4.2 4.8 8.1 

8.2 (Double the 

rated Voltage) 

SC 

decreased 

SOC (%) 

100 

to 0 
100 to 50 > 100% SC failure 

100 

to 0 

100 

to 

23 

100 

to 0 

100 

to 5 

100 

to 40 

100 to 

53 
>100 

Time for 

DOD in 

minutes 

33.3 8.3 to 41.7 >3.33 33.3 6.3 33.3 41.7 

8.3 

to 

41.7 

7.5 to 

41.7 
9.7 

SC peak 

current 

(A) 

55 33 32 110 140 120 55 70 42 21 

SC peak 

voltage 

(V) 

11 11 > 25  18 18 18 18 18 18 >18 

Sudden 

Voltage 

drop (V) 

9 9 9  
18 

to 6 

18 

to 

15 

18 

to 

16 

18 to 

11.5 

18 to 

14 
Increase in voltage 

 

The charging rates of all the topologies are given in the Figure 4.32.  
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Figure 4.32 Topologies with the respective time to full charge 

4.8 Conclusion and Recommendations 

 A simplified mathematical equivalent model was used in this work to examine and 

evaluate the effect and severity of charge/discharge rate of lithium-ion battery (LIB) and 

Super Capacitor (SC). The SoC, current, terminal voltage, and lifetime properties of LIBs 

were determined with the identical input parameters. Furthermore, it has been shown that 

the response of discharge characteristics for LIBs results in an extended lifespan for useable 

capacity extraction. As a result, it might be observed as an indicator that LIBs with higher 

energy capacity would be used in renewable generation-based stationary applications. 

 Accordingly, the system with FCLIB having SC, results in equal cost with better 

performance with fast charging capability of LIB. When using architecture of two SCs with 

a greater energy level and charging one battery, the battery fast charging to 100 % SoC 

takes 203 seconds (3.38 minutes) but reaches very high voltages and currents. When the 

internal DC resistance of the SC is 0.5 ohm, the SC exhibits aberrant behavior when 

operating from 100% to more than 100 % SoC. Furthermore, the battery exceeds its rated 

voltage, resulting in battery damage. When the internal DC resistance of the SC is reduced 

(89e-3) and at SC high energy levels, the battery charges fast, 13.67 minutes with one 

battery and one super capacitor (1B1S) topology and 80 % is achieved at 6.7 minutes. The 

initial current and voltages are higher, causing damage to the LIB and SC as temperatures 

rise.  
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CHAPTER 5  

TECHNO-ECONOMIC ANALYSIS OF 

INTEGRATED SSPV WITH EESS AND DESIGN OF 

WIND ENERGY CONVERSION SYSTEM 

5.1 Introduction 

The increasing demand for renewable energy sources has led to the development of 

off-shore micro-grid systems that integrate SSPV as discussed in Chapter 2 and chapter 3 

and EESS as discussed in Chapter 4 to provide reliable and sustainable energy supply in 

remote areas. The modeling of these systems is crucial to optimize their design, operation, 

and maintenance, and ensure their economic and environmental feasibility. HOMER-Pro 

is a powerful software tool widely used for modeling and analyzing off-grid and grid-

connected renewable energy systems, including off-shore micro-grids. This chapter 

presents a detailed study on the modeling of off-shore micro-grid systems using HOMER-

Pro, with a focus on the integration of SSPV and EESS components. 

 Wind Energy Conversion Systems (WECS) have gained widespread attention in 

recent years due to their potential to generate electricity from renewable sources. WECS 

harness the kinetic energy of wind to generate electricity and have been adopted around the 

world as a means of reducing greenhouse gas emissions and meeting the increasing demand 

for electricity. A significant amount of research has been conducted on WECS, covering 

various aspects of their design, performance, and optimization. For instance, in [228]–[230] 

investigated the effects of wind shear and turbulence on the power output of a WECS, 

demonstrating the need for accurate models to predict the system's performance. In [80], 

the potential of integrating a WECS with a compressed air energy storage system evaluated, 

demonstrating improved system performance and energy management with the integration 

of energy storage. 

Moreover, the literature survey reveals that the optimization of WECS has been the 

focus of extensive research efforts. The optimization studies have explored various aspects 

such as control strategies, blade design, and turbine placement. For example, in [231] 

proposed a hybrid control strategy for a WECS with permanent magnet synchronous 

generator (PMSG) that combines model predictive control and adaptive fuzzy logic control, 
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demonstrating improved system performance and energy management giving more scope 

to DFIG based WECS.  

In addition, the integration of WECS with other renewable energy sources such as 

PV systems and energy storage systems has been identified as a key solution to the 

intermittency challenge of these renewable sources. Several studies have explored the 

benefits and challenges of this integration, including the impact on system performance, 

economic feasibility, and energy management strategies. 

This chapter highlights the importance of accurate modeling parameters and system 

configuration in achieving optimal performance and cost-effectiveness. The research also 

discusses the challenges and opportunities associated with micro-grid systems, and the 

potential for future research and development in this area. The design of WECS with DFIG 

is also presented with the mathematical simulation in this chapter. Overall, this chapter 

aims to provide valuable insights into the design and modeling of off-shore micro-grid 

systems using HOMER-Pro, and contribute to the sustainable development of renewable 

energy technologies and the simulation of WECS with the DFIG.  

5.2 Microgrid Modeling and Parameterization 

The real time data from SCADA center, TSSPDCL Hyderabad considered as micro-

grid system is chosen to explore the techno-economic analysis of LIB and SCs. The PV 

array, grid, and FCLIB system are the three energy sources under consideration in the 

micro-grid system. A load with a rating of 4–5 kVA is attached to the system and is powered 

mostly by the PV and FCLIB [232]. 

5.3 SSPV System (SSPVS) 

The solar array erected at the industries is made up of two distinct arrays, each of 

which is made up of 14 modules connected in analogous with two arrays to make 10kW 

peak of total capacity. But at the facility, 56 modules with a 10-kW peak of total capacity 

were installed which is 4 times of industry erection. The SSPV array is placed with an 

azimuth angle of 0 degrees and at an inclination angle of 16 degrees. This solar plant's 

electricity production is affected by meteorological and geographical variables [233]. The 

power output of a SSPV array (PPV) is computed as follows: 

𝑃𝑃𝑉 = 𝐺𝑃𝑉𝑓𝑃𝑉 (
𝐼𝑇

𝐼𝑇,𝑆𝑇𝐶
) [1 + 𝛼𝑃(𝑇𝐶 − 𝑇𝐶,𝑆𝑇𝐶)]    5.1 
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where, GPV is the rated capacity of PV in kW, IT is the incident solar radiation on the SSPV 

array in kW/m2, fPV is derating factor of the SSPV array, TC is cell temperature in 0C, IT,STC 

is the incident radiation which is considered as 1 kW/m2 at STC, TC,STC is the temperature 

of PV cell under STC ( at 25 0C), and 𝛼𝑃 is the power temperature coefficient (%/0C). 

 HOMER-Pro software was used to model the grid-connected SSPV system under 

consideration. The system included a 10 kWp solar array, a 5 kW grid-connected converter, 

83 Ah lead-acid battery storage, and a 167 Ah FCLIB [197], [234], load having a 4–5 kVA 

rating. The Grid connected SSPV system (GCSSPVS) with respective components is 

shown in Figure 5.1. 

 

Figure 5.1 Schematic diagram of the SSPVS with FCLIB 

5.4 Data on Load Profiles and Solar Resources 

 The load profile of the area under consideration is based on the utilization of a 

neighboring commercial load demand on the Telangana State Southern Power Distribution 

Company Limited (TSSPDCL) for a month. According to the data obtained in real-time, 

the commercial demand of load has a peak demand of 4.97 kW and with a maximum energy 

usage of 16 kWh/day at the area. When there is a power shortfall from PV and FCLIB, the 

load is powered mainly by the PV array and moderately by the grid. The load average 

profile is depicted in Figure 5.2 [232] based on load profile data average in a day collected 

at the TSSPDCL Hyderabad location. 
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Figure 5.2 Daily load curve (Jan 2nd) 

 The sun radiation statistics were obtained from the site's plant data logger as well 

as NASA [235]. Based on the plant data and analysis, a typical yearly solar radiation of 5.8 

kWh/m2/day is obtained with 0.6 index of clearness, as shown in Figure 5.3. The measure 

of the lucidity of the atmosphere is clearness index, represented as the proportion of solar 

energy that is passed through the atmosphere and strikes the Earth's surface [232]. 

 

Figure 5.3 Global horizontal  radiation with clearance Index [236] 

5.5 Modeling of EESS 

 Excess electricity generated from the micro-grid is collected in energy storage 

devices and used when the PV plant runs out of energy to power the load demand. The 

FCLIBs stored energy is provided by [237]. 

𝐵𝐹𝐶𝐿𝐼𝐵 = 𝐵𝐹𝐶𝐿𝐼𝐵.0 + ∫ 𝑉𝐹𝐶𝐿𝐼𝐵𝐼𝐹𝐶𝐿𝐼𝐵𝑑𝑡
𝑡

0
     5.2 
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where BFCLIB.0 signifies the starting FCLIB charge and VFCLIB and IFCLIB signify the 

FCLIB’s voltage and current, respectively. 

The number of series-connected FCLIB cells (N
bat
) necessary to achieve the specified 

voltage [237]. 

𝑁𝐹𝐶𝐿𝐼𝐵 =
𝑉𝑏𝑢𝑠

𝑉𝐹𝐶𝐿𝐼𝐵
        5.3 

Vbus is the micro-grid system's bus voltage, while VFCLIB is the rated voltage of a single 

FCLIB. Furthermore, the maximum power charge/discharge of a single FCLIB is specified 

as follows: 

𝑃𝐹𝐶𝐿𝐼𝐵
𝑚𝑎𝑥 =

𝑁𝐹𝐶𝐿𝐼𝐵𝑉𝐹𝐶𝐿𝐼𝐵𝐼𝐹𝐶𝐿𝐼𝐵
𝑚𝑎𝑥

1000
       5.4 

where, 𝐼𝐹𝐶𝐿𝐼𝐵
𝑚𝑎𝑥  represents the utmost current charging of the LIB in amperes [238]. The 

technical parameters of the LIB and SC used in this study are given in Table.1. 

Table 5.1 LIB and SC cost and respective parameters used for modeling in 

HOMER-Pro [239]–[241] 

Parameters LIB (LMO [218]) SC ([242], [243]) 

Nominal cell Voltage (V) 3.9 11/18 

Number of strings 4 2 

Cycle number at repeated maximum DOD 3000 [236] 106 

Initial SoC % 0 100 

Round Trip Efficiency 90 98 

substitution cost ($/KWh)  429.68 435 

Cost ($/KWh) 482.3 480/ 510 

Capacitance - 500F 

5.6 Grid system  

 The SSPV system under consideration uses a grid system to improve supply system 

dependability. As a result, the load is meant to get electricity whenever it is required, even 

if it is usually active during the day. The electricity availability on an average during the 

day is about 12 hours. In the simulation for the instance under consideration, the grid 

electricity rates are assumed to be $0.087/kWh. 
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5.7 Parameters for System Economics 

 The CoE and total PNC (Present Net Cost) of batteries and micro-grid system were 

used to determine their economic feasibility. 

5.7.1 PNC Estimation 

 Initial, replacement, operating, and maintenance costs combined the value of PNC 

is calculated by subtracting the costs of fuel from the income. The overall PNC is 

determined as follows: 

𝑃𝑁𝐶 =
𝐶𝐴

𝐶𝑅𝐹(𝑖,𝑛)
         5.5 

where, CRF(i, n) represents the Capital Recovery Factor, i and n represent the real annual 

interest rate and the number of years, respectively [237]. The capital recovery factor is also 

defined as: 

𝐶𝑅𝐹(𝑖, 𝑛) =
𝑖(1+𝑖)𝑛

(1+𝑖)𝑛−1
         5.6 

where, i =
inom−f

1+f
, The yearly inflation rate is represented as f and the nominal interest rate 

is given as inom. 

5.7.2 CoE Estimation 

 The CoE is one of the primary parameters used to assess the economic efficacy of 

an energy system. The CoE is calculated by dividing the yearly cost of all system 

components by the amount produced energy [244]. The CoE is issued by 

𝐶𝑜𝐸 =
𝐶𝐴

𝐸𝑆
          5.7 

The annual energy provided is denoted by ES, while the total annual cost is denoted 

by CA [237]. The total yearly cost is the sum of the costs for substitution, capital and 

operation and maintenance (O & M). 

5.8 Design of WECS 

The WECS consists turbine, gearbox, and generator. Depending on the wind speed, 

the turbine rotated and converts the wind speed into mechanical rotation which drives the 

rotor of the generator. The generators used in WECS are of Permanent Magnet 

Synchronous Generator (PMSG), and DFIG. For offshore applications, the DFIG is mostly 
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preferred due to harsh environmental conditions and variable high wind speeds [51], [52], 

[78]. The DFIG system is considered in two conditions one is healthy and other is unhealthy 

condition. Where the unhealthy condition is of the DFIG is considered with BRB fault and 

no stator fault with loading of the WECS at no load, half load and one fourth load. 

5.8.1 Modeling of DFIG 

 The microgrid is designed as shown in Figure 5.4 using MATLAB/ SIMULINK 

[245]–[249]. The turbine is connected to the DFIG system, where the wind speed is 

considered as 25 m/s as per the SSPVS design. 

 

Figure 5.4 Microgrid system 

The microgrid system considered inside Figure 5.4 is the combination of Figure 5.1 

of SSPVS, EESS and microgrid with WECS. As specified in the above modeling 

references, the mathematical equations for the DFIG rotor are developed as shown in below 

Figure 5.5 to 5.8. 

Mathematical model of the induction motor in phase coordinate system a, b, c is 

given for both stator and rotor as equations (5.8) and (5.9). 

Stator:  

𝑈𝑎
𝑠 = 𝑟𝑎

𝑠𝑖𝑎
𝑠 +

𝑑

𝑑𝑡
𝜓𝑎
𝑠 , 𝑈𝑏

𝑠 = 𝑟𝑏
𝑠𝑖𝑏
𝑠 +

𝑑

𝑑𝑡
𝜓𝑏
𝑠 , 𝑈𝑐

𝑠 = 𝑟𝑐
𝑠𝑖𝑐
𝑠 +

𝑑

𝑑𝑡
𝜓𝑐
𝑠    5.8 

Rotor: 

0 =  𝑟𝑏
𝑟𝑖𝑏
𝑟 + 

𝑑

𝑑𝑡
𝜓𝑏
𝑟 , 0 =  𝑟𝑏

𝑟𝑖𝑏
𝑟 + 

𝑑

𝑑𝑡
𝜓𝑏
𝑟 , 0 =  𝑟𝑐

𝑟𝑖𝑐
𝑟 + 

𝑑

𝑑𝑡
𝜓𝑐
𝑟    5.9 

 The controlled voltage source with back transformation creating rotor side 

converter of DFIG input turbine system is shown in the Figure 5.5.  Where Figure 5.6 
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represents the park transformation of DFIG by which, the voltage and current of stator and 

rotor side currents are measured. Figure 5.7 represents the active and reactive power 

generated from DFIG. 

 

Figure 5.5 Turbine input for the DFIG system as controlled voltage source at 25 m/s 

wind speed 

 

Figure 5.6 DFIG parks transformation for measurement of voltage and current 

 

Figure 5.7 Active and Reactive power generated from DFIG 
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The Figure 6.5 is the current controller for the rotor currents generated. The abc - 

dq frame reference is considered for the three-phase rotor current. The Table 6.1 represents 

the rated parameters of the DFIG and the same is used in the experimental setup as shown 

in Figure 6.12. 

 

Figure 5.8 DFIG Three-phase rotor current controller 

5.9 Results and Discussion 

The influence of a discharge-charge profile on LIB capacity deprivation behavior 

at different current rate levels was studied in this article using a MATLAB-based simple 

equivalent circuit model in Chapter.4. Furthermore, using HOMER-Pro software, the 

techno-economic analysis and performance of LIB and FCLIB integrated with grid-

connected PV-based micro-grid systems were analyzed. The research was carried out 

utilizing actual solar energy resource, load profiles and FCLIB storage data.  

Figure 5.9 depicts the power output of the grid system and load demand. The 

additional load demand can be met by the output of the SC and LIB's SoC with normal load 

usage. HOMER-Pro-presents the optimized outputs of the micro-grid system considering 

power load from the grid as well as power shortages from PV and FCLIB. The extreme 
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ideal output of the system under consideration is graded according to the total CoE and 

PNC. 

 

Figure 5.9 The Load demand and grid energy in KVA 

The output curves of simplified electric circuit models show that LIB and SC have 

essentially identical charge and discharge behaviors, as shown in Figure 4.2 to 4.15. 

Furthermore, the duration of functional life in terms of discharge-charge cycles is 

determined to be different for both LIB and SC based on discharge characteristics. 

Furthermore, with fewer cells and lower capacity, LIB discharge characteristics are shown, 

resulting in longer lifespan characteristics. HOMER-Pro was also utilized to do an 

economic and technical examination of LIB and SC, with ampere-hour (Ah) capacity of 

LIBs as the input for an electric model circuit simulation. As an outcome of HOMER-pro 

simulation, the GCSSPVS system using a LIB, only requires 6 batteries while, the FCLIB 

system require 3-LIBs and 3-SC. Table 5.2 summarizes the costs of various components 

utilized in the SSPV system. 

Table 5.2 Cost of components utilized in the SSPV system 

Component 
Capital 

($) 

O&M 

($) 

Substitution 

($) 

Salvage 

($) 

Fuel 

($) 
Total ($) 

PV array 

(8.4KW) 
816.53 0.0 0 0 9561.77 10378.3 

LIB 3435.63 0.0 1068.17 105.15 0 4398.65 

Converter 

with LIB 
866.2 22.64 158.25 16.97 0 1030.12 

Total system 

with LIB 
839.13 1226.42 -122.43 0 14990.17 16933.29 

Total system 

with LIB and 

SC 

1655.97 2873.33 -90.58 0 15726.34  
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 The capital, substitution, salvages expense, and operation and maintenance (O&M) 

are all represented in Table.1 are the cost elements. The capital cost is the entire upfront 

cost of the plant, whereas the substitution, maintenance, and operation costs are expenditure 

incurred over the facility's operational life. Table 5.2 shows that, in the usual application 

scenario evaluated, the optimized simulation result shows that FCLIB operation and 

maintenance (O & M), substitution, and salvage costs are substantially lower than LIB and 

SC combination. The substitution cost of the converter with LIB and SC is determined to 

be economical compared to the capital cost outcome for the stipulated 15-year lifespan 

service, according to HOMER's optimization result. Similarly, Table 5.3 gives the 

performance characteristics of both LIB and SC where the charge/discharge density of SC 

is higher compared to LIB. 

Table 5.3 The comparison of LIB and SC performance 

Device storage characteristics LIB SC 

Charging time 1 < t < 5h 1 - 30s 

Discharging time T > 0.3h 1 - 30s 

Energy Density (Wh/kg) 10 – 100 1 - 10 

Life time (number of cycles) 3000 106 

Power density < 1000 10,000 

Charge/discharge Efficiency 0.7 - 0.85 0.85 - 0.98 

 The PNC of the LIB and SC for 10 KW PV array in the GCSSPVS is represented 

in Table 5.4 with CoE estimation.  

Table 5.4 PNC of LIB for 10KW PV array 

Parameter LIB for 10 KW PV array 
FCLIB for 10 KW PV 

array 

Number of components 6 3LIB/3SC 

Converters (KW) 5 5 

Total PNC ($) 14990.8 15726.86 

CoE ($) 0.33 0.35 

Operating cost ($) 839.13 1656.39 

Renewable Fraction (%) 90 91 
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5.9.1 WECS performance 

 The WECS is the combination of turbine system and the generator and are 

interconnected with the gearbox.  

5.9.1.1 Turbine performance 

 The turbine system input is wind and the wind speeds are variable because of which, 

the turbine rotates at different speeds. The maximum input for the turbine is 25 m/s as 

specified in section 5.8 and the output from the wind turbine is as shown in Figure 5.10. 

 

Figure 5.10 Turbine output (input for DFIG) 

5.9.1.2 DFIG performance 

 The input for the DFIG is the output from the turbine system. So, the DFIG input is 

as shown in Figure 5.10. When the turbine rotates, it moves the rotor of the generator DFIG.  

5.9.1.2.1 Healthy DFIG performance 

 The rotor generates currents and the rotor currents from the modeling are as shown 

in Figure 5.11. 

 

Figure 5.11 DFIG three-phase rotor currents 
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 From Figure 5.11, it can be observed that, the sum of three-phase rotor currents is 

zero, which implies the DFIG rotor is working properly without any faults (healthy 

condition). Due to the flux generated by the rotor and stator windings, the flow of currents 

is possible in stator too. The stator currents in three-phases is as shown in Figure 5.12. 

 

Figure 5.12 DFIG three-phase stator currents 

 The stator currents at starting are in damping condition, which require time to get 

stable by achieving the equal flux as rotor. The active and reactive power generated is as 

shown in Figure 5.13, where the power factor of the DFIG takes place. 

 

Figure 5.13 Active and reactive power generated in DFIG 

 The torque is generated in the DFIG due to the proportional relation of speed and 

the torque waveform is as shown in Figure 5.14. From this, it can be observed that, the 

torque is initially high and later it becomes stable.  

 
Figure 5.14 Torque generated in DFIG 
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5.10 Conclusion and Recommendations 

In extension to the charge and discharge cycle function, the HOMER-Pro software 

was used to do a techno-economic study of LIB and SC with SSPVS, considering resource 

and actual commercial load demand profiles data provided by TSSPDCL. As a 

consequence, the system with a LIB had a CoE of 0.33 $/kWh, whereas the system with a 

LIB and SC had a CoE of 0.35 $/kWh. The PNC of the system with LIBs, on the other 

hand, is $14,990.8, while the PNC of the system with LIB and SC is $15,726.86.  

From the investigations, FCLIB with SC topologies can be recommended 

depending on the time required for fast charging considering battery management system 

with cooling technologies. However, if fast charging is considered/not considered, the cost 

of the system will be same as FCLIB from Table 5.3 and 5.4 as depicted with SSPVS. So 

FCLIB can be considered with economic and optimal storage solution even after 

connecting with the SSPVS selecting best FCLIB topology.  

The WECS with DFIG and the rotor current configuration is simulated using 

MATLAB/SIMULINK and the performance characteristics of the WECS are obtained. The 

stator and rotor currents are obtained with the consideration of WECS integrated with the 

micro-grid system. In the next chapter, the integration of SSPVS, EESS and WECS 

with/without the consideration of DFIG BRB fault as an offshore microgrid system is 

discussed with simulation and experimental setup. 
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CHAPTER 6  

OFFSHORE MICROGRID SYSTEM BY 

INTEGRATING WIND ENERGY CONVERSION 

SYSTEM (WECS) WITHOUT/WITH BRB FAULTS 

OF DFIG 

6.1 Introduction 

 The increasing demand for energy and the need to reduce carbon emissions has led 

to the development of RES such as PV and wind energy. Offshore microgrid systems have 

the potential to integrate these renewable sources and provide a reliable and sustainable 

energy supply to remote areas [61]. The microgrids can perform both in standalone and 

grid-connected modes [62]. As discussed in Chapter 5, the off-shore microgrid system is 

designed with 10 kW offshore PV integrated with 5 kW grid-connected system with a 

converter and a 167Ah FCLIB for EESS [197], [234]. The SSPVS with respective grid and 

storage components is as shown in Figure 5.1 in Chapter 5. The load having a 4 to 5 KVA 

rating is considered with the profile of load is in Chapter 5 as shown in Figure 5.2. The 

integration of SSPVS and WECS in offshore microgrids can provide a reliable and 

consistent energy supply to areas with limited access to the grid [61].  

The integration of renewable energy sources, such as wind and solar, with energy 

storage systems has become increasingly popular in recent years due to their potential to 

provide a reliable and consistent source of power [47]–[49], [54]. The intermittent nature 

of these renewable energy sources, particularly wind and solar, creates challenges for their 

effective utilization as a primary source of electricity. However, the integration of energy 

storage systems with these renewable energy sources presents an opportunity to address 

these challenges and improve the efficiency and reliability of renewable energy systems. 

Among the RER, WECS and PV systems have gained significant attention due to 

their widespread adoption and potential to generate electricity from natural resources. The 

integration of PV and energy storage systems with WECS has the potential to significantly 

improve the reliability and efficiency of renewable energy systems [62], [82], [250]. One 

of the primary benefits of this integration is the ability to store excess energy generated by 
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the WECS and PV systems during periods of high availability, which can then be used to 

meet demand during periods of low availability. This integration enables a more consistent 

and reliable power output and reduces the dependence on traditional energy sources, such 

as fossil fuels. 

Several studies have explored the benefits and challenges of integrating PV and 

energy storage systems with WECS. The economic feasibility of integrating PV and energy 

storage systems with a WECS, concludes that the integration significantly improved the 

system's economic performance [41], [62]. Moreover, the integration of PV and energy 

storage systems with WECS also offers several benefits such as reduced curtailment, 

enhanced energy management, and improved system reliability. The ability to manage the 

energy flow between the PV, WECS, and storage systems can optimize energy generation 

and utilization and minimize energy waste.  

 Offshore microgrid systems with PV and wind energy integration face various 

challenges. One of the primary challenges is the harsh environment, which can damage the 

components and affect system performance [78].The importance of reliability analysis for 

offshore WECS has increased with the expansion of offshore power via wind generation, 

as the systems operate in harsh conditions and exhibit complex behaviors that can have 

significant negative impacts [51], [52]. It is therefore crucial to thoroughly analyze the 

reliability of offshore wind turbines to ensure their safe and efficient operation. The WECS 

typically consists of wind turbines, generators, and a control system and exhibits more 

failures and are explained in [79] with fault tree analysis. Offshore, the wind blows at higher 

speeds and rotates the turbine blades which rotates the generator rotor via the gearbox. The 

Doubly-Fed Induction Generators (DFIG) at offshore WECS are mostly preferred 

generators due to higher wind speeds.  

The DFIG exhibit faults in the stator and rotor construction, like Broken Rotor Bar 

(BRB), Stator Inter Turn Faults (SITF), line faults etc., [78], [80]. A thermo-gram-based 

fault detection method with Deep Learning (DL) recognizes eleven conditions of Induction 

Machine (IM) which are classified as two Stator Turn to Turn Fault (STTF), one healthy 

and eight SITF where different location-severity combinations are also proposed by 

different researchers [63], [249], [251]–[254] with DFIG implementations. 
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 The DFIG exhibits almost 9 to 10 % of BRB fault while used as industrial machines 

and in the offshore environment, it is double the fault on land. The diagnosis of the incipient 

BRB fault in the WECS is the foremost objective to increase the reliability of the offshore 

micro-grid system [81], [82]. Different fault detection techniques in the experimental 

condition and with signature analysis are performed via Deep learning techniques using 

Convolution Neural Networks with IR images, voltage, and frequency variation detection 

[82]–[87]. 

 The importance of reliability analysis for offshore microgrid with the detection of 

WECS failures is more important. In this chapter, the design of offshore microgrid with the 

integration of SSPVS, EESS with WECS are considered with/without BRB fault 

consideration (healthy, unhealthy) via mathematical modeling, and experimental setup. The 

different percentages of single BRB faults are considered by intentionally imposing in 

DFIG, and collecting of stator currents for three phases using a three-phase current sensor. 

The current sensor collected data is utilized and also converted into Power Spectral Density 

(PSD). Features are selected and five classification algorithms like Decision Trees (DT), 

Support Vector Machines (SVM), K-Nearest Neighbors (KNN), Logistic Regression 

(LOR), and Random Forests (RF) are developed for WECS fault forecasting. 

6.2 Offshore microgrid system design 

 Offshore microgrid systems typically consist of multiple RER, storage systems, and 

a control system. The SSPVS and wind energy systems provide a constant and reliable 

source of energy, while the storage systems ensure that the energy supply is available even 

during the period of low generation of supply. The control system at Point of Common 

Coupling (PCC) manages the energy flow between components and ensures that the energy 

supply is stable.  

6.2.1 Submerged Solar PV System (SSPVS) 

 The PV system typically consists of PV panels, inverters, and a control system. The 

PV panels generate electricity when exposed to sunlight, which is converted to usable 

energy by the inverters. The Power output of the PV is calculated as per equation 5.1 as 

specified in Chapter 5. The SSPV at 0.5 cm gives good efficiency which can also be 

considered as FPV system and the design is as specified in Chapter 3. The flow of air on 
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top of the PV system is considered as 25 m/s as wind speed on offshore as specified in 

section 3.4 of the Chapter 3. In experimental setup, the PV cell considered is of 20W panel 

as specified in Table 3.1 in chapter 3 at section 3.2. 

6.2.2 Energy Efficient Storage System (EESS) 

 Storage systems are an essential component of offshore microgrid systems. These 

systems store excess energy generated by renewable energy sources during periods of high 

generation and deliver the stored energy during less generation. The common storage 

system used in offshore microgrid systems here is the combination of LIB and SC 

considered as FCLIB system which is named as EESS. The maximum power 

charge/discharge of a single FCLIB is specified in Chapter 5 in equation 5.4. 

6.2.3 Wind Energy Conversion System (WECS) 

 Depending on the wind speed, the turbine rotated and converts the wind speed into 

mechanical rotation which drives the rotor of the generator as discussed in chapter 5 in 

section 5.8. The WECS is considered with a DFIG having a capability of 3.7 kW at a rated 

voltage of 400 V and the parameters of DFIG considered in practical are listed in Table 6.1.  

Table 6.1 Parameters of DFIG 

Parameter Value 

Rated Voltage 400V 

Rated Current 7.3A 

Rated power 5HP (3.7KW) 

Rated Torque 22.7 N-m 

Rated speed 1500 RPM 

Power factor 0.82 

Phase resistance 4.6 Ω 

Efficiency 86.3 % 

6.2.3.1 Healthy DFIG 

The DFIG rotor and stator exhibits no failure and the turbine of the WECS are 

working without any failure. The performance parameters of the DFIG are measured and 

shown in results section. When the DFIG is healthy, the rotor speed matches with the stator 
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rated speed and the torque generated is almost stable. The experimental DFIG machine with 

healthy stator and rotor called as 0 % of fault and is as shown in Figure 6.1. 

 

Figure 6.1 Three-phase healthy DFIG 

6.2.3.2 Unhealthy DFIG 

 The unhealthy DFIG is considered with single BRB fault but the BRB fault is 

considered at a level of 25 %, 50 % and 75 %. The rotor current variation when the BRB 

fault is considered in modeling. Faults of induction motors introduce additional frequency 

components in the stator current signal, therefore, stator currents as input data are widely 

used in condition monitoring, and the frequency spectrum of the stator current is analyzed 

for condition monitoring purpose. The classical approach used in an industrial environment 

for the detection of broken rotor bars in induction motors is based on the analysis of the 

stator current in steady state. 

Among various spectral analysis methods, Current Signature Analysis (CSA) is one 

of the most popular techniques for online monitoring induction generator. For a healthy 

DFIG, there is symmetry of winding, and only forward rotating field exist, thus, the rotor 

frequency (f2) is shown in Equation (6.1) with the multiplication of rotor slip (S) and supply 

frequency (f1). The deviation in supply frequency and the rotor frequency is known as a 

lower side band rotor frequency (fb_lower) and is given as expressed in Equation (6.2). An 

upper sideband current constituent is prompted by the stator winding, which is due to rotor 

oscillation is known as upper side band rotor frequency (fb_upper) as shown in Equation (6.3). 

From Equations (6.1) to (6.3), the broken rotor bar fault generates a resultant current 

constituent of frequencies in terms of rotor slip and supply frequency and is as expressed 

in Equation (6.4). 

𝑓2 = 𝑆𝑓1          6.1 
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𝑓𝑏_𝑙𝑜𝑙𝑤𝑒𝑟 = 𝑓1(1 − 2𝑆)        6.2 

𝑓𝑏_𝑢𝑝𝑝𝑒𝑟 = 𝑓1(1 + 2𝑆)        6.3 

𝑓𝑏 = 𝑓1(1 ± 2𝑆)         6.4 

Where, fb represents broken bars frequency, f1 is the supply frequency, and S is the rotor 

slip. 

In experimental set up, the rotor of the DFIG is considered as shown in Figure 6.2 

and the design of rotor is in such a way that single rotor bar can be removed or attached 

with different percentage (25 %, 50 %, 75 %) level of broken rotor bar for performance 

analysis. The different levels of braking are considered as shown in Figure 6.3.  

 

Figure 6.2 Rotor of DFIG with single rotor bar (removable and attached via 

welding) 

 

Figure 6.3 BRB with 0%, 25%, 50% and 75% of braking levels 

 At each iteration, the loading is considered at different no-load, half-load, and one 

fourth load conditions. The rotor is removed and welded with the BRB and at different load 

condition, the stator currents are measured with current sensor with transducer as shown in 

Figure 6.4. 
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Figure 6.4 Current sensor for three-phase stator current measurement 

6.2.4 Main utility grid system 

 The main utility grid system considered is of fossil fuels as energy sources and the 

output is of 5KW as specified in the Chapter 5 and the modeling in MATLAB/SIMULINK 

is as shown in Figure 6.5. The offshore microgrid design can be connected or disconnected 

from the main utility grid depending the load demand. When microgrid is connected with 

the utility grid, then the system is called as on grid system and if the microgrid is 

disconnected from the main utility grid, then the system is called as off grid system. 

 

Figure 6.5 Main utility grid system model in MATLAB/SIMULINK (5KW) 
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6.2.5 Load demand 

 The load profile of the system is considered as 4-5 KVA and is variable in a day as 

shown in Figure 5.2 and is connected at PCC. When the load demand is less than the off-

shore microgrid source output generated then the EESS stores the energy with fast charging 

of battery and slow discharging of SC. If the load demand is more than the generated output, 

then the stored energy is delivered to the load by EESS in order to provide continuous 

power supply. Different control systems are designed at turbine and rotor side in order to 

protect the grid from BRB faults. 

 In no-load condition, the load is zero so the current drawing is also zero. The one 

fourth load is considered and the current drawing will become 1.825 A and at the half load 

condition, the load current is 3.65A. At the above load conditions, the DFIG is considered 

with /without BRB fault to make healthy and unhealthy generator. 

6.2.6 Offshore microgrid system in modeling and experimental setup 

 The full system is as shown in Figure 6.6 which is the expansion of Figure 5.4 with 

the combination of all RES, storage system, micro grid and load with all control systems to 

create offshore microgrid system. 

 

Figure 6.6 Full circuit model of the offshore microgrid system (Figure 5.4 expansion 

circuit) 

 The total offshore microgrid system work bench and schematic is considered as 

shown in Figure 6.12 a) and b) with the WECS with/without fault, SSPVS, and EESS. 
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a) 

 

b) 

Figure 6.7 a) Offshore microgrid experimental setup with DFIG stator three-phase 

current measurement via NI my DAQ b) Block diagram representation of the 

Offshore microgrid design 

 The NI my DAQ in Figure 6.7 a) with LabVIEW software is considered to collect 

the stator current data from the current sensor as shown in Figure 6.4 at both healthy and 

unhealthy condition of DFIG. The DFIG measured stator current variations at different 

levels of BRB fault and loading conditions are discussed in result section. The block 

diagram representation is as shown in Figure 6.7 b). 
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6.3 ML techniques implementation 

6.3.1 Data Acquisition 

 The data has been obtained from the BRB fault with stator current measurement. In 

this study, the focus is on different Load condition of stator with different levels of BRB 

faults. The four cases namely: No rotor fault, 25 % rotor fault, 50 % rotor fault and 75 % 

rotor fault. In each case, the load is considered at no-load, one fourth load and half load 

conditions with 0 A, 1.825 A, and 3.65 A of current drawing respectively. All the data files 

have been taken from LabVIEW in .LVM file format and in each case 500 files are obtained 

with around 10000 data points each. 

 The file contains information about stator currents of three phases as I1, I2, I3 and 

the respective Power Spectral Density (PSD) are I1 (PSD), I2 (PSD) and I3 (PSD). Using 

python libraries, these files have been extracted into jupyter notebook. The data has been 

divided into train, validation, and test data. There is a total of four categories for the 

supervised classification and hence are labeled as classes 0, 1, 2 and 3 for no rotor fault, 25 

% rotor fault, 50 % rotor fault and 75 % rotor fault respectively with all loading conditions. 

In each case, 50 files have been kept aside for testing purposes. The remaining data was 

divided into 80-20 split for training and validation. 

6.3.2 Feature Selection (Extraction) 

 The data obtained is huge, so the models are trained using the statistical parameters 

from the data. The statistical features namely Mean, Median, Mode, Standard Deviation 

(Std), Variance (Var), Kurtosis, Skew, Max, Min, Range and Mean Absolute Deviation 

(Mad) are considered for training the ML algorithms. After interpretation of all the files, 

the statistical features are measured and all four categories are combined into a data frame. 

The data frame contains the statistical features for I1, I2 and I3 thereby giving 34 columns 

and 2304 rows, and these features are the best features considered for training, testing and 

validation. The selected features and their definition are provided in Table 6.2 

6.3.2.1 Decision Trees (DT) 

 DT is an important machine learning algorithm used for supervised learning and 

helps in classification. It follows a tree like structure and is a practical method for 

classification. A decision tree always starts with a root node, the node which represents the 

entire data, and this further gets divided into two or more sets. Splitting or dividing of data 

is a process of dividing any node into two or more sub nodes. A decision node is one which 

divides a sub node into further sub nodes. After splitting, the leaf nodes or the end nodes 
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are those nodes which do not have any further splitting. Initially the training data is fed into 

the decision tree algorithm.  

The target variables are also included in the training since it is supervised learning. 

Then construct some decision rules from the training samples. For example, from a data 

set, if the value is more than 2, then the data is sent to the left half, else towards the right 

half. There are many ways to choose a decision. What decision trees needs to do is to find 

the best rule to split the node starting from the root node. For this, the algorithm starts from 

the root node and at each node, the algorithm calculates the information of gain. The split 

with the largest information gain is used to make the split and this process is repeated 

continuously. The process is stopped when there are no decision rules left. Overfitting is a 

problem which occurs in decision trees. One way to overcome this is to set a max depth for 

the decision tree but this comes at a cost of increasing the bias. 

 

Table 6.2 Statistical features and definition 

Statistical 

Feature 
Definition 

Mean Sum of all elements divided by the total number of elements 

Median Middle most element in total elements 

Mode The element which occurs the maximum number of times 

Std Gives a measure of how spread the elements are from the mean 

Var 
Gives a measure of variability in distribution about the mean. Similar to standard 

deviation but difference is in the units 

Kurtosis 

Defines the peak of a curve. For example, if we have two curves with same standard 

deviation and mean, then we can differentiate between the curves using the kurtosis. 

More peaked the curve is, more is the kurtosis. 

Skew Gives measure of how the distribution is distributed about the central value 

Max Gives the maximum value in the list of elements 

Min Gives the minimum value in the list of elements 

Range Gives the difference between the maximum and minimum value 

Mean 

Absolute 

Deviation 

Sometimes there exists 2 different distributions with same mean. But some 

distributions may be more spread out than other distributions. To find this, there is a 

need to find how deviated the points are from the mean and hence mean absolute 

deviation can be calculated. 

  

 An important concept in decision trees is entropy. Entropy can be defined as the 

amount of non-uniformity present in the node of a DT. If there are two classes and both are 
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equal likely for example 4 classes and 2 are in category A and 2 in category B, then its 

entropy is high. It is given by the equation (6.5): 

Entropy = -∑ 𝑝𝑖 ∗ 𝑙𝑜𝑔 (𝑝𝑖)
𝑛
𝑖=1         6.5 

where, n is the total number, Pi is the probability of randomly selecting a particular example 

from a class i. 

 Now, after finding this entropy, a decision tree needs to make splits such that a term 

called information gain can be calculated. The information gain is defined as the difference 

between the entropy of the parent of a particular node and the entropy of all its children 

nodes. The higher the information gain, the better that variable can be used for splitting. 

The hyper parameters in the DT are:  

➢ Max_Depth: Used to specify the maximum depth of the decision tree. 

➢ Min_samples_leaf: Gives the minimum samples which are to be present in a 

leaf. 

➢ Criterion: This is used to define how good the split is. 

 

Figure 6.8 DT for the feature selection 

 The DT algorithm is considered with the statistical features selected in Table 6.2 

with the stator currents variation data from the experimental setup and the 80 to 20% 

variation is considered for training and testing respectively. The detailed results are shown 

in section 6.4. The DT for the feature selection is as shown in Figure 6.8. 
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6.3.2.2 Random Forests (RF) 

 RF is a type of bagging technique. A bagging technique is a technique where a main 

dataset is divided into multiple samples of data and fed into multiple models which are 

called base models. The final prediction is taken as the majority of all the models. In RF, 

decision trees are used at the base models i.e. a RF has multiple decision trees and data is 

sampled as row sampling plus feature sampling. Now the decision trees train and give 

outputs accordingly. The majority of the outputs given by the decision trees is taken as the 

final prediction. This type of algorithm is called bootstrap aggregation. 

 In DT, the main problem is when the tree has a very big depth then overfitting may 

happen i.e. it has low bias and high variance. Overfitting is when the training accuracy is 

high and testing accuracy is low. To overcome this problem of overfitting, RF is used as 

there are multiple decision trees which split into depth, but the main advantage is for each 

sample of data, that corresponding DT becomes the best classifier. This helps us get a low 

variance and low bias for RF. The hyperparameter considered in RF is N_estimators: 

Number of DTs in the RF. 

6.3.2.3 Logistic Regression (LoR) 

 LR is mainly preferred for classifications. It is used when the output variable is 

categorical. Here output variable refers to dependent or target variable. Example include 

predicting whether an email is spam or not or predicting whether a person is happy or sad. 

In LR, the probability of occurrence of a particular output variable is calculated. To predict 

the output, the independent variables are used to determine the output. There are three types 

of LR techniques i.e., binary, multinomial and ordinal.  

➢ Binary logistic regression: The output can belong to only one of two categories. 

➢ Multinomial logistic regression: The output can belong to one of three or more 

categories without any ordering. 

➢ Ordinal logistic regression: The output can belong to one of three or more 

categories with ordering. 

 The question is, why not just use LR i.e. by drawing a line for all the data points 

and set a threshold such as values above 0.5 are category 1 and values below 0.5 are 

category 0. The problem is the values in the graph can occur between plus infinity and 

minus infinity. The main goal of LR is to determine the probability of occurrence and not 

the value of the variable. Since probability is estimated, the range of values varies from 0 

to 1. To achieve this range, logistic function “ f ” is used. The LR is entirely based on the 
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logistic function. If the value is plus infinity, then our logistic function gives 1 and if the 

value is minus infinity, the logistic function gives 0. The equation of logistic function “ f ” 

is given by equation (6.7) 

𝑓(𝑧) =  1 (1 + 𝑒−𝑧)⁄          6.6 

Where, 𝑧 =  𝑎 + 𝑏1𝑥1 + 𝑏2𝑥2 +⋯……+ 𝑏𝑘𝑥𝑘 , a is the bias, b is model parameters for k 

terms, x1, x2…. are data points.  

 The statistical software utilized will determine the coefficients b1, b2, … bk and a. 

When X1, X2….  Becomes 0, then z yields the value of bias a. The hyperparameters utilized 

are C: defined as inverse of regularization strength, Penalty: Used to introduce L1 or L2 

penalty into the model for training. The LoR algorithm is considered with the statistical 

features selected in Table 6.2 with the stator currents variation data from the experimental 

setup and the 80 to 20% variation is considered for training and testing respectively. The 

detailed results are shown in section 6.4. 

6.3.2.4 Support Vector Machines (SVM) 

 SVM is a powerful tool used for classification. SVM classifies a picture according 

to the pattern like whether a picture is a cat or a dog. SVM is also one of the best algorithms 

used for classification. In SVM, our target which is required to classify is represented as 

point in the “ n ” dimensional coordinate system with the features (input variables) as 

reference. The algorithm then does the classification by drawing a hyperplane i.e., a line in 

2- dimensional or a plane in 3-dimensional space in such a way that all points of one 

category are on one side of the hyperplane and the other points are on the other side. There 

can be multiple such hyperplanes which exist. SVM tries to find the best hyperplane which 

divides the data. By best sense it tries to maximize the distance between the two nearest 

points of either category. This distance between the two points is called the margin and the 

points which fall exactly on the margin are called support vectors. 

 To determine this hyperplane, first SVM requires the training set with labels and 

hence it is called supervised learning algorithm. In the background, SVM tries to solve the 

convex optimization problem represented in equation (6.7) 

‖𝑤‖−2𝑤.𝑏
𝑚𝑎𝑥           6.7 

Subject to the conditions wtx + b ≥ 1 for all x ∈ C1 and wtx + b ≤ −1 for all x ∈ C2. 

Where, wt is the weight, b is the bias, x are the data points, C1 and C2 are the classes of 

classification. 
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 In many cases the data points cannot be separated by hyperplanes like the data 

points form a concentric circle. In such cases, all the points are transferred to a higher 

dimensional space and then a hyperplane is found. This trick is called kernel trick and is 

widely used in SVM. For SVM, the hyperparameters tuned were C, gamma and Kernel.  

➢ C: It is the penalty parameter and adds penalty to each misclassified point. 

➢ Gamma: It defines the amount of curvature we need in our prediction. 

➢ Kernel: Kernels are used to introduce non-linearity and transforms it in the 

required form. 

A total of 125 fits performed on the data and obtained the best hyperparameters. Similar to 

the DT algorithm, in SVR algorithm also the statistical features selected in Table 6.2 are 

considered with the stator currents variation data from the experimental setup and the 80 to 

20 % variation is considered for training and testing respectively. The detailed results are 

shown in section 6.4. 

6.3.2.5 K Nearest Neighbors (KNN) 

 KNN is a very simple algorithm used for supervised classification and also for 

regression. In this algorithm first, the training data is plotted in the “n” dimensional space. 

Now during prediction of a point by taking the features as inputs, the point is plotted in the 

“n” dimensional space. Now the KNN algorithm tries to find the ‘k’ nearest neighbors of 

the point to estimate the class to which it belongs to. For finding the nearest neighbors, 

distance metrics such as Minkowski distance, Euclidean distance or Manhattan distance 

were used. 

✓ Minkowski distance: (∑ |Xi − Yi|
p)n

i=1
1/p

 

✓ Where X and Y are data points, p is the order (an integer)  

✓ Euclidean distance: In the above equation, if p=2, then it is Euclidean distance. 

✓ Manhattan distance: In the above equation, if p=1, then it is Manhattan distance. 

In general, for choosing K value, the following conventions may be followed. 

➢ K must not be an even value for a two-class classification. 

➢ K must not be a multiple of the number of classes. 

 For KNN, the main drawback is the time complexity. It takes a lot of time in 

searching for the nearest neighbors for each sample. In other words, it becomes 

significantly slow as the size of the data keeps increasing. To find the optimal K value, an 

error or an accuracy plot is used and then choose the K value which gives the lowest error 

rate or highest accuracy rate. The hyperparameters of the KNN are: 
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➢ Neighbors: Specify the number of nearest neighbors. 

➢ Weights: Functions which help in predictions. 

➢ Metric: Used to find the distance between the points. 

6.3.3 Validation 

 For all the above 5 ML algorithms, the accuracy is measured. In each of the models, 

80% of the data is considered as the training data and is fed for training. After training the 

model, 20% of data is used for testing and the extra 50 files are used for predictions to 

provide validation set. The prediction is done without tuning the data for hyperparameters. 

Then later, the data is tuned by using GridsearchCV, with the best hyperparameters 

calculations. The accuracy is observed with and without tuning for all the ML algorithms 

specified above and are listed in Table 6.3. 

Table 6.3 Accuracy of the ML algorithms with/without tuning 

ML algorithm 
Accuracy without tuning for 

hyperparameters 

Accuracy with tuning for the 

best hyperparameters 

DT 83% 97% 

RF 99% 100% 

LR 42% 97% 

SVM 42% 99% 

KNN 98% 99% 

 From the Table 6.3, it can be observed that all ML algorithms performed 

exceptionally well after hyperparameters tuning and there is no overfitting. 

6.4 Results and Discussion 

 The result section is divided as offshore microgrid system output with the addition 

of WECS system with healthy DFIG system in modeling and DFIG BRB fault analysis via 

modeling and experimental setup at different percentage of BRB fault. 

6.4.1 Offshore microgrid system 

The offshore micro-grid system with SSPVS, EESS, converter and micro-grid is 

represented as Micro-Grid System in Figure 5.4 and Figure 6.1. The voltage and current 

output of the offshore microgrid system is measured in per unit value and is as shown in 

Figure 6.9. 
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Figure 6.9 Per unit voltage and current output 

 In the entire offshore microgrid at PCC, the required protection with control systems 

are provided which will eliminate the sudden load variations, wind variations causing 

damage to DFIG, intermittent nature of solar. Even when the DFIG faults are considered, 

the grid is protected and the output voltage and current are not varied much as shown in 

Figure 6.9 which ensures reliability of the offshore microgrid design. 

6.4.1.1.1 Unhealthy DFIG performance 

 The unhealthy DFIG is considered with BRB fault and different loading conditions. 

The measurement of stator currents in each condition are monitored experimentally, at no-

load condition with stator current signature. The Figure 6.10 represents the stator currents 

via experimental setup at different load and BRB fault conditions. 

 
a) 

 
b) 
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c) 

 
d) 

 
e) 

 
f) 

 
g) 

 
h) 
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i) 

 
j) 

 

k) 

 

l) 

Figure 6.10 Normalized stator currents for 0 %, 25 %, 50 % and 75 % BRB faults at 

no load, 1/4th load and half load respectively. a) 0% BRB at no load b) 0% BRB at 

1/4th load c) 0% BRB at half load d) 25% BRB at no load e) 25% BRB at 1/4th load 

f) 25% BRB at half load g) 50% BRB at no load h) 50% BRB at 1/4th load i) 50% 

BRB at half load j) 75% BRB at no load b) 75% BRB at 1/4th load c) 75% BRB at 

half load 

 From Figure 6.10, it is observed that the amplitude of the stator current varies with 

the percentage load and the deviation of power factor is observed with the BRB fault which 
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is because of the frequency variation in the system. Further to analyze more practically, the 

stator currents are converted into PSD values. 

6.4.2 PSD waveforms at no load 

The obtained stator currents are converted into the PSD values and the waveforms 

for the stator current with the normalized frequency are represented from Figure 6.11. 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

Figure 6.11 a) No BRB fault and no load condition PSD conversion b) No BRB fault 

and half load condition PSD conversion c) 25% BRB fault and no load condition 

PSD conversion d) 50% BRB fault and no load condition PSD conversion e) 75% 

BRB fault and no load condition PSD conversion 

 From Figure 6.11, it can be observed that, the stator currents magnitude becomes 

almost equal making the DFIG unstable. As the single BRB fault is considered in 
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experimental and simulation, the impact of the DFIG on offshore microgrid is less but it 

creates sudden drop of voltage and currents with frequency mismatch. 

6.4.3 ML techniques validation 

 Now after performing the classification and obtaining the metrics on the training 

and testing sets respectively, the test data of 50 files in each condition are considered and 

validated the predictions on the trained models with hyperparameter tuning to see which 

ML algorithm performed best. The Table 6.4 shows the accuracy of the all ML techniques 

after hyperparameter tuning for validation. 

Table 6.4 Accuracy of ML techniques during validation 

ML algorithm Accuracy after tuning 

DT 80% 

RF 85% 

LR 92% 

SVM 94% 

KNN 96% 

 From the above results, it can be clearly seen that KNN has given the best accuracy 

of 96% and DT gave the least accuracy of 80% on the validation data. 

6.5 Conclusion 

 In conclusion, the integration of PV and energy storage systems with WECS 

presents significant potential for improving the reliability and efficiency of renewable 

energy systems. Further research and development in this area helped to address the 

challenges associated with the integration and advance the adoption of renewable energy 

sources. An offshore microgrid system is designed to reduce the carbon emissions with the 

use of RES and to provide reliable and sustainable energy to the loads at offshore/onshore. 

The design of offshore microgrid with the integration of SSPVS, EESS with WECS are 

considered without fault consideration via mathematical modeling. The SSPVS and EESS 

outputs are analyzed with techno-economic analysis in Chapter 5. In this chapter, it is 

observed that, the WECS and the offshore microgrid are giving appropriate result, where 

the grid current and voltage outputs are reaching the per unit configuration. A turbine 

system coupled with DFIG is considered as the WECS in this case. 
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 The turbine is considered with no-fault condition with input speeds of 25m/s. 

Similarly, DFIG is considered with/without single BRB fault. The different percentages of 

single BRB faults are considered by intentionally imposing in DFIG, and collecting of 

normalized stator currents for three phases using a three-phase current sensor. The current 

sensor collected data is utilized and also converted into Power Spectral Density (PSD) via 

NI my DAQ with LabVIEW software. Five classification algorithms like SVM, LR, DT, 

KNN, and RF are developed for DFIG fault forecasting.  

 The accuracy is measured for these algorithms by finding statistical features via ML 

techniques. For the best forecasting, GridsearchCV is utilized to obtain best fit 

hyperparameters for each individual algorithm. Without tuning for hyperparameters, during 

testing all ML algorithms gave different efficiencies and with tuning they gave almost 

above 95% efficiency. With best hyperparameters, the KNN is providing better validation 

accuracy of 96%and DT gave the least accuracy of 80%. With the implementation of KNN 

in  the WECS, the condition monitoring of the DFIG can be done so that the prediction of 

the machine is exhibited with timely response of the fault condition monitoring.        
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CHAPTER 7  

CONCLUSION 

7.1 Conclusion of The Research 

 The Modeling and Simulation of Submerged Solar PV (SSPV) with an Efficient 

Energy Storage System (EESS) Integrated with wind fed Offshore Micro Grid (OMG) is 

implemented and explained in above chapters. From an extensive literature survey done, it 

has been observed that by decreasing the temperature on the surface of PV cells, efficiency 

of the cells can be improved tremendously. The temperature can be decreased with the use 

of two cooling techniques: forced cooling and natural cooling. Forced cooling systems has 

additional electrical equipment which consumes power more than the generated power and 

natural cooling technique has different construction for installation of PV panels. It is also 

observed that while comparing the literature based on forced and natural cooling 

techniques, the natural cooling techniques were mostly preferred with the PV systems. This 

is mainly due to the effective operation of PV cells working with natural cooling techniques 

as well as the cost factor when taken into account. 

 The natural cooling system involves FPV systems. In FPV systems, the SSPV 

system type is mostly considered. The factors affecting the PV cell efficiency are majorly 

eliminated with the SSPV systems. Even water has two types of optical properties: inherent 

and apparent optical properties, which shows the presence of irradiation at different water 

depths. The spectrum has different wavelengths and the distribution of wavelengths inside 

water also varies with the presence of particulate matter and type of water (normal, ocean, 

lake, organic etc.,). At different depths, the optical properties of solar cells vary with the 

environmental conditions but are suitable for SSPV systems to operate and produce 

electricity. 

 SSPV system saves valuable land for tourism, mining, agricultural, and other land-

impulse actions and turns non-profit generating and unexploited surface of water into 

profit-oriented PV power plants. The Hydro-optical characteristics of solar cells proves the 

irradiation presence in water and the physical properties of water makes decrease in 

temperature by increasing the efficiency of submerged PV cells. On the whole, mentioned 

above advantages will allow submerged PV system, suitable for energy generation in the 
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present scenario and is discussed in Chapter 2 and the evolution of PV till date with 

different cooling techniques and efficiency improvement are also discussed. 

In order to model the SSPV system, the PV cell has to be designed first and then 

the submerged conditions can be evaluated and is discussed in Chapter 3. The PV cell/panel 

is designed mathematically and obtained the characteristics at different irradiations and 

temperatures, where the PV cell/panel is having higher Voc and lesser Isc creating higher 

Pmax with the decrease in temperature (0, 25, 51 and -45 0C) and irradiation (1000, 600, 200 

W/m2). The mono-crystalline Si PV cell/panel is modeled as shown in Figure 3.12 and 3.16 

in an experimentally validated Multiphysics environment, and the I-V and P-V 

performance characteristics are plotted as shown in Figure 3.28 (a) and (b). The efficiency 

of the simulated PV cell is 19.69 % which is almost equal to the efficiency of the 

commercially available mono-crystalline Si (19.69 %) experimental and data sheet data as 

tabulated in Table 4. The PV cell is also modeled using Ge, GaAs, and InP materials, as 

discussed in section 3.2.2, at 250C at both cell/panel level and at the cell level, the GaAs 

have 20.53% efficiency while the mono-crystalline Si has 19.69% efficiency. The cell level 

model is extended to the panel level with material and temperature variations where GaAs 

have achieved 23.27 % (3 % increase) efficiency while Si has 19.69 % efficiency, the same 

as a cell. The materials efficiency at STC is as follows: GaAs > mono-crystalline Si > InP 

> Geand the GaAs exhibit 28.57 % at -450C. The efficiency of the PV cell/panel is 

estimated based on the thermal losses, bandgap, and thickness of the model. It is observed 

that the Joule heat distribution is more in Ge, and the order of Joule heat distribution is Ge 

(234KW/m3)> Si (61KW/m3) > GaAs (5.05KW/m3)> InP (3.95KW/m3) representing less 

joule heat in InP throughout due to the thickness of PV. 

The prediction is done to predict the values of current and power to obtain I-V and 

P-V characteristics of PV cells with all the other parameters and also to obtain efficiency. 

The LR, PR, SVR, and KRR algorithms are chosen for the prediction due to data points 

availability from low to medium and the popularity of algorithms for the characteristics. 

LR provides less accuracy because of the non-linearity in the characteristics, which is 

almost less than 80% of the R2-score. Similarly, PR and KRR resulted in> 85% R2-score. 

The degree 4 is the best hyper parameter of PR, the best fit hyper parameters for I-V 

characteristics are C = 1000, ϵ = 0.01 and γ (for RBF kernel) =1and for P-V characteristics 

C = 1000, ϵ = 0.10 and γ (for RBF kernel) =1 in SVR prediction. Similarly, for KRR, the 
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best hyper parameters for I-V characteristics are alpha (α) =0.001 and gamma (γ) =1.0, 

using RBF kernel, and similarly for P-V, alpha (α) = 0.1 and gamma (γ) =100.0, using a 

polynomial kernel.   

The GaAs efficiency is 20.52 % at 250C, 21.23 % at 150C, and 24.97 % at -180C, 

and the mono-crystalline Si has 19.32 % efficiency at 250C, 20.11 % at 150C, and 20.92 % 

at -180C both using PR and KRR ML algorithms. From this, it can be observed that GaAs 

provides higher efficiency at all levels of temperatures through modeling and prediction. 

In materials point of view, GaAs is capable of providing higher efficiency (28.57% at -

450C) under different environmental conditions. With temperature variations, GaAs and Si 

materials are capable of higher efficiency with the decrease in temperature from +510Cto -

450C via modeling. With ML techniques, the PR is capable of predicting the data with less 

data provision by eliminating over/under fit of data, but the degree of polynomial is not 

fixed, and KRR is capable of predicting (92.23%) the data at different intervals of 

temperatures for different materials with higher data input for training and testing. 

 Implementing SSPV with Si and GaAs materials is done both mathematical and 

Multiphysics modeling and the performance characteristics are obtained as shown in 

section 3.5.6. The KRR and SVR ML algorithms are implemented for SSPV till 0.5 cm and 

validated at 0.3 cm of water depth which gave better efficiency. The GaAs is giving better 

efficiency compared to Si at different depths of water and KRR is giving more efficiency 

at both current and power prediction when compared to SVR. 

 The energy generated from the source has to be stored efficiently in order to reduce 

the losses and an EESS is developed in Chapter 4. firstly, a simplified mathematical 

equivalent model was used in this work to examine and evaluate the effect and severity of 

charge/discharge rate of lithium-ion battery (LIB) and Super Capacitor (SC). The SoC, 

current, terminal voltage, and lifetime properties of LIBs were determined with the 

identical input parameters. Furthermore, it has been shown that the response of discharge 

characteristics for LIBs results in an extended lifespan for useable capacity extraction. As 

a result, it might be observed as an indicator that LIBs with higher energy capacity would 

be used in renewable generation-based stationary applications. 

 Accordingly, the system with FCLIB having SC, results in equal cost with better 

performance with fast charging capability of LIB. When using architecture of two SCs with 
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a greater energy level and charging one battery, the battery fast charging to 100 percent 

SoC takes 203 seconds (3.38 minutes) but reaches very high voltages and currents. When 

the internal DC resistance of the SC is 0.5 ohm, the SC exhibits aberrant behavior when 

operating from 100% to more than 100% SoC. Furthermore, the battery exceeds its rated 

voltage, resulting in battery damage. When the internal DC resistance of the SC is reduced 

(89e-3) and at SC high energy levels, the battery charges fast, 13.67minutes with one 

battery and one super capacitor (1B1S) topology and 80% is achieved at 6.7 minutes. The 

initial current and voltages are higher, causing damage to the LIB and SC as temperatures 

rise.  

In extension to the charge and discharge cycle function, the HOMER-Pro software 

was used in Chapter 5, to do a techno-economic study of LIB and SC with GCSSPVS, 

considering resource and actual commercial load demand profiles data provided by 

TSSPDCL. As a consequence, the system with a LIB had a CoE of 0.33 $/kWh, whereas 

the system with a LIB and SC had a CoE of 0.35 $/kWh. The PNC of the system with LIBs, 

on the other hand, is $14,990.8, while the PNC of the system with LIB and SC is 

$15,726.86.  

From the investigations, FCLIB with SC topologies can be recommended 

depending on the time required for fast charging considering battery management system 

with cooling technologies. However, if fast charging is considered/not considered, the cost 

of the system will be same as FCLIB from Table 5.3 & 5.4 as depicted with GCSSPVS. So 

FCLIB can be considered with economic and optimal storage solution even after 

connecting with the GCSSPVS selecting best FCLIB topology.  

An offshore microgrid system is designed to reduce the carbon emissions with the 

use of RES and to provide reliable and sustainable energy to the loads at offshore/onshore. 

The design of offshore microgrid with the integration of GCSSPVS, EESS with WECS are 

considered without fault consideration via mathematical modeling. The GCSSPVS and 

EESS outputs are analyzed with techno-economic analysis in Chapter 5. In this chapter, it 

is observed that, the WECS and the offshore microgrid are giving appropriate result, where 

the grid current and voltage outputs are reaching the per unit configuration. The WECS is 

considered as mix of turbine system and DFIG. The turbine is considered with no-fault 

condition with input speeds of 25m/s. Similarly, DFIG is considered with/without single 

BRB fault. The different percentages of single BRB faults are considered by intentionally 
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imposing in DFIG, and collecting of normalized stator currents for three phases using a 

three-phase current sensor. The current sensor collected data is utilized and also converted 

into Power Spectral Density (PSD) via NI my DAQ with LabVIEW software. Five 

classification algorithms like SVM, LR, DT, KNN, and RF are developed for DFIG fault 

forecasting. The accuracy is measured for these algorithms by finding statistical features 

via ML techniques. For the best forecasting, GridsearchCV is utilized to obtain best fit 

hyperparameters for each individual algorithm. Without tuning for hyperparameters, during 

testing all ML algorithms gave different efficiencies and with tuning they gave almost 

above 95% efficiency. With best hyperparameters, the KNN is providing better validation 

accuracy of 96%and DT gave the least accuracy of 80%. 

Overall, the research shows that by utilizing natural cooling techniques and SSPV 

systems, along with the use of high-efficiency materials such as GaAs, the efficiency of PV 

cells can be significantly improved, making them a viable option for sustainable energy 

generation. The multiphysics modeling and the mathematical design of SSPV is developed 

from the basic PV cell/panel model. The FCLIB is modelled with the combination of LIB 

and SC and working as EESS. The EESS gives the effective storage and also efficient 

performance resembling the fast charging capability for the RER. The WECS is modeled 

with the DFIG and it provides the with/without BRB fault conditions exhibiting efficient 

performance when integrated with the SSPV, EESS and control systems at PCC. The 

findings of this research can provide valuable insights for future research in field of 

renewable energy. 

7.2 Limitations of Research 

 The offshore microgrid is designed with integration to the general fossil fuels 

microgrid system of 5KW, which can cause little carbon emissions effecting the 

surrounding environment. Some of the limitations are exhibited with experimental 

configurations of SSPV, where the prototypes of the modeling are considered and the 

depths are considered only till 1 m of water depth due to computation limit. The EESS is 

implemented only for the AC loads after integrating with the microgrid, SSPV, and WECS. 

The WECS design is considered only with the BRB fault in DFIG and other faults exhibited 

by offshore harsh environment are not considered. The Multiphysics environment takes 

more computational time because of the modules used in the design environment and can 

be eliminated with the use of High Performance Computer (HPC) or with the prediction 

algorithm implementations. The ML algorithms used for prediction of PV performance in 
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normal and submerged conditions, and feature selection used for DFIG system BRB fault 

analysis is limited to five algorithms each.  

7.3 Future Scope 

The offshore microgrid considered is of 5KVA variable load in a day. It can be 

modeled for the high load capacity with more generation capability from the RER. The 

offshore microgrid is the combination of only PV and wind combination, it can also be 

included with other resources like tidal and wave energy.  

➢ The SSPV design can be further implemented for different irradiation and water 

conditions and also depth can be increased with high performance computing 

system. 

➢ The SSPV installation in real time with the comparison of FPV can also be down 

with the cost, operation and maintenance analysis. 

➢ The EESS designed can be implemented for the Electrical vehicle application by 

making use of SC for instantaneous energy release to provide quick start ignition. 

➢ The EESS can also be implemented as a digital twin to measure the performance of 

energy charge/discharge with different application by decreasing the carbon 

emissions. 

➢ The WECS designed can be further implemented with different types of faults like 

STTF, SITF, turbine faults etc., 

➢ The ML algorithms used for PV performance in normal and submerged condition 

prediction can also be used for combined performance evaluation of the offshore 

microgrid system with the relatable grid data and load data. 

➢ The ML algorithms used for DFIG fault analysis with feature selection can also be 

implemented for the other faults exhibited with the offshore marine environment. 

Other than these ML algorithms, other algorithms can also be implemented for the 

prediction and fault analysis. 

➢ Different faults during the integration of the resources can also be reduced with the 

use of different control techniques like impedance matching circuit, voltage and 

current control circuits at PCC to reduce impedance, voltage and current 

mismatches. 
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Appendix: A 
Prediction of PV Cell Parameters at Different Temperatures via ML Algorithms 

and Comparative Performance Analysis in Multiphysics Environment 

PV Panel modeling: The modelling of PV panel involves, geometry and material selection. 

PV panel geometry: 

 

 

a)      b)  

Fig. A1. a) 3-D view of PV solar panel, b) Top-view of 3-D solar panel. 

The PV solar panel with all the layers is as shown in Fig. A1 a), and the top view 

of the panel is represented in Fig. A1 b). The panel’s dimensions are 42.0 × 35.0 × 2.0 mm. 

PV panel material selection: 

 

Fig. A2. EQE of Si (Red), GaAs (Green), and GaInP (Blue) for the fabrication of SPV 

cells [1] 

The GaAs have high external quantum efficiency in the visible spectrum compared 

to both Si and InP, as shown in Fig. A2. Due to less joule heat production and high-

temperature resistance, GaAs material is mostly used for space applications irrespective of 

cost. 
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Support Vector Regression (SVR): 

The flow chart for SVR is as shown in Fig. A3 where the Grid search CV is used to 

find the best hyper parameters after testing with different combinations of hyper parameters. 

 

Fig. A3. Flow chart for SVR with best hyper parameters selection 

All these ML techniques have two sections in common: Data import & training, and 

prediction method technology implementation till plotting the data. The flow of data import 

and training is as shown in Fig. A4. Similarly, Fig. A5 shows the flow of prediction 

techniques implementation. 

 

Fig. A4. Flowchart for Data import and training 

Import 
Library

• import numpy as np

• import pandas as pd

• import matplotlib.pyplot as plt

• import seaborn as sns

• %matplotlib inline

Import 
Dataset

• Import folder from drive

• Import file from folder

Read the 
data

• Data from excel, CSV file extensions 
are read thoroughly

• We can print the data

Scaling 
the Data

• Import MinMax Scaler

Fit the 
data

• Fit the axis data to the respective 
parameters

Train /test 
the data

• import train_test_split
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Fig. A5. Implementation of prediction techniques flow 

Joule heating distribution: 

 

a) 

 

b)       c) 

Fig. A6. (a) The joule heating of Ge, b) The joule heating of GaAs, and c) The joule 

heating of InP - represented at 250C. 
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The individual material joule heat distribution is presented in Fig.A6  a), b), and c) 

with a consideration of cutline in the geometry across the axis of depth. The heat transfer 

in the material varies with length of the arc considered as shown in above Fig.A6. 

 

a) 

 

b) 

Fig. A7. a) Joule Heat distribution across 3D-axis cutline on PV cell for Si, Ge, GaAs, 

and InP b) 3D-representation of joule heating in contour and surface of PV cell 

 In the modeling, a 3-D axis cutline is drawn along 20mm length and the joule 

heat of Si, Ge, GaAs and InPare measured and drawn as shown in Fig. A7 a). The joule 

heat on the surface and the contour varies along legth, width and height. The joule heat 

variation on contour and surface are represented as shown in Fig. A7 b). 

ML based prediction of solar PV characteristics: 

The flow chart for the ML techniques implementation for mono-crystalline Si at 

250C is as shown in Fig. A8 and the best hyper parameters from 250C prediction are utilized 

further with the addition of 250C data to the previous training data.  



Appendix: A 

169 
 

 

Fig. A8. Flow chart for mono-crystalline Si prediction with ML techniques 

Linear Regression (LR): 

 

a)   b) 

Fig. A9. a) I-V characteristics prediction at 150C for mono-crystalline Si b) P-V 

characteristics of mono-crystalline Si at 150C 

 

a)      b) 

Fig. A10. a) I-V characteristics of mono-crystalline Si predictions at -180C b) P-V 

characteristics of mono-crystalline Si predictions at -180C 
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The I-V and P-V characteristics of mono-crystalline Si are given in Fig.A9 a), b) 

and Fig. A10 a), b) at 150C and -180C respectively. The non-linearity in the output values 

makes the LR not adaptive for the PV panel performance analysis. 

 

Polynomial Regression (PR): 

 

a)      b) 

 

c)      d) 

Fig. A11. a) RMSE values at different polynomial degree for I-V characteristics b) R2-

score values at different polynomial degree for I-V characteristics and c) RMSE values at 

different polynomial degree for P-V characteristics d) R2-score values at different 

polynomial degree for P-V characteristics. 

Fig. A11 (a), (c), (b) and (d) for I-V data and P-V data at an interval of 1 to 7 as 

degree of freedom. It can be observed that lesser the RMSE value and higher R2-score then 

that polynomial degree gives better result. In the proposed work the degree 4 is giving lesser 
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RMSE = 0.05 and higher R2-score = 0.93 for I-V and RMSE = 0.07 and higher R2-score = 

0.95 for P-V. 

 

a)       b) 

 

c)      d) 

Fig. A12. a) & c) I-V characteristics of mono-crystalline Si predictions at 250C, 150C and 

-180C b) and d) P-V characteristics of mono-crystalline Si predictions at 150C and -180C 

respectively by PR prediction 

The Fig. A12 a), c) and b), d) shows the I-V and P-V characteristics prediction 

through PR at 150C and -180C. The PR predictions values are almost similar to the 

simulated data and the efficiency of mono-crystalline Si at 150C and -180C. 

Support Vector Regression (SVR): 

The values of simulated data and predicted data both are available to validate the 

SVR prediction results and are shown in Fig. A13. a) & b) and Fig. A13. c) & d) as I-V 

and P-V characteristics at 150C and -180C. 
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a)         b) 

 

c)        d) 

Fig. A13. a) & c) I-V characteristics b) and d) P-V characteristics of mono-crystalline Si 

predictions at 250C, 150C and -180C respectively by SVR prediction 

Kernel Ridge Regression (KRR): 

 

a)     b) 

 

c)     d) 

Fig. A14. a) & c) I-V characteristics of mono-crystalline Si predictions at 250C, 150C and 

-180C b) and d) P-V characteristics of mono-crystalline Si predictions at 250C, 150C and -

180C respectively by KRR prediction 
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The values of simulated data and predicted data both are available to validate the 

PR prediction results and are shown in Fig. A14. a) & b) and Fig. A14. c) & d) as I-V and 

P-V characteristics at 150C and -180C. 

Prediction algorithms for different materials at different temperatures: 

 

a)    b) 

 

c)    d) 

 

e)     f) 

 

g)     h) 

Fig. A15. a) & b) I-V and P-V characteristics of Ge with LR ML technique c) & d) I-V 

and P-V characteristics of Ge with PR ML technique e) & f) I-V and P-V characteristics 

of Ge with SVR ML technique g) & h) I-V and P-V characteristics of Ge with KRR ML 

technique 
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The I-V and P-V, prediction and simulated data for Ge with LR, PR, SVR and KRR 

are represented in Fig. A15 (a) to (h) where the PR and KRR are giving better prediction. 

The metrics for the prediction is listed in Table A1 and the 98.5% accuracy with PR and 

97.6% accuracy with KRR for I-V, similarly, for P-V, 96.4% accuracy with PR and 96.1% 

accuracy with KRR is achieved.  

 

Table A1. 

List of metrics for ML techniques of Ge at 250C 

Metric Temperature 

LR PR SVR KRR 

IV PV IV PV IV PV IV PV 

RMSE 

250C 

0.190 0.303 0.042 0.049 0.051 0.165 0.053 0.051 

MAE 0.133 0.200 0.035 0.036 0.044 0.126 0.039 0.036 

MAPE 4.784 10.712 0.333 0.521 0.512 5.291 0.796 1.264 

R2-Score 0.692 -0.398 0.985 0.964 0.977 0.589 0.976 0.961 

 

 

Table A2. 

List of metrics for ML techniques of GaAs at 250C 

Metric Temperature 

LR PR SVR KRR 

IV PV IV PV IV PV IV PV 

RMSE 

250C 

0.099 0.184 0.048 0.074 0.067 0.089 0.0576 0.106 

MAE 0.069 0.117 0.035 0.048 0.031 0.071 0.033 0.065 

MAPE 0.962 1.381 0.451 0.523 0.784 0.584 0.517 0.686 

R2-Score 0.561 0.474 0.897 0.915 0.800 0.877 0.852 0.827 
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a)     b) 

 

c)     d)  

 

e)     f) 

 

g)     h) 

Fig. A16. a) & b) I-V and P-V characteristics of GaAs with LR ML technique c) & d) I-V 

and P-V characteristics of GaAs with PR ML technique e) & f) I-V and P-V 

characteristics of GaAs with SVR ML technique g) & h) I-V and P-V characteristics of 

GaAs with KRR ML technique 
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The I-V and P-V of GaAs with LR, PR, SVR, and KRR ML techniques are shown 

in Fig. A16 (a) to (h), and the corresponding MAE, MAPE, RMSE and R2-score metrics 

are measured at 250C and tabulated in Table A2. Similarly, I-V and P-V of InP with LR, 

PR, SVR and KRR ML techniques are shown in Fig. A17 (a) to (h). Also, from the 

prediction, the MAE, MAPE, RMSE and R2-score metrics are measured at 250C and 

tabulated in Table A3. 

 

a)     b) 

 

c)     d) 

 

e)     f) 

 

g)    h) 

Fig. A17. a) & b) I-V and P-V characteristics of InP with LR ML technique c) & d) I-V 

and P-V characteristics of InP with PR ML technique e) & f) I-V and P-V characteristics 

of InP with SVR ML technique g) & h) I-V and P-V characteristics of InP with KRR ML 

technique 



Appendix: A 

177 
 

Table A3. 

List of metrics for ML techniques of InP at 250C 

Metric Temperature 

LR PR SVR KRR 

IV PV IV PV IV PV IV PV 

RMSE 

250C 

0.081 0.209 0.056 0.101 0.033 0.078 0.049 0.105 

MAE 0.063 0.171 0.037 0.068 0.023 0.063 0.030 0.071 

MAPE 0.158 0.411 0.084 0.149 0.063 0.106 0.055 0.148 

R2-Score 0.851 0.547 0.926 0.893 0.974 0.937 0.944 0.884 
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