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Abstract 

A diverse mix of energy sources integrated into the power system alters modern 

power systems' traditional operational and control requirements. The generation patterns of 

renewable energy sources are variable and dependent on local weather patterns. Besides, 

the load in the power system is dynamic in nature. As such, the imbalances created by 

generation and load can indeed result in frequency variations demanding a load frequency 

control (LFC). The LFC becomes even more complicated with the multi-source distributed 

hybrid power system (HPS), including renewable sources; consequently, an HPS dynamic 

modeling is necessary. 

The HPS includes a reheat thermal power system (RTPS) and distributed energy 

resources (DERs) such as wind turbine generator (WTG), fuel cell (FC) stack, battery 

energy storage system (BESS), diesel engine generator (DEG), is modeled. A state-space 

representation is derived for this HPS with different types of controllers to obtain the 

dynamic model suitable for time-domain analysis.  

Different controller topologies based on model predictive control (MPC), 

proportional-integral (PI), a proportional integral derivative with filter-coefficient (PIDN), 

and PI controller cascaded with PDN (PIDN) were investigated for the frequency regulation 

in HPS. Depending on performance, complexity, economic aspects, and market 

availability, the PIPDN topology was found to be a better choice for LFC. 

Consequently, optimizing the PI/PID/PIPDN controller parameters is essential to 

obtain the desired performance, which is a challenging task. Optimization techniques such 

as Linear Programming (LP), Deep Reinforcement Learning (DRL), and Genetic 

Algorithm (GA) were used for centralized control. However, the time domain results 

suggested that decentralized control is necessary for maintaining the frequency of HPS. In 

decentralized control with each controller for RTPS and DERs, a novel method called 

parameter sensitivity algorithm (PSA) is proposed to obtain the RoC of the controller gains 

and were further optimized using a constrained GA. To demonstrate coordinated control 

effectiveness, a hybrid objective function for optimization is formulated. The investigation 

results validate that the suggested optimized controllers provide enhanced frequency 

regulation. The practical feasibility of the proposed methodology is reinforced using 

dSPACE hardware-in-the-loop (HIL) testing.   
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Even though controller optimization is accomplished using the GA-PSA method, 

efficient operation, and control in renewable and storage-integrated HPS have become 

more challenging with growing uncertainties. Controlling the frequency deviation is even 

more difficult when uncertain situations are coupled with communication data loss. To 

address this issue, a novel adaptive control architecture based on Data driven predictive 

control (DDPC) is proposed in this thesis for balancing the network frequency. When the 

DERs are integrated, the deterministic frequency deviations (DFD) limit is satisfied by 

utilizing the proposed method. The proposed method is further validated using the dSPACE 

HIL simulation method for testing the controller's real-time capabilities. 

DDPC efficiently handles the loss of control information under uncertainties; 

however, another significant concern in LFC is false data injection attacks where cyber-

resilient methods are necessary to avoid data loss. A novel resilient blockchain framework 

for realizing LFC is proposed for addressing the power resilience and the false-data 

injection issue. Furthermore, in the event of DER loss, efficient LFC techniques are 

essential for frequency restoration in HPS. A consensus algorithm-based blockchain 

methodology enables strategic decision-making and secures the data flow to the market 

operator. The proposed framework-driven methods are implemented using a Blockchain 

network developed in Python for securing LFC transactions by developing a case study for 

the modeled HPS. The method's effectiveness is verified using simulation studies and HIL 

validation for the contracted power from RTPS and DERs. HIL enables rapid prototyping 

and real-time validation of the designed controller for studying the practical feasibility of 

the method. 

Moreover, HPS's stability with renewable integration during islanding operations 

occurring during the loss of RTPS is a concern. Participation of DERS with prosumers in 

LFC is examined. To achieve successful islanding, a smart home inverter (SHI) based 

coordinated control is proposed. A DRL algorithm is proposed to coordinate controllers for 

LFC operation. An LFC framework is introduced via a dynamic environment-based multi-

agent twin delayed deep deterministic policy gradient (DEMA-TD3) algorithm to 

coordinate the decentralized controllers. Virtual inertia (VI) is added to provide frequency 

support for robust control.  

Thus, the proposed control techniques resulted in resilient and robust frequency 

regulation in HPS.  
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Chapter 1 

1 Introduction 

1.1 Background 

Energy is integral to all technological verticals, promoting global growth and 

advancement. The indispensable need for a constant energy supply has inspired numerous 

reforms in modernizing the Indian grid to set up examples for the global smart grid 

revolution [1]. The sustenance of the power supply is made possible by integrating 

Renewable Energy Sources (RES) along with prosumers and, consequently, distributed 

energy resources (DER), which have emerged as a promising technology [2]. This has 

provided sustainable energy practices and encouraged clean energy resource participation 

in the global energy mix and the Indian subcontinent. Extensive deployment of DERs in 

India can harness energy from RES, where India targets about 500 GW by 2030 [3] while 

satisfying economic motives, provided that the power exchanges-based green open-access 

framework is employed in the energy markets [4], [5]. Therefore, renewable energy (RE) 

integration and DER integration with the grid can help achieve sustainable development 

goals (SDG) -7 [6].  

This advent of transformation in the energy sector with increased growth in the 

overall RES generation worldwide [7] helps achieve sustainable energy ecosystems. The 

global growth in the generation from RES [8] over the past decade is depicted in Figure 

1.1, representing an increase in generation from different RES over the past two decades. 

There is exponential growth in the capacity of RES to meet the demand while decreasing 

carbon emissions. The generation from solar was a mere 1,77,811 MW in the year 2010 

compared to 8,54,795 MW in the year 2021. The wind generation in 2000 was 16,927 MW 

compared to 7,69,227 MW in 2021. The capacity obtained from solar generation has 

increased multifold, followed by wind generation. There are numerous motives for the 

tremendous growth in solar and wind, such as climate change, technical factors, economic 

factors, feasibility, and government policies. 

The RES generation growth in India over the past two decades is depicted in 

Figure 1.2, where the trend shows similar characteristics to that of the global trend, 

specifically in the solar and wind generation increase. Considering the scenario in India, 

the share of RESs in the generation is close to 34. 7% and various ongoing RES projects 
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make RES a vital part of the Indian grid. Several pilot future smart grid projects involving 

solar and wind generation have been initiated as a part of the smart grid initiative. However, 

the RE expansion in modern power systems faces critical riding operational and control 

challenges [1]. 

 

Figure 1.1 Global Renewable Energy Growth Over the Past Two Decades. Source: International 

Renewable Agency (IRENA), 2023 as on April 2023. 

 

Figure 1.2 Renewable Energy Growth in India Over the Past Two Decades. Source: International 

Renewable Agency (IRENA), as on April, 2023. 

The increasing trends of RES growth in the world and India make it evident that the 

predicted RES share in future power systems is significant, and traditional control methods 

are not suitable in modern power systems.  The various energy sources present in the Indian 

power system represent the need for apposite control methods. Therefore, the modern grid 

is a complex network consisting of Conventional Power Systems (CPS) such as a reheat 

thermal power system (RTPS), DERs, prosumers such as smart home inverters, and high 
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penetration of RES together, forming a Hybrid Power System (HPS). Furthermore, 

Microgrids (MG) are installed in this network for increased efficiency and reliability. 

Figure 1.3 depicts various components in an HPS and their energy interactions. The main 

components are 

• RTPS (Power Producer) 

• RES (Power Producer) 

• MG (Power Producer) 

• Prosumers (Power Producer and Consumer)  

• Storage Devices (Power Producer and Consumer)  

• Loads (Power Consumer) 

 

 

 Figure 1.3 Energy interactions among various power system components. 

Different loads, such as residential, industrial, commercial, and agricultural, are 

supplied by power produced from Thermal Power Systems, RES such wind, prosumers, 

and smart MG with DERs such as Diesel Generator (DG) and Battery Energy Storage 

System (BESS). The energy interactions among the producers and consumers in real-time 

are dependent on factors like the power available from various sources, the amount of load, 

and the loading on the lines. Real-time power exchanges considering different factors 

require efficient control of HPS. Control architecture in an HPS with high RES penetration 

must ensure real and reactive power balance, nominal voltage, and frequency [9] to 

maintain power system stability [10]. Grid-edge resource (GER) (the DERs connected at 
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the grid-edge or distribution end are referred to as GERs) integrated power system networks 

are continuously challenged by disturbances like power imbalance, uncertainties in GER 

operation, and short circuits. While these disturbances are common in typical power 

systems, they are profound and accountable, especially in hybrid power network operations 

with bidirectional power transfer [11]. The incorporation of RES can largely influence the 

frequency stability of the grid. The optimum frequency band in India is 49.95 Hz to 50.05 

Hz, the maximum steady state frequency deviation should not cause 0.3 Hz, and the 

allowable limits are 49.5 Hz to 50. 5 Hz.  

1.1.1 Stability and control 

Power system stability definitions and classifications for the traditional power 

systems and microgrids are well established, and the definitions are presented as follows. 

▪ Definition of Power System Stability in the conventional system [12]: “Power 

system stability is the ability of an electric power system, for a given initial 

operating condition, to regain a state of operating equilibrium after being 

subjected to a physical disturbance, with most system variables bounded so that 

practically the entire system remains intact.” 

▪ Definition of Microgrid Stability [13]: Consider a microgrid that is operating in 

equilibrium, with state variables taking on appropriate steady-state values 

satisfying operational constraints, such as acceptable ranges of currents, 

voltages, and frequency. Such a microgrid is stable if, after being subjected to a 

disturbance, all state variables recover to (possibly new) steady-state values that 

satisfy operational constraints and without the occurrence of involuntary load 

shedding. 

The vital parameters, such as voltage and frequency, should remain within the 

specified limits after being subjected to a disturbance to ensure system stability. The factors 

that affect the system stability in the case of CPS and MG vary due to the changes in system 

dynamics.   

1.1.2 Classification in Traditional Power Systems Vs. Microgrids 

The classification of stability for Traditional power systems and MG are presented 

in Figure 1.4 and Figure 1.5, representing the essential observations as follows: 
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▪ Frequency stability in traditional power systems is predominantly long-term 

stability, whereas, in MG, it is of both long-term and short-term phenomena 

because of RES uncertainties and reduced inertia problems [14]. 

▪ The recent changes in the structure of the modern power system necessitated 

inertial emulation [15], which suggests that the frequency stability in HPS with 

RES penetration can also be a more challenging short-term problem. 

▪ Power supply and balance affect both voltage and frequency variations in MG 

due to low R/X ratios [16]. However, decoupling in HPS exists as the 

conventional transmission system impedance is high. 

 

  

 Figure 1.4 Classification of Power System Stability. 

1.1.3 Comments on Hybrid Power System Stability: 

• A formal analysis of stability in modern power systems is still under consideration, 

and the definitions are not available for hybrid power system stability. 

• However, the changing inertia due to the penetration of renewables in traditional 

power systems mainly impacts the frequency stability of the power system. 

• Moreover, the DER integration can contribute to reduced inertia, and fast-acting 

storage technologies are used for ramping up the active power required. 

• The uncertainties with RES make the active power balance challenging, primarily 

impacting the system frequency.  
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• In isolated hybrid power systems, voltage and frequency stability are a concern, and 

adequate reserves with efficient control mechanisms are required to ensure the 

stable and reliable operation of HPS [17]. 

  

 Figure 1.5 Classification of Microgrid Stability [16]. 

It is to be emphasized that the stable operation of HPS can be ensured by designing 

robust controllers considering the dynamic models of the system. Thus, voltage and 

frequency can be maintained in HPS through decentralized and coordinated control 

mechanisms [18].   

The power system control is a hierarchical control that consists of mainly primary, 

secondary, and tertiary controls, and the role of communications is increasing in the control 

architecture [19]. Primary control is based on the system's characteristic droop and is well-

established for different multi-source systems [20].  In primary control, the problem of 

steady-state error exists [21], and therefore, secondary control is significantly necessary. 

Secondary control is based on LFC action for a control area to restore the frequency to a 

nominal operating value [22], which involves the complex process of controller design 

[23]. Tertiary control is based on the hourly power reserves available and is a slow form of 

control performed by the grid operator upon request [24]. As such, coordination among 

different levels of controls is required. The control operations are influenced by the impact 

of renewables and DERs integration, which is discussed in the subsequent section. 
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1.2 Impact of renewable energy and distributed energy resource integration 

The impact of RES mainly introduces the problems of 1) Uncertainty and 2) Low-

Inertia. The generation stochasticity associated with RE causes power deviation and 

control problems [2]. The uncertainty in the RE generation can cause issues with system 

stability arising from an imbalance in generation and demand, which in turn causes 

frequency deviations [25]. Effective frequency control is necessary for the seamless 

operation of the power systems. Secondary control using LFC [26] has been designed to 

dampen the disturbances in frequency and bring the network back to its stable operating 

point.  

Building energy ecosystems with high renewable participation, guaranteed 

robustness, and resilience is crucial for the sustainable energy sector's growth and 

development [27]. However, the power grids are becoming weak and vulnerable due to 

uncertainties associated with renewable penetration [28]. Figure 1.6 depicts significant 

power outages in different countries, affecting millions of people worldwide, and was the 

cause of substantial economic losses [29], [30]. Due to increasing failures in the grid [31], 

understanding resilience in power systems is of prime importance, which converges to the 

system's ability to avoid, anticipate, adapt, and recover from or post-occurrence of 

disruptive events [28], [32]. Potential causes identified in the literature are voltage collapse, 

loss of synchronization, overloading, congestion-initiated tripping, intentional attacks, 

and increased or decreased frequency [33]. The intentional attacks were observed as both 

physical and cyber-attacks [34], and asset protection under cyber-attacks requires cyber-

resilient architecture. Recent technical reports from various government bodies in Europe, 

the US, and the literature have informed that the penetration of DERs can cause frequency 

nadir, and frequency restoration is crucial for the stable operation of the grids [35]–[37].  

The reduced inertia in power systems as a result of renewable-based generation 

further degrades the frequency profiles of the power system [38]. Therefore, maintaining 

frequency in low-inertia power systems is a significant concern, which requires fast and 

robust LFC techniques. Given the significance of LFC, the following sub-section provides 

a brief outlook on LFC in HPS. 
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Figure 1.6 A representation of the resilience events based on the significant power outages in the 

world [29], [30] occurring between 2001 and 2020. Labels represent the year, country, and number 

of people affected in millions due to the event. The segments are in sequence of years and in 

proportion to the number of people affected. 

1.3 An outlook on load frequency control 

 After the integration of GERs or DERs, the traditional power system networks have 

been transforming into new faces with autonomous grid operation [39], smart grid 

operation, and control [18]; the solution to load frequency regulation still remains an open 

challenge to be dealt with for maintaining power system frequency [36]. It is to be 

understood that irrespective of the transformation of power system networks into new 

paradigms, LFC control is vital in maintaining the system stability intact with frequency 

under control.  

The research focus and sub-areas or elements included in the LFC of HPS are 

depicted through cluster analysis, as shown in Figure 1.7. LFC in HPS with different 

controllers such as proportional-integral (PI) controllers, proportional integral derivative 

(PID) controllers, fuzzy controllers, adaptive control systems, fractional order controllers, 

and other forms of control techniques form the significant cluster indicated in red color. 

The second large cluster depicted in blue focuses on renewable energy sources; other 

technologies, such as fuel cells (FC) and energy storage systems, are incorporated in the 

LFC research. The third cluster in green indicates that electric vehicle participation or, 

battery participation from the demand side can be a solution for improving the frequency 
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stability. The smaller cluster in yellow focuses majorly on optimization techniques and 

algorithms for LFC and learning algorithms. However, designing robust control of systems 

with a time delay or communication delay was not given enough consideration. 

 

Figure 1.7 Keyword Cluster Analysis of LFC research in Hybrid power systems from the Scopus 

database. 

A few concerns are identified in aiming at HPS frequency control based on the 

current research status, which are the motivating factors for the work conducted in this 

study. The following points encapsulate the significant challenges in frequency regulation: 

• Modeling a combination of energy sources [25], conventional power systems such 

as reheat thermal power systems [40], FC, and renewable energy [41] are necessary. 

HPS state-space modeling, considering the controller topologies, is of paramount 

significance. 

• LFC stability is much less explored in HPS, where the optimization techniques [42], 

[43] developed do not comply with the stability limits. Thus, additional studies are 

necessary. 
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• Uncertainties in the system [22], [37] are characterized using random deviations 

that did not represent the real-time conditions for studying their impact on the 

frequency control and time-domain dynamics of the HPS. 

• Regulation market strategies [44], resilience [37], robustness [45], and stability 

during islanding [46] are not comprehensively addressed in LFC for maintaining a 

reliable and sustainable power system architecture. 

Therefore, LFC in HPS remains a complex and challenging problem requiring in-

depth study to propose feasible solutions. Thus, the current thesis uses a multi-faceted state-

of-the-art LFC framework to address the issues arising from extreme frequency deviations 

for efficient grid operation and control, enhancing robustness and resilience.   A literature 

review in the above aspects is carried out to identify the research gaps for designing resilient 

and robust LFC for the HPS. 

1.4 Literature Review 

LFC reduces the frequency deviation by initiating appropriate control actions that 

can maintain the supply and demand balance following a load disturbance or a source 

disturbance [47]. These control actions in standalone or isolated systems are complex and 

require effective design strategies [48] in LFC operation. Thus, LFC operation is carried 

out by the grid operators through maintenance of the active power reserves and automated 

control [49]. The LFC reserves can be obtained from conventional sources, BESS, FC, 

DEG, or any other storage systems where modeling of the HPS is required [50]. The 

regulation of active power output can be affected by the types of controllers employed 

[51], optimization techniques [43], robustness to uncertainties [37], communication 

delays [52], the source dynamics which are a part of modeling [53], and false-data injection 

attacks which is a resilience issue in regulation markets [44], [54]. Therefore, it is 

essential to consider these aspects for designing an effective LFC strategy in an isolated 

HPS for frequency stability enhancement. However, these issues are not 

comprehensively addressed in the previous LFC studies [51], [55], [56]. Thus, designing a 

holistic framework is necessary to obtain the resilient and robust frequency regulation. As 

such, to comprehend the LFC requirements and define the research objectives, an extensive 

literature survey is carried out to identify the research gaps and establish the methodology 

for the execution of the objectives systematically. The literature review is classified into 

six main categories as follows: 
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• Modeling 

• Types of Controllers 

• Optimization Techniques 

• Uncertainties and communication delays 

• Resilience and regulation markets 

• Frequency Stability enhancement 

The key highlights in each of these categories are depicted in Figure 1.8, which are 

further discussed in detail. 

  

 Figure 1.8 An outline of the literature review for LFC with key highlights. 

1.4.1 Modeling 

Power system models consisting of the conventional RTPS are broadly studied with 

different modeling techniques for designing LFC [57], [58]. Frequency dynamics play an 

essential role in various operations of power systems with a more significant share of RES 

[59]. To understand the frequency dynamics, appropriate dynamic model representation 

was identified as a preliminary requirement for undergoing frequency stability analysis of 

the HPS [60]. An HPS was described as a combination of two or more different sources of 

energy [61]. This sub-section surveys the existing models of HPS to represent the system's 

dynamic behavior for LFC studies and thereby perform testing of the HPS [62]. In one of 

the systems, wind and diesel generation was modeled using first-order transfer functions to 
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study the performance of a PID controller with a derivative filter [63]. Detailed FC models 

for vehicle applications are considered a part of dynamic models in an HPS [64]. The 

problem of modeling a pumped storage hydropower system, which is integrated with a solar 

and wind power system for stability studies, was considered in [65]. In HPS, high 

renewable penetration can lead to complex models where the model order reduction 

technique can be implemented [66]. However, first-order transfer function models are 

widely used for modeling HPS in LFC studies [25], [67]. For droop control-based 

frequency regulation [68] of MG, a simple first-order transfer function model was found 

expedient in analyzing the system [69]. HPS consisting of BESS, FC, diesel engine 

generator (DEG), and aqua-electrolyzer (AE) are modeled using first-order systems where 

RTPS is not considered [50], [70]. To conceive dynamic performance-related insights, the 

state-space representation of the model is of vital significance, along with frequency 

response characteristics [21]. The state-space dynamic model of an HPS consisting of 

Thermal, Hydro, Gas, and Wind Systems was presented in [71], where only the integral 

controller-based approach was considered for LFC studies. However, HPS models 

involving only a limited number of sources, like PV-Diesel [68], PV- Super Magnetic 

Energy Storage (SMES) [69], and electric vehicles [72], were modeled in the previous 

frequency control studies where conventional power system models were not included. 

Further, in previous studies, the state-space representation of an HPS composed of an MG 

as well as a conventional Thermal power system did not receive the required attention. 

Moreover, new modeling techniques, other than differential-algebraic equations 

such as symbolic modeling, have been discussed for power system modeling and analysis, 

which can be useful in building dynamic models for stability studies [73]. A combinational 

model of wind and thermal power systems has been considered to perform load frequency 

control, where a second-order system was considered for the wind and a non-reheat power 

system was considered for the thermal system in the HPS [74]. In MG, Voltage Source 

Converters (VSC), the interfaces for DERs are modeled to represent the source dynamics 

[75]. The literature available for modeling the HPS consists of two or three energy sources, 

such as hydro-wind-solar [65], wind-diesel [17], and wind-thermal [74]. A recent study 

considered a microgrid with renewables, waste-to-energy components, bio-diesel, and bio-

gas generation [76]. However, these generation sources are still in the developmental 

stages.  

The demand-side resources (DR) can also participate in LFC for effective control 

[25]. Smart homes (SH) with inverters were used as a means to supply power to the loads 
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during inadequate generation from the grid without curtailing the load [77]. SH with energy 

storage can be understood as a possible choice that needs to be explored in providing 

frequency regulation. Home grid based on solar, battery, and inverter, as well as home to 

the public grid (H2G) discussed in [78], [79], can also be utilized for LFC. However, the 

dynamic models for SHI participation in LFC are not available in the literature. There is a 

pressing need to establish holistic models consisting of primary generation sources, such 

as thermal, wind, diesel, fuel-cell, and battery energy storage, that needs to be considered 

for an out-and-out understanding of the complete dynamics of HPS. Comprehensive state-

space models have not been reported using multi-source HPS modeling and demand side 

resource participation.  

Following the modeling of HPS, the subsequent step in LFC design is to select the 

type of controller utilized.   

1.4.2 Types of Controllers 

In a recent LFC review, the changing scenario of LFC due to various challenges, 

including low inertia, RES, and DER integration, was presented [80]. Given the complexity 

and significance of the LFC in multi-source HPS, the aim of this subsection is to examine 

the various types of LFC controllers available, along with their respective advantages and 

disadvantages.  Numerous controllers and control algorithms have been developed and 

implemented for different HPS models consisting of RES [67], [71], [81]. Several studies 

have highlighted that the choice of controller topology can impact the FR in hybrid power 

systems [25], [82], [83]. Diverse control techniques and algorithms were proposed for LFC 

using proportional integral derivative (PID) control [49], [84], model predictive control 

(MPC), [85], sliding mode control (SMC)  [86], and H-infinity control [87]. A sliding 

mode controller was explicitly proposed for wind generation-based power systems to 

address the LFC problem [88], where other sources, as seen in practical power systems, 

were not integrated.  

Robust control is desirable to handle the stochastic uncertainties at the local level 

and also to coordinate at the central level [89], [90] using PI controllers. LFC of a wind 

and vehicle hybrid system [91] using the H-infinity approach was presented in the 

literature. Other challenges in LFC, such as reduced inertia and increased Rate of Change 

of Frequency (RoCoF) [92], require fast recovery of active power from the sources in 

significant disturbances [92].  These problems become significant during the islanding 

conditions. The low inertia due to RES has raised the need for alternative frequency 
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controllers [20] [93]. As such, VI controller design was considered, which was beneficial 

in obtaining a better frequency control response [10]. VI technique was applied to wind 

systems, which showed an increment in the overall system inertia [11]. In past studies, VI 

control, such as inertial emulation using smart loads [15], the inertial emulation from the 

smart induction motors drives [94], and the VI loop in the energy storage systems [95], 

have been used to provide frequency regulation.  

MPC has been prominently used in past studies for frequency control and has been 

implemented for LFC in stand-alone microgrids with RES [96]. Active frequency response 

using a centralized MPC provides uniform frequency control and is adequate for 

contingency situations in large power systems [97]. MPC provided robust performance in 

case of the system's dynamic variations and stochastic uncertainties due to RES. The 

stochastic disturbances in wind and photovoltaic (PV) were efficiently handled by MPC in 

[74], [90]. Moreover, the choice of optimization variables included in the objective function 

for MPC can impact the performance of the controller [98]. In addition to these, adaptive 

model predictive control (ADMPC), tilt integral derivative control (TID), and fractional-

order (FO) controllers were also designed for LFC [99]–[101]. The literature also addresses 

artificial intelligence/ machine learning  (AI/ML) techniques such as artificial neural 

networks [102], a decision tree-based control [103], deep reinforcement learning (DRL) 

[104], and PID modeling as non-linear in nature [105]. However, the MPC, H-infinity, and 

FO controllers are not widely used in practical scenarios due to their complexity and 

economic aspects. Other methods, such as Frequency regulation by linear matrix inequality 

(LMI) control, were incorporated to minimize the frequency deviation of the HPS [106].  

However, the PID control stands as the most widely used practical control scheme for 

LFC due to its uncomplicated structure, robust performance, practical feasibility, and 

design simplicity [13,14]. It is interesting to note that about 90 percent of the industrial 

controllers used today are PID controllers.  

In [107], frequency control for an HPS consisting of RES was carried out using I, 

PI, and PID controllers. The derivative action alone amplifies the noise in the system and, 

therefore, should be used with optimal tuning and in combination with PI or other 

controllers for practical purposes. PID controller performance was found to be superior to 

that of other controllers. Furthermore, the traditional droop-based control mechanism for 

LFC in MG has received greater attention for implementing frequency control [108]. 

Another recent study added that a cascaded PI-PD controller provided better frequency 

regulation than a PID controller for an HPS integrated with electric vehicles [109]. It is to 
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be noted that HPS with conventional and non-conventional energy sources employed PID 

or sometimes cascaded PI-PD controllers, and MG utilized frequency-droop-based 

controllers [67], [71], [80], [81], [107]–[110]. An increasing number of studies have found 

that the type of power system greatly influences the type of controller employed. A 

comparable simulation study presented a dual-stage PI(1+PD) architecture for significantly 

improved FR than a typical PID with filter coefficient (PIDN) topology [111]. Regardless, 

determining the operational feasibility by demonstrating real-time controller performance 

is pivotal. However, the challenging task in PID controller design is tuning the controller 

parameters, where optimization techniques are necessary. Subsequently, optimization 

techniques for controller parameter design are discussed. 

1.4.3 Optimization techniques 

It is understood from the previous sub-section that most LFC controllers [112] 

employ PID-based controller approaches to nullify the disturbances. With the use of PID 

controllers [26], [55], the challenging aspect is determining the optimal parameters of the 

controller gains. Controller parameters are crucial factors in deciding the stability of a 

system, and the variation of these parameters dramatically affects the overall stability [113]. 

Tuning the PID parameters using conventional methods like the Ziegler-Nicholas method 

or Cohen-coon can result in poor damping; the dominant pole method can be tedious as it 

is sometimes impossible to define the dominant poles [114] in a larger system. 

Conventionally, PID parameter tuning is done based on frequency domain analysis 

[115]. However, the tuned parameters endure proportional and derivate kicks because of 

their inherent parallel structure. 

Furthermore, conventional methods cannot be optimal for tuning multiple PID 

controllers when the system is subject to stochastic uncertainties from both the load and the 

generation side. It is proven that linear programming (LP) based optimization in lower-

order systems provides quick and accurate solutions while requiring less processing 

capacity [116]. On the contrary, LP’s effectiveness in higher-order feedback systems has 

been less investigated [117]. Although studies implemented LP optimization for 

polymerization reactors [117], the effectiveness of LP optimization in power system control 

applications has not been considered, as it requires a higher-order complex mathematical 

model [118]. Consequently, various analytical, heuristics, and intelligent methods have 

been developed to fine-tune the PID parameters to achieve based LFC performance for the 

given network [55], [119]. However, one challenge with LP is that the tuning complexity 
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increases, and performance cannot be guaranteed for multiple-controller coordination as 

the algorithm is developed based on single-controller tuning as the objective. 

In the recent literature, many soft computing techniques have been addressed for 

fine-tuning the PID parameters [101].  A subsequent LFC study using SMES-based novel 

PID was proposed in [110], for which the gains of the PID controller were tuned using the 

Moth Swarm Algorithm, and gain values were significantly high. The automatic 

generation control for an HPS with PV, wind, and hydropower plants has been modeled in 

[120], and PID parameters are tuned using model predictive control and leader Harris 

Hawks algorithm. A tilt-fraction order controller is designed and applied to the HPS 

networks using gorilla troops optimizer [121] and Archimedes Optimization algorithm 

[122], in which the proposed techniques are shown to be dominating particle swarm 

optimization (PSO) and whale optimization algorithm (WOA). A recent study dealt with 

a direct search algorithm for PI optimization [123], where the search space is sliced down 

based on the feasibility space. Another approach considered the ant colony-based 

technique to optimize the controller parameters [124]. The works in [23], [125], [126] have 

also tuned their PID parameters using heuristic optimization approaches.  

Numerous algorithms to enhance LFC have been evolved and tested for different 

MG architectures [6-7]. The grasshopper optimization algorithm can be used for optimal 

LFC and achieve a stable performance of the controllers [126]. The behavior of loads such 

as Electric Vehicles (EVs) adds to the uncertain nature of RES. Intelligent systems to deal 

with the stochastic nature of these elements were proposed through Hebb learning [127]. 

Frequency control is a dominant concern in power systems operation and control, and a 

comprehensive study on different control techniques was conducted to evaluate the 

methods dealing with the problems of LFC [10]. In PID design, the most taxing exercise is 

finding the optimal gains suitable for the desired outcome, i.e., minimization of frequency 

deviation in the LFC scenario [128]. Multiple versions of problem-specific PID design 

techniques and optimization algorithms are available in the literature, such as differential 

evolution (DE) hybridized with pattern search (PS) [15] optimization using integral error 

criterion [16]. Other tuning techniques for PID parameters, such as atom search 

optimization (ASO) [131], hybrid harmony search, cuckoo optimization [132], and 

grasshopper optimization algorithm (GOA) [133] were employed for LFC. The heuristic 

algorithms have a few advantages and disadvantages in optimization concerning 

computational complexity. Hybrid algorithms such as genetic algorithm (GA) combined 

with PSO [134] are also used for optimization to extract the best features.  
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While addressing different techniques for solving the optimal PID control-based 

LFC problem, various topologies of controllers are also discussed in the [86], [135]. When 

there are multiple controllers in the system, coordinated control effectively regulates the 

power from diverse sources to accomplish commendable controller performance [136]. 

Intelligent techniques through DRL were examined to design a coordinated control 

approach for tuning the PID parameters [137], [138]. AI-based methods [139] and hybrid 

optimization techniques [140] were proposed to improve the FR in multi-source power 

systems. Despite the performance advantages of AI and DRL tuning methods, the 

computational complexity involved is very high compared to meta-heuristic techniques, 

resulting in slower convergence. Table 1.1 summarizes the focus areas of recent studies for 

designing optimal controllers.  

In addition to controller topology and a coordinated control mechanism, an 

optimization algorithm requires an objective function derived from the LFC model 

developed for the power system using the classical transfer function approach [124], [141]. 

The designed objective function is potentially influential in parameter optimization [142]. 

The frequency error or deviation refers to the difference in system frequency from the rated 

frequency [143], and the goal of LFC optimization strategies is to reduce frequency error. 

Most of these optimization algorithms are population-based search methods that consider 

an objective function such as integral time absolute error (ITAE) or integral absolute error 

(IAE) [105] to minimize the frequency deviation. Objective function design influences the 

optimization process; thus, the focus must be laid on novel objective functions to improve 

the optimal controllers' performance. Though the proposed techniques have done well in 

providing better optimal PID parameters for the designed problems, the techniques did not 

consider the RoC to establish a stable search space for the controller parameters. 

Nonetheless, the CPU time required for optimization is demanding, where slower 

convergence makes LFC less reliable in responding quickly to disturbances and 

communication delays. Renewable energy impact on LFC was not considered in the works 

of [136], [142], [144]–[146]. Further, robust stability considering random uncertainties in 

the power system is not examined in [142], [145], [147]. The described works did not 

provide a comprehensive solution to accomplish the overall goals of LFC. Thus, modeling 

the disturbances and communication delays is necessary for improving the LFC 

performance. 
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                                                       Table 1.1 A Comparative study on LFC techniques for optimal and Robust performance. 

Ref Methodology Focus 
Operating 

Conditions 

Renewable 

integration 

Coordinated 

Control 

Controller 

Parameter 

Sensitivity 

[3] 
Battery and demand response for 

LFC 

Robust and stable 

frequency control 
Normal/Random 🗶 ✔ 🗶 

[4] 
A quasi-oppositional harmony 

search algorithm  

Improved dynamic 

response 
Normal/Random ✔ 🗶 🗶 

[6] Delay compensator design Improved stability Normal/Random 🗶 🗶 🗶 

[7] 
Integral automatic generation 

control (AGC) controller 

Penetration of wind 

generation  into the 

grid 

Normal ✔  🗶 🗶 

[9] 
Design of a simple approach for 

FO-IMC tuning 

Disturbance 

rejection 
Normal 🗶 🗶 🗶 

[14] Robust PID controller design 
Reliable controller 

performance 
Normal/Random ✔ 🗶  🗶  
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[21] Modified PID tuning using GOA 

Frequency control 

under multiple 

disturbances 

Normal/Random ✔ ✔ 🗶 

[22] 
Tilt integral derivative with filter 

(TIDF) controller design 

Improved controller 

performance 
Normal/Random ✔ ✔ 🗶 

[28] 
Evolutionary imitation-based RL 

technique 
Coordinated control Normal/Random ✔ ✔ 🗶 

[32] 
Modified Jaya algorithm tuned 

novel adaptive controller 

The objective 

function of online 

optimization  

Normal 🗶 🗶 🗶 

[33] 
Load frequency active disturbance 

rejection (LADRC) 

Overcome the effect 

of disturbances in 

load 

Normal/Random 🗶 🗶 🗶 
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1.4.4 Uncertainties and communication delays 

The main goals of LFC in multi-source power systems with renewable integration 

include robustness under uncertain conditions where there is concern for the system’s 

resilient operation [137]. This phenomenon was observed in August 2019 in the case of a 

European grid failure [148] event due to frequency disturbance, where the grid had to 

respond quickly. Apart from such severe disturbances, minor frequency deviations can 

occur due to communication failures [149] and frozen measurements. These affect the load 

frequency controllers, as observed in the German control area, causing a reduction in loads 

to restore the frequency [150]. Such load reductions can impact the economic operation of 

the power system. Furthermore, a recent study has published an open database of frequency 

deviations in the power grid at various locations worldwide [6], presenting an argument for 

the importance of maintaining power grid frequency under changing scenarios with 

renewable integration. Given these implications of frequency deviation in HPS, it is 

imperative to establish effective frequency control mechanisms.  

Uncertainty modeling 

The uncertainties present in the system cause frequency deviations, which require 

adept controller action for maintaining nominal frequency [151]. Therefore, it is necessary 

to model the uncertainties in such a way that the controllers can respond to these source 

or load uncertainties. An approach using randomized simulated models for the fluctuations 

in wind speed and the load was utilized for representing the uncertainties while testing the 

robustness of the controllers [51], [152]. Similarly, a random load disturbance model 

without considering the source uncertainty is generated through simulation in LFC studies 

[153].  Theoretically, these disturbances can be understood as continuously varying input 

disturbances. 

One of the main limitations of these methodologies is that the uncertainty models 

cannot provide any real-time information for the LFC operator or the controllers, which is 

crucial for anticipating future disturbance for improved LFC decision-making ability. 

Therefore, uncertainty characterization for LFC studies must be described for specific real-

time scenarios.  

Though uncertainty modeling has been well-explored and established in day-head 

scheduling for making hourly decisions and providing flexibility and control [154]; 

however, this uncertainty modeling is unsuitable for control decisions concerning LFC 

because LFC involves shorter time scales and faster response [155]. Very few studies are 
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available on including uncertainty models for performing effective frequency control at 

shorter time scales [156]. Uncertainty assessments performed as a part of LFC using state 

estimation studies did not consider the impact through modeling of practical load and 

wind fluctuations. As such, forecasting load and source uncertainties associated with 

distributed generation are crucial for understanding the impact of uncertainty on system 

frequency. Another recent study utilizing probabilistic wind uncertainty forecasting impact 

analysis reported frequency variations as significant as 0.25 Hz in the frequency deviation 

when there are significant wind generation uncertainties in the system [157], where real-

time data was not considered. Such frequency deviations higher than 0.1 Hz are 

unacceptable according to the operating standards of various power grids worldwide [36], 

[158]. Moreover, the deterministic frequency deviations are required to be limited to 100 

mHz to avoid mismatches in the optimal power flows for secure and economical operations 

[150]. Given the operational requirements for maintaining the grid frequency within 

allowable limits [57] and the impact of uncertainty on the grid frequency [157], it is 

necessary to model the load and generation uncertainties considering real-time data for the 

grid operators to impart effective LFC. Therefore, data-driven uncertainty models are 

necessary to provide the necessary real-time information to LFC operators. 

Communication delays 

Furthermore, several studies have only focused on controller optimization [159], 

[160] for robust LFC design considering various types of controllers. Optimized PID 

controllers with different configurations are widely employed for LFC operation because 

of their simple yet robust performance [128], [161]. Some of the recent studies suggested 

adaptive control techniques considering strategies to adjust the LFC action under 

different uncertain scenarios [142], [162]. It is to be noted that the previous research for 

LFC, considering robust optimization and adaptive control, is operated through an operator-

driven centralized communication system [163]. In such a scenario, the problem identified 

is that these adaptive approaches cannot guarantee efficient regulation during 

communication data loss to regulate the frequency.  

A few studies investigated the problem of communication delay by designing 

compensators and modeled the delay using the exponential delay function [144], [151]. 

Apart from LFC delay usually arising at the supervisory control and data acquisition 

(SCADA) systems, the measurement time delays while sensing the data from remote 

terminal units (RTU) were addressed by triggering mechanisms [149]. However, packet 
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loss or data loss is another important factor that can seriously impact the stability of the 

system. To address this issue at LFC, a recent study has considered packet dropout in 

communication with restoration after a certain period of time and implemented a consensus 

control [164]. The measurement data loss can also significantly impact the command 

generated by the controllers due to inaccurate feedback measurements, which has not been 

considered in these studies. Communication delay is mainly addressed in conventional 

thermal power systems [144], [149], [151], where DER integration in LFC was not part of 

the problems addressed. One more aspect that did not receive the necessary attention in the 

previous LFC studies is the impact of renewable uncertainties co-occurring in the 

presence of communication data loss or measurement data loss. In addition to this, the 

approaches presented in [144], [151] to address the communication delay have considered 

extensive simulation studies for verification. Further, performing validation studies using 

hardware-in-the-loop (HIL) simulation improves the practical feasibility of the methods 

utilized for LFC [155]. 

1.4.5 Resilience and regulation markets 

Another important LFC issue is resilience, which mandates that the grid should have 

the capability to withstand a large disturbance. One such disturbance identified in the grid 

operation for frequency stability is the control input malfunction in LFC [35]. For stable 

operation of an HPS consisting of DERs, frequency should be maintained using efficient 

coordinated control mechanisms [137]. The collective participation and control of multiple 

sources are essential in systems with wind power installations due to the variability of wind 

resources and associated wind curtailment [165]. The robust controller performance was 

considered in recent studies for withstanding renewable uncertainties in microgrids and 

HPS consisting of battery storage and hydrogen fuel cells [166]. Even though robust 

frequency control was guaranteed, ineffective LFC mechanisms during the loss of sources 

can lead to power system resilience issues through slow cascading failures [148]. Various 

storage possibilities were considered for addressing the rapid application of LFC to ensure 

the power system's effectual and reliable operation [167]. For instance, if the steam valve 

is not immediately adjusted, various losses in a system might cause transient frequency 

stability problems in thermal and battery-operated systems [40]. However, there is limited 

research related to frequency stability under multiple-outage scenarios.  

Another cause of frequency instability is service denial attacks, where 

supplementary loop-based architecture was proposed to secure data transfers and assure 
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cyber-resilience [168]. However, in this architecture, existing infrastructure needs to be 

updated to commission additional control loops. The physical layer consists of energy 

sources, loads, measuring equipment, and associated hardware [169]. Integrating the cyber 

and physical layers enhances decarbonization [170] and frequency regulation capabilities 

under vulnerabilities [37]. LFC architectures proposed in the literature [137] did not support 

the incorporation of the cyber layer for secure data transfers. 

In addition, the aggregators' contracted power for ancillary service provision is 

one of the crucial aspects of LFC. Frequency regulation is one of the ancillary services 

where the remuneration mechanisms are based on the active power transferred in a given 

duration [171]. The power transfer happens whenever the DER receives an LFC command 

signal for any event, such as a load increase or a source uncertainty [22]. The stakeholders 

share this data for availing of the price in the deregulated markets for delivering frequency 

regulation services [44]. For cyber resilience, the energy market data should be safeguarded 

from false data injection attacks [172]. To clarify the terms, power system resilience 

predominantly relates to the physical layer, whereas data transfer and storage influence 

cyber-resilience. There is a strong association between the two taxonomies-related 

resilience issues, with certain overlapping events [28]. 

In view of the secure and reliable grid operation, resilience in LFC needs to be 

addressed. Ensuring resilience in the physical and data layers for frequency stability 

requires a suitable framework. However, existing control frameworks lack a 

comprehensive solution for resilient frequency control. A comparison of the available 

methodologies for frequency regulation highlighting the need for novel in-depth techniques 

for LFC is shown in Table 1.2. The frameworks proposed in the studies did not integrate 

the physical, control, and data layers to build a comprehensive LFC model capable of 

informed decision-making. Moreover, the existing data layer is unsuitable for extensive 

data processing with higher transmission rates. 

Very few studies are available on the resilient ancillary service provision, 

specifically for providing active power regulation. In the previous studies [32], [135], the 

authors did not address the effect of the loss of multiple generation sources on LFC. Instead, 

the resilience to cyber-attacks on the LFC command signal was extensively considered in 

the LFC studies [37], [168], [169]. Nevertheless, the preparedness for malicious attacks 

during the contracted power data transfer from the distributed power producers to the 

frequency regulation markets has not been studied. The contracted power payment in the 

regulated markets was based on the conventional data layer, and automated decision-
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making capabilities were not incorporated into the LFC architecture. An effectual 

approach for harmonizing the frequency control and power data networks is required for 

the resilient operation of the DER-integrated HPS, where exploration of new technologies 

for futuristic power grids is preordained. 

Electric grid modernization and increased participation of DERs necessitated 

integrating information technology (IT)-based solutions for efficient operation and control 

of power systems [173]. The conventional data layer cannot trigger automated contracts for 

effective decision-making, whereas a blockchain-driven data layer stands as a promising 

breakthrough for informed decision-making in power systems [174]. Moreover, the 

communication infrastructure in smart grids is subjected to malicious cyber-attacks and 

requires a secure energy data transfer and storage mechanism [37]. In the blockchain, the 

immutability feature aids in the power network's secure and resilient operation [173], [175]. 

In many energy transactions, various players, such as market operators and coordination 

agents, are involved, where trust is a pertinent issue [176]. In contrast, self-enforcement 

functionality unique to the Blockchain can be leveraged to ensure minimal third-party 

involvement and trust-based automated mechanisms [177].  

 Due to its inherent strategic decision-making capabilities, blockchain networks 

gained research interest in various DER applications, such as energy management systems 

(EMS) facilitating peer-to-peer (P2P) transactions [178], prosumer-based networks [179], 

sustainable recycling [180], and microgrids [177], [178].  

A blockchain network utilizes smart contracts, which are predefined digital 

agreements constituting a set of rules for attaining the connected targets [27]. In brief, smart 

contracts are executable pieces of code written by participants that can be completed 

autonomously to create and store values in a block when the predefined rules are carefully 

adhered to [183]. A blockchain-based model for LFC resilience in spent electric vehicles 

(electric vehicles with used batteries) was investigated [184]; however, the application of 

blockchain for LFC utilizing the coordinated control for regulating frequency has not been 

considered in the literature, as observed in Table 1.2. As a result, it is evident that the LFC 

techniques confronted with the issues of resilience, secure data transfer, and intrinsic 

decision-making for permitting transactions necessitate advanced ways for offering a 

comprehensive solution. Moreover, initializing and completing the frequency regulation 

transactions based on the regulation markets through blockchain smart contract 

technology was not studied from the LFC point of view. 
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 Table 1.2 A comparative analysis of resilient frequency control. 

Ref Frequency control objective Architecture Power 

system 

Resilience 

Cyber-

Resilience 

Blockchain 

Application 

Remarks and Limitations 

[32] Frequency regulation 

following the outages in the 

grid 

Conventional ✓   Power system resilience was addressed, and data 

vulnerability exists 

[37] Resilient load frequency 

control to avoid collapse at the 

system level 

Conventional 

with data 

security 

 ✓  Resilient control under cyber-attacks but 

regulation market compensation was not 

addressed 

[137] Coordination of the 

distributed controllers for the 

realization of frequency 

control 

Conventional 

with market 

integration 

   Coordinated control with data vulnerability and 

the requirement for high computational efforts 

[135] Design and implementation of 

robust frequency control 

under reduced inertia and 

uncertainties 

Conventional ✓   Robust and resilient frequency control without 

considering regulation markets and data security 
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[39] Improving the robust stability 

of microgrids 

Conventional    An efficient power-sharing approach with the 

conventional data layer 

[181] Coordination for frequency 

control in Hybrid energy 

system with greater wind 

penetration 

Conventional    Uncertainties due to RES were efficiently 

handled. However, the data layer was 

conventional 

[166] Coordinated controllers for 

designing robust frequency 

control  

Conventional    A novel approach for system parametric 

deviations with limited data security without 

considering regulation markets 

[124] Robustness of the controller 

for reducing the frequency 

deviation in an interconnected 

system 

Conventional    Optimized control using different objective 

functions where the aspects of resilience were 

not addressed 

[49] Improving the time-domain 

response through energy 

storage 

Conventional    Energy storage is utilized for regulating 

frequency, but the regulation remuneration was 

not discussed 

[168] Resilient frequency control 

under cyber attacks  

Conventional 

with data 

security 

 ✓  Data security was addressed along with control; 

however, decisions were based on conventional 

contracted power 
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[169] Market-based frequency 

control for robustness and 

cyber-resilience 

Conventional 

with market 

integration 

 ✓  Market participation was evaluated along with 

data security. Lacks decision-making under 

outage scenarios  

[57] Frequency control and grid 

stability is achieved while 

satisfying energy storage 

requirements  

Conventional 

with flexible 

load 

   An efficient method is introduced for extending 

the life time while maintaining frequency. 

However, the market integration of ESS has not 

been considered. 

[152] Resilient control and 

regulation of frequency under 

attacks in wind integrated 

networks 

Conventional 

with data 

security 

 ✓  A robust control mechanism under different 

attacks for resilient communication network has 

been proposed. Nonetheless, this mechanism did 

not consider the data tampering in the regulation 

markets. 

[182] Frequency control for 

alleviating the burden on 

aggregator decision making 

has been considered with 

electric vehicles 

Conventional 

with market 

integration 

   Decision making capability enhanced for the 

aggregators including the market prices. 

However, the data vulnerability needs to be 

addressed. 



28 

 

It is to be noted that although blockchain methodology is considered for energy 

management applications [185], its effectiveness for frequency regulation and data storage 

is to be investigated. The efficacy of blockchain for market clearing during frequency 

regulation in regulation markets should be further explored, as faster clearing was attained 

in prosumer energy management markets using this technology [186]. Cyber-resilience 

requires a study of blockchain-assisted LFC mechanisms.  Although optimization 

techniques, uncertainty modeling, communication delay-robust techniques, and cyber-

resilient architectures can improve the resilient and robust performance of the 

controllers, ensuring stable operation under the loss of a major source is still a challenging 

task.  

1.4.6 Frequency Stability enhancement 

In addition to frequency control, stability is one of the critical aspects of the 

successful operation of an HPS [187]. Frequency controls such as turbine over-speed 

controls may account for some of the complex frequency instability problems [47]. Time 

domain analysis is proven to be a reliable method for stability studies [188]. Frequency 

instability was observed for an MG system in [189] by conducting parameter sensitivity 

analysis through variation of the system parameters. For isolated HPS or systems with 

RES, modeling was developed using state-space representation in order to perform 

various frequency stability studies [190]–[192]. These works were found to focus only on 

PI controller models while developing the necessary state-space models for the controller.  

On the other hand, a PID controller was utilized to damp the frequency oscillations in the 

models for secondary control [107], [110], [108], [193]. A cascaded PI-PD control for HPS 

was discussed through time-domain simulations [194]. However, controller dynamics 

were not incorporated in the state-space model developed, which can be crucial for 

understanding frequency stability and performing sensitivity analysis. Frequency 

stability is crucial in HPS, and analysis concerning controller parameters is fundamental, 

where inaccurate control settings can cause local instability [195]. Various definitions 

related to frequency stability are exhaustively presented in [13], [20].  

The traditional power system controls are centralized and cannot accommodate the 

need for integrating a large number of RES in the distribution system [196]. The control 

system design for modern HPS should reinforce the DER capabilities and operate using a 

decentralized framework for enhanced frequency stability [197]. In view of deregulation 

and the changing structure of the HPS the centralized LFC paradigm was shifted to 
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distributed models [198]. Therefore, the momentum towards developing decentralized 

control architecture suitable for LFC has gained importance with changing scenarios in 

deregulated power systems [199]. 

Numerous LFC techniques were proposed in the literature to maintain the system's 

frequency. A robust frequency control model using H-Infinity control was developed for a 

large-scale power system [151], neglecting the effect of renewable penetration on the 

system frequency. In addition, the tuning of the PID controller to achieve LFC was 

addressed by [58], [133], the cascaded stages of controllers for LFC [200] where 

coordination control schemes were not included in the studies. However, these methods 

did not address a coordinated approach considering hybrid sources in the power 

system. Reduction in system inertia due to asynchronous interconnections [46], which is 

contributed by the inertia constant of synchronous generators connected to the system 

[201], [202] is another concern for frequency stability.  

DRL for coordinated control and frequency stability enhancement 

Investigating novel control techniques in different applications is inevitable to gain 

insights into the optimal controller design for coordinating multiple controllers. Apart from 

LFC, the recent control applications are focused on utilizing reinforcement learning 

methods for enhanced stability performance [203]. For coordinated control applications 

in various domains of power system optimization, DRL has been recognized as the best 

approach for coordination and cooperation [204], [205]. With the advent of machine 

learning techniques, DRL-based decentralized LFC schemes were proposed for achieving 

the desired frequency response [206]. The DRL acts through autonomous agents in a multi-

agent-based control system that coordinately works towards LFC [207]. A modified version 

of the single-agent twin-delayed deep deterministic policy gradient (TD3) method was 

proposed for LFC using a centralized secondary controller for a two-area power system 

[206]. However,  centralized secondary control, otherwise known as LFC, was not 

considered feasible because the dynamic response for various power sources is not identical 

in real-time scenarios [208]. Therefore, distributed mechanisms for LFC were proposed for 

controlling multiple sources [199], [209]. The operational environment is uncertain in 

hybrid power systems where the architecture functionality and design components are 

essential for seamless control performance [209]. These schemes in the literature have not 

accounted for uncertainties and reduced inertia due to the penetration of RES while 

formulating the LFC problem.  
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Multi-agent (MA) DRL techniques were proposed for their efficient coordinating 

capabilities for decentralized frequency control [104], [206], [210]. In one of the DRL 

solutions, a deep deterministic policy gradient (DDPG) was compared with the Q-learning 

technique for frequency control during emergencies [211], where DDPG outperformed the 

Q-learning algorithm. Similarly, DDPG was tested for the LFC of a multi-area thermal 

power system considering the renewable and load uncertainties [212]. DDPG is a policy-

based model which is based on actor-critic networks, where the actor corresponds to the 

policy and is updated through gradient ascent to follow a policy to maximize the total 

reward. The critic corresponds to the value function and is updated through gradient descent 

that minimizes the total loss [213]. However, the DDPG method suffers from 

overestimation while updating the policy and function values [214]. The overestimation 

problem can be addressed through TD3 [214] by applying delayed policy updates. TD3 

was more effective than DDPG for cellular applications [215] and centralized LFC, 

neglecting renewable uncertainties [206]. Table 1.3 presents some prominent decentralized 

LFC mechanisms that incorporated distributed and modified TD3 algorithms to improve 

the efficiency of the multi-agent TD3 (MA-TD3) algorithm. However, its effectiveness for 

decentralized LFC of HPS under a dynamic, uncertain environment considering demand 

side contribution is not analyzed. 

Demand side participation for frequency stability 

On the demand side, the aggregated EVs with a supplementary control are 

employed for secondary frequency control or LFC [219]. As depicted in Table 1.3, very 

few studies are available on the decentralized framework; among those, demand-side 

participation is not considered. A few studies utilized the DERs to regulate the active power 

output based on an LFC command [87], [220]. The impact of RE uncertainties mainly 

influences the secondary control layer [220]. Therefore, utilizing DERs for LFC design 

and implementation in Hybrid systems can alleviate the operational difficulties in the LFC 

layer. Besides, the islanding operation under the loss of thermal interconnection causes 

frequency instability [221]. Smart homes can successfully participate in energy 

management when integrated with RES [222].  



31 

 

                                             Table 1.3 A comprehensive literature survey of the DRL methodologies implemented for LFC.  

Ref LFC Methodology Modeling Control Remarks on the LFC framework 

[210] Single-agent DRL 
Renewable and 

conventional 
Centralized 

Decentralized schemes for LFC are required with DER 

integration. 

[104] 
Fuzzy + Single agent DDPG + 

Inertia control 

Renewable, 

Load-side 

(V2G), and 

conventional 

Centralized 
Multiple controller coordination was not studied, and DDPG 

suffers from overestimation. 

[206] DCR-TD3 
Renewable and 

conventional 
Centralized 

Although overestimation was addressed using TD3, X2G for 

LFC and coordination are not considered 

[212] MA-DRL using DDPG 
Renewable and 

conventional 

Decentralized and 

coordinated 

An efficient cooperative strategy was developed. Considering 

load-side participation can further enhance the applicability to 

DER-integrated networks. 

[138] 

Exploration-based multi-agent 

deep deterministic policy 

gradient (EE-MADDPG) 

Renewable and 

conventional 

Decentralized and 

coordinated 

A coordinated approach to reduce mileage wastage is considered. 

The method has high computational complexity, and load-side 

resource participation was not considered. 
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[216] 

Multi-agent distributed 

multiple improved deep 

deterministic policy gradient 

(MADMI-TD3) 

Renewable and 

conventional 

Centralized- 

Decentralized using 

virtual generation 

alliance 

This framework is not fully distributed, and the learning 

influences the central agent. In such methods, the performance 

of the multiple source systems cannot be fully optimized. 

[217] 

Linear active disturbance 

rejection control (LADRC) 

based soft actor-critic (SAC) 

Renewable and 

conventional 
decentralized 

An effective frequency control method is implemented. 

However, Load side participation in the LFC framework was not 

considered. 

[218] 
SAC-based MADRL (offline) 

and trained agents (online) 

Renewable and 

conventional 

Coordinated and 

decentralized 

An economical method has been implemented for frequency 

control. The system is mainly renewable-based, so the low inertia 

problem still exists. 
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1.5 Research gaps and Motivations 

The literature survey covering the breadth and depth of the current state of LFC 

research highlighted a few important research gaps that are addressed using various novel 

methods throughout this study. The pictorial representation for connecting the dots and 

developing a comprehensive LFC operating model for modern HPS is depicted in  Figure 

1.9. Following are the points that outline the research gaps, which are strong motivating 

factors for the research work carried out in this thesis: 

• In the literature, mathematical models for PID that are employed for LFC are not 

considered while developing the dynamic state-space models. The limits obtained 

by eliminating the derivative gain, 𝐾𝑑 ignores the effect of the derivative term on 

stability, which helps in dampening the oscillations. Therefore, the inclusion of 

controller models for developing a comprehensive state-space model of the HPS is 

not found in the literature. 

• Direct optimization technique using LP is still unexplored in the LFC of power 

systems integrated with GER and has not been validated. Another drawback is that 

the controllers verified in simulation cannot be guaranteed for practical use due to 

limitations on the configuration, hardware processing power, and solver step-time 

details variance in practical cases.  

 

 Figure 1.9 Connecting the dots and proposing a novel framework for LFC of HPS. 
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• On the other hand, the traditional PID tuning approach based on a transfer-function 

derived objective function is computationally intensive and takes longer to converge 

because it fails to acknowledge the RoC.  

• Further, it was often overlooked by the previous LFC studies is the impact of 

renewable uncertainties. Uncertainties are not modeled considering the real-time 

data.  

• Uncertainty characterization is paramount to understanding the impact caused by 

intermittent generation sources and dynamic loads on the frequency deviations in 

the system, which needs to be modeled using efficient data-driven techniques. 

• In the literature, the design of adaptive control in the event of communication 

data loss or measurement data loss was not given sufficient consideration. The loss 

occurring together with the presence of uncertainties can impact LFC operation, and 

therefore, this needs to be considered. 

• Further, the control should also be tested for practical feasibility by HIL simulation, 

considering communication failure under uncertain variations in load and 

generation while ensuring the deviation within acceptable deterministic frequency 

deviation (DFD) limits.  

• Blockchain can potentially perform distributed control operations and 

supplement future energy control centers and network operators. Given the 

impending benefits of blockchain, its application to critical DER network issues 

involving frequency regulation needs to be further researched to realize the potential 

advantages. 

• A comprehensive study for accentuating secure power system LFC operation under 

multiple source losses and data vulnerability issues has not been considered in 

the literature. The fundamental motivation for this study is to formulate a 

framework for LFC resilience through event detection and control with the 

integration of DER networks. 

• The LFC market integration requires data storage and automated transaction 

capabilities as the number of LFC participants increases, where the problem of 

secure data transfers and inherent decision-making capabilities needs to be 

addressed more effectively. This drives the study's objective of proposing a 

blockchain framework into existing LFC architectures. 
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• Another reason is the lack of an end-to-end solution in current methodologies in 

aspects of control, power system resilience, cyber-attack resilience, and LFC market 

enabling technology. As a result, the proposed approach aims to provide a cutting-

edge solution by leveraging a novel blockchain-based framework for resilient LFC 

operation. 

• With the motivation to integrate the blockchain for data monitoring, LFC event 

detection, control command initiation, actual contractual power data logging, and 

compensation for in-regulation markets, this study proposes a novel LFC 

framework. 

• The centralized control mechanisms using single-agent DRL techniques cannot 

achieve the distributed control functionalities required for DER integration in 

modern power systems. These studies have not considered decentralized schemes, 

which are essential for the scalability and interoperability of DERs in the HPS.  

• The demand-side resource integration using smart homes in secondary 

frequency control was not considered in the existing model-based systems, even 

though decentralized schemes are employed. Moreover, none of these studies 

accounted for the reduced inertia issue in the modeling and control framework. 

Hence, another motivating factor is to assess the participation of smart homes in 

providing frequency support during the islanding mode of operation. 

• The environment in an HPS varies with different controller parameters, which 

affects the controller tuning and the calculated reward. The environment in which 

the agent is trained plays a vital role in learning. For effective decision-making by 

the DRL agent, the environment should be updated while using the dynamic 

environment (DE) in the MA-TD3 training process for a fully-decentralized 

operation, which has not been considered. 

1.6 Aim and Scope of the study 

This study aims to “Design, simulate, and validate a resilient and robust control 

framework for frequency regulation in hybrid power system integrated with renewables 

and storage,” with the following research objectives. 

• Objective 1: Study various aspects of stability and control of Hybrid Power 

Systems and develop dynamic models for frequency regulation considering various 

power system components. 
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• Objective 2: Design and validate the optimal controller for the multi-source 

distributed Hybrid Power System using robust frequency control techniques by 

defining the region of convergence (RoC) for stability.  

• Objective 3: Integrate data-driven models for the stochastic uncertainties in wind 

generation and load profiles and design adaptive control for frequency regulation, 

including communication loss and measurement loss. 

• Objective 4: Model and build the regulation market framework for resilience and 

robustness using blockchain and incorporating smart home inverters in a Hybrid 

Power System for islanding stability and coordination in frequency control. 

The broad scope of this study is frequency regulation of hybrid power system, 

including wind as renewable energy and DERs, where coordinated control and robust 

optimization, including RoC is considered. The data-driven uncertainty models with 

ML techniques suitable for LFC are within the scope of the study, where wind uncertainty 

and load uncertainty are modeled. Adaptive control through data-driven predictive 

control under communication failure is a part of the study. Moreover, the study covers the 

blockchain framework using a proof of concept for the regulation-market transactions, 

and resilience is a part of the current thesis. Furthermore, advanced DRL methods for 

stable operation using smart home inverters are under the broad spectrum of the study. 

1.7 Organization and layout of the study  

Various coordination strategies, optimization techniques, a framework for uncertainty 

models and adaptive control, a framework for blockchain-assisted resilient LFC, and robust 

and stable control through smart home inverters are proposed in this work.  

The  rest of the thesis is organized into six chapters. The layout of the remaining chapters 

and the summary of these chapters are presented below: 

1.7.1 Chapter 2 

In Chapter 2 (Objective 1), the modeling aspects of HPS, including the source 

models consisting of RTPS, renewable energy models, and DER models, are developed. 

The disturbances are modeled as step inputs. Moreover, controller configurations are also 

developed using mathematical equations. Comprehensive state-space models, including the 

controller models, are discussed along with the necessary simulations. Consequently, the 

design challenges in controlling the frequency effectively are discussed. 



37 

 

1.7.2 Chapter 3 

In Chapter 3 (Objective 2), preliminary investigations are done on different 

controllers, including the centralized controller. The most popular and beneficial control 

topologies are identified. The design of these controllers using ROC-based optimization 

techniques and various objective functions is discussed. Consequently, validation studies 

of mathematical models through time-domain simulations are conducted. Further, 

comparative assessments are performed and validated using HIL simulation studies. 

1.7.3 Chapter 4 

In Chapter 4 (Objective 3), uncertainty modeling using data-driven methods is 

discussed using various simulation studies. A novel adaptive architecture under 

communication failures is introduced using a data-driven predictive control mechanism. 

Moreover, the proposed method is assessed using various performance metrics under 

different disturbance scenarios. Finally, the HIL validation of the LFC action for the 

proposed framework is conducted. 

1.7.4 Chapter 5 

In Chapter 5 (Objective 4), a detailed blockchain framework for implementing a 

resilient and robust control framework for LFC is proposed. The framework utilization for 

regulation market transactions and remuneration payments is simulated for different 

scenarios. The resiliency of the power system and the cyber-physical system is addressed 

through the proposed method, and various simulation and HIL validation studies are 

performed. 

1.7.5 Chapter 6 

In Chapter 6 (Objective 4), a deep reinforcement learning-based multi-agent 

control system is developed for coordinated and distributed LFC operation. Participation 

of smart home inverters for enhancing stability during the islanding mode of operation is 

considered by simulating the loss of RTPS. Various control loops are coordinated for 

effective frequency regulation. The proposed method is verified through exhaustive 

simulation studies and performance metric assessments. 

In summary, the background and motivation for LFC research in isolated HPS are 

discussed. The objectives of the study are defined based on the background and impact of 

renewables and DERs on frequency through an outlook on LFC. An extensive literature 

survey is conducted to identify the research gaps. Modeling of the HPS, control topologies, 
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optimization methods, uncertainty models for adaptive control, blockchain for resilience, 

and smart home inverters for stability are identified as the key motivating factors for the 

study.  
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Chapter 2 

2 System Model  

 

 Figure 2.1 Aspects of Objective 1 addressed in Chapter 2: An outline. 

Chapter 2 discusses different modeling aspects of the system configured for 

studying stability and control of hybrid power systems for frequency regulation. The outline 

of Chapter 2, highlighting the key topics for comprehensively addressing the first objective 

of this work, is depicted in Figure 2.1. Furthermore, Section 2.7 discusses the design 

challenges of the controllers and provides the background for controller choice and 

optimization. Significant insights from Chapter 2 are presented in Section 2.8. 

2.1 Introduction 

In LFC, the dynamic system model is represented using the transfer function 

approach for the individual components of the power system under study. The current 

system consists of a Reheat Thermal Power System (RTPS), Wind Turbine Generator 

(WTG), Diesel Engine Generator (DEG), Fuel Cell (FC) and aqua Electrolyzer (AE), and 

a Battery Energy Storage System (BESS). All the energy sources and loads are connected 

to the point of common coupling (PCC). The loads are connected at the PCC, and the 

system configuration is depicted in Figure 2.2.  

PCC's real power balance condition maintains a constant frequency. To minimize these 

frequency deviations, providing frequency support by maintaining the real power balance 

is necessary. This can be achieved using primary control via droop control [223] as well as 

secondary control via various controllers [224]. Building a dynamic model representing 

various time delays of different energy sources is necessary for LFC. Initially, the RTPS 

model for representing the dynamics of the conventional power system with respect to the 
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changes in frequency for a given disturbance is considered and developed in the following 

sub-section. 

 

 Figure 2.2 Configuration of the power system model under study. 

2.2 RTPS Model 

Dynamic model block diagram representation of RTPS for LFC modeling that 

forms the basis for further analysis is shown in Figure 2.3. The two-stage turbine model is 

the most widely accepted model in the literature. RTPS model [225], [226] is represented 

by three functional blocks; each block corresponds to the governor model, Turbine1 model, 

and Turbine2 model where ′𝛥𝑃𝑔′, ′ 𝛥𝑃𝑡′ and ′𝛥𝑃𝑡1′ are their respective outputs. Turbine1 

represents the HP stage model, and Turbine2 represents the LP stage model. The time 

constants of all the sources represent the time required for change in the power deviation 

of independent sources for a given regulation command. An example of the governor reheat 

turbine model for calculating the reheater time constant is shown below. 

Consider a single reheat turbine whose turbine time constant can be obtained using 

the equation, 𝑇𝑡 =
𝑃0

𝑄0
𝑉

𝜕𝜌

𝜕𝑃
, where the parameters, 𝑄0 is rated flow out of the vessel in kg/s, 

𝑃0 is rated pressure in kPa, 𝑉 is the volume of the steam vessel in m3, 𝜌 is the density of 

steam in kg/ m3, and 𝑃 is the pressure of the steam in the vessel. Data for 𝑇𝑡: 

𝑃0 = 16671.305 𝑘𝑃𝑎, 𝑄0 = 405.04 𝑘𝑔/𝑠, 𝑉 = 2.1298 𝑚3, 𝑎𝑛𝑑 
𝜕𝜌

𝜕𝑃
=  0.00341 s2/m2 

Therefore, 𝑇𝑡 ≈ 0.3. Similarly, the calculated reheat constant is 𝑇𝑟 ≈ 10. The power system 

time constants based on the 2000 MW base generation of the RTPS are calculated for the 

equivalent inertia, 𝐻𝑒𝑞 = 5 𝑠, D = 0.008333 MW/Hz pu are 𝐾𝑃 =
1

𝐷
= 120 Hz/MW pu and 

𝑇𝑃 =
2𝐻𝑒𝑞

𝐷𝑓
= 20 𝑠. The system time constants are valid for HPS with rotating machines, 
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penetration of renewable energy sources modeled as source disturbance, and DER 

integration. If the conditions of the system change, the modeling needs to be modified as 

per the system configuration. ′𝛥𝑃𝑡ℎ′ represents the change in real power generated by 

RTPS.  ′𝛥𝑃𝑑′ represents the change in real power demand by the load. R is the RTPS droop, 

expressed in Hz/MW, regulating the governor's speed. 

The derived state equations for RTPS power regulation are given in (2.1) to (2.4) 

 𝛥�̇�𝑡ℎ = −
1

𝑇𝑟
𝛥𝑃𝑡ℎ +𝑐1𝛥𝑃𝑡1 +

𝐾𝑟

𝑇𝑟
𝛥𝑃𝑡, (2.1) 

 𝛥�̇�𝑡1 = −
1

𝑇𝑡
𝛥𝑃𝑡1 +

1

𝑇𝑡
𝛥𝑃𝑡, (2.2) 

 𝛥�̇�𝑡 = 𝑐2𝛥𝑓 −
1

𝑇𝑔
𝛥𝑃𝑡,   (2.3) 

 𝛥�̇�𝑔 = 𝑐3𝛥𝑓 −
1

𝑇𝑔
𝛥𝑃𝑡 −

𝐾𝑔

𝑇𝑔
𝛥𝑃𝑔 −

𝐾𝑔

𝑇𝑔
𝛥𝑢1, (2.4) 

where 𝛥𝐾𝑔 and 𝑇𝑔 are the governor constants, 𝛥𝑢1 is the command generated by controller-

1, 𝑐1, 𝑐2, and 𝑐3 are the coefficients computed obtained from the system model parameters. 

 

 Figure 2.3 Block diagram representation of the dynamic model for HPS. 
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2.3 DERs Model 

The DERs are WTG, FC, AE, DEG, and BESS. BESS is the storage unit employed 

that can participate in load frequency regulation at the time of stochastic uncertainties. FC 

is used for fast response to load or source variations. The AE is used for hydrogen 

production through electrolysis at the onsite location. Electrolysis helps achieve carbon-

free production and is the most widely used method. The modeling of these individual 

sources is obtained from [227], where the BESS, WTG, FC, and DEG sources are modeled 

as simple first-order lag transfer functions. First-order modeling of the sources is suitable 

for representing the dynamics that affect the frequency of HPS [228]. The diverse sources 

employed in power generation are connected at a common coupling point, an AC bus, to 

feed the load, as shown in Figure 2.2. 

2.3.1 Wind Turbine Generator  

The WTG power output proportionally varies with the varying wind speed at the 

installed location. Different components are employed to define wind speed variables in 

order to account for real-time wind fluctuations [25]. The detailed WTG characteristics and 

the corresponding data for the WTG system are described in [229]. The available output 

mechanical power for the WTG is given in (2.5). 

 𝑃𝑊 = 0.5𝜌𝐴𝑟𝐶𝑃𝑉𝑤
3  (2.5) 

where 𝜌, 𝐴𝑟, 𝐶𝑝, and 𝑣𝑤 are air density, blade swept area, and wind speed respectively. The 

WTG representation using the first-order transfer function is depicted in the WTG block in 

Figure 2.2. The state equation obtained for WTG's output power is given in (2.6). 

 𝛥�̇�𝑤𝑡𝑔 = −
1

𝑇𝑤𝑡𝑔
𝛥𝑃𝑤𝑡𝑔 +

𝐾𝑤𝑡𝑔

𝑇𝑤𝑡𝑔
𝛥𝑣𝑤  (2.6) 

where the power output deviation from WTG is 𝛥𝑃𝑤𝑡𝑔. The modeling constants of WTG 

are denoted as 𝐾𝑤𝑡𝑔 and 𝑇𝑤𝑡𝑔. 

2.3.2 Fuel Cell (FC) and Aqua Electrolyzer (AE)  

An FC generates electrical energy from any fuel, such as hydrogen. Green hydrogen 

production is sustainable, and FC and the DERs supply the power required for hydrogen 

production. The water is separated into oxygen and hydrogen by the aqua electrolyzer. AE 

provides the necessary hydrogen for the FC's electrical energy production. The negative 

sign for AE in Figure 2.3 indicates the power absorbed by AE. The AE consumes 

approximately 25% of the electricity produced by the FC. For LFC research, first-order 
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transfer-function-based FC and AE modeling are suitable [230], [231]. Based on the 

available literature, the modeling is integrated into the HPS for FC and AE systems. 

Figure 2.3 presents the FC and AE transfer-function models. The state equations for the 

output power deviation of FC and AE obtained from the transfer functions are given in 

(2.7) and (2.8). 

 𝛥�̇�𝑓𝑐 = −
1

𝑇𝑓𝑐
𝛥𝑃𝑓𝑐 +

𝐾𝑓𝑐

𝑇𝑓𝑐
 𝛥𝑢2   (2.7) 

 𝛥�̇�𝑎𝑒 = −
1

𝑇𝑎𝑒
𝛥𝑃𝑎𝑒 −

𝐾𝑎𝑒

𝑇𝑎𝑒
 𝛥𝑢2   (2.8) 

The change in FC power generated is 𝛥𝑃𝑓𝑐. 𝐾𝑓𝑐 and 𝑇𝑓𝑐 are the FC's modeling 

constants. 𝛥𝑃𝑎𝑒  is the change in power consumed for hydrogen production in the AE. 𝐾𝑎𝑒 

and 𝑇𝑎𝑒 are the model constants of the AE system. 

2.3.3 Diesel Engine Generator (DEG) 

DEG controls frequency deviation by providing immediate power assistance when 

receiving the control command. DEG has a proven mark in practical applications as a 

backup/emergency power source due to its quick operational characteristics [228]. The 

first-order transfer function model for DEG is presented in Figure 2.3, neglecting the non-

linearities [228], [230]. The linearized state equation for DEG is given in (2.9) 

 𝛥�̇�𝑑𝑒𝑔 = −
1

𝑇𝑑𝑒𝑔
𝛥𝑃𝑑𝑒𝑔 +

𝐾𝑑𝑒𝑔

𝑇𝑑𝑒𝑔
 𝛥𝑢2  (2.9) 

where 𝛥𝑃𝑑𝑒𝑔 is the DEG power deviation, 𝐾𝑑𝑒𝑔 and  𝑇𝑑𝑒𝑔 are the DEG system model 

constants. 

2.3.4 Battery Energy Storage System (BESS) 

BESS is well-known for delivering swift active power support in the face of 

renewable uncertainty, which helps to reduce frequency deviations. The primary 

component in BESS is batteries and excess electrical energy from WTG can be stored in 

the BESS. It is to be noted that the negative sign in Figure 2.3 represents the energy 

storage capability of the BESS. The first-order modeling for BESS is shown in Figure 2.3 

[136], [225], [228]. The state equation obtained from the transfer function model of the 

BESS is given in (2.10). 

 𝛥�̇�𝑏𝑒𝑠𝑠 = −
1

𝑇𝑏𝑒𝑠𝑠
𝛥𝑃𝑏𝑒𝑠𝑠 ±

𝐾𝑏𝑒𝑠𝑠

𝑇𝑏𝑒𝑠𝑠
 𝛥𝑢2  (2.10) 
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𝛥𝑃𝑏𝑒𝑠𝑠 is the changing power in the BESS, 𝐾𝑏𝑒𝑠𝑠 and 𝑇𝑏𝑒𝑠𝑠 are the BESS model 

constants. The positive indicates that the BESS is discharging (supplying power) and the 

negative sign indicates that the BESS is charging (absorbing power). 

 (2.11) and (2.12) give the state equations representing the change in frequency. 

 𝛥𝑓̇ = −
1

𝑇𝑝
𝛥𝑓 +

𝐾𝑝

𝑇𝑝
𝛥𝑃𝑡ℎ +

𝐾𝑝

𝑇𝑝
𝛥𝑃𝑤𝑡𝑔 +

𝐾𝑝

𝑇𝑝
𝛥𝑃𝑓𝑐 −

𝐾𝑝

𝑇𝑝
𝛥𝑃𝑎𝑒 

 ±
𝐾𝑝

𝑇𝑝
𝛥𝑃𝑏𝑒𝑠𝑠 +

𝐾𝑝

𝑇𝑝
𝛥𝑃𝑑𝑒𝑔 −

𝐾𝑝

𝑇𝑝
𝛥𝑃𝑑   (2.11) 

 𝛥𝑓̇ = −
1

𝑇𝑝
𝛥𝑓 +

𝐾𝑝

𝑇𝑝
𝛥𝑃𝑒   (2.12) 

where 𝛥𝑃𝑡ℎ is the power deviation from RTPS, the power output deviation from 

WTG is 𝛥𝑃𝑤𝑡𝑔, the change in FC power generated is 𝛥𝑃𝑓𝑐, 𝛥𝑃𝑎𝑒  is the change in power 

consumed for the hydrogen production in the AE, 𝛥𝑃𝑑𝑒𝑔 is the DEG power deviation, 𝛥𝑃𝑑 

is the disturbance in load, and 𝛥𝑓 is the deviation in HPS's frequency, and the power system 

model representing the dynamics of load and inertia is obtained by the gain 𝐾𝑝 and time 

constant 𝑇𝑝. In the HPS model, the DER dynamics are generally modeled as first-order 

transfer functions that can represent the power deviations for controller design and LFC 

operation. For wind speed deviation, the WTG mechanical power output varies as a 

function of the wind speed, determining the windspeed characteristic curve. These 

variations are utilized to model the gain and time constants of the WTG. The parameters of 

WTG, FC, AE, and BESS are derived based on the input-output relationship of the source 

to the changes in the fuel and battery discharging rate. Similarly, the DEG parameters are 

calculated using the changes in the output power by considering the operation time.   

Thus, the modeling is based on (2.1) to (2.4), and (2.6) to (2.11) represent the 

holistic multi-source HPS. It is to be noted that the HPS designed so far is an uncontrolled 

system, where the signals  𝛥𝑢1 = 𝛥𝑢2 = 𝛥𝑓, and the deviation in frequency is dependent 

on the load and wind deviations in the HPS. 

2.4 Simulation of HPS 

The multi-source HPS model is described through (2.1) to (2.4), and (2.6) to (2.11) 

is simulated using the MATLAB/Simulink environment using the block diagram 

representation shown in Figure 2.3.  Three different test scenarios are considered to 

measure the frequency deviation, with the primary droop controller alone acting as a 

regulation agent, where the secondary LFC controllers are absent. The corresponding 
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results are depicted in Figure 2.4. The steady-state frequency deviation when there is no 

disturbance is depicted in Figure 2.4(a). Under a steady state condition, no deviation in 

frequency exists, indicating the equilibrium in power demand and supply. Further, the load 

and wind disturbances simulation studies are presented as three scenarios. 

The three scenarios are described by the type of disturbances occurring in the 

system. In scenario 1, the HPS is subjected to a step load disturbance of magnitude 0.01 

pu, which represents an increase of load in the system by 1 percent. During this scenario, 

the wind disturbance is assumed to be absent. The step response for scenario 1 is depicted 

in Figure 2.4(b), where the HPS frequency deviation is observed to drop, and the steady 

state error exists, implying that the system cannot restore the frequency deviation to the 

nominal operating power frequency. This phenomenon can be observed as an under-

frequency event, and the frequency deviation magnitude varies with the step disturbance's 

magnitude. In case of a decrease in the load by 1 percent, an over-frequency event occurs. 

In scenario 2, the step load disturbance is absent, and the disturbance considered is 

an increase in the wind velocity. The simulated wind velocity magnitude increase is about 

1 percent, equal to 0.01 pu. During this scenario, the step response obtained for frequency 

deviation is shown in Figure 2.4 (c). Due to the increase in wind speed, there is an increase 

in wind generation, resulting in an increase in the frequency deviation. It is to be noted that 

the wind velocity increase causes an over-frequency event, and the magnitude of frequency 

deviation varies with the magnitude of the wind velocity. 

In scenario 3, an increase of 0.01 pu load disturbance and a decrease of 0.01 pu 

wind disturbances are considered at a step time of 0s. This is a more severe disturbance 

when compared to scenario1 and 2 because of the concurrent changes occurring in load and 

wind speed. The corresponding output for frequency deviation in the time domain is 

depicted in Figure 2.4(d). The steady-state error in frequency is increased when compared 

to scenario 1.  

 

(a) 
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(b) 

 

(c) 

 

(d) 

Figure 2.4 (a) Steady-state simulation without any disturbance (b) Frequency deviation of HPS 

under step load increase (c) Frequency deviation of HPS under wind velocity increase (d) Frequency 

deviation of HPS under step load increase and wind velocity decrease. 

The disturbance parameters are considered based on the existing literature [232]. 

The step response parameters shown in Table 2.1 indicate the impact of each scenario on 

the frequency deviation in HPS. It can be observed that the settling time is significant for 

all the scenarios. Most importantly, the steady-state error is not zero in any of the cases, 

indicating the need for additional control mechanisms to eliminate the steady-state error 

present in the system. The peak deviation in frequency has increased by 38% from scenario 

1 to scenario 3 and by 52% from scenario 2 to scenario 3. The increase in the peak value 

indicates that the deviations in frequency in real-time conditions when there are extreme 

changes in load or wind speed can be highly fluctuating, and the stable operation of the 
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power system becomes complicated. Therefore, it is indispensable to maintain the power 

system frequency at a nominal value. 

 Table 2.1 Step response parameters for the time domain response for the HPS without LFC. 

Parameter Scenario-1 Scenario-2 Scenario-3 

Rise Time (s) 0.3395 1.0878 0.6334 

Settling Time (s) 16.369 17.2382 16.8664 

Settling Minimum (Hz) -0.0467 0.0218 -0.0755 

Settling Maximum (Hz) -0.0216 0.0364 -0.0437 

Peak value (Hz) 0.0467 0.0364 0.0755 

Peak Time (Hz) 1.54 3.8400 2.5000 

Steady-state error (Hz) 0.0239 0.0241 0.0481 

 

Another case is considered, where the extreme changes of 10% load variation 

occurring together with a 50% wind velocity decrease are shown in Figure 2.5, which 

shows the deviation in frequency is beyond 2 Hz. It can be noted that the three are different 

operating levels for maximum allowable frequency deviation. The most common limit for 

operating the frequency tripping relays is ±0 ⋅ 5 Hz [233]. This initiates the under-

frequency/over-frequency load shedding and, consequently the islanding formations. The 

frequency stability is at risk during such incidents, and system-wide blackouts can occur 

[234]. To avoid such events, it is indispensable to have corrective actions and control 

operations in place and monitored by the grid operators for the power system's stable, 

reliable, secure, and resilient operation. 

In literature, PID control is the most widely used control due to its practical 

feasibility, simple structure, and cost-effectiveness. Based on this fact, different types of 

PID controller models are presented in Section 2.5 for controlling the frequency deviation 

of HPS. 
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 Figure 2.5 Frequency deviation of HPS with extreme changes in wind and load disturbances. 

2.5 Controller Models 

The closed-loop model with distributed controllers for the HPS LFC 

implementation is depicted in Figure 2.6. The net power deviation is maintained as zero by 

designing the controller models for RTPS and DERs. 

 

 Figure 2.6 HPS configuration with distributed load frequency controllers. 

It was observed from (2.11) that the deviation in frequency is predominantly 

affected by the deviations in the various sources' and loads' active power. Alternately, it 

can be stated that the net power deviation 𝛥𝑃𝑒 in the HPS should be zero for the frequency 

deviation to be zero, provided that the initial frequency deviation is zero. Mathematically, 

this statement can be expressed in (2.13). 

𝛥𝑃𝑡ℎ + 𝛥𝑃𝑑𝑒𝑔 ± 𝛥𝑃𝑏𝑒𝑠𝑠 + 𝛥𝑃𝑓𝑐 − 𝛥𝑃𝑎𝑒 + 𝛥𝑃𝑤𝑡𝑔 − 𝛥𝑃𝑑 = 𝛥𝑃𝑒 = 0    (2.13) 

Different controller models are designed for the HPS are employed by modifying 

their structure. Three controller topologies, PI, PIDN and PIDDN are designed for robust 

performance. 
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(a) 

 

(b) 

Figure 2.7 Controller Configurations (a) PI and PIDN controller structure (b) PIPDN controller 

structure 

Using the PI structure for the initial case, as shown in Figure 2.7(a), controller-1 

and controller-2 are designed. Similarly, the controllers are designed in subsequent cases 

using PIDN and PIPDN structures, as shown in Figure 2.7(b). The modified mathematical 

PIDN control structure is depicted in Figure 2.7(a) with the filter coefficient. The terms 𝑘𝑝, 

𝑘𝑖, and 𝑘𝑑 are the gain constants for proportional, integral, and derivative controllers. The 

term 𝑁 denotes the filter coefficient, which is used to eliminate the noise amplified due to 

derivative term. In this work, N=100 is considered based on the literature [160], and the 

other controller parameters are optimized. The term 𝑘𝑑 is equal to zero for a PI controller 

version, represented in the dotted area in Figure 2.6(a). The proposed PI-PDN structure 

controller structure employed for the LFC is shown in Figure 2.6(b). The terms 𝑘𝑝1 and 

𝑘𝑝2 are the proportional gain constants of the PIPDN controller.  

The modified mathematical PIDN control structure is depicted in Figure 2.7(a) with 

the filter coefficient utilized in this work is  

 𝑘𝑃 +
𝑘𝑖

𝑠
+

𝑘𝑑𝑁𝑠

𝑆+𝑁
    (2.14) 

The mathematical representation of the proposed PI-PDN structure, as shown in 

Figure 2.7(b), employed for the LFC is  

 (𝑘𝑃1 +
𝑘𝑖

𝑠
) (𝑘𝑃2 +

𝑘𝑑𝑁𝑠

𝑆+𝑁
)   (2.15) 



50 

 

where the terms 𝑘𝑝1 and 𝑘𝑝2 are the proportional gain constants of the PIPDN controller. 

Controller state equations are derived for controllers-1 and 2 using the controller structure 

described in (2.14) and (2.15). The gain constants for PI, PIDN, and PIPDN are multiplied 

by a droop coefficient denoted by 𝑚𝑝 for controller-2. It is to be noted that controller-1 is 

used to control the governor setting in RTPS, and controller-2 controls the power generated 

by DERs. 

2.5.1 PI Controller  

The generalized state equation for the PI controller model represented in Figure 

2.7(a) is 

 𝛥�̇�𝑐 = 𝛥�̇�1 = 𝛥�̇�2 = (𝑘𝑖𝑐 −
𝑘𝑝𝑐

𝑇𝑝
) 𝛥𝑓 + 𝑐4𝛥𝑃𝑡ℎ + 𝑐4𝛥𝑃𝑤𝑡𝑔 + 𝑐4𝛥𝑃𝑎𝑒 + 𝑐4𝛥𝑃𝑓𝑐 +

𝑐4𝛥𝑃𝑑𝑒𝑔 + 𝑐4𝛥𝑃𝑏𝑒𝑠𝑠 − 𝑐4𝛥𝑃𝑑     (2.16) 

 
𝑘𝑝𝑐 = 𝑘𝑝1, 𝑘𝑖𝑐 = 𝑘𝑖1, 𝛥𝑢𝑐 = 𝛥𝑢1;  ∀𝑅𝑇𝑃𝑆

 𝑘𝑝𝑐 = 𝑚𝑝𝑘𝑝2, 𝑘𝑖𝑐 = 𝑚𝑝𝑘𝑖2, 𝛥𝑢𝑐 = 𝛥𝑢2;  ∀𝐷𝐸𝑅𝑠
    (2.17) 

where the term 𝛥𝑢𝑐 represents the control signal obtained from the controller, which is the 

state variable for PI control and 𝑐4 denotes the PI controller constant. 

2.5.2  PIDN Controller 

The generalized PIDN (from Figure 2.7(a)) controller state equations are the state 

equation for PI used as a part of the PIDN controller state; thus, the control signal 𝛥�̇�𝑐 is 

obtained from (2.16) and (2.18). 

 𝛥�̇�12 =
−𝑘𝑑𝑐𝑁

𝑇𝑝
𝛥𝑓 + 𝑐5𝛥𝑃𝑡ℎ + 𝑐5𝛥𝑃𝑤𝑡𝑔 + 𝑐5𝛥𝑃𝑎𝑒 + 𝑐5𝛥𝑃𝑓𝑐 + 𝑐5𝛥𝑃𝑑𝑒𝑔 + 𝑐5𝛥𝑃𝑏𝑒𝑠𝑠 −

𝑁𝛥𝑢12 − 𝑐4𝛥𝑃𝑑    (2.18) 

 
𝑘𝑑𝑐 = 𝑘𝑑1;  ∀𝑅𝑇𝑃𝑆

 𝑘𝑑𝑐 = 𝑚𝑝𝑘𝑑2;  ∀𝐷𝐸𝑅𝑠
  (2.19) 

where the term 𝛥𝑢12 represents the state obtained due to the derivative term in the PIDN 

controller and 𝑐5 denotes the PIDN controller constant. 

2.5.3 PI-PDN Controller  

The control signal obtained from the PIPDN controller, as shown in Figure 2.7(b) in a 

linearized form, is  

𝛥�̇�13 = 𝛥�̇�23 = 𝑐6𝛥𝑓 + 𝑐7𝛥𝑃𝑡ℎ + 𝑐7𝛥𝑃𝑤𝑡𝑔 + 𝑐7𝛥𝑃𝑎𝑒 + 𝑐7𝛥𝑃𝑓𝑐 + 𝑐7𝛥𝑃𝑑𝑒𝑔 +𝑐7𝛥𝑃𝑏𝑒𝑠𝑠 −

𝑁𝛥𝑢𝑐 + 𝑘𝑝2𝑁𝛥𝑢𝑐 − 𝑐7𝛥𝑃𝑑    (2.20) 
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𝑘𝑝𝑑 = 𝑘𝑝3, 𝑘𝑑𝑑 = 𝑘𝑑3, ;  ∀𝑅𝑇𝑃𝑆

 𝑘𝑝𝑑 = 𝑘𝑝4, 𝑘𝑑𝑑 = 𝑘𝑑4, ;  ∀𝑀𝐺𝑆
  (2.21) 

where 𝛥𝑢𝑐, the PI controller output is the input of the PDN block. The complete model for 

PIPDN can be obtained by using (2.16) and (2.20). The PIPDN constant terms are denoted 

as 𝑐6 and 𝑐7. The state space model can be represented using the general for described as 

 �̇� = 𝐴𝑋 + 𝐵𝑈
𝑌 = 𝐶𝑋 + 𝐷𝑈

   (2.22) 

where 𝑋 represents the state vector, 𝑌 represents the output vector, 𝑈 represents the input 

vector. 𝐴, 𝐵, 𝐶, and 𝐷 are the constant matrices. 

2.6 Controller Implementation 

The different modified controllers are implemented using the MATLAB/Simulink 

environment to test the controllers' efficacies. The explicit Runge-Kutta numerical solver 

solves the state space equations to provide a solution to the ordinary differential equations 

at the given initial conditions. The PI configuration model for the HPS is depicted in Figure 

2.8(a). The PIDN configuration for the HPS system frequency regulation is depicted in 

Figure 2.8(b). The block diagram model for the PIPDN configuration is shown in Figure 

2.8(c).  The controller gain values are obtained using the MATLAB PID tuner and the trial 

and error method and are provided in Table 2.2. These controller parameters are utilized 

for simulation, and the corresponding results obtained for the HPS frequency deviation are 

depicted in Figure 2.9. 

It can be noted that the HPS was subjected to a load and wind deviation of 0.01 pu, 

which is relatively minor for analyzing the time domain response. If the magnitude of the 

disturbance increases, the magnitude of the frequency deviation also increases. The 

maximum frequency deviation while implementing the PI controller is greater than that of 

the PIDN controller. The maximum deviation in frequency when implementing the PIPDN 

controller is the least among all the three controller configurations. The problem of steady-

state error that existed when LFC was not incorporated has been alleviated using the 

controller configurations. The step response parameters for deviation shown in Figure 2.9  

are utilized for analyzing the controller performance for different configurations. The 

maximum peak deviation reduction from PI configuration to PIDN configuration was 

observed to be 49.5 percent. Following that, the percentage reduction while employing the 

PIPDN configuration is 33.3% from that of the PIDN configuration. 
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 (a) 

 

 (b) 
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(c) 

Figure 2.8 (a) Block diagram for PI configuration implementation (b) Block diagram for PIDN 

configuration implementation (c) Block diagram for PIPDN configuration implementation 

 Table 2.2 Controller gain parameters of different controller models 

Controller Gain Parameters 

PI 𝑘𝑝1 = 2; 𝑘𝑝2 = 1.2; 𝑘𝑖1 = 2; 

𝑘𝑖2 = 0.5; 
PIDN 𝑘𝑝1 = 2; 𝑘𝑝2 = 2; 

𝑘𝑖1 = 1.5;𝑘𝑖2 = 1.5; 
𝑘𝑑1 = 0.5;𝑘𝑑2 = 0.5 

PIPDN 𝑘𝑝1 = 2; 𝑘𝑝2 = 2; 

𝑘𝑖1 = 1.5;𝑘𝑖2 = 1.5; 
𝑘𝑝1 = 1; 𝑘𝑝2 = 1; 

𝑘𝑑1 = 0.5;𝑘𝑑2 = 0.5 

 

The main objective of LFC is to minimize the maximum frequency deviation, which 

the PIPDN configuration can attain. The superiority of the cascaded controller in reducing 

the peak deviation makes this a preferred choice for LFC among the studied controllers.  
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 (a) 

  

 (b) 

  

 (c) 

Figure 2.9 Frequency deviation in HPS (a) PI configuration response (b) PIDN configuration 

response (c) PIPDN configuration response. 

This study considers the worst-case scenario response of frequency deviation 

occurring at 0.5 pu changes in wind speed. The modern power system operating frequency 

must be maintained within ± 0.1 Hz during large wind power fluctuations [235] to ensure 

that the DERs connected to the grid do not receive false tripping signals. The worst-case 

scenario is simulated, and the corresponding frequency deviation is depicted in Figure 2.10. 

Although the controller can reduce the frequency deviation due to small perturbations in 

load and wind speed, the frequency deviation with large wind speed fluctuations needs 

further improvement. In conclusion, the peak deviation has crossed the acceptable limits of 
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± 0.1 Hz, which emphasizes the need for a more robust controller design for LFC under 

different conditions. 

 Table 2.3 Step response parameters of HPS, including the controller models. 

Parameter PI PIDN PIPDN 

Rise Time 0.0012 0.0012 0.0010 

Rise Time (s) 8.9419 7.3594 6.1204 

Settling Time (s) -0.0101 -0.0051 -0.0034 

Settling Minimum (Hz) 0.0029 5.9347e-04 1.1260e-04 

Settling Maximum (Hz) 0.0101 0.0051 0.0034 

Peak value (Hz) 0.2903 0.3003 0.2102 

Peak Time (Hz) 
8.8863e-

05 
8.9610e-05 7.4498e-05s 

 

 

Figure 2.10 Frequency deviation with the best controller configuration (PIPDN) when the system 

is subjected to large wind power fluctuations. 

2.7 Design Challenges 

Based on the results obtained from the modeling and controller implementation for 

the HPS frequency regulation, some of the inherent design challenges for robust control are 

identified as follows: 

2.7.1 Choice of Controller and Configuration: 

Some of the major influencing factors for controller choice are: 

• Construction aspects 
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• Design Simplicity 

• Robustness 

• Practical feasibility 

• Complexity 

• Target Performance 

Additional analysis needs to be carried out for choosing the controller configuration 

where the design should be simple, an industrial application should be feasible, time 

complexity and computational complexity should be minimal, and the target performance 

in the controlling action needs to be guaranteed. 

2.7.2 Optimal performance of the controller 

After choosing the controller, it is necessary to design the controller parameters to 

achieve optimal performance. For instance, PID controller parameters must be tuned to 

achieve the desired output [125]. In the case of MPC, parameters such as the objective 

function, weights, control horizon, and prediction horizon need to be defined for 

performance improvement [96]. In deep reinforcement learning, reward function, learning 

rate, buffer size, discount factor, and other variable parameters must be appropriately 

designed to achieve optimal performance [236]. Therefore, detailed studies using 

theoretical aspects, investigation of simulations, and complementing HIL experimentation 

are required to effectively address the frequency regulation problem.  

2.8 Summary 

In this chapter, the HPS model is introduced using the block-diagram 

representation. The novelty in this chapter is that the state space model, including the 

controller configurations, is derived for the HPS to perform frequency regulation studies 

on the developed system configuration. Different controller configurations, such as PI, 

PIDN, and PIPDN, are modeled, and their state space representations are presented. The 

simulations of uncontrolled and controlled cases are analyzed to identify the study's further 

research direction for improving the controllers' performance. The results indicate PIPDN 

as the best choice among the investigated controller configurations. However, further 

optimization is required to obtain the desired robust performance of the PIPDN controller. 

Significant design challenges are identified in the controller choice and optimization, which 

are addressed in the subsequent chapters. 
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Chapter 3 

3 Robust Controller Design Using Optimization  

 

 Figure 3.1 Aspects of Objective 2 addressed in Chapter 3: An outline. 

The outline of Chapter 3 is consistent with the Objective 2 implementation, as 

depicted in Figure 3.1. This chapter deals with the selection of controller topology through 

preliminary investigations, where the desired characteristics of the controller are identified. 

Following this, the optimization of controller parameters is considered using different 

objective functions and algorithms. The optimized controller performance is assessed by 

investigating the RoC optimization results. The validation of the optimized controller 

output is mathematically verified. Moreover, the simulation results obtained for the HPS 

frequency regulation are verified using HIL simulation.   

3.1 Introduction 

The HPS described in Chapter 2 is considered, which constitutes the RTPS and 

DERs. Initially, the impact of DERs on the HPS is studied with a simple PID controller 

before further proceeding with different control and optimization techniques.  RTPS is 

considered the conventional power system, and the DER cluster is an MG. The steps 

involved in the control strategy for RTPS and DERs are:  

3.1.1 Impact Studies 

Scenario I: Test the RTPS without primary control for frequency deviation, and if 

it exceeds ±0.5 Hz, consider scenario II. 

Scenario II: Design a PID controller to maintain the frequency deviation within the 

prescribed limits. Consider scenario III for analysis of the microgrid. 
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Scenario III: Test the HPS with primary droop control alone for frequency 

deviation, and if it exceeds ±0.5 Hz, consider scenario IV. 

Scenario IV: Design a droop plus PID controller to achieve minimal frequency 

deviation for the HPS consisting of RTPS and DERs. 

The control strategy can be summarized as primary control with a PID loop for 

RTPS and a Droop-based PID for MG. The secondary control strategy employed for MG 

is represented in Scenario IV, where the primary droop control is modified by cascading a 

PID controller in the droop loop for MG. 

Scenario I is tested for CPS without a conventional power system controller 

(CPSC), and the step response for a step load change of 0.1 in the time domain has a steady 

state error of 0.07 Hz, as depicted in Figure 3.2. As per the control strategy, scenario II is 

considered, which includes a PID controller along with the feedback loop containing droop. 

The step response for the CPS with CPSC is improved, as shown in Figure 3.2. The peak 

deviation is 0.01 Hz, and the settling time is 10 seconds. 

 

 Figure 3.2 Step response of CPS with and without CPSC. 

Figure 3.3 illustrates the frequency deviation for CPS with CPSC under a real-time 

continuous step load variation at a sampling rate of 0.1s. The frequency deviation is within 

± 0.5 Hz. The overall response of CPS has been significantly improved by incorporating 

the primary control. 

 

 Figure 3.3 Frequency deviation of CPS with CPSC. 
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To study the impact of the interconnection of MG on the frequency deviation of the 

system to an existing CPS, Scenario III is considered. Step load variation of 0.1 p. u. with 

the MG interconnection causes the frequency to settle at almost 25 seconds, as shown in 

Figure 3.4. The peak overshoot of frequency deviation increased to 0.1 Hz when the DERs 

were connected.  

 

 Figure 3.4 Impact of the interconnection of MG to CPS on step response of HPS. 

To improve the settling time and reduce the magnitude of frequency deviation, 

scenario IV is considered. The settling time for CPS with CPSC is 10s, and the peak 

deviation is at 0.016 Hz, as shown in Figure 3.5. The control strategy with MGC (see 

Figure 3.5) improved the settling time to 5s which is 1/5 th of that without the controller 

(25s as shown in Figure 3.5.), and the peak frequency deviation reduced to 0.00108 Hz. 

The order of frequency deviation without MGC can be seen as 1/10 th of a Hz (see “HPS 

without MGC in Figure 3.5 ). However, the frequency deviation with MGC observed is in 

the order of 1/1000 th of a Hz (see “HPS with MGC in Figure 3.5), which is negligible. 

 

 

 Figure 3.5 Step Response of HPS with and Without MGC. 

Step response of all the scenarios for a step load deviation of 0.1 p. u. has been 

shown in Figure 3.6. It is observed that HPS with MGC has the most desired system 

response of frequency in the time domain. The frequency deviation is close to 0.001 Hz, 
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and the system response to a step load change has been significantly improved (see Figure 

3.6). Further, the deviation of the frequency with MGC under continuous random load 

disturbance for HPS is shown in Figure 3.7. The studies suggest that the impact of the 

interconnection of MG to a CPS on frequency using MGC has been drastically reduced as 

compared to without MGC.  

 

 

 Figure 3.6 Cumulative Step Response of CPS and HPS. 

 

 

 Figure 3.7 Frequency Deviation of CPS with MGC. 

The impact analysis concluded that the DERs considerably impact the HPS 

frequency regulation and thus should be provided with suitable control techniques. These 

controllers ensure satisfactory outcomes in the frequency control of the HPS. There are two 

different control methods for LFC 

1. Centralized LFC scheme [117] 

2. Distributed control scheme [209] 
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3.2 Preliminary Investigations 

Different centralized control schemes are investigated in the preliminary 

investigations. These centralized control schemes are compared to analyze the obtained 

results. The methods investigated for centralized schemes are: 

• MPC-based LFC for HPS1 

• GA, DRL, LP-based optimization for a centralized PID controller. 

3.2.1 MPC-based LFC for HPS 

MPC technique is a constrained optimization problem, which is described as 

follows: 

Cost Function for controller design: 

 𝐽(𝑧𝑘) = 𝐽𝑦(𝑧𝑘) + 𝐽𝛥𝑢(𝑧𝑘), (3.1) 

The cost function 𝐽(𝑧𝑘) consists of two terms 𝐽𝑦(𝑧𝑘) and 𝐽𝛥𝑢(𝑧𝑘), where 𝑧𝑘 is the decision 

variable, 𝐽𝑦(𝑧𝑘) is the cost function for measured output values, which is responsible for 

achieving the reference output value and 𝐽𝛥𝑢(𝑧𝑘) is the cost function for the change in 

values of manipulated variables responsible for the rate (slow/fast) with which manipulated 

variables can change. The expanded form of 𝐽𝑦(𝑧𝑘) is given as: 

 𝐽𝑦(𝑧𝑘) = ∑ ∑ { 𝑤𝑗
𝑦

 [𝑟𝑗(𝑘 + 𝑖|𝑘) − 𝑦𝑗(𝑘 + 𝑖|𝑘)] }2𝑝
𝑖=1

𝑛𝑦

𝑗=1
   (3.2) 

where 𝑛𝑦 is the number of measured outputs, 𝑝 is the prediction horizon, 𝑗 is the 𝑗𝑡ℎ 

measured output (MO), 𝑤𝑗
𝑦

 is the weight for the 𝑗𝑡ℎ MO, 𝑘 is the current time instant, 

𝑟𝑗(𝑘 + 𝑖|𝑘) is the reference/setpoint value for the 𝑗𝑡ℎ MO at (𝑘 + 𝑖) instant, calculated at 

instant 𝑘 and 𝑦𝑗(𝑘 + 𝑖|𝑘) is the predicted MO value for the 𝑗𝑡ℎ MO at (𝑘 + 𝑖) instant, 

calculated at instant 𝑘. Similarly, the expanded form of 𝐽𝛥𝑢(𝑧𝑘) is given as: 

 𝐽𝛥𝑢(𝑧𝑘) = ∑ ∑ { 𝑤𝑗
𝛥𝑢 𝛥𝑢𝑗(𝑘 + 𝑖|𝑘) }2𝑞−1

𝑖=0
𝑛𝑢
𝑗=1    (3.3) 

where,  𝛥𝑢𝑗(𝑘 + 𝑖|𝑘) = 𝑢𝑗(𝑘 + 𝑖|𝑘) − 𝑢𝑗(𝑘 + 𝑖 − 1|𝑘) ∀ 𝑖 = 1, 2, . . . , 𝑞 − 1. And for 𝑖 =

0, 𝛥𝑢𝑗(𝑘|𝑘) = 𝑢𝑗(𝑘|𝑘) − 𝑢𝑗(𝑘 − 1), 𝑛𝑢 is the number of manipulated variables, 𝑞 is the 

control horizon, 𝑗 is the 𝑗𝑡ℎ manipulated variable (MV), 𝑤𝑗
𝛥𝑢 is the weight for the 𝑗𝑡ℎ MV, 

 
1 This work has been published in the conference “ International conference on Smart Energy Grid 

Engineering, 2021. The details of the publication are “A. Varshney, R. Loka, and A. M. Parimi, “Fast 

Frequency Response Using Model Predictive Control for A Hybrid Power System,” in 2021 IEEE 9th 

International Conference on Smart Energy Grid Engineering (SEGE), Aug. 2021, pp. 104–110. doi: 

10.1109/SEGE52446.2021.9534981.” 
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𝑘 is the current time instant, 𝑢𝑗(𝑘 + 𝑖|𝑘) is the predicted MV value for the 𝑗𝑡ℎ MV at (𝑘 +

𝑖) instant, calculated at instant 𝑘.  

Weight is a penalizing factor; the higher the weight 𝑤𝑗
𝑦

, the lesser is the value of the steady-

state error of the measured output 𝑦𝑗 and vice versa. Similarly, the higher the weight 𝑤𝑗
𝛥𝑢. 

The slower is the change in consecutive values of 𝑢𝑗  and vice versa. Each weight is kept 

constant throughout the process of solving the optimization problem. 

Constraints/Bounds for controller design:  

There are bounds on predicted measured outputs (3.4), predicted manipulated 

variables (3.5), and changes of predicted manipulated variables (3.6), which are described 

as follows: 

 𝑦𝑗,𝑚𝑖𝑛 ≤ 𝑦𝑗(𝑘 + 𝑖|𝑘) ≤ 𝑦𝑗,𝑚𝑎𝑥,  

 ∀ 𝑖 = 1, 2, … , 𝑝 𝑎𝑛𝑑 ∀ 𝑗 = 1, 2, … , 𝑛𝑦  (3.4) 

 𝑢𝑗,𝑚𝑖𝑛 ≤ 𝑢𝑗(𝑘 + 𝑖|𝑘) ≤ 𝑢𝑗,𝑚𝑎𝑥, 

 ∀ 𝑖 = 0, 1, … , 𝑞 − 1 𝑎𝑛𝑑 ∀ 𝑗 = 1, 2, … , 𝑛𝑢  (3.5) 

 𝛥𝑢𝑗,𝑚𝑖𝑛 ≤ 𝛥𝑢𝑗(𝑘 + 𝑖|𝑘) ≤ 𝛥𝑢𝑗,𝑚𝑎𝑥, 

 ∀ 𝑖 = 0, 1, … , 𝑞 − 1 𝑎𝑛𝑑 ∀ 𝑗 = 1, 2, … , 𝑛𝑢  (3.6) 

3) Decision Variables: Computation of decision variable 𝑧𝑘 starts at the time instant 𝑘, but 

after solving the optimization problem using Quadratic Programming, only the first optimal 

control moves (i.e., 𝑢(𝑘|𝑘)) is implemented on the plant, and at the next time instant, the 

optimization problem is reformulated and solved again. It is an online optimization 

technique, so the above process goes on repeatedly. 

 (𝑧𝑘)𝑇 = (𝑢(𝑘|𝑘)𝑇𝑢(𝑘 + 1|𝑘)𝑇 ⋅⋅⋅ 𝑢(𝑘 + 𝑝 − 1|𝑘)𝑇)  (3.7) 

where 𝑢(𝑘 + 𝑖|𝑘) is the vector of all 𝑛𝑢 manipulated variables at (𝑘 + 𝑖) instant, calculated 

at instant 𝑘.  

 𝑢(𝑘 + 𝑖|𝑘) = (𝑢1(𝑘 + 𝑖|𝑘) 𝑢2(𝑘 + 𝑖|𝑘) ⋅⋅  𝑢𝑛𝑢
(𝑘 + 𝑖|𝑘))  (3.8) 

Scenario 1:MPC for Hybrid Power System  

In the case of HPS, the objective of the MPC is to stabilize the frequency deviations (𝛥𝑓) as 

fast as possible, and the controller should be robust to the disturbances. HPS has load 

disturbances (𝛥𝑃𝑑) and wind disturbances (𝛥𝑣𝑤). The controller minimizes these 

disturbances by controlling the input to the speed governor (𝑀𝑉1) and the input to the 

microgrid (𝑀𝑉2).  
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Here, the desired value of 𝛥𝑓is considered to be within 1% of 50 Hz (i.e., ± 0.5 Hz), and the 

reference is set to zero (i.e. 𝑟1(𝑘 + 𝑖|𝑘) = 0, ∀ 𝑖). 

The optimization problem for HPS is as follows:  

 𝑚𝑖𝑛
𝑧𝑘

      𝐽(𝑧𝑘) = ∑ { 𝑤1
𝑦

 𝛥𝑓(𝑘 + 𝑖|𝑘) }2𝑝
𝑖=1 + ∑ ∑ { 𝑤𝑗

𝛥𝑢 𝛥𝑢𝑗(𝑘 + 𝑖|𝑘) }2𝑞−1
𝑖=0

2
𝑗=1   (3.9) 

subjected to 

   −0.5 ≤ 𝛥𝑓(𝑘 + 𝑖|𝑘) ≤ 0.5, ∀ 𝑖 = 1, 2, … , 𝑝      (3.10) 

Scenario 2: MPC for Hybrid Power System considering Rate of Change of Frequency (RoCoF)  

In this case, with the addition of one more measured output modifies the objective function. 

Now, the objective of the MPC is to stabilize the frequency deviation (𝛥𝑓) and constrain 

the rate of change of frequency (𝑓𝑅𝑜𝐶) within ± 0.1 Hz/s. The reference value for 𝑓𝑅𝑜𝐶 has 

been set to zero (i.e. 𝑟2(𝑘 + 𝑖|𝑘) = 0, ∀ 𝑖). 

Same as HPS with MPC case, the desired value of 𝛥𝑓 is considered to be within 1% of 50 

Hz (i.e., ± 0.5 Hz), and the reference is set to zero (i.e. 𝑟1(𝑘 + 𝑖|𝑘) = 0, ∀ 𝑖). The 

optimization problem for HPS with RoCoF is as follows: 

 𝑚𝑖𝑛 
𝑧𝑘

      𝐽(𝑧𝑘) = ∑ { 𝑤1
𝑦

 𝛥𝑓(𝑘 + 𝑖|𝑘) }2𝑝
𝑖=1 + 

 ∑ { 𝑤2
𝑦

 𝑓𝑅𝑜𝐶(𝑘 + 𝑖|𝑘) }2𝑝
𝑖=1 + ∑ ∑ { 𝑤𝑗

𝛥𝑢 𝛥𝑢𝑗(𝑘 + 𝑖|𝑘) }2𝑞−1
𝑖=0

2
𝑗=1   (3.11) 

subjected to    

   0.5 ≤ 𝛥𝑓(𝑘 + 𝑖|𝑘) ≤ 0.5, ∀ 𝑖 = 1, 2, … , 𝑝     (3.12) 

   −0.1 ≤ 𝑓𝑅𝑜𝐶(𝑘 + 𝑖|𝑘) ≤ 0.1, ∀ 𝑖 = 1, 2, … , 𝑝  (3.13)     

3.2.2 Results of Centralized MPC for HPS 

The controller models described through (3.9) and (3.10) are simulated for the HPS 

model discussed in Chapter 2 using centralized control, representing MPC scenario 1. 

Similarly, the controller objective function described by (3.11) to (3.13) are utilized for 

HPS, which represents the MPC Scenario 2. All the simulations are carried out using 

MATLAB/Simulink software. Scenario 1 and Scenario 2 have significant improvements in 

the time response obtained for the frequency deviation of HPS.  Table 3.1 presents the 

time response parameters for different cases for studying various controllers' performance, 

with step load disturbance of 0.1 pu and step wind disturbance of 0.1 pu. for a simulation 

time of 10 s. Scenario 1 and Scenario 2 are designed to decrease the settling time up to 0.03 

s, which falls significantly below the standard threshold for fast frequency reserve (FFR). 

Therefore, satisfactory performance for FFR can be obtained from Scenario 1 and Scenario 

2. The performance parameter peak overshoot is reduced by 89% from Scenario 1 to 
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Scenario 2. Peak to peak magnitude has been reduced by 7.7% from Scenario 1 to Scenario 

2. It shows that the performance parameters are improved with the inclusion of RoCoF in 

the MPC objective function.  

 Table 3.1 Step Response Parameters of HPS for Various Cases 

Scenario 
Settling time 

(s) 

Peak Undershoot 

(Hz) 

Peak Overshoot 

(Hz) 

Peak to Peak 

Magnitude (Hz) 

1 0.0331 0.0012 0.000986 0.0013 

2 0.0346 0.0012 0.0001 0.0012 

The HPS under simulation study was subjected to a random load and random wind 

disturbance to examine the robust performance of the controllers designed for various cases 

in the HPS. The random load and random wind disturbance profiles considered for Cases 

1, 2, and 3 are presented in Figure 3.8. The load and wind disturbances range from -0.05 

p.u to 0.1 p.u. which are changed after a time interval of 0.2 𝑠. The disturbance profiles are 

used for simulation studies for obtaining continuous frequency deviation and the power 

deviation for various cases in the HPS. For Scenario 1 and Scenario 2, frequency deviation 

plots for the same type of random load and wind disturbance are simulated in Figure 3.9 

and Figure 3.10, respectively. FFR can be observed in both cases for a continuous 

disturbance as well. FFR was achieved within 0.1s by eliminating the frequency deviation 

from the nominal value. 

  
(a) (b) 

 Figure 3.8 Random profiles of (a) Load disturbance (b) Wind disturbance. 
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Figure 3.9 Frequency deviation for Scenario 1 for a random load and random wind disturbance. 

  

Figure 3.10 Frequency deviation for Scenario 2 for a random load and random wind disturbance. 

The performance of the MPC for the centralized scheme helped achieve enhanced 

frequency regulation. However, the practical feasibility of MPC is limited due to its 

economic aspects, whereas the PID topologies are economically practical. The 

effectiveness of the PID for centralized schemes needs to be further studied. 

3.2.3 GA, DRL, LP based optimization for a centralized PID controller 

GA based optimization is widely employed for different optimization studies [56], [237], 

including LFC studies, which is a bio-inspired heuristic technique. The methodology 

adopted for GA optimization [238] helps regulate the frequency by tuning the control 

parameters.  

DRL-based optimization works on the principle of experiential learning using the 

information from state, action, and reward [104]. The general DRL framework utilizes the 

feedback from the environment, which is the plant model while exploring the action space 

consisting of the control commands generated by the DRL agent. The algorithm employed 

for DRL is obtained from [239]. The agent design, policy, and parameter updates utilize 

the twin-delayed deep deterministic policy gradient (TD3) DRL algorithm described in 

[118]. The agent comprises one actor and two critic networks, twinned by a target actor 
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network and a target critic network. The TD3 agent learning mechanisms for LFC are well 

explained in [118], [240], represented in Table 3.2. 

 Table 3.2 Algorithm for DRL Control [239] 

1 Initialization of actor network  , and Critic 
networks 

1 2
,Q Q  with some random 

parameters 1 2, ,    
2 Initialize the target networks 

1 1 2 2, ,           
3 Initialization of the experience replay buffer 

pool   
4 for 1t =  to T  do 

5 Explore an action ( )a s + with noise 

  

6 0( , )  , then observe reward Re and 
new state s  

7 Store transition tuple ( , , , )s a r s  in   

8 Sample minibatch of tN transitions
( , , , )s a r s  from       

9 0a ( s ) , clip( ( , ), , )       +  −  where

  is noise variance and   is  target 

policy variance. 

10 1 2
i

i ,y Re min Q ( s ,a )
= 

 +   

11 Update ss 

12 If t  mod d  then 

13 Update   by the deterministic policy 
gradient 

14 
1

 

1
a aJ Q ( s,a )| ( s )     

=
 =  


 

15 Update target networks: 

16 1i i i( )     + −  

17 1i i i( )     + −  

18 end 

19 end 

 

  The reward function chosen for the RTPS and the RTPS with grid-edge DERs for training 

the TD3 agent is given as 

 𝑅𝑒 = − ∑ (
𝛽𝑇𝑠

𝑧−1
)𝑇𝑠

× 𝑦𝑖−𝑇𝑠
, (3.14) 

where the multiplicative gain 𝛽 increases the negative error in the sampled frequency 

deviation 𝑦𝑖−𝑇𝑠
 at each sampling instant 𝑇𝑠. The goal of the DRL agent is to maximize 

reward, which reduces the frequency deviation error. The frequency deviation is reduced 

by employing a negative reward function in which the TD3 agent maximizes the total 

reward. The training of the DRL agent using the reward function defined in (3.14) is carried 
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out to minimize the error. The objective of the DRL agent is to learn the best policy that 

optimizes the total reward. The DRL agent training is carried out offline on the plant model. 

The optimally trained agent is deployed for parameter tuning in the online PI+DF control, 

which guarantees stability.  

LP-based optimization control structure is depicted in Figure 3.11 [241] and modified 

for the LFC optimization problem as follows:  

 

 Figure 3.11 LP optimizer design structure of an ith-area Hybrid Power System. 

The output from the PI control model 𝐾𝐼𝑖 is given as: 

 
 .( )Piout ii

IiKyPI K s= +
 (3.15) 

The signal obtained from the derivative Filter is: 

 
( )(1 ) .

iout Dii
s T syDF = +

 (3.16) 

The output of the cascaded derivative gain with the derivative filter: 

 
.

i ii
out outd Dic KD DF= −

 (3.17) 

where 𝑐𝑑𝑖
 is the desired response post-tuning the controller parameters. Rearranging (3.15) 

in the time domain and integrating on both sides gives: 

  

( ) ( )

( ) ( )

( ) ( ) ( ) .

outi i

i

outi i

t t t t t t

out i iPi Ii

t tt

yPI

d t K d t K t dty yPI

yPI

+ + +

− =  
 (3.18) 

By applying the trapezoidal integration method on (3.18),   

 1 2 3( ) ( ) ( ) ( ),
i iout outi i

t t t t t ty yPI PI  + = + + +
 (3.19) 

where the coefficient values in (3.19) for a time-step Δt are, 

 
( ) ( )1 2 3, , 12 2 .Ii Pi Ii PiK K K Kt t  = + = − = 

 (3.20)    

From  Figure 3.11, the desired response can be written as: 

 
.

i ii
out outdc PI D= +

 (3.21) 

For the LP optimizer, the desired response can be derived by substituting (3.17) and (3.19) 

in (3.21) with different LP constraints, 
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 𝛥𝑐𝑑𝑖
(𝑘) = 𝛥𝐷𝐹𝑜𝑢𝑡𝑖

(𝑘)𝐾𝐷𝑖 + 𝑦𝑖(𝑘)𝛼1 + 𝑦𝑖(𝑘 − 1)𝛼2 + 𝜙1(𝑘) − 𝜙2(𝑘) (3.22) 

where equality constraints with the same length as of. The positive residue variables 

𝜙1(𝑘), 𝜙2(𝑘) aid in facilitating the buffer to optimization constraints. By substituting 

(3.20) in (3.22), the PI+DF parameters can be tuned to obtain the optimal performance 

from the desired response as following: 

 
𝛥𝑐𝑑𝑖

(𝑘) = 𝛥𝐷𝐹𝑜𝑢𝑡𝑖
(𝑘)𝐾𝐷𝑖 + [𝑦𝑖(𝑘) − 𝑦𝑖(𝑘 − 1)]𝐾𝐼𝑖

𝛥𝑡
2⁄

+[𝑦𝑖(𝑘) − 𝑦𝑖(𝑘 − 1)]𝐾𝑃𝑖 + 𝜙1(𝑘) − 𝜙2(𝑘),
 ( 3.23) 

where,  

 

( ) ( ) ( 1)

( ) ( ) ( 1)

i i i

i i i

d d d

out out out

c k c k c k

DF k DF k DF k

 = − −

 = − −
 (3.24) 

The LP optimization problem for minimizing the total error while satisfying the 

constraints is: 

 

2 1 2

2

1 2

min ( ) ( )

s.t   ( ) ( ) ( ) ( 1)

     ( ) ( 1) ( ) ( ),

      , ,

i

n
e k

t
outd Di Iii ii

Pii i

Pi Ii Di

k kT

c k k K k k Ky yDF

k k K k ky y

lb K K K ub

 

 

=



= +   

  = + − −  

 + − − + − 

 
 (3.25) 

The LP optimizer solves the optimization problem subject to equality and inequality 

constraints described in (3.23) and obtains the optimal solution for the PI+DF controller 

parameters within the specified lower bound (lb) and upper bound (ub). Therefore, 

considering input and output signals for N values of k, the optimization problem (3.25) 

should satisfy the set of constraints given in (3.23). Attempting to lower the overall residue 

variables 𝜙1(𝑘), 𝜙2(𝑘) yields a numerical convergence of the optimization problem. 

3.2.4 Time domain simulations with RTPS and without DERs 

Initially, the proposed LP optimizer for LFC is studied on a single area RTPS 

system described in Chapter 2, in which 𝑦𝑖 = 𝛥𝑓𝑖. The state-space model is obtained for 

the single-area RTPS using (2.22) without considering the controller states, where the 

benchmark RTPS system parameters are attained from [242]. The LP optimizer in (3.25)is 

used for the optimal controller design, which generates the matrices 𝐴 ∈ ℝ1000×3, 𝐵 ∈

ℝ1000×1, and 𝐶 ∈ ℝ2003×1 by solving (3.23), where 𝛥𝑡 = 0.01. Note that the variables are 

the controller gain parameters with thousand equality and inequality constraints for 

obtaining the optimal controller parameters. The step load disturbance of 0.1𝑝𝑢 is 
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simulated for the numerical study using the plant transfer function obtained through 

�̄�𝑖1(𝑠𝐼 − �̄�𝑖𝑖)
−1�̄�𝑖1.  

 

 Figure 3.12 Single-line diagram of the considered HPS system. 

 Similarly, an isolated HPS with the case of a single control area for LFC is simulated for 

a disturbance vector 𝑤𝑖 = [0.1 0.1]𝑇𝑝𝑢, which includes deterministic disturbances in 

load and wind energy considering the model described in Chapter 2. The DERs modeled in 

the system are fuel cell, aqua-electrolyzer, diesel generators, and battery storage, as 

depicted in Figure 3.12. The dynamic model for the system with RTPS and DERS 

described in Chapter 2 with �̄�𝑖−𝑛𝑒𝑤 ∈ ℝ8×8, �̄�𝑖−𝑛𝑒𝑤 ∈ ℝ8, �̄�𝑖−𝑛𝑒𝑤 ∈ ℝ8, and �̄�𝑖−𝑛𝑒𝑤 ∈

ℝ8×2 is utilized to construct the plant transfer function given in (3.26), excluding the 

controller models. 

  𝐺(𝑠) =
−6𝑠7−172.6𝑠6−1653𝑠5−6217𝑠4−9469𝑠3−5249𝑠2−1061𝑠−62.5

𝑠8+28.737𝑠7+277.1𝑠6+1105𝑠5+2319𝑠4+2622𝑠3+1378𝑠2+315.6𝑠+26.06
  (3.26) 

For the developed plant model, different techniques discussed in Section 3.2.3 are 

employed for determining the LFC output in the time domain. The system output response 

for the RTPS plant is shown in Figure 3.13(a). By observing the responses from the 

classical PID tuning approach, GA based approach [119], DRL approach, and proposed LP 

optimizer for LFC in RTPS, the proposed method has the least peak-frequency deviation. 

The plots indicate that the settling time of DRL and LP techniques are competitive, settling 

within 5s from the onset of the disturbance. In some parameters LP gave a better 

performance where as in other parameters DRL has a better performance. 

LP has reduced peak deviation among all the cases for HPS as shown in  Figure 

3.13(b). The conventional tuning did not yield in a satisfactory controller performance in 

either of the plant models, depicting the need for efficient algorithms. The numerical 

simulations indicate that the DER interconnection and renewable disturbances have an 

impact on the overall frequency deviation when compared to the independent RTPS model. 
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The LP optimizer has a comparable performance with the DRL controllers for frequency 

regulation under the impact of grid-edge DERs. 

 
(a) 

 
(b) 

 Figure 3.13 Frequency deviation of the dynamic-model (a) RTPS (b) HPS.  

A comparative assessment of the controller’s efficacy through different 

optimization techniques is represented in Figure 3.14. The error metrics computed for 

comparative assessment are given as: 

𝐼𝑇𝐴𝐸 = ∑ 𝑎𝑏𝑠(𝛥𝑦𝑖) × 𝑡

𝑡𝑠𝑖𝑚

𝑡=0

 

𝐼𝐴𝐸 = ∑ 𝑎𝑏𝑠(𝛥𝑦𝑖)
𝑡𝑠𝑖𝑚

𝑡=0
        (3.27) 

where 𝑡 is the simulation time-step employed and 𝑡𝑠𝑖𝑚 is the simulation time. The following 

comparisons are drawn for the different controllers considering the parameters shown on 

the x-axis of  Figure 3.14.  

• Peak Time (𝑇𝑝) for RTPS: GA > DRL > LP. 

• Peak Time (𝑇𝑝) for RTPS: GA > DRL ~ LP. 

• Peak value (𝑃): LP is 29.15% better than DRL for RTPS and 16.6% better than 

DRL for HPS. 
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• ITAE for RTPS and HPS: GA > LP > DRL. DRL has 7% improved ITAE values 

for the RTPS and HPS when compared to LP optimizer. 

• IAE for RTPS and HPS:  GA > LP > DRL.  IAE is the minimum for the DRL 

technique.  

The convergence of the LP optimization takes 0.3129 s, which is significantly lesser 

than GA and DRL techniques. GA has the highest CPU time of 1427.5 s, and DRL has 

143.617 s, which is computationally expensive. Here, the line plots indicate the percentage 

change in the DRL/GA technique compared to the proposed LP parameter optimizer, where 

positive percentages indicate superior LP performance. 

 
 Figure 3.14 Performance Comparison of GA, DRL, and LP techniques. 

HIL Validation 

The main limitation of verifying the controller performance only through simulations is the 

simulation step size that determines the time resolution of measurements. A smaller 

simulation step size might improve performance in the simulation environment. 

Nonetheless, its effectiveness is to be validated in a real-time environment considering any 

target hardware platform. Therefore, the controllers developed and tested through 

numerical simulation are verified, considering a sufficiently reasonable time step of 0.01s 

for achieving the desired performance in real-time evaluation.  

A dSPACE real-time simulator is utilized for rapid prototyping of the controller and 

dynamic model using the HIL setup shown in Figure 3.15(a), and the generalized 

configuration scheme as shown in Figure 3.15(b). The setup consists of software and 

hardware combinations for testing the performance of the optimal controllers. In the host 

PC, the software requirements are MATLAB/Simulink and ControlDesk graphical user 

interface (GUI). The prototyping in real-time is performed on the target hardware, dSPACE 
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MicroLabBox-RT1202. The ethernet-based communication link is established for 

communication between the target hardware and the host PC. 

 In the host PC, a MATLAB/Simulink model of the RTPS and HPS with a real-time 

interface (RTI) for system design-based I/O incorporation is employed for C-code 

generation. Further, the compatible system description files (SDF) are generated for 

dSPACE MicrolabBox HIL validation. The SDF runs the real-time application, where the 

measurements obtained can be accessed using the ControlDesk graphical instruments. The 

outputs from the real-time hardware can be visualized by the use of measuring instruments 

connected to the analog channels. 

  

 (a) 

  

 (b) 

 Figure 3.15 HIL validation (a) Hardware setup (b) General scheme for HIL validation. 

A digital storage oscilloscope (DSO) is used to visualize the analog value from the 

hardware prototyping unit. HIL is implemented for GA, LP, and DRL-optimized 

controllers for the RTPS and HPS. The corresponding oscilloscope outputs are depicted in 

Figure 3.16. The dynamic time-domain performance of the controllers is validated in real-

time using the methodology shown in Figure 3.15(b). The GA optimizer has a higher peak 

deviation, and the transient response characteristics under grid-edge DERs require further 

improvement. The transient response is improved in DRL optimization validation 

compared to the GA technique. However, the peak frequency deviation is higher than the 
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LP optimizer, which has the minimum value of maximum frequency deviation, considering 

the real-time study. It is affirmed by the real-time response depicted in Figure 3.16(e) and 

Figure 3.16(f) that the LP optimizer has minimum peak frequency deviation. 

The frequency deviation of the LP-optimized controller obtained from the 

simulation, when compared to the real-time HIL frequency deviation, is depicted in 

Figure 3.17. The real-time validation output obtained from the dSPACE closely follows the 

time-domain simulated response, where the optimality condition is preserved. It is to be 

noted that the simulation step time resulted in optimal real-time controller performance. 

 

(a) (b) 

 

(C) (d) 

 

(e) (f) 

Figure 3.16 HIL response (a) GA-RTPS (b) DRL-RTPS (c) LP-RTPS (d) GA-HPS (e) DRL-HPS 

(f) LP-HPS. 
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 Figure 3.17 HIL response for LP-RTPS. 

3.2.5 Observations based on Preliminary investigations 

• The centralized MPC controller exhibits efficient performance and is robust to 

renewable and load uncertainties, whereas the centralized PID performance is inferior. 

• Based on the relevance to practical feasibility in plant control for LFC, the PID 

controller is cost-effective compared to other controllers. 

• Furthermore, centralized control is not advantageous as it is not resilient to 

communication failures or loss of communication command.  

• Moreover, the DERs and RTPS operate at different power levels consisting of different 

power-frequency characteristics, where centralized control compromises the sources' 

ability to cater to LFC efficiently. 

• Therefore, it is to be highlighted that decentralized and coordinated control is required 

for enhanced LFC operation. 

• However, the coordination of decentralized LFC controllers still remains a challenge, 

and there is a necessity to develop reliable coordination techniques.  

• It is to be noted that even though LP optimization is efficient in centralized schemes, 

its application to decentralized schemes and coordinated control is limited. 

• GA and DRL schemes are suitable for parameter tuning in decentralized control 

applications. 

Based on the GA’s computational effort, it was observed that further improvements 

are required to improve the GA’s efficiency in performing coordinated control for 

decentralized controllers. 
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3.3 Optimization 

3.3.1  Coordinated Control Approach2 

The frequency regulation control framework is designed to build coordinated and 

efficient controllers. The steps involved in the proposed methodology are: 

• The first step is to design the objective functions using the linearized system for the 

three different controller configurations designed for the LFC of multi-source HPS. 

• The next step is to obtain the RoC by applying the proposed PSA utilizing the 

linearized models. 

• The proposed PSA-constrained GA workflow then obtains the decision variables 

for every controller for each optimization criterion. 

The technicalities involved in the optimal controller parameter design and 

calculation using the proposed methodology are elaborated on in this section. The optimal 

controller design is achieved by minimizing the frequency error of the HPS following a 

disturbance. The error 𝛥𝑓can be reduced by defining the objective function 𝑓(𝑥) as the 

optimization criterion. The objective function employed for error minimization is used to 

optimize the gain parameters of the controller. Given the significance of RoC, the controller 

gain limits are obtained and included as constraints in the optimization problem. 

Subsequently, a two-fold control approach using the PSA and optimization using PSA 

constrained genetic algorithm is utilized for tuning the controller parameters to achieve the 

desired objective of minimizing frequency deviation. Initially, the objective function is 

defined using the frequency deviation error. 

3.3.2 Formulation of Objective function 

The LFC problem necessitates the effective development of an objective function 

with a frequency error term 𝛥𝑓 [226]. The defined objective function impacts the tuning 

ability of the optimization process. In recent studies, comparative performance of various 

objective functions reported that the tuned parameters using ITAE resulted in better 

controller performance [25], [243]. In this method, three different objective functions are 

designed and compared for their tuning efficiency. The objective function 𝑓(𝑥) is 

 
2 This work has been published in Sustainable Energy Technologies and Assessments Journal. The 

article details are: R. Loka, A. M. Parimi, S. T. P. Srinivas, and N. Manoj Kumar, “Region of convergence 

by parameter sensitivity constrained genetic algorithm-based optimization for coordinated load frequency 

control in multi-source distributed hybrid power system,” Sustainable Energy Technologies and Assessments, 

vol. 54, p. 102887, Dec. 2022, doi: 10.1016/j.seta.2022.102887. 
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formulated from the linearized state-space models developed using (2.22). The linearized 

state-space models using (2.22) are utilized to capture the 𝛥𝑓 values corresponding to the 

time instant 𝑡 using the step-response of the HPS. The captured values of 𝛥𝑓 and 𝑡 are used 

to compute the objective function 𝑓(𝑥). The objective functions used for the optimization 

of the decision variables are ITAE, IAE, and novel hybrid objective functions. The 

formulae used to compute ITAE, and IAE, are given in (3.29) and (3.30). The objective 

functions are denoted using the variable 𝑚. ITAE, IAE, and novel hybrid objective function 

correspond to m = 1, 2, and 3. 

 𝑓(𝑥) = 𝐼𝑇𝐴𝐸 = ∑ 𝑎𝑏𝑠
𝑡𝑓𝑖𝑛𝑎𝑙

𝑡=0
(𝛥𝑓) × 𝑡; (𝑚 = 1), (3.28) 

 𝑓(𝑥) = 𝐼𝐴𝐸 = ∑ 𝑎𝑏𝑠
𝑡𝑓𝑖𝑛𝑎𝑙

𝑡=0
(𝛥𝑓); (𝑚 = 2), (3.29) 

Two performance criteria can be combined to form the novel hybrid objective 

function: 

 𝑓(𝑥) = 𝛼(𝐼𝑇𝐴𝐸) + 𝛽(𝐼𝐴𝐸); (𝑚 = 3), (3.30) 

The term 𝑡 represents a short discrete timestep and 𝑡𝑓𝑖𝑛𝑎𝑙 represents the total 

simulation time. Subsequently, the constraints on the decision variables are to be 

determined to refine the search space. 𝛼 and 𝛽 are the constant coefficients chosen to be 

large in order to penalize the error terms.  

3.3.3 Novel Parameter Sensitivity Approach for RoC 

The controller gains are extracted from the optimal solution obtained by minimizing 

the objective function. However, the system's stability is affected by varying the controller 

gain parameters in the dynamic scenarios. The range of gain parameters where the system 

operates in a stable mode is RoC. The controller parameter gains limits that are bound to 

push the system into an unstable operation mode are determined using the parameter 

sensitivity approach. The unknown optimization parameters in the minimization problem 

are the decision variables. In the current optimization problem, the decision variables are 

tunable parameters of different controller configurations, as shown in Table 3.3. The 

decision ranges of the optimization parameters are obtained through the PSA algorithm. 

The foremost step in carrying out PSA is to identify the decision variables. The decision 

variables used in the optimization (𝑥0 to 𝑥𝑛) are the controller gains in the various controller 

models (j = 1,2 and 3). The optimization parameters are given in Table 3.3, and their 

bounds are to be identified by the PSA algorithm to establish the RoC. The number of 

decision variables 'n' depends on the controller configuration used. Efficient optimization 
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can be attained by using a well-defined RoC for the decision variables. The bounds are 

captured using the proposed PSA method. The algorithm for determining the gain limits 

for different controller cases, j = 1,2 and 3, is described in Table 3.4. 

 Table 3.3 Decision variables for the controller models 

Controller model 
RTPS (optimization 

parameters) 

DERs (Optimization 

Parameters) 

PI (𝑗 = 1, 𝑚 = 1, 2,3) 𝑘𝑝1 𝑎𝑛𝑑 𝑘𝑖1 𝑘𝑝2 𝑎𝑛𝑑 𝑘𝑖2 

PID (𝑗 = 2,    𝑚 = 1, 2,3 ) 𝑘𝑝1, 𝑘𝑖1, and 𝑘𝑑1 𝑘𝑝2, 𝑘𝑖2, and 𝑘𝑑2 

PI-PD (𝑗 = 3,    𝑚 = 1, 2,3 𝑘𝑝1, 𝑘𝑖1, 𝑘𝑝2 and , 𝑘𝑑1 𝑘𝑝3, 𝑘𝑖2, 𝑘𝑝4 and 𝑘𝑑2 

The inequality constraints on the decision variables are given by Equation (3.32) 

and are obtained through the PSA algorithm.   

 0 ≤ 𝑥𝑖 ≤ 𝑙𝑖𝑚𝑖   ∀  𝑖 ∈ [0, 𝑛] (3.31) 

where 𝑥𝑖  is the 𝑖𝑡ℎ  decision variable, whose decision range is given by 𝑙𝑖𝑚𝑖. 

 Table 3.4 PSA algorithm 

Algorithm 1: PSA Algorithm 

Begin  

Define [A] matrix using Equation (2.22) 

Define the objective function f(x): for all variables 𝑥 

Define decision variables 𝑥0 𝑡𝑜 𝑥𝑛 

Compute optimal values of 𝑥 using GA  

Read the optimal values as 𝑥0𝑜𝑝𝑡  𝑡𝑜 𝑥𝑛𝑜𝑝𝑡  

Set the limit vector [𝑙𝑖𝑚𝑖]𝑛×1 to 5000 

Set count to zero 

Init variable 𝑖 to zero 

Init vector [𝑔𝑖]𝑛×1 to zero 

For count=0 to n for all n decision variables 

While (𝑘𝑖  <  𝑙𝑖𝑚𝑖) 

Set 𝑥𝑖 =  𝑥𝑖𝑜𝑝𝑡  for all 𝑥𝑖 where 𝑖 is not equal to count 

For 𝑖 is equal to count 

Assign  𝑥𝑖𝑜𝑝𝑡 equal to 𝑔𝑖 

Compute eigenvalues of [A] matrix 

If eigenvalues of [A] are greater than zero 

Assign 𝑙𝑖𝑚𝑖 equal to 𝑔𝑖 

Break 

Else if  

Increment 𝑔𝑖 by 0.1 

End else if 

End if 

End for 

Increment 𝑖 by one 

Assign count equal to 𝑖 

End while 

End for 

Read the values of the limit vector [𝑙𝑖𝑚𝑖]𝑛×1 
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3.3.4 PSA Constrained optimization using GA for Coordinated Control 

The bounds obtained for the decision variables through PSA provide a finite 

solution space for the optimization parameters. The finite space ensures the stability of the 

HPS under dynamic scenarios, which are illustrated in the simulation results. 

MATLAB/Simulink environment is utilized for implementing the PSA algorithm. The 

optimization toolbox in MATLAB is utilized for implementing the PSA-constrained GA 

for LFC of the multi-source HPS. The per-unit step load disturbance and step wind 

disturbance are the inputs to the multi-source HPS. The essential functions of GA 

implemented for optimization are roulette wheel selection, arithmetic crossover, and 

adapting feasible mutation with a mutation probability of 0.1. Two factors decide the 

stopping criteria for convergence of the solution: the limit of the function tolerance, which 

is less than 0.00001. The other factor is the maximum number of generations. The optimal 

values are obtained if any of these stopping conditions are satisfied. The decision variables 

obtained from the optimization process are substituted in the gain constants of controller-1 

and controller-2 to perform LFC through coordinated control of controller-1 and 2. The 

working procedure for coordinating different controllers using the two-fold optimization 

approach is described using the flowchart depicted in Figure 3.18. The PSA lead 

optimization uses the population-based GA technique [244], where the fitness function 

used in the process is given by 

 𝑓𝑣𝑎𝑙 =
1

𝑓(𝑥)
 (3.32) 

where 'f(x)' corresponds to the objective function considered during the 

optimization process. The novel optimization strategy is leveraged through a simulation 

procedure for each objective function. The proposed control strategy is applied to determine 

the optimal controller parameters for achieving the LFC of the HPS. The optimal controller 

parameters calculated from the proposed mechanism correspond to the controller gains of 

controller-1 and controller-2 for PI, PIDN, and PIPDN controller configurations. The 

performance of the various controller cases while considering different objective functions 

in controlling the frequency deviation of the HPS is studied using simulation test cases. The 

following section presents a detailed analysis of the novel designed controller's execution 

through simulation scenarios. 

Assign the bounds of 𝑥𝑖 as [0, 𝑙𝑖𝑚𝑖] for all 𝑛 decision variables 

End 
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 Figure 3.18 PSA-based optimization (GA) workflow. 

3.4 Results and Discussion 

This section describes the performance of the optimal controllers designed for 

multi-source HPS. The block diagrams of the integrated model represented in Chapter 2 

with the corresponding HPS design parameters are used to investigate the proposed 

controller configuration for numerical simulation testing. The obtained RoC is used to 

achieve the design objectives for the target performance. Multiple simulation scenarios for 

PI/PIDN/PIPDN are compared based on the objective function employed for the controller 

design. Time-domain simulations are conducted to investigate dynamic response 

evaluation for different controllers subject to step changes in load and wind disturbance. 
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The outcomes are compared to determine the most effective controller configuration and 

objective function that provides the least amount of frequency deviation. 

The simulation scenarios considered for the LFC are as follows: 

Simulation Scenario-1 PI configuration for Controller-1 and Controller-2 for the 

three objective functions 

Simulation Scenario-2 PIDN configuration for Controller-1 and Controller-2 for the 

three objective functions 

Simulation Scenario-3 PIPDN configuration for Controller-1 and Controller-2 for the 

three objective functions 

3.4.1 Investigating Region of Convergence 

The linearized model is obtained for the block diagram depicted in Figure 2.6 by 

substituting (2.1) -(2.4), (2.6)-(2.11), and the respective controller models from (2.15)-

(2.21) in the state-space model described by (2.22). The 𝐴 matrix was obtained from the 

linearized model for implementing the PSA algorithm for different simulation scenarios. 

(2.22) defined the objective function initially used to execute the GA without PSA 

constraints. 

A comprehensive understanding of PSA can be obtained by visualizing the Eigen 

trace of eigenvalues obtained by varying one of the controller parameters by keeping all 

other parameters constant. The initial parameter gains values for plotting the Eigentrace are 

obtained from the traditional GA without considering the RoC. PSA visualization is 

depicted in Figure 3.19. The eigenvalues are plotted for each controller case-j, and the 

stability limit obtained using PSA has been marked using the RoC. The stable and unstable 

regions are color-coded in Figure 3.19(a)-Figure 3.19(d) to indicate the maximum limit on 

the parameter gain for each considered simulation scenario. The effect on stability depends 

on the varying gain parameter. In the PI controller configuration, the proportional gain limit 

is reached for controller-2 at a value of 3437.1, as shown in Figure 3.19(a). 

Similarly, in the case of PIDN controller configuration, as depicted in Figure 

3.19(b), the integral gain limit is reached at 29.3 for controller-2. Moreover, the parameter 

sensitivity limit of the controller gain varies from RTPS's controller to the DER controller. 

In PIPDN controller configuration, the first proportional gain limit for controller-2 is 53.1, 

as shown in Figure 3.19(c),  and the second proportional gain limit for controller-2 is 

2058.1, as obtained in Figure 3.19(d).  It is to be noted that the RoC varies for each 



81 

 

controller configuration, which entails the significance of RoC calculation for different 

cases to determine the individual stable operating region.         

The gain parameter bounds obtained for all the controller configurations through 

PSA are tabulated in Table 3.5. The upper limit for the optimization process is restricted to 

a threshold value of 100 if the parameter limit exceeds 100. The PSA algorithm is executed 

by varying the gain parameter values starting from optimal gain values, where the stability 

of the system can be affected after a specific limit is reached in the controller gains. The 

simulation of PSA is performed to determine the search space. The bounds obtained from 

PSA are used in the optimization process of different controllers. Imposing RoC limits 

maintain the system's stability under varying controller parameters. It can be affirmed that 

the RoC guarantees faster convergence than the optimization techniques that disregard the 

exercise of manifesting stable boundary conditions.  

  
(a) (b) 

  
(c) (d) 

Figure 3.19 Region of Convergence for varying controller gains (a) Eigen trace for the proportional 

gain of controller 2 for simulation scenario-1. (b) Eigen trace for the integral gain of controller 2 

for simulation scenario-2. (c) Eigen trace for the proportional gain of controller 1 for simulation 

scenario-3. (d) Eigen trace for the proportional gain of controller 2 for simulation scenario-3 

 Table 3.5 RoC limits obtained from PSA 

S. No 𝒙𝒊 𝒍𝒊𝒎𝒊, 𝒋 = 𝟏 𝒍𝒊𝒎𝒊, 𝒋 = 𝟐 𝒍𝒊𝒎𝒊, 𝒋 = 𝟑 

1 𝑘𝑝1 99 1802.2 99 

2 𝑘𝑖1 16 690 110 

3 𝑘𝑝2 NA NA 3437.1 

4 𝑘𝑑1 NA 44.9 91 

5 𝑘𝑝3 53.1 690.1 103 

6 𝑘𝑖2 6.3 29.3 41 
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7 𝑘𝑝4 NA NA 2058.1 

8 𝑘𝑑2 NA 2 142 

 

3.4.2 PSA based optimization study: A comparison of controller configurations and 

designed objective functions 

The optimization process discussed in the workflow diagram shown in Figure 3.18 

is realized using GA in the MATLAB environment. The state-space linearized model is 

employed for the different simulation scenarios to study the step response characteristics 

under a step load and step wind disturbance of 0.1 pu. The objective functions obtained 

from (3.29) -(3.31) are substituted in (3.33) to obtain the individual fitness functions. The 

constraints obtained from the PSA algorithm are set as bounds for GA using Equation (26). 

The population size for the controllers j = 1, 2 is 80, and for j = 3 is 200. The optimal values 

for controller gains obtained for various simulation scenarios are listed in                                              

Table 3.6. 

The optimal gains are attained for simulation scenario-1, where j = 1, considering 

the cases where m = 1, 2, 3. The controller gain limits for scenario-1 obtained from  Table 

3.5 are substituted in (16)-(17). The optimized parameters obtained for PI configuration in 

Table 3.6 are utilized for LFC. The state-space model is developed using (22), from which 

the plant transfer function is obtained. The controller parameters directly impact the 

frequency regulation mechanism in the HPS. The optimal parameters obtained from the 

proposed methodology reduce the error in frequency arising due to a disturbance in the 

system. The plant transfer function was used to calculate the step response for the case j=1 

with a step-load deviation of 0.1 pu. 

The corresponding dynamic response is plotted in Figure 3.20(a), where there is a 

trade-off between peak frequency deviation and settling time for the controller parameters 

obtained using objective functions m = 1, 2, 3. Various objective functions contribute 

differently to frequency regulation for the PI controller configuration. It is observed that 

the objective function impacts the optimal parameters, and hence, the step response varies 

depending on the objective function. Analogously, the optimal gains obtained for 

simulation scenario-2, i.e., j = 2 ∀ m = 1, 2, 3, are substituted in the (2.16) -(2.19) to get the 

state-space model. 

Step response for the time-domain study of simulation scenario-2 is plotted in 

Figure 3.20(b) using the updated plant transfer function. The PIDN controller configuration 
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performs better than the PI controller configuration with the presence of a derivative filter. 

The peak deviations are reduced with the proposed objective function than the existing 

objective functions ITAE and IAE. The obtained step response using m = 3 for j = 2 

corroborates the effectiveness of the proposed objective function in the optimization 

process. Following this, the simulation scenario-3 is considered where j = 3. The optimal 

gains are attained using objective functions m =1, 2, 3.  

The optimal gain values obtained using the proposed methodology for scenario-3 

are in Table 3.6. By substituting the optimal gains in (2.16) -(2.17) and (2.20) -(2.21), LFC 

employing the proposed PIPDN configuration is simulated for the multi-source HPS.  The 

new controller model gives an updated state-space model and plant-transfer function for 

simulation scenario-3. The dynamic step response for j = 3 is plotted in Figure 3.20(c). The 

time-domain response depicts that the case m=3 functions better than the other two 

objective functions. It is evident that the oscillations in the frequency deviation are reduced 

from the previous controller configurations by employing the proposed PIPDN controller 

topology. An improved frequency regulation observed in Figure 3.20(c) depicts the 

meticulous functionality of the proposed optimized controller in LFC.  

A comparison of dynamic time-domain response for various controller cases when 

ITAE (m = 1) is the objective function is presented in Figure 3.20(d). The best FR can be 

observed for the PIPDN controller case among the three controller configurations. 

Similarly, a comparison of the controller's performance when IAE (m = 2) is the objective 

function is shown in Figure 3.20(e).  A significant reduction in the peak frequency deviation 

can be observed when the LFC uses the PIPDN controller. It is to be noted that IAE has a 

sluggish dynamic response compared to ITAE. A comparison of case m = 3, where the 

hybrid objective function is incorporated for various controller cases, as plotted in Figure 

3.20(f), depicts the peak frequency deviation from scenario-1 to scenario-2 to scenario-3. 

The choice of the controller determines the effectiveness in controlling the frequency 

deviation. The PIPDN controller improves frequency control for various objective 

functions by reducing frequency deviation from 0.018 to 3.07E-06. The supremacy of the 

PIPDN controller topology is pragmatic in Figure 3.20(d) to Figure 3.20(f) among all the 

objective functions considered for LFC optimization. The PIPDN controller topology is 

suggested for attaining minimal frequency error when the system is subjected to a load or 

source disturbance. 
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                                            Table 3.6 Optimal gain values for different controller configurations and objective functions 

 

 

 

 

 

 

 

 

 

 

 

 

 

obj  ITAE ( m = 1) IAE (m = 2) Proposed Objective Function (m =3) 

No 𝒙𝒊 j=1 j=2 j=3 j=1 j=2 j=3 j=1 j=2 j=3 

1 𝑘𝑝1 10.345 68.209 10.081 12.1778 72.173 12.217 7.554 26.889 9.779 

2 𝑘𝑖1 15.345 76.961 99.882 15.7455 66.918 92.011 10.588 99.999 99.999 

3 𝑘𝑝2 NA NA 78.015 NA NA 65.405 NA NA 82.137 

4 𝑘𝑑1 NA 14.762 96.996 NA 17.816 79.239 NA 5.052 99.994 

5 𝑘𝑝3 9.681 35.723 19.359 18.2149 24.337 18.237 5.904 44.752 18.889 

6 𝑘𝑖2 4.423 14.982 41.437 4.9054 9.900 45.051 2.640 11.756 43.627 

7 𝑘𝑝4 NA NA 16.961 NA NA 31.060 NA NA 17.037 

8 𝑘𝑑2 NA 1.146 42.588 NA 0.989 65.430 NA 0.619 43.257 
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To further analyze the dynamic response obtained from the HPS, the step-response 

parameters, such as settling time, peak-overshoot, and peak-undershoot, are presented in 

Table 3.7. The LFC aims to maintain the frequency at the nominal value. The peak 

deviation should be maintained close to zero. The PIPDN controller outperforms the PI 

controller regarding peak-frequency deviation and settling time. The PIDN controller 

performs better in terms of settling time when compared with the PI and PIPDN controllers. 

However, the peak deviation is observed to be the lowest while implementing the PIPDN 

controller for the LFC, which is the essential objective of the LFC. When compared using 

the controller case as the reference for m = 1, 2, 3, it can be given as 𝑗 = 3 > 𝑗 = 1 > 𝑗 =

2. The relationship of peak frequency deviation for various controller cases for all the 

objective functions would be given as 𝑗 = 1 > 𝑗 = 2 > 𝑗 = 3. The results manifest the 

enhanced functionality of the designed optimal controller for peak error minimization. 

 Table 3.7 Step-response parameters for various simulation scenarios 

 

The least settling time was observed for the PIDN controller when tuned using the 

proposed hybrid objective function. The lowest peak frequency deviation was observed for 

the PIPDN controller when tuned with the proposed hybrid objective function. The 

proposed objective function and PIPDN controller configuration can be used in tandem to 

achieve the desired performance. A rigorous performance evaluation is performed to 

determine the distinctiveness of PIPDN optimized using the proposed algorithm and the 

objective function. The next step is the evaluation of various error indices, which provides 

empirical insights into the controller capabilities for optimal frequency control. For each 

Scenario, obj Settling time Peak-Overshoot Peak-Undershoot 

j=1, m=1 5.2773 0.0182 0.0415 

j=2, m=1 4.5359 1.13E-02 0.0037 

j=3, m=1 6.4095 3.37E-05 3.37E-05 

j=1, m=2 7.3936 0.0095 0.031 

j=2, m=2 4.6484 1.18E-02 0.0051 

j=3, m=2 7.8692 3.50E-06 2.48E-05 

j=1, m=3 5.514 0.0237 0.0521 

j=2, m=3 3.462 0.0142 0.0027 

j=3, m=3 6.3028 3.07E-06 3.39E-05 
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scenario and respective objective function, the formulae for the error indices evaluated for 

the step response along with ITAE and IAE are.  

 𝑓(𝑥) = 𝐼𝑇𝑆𝐸 = ∑ 𝑎𝑏𝑠
𝑡𝑓𝑖𝑛𝑎𝑙

𝑡=0
(𝛥𝑓 × 𝛥𝑓) × 𝑡 (3.33) 

 𝑓(𝑥) = 𝐼𝑆𝐸 = ∑ 𝑎𝑏𝑠
𝑡𝑓𝑖𝑛𝑎𝑙

𝑡=0
(𝛥𝑓 × 𝛥𝑓) (3.34) 

 𝑀𝑆𝐸 =
1

𝑁
∑ 𝑎𝑏𝑠

𝑡𝑓𝑖𝑛𝑎𝑙

𝑡=0
(𝛥𝑓 × 𝛥𝑓) (3.35) 

 𝑀𝐴𝐸 =
1

𝑁
∑ 𝑎𝑏𝑠

𝑡𝑓𝑖𝑛𝑎𝑙

𝑡=0
(𝛥𝑓) (3.36) 

where 𝑁 is the total number of discrete time steps considered from the initial timestep 𝑡 =

0 to the final time step (𝑡𝑓𝑖𝑛𝑎𝑙). The error indices are calculated by using integration in the 

continuous-time evaluation. The error is approximated with summation using closely 

spaced discrete timesteps sampled at 0.01 s. Comparing the tabulated values of error indices 

presented in                                                                          Table 3.8Table 3.8, simulation 

scenario 3, where j=3 and m=3, stands as the best-case scenario with the least error index 

of ITAE as 0.0035 for a simulation time of 10s. The extensive analysis of the simulation 

studies concludes that the PIPDN controller optimized using the PSA algorithm and GA 

provides the most satisfactory performance for the LFC of the multi-source HPS. 

Moreover, the optimal performance of the PIPDN controller is achieved while 

implementing the novel hybrid objective function for tuning the controller gains. 

To further study the effectiveness of the controller, the proposed PSA-based 

optimization of the droop-cascaded PIPDN controller is compared with a similar LFC study 

where a cascaded PI-PD controller was used. The performance parameters and error indices 

are plotted in the bar graph in Figure 3.21. The case-3 of the previous study has been 

compared with simulation scenario-3, where m = 3. There is a close similarity between the 

multi-source HPS employed for the LFC studies. The settling time has been significantly 

improved with the PSA-optimized PI-PDN configuration. There is a 30% reduction in the 

settling time. The peak deviation and the error indices are also substantially improved 

compared with the previous literature study. The modified PIPDN topology provides better 

step response statistics and affirms that the proposed methodology is efficient for optimal 

LFC.  
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(c) (d) 

  

(e) (f) 

Figure 3.20 Dynamic response analysis using time-domain simulations (a) Step response for 

simulation scenario-1, (b) Step response for simulation scenario-2, (c) Step response for simulation 

scenario-3, (d) Step response using m = 1, (e) Step response using m = 2, (f) step response using m 

= 3. 

3.4.3 Mathematical and Hardware Validation 

The optimized parameters obtained from the state-space model are used to test the 

validation of the developed linearized controller models. The optimized parameters for 

three simulation scenarios are substituted in the linearized state equations from which the 

step response has been obtained. Subsequently, the step response obtained is compared with 

the step response obtained from the block-diagram model for LFC represented in  Figure 

2.6. 
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                                                                         Table 3.8 Calculated error indices for various simulation scenario cases 

 

 

 

 

S.No Scenario, obj ITAE IAE ISE ITSE MSE MAE 

1 j=1, m=1 2.617 0.0738 0.0299 0.0098 2.99E-05 7.38E-05 

2 j=1, m=2 3.5873 0.1471 0.0125 0.006 1.25E-05 1.47E-04 

3 j=1, m=3 3.5519 0.1021 0.0594 0.023 5.94E-05 1.02E-04 

4 j=2, m=1 0.4504 0.0137 6.73E-04 1.75E-04 6.73E-07 1.37E-05 

5 j=2, m=2 0.4765 0.0141 9.01E-04 2.38E-04 9.01E-07 1.41E-05 

6 j=2, m=3 0.2893 0.009 0.0012 2.58E-04 1.19E-06 9.00E-06 

7 j=3, m=1 0.0037 1.15E-04 2.36E-08 1.08E-08 2.36E-11 1.15E-07 

8 j=3, m=2 0.0058 1.51E-04 2.58E-08 1.89E-08 2.58E-11 1.51E-07 

9 j=3, m=3 0.0035 1.11E-04 2.24E-08 9.84E-09 2.24E-11 1.11E-07 
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 Figure 3.21 Comparison of optimized PIPDN controller performance. 

The comparison for model validation has been verified for different simulation 

scenarios. The step-response obtained using simulation scenario-1, as shown in Figure 

3.22(a), incorporating a PI controller in the secondary controllers-1 and 2, is compared with 

that of the step-response derived from the mathematical state-space model. Similarly, the 

comparison for PID and PI-PD controllers has also been obtained for simulation scenarios-

2 shown in Figure 3.22(b) and the simulation scenario-3 depicted in Figure 3.22(c). The 

plots reveal that the mathematical model obtained, i.e., the linearized state-space model 

from (2.1) - (2.22), is valid compared to the equivalent block-diagram representation. 

  
(a) (b) 

 
(c) 

Figure 3.22 Validation of the mathematical modeling using time-domain simulations for (a) PI 

controller configuration, (b) PIDN controller configuration, (c) PIPDN controller configuration. 
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Hardware validation is conducted to interpret the practical applicability of the 

suggested approach and examine the proposed controller performance. Figure 3.23 

illustrates the configuration employed for HIL testing. The arrangement consists of a 

dSPACE RT1202 MicrolabBox for rapid prototyping of a simulated HPS environment, a 

host PC to integrate the dSPACE controller with the MATLAB/SIMULINK environment, 

and a digital storage oscilloscope (DSO) to visualize the HIL response. The simulation test 

bench for the dSPACE controller consists of dSPACE software with a real-time interface 

(RTI) for realizing the seamless I/O capabilities of the MicroLabBox. RTI provides the 

building and linking functionalities for deploying real-time applications along with the 

Simulink coder. Control Desk 7.3 provides the software environment for post-deployment 

measurements for interacting with the dSPACE platform and serves as a GUI. 

The measured frequency deviation from HIL testing is equivalent to that obtained 

from the time-domain simulation. The HIL simulation is carried out to test the effectiveness 

of the designed controller in real-time conditions. The target hardware simulates the 

controller operation using the hardware time step, which validates the time step and solver 

performance carried out in the simulation procedure. The results indicate that the proposed 

controllers are effective for real-time hardware prototyping, which is affirmed by the DSO 

results obtained from the dSPACE analog I/O channels. 

 

  
(a) (b) 

  
(c) (d) 
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Figure 3.23 HIL testing for frequency deviation in HPS, (a) Hardware setup, (b) Step response of 

PI controller, (c) Step response of PIDN controller, (d) Step response of PIPDN controller 

The response of frequency deviation is captured in the DSO. The frequency 

deviation for the different controller topologies presented in Figure 3.23(b)-Figure 3.23(d) 

demonstrates the feasibility of the proposed methodology in significantly reducing the peak 

value and, therefore, is acceptable for real-time applications. The dSPACE control desk 

environment is used to plot the output received by the analog channel on the host PC. The 

zoomed-in control desk plots are superimposed over the output observed in DSO for 

enhanced visualization. Reduction in peak deviation occurs when PIDN is employed 

instead of the PI controller. The transient behavior and peak frequency error are further 

improved with the PIPDN controller. The hardware investigation signifies that the PIPD 

controller configuration outperforms the PIDN and PI controller setups in real-time. The 

observation is that the PSA-constrained GA optimization for PIPDN tuning is the optimal 

controller choice for LFC.  

3.4.4 Robust Controller Performance 

The RES penetration and load uncertainties are the factors that can affect power 

generation and consumption factors. The perturbations caused by random fluctuations in 

wind speed and load vary the system's frequency from the nominal value. The maximum 

allowable frequency deviation for frequency-sensitive equipment is as low as 0.1 Hz. The 

controller must maintain the frequency within the prescribed limits, even under random 

wind generation and load demand perturbations. Therefore, the robustness of the controller 

to random fluctuations is simulated by using the random wind speed and load deviations 

shown in Figure 3.24. The random fluctuations in wind speed are generated close to real-

time variations using the base speed, ramp rate constraint, and random noise function using 

the MATLAB/Simulink environment. 

The best-case scenario of the controller case has been identified as simulation 

scenario-3 for m = 3 from the time-domain investigations conducted on the dynamic 

response. The HPS was subjected to random load and wind disturbances to test the robust 

performance of the best-case controller designed using the PSA-based optimization. The 

frequency deviation plot for the HPS, when subjected to random Load and wind deviations, 

is shown in Figure 3.24. The wind speed fluctuations are varied randomly between 0.4 pu 

to 0.6 pu. The random load has been varied between 0.1 pu to 0.3 pu. The frequency 

deviations observed are minimal under the continuous Load and wind speed variations. The 
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robust PIPDN controller for m=3 successfully handled the continuous and stochastic 

uncertainties in the system. 

The active power of different sources in the multi-source HPS under the influence 

of random load and wind perturbations has been presented to analyze the sources' 

contribution to minimizing the frequency deviation during the presence of load and wind 

uncertainties. Initially, a sudden increase in wind speed caused fluctuations in frequency 

due to active power mismatch. The perturbations in load have caused a similar effect. There 

is a sudden increase in frequency due to an increased active power output of about 0.525 

pu. The variations in RTPS have essentially compensated for the increase in wind speed, 

as shown in Figure 3.24. The decrease in RTPS power output is about 0.6 pu. Therefore, 

the participation of other sources is necessary to obtain balance in the active power. The 

power from DEG, FC, and BESS can be varied quickly. Active power deviation in DEG 

shown in Figure 3.24 

Figure 3.24 compensates for the rise in load by slightly adjusting its power output 

of about 0.03 pu based on the command received from the optimized controller. Following 

the decrease in RTPS power output, FC participation is significant in frequency regulation, 

increasing by about 0.08 pu. AE absorbs a part of the power generated by the FC for 

hydrogen production, which is plotted. The initial increase in WTG output depending on 

the wind speed fluctuation is shown. The BESS quickly contributes to the active power 

mismatches of lesser magnitude, as shown in Figure 3.24. The initial change in BESS 

power output is about 0.015 pu.  

The optimally designed novel load frequency controllers adjust the power output 

from the DERs and RTPS through the coordinated control action. The initial deviation has 

shifted the power system's operating state, and the LFC achieves a new stable operating 

point. Subsequently, the control commands help maintain an equilibrium among the active 

power outputs for the small perturbation in the random load and wind. The deviations in 

RTPS, DEG, FC, AE, WTG, and BESS are shown. 

The active power adjustments align with command signals obtained from LFC to 

achieve robust control. The PIPDN configuration has proved to be effective for handling 

uncertainties in wind speed deviations and load deviations. Thus, effective coordination of 

controllers through RoC and PSA-GA optimization achieved active power regulation 

among various sources of the multi-source HPS.  
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Figure 3.24 Robust performance using the PSA constrained GA optimized PIPDN 

controller configuration. 

3.5  Summary 

Initially, centralized control techniques based on MPC and PID optimization were 

discussed. The advantages of different schemes were discussed, along with the 

shortcomings of centralized control, which highlighted the need for coordinated control. 

Furthermore, this chapter introduced a novel parameter sensitivity-based optimization 

algorithm using GA to perform the LFC of a multi-source HPS. The implemented PSA was 

able to determine the constraints of the gain parameters of the controllers. Also, the 

obtained parameter bounds for individual controller models favor the RoC results. As such, 

the results ensure a stable optimization process compared to the counterparts shown where 

the stability limits are determined by including the controller parameters. Subsequently, 

optimized gains were obtained for the controllers using the PSA-based optimization. 

Various simulation scenarios were analyzed to identify the optimal case using time-domain 

studies considering step-response. The cascaded droop PI-PDN controller was designed 

using the PSA algorithm's limits, and the proposed hybrid objective function was found to 
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be superior to that of various simulation scenario cases. The PSA-optimized PI-PDN error 

indices showed a 99% decrease from the PIDN controller case. Settling time was reduced 

by 30% compared to a previous LFC study consisting of a similar HPS configuration. The 

controller's performance was tested under varying load and generation uncertainties. It was 

found that the proposed controller offers robust performance against stochastic 

uncertainties.  

In this work, the uncertainties are modeled through randomized simulations. 

However, real-time uncertainty requires models representing the practical use cases where 

data-driven models are required. Moreover, the communication failure also needs to be 

assessed for creating a communication failure resilient LFC model. 
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Chapter 4 

4 Data-Driven Predictive Control 

 

 Figure 4.1 Aspects of Objective 3 addressed in Chapter 4: An outline. 

In this chapter, objective 3 is achieved using data-driven uncertainty models and 

adaptive control for efficient frequency regulation under communication failure. The 

aspects of objective 3 discussed in this chapter are presented in the pictorial outline, as 

depicted in Figure 4.1.  The framework and modeling approach are detailed to provide 

insights into the methodology of the study. Uncertainty modeling is carried out to represent 

the load and wind uncertainties in the system. The uncertainty characterization and data-

driven predictive control are introduced in this chapter that can counter the communication 

failure scenarios.  For the HPS, the corresponding simulations, HIL validations, and 

performance comparison of different approaches are discussed in the results and discussion 

section. 

4.1 Introduction 

Data-driven models are employed for different aspects, such as electricity theft 

detection [245] and energy-saving systems [246]. These models are instrumental in cases 

particularly where the physics-based models are not available or in cases where the 

complexity of physics-based models is very high. Most of the data generated for energy 

and power requirements fall under the category of time-series data sets. Data-driven model 

complexity depends on the application, such as load forecasting, renewable uncertainty 

prediction, and the timescale of the dataset. A supervised shallow learning model using 

extreme gradient boosting (XGBoost) is well-suited for building different tree-based 

regression models for representing random phenomena. When it comes to time-series data 
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with recurring patterns, recurrent neural networks (RNNs) and long short-term memory 

(LSTMs) models perform better than the others [247] 

4.1.1 Challenges and requirements in forecasting for LFC 

LFC requires control actions that can continuously adjust the power output of the 

sources at a time scale of a few seconds to minutes. The uncertainties in the load are to be 

modeled at shorter timescales, unlike the previous models, in order to attain suitability to 

LFC. A few challenges in forecasting the uncertainties for LFC are: 

• Data availability at a shorter timescale for developing data-driven models for load 

or renewable uncertainties. 

• Uncertainty models require real-time data sets rather than synthetic data sets, which 

account for weather conditions. 

• Data-driven models are to be built offline because of the speed at which the 

controllers must act to incorporate frequency regulation. 

The following sub-section designs a framework suitable for LFC data-driven 

uncertainty modeling considering practical data sets and introduces an adaptive control 

architecture under communication failure scenarios. 

4.2 Framework for adaptive architecture  

During communication failure and uncertainties, the grid frequency distortions can 

cause unacceptable DFD, which results in excessive power flows and decreased efficiency 

in the power system. The proposed framework depicted in Figure 4.2 consists of four 

different layers for operating the system within the DFD limits, which constitute 1) the 

Control layer, 2) the Communication layer, 3) the Physical Layer, and 4) the Auxiliary 

control layer. The architecture and functional details of each of these layers are as follows: 

4.2.1 Control Layer 

The control layer consists of the load frequency controllers and the LFC operator. 

The optimization of the controllers was performed offline, and the optimized controllers 

were utilized online for communicating the control signal. The grid LFC operator in the 

control layer sends the optimal control command, as shown in Figure 4.2, supported 

through coordinated controllers for controlling the output for different sources in the 

physical layer. The LFC controllers work on the feedback frequency measurement obtained 

from the physical layer at a specified sampling rate for LFC operation. 
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Figure 4.2 Integration of the auxiliary control layer operated by data-driven predictive control for 

communication failure resilient frequency control framework for a single area system.  

4.2.2 Communication layer  

The communication layer consists of a communication network employed to 

transfer the signal to the sources participating in LFC. The information exchange between 

the physical and control layers is performed using supervisory control and data acquisition 

(SCADA) systems with crucial infrastructure. This includes fiber optic cables, wireless 

communication links, and other hardware and software components that make up the 

network. The communication network must be reliable and fast to ensure that information 

is transmitted quickly and accurately. However, in certain events, the communication 

network can fail, and loss of information is a significant issue in LFC. 
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4.2.3 Physical Layer 

The sources and loads are present in the physical layer of the framework. Different 

types of generation, including conventional, renewable, DERs, and different types of loads, 

exist in the physical layer. There must be a balance in the load and generation to maintain 

the power network frequency at a nominal value. The maximum allowable DFD is 0.1 Hz, 

which has to be converged by adjusting the power generated by different sources. These 

sources have a dependency on the communication network for active power adjustments, 

which are an essential part of frequency control. In case of communication network failure 

for short time intervals, the auxiliary control layer will be triggered.  

4.2.4 Auxiliary control layer 

The independent operation is achieved through an adaptive architecture for local 

control command imitation during the event via the auxiliary control layer. The event refers 

to communication data loss or loss of measurement signal, which affects the control 

capabilities of the LFC network. The auxiliary control layer can be operated on a local 

machine that can communicate the necessary control signal during the communication loss. 

The control signal is generated using a combinatorial model of deep learning (DL) model 

and a mathematical model run on the local machine. Thus, the proposed architecture 

improves the reliability of control and maintains the desired frequency range under 

communication loss events by following an adaptive approach. 

4.3 Modeling approach  

The dynamic model for the designed framework, consisting of the different layers 

discussed in Section 4.2, is depicted in Figure 4.3. This block diagram contains various 

components of the layers modeled to obtain the LFC dynamics and frequency deviations. 

The well-detailed block diagrams of controllers, the independent sources, and the objective 

function part of this model are presented in Chapter 2. The models are described as 

• System model for the physical layer 

• Control layer model 

• Communication layer model 

• Adaptive architecture model for auxiliary control layer model 
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4.3.1 System model for the physical layer 

The details of physical layer modeling were presented in Chapter 2 from Equation 

(2.1) to (2.4) and (2.6) to (2.12). 

4.3.2 Control layer model 

The optimization of the controllers is carried out using PSA-GA with different 

objective functions. The details of the optimization layer are presented in Chapter 3.3. 

 

 

Figure 4.3 Block diagram representation of the proposed framework for enabling frequency control 

under communication loss. 

4.3.3 Control command communication to the physical layer 

 The communication layer model is represented by the samples of control signals 

transferred from the control layer to the physical layer. The optimized controllers from the 

control layer generate the control, which is communicated to the physical layer for 

regulating the output from RTPS and DERs. The frequency measurement is obtained from 

the physical layer and provided as feedback to the controllers in the control layer, as 

depicted in Figure 4.4. The control commands for the measured frequency deviation for 

RTPS and DERs are defined by the equation, 

 ∆𝑢1(𝑡) ≜ 𝛥𝑢11(𝑡)|𝐿𝐹𝐶1 + 𝛥𝑢12(𝑡)|𝐿𝐹𝐶1,  

 ∆𝑢2(𝑡) ≜ 𝛥𝑢11(𝑡)|𝐿𝐹𝐶2 + 𝛥𝑢12(𝑡)|𝐿𝐹𝐶2.  (4.1) 

where 𝛥𝑢11(𝑡) and 𝛥𝑢12(𝑡) are the intermediate control signals received from PI and DN 

controllers. At the time of disturbance, each of the controllers generates a continuous 
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control command of the form ∆𝑢𝑐(𝑡) + ∆𝑢𝑐(𝑡 + ∆𝑡) + ∆𝑢𝑐(𝑡 + 2∆𝑡) + ⋯ + ∆𝑢𝑐(𝑡𝑓) , for 

the feedback measurement signal received 𝛥𝑓(𝑡) + 𝛥𝑓(𝑡 + ∆𝑡) + 𝛥𝑓(𝑡 + 2∆𝑡) + ⋯ +

𝛥𝑓(𝑡𝑓). On the loss of a communication signal or a frozen frequency measurement, the 

frequency deviation increases. As such, the impact of the loss of frequency measurement 

is modeled as the sample loss for a number of discrete time instants. The model of 

communication failure is represented in Figure 4.4, where the total number of samples is 

equal to (∆𝑡 × 𝑡𝑓) + 1. Here, ∆𝑡 is the discrete time step deviation at which the samples 

are extracted, and 𝑡𝑓 is the total time starting from zero. The possible scenarios are depicted 

in Figure 4.4, which includes the communication loss of the command sent to RTPS, the 

communication loss of the command sent to DERs, or the measurement loss for the 

feedback sent to controllers, which impacts the frequency deviation. The possible scenarios 

indicate the LFC events that can occur due to the loss of data samples occurring between 

(𝑡 + 𝑟∆𝑡) to (𝑡 + 𝑠∆𝑡), where 𝑟 and 𝑠 are positive real numbers such that 𝑠 > 𝑟. Thus, the 

effectiveness of the optimized controllers under such events requires adaptive nature for 

initiating corrective actions and regulating the frequency of the system. Therefore, the 

adaptive architecture that represents the auxiliary control layer in the following section is 

designed to withstand these events.  

 

 Figure 4.4 Communication and measurement loss from the data samples. 

4.4 Adaptive architecture 

The communication system interruption can hinder the transmission of the LFC 

command, which is handled by the DDPC consisting of the 1) plant model, 2) optimal 

controllers, and 3) uncertainty characterization model for predicting the load uncertainties, 

as depicted in Figure 4.3. The HPS plant model and optimal controller models described in 

Chapter 3 are utilized for the auxiliary control layer to represent the HPS dynamics 

accurately, where the uncertain disturbances are the unknown quantities. Uncertainty 
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characterization through data-driven methods is used for obtaining the predictive 

uncertainties in the DDPC mechanism. This helps to obtain the feedback measurements 

from the plant model and control signals from the optimal controllers based on the predicted 

uncertainty from the data-driven models to maintain the frequency deviation at a nominal 

value. Therefore, the plant model is coupled with the optimized controllers and predicted 

uncertainties to generate the corrective measurements and the control commands during an 

event. Thus, for any loss of information, as depicted in Figure 4.4, the triggering circuit 

activates the localized command signal transmission from the DDPC until the grid LFC 

command is restored. The adaptive model runs parallelly and gets triggered through a 

triggering logic only under any event of data loss. In the auxiliary control layer, uncertainty 

characterization and DDPC implementation for LFC. Initially, uncertainty characterization 

case studies are conducted for medium-term load forecasting (MLTF). Based on these 

results, data-driven methods are implemented for uncertainty modeling to overcome the 

challenges faced in LFC. 

4.4.1 Uncertainty characterization for load in medium-term load forecasting 

Time series data is a sequence of points and values that have a natural temporal ordering. 

Real-life instances of time series data can be seen in fluctuations in the stock markets, 

electrocardiography (ECGs), weather data, financial sales, etc. Load forecasting, which 

makes use of time-series data, is one of the applications in the power systems industry. A 

time series can be denoted as: 

 𝑥(𝑡) = (𝑥𝑡1 
, 𝑥𝑡2

, 𝑥𝑡3
, … , 𝑥𝑡𝑛

)  (4.2) 

where 𝑥𝑡𝑖 
′𝑠 are the values at different time steps 𝑡 and 𝑥(𝑡) is the time series data. The 

predictions for time-series data can be performed through statistical methods like ARIMA 

and sARIMA. Moreover, the data can be encoded into recurrence plots using time encoding 

techniques [248]. Recurrence plots are essential in generating pictorial patterns in time-

series data, and a two-dimensional- convolutional neural network (2D-CNN) model can be 

trained to recognize the patterns. 

A recurrence plot is generated by mapping time series data onto a 2-dimensional phase 

space by grouping two adjacent data points of the time sequence as defined in (4.2) 

 𝑆(𝑡𝑖) = (𝑥(𝑡𝑖), 𝑥(𝑡𝑖−1))  (4.3) 

𝑆(𝑡𝑖) points are, in turn, mapped into N×N metrics, which is called a recurrence plot 

(RP), 𝑅(𝑖, 𝑗). Mapping is done by taking the Euclidean distance of each point with the other 

and representing it as N×N metrics as defined in (4.3) 
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 𝑅(𝑖, 𝑗) = 𝑑𝑖𝑠𝑡(𝑠(𝑡𝑖), 𝑠(𝑡𝑗) )  (4.4) 

Figure 4.5 show two recurrence plots or two different time steps generated using (4.2) and 

(4.3). These RPs act as inputs to a 2D-CNN for training and forecasting. 

  
(a) (b) 

 

 Figure 4.5 Recurrence plots for (a) time step tn (b) time step tn+1. 

Other methods like Gramian Angular Field (GAF) or Markov Transition Field (MTF) for 

time series data encoding have been implemented on a 2D-CNN [249]; however, recurrence 

plots perform better than their counterparts [250]. 

4.4.1.1 Convolutional Neural Networks 

 CNNs are deep learning models most apt for image recognition and classification. 

A 2D-CNN has multiple hidden layers, each having filters that can extract features from 

images like patterns and similarities. These models find multiple uses in image 

classification and segmentation, medical image analysis, and financial time series analysis. 

As these models analyze sequential data, they have a memory associated with them. 

This adds to the computational costs, and large datasets need higher memory bandwidth to 

be computed. In the preliminary investigations, the working of 2D-CNNs, which are of 

lower computation cost compared to RNNS and LSTMs, on time series data to address the 

shortcomings of other models are analyzed. 

4.4.1.2 Auto-Regressive Integrated Moving Average 

ARIMA is the most popular forecasting algorithm when working with time-series 

data. Differential autoregressive moving average or ARIMA (p, d, q) can be split into two 

parts: AR is autoregressive, and MA is moving average. These two parts are governed by 

the model parameters p, d, and q, where p and q are corresponding orders and d is the 

differencing parameter. ARIMA is essentially a linear regression model that can be used 

on stationary data to find future values of a sequence from past values. The equations 

governing ARIMA are: 

 𝑌𝑡 =  𝛼 + 𝛽1𝑌𝑡−1 + 𝛽2𝑌𝑡−2 + ⋯ + 𝛽𝑝𝑌𝑡−𝑝𝜖𝑡 +  𝜙1𝜖𝑡−1 +  𝜙2𝜖𝑡−2 + ⋯ + 𝜙𝑞𝜖𝑡−𝑞 (4.5) 
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Equation (4.4) can be broken up into the two AR and MA parts. Y is the time series 

power consumption data, p is the AR order, and β is its corresponding slope coefficient. 

Similarly, ϕ is the MA parameter with q as its order. ϵ is the error between the predicted 

and true values at time step 𝑡. The model is trained for all 𝑌𝑡−𝑖 points and parameters of 

Equation (4.4) are fitted during the training. 

Auto ARIMA is used in this paper to find the best (p, d, q) values and modelling is 

done accordingly. The term ‘auto’ signifies automatically searching the sample space of 

different combinations of p, d, q parameters and choosing the most optimal ones for 

improving the prediction accuracy according to the grid search algorithm. 

4.4.1.3 Methods for medium-term load forecasting 

A comparison3 between the statistical ARIMA model and the deep learning 2D-

CNN model for MLTF is obtained for testing the efficiency of 2D-CNN in timeseries 

forecasting.  

4.4.1.4 Dataset 

The Turkey power consumption and generation [251] dataset is used for evaluating 

the two proposed methods i.e. 2D-CNN and ARIMA. The dataset has power consumption 

and generation (MWh) collected per hour for the country of Turkey. There are 40,176 data 

points from Jan. 1, 2016, to Aug. 2, 2020. Time series encoding of these data points using 

(4.2) and (4.3) leads to the generation of 40,000 recurrence plots of (95, 95, 3) dimension. 

For training and testing of the 2D-CNN model, 21,024 and 5,256 images are used, 

respectively, i.e., a validation split of 0.2. 5,112 images that encode data points of the year 

2019, are used for the prediction of power consumption of the year 2020. Time series power 

consumption data is plotted in Figure 4.6 for the first seven days of 2020 sampled hourly. 

The ARIMA model has been trained on all hourly data points of the year 2019. This trained 

model is used to predict the hourly power consumption for the year 2020. 

The deep learning model comprises of an input layer, three two-dimensional 

convolutional layers (2D-CNNs) and a max-pooling layer between the CNN layers. The 

feature map obtained from the third 2D-CNN is flattened and passed into a fully connected 

dense layer of 64 units, followed by a single densely connected neuron that generates the 

final predictions. The input layer accepts RPs of dimensions (95, 95, 3). The 2D-CNNs 

 
3 This work has been presented in a conference and the detail are : M. S. Patil, R. Loka, and A. M. 

Parimi, “Application of ARIMA and 2D-CNNs Using Recurrence Plots for Medium-Term Load 

Forecasting,” in 2021 IEEE 2nd China International Youth Conference on Electrical Engineering (CIYCEE), 

Dec. 2021, pp. 1–5. doi: 10.1109/CIYCEE53554.2021.9676838 
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have filters of (32, 32), (64, 64), and (64, 64), respectively, and the max-pooling layers 

have a kernel size of (2, 2). All activation functions for the layers are 'relu' (rectified linear 

activation function). The 2D-CNN architecture is represented in Figure 4.7. 

  

 Figure 4.6 Sample Turkey Power Consumption Profile. 

4.4.1.5 2D Convolutional Neural Network Model 

 

 Figure 4.7 2D CNN model for medium-term load forecasting. 

The training and testing of the model are done on a normalized dataset of load 

values as the 2D-CNN is used for regression and not for classification [250], [252]. 

Performing regression using 2D-CNNs is similar to classification except for the loss 

function for regression cannot be softmax or cross-entropy loss [252]. Conclusively, the 

input set of training images are all scaled down by dividing by 255, and normalization is 

done for the output set of training images using the min-max normalization in the sklearn 

library, represented by (4.5).  In (4.5), 𝑥 is an array of values to be normalized, 𝑥𝑚𝑖𝑛 and 

𝑥𝑚𝑎𝑥 are the maximum and minimum values of 𝑥 and 𝑥𝑠𝑐𝑎𝑙𝑒𝑑 is the normalized array. 

Stochastic gradient descent with a step size of 0.001 is used as the optimizer. The loss 

function is 'mean squared error' for faster convergence, and the metrics to evaluate the 
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model are mean absolute error (MAE), root mean square error (RMSE), and Mean Absolute 

Percentage Error (MAPE). The programming language used is Python 3.6, and the deep 

learning models are built on the Tensorflow-Keras framework. Figure 4.8 show the 

forecasting done by the 2D-CNN model for 2020 given 2019 data points. 

 𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =  
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥− 𝑥𝑚𝑖𝑛
  (4.6) 

  

 Figure 4.8 2D-CNN Hourly Predictions. 

4.4.1.6 ARIMA Model 

Power consumption data is not stationary; pre-processing is necessary to make it 

stationary before passing it through an ARIMA algorithm. The log scaling method is used 

for making data stationery, where the logarithm of all points of the time series are taken 

and then differenced once to get a stationary series. The python package 'pmdarima' 

contains the module 'auto_arima' is used to train the model, and the results are depicted in 

Figure 4.9 shows the predictions of the ARIMA model and their corresponding true values.  

  

 Figure 4.9 ARIMA Hourly Predictions. 
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 Statistical modeling of load data using ARIMA for MLF provides better 

predictions than the 2D-CNN model. It was observed that 2D-CNN using recurrence plots 

for time series analysis performs better than SVMs, ANNs, and 1D-CNNs [253]. Thus, it 

can analogously be inferred that ARIMA outperforms these deep learning methods for 

MTLF. Figure 4.10 graphically depicts the comparison between true hourly load values and 

the predicted ARIMA and 2D-CNN values for 6 days from 1st Feb. 2020 to 6th Feb. 2020. 

For hourly data prediction, the MAE is 7.6% for the ARIMA model while it is 12.7% for a 

2D-CNN model, which reveals that ARIMA is better than 2D-CNN for MLTF. 

  

Figure 4.10 True value vs. ARIMA predictions vs 2D-CNN predictions for hourly load 

consumption for 6 days. 

The hourly predictions are not suitable for control decision-making in LFC, which 

has an operational timescale of seconds to minutes. Thus, from the literature and MLTF 

analysis, it was found that LSTM is better for smaller timescales and, thus, for LFC. 

4.4.2 Uncertainty characterization for load in LFC 

The uncertainty characterization model in the HPS model depicted in Figure 4.3 is 

a data-driven model of load and wind uncertainties occurring in the physical layer. These 

uncertainties depend on factors such as weather conditions, location, and historical patterns. 

Therefore, characterization of these uncertainties can be effectively accomplished using 

time-series forecasting-based regression models by identifying the features that influence 

the patterns in the future. In this work, a deep learning model using LSTM is utilized for 

load uncertainty characterization.  

LSTM is a type of RNN [254] that is suitable for time series forecasting. Forecasting 

time series entails predicting the future values of a sequence based on its past values. LSTM 

networks are particularly effective for this task because of their inherent capability to learn 
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long-term dependencies between the elements in the sequence. These networks consist of 

a combination of forget gates, input gates, and output gates to selectively remember or 

forget information from previous time steps. In a load uncertainty characterization, an 

LSTM network can be trained to take in a sequence of past values and predict the next value 

in the sequence. The network can be configured with multiple layers, with each layer 

processing the output of the previous layer. The output of the last layer is then used to make 

the final prediction. The structure of an LSTM unit has different units and activation 

functions [255]. The LSTM equation for the Input gate is defined by the equation 

 𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑥𝑡 + 𝑊𝑖ℎℎ𝑡−1 + 𝑏𝑖)  (4.7) 

where the suffix- 𝑡 is indicative of the time instant, 𝑖𝑡 is the input gate at the time instant, 

𝑥𝑡 is the input at instant 𝑡, ℎ𝑡−1 is the hidden state at 𝑡 − 1, the weight matrices are 𝑊𝑖𝑥 and 

𝑊𝑖ℎ, 𝑏𝑖 is the bias vector, and 𝜎 is the sigmoid activation function. The forget gate equation 

is written as 

 𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑥𝑡 + 𝑊𝑓ℎℎ𝑡−1 + 𝑏𝑓)  (4.8) 

where 𝑓𝑡 denotes the forget gate at time 𝑡, weight matrices are 𝑊𝑓ℎ and 𝑊𝑓𝑥, and 𝑏𝑓 is the 

bias vector. The memory cell stores the necessary data and is defined as: 

 𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡𝑡𝑎𝑛ℎ𝜎(𝑊𝑐𝑥𝑥𝑡 + 𝑊𝑐ℎℎ𝑡−1 + 𝑏𝑐)  (4.9) 

where 𝑐𝑡 is the memory cell at instant 𝑡, the weight matrices are 𝑊𝑐𝑥 and 𝑊𝑐ℎ, and the bias 

vector is 𝑏𝑐. The output gate can be represented as: 

 𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑥𝑡 + 𝑊𝑜ℎℎ𝑡−1 + 𝑏𝑜𝑖)  (4.10) 

where 𝑜𝑡 represents the output at instant 𝑡. 

4.4.2.1 Data-driven load uncertainty characterization case study 

The dataset is a real-load data set of the German area obtained using the European 

network of transmission operators for electricity (ENTSO-E) transparency platform [256]. 

Data cleaning was carried out in order to obtain the data in the required time-series format. 

Following that, the data was standardized using a min-max scaler to ensure optimal training 

performance. Training and test data sets are formulated using a time-split for implementing 

the data-driven uncertainty characterization. A lightweight LSTM model is constructed for 

initiating the training process, and the parameters are chosen using hyperparameter tuning. 

In the architecture of the model, the first layer is an LSTM layer with 62 units, from which 

a sequence of inputs is generated. The next layer is a Dropout layer for regularization, 

which is used to randomly turn off a fraction of the neurons to reduce overfitting. The third 

layer is another LSTM layer with 32 units. Finally, the fourth layer is a Dense layer with 
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one unit, which is used for the output of the model. The output obtained from the LSTM 

model is utilized for the auxiliary layer in LFC architecture in MATLAB to suit the LFC 

timeframes.  

The error and loss metrics during training and validation are depicted in Figure 4.11, 

which represents the LSTM model's efficacy in prediction. The training error and loss are 

decreasing, which indicates the model's efficiency in learning the patterns in the training 

dataset. It is observed that the validation error and loss are decreasing along with training 

error and loss. This indicates the model is learning the patterns, and generalization to new 

data is reliable. The model training and validation graphs are shown for 10 epochs and 

represent the learning ability of load uncertainties in the data.  

   

 (a) 

  

 (b) 

Figure 4.11 (a) Error in Training and Validation data for 10 Epochs (b) Loss for Training and 

Validation data for 10 Epochs. 

The results obtained from testing the LSTM algorithm using various metrics 

indicate that the model's performance is reliable. Specifically, the R2-score, which 

measures the proportion of the variance in the target variable that can be explained by the 
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model, achieved a prominent value of 99.77. Furthermore, the model's predictive accuracy 

is further confirmed by the low values of both the mean absolute error (MAE) and mean 

square error (MSE) metrics. The MAE, which measures the average absolute difference 

between the predicted and actual values, achieved an impressively low value of 0.00574. 

Similarly, the MSE, which measures the average squared difference between the predicted 

and actual values, obtained an exceptionally low value of 0.0001002. These low error 

values (<1% error in prediction) indicate that the LSTM algorithm can reliably predict the 

load uncertainty with a high degree of accuracy. 

The actual load and the predicted load are plotted for the validation set, and the 

results are depicted in Figure 4.12. The model closely identifies the patterns in load, the 

peak load changes, and the minimum load on the system, as observed in the overall 

response. The zoomed-in plot shown in Figure 4.12 (b) clearly depicts the considered 

model's effectiveness in characterizing the load uncertainties by the prediction model. A 

few data samples from the prediction model are considered for testing the LFC under load 

uncertainty for the real-time data of load and the predicted load data. These data samples 

are depicted in Figure 4.13 and are utilized in the simulated model of the adaptive DDPC 

approach for LFC under communication loss. These samples are used to study the time-

domain performance for the actual and predicted scenarios while considering load 

uncertainty in the system. 

 

(a) 
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(b) 

Figure 4.12 Predicted load versus actual load for LSTM based data-driven model (a) validation set 

response (b) Zoomed-in response. 

 

 Figure 4.13 Predicted load versus actual load for a set of samples. 

4.4.3 Uncertainty characterization for wind in LFC 

XGBoost is an implementation of the Gradient Boosted Trees algorithm [257] 

developed by Chen et al. for scalable applications. This is a supervised learning algorithm 

that can be applied for both classification and regression tasks. The XGBoost for time series 

forecasting is implemented by splitting the wind uncertainty data into a set of features from 

the input data that are used to predict the target values. The XGBoost minimizes the loss 

function to reduce the error between the predicted values and the actual values. The loss 

minimization objective is defined by the equation 

 𝑜𝑏𝑗𝑋 = ∑ 𝑙(𝑦𝑖, �̂�𝑖)
𝑛
𝑗=1 + ∑ 𝛺(𝑓𝑘)𝐾

𝑘=1   (4.11) 

where 𝑙(𝑦𝑖, �̂�𝑖) is the loss function to be minimized for the validation output 𝑦𝑖 and the 

predicted output �̂�𝑖, 𝐾is the number of trees in the XGBoost model, 𝑓𝑘 is the 𝑘𝑡ℎ tree and 

the penalization factor for complex models is performed through the regularization term 𝛺. 

The uncertainty characterization using data-driven methods is utilized in the control 

methodology described in the following sub-section. The models are trained online, and 

these models are deployed offline. 
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4.4.3.1 Data-Driven Wind Uncertainty characterization 

A national renewable energy laboratory (NREL) recorded weather data set was 

utilized to predict wind speed [258]. A meteorological tower of 82 m is located at an 

elevation of 1855 m above sea level to collect weather data. The data is time series data 

collected at 5-minute intervals during a four-year period. This data set consists of air 

temperature, average wind speed, average wind direction, turbulence intensity measured at 

80 m height, and the relative humidity captured at 2 m height. The data set is accessible 

from IEEE open data sets portal and is suitable for research purposes. Initially, the data pre-

processing was carried out to identify any missing values and replace them using a time-

series rolling-statistical mean per the last window of five observed values. The standard 

deviation in average wind speed was detected as 3.71 m/s, which depends on various factors 

such as a month, day, time, location, temperature variations, and others.  

Moreover, the wind speed percentage change has been obtained for the current 

value from a previous value for the data set. The maximum percentage change observed 

was 19.125%, where a sudden change in wind speed of 11.48 m/s was observed. These 

extreme phenomena are crucial for identifying potential problems in the grid operation 

under large wind energy penetration. Therefore, wind uncertainty characterization can help 

improve the frequency stability of the HPS. 

An XGBoost regressor model is developed using the sci-kit learn library for 

uncertainty characterization of the wind velocity. The feature importance of the XGBoost 

is utilized to understand the model's critical features. The relative importance is highest for 

the wind direction followed by humidity. Initially, the grid search is used to tune the 

hyperparameters, and the predicted wind speed is depicted in Figure 4.14(a). Following 

this, a random search is used to tune the hyperparameters and the corresponding predicted 

and actual samples of wind speed are shown in Figure 4.14(b). The model tuned using 

random search resulted in reduced error metrics and, therefore, was utilized for uncertainty 

characterization in the DDPC approach. A few samples in time for the actual wind speed 

and the predicted wind speed, considering the best-tuned hyperparameters, are depicted in 

Figure 4.14(c). These depict the closeness with which the model predicts the changes and 

patterns in wind speed. Consequently, the effectiveness of the uncertainty characterization 

for LFC is tested. The XGBoost model with tuned hyperparameters achieved an R2-score 

of 84, which signifies that the predictions are of reliable accuracy. Further, the model has 

achieved an MAE of 0.0558 (5.58%) and an MSE of 0.0162 (1.62%), which indicates that 

the average difference between the predicted and actual values is relatively small (less than 
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6%). The metrics indicate that the XGBoost model is effective and could be a feasible 

choice for predicting outcomes in wind uncertainty scenarios. 

  

 (a) 

  

 (b) 

  

 (c) 

 Figure 4.14 Wind uncertainty characterization using XGBoost data-driven model. 

4.4.4 Data-driven predictive control implementation 

For DDPC implementation, uncertainty prediction is facilitated through the 

utilization of the pre-trained ML models. These models are designed to generate the 

disturbance data from the data-driven models that can be used to inform the various sources 

in the plant model and the optimal controllers for initiating the necessary corrective actions. 
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By using the disturbance data as input, the frequency measurements and the control 

commands necessary to maintain the frequency stability of the system are synthesized. The 

plant in the physical layer generates the commands based on the optimized LFC controllers 

on a local system. 

The synthesized data provide crucial information in the event of a communication 

loss, as described in Section 4.3.3. In such a scenario, it is necessary to access the system 

information and improve the operational capabilities of the network. These control 

commands deliver auxiliary adaptive control to regulate the DFD in the absence of real-

time communication information, as shown in the flowchart depicted in Figure 4.15.  

 

 Figure 4.15 Flowchart for adaptive methodology through data-driven predictive control. 

Under normal operating conditions, the grid controller commands are executed for 

LFC implementation from the control layer. In case of any adverse event, the triggering 

circuit is activated, sending the required missing information by activating the DDPC 

control command from the auxiliary control layer. At each sampling instant, the condition 

of the grid LFC operation is checked. The triggering circuit deactivates the DDPC 
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command upon restoration of the normal grid operation. The triggering circuit operation is 

described using Algorithm 4.1, given in Table 4.1. 

 Table 4.1 Algorithm for Triggering Logic 

Algorithm 4.1: Triggering logic 

Initialize 𝑡, 𝛥𝑡, and 𝑡𝑓 

for 𝑡 = 0: 𝑡𝑓 

𝑒𝑣𝑒𝑛𝑡 ←  𝑒𝑣𝑒𝑛𝑡{𝐿𝐹𝐶1, 𝐿𝐹𝐶2, 𝛥𝑓} 
If event(𝐿𝐹𝐶1) at 𝑡 = true 

∆𝑢1(𝑡) = ∆𝑢1(𝐷𝐷𝑃𝐶)𝑡 
else 

if event(𝐿𝐹𝐶2) at 𝑡 = true 
∆𝑢2(𝑡) = ∆𝑢2(𝐷𝐷𝑃𝐶)𝑡 

else  
if event(𝛥𝑓) at 𝑡 = true 
𝛥𝑓(𝑡) = 𝛥𝑓(𝐷𝐷𝑃𝐶)𝑡 

else 
end if 

𝑡 = 𝑡 + 𝛥𝑡 
end for 

 

Here, the signals ∆𝑢1(𝐷𝐷𝑃𝐶)𝑡, ∆𝑢2(𝐷𝐷𝑃𝐶)𝑡, and 𝛥𝑓(𝐷𝐷𝑃𝐶)𝑡 are the synthetic data 

signals obtained from the DDPC plant model, where  ∆𝑢1(𝐷𝐷𝑃𝐶)𝑡 is the synthetic RTPS 

command signal at 𝑡, ∆𝑢2(𝐷𝐷𝑃𝐶)𝑡 is the synthetic DERs command signal at 𝑡, and 

𝛥𝑓(𝐷𝐷𝑃𝐶)𝑡 is the estimated DDPC frequency measurement at 𝑡. 

4.5 Results and Discussion 

The system configuration shown in Figure 4.3 is simulated using 

MATLAB/Simulink environment with the offline uncertainty model. The communication 

loss scenarios depicted in Figure 4.4 are simulated considering a loss of 51 samples at the 

time of occurrence of disturbance. Online training on load and wind uncertainty 

characterization is performed using Python data science libraries. For the simulated model, 

the DDPC is activated according to the flowchart depicted in Figure 4.15. The triggering 

circuit is designed in Simulink using Algorithm 1 considering 𝛥𝑡 = 0.01. The triggering 

circuit is designed in Simulink using Algorithm 1 considering 𝛥𝑡 = 0.01. The results and 

analysis of the proposed methodology is presented in the following sub-sections. The 

simulation case studies are followed by uncertainty characterization and the significant 

results are presented and discussed as 

• Time domain analysis of the proposed methodology 
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• HIL validation 

• Performance comparison   

4.5.1 Time domain analysis of the proposed methodology 

The frequency deviation for the actual and predicted loads closely matches, as 

depicted in Figure 4.16. The zoomed-in response shown for both the actual and predicted 

cases for the disturbance occurring at 150s indicates that the predicted time-domain 

response follows the actual time-domain response. Therefore, by predicting the uncertainty 

in the system and utilizing the plant model, the frequency deviation at a future time step 

can be accurately estimated. This information in a future disturbance is crucial for taking 

corrective action in case of any communication loss. The communication loss scenario 

considering the load uncertainty characterization, is tested for the various events described 

in Section 4.3.3. The scenarios tested for the different events are as follows: 

• Scenario 1: Loss of Frequency measurement 

• Scenario 2: Loss of LFC command to the RTPS 

• Scenario 3: Loss of LFC command to the DERs 

• Scenario 4: Loss of LFC command to DERs with wind and load uncertainty 

• Scenario 5: The effect of delay in the DDPC model 

4.5.1.1 Scenario 1: Loss of Frequency Measurement 

In Scenario 1, the frequency measurement loss is simulated at 5s, and the 

information is restored after 51 samples for the grid LFC operators to communicate the 

optimal control command. The load uncertainty is considered in this scenario, activating 

the DDPC. For this scenario, the frequency deviation without and with the proposed 

adaptive DDPC for the LFC of the HPS is simulated. Figure 4.17 depicts the response of 

both cases for scenarios on the same scale to visualize the impact of DDPC in the event of 

frequency measurement loss. At a timestamp of 5s, the oscillations in frequency deviation 

started increasing with the loss of frequency measurement when DDPC was absent. After 

51 samples, the frequency measurement is recorded, where the peak deviation in frequency 

occurred, as depicted in Figure 4.17(a). Once the communication is restored, the amplitude 

of the oscillations starts to reduce and settle down. The peak frequency deviation crossed 

100 mHz, which is not an ideal scenario considering the DFD requirements. 



116 

 

  

 (a) 

  

 (b) 

 Figure 4.16 Time-domain response (a) actual load (b) Predicted load. 

  

 (a) 

  

 (b) 

Figure 4.17 Frequency measurement loss (a) Time-domain response without DDPC (b) Time-

domain response with DDPC. 
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On the other hand, the frequency deviation with DDPC responds quickly to the 

communication loss by activating the triggering circuit of the auxiliary control layer and 

sending the appropriate signal for the samples missing in the measured frequency to the 

physical layer. This timely corrective action with the proposed approach has significantly 

reduced the peak deviation in frequency. Further, the oscillations in frequency have reduced 

from the onset of the disturbance and settled quickly, unlike the case without DDPC. 

Therefore, the proposed method adaptively restores the frequency deviation when the 

system is subjected to frequency measurement loss by maintaining the frequency within 

acceptable ranges of the DFD and maximum frequency deviation limits.  

4.5.1.2 Scenario 2: Loss of LFC command to the RTPS 

In Scenario 2, the communication loss from the LFC grid operator to the RTPS is 

considered to be lost at the time-instant of 5s. This scenario is executed without considering 

the DDPC and, with considering DDPC, simulated in the time domain, and the 

corresponding frequency deviations are shown in Figure 4.18. When the communication is 

lost, there is a dip in the frequency as the RTPS is unable to adjust its output in coordination 

with the DERs. Even though the communication is restored, the settling time of the 

frequency deviation has increased as the dynamics of RTPS are slow, which are depicted 

in  Figure 4.18 (a). Moreover, the peak deviation is increased when compared to the case 

of DDPC activation. 

As shown in Figure 4.18(b), the peak deviation is reduced, and the response has 

quickly settled in the presence of DDPC-based LFC. It was demonstrated that the DDPC 

could effectively handle the communication failure to the RTPS system by activating the 

appropriate switch-based triggering logic to restore the HPS frequency. Therefore, DDPC 

enhances the ability of the system to cope with communication data failures. 

  

 (a) 
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 (b) 

Figure 4.18 LFC command failure to RTPS (a) Time-domain response without DDPC (b) Time-

domain response with DDPC. 

4.5.1.3 Scenario 3: Loss of LFC command to the DERs 

In Scenario 3, the LFC command from the grid operator to the DERs has been lost 

at the instant of 5s. The time-domain simulations without DDPC and with DDPC for 

frequency deviation are depicted in Figure 4.19. The control command loss has a severe 

impact on the frequency, causing a higher frequency deviation exceeding the acceptable 

limits, whereas by utilizing the DDPC, the peak instantaneous frequency deviation is 

minimized, and the response has settled to the minimum value. This is achieved by 

activating the triggering logic-based adaptive control for communicating the necessary 

command signal to the DERs. The DERs responded to the DDPC communication and 

adjusted their power outputs so as to reduce the peak deviation in frequency, as observed 

in Figure 4.19(b). Therefore, it is evident that the DDPC control provides reliable adaptive 

control commands even under the loss of grid LFC command.  

  

 (a) 
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 (b) 

Figure 4.19 LFC command failure to DERs (a) Time-domain response without DDPC (b) Time-

domain response with DDPC. 

4.5.1.4 Scenario 4: Loss of LFC command to DERs with wind and load uncertainty 

The simulations are carried out considering communication failure to DERs, which 

has the highest impact on the frequency deviation of the HPS under the presence of both 

load uncertainty and wind uncertainty. The triggering circuit-enabled DDPC control was 

verified through time-domain analysis and compared with the optimal control without the 

DDPC model. These results are depicted in Figure 4.20. The load and wind uncertainty, 

coupled with communication failure, increased the peak frequency deviation to a value 

higher than 100 mHz, which is not a desired phenomenon. On the other hand, the DDPC 

control effectively handled the communication loss and maintained the frequency at a 

desired peak value, adjusting and adapting the control command information. This proves 

the efficacy of the proposed DDPC approach in handling the wind and load uncertainties 

under communication data loss for frequency regulation.  

  

 (a) 
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 (b) 

Figure 4.20 Communication failure to DERs with load and wind disturbances (a) Frequency 

deviation without DDPC (b) Frequency deviation with DDPC. 

4.5.1.5 Scenario 5: The effect of delay in the DDPC model 

In the previous scenarios, the adaptive architecture is assumed to be triggered by 

neglecting the operating time delay for activating the operation of the auxiliary local control 

layer. However, the effect of operating time delay in the adaptive DDPC model's triggering 

mechanism is also considered in this scenario by modeling the time delay as a transport 

delay in simulation, as described in [155]. The effectiveness of DDPC under the load 

uncertainty scenario 5, including the delay, is tested utilizing the simulated models. 

Consequently, the corresponding time domain simulation results are depicted in Figure 

4.21. The results observed from the plot shown in Figure 4.21 indicate that the DDPC 

control effectively minimizes the peak frequency deviation even under the effect of 

operating time delays. Further, the target of maintaining the peak frequency within the 

maximum DFD of 100 mHZ is achieved. However, the peak deviation has increased when 

compared to scenario 5, where the delay was neglected, which can be identified as one of 

the limitations of the current study.  

 

Figure 4.21 Time domain simulation for DDPC with delay consideration and without DDPC 

activation.  
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4.5.2 Hardware-in-the-loop Validation 

The hardware setup utilized for the verification of the simulation results is depicted 

in Figure 4.22 , which consists of a power supply, a host PC, dSPACE hardware, and a 

DSO.  The communication failure scenario considering the data loss to DERs under load 

uncertainty case is simulated through HIL verification, and the results are depicted in Figure 

4.23. The HIL results depict that the DDPC approach is reliable under communication 

failure events, as observed in Figure 4.23. 

 

 Figure 4.22 Hardware in loop set up for verification of the results. 

It is to be noted that the results are obtained on the same scale to compare the 

effectiveness of the DDPC in controlling the frequency deviation. It is evident that the 

simulation results and HIL results are comparable to the observed responses. This 

highlights the accuracy and practical feasibility of the approach in controlling the frequency 

deviation. Moreover, the triggering logic is effective for the control of real-time systems 

under communication failure. 

  

 (a) 
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 (b) 

Figure 4.23 Frequency deviation obtained through HIL verification (a) Communication failure to 

DERs without DDPC (b) Communication failures to DERs with DDPC. 

4.5.3 Performance Comparison 

The control effort required to control the disturbance at 5s is depicted in  Figure 

4.24. It was observed that the control effort is zero for the initial 51 samples due to 

communication failure when DDPC is absent. It is to be noted that the maximum control 

effort refers to the highest level of effort required to maintain control in a given system. In 

the current LFC scenario for the HPS, the maximum control effort is reduced by 82.5% by 

using the DDPC approach when a communication failure occurs. This is a substantial 

improvement, indicating that the system has become much easier to control, which shows 

enhanced stability. The total control effort is a quantitative representation of the overall 

effort required to control the system response when subjected to a disturbance. This can be 

understood as the sum of absolute control values for a given set of samples until the system 

response settles down. The total control effort is reduced by 47.7% by using the proposed 

DDPC approach. It is evident from the reduction in total control effort that the system has 

become efficient and reliable even under the failure of communication data.  

 

 Figure 4.24 Comparison of the control effort required under communication loss. 
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 (a) 

  

 (b) 

Figure 4.25 Performance metrics improvement (a) Heat map depicting the reduction in performance 

indicators (b) Percentage reduction of each metric for different communication failures. 

The different indicators for analyzing the performance metrics are depicted in 

Figure 4.24. The heatmap shown in Figure 4.24(a) shows the communication failure and 

the control methodology on the Y-axis with corresponding metrics on the X-axis. The 

metrics utilized for comparative analysis are integral time absolute error (ITAE), integral 

absolute error (IAE), mean absolute error (MAE), mean squared error (MSE), integral 

squared error (ISE), integral time squared error (ITSE), peak deviation in frequency, peak 

to peak deviation in frequency. The values are scaled column-wise with maximum value to 

represent the corresponding improvement in the values of the metrics. For LFC1 

communication failure, the DDPC technique has improved the performance as understood 

from the color components with LFC1-DDPC. It can be noted that the peak-to-peak value 

improvement is not as significant as other metrics. On the other hand, the error indices and 

the peak value have improved significantly. These values for the LFC2 failure show a 
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substantial improvement in all the metrics, as observed in the color grading of LFC2-

DDPC, by utilizing the proposed method.  

To further analyze the obtained results, the percentage reduction of the performance 

metrics depicted in Figure 4.24 (b) indicates the contribution of DDPC to communication 

failure events. For LFC1 failure, the ITAE, IAE, and MAE are reduced by 67 percent to 68 

percent, while MSE, ISE, and ITSE are reduced to around 84 percent. The peak error 

reduction is 24 percent, and the peak-to-peak is 9 percent. These metrics indicate 

performance improvement of the adaptive control for LFC1 data loss. When LFC2 data is 

lost, the failure causes a more severe disturbance in frequency deviation, where the adaptive 

approach stands as a superior contributor to frequency control. This can be understood from 

the percentage reductions of the metrics for LFC2 with DDPC in place. The metrics ITAE, 

IAE, and MAE are reduced in the range of 74.5-76.6 percent. Subsequently, the indices 

MSE, ISE, and ITSE are reduced by about 97%, which is a substantial improvement. The 

peak value has reduced by 74% and the peak-to-peak value by 81.3 percent. Therefore, 

these percentage improvements are indispensable markers that suggest the superiority of 

the proposed adaptive architecture as a suitable method to efficiently handle the system 

frequency under communication loss. 

4.6 Summary  

Preliminary investigations concluded that the LFC requires data-driven models in 

the order of seconds to minutes time scales. Therefore, a novel framework for LFC is 

introduced to address the issue of uncertainty modeling. Communication data loss and 

measurement data loss resilient, adaptive control framework has been proposed and tested 

for efficient LFC operation. Uncertainty characterization and robustness to practical 

uncertainties have been verified. Uncertainty characterization using data-driven load and 

wind models is performed through LSTM and XGBoost models. With LSTM, the MAE 

for load prediction is less than 1%, and with XGBoost, the MAE for wind prediction is less 

than 6%. Different grid LFC command loss events for RTPS and DERs and measurement 

loss events are addressed by activation of the DDPC through a triggering algorithm. The 

DDPC-based adaptive control method reduced the peak frequency deviation below the 

acceptable DFD limits under different events. For LFC1 data loss, the error indices are 

reduced by about 68 percent. The event of LFC2 data loss has proved the superiority of the 

proposed method under communication data loss by reducing the error indices by 97 %. 
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Moreover, without DDPC, the DFD limit was violated under the measurement loss. This 

issue was overcome while utilizing adaptive control. It has to be noted that the control effort 

has been significantly reduced under communication failure, which proved the 

preeminence of the DDPC control. By utilizing the proposed method, a significant 

reduction in the peak-to-peak frequency deviation was observed with the utilization of 

uncertainty characterization. The performance indicators assessed for testing the efficacy 

of the proposed method suggested that DDPC can help achieve robust and resilient 

frequency control under different data loss events. The HIL validation results concluded 

that the method is feasible for application to real-time systems and demonstrated the ability 

to limit the maximum DFD in the system. In conclusion, the uncertainty modeling using 

data-driven approaches achieved the adaptive control capability for frequency regulation in 

HPS with DER and renewable integration. The data loss is addressed efficiently using this 

framework. However, the data vulnerability and power system resilience in LFC under loss 

of sources remains an open challenge.  The subsequent chapter addresses the issue of LFC 

data security, which further includes the transactions in the balancing markets for LFC 

services. 
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Chapter 5 

5 Blockchain Implementation  

 

 Figure 5.1 Aspects of Objective 4 addressed in Chapter 5: An outline. 

The objective four is realized in Chapter 5 and Chapter 6. The blockchain 

implementation using a regulation market framework has been expounded in Chapter 5. 

The outline of Chapter 5, which addresses some aspects of Objective 4, is shown in Figure 

5.1. The resilient blockchain for data security has been implemented using smart contracts 

for LFC using a simple proof-of-concept application. Furthermore, a robustness simulation 

for uncertain wind and load is utilized for creating a blockchain for robust control.  

5.1 Introduction to Frequency Regulation Framework and HPS Case Study Design 

and Modeling4 

5.1.1 Case study design and framework of the proposed method 

Conventional fuels such as coal are still widely used across the globe for power 

generation, while wind generation is employed in places with good wind potential and can 

provide green energy. Diesel generators and storage are used for quick regulation purposes. 

Further, in view of sustainability, upcoming hydrogen projects [259] can create a massive 

potential for utilizing hydrogen energy for regulation. The world's largest green hydrogen 

project was initiated in California, United States [260], marking hydrogen integration's 

 
4 This work has been published in the journal “Energy Conversion and Management”. The details 

of the publication are: R. Loka, A. M. Parimi, S. T. P. Srinivas, and N. Manoj Kumar, “Leveraging blockchain 

technology for resilient and robust frequency control in a renewable-based hybrid power system with 

hydrogen and battery storage integration,” Energy Conversion and Management, vol. 283, p. 116888, May 

2023, doi: 10.1016/j.enconman.2023.116888. 
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importance in system operation and control studies. An isolated HPS is designed 

considering conventional sources, wind generation, diesel generation, and integration of 

hydrogen-based fuel cell with aqua-electrolyzer and battery storage components. The 

framework of the proposed method is shown in Figure 5.2, which consists of four 

fundamental components to attain a comprehensive solution for achieving a resilient 

network in multiple LFC scenarios. The first component is modeling the HPS based on the 

mathematical equivalent to account for the dynamics of the system, where the control 

objective is formulated and designed for LFC.  The next component is to identify the 

parameters for efficient control and LFC market integration. For effective control, optimal 

controller parameters are to be obtained, and continuous deviation in frequency is to be 

monitored. Subsequently, the power deviations of the participating LFC sources are to be 

monitored for market integration. With this information, the next step is to create a 

MATLAB/Simulink model for configuring the HPS network model and create a database 

using MATLAB for monitoring various parameters. Finally, this database is updated for 

different simulation studies and utilized for creating a blockchain network that triggers the 

event-based LFC and stores the necessary data in the blocks for the LFC market transaction 

model. 

  

Figure 5.2 Case study design methodology for resilient frequency regulation in DER integrated 

networks. 
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5.1.2 System Architecture and Model 

The comprehensive resilient frequency control framework proposed for the HPS is 

divided into three elementary layers; the physical layer, the control layer, and the data layer, 

as shown in Figure 5.3. The DERs, traditional generation, and loads corresponding to a 

single area HPS make up the HPS in the physical layer. The active power flows from these 

independent sources to the load in the physical layer, forming an energy network. The 

balance between the load and generation is ensured by the combined power delivered from 

various sources under the LFC contract. 

The number of aggregators taking part in frequency regulation determines the nodes 

for power data transfer, whilst the physical layer contributes to the active power regulation 

for enabling LFC. The power frequency measurement is carried out through sensors at 

different time stamps and transmitted to the control layer. The measured data is monitored 

for triggering control commands when necessary. The aggregators in the physical layer 

send the data to the aggregator nodes in the blockchain-driven data layer. 

  

Figure 5.3 Resilient blockchain-assisted Frequency Control Framework for the HPS. The three-

layer architecture of the physical components and functionalities are represented. 

The measured frequency deviation during an event from the nominal value invokes 

the smart contracts. The smart contracts then trigger the event in the control layer through 

the blockchain layer, and the control center receives the corresponding event information. 
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The control layer, in this case, consists of controller hardware and computer hardware 

connected by a wide-area network (WAN). The control center continuously generates the 

LFC command to regulate the active power deviations in the physical layer to maintain the 

equilibrium between the sources and load. The LFC input generated in the control layer is 

transferred to the sources or the aggregator nodes in the physical layer through the 

communication network. Coordinated and robust control mechanisms are required to avoid 

frequency disturbances caused by incorrect LFC input, as seen in the European network. 

The actual power transfer data from the aggregator nodes needs to be transferred to 

the market operator for economic operations based on the market price. The proposed 

architecture sends operational power adjustment data to the blockchain network layer to 

enable energy transactions for remuneration in frequency regulation markets. For the 

realization of the data layer, blockchain was identified to possess potential applications in 

ancillary service participation and balancing markets [174]. The power regulation data 

received by the blockchain network facilitates regulation payment as per the smart contracts 

based on the real-time clearing price. The power transfer data is crucial where the attackers 

can pose the threat of false data injection, and resilient storage of data is necessary for 

securing the energy market transactions—the blockchain functions as enabling technology 

in the data layer for securing frequency-regulation data transfer and storage.  

The initial step in realizing the framework shown in Figure 5.3 is building the 

mathematical model for LFC that characterizes the physical and control layers. The block 

diagram representation for LFC modeling is shown in Figure 5.4, and the mathematical 

model is presented in chapter 2. The RTPS is the conventional source supplying the load. 

The RTPS power deviation is represented by the change in the turbine's output influenced 

by the change in the speed governor setting. The DERs connected to the PCC are WTG, 

FC with AE, BESS, and DEG. The DERs and the RTPS coordinated by the secondary 

controller actions balance the load disturbance and wind uncertainties. For the RTPS, the 

primary droop control action is activated by the speed regulation constant in Hz/MW.  

The RTPS model is a two-stage governor and reheat-turbine model [226]. The WTG 

modeling for obtaining the output power deviations corresponding to the variable wind 

speed is based on the first-order model [25]. The modeling and the corresponding first-

order equations for the FC, AE, DEG, and BESS are integrated into the HPS [261]. The 

comprehensive model of the HPS is obtained by combining the individual components with 

the load and inertia model [262]. The state-space model is derived from the integrated block 

diagram model of the HPS, as depicted in Figure 5.4, and is represented in Chapter 2. The 
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frequency deviation occurs mainly due to the load change and the uncertainties in the wind 

velocity. The frequency changes can be managed by balancing with the other sources 

involved in active power regulation, whose power adjustments are compensated in the 

balancing markets [44]. The next section discusses how the controller design facilitates 

active power balancing. 

5.1.3 Controller Design 

The controller design methodology includes controller model development, 

defining the objective function, and finding the optimal parameters for the efficient 

performance of the controller, as depicted in Figure 5.5. The controller models utilized for 

the RTPS and the DERs are PIDN configure rations. The parameters are the coefficients of 

PIDN, which are 𝑘𝑝1,𝑘𝑖1, and 𝑘𝑑1for the RTPS controller, N is the coefficient of the filter 

model. The developed model parameters are found using the PSA-based GA discussed in 

Chapter 3.  

  

Figure 5.4 LFC representation for the modeling of the physical and control layers. The purple lines 

represent the communication signals from sensors. The green lines represent the actuating signals, 

the blue line represents the wind uncertainty, and the red lines represent the power flows. 

5.2  Optimal Control and Blockchain Implementation Procedure 

The controller attains an active power balance between the generation and load mismatches, 

which is expressed as 
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 𝛥𝑃𝑡ℎ + 𝛥𝑃𝑑𝑒𝑔 ± 𝛥𝑃𝑏𝑒𝑠𝑠 + 𝛥𝑃𝑓𝑐 − 𝛥𝑃𝑎𝑒 + 𝛥𝑃𝑤𝑡𝑔 = 𝛥𝑃𝐿 (5.1) 

  

 Figure 5.5 Controller modeling methodology. 

5.2.1 Objective function 

These parameters are to be optimized with the objective of frequency error 𝛥𝑓 

minimization, and the error can be measured using various performance indices. The index 

used in the proposed optimization is ITAE. The performance of ITAE has been proven to 

be superior to IAE. IAE contributes to sluggish response in the time domain and hence was 

not considered as the metric. The details are discussed in Chapter 3. 

5.2.2 Optimization process 

The combined state-space model is constructed using linearized controller models 

and HPS. The objective function is formulated from the plant transfer function obtained 

from the state-space model described in Chapter 2. The PSA approach is used to find the 

stable operating region of the controller coefficients. The bounds of the coefficients where 

the stability is lost are obtained from the PSA. Thereby, the obtained limits are the 

constraints of the GA optimization. Linearization and PSA combined with GA are 

computationally inexpensive for solving the constrained optimization problem. The GA 

utilizes selection: roulette wheel, crossover: arithmetic, and mutation-adapting feasible 

where the probability is 0.1, and the algorithm details are from Chapter 3. The optimization 

process helps the controller adjust the active power regulation and maintain the nominal 

output frequency. The resilience issue where the high-impact, low-probability events [40] 

can disrupt the system frequency can be addressed by the optimized controller. 

5.3 Proposed blockchain implementation 

The methodology of the LFC blockchain execution to enable secure and resilient 

transactions is depicted in Figure 5.6, which provides a comprehensive solution for LFC 

implementation to enhance resilience. At every epoch, the nodes in the blockchain network 
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monitor the frequency deviation data. The participating nodes invoke the smart contracts 

whenever there is a frequency deviation. The event detection from smart contracts actuates 

the command signal from the control center. The command signal is responsible for the 

changes in active power to regulate the frequency. The power adjustment data from the 

utility companies is recorded and stored to avail the remuneration for the provision of 

frequency regulation services. This data is usually maintained in data logs and stored in 

databases. However, false data injection attacks can cause heavy losses to utilities. A 

blockchain-based methodology is introduced in this section to secure the data from cyber-

attackers. Two aggregators are considered to be part of the LFC blockchain network. The 

aggregator-1 node corresponds to the RTPS, and the aggregator-2 node corresponds to the 

DERs. The consensus-based private blockchain model is incorporated into the LFC 

blockchain model [174]. The data is obtained perpetually from the sensors in the physical 

layer. The DERs form one cluster, RTPS is another, and the aggregated active power output 

data is obtained for updating the ledger. 

The blockchain process flow is initialized by checking for the LFC command, 

which verifies the transaction request. Once the LFC command is set, a transaction request 

can be initialized from either of the nodes. The transaction request from node-1 or node-2 

creates a new block to be inserted into the blockchain. Before it can be permanently added 

to the chain, the new block must be validated. The validation methodology adopted for the 

LFC blockchain is based on a consensus algorithm - proof of authority (POA) [174]. At 

each instant, one of the nodes is chosen as the leader node for validation, which receives 

the transaction's authority information. The registered IP address and geospatial 

information are considered to authenticate the validation process on the two nodes, as 

described in [176]. Synthetic IP addresses and geospatial identifiers are generated for the 

two nodes for implementing the POA. The POA consensus algorithm builds trust and 

security where the real identities are verified based on reputation. The validated blocks are 

permanently added to the LFC blockchain at each iteration 'i'. Each new LFC block contains 

the power adjustment data with the transaction timestamp, the (n-1)th hash to ensure 

integrity, and the nth hash, which represents the digital signature for security. Blockchain 

stores the transaction data in the blocks, which are immutable. 
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Figure 5.6 Process flow for LFC blockchain implementation depicting the data flow and storage 

mechanisms. 

5.4 Simulation Results and Discussion 

The scenarios for examining the resilience and robustness of the HPS model 

depicted in Figure 5.4 are simulated in MATLAB/Simulink environment. The active power 

regulation data obtained from HPS is stored along with the control command data using the 

blockchain methodology described in Figure 5.6. A two-node blockchain network is 

developed for the HPS using Python code. 

5.4.1 Resilient Frequency control 

Four test simulation scenarios are considered for resilient frequency control of 

multi-source HPS integrated with hydrogen and battery storage systems, including (i) A 
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10% step load and wind disturbance; (ii) Loss of WTG at 50s; (iii) Loss of DEG at 100s 

when WTG is lost; and (iv) Loss of FC at 200s when WTG and DEG are lost. 

5.4.1.1 Net Compensated Power 

The load receives the net compensated power from aggregator-1 (DERs) and 

aggregator-2 (RTPS), as shown in Figure 5.7(a) in case of any events or disturbances. It is 

to be noted that the net compensated power is the total power deviation obtained from the 

multi-source HPS for regulating the frequency. The nominal frequency in HPS is 

maintained for each disturbance by the power shared by the aggregators. Thus, the net 

compensated power varies directly with the magnitude of load disturbance, wind velocity 

disturbance, and power deficit due to DER loss and directly influences the frequency 

deviation. Therefore, the command received from the control center for modification of net 

compensated power can regulate the frequency of HPS by facilitating the injection of net 

compensated power. This total power deviation under LFC participation needs to be cleared 

in the frequency regulation market as per the proposed implementation depicted in Figure 

5.7(a).  The power data for pricing is extracted from the Simulink environment model of 

the multi-source HPS developed using the methodology described in Chapter 2 and Chapter 

3. The peaks are detected from the simulation, and the net compensated power is depicted 

in Figure 5.7(b), which is used for remuneration through blockchain transactions for the 

power compensated by the aggregators.  

 The remuneration of payments for regulating sources is depicted in Figure 5.7(c). 

The bids of DERs were based on the day ahead market (DAM) prices. The prices used for 

the ancillary service provision for DERs other than the FC are obtained from the previous 

research [263]. For FC, the prices are from National Renewable Energy Laboratory 

(NREL) research [264]. For RTPS and WTG, the prices are obtained based on the US 

markets [70]. The regulation payments are calculated using the mechanism described [137]. 

The duration of the ancillary service participation is depicted based on the test scenarios 

considered for the case study. It can be observed that the RTPS is the primary participant 

during the loss of wind energy sources. Hydrogen energy and fuel cell participation were 

majorly noted due to the coordination action and faster dynamics during the loss of DEG 

in HPS.  

5.4.1.2 Data security and integrity against false data injection attacks 

Implementation of blockchain methodology, as described in Figure 5.6, generated 

the blocks, including the hash details are shown in Table 5.1, which describes the previous 

hash and self-hash linking the blocks. It is observed that the self-hash of the previous block 
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is the previous hash of the current block. Thus, the transactions are all secured, and any 

change in the stored power transactions can generate a new hash. Consequently, the 

previously stored blockchain is no longer valid as the link gets broken.  

The integrity of the blockchain can be preserved by the hashing mechanism under 

false data injection, as depicted in Figure 5.8. A false data injection attack is simulated in 

python, representing the attacker depicted in Figure 5.3. In this scenario, considering 

Block2 with a block data value of 0.065849 and the transaction at t = 10s, the connector 

indicates that the self-hash of block 2 is the previous hash of block 3. In block 2, consisting 

of false data, the self-hash generated is different from the original data. Therefore, the 

connector represents a broken link in the blockchain. It can be observed that secure 

operations are possible with blockchain, and data tampering problems in regulated markets 

can be addressed. By implementing blockchain, grid operators can ensure resilient 

frequency control from impending cyber-attacks. It is demonstrated that the immutability 

of blockchain can be leveraged for cyber-resilience in the operation of the LFC system. 

 
(a) 

 
(b) 
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(c) 

Figure 5.7 Power regulation and prices (a) Blockchain transaction mechanism (b) The timestamped 

net compensated power from multi-source HPS for different scenarios indicating the compensated 

value in pu, (c) The payment using the energy price of regulating sources at different test scenarios. 

The implementation of blockchain for the LFC of multi-source HPS stands out from 

the conventional methods in the following aspects: 

• Blockchain efficiently handles the active power regulation between RTPS and load 

and between DER and load by the predefined smart contracts for event triggering 

and LFC command initiation. 

• The transactions stored in the blockchain provide the market operator with a secure 

data transfer mechanism. 

• Blockchain implementation for LFC ensures data security and integrity against false 

data injection attacks. 

 

Figure 5.8 A depiction of Blockchain mechanism and data security. The false data injection causes 

the block linkage to break, as the previous address cannot be matched. The red color indicates the 

tampered block. The validation nodes prevent this from happening; thus, the Blockchain is 

immutable. 
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Table 5.1 Blockchain for Resilient Frequency control 

Block Hash and Data LFC Event Scenario 

Block 1 "0 pu at t = 0s" 

Self-hash = a6870161f512cbd45f1ef23e9a27b8eb308153d04cf55b26925e3105560c2de6 

Genesis Block 

 

Block 2 "RTPS (0.065849 pu) at 20.46 $ at t = 10s" 

Previous hash = a6870161f512cbd45f1ef23e9a27b8eb308153d04cf55b26925e3105560c2de6 

Self-hash = 010b8019730b1c80b516b60ed57980a4890e205520f389b2e9efbafb04ce9b04 

Blockchain Initialization  

Block 3 "DER (0.10059 pu) at 22.76 $at t = 20s" 

Previous hash = 010b8019730b1c80b516b60ed57980a4890e205520f389b2e9efbafb04ce9b04 

Self-hash = 17238db2d1725b20660cd882b7a160e3921c557264b259aac4409bb5a66ed111 

Test Scenario 1: 0.1 pu Load and Wind disturbance 

Block 4 "RTPS (0.0854 pu) at 26.54 $ at t = 50.01" 

Previous hash = 

17238db2d1725b20660cd882b7a160e3921c557264b259aac4409bb5a66ed111 

Self-hash = f9e330cee3f4b4cc216d31d372a6bdc2f3696fb374e2bb69008e3c335469b576 

Test Scenario 2: Loss of WTG 

Block 5 "DER (0.01186 pu)  at 13.25 $ at t = 56.38s" 

Previous hash = f9e330cee3f4b4cc216d31d372a6bdc2f3696fb374e2bb69008e3c335469b576 

Self-hash = d00d7613b220ef1d91304d3a5741b003f616b14a5be419bbc8c8fe75d07c2e32 

Test Scenario 2: Loss of WTG 

Block 6 "RTPS (0.0007304 pu) at 0.45 $ and DER (0.00154 pu) at 2.67 $ at t = 100.01" 

Previous hash = d00d7613b220ef1d91304d3a5741b003f616b14a5be419bbc8c8fe75d07c2e32 

Self-hash = 309f50157715ba4162d48dd12376f08cba29521c17cffb21ac3bd2ecf7890e80 

Test Scenario 3: Loss of DEG 

Block 7 "RTPS (0.0018068 pu) at 1.12 $ and DER (0.00053591 pu) at 0.26 $ at t = 200.01" 

Previous hash = 309f50157715ba4162d48dd12376f08cba29521c17cffb21ac3bd2ecf7890e80 

Self-hash = 9b6a4e36b649d0a9b94008efe251a1ad49dab648556a685790947b3cefebfab2 

Test Scenario 4: Loss of FC 
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5.4.1.3 Four Test Scenarios Results and Discussion 

Each considered power system test scenario is a resiliency test case leveraging 

blockchain implementation. The preceding test disturbance subsides in the simulated 

scenarios before the subsequent test disturbance arises. 

5.4.1.4 Test Scenario 1: A 0.1 pu step load disturbance 

HPS is subjected to a load change of 10% when all the sources are supplying the 

load. The combined load and wind disturbance of 0.1 pu monitored by the blockchain 

network invoked the smart contracts. The smart contracts communicate the event 

information to the controllers to generate an LFC command. The event-triggered command 

from the control center shifts the power deviations to maintain the frequency at a nominal 

value. The aggregator-1 is responsible for framing the blockchain transaction request for 

RTPS based on the controller's response. Similarly, the aggregator-2 initiates the 

transactions from the DERs following the control center commands. Upon validation using 

the POA consensus algorithm by aggregator-1 as the leader node, the net compensated 

power data and transaction data from the participating nodes are stored as new blocks in 

the blockchain, as shown in Figure 5.7.  

The active power transaction requests for 10% load disturbance created the new 

blocks 2 and 3 (see Table 5.1). The transactions from aggregators 1 and 2 controlled the 

frequency deviation associated with simulated disturbances occurring at a 10s timestamp. 

Blockchain provides a distributed platform to send the regulation data to the market 

operator. The disturbances in the system have triggered an LFC event, which caused a 

frequency deviation, as shown in Figure 5.9.  These deviations in frequency are settled by 

the controller, which is the result of respective changes in the active power regulation of 

different sources, which was stored as compensated power data in the blocks. It is evident 

from the frequency response that the proposed methodology is effectual in curbing the 

deviations. As observed from the step-response parameters in Table 5.2, the relationship 

between the load and the rise in wind velocity led to frequency fluctuations that ranged 

from the nominal value to a maximum deviation of 0.0113 Hz. The transient time represents 

that the LFC has shifted the pre-disturbance operating point to the post-disturbance 

operating point in 4.5s. Therefore, a fast transition to the new steady state is observed using 

the proposed methodology for LFC. The results obtained in Table 5.2 indicated that the 

performance of the proposed methodology is efficient in restoring the nominal frequency 

of the system in a post-disturbance scenario while accounting for load and wind 

uncertainty. 
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 Figure 5.9 Step response for 0.1pu load and wind disturbance.  

 Table 5.2 Step response parameters of scenario 1 

Parameter Value 

Settling time 8.9754 s 

Minimum -0.0113 Hz 

Maximum 0.0037 Hz 

Peak time  10.0300 s 

Transient time 4.5360 

 

The power deviations among various sources triggered by the designed LFC 

controller commands are shown in Figure 5.10. Initially, the system is in an equilibrium 

where the power deviations are 0pu from the sources. The disturbance in load and wind 

occurring at 10s has shifted the power deviations among various sources to reduce the 

power generated and supplied imbalances. RTPS has initiated the increase in power due to 

the disturbance, as shown in Figure 5.10. The increase in wind speed has caused an increase 

in WTG generation that necessitates power adjustments among the other sources.   

The increase in the WTG power has caused other DERs to decrease the power 

generated slightly to achieve the post-disturbance equilibrium. The transient increase in the 

power from FC and AE compensated for the load demand. The WTG output has settled to 

a 0.1 pu increase at 15s. The DERs adjusted their outputs to a new value, and the 

aggregator-2 stores the peak transaction information at a timestamp of 20s. The goal of 

LFC is realized by adjusting the active power outputs to minimize the frequency deviation, 

where varied source dynamics can be noticed to achieve this goal. It can be observed that 

the BESS is fast acting in adjusting the power output. DEG is next to BESS in regulating 

the active power output. However, the RTPS power adjustment with respect to the 

disturbance did not settle quickly due to the governor-turbine dynamics of the system and 

the same is observed from the zoomed-in RTPS power deviation, depicted in Figure 5.10 
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between 15 and 18s. In this respect, the contribution of FC is crucial for the regulation of 

frequency as the FC power output follows the RTPS power output. The FC leverages the 

coordinated control command received to track the RTPS dynamics with the aim of 

maintaining the net power deviation at zero. Therefore, the FC dynamics have achieved 

equilibrium in the active power and maintained the frequency at a nominal value post-

disturbance. It is demonstrated that the proposed methodology has contributed effectively 

to regulating the frequency by regulating the active power for the maintenance of 

equilibrium in the system. The frequency deviation data for monitoring purposes are stored 

off-chain. 

5.4.1.5 Test Scenario 2: Loss of WTG at 50s 

To test the resiliency of the designed controller, the WTG is disconnected at a 

timestamp of 50s. The loss of WTG triggers a sudden change in frequency. The WTG loss 

event has triggered the LFC action from the control centers, and in response, the new blocks 

are initiated by the aggregators' peak power deviations. 
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Figure 5.10 The deviation in power from the multiple sources for a combined load and wind 

disturbance. The response from each source is represented in the subplots with a zoomed-in 

response to represent the RTPS dynamics 

Node-2 acts as the leader node for the validation process. The scenario's power adjustments 

and market transactions are stored as Block 4 and Block 5. The frequency regulation for 

scenarios 2,3, and 4 is plotted in Figure 5.11. In scenario 2, WTG loss has hard-pressed the 

frequency to decrease due to reduced power generation. The test scenario 2 results prove 

that the proposed control architecture is resilient in the event of a sudden loss of WTG. 

Furthermore, the simulation results provide compelling evidence for the system's frequency 

stability. This stability is a crucial aspect of the system's performance, and the simulation 

results have confirmed that the system operates within acceptable limits and can sustain its 

frequency stability even under challenging conditions. As a result, it is proved that the 

proposed method is reliable and robust in application scenarios. The step response 

parameters from Table 5.3 indicate that WTG loss increased the settling time by 56.7% 

from scenario 1. However, the LFC action has limited the maximum peak increase to 1.73% 

from scenario 1. Due to the rapid, responsive storage and FC integration, the post-loss 

stable functioning zone is reached in a transient time of 2.332s by regulating the power 

output from RTPS and the active DERs.  

The individual source power adjustments and regulation payment transactions of 

the multi-source HPS are plotted in Figure 5.12 for WTG loss. RTPS is the major 

contributor to the HPS's frequency regulation. Therefore, WTG loss has increased the 

power output from RTPS. The immediate increase in the RTPS's power is necessary to 

regulate the frequency facilitated by blockchain smart contracts. The power output from 

WTG is dropped to zero at 50s. It is to be noted that the load disturbance is absent at the 

time of WTG loss. The DERs adjusted their outputs to a new stable operating point based 

on the signal received from the control center. Therefore, the participation of DERs resulted 

in withstanding the loss of WTG and maintaining the system's stability. This decreases the 

reliance on centralized generation systems and enhances the overall reliability and 

resilience of the power grid. DERs contribute significantly to a more stable LFC operation 

by playing an important role in maintaining the balance between energy demand and 

supply.  
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 Figure 5.11 Frequency Regulation using Blockchain for Scenarios 2, 3, and 4. The deviations due 

to scenarios 3 & 4 are represented in zoomed-in responses. 

The net power compensated by DERs adjusts the frequency, where the peak is 

detected at 56.38s. The corresponding LFC block consists of the information from 

aggregator-2 for the WTG loss event. The transactions are validated, and this new 

information gets stored and added to the LFC blockchain. The net compensated power from 

Figure 5.7 indicates the power balance action for attaining equilibrium for the WTG loss 

scenario. The LFC is resilient to the loss of power from WTG with hydrogen source and 

storage support. The participation of DEG, FC, and BESS is crucial, as observed in Figure 

5.12, for providing the necessary support required for balancing the network's frequency. 

The corresponding data from the active power deviations is utilized for storing the 

transactions on the blockchain. 

5.4.1.6 Test Scenario 3: Loss of DEG at 100s following WTG loss 

 Assuming DEG loss at 100s following the WTG, frequency is regulated by further 

adjusting the power output from the RTPS and the active DERs. As observed in Table 5.1, 

block-6 contains the corresponding power and remuneration transactions compensated for 

LFC by aggregator-1 and aggregator-2 as subsequent blocks. The frequency deviation 

observed from Figure 5.11 for DEG loss is minimal, and the LFC action has contributed to 

quick frequency restoration. The step response parameters from Table 5.3 for the loss of 

DEG are not significant compared to the WTG loss scenario. The maximum peak is only 

7% of the peak value in the scenario due to the hydrogen-based energy contribution. The 

post-loss compensated powers in multi-source HPS attained a new steady state in 2.0921s. 

It is evident from the frequency response for test scenario 3 that the FC and BESS 

effectively handled the absence of DEG in coordination with the RTPS.  
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 Figure 5.12 The deviation in power from the multiple sources under WTG loss. The response from 

each source is represented in the subplots. 

Although the system was subjected to consequent losses of DERs, the frequency 

stability is maintained by the proposed methodology.  Thus, the power resilience of the 

LFC operation is demonstrated by the simulation results. The power deviations for the DEG 

loss from different sources are plotted in Figure 5.13. These deviations are responsible for 

minimizing the system frequency under the loss event. The RTPS power has increased to 

compensate for the DEG loss immediately following the event. Aggregator-1 stored 

immediate RTPS power deviation information following the DEG loss event in the new 

LFC block. WTG can be observed to be inactive at a timestamp of 50s. The DEG output, 

as seen in  Figure 5.13, is zero at 100s. Active DERs are FC and BESS in Scenario 3. The 

power from FC has slightly increased before adjusting to a new post-loss operating point. 

Consequently, the BESS has adjusted the power output to compensate for the DEG loss. In 
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the validation process, node-1 assumes the role of the leader node. The authority node 

added the new blocks of the LFC participant's power contribution and their associated 

market-clearing transaction price. The results confirm that the blockchain supports the LFC 

architecture even under the sudden disturbances arising due to the loss of sources.  

 

Figure 5.13 The deviation in power from the multiple sources under WTG loss and subsequent 

DEG loss. The response from each source is represented in the subplots. 

Test Scenario 4: Loss of FC at 200s following WTG and DEG losses 

The FC is also disconnected at 200s following the loss of WTG and DEG, 

considering an extreme scenario of the loss of three distributed generators in the multi-

source HPS. The corresponding immediate power deviations are stored in Block 7, as 

observed in Table 5.1. The blockchain network has proved to be adept in storing the LFC 

transactions under the extreme loss scenario. The loss of FC and the corresponding 
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frequency deviation can be observed in Figure 5.14. The FC loss has caused frequency 

fluctuations at 200s, which are of low magnitude as the output power from FC was 

comparatively less than that of WTG. The frequency oscillations quickly settled with the 

LFC action.  

The frequency regulation results ascertained successful LFC operation via the 

coordinated control assisted by blockchain technology.  The step response parameters from 

Table 5.3 indicate that the peak deviation is lower than in scenario 1, and the settling time 

is reduced from scenario 2 and scenario 3. The reduction in settling time results from faster 

storage dynamics in the LFC power network. Aggregator 1 and Aggregator 2 store the 

transactions as per the commands received from the LFC controllers upon invoking the 

smart contract event. 

  

Figure 5.14 The deviation in power from the multiple sources under WTG loss, DEG loss, and 

subsequent FC loss. The response from each source is represented in the subplots. 
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During validation, node-2 is responsible for the execution of the POA-based 

authentication. The power adjustments for compensating for the FC loss are plotted in 

Figure 5.14. The RTPS has increased the power slightly at the time of FC's disconnection. 

BESS is the only active DER where the power deviation is increased to balance the 

reduction in FC's power, which became zero at 200s. These deviations in active power, as 

observed in Figure 5.14, are responsible for regulation services, and the power data is 

extracted to enable the LFC market transactions. The loss of three sources consecutively 

has caused frequency distortions. The blockchain-assisted LFC mechanism handled the 

frequency distortion even under extreme circumstances. It is to be noted that the transient 

time to reach the new steady-state post-disturbance or post-loss scenarios is in the range of 

2 to 4.5s. Therefore, by validating the blocks, the proposed frequency control is verified to 

handle the loss of DERs efficiently and account for the LFC transactions. 

 Table 5.3 Step Response parameters of scenarios 2,3 and 4 

Parameter 
Scenario 2 

Value 

Scenario 3 

Value 

Scenario 4 

Value 

Settling time 20.74 s 16.987 8.887 

Minimum -0.0115 -2.8776e-05 -7.4371e-05 

Maximum 0.0034 9.6834e-05 1.1968e-04 

peak time 50.03 100.0300 200.0 

Transient time 2.3332 2.0921 1.5872 

 

5.4.2 Robust Frequency Regulation Using Blockchain 

The LFC operation's robustness in practical scenarios must be assessed under 

dynamic disturbances. The deviation of compensated power to any load or wind 

disturbance is responsible for frequency regulation. The aggregators utilize blockchain 

technology to implement the regulation commands acquired from the control center. The 

uncertainties in the load and wind are minimized using the LFC controllers through robust 

frequency regulation. The load and wind uncertainties simulated over 100s are shown in 

Figure 5.15. The considered uncertainties are random in nature to represent the real-time 

disturbances for evaluation of LFC operation. The simulated disturbances occurred when 

RTPS and all the DERs actively participated in the frequency regulation. The load profile 

is initially constant; at 405s, a load of 0.1 pu gets connected at 440s. A load of 0.15 pu gets 
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disconnected at 442s. Therefore, the peak load occurred on the HPS for 2s and a load of 

0.2 pu gets disconnected at a sample time of 480s. The wind profile was initially constant, 

and later, the wind velocity increased by 0.2pu at 420s, followed by a 0.15pu decrease at 

430s. The wind velocity increased by 0.15pu at 470s and remained constant for the 

simulated time duration. 

  

Figure 5.15 Simulated Random Load and Wind Disturbance: The per unit wind deviation is 

calculated on a base wind speed of 10 m/s. E.g., A 0.2 pu change refers to a change of 2 m/s. 

The compensated power from aggregator-1 and aggregator-2 have mitigated the 

uncertainties in wind and load energy using PSA-optimized controllers and achieved robust 

frequency control. RTPS and DER transactions that occurred at different timestamps form 

the new blocks from block 8 for the robust LFC blockchain shown in                                                                                     

Table 5.4. The LFC control center's commands are actuated under uncertain events where 

the active power regulations are captured to create new blocks through validation. The 

designed blockchain mechanism successfully stored the transactions under continuous 

random load disturbances, as evidenced by the obtained results. 

The power deviations in the net compensated powers caused by the disturbances 

shown in Figure 5.15 gave rise to frequency disturbances, as shown in Figure 5.16. The 

variations in frequency were within a range of -0.02 Hz to 0.02 Hz, which implied that the 

multi-source HPS's frequency regulation has been robust to uncertainties using the 

proposed methodology for LFC. The mathematical interpretation of frequency disturbances 

that occurred due to different step disturbance magnitudes in load and wind are given in 

Table 5.5. 

The frequency deviation for step disturbance magnitude of load and wind for a 

magnitude of 0.1 pu was measured through error indices given in the first column. The 
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other columns represent the measured frequency deviation using error indices for 

independent load or wind disturbances and their corresponding step magnitude. The highest 

error indices occurred for the 0.2 pu wind disturbance alone, followed by 0.2 pu load 

disturbance and 0.1 pu load disturbance.  

The least values of error indices occurred for a scenario of 0.1 pu load and wind 

disturbances. These values provide essential information on the robust capabilities of 

blockchain-assisted frequency control when there are various types of disturbances in the 

multi-source HPS. The error indices for different scenarios of step load and wind 

disturbances evaluated the robust performance of the control mechanism under large load 

and wind disturbances. It is to be noted that the maximum peak occurred for 0.2 pu load, 

whereas maximum error was observed for 0.2 pu load at 480s. 

However, the frequency deviation is as per the norms below 0.1 Hz [282]. The 

observed results reaffirm the robustness of the LFC control and effective blockchain 

transactions for achieving robust operation. Therefore, blockchain transactions through 

smart contracts among the distributed aggregators can serve as a novel emerging LFC 

paradigm for robustness and resiliency in power system frequency control.   The regulation 

results demonstrated that the LFC blockchain network developed is successful in attaining 

cyber resilience, power system resilience, market transaction clearing, and securing the 

power network. 

  

 

Figure 5.16 Robust frequency regulation when the HES experiences continuous disturbances in 

load and wind deviations. The disturbances can be observed due to multiple scenarios. The 

deviation in wind speed increase or decrease is correspondingly related to frequency increase or 

decrease. The load connection causes the frequency to drop and oscillate. The load disconnection 

causes the frequency to rise and oscillate. 
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                                                                                    Table 5.4 Blockchain for Robust Frequency Control 

Block Hash and Data Event  

Block 8 

"RTPS (0.071807 pu) at  1.607 $ and DER (0.065459 pu) at 1.56$ at t=405s" 

Previous hash = 9b6a4e36b649d0a9b94008efe251a1ad49dab648556a685790947b3cefebfab2 

Self-hash =  c833b6c0ebe26185b01684b2521f914fd21db71265c8ed0f9b1d7b9fded6a437 

0.1pu load connected 

Block 9 

"RTPS (0.0025144 pu) at 0.056 $ at t = 420.03s " 

Previous hash =  c833b6c0ebe26185b01684b2521f914fd21db71265c8ed0f9b1d7b9fded6a437 

Self-hash =  3c8dedb123487e4b4c43705803b5132b2b6904e320b175fe8f5bbeb9a0811a0cc 

0.2pu increase in Wind power 

Block 10 

"DER (0.23882 pu) at 6.236 $ at t = 429s" 

Previous hash =  c8dedb123487e4b4c43705803b5132b2b6904e320b175fe8f5bbeb9a0811a0cc 

Self-hash =   d4d3ffa7e0a12b4ea448cfaa5e9f3539a1fedd96571c45ef656af3263e6c9997 

0.2pu increase in Wind speed 

Block 11 

"RTPS (0.00061724 pu) at 0.0139 $ at t = 430.09s" 

Previous hash =   d4d3ffa7e0a12b4ea448cfaa5e9f3539a1fedd96571c45ef656af3263e6c9997 

0.15pu decrease in Wind 

speed 
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Self-hash =   7795746f80cb06e4a3481f7c9bfd257b4ba289d14266b661e095df0fe47b30e8 

Block 12 

"DER (0.03071 pu) at 2.116 $ at t = 439s" 

Previous hash =   7795746f80cb06e4a3481f7c9bfd257b4ba289d14266b661e095df0fe47b30e8 

Self-hash =   519fcfc70148f5e5001d436025c1e25ed33c0a28747c99342da77dd5093113d8 

0.15pu decrease in Wind 

speed 

Block 13 

"RTPS (0.09819 pu) at 2.19 $ and DER (0.1379 pu) at 2.1 $ at t=440s" 

Previous hash =   519fcfc70148f5e5001d436025c1e25ed33c0a28747c99342da77dd5093113d8 

Self-hash =   9b4fc455dc95c258909e2afaf772c1aa69eaa8c432762fc2bee937b973d71fc9 

0.15pu Load connected 

Block 14 

"RTPS (0.050092 pu) at 1.12 $ and DER (0.0089084 pu) at 4.04 $ at t=442s" 

Previous hash =  9b4fc455dc95c258909e2afaf772c1aa69eaa8c432762fc2bee937b973d71fc9 

Self-hash =  d87068ced5a16292cc3a246edf152b2271fa48ce8174351e0336c68381b9f77a 

0.05pu Load disconnected 

Block 15 

"RTPS (0.2 pu) at 4.47 $ at t = 473s" 

Previous hash =  d87068ced5a16292cc3a246edf152b2271fa48ce8174351e0336c68381b9f77a 

Self-hash =  8243f14a66bcd9e8eaec3b113fa85f871e43994ffdc780255a9dfb300f20c70d 

0.15pu increase in Wind 

speed 
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Block 16 

"DER (0.21224 pu) at 4.77 $ at t = 479.07s" 

Previous hash =  8243f14a66bcd9e8eaec3b113fa85f871e43994ffdc780255a9dfb300f20c70d 

Self-hash =  61db482a230379898cd167c647ce045a7e81f2aec842aeb2ca2fa3922685f1c8 

0.15pu increase in Wind 

speed 

Block 17 

"RTPS (0.2 pu) at 4.47 $ at t = 480s" 

Previous hash =  61db482a230379898cd167c647ce045a7e81f2aec842aeb2ca2fa3922685f1c8 

Self-hash =  3ad7720d60e05d05555630e706fc945c29ebbc551f3ded12da57944bf6e4c9f5 

0.2pu Load disconnected 

Block 18 

"DER (0.27078 pu) at 7.94 $ at t = 485.74s" 

Previous hash =  3ad7720d60e05d05555630e706fc945c29ebbc551f3ded12da57944bf6e4c9f5 

Self-hash =  029a1db9186ad367fc7f89d28917b9de06d4076f7e48fc5583527475295608fc 

0.2pu Load disconnected 
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 Table 5.5 Error indices for various step disturbances 

 

5.4.3 Real-time experimental Verification 

A testing platform using HIL simulation has been set up for evaluating the real-time 

execution performance of the proposed control structure. The HIL experimental test bench 

utilized for analysis and verification is depicted in Figure 5.17(a). The setup consists of a 

host PC, a dSPACE hardware testing and prototyping platform, and a DSO for capturing 

the signals from the dSPACE platform. The experimental verification output response for 

the proposed methodology is shown in Figure 5.17(b), which utilizes the setup depicted in 

Figure 5.17(a). The frequency deviation depicted in the simulation test scenario 1 has been 

captured in real-time in the channel-1 output of the DSO, which proves the HIL result 

validation for the simulated responses. Similarly, the net power deviation output, which is 

to be verified for blockchain execution of POA and transaction initiation, is captured in the 

channel-2 output of the DSO. The LFC model's simulation result consisting of the 

frequency deviations and net power deviations is verified using the HIL testing by running 

the LFC Simulink model on the dSPACE platform. It is to be noted that the verification 

using HIL substantiates the effectiveness of the proposed scheme in practical control 

scenarios, where the data received from the simulated LFC model to the blockchain 

simulation is demonstrated as reliable and practically feasible.  

For visualizing the blockchain simulation setup shown as a part of Figure 5.17(a), 

snapshots and snippets from various simulations are utilized, detailing the steps involved 

in the approach, as depicted in Figure 5.17(c). This mechanism corresponds to the 

procedural framework and the execution methodology discussed in Section 5.1 for enabling 

blockchain-based transactions for the resilient and robust LFC of the HPS.  

Error Index 
0.1 pu wind 

& load 
0.1 pu Load 0.2 pu wind 0.1 pu load 

ITAE 0.5883 3.5365 4.7131 2.3565 

IAE 0.0137 0.3971 0.4246 0.2123 

ISE 6.73E-04 0.0033 5.83E-04 1.46E-04 

ITSE 0.0069 0.0337 0.0069 0.0017 

MSE 3.37E-07 1.64E-06 2.91E-07 7.28E-08 

MAE 6.87E-06 1.98E-04 2.12E-04 1.06E-04 
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Frequency monitoring data log-driven event detection triggers the smart contracts 

to initiate the transfer of the compensated power, which imitates the block creation followed 

by consensus-based validation through POA. Once the validation is completed, new blocks 

are added to the chain. The results obtained in the output terminal verified the POA and 

displayed the blocks created as a result of LFC transactions. Each block's self-hash and 

previous hash are visible, demonstrating the successful completion of the block initiation, 

validation, and creation process for robust and resilient LFC operation. 

5.4.1 A comparative assessment of the results 

The domain of investigation in the past LFC studies was limited to either power 

system resilience or cyber-resilience, where the implementation of regulation markets and 

automated transactions was not considered in the result analysis. Although robust 

frequency control was widely presented under varied load and renewable uncertainties in 

the literature, the results did not include the application of blockchain technology for data 

storage and transactions during continuous wind and load disturbances, as presented in the 

current study. The utilization of the proposed blockchain framework provides coordinated 

command initiation of LFC while securing the power data and corresponding energy data, 

preventing any false data injection attacks. A detailed analysis of the results in comparison 

with previous results of existing studies is presented in the following: 

• Power System Resilience: The existing studies in [32], [135] did not account for the 

renewable loss scenario and consequent losses, as depicted in Figure 5.11 to Figure 

5.14. 

• Cyber Resilience: Unlike the injection of a signal for studying the cyber-resilience 

[37], [168],  the current work addresses the issue of data tampering, as depicted in 

Figure 5.8. 

• Frequency Regulation Markets: The data storage without vulnerability and 

regulation payments are proposed using blockchain methodology, as observed from 

Table 5.1, which was not considered in past studies [137], [169]. 

• Robust Control: Even though robust control was established in the existing studies 

[159], [200], blockchain implementation, as observed in                                                                                     

Table 5.4, is the novel contribution of this work. 
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(a) (b) 

 

(c) 

Figure 5.17 Real-time validation of the simulated Results (a) Hardware-in-loop (HIL) testing setup 

and execution (b) HIL-validated output for Test Scenario-1 (c) Blockchain simulation setup for 

Execution and verification of the proposed LFC through the framework. 
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5.5 Summary 

In this chapter, a frequency control framework developed using a PSA-constrained 

GA-optimized controller leveraging blockchain-data layer enabled resilient LFC in an HPS. 

The framework utilized a three-layer LFC implementation by modeling the physical layer 

and control layer using a MATLAB/Simulink environment, where the power adjustment 

data in the data layer is secured using a blockchain network configured in Python. The 

controller performance has demonstrated effective frequency regulation considering 

subsequent generation losses. Therefore, the designed controller is proven to be resilient to 

power system outage issues. The LFC blockchain network ensures the security of the LFC 

transactions. The immutability of the POA consensus algorithm implemented for the LFC 

blockchain offered resilience against false data injection attacks. Moreover, the proposed 

methodology enhanced the system's robustness against wind and load uncertainties. The 

test scenarios verified that the developed framework for LFC implementation offers the 

features of robustness, resiliency, security, and data integrity in multi-source HPS. The key 

conclusions from the case study are: 

• Event-triggered mechanisms for frequency control based on the aggregator's 

contracted power were automated through smart contracts, which provide a cyber-

resilient platform for LFC. 

• The LFC operation under power resilience was efficient, and the maximum peak 

deviation was observed for the wind loss scenario at 0.0115 Hz, which was below 

the acceptable instantaneous deviation, indicating effective controller performance.  

• The power resilience was demonstrated by simulating the consequent loss of 

sources and catering to LFC by utilizing the actively participating sources, where 

the blockchain framework was proved to be efficient. 

• Integration of various DERs for promoting the use of sustainable hydrogen-based 

FC participation in the ancillary service provision was achieved through seamless 

control capabilities. 

• Synergies among the aggregator's contracted power, actual contracted power in a 

real-time event, and transactions of the market operator for providing the 

remuneration are attained without the intervention of a third party by utilizing a 

comprehensive LFC framework. 



156 

 

• The extracted power data was securely stored, and various simulation scenarios 

indicated effective handling of the active power data and market transaction 

utilizing the blockchain methodology proposed for LFC. 

• The maximum instantaneous frequency deviation under large random load and 

renewable uncertainties was observed at 0.02Hz, which was below the allowable 

standard deviation of 0.1Hz. It concludes the efficacy of the proposed methodology 

for achieving robust frequency regulation and robust transactions.  

• Numerous financial operations for regulated active power in the ancillary markets 

can be carried out at a seconds-time scale that opens the doors for new market 

participants and provides a pathway for policymakers to fully utilize the potential 

of sustainable energy sources. 

In this study, stability aspects during the loss of the thermal power system and further 

frequency stability enhancement by DR participation are not included, which are to be 

addressed in the subsequent chapter. 
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Chapter 6 

6 Smart Home Inverter for Stability  

 

 Figure 6.1 Aspects of Objective 4 addressed in Chapter 6: An Outline. 

In the HPS, the loss of RTPS can cause stability issues as only DERs are operating 

to supply the power. During this condition, the utilization of SHI and coordinated control 

architecture is proposed in this chapter. Figure 6.1 depicts the aspects of objective 4 

(highlighted in dotted lines) addressed step-by-step, representing the outline of the chapter. 

Initially, the introduction to the DRL framework and the utilization of SHI in the HPS is 

discussed. Further, an advanced DRL-based control strategy implementing SHI is 

introduced for enhancing the HPS stability under the loss of RTPS. 

6.1 Introduction 

 The aspects of stability are affected when there is a loss of a major source in the 

system. This requires an efficient control framework as well as strategies that can quickly 

compensate for the loss of source. Initially, the SHI is introduced to enhance stability. 

Finally, the DRL framework is redesigned using SHI and various coordinated control loops 

for effective frequency regulation. The model of the HPS consisting of RTPS, DERs, and 

the corresponding control loops is derived in Chapter 2. Additionally, SHI participation 

with a corresponding aggregated controller and a VI control loop for WTG is designed as 

depicted in Figure 6.2.  

6.1.1 Smart home inverter Modeling 

The demand response mechanisms activate primary frequency regulation on the 

load side by increasing or decreasing the load-damping coefficient to assist the 
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conventional primary droop control on the generator side [136]. For implementing LFC on 

the load side, entities with storage potential and anything-to-grid (X2G) functionality are 

found suitable [265]. Secondary control participation for obtaining frequency response for 

EVs can be modeled as a transfer function [266] similar to storage systems. In this regard, 

smart homes with storage can be modeled by adopting the demand response load model 

presented in [267] using the transfer function approach with supplementary control. The 

aggregated SHI is represented through the battery storage model by utilizing a first-order 

transfer function approach with a gain of  ′𝐾𝑠ℎ𝑖′ and a time-constant of ′𝑇𝑠ℎ𝑖′ given by (6.1) 

for enabling home-to-grid (H2G) frequency regulation. 

 ∆𝑃𝑠ℎ𝑖 =
𝐾𝑠ℎ𝑖

1+𝑠𝑇𝑠ℎ𝑖
∆𝑢4   (6.1) 

where, ′∆𝑃𝑠ℎ𝑖′ gives the change in the SHI power output.  

 

 Figure 6.2 Block diagram representation of the HPS integrated with SHI. 

6.1.2 VI controller for WTG Modeling:  

The VI loop is required to provide additional support for the reduced system inertia 

through a control signal, ′∆𝑢3′, which is defined as ∆𝑢3 = ∆𝑓 (
𝑑

𝑑𝑡
) 𝐻 and designed using 

the methodology in [22],  where '𝐻' is the inertia constant. By including the SHI 

participation in the HPS, different operating modes are simulated, whose results are 

discussed below. 
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6.2 Initial Investigations on stability 

The stability of the system using SHI under two different modes is investigated. 

The HPS operating with all sources is considered as the grid-connected mode. In the second 

mode, the RTPS is lost during Islanding mode.  

6.2.1 Grid-Connected Mode5 

In grid-connected mode, RTPS and MG together participate in frequency 

regulation. The coordinated control of different loops for various energy sources is 

simulated to analyze the frequency deviation in the HPS. A change in wind speed from 8 

kmph to 11 kmph is considered as a wind disturbance, and a step load disturbance of 0.1 

pu is considered for studying the frequency response. 

Frequency response with coordinated controls can be observed in Figure 6.3. When 

the control signals, ‘𝛥𝑢1 and 𝛥𝑢2’ are acting, frequency deviation is maximum. Due to the 

addition of a control signal, ‘𝛥𝑢3’ from the VI control loop, peak deviation is reduced 

slightly. To decrease the overshoot in frequency, SHI participates in the grid to smart home 

(G2SH) mode.  

 

Figure 6.3 Frequency response of a Hybrid Power System using coordinated control of different 

control loops under a wind speed disturbance and a step load disturbance, N represents the number 

of smart homes participating in frequency regulation. 

A significant reduction in frequency overshoot can be observed when the control 

signal ‘𝛥𝑢4’ is added with 100 SHI participating in frequency regulation. But this caused 

an undershoot in frequency and increased the settling time. For N=500, undershoot and 

settling time are improved. For N=1000, there is an 86.04 % reduction in maximum 

 
5 This work has been published in the conference INDICON 2020. The details of the publication are: 

R. Loka and A. M. Parimi, “Home Inverter Based Coordinated and Distributed Frequency Control 
in a Smart Hybrid Power System,” in 2020 IEEE 17th India Council International Conference 
(INDICON), New Delhi, India, Dec. 2020, pp. 1–6. doi: 10.1109/INDICON49873.2020.9342394. 
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frequency deviation with the participation of SHI from the second case, where SHI 

participation is absent. The number of SHI participating in frequency regulation can greatly 

impact the fluctuations in frequency.  

6.2.2 Islanded Mode 

Frequency deviation is higher when the MG switches from grid-connected mode to 

islanded mode because of sudden loss of power from the grid. Simulation studies are carried 

out to address this problem. RTPS is disconnected at t=5s in the simulated model to analyze 

the behaviour of the MG or DERs in islanded condition, as depicted in Figure 6.4.  

 

Figure 6.4 Real Power Deviation in RTPS when Microgrid switches from grid-connected mode to 

islanded mode. 

The transition from grid-connected mode to islanded mode reduces the real power 

available from RTPS to zero instantaneously, at t=5s, as shown in Figure 6.5. The sudden 

loss of RTPS can cause large deviations in frequency. This is because the grid balancing 

needs to be done by the MG alone to meet the changes in load demand and wind speed 

changes. The islanded mode of operation considering the switching transition at t=5s is 

simulated with and without the participation of SHI to study frequency deviation in the 

MGFrequency relays usually trip when the frequency deviation exceeds ±0.5 Hz, and the 

islanding operation causes the frequency above the preset values, as depicted from Figure 

6.5, giving rise to frequency instability. 

  

Figure 6.5 Frequency instability during Islanding mode without the participation of SHI, triggering 

the frequency relays. 
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Thus, islanding is not successful when only control loops without SHI participate 

in the frequency regulation. It was observed that the control loop with SHI is responsible 

for causing an initial overshoot in frequency. To address this frequency instability, SHI 

participation is considered, with 5000 SH participating in frequency regulation along with 

different control loops.  

The frequency instability problem can be solved with the participation of SHI, as 

depicted by the frequency response in Figure 6.6. The maximum deviation in frequency is 

-0.3 Hz, which is within the limits of set points for the operation of frequency relays. 

Frequency oscillations are successfully damped, considering a step load disturbance of 1%. 

Grid balancing has been successfully achieved using SHI as a grid balancing control agent. 

 

Figure 6.6 Frequency Response for Islanding mode of operation with the participation of SHI. 

6.1 Challenges for decentralized controller tuning-DRL necessity 

In decentralized control design applications, traditional algorithms and heuristic 

search methods require a large computational time. Moreover, it is understood from the 

literature that advanced DRL frameworks outperform various heuristic search methods 

such as GA and PSO. The coordination among multiple controllers can be easily achieved 

using multi-agent DRL models. Therefore, the following studies are based on the DRL 

framework for achieving decentralized and coordinated control.  

6.2 Control using DRL without considering SHI 

For the HPS model described in Chapter 2, the PID controllers are coordinated 

using a decentralized DRL framework that utilizes the MA-TD3 algorithm.  The MA-DRL 

[5]-[7] framework is used to solve the LFC problem in the renewable energy single-area 

power system. The model consists of a single control area with two individual frequency 

controllers. A DRL agent is trained on these PID environments based on deep neural 
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networks (DNNs) [13]. Each DRL controller will adjust the frequency cooperatively to 

reduce the load frequency deviation and monitor unexpected power interchange. A hybrid-

area power system environment was defined to simulate and test the MA-TD3 model 

controller [12]. 

6.2.1 MA-TD3 Training 

For training, each single-agent DRL Control Area is initialized with the data from 

the fine-tuned PID model, discussed in Chapter 2. Afterward, the parameters will be 

optimized by the MA-TD3 model [11] to maximize the goal objective, thus achieving 

suitable initial performance and making the MA-TD3 learning process more 

straightforward. The RL agent parameters, learning rate, batch size, replay buffer length, 

target variance, and number of iterations (episodes) are set to 0.001, 128, 0.000001, 0.1, 

and 1000, respectively. The reward function and generate observation function in the RL 

agent block are defined as: 

 𝑅𝑒𝑤𝑎𝑟𝑑 = −((𝑟𝑒𝑓 − ℎ)2(𝑡) + 0.01𝑢2(𝑡))  (6.2) 

 𝑜𝑏𝑠 = [𝑒 ∫ 𝑒𝑑𝑡  
𝑑𝑒

𝑑𝑡
] =  [𝑘𝑃 𝑘𝑖 𝑘𝑑] (6.3) 

Here, 𝑘𝑝, 𝑘𝑖, 𝑘𝑑, are the PID parameters, and 𝑒 is the error from the previous state. 

𝑢(𝑡) is the current state function, and 𝑟𝑒𝑓 is the reference function with an error as ℎ. The 

results of the frequency deviation response for the hybrid-area power system discussed in 

Chapter 2, considering a step time of 0.1 microseconds and a total measured time of 10 

seconds, is shown in Figure 6.7. Figure 6.7 shows that the proposed MA-TD3-based LFC 

approach [12] has lower rise time(tr), settling time(ts), and overshoot and thus can 

effectively control the load frequency for the given renewable energy single-area power 

systems. However, the loss of RTPS is not considered in this simulation. The following 

sub-section discusses the loss of RTPS and its impact on frequency stability. 

 

 Figure 6.7 Fine-tuned PID v/s MA-TD3 results (MATLAB Simulation). 
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6.3 Smart Home Inverter for Stability using DEMA-TD3 

6.3.1 Decentralized Control Architecture for LFC 

A. Modeling of DRL Agent for LFC 

The input of the DRL agents is the frequency deviation at each instant ′𝑡′ and given 

as (6.4): 

 𝑢(𝑡) = 𝛥𝑓𝑡  (6.4) 

The DRL agents can be described through state space, action space, and reward 

function. 

1) State Space 

The states of the HPS in the state space getting effected by the controller commands 

are defined as (6.5): 

 𝑠 = [∆𝑓𝑡 ∆𝑃𝑡1 ∆𝑃𝑡 𝛥𝑃𝑥𝑥]  (6.5) 

2) Action Space 

The output of the DRL agent is the action of the agent that controls the power 

outputs ′𝛥𝑃𝑥𝑥′  to achieve coordination. The action space is represented as (6.6): 

 𝑎 = {∆𝑢1,  ∆𝑢2,  ∆𝑢4}  (6.6) 

The action space for the three DRL agents is the command that affects the set point 

of the power sources for achieving the power equilibrium. The values of action space are 

modified using the error signal (6.7): 

 𝑒(𝑡 + 1) = 𝛥𝑓𝑡+1  − 𝛥𝑓𝑡  (6.7) 

where ′𝛥𝑓𝑡′ is the frequency deviation at instant ′𝑡′.  

3) Reward Function 

The design of the reward function can enhance the DRL controller's performance 

by learning the optimal policy ′𝜋′. The Linear–Quadratic–Gaussian (LQG) method is 

adopted because it aims to minimize the loss for a stochastic system [268] and is redesigned 

to obtain the required reward function for the HPS. Thus, the cost function for frequency 

minimization in LFC using LQG is given by (6.8): 

 ∑ [𝜑 ∗ (𝑥𝑖 − 𝑥𝑖𝑑𝑒𝑠)2 + (𝑥𝑖+1 − 𝑥𝑖)2]
𝑛

𝑖=1
   (6.8) 

where 𝑥𝑖 is the error at ith time-step, n is the maximum number of time-steps, 𝑥𝑖𝑑𝑒𝑠 is the 

desired value. In LFC, 𝑥𝑖𝑑𝑒𝑠 is equal to zero as we require a change in frequency to be zero. 

𝜑 is the weighting coefficient, which can be chosen by tuning methods to ensure that the 
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error is minimized. The LQG objective function is modified to obtain the reward function. 

The reward function calculates the total reward and transfers the learning goals to the DRL 

agent during the training process. The target of the controller's actions is to reach the desired 

reference value set by action space by controlling the states ′𝑠′  for which the instantaneous 

reward function for the DRL agent that minimizes the error is given by (6.9): 

 𝑟 = −[(𝜑 ∗ Δf𝑡
2) + (𝛥𝑓𝑡+1 − 𝛥𝑓𝑡)2]  (6.9) 

The reward function is designed as the negative of the LQG cost function. 

Consequently, an agent maximizes the value of the reward function (r), implying 

minimizing the cost function. The 𝜑 value was determined as 0.01 by hyperparameter 

tuning through the random search for optimal model performance. The weighting 

coefficient penalizes the actual reward such that the agent's action space can be further 

explored. Thus, the training performance of the state action pair ′(𝑠, 𝑎)′  has been enhanced 

using the LQG cost function and the tuned optimal weighting coefficient, 𝜑. The DRL 

agents learn through the 𝑄-value = ′𝑄(𝑠, 𝑎)′[133], which is the quality of the state and 

action couplet that maximizes the expected return.   

a. LFC via DDPG 

The DDPG modeling for LFC utilizes the DRL’s agent action and state spaces with 

different networks: actor-network, critic-network, actor-target, and critic-target. The 

weights of these networks are called network parameters. This model learns the optimal 

network parameters and Q-value for episode ′𝑖′  through a training process that maximizes 

the reward (6.5).  

The Actor-network is (6.6): 

 𝐴𝑐𝑡𝑜𝑟 {
(𝑠|𝜋∅(𝑡))

(𝑠|𝜋∅(𝑡 + 1))
     (6.10) 

And Critic network is (6.7): 

 𝐶𝑟𝑖𝑡𝑖𝑐 {
(𝑠|𝜃μ(𝑡))

(𝑠|𝜃𝜇(𝑡 + 1))
   (6.11) 

where ′𝜋∅
′  corresponds to the policy ′𝜋′ and policy parameters ′∅′.  Similarly, ′𝜃μ′

 

corresponds to the network parameter ′𝜃′ for actor-critic agent ′𝜇′. These parameters are 

learned during the DRL training for obtaining effective frequency regulation. The actor-

network acts using the observations obtained locally, while the critic network stores global 
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information from all the agents. The information on the actions of different agents in 

DDPG, ′𝑎𝑡+1 =  π(st+1)′ and the samples, ′(𝑠𝑡
𝑖, 𝑠𝑡+1

𝑖 , 𝑟𝑡
𝑖, 𝑎𝑡

𝑖 )′ are stored in the memory 

buffer. There are two updates in the training of the DDPG model, where one is the update 

on actor-network policy parameters using deterministic gradient descent (6.8): 

 𝛻𝜃𝑖
𝜇𝐽 = 𝑁−1 ∑ 𝛻𝑎𝑖

𝑄𝑖
𝜇(𝑠, 𝑎)|𝑎=𝜋𝜙𝑖

(𝑠)𝛻𝜙𝑖
𝜋𝜙𝑖

(𝑠)𝑁
𝑖=0    (6.12) 

The second update is the minimization of critic-network loss (6.9): 

 𝐿𝑜𝑠𝑠 =
1

𝑁
∑ (𝑦𝑖

𝑁
𝑖=0 − 𝑄(𝑠𝑖, 𝑎𝑖)𝛻𝜙𝑖

𝜋𝜙𝑖
(𝑠𝑖)   (6.13) 

where, y is the error (𝑦 = 𝑟 + 𝛾. 𝑄(𝑠, 𝑎)), N is the batch size of episodes during the training, 

𝛾 is the discount factor. The training involves the update of parameters for all the LFC 

agents for 𝑖𝑡ℎ episode until the maximum number of episodes ′𝐸′ is reached. 

b. Secondary control using MA-TD3 

The MA-TD3 agent follows the DRL agent modeling described previously with 

changes in policy parameters updates. The representation of the MA-TD3 model is shown 

in Figure 6.8. The environment represents the model's state space. The actor networks 

consist of a pair of actors and a target actor network. Similarly, the critic networks consist 

of a critic and a target critic pair. The features specific to TD3 are clipped double Q-

learning, delayed updates, and target smoothening. The learning process and the specific 

features of the MA-TD3 agent depicted in Figure 6.8 are described as follows:  

i. Clipped Double Q-learning:  

In double Q-Learning for actor-critic networks, two unconnected critic networks, 

as shown in the critic layer of Figure 6.8, are used for making the estimates and carrying 

out the value updation, which helps in unbiased action estimates. The observations 

′(𝑠𝑡
𝑖, 𝑠𝑡+1

𝑖 , 𝑟𝑡
𝑖, 𝑎𝑡

𝑖 )′ are the inputs stored in the experience replay buffer in the TD3 agent used 

to generate subsequent actions (𝑎𝑡+1 ) as the output. The agent action estimate, ′𝑎𝑡+1 =

 π(st+1)  + 𝜉′ consists of an additional term  ′𝜉′, which is Gaussian noise. The noise helps 

in regularizing the overestimation by introducing bias in the model.  The pair of critics 

(𝑄𝜃1
, 𝑄𝜃2

) and a single actor (𝜋𝜙) are used to define the clipped double Q-Learning 

Equation as (6.10): 

 𝑦 = 𝑟 + 𝛾. 𝑄𝜃𝑖
𝑡+1(𝑠𝑡+1, 𝑎𝑡+1)   (6.14) 

where 𝑟 is the reward received in the time of ′𝑡 + 1′ secs, with the state as ′𝑠′ and actions 

as ′𝑎′ giving a Q-value of 𝑄𝜃 with 𝜃1 and 𝜃2 being the two proposed critic networks and 𝛾 

being the discount factor. 𝛾 ∈ (0,1) and helps in focusing on short-term rewards. 
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 Figure 6.8 Actor-Critic agent in DEMA-TD3 model for secondary control. 

ii. Delayed Updates:  

Target networks help in achieving stability but are prone to volatile results. DRL 

models tend to give high deviations due to uncertainty in convergence. The deviations 

happen when the accumulation of errors foreshadows the required weights, resulting in 

poor quality estimates. Delayed policy and target network updates were prescribed to 

address this issue. This can help in the reduction of errors before the policy updates. Thus 

in the model, the policy network is updated with the smoothening parameter 𝜏. The equation 

for updating the weights is: 

 𝜃𝑖
𝜇𝑡+1

← 𝜏𝜃𝑖
𝜇𝑡

+ (1 − 𝜏)𝜃𝑖
𝜇𝑡+1

   (6.15) 

where, 𝜃𝑖
𝜇

 represents 𝑖𝑡ℎ  episode’s network parameter for the policy of the agent 𝜇. 

iii. Actor-Critic Target Policy Smoothening and Regularisation:  

While updating the critic networks, the deterministic model is prone to inaccurate 

predictions due to variational errors, which results in high data variance, and thus, it needs 

to be regularized. Therefore, TD3 proposes that the cost function should be estimated 

around a small range of target action to reduce the high variations and parallelly smoothen 
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the value estimates by training over similar action-state pairs. The equation used to carry 

out regularization (6.9) during data fitting is: 

 𝑦 = 𝑟 + 𝔼𝜋[𝑄𝜃𝑖
𝑡+1 (𝑠𝑡+1, 𝜋𝜙𝑡+1(𝑠𝑡+1))] + 𝜉   (6.16) 

where ′𝔼𝜋′ is the expected value for the Q-value function for the next state with policy 

parameters 𝜋; adding a small amount of random white noise during training helps smoothen 

the weight change as the policy updation occurs. The following equation carries this out: 

 𝑦 = 𝑟 + 𝛾. 𝑄𝜃𝑖
𝑡+1(𝑠𝑡+1, 𝑎𝑡+1) 𝜉 ∼ 𝑐𝑙𝑖𝑝(𝑁(0, 𝜎), −𝑐, +𝑐 )   (6.17) 

c. Proposed Secondary Control using DEMA-TD3 

 

The dynamic environment-based multi-agent TD3 model extends the MA-TD3 

model discussed previously. The DEMA-TD3 model adopts all the aspects of the MA-TD3 

model with slight changes in the training and simulation process. The required controllers 

are replaced with their respective TD3 agents during the training process. In our case, the 

PID controllers are replaced with the TD3 agents that mimic the behavior of the PID 

controller earlier present; this enables real-time environment simulation and allows us to 

tune the PID parameters of all the controllers available. Each agent interacts with the other 

agents via the environment consisting of the HPS plant and the controller agents. This 

interaction among environments is reflected in the state space of all the agents. The new 

state space for agents 1, 2, and 3 is defined as: 

 𝑠1  = [∆𝑓𝑡 ∆𝑃𝑡1 ∆𝑃𝑡 𝛥𝑃𝑥𝑥 𝛥𝑢2 𝛥𝑢4 ] 

 𝑠2  = [∆𝑓𝑡 ∆𝑃𝑡1 ∆𝑃𝑡 𝛥𝑃𝑥𝑥 𝛥𝑢1 𝛥𝑢4 ] 

 𝑠3  = [∆𝑓𝑡 ∆𝑃𝑡1 ∆𝑃𝑡 𝛥𝑃𝑥𝑥 𝛥𝑢1 𝛥𝑢2 ]   (6.18) 

thus making the state space of each agent dependent on the action space of all other agents 

and establishing a co-dependent relationship among them. Simultaneous training of each 

agent helps find the optimal policy much faster and simpler from a completely random 

environment. The agent selection based on episode number for training is defined as: 

 𝑎𝑔𝑒𝑛𝑡𝑛=1,2,3 = 

 {

𝑎𝑔𝑒𝑛𝑡1 𝑖𝑓 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 ∈ (1,50) ∪ (151,200) ∪ (301,350) ∪ ⋯

𝑎𝑔𝑒𝑛𝑡2 𝑖𝑓 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 ∈ (51,100) ∪ (201,250) ∪ (351,400) ∪ ⋯

𝑎𝑔𝑒𝑛𝑡3 𝑖𝑓 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 ∈ (101,150) ∪ (251,300) ∪ (401,450) ∪ ⋯

}   (6.19) 
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 Figure 6.9 Actor-Critic agents in DEMA-TD3 model for HPS. 

As the episodes occur, each agent updates its value considering the current state of 

the environment, which can be a product of changes due to multiple agents, as shown in 

Figure 6.9. These changes in the environment were introduced by all the agents present 

from the previous iterations. 

The algorithm, as shown in Figure 6.10 iterates over E episodes and trains all the 

agents present in a successive manner. After each episode, the changed agent reflects back 

to the environment, making it dynamic in nature. The cycle between choosing all three 

agents for training ensures synchronous control among them. 

Being an actor-critic approach and a successor of the DDPG model, the TD3 model 

estimates the actor gradient ′𝛻𝜃𝑖
𝜇𝐽′ as described in the DEMA-TD3 algorithm in  Figure 

6.10 for determining the coordinated control commands (𝑎𝑡+1 ) for the LFC of the HPS. 

Figure 6.10 also indicates the detailed step-by-step process of combining these aspects of 

the TD3 model to formulate the DEMA-TD3 algorithm for the LFC of the HPS. In this 

algorithm, the states are given by (6.14), and the reward is computed by (6.4). The model 

parameters are updated based on the frequency deviation received from the feedback 

network in the environment. Each agent's fundamental goal is to reduce the load frequency 

of the system. The DDPG controller can simulate this, but the MA-TD3 enhances it further 

because TD3 mitigates the over-estimation bias using delayed updates. The MA-TD3 

provides multiple individual agents in the environment, clipped double-Q learning, delayed 

updates, and actor-critic target policy regularization. 
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 Figure 6.10 Algorithm for DEMA-TD3 Control. 

     d. Comparison of DEMA-TD3 with MA-TD3 and DDPG 

Pre-training Methodology:  
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As a result of the inclusion of multi-agent criteria, which makes each agent 

dependent on the others, all agents can collectively attain local and global stability. The 

DEMA-TD3 model increases the flexibility of this modeling approach. The environment is 

updated each time the agents are trained, which enhances local and global stability. The 

training procedure follows the MA-TD3 methodology using multi-agent criteria. On the 

contrary, the environment update is carried out cyclically to ensure that only one agent is 

responsible for changing the environment. As a result, this addition has improved 

stability than MA-TD3 since MA-TD3 is more susceptible to variations because different 

agent parameters update the environment simultaneously. To address the problems of 

simultaneous agent parameter updating, DEMA-TD3 also updates the environment in a 

cyclical manner to determine the best policy for maximizing the overall reward. 

The initial step of executing the LFC architecture is to train the proposed secondary 

controllers based on the DRL model's training process. The models are trained on similar 

hyperparameters to ensure an even comparison between all the trained models. All 

experiments are carried out with early stopping condition enabled, a dropout rate of 0.1, 

and Adam optimizer is used with a ridge regularization over as Tesla V100 GPU, 64vCPUs 

p3.16xlarge Amazon Web Service (AWS) instance. The allocated memory requirements 

and desired speed are the influencing factors for selecting these training parameters. The 

values of the model hyperparameters mentioned in the DEMA-TD3 algorithm used for 

training the DRL agents and updation weights are finetuned using the grid search algorithm 

[269]. The allocated memory requirements and desired speed are the influencing factors 

for selecting these training parameters. The values of the training parameters mentioned in 

the DRL algorithms used for training the DRL agents and the updation of weights are 

presented in Table 6.1. We must constantly monitor every transition because DRL models 

are sensitive to parameter changes. Hyperparameter tuning is utilized for obtaining the 

values. For the following hyperparameters, we have utilized various techniques and 

considerations to obtain optimal values: 

i. Actor (𝜼) and Critic (𝝉) learning rates: The speed of the convergence is accelerated 

as the actor learning rate and critic learning rate increase. However, it can also make 

the model unstable. Using the grid search approach [269] for a range of typical 

values between (0 < learning rate < 0.1), we obtained the most stable values as 0.001 

learning rate for both actor and critic networks. 

ii. Batch Size (𝑵): The batch size represents the number of training simulations to 

consider to get optimized results. Using multiple trained models on the batch sizes 
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as multiples of 64 based on the processing memory size, we choose a value of 128 

training examples for our model build process for determining the batch size. 

iii. Noise-variance (𝝈): Adding noise helps remove the condition, which leads to 

overtraining the model. Nevertheless, if the noise in the simulation is high, the 

algorithm's performance degrades. Therefore, using a random search algorithm 

[269] for noise variance value (0 < 𝜎 < 1), we obtained a variance of 0.01. In 

Gaussian noise, the mean is considered to be zero, and variance is 0.01 for most 

optimal performance. 

iv. Maximum Episodes (𝑬): As the training model includes early stopping conditions, 

the number of iterations is designed such that the training process continually 

encounters the early stopping criteria. Therefore, the maximum number of episodes 

is 1000; best-performing models are trained before the stopping criteria arrive. 

The training parameters are tuned to attain optimal model performance for LFC application 

by utilizing the tuning method discussed in the pre-training methodology. It is to be noted 

that the training parameters can influence the LFC performance. For example, the expected 

return ′𝔼′  value can be maximized through episode length by observing the agent's stability 

in learning the optimal policy. The maximum number of steps, episodes, and batch size 

determines the training progression by simulating the learning environment. The learning 

rates' η' and 'τ' drive the agent towards balanced exploration and enhance the final 

performance. The training parameters improve the parameters of the actor and critic models 

and optimal policy learning capability while maximizing the final reward.  

 Table 6.1 Training Parameters For The RL Agents 

Parameters Values 

Actor Learning Rate (𝜂) 0.001 

Critic Learning Rate (𝜏) 0.001 

Batch Size (𝑁) 128 

Noise variance (𝜎) 0.1 

TD3 target policy variance (𝛾) 0.1 

Experience Buffer length (𝐷) 1000000 
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Simulation Time (secs) (𝑇) 10 

Maximum Episodes (𝐸) 1000 

Maximum steps per episode (𝐸/𝑇) 100 

 

Furthermore, a comparison indicating model training accuracy is presented between 

the proposed MA-TD3 controllers and the existing multi-agent DDPG model for 100 

episodes based on the average error deviation and plotted in Figure 6.11. The training 

process suggests that the error ′𝑒(𝑡 + 1)′ is high for the DDPG model, and also, the 

overestimation of bias is visible for DDPG. In MA-TD3, the error slightly decreased, and 

the training process was improved from the DDPG model. However, the over-estimation 

bias is not significantly reduced. On the other hand, DEMA-TD3 shows a stable pattern in 

the value of approximation error. With this comparison, it can be observed that the LFC 

control architecture design using the DEMA-TD3 model reduces the approximation error. 

Based on the superiority of the DEMA-TD3 model, secondary controllers are trained using 

the DEMA-TD3 model. Subsequently, the trained models are implemented as the 

secondary controllers for the HPS. Finally, the designed control architecture for LFC is 

tested for different disturbances. 

  

 Figure 6.11 Training Results for DDPG and MA-TD3. 

Agent Deployment:   

After completion of the offline training using the pre-training methodology, the 

agent is deployed in the online application. The agent’s performance in the online 

application can be assessed by comparing the total reward obtained from the DRL training 

process. Given that the negative LQG cost function is the LFC agent's reward function, the 

final reward for each agent is thus compared for performance assessment. The DDPG agent 

gives a reward value of -435, while the MA-TD3 agent further improves with a value of -
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330. It was observed that the DEMA-TD3 agent provides a reward value of -136, with 

superior performance. The MA-TD3 reward value is improved by 24.13% from that of the 

DDPG-trained model. The DEMA-TD3 model outperforms the other DRL-trained models 

with an improved reward value of 58.78% from the TD3-trained model. Therefore, the 

DEMA-TD3 methodology can be leveraged in multi-agent-based coordinated control 

applications for enhanced optimal policy learning.  

6.3.2 Simulation Results and Discussion 

The control architecture designed for the HPS with SHI is simulated in the 

MATLAB/Simulink environment. Proposed secondary controllers are designed through 

DEMA-TD3 agents, as shown in Figure 6.8, and the DEMA-TD3 algorithm is described in 

Figure 6.9. These MA-TD3 agents designed for different sources in the HPS coordinate 

with each other to achieve optimal LFC. The model evaluation for the classical PID control 

using the frequency response approach [115], MA-DDPG, MA-TD3, and the proposed 

DEMA-TD3 is performed using different time-domain simulation case studies:  

A. Grid Connected Mode  

B. Islanding Mode 

C. Stress Testing 

D. Wind Speed Variations 

E. Absence of Virtual Inertia Control 

F. Grid-connected and Islanding Mode without SHI 

G. Random Load Disturbance 

A. Grid-Connected Mode 

In this mode of operation, the thermal power plant is connected to the load and 

provides the grid reference for frequency. When the HPS is subjected to 0.1 pu step 

disturbances of load ′𝛥𝑃𝑑′ and wind velocity ′∆𝑤𝑣′, the frequency deviation in the HPS 

while implementing PID, DDPG, MA-TD3, and the proposed DEMA-TD3 model is 

compared through the error indices, as shown in Table 6.2. 

 Table 6.2 Error Indices for Step-Response in Grid-connected Mode 

Error Index PID Control 
DDPG 

Model 

MA-TD3 

Model 

DEMA-TD3 

Model 

ITAE 0.05821 0.0219 0.02 0.0186 

IAE 5.395e-03 3.770e-03 3.656e-03 3.142e-03 
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Error Index PID Control 
DDPG 

Model 

MA-TD3 

Model 

DEMA-TD3 

Model 

ISE 1.347e-05 1.407e-06 1.246e-06 9.686e-07 

ITSE 3.648e-05 5.207e-06 4.179e-06 3.598e-06 

RMSE 1.2851e-04 3.1387e-04 3.06741e-04 1.1774e-04 

MAE 1.4500e-03 2.3606e-04 1.0554e-04 5.0324e-05 

Settling Time(ts) 17.205 17.0183 17.0109 17.0069 

 

It is observed that the DEMA-TD3 model is more effective than the current existing 

DDPG model and the MATD3 model, as seen in comparing all the individual performance 

indices. There is an 8.6% reduction in the ITAE error index for the MA-TD3 model when 

compared with the DDPG model. Further, the reduction in the error-index ITAE for the 

proposed model is 15% from that of the DDPG model and a 68% decrease from that of 

classical PID control. This is due to the delayed policy updates and the clipped double-Q-

learning employed for the DEMA-TD3 model, which has resulted in better updates of the 

policy gradients when combined with the dynamic updates of the states of the environment. 

The step-response of frequency deviation for HPS is obtained in the grid-connected mode, 

as observed in Figure 6.12. The detected step response from the PID controller in the 

simulation model displays higher peak deviations, and the transient response requires 

further improvement for satisfactory controller performance. The implementation of the 

proposed DRL methods for stability and operational enhancement is clearly noted through 

the settling time and peak reduction. The comparison of PID, DDPG, MA-TD3, and 

DEMA-TD3 controllers demonstrates that the proposed controller model for the LFC gives 

a better performance when the HPS operates in the grid-connected model. 

 

 

Figure 6.12 Step Response of Frequency Deviation for PID, DDPG, MA-TD3 proposed DEMA-

TD3. 
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B. Islanding Mode 

The islanding mode is simulated by disconnecting the thermal power plant from the 

rest of the HPS at a sample time of five seconds. For disconnection, a simple switching 

model to represent the transition to islanding is constructed in the simulation environment.  

Here, the simulation environment for LFC is the electromechanical system integrated with 

renewables, and storage has been constructed using the per-unit model for simulating the 

frequency regulation dynamics of the system. The switch signal is generated at t = 5s using 

a clock synchronized with the simulation runtime in the environment. The sudden loss of 

power from the thermal generation causes a power imbalance in the HPS. Moreover, the 

system's inertia is reduced due to the disconnection of the synchronous generator. To assess 

the system performance, time-domain simulations are performed during islanding mode. 

The step response of frequency deviation using different controllers (PID, DDPG, MA-

TD3, and DEMA-TD3) has been plotted in Figure 6.13. Also, Figure 6.13 indicates that 

the downside of classical PID control is that it experiences proportional and derivative 

kicks. Although the PID, DDPG, and MA-TD3 models help in successful islanding 

operation, the peak deviation in frequency for the HPS is reduced when LFC is performed 

through the DEMA-TD3 model during the islanding mode of operation. The DEMA-TD3 

performance can be further analyzed using error indices given in Table 6.3. 

 

 Figure 6.13 Step-response of Islanded Mode of Operation. 

 Table 6.3 Error Indices For Step Response In Islanded Mode 

Error Index PID Control 
DDPG 

Model 
TD3 Model 

DEMA-TD3 

Model 

ITAE 0.0293 0.0270 0.0215 0.018 

IAE 0.018 8.507e-03 6.387e-03 3.127e-03 

ISE 3.67e-05 6.013e-06 3.443e-06 9.664e-07 

ITSE 4.351e-04 4.215e-05 3.963e-05 3.573e-05 
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PID controller exhibits maximum error deviation among all the tested controller 

cases for the LFC execution. For MA-TD3, the ITAE is reduced by 20% from the DDPG 

model. However, the peak frequency deviation is higher, as observed from the plot. The 

frequency error increased in the DDPG model as compared to the DEMA-TD3 model in 

the islanding mode. Therefore, the ITAE is reduced by 33.3% in the islanded mode for the 

proposed controller when compared to the DDPG. Using the proposed architecture, the 

transition from grid-connected mode to islanding mode resulted in better frequency 

regulation. Hence, the proposed DEMA-TD3 model is suggested for successful islanding 

in the HPS. 

C. Stress Testing 

In real-time scenarios, the load disturbance magnitudes can be widely varying. 

Therefore, the HPS is subject to varying load stress at different sampling instants to test the 

performance of the proposed decentralized control architecture in accounting for varying 

magnitudes of load disturbances. Moreover, the islanding operation occurs at t = 5s while 

evaluating the model performance during stress testing. The load stress magnitude ′𝛥𝑃𝑑′  is 

varied from 0.01 pu to 0.02 pu. For a 20% step load deviation, the step response for the 

HPS frequency deviation is shown in  Figure 6.14. 

 

 Figure 6.14 Stress Test for 20% load disturbance in HPS. 

The PID controller response has sharp peaks and oscillations due to the load stress, 

as shown in Figure 6.14. The DDPG model has shown an oscillatory response that can 

impact the power system's stability. MA-TD3 model has lesser oscillations than DDPG but 

a higher peak deviation than DE-MATD3. The proposed DEMA-TD3 model is resilient to 

oscillatory behavior and performs better than the DDPG model. The error indices under a 

stress test, when the disturbance occurs at a sampling instant of 0s, are shown in Table 6.4. 

PID control, DDPG, and MA-TD3 error indices correspond to the minimum stress of 0.1 

% load disturbance on the system. 
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The simulation case study depicts that the DEMA-TD3 performs to varying 

amounts of load stresses robustly. When the load stress is increased from 0.1% to 20 %, the 

increase in the ITAE value is 5.5%, indicating the proposed secondary controller's optimal 

performance. Therefore, the DEMA-TD3 model can successfully withstand increasing load 

stress on the HPS by maintaining the frequency at a nominal value. Furthermore, the DRL 

technique using DEMA-TD3 results in the coordination of the power sources to regulate 

the frequency. The error-index ITSE is robust to changes in stress due to controller action. 

 Table 6.4 Error Indices for Stress Test On The HPS 

 

D. Wind Speed Variations 

The uncertainty in the wind speed can cause a power imbalance in the HPS. Hence, 

the uncertainty of wind speed variations is simulated at different sampling times with wind 

speed variation from 8 m/s to 11m/s. The step response plot for the PID control, DDPG, 

MA-TD3, and DEMA-TD3 models when the wind energy varies at t = 10s is shown in 

Figure 6.15. PID control has sharp kicks at 10s due to the wind uncertainty, inherently 

caused by its parallel structure when robust tuning methods are not employed. The DDPG 

model and MA-TD3 model have shown large peak deviations in frequency at t = 10s when 

there is an increase in active power from the wind generation system due to the increase in 

wind velocity. The DDPG lands in local minima. As such, a robust design is not achieved. 

On the contrary, the DEMA-TD3 model has shown robustness to wind uncertainty. 

The parameter updates and the actions performed by DEMA-TD3 are free from bias due to 

the sequential dynamic environment utilized for training. This resulted in better 
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maximization of the reward, unlike the stationary environment in the MA-TD3 model. 

Moreover, the target smoothing and regularization feature resulted in error reduction. 

Therefore, the frequency deviation error is reduced due to better estimates obtained from 

the coordination of the agents achieved from the DEMA-TD3 model. The different indices 

that depict the error values for the varying wind disturbances occurring at different sample 

times are shown in Table 6.5. The PID, DDPG, and MA-TD3 models are simulated at a 

sample time of 10s. The DEMA-TD3 model is tested at different sample times of 10s and 

20s. 

 

 Figure 6.15 Step Response of the HPS under Wind Energy Variation at t=10s. 

 Table 6.5 Error Indices of Step Response under Varying Wind Disturbances 

Error 

Index 

T=10s 

PID 

Control 

T=10s 

DDPG 

Model 

T=10s 
Islanding Mode (DEMA-

TD3) 

MA-TD3 

Model 
T=10s T=20s 

ITAE 0.3468 0.170 0.148 0.086 0.086 

IAE 0.05658 8.554e-03 8.337e-03 7.229e-03 7.212e-03 

ISE 8.02e-05 5.914e-06 4.029e-06 2.849e-06 2.824e-06 

ITSE 5.32e-04 4.148e-05 4.130e-05 3.069e-05 3.045e-05  

 

It is observed that the PID control underperforms compared to other controllers. 

The DDPG model and MA-TD3 model have higher error values in comparison with the 

DEMA-TD3 model for uncertain wind disturbances. Over-estimation of Q-values from 

lack of interactions among the agents and sources causes deviation in frequency as the 

desired setpoints are not achieved through DDPG or MA-TD3. It can be observed that the 

ITAE value for the DEMA-TD3 model remained the same for different sample times, 

which shows that the DEMA-TD3 model is robust to wind speed variations. Therefore, the 
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DEMA-TD3 model effectively deals with uncertainties in the wind and load while 

maintaining the frequency near the nominal value.  

E. Absence of Virtual Inertia Control 

The reduced inertia in the HPS due to asynchronous interconnections can cause a 

high RoCoF. A VI control has been included to avoid such cases in the HPS. The scenario 

where the VI is not contributing to the system's overall inertia is simulated to test the 

performance of the proposed DEMA-TD3 controller. The plot of frequency deviation for a 

step load disturbance of 10% is shown in Figure 6.16. The classical PID controller, under 

the absence of a VI control loop, exhibits an oscillatory response and higher peak 

deviations. In this scenario, low-amplitude high-frequency oscillations in frequency 

deviation are not settled when a PID controller is employed. 

On the contrary, the MA-DDPG, MA-TD3, and DEMA-TD3 models can withstand 

the absence of virtual inertia and maintain the frequency of the HPS. However, the plot 

shows that the DDPG model has a higher peak deviation when compared to the MA-TD3 

and DEMA-TD3 controls. This indicates that the proposed model can offer better control 

in the absence of a VI control loop for the HPS. As such, the DEMA-TD3 model can 

generate appropriate command signals to the power sources and the active power deviation 

is adjusted to nullify the effect of disturbance. The MA-TD3 model’s performance is 

comparable to that of the proposed method in the absence of VI. The error indices are 

shown in Table 6.6 for the simulation case.    

 

 Figure 6.16 Step-response for 10% load disturbance in the absence of VI Control. 

 Table 6.6 Error Indices under The Absence of VI Control 

Error Index PID Control 
DDPG 

Model 

MA-TD3 

Model 

DEMA-TD3 

Model 

ITAE 0.08068 0.025 0.021 0.017 

IAE 7.61e-03 3.279e-03 3.211e-03 3.061e-03 
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Error Index PID Control 
DDPG 

Model 

MA-TD3 

Model 

DEMA-TD3 

Model 

ISE 1.128e-05 1.299e-06 1.145e-06 9.461e-07 

ITSE 7.013e-06 3.917e-06 3.771e-06 3.398e-06 

 

There is a 32% decrease in the ITAE value from DDPG to the proposed DEMA-

TD3 model, and for the MA-TD3, the ITAE reduction is 16% from DDPG. Therefore, the 

proposed DEMA-TD3 model is accurate and is more suitable for low-inertia systems. The 

results for this simulation case suggest that the DEMA-TD3 model gives a better LFC than 

the DDPG model for the HPS, even under reduced inertia conditions. 

F. Grid-Connected and Islanded Mode without SHI  

System stability can be improved using various control methodologies; providing 

additional active power regulation from fast-acting sources and storage such as DEG, FC, 

and BESS; or by timely demand response contribution. SHI is one of the crucial 

components for system stability, as better coordination can be attained through SHI 

participation [270]. The grid-connected mode is shown in Figure 6.17(a) for the case of the 

absence of SHI for a 1% step load disturbance scenario.  The oscillations exist in the grid-

connected mode, and the transient response can be enhanced with SHI participation. In the 

considered HPS model, the stability of the system when RTPS is disconnected using a 

switching model, the SHI participation is beneficial. As observed from Figure 6.17(b), the 

islanding mode is unstable without SHI. Therefore, SHI participation is necessary for 

successful islanding operation in the LFC design, and the coordinated control provided by 

DEMA-TD3. When the system is under normal operating conditions, the RTPS participates 

in frequency regulation. In this mode, stability is achieved, as observed in Figure 6.17(a), 

with or without SHI participation. The stability under the presence and absence of demand 

response was verified in [271]. Using the classical control concept to further understand 

the system's stability under RTPS disconnection, bode plots were obtained with and without 

SHI participation. The system is linearized at the instance of switching, and Figure 6.17(d) 

indicates instability (negative phase margin) when there is no demand response 

contribution in the LFC. The supplementary SHI control offers immediate active power 

regulation at the switching instant, and the frequency stability is restored, as shown in 

Figure 6.17(c). The additional active power regulated by the control command 𝛥𝑢4(𝑡 >

𝑡𝑠𝑤) from the SHI is 
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𝛥𝑃𝑆𝐻𝐼(𝑡 > 𝑡𝑠𝑤) =  𝛥𝑃𝑆𝐻𝐼(𝑡𝑠𝑤) + 𝛥𝑃𝑆𝐻𝐼(𝑡𝑠𝑤 + 1) + ⋯ + 𝛥𝑃𝑆𝐻𝐼(𝑡𝑓𝑖𝑛𝑎𝑙 − 1)𝛥𝑃𝑆𝐻𝐼(𝑡𝑓𝑖𝑛𝑎𝑙). 

    (6.20) 

where 𝑡𝑠𝑤 is the switching instant and 𝑡𝑓𝑖𝑛𝑎𝑙 is the total time of the simulation experiment. 

G. Random Load Disturbance  

Finally, the HPS subjected to a random white noise disturbance, the range of ±0 ⋅ 1 

pu magnitude mimics a continuously varying load, is simulated. The respective time-

domain plot is shown in Figure 6.18. The deviation in frequency for the proposed control 

architecture is within limits under random load conditions as well. The error indices for a 

step load and random load are shown in Table 6.7. 

  

(a) (b) 

  

(c) (d) 

Figure 6.17 Frequency stability of the system (a) Grid-Connected mode operation without SHI, (b) 

Islanding mode operation without SHI, (c) Bode plot of the HPS with SHI participation under RTPS 

disconnection, (d)   Bode plot of the HPS without SHI participation under RTPS disconnection. 
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Figure 6.18 Frequency Deviation in the HPS with DEMA-TD3 under Random Continuous Load 

disturbance. 

The lower values of error indices for this simulation scenario indicate that the 

DEMA-TD3 is robust to random load variations in the system. The various case studies 

indicate that MA-TD3 control is superior to the existing DRL solution based on DDPG for 

the LFC of the HPS. 

 Table 6.7 Error Indices for Random Load Disturbance 

Error Index for 

DEMA-TD3 
Step Load 

Random 

Load 

ITAE 0.018 0.16 

IAE 3.126e-03 4.390e-03 

ISE 9.654e-07 1.005e-06 

ITSE 3.574e-06 6.235e-06 

 

6.3.3 Comparative Analysis of the Proposed MA-TD3 Model 

The proposed MA-TD3 model for LFC is analyzed using the maximum frequency 

deviation as the comparison metric with reference to the models developed in the literature 

[206]. The performance comparison of different models proposed in the literature with that 

of the MA-TD3 is presented in Figure 6.19. The MA-TD3 model has given a peak 

frequency deviation of 0.0037 Hz [137]. The DEMA-TD3 model has the least frequency 

deviation among the various LFC techniques. Therefore, the LFC using the DEMA-TD3 

and decentralized control through cooperation from the different agents stands as the 

superior solution for frequency regulation in HPS.  

 

Figure 6.19 Comparison of Peak Frequency Deviation of various existing LFC models with the 

proposed DEMA-TD3 model. 
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6.3.4 Influence of reward function on the frequency deviation 

The reward function is designed to minimize the error in the frequency of the HPS 

when different DRL agents are trained using a fully distributed multi-agent framework. The 

key observations from the simulation test cases that encapsulate the influence of reward 

function on the peak frequency deviation are as follows: 

• It is worth noting that the minimum reward was achieved for the DEMA-TD3 agent 

during the training process. Based on the final reward value attained for each DRL-

trained agent, the minimum peak deviation in frequency is observed for the DE-

MA-TD3 model. Therefore, the negative reward function directly influences the 

minimization of the maximum value of the frequency deviation. 

• Moreover, the DEMA-TD3 model has shown robustness to wind uncertainty as the 

parameter updates and the actions performed by DEMA-TD3 are free from bias due 

to the sequential dynamic environment updates utilized for training, which resulted 

in better maximization of the reward, unlike the stationary environment in MA-TD3 

model. It can be identified that the DRL agent's environment influenced the final 

reward value. 

• The performance criteria computed for various sources can be analyzed to study the 

impact of the reward function and its final value. It is evident from the results that 

the modified LQG reward function minimized the error indices for the considered 

simulation test cases. 

6.4 Summary 

This chapter identifies coordinated and decentralized LFC using DRL methods, 

eliminating the overestimation in the DDPG model via multi-agent control as the main 

problem by proposing and implementing a DEMA-TD3-based DRL. Overestimation 

causes relatively higher values of error indices and frequency deviation. Diverse case 

studies have been considered to compare the performance of the existing classical PID 

controller and DDPG model with the proposed controller. When compared to the MA-TD3 

model, the DEMA-TD3 model has improved coordination. The ITAE is reduced by 15 

percent in grid-connected mode and by 33 percent in islanding mode by using the DEMA-

TD3 algorithm. The HPS’s frequency deviation was maintained close to zero during a grid-

connected and islanding operation mode, and the DEMA-TD3 control has shown resilience 
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to varying load stresses on the HPS and during the loss of RTPS. The addition of SHI has 

contributed to the stable islanding operation. 

Moreover, the controllers were robust to the dynamic load disturbances present in 

the system. Variability in wind generation was also effectively handled by the proposed 

method. The model outperformed the multi-agent DDPG model established for LFC in each 

of the considered scenarios. Implementing the coordinated controller designed using the 

DEMA-TD3 approach is beneficial for LFC in multi-source HPS under uncertainties and 

generation loss. 
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Chapter 7 

7 Conclusion, Contributions, and Future Scope 

7.1 Conclusion  

The sustainability and clean energy goals have focused on building a greener grid, 

which resulted in the penetration of renewable energy sources and DERs with storage 

capacity. These changes in the grid can be represented as an HPS, where the frequency 

regulation is a daunting task for the grid operators. The main challenges identified through 

an extensive literature review (Chapter 1) in controlling the frequency of the HPS are 

optimal frequency control, load and source disturbances, communication failure events, 

loss of source events, frequency regulation market transactions with secure data transfers, 

and stability of the HPS under the loss of RTPS. These challenges are systematically 

addressed in the current thesis. 

In Chapter 2, the modeling aspects of the independent sources of HPS, including 

the different controller configurations, are derived using the state-space approach, which is 

further utilized to optimize the controller parameters. Chapter 3 verifies a novel PSA-GA 

algorithm using a mathematical model, simulation, and hardware validations for improved 

controller performance. Analysis of the system dynamics using time-domain simulations 

to test the robustness of the controllers under simulated random load conditions and random 

wind speed deviation. It was demonstrated that optimizing the controller parameters using 

the proposed algorithm reduced the frequency deviation and error indices and contributed 

to efficient frequency regulation. Validation of the controller performance is carried out 

using the HIL verification. 

In Chapter 4, the algorithm’s performance under communication failure is tested, 

where the data-driven uncertainty models and an adaptive DDPC architecture are 

introduced to support the PSA-GA tuned controllers in the event of communication failure. 

Several case studies are considered for testing the efficacy of the proposed methodology 

using simulated scenarios for verifying resilient frequency regulation and performance 

assessments with and without considering the DDPC approach. It was shown that the 

DDPC architecture can withstand communication loss and maintain the frequency within 

the DFD limits. HIL validation of the proposed methodology is performed using the 
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dSPACE test bench as a simulation platform, considering the communication loss under 

uncertain scenarios. 

In Chapter 5, a significant aspect of the HPS frequency control is the loss of sources, 

which has been executed through the developed optimization algorithm. However, a 

blockchain framework is introduced for cyber-resiliency issues to provide safe and 

immutable transactions in the balancing markets. A blockchain-based network is 

established to allow aggregator nodes to participate in frequency regulation services for 

continuous LFC data monitoring, event triggering, and control command initiation. Data 

storage was enabled on blockchain for the transacted power data from the aggregator nodes 

to maintain the frequency and remuneration data for enabling secure transactions in LFC 

markets. Power system resiliency scenarios were considered for testing the proposed 

framework's efficacy in handling the resiliency events for LFC and regulation markets. It 

can be concluded that blockchain helps in achieving secure data transfers and aids in 

resilient and robust frequency control. The controller and LFC power data generation are 

verified using a real-time validation-based dSPACE hardware test bench to ensure reliable 

data for the execution of the proposed approach. 

In Chapter 6, the stability aspect considers frequency regulation when the major 

source is lost in the HPS. An advanced DRL-based framework is proposed for controller 

optimization along with various control loops for enhanced control capabilities. The 

utilization of SHI ensures stability during the loss of RTPS, which concludes that the 

participation of demand-side resources helps achieve stable operation of the HPS. 

Therefore, it was established that the DEMA-TD3 framework, SHI participation, and 

virtual inertia loop were effective for robust frequency regulation.  

7.2 Contributions of the Research 

Based on the novel methods developed for LFC implementation in HPS, the main 

contributions of the thesis are as follows: 

• To find the RoC of controller parameters, PSA is examined for 

implementing PSA-constrained GA optimization for enhancing the system's 

stability. 

• A new hybrid objective function is introduced to establish a PIPDN-based 

controller topology for frequency error reduction. 
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• The investigated HPS and the various controller topologies are leveraged 

for linearized model development to achieve faster convergence during 

controller parameter tuning.  

• The efficacy of the novel methodology for optimizing the controller 

configurations such as PI, PIDN, and PIPDN is examined. Also, the 

comparative assessments of the new objective function are performed using 

ITAE and IAE  and HIL verification. 

• Utilizing data-driven methods for uncertainty characterization in the system 

for enhancing frequency control decisions under the impact of uncertainties.  

• Introducing a DDPC methodology for adaptive architecture, uncertainty 

characterization, and a triggering mechanism for adaptive control execution 

when the system experiences different communication data loss and 

measurement data loss. 

• The DDPC improved the FR which is validated for practical feasibility 

through real-time HIL testing using dSPACE, Proposing a framework for 

LFC consisting of four layers for ensuring fail-proof frequency regulation 

under communication failure. 

• Building a comprehensive framework considering the existing aspects of the 

physical layer, control layer, and the proposed blockchain-driven data layer 

for addressing power resilience and cyber-resilience in LFC. 

• Modeling a multi-source HPS and establishing a network interconnection 

for the data monitoring in the HPS for communication among aggregator 

nodes, controllers, and physical sources. 

• Designing an optimal controller for resilient and robust performance of the 

HPS under generation loss, variations in renewable generation, and load 

fluctuations. 

• Introducing a blockchain-based framework for utilizing consensus-based 

validation for initializing and executing regulation payments for the LFC 

participants, contributing to active power regulation upon receiving the 

regulation commands.  

• Demonstrating, through a proof-of-concept, secure data transfer in the face 

of false data injection attacks using the blockchain framework for cyber-

resilient LFC operation. 
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• Demand-side resource participation using SHI is introduced in HPS for 

enhancing frequency stability. 

• A fully decentralized optimal control methodology is proposed in the control 

framework by considering multi-agent control for effective control 

decisions along with a virtual inertia loop to achieve enhanced LFC 

performance, whereas the existing DRL methods did not include VI control. 

• A coordinated control scheme is proposed for achieving cooperation among 

the multiple controllers designed for LFC by introducing a dynamic 

simulated plant environment model to account for the stochasticity in the 

state information during the agent training. 

• A novel control algorithm using DRL implementation via DEMA-TD3 

considering the hyperparameter tuning of the training parameters has been 

proposed for robust secondary frequency control. 

• The efficacy of the proposed decentralized LFC architecture for the HPS has 

been tested through various simulation case studies by comparing the 

performance of the proposed framework with conventional PID, DDPG, and 

MA-TD3 models. 

7.3 Future Scope 

In future works, modeling aspects can be improved by considering nonlinearities 

and higher-order models. Inverter-based models can be used to model the power electronic 

interfaced sources using pulse width modulation (PWM) control. Power hardware in-loop 

methods, including the inverter models, can be considered for further studies.  Blockchain 

for LFC can be implemented considering policy-level implications and smart contracts 

supported by AI-assisted mechanisms. Further, the number of features can be enhanced for 

the data-driven models, and the operational time delay can be thoroughly investigated in 

the adaptive architecture. Digital twin-assisted LC frameworks can be designed for 

embedding the controllers with real-time decision-making capabilities. 
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