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ABSTRACT

This thesis explores the role of quantum effective action in understanding the vacuum

states of a quantum field theory in curved spacetimes. The effective action is a

powerful mathematical tool in the literature that explains fundamental phenomena

like the Schwinger effect, Casimir effect, spontaneous symmetry breaking, etc. It

also plays a significant role in understanding various approaches to quantum gravity.

We begin our study on the vacuum states of the field configuration by calculating

the vacuum energy of a charged complex scalar field in the presence of a background

electromagnetic field with nontrivial boundary conditions (periodic and finite bound-

ary conditions). Understanding the vacuum energy under such nontrivial boundary

conditions allows for a deeper understanding of the Casimir effect in scenarios involv-

ing extra compact dimensions and in the presence of background fields. Furthermore,

these investigations aid in comprehending the role of boundary conditions in the

Schwinger effect as well. From an experimental perspective, this research has the

potential to facilitate the experimental realization of the Schwinger effect and the

detection of extra compact dimensions.

Later we focus on understanding observer dependence of spontaneous symmetry

breaking (SSB). SSB is fundamental, and it is nontrivial for such a phenomenon

to depend on a class of observers. By general covariance, it is clear that a set of

inertial observers would perceive the mechanism of SSB as universal. However, the

situation is more complex when we consider this phenomenon from the perspective of

a uniformly accelerating observer. In this thesis, we calculate a closed-form expression

for the quantum effective potential in the frame of a uniformly accelerated observer

for arbitrary dimensions. Using the effective potential, we show that the symmetry is

restored from an accelerated observer’s perceptive. We did this analysis for a single

scalar field with λϕ4 interactions and in the O(N) symmetric scalar field theory

using large N limit approximation.

Focusing more on SSB, we study the role of curvature on SSB. The precise model we

consider is the O(N) symmetric scalar field theory in anti-de Sitter space (AdS) in

the large N limit. We calculate the effective potential in arbitrary dimensional AdS

and conclude that SSB exists in three dimensions but not in four-dimensional AdS.
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Chapter 1

Introduction

The primary objective of theoretical physics is to establish a unified framework that

encompasses all four fundamental forces, with a special emphasis on comprehending

the quantum theory of gravity. Despite significant efforts to construct such a theory

that unifies all interactions, it remains an elusive challenge. The quantization of

gravity poses formidable difficulties, and its integration into a universal framework

is complicated by its intrinsic connection to the spacetime on which quantum field

theories are defined.

String theory [1] stands out as a promising candidate for a unified theory, representing

all fundamental forces, including gravity, as excitations of one-dimensional strings.

The mathematical elegance of the theory and its potential unification through M-

theory [1] are compelling features. However, certain challenges, such as the need for

supersymmetry for its consistency while lacking any experimental evidence, have

raised questions about its validity. Another notable approach is loop quantum gravity

[2], which utilizes the canonical quantization scheme. However, this approach fails to

consistently unify the forces of nature and also runs into problems that have plagued

earlier approaches to quantum gravity. However, both these theories predicted the

existence of extra compact spatial dimensions and an experimental realisation of the

same can give a valid test for these theories.

Tangentially, the AdS/CFT correspondence [3], also known as the holographic

theory, stands as a unique quantum gravity theory in its own right. While it
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Introduction

was discovered from our understanding of string theory, most physicists believe

that the correspondence is more general and is independent of string theory. The

correspondence posits that a quantum gravity theory in (d + 1)-dimensional anti-de

Sitter (AdS) space is equivalent to a conformal field theory (CFT) without gravity

residing on its (d)-dimensional conformal boundary. The AdS/CFT correspondence

establishes a strong-weak duality between the two theories involved. This means that

a strongly coupled theory in one description is equivalent to a weakly coupled theory

in the other description. This duality is immensely valuable since strongly coupled

quantum field theories are typically challenging to study, while weakly coupled

theories are more amenable to analysis. The conjecture offers a nonperturbative

approach to studying strongly coupled CFTs, providing novel insights into the

nature of black holes, information theory, and resolving the information paradox [4,

5]. Furthermore, it finds applications in diverse areas, including condensed matter

physics [6]. In fact, one can use this correspondence to compute features of strongly

coupled quantum field theories by mapping it to the calculations involving classical

general relativity in asymptotically anti-de Sitter spacetimes. One can also go the

other way by studying quantum gravity aspects of theories in asymptotically anti-

de Sitter spacetimes and relate it to weakly coupled quantum field theories at its

boundaries. In all these analysis AdS spacetime plays a central role in the formulation

of this correspondence.

Another spacetime which naturally emerges in the study of quantum gravity is Rindler

space. This is the spacetime as perceived by a uniformly accelerating observer in

Minkowski spacetime. Rindler space has been researched quite extensively and

offers a simpler framework that captures essential aspects of non-extremal black

hole spacetimes without the added mathematical complexities involving singularities.

This analysis falls within the broader framework of quantum field theory in curved

spacetime. This approach yields fascinating predictions, such as Hawking radiation

[7] and the Unruh effect [8, 9]. Although not a fundamental theory, using this method

in the context of black hole spacetime provides valuable insights into a quantum

theory of gravity. In the absence of a fully developed quantum theory of gravity,

this is a powerful tool [10]. Here, gravity is treated as a fixed background without

dynamics, while other quantum fields interact within this background.

2



Introduction

In summary, owing to the importance of these spacetimes in the context of quantum

gravity, in this thesis, we shall investigate fundamental phenomena such as the

Casimir effect [11] and Schwinger effect [11] in spacetimes with extra compact

dimensions, as well as spontaneous symmetry breaking (SSB) [12, 13] in both Rindler

and anti-de Sitter spacetimes. In our belief, these investigations contribute to a

deeper understanding of quantum gravity and its underlying principles.

In the thesis, we employ quantum effective action or the quantum effective potential

as an essential mathematical tool. The effective potential has been widely utilized

in the literature to investigate Casimir effect [14], Schwinger effect [15], Hawking

radiation [16], and SSB [17]. All these phenomena are closely linked to the vacuum

state of the theory, and the effective potential serves as a powerful tool for defining

and comprehending the vacuum state. Understanding vacuum states is crucial as they

provide a description of the entire particle spectrum within the theory. Within the

path integral formalism, the perturbative study of field dynamics involves expanding

the action around the vacuum field configuration. In short, our research aims to

explore the role of effective action in comprehending fundamental vacuum phenomena

in spacetimes that hold significance for understanding the quantum theory of gravity.

By utilizing the methodologies of effective action, we investigate specific issues such

as:

1. The means to detect the existence of additional compact dimensions, as postu-

lated by theories like string theory. Also, how extra compact dimensions can

modify the Casimir and Schwinger effects?

2. How to enhance the particle pair production in the Schwinger effect so that it

is observable in a laboratory.

3. Does the occurrence of a fundamental phenomenon like SSB rely on the

observer?

4. How does SSB depend on the curvature of the background spacetime?

Questions 1 and 2 are addressed in Chapter 3, where we revisit the calculations of

vacuum energy of a charged massive complex scalar field in general Rp × S1 × ... × Sk

3



Introduction

topology in the background of a constant electromagnetic gauge potential. The

investigation of vacuum energy in the compact dimensions, characterized by periodic

boundary conditions on the field, exhibits a natural connection to Casimir effect.

Subsequently, it has been established that the inclusion of additional compact dimen-

sions introduces modifications to the attractive Casimir force experienced between

parallel plates. As an experimentally validated quantum field theory prediction, a

more accurate measurement of the Casimir force can serve as a testing ground for

confirming the existence of additional compact dimensions. Once we understood the

vacuum energy of the complex scalar field in the background electric field, we can also

study the role of boundary conditions on the Schwinger pair production rate using

the same results. The analysis yields a conclusive finding that both periodic and

finite boundary conditions can amplify the pair production rate, thereby facilitating

the experimental manifestation of the Schwinger effect.

In Chapter 5, we investigate question 3 by examining the phenomenon of SSB within

the frame of a uniformly accelerated observer (also called Rindler frame). The choice

of the accelerated observer to study the observer dependence of the SSB is not

random. The thermalization theorem or the Unruh effect establishes a connection

between an accelerated frame and finite temperature field theory. Within the existing

literature, it is known that broken symmetries can be restored at certain finite

temperatures. Consequently, one can anticipate an analogous restoration of broken

symmetries within the Rindler frame. We conclude the same through proper analysis

in general dimensions, thereby further reinforcing the thermalization theorem. Hence,

the broken symmetry state observed by an inertial observer manifests as a symmetric

state for an observer accelerating beyond a critical acceleration. In our analysis

we first employ a single scalar field with ϕ4 interaction. The symmetry group of

interest is the discrete symmetry group Z2. Furthermore, we expand our analysis by

incorporating the O(N) symmetric linear sigma model, encompassing N scalar fields

(typically with N ≫ 1). In this context, the symmetry group is a continuous one.

Finally, we address question 4 in Chapter 6 with explicit calculations of SSB in AdS

space. As a constant curvature spacetime, AdS is a suitable setting to examine the

curvature dependence of SSB. Moreover, given that we possess a quantum theory of

4
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gravity in AdS facilitated by the AdS/CFT correspondence [3], this framework can

contribute to a deeper comprehension of SSB by leveraging the holographic principle.

Chapter 2 presents a concise pedagogical review of the effective action and potential.

Likewise, Chapter 4 offers an extensive analysis of SSB, rendering the thesis self-

contained.

5



Chapter 2

The Effective Action

The effective action, commonly denoted as Γ, plays a crucial role in modern theoretical

physics. It provides two equivalent descriptions: as the generating function for one-

particle irreducible (1PI) Feynman diagrams, and as a reduced-action formalism that

captures the essential physics of a system with fewer degrees of freedom. While the

effective action is generally non-local, in many cases of interest, it can be expressed as

a spacetime integral over the Lagrangian density, known as the effective Lagrangian

or effective potential.

The effective potential plays a central role in understanding various aspects of vacuum

field configurations, including the vacuum energy, vacuum polarizations, and the

nature of symmetry in the vacuum state, such as spontaneous symmetry breaking.

It serves as a fundamental mathematical tool that enables us to explore and analyze

these phenomena. In this chapter, we present the basic formulation of the effective

action and the effective potential, along with the associated mathematical tools that

will be utilized in the subsequent chapters.

In this chapter we build the basic formalism of effective action in a way similar to

that in [17, 18, 15].

6



Chapter 2. The Effective Action

2.1 As a Generating Functional

A fundamental quantity in quantum field theory is the transition amplitude (⟨0+∣0−⟩J)

between vacuum states in the presence of a source (J). Within the framework of

Euclidean path integral formalism, this can be expressed as follows

⟨0+∣0−⟩J = Z[J] = ∫ [Dϕ] e
− 1

h̵
[SE[ϕ]−J.ϕ]. (2.1)

In this section, we maintain the explicit dependence on h̵. However, it should be

noted that in later parts of the thesis, we consider h̵ = 1. In the context of statistical

field theory, the quantity Z[J] assumes the role of a partition function. It is evident

that Z[J] serves as the generating functional for the n-point Feynman diagrams (or

moments). However, by working with the connected Feynman diagrams, one can

reduce the number of diagrams involved. The generating functional for the connected

Feynman diagrams (or cumulants) is expressed as

W [J] = h̵ log (Z) . (2.2)

W [J] can be considered as the equivalent of the free energy (Helmholtz free energy)

in the realm of statistical physics. By further employing the concept of one-particle

irreducible (1PI) Feynman diagrams, it is possible to further reduce the number

of diagrams involved. 1PI diagrams are those Feynman diagrams that cannot be

separated into disconnected diagrams by cutting a single line. As the entire theory

can be reconstructed using 1PI diagrams, they are regarded as the fundamental

building blocks of the complete set of Feynman diagrams. To obtain the generating

functional for 1PI diagrams, a functional Legendre transformation is employed. This

transformation yields the following expression:

Γ [ϕ0] =W [J] − ∫ dvxJ (x)ϕ0 (x) , (2.3)

where dvx is the invariant volume element and ϕ0 represents the vacuum expectation

value of the field. The quantity Γ is referred as the effective action of the theory,

which is analogous to the Gibbs free energy in statistical physics. It is important to

7



Chapter 2. The Effective Action

note that the effective action is not a functional of the external field, but rather a

functional of the field configuration ϕ0.

By considering Γ as the generating functional of 1PI diagrams, we can expand the

effective action as follows

Γ =∑
n

1

n! ∫
dvx1 ...dvxn Γ(n) (x1...xn)ϕ0 (x1) ..ϕ0 (xn) . (2.4)

The Γ(n) terms represent the one-particle irreducible Green’s functions, also known

as proper vertices. Additionally, it is possible to expand the effective action Γ in

terms of derivatives of the field. In flat spacetime, this expansion is equivalent to

expanding around the point where all external momenta vanish. In position space,

the expansion of Γ can be written as follows:

Γ = ∫ dvx (V (ϕ0) +
1

2
Z (ϕ0) (∂µϕ0)

2
+ ...) . (2.5)

The term V (ϕ0) is known as the effective potential and it is solely a function

of ϕ0, not a functional. In the context of flat spacetime, one can interpret the

derivation of Eq. 2.5 as an expansion in terms of powers of momentum which can

be found in Section 12.3 of [18]. In many physical scenarios, ϕ0 can be treated as a

constant, representing vanishing external momentum. In such cases, all the relevant

information of the theory is encoded in the effective potential alone. The calculation

including higher-order derivative terms of ϕ0, can be found in [19]. Now, if we

compare with Eq. 2.4, it becomes evident that the n-th derivative of the effective

potential corresponds to the summation of all one-particle irreducible diagrams with

vanishing external momenta.

Some of the important features of the effective potential are listed below.

1. Effective potential as an energy density: Similar to the classical potential,

the effective potential can be interpreted as an energy density. Denoted as

V (ϕ), the effective potential represents the energy density associated with

the vacuum state characterized by the expectation value ⟨ϕ⟩ = ϕ0. A detailed

derivation of this proposition can be found in Chapter 5, Section 3.7 [17] and

8



Chapter 2. The Effective Action

Section 2.3 of [20]. The outline of the proof is as follows . Analogous to

the expansion in Eq. 2.5, the function W (J) can be expanded in terms of

derivatives of J , which, in the limit of constant J , yields W (J) ∼ TV ε(J),

where V denotes the total volume of space and T represents the total time.

Consequently, we can identify ε as the energy density of the vacuum state, as

indicated in Eq. 2.1.

⟨0+∣0−⟩J = e
− i

h̵
W ∼ e−

i
h̵
TV ε(J). (2.6)

The above result allow us to write the effective potential for constant ϕ0 and

constant source J as (using Eq. 2.3 and Eq. 2.5)

V (ϕ0) = ε (J) + Jϕ0. (2.7)

The equation mentioned above (Eq. 2.7) represents the assertion that the effec-

tive potential corresponds to the energy density of the vacuum, subject to the

constraint ⟨ϕ⟩ = ϕ0. Detailed information can be found in the aforementioned

references for a comprehensive understanding of this concept.

In other words, V (ϕ0) gives the ground state energy density with the classical

field ϕ0. One important point to note is that once we obtain the effective po-

tential, the stationary points (not necessarily minima) of the effective potential

corresponds to the vacuum field configuration. Also, if we have more than

one local minima, the one that with lowest energy corresponds to the global

minima.

2. Everywhere convex: Expressing the effective potential as a function of

ϕ0, it can be proven that it possesses convexity throughout. The proof of this

statement can be outlined as follows, utilizing equations Eq. 2.1 and Eq. 2.6.

−h̵TV
∂2ε

∂J2
= ⟨∫ dvxϕ⟩

2

− ⟨(∫ dvxϕ)
2

⟩ . (2.8)

We can observe that the variance of a distribution is consistently positive. Based

on this fact, it is possible to demonstrate that the right-hand side of equation

9



Chapter 2. The Effective Action

Eq. 2.8 is always positive. As a result, we obtain the following expression

∂2ε

∂J2
≤ 0 (2.9)

Also, from 2.7, one can show that

∂ε

∂J
= −ϕ0;

∂V

∂ϕ0

= J. (2.10)

Employing equations Eq. 2.8 and Eq. 2.10, it is possible to establish that the

second derivative of the effective potential is always positive, thereby indicating

the convexity of the effective potential. A comprehensive derivation of this

result can be found in Section 13.5 of the reference [20]. Additional relevant

sources for this topic include [21] and [22]. It should be noted that this assertion

holds true even when the classical potential is non-convex, as is often the case

in scenarios involving spontaneous symmetry breaking. The key element in

the aforementioned derivation is the positivity of the distribution’s variance,

which holds significance not only in quantum field theory but also in the

domain of statistical physics. Thus, within the context of statistical physics,

the aforementioned statement is equivalent to the positivity of the specific heat

of the system.

3. Imaginary part of the effective potential: Although one might expect

the effective potential to be a real-valued function as an energy density, explicit

calculations have revealed that it can possess an imaginary part [23]. This

occurrence arises due to the instability of the field configuration with a fixed

expectation value ⟨ϕ⟩ = ϕ0, as discussed in Section 45.1 of [24]. Consequently,

the field configuration decays, and the imaginary part of the effective potential

provides the probability of the decay rate per unit volume. Considering

V (ϕ0) =R + iI, where R represents the real part and I denotes the imaginary

part, we can deduce the following equation from Eq. 4.10.

∣ ⟨0+∣0−⟩J ∣
2
= e−2 ∫ dvxI . (2.11)

Indeed, the imaginary part of the effective potential provides insight into
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the number of particles produced per unit time and per unit volume. This

concept will be particularly useful in comprehending the Schwinger effect [15].

Furthermore, once the explicit result for the one-loop effective potential is

calculated, we can delve further into the discussion of its imaginary part.

2.2 One-loop Effective Potential

As previously mentioned, the calculation of the complete effective potential involves

an infinite summation over all Feynman diagrams, which can be computationally

challenging. To facilitate the calculation, an effective approximation method is the

loop expansion. In this expansion, the leading order corresponds to the sum of all

tree-level diagrams, representing the classical potential, while the next leading order

corresponds to the sum of all one-loop diagrams, and so on. Calculation of V and

Z upto second loop order can be seen in [22]. Now, let us explicitly calculate the

effective potential of a scalar field in flat space up to the one-loop order. We consider

the Euclidean Lagrangian in flat space.

L =
1

2
∂µϕ∂

µϕ +U (ϕ) . (2.12)

In our analysis, we consider a theory with broad generality, where U (ϕ) can represent

any polynomial function of ϕ and may also include the mass parameter. As previously

mentioned, the no loop approximation corresponds to the summation of all tree-level

diagrams, which is simply the classical potential U (ϕc). On the other hand, the sum

of all one-loop diagrams can be depicted diagrammatically as shown in Figure 2.1.

Figure 2.1: One loop diagrams

11
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Given that U (ϕ) is an arbitrary polynomial function of ϕ, each vertex in Figure

2.1 corresponds to a sum of zero (representing the possible mass parameter), one

(representing the cubic interaction), two (representing the quartic interaction), and

so on, external lines. Since the effective potential includes terms with zero external

momenta, each of these external lines carries zero external momenta. Consequently,

the value of the vertex is determined by the second derivative of the potential

evaluated at the classical field value, denoted as U ′′ (ϕ0). Hence, the sum of all

one-loop diagrams can be expressed as follows:

V1 = ∫
ddk

(2π)
d

∞

∑
n=1

1

2n
(
U ′′ (ϕ0)

k2 + iϵ
)

n

, (2.13)

where 2n is a combinatoric factor. Using this one can get

V = U (ϕ0) +
1

2 ∫
dvk log (k

2 +U ′′ (ϕ0)) = U (ϕ0) +
1

2
log (− ◻ +U ′′ (ϕ0)) . (2.14)

The operator ◻ represents the d’Alembert operator. By incorporating higher loop

corrections, the calculations of the effective potential can be improved, as demon-

strated in [25, 22]. It is worth mentioning that the results for the loop expansion of

the effective potential in curved spacetime can be derived in a similar manner, as

illustrated in Section 6.6 of [14]. In this thesis, our focus lies on problems where the

one-loop effective potential serves as a satisfactory approximation. Additionally, it

should be noted that for the case of free massive scalar field theory in four-dimensional

spacetime

V1 = ∫
d4k

(2π)
4 log (k

2 +m2
0) = ∫

dk⃗3

(2π)
3

√

k⃗2 +m2
0, (2.15)

where the last equality is true upto an infinite constant. Indeed, equation Eq. 2.15

represents the minimum eigenvalue of the Hamiltonian obtained through the canonical

formalism. In the case of free field theory, this minimum eigenvalue corresponds to

the vacuum expectation value of the zero-zero component of the energy-momentum

tensor, denoted as ⟨T 00⟩.

12
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2.3 As an Effective Theory

Now we show that the loop expansion is equivalent to a power series expansion with

respect to a constant multiple of the Lagrangian. For this purpose, introduce a

parameter h in the Lagrangian density as

L (ϕ, ∂ϕ, h) =
1

h
L (ϕ, ∂ϕ) . (2.16)

Note that in the context of Feynman diagrams

- Propagator corresponds to the inverse of the differential operator associated

with the equation of motion. Consequently, each propagator carries a factor of

h.

- Each vertex in a diagram corresponds to an interaction, so each vertex carries

a factor of h−1.

With the considerations mentioned, the power of h in a one-particle irreducible

diagram can be determined as P = I − V , where I corresponds to the number of

internal lines and V corresponds to the number of vertices. The relationship between

P and the number of loops, denoted as L, in a diagram can be established as follows.

The number of loops, L, corresponds to the number of independent momentum

integrations. Each internal line contributes to a momentum integral, while each

vertex introduces a Dirac delta function that reduces the number of independent

momentum integrations by one, except for the Dirac delta function associated with

total momentum conservation. Thus, we have L = I − V + 1, which implies P = L − 1.

Consequently, one can conclude that the loop expansion is equivalent to a power

series expansion in terms of h.

Now we rederive Eq. 2.14 as the second leading order term in the power series

expansion in h̵. Consider a scalar field ϕ with the Euclidean action

SE [ϕ] =
1

h̵ ∫
dvx (

1

2
gµν∂µϕ∂νϕ +U (ϕ)) . (2.17)
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In Eq. 2.17, ϕ represents the complete quantum field. However, we can express ϕ as

ϕ = ϕ0 +
√
h̵η, where ϕ0 is the classical field configuration or the vacuum expectation

value of ϕ, and η represents the quantum fluctuation. The quantum fluctuation η

is scaled by
√
h̵ to ensure that the expansion around ϕ0 is equivalent to a series

expansion in h̵. With this, we can expand the action around ϕ0 as follows:

SE [ϕ] =
1

h̵
S (ϕ0) +

h̵

2
S′′ (ϕ0) η

2 + .... (2.18)

In the above expression, the prime (′) denotes functional differentiation, and we

utilize the fact that S′ = 0 since ϕ0 corresponds to the classical field. By substituting

Eq. 2.18 into Eq. 2.1, we arrive at a functional Gaussian integral, assuming the

translational invariance of the measure (Dϕ→Dη). Employing the standard results

of Gaussian integrals, one can obtain the following result (for detailed calculations,

refer to Section 12.3 of [26])

Γ = Scl +
h̵

2 ∫
dvx log (− ◻ +U

′′ (ϕ0)) , (2.19)

The derived expression indeed reproduces the effective potential as given in Eq. 2.14.

Thus, we have re-derived Eq. 2.14 as the leading-order term in an expansion in h̵.

This derivation highlights the fact that the classical theory corresponds to the O(h̵0)

order term of a general quantum theory.

Additionally, it is noteworthy that one can reinterpret ϕ0 +
√
h̵η as a separation of

the field ϕ into low-energy modes (ϕ0) and high-energy modes (η). Consequently,

Eq. 2.19 provides a classical effective action for ϕ0, which encodes the quantum

information of the field. This explains the term “effective action” as it captures the

effective behavior of the field.

The concept of an effective theory can be extended to include multiple fields. Let’s

consider an interacting field theory with two dynamical fields, denoted as Q and q.

The full theory is described by the partition function, which can be written as

Z = ∫ DQ∫ Dq e−S[Q,q], (2.20)
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where S is the total Euclidean action of the theory. In many physical situations, it is

often reasonable to assume that one of the fields, let’s say Q, varies slowly compared

to the other field, denoted as q. In this case, we can construct a classical field theory

for Q by integrating out the degrees of freedom associated with q. This leads to the

formulation of an effective Euclidean action, denoted as Γ, which is given by

e−Γ = ∫ Dq e−S[Q,q]. (2.21)

Now one can take Γ as classical action and study its properties. Now we list few well

known examples where the idea of effective theory is used in the literature.

1. Electric field as background field : In the context of Quantum Electro-

dynamics (QED) with a slowly varying electric field, the electric field can be

approximated as a classical field or background field. By calculating the effec-

tive action and effective potential for this background electric field, it is found

that the effective potential exhibits an imaginary part, as discussed below Eq.

2.5. This imaginary part corresponds to the number of electron-positron pairs

produced by the electromagnetic field per unit time per unit volume, which

is known as the Schwinger effect [27]. Julian Schwinger utilized the effective

action method to provide a complete quantum field theoretical description of

this phenomenon. For more detailed calculations, you can refer to [28] for QED

and section 4.2.1 of [15] for the case of a charged scalar field.

2. Gravitational field as background field : In the absence of a fully developed

quantum theory of gravity, one can treat gravity as a background field within

which the dynamics of other fields take place. This forms the basis of studying

quantum field theory in curved spacetime. In the formalism we have established,

the metric gµν can be treated as a classical field. By starting from the Lorentzian

partition function (analogous to Eq. 4.10) and applying Schwinger’s action

principle [29], it is possible to demonstrate (as shown in section 12.2 of [26] or

section 6.1 of [10]) that
δΓL

δgµν
=

√
−g

2
⟨Tµν⟩ , (2.22)
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where ΓL is the Lorentzian effective action, Tµν is the energy momentum tensor

and g is the determinant of the Lorentzian metric. ⟨Tµν⟩ account the back-

reaction of quantum fields and including the back-reaction, one can write the

Einstein field equation as Gµν = 8πG ⟨Tµν⟩. So in a semi-classical gravity theory,

one can start defining the effective action as the one which gives the correct

⟨Tµν⟩ in Einstein’s field equation.

In terms of the one-loop effective action, Eq. 2.19 involves the calculation of the

trace of the logarithm of a differential operator. Mathematically, this calculation

corresponds to finding all the eigenvalues of the differential operator. However,

differential operators are infinite-dimensional operators, and therefore they have an

infinite number of eigenvalues.

To extract meaningful physics from these infinite quantities, we follow two steps:

regularization and renormalization. The first step, regularization, involves separating

out the infinities in a controlled manner. This is typically achieved by introducing a

regularization scheme that modifies the calculation in a way that renders the results

finite. The second step is renormalization, which involves redefining the parameters

of the theory in terms of physically measurable quantities. This is done to absorb the

infinities and ensure that the theory is consistent with experimental observations.

In the case of free scalar field theory in Minkowski spacetime, the renormalization

procedure can be simplified using a technique called normal ordering. Normal ordering

involves subtracting an infinite constant, known as the zero-point energy, from the

potential. This eliminates the infinite contributions and allows for meaningful

calculations. In flat spacetime, subtracting an infinite quantity is valid because

energy differences are physically meaningful, rather than the absolute values of

energy. However, in the context of general relativity, where energy is the source of

gravity, we cannot freely rescale the zero-point energy. The energy density associated

with the quantum vacuum can have observable gravitational effects. Therefore, in

gravitational theories, the renormalization procedure is more involved and requires

careful treatment of the vacuum energy. Also, in interacting field theories, the

renormalization procedure becomes more complex. Additional counterterms are
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introduced to absorb the remaining divergences and ensure that physical observables

are finite.

2.4 Regularization

We currently lack a theory that can fully explain the nature of the universe across all

energy scales. However, quantum field theory has proven to be a powerful framework

for understanding the behavior of elementary particles and their interactions within

a certain range of energies. It is important to note that quantum field theory is an

effective theory, which means it may break down at very high energy scales or small

length scales where new physics is expected to emerge.

Nevertheless, this limitation does not hinder our ability to explain and understand the

physics observed in our laboratories. The phenomena we observe and study typically

occur at finite energy scales that fall within the domain where quantum field theory

is applicable. Therefore, we can successfully utilize quantum field theory to describe

and explain the experimental results within this energy range. The divergences that

arise in our calculations within quantum field theory are a consequence of the fact

the theory itself is not valid in all length scale. The two type of divergences we

encounter in our calculations are

1. Ultraviolet (UV) divergence: The divergences of physical observables at

very high energy or small length scales are called UV divergences. We will

discuss how to handle these divergences in the next section.

2. Infra red (IR) divergences: The divergences occurring at low energy scales

are referred to as IR (infrared) divergences. These divergences arise due to

the absence of a upper bound on the length scale in the theory, particularly

in massless theories where modes with infinite wavelengths are possible. In

momentum space, this can be understood by observing that the propagator

diverges as the momentum goes to zero in massless theories.

In dealing with IR divergences, one common approach is to consider a massive

theory and then take the limit of the mass tending to zero at the end of
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the calculations. This effectively regularizes the IR divergences. However, in

certain cases, such as in the high-temperature expansion of a finite temperature

field theory, IR divergences can still arise. This is because the expansion is

mathematically equivalent to an expansion about a massless theory, leading to

the presence of IR divergences [30].

Below we go through some regularization techniques and in next Section 2.5 we

describes the renormalization .

2.4.1 The Heat Kernel

The heat kernel associated with an operator Ô, characterized by eigenvalues λn and

eigenfunctions ∣ψn⟩, is defined as

K̂ (s) = e−Ôs =∑
n

e−λns ∣ψn⟩ ⟨ψn∣ . (2.23)

In terms of the heat kernel one can write the one loop effective potential as (see

section 12.3.3 of [26] or section 5.3.3 of [14])

V1 = −
1

2 ∫
∞

0

ds

s
K̂ (s, x, x) , (2.24)

where K̂ (s, x, x) is the trace of the heat kernel. Calculating the heat kernel may

initially appear challenging due to the involvement of both eigenvalues and eigen-

functions of the operator. However, it becomes more manageable when we realize

that, in the position basis, it satisfies the following differential equation

dK̂ (s)

ds
= −ÔK̂ (s) , (2.25)

with the boundary condition

K̂ (x,x′, s = 0) = δ (x − x′) . (2.26)
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One can calculate the heat kernel explicitly in some simple examples [31]. However,

the significance of the heat kernel method arises from several properties, which are

summarized below:

1. The heat kernel method can be applied to any self-adjoint, elliptic, second-order

differential equation on a scalar function. Therefore, it can be used in various

contexts, including general curved spacetime and gauge theories, where the

differential operators are gauge invariant.

2. The heat kernel K̂(s, x, x′) is non-singular for all s > 0 and x ≠ x′. Additionally,

in the limit x→ x′ and s→ 0, we can obtain an asymptotic expansion of the

heat kernel given by:

K̂ (s, x, x′) ∼
1

(4πs)
d/2
e
−u(x,x′)

2s

∞

∑
n=0

an (x,x
′) sn, (2.27)

where u (x,x′) is half the square of the distance between x and x′ (also known

as Synge’s function) and an are called the Seely-DeWitt coefficients. Especially

in the coincidence limit (x→ x′)

K̂ (s, x, x) ∼
1

(4πs)
d/2

∞

∑
n=0

an (x) s
n. (2.28)

The crucial aspect of the heat kernel method is that the coefficients an(x) are

independent of the coordinate system and gauge choice. These coefficients

can be calculated explicitly using recursive relations, and the results are well-

known in the literature. A recursive method for calculating these coefficients is

provided in Chapter 9 of the book [32]. Alternatively, a non-recursive approach

for calculating these coefficients in flat space is presented in the paper [33],

which offers a comparatively easier method.

By employing Eq. 2.28 in Eq. 2.24, it is possible to regulate the one-loop effective

potential and address the issue of ultraviolet divergence in its calculation. In curved

spacetime, a different expansion of the heat kernel can be performed using curvature

as demonstrated in Chapter 13 of [26]. This alternative expansion provides additional
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information about the infrared structure of the theory, capturing its behavior at

large distances.

2.4.2 Role of the Free Propagator

As mentioned earlier in Section 2.4.1, the heat kernel method allows us to separate

out the divergent part of the effective potential. However, computing the finite

remainder using the heat kernel can be a laborious task. In many cases of interest,

we require the explicit form of the finite part of the effective potential, for which

the heat kernel method may not be as useful. Therefore, we need an alternative

regularization method that not only regulates the effective potential but also provides

the finite terms. In this section, we introduce one such method that utilizes the

propagator or the Green’s function in the relevant spacetime. This method becomes

particularly valuable when we have knowledge of the explicit form of the Green’s

function.

The Euclidean Green’s function or propagator of a free massive scalar field with

mass m in a general curved spacetime satisfies the following differential equation

(− ◻ +m2)G (x,x′) = δ (x,x′) . (2.29)

Now we can rewrite Eq. 2.14 up to a term independent of the field configuration ϕ0

using Eq. 2.29 as

V1 =
1

2
log (− ◻ +M2) =

1

2 ∫
M2

0
dm2 lim

u→0
G (u,m2) . (2.30)

One can get Eq. 2.30 directly from Eq. 2.24 upto a constant by knowing the relation

between the heat kernel and propagator as given below

G (x,x′,m2) = ∫

∞

0
ds K (s, x, x′) . (2.31)

In situations where we know the explicit form of the Green’s function, we can

perform a series expansion of G(u,m2) around u = 0. This series expansion serves as
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a regularization scheme for the effective potential and also provides the finite terms

of the effective potential.

2.5 Renormalization

In the previous section, we discussed the separation of infinite and finite terms in

the one-loop effective potential. In this section, we explore how to interpret these

infinities in a consistent manner, as initially introduced by Kenneth G. Wilson [34,

35]. The general idea is as follows:

By imposing certain requirements such as symmetry and locality, we can construct a

general Lagrangian for the theory, as shown in Eq. 2.12. Subsequently, following the

approach described in Section 2.3, we can construct an effective theory that is valid

for energies below a certain arbitrary energy scale µ. This process includes modifying

the parameters in the Lagrangian (for example, U (ϕ) in Eq. 2.12 contains terms like

anϕn for n = 2,3, . . ., where an represents the bare parameters of the theory). In a

renormalizable theory, the redefinition of these parameters address the divergences

in the effective potential. However, the redefined parameters will depend on the

arbitrary energy scale in such a way that the total effective potential or physical

observables remains independent of the chosen scale.

2.5.1 λϕ4 Theory

To conclude our discussion on regularization and renormalization, let us consider

the explicit calculation of the renormalized one-loop effective potential for a scalar

field with quartic interactions (λϕ4 theory) in both flat spacetime and a non-trivial

topology. The calculation of the one-loop effective potential for the λϕ4 theory has

been extensively studied in the literature. A textbook calculation can be found in

section 4.3 of [15] or chapter IV.3 of [36]. Here, we will reproduce these textbook

results using the explicit form of the Euclidean propagator discussed in Section 2.4.2.
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We consider the classical Euclidean Lagrangian

L =
1

2
∂µϕ∂µϕ +

1

2
m2

0ϕ
2 +

λ0
4!
ϕ4, (2.32)

where m0 and λ0 are bare parameters which does not have any physical relevance.

Quantum corrections in the classical Lagrangian introduce divergences in theory,

which we can absorb by re-defining the parameters m0 and λ0. So we introduce the

renormalized parameters m and λ such that both renormalized and bare parameters

equate at leading order in λ. Generally, one has to replace ϕ with a renormalized

field. However, as we are interested in one-loop calculations, this is fine (For a

detailed discussion of our re-normalization procedure, see [37]). In terms of these

renormalized parameters, one can write the finite Euclidean Lagrangian as

L =
1

2
∂µϕ∂µϕ +

1

2
m2ϕ2 +

λ

4!
ϕ4 +Aϕ2 +Bϕ4, (2.33)

where A and B are the counter terms which are divergent and has to be calculated

such a way that it make the complete Lagrangian as finite. The Euclidean propagator

for a massive scalar field theory in a d dimensional flat space is given as [38]

GE (u,m
2) =

1

(2π)
d/2
(
m

u
)

d−2
2

K d−2
2
(mu) , (2.34)

where u is the invariant length and Kν (z) is the modified Bessel function of second

kind. As we are calculating one loop effective potential using Eq. 2.30, series expand

the propagator about u = 0. In four dimensional spacetime (d = 4 in Eq. 2.34) the

series expansion gives

lim
u→0

GE (u,m
2) ∼

1

4π2u2
+
m2

8π2
(γE −

1

2
) +

m2

16π2
log (

m2u2

4
) +O(u), (2.35)

where γE is the Euler’s constant. One can use the above expansion in Eq. 2.30 to

obtain the regularized one loop effective potential as

V un
eff =

1

2
m2ϕ2 +

λ

4!
ϕ4 +

λϕ2

64π2
M2 (log (

M2

4µ2
) −

3

2
− 2γE) +

λϕ2

16π2u

+
m4

64π2
log (

M2

4µ2
) +

λϕ2

64π2
M2 log (u2µ2) +Aϕ2 +Bϕ4

(2.36)
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where M2 = m2/2 + λϕ2/2, we introduced an arbitrary energy scale µ in order to

separate out the divergent parts. Equation 2.36 is the regularized one loop effective

potential. One can find the value of A and B using any physically observable

parameters, we use the physical mass (mp) and physical constant (λp) for this

purpose. So the renormalization condition is

∂2Veff
∂ϕ2

∣
ϕ→0
=m2

p (2.37a)

∂4Veff
∂ϕ4

∣
ϕ→0
= λp. (2.37b)

The physical mass of the theory defined using Eq. 2.37a is equivalent to the poles

of the complete propagator of the theory, which can be rigorously justified using

Källen–Lehmann spectral representation [39, 40]. Similarly, one can experimentally

validate the the coupling constant using collision experiments or four point function

through S matrix which is equivalent to the definition of λp in Eq. 2.37b. Note that

in some situations (for example for mass less theory, see chapter IV.3 of [36]), one

can’t take ϕ → 0 limit as the derivative blows up as ϕ → 0. In such situation we

introduce an arbitrary energy scale and define the parameters accordingly. Using

Eq. 2.37 in Eq. 2.36 including the classical contributions gives

m2
p =m

2 + 2A +
λ

8π2u2
+
m2λ

16π2
(log (uµ) + log (

m

2µ
) −

1

2
+ γE)

λp = λ + 24B +
3λ2

16π2
(log (uµ) + log (

m

2µ
) + γE)

(2.38)

Choose the counter terms A and B such that it subtracts the divergent term as

u→ 0 (minimal subtraction) which gives

m2
p =m

2 +
m2λ

16π2
(log (

m

2µ
) −

1

2
+ γE)

λp = λ +
3λ2

16π2
(log (

m

2µ
) + γE) .

(2.39)

Note that the the physical parameters are independent of the arbitrary energy scale,

so the renormalized parameters are dependent on the arbitrary energy scale µ. The

dependence renormalized parameters on the µ can be shown be in terms of differential
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equation as (from Eq. 2.39)

dm2

dµ
= γ (m) =

λpm2

16π2µ
+O (λ2)

dλ

dµ
= β (λ) =

3λ2p
16π2µ

+O (λ3) ,

(2.40)

where we have used the fact that λ = λp + O(λ2). Equation 2.40 are called the

renormalization group (RG) equation. The γ (m) and β (λ) tells how the parameters

scale according to the energy scale µ. In terms of these renormalized parameters,

one can write full renormalized effective potential as

V =
1

2
m2ϕ2 +

λ

4!
ϕ4 +

1

64π2
(m2 +

λ

2
ϕ2)

2

log
1

2µ
(m2 +

λ

2
ϕ2) , (2.41)

where we rescale the arbitrary energy scale µ. Now that we have the explicit form

of the one-loop effective potential (Eq. 2.41), it is important to highlight some key

points about the effective potential:

1. It seems that the effective potential is dependent on the arbitrary energy scale

µ. But one can show that
dV

dµ
= 0, (2.42)

using Eq. 2.40. Similarly one can find the RG equation by demanding Eq. 2.42.

2. The one-loop effective potential becomes complex when m2 + λ
2ϕ

2 ≤ 0, as

discussed in Section 2.1. In such cases, it is necessary to perform a field shift

and calculate the effective potential by considering both the minima of the

potential. This ensures a consistent treatment of the quantum corrections and

provides a complete description of the system.

2.5.2 The Non Trivial Topology of S1 ×Rd

In this section, we focus on the calculation of the renormalized effective potential for

a free massive scalar field in the non trivial S1 ×Rd topology. In the next chapter,

Chapter 2, we generalize this calculation to the case of Sk ×Rp topology. In the case

of a non-trivial topology, the renormalized effective potential can be obtained by
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subtracting the contribution of the trivial topology. In our calculation, we employ

the heat kernel method to evaluate the effective potential, as described in Eq. 2.24.

For a free massive scalar field, the heat kernel in the coincident limit on the S1 ×Rd−1

manifold is given by

K(s, x, x) =
1

(4πs)
d
2

∞

∑
n=−∞

e−
n2L2

4s e−sm
2

, (2.43)

where s is the proper-time parameter, m is the mass of the scalar field, and L is the

circumference of the S1 direction. In this form, it is evident that n = 0 corresponds

to the standard flat space heat kernel, and we renormalize the effective potential by

subtracting the contribution from Rd. In terms of propagators (see Eq. 2.31), this

corresponds to subtracting the flat space propagator. This subtraction yields the

residual heat kernel as

K(s, x, x) =
2

(4πs)
d
2

∞

∑
n=1

e−
n2L2

4s e−sm
2

. (2.44)

This residual heat kernel captures the contributions arising from the non-trivial

topology, allowing us to study the effects of the topology on the renormalized

effective potential.

This renormalization works due to the fact that the divergent contributions of the

of the non trivial topology is same as the trivial. From Eq. 2.24, one can write the

corresponding one-loop effective potential as

V = −2(
m

2πL
)

d
2 ∞

∑
n=1

1

n
d
2

K d
2
(mnL) , (2.45)

where Kν(z) is the modified Bessel function of second kind. Equation 2.45 gives the

closed form expression for the complete one loop effective potential. Taking d = 4,

mL → 0 limit in Eq. 2.45 gives the vacuum energy of a massless scalar field with

periodic boundary condition as

V = −
π2

90L2
. (2.46)

Similarly one can calculate the vacuum energy in any arbitrary dimensions. We

generalize these results in the next chapter.
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Chapter 3

The Vacuum Energy

This chapter is based on our work on vacuum energy in compact spacetime [31]. In

this study, we investigated the vacuum energy of a complex scalar field coupled to a

constant electromagnetic gauge field in a general Rp ×S1 × ...×S1
k (Rp ×S1

k) topology.

Additionally, we examined the Casimir force experienced by a parallel plate system

situated in the topology, and we investigated the Schwinger pair production rate in

this setting as well for completeness. Through our analysis, we aimed to gain insights

into the effects of compact spacetime topologies on these physical phenomena.

The pursuit of unifying interactions has prompted the exploration of the concept

of additional compact dimensions. This concept was initially introduced by Kaluza

[41, 42, 43], and subsequently further developed in more promising endeavors such

as supergravity and string theory. It is worth noting that the presence of boundary

conditions and external background fields gives rise to phenomena such as the Casimir

effect [11] and Schwinger effect [27]. By considering compact dimensions as periodic

boundary conditions, the investigation of physics within extra compact dimensions

becomes intertwined with the study of the Casimir effect [44, 45]. Consequently,

comprehending fundamental phenomena like the Casimir effect and Schwinger effect

within the framework of extra compact dimensions can serve as a platform for

experimentally verifying the existence of these additional compact dimensions.

As discussed in Section 2.1, the effective potential provides the vacuum energy of the

theory with constant field configuration. In Section 3.1, we compute the one-loop
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Chapter 3. The vacuum energy

effective potential for a complex scalar field coupled to a constant gauge potential

in the topology of Rp × S1
k , utilizing Eq. 2.24. This one-loop effective potential

enables us to determine the vacuum energy density of the complex scalar field within

the specified topology. Subsequently, we employ the vacuum energy to calculate

the Casimir force between parallel plates in this topology. Section 3.2 extends our

analysis by introducing a coupling between the complex scalar field and constant

electric and magnetic fields. Strong electric field results in the Schwinger effect,

further explored within the context of finite and periodic boundary conditions in

Section 3.3.

3.1 Constant Gauge Potential

The Euclidean Lagrangian density of complex scalar field of mass m and charge q

minimally coupled to a vector potential Aµ is

L = (Dµϕ)
∗
(Dµϕ) +m

2ϕ2, (3.1)

where Dµ = ∂µ − iqAµ is the gauge derivative. In our study, we adopt the Lorentz

gauge condition (∂µAµ = 0). The k spatial dimensions are compactified within the

range 0 < xj < Lj, where the index j spans from 1 to k. Given the non-trivial

topology, the gauge potentials associated with the compact dimensions cannot be

gauge-transformed away. Consequently, we treat the background gauge field as

Aµ =
k

∑
j=1

ajδ
µ
j , (3.2)

where aj ’s are real. We required the Lagrangian to be single valued, which constrain

the Lagrangian to satisfy the boundary condition as

L(x⃗, x1, x2, ..., xj +Lj, ..., xk) = L(x⃗, x1, x2, ..., xk), (3.3)

where x⃗ is the vector in the p dimensional flat Minkowski space and j can vary from

1 to k. The condition on the Lagrangian, where it involves the scalar field ϕ in

the combination ϕϕ† or its higher powers, can be satisfied if the field exhibits the
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Chapter 3. The vacuum energy

following generic properties:

ϕ(x⃗, x1, x2, ..., xj +Lj, ..., xk) = e
2πiδjϕ(x⃗, x1, x2, ..., xk), (3.4)

where all δj’s are just real as of now undetermined phases. In this work we choose

δ = 0, corresponds to the periodic boundary condition.

In this section, our objective is to compute the one-loop effective potential utilizing

Eq. 2.24. To achieve this, it is necessary to calculate the heat kernel as a solution to

the differential Eq. 2.25, while considering the boundary condition given by Eq. 2.26.

To solve the differential equation (Eq. 2.25), we employ the Fourier transform method.

In a general d-dimensional space (d = p + k), the Fourier transform of the heat kernel

can be expressed as follows

K(s;x,x′)∝ ⨋ eipx k̃(s, p, ...), (3.5)

where the summation is over the Fourier modes along the compact dimensions as

the heat kernel satisfies the condition

K(s; x⃗, xj +Lj; x⃗
′, x′j′ +Lj′) =K(s ∶ x⃗, xj; x⃗

′, x′j′). (3.6)

One can understand the above equation (Eq. 3.6) as follows, under any transformation,

heat kernel must behave as ϕ (x)ϕ∗ (x′) (see Eq. 2.23), and ϕ satisfy Eq. 3.4, which

constrain the heat kernel by Eq. 3.6. In terms of the Fourier transform along compact

dimensions, one can express the heat kernel as

K(τ ;x,x′) =
1

Vk
∑

n1...nk

[kn1,...,nk
exp(

2πin1

L1

(x1 − x
′
1)) ... exp(

2πink

Lk

(xk − x
′
k))] ,

(3.7)

where Vk = L1L2...Lk. Now we proceed to calculate the heat kernel for our problem.

The heat equation (Eq. 2.25) can be written as

(−DµD
µ +m2)K(s;x,x′) = −

∂

∂s
K (s;x,x′) . (3.8)
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Using Eq. 3.2 we can expand Eq. 3.8 as

( −∇2
p − ∂1∂1 − ∂2∂2... − ∂k∂k + 2iqa1∂1 + 2iqa2∂2... + 2iqak∂k

+ q2a21 + q
2a22... + q

2a2k +M
2)K = −

∂

∂s
K,

(3.9)

where ∇2
p is the Laplacian in flat p dimensions. Using the Fourier trasform (Eq. 3.7)

we can re write Eq. 3.9 as

(−∇2
p +M

2
n1n2...nk

)kn1n2...nk
= −

∂

∂s
kn1n2...nk

, (3.10)

where kn1n2...nk
is the Fourier coefficients along compact dimensions and

M2
n1...nk

= (
2π

L1

)
2

(n1 −
qaL1

2π
)

2

+ (
2π

L2

)
2

(n2 −
qa2L2

2π
)

2

...

+ (
2π

Lk

)
2

(nk −
qakLk

2π
)

2

+m2.

(3.11)

But Eq. 3.10 is the heat kernel equation in flat p dimensional Euclidean space which

is known in the literature [32]. Which concludes

kn1n2...nk
=

1

(4πs)
p/2

exp(−
1

4s
∣x⃗ − x⃗′∣

2
−M2

n1n2...nk
s) . (3.12)

We also require kn1...nk
to satisfy the following boundary condition as

lim
s→0

kn1n2...nk
(s, x⃗, x⃗′) = δp(x⃗ − x⃗′). (3.13)

Now as a heat kernel K (s, x, x′) should satisfy similar boundary condition. From

(Eq. 3.7) one can show that

lim
s→0

K(s, x, x′) = δp(x⃗ − x⃗′) ∑
n1...nk

1

Vk
exp(

2πin1

L1

(x1 − x
′
1)) ... exp(

2πink

Lk

(xk − x
′
k))

= δp(x⃗ − x⃗′)δ(x1 − x
′
1)...δ(xk − x

′
k).

(3.14)
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Thus we have the complete heat kernel. Now using Eq. 3.7 and Eq. 3.12 in Eq. 2.24

we can rewrite the one loop correction to the effective potential as

V1 = ∫
∞

0

ds

s

1

Vk
∑

n1...nk

1

(4πs)
p/2

exp (−M2
n1...nk

s) ,

=
1

Vk

1

(4π)
p
2

Γ(
−p

2
) ∑
nk...n1

(M2
n1...nk

)
p
2 .

(3.15)

One can do the summation in Eq. 3.15 using

∞

∑
n=−∞

((n + β)2 + α2)
−λ
=
√
π
Γ (λ − 1

2
)

Γ(λ)
α(1−2λ) + 4 sin(λπ)fλ(α,β), (3.16)

where

fλ (α,β) =R{∫
∞

α

(x2 − α2)
−λ

exp (2πx + 2πiβ) − 1
} . (3.17)

Here, R represents the real part of the complex-valued function. The summation in

(Eq. 3.16) converges only when R(λ) > 1
2 . However, the right-hand side expression is

valid for all values of λ. For k compact spatial dimensions, we have k summations in

Eq. 3.15, and each summation converges. Consequently, we have k! ways to perform

this summation, which considers the symmetry related to the exchange of compact

dimensions (Li ↔ Lj). The ‘sym’ in the equations below represents this symmetry

consideration. It’s important to note that the Euclidean effective potential (V ) is

related to the Lorentzian effective potential (VL) as V = −VL. Therefore, the effective

potential for a complex scalar field in a d-dimensional spacetime with k compact

spatial dimensions is given by

VL = V0 −
4πh̵

Vk

k

∑
s=1

⎡
⎢
⎢
⎢
⎢
⎣

(π)
d−s
2

Γ (d−s2 + 1)
(

1

Lk+1−s

)
d−s

(
k−s

∏
r=1

Lr)∑
∗

l

f
s−d
2

(αk
k+1−s, βk+1−s)

⎤
⎥
⎥
⎥
⎥
⎦

+ sym,

(3.18)

where ∑
∗
is a multiple summation and we have to sum over all l ∈ (nk, ..., nk+2−s)∣s ≥ 2

in the range (−∞,∞), Vk = L1...Lk and

αk
k+1−s = Lk+1−s

⎛

⎝
L−2k+2−s (nk+2−s + β2)

2
... +L−2k (nk + βk)

2
+ (

m

2π
)
2 ⎞

⎠

1
2

, (3.19)

where βk = −qakLk/2π. To get Eq. 3.18 we used the mirror identity Γ(−x) sin(−πx) =

π/xΓ(x). In Eq. 3.18, V0 is an infinite quantity corresponds to the contribution
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from non compact spacetime. As we discussed at the end of Section 2.5, one can

renormalize the effective potential by subtracting the contribution from the non

compact spacetime, which corresponds to the trivial topology (Rd). Then the

renormalized one loop correction to the effective potential is given as

Vren = −
4πh̵

Vk

k

∑
s=1

⎡
⎢
⎢
⎢
⎢
⎣

(π)
d−s
2

Γ (d−s2 + 1)
(

1

Lk+1−s

)
d−s

(
k−s

∏
r=1

Lr)∑
∗

l

f
s−d
2

(αk
k+1−s, βk+1−s)

⎤
⎥
⎥
⎥
⎥
⎦

+ sym,

(3.20)

3.1.1 Vacuum Energy

The effective potential corresponds to the energy density of the vacuum state (see

Section 2.1). But in our system we have an arbitrary parameter corresponds to

the constant guage potential. One can choose the guage such that it minimises the

effective potential and can call the corresponding effective potential as the vacuum

energy of the field. The minimum of the effective potential (Eq. 3.20) is at the

maximum of fλ (α,β). The a dependence of effective potential is through β. So,

we are interested in finding the maximum of fλ(α,β) with respect to β when λ < 0.

From Eq. 3.17

∂f

∂β
= 2πI {∫

∞

α
dx
(x2 − α2)−λe2πx+2πiβ

(e2πx+2πiβ − 1)
2 } , (3.21)

where I gives the imaginary part of the function inside. But,

e2πx+2πiβ

(e2πx+2iπβ − 1)
2 =

1

(2 cos(2πβ) cosh(2πx) − 2) + 2i sin(2πβ) sinh(2πx)
.

Which gives,

∂f

∂β
= −4π∫

∞

α
dx (x2 − α2)

−λ sin(2πβ) sinh(2πx)

(2 cos(2πβ) cosh(2πx) − 2)
2
+ (2 sin(2πβ) sinh(2πx))

2 .

(3.22)

Then,

∂f

∂β
= 0 ∀ β =

n

2
where n ∈ Z. (3.23)
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Checking the second derivative at these critical points,

∂2f

∂β2
∣
β=n

2

= 4π∫
∞

α
dx (x2 − α2)

−λ 2π(−1)n+1

(2 cos(2πβ) cosh(2πx) − 2)
2
+ (2 sin(2πβ) sinh(2πx))

2 .

Which gives

Sign(
∂2f

∂β2
) = (−1)n+1 = (−1)2β+1 ∀ n ∈ Z.

From this we can conclude that f is maximum when β = n and is minimum when

β = n + 1
2 . In our calculations we choose n = 0. Then, the renormalized effective

potential obtains its minimum value when a = 0. Then changing the integration

variable in Eq. 3.17 to y = x/α and using the modified Bessel function of second kind

Kν(z) we can write

fλ(α,0) =
Γ(1 − λ)

π1−λαλ− 1
2

∞

∑
n=1

nλ− 1
2Kλ− 1

2
(2πnα). (3.24)

Using Eq. 3.24 the vacuum energy of a massive complex scalar field is

Vmin = −
4h̵

Ld

k

∑
s=1

∑
∗

l

∞

∑
n=1

(Nk
k+1−s)

d−s+1
2 n

s−d−1
2 K d−s+1

2
(2πnNk

k+1−s) + sym, (3.25)

where

Nk
k+1−s =

√

n2
k+2−1 + ... + n

2
k+1−s + (mL/2π)

2
. (3.26)

In obtaining Eq. 3.26 we assume L1 ≈ L2... ≈ Lk ≈ L. Now we do some explicit

calculation of vacuum energy of a complex scalar field using Eq. 3.18 in some specific

spacetimes.
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1 + 3 dimensional flat spacetime with two compact dimensions

The zero point energy of the massless complex scalar field in R(1,1) ×S1 ×S1 topology

is given by Eq. 3.25 with p = 2 and k = 2. This leads to

Vmin = −4h̵π
2
⎛

⎝

4f− 3
2
(0,0)

3L4
2

+
∑n2

f−1 (Nn2 ,0)

L2L3
1

⎞

⎠
+ sym,

= −2h̵π2
⎛

⎝

4f− 3
2
(0,0)

3L4
2

+
4f− 3

2
(0,0)

3L4
1

+
∑n2

f−1 (Nn2 ,0)

L2L3
1

+
∑n1

f−1(Nn1 ,0)

L1L3
2

⎞

⎠
,

= −
h̵

10
(1.2(

1

L4
1

+
1

L4
2

) + 1.96(
1

L2L3
1

+
1

L1L3
2

)) . (3.27)

In this expression, if we take the limit of either L1 or L2 approaching infinity and

consider the symmetry factor appropriately, we will recover the standard result for

one compact space dimension i.e., Vmin = −h̵π2/45L4 [14]

1 + 5 dimensional flat spacetime with two compact dimensions

As we are interested in four-dimensional Minkowski spacetime, consider the topology

R(1,3) × S1 × S1. This consists of four flat dimensions (p = 4) and two compact

dimensions (k = 2). Then, using equation (Eq. 3.25), the zero-point energy of a

massless complex scalar field in this topology is as follows:

Vmin = −2h̵π
3
⎛

⎝

16f−5
2
(0,0)

15L6
2

+
∑n2

f−2 (Nn2 ,0)

L5
1L2

⎞

⎠
+ sym,

= −h̵π3
⎛

⎝

16f−5
2
(0,0)

15L6
2

+
16f−5

2
(0,0)

15L6
1

+
∑n2

f−2 (Nn2 ,0)

L5
1L2

+
∑n1

f−2 (Nn1 ,0)

L5
2L1

⎞

⎠
,

= −
h̵

100
(6.6(

1

L6
2

+
1

L6
1

) + 8.5(
1

L2L5
1

+
1

L1L5
2

)) . (3.28)
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1 + 6 dimensional flat spacetime with three compact dimensions

Now include one more extra compact dimension (i.e., p = 4 and k = 3). Then the

vacuum energy of the massless complex scalar field is,

Vmin = −4h̵π
3
⎛

⎝

πf−3(0,0)

6L7
3

+
8∑n3

f− 5
2
(Nn3 ,0)

15L6
2L3

+
∑n2∑n3

f−2 (Nn2 ,n3
,0)

2L5
1L2L3

⎞

⎠
+ sym,

= −
h̵

10
(
1.21

L7
3

+
1.45

L6
2L3

+
1.83

L5
1L2L3

) + sym. (3.29)

These results are accurate when all compact spatial dimensions are of same size. But

summations in renormalised effective potential (Eq. 3.20) converges very fast and

the leading order itself is a good approximation and it simplifies the calculations

drastically. So in the next section, we take this approximation and also check the

validity of the approximation by comparing it with the results above.

3.1.2 Approximation Scheme for the Vacuum Energy

The function zλKλ(z) rapidly decays as z ranges from 0 to ∞. This enables us to

approximate the sum ∑
∗
using its leading order term as follows

Vmin ≈ −
4h̵

Vk

k

∑
s=1

(
∏

k−s
r=1 Lr

Ld−s
k+1−s

)(
mLk+1−s

2π
)

d−s+1
2 ∞

∑
n=1

n
s−d−1

2 K d−s+1
2
(nmLk+1−s) + sym.

(3.30)

The above equation (Eq. 3.30), simplifies the effective potential considerably. This

approximation is valid even for compact dimensions of difference size. Also using the

result limz→0 zνKν(z) = 2ν−1Γ(ν) we can use Eq. (3.30) for calculating the vacuum

energy of massless scalar field in the same spacetime. Now we can check the validity

of our approximation by calculation the vacuum energy of the massless complex scalar

field using Eq. 3.30 and comparing the results with results with the one calculated

using Eq. 3.25. The vacuum energy of the massless complex scalar field in different

spacetime are as follows
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p = 2, k = 2

Vmin ≈ −2h̵π
2 (

1

180
(
1

L4
1

+
1

L4
2

) +
ζ(3)

4π3
(

1

L2L3
1

+
1

L1L3
2

)) ,

= −
h̵

10
(1.2(

1

L4
1

+
1

L4
2

) + 1.91(
1

L2L3
1

+
1

L1L3
2

)) .

(3.31)

p = 4, k = 2

Vmin ≈ −h̵π
3 (

2

945
(
1

L6
2

+
1

L6
1

) +
3ζ(5)

4π5
(

1

L2L5
1

+
1

L1L5
2

)) ,

= −
h̵

100
(6.6(

1

L6
2

+
1

L6
1

) + 7.9(
1

L2L5
1

+
1

L1L5
2

)) .

(3.32)

p = 4, k = 3

Vmin ≈ −4h̵(
15ζ(7)

16π3L7
3

+
π3

945L6
2L3

+
3ζ(5)

8π5L5
1L2L3

) + sym,

= −
h̵

10
(
1.21

L7
3

+
1.30

L6
2L3

+
1.57

L5
1L2L3

) + sym.

(3.33)

Now we have the vacuum energy of a massless complex scalar field obtained using the

exact formula Eq. 3.25 (see 3.1.1) and using the approximation Eq. 3.30 in different

spacetime. Comparing these results, one can conclude that for masseless scalar

field, the approximation (Eq. 3.30) gives a relative error of 1.3%, 3.9% and 9% for

R(1,1)×S1×S1, R(1,3)×S1×S1 and R(1,3)×S1×S1×S1, respectively. The relative error

increases as we increase the number of dimensions but we can consider higher order

corrections in the same way. In this work we are only interested in the qualitative

nature of the Casimir force between parallel plates placed in different spacetime

having extra compact dimension. So for our purpose we will use the approximate

result (Eq. 3.30) as our formula for the vacuum energy of the complex scalar field.

3.1.3 Casimir Force on a Piston

Armed with an approximate expression for Vmin (Eq. 3.30), we now turn our attention

to calculate the Casimir force on a piston (or two parallel plates) placed in various

compact spacetime dimensions. The energy density ρ of a complex scalar field
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satisfying Dirichlet boundary condition (i.e., the field vanishing at boundaries x = 0

and x = L) can also inferred from our results by replacing L by 2L (where L ∈

{L1, ..., Lk})[14, 46] as

ρ(L) = Vmin(2L). (3.34)

For calculating the Casimir force on a piston we consider the finite box boundary

condition as shown in Figure 3.1 and eventually take the limits l1, l2, l3 →∞. The

importance of taking the finite box boundary condition is well discussed in the

literature [44, 45, 47, 48, 49].

Figure 3.1: A Rectangular piston

The Casimir force has contributions from both regions I and II as

F

Vk
= −

d

dL
(Lρ1) −

d

dL
((l1 −L)ρ2) ∣

l1→∞
, (3.35)

where ρ1 and ρ2 are the energy densities in the region I and II respectively. Considering

d = 4 and k = 1 in Eq. 3.30 and using Eq. 3.34 and Eq. 3.35, the Casimir force acting

on the piston is

F = −
m2

4L2π2

∞

∑
n=1

(
2mL

n
K1(ξ) +

3

n2
K2(ξ)) , (3.36)

Here, ξ = 2mnL. This expression represents the force per unit area acting on the

piston due to vacuum fluctuations of a massive complex scalar field in a Minkowski

spacetime. It’s worth noting that this result (Eq. 3.36) for the Casimir force is well

known in the literature [46]. In the limit as m approaches zero, it converges to the

standard result initially derived by H. B. G. Casimir [11]. Furthermore, we can extend

this analysis to calculate the force per unit area on the piston when extra compact

dimensions are present. Each additional compact dimension introduces corrections
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to Eq. 3.36, as illustrated in Figure 3.2 for a massless scalar field. These corrections

vanish in the limit as R, the size of the extra compact dimension, approaches both

zero and infinity. The limit R → 0 corresponds to the case of compact dimensions

collapsing to a point, while R →∞ yields results consistent with a d-dimensional flat

topology [50]. A similar examination of corrections to the Casimir force from extra

compact dimensions in a massless scalar field is presented in [45].

Figure 3.2: Corrections in the Casimir force due extra compact dimensions for a
massless scalar field. C (µ) is the correction and µ = L/R.

The Casimir force between the parallel plates due a massive complex scalar field

depends on different parameters like the mass of the field, number of extra compact

dimensions, separation between the parallel plates and the size of extra compact

dimensions. The role of each parameter in the Casimir force can be analysed by

plotting the Casimir force as a function of these parameters.
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-0.04

0
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No extra compact dimension

One extra compact dimension

Two extra compact dimension

1

Figure 3.3: Shows the variation of Casimir force with respect to Lm, where we
assume R = L.

From Figure 3.3 we can conclude few features of the Casimir force as follows

1. The Casimir force is always attractive, irrespective of mass, separation between

the plates, number of extra compact dimensions and the size of extra compact

dimensions.

2. Having extra compact dimensions reduces the attractive Casimir force. This

effect can be attributed to the following phenomenon: in the presence of extra

dimensions, vacuum fluctuations have the opportunity to escape into these

additional dimensions. Consequently, there are fewer modes available within

the confined space between the plates. This hypothesis gains support from

the observation that the Casimir force per unit area per unit length of extra

compact dimension is maximized when the size of the extra compact dimension

is smaller than the separation between the plates. The impact of these extra

compact dimensions is most pronounced when Lm < 1.

3. As a function of mass, Casimir force is maximal for a massless scalar field and

decreases as mass increases. Casimir force vanishes to zero as m→∞ as there

are no more quantum fluctuations in this limit.

Experimentally, the Casimir effect has been observed for a parallel plate separation

of the order 10−7m [51, 52]. For the Higgs field (mass ≈ 10−25Kg [53]), using the above

values, the Casimir force per unit area on the piston without any extra compact
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dimension is −4.318× 10−8N . Now from phenomenological models, if we consider the

upper bound on the size of one extra compact dimension as R ≤ 10 nm [54], we see

from our Eq. (3.59) that the presence of one extra compact dimension almost halves

the intensity of attraction to −2.262 × 10−8N . These qualitative numbers can in fact

provide us with a test bed to probe for existence of compact extra dimensions.

3.2 Constant Magnetic and Electric Fields

A non trivial boundary condition disturbs the vacuum state of field and this leads

to the Casimir force and all the effect of extra compact dimensions on the Casmir

force is also due to the same. Any general interactions of the field can also disturb

the vacuum configurations and leads to non trivial effects, one simple example of

this is the presence of an external background field. In this section we study both

the effect of constant background elctro magnetic field and the non trivial boundary

conditions in the vacuum state of a massive complex scalar field.

We start our study by considering a complex scalar field in 1+3 spacetime where one

of the spatial dimension is compact under the identification x1 ∼ x1 +L. We choose

the guage potential Aµ = (0, a, 0,Bx2) such that there exist a constant magnetic field

B along the compact dimension along with a constant guage potential a. One can

solve Eq. 2.25 with Eq. 2.26 by expanding K(s;x,x′) in Fourier modes.The Fourier

transform of the heat kernel is given as

K(s;x,x′) =
1

L1
∑
n

exp(
2πi

L
n(x1 − x

′
1))∫

dω

2π

dp3
2π

eiω(τ−τ
′)eip3(x3−x

′

3)k̃(s, x2). (3.37)

Where we choose periodic boundary condition for the field. In this context, one write

the heat equation (Eq. 2.25) as

∂22 k̃ − (ω
2 + (

2πn

L1

)
2

+ p23 − 2qa(
2πn

L1

) − 2qBx2p3 + q
2a2 + q2B2x22 +m

2) k̃ =
∂k̃

∂s
.

(3.38)

By completing the square we can re write this as

∂2k̃

∂y2
− q2B2y2k̃ − (M2

n + ω
2) =

∂k̃

∂s
, (3.39)
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where qBy = p3 − qBx2 and L2
1M

2
n = L

2
1m

2 + 4π2 (2πn − qaL1)
2
. Equation 3.39 is a

standard differential equation satisfied by the Mehler kernel. So,

k̃(s; y, y′) = A exp(
− coth(2qBs)

2
qB(y2 + y′2) + qB coseh(2qBs)yy′ − (M2

n + ω
2) s) ,

(3.40)

where A = [qB/ (2π sinh(2qBs))]
1
2 . Using Eq. 3.40 in Eq. 3.37 gives the complete

heat kernel in the coincidence limit (x→ x′) as

K(s;x,x) =
qBA

L1

∞

∑
n=−∞

e−M
2
ns
∫

dω

2π

dy

2π
e−ω

2s exp (− tanh(qBs)qBy2) , (3.41)

where we have used dp3 = qBdy. We can do the integration in Eq. 3.41 using the

standard Gaussian integral as

K(s;x,x) =
qB

8π
3
2L

1
√
s sinh(qBs)

∞

∑
n=−∞

e−M
2
ns. (3.42)

Substituting Eq. 3.42 in Eq. 2.24 gives the Euclidean effective potential as

V =
1

8π3/2L

∞

∑
n=−∞

∫

∞

0

ds

s5/2
qBs

sinh(qBs)
e−M

2
ns. (3.43)

The above expression for the effective potential (Eq. 3.43) diverges a s→ 0. So one

has to implement a proper renormalization procedure. One can series expand the

effective potential (Eq. 3.43) around s = 0 as

V ≈ v0 +
1

8π3/2L1
∑
n

(
B2q2

6 ∫

∞

0

ds
√
s
e−M

2
ns) + Vfinite, (3.44)

where v0 corresponds to terms independent of B and Vfinite corresponds to the finite

contribution to the effective potential. We can subtract out the v0 term as it only

rescale the energy. Then the remaining diverging term is proportional to B2, which

can be renormalized by re defining the parameters in the bare Lagrangian Eq. 3.1

(see Section 2.5). For a weak magnetic field the renormalized Euclidean effective

potential is

Vren ≈
7q4B4

2880π3/2L
∑
n
∫

∞

0
dss3/2e−M

2
ns +O(B6), (3.45)
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where we neglect the higher order terms in B. The s integral in Eq. 3.45 is the

integral representation Gamma function, so we can re write this as

Vren =
7q4B4

3840Lπ
(
L

2π
)

5 ∞

∑
n=−∞

(
m2L2

4π2
+ (n −

qaL

2π
)

2

)

− 5
2

+O(B6). (3.46)

Using Eq. 3.16 we can do the summation which leads to,

Vren =
7B4q4

5760m4π2
+
7B4L4q4

30720π6
fλ(α,β) +O(B

6), (3.47)

where α = mL1/2π , β = −qaL1/2π and λ = 5/2. The first term in Vren is the

contribution from 1 + 3 flat spacetime [15]. Similar to the above Section 3.1, we

choose the constant gauge potential a = 0, such that it minimizes the Lorentzian

effective potential. Then one can re-express the vacuum energy of the massive

complex scalar field using Eq. 3.24 as

Vmin = −
7B4q4

5760m4π2
(1 +m2L2

∞

∑
n=1

n2K2(ξ/2)) +O(B
6). (3.48)

As we have an idea on the effect of weak background magnetic field on the effective

potential, now we can add the higher order corrections in the magnetic field. The

higher order corrections can be expressed in the form form a converging summation

as

Vmin =
∞

∑
k=2

(22k − 2)

16π2(2k)!
m4−4kB2kq2kB2kΓ(2k − 2)

+
∞

∑
k=2

⎛

⎝

(1 − 21−2k)

π2(2k)!
(
L

m
)

2k−2

B2kq2kB2k

∞

∑
n=1

n2k−2K2k−2(ξ/2)
⎞

⎠
,

(3.49)

where Bk is the (k)th Bernoulli number. This matches with the results in [55].

First part of the equation is the contribution from flat space topology [56]. Now we

calculate the Casimir force acting on piston as discussed in Section 3.1.3. Substituting

Eq. 3.48 in Eq. 3.34 and using Eq. 3.35 , the Casimir force per unit area on the

piston is

F =
7B4q4L2

5760m4π2

∞

∑
n=1

(3ξ2K2(ξ) −
1

2
ξ3 [K1(ξ) +K3(ξ)] ). (3.50)

where ξ = 2mnL. Similarly, we can calculate the Casimir force per unit area on the

piston with extra compact spatial dimensions, and the results are as shown in the

Figure 3.4.
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Figure 3.4: Shows the qualitative behaviour of Casimir force in the presence
of weak external field and extra compact dimensions. On the y-axis A can be
electric field E parallel to the plates or magnetic field B perpendicular to the
plates. In this plot we assume that the size of extra compact dimension is same as

the seperation between the plates.

We study the effect of constant magnetic field perpendicular to the piston on the

Casimir force. Now we focus on the effect of constant electric field parallel to the

piston on the Casimir force. Due the duality between the electric and magnetic

field [57, 58], one can simply repeat the calculations as above and the results are

qualitatively same.

Consider the guage potential Aµ = (0, a, 0,Eτ), a constant guage potential along the

compact dimension and a constant electric field along the non compact dimension.

Proceeding the same way as discussed above, one can get the effective potential as

VL = −
1

8π3/2L1

∞

∑
n=−∞

∫

∞

0

ds

s5/2
qEs

sin(qEs)
e−M

2
ns. (3.51)

Following the calculations as in the case of constant magnetic field, for a weak electric

field E → 0, one can calculate the Casimir force per unit area on the piston as

F =
7E4q4

5760m4π2

∞

∑
n=1

(3ξ2K2(ξ) −
1

2
ξ3 [K1(ξ) +K3(ξ)] ). (3.52)

Similar calculations can be extended to d dimensional spacetime with k compact

spatial dimensions. For the case of one extra compact dimension, the corresponding
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Casimir force is

F = −
7E4q4

11520π2m4

∞

∑
n=1

(ξ2K2(ξ) +
Rm
√
2π
ξ

3
2K 3

2
(ξ) − ξ3K1(ξ) −

Rm
√
2π
ξ

5
2K 1

2
(ξ)), (3.53)

where ξ = 2mnL as usual and R is the size of extra compact dimension. A plot

showing the influence of extra compact dimension on the Casimir force is given in

Figure 3.4.

That completes our study on the effect of constant background fields on the Casimir

force between the parallel plates in the presence of extra compact spatial dimensions.

The conclusions are as follows

1. Large magnetic field can inhibit the Casimir force between two parallel plates

[55]. We can inferred this conclusion from Eq. 3.43, as B → ∞ the effective

potential vanishes. On the contrary, a similar analysis on the electric field

(Eq. 3.51) concludes that a large electric field enhances the Casimir force.

2. In the weak field approximation, both the electric field and magnetic field

enhances the Casimir force (see Eq. 3.52 and Eq. 3.50).

3. From the Figure 3.4, we can see that there is repulsive contribution to the

Casimir force for Lm < 1. For the case of a weak magnetic field, this repulsive

contribution is noted in [59].

4. Also, Figure 3.4 illustrates that even though the extra compact dimension

does not change the qualitative behavior of Casimir force, it does decrease its

magnitude.

3.3 The Schwinger Effect

The Schwinger effect is the creation of particle-antiparticle pairs from the vacuum in

the presence of a strong electric field. It was proposed by physicist Julian Schwinger

in 1951 [27] and has important implications in quantum field theory, high-energy

physics, cosmology, and quantum gravity. The effect occurs when a strong electric
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field separates virtual particles before they annihilate, resulting in the production

of real particles. It is difficult to observe experimentally but has been studied

using ultra-intense lasers and strong electric fields in condensed matter systems.

Understanding Schwinger effect in the presence of parallel plates can help in the

experimental realization of it. Here, we calculate the Schwinger pair production rate

from the imaginary part of the effective potential as follows. The complete effective

potential is give by Eq. 3.51 and we have to do the integral

I = ∫
∞

0

ds

s5/2
qEs

sin(qEs)
e−M

2
ns. (3.54)

The integrand has branch points at s = 0 and s = ∞ and has singularities at

sk = kπ/qE as shown in Figure 3.5. But the singularity at s = 0 is already considered

for calculating Casimir energy or the real part of the effective potential. Then the

contribution to the imaginary part of the effective potential might be coming from

other poles. One can do the integral in Eq. 3.54 using Cauchy’s theorem.

I(s)

R(s)
c2 c3 cn

c̃3
...

...

c̃2 c̃nc̃1

c1

1

Figure 3.5: The contour of s integration for Eq. 3.54

Take

f(z) =
1

z5/2
qEz

sin(qEz)
e−M

2
nz, (3.55)

and using Cauchy’s theorem we can say that

∮ f(z)dz = 2πi
∞

∑
k=1

(−1)k (
qE

kπ
)

3
2

e−
M2

nkπ

qE , (3.56)
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along the closed contour given in the Figure 3.5. From this we can write

∮ f(z)dz = ∫
c1
f(z)dz + ∫

s2−ϵ

s1+ϵ
f(z)dz + ... + ∫

sn+ϵ

−∞
+∫

c̃n
f(z)dz + ...∫

ϵ

s1−ϵ
f(z)dz.

In the fourth quadrant or in the lower half plane the function will have an extra 2π

phase which gives

f(z) =
e−iπ

z5/2
qEz

sin(qEz)
e−M

2
nz = −f(z). (3.57)

Then in the limit ϵ→ 0 this gives

∮ f(z)dz = 2I + ∫
c1
f(z)dz + ∫

c2
f(z)dz + ... + ∫

cn
f(z)dz + ∫

c̃n
f(z) + ...∫

c̃1
f(z)dz.

Then for integration over c1, take z = s1 + ϵeiθ

∫
c1
f(z)dz = ∫

0

π

iϵeiθdθ

s
5/2
1

qEs1
cos(qEs1)ϵeiθ

e−M
2
ns1 ,

= −i
πqEe−M

2
ns1

s
3
2
1 cos(qEs1)

.

The integration over c1 and c̃1 add up to zero, similarly for all other c′ns. From this

we can write

I = πi
∞

∑
k=1

(−1)k (
qE

kπ
)

3
2

e−
M2

nkπ

qE . (3.58)

Now we can use this result of the integration in the effective potential (Eq. 3.51).

The summation over n in Eq. 3.51 can be done in terms of elliptic theta function,

which gives the imaginary part of the effective potential as

Im(V ) =
∞

∑
k=1

(−1)k+1

2(2π)3
e
−kπm2

qE (
qE

k
)

2

Θ(3,0, e
−qEL2

4kπ ) , (3.59)

where Θ is the elliptic theta function. Here we used M2
n = m

2 + 4π2

L2 (n −
qaL
2π
)
2
and

also took a = 0 as that choice minimizes the potential. The imaginary part of the

effective potential gives the number of pairs of charged scalar particles created by

the electric field per unit time per unit volume. The functional behaviour of elliptic

theta is given Figure 3.6
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Figure 3.6: Shows the variation of imaginary part of the effective potential with
respect to the separation between the parallel plates.

In the limit L →∞, Θ → 1 and gives the standard Schwinger effect result in 3 + 1

dimension [28, 27]. Presence of extra compact dimensions, along with the piston, add

the number of Θ functions corresponding to each extra compact dimensions. But if

we consider extra compact dimensions without the piston, i.e., Aµ = (0,0,0,Eτ, a).

The corresponding effective potential is

V = −
qE

16π2R

∞

∑
n=−∞

∫

∞

0

ds

s2
e−M

2
ns

sin(qEs)
, (3.60)

where R is the size of extra compact dimension and M2
n = (

2πn
R − qa)

2 +m2. There

are no branch cuts in the integral and using the results in [28, 15]

Im(V ) =
∞

∑
k=1

(−1)k+1

4(2π)3
e
−kπm2

qE (
qE

k
)

5
2

Θ(3,0, e
−qER2

4kπ ) . (3.61)

The limit R → ∞ gives the Schwinger effect in 1 + 4 flat dimension. In the same

way, one can calculate the pair production in a higher compact and non-compact

dimensions, with or without pistons.

The conclusions are as follows

1. The functional behaviour of the theta function (Figure 3.6) explicitly shows

that the presence of parallel plates and the extra compact dimensions can

enhance the particle pair production
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The Schwinger effect still awaits experimental confirmation in the laboratory as it

requires extreme electric fields. Our results in this work can help in the experimental

realization of the Schwinger effect via enhancement mechanism. Also, once we have

an experimental realization of the Schwinger effect, we can use it to put constraints

on the extra compact dimensions.
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Spontaneous Symmetry Breaking

The foundation of constructing fundamental theories relies on the concept of symmetry.

It is believed that nature favors symmetry, and all fundamental laws exhibit symmetry.

However, the world we observe is not entirely symmetrical. The central notion to

comprehend an asymmetrical world by employing symmetrical laws is the concept of

spontaneous symmetry breaking (SSB).

In this chapter, we delve into the topic of spontaneous symmetry breaking (SSB) in

real scalar fields, employing the methodologies of effective potential. Our approach

aligns with standard textbooks such as [24, 17, 36], capturing the essence of SSB in

a comprehensive manner. While discussing SSB, we draw connections to condensed

matter physics as explored in [60, 18]. However, we do not venture into the SSB of

gauge theories or its renormalization, which holds significance in the renormalization

of weak interactions.

In Section 4.1, we provide a definition of SSB and present a list of its key features.

Moving on to Section 4.2, we outline the explicit calculation of SSB in the context of

discrete symmetry, utilizing both classical and quantum theories. Subsequently, in

Section 4.3, we extend the quantum analysis of SSB to continuous symmetry and

highlight notable features such as the Goldstone theorem and the Coleman-Mermin-

Wagner theorem. Section 4.4 focuses on discussing the O(N) symmetric theory,

utilizing the 1/N expansion (Large-N expansion) and demonstrating SSB within this
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framework. Finally, we conclude this chapter by exploring symmetry restoration at

finite temperature in Section 4.5.

4.1 Introduction

Definition : The phenomenon in which a state of a system (usually the vacuum

state or in statistical physics a thermal equilibrium state) is not symmetric under the

symmetry transformation of the theory (means symmetry of the action, Lagrangian

or Hamiltonian.)

It is not difficult to see spontaneous symmetry breaking in nature, all the material

around us are made up of atoms that obey rotationally symmetric laws, but most

objects around us are not rotationally symmetric (see section 19. 1 of [61]). One can

see similar intuitive examples of spontaneous symmetry breaking like bending of thin

rod in section 8.1 of [62] and a little man in a ferromagnet in section 43.1 of [24].

Some general features of spontaneous symmetry breaking are listed below

1. Degenerate Vacuum : A theory exhibiting SSB is invariably connected with

the degeneracy of vacuum states. As mentioned earlier (refer to Section 2.2),

the vacuum expectation value of the field is determined by the minimum

of the effective potential. Let’s consider a symmetry transformation T of

the theory, implying that the effective potential remains invariant under the

action of T . However, in the presence of SSB, we find that Tϕ0 ≠ ϕ0, where

ϕ0 represents the vacuum expectation value of the field. Simultaneously, we

have V (ϕ0) = V (Tϕ0), which implies the existence of degenerate vacua. This

statement reflects the fact that different vacuum states, related to one another

through the symmetry transformation T , possess the same energy given by the

value of the effective potential. So, symmetry is not broken, but is hidden by

the choice of the vacuum state.

2. Non-zero ϕ0 : An essential and mathematically useful characteristic of

SSB is the existence of a non-zero vacuum expectation value of the field
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(ϕ0 ≠ 0). This signifies that when ϕ0 ≠ 0, SSB is present in the system. In the

context of SSB for continuous symmetry, we can establish the validity of the

aforementioned statement through the following proof: Consider a continuous

symmetry transformation T of the theory. According to Noether’s theorem,

for every continuous symmetry, a conserved current Jµ and an associated

conserved charge Q can be constructed. This conserved charge also serves as

the generator of the symmetry. Then the statement of SSB, that vacuum field

configuration ϕ0 varies under the symmetry transformation can be written as

δϕ0 = i [Q,ϕ0] δω ≠ 0, (4.1)

where ω is the parameter of the symmetry transformation. Then taking vacuum

expectation value of Eq. 4.1 gives

⟨0∣Qϕ0 ∣0⟩ − ⟨0∣ϕ0Q ∣0⟩ ≠ 0. (4.2)

So one can conclude that Q ∣0⟩ ≠ 0 means ⟨ϕ0⟩ ≠ 0, which completes the proof.

3. Phase transition : Spontaneous symmetry breaking is associated with phase

transitions occurring in a system, specifically the transition from a symmetric

state to a broken symmetry state. At these phase transitions, a parameter, often

referred to as an order parameter, reaches its critical value. This critical value

separates different phases of matter, such as magnetic phases, superconducting

phases, and others.

The concept of SSB provides a powerful framework for understanding and

studying these phases of matter. It allows us to analyze the behavior of systems

where the symmetries are broken in certain phases, leading to the emergence of

unique properties and phenomena. For instance, in a ferromagnetic material,

the alignment of magnetic spins breaks the rotational symmetry, resulting in a

magnetized state. The transition from a paramagnetic phase to a ferromagnetic

phase can be explained using the ideas of SSB. Similarly, in superconductors,

the breaking of gauge symmetry leads to the expulsion of magnetic fields and

the emergence of zero resistance. The study of this phase transition and the
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properties of superconducting materials can be approached through the lens of

SSB.

Now let’s dive into the mathematical details of SSB using some examples and study

them using the one-loop effective potential.

4.2 Discrete Symmetry Breaking: The Z2 group

We start with the spontaneous breaking of a discrete symmetry Z2. Consider the

Lagrangian

L =
1

2
(∂ϕ)2 +

m2

2
ϕ2 +

λ

4!
ϕ4 =

1

2
(∂ϕ)2 +U (ϕ) . (4.3)

Few points to note about the system are

1. The Lagrangian density of the theory exhibits an invariance under the trans-

formation ϕ → −ϕ, indicating that the symmetry group associated with the

theory is the cyclic group Z2.

2. The variables denoted by m2 and λ represent parameters within the theory,

capable of assuming any value. However, when considering a bounded system,

it is necessary for λ to have a positive value.

4.2.1 Classical Field Theory

In order to investigate SSB in classical theory, it is necessary to determine the ground

state field configuration. If the ground state field configuration changes under the

symmetry group Z2, it indicates the presence of SSB. To determine the ground state

of the theory, we can note that the Euclidean Lagrangian density is equivalent to the

Hamiltonian density or the energy density of the system. Consequently, the terms

involving derivatives of the field ϕ in the Lagrangian contribute positively to the

energy density. Therefore, the state of minimum energy or the ground state should

be described by a constant field configuration denoted as ϕ0, which corresponds

to the minimum of the potential U(ϕ). It is important to note that the potential
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may possess multiple minima depending on the U (ϕ). At this point, two distinct

situations arise depending on the sign of m2.

In the case of m2 ≥ 0, the potential is concave everywhere, and the minimum occurs

at ϕ0 = 0, as depicted in Figure 4.1a. The field configuration at the ground state (ϕ0)

exhibits symmetry under Z2, indicating the absence of SSB.

In contrast, for m2 < 0, the situation is significantly different. As illustrated in

Figure 4.1b, the potential has two minima at ϕ0 = ±v, while ϕ0 = 0 becomes a local

maximum. The value of v can be explicitly calculated by determining the minimum

of the potential, yielding v2 = 6m2/λ. The system has the freedom to choose either

±v as its ground state, and one can’t distinguish between these ground states through

any physical experiments.

ϕ

�(ϕ)

(a) For m2
≥ 0. Minimum of

the potential is at ϕ = 0

-
ϕ

�(ϕ)

(b) For m2
< 0. Minimum of the

potential is at ϕ = ±v

Figure 4.1: Potential U (ϕ) as a function of ϕ.

Whichever value (±v) the system selects as its ground state, it no longer possesses

symmetry under Z2, indicating SSB. However, it is important to note that each

ground state configuration is related to the other through a Z2 transformation. Hence,

one can argue that the symmetry is hidden due to the random choice of vacuum

state.

An intriguing question arises regarding the critical point m2 = 0. In classical theory,

there is no SSB for m2 = 0. However, one may wonder if quantum fluctuations can

induce symmetry breaking. The answer is affirmative, and we will delve into the

details in next section.
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4.2.2 SSB in Quantum Field Theory

Spontaneous Symmetry Breaking gives rise to degenerate vacuum states. In a

quantum theory, within a finite volume, these distinct vacuum states can communicate

through the phenomenon of tunneling. However, in the infinite volume limit, the

energy barrier between different vacuum states becomes infinitely high, preventing

any tunneling from occurring. As a result, in quantum field theory, all of these

degenerate vacuum states are considered distinct and equally probable. One can

choose to construct perturbation theory around any of these vacuum states.

As discussed in Section 2.1, in quantum field theory, the effective potential takes the

role of classical potential. So, one has to find the vacuum state configuration of the

field as the minimum of the effective potential (here, we consider the one-loop effective

potential). The one-loop correction to the effective potential for the Lagrangian

Eq. 4.3 is already calculated in Section 2.5 (Eq. 2.41). Including the classical term,

the effective potential upto one loop correction is

V =
1

2
m2ϕ2 +

λ

4!
ϕ4 +

1

64π4
(m2 +

λ

2
ϕ2)

2

log
1

2µ
(m2 +

λ

2
ϕ2) . (4.4)

ϕ

�(ϕ)

(a) For m2
< 0. The dotted part

corresponds to the imaginary part.

ϕ

�(ϕ)

(b) For m2
= 0. Plotted for very

low values of ϕ.

Figure 4.2: Potential U (ϕ) as a function of ϕ.

The vacuum field configuration is the minimum of the effective potential. Looking

at Eq. 4.4 one can conclude the following
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1. For m2 > 0, the qualitative behaviour of V (ϕ) remains the same as Figure 4.1a.

So, there is a unique minimum at ϕ = 0 which is symmetric under Z2, so there

is no spontaneous symmetry breaking upto one loop order

2. In the case of m2 < 0, it is observed that the effective potential becomes complex

when m2 > λ
2ϕ

2. As explained in Section 2.2, the presence of the complex part

in the potential indicates the system’s instability. Consequently, ϕ = 0 cannot

be a possible minimum. By referring to Figure 4.2a, it can be observed that

the minimum of the effective potential occurs at ϕ ≠ 0. Thus, the vacuum field

configuration is not symmetric under Z2, indicating the presence of SSB.

(a) Word of caution : The effective potential appears not convex between v

and −v. However, this is a consequence of directly substituting m2 → −m2

in equation Eq. 4.4, which is not a justified procedure. When m2 → −m2,

the potential exhibits two minima, and in the saddle point approximation

(as seen in equation Eq. 2.19), it is necessary to consider a sum over both

minima. By taking this into account, it becomes evident that between v

and −v, the vacuum expectation value of the field does not coincide with

the classical field, and the classical field serves as a mean field. This leads

to the appearance of the complex part in the effective potential, and it

can be demonstrated that the effective potential is indeed convex in all

regions. Additionally, for the calculations we are performing, which are

centered around the minima, the use of equation Eq. 4.4 can be justified.

For more comprehensive explanations and detailed arguments, please refer

to section 13.6 of [20].

3. We now turn our attention to the question of whether quantum fluctuations

can induce symmetry breaking for m2 = 0. To investigate this, we calculate the

one-loop effective potential by substituting m2 → 0 in Eq. 4.4. The resulting

plot of the one-loop effective potential for the massless theory is depicted in

Figure 4.2b. From this analysis, it can be concluded that quantum fluctuations

indeed break the symmetry. For a more comprehensive understanding, please

refer to chapter 4.3 of the book by A. Zee [36].
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4.3 Continuous Symmetry Breaking: The O(2)

group

In this section, we explore the spontaneous symmetry breaking of a continuous

symmetry, specifically the rotational symmetry (belonging to the O(2) group) within

the configuration space of the field. We examine a Lagrangian similar to Eq. 4.3,

which can be expressed as follows:

L =
1

2
(∂Φ)2 +

m2

2
Φ2 +

λ

4!
Φ4 =

1

2
(∂Φ)2 +U (Φ) , (4.5)

where Φ = (ϕ1, ϕ2) represents a pair of scalar fields. Alternatively, one can also

perform the same analysis using a single complex scalar field. We can replicate all

the analyses outlined in Section 4.2, with Figure 4.2 being replaced by its higher-

dimensional counterparts, as depicted in Figure 4.3. This leads us to the same

conclusions, indicating that the system exhibits SSB for m2 ≤ 0, while no SSB occurs

for m2 > 0.

Figure 4.3: Plot of classical potential in Eq. 4.5 with m2
< 0.

But there are some crucial difference between spontaneous symmetry breaking of

discrete symmetry and continuous symmetry which are listed below

1. Infinitely degenerate vacuum: There exist infinitely degenerated vacuum

associated with every continuous symmetry breaking. The SSB of a continuous

symmetry means

S ∣0⟩ = eiθQ ∣0⟩ ≠ ∣0⟩ , (4.6)
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where S is the symmetry transformation and Q is the generator or the conserved

current associated with the symmetry. As Q represents a conserved charge,

it follows that [Q,H] = 0, which implies [S,H] = 0 as well. Utilizing these

relations, one can observe that the state S ∣0⟩ also possesses the same energy

(zero) as the vacuum state ∣0⟩. In simple terms, this implies that if a continuous

symmetry is broken, there exists a curve of points through the vacuum state

that corresponds to the symmetry transformation of the vacuum, all having

the same energy. This argument holds true for any continuous symmetry, as

explained in chapter 5 of the book by Coleman [17]. In the case of the O(2)

symmetry, all the degenerate vacuum states lie on valley of the Mexican hat

potential (see Figure 4.3).

2. Goldstone’s theorem: Goldstone’s theorem, first established by Goldstone,

Salam, and Weinberg [63, 12, 13], asserts that in the presence of SSB of a

continuous symmetry, massless fields called Nambu-Goldstone bosons emerge.

This statement can be proven in various ways. One approach involves demon-

strating that the mass matrix associated with SSB has zero eigenvalues, as

illustrated in section 11.1 of [39]. Alternatively, the theorem can be established

by employing the techniques of quantum field theory, as explained in chapter

4.1 of [36]. Additionally, a proof utilizing group theory and geometry can be

found in section 5.2.3 of [17] or section 43.3 of [24]. These proofs establish the

emergence of Nambu-Goldstone bosons in the context of SSB.

Explicitly considering the O(2) Lagrangian given by equation Eq. 4.5, one

can investigate SSB by imposing the transformation ϕ1 = ϕ1 + v and ϕ2 = ϕ2.

Substituting these expressions into equation Eq. 4.5, it becomes apparent that

ϕ2 remains massless, providing a concrete illustration of Goldstone’s theorem.

3. Coleman-Mermin-Wagner theorem : The theorem postulates that the

spontaneous breaking of a continuous symmetry in spacetime dimension d ≤ 2

is implausible [64, 65, 66]. The derivation of the theorem, closely following [66],

can be outlined as follows. The Goldstone theorem ensures the presence of

massless bosons as a characteristic feature of SSB of a continuous symmetry.

Consequently, the coincident limit of the propagator for the massless boson in
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d-dimensional spacetime is

G (x,x) = lim
x→0
∫

ddk

(2π)
d

eikx

k2
. (4.7)

The ultraviolet divergence in this propagator can be effectively addressed

by utilizing previously discussed renormalization techniques. However, it is

important to note that in cases where d ≤ 2, an infrared divergence emerges

(k → 0), which cannot be reconciled through renormalization procedures,

resulting in the absence of massless bosons in d ≤ 2 and, consequently, the

spontaneous breaking of continuous symmetry. For a comprehensive explanation

of this argument, please refer to section IV.1 of [36].

4.4 O(N) Symmetric Theory in the large N limit

In Section 4.3 we investigated a system that possesses an O(2) symmetry. To extend

this symmetry group to O(N), we consider the same Lagrangian as in equation

Eq. 4.5, but now with ϕ = (ϕ1, ..., ϕN). Perturbative studies of these models can be

approached in two distinct ways: the ordinary expansion in λ for a fixed value of

N , or the perturbation in 1/N for a fixed value of λ. In this section, our focus lies

on the latter approach, the 1/N perturbation, as it encompasses a more nonlinear

structure of the theory. We aim to understand the phenomenon of SSB in the context

of O(N)-symmetric theory, utilizing the large N approximation.

A thorough and comprehensive analysis of the 1/N expansion for O(N)-symmetric

theories can be found in chapter 8 of [17], which serves as our reference for this

discussion. Since we utilize the results of this section in the study of SSB in Anti

de Sitter space, we consider the theory in a general curved spacetime with minimal

coupling to gravity. In the 1/N perturbation approach, it is advantageous to introduce

a scaled coupling constant, denoted by λ, which yields the following action:

S = ∫ dvx (
1

2
gµν∂µϕ∂νϕ +

1

2
m2

0ϕ
2 +

λ0
8N
(ϕ2)

2
) , (4.8)
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where m0, λ0 are bare parameters of the theory and dvx = ddx
√
g is the d dimensional

invariant measure. One can introduce an axillary field to the theory which gives the

new action as

S [ϕ,σ] = ∫ dvx (
1

2
ϕ (−∇2 + σ)ϕ −

N

2λ0
σ2 +

Nm2
0

λ0
σ) , (4.9)

where ∇2 is the d dimensional Laplacian. Then the partition function for the theory

is

Z = ∫ DϕDσe−S[ϕ,σ]. (4.10)

One can do the path integral over σ in Eq. 4.10 as

Z = ∫ Dϕ∫ Dσe
− ∫ dvx(−

1
2
ϕ∇2ϕ+ 1

2
σ(ϕ2+

Nm2
0

λ0
)− N

2λ0
σ2)

= ∫ Dϕ e− ∫ dvx(−
1
2
ϕ∇2ϕ)

∫ Dσe
− ∫ dx

√
g( 1

2
σ(ϕ2+

Nm2
0

λ0
)− N

2λ0
σ2)

= ∫ Dϕ exp{−∫ dvx (−
1

2
ϕ∇2ϕ +

1

2
m2

0ϕ
2 +

λ0
8N

ϕ4)}.

(4.11)

Which is the same partition function with Eq. 4.8 as our action. By utilizing the

result of a Gaussian integral and neglecting terms that are independent of the fields,

we arrive at the final line of equation Eq. 4.11. This implies that the introduction of

the auxiliary field σ does not alter the partition function of the actual theory. In

other words, both the actions presented in equations Eq. 4.8 and Eq. 4.9 describe the

same dynamics. Considering equation Eq. 4.9 as our action simplifies our calculations,

enabling us to construct an effective theory for σ by integrating out the ϕ field.

Z = ∫ Dσ e
∫ dvx(

N
2λ0

σ2−
Nm2

0
λ0

σ)
(det (−∇2 + σ))

−N
2

= ∫ Dσ e
−N

2
log(det(−∇̄2+σ̄))−∫ dvx(−

N
2λ0

σ2+
Nm2

0
λ0

σ)

= ∫ Dσ e−Seff ,

(4.12)

where Ō = O/µ2 , µ is some arbitrary constant with the dimension of mass inserted,

so the logarithm argument is dimensionless and Seff is the effective action and is

58



Chapter 4. Spontaneous Symmetry Breaking

given as

Seff =
N

2
log (det (−∇̄2 + σ̄)) + ∫ dvx (−

N

2λ0
σ2 +

Nm2
0

λ0
σ)

=
N

2 ∫
dvx log (−∇̄2

x + σ̄) + ∫ dvx (−
N

2λ0
σ2 +

Nm2
0

λ0
σ) .

(4.13)

If the theory consists of a large number of scalar fields (N → ∞), the dominant

contribution to Z comes from the saddle point of Seff . One can evaluate the effective

action and the corresponding effective potential around the saddle point as

Veff =
N

2
(log (−∇̄2

x + σ̄) −
1

λ0
σ2 +

2m2
0

λ0
σ) . (4.14)

Now for notational simplicity we take

V1 =
N

2
log (−∇̄2

x + σ̄)

=
N

2
lim
u→0
∫

σ

0
dm2 G (u,m2) .

(4.15)

Here, G (u,m2) represents the Euclidean Green’s function of a scalar field with mass

m in d-dimensional space, and u denotes the invariant distance (see Section 2.4.2).

In the limit where u approaches zero (the coincident limit), the propagator diverges.

Consequently, it is necessary to employ an appropriate renormalization procedure.

By examining the classical action (Eq. 4.9), we can establish the renormalization

conditions as follows:

dVeff
dσ
∣
σ→µ2

=
Nm2

λ
, (4.16a)

d2Veff
dσ2

∣
σ→µ2

= −
N

λ
, (4.16b)

where λ and m are the renormalized parameters. Here µ is an arbitrary constant

with dimensions of energy and in possible cases we take µ = 0. After renormalization,

the total potential (V ) is

V =
1

2
σϕ2 + V ren

eff , (4.17)
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where V ren
eff is the renormalized effective potential. As discussed in Section 2.2, the

minima of the total potential is determined by stationary points of V , i.e.,

∂V

∂σ
= 0, (4.18a)

∂V

∂ϕ
= 0. (4.18b)

Utilizing Eq. 4.18a, we can express σ as a function of ϕ, allowing us to subsequently

write V as a function solely dependent on ϕ. Therefore, the condition for the minima

of the potential can be expressed as follows:

dV

dϕ
=
∂V

∂ϕ
+
∂V

∂σ

∂σ

∂ϕ

=
∂V

∂ϕ
= 0,

(4.19)

where in the second line of Eq. 4.19 we use Eq. 4.18a. Using Eq. 4.19 in Eq. 4.17

gives
dV

dϕ
= σϕ = 0. (4.20)

The minima of the potential can manifest at either ϕ = 0 or σ = 0. The field

configuration associated with the ϕ = 0 minima is characterized by O(N) symmetry.

However, the field configuration corresponding to σ = 0 does not possess O(N)

symmetry. Therefore, if the global minima of the potential are found at σ = 0, it

indicates the occurrence of SSB in the theory.

4.4.1 Spontaneous Symmetry Breaking

In this subsection, we investigate the phenomenon of SSB in the linear sigma model

(LSM) as described in [67, 68, 69]. Following a similar approach as in the simple λϕ4

theory (see Section 4.2.2), we examine the SSB in the LSM by computing the one-loop

effective potential. Our analysis is carried out in various spacetime dimensions.
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Four dimensions

In the case of four dimensions, we have already derived the renormalized effective

potential. By comparing equation Eq. 4.14 with equation Eq. 2.14, we can obtain

the renormalized one-loop effective potential from equation Eq. 2.41 by replacing

M2 with σ, yielding:

V =
1

2
σϕ2 −

N

2λ
σ2 +

Nm2

λ
σ +

Nσ2

64π2
log

σ

2µ2
. (4.21)

To determine the global minimum of the effective potential, we can utilize equation

Eq. 4.18a to write

ϕ2 =
2Nσ

λ
−
2Nm2

λ
−
Nσ

16π2
log (

σ

µ2
) . (4.22)

Figure 4.4: ϕ2 as a function of σ.

In order to obtain equation Eq. 4.22, we rescaled the arbitrary parameter µ2. The

plot depicting ϕ2 as a function of σ according to equation Eq. 4.22 can be found in

Figure 4.4.

The maximum value that ϕ can reach is ϕmax, as for ϕ > ϕmax the effective potential

becomes complex. Additionally, it is important to note that for ϕ < ϕmax, ϕ2 and the

effective potential are double-valued. Now, when σ = 0

ϕ2 = −
2Nm2

λ
. (4.23)
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As we are considering a real scalar field, this is possible only if m2/λ < 0. So for

m2/λ < 0 the system can have minima at σ = 0 or at σ = σ1. The magnitude of V

at σ = 0 and σ = σ2 is determined by V ren
eff (σ) (see Eq. 4.17). Also, as function of σ,

V ren
eff (σ) has its turning points at σ1 and σ2 and for m2/λ < 0, σ1 < 0 which is not in

the possible range of σ ∈ [0,∞). The slope of V ren
eff at σ = 0 is negative for m2/λ < 0,

so the magnitude of V ren
eff decreases from σ = 0 to σ = σ2 which means

V (σ = 0) > V (σ = σ2) . (4.24)

Therefore, the global minimum of the effective potential occurs at σ = σ2 or ϕ = 0.

The global minima of the system exhibit symmetry under O(N) transformations,

indicating the absence of SSB in four dimensions for any values of m2/λ. For a more

detailed analysis, please refer to [68, 69].

Three dimensions

The renormalized effective potential in three dimensions can be calculated by following

the steps outlined in Section 2.5.1. First, expand the propagator around u = 0 using

equation Eq. 2.34 with d = 3. Then, perform the integration over m2 using equation

Eq. 2.30. Finally, apply the renormalization conditions as specified in equation

Eq. 4.16. This procedure yields the following expression for the renormalized effective

potential

V =
1

2
σϕ2 −

N

2λ
σ2 +

Nm2

λ
σ −

Nσ3/2

12π
. (4.25)

Note that here the renormalized λ = λ0, so λ > 0. Following the same way as in four

dimension one can use 4.18a to get

ϕ2 =
2Nσ

λ
−
2Nm2

λ
+
2Nσ1/2

4π
(4.26)

In three dimensions, similar to the four-dimensional case, σ = 0 is only possible for

m2 < 0 in the context of a real scalar field. Furthermore, ϕ2(σ) is a monotonically

increasing function of σ. For m2 < 0, ϕ2(σ = 0) is positive, and as a monotonically

increasing function, it implies that ϕ = 0 is not possible for any value of σ. The only

viable vacuum state of the theory is at σ = 0, which breaks the O(N) symmetry and is
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asymmetric. Therefore, it can be concluded that SSB occurs in the O(N)-symmetric

linear sigma model in three dimensions for m2 < 0, while there is no SSB for m2 ≤ 0.

Detailed analysis can be found in [67].

Similar analysis can be carried out in two dimensions; however, it is important to

note that the Coleman-Mermin-Wagner theorem, as discussed in Section 4.1, already

guarantees the absence of SSB in two dimensions. The formalism presented here is

general and can be readily extended to higher dimensions.

4.5 Symmetry Restoration

The concept of the restoration of broken symmetries at finite temperature was

initially proposed by D.A. Kirzhnits and A.D. Linde, inspired by the Meissner effect

[70]. Subsequently, L. Dolan, R. Jackiw, and Steven Weinberg provided a quantum

field theory-based understanding of this phenomenon [71, 72]. In this section, we

revisit and explore these effects in a manner similar to the approach presented in

[71]. An intuitive perspective on the restoration of symmetry at finite temperature

can also be found in [73].

In this section, we investigate the phenomenon of symmetry restoration at finite

temperature within the context of a single real scalar field with λϕ4 self-interaction,

which exhibits SSB (for m2 < 0, as discussed in Section 4.2.1). The analysis presented

here can be extended to other models discussed in this chapter. The procedure

is outlined as follows. First, we calculate the one-loop effective potential at finite

temperature for a free massive scalar field using the heat kernel method (similar

calculations using the propagator can be found in [30]). We then utilize these results

to calculate the one-loop effective potential for the λϕ4 interaction, demonstrating

that the broken symmetry is restored beyond a critical temperature Tc.

4.5.1 Free Massive Scalar Field Theory at T ≠ 0

To demonstrate the symmetry restoration, one could directly consider the λϕ4 theory

and proceed. However, since we require the results of this section for comparison
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with the results of an accelerated observer in the next chapter, we will examine it in

detail. In a d-dimensional finite temperature quantum field theory at equilibrium, the

system is equivalent to a Euclidean field theory where the periodicity of imaginary

time corresponds to the inverse temperature. Therefore, it is necessary to study the

field theory on the manifold S1 ×Rd−1. By taking L = β = 1/T in Eq. 2.45, we can

obtain the one-loop effective potential as follows:

V = −2(
m

2πβ
)

d
2 ∞

∑
n=1

1

n
d
2

K d
2
(mnβ) , (4.27)

where Kν(z) is the modified Bessel function of second kind. The Eq. 4.27 provides

a closed-form expression for the complete one-loop effective potential in arbitrary

dimensions. We will utilize this result to examine the influence of temperature on the

effective potential by considering extreme cases such as mβ → 0 (high temperature

expansion) and mβ →∞ (low temperature expansion). Consequently, we will analyze

different dimensions separately.

For three dimension, taking d = 3 in Eq. 4.27, the leading order high temperature

expansion (mβ → 0 in Eq. 4.27) gives

lim
mβ→0

V = −
ζ(3)

2πβ3
+
m2T

8π
−
m2T

4π
log (

m

T
) . (4.28)

This is in agreement with the results in [74, 75]. The leading term 1/β3 leads to the

Stefan-Boltzan law. Similar calculations in four dimensions (d = 4 in Eq. 4.27) gives

lim
mβ→0

V = −
π2

90β4
+
m2

24β2
. (4.29)

Similarly, we can study the low temperature expansion. For three dimension, with

d = 3 and mβ →∞ in Eq. 4.27, gives

lim
mβ→∞

V = −
mβ

2πβ3
e−mβ. (4.30)

Similar expansions in four dimensions gives

lim
mβ→∞

V = −
mβ

3
2

(2π)
3
2 β4

e−mβ. (4.31)
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These findings are consistent with the outcomes presented in [30]. Similar compu-

tations can be conducted in other dimensions as well. It can be observed that at

low temperatures T << m, the finite temperature contributions are exponentially

suppressed, allowing us to approximate the results with those obtained at T = 0. The

exponential decay appears to be attributed to the functional behavior of Kν (z) and

remains independent of the spacetime dimensions.

4.5.2 λϕ4 Interaction

If we consider the λϕ4 theory and aim to calculate the one-loop effective potential,

we can simply replace m2 in Eq. 4.27 with M2 =m2 + λ
2ϕ

2. Here, m and λ represent

the renormalized parameters of the scalar field, and ϕ denotes the constant field

configuration. For our qualitative analysis of symmetry restoration, we only need to

examine what occurs at high temperatures, specifically when mβ → 0 [71]. In three

dimensions, according to Eq. 4.28, we can express the one-loop effective potential at

the high-temperature limit as follows:

V =
m2

2
ϕ2 +

λ

4!
ϕ4 +

M2T

8π
−
M2T

8π
log (

M2

T 2
) . (4.32)

The total mass of the system is defined as

∂2V

∂ϕ2
∣
ϕ→0
= µ2. (4.33)

This gives

µ2 =m2 +
λT

4π
log (

T

m
) . (4.34)

This is in agreement with Eq. 3.4 of [74] and Eq. 4 of [75]. So if we start from

a system with SSB (m2 < 0), after some critical temperature Tc, where Tc can be

defined as

m2 =
λTc
4π

log (
Tc
m
) , (4.35)
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the effective mass of the theory takes positive values or one can say that symmetry

is restored. One do similar calculations in four dimensions, comparing with Eq. 4.29

V =
m2

2
ϕ2 +

λ

4!
ϕ4 +

λ

24β2
ϕ2. (4.36)

Similar to the three dimensional case, one can calculate the mass corrections in λϕ4

theory due to temperature as

µ2 =m2 +
λT 2

12
. (4.37)

In four dimensions, if we start with m2 < 0 (SSB), then the effective mass takes

positive values for T > Tc

T 2
c = 12

m2

λ
. (4.38)

So one can conclude that the broken symmetry is restored at finite temperature after

some critical temperature Tc.
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Spontaneous Symmetry Breaking

and the Uniformly Accelerated

Observer

In this chapter, we address the question, do the spontaneous symmetry breaking

and associated phase transitions depends on the observer? This chapter is based on

our work on calculating one-loop effective potential in the frame of an accelerated

observer [76].

An accelerated observer is of particular interest in theoretical physics because of

the equivalence principle: “The effects of a uniform gravitational field is equivalent

to the effects observed in a non-inertial uniformly accelerated frame”. Later, this

interest is reinforced by the observation that the accelerated observer perceives an

observer dependent horizon that essentially captures all the salient features of black

hole spacetime without the associated mathematical complexity. Due to the horizon,

an accelerated observer has no access to the information outside the horizon, and

this ignorance makes the observables of an accelerated observer equivalent to that of

a thermal ensemble of an inertial observer. This is the statement of Fulling-Davies-

Unruh effect [9, 8, 77] or simply the Unruh effect. Specifically, the Unruh effect is the

statement that the observations of an accelerated observer with acceleration a are

equivalent to the observations of an inertial observer at temperature T = a/2π. As we
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saw in the previous chapter 4, the broken symmetry is restored at a finite temperature.

So, one can expect a similar restoration of broken symmetries in the accelerated

frames. Indeed we will conclude the same, which means the broken symmetry state of

an inertial observer is a symmetric state for an accelerated observer with acceleration

above some critical acceleration. Along with confirming the observer dependence of

SSB, this demonstrates the ontic nature of the Unruh effect.

One can understand the Unruh effect using different methods, like using an accelerated

detector [8] (section 3.3 of [10]), using Bogoliubov transformation [9] (chapter 8 of

[26]), using thermalization theorem [78], using Euclidean propagators [79], using flat

space propagator [80] etc. Some reviews on the topic are [81, 82, 83].

In Section 5.1, we demonstrate the Unruh effect closely following [79]. In Section 5.2,

we calculate the one loop effective potential in Rinder frame and in Section 5.3 we

use the effective potential to study the symmetry restoration. We conclude this

chapter with 5.4, where we extend this analysis to linear sigma model using the large

N approximation.

5.1 The Euclidean Rindler Observer

Consider the theory in the frame of an accelerated observer in 1 + 3 dimensional

spacetime with the metric

ds2 = −ξ2dτ 2 + dξ2 + dx⃗2, (5.1)

where x⃗ is a vector in 2 dimensional flat spacetime. Extending to arbitrary d + 2

dimensional spacetime is trivial by considering x⃗ as a vector in Rd dimensional

spacetime. In the metric, there is no acceleration parameter as it can be absorbed

into the Euclidean Rinlder time, which makes the Euclidean time dimensionless.

With this choice of Euclidean time, the only relevant quantity is the inverse invariant

horizon temperature given by 2π. From the standard flat Minkowski spacetime given

by

ds2 = −dT 2 + dX2 + dY 2 + dZ2, (5.2)
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one can reach the Rindler metric (Eq. 5.1) using the standard transformation given

by

T = ξ sinh (τ)

X = ξ cosh (τ) .
(5.3)

Figure 5.1: The coordinate system prepared by an accelerated observer. Each
dotted line corresponds to constant τ and hyperbolic lines corresponds to constant
ξ. Light cone in the Minkowski coordinates act as the horizon for the accelerated

observer.

Some interesting features of this coordinate transformation is listed below

1. The Rindler coordinates only cover quarter of the Minkowski coordinates, the

region X2 − T 2 = ξ2 > 0 as shown in Figure 5.1.

2. X2 −T 2 = ξ2 = 0 is a coordinate singularity, which forms an observer dependent

horizon to the accelerated observer. So, the accelerated observer cannot access

the regions beyond this horizon.

3. Each hyperbola ξ = a−1 shown in Figure 5.1, corresponds to an accelerated

observer moving along X direction with constant acceleration a and proper

time τ .
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4. The time-like Killing vector is different for an accelerated and inertial observer,

which leads to different vacuum states for accelerated and inertial observers.

Then the statement of the Unruh effect is that the accelerated observer perceives

the vacuum of an inertial observer as thermal.

5. The Rinlder frame is a coordinate transformation from the flat Minkowski

frame, so the spacetime remains flat (vanishing Riemann tensor).

Now we do the standard Wick rotation to get the Euclidean Rindler space by taking

T → iT and τ → iτ . The Euclidean Rindler metric is given by

ds2 = ξ2dτ 2 + dξ2 + dx⃗2, (5.4)

with the coordinate transformation

T = ξ sin (τ)

X = ξ cos (τ) .
(5.5)

Figure 5.2: The coordinate system prepared by the Euclidean Rindler (or the
polar coordinate chart). Each dotted line corresponds to constant τ and circles
corresponds to constant ξ. The entire horizon is mapped to a single point at the

center.

Note the following
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1. The new metric Eq. 5.4 is the Euclidean flat space represented in polar coordi-

nates through transformation Eq. 5.5. An inertial observer in these coordinates

can be described as having coordinates ξ = ξ0 and τ = τ0. A uniformly acceler-

ating/Rindler observer in the same coordinate system can be characterized as

ξ = ξ0 and τ not constant but uniformly varying.

2. The Euclidean time is an angular coordinate, so is periodic with periodicity 2π.

3. The word line of constant accelerated observer is circles with radius 1/a as

shown in Figure 5.2

4. The crucial observation is that the entire horizon is mapped to a single point

at the origin. The topology perceived by an inertial observer is standard R4,

but for an accelerated observer, it is S1 ×R3, which is multiply connected. The

accelerated observer perceives a hole at the origin.

5. So in the Euclidean signature, the difference between the inertial and accelerated

observer is topological.

6. As the topology is different, the inertial observer and accelerated observer

perceive different vacuum states distinguished by topologically invariant pa-

rameters, as ∣0⟩i for the inertial observer and ∣0⟩r for the Euclidean Rindler

observer.

Now consider as a free massive scalar field ϕ. In the Euclidean Rindler frame, one

can define the propagator of the scalar field with respect to the ∣0⟩i given by G2π or

with respect to the vacuum of an accelerated observer ∣0⟩r given by G∞. Both these

propagator or Green’s functions satisfy the same differential equation given by

(− ◻ +m2)G∞/2π (x,x
′) = δ (x,x′) . (5.6)

As a solution to the above differential equation, the difference between the propagator

comes from the different boundary conditions they satisfy. The G2π is uniquely

defined by the condition that it is periodic in τ with periodicity 2π. However, G∞

lives in a multiply connected space and it posses an infinite periodicity in τ and for
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an accelerated observer with acceleration a , G∞ can be obtained by

G∞ = lim
a→0

G2π. (5.7)

Now let us look at the explicit expression for G2π and G∞. We can compute these

propagators by directly using the Rindler modes [82] or using the optical metric [84,

85]. For a d + 2-dimensional Euclidean Rindler space the propagators are given by

[86],

Gd+2
2π (x,x0;m) = ∫

ddk

(2π)
d
eik⃗.∆x⃗

∫

∞

0

dν

π2
cosh (ν (π −∆τ))Kiν (µkξ)Kiν (µkξ0)

(5.8)

and

Gd+2
∞ (x,x0;m) = ∫

ddk

(2π)
d
eik⃗.∆x⃗

∫

∞

0

dν

π2
sinh (πν) e−ν∆τKiν (µkξ)Kiν (µkξ0) (5.9)

where ∆y = y − y0, µ2
k = k

2 +m2 and Kν (z) is the modified Bessel function of the

second kind. We can explicitly calculate the integrals in Eq. 5.8, which yield the flat

space propagator with invariant length written in Rindler coordinates. This indeed

confirms that G2π is the flat space propagator written in Rindler coordinates. Also,

using Eq. 5.8 and Eq. 5.9 one can see that

G2π (τ − τ0) =
∞

∑
n=−∞

G∞ (τ − τ0 + 2πn) . (5.10)

Examining Eq. 5.10, it becomes apparent that G2π exhibits periodicity in τ − τ0,

with a period of 2π . One can understand Eq. 5.10 in the following manner: The

propagator of an accelerating observer relating to their vacuum is G∞. However,

due to the observer inhabiting a multiply connected space, they obtain their actual

propagator by summing over all the inequivalent closed paths around the origin,

which gives G2π. Drawing a parallel with analogous findings in finite temperature

field theory, G2π can be seen as the thermally equilibrated counterpart of G∞ [79].

Therefore, in relation to the vacuum state of an accelerated observer, the inertial

vacuum assumes a thermal nature for an accelerated observer, which elucidates the

Unruh effect.
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5.2 One-loop Effective Potential

Within this section, we employ the methodology outlined in Eq. 2.4.2 to compute

the one-loop effective potential of a free massive scalar field from the perspective

of an accelerated observer. The resultant calculation yields the complete one-loop

effective potential, which is expressed as follows:

Veff =
1

2
m2

0ϕ
2 +

1

2 ∫
m2

0

0
dm2 lim

u→0
G (u,m2)

=
1

2
m2

0ϕ
2 + V1,

(5.11)

where m0 is the bare mass of the theory. From Section 5.1, topologically the problem

of calculating effective potential in the Euclidean Rindler frame is similar to the

calculation of the energy-momentum tensor in Rd+1 × S1 (same as finite temperature

field theory) space in d+2 spatial dimensions. We address this problem in Section 2.5.2,

and using the results in Section 2.5.2, we calculate the renormalized one-loop effective

potential by using G∆ = G2π −G∞. The physical condition we are imposing through

this renormalization procedure is to set the vacuum energy with respect to the

Rinlder vacuum to zero, as we should. Also, in finite temperature field theory, we

renormalize the free energy by subtracting the zero temperature contribution [30],

comparing with this, the above renormalization is justified as lima→0G2π = G∞ [79].

To avoid potential confusion among readers, we emphasize an important point.

Specifically, G2π represents the standard flat space propagator expressed in polar

coordinates (as discussed below Eq. 5.9). Hence, one can calculate the standard

flat Euclidean space one-loop effective potential using the same G2π. However, the

renormalization process must be executed in a manner that sets the vacuum energy

to zero with respect to the vacuum of an inertial observer. This involves taking

the coincidence limit in the usual space with a topology of Rd+1 and eliminating

singular contributions by including counterterms. In our study, given that inertial

and accelerated observers possess distinct vacuum states, the renormalization of

vacuum energy must be approached differently to ensure consistency with their

respective vacua. Consequently, for a comprehensive investigation of physical effects

from the perspective of an accelerated frame in Euclidean signature, one must
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calculate operator expectation values with respect to G∆ = G2π −G∞ instead of solely

employing G2π.

Furthermore, it is essential to note that both G2π and G∞ exhibit finite and infinite

components. Remarkably, the infinite part of G2π precisely matches that of G∞

and elegantly cancels out in the expression for G∆. However, the significance lies

in that G∆ also involves a non-trivial subtraction of the finite components, yielding

the correct finite contribution to the effective potential (see Section 2.5.2 for more

details). As a means of ensuring consistency, the effective potential derived from

G∆ successfully reproduces the correct free energy as demonstrated in [87], as well

as the Rindler entropy density illustrated in [88]. In this light, we can confidently

conclude that the effects arising from the presence of an event horizon, as perceived

by the accelerating observer, are accurately captured by adhering to this consistent

renormalization protocol.

Now using Eq. 5.8 and Eq. 5.9, one can write G∆ in the coincidence limit as

G∆ = ∫
ddk

(2π)
d ∫

dν

π2
e−πνK2

iν (ξµk) . (5.12)

One can do the ‘ν’ and ‘k’ integral in Eq. 5.12 by separating the ‘ν’ dependence in

Kiν(z) using Eq. 2.1 in [89] and the integral identity (p.693, Eq.6.596,3 in [90]). The

resulting integral can be expressed in terms of elementary functions using (p.917, Eq.

8.432,6 in [90]) as

G∆ =
1

2π (4π)
d
2 ξd
∫

∞

0

du

π2 + u2 ∫
∞

0

ds

s
d
2
+1
e−ξ

2m2se
− cosh(u/2)2

s , (5.13)

where we introduced renormalized mass m. One can calculate one-loop effective

potential using Eq. 5.13 in Eq. 5.11 as

V1 =
−1

(4π)
d
2
+1
ξd+2
∫

∞

0

du

π2 + u2 ∫
∞

0

ds

s
d
2
+2
e−α

2se
− cosh(u/2)2

s , (5.14)

where α =mξ. It turns out that there is no closed-form expression for the complete

integral in Eq. 5.14. However, one can derive an approximate result as follows. First
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scale s as s = α2t and then splitting the integral into two parts as

V1 =
−1

(4π)
d
2
+1
ξd+2αd+2

⎛

⎝
∫

1/α2

0

dt

t
d
2
+2
e−α

4t
∫

∞

0

du

π2 + u2
e
− cosh(u/2)2

α2t

+ ∫

∞

1/α2

dt

t
d
2
+2
e−α

4t
∫

∞

0

du

π2 + u2
e
− cosh(u/2)2

α2t

⎞

⎠
.

(5.15)

In the first term in Eq. 5.15 α2 is less than 1, so one can do the u integral using

Laplace method and the resulting t integral in the leading order can be done in terms

of Bessel function of the second kind. The leading order approximation is

V1 ≈ −
2

(4π)
d+2
2 π

3
2

α
d+1
2

ξd+2
K d+1

2
(2α) . (5.16)

The correction from the second integral in Eq. 5.15 is of the order O(α4), so one can

safely neglect that in comparison with the leading order term. In order to obtain the

other extreme limit for the parameter α, we now scale s = t/α2 in Eq. 4.15 to get

V1 =
−αd+2

(4π)
d
2
+1
ξd+2

⎛

⎝
∫

α2

0

dt

t
d
2
+2
e−t∫

∞

0

du

π2 + u2
e
−α2 cosh(u/2)2

t

+ ∫

∞

α2

dt

t
d
2
+2
e−t∫

∞

0

du

π2 + u2
e
−α2 cosh(u/2)2

t

⎞

⎠
.

(5.17)

Now as α →∞, one can do the first integral in Eq. 5.17 using the Laplace method

which gives the same result as Eq. 5.16. Therefore, for the two extreme conditions

considered in this paper, Eq. 5.16 is a good approximation to Eq. 5.14.
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Figure 5.3: Plot and compare the approximate result (Eq. 5.16) with the
numerically integration result for Eq. 5.14 in the cases of d = 1 and d = 2..
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In order to assess the accuracy of the approximation presented in Eq. 5.16, we can

directly compare it to the entire function described by Eq. 5.14 through numerical

integration for specific values of d. The resulting comparison plot is depicted

in Figure 5.3. Analysis of the figure indicates that disregarding a scaling factor,

the approximation Eq. 5.16 provides an adequate representation of the function

Eq. 5.14. Notably, this scaling factor relies on numerical coefficients, implying

that by substituting Eq. 5.16 for Eq. 5.14, we can obtain reasonably accurate

qualitative insights. This approximation proves particularly effective when considering

limiting values of α, successfully capturing the qualitative behavior. Utilizing this

approximation, we can further investigate the characteristics of the effective potential

for observers experiencing both high and low acceleration. Furthermore, to verify

the validity of our approximation, we can compare these results with those obtained

from field theory at finite temperatures.

5.2.1 Observers with High Values of Acceleration for d = 1, 2

Considering near horizon observers characterized by high acceleration, we can examine

this regime by taking the limit α → 0 in Eq. 5.14. Notably, this limit corresponds to

the high-temperature limit in finite temperature field theory. Although performing a

Taylor series expansion around α = 0 in Eq. 5.14 may appear tempting, caution must

be exercised. As a function of α, V1 is not analytically defined at α = 0 due to the

divergence of the ‘s’ integral for terms with n ≥ d
2 + 1. However, this expansion still

yields the correct leading-order term for the case of four dimensions, where d = 2.

Specifically, the second term in the series expansion around α = 0 in Eq. 5.14 yields

the following expression (after reintroducing m and ξ),

lim
α→0

V1 =
m2

6 (4π)
2
ξ2
. (5.18)

An interesting interpretation arises when considering an observer following a trajec-

tory with a constant ξ. In this case, the observer perceives an Unruh temperature

given by ξ = 1
2πT . Remarkably, we observe that Eq. 5.18 aligns with the results
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obtained from field theory at finite temperature (see Eq. 4.29). However, this in-

terpretation and agreement do not hold for dimensions other than four. Therefore,

for general dimensions, the near horizon limit can be investigated effectively by

utilizing Eq. 5.16 as a reliable approximation for the effective potential. Specifically,

for the case of three dimensions with d = 1 and α → 0, Eq. 5.16 yields the following

expression:

lim
α→0

V1 ≈
m2

8π3ξ
(1 − γE) −

m2

8π3ξ
log (m2ξ2) , (5.19)

where γE is the Euler’s constant. By considering the Unruh temperature ξ = 1
2πT ,

we can compare Eq. 5.19 with the finite temperature results in Eq. 4.28. Notably,

the temperature dependence of the effective potential in Eq. 5.19 perfectly matches

that of the finite temperature results in Eq. 4.28, albeit with some disagreement in

the coefficients at this order of approximation. However, it is possible to refine the

agreement by considering higher-order corrections. Analogous calculations in four

dimensions, i.e., for d = 2 and α → 0 in Eq. 5.16, yield the following expression,

lim
α→0

V1 ≈
m2

16π3ξ2
. (5.20)

Which is a sufficiently good approximation of Eq. 5.18. Also, Eq. 5.16 can in fact

be used to study the behavior of effective potential in Euclidean Rindler space in

general dimensions.

5.2.2 Observers with Low Values of Acceleration for d = 1,2

Let us now examine the opposite limit, where the observer accelerates slowly and

remains far from the horizon (denoted as α →∞ in Eq. 5.16). Specifically, for three

dimensions with d = 1 and α →∞, Eq. 5.16 yields the following expression:

lim
α→∞

V1 ≈ −
e−2αα

1
2

8π
5
2 ξ3

. (5.21)

To analyze this result, we can compare it with the finite temperature results in

Eq. 4.30 by considering the Unruh temperature (ξ = 1/(2πT )). We observe that the

leading exponential decay behavior remains the same as in the finite temperature
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case. However, the polynomial powers of the temperature are altered by a factor of

half. This discrepancy may be attributed to the approximation scheme employed.

For the case of four dimensions, a similar limit yields the expression:

lim
α→∞

V1 ≈ −
e−2αα

16π3ξ4
. (5.22)

In conclusion, we find that for a slowly accelerating observer with proper acceleration

‘a’, the corrections to the effective potential exhibit exponential suppression charac-

terized by the Boltzmann factor e−m/a. This behavior arises from the leading order

behavior of the modified Bessel function (limz→∞Kν(z) ∼ e−z). Based on Eq. 5.16, we

can expect this exponential suppression to also be present in arbitrary dimensions.

5.3 Symmetry Restoration in λϕ4 Theory

We now turn our attention to the investigation of whether the breakdown of discrete

Z2 symmetry is restored for a specific class of observers. To study SSB, it is

customary to employ the effective potential [17, 36]. Leveraging the insights gained

from Chapter 4, we can now elucidate the phenomenon of spontaneous symmetry

breaking in the Rindler frame. Since the Rindler frame can be regarded as another

coordinate system for standard flat space, a comparison with results obtained in

standard flat space enables us to discern the frame dependence of SSB. To this

end, we consider a self-interacting massive scalar field theory characterized by the

following action:

S = ∫ dvx (
1

2
gµν∂µϕ∂νϕ +

m2
0

2
ϕ2 +

λ0
4!
ϕ4) . (5.23)

The corresponding renormalized one loop effective potential for this action can be

calculated using G∆ in Eq. 5.13 in the formula for one loop effective potential as in

Eq. 2.30. Proceeding the same as in Section 5.2, we can get the approximate result

of renormalized one loop effective potential as

V1 ≈ −
2

(4π)
d+2
2 π

3
2

(m2 + λϕ2/2)
d+1
4

ξ
d+3
2

K d+1
2

⎛

⎝
2ξ

√

m2 +
λ

2
ϕ2
⎞

⎠
, (5.24)
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wherem and λ are now the renormalized parameters. From Eq. 5.24, it is evident that

the effective potential explicitly depends on ξ, which corresponds to the trajectory

of the accelerated observer [91]. This observation implies that the re-normalized

parameters of the theory, such as the mass, can also exhibit dependence on the

observer, thus indicating the observer dependence of SSB in the system.

Furthermore, we can provide an interpretation of the effective potential result as

follows: Let us consider discretizing the radial coordinate in the Euclidean Rindler

frame. At each radial lattice point, denoted by index “i” (with the usual rotational

invariance), the effective potential takes on a distinct form that depends on the label

“i”. In other words, each observer situated at a specific lattice point “i” perceives a

different effective potential and, consequently, a distinct coefficient of ϕ2.

In the literature, it is well-established that in standard flat space, the vacuum state

configuration of a scalar field governed by λϕ4 interaction exhibits a breakdown of Z2

symmetry for m2 < 0 [36, 17]. Additionally, it is known that at finite temperatures,

this symmetry is restored above a critical temperature [70, 71, 72]. Drawing upon

the thermalization theorem [81], we can thus anticipate a similar restoration of

broken symmetries in accelerated frames, as demonstrated in previous works [92,

93]. Analogous to finite temperature calculations, we can determine the critical

acceleration for symmetry restoration by imposing [71]:

∂2Veff
∂ϕ2

∣
ϕ=0
= 0. (5.25)

The hallmark of SSB is the emergence of a nonvanishing vacuum state field configu-

ration. Consequently, the equation for the critical acceleration can be interpreted

as the point at which the minimum of the effective action or effective potential

occurs with ϕ0 = 0, indicating the restoration of symmetry. Furthermore, the critical

acceleration can be interpreted as the point at which the renormalized mass attains a

value of zero. Viewed from the perspective of the effective potential discretized along

the radial direction, the condition given by Eq. 5.25 can be regarded as imposing a

renormalization condition to absorb the quadratic divergence at each lattice point.

By employing this condition (Eq. 5.25) in Eq. 5.24 with m2 < 0, one can estimate
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the approximate critical acceleration in four dimensions as follows:

a2c =
16π3

λ
m2e2imξ mξ→0

ÐÐÐ→
16π3m2

λ
(5.26)

where we choose the trajectory ξ = 1/ac. The value of the critical acceleration

obtained in Eq. 5.26 shows good agreement with the results found in [92, 93],

considering the limitations of our approximation. It is crucial to emphasize that the

methods employed in [93, 92] do not generalize to arbitrary dimensions and yield

incorrect outcomes for dimensions other than four. In [93], the authors calculated the

critical acceleration using a Taylor expansion, as discussed in Section 5.2. However,

this approach fails in two distinct ways when applied to dimensions other than four.

Firstly, it fails to capture the correct functional dependence of the effective potential

in the mξ → 0 limit. Secondly, in four dimensions, the divergence part of the effective

potential naturally separates even when performing the Taylor expansion in mξ at

the leading order. However, this separation does not occur in other dimensions,

necessitating the specification of a renormalization procedure. This becomes evident

when considering three dimensions, where the critical acceleration can be calculated

by setting d = 1 in Eq. 5.24 and utilizing Eq. 5.25:

−
m2

2
+
λac
8π3

K0 (
2m

ac
) = 0. (5.27)

In the limit of limz→0Kν(z)→ +∞, it can be concluded that the broken symmetry

will be restored in three dimensions once the critical acceleration ac is reached.

Taking the near-horizon limit of mξ → 0, the leading order behavior of Eq. 5.27 is

given by:

−
m2

2
+
λac
8π3

log (
ac
m
) = 0. (5.28)

By considering the Unruh temperature ac = 2πTc, it is possible to reproduce the

results obtained in finite temperature field theory, as demonstrated in previous works

[74, 75]. It is worth noting that attempting to obtain the logarithmic functional

dependence on the critical acceleration using a Taylor expansion, as done in [93], is

not feasible.

Similar to the finite temperature field theory [71], an accurate determination of the
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critical acceleration necessitates higher-loop corrections in the effective potential [93].

However, the one-loop effective potential is a suitable approximation to study the

observer dependence of spontaneous symmetry breaking.

5.4 Symmetry Restoration in Linear Sigma Model

Our current focus revolves around examining SSB within the O(N) symmetric linear

sigma model, specifically within the framework of Rindler space and under the

assumption of the large N limit. In Section 5.3, we established the restoration of

broken Z2 symmetry in the vacuum configuration of a single scalar field with ϕ4

interaction at a critical acceleration. Furthermore, Section 4.4.1 presented evidence

indicating the absence of O(N) symmetry in the vacuum field configuration within

three-dimensional spacetime, thereby manifesting spontaneous symmetry breaking .

Consequently, our objective is to investigate whether the broken O(N) symmetry can

be restored in an accelerated frame, leveraging the large N limit as an approximation

method. Following the same methodology as in Section 5.3, we derive the renormalized

one-loop effective potential of the linear sigma model as

V ren
eff = −

N

2λ
σ2 +

Nm2

λ
σ −

2Nσ
d+1
4

(4π)
d+2
2 π

3
2 ξ

d+3
2

K d+1
2
(2α) , (5.29)

wherem and λ are the renormalized parameters and α = ξ
√
σ which is a dimensionless

parameter. With the effective potential in hand, one can study the symmetry behavior

of the vacuum configurations in different dimensions.

In three dimensional spacetime, the one loop effective potential in the near horizon

limit (α → 0) is

lim
α→0

V ren
eff ∣

d=1
= −

N

2λ
σ2 +

Nm2

λ
σ −

Nσa

8π3
log (

σ

a2
) , (5.30)

where we choose the trajectory ξ = 1/a. Consider a theory with SSB in standard

flat space, characterized by m2 < 0. In accelerated frames, as indicated by Eq. 5.30,

the effective mass becomes positive beyond a critical acceleration, leading to the

symmetry restoration at high accelerations. At the same time, it is possible to
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calculate the critical acceleration using conditions similar to Eq. 5.25 with d = 1, it

should be noted that the critical acceleration depends on an arbitrary scale µ (even

though the normalized effective potential is scale-independent). Hence, similar to

finite temperature field theory [75], Eq. 5.30 may not be directly useful for predicting

the critical acceleration. However, the underlying structure of Eq. 5.30 assures

symmetry is restored for at least a particular class of Rindler observers. Moreover,

our techniques are general and can be applied to shed light on symmetry-breaking

aspects in Rindler space for arbitrary spacetimes.

An analogous analysis can be carried out in four-dimensional spacetime. Nevertheless,

it is important to emphasize that the flat four-dimensional linear sigma model, as

discussed in Section 4.4.1, does not exhibit SSB. Therefore, drawing definitive con-

clusions regarding the observer dependence of SSB based solely on four-dimensional

results is not possible. However, through a comparison with results in flat space, it

becomes apparent that acceleration introduces modifications to the effective mass of

the theory. These corrections can be expressed as follows:

m2
eff

λ
=
m2

λ
+

a2

16π3
. (5.31)

In this study, we have investigated the observer dependence of SSB using two distinct

models. The results obtained from both models lead to the conclusion that SSB

does depend on the observer. By specifically focusing on the perspective of an

accelerated observer and concurrently comparing these findings with those obtained

from studying finite temperature effects, our results provide further support for the

thermalization theorem.

Furthermore, since SSB is typically associated with a phase transition, the observer

dependence of SSB suggests that the temperature experienced by an accelerated

observer possesses physical significance. Thus, our analysis reinforces the notion

that the temperature perceived by an accelerated observer is indeed a physically

meaningful quantity.
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Chapter 6

Symmetry Breaking in Anti-de

Sitter Space

In this chapter, we explore the influence of curvature on spontaneous symmetry

breaking (SSB) by investigating SSB in anti-de Sitter (AdS) spacetime, building upon

the general framework of quantum field theory in curved spacetime. The analysis

presented here is based on our previous work in [94] and follows a similar approach.

We focus on the specific model of an O(N) symmetric linear sigma model in the

large N limit approximation. The AdS spacetime holds significant importance in

the AdS/CFT correspondence, which establishes a connection between gravitational

theories in AdS space and conformal field theories on the boundary. Furthermore, it

is worth noting that Rindler space and AdS emerge as near-horizon geometries of

non-extremal and extremal black holes, respectively, relating to our discussions in

previous chapters.

6.1 Anti-de Sitter space

The d + 1 dimensional Euclidean Anti-de Sitter (AdS) can be described using the

Poincare coordinates as

ds2 =
L2

z2
(dz2 +

d

∑
i=1

dx2i) , (6.1)
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where L is the AdS scale. Note that the Poincare corrdinates only covers a portion

of AdS space, called the Poincare patch. Some interesting properties of the AdS

space is listed below [95, 96]

1. AdS is a maximally symmetric spacetime with d (d + 1) /2 number of indepen-

dent Killing vectors in d dimensional spacetime.

2. Solution to Einstein’s field equation with a negative cosmological constant and

constant negative curvature.

3. Asymptotic Structure: AdS space has a well-defined boundary at infinity. This

boundary is topologically equivalent to a Euclidean space. The asymptotic

behavior of AdS space plays a crucial role in the AdS/CFT correspondence,

which relates theory in the bulk AdS space to a conformal field theory defined

on its boundary.

Before proceeding with the calculation of SSB, examining the stability criteria for

scalar fields in the AdS space is essential.

6.1.1 The Breitenlohner-Friedmann Bound

The Breitenlohner-Freedman (BF) bound is a stability condition in the AdS space.

According to this bound, a negative mass for a scalar field does not result in instabil-

ities, as in flat space, as long as m2L2 > −d2/4 for AdSd+1 spacetime. This condition

ensures the scalar field remains stable and well-behaved in the AdS background.

One can obtain this bound in the following way [97]. Consider the action for a free

massive scalar field ϕ = ϕ (z) as

S = ∫ ddxdz
1

zd+1
(z2∂zϕ∂zϕ +m

2L2ϕ2) . (6.2)

Now introduce a new variable as y = log (z) and rescale the scalar field as ϕ = zd/2ψ

which gives the action upto a boundary term as

S = ∫ ddxdy (∂yψ∂yψ + (m
2L2 +

d2

4
)ψ2) . (6.3)
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By comparing the action in Eq. 6.3 with the action in flat spacetime, we observe that

(m2L2 + d2/4) serves as the effective mass of the theory. The potential is bounded if

and only if m2L2 > −d2/4, which corresponds to the BF bound. The BF bound can

be derived using various approaches, all of which highlight the significance of this

bound.

1. The stability of a static field configuration can be determined by examining

the positivity of the conserved energy function. By applying this condition,

it can be shown that the presence of normalizable negative energy modes is

possible below the BF bound [98]. This method of analysis is similar to the

original derivation of the BF bound [99, 100]

2. The BF bound ensures that the operator K̂ = (−◻+m2) is positive definite. In

various calculations, such as the effective action or perturbative analysis, it is

crucial for K̂ to be positive definite; otherwise, the Euclidean path integral

would diverge. The BF bound can be derived by considering the condition for

positive definiteness of K̂.

3. Also, the BF bound can also be derived by examining the finiteness of the action

in AdS space [101]. This requirement ensures the existence of normalizable

modes and enables the quantization of the field.

Using any of these derivations, it can be shown that for an interacting field theory

with a potential U(ϕ) that includes the mass term, the BF bound is given by

U ′′(ϕ) > −d2/4 [102].

6.2 Symmetry Breaking

To investigate SSB, it is necessary to compute the one-loop effective potential.

Analogously to the Rindler case, we calculate the one-loop effective potential using

the propagator (as shown in equation 2.30). The bulk-to-bulk Green’s function in

AdSd+1 can be expressed as follows [103]:

G(W ) =
α0

Ld−1
W∆ F2 1 (∆,∆ +

1 − d

2
,2∆ − d + 1;−4W) , (6.4)
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where

W =
1

2

1

cosh( uL) − 1
; ∆ =

d

2
+
1

2

√
d2 + 4m2L2; α0 =

Γ(∆)

2πd/2Γ (∆ − d
2 + 1)

, (6.5)

and F2 1 is the Hypergeometric function. In the limit of coincidence (u → 0), the

propagator diverges, as expected. To calculate the effective potential in three and

four-dimensional AdS space, we utilize Green’s function given in equation 6.4.

6.2.1 Four Dimensions

To calculate the renormalized effective potential, it is necessary to regularize the

Green’s function in Eq. 6.4. Following a similar approach as in the previous chapter,

we expand G(W ) around u = 0 in four-dimensional spacetime (d = 3 in equation

Eq. 6.4) as

lim
u→0

G(W ) =
1

12π2
(
3

u2
−
16 + 3∆(∆ − 5)

4L2

+
3

4L2
(∆ − 2) (∆ − 1) (2H∆−3 + 2 log (

u

2L
))) ,

(6.6)

where Hz is the harmonic number. In order to study the SSB, we focus on the linear

sigma model in the large N limit as discussed in Section 4.4. Using Eq. 6.6 we can

calculate the one loop corrections to the effective potential (using 4.15) as

8L2π2V1
N

=σ (γ +
L2

u2
−

5

12
+
β

3
+ log (

u

2L
) +

1

2
log (Γ(β)) + β log (Γ(β)) − 3ψ (−2, β))

+
L2σ2

4
(log (

u

2L
) + γ −

1

2
) +

β

L2
(
3

4
+ 2 log (Γ(β)) + 6ψ (−3, β))

+
1

L2
(log (Γ(β)) − 6ψ (−4, β) + 3ψ (−3, β)) −

13

2L2
ψ (−2, β) ,

(6.7)

where γ is the Euler’s constant, ψ is the polygamma function and for notational

simplicity we choose

β = −
1

2
+
1

2

√
9 + 4L2σ. (6.8)

Based on equation 6.8, it is evident that β is real when −9/4L2 < σ, which corresponds

to the BF bound discussed in Section 6.1.1. Therefore, within the BF bound, the

effective potential is also real. Equation 6.7 provides a regularization scheme for
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the effective potential, and as anticipated from previous results [102, 104], the

divergences in the effective potential manifest as linear and quadratic terms in σ. So

one can renormalize the theory by redefining m0 and λ0. By applying appropriate

renormalization conditions (see Eq. 4.16), we can express the renormalized parameters

as follows:
m2

λ
=

1

48L2π2
+

1

8π2u2
+
m2

0

λ0
+

1

8L2π2
log (

u

2L
)

−
1

λ
=

1

144
−

1

96π2
−

1

λ0
+

1

16π2
log (

u

2L
) .

(6.9)

Note that in the renormalized parameters, we included the finite terms involving L.

Using Eq. 6.9, one can write the renormalized effective potential as

V ren
eff =

Nm2σ

λ
−
Nσ2

2λ
+

N

8L2π2
(
σ2L2

4
(γ −

1

3
−
π2

9
) +

β

L2
(
3

4
+ 2 log (Γ(β)) + 6ψ (−3, β))

+
σ

2
(2γ +

2β

3
+ (2β + 1) log (Γ(β)) − 6ψ (−2, β) −

7

6
)

+
1

L2
(log (Γ(β)) − 6ψ (−4, β) + 3ψ (−3, β) −

13

2
ψ (−2, β))) .

(6.10)

The one-loop renormalized effective potential is given by Eq. 6.10. Taking into

account the tree-level contributions, we can express the full effective potential at the

one-loop level as

V =
1

2
σϕ2 + V ren

eff . (6.11)

At this stage of our calculations, we can perform a consistency check by considering

the limit as L → 0. In this limit, we expect to recover the results obtained in flat

spacetime, as discussed in Section 3.4. Taking L→ 0 in Eq. 6.11, we obtain

lim
L→∞

V =
1

2
σϕ2 +

m2Nσ

λ
−
Nσ2

2λ
+
Nσ2

64π2
log (σL2) . (6.12)

In the limit of flat spacetime, where L becomes an arbitrary parameter with di-

mensions of length, we can replace it with an energy parameter 2µ2 = 1/L2. This

substitution allows us to reproduce the flat space result, as shown in Eq. 4.21.
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The Ground State

We investigate spontaneous symmetry breaking (SSB) by examining the non-zero

vacuum expectation value of the field. As discussed in Section 2.3, the vacuum field

configuration corresponds to the stationary points of the effective potential V . The

condition for the stationary points of the effective potential, as given by Eq. 4.18,

can be applied in the AdS space to yield the following expression

ϕ2(σ) =
N

72L2π2λ

⎛

⎝
− 144π2L2m2 + 3λL2σ + λπ2L2σ + 144L2π2σ − 9λ (β + 1 +L2σ)Hβ−1

⎞

⎠
.

(6.13)

Similar to four-dimensional flat space (see Section 5.2), the function ϕ2 exhibits two

distinct branches as a function of σ, leading to the effective potential V being a

double-valued function of σ. The variation of ϕ2 with respect to σ is depicted in

Figure 6.1, which is similar to the corresponding plot in flat space (see Figure 4.4).

From Figure 6.1, we observe that ϕ2 reaches its maximum value ϕ2
max at σ = σ0 and

subsequently decreases monotonically.

0

0 1× 10139

σ1 σ0 σ2

ϕ2max

ϕ
2
(σ
)

σ

1

Figure 6.1: A plot illustrating ϕ2 as a function of σ for m2
> 0.

One can anticipate the existence of multiple local minima, corresponding to σ = 0

and ϕ = 0. The determination of the ground state involves comparing the values

of the effective potential at each minimum, and the configuration with the lowest

effective potential corresponds to the ground state. Let us begin by considering σ = 0

which gives

V (0) = −
0.003N

L4
. (6.14)
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But at this point

ϕ2(0) = −
2m2N

λ
. (6.15)

For m2 > 0, the field becomes complex, so in order to have σ = 0, we require m2 ≤ 0.

From Fig. 6.1, we observe that ϕ = 0 for both σ1 and σ2. In the case of m2 < 0 and

ϕ2(0) > 0, we have σ1 < 0. As discussed earlier, σ can take negative values within

the BF bound. Our next task is to determine the global minima of the potential by

comparing the values of effective potential. From Eq. 4.17, the effective potential at

ϕ = 0 is

V (ϕ = 0) = V ren
eff (σ). (6.16)

Then for small values of σ

lim
σ→0

V ren
eff (σ) = V (σ = 0) +

Nm2σ

λ
+O(σ2). (6.17)

So, for m2 < 0, we observe that the effective potential Veff increases from V (0)

to V (σ1) since σ1 < 0. However, it decreases from V (0) to V (σ2). Thus, we can

conclude that

V (σ2) < V (0). (6.18)

So, for m2 < 0, the global minimum of the potential is located at ϕ = 0. Therefore,

the global minimum of the potential exhibits symmetry, and there is no spontaneous

symmetry breaking.

Now, If m2 > 0, the minimum of the potential can only occur at ϕ = 0. Consequently,

in this case, the system has no spontaneous symmetry breaking. However, the

minimum of the potential can be at σ1 or σ2. For m2 > 0, from Eq. 6.17, it can be

observed that V ren
eff decreases towards V (σ1) (since σ1 < 0) and increases towards

V (σ2). Thus

V (σ1) < V (σ2), (6.19)

which makes σ1 the global minima. Now, for m2 = 0, we can apply the same reasoning

as for m2 < 0 and conclude that ϕ(σ2) represents the global minimum configuration

of the field.
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In conclusion, in four-dimensional AdS, there is no spontaneous symmetry breaking

for any values of m2 with λ > 0.

6.2.2 Three Dimensions

The computation for the three-dimensional case follows a similar approach as the

four-dimensional case. In three dimensions, we can expand the propagator near u = 0

as (from Eq. 6.4)

lim
u→0

G(W ) =
1

4πL
+

1

4πu
−

∆

4πL
+O(u), (6.20)

where ∆ is defined in Eq. 6.5. Substituting this in Eq. 4.15 one can calculate V1 as

V1 =
Nσ

8πu
−

N

12Lπ
(σ +

1

L2
)
√
1 +L2σ. (6.21)

Here, the BF bound is given by −1/L2 < σ, ensuring that the effective potential

remains real valued. The divergence in V1 is proportional to a linear power of

σ. Therefore, it can be renormalized using Eq. 4.18, which give the renormalized

parameters as
m2

λ
=

1

8π
(
1

u
+
1

L
) +

m2
0

λ0
(6.22)

All the divergences in the effective potential are renormalized by Eq. 6.22. Similar to

flat space (see Section 4.4.1), we can choose λ = λ0. In Eq. 6.22, we included finite

terms involving L in the renormalized parameters. By using this renormalization

condition (4.16a), the renormalized effective potential becomes

V ren
eff =

Nσ

8πL
+
Nm2σ

λ
−
Nσ2

2λ
−
N

12π
(σ +

1

L2
)
3/2

. (6.23)

The Ground State

Continuing the analysis in the same manner as in four dimensions, the stationary

points of the potential are determined by Eq. 4.18. By utilizing Eq. 4.18a, we obtain

ϕ2(σ) = −
N

4πL
−
2Nm2

λ
+
2Nσ

λ
+

N

4πL

√
1 +L2σ. (6.24)
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Here
dϕ2

dσ
> 0, (6.25)

which implies that ϕ2 is a monotonically increasing function of σ. From Eq. 4.20,

we find that the stationary points of the potential V occur at ϕ = 0 or σ = 0. Let’s

consider the extremum at σ = 0, the effective potential is given as

V (0) = −
N

12πL3
, (6.26)

For which we have

ϕ2(0) = −
2Nm2

λ
. (6.27)

Therefore, the value of σ = 0 is only possible if m2 ≤ 0. If we consider m2 < 0, from Eq.

6.27 we find that ϕ2(0) > 0. As a monotonically increasing function, ϕ = 0 is possible

only if σ < 0. According to the BF bound −1/L2 < σ, σ can indeed be negative. Now

let’s consider a σ1 such that −1/L2 < σ1 < 0 and ϕ2(σ10) = 0. We can expand V ren
eff

near σ = 0 as follows:

lim
σ→0

V ren
eff (σ) = −

N

12πL3
−Nσ1

m2

λ
. (6.28)

It is important to note that the only extremum of V ren
eff (σ) occurs when σ = σ10, which

corresponds to ϕ = 0. In the case of m2 < 0, we find that V ren
eff (σ10) > V

ren
eff (σ = 0).

Therefore, the global minimum of the potential is located at σ = 0, representing an

asymmetric minimum and indicating spontaneous symmetry breaking. However,

for m2 > 0 and m2 = 0, the only possible ground state occurs at ϕ = 0, which is a

symmetric configuration.

In conclusion, in the AdS background, the qualitative results are similar to those

obtained in flat space, as discussed in Section 3.4. In four dimensions, there is no

spontaneous symmetry breaking for any values of m2. However, in three-dimensional

AdS, we observe spontaneous symmetry breaking for m2 < 0. Furthermore, one-loop

quantum effects introduce corrections proportional to 1/L and 1/L2 to the effective

mass squared of the theory in three and four dimensions, respectively. Therefore,

curvature’s effect is to modify the effective mass squared of the scalar fields in this

context.
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Conclusions and Future Work

In this thesis, we employ the concept of effective action as a fundamental mathematical

tool to investigate various phenomena, including the Casimir effect, the Schwinger

effect, and spontaneous symmetry breaking (SSB) in Rindler spacetime as well as in

curved spacetime (anti-de Sitter space) or spacetime with non-trivial topology.

7.1 Summary

Our initial work (Chapter 3) delves into the impact of extra compact dimensions and

background electromagnetic fields on the Casimir effect. We develop a closed-form

expression for the one-loop effective potential of a massive complex scalar field

minimally coupled to a constant electromagnetic field. Importantly, this analysis is

conducted in arbitrary p+k dimensional spacetime. Our approach provides a general

framework that reproduces existing results and also yields new insights. Within

this framework, we comprehensively examine the influence of several key factors

on the Casimir force, including the number and size of extra compact dimensions,

the mass of the complex scalar field, and the presence of constant electric and

magnetic fields. Notably, a constant electric field leads to vacuum polarization,

known as the Schwinger effect, with its signature manifested in the imaginary part

of the effective potential. Leveraging the effective potential, we calculate the pair

92



Chapter 7. Conclusions and Future Work

production enhancement rate resulting from extra compact dimensions and finite

boundary conditions, such as parallel plates.

Our research carries implications for experimental investigations. It suggests that

more precise measurements of the Casimir force, capable of distinguishing corrections

arising from extra compact dimensions, could provide experimental validation for

their existence. Furthermore, while the Schwinger effect remains to be experimentally

realized due to its requirement for intense electric fields, our findings indicate that

pair production rates can be significantly enhanced by incorporating finite boundary

conditions, potentially facilitating its experimental observation.

As a mathematical tool of remarkable potency, the effective potential enables further

generalization of our findings. This encompasses extensions, including the twisted

fields, quasi-periodic boundary conditions, and finite temperature effects.

In our subsequent research (Chapter 5 and Chapter 6), we directed our focus towards

the phenomenon of spontaneous symmetry breaking (SSB). SSB is unmistakably

characterized by the non-zero vacuum expectation value of a field, rendering the

effective potential a natural tool for understanding this phenomenon.

To begin with, we pondered over the observer-dependent aspects of SSB. To that

end, we explored SSB from the perspective of a uniformly accelerated observer.

Our analysis revealed that the broken symmetries are restored from the perceptive

of a uniformly accelerated observer, provided the proper acceleration is above a

critical value. These findings had previously been found in the literature in the

context of four-dimensional spacetime and relying on a specific renormalization

procedure, which was incomplete. We have advanced these insights by extending

their applicability to spacetimes of arbitrary dimensions. Furthermore, we introduced

a more general renormalization procedure for calculating one-loop effective potential

in the Euclidean Rindler frame. Connections with finite temperature field theory

results are established, further reinforcing that Rindler space can be a proxy for

Minkowski spacetime with finite temperature.

To comprehensively understand SSB, we employed two distinct models. The first

model featured a single scalar field with λϕ4 interaction, while the second model
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was an O(N) symmetric scalar field theory in the large N limit. We examined

scenarios encompassing discrete and continuous symmetry breaking with these

models, employing two distinct perturbation methods to facilitate our analysis.

Additionally, we extended our effective potential calculations to study SSB in anti-de

Sitter space. In this context, we focused purely on O(N) symmetric scalar field

theory in the large N limit. This work involved explicit calculations to understand

the curvature-dependent aspects of SSB. Our work in anti-de Sitter space may pave

the way for a deeper comprehension of SSB within the framework of quantum gravity

theory, particularly through the lens of the AdS/CFT correspondence.

In summary, the effective action method provides a robust and systematic approach to

studying the vacuum state of a theory and quantum field theory in curved spacetime

in general. They offer a comprehensive understanding of quantum fluctuations,

renormalization effects, vacuum stability, and non-perturbative phenomena, making

them a valuable tool for theoretical physicists in various domains of physics. So, the

effective action method can provide insight into a more general theory of quantum

gravity.

7.2 Future Work

Some possible extensions of our work are listed below.

1. Understanding the Casimir effect in nontrivial topologies using different bound-

ary conditions on the field, like the anti-periodic (twisted fields) and quasi-

periodic boundary conditions. One can extend the results using Euclidean

formalism to obtain finite temperature corrections.

2. One can study SSB in thermal anti-de Sitter space and address the following

questions. Is broken symmetry restored after a critical acceleration? If so, it

would be fascinating to investigate the role of the Hawking-Page transition in

SSB and in the possible restoration of broken symmetry.
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3. We can also study the symmetry breaking from the perspective of a uniformly

accelerating observer in anti-de Sitter space. This is interesting since such a

model would include the effects of both the curvature as well as the existence

of an event horizon. Such an analysis can address the following questions. Is

the Ads-Rindler frame equivalent to finite temperature AdS through Unruh

temperature? Also, using AdS/CFT correspondence, one may calculate the

CFT signature of symmetry restoration, and also provide us with insights on

‘critical acceleration’ in AdS spacetime.

4. One can also inquire the issue of electro-weak symmetry breaking in the early

universe by considering the SSB in de-Sitter (dS) space from the perspectives

of both geodesic as well as accelerating observers in dS spacetime.
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