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Abstract 

Vitamin D3 (cholecalciferol; VD) is an essential micronutrient, extensively agreed as 

the first-line medication for bone-related disorders due to its involvement in 

calcium/phosphorus level maintenance. Recent research highlights also shed its 

importance in several brain-related disorders where it regulates redox imbalance, 

inflammation, apoptosis, growth-factor synthesis, synaptic plasticity, and 

neurotransmission. VD deficiency is proposed to be a risk factor in the progression of 

several neurological disorders, including Huntington’s disease (HD). The majority of 

the biological activity is mediated by the active metabolite of VD i.e., 1,25-

hydroxyVitamin D3 [1,25(OH)2D3 (calcitriol)] via binding to Vitamin D receptor 

(VDR). VD-VDR interaction in turn regulates several genes involved in neuroplasticity, 

neuroprotection, neurotropism, and neuroinflammation. The majority of the work 

reflecting the neuroprotective function of VD comes from clinical and preclinical 

studies conducted in neurological diseases like Alzheimer’s disease (AD), and 

Parkinson’s disease (PD), where reports in the field of Huntington's disease (HD) remain 

limited.  In this thesis, I have explored the neuronal benefits of VD supplementation 

using a toxic-induced model of HD, 3-nitropropionic acid (3-NP) that mimics some of 

the neuropathological symptoms observed in HD.   

  My study is broadly divided into two parts where in the first part I have assessed 

the phenotypic effects of two doses (500IU/kg/day and 2000IU/kg/day) of VD 

supplementation on movement, motor coordination and memory function in 3-NP 

induced mouse model of HD. The results drawn from the first part of the study inferred 

that 500IU/kg/day VD dose was sufficient to rescue movement impairment observed in 

HD mice.  Hence for the latter part of my thesis I restricted my studies on only 500IU 

dose of VD.  

  The second part of my thesis showed that the benefits of VD supplementation 

on behavior phenotype occurred via an enhancenemnt in the gene expression of 

neurotrophins like brain-derived neurotrophic factor (BDNF) and nerve growth factor 

(NGF). VD induction not only enhanced neurotrophin levels but also increased 

cholinergic neurotransmission in two vital regions of the brain severely affected in HD 

i.e the striatum and the cortex. I showed that VD-VDR interaction restored the 
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cholinergic signaling and increased the protein expression of alpha 7 nicotinic 

acetylcholine receptors (α7nAChRs). An enhancement in the gene/protein expression of 

α7nAChRs occurred with a concomitant reduction in the gene expression of brain 

resident immune protein, the T-cell receptor beta (TCR-β) subunit in HD mice. Overall, 

in the present thesis I showed an anti-oxidant, anti-apoptotic, anti-cholinesterase and 

anti-inflammatory effects of VD in HD.  
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1.1. Overview and rationale: 

In the year 1922, McCollum and colleagues discovered Vitamin D for the treatment 

of rickets (McCollum et al., 1922). Two years later, Vitamin D was named according to 

the source of origin and difference in the chemical structure (Hess and Weinstock, 1924). 

In plants, it is considered Vitamin D2 (ergocalciferol), and from animal sources, it is 

referred to as Vitamin D3 (VD, cholecalciferol; Hess and Weinstock, 1924). In 1936, a 

study by Windans and Bock discovered that when skin gets exposed to ultraviolet (UV) 

rays (290-315nm) 7-dehydrocholesterol was converted into pre-Vitamin D3 which further 

gets isomerized to form Vitamin D3 (VD) or cholecalciferol  (Windans and Bock, 1936). 

Thus, VD was obtained through dietery sources and oral supplements. Multiple studies 

thereafter reflected the importance of VD in the maintenance of bone homeostasis 

(Carpenter and Zhao, 1999; Holick et al., 1977; Zhang and Naughton, 2010). The 

physiological benefits of VD were also observed in diseases like osteoporosis, 

hyperthyroidism, cardiovascular diseases, diabetes, hypertension and cancer (Alvarez et 

al., 2019; Bouillon et al., 2022; Hou et al., 2018; Geleijnse, 2011; Laird et al., 2010; 

Nakashima et al., 2016; Pilz et al., 2016; Varghese et al., 2021; Vaughan-shaw et al., 2017; 

Walker and Bilezikian, 2017; Wanger et al., 2012).  

In the last three decades, numerous studies showed therapeutic benefits of VD on 

brain health (da Costa et al., 2023; Eyles et al., 2005, 2013; Emmanuel Garcion et al., 2002; 

Gezen-Ak et al., 2007; Grimm et al., 2013; Koduah et al., 2017; Landfield and 

Cadwallader–Neal, 1998; Lemire and Archer, 1991; Musiol and Feldman, 1997; Patel and 

Shah, 2022; Stio et al., 1993). The therapeutic options of VD on brain health largely come 

from observational and clinical studies performed on human samples and animal models 

where it was demonstrated that VD deficiency increases the risk of mortality, infections, 

and many other diseases which possibly can be avoided by VD supplementation (Amrein 

et al., 2020; Harrison et al., 2020; Janjusevic et al., 2022; Siddiqui et al., 2020; Smolders 

et al., 2021; Wajda et al., 2019). VD deficiency is now considered a global pandemic 

(Anjum et al., 2023). The prevalence of health problems associated with low serum levels 

of VD has been observed among more than a billion people worldwide (Moretti et al., 

2018). Several scientific groups observed that the variations in the amount of VD in the 

https://www.zotero.org/google-docs/?VAV7bf
https://www.zotero.org/google-docs/?zB9VSf
https://www.zotero.org/google-docs/?5TiOHI
https://www.zotero.org/google-docs/?ZOurPH
https://www.zotero.org/google-docs/?Q2DzsJ
https://www.zotero.org/google-docs/?u9OO01
https://www.zotero.org/google-docs/?yez1Xu
https://www.zotero.org/google-docs/?yez1Xu
https://www.zotero.org/google-docs/?yez1Xu
https://www.zotero.org/google-docs/?yez1Xu
https://www.zotero.org/google-docs/?NMKVoU
https://www.zotero.org/google-docs/?NMKVoU
https://www.zotero.org/google-docs/?NMKVoU
https://www.zotero.org/google-docs/?lmFWA9
https://www.zotero.org/google-docs/?W4Q4B6
https://www.zotero.org/google-docs/?W4Q4B6


3 
 

body are attributed to geographical location, seasons, cultural practices, lifestyles, and diets 

(Webb, 2006). Several factors determine the body's availability of VD, but 90% of the 

elderly people are deficient in VD because of their lifestyle and low exposure to sunlight 

(Rui et al., 2014). In 2017, Michael Berridge proposed aging as an important risk factor for 

the development of neurodegenerative disorders (Berridge, 2017). In his study, he 

hypothesized that the process of aging could be modulated by adequate intake of VD 

supplementation that in turn regulated the expression of genes related to calcium 

homeostasis, antioxidants, serotonin synthesis, inflammation, autophagy, mitochondrial 

dysfunction, epigenetic changes and DNA disorders (Berridge, 2017). He quoted VD as a 

“miracle Vitamin” as VD sufficient individuals were observed to have a decreased rate of 

aging (Berridge, 2017). This has led to considerable debate regarding VD supplementation 

in the elderly and whether deficiencies in VD represent an indicator of ill health or increase 

one’s susceptibility to chronic disease (Berridge, 2017). 

VD deficiency and insufficiency were observed across myriad age-related 

neurological diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), 

multiple sclerosis (MS), Huntington's disease (HD), dementia and depression (Anwar et 

al., 2023; Azam et al., 2021; Banerjee and Chatterjee, 2003; Berridge, 2017; Chel et al., 

2013; Fullard and Duda, 2020; Moretti et al., 2018; Munger et al., 2004; Somoza-Moncada 

et al., 2023). One of the major significant mental health problems today observed in elderly 

people includes dementia and impairment in movement which has been shown with an 

inverse relationship with circulating VD levels in the blood plasma as well as in the brain 

(Bivona et al., 2019; Farghali et al., 2020; Sultan et al., 2020; Utkan Karasu and Kaymak 

Karataş, 2021). A high concentration of VD metabolites in the brain regions particularly 

the hippocampus and substantia nigra region has been shown to improve memory and 

motor function (Moretti et al., 2018).  In the other brain regions like the prefrontal cortex, 

vital for attention and working memory, low levels of VD have been positively correlated 

with anxiety induction (Wu et al., 2021). Molecular studies have suggested that aging and 

age-related neurological disorders share some common characteristics such as protein 

aggregation, synaptic dysfunction, energy depletion from mitochondrial abnormalities, 

DNA and RNA deficits, inflammation, oxidative stress, and neuronal death (Wilson et al., 

2023). The patients suffering from these neurological conditions showed a dramatic 
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improvement in cognitive function, learning, and memory on VD supplementation (Eyles, 

2020; Gil and Rego, 2008; Karabulut et al., 2021; Landel et al., 2016; Liang et al., 2018; 

Lima et al., 2018; Mohamed et al., 2015; Rossom et al., 2012; Yamini et al., 2018). Thus, 

multiple studies showcased the neurobiological benefits of VD intake in neurodegenerative 

diseases. 

Huntington’s disease (HD) is one such neurodegenerative disorder where a high 

prevalence of VD deficiency was reported in the Caucasian population (Chel et al., 2013). 

However, in the case of HD, minimal data is available to determine the molecular 

mechanism behind the benefits of VD supplementation and its mode of action in the 

striatum, the prime brain region known to undergo neuronal atrophy in HD. The striatum 

constitutes the main output station of the basal ganglia circuitry and the medium spiny 

neurons (MSNs) are the major neuronal components of the striatum (Chambon et al., 

2023). These neurons are demarcated on the basis of the expression of dopamine (D1 and 

D2) receptors and are involved in motor control and cognitive functions. D2 receptors are 

expressed in indirect pathway neurons and inhibit motor output, while D1 receptors are 

expressed in direct pathway neurons and have an excitatory effect on motor output. In order 

to control movement appropriately, the balance between direct and indirect pathways is 

essential. HD is one such movement disorder caused by alterations in the direct and indirect 

pathways (Garret et al., 2018; Manjari et al., 2022; Chambon et al., 2023). It is a 

neurodegenerative disorder caused by a selective loss of medium spiny neurons (MSNs) 

primarily in the striatum (Gil and Rego, 2008; Gil-Mohapel, 2012). HD is an autosomal 

dominant disorder and is caused by an increased number of CAG repeats in the 1st exon of 

the huntingtin gene (Htt), located on the 4th chromosome (McColgan and Tabrizi, 2018; 

Capiluppi et al., 2020). The expansion of more than 36 CAG repeats causes a 

polyglutamate stretch in the huntingtin protein where the accumulation of polyglutamate 

aggregates causes loss of striatal neurons. Some of the features which are responsible for 

this selective neuronal loss include mitochondrial dysfunction, oxidative stress, 

inflammatory responses, unbalanced homeostasis of apoptotic molecules, impairment in 

synaptic plasticity, reduced axonal transport of neurotrophins and neurotransmitters 

(Cattaneo et al., 2005; El-Sahar et al., 2020; Garret et al., 2018; Gatto and Weissmann, 

2022; Gil and Rego, 2008; Johri et al., 2013; Paul and Snyder, 2019; Ravalia et al., 2021; 
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Sawa et al., 2003; Upadhayay et al., 2023; Zheng et al., 2018).  Therefore, in our study, I 

have mainly focused on exploring the potential mechanisms of neuroprotection by Vitamin 

D3 (VD) in Huntington’s disease (HD). In my thesis, I have examined the phenotypic 

changes in the behavior of HD animals on VD supplementation. My work also unravels 

the molecular underpinnings by which VD shows its protective role in the striatum via the 

Vitamin D receptor (VDR) in 3-nitropropionic acid (3-NP) induced mouse model of HD.  

1.2. Existing Research Gaps: 

1. The beneficial effect of VD supplementation in HD patients remains limited.  

2. There is limited data available in which striatal brain samples from HD model have 

been examined for action of VD supplementation on VDR expression. 

3. No study has yet validated VD potential to activate multiple rescue pathways and 

decrease the progression of striatal neuron death in HD. 

4. There is limited information about neuroprotective role of VDR signaling pathways 

and its downstream cellular targets in HD. 

1.3. Research Objectives and Hypothesis: 

1.3.1. Research objectives: 

Evidence indicates that VD supplementation has a beneficial effect on cognitive 

and psychiatric functions by regulating the expression of key neurotrophins like brain 

derived neurotrophic factor (BDNF), nerve growth factor (NGF), glial derived 

neurotrophic factor (GDNF), neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4) (Alamro 

et al., 2020; Koshkina et al., 2019; Lin et al., 2020; Mohamed et al., 2015). The protective 

effect of VD is commonly carried out through its biological receptor i.e. VDR (Bao et al., 

2020; Lima et al., 2018; Lin et al., 2020; Xu and Liang, 2021). One pathway which is 

known to increase the neuronal survival by the cross-talk between VDR and cholinergic 

activity via alpha 7 nicotinic acetylcholine receptor (da Silva Teixeira et al., 2020; 

Zaulkffali et al., 2019). 

Thus, in the first part of my study, I examined the beneficial effects of VD 

supplementation on behavior, thereby rescuing the phenotypic changes in HD. In the 

second part of my study, I explored the molecular mechanisms through which VD 
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supplementation showed its rescue effect, which helps in the survival of striatal neurons. 

In the third part of my thesis, I have determined VD's anti-inflammatory, antioxidant, and 

anti-cholinesterase activity on HD in cortical and striatal neurons. In the final part of my 

study, I have discussed the importance of a nutraceutical, VD as a savior for network-wide 

function through the cross-talk between the VDR and the cholinergic activity through alpha 

7 nicotinic acetylcholine receptor. In the future direction, I have argued on the starling role 

of VD, where its early intake can benefit in aging and across age-related neurological 

disorders including HD. 

1.3.2. Aim and objectives: 

The main aim of my study was to explore the benefits of VD in HD and elucidate 

the downstream signalling mechanisms of neuroprotection. The following were the 

proposed objectives of the present thesis: 

1. To understand the dose and time-dependent effect of VD supplementation in the 3-

nitropropionic acid (3-NP) induced mouse model of HD. 

2. To explore if VD enhances neurotrophin expression via VDR in HD mice. 

3. To elucidate the anti-oxidative, anti-inflammatory, and anti-cholinesterase activity of 

VD in HD. 

4. To explore VD-mediated intervention on α7 nAChRs and TCR-β subunit receptor gene 

expression in HD. 

1.4. Background: 

1.4.1. The historical significance of VD: 

In 1921, Hess & Unger discovered from their clinical studies that sunlight could 

cure rickets (Hess and Unger, 1921). Later, in the year 1922, McCollum and his coworkers 

discovered Vitamin D, while trying to discover a drug to treat rickets (McCollum et al., 

1922). McCollum and his co-workers demonstrated that a modified form of cod-liver oil, 

which was depleted of Vitamin A, cured rickets. His team identified Vitamin D as an entity 

of fat-soluble Vitamins (McCollum et al., 1922). In successive years, a link between 

sunlight and calcium retention was provided by the other authors when they found that 
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rickets in rats got cured by irradiating food with UV rays (Steenbock, 1924). UV irradiation 

converts inactive lipids into active antirachitic substances which potentiated bone 

development in children (Steenbock, 1924). Later, Hess & Weinstock named animal-

derived Vitamin D as Vitamin D3 (VD), while plant-derived Vitamin D was tagged as 

Vitamin D2 (Hess and Weinstock, 1924). In 1936, the dermal synthesis of Vitamin D3 via 

sun irradiation was explored by Windans and Bock, who showed non-enzymatic 

production of Vitamin D3 from 7-dehydrocholesterol in the skin on exposure to sunlight 

(Windans and Bock, 1936). In 1960s, the structural details of VD revealed that it was a 

steroid hormone which can act as a nuclear receptor (Azam et al., 1969; Colston et al., 

1981; Haussler et al., 1995, 1968; Norman et al., 1982).  

The effect of VD on bone health remained undebatable but the first evidence on   

the neurobiological importance of VD was provided by Lemire and Archer in the year 1991 

(Lemire and Archer, 1991). Their study reflected calcitriol as an important remyelinating 

and immunosuppressive agent, where in an animal model for multiple sclerosis (MS) i.e., 

experimental autoimmune encephalomyelitis (EAE), VD supplementation increased the 

expression of myelin basic protein (MBP) in the serum (Lemire and Archer, 1991). Since 

1991, researchers discovered progressively the myriad benefits of calcitriol intake across a 

number of neuropsychiatric disorders where studies highlighted the role of calcitriol in 

neuroprotection, immunomodulation, neurotransmitter maintenance, and synaptic 

plasticity (Almeras et al., 2007; Cornet et al., 1998; Eyles et al., 2007, 2005; Garcion et al., 

1997; Hajiluian et al., 2017; Lv et al., 2020; Rodrigues et al., 2019; Shinpo et al., 2000). 

Subsequent studies showed VD mediated regulation on synaptic neurotransmission and 

synaptic plasticity via enhancement in multiple downstream signal transduction pathways 

(DeLuca et al., 2013; Eyles et al., 2007; Groves et al., 2014; Kouba et al., 2023; Mayne 

and Burne, 2019).  

The main activity of VD in the brain was observed in the regulation of calcium 

signaling, cell proliferation, differentiation, and gene regulation (Alamro et al., 2020; 

Carlberg and Campbell, 2013; DeLuca et al., 2013; Eyles et al., 2003; Eyles, 2020; Groves 

et al., 2014; Holick, 2015; Taniura et al., 2006). The researchers found that VD has 

tendency to cross blood-brain barrier (BBB) in its circulating forms i.e., calcidiol (25-

hydroxy VitaminD3 (25-(OH)D3)) and calcitriol (1,25-dihydroxy Vitamin D3 [1,25-
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(OH)2D3] and reaches the central nervous system (CNS, Anjum et al., 2023; DeLuca et al., 

2013; Galoppin et al., 2022; Mayne and Burne, 2019; Molinari et al., 2019). The active 

metabolites of VD are calcitriol or 1,25(OH)2D3, which binds to the VDR in the brain and 

modulates the transcription of more than 2000 genes (Carlberg and Campbell, 2013; 

Warwick et al., 2021). VD belongs to the member of the steroid receptor superfamily. VD-

VDR then forms a heterodimer with the retinoid X receptor (RXR), another steroid receptor 

family member (Chambon, 2005; X. Cui et al., 2017). In the target gene, the VD-

VDR/RXR complex binds to the Vitamin D response element (VDRE) and controls the 

transcription of many target genes in conjoint association with other co-activators and are 

responsible for the overall genomic effect of calcitriol in the target cell (Bao et al., 2020; 

Bikle, 2011; X. Cui et al., 2017).  

The main resident cells of the central nervous system mainly comprise neurons and 

glial cells (Barres and Barde, 2000; Brown, 2007; Paridaen and Huttner, 2014; Quan et al., 

2022). The beneficial effect of VD in brain occurs mainly to genomic effect which help in 

neuronal survival, proliferation, and differentiation (Bakhtiari-Dovvombaygi et al., 2021; 

Di Somma et al., 2017; Evans et al., 2018; Magdy et al., 2022; Manjari et al., 2022). There 

have also been numerous studies that have shown that VD acts as an as an anti-

inflammatory and anti-oxidant agent and aids in glial health (Alessio et al., 2021; Lee et 

al., 2020; Mazzetti et al., 2022). VD infusion also attenuates microglial activation by 

decreasing the production of inflammatory cytokines and increasing the expression of Iba-

1 (ionized-calcium binding adapter protein-1) which is a sensitive marker for microglia 

(Calvello et al., 2017; Shi et al., 2021). Similarly, VD regulates the synthesis of different 

neurotrophic factors like NGF, NT-3, and NT-4 in astrocytes (I. Neveu et al., 1994b, 

1994a). 

1.4.2. VD: Structure and function 

VD is now considered an essential micronutrient, a prohormone, and a neurosteroid 

with myriad physiological benefits on the skeletal and non-skeletal systems (Anjum et al., 

2023; Bendik et al., 2014; Bouillon et al., 2022; Groves et al., 2014; Latham et al., 2021). 

It can be obtained through various means, like oral supplements, dietary sources, and 

dermal synthesis (Carpenter and Zhao, 1999; Windans and Bock, 1936). There are two 
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forms of Vitamin D that are mainly present in nature, i.e., ergocalciferol (Vitamin D2) and 

cholecalciferol (Vitamin D3), where ergocalciferol (Vitamin D2) is of plant origin, whereas 

cholecalciferol is of natural animal origin (Zhang and Naughton, 2010). A series of 

enzymatic reactions takes place within the body converts the inactive precursors of 

prohormones into active forms. VD enters the body via dietary supplements or sunlight 

and undergoes a series of enzymatic reactions to form its active form, calcitriol or 1,25-

dihydroxycholecalciferol (1α,25-(OH)2D3; Christakos et al., 2016). The active form of VD 

or calcitriol [1α,25-(OH)2D3] is a secosteroid hormone that contains a broken carbon-

carbon double bond at the 9th and 10th position in the B-ring of 

cyclopentanoperhydrophenanthrene structure which is the basic skeletal structure of 

steroids as seen in Fig. 1A (Seuter et al., 2014). It was reported that the flexible nature of 

1α,25-(OH)2D3 structure helps the molecule to bind perfectly into the ligand binding site 

of Vitamin D binding protein (DBP). Also, the structure of 1α,25-(OH)2D3 helps the 

molecule to bind to both the nuclear VDR (nVDR) and membrane-bound VDR (mVDR), 

which further helps in the regulatory function of VD in target organs (Norman et al., 1982). 

Calcitriol elicits its cellular responses via binding to the VDR. Depending on the 

mechanism by which it triggers cellular responses, VD shows bowel-like shapes as well as 

planar-like shapes (Sirajudeen et al., 2019). 

 

Fig.1. Structure of cholecalciferol and 1α,25(OH)2D3 or calcitriol: The structure of VD 

is similar to that of steroid, except for the broken rings at positions C9 and C10. Calcitriol 

is the active metabolite of VD with three (OH) hydroxyl groups and commonly referred to 

as 1,25-dihydroxycholecalciferol (Image Source: Wikipedia) 
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There are a number of factors that influence the biological availability of VD, some 

of which are the season, geographic latitude, time, cloud coverage, and individual 

characteristics, such as age, pigmentation, and clothing (Webb, 2006). Originally, VD was 

found to be beneficial for calcium metabolism and the maintenance of bone structure, but 

it now offers a variety of functional characteristics where it shows its anticarcinogenic, 

hepatoprotective, cardioprotective, antiarthritic, and neuroprotective properties (Anjum et 

al., 2018; Eyles et al., 2005; Eyles et al., 2021; Shea et al., 2022). In association with the 

parathyroid hormone, VD controls calcium and phosphorus homeostasis in the blood, 

bones, neuromuscular junctions, immune system, and cardiovascular system (Sirajudeen 

et al., 2019). In the cardiovascular system, it facilitates the renin-angiotensin system, 

thereby suppressing inflammation in both the heart and the blood vessels (Wang et al., 

2008). VD is not only important for the function of peripheral organs but also plays a 

critical role in the central nervous system (CNS), where higher levels of VD are positively 

correlated with better memory function and cognition (Anjum et al., 2023; Shea et al., 

2023). The latter study reinforces the importance of studying how VD created resilience to 

protect the aging brain against diseases such as AD and other related dementias (Shea et 

al., 2023). VD influences a number of important events in brain development, including 

neurotrophin synthesis, neurotransmitter synthesis, and axonal elongation (Eyles, 2020). 

VD stimulates NGF, NT-3, and NT-4 production, which are crucial to neuronal survival 

and development (Cui and Eyles, 2022; Farghali et al., 2020; Gezen-Ak et al., 2014).  

Over the last two decades, extensive research on neuronal and non-neuronal brain 

cells showed that calcitriol not only regulates gene expression but also can rapidly alter the 

ion channel function (X. Cui et al., 2017). One of the major functional effects of VD was 

its effect on the function of both voltage-gated and ligand-gated ion channels expressed in 

the CNS (Restrepo-Angulo et al., 2020). Some of the ion channels recently shown to be 

modulated directly by calcitriol are L-type voltage-gated calcium channels (L-VGCC), 

transient receptor potential (TRP) vanilloid family 1 (TRPV1) channel, glutamate-type 

receptors like N-methyl-D-aspartate (NMDA) and kainate receptors (Long et al., 2021). It 

is documented that VD induction increased the expression of TRPV6, a TRP channel that 

augments the calcium uptake in human LNCaP (lymph node cancer of the prostate) cells 

and thereby enhanced cellular proliferation (Lehen’kyi et al., 2011). Knocking down of 
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these ion channel receptors inhibited cell proliferation. This suggests that calcitriol 

regulates the calcium influx by modulating the expression of ion channel receptors 

(Restrepo-Angulo et al., 2020). Some reports have also showed that modulation in the 

expression of L-VGCC regulates the secretion of neurotransmitters (Atlas et al., 2001). 

Interestingly, an opposite effect has been observed in studies on voltage-gated potassium 

channels like TWIK (Tandem of p domains in a weak inward rectifying potassium 

channel)-related acid sensitive potassium channel 1 (TASK-1; Callejo et al., 2020).  

A significant role is played by VD in brain development through VDR (Erben et 

al., 2002). Immunohistochemical evidence confirmed the presence of VDR expression in 

mammalian brains (Dursun and Gezen-Ak, 2017; Liu et al., 2021). VDR is principally 

located in the nucleus of target cells and  requires VDR to show its effect is seen in different 

regions of the brain like striatum, cortex, hippocampus, amygdala, substantia nigra, and 

hypothalamus (Cui et al., 2018; Liu et al., 2021; Lv et al., 2020; Moretti et al., 2018; Shah 

et al., 2019). Most of the vital function of VDR were inferred from studies undertaken in 

VDR null mice (VDR-/-; Van Cromphaut et al., 2001). These mice showed normal 

cognition but suffered from abnormal motor behavior, increased anxiety, and also 

developed hypocalcemia and retarded bone growth (Yoshizawa et al., 1997; Burne et al., 

2005; Bouillon et al., 2008). Moreover, gene silencing of VDR using small interfering 

RNA (siRNA) has been showed to cause a corresponding reduction in neurotrophin 

production in the normal mammalian brain (Gezen-Ak et al., 2011). In addition, the 

activation of VDR is known to regulate multiple neuronal signaling pathways through its 

effect on the expression of BDNF, NGF, and GDNF. The neurotrophins are necessary for 

the survival, migration and differentiation of developing neurons (Bernd, 2018; Cohen-

Cory et al., 2010; Duarte Azevedo et al., 2020; Hall et al., 2018). In one specific finding, 

authors showed that VDR facilitated c-Ret (c-terminal of rearranged during transfection) 

mediated downstream signaling pathway and potentiated neuronal survival in the 

dopaminergic neurons of substantia nigra in a VD deficient rodent model (Pertile et al., 

2018). As c-Ret forms the endogenous receptor for the neurotrophin, GDNF, it was inferred 

from the above studies that VDR can act directly and indirectly via neurotrophins to rescue 

neuronal survival in multiple brain regions. (Eyles, 2020; Liu et al., 2021). 
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VDR expression was also observed in the glial cells of the CNS. The two most 

abundant non-neuronal cells which express VDR are the microglia and the astrocytes 

(Alessio et al., 2021; Lee et al., 2020; Mazzetti et al., 2022). In microglia, VDR and specific 

enzymes (1ɑ-hydroxylase) convert calcidiol [25-(OH) D3] to calcitriol ([1,25-(OH)2D3]; 

Alessio et al., 2021; P. W. Lee et al., 2020). VDR has been reported to be expressed in 

astrocytes along with the VD activating enzyme i.e., CYP27B1. CYP27B1-positive 

astrocytes have been showed to display neuroprotective features (Jiao et al., 2017; Mazzetti 

et al., 2022). Hence, a number of studies are available that confirmed impact of VD on the 

healthy brain as well as in brain-related disorders (Jang et al., 2015; Mehri et al., 2020; 

Molnár et al., 2016). 

1.4.3. Metabolism of VD: 

In late 1930s, the discovery of VD occurred and thereby it was tagged as the 

“sunshine Vitamin” which had a vital effect on the maintenance of calcium and phosphorus 

homeostasis (Nair and Maseeh, 2012). The study by Holick and team demonstrated that 

when 7-dehydrocholesterol in the skin was exposed to ultraviolet light (290-315 nm), pre-

Vitamin D3 gets isomerized into Vitamin D3 (Holick et al., 1977; Christakos et al., 2016). 

The conversion of 7-dehydrocholesterol into pre-Vitamin D3 occurrs within fifteen 

minutes, which then gets isomerized to produce the active form of VD (calcitriol; Holick, 

1981). Calcitriol transportation in the circulation requires a lower binding affinity for 

Vitamin D binding protein (DBP) to reach its target organs (Hollis, 1984; Horst et al., 

1986). 

VD metabolism takes palce by following a two steps enzymatic reactions via 

hydroxylation at the 25th position and hydroxylation at the 1α position in the presence of 

cytochrome P450 oxidases (CYPs; Sugimoto and Shiro, 2012). These two enzymatic 

hydroxylation reactions are mandatory to produce the active form of VD. In the first step, 

cholecalciferol is initially transported to the liver with help of carrier protein where it gets 

hydroxylated into 25-hydroxyVitamin D or 25(OH)D3 (also called calcidiol) in the 

presence of the enzyme 25-hydroxylase or CYP2R1 (Cheng et al., 2004). CYP2R1 is the 

major enzyme responsible for hydroxylation at 25th position of VD (Christakos et al., 

2016). The calcidiol or 25-(OH)D3 is then transported to the kidney for its second 
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hydroxylation step where it is converted into the biologically active form called as 1-alpha-

25-dihydroxyVitamin D3 (1ɑ,25-(OH)2D3) or calcitriol by the enzyme, 1ɑ-hydroxylase 

(cytochrome P450 family 27 subfamily B member 1 or CYP27B1; Christakos et al., 2016). 

Calcitriol is a potent ligand of the VDR and mediates most of the physiological actions of 

the VD (Eyles et al., 2005; Eyles et al., 2021).  The enzymes, 1ɑ-hydroxylase or CYP27B1 

and 25-hydroxylase or CYP2R1 mainly resides in the endoplasmic reticulum or 

mitochondria and requires cytochrome P450 oxidases for successive hydroxylation 

reactions and are resident to the inner mitochondrial membrane (Cheng et al., 2003). In the 

hepatocytes, the majority of the activity of 25-hydroxylase is seen in mitochondria when it 

binds to CYP2R1 and generates 25-(OH)D3 (calcidiol; Cheng et al., 2003). However, in 

the kidney, the enzyme, 1ɑ-hydroxylase (CYP27B1) is present both in ER and in 

mitochondria where the synthesis of calcitriol takes place (Takeyama et al., 1997).  

Recent evidence however suggested that the kidney is not the only organ where the 

second step of hydroxylation takes place to produce calcitriol or (1ɑ,25(OH)2D3) by the 

enzyme, 1ɑ-hydroxylase (CYP27B1). These enzymes are also present in nonrenal cells like 

keratinocytes, monocytes, macrophages, osteoblasts, prostate, colon cells, neuron, and glial 

cells (Bikle, 2011; Jones et al., 2014; Eyles et al., 2005). In the mammalian brain, 1ɑ-

hydroxylase (CYP27B1) is found to be widely distributed across different brain regions 

both during development and in adulthood (Eyles, 2020; Eyles et al., 2005; Gáll and 

Székely, 2021; Mazzetti et al., 2022; Zehnder et al., 2001). This suggests that neurons and 

glial cells both can regulate the local production of calcitriol or calcidiol and is capable to 

modulate neuronal activity (Gáll and Székely, 2021; Eyles et al., 2005; Mazzetti et al., 

2022).  However, both circulating form of VD (calcidiol and calcitriol) are capable to cross 

the blood-brain barrier and have the potential to add to the local concentration of calcitriol 

in the CNS (Anjum et al., 2023). 

The catabolism of calcidiol or calcitriol occurs via the mitochondrial enzyme, 24-

hydroxylase or 24-hydroxylase (CYP24A1) present in both renal and nonrenal cells 

(Huang et al., 2015; Christakos et al., 2016). CYP24A1 can catalyze the conversion of both 

25-hydroxyVitamin D3 (25-(OH)D3; calcidiol) and 1,25-dihydroxyVitaminD3 (1,25-

(OH)2D3; calcitriol) into 24,25-dihydroxyVitamin D3 (24,25-(OH)2D3) which is destined 

for excretion (Christakos et al., 2016). The primary excretory route for excess VD is 
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through bile into feces (Jones et al., 2014). CYP24A1 (24-hydroxylase) initiates various 

catabolic reactions, leading to calcitriol inactivation. The 24-hydroxylation is followed by 

the oxidation of the 24-OH group to the keto group leading to the cleavage between C23 

and C24 positions. Subsequently, this results in the formation of calcitroic acid with no 

biological activity. Thus, CYP24A1 is likely to play an important role in protecting the 

body from excess amounts of VD, thereby maintaining sufficient levels of VD in serum 

(Bikle, 2011; Jones et al., 2014). 

 

Fig.2. Metabolism of 7-dehydrocholesterol to calcitriol: VD is produced in the skin from 

7-dehydrocholesterol in a non-enzymatic process resulting in the formation of pre-Vitamin 

D which further isomerizes into VD. VD gets converted into 25-hydroxyVitamin D3 in the 

liver by 25-hydroxylases. The active form of VD i.e., 1α,25-hydroxyVitamin D3 is formed 

in the kidney by undergoing a second hydroxylation reaction in the presence of 1α-

hydroxylases. Whereas, the excess amount of VD gets converted into its inactive form in 

the presence of 24-hydroxylase to form calcitroic acid. Thus, formed calcitroic acid gets 

excreted through bile. (Image source: Jones et al., 2014). 
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1.4.4. Cellular activity of VD: 

The cellular effect of the active form of VD or calcitriol is exerted by its binding to 

its nuclear or membrane-bound VDR (Sirajudeen et al., 2019). The importance of VD in 

the regulation of different aspects of brain development, differentiation and cellular 

machinery was defined via the degree of expression of VDR (Anjum et al., 2023; Di 

Somma et al., 2017; Moretti et al., 2018; Umar et al., 2018).  Due to the differential gene 

expression of VDR in different brain regions like striatum, cortex, hippocampus has 

differential gene expression of VDR, there is a region specific effect of VD-VDR mediated 

benefits on neuronal function (Cui and Eyles, 2022; Landel et al., 2017; Liu et al., 2021).  

1.4.4.1. Structure and function of VDR – Cellular localization: 

VDR is found mainly in mammalian tissues where its binding to the active 

metabolite of VD i.e., calcitriol regulates the expression of more than 2000 genes (Carlberg 

and Campbell, 2013; Warwick et al., 2021). It was proposed that the activity of VDR takes 

place through either cell signaling pathways or by ligand-activated transcription factors, 

depending on whether the receptor is membrane-bound or nuclear bound  (Bikle, 2021; 

Rastinejad et al., 2013; Sirajudeen et al., 2019; Zhang et al., 2011; Zmijewski and Carlberg, 

2020). 
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Fig.3. Schematic representation of chromosomal and protein domains of nVDR: On 

the 12q chromosome, VDR is located. VDR protein contains several functional domains. 

Two zinc finger motifs are found at the N-terminus of the DNA binding domain and nuclear 

localization motif. A hormone-binding domain is found at the protein’s C-terminus, which 

also contains an activation function (AF-2) domain, while heterodimerization regions are 

found in the scattered regions of the protein, where it binds to the retinoid X receptor. 

(Image source: Fibla and Caruz, 2010, Manchanda et al., 2012) 

The gene encoding for VDR is located on the 12th chromosome (Bid et al., 2012). 

The molecular mass of VDR is 48 kilodalton with two functional domains namely, a DNA-

binding domain (DBD) and a ligand-binding domain (LBD).  

(i) DNA-binding domain (DBD): In the DNA-binding domain of VDR, there are two 

zinc finger motifs which is located near the N-terminus region of the protein (Fibla 

and Caruz, 2010). The first zinc finger is important for the formation of heterodimer 

with retenoid X receptor (RXR) whereas the second zinc finger is involved in 

binding of specific DNA to the Vitamin D response element (VDRE) of the target 

gene (Rochel, 2022; Wan et al., 2015). RXR binds to the upper half site while VDR 

binds to the downstream site of VDRE which are separated by three base pairs of 
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spacer DNA (DR3; Shaffer and Gewirth, 2002). DNA binding of VDR is dependent 

upon the availability of the binding site through pioneer factors and coactivators, 

which opens the chromatin and modify chromatin topology (Rochel, 2022).  

(ii) Ligand-binding domain (LBD): The ligand-binding domain is located at the C-

terminal region of VDR, along with a motif necessary to activate the function of 

VDR which is called  ligand-dependent transcriptional activation domain (AF-2; 

Fibla and Caruz, 2010). LBD domain contain twelve helices, i.e., three two turn 

helices and three-stranded beta sheets which undergoes conformational changes 

when bound to its ligand (Rochel, 2022). The binding of specific agonist (calcitriol) 

with VDR induces conformational change in the first 12 helices which are buried 

deep inside the receptor allowing the upregulation of transcriptional activity of 

different target genes (Mutchie et al., 2019; Rochel, 2022; Wan et al., 2015; 

Zmijewski and Carlberg, 2020). The gene expression of target genes ultimately 

depends on the conformational changes induced in the 12th helix which recruits 

coactivator at the beginning of the gene expression (Rochel, 2022). The absence of 

agonist causes no conformational change in the 12th helix, thereby inhibiting the 

recruitment of coactivator which in turn suppresses gene expression. It is suggested 

that AF-2 motif may mediate transactivation through ligand-dependent 

intermolecular interaction with coactivators and through ligand-induced 

intramolecular contacts with the VDR ligand-binding domain itself. This balance 

in the conformational changes in 12th helix of LBD that is the major regulator for 

transcription regulation of many genes in the target cells (Ekimoto et al., 2021; 

Rochel, 2022; Slominski et al., 2021; Wan et al., 2015). 

Calcitriol mediates its biological effects by binding with VDRs via genomic 

and non-genomic pathways, both of which are manifest through nuclear VDRs 

(nVDRs) and membrane-bound VDRs (mVDRs; Fibla and Caruz, 2010, 

Manchanda et al., 2012). 
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1.4.4.2. Genomic action of VDR: 

The genomic activity of VD is facilitated through its binding with the VDR located 

in the nVDR (Lu et al., 2018; Sirajudeen et al., 2019; Zhang et al., 2023). It is attributed 

by the interaction between VD, VDR, and retinoid X receptors (RXR). When calcitriol gets 

attached to VDR, it undergoes conformational changes in the ligand binding domain. These 

conformational changes facilitate the formation of heterodimer with RXR. The VD-

VDR/RXR complex interacts with the VDRE in the promoter region of target genes across 

the genome to induce or suppress the gene expression. The classical form of VDRE consists 

of two half-sites separated by three nucleotides, referred to as DR3 (Shaffer and Gewirth, 

2002). The VD-VDR/RXR complex can also bind to the DR4 type of VDRE (Carlberg and 

Dunlop, 2006). When the VD-VDR/RXR complex binds with VDRE, it leads to the release 

of co-repressor proteins, such as nuclear receptor corepressor 2 or silencing mediator of 

retinoic acid and thyroid hormone receptor (NcoR2/SMRT), in addition to recruiting co-

activators, such as steroid receptor coactivator 1 (SRC1), that promote the expression of 

target genes (Haussler et al., 2013). When the VD-VDR/RXR complex binds to the 

promoter region of the specific gene, it initiates transcription, where the rate-limiting step 

is based on the the bio availability of calcitriol or VD (Eyles, 2020). The genomic effect of 

VD occurs in nearly all the body cells. For the purpose of this thesis, we will mostly focus 

on the genomic effect of VD in developmental, adult, and aged brain. 

Majority of the studies which reflect the genomic activity of VD on neurogenesis 

focused on the hippocampal region. Several groups have investigated the effect of VD on 

the developing hippocampal neurons, neuronal outgrowth, and neuronal development via 

regulating the gene expression of NGF (Brown et al., 2003; X. Cui et al., 2017; Juwita et 

al., 2021; Marini et al., 2010; Morello et al., 2018; I. Neveu et al., 1994a; Ucuz et al., 2015). 

Gene array analysis showed that low levels of VD during gestation influence the genes 

involved in neuronal development and differentiation via the upregulation of myriad 

neurotrophic factors (Brown et al., 2003; Naveilhan et al., 1996; I. Neveu et al., 1994a). 

Many insights on the genomic effect of VD also were inferred from studies utilizing a 

developmental VD (DVD) deficient or 1ɑ-hydroxylase lacking enzyme rodent models 

(Groves and Burne, 2017). VD deficiency in pregnant females decreases the neurosphere 
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formation and reduces cognitive function in the offspring, suggesting that VD plays a vital 

role in cell proliferation (Chowdhury et al., 2020; Cui et al., 2007). There was also an 

increase in cell proliferation in the hippocampal dentate gyrus and a decrease in the survival 

of newborn neurons (Morello et al., 2018). According to a study on SH-SY5Y cells, 

calcitriol is associated with GDNF expression via VDR, which is critical for the 

development of dopaminergic neurons (Pertile et al., 2018). Using the neonatal brain of the 

DVD rat, it has been determined that VD is essential to neurotransmitter release, which 

will be necessary to transfer chemical signals from one neuron to another and to facilitate 

synaptic plasticity (Kesby et al., 2017; Lovinger, 2010). The findings of all these studies 

suggest that VD may be directly associated with neural expansion, differentiation, and 

development. 

VD also promotes neurogenesis in the adult hippocampus. Several in-vitro and in-

vivo studies have shown that VD supplementation increases the density of hippocampal 

neurons in adults (Brewer et al., 2001; Buell and Dawson-Hughes, 2008; Landfield and 

Cadwallader–Neal, 1998; Latimer et al., 2014; Moretti et al., 2018). Several studies on VD 

that suggested that the level of VD is directly related to the activity and expression of 

neurotrophins like BDNF, NGF, NT-3, NT-4, and GDNF in the brain (Eyles, 2020; Groves 

and Burne, 2017; Lardner, 2015; Nadimi et al., 2020; Pertile et al., 2018). NGF is thought 

to be one of these neurotrophins that are mainly expressed by neurons in the hippocampus 

and neocortex, where it is primarily involved in neuronal survival, neurotransmission, and 

synaptic function (Farghali et al., 2020; Liu et al., 2018). According to a study, the 

administration of calcitriol directly to the hippocampus of adult rats showed an increased 

expression of NGF, which is helpful for the survival of the adult brain (Saporito et al., 

1993). Another neurotrophic factor is GDNF, which is necessary for the differentiation and 

survival of dopaminergic neurons (Allen et al., 2013; Lara-Rodarte et al., 2021; Pertile et 

al., 2018). According to a study on neural stem cells isolated from the hippocampus of 8-

week-old mice, calcitriol supplementation increased the proliferation rate by increasing the 

expression of BDNF, NT-3, and GDNF (Shirazi et al., 2015). The effects of calcitriol 

supplementation on primary neural progenitor cells were observed to increase Ki+ and 

proliferating cell nuclear antigen (PCNA) expression, thereby directly stimulating 

proliferation (Morello et al., 2018). Some studies showed that calcitriol supplementation 

https://www.zotero.org/google-docs/?vbczAB
https://www.zotero.org/google-docs/?JdwwjO
https://www.zotero.org/google-docs/?AhSMcU
https://www.zotero.org/google-docs/?aFrcHw
https://www.zotero.org/google-docs/?6em8jt
https://www.zotero.org/google-docs/?6em8jt
https://www.zotero.org/google-docs/?l4MXD5
https://www.zotero.org/google-docs/?l4MXD5
https://www.zotero.org/google-docs/?nREOO2
https://www.zotero.org/google-docs/?bxyver
https://www.zotero.org/google-docs/?bxyver
https://www.zotero.org/google-docs/?4kkCGG
https://www.zotero.org/google-docs/?4kkCGG
https://www.zotero.org/google-docs/?C2afRJ
https://www.zotero.org/google-docs/?n8Dl5y


20 
 

inhibits calcium influx in mesencephalic and hippocampal neurons by lowering the 

expression of L-VGCC and increasing the expression of Calbindin D-28K and Na+/Ca2+ 

exchangers (Alexianu et al., 1998; Brewer et al., 2001; Gezen-Ak et al., 2011; Ibi et al., 

2001). Along with neurogenesis and development, calcitriol also acts as a protective agent 

by decreasing reactive oxygen species (ROS) through the Nrf2 (nuclear factor erythroid 2 

related factors) regulatory network, controlling antioxidant expression and suppressing 

neuroinflammation by regulating the expression of inflammatory cytokines (Calton et al., 

2015; Calvello et al., 2017; Garcion et al., 1998; Lefebvre d’Hellencourt et al., 2003). 

According to the studies, it is believed that there is a close relationship between the 

levels of calcidiol and changes in the level of neurotransmitters, which help to carry 

chemical insights from one neuron to another (Farhangi et al., 2017; Patrick and Ames, 

2015; Seyedi et al., 2019). As a result of calcitriol supplementation to cortical neurons 

isolated from embryonic rats at 18 days old, synaptic proteins like synapsin-1 were 

increased, and glutamate toxicity decreased with time, indicating that calcitriol maintains 

synaptic plasticity (Taniura et al., 2006). In different brain regions, such as the 

hippocampus and prefrontal cortex, VD is associated with significant changes in levels of 

dopamine, serotonin, acetylcholine, gamma-aminobutyric acid (GABA), and glutamate 

due to its genomic regulation of their respective rate-limiting enzymes (Groves et al., 2014; 

Jiang et al., 2014; Pertile et al., 2016). 

Evidence suggests that the genome-wide effect of calcitriol can be attributed to the 

presence of the target gene's promoter region on the VDRE, which regulates neurotrophins, 

oxidative stress, inflammation, synaptic transmission, and the activity of ion channels in 

the brain (Brown et al., 2003; Cohen-Cory et al., 2010; Haussler et al., 1998; Naveilhan et 

al., 1996; I. Neveu et al., 1994a). In this way, VD supplementation may directly modulate 

the differentiation, maturation, and survival of neurons. In addition to its effect on 

neurotrophins, VD supplementation also maintains oxidative stress. It has been found that 

VD supplementation in a developing brain stimulates the expression of nitric oxide (NOS) 

and the activity of gamma-glutamyl transpeptidase and glutathione (GSH) in the rat 

hippocampal tissues (Garcion et al., 1998). Furthermore, VD protects cells from oxidative 

stress by increasing the expression of antioxidants like superoxide dismutase (SOD) and 

catalase in rats exposed to mild stress (Bakhtiari-Dovvombaygi et al., 2021). To determine 
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the anti-oxidant effect of VD, researchers investigated traumatic brain-injured rats that 

showed a decrease in NADPH oxidase expression with an increase in VDR expression, 

which determined the antioxidant effects of calcitriol by its genomic action (Jamilian et al., 

2019). 

However, there have been numerous studies linking low levels of VD with age-

related neurodegenerative disorders such as AD, PD, and HD (Chai et al., 2019; Chel et 

al., 2013; Fullard and Duda, 2020). The evidence suggested that treating different 

neurological disorders, such as AD and PD, with VD caused a profound increase in BDNF 

production, which corresponded to the findings regarding the development of BDNF 

(AlJohri et al., 2019; Bayo-Olugbami et al., 2022; Lima et al., 2018; Mohamed et al., 2015). 

In another study, VD was shown to reverse age-induced memory deficits and maintain 

synaptic plasticity by altering the expression of BDNF, NGF, TrKA, and TrkB in the 

hippocampal tissues of rats (Bayat et al., 2021). It has been demonstrated in some 

preclinical studies that calcitriol enhanced cognitive functioning and memory in age-

related neurological conditions such as AD and PD (Anjum et al., 2023; Koduah et al., 

2017; Latimer et al., 2014; Morello et al., 2018). The calcitriol also plays a protective role 

in AD and PD models by regulating neurotrophins, anti-oxidants, and inflammation 

cytokines, similar to embryonic stages (Calvello et al., 2017; Landel et al., 2016; Lima et 

al., 2018; Saad El-Din et al., 2020a; Y. Zhang et al., 2022). According to clinical studies, 

VD can improve posture, balance, and memory in elderly AD and PD patients with an 

increase in serum concentrations of 25-(OH)D3 (Chakkera et al., n.d.; Fullard and Duda, 

2020; Hiller et al., 2018; Jia et al., 2019). According to this analysis, there is a positive 

correlation between the levels of VD and different neurodegenerative disorders. 

Researchers have determined that VD may promote healthy aging of the brain through its 

influence on synaptic function (Almeras et al., 2007; Eyles et al., 2007; Latimer et al., 

2014; Mayne and Burne, 2019; Wang et al., 2023). According to a study on middle-aged 

rats, VD regulates synaptic proteins involved in synaptic vesicle trafficking and 

neurotransmission (Latimer et al., 2014). Additionally, calcitriol administration induced a 

reduction in the density and activity of the L-VGCC in hippocampal neurons of older rats, 

which is thought to retard calcium influx, which may contribute to preventing some of the 

toxic outcomes associated with neurodegenerative diseases like AD and PD (Behl et al., 
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2022; Brewer et al., 2006; Gezen-Ak et al., 2011; Ibi et al., 2001). The data gathered by 

the researchers suggest that VD promotes the development and survival of neurons in the 

adult brain by delaying the process of aging. 

 

Fig.4. Genomic pathway of VD: As soon as 1ɑ,25-(OH)2D3 binds to its VDR receptor, it 

initiates gene transcription, which then heterodimer with RXR, which increases the affinity 

of the VD-VDR/RXR for specific promoter regions. Co-activators tend to bind to VDRE 

when the VD-VDR/RXR complex binds to the VDRE, which recruits RNA polymerase II 

to the TATA box. By transcribing genes, mRNA is produced and translated into specific 

proteins by RNA. (Image source: Bikle, 2021) 

           1.4.4.2.1. Epigenetic modifications due to the activation of VDR: 

The interaction between calcitriol and VDR not only results in genomic effects but 

also leads to epigenetic changes (Fetahu et al., 2014; Karlic and Varga, 2011). The 

mechanism of transcriptional regulation of VDRE and VDR activation involves histone 

modification, chromatin remodeling, and an alteration in the binding of RNA polymerase 

II (Di Rosa et al., 2011; Ramagopalan et al., 2010). It was found that the VD-VDR complex 

plays an important role in transiently opening and closing chromatin at RNA polymerase 

II-enhanced sites, which determines the regulation of the primary target genes for the 

calcitriol (Carlberg and Molnár, 2015). According to these studies, calcitriol helps to 

regulate genes via epigenetic mechanisms and, conversely, regulates epigenetic events 

(Bahrami et al., 2018; Fetahu et al., 2014; Xue et al., 2016). The primary epigenetic 
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modifications caused by calcitriol include acetylation and histone protein methylation 

(Nurminen et al., 2018; Sawatsubashi et al., 2019). Calcitriol induces DNA methylation at 

the promoter site of the target genes, which can be repetitive over a period of several DNA 

replication cycles (Doig et al., 2013). Due to this modification by calcitriol, there is an 

alteration in the accessibility of DNA and chromatin structure that can lead to aberrant gene 

expression, which is ultimately linked to the development and progression of many fatal 

diseases (Anderson et al., 2018; Beckett et al., 2016; Fetahu et al., 2014; Lai et al., 2020; 

Xue et al., 2016). Although this may be the case, calcitriol still regulates DNA methylation 

to ensure its proper functioning. In addition to the methylation process, supplementation of 

calcitriol also aids in acetylation. The interaction between the VD-VDR/RXR complex and 

the histone acetyltransferases (HATs), which introduce acetyl groups into the nucleosomes, 

resulting in the chromatin being more accessible to transcription factors (Karlic and Varga, 

2011). Evidence shows that VDR can bind to DNA without a ligand and form complexes 

with histone deacetylases (HDACs; Liu et al., 2017; Seuter et al., 2014). In addition, it 

appears that VD supplements cause the acetylation of histone 3 acetylation at lysine 27 

(H3K27), which is associated with activated enhancers in the genome of target genes 

(Sawatsubashi et al., 2019; Seuter et al., 2014). This acetylation or methylation of H3K27 

could possibly be regarded as part of a mechanism that allows the opening or closing of 

chromatin (Sawatsubashi et al., 2019). In addition, it has been shown that VDR-mediated 

regulation of targeted gene expression can be carried out through the modification of HATs 

and HDACs (Pike and Meyer, 2012; Wang, 2007). The acetylation and deacetylation of 

histones lead to the opening and closing of chromatin, regulating the transcription of target 

genes (Eberharter and Becker, 2002; Gujral et al., 2020). Calcitriol also helps to deacetylate 

H3 and histone 3 dimethylated lysine 9 (H3K9) di-methylation (Fu et al., 2013). The 

process of acetylation and methylation contributes to regulating gene expression (H.-T. 

Lee et al., 2020; Miller and Grant, 2013). These epigenetic modifications in the presence 

of the VD-VDR/RXR complex involve the differentiation and formation of cells by 

transcription regulation. 
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Fig.5. Schematic illustration of histone modification by methylation and acetylation 

mediated by calcitriol and its link with the basic transcription machinery: Cells 

package DNA in the heterochromatin region, resulting in a dense array of nucleosomes. 

The tightly packed chromatin is inaccessible to transcription factors. Through protein-

protein interactions with co-activators with HAT activity, the chromatin opens. In order to 

promote gene expression and relax chromatin structure, two major epigenetic 

modifications, DNA methylation and histone modification, are essential. VDR is 

inactivated and expressed less when DNA methylation occurs at its promoter region. 

Histone deacetylases (HDAC) corepressors bound to heterochromatin regions suppress 

downstream gene expression by repressing transcriptional machinery, which leads to 

downstream gene silencing. VDR-RXR complexes bind with HATs, which cause histone 

acetylation. In this way, transcription factors can be recruited, and downstream genes can 

be expressed. (Image source: Krishna, 2019) 

            1.4.4.3. Non-genomic action of VD:    

The non-genomic actions of 1α,25-dihydroxyVitamin D3 or 1ɑ,25-(OH)2D3 or 

calcitriol occur in many peripheral cells, including the central nervous system (Bollen and 

Atherton, 2021; X. Cui et al., 2017; de Angelis et al., 2017; Hii and Ferrante, 2016; Shirvani 

et al., 2019; Zmijewski and Carlberg, 2020). Compared with genomic actions, non-

genomic actions of VD involve mechanisms independent of nVDR activation and are more 

rapid. VD propagates the non-genomic action by binding to the membrane-bound VDR 

(mVDR) on the cell surface (Sirajudeen et al., 2019). Furthermore, co-

immunoprecipitation studies have shown that 1,25-membrane-associated rapid response 
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steroid-binding proteins (1,25-MARRS) also interact in non-nuclear compartments. As a 

result, both mVDR and 1,25-MARRS are essential for the non-genomic actions of VD. 

They function as chaperone proteins and are involved in a number of downstream signal 

transduction pathways (Chen et al., 2013, 2010). Protein disulfide isomerase 3 (PDIA3), 

which is also known as endoplasmic reticulum stress protein 57 (ERp57), is an additional 

receptor that is expressed by all types of brain cells involved in the non-genomic action of 

VD, along with mVDR and 1,25-MARRS (Landel et al., 2017; Sequeira et al., 2012). A 

study showed that 1,25D3-MARRS/Pdia3/ERp57 receptor activation reduced the number 

of amyloid plaques and removed neurofibrillary tangles in the cortex and hippocampus of 

5XFAD mice with AD (Tohda et al., 2012). There have been numerous studies that suggest 

that calcitriol binding to mVDR caused the activation of calcium and kinase signaling 

pathways, which activate a variety of protein kinases, including phosphoinositol-3 kinase 

(PI3K), protein kinase A (PKA) and calmodulin-dependent protein kinase II (CamKII; 

Christakos et al., 2016; Gooch et al., 2019; Zanatta et al., 2012). The action of these kinases 

further activates secondary signaling molecules such as phospholipase C (PLC), 

phospholipase A2 (PLA2), mitogen-activated protein kinase (MAPK), extracellular signal-

related protein kinase 1 and 2 (ERK1/2) and G protein-coupled receptors (Bikle, 2021; de 

Angelis et al., 2017; Habib et al., 2020; Hii and Ferrante, 2016; Vuolo et al., 2012; 

Zaulkffali et al., 2019). The downstream signaling pathways of these kinases are directly 

or indirectly related to transcriptional regulation via the cross-talk between the genomic 

effects of VD through nVDRs that can aid in the survival of cells (de Angelis et al., 2017). 

Interestingly, it is notable that most of the intracellular molecules that participate in the 

non-genomic pathways are common to different target organs (Bollen and Atherton, 2021; 

de Angelis et al., 2017; Donati et al., 2022; Hii and Ferrante, 2016). There is also an 

evidence showed that the non-genomic effects of VD were due to its binding to an 

alternative ligand binding pocket in classical nVDRs (Mizwicki et al., 2010). Generally, it 

is accepted that the non-genomic action of VD signaling facilitates the genomic action by 

stimulating the phosphorylation of RXR or other transcription factors (J. Chen et al., 2013; 

Zanello and Norman, 2004). The findings made with VDR knockout monocytes indicate 

that the non-genomic actions of VD modulate transcriptional responses were not 

independent of VDR (Warwick et al., 2021). Despite this, different signaling cascades are 
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involved in determining the non-genomic effect of VD in a range of cell types, as well as 

at various stages during the development of each cell type and point in time (Doroudi et 

al., 2012; Zamoner et al., 2008; Zanatta et al., 2012, 2011). 

According to Cui and colleagues, calcitriol is involved in calcium and kinase 

signaling pathways that regulate cell survival. Furthermore, VD modulates synaptic 

transmission by increasing the frequency of it in juvenile gonadotropin-releasing hormone 

(GnRH) neurons. This study showed that acute application of calcitriol decreased the 

inward currents induced by the excitatory NMDA and kainite receptors (Bhattarai et al., 

2017). Furthermore, calcitriol rapidly reduces the frequency of GABAergic postsynaptic 

currents. As a result of all these changes, VD may maintain the balance between excitation 

and inhibition of local neural circuits in the brain (Bhattarai et al., 2017). 

The non-genomic ativtiy of VD also gets propagated via the regulation of ion 

channels (Cui and Eyles, 2022). The L-type voltage-gated calcium channels (L-VGCC) 

facilitate the electrical signaling of cells by allowing restricted passage of calcium ions 

inside the cells in response to changes in the membrane potential of the cell. It is shown 

that a suboptimal concentration of VD could alter brain maturation through modulation of 

L-VGCC signaling (Zanatta et al., 2012). 

The rapid non-genomic action of VD increases calcium influx in the cortex and 

prefrontal cortex, which ultimately maintains the Ca2+ homeostasis in these areas by the 

cross-talk between the genomic and non-genomic actions of VD on L-VGCC and protects 

these cells from excitotoxicity (Cui at al., 2017; Cui and Eyles, 2022; Zanatta et al., 2012). 

In response to the activation of L-VGCC, a number of protein kinases, such as protein 

kinase C (PKC), protein kinase A (PKA) and mitogen-activated protein kinase-

extracellular signal-regulated kinase-cascade-1 and 2 (MAPK-ERK-1/2) are 

phosphorylated, acting as secondary messengers (Gooch et al., 2019; Gravielle, 2021; 

Subbamanda and Bhargava, 2022). The phosphorylation of these protein kinases play a 

vital role in the cross-talk with genomic effects, which leads to transcription regulation, 

cell growth, and differentiation, as well as apoptosis, as depicted in Fig. 6 (Vuolo et al., 

2012). 
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Fig. 6: Non-genomic action of VD: VD exerts non-genomic effects by binding membrane-

bound VDR (mVDR). Several intermediate factors are activated when vd binds with 

mVDR, which eventually activates MAPK-ERK-1/2, activating VD's non-genomic action. 

Calcium influx is stimulated by activated VDR, resulting in a cascade of intracellular 

pathways like protein kinase C (PKC). At an intracellular level, VD activates G protein-

coupled receptors (GPCRs), which lead to several signaling pathways, including 

phospholipase C (PLC) and phosphatidylinositol 3-kinase. As a result of the convergence 

of these pathways, MAPK-ERK-1/2 is activated, which further interacts with VDR 

genomic action and modulates gene expression. (Image Source: Vuolo et al., 2012) 

Besides activating L-VGCC, VD also activates K+ and Cl- channels, which regulate 

membrane potential through Na+/K+-ATPase (X. Cui et al., 2017). Further, the non-

genomic actions of VD include the opening up of channels for Ca2+ and Cl- as well (Bikle, 

2021; Gooch et al., 2019; Norman, 2006). Since most of the nongenomic activity is focused 

on signaling pathways and ion channel function, it may have modulatory effects on the 

innate and adaptive immune responses of cells as well as cell survival (X. Cui et al., 2017; 

Cutolo et al., 2023; Hii and Ferrante, 2016). These responses may include interaction 

between mVDR and target proteins like IkappaB kinase (IKKB), which regulates the 
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activity of NF-κB, signal transducers and activators of transcription (Stat1), runt-related 

transcription factor (RunX), c-jun, ꞵ -catenin and cREB which further regulate the survival 

pathways (Y. Chen et al., 2013; Hii and Ferrante, 2016; Lange et al., 2014; Nadimi et al., 

2020; Pálmer et al., 2001; Wei and Christakos, 2015). Some mitochondrial functions are 

directly or indirectly affected by VD, including energy production, mitochondrial 

membrane potential, ion channel activity, and apoptosis (Zmijewski and Carlberg, 2020). 

Therefore, VDR activation may promote neuronal survival through interactions 

between genomic and non-genomic pathways. As a result of this cross-talk, neurotrophic 

factors, like BDNF, are upregulated along with autophagy, and antioxidant pathways are 

activated (Abdulghani et al., 2023; Zhao et al., 2022). An intricate network of these 

pathways is responsible for repairing and promoting neuronal damage in a wide range of 

neuropathological conditions, as well as promoting their survival. 

1.4.4.4. Activity of VD on different neurotrophins: 

One of the primary effects of VD in the maintenance of brain development and 

function is through its regulation of the expression and activity of key neurotrophins in the 

CNS (Anjum et al., 2023; Cui and Eyles, 2022; Lv et al., 2020). VD activates a variety of 

neurotrophins, including NGF, BDNF, NT-3, NT-4, and GDNF (Gezen-Ak et al., 2014; 

Khairy and Attia, 2021; Koshkina et al., 2019; Lv et al., 2020; Nadimi et al., 2020; Pertile 

et al., 2018; Pignolo et al., 2022). Neurotrophins (BDNF, NGF, GDNF, NT-3, NT-4) play 

an essential role in neuron growth, development, neurotransmission, and synaptic plasticity 

(Bathina and Das, 2015; Li et al., 2016; Pertile et al., 2018; Proenca et al., 2016; Wang et 

al., 2020). Because of their versatile activity in normal brain function, alteration in the 

expression of different neurotrophins has been studied in neurological disease conditions 

and correlated with degeneration of neurons. Under different neuropathological conditions 

like AD, PD, depression, and HD, VD has been found to regulate the activity and 

expression of neurotrophins (Alamro et al., 2020; Chunmei Geng et al., 2019; Koshkina et 

al., 2019; Mohamed et al., 2015; Pignolo et al., 2022). 

Across all the brain regions, VD has been shown to enhance the expression of 

BDNF, NGF, NT-3, and NT-4, while an increase in the expression of GDNF is seen in 
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specific brain regions like substantia nigra (Cornet et al., 1998; Naveilhan et al., 1996; 

Neveu et al., 1994; Saporito et al., 1994). 

The primary evidence gathered by Neveu and team showed that, in glial cells and 

astrocytes, calcitriol enhances the expression of neurotrophic factors such as NGF, NT-3, 

and NT-4 (Isabelle Neveu et al., 1994; Wion et al., 1991). An initial study determined that 

calcitriol administration to hippocampal neurons of adults induced NGF expression 

(Saporito et al., 1993). In a study by Gezen-Ak and colleagues, silencing the VDR genes 

using siRNA in primary cortical neurons decreased NGF release, which determined that 

VD increases the levels of NGF through VDR and helps in neuronal survival (Gezen-Ak 

et al., 2011). Later, it was determined that an increase in VDR expression increases the 

release of NGF, which further prevents beta-amyloid elevation and toxicity (Gezen-Ak et 

al., 2014). Different studies have also found increased levels and expression of NGF on 

VD supplementation (Alamro et al., 2020a; Koshkina et al., 2019; Pignolo et al., 2022). 

The activity of NGF is mediated by TrkA receptors, which help to stimulate cell growth 

and prevent programmed cell death (Minnone et al., 2017). TrkA receptors undergo 

autophosphorylation of their tyrosine residues when NGF binds with them (Marlin and Li, 

2015). Phosphorylation of these receptors activates PI3K, Akt kinases. The downstream 

targets of these kinases are essential for neuronal survival (Yan et al., 2020). Furthermore, 

autophosphorylation of TrKA receptors leads to the activation of MAPK through a Ras-

mediated pathway (Reichardt, 2006). As a result of MAPK activation, ERK1/2 is 

phosphorylated, which further regulates cyclic adenosine monophosphate response 

element binding protein (CREB), ultimately leading to neuronal survival (Koga et al., 

2019). Beside from the two pathways described above, phosphorylation of TrkA receptors 

activates phospholipase C (PLC) and protein kinase C (PKC) to promote neuronal survival. 

Thus, VD-mediated transcription plays a role in regulating the expression of NGF, which 

is critical for neuronal survival (Reichardt, 2006). 

According to a study by Naveilhan and colleagues, VD can induce BDNF 

production and regulate expression of BDNF in C6 glioma cells (Naveilhan et al., 1996). 

Further, Atif and coworkers demonstrated that calcitriol supplementation increases the 

protein expression of BDNF in ischemic stroke-induced cortical cells (Atif et al., 2013). 

Their study found that supplementing cells with calcitriol increased the gene expression of 
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BDNF thereby increasing the protein expression of TrkB receptors (Massa et al., 2010). 

As a result, downstream signaling of ERK1/2 is activated, which then transduces growth 

factor signals to the nucleus, affecting gene expression. ERK1/2 phosphorylation 

contributes to metabolism, mitosis, differentiation, inflammation, cell death, and survival 

(Lu and Xu, 2006). Study findings suggested that BDNF has a neuroprotective effect when 

expression of ERK1/2 is increased in the cells since ERK1/2 induces expression of anti-

apoptotic genes such as BCl-2 (Atif et al., 2013; Nilsen and Brinton, 2002). Calcitriol 

supplementation to neural stem cells (NSCs) increased the expression of neurotrophic 

factors like NT-3, BDNF, and GDNF, which promote oligodendrocyte proliferation and 

differentiation (Shirazi et al., 2015). According to a study on adult rats subjected to stress, 

calcitriol increased the levels of neurotrophins like BDNF, NT-3, and NT-4 in their brains 

(Koshkina et al., 2019). The results of this study supported the prescription of VD 

supplements for treating depression in females. Similarly, VD supplementation to diabetic 

rats increased the levels of BDNF in hippocampal tissues. According to their study, BDNF 

increased TrkB receptor phosphorylation, activating transcription factor CREB, which are 

important for neuronal survival (Gabryelska et al., 2023; Nadimi et al., 2020). Based on 

the findings from recent clinical studies, it has been showed that when VD is supplemented 

to patients with depression, the levels of BDNF in the serum were significantly increased 

(Abiri and Vafa, 2020; Paduchová et al., 2021). Additionally, recent studies have found 

that supplementing with VD increased the levels of BDNF in hippocampal tissues of 

animal models of different neurological conditions (Bakhtiari-Dovvombaygi et al., 2021; 

Xu and Liang, 2021). 

According to different studies, VD regulates the expression of other neurotrophins 

like NT-3 and NT-4  (Koshkina et al., 2019; Shirazi et al., 2015). The activity of NT-4 gets 

mediated by TrkB receptors, which is similar to the downstream signaling pathway 

involved in the action of BDNF (Proenca et al., 2016). NT-3, on the other hand, initiates 

its activity by binding to TrkC receptors. When NT-3 binds to TrkC receptors, the receptors 

undergo phosphorylation thereby triggering the intracellular signaling pathway (Houlton 

et al., 2019; Khan and Smith, 2015). It is anticipated that the downstream signaling 

pathway of the phosphorylated TrKC receptors will be carried out through the ERK1/2 
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pathway, which helps in neuronal differentiation, as well as the PI3K pathway, which 

further leads to neuronal survival (Khan and Smith, 2015; Yan et al., 2021). 

GDNF is another neurotrophin that gets modulated on a cellular level following 

VD supplementation, which helps mainly in the survival of dopaminergic neurons (Cortés 

et al., 2017; Lara-Rodarte et al., 2021; Lin et al., 1993; Sariola and Saarma, 2003). 

Dopaminergic neurons benefit from GDNF downstream signaling through Ret receptors, 

which are highly expressed in the substantia nigra (Gattei et al., 1997; Kramer et al., 2007; 

Mahato and Sidorova, 2020; Stanga et al., 2018). Homodimers of GDNF aggregate two 

Ret molecules containing tyrosine residues, resulting in the accumulation of GDNF 

(Bahlakeh et al., 2021). In response to the transphosphorylation of that tyrosine residue, 

intracellular cascades will get triggered, including MAPK and PI3K pathways, which are 

critical to neurite survival and neurite outgrowth (Allen et al., 2013).  The above evidence 

altogether supports the idea that VD plays a significant role in the regulation of 

neurotrophins, which play a crucial role in the survival, proliferation, and differentiation 

of neurons in the brain. 

1.4.4.5. Antioxidant role of VD–Organelle-based function: 

The redox system plays a critical role in maintaining cellular homeostasis by 

generating or eliminating ROS (Le Gal et al., 2021; Schieber and Chandel, 2014; 

Trachootham et al., 2008). The main types of ROS are oxygen free radicals (O2
-), hydroxyl 

radicals (OH.), and hydrogen peroxide (H2O2; Collin, 2019; Munnamalai and Suter, 2009). 

Usually, decrease in the amount of molecular oxygen leads to the production of ROS. The 

redox system is usually responsible for controlling gene transcription through cysteine 

residue binding to DNA transcription sites and epigenetic modifications through the 

remodeling of chromatin (Rhee, 2006). Moreover, it contributes to post-translational 

modifications that lead to conformational changes in peptides due to oxidative alterations 

of amino acid residues, which help regulate protein structure and function (Petushkova and 

Zamyatnin, 2020). Moreover, recent evidence suggested that the redox system played a 

novel role in regulating cell proliferation and survival by post-translational modification of 

signaling proteins, ubiquitin proteosomes, and other proteases. Cross-talk between redox 
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regulatory pathways governing survival and death is responsible for this (Foyer et al., 2018; 

Kriegenburg et al., 2011; Schieber and Chandel, 2014; Trachootham et al., 2008). 

An imbalance in the redox system in the cells is caused by the overproduction of 

ROS, which overwhelms the protective and defense mechanisms that help protect the cells 

from various physiological conditions (Berg et al., 2004). This imbalance will result in 

hypoxia, mitochondrial dysfunction, protein misfolding, inflammatory responses, lipid 

peroxidation, DNA damage, and interference of ROS with signal transduction pathways. 

Additionally, this process will also involve the degradation of proteins, which play a major 

role in maintaining cellular health (Franco-Iborra et al., 2016; Rey et al., 2023; Rotermund 

et al., 2018). When redox system is imbalanced, the production of oxidized proteins and 

lipids increases. This is considered an early event in the progression of neurodegenerative 

diseases (Andersen, 2004). It has been found that the production of ROS plays a role in the 

progression of a variety of neurodegenerative disorders such as AD, PD, and HD 

(Agnihotri and Aruoma, 2020; O’Regan et al., 2021; Zhang et al., 2020). VD has received 

considerable attention as a redox imbalance management tool due to its antioxidant 

properties. Whether VD directly affects the disposal of free radicals or indirectly by 

activating essential neuroprotection pathways is a much-debated question. This area is not 

fully studied in the pathologies of different neuronal diseases. As an evidence of calcitriol 

blocking ROS production and preventing their hydroxyl donors, there was an evidence of 

its direct impact (Ibi et al., 2001). 

Some antioxidants, such as superoxide dismutase (SOD), glutathione peroxidase 

(GpX), Catalase (Cat), nitric oxide synthase (NOS), and nitrogen oxide (NOX), are 

regulated by VD, which regulates mitochondrial function by ROS (Calvello et al., 2017; 

Cui et al., 2019; da Costa et al., 2023; Patel and Shah, 2022; Y. Zhang et al., 2022). In 

preliminary studies of calcitriol supplementation in different neurological conditions, it has 

been showed that this treatment had a beneficial effect on reducing NOS and gamma-

glutamyl transpeptidase, thereby increasing the amount of glutathione (GSH; E. Garcion 

et al., 2002; Garcion et al., 1998). Based on a study on cultured rat cortical neurons, it has 

been determined that supplementation with calcitriol reduces glutamate toxicity by 

increasing the expression of VDR (Taniura et al., 2006). VD supplementation has been 

found to increase the gene expression of antioxidants like GSH, SOD, and GpX by binding 
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to VDRE (Brown and Slatopolsky, 2008). It has been recognized that GSH is one of the 

major endogenous components of the cellular defense system, which is specifically 

responsible for scavenging ROS directly (Galano and Raúl Alvarez-Idaboy, 2011). There 

is evidence that antioxidants that help to prevent oxidative stress react with glutathione and 

act against free radicals. Therefore, it can be speculated that increase in glutathione levels 

will help regulate cell proliferation (McCarty and DiNicolantonio, 2015). A study on 

traumatic brain-injured rats showed that VD treatment decreased NOX activity in 

hippocampal tissues (C. Cui et al., 2017). It has been found that VD reduces lipid 

peroxidation, which influences the activity of antioxidants (AlJohri et al., 2019). VD is 

shown to have antioxidant activity via the VDR that inhibits the expression of multiple 

antioxidant enzymes, such as NOX2, NOX4, and the NADPH oxidase (Cui et al., 2019). 

According to a clinical study on patients suffering from psychiatric disorders, 

supplementation with VD lead to improvement in total antioxidant capacity (TAC) and 

glutathione (GSH) and remarkable decrease in the levels of MDA (Jamilian et al., 2019). 

VD can have an antioxidant effect in the brain as a result of an increase in oxidative stress, 

which results in an upregulation of the expression of CYP27B1, a brain-resident enzyme, 

leading to the formation of calcitriol in the brain (Huang et al., 2015; Hur et al., 2014; 

Kasatkina et al., 2020). A study conducted with a rat model of AD demonstrated that long-

term administration of VD can slow down excessive oxidative stress by enhancing the 

activity of SOD (Mehrabadi and Sadr, 2020). The enzyme SOD plays a vital role in the 

functions of the antioxidant defense system by catalyzing the dismutating of oxygen-free 

radicals into molecular oxygen and hydrogen peroxide (Younus, 2018). There are a variety 

of possible mechanisms through which VD reduces oxidative stress. One of them is that it 

boosts levels of enzymes that protect brain tissue from oxidative stress, such as SOD and 

thiol, which reduces MDA, one of the markers of oxidative stress, in brain tissue samples 

(Bakhtiari-Dovvombaygi et al., 2021b; Bayo-Olugbami et al., 2022; Khairy and Attia, 

2021). In 2018, Lima and colleagues reported that VD supplementation induced dopamine 

metabolism in mice induced with 6-hydroxydopamine (6-OHDA), which helps to preserve 

motor function and regulate lipid peroxidation (Lima et al., 2018). Further, studies have 

demonstrated that supplementing with VD lowers the appearance of oxidative stress 

markers by increasing the expression of Sirt1 (Sirtuin 1), which is important in preventing 
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mitochondrial damage in various neurological diseases like PD, AD, ALS, and HD (Chen 

et al., 2005; Hasegawa and Yoshikawa, 2008; Kim et al., 2007; Magdy et al., 2022; Pallàs 

et al., 2008; Wareski et al., 2009). The pretreatment with calcitriol significantly reduced 

the levels of lipid peroxidation and the release of apoptotic proteins in iron-treated locus 

coeruleus of rats (Mello-Filho and Meneghini, 1991). Moreover, the calcitriol 

administration also prevented the oxidation and accumulation of ferric iron in the neuronal 

cells (Chen et al., 2003). Similarly, calcitriol was also found to reduce ROS formation and 

cell death in cortical neuronal cells exposed to Zinc (Lin and Beal, 2006). It has been found 

that VD treatment could enhance the activity of Nrf2, a transcription factor well known for 

the synthesis of antioxidant enzymes (C. Cui et al., 2021). As a result, all the above 

evidence demonstrates the efficacy of VD as an antioxidant in treating neurological 

diseases. 

1.4.4.6. Anti-neuroinflammatory role of VD: 

Inflammation in neuronal cells is a major factor contributing to the onset and 

progression of neurodegenerative diseases (Hou et al., 2019). The process gets triggered 

by the overactivation of innate immune response cells, such as microglia or astrocytes, in 

response to protein misfolding or other environmental stress that diverts from the 

beneficiary function to sustained release of pro-inflammatory molecules (Bachiller et al., 

2018; Blach-Olszewska and Leszek, 2007; Novellino et al., 2020; Rotermund et al., 2018). 

The antioxidant effects of VD are well documented, but many studies have demonstrated 

that the substance can slow the inflammatory cytokine storm that antagonizes neuronal loss 

(Banerjee et al., 2015; Calvello et al., 2017; Cannell, 2008; Groves et al., 2014; Wang et 

al., 2023). 

Initially, Lemire and Archer found that calcitriol has an anti-inflammatory effect in 

the relapsing model of EAE, the MS model. When the lymphocyte proliferation and IL-2 

expression were decreased in the brain, they concluded that VD might had 

immunomodulatory role (Lemire and Archer, 1991). Garcion and colleagues later 

demonstrated in lipopolysaccharide-induced cells that calcitriol inhibits induced nitric 

oxide synthase (iNOS) expression in rat brain monocytes. According to this study, VD 

supplementation reduces the effects of immune-induced oxidative stress in the CNS 
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(Garcion et al., 1998). Later, a study on EOC microglial cell line showed that calcitriol 

administration had inhibited the activity of tumor necrosis factor-alpha (TNF-α) and 

interleukin-6 (IL-6) by increasing the expression of VDR and increased the level of 

transforming growth factor-beta subtype 1 (TGF-β1; Lefebvre d’Hellencourt et al., 2003). 

According to another study, treatment with calcitriol significantly decreased the expression 

of TNF-α and interferon-gamma (IFN-γ) in microglia from rats treated with toxic-induced 

PD models of the disease. The immunomodulatory effects of VD have been established by 

decreasing the gene expression of these two proteins in microglia (Kim et al., 2006). 

Recent studies have showed that VD exerts its protective effects by modulating the 

activity of TNF-α, IL-1β, IL-6, TGF-β, and IL-10 in conditions such as aging and cognitive 

decline (Calvello et al., 2017; Cui et al., 2019; Evans et al., 2018; Patel and Shah, 2022). 

The fact that multiple sclerosis is considered a chronic inflammatory disorder has led to 

numerous studies demonstrating that people with adequate VD are at a relatively low risk 

of becoming ill with this disease (Dörr and Paul, 2015; Munger et al., 2004). On this note, 

a study on the toxin induced mouse model of PD has shown that VD supplementation 

decreased the expression of pro-inflammatory cytokines like TNF-α, and IL-1β and 

increased the expression of anti-inflammatory markers like IL-10, TGF-β, and IL-4 in both 

striatum and substantia nigra (Calvello et al., 2017). Furthermore, the study found that VD 

administration reduced the expression of CD206 (cluster of differentiation 206), CD163 

(cluster of differentiation 163), and CD204 (cluster of differentiation 204) in the microglia 

of PD mice (Calvello et al., 2017). The results of an investigation conducted by Wang and 

his colleagues in 2018 determined that serum levels of VD were negatively correlated with 

the IL-6, a proinflammatory marker (Wang et al., 2018). In the same year, Evans and team 

found that acute VD administration reduced the expression of pro-inflammatory markers 

like interleukin-21 (IL-21) and interleukin-23a (IL-23a) in ischemic stroke patients, 

indicating that VD regulates inflammatory responses in the peripheral organs and the brain, 

thereby maintaining brain health (Evans et al., 2018). The evidence showed that VD 

supplementation improves spatial and working memory in rats induced with 

lipopolysaccharide by decreasing the levels of TNF-α, IL-1β, and TGF-β1 (Doncheva et 

al., 2022). It has also been showed that the active form of calcitriol modulated the 

phenotype of T cells by inhibiting JAK-STAT signaling, which further increased the 
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expression of T helper cells (Magdy et al., 2022). Apart from its ability to affect different 

pro- and anti-inflammatory cytokines, VD has also been showed to facilitate the 

differentiation of M2 cells by stimulating the synthesis of toll-like receptors 4 and 10 (TLR-

4 and TLR-10), which in turn leads to an intracellular signaling pathway that activates 

innate immunity (Calvello et al., 2017; Verma and Kim, 2016). Calcitriol also has a 

neuroinflammatory role in lipopolysaccharide-induced pericytes by modulating the 

expression of genes such as CCL2 (chemokine (c-c motif) ligand 2), CHRDL1 (chordin 

like 1), KLF4 (Kruppel like factor 4), TNFPAIP6 (tumor necrosis factor-alpha-induced 

protein 6), TNFS4 (tumor necrosis factor superfamily number 4), and VCAM (vascular 

cell adhesion molecule 1). According to the results of this study, calcitriol can be used to 

prevent or treat neuropsychiatric disorders (Nissou et al., 2014). Furthermore, VD is known 

to have a direct effect on the expression of proinflammatory cytokines in damaged neurons, 

microglia, and astrocytes (Cui and Eyles, 2022; Galoppin et al., 2022; P. W. Lee et al., 

2020). Another study on PD showed that VD supplementation attenuated 

neuroinflammation in microglia by downregulating the expression of TLR-4 and 

upregulating the expression of anti-inflammatory cytokines like IL-10, IL-4, and TGF-β 

(Calvello et al., 2017). Studies have shown that astrocytes can also express CYP27B1 and 

VDR (Jiao et al., 2017; Lu et al., 2018; Mazzetti et al., 2022). Therefore, supplementing 

astrocytes with VD will boost the production of calcitriol and suppress inflammation. A 

recent study involving lipopolysaccharide-induced astrocytes found that VD 

administration suppressesd the expression of pro-inflammatory cytokines like TNF-α, IL-

1β, and TLR-4, thus reducing astrocyte activation (Jiao et al., 2017). Conversely, the 

microglia are considered a key player in different inflammatory and neurodegenerative 

disorders (Bachiller et al., 2018; Rodríguez-Gómez et al., 2020). There is a possibility that 

calcitriol can be synthesized by microglia because of the presence of the enzyme CYP27B1 

(Boontanrart et al., 2016; Smolders et al., 2021). Various studies on neuroinflammatory 

models like multiple sclerosis, it was demonstrated that VD could reduce the activation of 

microglia and antigen-presenting cells by downregulating the expression of Iba1, MHC-II 

(Major histocompatibility complex II), CD86 (cluster of differentiation 86), and TLR-4 

(Galoppin et al., 2022). Furthermore, VD treatment has decreased the production of pro-

inflammatory cytokines like IL-6, TNF-α, and IL-1β and, on the other hand, increased the 
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expression of anti-inflammatory cytokines like TGF-β1, IL-10, IL-4, IFN-α and IFN-β in 

microglia in different models in different neuroinflammatory models including EAE 

(Galoppin et al., 2022). Collectively, it may be proposed that VD could be used as a 

valuable tool due to affirmative action on neuro-inflammation observed in 

neurodegenerative diseases. 

1.4.4.7. Anti-cholinesterase activity of VD in the brain: 

The cholinergic system plays an essential role in arousal, learning, memory, and 

attention (Huang et al., 2022; Teles-Grilo Ruivo et al., 2017; Villano et al., 2017). A 

neurotransmitter released by cholinergic neurons, acetylcholine (ACh), which acts as a 

chemical messenger and allows them to communicate with one another (Picciotto et al., 

2012). The synthesis of Ach is carried out at the axon terminals from two components, 

choline, and acetyl-CoA, in the presence of choline acetyltransferase (Aboughazala and 

Anan, 2020; Bellier and Kimura, 2007). Once the action potential reaches the axon 

terminus, acetylcholine is released into synaptic clefts through the vesicles (Han et al., 

2017; Sugita et al., 2016). The breakdown of ACh occurs in the synaptic cleft because of 

the presence of acetylcholinesterase (AChE; McHardy et al., 2017). Ach has been shown 

to promote cytoskeleton organization, cell proliferation, differentiation, and apoptosis 

through the activation of its two types of receptors i.e., muscarinic acetylcholine receptor 

(mAChRs) and nicotinic acetylcholine receptors (nAChRs; Dani, 2015; Liu et al., 2015; 

Mashimo et al., 2019; Resende and Adhikari, 2009; Zoli et al., 2018). The receptors are 

multisubunit proteins derived from both neuromuscular and neuronal tissues that form ion 

channels that are ligand-gated and play a role in the transmission of synaptic signals 

between neurons and neuromuscular junctions (Dani, 2015; Papke and Lindstorm, 2020; 

Unwin, 2013; Zoli et al., 2018). In the CNS, neuronal nAChRs are mostly expressed in 

presynaptic, postsynaptic, and extra-synaptic regions (Dani, 2015; McKay et al., 2007; 

Resende and Adhikari, 2009). Among these ɑ7 nAChRs are mostly expressed in the 

regions implicated with cognition, learning, and memory, such as the neocortex and 

hippocampus, and the levels are low in the striatum, forebrain, and various brain nuclei 

(Cao et al., 2022). When ACh binds to the ɑ7 nAChRs, it causes confirmation changes in 

the receptors, leading to the efficient exchange of ions, particularly with Ca2+ and thereby 
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promoting downstream signaling cascades, which are responsible for controlling a variety 

of neurotransmitter releases, cell survival, and cellular excitability processes (Cao et al., 

2022; Cheng and Yakel, 2015; Mashimo et al., 2019; McKay et al., 2007; Zoli et al., 2018). 

These ɑ7 nAChRs are homopentameric in nature, which gets distinguished from other 

nAChRs due to their low affinity binding with α-Bungarotoxin (α-BTX), which are highly 

expressed in presynaptic and postsynaptic sites of CNS. Homopentameric ɑ7 nAChRs 

contain an extracellular domain at their N-terminus, a small extracellular domain at their 

C-terminus, and four transmembrane domains connected by cytoplasmic loops. The 

receptor is dysfunctional in neurological disorders such as Alzheimer's disease, Parkinson's 

disease, schizophrenia, and multiple sclerosis. Such neurological conditions will impair 

nAChR function due to impaired energy and glucose metabolism in the brain (Jackson-

Guilford et al., 2000). Thus, it may provide a novel therapeutic target for diseases like 

Alzheimer's disease, Parkinson's disease, schizophrenia, and multiple sclerosis that alter 

cholinergic signaling. 

Initial studies determine that VD regulated the expression of neurotransmitters like 

ACh as well as the rate-limiting enzymes involved to maintain the levels of ACh like 

choline acetyltransferase and acetylcholinesterase (Emmanuel Garcion et al., 2002; 

Sonnenberg et al., 1986). However, a study had shown that VD supplementation 

normalized the nAChR dysfunction, which lowered the time of spatial recognition and 

improved cognitive functions (Kumar et al., 2011). It was found that VD supplementation 

decreased the cholinergic activity in the prefrontal cortex of scopolamine-induced AD rats 

and streptozotocin-induced diabetic rats by reducing the activity of AChE, thus rescuing 

the learning and memory (Alrefaie and Alhayani, 2015; Karabulut et al., 2021). Similarly, 

another study on the hippocampus of aged mice and diabetic rats showed that VD levels 

were positively correlated with the activity of choline acetyltransferase and decreased the 

level of AChE (Al-Zahrani et al., 2021; Khairy and Attia, 2021; J. Zhang et al., 2022). 

Another study using a nicotine withdrawal mouse model showed that VD supplementation 

improved the expression levels of all ɑ7 nAChRs in the hippocampus, influencing memory, 

cognitive function, and synaptic transmission (Wu et al., 2021). In a recent study, it has 

been demonstrated that VD improves the cholinergic activity in the cortex of AD rats by 

decreasing the activity of AChE and increasing the concentrations of ACh (Rodrigues et 
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al., 2019). Overall, the results demonstrate that cholinergic interventions are more 

prevalent in the cortex compared to the striatum since ɑ7 nAChRs in the latter are less 

common. 

1.4.4.8. Anti-apoptotic effect of VD in the central nervous system: 

The mechanism of apoptosis is the energy-dependent cascade of molecular 

pathways that occurs in almost all neurodegenerative diseases  (Chi et al., 2018; J. Cui et 

al., 2021; Moujalled et al., 2021). The two types of apoptotic pathway mechanisms were 

studied in stress conditions. First is the mitochondria-mediated pathway, known as the 

intrinsic pathway, and the other is a receptor-mediated pathway, known as the extrinsic 

pathway, which involves an energy-dependent cascade of molecular pathways (Elmore, 

2007; Radi et al., 2014). In most neurological diseases, neurons undergo apoptosis via 

intrinsic pathways, which can be induced by neurotrophin deprivation, DNA damage, 

mitochondrial dysfunction, or endoplasmic reticulum stress (Hollville et al., 2019; Maity 

et al., 2022; Shadfar et al., 2022; Shen et al., 2020). The stimulation of these stressors 

activates specific signaling events by reducing Akt signaling, resulting in the activation of 

anti-apoptotic and pro-apoptotic proteins that maintain mitochondrial membrane integrity 

(Ambacher et al., 2012; Green and Llambi, 2015; Hollville et al., 2019). Through a cascade 

of intracellular pathways, these pro-apoptotic proteins, such as Bcl-2 associated X protein 

(Bax), form an oligomer and insert into outer mitochondrial membranes, releasing 

cytochrome c into the cytosol (Garrido et al., 2006; Hussar, 2022; Peña-Blanco and García-

Sáez, 2018). In response to Cyt-c binding to Apaf-1, an apoptosome is formed, which 

activates caspase-9 (Bratton and Salvesen, 2010; Jiang and Wang, 2000). An activated 

caspase-9 triggers a series of proteins that lead to DNA fragmentation and chromatin 

condensation, leading to apoptosis (Elmore, 2007; Faleiro and Lazebnik, 2000). 

Consequently, VD has the ability to reduce apoptosis and neuronal death by 

downregulating the expression of L-VGCC and upregulating the expression of membrane 

Ca2+-ATPase, thereby predicting its role in neuronal survival (Eyles et al., 2013). Low 

levels of the VDR protein have been linked to impair autophagy, resulting in a decrease in 

the number of functional genes involved in regulating apoptosis (Uberti et al., 2014). A 

study on the EAE mouse model of multiple sclerosis revealed that VD supplementation 
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increased B-cell leukemia/lymphoma 2 protein (Bcl-2)/Bax, thereby inhibiting apoptosis 

(Zhen et al., 2015). A study on traumatic brain injury showed that VDR activation 

suppressed neuronal apoptosis, which determined that VDR acts as a self-defensive protein 

to overcome pathological stress conditions (C. Cui et al., 2017). These studies shoed that 

VD can rescue apoptotic cell death by activating the VDR. VD supplementation gained 

attention for its widespread anti-apoptotic role in different brain regions, leading to reduced 

reactive oxygen species (Yamini et al., 2018). This indicates the relationship between VD 

deficiency and impaired cognitive function. Previous studies on AD showed that VD 

supplementation decreased the number of apoptotic bodies and increased the number of 

viable cells in hippocampal and cortical tissues, respectively (Alamro et al., 2020a; Yamini 

et al., 2018). A study conducted on different aged matched in vitro cultures demonstrated 

that VD supplementation decreased the expression of cytochrome c, a crucial regulator of 

energy metabolism and apoptotic pathways associated with mitochondrial dysfunction 

(Molinari et al., 2019). 

In the same way, an evidence determined that VD administration to seizure-induced 

rats decreased expressions of c-fos, Bax, and caspase-3, thereby preventing the apoptosis 

of hippocampal cells (Şahin et al., 2019). As per reports from recent studies, VD is found 

to regulate nuclear factor kappa B (NF-κB), Bcl-2, Bax, and caspase-3, which are listed as 

risk factors in age-related neurological disorders such as AD and PD (Bao et al., 2020; 

Bayo-Olugbami et al., 2022; Khairy and Attia, 2021; Lin et al., 2020; Magdy et al., 2022). 

The VD supplementation resulted in a reduction in the expression of Bax, C-Fos, and 

Caspase-3 levels in AD and hyperthyroidism, which may have a positive effect on 

apoptosis in the brain, especially in the hippocampal region (Rastegar-Moghaddam et al., 

2023). Overall, these results indicate that VD has a vital function in regulating apoptosis 

during neurological conditions, demonstrating its anti-apoptotic properties. 

1.4.4.9. VD helps to maintain synaptic plasticity: 

Synaptic plasticity involves the generation of new synapses, eliminating synapses 

if not required, and altering the structural, molecular, and electrophysiological properties 

of existing synapses based on their functionality (Chelini et al., 2018; Citri and Malenka, 

2008). A synapse consists of pre-synaptic terminal loaded with neurotransmitter vesicles 
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and postsynaptic compartment with an array of receptors to receive a response from 

neurotransmitters, which leads to synaptic plasticity (Citri and Malenka, 2008). Synaptic 

plasticity plays a vital role in the development and maintenance of neural circuitry, and 

accumulating evidence suggests that impairment in synaptic plasticity contributes to 

different neurological disorders (Perez-Catalan et al., 2021). Depending on the stimulus or 

various other conditions like drug administration, synaptic transmission can either be 

enhanced or depressed, and these changes may last from milliseconds to hours or days or 

even longer (Almeras et al., 2007; Eyles, 2020; Latimer et al., 2014). Overall, a synapse 

consists of pre-synaptic terminal loaded with neurotransmitter vesicles and postsynaptic 

compartment, which is packed with receptors to receive response from neurotransmitters. 

An alteration in the molecular mechanism of synaptic transmission or changes in the 

surrounding environment is considered to be synaptic dysfunction (Ardiles et al., 2017). 

This synaptic dysfunction and degeneration is regarded as a common hallmark for 

neurological diseases like AD, PD, and HD (Lepeta et al., 2016; Marsh and Alifragis, 2018; 

Taoufik et al., 2018). These diseases are characterized by an imbalance in the composition, 

organization, and function of synaptic terminals caused by protein aggregates. Protein 

aggregates are involved in different mechanisms through which they bind to synaptic 

proteins, such as cellular prion protein, post-synaptic density protein 95 (PSD95), 

synaptosomal associated protein 25 (SNAP 25), neurogranin, synaptotagmin-1 and 

synapsin 1 (Agnello et al., 2021; Baker et al., 2018; Laurén et al., 2009; Levy et al., 2022; 

Mirza and Zahid, 2017; Smith et al., 2007). In addition, various studies showed that 

prenatal VD deficiency may alter genes involved in synaptic plasticity, primarily debrin, 

and neuromodulin. 

In light of this, it is evident that VD plays an important role in the maintenance of 

synaptic transmission, as well as modulating synaptic plasticity (Gáll and Székely, 2021). 

There is mounting evidence that VD plays an essential role in long-term potentiation (LTP) 

in the brain, which is a widely recognized mechanism of synaptic plasticity and an essential 

component of information storage in the brain (Eyles, 2020; Latimer et al., 2014). In 

addition, VD administration in aged rats increased synaptic plasticity by increasing the 

expression of genes involved in synaptic plasticity, such as synaptojanin 1, synaptotagmin 

2, and calcium/calmodulin-dependent protein kinase (Latimer et al., 2014). According to 
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another evidence on AD, VD supported nerve transmission and synaptic plasticity by 

detecting extracellular postsynaptic potentials (Taghizadeh et al., 2014). The researchers 

reported that VD administration increased the protein concentration of synapsin and PSD-

95 when the neurons were exposed to glutamate-induced neurotoxicity, which is important 

for the development and maturation of dendritic spines and synaptogenesis (Kouba et al., 

2023; Taniura et al., 2006). 

In another study, L-VGCC upregulation maintained nitric oxide (NO) levels, which 

play a key role in neurotransmission, synaptic plasticity, and neuroprotection. 

Nevertheless, it is already known that the optimal level of VD maintains L-VGCC 

expression and activity (Hölscher, 1997; Murdaca et al., 2021). According to 

electrophysiological measurements on hippocampal brain regions, supplementing with VD 

improved synaptic plasticity by cellular excitability in aged rats (Bayat et al., 2021). 

According to research, VD has a role in the release of neurotransmitters like dopamine, 

serotonin, and glutamate and in the expression of their corresponding receptors, both of 

which are essential to synaptic function (Eyles, 2020; Mayne and Burne, 2019; Wang et 

al., 2023). Recent evidence has demonstrated that supplementation with VD regulated 

some synaptic proteins such as synaptophysin, SNAP-25, PSD-95, and synapsin-1 (Liang 

et al., 2018; Mutchie et al., 2019; Wang et al., 2023). These studies suggest that VD 

supplementation regulates neuronal function and relieves age-related cognitive decline.  

1.4.5. VD deficiency: 

VD deficiency has increased exponentially in recent years. However, the definition 

of VD deficiency is still under debate. Most of the clinical data suggest that the serum 

concentration of 25(OH)D3 depicts the bioavailability of VD in the body to carry out 

different biological functions (Holick and Chen, 2008). Moreover, when the concentration 

of 25(OH)D3 in the serum is >30ng/ml, it is considered sufficient, whereas if the attention 

is 21-29 ng/ml, it is considered insufficient. When the serum concentration is less than 20 

ng/ml, that condition is considered VD deficiency (Dawson-Hughes et al., 2010). 

1.4.5.1. Global and Indian prevalence of VD deficiency:   

Deficiency of VD is one of the world's most serious public health problems. The 

problem affects all age groups, even in tropical countries. Several clinical evidences 
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indicate more cases were reported in North America and Europe than in other regions (Gois 

et al., 2017). In elderly populations, VD deficiency is more prevalent due to reduced 

sunlight exposure, reduced dietary intake, and reduced ability of the skin to produce 7-

dehydrocholesterol, a component that contributes to VD formation (Gois et al., 2017). 

Compared with European countries, clinical data from Middle-Eastern countries also 

showed low levels of VD in serum, i.e., 10-14ng/ml (Kaykhaei et al., 2011; Sayed-Hassan 

et al., 2014). 

 

Fig. 7. Global prevalence of VD deficiency: The prevalence of VD deficiency studies 

worldwide has increased in different regions as a growing public health problem that might 

change over time. (Image source: Gois et al., 2017) 

It has been estimated from clinical evidence that 68% of people from South Asia 

were deficient in VD, representing 24% of the global population (Siddiqee et al., 2021). 

Due to the fact that India is one of those tropical countries where people are exposed to 

sunlight all the time and thus should be able to get enough VD, it has been showing a 

gradual increase in VD deficiency compared to other countries in South Asia (Aparna et 

al., 2018). According to reports, three out of four people have this condition. As a 

diversified country, India also has varying levels of VD deficiency based on age, location, 

food, and cultural habits. The reason for this is likely the vegetarian eating habits of people, 

and animal foods are considered a rich source of VD. According to clinical studies, VD 

deficiency will be an epidemic in India by 2022, affecting over 70% of the population 

(Khadilkar et al., 2022). 
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1.4.5.2. VD deficiency in different neurological conditions: 

Hypovitaminosis D3 is seen in patients with peripheral diseases such as type 1 

diabetes mellitus, inflammatory bowel disease, anemia, rickets, osteoporosis, rheumatoid 

arthritis, etc. Additionally, previous studies have found that low levels of VD are linked to 

neurological conditions like AD, PD, MS, Amyloid lateral Sclerosis, schizophrenia, and 

HD (Chel et al., 2013; X. Cui et al., 2021; Di Somma et al., 2017). A similar pathway is 

associated with these neurological diseases, including inflammatory responses, oxidative 

stress, mitochondrial dysfunction, DNA damage, and synaptic dysfunction. As a result of 

all these conditions, neuronal death occurs, resulting in cognitive decline and memory loss 

(Wilson et al., 2023). A ligand, calcitriol, enhances the expression of VDR, which regulates 

neurotrophins, oxidative stress, neuroinflammation, and synaptic strength, thereby 

promoting cell survival and neurotransmission. 

Furthermore, VD deficiency disrupts the balance between excitatory and inhibitory 

neurotransmitters. Based on research on mice and rat models, it was shown that VD 

deficiency decreases glutamate production and increases levels of gamma-aminobutyric 

acid (GABA), which results in altered behavior and cognition (Groves et al., 2013; 

Kasatkina et al., 2020). As a consequence of this imbalance between excitatory and 

inhibitory neurotransmitters, there could be an increase in reactive oxygen species 

production and calcium levels at the nerve terminals (X. Cui et al., 2021). 

Several in vitro studies had also found that VD can regulate cytotoxicity, protein 

misfolding, apoptosis, and inflammation (Banerjee and Chatterjee, 2003). Additionally, 

studies had found that VD deficiency may cause deficits in brain development. According 

to meta-analyses, patients with VD deficiency exhibit cognitive impairment, a common 

phenotypic feature in different neurological disorders (Goodwill and Szoeke, 2017). 

Despite these findings, it is evident that VD regulates gene expression that contributes to 

cytoskeleton maintenance, calcium homeostasis, synaptic plasticity, neurotransmission, 

oxidative phosphorylation, mitochondrial function, protein transport, chaperone 

maintenance, cell cycle regulation, as well as post-translational modifications that are 

altered by VD deficiency (Almeras et al., 2007; Eyles et al., 2007; Eyles, 2020). Based on 

this evidence, we can conclude that VD deficiency contributes to the decline of 
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neurocognitive function and the accelerated process of neurodegeneration. This determines 

that VD deficiency contributes significantly to early brain aging (Terock et al., 2022). The 

MRI scan of elderly VD deficient patients showed reduced hippocampal volume and 

deficits associated with the right hippocampal lobe. This disrupts the network, resulting in 

cognitive impairment (Al-Amin et al., 2019). Low serum levels of calcidiol are associated 

with decreased mitochondrial respiration, which contributes to a lack of energy. It increases 

oxidative stress, which may contribute to neurodegenerative diseases related to aging 

(Berridge, 2017; Kim et al., 2014). There is evidence that VD deficiency accelerates the 

process of aging, leading to aging-related neurological disorders. 

1.4.6. The activity of VD in different neurological conditions: 

In the nervous system, VD protects neurons against multiple risk factors caused by 

various neurological conditions. When patients live with neurological disorders, VD 

supplementation can be crucial in restoring VD homeostasis and preventing neurological 

diseases (X. Cui et al., 2017; Landel et al., 2016). To minimize the risk of such conditions, 

the endocrine society suggested specific doses of VD to reach a minimum level of calcidiol, 

i.e., 30ng/ml in the serum. Depending on the baseline level of calcidiol, the environmental 

conditions, and the age of the patient, the dosage of VD will be determined (Holick et al., 

2011). Thus, based on the results of the previous study, it was evident that depending on 

the baseline level of calcidiol, an optimized dose of VD supplementation can have a 

therapeutic impact on different neurological diseases (Moretti et al., 2018). Therefore, VD 

supplementation might be safe and inexpensive for treating age-related neurological 

disorders. The cellular effects of VD might be able to rescue the risk factors and improve 

the pathologies of diverse neurological conditions. 

1.4.6.1. The dose-dependent effect of VD in different neurological conditions: 

Based on recommendations and case studies from different endocrinologist 

societies, VD supplementation dosage varies according to baseline serum calcidiol levels, 

responsiveness, and disease severity (Di Somma et al., 2017). The risk of VD deficiency 

and the interaction with the specific type of neurological illness require routine monitoring 

of VD levels in the blood. In response to serum calcidiol levels, the dosage of VD will be 

determined through diet or external supplementation (Anwar et al., 2023). According to 
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clinical studies, almost 70-90% of people with neurological conditions like AD, PD, MS, 

schizophrenia, and HD have a VD deficiency. VD can have a wide range of effects, which 

vary with different doses and depending on the conditions in which it is used as follows: 

1.4.6.1.1. The effect of different doses of VD in different clinical conditions: 

Initially, neurological conditions like MS was seen with a VD deficiency, for which 

endocrinologists have tried different doses of VD with limited success. An initial study 

conducted on MS showed that dietary supplements containing ≥400 IU/day of VD daily 

decreased the risk of developing the disease by 40%, increasing the serum level of VD by 

20ng/ml (Munger et al., 2006, 2004). According to the clinical studies by Annweiler and 

Beauchet's, patients with moderate AD conditions showed improvements when 

supplemented with a high dose of VD, i.e., 10,000IU each month, after which they have 

improved their language, memory, and cognitive abilities, which further reveals that 

prevention of neuronal damage (Annweiler and Beauchet, 2011; Annweiler, 2016). On the 

other hand, in a randomized survey of placebo-controlled participants, it was found that 

supplementing with 400 IU of VD did not significantly enhance cognitive function 

(Rossom et al., 2012). In a study of patients with AD who were supplemented with a low 

dose of VD, i.e., ≥400 IU/day, the results did not indicate any significant improvement in 

symptoms even after the third year of disease progression (Luthra et al., 2018). The 

randomized study determined that a high dose of VD, i.e., 10,000IU/day, improved the 

balance of PD patients, mainly in the younger population (Hiller et al., 2018). Moreover, 

such type of placebo-controlled moderate AD patients, when supplemented with 800 

IU/day of VD for 12 months orally, showed significant improvement in cognitive function 

performance and decreased the level of Aβ related plasma markers, which determines the 

beneficial role of VD in AD patients (Jia et al., 2019). In a recent study on MS, 

supplementing placebo-controlled patients with 10,000IU to 40,000IU/day alone 

significantly reduced neuroinflammation-related abnormalities observed in MRI scans 

(Feige et al., 2020). Researchers found that the neurological symptoms of MS were 

significantly reduced when 40,000IU of VD were administered for five years, i.e., 

1000IU/kg/day through a diet (Gandhi et al., 2021). Clinical studies on PD patients showed 

that 1200 IU of VD per day for 12 months had only a short-term effect when compared to 
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a placebo-controlled group, with serum concentrations of VD increasing to 19.2ng/ml after 

12 months (Anwar et al., 2023). Furthermore, in the case of HD, it has been found that 

patients will have VD deficiency when they undergo treatment. However, there is no 

clinical evidence that VD is dose-dependent when treating HD patients. 

1.4.6.1.2. The effect of different doses of VD in preclinical conditions: 

At the pre-clinical stage, the protective effect of VD mainly depends on the type of 

condition and age, which leads to variations in the molecular changes. According to recent 

research on streptozocin-induced AD mice, 42IU/kg/day subcutaneous VD pre-

supplementation for seven days and 42IU/kg/day oral VD post-supplementation for 21 

days significantly improved cognitive function and rescued neurons from oxidative stress, 

neuroinflammation, synaptic dysfunction, and cholinergic dysfunction (Yamini et al., 

2018). A study released in 2019 by Cui et al. concluded that intraperitoneal injections of 

100 ng/kg VD for six weeks attenuated oxidative stress and inflammation in hypersensitive 

rats (Cui et al., 2019). There is an evidence that the anti-oxidative effect of VD on AD rats 

possessing Aβ1 – 40 aggregates, when supplemented with 1µg/kg/day of it through i.p. for 

14 days, will result in the survival of neurons, which is substantiated by the findings of 

histological examinations (S and Ss, 2020). As cited in 2022, Patel and Shah reported that 

oral administration of 2.5µg/kg/day and 5µg/kg/day of VD for 21 days to AD rats showed 

anti-oxidant, anti-inflammatory, and anticholinergic effects. In general, higher doses of VD 

have more favorable outcomes than lower doses, but the difference between the two doses 

is not very significant. Hence, it can be assumed that 2.5g/kg/day is a satisfactory dose for 

a person to demonstrate the beneficial effects (Patel and Shah, 2022). According to this, 

VD plays a valuable role depending on the dose and route of administration in different 

models of AD. 

As well it has been found that in the case of PD, when the disease was induced with 

MPTP, the administration of 1g/kg/day of VD through intragastric gavage for 10 days had 

anti-inflammatory and antioxidant effects (Calvello et al., 2017). Furthermore, in 2018, it 

was determined that pre- and post-supplementation of 1µg/kg/day of VD for 7 days and 14 

days, respectively, are beneficial. Based on the findings of the study, VD increases the 

expression of VDR in the 6-OHDA-induced mouse model of PD, whether it is administered 
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pre- or post-treatment (Lima et al., 2018). In 2022, Magdy et al. found that 1µg/kg/day of 

calcitriol administered for 8 days acted as an anti-oxidant and anti-apoptotic agent in PD 

mice induced by retenone (Magdy et al., 2022). A recent study found that VD 

supplementation of 1µg/kg/day for 21 days showed beneficial effects before and after 

exercise in PD rats. Based on the results of the study, the researchers concluded that VD 

has a protective effect by fighting inflammatory responses, and the cognitive function of 

rats does not differ depending on whether they have undergone exercise (da Costa et al., 

2023). As a result, we can conclude that, in the case of PD, the effect of VD depends on 

the dose but not the time and route of administration. 

Similarly, VD has beneficial effects on various other age-related neurological 

conditions, where the outcome depends on the dose and the route of administration, as 

shown in Table 1. A minimal amount of evidence indicates that VD supplements increase 

longevity in HD mice (Fort Molnár et al., 2016). As a result, it appears that the effectiveness 

of VD in treating various neurological disorders depends on the dose and route of 

administration. 
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Table 1. The beneficial effect of VD supplementation in different neurological diseases based on different doses both in 

in-vitro and in-vivo conditions 

S. 

No. 

Mode of action Disease type Model Dose of VD Mechanism of action Ref. 

1. Anti-inflammatory 

activity 

Parkinson’s 

disease 

5 mg/kg of MPTP for 

four doses for every 8 

hours – mouse model 

1µg/kg/day of VD by 

intragastric gavage for 10 

days 

Decrease in the gene 

expression of pro-

inflammatory markers (TNF-

α, IL-1β). Increase in the gene 

expression of anti-

inflammatory markers (IL-10, 

TGF-β) and protein expression 

of anti-inflammatory markers 

(CD163, CD204, CD206) 

Calvello et 

al., 2017 

   6-OHDA – rat model Pre-supplementation of 

1µg/kg/day for seven days, 

Post-supplementation of 

1µg/kg/day for 14 days 

orally 

Inhibiting protein expression 

of HSP40 and TLR4 

Araújo de 

Lima et al., 

2022 

   6-OHDA - mouse model 30mg/kg/day of VD (i.p) 

for 21 days 

Decrease in the gene 

expression of IL-1β 

Bayo -

Olugbami 

et al., 2022 

  Aging Spontaneously 

hypersensitive rats 

100 ng/kg of calcitriol for 6 

weeks orally  

Decrease in gene expression 

of iL-1β, IL-6, IL-10 

Cui et al., 

2019 
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S. 

No. 

Mode of action Disease type Model Dose of VD Mechanism of action Ref. 

1. Anti-inflammatory 

activity 

Alzheimer’s 

disease 

2 mg/kg of scopolamine as a 

single dose intraperitoneally 

– rat model 

2 doses of calcitriol were 

given orally for 21 days 

Doses: 2.5µg/kg/day and 

five µg/kg/day 

Decrease in the concentration 

of IL-1β, TNF-α, interferon-γ, 

IL-6 and NF-κβ 

Patel and 

Shah, 2022 

  Ischemic 

stroke 

Mice – middle cerebral artery 

occlusion 

Pre-supplementation of 

100ng/kg/day of 

calcitriol for 5 days 

Decrease in the gene 

expression of TNF-α, IL-1β, 

IL-6, IL-21, IL-23a and TGF-

β1 

Evans et 

al., 2018 

2. Antioxidant activity Parkinson’s 

disease 

SH-SY5Y treated with a 

solution of α-syn aggregates 

(α-syn + VD) oligomers Decrease in ROS generation Zhang et 

al., 2022 

   6-OHDA – rat model Pre-supplementation of 

1µg/kg/day for seven 

days, Post-

supplementation of 

1µg/kg/day for 14 days 

orally 

Reduction in the levels of nitric 

oxide 

Araújo de 

Lima et al., 

2022 

   5 mg/kg of MPTP for four 

doses for every 8 hours – 

mouse model 

1µg/kg/day of VD by 

intragastric gavage for 10 

days 

Decrease in protein expression 

of iNOS 

Calvello et 

al., 2017 

   6-OHDA – mouse model 30mg/kg/day of VD (i.p) 

for 21 days 

Decrease in the expression of 

MOAB, DDC 

Bayo-

Olugbemi 

et al., 2022 

 

https://www.zotero.org/google-docs/?ufF5SV
https://www.zotero.org/google-docs/?ufF5SV
https://www.zotero.org/google-docs/?qZ97T8
https://www.zotero.org/google-docs/?qZ97T8
https://www.zotero.org/google-docs/?CxPZZM
https://www.zotero.org/google-docs/?CxPZZM
https://www.zotero.org/google-docs/?oRdEbI
https://www.zotero.org/google-docs/?oRdEbI
https://www.zotero.org/google-docs/?oRdEbI
https://www.zotero.org/google-docs/?FNmGuh
https://www.zotero.org/google-docs/?FNmGuh
https://www.zotero.org/google-docs/?IE7jTj
https://www.zotero.org/google-docs/?IE7jTj
https://www.zotero.org/google-docs/?IE7jTj
https://www.zotero.org/google-docs/?IE7jTj
https://www.zotero.org/google-docs/?IE7jTj
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S. 

No. 

Mode of action Disease type Model Dose of VD Mechanism of action Ref. 

2. Antioxidant activity Parkinson’s 

disease 
6-OHDA – rat model 1 µg/kg/day of VD for 

21 days orally 

  

Decrease in nitrite and increase 

in GSH. 

da Costa et 

al., 2023 

   2.5mg/kg/day of rotenone 

for 4 weeks 

intraperitoneally – mouse 

model 

1 µg/kg/day of calcitriol 

for 8 days 

Increased the gene expression 

of Sirt1 

Magdy et 

al., 2022 

   SH-SY5Y cell line – 

exposed to MPP+ for 24 

hours 

Pre-treated with calcitriol 

for 4 hours 

Decrease in ROS production 

and increase in NAD+ levels 

Hu et al., 

2021 

  Alzheimer’s 

disease 
SH-SY5Y (Human 

neuroblastoma cell line) - 

1µM of Aβ (25-35) 

50nM of calcitriol (active 

form of VD) – 24 hrs 

after treatment with Aβ 

(25-35) 

Decrease in intracellular ROS Lin et al., 

2020 

   0.2µl of 5mg/ml of Aβ 

(1–40) peptides given 

directly to the  dorsal 

right portion of the 

hippocampus – rat model 

1µg/kg/day for 14 days Increase in the activity of SOD S and Ss, 

2020 

https://www.zotero.org/google-docs/?Ei1SAh
https://www.zotero.org/google-docs/?Ei1SAh
https://www.zotero.org/google-docs/?iML9HW
https://www.zotero.org/google-docs/?iML9HW
https://www.zotero.org/google-docs/?Utc1vl
https://www.zotero.org/google-docs/?Utc1vl
https://www.zotero.org/google-docs/?K7r5Ey
https://www.zotero.org/google-docs/?K7r5Ey
https://www.zotero.org/google-docs/?Yj7RBa
https://www.zotero.org/google-docs/?Yj7RBa
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S. 

No. 

Mode of action Disease type Model Dose of VD Mechanism of action Ref. 

2. Antioxidant activity Alzheimer’s 

disease 

Primary neuronal culture 

from 1 week old rats - 

1µM of Aβ (1-42) 

1nM of VD treatment for 

72 hours 

Increase in levels of GSH, 

activity of GST, catalase, SOD 

Alamro et 

al., 2020 

   Spontaneously 

hypersensitive rats 

100 ng/kg of calcitriol 

for 6 weeks orally 

Decrease in gene expression of 

iNOS and protein expression 

of NOX2, NOX4. Decrease in 

the activity of NADPH 

oxidase, SOD, Cat. 

Cui et al., 

2019 

   3 mg/kg of ICV-STZ 

injection 

Pre-treatment of 42IU of 

VD for 7 days and post-

treatment 42IU of VD 

for 21 days orally 

Increase in the activity of SOD, 

Catalase, GSH 

Yamini et 

al., 2018 

   2 mg/kg of Scopolamine 

as a single dose 

intraperitoneally – rat 

model 

2 doses of calcitriol were 

given orally for 21 days 

Doses: 2.5µg/kg/day and 

5µg/kg/day 

Decrease in the concentration 

of glutathione and activity of 

superoxide dismutase. 

Patel and 

Shah, 2022 

   0.8mg/kg of 

lipopolysaccharide for 

three weeks, which is 

once per week - rat model 

VD: 1µg/kg twice a day 

for 4 weeks by i.p 

injection 

Decrease in the gene 

expression of Keap1 

Saad El-

Din et al., 

2020 

 

 

https://www.zotero.org/google-docs/?Gy8s9u
https://www.zotero.org/google-docs/?Gy8s9u
https://www.zotero.org/google-docs/?k9CD7Y
https://www.zotero.org/google-docs/?k9CD7Y
https://www.zotero.org/google-docs/?HCTLLr
https://www.zotero.org/google-docs/?HCTLLr
https://www.zotero.org/google-docs/?Enuu5N
https://www.zotero.org/google-docs/?Enuu5N
https://www.zotero.org/google-docs/?HK9bYv
https://www.zotero.org/google-docs/?HK9bYv
https://www.zotero.org/google-docs/?HK9bYv
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S. 

No. 

Mode of action Disease type Model Dose of VD Mechanism of action Ref. 

2. Antioxidant activity Alzheimer’s 

disease 

SH-SY5Y neuroblastoma 

cell line –1µM of Aβ (25-

35) 

2 different 

concentrations of 

Calcitriol: 0.1nM and 

10nM 

Decrease in the level of 

intracellular ROS. 

Lin et al., 

2020 

  Aging 5 months old rats, 12 

months old rats, 24 

months old rats 

500IU/kg/day of VD for 

5 weeks orally 

Decrease in the level of MDA 

and increase in the activity of 

SOD 

Khairy and 

Attia, 2021 

   Human umbilical 

endothelial cells co-

cultured with astrocytes 

100nM of VD at 

different time points 

from 15 minutes to 1440 

minutes 

Decrease in ROS production, 

Decrease in the protein 

expression of SOD3 

Molinari et 

al., 2019 

   Primary cortical culture 

from 7 days old rats 

4 different 

concentrations of 

Calcitriol: 0.25µg/ml, 

0.5 µg/ml, 0.75 µg/ml 

and 1.0 µg/ml. 

Decrease in lipid 

peroxidation and activity of 

catalase with Increase in the 

activity of GSH 

AlJohri et 

al., 2019 

  Huntington’s 

disease 

25 mg/kg of 3-NP for 3 

doses for every 12 hours-

mouse model 

500IU/kg/day of VD 

(i.p) for 15 days  

Decrease in the gene 

expression of GpX and Cat 

Manjari et 

al., 2022 

 

https://www.zotero.org/google-docs/?bXveIV
https://www.zotero.org/google-docs/?bXveIV
https://www.zotero.org/google-docs/?cbulYG
https://www.zotero.org/google-docs/?cbulYG
https://www.zotero.org/google-docs/?Ot7KtY
https://www.zotero.org/google-docs/?Ot7KtY
https://www.zotero.org/google-docs/?MFORU9
https://www.zotero.org/google-docs/?MFORU9
https://www.zotero.org/google-docs/?8AbYqw
https://www.zotero.org/google-docs/?8AbYqw
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S. 

No. 

Mode of action Disease type Model Dose of VD Mechanism of action Ref. 

2. Antioxidant activity Depression UCMS-rat model 3 doses of VD (i.p) for 4 

weeks 

Doses: 100 IU/kg, 1000 

IU/kg and 10,000IU/kg 

Increase in the activity of 

Catalase, SOD. 

Bakhtiari-

Dovvomba

ygi et al., 

2021b 

3. Neuroprotective role Parkinson’s 

disease 

6-OHDA-rat model 1µg/kg/day of VD for 21 

days orally 

  

Increase in DA, TH, DAT da Costa et 

al., 2023 

   6-OHDA-rat model Pre-supplementation of 

1µg/kg/day for 7 days 

Post-supplementation of 

1µg/kg/day for 14 days 

orally 

Increase in the gene 

expression of BDNF and 

alteration of dopamine 

metabolism 

Lima et al., 

2018 

   6-OHDA–mouse model 30µg/kg/day of VD (i.p) 

for 21 days 

Increase in the gene 

expression of BDNF, DAT, 

and TH. 

Bayo-

Olugbami 

et al., 2022 

   2.5mg/kg/day of 

rotenone for 4 weeks 

intraperitoneally – 

mouse model 

1µg/kg/day of Calcitriol 

for 8 days 

Increased the protein 

expression of TH 

Magdy et 

al., 2022 

   30mg/kg/day of MPTP 

for 7 days 

2.5µg/kg/day of calcitriol 

for 7 days 

Increase in the level of TH Hu et al., 

2021 

       

https://www.zotero.org/google-docs/?hlr8mC
https://www.zotero.org/google-docs/?hlr8mC
https://www.zotero.org/google-docs/?hlr8mC
https://www.zotero.org/google-docs/?hlr8mC
https://www.zotero.org/google-docs/?NsoLj5
https://www.zotero.org/google-docs/?NsoLj5
https://www.zotero.org/google-docs/?BU1nb6
https://www.zotero.org/google-docs/?BU1nb6
https://www.zotero.org/google-docs/?kFqbPv
https://www.zotero.org/google-docs/?kFqbPv
https://www.zotero.org/google-docs/?kFqbPv
https://www.zotero.org/google-docs/?kFqbPv
https://www.zotero.org/google-docs/?kFqbPv
https://www.zotero.org/google-docs/?kH9mUE
https://www.zotero.org/google-docs/?kH9mUE
https://www.zotero.org/google-docs/?zriB7T
https://www.zotero.org/google-docs/?zriB7T
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S. 

No. 

Mode of action Disease type Model Dose of VD Mechanism of action Ref. 

3. Neuroprotective role Alzheimer’s 

disease 

SH-SY5Y (Human 

neuroblastoma cell line) 

- 1µM of Aβ (25-35) 

50nM of Calcitriol (Active 

form of VD) – 24 hrs after 

treating with Aβ (25-35) 

Increased the phosphorylation 

of PI3K, Akt, GSK-3β 

Lin et al., 

2020 

   Colchicine dissolved in 

ACSF 15µg/rat (7.5in 

5µl/site) 

42 IU/kg subcutaneously 

for one week 

Increase in the concentration 

of BDNF 

AlJohri et 

al., 2019 

   Primary neuronal 

culture from 1 week 

old rats - 1µM of Aβ 

(1-42) 

1nM of VD and 

maintained for 72 hours 

Increase in the 

concentration of NGF 

Alamro et 

al., 2020 

   0.2µl of 5mg/ml of Aβ 

(1–40) peptides given 

directly to the dorsal 

right portion of the 

hippocampus – rat 

model 

1µg/kg/day for 14 days Increase in the number of 

neurons on H&E staining 

S and Ss, 

2020 

   APPswe/PS1ΔE9 mice 100ng/kg/day of calcitriol 

(i.p) for 6 weeks 

Increase in the protein 

expression of VDR and 

decrease in the protein 

expression of p-ERK. 

Bao et al., 

2020 

 

https://www.zotero.org/google-docs/?arcyvH
https://www.zotero.org/google-docs/?arcyvH
https://www.zotero.org/google-docs/?6aFgft
https://www.zotero.org/google-docs/?6aFgft
https://www.zotero.org/google-docs/?ztf6yA
https://www.zotero.org/google-docs/?ztf6yA
https://www.zotero.org/google-docs/?MpOz6g
https://www.zotero.org/google-docs/?MpOz6g
https://www.zotero.org/google-docs/?4r5nkF
https://www.zotero.org/google-docs/?4r5nkF
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S. 

No. 

Mode of action Disease type Model Dose of VD Mechanism of action Ref. 

3. Neuroprotective role Alzheimer’s 

disease 

2 mg/kg of 

scopolamine as a 

single dose 

intraperitoneally – rat 

model 

2 doses of calcitriol were 

given orally for 21 days 

Doses: 2.5µg/kg/day and 

5µg/kg/day 

Decrease in the concentration 

of Aβ and p-Tau 

Patel and 

Shah, 2022 

   0.8mg/kg of 

lipopolysaccharide 

for three weeks, 

which is once per 

week - rat model 

1 µg/kg of VD twice a day 

for 4 weeks via i.p. 

Decrease in the concentration 

of Aβ and p-Tau. 

Decrease in the protein 

expression of ERK1/2. 

Saad El-

Din et al., 

2020b 

   SH-SY5Y 

neuroblastoma cell 

line –1µM of Aβ (25-

35) 

2 different concentrations 

of calcitriol: 0.1nM and 

10nM 

Increase in the protein 

expression of VDR, GDNF. 

Decrease in the concentration 

of p-tau. Increased the 

phosphorylation of PI3K, Akt, 

GSK-3β 

Lin et al., 

2020 

  Aging 5 months old rats, 12 

months old rats, 24 

months old rats 

500IU/kg/day of VD for 5 

weeks orally 

Increase in the level of BDNF Khairy and 

Attia, 2021 

   Human umbilical 

endothelial cells co-

cultured with 

astrocytes 

100nM of VD at different 

time points from 15 

minutes to 1440 minutes 

Increase in ERK/MAPK 

activity and PI3K/Akt activity 

Molinari et 

al., 2019 

https://www.zotero.org/google-docs/?pJXs5H
https://www.zotero.org/google-docs/?pJXs5H
https://www.zotero.org/google-docs/?3wlLp6
https://www.zotero.org/google-docs/?3wlLp6
https://www.zotero.org/google-docs/?3wlLp6
https://www.zotero.org/google-docs/?Vot6og
https://www.zotero.org/google-docs/?Vot6og
https://www.zotero.org/google-docs/?YFYKYu
https://www.zotero.org/google-docs/?YFYKYu
https://www.zotero.org/google-docs/?VWolK3
https://www.zotero.org/google-docs/?VWolK3
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S. 

No. 

Mode of action Disease type Model Dose of VD Mechanism of action Ref. 

3. Neuroprotective role Huntington’s 

disease 

25 mg/kg of 3-NP for 

3 doses for every 12 

hours – mouse model 

500IU/kg/day of VD (i.p) 

for 15 days 

Increase in the gene expression 

of NGF, BDNF and protein 

expression of VDR 

Manjari et 

al., 2022 

  Depression UCMS – rat model 3 doses of VD (i.p) for 4 

weeks 

Doses: 100 IU/kg, 1000 

IU/kg and 10,000IU/kg 

Increase in the concentration of 

BDNF and decrease in the 

concentration of Aβ 

Bakhtiari-

Dovvomba

ygi et al., 

2021b 

  Stroke CUMS – mouse 

model 

4 doses of VD were given 

by ICV for 4 weeks 

Doses: 6µg/kg, 

12.5µg/kg, 25µg/kg and 

50µg/kg 

Increase in the protein 

expression of VDR and BDNF 

Xu and 

Liang, 

2021 

  Mild stress CUMS – rat model 3 doses of VD were 

given by subcutaneous 

injection for 4 weeks 

Doses: 1.0mg/kg/day, 

2.5mg/kg/day and 

5mg/kg/day 

Increase the protein expression 

of BDNF, NT-3, and NT-4. 

Koshkina 

et al., 2019 

https://www.zotero.org/google-docs/?bTHeab
https://www.zotero.org/google-docs/?bTHeab
https://www.zotero.org/google-docs/?pQB8Qn
https://www.zotero.org/google-docs/?pQB8Qn
https://www.zotero.org/google-docs/?pQB8Qn
https://www.zotero.org/google-docs/?pQB8Qn
https://www.zotero.org/google-docs/?1k090Y
https://www.zotero.org/google-docs/?1k090Y
https://www.zotero.org/google-docs/?1k090Y
https://www.zotero.org/google-docs/?9pag1N
https://www.zotero.org/google-docs/?9pag1N
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S. 

No. 

Mode of action Disease type Model Dose of VD Mechanism of action Ref. 

4. Anti-apoptotic 

activity 

Aging 5 months old rats, 12 

months old rats, 24 

months old rats 

500IU/kg/day of VD for 5 

weeks orally 

Decreased the activity of 

Caspase-3 

Khairy and 

Attia, 2021 

   Human umbilical 

endothelial cells co-

cultured with 

astrocytes 

100nM of VD at 

different time points 

from 15 minutes to 1440 

minutes 

Decrease in p53 activity, 

Decrease in the protein 

expression of cytochrome C  

Molinari et 

al., 2019 

   Primary cortical 

culture from 7 days 

old rats 

4 different 

concentrations of 

Calcitriol: 0.25µg/ml,0.5 

µg/ml, 0.75 µg/ml, and 

1.0 µg/ml. 

Increase in the number of viable 

cells 

AlJohri et 

al., 2019 

  Alzheimer’s 

disease 

Primary neuronal 

culture from 1 week 

old rats - 1µM of Aβ 

(1-42) 

1nM of VD and 

maintained for 72 hours 

Increase in the number of viable 

cells 

Alamro et 

al., 2020 

   SH-SY5Y (Human 

neuroblastoma cell 

line) - 1µM of Aβ (25-

35) 

50nM of Calcitriol 

(Active form of VD) – 

24 hrs after treating with 

Aβ (25-35) 

Decrease in the protein 

expression of activated caspase-

3 with reduction in the 

percentage of apoptotic cells 

Lin et al., 

2020 

   SH-SY5Y 

neuroblastoma cell 

line –1µM of Aβ (25-

35) 

2 different 

concentrations of 

calcitriol: 0.1nM and 

10nM 

Increase in cell viability. 

Decrease in the protein 

expression of caspase-3 and 

apoptotic cell death. 

Lin et al., 

2020 

https://www.zotero.org/google-docs/?TtSlR0
https://www.zotero.org/google-docs/?TtSlR0
https://www.zotero.org/google-docs/?Mqw5vw
https://www.zotero.org/google-docs/?Mqw5vw
https://www.zotero.org/google-docs/?0KN2KM
https://www.zotero.org/google-docs/?0KN2KM
https://www.zotero.org/google-docs/?V2xict
https://www.zotero.org/google-docs/?V2xict
https://www.zotero.org/google-docs/?UVCOln
https://www.zotero.org/google-docs/?UVCOln
https://www.zotero.org/google-docs/?Ro9B8Z
https://www.zotero.org/google-docs/?Ro9B8Z
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S. 

No. 

Mode of action Disease type Model Dose of VD Mechanism of action Ref. 

4. Anti-apoptotic 

activity 

Alzheimer’s 

disease 

3 mg/kg of ICV-STZ 

injection 

Pre-treatment of 42IU 

of VD for 7 days and 

post-treatment 42IU of 

VD for 21 days orally 

Increase in the activity of 

mitochondrial complexes and 

decrease in P65κB. Decrease in 

the number of dead neurons. 

Yamini et 

al., 2018 

   APPswe/PS1ΔE9 mice 100ng/kg/day of 

calcitriol by 

intraperitoneal injection 

for 6 weeks 

Decrease in the percentage of 

apoptotic cells. Increase in the 

gene expression of Bcl-2. 

Decrease in the gene expression 

of Bax and caspase-3. 

Bao et al., 

2020 

  Parkinson’s 

disease 

SH-SY5Y treated with 

a solution of α-syn 

aggregates 

(α-syn + VD) oligomers Decrease in cell death Zhang et 

al., 2022 

   6-OHDA – mouse 

model 

30mg/kg/day of VD 

(i.p) for 21 days 

Decrease in the gene expression 

of BAX 

Bayo-

Olugbami 

et al., 2022 

   2.5mg/kg/day of 

rotenone for 4 weeks 

intraperitoneally – 

mouse model 

1µg/kg/day of calcitriol 

for 8 days by 

subcutaneous injection 

Increased the expression of LC3 

and decrease in the protein 

expression of P62, NF-κB 

Magdy et 

al., 2022 

 

https://www.zotero.org/google-docs/?d55iOW
https://www.zotero.org/google-docs/?d55iOW
https://www.zotero.org/google-docs/?VDYA5T
https://www.zotero.org/google-docs/?VDYA5T
https://www.zotero.org/google-docs/?6lAEWz
https://www.zotero.org/google-docs/?6lAEWz
https://www.zotero.org/google-docs/?V7JIyt
https://www.zotero.org/google-docs/?V7JIyt
https://www.zotero.org/google-docs/?V7JIyt
https://www.zotero.org/google-docs/?V7JIyt
https://www.zotero.org/google-docs/?V7JIyt
https://www.zotero.org/google-docs/?1x4oGz
https://www.zotero.org/google-docs/?1x4oGz
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S. 

No. 

Mode of action Disease type Model Dose of VD Mechanism of action Ref. 

5. Anticholinesterase 

activity 

Aging 5 months old rats, 12 

months old rats, 24 

months old rats 

500IU/kg/day of VD 

for 5 weeks orally 

Increase in the activity of AChE Khairy and 

Attia, 2021 

  Alzheimer’s 

disease 

Intracerebroventricular 

injection of 3 mg/kg of 

streptozotocin – rat 

model 

3 different doses of VD, 

i.e., 12.5µg/kg, 

42µg/kg, and 125µg/kg 

orally for 21 days 

Decrease in AChE activity Rodrigues 

et al., 2019 

   3 mg/kg of ICV-STZ 

injection 

Pre-treatment of 42IU 

of VD for 7 days and 

post-treatment 42IU of 

VD for 21 days by oral 

dose orally 

Decrease in activity of AChE Yamini et 

al., 2018 

   2 mg/kg of 

Scopolamine as a single 

dose intraperitoneally – 

rat model 

2 doses of calcitriol 

were given orally for 

21 days 

Doses: 2.5µg/kg/day 

and 5µg/kg/day 

Decrease in the level of AChE Patel and 

Shah, 2022 

6. Immunomodulatory 

effect 

Parkinson’s 

disease 

6-OHDA – mouse 

model 

30mg/kg/day of VD 

(i.p) for 21 days 

Decrease in the gene expression 

of CD11b 

Bayo-

Olugbemi 

et al., 2022 

  Alzheimer’s 

disease 

Spontaneously 

hypersensitive rats 

100 ng/kg of calcitriol 

for 6 weeks orally 

Decrease in gene expression of 

TNFα, CD86, CD206, Arg1 

Cui et al., 

2019 

 

https://www.zotero.org/google-docs/?HpYVg6
https://www.zotero.org/google-docs/?HpYVg6
https://www.zotero.org/google-docs/?jE3UGH
https://www.zotero.org/google-docs/?jE3UGH
https://www.zotero.org/google-docs/?0tTKpM
https://www.zotero.org/google-docs/?0tTKpM
https://www.zotero.org/google-docs/?g7fm0q
https://www.zotero.org/google-docs/?g7fm0q
https://www.zotero.org/google-docs/?YruRou
https://www.zotero.org/google-docs/?YruRou
https://www.zotero.org/google-docs/?YruRou
https://www.zotero.org/google-docs/?YruRou
https://www.zotero.org/google-docs/?YruRou
https://www.zotero.org/google-docs/?Cwe5Sy
https://www.zotero.org/google-docs/?Cwe5Sy
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S. 

No. 

Mode of action Disease type Model Dose of VD Mechanism of action Ref. 

6. Immunomodulatory 

effect 

Alzheimer’s 

disease 

0.8mg/kg of 

lipopolysaccharide for 

three weeks, which is 

once per week - rat 

model 

1 µg/kg of VD twice a 

day for four weeks 

through i.p. 

Decrease in the protein 

expression of MAPK P38 

Saad El-

Din et al., 

2020 

 

 

  

https://www.zotero.org/google-docs/?I3bppt
https://www.zotero.org/google-docs/?I3bppt
https://www.zotero.org/google-docs/?I3bppt
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1.4.6.1.3. The cellular effect of VD in various neurological conditions: 

A thorough investigation of the mechanisms of action of calcitriol was undertaken 

using in-vitro models for different neurological conditions. A study on primary cortical 

neurons from 7-day-old rats treated with VD at four different doses, i.e., 0.25µg/ml, 

0.5µg/ml, 0.75µg/ml, and 1µg/ml, showed an improved survival rate of existing cells after 

72 hours. It was concluded that the protective role of VD led to a reduction in oxidative 

stress, decreased catalase activity and an increase in glutathione transferase activity 

(AlJohri et al., 2019). Another study conducted in the SH-SY5Y neuroblastoma cell line, 

induced with 1µM of Aβ (25-35), indicated dose-dependent effects of calcitriol (0.1nm or 

10nm)  in AD. The beneficial effects of VD was shown to occur by increase in the gene 

expression of VDR, decrease in caspase-3 gene expression and an enhancement in the  AKt 

kinases signaling pathway (Lin et al., 2020). A study by Alamro and colleagues 

demonstrated the beneficial effect of VD when primary neuronal cultures from one-week-

old rats were treated with 1µM of Aβ (1-42). The treatment of cells with 1nM of calcitriol 

for 72 hours significantly reduced the activity of antioxidants like SOD and catalases and 

increased the gene expression of NGF, demonstrating the survival of neurons (Alamro et 

al., 2020). 

Similarly, VD supplementation has been shown to protect against PD through 

various signaling pathways. According to one study, when SH-SY5Y neuroblastoma cells 

were exposed to MPP+, they developed PD-like features. The study showed that pre-

treatment with calcitriol for four hours reduced ROS production in cells and increased VDR 

expression, indicating that VD has a beneficial effect on oxidative stress (Hu et al., 2021). 

Later, a study on SH-SY5Y neuroblastoma with α-syn aggregates, when supplemented 

with calcitriol, showed its anti-oxidant effect by decreasing the ROS production, thereby 

decreasing the number of apoptotic cells (Y. Zhang et al., 2022). 

Similarly, VD also has a protective role against apoptotic cell death, oxidative 

stress, and an increase in the expression of neurotrophins in the central nervous system, as 

shown in Table 1. Based on the findings above, it is evident that VD has a beneficial effect 

on a wide range of molecular markers to evaluate the mechanism of action in the brain 

through in-vitro studies. 

https://www.zotero.org/google-docs/?zXKNUJ
https://www.zotero.org/google-docs/?ImdiBi
https://www.zotero.org/google-docs/?buQSiR
https://www.zotero.org/google-docs/?buQSiR
https://www.zotero.org/google-docs/?Hlz6kd
https://www.zotero.org/google-docs/?nxtBjS


63 
 

1.4.6.2. Effect of VD deficiency in HD: 

Huntington's disease (HD) is one of the age-related neurodegenerative disorders 

with high prevalence found mostly in Caucasians. A lack of VD is among the most common 

health problems among people suffering from age-related neurological disorders like HD. 

From the initial clinical study, it may be considered that the risk of fractures is higher in 

patients who suffer from HD (Grimbergen et al., 2008). According to a study by Godman 

et al., there is an increased risk of VD deficiency, which may occur before the outbreak of 

HD (Goodman and Barker, 2011). Based on the clinical study conducted by Chel et al., 

about 89% of patients with HD have VD insufficiency, with an average serum 

concentration of calcidiol at 33 nmol/L (Chel et al., 2013). Therefore, it can be considered 

that VD deficiency and insufficiency are highly observed in patients with HD. 

1.5. Huntington’s disease (HD): 

1.5.1. Historical significance of HD: 

Huntington's disease (HD) was diagnosed in 1842 as Huntington chorea, but by 

1872, it had been renamed Huntington's disease by George Huntington himself (Roos, 

2010). HD is an autosomal dominant disease mainly characterized by behavioral, motor, 

cognitive, and neuropsychiatric symptoms (Gatto and Weissmann, 2022). There is an 

average age of 35 to 44 years when the signs of the disease will appear, while the average 

survival time after the onset of the symptoms will be 15 to 18 years (Caron et al., 2020). 

As of 2010, there are 17,2 cases per 100,000 of HD in the Caucasian population, and it has 

been estimated that there are more than 0.2 million people in India who are at risk because 

of HD (Raju and Kukkle, 2021; Shaw et al., 2022).  

The disease is caused by an autosomal dominant inherited CAG repeat located in 

the huntingtin gene (Htt) on the 4th chromosome, which causes its manifestation. In the 1st 

exon of the mRNA, repeats of the CAG motif will be found at the N-terminus in a 

polyglutamate expansion of more than 40 repeats (Capiluppi et al., 2020). There is an 

inverse correlation between the number of CAG repeats and the age of onset of the disease 

(Pringsheim et al., 2012). In most cases, the onset of symptoms occurs after 45 years of 

age, but if the symptoms appear before 31, this is considered a juvenile onset of the disease 

https://www.zotero.org/google-docs/?ikTI4f
https://www.zotero.org/google-docs/?Twyk4i
https://www.zotero.org/google-docs/?iIwYPH
https://www.zotero.org/google-docs/?nmu7iE
https://www.zotero.org/google-docs/?nmu7iE
https://www.zotero.org/google-docs/?PSrjOh
https://www.zotero.org/google-docs/?2sAwCM
https://www.zotero.org/google-docs/?sdo2r4
https://www.zotero.org/google-docs/?04nvvt
https://www.zotero.org/google-docs/?rYUMjw
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(Machiela et al., 2020). The diagnostic criteria of the disease are mainly carried out by MRI 

imaging and genetic analysis based on the comprehensive family medical history brain 

imaging, and genetic testing (Caron et al., 2020). 

1.5.2. Prevalence of HD: 

HD is diagnosed clinically through a combination of family history, personal 

history, and neurological, psychiatric, and genetic testing (Medina et al., 2022; Roos, 

2010). A classification scheme divides HD into presymptomatic, prodromal, and manifest 

forms (Ross et al., 2019). Presymptomatic HD patients have CAG repeats without any 

symptoms associated with HD (Wheeler et al., 2007). Individuals with prodromal HD may 

have CAG repeats as well as motor abnormalities and apparent cognitive symptoms 

(Medina et al., 2022). Manifest HD includes 90% of individuals with motor abnormalities 

and cognitive changes, whereas 99% have no cognitive impairment or motor abnormalities 

(Ross et al., 2019). 

According to the initial pooled evidence of the clinical studies, that prevalence is 

0.38 cases per 100,000, with a global prevalence of 2.71 cases per 100,000 (Pringsheim et 

al., 2012). The increase in the prevalence of HD may be attributed to the earlier diagnosis 

and medical treatment of the disease (Rawlins et al., 2016). Moreover, de novo mutations 

are estimated to account for 7.1% of all new cases, which may contribute to the rising 

incidences of this disease (Kay et al., 2018). A lower incidence of cases is observed in 

Asian countries than in Europe, North America, and Australia (Pringsheim et al., 2012). 

Caucasian populations have an overall prevalence of 8.2 to 9.0 cases per 100,000, whereas 

the overall prevalence in Asia is 0.99 cases per 100,000 people (Medina et al., 2022). 

https://www.zotero.org/google-docs/?WvJb1g
https://www.zotero.org/google-docs/?T7rqjR
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Fig.8. Prevalence of HD: is increasing daily worldwide, increasing in different regions as 

a growing public health problem that might change with time. (Image source: Warby et al., 

2011) 

It is worth noting that there is very little evidence available from India, where a 

prevalence of 1.75 cases per 100,000 people is reported, which is mainly seen in Indian 

immigrants from the UK (Shiwach and Lindenbaum, 1990). The first well-documented 

case was from India, especially in the northern part of the country, with 35 sporadic cases 

over 11 years (Khosla and Arora, 1973). Several years later, in 2001, clinicians from 

Nimhans found 26 subjects exhibiting symptoms that were native to South India and that 

had onsets of the disease between the ages of 6 and 66 (Murgod et al., 2001). In this group 

of patients, about 88.5% of the patients have initial motor symptoms, followed by 11% 

who have behavioral problems (Murgod et al., 2001). The same institute also found 

psychiatric comorbidity in 144 South Indian patients whose mean death age was 53 and 

whose illness duration was 7 years (Ratna et al., 2022). In recent research from Eastern 

India, 75 HD subjects with a mean age of onset of 37 years and 5% of patients with juvenile 

onset of the disease were found (Hussain et al., 2020). A recent study by Nimhans observed 

3 to 5 HD cases for every 100,000 people, which gives a total of 40000 to 70,000 HD cases 

in the total population. As a result of all this evidence, it can be concluded that HD is well 

recognized in all parts of the country.  
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1.5.3. Pathogenesis of HD: 

HD is an autosomal dominant neurodegenerative disorder characterized by 

movement disorders and cognitive decline (Roos, 2010). Clinically, HD is mainly 

characterized by the shrinkage of the brain with the degeneration of the striatum and cortex, 

with a specific loss of medium spiny neurons (MSNs; Blumenstock and Dudanova, 2020; 

Le Cann et al., 2021; Reiner et al., 1988). However, on disease progression, other brain 

regions like globus pallidus (GP), thalamus, hypothalamus, subthalamic nucleus, 

substantia nigra (SN), and cerebellum may also get affected (Heinsen et al., 1996; Hp et 

al., 1990; Kassubek et al., 2004; Petersén et al., 2002). HD is a progressive 

neurodegenerative disorder caused by the mutation in the huntingtin (Htt) gene, a 

ubiquitously expressed protein of 350KDa (Jimenez-Sanchez et al. 2017). The Htt gene is 

widely expressed in humans and rodents, with the highest levels of expression in neurons 

of the central nervous system, mainly striatal and corticostriatal neurons (DiFiglia et al., 

1995; Fusco et al., 1999). Huntingtin is a complex protein containing a polyglutamine tract 

encoded by trinucleotide repeats uninterrupted across the first exon (Iennaco et al., 2022; 

Jimenez-Sanchez et al., 2017). HD patients carry expansions of 36 or more CAG repeats 

compared to wild-type alleles, which contain 35 CAG repeats (Warby et al., 2009; Wheeler 

et al., 2007). It has been shown that a strong correlation exists between the number of CAG 

repeats and the age of onset of symptoms, with greater CAG repeat expansions generally 

associated with earlier onset ages of symptoms (Langbehn, 2022; Swami et al., 2009). 

Understanding the structure and function of wild-type Htt genes and proteins is essential 

before studying HD pathology. 

1.5.3.1. Structure and function of wild-type Huntingtin gene and protein: 

A wild-type Huntingtin protein (350KDa) consists of polyglutamine sequences at 

the NH2 terminus as well as multiple consensus sequences known as HEAT (huntingtin, 

elongation factor 3, protein phosphatase 2A, and TOR1 [target of rapamycin 1]) repeats 

that play a crucial role in protein–protein interactions (Pryor et al., 2014; Ramazzotti et al., 

2012; Sap et al., 2021; Sapp et al., 2020; Takano and Gusella, 2002). The motifs mainly 

involve intracellular trafficking (Chen et al., 2023). It is a cytoplasmic protein that has 



67 
 

partial nuclear localization and colocalizes with a range of cell organelles, such as the 

nucleus, the endoplasmic reticulum, the Golgi complex, and the endosomes (Schulte and 

Littleton, 2011). In addition to this, huntingtin possesses a nuclear export sequence, which 

can be found near its COOH terminus (McClory et al., 2018). Moreover, the N-terminal 

sequence in huntingtin interacts with Tpr, a nuclear export protein involved in nuclear 

export (Cornett et al., 2005).   

 

Fig.9. Diagram showing Huntingtin's amino acid structure. (Q)n indicates 

polyglutamine regions and P(n) indicates polyproline regions. There are 37 HEAT repeat 

domains clustered into three main groups (red boxes). In the circles, posttranslational 

modifications are indicated (sumoylation/ubiquitination at the red circles, phosphorylation 

at the blue circles). An arrowhead indicates the site of caspase cleavage and a triangle 

indicates calpain cleavage. NES stands for nuclear export signal sequence. (Image source: 

Paine, 2015) 

Since the Huntingtin gene is responsible for HD, the wild-type Huntingtin protein 

has certain functions (Schulte and Littleton, 2011). It has been determined that it plays a 

significant role in embryonic development, as it stimulates neurogenesis, maintains neural 

stem cells, and regulates neuroendothelial interactions (Barron et al., 2021; Conforti et al., 

2013; Jeong et al., 2006; Sari, 2011). It acts as a scaffolding protein that interacts with β-

tubulin and binds to the microtubules, thereby maintaining the cytoskeleton (Rui et al., 

2015; Schulte and Littleton, 2011; Tousley et al., 2019). The protein also plays a role in 

transcription regulation, mainly for the BDNF (Bathina and Das, 2015). In recent research, 

huntingtin has been shown to interact with methyl-CpG-binding protein 2, thereby 

modulating BDNF transcription (McFarland et al., 2014). Furthermore, it regulates 

synaptic function by interacting with synaptic vesicles at the pre-synaptic terminal and 
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PSD95 at the post-synaptic terminal (Barron et al., 2021; Chen et al., 2021; Wennagel et 

al., 2022). A recent study found that huntingtin is essential in forming the excitatory 

synapses between cortical and striatal areas (Blumenstock and Dudanova, 2020). In light 

of the above evidence, it can be concluded that Htt protein plays a vital role in the normal 

functioning of neurons.  

1.5.3.2. Neuropathology of HD: 

The primary characteristic of HD is the loss of medium spiny neurons, primarily in 

the striatum, followed by the cortex (Blumenstock and Dudanova, 2020; Ehrlich, 2012). In 

the striatum, MSNs constitute nearly 90-95% of the neurons that conduct 

neurotransmission through gamma amino butyric acid (GABA) and glutamate (André et 

al., 2010; Arama et al., 2015; Garret et al., 2018; Lee et al., 2016). The striatum receives 

input from specific thalamic nuclei and neocortical areas (Lanciego et al., 2012). 

Furthermore, the striatum contains several modulatory components, including dopamine 

(DA), which is released from the subsubstantia nigra pars compacta (SNc) of the brain 

(Yamada et al., 2016; Zhai et al., 2019). Striatal output is primarily divided into two 

populations of MSNs with distinct projections and DA receptors that involve direct and 

indirect pathways (Andre et al., 2011). The direct pathway is composed of neurons 

expressing D1 DA receptors as well as substance P (Sp) that send projections to substantia 

nigra pars reticulata (SNr) and globus palladius interna (GPi; Gerfen, 2023; Wall et al., 

2013). An indirect pathway is mediated by neurons expressing predominantly D2 receptors 

and extending to the globus palladius externa (GPe; Cazorla et al., 2015; Gerfen, 2023). 

Through the balance between direct and indirect pathways through the excitatory and 

inhibitory signals conveyed by glutamate and GABA, respectively, the movement of the 

body is maintained (Cazorla et al., 2015; Lanciego et al., 2012).  
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Fig.10. Direct and indirect pathways of Basal Ganglia in initiating motor activity. In 

the direct pathway, cerebral cortical input to the striatum causes activation of inhibitory 

neurons in the striatum which then causes an increased inhibitory output to the globus 

pallidus internal [GPi]. There is a decreased inhibitory output from GPi to ventral anterior 

[VA] and ventral lateral [VL] nuclei of the thalamus which then projects via excitatory 

pathways into the premotor cortex. The direct pathway is involved in regulating tonic 

excitation in the premotor cortex which is an area involved in planning and initiating 

movement. The indirect pathway is inhibitory to movement when excitatory projection 

from cerebral cortex facilitates inhibitory projection neurons in globus pallidus external 

[GPe]. These then inhibit tonic inhibitory output neurons which decreases tonic inhibition 

of subthalamic nucleus [STN] resulting in increased excitatory output to GPi. Excitatory 

input to GPi increases inhibitory output from GPi to thalamus which then decreases 

excitatory feedback to cerebral cortex leading to inhibition of motor activity. Dopamine 

promotes action of direct pathway while suppressing the activity of indirect pathway. 

(Image source: Roshan et al., 2016) 
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As the disease progresses by there is initially loss of medium spiny neurons of 

indirect pathway. As there is progressive degeneration of these neurons takes place, the 

excess glutamatergic and dopimenergic signals that would have gone to the indert pathway, 

will be funneled to direct pathway. As the disease progresses by the neurons which are 

involved in the direct pathway will also undergo gradually at the later stages of the disease. 

It is presumed that if the neurons associated with the indirect pathway undergo 

degeneration, a change or loss of input to the GPe will lead to an imbalance in the output 

circuit of the basal ganglia, followed by dystonia-like symptoms at the later stages, which 

are the result of the loss of neurons expressing D2 receptors (Andre et al., 2011; Galvan et 

al., 2012; Garret et al., 2018; Nelson and Kreitzer, 2014; Rikani et al., 2014). According to 

these observations, HD is characterized by hyperkinesia and hypokinesia due to the loss of 

MSNs. 

1.5.3.3. Molecular mechanisms involved in neuronal atrophy in HD: 

It is well known that HD is mainly caused by the genetic origin of the disease due 

to the expansion of CAG repeats at the N-terminal end of the Htt gene, which is located on 

the 1st exon of the 4th chromosome (Gil-Mohapel, 2012; Möncke-Buchner et al., 2002). 

When the CAG repeats exceed 36, symptoms of the disease may arise (Wheeler et al., 

2007). One of the hallmarks of HD on a neuropathological level is the formation of protein 

aggregates originating from the post-translational modification of mHtt (Cisbani and 

Cicchetti, 2012; Jarosińska and Rüdiger, 2021). The accumulation of polyglutamate 

aggregates may result in neuronal loss due to their interaction with up to 800 proteins 

(Jarosińska and Rüdiger, 2021). Their functions may include RNA binding, neurogenesis, 

transcription, translation, cytoskeletal organization, mitochondrial function, vesicular 

transport, and synaptic transmission (Barron et al., 2021; Eshraghi et al., 2021; Heinz et 

al., 2021; Nguyen et al., 2013; Tousley et al., 2019). The toxicity in the neurons with mHtt 

occurs due to the gain of function by the expanded and mutated expression of 

polyglutamine (Sari, 2011). In turn, mutant protein aggregates will become more prone to 

proteolysis, and toxic polyglutamate fragments will interfere with other proteins, causing 

neuronal dysfunction and selective neuronal death (Caron et al., 2020; Sari, 2011). An 

association exists between polyglutamine length and disease threshold (Lieberman et al., 
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2019). Based on previous studies, these protein aggregates disrupt axonal transport and 

autophagy (Jarosińska and Rüdiger, 2021; Kim and Kim, 2014). The mHtt may also have 

toxic effects. Previous studies have shown that nuclear localization of mHtt increases 

cellular toxicity (Bae et al., 2006). The interference with neurotrophin transport may result 

in neuronal dysfunction, leading to neuronal death (Gatto et al., 2020). Aggregates of mHtt 

may also be involved in proteolytic cleavage (Gray et al., 2008). A study has shown that 

huntingtin can undergo proteolytic cleavage, resulting in the generation of toxic fragments 

transported to the nucleus (Gray et al., 2008). The toxic fragment of mHtt or the entire 

length of mHtt can interfere with BDNF transport in the nucleus and inhibit its functioning 

(Gatto et al., 2020). When mHtt is present, proteins may misfold, leading to protein 

aggregation and ubiquitination (Ross and Tabrizi, 2011; Takahashi et al., 2008). 

Growing evidence suggests that transcriptional dysregulation is the major 

pathogenic mechanism of HD (Riley and Orr, 2006). Transcription factors implicated in 

HD pathophysiology include repressor element-1 silencing transcription factor (REST), 

CREB, NF-κB, and peroxisome proliferator-activated receptor gamma coactivator-1 alpha 

(PGC-1α) (Chaturvedi et al., 2009; Glass et al., 2000; Hsiao et al., 2013; Zuccato and 

Cattaneo, 2007). REST is the major response element for BDNF promotor II and acts as a 

regulator for the expression of BDNF (Zuccato and Cattaneo, 2007). When mHtt 

dissociates from REST, it facilitates its translocation to the nucleus, suppressing gene 

transcription and decreasing BDNF expression (Zuccato and Cattaneo, 2007). Similarly, 

CREB binds to DNA sequences called cAMP response elements (CRE) and increases or 

decreases downstream gene expression (Finkbeiner, 2000). CREB supports cell survival 

by enhancing the expression of cell-protective proteins, such as BDNF and Bcl-2, whereas 

the activity of CREB is downregulated in HD patients (Finkbeiner, 2000). NF-κB is 

responsible for the production of cytokines and is involved in the regulation of immunity, 

synaptic plasticity, and cell survival (Kaltschmidt and Kaltschmidt, 2015, 2009; Mattson 

and Meffert, 2006; Shih et al., 2015). One study found that enhanced NF-κB activation 

increased astrocyte inflammation and HD pathophysiology, suggesting an increased rate 

of inflammation and apoptotic cell death in HD (Hsiao et al., 2013; Marcora and Kennedy, 

2010). 
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Fig.11. The diagrammatic representation of major physiological pathways in HD. 

Several physiological processes are disrupted by mutant huntingtin protein (mHtt), 

including apoptosis, autophagy, axonal transport, transcription, neurotrophins, 

mitochondrial function, and excitotoxicity. A pointed arrow indicates an increase in 

physiological events, while a blocked arrow indicates an inhibition. (Image source: 

Scheuing et al, 2014) 

One of the major pathologies in HD observed is weight loss, increased calorie 

consumption, and metabolic dysfunction (Handley et al., 2016; Marder et al., 2009; Ogilvie 

et al., 2021). These metabolic abnormalities may occur due to the decreased activity of 

oxidative phosphorylation and decreased ATP production (Mochel and Haller, 2011; 

Powers et al., 2007). It is well known that Peroxisome proliferator-activated receptor-

gamma coactivator (PGC-1α) is the key regulator for mitochondrial function, and the 

decreased expression of PGC-1α is seen in the patients with HD depicting the disbalance 

in the autophagy-lysosome pathway (Johri et al., 2013; Yang and Zhang, 2023). It is also 

well known that the later stages of HD may lead to other age-related neurodegenerative 
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diseases like AD and PD due to the interaction of mHtt aggregates with Tau proteins and 

α-synuclein (Jarosińska and Rüdiger, 2021; Masnata et al., 2020). All these evidences 

determine that dysregulation in the confirmation and processing of mHtt may represent the 

core molecular pathology of HD, leading to neuronal dysfunction and neuronal atrophy.  

1.5.4. Different animal models of HD: 

Animal models are needed to understand the pathogenesis of HD, elucidate brain 

regions involved in structural and functional decline, and evaluate potential therapeutic 

interventions. A reliable model of HD should be able to mimic the neuropathology and 

symptoms of HD. Selecting the most appropriate animal model is crucial, primarily a 

rodent model (Ramaswamy et al., 2007). Many invertebrate models are used to study HD 

pathology and therapeutic strategies, including C. elegans and Drosophila melanogaster 

(Krench and Littleton, 2013; Machiela et al., 2016). Most HD animal models can be 

categorized as genetic or non-genetic. 

1.5.4.1. Genetic models of HD: 

The discovery that mHtt is the cause of the disease prompted genetic models to be 

investigated to answer basic biological questions about it and find potential treatments. A 

genetic model can also be classified into two categories, i.e., transgenic and knock-in. 

1.5.4.1.1. Transgenic models of HD: 

The generation of transgenic mice involves the introduction of HD mutation in the 

mouse germline. It could, therefore, be predicted to generate a mouse model of HD despite 

the presence of two copies of the huntingtin gene. Several transgenic models are available 

for studying HD pathology, as shown in the following Table 2: 
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Table 2: List of transgenic animal models to study the pathology of HD 

Animal 

model 

Species Construct No. of CAG 

repeats 

Cells effected Symptoms Ref. 

R6/2 Mouse First 90 amino acids of human Htt 

are randomly inserted into mouse 

genome 

144 Significant 

neuronal loss in 

striatum 

Chorea like movements, 

seizures, weight loss, motor 

dysfunction, decrease in 

memory  

Dodds et al., 

2014; 

Ellrichmann et 

al., 2017 

R6/1 Mouse First 90 amino acids of human Htt 

are randomly inserted into mouse 

genome 

116 Decrease in 

striatal volume 

and presence of 

cellular inclusions 

Decrease in body weight, gait 

abnormalities, decrease in 

anxiety 

Gatto and 

Weissmann, 

2022; Naver 

et al., 2003 

N171-82Q Mouse First 171 amino acids of yeast 

artificial chromosome of human Htt 

are randomly inserted into mouse 

genome 

82 Neuronal loss in 

striatum. 20% of 

cell shrinkage. 

Presence of 

cellular inclusions 

in striatum, 

hippocampus and 

cortex 

Motor dysfunction, Clasping 

behavior, weight loss, 

decrease in working memory 

Ferrante, 

2009; Fort 

Molnár et al., 

2016 

YAC Mouse Yeast artificial chromosome 

expressing entire human Htt protein 

72, 128 Majority of loss in 

lateral striatum 

Hyperkinesia, gait 

abnormalities, ataxi 

Figiel et al., 

2012; Slow et 

al., 2003 

Transgenic 

rat 

Rat 1962 base pairs from the N-

terminal end of rat Htt gene 

51 human 

derived 

repeats 

Enlargement of 

lateral ventricles 

and presence of 

cellular inclusions 

throughout the 

brain 

Motor dysfunction, gait 

abnormalities, dyskinesia, 

decline in working memory 

von Hörsten et 

al., 2003 
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1.5.4.1.2. Knock-in models of HD: 

A knock-in mouse model of HD is considered the most accurate genetically. To 

create these animal models, a mutant human copy of the Htt gene with expanded CAG 

repeats is replaced with the wild-type portion. As a result, these animals contain two copies 

of the Htt gene, the wild-type and mutant type. Here are some of the most commonly used 

HD knock-in models:
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Table 3: List of knock-in models of HD 

Model Species Construct No. of CAG 

repeats 

Cells affected Symptoms Ref. 

HdhQ92 Mouse Replacing exon 1 of mouse Htt with an exon 

1 of mutant human Htt 

92 No striatal 

degeneration 

 No symptoms Brooks et al., 

2012; Wheeler 

et al., 2000 

HdhQ111 Mouse Replacing exon 1 of mouse Htt with an exon 

1 of mutant human Htt 

111 No striatal 

degeneration 

Gait abnormalities Wheeler et al., 

2000; Yhnell 

et al., 2016 

CAG 140 Mouse Inserting CAG repeats into mouse Htt gene 140 Nuclear 

inclusions in 

striatum, cortex, 

hippocampus 

and cerebellum 

Increase in anxiety 

and decrease in 

stride length 

Hickey et al., 

2012; Kaye et 

al., 2021 

CAG150 Mouse Inserting CAG repeats into mouse Htt gene 150 Increase in 

striatal gliosis 

and myelin 

breakdown 

Motor dysfunction, 

clasping behavior, 

hypoactivity, gait 

disturbances 

Brooks et al., 

2012b; Heng 

et al., 2007 
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There are some drawbacks to using genetic models to study mutant huntingtin 

protein (Ramaswamy et al., 2007). These are as follows: 

1. There is a possibility that the mutated gene inserted into the genetic model may interfere 

with the normal function of other genes that are not related to HD. 

2. Htt expression is controlled spatially and temporally by an artificial promoter, whose 

control differs from the endogenous promoter's. 

3. The exact behavioral deficits seen in HD patients may or may not be apparent and usually 

take much longer to manifest. 

Considering all these factors, one can propose a non-genetic model of HD to study 

its pathology and therapeutic strategies. 

1.5.4.2. Non-genetic model of HD: 

A non-genetic model is generally used to test the therapeutic effects of drugs that 

are either in use or to be planned for the use in human clinical trials (Maze et al., 2015; 

Upadhyay et al., 2023). Along with this a non-genetic model have also been effective for 

testing neurotrophic factors, oxidative stress, inflammation, and mitochondrial dysfuction 

which are the main pathogenic conditions of HD (Mundo et al., 2013; Upadhyay et al., 

2023). This determines that the neuroprotective therapies in a non-genetic model may be 

useful for understanding the benefits of treating patients who are diagonized with HD either 

by onset of neuronal degeneration or by behavioral symptoms (Ramaswamy et al., 2007; 

Túnez et al., 2010). These models can induce cell death by excitotoxicity or altering 

mitochondrial metabolism. To produce non-genetic models of HD, some neurotoxins can 

be used, as shown below:



78 
 

Table 4: List of neurotoxins to be used to generate the non-genetic model of HD to study the pathology and therapeutic 

strategies of different drugs 

Type of 

neurotoxin 

Species Mode of 

administration 

Cells affected Mode of action Symptoms Ref. 

Kainic acid 

(KA) 

Rats 

Intrastriatal 

injections Striatal cholinergic 

and GABAergic 

neurons 

Excitotoxicity due to the excessive 

stimulation of kainite receptors 

Impaired learning and 

memory, locomotor 

impairment 

Coyle, 1979; 

Coyle et al., 

1983 

Malonic acid 

(MA) 

Rats 

Intrastriatal 

injections Striatum Reversible inhibitor of succinate 

dehydrogenase leading to mitochondrial 

dysfunction, excitotoxicity and 

generation of ractive oxygen species 

Decreased 

locomotion, grip 

strength and spatial 

memory 

Kalonia et 

al., 2010; 

Kumar et al., 

2013 

Quinolenic acid 

(QA) 

Rats, mouse 

and non-

human 

primates 

Intrastriatal or 

intraperitoneal 

injections 

Striatal depletion 

and selective loss of 

GABAergic 

neurons  

Excitotoxicity, inflammation, oxidative 

metabolism 

Hyperkinesia, 

dyskinesia and 

memory deficits 

Sanberg et 

al., 1989 

  

 

    



79 
 

  

 

    

Type of 

neurotoxin 

Species 
Mode of 

administration Cells affected Mode of action Symptoms Ref. 

3-nitropropionic 

acid (3-NP) 

Rats, mouse 

and non-

human 

primates 

Intraperitoneal or 

intrastriatal 

injections 

GABAergic 

medium spiny 

neurons, lateral 

striatum and cortex 

Mitochondrial dysfunction by irreversible 

inhibition of succinate dehydrogenase 

Hyperkinesia, 

hypokinesia, 

dystonia, dyskinesia, 

impaired spatial 

memory 

Borlongan et 

al., 1997; 

Túnez et al., 

2010 
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According to the Table 4, 3-NP model is the widely used model to study the 

neuropathology of HD due the following reasons: 

1. Neurotoxicity can be studied with this method because it results in massive cell death in 

a short period of time. 

2. One can study the therapeutic potential of different drugs on neuroprotection and neuro 

restoration by using this model. 

3. The model is helpful in analyzing synergetic effects caused by mitochondrial alterations 

and energy depletion. 

4. The model is most suitable to study the dose dependent activity of different drugs at 

different stages of disease.  

Hence, 3-NP induced animals are considered to be the best model for studying the 

therapeutic effects of different neutraceuticals like VD (Túnez et al., 2010). 

1.5.5. 3-Nitropropionic acid induced mouse model of HD: 

3-nitropropionic acid (3-NP) is a natural toxin synthesized from fungi and plants 

which has tendency to cross the blood-brain barrier (Silva-Palacios et al., 2017). The model 

can mimic hyperkinetic and hypokinetic symptoms of HD depending on the time and dose 

of administration (Borlongan et al., 1997; Storgaard et al., 2000). It acts as an irreversible 

inhibitor of tricarboxylic acid cycle and respiratory chain enzyme succinate dehydrogenase 

(SDH), the main constituent of mitochondrial respiratory chain complex II (Herrera-

Mundo and Sitges, 2013; Silva-Palacios et al., 2017). This permanent inhibition leads to 

deficits in ATP synthesis in the mitochondrial membrane, increasing the lactate 

concentration and causing hypoxia in cells followed by neuronal death primarily in the 

striatal region, which results in dystonia (Maciel et al., 2004; Nasr et al., 2003; Schulz et 

al., 1996). Apoptosis is also caused by ATP synthesis being disrupted by 3-NP induction, 

which affects several biochemical pathways. As a result of the disruption of the 

mitochondrial membrane, cytochrome-c is more readily expressed, resulting in the 

activation of caspase-9, which further stimulates caspase-3 by acting on pro-caspases and 

affecting neuronal integrity (C et al., 2014). 
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In addition, 3-NP induced mitochondrial abnormalities affect the oxidative stress, 

thereby increasing the level of reactive oxygen species (ROS) associated with HD (C et al., 

2014). It has been shown that 3-NP increases free radical and fatty acid levels in rodent 

models (Binienda and Kim, 1997). Moreover, 3-NP induction reduces the activity of 

antioxidant enzymes like SOD, GpX, and Cat, thereby further promoting ROS production 

(Kumar et al., 2007, 2006). In addition, excess generation of ROS damages mitochondrial 

DNA and reduces the expression of anti-apoptotic markers like Bcl-2, leading to motor 

abnormalities and cognitive deficits (Colle et al., 2012; Mandavilli et al., 2005). 

Neuronal excitotoxicity can occur in the brain due to 3-NP altering Ca2+ 

homeostasis and over activating NMDA receptors, leading to neuronal degeneration, a 

contributing factor to HD (Chidambaram et al., 2017). The calcium/calmodulin pathway 

promotes neuronal excitotoxicity when NMDA receptors are overactivated, resulting in an 

excess release of nitric oxide synthase (nNOS) (Calabresi et al., 2001). As a result of 

overactivation of these NMDA receptors and increased Ca2+ influx, caspases are activated, 

which in turn lead to striatal lesions, which constitute a major sign of disease progression 

(Browne and Beal, 2006; Calabresi et al., 2001). Aside from disrupting ionic influx in 

striatal neurons, 3-NP also enhances glutamate concentration, which results in 

excitotoxicity (Marti et al., 2003). HD's hyperkinetic symptoms result from an imbalance 

in neurotransmitter levels in the brain caused by all these reactions together (Binawade and 

Jagtap, 2013). 
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Fig.12. Cellular excitotoxicity and mitochondrial dysfunction caused by 3-NP. The 3-

Nitropropionic Acid (3-NP) causes cell death by inhibiting mitochondrial complex II 

enzymes, disrupting bioenergetics, releasing cytochrome C, which activates caspase, 

increasing the severity of Huntington's disease (HD). Additionally, 3-NP increases 

glutamate release, overactivating NMDA receptors and enhancing Ca2+ efflux from the ER. 

As a result, excitotoxicity occurs and reactive oxygen species (ROS) / reactive nitrogen 

species (RNS) are produced. Inflammation cascades are activated by ROS, which inhibit 

anti-oxidant production by Nrf2. In addition to raising oxidative stress in the nucleus, this 

reduces the radical scavenging activity of the cell, leading to striatal nerve degeneration 

and eventually cell death, contributing to HD. (Image source: Upadhyay et al., 2023) 

As a leading cause of neurodegeneration in HD, neuroinflammation plays a key 

role. The in-vivo study found that 3-NP exposure causes striatal neuroinflammation by 

causing increased oxidative stress and mitochondrial dysfunction, which, in turn, activates 

inflammatory cytokines that cause neuroinflammation similar to HD (Jamwal and Kumar, 

2016). In addition, 3-NP downregulated Nrf2/ARE signaling, which causes an imbalance 

of anti-oxidant enzymes that leads to disease progression, as Nrf2/ARE signaling controls 

the excessive generation of ROS (Gonchar et al., 2021; Silva-Palacios et al., 2017). 

Researchers have shown that 3-NP impairs MAPK pathway functioning, increases 

oxidative stress, and accelerates excitotoxicity in rodent brains, resulting in motor 

abnormalities (Yang et al., 2021). Additionally, it has been shown that 3-NP overactivates 

3-NP 
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the PI3K/Akt signaling pathway, which leads to oxidative stress, which is associated with 

striatal neurodegeneration and increases autophagy, which further activates caspases, 

which decreases BDNF levels in the brain (Kulasekaran and Ganapasam, 2015; Mustafa et 

al., 2021). These earlier studies suggest that 3-NP exposure also results in a reduction in 

BDNF protein synthesis, which decreases cell growth, proliferation, synaptic plasticity, 

and imbalance in cellular homeostasis that is associated with HD (Ranju et al., 2015; 

Shalaby et al., 2018; Wu et al., 2017). As a result of all these conditions, 3-NP induced 

models had similar motor abnormalities to HD patients, including involuntary hypokinetic 

movement, dystonia, and muscle rigidity. As a result, 3-NP HD models could serve as a 

more effective tool for determining the therapeutic effectiveness of vitamins like VD.
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2.1. Introduction: 

 Huntington’s disease (HD) is a progressive neurodegenerative disorder which is 

one of the most untreatable pathology in brain which is rising especially in India. The 

prelavance of the disease is 0.4/1,00,000 population in Asia where as in India, it is which 

is 1.75/1,00,000 population as per 2020 (Hussain et al., 2020). The disease leads to 

selective loss of medium spiny neurons (MSNs) which leads to the decrease in motor co-

ordination in HD (Lewitus et al., 2014). Loss of MSNs leads to the loss of γ-amino butyric 

acid (GABA) signaling which leads to involuntary movements, lack of coordination, and 

cognitive and psychiatric impairments (Gil and Rego, 2008). HD is an autosomal dominant 

neurodegenerative disorder caused by the expansion of CAG (encodes for glutamine) in 

Huntingtin gene (Htt) located on 4th chromosome with an inverse correlation between the 

number of repeats and age of onset of disease (Gil-Mohapel, 2012). 3-NP is a 

mitochondrial toxin leads to striatal damage thereby mimicking the symptoms of HD (Gao 

et al., 2015). It is an irreversible inhibitor of succinate dehydrogenase of tricarboxylic acid 

cycle, which has been used to explore the molecular mechanisms related to striatal damage 

in HD (Túnez et al., 2010).  

Calcitriol, the active form of VD is the fundamental agent which helps in 

maintaining the survival of neurons, synaptic plasticity by its activity on certain agents like 

brain derived neurotrophic factor (BDNF), acetylcholine, dopamine and GABA (Lustig, 

2006; Moretti et al., 2018). It has been evident that, VD deficiency is seen in 

neurodegenerative diseases like HD (Chel et al., 2013; Fort Molnár et al., 2016). VD is a 

neurosteroid hormone which shows its protective role in neurodegenerative diseases like 

Parkinson’s and Alzheimer’s disease (AlJohri et al., 2019; Banerjee et al., 2015; Calvello 

et al., 2017; Lima et al., 2018; Mohamed et al., 2015). The neuroprotective role of VD will 

take place via VDR (Eyles, 2020; Lv et al., 2020; Manjari et al., 2022). 

Evidence suggests that, VD supplementation rescues the behavior of animals like 

locomotion, neuromuscular co-ordination and spatial memory depicting its protective role 

(Koduah et al., 2017; Lima et al., 2018; Mohamed et al., 2015; Yamini et al., 2018). Though 

VD supplementation is readily available and affordable, little is known about its potential 

beneficial effects in HD. Limited evidence is available to correlate VD deficiency with HD 

https://www.google.com/search?rlz=1C1CHBF_enIN861IN861&sxsrf=ALeKk02emsBGkAdz1_8CmlOcHWDEucu5jg:1587453471096&q=psychiatric&spell=1&sa=X&ved=2ahUKEwj_yveB_fjoAhVNzjgGHVKtDuoQkeECKAB6BAgYECc
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and whether high VD supplementation affects motor function in HD has not been 

established (Chel et al., 2013). Thus, the present chapter examines the effect of two 

different doses of VD supplementation on motor dysfunction following the administration 

of 3-nitropropionic acid (3-NP) and elucidates the optimal dose to determine the protective 

role. 

2.2. Materials and methods: 

2.2.1. Animal Procurement: 

Ten to twelve weeks old male C57BL/6 mice (average weight; 26 ± 3 g) were 

acquired from Sainath Agencies, Hyderabad, India. Animals were group housed (2 mice 

per cage) with ad libitum access to food and water. They were kept in a 12 h light/12 h 

dark cycle at 25±2 °C. All the animal experiments were carried out with the approval of 

the Institutional Animal Ethics Committee (IAEC), BITS - Pilani, Hyderabad 

(BITS/Hyd/IAEC/2019/10, BITS/Hyd/IAEC/2020/20). All efforts were made to minimize 

the number of animals used and their suffering. 

2.2.2. Study design: 

All the animals were acclimatized for 5 days and then received behavioural training 

for 7 days prior to treatment. Animals were then randomly divided into 6 experimental 

groups (Group I to Group VI; Table 5) and given injections of 3-NP and/or VD 

(cholecalciferol) (Fig. 13). 3-NP was given by three intraperitoneal injections of 25 mg/kg, 

every 12 h, for a cumulative dose of 75 mg/kg as described previously by Amenda et al 

(2005) and Fernagut et al (2002) with minimal modification (Amende et al., 2005; Fernagut 

et al., 2002).  VD was given i.p. daily for 15 days at two different doses 500IU/kg and 

2000IU/kg as shown in the Table 5. 
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2.2.3. Experimental design: 

The mice were randomly divided into four experimental groups for behavior and 

biochemical assay. (Table 5) 

i. Group I:  Control group mice (C57BL/6) injected with saline. 

ii. Group II: 3-NP induced mice by i.p. injection (3-NP; 75 mg/kg) without VD-

treatment (HD). 

iii. Group III:  Mice injected solely with 500IU/kg/day VD for 15 days. 

iv. Group IV: Post-intraperitoneal injection of 500IU/kg/day of VD to 3-NP (75 

mg/kg) pre-injected mice for 15 days (HD + VD). 

v. Group V: Mice injected solely with 2000IU/kg/day VD for 15 days. 

vi. Group VI: Post-intraperitoneal injection of 2000IU/kg/day of VD to 3-NP (75 

mg/kg) pre-injected mice for 15 days (HD + VD). 

Table 5: The six different experimental groups of C57BL/6 male mice (3-4 months old). 

Animal Group 

 Group I (Control – 1X saline) 

 Group II (3-NP-75mg/kg) 

 Group III (VD-500IU/kg/day for 15 days) 

 Group IV (3-NP-75mg/kg + VD-500IU/kg/day for 15 days) 

 Group V (VD-2000IU/kg/day for 15 days) 

 Group VI (3-NP-75mg/kg + VD-2000IU/kg/day for 15 days) 
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Fig. 13. Timeline of present study 

2.2.4. Drugs and reagents: 

2.2.4.1 Cholecalciferol:  

Cholecalciferol (Vitamin D3; VD) was purchased from Sigma-Aldrich, India (Cat 

No: C9756) and dissolved in 1% ethanol (diluted with sterile saline) on the day of injection 

(Mohamed et al., 2015). Mice were administered with two different doses of VD i.e., 

500IU/kg/day (12.5μg/kg/day) and 2000IU/kg/day (60μg/kg/day) through intraperitoneal 

injection reported previously by Kolla and Majagi (Chabas et al., 2013; Gueye et al., 2015; 

Kolla and Majagi, 2019). Briefly, VD was administered to the Group III and V (only VD) 

mice and Group IV and VI (HD+VD) mice. Group IV and IV mice (HD + VD) were given 

24 hr recovery time from previous 3-NP induction.  Then the VD injections were carried 

out 24 hr after the last dose of 3-NP daily for 15 days to Group IV mice (from 0 to 15th 

day, Fig. 13 and Table 5). 

Behavior test i.e., Locomotion, Stride analysis, Rotarod analysis 

and Morris water maze analysis 

Day -15 Day -1 Day 0 Day 15 Day 30 

  

 

Day -2 

 

Acclimatizing and 

training animals 

75mg/kg (i.p) treatment of 3-NP 

at 12h intervals of time to Group 

II and Group IV mice Group III and Group IV (preinjected 

with 3-NP) mice injected with 

500IU/kg/day of Vitamin D3, 

Group V and Group VI 
(preinjected with 3-NP) mice 

injected with 2000IU/kg/day of 

Vitamin D3 

Decapitation of all four groups of 

mice for mRNA and protein 

expression analysis 
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2.2.4.2. 3-Nitropropionic acid:  

3-nitropropionic acid (3-NP) was purchased from Sigma-Aldrich, India (Cat No.: 

N22908). Stock solutions of 3-NP (3 mg/ml) were prepared in 0.1M phosphate buffered 

saline solution and were injected intraperitoneally at 25 mg/kg (3-NP; cumulative dose of 

75 mg/kg) thrice at 12 h intervals to respective groups of mice as described previously (Fig. 

13 and Table 5). Controls were treated with three doses of saline at 12 h intervals.  In this 

study, we used a subacute dose of 3-NP dose as reported previously by Amenda et al (2005) 

with minimal modification (Amende et al., 2005). This protocol is based on previous 

published studies by Fernagut et al. and Kim and Chan who used 50 mg/kg i.p. injection 

of 3-NP for 5 days. To model a subacute exposure to 3-NP, a cumulative dose of 75 mg/kg 

dose of 3-NP was undertaken (Fernagut et al., 2002; Kim and Chan, 2001). 

2.2.5. Behavioral assessment: 

A total of 80 mice were used for behavioral experiments.  Mice were initially 

assessed for locomotion and gait as previously reported (Amenda et al., 2005; Fernagut et 

al., 2002). A separate cohort was used to evaluate the effects on locomotion and rotorod 

performance. Only two behavioral tests were done on a given set of animals. Protocols for 

behavioral tests were: 

2.2.5.1. Assessment of locomotor activity: 

The locomotor activity was monitored using an actophotometer as described 

previously (Digital Photoactometer cage; Dolphin, 2009, Kumar et al., 2009), using the 

number of beam breaks as the measure of movement for each animal. Locomotion was 

measured over a 5 min period, and baseline readings were taken before the respective drug 

injections (Fig. 14). 
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Fig. 14. Schematic representation of locomotor activity by using actophotometer 

2.2.5.2. Estimation of gait by stride analysis: 

Stride length analysis was done to determine the hyperkinesia in mice by marking 

the animals’ forepaws and hind paws with ink (red for forelimbs and blue for hind limbs; 

Fig. 15A and B). The animals were allowed to move on a strip of paper (4 cm wide and 

56 cm long) placed on a brightly lit runway leading to a darkened box. Stride length was 

measured manually as the distance between two paw prints as described previously 

(Fernagut et al., 2002).  Forelimb stride length measurement was first measured for all mice 

followed by hind limb stride length on a new strip of paper. 
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A. 

 

 

           B. 

 

 

 

 

Fig. 15. (A) Schematic representation to carry out the stride length (B) Representation for 

the estimation of gait which can be analyzed by the average stride of fore limbs and hind 

limbs. 

2.2.5.3. Assessment of motor coordination by rotarod analysis: 

The integrity of motor coordination was measured using the rotarod as described 

previously (Kumar et al., 2009). Briefly, the rotarod apparatus consists of a long rotating 

rod of 90 cm long and 3 cm in diameter. The apparatus was divided into three different 

compartments by a glass partition (Rota rod 3 compartments, Dolphin, 2019). The rod 

rotation speed was set initially at 35 rotations per minute (RPM). Mice received training 

on the accelerating rod prior to treatment. After achieving criterion (no falls from the 

rotarod within 180 sec, mice were injected with either saline (Group I; Control), 3-NP 

(Group II; HD) or VD (Group III) or both (Group IV; HD + VD). After the respective 

injections, the treated mice were re-tested for 180 sec and the latency to fall was recorded 

and analyzed. 

Stride length of 
hind limbs (cms.) 

Stride length of fore 
limbs (cms.) 

  

    

  



92 
 

2.2.5.4. Assessment of Spatial memory by Morris water-maze test: 

Morris water-maze (MWM) test was conducted in a white round pool of 92 cm in 

diameter and 60cm in depth as described previously (Barnhart et al., 2015). The pool was 

filled to a depth of 40 cm with white opaque non-toxic water-based paint and was divided 

into 4 quadrants as shown in Fig. 16.  Pool temperature was maintained at 25±1°C and pH 

at 7±0.1. An escape platform was placed at the center of the 4th quadrant. The platform 

was located at 20 cm from the pool's edge and submerged at 1cm beneath the water surface. 

The platform remained at the same position throughout the training and testing periods.  

Training over 10 consecutive days was undertaken and consisted of trials during which 

each animal could escape swimming by finding a permanently located submerged platform 

within 60 sec (Barnhart et al., 2015). Following training, the animals were divided into four 

groups.  Group 1 animals (control) and group 2 animals (HD mice) received intraperitoneal 

injections of either 1X saline or 3-NP (75 mg/kg). Group 3 (only VD) and group 4 (3-NP 

+ VD) received intraperitoneal injections of either 500IU/kg of VD or 3-NP (75 mg/kg) 

together with VD for a dose of 500IU/kg. All animals before being divided into respective 

groups underwent training. Thereby, the amount of time taken by the animal to locate the 

platform was recorded manually using a timer and the proportion of escape latency was 

subsequently measured. 

 

Fig. 16.  Diagrammatic representation for the calculation of spatial memory by morris 

water maze test. 
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2.2.6. Statistical analysis: 

Data is represented as normalized values w.r.t to zero day for the respective groups 

of mice and reported as mean ± SEM (standard error of the mean). Statistical analysis was 

conducted using two-way repeated measures ANOVA, two-way ANOVA and one-way 

repeated measures ANOVA followed by either post hoc multiple pairwise analysis using 

Tukey's HSD tests or paired sample t-test. For non-parametric measurements, a Kruskal–

Wallis test followed by an unpaired sample t-test was performed.  p < 0.05 was set as 

threshold of significance (*p < 0.05, **p < 0.005, and ***p < 0.001). All the statistical data 

was analyzed using Origin 8.1. 

2.3. Results: 

2.3.1. VD supplementation improves the locomotor activity in the mouse model 

of HD: 

The impact of supplementation of two different doses of VD i.e., 500IU/kg/day and 

2000IU/kg/day on the locomotor activity in HD model mice was tested over a period of 30 

consecutive days. An actophotometer was used to determine the total number of beam 

crossings for the evaluation of hypokinesia (Fig. 14.; Kumar et al 2009). By the 7th day 

there were no differences in the movement among the six experimental groups of mice. 

However, a consistent decrease of roughly 30% in the locomotory activity was observed 

on the 14th and 21st days in 3-NP injected HD mice (Group II) as compared to Control 

(Group I) mice; (14th day, 0.76 ± 0.08 vs 1.01 ± 0.11; 21st day 0.66 ± 0.07 vs 1.03 ± 0.05, 

n = 8-10, p < 0.001, Tukey’s post-hoc analysis, Fig. 17B).  On the 30th day it further 

deteriorated to 40% of Control values (Group II vs Group I; 0.40 ± 0.02 vs 1.03 ± 0.06, n 

= 10, p < 0.001, Tukey’s post-hoc analysis, Fig. 17B). However, on the 14th and 21st days, 

Group IV mice supplemented with 500IU/kg/day of VD and pre-injected with 75 mg/kg of 

3-NP showed a rescue in the locomotor activity near control levels and significantly above 

Group II mice (3-NP treated HD mice) (Group IV vs Group II; 14th day, 0.92 ± 0.09 vs 

0.76 ± 0.08; 21st day, 0.83 ± 0.07 vs 0.66 ± 0.07, n = 10, p < 0.001, Tukey’s post-hoc 

analysis, Fig. 17A). But by 14th and 21st day, Group VI mice when supplemented with 

2000IU/kg/day did not show any rescue effect when compared with 3-NP treated HD mice 

(Group VI vs Group II; 14th day, 0.76 ± 0.15 vs 0.76 ± 0.08, n = 12, p = 0.99; 21st day, 0.68 
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± 0.25 vs 0.66 ± 0.07, n = 10, p = 0.93, Tukey’s post-hoc analysis, Fig. 17A). After 21st 

day surprisingly 2000IU/kg/day of VD when supplemented with HD mice showed rescue 

effect. On the 30th day, Group IV mice on 500IU/kg/day of VD supplementation showed a 

robust enhancement by 1.2-fold in the locomotion performance as compared to HD mice 

(0.86 ± 0.07 vs 0.40 ± 0.02, n = 10, p < 0.001, Tukey’s post-hoc analysis, Fig. 17B). 

Similarly, by 30th day Group VI mice on 2000IU/kg/day of VD supplementation showed 

0.6 fold increase in the locmotor activity when compared with HD mice (0.65 ± 0.19 vs 

0.40 ± 0.02, n = 10-12, p = 0.02, Tukey’s post-hoc analysis, Fig. 17B). 

The results infer that, by 30th day similar rescue effect was observed by 30th day 

when supplemented with both the doses of VD for 15 days I.e., 500IU/kg/day and 

2000IU/kg/day (Group IV vs Group VI, vs 0.86 ± 0.07 vs 0.65 ± 0.19, n = 10 to 12, p = 

0.35, Tukey’s post-hoc analysis, Fig. 17B). These results confirm that 500IU/kg of VD 

supplementation as an otimal dose to rescue the locomotion when striatal nsurons were 

subjected to 3-NP induced neurodegeneration. Furthermore, this data also confirms that the 

effect of VD supplementation caused no chronic toxic side effect at either of the doses.  
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A.  

      
B.  

 
                                                      

Fig.17. VD supplementation rescues locomotor performance in HD mice. (A) VD 

supplementation (500IU/kg/day and 2000IU/kg/day) significantly reversed the immobility 

effect of 3-NP observed in HD mice (n = 8 -12; p < 0.001, two-way repeated measures 

ANOVA). (B) By 30th day, a significant decrease in locomotion activity was observed in 

HD mice (Group II) as compared to control (Group I), which was reversed significantly by 

VD induction (Group IV vs Group II, n = 8-10, p < 0.001; Group VI vs Group II, n = 10-

12, p = 0.02; Tukey’s post-hoc analysis). No significant difference between locomotion 

activity between the mice supplemented with two different doses of VD (500IU/kg/day and 

2000IU/kg/day) to 3-NP induced HD mice (Group IV vs Group VI, n = 8 – 12, p = 0.35, 

Tukey’s post-hoc analysis).  All data are normalized against zero day for respective group 

and is represented as mean ± SEM. 
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2.3.2. Gait was unaltered on 3-nitropropionic acid induced mouse model of HD: 

To determine the potential neuroprotective role of both doses of VD supplementation 

(500IU/kg/day and 2000IU/kg/day) on gait of 3-NP treated mice, we measured the distance 

between two successive paw prints (Fig. 15) for four weeks. No change in the stride length 

was observed across all the six groups of the mice respectively (Fig. 18). In comparison 

with Controls (Group I), HD mice (Group II) gait dynamics remained unchanged for all 

the respective timepoints (Group II vs Group I; 7th day, 0.90 ± 0.03 vs 0.98 ± 0.04; 14th 

day, 1.00 ± 0.07 vs 1.02 ± 0.06; 21st day, 0.88 ± 0.11 vs 1.09 ± 0.09; 30th day, 1.06 ± 0.05 

vs 1.03 ± 0.05, n = 4 - 10, p = 0.7, Tukey’s post-hoc analysis, Fig. 18A). Even on the 30th 

day, where we found a highly significant 60% decrease in the locomotion in HD mice (Fig. 

17B) the gait dynamics remained unaltered between Control and HD mice (Group II vs 

Group I; 1.06 ± 0.05 vs 1.03 ± 0.05, p = 0.7; n = 10 each, Tukey’s post-hoc analysis, Fig. 

18B). Similarly, no effect of either the dose of VD supplementation (500IU/kg/day and 

2000IU/kg/day) was seen on stride length in 3-NP treated mice (Group IV and VI) as 

compared with HD mice (Group II) for entire timeline of the study (Group IV and Group 

VI vs Group II; 7th day, 0.88 ± 0.09 and 1.08 ± 0.06 vs 0.90 ± 0.03; 14th day, 0.79 ± 0.03 

and 1.03 ± 0.06 vs 1.00 ± 0.07; 21st day 0.88 ± 0.02 and 0.92 ± 0.02 vs 0.88 ± 0.11; 30th 

day, 1.03 ± 0.04 and 1.05 ± 0.06 vs 1.06 ± 0.05, n = 4-10, Fig. 18A and B). A one-way 

balanced repeated measures ANOVA was conducted for the 30th day timepoint to cross 

check whether VD supplementation modulated gait dynamics in HD mice (Fig. 18B). A 

power analysis done only for the 30th day gave a value of 1. This time point was chosen 

primarily because we found a robust effect of VD at this time point in other behavior tests 

(Fig. 17 and 19). Consequently, VD supplementation (either alone or in conjunction with 

3-NP treatment) also did not impact the stride length performance of the mice across all 

time points of the present study. Our results agree with the findings of Fernaugut et al 

(2002) where even a much higher cumulative dose of 3-NP (340 mg/kg) resulted in no 

differences in stride length for either forelimbs and hind limbs in mice (Fernagut et al., 

2002). The data suggest that since the postural gait control is regulated through reciprocal 

connections between the brainstem and cerebellar cortex, the obtained result may reflect 

that the dose of 3-NP (75 mg/kg) used in the present study did not possibly produce a 

significant neuronal loss in the cerebellum (Takakusaki et al 2017). 
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A.  

 
B.  

 
 

Fig.18. VD administration shows no effect in GAIT dynamics of HD mice. (A) VD 

supplementation (500IU/kg/day and 2000Iu/kg/day) showed no significant effect on gait 

dynamics in 3-NP induced HD mice (n = 4 -10, p = 0.4, two-way ANOVA). 3-NP (i.p; 

75mg/kg, Group II) induced mice produced no change in fore limb and hind limb 

performance as compared with Group I (Control) mice across a span of 30 days. (B) On 

30th day, no effect of i.p injection of VD (500IU/kg/day and 2000IU/kg/day) was observed 

in the stride length performance of 3-NP pre-treated mice (Group IV and VI) (n = 10, p = 

0.67, Tukey’s post-hoc analysis).  Data is represented as normalized mean ± SEM value 

against zero day for respective group represent the stride length measurement of each 

mouse. 
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2.3.3. VD supplementation improves rotarod performance in HD mice: 

To test the potential effect of VD supplementation to rescue grip strength in 3-NP 

induced HD mice, we used the rotarod to determine the latency of first fall for the 

evaluation of motor coordination for four weeks (Amende et al 2005, Rodrigues et al 2019). 

We found that on the 7th day as well as on the 14th day, 3-NP injected HD mice consistently 

showed around a 50% reduction in fall latency when compared with the aged-matched 

Control animals (Group II vs Group I; 7th day; 0.63 ± 0.22 vs 1.40 ± 0.15; 14th day, 0.58 ± 

0.19 vs 1.33 ± 0.08, n = 8 - 9, p < 0.001, two-way ANOVA followed by Tukey’s post-hoc 

analysis, Fig. 19). On the 21st and 30th days, 3-NP treated mice still had a roughly 35% 

decrease in the latency to fall as compared to Control mice (Group II vs Group I; 21st day, 

0.92 ± 0.22 vs 1.40 ± 0.05; 30th day, 0.90 ± 0.22 vs 1.45 ± 0.001, n = 8 - 9, p < 0.001, two-

way ANOVA followed by Tukey’s post-hoc analysis, Fig. 19A and B). A significant 

improvement in the neuromuscular coordination was observed between Group IV mice 

(HD + VD) and Group II mice (HD) from the 7th day onwards and continued through the 

30th day (Fig 19A and B).  Astonishingly, Group IV (HD + VD) mice showed a highly 

significant effect of VD supplementation on rotarod performance on the 14th day by 1.4 

fold (1.37 ± 0.13), on the 21st day by 0.6-fold (1.44 ± 0.1)  and on the 30th day by 0.74 fold 

(1.57 ± 0.001) as compared to Group II mice (HD) for the same time points (14th day, 0.58 

± 0.19; 21st day, 0.92 ± 0.22; 30th day, 0.90 ± 0.22, n = 8 - 9, p < 0.001, Tukey’s post-hoc 

analysis, Fig. 19A and B). To our surprise VD treatment to pre-3-NP injected mice (Group 

IV; HD + VD) recorded no latency to fall within a total time duration of 180 seconds and 

rescued the neuromuscular coordination by 100% when compared with 3-NP induced HD 

mice. To rule out the possibility that VD supplementation alone showed any effect on the 

grip strength of mice, VD injections were carried out in a Control group (Group III). 

Interestingly, we found no significant difference in the latency to first fall between the 

Group I (Control) and the VD supplemented mice (Group III) for all time points (p = 0.9; 

Tukey’s post-hoc analysis, Fig. 19A and B). Overall, two-way ANOVA showed a 

significant difference in the mean among all groups of mice with no interaction between 

the groups and day (p < 0.001, two-way ANOVA, Fig. 19A), reflecting the effects of VD 

and 3-NP in Group II and Group IV mice. These result support our hypothesis that the VD 

supplementation has a robust rescue effect on neuromuscular coordination, which is 
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sustained throughout the timeline of the study. Neuromuscular coordination is impaired in 

patients with HD but how VD might affect the HD associated behavioral performance is 

not well described in the mouse model (Chel et al., 2013). Our data parallels the findings 

of Sakai and colleagues who showed that an oral supplementation of the VD analogue 

eldecalcitol (ED‐71, ELD), a derivative of 1,25 (OH)2D3, for 14 days significantly 

improved the locomotor performance of mice (Sakai et al., 2015). Here we used a similar 

dose of VD (500IU/kg/day; 12.5µg/kg/day) for a similar about of time (here 15 days) to 

explore the motor benefits of VD (cholecalciferol) in HD mice. Our findings collectively 

suggest that motor performance deficits observed in the 3-NP mouse model of HD get 

significantly reversed by VD supplementation, suggesting a neuroprotective function of 

VD in the striatum. 

A.                                                                                  B. 

 

Fig.19. Rotarod performance of HD mice depicting beneficial effect of VD 

administration in HD mice. (A) Grip-strength of 3-NP induced HD mice was significantly 

improved on VD supplementation (p < 0.001, n = 8-9, two-way ANOVA. (B) On 30th day, 

HD mice post supplemented with 500IU/kg of VD (Group IV) showed no latency in fall 

for entire 180 sec from the rotating rod, as compared HD mice (Group II, n = 8, p < 0.001, 

Tukey’s post-hoc analysis). HD mice induced with 3-NP showed a significant decrease in 

the as compared to Control (Group I) (n = 8-9, p < 0.001, Tukey’s post-hoc analysis). Data 

is represented as normalized mean ± SEM value against zero day for respective group and 

circle represent the latency of the first fall. 



100 
 

2.3.4. VD rescues spatial memory of HD mice: 

To test the potential effect of VD supplementation (500IU/kg) on spatial memory 

function of 3-NP induced HD mice, we used the Morris water maze (MWM) to determine 

the escape latency of the animal for month duration. Training over a period of 10 

consecutive days was given to the animals during which animals had to escape towards the 

submerged platform within 60 secs before inducing the animals with HD. The time taken 

by the 4 groups of animals was recorded to locate the hidden for the evaluation of rescue 

in spatial memory (Fig. 16). In agreement with our above behavior data, we noticed that 

on the 30th day, 3-NP induced HD animals (75mg/kg, group 2) showed nearly a 3-fold 

increase in the time to locate the hidden platform (0.68 ± 0.18, n = 9) when compared with 

the aged-matched control animals (0.11 ± 0.01, n = 10, p < 0.001, Tukey’s post-hoc 

analysis, Fig. 20). On the other hand, VD treatment on post 3-NP injection given to group 

4 animals (3-NP + VD) showed significant decrease in the normalized escape latency of 

animals by 1.8-fold (0.19 ± 0.03, n = 7) when compared with 3-NP induced HD animals 

(p < 0.001, Tukey’s post-hoc analysis, Fig. 20), and were indistinguishable from control 

animals. A similar rescue effect of VD on spatial memory was also observed on 21st day. 

We observed no significant difference in the escape latency between the control and only 

VD supplemented animals for the entire time course (Fig. 20). Spatial learning and MWM 

performance depend upon the coordinated action of different brain regions constituting a 

functionally integrated neural network, and thus our data likely reflects that VD 

supplementation possibly rescues the co-ordination of striatum with various brain region 

including cortex, hippocampus and cerebellum (D’Hooge and De Deyn, 2001). 

Furthermore, this data also confirms that intake of VD alone shows no improvement in 

cognitive performance as the animals supplemented with only VD (group 3) show no 

difference in MWM performance when compared to that of aged matched control animals 

(group 1; Fig. 20). 
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A.                                                                                  B. 

 

Fig.20. Morris water maze analysis of HD mice depicting beneficial effect of VD 

administration in HD mice on spatial memory. (A) Memory of 3-NP induced HD mice 

was significantly improved on VD supplementation (p < 0.001, n = 7-10, two-way 

ANOVA. (B) On 30th day, HD mice post supplemented with 500IU/kg of VD (Group IV) 

showed minimal escape latency toward the hidden platform, as compared HD mice (Group 

II, n = 9, p < 0.001, Tukey’s post-hoc analysis). HD mice induced with 3-NP showed a 

significant increase in escape latency when compared to Control (Group I) (n = 8-9, p < 

0.001, Tukey’s post-hoc analysis). Data is represented as normalized mean ± SEM value 

against zero day for respective group and circle represent the escape latency towards the 

hidden platform. 

2.3.5. VD supplementation maintains the body weight of HD mice: 

An overall significant difference in mean body weight was observed among all the 

groups of mice (p = 0.002, two-way ANOVA, Fig. 21A). A 30% decrease in the body 

weight was observed by 30th day in Group II mice when compared with Group I mice (HD 

vs Control; 0.87 ± 0.01 vs 1.23 ± 0.05, n = 8-10, p < 0.001, paired sample t-test, Fig. 21B). 

The body weight was significantly rescued on VD supplementation in HD mice (HD + VD 

vs HD; 1.10 ± 0.05 vs 0.87 ± 0.01, n = 8-10, p < 0.001, paired sample t-test, Fig. 21B), 

possibly reflecting the effect of VD in fixing oxidative stress, mitochondrial function, and 

muscle heath (Chabas et al., 2013; Kim and Chan, 2001; Latham et al., 2021). 
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Fig.21. VD administration recues body weight in HD mice. On 30th day, 500IU/kg/day 

of VD injection to pretreated 3-NP mice (HD) showed a significant rescue in the body 

weight (Group IV vs Group II, n = 8-10, p = 0.001, paired sample t-test). HD mice showed 

a dramatic decrease in the body weight as compared to Control (Group II vs Group I, n = 

8-10, p < 0.001, paired sample t-test). Data is represented as normalized mean ± SEM value 

against control. 

2.4. Discussion: 

Striatum is the main information processing hub of basal ganglia and performs 

multiple functions including control of movement, reward, and addiction. Dysfunction and 

death of striatal neurons are the main causes for the motor disorders associated with HD 

(Lewitus et al., 2014). Though some of the results remain inconclusive, the limited 

information available suggests a neuroprotective function of VD in the context of the motor 

dysfunction observed in HD. The goal of the present study was to explore the therapeutic 

potential of VD in an animal model of HD induced by intraperitoneal injection of 3-

nitropropionic acid (3-NP). 3-NP is a well-established toxic model causing mitochondrial 

dysfunction and selective loss of striatal neurons (Brouillet, 2014; Túnez et al., 2010). In 

this study, we used a subacute dose of 3-NP, a slight modification from the previous study 

(Amenda et al., 2005). The protocol is derived from earlier studies by Fernagut and team 

and the work by Kim and Chan  where 50 mg/kg of 3-NP was given for 5 days (Amende 

et al., 2005; Fernagut et al., 2002, Kim and Chan, 2001). As described by Nishino and 

team, a single low dose injection of 3-NP (20 mg/kg) was insufficient to induce behavioral 

and biochemical abnormalities in the striatum but subsequent injections caused significant 

striatal lesions and motor deficits (Nishino et al., 1997). Our data show that 500IU/kg/day 
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and 2000IU/kg/day dose (taking an average weight of animals ~ 30gms across the group) 

of VD given to 3-NP mice produces significant improvement in motor and memory test 

performances like locomotion, rotarod and Morris water maze as in comparison with 3-NP 

induced group of animals. 

These studies suggested that 500IU/kg/day (12.5µg/kg) of VD improved 

myelination and accelerated functional recovery of nerve post injury (Chabas et al 2013). 

In another study, 500IU/kg/day of VD significantly improved the locomotion performance 

of rodents in a spinal cord injury model that was not observed with a dose of 200IU/kg/day 

(Gueye et al., 2015). Further, Rodrigues and collegues demonstrated that in rodent model 

of sporadic dementia of Alzheimer’s type, 500IU/kg/day of VD was enough to reduce 

oxidative stress markers and restore cholinergic function by decreasing acetylcholine 

esterase activity in synaptosomes (Rodrigues et al., 2019). Based on these findings, we 

utilized the chronic administration of 500IU/kg/day for 15 days in order to explore its effect 

on motor disabilities in the 3-NP induced mouse model of HD. We also tested if any 

benefits were maintained over the next 15 days in the absence of continued VD 

administration, and our data supported that this is the case. 

The rescue effect of VD administration in 3-NP induced HD mice were tested on 

movement impairment, stride length and grip strength to evaluate the motor coordination 

of the animals (Beal et al., 1993). Group II mice (3-NP induced) showed a reduction in 

their latency of fall on the rotarod, whereas Group IV mice (HD + VD) rescued 

neuromuscular coordination and showed no latency of first fall within a total time duration 

of 180 seconds as shown in Fig. 19. Neuromuscular coordination is known to be impaired 

in patients with HD but how VD affects this behavior performance in HD have not been 

described in mouse model (Chel et al., 2013). The findings of the present study suggest 

that the motor performance deficits observed in the 3-NP model of HD were significantly 

reversed by VD supplementation, suggesting a neuroprotective function of VD in the 

striatum. We observed no variability in the gait dynamics across all the four groups (Group 

I-IV) over a month's time as shown in Fig. 19 and 20, possibly reflecting that the dose of 

3-NP (75 mg/kg) used in the present study did not produce neuronal loss in the cerebellum 

(Takakusaki, 2017). Hence, no rescue effect of VD was observed in 3-NP injected HD 
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mice (Fig. 19 and 20).  Changes in gait or postural control could occur with different doses 

or schedules of neurotoxin (3-NP) injection than those undertaken in the present study. 

The enhancement in locomotory and rotarod performances of HD mice post 

injected with VD (Group IV; HD + VD) (Fig. 17 and 19). 3-NP induction also significantly 

decreased the body weight of HD mice (Group II) by ~ 0.3-fold as previously reported by 

Kumar and team, which was reversed upon VD supplementation by the end of 30 days 

(HD + VD; Group IV, Fig. 21) (Kumar et al., 2009).  

The findings in the present chapter reveal that administration of VD following 

induction of the 3-NP model of HD rescued the impaired motor coordination and 

locomotion. Overall, VD supplementation has proved to be effective in reversing motor 

deficits and spatial memory in the 3-NP induced mouse model of HD. It could be 

considered as promising agents for the development of new therapeutics for 

neurodegenerative disorders including HD.
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Restorative action of Vitamin D3 

on enhancing neurotrophins and 

antioxidant expression in the 

striatum via Vitamin D receptor 
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3.1. Introduction: 

From the previous chapter it is evident that 500IU/kg as the optimal dose to study 

but the molecular mechanism for the rescue in the behavior of mice is still unknown. In the 

last decade, a potential link has been explored between VD deficiency and 

neurodegenerative disorders (Amrein et al., 2020; Chel et al., 2013; Holick et al., 2011; 

Koduah et al., 2017). VD is a neurosteroid hormone that shows neuroprotection effects in 

animal and cell-culture models of Parkinson’s and Alzheimer’s disease (Bivona et al., 

2019; Calvello et al., 2017; Kim et al., 2006; Nimitphong et al., 2021; Rodrigues et al., 

2019). Calcitriol, which is the active form of VD, exerts its neuroprotective role via VDR 

(Taniura et al., 2006). 

Various evidences on other neurodegenerative diseases showed that, VD 

supplementation has showed upregulation of nerve growth factor (NGF) and brain derived 

neurotrophic factor (BDNF) which helps in the survival of existing neurons (Gao et al., 

2022; Mohamed et al., 2015; Wang et al., 2023). These neurotrophins also promote 

synaptic function and survival of several neuronal populations, including striatal neurons 

that are the primary affected cells in HD (Zuccato et al., 2001; Zuccato and Cattaneo, 

2007). Oxidative stress is also considered as one of the key players for the disease 

progression in HD (Paul and Snyder, 2019; Túnez et al., 2010). However, studies suggest 

that, VD has potential role in regulation of oxidative stress during neuropathological 

conditions which leads to the survival of existing neurons (Lima et al., 2018; Molinari et 

al., 2019; Wang et al., 2023). This can be identified by the effect of oxidative stress on 

certain antioxidants like superoxide dismutase (SOD), glutathione peroxidase (GpX), and 

catalase (Cat). Studies suggest that VD supplementation has a regulatory effect on 

oxidative stress which leads to the survival of neurons (Bakhtiari-Dovvombaygi et al., 

2021; Lima et al., 2018). There is a limited evidence shows that VD supplementation shows 

its protective role in HD however the molecular mechanism of its therapeutic role is not 

established (Fort Molnár et al., 2016). Therefore, the present study was focused on the 

protective role of 500IU/kg of VD supplementation on HD in 3-NP induced mouse. 

Therefore, the present chapter focusses on the effect of 500IU/kg of VD supplementation 
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on neuronal survival by its activity on neurotrophins and anti-oxidants through non-

genomic action in HD on the administration of 3-nitropropionic acid (3-NP). 

3.2. Materials and methods: 

3.2.1. Animal Procurement: 

Ten to twelve weeks old male C57BL/6 mice (average weight; 26 ± 3 g) were 

acquired from Sainath Agencies, Hyderabad, India. Animals were group housed (2 mice 

per cage) with ad libitum access to food and water. They were kept in a 12 h light/12 h 

dark cycle at 25±2 °C. All the animal experiments were carried out with the approval of 

the Institutional Animal Ethics Committee (IAEC), BITS - Pilani, Hyderabad 

(BITS/Hyd/IAEC/2019/10, BITS/Hyd/IAEC/2020/20). All efforts were made to minimize 

the number of animals used and their suffering. 

3.2.2. Study design: 

All the animals were acclimatized for 5 days and then randomly divided into 4 

experimental groups (Group I to Group IV; Table 5) and given injections of 3-NP and/or 

VD (Fig. 13). 3-NP was given by three intraperitoneal injections of 25 mg/kg, every 12 h, 

for a cumulative dose of 75 mg/kg as described previously by Amenda et al (2005) and 

Fernagut et al (2002) with minimal modification (Amende et al., 2005; Fernagut et al., 

2002).  500IU/kg/day of VD was given i.p. daily for 15 days as shown in the chapter 2. 

3.2.3. Experimental design: 

The mice were randomly divided into four experimental groups for behavior and 

biochemical assay as in Chapter 2 

i. Group I:  Control group mice (C57BL/6) injected with saline. 

ii. Group II: 3-NP induced mice by i.p. injection (3-NP; 75 mg/kg) without VD-treatment 

(HD). 

iii. Group III:  Mice injected solely with 500IU/kg/day VD for 15 days. 

iv. Group IV: Post-intraperitoneal injection of 500IU/kg/day of VD to 3-NP (75 mg/kg) pre-

injected mice for 15 days (HD + VD). 
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3.2.4. Drugs and reagents: 

3.2.4.1 Cholecalciferol:  

Cholecalciferol (Vitamin D3; VD) was purchased from Sigma-Aldrich, India (Cat 

No: C9756) and dissolved in 1% ethanol (diluted with sterile saline) on the day of injection 

(Mohamed et al., 2015). Mice were administered with two different doses of VD i.e., 

500IU/kg/day (12.5μg/kg/day) through intraperitoneal injection reported previously by 

Kolla and Majagi (Chabas et al., 2013; Gueye et al., 2015; Kolla and Majagi, 2019). 

Briefly, VD was administered to the Group III and V (only VD) mice and Group IV and 

VI (HD+VD) mice. Group IV and IV mice (HD + VD) were given 24 hr recovery time 

from previous 3-NP induction.  Then the VD injections were carried out 24 hr after the last 

dose of 3-NP daily for 15 days to Group IV mice (from 0 to 15th day, Fig. 13 and Table 

5). 

3.2.4.2. 3-Nitropropionic acid:  

3-nitropropionic acid (3-NP) was purchased from Sigma-Aldrich, India (Cat No.: 

N22908). Stock solutions of 3-NP (3 mg/ml) were prepared in 0.1M phosphate buffered 

saline solution and were injected intraperitoneally at 25 mg/kg (3-NP; cumulative dose of 

75 mg/kg) thrice at 12 h intervals to respective groups of mice as described previously (Fig. 

13 and Table 5). Controls were treated with three doses of saline at 12 h intervals.  In this 

study, we used a subacute dose of 3-NP dose as reported previously by Amenda et al (2005) 

with minimal modification (Amende et al., 2005). This protocol is based on previous 

published studies by Fernagut et al (2002) and Kim and Chan (2001) who used 50 mg/kg 

i.p. injection of 3-NP for 5 days. To model a subacute exposure to 3-NP, a cumulative dose 

of 75 mg/kg dose of 3-NP was undertaken (Fernagut et al., 2002; Kim and Chan, 2001). 

3.2.5. RNA isolation and cDNA synthesis: 

On the 30th day, mice from respective groups were anesthetized using isoflurane 

(Rx, NoB506) and immediately decapitated for the extraction of striatal brain 

samples.  Brain tissue was placed into 1 ml of RNAiso PLUS (Takara Bio) and sonicated 

on ice. 200μl of chloroform was added and samples were centrifuged for 30 minutes at 

12,000g at 4°C (Eppendorf Refrigerated centrifuge, 542R). After isolation of the aqueous 



109 
 

phase, an equal volume of isopropanol (Hi-Media Laboratories, Molecular biology grade, 

India) was added, incubated overnight at -20°C and again centrifuged at 12,000g for 30 

minutes at 4°C. Samples were washed with 70% ice-cold ethanol and the obtained pellet 

was resuspended in nuclease-free water. DNase I (EN052, Thermo ScientificTM, USA) 

treatment was performed to remove any DNA contamination.  DNase-treated samples were 

made up to 400μl using nuclease-free water. It was followed by sample purification using 

1/10th volume of 3M sodium acetate and 2X volume of phenol: chloroform: isoamyl 

alcohol (Sisco Research Laboratories Pvt. Ltd., India) and centrifuged for 2 minutes at 

maximum speed at 4°C. The aqueous phase was isolated with addition of an equal volume 

of ice-cold 100% ethanol, followed by overnight incubation at -20°C. The samples were 

again centrifuged at maximum speed for 15 minutes at 4°C, then washed with 70% ice-

cold ethanol and the obtained pellet was resuspended in nuclease-free water. The total 

concentration of purified RNA was estimated by the Nanodrop spectrophotometer 

(Nanodrop, Thermo Fisher Scientific, USA).  An equal amount of RNA from each group 

was used to reverse transcribe complementary DNA (cDNA) with the help of the Verso 

cDNA synthesis kit (Cat No: AB1453A, Thermo ScientificTM, USA) as per 

manufacturer's instruction.  Briefly, 500 ng of purified RNA was taken from each group 

for cDNA synthesis with the following reaction conditions: 42°C for 1 h followed by 95°C 

for 2 minutes. The obtained cDNA was used for semiquantitative PCR. 

3.2.6. Analysis of mRNA expression of nerve growth factor, and antioxidant 

markers by semi-quantitative PCR: 

The sequences of neurotrophic genes (nerve growth factor (NGF) and brain derived 

neurotrophic factor (BDNF)) of the mouse genome were obtained from NCBI. The 

sequences were deposited in the IDT primer quest tool to get the most suitable primer for 

gene analysis. For antioxidant marker genes, we analyzed superoxide dismutase 1 (SOD1), 

superoxide dismutase 2 (SOD2), catalase (Cat) and glutathione peroxidase 4 (GpX4). All 

the genes, primer sequences and amplicon sizes are listed in Table 6. 
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Table 6. Sequence of Primers used in semi-quantitative and real time PCR studies 

Gene Orientation Sequence of primers (5’ to 3’) Amplicon 

size 

18s Forward ACGGAAGGGCACCACCAGGA 127 

 
Reverse CACCACCACCCACGGAATCG 

NGF Forward GGCAGAACCGTACACAGATAG 88 

 
Reverse TGTGTCAAGGGAATGCTGAA 

BDNF Forward TCCTAGAGAAAGTCCCGGTATC 94 

 
Reverse GCAGCCTTCCTTGGTGTAA 

SOD1 Forward CAGAAGGCAAGCGGTGAAC 107 

 
Reverse CAGCCTTGTGTATTGTCCCCATA 

SOD2 Forward TCCTAGAGAAAGTCCCGGTATC 112 

 
Reverse GCAGCCTTCCTTGGTGTAA 

GPx4 Forward GCCCAATACCACAACAGTAGA 108 

 
Reverse CCTGAACCACAGCGATGAA 

Cat Forward AATTGCCTCCACACCTTCAC 107 

  
  Reverse TCACCAAGCTGCTCATCAAC 

  

Semiquantitative-PCR was performed using respective cDNA with gene specific 

primers to estimate the relative quantification of target genes. We used the following PCR 

condition to amplify NGF using 2X PCR master mix (Takara Bio) and 0.5μM of each 

primer: 95°C for 2 min; 35 cycles of 95°C for 30 sec., 62°C for 30 sec., 72°C for 30 sec.; 

and a final step of extension of 72°C for 5 min. For antioxidant markers the PCR condition: 

95°C for 5 min; 35 cycles of 95°C for 30 sec, 60°C for 45 sec., 72°C for 45 sec.; and a final 

step of extension at 72°C for 10 min for SOD1, SOD2, and GpX4 whereas Cat 

amplification was carried out at 56°C for 45 sec. The PCR products were checked by 

electrophoresis on 1.5% agarose gel, visualized and quantified using Image software by 

keeping 18s rRNA as a Control (housekeeping gene). 
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𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑄𝑢𝑎𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎 𝑔𝑒𝑛𝑒 =
𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑔𝑒𝑛𝑒

𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝐻𝑜𝑢𝑠𝑒𝑘𝑒𝑒𝑝𝑖𝑛𝑔 𝑔𝑒𝑛𝑒
 

3.2.7. Quantitative analysis of brain derived neurotrophic factor by Real PCR: 

The expression of brain derived neurotrophic factor (BDNF) among the four groups 

of mice was assessed by Real time-PCR (RT-PCR) in a CFX96 Touch Real-time PCR 

system (BioRad) using the GoTaq qPCR SYBR master mix (Cat No #A6001, Promega 

Corporation). The reaction mixture was prepared according to the manufacturer’s protocol 

using ~12 ng of the cDNA template. Relative gene expression was quantified using the 

ΔCT method with respective primers (BDNF forward 5′-

TCCTAGAGAAAGTCCCGGTATC-3′; reverse 5’-GCAGCCTTCCTTGGTGTAA-3’) 

and normalized to 18s (forward 5'-ACGGAAGGGCACCACCAGGA-3'; reverse 5'-

CACCACCACCCACGGAATCG-3'). The gene expression analysis was carried out by 

∆∆CT method to determine the fold changes in the expression of BDNF as follows: 

𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 = 2^-ΔΔCt 

𝛥𝛥𝐶𝑡 = ΔCt (Gene of interest) - ΔCt (Housekeeping gene) 

ΔCt (cycle difference) = Ct (target gene) – Ct (Control gene) 

 3.2.8. Protein expression of VDR by Western blot: 

On the 30th day, striatal brain tissue was extracted from all four groups of mice. The 

tissue was homogenized in the lysis buffer (150 mM sodium chloride, 1.0% TritonX-100, 

0.5% sodium dodecyl sulfate and 50mM Tris, pH 8.0). The protein concentration was 

determined using a Bradford protein assay kit (Bio-Rad, USA). We loaded equal amounts 

of protein (25 μg) run in a 12% gel, and then transferred to PVDF (Pall Corporation) 

membrane through a trans blot wet transfer system (Bio-Rad). The membrane was blocked 

using 5% BSA and incubated with respective primary and secondary antibodies for β-Actin 

Rabbit mAb (1:3000, CST#4970, Cell Signaling Technology); VDR Rabbit mAb (1:1500, 

CST#12550, Cell Signaling Technology); Anti-rabbit IgG-HRP-linked antibody (1:5000, 

CST#7074, Cell Signaling Technology).  β-Actin served as a loading control. The signal 

intensities of the bands were captured using the fusion pulse gel documentation system 
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(Eppendorf, USA). ImageJ software was used to quantify the band intensities and the 

protein expression of the protein was determined by using the following formula: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑜𝑓 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 =
𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑏𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑔𝑟𝑜𝑢𝑝 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑏𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝐶𝑜𝑛𝑡𝑟𝑜𝑙
 

3.2.9. Statistical analysis: 

Experimental data are represented as normalized values w.r.t to control. Data is 

represented in bar plot by illustrating the distribution of normalized values for each 

respective group of mice (Group I to Group IV). Group data in the text are presented as 

mean ± standard error of the mean (SEM). Statistical analysis was conducted using one-

way ANOVA followed by either post hoc multiple pairwise analysis using Tukey's HSD 

tests or paired sample t-test.  p < 0.05 was set as threshold of significance (*p < 0.05, **p < 

0.005, and ***p < 0.001). Statistical analysis was performed using Origin 8.1. 

3.3. Results: 

3.3.1. VD supplementation increases the expression of neurotrophins in 3-

nitropropionic induced Huntington’s mice: 

3.3.1.1. VD supplementation enhances the gene expression of nerve growth 

factor in HD mice: 

To test the possibility whether VD supplementation upregulated survival pathways 

in the striatal neurons following 3-NP injection, we measured mRNA expression (see 

methods) of nerve-growth factor (NGF) from the striatum.  On the 30th day we found 3-

NP injected HD animals showed a profound reduction by ~36% in the expression of NGF 

from striatum (group 2, 0.66 ± 0.04, n = 4, Fig. 22A) when compared to control mice 

(group 1, 1.00 ± 0.00, n = 4, p < 0.0001, student’s t-test, Fig. 22A). NGF expression was 

increased by 72% (group 4, 1.14 ± 0.12, n = 4) when compared with 3-NP induced HD 

animals (group 2, 0.66 ± 0.04, n = 4, p = 0.004, student’s t-test, Fig. 22A) in the striatum. 

Furthermore, mRNA expression of NGF remain unchanged between mice supplemented 

with only VD and control. These results confirmed that VD supplementation can enhance 
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the expression of NGF only when striatal neurons are subjected to neurodegeneration on 

3-NP induction. 

A.                                                        B. 

 

Fig. 22. mRNA expression of NGF from the striatal tissues of mice depicting 

neuroprotective effect of 500IU/kg of VD by semi-quantitative PCR. (A) VD 

administration rescued the mRNA expression of NGF in the striatum of 3-NP induced HD 

mice (Group IV vs Group II, n = 4, p = 0.001, paired sample t-test). NGF expression was 

significantly downregulated in HD mice as compared to control (Group II vs Group I, n = 

4, p = 0.006, paired sample t-test). Representative gel images of PCR results for NGF. (B) 

Representative gel images of semi-quantitative PCR results for NGF. Data is represented 

as normalized mean ± SEM value against control. 

3.3.1.2. VD supplementation increases the mRNA expression of brain derived 

neurotrophic factor in HD mice by real-time PCR: 

Alterations in the mRNA expression of BDNF was analyzed in striatal tissues from 

all the four groups of mice by RT-PCR. RT-PCR results for BDNF expression in the 

striatum showed a significant change in the gene expression induced by VD 

supplementation in HD mice (n = 3, p = 0.04, Kruskal-Wallis test, Fig. 23). HD mice 

showed a significant decrease in the gene expression of BDNF as compared to Controls 

(Group II vs Group I; 0.53 ± 0.06 vs 1.00 ± 0.00, n = 3, p = 0.001, unpaired sample t-test). 

VD administration after 3-NP injection robustly increased the BDNF expression in Group 

IV mice (3.10 ± 0.57) when compared with HD mice (Group II mice; 0.53 ± 0.06, n = 3, p 

= 0.01, unpaired sample t-test, Fig. 23) reflecting that the biological effect of VD was not 

compromised by 3-NP induction. In addition, no significant difference in the BDNF 

expression was observed in the striatal tissues of Group III with respect to Group I mice 

18s  - 127 bp 

NGF  - 88bp 
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(VD vs Control; 1.41 ± 0.40 vs 1.00 ± 0.00, n = 3, p = 0.35, unpaired sample t-test, Fig. 

23). 

 

Fig. 23. RT-PCR results depicting robust enhancement in the mRNA expression of 

BDNF in the striatum of HD mice on VD administration (Group IV vs Group II, n = 3, p = 

0.01, unpaired sample t-test. Striatal tissue of HD mice showed a significant decrease in the 

gene expression of BDNF (Group II vs Group I, n = 3, p = 0.001, unpaired sample t-test. 

Data is represented as normalized mean ± SEM value against control. 

3.3.2. VD supplementation attenuates oxidative stress by regulating the gene 

expression of antioxidant markers: 

To observe the effect of VD supplementation on the gene expressions of antioxidant 

markers, we performed semiquantitative PCR in all the four groups of mice (Group I to 

Group IV). mRNA expressions of Superoxide dismutase 1 (SOD1), Superoxide dismutase 

2 (SOD2), Glutathione peroxidase 4 (GpX4), and Catalase (Cat) were subsequently 

analyzed. 

3.3.2.1. VD did not show any effect on the gene expression of superoxide 

dismutase 1 and 2 in the striatum of HD mice: 

The effect of VD supplementation did not significantly change the gene expression 

of superoxide dismutase 1 (SOD1) among the four groups of mice (p = 0.71, one-way 

ANOVA, Fig. 24A and B).  Striatal tissue from HD mice showed no change in SOD1 

mRNA expression (0.86 ± 0.42, n = 4) when compared with Group I (Control; 1.00 ± 0.00, 

n = 4, p = 0.38, paired sample t-test, Fig. 24A). VD administration in HD mice also showed 

no significant change in SOD1 expression in the striatal samples of Group IV mice (HD + 
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VD; 1.57 ± 0.45) when compared with Group II animals (HD; 0.86 ± 0.42, n = 4, p = 0.99, 

paired sample t-test, Fig. 24A). VD supplementation alone did not affect SOD1 mRNA 

expression in Group III mice when compared with Group I (VD vs Control; 1.41 ± 0.43 vs 

1.00 ± 0.00, n = 4, p = 0.79, paired sample t-test, Fig. 24A). 

Superoxide dismutase 2 (SOD2) mRNA expression also remained unchanged among 

all the four groups of mice either on 3-NP treatment or VD supplementation (p = 0.47, one-

way ANOVA, Fig. 24A). SOD2 mRNA expression in HD mice was modulated by ~0.6 

fold as compared to Control but did not reach significance (1.57 ± 0.35, n = 4, p = 0.90, 

paired sample t-test, Fig. 24B). Striatal samples from Group IV mice showed an 

insignificant change in SOD2 mRNA expression when compared with Group II mice (HD 

+ VD vs HD; 0.99 ± 0.27 vs 1.57 ± 0.35, n = 4, p = 0.99, paired sample t-test, Fig. 24B). 

Also, no change in the expression of SOD2 was observe in Group III mice supplemented 

with only VD when compared with Group I mice (VD vs Control; 1.25 ± 0.37 vs 0.99 ± 

0.01, n = 4, p = 0.54, paired sample t-test, Fig. 24B). 
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A.                                                      B. 

       
                                      C. 

 

 

 

 

 

 

Fig. 24. mRNA expression of superoxide dismutase from the striatal tissues of mice 

depicting neuroprotective effect of 500IU/kg of VD. (A) On 30th day, no significant 

change in the mRNA expression of superoxide dismutase1 (SOD1) was observed across all 

groups of mice (n = 4, p = 0.71, one-way ANOVA). VD induction produced no change in 

the striatal expression of SOD1 in Group IV mice as compared to HD mice (Group IV vs 

Group II, n = 4, p = 0.99, paired sample t-test. (B) No significant change in the mRNA 

expression of superoxide dismutase2 (SOD2) was observed across all groups of mice (n = 

4, p = 0.47, one-way ANOVA). VD supplementation did not significantly rescue the 

expression of SOD2 in Group IV mice as compared to HD mice (Group IV vs Group II, n 

= 4, p = 0.99, paired sample t-test). (C) Representative gel images of semi-quantitative PCR 

results for SOD1 and SOD2. Data is represented as normalized mean ± SEM value against 

control. 

 

- 127 bp 

- 112 bp 

- 107 bp 

18s  

SOD2  

SOD1  
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3.3.2.2. VD alleviates oxidative stress by decreasing the gene expression of 

glutathione peroxidase 4 in HD: 

On the 30th day after 3-NP induction in HD mice, an overall change in the gene 

expression of glutathione peroxidase 4 (GpX4) in the striatal tissue was observed (f (3) = 

14.06, p < 0.001, one-way ANOVA, Fig. 25). PCR data for GpX4 revealed that 3-NP 

treatment caused a significant increase in the expression of GpX4 in the striatum of HD 

mice as compared with Group I mice (Group II vs Group I; 2.09 ± 0.22 vs 1.00 ± 0.00, n = 

4, p = 0.008, paired sample t-test, Fig. 25). mRNA expression of GpX4 in Group IV mice 

(HD + VD) decreased with VD administration as compared to the HD mice (Group IV vs 

Group II; 1.19 ± 0.11 vs 2.09 ± 0.18, n = 4, p = 0.007, paired sample t-test, Fig. 25), to 

roughly control levels. Similarly, VD supplementation alone in Group III mice did not 

change GpX4 expression relative to Group I (VD vs Control; 1.08 ± 0.05 vs 1.00 ± 0.00, p 

= 0.99, paired sample t-test, Fig. 25). 

A.                                                              B. 

 

Fig.25. mRNA expression of glutathione peroxidase from the striatal tissues of mice 

depicting neuroprotective effect of 500IU/kg of VD. (A) Graph depicting enhanced 

expression of glutathione peroxidase on 3-NP injection in HD mice on 30th day which got 

substantially decreased on VD administration (n = 4, p < 0.001, one-way ANOVA; Group 

II vs Group I, n = 4, p = 0.008; Group IV vs Group II, n = 4, p = 0.007, paired sample t-

test). (B) Representative gel images of semi-quantitative PCR results for GpX4. Data is 

represented as normalized mean ± SEM value against control. 
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3.3.2.3. Effect of VD on mRNA expression of catalase in HD: 

Similar results were seen with expression of the antioxidant enzyme catalase (Cat). 

PCR data from the 30th day post-HD induction revealed an overall change in catalase 

expression across all the four treatment groups (p < 0.001, one-way ANOVA, Fig. 26). 3-

NP injected HD mice showed a significant increase in the enzyme expression as compared 

with Group I mice (Group II vs Group I; 2.02 ± 0.18 vs 1.00 ± 0.00, n = 4, p = 0.005, paired 

sample t-test, Fig. 26). VD administration appears to reduce the oxidative stress in HD mice 

as seen by the decrease in catalase expression in Group IV mice (HD + VD) (Group IV vs 

Group II; 1.38 ± 0.03 vs 2.02 ± 0.18, n = 4, p = 0.02, paired sample t-test, Fig. 26). VD 

supplementation alone in Group III mice also showed a decrease in the mRNA expression 

of catalases when compared to HD mice but was not significant (VD vs HD; 1.72 ± 0.03 vs 

2.02 ± 0.18, p = 0.08, paired sample t-test, Fig. 26). VD supplementation in Group IV mice 

(HD + VD) showed a decrease in the expression of antioxidants markers with a subsequent 

partial rescue in the body weight (Fig. 21). 

A.                                                          B. 

 

Fig. 26. mRNA expression of Catalase from the striatal tissues of mice depicting 

neuroprotective effect of 500IU/kg of VD. (A) Graph depicting rescue effect of VD on 

catalase expression in Group IV mice as compared to Group II (HD) (n = 4, p < 0.001, one-

way ANOVA). Striatal expression of catalases was enhanced in HD mice (Group II vs 

Group I, n = 4, p = 0.005, paired sample t-test) which got diminished on VD induction in 

Group IV mice (n = 4, p = 0.02, paired sample t-test). (B) Representative gel images of 

semi-quantitative PCR results for Cat. Data is represented as normalized mean ± SEM value 

against control. 
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3.3.3. Restorative action of VD takes place through an increase in the protein 

expression of VDR in HD: 

The effect of VD supplementation on expression of the VDR in the striatum was 

elucidated by western blot analysis (f (3) = 5.48, p = 0.01, one-way ANOVA, Fig. 27). 3-

NP mediated neurodegeneration caused a significant decrease in VDR expression by ~0.54 

fold in HD mice (Group II) as compared to the Control (Group II vs Group I, 0.46 ± 0.15 

vs 1.00 ± 0.00, n = 4, p = 0.02, paired sample t-test, Fig. 27). VD supplementation rescues 

this effect as Group IV mice (HD + VD) showed a significant increase in the expression of 

VDR by ~ 2-fold as compared to Group II (HD) mice (1.28 ± 0.26 vs 0.46 ± 0.15, n = 4; p 

= 0.04, paired sample t-test, Fig. 27). An enhancement in the protein expression of VDR 

was observed in Group III mice, supplemented with only VD as compared to Group I mice 

but did not reached significance (VD vs Control; 1.52 ± 0.25 vs 1.00 ± 0.00, n = 4; p = 0.13, 

paired sample t-test, Fig. 27).  Our results parallel the finding of Lima and team where VD 

administration enhanced the expression of VDR in the hippocampus (Lima et al., 2018). 

  A.                                                       B. 

 

Fig. 27. Enhanced protein expression of VDR in the striatum of HD mice. (A) Graph 

depicting neuroprotective effect of 500IU/kg of VD in HD mice. The protein expression of 

VDR got significantly compromised in HD mice and reversed substantially on VD 

administration (n = 4, p = 0.01, one-way ANOVA; Group II vs Group I, n = 4, p = 0.02; 

Group IV vs Group II, n = 4, p = 0.04, paired sample t-test). (B) Blot representation to 

analyze the protein expression of VDR. Data is represented as normalized mean ± SEM 

value against control. 

48kDa VDR 

45kDa β-Actin 
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3.4. Discussion: 

In the last decade, µg/kg VD or 1α,25-dihydroxyVitamin D3 and its analogues have 

been explored for their usefulness in brain disorders. A number of studies have reported a 

link between low serum level of VD in patients affected by neurodegenerative and 

neuropsychiatric disorders like AD, PD, HD, Schizophrenia, sleep disorders, autism, and 

depression (Bakhtiari-Dovvombaygi et al., 2021; Chabas et al., 2013; Kim et al., 2006; 

Koduah et al., 2017; Mohamed et al., 2015; Morello et al., 2018). Under a number of 

neuropathological conditions, VD supplementation has shown to have a myriad of 

biological functions including reducing the expression of oxidative stress markers and 

neuro-inflammatory markers and increasing the expression of neurotrophins (Latham et 

al., 2021; Lima et al., 2018; Mohamed et al., 2015; Rodrigues et al., 2019). Based on the 

study reported in chapter 2 that treating 3-NP HD model mice with 500IU/kg/day of VD 

produces significant improvements in movement and motor performance (Fig. 17 and 19). 

The dose of VD was chosen based on prior studies of its neuroprotective, antidepressant, 

and antioxidant effect in rodent model (Gueye et al., 2015; Kolla and Majagi, 2019; 

Mohamed et al., 2015). A study by Rodrigues and colleagues demonstrated that in rodent 

model of sporadic dementia of Alzheimer’s type, 500IU/kg/day of VD was enough to 

reduce oxidative stress markers and restore cholinergic function by decreasing 

acetylcholine esterase activity in synaptosomes (Rodrigues et al., 2019).  

The enhancement in locomotory and rotarod performances of HD mice post 

injected with VD (Group IV; HD + VD) was accompanied with an enhancement in the 

expression of brain derived neurotrophic factor (BDNF), nerve-growth factor (NGF), and 

the VDR (Fig. 22, 23, and 27). Previous studies have found that VD mediates an increase 

in the expression of VDR, tyrosine hydroxylase (TH), the dopamine transporter (DAT), 

and brain derived neurotrophic factors (BDNF) (Nimitphong et al., 2011). VD mediates its 

biological effect via VDR by acting as transcriptional regulator for some important 

neurotrophins in the brain like NGF and BDNF (Bayo-Olugbami et al., 2022; Johri et al., 

2013; Nadimi et al., 2020; Taniura et al., 2006; Zuccato and Cattaneo, 2007). To test some 

of these previously reported targets, semi-quantitative PCR and RT-PCR was carried out 

to explore VD-induced gene expression of neurotrophins in Control and 3-NP treated group 
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of mice. In agreement with earlier literature reports, we found a significantly decreased 

expression of BDNF and NGF in 3-NP injected HD mice, but this profoundly augmented 

in the Group IV mice (HD + VD) with supplementation of VD (500IU/kg) (Fig. 22 and 

23) (Allen et al., 2013; Livak and Schmittgen, 2001; Zuccato and Cattaneo, 2007). 

Numerous studies have highlighted the importance of neurotrophic factors like BDNF and 

NGF as potential therapeutics for neurodegenerative diseases such as AD, PD, and HD 

(Calvello et al., 2017; Lima et al., 2018; Mohamed et al., 2015; Rodrigues et al., 2019). In 

particular, in-vivo and in-vitro findings from Zuccato et al (2001) suggest that restoring 

BDNF production in cortical neurons during HD could restore the survival signal required 

by the dying striatal neurons (Zuccato et al., 2001; Zuccato and Cattaneo, 2007). The same 

study also provided evidence using genetic models of HD that mutant huntingtin 

profoundly diminished the cortical production of BDNF. Further, the work conducted by 

Navarro and team suggests BDNF to be the most effective factor in preventing the loss of 

striatal neurons in HD (Navarro et al., 2000). Our data demonstrate that the gene expression 

of BDNF and NGF was significantly compromised in 3-NP induced HD mice (Group II) 

and was substantially reversed upon VD administration in Group IV mice. This result 

suggests a direct therapeutic benefit of VD in combating 3-NP induced striatal 

neurodegeneration via BDNF and NGF in the striatum (Fig. 22 and 23). NGF and BDNF 

are established candidates for combating the death of neurons observed in a range of 

neurodegenerative disorders (Allen et al., 2013; Gil-Mohapel, 2012; Zuccato et al., 2001). 

VD supplementation possibly enhances the survival signals from neurotrophins to reduce 

neurodegeneration and combat striatal neuronal loss as observed in the rat model of AD 

(Mohamed et al., 2015). These results indicate that VD could alleviate behavior deficits in 

3-NP induced HD mice via enhancement in neurotrophins expression in the striatum. 

The enhancement in the production of neurotrophins like BDNF could act to reduce 

oxidative stress in neurodegenerative diseases including HD (Allen et al., 2013; Paul and 

Snyder, 2019). Oxidative stress markers allow assessment of the status of the biological 

samples where it measures the capacity of the system to scavenge free radicals. To control 

the intracellular redox balance, cells have evolved a highly complex ROS scavenging 

network. Previous studies on the antioxidant role of VD have been controversial as some 

studies did not support an antioxidant function for VD and other studies observed an up-
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regulation of the antioxidant markers (Ahmed et al., 2020; Bayo-Olugbami et al., 2022; 

Lima et al., 2018). To determine whether, in our model, similar pathways are activated we 

checked different antioxidant enzymes marker genes. The glutathione (GSH)-dependent 

enzymatic system is one of most important ROS balancing units that regulates cell survival 

against oxidative damage. GSH contributes to the maintenance of the intracellular redox 

environment either by disulfide-exchange reactions with oxidized proteins or by acting as 

a reducing agent for glutathione peroxidases. Out of seven Glutathione peroxidases of 

mammals, GpX4 is particularly important due to its critical role in determining the cell 

membrane redox state. Increased expression of GpX4 indicates lipid based oxidative stress 

(Tagliaferri et al., 2019). In Group II (HD animals) we found a significant increase in 

expression of GpX4 indicating higher oxidative stress and this was attenuated upon 

supplementation with VD (Group IV, Fig. 25). Catalase is one of the crucial antioxidant 

enzymes that mitigates oxidative stress by destroying cellular hydrogen peroxide to 

produce water and oxygen (Tagliaferri et al., 2019). Supporting the GpX4 expression data 

which indicates higher oxidative stress, HD (Group II) animals showed increased 

expression of catalase, which was again diminished by VD supplementation. This suggests 

that VD supplementation reduces oxidative stress and leading to the subsequent 

downregulation of antioxidant enzymes. We could not find the significant differences in 

SOD1 and SOD2 expression possibly because its activation depends on very specific ROS 

species. 

The antioxidant effect of VD supplementation in HD mice was accompanied by 

enhancement in the protein expression of VDR in the striatum (Fig. 27). Previous studies 

have reported that the biological activity of VD happens via upregulation of VDR in other 

neurodegenerative diseases like AD, PD, stress etc. Therefore, the protein expression of 

VDR was analyzed in Group IV mice (HD + VD) pre-injected with 3-NP. On the 30th day, 

a robust expression of VDR by ~2 fold was observed in HD mice supplemented with VD 

(Fig. 27). HD mice (Group II) showed a significant decrease by ~0.54 fold in the VDR 

expression as compared to Control (Group I). This enhanced VDR expression could help 

in attenuating the toxic effect of 3-NP thereby reducing antioxidant stress markers and 

increasing neurotrophins expression in Group IV mice. The improvement in motor 

performance observed in HD mice could also occur due to increased VDR signaling at the 



123 
 

neuromuscular junction as seen previously (Lima et al., 2018). Previous studies have 

demonstrated that VDR signaling alleviates oxidative stress and increases production of 

neurotrophins like BDNF (Bakhtiari-Dovvombaygi et al., 2021; Nadimi et al., 2020). It is 

likely that in our study, the rescue effect of VD observed in behavior tasks involves the 

VD-VDR signal transduction pathway, potentiating survival signals via neurotrophins and 

decreasing oxidative stress, which in turn downregulates antioxidant stress markers 

(Fig.22, 23, 25 and 26). It is known that VDR signaling is vital for mitochondrial integrity, 

combats ER stress and strengthens skeletal muscle activity at neuromuscular junction 

(Bakhtiari-Dovvombaygi et al., 2021; Maity et al., 2022). In summary, our data suggests 

that VD mediates a neuroprotective effect in the striatum via enhancement in the expression 

of VDR and vital neurotrophins, like BDNF and NGF, crucial for survival signals in HD.
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Unprecedented effect of Vitamin D3 

on T-cell receptor beta subunit and 

alpha7 nicotinic acetylcholine 

receptor expression in 3-

nitropropionic acid induced mouse 

model of Huntington’s disease 
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4.1. Introduction: 

One of the breakthroughs in the field of immune-neuronal interaction came 35 years 

ago when neuroscientists discovered the neuronal role of cytokine, interleukin-1 (IL-1) in 

the modulation of neurotransmitters release and explored its contribution toward immune-

brain interaction (Kabiersch et al., 1988; Spadaro and Dunn, 1990). Thereafter, rapid 

advances were made in discovering the expression of immune molecules and receptors in 

the brain originally thought to be expressed only in the immune system. Immune proteins 

like major histocompatibility complex – I (MHC-I), β2 microglobulin (a co-subunit of 

MHC-I), and its potential binding partner CD3ζ (a protein complexed to receptors for 

MHC-I) were found to be expressed in neurons (Baudouin et al., 2008; Shatz, 2009; Komal 

et al., 2022). In addition to MHC-I, a study undertaken by Komal et al., 2014 reflected a 

possible effect of T-cell receptor activation (TCR) on α7 nicotinic acetylcholine receptor 

expression and function in the murine cortex. However, how immune resident protein, T-

cell receptor beta subunit (TCR-β) expression in the central nervous system gets modulated 

under a neuropathological condition like those observed in Huntington’s disease (HD) 

remains unexplored. 

HD is a progressive, fatal, neurodegenerative disorder characterized by neuronal 

loss predominantly in the striatum, followed by the cortical region of the brain (Gil and 

Rego, 2008). Neuronal death results in motor, cognitive and working memory impairments 

typically associated with the disease pathology (Gil and Rego, 2008). Some of the 

neurotoxic conditions responsible for neuronal loss in the striatum and the cortex as seen 

in HD include enhanced neuroinflammation, increased oxidative stress, decreased 

neurotrophins production, and mitochondrial dysfunction (Cherubini et al., 2020; Maity et 

al., 2022; Rekatsina et al., 2020; Zuccato and Cattaneo, 2007). 3-NP induction in mice 

causes selective neuronal degeneration in the caudate and putamen of basal ganglia 

circuitry and recapitulates a wide range of neuropathological symptoms of HD (Brouillet, 

2014). 3-NP is an irreversible inhibitor of succinate dehydrogenase and is a well-known 

toxin-induced model of HD (Kim et al., 2003). 3-NP injections in rodents have also been 

shown to cause neuroinflammation and neurochemical alteration due to increased oxidative 

stress (Ahuja et al., 2008). In this regard, an antioxidant effect of Vitamin D3 (VD; 
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cholecalciferol) at a dose of 500IU/kg/day was recently shown to significantly rescue 

motor dysfunction in a 3-NP-induced mouse model of HD (Manjari et al., 2022). VD 

administration also caused an enhancement in the gene expression of neurotrophins like 

nerve-growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in the striatum 

(Manjari et al., 2022).  

There are shreds of evidence that VD mediates its biological effect by binding with 

the VDR and combats neuronal loss across a range of neuropsychiatric illnesses (AlJohri 

et al., 2019; Bakhtiari-Dovvombaygi et al., 2021; Buell and Dawson-Hughes, 2008; 

Chabas et al., 2013; Nimitphong and Holick, 2011; Rodrigues et al., 2019). Nonetheless, 

under such neuropathological conditions, as observed across a multitude of neurological 

disorders like AD, PD, Schizophrenia, and HD, impairment in cholinergic 

neurotransmissions are also discovered where specific activation of α7 nicotinic 

acetylcholine receptors (α7 nAChRs) have been shown to exhibit neuroprotective benefits 

(Caton et al., 2020; Egea et al., 2015; El Nebrisi et al., 2020; Foucault - Fruchard et al., 

2017; Foucault-Fruchard et al., 2018; Hoskin et al., 2019; Marder, 2016; Quik et al., 2015; 

Tata et al., 2014; Zhao et al., 2021). However, the impact of VD supplementation on the 

neuronal gene expression of TCR-β subunit receptor and α7 nAChRs in HD remains 

largely unexplored. Also, 3-NP mediated increase in oxidative stress and its effect on 

acetylcholinesterase (AChE) activity in HD remains to be elucidated. 

In the present study, we show that VD administration in HD mice preinjected with 

3-NP significantly decreases the gene expression of TCR-β immune receptor and 

antioxidants like catalase (Cat), and glutathione peroxidase (GpX4) together with a 

concomitant reduction in the acetylcholinesterase activity in the cortex and striatal brain 

regions. No significant difference was observed between Group I (control mice) and Group 

III (mice supplemented only with VD), further supporting the present hypothesis that VD 

neuroprotective benefits were observed only when neurons were subjected to 

neurodegeneration on 3-NP administration. Overall in the present work, we primarily show 

an anticholinesterase activity of VD and its positive effect on α7 nicotinic acetylcholine 

receptor mRNA and protein expression together with a detrimental effect on the gene 

expression of the TCR-β subunit in HD. 
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4.2. Materials and methods: 

4.2.1. Animal Procurement: 

Ten to twelve weeks old male C57BL/6 mice (average weight; 26 ± 3 g) were 

acquired from Sainath Agencies, Hyderabad, India. Animals were group-housed (2 mice 

per cage) with ad libitum access to food and water. They were kept in a 12 h light/12 h 

dark cycle at 25±2 °C. All the animal experiments were carried out with the approval of 

the institutional animal ethics committee (IAEC), BITS - Pilani, Hyderabad 

(BITS/Hyd/IAEC/2019/10, BITS/Hyd/IAEC/2020/20). All efforts were made to minimize 

the number of animals used and their suffering. 

4.2.2. Study design: 

All the animals were acclimatized for two weeks and were then randomly divided 

into 4 experimental groups (Group I to Group IV). Intraperitoneal injections (i.p) of 3-

nitropropionic acid (3-NP) and/or VD were given as described previously (Manjari et al., 

2022). Briefly, 3-NP was given thrice at a dose of 25 mg/kg, every 12 h, for a total 

cumulative dose of 75 mg/kg.  Intraperitoneal injections (i.p) of VD were undertaken at a 

dose of 500IU/kg/day from day 1 to day 15 (Manjari et al., 2022). 

4.2.3. Experimental design: 

The mice were randomly divided into four experimental groups for biochemical 

assays (Table 5). 

i. Group I:  Control group mice (C57BL/6) injected with 1X saline. 

ii. Group II: 3-NP induced mice by i.p. injection (3-NP; 75 mg/kg) without VD-

treatment (HD). 

iii. Group III:  Mice injected solely with 500IU/kg/day of VD for 15 days. 

iv. Group IV: Post-intraperitoneal injection of 500IU/kg/day of VD to 3-NP (75 

mg/kg) pre-injected mice for 15 days (HD + VD). 
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4.2.4. Drugs and reagents: 

4.2.4.1 Cholecalciferol:  

Cholecalciferol (Vitamin D3; VD) was purchased from Sigma-Aldrich, India (Cat 

No: C9756) and dissolved in 1% ethanol (diluted with sterile saline) on the day of injection 

(Mohamed et al., 2015). Mice were administered with 500IU/kg (12.5μg/kg/day) i.p. of 

VD as reported in chapter 2. VD administration was undertaken in Group III mice (only 

VD) and Group IV mice (HD+VD). 

4.2.4.2. 3-Nitropropionic acid:  

3-nitropropionic acid (3-NP) was purchased from Sigma-Aldrich, India (Cat No: 

N22908). Stock solutions of 3-NP (3 mg/ml) were prepared in 0.1M phosphate-buffered 

saline solution and were injected intraperitoneally at 25 mg/kg (3-NP; a cumulative dose 

of 75 mg/kg) thrice at 12 h intervals to respective groups of mice as described in chapter 2. 

Controls were treated with three doses of 1X saline at 12 h intervals. 

4.2.5. RNA isolation and cDNA synthesis: 

On the 30th day, mice from all four groups (i.e Group I to Group IV) were 

anesthetized using isoflurane (Rx, NoB506) and immediately decapitated for the extraction 

of cortical and striatal brain tissue samples. The respective brain tissue sample was placed 

into 1 ml of RNAiso PLUS (Takara Bio), sonicated on ice, and centrifuged after the 

addition of 200μl of chloroform for 30 minutes at 12,000g at 4°C (Eppendorf Refrigerated 

centrifuge, 542R). The isolation of the aqueous phase was followed by the addition of an 

equal volume of isopropanol (Hi-Media Laboratories, Molecular biology grade, India), 

followed by overnight incubation at -20°C. Sample washing was preceded with 

centrifugation at 12,000 g for 30 minutes at 4°C, followed by washing with 70% ice-cold 

ethanol. The obtained pellet was resuspended in nuclease-free water. DNase-treated 

samples (EN052, Thermo ScientificTM, USA) were made up to 400μl using nuclease-free 

water, followed by sample purification using 1/10th volume of 3M sodium acetate and 2X 

volume of phenol: chloroform: isoamyl alcohol (Sisco Research Laboratories Pvt. Ltd., 

India) and centrifuged for 2 minutes at maximum speed at 4°C. The total concentration of 

purified RNA was estimated by the Nanodrop spectrophotometer (Nanodrop, Thermo 
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Fisher Scientific, USA).  An equal amount of RNA from each group was used to reverse 

transcribe complementary DNA (cDNA) with the help of the Verso cDNA synthesis kit 

(Cat No: AB1453A, Thermo ScientificTM, USA) as per the manufacturer's instruction.  

Briefly, 500 ng of purified RNA was taken from each group for cDNA synthesis with the 

following reaction conditions: 42°C for 1 h followed by 95°C for 2 minutes. The obtained 

cDNA was used for real-time polymerase chain reaction (RT-PCR). The expression of 

targeted genes was normalized to 18S RNA. All primers are listed in Table 7. 

4.2.6. Analysis of gene expression for T-cell receptor alpha, T-cell receptor 

beta, tumor necrosis factor-alpha, interleukin 6, alpha7 nicotinic acetylcholine 

receptor, nuclear factor-kappa B and antioxidants by Real-time PCR: 

The sequences of the immune receptor, TCR-alpha (TCR-α), TCR-beta (TCR-β), 

α7 nicotinic acetylcholine receptor (α7 nAChRs), nuclear factor-kappa B (NF-κB), pro-

inflammatory cytokines (tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6)) and 

antioxidant marker genes (catalase (Cat) and glutathione peroxidase 4 (GpX4)) of the 

mouse genome were obtained from NCBI. The sequences were deposited in the IDT primer 

quest tool to get the most suitable primer for gene analysis. For antioxidant marker genes, 

catalases (Cat) and glutathione peroxidase 4 (GpX4) expression was undertaken in the 

study. All the genes, primer sequences, and amplicon sizes are listed in Table 1. The gene 

expression among the four groups of mice was assessed by RT-PCR in a CFX96 Touch 

Real-time PCR system (BioRad) using the GoTaq qPCR SYBR master mix (Cat No 

#A6001, Promega Corporation). The reaction mixture was prepared according to the 

manufacturer’s protocol using ~12 ng of the cDNA template. Relative gene expression was 

quantified using the ΔCT method with respective primers (Table 7) and normalized to 18s 

(forward 5'-ACGGAAGGGCACCACCAGGA-3'; reverse 5'-

CACCACCACCCACGGAATCG-3'). We used the ∆∆CT method to determine the fold 

changes in the expression of TCR-β, α7 nAChRs, and oxidative stress markers (Livak and 

Schmittgen, 2001). Briefly, the threshold cycle (Ct) was extracted using Bio-Rad CFX 

Manager 3.1 software, and relative gene expression was calculated as represented in 

chapter 3. 

https://elifesciences.org/articles/39054#bib75
https://elifesciences.org/articles/39054#bib75
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Table 7. List of primers used in real time PCR studies to analyze the mRNA 

expression of different genes 

Gene Orientation Sequence of primers (5’ to 3’) Amplicon 

size 

18s Forward ACGGAAGGGCACCACCAGGA 127 

 
Reverse CACCACCACCCACGGAATCG 

TCR-α Forward CAAGTGACCCTTTCAGAAGATGA 
106 

 Reverse GTGGACCTTGTCCAGGATATTG 

TCR- β  Forward GTGAATGGCAAGGAGGTCCA 

111 
 Reverse CCAGAAGGTAGCAGAGACCC 

GPx4 Forward GCCCAATACCACAACAGTAGA 108 

 
Reverse CCTGAACCACAGCGATGAA 

Cat Forward AATTGCCTCCACACCTTCAC 107 

  
  Reverse TCACCAAGCTGCTCATCAAC 

α7 nAChRs Forward GTACAAGGAGCTGGTCAAGAA 

94 
 Reverse CAGGAGACTCAGGGAGAAGTA 

TNF-α Forward CTACCTTGTTGCCTCCTCTTT 

116 
 Reverse GAGCAGAGGTTCAGTGATGTAG 

IL6 Forward GGGATGTCTGTAGCTCATTCTG 101 

 Reverse AACTGGATGGAAGTCTCTTGC  

NF-κB Forward GGAACAGGTGGGATGTTGCT 187 

 Reverse GACTAAACTCCCCCTGATTCTGAAG  
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4.2.7. Acetylcholinesterase activity assay: 

The acetylcholinesterase (AChE) activity was assayed using Amplex® Red 

Acetylcholine/Acetylcholinesterase Kit (A-12217; Invitrogen) essentially following 

instructions as directed by the manufacturer. In the assay, AChE activity was assessed 

indirectly with the help of Amplex Red reagent, a highly sensitive dye for horseradish 

peroxidase (HRP). In the initial step, AChE transforms acetylcholine into choline and acts 

as a substrate for the choline oxidase enzyme that converts choline to betaine and H2O2. 

Following this step, H2O2 reacted at a ratio of 1:1 with Amplex red to produce the 

fluorescent product resorufin, which in turn was measured using a fluorescent plate reader 

(Spiromax, USA). To analyze AChE activity, the reaction was initiated using a 100μL 

working solution (50 μM acetylcholine, 200μM Amplex Red reagent, 0.1 U/mL choline 

oxidase, and 1 U/mL horseradish peroxidase [HRP]) which was added to 100 µl of lysate 

of the brain tissue sample from each respective group of mice. After 30 minutes of 

incubation at room temperature, the fluorescence intensity was measured at 590 nm 

emission wavelengths when excited at 560nm. The enzyme activity was calculated using 

AChE standard curve and data is represented as mU/mg protein after subtraction of the 

background fluorescent value for each sample fluorescent value. 

4.2.8. Protein expression analysis of alpha7 nicotinic acetylcholine receptor by 

western blotting: 

On the 30th day, cortical and striatal brain tissue was extracted from all four groups 

of mice. The tissue was homogenized in the lysis buffer (150 mM sodium chloride, 1.0% 

TritonX-100, 0.5% sodium dodecyl sulfate, and 50 mM Tris, pH 8.0). The protein 

concentration was determined using a Bradford protein assay kit (Bio-Rad, USA). We 

loaded equal amounts of protein (50 μg) run in a 12% gel, and then transferred to PVDF 

(Pall Corporation) membrane through a trans blot wet transfer system (Bio-Rad). The 

membrane was blocked using 5% BSA and incubated with respective primary and 

secondary antibodies for α7 nAChRs mouse mAb (CHRNA7, 1:500, #MA5-31691, 

Thermo Fischer); Anti-mouse IgG-HRP-linked antibody (1:5000, AB_10015289, Jackson 

ImmunoResearch Laboratories). Membranes stained with ponceau (ML045, Himedia) 

were used as a control for normalization. The signal intensities of the bands were captured 
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using the fusion pulse gel documentation system (Eppendorf, USA). ImageJ software was 

used to quantify the band intensities. 

4.2.9. Statistical analysis: 

Experimental data are represented as normalized values w.r.t to control. Data in the 

figures are represented by bar plots with mean data and standard error. to illustrate the 

distribution of normalized values for each respective group of mice (Group I to Group IV). 

Group data in the text are presented as mean ± standard error of the mean (SEM). Statistical 

analysis was conducted using one-way ANOVA followed by either post hoc multiple 

pairwise analysis using Tukey's HSD tests or paired sample t-test.  p < 0.05 was set as 

threshold of significance (*p < 0.05, **p < 0.005, and ***p < 0.001). Statistical analysis of 

all data was performed using Origin 8.1. 

4.3. Results: 

4.3.1. VD supplementation decreases T cell receptor beta subunit expression in 

the cortex and striatum of HD mice: 

To explore the chronic effect of VD on the immune receptor, T cell receptor beta 

(TCR-β) subunit mRNA expression, RT-PCR was performed on the cortical and striatal 

brain tissue samples extracted on the 30th day from all four groups of mice (Group I-Group 

IV). We found an overall significant change in TCR- β expression among all four groups 

of mice (p = 0.004; one-way ANOVA). HD mice (Group II) injected with a cumulative 

dose of 75mg/kg of 3-NP showed profound enhancement ~ 2-fold in the gene expression 

of the TCR-β subunit in the cortex when compared to that of control mice (Group II vs 

Group I; 3.16 ± 0.32 vs 1.00 ± 0.00, n = 6, p = 0.009, paired sample t-test; Fig. 28A). On 

the 30th day, post administration of 500IU/kg of VD in HD mice significantly subsided the 

gene expression of the immune receptor, TCR-β subunit in comparison to HD mice 

preinjected with only 3-NP (Group IV vs Group II; 1.06 ± 0.15 vs 3.16 ± 0.32, n = 6, p = 

0.02, paired sample t-test; Fig. 28A). 

Similarly, a comparable trend of the VD effect was observed from the striatal brain 

tissue samples of all four groups of mice (p < 0.001, one-way ANOVA). The expression 

of TCR-β in HD mice was upregulated by ~3-fold (3-NP) when compared to the control 
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(Group II vs Group I; 4.02 ± 0.52 vs 1.00 ± 0.00, n = 10, p = 0.005, paired sample t-test, 

Fig. 28B). VD supplementation significantly decreased the expression of TCR-β in the 

striatum of 3-NP injected mice (HD + VD) as compared with HD mice (Group IV vs Group 

II; 1.08 ± 0.07 vs 4.02 ± 0.52, n = 10, p = 0.008, paired sample t-test, Fig. 28B). Overall, 

these data represent that VD modulates the gene expression of the immune receptor, TCR-

β under neuropathological conditions induced by 3-NP. 

There is no significant effect of VD on  the mRNA expression of  TCR-α in both 

cortex (Group II vs Group I; 1.11 ± 0.12 vs 1.00 ± 0.00, n = 6, p = 0.4; Group IV vs Group 

II; 1.15 ± 0.12 vs 1.11 ± 0.12, n = 6, p = 0.86, paired sample t-test, Fig. 28C) and striatum 

(Group II vs Group I; 1.11 ± 0.08 vs 1.00 ± 0.00, n = 6, p = 0.005; Group IV vs Group II; 

1.10 ± 0.12 vs 1.11 ± 0.08, n = 10, p = 0.008, paired sample t-test, Fig. 28D). 
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A.          TCR-α (Cortex)                     B.           TCR-β (Cortex) 

          
                    C.         TCR-α (Striatum)                  D.       TCR-β (Striatum) 

           
Fig.28. VD intake decreases the gene expression of the TCR-α and TCR-β subunit in 

the cortex and striatum of HD mice. (A) RT-PCR results didnot showed any significant 

in the cortical gene expression of the TCR-α among all four groups of mice (p=0.57, one-

way ANOVA) (B) RT-PCR results demonstrated a significant increase in the cortical gene 

expression of the TCR-β subunit in Group II mice (HD vs control; n = 6, p = 0.009, paired 

sample t-test). VD administration to Group IV mice post-3-NP injection rescued the mRNA 

expression of the TCR-β subunit in the cortex of HD mice (HD + VD vs HD; n = 6, p = 

0.02, paired sample t-test). (C) RT-PCR results didnot showed any significant in the striatal 

gene expression of the TCR-α among all four groups of mice (p=0.72, one-way ANOVA) 

(D) RT-PCR results depicting VD administration decreased the mRNA expression of the 

TCR-β subunit in the striatum of 3-NP-induced HD mice (HD + VD vs HD; n = 10, p = 

0.008, paired sample t-test). TCR-β subunit expression was significantly upregulated in 

Group II as compared to Group I mice (HD vs control; n = 10, p = 0.005, paired sample t-

test). 
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4.3.2. VD supplementation rescues the protein and mRNA expression of α7 

nicotinic acetylcholine receptors in the cortex and striatum of HD mice: 

The effect of VD supplementation on the protein expression of the α7 nicotinic 

acetylcholine receptor (α7 nAChRs) in the cortex was elucidated by western blot analysis. 

3-NP mediated neurodegeneration caused a significant decrease in the α7 nAChRs protein 

expression in HD mice (Group II) as compared to the control (Group II vs Group I, 0.24 ± 

0.08 vs 1.00 ± 0.00, n = 4, p < 0.001, paired sample t-test, Fig. 29A). VD supplementation 

rescued this effect as Group IV mice (HD + VD) showed an enhancement in the protein 

expression of α7 nAChRs as compared to Group II (HD) mice (1.13 ± 0.07 vs 0.24 ± 0.08, 

n = 4; p < 0.001, paired sample t-test, Fig. 29A and C). Real-time PCR analysis conducted 

on the striatal sample also showed a dramatic decrease in the mRNA expression of α7 

nAChRs in HD mice which got rescued on VD administration (Group II vs Group IV 0.44 

± 0.01 vs 0.88 ± 0.10, n = 6, p = 0.02, paired sample t-test, Fig. 29B). α7 nAChRs mRNA 

expression got subsided in HD mice when compared to control mice (Group II vs Group I 

0.44 ± 0.01 vs 1.00 ± 0.00, n = 6, p < 0.001, paired sample t-test, Fig. 29B). These results 

indicate that an increase in the gene expression of TCR-β (Fig. 28) was somehow causing 

a negative regulation of α7 nAChRs expression in HD and validates our previous finding 

where we showed that the entire octameric component of activated TCR downregulated 

the expression and function of the α7 nicotinic acetylcholine receptors (Komal et al., 2014). 

Here we show that neurotoxic conditions mimicked by 3-NP cause an increase in the gene 

expression of native immune proteins like TCR-β with concomitant downregulation in 

protein and mRNA expression of α7 nAChRs in the central nervous system. 
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A.            Cortex                             B.               Striatum 

   
                                          C. 

                                           
 

Fig.29. Effect of VD supplementation on the protein and gene expression of α7 

nicotinic acetylcholine receptors (α7 nAChRs) in the cortex and striatum of HD mice. 

(A) On the 30th day, an overall change in the protein expression of α7 nAChRs was 

observed in cortical tissue samples from all the four groups of mice (n = 4, p < 0.001, one-

way ANOVA). VD supplementation rescued the cortical expression of α7 nAChRs in 

Group IV mice (HD + VD) as compared to Group II (HD) mice (n = 4, p < 0.001, paired 

sample t-test). (B) A significant increase in the mRNA expression of α7 nAChRs was also 

observed in the striatal samples of 3-NP-induced HD mice (Group IV) on VD 

administration (HD + VD vs HD, n = 6, p = 0.02, paired sample t-test). The mRNA 

expression of α7 nAChRs got significantly decreased in Group II mice when compared 

with Group I mice (HD vs control; n = 6, p < 0.001, paired sample t-test). (C) 

Representative blot for protein expression of α7 nAChRs from the cortical tissues. 
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4.3.3. VD administration alleviates acetylcholinesterase levels in the cortex and 

striatum of HD mice: 

To analyze the effect of VD on cholinergic neurotransmission, acetylcholinesterase 

(AChE) activity assay was performed on the cortical and striatal tissue samples from the 

respective four groups of mice. HD mice induced with 3-NP (75mg/kg) showed a 

significant rise in the AChE activity when compared with control mice (Group II vs Group 

I, 748 ± 70 mU/mg vs 417 ± 26 mU/mg, n = 6, p < 0.001, paired sample t-test, Fig. 30A), 

indicating the detrimental effect of 3-NP on cholinergic neurotransmission in the cortex. 

However, VD administration attenuated the effect of 3-NP and decreased the cortical 

AChE activity in HD mice (Group IV vs Group II; 502 ± 33 mU/mg vs 748 ± 70 mU/mg, 

n = 6, p = 0.002; paired sample t-test, Fig. 30A). A similar increase in AChE activity was 

also observed in the striatum of HD mice (Group II vs Group I, 49 ± 4 mU/mg vs 29 ± 3 

mU/mg, n = 8, p < 0.001, paired sample t-test, Fig. 30B). On the 30th day, VD 

administration significantly attenuated the AChE activity in 3-NP- induced mice (HD + 

VD) when compared with HD mice group (Group IV vs Group II, 29 ± 3 mU/mg vs 49 ± 

4 mU/mg, n =8, p < 0.001, paired sample t-test, Fig. 30B). These results indicate an anti-

cholinesterase effect of VD in HD. The results of this study are in accordance with the 

previous findings where VD attenuated the AChE activity in the cerebral cortex of diabetic 

rats (Rodrigues et al., 2019). Thus, VD supplementation can rescue deficits in cholinergic 

neurotransmission by decreasing AChE activity and restoring acetylcholine (ACh) levels 

in HD. 
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A.                 Cortex                            B.               Striatum 

 
Fig. 30. Effect of VD supplementation on the enzymatic activity of acetylcholine 

esterase (AChE) in the cortex and striatum of HD mice (A) On the 30th day, a notable 

change in the activity of AChE was observed in the cortex of all four groups of mice (n = 

6, p < 0.001, one-way ANOVA). VD induction significantly combated the activity of 

AChE in Group IV mice as compared to Group II (HD + VD vs HD; n = 6, p = 0.002, 

paired sample t-test). (B) A significant decrease in the activity of AChE was also observed 

in the striatal brain tissue samples of Group IV mice, supplemented with VD (HD + VD vs 

HD, n = 8, p < 0.001, paired sample t-test). 

4.3.4. An Anti-inflammatory and anti-apoptotic effect of VD supplementation 

in HD mice: 

A significant enhancement in the levels of pro-inflammatory cytokines like tumor 

necrosis factor-α (TNF-α) and interleukin 6 (IL-6) is known to precede striatal 

neurodegeneration in HD (Chambon et al., 2023; Jia et al., 2022). To validate if 3-NP 

induction causes neuroinflammation in the striatum, we recorded the gene expression of 

vital neuroinflammatory markers like nuclear factor-kappa B (NF-κB) and 

proinflammatory cytokines like TNF-α and IL-6 from the striatal and cortical brain tissue 

samples from all the four groups of mice. HD mice injected with 3-NP showed a profound 

enhancement in the gene expression of NF-κB as compared to the control mice (Group II 

vs Group I; 7.42 ± 0.25 vs 1.00 ± 0.00, n = 4, p < 0.001, paired sample t-test, Fig. 31A). 

The mRNA levels of TNF-α (Group II vs Group I; 1.64 ± 0.06 vs 1.00 ± 0.00, n = 4, p = 

0.005, paired sample t-test, Fig. 31B) and IL-6 in the striatum were also elevated on 3-NP 

induction (Group II vs Group I; 3.89 ± 0.50 vs 1.00 ± 0.00; n = 4, p = 0.02, paired sample 

t-test, Fig. 31C). Upon VD administration, the mRNA expression of NF-κB significantly 

subsided in HD mice (Group IV vs Group II; 0.57 ± 0.04 vs 7.42 ± 0.25, n = 4, p < 0.001, 
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paired sample t-test, Fig. 31A). VD intake by HD mice also showed a profound decrease 

in the mRNA expression of TNF-α (Group IV vs Group II; 1.04 ± 0.07 vs 1.64 ± 0.06, n = 

4, p = 0.02, paired sample t-test, Fig. 31B) and IL-6 (Group IV vs Group II; 1.08 ± 0.13 vs 

3.89 ± 0.50, n = 4, p = 0.01, paired sample t-test, Fig. 31C), reflecting its anti-inflammatory 

action. 

A similar antagonistic effect of VD on inflammatory cytokines gene expression was 

observed in the cortex of HD mice. An increase in the cortical mRNA expression of TNF-

α got substantially decreased in 3-NP-induced HD mice treated with VD (Group II vs 

Group I; 1.50 ± 0.07 vs 1.00 ± 0.00, n = 4, p = 0.01; Group IV vs Group II; 0.77 ± 0.03 vs 

1.50 ± 0.07, n = 4, p = 0.002, paired sample t-test, Fig. 31D). Similarly, VD 

supplementation significantly decreased the mRNA expression of IL-6 in HD mice (Group 

IV vs Group II; 1.08 ± 0.07 vs 1.73 ± 0.14, n = 4, p = 0.01, paired sample t-test, Fig. 31E). 

Altogether, our data validate previous findings where HD pathogenesis was found to be 

associated with an aberrant NF-κB pathway activation (Khoshnan et al., 2004; Soylu-

Kucharz et al., 2022). 
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A.    TNF-α (Striatum)         B.         IL-6 (Striatum)          C.    NF-κB (Striatum) 

 
                           D.       TNF-α (Cortex)            E.         IL-6 (Cortex) 

 
Fig.31. An Anti-inflammatory effect of 500IU/kg of VD in the striatum and cortex of 

3-NP-induced HD mice. (A) Group IV mice administered with VD showed a significant 

reduction in the striatal gene expression of TNF-α (HD + VD vs HD, n = 4, p = 0.02, paired 

sample t-test) which got elevated in Group II mice injected with 75mg/kg of 3-NP (HD vs 

control, n = 4, p = 0.005, paired sample t-test). (B) An increased mRNA expression of 

another inflammatory cytokine, interleukin 6 (IL-6) was observed in the striatum of Group 

II mice (HD vs control, n = 4, p = 0.02, paired sample t-test) and was decreased in Group 

IV mice administered with VD (HD + VD vs HD, n = 4, p = 0.01, paired sample t-test. (C) 

mRNA expression of nuclear factor kappa B (NF-κB) was significantly increased in Group 

II mice (HD vs control, n = 4, p < 0.001, paired sample t-test) which got combated on VD 

supplementation (HD + VD vs HD, n = 4, p < 0.001, paired sample t-test). (D) A similar 

increase in the mRNA expression of tumor necrosis factor-α (TNF-α) was observed in the 

cortical brain tissue samples of Group II mice injected with 3-NP (HD vs control, n = 4, p 

= 0.01, paired sample t-test). The post-supplementation of VD for 15 days significantly 

attenuated the gene expression of TNF-α (HD + VD vs HD, n = 4, p = 0.002, paired sample 

t-test) and (E) interleukin 6 (IL-6) in the cortex of Group II mice (HD + VD vs HD, n = 4, 

p = 0.01, paired sample t-test). IL-6 gene expression was observed to be highly elevated in 

Group II mice on 3-NP injection (HD vs control, n = 4, p = 0.03, paired sample t-test). 
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4.3.5. VD administration in HD mice decreases oxidative stress as reflected by 

a reduction in key antioxidants gene marker expression in the cortex: 

To observe the effect of VD supplementation on the gene expressions of antioxidant 

markers, we performed RT-PCR in all four groups of mice (Group I to Group IV). mRNA 

expressions of glutathione peroxidase 4 (GpX4), and catalase (Cat) were subsequently 

analyzed in the cortical brain samples. 

4.3.5.1. Anti-oxidant effect of VD on the gene expression of glutathione 

peroxidase 4 in the cortex of HD mice: 

On the 30th day after 3-NP-induction in HD mice, an overall change in the gene 

expression of GpX4 in the cortical tissues was observed (n = 6, p < 0.001, one-way 

ANOVA, Fig. 32). RT-PCR results of GpX4 revealed that 3-NP treatment elevated the 

gene expression of GpX4 in the murine cortex of HD mice as compared with control mice 

(Group II vs Group I; 2.83 ± 0.08 vs 1.00 ± 0.00, n = 6, p < 0.001, paired sample t-test, 

Fig. 32). mRNA expression of GpX4 in Group IV mice (HD + VD) got significantly 

decreased on VD administration as compared to the HD mice (Group IV vs Group II; 1.31 

± 0.14 vs 2.83 ± 0.08, n = 6, p < 0.001, paired sample t-test, Fig. 32). 

 

Fig. 32. VD administration rescues the gene expression of GpX4 in the cortex of HD 

mice. mRNA expression of glutathione peroxidase 4 (GpX4) was increased in Group II 

mice (HD vs control, n = 6, p < 0.001, paired sample t-test), which subsided on VD 

supplementation (HD + VD vs HD, n = 6, p < 0.001, paired sample t-test). 
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4.3.5.2. Effect of VD on the gene expression of catalase in the cortex of HD mice: 

The effect of VD supplementation showed a remarkable change in the gene 

expression of catalase (Cat) among all four groups of mice in cortical samples (n = 8, p = 

0.004, one-way ANOVA, Fig. 33).  Cat mRNA expression was elevated in HD mice when 

compared with control mice (Group II vs Group I; 2.74 ± 0.33 vs 1.00 ± 0.00, n = 8, p = 

0.008, paired sample t-test, Fig. 33). VD administration in HD mice combated the gene 

expression of catalases in the cortical samples of Group IV mice as compared with Group 

II mice (HD + VD vs HD; 1.29 ± 0.16 vs 2.74 ± 0.33, n = 8, p = 0.003, paired sample t-

test, Fig. 33). 

 

Fig. 33. VD administration rescues the gene expression of catalase in the cortex HD 

mice. The mRNA expression of catalase (Cat) was also found to be increased in the cortex 

of Group II mice as compared to Group I mice (HD vs control, n = 8, p = 0.008, paired 

sample t-test). The gene expression of Cat got alleviated on VD supplementation in Group 

IV mice reflecting its antioxidant effect (HD + VD vs HD, n = 8, p = 0.003, paired sample 

t-test). 

4.4. Discussion: 

The two primary pathological mechanisms commonly observed across all 

neurodegenerative diseases including HD are increased oxidative stress and 

neuroinflammation (Cherubini et al., 2020; Maity et al., 2022; Pérez-Rodríguez et al., 

2020). Evidence indicates under these neurotoxic conditions there is an enhancement in the 

gene expression of the brain resident immune protein, the major histocompatibility 

complex-I (MHC-I, Wang et al., 2021; Welberg, 2013). Several studies also demonstrate 

that “immune receptors” like major histocompatibility complexes type I (MHC-I), the 
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cluster of differentiation-zeta (CD-3ζ), and leukocyte immunoglobulin-like receptor B2 

(LILRB2) play a key role in neurodegenerative disorders and could be a potential 

therapeutic target for neurological disorders like Alzheimer’s disease (AD) and 

Parkinson’s disease (PD) (Kim et al., 2013; Welberg, 2013). However, the brain's resident 

T-cell receptor beta subunit’s (TCR-β) gene expression modulation in a neurological 

disorder like HD is limited and remains largely unexplored. In this regard, studies have 

confirmed the neuroprotective capacity of VD in combating neuroinflammation, and 

oxidative stress, and restoring cholinergic signaling in different neurodegenerative disease 

models (Calvello et al., 2017; Koduah et al., 2017; Lima et al., 2018; Manjari et al 2022). 

A study by Rodrigues and colleagues specifically showed that VD upregulated VDR 

expression, restored oxidative damage, and decreased acetylcholinesterase (AChE) activity 

in a rodent model of AD. Our recent findings also highlighted the neuroprotective benefits 

of VD on motor dysfunction in 3-NP induced HD mice (Manjari et al., 2022). 

In the present study, we demonstrate that chronic administration of 500IU/kg/day 

of VD (0-15 days) shows a long-lasting neuroprotective and anti-neurotoxic effect by 

decreasing the gene expression of the immune receptor, TCR-β subunit expression in both 

the cortex and striatum of HD mice (Fig. 28B and D). 3-NP administration is known to 

induce HD-like symptoms in rodents with a phenotype similar to the genetically inherited 

human disease (Brouillet, 2014; Brouillet et al., 2005). The striatal medium spiny neurons 

are more susceptible to neurotoxic conditions induced by 3-NP as compared to the cortical 

neurons (Singh et al., 2010). A significant increase in inflammatory mediators such as 

tumor necrosis factor-alpha (TNF-α) is also reported previously to be associated with the 

neurodegenerative effects of 3-NP in the striatum (Ahuja et al., 2008). Under such a 

neurotoxic environment, here we show that there is an increased gene expression of native 

immune proteins in the T-cell receptor- beta (TCR-β) subunit with no change in the gene 

expression of the T-cell receptor-alpha (TCR-α) subunit in the HD mice (Fig. 28A and C). 

We demonstrate that 3-NP-induced increased oxidative stress causes a profound 

enhancement in the gene expression of TCR-β in the murine cortex and striatum which 

gets subsided on VD administration (Fig. 28B and D). We also found that 3-NP mediated 

enhancement in a free radical generation, increased oxidative stress, and an increase in 

TCR-β subunit in HD mice was paralleled with an increase in acetylcholinesterase (AChE) 
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activity in the two brain regions most vulnerable to undergoing neuronal atrophy in HD i.e 

the cortex and the striatum (Fig. 30A and B). AChE is an important regulatory enzyme 

found in cholinergic neurons and its elevation indirectly reflects cholinergic dysfunction 

(Walczak-Nowicka and Herbet, 2021). Cholinergic deficiency and an increase in AChE 

levels have been shown previously to cause memory impairment in the 3-NP-induced rat 

model of HD (Menze et al., 2015). We show that VD administration decreases AChE 

activity in both the cortex and the striatum which also possibly reflects its importance as 

therapeutics to combat neuronal loss observed in this neurodegenerative disease 

(Vattakatuchery and Kurien, 2013; Walczak-Nowicka and Herbet, 2021). Much of the 

therapeutic potential of VD is reflected in the studies performed on AD, where the 

neuroprotective mechanism occurred via VDR signaling (Landel et al.,2016). In our recent 

finding also, we demonstrated that the striatal protein expression of VDR got rescued on 

post-VD supplementation (Manjari et al., 2022). Hence, it is very likely that VD-VDR 

mediated upregulation of neurotrophins like brain-derived neurotrophic factor (BDNF) and 

nerve growth factor (NGF) activates the neuroprotective pathway in HD (Manjari et al., 

2022). 

In the past, T-cell receptor (TCR) activation has been shown to negatively regulate 

the expression and function of α7 nicotinic acetylcholine receptors in the murine frontal 

and prefrontal cortex (Komal et al., 2014). Also, previous studies have demonstrated that 

the α7 cholinergic receptor's activity is modulated via a variety of kinases like Protein 

kinase A (PKA) and Src-family kinases like Lck and Fyn kinase (Komal et al., 2015, 2014; 

Komal and Nashmi, 2015). The α7 nicotinic acetylcholine receptor comes under the family 

of ligand-gated ion channels where these ionotropic receptors are known to contribute 

toward cognition, attention, and working memory function which gets compromised in 

neurological disorders (Dau et al., 2013; Komal et al., 2011; Perutz et al., 1999; Suzuki et 

al., 2006; Vattakatuchery and Kurien, 2013). It is possible that under a neuropathological 

insult like those observed in HD, which is characterized by elevated neuroinflammation, 

apoptotic signals, and oxidative stress, an enhanced gene expression of the TCR- β subunit 

occurs with a concomitant downregulation in alpha 7 nicotinic acetylcholine receptors (α7 

nAChRs) potentiating neuronal loss in the striatum. 
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VD supplementation rescued the protein and mRNA expression of α7 nAChRs and 

also restored the acetylcholine levels with a simultaneous reduction in the immune 

receptor, TCR-β subunit mRNA expression in the cortex, and the striatal brain tissue 

samples (Fig. 28, 29 and 32). In other words, restoration of cholinergic signaling in the 

striatum occurred with a downregulation in the gene expression of key proinflammatory 

cytokines like TNF-α and IL-6 in HD mice (Fig. 31). It is known that elevated levels of 

pro-inflammatory cytokines like TNF-α and NF-κB activity precede striatal 

neurodegeneration (Chambon et al., 2023; Khoshnan et al., 2004; Soylu-Kucharz et al., 

2022). In our study, we show that VD intake by Group IV mice (HD + VD) showed a 

detrimental effect on NF-κB gene expression in the striatum (Fig. 31A). Thus, the anti-

inflammatory and anti-apoptotic effect of VD reflects its neuroprotective benefits as 

observed previously across a wide range of neurogenerative diseases including HD (Buell 

and Dawson-Hughes, 2008; Calvello et al., 2017; Chabas et al., 2008; Lima et al., 2018; 

Manjari et al., 2022; Mohamed et al., 2015; Nimitphong and Holick, 2011; Rodrigues et 

al., 2019). 

VD mediates its biological effect by interacting with the VDR (Landel et al.,2016). 

Hence, it is very likely that VD-VDR interaction mediates an anti-apoptotic signal by 

inhibiting the NF-κB mediated activation of vital pro-inflammatory cytokines gene 

expression and rescues cholinergic signaling deficits by combating AChE activity and 

restoring the expression of α7 nicotinic acetylcholine receptor in the cortex and the 

striatum. It may be argued that early intervention with VD can be proposed to have 

therapeutic benefits over a range of neurological disorders including HD possibly by 

downregulation of T-cell receptor-beta subunit expression (TCR-β) and inhibition of NF-

κB mediated inflammatory cytokine pathway. The enhanced β subunit expression in the 

brain is justifiable in our findings as TCR-α subunit gene expression remained unchanged 

in all four groups of mice (Fig. 28A and C). However, we cannot rule out the possibility 

of invasion of peripheral T-lymphocytes invasion in our 3-NP mouse model of HD which 

also disrupts blood-brain barrier permeability (Kim et al., 2003), A functional anomaly of 

only the TCR-β subunit in neuropathological conditions is hypothesized in this work as 

recently proposed in our previous publication (Komal et al., 2022). It is speculated that 

striatal and cortical synapses may undergo enhanced synaptic pruning in HD via MHC-I 
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and TCR-β interaction under increased oxidative stress and mitochondrial dysfunction, 

which precedes the neurodegenerative processes observed across the plethora of 

neurodegenerative diseases (Komal et al., 2022). 

This novel mechanism of downstream signaling cascade initiated by TCR-β in 

neurons may dictate the selective neurodegeneration of striatal and cortical neurons via 

downstream activation of kinase cascade and substantially abrogate the function and 

expression of nicotinic acetylcholine receptors under a neuropathological insult 

characterized by mitochondrial dysfunction, ER stress, elevation in oxidative stress, ATP 

depletion and increased cytokine storm as observed in HD and other neurological disorders 

(Komal et al., 2022). These statements merit additional research and future experiments 

will shed deeper insights into whether VD can interfere with the aberrant synaptic pruning 

preceding neurodegeneration in HD. 
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Chapter 5 

General Discussion 
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The primary focus of the present study was to explore whether VD mediates a 

protective action on cortical and striatal neurons when subjected to neuropathological 

conditions like those observed in Huntington’s disease (HD).  

5.1. VD delays the progression of neurodegeneration in HD: 

HD is an autosomal dominant neurodegenerative disorder characterized by 

impaired motor co-ordination, cognition, and behaviour (Gil-Mohapel, 2012).  The main 

cause of HD is the unstable expansion of CAG repeats at the end of the Huntingtin (Htt) 

gene, which results in polyglutamate protein aggregates (Gil and Rego, 2008). When these 

aggregates interact with other cellular mechanisms, they cause mitochondrial dysfunction, 

oxidative stress, excitotoxicity, and inflammation (Blumenstock and Dudanova, 2020; Gil 

and Rego, 2008). Due to the increasing incidence of HD, researchers are focusing more 

and more on identifying therapies that can alter the course of HD in order to develop 

effective treatment options. The majority of therapeutic interventions focus on treating 

symptoms of motor, behavioral, and psychiatric disturbances (Ferguson et al., 2022; Mestre 

et al., 2009). A drug that is most commonly used by clinicians to treat HD patients is 

tetrabenazine (TBZ), which works by binding to the vesicular monoamine transporter 

(VAMT2) and depleting monoamines and dopamine from nerve terminals (Frank, 2010; 

Grigoriadis et al., 2017; Kenney et al., 2007). Despite the positive effects of this drug on 

chorea, there are notable side effects, including drowsiness (36.5%), parkinsonism 

(28.5%), depression (15.0%), insomnia (11.0%), nervousness or anxiety (10.3%), akathisia 

(9.5%) (Jankovic and Beach, 1997). 

According to the previous study, we were able to find out that TBZ is a potential 

drug for HD that may be able to reduce the symptoms of HD, particularly chorea, which is 

the most common symptom of HD (Frank, 2010). As of now, it is unknown whether there 

is a possible medication that could delay the process of neurodegeneration in HD. Because 

there is a link between VD deficiency or insufficiency and neuronal atrophy in HD, we can 

propose VD as a therapeutic agent to combat or delay this neurological condition. 
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5.1.1. Intervention of age-related disorders with VD including HD: 

Many of the hallmarks of aging are also seen in the mechanisms involved in the 

pathogenesis of Huntington’s disease (HD; Berridge, 2017; Wilson et al., 2023). The 

activity of all these mechanisms declines with age and the process is more rapid in HD 

patients (Berridge, 2017). Although HD patients have the gene mutation from birth, it takes 

several decades for the mutation to manifest (Nopoulos, 2016). The hallmarks of aging and 

cellular alteration in HD have a striking overlap, therefore delaying biological aging could 

delay the onset or progression of HD symptoms (Berridge, 2017; Machiela et al., 2020). 

Hence, the role of aging in HD needs further investigation, and anti-aging therapies may 

show a beneficial effect on HD. 

5.1.2. VD as a potential therapeutic agent for HD: 

In the last two decades, a positive correlation is discovered between low blood 

serum levels of calcidiol and the risk of development of neurodegenerative diseases such 

as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD, A. 

Lauer et al., 2020; Chai et al., 2019; Chel et al., 2013). In the case of HD, a study by Chel 

and collegues in year 2013 found a significant decrease in the serum levels of calcidiol in 

patients with HD when compared with controls (Chel et al., 2013). A rapid erosion in the 

levels of calcidiol is also documented in AD and PD patients. These neurological disorders 

are also associated with polymorphisms in the VDR which binds to its endogenous ligand, 

VD, and mediates its biological effects. In light of this, it can be speculated that a VD 

deficiency may play a role in the development of neurodegenerative diseases. All of these 

findings suggest that a deficiency or insufficiency of VD may be a risk factor that leads to 

the progression of neurodegeneration with advancing age. In concert with this idea, an 

experimental study carried out in the case of HD reflected an increase in life expectancy in 

a genetic rodent model of HD with 82 CAG repeats (Fort Molnár et al., 2016). In this study, 

however, the exact molecular mechanism that is responsible for the decrease in mortality 

was unknown (Fort Molnár et al., 2016). Our study provides convincing evidence that 

under neurotoxic conditions, VD supplementation can play a neuroprotective role in HD. 

VD administration in such neurological conditions boosts survival signals, combats 

oxidative stress, inflammation, apoptotic cell death, and increases the activity of 
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neurotrophins. It is very likely to propose that VD neuroprotective effect increases the life 

span of medium spiny neurons in the striatum by BDNF, VDR, and α7 nAChRs mediated 

signaling. 

5.2. VD rescues spatial memory and behaviour phenotypes in HD: 

The results from chapter 2 expand our understanding of the role of VD in regulating 

the behaviour and memory of HD mice. There has been significant evidence to prove our 

findings that VD alters behavior in age-related neurological diseases like AD and PD 

(Amende et al., 2005; Doncheva et al., 2022; Lima et al., 2018; Lin et al., 2022; Mohamed 

et al., 2015). The results of this thesis provide using exclusive evidence that 500IU/kg/day 

of VD supplementation can significantly improve locomotion, motor coordination, and 

spatial memory deficits of HD mice, administered with 3-NP) (Manjari et al., 2022). In this 

toxin-induced HD model, we have clearly shown that the 3-NP significantly mimics nearly 

all the hypokinetic symptoms as observed in HD. Our findings need further validation on 

the benefits of VD supplementation in a genetic model of HD. 

5.3. VD administration upregulates VDR expression in HD: 

In chapter 3 of this thesis, the protective role of VD was determined that the 

upregulation of VDR which in turn enhanced the expression of neurotrophins like brain-

derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the striatum and 

cortex of HD mice. The upregulation in the gene expression of BDNF and NGF boosts 

striatal neuronal survival. It is very likely to occur by activating the TrkB and TrkA 

receptors respectively (Wang et al., 2022). TrkB activation occurs via transphosphorylation 

of the src homolog domain (SH2) and phosphorylation of PLCγ and PI3K which further 

activated MAPK/ERK signaling. It is found that activation of MAPK signaling support 

neuronal survival, function, and synaptic plasticity as shown in the Fig. 34. 
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Fig. 34. Overview of BDNF signaling through TrkB receptors. Upon binding to BDNF, 

the receptor tyrosine kinase TrkB becomes phosphorylated. Phosphorylation at various 

sites leads to activation of downstream pathways. The PI3K pathway activates protein 

kinase B (AKT), leading to cell survival. The MEK and ERK pathway leads to cell growth 

and differentiation. The PLC pathway activates inositol trisphosphate (IP3) receptor to 

release intracellular calcium stores leading to enhanced calmodulin kinase (CamK) 

activity, leading to synaptic plasticity. (Image source: Gali et al., 2014) 

Similarly, NGF upregulation causes phosphorylation of TrkA receptors which 

eventually can lead to the downstream activation of Akt and ERK1/2 pathways. This in 

turn can rescue striatal neurons from undergoing apoptosis on VD administration (Romon 

et al., 2010) as shown in Fig. 35. 
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Fig.35. Interactions of NGF with TrkA lead to the activation of major intracellular 

signaling pathways. NGF binding to TrkA receptor leads to dimerization and 

autophosphorylation. The linker Shc binds to phospho-Y490 on Trk and to a Grb2-SOS 

complex. SOS is a nucleotide exchange factor that activates Ras by replacing GDP with 

GTP. Activated Ras interacts directly with the serine–threonine kinase Raf. The activated 

Raf leads to the sequential activation of MAPK kinase (MEK), the mitogen-activated 

protein kinase-ERK kinase (MAPK). MAPK translocates to the nucleus, where it 

phosphorylates transcription factors, promoting neuronal cell differentiation. Activation of 

phosphatidylinositol 3-kinase through Ras or Gab1 promotes survival and growth of 

neurons. Activation of phospholipase C- γ 1 (PLC- γ 1) results in activation of Ca 2+ - and 

protein kinase C-regulated pathways that promote synaptic plasticity. (Image source: 

Skaper, 2012) 

Previous studies have proposed that VD upregulates the expression of BDNF and 

NGF in similar age-related neurological conditions like AD and PD (Gezen-Ak et al., 2014; 

Khairy and Attia, 2021). They have shown that the upregulation of neurotrophins takes 

place via VDR signaling (Alsulami et al., 2020; Cornet et al., 1998). In our study also, we 

have provided a similar effect of VD-mediated enhancement in VDR expression and a 

conjoint positive effect of VD-VDR signaling on neurotrophins gene expression. The 

findings of chapters 3 and 4 also investigated the VD anti-oxidant effect in the striatum and 

the cortex. VD decreased the expression of anti-oxidants like glutathione peroxidase 
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(GpX4) and catalase (Cat). These anti-oxidants are known regulators of oxidative stress as 

they eliminate excess number of oxygen-free radicles as shown in Fig. 36. 

 

Fig.36. Schematic representation of anti-oxidants in protecting the cells from 

oxidative stress. Superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione 

reductase (GR) and catalase (CAT) are the main endogenous enzymatic defense systems 

of all aerobic cells. They give protection by directly scavenging superoxide radicals and 

hydrogen peroxide, converting them to less reactive species. SOD catalyzes the 

dismutation of superoxide radical (•O2) to hydrogen peroxide (H2O2). Although H2O2 is 

not a radical, it is rapidly converted by fenton reaction into •OH radical which is very 

reactive. GpX neutralizes hydrogen peroxide by taking hydrogens from two GSH 

molecules resulting in two H2O and one GSSG. GR then regenerates GSH from GSSG. 

CAT the important part of enzymatic defense, neutralizes H2O2 into H2O. (Image source: 

Pandey and Rizvi, 2010) 
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In chapter 4, we provided an anti-inflammatory function of VD in HD. VD 

administration in HD mice significantly decreased the gene expression of TNF-α and IL-6 

in the cortex and in the striatum (Fig. 32). In our study, we also found a profound reduction 

in the gene expression of NF-κB. Since NF-κB is a critical mediator of pro-inflammatory 

gene induction, it is proposed that VD intervention in HD can combat cytokine storm as 

shown in Fig. 37. 

 

Fig. 37. Suppression of NF-κB pathways by VD supplementation. VDR: Vitamin D 

receptor; VDRE: Vitamin D response element; NF-κB: nuclear factor kappa B; D: 

1,25(OH)2-Vitamin D3; IL-6: interleukin 6; TNF-α: tumor necrosis factor-α.  

5.4. Cross-talk between VDR, TCR-β subunit and α7 nAChRs in HD: 

Cholinergic dysfunction is a prominent feature of HD (Tata et al., 2014). In this 

dissertation we have shown that TCR-β is related with the function of α7 nicotinic 

acetylcholine receptor (α7 nAChRs) as we have shown that the expression of brain resident 

TCR-β expression gets upregulated in HD. From a previous study, it was evident that TCR 

activation downregulate the expression of α7 nAChRs from neocortex and prefrontal cortex 
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(Komal et al., 2014). Previous studies have demonstrated that activation of α7 nAChRs 

balances cognition and memory by modulating the kinases like Protein kinase A (PKA) and 

Src-family kinases like Lck and Fyn kinase (Komal et al., 2015, 2014; Komal and Nashmi, 

2015). Taking this into consideration we have shown that VD intake by HD mice rescued 

the cholinergic activity with a concomitant decrease in the expression of the TCR-β subunit 

with a simultaneous decrease in the activity of acetylcholine esterase (AChE). Overall our 

study showed the anti-oxidant, anti-cholinergic, anti-inflammatory, and anti-apoptotic 

properties of VD in HD.
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Chapter 6 

Conclusion 
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The Asian prevalence of HD seems to be on high rise, though the increased 

prevalence of HD is mainly reported from Europe, Australia and North America. The 

present treatment for HD is tetrabenazine (TBZ), a drug that is believed to treat only the 

symptoms of HD (Frank, 2010; Grigoriadis et al., 2017). In this regard, multiple evidence 

pinpoints towards the therapeutic potential of VD as a mean of minimizing the neurotoxic 

conditions observed across myriad neurological disorders like Alzheimer's disease (AD), 

Parkinson's disease (PD), and Huntington's disease (HD) (Banerjee and Chatterjee, 2003; 

Chel et al., 2013; Moretti et al., 2018; Holick et al., 2011).  

In recent years, several scientific studies have linked VD deficiency as one of the 

major risk factor involved with the onset of many age-related neurological disorders 

(Berridge, 2017). A high prevalence of VD deficiency is also observed in HD, a 

neurodegenerative disease characterized by a decrease in neurotrophins synthesis, increase 

in oxidative stress, inflammation, and apoptosis (Chel et al., 2013; Wilson et al., 2023). On 

the basis of the data reported in this thesis, VD can be considered an easily available and 

cheap neutraceutical that may delay the process of neurodegeneration in HD (Lima et al., 

2018; Mohamed et al., 2015). Based on the findings of this thesis, the following key 

conclusions are drawn:  

 500IU/kg/day dosage of VD rescued behavior deficits observed in HD mice. 

 VD administration to HD mice potentiated striatal gene expression of neurotrophins 

such as brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). 

 VD was effective in combating oxidative stress and neuroinflammation through the 

reduction of the gene expression of anti-oxidants and anti-inflammatory markers in 

cortical and striatal brain regions of HD mice. 

 VD administration signigicantly reduced the gene expression of NF-κB in the striatum 

of HD mice. 

 VD potentiated cholinergic signaling under neurotoxic conditions induced by 3-NP and 

caused reduction in the cholinesterase activity, increased the protein/gene expression of 

α7nAChRs with a concomitant decrease in the gene expression of T-cell receptor beta 

subunit expression in two important regions of the brain known for attention, memory 

and cognition namely, the striatum and cortex. 

https://www.zotero.org/google-docs/?3zxG2l
https://www.zotero.org/google-docs/?3zxG2l
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 The beneficial effects of VD occurred via an enhancement in the VDR signal 

transduction pathways. 

6.1.Limitations: 

The present study emphasized on the neuroprotective effects of VD in HD but has 

some limitations. The study has addressed the beneficial effect of only one dose in a murine 

model induced by 3-NP which mimics HD like symptoms. I have not undertaken a direct 

comparison on the dose dependent effect of VD on various behavior phenotypes. It is 

possible that the additional valuable factors of VD, not reported here, may be identified by 

utilizing a genetic model of HD like YAC128. Our study also lacks data in determining the 

advantages of VD supplementation in Indian HD patients. It will be helpful in translating 

our findings from murine model to human diseases that will showcast the differences 

between rodent and human biology, disease pathology and, VD metabolism. It will be 

necessary that such clinical research are carried out with appropriate controls as it is 

absolutely a requirement to validate the efficacy and safety of VD supplementation in 

Indian HD patients. The limitations of the present study also arose due to the complexity 

of VD-VDR interaction that activates many downstream signal transduction pathways.  
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 Specific Contributions 

 In the present thesis, I showed VD’s neuroprotective function in HD that occurred via 

VDR mediated signal transduction pathway. 

 It is the first report that determined the beneficial effect of VD on the behavior 

phenotypes induced by 3-nitropropionic acid (3-NP) model of HD. 

 It is the first report which elucidated the positive effect of VD on the neurotrophins gene 

expression in HD. 

 It is the first evidence that determined the anti-oxidant, anti-inflammatory, anti-

cholinergic, and anti-apoptotic activity in HD. 
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Future directions 

1. Our results indicate that VD regulates the activity of acetylcholinesterase (AChE) and the 

expression of α7 nicotinic acetylcholine receptors (α7 nAChRs) which in turn can enhance 

synaptic function. These results can be followed up by exploring whether VD 

supplementation can maintain synaptic plasticity in Huntington’s disease (HD). 

2. VD is known to mediate a cross-talk between genomic and non-genomic pathways. A 

comprehensive analysis of these signal pathway by which VD shows its beneficial effect in 

HD needs validation. 

3. An exploration of the specific contribution of VD-mediated signaling needs to be tested 

using a genetic in-vivo and in-vitro model in HD. 
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Center, Montréal, QC, Canada

Abstract—A number of studies has explored a positive correlation between low levels of serum Vitamin D3 (VD;
cholecalciferol) and development of neurodegenerative diseases including Huntington’s disease (HD). In the pre-
sent study, the prophylactic effect of VD on motor dysfunction was studied in an experimental model of HD. An
HD-like syndrome was induced in male C57BL/6 mice through an intraperitoneal injection (i.p) of 3-NP for 3 con-
secutive doses at 12 h interval of time as described previously (Amende et al. 2005). This study investigated the -
in-vivo therapeutic potential of VD (500 IU/kg/day) supplementation on movement, motor coordination, motor
activity and biochemical changes in this HD model. Mice were divided into four groups: Group I: Control (saline);
Group II: 3-NP induced HD (HD); Group III: Vitamin D3 (VD) and Group IV: 3-NP induced + post Vitamin D3 injec-
tion (HD + VD). All groups of mice were tested for locomotion, gait analysis and rotarod performances over a
span of 30-days. VD administration rescued locomotor dysfunction and neuromuscular impairment in HD mice
with no change in gait dynamics. In addition, administration of VD to 3-NP treated mice led to a significant
enhancement in the expression of key neurotrophic factors including brain-derived neurotrophic factor (BDNF)
and nerve-growth factor (NGF), the Vitamin D receptor (VDR), and antioxidant markers (catalases [Cat] and glu-
tathione peroxidase [GpX4]) in the striatum, suggesting a detoxification effect of VD. Altogether, our results show
that VD supplementation induces survival signals, diminishes oxidative stress, and reduces movement and motor
dysfunction in HD. � 2022 IBRO. Published by Elsevier Ltd. All rights reserved.

Key words: Huntington’s disease (HD), vitamin D3 (VD), 3-nitropropionic acid (3-NP), cholecalciferol, neurotrophic factors, antio-

xidants.

INTRODUCTION

Huntington’s disease (HD) is a progressive

neurodegenerative disorder with a prevalence in the

range of 1/10,000–1/20,000 in the Caucasian population

and 0.4/1,00,000 in Asian populations respectively

(Pringsheim et al., 2012; Chel et al., 2013; Baig et al.,

2016; Rawlins et al., 2016). Extensive efforts have been

made to understand the molecular, cellular, and system-

level changes which occur during the progression of dis-

ease and their contribution towards striatal atrophy. The

selective loss of medium spiny neurons (MSN) is known

to be the main causes for motor disorders associated with

Huntington’s disease (HD) (Gil and Rego, 2008; Gil-

Mohapel, 2012; Lewitus et al., 2014). The loss of c-
amino butyric acid (GABA) signaling from the MSNs

causes circuit dysfunction, which results in involuntary

movements, postural instability, lack of coordination,

https://doi.org/10.1016/j.neuroscience.2022.03.039
0306-4522/� 2022 IBRO. Published by Elsevier Ltd. All rights reserved.
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and cognitive and psychiatric impairments (Gil and Rego,

2008). HD is a monogenic, autosomal dominant disorder

caused by expansion of a trinucleotide CAG sequence

(encoding glutamine) in the first exon of the huntingtin

(Htt) gene, located on chromosome 4, with an inverse cor-

relation between repeat length and age of onset of symp-

toms (Gil and Rego, 2008; Gil-Mohapel, 2012;

Blumenstock and Dudanova, 2020). The polyglutamine

expansion in huntingtin protein (HTT) causes mitochon-

drial dysfunction, neuro-inflammation and oxidative stress

which ultimately lead to the death of striatal neurons

(Brouillet et al., 2005; Gil and Rego, 2008; Blumenstock

and Dudanova, 2020). Mutant huntingtin protein aggre-

gates in the striatum impairs cellular processes like mito-

chondrial function, initiates autophagy and proteostasis,

and ultimately enhances oxidative stress in HD (Maity

et al., 2022). Striatal damage is also known to be induced

by the mitochondrial toxin, 3-nitropropionic acid (3-NP)

which reproduces symptoms of HD in animals, including

hypokinetic motor impairment which mimic some of the

neuropathophysiological symptoms of HD (Beal et al.,

1993; Brouillet et al., 2005; Kumar, Kalonia, and Kumar,

2009; Túnez et al., 2010; Brouillet, 2014). 3-NP is an irre-

versible inhibitor of mitochondrial succinate dehydroge-

nase in the tricarboxylic acid cycle (TCA) (Brouillet

et al., 2005; Duran-Vilaregut et al., 2009; Túnez et al.,

2010). The potential utility of the 3-NP model of striatal

degeneration comes from studies that show mitochondrial

impairment, energy depletion, and oxidative stress are the

key players in HD pathogenesis (Beal et al., 1993; Vis

et al., 1999; Kumar, Kalonia, and Kumar, 2009; Johri

and Beal, 2012). The high energy demand by neurons

of the central nervous system makes them most vulnera-

ble to the metabolic alterations observed in HD patients

(Johri and Beal, 2012; Paul and Snyder, 2019).

In the last decade, a potential link has been explored

between Vitamin D3 (VD or cholecalciferol) deficiency and

neurodegenerative disorders (Holick et al., 2011; Chel

et al., 2013; Molnár et al., 2016; Koduah et al., 2017;

Amrein et al., 2020). Vitamin D3 (VD) is a neurosteroid

hormone that shows neuroprotection effects in animal

and cell-culture models of Parkinson’s and Alzheimer’s

disease (Kim et al., 2006; Sanchez et al., 2009;

Nimitphong and Holick, 2011; Mohamed et al., 2015;

Calvello et al., 2017; Koduah et al., 2017; Lima et al.,

2018; AlJohri et al., 2019; Bivona et al., 2019;

Rodrigues et al., 2019). Calcitriol, which is the active form

of VD, exerts its neuroprotective role via Vitamin D recep-

tor (VDR) (Taniura et al., 2006; Butler et al., 2011;

Bankole et al., 2015; Ricca et al., 2018).

Evidence suggests that VD supplementation

increases the release of neurotrophic factors like nerve

growth factor (NGF) and brain derived neurotrophic

factor (BDNF) in neurodegenerative diseases like

Parkinson’s and Alzheimer’s disease to reduce neuronal

death by apoptosis or necrosis (Kim et al., 2006; Allen

et al., 2013; Baydyuk and Xu, 2014; Mohamed et al.,

2015). These neurotrophins also promote synaptic func-

tion and survival of several neuronal populations, includ-

ing striatal neurons that are the primary affected cells in

HD (Zuccato et al., 2001; Zuccato and Cattaneo 2007).

Oxidative stress markers are also observed as a hallmark

of neurodegenerative disorders like HD (Johri and Beal,

2012; Brouillet 2014; Lima et al., 2018; Paul and Snyder

2019). This can be identified by the effect of oxidative

stress on certain antioxidants like superoxide dismutase

(SOD), glutathione peroxidase (GpX), and catalase

(Cat). Studies suggest that VD supplementation has a

regulatory effect on oxidative stress which leads to the

survival of neurons (Lima et al., 2018; Bakhtiari-

Dovvombaygi et al., 2021; Latham et al., 2021). Though

VD supplementation is readily available and affordable, lit-

tle is known about its potential beneficial effects in HD.

Limited evidence is available to correlate VD deficiency

with HD and whether high Vitamin D supplementation

affects motor function in HD has not been established

(Chel et al., 2013). The cellular mechanism responsible

for neuroprotection of Vitamin D supplementation also

remains uncertain. Therefore, the present study was

undertaken with the aim to explore the effect of 500 IU/

kg of Vitamin D supplementation on motor dysfunction fol-

lowing administration of 3-nitropropionic acid (3-NP).

EXPERIMENTAL PROCEDURES

Animal procurement

Ten to twelve weeks old male C57BL/6 mice (average

weight; 26 ± 3 g) were acquired from Sainath

Agencies, Hyderabad, India. Animals were group

housed (2 mice per cage) with ad libitum access to food

and water. They were kept in a 12 h light/12 h dark

cycle at 25 ± 2 �C. All the animal experiments were

carried out with the approval of the Institutional Animal

Ethics Committee (IAEC), BITS – Pilani, Hyderabad,

India. All efforts were made to minimize the number of

animals used and their suffering.

Study design

All the animals were acclimatized for 5 days and then

received behavioral training for 7 days prior to

treatment. Animals were then randomly divided into four

experimental groups (Group I to Group IV; Table 1) and

given injections of 3-nitropropionic acid (3-NP) and/or

Vitamin D3 (VD or cholecalciferol) (Fig. 1). 3-NP was

given by three intraperitoneal injections (i.p) of 25 mg/

kg, every 12 h, for a cumulative dose of 75 mg/kg as

described previously with minimal modification

(Fernagut et al., 2002; Amende et al., 2005). VD was

given i.p. daily for 15 days at 500 IU/kg/day.

Table 1. The four different experimental groups of C57BL/6 male mice

(3–4 months old)

Animal Groups

Control (1� saline) (Group I)

3-NP (75 mg/kg) (Group II)

Vitamin D (500 IU/kg) (Group III)

3-NP (75 mg/kg) + Vitamin D (500 IU/kg) (Group IV)
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Experimental design

The mice were randomly divided into four experimental

groups for behavior and biochemical assay. (Table 1)

i. Group I: Control group mice (C57BL/6) injected

with saline.

ii. Group II: 3-NP induced mice by i.p. injection (3-NP;

75 mg/kg) without VD-treatment (HD).

iii. Group III: Mice injected solely with 500 IU/kg/day

Vitamin D3 (VD) for 15 days.

iv. Group IV: Post-intraperitoneal injection of 500 IU/

kg/day of VD to 3-NP (75 mg/kg) pre-injected mice

for 15 days (HD + VD).

Drugs and reagents

i) Cholecalciferol (Vitamin D3; VD) was purchased

from Sigma-Aldrich, India (Cat No: C9756) and dis-

solved in 1% ethanol (diluted with sterile saline) on

the day of injection (Mohamed et al., 2015). Mice

were administered with 500 IU/kg (12.5 lg/kg/day)
i.p. of VD as reported previously (Chabas et al.,

2013; Gueye et al., 2015; Kolla and Majagi, 2019).

Briefly, VD was administered to the Group III (only

VD) mice and to Group IV (HD + VD) mice. Group

IV mice (HD + VD) were given 24 h recovery time

from previous 3-NP induction. Then the VD injec-

tions were carried out 24 h after the last dose of

3-NP daily for 15 days to Group IV mice (from 0 to

15th day, Fig. 1 and Table 1).
ii) 3-nitropropionic acid (3-NP) was purchased from

Sigma-Aldrich, India (Cat No.: N22908). Stock solu-

tions of 3-NP (3 mg/ml) were prepared in 0.1 M

phosphate buffered saline solution and were

injected intraperitoneally at 25 mg/kg (3-NP; cumu-

lative dose of 75 mg/kg) thrice at 12 h intervals to

respective groups of mice as described previously

(Fig. 1 and Table 1). Controls were treated with

three doses of saline at 12 h

intervals. In this study, we

used a subacute dose of 3-

nitropropionic acid dose as

reported previously by

Amenda et al., 2005 with

minimal modification. This

protocol is based on previous

published studies who used

50 mg/kg i.p. injection of 3-

NP for 5 days (Kim and

Chan, 2001; Fernagut et al.,

2002). To model a subacute

exposure to 3-NP, a cumula-

tive dose of 75 mg/kg dose of

3-NP was undertaken (Kim

and Chan, 2001; Fernagut

et al., 2002).

Behavioral evaluations

A total of 80 mice were used for

behavioral experiments. Mice

were initially assessed for

locomotion and gait as previously

reported by Amende et al. (2005)

and Fernagut et al. (2002). A separate cohort was used

to evaluate the effects on locomotion and rotarod perfor-

mance. Only two behavioral tests were done on a given

set of animals. Protocols for behavioral tests were:

i) Assessment of locomotor activity

The locomotor activity was monitored using an

actophotometer as described previously (Digital

Photoactometer cage; Dolphin, 2009), using the number

of beam breaks as the measure of movement for each

animal (Kumar et al., 2009). Locomotion was measured

over a 5 min period, and baseline readings were taken

before the respective drug injections (Fig. 2).

ii) Estimation of gait by stride length analysis

Stride length analysis was done to determine the

choreatic movement in mice by marking the animals’

forepaws and hind paws with ink (red for forelimbs and

blue for hind limbs; Fig. 3). The animals were allowed to

move on a strip of paper (4 cm wide and 56 cm long)

placed on a brightly lit runway leading to a darkened

box. Stride length was measured manually as the

distance between two paw prints as described

previously (Fernagut et al., 2002). Forelimb stride length

measurement was first measured for all mice followed

by hind limb stride length on a new strip of paper.

iii) Assessment of motor coordination by rotarod

analysis

The integrity of motor coordination was measured

using the rotarod as described previously (Kumar et al.,

2009). Briefly, the rotarod apparatus consists of a long

rotating rod of 90 cm long and 3 cm in diameter. The

apparatus was divided into three different compartments

Fig. 1. Timeline and design for the behavioral study. C57BL/6 male mice (3–4 months) were trained

for 7 days in the behavioral tasks and thereafter injected (i.p) with 3-nitropropionic acid (3-NP) in 3

doses of 25 mg/kg at 12 h intervals (cumulative dose of 75 mg/kg; Group II and IV). VD (500 IU/

kg/day) supplementation was given to Group III (only VD) and Group IV mice after post-injection with

3-NP (HD + VD -) for 15 days (Day 1–Day 15). Behaviors analysis was conducted from Day 1 to Day

30. On the 30th day, mice were sacrificed and the striatal brain tissues were extracted for gene and

protein expression analysis.
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by a glass partition (Rota rod 3 compartments, Dolphin,

2019). The rod rotation speed was set initially at 35 rota-

tions per minute (RPM). Mice received training on the

accelerating rod prior to treatment. After achieving crite-

rion (no falls from the rotarod within 180 sec, mice were

injected with either saline (Group I; Control), 3-NP (Group

II; HD) or VD (Group III) or both (Group IV; HD + VD).

After the respective injections, the treated mice were re-

tested for 180 sec and the latency to fall was recorded

and analyzed.

RNA isolation and cDNA preparation

On the 30th day, mice from respective groups were

anesthetized using isoflurane (Rx, NoB506) and

immediately decapitated for the extraction of striatal

brain samples. Brain tissue was placed into 1 ml of

RNAiso PLUS (Takara Bio) and sonicated on ice. 200 ll
of chloroform was added and samples were centrifuged

for 30 min at 12,000g at 4 �C (Eppendorf Refrigerated

centrifuge, 542R). After isolation of the aqueous phase,

an equal volume of isopropanol (Hi-Media Laboratories,

Molecular biology grade, India) was added, incubated

overnight at �20 �C and again centrifuged at 12,000g
for 30 min at 4 �C. Samples were washed with 70% ice-

cold ethanol and the obtained pellet was resuspended in

nuclease-free water. DNase I (EN052, Thermo

ScientificTM, USA) treatment was performed to remove

any DNA contamination. DNase-treated samples were

made up to 400 ll using nuclease-free water. It was

followed by sample purification using 1/10th volume of

3 M sodium acetate and 2� volume of phenol:

chloroform: isoamyl alcohol (Sisco Research

Laboratories Pvt. Ltd., India) and centrifuged for 2 min

at maximum speed at 4 �C. The aqueous phase was

isolated with addition of an equal volume of ice-cold

100% ethanol, followed by overnight incubation at

�20 �C. The samples were again centrifuged at

maximum speed for 15 min at 4 �C, then washed with

70% ice-cold ethanol and the obtained pellet was

resuspended in nuclease-free water. The total

concentration of purified RNA was estimated by the

Nanodrop spectrophotometer (Nanodrop, Thermo Fisher

Scientific, USA). An equal amount of RNA from each

group was used to reverse transcribe complementary

DNA (cDNA) with the help of the Verso cDNA synthesis

kit (Cat No: AB1453A, Thermo ScientificTM, USA) as per

manufacturer’s instruction. Briefly, 500 ng of purified

RNA was taken from each group for cDNA synthesis

with the following reaction conditions: 42 �C for 1 h

followed by 95 �C for 2 min. The obtained cDNA was

used for semiquantitative PCR and real-time PCR (RT-

PCR) (Fig. 5).

Analysis of mRNA expression for nerve growth factor
(NGF), brain derived neurotrophic factor (BDNF), and
antioxidant marker genes

The sequences of neurotrophic genes (NGF and BDNF)

of the mouse genome were obtained from NCBI. The

sequences were deposited in the IDT primer quest tool

to get the most suitable primer for gene analysis. For

Fig. 2. VD supplementation rescues locomotor performance in HD

mice. (A) Vitamin D supplementation (VD; cholecalciferol; 500 IU/

kg/day) significantly reversed the loss of locomotor activity due to 3-

NP treatment in HD mice (HD + VD vs HD; n = 8–10; p < 0.001,

two-way repeated measures ANOVA). All data are normalized values

against the initial day for each group and is represented as

mean ± SEM. (B) On 30th day, a significant decrease in locomotion

activity in HD mice (Group II) was observed as compared to Control

mice (Group I), which was reversed significantly upon VD supple-

mentation (HD vs Control; n = 10, p < 0.001, Tukey’s post-hoc
analysis). Data is represented as box-and-whisker plots depicting

median with first and third quartiles; shaded square is the mean for

each group and whiskers represents 5th and 95th percentile values.

Fig. 3. 3-NP or VD administration have no effect in gait dynamics. (A)
Schematic representation of paw prints, with gait assessed by stride

length analysis. Left and right paws of individual mice were coated

with non-toxic ink and mice were allowed to walk on a sheet of

oriental white paper. Overall stride of the mice is represented as the

average stride of forelimbs and hind limbs. Stride length was

determined as the distance between two consecutive paw prints.

(B) 3-NP (i.p; 75 mg/kg) induction produced no change in forelimb

and hind limb performance in HD mice (Group II) as compared with

Group I (Control) mice across a span of 30 days (n = 4–10, p = 0.4,

two-way ANOVA). VD supplementation also showed no significant

effect on gait dynamics in 3-NP induced HD mice (n= 4–10, p= 0.4,

two-way ANOVA). All data are normalized value against initial day for

each group and is represented as mean ± SEM. (C) On 30th day, no

effect of VD was observed on the stride length performance of 3-NP

pre-treated mice (Group IV; HD + VD) as compared to HD (Group II)

mice (n = 10, p = 0.70, Tukey’s post-hoc analysis). Data is

represented as box-and-whisker plots depicting median with first and

third quartiles; shaded square is the mean for each group and

whiskers represents 5th and 95th percentile values.
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antioxidant marker genes, we analyzed superoxide

dismutase 1 (SOD1), superoxide dismutase 2 (SOD2),

catalase (Cat) and glutathione peroxidase 4 (GpX4). All

the genes, primer sequences and amplicon sizes are

listed in Table 2. Semiquantitative-PCR was performed

using respective cDNA with gene specific primers to

estimate the relative quantification of target genes. We

used the following PCR condition to amplify NGF using

2X PCR master mix (Takara Bio) and 0.5 lM of each

primer: 95 �C for 2 min; 35 cycles of 95 �C for 30 s,

62 �C for 30 s, 72 �C for 30 s; and a final step of

extension of 72 �C for 5 min. For antioxidant markers

the PCR condition: 95 �C for 5 min; 35 cycles of 95 �C
for 30 s, 60 �C for 45 s, 72 �C for 45 s; and a final step

of extension at 72 �C for 10 min for SOD1, SOD2, and

GpX4 whereas Cat amplification was carried out at

56 �C for 45 s. The PCR products were checked by

electrophoresis on 1.5% agarose gel, visualized and

quantified using Image software by keeping 18 s rRNA

as a Control (housekeeping gene).

Relative Quantification of a gene

¼ Quantity of the required gene

Quantity of Housekeeping gene

Quantitative expression analysis for BDNF by Real-
Time PCR (RT-PCR)

The expression of BDNF among the four groups of mice

was assessed by RT-PCR in a CFX96 Touch Real-time

PCR system (BioRad) using the GoTaq qPCR SYBR

master mix (Cat No #A6001, Promega Corporation).

The reaction mixture was prepared according to the

manufacturer’s protocol using �12 ng of the cDNA

template. Relative gene expression was quantified using

the DCT method with respective primers (BDNF forward

50-TCCTAGAGAAAGTCCCGGTATC-30; reverse 50-GCA

GCCTTCCTTGGTGTAA-30) and normalized to 18s

(forward 50-ACGGAAGGGCACCACCAGGA-30; reverse

50-CACCACCACCCACGGAATCG-30). We used the

DDCT method to determine the fold changes in the

expression of BDNF (Livak and Schmittgen, 2001).

Briefly, the threshold cycle (Ct) was extracted using Bio-

Rad CFX Manager 3.1 software and relative gene expres-

sion was calculated as follows: fold change = 2^�DDCt,
where DCt (cycle difference) = Ct (target gene) – Ct

(Control gene) and DDCt = DCt (treated condition) –

DCt (Control condition) (Livak and Schmittgen, 2001).

Protein expression analysis for Vitamin D3 receptor
by western blot

On the 30th day, striatal brain tissue was extracted from all

four groups of mice. The tissue was homogenized in the

lysis buffer (150 mM sodium chloride, 1.0% TritonX-100,

0.5% sodium dodecyl sulfate and 50 mM Tris, pH 8.0).

The protein concentration was determined using a

Bradford protein assay kit (Bio-Rad, USA). We loaded

equal amounts of protein (25 lg) run in a 12% gel, and

then transferred to PVDF (Pall Corporation) membrane

through a trans blot wet transfer system (Bio-Rad). The

membrane was blocked using 5% BSA and incubated

with respective primary and secondary antibodies for b-
Actin Rabbit mAb (1:3000, CST#4970, Cell Signaling

Technology); Vitamin D3 Receptor Rabbit mAb (1:1500,

CST#12550, Cell Signaling Technology); Anti-rabbit

IgG-HRP-linked antibody (1:5000, CST#7074, Cell

Signaling Technology). b-Actin served as a loading

control. The signal intensities of the bands were

captured using the fusion pulse gel documentation

system (Eppendorf, USA). ImageJ software was used to

quantify the band intensities.

Statistical analysis

Experimental data is represented as normalized values w.

r.t to zero day for the respective groups of mice. Data in

the figures are represented as box and whisker plots

depicting the median with interquartile range; (central

line: median; 25th and 75th quartiles; box: central shaded

square: mean; whiskers: 5th–95th percentile values) to

illustrate the distribution of normalized values for each

Table 2. Sequence of Primers used in PCR studies

Gene Orientation Sequence of primers (50–30) Amplicon size

18s Forward ACGGAAGGGCACCACCAGGA 127

Reverse CACCACCACCCACGGAATCG

NGF Forward GGCAGAACCGTACACAGATAG 88

Reverse TGTGTCAAGGGAATGCTGAA

BDNF Forward TCCTAGAGAAAGTCCCGGTATC 94

Reverse GCAGCCTTCCTTGGTGTAA

SOD1 Forward CAGAAGGCAAGCGGTGAAC 107

Reverse CAGCCTTGTGTATTGTCCCCATA

SOD2 Forward TCCTAGAGAAAGTCCCGGTATC 112

Reverse GCAGCCTTCCTTGGTGTAA

GPx4 Forward GCCCAATACCACAACAGTAGA 108

Reverse CCTGAACCACAGCGATGAA

Cat Forward AATTGCCTCCACACCTTCAC 107

Reverse TCACCAAGCTGCTCATCAAC
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respective group of mice (Group I to Group IV). Group

data in the text and in the Supplementary tables are

presented as mean ± standard error of the mean

(SEM). Statistical analysis was conducted using two-

way repeated measures ANOVA, two-way ANOVA and

one-way repeated measures ANOVA followed by either

post hoc multiple pairwise analysis using Tukey’s HSD

tests or paired sample t-test. For non-parametric

measurements, a Kruskal–Wallis test followed by an

unpaired sample t-test was performed. p < 0.05 was

set as threshold of significance (*p < 0.05, **p < 0.005,

and ***p < 0.001). All the data is displayed using Origin

8.1.

RESULTS

VD supplementation improves locomotor activity in a
mouse model of HD

The impact of chronic supplementation of 500 IU/kg/day

of VD on the locomotor activity in HD model mice was

tested over a period of 30 consecutive days. An

actophotometer was used to determine the total number

of beam crossings for the evaluation of bradykinesia

(Fig. 2) (Kumar et al., 2009). A repeated measures two-

way ANOVA with power analysis showed a significant

day effect (F (3) = 9.12, p < 0.001, Fig. 2) and significant

interaction between the groups and days (F (3) = 9.12,

p < 0.001, power value = 0.8). On the 7th day, there

were no differences in the movement among the four

experimental groups of mice. However, a consistent

decrease of roughly 30% in the locomotory activity was

observed on the 14th and 21st days in 3-NP injected HD

mice (Group II) as compared to Control (Group I) mice;

(14th day, 0.76 ± 0.08 vs 1.01 ± 0.11; 21st day

0.66 ± 0.07 vs 1.03 ± 0.05, n = 8–10, p < 0.001,

Tukey’s post-hoc analysis). On the 30th day it further dete-

riorated to 40% of Control values (Group II vs Group I;

0.40 ± 0.02 vs 1.03 ± 0.06, n = 10, p < 0.001, Tukey’s

post-hoc analysis). However, on the 14th and 21st days,

Group IV mice supplemented with VD and pre-injected

with 75 mg/kg of 3-NP showed a rescue in the locomotor

activity near control levels and significantly above Group

II mice (3-NP treated HD mice) (Group IV vs Group II;

14th day, 0.92 ± 0.09 vs 0.76 ± 0.08; 21st day,

0.83 ± 0.07 vs 0.66 ± 0.07, n = 10, p < 0.001, Tukey’s

post-hoc analysis). On the 30th day, Group IV mice on VD

supplementation showed a robust enhancement by 1.2-

fold in the locomotion performance as compared to HD

mice (0.86 ± 0.07 vs 0.40 ± 0.02, n = 10, p < 0.001,

Tukey’s post-hoc analysis). To check the possibility that

VD supplementation alone showed any improvement on

the movement of the animals, VD injections solely were

carried out in a Control group of mice (Group III). Interest-

ingly, we found no significant difference between locomo-

tion activity of VD administered mice as compared to

Control mice for the entire timeline of 30 days (Group III

vs Group I; 7th day, 0.87 ± 0.23 vs 0.87 ± 0.12; 14th

day, 0.93 ± 0.09 vs 1.01 ± 0.11; 21st day 0.96 ± 0.1

vs 1.03 ± 0.05; 30th day, 0.91 ± 0.12 vs 1.03 ± 0.06,

n = 8–10, p = 0.7, Tukey’s post-hoc analysis, Fig. 2A,

B). Further, no significant change in locomotion was

observed between Group III (VD) and Group IV

(HD + VD) mice nullifying the possibility of any chronic

toxic side effect by 500 IU/kg/day of VD in Group III mice

(Group III vs Group IV; 7th day, 0.87 ± 0.23 vs

0.88 ± 0.20; 14th day, 0.93 ± 0.09 vs 0.92 ± 0.09;

21st day 0.96 ± 0.10 vs 0.83 ± 0.07; 30th day,

0.91 ± 0.12 vs 0.86 ± 0.07, n = 10, p = 0.9, Tukey’s

post-hoc analysis, Fig. 2A, B). These results suggest

the therapeutic potential of VD supplementation in rescu-

ing locomotor dysfunction in HD mice. VD mediated a

beneficial effect on movement occurred only when striatal

neurons were subjected to neurodegeneration on 3-NP

induction. Our results validate the in-vivo findings of

Gueye et al. (2015) where a similar dose of Vitamin D3

(VD, 500 IU/kg/day) resulted in a dramatic recovery in

locomotor performance of animals subjected to spinal

cord injury (Gueye et al., 2015).

Gait was unaltered in 3-NP induced HD mice

To determine the potential neuroprotective role of VD

supplementation (500 IU/kg/day) on gait of 3-NP treated

mice, we measured the distance between two

successive paw prints (Fig. 3) for four weeks. No

change in the stride length was observed across all the

four groups of the mice respectively (Fig. 3). In

comparison with Controls (Group I), HD mice (Group II)

gait dynamics remained unchanged for all the respective

timepoints (Group II vs Group I; 7th day, 0.90 ± 0.03 vs

0.98 ± 0.04; 14th day, 1.00 ± 0.07 vs 1.02 ± 0.06;

21st day, 0.88 ± 0.11 vs 1.09 ± 0.09; 30th day,

1.06 ± 0.05 vs 1.03 ± 0.05, n = 4–10, p = 0.7,

Tukey’s post-hoc analysis, Fig. 3A, B). Even on the 30th

day, where we found a highly significant 60% decrease

in the locomotion in HD mice (Fig. 2B) the gait

dynamics remained unaltered between Control and HD

mice (Group II vs Group I; 1.06 ± 0.05 vs 1.03 ± 0.05,

p = 0.7; n = 10 each, Tukey’s post-hoc analysis,

Fig. 3B). Similarly, no effect of VD supplementation was

seen in forelimb and hind-limb stride length in 3-NP

treated mice (Group IV) as compared with HD mice

(Group II) for entire timeline of the study (Group IV vs

Group II; 7th day, 0.88 ± 0.09 vs 0.90 ± 0.03; 14th day,

0.79 ± 0.03 vs 1.00 ± 0.07; 21st day 0.88 ± 0.02 vs

0.88 ± 0.11; 30th day, 1.03 ± 0.04 vs 1.06 ± 0.05,

n = 4–10, p = 0.70, Tukey’s post-hoc analysis,

Fig. 3A, B). A one-way balanced repeated measures

ANOVA was conducted for the 30th day timepoint to

cross check whether VD supplementation modulated

gait dynamics in HD mice. No significant change in gait

dynamics was observed with VD administration across

all groups of mice (F (3) = 0.53, p = 0.66, Fig. 3B). A

power analysis done only for the 30th day gave a value

of 1. This time point was chosen primarily because we

found a robust effect of VD at this time point in other

behavior tests (Fig. 2 and Fig. 4). Consequently, VD

supplementation (either alone or in conjunction with 3-

NP treatment) also did not impact the stride length

performance of the mice across all time points of the

present study. Our results agree with the findings of

Fernaugut et al. (2002) where even a much higher

cumulative dose of 3-NP (340 mg/kg) resulted in no
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differences in stride length for either forelimbs and hind

limbs in mice. The data suggest that since the postural

gait control is regulated through reciprocal connections

between the brainstem and cerebellar cortex, the

obtained result may reflect that the dose of 3-NP

(75 mg/kg) used in the present study did not possibly

produce a significant neuronal loss in the cerebellum

(Takakusaki 2017).

VD supplementation improves rotarod performance
of HD mice

To test the potential effect of VD supplementation to

rescue grip strength in 3-NP induced HD mice, we used

the rotarod to determine the latency of first fall for the

evaluation of motor coordination for four weeks

(Amende et al., 2005; Rodrigues et al., 2019). We found

that on the 7th day as well as on the 14th day, 3-NP

injected HD mice consistently showed around a 50%

reduction in fall latency when compared with the aged-

matched Control animals (Group II vs Group I; 7th day;

0.63 ± 0.22 vs 1.40 ± 0.15; 14th day, 0.58 ± 0.19 vs

1.33 ± 0.08, n = 8–9, p < 0.001, two-way ANOVA fol-

lowed by Tukey’s post-hoc analysis, Fig. 4). On the 21st

and 30th days, 3-NP treated mice still had a roughly

35% decrease in the latency to fall as compared to Con-

trol mice (Group II vs Group I; 21st day, 0.92 ± 0.22 vs

1.40 ± 0.05; 30th day, 0.90 ± 0.22 vs 1.45 ± 0.001,

n = 8–9, p < 0.001, two-way ANOVA followed by

Tukey’s post-hoc analysis). A significant improvement in

the neuromuscular coordination was observed between

Group IV mice (HD + VD) and Group II mice (HD) from

the 7th day onwards and continued through the 30th day

(Fig. 4). Astonishingly, Group IV (HD+ VD) mice showed

a highly significant effect of VD supplementation on

rotarod performance on the 14th day by 1.4 fold (1.37 ±

0.13), on the 21st day by 0.6-fold (1.44 ± 0.1) and on

the 30th day by 0.74 fold (1.57 ± 0.

001) as compared to Group II mice

(HD) for the same time points (14th

day, 0.58 ± 0.19; 21st day,

0.92 ± 0.22; 30th day,

0.90 ± 0.22, n = 8–9,

p < 0.001, Tukey’s post-hoc anal-

ysis, Fig. 4A, B). To our surprise

VD treatment to pre-3-NP injected

mice (Group IV; HD + VD)

recorded no latency to fall within a

total time duration of 180 s and res-

cued the neuromuscular coordina-

tion by 100% when compared with

3-NP induced HD mice. To rule

out the possibility that VD supple-

mentation alone showed any effect

on the grip strength of mice, VD

injections were carried out in a

Control group (Group III). Interest-

ingly, we found no significant differ-

ence in the latency to first fall

between the Group I (Control) and

the VD supplemented mice (Group

III) for all time points (p = 0.9;

Tukey’s post-hoc analysis). Over-

all, two-way ANOVA showed a significant difference in

the mean among all groups of mice with no interaction

between the groups and day (F (5) = 4.06, p < 0.001,

Fig. 4), reflecting the effects of VD and 3-NP in Group II

and Group IV mice. These result support our hypothesis

that the VD supplementation has a robust rescue effect

on neuromuscular coordination, which is sustained

throughout the timeline of the study. Neuromuscular coor-

dination is impaired in patients with Huntington’s disease

but how VD might affect the HD associated behavioral

performance is not well described in the mouse model

(Chel et al., 2013). Our data parallels the findings of

Sakai et al. (2015) who showed that an oral supplementa-

tion of the VD analogue eldecalcitol (ED-71, ELD), a

derivative of 1,25 (OH)2D3, for 14 days significantly

improved the locomotor performance of mice. Here we

used a similar dose of VD (500 IU/kg/day; 12.5 mg/kg/day)
for a similar about of time (here 15 days) to explore the

motor benefits of VD (cholecalciferol) in HD mice. Our

findings collectively suggest that motor performance defi-

cits observed in the 3-NP mouse model of HD get signif-

icantly reversed by VD supplementation, suggesting a

neuroprotective function of VD in the striatum.

VD supplementation increases neurotrophin
expression in the striatum of 3-NP induced HD mice

Alterations in the mRNA expression of the neurotrophins

were analyzed in striatal tissues from all the four groups

of mice, with NGF analyzed by semiquantitative PCR

and BDNF by RT-PCR. RT-PCR results for BDNF

expression in the striatum showed a significant change

in the gene expression induced by Vitamin D3

supplementation in HD mice (n = 3, p = 0.04, Kruskal–

Wallis test, Fig. 5A). HD mice showed a significant

decrease in the gene expression of BDNF as compared

Fig. 4. Rotarod performance data depicting the beneficial effect of VD administration in HD mice. (A)
Grip-strength of 3-NP induced HD mice (HD + VD) was significantly improved on VD supplemen-

tation (p < 0.001, n = 8–9, two-way ANOVA). All data are normalized values against the initial day

for each group and is represented as mean ± SEM. (B) On 30th day, HD mice supplemented with VD

(HD + VD) showed no latency in fall for the entire 180 s from the rotating rod, as compared HD mice

(n = 8, p < 0.001, Tukey’s post-hoc analysis). HD mice induced with 3-NP showed a significant

decrease in fall latency as compared to Control (Group I) (n = 8–9, p < 0.001, Tukey’s post-hoc
analysis). Data is represented as box-and-whisker plots depicting median with first and third quartiles;

shaded square is the mean for each group and whiskers represents 5th and 95th percentile values.
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to Controls (Group II vs Group I; 0.53 ± 0.06 vs

1.00 ± 0.00, n = 3, p = 0.001, unpaired sample t-
test). VD administration after 3-NP injection robustly

increased the BDNF expression in Group IV mice (3.10

± 0.57) when compared with HD mice (Group II mice;

0.53 ± 0.06, n = 3, p = 0.01, unpaired sample t-test,
Fig. 5A, Supplementary Table 5) reflecting that the

biological effect of VD was not compromised by 3-NP

induction. In addition, no significant difference in the

BDNF expression was observed in the striatal tissues of

Group III with respect to Group I mice (VD vs Control;

1.41 ± 0.40 vs 1.00 ± 0.00, n = 3, p = 0.35,

unpaired sample t-test, Fig. 5A, Supplementary Table 5).

Similarly, semiquantitative PCR results showed an

overall difference in the mRNA expression of NGF in all

the four groups of mice (F (3) = 4.01, p = 0.03, one-

way ANOVA). In HD mice (Group II) the expression of

NGF was downregulated by �0.34-fold (3-NP;

0.66 ± 0.04, n = 4) when compared to Group I

animals (Control; 1.00 ± 0.00, n = 4, p = 0.001,

paired sample t-test, Fig. 5B). VD supplementation

significantly rescued the expression of NGF in the

striatum by �0.7 fold in Group IV mice as compared

with HD mice (HD + VD vs HD; 1.14 ± 0.12 vs

0.66 ± 0.04, n = 4, p = 0.006, paired sample t-test,
Fig. 5B, C). Treatment of VD alone enhanced NGF

expression by �0.8 fold in Group III mice as compared

to HD mice (VD vs HD; 1.19 ± 0.21 vs 0.66 ± 0.04,

n = 4, p = 0.03, paired sample t-test, Fig. 5B, C) but

did not significantly change NGF relative to Group I

mice. These data indicate that HD mice have reduced

neurotrophin expression and this is rescued by VD

supplementation. The enhanced neurotrophin

expression could underlie the neuroprotective effect of

VD in HD mice. Our results parallel the findings of

Mohamed et al. (2015) where VD treatment significantly

alleviated beta-amyloid plaque expression with a con-

comitant elevation in the expression of neurotrophins in

a rat model of Alzheimer’s disease.

VD supplementation attenuates oxidative stress as
reflected by the decrease in the antioxidant enzyme
expression in HD mice

To observe the effect of VD supplementation on the gene

expressions of antioxidant markers, we performed

semiquantitative PCR in all the four groups of mice

(Group I to Group IV). mRNA expressions of superoxide

dismutase 1 (SOD1), superoxide dismutase 2 (SOD2),

glutathione peroxidase 4 (GpX4), and catalase (Cat)

were subsequently analyzed.

(i) Superoxide dismutase1

(SOD1) and superoxide dis-

mutase 2 (SOD2):

The effect of VD

supplementation did not

significantly change the gene

expression of SOD1 among the

four groups of mice (F (4) = 0.54,

p = 0.71, one-way ANOVA,

Supplementary Table 6). Striatal

tissue from HD mice showed no

change in SOD1 mRNA

expression (0.86 ± 0.42, n = 4)

when compared with Group I

(Control; 1.00 ± 0.00, n = 4,

p = 0.38, paired sample t-test,

Fig. 6A). VD administration in HD

mice also showed no significant

change in SOD1 expression in the

striatal samples of Group IV mice

(HD + VD; 1.57 ± 0.45) when

compared with Group II animals

(HD; 0.86 ± 0.42, n = 4,

p = 0.99, paired sample t-test),
Fig. 6A, Supplementary Table 6).

VD supplementation alone did not

affect SOD1 mRNA expression in

Group III mice when compared

with Group I (VD vs Control;

1.41 ± 0.43 vs 1.00 ± 0.00,

n = 4, p = 0.79, paired sample t-
test, Fig. 6A).

SOD2 mRNA expression also

remained unchanged among all

the four groups of mice either on

Fig. 5. mRNA expression of BDNF and NGF from the striatal tissues of mice depicting the

neuroprotective effect of 500 IU/kg of VD. (A) Real Time – PCR results depicting robust enhancement

in the mRNA expression of BDNF in the striatum of HD mice upon VD administration (HD + VD vs

HD; n = 3, p = 0.01, unpaired sample t-test). Striatal tissue of HD mice showed a significant

decrease in the gene expression of BDNF (HD vs Control; n= 3, p= 0.001, unpaired sample t-test).
(B) Semiquantitative PCR results depicting VD administration rescued the mRNA expression of NGF

in the striatum of 3-NP induced HD mice (HD + VD vs HD; n = 4, p = 0.001, paired sample t-test).
NGF expression was significantly downregulated in HD mice as compared to Control (HD vs Control;

n = 4, p = 0.006, paired sample t-test) (C) Representative gel images of PCR results for NGF. Data

is represented as box-and-whisker plots depicting median with first and third quartiles; shaded square

is the mean for each group and whiskers represents 5th and 95th percentile values.
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3-NP treatment or VD supplementation (F (3) = 0.91,

p = 0.47, one-way ANOVA, Fig. 6B). SOD2 mRNA

expression in HD mice was modulated by �0.6 fold as

compared to Control but did not reach significance (1.57

± 0.35, n = 4, p = 0.90, paired sample t-test,
Fig. 6B). Striatal samples from Group IV mice showed

an insignificant change in SOD2 mRNA expression

when compared with Group II mice (HD + VD vs HD;

0.99 ± 0.27 vs 1.57 ± 0.35, n = 4, p = 0.99, paired

sample t-test, Fig. 6B, Supplementary Table 6). Also, no

change in the expression of SOD2 was observe in

Group III mice supplemented with only VD when

compared with Group I mice (VD vs Control;

1.25 ± 0.37 vs 0.99 ± 0.01, n = 4, p = 0.54, paired

sample t-test, Fig. 6B).

(ii) Glutathione peroxidase (GpX4):

On the 30th day after 3-NP induction in HD mice, an

overall change in the gene expression of GpX4 in the

striatal tissue was observed (F (3) = 14.06, p < 0.001,

one-way ANOVA, Fig. 6C, Supplementary Table 6).

PCR data for GpX4 revealed that 3-NP treatment

caused a significant increase in the expression of GpX4

in the striatum of HD mice as

compared with Group I mice

(Group II vs Group I; 2.09 ± 0.22

vs 1.00 ± 0.00, n = 4,

p = 0.008, paired sample t-test,

Fig. 6C). mRNA expression of

GpX4 in Group IV mice

(HD + VD) decreased with VD

administration as compared to the

HD mice (Group IV vs Group II;

1.19 ± 0.11 vs 2.09 ± 0.18,

n = 4, p = 0.007, paired sample

t-test, Fig. 6C), to roughly control

levels. Similarly, VD

supplementation alone in Group III

mice did not change GpX4

expression relative to Group I (VD

vs Control; 1.08 ± 0.05 vs

1.00 ± 0.00, p = 0.99, paired

sample t-test, Fig. 6C,

Supplementary Table 6).

(iii) Catalase (Cat):

Similar results were seen with

expression of the antioxidant

enzyme catalase. PCR data from

the 30th day post-HD induction

revealed an overall change in

catalase expression across all the

four treatment groups (F

(3) = 23.27, p < 0.001, one-way

ANOVA, Fig. 6D, Supplementary

Table 6). 3-NP injected HD mice

showed a significant increase in

the enzyme expression as

compared with Group I mice

(Group II vs Group I; 2.02 ± 0.18

vs 1.00 ± 0.00, n = 4, p = 0.005, paired sample t-

test, Fig. 6D). Vitamin D3 administration appears to

reduce the oxidative stress in HD mice as seen by the

decrease in catalase expression in Group IV mice

(HD + VD) (Group IV vs Group II; 1.38 ± 0.03 vs

2.02 ± 0.18, n = 4, p = 0.02, paired sample t-test,
Fig. 6D). VD supplementation alone in Group III mice

also showed a decrease in the mRNA expression of

catalases when compared to HD mice but was not

significant (VD vs HD; 1.72 ± 0.03 vs 2.02 ± 0.18,

p = 0.08, paired sample t-test, Fig. 6D, Supplementary

Table 6). VD supplementation in Group IV mice

(HD + VD) showed a decrease in the expression of

antioxidants markers with a subsequent partial rescue in

the body weight (supplementary Fig. 1). An overall

significant difference in mean body weight was observed

among all the groups of mice (F (3) = 5.40, p = 0.002,

two-way ANOVA, supplementary Fig. 1, Supplementary

Table 4). A 30% decrease in the body weight was

observed by 30th day in Group II mice when compared

with Group I mice (HD vs Control; 0.87 ± 0.01 vs

1.23 ± 0.05, n = 8–10, p < 0.001, paired sample t-
test supplementary Fig. 1). The body weight was

Fig. 6. mRNA expression of antioxidants from the striatal tissues of mice depicting reduced oxidative

stress after VD administration in HD mice. (A) On 30th day, no significant change in the mRNA

expression of superoxide dismutase1 (SOD1) were observed across all groups of mice (n = 4,

p = 0.71, one-way ANOVA). VD induction produced no change in the striatal expression of SOD1 in

Group IV mice (HD + VD) as compared to HD mice (n = 4, p = 0.99, paired sample t-test). (B) No
significant change in the mRNA expression of superoxide dismutase 2 (SOD2) were observed across

all groups of mice (n = 4, p = 0.47, one-way ANOVA). Vitamin D supplementation did not

significantly change the expression of SOD2 in Group IV mice (HD + VD) as compared to HD mice

(n = 4, p = 0.99, paired sample t-test). (C) Box and whisker plot depicting enhanced expression of

glutathione peroxidase 4 (GpX4) following 3-NP injection in HD mice (HD vs Control; n = 4,

p = 0.008, paired sample t-test). GpX4 expression significantly subsided upon VD administration in

Group IV mice (HD + VD) as compared to HD mice (n = 4, p = 0.007, paired sample t-test). (D)
Box and whisker plot depicting VD administration leading to decrease in catalase expression in Group

IV mice (HD + VD) as compared to Group II (HD) (n = 4, p = 0.02, paired sample t-test). Striatal
expression of catalases was enhanced in HD mice when compared to Control mice (n = 4,

p = 0.005, paired sample t-test). (E) Representative gel images of PCR results for SOD1, SOD2,

GPX4 and Cat in the striatum of Control, HD, VD and HD + VD mice. Data are represented as box-

and-whisker plots indicating median, first and third quartile, and 5th and 95th percentile values.
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significantly rescued on Vitamin D3 supplementation in

HD mice (HD + VD vs HD; 1.10 ± 0.05 vs

0.87 ± 0.01, n = 8–10, p < 0.001, paired sample t-
test, supplementary Fig. 1), possibly reflecting the effect

of VD in fixing oxidative stress, mitochondrial function,

and muscle heath (Latham et al., 2021; G. W. Kim and

Chan 2001; Chabas et al., 2013; Gueye et al., 2015).

VD supplementation increases the expression of VDR
in striatum of 3-NP induced HD mice

The effect of Vitamin D supplementation on expression of

the Vitamin D receptor (VDR) in the striatum was

elucidated by western blot analysis (F (3) = 5.48,

p = 0.01, one-way ANOVA, Fig. 7, Supplementary

Table 7). 3-NP mediated neurodegeneration caused a

significant decrease in VDR expression by �0.54 fold in

HD mice (Group II) as compared to the Control (Group

II vs Group I, 0.46 ± 0.15 vs 1.00 ± 0.00, n = 4,

p = 0.02, paired sample t-test, Fig. 7A). VD

supplementation rescues this effect as Group IV mice

(HD + VD) showed a significant increase in the

expression of VDR by �2-fold as compared to Group II

(HD) mice (1.28 ± 0.26 vs 0.46 ± 0.15, n = 4;

p = 0.04, paired sample t-test). An enhancement in the

protein expression of VDR was observed in Group III

mice, supplemented with only VD as compared to

Group I mice but did not reached significance (VD vs

Control; 1.52 ± 0.25 vs 1.00 ± 0.00, n = 4; p = 0.13,

paired sample t-test). Our results parallel the finding of

Lima et al., 2018 where VD administration enhanced the

expression of VDR in the hippocampus.

DISCUSSION

In the last decade, Vitamin D3 (1a,25-dihydroxyvitamin

D3) and its analogues have been explored for their

usefulness in brain disorders. A number of studies have

reported a link between low serum level of VD in

patients affected by neurodegenerative and

neuropsychiatric disorders like Alzheimer’s Disease

(AD), Parkinson’s Disease (PD), Huntington’s disease

(HD), Schizophrenia, sleep disorders, autism, and

depression (Kim et al., 2006; Chabas et al., 2013;

Gueye et al., 2015; Mohamed et al., 2015; Sakai et al.,

2015; Koduah et al., 2017; Morello et al., 2018; Bivona

et al., 2019; Bakhtiari-Dovvombaygi et al., 2021). Under

a number of neuropathological conditions, Vitamin D sup-

plementation has shown to have a myriad of biological

functions including reducing the expression of oxidative

stress markers and neuro-inflammatory markers and

increasing the expression of neurotrophins (Mohamed

et al., 2015; Lima et al., 2018; Rodrigues et al., 2019;

Bakhtiari-Dovvombaygi et al., 2021; Latham et al.,

2021). Though some of the results remain inconclusive,

the limited information available suggests a neuroprotec-

tive function of VD in the context of the motor dysfunction

observed in Huntington’s disease (HD). The goal of the

present study was to explore the therapeutic potential of

Vitamin D3 (VD) in an animal model of HD induced by

intraperitoneal injection of 3-nitropropionic acid (3-NP).

3-NP is a well-established toxic model causing mitochon-

drial dysfunction and selective loss of striatal neurons

(Túnez et al., 2010; Brouillet, 2014). In this study, we used

a subacute dose of 3-nitropropionic acid, a slight modifi-

cation from the protocol of Amende et al. (2005). The pro-

tocol is derived from earlier studies by Fernagut et al.

(2002) and Kim and Chan (2001), where 50 mg/kg of 3-

NP was given for 5 days. As described by Nishino et al.

(1997), a single low dose injection of 3-NP (20 mg/kg)

was insufficient to induce behavioral and biochemical

abnormalities in the striatum but subsequent injections

caused significant striatal lesions and motor deficits. Our

data show that treating 3-NP HD model mice with

500 IU/kg/day of Vitamin D3 produces significant improve-

ments in movement and motor performance (Fig. 2 and

Fig. 4). The dose of VD was chosen based on prior stud-

ies of its neuroprotective, antidepressant, and antioxidant

effect in rodent model (Chabas et al., 2013; Gueye et al.,

2015; Kolla and Majagi, 2019; Rodrigues et al., 2019).

These studies suggested that a dose of 500 IU/kg/day

(12.5 mg/kg) of VD improved myelination and accelerated

functional recovery of nerve post injury (Chabas et al.,

2013). In another study, 500 IU/kg/day of VD significantly

improved the locomotion performance of rodents in a

spinal cord injury model that was not observed with a

dose of 200 IU/kg/day (Gueye et al., 2015). Further,

Rodrigues et al. (2019) demonstrated that in rodent model

of sporadic dementia of Alzheimer’s type, 500 IU/kg/day

of VD was enough to reduce oxidative stress markers

and restore cholinergic function by decreasing acetyl-

choline esterase activity in synaptosomes. Based on

these findings, we utilized the chronic administration of

500 IU/kg/day for 15 days in order to explore its effect

on motor disabilities in the 3-NP induced mouse model

of HD. We also tested if any benefits were maintained

over the next 15 days in the absence of continued VD

administration, and our data supported that this is the

case.

A study undertaken by Chel et al. (2013) suggested

for the first time the importance of VD in HD by providing

a link between VD deficiency and HD. In the same study,

Fig. 7. Enhanced protein expression of the Vitamin D receptor (VDR)

in the striatum of HD mice. (A) Box and whisker plot depicting the

effect of VD supplementation on VDR expression in HD mice. The

protein expression of VDR was significantly compromised in HD mice

and reversed substantially upon VD administration (HD vs Control,

n = 4, p = 0.02; HD + VD vs HD, n = 4, p = 0.04, paired sample t-
test). Data are normalized against Control Data; plots indicating

median, first and third quartile, and 5th and 95th percentile values. (B)
Representative protein expression levels of VDR in the striatum of

Control, HD, VD and HD + VD mice.
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the author showed a positive correlation between high

serum levels of 25-hydroxycholecalciferol (25(OH)VD3

or calcidiol) levels and improvement in motor capabilities

in HD patients. This was supported by the study by Xue

et al. (2015), which showed that the serum concentration

of Vitamin D3 (VD) metabolite strongly influences the

bioavailability of Vitamin D3 metabolites in the brain. To

produce the metabolically active form of VD (1a,25-dihy
droxycholecalciferol; 1a,25-(OH)2-VD3 or calcitriol), Vita-

min D3 (VD or cholecalciferol) undergoes two hydroxyla-

tion step reactions. The first hydroxylation reaction

occurs in the liver to produce 25-hydroxycholecalciferol

(25(OH)VD3 or calcidiol) and then a second hydroxylation

occurs in the kidney to produce the metabolic active form

of Vitamin D3 (1a,25-dihydroxycholecalciferol; 1a,25-
(OH)2-VD3 or calcitriol) (Xue et al., 2015; Bivona et al.,

2019). The serum half-life of the active metabolic form

of Vitamin D3 is reported to be approximately 4–6 h while

the serum half-life of calcidiol is approximately 10–

21 days. The serum level of calcidiol is the most accurate

and accepted method to depict VD status of an organism

(Xue et al., 2015). Our results demonstrate that even in

absence of systemic injection of VD (from the 15th to

30th day; Fig. 2 and Fig. 4), significant improvement was

observed in locomotion and rotarod performance of ani-

mals over this span, especially on the 30th day. These

data corroborate the findings of Xue et al. (2015), sug-

gesting that the serum levels of VD influence brain VD

metabolite levels and impact the motor capabilities of

HD model animals, neurotrophin levels and oxidative

stress.

The rescue effect of VD administration in 3-NP

induced HD mice were tested on movement impairment,

stride length and grip strength to evaluate the motor

coordination of the animals (Beal et al., 1993; Baydyuk

and Xu, 2014). Group II mice (3-NP induced) showed a

reduction in their latency of fall on the rotarod, whereas

on 30th day, Group IV mice (HD + VD) rescued neuro-

muscular coordination and showed no latency of first fall

within a total time duration of 180 seconds as shown in

Fig. 4. Neuromuscular coordination is known to be

impaired in patients with Huntington’s disease but how

VD affects this behavior performance in HD have not

been described in mouse model (Chel et al., 2013). The

findings of the present study suggest that the motor per-

formance deficits observed in the 3-NP model of HD were

significantly reversed by VD supplementation, suggesting

a neuroprotective function of VD in the striatum. We

observed no variability in the gait dynamics across all

the four groups (Group I-IV) over a month’s time as shown

in Fig. 3, possibly reflecting that the dose of 3-NP (75 mg/

kg) used in the present study did not produce neuronal

loss in the cerebellum (Takakusaki, 2017). Hence, no res-

cue effect of VD was observed in 3-NP injected HD mice

(Fig. 3). Changes in gait or postural control could occur

with different doses or schedules of neurotoxin (3-NP)

injection than those undertaken in the present study.

The enhancement in locomotory and rotarod

performances of HD mice post injected with VD (Group

IV; HD + VD) was accompanied with an increase in the

expression of brain derived neurotrophic factor (BDNF),

nerve-growth factor (NGF), and the Vitamin D receptor

(VDR) (Fig. 5 and Fig. 7). Previous studies have found

that VD mediates an increase in the expression of

Vitamin D receptor (VDR), tyrosine hydroxylase (TH),

the dopamine transporter (DAT), and brain derived

neurotrophic factors (BDNF) (Nimitphong and Holick,

2011). VD mediates its biological effect via VDR by acting

as transcriptional regulator for some important neu-

rotrophins in the brain like NGF and BDNF (Johri and

Beal, 2012; Taniura et al., 2006; Allen et al., 2013;

Zuccato and Cattaneo, 2007; Silva et al., 2015; Bayo-

Olugbami et al., 2020; Nadimi et al., 2020). To test some

of these previously reported targets, semi-quantitative

PCR and RT-PCR was carried out to explore VD-

induced gene expression of neurotrophins in Control

and 3-NP treated group of mice. In agreement with earlier

literature reports, we found a significantly decreased

expression of BDNF and NGF in 3-NP injected HD mice,

but this profoundly augmented in the Group IV mice

(HD + VD) with supplementation of VD (500 IU/kg)

(Fig. 5A, B) (Saporito et al., 1994; Pérez-Navarro et al.,

2000; Chabas et al., 2013; Gueye et al., 2015; Silva

et al., 2015; Bayo-Olugbami et al., 2020; Nadimi et al.,

2020). Numerous studies have highlighted the importance

of neurotrophic factors like BDNF and NGF as potential

therapeutics for neurodegenerative diseases such as

Parkinson’s, Alzheimer’s, and Huntington’s diseases

(Kim et al., 2006; Sanchez et al., 2009; Mohamed et al.,

2015; Lima et al., 2018; AlJohri et al., 2019; Rodrigues

et al., 2019). In particular, in-vivo and in-vitro findings from

Zuccato et al. (2001) suggest that restoring BDNF pro-

duction in cortical neurons during HD could restore the

survival signal required by the dying striatal neurons

(Zuccato and Cattaneo, 2007). The same study also pro-

vided evidence using genetic models of HD that mutant

huntingtin profoundly diminished the cortical production

of BDNF. Further, the work conducted by Pérez-Navarro

et al. (2000) suggests BDNF to be the most effective fac-

tor in preventing the loss of striatal neurons in HD. Our

data demonstrate that the gene expression of BDNF

and NGF was significantly compromised in 3-NP induced

HD mice (Group II) and was substantially reversed upon

VD administration in Group IV mice. This result suggests

a direct therapeutic benefit of VD in combating 3-NP

induced striatal neurodegeneration via BDNF and NGF

in the striatum (Fig. 5). NGF and BDNF are established

candidates for combating the death of neurons observed

in a range of neurodegenerative disorders (Zuccato and

Cattaneo, 2007; Gil-Mohapel, 2012; Allen et al., 2013).

VD supplementation possibly enhances the survival sig-

nals from neurotrophins to reduce neurodegeneration

and combat striatal neuronal loss as observed in the rat

model of AD (Mohamed et al., 2015). These results indi-

cate that VD could alleviate behavior deficits in 3-NP

induced HD mice via enhancement in neurotrophins

expression in the striatum.

The enhancement in the production of neurotrophins

like BDNF could act to reduce oxidative stress in

neurodegenerative diseases including HD (Taniura

et al., 2006; Allen et al., 2013; Takakusaki, 2017; Paul

and Snyder, 2019; Bakhtiari-Dovvombaygi et al., 2021).
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Oxidative stress markers allow assessment of the status

of the biological samples where it measures the capacity

of the system to scavenge free radicals. To control the

intracellular redox balance, cells have evolved a highly

complex ROS scavenging network. Previous studies on

the antioxidant role of VD have been controversial as

some studies did not support an antioxidant function for

VD and other studies observed an up-regulation of the

antioxidant markers (Loscalzo, 2008; Seiler et al., 2008;

Tagliaferri et al., 2019). To determine whether, in our

model, similar pathways are activated we checked differ-

ent antioxidant enzymes marker genes. The glutathione

(GSH)-dependent enzymatic system is one of most

important ROS balancing units that regulates cell survival

against oxidative damage. GSH contributes to the mainte-

nance of the intracellular redox environment either by

disulfide-exchange reactions with oxidized proteins or by

acting as a reducing agent for glutathione peroxidases.

Out of seven Glutathione peroxidases of mammals,

GpX4 is particularly important due to its critical role in

determining the cell membrane redox state. Increased

expression of GpX4 indicates lipid based oxidative stress

(Tagliaferri et al., 2019). In Group II (HD animals) we

found a significant increase in expression of GpX4 indicat-

ing higher oxidative stress and this was attenuated upon

supplementation with VD (Group IV, See Fig. 6). Catalase

is one of the crucial antioxidant enzymes that mitigates

oxidative stress by destroying cellular hydrogen peroxide

to produce water and oxygen (Loscalzo, 2008; Seiler

et al., 2008; Tagliaferri et al., 2019). Supporting the

GpX4 expression data which indicates higher oxidative

stress, HD (Group II) animals showed increased expres-

sion of catalase, which was again diminished by VD sup-

plementation. This suggests that VD supplementation

reduces oxidative stress and leading to the subsequent

downregulation of antioxidant enzymes. We could not find

the significant differences in SOD1 and SOD2 expression

possibly because its activation depends on very specific

ROS species.

The antioxidant effect of VD supplementation in HD

mice was accompanied by enhancement in the protein

expression of Vitamin D receptor (VDR) in the striatum

(Fig. 7). Previous studies have reported that the

biological activity of VD happens via upregulation of

VDR in other neurodegenerative diseases like AD and

PD (Mohamed et al., 2015; Lima et al., 2018). Therefore,

the protein expression of VDR was analyzed in Group IV

mice (HD + VD) pre-injected with 3-NP. On the 30th day,

a robust expression of VDR by �2 fold was observed in

HD mice supplemented with VD (Fig. 7). HD mice (Group

II) showed a significant decrease by �0.54 fold in the

VDR expression as compared to Control (Group I). This

enhanced VDR expression could help in attenuating the

toxic effect of 3-NP thereby reducing antioxidant stress

markers and increasing neurotrophins expression in

Group IV mice. The improvement in motor performance

observed in HD mice could also occur due to increased

Vitamin D receptor signaling at the neuromuscular junc-

tion as seen previously (Sakai et al., 2015). Additional

contribution of VD supplementation to the neuroprotective

role of the cholinergic system may also be a factor, as has

been seen in AD (Rodrigues et al., 2019). A reduction in

cholinergic signaling may occur in HD due to aberrant

kinase signaling as studies have shown that protein

kinases are known modulators of cholinergic receptors

expression and function (Komal et al., 2014; 2015). Previ-

ous studies have demonstrated that Vitamin D receptor

(VDR) signaling alleviates oxidative stress and increases

production of neurotrophins like BDNF (Bakhtiari-

Dovvombaygi et al., 2021; Xu and Liang, 2021). It is likely

that in our study, the rescue effect of VD observed in

behavior tasks involves the VD-VDR signal transduction

pathway, potentiating survival signals via neurotrophins

and decreasing oxidative stress, which in turn downregu-

lates antioxidant stress markers (Fig. 8). It is known that

VDR signaling is vital for mitochondrial integrity, combats

ER stress and strengthens skeletal muscle activity at neu-

romuscular junction (Baydyuk and Xu, 2014; Sakai et al.,

2015; Bakhtiari-Dovvombaygi et al., 2021; Xu and Liang,

2021; Maity et al., 2022). In summary, our data suggests

that Vitamin D3 mediates a neuroprotective effect in the

striatum via enhancement in the expression of Vitamin

D receptor (VDR) and vital neurotrophins, like BDNF

and NGF, crucial for survival signals in HD.

3-NP induction also significantly decreased the body

weight of HD mice (Group II) by �0.3-fold as previously

reported by Kumar et al. (2009), which was reversed upon

VD supplementation by the end of 30 days (HD + VD;

Group IV, supplementary Fig. 1). 3-NP is known to cause

mitochondrial dysfunction similar to what is demonstrated

Fig. 8. Restorative effects of Vitamin D3 (VD) in Huntington’s disease

(HD). VD supplementation enhances Vitamin D receptor (VDR) in the

striatum with concomitant increase in the expression of neurotrophins

namely, brain derived neurotrophic factor (BDNF) and nerve growth

factor (NGF) in the striatum of HD mice (Group IV). The increased

gene expression of neurotrophins is proposed to occur through

biological effects of VD on Vitamin D receptor (VDR), potentiating

antioxidant and neuroprotective benefits of VD on motor activity.

78 S. K. V. Manjari et al. / Neuroscience 492 (2022) 67–81



in a genetic model of HD (Brouillet et al., 2005; She et al.,

2011). Our gene expression and protein expression data

reflect that at this time point (30th day) there is a signifi-

cant enhancement in the Vitamin D receptor expression

(VDR) in the striatum with a concomitant increase in

expression of BDNF and NGF. The therapeutic action of

VD possibly involves an increase in the expression of

VDR in the skeletal muscles and increasing muscle mass,

and increasing body weight. This also suggests that VD

may be rescuing energy impairments and mitochondrial

dysfunction through upregulation of VDR and possibly

could be one of the reasons why we see an enhancement

in the weight in Group IV mice (Wong et al., 2009; Latham

et al., 2021). Overall, our results are novel in determining

the long-lasting effect of VD on striatal functions in HD,

and reflecting the strong effect of this neurosteroid in com-

bating motor dysfunction via enhancement in survival sig-

nal by BDNF and NGF (Fig. 5).

It must be noted that our study had some limitations in

that we did not perform histopathological studies to

determine the effect of VD on cell death in striatal

neurons. Further, the 3-NP cytotoxic model is useful

model for mimicking the pathophysiological symptoms of

HD, but does not involve mHTT itself. In our study, HD

mice showed a significant molecular change in VDR

levels, antioxidant stress markers and neurotrophin

expression, which are known to underlie HD

pathogenesis and have been observed in transgenic

models of the disorder (Vis et al., 1999; Zuccato et al.,

2001; Brouillet et al., 2005; Gil and Rego, 2008; Gil-

Mohapel, 2012; Brouillet, 2014). Our findings showed that

VD is a promising agent for delaying or even restoring

motor dysfunction. It is evident from our study and others

that VD supplementation possibly involves a diversity of

mechanisms for its beneficial effect in HD (Taniura

et al., 2006; Bankole et al., 2015; Sakai et al., 2015; Xu

and Liang, 2021). VD supplementation has proved to be

effective in reversing motor deficits and neurotrophins

levels in the 3-NP induced mouse model of HD. It could

be considered as promising agents for the development

of new therapeutics for neurodegenerative disorders

including HD. However, it will remain critical to replicate

our findings on neuroprotective role of VD supplementa-

tion in transgenic animal models.
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A B S T R A C T   

Introduction: 3-NP induction in rodent models has been shown to induce selective neurodegeneration in the 
striatum followed by the cortex (Brouillet, 2014). However, it remains unclear whether, under such a neurotoxic 
condition, characterized by neuroinflammation and oxidative stress, the gene expression of the immune resident 
protein, T-cell receptor beta subunit (TCR-β), α7 nicotinic acetylcholine receptor (α7 nAChRs), the nuclear factor 
kappa B (NF-κB), inflammatory cytokines (TNF-α and IL-6), and antioxidants (Cat and GpX4) get modulated on 
Vitamin D3 (VD) supplementation in the central nervous system. 
Methods: In the present study, real-time polymerase chain reaction (RT-PCR) was performed to study the 
expression of respective genes. Male C57BL/6 mice (8–12 weeks) were divided into four groups namely, Group I: 
Control (saline); Group II: 3-NP induction via i.p (HD); Group III: Vitamin D3 (VD) and Group IV: (HD + VD) 
(Manjari et al., 2022). 
Results: On administration of 500IU/kg/day of VD, HD mice showed a significant reduction in the gene 
expression of the immune receptor, TCR-β subunit, nuclear factor kappa B (NF-κB), inflammatory cytokines, and 
key antioxidants, followed by a decrease in the acetylcholinesterase activity. 
Conclusion: A novel neuroprotective effect of VD in HD is demonstrated by combating the immune receptor, TCR- 
β gene expression, antioxidant markers, and inflammatory cytokines. In addition, HD mice on VD administration 
for 0–15 days showed an enhancement in cholinergic signaling with restoration in α7 nAChRs mRNA and protein 
expression in the striatum and cortex.   

1. Introduction 

One of the breakthroughs in the field of immune-neuronal interac-
tion came 35 years ago when neuroscientists discovered the neuronal 
role of cytokine, interleukin-1 (IL-1) in the modulation of neurotrans-
mitters release and explored its contribution toward immune-brain 
interaction (Kabiersch et al., 1988; Spadaro and Dunn, 1990). 

Thereafter, rapid advances were made in discovering the expression of 
immune molecules and receptors in the brain originally thought to be 
expressed only in the immune system. Immune proteins like major his-
tocompatibility complex – I (MHC-I), β2 microglobulin (a co-subunit of 
MHC-I), and its potential binding partner CD3ζ (a protein complexed to 
receptors for MHC-I) were found to be expressed in neurons (Baudouin 
et al., 2008; Shatz, 2009; Komal et al., 2022). In addition to MHC-I, a 

Abbreviations: VD, Vitamin D3; HD, Huntington’s disease; 3-NP, 3-nitropropionic acid; i.p, Intraperitoneal; ACh, Acetylcholine; BDNF, Brain-derived neurotrophic 
factor; NGF, Nerve-growth factor; VDR, Vitamin D receptor; Cat, Catalases; GpX4, Glutathione peroxidases; α7 nAChRs, alpha7 nicotinic acetylcholine receptors; 
MHC-I, Major histocompatibility complex– I; MSN, Medium spiny neurons; GABA, γ-aminobutyric acid; Htt, Huntingtin gene; mHTT, mutant Huntingtin protein; 
cDNA, Complementary DNA; RT-PCR, Real-Time polymerase chain reaction; ANOVA, Analysis of variance; AD, Alzheimer’s disease; PD, Parkinson’s disease; 1α, 25 
(OH)2VD3, 1α, 25-dihydroxy vitamin D3 or calcitriol; 25OHVD3, 25-hydroxyvitamin D3 or calcidiol; ROS, reactive oxygen species; SEM, standard error of the mean. 
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study undertaken by Komal et al. (2014) reflected a possible effect of 
T-cell receptor activation (TCR) on α7 nicotinic acetylcholine receptor 
expression and function in the murine cortex. However, how immune 
resident protein, T-cell receptor beta subunit (TCR-β) expression in the 
central nervous system gets modulated under a neuropathological con-
dition like those observed in Huntington’s disease (HD) remains 
unexplored. 

Huntington’s disease (HD) is a progressive, fatal, neurodegenerative 
disorder characterized by neuronal loss predominantly in the striatum, 
followed by the cortical region of the brain (Gil and Rego, 2008). 
Neuronal death results in motor, cognitive, and working memory im-
pairments typically associated with the disease pathology (Gil and Rego, 
2008). Some of the neurotoxic conditions responsible for neuronal loss 
in the striatum and the cortex as seen in HD include enhanced neuro-
inflammation, increased oxidative stress, decreased neurotrophins pro-
duction, and mitochondrial dysfunction (Cherubini et al., 2020; Maity 
et al., 2022; Rekatsina et al., 2020; Zuccato and Cattaneo, 2007). 
3-nitropropionic acid (3-NP) induction in mice causes selective neuronal 
degeneration in the caudate and putamen of basal ganglia circuitry and 
recapitulates a wide range of neuropathological symptoms of HD 
(Brouillet, 2014). 3-NP is an irreversible inhibitor of succinate dehy-
drogenase and is a well-known toxin-induced model of HD (Kim et al., 
2003). 3-NP injections in rodents have also been shown to cause neu-
roinflammation and neurochemical alteration due to increased oxida-
tive stress (Ahuja et al., 2008). In this regard, an antioxidant effect of 
Vitamin D3 (VD; cholecalciferol) at a dose of 500IU/kg/day was 
recently shown to significantly rescue motor dysfunction in a 3-NP 
induced mouse model of HD (Manjari et al., 2022). VD administration 
also caused an enhancement in the gene expression of neurotrophins like 
nerve-growth factor (NGF) and brain-derived neurotrophic factor 
(BDNF) in the striatum (Manjari et al., 2022). 

There are shreds of evidence that Vitamin D3 (VD) mediates its 
biological effect by binding with the Vitamin D receptor (VDR) and 
combats neuronal loss across a range of neuropsychiatric illnesses 
(AlJohri et al., 2019; Bakhtiari-Dovvombaygi et al., 2021; Buell and 
Dawson-Hughes, 2008; Chabas et al., 2013; Nimitphong and Holick, 
2011; Rodrigues et al., 2019). Nonetheless, under such neuropatholog-
ical conditions, as observed across a multitude of neurological disorders 
like Alzheimer’s disease (AD), Parkinson’s disease (PD), schizophrenia 
(SCZ), and Huntington’s disease (HD), impairment in cholinergic neu-
rotransmissions are also discovered where specific activation of α7 
nicotinic acetylcholine receptors (α7 nAChRs) have been shown to 
exhibit neuroprotective benefits (Caton et al., 2020; D’Angelo et al., 
2021; Egea et al., 2015; El Nebrisi et al., 2020; Foucault-Fruchard et al., 
2017, 2018; Hoskin et al., 2019; Marder, 2016; Quik et al., 2015; Tata 
et al., 2014; Zhao et al., 2021). However, the impact of Vitamin D3 (VD) 
supplementation on the neuronal gene expression of TCR-β subunit re-
ceptor and α7 nAChRs in HD remains largely unexplored. Also, 3-NP 
mediated increase in oxidative stress and its effect on acetylcholines-
terase (AChE) activity in HD remains to be elucidated. 

In the present study, we show that VD administration in HD mice 
preinjected with 3-NP significantly decreases the gene expression of 
TCR-β immune receptor and antioxidants like catalase (Cat), and 
glutathione peroxidase (GpX4) together with a concomitant reduction in 
the acetylcholinesterase activity in the cortex and striatal brain regions. 
No significant difference was observed between Group I (control mice) 
and Group III (mice supplemented only with VD), further supporting the 
present hypothesis that VD neuroprotective benefits were observed only 
when neurons were subjected to neurodegeneration on 3-NP adminis-
tration. Overall in the present work, we primarily show an anticholin-
esterase activity of VD and its positive effect on α7 nicotinic 
acetylcholine receptor mRNA and protein expression together with a 
detrimental effect on the gene expression of the TCR-β subunit in Hun-
tington’s disease (HD). 

2. Experimental procedures 

2.1. Animal procurement 

Ten to twelve weeks old male C57BL/6 mice (average weight; 26 ±
3 g) were acquired from Sainath Agencies, Hyderabad, India. Animals 
were group-housed (2 mice per cage) with ad libitum access to food and 
water. They were kept in a 12 h light/12 h dark cycle at 25 ± 2 ◦C. All 
the animal experiments were carried out with the approval of the 
institutional animal ethics committee (IAEC), BITS - Pilani, Hyderabad. 
All efforts were made to minimize the number of animals used and their 
suffering. 

2.2. Study design 

Mice were acclimatized for twelve days and were then randomly 
divided into 4 experimental groups (Group I to Group IV). Intraperito-
neal injections (i.p) of 3-nitropropionic acid (3-NP) and/or Vitamin D3 
(VD or cholecalciferol) were given as described previously (Manjari 
et al., 2022). Briefly, 3-NP was given thrice at a dose of 25 mg/kg, every 
12 h, for a total cumulative dose of 75 mg/kg. Intraperitoneal injections 
(i.p) of VD were undertaken at a dose of 500IU/kg/day from day 1 to day 
15 (Fig. 1; Manjari et al., 2022). 

2.3. Experimental design 

The mice were randomly divided into four experimental groups for 
biochemical assays (Fig. 1).  

a. Group I: Control group mice (C57BL/6) injected with 1X saline.  
b. Group II: 3-NP induced mice by i.p. injection (3-NP; 75 mg/kg) 

without VD-treatment (HD).  
c. Group III: Mice injected solely with 500IU/kg/day of Vitamin D3 

(VD) for 15 days.  
d. Group IV: Post-intraperitoneal injection of 500IU/kg/day of VD to 

3-NP (75 mg/kg) pre-injected mice for 15 days (HD + VD). 

Fig. 1. Timeline and design for the study. C57BL/6 male mice at the age of ten 
to twelve weeks were undertaken in the present study. Mice were separated into 
four different groups. Group II and Group IV mice were injected (i.p) with 3- 
nitropropionic acid (3-NP) at 25 mg/kg dose at 12 h intervals of time (cumu-
lative dose of 75 mg/kg; Manjari et al., 2022). Vitamin D3 (VD; 500IU/kg/day) 
was supplemented in Group III mice (VD only) and after post-injection of 3-NP 
to Group IV mice (HD + VD) for 15 days i.e. from Day 1 – Day 15. Mice were 
kept under observation from Day 1 to Day 30. On the 30th day, mice were 
sacrificed and the cortical and striatal brain tissue samples were extracted for 
gene and protein expression analysis. 
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2.4. Drugs and reagents 

2.4.1. Cholecalciferol (Vitamin D3; VD) 
was purchased from Sigma-Aldrich, India (Cat No: C9756) and dis-

solved in 1% ethanol (diluted with sterile saline) on the day of injection 
(Mohamed et al., 2015). Mice were administered with 500IU/kg 
(12.5 μg/kg/day) i.p. of VD as reported previously (Manjari et al., 
2022). VD administration was undertaken in Group III mice (only VD) 
and Group IV mice (HD+VD). 

2.4.2. 3-nitropropionic acid (3-NP) 
was purchased from Sigma-Aldrich, India (Cat No: N22908). Stock 

solutions of 3-NP (3 mg/mL) were prepared in 0.1 M phosphate- 
buffered saline solution and were injected intraperitoneally at 25 mg/ 
kg (3-NP; a cumulative dose of 75 mg/kg) thrice at 12 h intervals to 
respective groups of mice as described previously (Manjari et al., 2022). 
Controls were treated with three doses of 1X saline at 12 h intervals. 

2.5. RNA isolation and cDNA preparation 

On the 30th day, mice from all four groups (i.e Group I to Group IV) 
were anesthetized using isoflurane (Rx, NoB506) and immediately 
decapitated for the extraction of cortical and striatal brain tissue sam-
ples. The respective brain tissue sample was placed into 1 mL of RNAiso 
PLUS (Takara Bio), sonicated on ice, and centrifuged after the addition 
of 200 μl of chloroform for 30 min at 12,000 g at 4 ◦C (Eppendorf 
Refrigerated centrifuge, 542R). The isolation of the aqueous phase was 
followed by the addition of an equal volume of isopropanol (Hi-Media 
Laboratories, Molecular biology grade, India), followed by overnight 
incubation at − 20 ◦C. Sample washing was preceded with centrifuga-
tion at 12,000 g for 30 min at 4 ◦C, followed by washing with 70% ice- 
cold ethanol. The obtained pellet was resuspended in nuclease-free 
water. DNase-treated samples (EN052, Thermo Scientific™, USA) 
were made up to 400 μl using nuclease-free water, followed by sample 
purification using 1/10th volume of 3 M sodium acetate and 2X volume 
of phenol: chloroform: isoamyl alcohol (Sisco Research Laboratories Pvt. 
Ltd., India) and centrifuged for 2 min at maximum speed at 4 ◦C. The 
total concentration of purified RNA was estimated by the Nanodrop 
spectrophotometer (Nanodrop, Thermo Fisher Scientific, USA). An equal 
amount of RNA from each group was used to reverse transcribe com-
plementary DNA (cDNA) with the help of the Verso cDNA synthesis kit 
(Cat No: AB1453A, Thermo Scientific™, USA) as per the manufacturer’s 
instruction. Briefly, 500 ng of purified RNA was taken from each group 
for cDNA synthesis with the following reaction conditions: 42 ◦C for 1 h 
followed by 95 ◦C for 2 min. The obtained cDNA was used for real-time 
polymerase chain reaction (RT-PCR). The expression of targeted genes 

was normalized to 18 S RNA. All primers are listed in Table 1. 

2.6. Primer design 

Primers for all genes were designed using a multitude of in-silico 
approaches involving various bioinformatics tools. The cDNA se-
quences for each gene were retrieved from the Ensembl genome browser 
(https://asia.ensembl.org/index.html). Primer for the TCR-β subunit 
was directed towards the constant region as described previously (Syken 
and Shatz, 2003; Table 1). 

2.7. Analysis of gene expression for TCR-β, α7 nAChRs, NF-κB, TNF-α, 
IL-6, and antioxidants by real-time polymerase chain reaction (RT-PCR) 

The sequences of the immune receptor, TCR-alpha (TCR-α), TCR- 
beta (TCR-β), α7 nicotinic acetylcholine receptor (α7 nAChRs), nuclear 
factor-kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), interleukin 
6 (IL-6) and antioxidant marker genes (Cat and GpX4) of the mouse 
genome were obtained from NCBI. The sequences were deposited in the 
IDT primer quest tool to get the most suitable primer for gene analysis. 
All the genes, primer sequences, and amplicon sizes are listed in Table 1. 
The gene expression among the four groups of mice was assessed by RT- 
PCR in a CFX96 Touch Real-time PCR system (BioRad) using the GoTaq 
qPCR SYBR master mix (Cat No #A6001, Promega Corporation). The 
reaction mixture was prepared according to the manufacturer’s protocol 
using ~12 ng of the cDNA template. Relative gene expression was 
quantified using the ΔCT method with respective primers (Table 1) and 
normalized to 18 s (forward 5’-ACGGAAGGGCACCACCAGGA-3’; 
reverse 5’-CACCACCACCCACGGAATCG-3’). We used the ΔΔCT method 
to determine the fold changes in the expression of TCR-β, α7 nAChRs, 
NF-κB, TNF-α, IL-6, and oxidative stress markers (Livak and Schmittgen, 
2001). Briefly, the threshold cycle (Ct) was extracted using Bio-Rad CFX 
Manager 3.1 software, and relative gene expression was calculated as 
follows: fold change = 2^-ΔΔCt, where ΔCt (cycle difference) = Ct 
(target gene) – Ct (control gene) and ΔΔCt = ΔCt (treated condition) - 
ΔCt (control condition) (Livak and Schmittgen, 2001). 

2.8. Acetylcholinesterase (AChE) activity assay 

The acetylcholinesterase (AChE) activity was assayed using 
Amplex® Red Acetylcholine/Acetylcholinesterase Kit (A-12217; Invi-
trogen) essentially following instructions as directed by the manufac-
turer. In the assay, AChE activity was assessed indirectly with the help of 
Amplex Red, a highly sensitive dye for horseradish peroxidase (HRP). In 
the initial step, AChE transforms acetylcholine into choline and acts as a 
substrate for the choline oxidase enzyme that converts choline to betaine 

Table 1 
Sequence of primers used in RT - PCR studies.  

Gene Orientation Sequence of primers (5’ to 3’) Amplicon size (bp) 

18 s Forward ACGGAAGGGCACCACCAGGA  127  
Reverse CACCACCACCCACGGAATCG 

TCR-α Forward CAAGTGACCCTTTCAGAAGATGA  106  
Reverse GTGGACCTTGTCCAGGATATTG 

TCR- β Forward GTGAATGGCAAGGAGGTCCA  111  
Reverse CCAGAAGGTAGCAGAGACCC 

α7 nAChRs Forward GTACAAGGAGCTGGTCAAGAA  94  
Reverse CAGGAGACTCAGGGAGAAGTA 

GPx4 Forward GCCCAATACCACAACAGTAGA  108  
Reverse CCTGAACCACAGCGATGAA 

Cat Forward AATTGCCTCCACACCTTCAC  107  
Reverse TCACCAAGCTGCTCATCAAC 

TNF-α Forward CTACCTTGTTGCCTCCTCTTT  116  
Reverse GAGCAGAGGTTCAGTGATGTAG 

IL-6 Forward GGGATGTCTGTAGCTCATTCTG  101  
Reverse AACTGGATGGAAGTCTCTTGC 

NF-κB Forward GGAACAGGTGGGATGTTGCT  187  
Reverse GACTAAACTCCCCCTGATTCTGAAG  
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and H2O2. Following this step, H2O2 reacted at a ratio of 1:1 with 
Amplex red to produce the fluorescent product resorufin, which in turn 
was measured using a fluorescent plate reader (Spiromax, USA). To 
analyze AChE activity, the reaction was initiated using a 100 μl working 
solution (50 μM acetylcholine, 200 μM Amplex Red reagent, 0.1 U/mL 
choline oxidase, and 1 U/mL horseradish peroxidase [HRP]) which was 
added to 100 μl of the brain tissue sample from each respective group of 
mice. After 30 min of incubation at room temperature, the fluorescence 
intensity was measured at 590 nm emission wavelengths. The enzyme 
activity was calculated using AChE standard curve and data is repre-
sented as mU/mg protein after subtraction of the background fluores-
cent value for each sample fluorescent value (Fig. 4). 

2.9. Protein quantification and western blotting 

On the 30th day, cortical and striatal brain tissue was extracted from 
all four groups of mice. The tissue was homogenized in the lysis buffer 
(150 mM sodium chloride, 1.0 % TritonX-100, 0.5 % sodium dodecyl 
sulfate, and 50 mM Tris, pH 8.0). The protein concentration was 
determined using a Bradford protein assay kit (Bio-Rad, USA). We 
loaded equal amounts of protein (50 μg) run in a 12 % gel, and then 
transferred to PVDF (Pall Corporation) membrane through a trans blot 
wet transfer system (Bio-Rad). The membrane was blocked using 5 % 
BSA and incubated with respective primary and secondary antibodies 
for α7 nAChRs mouse mAb (CHRNA7, 1:500, #MA5–31691, Thermo 
Fischer); Anti-mouse IgG-HRP-linked antibody (1:5000, AB_10015289, 
Jackson ImmunoResearch Laboratories). Membranes stained with pon-
ceau (ML045, Himedia) were used as a control for normalization. The 
signal intensities of the bands were captured using the fusion pulse gel 
documentation system (Eppendorf, USA). ImageJ software was used to 
quantify the band intensities. 

2.10. Statistical analysis 

Experimental data are represented as normalized values w.r.t to 
control. Data in the figures are represented as box and whisker plots 
depicting the median with interquartile range; (central line: median; 
25th and 75th quartiles; whiskers: 5th-95th percentile values) to illus-
trate the distribution of normalized values for each respective group of 
mice (Group I to Group IV). Group data in the text are presented as mean 
± standard error of the mean (SEM). Statistical analysis was conducted 
using one-way ANOVA followed by either post hoc multiple pairwise 
analysis using Tukey’s HSD tests or paired sample t-test. p < 0.05 was 
set as threshold of significance (*p < 0.05, **p < 0.005, and 

***p < 0.001). All the data is displayed using Origin 8.1. 

3. Results 

3.1. Vitamin D3 supplementation decreases TCR-β subunit expression in 
the cortex and striatum of HD mice 

To explore the chronic effect of VD on the immune receptor, TCR-β 
subunit mRNA expression, RT-PCR was performed on the cortical and 
striatal brain tissue samples extracted on the 30th day from all four 
groups of mice (Group I-Group IV). We found an overall significant 
change in TCR-β expression among all four groups of mice (p = 0.004; 
one-way ANOVA). HD mice (Group II) injected with a cumulative dose 
of 75 mg/kg of 3-NP showed profound enhancement ~2-fold in the gene 
expression of the TCR-β subunit in the cortex when compared to that of 
control mice (Group II vs Group I; 3.16 ± 0.32 vs 1.00 ± 0.00, n = 6, 
p = 0.009, paired sample t-test; Fig. 2A). On the 30th day, post 
administration of 500IU/kg of Vitamin D3 (VD) in HD mice significantly 
subsided the gene expression of the immune receptor, TCR-β subunit in 
comparison to HD mice preinjected with only 3-NP (Group IV vs Group 
II; 1.06 ± 0.15 vs 3.16 ± 0.32, n = 6, p = 0.02, paired sample t-test; 
Fig. 2A). 

Similarly, a comparable trend of the VD effect was observed from the 
striatal brain tissue samples of all four groups of mice (p < 0.001, one- 
way ANOVA). The expression of TCR-β in HD mice was upregulated 
by ~3-fold (3-NP) when compared to the control mice (Group II vs 
Group I; 4.02 ± 0.52 vs 1.00 ± 0.00, n = 10, p = 0.005, paired sample t- 
test, Fig. 2B). VD supplementation significantly decreased the expres-
sion of TCR-β in the striatum of 3-NP injected mice (HD + VD) as 
compared with HD mice (Group IV vs Group II; 1.08 ± 0.07 vs 4.02 
± 0.52, n = 10, p = 0.008, paired sample t-test, Fig. 2B). Overall, these 
data represent that VD modulates the gene expression of the immune 
receptor, TCR-β under neuropathological conditions induced by 3-NP. 

3.2. Vitamin D supplementation rescues the protein and mRNA expression 
of α7 nAChRs in the cortex and striatum of HD mice 

The effect of Vitamin D supplementation on the protein expression of 
the α7 nicotinic acetylcholine receptor (α7 nAChRs) in the cortex was 
elucidated by western blot analysis. 3-NP mediated neurodegeneration 
caused a significant decrease in the α7 nAChRs protein expression in HD 
mice (Group II) as compared to the control mice (Group II vs Group I, 
0.24 ± 0.08 vs 1.00 ± 0.00, n = 4, p < 0.001, paired sample t-test,  
Fig. 3A). VD supplementation rescued this effect as Group IV mice (HD +

Fig. 2. Vitamin D3 (VD) intake decreases the 
gene expression of the TCR-β subunit in the 
cortex and striatum of HD mice. (A) Data 
demonstrating a significant increase in the 
cortical gene expression of the TCR-β subunit in 
Group II mice (HD vs control; n = 6, p = 0.009, 
paired sample t-test). VD administration to 
Group IV mice post-3-NP injection rescued the 
mRNA expression of the TCR-β subunit in the 
cortex of HD mice (HD + VD vs HD; n = 6, 
p = 0.02, paired sample t-test). (B) RT-PCR re-
sults depicting VD administration decreased the 
mRNA expression of the TCR-β subunit in the 
striatum of 3-NP induced HD mice (HD + VD vs 
HD; n = 10, p = 0.008, paired sample t-test). 
TCR-β subunit expression was significantly 
upregulated in Group II mice as compared to 
Group I mice (HD vs control; n = 10, p = 0.005, 
paired sample t-test). Data is represented as 
box-and-whisker plots depicting the median 
with first and third quartiles and whiskers rep-
resenting the 5th and 95th percentile values.   
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VD) showed an enhancement in the protein expression of α7 nAChRs as 
compared to Group II (HD) mice (1.13 ± 0.07 vs 0.24 ± 0.08, n = 4; 
p < 0.001, paired sample t-test, Figs. 3A, and 3C). Real-time PCR anal-
ysis conducted on the striatal sample also showed a dramatic decrease in 
the mRNA expression of α7 nAChRs in HD mice which got rescued on VD 
administration (Group II vs Group IV 0.44 ± 0.01 vs 0.88 ± 0.10, n = 6, 
p = 0.02, paired sample t-test, Fig. 3B). α7 nAChRs mRNA expression 
got subsided in HD mice when compared to control mice (Group II vs 
Group I 0.44 ± 0.01 vs 1.00 ± 0.00, n = 6, p < 0.001, paired sample t- 
test, Fig. 3B). These results indicate that an increase in the gene 
expression of TCR-β (Fig. 2) was somehow causing a negative regulation 
of α7 nAChRs expression in HD and validates our previous finding where 
we showed that the entire octameric component of activated TCR 
downregulated the expression and function of the α7 nicotinic acetyl-
choline receptors (Komal et al., 2014). Here we show that neurotoxic 
conditions mimicked by 3-NP cause an increase in the gene expression of 
native immune proteins like TCR-β with concomitant downregulation in 
protein and mRNA expression of α7 nAChRs in the central nervous 
system. 

3.3. Vitamin D administration alleviates acetylcholinesterase levels in the 
cortex and striatum of HD mice 

To analyze the effect of Vitamin D3 (VD) on cholinergic neuro-
transmission, acetylcholinesterase (AChE) activity assay was performed 
on the cortical and striatal tissue samples from the respective four 
groups of mice. HD mice induced with 3-NP (75 mg/kg) showed a sig-
nificant rise in the AChE activity when compared with control mice 
(Group II vs Group I, 748 ± 70 mU/mg vs 417 ± 26 mU/mg, n = 6, 
p < 0.001, paired sample t-test, Fig. 4A), indicating the detrimental ef-
fect of 3-NP on cholinergic neurotransmission in the cortex. However, 
Vitamin D3 administration attenuated the effect of 3-NP and decreased 
the cortical AChE activity in HD mice (Group IV vs Group II; 502 ± 33 
mU/mg vs 748 ± 70 mU/mg, n = 6, p = 0.002; paired sample t-test, 
Fig. 4A). A similar increase in AChE activity was also observed in the 
striatum of HD mice (Group II vs Group I, 49 ± 4 mU/mg vs 29 ± 3 mU/ 
mg, n = 8, p < 0.001, paired sample t-test, Fig. 4B). On the 30th day, VD 
administration significantly attenuated the AChE activity in 3-NP 
induced mice (HD + VD) when compared with HD mice (Group IV vs 

Fig. 3. Effect of VD supplementation on the 
protein and gene expression of α7 nicotinic 
acetylcholine receptors (α7 nAChRs) in the 
cortex and striatum of HD mice (A) On the 30th 
day, an overall change in the protein expression 
of α7 nAChRs was observed in cortical tissue 
samples from all the four groups of mice (n = 4, 
p < 0.001, one-way ANOVA). VD supplemen-
tation rescued the cortical expression of α7 
nAChRs in Group IV mice (HD + VD) as 
compared to Group II (HD) mice (n = 4, 
p < 0.001, paired sample t-test). (B) A signifi-
cant increase in the mRNA expression of α7 
nAChRs was also observed in the striatal sam-
ples of 3-NP induced HD mice on VD adminis-
tration (Group IV vs Group II, n = 6, p = 0.02, 
paired sample t-test). The mRNA expression of 
α7 nAChRs got significantly decreased in HD 
mice when compared with control mice (Group 
II vs Group I; n = 6, p < 0.001, paired sample t- 
test). Data is represented as box-and-whisker 
plots depicting the median in the first and 
third quartiles and whiskers represent the 5th 
and 95th percentile values. (C) Representative 
gel image for protein expression of α7 nAChRs 
from the cortical tissues.   

Fig. 4. Effect of VD supplementation on the 
enzymatic activity of acetylcholine esterase 
(AChE) in the cortex and striatum of HD mice 
(A) On the 30th day, a notable change in the 
activity of AChE was observed in the cortex of 
all four groups of mice (n = 6, p < 0.001, one- 
way ANOVA). VD induction significantly 
combated the activity of AChE in Group IV mice 
as compared to Group II mice (HD + VD vs HD; 
n = 6, p = 0.002, paired sample t-test). (B) A 
significant decrease in the activity of AChE was 
also observed in the striatal brain tissue samples 
of Group IV mice, supplemented with VD (HD +
VD vs HD, n = 8, p < 0.001, paired sample t- 
test). Data is represented as box-and-whisker 
plots depicting the median with first and third 
quartiles and whiskers representing the 5th and 
95th percentile values.   
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Group II, 29 ± 3 mU/mg vs 49 ± 4 mU/mg, n = 8, p < 0.001, paired 
sample t-test, Fig. 4B). These results indicate an anti-cholinesterase ef-
fect of VD in HD. The results of this study are in accordance with a 
previous finding where VD attenuated the AChE activity in the cerebral 
cortex of diabetic rats (Rodrigues et al., 2019). Thus, VD supplementa-
tion can rescue deficits in cholinergic neurotransmission by decreasing 
AChE activity and restoring acetylcholine (ACh) levels in HD. 

3.4. Vitamin D3 administration in HD mice decreases oxidative stress as 
reflected by a reduction in key antioxidants gene marker expression in the 
cortex 

To elucidate the effect of VD supplementation on the gene expres-
sions of antioxidant markers, we performed RT-PCR in all four groups of 
mice (Group I to Group IV). mRNA expressions of glutathione peroxidase 
4 (GpX4), and catalase (Cat) were subsequently analyzed in the cortical 
brain samples. On the 30th day after 3-NP-induction in HD mice, an 
overall change in the gene expression of GpX4 in the cortical tissues was 
observed (n = 6, p < 0.001, one-way ANOVA, Fig. 5A). RT-PCR results 
of GpX4 revealed that 3-NP treatment elevated the gene expression of 
GpX4 in the murine cortex of HD mice as compared with control mice 
(Group II vs Group I; 2.83 ± 0.08 vs 1.00 ± 0.00, n = 6, p < 0.001, 
paired sample t-test, Fig. 5A). mRNA expression of GpX4 in Group IV 
mice (HD + VD) got significantly decreased on VD administration as 
compared to the HD mice (Group IV vs Group II; 1.31 ± 0.14 vs 2.83 
± 0.08, n = 6, p < 0.001, paired sample t-test, Fig. 5A). 

The effect of VD supplementation showed a remarkable change in 
the gene expression of catalase (Cat) among all four groups of mice in 
cortical samples (n = 8, p = 0.004, one-way ANOVA, Fig. 5B). Cat 
mRNA expression was elevated in HD mice when compared with control 
mice (Group II vs Group I; 2.74 ± 0.33 vs 1.00 ± 0.00, n = 8, p = 0.008, 
paired sample t-test, Fig. 5B). HD mice on VD supplementation for 15 
days showed a significant reduction in the mRNA expression of catalases 
in the cortex when compared with HD mice injected with 3-NP (Group 
IV vs Group II; 1.29 ± 0.16 vs 2.74 ± 0.33, n = 8, p = 0.003, paired 
sample t-test, Fig. 5B). A similar anti-oxidant effect of VD is demon-
strated in our previous finding where a reduction in the gene expression 
of GpX4 and Cat was observed in the striatum of HD mice (Manjari et al., 
2022). Overall, our data indicate a protective effect of Vitamin D3 (VD) 
in HD and suggest its therapeutic potential in maintaining the cortical 
and striatal functions in Huntington’s disease (HD). 

3.5. An Anti-inflammatory effect of Vitamin D3 supplementation in HD 
mice 

A significant enhancement in the levels of pro-inflammatory 

cytokines like tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6) is 
known to precede striatal neurodegeneration in HD (Chambon et al., 
2023; Jia et al., 2022). To validate if 3-NP induction causes neuro-
inflammation in the striatum, we analyzed the gene expression of vital 
neuroinflammatory markers like nuclear factor-kappa B (NF-κB), 
proinflammatory cytokines like TNF-α and IL-6 from the striatal and 
cortical brain tissue samples from all the four groups of mice. HD mice 
injected with 3-NP showed a profound enhancement in the gene 
expression of NF-κB as compared to the control mice (Group II vs Group 
I; 7.42 ± 0.25 vs 1.00 ± 0.00, n = 4, p < 0.001, paired sample t-test,  
Fig. 6A). The mRNA levels of TNF-α (Group II vs Group I; 1.64 ± 0.06 vs 
1.00 ± 0.00, n = 4, p = 0.005, paired sample t-test, Fig. 6B) and IL-6 in 
the striatum were also elevated on 3-NP induction (Group II vs Group I; 
3.89 ± 0.50 vs 1.00 ± 0.00; n = 4, p = 0.02, paired sample t-test, 
Fig. 6C). Upon Vitamin D3 administration, the mRNA expression of 
NF-κB significantly subsided in HD mice (Group IV vs Group II; 0.57 
± 0.04 vs 7.42 ± 0.25, n = 4, p < 0.001, paired sample t-test, Fig. 6A). 
VD intake by HD mice also showed a profound decrease in the mRNA 
expression of TNF-α (Group IV vs Group II; 1.04 ± 0.07 vs 1.64 ± 0.06, 
n = 4, p = 0.02, paired sample t-test, Fig. 6B) and IL-6 (Group IV vs 
Group II; 1.08 ± 0.13 vs 3.89 ± 0.50, n = 4, p = 0.01, paired sample 
t-test, Fig. 6C), reflecting its anti-inflammatory action in the striatum. 

A similar antagonistic effect of VD on inflammatory cytokines gene 
expression was observed in the cortex of HD mice. An increase in the 
cortical mRNA expression of TNF-α got substantially decreased in 3-NP 
induced HD mice treated with Vitamin D3 (Group II vs Group I; 1.50 
± 0.07 vs 1.00 ± 0.00, n = 4, p = 0.01; Group IV vs Group II; 0.77 
± 0.03 vs 1.50 ± 0.07, n = 4, p = 0.002, paired sample t-test, Fig. 6D). 
Similarly, VD supplementation significantly decreased the mRNA 
expression of IL-6 in HD mice (Group IV vs Group II; 1.08 ± 0.07 vs 1.73 
± 0.14, n = 4, p = 0.01, paired sample t-test, Fig. 6E). Altogether, our 
data validate previous findings where HD pathogenesis was found to be 
associated with an aberrant NF-κB pathway activation (Khoshnan et al., 
2004; Soylu-Kucharz et al., 2022). 

4. Discussion 

The two primary pathological mechanisms commonly observed 
across all neurodegenerative diseases including Huntington’s disease 
are increased oxidative stress and neuroinflammation (Cherubini et al., 
2020; Maity et al., 2022; Pérez-Rodríguez et al., 2020). Evidence in-
dicates under these neurotoxic conditions there is an enhancement in 
the gene expression of the brain resident immune protein, the major 
histocompatibility complex-I (MHC-I, Wang et al., 2021; Welberg, 
2013). Several studies also demonstrate that “immune receptors” like 
major histocompatibility complexes type I (MHC-I), the cluster of 

Fig. 5. VD administration rescues the gene 
expression of antioxidants in HD mice (A) 
mRNA expression of glutathione peroxidase 4 
(GpX4) was increased in Group II mice (HD vs 
control, n = 6, p < 0.001, paired sample t-test), 
which subsided on VD supplementation (HD +
VD vs HD, n = 6, p < 0.001, paired sample t- 
test) (B) The mRNA expression of catalase (Cat) 
was also found to be increased in the cortex of 
Group II mice as compared to Group I mice (HD 
vs control, n = 8, p = 0.008, paired sample t- 
test). The gene expression of Cat got alleviated 
on VD supplementation in Group IV mice 
reflecting its antioxidant effect (HD + VD vs 
HD, n = 8, p = 0.003, paired sample t-test). 
Data is represented as box-and-whisker plots 
depicting the median with first and third quar-
tiles and whiskers representing the 5th and 95th 
percentile values.   
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differentiation-zeta (CD-3ζ), and leukocyte immunoglobulin-like re-
ceptor B2 (LILRB2) play a key role in neurodegenerative disorders and 
could be a potential therapeutic target for neurological disorders like 
Alzheimer’s disease (AD) and Parkinson’s disease (PD) (Kim et al., 2013; 
Welberg, 2013). However, the brain’s resident T-cell receptor beta 
subunit’s (TCR-β) gene expression modulation in a neurological disorder 
like Huntington’s disease (HD) is limited and remains largely unex-
plored. In this regard, studies have confirmed the neuroprotective ca-
pacity of Vitamin D3 (VD) in combating neuroinflammation, and 
oxidative stress, and restoring cholinergic signaling in different neuro-
degenerative disease models (Calvello et al., 2017; Koduah et al., 2017; 
Lima et al., 2018; Manjari et al., 2022). A study by Rodrigues and 

colleagues specifically showed that Vitamin D3 (VD) upregulated 
Vitamin D receptor expression, restored oxidative damage, and 
decreased acetylcholinesterase (AChE) activity in a rodent model of 
Alzheimer’s disease (AD, Rodrigues et al.,2019). Our recent findings 
also highlighted the neuroprotective benefits of VD on motor dysfunc-
tion in 3-NP induced HD mice (Manjari et al., 2022). 

In the present study, we demonstrate that a prolonged administra-
tion of 500IU/kg/day of Vitamin D3 (0–15 days) shows a long-lasting 
neuroprotective and anti-neurotoxic effect by decreasing the gene 
expression of the immune receptor, TCR-β subunit expression in both the 
cortex and striatum of HD mice (Fig. 2A and B). 3-NP administration is 
known to induce HD-like symptoms in rodents with a phenotype similar 

Fig. 6. An Anti-inflammatory effect of 500IU/ 
kg of VD in the striatum and cortex of 3-NP 
induced HD mice. (A) mRNA expression of nu-
clear factor kappa B (NF-κB) was significantly 
increased in Group II mice (HD vs control, 
n = 4, p < 0.001, paired sample t-test) which 
got combated on VD supplementation (HD +
VD vs HD, n = 4, p < 0.001, paired sample t- 
test). (B) Group IV mice administered with VD 
showed a significant reduction in the striatal 
gene expression of TNF-α (HD + VD vs HD, 
n = 4, p = 0.02, paired sample t-test) which got 
elevated in Group II mice injected with 75 mg/ 
kg of 3-NP (HD vs control, n = 4, p = 0.005, 
paired sample t-test). (C) An increased mRNA 
expression of another inflammatory cytokine, 
interleukin 6 (IL-6) was observed in the stria-
tum of Group II mice (HD vs control, n = 4, 
p = 0.02, paired sample t-test) which got sub-
sided in Group IV mice when administered with 
VD (HD + VD vs HD, n = 4, p = 0.01, paired 
sample t-test). (D) A similar increase in the 
mRNA expression of tumor necrosis factor-α 
(TNF-α) was observed in the cortical brain tis-
sue samples of Group II mice injected with 3-NP 
(HD vs control, n = 4, p = 0.01, paired sample 
t-test). The post-supplementation of VD for 15 
days significantly attenuated the gene expres-
sion of TNF-α (HD + VD vs HD, n = 4, 
p = 0.002, paired sample t-test) and (E) inter-
leukin 6 (IL-6) in the cortex of Group II mice 
(HD + VD vs HD, n = 4, p = 0.01, paired sam-
ple t-test). IL-6 gene expression was observed to 
be highly elevated in Group II mice on 3-NP 
injection (HD vs control, n = 4, p = 0.03, 
paired sample t-test). Data is represented as 
box-and-whisker plots depicting the median 
with first and third quartiles and whiskers rep-
resenting 5th and 95th percentile values.   
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to the genetically inherited human disease (Brouillet, 2014; Brouillet 
et al., 2005). The striatal medium spiny neurons are more susceptible to 
neurotoxic conditions induced by 3-NP as compared to the cortical 
neurons (Singh et al., 2010). A significant increase in inflammatory 
mediators such as tissue necrosis factor-alpha (TNF-α) is also reported 
previously to be associated with the neurodegenerative effects of 3-NP in 
the striatum (Ahuja et al., 2008). Under such a neurotoxic environment, 
here we show that there is an increased gene expression of native im-
mune proteins in the T-cell receptor- beta (TCR-β) subunit with no 
change in the gene expression of the T-cell receptor-alpha (TCR-α) 
subunit in the HD mice (Supplementary fig.). We demonstrate that 3-NP 
induced increased oxidative stress causes a profound enhancement in 
the gene expression of TCR-β in the murine cortex and striatum which 
gets subsided on VD administration (Fig. 2A and B). We also found that 
3-NP mediated enhancement in a free radical generation increased 
oxidative stress, and an increase in TCR-β subunit in HD mice was par-
alleled with an increase in acetylcholinesterase (AChE) activity in the 
two brain regions most vulnerable to undergo neuronal atrophy in HD i. 
e the cortex and the striatum (Fig. 4A and B). 

AChE is an important regulatory enzyme found in cholinergic neu-
rons and its elevation indirectly reflects cholinergic dysfunction (Walc-
zak-Nowicka and Herbet, 2021). Cholinergic deficiency and an increase 
in AChE levels have been shown previously to cause memory impair-
ment in the 3-NP induced rat model of HD (Menze et al., 2015). We show 
that Vitamin D3 (VD) administration decreases AChE activity in the 
cortex and the striatum which also possibly reflects its importance as 
therapeutics to combat neuronal loss observed in this neurodegenerative 
disease (Vattakatuchery and Kurien, 2013; Walczak-Nowicka and Her-
bet, 2021). Much of the therapeutic potential of VD is reflected in the 
studies performed on Alzheimer’s disease (AD), where the neuro-
protective mechanism occurred via Vitamin D receptor (VDR) signaling 
(Landel et al.,2016). In our recent finding, we also demonstrated that the 
striatal protein expression of VDR got rescued on post-VD supplemen-
tation in HD mice (Manjari et al., 2022). Hence, it is very likely that 
VD-VDR mediated upregulation of neurotrophins like brain-derived 
neurotrophic factor (BDNF) and nerve growth factor (NGF) activates 
the neuronal survival pathway in HD (Manjari et al., 2022). 

In the past, T-cell receptor (TCR) activation has been shown to 
negatively regulate the expression and function of α7 nicotinic acetyl-
choline receptors in the murine frontal and prefrontal cortex (Komal 
et al., 2014). Also, previous studies have demonstrated that the α7 
cholinergic receptor’s activity is modulated via a variety of kinases like 
Protein kinase A (PKA) and Src-family kinases like Lck and Fyn kinase 
(Komal et al., 2015, 2014; Komal and Nashmi, 2015). The α7 nicotinic 
acetylcholine receptor comes under the family of ligand-gated ion 
channels where these ionotropic receptors are known to contribute to-
ward cognition, attention, and working memory function which gets 
compromised in neurological disorders (Dau et al., 2013; Komal et al., 
2011; Perutz et al., 1999; Suzuki et al., 2006; Vattakatuchery and Kur-
ien, 2013). It is possible that under a neuropathological insult like those 
observed in HD, which is characterized by elevated neuroinflammation, 
apoptotic signals, and oxidative stress, an enhanced gene expression of 
the TCR-β subunit occurs with a concomitant downregulation in the 
expression and function of alpha 7 nicotinic acetylcholine receptors (α7 
nAChRs) potentiating neuronal loss in the striatum. 

Vitamin D3 (VD) supplementation rescued the protein and mRNA 
expression of α7 nAChRs and also restored the acetylcholine levels with 
a simultaneous reduction in the immune receptor, TCR-β subunit mRNA 
expression in the cortex, and the striatal brain tissue samples (Fig. 2, 
Fig. 4 and Fig. 5). A restoration of cholinergic signaling in the striatum 
occurred with a downregulation in the gene expression of key proin-
flammatory cytokines like TNF-α and IL-6 in HD mice (Fig. 6). It is 
known that elevated levels of pro-inflammatory cytokines like TNF-α 
and NF-κB activity precede striatal neurodegeneration (Chambon et al., 
2023; Khoshnan et al., 2004; Soylu-Kucharz et al., 2022). In our study, 
we show that VD intake by Group IV mice (HD + VD) showed a 

detrimental effect on NF-κB gene expression in the striatum (Fig. 6). 
Thus, the anti-inflammatory and anti-apoptotic effect of VD reflects its 
neuroprotective benefits as observed previously across a wide range of 
neurogenerative diseases including HD (Buell and Dawson-Hughes, 
2008; Calvello et al., 2017; Chabas et al., 2008; Lima et al., 2018; 
Manjari et al., 2022; Mohamed et al., 2015; Nimitphong and Holick, 
2011; Rodrigues et al., 2019). 

VD mediates its biological effect by interacting with the Vitamin D 
receptor (VDR, Landel et al.,2016). It is very likely that VD-VDR inter-
action mediates an anti-apoptotic signal by inhibiting the NF-κB medi-
ated activation of vital pro-inflammatory cytokines gene expression and 
rescuing the cholinergic signaling deficits by combating AChE activity 
with a restoration in the expression of α7 nAChRs in the cortex and the 
striatum. It may be argued that early intervention with VD can be pro-
posed to have therapeutic benefits over a range of neurological disorders 
including HD possibly by downregulation of T-cell receptor-beta subunit 
expression (TCR-β) and inhibition of NF-κB mediated inflammatory 
cytokine pathway. The enhanced TCR-β subunit expression in the brain 
is justifiable in our findings as TCR-α subunit gene expression remained 
unchanged in all four groups of mice (supplementary fig.). However, we 
cannot rule out the possibility of invasion of peripheral T-lymphocytes 
invasion in our 3-NP mouse model of HD which also disrupts 
blood-brain barrier permeability (Kim et al., 2003). As recently pro-
posed in our review, a functional anomaly of only the TCR-β subunit in 
neuropathological conditions is hypothesized in this work (Komal et al., 
2022). It is speculated that striatal and cortical synapses may undergo 
enhanced synaptic pruning in HD via MHC-I and TCR-β interaction 
under increased oxidative stress, enhanced neuroinflammation, and 
mitochondrial dysfunction, which precedes the neurodegenerative 
processes observed across the plethora of neurodegenerative diseases 
(Komal et al., 2022). 

5. Conclusion and perspectives 

A purely hypothetical theory is projected here where we think TCR-β 
may either be weakly associated with CD3-complex or can exist as a 
TCR-β-β dimer that can act as a functional protein as demonstrated 
previously from in-vitro findings (Punt et al., 1991; Oh et al., 2019). This 
novel mechanism of downstream signaling cascade initiated by TCR-β in 
neurons may dictate the selective neurodegeneration of striatal and 
cortical neurons via downstream activation of kinase cascade and sub-
stantially abrogate the function and expression of nicotinic acetylcho-
line receptors under a neuropathological insult characterized by 
mitochondrial dysfunction, ER stress, elevation in oxidative stress, ATP 
depletion and increased cytokine storm as observed in HD and other 
neurological disorders (Komal et al., 2022). These statements merit 
additional research and future experiments will shed deeper insights 
into whether VD can interfere with the aberrant synaptic pruning pre-
ceding neurodegeneration in HD. 
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Matsubayashi, H., Sakai, N., Kohsaka, S., Inoue, K., Nakata, Y., 2006. Microglial 
alpha7 nicotinic acetylcholine receptors drive a phospholipase C/IP3 pathway and 
modulate the cell activation toward a neuroprotective role. J. Neurosci. Res 83, 
1461–1470. https://doi.org/10.1002/jnr.20850. 

Syken, J., Shatz, C.J., 2003. Expression of T cell receptor beta locus in central nervous 
system neurons. Proc. Natl. Acad. Sci. USA 100, 13048–13053. https://doi.org/ 
10.1073/pnas.1735415100. 

Tata, A.M., Velluto, L., D’Angelo, C., Reale, M., 2014. Cholinergic system dysfunction 
and neurodegenerative diseases: cause or effect? CNS Neurol. Disord. Drug Targets 
13, 1294–1303. https://doi.org/10.2174/1871527313666140917121132. 

Vattakatuchery, J.J., Kurien, R., 2013. Acetylcholinesterase inhibitors in cognitive 
impairment in Huntington’s disease: a brief review. World J. Psychiatry 3, 62–64. 
https://doi.org/10.5498/wjp.v3.i3.62. 

Walczak-Nowicka, J., Herbet, M., 2021. Acetylcholinesterase Inhibitors in the treatment 
of neurodegenerative diseases and the role of acetylcholinesterase in their 
pathogenesis. Int. J. Mol. Sci. 22, 9290. https://doi.org/10.3390/ijms22179290. 

Wang, B.-Y., Ye, Y.-Y., Qian, C., Zhang, H.-B., Mao, H.-X., Yao, L.-P., Sun, X., Lu, G.-H., 
Zhang, S.-Z., 2021. Stress increases MHC-I expression in dopaminergic neurons and 
induces autoimmune activation in Parkinson’s disease. Neural Regen. Res. 16, 
2521–2527. https://doi.org/10.4103/1673-5374.313057. 

Welberg, L., 2013. A PIR-fect storm. Nat. Rev. Drug Discov. 12 https://doi.org/10.1038/ 
nrd4159. 

Zhao, J., Li, Yun, Li, Yan, Xu, S., Tao, T., Hua, Y., Zhang, J., Fan, Y., 2021. Activation of 
α7-nAChRs promotes the clearance of α-synuclein and protects against apoptotic cell 
death induced by exogenous α-synuclein fibrils. Front. Cell Dev. Biol. 9 https://doi. 
org/10.3389/fcell.2021.637319. 

Zuccato, C., Cattaneo, E., 2007. Role of brain-derived neurotrophic factor in 
Huntington’s disease. Prog. Neurobiol. 81, 294–330. https://doi.org/10.1016/j. 
pneurobio.2007.01.003. 

S. Manjari et al.                                                                                                                                                                                                                                 

https://doi.org/10.1186/s12974-020-01758-9
https://doi.org/10.1098/rstb.1999.0449
http://refhub.elsevier.com/S2667-2421(23)00058-1/sbref44
http://refhub.elsevier.com/S2667-2421(23)00058-1/sbref44
http://refhub.elsevier.com/S2667-2421(23)00058-1/sbref44
https://doi.org/10.1016/j.bcp.2015.06.014
https://doi.org/10.1007/s12325-019-01148-5
https://doi.org/10.1007/s12325-019-01148-5
https://doi.org/10.1080/13510002.2019.1617514
https://doi.org/10.1080/13510002.2019.1617514
https://doi.org/10.1016/j.neuron.2009.09.044
https://doi.org/10.1016/j.neuint.2010.06.008
https://doi.org/10.1016/j.isci.2022.103771
https://doi.org/10.1016/0889-1591(90)90034-N
https://doi.org/10.1002/jnr.20850
https://doi.org/10.1073/pnas.1735415100
https://doi.org/10.1073/pnas.1735415100
https://doi.org/10.2174/1871527313666140917121132
https://doi.org/10.5498/wjp.v3.i3.62
https://doi.org/10.3390/ijms22179290
https://doi.org/10.4103/1673-5374.313057
https://doi.org/10.1038/nrd4159
https://doi.org/10.1038/nrd4159
https://doi.org/10.3389/fcell.2021.637319
https://doi.org/10.3389/fcell.2021.637319
https://doi.org/10.1016/j.pneurobio.2007.01.003
https://doi.org/10.1016/j.pneurobio.2007.01.003

	1.1. Overview and rationale:
	1.2. Existing Research Gaps:
	1.3. Research Objectives and Hypothesis:
	1.3.1. Research objectives:
	1.3.2. Aim and objectives:
	The main aim of my study was to explore the benefits of VD in HD and elucidate the downstream signalling mechanisms of neuroprotection. The following were the proposed objectives of the present thesis:
	1. To understand the dose and time-dependent effect of VD supplementation in the 3-nitropropionic acid (3-NP) induced mouse model of HD.
	2. To explore if VD enhances neurotrophin expression via VDR in HD mice.
	3. To elucidate the anti-oxidative, anti-inflammatory, and anti-cholinesterase activity of VD in HD.
	4. To explore VD-mediated intervention on α7 nAChRs and TCR-β subunit receptor gene expression in HD.

	1.4. Background:
	1.4.1. The historical significance of VD:
	1.4.2. VD: Structure and function
	1.4.3. Metabolism of VD:
	1.4.4. Cellular activity of VD:
	1.4.4.1. Structure and function of VDR – Cellular localization:
	1.4.4.2. Genomic action of VDR:
	1.4.4.2.1. Epigenetic modifications due to the activation of VDR:

	1.4.4.3. Non-genomic action of VD:
	1.4.4.4. Activity of VD on different neurotrophins:
	1.4.4.5. Antioxidant role of VD–Organelle-based function:
	1.4.4.6. Anti-neuroinflammatory role of VD:
	1.4.4.7. Anti-cholinesterase activity of VD in the brain:
	1.4.4.8. Anti-apoptotic effect of VD in the central nervous system:
	1.4.4.9. VD helps to maintain synaptic plasticity:

	1.4.5. VD deficiency:
	1.4.5.1. Global and Indian prevalence of VD deficiency:
	1.4.5.2. VD deficiency in different neurological conditions:

	1.4.6. The activity of VD in different neurological conditions:
	1.4.6.1. The dose-dependent effect of VD in different neurological conditions:
	1.4.6.1.1. The effect of different doses of VD in different clinical conditions:
	1.4.6.1.2. The effect of different doses of VD in preclinical conditions:
	1.4.6.1.3. The cellular effect of VD in various neurological conditions:

	1.4.6.2. Effect of VD deficiency in HD:


	1.5. Huntington’s disease (HD):
	1.5.1. Historical significance of HD:
	1.5.2. Prevalence of HD:
	1.5.3. Pathogenesis of HD:
	1.5.3.1. Structure and function of wild-type Huntingtin gene and protein:
	1.5.3.2. Neuropathology of HD:
	1.5.3.3. Molecular mechanisms involved in neuronal atrophy in HD:

	1.5.4. Different animal models of HD:
	1.5.4.1. Genetic models of HD:
	1.5.4.1.1. Transgenic models of HD:
	1.5.4.1.2. Knock-in models of HD:

	1.5.4.2. Non-genetic model of HD:

	1.5.5. 3-Nitropropionic acid induced mouse model of HD:

	2.1. Introduction:
	2.2. Materials and methods:
	2.2.1. Animal Procurement:
	2.2.2. Study design:
	2.2.3. Experimental design:
	2.2.4. Drugs and reagents:
	2.2.4.1 Cholecalciferol:
	2.2.4.2. 3-Nitropropionic acid:

	2.2.5. Behavioral assessment:
	2.2.5.1. Assessment of locomotor activity:
	2.2.5.2. Estimation of gait by stride analysis:
	2.2.5.3. Assessment of motor coordination by rotarod analysis:
	2.2.5.4. Assessment of Spatial memory by Morris water-maze test:

	2.2.6. Statistical analysis:

	2.3. Results:
	2.3.1. VD supplementation improves the locomotor activity in the mouse model of HD:
	2.3.2. Gait was unaltered on 3-nitropropionic acid induced mouse model of HD:
	2.3.3. VD supplementation improves rotarod performance in HD mice:
	2.3.4. VD rescues spatial memory of HD mice:
	2.3.5. VD supplementation maintains the body weight of HD mice:
	Fig.21. VD administration recues body weight in HD mice. On 30th day, 500IU/kg/day of VD injection to pretreated 3-NP mice (HD) showed a significant rescue in the body weight (Group IV vs Group II, n = 8-10, p = 0.001, paired sample t-test). HD mice s...

	2.4. Discussion:
	3.2. Materials and methods:
	3.2.1. Animal Procurement:
	3.2.2. Study design:
	3.2.3. Experimental design:
	3.2.4. Drugs and reagents:
	3.2.4.1 Cholecalciferol:
	3.2.4.2. 3-Nitropropionic acid:

	3.2.5. RNA isolation and cDNA synthesis:
	3.2.6. Analysis of mRNA expression of nerve growth factor, and antioxidant markers by semi-quantitative PCR:
	3.2.7. Quantitative analysis of brain derived neurotrophic factor by Real PCR:
	3.2.8. Protein expression of VDR by Western blot:
	3.2.9. Statistical analysis:

	3.3. Results:
	3.3.1. VD supplementation increases the expression of neurotrophins in 3-nitropropionic induced Huntington’s mice:
	3.3.1.1. VD supplementation enhances the gene expression of nerve growth factor in HD mice:
	3.3.1.2. VD supplementation increases the mRNA expression of brain derived neurotrophic factor in HD mice by real-time PCR:

	3.3.2. VD supplementation attenuates oxidative stress by regulating the gene expression of antioxidant markers:
	3.3.2.1. VD did not show any effect on the gene expression of superoxide dismutase 1 and 2 in the striatum of HD mice:
	3.3.2.2. VD alleviates oxidative stress by decreasing the gene expression of glutathione peroxidase 4 in HD:
	3.3.2.3. Effect of VD on mRNA expression of catalase in HD:

	3.3.3. Restorative action of VD takes place through an increase in the protein expression of VDR in HD:

	3.4. Discussion:
	4.1. Introduction:
	4.2. Materials and methods:
	4.2.1. Animal Procurement:
	4.2.2. Study design:
	4.2.3. Experimental design:
	4.2.4. Drugs and reagents:
	4.2.4.1 Cholecalciferol:
	4.2.4.2. 3-Nitropropionic acid:

	4.2.5. RNA isolation and cDNA synthesis:
	4.2.6. Analysis of gene expression for T-cell receptor alpha, T-cell receptor beta, tumor necrosis factor-alpha, interleukin 6, alpha7 nicotinic acetylcholine receptor, nuclear factor-kappa B and antioxidants by Real-time PCR:
	4.2.7. Acetylcholinesterase activity assay:
	4.2.8. Protein expression analysis of alpha7 nicotinic acetylcholine receptor by western blotting:
	4.2.9. Statistical analysis:

	4.3. Results:
	4.3.1. VD supplementation decreases T cell receptor beta subunit expression in the cortex and striatum of HD mice:
	4.3.2. VD supplementation rescues the protein and mRNA expression of α7 nicotinic acetylcholine receptors in the cortex and striatum of HD mice:
	4.3.3. VD administration alleviates acetylcholinesterase levels in the cortex and striatum of HD mice:
	4.3.4. An Anti-inflammatory and anti-apoptotic effect of VD supplementation in HD mice:
	4.3.5. VD administration in HD mice decreases oxidative stress as reflected by a reduction in key antioxidants gene marker expression in the cortex:
	4.3.5.1. Anti-oxidant effect of VD on the gene expression of glutathione peroxidase 4 in the cortex of HD mice:
	4.3.5.2. Effect of VD on the gene expression of catalase in the cortex of HD mice:


	4.4. Discussion:
	5.1. VD delays the progression of neurodegeneration in HD:
	5.1.2. VD as a potential therapeutic agent for HD:

	5.2. VD rescues spatial memory and behaviour phenotypes in HD:
	The results from chapter 2 expand our understanding of the role of VD in regulating the behaviour and memory of HD mice. There has been significant evidence to prove our findings that VD alters behavior in age-related neurological diseases like AD and...
	5.3. VD administration upregulates VDR expression in HD:
	5.4. Cross-talk between VDR, TCR-β subunit and α7 nAChRs in HD:
	1. Our results indicate that VD regulates the activity of acetylcholinesterase (AChE) and the expression of α7 nicotinic acetylcholine receptors (α7 nAChRs) which in turn can enhance synaptic function. These results can be followed up by exploring whe...
	Restorative Action of Vitamin D3 on Motor Dysfunction Through �Enhancement of Neurotrophins and Antioxidant Expression in the Striatum
	Introduction
	Experimental procedures
	Animal procurement
	Study design
	Experimental design
	Drugs and reagents
	Behavioral evaluations
	RNA isolation and cDNA preparation
	Analysis of mRNA expression for nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), and antioxidant marker genes
	Quantitative expression analysis for BDNF by Real-Time PCR (RT-PCR)
	Protein expression analysis for Vitamin D3 receptor by western blot
	Statistical analysis

	Results
	VD supplementation improves locomotor activity in a mouse model of HD
	Gait was unaltered in 3-NP induced HD mice
	VD supplementation improves rotarod performance of HD mice
	VD supplementation increases neurotrophin expression in the striatum of 3-NP induced HD mice
	VD supplementation attenuates oxidative stress as reflected by the decrease in the antioxidant enzyme expression in HD mice
	VD supplementation increases the expression of VDR in striatum of 3-NP induced HD mice

	Discussion
	Contribution of the authors
	ack23
	Acknowledgements
	Conflicts of interest
	References
	Appendix A Supplementary data

	Unprecedented effect of vitamin D3 on T-cell receptor beta subunit and alpha7 nicotinic acetylcholine receptor expression i ...
	1 Introduction
	2 Experimental procedures
	2.1 Animal procurement
	2.2 Study design
	2.3 Experimental design
	2.4 Drugs and reagents
	2.4.1 Cholecalciferol (Vitamin D3; VD)
	2.4.2 3-nitropropionic acid (3-NP)

	2.5 RNA isolation and cDNA preparation
	2.6 Primer design
	2.7 Analysis of gene expression for TCR-β, α7 nAChRs, NF-κB, TNF-α, IL-6, and antioxidants by real-time polymerase chain re ...
	2.8 Acetylcholinesterase (AChE) activity assay
	2.9 Protein quantification and western blotting
	2.10 Statistical analysis

	3 Results
	3.1 Vitamin D3 supplementation decreases TCR-β subunit expression in the cortex and striatum of HD mice
	3.2 Vitamin D supplementation rescues the protein and mRNA expression of α7 nAChRs in the cortex and striatum of HD mice
	3.3 Vitamin D administration alleviates acetylcholinesterase levels in the cortex and striatum of HD mice
	3.4 Vitamin D3 administration in HD mice decreases oxidative stress as reflected by a reduction in key antioxidants gene ma ...
	3.5 An Anti-inflammatory effect of Vitamin D3 supplementation in HD mice

	4 Discussion
	5 Conclusion and perspectives
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Supporting information
	References


