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Abstract
The arithmetic of elliptic curves has played a crucial role in understanding various
classical questions in number theory and arithmetic geometry. In the last few decades,
breakthroughs have been made towards solving the congruent number problem using the
arithmetic of elliptic curves. The congruent number problem relates to giving a complete
description of positive integers that can occur as the areas of rational right triangles. A
complete answer to the congruent number problem is still unknown. It is well known in
the literature that the existence of congruent numbers is equivalent to the existence of
rational points of infinite order on a certain class of elliptic curves known as the congruent
number elliptic curves. The works of Goins and Maddox generalized the congruent number
problem for rational triangles, known as Heron triangles, through the positivity of rank of
a certain class of elliptic curves, known as Heronian elliptic curves.
As of yet, there is no effective way to compute the rank of an elliptic curve. However,
for a positive integer m, the study of m-Selmer groups helps to understand the structure
of rational points on elliptic curves and, hence, the rank. Selmer groups are finite and
effectively computable and act as an upper bound for the rank of an elliptic curve.
Heath-Brown studied the structure of 2-Selmer groups for congruent number elliptic curves,
which was fundamental to the understanding of the rank of that class of elliptic curves.
Unlike the congruent number elliptic curves, there is comparatively little in the literature
regarding the study of 2-Selmer groups of Heronian elliptic curves associated with Heron
triangles.
The main focus of the thesis is to analyze the structure of 2-Selmer groups for different
classes of Heronian elliptic curves using the method of 2-descent on elliptic curves. This,
in turn, provides a better estimate of the ranks of those curves, which is crucial for
understanding the numbers occurring as the area of Heron triangles with certain angles.
As a consequence of computing 2-Selmer groups, we also delve into the 2-part of the
Shafarevich-Tate groups for some of these classes of Heronian elliptic curves through
the class number divisibility criteria of certain number fields and solutions to certain
Diophantine equations. We provide numerical evidence for each of the studied classes of
Heronian elliptic curves at the end of each section.
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A positive integer n is called a congruent number if it is the area of a right triangle, with
all of its sides’ lengths being rational numbers. Given a positive integer n, the celebrated
congruent number problem asks when n is a congruent number. A Heron triangle is a
triangle with rational sides and rational area. The problem of determining when a positive
integer n appears as the area of a Heron triangle is a direct generalization of the congruent
number problem. The main aim of this thesis is to look into the rank computation of
a special class of elliptic curves, known as the Heronian elliptic curves, associated with
Heron triangles. This is essential in identifying a positive integer n as the area of a Heron
triangle with a given angle.
The quest for understanding congruent numbers has inspired mathematicians for more
than a thousand years (see [6], [28]). Works of Fibonacci, Fermat, and Euler made a
significant contribution in describing these numbers (see [4], [11]). Fibonacci showed
that 5 and 7 are congruent numbers and claimed 1 is not a congruent number. Fermat’s
idea (see [6]) of infinite descent proved that 1 is not a congruent number, and hence, the
possibility of a congruent number being a perfect square was discarded.
The congruent number problem eventually boils down to whether the rank of a special
type of elliptic curve, known as the congruent number elliptic curve, is positive, in the
following way (see [28], Chapter 1, Proposition 18):

Result 1.0.1. A positive integer n is a congruent number if and only if the rank of the
elliptic curve over Q

En : y2 = x3 − n2x = x(x− n)(x+ n) (1.0.1)

is at least one. In (1.0.1), En denotes the congruent number elliptic curve.

The rank of an elliptic curve, also known as the Mordell-Weil rank, is discussed in detail
in the next chapter. It denotes the size of the group of all rational points of the elliptic
curve. There is no effective algorithm for finding the rank of elliptic curves yet. Using the
equivalent criterion of the congruent number problem involving the congruent number
elliptic curve, Heegner proved in [22] that n = 2p are congruent numbers for every n with
p ≡ 3 (mod 8). He proved that the congruent number elliptic curves are isogenous to
modular curves X0(32) and then used the theory of complex multiplication to construct a
non-torsion point in Q(

√
−2p). Monsky extended Heegner’s method in [38] and showed

that primes p ≡ 5, 7 (mod 8) are congruent numbers. The Birch and Swinnerton-Dyer
conjecture (see [28]) predicts that a positive integer n is a congruent number if n ≡ 5, 6 or
7 (mod 8). This is because the sign of the functional equation depends on the equivalence
class of n (mod 8) and under these conditions, the L−function of En must vanish at s = 1

(see [28], Chapter 2, Proposition 12). In a recent work, Tian generalized this to a class of
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highly composite numbers (see [51]) and proved that for any given integer k ≥ 0, there are
infinitely many square-free congruent numbers with exactly k + 1 odd prime divisors in
each residue class of 5, 6 and 7 (mod 8). Jaap Top and Noriko Yui did a detailed survey
on the congruent number problem and its variants in [52]. One of the most important
results regarding the congruent number problem is due to J. Tunnell [53] in 1983. It
relates the congruent number problem to the Diophantine equations.

Result 1.0.2. [Tunnell, 1983]: Let n be a square free congruent number. Define An, Bn, Cn, Dn

as follows:

An = #{(x, y, z) ∈ Z3 | n = 2x2 + y2 + 32z2},

Bn = #{(x, y, z) ∈ Z3 | n = 2x2 + y2 + 8z2},

Cn = #{(x, y, z) ∈ Z3 | n = 8x2 + 2y2 + 64z2},

Dn = #{(x, y, z) ∈ Z3 | n = 8x2 + 2y2 + 16z2}.

Then:

An =Bn/2 if n is odd; and

Cn =Dn/2 if n is even.

If the Birch-Swinnerton Dyer conjecture is true, the converse of Tunnell’s aforementioned
result is also true. But the Birch-Swinnerton Dyer conjecture is still an open problem;
hence, the complete description of congruent numbers is still unknown.
Like the congruent number problem, many open problems involving elliptic curves are
dependent on finding the rank of the elliptic curves. As mentioned earlier, there is no
known effective algorithm for rank computation. Initially, Neron had conjectured that the
rank of the set of rational points on an elliptic curve is bounded (see [43]). Finding elliptic
curves with high ranks is an area of immense interest in number theory. Elliptic curves with
rank of four were found in 1945, with rank of seven in 1975, twelve in 1982, and twenty-
eight in 2006. Andrej Dujella maintains a database for elliptic curves with high ranks in
https://web.math.pmf.unizg.hr/ duje/tors/rankhist.html. At present, the largest known
rank of an elliptic curve is twenty-eight, found by Noam Elkies. Another source for data
about elliptic curves is due to J. Cremona (https://wstein.org/Tables/cremona/INDEX.html).
Due to the difficulties in finding ranks of elliptic curves over rational numbers, mathemati-
cians began looking into the rational numbers “locally,” i.e., by their degree of p-divisibility,
effectively clubbing together numbers with the same remainder modulo pn. This technique
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had the benefit of the operation structure being finite. Working out this analysis for every
prime p and then collectively putting it together as a global solution for Q, one can embed
E(Q)/mE(Q) into a group known as m-Selmer group. E(Q)/mE(Q) contains information
about the Mordell-Weil group E(Q) of an elliptic curve E. Hence, the m-Selmer group
gives an upper bound for the size of the Mordell-Weil group. Noting that E(Q) denotes
the Mordell-Weil group of E over Q, and r(E/Q) the corresponding Mordell-Weil rank, a
full p-descent method (see [46], Proposition X.4) generates an exact sequence

0 → E(Q)/pE(Q) → Selp(E/Q) → X(E/Q)[p] → 0.

Here, Selp(E/Q) denotes the p-Selmer group and X(E/Q) denotes the Shafarevich-
Tate group. The importance of the Selmer and the Shafarevich-Tate group in the rank
computation follows from the aforementioned p-descent exact sequence, as r(E/Q) =

sp(E/Q)− dimFpX(E/Q)[p] where sp(E/Q) = dimFpSelp(E/Q)− dimFpE(Q)[p] denotes
the p-Selmer rank of E.
Due to Cassels-Tate pairing (see [5]), the finiteness of the p-primary part of X(E/Q)[p∞]

would imply that X(E/Q)[p] has even Fp dimension, hence sp(E/Q) and r(E/Q) have
the same parity. The finiteness of X(E/Q)[p∞] implies the p-Selmer rank one conjecture
which states that r(E/Q) = 1 whenever sp(E/Q) = 1. This conjecture has been verified
for p ≥ 5 under certain assumptions (see [56], [54], [47]).
Very little is known about the p-Selmer rank one conjecture for p = 2 even though the
computation of a full 2-descent is easiest in practice and provides as yet the best tool to
compute r(E/Q). There has been a growing interest in the 2-Selmer group computation for
different families of elliptic curves, as evidenced by the works of Klagsbrun-Mazur-Rubin
in [26], [27], and the work of Mazur-Rubin in [35].
The method of descent is used in theory and in practice to find the rank of elliptic curves.
However, the method is not always successful. There are examples due to Shafarevich-
Tate and Ulmer for elliptic curves over function fields Fp(t) with arbitrarily large ranks.
Recently in ([43]), Park, Poonen, Voight, and Wood gave a heuristic model for elliptic
curve ranks that indicates that ranks are bounded. Moreover, it says there are finitely
many elliptic curves over Q having rank ≥ 22. The current record of known rank for a
class of infinitely many elliptic curves is nineteen, constructed by Noam Elkies.
We shall define the Selmer group in the next chapter explicitly. The Selmer groups of
an arbitrarily large order are known. In a series of works by Heath-Brown in [19], [20],
congruent number elliptic curves with large 2-Selmer groups were discussed in detail.
A generalization to the congruent number problem questions for a given positive rational
number n, whether a rational triangle [a, b, c] exists with area n with some given angle



Chapter 1. Introduction 5

θ. One can immediately see that the congruent number problem is a special case with
θ = π/2. Heron of Alexandria was the first who related the number n occurring as
the area of a rational triangle and the sides of a rational triangle by the formula n =√

s(s− a)(s− b)(s− c) where s represents semiperimeter, i.e., s =
a+ b+ c

2
, in the first

century. In his honor, rational triangles are known as Heron triangles. In [17], the work
of Goins and Maddox gave a correspondence analogous to the correspondence between
congruent numbers and congruent number elliptic curves. Their correspondence was
between the numbers occurring as the area of Heron triangles and the rational points on
specific elliptic curves associated with such numbers. Their main result was as follows.

Result 1.0.3. [Goins and Maddox, 2006]: A positive integer n can be expressed as the area
of a triangle with rational sides if and only if for some nonzero rational number τ the
elliptic curve

Eτ,n : y2 = x(x− nτ)(x+ nτ−1)

has a rational point that is not of order 2, where τ = tan
θ

2
. Such elliptic curves Eτ,n are

called Heronian elliptic curves. Moreover, n is a congruent number if and only if we can
choose τ = 1.

Given any integer n, the existence of infinitely many Heron triangles with the area n was
studied in [17], [44]. Buchholz and Rathbun proved in [1] the existence of infinitely many
Heron triangles with two rational medians. Later in [2], Buchholz and Stingley studied
eight elliptic curves associated with Heron triangles with two rational medians and showed
that none of them can have three rational medians. A Heron triangle with three rational
medians is called a perfect triangle and it is a longstanding conjecture that such triangles
do not exist. Peng and Zhang [40],[41] showed the existence of infinitely many classes of
isosceles Heron triangles whose sides are triangular numbers and infinitely many isosceles
Heron triangles whose sides are polygonal numbers. In a recent work, Das, Juyal, and
Moody [9] showed the existence of infinitely many Heron triangles and integer rhombuses
with common area and perimeter using the arithmetic of elliptic curves. In [12], Dujella
and Peral showed the existence of elliptic curves of ranks three, four, and five associated
with Heron triangles and found examples of elliptic curves over Q with ranks nine and ten.
Recently, Matilde and Oliver [33] extended the idea of Heron triangles from the Euclidean
plane to the hyperbolic plane. They showed a one-one correspondence between Heron
triangles with area n and rational points on the corresponding curve. In [18], Halbeisen
and Hungerbühler showed the existence of elliptic curves of rank at least two associated
with Heron triangles. They modified a few results of Goins and Maddox and related the
existence of a Heron triangle to an integral solution of certain Diophantine equations.
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We enlist the different objectives of this thesis below which mainly involve the computation
of the explicit group structure of the 2-Selmer group for Heronian elliptic curves associated
with different types of Heron triangles.

1. Mordell-Weil rank computation of the Heronian elliptic curves associated with Heron
triangles with specific angles and odd area n of the form n2 + 1 = 2q for a prime
number q. Such numbers famously appear in Landau’s problems (see [42]). A
complete group structure of the 2-Selmer group of those elliptic curves.

2. Mordell-Weil rank computation of the Heronian elliptic curves associated with Heron
triangles with specific angles and even area. A complete group structure of the
2-Selmer group of those elliptic curves.

3. Correspondence between the existence of Heron triangles and the solvability of
Diophantine equations associated with those Heron triangles.

4. Correspondence between the order of the 2-part of the Shafarevich-Tate group of a
certain class of Heronian elliptic curves and the solvability of certain Diophantine
equations.

The organization of the thesis is done in the following manner.

Chapter 2 includes the necessary background of the arithmetic of elliptic curves, most
notably, the structure of the Selmer and the Shafarevich-Tate groups, along with a brief
description of known results on Heronian elliptic curves.

In Chapter 3, we look into the arithmetic of the Heronian elliptic curves associated with
the Heron triangles of odd area. We first consider the case when n is a prime p such
that p ≡ 3, 5, 7 (mod 8). The latter part of this chapter includes a generalization of
the previous result in terms of arbitrary square-free odd integers n, with an explicit
computation of the 2-Selmer group using the complete 2-descent method. This chapter’s
work has been published/accepted in [16], [8].

Chapter 4 describes the arithmetic of Heronian elliptic curves representing the Heron
triangles with even area. The beginning of the chapter deals with the 2-Selmer group
structure of a special type of Heron triangle with area 2m. Later in the chapter, we
generalize the result for arbitrary even integers. The initial part of this chapter has been
published in [7]. The later part of the work mentioned in this chapter is communicated
and currently under review and the last part is accepted in [8].
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Chapter 5 deals with a one-one correspondence between the solvability of certain Dio-
phantine equations and the existence of Heron triangles using the Mordell-Weil rank. We
then highlight the 2-Selmer group structure of Heronian elliptic curves of prime area p ≡ 1

(mod 8) which were left out in Chapter 3. This was due to the possible existence of a
non-trivial Shafarevich-Tate group which depends on the solvability of a certain class of
Diophantine equations. A part of this chapter’s work has been published in [16].

Chapter 6 states a few results connecting the work in this thesis and several works available
in the literature. It mentions the limitations of the work clearly and then describes the
future scope of further work related to the results presented in this thesis.



Chapter 2

Background

8
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This chapter introduces the necessary preliminaries of the topics covered in the thesis. It
primarily gives a short background detail on the elliptic curve over number fields, the
primary focus of the thesis. We first recall some notions and results about the classification
of finite abelian groups (see [14] as a reference). We start with the definition of a p-group.

Definition 2.1. Let p be a prime. A group G is called p-group if every element of G is of
order pk for some k ≥ 0.

Theorem 2.2. A finite group is a p-group if and only if its order is a power of p.

Definition 2.3. A group G is finitely generated if there is a finite subset A ⊆ G such

that G = ⟨A⟩ i.e., every g ∈ G, can be written as g =
r∑

i=1

kigi where gi ∈ A, ki ∈ Z.

Definition 2.4. For each 0 ≤ r ∈ Z, let Zr = Z × . . . × Z be the direct product of r
copies of Z, where we take Z0 = 1. The group Zr is a free abelian group of rank r.
We can now state the following theorem regarding the group structure of finitely generated
groups.

Theorem 2.5 (Fundamental theorem of Finitely generated abelian groups). Every finitely
generated abelian group G is isomorphic to a direct product of cyclic groups in the form

Zr × Zp
r1
1
× Zp

r2
2
× . . .× Zp

rk
k

where the pi are primes, not necessarily distinct, and the ri are positive integers. The
direct product is unique except for the possible rearrangement of the factors; that is, the
number of factors Z is unique and the prime powers prii are unique.

A sequence of groups A,B and C and group homomorphisms α, and β such that

A
α−→ B

β−→ C

is called exact at B if im α = ker β.

Definition 2.6. A short exact sequence of groups is a sequence of groups and group
homomorphisms

0 → A
α−→ B

β−→ C → 0

which is exact at A, B, and C. That means α is one-one, β is onto, and im α = ker β. In
a general setup, an exact sequence can have many terms:

A1
α1−→ A2

α2−→ A3 . . . An−1
αn−1−−−→ An
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and it must be exact at each Ai for 1 < i < n. Exact sequences can also be of infinite
length.

2.1 Number Fields

Throughout this thesis, we consider elliptic curves over rational numbers. But most of the
properties of an elliptic curve hold true for number fields also. A number field is a finite
extension of Q. We use [39] as a reference for this section.
A field extension L/K is a pair of fields with K ⊂ L. In other words, L is a K-vector
space, and the number [L : K] = dimKL is called the degree of the field extension L/K.
The extension L/K is said to be finite if the degree of the extension is finite.

Definition 2.7. A finite extension K/Q is called a number field.

Definition 2.8. Let K be a number field. An algebraic integer is an element α ∈ K such
that there is some monic polynomial f ∈ Z[x] with f(α) = 0. We write OK for the set of
algebraic integers in K.

Example 2.1. If K = Q(i), then OK = Z[i].

For K = Q(
√
d) where d ∈ Z, d ̸= 0, 1, and d is square-free, it is well-known that

OK =

Z[
√
d], d ̸≡ 1 (mod 4).

Z[
1

2
(1 +

√
d)], d ≡ 1 (mod 4).

One can easily observe that if K is a number field, then K = Q(α) for some algebraic
integer α. The following result gives the number of distinct embeddings a number field
can possess in C.

Theorem 2.9. Let K be a number field of degree n. Then there are exactly n distinct
embeddings σi : K → C, (i = 1, 2, 3, . . . , n). The element σi(α) = αi are all the distinct
zeros in C of the minimal polynomial of α over Q.

The following result now describes the structure of the unit group O∗
K of OK .

Theorem 2.10. O∗
K is a finitely generated abelian group of rank r + s− 1 where r is the

number of real embeddings of K and 2s is the number of non-real complex embeddings.
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Definition 2.11. Let K be a number field of degree n and let σ1, σ2, . . . σn be the
embeddings K → C. Then for any α ∈ K, the norm is

NK(α) =
n∏

i=1

σi(α),

and the trace is

TK(α) =
n∑

i=1

σi(α).

It is well known that unique factorization does not hold for the elements of the ring of
integers of a number field. However, the unique factorization of nonzero ideals into prime
ideals does hold. To see this, we introduce the notion of fractional ideal first.

Definition 2.12. A fractional ideal of OK is a subset I ⊆ K satisfying the following:
(i) I is an abelian group under addition;
(ii) xI ⊆ I for every x ∈ OK ;
(iii) there exists some nonzero y ∈ OK such that yI ⊆ OK .
There is a group structure on the set of fractional ideals of OK . The following theorem
tells us that the prime factorization in OK is unique if all the ideals of OK are principal.

Theorem 2.13. The non-zero fractional ideals of OK form an abelian group under
multiplication. Moreover, every non-zero ideal of OK can be written as a product of prime
ideals, uniquely up to the order of the factors.

Let I(OK) denote the collection of all nonzero fractional ideals of OK , and P (OK) denotes
the collection of all nonzero principal fractional ideals of (OK). It can be noted that P (OK)

is a subgroup of I(OK).

Definition 2.14. The ideal class group for a number field K is the quotient group
I(OK)/P (OK).
It is well known that the ideal class group of a number field is a finite group. The class
number of a number field K, denoted by h(K), is defined as the order of the ideal class
group of K.
We note that if OK itself is a principal ideal domain, then the ideal class group is the
trivial group, and vice versa. One can loosely interpret the class number of a number field
to be a measure of how far OK is from being a principal ideal domain.

Definition 2.15. A prime number p is said to be ramified in a number field K if the
prime ideal factorization

⟨p⟩ = pOK = ℘e1
1 . . . ℘et

t
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has some ei greater than 1. If every ei equals 1, we say p is unramified in K.

Theorem 2.16 (Hilbert’s Class Field). ([39],Proposition (6.9)) The Hilbert class field E

of a number field K is the maximal unramified abelian extension of K. Its degree over K

equals the class number of K, and Gal(E/K) is canonically isomorphic to the ideal class
group of K.

We can use this fact to show the existence of an unramified abelian extension of degree n

of a number field K is equivalent to the class number h(K) ≡ 0 (mod n).

2.2 Elliptic Curves

We now introduce the necessary details regarding the group structure of elliptic curves
over number fields. Most of the results mentioned here are well-known. For notations and
references, we have followed [46].

Definition 2.17. An elliptic curve over a number field K is a smooth projective curve
(defined over K) of genus one with a distinguished K-rational point. Equivalently, an
elliptic curve is an abelian variety of dimension one.
For a field with char(K) ̸= 2 or 3, an elliptic curve E/K can be defined by a short
Weierstrass equation

E : y2 = x3 + Ax+B with A,B ∈ K, with ∆ ̸= 0.

The smoothness of an elliptic curve is equivalent to the non-vanishing of the discriminant,
∆ = −(4A3 + 27B2), of an elliptic curve.

Definition 2.18. Let E : y2 = f(x) be an elliptic curve over K. The set of K-rational
points on E is the set {(x, y) ∈ K ×K | y2 = f(x)}. This set is denoted by E(K).
We note that although the curves are represented with affine coordinates, in the variables
x and y, in the projective coordinates, the curve looks like

E : y2z = x3 + Axz2 +Bz3.

To specify an elliptic curve, we not only need an equation defining the curve but also a
distinguished rational point, which acts as the group’s identity. For curves in Weierstrass
form, the point O := (0 : 1 : 0) acts as the distinguished point, the unique point on the
curve E that lies on the line z = 0 at infinity. If z = 0 then x = 0 and we may assume
y = 1 after scaling the projective point (0 : y : 0) by 1 = y. We note that x = z = 0 gives
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y ̸= 0, since (0 : 0 : 0) is (by definition) not a projective point. Every point P ̸= O on
the curve E thus has a nonzero z-coordinate which we can scale to be 1, and we use the
notation P = (x0, y0) := (x0 : y0 : 1) to denote these affine points.
Given distinct points P,Q ∈ E(K), P ∗Q denotes the third point of intersection between
the curve and the line passing through P and Q. Note that P ∗ Q ∈ E(K). P + Q is
defined to be the reflection of P ∗Q about the x-axis. P ∗ P is defined to be the third
intersection point of E with the line tangent to E at P (which is well-defined for every P
because E is non-singular). As before, the reflection of P ∗ P about the x-axis defines
P + P . With this +, the set E(K) forms an abelian group, and O acts as the identity
element.

Theorem 2.19 (Mordell Theorem). Let E/Q be an elliptic curve. Then the group E(Q)

is finitely generated.

So by Theorem 2.5, E(Q) ∼= Zr ⊕ E(Q)tors. r is called the rank of the elliptic curve. The
result stands true even if Q is replaced by any arbitrary number field K. The subgroup of
points of finite order having coordinates in K are denoted by E(K)tors.

Theorem 2.20 (Mordell-Weil Theorem). Let E be an elliptic curve over a number
field K, then the set of K-rational points E(K) is finitely generated abelian group. i.e.
E(K) ∼= Zr ⊕ E(K)tors.

Theorem 2.21. ([46], Theorem II.2.3) Let ϕ : C1 → C2 be a morphism of curves. Then
ϕ is either constant or subjective.

Let C1/K and C2/K be curves and let ϕ : C1 → C2 be a nonconstant rational map defined
over K. Then composition with ϕ induces an injection of function fields fixing K,

ϕ∗ : K(C2) → K(C1), ϕ∗f = fo ϕ.

Definition 2.22. Let ϕ : C1 → C2 be a map of curves defined over K. If ϕ is constant,
we define the degree of ϕ to be 0. Otherwise we say that ϕ is a finite map and deg ϕ =

[(K(C1) : ϕ
∗K(C2)].

Theorem 2.23. ([46], Theorem II. 2.4.1) Let C1 and C2 be smooth curves and let
ϕ : C1 → C2 be a map of degree one. Then ϕ is an isomorphism.
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Let E[m] = {P ∈ E(K̄) | mP = O} refer the set of m−torsion points. It can be shown
that (see [46], Proposition V I.6.1),

E[m] ∼= Z/mZ× Z/mZ.

Definition 2.24. The divisor group of a curve C is the free abelian group generated by
the points of C denoted by Div(C). Thus a divisor D ∈ Div(C) is a formal sum

D =
∑
P∈C

nP (P )

where nP ∈ Z and np = 0 for all but finitely many P ∈ C. The degree of D is defined by

deg D =
∑
P∈C

nP .

Definition 2.25. Let C be a smooth curve and let f ∈ K̄(C)∗. Then we can associate to
f the divisor,

div(f) =
∑
P∈C

ordP (f)(P ).

where K(C) denotes the function field of C over K.
Weil-Pairing: Let T ∈ E[m]. There is a function f ∈ K̄(E) satisfying

div(f) = m(T )−m(O).

Taking T ′ ∈ E to be a point with [m]T ′ = T , there is a function g ∈ K̄(E) satisfying

div(g) = [m]∗(T )− [m]∗(O) =
∑

R∈E[m]

(T ′ +R)− (R).

Then there is a pairing
em : E[m]× E[m] → µm

by setting

em(S, T ) =
g(X + S)

g(X)

where X ∈ E is any point such that g(X + S) and g(X) are both defined and nonzero
(µm denotes the group of mth root of unity). This pairing is called the Weil em -pairing,
which we use in later sections to briefly sketch the proof of Complete 2-Descent.
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Proposition 2.26. ([46], Proposition II.8.1): The Weil em-pairing has the following
properties:
(i) It is bilinear:

em(S1 + S2, T ) = em(S1, T )em(S2, T ),

em(S, T1 + T2) = em(S, T1)em(S, T2).

(ii) It is alternating:
em(T, T ) = 1.

so in particular, em(S, T ) = em(T, S)
−1.

(iii) It is non-degenerate:

If em(S, T ) = 1 for all S ∈ E[m], then T = O.

(iv) It is Galois invariant:

em(S, T )
σ = em(S

σ, T σ) for all σ ∈ GK̄/K .

(v) It is compatible:

emm′(S, T ) = em([m
′]S, T ) for all S ∈ E[mm′] and T ∈ E[m].

We recall a few notions from p-adic valuation that will be needed in later topics.

Definition 2.27. For all x, y ∈ Z, a valuation v : Z → Z ∪ {∞} satisfies following;

(i) v(xy) = v(x) + v(y).

(ii) v(x+ y) ≥ min{v(x), v(y)}.

(iii) v(0) = ∞.

Definition 2.28. For a fixed prime number p ∈ Z, and x ∈ Z− {0}, vp(x) is the unique
non-negative integer which satisfies x = pvp(x)u with u ∈ Z and p ∤ u.
For x ∈ Q where x = a/b, vp(x) = vp(a)− vp(b).

Definition 2.29. On a field K, an absolute value is a function | | : K → R ≥ 0 such that
(i) |x| = 0 ⇐⇒ x = 0,

(ii) |xy| = |x||y|, and
(iii) |x+ y| ≤ |x|+ |y|
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Definition 2.30. Let (K, | |) be a field with an absolute value. A completion of (K, | |) is
an absolute-valued field (L, | |L) which is complete as a metric space and has the property
that there is some embedding i : K → L with the image of K dense and |x| = |i(x)|L for
x ∈ K.
Minimal Weierstrass equation

Let E/K be an elliptic curve given by a Weierstrass equation y2 = x3 + ax+ b. We say
that a Weierstrass equation is minimal if a and b belong to R = {x ∈ K : v(x) ≥ 0} the
ring of integers of K and v(a) < 4 or v(b) < 6 (this is equivalent to v(∆) being minimal).

Theorem 2.31. (Lutz-Nagell) If E/Q has minimal Weierstrass equation and P = (x, y) ∈
E(Q)tors then x, y ∈ Z and either y = 0 or y2|D where D denotes the discriminant of the
curve.

Let p ∈ Z be a prime, E be an elliptic curve over Q in minimal Weierstrass form. Then
the reduction of E modulo p is the (possibly singular) Weierstrass curve over Fp. Ē(Fp)

denotes the group of Fp rational points of E modulo p.

Definition 2.32. Let p ∈ Z prime, and E be an elliptic curve over Q in minimal
Weierstrass form. Then E is said to have a good reduction at p if Ē is non-singular.
Otherwise, E has a bad reduction at p.

Theorem 2.33. ([46], Proposition VII.3.1.) Let p be a prime such that E has a good
reduction at p. Let ϕ : E(Q)tors → Ē(Fp) be given by O → Ō and (x, y) → (x̄, ȳ). Then ϕ

is a one-one homomorphism, and thus E(Q)tors is isomorphic to a subgroup of Ē(Fp).

Corollary 2.34. The order of E(Q)tors divides the order of Ē(Fp) for every prime p with
good reduction.

Theorem 2.35 (Mazur’s theorem:). ([46], Theorem VIII.7.5) Let E be an elliptic curve
defined over Q. The possible torsion subgroups of E(Q) are:

(i) Z/NZ, where 1 ≤ N ≤ 10, or N = 12.

(ii) Z/2Z× Z/2NZ, where N = 1, 2, 3, 4.

The Mordell-Weil theorem is vast in nature. It tells us that a finite set is enough to
describe the whole structure of rational points on an elliptic curve. One can see the size
of E(K)/mE(K) as a measure of how large E(K) is compared to mE(K). The difficulty
is finding the inverse of the multiplication by [m] map in E(K). Without the loss of
generality, one can assume E[m] ⊂ E(K) for the next few results.
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Definition 2.36. The Kummer pairing

k : E(K)×GK̄/K → E[m]

is defined as follows. Let P ∈ E(K) and choose any point Q ∈ E(K) satisfying [m]Q = P .
Then k(P, σ) = Qσ −Q.

We enlist some of the fundamental properties of the Kummer pairing below.

Proposition 2.37. ([46] Proposition V III.1.2) Let k : E(K) × GK̄/K → E[m] is a
Kummer pairing. Then
(i) The Kummer pairing is well-defined.
(ii) The Kummer pairing is bilinear.
(iii) The kernel of the Kummer pairing on the left is mE(K).
(iv) The kernel of the Kummer pairing on the right is GK̄/L, where L = K([m]−1E(K))

is the composition of all fields K(Q) as Q ranges over the points in E(K̄) satisfying
[m]Q ∈ E(K).
Hence, the Kummer pairing induces a perfect bilinear pairing

E(K)/mE(K)×GL/K → E[m], where L = K([m]−1E(K)).

The above proposition tells us that the finiteness of E(K)/mE(K) (which can be proved,
is equivalent to the finiteness of the extension L/K.

Proposition 2.38. ([46], Proposition V III.1.5.) Let L = K([m]−1E(K)) be the field as
defined above.
i) The extension L/K is abelian and has exponent m i.e. the Galois group GL/K is abelian
and every element of GL/K has order dividing m.
ii) Let S = {v ∈ M0

k : E has bad reduction at v} ∪ {v ∈ M0
K : v(m) ̸= 0} ∪M∞

K .

The following proposition proves that the field extension L/K satisfying the conditions in
the above proposition is a finite extension.

Proposition 2.39. ([46], Proposition VIII.1.6.) Let K be a number field, S ⊂ MK be a
finite set of places containing M∞

K , and m ≥ 2 be an integer. Let L/K be the maximal
abelian extension of K having exponent m that is unramified outside of S. Then L/K is
a finite extension.

One can use the results of Proposition 2.37, Proposition 2.38, and Proposition 2.39 above
to prove the following theorem, known as the Weak Mordell-Weil Theorem. For the brevity
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of this thesis, we also include a brief sketch of the proof of the Weak Mordell-Weil theorem
and its relation to the Mordell-Weil theorem and m-Selmer group.

Theorem 2.40. (Weak Mordell-Weil Theorem)([46], Theorem VIII.1.1.) Let K be a
number field, E/K be an elliptic curve, and m ≥ 2 be an integer. Then

E(K)/mE(K)

is a finite group.

Proof. The perfect pairing at the end of the Proposition 2.37 shows that E(K)/mE(K)

is finite if and only if GL/K is finite where L = K([m]−1E(K)). Proposition 2.38 ensures
that L has certain properties, and Proposition 2.39 implies that any extension L of K
having these properties is a finite extension, hence GL/K is finite. This concludes the proof
of the Weak Mordell-Weil Theorem.

Remark 1: We note that the Kummer pairing induces an injection

E(K)/mE(K) → Hom(GL/K , E[m]).

While it is possible to compute the group Hom(GL/K , E[m]) explicitly, the crucial question
that remains is of which of those elements come from points of E(K)/mE(K). This last
question currently has no effective solution, and what makes the Mordell-Weil theorem
ineffective in practice. For this reason, one introduces the concept of the m-Selmer
group, where E(K)/mE(K) will be injected into a smaller group, and the cokernel of the
corresponding map will be explored. The following theorem shows that if the generators of
E(K)/mE(K) are known, one can effectively find the generators of E(K). This highlights
that the only ineffectiveness in the above proof is finding generators of E(K)/mE(K).

Theorem 2.41 (Descent Theorem). ([46], VIII.3.1.) Let A be an abelian group. Suppose
that there exist a height function h : A → R with the following three properties:
(i) Let Q ∈ A. There is a constant C1, depending on A and Q, such that

h(P +Q) ≤ 2h(P ) + C1 ∀ p ∈ A.

(ii) There are an integer m ≥ 2 and a constant C2, depending on A, such that

h(mp) ≥ m2h(P )− C2 ∀ P ∈ A.
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(iii) For every constant C3, the set {P ∈ A : h(P ) ≤ C3} is finite.
Suppose further that for the integer m in (ii), the quotient group A/mA is finite then A is
finitely generated.

Proof. Choose a finite set S = Q1, Q2, . . .Qr ∈ A to represent the finitely many cosets in
A/mA, and let P ∈ A be an arbitrary element. Reminiscent of the Euclidean algorithm,
let us begin by writing

P = mP1 +Qi1 ,

P1 = mP2 +Qi2 ,

Pn−1 = mPn +Qin .

For any index j, we have

h(Pj) ≤
1

m2
(h(mPj) + C2) from (ii)

=
1

m2
(h(Pj−1 −Qij) + C2)

≤ 1

m2
(2h(Pj−1 + C ′

1 + C2) from (i)

where C ′
1 is the maximum of the constants from (i) for Q ∈ {−Q1,−Q2, . . . ,−Qr}. Using

this inequality,

h(Pn) ≤
(

2

m2

)n

h(P ) +

(
1

m2
+

2

m2
+

4

m2
+ . . .+

2n−1

m2

)
(C ′

1 + C2)

<

(
2

m2

)n

h(P ) +
C ′

1 + C2

m2 − 2

≤ 1

2n
h(P ) +

1

2
(C ′

1 + C2) since m ≥ 2.

=⇒ h(Pn) ≤ 1 +
1

2
(C ′

1 + C2), for sufficiently large n

As P is a linear combination of Pn and Q1, Q2, . . . , Qr,

P = mnPn +
n∑
1

mj−1Qij .



Chapter 2. Background 20

It implies that every P ∈ A is a linear combination of the points in the set

{Q1, Q2, · · ·Qr} ∪ {Q ∈ A : h(Q) ≤ 1 +
1

2
(C ′

1 + C2)}.

From (iii), it is a finite set. This concludes the proof.

2.3 Galois Group Cohomology

We give a brief overview of Galois cohomology groups which will be essential in defining the
Selmer and Shafarevich-Tate groups later. We refer to ([46], Appendix B) for a detailed
discussion.

Definition 2.42. Let G be a group. A G−module is a pair (M,G) consisting of an
abelian group M together with a G− action that preserves its abelian structure, i.e. for
all σ ∈ G and all m,m′ ∈ M,σ(m+m′)) = σm+ σm′.

We note that σ ∈ G defines an automorphism of M , so that the G−action defines a
homomorphism G → Aut(M), generalizing the notion of a representation and agreeing
with the definition of a module over the group ring Z[G]. For example, if L/K is a finite
Galois extension with G = Gal(L/K), an elliptic curve E(L) is naturally a G−module,
with the action given by applying a field automorphism.

Definition 2.43. For a G−module M , the 0th cohomology group is the fixed set by

G : H0(G,M) := MG = {m ∈ M |∀σ ∈ G, gm = m}.

Definition 2.44. A crossed homomorphism is a map f : G → M such that ∀σ, τ ∈
G, f(στ) = f(σ) + σf(τ).

Definition 2.45. A crossed homomorphism is called principal if it is of the form ∀σ ∈
G, f(σ) = σm−m, for some m ∈ M .

Definition 2.46. For a G−module M , the first cohomology group is (roughly) the set of
crossed homomorphisms that aren’t principal. More precisely,
H1(G,M) :=

crossed homomorphisms

principal crossed homomorphisms
Note that any crossed homomorphism

satisfies f(1) = f(1 · 1) = f(1) + f(1) =⇒ f(1) = 0. Sums and differences of crossed
(resp. principal) homomorphisms are crossed (resp. principal), and observe that H1(G,M)

is an abelian group.
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Example 2.2. If G acts on M trivially, then H0(G,M) = MG = M . The crossed
homomorphisms “uncross:” f(στ) = f(σ) + f(τ), and principal crossed homomorphisms
vanish: f(σ) = σm−m = 0.
Therefore H1(G,M) = Hom(G,M).

2.4 Selmer and Shafarevich-Tate Group

We can now introduce the notion of Selmer and Shafarevich-Tate group to inject E(K)/mE(K)

into a smaller group. From Definition 2.36, we know there exists a pairing k : E(K)×
GK̄/K → E[m] such that k(P, σ) = Qσ −Q, where Q ∈ E(K̄) such that [m]Q = P .
From Proposition 2.37, we know that the kernel of k is mE(K). Hence, one may view the
map k as a homomorphism

δE : E(K)/mE(K) → Hom(GK̄/K , E[m]),

δE(P )(σ) = k(P, σ).

E[m] ⊂ E(K) implies that the group of m-th roots of unity µm ⊂ K∗ which follows from
the basic properties of Weil Pairing

em : E[m]× E[m] → µm

mentioned in Proposition 2.26. Since µm ⊂ K∗, Hilbert’s Theorem 90 ([14], (17.3)) asserts
that every homomorphism GK̄/K → µm has the form σ → βσ

β
for some β ∈ K̄∗ such that

βm ∈ K∗. In other words, there is an isomorphism

δK : K∗/(K∗)m → Hom(GK̄/K , µm),

δK(b)(σ) =
βσ

β

for β as mentioned above. We now describe the theoretical version of the m-descent
method through the following theorem.

Theorem 2.47 ([46], Theorem X.1.1.). With notations as mentioned above,
(i) There is a bilinear pairing b : E(K)/mE(K) → K∗/(K∗)m satisfying em(δE(P ), T ) =

δK(b(P, T )).
(ii) The pairing in (i) is nondegenerate on the left.
(iii) Let S ⊂ MK be the union of the set of infinite places, the set of finite primes at which
E has bad reduction and the set of finite primes dividing m. Then the image of the pairing
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in (i) lies in the following subgroup of K∗/(K∗)m:

K(S,m) = {b ∈ K∗/(K∗)m : v(b) ≡ 0 (mod m) for all v ̸∈ S}.

(iv) The pairing in (i) may be computed as follows. for each T ∈ E[m], choose functions
fT , gT ∈ K(E) such that

div(fT ) = m(T )−m(O) and fT · [m] = gmT .

Then for any point P ̸= T , b(P, T ) ≡ fT (P ) (mod (K∗)m). For P = T , one can compute
b(T, T ) using linearity.

Remark 2: Theorem 2.47 provides formulas for the computation of the Mordell-Weil
group. This is because it can be shown that K(S,m) in (iii) is a finite group ([46],
VIII.1.6). Secondly, the functions fT in (iv) are also quite easy to compute ([46], IX.8.1),
even for large values of m (we only focus on m = 2 here). Now the pairing in (i) is
nondegenerate on the left implies that to compute E(K)/mE(K), one only needs to do
the following.
Fix two generators T1 and T2 for E[m]. For each of the finitely many pairs (b1, b2) ∈
K(S,m)×K(S,m) check whether the simultaneous equations

b1z
m
1 = fT1(P ) and b2z

m
2 = fT2(P )

have a solution (P, z1, z2) ∈ E(K)×K∗×K∗. One can be even more explicit by expressing
the function fT in terms of Weirstrass coordinates x and y. This reduces the problem into
finding a solution (x, y, z1, z2) ∈ K ×K ×K∗ ×K∗ satisfying

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

b1z
m
1 = fT (x, y), b2z

m
2 = fT2(x, y).

The above equations define a new curve, called a homogeneous space, which we define later.
The problem of calculating E(K)/mE(K) now reduces to the existence or non-existence
of a single rational point on each of an explicitly given finite set of curves. Many of these
curves immediately get discarded from consideration due to the lack of any local solution
and, hence, no rational solution. The problem arises when there is a homogeneous space
having points defined over every completion Kv, yet having no K-rational points, which
we discuss later on.
For m = 2, we now give a detailed working description of the method 2-descent below.
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Proposition 2.48 (Complete 2-Descent). ([46], Proposition X.1.4.) Let E/K be an
elliptic curve given by a Weierstrass equation

y2 = (x− a1)(x− a2)(x− a3)

with a1, a2, a3 ∈ K. Let S ⊂ MK, be the finite set of places containing all Archimedean
places, the set of finite places at which E has bad reduction, and the set of finite places
dividing 2. Further let

K(S, 2) = {b ∈ K∗/(K∗)2 : v(b) ≡ 0 (mod 2) for all v ∈ MK\S}.

Then, there is an injective homomorphism

β : E(K)/2E(K) −→ K(S, 2)×K(S, 2)

defined by

β(x, y) =



(x− a1, x− a2) if x ̸= a1, a2,(
a1 − a3
a1 − a2

, a1 − a2

)
if x = a1,(

a2 − a1,
a2 − a3
a2 − a1

)
if x = a2

(1, 1) if x = ∞, i.e., if (x, y) = O,

Let (b1, b2) ∈ K(S, 2)×K(S, 2) be a pair that is not the image of one of the three points
O, (a1, 0), (a2, 0).Then (b1, b2) is the image of a point P = (x, y) ∈ E(K)/2E(K) if and
only if the equations

b1z
2
1 − b2z

2
2 = a2 − a1,

b1z
2
1 − b1b2z

2
3 = a3 − a1,

have a solution (z1, z2, z3) ∈ K∗ ×K∗ ×K. If such a solution exists, then we can take
P = (x, y) = (b1z

2
1 + a1, b1b2z1z2z3).

We now formally define the homogeneous spaces mentioned after Theorem 2.47.

Definition 2.49. Let C/K be a smooth projective curve. The isomorphism group of C is
the group of K̄-isomorphism from C to itself. It is denoted by Isom(C) and its subgroup
containing isomorphisms defined over K is denoted by IsomK(C).
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Definition 2.50. A twist of C/K is a smooth curve C ′/K that is isomorphic to C over
K̄. Two twists, C1 and C2, are equivalent if they are isomorphic over K. The set of twists
of C/K, modulo K-isomorphism, is denoted by Twist(C/K).
The following result shows that there is a bijection between Twist(C/K) and the elements
of the cohomology set H1(GK̄/K , Isom(C)).

Theorem 2.51 ([46], Theorem X.2.2). Let C/K be a smooth projective curve. For
each twist C ′/K of C/K, choose a K̄-isomorphism ϕ : C ′ → C and define a map
ξσ = ϕσϕ−1 ∈ Isom(C)-the automorphism group of C. (a) The map ξ is a 1-cocycle, i.e.

ξστ = (ξσ)
τξτ for all σ, τ ∈ GK̄/K .

The associated cohomology class in H1(GK̄/K , Isom(C)) is denoted by {ξ}.
(b) The cohomology class {ξ} is determined by the K− isomorphism class of C ′ and is
independent of the choice of ϕ. We thus obtain a natural map

Twist(C/K) → H1(GK̄/K , Isom(C)).

(c) The map in (b) is a bijection. In other words, the twists of C/K, up to K− isomorphism,
are in one-to-one correspondence with the elements of cohomology set H1(GK̄/K , Isom(C)).

Remark 3: The group Isom(C) is often non-abelian, and definitely so when C is an
elliptic curve. Hence, H1(GK̄/K , Isom(C)) in Theorem 2.51 is generally a pointed set, not
a group. This makes one look into a GK̄/K-invariant subgroup A of Isom(C)) such that
H1(GK̄/K , A) is a group.

Definition 2.52. A homogeneous space for E/K is a smooth curve C/K together with a
simply transitive algebraic group action of E on C defined over K, i.e. it is a pair (C, ν),
ν : C × E → C is a morphism over K satisfying the following properties:
(i) ν(p,O) = p ∀p ∈ C.
(ii) ν(ν(p, P ), Q) = ν(p, P +Q) ∀ p ∈ C and P,Q ∈ E.
(iii) There exists a unique P ∈ E satisfying ν(p, P ) = q, ∀ p, q ∈ C. The following result
shows that a homogeneous space a special case of twists on a curve.

Proposition 2.53 ([46], Proposition X.3.2). Let E/K be an elliptic curve and let C/K
be a homogeneous space for E/K. Fix a point p0 ∈ C and define a map

θ : E → C, θ(P ) = p0 + P.
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(i) The map θ is an isomorphism defined over K(p0). In Particular, the curve C/K is a
twist of E/K.

(ii) for all p ∈ C and all P ∈ E,

p+ P = θ(θ−1(p) + P ).

(note: The first + is the action of E on C while the second + is addition on E.)
(iii) For all p, q ∈ C,

q − p = θ−1(q)− θ−1(p).

(iv) The subtraction map

v : C × C → E, v(q, p) = q − p

is a morphism and is defined over K.

Definition 2.54. Let C/K and C ′/K be two homogeneous spaces. They are said to be
equivalent if there exists an isomorphism ϕ : C → C ′ over K such that ϕ(p+P ) = ϕ(p)+P

for all p ∈ C and all P ∈ E. The equivalence class containing E/K, acting on itself by
translation, is called the trivial class. The collection of equivalence classes of homogeneous
spaces for E/K is called the Weil -Chatlet group for E/K and is denoted by WC(E/K).

Proposition 2.55. ([46], Proposition X.3.3.) A homogeneous space C/K for E/K is in
the trivial class if and only if C(K) is not the empty set.

The above proposition indicates that the triviality of homogeneous space, i.e., being in the
equivalence class containing E/K, is equivalent to answering the Diophantine equation
question of whether the given curve has any rational points. The following result identifies
the Weil-Chatelet group WC(E/K) with a certain cohomology group, which helps solve
the Diophantine problems mentioned above.

Theorem 2.56. ([46], Theorem X.3.6.) There is a bijection WC(E/K) → H1(GK̄/K , E)

in the following way. Choose any point p ∈ C, and then define the map {C/K} → {σ →
pσ − p}.

The above theorem helps to identify the WC(E/K) with the cohomology group. Let
E,E ′ be elliptic curves defined over K. We consider the isogeny [m] : E → E over K.
Then, there is an exact sequence of GK̄/K-modules

0 // E[m] // E m // E // 0 .
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Considering Galois cohomology, one can now obtain the long exact sequence

0 // E(K)[m] // E(K) // E(K) // H1(GK̄/K , E[m]) // H1(GK̄/K , E)[m] // 0

which yields the following short exact sequence

0 // E(K)/mE(K) // H1(GK̄/K , E[m]) // H1(GK̄/K , E)[m] // 0 .

After considering the above sequence locally for each v ∈ MK , the following commutative

diagram can be obtained.

0 // E(K)/m(E(K))

��

// H1(GK̄/K , E[m]) //

��

H1(GK̄/K , E)[m] //

��

0

0 //
∏

v E(Kv)/m(E(Kv)) //
∏

v H
1(GK̄v/Kv

, E[m]) //
∏

v H
1(GK̄v/Kv

, E)[m] // 0

Definition 2.57. The m-Selmer group of E/K is the subgroup of H1(GK̄/K , E[m]) defined by

Selm(E/K) = ker

{
H1(GK̄/K , E[m]) −→

∏
v

H1(GK̄v/Kv
, E)

}
,

and is finite. The group is effectively computable, certainly in theory and often in practice. The

Shafarevich-Tate group of E/K is the subgroup of H1(GK̄/K , E) defined by

X(E/K) = ker
{
H1(GK̄/K , E)) −→

∏
v H

1(GK̄v/Kv
, E)

}
.

X(E/K) is the collection of elements of WC(E/K) that becomes trivial in all completions of

K. In other words, X(E/K) consists of all homogeneous spaces of E, up to equivalence, which

have points everywhere locally. The group X(E/K) is conjecturally finite. We conclude this

subsection with the following exact sequence between the m-Selmer group and the m-part of the

Shafarevich Tate group of an elliptic curve.

0 −→ E(K)/mE(K) −→ Selm(E/K) −→ X(E/K)[m] −→ 0.

Remark 4: We will compute the above groups when m = 2, called the 2-Selmer group and 2

-part of the Shafarevich-Tate group. As defined in the introduction, 2-Selmer rank of E(K) be

s2(E/K) = dimF2Sel2(E/K)− dimF2E(K)[2]. Let E/K be an elliptic curve with E[2] ⊂ E(K),

let S ⊂ MK be the set of places mentioned in Proposition 2.38 and let K(S, 2) be as in Proposition

2.48. We choose a basis for E[2] and use it to identify E[2] with µ2 × µ2 as GK̄/K -modules.

Then

H1(GK̄/K , E[2];S) ∼= K(S, 2)×K(S, 2),
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where this map uses the isomorphism K∗/(K∗)2−̃→H1(GK̄/K , µ2). The homogeneous space

associated to a pair (b1, b2) ∈ K(S, 2) × K(S, 2) is the curve in P3 give by the equations in

Proposition 2.48,

C : b1z
2
1 − b2z

2
2 = (e2 − e1)z

2
0 , , b1z

2
1 − b1b2z

2
3 = (e3 − e1)z

2
0 .

We need to check whether C(Kv) ̸= ϕ for any pair (b1, b2) and any absolute value v ∈ S to

compute the Sel2(E/K).

We finish this section with the following results of Hasse, which gives a bound for the number of

solutions of an elliptic curve over finite fields. This result is often used in literature and, indeed,

in this thesis to compute the 2-Selmer rank of an elliptic curve.

Theorem 2.58. (Hasse). Let E be an elliptic curve over Fq. Then there exist complex numbers

α and β with |α| = |β| = √
q such that for each k ∈ N,#E(Fqk) = 1 + qk − αk − βk.

Corollary 2.59. (Hasse). For an elliptic curve E over Fq, |#E(Fq)− 1− q| ≤ 2
√
q.

More generally, For smooth projective curves defined over Fq, the Hasse-Weil bound relates to

the following result.

Theorem 2.60. (Hasse-Weil bound) For a smooth projective curve C of genus g,

|#C(Fq)− q − 1| ≤ 2g
√
q.

2.5 Heronian Elliptic Curves

We have already formally defined the Heron triangle and the Heronian elliptic curves in the

previous chapter. We now look into some of the already established results regarding these types

of curves. For more details of the results in this section, one can see [17], [52]. We start with an

example.

Example 2.3. n = 1 is the area of a rational triangle with sides
(3
2
,
5

3
,
17

6

)
. However, we have

seen in the first chapter that 1 is not a congruent number.

The following table in [17] gives us the explicit transformation from a Heron triangle to a Heronian

elliptic curve and vice versa.

The following result, which is part of a work done by Goins and Maddox (see [17]), relates the area

of isosceles Heron triangles and the congruent numbers, along with some more characterizations.

Result 2.5.1. Fix a positive integer n. Then the following are equivalent:

(i) n is the area of an isosceles triangle.
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Table 2.1: Transformation between Heron triangle and Heronian elliptic curve

Triangle to Curve Curve to Triangle
n =

√
s(s− a)(s− b)(s− c) Eτ,n = y2 = x(x− nτ)(x+ nτ−1)

τ =
4n

(a+ b)2 − c2
a =

y

x

x =
(a+ c)2 − b2

4
b = n(τ + τ−1)

x

y

y = a
(a+ c)2 − b2

4
c =

(x2 + n2)

y

(ii) 2n is a congruent number.

(iii) Eτ,n has a rational point of order 4 for some nonzero rational τ .

If there is a rational point that is not of order 2, then the Mordell-Weil group of the congruent

number elliptic curve is infinite. However, in the case of Heronian elliptic curves, the existence of

points of order different from 2 will not necessarily ensure the Mordell-Weil group is infinite. For

example, such a situation arises when the triangle is an isosceles Heron triangle. We conclude

this section by collecting a few observations about congruent number elliptic curves and Heronian

elliptic curves.

Table 2.2: An analogy between Heronian elliptic curves and congruent number elliptic
curves

Heronian elliptic curve congruent number elliptic curve
Eτ,n y2 = x(x− nτ)(x+ nτ−1) y2 = x(x− n)(x+ n)

∆ 16n2(τ + τ−1)2 64n2

Etors Z/2Z× Z/2Z or Z/2Z× Z/4Z Z/2Z× Z/2Z
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In this chapter, we look into the Mordell-Weil group structure of the Heronian elliptic curves

associated with the Heron triangles of odd areas. This section primarily includes explicit 2-descent

methods for different Heronian elliptic curves to look into their corresponding 2-Selmer ranks,

which act as an upper bound of the Mordell-Weil ranks. We start with the particular case when

the area of the Heron triangle under consideration is an odd prime and then generalize the result

later in this chapter.

3.1 A Special Case of n = p ̸≡ 1 (mod 8) :

Given any integer n, the existence of infinitely many Heron triangles with the area n has been

studied in [17], [44]. The question becomes interesting when we fix an angle θ and study the

associated Heronian elliptic curve, its rank, and Selmer rank, which, as mentioned before, acts

as an upper bound for Mordell-Weil rank and is certainly computable in theory and often in

practice. We first consider the case of Heronian elliptic curves associated with the Heron triangles

with area n = p ≡ 3, 5, 7 (mod 8). We first state the following result regarding the rank of the

aforementioned Heron triangles. We prove the result in the upcoming sections via a complete

2-descent. Throughout this chapter, we denote a Heronian elliptic curve associated with a Heron

triangle of area n and one of the angles θ such that tan θ
2 = τ , by E.

Theorem 3.1. Let p be a prime such that p2 + 1 = 2q for a prime q. Then the Heronian elliptic

curve E : y2 = x(x− 1)(x+ p2) associated with Heron triangles of area p and τ = p−1 for one of

the angles θ has rank zero for n = p ≡ 5 (mod 8). Hence, there exists no Heron triangle with

area p and an angle θ such that tan θ
2 = 1

p . Moreover, E has rank at most one if n = p ≡ 3, 7

(mod 8) and τ = 1
p .

Assuming the finiteness of the Shafarevich-Tate group, we give the precise rank for the cases

p ≡ 3, 7 (mod 8) in the later part of this chapter. We start with a brief introduction to this set

of Heron triangles. We first recall that the Heronian elliptic curve associated with the Heron

triangle of area n and an angle θ is

E : y2 = x(x− nτ)(x+ nτ−1)

where τ denotes tan θ
2 . Now we can identify the Heronian elliptic curve with the given set of

Heron triangles in Theorem 3.1 as

E : y2 = x(x− 1)(x+ p2) with τ = p−1.

Throughout this section, we consider τ = p−1. Let S be the set consisting of all finite places at

which E has bad reductions, infinite places, and the prime 2. By the method of 2-descent, as
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explained in Proposition 2.48, there exists an injective homomorphism β such that

β : E(Q)/2E(Q) −→ Q(S, 2)×Q(S, 2)

defined by

β(x, y) =



(x, x− 1) if x ̸= 0, 1,

(−1,−1) if x = 0,

(1, 2q) if x = 1,

(1, 1) if P = O,

where

Q(S, 2) =
{
b ∈ Q∗/(Q∗)2 : vl(b) ≡ 0 (mod 2) for l ̸= 2, p, q

}
= {±1,±2,±p,±q,±2p,±2q,±pq,±2pq} ,

and O denotes the point of infinity [0, 1, 0] in the projective plane that acts as the identity element

in the group E(Q). Moreover, if (b1, b2) ∈ Q(S, 2)×Q(S, 2) is a pair that is not in the image of one

of the three points O, (0, 0), (1, 0), then (b1, b2) is the image of a point P = (x, y) ∈ E(Q)/2E(Q)

if and only if the equations

b1z
2
1 − b2z

2
2 = 1, (3.1.1)

b1z
2
1 − b1b2z

2
3 = −p2, (3.1.2)

have a solution (z1, z2, z3) ∈ Q∗ ×Q∗ ×Q. If (z1, z2, z3) is solution to the equations (3.1.1) and

(3.1.2), then the pre-image P = (x, y) ∈ E(Q) of a point (b1, b2) under the map b is given by

x = b1z
2
1 and y = b1b2z1z2z3. We note that #E(Q)/2E(Q) = 22+r(E/Q), where r(E/Q) is the

Mordell-Weil rank of E.

Remark 5: The brief plan for the proof of Theorem 3.1 is as follows. We first show that the

torsion group of the elliptic curve mentioned in the theorem is isomorphic to Z/2Z× Z/2Z. We

note that the existence of a Q-rational (simply rational) solution for the homogeneous space

corresponding to (b1, b2), defined by (3.1.1) and (3.1.2), identifies them inside the trivial class in

the Weil-chatelet group. The method adopted for finding such (b1, b2) is as follows.

(i) First, narrow down the choices of (b1, b2) for which the corresponding homogeneous spaces

given by (3.1.1) and (3.1.2) have rational solutions. This is done by carefully removing (b1, b2)

with corresponding homogeneous space missing local solutions for some prime p. In the case

n = p ≡ 5 (mod 8), a method like this essentially removes all possible pairs of (b1, b2), which from

the Proposition 2.48 then implies E(Q)/2E(Q) only contains the four torsion points, implying

the rank of the elliptic curve to be exactly zero.
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(ii) For the case n = p ≡ 3, 7 (mod 8), only one (b1, b2) = (1, q) remains that can not be

removed by the calculation mentioned above. This (b1, b2) remains a possible element for the

2-Selmer group (if one could show the local solutions exist for the corresponding homogeneous

spaces at every prime), or for the Mordell-Weil group (in case the rational solution exist for the

corresponding homogeneous space). As we fail to compute that, we stop at giving the upper

bound for the Mordell-Weil rank as one in this case.

Remark 6: We also note that the idea behind the calculation of various Selmer groups in this

chapter and later chapters depends heavily on the process mentioned above. With different curves

and more general n with arbitrary prime factors, the calculation varies significantly, sometimes

(in Chapter 5) involving methods from the ring of integers of ideal class groups. Still, the general

idea remains very similar to the one mentioned above.

3.1.1 Computing the Torsion Group of E :

Here, we explicitly discuss a method for computing the torsion group of elliptic curves. We

note that for an elliptic curve given by an equation of the form y2 = x3 + Ax + B, one may

consider the set Ẽ(Fp) of points on the curve with coordinates in Fp. For such points, we have

the following result (see [46], Section VII.3, Proposition 3.1):

Theorem 3.2. Let E/Q be an elliptic curve and p be a prime of good reduction. Then E(Q)tors

injects into Ẽ(Fp).

By applying the above theorem with several small primes which do not divide ∆, one can get an

effective bound on the size of the torsion subgroup. We first note that for E : y2 = x(x−1)(x+p2),

∆ = 64p4q2. Now for p ̸= 3, we reduce E : y2 = x(x−1)(x+p2) to Ẽ (mod 3) while simultaneously

noticing the fact q ̸≡ 0 (mod 3), we find that |Ẽ(F3)| = 4. Since E[2] ⊆ E(Q)tors and E(Q)tors

injects into Ẽ(F3) for any elliptic curve E, one can see that E(Q)tors = E[2] whenever p ≠ 3. On

the other hand, For p = 3 a similar approach shows that Ẽ(Q)tors ∼= Z/2Z× Z/2Z. Hence we

obtain the following isomorphism:

E(Q)tors ∼= Z/2Z× Z/2Z.

3.1.2 Bounding the Mordell-Weil Rank of E for p ̸≡ 1 (mod 8) :

We begin with the following result regarding the modifications of the equations (3.1.1) and (3.1.2),

which help us to look into nonzero integer solutions of equations rather than nonzero rationals.

Lemma 3.3. Let (b1, b2) ∈ Q(S, 2) × Q(S, 2) be a pair that is not in the image of points of

E(Q)tors. Then (b1, b2) is the image of a point P = (x, y) ∈ E(Q)/2E(Q) if and only if the
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equations

b1r
2
1 − b2r

2
2 = s2, (3.1.3)

b1r
2
1 − b1b2r

2
3 = −p2s2, (3.1.4)

have a solution (r1, r2, r3, s) ∈ Z∗ × Z∗ × Z∗ × Z∗ with gcd(ri, s) = 1, i ∈ {1, 2, 3}.

Proof. Assume zi =
ri
si

where ri, si ∈ Z and gcd(ri, si) = 1 for i ∈ {1, 2, 3}. The result follows

immediately if one assumes gcd(b1, s1) = gcd(b2, s2) = gcd(b1b2, s3) = 1 in addition. In case

the additional assumption of gcd(b1, s1) = gcd(b2, s2) = gcd(b1b2, s3) = 1 is not true, a simple

calculation for each of the three cases here will yield to a contradiction. We show proof for one of

those three cases; the other two follow a similar approach toward their solution. If gcd(b1, s1) ̸= 1

then there exists a prime number t1 such that t1|b1 and t1|s1. Now, from (3.1.1), we have r21s
2
2 ≡ 0

(mod t1) as b1 is square-free. This in turn implies that s2 ≡ 0 (mod t1) as gcd(r1, s1) = 1 and

t1|s1. If t1 ∤ b2, then b1r
2
1s

2
2 is divisible by an odd power of t1 whereas b2r

2
2s

2
1 + s21s

2
2 is divisible

by an even power of t1, a contradiction because b1r
2
1s

2
2 = b2r

2
2s

2
1+ s21s

2
2. Similarly if t1|b2, then an

odd power of t1 divides b1r21s22 − b2r
2
2s

2
1 whereas an even power of t1 divides s21s22, a contradiction

again.

In total there are 256 different possibilities of (b1, b2) ∈ Q(S, 2)×Q(S, 2). We now show that it

is sufficient to focus only on 16 of those pairs. Before we state our next result, for the sake of

brevity, we will assume A is the image of the set E(Q)tors under the map β, that is,

A = {(−1,−1), (1, 2q), (1, 1), (−1,−2q)}.

Lemma 3.4. Suppose (b1, b2) ∈ Q(S, 2)×Q(S, 2) such that (b1, b2) is the image of a point in the

group E(Q)/2E(Q). Then

(i) b1b2 > 0.

(ii) b1 is odd.

(iii) If (b1, b2) ∈ Im(β) modulo A, then bi ∈ {1, p, q, pq} for i = 1, 2.

Proof. Let us assume b1b2 < 0. If b1 > 0 and b2 < 0 then (3.1.4) implies 0 < b1r
2
1−b1b2r

2
3 = −p2s2,

a contradiction. Similarly if b1 < 0 and b2 > 0 then (3.1.3) implies s2 = b1r
2
1 − b2r

2
2 < 0, a

contradiction again. This immediately proves (i).

We now show that b1 has to be odd. Since p is an odd prime, from (3.1.4) one can get

p2s2 = b1b2r
2
3 − b1r

2
1 ≡ 0 (mod 2) which implies s ≡ 0 (mod 2) if b1 is even. Then from (3.1.3)

we get, b1r21 − b2r
2
2 = s2 ≡ 0 (mod 4), which implies b2 ≡ b1 ≡ 0 (mod 2). This is because

gcd(r1, s) = 1 = gcd(r2, s) and s ≡ 0 (mod 2). So, r1 ≡ r2 ≡ 1 (mod 2). Now from (3.1.4) we
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get,

b1r
2
1 = b1b2r

2
3 − p2s2 ≡ 0 (mod 4) and hence r1 ≡ 0 (mod 2)

as b1 is square-free. This is a contradiction as otherwise r1 ≡ 0 ≡ 1 (mod 2). Hence, b1 ̸≡ 0

(mod 2) and the assertion of part (ii) holds.

Now for part (iii), using the fact that β is a homomorphism, we can immediately say that

any pair (b1, b2) belongs to Im(β) if and only if (b1, b2)× (a1, a2) = (a1b1, a2b2) ∈ Im(β) where

(a1, a2) ∈ A. Hence without the loss of generality, one can only focus on examining the possibility

of (b1, b2) ∈ Im(β) where both b1 and b2 belong to Im(β)/A = {1, p, q, pq}. This proves the

statement of part (iii).

We now systematically look into the rest of the sixteen possibilities for (b1, b2) as potential image

points under the map β. The next result shows there will be only one point to be concerned with.

Lemma 3.5. Let (b1, b2) be a pair such that bi ∈ {1, p, q, pq} for i = 1, 2. If (b1, b2) ̸= (1, q) then

(b1, b2) ̸∈ Im(β) whenever p ≡ 5 (mod 8).

Proof. Suppose gcd(b1, b2) ̸= 1 for some (b1, b2) ∈ Im(β). Then gcd(b1, b2) is p, q or pq. If p

divides gcd(b1, b2) then s ≡ 0 (mod p) from (3.1.3). Also from (3.1.4), one can observe that

b1b2r
2
3 − p2s2 = b1r

2
1 ≡ 0 (mod p2). Hence, r1 ≡ 0 (mod p) as b1 is square-free. This leads us

to a contradiction as then p divides gcd(r1, s) = 1. So (b1, b2) ̸∈ Im(β) if gcd(b1, b2) = p or

pq. A very similar argument proves that q cannot also divide gcd(b1, b2) if (b1, b2) ∈ Im(β). So

(b1, b2) ∈ Im(β) implies that gcd(b1, b2) = 1. Now we are left with eight possible pairs of (b1, b2),

i.e., (1, p), (1, q), (1, pq), (p, 1), (p, q), (q, 1), (q, p) and (pq, 1) (ignoring (b1, b2) = (1, 1) which is the

image of O under the map β).

If (b1, b2) = (1, pq) ∈ Im(β) then from (3.1.4), one gets that pqr23 − p2s2 = r21 ≡ 0 (mod p). But

then (3.1.3) implies p divides r21−pqr22 = s2, a contradiction as gcd(r1, s) = 1. So (1, pq) ̸∈ Im(β).

A very similar argument shows that (pq, 1) ̸∈ Im(β) either.

Now (p, q) ∈ Im(β) implies pr21 − pqr23 = −p2s2 from (3.1.4). This implies that 2r21 ≡ 2qr23 ≡ r23

(mod p), hence either
(
2
p

)
= 1 or r1 ≡ r3 ≡ 0 (mod p). But

(
2
p

)
= −1 as p ≡ 5 (mod 8).

Also from (3.1.3), r1 ≡ 0 (mod p) implies −qr22 ≡ s2 (mod p). Multiplying both sides by 2,

we get r22 = −2s2 (mod p) as 2q = p2 + 1. This implies that either r ≡ s ≡ 0 (mod p) or(
−2
p

)
= 1. But

(
−2
p

)
= −1 as p ≡ 5 (mod 8). Hence r2 ≡ s ≡ 0 (mod p), a contradiction again

as gcd(r2, s) = 1. So, (p, q) ̸∈ Im(β).

If (q, p) ∈ Im(β), then from (3.1.4), we have qr21 − pqr23 = −p2s2 which implies r21 ≡ 0 (mod p).

This leads to a contradiction because from (3.1.3), s2 = qr21 − pr22 implies s ≡ 0 (mod p), hence

p divides both r1 and s. So (q, p) ̸∈ Im(β).

Now, we are left with only four possible image points for the homomorphism β. Those points are

(p, 1) (1, p), (q, 1) and (1, q).

(q, 1) ̸∈ Im(β) because otherwise s ≡ 0 (mod q) from (3.1.4) and then r2 ≡ 0 (mod q) from (3.1.3).
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This leads to a contradiction as gcd(r2, s) = 1. Now (1, p) ∈ Im(β) implies that r1 ≡ 0 (mod p)

from (3.1.4). Then from (3.1.3), one can observe that r21 − pr22 = s22 ≡ 0 (mod p), hence s ≡ 0

(mod p), a contradiction, as (r1, s) = 1. Similarly (p, 1) ∈ Im(β) implies pr23 − r22 = 2qs2 which

implies pr23 ≡ r22 (mod q) from (3.1.3) and (3.1.4). This leads to a contradiction if r2 ≡ r3 ̸≡ 0

(mod q) as
(
p
q

)
̸= 1 from the Gauss’ quadratic reciprocity law and the fact p2 + 1 = 2q. But if

r2 ≡ r3 ≡ 0 (mod q), then again from the above equation, 2qs2 = pr23 − r22 ≡ 0 (mod q2) which

implies s ≡ 0 (mod q), a contradiction as gcd(r2, s) = 1. Hence (1, p), (p, 1) ̸∈ Im(β) and the

result follows.

We have excluded the possibility of every non-trivial pair (b1, b2) being in the image of the

homomorphism β, apart from the point (1, q). The following lemma now essentially proves

Theorem 3.1 for p ≡ 5 (mod 8).

Lemma 3.6. If p ≡ 5 (mod 8) then (1, q) ̸∈ Im(β).

Proof. From (3.1.3) and (3.1.4) we know that if (1, q) ∈ Im(β), then

r21 − qr22 = s2, (3.1.5)

r21 − qr23 = −p2s2, (3.1.6)

for some (r1, r2, r3, s) ∈ Z∗×Z∗×Z∗×Z∗. From (3.1.6), we get that either
(
q
p

)
= 1 or r1 ≡ r3 ≡ 0

(mod p). But p ≡ 5 (mod 8) and 2q = p2 + 1 implies that
(
q
p

)
̸= 1 and hence r1 ≡ r3 ≡ 0

(mod p). But from (3.1.5), r1 ≡ 0 (mod p) implies either
(
−q
p

)
= 1 (mod p) or r2 ≡ s ≡ 0

(mod p), a contradiction in either way as
(
−q
p

)
̸= 1 and gcd(r2, s) = 1. Hence (1, q) ̸∈ Im(β).

For p ≡ 3, 7 (mod 8), we first observe that the same proof for p ≡ 5 (mod 8) works, except for

the image points (b1, b2) = (1, q), (p, q) and (p, 1) where we have used the fact p ≡ 5 (mod 8).

We now prove the main result by noticing that two of those three points can not appear as image

points even for the cases p ≡ 3, 7 (mod 8).

Proof of Theorem 3.1: We can now conclude the proof of Theorem 3.1 by proving that (p, q), (p, 1) ̸∈
Im(β) if p ≡ 3 (mod 4). First, let us suppose that p ≡ 3 (mod 8). Then (p, q) ̸∈ Im(β) as

(p, q) ∈ Im(β) implies pr21 − pqr23 = −p2s2 from (3.1.4). This implies that 2r21 ≡ 2qr23 ≡ r23

(mod p), hence either
(
2
p

)
= 1 or r1 ≡ r3 ≡ 0 (mod p), a contradiction in both cases as(

2
p

)
= −1 whenever p ≡ 3 (mod 8) and r1 ≡ r3 ≡ 0 (mod p) implies that −p2s2 ≡ 0 (mod p3)

from (3.1.4) which consequentially implies s ≡ 0 (mod p), a contradiction as gcd(r1, s) = 1. Sim-

ilarly, when p ≡ 7 (mod 8), from (3.1.3), one gets r22 ≡ −2s2 (mod p) which implies r2 ≡ s ≡ 0

(mod p) or
(
−2
p

)
= 1, contradiction either way as gcd(r2, s) = 1 and

(
−2
p

)
= −1 when p ≡ 7

(mod 8). Hence (p, q) ̸∈ Im(β) if p ≡ 3 (mod 4).
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Now (p, 1) ∈ Im(β) implies that pr21 − r22 = s2 from (3.1.3). This in turn implies r22 ≡ −s2

(mod p). Hence either
(
−1
p

)
= 1 or r2 ≡ s ≡ 0 (mod p), a contradiction either way as p ≡ 3

(mod 4) and gcd(r2, s) = 1. Hence (p, 1) ̸∈ Im(β) when p ≡ 3 (mod 4). This implies (1, q) is the

only possible image point (modulo the image of the torsion group). Using Lemma 3.6, we can

now conclude the proof.

It is now evident that the rank of the elliptic curve E(Q) is zero when p ≡ 5 (mod 8). The

torsion group is Z/2Z × Z/2Z or Z/2Z × Z/4Z, triangle being isosceles in the latter case. So

unlike the non-congruent numbers, we need to consider other orientations of the triangle and see

the rank of corresponding elliptic curves to conclude that there is no Heron triangle.

For the case of non-isosceles Heron triangle, we note that the torsion group of (E)tors =

{(0, 0), (0, 1), (0,−p2), O} and have one-one correspondence between sides of the triangle and

points y ≠ 0 on the elliptic curve. So above argument tells us that we do not have a non-isosceles

Heron triangle.

For the isosceles triangle case, we know if p is the area of an isosceles Heron triangle, then 2p is a

congruent number(see [17]). But 2p is the non-congruent number when p ≡ 5 (mod 8) (see [15]).

This implies p can not be an area of an isosceles Heron triangle. Hence there is no Heron triangle

with area p and an angle θ such that τ =
1

p
for p ≡ 5 (mod 8).

Table 3.1: Examples for area p ≡ 3, 5, 7 (mod 8), τ = 1
p with p2 + 1 = 2q and

corresponding rank distribution

p p (mod 8) q r(E/Q) p p (mod 8) q r(E/Q)
3 3 5 1 131 3 8581 1
5 5 13 0 139 3 9661 1
11 3 61 1 199 7 19801 1
19 3 181 1 271 7 36721 1
29 5 421 0 379 3 71821 1
59 3 1741 1 571 3 163021 1
61 5 1861 0 631 7 199081 1
71 7 2521 1 739 3 273061 1

We note that we have not included the case p ≡ 1 (mod 8) here. This is because we discuss

in detail the 2-Selmer group structure and the 2-part of the Shafarevich-Tate group of the

corresponding Heronian elliptic curves through the solvability of certain Diophantine equations

in Chapter 5.2. We enlist a few examples above of the curve E : y2 = x(x− 1)(x+ p2). The rank

is verified at http://magma.maths.usyd.edu.au/calc/.
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3.2 A Generalization

Now we give an explicit group structure for the 2-Selmer group of Heronian elliptic curve

E : y2 = x(x − 1)(x+ n2) associated with a Heron triangle of area n with θ as an angle such

that τ = tan θ
2 = n−1 and n2 + 1 = 2q for some prime q. For positive integers k and n, we define

Ωk,n = #{p : n ≡ 0 (mod p) and p ≡ k (mod 8)}. We now state the main result of this section

below.

Theorem 3.7. For a square-free integer n such that n2 + 1 = 2q for some prime q, let E :

y2 = x(x− 1)(x+ n2) denote the Heronian elliptic curve associated with the non-isosceles Heron

triangle of area n and an angle θ such that tan( θ2) = n−1. Then,

(i) Sel2(E/Q) ∼= (Z/2Z)Ω1,n+1 if Ω5,n = 0.

(ii) Sel2(E/Q) ∼= (Z/2Z)

(
Ω1,n+

Ω5,n(Ω5,n−1)

2

)
if Ω5,n ̸= 0.

We note that the above results can be used as a tool to compute the Heronian elliptic curve with

arbitrarily large 2-Selmer rank. This is because the 2-Selmer rank here is directly related to the

number of prime factors of n of the form 1, 5 modulo 8.

3.2.1 Bounding the 2-Selmer Rank of E :

Let n =
∏

i pi where pi’s are distinct odd primes. Then, we define

Q(S, 2) =
{
b ∈ Q∗/(Q∗)2 : vl(b) ≡ 0 (mod 2) for all primes l ̸∈ S

}
= ⟨±2, ±pi, ±q : 22 = p2i = q2 = 1⟩.

As described in the previous section, by the method of 2-descent (2.48), there exists an injective

homomorphism

β : E(Q)/2E(Q) −→ Q(S, 2)×Q(S, 2)

defined by

β(x, y) =



(x, x− 1) if x ̸= 0, 1,

(−1,−1) if x = 0,

(1, 2q) if x = 1,

(1, 1) if x = ∞, i.e., if (x, y) = O,

If (b1, b2) ∈ Q(S, 2) × Q(S, 2) is a pair that is not in the image of one of the three points

O, (0, 0), (1, 0), then (b1, b2) is the image of a point P = (x, y) ∈ E(Q)/2E(Q) if and only if the
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equations

b1z
2
1 − b2z

2
2 = 1, (3.2.1)

b1z
2
1 − b1b2z

2
3 = −n2, (3.2.2)

have a solution (z1, z2, z3) ∈ Q∗ ×Q∗ ×Q. As mentioned previously, under the 2-descent method,

each element (b1, b2) in Sel2(E/Q) corresponds to the homogeneous space given by (3.2.1) and

(3.2.2) with local solutions everywhere.

b1, b2 are square-free integers whose only prime factors are 2, q and prime factors of n. The image

of E(Q)tors under the 2-descent map is {(1, 1), (1, 2q), (−1,−1), (−1,−2q)} . We start with the

following result regarding l-adic solutions of the homogeneous space given by (3.2.1) and (3.2.2).

Lemma 3.8. Let (z1, z2, z3) be a solution to the homogeneous space given by equations (3.2.1)

and (3.2.2). Then for each prime l < ∞ and all i ∈ {1, 2, 3}, either vl(zi) ≥ 0 or vl(zi) = −k for

some positive integer k.

Proof. Let zi = lkiui, where ki ∈ Z and ui ∈ Z∗
l for i = {1, 2, 3}. Then vl(zi) = ki for all

i ∈ {1, 2, 3}.

Suppose k1 < 0. Then from (3.2.1) one can get that

b1u
2
1 − b2u

2
2l

2(k2−k1) = l−2k1 .

If k2 > k1, then l2 must divide b1, a contradiction as b1 is square-free. Hence k2 ≤ k1 < 0. Now

if k2 < k1 < 0 then again from (3.2.1) we get

b1u
2
1l

2(k1−k2) − b2u
2
2 = l−2k2 ,

which implies l2 must divide b2, a contradiction again. Hence if k1 < 0, then we have k1 = k2 =

−k < 0 for some integer k. For k2 < 0, one similarly gets k1 = k2 = −k < 0.

From (3.2.2), we have

b1u
2
1 − b1b2u

2
3l

2(k3−k1) = −n2 · l−2k1 .

If k1 < 0 and k3 > k1, then l2 must divide b1, a contradiction as before. Hence k3 ≤ k1 < 0 if

k1 < 0. For k3 < k1 < 0, we can rewrite the above equation as

b1u
2
1l

2(k1−k3) − b1b2u
2
3 = −n2 · l−2k3 , (3.2.3)

which implies l2 must divide b1b2, i.e., l = 2, pi or q. If l = pi, then from (3.2.3) we arrive at

the contradiction that p3 divides b1b2 whereas b1 and b2 are square-free. For l = 2 and q, one

can notice from (3.2.2) that if k3 ≤ −2, then l3 divides b1b2, a contradiction again. This in

turn implies k3 = −1 and hence k1 ≥ 0 which contradicts the assumption that k1 < 0. Hence
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k1 < 0 =⇒ k3 = k1.

Now, suppose k3 < 0. If k1 < 0, then from the previous part we already established k1 = k2 =

k3 = −k for some positive integer k. So without loss of generality, we can assume k1 ≥ k3.

If k3 < k1 and k3 < 0, then as mentioned previously in this proof, one can get that b1b2 ≡ 0

(mod l2) and l = 2 or q. Now we subtract (3.2.2) from (3.2.1) and observe that

b1b2u
2
3 − b2u

2
2l

2(k2−k3) = 2q · l−2k3 .

If k2 > k3, we get a contradiction that l3 divides b1b2 for l = 2, q. Therefore, k2 ≤ k3 < 0

but then by the first part, k1 = k2 ≤ k3, a contradiction to the assumption k1 > k3. Hence

k3 < 0 =⇒ k1 = k3. Together, now we obtain k1 = k2 = k3 = −k < 0 for some integer k if

k1 < 0 or k2 < 0 or k3 < 0.

Noting that we will only look into possible (b1, b2) ∈ Sel2(E/Q)/Im(E(Q)tors) under the 2-descent

map, without loss of generality, we fix the following observations.

i) b1 > 0, b2 > 0 always (due to l = ∞).

ii) b2 is odd.

Lemma 3.9. Let (b1, b2) ∈ Sel2(E/Q). Then for an arbitrary prime p,

(i) b1 ≡ 0 (mod p) =⇒ p ≡ 1, 5 (mod 8).

(ii) b2 ∈ {1, q}. Moreover, n ≡ 0 (mod p), p ≡ 5 (mod 8) =⇒ (1, q) ̸∈ Sel2(E/Q).

(iii) The number of prime factors of b1 of the form 8k + 5 must always be even.

Proof. We begin with noticing that b1 ̸≡ 0 (mod q). Otherwise, from (3.2.2) and (3.2.1),

vq(zi) ≥ 0 =⇒ −n2 ≡ 0 (mod q) and, vq(zi) = −k =⇒ b1 ≡ 0 (mod q2), contradiction in each

case. This implies no q-adic solution for the homogeneous space associated with (b1, b2) when q

divides b1.

A very similar argument as above shows that b1 is odd if (b1, b2) ∈ Sel2(E/Q). As otherwise,

v2(zi) ≥ 0 implies 2 divides −n2 from (3.2.2) and v2(zi) = −k leads to b2 as even from (3.2.1),

both contradictions from our assumptions of n and b2.

We now note that b2 ̸≡ 0 (mod p) if p divides n. If vp(zi) ≥ 0 then subtracting (3.2.2) from

(3.2.1), one can get 2q ≡ 0 (mod p), a contradiction. Otherwise, from (3.2.2), we get that p2

divides b1, a contradiction. This, along with the assumptions above, narrows down the choices of

b2 ∈ {1, q}.
Now b1 ≡ 0 (mod p) implies p divides n. We note that possible elements of Sel2(E/Q) now looks

like (b1, 1) or (b1, q).

If p ≡ 3, 7 (mod 8), we notice that the homogeneous space corresponding to (b1, 1) has no p-adic

solution. This is because if p ≡ 3, 7 (mod 8) then depending on vp(zi), from (3.2.1), either(−1
p

)
= 1, or b2 ≡ 0 (mod p), contradiction either way.

Now for homogeneous spaces corresponding to (b1, q), we first note that vp(zi) = −k =⇒ q ≡ 0
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(mod p), a contradiction. For vp(zi) ≥ 0, subtracting (3.2.2) from (3.2.1), we get that
(−2

p

)
= 1

which implies p ̸≡ 7 (mod 8). For p ≡ 3 (mod 8), we note that
( q
p

)
= −1 which contradicts

(3.2.1). This concludes the proof of part (i).

To conclude the proof of part (ii), we show that whenever n has a prime factor p ≡ 5 (mod 8), the

homogeneous space for (1, q) has no p-adic solution. From (3.2.2), we get
( q
p

)
= 1, a contradiction

as
( q
p

)
= −1 here.

For part (iii), we notice that the only possible element in the 2-Selmer group is of the form (b1, 1)

with p ≡ 1, 5 (mod 8) its only prime divisors where p varies over all divisors of n. For p ≡ 5

(mod 8), we note that
(p
q

)
= −1 whereas

(p
q

)
= 1 whenever p ≡ 1 (mod 8). Noting that only

factors of b1 are now primes p ≡ 1, 5 (mod 8), one can get that
(
b1
q

)
= 1 if there are even number

of factors of 5 (mod 8), else
(
b1
q

)
= −1. The result now follows from (3.2.1) and (3.2.2), observing

the fact that
(
b1
q

)
= 1 is a necessary condition for the homogeneous space corresponding to (b1, 1)

to have a q-adic solution.

3.2.2 Everywhere Local Solution

We prove that the homogeneous spaces corresponding to (p, 1) and (1, q) have local solutions

everywhere where p is any prime factor of n such that p ≡ 1 (mod 8) . We use Hensel’s lemma

to lift a simple root of a polynomial f(x) modulo a prime l to a solution for f(x) in Zl. Let C be

the homogeneous space given by (3.2.1) and (3.2.2) corresponding to the pairs (p, 1) and (1, q).

An application of smoothness of C, the degree-genus formula, and the Hasse-Weil bound give the

following.

(i) For l ≥ 5, l ̸= t where t ≡ 1, 5 (mod 8) and t divides n, C is a homogeneous space of genus

1 corresponding to (p, 1) or (p1p2, 1) with #C(Fl) ≥ 1 + l − 2
√
l ≥ 2 where p ≡ 1 (mod 8) ,

p1 ≡ p2 ≡ 5 (mod 8).

(ii) For l ≥ 5, l ̸= t where t ≡ 1, 3 (mod 8) and t divides n, C is a homogeneous space of genus 1

corresponding to (1, q) then #C(Fl) ≥ 1 + l − 2
√
l ≥ 2.

Hensel’s lemma implies that the homogeneous spaces mentioned above have l-adic solution for

all the primes l mentioned above. This reduces the problem to finding local solutions for only

finitely many primes.

Lemma 3.10. Let n be a squarefree integer such that n2 + 1 = 2q for a prime q. Then for each

prime factor, p of n, p ≡ 1 (mod 8), the homogeneous spaces corresponding to (p, 1) have local

solutions everywhere for l ≤ ∞.

Proof. As mentioned above, we need only to show local solutions exist for l = 2, 3 and t where

t ≡ 1, 5 (mod 8) is a prime that divides n. Fixing two of the three variables z1, z2, z3, we present

a set of simple roots for the system of equations (3.2.1) and (3.2.2) modulo l using Lemma 3.8

that can be lifted to Ql using Hensel’s lemma.

For l = 2, z1 = 1 is a simple root modulo 8 to the system of equations pz21 − 1 = 22k and
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z21 − 1 = −n2

p · 22k for k ≥ 2.

For l = 3, z1 = 1 is a simple root modulo 3 to the system of equations pz21 − 1 = 32k and

z21 − 1 = −n2

p · 32k when p ≡ 1 (mod 3). When p ≡ 2 (mod 3), one can see that z1 = 1 is a

simple root modulo 3 to the simultaneous equations pz21 − 1 = 1 and z21 − 0 = −n2

p .

For l = t, t ≡ 1, 5 (mod 8) and t divides n, z2 = a such that a2 ≡ −1 (mod p) is a simple root

modulo p for equations p · 02 − z22 = 1 and p · 02 − z22 = 2q. This concludes the proof.

In a very similar way to that of Lemma 3.10, we can prove the following result for (p1p2, 1) where

pi ≡ 5 (mod 8). We only observe that p1p2 ≡ 1 (mod 8) in this case.

Lemma 3.11. Let n be a squarefree integer such that n2 + 1 = 2q for a prime q. Then if exist,

for any two prime factors p1 and p2 of n, pi ≡ 5 (mod 8), i = 1, 2, the homogeneous spaces

corresponding to (p1p2, 1) have local solutions everywhere for l ≤ ∞.

Lemma 3.12. The homogeneous space corresponding to (1, q) ∈ Sel2(E/Q) if n has no prime

factor of the form 8k + 5.

Proof. We have already established in Lemma 3.9 that if n has a prime divisor of the form 5

modulo 8, then (1, q) ̸∈ Sel2(E/Q).

For l = 2, we notice n ̸≡ 1 (mod 8) implies q ≡ 5 (mod 8). For homogeneous space associated

to (1, q), this implies z1 = 1 is a simple root to z21 − q · 12 = 22 and z21 − q · 12 = −n2 · 22. Now

n ≡ 1 (mod 8) =⇒ q ≡ 1 (mod 8). We can immediately now see that z1 = 1 is a simple root

modulo 8 of the simultaneous equations z21 − q = 22k and z21 − q = −n2 · 22k for k ≥ 2.

For l = 3, we first note that q ≡ 1 (mod 3) always. Then z1 = 1 is a simple root to the system

of equations z21 − q · 12 = 32k and z21 − q · 12 = −n2 · 32k.
For l = t, where t ≡ 1, 3 (mod 8) is prime, t divides n, we note that

(−q
t

)
=
(−2

t

)
= 1. Now we

can see that z2 = a is a simple root to the equations 02 − qz22 = 1 and 02 − z22 = 2 where a2 ≡ −2

(mod t). This concludes the proof.

We are now in a position to restrict the size of the 2-Selmer group Sel2(E/Q). The proof requires

the results obtained in earlier sections.

Proof of Theorem 3.7. From Lemma 3.12, we know that (1, q) ∈ Sel2(E/Q) if n has no prime

factor of the form 5 modulo 8. From the group structure of the 2-Selmer group, Lemma 3.9 and

Lemma 3.10, we can see that Sel2(E/Q) = ⟨(pi, 1), (1, q)⟩ where pi ≡ 1 (mod 8) vary over all the

prime factors of n. This proves part (i) of Theorem 3.7.

From Lemma 3.9, we know (1, q) ̸∈ Sel2(E/Q) if n has a prime factor of the form 8k + 5. Hence

Lemma 3.10 and Lemma 3.11 imply Sel2(E/Q) = ⟨(pi, 1), (titj , 1)⟩ where pi varies over all the

prime factors of n of the form 8k+ 1 and ti ̸= tj varies over all the prime factors of n of the form

8k + 5. Because there are Ω5,n(Ω5,n−1)
2 ways to choose distinct ti, tj , the result follows.
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Remark 7: Using the above result, we get that Sel2(E/Q) = 1 for p ≡ 3, 7 (mod 8). Hence,

using the finiteness of the Shafarevich-Tate group, which implies that r(E/Q) has the same

parity as the p−Selmer rank for a prime number p, we can conclude that r(E/Q) is exactly one.

Hence X[2] is trivial. For p ≡ 5 (mod 8), we have seen r(E/Q) = 0 and Sel2(E/Q) = 0 hence

X[2] is trivial for this also.

We list odd integers n below with the 2-Selmer ranks of corresponding Heronian elliptic curve E

associated with the non-isosceles Heron triangle. The tables are verified using MAGMA [34] and

SAGE [49].

Table 3.2: Examples for odd area n, τ = 1
n with n2 + 1 = 2q and corresponding

2-Selmer rank

n q 2- Selmer Rank of E Generators
3 5 1 (1,5)
5 13 0 -
71 2521 1 (1, 2521)
3 · 5 113 0 -

3 · 5 · 7 · 11 667013 0 -
5 · 11 · 13 255613 1 (65,1)
5 · 17 3613 1 (17,1)
17 · 23 76441 2 (17,1),(1, 76441)

7 · 11 · 13 501001 0 -
3 · 5 · 7 · 11 · 19 240791513 0 -

5 · 13 · 3 19013 1 (65,1)
17 · 73 770041 3 (17,1),(73,1),(1,77041)

17 · 41 · 97 2285488441 4 (17,1),(41,1),(97,1),(1, 2285488441)
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This chapter consists of the arithmetic of the Heronian elliptic curves associated with triangles

with even area. First, we study a special case of triangles with area n = 2mp where p denotes a

prime number. Consequently, we construct a family of infinitely many Heronian elliptic curves

of rank 1 arising from Heron triangles. Assuming the finiteness of the Shafarevich-Tate group,

we then explicitly produce a separate family of infinitely many Heronian elliptic curves with

2-Selmer rank lying between 1 and 3. Then we generalize the result and analyze the 2-Selmer

ranks of the generalized Heronian elliptic curves. We conclude this chapter with the construction

of a large class of Heronian elliptic curves with arbitrarily large 2-Selmer ranks.

4.1 Heron Triangles of Area 2mp, and τ = 2m :

For a prime p, and an arbitrary positive integer m, in this section, we consider Heronian elliptic

curves associated with triangles of area 2mp and one of the angles θ such that τ = tan θ
2 = 2m.

The main result regarding this class of Heronian elliptic curves is as follows.

Theorem 4.1. Let p be a prime congruent to 7 modulo 8 and q = 4m + 1 be a prime such that(p
q

)
= 1. Then, the 2-Selmer rank of the Heronian elliptic curve

E : y2 = x(x− 4mp)(x+ p) (4.1.1)

is 1 when m = 1. In the case m ≥ 2, the 2-Selmer rank of E lies between 1 and 3.

4.1.1 The 2-Selmer Group :

We can identify the Heronian elliptic curve E given by (4.1.1) with a Heron triangle of area

2mp and an angle θ such that τ = tan θ
2 = 2m. The discriminant of the elliptic curve E is

16 · 42m · p6 · q2. Let S be the set consisting of all finite places at which E has bad reduction, the

infinite places and the prime 2, i.e., S = {p, q, 2, ∞}. We define

Q(S, 2) =
{
b ∈ Q∗/(Q∗)2 : vl(b) ≡ 0 (mod 2) for all primes l ̸∈ S

}
= {±1, ±2, ±p, ±q, ±2p, ±2q, ±pq, ±2pq} .

By the method of 2-descent (2.48), there exists an injective homomorphism

β : E(Q)/2E(Q) −→ Q(S, 2)×Q(S, 2)
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defined by

β(x, y) =



(x, x− 4mp) if x ̸= 0, 4mp,

(−1,−p) if x = 0,

(p, q) if x = 4mp,

(1, 1) if x = ∞, i.e., if (x, y) = O.

The homogeneous space for this curve is

b1z
2
1 − b2z

2
2 = 4mp, (4.1.2)

b1z
2
1 − b1b2z

2
3 = −p. (4.1.3)

4.1.2 Local Solutions for the Homogeneous Spaces :

In this section, we examine the properties of the l-adic solutions for (4.1.2) and (4.1.3) that are

associated with the 2-Selmer group. In a later section, we use these properties to bound the size

of the 2-Selmer group. We first prove the following result for all odd primes l.

Lemma 4.2. Suppose (4.1.2) and (4.1.3) have a solution (z1, z2, z3) ∈ Ql ×Ql ×Ql for any odd

prime l. If vl(zi) < 0 for any one i ∈ {1, 2}, then vl(z1) = vl(z2) = vl(z3) = −k < 0 for some

integer k.

Proof. Let zi = lkiui, where ki ∈ Z and ui ∈ Z∗
l for i = {1, 2, 3}. Then vl(zi) = ki for all

i ∈ {1, 2, 3}.

Suppose k1 < 0. Then from (4.1.2) one can get that

b1u
2
1 − b2u

2
2l

2(k2−k1) = 4mpl−2k1 .

If k2 > k1, then l2 must divide b1, a contradiction as b1 is square-free. Hence k2 ≤ k1 < 0. Now

if k2 < k1 < 0 then again from (4.1.2) we get

b1u
2
1l

2(k1−k2) − b2u
2
2 = 4mpl−2k2 ,

which implies l2 must divide b2, a contradiction again. Hence if k1 < 0, then we have k1 = k2 =

−k < 0 for some integer k. For k2 < 0, one similarly gets k1 = k2 = −k < 0.

From (4.1.3), we have

b1u
2
1 − b1b2u

2
3l

2(k3−k1) = −pl−2k1 .
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If k1 < 0 and k3 > k1, then l2 must divide b1, a contradiction as before. Hence k3 ≤ k1 < 0 if

k1 < 0. For k3 < k1 < 0, we can rewrite the above equation as

b1u
2
1l

2(k1−k3) − b1b2u
2
3 = −pl−2k3 , (4.1.4)

which implies l2 must divide b1b2, i.e., l = p or q as l is odd. If l = p, then from (4.1.4) we arrive

at the contradiction that p3 divides b1b2 whereas b1 and b2 are square-free. For l = q, we subtract

(4.1.3) from (4.1.2) and observe that

b1b2u
2
3 − b2u

2
2l

2(k2−k3) = pql−2k3 .

If k2 > k3, we get a contradiction that q3 divides b1b2. Therefore, k2 ≤ k3 < 0 but then by the

first part, k1 = k2 ≤ k3. Together, we obtain k1 = k2 = k3 = −k < 0 for some integer k if k1 < 0

or k2 < 0.

Lemma 4.3. Suppose equations (4.1.2) and (4.1.3) have a solution (z1, z2, z3) ∈ Q2 ×Q2 ×Q2.

If b1b2 ≡ 2 (mod 4), then v2(z1) = v2(z2) = v2(z3) = −k < 0.

Proof. Let zi = 2kiui, where ki ∈ Z and ui ∈ Z∗
2 for i = {1, 2, 3}. Then v2(zi) = ki for all

i = {1, 2, 3}.
When k1 < 0, the argument in the first part of the proof of Lemma 4.2 also yields k1 = k2 = −k < 0

and k3 ≤ k1. From (4.1.4), we can also conclude that k1 = k3 as l2 ∤ b1b2 for l = 2 in this case.

If k1 > 0, then k3 ≥ 0 in (4.1.4) implies 2 divides p, a contradiction. If k3 < 0 < k1, then reducing

(4.1.4) modulo 4 implies b1b2 ≡ 0 (mod 4), a contradiction again.

If b1 is even, one can show that k1 ̸= 0 by a similar argument. If b2 is even and k1 = 0, then

k2 ≥ 0 (resp. k2 < 0) in (4.1.2) implies that 4 divides b1b2 (resp. b2), a contradiction.

4.1.3 Bounding the Size of the 2-Selmer Group :

We now bound the size of the 2-Selmer group of the Heronian elliptic curves given by (4.1.1).

The 2-Selmer group Sel2(E/Q) consists of those pairs (b1, b2) in Q(S, 2) × Q(S, 2) for which

equations (4.1.2) and (4.1.3) have an l-adic solution at every place l of Q. We now limit the size

of Sel2(E/Q) by ruling out local solutions for certain pairs (b1, b2) by exploiting the results of

the previous section.

Lemma 4.4. Let (b1, b2) ∈ Q(S, 2)×Q(S, 2). Then

(i) The corresponding homogeneous space will have no l-adic solution for the case l = ∞ if

b1b2 < 0.

(ii) If b1b2 ≡ 2 (mod 4), the corresponding homogeneous space will not have 2-adic solutions.

(iii) If b1 ≡ 0 (mod q), then the corresponding homogeneous space will not have any q-adic

solution.
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Proof. (i) Let the homogeneous space corresponding to (b1, b2) ∈ Q(S, 2) × Q(S, 2) have real

solutions. Then b1 > 0 and b2 < 0 implies −p > 0 in (4.1.3), which is absurd. Similarly,

b1 < 0 and b2 > 0 implies 4mp < 0 in (4.1.2), which is absurd. Thus, the homogeneous space

corresponding to (b1, b2) has no l-adic solutions for l = ∞ if b1b2 < 0.

(ii) Let b1b2 ≡ 2 (mod 4). Then v2(z1) = v2(z2) = −k < 0 for some integer k from Lemma 4.3.

Hence (4.1.2) can be written as

b1u
2
1 − b2u

2
2 = 4mp · 22k,

which implies that b1 and b2 have the same parity, and it contradicts b1b2 ≡ 2 (mod 4).

(iii) Let us assume b1 ≡ 0 (mod q). Then one of vq(z1) or vq(z3) has to be negative in (4.1.3). If

vq(z1) < 0, then from Lemma 4.2, we have vq(z1) = vq(z2) = vq(z3) = −k < 0 for some integer k.

Subtracting (4.1.3) from (4.1.2), we get

b1b2u
2
3 − b2u

2
2 = pq2k+1,

where zi = uiq
−k for ui ∈ Z∗

q and i ∈ {1, 2, 3}. This implies that b2 ≡ 0 (mod q). From (4.1.3),

one can now deduce that

b1u
2
1 − b1b2u

2
3 = −pq2k =⇒ b1 ≡ 0 (mod q2),

a contradiction. For the case vq(z3) < 0, if additionally one of vq(zi) < 0 for i ∈ {1, 2}, we are

back to the previous case due to Lemma 4.2.

So we now suppose vq(z3) < 0 and vq(zi) ≥ 0 for i ∈ {1, 2}. Then from (4.1.3), one can

immediately observe b1b2 ≡ 0 (mod q2) =⇒ b2 ≡ 0 (mod q) too. From (4.1.2), this in turn

implies that 4mp ≡ 0 (mod q), a contradiction again. Hence the result follows.

With the help of Lemma 4.3 and from the fact that the torsion points (0, 0), (4m, 0), (−p, 0) and

O under the map β are

A = {(−1,−p), (p, q), (−p,−pq), (1, 1)},

we can now solely focus on the seven pairs

(1, p), (1, q), (1, pq), (2, 2), (2, 2p), (2, 2q), (2, 2pq).

Every other pair (b1, b2) will either belong to the same coset of one of those seven points in the

torsion group Im(β)/A or the corresponding homogeneous space will not yield local solutions for

at least one place l by Lemma 4.3, and consequently will not have rational solutions either. The

following result narrows down the possible pairs from seven to three.
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Lemma 4.5. There are no p-adic solutions to the homogeneous spaces corresponding to (1, p),

(1, pq), (2, 2p) and (2, 2pq).

Proof. First we prove the result for the case (b1, b2) = (1, p). A very similar proof can also be

carried out for the case (b1, b2) = (1, pq).

If vp(z1) > 0 then assuming z1 = pz̃1 one can get the following from (4.1.2).

p2z̃21 − pz22 = 4mp =⇒ −z22 ≡ 4m (mod p)

which implies that
(−1

p

)
= 1, a contradiction as p ≡ 7 (mod 8).

Now vp(z1) = 0 implies vp(z2) < 0 from (4.1.2), which in turn implies vp(z1) < 0 from Lemma

4.2, a contradiction.

If vp(z1) < 0 then from Lemma 4.2, vp(z1) = vp(z2) = −k < 0 for some integer k. Assuming

zi = uip
−k for i ∈ {1, 2}, (4.1.2) yields u21−pu22 = 4mp2k+1 =⇒ u1 ≡ 0 (mod p), a contradiction.

We now deal with the pair (2, 2p), the argument being similar for (2, 2pq). From (4.1.2) one can

see that if vp(z2) ≥ 0 then vp(z1) > 0. Now vp(z1) > 0 implies
(−2

p

)
= 1, a contradiction as p ≡ 7

(mod 8). If vp(z2) < 0, then vp(z2) = vp(z1) = −k < 0 for some integer k. Assuming zi = uip
k

where ui ∈ Z∗
p for i ∈ {1, 2, 3}, one can now observe from (4.1.2) that

2u21 − 2pu22 = 4mp2k+1 =⇒ u1 ≡ 0 (mod p),

a contradiction again. Hence the result follows.

We can reduce the possibilities for (b1, b2) further down from three to one if 2 is not a quadratic

residue modulo q, i.e., q = 5.

Lemma 4.6. Suppose m = 1, i.e., q = 5. Then the homogeneous spaces corresponding to

(b1, b2) ∈ {(2, 2), (2, 2q)} will not have q-adic solution.

Proof: First consider (b1, b2) = (2, 2). Subtracting (4.1.3) from (4.1.2) we get

4z23 − 2z22 = 5p.

This implies either z2 ≡ z3 ≡ 0 (mod 5) or
(
2
5

)
= 1, the latter being an immediate contradiction.

If z2 ≡ z3 ≡ 0 (mod 5), (4.1.3) implies 2z21 ≡ −p (mod 5), which is a contradiction again as(−p
5

)
= 1 but

(
2
5

)
= −1. Hence the result follows for (b1, b2) = (2, 2). For the case (b1, b2) = (2, 2q)

the result follows from (4.1.2)

2z21 − 10z22 = 4p =⇒ 2z21 ≡ 4p (mod 5).

This in turn implies
(
2
5

)
= 1, a contradiction. □
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Lemma 4.7. Equations (4.1.2) and (4.1.3) have a local solution in Ql for every prime l for

(b1, b2) = (1, q).

Proof. A twist of a smooth projective curve C/Q is a smooth curve C ′/Q that is isomorphic

to C over Q̄ (see [46], Section X.2). We use Hensel’s lemma to show that for (b1, b2) = (1, q),

equations (4.1.2) and (4.1.3) have a local solution in Ql for every place l. Every homogeneous

space of E is a twist of E (see [46], Proposition 3.2). First we consider l ≥ 5, l ̸= q. Suppose C

is the homogeneous space given by (4.1.2) and (4.1.3) corresponding to the pair (1, q). Then C is

a twist of E, and in particular, it has genus 1. By the Hasse-Weil bound, we have

#C(Fl) ≥ 1 + l − 2
√
l ≥ 2 for l ≥ 5, l ̸= q.

We can choose a solution (z1, z2, z3) ∈ Fl×Fl×Fl such that not all three of them are zero modulo

l. Now z1 ≡ z2 ≡ 0 (mod l) implies l2 divides 4mp, a contradiction. Similarly, z1 ≡ z3 ≡ 0

(mod l) implies −p ≡ 0 (mod l2), contradiction again. One can now suitably choose two of z1, z2
and z3 to convert equations (4.1.2) and (4.1.3) into one single equation of one variable with a

simple root over Fl. That common solution can then be lifted to Ql via Hensel’s lemma.

For l = q, one can notice that there exists a ̸≡ 0 (mod q) such that −p ≡ a2 (mod q). This in

turn shows that equations (4.1.2) and (4.1.3) has a simple root z1 = a modulo q and hence can

be lifted to a solution in Zq via Hensel’s lemma. We also note that any initial choice of integers

for z2 and z3 will not affect the above choice of z1 to work in this case.

For l = 3, first let us observe that q ≡ 2 (mod 3) always. If p ≡ 1 (mod 3), choose z2 = 0 and

z3 = 1. Then z21 = 4mp ≡ 1 (mod 3) from the first equation and z21 = q − p ≡ 1 (mod 3) from

the second equation. Hence z1 ̸≡ 0 (mod 3) is a solution that can be lifted by Hensel’s lemma.

If p ≡ 2 (mod 3), choose z2 = 1, z3 = 0. Then z21 = q + 4mp ≡ 1 (mod 3) from the first equation

and z21 = −p ≡ 1 (mod 3) from the second equation. Hence z1 ̸≡ 0 (mod 3) is a solution that

can be lifted by Hensel’s lemma.

Finally for the case l = 2, choose z2 = 1 and z3 = 0. For m = 1, this turns (4.1.2) and (4.1.3)

into the following;

z21 − 5z22 = 4p ≡ 28 ≡ 4 (mod 8), (4.1.5)

z21 − 5z23 = −p ≡ 1 (mod 8). (4.1.6)

In both the cases we now have z21 ≡ 1 (mod 8) which by Hensel’s lemma can be lifted to Q2.

Similarly for m ≥ 2, one can immediately observe that z21 ≡ 1 (mod 8) again, and hence can be

lifted similarly to Q2 via Hensel’s lemma. Hence proved.
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Proof of Theorem 4.1. Lemma 4.4 and Lemma 4.5 establish that there are at most three distinct

homogeneous spaces with possible local solutions at every prime l ≤ ∞. This concludes that the

2-Selmer rank of E lies between 0 and 3. Lemma 4.7 ensures the existence of one homogeneous

space with local solutions for all prime l ≤ ∞. These three lemmas conclude that the 2-Selmer

rank of E lies between 1 and 3. For q = 5, Lemma 4.6 implies that there is at most one

homogeneous space with everywhere local solution, and hence, with Lemma 4.7, this proves that

the 2-Selmer rank is exactly 1 for q = 5, concluding the proof of Theorem 4.1.

4.1.4 The Mordell-Weil Rank and 2-Part of Shafarevich-Tate

Group:

Assuming the finiteness of the Shafarevich-Tate group, one can immediately note that Theorem

4.1 has the following consequence.

Corollary 4.8. The Mordell-Weil rank of the elliptic curve E given by (4.1.1) is at most 1 when

m = 1. Moreover, if we assume the finiteness of the Shafarevich-Tate group X(E/Q), then the

rank of E(Q) is exactly 1 and the 2-part of X(E/Q) is trivial.

Proof: We have seen that the 2-Selmer group has rank 1 in the previous section when q = 5.

By the exact sequence (2.54), it follows that either E(Q) has rank 0 or X(E/Q)[2] = 0. If we

assume the finiteness of X(E/Q) as predicted by Shafarevich, then X(E/Q) must have square

order by Cassels-Tate pairing (see [3]). Therefore, X(E/Q)[2] has to be 0 i.e. the Mordell-Weil

rank of E is 1.

With the help of Theorem 4.1 and Corollary 4.8, we can now state the following regarding the

existence of infinitely many Heron triangles of a certain type.

Corollary 4.9. There exist infinitely many primes p congruent to 7 modulo 8 such that 2p is the

area of infinitely many Heron triangles with one angle θ given by tan θ
2 = 2.

Proof: For q = 5 we have infinitely many primes p ≡ 7 (mod 8) such that
(p
5

)
= 1 by Dirichlet’s

theorem on primes in arithmetic progression. This ensures the existence of a Heronian elliptic

curve E as in Theorem 4.1 with a rank of exactly 1, for each such prime p (Theorem 4.1 and

Corollary 4.8). This is equivalent to the existence of infinitely many Heron triangles with area 2p

and one angle θ such that τ = tan θ
2 = 2 due to the work of Goins and Maddox in [17] for each

such prime p. This concludes the proof.

We now include a list of Heronian elliptic curves satisfying the properties mentioned in the

Theorem 4.1 with the corresponding rank, 2-Selmer rank, and Shafarevich-Tate group in the

table below. The computations have been done in Magma [34] and SageMath [49] software.
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Table 4.1: Examples for area n = 2mp, τ = 2m with 4m + 1 = q and corresponding
rank distribution

p q r(E/Q) s2(E) X(E/Q)[2] p q r(E/Q) s2(E) X(E/Q)[2]
31 5 1 1 trivial 47 17 0 2 no information
71 5 1 1 trivial 127 17 2 2 trivial
79 5 1 1 trivial 151 17 0 no information no information
151 5 1 1 trivial 191 17 0 2 no information
191 5 1 1 trivial 223 17 0 2 no information
199 5 1 1 trivial 239 17 0 2 no information

4.2 Heron Triangles of Area 2mn and τ = n :

As a generalization to the triangle considered above, we focus on Heron triangles of area 2m · n
for square-free odd integer n and with one of the angles θ such that τ = tan θ

2 = n. The Heronian

elliptic curve E : y2 = x(x− 2mn2)(x+ 2m) is associated with such triangles. Let S denote the

set consisting of all finite places at which E has bad reductions, infinite places, and prime 2. We

define

Q(S, 2) =
{
b ∈ Q∗/(Q∗)2 : vl(b) ≡ 0 (mod 2) for all primes l ̸∈ S

}
= ⟨±2, ±pi, ±q⟩

where n = p1p2...pk is a square-free odd number such that n2 + 1 = 2q for some prime q. By the

method of 2-descent (2.48), there exists an injective homomorphism

β : E(Q)/2E(Q) −→ Q(S, 2)×Q(S, 2)

defined by

β(x, y) =



(x, x− 2mn2) if x ̸= 0, 2mn2,

(−1,−2δ(m)) if x = 0,

(2δ(m), 2q) if x = 2mn2,

(1, 1) if x = ∞, i.e., if (x, y) = O,

where O is the fixed base point and δ(m) = 0 for even m and δ(m) = 1 otherwise. If (b1, b2)

is a pair which is not in the image of O, (0, 0), (2mn2, 0), then (b1, b2) is the image of a point

P = (x, y) ∈ E(Q)/2E(Q) if and only if the equations

b1z
2
1 − b2z

2
2 = 2m · n2, (4.2.1)

b1z
2
1 − b1b2z

2
3 = −2m, (4.2.2)

b1b2z
2
3 − b2z

2
2 = 2m+1 · q (4.2.3)
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have a solution (z1, z2, z3) ∈ Q∗ ×Q∗ ×Q. We note that (4.2.3) is obtained by subtracting (4.2.2)

from (4.2.1) and is only included here due to its use later in this section. Throughout the work, b

denotes all possible products of the prime factors of n. By p, we denote an arbitrary factor of n,

unless otherwise mentioned. The main results of this work are now as follows;

Theorem 4.10. Let E : y2 = x(x − 2mn2)(x + 2m) be the elliptic curve corresponding to

non-isosceles Heron triangles of area 2m · n and one of the angles θ such that τ = tan θ
2 = n. We

assume n = p1p2..pk as a square-free odd number and n2 + 1 = 2q for some prime number q.

Then for odd m,

Sel2(E) =


⟨(2, 2)⟩ if pi ≡ ±3 (mod 8), q ≡ 1 (mod 8),

0 if pi ≡ ±3 (mod 8), q ≡ 5 (mod 8),

⟨(b, b), (2b, b), (2, 2)⟩ if pi ≡ ±1 (mod 8), q ≡ 1 (mod 8),

for all i ∈ {1, 2, ..., k}, where (b, b) ∈ Sel2(E) implies b ≡ 1 (mod 8) and (2b, b) ∈ Sel2(E) implies

b ≡ 7 (mod 8).

We note that the case of pi ≡ ±1 (mod 8), q ≡ 5 (mod 8) is not included above, since
(
n2+1
pi

)
=(

2
pi

)(
q
pi

)
=⇒ q ≡ 1 (mod 8). The result for even m is as follows.

Theorem 4.11. Let E : y2 = x(x− 2mn2)(x+ 2m) be the Heronian elliptic curve as mentioned

above. Then for even m, Sel2(E) = ⟨(b, b), (1, 2)⟩ where

(i) (b, b) ∈ Sel2(E) =⇒ b ≡ ±1 (mod 8).

(ii) (1, 2) ∈ Sel2(E) implies every prime factor of n is of the form ±1 modulo 8.

4.2.1 Local Solution to the Homogeneous Spaces :

We focus on l-adic solutions that are not in Zl, i.e. ti < 0 for all i = 1, 2, 3. We start with the

following result relating t1 and t2.

Lemma 4.12. Suppose (4.2.1) and (4.2.2) have a solution (z1, z2, z3) ∈ Ql ×Ql ×Ql for any

prime l. If vl(zi) < 0 for any one i ∈ {1, 2}, then vl(z1) = vl(z2) = −t < 0 for some integer t.

Proof. With the notations above, for t1 < 0, (4.2.1) implies b1 · u21 − b2 · u22 · l2(t2−t1) = 2m · n2 ·
l−2t1 =⇒ b1 ≡ 0 (mod l2) if t2 > t1, a contradiction as b1 is square-free. Hence t2 ≤ t1 < 0.

Now if t2 < t1 < 0 then again from (4.2.1) one gets

b1 · u21 · l2(t1−t2) − b2 · u22 = 2m · n2 · l−2t2 ,

which implies l2 must divide b2, a contradiction again. Hence if t1 < 0, then we have t1 = t2 =

−t < 0 for some integer t. For t2 < 0, one similarly gets t1 = t2 = −t < 0.
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The following result gives a correspondence between vl(z1) and vl(z3) for all primes l.

Lemma 4.13. Suppose (4.2.1) and (4.2.2) have a solution (z1, z2, z3) ∈ Ql ×Ql ×Ql for any

prime l. Then vl(z1) < 0 =⇒ vl(z3) = vl(z1) = −t < 0.

Proof. For t1 < 0, from (4.2.2), we have

b1 · u21 − b1b2 · u23 · l2(t3−t1) = −2m · l−2t1 .

If t3 > t1, then l2 must divide b1, a contradiction. Hence t3 ≤ t1 < 0. Now for t3 < t1 < 0, one

can see from above that

b1 · u21 · l2(t1−t3) − b1b2 · u23 = −2m · l−2t3 , (4.2.4)

which implies l2 must divide b1b2, i.e., l = 2, p or q where p denotes any of the primes that divide

n. Noting b1, b2 are square-free, one can get that t3 ≤ −2 =⇒ b1b2 ≡ 0 (mod l3), a contradiction

from the above equation. Hence, t3 = −1, but then t3 < t1 =⇒ t1 ≥ 0, contradiction again as

t1 < 0. Together, now we obtain t1 = t3 = −t < 0 if t1 < 0.

Lemma 4.14. Suppose (4.2.1) and (4.2.2) have a solution (z1, z2, z3) ∈ Ql ×Ql ×Ql for any

prime l. If p denotes an arbitrary prime factor of n, then

(i) For all primes l ̸= p, vl(z3) < 0 =⇒ vl(z3) = vl(z1). The same conclusion holds true for

l = p also if b1b2 ̸≡ 0 (mod p2).

(ii) For l = p, b1b2 ≡ 0 (mod p2), and vl(z3) < 0, either vl(z3) = −1 and vl(z1) = vl(z2) = 0, or

vl(z3) = vl(z1) = −t < 0.

Proof. (i) For vl(z3) = t3 < 0, from (4.2.2), we get

b1 · u21 · l2(t1−t3) − b1b2 · u23 = −2m · l−2t3 .

Hence t1 > t3 implies l2 divides b1b2 i.e. l = 2, p or q. l = 2 will imply 23 divides b1b2, a

contradiction. For l = q, from (4.2.3), we again get q3 divides b1b2 if t2 > t3, a contradiction.

Hence t2 ≤ t3 < 0 =⇒ t2 = t1 ≤ t3 from Lemma 4.12. Now t1 < t3 =⇒ b1 ≡ 0 (mod l2) from

(4.2.2), a contradiction. Hence t3 < 0 =⇒ t3 = t1 = −t < 0. This proves the first part of the

result.

(ii) For the second part, l = p, b1b2 ≡ 0 (mod p2), and t1 > t3 will imply t3 = −1 from (4.2.2),

and hence t1 ≥ 0. This, in turn, will also imply t2 ≥ 0. As vp(2m ·n2) = 2, one can easily observe

that t1, t2 ≥ 0 =⇒ t1 = t2 = 0 from (4.2.1). Hence for l = p and t1 > t3 implies t3 = −1, and

t1 = t2 = 0. For l = p and t1 ≤ t3 < 0 =⇒ t1 < 0, and hence from Lemma 4.13, we conclude

t1 = t3. This concludes the proof.
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The following result discusses the non-existence of l-adic solutions for different homogeneous

spaces and different l. This, in turn, makes the upper bound of the size of Sel2(E) smaller.

Without loss of generality, we assume b2 ̸≡ 0 (mod q), as (2δ(m), 2q) belongs in the image of the

E(Q)tors under the 2-descent map β.

Lemma 4.15. Let (b1, b2) ∈ Q(S, 2)×Q(S, 2). Then

(i) The corresponding homogeneous space has no l-adic solution for the case l = ∞ if b1b2 < 0.

(ii) If b1 ≡ 0 (mod q), then the corresponding homogeneous space has no q-adic solution.

(iii) The homogeneous space corresponding to (b1, b2) has no p-adic solution if b1b2 ≡ 0 (mod p)

but b1b2 ̸≡ 0 (mod p2).

Proof. (i) Let the homogeneous space corresponding to (b1, b2) ∈ Q(S, 2) × Q(S, 2) has real

solutions. Then b1 > 0 and b2 < 0 implies −2m > 0 in (4.2.2), which is absurd. Similarly,

b1 < 0 and b2 > 0 implies 2m · n2 < 0 in (4.2.1), a contradiction. Thus, the homogeneous space

corresponding to (b1, b2) has no l-adic solutions for l = ∞ if b1b2 < 0.

(ii) Let us assume b1 ≡ 0 (mod q). From (4.2.3), we notice that vq(zi) < 0 =⇒ b2 ≡ 0 (mod q),

a contradiction. Now for vq(zi) ≥ 0, (4.2.2) will imply that −2m ≡ 0 (mod q), a contradiction

again. Hence the result follows.

(iii) Assuming b1 ≡ 0 (mod p), we get b2 ̸≡ 0 (mod p) from the given condition. If vp(zi) < 0,

from (4.2.1), we get b2 · u22 ≡ 0 (mod p) where u2 ∈ Z∗
p, a contradiction. Hence vp(zi) ≥ 0,

but then (4.2.2) implies −2m ≡ 0 (mod p), a contradiction. The case b2 ≡ 0 (mod p), b1 ̸≡ 0

(mod p) can be done in a similar manner.

4.2.2 Size of the 2-Selmer Group When m is an Odd Integer :

We start this section under the assumption m is odd. From Lemma 4.15, it is evident that

(b, b), (2b, b), (b, 2b), (2b, 2b) are the only possible elements of Sel2(E) where b runs over all possible

square-free combinations of prime factors of n and 1.

Lemma 4.16. Let (b1, b2) ∈ Q(S, 2)×Q(S, 2). Then

(i) The homogeneous spaces corresponding to (2b, b) and (b, 2b) have no 2-adic solutions if b ̸≡ 7

(mod 8). The homogeneous space corresponding to (2b, 2b) has no 2-adic solution if b ̸≡ 1

(mod 8).

(ii) For p ≡ ±3 (mod 8), the homogeneous spaces corresponding to (b, b), (2b, b), (b, 2b) and

(2b, 2b) have no p-adic solutions where p is any prime factor of b.

(iii) For q ≡ 5 (mod 8), the homogeneous space corresponding to (2, 2) has no q-adic solution.

Proof. (i) For the case (2b, b), one can immediately observe v2(zi) ≥ 0, as otherwise b ≡ 0

(mod 2) from (4.2.1). For v2(zi) ≥ 0, looking into the parity of v2(zi) from (4.2.1) and (4.2.3),
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we get v2(z1) =
m−1
2 and v2(z2) =

m+1
2 . Using (4.2.1), this, in turn, implies

b · u21 − 2b · u22 ≡ b− 2b = n2 ≡ 1 (mod 8) =⇒ b ≡ 7 (mod 8).

For the case (b, 2b), in a similar way, we note that from (4.2.1) and (4.2.2), v2(z2) = m−1
2 = v2(z3).

From (4.2.3), we can now observe that b2 · u23 − b · u22 = 2q =⇒ b2 − b ≡ 2 (mod 8) =⇒ b ≡ 7

(mod 8). Hence the result follows.

Now for the case (2b, 2b), v2(zi) < 0 =⇒ 2b · u21 ≡ 0 (mod 4) from (4.2.2), a contradiction.

Hence v2(zi) ≥ 0 for all i = 1, 2, 3. Now from (4.2.2) and (4.2.3), one can immediately observe

that v2(z1) = v2(z3) =
m−1
2 , which in turn, implies b · u21 − 2b2 · u23 = −1 =⇒ b ≡ 1 (mod 8)

from (4.2.2). Hence the result follows.

(ii) For all the four types of pairs, in this case, one can first note from Lemma 4.14 that

vp(z3) = −1, and vp(z1) = vp(z2) = 0, as otherwise from (4.2.2), either 2m ≡ 0 (mod p) or

b ≡ 0 (mod p2). Now from (4.2.3), for (b, b) and (2b, 2b), we get
(
2m+1q

p

)
= 1, a contradiction as

n2 + 1 = 2q =⇒
(
2q
p

)
= 1 whereas m is odd, and

(
2
p

)
= −1 as p ≡ ±3 (mod 8).

For (2b, b) and (b, 2b), noting again that vp(z3) = −1, and vp(z1) = vp(z2) = 0, one gets
(
2
p

)
= 1

from (4.2.1), a contradiction again as p ≡ ±3 (mod 8). Hence the result follows.

(iii) For (2, 2), from (4.2.3), we obtain vq(zi) > 0 =⇒ 2m+1 ≡ 0 (mod q), vp(z2) = vp(z3) =

0 =⇒
(
2
q

)
= 1 contradiction both the time. Also, one can trivially observe from (4.2.3) that

vp(z2) = 0 if and only if vp(z3) = 0. Hence vq(zi) < 0 for all i ∈ {1, 2, 3}, and from Lemma 4.12,

one now gets
(
2
q

)
= 1, a contradiction when q ≡ 5 (mod 8).

4.2.3 Size of 2-Selmer Group When m is Even :

We focus on the elliptic curve E and its corresponding 2-Selmer group Sel2(E) with the assumption

m is an even integer in this section. From Lemma 4.14 and Lemma 4.15, it is again evident that

{(b, b), (b, 2b), (2b, b), (2b, 2b)} are the only possible elements in Sel2(E).

Lemma 4.17. Let (b1, b2) ∈ Q(S, 2)×Q(S, 2). Then

(i) The homogeneous spaces corresponding to (2b, b) and (2b, 2b) have no 2-adic solutions.

(ii) If p ̸≡ ±1 (mod 8) and n ≡ 0 (mod p), then the homogeneous spaces corresponding to (b, 2b)

has no p-adic solutions.

(iii) The homogeneous space corresponding to (b, b) has no 2-adic solution if b ̸≡ ±1 (mod 8).

Proof. (i) For l = 2 and (b1, b2) = (2b, b), it is evident from Lemma 4.12 and Lemma 4.13

that v2(zi) ≥ 0 for the homogeneous space described by (4.2.1) and (4.2.2). Noting that m is

even and comparing the parity of the exponent of 2 on both sides of (4.2.1) and (4.2.3), we get

v2(z3) = v2(z2) =
m
2 . From (4.2.3), we now get 2b · u23 − b · u22 = 2q =⇒ b ≡ 2 (mod 8), hence a

contradiction and the result then follows for the case (b1, b2) = (2b, b).

For the case (b1, b2) = (2b, 2b) a similar method shows from (4.2.2) and (4.2.3) that v2(z2) =
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m
2 , v2(z3) =

m−2
2 . From (4.2.3), one can now get 2b ≡ 7 (mod 8), a contradiction. Hence the

result follows.

(ii) We first prove the case when b ≡ 0 (mod p). If vp(zi) ≥ 0 for all i, then from (4.2.2)

for (b1, b2) = (b, 2b), one can observe that 2m ≡ 0 (mod p), a contradiction. Similarly if

vp(zi) = −t < 0 for all i, again from (4.2.2), one can see b · u21 ≡ 0 (mod p2), a contradiction.

From Lemma 4.14, now the only remaining case is vp(z3) = −1, and vp(z1) = vp(z2) = 0. Noting

m is even, from (4.2.2), this implies
(
2
p

)
= 1 =⇒ p ≡ ±1 (mod 8).

Now for the case when p ̸≡ ±1 (mod 8) divides n but not b, one can immediately observe that

vp(zi) ≥ 0 as otherwise
(
2
p

)
= 1 from (4.2.1), a contradiction if p ̸≡ ±1 (mod 8). Now for

vp(zi) ≥ 0, from (4.2.1), we get that vp(z2) = 0 =⇒ vp(z1) = 0 =⇒
(
2
p

)
= 1, a contradiction.

Hence vp(z2) > 0 which implies vp(z1) > 0 and that leads to vp(z3) = 0. Now from (4.2.3), we get

2b2 · u23 − 2b · z22 = 2m · 2q =⇒ b2 · u23 ≡ 2m−1 (mod p) =⇒
(
2

p

)
= 1.

The result now follows as 2 is a quadratic non-residue modulo p here.

(iii) For homogeneous space corresponding to (b, b), if v2(zi) < 0 in (4.2.1) and (4.2.2), then from

(4.2.2), it is evident that b ≡ 1 (mod 8). Otherwise, for the case v2(zi) ≥ 0, from (4.2.3), one can

notice that

v2(z2) = v2(z3) =⇒ b2 · u23 − b · u22 ≡ 2q or 0 ≡ 2 or 0 (mod 8).

This implies b ≡ ±1 (mod 8), and the result follows.

4.2.4 Everywhere Local Solution :

We now look into concluding the computation of the 2-Selmer rank for E. The following result

focuses on the homogeneous spaces with local solutions everywhere.

Lemma 4.18. Equations (4.2.1) and (4.2.2) have a local solution in Ql for every prime l for

(b1, b2) = (2, 2) when m is odd, q ≡ 1 (mod 8).

Proof. The Jacobian of the intersection of (4.2.1) and (4.2.2) for (2, 2) is(
4 · z1 −4 · z2 0

4 · z1 0 −8 · z3

)

which one can easily observe has rank 2 whenever l ̸= 2, p, q where p ≡ ±1 (mod 8), q ≡ 1

(mod 8). Hence except for those l’s, the topological genus becomes the same as the arithmetic

genus, which is 1 by the degree-genus formula, and Hasse-Weil bound for a genus one curve can

be used for all but finitely many primes. For small primes l = 2, 3 and for l = p, q we check

directly for the local solutions.
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For l ̸= p, q, l ≥ 5, using Hasse bound we choose a solution (z1, z2, z3) ∈ Fl×Fl×Fl such that not all

three of them are zero modulo l. Now z1 ≡ z2 ≡ 0 (mod l) implies l2 divides 2m ·n2 =⇒ l = p, a

contradiction. Similarly, z1 ≡ z3 ≡ 0 (mod l) implies −2m ≡ 0 (mod l) =⇒ l = 2, contradiction

again. One can now suitably choose two of z1, z2 and z3 to convert equations (4.2.1) and (4.2.2)

into one single equation of one variable with a simple root over Fl. That common solution can

then be lifted to Ql via Hensel’s lemma.

For l = 2, we first note that any solution (z1, z2, z3) of (4.2.1) and (4.2.3) implies v2(z1) =

v2(z3) =
m−1
2 . Using these we convert the equations (4.2.1) and (4.2.2) into the following;

u21 − z22 = n2,

u21 − 2u23 = −1.

Fixing z2 = 0 and u3 = 1, one can see that u21 ≡ 1 (mod 8) is a solution to the above equations

and can be lifted to Z2 via Hensel’s lemma. Multiplying both sides by 2m then gives rise to a

solution of (4.2.1) and (4.2.2) in Z2.

For l = 3, if n ≡ 0 (mod 3), fixing z2 = z3 = 1 gives rise to z1 ̸≡ 0 (mod 3) as a solution to

(4.2.1) and (4.2.2), that can be lifted to Z3 via Hensel’s lemma. If 3 does not divide n, fixing

z2 = 0 and z3 = 1 implies z1 ̸≡ 0 (mod 3) is a solution that Hensel’s lemma can again lift.

For l = p ≡ ±1 (mod 8), instead of looking for p-adic solution of (4.2.1) and (4.2.2), we focus on

equations (4.2.2) and (4.2.3). Fixing z1 = z2 = 0, and noting that
(
2
p

)
= 1, one can choose z3

such that z23 ≡ 2m−2 (mod p), as a solution that can be lifted to Zp via Hensel’s lemma.

For l = q ≡ 1 (mod 8), a very similar argument as for l = p, shows that z1 = z2 = 0 gives rise to

z3 as a solution such that z23 ≡ −2m−1 (mod q), that can lifted to Zq via Hensel’s lemma. This

concludes the proof.

The following result now completely determines the 2-Selmer group of E for odd integer m when

all the prime factors of n is of the form ±1 modulo 8.

Lemma 4.19. Let pi ≡ ±1 (mod 8) for all i ∈ {1, 2, ..., k}. Then for odd m, the equations

(4.2.1) and (4.2.2) have a local solution in Ql for

(i) every prime l for (b1, b2) = (b, b), when b ≡ 1 (mod 8).

(ii) every prime l for (2b, b) when b ≡ 7 (mod 8) if q ≡ 1 (mod 8).

Proof. The method adopted to prove the result is similar to that used in the proof of Lemma 4.18.

Hence, we mostly provide direct solutions that can be lifted to l-adic rational numbers via Hensel’s

lemma. Like the previous case, we explicitly check the cases l = 2, 3, q, p ≡ ±1 (mod 8), and

the case q ≡ 1 (mod 8) if q is of such form. For all other primes l, we use the Hasse-Weil bound

and can immediately observe that there exists a solution (z1, z2, z3) for homogeneous spaces

corresponding to both (b, b) and (2b, b) modulo l such that z1 ≡ z2 ≡ 0 (mod l) or z1 ≡ z3 ≡ 0

(mod l) is not possible. Hence can be lifted to Ql via Hensel’s lemma. We now start with the
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case (b, b).

(i) For l = 2, choosing v2(zi) < 0, one can immediately see z21 ≡ 1 (mod 8) is a solution if

z2 = z3 = 1 and hence can be lifted to Z2.

For l = 3, we note that n ̸≡ 0 (mod 3) in this case, and so is true for b. For b ≡ 1 (mod 3), we

look for solutions such that vq(zi) < 0. Fixing z2 = z3 = 1, one can see z1 ̸≡ 0 (mod 3) is then a

solution modulo 3 that can be lifted to Q3 via Hensel’s lemma. For b ≡ 2 (mod 3), fixing z2 = 0

and z3 = 1 gives rise to z1 ̸≡ 0 (mod 3), a solution that can again be lifted by Hensel’s lemma.

For l = p, where p varies over all prime factors of n, we start with noting
(
2
p

)
= 1 in this

case. We start with those primes p such that b ≡ 0 (mod p). Using Lemma 4.14, we look for

solutions (z1, z2, z3) such that vp(z3) = −1 and vp(z1) = vp(z2) = 0. Fixing z1 = z2 = 1, we get
b2

p2
· z23 = 2m. This z3 can be lifted to p-adic solutions using Hensel’s lemma.

Now for l = p, such that p divides n but not b, noting that
(
2
p

)
= 1, we observe that (0, 0, z3) is

a solution for (4.2.2) and (4.2.3) where b2z23 ≡ 2m (mod p). This solution can be lifted to Zp

using Hensel’s lemma.

For l = q, we first note that q ≡ 5 (mod 8) implies the Jacobian described earlier has rank 2

and hence is already considered using Hasse-Weil bound. So q ≡ 1 (mod 8), and
(
b
q

)
= 1 here.

Now (z1, 0, 0) gives rise to a solution that can be lifted by Hensel’s lemma, where b · z21 ≡ −2m

(mod q). This concludes the proof for the case (b1, b2) = (b, b).

(ii) We now look into the case (b1, b2) = (2b, b) where b ≡ −1 (mod 8). As above, we will only

focus on the primes l = 2, 3, p and q where p ≡ ±1 (mod 8). q ≡ 1 (mod 8) is a necessary

condition in this case, as otherwise, the corresponding homogeneous space does not have any

q-adic solution from Lemma 4.16 and hence does not belong to Sel2(E).

For l = 2, we again notice that v2(z1) = v2(z2)− 1 = m−1
2 which implies dividing both sides of

(4.2.1) and (4.2.2) by 2m, (z1, 1, 0) is a solution modulo 8, where z21 ≡ 1 (mod 8), and hence can

be lifted to Q2 via Hensel’s lemma.

For l = 3, we again note that n ̸≡ 0 (mod 3), and hence so is b. For b ≡ 1 (mod 3), fixing

z1 = 0 gives rise to z2, z3 ̸≡ 0 (mod 3) as solutions that can be lifted. For b ≡ 2 (mod 3), Fixing

z2 = 1, z3 = 0, we get z1 ̸≡ 0 (mod 3) as a solution that Hensel’s lemma can lift.

For l = p, when p ≡ ±1 (mod 8), p divides n but not b, fixing z1 = z2 = 0, one can choose z3 such

that b2z23 ≡ 2m−1 (mod p). If b ≡ 0 (mod p), we look for the solution with vp(z1) = vp(z2) =

0, vp(z3) = −1. Now fixing z1, z2 to any arbitrary values modulo p, one can see (z1, z2, z3) is a

solution where b2

p2
· z23 ≡ 2m−1 (mod p). The solution then can be lifted to Qp by Hensel’s lemma.

For l = q ≡ 1 (mod 8), noting
(
b
q

)
= 1 here, one can fix z2 = z3 = 0 and get z1 as a solution to

(4.2.1) and (4.2.2) such that b · z21 ≡ −2m (mod q). This can be lifted to Qq via Hensel’s lemma.

This concludes the proof for this case.

Now we focus on the 2-Selmer group Sel2(E) of the elliptic curve E when m is an even integer.

Before proving the results below, we first note that b ≡ ±1 (mod 8) implies
(
b
q

)
= 1 here.
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Lemma 4.20. Equations (4.2.1) and (4.2.2) have a local solution in Ql for every prime l for

(b1, b2) = (b, b) when m is even, b ≡ ±1 (mod 8).

Proof. The Jacobian of the intersection of (4.2.1) and (4.2.2) for (b, b) is(
2b · z1 −2b · z2 0

2b · z1 0 −2b2 · z3

)

For l ̸∈ {2, p, q}, the Jacobian has rank 2 modulo l and hence represent a smooth curve of genus

one. Using Hasse-Weil bound for such l ≥ 5, one can guarantee the existence of at least two

solutions (z1, z2, z3) for (4.2.1) and (4.2.2) modulo l. It is now a simple observation that either of

z1 ≡ z2 ≡ 0 (mod l) or z1 ≡ z3 ≡ 0 (mod l) implies l ∈ {2, p, q}. Hence, the solutions can not

be pairwise zero. Fixing two of z1, z2 and z3 suitably, now one can use Hensel’s lemma to lift the

solutions modulo l to Ql for all such primes l.

For l = 2, we start with the case b ≡ 1 (mod 8). Fixing z2 = z3 = 1 for v2(zi) < 0, z21 ≡ 1

(mod 8) is a solution that can be lifted to Q2 by Hensel’s lemma. For b ≡ −1 (mod 8), we first

observe from (4.2.1) and (4.2.3) that m
2 = v2(z2) = v2(z3) < v2(z1) is the only possibility in this

case for equations (4.2.1) and (4.2.2). Dividing both sides of (4.2.1) and (4.2.2) by 2m then yields

in

b · z21 − b · u22 = n2 ≡ 1 (mod 8),

b · z21 − b2 · u23 = −1 ≡ −1 (mod 8).

Fixing z1 = 0 results in u2 = u3 = 1 as solutions that can be lifted to Q2 via Hensel’s lemma.

For l = 3 and b ≡ 1 (mod 3), one can note that fixing z2 = z3 = 1 for v3(zi) < 0 gives rise to

z1 = 1 as a solution that can be lifted to Q3. Similarly for b ≡ 2 (mod 3), if n ̸≡ 0 (mod 3),

fixing z1 = 0 leads to z2 = z3 = 1 as solutions that can be lifted. In case b ≡ 2 (mod 3) and

n ≡ 0 (mod 3), fixing z2 = 1, z3 = 0 gives rise z1 ̸≡ 0 (mod 3) as a solution that can be lifted to

Z3.

For l = p where p divides b, it can be seen that fixing z1 and z2 to any arbitrary values modulo p

and choosing z3 as the solution of b2

p2
· z23 ≡ 2m (mod p) gives the required solution of (4.2.1) and

(4.2.2) that can be lifted to Qp for vp(z1) = vp(z2) = 0, vp(z3) = −1. For l = p where p divides n

but not b, (0, 0, z3) is a solution of (4.2.2) and (4.2.3), that can be lifted to Qp where z3 satisfies

b2 · z23 ≡ 2m (mod p).

For l = q, fixing z2 = z3 = 0 in (4.2.1) and (4.2.2), we can see that (z1, 0, 0) is a solution that

can be lifted to Qq where b · z21 ≡ −2m (mod q). This follows from the fact
(
b
q

)
= 1. Now the

result follows.

Lemma 4.21. Equations (4.2.1) and (4.2.2) have a local solution in Ql for every prime l for

(b1, b2) = (b, 2b) when m is even, and the the prime factors of n are of the form ±1 modulo 8.
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Proof. The Jacobian of the intersection of (4.2.1) and (4.2.2) for (b, b) is(
2b · z1 −4b · z2 0

2b · z1 0 −4b2 · z3

)

Similar to the method used in Lemma 4.20, we note that for l ̸∈ {2, p, q}, the Jacobian has rank

2 modulo 2 and hence represent a curve of genus one modulo such primes. Using the Hasse-Weil

bound, in a similar way, one can then notice the homogeneous space corresponding to (b, 2b)

represented by (4.2.1) and (4.2.1) has l-adic solution for all l ≥ 5 and l ̸= 2, p, q.

For l = 2, b ≡ 1 (mod 8), we first note that m
2 = v2(z1) < v2(z2) is the only possibility. Dividing

both sides of (4.2.1) and (4.2.2) by 2m, we can see that (z1, 0, 1) where z21 ≡ 1 (mod 8) is a

solution to the reduced equations and can be lifted to Q2 by Hensel’s lemma. For b ≡ −1

(mod 8), again one can note that m
2 = v2(z1) < v2(z3). This gives rise to (z1, 1, 0) as a solution

modulo 8 such that z21 ≡ 1 (mod 8) and can be lifted to Z2.

For l = 3, for z1 ̸≡ 0 (mod 3), we get (z1, 0, 1) as solution modulo l to (4.2.1) and (4.2.2) when

b ≡ 1 (mod 3) that can be lifted to Q3 via Hensel’s lemma. For b ≡ 2 (mod 3), the solution

(z1, 1, 0) with z1 ̸≡ 0 (mod 3) does the same thing.

For l = p, if b ≡ 0 (mod p), then fixing z1, z2 to any arbitrary non-zero values modulo l, (z1, z2, u3)

becomes a solution for the case vl(z1) = vl(z2) = 0, vl(z3) = −1 where u3 satisfies b2

p2
· u23 ≡ 2m−1

(mod p). This happens as
(
2
p

)
= 1. Hensel’s lemma can lift the solution because after fixing

z1 and z2, u3 becomes a simple root for equations (4.2.1) and (4.2.2). For the case when p

divides n but not b, (0, 0, z3) is a solution to (4.2.2) and (4.2.3) that can be lifted to Qp where

2b2 · z23 ≡ 2m (mod p).

Now for l = q, noting that m is even and
(
b
q

)
= 1, (z1, 0, 0) is a solution modulo q that can be

lifted to Qq where z1 satisfies b · z21 ≡ −2m (mod q). This concludes the proof.

4.2.5 Elliptic Curves with Arbitrarily Large 2-Selmer Rank :

Now we are in a position to prove Theorem 4.10 and Theorem 4.11. We note that these theorems

give rise to a construction of elliptic curves with arbitrarily high 2-Selmer ranks.

Proof of Theorem 4.10: From Lemma 4.16, one can immediately conclude that for p ≡ ±3

(mod 8), Sel2(E) = 0 if q ≡ 5 (mod 8) and for q ≡ 1 (mod 8), the 2-Selmer group can possibly

only be generated by (2, 2) which was proved in Lemma 4.18.

For the case p ≡ ±1 (mod 8), from Lemma 4.16, one can identify (b, b) as only possible generators

of Sel2(E) if q ≡ 5 (mod 8) and b ≡ 1 (mod 8), the assertion later verified in Lemma 4.19. For

q ≡ 1 (mod 8), again from Lemma 4.16, the possible elements of Sel2(E) are identified as

(2, 2), (b, b), (2b, b), (b, 2b), (2b, 2b). In Lemma 4.19, the existence of (b, b), (2b, b) in the 2-Selmer

group is proved, which along with the existence of (2, 2) ∈ Sel2(E) proved in Lemma 4.18, proves

the result of Theorem 4.22.
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Table 4.2: Examples for area 2mn, τ = n with n2 + 1 = 2q when m is odd and
corresponding 2-Selmer rank

n m q 2-Selmer rank of E Generators of Sel2(E)
3 1, 3, 5 5 0 -

3 · 5 1, 3, 5 113 1 (2, 2)∗

11 · 19 1, 3, 5 21841 1 (2, 2)
3 · 5 · 11 1, 3, 5 13613 0 -
3 · 5 · 13 1, 3, 5 19013 0 -

79 1, 3, 5 3121 2 (2, 2)∗, (79, 2 · 79)∗
17 · 23 1, 3, 5 76441 3 (2, 2), (34, 34)∗, (23, 46)

7 · 17 · 31 1, 3, 5 6804361 4 (2, 2), (17, 17), (14, 7), (62, 31)

Proof of Theorem 4.11: From Lemma 4.17, we conclude that Sel2(E) possibly only contain

(b, b) or (b, 2b) when b ≡ ±1 (mod 8) if (b, b) ∈ Sel2(E), and every prime factors of b is of the

form ±1 modulo 8 if (b, 2b) ∈ Sel2(E). Lemma 4.20 and Lemma 4.21 proves that Sel2(E) contains

(b, b), (b, 2b) by showing the existence of l-adic solution for all primes l. Now the result follows

from the observation that (1, 2) = (b, b) · (b, 2b).

Table 4.3: Examples for area 2mn, τ = n with n2 + 1 = 2q when m is even and
corresponding 2-Selmer rank

n m q 2-Selmer rank of E Generators of Sel2(E)
3 2, 4, 6 5 0 -

3 · 5 2, 4, 6 113 1 (3 · 5, 3 · 5)∗
11 · 19 2, 4, 6 21841 1 (11 · 19, 11 · 19)∗
3 · 5 · 11 2, 4, 6 13613 2 (15, 15), (55, 55)
3 · 5 · 13 2, 4, 6 19013 2 (15, 15), (65, 65)

71 2, 4, 6 2521 2 (71, 71), (1, 2)
79 2, 4, 6 3121 2 (79, 79)∗, (1, 2)∗

17 · 23 2, 4, 6 76441 3 (17, 17)∗, (23, 23), (1, 2)
5 · 7 · 11 · 17 2, 4, 6 21418513 3 (7, 7), (17, 17), (55, 55)
7 · 17 · 31 2, 4, 6 6804361 4 (7, 7), (17, 17), (31, 31), (1, 2)

(b1, b2)
∗ denotes the pairs that were verified via SAGEMATH and MAGMA. The run time for

the rest was too long to verify.

4.3 Heron Triangles of Area 2mn and τ = 2m :

Here, we look into the Selmer and Shafarevich-Tate group structure of the Heronian elliptic

curves associated with Heron triangles of area 2m · n for square-free odd n, and one of the angles

θ such that τ = tan θ
2 = 2m. The main result of this section is as follows.
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Theorem 4.22. Let E : y2 = x(x− 4mn)(x+ n) be a Heronian elliptic curve for n = p1p2..pk,

where pi are primes congruent to 1 modulo 8. If
( pi
pj

)
= 1, and

( q
pi

)
= −1, then the 2-Selmer

rank of E is k + 1 for m ≥ 3 and k for m = 2.

We prove the above result as a special case for triangles of area 2m · n for square-free odd n.

For this reason, throughout this section, we consider the more general elliptic curve E : y2 =

x(x− 4mn)(x+ n) where n is only a square-free odd integer.

4.3.1 The 2-Selmer Group

We identify the elliptic curve E : y2 = x(x − 4mn)(x + n) with a Heron triangle of area 2mn

and an angle θ such that τ = tan θ
2 = 2m. Moreover, in case the associated Heron triangles are

non-isosceles, it is known that E(Q)tors is isomorphic to Klein’s four group. The discriminant of

the elliptic curve E can be observed to be 16 · 42m · n6 · q2 where q = 4m + 1 is a prime number.

Let S be the set consisting of all finite places at which E has bad reduction, the infinite places,

and the prime 2. We define

Q(S, 2) =
{
b ∈ Q∗/(Q∗)2 : vl(b) ≡ 0 (mod 2) for all primes l ̸∈ S

}
(4.3.1)

= ⟨±2, ±pi, ±q⟩,

where n = p1p2...pk is a square-free odd number. By the method of 2-descent (2.48, there exists

an injective homomorphism

β : E(Q)/2E(Q) −→ Q(S, 2)×Q(S, 2)

defined by

β(x, y) =



(x, x− 4mn) if x ̸= 0, 4mp,

(−1,−n) if x = 0,

(n, q) if x = 4mn,

(1, 1) if x = ∞, i.e., if (x, y) = O,

corresponding homogeneous space is

b1z
2
1 − b2z

2
2 = 4mn, (4.3.2)

b1z
2
1 − b1b2z

2
3 = −n, (4.3.3)

b1b2z
2
3 − b2z

2
2 = nq. (4.3.4)

We note that (4.3.4) can be obtained by subtracting (4.3.3) from (4.3.2), and only mentioned

here because of its use in the later part of this work.
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We now examine the properties of the l-adic solutions for (4.3.2) and (4.3.3) that are associated

with the 2-Selmer group. We start with the following result for all finite primes l.

Lemma 4.23. Suppose (4.3.2) and (4.3.3) have a solution (z1, z2, z3) ∈ Ql ×Ql ×Ql for any

prime l. If vl(zi) < 0 for any one i ∈ {1, 2}, then vl(z1) = vl(z2) = −t < 0 for some integer t.

Proof. Let zi = ltiui, where ti ∈ Z and ui ∈ Z∗
l for i = {1, 2}. Then vl(zi) = ti for all i ∈ {1, 2}.

Suppose t1 < 0. Then from (4.3.2) one can get that

b1u
2
1 − b2u

2
2l

2(t2−t1) = 4mnl−2t1 .

If t2 > t1, then l2 must divide b1, a contradiction as b1 is square-free. Hence t2 ≤ t1 < 0. Now if

t2 < t1 < 0 then again from (4.3.2) we get

b1u
2
1l

2(t1−t2) − b2u
2
2 = 4mnl−2t2 ,

which implies l2 must divide b2, a contradiction again. Hence if t1 < 0, then we have t1 = t2 =

−t < 0 for some integer t. For t2 < 0, one similarly gets t1 = t2 = −t < 0.

The following result gives a correspondence between vl(z1) and vl(z3) for all primes l.

Lemma 4.24. Suppose (4.3.2) and (4.3.3) have a solution (z1, z2, z3) ∈ Ql ×Ql ×Ql for any

prime l. Then vl(z1) < 0 =⇒ vl(z3) = vl(z1).

Proof. We start with the assumption that vl(zi) = ti for all i ∈ {1, 3}. For t1 < 0, from (4.3.3),

we have

b1u
2
1 − b1b2u

2
3l

2(t3−t1) = −nl−2t1 .

If t3 > t1, then l2 must divide b1, a contradiction. Hence t3 ≤ t1 < 0. For t3 < t1 < 0, we can

rewrite the above equation as

b1u
2
1l

2(t1−t3) − b1b2u
2
3 = −nl−2t3 , (4.3.5)

which implies l2 must divide b1b2, i.e., l = 2, p or q where p denotes any of the prime pi’s. For

l = 2, p, q, we note that t3 ≤ −2 =⇒ b1b2 ≡ 0 (mod l3), a contradiction from the above

equation. Hence, t3 = −1 if l = 2, p, q, but then t3 < t1 =⇒ t1 ≥ 0, contradiction again as

t1 < 0. Together, now we obtain t1 = t3 = −t < 0 if t1 < 0.

Lemma 4.25. Suppose (4.3.2) and (4.3.3) have a solution (z1, z2, z3) ∈ Ql ×Ql ×Ql for any

prime l. Then

(i) For all primes l ̸= 2, vl(z3) < 0 =⇒ vl(z3) = vl(z1). The same conclusion holds true for

l = 2 also if b1b2 ̸≡ 0 (mod 4).
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(ii) For l = 2, b1b2 ≡ 0 (mod 4), and vl(z3) < 0, either vl(z3) = −1 and vl(z1) = vl(z2) ≥ 0, or

vl(z3) = vl(z1).

Proof. Borrowing the same notation, for the case vl(z3) = t3 < 0, from (4.3.3), we observe that

b1u
2
1l

2(t1−t3) − b1b2u
2
3 = −nl−2t3 .

Hence t1 > t3 implies l2 divides b1b2 i.e. l = 2, pi or q. As mentioned previously, l = pi will imply

l3 divides b1b2, a contradiction. For l = q, subtracting (4.3.3) from (4.3.2), we again get q3 divides

b1b2, a contradiction if t2 > t3. Hence t2 ≤ t3 < 0 =⇒ t2 = t1 ≤ t3. Now t1 < t3 =⇒ b1 ≡ 0

(mod l2), a contradiction. Hence t3 < 0 =⇒ t3 = t1 = −t < 0. This proves the first part of the

result.

l = 2, b1b2 ≡ 0 (mod 4), and t1 > t3 will imply t3 = −1, and hence t1 ≥ 0. This, in turn, will

also imply t2 ≥ 0. If t1 ̸= t2, it will then lead to a contradiction from (4.3.2), as v2(b1z
2
1 − b2z

2
2)

will be an odd number now whereas v2(4
mn) will always be an even number. Hence l = 2 and

t1 > t3 implies t3 = −1, and t1 = t2 ≥ 0. For l = 2 and t1 ≤ t3 < 0 =⇒ t1 < 0, and hence from

Lemma 4.24, we conclude t1 = t3. This concludes the proof.

4.3.2 Bounding the Size of the 2-Selmer Group

We now bound the size of the general 2-Selmer group of the Heronian elliptic curve E : y2 =

x(x−4mn)(x+n). The 2-Selmer group Sel2(E/Q) consists of those pairs (b1, b2) in Q(S, 2)×Q(S, 2)

for which equations (4.3.2) and (4.3.3) have an l-adic solution at every place l of Q. Before

proving Theorem 4.22, we define the following subgroup of Q(S, 2)×Q(S, 2).

Notation: We define the the group GE ⊂ Q(S, 2)×Q(S, 2) as follows. For (b1, b2) ∈ GE ,

(i) b1b2 ≡ 0 (mod 2) =⇒ b1b2 ≡ 0 (mod 4) with b1b2
4 ≡ n or n+ b1 (mod 8).

(ii) b1b2 ̸≡ 0 (mod 2) implies one of b1 ≡ b2 ≡ 1 (mod 8), b1b2 ≡ n (mod 4), and b1 ≡ b2 ≡
−n, 4− n (mod 8) must hold true.

(iii) b1b2 ≡ 0 (mod p2) implies
(
b1/p
p

)
=
(
−n/p

p

)
and

(
b2/p
p

)
=
(
−nq/p

p

)
.

b1b2 ̸≡ 0 (mod p2), b1 ≡ 0 (mod p) implies
(
b1/p
p

)
=
(
n/p
p

)
and

(
b2
p

)
=
(
q
p

)
.

b1b2 ̸≡ 0 (mod p2), b2 ≡ 0 (mod p) implies
(
−b1
p

)
= 1 and

(
−b2/p

p

)
=
(
n/p
p

)
.

(iv)
(
b1
q

)
= 1 or

(
b1
q

)
=
(
−n
q

)
.

We first prove the following general result binding the size of Sel2(E/Q) for E : y2 = x(x −
4mn)(x+ n) where n is a square-free odd integer. We use this result later in proving Theorem

4.22.

Lemma 4.26. Let (b1, b2) ∈ Q(S, 2)×Q(S, 2). Then

(i) The corresponding homogeneous space will have no l-adic solution for the case l = ∞ if
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b1b2 < 0.

(ii) If b1b2 ≡ 2 (mod 4), the corresponding homogeneous space will not have 2-adic solutions.

(iii) If b1b2 ≡ 0 (mod 4), the corresponding homogeneous space has no 2-adic solution if
b1b2
4 ̸≡ n or n + b1 (mod 8). Moreover, for m = 2, and b1 ≡ b2 (mod 8), if b1b2

4 ̸≡ n + b1

(mod 8), the same conclusion holds.

(iv) If
(
b1
q

)
̸= 1, then the corresponding homogeneous space will not have any q-adic solution.

Proof. (i) Let the homogeneous space corresponding to (b1, b2) ∈ Q(S, 2) × Q(S, 2) have real

solutions. Then b1 > 0 and b2 < 0 implies −n > 0 in (4.3.3), which is absurd. Similarly,

b1 < 0 and b2 > 0 implies 4mn < 0 in (4.3.2), which is absurd. Thus, the homogeneous space

corresponding to (b1, b2) has no l-adic solutions for l = ∞ if b1b2 < 0.

(ii) For b1b2 ≡ 2 (mod 4), we start with the case b1 even and b2 odd. v2(zi) < 0 =⇒ b2 ≡
0 (mod 2) from (4.3.2) and Lemma 4.25, a contradiction. Hence v2(zi) ≥ 0 which in turn

implies v2(z2) > 0 from (4.3.2). Then from (4.3.4), we get nq = b1b2z
2
3 − b2z

2
2 ≡ 0 (mod 2), a

contradiction.

A very similar approach as above shows that v2(zi) ≥ 0 and v2(z1) > 0 when b1 is odd and b2 is

even. This in turn implies −n = b1z
2
1 − b1b2z

2
3 ≡ 0 (mod 2), a contradiction.

(iii) For b1b2 ≡ 0 (mod 4), we prove that the only possibility is 0 ≤ v2(z1) = v2(z2) ≤ m −
1, v2(z3) = −1. From Lemma 4.23, one can immediately notice from (4.3.3) that v2(zi) < 0 for

all i ∈ {1, 2, 3} is not possible. Now for the case v2(z3) ≥ 0, from (4.3.3), one gets that v2(z1) ≥
0 =⇒ n ≡ 0 (mod 2), a contradiction. Hence, v2(z1) < 0, which in turn implies v2(z3) < 0

from Lemma 4.24, a contradiction again. Hence v2(z3) = −1, and 0 ≤ v2(z1) = v2(z2) ≤ m− 1.

Now the result follows from (4.3.3). Here, from (4.3.2) and (4.3.3), we also note that b1b2
4 ≡ n

(mod 8) =⇒ v2(z1) ≥ 1 =⇒ m ≥ 3 if b1 ≡ b2 ≡ (mod 8). This concludes the proof.

(iv) Let us first assume b1 ≡ 0 (mod q). From (4.3.4), we notice that vq(zi) < 0 =⇒ b2 ≡ 0

(mod q), a contradiction. Now for vq(zi) ≥ 0, it is an immediate observation from (4.3.4) that

vq(z2) > 0 which implies 4mn ≡ 0 (mod q) from (4.3.2), a contradiction. Hence b1 ̸≡ 0 (mod q).

Now from (4.3.4) if vq(zi) < 0 or vq(z2) = vq(z3) = 0, one gets
(
b1
q

)
= 1. From (4.3.4),

vq(z2) > 0 ⇐⇒ vq(z3) > 0 =⇒ n ≡ 0 (mod q), a contradiction. Hence the result follows.

We note that the torsion points (0, 0), (4m, 0), (−n, 0) and O under the map β are A =

{(−1,−n), (n, q), (−n,−nq), (1, 1)}. So without the loss of generality, we assume b2 ̸≡ 0 (mod q),

as (n, q) belongs to the image of the E(Q)tors. Hence we can now solely focus on the pairs of the

form (b1, b2) such that 2 and p are the only possible factors of bi’s where p varies over all prime

factors of n. We first start with the 2-adic solutions. We note that from Lemma 4.26, b1b2 is

either odd or 0 (mod 4).
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Lemma 4.27. Let (b1, b2) ∈ Q(S, 2)×Q(S, 2). Then for b1b2 odd and m ≥ 2, if the corresponding

homogeneous space has 2-adic solution (z1, z2, z3) then one of the following conditions occurs.

(i) b1 ≡ b2 ≡ 1 (mod 8).

(ii) b1 ≡ b2 ≡ −n, 4− n (mod 8).

(iii) b1b2 ≡ n (mod 4).

Proof. (i) Assuming (z1, z2, z3) is a solution, one can immediately observe that if v2(zi) < 0 then

(4.3.2) and (4.3.3) imply b1 ≡ b2 ≡ 1 (mod 8).

(ii) For v2(z1) = v2(z2) = 0 < v2(z3), b1 ≡ b2 (mod 8) from (4.3.2) as m ≥ 2. Now from (4.3.3),

one can get b1 ≡ −n, 4− n (mod 8) which proves the result.

(iii) Let us suppose that 0 < v2(z1) = v2(z2) ≤ m − 1 and v2(z3) = 0. Now (4.3.3) implies

b1b2 − n ≡ 0, 4 (mod 8). For v2(z1) = m =⇒ v2(z2) > m and v2(z3) = 0. From (4.3.3), one

can now obtain b1b2 ≡ n (mod 8) as m ≥ 2. Similarly, v2(z2) = m =⇒ b1b2 ≡ n (mod 8) from

(4.3.4).

We now look into the p-adic solutions of (4.3.2) and (4.3.3). Note that p runs over all prime

factors of n.

Lemma 4.28. Let (b1, b2) ∈ Q(S, 2)×Q(S, 2). Then

(i) if b1b2 ≡ 0 (mod p2), the corresponding homogeneous space has no p-adic solution if
(
b1/p
p

)
̸=(

−n/p
p

)
or
(
b2/p
p

)
̸=
(
−nq/p

p

)
.

(ii) if b1b2 ̸≡ 0 (mod p2), b1 ≡ 0 (mod p), the corresponding homogeneous space has no p-adic

solution if
(
b2
p

)
̸=
(
q
p

)
or
(
b1/p
p

)
̸=
(
n/p
p

)
.

(iii) if b1b2 ̸≡ 0 (mod p2), b2 ≡ 0 (mod p), the corresponding homogeneous space has no p-adic

solution if
(
−b1
p

)
̸= 1 or

(
−b2/p

p

)
̸=
(
n/p
p

)
.

Proof. (i) We first note that if b1b2 ≡ 0 (mod p2), then from (4.3.2), either vp(zi) < 0 or

vp(z1) = vp(z2) = 0, vp(z3) ≥ 0. In either cases, from (4.3.3), it is now evident
(
b1/p
p

)
=
(
−n/p

p

)
.

Similarly, from (4.3.4), one can get
(
b2/p
p

)
=
(
−nq/p

p

)
. Now the result follows.

(ii) For b1b2 ̸≡ 0 (mod p2), b1 ≡ 0 (mod p), we first note that vp(zi) < 0 =⇒ b2 ≡ 0 (mod p)

from (4.3.2), a contradiction. Now vp(zi) ≥ 0 implies vp(z1) = vp(z3) = 0 and vp(z2) > 0 from

(4.3.2) and (4.3.4). Hence from (4.3.2), one can get
(
b1/p
p

)
=
(
n/p
p

)
, whereas (4.3.4) implies(

b1b2/p
p

)
=
(
nq/p
p

)
, together which then implies

(
b2
p

)
=
(
q
p

)
.

(iii) For b1b2 ̸≡ 0 (mod p2), b2 ≡ 0 (mod p), in a similar way to the previous case one can show

that vp(zi) ≥ 0, which then implies vp(z2) = vp(z3) = 0 and vp(z1) > 0. Now from (4.3.2),

we get
(
−b2/p

p

)
=
(
n/p
p

)
, and from (4.3.3), we get,

(
b1b2/p

p

)
=
(
n/p
p

)
. Together one then gets(

−b1
p

)
= 1. Hence the result follows.

We are now in a position to prove the following general result regarding the size of Sel2(E).
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Proposition 4.29. Let E : y2 = x(x− 4mn)(x+ n) be the Heronian elliptic curve corresponding

to non-isosceles Heron triangles of area 2m · n and one of the angles θ such that τ = tan θ
2 = 2m,

where n = p1p2 . . . pk is a square-free odd number, q = 4m + 1 is a prime. Then for m ≥ 2 and

n ̸≡ 0 (mod 3), Sel2(E) = GE.

Proof. We have already established that Sel2(E) ⊂ GE through the Lemma 4.26, Lemma 4.27,

and Lemma 4.28. We now show that GE ⊂ Sel2(E). In that regard, we first note that the

Jacobian of the intersection of (4.3.2) and (4.3.3) for (b1, b2) is(
2b1z1 −2b2z2 0

2b1z1 0 −2b1b2z3

)
(4.3.6)

which has rank 2 modulo any prime l ̸= 2, p, and l = q in case z2 ≡ z3 ≡ 0 (mod q) =⇒
(
b1
q

)
=(

−n
q

)
. Hence for l ≠ 2, p, and for

(
b1
q

)
=
(
−n
q

)
, l ̸= q, the topological genus becomes the same

as the arithmetic genus, which is 1 by the degree-genus formula, and Hasse-Weil bound ensures

the existence of at least two sets of solutions modulo l for all such primes l.

For l = 2, (b1, b2) ∈ GE , we go case by case depending on the relations between b1 and b2. We

start with the case b1b2 odd.

If b1 ≡ b2 ≡ 1 (mod 8), (u1, 1, 1) is a solution modulo 8 with u21 ≡ 1 (mod 8), that can be lifted

to Q2 as a solution of (4.3.2) and (4.3.3) with v2(zi) < 0 by Hensel’s lemma.

If b1b2 ≡ n (mod 8), then one can immediately observe that (0, 0, u3) is a solution to (4.3.3) and

(4.3.4) with u23 ≡ 1 (mod 8), that can be lifted to Q2 as a solution with either v2(z1) = m or

v2(z2) = m.

If b1 ≡ b2 ≡ −n, 4− n (mod 8), (u1, 1, 0) is a solution to (4.3.2) and (4.3.3) with u21 ≡ 1 (mod 8)

that can be lifted to Q2 via Hensel’s lemma.

For b1b2 even, we have b1b2 ≡ 0 (mod 4) and b1b2
4 ≡ n or n+ b1 (mod 8). One can now see that

(0, 0, u3) and (1, 1, u3) are the respective solutions for the two cases with u23 ≡ 1 (mod 8) and

hence can be lifted to Q2 for a solution with v2(z3) = −1.

Now for l = 3, noting that n ̸≡ 0 (mod 3), we enlist the solutions below that can be lifted to Q3

via Hensel’s lemma. For n ≡ 1 (mod 3), if b1 ≡ b2 ≡ 1 (mod 3), (u, 1, 1) is such a solution with

u2 ≡ 1 (mod 3) that can be lifted for v3(zi) < 0, if b1 ≡ b2 ≡ 2 (mod 3), (0, 1, u) is the required

solution, (u, 0, 1) works for the case b1 ≡ 1 (mod 3), b2 ≡ 2 (mod 3), while (u, 1, 0) works for the

case b1 ≡ 2 (mod 3), b2 ≡ 1 (mod 3). For n ≡ 2 (mod 3), if b1 ≡ b2 ≡ 1 (mod 3), again (u, 1, 1)

works as a solution for v3(zi) < 0, (u, 0, 1) works as a solution that can be lifted for b1 ≡ b2 ≡ 2

(mod 3), while if b1 ≡ 1 (mod 3), b2 ≡ 2 (mod 3), (u, 1, 0) is a solution that can be lifted, and

for the case b1 ≡ 2 (mod 3), b2 ≡ 1 (mod 3), (0, 1, u) is such a solution.

For l = p, b1b2 ≡ 0 (mod p2) =⇒
(
b1/p
p

)
=
(
−n/p

p

)
and

(
b2/p
p

)
=
(
−nq
p

)
as (b1, b2) ∈ GE .

Fixing z2 = u2, z3 = 1 such that b2
p u

2
2 ≡ −nq

p (mod p), one can get z1 = u1 as a solution

that can be lifted to Qp where b1
p u

2
1 ≡ −n

p (mod p). Otherwise, for b1 ≡ 0 (mod p), we have
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(
b1/p
p

)
=
(
n/p
p

)
and

(
b2
p

)
=
(
q
p

)
. We first note that vp(z2) > 0 always in this case, and hence

without loss of generality, one can solve (4.3.2) and (4.3.3) after dividing by p on both sides. Now

fixing z2 = 0, z3 = u3 such that b1b2
p u23 ≡

nq
p (mod p), one can see z1 = u1 is a solution that can

be lifted by Hensel’s lemma for the modified equations, where b1
p u

2
1 ≡ 4mn

p (mod p). For b2 ≡ 0

(mod p), one can similarly find a solution that can be lifted to Qp via Hensel’s lemma.

For l = q, we only focus on the case of
(
b1
q

)
=
(
−n
q

)
, and (u, 0, 0) becomes a solution that can

be lifted to Qq via Hensel’s lemma where b1u
2 ≡ −n (mod q).

For any other primes l, the Hasse-Weil bound now guarantees one set of solutions (z1, z2, z3) of

(4.3.2) and (4.3.3) that does not satisfy z1 ≡ z2 ≡ 0 (mod l) or z1 ≡ z3 (mod l). Fixing any two

of them suitably, the other one then can be lifted by Hensel’s lemma as an l-adic solution of

(4.3.2) and (4.3.3). This completes the proof.

We now conclude this article with the proof of Theorem 4.22, which is a special case of the

general result in Proposition 4.29.

Proof of Theorem 4.22: Under the given assumptions, as
(
−1
p

)
=
(
n
p

)
= 1, and

(
q
p

)
= −1,

one can see (b1, b2) ∈ GE =⇒ b1 = 1, or 2. Also it is evident here that if b1b2 ̸≡ 0 (mod 2),

then b1 ≡ b2 ≡ 1 (mod 8), and when b1b2 ≡ 0 (mod 4), then b1b2
4 ≡ 1 ≡ n (mod 8). Hence

Sel2(E) = GE = ⟨(1, pi), (2, 2)⟩ for m ≥ 3. For m = 2, one can see from Lemma 4.26 that

⟨(2, 2)⟩ ≤ Sel2(E) =⇒ 1 = b1b2
4 ≡ n+ b1 ≡ 3 (mod 8), a contradiction. Hence the result follows.

Table 4.4: Examples for area 2mn, τ = 2m with 4m+1 = q and corresponding 2-Selmer
rank

n q s2(E) Generators of Sel2(E)
41 · 73 17 2 (1, 41),(1,73)
41 · 113 17 2 (1,41), (1,113)
41 · 73 65537 3 (1, 41), (1,73), (2,2)
41 · 113 65537 3 (1,41), (1,113), (2,2)

113 · 137 · 313 65537 4 (1, 113), (1,137), (1,313), (2,2)
113 · 137 · 313 · 337 65537 5 (1, 113), (1,137), (1,313), (1, 337), (2,2)

4.4 Heron Triangles of Even Area n and τ = 1
n :

In this section, we discuss the Heronian elliptic curve associated with the Heron triangles of even

area n such that n2 + 1 = q for a prime q, and one of the angles θ with τ = tan θ
2 = n−1. For

positive integers k and n, we define Ωk,n = #{p : n ≡ 0 (mod p) and p ≡ k (mod 8)}. The

main result of this section is now the following.
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Theorem 4.30. For a square-free integer n such that n2 + 1 = q for some prime q, let E : y2 =

x(x− 1)(x+ n2) be the Heronian elliptic curve associated with the non-isosceles Heron triangle

of area n and an angle θ such that tan( θ2) = n−1 . Then Sel2(E/Q) ∼= (Z/2Z)(Ω1,n+Ω5,n).

We again note that the above result can be used as a tool to compute the Heronian elliptic

curve with arbitrarily large 2-Selmer rank. This is because the 2-Selmer rank here is directly

related to the number of prime factors of n of the form 1, 5 modulo 8. We first associate the

Heronian elliptic curve E in Theorem 4.30 with a Heron triangle of area n and an angle θ such

that τ = tan θ
2 = 1

n . Assuming n
2 =

∏
i pi, we define

Q(S, 2) =
{
b ∈ Q∗/(Q∗)2 : vl(b) ≡ 0 (mod 2) for all primes l ̸∈ S

}
= ⟨±2, ±pi, ±q : 22 = p2i = q2 = 1⟩.

By the method of 2-descent (2.48), there exists an injective homomorphism

β : E(Q)/2E(Q) −→ Q(S, 2)×Q(S, 2)

defined by

β(x, y) =



(x, x− 1) if x ̸= 0, 1,

(−1,−1) if x = 0,

(1, q) if x = 1,

(1, 1) if x = ∞, i.e., if (x, y) = O.

4.4.1 Bounding the 2-Selmer Rank :

We first look into the 2-Selmer group Sel2(E/Q). As mentioned previously, under the 2-descent

method, each element (b1, b2) in Sel2(E/Q) corresponds to the following homogeneous space with

local solutions everywhere.

b1z
2
1 − b2z

2
2 = 1, (4.4.1)

b1z
2
1 − b1b2z

2
3 = −n2, (4.4.2)

such that (z1, z2, z3) ∈ Q∗ × Q∗ × Q, b1, b2 are square-free integers whose only prime fac-

tors are 2, q and prime factors of n. The image of E(Q)tors under the 2-descent map is

{(1, 1), (1, q), (−1,−1), (−1,−q)} . We start with the following result regarding l-adic solu-

tions of the homogeneous space given by equations (4.4.1) and (4.4.2). The proof is similar to

the previous chapter.
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Lemma 4.31. Let (z1, z2, z3) be a solution to the homogeneous space given by equations (4.4.1)

and (4.4.2). Then for each prime l < ∞ and all i ∈ {1, 2, 3}, either vl(zi) ≥ 0 or vl(zi) = −k for

some positive integer k.

Proof. For i ∈ {1, 2}, vl(zi) < 0 immediately implies vl(zi) = −k for some positive integer k . If

vl(z3) < 0 and vl(z1) > vl(z3), then either from (4.4.2) or from subtracting (4.4.2) from (4.4.1),

we get l3 divides b1b2, an absurdity. Hence vl(z1) ≤ vl(z3) < 0, and using the first case of the

proof, we conclude.

Noting that we will only look into possible (b1, b2) ∈ Sel2(E/Q)/Im(E(Q)tors) under the 2-descent

map, without loss of generality, we fix the following observations.

1) b1 > 0, b2 > 0 always (due to l = ∞). 2) b2 ̸≡ 0 (mod q).

Lemma 4.32. Let (b1, b2) ∈ Sel2(E/Q). Then b2 = 1 always and for an arbitrary prime p,

b1 ≡ 0 (mod p) =⇒ p ≡ 1, 5 (mod 8) and p ̸= q.

Proof. We first note that b1 ̸≡ 0 (mod q) here, and the proof is the same as in the n odd case.

Similarly, we can also see that if p is an odd prime that divides n, then b2 ̸≡ 0 (mod p).

We now notice that b2 is odd if (b1, b2) ∈ Sel2(E/Q). One can trivially observe that gcd(b1, b2) ̸≡ 0

(mod 2). Now b2 is even either implies 2 divides q when v2(zi) ≥ 0 or 2 divides b1 when v2(zi) = −k,

contradiction either way.

We have now established that b1 ̸≡ 0 (mod q) and b2 = 1 if (b1, b2) ∈ Sel2(E/Q).

From (4.4.1), it is evident that b1 ≡ 0 (mod p) =⇒ p ≡ 1, 5 (mod 8). This is because (4.4.1)

implies
(−1

p

)
= 1 for the pair (b1, 1). n2 + 1 = q implies q ≡ 5 (mod 8). Subtracting (4.4.2)

from (4.4.1) for homogeneous space corresponding to (2, 1), we get
(
2
q

)
= 1, a contradiction for

q ≡ 5 (mod 8). Hence the homogeneous space corresponding to (2, 1) has no q-adic solution.

This concludes the proof.

4.4.2 Everywhere Local Solution

We prove that the homogeneous spaces corresponding to (p, 1) has local solutions everywhere

where p is any prime factor of n such that p ≡ 1, 5 (mod 8) . We use Hensel’s lemma to lift a

simple root of a polynomial f(x) modulo a prime l to a solution for f(x) in Zl. Let C be the

homogeneous space given by (4.4.1) and (4.4.2) corresponding to the pair (p, 1). An application

of smoothness of C, the degree-genus formula, and the Hasse-Weil bound give the following.

For l ≥ 5, l ̸= t where t ≡ 1, 5 (mod 8) and t divides n, C is a homogeneous space of genus 1

corresponding to (p, 1) or (p1p2, 1) with #C(Fl) ≥ 1 + l − 2
√
l ≥ 2 where p ≡ 1, 5 (mod 8) .

Hensel’s lemma implies that the homogeneous spaces mentioned above have l-adic solution for

all the primes l mentioned above. This reduces the problem to finding local solutions for only

finitely many primes.
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Lemma 4.33. Let n be a integer such that n2 +1 = q for a prime q. Then for each prime factor,

p of n, p ≡ 1, 5 (mod 8), the homogeneous spaces corresponding to (p, 1) have local solutions

everywhere for l ≤ ∞.

Proof. As mentioned above, we need only to show local solutions exist for l = 2, 3 and t where

t ≡ 1, 5 (mod 8) is a prime that divides n. Fixing two of the three variables z1, z2, z3, we present

a set of simple roots for the system of equations (4.4.1) and (4.4.2) modulo l using Lemma 4.31

that can be lifted to Ql using Hensel’s lemma.

For l = 2, For p ≡ 5 (mod 8), we note that z1 = 1 is a simple root modulo 8 to the system

of equations pz21 − 1 = 22 and z21 − 1 = −n2

p · 22. For l = 3, z1 = 1 is a simple root modulo 3

to the system of equations pz21 − 1 = 32k and z21 − 1 = −n2

p · 32k when p ≡ 1 (mod 3). When

p ≡ 2 (mod 3), one can see that z1 = 1 is a simple root modulo 3 to the simultaneous equations

pz21 − 1 = 1 and z21 − 0 = −n2

p .

For l = t, t ≡ 1, 5 (mod 8) and t divides n, z2 = a such that a2 ≡ −1 (mod p) is a simple root

modulo p for equations p · 02 − z22 = 1 and p · 02 − z22 = 2q. This concludes the proof.

We are now in a position to restrict the size of the 2-Selmer group Sel2(E/Q). The proof requires

the results obtained in earlier sections.

Proof of Theorem 4.30. We observe that from Lemma 4.32, (b1, b2) ∈ Sel2(E/Q) implies (b1, b2) =

(p, 1) such that p ≡ 1, 5 (mod 8) divides n are the only possibilities. In Lemma 4.33, we established

the homogeneous spaces corresponding to those pairs have local solutions everywhere; hence, the

result follows.

We conclude this section with a table of examples that support the aforementioned result.

Table 4.5: Examples for area n, τ = 1
n with n2 + 1 = q and corresponding 2-Selmer

rank

n q 2- Selmer Rank of E Generators
2 5 0 -

2 · 5 101 1 (5,1)
2 · 3 · 11 4357 0 -
2 · 5 · 13 16901 2 (5,1),(13,1)
2 · 7 · 29 164837 1 (29,1)
2 · 5 · 17 28901 2 (5,1),(17,1)

2 · 7 · 17 · 23 29964677 1 (17,1)
2 · 3 · 5 · 7 · 11 5336101 1 (5,1)
2 · 3 · 5 · 7 · 13 7452901 2 (5,1),(13,1)
2 · 3 · 5 · 7 · 37 7452901 2 (5,1),(37,1)
2 · 3 · 5 · 7 · 41 74132101 2 (5,1), (41,1)
2 · 5 · 13 · 17 4884101 3 (5,1),(13,1),(17,1)
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Diophantine equations and their solvability have played a key role in Number theory. Un-

derstanding the solution of a certain Diophantine equation directly affects the arithmetic of

number-theoretic objects frequently. Sierpinsky had proved that the only positive solution (x, y, z)

to the non-linear Diophantine equation 3x + 4y = 5z is (2, 2, 2) in [45]. Later, L. Jeśmanowicz ex-

tended Sierpinsky’s result in [25] and conjectured that for fixed coprime integers m,n with m > n

and of different parity, the exponential Diophantine equation (m2 − n2)x + (2mn)y = (m2 + n2)z

has only one positive integer solution (2, 2, 2). Many particular cases of this conjecture have been

proved over the years in [10], [30], [32], [36], [37], and [50], including a non-coprimality case of

the Jeśmanowicz conjecture. The works of Kramer and Luca in [29] showed a pathway regarding

understanding a Diophantine equation arising from Heron triangles. In [55], X. Yan showed

that for fixed coprime positive integers m and n with different parity, the Diophantine equation

(m2 + n2)x + (2mn)y = (m+ n)2z has no solution with y ≥ 2. We show that the Diophantine

equation (x2 + y2)2 + (2pxy)2 = z2 with gcd(x, y) = 1 is solvable if and only if there exists a

Heron triangle with area p and an angle θ such that τ = tan θ
2 = 1

p . Hence, We conclude that

there is no solution to the aforementioned Diophantine equation when p ≡ 1, 5 (mod 8) with the

help of Theorem 3.1 from the third chapter. Then, we generalize the result for the area being

any squarefree integer n and τ = 1
n .

Pythagoras’ theorem enables us to see the existence of the right triangle with the area n is

equivalent to the solvability of Diophantine equation x2 + y2 = z2 and
xy

2
= n with x, y, z ∈ Q.

y z

x

i.e., n is a congruent number if and only if the two equations

x2 + y2 = z2 and
xy

2
= n have solutions with x, y, z ∈ Q.

5.1 Heron Triangle of Area n = p :

We first establish a one-one correspondence between Heron triangles and the solvability of certain

Diophantine equations. The existence of such Heron triangles was already discussed in Chapter

3 via the algebraic rank computation of corresponding elliptic curves.

Theorem 5.1. For every fixed odd prime p, there is a one-one correspondence between the

solvability of the Diophantine equation (x2 + y2)2 + (2pxy)2 = z2 with gcd(x, y) = 1 and the

existence of a Heron triangle with area p and an angle θ such that tan θ
2 = 1

p . Hence, if p ≡ 5

(mod 8), then (x2 + y2)2 + (2pxy)2 = z2 has no solution if p2 + 1 = 2q for some prime q.

Proof: We first notice that both sin θ and cos θ will be rational. From the laws of sines and

cosines for a triangle, we get the following;

cos θ =
a2 + b2 − c2

2ab
, sin θ =

2p

ab
, tan

θ

2
=

4p

(a+ b)2 − c2
. (5.1.1)
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From (5.1.1) and the fact that we have assumed tan θ
2 = 1

p , we arrived at the following conclusion;

(a+ b)2 = c2 + 4p2 = c2 + (2p)2. (5.1.2)

Also from (5.1.1) and the fact that sin2 θ + cos2 θ = 1, we get the following;

(a2 + b2 − c2

2ab

)2
+
(2p
ab

)2
= 1 which implies ab = 1 + p2. (5.1.3)

Equations (5.1.2) and (5.1.3) together implies that (a− b)2 = (a+ b)2 − 4ab = c2 − 4. Assuming

a − b = u = u1
u2

and c = w = w1
w2

, where both the representations are in their lowest forms,

we observe that w2
1−4w2

2

w2
2

=
u2
1

u2
2
. Since gcd(w2

1 − 4w2
2, w

2
2) = 1, we can write u22 = w2

2 and

u21 = w2
1 − 4w2

2 which then implies w2
1 = u21 + 4w2

2. From the fact that gcd(w1, w2) = 1, it

can be immediately seen w1, 2w2 and u1 are all pairwise coprime and they form a Pythagorean

primitive triplet. Hence, there exist integers m,n with m > n such that gcd(m,n) = 1 and

u1 = m2−n2, 2w2 = 2mn and w1 = m2 +n2. This implies c = w1
w2

= m2+n2

mn = m
n + n

m . Similarly

from the fact that (a− b)2 =
u2
1

w2
2
, one can observe that a− b = m

n − n
m , under the assumption

a ≥ b which implies that b = a− (mn − n
m). If b ≥ a, one can change a− b suitably. Now from

(5.1.2), we know that (a+ b)2 = 4p2 + c2 = 4p2 + (mn + n
m)2, where replacing b as in the previous

line, we get the following;

a =
m
n − n

m ±
√

(mn + n
m)2 + 4p2

2
=

m2 − n2 ±
√
(m2 + n2)2 + (2pmn)2

2mn
.

This immediately gives us a solution to the Diophantine equation z2 = (x2 + y2)2 + (2pxy)2 with

gcd(x, y) = 1 in the form of

z = 2mna− (m2 − n2), x = m and y = n.

For the converse implication, we begin with the assumption that there exist positive integers x, y

and z such that gcd(x, y) = 1 and z2 = (x2 + y2)2 + (2pxy)2. Define

a =

x
y − y

x +
√

(xy + y
x)

2 + 4p2

2
=

x
y − y

x + z
xy

2
, b = a− (

x

y
− y

x
) and c =

x

y
+

y

x
.

Then a, b, c are all positive integers. Also, ab = 1 + p2 and a− b = y
x − x

y . Now suppose we have

a triangle with sides a, b and c and the angle θ between the sides of the length a and b. Then by

the law of cosines,

cos θ =
a2 + b2 − c2

2ab
=

(a− b)2 − c2

2ab
+ 1 =

p2 − 1

p2 + 1
∈ Q.

Similarly, from the formula of sin θ =
√
1− cos2 θ we get, sin θ = 2p

p2+1
= 2p

ab . This implies

that the triangle have area 1
2ab sin θ = p. Substituting the values of a, b and c in terms of
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x, y and z and observing the fact that z2 = (x2 + y2)2 + (2pxy)2, one can easily observe that

tan θ
2 = 4p

(a+b)2−c2
= 1

p too. This concludes the proof of the statement. □

The following result looks into the solution of the Diophantine equation x2 + y2 + x2y2 = p2 for

some odd prime number p. The result follows directly from Theorem 5.1.

Corollary 5.2. For an odd prime p, there exists a Heron triangle with area p and an angle θ

such that tan θ
2 = 1

p whenever the Diophantine equation p2 = x2 + y2 + x2y2 is solvable.

Proof: By the Pythagorean primitive element theorem, any solution (m,n, l) of (x2 + y2)2 +

(2pxy)2 = z2 with gcd(m,n) = 1 implies that there exist co-prime natural numbers r and s such

that m2+n2 = r2− s2, 2pmn = 2prs and l = r2+ s2. Hence r = p and s = mn will be a possible

solution if r2 − s2 = p2 −m2n2 = m2 + n2. This concludes the proof of the statement.

5.1.1 A Generalization

Observing the simple fact that we are not using any of the properties of prime p in the above

theorem, we generalize the result using the same technique.

Theorem 5.3. For every squarefree integer n, there is a one-one correspondence between the

solvability of the Diophantine equation (x2 + y2)2 + (2nxy)2 = z2 with gcd(x, y) = 1 and the

existence of a Heron triangle with area n and an angle θ such that tan θ
2 = 1

n .

Proof: From the laws of sines and cosines for a triangle, we get the following;

cos θ =
a2 + b2 − c2

2ab
, sin θ =

2n

ab
, tan

θ

2
=

4n

(a+ b)2 − c2
. (5.1.4)

From (5.1.4) and the fact that we have assumed tan θ
2 = 1

n , we get;

(a+ b)2 = c2 + 4n2 = c2 + (2n)2. (5.1.5)

Using (5.1.4) and the fact that sin2 θ + cos2 θ = 1, we get the following;

(a2 + b2 − c2

2ab

)2
+
(2n
ab

)2
= 1 which implies ab = 1 + n2. (5.1.6)

Equations (5.1.5) and (5.1.6) together implies that (a− b)2 = (a+ b)2 − 4ab = c2 − 4. Assuming

a − b = u = u1
u2

and c = w = w1
w2

, where both the representations are in their lowest forms,

we observe that w2
1−4w2

2

w2
2

=
u2
1

u2
2
. Since gcd(w2

1 − 4w2
2, w

2
2) = 1, we can write u22 = w2

2 and

u21 = w2
1 − 4w2

2 which then implies w2
1 = u21 + 4w2

2. From the fact that gcd(w1, w2) = 1, it

can be immediately seen w1, 2w2 and u1 are all pairwise coprime and they form a Pythagorean

primitive triplet. Hence, there exist integers m, k with m > k such that gcd(m, k) = 1 and

u1 = m2 − k2, 2w2 = 2mk and w1 = m2 + k2. This implies c = w1
w2

= m2+k2

mk = m
k + k

m . Similarly
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from the fact that (a− b)2 =
u2
1

w2
2
, one can observe that a− b = m

k − k
m , under the assumption

a ≥ b which implies that b = a− (mk − k
m). If b ≥ a, one can change a− b suitably. Now from

(5.1.5), we know that (a+ b)2 = 4n2 + c2 = 4n2 + (mk + k
m)2, where replacing b as in the previous

line, we get the following;

a =

m
k − k

m ±
√
(mk + k

m)2 + 4n2

2
=

m2 − k2 ±
√
(m2 + k2)2 + (2nmk)2

2mk
. (5.1.7)

This immediately gives us a solution to the Diophantine equation z2 = (x2 + y2)2 + (2nxy)2 with

gcd(x, y) = 1 in the form of

z = 2mka− (m2 − k2), x = m and y = k. (5.1.8)

For the converse implication, we begin with the assumption that there exist positive integers x, y

and z such that gcd(x, y) = 1 and z2 = (x2 + y2)2 + (2nxy)2. Define

a =

x
y − y

x +
√

(xy + y
x)

2 + 4n2

2
=

x
y − y

x + z
xy

2
, b = a− (

x

y
− y

x
) and c =

x

y
+

y

x
. (5.1.9)

Then a, b, c are all positive integers. Also, ab = 1 + n2 and a− b = y
x − x

y . Now suppose we have

a triangle with sides a, b and c and the angle θ between the sides of the length a and b. Then by

the law of cosines,

cos θ =
a2 + b2 − c2

2ab
=

(a− b)2 − c2

2ab
+ 1 =

n2 − 1

n2 + 1
∈ Q.

Similarly, from the formula of sin θ =
√
1− cos2 θ we get, sin θ = 2n

n2+1
= 2n

ab . This implies

that the triangle have area 1
2ab sin θ = p. Substituting the values of a, b and c in terms of

x, y and z and observing the fact that z2 = (x2 + y2)2 + (2nxy)2, one can easily observe that

tan θ
2 = 4n

(a+b)2−c2
= 1

n . □

With the help of results in the previous chapters, we get the Heronian elliptic curves with positive

ranks. We conclude this section by enlisting examples for such Heron triangles and corresponding

solutions of Diophantine equations below.
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Table 5.1: Transformation between Heron triangle and solutions of Diophantine
equation

Sides to Solution Triplet Solution Triplet to Sides

c =
w1

w2

=
x2 + y2

xy
a =

x

y
− y

x
+

z

xy

2

a− b =
u1

u2

=
x2 − y2

xy
b = a−

(x
y
− y

x

)
adding u1 and w1, we get x and y c =

x

y
+

y

x
z = 2xya− (x2 − y2)

Table 5.2: Examples of Heron triangles and solution of corresponding Diophantine
equation

n Point on elliptic curve Sides of triangle Solution triplet

3 (9, 36)
[
4,

5

2
,
5

2

]
(2, 1, 13)

2 · 5
(5
4
,
45

8

) [202
9

,
9

2
,
325

18

]
(18, 1, 485)

11

(
121

49
,
7260

343

) [
427

30
,
60

7
,
1261

210

]
(35, 6, 4789)

5 · 17
(425
64

,
266475

512

) [57808
627

,
627

8
,
70057

5016

]
(264, 19, 855593)

5.2 The 2-Selmer group of E for p ≡ 1 (mod 8) :

We now look into the 2-part of the Shafarevich-Tate group of elliptic curves associated with the

Heron triangles with area p ≡ 1 (mod 8). We note that we have already discussed in detail the

Mordell-Weil group structure for similar Heronian elliptic curves in Chapter 3 , Section 3.1, when

p ̸≡ 1 (mod 8). The main result of this section is as follows.

Theorem 5.4. Let E : y2 = x(x − 1)(x + p2) denote a Heronian elliptic curve associated

with a Heron triangle of area p and one of the angles θ such that tan θ
2 = p−1 where p ≡

1 (mod 8) is a prime, p2 + 1 = 2q for a prime q. Then r(E/Q) = 2 if the Diophantine

equation p(x2 − py2)2 − 4x2y2 = z2 has solution for odd integer z. Otherwise, r(E/Q) = 0, and

X(E/Q)[2] ∼= Z/2Z× Z/2Z.
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5.2.1 Local Solutions for the Homogeneous Spaces

A background of the full 2-descent method for similar elliptic curves is elaborately described in

Chapter 3.1 for p ̸≡ 1 (mod 8). For brevity, we include a brief background below for the case

p ≡ 1 (mod 8).

Let S be the set consisting of all finite places at which E has a bad reduction, the infinite places,

and the prime 2. We define

Q(S, 2) =
{
b ∈ Q∗/(Q∗)2 : vl(b) ≡ 0 (mod 2) for all primes l ̸∈ S

}
(5.2.1)

= ⟨±2, ±p, ±q⟩.

If β denotes the 2-descent map, then from (2.48), we can say that

β(E(Q)tors) = {(1, 1), (−1,−1), (1, 2q), (−1,−2q)}. Moreover, if (b1, b2) ∈ Q(S, 2) × Q(S, 2)

is a pair that is not in the image of one of the three points O, (0, 0), (1, 0) under β, where

Q(S, 2) = {±1, ±2, ±p, ±q, ±2p, ±2q, ±pq, ±2pq}, then (b1, b2) is the image of a point P =

(x, y) ∈ E(Q)/2E(Q) if and only if the equations

b1z
2
1 − b2z

2
2 = 1, (5.2.2)

b1z
2
1 − b1b2z

2
3 = −p2, (5.2.3)

have a solution (z1, z2, z3) ∈ Q∗ ×Q∗ ×Q.

5.2.2 Bounding the Size of 2-Selmer Group of E

We are now in a position to look into the Selmer group structure of E for p ≡ 1 (mod 8). We

first prove the following result for all prime l.

Lemma 5.5. Suppose (5.2.2) and (5.2.3) have a solution (z1, z2, z3) ∈ Ql × Ql × Ql for any

prime l. If vl(zi) < 0 for any one i ∈ {1, 2, 3}, then vl(z1) = vl(z2) = vl(z3) = −k < 0 for some

integer k.

Proof. Let zi = lkiui, where ki ∈ Z and ui ∈ Z∗
l for i = {1, 2, 3}. Then vl(zi) = ki for all

i ∈ {1, 2, 3}.

Suppose k1 < 0. Then from (5.2.2) one can get that

b1u
2
1 − b2u

2
2l

2(k2−k1) = l−2k1 .
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If k2 > k1, then l2 must divide b1, a contradiction as b1 is square-free. Hence k2 ≤ k1 < 0. Now

if k2 < k1 < 0 then again from (5.2.2) we get

b1u
2
1l

2(k1−k2) − b2u
2
2 = l−2k2 ,

which implies l2 must divide b2, a contradiction again. Hence if k1 < 0, then we have k1 = k2 =

−k < 0 for some integer k. For k2 < 0, one similarly gets k1 = k2 = −k < 0.

From (5.2.3), we have

b1u
2
1 − b1b2u

2
3l

2(k3−k1) = −p2 · l−2k1 .

If k1 < 0 and k3 > k1, then l2 must divide b1, a contradiction as before. Hence k3 ≤ k1 < 0 if

k1 < 0. For k3 < k1 < 0, we can rewrite the above equation as

b1u
2
1l

2(k1−k3) − b1b2u
2
3 = −p2 · l−2k3 , (5.2.4)

which implies l2 must divide b1b2, i.e., l = 2, p or q. If l = p, then from (5.2.4) we arrive at

the contradiction that p3 divides b1b2 whereas b1 and b2 are square-free. For l = 2 and q, one

can notice from (5.2.3) that if k3 ≤ −2, then l3 divides b1b2, a contradiction again. This in

turn implies k3 = −1 and hence k1 ≥ 0 which contradicts the assumption that k1 < 0. Hence

k1 < 0 =⇒ k3 = k1.

Now, suppose k3 < 0. If k1 < 0, then from the previous part we already established k1 = k2 =

k3 = −k for some positive integer k. So without loss of generality, we can assume k1 ≥ k3.

If k3 < k1 and k3 < 0, then as mentioned previously in this proof, one can get that b1b2 ≡ 0

(mod l2) and l = 2 or q. Now we subtract (5.2.3) from (5.2.2) and observe that

b1b2u
2
3 − b2u

2
2l

2(k2−k3) = 2q · l−2k3 .

If k2 > k3, we get a contradiction that l3 divides b1b2 for l = 2, q. Therefore, k2 ≤ k3 < 0

but then by the first part, k1 = k2 ≤ k3, a contradiction to the assumption k1 > k3. Hence

k3 < 0 =⇒ k1 = k3. Together, now we obtain k1 = k2 = k3 = −k < 0 for some integer k if

k1 < 0 or k2 < 0 or k3 < 0.

We can now bound the size of the 2-Selmer group of the Heronian elliptic curve E for p ≡ 1

(mod 8). Without loss of generality, we can only focus on the homogeneous spaces corresponding

to pairs (b1, b2) such that b1 > 0, b2 > 0 if b1b2 > 0. This is because every pair (b1, b2) such

that b1b2 > 0 will belong to the same coset of (−b1,−b2) in the quotient group Im(β)/A where

A = {(−1,−1), (1, 2q), (−1,−2q), (1, 1)}. Using the exactly similar argument, without loss of

generality, we can only focus on the local solutions of the homogeneous spaces corresponding to

(b1, b2) such that b2 is odd.
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Lemma 5.6. Let (b1, b2) ̸∈ {(1, 1), (1, q), (p, 1), (p, q)}. Then the corresponding homogeneous

space can not have local solutions for all primes l ≤ ∞.

Proof. Let the homogeneous space corresponding to (b1, b2) ∈ Q(S, 2)×Q(S, 2) have real solutions.

Then b1 > 0 and b2 < 0 implies −p2 > 0 in (5.2.3), which is absurd. Similarly, b1 < 0 and b2 > 0

implies 1 < 0 in (5.2.2), contradiction again. Thus, the homogeneous space corresponding to

(b1, b2) has no l-adic solutions for l = ∞ if b1b2 < 0.

If gcd(b1, b2) ≡ 0 (mod p) and vp(zi) < 0 for any i ∈ {1, 2, 3}, then from Lemma 5.5 and (5.2.3),

one can get p2 divides b1, a contradiction. If gcd(b1, b2) ≡ 0 (mod p) and vp(zi) ≥ 0 for all

i ∈ {1, 2, 3}, then from Lemma 5.5 and (5.2.2), one can get p divides 1, again a contradiction.

Hence gcd(b1, b2) ̸≡ 0 (mod p). Now moreover, if p divides b2 then vp(zi) ≥ 0 implies p divides

b1 or z1 from (5.2.3), a contradiction as then either gcd(b1, b2) ≡ 0 (mod p) or p divides 1 from

(5.2.2). If vp(zi) < 0, then also from Lemma 5.5 and (5.2.2), one gets p divides b1, a contradiction

again.

If q divides b1, then from the equation b1b2z
2
3 − b2z

2
2 = 2q, one get that q divides b2 if vq(z3) ≥ 0

and vq(z2) ≥ 0. This, in turn, implies q divides 1 from (5.2.2) and Lemma 5.5, a contradiction.

Otherwise, again from Lemma 5.5 and (5.2.2), one gets that q divides b2 and hence from (5.2.3),

b1 ≡ 0 (mod q2), a contradiction.

We now show that for the existence of local solutions everywhere, b1 needs to be odd always.

Otherwise, b1 even and v2(zi) < 0 implies that p2 ≡ 0 (mod 2) from (5.2.3), a contradiction. Else,

from Lemma 5.5 and (5.2.2), one can see that b2 is even, a contradiction from the assumption

made above.

Now we can see for a homogeneous space corresponding to (b1, b2) to have local solution everywhere

b1 ∈ {1, p} and b2 ∈ {1, q}.

5.2.3 Everywhere Local Solution :

Now we prove that the homogeneous spaces corresponding to (p, 1) and (1, q) have local solutions

everywhere. We use Hensel’s lemma to lift a solution modulo a prime l to a solution in Ql.

Lemma 5.7. The homogeneous spaces corresponding to (p, 1) and (1, q) have local solutions

everywhere for l ≤ ∞.

Proof. Suppose C is the homogeneous space given by (5.2.2) and (5.2.3) corresponding to the

pair (p, 1). Then C is a twist of E. The Jacobian of the intersection of (5.2.2) and (5.2.3) for

(p, 1) is (
2p · z1 −2 · z2 0

2p · z1 0 −2p · z3

)
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one can easily observe has rank 2 whenever l ̸= 2, p, q. Hence except for those l’s, the topological

genus becomes the same as the arithmetic genus, which is 1 by the degree-genus formula. By the

Hasse-Weil bound, we have

#C(Fl) ≥ 1 + l − 2
√
l ≥ 2 for l ≥ 5, l ̸= p.

Hence, we can choose a solution (z1, z2, z3) ∈ Fl ×Fl ×Fl such that not all three of them are zero

modulo l. Now z1 ≡ z2 ≡ 0 (mod l) implies l2 divides 1 from (5.2.2), a contradiction. Similarly,

z1 ≡ z3 ≡ 0 (mod l) implies −p ≡ 0 (mod l2) from (5.2.3), contradiction again. Fixing two of

z1, z2 and z3, one can now convert equations (5.2.2) and (5.2.3) into a system of equations in

one variable with a simple root over Fl. That common solution can be lifted to Zl via Hensel’s

lemma.

For l = p, we first notice that
(−1

p

)
= 1 as p ≡ 1 (mod 8). Hence there exists a ∈ Z such that

a2 ≡ −1 (mod p). Now fixing z1 = 1 in equations (5.2.2) and (5.2.3), we can see that z2 = a and

z3 = 1 are two simple roots of two single variable polynomials and hence can be lifted to Zp.

For l = q, we first note that p ≡ 1 (mod 8) =⇒
(
p
q

)
=
(
q
p

)
= 1. Now fixing z1 = z3 = 1, one

can immediately notice that (1, a, 1) where a2 ≡ p (mod q), is a solution modulo q to (5.2.2) and

(5.2.3) with vq(zi) < 0 that can be lifted to Qq by Hensel’s lemma.

For l = 3 and p ≡ 1 (mod 3), using Lemma 5.5, we look into solutions for the equations

pz21 − z22 = 32k and z21 − z23 = −p · 32k in Z3. Fixing z1 = 1, one can notice that z2 = z3 = 1

are two simple solutions and hence can be lifted to solution in Z3 for the equations mentioned

above. Diving by 32k, it gives rise to solutions in Q3 for equations (5.2.2) and (5.2.3). For p ≡ 2

(mod 3), fixing z2 = 1 and z3 = 0 in (5.2.2) and (5.2.3) respectively will give z1 = 1 as a simple

solution modulo 3 and hence can be lifted to Z3 via Hensel’s lemma.

For the case l = 2, just as in the beginning of the case l = 3, using Lemma 5.5, we find solutions

in Z2 for the equations pz21 − z22 = 22k and z21 − z23 = −p · 22k such that k ≥ 2. Fixing z2 = z3 = 1

gives rise to z1 ≡ 1 (mod 8) as a solution modulo 8 to both those equations that can be lifted to

a solution in Z2. This ensures a solution for the homogeneous space corresponding to (p, 1) in

Q2 also.

For the case (b1, b2) = (1, q), the proof follows a very similar way as in the case (b1, b2) = (p, 1).

For l ≥ 5, l ̸= p, q, the homogeneous spaces C corresponding to (1, q) given by equations (5.2.2)

and (5.2.3) are of genus 1 and have solutions in Fl by Hasse-Weil bound and can be lifted to Zl

via a similar argument used in the previous case.

For l = q, because −p2 ≡ 1 (mod q), fixing z2 = z3 = 0 in equations (5.2.2) and (5.2.3) gives

z1 = 1 as a solution to the homogeneous space modulo q that can be lifted to Zl via Hensel’s

lemma.

For l = p, we give a solution for the case vp(zi) < 0. Because 2q ≡ 1 (mod p), one can notice

that fixing z1 = 1 and then choosing z2 = 1 and z3 = a is a solution that can be lifted to Zl via

Hensel’s lemma where a2 ≡ 2 (mod p).
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For the case l = 3, fixing z1 = 1 and choosing z2 ≡ z3 ̸≡ 0 (mod 3) gives rise to solutions for the

equations z21 − qz22 = 32k and z21 − qz22 = −p2 · 32k. This solution can be lifted to Zl and then

give solution for (5.2.2) and (5.2.3) in Ql as mentioned in the previous part.

For the case l = 2, noticing the fact p ≡ 1 (mod 8) =⇒ q ≡ 1 (mod 8), the proof follows the

same way with the same choice of solutions modulo 8 for the case (b1, b2) = (p, 1).

5.2.4 2-Part of the Shafarevich-Tate Group :

In this section, we cover the pairs (p, 1) and (1, q). We use the fact that due to Hilbert’s class

field theorem, the existence of an unramified abelian extension of degree n of a number field

K is equivalent to the class number h(K) ≡ 0 (mod n). We are now in a position to prove the

following result.

Proof of Theorem 5.4: We start with the possibility of the homogeneous space corresponding to

(p, 1) in X(E/Q)[2]. Let zi =
ai
di

for i = 1, 2, 3 is a rational solution set for equations (5.2.2) and

(5.2.3) where the rational numbers zi are in their lowest form i.e. gcd(ai, di) = 1 for all i = 1, 2, 3.

It can be shown easily that d21 = d22 = d23 = d2 for some integer d. So now we have the following

three equations for the case (p, 1);

pa21 − a22 = d2, (5.2.5)

pa21 − pa23 = −p2 · d2, (5.2.6)

pa23 − a22 = 2q · d2. (5.2.7)

We first claim that d is even; hence, ai is odd for each i = 1, 2, 3. Otherwise, from (5.2.7), noticing

the fact that q ≡ 1 (mod 8), one can observe a23 − a22 ≡ 2 (mod 8), a contradiction. From (5.2.6),

one can actually see that d2 ≡ a21 − a23 ≡ 0 (mod 8) =⇒ d ≡ 0 (mod 4).

A straightforward calculation shows that there are no common odd prime factors of a1 + a3 and

a1 − a3. Assuming ai ≥ 0 for all i = 1, 2, 3, (5.2.6) then implies that one of the two possibilities

of a1 + a3 and a1 − a3 is

a1 + a3 = p · 2n1 ·m2
1, a1 − a3 = −2n2 ·m2

2

where m = m1m2 is odd, n = n1 + n2 ≥ 4 and d2 = 2n · m2. The fact that a3 is odd and

2a3 = p ·2n1 ·m2
1+2n2 ·m2

2 now implies that either a3 = p ·2n−2 ·m2
1+m2

2 or a3 = p ·m2
1+2n−2·. In

either way, a3 ≡ 1 (mod 4). Same is true for the case when a1+a3 = 2n1 ·m2
1, a1−a3 = −p·2n2 ·m2

2.

Now if one defines α = a3 + d
√
p ∈ Q(

√
p), then from (5.2.6) we get NK/Q(α) = a21 where

K = Q(
√
p). Because gcd(a1, a3) = 1 can be proved easily, one can also observe that gcd(α, ᾱ) = 1

in OK , the ring of integers of K, where ᾱ = a3 − d
√
p. This in turn implies that αOK = a2 for

some ideal a which implies no finite primes except possibly primes above 2 ramifies in K(
√
α)/K.

But α = a3 + d
√
p ≡ 1 (mod 4) implies 2 also does not ramify in K(

√
α)/K. It is also clear
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that infinite primes also do not ramify in K(
√
α)/K as K(

√
α) ⊂ R. Hence from Hilbert’s

class field theorem, we can conclude that K = Q(
√
p) has an even class number whenever the

homogeneous space corresponding to (p, 1) has a rational solution. But it is well known that the

class number of Q(
√
p) is always odd [13]. Hence (p, 1) ∈ X(E/Q)[2] if

√
α ̸∈ Q(

√
p). Assuming

the finiteness of X(E/Q), as predicted by Shafarevich, the order of the group must be square.

As (1, q) is the only other possibility, we conclude that (1, q) ∈ X(E/Q)[2] and hence conclude

that X(E/Q)[2] ∼= Z/2Z× Z/2Z if
√
α ̸∈ Q(

√
p).

Now
√
α ∈ K =⇒ α = (x + y

√
p)2 =⇒ a3 = x2 + py2, a21 = (x2 − py2)2, and d = 2xy.

This, in turn, implies that a22 = p(x2 − py2)2 − 4x2y2, a solution to the Diophantine equation

p(x2 − py2)2 − 4x2y2 = z2 for odd z. This implies that the homogeneous space corresponding to

(p, 1) has a rational solution
(

±(x2−py2)
2xy , ±z

2xy ,
x2+py2

2xy

)
. Hence the Mordell-Weil rank is at least

one. Knowing the Selmer rank is two, we can then conclude that r(E/Q) = 2 and the 2-part of

the Shafarevich-Tate group is trivial. We note that even though the ring of integer OK = Z[1+
√
p

2 ],

α =
(
x+y

√
p

2

)2
=⇒ a3 = x2+py2

4 ∈ Z =⇒ x, y both are even as p ≡ 1 (mod 8). Hence, without

the loss of generality, one can assume x, y as integers. This concludes the proof.

Table 5.3: Examples for area p ≡ 1 (mod 8), τ = 1
p with p2+1 = 2q and corresponding

rank distribution

p r(E/Q) s2(E/Q) X(E/Q)[2]
409 0 2 (Z/2Z)2
449 0 2 (Z/2Z)2
521 0 2 (Z/2Z)2
569 0 2 (Z/2Z)2
641 0 2 (Z/2Z)2

We provide a table of examples above in support of our result. Computations for the table have

been done in Magma software (see [34]).
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6.1 Limitations

1. The main theme of the thesis is to compute the 2-part of the Selmer group for Heronian

elliptic curves, which also helps to get an upper bound for the Mordell-Weil rank of the

curve. However, it does not give the exact value of the Mordell-Weil rank. Knowing the

2-part of the Shafarevich-Tate group helps in that regard. But as evident in the previous

chapters, that information came in a conditional way, mostly via class number divisibility

of certain number fields. Because of this, there are practical difficulties while dealing with

the Mordell-Weil group of different types of Heronian elliptic curves.

2. The 2-Selmer rank computation for congruent number elliptic curve was done extensively in

a series of works by Heath-Brown (see [19] and [20]). As an appendix to his works, Monsky

introduced a matrix whose rank is directly related to the 2-Selmer rank of an arbitrary

congruent number elliptic curve. This gave an alternative to the 2-descent method for

computing the 2-Selmer rank via an approach motivated by elementary linear algebra.

There is still a lack of similar results in the case of Heronian elliptic curves.

6.2 Future Perspectives

1. As mentioned in the introduction, Heegner [22] developed a method to conclude 2p is

congruent for certain numbers, and then Monsky and Tian [51] generalized the results for

congruent numbers using Heegner’s method. This method can be used to construct rational

points, known as Heegner points, which turn out to be of infinite order on the modular

elliptic curves. Gross-Zagier and Kolyvagin made remarkable contributions towards BSD

conjecture using this method. So, using the Modularity theorem, one can look into the

construction of Heegner points on Heronian elliptic curves.

2. The class number divisibility problem is one of the contemporary problems in the field of

number theory. There are works available in literature by Soleng [48] and Lemmermayer

[31] where authors have used rational points of an elliptic curve with positive rank to

construct an unramified abelian extension of certain number fields. Hilbert class field

theorem then implies the class number of those number fields divisible by the degree of the

aforementioned unramified abelian extension. As we have already constructed Heronian

elliptic curves with positive ranks in the previous chapters, the class number divisibility

problem for number fields generated from points of those elliptic curves can be looked into.

3. Izadi, Farzali, Khoshnam, and Moody [24] extended the idea of Goins and Maddox to Heron

quadrilaterals. So, one can think of extending those ideas to generalize the connection

between n-polygon and elliptic curves and Diophantine equations.

4. Harron-Snowden [21] computed the density of elliptic curves associated with each of the

torsion subgroups classified by Mazur’s theorem. Then Im and Kim [23] extended those
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results to elliptic curves over number fields. Using the same method, the density of isosceles

Heron triangles can be looked into.

5. An algorithm to compute the Mordell-Weil rank of an elliptic curve is famously unavailable

in number theory. However, one can look into the possibility of the same for the subclass

of all Heronian elliptic curves.



Appendix A

MAGMA and SAGE Commands

1. Code for Mordell-Weil group information (MAGMA):

First, go to http://magma.maths.usyd.edu.au/calc/ and run the following code. Here,

ai’s denote the coefficients of an Elliptic curve in generalized Weierstrass form.

E:=EllipticCurve([a1, a2, a3, a4, a6]);

E;

MordellWeilShaInformation(E);

time rank, gens, sha :=MordellWeilShaInformation(E : ShaInfo);

2. Code for Mordell-Weil group information (SAGE):

Go to http://www.sagemath.org, and run the following code.

sage:E=EllipticCurve([a1, a2, a3, a4, a6])

sage: E

sage:E.rank()

sage:E.selmer_rank()

3. Code for the Class number of Biquadratic number field Q(
√
m,

√
n) (MAGMA):

R < X >:= PolynomialRing(Integers());

K := NumberField ([X2 −m,X2 − n]:Abs);

K;

ClassNumber (K);

4. Code for quadratic fields Q(
√
m) (MAGMA):

R < X >:= PolynomialRing(Integers()); K := NumberField(X2 −m);

K;

ClassNumber (K);
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