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Abstract
One of the essential areas in the communication field today is wireless communication. Wireless

communication aims to provide high-quality, reliable communication for cellular networks. For

several decades, wireless cellular technology has advanced from the first generation (1G) to

today’s fifth generation (5G). Nowadays, wireless communications have evolved into one of

the most revolutionary technologies in the industrial, public, and government sectors. Thus,

the demand for wireless communication has been increasing continuously. 5G is a wireless

technology that has been envisioned to meet these growing demands. Therefore, improving the

key requirements is essential to meet the rising demand for 5G wireless networks. The present

wireless communication technologies may not be capable of fulfilling these key requirements of

5G wireless networks; therefore, developing advanced technologies is essential. In recent years,

several emerging technologies have been developed to improve the essential requirements of 5G

networks. Heterogeneous Networks (HetNets) and Non-Orthogonal Multiple Access (NOMA)

are among the emerging technologies intended to improve some of the vital requirements of 5G

networks.

NOMA technology has been identified as vital in boosting system throughput to meet 5G network

demands. To maximize system throughput in a NOMA-based 5G network, the base station (BS)

must distribute appropriate transmit power to users. As a result, power allocation (PA) is a crucial

challenge for the NOMA-based 5G network’s system throughput improvement. User fairness

is another equally important parameter that should go hand-in-hand with system throughput

for NOMA-based 5G networks. But, to the best of our knowledge, even though there have

been works that look at system throughput and user fairness maximization for NOMA-based

5G networks, they looked at these as a single objective optimization problem, where one is the

objective and the other is one of the constraints. However, quite often, joint optimization of

both system throughput and user fairness is required to make optimal decisions in the face of

trade-offs between these equally important but conflicting objectives. In this regard, Chapter 2

formulates a Multi-objective Optimization (MOO) problem to jointly maximize the sum rate

and user fairness in a downlink transmission NOMA-based 5G networks through optimal PA

under system-imposed constraints. A weighted sum approach is used to turn the MOO into a

single-objective optimization problem to make it analytically tractable and provide the desired

trade-off between the conflicting objectives. We apply the Lagrange dual decomposition method

and the Karush–Kuhn–Tucker (KKT) conditions to achieve the optimal PA. Using optimal PA

expressions, we propose an iterative PA algorithm that converges fast enough to be employed in

practical NOMA-based 5G networks. We present simulation results to validate our proposed

solution. We also compare the proposed system’s results with the benchmark methods.



iv

NOMA is based on the concept of multiplexing users at the same time and frequency, which

can cause a significant amount of multiple access interference during decoding at each intended

receiver. In order to handle this multiple access interference, successive interference cancellation

(SIC) is an essential process at the receiver in the NOMA network. To ensure the successful

execution of the SIC process, the transmit powers of the users must meet the minimum required

gap at the transmitter. However, to the best of our knowledge, to date, no work addresses the joint

optimization of sum rate and user fairness while simultaneously considering the minimum power

gap constraint. Therefore, in Chapter 3, we formulate and solve a joint sum rate and fairness

MOO problem for the downlink NOMA-based 5G network. Along with the usual transmitter

power budget and Quality of Service (QoS) constraints, we also consider the user’s minimum

transmit power gap constraint, which is required for the successful execution of SIC, a constraint

ignored at large in the literature. We derive optimal PA coefficients for the proposed method. As

part of the validation process, we present simulation results and compare the performance of the

proposed system with a system that considers only the sum rate objective.

The use of NOMA in a multicarrier system can further increase the rate of a 5G network. In

such a system, the subchannel allocation (SA) and PA are intricately linked and essential for

improving system throughput. Chapter 4 work comes up with joint optimization of the SA and

PA to maximize the sum rate of the NOMA-based 5G network while sticking to the minimum

power gap constraint. Specifically, we formulate an optimization problem to maximize the sum

rate by achieving optimal SA and PA while adhering to minimum user rate, minimum power gap,

subchannel user rate, and power budget constraints for downlink transmission in multicarrier

NOMA networks. To ensure that the proposed method can solve in polynomial time, SA and PA

have been obtained in two stages. First, we calculate SA and then PA for each subchannel. In

order for our optimization method to work in real-world 5G networks, we propose a fast and

low-complexity algorithm. Finally, we present simulation results for the proposed method and

compare them with benchmarking schemes. We also compare and examine the performance of

the proposed algorithm with existing SA algorithms for our proposed method.

HetNet offers a high data rate, increased capacity, enhanced QoS, reduced latency, and decreased

power consumption for 5G networks. Despite the advantages, there are several challenges in

HetNets; among them, interference is one of the most significant. Due to densification in a

HetNet, interference increases, and consequently, coverage probability decreases for the network.

In Chapter 5, we propose an efficient and faster power control algorithm in the downlink to

enhance the coverage probability of the K-tier 5G HetNet. We consider the Poisson point

process (PPP) to model BS distribution, and Voronoi tessellation provides network coverage

areas. We present simulation results to show that the proposed power control algorithm improves
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the coverage probability compared to the existing power control algorithm. Furthermore, the

proposed power control algorithm’s convergence rate is faster than the existing power control

algorithm.

Densification in HetNets increases interference while decreasing the rate and outage probability.

As a result, NOMA-based HetNets may be employed to minimize cross-tier interference. Thus,

it decreases outage probability and increases the system sum rate in order to fulfill 5G network

needs. PA is vital for increasing system throughput and reducing outages in NOMA-based

HetNets. Hence, Chapter 6 comes up with an optimal PA for downlink transmission NOMA-

based HetNets to optimize the system’s sum rate and outage probability of the 5G network while

adhering to the minimal user rate constraint. We derive a generalized optimal PA coefficient

equation for small-cell users of NOMA-based HetNets. Then, utilizing the PA coefficient

equation, we present an algorithm to optimize the sum rate and minimize the outage probability.

To apply our algorithm in real-world wireless networks, we ensure that our algorithm is both

fast and minimal in complexity. Finally, we illustrate simulation results for the proposed method

and compare them to OMA systems.
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Chapter 1

Introduction

This chapter provides an overview and the motivation for the research topic. The objectives and

summary of the essential contributions of the thesis are expressed. In addition, we provide the

structure of the rest of the thesis.

1.1 Overview

Wireless mobile communications have changed tremendously since MacDonald of Bell Tele-

phone Laboratories came up with the idea of cellular communications in 1979 [1]. Wireless

communication has become one of the most revolutionary technologies in the industrial, public,

and government sectors [2, 3]; thus, it is essential to understand how previous generations

developed.

1.1.1 History: From 1G to 5G:

Over the previous four decades, cellular technology has progressed from the first generation

(1G), followed by the second generation (2G), third generation (3G), and fourth generation

(4G), culminating in today’s fifth generation (5G). The 1G mobile communication systems were

developed for commercial usage in the 1980s. Advanced mobile phone system (AMPS), the

first analog cellular technology, was extensively used in North America [4]. Radiolinja was

1
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the first company in Finland to launch 2G mobile telephony networks in 1991. The global

system for mobile communications (GSM) standard was utilized in this network [4]. The key

advantage of 2G networks over 1G networks was data services for mobile, initiating with SMS

text messaging and advancing to Multimedia Messaging Service (MMS). 2G has a data rate

of 14.4 – 64 Kilobits Per Second (KBPS) and a latency of 500 – 1000 milliseconds [5, 6]. The

general packet radio service (GPRS) was the first significant step in growing GSM networks

toward 3G communication systems. The International Telecommunication Union (ITU) created

3G telecommunication technologies in the early 1980s [7]. In Japan, NTT DoCoMo was the first

to commercialize 3G in 2001. Compared to 2G networks, 3G networks provide faster data rates

of 2 Megabits Per Second (MBPS), low latency of 200 milliseconds, and more security [5, 6].

3G provides devices with mobile broadband service of several Mbps. Applications like a Global

positioning system (GPS), mobile internet access, mobile TV, video calls, and location-based

services were developed employing the bandwidth and location information of 3G devices.

The International Telecommunications Union-Radio (ITU-R) communications sector set the

specifications for 4G mobile telecommunication technology standards in March 2008 [8]. Spread

spectrum radio technology, which was employed in 3G networks, was phased out in 4G systems.

The orthogonal frequency division multiple access (OFDMA) multi-carrier transmission was

the fundamental technology in 4G networks. OFDMA has been extensively used to achieve

higher data rates in 4G mobile communication systems such as long-term evolution (LTE) and

LTE-Advanced [9]. 4G has a latency of 100 milliseconds and a data transmission rate of 200

MBPS - 1 Gigabits Per Second (GBPS) [5, 6]. Following a historical 10-year cycle for every

generation, the 5G mobile network is now in the research stage. 5G is expected to be significantly

faster than 4G, with peak data speeds of up to 20 GBPS and an average data rate of up to 10

- 100 GBPS [5]. 5G is expected to offer a much lower latency of less than 1 millisecond [6],

enabling more instantaneous, real-time access. 5G is expected to be more than just an extension

of the existing 4G communication networks. It is expected to support a wide range of scenarios,

including smart homes, e-health, industries Internet of Things (IoT), autonomous vehicles, etc.

This is due to the exponentially increasing demand for data traffic and the significant impact of

future wireless networks on daily human activities. Increased bandwidth, low latency, energy

conservation, cost reduction, increased system capacity, and massive device connection are some
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of the most significant requirements of 5G [10]. Figure 1.1 shows an evolution of 1G to 5G

networks [11].

1980

Analog voice 
calls

1991

Digital voice, 
Text messaging, 
MMS, Basic data 
service

500-1000 ms

14.4 – 64 kbps

2001

Mobile 
broadband

200 ms

2 Mbps

2010

Fast mobile 
broadband

100 ms

200 Mbps - 1 
Gbps

2020

Enhanced mobile 
broadband, IoT

<1ms

10 Gbps - 100 
Gbps

5G

4G

3G

1G

2G

FIGURE 1.1: Evolution of 1G to 5G networks.

1.2 Requirements for 5G:

The fast development of several emergent applications, including artificial intelligence (AI), en-

tertainment and multimedia, augmented reality (AR) and virtual reality (VR), three-dimensional

(3D) media, and the IoT, has resulted in a tremendous increase in cellular network traffic. [12].

Global mobile traffic volume was 7.462 exabytes per month in 2010, 60 exabytes per month in

2020, and is expected to reach 600 exabytes per month in 2025 and 5016 exabytes per month

in 2030 [13]. This statistic demonstrates the extreme importance of communication system

improvement. To meet the ever-increasing demand for 5G networks, it is necessary to improve

the key requirements of 5G wireless networks. The key requirements of 5G wireless networks

can be summarized as follows:

• Data Rate: For more than a century, wireless data traffic has grown at an exponential rate.

The race for a faster data rate would continue, necessitating a 10x data rate increase every

five years [14]. In the case of 5G, this refers to achieving a peak data rate of at least 1

GBPS when it launched in 2020. Next, it is expected to scale up to 10 GBPS in five years

and even 100 GBPS by 2030 [15].
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• Connectivity: Over the previous few years, millions of sensors have been integrated into

homes, cities, industries, and other environments to develop smart life and automated

systems. As a result, these services will require a high data throughput as well as

reliable connectivity. It is anticipated that the 5G system can support up to one million

simultaneous connections per square kilometer (km) [16]. Global mobile traffic volume

is predicted to boost 670 times by 2030 compared to 2010 [13]. As compared to 5.32

billion in 2010, the number of mobile subscriptions is anticipated to reach 17.1 billion by

2030 [17].

• Fairness: In general, wireless network fairness is achieved by providing adequate Quality

of Service (QoS) to all users [18]. Throughout 5G and beyond wireless networks, a large

number of devices want an inexpensive QoS at any time, from any location, and regardless

of the channel conditions. Thus, it is necessary to take into consideration the issue of

fairness for 5G networks.

• Energy Efficiency: Due to increased energy consumption and environmental concerns

throughout the globe, energy-efficient communications have received a lot of emphasis

in academia and industry [19]. By 2020, billions of information and communication

technology (ICT) devices have contributed up to 3.5 percent of the world’s carbon dioxide

(CO2) emissions, and these emissions are expected to be 14 percent by 2040 [20]. In

addition, by 2025, it is estimated that the communications sector is expected to account

for 20 percent of all global electricity [20]. Furthermore, energy prices are increasing,

and worldwide carbon dioxide emissions rise from ICT devices. Thus, the topic of

energy-efficient radio management is becoming more engaging.

• Latency: Ultra-reliable, low-latency communications have become a critical component

of the wireless network. 5G networks are expected to provide low-latency communications

by adding features like an end-to-end delay of less than 1 millisecond [15]. According to

academic and industry experts, expecting a radio latency value of less than 1 millisecond

is one of the significant performance parameters for 5G networks [21].

• High Coverage: One of the primary concerns with 5G networks is improving coverage,

which affects system performance and end-user experience. Because 5G uses higher

frequencies than 4G, it can experience increased attenuation and penetration loss, resulting
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in limited coverage. Most of the new 5G spectrum allotments worldwide are time-

division duplex (TDD) carriers operating at frequencies of 3.3-3.8 GHz, 28 GHz, or

39 GHz, substantially higher than 4G. This can have an impact on 5G new radio (NR)

coverage. [22].

To summarise, Figure 1.2 depicts the key requirements for 5G.

Low    
Latency

Higher  
Fairness

Massive  
Connectivity

Higher 
Energy 

Efficiency

Higher Data 
Rate

Higher 
Coverage

Future 
Networks 

Requirement

FIGURE 1.2: Key requirements of 5G.

The present wireless communication technologies may not be sufficient to meet the aforemen-

tioned critical requirements; therefore, developing of advanced technologies for 5G wireless net-

works is necessary [23]. Recent years have seen the development of several emerging technolo-

gies, including heterogeneous networks (HetNets) [24], millimeter wave (mmWave) [25], non-

orthogonal multiple access (NOMA) [26], massive multiple-input multiple-output (MIMO) [27],

and device-to-device (D2D) communication [28], among others. This thesis studies NOMA

and HetNet, potential multiple access techniques intended to address some of the essential

requirements mentioned above the 5G networks [26, 29, 30].
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1.3 NOMA

1.3.1 Orthogonal Versus Non-orthogonal Multiple Access Techniques

Multiple access techniques are the key component of the wireless communication system. Multi-

ple access techniques are divided into orthogonal and non-orthogonal categories. In orthogonal

multiple access (OMA) techniques, signals transmitted by various users are orthogonal in fre-

quency, time, or code domains to reduce the multiple access interference-effect (see Figure

1.3). Frequency division multiple access (FDMA), time division multiple access (TDMA), code

division multiple access (CDMA), and OFDMA are all examples of this principle in use [31].

In contrast to OMA schemes, as shown in Figure 1.3, NOMA works on the principle of users

sharing time and frequency resources by separating them into different domains. This separation

domain is divided into two regimes: power-based and code-based, resulting in NOMA mecha-

nisms in the power-domain and code-domain, respectively. The focus of this thesis has been

on a NOMA scheme operating in the power domain; hereafter, we refer to the power-domain

NOMA scheme as NOMA. NOMA serves more than one user at the same time, frequency, and

code but at different power levels [32].

Power Power

Time,Freq,code Freq

Orthogonal 
between users

FIGURE 1.3: OMA and NOMA

It may not be possible to meet the above-mentioned key requirements for future communication

systems using OFDMA-based OMA alone [33]. All of these requirements are seen as a challenge
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in developing new potential communication systems [10]. As a result, NOMA is presented as

one of the potential technologies for meeting key requirements of 5G communication systems.

NOMA incorporates the concept of superposition coding, which is deployed on the transmitting

side, and the principle of successive interference cancellation (SIC), which is implemented on

the receiving side [34].

1.3.2 NOMA Fundamentals

NOMA employs two key operations: superposition coding on the transmitter side and SIC on

the receiver side.

1.3.2.1 Superposition Coding

The superposition coding for the NOMA network is shown in Figure 1.4. In superposition coding,

the modulated signals of several users are superimposed in the power domain. Power domain

multiplexing represents the process by which the signals of multiple users are multiplexed

via varying power levels depending on the circumstances of their respective channels while

maintaining the same time, frequency, and coding resources for all users, as shown in Figure

1.4. Power allocation (PA) coefficient (α) can be used to provide different levels of power to

S1

S2

SM

Transmit
Antenna

X

User 1

Power

Time/Frequency

User 2

Power allocationSuperposition coding

𝜶𝟏P

𝜶𝑴P

𝜶𝟐P

User M

FIGURE 1.4: Superposition coding and power allocation

different users. Thus, in superposition coding, all user signals are multiplied with separate PA
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coefficients α , and combined at the base station (BS). As a result, the transmitted signal at BS

that uses superposition coding can be expressed as,

X =
M

∑
m=1

√
αmP Sm, (1.1)

where Sm is the symbol of user m, αm is PA coefficient for user m, and P is total transmit power

of BS.

1.3.2.2 Successive Interference Cancellation

The SIC process is performed on the receiver side, as shown in Figure 1.5. In the SIC process,

Direct

Decoding

Decode and 

remove user 

1’s data by 

SIC

Decode 

user 2’s 

data

Decode and 

remove user 

1’s data by 

SIC

Decode and 

remove user 

2’s data by 

SIC

Decode 

user M’s 

signal

Decode and 

remove user 

(M-1)’s data 

by SIC

𝒀𝟏 𝒁𝟏

𝒁𝟐

𝒁𝑴

User 1

User 2

User M

𝒀𝟐

𝒀𝑴

𝒉𝟏 ≤ 𝒉𝟐 ≤ ⋯ ≤ 𝒉𝑴
𝜶𝟏 ≥ 𝜶𝟐 ≥ ⋯ ≥ 𝜶𝑴

FIGURE 1.5: Successive interference cancellation

data is decoded in the order of diminishing power levels. In each user at the receiver, first, the

data corresponding to the user who is provided the highest power in the superposition coding at

the BS is decoded directly. Then, the user who is provided the next highest power is decoded

by eliminating interference from the preceding decoded user. This process happens till all the

user’s data is decoded at the receiver [35, 36]. Let the received signal at user m is given by,

rm = hmX +ηm, (1.2)

where hm is the complex channel gain from BS to user m, ηm ∼C N (µ, σ2) is complex additive

white Gaussian noise (AWGN) with zero mean (µ = 0) and variance σ2 [37, 38]. Without loss
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of generality, the channel gains are sorted between the BS and all users in ascending order as

|h1| ≤ |h2| ≤ · · · ≤ |hM|. After the SIC process as described above, the decoded signal at the

receiver is given by,

ym = hm
√

αmP Sm +hm

M

∑
n=m+1

√
αnP Sn +ηm, (1.3)

1.3.2.3 NOMA in Downlink Transmission

To discuss the downlink transmission of the NOMA network, consider a BS that communicates

with M users, as shown in Figure 1.6. We assume a single input and single output (SISO) system

Base Station

User M
User 3

𝒉𝟑

𝒉𝟐

𝒉𝑴

User 2

User 1

𝒉𝟏

FIGURE 1.6: The downlink transmission of the NOMA network

where the BS uses a single antenna to transmit and the users use a single antenna to receive.

Without loss of generality, it is assumed that user 1 is the weakest user in the network and user

M is the strongest user. By applying superposition coding at the BS and the SIC process at

each user, the signal-to-interference and noise ratio (SINR) as seen by user m can be written

as, [36, 37],

SINRm =
αmP |hm|2

∑
M
n=m+1 αnP |hm|2 +σ2

, (1.4)

Hence, the achievable rate for user m is given by [36, 37],

Rm = log2(1+SINRm) bps/Hz. (1.5)
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1.4 Heterogeneous Networks

One of the leading emerging technologies for 5G networks is the deployment of small cells

in the cellular network, called a HetNet [39]. In HetNet, low-power small cells (Microcell,

Picocell, and Femtocell) are overlaid with a large-power macrocell. The HetNets architecture is

anticipated to be crucial to the development of 5G network requirements. Because of network

densification, 5G networks will be more diversified and more densely deployed than today’s

networks. The objective of deploying such small cells is to improve essential features like

indoor coverage, user performance at cell-edge, spectrum efficiency using spatial reuse, energy

consumption, and capacity. However, due to network densification, intense proliferation, and the

same frequency used in all cells, interference in the HetNet can increase [40, 41].

Among each tier of BS, there are differences in the transmit power, target SINR, and BS density

in the HetNets [42]. Each cell’s transmit power is based on its coverage area. Microcell coverage

regions are the greatest, femtocell coverage areas are the smallest, and picocell coverage areas

are in the midst [43]. Macro BSs, typically deployed by the operator in a planned layout,

provide umbrella coverage. They transmit power typically between 40 W to 100 W. Small cells

are deployed on coverage holes or capacity-demanding hotspots, thus following a relatively

random placement. Low-power femtocell BS provides a smaller coverage area (less than 100

m), requiring low transmit power (less than 200 mW). Picocell BS provides a 100 m to 200 m

coverage area, hence requiring 250 mW to 1 W transmit power [44, 45]. The types of small cells

and the design that can support are listed in Table 1.1.

TABLE 1.1: Base station types.

Base station type Number of users Coverage (meter) Location
Femtocell 1 to 30 10 to 100 Indoor
Picocell 30 to 100 100 to 200 Indoor/Outdoor
Microcell 1000 to 2000 100 to 2000 Indoor/Outdoor
Macrocell > 2000 5000 to 32000 Outdoor
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FIGURE 1.7: Representation of 3-tier HetNet, composed of macro, pico,
and femto Base Stations.

1.4.1 HetNet in Downlink Transmission

A typical HetNet is shown in Figure 1.7. The Poisson point process (PPP) is used to model BS

distribution, and Voronoi tessellation is used to provide network coverage areas for the HetNet.

Hence, BSs in the ith tier are spatial distributed in R2 as a PPP Φi of density λi, transmit power

Pi, and target SINR Ti [42]. Hence, each tier can be distinguished from the others by the tuple

{Pi,Ti,λi}. Let us place a typical mobile user at the origin. hi stands for the fading coefficient

between the user i and BS. The power received by a user at the origin from the BS at location

xi ∈Φi in the ith tier is represented by [42],

Pr = Pihi ∥xi∥−α (1.6)

Where α stands for the path loss exponent. Given that the user is connected to a BS at location

xi, the received SINR can be expressed as [42]:

SINR(xi) =
Pihi ∥xi∥−α

∑
K
j=1 ∑x∈Φ j\xi Pjh j

∥∥x j
∥∥−α

+σ2
(1.7)
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Where σ2 represents the noise power. Now, in a K-tier HetNet, the coverage probability can be

modeled as follows [42],

Pc({Pi} ,{Ti} ,{λi}) = P

( ⋃
i∈κ,xi∈Φi

SINR(xi)> Ti

)
(1.8)

1.5 Objectives of the Thesis

Wireless communications are now one of the major developments in the industry, public, and

government sectors. Hence, the need for wireless communication has increased massively. In

order to satisfy the growing need for 5G wireless communication, it is necessary to improve

key requirements such as sum rate, fairness, outage probability, and coverage. Among other

technologies of 5G, HetNets and NOMA are emerging technologies that enhance the crucial

requirements for 5G networks. Hence, this thesis mainly focuses on improving key requirements

of HetNets-based and NOMA-based 5G networks. Taking into account the concerns mentioned

above, we formulate the following objectives to enhance key requirements of HetNets-based and

NOMA-based 5G networks:

1. Joint Sum Rate and User Fairness Maximization for Downlink NOMA Networks.

2. Joint Sum Rate and User Fairness Maximization adhering to the minimum power gap

constraint for Downlink NOMA Networks.

3. Sum Rate Maximization for Downlink Multicarrier NOMA Networks.

4. Improve Coverage Probability for Heterogeneous Networks.

5. Improve Sum Rate and Outage Probability for Downlink NOMA Heterogeneous Networks.

1.6 Thesis Outline

The rest of the thesis is organized as follows:
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Most NOMA research has focused on single-objective optimization, either of the sum rate or user

fairness. However, in many situations, it is essential to consider a multi-objective optimization

(MOO) problem to jointly maximize both the sum rate and user fairness to make effective

decisions in the face of trade-offs between these two equally important but conflicting objectives.

Chapter 2 formulates and investigates the MOO problem in downlink NOMA networks to

achieve optimal PA for joint optimization of sum rate and user fairness while maintaining the

transmit power budget and QoS constraints.

SIC is an essential constraint in order to prevent co-channel interference at the receiver, which is

caused by multiplexing users on the same resource block in NOMA. However, to successfully

execute SIC, the NOMA transmitter must maintain a suitable gap between the user’s transmit

power. Thus, in addition to the user’s QoS and transmitter power budget constraints addressed

in Chapter 2, we address the minimal transmit power gap constraint in Chapter 3. In this regard,

the Chapter 3 research aims to find the optimal PA for downlink NOMA networks in order to

maximize the sum rate and user fairness while meeting the minimal transmit power gap, QoS,

and transmit power budget constraints.

Multiple access techniques are gaining popularity as the need for high data rates in 5G networks

increases. Moreover, multiple access techniques are required to meet the ever-increasing

bandwidth requirements. As a result, in addition to PA in the Chapters 2, and 3 optimization

problem, we decided to look at the problem of optimal subchannel allocation (SA) in Chapter

4 for NOMA-based 5G network. In Chapter 4, we formulate and investigate the problem of

determining optimal SA and PA for maximizing the sum rate while fulfilling the transmit power

budget, minimum rate requirement, subchannel user’s limit, and minimum power gap constraints

in the downlink multicarrier NOMA network. To achieve SA, we investigate the algorithms for

SA that are described in papers [46–48] and associate them with our optimization problem.

Current wireless communication technology may not be sufficient to meet the crucial require-

ments of a 5G network. In recent years, HetNet technology has emerged to fulfill the essential

5G network requirements. Having studied the NOMA technology to improve key parameters of

the 5G network in Chapters 2, 3, and 4, in Chapter 5, we investigate improving the coverage

probability parameter of the 5G network using HetNet technology. We propose an efficient and

faster power control algorithm in the downlink HetNet to enhance the coverage probability.
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It is obvious that hybrid systems, particularly those that combine NOMA with other technologies,

can further improve system parameters [49]. This motivates us to use NOMA-based HetNets. In

Chapters 2, 3, and 4, we investigate improving the performance parameters of the 5G network

employing NOMA technology. In Chapter 5, we examine improving the performance parameters

for the 5G network using HetNet technology. However, Chapter 6 studies NOMA-based HetNets

to improve 5G network performance parameters. Thus, Chapter 6 presents an optimal PA for

downlink transmission of NOMA-based HetNets in order to maximize the 5G network’s sum

rate and outage probability while sticking to the minimal user rate constraint. We derive a

generalized equation of the optimal PA for small cell users in NOMA-based HetNets.

Chapter 7 says the conclusions.



Chapter 2

Power Allocation Scheme for Sum Rate

and Fairness Trade-off in Downlink NOMA

Networks

NOMA is one of the fundamental principles for the 5G wireless network [50]. NOMA is based

on the idea that users can share time-frequency resources by splitting them in power-domain

and code-domain [51, 52]. This results in power-domain NOMA and code-domain NOMA

mechanisms. Our work uses power-domain NOMA. In power-domain NOMA, multiple users

are superimposed in the power domain at the transmitter, and at the receiver, users are decoded

based on SIC. Hence, the NOMA technique’s key idea is that multiple users are served in a

single time-frequency block [53]. This is unlike OMA techniques like TDMA and OFDMA

that serve a single user in each resource block [53]. Thus, NOMA can achieve a high sum rate

(or spectral efficiency) in comparison to OMA techniques, thereby potentially increasing the

overall throughput of the system [54,55]. This has motivated many researchers in the recent past

to target the maximization of the sum rate of systems that employ NOMA as a multiple access

scheme [36, 51, 56–66]. However, despite an increased throughput, since NOMA is based on the

SIC order, the served users might receive unequal achievable rates, which may be troubling in a

scenario requiring user fairness [67]. To address this challenge, many authors have considered

maximizing the sum rate under user fairness as one of the constraints [68–70], or maximizing

the user fairness under the constraint of minimum rate for users and other system imposed

15
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restrictions [71], [72]. Targeting to maximize the sum rate or user fairness as a single objective

optimization problem is an important and challenging issue that has been well addressed. Quite

often, an optimal PA to jointly maximize both the sum rate and the user fairness is of paramount

importance to make efficient decisions in the face of trade-offs between these two equally

important but conflicting objectives. Therefore, NOMA needs to be enabled to balance the trade-

off between achievable rates and user fairness through optimal PA. However, to the best of our

knowledge, such an attempt is missing in the literature. In this regard, this work aims to obtain

optimal PA to jointly maximize the sum rate and user fairness under system-imposed constraints.

We formulate and solve this as an MOO problem to obtain optimal PA that maximizes the sum

rate and user fairness for a NOMA-based system.

The rest of the Chapter is organized as follows. In Section 2.1, we conduct a literature survey of

the related works and then motivate and summarize our contributions. We present the system

model and problem formulation in Section 2.2. In Section 2.3, we derive the optimal PA solution

for the joint sum rate and user fairness optimization problem. Section 2.4 presents simulation

results and related discussions for the proposed scheme. Finally, Section 2.5 provides concluding

remarks.

2.1 Related Work

In the context of sum rate, the authors in [51] obtain the optimal sum rate of downlink two-user

NOMA network for admitting imperfect SIC and minimum QoS requirement constraint. A sub-

optimal improper Gaussian signaling circularity coefficient is calculated iteratively to maximize

the sum rate. In [56], the authors maximize the sum rate of multiple downlink users for NOMA

networks through optimal PA strategy subject to minimum user rate requirements. In [57], the

authors investigate optimal PA to maximize the sub-carrier-based NOMA network’s sum rate

under a minimum rate and a total power constraint. To reduce complexity, two closed-form

sub-optimal solutions are also proposed for a two-user situation. Authors in [58] maximize the

sum rate using the optimal PA of a MIMO NOMA network with layered transmissions. The

authors propose an alternating maximization (AM) algorithm to maximize the sum rate at the

BS for known instantaneous channel state information (CSI) and statistical CSI. In [59], the
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authors examine the subcarrier and PA for the downlink of a single-cell multicarrier downlink

NOMA network. For maximizing the sum rate for the NOMA network, a three-step algorithm

named Double Iterative Waterfilling Algorithm is proposed. A secure transmission system

for the NOMA network with imperfect CSI for both the eavesdropper’s channel and the main

channel is studied in paper [60]. An effective algorithm is offered to maximize the reliable

secrecy sum rate under transmit power limitations, outage probability, and QoS requirements.

The optimization problem of sum rate maximization is formulated for a linearly precoded

multiple-input single-output (MISO) downlink transmission NOMA network in manuscript [61].

To solve the optimization problem of sum rate maximization and provide complex precoding

vectors, the authors design an iterative algorithm employing the minorization-maximization

approach. In [62], the authors study the sum-rate performance of two users and multiple users in

the MIMO NOMA network. MIMO-NOMA outperforms MIMO-OMA in both sum and ergodic

sum rates in both situations, namely, two users and multiple users. In [36], the proposed MOO

methodology efficiently allocates resources in the many-user downlink transmission NOMA

network that improves the sum rate while minimizing transmit power subject to the user’s QoS

requirements, SIC, and transmit power budget. Authors in [63] study the optimization problem

to achieve optimal value for both PA and frequency to maximize the sum rate while considering

each user’s minimum rate requirement constraint in a multiuser NOMA downlink network.

The work [64] provides an optimal PA for downlink transmission NOMA-based HetNets to

maximize sum rate and outage probability adhering to QoS constraint. The paper [65] looks

into PA for maximizing the weighted sum rate in the downlink multiple carriers NOMA systems

with imperfect SIC. The paper [66] optimizes subchannel and power to maximize the sum rate

while meeting a minimal power gap, minimum user rate, the maximum number of users in a

subchannel, and power budget constraints for downlink multicarrier NOMA networks.

Besides the sum rate, user fairness has also gained significant attention in NOMA networks.

In this regard, in [67], the maximization of fairness among users with optimal PA is studied

by authors for a downlink transmission NOMA network under instantaneous CSI and average

CSI knowledge at the transmitter. In [68], authors study optimal PA for energy efficiency

maximization and guaranteed user fairness for minimum data rate requirements and maximum

transmission power constraints for the MIMO NOMA network. In [72], authors offer a joint

NOMA and TDMA scheme in the Industrial Internet of Things, which enables various sensors to
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communicate in the same time-frequency resource block by applying the NOMA scheme. Time

slot allocation, power control, and user scheduling are simultaneously optimized to maximize

the system α - fair utility involving minimum rate constraint and transmit power constraint.

In [37], optimization problems are formulated by the authors for the downlink multicarrier

NOMA network to optimize fairness and energy efficiency between users concerning the PA

and subcarriers. A novel greedy subcarrier assignment method is proposed, which is based

on the worst-user first principle. The work in [73] discusses multi-user multi-cluster MIMO

systems with downlink NOMA networks. Authors derive closed-form expressions for ergodic

rates and outage probability. Multi-user PA coefficients within each sub-group are optimized to

maximize fairness for imperfect SIC. The authors introduce an iterative algorithm to present

fairness amongst various sub-groups. In the paper [74], the authors investigate the PA and

user set selection problem to provide proportional fairness in multi-user downlink NOMA

networks. A user-set selection system based on tree searching implements a carefully planned

pruning mechanism to eliminate unnecessary user sets in the NOMA network. In [75], the

fairness performance is increased for a NOMA-based scheduling scheme for a wireless-powered

communication network by irregular user deployment by providing NOMA transmissions for

wireless information transfer and wireless energy transfer.

Furthermore, a limited number of works [52, 69–71, 76, 77] address the optimal relationship of

user’s fairness and sum rate for the NOMA network. The paper [52] gives the joint fairness

and sum-rate optimization problem for uplink transmission NOMA network. The authors

propose an algorithm for optimal PA, subband assignment, and user grouping for concurrently

optimizing fairness and sum rate. The authors present two algorithms; the first algorithm can

prevent weak users from starvation and improve fairness, and the second algorithm is applied

to obtain PA. The authors in [69] introduce water-filling-based joint PA and a proportional

fairness scheduling method to maximize the achievable rate by a quasi-optimal re-partition of

the transmission power amongst sub-bands while ensuring a large level of fairness towards

resource allocation. The proposed method improves system throughput and user fairness related

to either orthogonal signaling or static PA NOMA network. In the paper [70], the average sum

rate is maximized considering fading channels, including peak and average power constraints,

as well as fairness constraints for a two-user downlink transmission NOMA network. Sum rate

maximization is obtained for full and partial CSI, and fairness is taken care of by including a
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minimum achievable ergodic rate condition. In the manuscript [71], the optimal PA optimization

problem is designed to maximize the instantaneous sum rate with α-fairness for the downlink

NOMA network. The user rates are updated based on the instantaneous CSI. The α-fairness is

used to measure the qualitative fairness of the instantaneous rate. In the manuscript [76], the

author studied proportional fairness scheduling with two users’ downlink NOMA networks.

The author considered different criteria and achieved optimal PA. The author has shown that

the proportional fairness scheduling method maximizes the sum rate and maximizes the least

normalized rate which gives proportional fairness and a slight variation of communication rates.

The paper [77] addresses work to enable a balanced trade-off between two objectives sum rate

and users fairness by employing the MOO problem for designing beamforming in a MISO

NOMA system. In this work, a beamforming vector is designed such that the BS can properly

allocate the weights of every objective corresponding to the channel conditions and network

circumstances. A sequential convex approximations technique is used to determine the weighting

coefficients iteratively.

2.1.1 Motivation and Contributions

As stated in [78], the NOMA network’s achievable rate is more widespread than that of the

OMA network under asymmetric channel conditions. For illustration, in Figure 2(b) in [78],

the achievable rate of strong user in NOMA is almost double that of OMA. It is because of

superposition coding and SIC used in the NOMA network. In consideration of power-sharing

with weak users, the weak user allows a strong user to use the entire bandwidth while allocating

a smaller transmission power. As a consequence, a stronger user introduces a small amount of

interference to a weaker user. On the other hand, in an OMA network, a significant portion of

bandwidth is allocated to a weak user to increase the rate, resulting in a significant reduction in

the strong user’s achievable rate whose rate is bandwidth restricted. As a result, in a downlink

communication network with asymmetric channel conditions between multiple users, NOMA

has a more significant opportunity than OMA of improving the trade-off between system sum

rate and user fairness 1.
1NOMA with appropriate power-sharing and successful SIC achieves a higher rate for the worst user, improving

user fairness between near and far users while providing a higher sum rate compared to OMA regardless of channel
circumstances.
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In some circumstances, multiple objectives of the system need to be optimized simultaneously,

which encourages the MOO problem. In particular, many research areas, including engineering,

have used MOO to make optimal decisions in the face of trade-offs between two or more

objectives that may have a contradiction [79], [80]. Most current NOMA studies focus on

a single-objective optimization problem to optimize individual objectives like sum rate, EE,

SE, fairness, etc. Therefore, to the best of our knowledge, there is no widely accepted MOO

problem for joint configuration of users fairness and sum rate to adequately achieve a trade-off

between them with optimal PA under QoS and power budget constraints for the downlink NOMA

network, the reason behind this research.

Additionally, the BS should intelligently assess whether it is essential to maximize the sum rate

or user’s fairness or find a reliable balance between them. Hence, to our understanding, the recent

studies [36,37,51,52,56–76] lack consideration of MOO problems for maximization of sum rate

and users fairness in the downlink transmission NOMA networks. Several works [37, 52, 67–76]

have studied maximizing sum rate while supporting user fairness for downlink NOMA networks.

Despite this, achieving optimal PA for accomplishing a balanced trade-off and concurrently

maximizing sum rate and user fairness for maintaining QoS and power budget constraint

is missing for downlink NOMA networks. Therefore, we study in-depth interpretation and

maximization of sum rate and user fairness for optimal PA in the NOMA downlink network

under QoS and power budget limitation. In the paper [77], the authors designed an optimal

beamforming vector to maximize the sum rate and user fairness in a MOO problem for the

downlink NOMA network. However, the constraints considered in our work are more realistic

than the paper [77], which excludes the QoS constraint. Additionally, compared to the paper [77],

we also derive a closed-form expression for optimal PA that enables easy and quick changes to

the power coefficients as the users channel conditions change. Hence, this Chapter’s essential

contribution is to get the optimal value of PA for maximization of sum rate and user fairness with

QoS condition and power budget restriction in the MOO problem for downlink transmission

NOMA network.

The main aspects of the Chapter are summarized as follows:

• We express and study the MOO problem to achieve optimal PA for joint optimization of
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sum rate and user fairness in downlink NOMA networks. The objective is to simultane-

ously enhance the sum rate and user fairness while satisfying the transmit power budget

and QoS requirement constraints with optimal PA.

• In our work, we exploit the weighted-sum method where the multi-objectives of maximum

sum rate and user fairness can be linearly combined as a single-objective optimization

problem by employing a weighting coefficient. Here, the weighting coefficient indicates a

trade-off between two objective functions [80], [81].

• The optimization problem of interest is challenging to solve directly due to the complex

formulation of a Lagrangian function. We apply a new assistance variable and reformulate

the initial problem to a solvable one.

• We use a Lagrange dual decomposition method and Karush–Kuhn–Tucker (KKT) condi-

tions to determine the optimal solution for our MOO problem. Lagrange multipliers can

be obtained and updated iteratively by applying the sub-gradient method [82].

• We carry out simulations to validate our analytical expressions and the proposed iterative

algorithm. Our results show that the proposed algorithm requires very few iterations for

converging to the optimal PA. We also compare the performance of the proposed method

with the benchmark methods.

2.2 System Model and Problem Formulation

In this section, we introduce the system model, followed by a discussion of the problem

formulation. Let us consider a downlink NOMA-based wireless network, as shown in Figure

2.1, with a BS that communicates with M users. We consider a SISO system in which the BS

transmits using a single antenna, and the users receive using a single antenna. Since NOMA

uses the power domain for user multiplexing, all users are served at the same time over the

same frequency band. Complete knowledge of CSI of all users is assumed at the BS [36].

ηm ∼ C N (µ, σ2) is complex AWGN with zero mean (µ = 0) and variance σ2. Additionally,

we consider channels between BS and all served users to be independently distributed rayleigh

fading. The complex channel coefficient between BS and user i is denoted by hi ∼C N (0, d−pl
i )
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FIGURE 2.1: The system model illustrating the SIC process of downlink
transmission NOMA network.

where i ∈ (1,2, · · · ,M), di is the distance between BS and user i, and pl is the path loss

exponent [83]. Without loss of generality, we order the channel gains between the BS and

all users such that |h1| ≤ |h2| ≤ · · · ≤ |hM|. NOMA performs two fundamental operations,

superposition coding, which needs to be done at the transmitter side, and SIC, which is executed

at the receiver side. In superposition coding, all user signals are multiplied with separate PA

then added together. On the receiver side, SIC is performed where data is decoded in the order

of diminishing power levels. First, data corresponding to the user who has been allocated the

highest power is decoded directly. Then, the user who has the next highest power is decoded by

eliminating interference from the preceding decoded user. This process happens to continue till

the intended user’s data is decoded. Figure 2.1 depicts the SIC process of downlink transmission

of the NOMA network. The BS transmits a multiplexed signal given by,

X =
M

∑
m=1

√
Pm Sm, (2.1)

where Sm is the symbol of user m, and Pm is PA for user m. The received signal at user m is

given by,

rm = hmX +ηm, (2.2)

where hm is the channel gain from BS to user m, ηm ∼ C N (µ, σ2) is AWGN with zero mean

(µ = 0) and variance σ2. User m performs SIC as described above to obtain the signal ym given
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by,

ym = hm
√

Pm Sm +hm

M

∑
n=m+1

√
Pn Sn +ηm, (2.3)

The SINR as seen by user m is then given by [36],

SINRm =
Pm |hm|2

∑
M
n=m+1 Pn |hm|2 +σ2

, (2.4)

The achievable rate for user m is given by [36],

Rm = log2(1+SINRm) bits/sec/Hz. (2.5)

2.2.1 NOMA Under Imperfect SIC

The NOMA transmitter should ensure a minimal power gap between the user transmit powers

for SIC to be successfully executed at the user’s end [36]. Each user’s SIC is dependent on

previous decodings, and errors can propagate and affect the performance of the NOMA network

if the minimum power gap is not maintained at the transmitter. Therefore, SIC residual error

propagation parameters can be considered in the NOMA systems if the SIC is not executed

perfectly. Hence, the SINR for imperfect SIC can be defined as [51, 65, 73, 84],

SINRimper
m =

Pm |hm|2

ε ∑
m−1
n=1 Pn |hm|2 +∑

M
n=m+1 Pn |hm|2 +σ2

. (2.6)

The factor ε lies between 0, and 1 quantifies the residual interference component produced by

this imperfection, where ε = 0 refers to perfect SIC, and ε = 1 refers to entirely imperfect SIC.

We show the achievable rate region for 2 users of a NOMA system as shown in Figure 2.2. The

feasible operating region has been obtained for a Signal-to-Noise Ratio (SNR) of 4 for user 1

and SNR of 25 for user 2. As can be seen from Figure 2.2, for different PAs to the two users,

different achievable rate combinations can be obtained. For example, point A indicates the case

when all the power is allocated to user 1, and point B when all the power is allocated to user 2.

Clearly, if the goal is to maximize the sum rate of the system, then we should operate at point B,

which corresponds to allocating all the power to user 2. However, this PA results in unfairness to

user 1, who is going to get a rate of zero. Also, operating at point A is both unfair to user 2 and
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FIGURE 2.2: Capacity Region of a 2-User Downlink NOMA System.

fails to maximize the sum rate as well. Hence, the goal of this Chapter is to find the operating

point that jointly maximizes the sum rate and fairness simultaneously. However, to do this, we

first need to choose an appropriate measure for user fairness.

Fairness measures are tools to measure fairness levels. They can be classified as quantitative

or qualitative. Jain’s Index and Entropy measures are quantitative measures, and max-min and

proportional fairness are qualitative measures [85]. Jain’s index and Entropy measures do not

help to identify the unfairly treated individual resources. Jain’s index and Entropy measures

require complete information of the resource allocation to calculate fairness. max-min fairness

can not measure individual fairness and can not measure the level of fairness. However, the

α - fair utility function is a generalized form of fairness function. Compared to the fairness

mentioned above, α - fairness only uses a single scalar that utilizes different user fairness

levels [86]. Hence, in this Chapter, we choose to work with α - fair utility function, which can

be expressed as:

U(Rm) =


R1−l

m
1− l

, l ≥ 0, l ̸= 1,

ln(Rm), l = 1
(2.7)

where l is non-negative and represents different rate fairness levels. In general, an increase

in the value of l results in increased fairness among users. For instance, setting l = 0 gives
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the maximum sum rate, setting l = 1 provides proportional fairness, and setting l→ ∞ gives

max-min fairness [86]. Therefore, in order to achieve the goal of finding the operating point that

jointly maximizes the sum rate and user fairness simultaneously using optimal PA for downlink

transmission NOMA system, we formulate the following MOO problem:

(P1) : max
Pm

(
M

∑
m=1

Rm,
M

∑
m=1

U(Rm)

)
, (2.8a)

s.t.
M

∑
m=1

Pm ≤ PBS, (2.8b)

Rm ≥ Rmin, ∀m, (2.8c)

Pm ≥ 0, ∀m. (2.8d)

where (2.8a) is the vector of objective functions to be jointly maximized. The first function in

the vector is the sum rate, and the second function is the sum utility. The constraint in (2.8b)

assures BS’s combined transmit power to all users is not above the total power budget of BS.

The constraint in (2.8c) ensures the minimum rate requirement of each user. The minimum rate

requirement constraint is often employed to ensure rate fairness and the QoS of the network.

Finally, the constraint in (2.8d) ensures the non-negative transmit power for each user.

2.3 Solution of Multi-objective Optimization Problem

The most extensively used classical methods for solving MOO problems are the weighted sum

method and the ε - constraint method [87]. The weighting coefficient is used in the weighted sum

method for linearly combining the MOO problem as a single-objective optimization problem.

The ε - constraint method optimizes one objective function while constraining the other objective

functions to be less than or equal to the specified numerical value [87]. Here, the ε vector must be

carefully selected to fall within the particular objective function’s minimum and maximum values,

which could render this method difficult. In addition, as compared to the ε - constraint approach,

the weighted sum approach is easier to implement. Moreover, this weighting coefficient method

allows us to have a trade-off between multiple objectives [80], [81]. This is also in line with

our motivation to achieve optimal PA for accomplishing a balanced trade-off and concurrently

maximizing sum rate and user fairness for maintaining QoS and power budget constraints.
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Therefore, we use the weighted sum method in our Chapter to solve the optimization problem

(P1). Hence, the MOO problem (P1) is converted to a single objective optimization problem as:

(P2) : max
Pm

ω

M

∑
m=1

Rm +(1−ω)
M

∑
m=1

U(Rm),

s.t. (2.8b), (2.8c), (2.8d).

(2.9)

Where ω is the weighting coefficient for objective 1 and (1−ω) is the weighting coefficient for

objective 2, such that 0≤ ω ≤ 1 [88]. Higher values of ω favor maximizing the system sum rate,

whereas lower values of ω favor user fairness. Therefore, for a given l, the trade-off between

sum rate and fairness can be achieved by adjusting ω . Note that (P2) in its current form is tough

to solve using the Lagrange dual decomposition method and KKT conditions since the fairness

objective function is dependent on the achievable rates, which have a non-linear form. Thus,

the optimization problem (P1) is first formulated and then converted to a convex optimization

problem, for which the solution obtained is always the optimal one [82]. In order to overcome

this non-linear problem, we judiciously identify that we can reduce the difficulty in solving this

problem if we define a new assistant variable tm for user m, and rewrite (P2) as [89]:

(P3) : max
Pm

ω

M

∑
m=1

Rm +(1−ω)
M

∑
m=1

U(tm), (2.10a)

s.t. (2.8b), (2.8c), (2.8d),

tm ≤ Rm, ∀m. (2.10b)

Observe that when the weighted objective function in (P3) is maximized, U(·) is an increasing

function, and tm must be equal to Rm [89]. Hence, (P2) and (P3) would, therefore, have the

same solution. Therefore, we can solve (P3) instead of (P2). This motivates us to now apply the

Lagrange dual decomposition method [82] to (P3). Doing so gives the following Lagrangian

function:

L (Pm,χm,βm,µm) =ω

M

∑
m=1

Rm +(1−ω)
M

∑
m=1

U(tm)+
M

∑
m=1

χm(Rm−Rmin)+βm(PBS−
M

∑
m=1

Pm)

+
M

∑
m=1

µm(Rm− tm),

(2.11)
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Solving the above Lagrangian function consists of two sub-problems. The first one is the

Application layer optimization problem with variable t, and the second one is the Physical layer

optimization problem with variable P. Hence, the Application layer optimization problem can

be written as follows:

h1 = max
t

g1(tm), (2.12)

where,

g1(tm) = (1−ω)
M

∑
m=1

U(tm)−
M

∑
m=1

µmtm. (2.13)

and the physical layer optimization problem can be written as:

h2 = max
Pm

g2(Pm), (2.14)

where,

g2(Pm) = ω

M

∑
m=1

Rm +
M

∑
m=1

χm(Rm−Rmin)+βm(PBS−
M

∑
m=1

Pm)+
M

∑
m=1

µmRm. (2.15)

The α-fair utility function in Eqn. (2.7) consists of two cases: l = 1 and l ≥ 0. Therefore,

we will discuss the optimal solution of g1(tm) of Eqn. (2.12) separately for l = 1 and l ≥ 0 as

follows:

Case I (l = 1): In this case, the second term ∑
M
m=1 µmtm in (2.13) is a linear function of tm, and

U(tm) = ln(tm) is a strictly concave function of tm. Hence, g1(tm) is a concave function of tm.

Therefore, by applying the KKT conditions [82], the closed-form expression for tm in Case I can

be obtained by taking the first partial derivative of g1(tm) w.r.t tm and equating to zero. Hence,

∂g1(tm)
∂ tm

=
(1−ω)

tm
−µm = 0 =⇒ t∗m =

(1−ω)

µm
. (2.16)

Case II (l ≥ 0): As shown in Appendix A, g1(tm) is concave function of tm. Therefore, by

applying the KKT conditions, the closed-form expression for tm in Case II can be obtained, as

shown in Appendix C. Hence,

t∗m = l

√
(1−ω)

µm
. (2.17)

To obtain optimal PA Pm
∗, we first show that g2(Pm) is a concave function of Pm (refer Appendix

B). Therefore, the closed-form expression for P∗m can be derived using the KKT conditions (refer
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to Appendix D for the derivation) as shown in the given Eqn. (2.18) with [P]+ = max(0,P) and

φm as shown in Eqn. (2.19).

P∗m =

(ω +χm +µm) |hm|2−φm

(
∑

M
n=m+1 Pn |hm|2 +σ2

)
φm |hm|2

+ , (2.18)

φm = βm log(2)+
m−1

∑
i=1

(ω +χi +µi) (Pi
2(|hi|2)2)(

∑
M
j=i Pj |hi|2 +σ2

)(
∑

M
k=i+1 Pk |hi|2 +σ2

) . (2.19)

Now, the Lagrange multipliers can be obtained and updated in an iterative manner using a

sub-gradient method [82]:

χm(t +1) = [χm(t)+δ1(t)(Rmin−Rm)]
+ , ∀m, (2.20)

βm(t +1) =

[
βm(t)+δ2(t)

(
M

∑
m=1

Pm−PBS

)]+
, (2.21)

µm(t +1) = [µm(t)+δ3(t)(tm−Rm)]
+ . (2.22)

where δ1,δ2,and δ3 are step sizes for Eqn. (2.20), Eqn. (2.21), and Eqn. (2.22) respectively

and t is the iteration index. There are various sorts of step size rules used in the subgradient

method. We choose step size according to a diminishing step size rule explained in [90]. Using

the expressions that we have derived, we now propose an iterative algorithm 1 to obtain the

optimum PA (P∗m) for the sum rate and user fairness maximization for downlink communication

NOMA system.

Now we analyze the time complexity of our proposed algorithm 1. The convergence rate and

the number of arithmetic operations decide the algorithm’s time complexity. Since algorithm 1

has M users, updating the sum rate and fairness at line 3 in algorithm 1 requires M worst-case

computation time. We can see that the Eqn. (2.19) for φi contains the product of two summations.

The first summation sums up most of the M terms, while the second summation adds the max of

(M−1) terms. Consequently, the amount of time it takes to compute φi at line 7 algorithm 1

in the worst-case scenario is M(M−1) for M users. Following that, updating Pi in Eqn. (2.18)

depends on φi. Note that, inside the inner loop, Pi takes more computing time than an assistant

variable, Pi, Lagrange multipliers, sum rates, and fairness. Thus, it is important to observe that

Pi at line 8 algorithm 1 takes the greatest computation time inside the loops. As a result, the
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Algorithm 1 Iterative Optimal Power Allocation Algorithm

1: Requires: σ2, PBS, Rmin, M, pl, l, t, ω , and R,
2: Requires: h, P, χ , β , and µ for all users.
3: Evaluate initial rates and user fairness for M users;
4: for until sum rate/User fairness start repeating do
5: for m = 1 to M do
6: t = t +1;
7: Update φm(t) using Eqn. (2.19);
8: Update Pm(t) using Eqn. (2.18);
9: Update tm(t) using Eqn. (2.16) if l = 1 else Updates tm(t) using (2.17) if l ≥ 0;

10: Update χm(t), βm(t), and µm(t) using Eqn. (2.20), Eqn. (2.21), and Eqn. (2.22)
respectively;

11: Update rates and user fairness for M users;
12: end for
13: end for

worst-case calculation time of Pi in line 8 for each iteration of the inner loop is M2(M− 1).

Since the inner loop (lines 5 to 12) repeats M times, the worst-case complexity of the inner

loop is M3(M−1). Assume the total number of iterations for algorithm 1 convergence is T cv.

Therefore, the outer loop repeats T cv times. As a result, the overall worst-case time complexity

for the outer loop is M3(M−1)T cv for M users. Pi in line 8 has a higher worst-case computation

time than in line 3. As a result, our proposed algorithm’s worst-case run time complexity for M

users is O(M4 T cv). Note that the number of users that are multiplexed per subband is usually

limited to 2-3 in most of the literature for downlink PA in NOMA-based systems in order to

limit the SIC complexity. Hence, M can be safely assumed to be less than or equal to 3 users

making the proposed algorithm practically feasible for a technology like 5G [91], [92].

2.3.1 Effect on the Proposed Method in the Absence of Minimum Rate

Requirement Constraint.

In Sections 2.2 and 2.3, we discussed the sum rate and fairness maximization with the constraints

given for M users downlink transmission NOMA network in our optimization problem (P1).

Here, we drop the minimum rate requirement constraint in the optimization problem (P1) to

obtain the optimal PA for the sum rate and fairness maximization. Therefore, the optimization
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problem (P4) can be written as:

(P4) : max
Pm

(
M

∑
m=1

Rm,
M

∑
m=1

U(Rm)

)
, (2.23a)

s.t.
M

∑
m=1

Pm ≤ PBS, (2.23b)

Pm ≥ 0, ∀m. (2.23c)

We use the same steps and method discussed in the Section 2.3 to obtain the optimization

problem (P4) solution. However, all the steps and explanations involved are overlooked due to

the similarity and simplicity.

2.3.2 Single-objective Optimization Scheme.

We introduce a single-objective optimization problem by removing the user fairness objective

from the optimization problem (P1) in order to reduce computational complexity. Hence, the

optimization problem (P5) may be expressed as:

(P5) : max
Pm

M

∑
m=1

Rm, (2.24a)

s.t.
M

∑
m=1

Pm ≤ PBS, (2.24b)

Rm ≥ Rmin, ∀m, (2.24c)

Pm ≥ 0, ∀m. (2.24d)

To solve the optimization problem (P5), we follow the same steps and methodology as in section

2.3. However, all of the steps and explanations involved are ignored due to their similarity and

simplicity.

2.3.3 Discussion on Fairness

The α-fair utility function measures the fairness of a single user. However, if we wish to measure

fairness across all network users, JFI is a widely used quantitative measure of fairness. Thus, we
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can use JFI in simulation to determine system fairness. We consider JFI in terms of achievable

rates defined as [71, 72, 93–96]:

JFI =

(
∑

M
i=1 Ri

)2

M ∑
M
i=1 R2

i
(2.25)

This definition in Eqn. (2.25) demonstrates that JFI accepts continuous values in the range

[1/M;1]. JFI = 1 refers to the fairest rate allocation, in which all users receive the same rate

allocations. On the other hand, JFI = 1/M denotes the least fair rate allocation, in which all

rate allocations are given to a single user.

2.4 Simulation Results

This section discusses the simulation results of our proposed MOO problem. Also, we compare

the simulation results of the proposed method (P1) with the optimization methods (P4), (P5),

and paper [56]. We use MATLAB to perform simulations. In the simulation, the performance

parameters for all users are obtained over 105 channel gain realizations of Rayleigh fading, and

then we take the average of these performance parameters. Unless otherwise stated, the values of

the simulation parameters used to generate the plots are mentioned in Table 2.1. These parameter

System Parameter Values
Channel realization (R) 105

Number of users (M) 3 and 4
Total power budget of BS (PBS) 10 Watt
Variance of AWGN noise (σ2) 1
The minimum required rate for QoS (Rmin) 1 Bits/Sec/Hz
Weighting coefficient (ω) 0.5
Fairness level (l) 0.5

TABLE 2.1: The simulation values for various parameters

values have been taken from the paper [36]. Table 2.2 presents the initial and converged system

parameter values for the proposed MOO method in the three-users and four-users downlink

NOMA networks. In our simulations, we randomly initialize the PA as P1 = P2 = P3 = 5W

for three users case and P1 = P2 = P3 = P4 = 5W for four users case, regardless of our MOO

problem’s objectives and constraints. There is no specific reason for choosing 5W power values

for three and four user cases, respectively. However, it is important to note that these random
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System
parameter

Initial value Converged value
3 Users 4 Users 3 Users 4 Users

P1 5 5 5.903 7.440
P2 5 5 1.545 1.786
P3 5 5 0.332 0.426
P4 – 5 – 0.163
Total Power from BS 15 20 7.779 9.815
R1 0.5154 0.3679 1.5386 1.5207
R2 0.9469 0.5591 1.7663 1.4430
R3 5.4288 0.9656 1.9793 1.1096
R4 – 5.6594 – 1.4390
SR 6.8911 7.5520 5.2842 5.5123
JFI 0.5167 0.4268 0.9897 0.9870

TABLE 2.2: Initial and converged system parameter values for downlink
NOMA networks

initializations of the PA must converge to optimal PA values in order to jointly maximize sum rate

and user fairness while satisfying the (2.8b), (2.8c), and (2.8d) constraints of the optimization

problem (P1). The random initialization of PA results in an initial total transmit power of 15

W for three users, violating the power budget constraint as shown in Table 2.2. However, our

algorithm ensures convergence of optimal PA P1 = 5.903W,P2 = 1.545W, and P3 = 0.332W for

three users and P1 = 7.440W,P2 = 1.786W,P3 = 0.426W, and P4 = 0.163W for four users, as

specified in Table 2.2. These results in a total transmit power of 7.779W for three and 9.815W

for four user cases, satisfying the power budget constraint (2.8b). From Table 2.2, we can also

see that the convergence achievable rates in the three users and the four users cases are very

close, highlighting the effectiveness of our proposed algorithm with respect to user fairness

while also maximizing the sum rate.

Each user’s transmit power is shown graphically in Figure 2.3 and Figure 2.4 to demonstrate how

they change with each iteration of an algorithm 1 of our method for three users and four users

instances. The iteration index is shown on the horizontal axis, and the vertical axis indicates the

parameter of interest. Figure 2.3 shows that the transmit power of user 1 starts at 5W and finally

converges to 5.903W as the number of iterations reaches 8. We can make similar observations

for user 2 and user 3 from Figure 2.3. Hence, the optimal transmit power of user 1, user 2, and

user 3 is 5.903W , 1.545W , and 0.332W , respectively, making the total transmit power equal

to 7.779W , which is less than the power budget constraint of PBS = 10W . Figure 2.4 shows
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FIGURE 2.3: Transmit power versus the number of iterations for the pro-
posed method for three users downlink communication NOMA network.
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FIGURE 2.4: Transmit power versus the number of iterations of an algo-
rithm for the proposed method for four users downlink communication

NOMA network.

transmit power versus the number of iterations for four users with a similar conclusion. Observe
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that the user with the worst channel conditions receives the largest transmit power, while the

user with the best channel conditions receives the least transmit power.

Similarly, we can observe the convergence of rates to optimal values of each user in Figure

2.5, Figure 2.6, and Figure 2.7 for the three-user proposed method, four-user proposed method,

and (P4) method with three-user, respectively, as initially noted in Table 2.2. In addition,
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FIGURE 2.5: Sum rate, Jain’s fairness index, and individual rates against
the number of iterations for the proposed method for three users downlink

communication NOMA network.

the sum rate and JFI of the proposed and (P4) methods are shown in Figures 2.5, 2.6, and 2.7.

Note that in the three-user and four-user scenarios of (P1), the optimal rates for all users are

greater than or equal to Rmin = 1 Bits/Sec/Hz. It must be anticipated from constraint (2.8c) in the

MOO problem (P1). On the other hand, the (P4) optimization method overlooked the minimum

rate constraint (2.8c) from the optimization problem(P1). As a result, user rates in the (P4)

method may take any value, and we can see that the user 3 rate (R3 = 0.8662 Bits/Sec/Hz) is

lower than the Rmin. Figures 2.5, 2.6, and 2.7 show the relationship between individual rates

and user fairness versus iteration numbers of an algorithm 1. These figures depict how the JFI

evolves in terms of rate allocation at each iteration for the proposed methodology and (P4)

optimization method. In the case of three users, the JFI is equal to 0.5167 for initial randomly
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FIGURE 2.6: Sum rate, Jain’s fairness index, and individual rates against
the number of iterations for the proposed method for four users downlink

communication NOMA network.
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chosen user rates and converges to 0.9897 when the number of iterations approaches 8. Figure

2.6 shows a similar observation for the four-users case; JFI is 0.4268 for the initial value and

then concentrates on 0.9870. This clearly demonstrates that our proposed MOO algorithm

maximizes user fairness objective. On the other hand, the primary JFI is 0.5167 in the (P4)

scheme, and then the algorithm 1 converges the JFI to 0.8664, as shown in Figure 2.7. The (P4)

optimization scheme’s sum rate (at ω = 0.5) is higher than the proposed method (P1) due to

fewer constraints of the (P4) optimization method than the proposed method. However, the JFI

of the (P4) optimization scheme is lower than that of the proposed method (P1) because the

(P4) method does not account for a minimum rate constraint (2.8c), resulting in more unfair rate

allocations than the proposed method (P1). It is observed that after initially assigned random

PA, the proposed algorithm requires only 8 iterations to converge, demonstrating that it has a

fast convergence rate and effectiveness to be deployed in practical NOMA networks.

Figure 2.8 depicts the sum rate and JFI concerning the number of iterations of an algorithm 1

for the three users for the problem (P1) with ω = 0.5, problem (P1) with ω = 1, problem (P5),

and the single-objective scheme in [56]. It is worth noting that the objectives and constraints of
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FIGURE 2.8: Sum rate and Jain’s fairness index concerning the number of
iterations for the three users for the proposed problem (P1) with ω = 0.5,
proposed problem (P1) with ω = 1, single objective scheme (P5), and

the single-objective problem of [54].
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the single-objective optimization problem (P5) and the single-objective optimization problem

of [56] are the same. Also, when ω = 1, problem (P1) is the same as problems (P5) and [56].

As a result, the optimal sum rate for (P1) with ω = 1, (P5), and [56] problems must be the

same, as illustrated in Figure 2.8. The JFI of the (P5) problem is greater than the JFI of

the [56] optimization problem. The problem (P5) has a full weight (ω = 1) towards the sum

rate objective but no weight towards user fairness. Whereas, in the proposed method (P1) with

ω = 0.5, it gives equal weight to the sum rate and fairness objectives. Consequently, the sum

rate of the problem (P1) with ω = 0.5 must be less than the problem (P1) with ω = 1, (P5)

and [56], but the JFI of problem (P1) (with ω = 0.5) greater than problem (P1) with with ω = 1,

(P5), and [56], as depicted in Figure 2.8.

In Figure 2.10, we plot the sum rate and user’s fairness as a function of the number of iterations

of an algorithm 1 for different residual component (ε) in a 3 users case (using the imperfect SINR

Eqn. 2.6). As can be seen from the figures, when ε increases, residual interference increases
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FIGURE 2.9: Jain’s fairness index vs. the number of iterations for
different residual components in the downlink NOMA network with three

users.

for all users (except the weakest user) in the NOMA network, and thus, the sum rate and user’s

fairness for the proposed method decreases. The SIC operation in the NOMA network directly



Chapter 2. Power Allocation Scheme for Sum Rate and Fairness Trade-off in Downlink NOMA
Networks 38

0 5 10 15 20 25 30

Number of iterations

0

1

2

3

4

5

6

7

S
u

m
 R

a
te

 (
B

it
s

/S
e

c
/H

z
)

 = 0

 = 0.02

 = 0.04

 = 0.06

 = 0.08

 = 0.1

FIGURE 2.10: Sum rate vs. the number of iterations for different residual
components in the downlink NOMA network with three users.

decodes the weakest user (user 1). In this way, the weakest user is spared from the effects of

imperfect SIC. For the proposed (P1) method, with a 10% increase in residual interference, the

sum rate drops by 40.35% while JFI drops by 14.42%. Figure 2.11 illustrates the user’s fairness

as converging with the number of iterations of algorithm 1 for different fairness levels (l) for

three users downlink NOMA network. As per the α - fair utility function (Eqn. 2.7), fairness

among users increases when the fairness level increases. Therefore, we can observe in Figure

2.11 that as l increases, the proposed method fairness increases. However, it is worth noting that

for large l from 5 to 50, JFI rises by a small amount from 0.9905 to 0.9907. As a result, using a

large value of l to maximize the overall rate is fruitless.

Figure 2.12 shows the sum rate and user fairness versus the number of iterations of algorithm

1 for two strong and one weak user in a three-user downlink NOMA network. Without loss

of generality, we assume user 1 is the weakest, and users 2 and 3 are the strong compared to

user 1 in the three-user case. We fix the channel coefficients using the relationship h2 ≈ h3 and

h2 = Xh1, where X is a uniformly distributed random number between 10 and 15. This ensures

that h2 and h3 are greater than h1 by a factor of at least 10 all the time. In this case, the JFI

converges to 0.7378, and the sum rate converges to 5.7820. Due to the significant difference in
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FIGURE 2.11: Jain’s fairness index vs. the number of iterations for
different fairness levels in the downlink NOMA network with three users.
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FIGURE 2.12: Sum rate and Jain’s fairness index vs. the number of
iterations for two strong and one weak user in the downlink NOMA

network with three users.

channel conditions between strong and weak users, users get lower JFI in this two strong and

one weak case compared to the |h1| ≤ |h2| ≤ |h3| case (discussed in Figure 2.5).
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Figure 2.13 illustrates the achievable sum rate and JFI as a function of the weighting coefficient

(ω) using the proposed PA algorithm. The horizontal axis indicates ω , the left side of the y-axis
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FIGURE 2.13: Sum rate and Jain’s fairness index against weighting
coefficient in the downlink NOMA network with three users.

shows the sum rate and the right side of the y-axis indicates JFI. In Figure 2.13, as expected

and as shown by our PA algorithm, the maximum sum rate is achieved at w = 1 at the cost of

the lowest fairness, whereas maximum fairness is achieved at w = 0 at the cost of the lowest

sum rate. However, the results obtained using our algorithm in Figure 2.13 also show that a

desired trade-off between the sum rate and fairness is possible with an appropriate choice of

ω . As seen from the figure, our algorithm shows the sum rate increases monotonically, and the

fairness decreases monotonically as we increase ω . Hence, it is possible to choose optimal point

ω∗ where both the sum rate and the fairness are jointly maximized. As illustrated in Figure 2.13,

selecting w = 0.51 resulted in a good trade-off between these performance parameters.

2.4.1 Comparison with OMA

In Figure 2.14, we compare our proposed NOMA network’s sum rate and user fairness with that

of a conventional OMA network for different total transmit power of BS. Figure 2.14 shows that
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FIGURE 2.14: Sum rate and Jain’s fairness index vs. total transmit power
from BS in downlink NOMA and OMA networks with three users.

the sum rate for OMA and NOMA networks gradually increases with the total transmit power.

JFI for OMA increases with the increase in total transmit power; however, JFI for NOMA first

increases and then decreases to a further rise in total transmit power. Additionally, the NOMA

sum rate and fairness are always higher than the OMA sum rate and fairness. This is because

each user in OMA must share bandwidth with all other users compared to NOMA, in which each

user uses the entire bandwidth but is separated from other users in the power domain. Moreover,

for Figure 2.14, as the transmit power increases, the separation between sum rates of NOMA

and OMA increases. This happened because PA is linked to the SIC process. When the BS’s

transmit power is low, the user with the small PA is greatly affected by noise, resulting in a sum

rate degradation of NOMA compared to the OMA. This is indeed what we see in Figure 2.14 for

low transmit power. However, if the transmit power is sufficiently high, the receiver can detect

the signal more accurately, and SIC can be carried out more efficiently, resulting in a significant

rate increase. As a result, we can see a more increase in the NOMA sum rate than the OMA sum

rate at higher transmit power, as shown in Figure 2.14.
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2.5 Summary

This Chapter presented a MOO scheme to investigate the trade-off between sum rate and user

fairness for downlink transmission NOMA networks. The work investigated a novel approach

and demonstrated that the proposed technique works well for the NOMA network. First, we

formulated an original MOO problem for maximization of sum rate and user fairness with

transmit power and QoS requirement constraints while optimizing PA. Using the weighted sum

method, we transformed a MOO problem into a single-objective optimization problem. We

applied the Lagrange dual decomposition method and KKT conditions to solve the optimization

problem. Finally, simulation results show that the maximization of sum rate and user fairness

for downlink NOMA networks.

In the future, we aim to investigate the performance of our proposed method for the study of

downlink NOMA networks in the presence of an imperfect SIC constraint. Furthermore, the

performance of our proposed method for downlink transmission in NOMA-based heterogeneous

networks is one that we would like to study further.

NOMA is based on the concept of multiplexing users at the same time and frequency, which

might result in a substantial amount of multiple access interference during decoding at each

intended receiver. Hence, SIC is a crucial process employed at the receiver of a NOMA network

to mitigate this interference caused by multiple access. However, to ensure the successful

execution of the SIC process, each user’s transmit power must meet the minimum required gap,

which is defined as the minimum transmit power gap constraint. We address the minimum

transmit power gap constraint in Chapter 3, in addition to the user’s QoS and transmitter power

budget constraints investigated in Chapter 2. In this context, the study presented in Chapter

3 aims to determine the optimal PA for downlink NOMA networks to optimize the sum rate

and user fairness while meeting the minimum transmit power gap, QoS, and power budget

constraints.



Chapter 3

Power Allocation for Joint Sum Rate and

Fairness Optimization in Downlink NOMA

Networks

Future broadband wireless networks need to be capable of meeting the enormous demand for

high-speed data transmission. NOMA has been recognized as one of the important enabling

elements to satisfy such a demand. [38, 65, 70]. The fundamental idea of NOMA is that several

users are served in a single time-frequency block, in contrast to the OMA method, which serves

a single user in each resource block [35, 38, 51, 52, 67]. As a result, NOMA is found to give a

higher data rate and spectrum efficiency than OMA [52, 65, 77, 97]. Therefore, in recent years,

many researchers in academia and industry have been inspired to further investigate ways to

maximize the sum rate of the NOMA networks.

Despite the importance of the sum rate, user fairness is an equally important factor in NOMA

networks [67,77]. When there is a possibility that users with poor gains may be unable to access

the channel, we can take advantage of fairness at the cost of reduced throughput [76, 77]. In

addition, as NOMA aims to serve multiple users through non-orthogonal resource allocation, it is

desirable to realize a trade-off between sum rate and user fairness [67,71]. Designing such a trade-

off between the sum rate and fairness in a NOMA network is highly dependent on distributing the

total transmit power among users at the BS NOMA transmitter [52, 67, 70, 71, 76, 98]. However,

43
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the distribution of the total transmit power should be done in a way that in addition to the network

and user constraints, NOMA technology’s constraint should also be satisfied.

To this end, in addition to the users’ QoS and transmitter power budget constraints, we should

also consider the co-channel interference between NOMA multiplexed users at the receiver.

Since NOMA multiplexes users on the same resource block, it results in co-channel interference

between the multiplexed users [37]. Hence, SIC may help decrease interference at the receivers

[35, 36, 65, 98]. However, for the SIC to be appropriately executed at the user’s end, the NOMA

transmitter should ensure a sufficient gap between the user transmit powers [35, 36, 98]. In

this respect, this research aims to find the optimal PA coefficients among multiplexed users for

downlink NOMA networks to jointly optimize the sum rate and user fairness while satisfying

users’ QoS, transmit power budget, and users’ minimum transmit power gap constraints.

The rest of the Chapter is organized as follows. Section 3.1 discusses the related literature,

motivation, and summary of our contributions. Section 3.2 presents the downlink NOMA system

model and the MOO problem formulation. Section 3.3 derives the optimal PA coefficients

and provides an iterative algorithm for the solution of the MOO problem. The proposed MOO

problem’s simulation results and related discussions are presented in Section 3.4. Finally, the

Chapter is concluded in Section 3.5.

3.1 Related Work

We begin with sum rate maximization articles, particularly those that deal with the SIC constraint

in addition to other constraints. To maintain consistency in the discussion in this CHapter, if the

SIC process at the receiver is imperfect, then interference from multiplexed co-users with lower

channel coefficients is not completely eliminated when decoding a user’s signal. Henceforth,

imperfect SIC in this Chapter means there are some residues of user interference even after

successive interference cancellation. The optimal PA for maximizing the weighted sum rate

in a downlink multi-carrier NOMA network with imperfect SIC in addition to power budget

and power order constraints are investigated in the manuscript [65].To optimize the sum rate for

downlink NOMA networks, the study [38] proposed an optimal PA scheme that considers the

imperfect SIC, the power budget, and the minimum rate constraints. The study [35] optimizes
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user clustering and PA for downlink and uplink NOMA networks to maximize the sum rate.

This study includes a sufficient gap between users transmitting power constraint in addition to

power budget, QoS, one user can be allocated to at most one cluster while at least two users

are grouped into one cluster, and total frequency resource constraints. The authors of [51]

maximize the sum rate of a two-user downlink NOMA network while considering the imperfect

SIC along with QoS constraints. The sum rate is maximized by calculating the optimal improper

Gaussian signaling (IGS) circularity coefficient. The study [97] comes with an optimization

problem that solves the precoding matrix and PA to optimize system throughput by employing

imperfect SIC for downlink MIMO NOMA with power budget and minimum rate requirement

for weak user constraints. The research [36] proposes a MOO problem for optimally allocating

power in a downlink transmission NOMA network in order to maximize the sum rate while

minimizing transmit power under the constraint of the minimum power gap among users, along

with QoS and power budget constraints. The research [99] explores the performance of a NOMA-

based satellite-terrestrial system in terms of outage performance, ergodic sum rate, and system

throughput in the presence of imperfect SIC and CSI while satisfying the QoS requirement.

We now examine sum rate studies that ensure a desired fairness level without addressing the SIC

constraint while considering other constraints. In [70], the authors optimize the PA to maximize

the average sum rate for two-user downlink transmission with delay-tolerant transmission

over fading channels, incorporating peak and average power and minimum individual rate

constraints. Sum rate maximization is achieved for both complete and partial CSI, and fairness

is ensured by including a minimum achievable ergodic rate requirement. In article [67], a

downlink transmission NOMA network studies the maximization of fairness in terms of rate

under full CSI and outage probability under average CSI with optimal PA. The research [52]

employs zero-forcing (ZF) and minimum mean square error (MMSE), and the paper [100]

employs maximum ratio combining (MRC) and MIMO SIC receiver algorithms to solve the

joint fairness and sum rate optimization problem for uplink transmission NOMA networks. The

authors in [52, 100] offers a method for concurrently improving fairness and sum rate through

optimal PA, subband assignment, and user grouping. [52,100] constrained power budget, number

of users per subband, and number of subbands per user.The author investigated proportional

fairness scheduling in a two-user downlink NOMA network in the research [76]. The author

demonstrated that the proportional fairness scheduling approach optimizes both the sum rate and
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the least normalized rate with optimal PA, resulting in proportional fairness and a slight variation

in transmission rates. The optimal PA optimization problem in the paper [71] is intended to

optimize the instantaneous sum rate with α - fairness for the downlink NOMA network under

the power budget constraint. The user rates are updated based on the instantaneous CSI. The

work [37] formulates an optimization problem for a downlink multicarrier NOMA network

to optimize fairness and EE amongst users in terms of PA and subcarriers. The optimization

problem has QoS requirements, the transmission power of the BS, the power budget for each

subchannel, and the user limit on the subcarrier constraints. First, the worst-case user first

subcarrier allocation (WCUFSA) algorithm is presented to allocate subcarriers. Then, optimal

PA is achieved to improve the energy efficiency further and guarantee maximum fairness for

NOMA users. The authors offer a water-filling-based joint PA and a proportional fairness

scheduling approach in [69] to optimize the achievable rate by a quasi-optimal repartition of

transmission power among subbands while assuring a high resource allocation fairness. The

paper [72] proposed a joint NOMA and TDMA scheme in the Industrial IoT, which allows

several sensors to communicate in the same time-frequency resource block using the NOMA

method. Time slot allocation, power control, and user scheduling are optimized simultaneously

to maximize the system α - fair utility with minimum rate, available transmission time allocated

to all sensors, and transmit power constraints.

Some researchers have studied the sum rate that ensures user fairness while considering the

SIC constraint in addition to other constraints. The research [77] addresses a MOO problem to

jointly optimize sum rate and fairness for designing optimal beamforming in a MISO NOMA

network by incorporating SIC power order in addition to the total transmit power constraints.

The objective of the study [98] is to maximize the fairness in the data rates of different users

while optimizing PA in a NOMA network by taking the minimum gap among users’ powers

as well as QoS, power budget constraints into consideration. The article [68] investigates the

optimal PA for maximizing energy efficiency for MIMO NOMA networks with SIC power

order as well as weak user QoS requirements, user fairness, and maximum transmission power

constraints.
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3.1.1 Motivation and Contributions

The majority of research on NOMA till now has been on single-objective optimization, either

of the sum rate or fairness. However, in many situations, multiple system objectives need be

optimized simultaneously. Quite often, it is essential to employ MOO to jointly optimize both

sum rate and user fairness with respect to PA in order to make effective decisions in the face of

trade-offs between these two equally important but conflicting objectives. Also, since NOMA is

based on the idea of multiplexing users at the same time and frequency, it can cause a significant

amount of multiple access interference during the decoding process at each intended receiver. In

order to handle this multiple access interference, SIC is an important process at the receivers in

a NOMA network. But, to make the SIC process successful, the transmit power of all the users

must satisfy the minimum required gap. However, to the best of our knowledge, there has been

no work till now that addresses the joint optimization of sum rate and users fairness while also

considering the minimum power gap constraint. Even though [77] jointly maximizes the sum

rate and user fairness, it does so with respect to the beamforming vector and not users’ power

allocation and without considering the power gap constraint. Only a few works [35, 36, 98]

guarantee a minimal gap between users’ transmission powers, but these papers do not address

the MOO problem for joint sum rate and fairness maximization. Hence, to the best of our

knowledge, a work that considers the joint optimization of sum rate and users fairness under the

transmit power budget, users QoS, and minimum gap between users transmit power constraints

is missing in the literature. In order to fill this important gap in the literature, we investigate the

MOO problem for joint maximization of sum rate and user fairness through optimal PA while

adhering to a sufficient power gap constraint between the users’ transmit powers in addition to

the transmit power budget and users’s QoS constraints. In this regard, the main contributions of

the Chapter are summarized as follows:

• We formulate and study the MOO problem to achieve optimal PA in downlink NOMA

networks. The MOO problem jointly optimizes the sum rate and user fairness while meet-

ing the minimum transmit power gap between users, power budget, and QoS requirements

through optimal PA.
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• We run Monte Carlo simulations to verify our analytical expressions and the proposed

iterative algorithm. Our simulations show that the proposed algorithm requires only a few

iterations to converge to the optimal PA coefficients.

• We show through our derived analytical expressions and simulations the trade-off between

the sum rate and user fairness as the weighting coefficient that indicates the amount of

importance given to each objective is varied. This also helps us to compare the proposed

method’s performance with a single objective benchmark scheme that considers only the

sum rate objective in a network.

• Using our investigations, we also show that as the minimum power gap increases, except

for the weakest user, other users restrictions increase with their power. Thus, the sum rate

performance degrades with the increase in the minimum power gap. Hence, we conclude

that there is an optimal power gap that needs to be chosen for the best performance of the

network.

While our investigation of the MOO problem provides a lot of insights into how we can bring a

meaningful trade-off between sum rate and user fairness under the said constraints, it has to be

noted that the formulated problem poses sufficient challenges to solve because of the complicated

nature of objective functions and the additional power gap constraint that is included in our work.

In order to circumvent the challenges, as will be seen in the subsequent sections, we judiciously

include a new assistance variable to convert the original problem into a solvable problem. Further,

we adopt the weighted-sum method, which allows the MOO problem of maximizing sum rate

and user fairness to be linearly combined into a single-objective optimization problem [77,80,81]

using a weighting coefficient that enables a desired trade-off between these conflicting objectives.

Following that, we derive the optimal solution to our MOO problem using a Lagrange dual

decomposition method and KKT conditions. Hence, overall, considering the importance of the

problem that is formulated, the challenges that such a problem formulation poses to get solved

and the numerous insights that our investigation provides, this work can be considered important

for the literature.
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3.2 System Model and Problem Formulation

This section discusses the downlink NOMA network system model and formulation of the

MOO problem for joint sum rate and user fairness maximization using optimal PA. Consider a

downlink NOMA-based wireless network with a BS that communicates with M users, as shown

in Figure 3.1. We assume a SISO system where the BS uses a single antenna to transmit, and
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FIGURE 3.1: The system model illustrating the SIC process of downlink
transmission NOMA network.

the users use a single antenna to receive. NOMA is based on the idea that users can share time-

frequency resources by splitting them into power-domain and code-domain [51, 52]. This results

in power-domain NOMA and code-domain NOMA mechanisms. We utilize power-domain

NOMA user multiplexing, which enables us to serve all users at the same time across the same

frequency band [37, 38, 67, 68, 71]. NOMA employs superposition coding at the transmitter, and

at the receiver, it uses SIC decoding [35, 67, 71]. In superposition coding, all user signals are

multiplied with separate PA coefficients and then combined at the BS. As a result, the transmitted

signal at BS that uses superposition coding can be expressed as Eqn. (1.1). The received signal

at user m is given by Eqn. (1.2). We assume the channels between the BS and all served users

to have rayleigh fading with independent distribution [67, 77], represented by hm = zmd−pl
m

and zm is the small scale fading parameter that follows a complex Gaussian distribution i.e.,

zm ∼ C N (0,1) whre m ∈ (1,2, · · · ,M), dm is the distance between BS and user m, and pl is

the path loss exponent [37, 71]. Without loss of generality, we sorted the channel gains between
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the BS and all users in ascending order as |h1|≤ |h2|≤ · · · ≤ |hM|. Further, we assume that the

CSI is perfectly known at the BS [36, 37]. The SIC process for the downlink transmission of the

NOMA network is illustrated in Figure 3.1. After the SIC process as described above, we can

obtain the signal ym at user m given by Eqn. (1.3). The SINR as seen by user m can be written

as Eqn. (1.4). Hence, the achievable rate for user m is given by Eqn. (1.5).

Fairness measurements are tools for determining the amount of fairness. The fairness mea-

surements can be characterized as quantitative or qualitative based on their quantitative ability.

Quantitative measurements include JFI and Entropy, while qualitative measures include max-min

and proportional fairness [85, 86]. JFI and Entropy measures do not help identify resources that

have been treated unfairly. Additionally, JFI and Entropy measures need complete information

on resource allocation to obtain fairness [86]. In max-min fairness measures, maximizes the

user service by providing the lowest service to the maximum allocated resource. It may result in

network inefficiency. max-min fairness does not measure individual fairness and the amount of

fairness [86]. On the other hand, an α - fair utility function is a generalized form of the fairness

function. Compared to the fairness mentioned above, an α - fair utility function measures

individual fairness and does not require complete information. An α - fair utility function uses a

single scalar to represent various levels of user fairness [71, 86]. As a result, in this study, we

prefer to use the α - fair utility function, which may be represented as [71, 77, 86],

U(Rm) =


R1−l

m
1− l

, l ≥ 0, l ̸= 1,

ln(Rm), l = 1.
(3.1)

Where l represents different fairness levels of achievable rate Rm. We incorporate the constraint of

minimum power gap for successful SIC into our optimization problem, which can be represented

as follows [35, 36, 98],

αmP|hm+1|2−
M

∑
i=m+1

αiP|hm+1|2≥ Pg, for m = 1,2, · · · ,M−1. (3.2)

where Pg is the minimal power gap between users to implement the SIC procedure successfully.

From Eqn. (3.2), primary decoded users must be given more power than later decoded users to

ensure successful SIC in NOMA networks. Furthermore, there should be a reasonable difference

in transmission power between users.
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Next, we frame the MOO problem to determine the operating point that simultaneously optimizes

the sum rate and user fairness using optimal PA for downlink NOMA networks. This MOO

problem can be written as (P1),

(P1) : max
αm

(
M

∑
m=1

Rm,
M

∑
m=1

U(Rm)

)
, (3.3a)

s.t. αmP|hm+1|2−
M

∑
i=m+1

αiP|hm+1|2≥ Pg,

for m = 1,2, · · · ,M−1. (3.3b)

Rm ≥ Rmin, ∀m, (3.3c)
M

∑
m=1

αmP≤ PBS, (3.3d)

αm ≥ 0, ∀m. (3.3e)

Where Eqn. (3.3a) denotes objective functions to be maximized simultaneously. The first

function is the sum rate, and the second function is the sum utility. The constraint in Eqn. (3.3b)

ensures minimum power gap for successful SIC process in NOMA. In the context of QoS, the

constraint in Eqn. (3.3c) implies the requirement that the data rate of each user must not fall

below the minimum user data rate Rmin. The constraint in Eqn. (3.3d) ensures that the network’s

overall transmit power does not exceed BS’s total power budget PBS. Finally, the constraint in

Eqn. (3.3e) assures that each user has a non-negative transmit power.

3.3 Solution of Multi-objective Optimization Problem

This section will provide the optimal solution for an M users downlink NOMA network in

terms of both sum rate and user fairness maximization. Later in this section, we also discuss

benchmark schemes. The weighted sum and ε-constraint methods are the two most often adopted

classical methods for solving MOO problems [87]. In the weighted sum method, a weighting

coefficient linearly combines the MOO problem into a single-objective optimization problem.

The ε-constraint method optimizes one objective function while constraining the others to be

less than or equal to a defined numerical value [87]. The ε vector in the ε-constraint method

must be carefully chosen to fall within the minimum and maximum values of the objective
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function, which might make this approach challenging. However, the weighted sum method

is more straightforward to implement than the ε-constraint method. Furthermore, we may

make a trade-off between multiple objectives using the weighting coefficient method. This

is also consistent with our aim of reaching optimal PA to achieve a balanced trade-off while

simultaneously optimizing the sum rate and user fairness. Thus, we use the weighted sum

method to solve the MOO problem (P1). This results in a MOO problem (P1) being converted

into a single objective optimization problem, which is as follows [77, 80, 81],

(P2) : max
αm

ω

M

∑
m=1

Rm +(1−ω)
M

∑
m=1

U(Rm),

s.t. (3.3b), (3.3c), (3.3d), (3.3e).

where ω is a weighting coefficient, such as 0≤ ω ≤ 1. The ω shows a tradeoff between two

objectives, i.e., higher ω values support maximizing the sum rate, while lower ω values favor

maximizing user fairness. Note that the fairness objective function is neither convex nor concave

with regard to α . Hence, the optimization problem (P1) becomes non-convex. Therefore, the

solution for (P1) may not be global. We recognize that the fairness objective function can be

converted to a concave function by creating a new assistant variable vm for the user m [89], and

then (P2) is written as,

(P3) : max
αm

ω

M

∑
m=1

Rm +(1−ω)
M

∑
m=1

U(vm),

s.t. (3.3b), (3.3c), (3.3d), (3.3e).

vm ≤ Rm, ∀m. (3.4a)

As stated in [89], when the weighted objective function in (P3) is to be maximized, U(·) must

be an increasing function, and vm must be equal to Rm. Then, (P2) and (P3) would have the

same solution. As a result, instead of (P2), we can solve (P3). We may now use the Lagrange

dual decomposition method to solve the optimization problem (P3) [36, 70, 82]. As a result, the
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following Lagrangian function is obtained as,

L (αm,ψm,χm,βm,µm) = ω

M

∑
m=1

Rm +(1−ω)
M

∑
m=1

U(vm)+
M

∑
m=1

χm(Rm−Rmin)+

M−1

∑
m=1

ψm

(
αmP|hm+1|2−

M

∑
i=m+1

αiP|hm+1|2−Pg

)
+βm(PBS−

M

∑
m=1

αmP)+
M

∑
m=1

µm(Rm− vm),

(3.5)

There are two sub-problems in solving the above Lagrangian function. The first is a problem

of application layer optimization with variable v, and the second is a problem of physical layer

optimization with variable α . Hence, the problem of application layer optimization may be

expressed as,

T1 = max
t

g3(vm), (3.6)

where,

g3(vm) = (1−ω)
M

∑
m=1

U(vm)−
M

∑
m=1

µmvm. (3.7)

and the physical layer optimization problem can be written as:

T2 = max
αm

g4(αm), (3.8)

where,

g4(αm) = ω

M

∑
m=1

Rm +
M

∑
m=1

χm(Rm−Rmin)+βm(PBS−
M

∑
m=1

αmP)+

M−1

∑
m=1

ψm

(
αmP|hm+1|2−

M

∑
i=m+1

αiP|hm+1|2−Pg

)
+

M

∑
m=1

µmRm

(3.9)

In Eqn. (3.1), the α-fair utility function has two cases: l = 1 and l ≥ 0. As a result, for l = 1

and l ≥ 0, we can study the optimal solution of T1 of Eqn. (3.6) independently as follows.

Case I (l = 1): In this case, U(vm) = ln(vm) is a strictly concave function of vm. Therefore, the

first term (1−ω)∑
M
m=1U(vm) is a strictly concave function of vm. The second term ∑

M
m=1 µmvm

in (3.7) is a linear function of vm. Hence, g3(vm) is a concave function of vm. Thus, by using the

KKT conditions [82], one may derive the closed-form formula for vm in case I by obtaining the

first partial derivative of g3(vm) with respect to vm and equating to zero. Hence,

∂g3(vm)

∂vm
=

ω

vm
−µm = 0 =⇒ v∗m =

ω

µm
. (3.10)
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Case II (l ≥ 0): g3(vm) is a concave function of vm, as demonstrated in Appendix E. As a result,

the closed-form formula for vm in case II can be computed by applying the KKT conditions, as

shown in Appendix G. Therefore, we get v∗m as,

v∗m = l

√
(1−ω)

µm
. (3.11)

To derive optimal PA coefficients α∗m, we first demonstrate in Appendix F that g4(αm) is a

concave function of αm. As a result, as seen in Appendix H, the closed-form expression for α∗m

can be determined using the KKT conditions as stated in Eqn. (3.12) with [α]+ = max(0,α)

and Tm as given in Eqn. (3.13).

α
∗
m =

[
(ω +χm +µm)P|hm|2−Tm

(
∑

M
n=m+1 αnP|hm|2+σ2)

TmP|hm|2

]+
, (3.12)

Tm = βmP−ψmP|hm+1|2+
m−1

∑
i=1

(
ψiP|hi+1|2+

(
(ω +χi +µi)P|hi|2

∑
M
j=i+1 α jP|hi|2+σ2

− (ω +χi +µi)P|hi|2

∑
M
j=i α jP|hi|2+σ2

))
(3.13)

Now, using a sub-gradient method, the Lagrange multipliers can be calculated and updated

iteratively, as described below [82],

ψm(t +1) =

[
ψm(t)+δ1(t)

(
Pg−αmP|hm+1|2+

M

∑
i=m+1

αiP|hm+1|2
)]+

,

for m = 1,2, · · · ,M−1,

(3.14)

χm(t +1) = [χm(t)+δ2(t)(Rmin−Rm)]
+ , ∀m, (3.15)

βm(t +1) =

[
βm(t)+δ3(t)

(
M

∑
m=1

αmP−PBS

)]+
, (3.16)

µm(t +1) = [µm(t)+δ4(t)(vm−Rm)]
+ . (3.17)

where δ denotes the step size, and t represents the iteration index. The subgradient method

uses a variety of different step size rules. We pick the step size in accordance with the rule of

diminishing step sizes described in [90]. Once the equations are derived, we can present an
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iterative algorithm 2 for obtaining the optimal PA coefficients for the MOO problem (P1) of

jointly maximizing the sum rate and user fairness.

Algorithm 2 Iterative Optimal Power Allocation Algorithm

1: Requires: P, σ2, PBS, Rmin, M, Pg, pl, l, t, ω , and R;
2: Requires: h, α , ψ , χ , β , µ , and δ for all users;
3: Calculate initial rates and user fairness for M users;
4: for until sum rate/user fairness repeats do
5: for m = 1 to M do
6: t = t +1;
7: Update Tm(t) using Eqn. (3.13);
8: Update αm(t) using Eqn. (3.12);
9: Update vm(t) using Eqn. (3.10) if l = 1 else update vm(t) using Eqn. (3.11) if l ≥ 0;

10: Update ψm(t) using Eqn. (3.14);
11: Update χm(t) using Eqn. (3.15);
12: Update βm(t) using Eqn. (3.16);
13: Update µm(t) using Eqn. (3.17);
14: Update rates and user fairness for M users;
15: end for
16: end for

Now we study the time complexity of our proposed algorithm. Since algorithm 2 has M users,

it takes M worst-case computation time to update the sum rate and fairness at line 3. It is

important to note that line 8 takes the most computing time inside the loop. The worst-case

time computation of Tm in Eqn. (3.13) is M2. Line 8 updates αm using Eqn. (3.12), which

depends on Tm. Thus, the worst-case time computation of αm is M3. Since the inner loop (line

5 to line 15) repeats M times, the inner loop’s worst-case complexity is M4. Assume that the

total number of iterations required for algorithm convergence is T cv. As a result, our proposed

method’s worst-case run time complexity for M users is O(M4 T cv).

3.3.1 Benchmark: Single-objective Optimization

It is worth noting that our proposed MOO problem (P1) jointly optimizes the sum rate and user

fairness. In certain circumstances, it may be necessary to optimize only the sum rate of a NOMA

network in order to decrease computing complexity. Consequently, subsection 3.3.1 provides

the single-objective optimization problem (P4) by omitting the user fairness objective of the

MOO problem (P1). As a result, section III-B of work [36] provides a benchmark for the MOO
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problem (P1). In (P4), we find the optimal PA for maximizing the sum rate while keeping the

minimum transmit power gap between users, QoS, and power budget constraints in mind. As a

result, the optimization problem (P4) may be stated as follows:

(P4) : max
αm

M

∑
m=1

Rm,

s.t. (3.3b), (3.3c), (3.3d), (3.3e).

We solve the optimization problem (P4) using the same steps and method as in Section 3.3 due

to the similarities in solving the optimization problem. As a result, all steps and explanations are

ignored.

3.4 Simulation Results

This section discusses the simulation results for our proposed MOO problem. Additionally, we

compare the simulation results to the benchmark method. The performance parameters for all

users are obtained in the simulation across 105 channel gain realizations of Rayleigh fading,

and then we take the average of these performance parameters. Table 3.1 lists the values of

the simulation parameters used to generate the plots unless otherwise stated. We have set the

TABLE 3.1: The simulation values for various parameters

System Parameter Values
Channel realization (R) 105

Number of users (M) 3
Total transmit power from BS (P) 10 W
Total power budget of BS (PBS) 10 W
Variance of AWGN noise (σ2) 1
The minimum required rate for QoS (Rmin) 1 bps/Hz
Minimum power gap among different users (Pg) 1.5
Weighting coefficient (ω) 0.5
Fairness level (l) 0.75

user’s minimum power gap to 1.5 (Pg = 1.5). The proposed solution ensures power gaps of

constraint (3.3b) for the given user’s channel conditions. Table 3.2 shows the proposed MOO

problem’s initial and converged system parameter values. In our simulations, we randomly
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TABLE 3.2: Initial and converged system parameter values for downlink
NOMA networks

System Parameter Initial value Converged value
α1 0.1 0.6501
α2 0.1 0.1066
α3 0.1 0.0222
Transmit power from
BS to user 1 1 W 6.50 W

Transmit power from
BS to user 2 1 W 1.07 W

Transmit power from
BS to user 3 1 W 0.22 W

Total transmit power from BS 3 W 7.792 W
R1 0.35 bps/Hz 1.68 bps/Hz
R2 0.75 bps/Hz 1.38 bps/Hz
R3 4.23 bps/Hz 2.34 bps/Hz
SR 5.33 bps/Hz 5.40 bps/Hz
JFI 0.51 0.95

initialize the PA coefficients as α1 = α2 = α3 = 0.1, as shown in Table 3.2, regardless of our

MOO problem’s objectives and constraints. On the other hand, our method guarantees that the

optimal PA coefficients converge to α1 = 0.6501,α2 = 0.1066,α3 = 0.0222, resulting in a total

transmit power of 7.79 W that meets all constraints of (P1) while also concurrently optimizing

sum rate and fairness. Table 3.2 shows that, as expected by NOMA principles, the user with the

worst channel conditions receives the most transmit power. In contrast, the user with the best

channel conditions receives the least transmit power. Additionally, we can observe in Table 3.2

that randomly initialized PA coefficients provide rates that are not ensuring the QoS constraint.

On the other side, once the algorithm converges, all user rates satisfy the QoS constraint. Those

rates converge very near to one another, demonstrating the effectiveness of our proposed method

in terms of user fairness while simultaneously maximizing the sum rate.

Figures 3.2 and 3.3 show graphically how each user’s transmit power and rate change with each

iteration of our algorithm 2. The iteration index is shown on the horizontal axis, while the

parameter of interest is displayed on the vertical axis. Figure 3.2 shows that user 1’s transmit

power begins at 1 W and eventually converges to 6.50 W as the number of iterations approaches

35. We may draw similar conclusions from Figure 3.2 for users 2 and 3. As a result, the optimal

transmit power of users 1, 2, and 3 is 6.50 W, 1.07 W, and 0.22 W, respectively, resulting in a
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FIGURE 3.2: Transmit power vs. the number of iterations for downlink
NOMA network.
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FIGURE 3.3: Individual rates vs. the number of iterations for downlink
NOMA network.
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total transmit power of 7.79 W, which is less than the power budget constraint (PBS = 10 W).

Thus it ensures power budget constraint. In Figure 3.3, individual rates converge to optimal

values of 1.68 bps/Hz, 1.38 bps/Hz, and 2.34 bps/Hz for users 1, 2, and 3. Note that all user’s

optimal rates are higher than Rmin = 1 bps/Hz, which is expected given constraint (3.3c) in the

MOO problem (P1). The proposed method only needs about 35 iterations to converge once the

first random PA coefficients are given, proving that it has a fast convergence rate and is effective

enough to be implemented in practical networks like 5G networks.

Figure 3.4 illustrates the sum rate versus the number of iterations for various weighting coef-

ficients (ω) in the proposed and benchmark methods. The ω allows for a choice between the
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FIGURE 3.4: Sum rate vs. the number of iterations for various weighting
coefficients in downlink NOMA network.

sum rate and fairness. Higher ω values support increasing the sum rate, while lower ω values

support increasing user fairness. Thus, when seen in Figure 3.4, as ω grows, so does the sum

rate. When ω = 1, the sum rate is entirely favored, and fairness is completely ignored. Hence,

the benchmark and the ω = 1 case are the same. As a result, the ω = 1 and benchmark plots

intersect, as illustrated in Figure 3.4.
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Figure 3.5 depicts JFI versus iteration count for various weighting coefficients (ω) in the

proposed and benchmark methods. The JFI for ω = 0.5 is equal to 0.51 for initially randomly

0 1 0 2 0 3 0 4 0 5 0 6 0
0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

 

 

Ja
in’

s f
air

ne
ss

 in
de

x

N u m b e r  o f  i t e r a t i o n s

 w  = 0   w  =   0 . 2 5   w  = 0 . 5  
 w  = 0 . 7 5   w  = 1   B e n c h m a r k

5 1 5 4 5 7 6 0 6 30 . 9 3
0 . 9 4
0 . 9 5
0 . 9 6
0 . 9 7

 

 

FIGURE 3.5: JFI vs. the number of iterations for different weighting
coefficients in downlink NOMA network.

chosen PA coefficients and grows to 0.95 when iterations exceed 35. This indicates clearly

that our proposed MOO method maximizes user fairness. In Figure 3.5, when ω increases,

the fairness decreases. Figure 3.5 shows that plots overlap for ω = 1 and the benchmark

method, which is expected. Figure 3.6 depicts the achieved sum rate and JFI over the weighting

coefficient. ω is indicated on the horizontal axis, the sum rate is shown on the left side of the

y-axis, and JFI is indicated on the right side of the y-axis. For problem (P1), as anticipated, at ω

= 0, the maximum sum rate is achieved at the cost of the lowest fairness. Furthermore, when

ω = 1, maximum fairness is achieved at the cost of the lowest sum rate. However, the BS can

choose an appropriate value for the weighting coefficient ω in order to achieve a good balance

between the sum rate and fairness. As shown in Figure 3.6, choosing ω = 0.52 results in a good

trade-off between these performance parameters. Figure 3.7 depicts the proposed method’s

sum rate versus iteration count for different power gaps (Pg). When Pg increases, the sum rate

decreases for the proposed method. This is because when Pg increases, the PA coefficients

decrease (except for the PA of the weakest user). The reason for the decrease in PAs is that users,
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FIGURE 3.6: Sum rate and JFI against weighting coefficient in downlink
NOMA network.
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FIGURE 3.7: Sum rate vs. the number of iterations for various power
gaps in the downlink NOMA network.

excluding the weakest, must meet the SIC process’s power gap criterion (3.3b). The weakest

user is provided the most power. Hence, this user directly decoded in the NOMA network’s

SIC procedure. Therefore, the weakest user is exempt from meeting the power gap condition
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between decoded and non-decoded users. As a result, Pg does not affect the PA coefficient of the

weakest user. Figure 3.8 illustrates the proposed method’s transmit power versus total power

budget (PBS) for various weighting coefficients (ω). According to constraint (3.3d), when PBS
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FIGURE 3.8: Transmit power vs. total power budget for downlink NOMA
network.

increases, transmit power for all users should increase. However, because of the minimum power

gap constraint (3.3b), all users except the weakest have limitations when it comes to increasing

transmit power. As a result, we can see in Figure 3.8 that the transmit power for the weakest user

grows rapidly while the transmit power for other users increases gradually. Figure 3.9 shows

the sum rate against the total power budget for different weighting coefficients in the proposed

method. According to the discussion mentioned above, when PBS increases, so does the transmit

power for all users. As a result, the network’s overall rate increases.

3.5 Summary

This research presented a MOO method for investigating the trade-off between sum rate and

user fairness in downlink communication NOMA networks incorporating the minimum power
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FIGURE 3.9: Sum rate vs. total power budget for various weighting

coefficients in downlink NOMA network.

gap for successful SIC constraint. The study looks at a novel approach and demonstrates that the

proposed method performs well in downlink NOMA networks. First, we formulated the MOO

problem for jointly maximizing sum rate and user fairness while optimizing PA under a minimum

power gap among users, transmit power, and QoS requirement constraints. Then, we converted

a MOO problem to a single-objective optimization problem using the weighted sum method.

In order to solve the optimization problem, we used the Lagrange dual decomposition method

and the KKT conditions. Finally, simulation results show how downlink NOMA networks can

maximize the sum rate and be fair to all users while maintaining a quick convergence rate for the

proposed method. We also compared our method’s performance to that of benchmark methods.

As 5G networks require more data rates, multiple access techniques are becoming more popular.

Additionally, multiple access technique is needed to meet the rising bandwidth requirements.

Hence, in addition to the PA optimization problems in Chapters 2 and 3, we will next move on to

study the optimal SA problem in Chapter 4. In Chapter 4, we formulate and study the problem

of determining optimal SA and PA for maximizing the sum rate.



Chapter 4

Joint Subchannel and Power Optimization

for Sum Rate Maximization in Downlink

Multicarrier NOMA Networks

For more than a century, wireless data traffic has grown at an exponential rate. The race for a

faster data rate would continue, necessitating a 10x data rate increase every five years [14]. In the

case of 5G, this refers to achieving a peak data rate of at least 1 GBPS when it launched in 2020.

Next, it is expected to scale up to 10 GBPS in five years, and even 100 GBPS by 2030 [15]. Thus,

the data rate of wireless networks must be increased in order to keep up with the rising demand

for data rate in wireless networks. OFDMA has been widely investigated and implemented in 4G

mobile communication networks for sum rate maximization [101], [102]. However, in OFDMA,

orthogonal channel access can restrict spectral efficiency since one user per time slot can only

access each subchannel. To enhance spectrum efficiency, NOMA enables several users to be

multiplexed on the same subchannel. As a result, the NOMA network can achieve a higher sum

rate, potentially improving the system’s overall throughput compared to the OMA network [54].

Therefore, in recent times, many researchers have been motivated to maximize the sum rate

of the NOMA system. The maximization of the sum rate in the NOMA network massively

depends on sharing appropriate transmit power from the BS to all the users. NOMA operates on

the principle of sharing time-frequency resources among users by separating them into other

domains [103]. The separation domain is split into power-based and code-based, resulting in

64
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power-domain NOMA and code-domain NOMA mechanisms, respectively. In power-domain

NOMA, different powers are given to the different users based on the channel conditions [104].

PA coefficients can be used to provide different power to different users. Therefore, PA is an

essential tool for the sum rate maximization in the NOMA network.

In order to enhance spectrum efficiency, NOMA multiplexes users on the same subchannel;

unfortunately, this leads to co-channel interference amongst the multiplexed users [105]. How-

ever, for the successful execution of SIC, a minimum power gap needs to be maintained among

users [36, 98, 106, 107], which is included in our work. The world’s future wireless network

demand is expected to increase massive data traffic for networks. NOMA has recently received a

lot of attention as a potential contender for future wireless networks. Therefore, multiple carrier

techniques have become increasingly popular due to the increasing demand for high data rates

in NOMA networks. Multiple access techniques are necessary to meet the rapidly growing

bandwidth requirement. Further, expecting all users to share the same amount of bandwidth

may be impractical in terms of complexity. In certain cases, the problem of using the whole

available bandwidth by all users may become prohibitive [37]. Consequently, NOMA can

leverage multicarrier systems to create practical wireless communication networks. Multicarrier

NOMA enables a limited number of users to use a subset of subcarriers at the same time. In

such a scenario, it is clear that SA and PA are inextricably linked, with both having an influence

on the overall system rate. Also, to prevent the imminent spectrum crisis caused by limited

bandwidth and a growing number of users, an efficient method for adaptive bandwidth and PA is

needed [37]. In this regard, this chapter seeks to determine SA and PA for the NOMA downlink

network to maximize the sum rate while maintaining the total power budget, quality of service

minimum power gap for SIC, subchannel user limit, and QoS constraints.

4.1 Related Work

We begin by discussing papers on the PA for sum rate maximization under SIC constraint.

Authors in [106] analyze the power budget, QoS, and minimum power gap constraints in order

to optimize the sum rate for both downlink and uplink NOMA networks. The optimal PA,

resource blocks, and user groups are found in the cluster. A MOO problem is formulated in
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paper [36] to maximize rate and minimize transmission power for a downlink NOMA network

with constraints on minimum rate requirement, power budget, and minimum power gap. The

objective of the paper [98] is to improve the fairness of data rates across users while optimizing

PA in a NOMA system while taking into account QoS, power budget, and minimum power gap

constraints. Paper [107] formulated and solved the PA technique for improving the spectral

efficiency of NOMA-enabled IoT devices under the transmit power, QoS, and minimum power

gap constraints. The work in [65] formulates and studies the optimization problem of PA and

user scheduling to maximize the weighted sum rate. A downlink multi-carrier NOMA network’s

power budget and SIC error constraints are included.

SA and PA are interconnected factors contributing to high system performance in multicarrier

NOMA systems. Thus, we next discuss SA and PA optimization works in the NOMA network

for sum rate maximization. The authors of the study [37] maximize energy efficiency and

user fairness by optimizing SA and PA and providing power budget and QoS constraints. The

optimization problem is split into two stages, SA and PA, to reduce computational complexity.

In paper [108], the authors maximized sum rate, energy efficiency, and maximin fairness in

downlink NOMA network with joint optimization of PA and SA under QoS and power order

constraints. The work [109] proposed a joint SA and PA optimization problem to maximize

weighted sum rate utility in a downlink NOMA network with a total power budget, individual

power restriction for each user, and the maximum number of multiplexed users on each sub-

channel. The manuscript [110] investigates SA and PA to balance the sum rate improvement

and the power consumption in downlink NOMA networks. The Lyapunov optimization method

solves this problem with minimal user QoS and maximum transmit power constraints. The

problem of SA and PA to maximize sum rate in NOMA heterogeneous small cell networks is

investigated in [111], taking into account energy harvesting and cross-tier interference. The

objective of the paper [112] is to optimize the sum rate of the NOMA heterogeneous network,

including macro and small cells, by assigning subchannels and power following total power,

QoS, and cross-tier interference requirements. The manuscript [113] studied the PA and SA

optimization problem to maximize the sum rate utility for downlink NOMA networks, consid-

ering individual and overall power budgets and the maximum number of users multiplexed on

each subcarrier. The work [114] examined the SA and PA method for the sum rate of cognitive

NOMA systems that takes channel uncertainty and user’s QoS, interference temperature, and
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transmission power constraints. NOMA-based IoT has been presented in an article [115] as

an optimization problem of achievable rate for optimizing user clustering, PA, and bandwidth

allocation to minimize the number of channels while meeting the QoS requirements. The authors

of the research [116] formulated the problem of maximizing overall system capacity and spectral

efficiency by optimizing the SA and PA in the downlink NOMA system. The paper [117]

aims to maximize the weighted total sum rate in a downlink NOMA system by optimizing

the SA and PA while considering user fairness. The optimal joint PA and SA approach for

multicarrier NOMA systems under power constraint and maximum users on each subchannel

constraint is studied in the paper [118]. The paper [119] investigates the PA and SA schemes

for maximizing total system capacity and user fairness in multicarrier NOMA systems with

energy harvesting. An efficient user scheduling and PA problem for sum rate maximization is

investigated in [120] for multi-mell, multicarrier NOMA networks. The problem is separated

into two subproblems. The user scheduling for fixed power is the first problem, and PA is the

second problem. Work [121] addresses the optimization problem of user association, transmit

PA, sub-channel assignment, and multiple access technique selections for hybrid OMA-NOMA

Wireless Networks to optimize the sum rate under a minimum rate requirement and power

constraints.

There have been some recent works for sum rate maximization. The maximum sum rate is

obtained in the manuscript [122] by optimizing the phase matrix of the reconfigurable intelligent

surface (RIS) subject to maximum power constraints of the RIS-aided uplink NOMA network

with direct links. Due to the non-convexity of the problem, two methods have been proposed.

Paper [123] studies the throughput and outage probability of coordinated direct and relay

transmission (CDRT) based downlink NOMA with direct links to the near user and the far user.

The author shows the importance of choosing the PA coefficient and target symbol rates to

boost the near user throughput while ensuring the desired far user throughput. The work [124]

studies the outage probability and ergodic sum rate of the NOMA-based overlay cognitive radio

network for Industry 5.0 using Nakagami-m channels. The performance of an adaptive multi-user

underlay NOMA network with multiple near-users and far-users is investigated in the paper [84].

The authors employ an intelligent user selection and switching between cooperative NOMA,

non-cooperative NOMA, and OMA to ensure high throughput at the selected far user while

ensuring the desired performance at the selected near user. The authors also show that careful
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consideration of target rates and the PA coefficient is essential. A Joint Maximum-Likelihood

detector guarantees reliable multi-user detection in the uplink IoT Single Input Multiple Output

(SIMO)-NOMA system in work [125]. The authors proposed a scheme showing effectiveness in

removing the error floor.

4.1.1 Motivation and Contributions

The papers [37, 108–121] maximize the sum rate by optimizing both SA and PA; however, the

SIC constraint is ignored. Some articles investigated the SIC constraint but failed to consider

SA and PA together to maximize the sum rate. In particular, articles [36, 65, 98, 106, 107]

investigated maximizing sum rate while dealing with the SIC constraint and other constraints

such as power budget, QoS, and minimum rate requirement constraints. However, these NOMA

studies have not addressed the SA problem. In summary, to the best of our knowledge, existing

works in the literature have ignored the optimization of SA and PA together, along with the SIC

constraint for the sum rate maximization. Therefore, we are motivated to maximize the sum

rate by optimizing SA and PA while adhering to the minimum power gap for SIC, QoS, power

budget, and subchannel user limit constraints for the downlink multicarrier NOMA network.

The salient aspects of the Chapter are summarized as follows:

• We formulate and analyze the SA and PA optimization problem to maximize the sum rate

while satisfying the power budget, QoS, subchannel user limit, and minimum power gap

constraints in the downlink multicarrier NOMA network.

• We study the SA algorithms from articles [46–48] and associate them with our optimization

problem (P1) to obtain SA. We compare and examine the performance of each algorithm

for our proposed method.

• Then, the PA solution is obtained using a linear optimization problem and concavity of

the sum rate. In addition, we conclude that our solution is unique to the proposed method.

• We perform simulations as part of the validation process for our proposed optimization

problem. Additionally, we compare the proposed method’s performance to the benchmark

method. We compare greedy [46], worst subcarrier avoiding (WSA) [47], worst case
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avoiding (WCA), and worst case first (WCF) [48] algorithms performance to problem

(P1). We conclude that the WCF algorithm provides a higher sum rate of the NOMA

network than greedy, WSA, and WCA algorithms for the proposed problem.

The rest of the Chapter is organized as follows. We present the system model and problem

formulation in Section 4.2. In Section 4.3, we derive the SA and PA solution for the proposed

optimization problem. Section 4.4 presents simulation results and relevant discussions for the

proposed scheme. Finally, Section 4.5 provides concluding remarks.

4.2 Problem Statement

This section introduces the downlink NOMA network system model and formulates the opti-

mization problem for maximizing the sum rate with SA and PA.

4.2.1 System Model

We consider a downlink multicarrier NOMA-based wireless network with N subcarriers and

the total number of T c users. Figure 4.1 illustrates SA for our downlink multicarrier NOMA

network. In Figure 4.1, Mc represents the maximum number of users per subchannel and N

Subcarriers

1 2 N

𝒖𝟏,𝟏

𝒖𝟐,𝟏

𝒖𝑴,𝟏

𝒖𝟏,𝟐

𝒖𝟐,𝟐

𝒖𝟏,𝑵

𝒖𝟐,𝑵

𝒖𝑴,𝟐 𝒖𝑴,𝑵

FIGURE 4.1: Subcarrier assignment for downlink multicarrier NOMA
network.



Chapter 4. Joint Subchannel and Power Optimization for Sum Rate Maximization in Downlink
Multicarrier NOMA Networks 70

stands for the number of subchannels, where m ∈ (1,2, · · · ,Mc) and n ∈ (1,2, · · · ,N). After

assigning all users to subchannels, we employ the NOMA technique in each subchannel. We

employ power-domain NOMA user multiplexing, with all users serviced simultaneously over the

same frequency range [54]. The power-domain NOMA mechanism uses superposition coding at

the transmitter and SIC at the receiver. Figure 4.2 depicts the SIC process in each subcarrier for

our downlink NOMA network. The words subchannel and subcarrier are used interchangeably

Direct

Decoding

SIC of 

user M’s 

Signal

SIC of 

user M-1’s 

Signal

Decode 

user 1’s 

signal

SIC of 

user 2’s 

Signal

SIC of 

user M’s 

Signal

SIC of 

user M-1’s 

Signal

Decode 

user 2’s 

signal

Base Station

𝒉𝟏,𝒏

𝒉𝟐,𝒏

𝒉𝑴,𝒏

𝒚𝟏,𝒏

𝒚𝟐,𝒏

𝒚𝑴,𝒏 𝒓𝑴,𝒏

𝒓𝟏,𝒏

𝒓𝟐,𝒏

𝒖𝟏,𝒏

𝒖𝟐,𝒏

𝒖𝑴,𝒏

FIGURE 4.2: SIC process in each subcarrier for multicarrier downlink
NOMA network.

in this Thesis. The network’s total bandwidth is BN Hz is split into N subchannels of subchannel

bandwidth Bc
N , for each n ∈ N, such that ∑n∈N Bc

n = BN . We consider Rayleigh fading channel

with channel coefficient between BS and user m on subchannel n is denoted by hm,n = zm,nd−pl
m,n ,

where dm,n is the distance between BS and user m, and pl is the path loss exponent, and zm,n is a

complex Gaussian distribution, zm,n ∼ C N (0, 1) [37, 108]. We consider channels between BS

and all users are independently distributed.

Without losing generality, we arrange channel coefficients between BS and all users on nth

subchannel in a descending order as
∣∣h1,n

∣∣ ≥ ∣∣h2,n
∣∣ ≥ ·· · ≥ |hMc,n|. According to this order

on each subchannel, at the NOMA network’s transmitter side, each user’s PA coefficient is

first multiplied by the total transmit power, and then these signals are added together. The BS

transmits a multiplexed signal on each subchannel n is given by,

Xc =
Mc

∑
m=1

√
αm,nPc Sc

m,n, (4.1)
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where Pc denotes the total transmit power per subchannel. αm,n is PA coefficient for user m on

subchannel n, and Sc
m,n is the symbol of user m on subchannel n. The SIC process is carried out

on each subchannel on the receiver side of the NOMA network. In the SIC process, the data

of the higher power user, i.e. user M, is first decoded directly, then the data of the next highest

power user (user Mc−1) is decoded by canceling the interference generated from the previously

decoded user (user Mc). This process continues until we have decoded all the user’s data. The

SIC method is illustrated in Figure 4.2. We can present the received signal to the mth user over

the nth subchannel as given below,

rm,n = hm,n Xc
n +ηm,n, (4.2)

where ηm,n ∼ C N (0, σ2). Thus, using the SIC working discussed above, the received signal

rm,n for user m is represented by,

ym,n =

(√
αm,nPc Sc

m,n +
Mc

∑
i=m+1

√
αi,nPc Sc

i,n

)
hm,n +ηm,n, (4.3)

The signal-to-interference and noise ratio (SINR) as seen by user m on subchannel n is then

written as [108],

SINRm,n =
αm,nPc · |hm,n|2

|hm,n|2 ·∑m−1
i=1 αi,nPc +σ2

, (4.4)

According to Shannon’s capacity formula, the data rate of user m over subchannel n is written

as [108],

Rm,n = Bc
N log2(1+SINRm,n) bps. (4.5)

4.2.1.1 Imperfect SIC

For SIC to be successfully executed at the user’s end, the NOMA transmitter should ensure a

minimal power gap between the user transmit powers [36]. If the minimal power gap is not

maintained at the transmitter, errors may propagate and degrade the performance of the NOMA

network (since each user’s SIC depends on previous decodings). As a result, SIC residual error

propagation can be considered in NOMA systems if the SIC is not executed perfectly. Therefore,
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the SINR for imperfect SIC can be represented as [51, 65, 84],

SINRimper
m =

αm,nPc |hm,n|2

∑
m−1
i=1 αi,nPc |hm,n|2 + ε ∑

Mc

j=m+1 α j,nPc |hm,n|2 +σ2
(4.6)

The residual interference component produced by this imperfection is quantified by the factor ε ,

which ranges from 0 to 1. Perfect SIC has an ε = 0, whereas fully imperfect SIC has an ε = 1.

4.2.2 Problem Formulation

In NOMA, signals for all users are superimposed at the transmitter and decoded at each user

executing the SIC process. The SIC process decodes and subtracts the signals in sequence until

it gets its desired signal. However, the decoding order for each user must match the user index

in the cancellation sequence. In the case of a mismatch, users will not receive their signals.

As a result, the SIC decoding order is a critical issue in SIC process execution, which we are

addressing in this work. Let πm,n ∈ {0,1} represent the decoding order of user m on subchannel

n. Based on this order, we can implement the SIC process. For user m, users m+1 to user Mc are

removed with the SIC process, and then user m decodes its own signal. In this case, to guarantee

that the SIC can be performed successfully, decoding order πi,n, for i = 1 to m− 1 must be

assigned to 1, and πi,n, for i = m+1 to Mc must be assigned to 0 for |hm,n|2 ≥
∣∣hm+1,n

∣∣2 ,∀m.

Otherwise, πi,n, for i = 1 to m−1 must be assigned to 0, and πi,n, for i = m+1 to Mc must be

assigned to 1. Hence, SINR for user m on subchannel n can be written as,

SINRm,n =
αm,nPc |hm,n|2

πm,n |hm,n|2 ∑
m−1
i=1 αi,nPc +πm,n |hm,n|2 ∑

Mc

i=m+1 αi,nPc +σ2
, (4.7)

We can now formulate an optimization problem (P1) for obtaining SA and PA in the downlink

NOMA network, taking into account practical considerations such as subchannel users limit,

QoS, power budget, and minimum power gap constraints, as follows:

(P1) : max
S,α

N

∑
n=1

Mc

∑
m=1

sm,nRm,n, (4.8a)

s.t. C1 : Rm,n ≥ Rmin, ∀m,n, (4.8b)
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C2 : sm,nαm,nPc ∣∣hm−1,n
∣∣2−m−1

∑
i=1

si,nαi,nPc ∣∣hm−1,n
∣∣2

≥ Pg, for m = 2,3, · · · ,Mc, ∀n, (4.8c)

C3 :
Mc

∑
m=1

sm,nαm,nPc ≤ 1, ∀n, (4.8d)

C4 :
T

∑
m=1

sm,n ≤Mc, ∀n, (4.8e)

C5 : sm,n ∈ {0,1} , ∀m,n. (4.8f)

where S = [sm,n]T×N stands for SA matrix and sm,n is an element of S that becomes one if user

m is multiplexed on subcarrier n and zero otherwise, α = [αm,n]M×N denotes the PA matrix and

αm,n is an element of α . In the context of QoS, constraint Eqn. (4.8b) implies the requirement

that the data rate of each user must not fall below the minimum user data rate Rmin. The constraint

in Eqn. (4.8c) ensures the minimum power gap required for the successful execution of the SIC

process in NOMA for each subchannel n. Pg is the minimum required power gap. According to

Eqn. (4.8d), the total power of all users on a subchannel is less than or equal to P. Eqn. (4.8e)

guarantees that a single subcarrier can support up to Mc users. Finally, Eqn. (4.8f) employs a

subcarrier assignment variable.

4.3 Solution of Optimization Problem

The global optimal solution to an optimization problem (P1) is difficult to find in polynomial

time, so we no longer insist on having an efficient method to determine the global optimal solution

in polynomial time. Instead, we should strive for approximation or locally optimal solutions in

polynomial time, which is more feasible in practice [126]. According to [47,48,127], it is possible

to achieve PA and SA of the optimization problem (P1) by using separate power and subcarrier

allocation without sacrificing much performance but significantly reducing implementation

complexity. As a result, this Chapter implies that power and subcarrier distribution takes place

in two stages. After SA, PA is done based on the channels of the subcarriers that have been

assigned to various users.
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4.3.1 Subchannel Assignment Scheme

This subsection presents a low-complexity SA algorithm based on the assumption of equal power

across subchannels. The SA algorithm goal is to maximize the sum rate by efficiently allocating

users to the subchannels. To do so, we studied the SA algorithms from [46–48] and associated

them with our problem (P1). The greedy method is presented in paper [46], the WSA algorithm

is proposed in the article [47], and WCA and WCF algorithms are presented in the article [48].

To demonstrate the functioning of each algorithm, we use a general channel quality matrix HNTc

with a total of N subchannels to accommodate a total of T c users in the network and a maximum

of Mc users per subchannel. To begin, let us look at the greedy algorithm.

4.3.1.1 Greedy Algorithm

In the greedy method, a subcarrier is always assigned to Mc users who have the best channel

characteristics among the remaining users who still need subcarriers. SA is performed sequen-

tially from the first to the final subchannel. The first subchannel is assigned to Mc users who have

the best channel quality for this subchannel. The next subchannel is then assigned to Mc users

who have the best channel qualities among the remaining users. This process is repeated until

the final subchannel is reached. In summary, the greedy algorithm is presented in the following

algorithm 3. The reduced complexity of the greedy algorithm is a clear benefit. However, the

Algorithm 3 Greedy Algorithm

Initialize: Mc,M = /0,N = {1,2, · · · ,N} ,T = {1,2, · · · ,T c} ,T̃ = T
Repeat:
1) For each subchannel ni, assign user t∗ with best channel quality:

t∗ = argmax
t∈T̃

{ht,ni} ,ni ∈N ,∀t.

2) Remove user t∗ from T̃ : T̃ ← T̃ −{t∗} .
3) Add user t∗ to M : M ←M ∪{t∗} .
Stop if |M |= Mc.

algorithm may be forced to allocate users subchannels with extremely low channel quality later

in the allocation process because of a lack of alternative possibilities.
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4.3.1.2 Worst Subchannel Avoiding Algorithm

The WSA algorithm [47] ensures that users do not get subchannels with the worst channel

quality. First, the channel with the worst quality is determined for each of the subchannels. Next,

the subchannels are ordered ascendingly by their poorest channel qualities. As a final step, users

are assigned subchannels from the first row to the last row, following the greedy algorithm’s

rules outlined in Section 4.3.1.1. In summary, the WSA algorithm can be described as shown in

algorithm 4.

Algorithm 4 WSA Algorithm

Initialize: Mc,N = {1,2, · · · ,N} ,T = {1,2, · · · ,T c}
1) Find each subchannel’s worst channel quality:

hmin
ni

= argmin
t∈T

{ht,ni} ,ni ∈N .

2) Arrange subchannels in ascending order according to the worst channel qualities as,
{n1,n2, · · · ,nN}, if hmin

n1
≤ hmin

n2
≤ ·· ·hmin

nN
.

3) Based on the above order, apply the greedy algorithm to assign users to each subchannel.

4.3.1.3 Worst Case Avoiding Algorithm

We can classify the WSA algorithm as a subcarrier-oriented WSA algorithm because it can avoid

assigning the (N−1) worst channels when there are total N subchannels [47]. When the WCA

algorithm is in use, it always tries to stay away from the worst subchannels as much as it can.

The WCA algorithm avoids more bad subchannels than the subcarrier-oriented WSA algorithm.

When the WCA algorithm is used, it first places the users in ascending order based on their

subcarrier’s poorest channel quality. Then, the greedy algorithm is used to assign subcarriers to

users one at a time, from the first to the last column. The WCA algorithm is provided, as shown

in algorithm 5.

4.3.1.4 Worst Case First Algorithm

In the WCF algorithm, users are reordered based on the channel quality of available subcarriers.

Specifically, at each step, the algorithm determines the unassigned user’s worst channel quality

using just the available subcarriers, rather than the worst channel quality using all available
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Algorithm 5 WCA Algorithm

Initialize: Mc,N = {1,2, · · · ,N} ,T = {1,2, · · · ,T} , ˜N = N
1) Find each user’s worst channel quality:

hmin
ti = argmin

n∈N
{hti,n} , ti ∈T .

2) Arrange users in ascending order according to the worst channel qualities as,
{t1, t2, · · · , tT}, if hmin

t1 ≤ hmin
t2 ≤ ·· ·h

min
tT c .

3) Based on the above order, assign subchannels one at a time from the first user to the last
user.

For ti user, subchannel n∗ is assigned as,
n∗ = argmax

n∈ ˜N

{hti,n} , ti ∈T .

4) Remove subchannel n∗ from ˜N : ˜N ← ˜N −{n∗}, if subchannel n∗ has been assigned to
M users.

subcarriers, as the WCA algorithm does. In summary, the WCF algorithm can be stated as

follows in algorithm 6.

Algorithm 6 WCF Algorithm

Initialize: Mc,N = {1,2, · · · ,N} ,T = {1,2, · · · ,T} , ˜N = N ,T̃ = T ,Mn = /0
Repeat:
1) Find each user’s worst channel quality:

hmin
ti = argmin

n∈ ˜N

{hti,n} , ti ∈ T̃ .

2) Find the user with a minimum of the worst channel quality:
t∗ = argmin

t∈T̃

{
hmin

t
}

.

3) Assign user t∗ to the subchannel n∗ with the best channel quality:
n∗ = argmax

n∈ ˜N

{ht∗,n} , t∗ ∈T .

4) Mn←Mn∪{n∗} .
5) Remove user t∗ from T̃ : T̃ ← T̃ −{t∗} .
6) Remove subchannel n∗ from ˜N : ˜N ← ˜N −{n∗}, if subchannel n∗ has been assigned to
M users.
Stop if T̃ = /0.

We can apply and evaluate the performance of each discussed algorithm for our problem. All of

the algorithms presented so far provide an S matrix. Next, we can then proceed with acquiring

the PA of users in each subchannel.
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4.3.2 Power Allocation Method

Since the SA algorithms discussed in the previous Section 4.3.1 assigned all users to different

subchannels, we can utilize this section to solve the PA of the optimization problem (P1). As a

consequence, using obtained S matrix, the PA optimization problem (P2) can be expressed as

follows,

(P2) : max
α

Mc

∑
m=1

N

∑
n=1

sm,nRm,n, (4.9a)

s.t. (4.8b),(4.8c), and (4.8d).

Our first step is to determine the solution of the PA coefficients for constraint (4.8b) and constraint

(4.8c) on each subchannel. Next, we can evaluate the proposed method’s PA coefficients for this

common region on each subchannel. To get the solution of PA coefficients on constraint (4.8b)

in the problem (P2), we simplified constraint (4.8b) as shown below,

α
′
m,nPc · |hm,n|2

|hm,n|2 ·∑m−1
i=1 α

′
i,nPc +σ2

≥ ξ ,∀m

Here, α
′
m,n is the PA coefficient of user m on subchannel n for constraint (4.8b) in the problem

(P2), and ξ is the minimum target SINR, which is ξ = 2Rmin − 1. By substituting αm,n =

1−
Mc

∑
i=1,
i ̸=m

αi,n into the above equation and solving, we get,

ξ

m−1

∑
i=1

α
′
i,n +

Mc

∑
i=1,
i̸=m

α
′
i,n ≤ (1−ξ um) ,∀m (4.10)

Here, um = σ2

Pc·|hm,n|2
. We have Mc equations with Mc unknown to Mc users on subchannel n for

Eqn. (4.10). As a result, we may employ linear simultaneous equations to get the solution in

all user’s α . A matrix equation of linear simultaneous equations of the form E ·α ′m,n = F can

represent Eqn. (4.10). Where matrix E of size Mc×Mc is represented by Eqn. (4.11) and matrix
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F of dimension Mc×1 is represented by Eqn. (4.12).

E =



0 1 1 · · · 1

(1+ξ ) 0 1 · · · 1

(1+ξ ) (1+ξ ) 0 . . . 1
... . . . . . . . . . ...

(1+ξ ) (1+ξ ) (1+ξ ) · · · 0


(4.11)

F =
[
1−ξ u1 1−ξ u2 1−ξ u3 · · · 1−ξ uMc

]T
(4.12)

Where T is the matrix’s transpose. Now, solving the above linear simultaneous equations gives

us the solution to the PA coefficients α
′
m,n. Matrix E is a non-singular matrix, as shown in

Appendix I. As a result, the unknown matrix α
′
m,n in the given system of linear simultaneous

equations has a unique solution. The next step is to solve constraint (4.8c) in (P2) to get the

solution of constraint (4.8c) on the PA coefficients across subchannel n; the explanation is shown

below.

α
′′
m,nPc ∣∣hm−1,n

∣∣2−m−1

∑
i=1

α
′′
i,nPc ∣∣hm−1,n

∣∣2 ≥ Pg, for m = 2,3, · · · ,Mc. (4.13)

Here, α
′′
m,n is the PA coefficient of user m on subchannel n for constraint (4.8c) in (P2). For user

m on subchannel n, put, αm,n = 1−
Mc

∑
i=1,
i̸=m

αi,n, solving, we get,

(
2

m−1

∑
i=1

α
′′
i,n +

Mc

∑
i=m+1

α
′′
i,n

)
Pc ∣∣hm−1,n

∣∣2 ≤ Pc ∣∣hm−1,n
∣∣2−Pg, for m = 2,3, · · · ,Mc. (4.14)

From Eqn. (4.14), we have (Mc−1) equations with (Mc−1) unknown to Mc users on subchannel

n; and from constraint (4.8d) in the problem (P2), we receive one more equation. Eqn. (4.14)

may be written as a matrix equation with linear simultaneous equations of the form G ·α ′′m,n = H.

Matrix G has a dimension Mc×Mc as shown in Eqn. (4.15), and matrix H has a dimension
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Mc×1 indicated in Eqn. (4.16).

G =



1 1 1 · · · 1

2Pc
∣∣h1,n

∣∣2 0 Pc
∣∣h1,n

∣∣2 · · · Pc
∣∣h1,n

∣∣2
2Pc

∣∣h2,n
∣∣2 2Pc

∣∣h2,n
∣∣2 0 . . . Pc

∣∣h2,n
∣∣2

... . . . . . . . . . ...

2Pc
∣∣hMc−1,n

∣∣2 2Pc
∣∣hMc−1,n

∣∣2 2Pc
∣∣hMc−1,n

∣∣2 · · · 0


(4.15)

H =
[
1 Pc

∣∣h1,n
∣∣2−Pg Pc

∣∣h2,n
∣∣2−Pg · · · Pc

∣∣hM−1,n
∣∣2−Pg

]T
(4.16)

Now, solving the above linear simultaneous equations provides the solution to the PA coefficients

α
′′
m,n. Matrix G is a non-singular matrix, as demonstrated in Appendix J. As a result, the above

system of linear simultaneous equations has a unique solution of unknown matrix α
′′
m,n. The

solution for each user of Eqn. (4.10) is less than or equal to the corresponding element of

the α
′
m,n matrix since we obtained the solution by choosing equal to rather than less than or

equal to in Eqn. (4.10). Similarly, the solution for each user of (4.14) is less than or equal

to the corresponding element of the α
′′
m,n matrix. The sum rate function is a concave-down

and strictly increasing function for αm,n (the proof is given in Appendix K). Consequently, the

smaller between the corresponding element of α
′
and α

′′
is the PA coefficient for each user for

maximizing the sum rate. Hence, we obtained the PA coefficient matrix α∗ for maximizing the

sum rate. In the context of the preceding description, we present algorithm 7 for determining

the α∗ over each subchannel to maximize the sum rate in a NOMA downlink communication

system. In the algorithm 7, we first determine the SIC decoding order of the NOMA, followed

by the SA and PA. We obtain decoding order πm,n from lines 4 to 8 in algorithm 7. The S matrix

can be calculated using one of the greedy, WSA, WCA, or WCF methods in algorithm 7, line 9.

In line 11 of algorithm 7, we calculated the upper limits α
′
and α

′′
for the constraints of (P2).

We can obtain α∗ from lines 13 to 19 of algorithm 7. Thus, we achieve the maximum sum rate

on the subchannel for α∗ in the downlink NOMA network while adhering to power budget, QoS,

and minimum power gap constraints.



Chapter 4. Joint Subchannel and Power Optimization for Sum Rate Maximization in Downlink
Multicarrier NOMA Networks 80

Algorithm 7 Power allocation for each subchannel.

1: Requires: R, Pc, Mc, N, Rmin, Pg, σ2, η , E, F, G, and H.
2: for n = 1 to R do
3: Generate channel quality matrix;
4: if |hm,n|2 ≥

∣∣hm+1,n
∣∣2 ,∀m then

5: πi,n = 1, for i = 1 to m−1, and πi,n = 0, for i = m+1 to Mc;
6: else
7: πi,n = 0, for i = 1 to m−1, and πi,n = 1, for i = m+1 to Mc;
8: end if
9: Calculate S matrix using Greedy/WSA/WCA/WCF algorithm;

10: Given E ·α ′ = F and G ·α ′′ = H;
11: Compute matrix α

′
and α

′′
;

12: for n = 1 to N do
13: for m = 1 to Mc do
14: if α

′
m,n ≤ α

′′
m,n then

15: α∗m,n = α
′
m,n;

16: else
17: α∗m,n = α

′′
m,n;

18: end if
19: end for
20: Find sum rate over n subchannel;
21: end for
22: Compute network’s sum rate;
23: end for
24: Find mean of α∗m,n and sum rate;

4.3.3 Complexity Analysis

This section analyzes the complexity of SA algorithms and the proposed algorithm. Our

analysis assumes that Mc ≥ N. The greedy algorithm finds Mc number of users for each

subcarrier. The number of required operations for all Mc users allocation is Mc(Mc−1)
2 . As a

result, the greedy algorithm has a time complexity of O(Mc2). The total number of operations

for the WSA algorithm is about N(Mc−1)+2N ln(N)+ Mc(Mc−1)
2 , yielding a time complexity

of O(Mc2). The WCA algorithm orders the M users from worst to best channel qualities.

This process requires Mc(N−1)+2Mc ln(Mc) calculations. Then, (Mc−N)(N−1)+ N(N−1)
2

operations are required for the SA. Hence, the number of operations required by the WCA

algorithm can be expressed as Mc(N−1)+2Mc ln(Mc)+(Mc−N)(N−1)+ N(N−1)
2 . Hence,

the WCA algorithm has O(McN) time complexity. The SA process of the WCF algorithm

is the same as the WCA algorithm, except for the user order. The WCF algorithm requires
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Mc(N−1)+ Mc(Mc−1)
2 + (N−1)(N−2)

2 + N(N−1)
2 +(Mc−N)(N−1) number of operations. After

solving, the time complexity of the WCF algorithm can be obtained as O(Mc2). Table 4.1

summarises the time complexity of the above-discussed SA algorithms.

TABLE 4.1: Time complexity of various SA algorithms

Algorithm Time complexity
Greedy O(Mc2)

WSA O(Mc2)
WCA O(McN)

WCF O(Mc2)

We can now study algorithm 7’s time complexity. The algorithm’s time complexity is defined

as the number of iterations and arithmetic operations performed. We have a maximum of

Mc users in each subchannel of our NOMA network, which means that solving a system of

linear simultaneous equations has a time complexity of at most Mc3 on each subchannel. The

overall time complexity of linear simultaneous equations is Mc3N if N subchannels are in the

system. The total number of iterations for the inner-most loop is Mc, whereas the total number

of iterations for the inner loop (lines 7 to 16) is N. Hence, the loop’s time complexity is equal to

NMc. The loop has a higher time complexity than the greedy, WSA, WCA, and WCF algorithms.

As a result, our proposed algorithm’s worst-case run time complexity is O(Mc3N).

4.3.4 Benchmark: Optimization Problem Without Minimum Power Gap

Constraint

Section 4.2 discusses the optimization problem (P1) for sum rate minimization in a downlink

NOMA network with subchannel user’s limit, QoS, power budget, and minimum power gap

constraints. In order to understand the effect of the minimum power gap constraint, we have

removed the minimum power gap constraint from (P1); thus, this Subsection 4.3.4 presents an

optimization problem (P3) without minimum power gap constraint. As a result, Subsection

4.3.4 provides the optimization problem (P3) as a benchmark for the optimization problem

(P1). In (P3), we find the PA for sum rate maximization while keeping QoS, subchannel user’s

limit, and power budget constraints in mind. As a result, the optimization problem (P3) may be
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formulated as follows:

(P3) : max
α

Mc

∑
m=1

N

∑
n=1

sm,nRm,n, (4.17a)

s.t. (6b),(6d),(6e) and (6 f ).

We solve the optimization problem (P3) using the same steps and method as in Section 4.3;

as a result, all of the steps and explanations are overlooked due to the similarity in solving the

optimization problem.

4.4 Simulation Results

This section presents and discusses computer simulation results for our proposed optimization

problem (P1). The simulation results of the benchmark method (P3) are discussed in this section.

In all the plots, markers denote computer simulation points. In addition, we present and compare

simulation results of the greedy, WSA, WCA, and WCF algorithms in order to demonstrate their

performance for our proposed and benchmark methods. Furthermore, our simulation results for

the proposed method (P1) give the most desirable power gap value for a successful SIC process

for constraint (4.8c) and the most appropriate minimum rate requirement for constraint (4.8b).

In the simulations, we consider one BS and nine users (N = 9) who are uniformly distributed in

the cell range with a radius of 1 kilometer (km) [128]. Three users (Mc = 3) are allowed to use

one subchannel at most. The BS uses the same transmit power of 1 W on each subchannel [128].

The performance parameters for all users are obtained in the simulation across 105 channel gain

realizations of Rayleigh fading [36]. Then, we take the average of channel gain realizations of

these performance parameters as shown in algorithm 7. We assume the minimum required power

gap is 0.5 W [36]. Further, we assume that the path loss exponent is 3 and the minimum data

rate for QoS is 1 bps/Hz [64]. Table 4.2 presents the simulation parameters used to generate the

simulation results unless otherwise stated. Table 4.3 summarizes our proposed method’s system

parameters obtained in simulations for each subchannel for greedy, WSA, WCA, and WCF

algorithms. As depicted in the Table 4.3, we present each user’s PA coefficients and achievable

rates in each subchannel employing greedy, WSA, WCA, and WCF algorithms. Additionally,

the sum rate of each subchannel is shown. The sum of the PA coefficients and individual rates
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TABLE 4.2: Required system parameters for the simulation.

System Parameter Values
Channel realization (R) 105

Total number of users (T c) 9
Number of subchannels (N) 3
Maximum number of users in each subchannel (Mc) 3
Transmit power from BS to each subchannel (Pc) 1 W
Noise power (σ2) 10 mW
Minimum required power gap (Pg) 0.5 W
Minimum data rate for QoS (Rmin) 1 bps/Hz
Path loss exponent (pl) 3

TABLE 4.3: Simulation results obtained for the proposed method using
greedy, WSA, WCA, and WCF algorithm in subchannels 1, 2, and 3.

System
Parameter

Greedy WSA WCA WCF
N1 N2 N3 N1 N2 N3 N1 N2 N3 N1 N2 N3

α∗ of user 1 0.16 0.17 0.16 0.16 0.17 0.17 0.17 0.16 0.16 0.16 0.16 0.17
α∗ of user 2 0.24 0.25 0.27 0.21 0.25 0.24 0.24 0.24 0.24 0.22 0.25 0.24
α∗ of user 3 0.55 0.53 0.56 0.61 0.52 0.55 0.55 0.56 0.56 0.59 0.53 0.55

Rate of user 1 8.15 7.87 6.29 8.14 8.69 7.82 8.16 7.27 8.10 8.15 8.67 8.11
Rate of user 2 1.27 1.33 1.43 1.17 1.32 1.29 1.28 1.30 1.27 1.20 1.32 1.28
Rate of user 3 1.24 1.17 1.10 1.36 1.16 1.22 1.26 1.22 1.25 1.34 1.17 1.23

Sum rate 10.66 10.37 8.83 10.67 11.17 10.33 10.69 9.80 10.62 10.69 11.15 10.62
Network’s totat rate 29.86 32.16 31.11 32.47

in each subchannel, as indicated in Table 4.3, guarantees that constraints (4.8b), (4.8c), and

(4.8d) are fulfilled. The JFI is a well-known quantitative measure of how well a given level of

fairness is guaranteed among multiple users [93]. We use JFI to measure user fairness. The JFI

of the proposed method with the greedy algorithm for subchannel (N1), subchannel (N2), and

subchannel (N3) are 0.55, 0.55, and 0.61, respectively. For the WCA algorithm, JFI for N1, N2,

and N3 are 0.55, 0.57, and 0.55, respectively. Similarly, for the WSA and WCF algorithms, JFI

for N1, N2, and N3 are 0.55, 0.53, and 0.55, respectively.

As depicted in Figures 4.3, 4.4, and 4.5 for subchannels 1, 2, and 3, respectively, the variation of

sum rates with transmit power are demonstrated for various algorithms in the proposed method

(P1) and the benchmark method (P3). Figures 4.3, 4.4, and 4.5 illustrates that when the transmit

power of subchannels 1, 2, and 3 increases, the sum rate increases for all algorithms of proposed

and benchmark methods. Since we have removed the minimum power gap constraint in the

benchmark method (P3), the sum rate of the benchmark method must be higher than the sum

rate of the proposed method (P1), as shown in Figures 4.3, 4.4, and 4.5. Note that as transmit
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FIGURE 4.3: Sum rate against transmit power in subchannel 1 for pro-
posed and benchmark methods in a downlink transmission NOMA net-

work employing various algorithms.

power increases, the sum rate performance of all algorithms varies more. Hence, at 1 W transmit

power (Pc = 1W ), the subchannels have fewer variations in the sum rate. The WCF algorithm

improves the greedy, WSA, and WCA algorithms, it outperforms them in subchannels 1, 2, and

3 for the proposed and benchmark methods, as shown in Figures 4.3, 4.4, and 4.5. Compared to

the greedy algorithm, the WSA algorithm can prevent users from being assigned subchannels

with the worst subchannel qualities. Thus, the WSA algorithm outperforms the greedy algorithm

in all subchannels, as shown in Figures 4.3, 4.4, and 4.5. Compared to the WCA algorithm,

the WCF algorithm has only differences in reordered users based on the channel quality of

available subcarriers. Since users are selected from available subchannels, sometimes WCF has

less circumstance of picking different users in available subchannels. Hence, WCA and WCF

algorithms perform almost identically in subchannel 3 for the proposed method. However, the

WCF algorithm outperforms the WCA algorithm in subchannels 1 and 2 for the proposed method.

In the WCA algorithm, users are ordered based on their subcarrier’s poorest channel quality, and

then, WCA applies the greedy algorithm to assign subcarriers to users. Since subchannels are

not ordered in WCA, subchannel 1 of the greedy and WCA algorithms has a larger chance of
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FIGURE 4.4: Sum rate versus transmit power in subchannel 2 for pro-
posed and benchmark methods in a downlink transmission NOMA net-

work employing various algorithms.

FIGURE 4.5: Sum rate versus transmit power in subchannel 3 for pro-
posed and benchmark methods in a downlink transmission NOMA net-

work employing various algorithms.
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selecting the same users. As shown in Figure 4.3, WCA and greedy algorithms have a very small

difference in sum rate. In subchannel 2, the WSA and WCF algorithms have identical results,

and the WSA and WCF algorithms outperform the greedy and WCA algorithms (see Figure

4.4). The greedy and WSA algorithms are outperformed by the WCA and WCF algorithms in

subchannel 3.

Figure 4.6 shows the sum rate comparison for each algorithm for subchannels 1, 2, and 3 for the

proposed and benchmark methods. We compare how the algorithms perform in each subchannel

FIGURE 4.6: Sum rate comparison for each algorithm for subchannels 1,
2, and 3 for the proposed and the benchmark methods in the downlink

NOMA network.

with respect to the sum rate achieved. Since the WCF algorithm is an improvement of the

greedy, WSA, and WCA algorithms, it has a higher sum rate than the greedy, WSA, and WCA

algorithms in subchannels 1, 2, and 3 for the proposed and benchmark methods, as shown in

Figure 4.6.

Figure 4.7 depicts the sum rate as a function of power gap (Pg) for subchannels 1, 2, and 3 when

the WCF algorithm is applied to the proposed method (P1). Figure 4.8 shows how the sum

rate changes as a function of the minimum rate requirement (Rmin) for subchannels 1, 2, and

3 when the WCF algorithm is used with the proposed method (P1). According to Equations
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FIGURE 4.7: The sum rate as a function of power gap (Pg) for subchan-
nels 1, 2, and 3 when the WCF algorithm is employed in the proposed

method.

FIGURE 4.8: The sum rate as a function of minimum rate requirement
(Rmin) for subchannels 1, 2, and 3 when the WCF algorithm is employed

in the proposed method.
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(4.10) and (4.14), we have limitations on Pg and Rmin for each subchannel. Hence as can be seen

in Figures 4.7 and 4.8, we have different Pg and Rmin limits on the horizontal axis for various

subchannels. As indicated in Figures 4.7 and 4.8, the simulations are carried out in accordance

with the valid range. PA coefficients can comfortably choose higher values until a specific value

of Pg is reached. However, for higher Pg values, Eqn. (4.14) restricts the PA coefficients of users

1 to m−1 for user m. Hence, as seen in Figure 4.7, the sum rate for subchannels 1, 2, and 3

rises as Pg rises, then begins to fall as Pg increases more. Therefore, the NOMA system of the

proposed method should have Pg set to 1W,1.75W to 2.75W, and 1W to 1.5W for subchannels 1,

2, and 3, respectively, in order for it to work nicely. Similarly, PA coefficients can choose higher

values comfortably until a specific value of Rmin is reached. However, Eqn. (4.10) restricts

PA coefficients for higher Rmin values. Hence, as illustrated in Figure 4.8, the sum rate for

subchannels 1, 2, and 3 increases as Rmin increases, then starts to drop as Rmin increases further.

For the proposed method to perform efficiently, the NOMA system should have Rmin equal to

0.75 W, 0.55 W, and 0.75 W for subchannels 1, 2, and 3, respectively. With the discussion of

figures 4.7 and 4.8, we have provided an appropriate power gap value for the minimum power

gap constraint as well as the most suitable minimum user’s data rate for the QoS constraint in

each subchannel for the proposed method (P1) in a downlink NOMA network.

In Figure 4.9, we plot the sum rate of all algorithms in subchannel 3 as a function of transmit

power for two different residual components (using the imperfect SINR Eqn. (4.6)). As ε

increases, residual interference increases for all users in the NOMA network (except the weakest

user). Thus, the sum rate for the proposed method decreases. Therefore, as can be seen from the

figure, ε = 0.01 has a higher sum rate than ε = 0.05. In subchannel 3, WCA and WCF have a

very small variation in the sum rate for ε = 0.05, and WSA and WCA have a small variation

in the sum rate for ε = 0.01 The sum rate for WCA and WCF algorithms in subchannel 3 is

10.62 for ε = 0 at Pc = 1W . WCA sum rate is 6.8423 for ε = 0.01, and 4.7436 for ε = 0.05 at

Pc = 1W . The WCF sum rate is 6.8423 for ε = 0.01, and 4.7475 for ε = 0.05 at Pc = 1W . WCA

and WCF sum rate decreases by 35.57% with a 1% increase in residual interference. WCA

sum rate decreases by 55.33% with a 5% increase in residual interference, and the WCF sum

rate decreases by 55.29% with a 5% increase in residual interference. 1% increase in residual

interference results in 26.08% decrease, while 5% increase results in 47.88% decrease for the

greedy algorithm. Likewise, from Figure 4.9, the WSA algorithm rate decreases significantly
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FIGURE 4.9: Sum rate vs. transmit power for two different residual
components employing greedy, WSA, WCA, and WCF algorithms in

subchannel 3 downlink NOMA network.

by imperfect SIC. Thus, SIC has a significant impact on the proposed method. As a result,

considering the minimum power gap for the successful execution of SIC is crucial for the

proposed algorithm.

Figure 4.10 shows the WCF algorithm’s sum rate versus cell radius in km in subchannels 1,

2, and 3. We consider Rayleigh fading channel denoted by hm,n = zm,nd−pl
m,n , where dm,n is

the distance between BS and user m and zm,n ∼ C N (0, 1). As distance varies, the channel

coefficient changes. Hence, the NOMA network’s sum rate changes. The distance varies from

0.3 km to 1.2 km, and the sum rate for the WCF algorithm is plotted. The results demonstrate

that, as expected, the sum rate decreases with an increase in distance. The subchannel N2 sum

rate is always higher than the subchannels 1 and 3, regardless of distance.

Figure 4.11 depicts the sum rate versus the number of subchannels (N) employing the WCF

algorithm for the proposed method with nine users (T c = 9). As the number of subchannels

increases, users can recommend themselves to subchannels with better sets of preferences in

order to obtain a higher rate. Hence, the sum rates increase as the number of subchannels

increases in Figure 4.11.
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FIGURE 4.10: Sum rate vs. cell radius in subchannels 1, 2, and 3 for
WCF algorithm.

FIGURE 4.11: Sum rate versus the number of subchannels (N) employing
the WCF algorithm for the proposed method

4.5 Summary

We formulated and analyzed an optimization problem to maximize the sum rate supporting

the transmit power budget, QoS, minimum power gap, and maximum users per subchannel
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constraints while optimizing the SA and the PA for the downlink multicarrier NOMA network.

We framed the SA and PA as two-stage problems to ensure that the proposed method can be

solved in polynomial time. To obtain the SA, we investigated various algorithms. After obtaining

SA, the upper bounds for QoS and minimum power gap constraints for each subchannel are

computed separately. Then, the common region between these two upper limits is used to

determine the PAs. We proved that our solution is unique. Finally, a fast and low-complexity

algorithm is proposed to solve the optimization method. We presented simulation results for

the proposed method and analyzed the results of the proposed scheme with the results of the

benchmark scheme. We also compared the performance of several SA algorithms for the

proposed method. In the future, we aspire to improve the energy efficiency of our proposed

method for the study of NOMA-based downlink transmission.

Conventional wireless communication technologies cannot meet the essential requirements of 5G

wireless networks; therefore, developing new technologies for 5G networks is necessary [23]. In

recent years, NOMA and HetNet have been recognized as emerging technologies for developing

critical requirements. Chapters 2, 3, and 4 focus on the NOMA technique that enhances essential

parameters of the wireless network, like sum rate and user fairness. Chapter 5 focuses on HetNet,

the potential technique employed to increase the coverage probability parameter of the wireless

network.



Chapter 5

Power Control Algorithm to Improve

Coverage Probability in Heterogeneous

Networks

One of the main components of 5G technology is the deployment of small cells in the cellular

network, called a HetNet [129]. The objective of deploying such small cells is to improve

essential features like indoor coverage, user performance at cell-edge, spectrum efficiency

using spatial reuse, energy consumption, and capacity. In HetNet, low-power small cells (

Microcell, Picocell, and Femtocell) are overlaid with a large-power macrocell. Due to network

densification, intense proliferation, and the same frequency used in all cells, interference in the

HetNet increases [44, 130]. Consequently, the coverage performance of the cellular network

decreases. Hence, interference is one of the leading performance controlling factors in the

network [131]. In this work, we mitigate this problem.

5.1 Related Work

In [132], the authors derive the coverage probability of the network by considering blockage,

the directionality of the antenna, different fading distributions, and various tiers. In [133], the

coverage probability of the wireless network by considering the association of MIMO antennas

92
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with heterogeneous networks is obtained. Paper [133] provided opportunities for researchers

to collaborate MIMO with heterogeneous networks to work on coverage probability. The

distribution of BSs modeled as PPP or a Matérn hard-core point process (MHCPP) is matching

with today’s real-life BS distribution scenarios. Compared with the PPP model, where base

stations are randomly distributed without restriction, the MHCPP model constructed from a

PPP imposes a minimum distance between two BSs so that they are not too close. The BS

distribution using PPP is one of the most attractive models for obtaining coverage probability.

Hence, active work has been carried out for computation of coverage probability considering BS

deployment as PPP [42, 134]. In [42], the authors derived and analyzed coverage probability for

K-tier heterogeneous networks with the PPP distribution of BSs. This paper investigated both

open and closed access conditions of the network. However, in paper [135], the authors modeled

and analyzed coverage probability in HetNet with PPP applied for macrocell BS distribution and

the Poisson-point cluster process (PPCP) used for small cell BS distribution. In the article [136],

the authors obtained coverage and interference in D2D networks with the PPCP BS deployment.

In the paper [137], the coverage probability is increased for nonuniform deployment compared

to the uniform deployment of small cells. In [137], the small cell BSs are only located in the

uncovered region (outer region) of the macrocell BS, and they are not located in the covered area

(inner region) of the macrocell BS. Moreover, there are several methods to reduce interference

and improve the performance of coverage in the network. Inter-cell interference coordination

(ICIC) and intra-cell diversity (ICD) improve coverage of the cellular network [138]. In the

paper [139], the power control algorithm is used to reduce interference and improve the coverage

probability of HetNet.

The transmission power level of macrocell and small cells plays a vital role in interference and

coverage performance in HetNet. Over the past several years, transmission power has been

the most crucial aspect in the management of interference in both the uplink and downlink of

cellular networks. The higher transmission power of smaller cells may contribute to better QoS

but, at the same time, may cause sufficient interference to other neighboring users of adjacent

cells in the network and may lead to degradation in coverage performance. However, a precise

selection of transmit power in the small cells can help in the management of interference in the

network [139–141]. In [140], the authors use game theory to reduce the power consumption

of femtocell BS and hence improve SINR and outage probability performance for femtocell
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users of HetNets. In this work [140], the authors repeated the steps of the decision in an almost

predictable way to reach a final decision. In the article [139], authors designed a power control

algorithm to update the transmission power and improve the coverage probability of interference-

limited networks (ignored noise) of [42]. Taking inspiration from their work, we have proposed

a power control algorithm for K-tier heterogeneous networks to update the transmit power to

increase the coverage probability of interference-limited networks of [42]. In the algorithm,

we renew the transmit power of small cells in such a way that it minimizes the interference of

another user served by the network. Our proposed algorithm for power control improves the

coverage probability more than [139]. Moreover, the convergence rate of our proposed algorithm

is higher than the convergence rate of paper [139].

The rest of this Chapter is structured as follows. The system model for the HetNet is described

in Section 5.2. In Section 5.3, we introduce the proposed power control algorithm. In Section

5.4, we present simulation results for the validation of theoretical analysis.

5.2 System Model

User
User

User
User 

User

User

Macro BSFemto BS Pico BS

FIGURE 5.1: Representation of a three-tier HetNet consisting of a com-
posite of macro, pico, and femto BSs. Only a single macrocell is shown

in the Figure.

Figure 5.1 illustrates the three-tier HetNet. Here, we investigate three types of cells: macrocell,

picocell, and femtocell. Each tier BS differs in terms of the transmit power, target SINR, and
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density of the BS in the HetNet [42]. Microcells have the highest and femtocells have the lowest

coverage areas, and picocells have a coverage area in their midst [43]. The transmission power

of each cell depends on the coverage area provided by the particular cell. Large-power macrocell

BS provides a larger coverage area (a few km), hence requiring high transmit power (40 W to

100 W) at the BS. Low-power femtocell BS provides a smaller coverage area (less than 100

m) and hence requires low transmit power (less than 200 mW) at the BS. Picocell BS provides

100 m to 200 m coverage area, hence requiring 250 mW to 1 W transmit power [44, 45]. The

coverage area of small cells increases when they are away from the macrocell BS. Therefore,

whenever macro cell coverage is insufficient, small cells play an essential role in improving

coverage [42].

We use stochastic geometry to model the system, BSs in the ith tier are spatial distributed in R2

as a PPP Φi of density λi, transmit power Psc
i , and target SINR Ti [42]. In Figure 5.2, we provide

FIGURE 5.2: The system model shows coverage regions for the Three-
Tier Heterogeneous Network. Macrocells are indicated by triangles
(Pink), Picocells are indicated by stars (Blue), and Femtocells are indi-

cated by circles (Red).

transmitting power to microcells, picocells, and femtocells. Standard values are 50 W, 2 W, and

0.2 W for microcell, picocell, and femtocell, respectively. In system model, BSs of Macrocell,

Picocell, and Femtocell are distributed with densities of λ1,λ2,λ3, where λ2 = 2λ1,λ3 = 5λ1.

In our two-dimensional (2D) system model, the BSs are distributed according to the PPP, and

Voronoi tessellation is applied to obtain the coverage area of the BS. Voronoi tessellation is

the most useful method to obtain a random coverage area of cells in a system model of plane
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R2 [142]. In our model, i ∈ {1,2,3}, where i = 1 indicates macrocell. In 2-tier networks, i =

2 indicates femtocells, and in 3-tier networks, i = 2 and 3 indicate picocells and femtocells,

respectively. Hence, each tier can uniquely characterized by the tuple {Psc
i ,Ti,λi}. We organize a

conventional mobile user to reside at the origin. The fading coefficient between the user and BS

is denoted by hx and hx ∼ exp(1) is Rayleigh fading with mean 1, and assumed as independent

and identical distribution (IID). ∥xi∥−pl is the standard path loss function, pl indicates the path

loss exponent, and typically it is greater than 2. We use the same path loss exponent for all K-tier

HetNet. From the previous assumptions, the received power by a user located at the origin, from

the BS at location xi ∈Φi in the ith tier is represented by [42]:

Pr = Psc
i hi ∥xi∥−pl (5.1)

Considering that the user connected to BS of location xi, then resulting received SINR can then

expressed as [42]:

SINR(xi) =
Psc

i hi ∥xi∥−pl

∑
K
j=1 ∑x∈Φ j\xi Psc

j h j
∥∥x j
∥∥−pl

+σ2
(5.2)

The first term ∑
K
j=1 ∑x∈Φ j\xi Psc

j h j
∥∥x j
∥∥−pl in the denominator denotes the aggregate interference

from all other BSs, excluding the marked BS which is located at xi, while the second term σ2

represents the noise power. The coverage probability in a K-tier HetNet can be modeled as [42]:

Pc({Psc
i } ,{Ti} ,{λi}) = P

( ⋃
i∈κ,xi∈Φi

SINR(xi)> Ti

)
(5.3)

In the article [42], the authors obtained derivation of coverage probability for open access for

the randomly located user, and the obtained result indicated as follows:

Pc({Psc
i } ,{Ti} ,{λi}) =

K

∑
i=1

λi

∫
R2

eme

(
−σ2Ti

Psc
i
∥xi∥pl

)
dxi (5.4)

where,

m =−c(pl)
(

Ti

Psc
i

) 2
pl ∥∥x2

i
∥∥ K

∑
n=1

λnPsc
n

2
pl ,

c(pl) =
2Π2

pl
csc
(

2Π

pl

)
.
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The coverage probability for the interference-limited network (no noise) at randomly resided

user simplified to the following [42]:

Pc({Psc
i } ,{Ti} ,{λi}) =

Π

c(pl)
∑

K
i=1 λiPsc

i
2
pl T
− 2

pl
i

∑
K
i=1 λiPsc

i
2
pl

(5.5)

5.3 Algorithm

Coverage probability (equation (5.4) and equation (5.5)) of HetNet is a concave up and mono-

tonically decreasing function. The concave up and monotonically decreasing function must

satisfy condition T2 ≥ T1 [139]. Therefore, in the overall discussion, we pay special attention

to the condition T2 ≥ T1. In our proposed power control algorithm, we use different target

Signal-to-Interference ratio (SIR) Ti for different tiers to make condition T2 ≥ T1 realistic.

In paper [42] shows, each mobile user connects to its most strong BS instantaneously, i.e., to the

BS that gives the largest received SINR. Mathematically, the typical user is in the coverage if

the following condition is satisfied:

max
x∈Φi

SINR(x)> Ti, i ∈ {1,2,3} (5.6)

From equation (5.6), In a 2-tier network, the typical user has the selection choice to connect either

femto BS or micro BS. Usually, a user connecting to the femto BS provides high throughput

coverage in the indoor environment (where this is most required) and hence experiences better

QoS compared to the micro BS [143]. To fulfill these, the SIR target of femto BS should be

greater than or equal to the SIR target of micro BS, i.e., T2 ≥ T1 [139]. Generally, the SIR

provided by femto BS should be higher to maintain the above situation. Therefore, we need

to increase the transmit power of the femtocell. However, increased femtocell transmit power

can act as additional interference if the user has already connected to another cell (microcell),

consequently causing a decrease in the coverage probability of the HetNet. In another case,

decreasing the small BSs’ transmit power mitigates network interference. As a result, other

BSs provide improved SIR value to the user. Accordingly, the maximum SIR in equation (5.6)

increases, and there is an improvement in the coverage probability of the network. Therefore, the
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power control algorithm aims to decrease the transmission power of small BSs and ensure the SIR

is still high but the energy consumption is low. In other circumstances, increasing the transmit

power of macrocells improves the coverage probability of HetNet, and decreasing the transmit

power of macrocells reduces the coverage probability of HetNet. However, there is very less

impact on the coverage probability of the HetNet mentioned in equation (5.5). Hence, updating

the transmit power of microcells in the HetNet is futile. The proposed power control system is

shown in the Figure 5.3. In an iterative process of the power control algorithm, each time, the

Updated 

Power

Current 

SIR
UserSmall cell BS

Updating 

Power New SIR

FIGURE 5.3: Power control system.

mobile user measures SIRs arriving from all small cell BSs of K-tier HetNet. After analyzing

the current conditions of the network, the mobile user sends back these SIRs information to an

appropriate BS for modification of existing power. Based on the current information from the

mobile user, BSs update their transmit power, and again, mobile users get new SIRs from the

BSs. Once again, the mobile user measures SIRs and sends back this information to BSs. This

process continues until it starts converging to the SIRs. The convergence of SIR values in the

iterations indicates that we have reached feasible SIRs where the network consists of the lowest

interference in the network. In this manner, we approach optimal values of the transmit power

of BSs where interference provided by each BS to other BSs is lowest. In the process, all these

SIRs are satisfied at the same time.

The proposed power control algorithm for K-tier heterogeneous networks has been provided in

this Chapter. Initially, we initialized the system parameters required in the network. In steps 7 to

17 of an algorithm, we updated the transmission power of all small cells present in the network,
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Algorithm 8 Proposed power control algorithm in a K-tier heterogeneous network

1: Requires: {λ1,λ2, · · · ,λK}, {T1,T2, · · · ,TK};
2: Requires:

{
Psc

1 ,Psc
2 , · · · ,Psc

K
}

;
3: Requires: pl, t;
4: Evaluate small cells SIRs and initial Pc at t;
5: for (until SIRs start repeating for SCs) do
6: Calculate SIRs for small cells at t +1;
7: if SIR2(t +1)> 1 then
8: Psc

2 (t +1) = T2×Psc
2 (t)

SIR2(t+1)
9: else

10: Psc
2 (t +1) = T2×Psc

2 (t)×SIR2(t +1)
11: end if
12: if SIR3(t +1)> 1 then
13: Psc

3 (t +1) = T3×Psc
3 (t)

SIR3(t+1)
14: else
15: Psc

3 (t +1) = T3×Psc
3 (t)×SIR3(t +1)

16: end if
17: proceed if-else for K-tier cells;
18: Update Pc(t +1) using equation (5.5) for updated Psc

i ;
19: end for
20: Declare updated Psc

i of small cells as a optimal powers;
21: Declare updated Pc as a optimal value;

then replaced the updated power in equation (5.5) to find the updated coverage probability.

We repeat this process as long as SIRs of small cells start converging. We have proposed an

algorithm to implement the idea, as mentioned above. We incorporate the power budget of each

tier in the network. The typical small cell transmission power range is specified in Section 5.2.

Here, we ensure the power of each tier is within their power constraint. Initially, we assume the

transmit powers of all the BSs are fixed.

5.4 Simulation Results

In this Section, we analyzed the coverage probability performance of the proposed power control

model. Also, we compared our proposed power control method performance with the existing

power control method [139]. To present a quantitative comparison with an existing power

control method, we fixed the same system parameter values used in the article [139]. As per

the discussion in Section 5.3, we can observe that all the results (Figure 5.5, Figure 5.6, and
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Figure 5.4) obtained for an existing power control method as well as for the proposed power

control method successfully increases the coverage probability of [42] if the necessary condition

T2 ≥ T1 is satisfied. For a more precise explanation, we changed T2 from 1 decibel (dB) to -1

dB, and the result in Figure 5.4 shows that coverage probability successfully increases for the

condition T2 ≥ T1. This condition satisfies the existing power control method as well as the
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FIGURE 5.4: Coverage Probability of three-tier heterogeneous network
with three cases: with fixed power, with existing power control method,

and with the proposed power control method (for T2 = -1 dB)

proposed power control method for general K-tier HetNet. For result in Figure 5.4 we used

K = 3,Psc
1 = 25×Psc

2 = 250×Psc
3 , pl = 3,λ3 = 5×λ1,λ2 = 2×λ1.

In two-tier HetNet, Figure 5.5 shows that the proposed power control method improves the

coverage probability compared to the existing power control method and fixed power [42]. For

result in Figure 5.5 we used K = 2,Psc
1 = 25×Psc

2 , pl = 3,λ2 = 2×λ1. When T1 = -5 dB, then

the coverage probability for fixed power is 0.80, 0.84 for the existing power control method, and

0.89 for the proposed power control method. At T1 = -5 dB, the existing power control method

increases coverage probability by 5.0 percent compared to fixed power, and the proposed power

control method increases coverage probability by 11.25 percent compared to fixed power. The

proposed power control method increases coverage probability by 5.95 percent compared to the

existing power control method.
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FIGURE 5.5: Coverage Probability of two-tier heterogeneous network
with three cases: with fixed power, with existing power control method,

and with the proposed power control method (for T2 = 1 dB).

In three-tier HetNet, Figure 5.6 shows that the proposed power control method improves the

coverage probability compared to the existing and fixed power control methods. For result
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FIGURE 5.6: Coverage Probability of three-tier heterogeneous network
with three cases: with fixed power, with existing power control method,

and with the proposed power control method (for T2 = 1 dB)

in Figure 5.6 we used K = 3,Psc
1 = 25×Psc

2 = 250×Psc
3 , pl = 3,λ3 = 5× λ1,λ2 = 2× λ1.

When T1 = -5 dB, then the coverage probability for fixed power is 0.75, 0.82 for the existing
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power control method, and 0.89 for the proposed power control method. At T1 = -5 dB, the

existing power control method increases coverage probability by 9.33 percent compared to

fixed power, and the proposed power control method increases coverage probability by 18.67

percent compared to fixed power. Compared to the existing power control method, the proposed

power control method increases coverage probability by 8.54 percent. Therefore, by comparing

numerical results from Figure 5.5 and Figure 5.6, the three-tier HetNet performance is better

than the two-tier HetNet for the proposed power control method.

5.4.1 Comparison with an Existing Power Control Method.

The proposed power control method increases not only the coverage probability compared to the

existing power control method but also the convergence rate, which is faster than the existing

power control method. Figure 5.7 shows the iterations comparison for the proposed and existing
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FIGURE 5.7: Iterationwise comparison of convergence of coverage prob-
ability with two cases: with existing power control method and with the

proposed power control method

power control methods for both two-tier HetNet and three-tier HetNet. In both two-tier HetNet

and three-tier HetNet, the existing power control method required approximately 20 iterations to

converge, whereas the proposed power control method required just eight iterations to converge.

Hence, convergence performance is also better for the proposed power control method than

the existing power control method. Additionally, Table 5.1 presents the number of iterations



Chapter 5. Power Control Algorithm to Improve Coverage Probability in Heterogeneous
Networks 103

TABLE 5.1: Number of iterations with two cases: the existing and
proposed power control methods.

Two-tier HetNet Three-tier HetNet

Existing
power
control
method

Proposed
power
control
method

Existing
power
control
method

Proposed
power
control
method

Number of iterations 20 8 20 8

with two cases, the existing power control method and the proposed power control method for

downlink heterogeneous networks.

As discussed in Section 5.3, during successive iterations, if SIRs of small cells repeat with some

accuracy, then the coverage probability of the network converges. In Figure 5.8, the SIR of

picocell and SIR of femtocell converged on the eighth iteration. Therefore, the result in Figure
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FIGURE 5.8: Iterationwise comparison of convergence of SIR2 and
SIR3 of three-tier heterogeneous network for the proposed power control

method

5.8 is a validation of our proposed theory. Moreover, the result from Figure 5.8 is the justification

of the conclusion obtained in Figure 5.7, which has shown that the three-tier heterogeneous

network converges to approximately eighth iteration for the proposed power control method.
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5.5 Summary

In this work, we proposed the power control algorithm to improve coverage probability in the

downlink communication of K-tier heterogeneous networks. In our system model, we used

the PPP for the distribution of BSs of three-tier heterogeneous networks. The proposed power

control algorithm increases results for necessary condition T2 ≥ T1. Our algorithm updates the

transmission power of the BS of all low-power small cells of the heterogeneous network to

minimize interference present in the network. It consequently increases coverage probability

in the heterogeneous network. The numerical result shows that the proposed method increases

coverage probability more than the existing power control method. We also demonstrate that the

convergence rate of the proposed power control algorithm is faster than the convergence rate

of the existing power control algorithm. Furthermore, it is observed that the proposed power

control algorithm converges if the SIRs of the small cell repeat for successive iterations. In the

proposed power control algorithm, power control is distributed to all users and, therefore, does

not require any centralized controller. Thus, the computational complexity in the network is

reduced.

Hybrid systems can improve the system parameters of wireless networks, particularly when

NOMA is combined with other techniques. This motivates us to use NOMA in HetNets to

enhance system parameters. Chapters 2, 3, and 4 solely deal with the NOMA system, and

Chapter 5 deal only with the HetNet system. However, the next Chapter 6 employs hybrid

systems combining NOMA with HetNet to enhance the sum rate and outage probability further.



Chapter 6

Optimal Power Allocation for Downlink

NOMA HetNets to Improve Sum Rate and

Outage Probability

HetNets are composed of low-power small cells (Microcell, Picocell, and Femtocell) super-

imposed over a high-power macrocell [144]. It is anticipated that the deployment of these

small cells over macrocell can enhance essential parameters such as outage probability, user

performance at the cell edge, spectrum efficiency, energy consumption, and sum rate [145].

However, interference in HetNets rises as a result of network densification, intensive growth,

and the usage of the same frequency by all cells [40, 41]. As a result, the cellular network’s

outage and data rate performance degrades. Hence, interference is a significant performance

constraint in the network [39]. Using NOMA in HetNets helps reduce cross-tier interference

and improve system sum rate and outage probability, which we do in this Chapter.

The frequency band in typical OFDMA HetNets may be split into many sub-frequency bands,

and users in the macrocell and small cells are allocated to various sub-frequency bands to

minimize cross-tier interference [146]. However, in NOMA HetNets, SIC is used at the receivers

to enable numerous users to be multiplexed on the same sub-frequency band, resulting in a

higher sum rate than in OMA [147]. Strong users can eliminate interference from weak users

multiplexed on the same sub-frequency band in the NOMA SIC process. Because several users

105
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in the NOMA network share the same time/frequency resource, different powers are assigned

to users, dependent on channel circumstances. PA coefficients can be used to provide different

levels of power to different users. The inappropriate selection of PA can reduce the sum rate

and increase the outage probability of the NOMA network. As a result, PA is a vital tool for

the NOMA network’s sum rate and outage improvement. Hence, this Chapter focuses on the

minimization of outage probability and maximization of sum rate for downlink NOMA HetNets

obtaining optimal PA.

The rest of the Chapter is organized as follows. In Section 6.1, we will present related works.

We present the system model in Section 6.2. In Section 6.3, we derive the optimal PA solution

for the proposed optimization problem. Section 6.4 presents simulation results and relevant

discussions for the proposed scheme. Finally, Section 6.5 provides concluding remarks.

6.1 Related Work

The downlink NOMA network’s outage probability has been addressed in a few studies. the

work [148] investigates the optimal outage probability problem in the NOMA network while

taking power allocation, decoding order selection, and user grouping into consideration. The

outage probability and ergodic sum rate of NOMA for randomly deployed users with optimal PA

are investigated in paper [149] under perfect and imperfect CSI. The optimum PA is explored

in [150] in terms of data rate and outage probability under CSI to optimize fairness among users

of a NOMA downlink network. In work [151], closed-form expressions for outage probability

and system capacity in simultaneous wireless information and power transmission to NOMA

networks are obtained and investigated. The outage probability and diversity order by the

cooperative NOMA method are studied in the article [105]. In paper [152], the authors come up

with a simple way to find outage probability in downlink HetNet with flexible cell association.

The HetNet is modeled as a multi-tier cellular network in which each tier’s BSs are distributed

at random locations. In [153], a closed-form equation for secrecy outage probability in HetNets

and K-tier HetNets based on stochastic geometry is derived with a BS association constraint.

In addition to improving outage probability, another key objective of this Chapter is to maximize

the sum rate. For NOMA based HetNets, an iterative subchannel allocation and PA algorithm
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is offered to optimize the sum rate of small cells within a limited number of iterations [154].

The subchannel assignment issue and the PA problem in downlink NOMA based HetNets are

investigated in article [155]. In [56], the authors find the best PA technique for NOMA networks

to maximize the sum rate. They do this while meeting minimum user rate requirements. The

work [51] determines the maximum sum rate of a downlink two-user NOMA network under the

assumption of an imperfect SIC and minimal QoS constraint. In [57], the authors look into the

best PA for a sub-carrier-based NOMA network to maximize its sum rate under a minimum rate

and a total power constraint. Work [58] maximizes the total rate using optimum PA in a MIMO

NOMA network with layered transmissions. The authors offer an alternating maximization

algorithm for instantaneous CSI and statistical CSI at the BS. [59] investigates the subcarrier and

PA for a single-cell multicarrier downlink NOMA network. The Double Iterative Waterfilling

Algorithm is presented to maximize the NOMA network’s sum rate. Paper [36] proposes a

multi-objective optimization framework for effectively allocating PA in a downlink transmission

NOMA network, which maximizes the total rate while reducing transmit power and considering

the QoS, SIC, and transmit power budget.

6.2 System Model
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SCU 2
SCU 1

SCU 2

SCU 1

SBS 1

SBS 2

SBS 3

MBS

MCU 2

MCU 1

Desired signal
Interference 
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FIGURE 6.1: A downlink NOMA-based Heterogeneous Network

This section introduces the downlink NOMA-based HetNets system model. Let us consider a

downlink NOMA-based two-tier heterogeneous wireless network, as shown in Figure 6.1. Msc
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small cells are superimposed on a single macrocell in the network. Each small cell has Nsc small

cell users, while each macrocell has K macrocell users. Let’s denote dsc
m,n as the user’s distance

from small cell BS m to small cell user n. Let’s denote hsc
m,n as Rayleigh fading coefficient from

small cell BS m to small cell user n, where hsc
m,n = zsc

m,ndsc
m,n
−pl , zsc

m,n is a Rayleigh distribution

and pl is the path loss exponent. Let’s denote gm,n as a complex Rayleigh fading coefficient

from macrocell BS to small cell user n in small cell m, zm,n = C N (0,σ2) is the Additive

AWGN noise. Let’s indicate xm,n is data intended for nth user in small cell m. Let’s represent

wm,n interference plus noise for nth user in small cell m. Without losing generality, we arrange

channel coefficients on small cell BS m in descending order as
∣∣∣hsc

m,1

∣∣∣≥ ∣∣∣hsc
m,2

∣∣∣≥ ·· · ≥ ∣∣∣hsc
m,Nsc

∣∣∣.
According to NOMA’s principles, the PA coefficients must be sorted as αsc

m,1 ≤ αsc
m,2 ≤ αsc

m,3 · · · ≤

αsc
m,Nsc , where αsc

m,n PA coefficient from small cell BS m to small cell users n. Due to low power

and intense penetration loss in small cell, we can ignore interference between different small

cell users [146, 156]. The SINR of NOMA network received at the nth small cell user of small

cell m can be written as [36],

SINRsc
m,n =

αsc
m,nPsc

∣∣hsc
m,n
∣∣2∣∣hsc

m,n
∣∣2 Psc ∑

n−1
j=1 αsc

m,n +Pk |gm,n|2 +σ2
(6.1)

where Psc is transmit power from small BS. According to Shannon’s capacity formula, the data

rate of small cell user n in small cell m is written as [36],

Rsc
m,n = Bsc log(1+SINRsc

m,n) (6.2)

where, Bsc is bandwidth of small cell. For simplicity, we use Bsc = 1 Hz. If the data rate falls

below the user’s required minimum data rate at any point, the user can experience an outage. As

a result, the outage probability of small cell user n in small cell m is expressed as,

Outage Probability = P(Rsc
m,n < Rsc∗

m,n) (6.3)

where, Rsc∗
m,n is target rate of small cell user n of small cell BS m.
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6.3 Proposed Method

This section determines the best PA solution that maximizes the sum rate and minimizes the

outage probability in NOMA-based HetNets. To achieve optimal PA coefficient while ensuring

QoS for user n in small cell m, we choose αsc
m,n such that, Rsc

m,n ≥ Rsc∗
m,n. To determine the PA

coefficient for user 1 (nearest user) in small cell m, we can describe the achievable rate of user 1

as,

Rsc
m,1 = log

1+
αsc

m,1Psc
∣∣∣hsc

m,1

∣∣∣2
Pk
∣∣gm,1

∣∣2 +σ2

 (6.4)

To obtain PA coefficient αsc
m,1, we use Rsc

m,1 ≥ Rsc∗
m,1, solving, we get,

αsc
m,1Psc

∣∣∣hsc
m,1

∣∣∣2
Pk
∣∣gm,1

∣∣2 +σ2
≥ 2Rsc∗

m,1−1

Let’s denote the target SINR for user n on small cell m as, ξn = 2Rsc∗
m,n−1, solving, equation of

αsc
m,1 can be written as,

α
sc
m,1 ≥

ξ1(Pk
∣∣gm,1

∣∣2 +σ2)

Psc
∣∣∣hsc

m,1

∣∣∣2 (6.5)

To obtain PA coefficient αsc
m,2, we can use Rsc

m,2 ≥ Rsc∗
m,2, solving, we get,

αsc
m,2Psc

∣∣∣hsc
m,2

∣∣∣2
αsc

m,1Psc
∣∣∣hsc

m,2

∣∣∣2 +Pk
∣∣gm,1

∣∣2 +σ2
≥ 2Rsc∗

m,2−1

solving, αsc
m,2 equation can be written as,

α
sc
m,2 ≥

ξ1ξ2(Pk
∣∣gm,1

∣∣2 +σ2)

Psc
∣∣∣hsc

m,1

∣∣∣2 +
ξ2(Pk

∣∣gm,2
∣∣2 +σ2)

Psc
∣∣∣hsc

m,2

∣∣∣2
Therefore, using the deduction method and taking the lower limit of αsc

m,n, the PA coefficient

for user n in small cell m can be written as shown in equation (6.6). This equation can be

expressed in terms of previously determined PA coefficients, which are as shown in equation

(6.7). Thus, we achieve the optimal αsc
m,n in the NOMA-based HetNets while adhering to the



Chapter 6. Optimal Power Allocation for Downlink NOMA HetNets to Improve Sum Rate and
Outage Probability 110

α
sc
m,n =

n

∑
i=1

(
ξi

(
1+

n−1

∑
j=i+1

ξ j︸ ︷︷ ︸
ST

+Sum of all possible two product terms of ST+

Sum of all possible three product terms of ST+ · · ·

)ξn(Pk |gm,i|2 +σ2)

Psc
∣∣∣hsc

m,i

∣∣∣2
)

(6.6)

α
sc
m,n =

n−1

∑
i=1

(
α

sc
m,i

(
1+

n−1

∑
j=i+1

ξ j︸ ︷︷ ︸
ST

+Sum of all possible two product terms of ST

+Sum of all possible three product terms of ST+ · · ·

))
+

ξn(Pk |gm,n|2 +σ2)

Psc
∣∣hsc

m,n
∣∣2

(6.7)

QoS constraint. In the context of the preceding description, we now propose algorithm 9 for

acquiring the optimum sum rate and outage probability with PA in a downlink NOMA-based

HetNets while sticking to the QoS constraint. We assume that all users’ target rates Rsc∗
m,n are the

Algorithm 9 Outage probability and sum rate in small cell of NOMA based HetNets

1: Requires: S,Pk,Psc,pl,Msc,Nsc, σ2.
2: x = zeros(1,S);
3: Obtain hsc

m,n and gm,n;
4: Generate equally spaced Rsc∗ vector.
5: for i = 1 to length(Rsc∗) do
6: Compute αsc

m,n from eqn. (6.7);
7: Find data rates for each user in small cells;
8: for u = 1 to S do
9: if Rsc

m,n(u)≤ Rsc∗(i) then
10: x(u) = x(u)+1 for each users
11: end if
12: end for
13: OP = x/S for each user;
14: Calculate Sum rate in each small cell;
15: end for

same in the algorithm. Lines 13 and 14 provide the outage probability and sum rate, respectively.

We can now examine the time complexity of our proposed algorithm. The algorithm’s if

statement does not affect the time complexity. The time complexity of the αsc
m,n equation is
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Nsc. Since the inner loop (lines 5 to 12) repeats S times, the worst-case time complexity of

the inner loop is S, provided S is greater than Nsc. Let us suppose R has a length of L. The

outer loop repeats L times, giving a worst-case time complexity of LS. Consequently, the

worst-case run time complexity of our proposed algorithm is O(LS). Thus, we have developed

a simple algorithm that has a low time complexity and can be used with real-world wireless

communication networks.

6.4 Simulation Results

This section presents and discusses the simulation results for our proposed problem. Furthermore,

we compare the simulation results of the proposed method with OMA to demonstrate comparable

performance. Unless otherwise specified, Table 6.1 contains the simulation parameters used to

obtain all the simulation results. In the simulation, we obtain the performance parameters for all

users across 105 Rayleigh fading channel gain realizations (R), and then we take the average of

these performance parameters. The system parameters obtained in simulations for our proposed

TABLE 6.1: System parameters required for simulation.

System Parameters Values
Channel realization (R) 105

Number of small cells (Msc) 1
Number of users in small cell (Nsc) 2 and 3
Total transmit power from macrocell BS (Pk) 1 Watt
Total transmit power from small cell BS (Psc) 0.1 Watt
Variance of AWGN noise (σ2) 10−4

The minimum required rate for QoS (Rsc∗
min) 1 bps/Hz

Path loss exponent (pl) 3

method are summarised in Table 6.2. We provide the PA coefficients and the achievable rates

for each user in a small cell for two and three user cases for the proposed method in Table 6.2.

Additionally, the sum rate for two and three users in small cell is shown. The PA coefficients

are between 0 and 1, and their sum equal to 1 indicates that users take power in such a way that

their total power equals Psc, as seen in Table 6.2. Individual rates in Table 6.2 ensure that each

user’s minimum rate constraint is fulfilled.
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TABLE 6.2: Simulation results obtained for the proposed method.

System
Parameters

Obtained values
2 Users 3 Users

αsc
1 0.1845 0.1924

αsc
2 0.8155 0.2420

αsc
3 - 0.5656

Rsc
1 1.0000 bps/Hz 1.0000 bps/Hz

Rsc
2 4.1729 bps/Hz 1.0000 bps/Hz

Rsc
3 - 2.9909 bps/Hz

Sum rate 5.1729 bps/Hz 4.9909 bps/Hz

Figures (6.2) and (6.3) depict the fluctuation of outage probability with target rate for the

proposed NOMA method and OMA method for two and three users in a small cell of NOMA-

based HetNets. The outage probability of NOMA-based HetNets outperforms the OMA method
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FIGURE 6.2: Outage probability Vs. target Rate for the proposed NOMA
method and OMA method for two users case in a small cell of NOMA-

based HetNets.

irrespective of target rates, as seen in Figures (6.2) and (6.3). This is obvious because PA

coefficients are dynamically modified whenever the channels and the target rates change. It’s

straightforward to notice in Figures (6.2) and (6.3) that the small cell user’s performance worsens

as the target rate rises. This should happen because the small cell user’s chances of meeting the
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FIGURE 6.3: Outage probability Vs. target Rate for the proposed NOMA
method and OMA method for three users case in a small cell of NOMA-

based HetNets.

target rate reduces as the target rate rises. Hence, Rsc∗
min must be smaller in order for the proposed

and OMA methods to perform better for two and three users, as seen in Figures (6.2) and (6.3).

In Figure (6.2), we can observe that the strong user performs well for the proposed method,

but the weak user reaches an outage. In the proposed method, the far user’s outage increases

rapidly for the initial Rsc∗
min, and beyond 5 bps/Hz, the far user is continuously in an outage. The

strong and weak user outage performance is almost the same for the OMA method. The OMA

method shows a transition around values of 1 to 5 bps/Hz for both users and beyond that, users

are always in an outage. Thus, for two users in small cell, NOMA-based HetNets outperform

the OMA method. In Figure (6.3), we can observe that users 1 and 2 outage performance is

satisfactory for all Rsc∗
min in the proposed method, but the weakest user is quickly approaching

outage. The outage performance of user 3 has quite a sharp transition around 0.5 to 3.5 bps/Hz,

and exceeding that, user 3 is always in an outage. The outage of all users is almost the same for

the OMA method. Initially, users show transition around values 0 to 3 bps/Hz; after that, they

are always in an outage. Thus, NOMA-based HetNets outperforms the OMA method for three

users in small cell.
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The change of sum rate with transmit power is shown in Figures (6.4) and (6.5) for the proposed

NOMA and OMA methods for two and three users in a small cell of NOMA-based HetNets.
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FIGURE 6.4: Sum rate versus transmit power for proposed NOMA
method and OMA method for two users case in a small cell of NOMA-

based HetNets.

Figures (6.4) and (6.5) show that when transmit power increases, the sum rate of NOMA-based

HetNets and OMA methods for two and three users increases as well. Given that we use the

QoS constraint to obtain the optimum PA in the proposed method, the proposed method’s sum

rate may be higher than the OMA method, as shown in Figures (6.4) and (6.5). The NOMA sum

rate outperforms the OMA sum rate because each user in OMA must share bandwidth with all

other users compared to NOMA, where each user shares the entire bandwidth. Additionally, in

Figures (6.4) and (6.5), the separation between NOMA and OMA sum rates increases as transmit

power increases. This happens because PA is inextricably linked to the SIC process. The user

with the small PA is greatly affected by noise when the BS’s transmit power is low, resulting in

a sum rate degradation of NOMA compared to OMA. For low transmit power, this is exactly

what we see in Figures (6.4) and (6.5). The receiver can detect the signal more accurately, and

SIC can be carried out more efficiently if the transmit power is sufficiently high, resulting in a
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FIGURE 6.5: Sum rate versus transmit power for proposed NOMA
method and OMA method for three users case in a small cell of NOMA-

based HetNets.

significant rate increase. As a result, at higher transmit power, the NOMA sum rate increases

more than the OMA sum rate, as illustrated in Figures (6.4) and (6.5).

6.5 Summary

This Chapter aims to find the optimal PA problem for downlink transmission NOMA-based

HetNets to optimize the sum rate and outage. We devised a problem to maximize the sum rate

and minimize the outage probability while adhering to the minimum data rate requirement with

optimal PA coefficients. A novel technique is investigated to get the solution of the proposed

method in a NOMA-based HetNets for downlink transmission. In the small cell of NOMA-

based HetNets, we derived a generalized optimal PA coefficient equation. We then offered a

low-complexity, fast algorithm for our proposed method to maximize the sum rate and minimize

outage probability. It is demonstrated that the proposed method functions efficiently in a NOMA

network for downlink communication. In this Chapter, we presented simulation results for the

proposed method and compared them to results from the OMA scheme.



Chapter 7

Conclusions

Chapter 2 introduced a MOO scheme to investigate the trade-off between sum rate and user

fairness for downlink transmission NOMA networks. The study examined a novel approach and

demonstrated that the proposed technique works well for the NOMA network. We formulated

an original MOO problem for joint maximization of sum rate and user fairness to optimize

PA incorporating transmit power and QoS requirement constraints. Using the weighted sum

method, we converted a MOO problem into a single-objective optimization problem. To solve

the optimization problem, we employed the Lagrange dual decomposition method and KKT

conditions. Finally, simulation results demonstrated joint maximization of sum rate and user

fairness with optimal PA for downlink NOMA networks.

Chapter 3 presented a MOO method for investigating the trade-off between sum rate and user

fairness in downlink communication NOMA networks, including the minimum power gap for

successful SIC constraint. The chapter examines a novel method and shows that the proposed

method works effectively in downlink NOMA networks. First, we formulated the MOO problem

for jointly maximizing sum rate and user fairness while optimizing PA under a minimum power

gap among users, transmit power, and QoS requirement constraints. Then, we transformed a

MOO problem into a single-objective optimization problem using the weighted sum method.

To solve the optimization problem, we employ the Lagrange dual decomposition method and

the KKT conditions. Finally, simulation results show how downlink NOMA networks can

obtain optimal PA to maximize the sum rate and be fair to all users while maintaining a quick
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convergence rate for the proposed method. We also examined how well our method performed

compared to benchmark methods.

The sum rate maximization problem is formulated and analyzed in Chapter 4 to optimize SA

and the PA, incorporating the transmit power budget, QoS, minimum power gap, and maximum

users per subchannel constraints for the downlink multicarrier NOMA network. We set up the

SA and PA as two-stage problems in order to ensure that the proposed method can be solved in

polynomial time. We investigated various algorithms to obtain the SA. After obtaining SA, the

upper bounds for QoS and minimum power gap constraints for each subchannel are computed

separately. Then, the PAs are calculated using the common region between these two upper

bounds. We have shown that our solution is unique. A fast and low-complexity algorithm

is proposed to solve the optimization method. Finally, we presented simulation results for

the proposed method and analyzed the results of the proposed method with the results of the

benchmark method. For the proposed method, we also compared the performance of several SA

algorithms.

To improve the coverage probability in the downlink transmission of K-tier heterogeneous

networks, we proposed the power control algorithm in Chapter 5. We used the PPP in our

system model to distribute BSs of three-tier heterogeneous networks. The proposed power

control algorithm increases results for necessary condition T2 ≥ T1. Our method changes the

transmission power of the BS of all low-power small cells in a heterogeneous network to keep

interference to a minimum. As a result, the coverage probability in the heterogeneous network

increases. It has been seen that the proposed power control method converges if the SIRs

of the small cell repeat for successive iterations. The result shows that the proposed method

increases coverage probability more than the existing power control method. We also show

that the proposed power control algorithm’s convergence rate is faster than the existing power

control algorithm’s convergence rate. In the proposed power control algorithm, power control is

distributed to all users, eliminating the need for a centralized controller. Thus the computational

complexity in the network is reduced.

Chapter 6 formulated and analyzed the optimization problem to find the optimal PA to optimize

the sum rate and outage for downlink communication NOMA-based HetNets. We came up

with a problem to maximize the sum rate and minimize the probability of an outage while
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fulfilling the minimum data rate requirement with optimal PA coefficients. A novel method is

investigated to get the solution of the proposed method in a NOMA-based HetNets.We proposed

a generalized optimal PA coefficient equation in the small cell of NOMA-based HetNets. Then,

we presented a low-complexity, fast algorithm for our proposed method to maximize the sum

rate and minimize outage probability. It has been shown that the proposed method works well

for downlink transmission in a NOMA network. Finally, we present simulation results for the

proposed method and compare them to results from the OMA scheme.

7.1 Future Scope

1. It is obvious that hybrid systems can improve the system parameters of 5G networks,

especially those that integrate NOMA and HetNet techniques. The MOO problem in

downlink transmission NOMA networks is formulated and investigated in Chapters 2

and 3 to achieve optimal PA for joint optimization of sum rate and user fairness. We

intend to further study the performance of our proposed method for combining NOMA

and heterogeneous networks for downlink transmission.

2. In Chapter 4, the subchannel and power allocation are obtained to maximize the sum rate

objective while adhering to the minimum power gap constraint for downlink transmission

NOMA-based 5G networks. We intend to study on how well our proposed method works

for integrating NOMA and heterogeneous networks for downlink multicarrier systems.

3. Massive MIMO has been identified as the key technology for the 5G network to boost the

sum rate over the current network. Chapters 2, 3, 4, and 6 maximize the sum rate for the

SISO system, which the BS transmits, and the users receive using a single antenna. We

intend to investigate the MIMO system’s performance for downlink transmission for a

combination of NOMA and heterogeneous-based 5G networks.



Appendix A

Concavity Proof of g1(tm)

In this appendix, we prove the concavity of g1(tm). We do this by showing that the Hessian

matrix is negative definite. Let ∆i represent the determinant of the leading principal sub-matrix

of first i rows and i columns of the Hessian matrix A. If ∆i < 0, for odd i ∈ {1,2, · · · ,M} and

∆i > 0, for even i ∈ {1,2, · · · ,M}, then we say A is negative definite. First term in Eqn. (2.13)

can be written as,

Usum =
M

∑
m=1

t1−l
m

1− l
, l ≥ 0.

The Hessian matrix for Usum can then be calculated as follows:

AM×M =
[
ai j
]
, where, ai j =

∂

∂ ti

(
∂Usum

∂ t j

)
.

After solving, we get,

AM×M =

(
− l

t(1+l)
i

)
× IM×M, where, I is Identity matrix.

The determinant of a diagonal matrix is the product of its diagonal elements, Hence, we get,

∆i < 0, for odd i ∈ {1,2, · · · ,M} and ∆i > 0, for even i ∈ {1,2, · · · ,M} . Hence, Hessian matrix

A is negative definite. Hence, Usum is concave. It can be noted that the second term ∑
M
m=1 µmtm

in Eqn. (2.13) is a linear function of tm. Therefore it is strictly concave-convex. Thus, g1(tm) is

concave function.
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Appendix B

Concavity Proof of g2(Pm)

The concavity proof of g2(Pm) is shown here. Since the channels are ordered |h1| ≤ |h2| ≤ · · · ≤

|hM| , then we can write the sum rate as,

Rsum =
M

∑
m=1

log2

(
1+

Pm |hm|2

∑
M
n=m+1 Pn |hm|2 +σ2

)
.

Denoting Hessian matrix for Rsum as:

BM×M =
[
bi j
]
.

After solving, we obtain the coefficients of the Hessian matrix B as:

bi j = b ji, for j ≥ i, constant i.

where, matrix elements bi j for user m is given by,

bmm =
m

∑
i=1

[
−Tii +Ti(i+1)

]
, excluding Tm(m+1),

where, Ti j is given as,

Ti j =

(
|hi|2(

∑
M
n= j Pn

)
|hi|2 +σ2

)2

,
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Here, the determinant of the leading principal sub-matrix ∆m for user m can be written as,

∆m =



−T11 −T11 −T11 · · · −T11

0 T12−T22 T12−T22 · · · T12−T22

0 0 T23−T33 · · · T23−T33
...

...
... . . . ...

0 0 0 · · · T(m−1)m−Tmm


Since |h1| ≤ |h2| ≤ · · · ≤ |hM|, therefore T12 < T22,T23 < T33, · · · ,T(M−1)M < TMM and hence

∆M > 0 if M is even else ∆M < 0 if M is odd. Therefore, ∆i < 0 for odd i ∈ {1,2, · · · ,M}

and ∆i > 0 for even i ∈ {1,2, · · · ,M} . Consequently, Hessian matrix B is negative definite.

Hence, Rsum is concave function. As, Rsum is concave function, therefore first term ω ∑
M
m=1 Rm,

second term ∑
M
m=1 χm(Rm−Rmin), and fourth term ∑

M
m=1 µmRm are concave function. Also, it is

important to note that in Eqn. (2.15), the third term βm(PBS−∑
M
m=1 Pm) is a linear function of P.

Hence the third term in Eqn. (2.15) is concave-convex. Therefore, g2(Pm) is concave function.



Appendix C

Derivation of a Closed-form Expression tm

The equation for g1(tm) is,

g1(tm) = (1−ω)
M

∑
m=1

U(tm)−
M

∑
m=1

µmtm.

The first partial derivative of g1(tm) with respect to tm is,

∂g1(tm)
∂ tm

= (1−ω)
M

∑
m=1

t(1−l)
m

1− l
−

M

∑
m=1

(µm tm) ,

We can determine the optimal value of tm in Eqn. (2.17) by solving the partial derivative equated

to zero.
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Appendix D

Derivation of a Closed-form Expression Pm

The equation for g2(Pm) is given as,

g2(Pm) =ω

M

∑
m=1

Rm +
M

∑
m=1

χm(Rm−Rmin)+βm(PBS−
M

∑
m=1

Pm)+
M

∑
m=1

µmRm.

Now, we can derive a closed-form expression of Pm for um, as shown here. The first partial

derivative of g2(Pm) with respect to Pm can be written as,

∂g2(Pm)

∂Pm
=

m−1

∑
i=1

((
−(ω +χi +µi)

log2

)
×

 P2
i

(
|hi|2

)2(
∑

M
n=i Pn |hi|2 +σ2

)(
∑

M
n=i+1 Pn |hi|2 +σ2

)
)+

(ω +χm +µm)

log2
|hm|2

∑
M
n=m Pn |hm|2 +σ2

−βm,

We can now solve the partial derivation equal to zero to get the optimal solution of P∗m for user

m as seen in Eqn. (2.18).
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Appendix E

Proof of g3(tm) is Concave Function

We prove the concavity of g3(tm) in this appendix. This is accomplished by demonstrating

that the Hessian matrix is negative definite. Let ∆i represent the determinant of the leading

principal sub-matrix of the first i rows and i columns of the Hessian matrix C. If ∆i > 0, for

even i ∈ {1,2, · · · ,M} and ∆i < 0, for odd i ∈ {1,2, · · · ,M}, then we say C is negative definite.

The first term in Eqn. (3.7) can be written as,

Usum = (1−ω)
M

∑
m=1

t1−l
m

1− l
, l ≥ 0.

The Hessian matrix for Usum can then be calculated as follows:

C =



∂

∂ t1

(
∂Usum

∂ t1

)
∂

∂ t1

(
∂Usum

∂ t2

)
· · · ∂

∂ t1

(
∂Usum

∂ t3

)
∂

∂ t2

(
∂Usum

∂ t1

)
∂

∂ t2

(
∂Usum

∂ t2

)
· · · ∂

∂ t2

(
∂Usum

∂ t3

)
...

... . . . ...
∂

∂ tM

(
∂Usum

∂ t1

)
∂

∂ tM

(
∂Usum

∂ t2

)
· · · ∂

∂ tM

(
∂Usum
∂ tM

)
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After solving, we get,

C =



− (1−ω)x

t(1+x)
1

0 · · · 0

0 − (1−ω)x

t(1+x)
2

· · · 0
...

... . . . ...

0 0 · · · − (1−ω)x

t(1+x)
M


The determinant of a diagonal matrix is the product of its diagonal elements, Hence, we get,

∆i > 0, for even i ∈ {1,2, · · · ,M} . and ∆i < 0, for odd i ∈ {1,2, · · · ,M}. Hence, Hessian matrix

C is negative definite. Hence, Usum function is concave. It is worth noting that in Eqn. (3.7),

the second term ∑
M
m=1 µmtm is a linear function of tm. As a result, it is strictly concave-convex.

Hence, g3(tm) is a concave function.



Appendix F

Proof of g4(αm) is Concave Function

In this appendix, we prove the concavity of the g4(αm) function. Since the channels are sorted

as |h1|≤ |h2|≤ · · · ≤ |hM| , then we can express the sum rate as,

Rsum =
M

∑
m=1

log2

(
1+

αmP|hm|2

∑
M
n=m+1 αnP|hm|2+σ2

)
.

Denoting Hessian matrix for Rsum as, DM×M =
[
di j
]
. After solving, we get the coefficients of

the Hessian matrix D as shown below,

d11 = d12 = d13 = · · ·= d1M =−C11,

d21 = d31 = d41 = · · ·= dM1 =−C11,

d22 = d23 = d24 = · · ·= d2M =−C11 +C12−C22,

d32 = d42 = d52 = · · ·= dM2 =−C11 +C12−C22,

d33 = d34 = d35 = · · ·= d3M =−C11 +C12−C22 +C23−C33,

d43 = d53 = d63 = · · ·= dM3 =−C11 +C12−C22 +C23−C33,
...

dMM = −C11 +C12−C22 +C23−C23 + · · ·+C(M−1)(M−1)−C(M−1)M +CMM. By performing
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elementary matrix operations to reduce the matrix to upper triangular form, we get,

D =



−C11 −C11 −C11 · · · −C11

0 C12−C22 C12−C22 · · · C12−C22

0 0 C23−C33 · · · C23−C33
...

...
... . . . ...

0 0 0 · · · C(M−1)M−CMM


Since |h1|≤ |h2|≤ · · · ≤ |hM|, therefore C12 <C22,C23 <C23, · · · ,C(M−1)M <CMM. Therefore,

∆i > 0 for even i ∈ {1,2, · · · ,M} and ∆i < 0 for odd i ∈ {1,2, · · · ,M}. As a result, Hes-

sian matrix D is negative definite. Hence, Rsum is concave function. As, Rsum is concave

function, therefore first term ω ∑
M
m=1 Rm, second term ∑

M
m=1 χm(Rm−Rmin), and fourth term

∑
M
m=1 µmRm are concave function. Also, it is important to note that in Eqn. (3.9), the third term

∑
M−1
m=1 ψm

(
αmP|hm+1|2−∑

M
i=m+1 αiP|hm+1|2−Pg

)
and the fourth term βm(PBS−∑

M
m=1 αmP) are

linear function of α . Hence, the third and fourth terms in Eqn. (3.9) are concave-convex.

Therefore, g4(αm) is concave function.



Appendix G

Derivation of a Closed-form Expression vm

The equation for g3(vm) is,

g3(vm) = (1−ω)
M

∑
m=1

U(vm)−
M

∑
m=1

ξmvm.

The first partial derivative of g3(vm) with regards to vm is given as,

∂g3(vm)

∂vm
= (1−ω)

M

∑
m=1

v(1−l)
m (1− l)

1− l
−

M

∑
m=1

(ξm vm) ,

By solving the partial derivative and equal to zero, we may get the optimal value of vm in

equation (3.11).
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Derivation of a Closed-form Expression αm

The equation for g4(αm) is given as,

g4(αm) = ω

M

∑
m=1

Rm +
M

∑
m=1

χm(Rm−Rmin)+βm(PBS−
M

∑
m=1

αmP)+

M−1

∑
m=1

ψm

(
αmP|hm+1|2−

M

∑
i=m+1

αiP|hm+1|2−Pg

)
+

M

∑
m=1

µmRm

To get a closed-form expression for αm, compute the first partial derivative of g4(αm) concerning

αm, as shown below,

∂g4(αm)

∂αm
=

(ω +χm +µm)

log2
P|hm|2

∑
M
n=m αnP|hm|2+σ2

−βmP−ψmP|hm+1|2

+
m−1

∑
i=1

((
−(ω +χi +µi)

log2

)
×

(
αiP2 (|hi|2

)2(
∑

M
n=i αnP|hi|2+σ2

)(
∑

M
n=i+1 αnP|hi|2+σ2

))+ψiP|hi+1|2
)

(H.1)

We may now solve the partial derivation and equal it to zero to get the optimal solution α∗m for

user m, as shown in Eqn. (3.12).
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Appendix I

Proof of Matrix E is a Non-singular Matrix.

We present in this appendix that matrix E is a non-singular matrix. The determinant of matrix E

can be written as,

∆E = (1+ξ ) ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 · · · 1

1 0 1+ξ · · · 1+ξ

1 1 0 . . . 1+ξ

... . . . . . . . . . ...

1 1 1 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
By performing matrix row operations, we can reduce matrix ∆A to its upper triangular form as,

∆E = (1+ξ ) ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 · · · 0

0 −1 1+ξ 0 · · · 0

0 0 −1 1+ξ · · · 0
... . . . . . . . . . . . . ...

0 0 0 0 · · · 1+ξ

0 0 0 0 · · · v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Where, v = ξ (Mc−2)+(Mc−1)∑

Mc

p=3 ξ (Mc−p). Matrix E has the rank of Mc, as can be seen. As

a result, matrix E is a non-singular matrix.
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Appendix J

Proof of matrix G is a Non-singular Matrix.

In this appendix, we show that matrix G is a non-singular matrix. We can write determinant of

matrix G as,

∆G =
Mc−1

∏
i=1

P |hi,n|2 ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1

2 0 1 · · · 1

2 2 0 . . . 1
... . . . . . . . . . ...

2 2 2 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
By performing elementary matrix operations to reduce matrix ∆G to upper triangular form, we

get,

∆G =
Mc−1

∏
i=1

P |hi,n|2 ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1

0 −2 −1 · · · −1

0 0 −2 . . . −1
... . . . . . . . . . ...

0 0 0 · · · −2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
We can see that the rank of matrix G is Mc. Therefore, matrix G is a non-singular matrix.
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Proof for Sum Rate is Concave Down

Function to αm,n

Here we prove that the sum rate to αm,n is a concave down function. Since the channels are

ordered on subchannel n as,
∣∣h1,n

∣∣≥ ∣∣h2,n
∣∣≥ ·· · ≥ |hMc,n|, then we can write the sum rate on

subchannel n as,

Rsum =
Mc

∑
m=1

log2

(
1+

αm,nPc · |hm,n|2

|hm,n|2 ·∑m−1
i=1 αi,nPc +σ2

)
,

The first partial derivative of Rsum with respect to α1,n can be written as,

∂Rsum

∂α1,n
=

Pc
∣∣h1,n

∣∣2
α1,nPc

∣∣h1,n
∣∣2 +σ2

−
Pc
∣∣h2,n

∣∣2
α1,nPc

∣∣h2,n
∣∣2 +σ2

+
Pc
∣∣h2,n

∣∣2
(∑2

i=1 αi,n)Pc
∣∣h2,n

∣∣2 +σ2
−

Pc
∣∣h3,n

∣∣2
(∑2

i=1 αi,n)Pc
∣∣h3,n

∣∣2 +σ2
+ · · ·+

Pc |hMc,n|2

∑
M
i=1 αi,nPc |hMc,n|2 +σ2

,

The first partial derivative of Rsum with respect to α2,n is,

∂Rsum

∂α2,n
=

Pc
∣∣h2,n

∣∣2
(∑2

i=1 αi,n)Pc
∣∣h2,n

∣∣2 +σ2
−

Pc
∣∣h3,n

∣∣2
(∑2

i=1 αi,n)Pc
∣∣h3,n

∣∣2 +σ2
+

Pc
∣∣h3,n

∣∣2
(∑3

i=1 αi,n)Pc
∣∣h3,n

∣∣2 +σ2
−

Pc
∣∣h4,n

∣∣2
(∑3

i=1 αi,n)Pc
∣∣h4,n

∣∣2 +σ2
+ · · ·+

Pc |hMc,n|2

∑
Mc

i=1 αiPc |hMc,n|2 +σ2
,
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Therefore, by deduction method, the first partial derivative of Rsum concerning αm,n can be

written as,

∂Rsum

∂αm,n
=

Mc

∑
i=m

[
Pc |hi,n|2

∑
i
j=1 α j,nPc |hi,n|2 +σ2

−
Pc
∣∣hi+1,n

∣∣2
∑

i
j=1 α j,nPc

∣∣hi+1,n
∣∣2 +σ2

]
, (K.1)

Since,
∣∣h1,n

∣∣≥ ∣∣h2,n
∣∣≥ ·· · ≥ |hMc,n|, Therefore, Eqn. (K.1) is positive. Hence, The sum rate is

increasing function as an increasing αm,n value. By doing a similar procedure, we get the second

derivative of Rsum with respect to αm,n,

∂ 2Rsum

∂α2
m,n

=
Mc

∑
i=m

((
Pc
∣∣hi+1,n

∣∣2
(∑i

j=1 α j,nPc
∣∣hi+1,n

∣∣2 +σ2

)2

−

(
Pc |hi,n|2

∑
i
j=1 α j,nPc |hi,n|2 +σ2

)2)
. (K.2)

Since,
∣∣h1,n

∣∣≥ ∣∣h2,n
∣∣≥ ·· · ≥ |hMc,n|, Therefore, the second derivative of the sum rate of αm,n

is negative. Thus, the first derivative is positive, while the second derivative is negative of

Rsum; hence, it is important to note that Rsum function is a concave down and strictly increasing

function for αm,n.
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