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Abstract

Motivated by operations research applications, which involve optimizing the placement of obnox-
ious facilities such as airports, industrial facilities, landfills, prisons, and other facilities that may
impact each other and nearby residents, extensive research has been conducted on geometric
dispersion problems within the field of computational geometry. This thesis investigates geometric
dispersion and obnoxious facility location problems in the Euclidean plane and proposes exact,
parameterized, and approximation algorithms.

Firstly, we study the following obnoxious facility location problem in the plane: locate k new
obnoxious facilities amidst n ordered demand points (existing facility sites) so that none of the
existing facility sites are affected (i.e., no new facility overlaps with the existing facility). We
study this problem in two restricted settings. The obnoxious facilities are constrained to be on (i)
a given horizontal line segment pq, and (ii) the boundary arc of a given disk C. For the problem in
(i), we give an (1�✏)-approximation algorithm that runs in O((n log n+k) log ||pq||

2(k�1)✏) time, where
✏ > 0, k � 1 and ||pq|| is the length of pq. We also propose two exact polynomial-time algorithms
using binary search and Megiddo’s [53] parametric search techniques, respectively, that run in
time O((nk)2) and O((n log n+ k)2), respectively. Using the improved parametric technique [16],
we give an O(n log2 n)-time algorithm for k = 2. We also show that the (1� ✏)-approximation
algorithm of (i) can be easily adapted to solve the problem (ii) with an extra multiplicative
factor of n in the running time. Finally, we give a O(n3

k)-time dynamic programming solution to
the min-sum obnoxious facility location problem restricted to a line segment where the demand
points are associated with weights, and the goal is to minimize the sum of the weights of the
points covered.

Next, we study a semi-obnoxious facility location problem constrained to a line in the plane.
Suppose there exist two types of demand points that exhibit attraction and repulsion towards
facilities. In that case, the problem is formulated as follows: we are given a set B of blue points
and a set R of red points, all lying above a horizontal line `, in the plane. Let the weight of a
given point pi 2 B[R be wi > 0 if pi 2 B and wi < 0 if pi 2 R. Let n = |B[R| and d

0(= d\@d)
be the interior of any geometric object d. We wish to pack k non-overlapping congruent disks d1,

d2, . . . , dk of minimum radius, centered on ` such that
kP

j=1

P

{i:9pi2R,pi2d0j}
wi +

kP
j=1

P
{i:9pi2B,pi2dj}

wi

is maximized, i.e., the sum of the weights of the points covered by
kS

j=1
dj is maximized. Here, the

disks are the obnoxious or undesirable facilities generating nuisance or damage (with quantity
equal to wi) to every demand point (e.g., population center) pi 2 R lying in their interior. In
contrast, they are the desirable facilities giving service (equal to wi) to every demand point pi 2 B
covered by them. The line ` represents a straight highway or railway line. These k semi-obnoxious
facilities need to be established on ` to receive the largest possible overall service for the nearby

v
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attractive demand points while causing minimum damage to the nearby repelling demand points.
We show that the problem can be solved optimally in O(n4

k
2) time. Subsequently, we improve

the running time to O(n3
k ·max (n, k)). Furthermore, we considered two special cases of the

problem where points do not have arbitrary weights. In the first case, the objective is to cover
the maximum number of blue points while avoiding red points. The second case aims to cover
all the blue points with the minimum number of red points covered. We show that these two
special cases can be solved in O(n3

k ·max (log n, k)) time. For the first case, when k = 1, we
also provide an algorithm that solves the problem in O(n3) time, and subsequently, we improve
this result to O(n2 log n). The above-weighted variation of locating k semi-obnoxious facilities
may generalize the problem that Bereg et al. [10] studied where k = 1, i.e., the smallest radius
maximum weight circle is to be centered on a line. Furthermore, we consider a generalization
of the weighted problem where we are given t horizontal lines instead of one line. We give an
O(n4

k
2
t
5) time algorithm for this problem. Finally, we consider a discrete variant where a set of

s candidate sites (in convex position) for placing k facilities is pre-given (k < s). We propose an
algorithm that runs in O(n2

s
2 + ns

5
k
2) time for this discrete variant.

Next, we study a discrete variant of the obnoxious facility location problem where the candidate
facility locations are positioned convexly and have no demand points. This particular variant of
the problem is referred to as the k-dispersion problem on a convex set of points. It has been
formulated as follows: given a set S of n points placed in convex position in the plane and an
integer k (0 < k < n), the objective is to compute a subset S

0 ⇢ S such that |S0| = k and the
minimum distance between a pair of points in S

0 is maximized. Based on the bounded search tree
method, we propose an exact fixed-parameter algorithm in O(2kn2 log2 n) time for this problem,
where k is the parameter. The proposed exact algorithm improves on the algorithm of Akagi
et al. [5], which requires time n

O(
p
k), whenever k < c log2 n for some constant c. We then give

an exact polynomial-time (O(n4
k
2)) algorithm for any k > 0, thus answering the open question

about the complexity of this restricted dispersion problem. For k = 3, there is an O(n2)-time
algorithm by Kobayashi et al. [44]. We then present a O(n)-time 1

2
p
2
-approximation algorithm

for the problem when k = 3 if the points are given in convex position order.

Unlike the aforementioned facility location problems, the concept of a dominating set in graph
theory is also employed for modeling facility location problems. The concept of a dominating set
has received significant attention in graph theory as well as in computational geometry and has
been extensively utilized by researchers as a modeling tool for various facility location problems.
In our study, we focused on an edge-vertex dominating set problem, which is formulated as
follows: given an undirected graph G = (V,E), a vertex v 2 V is edge-vertex (ev) dominated by
an edge e 2 E if v is either incident to e or incident to an adjacent edge of e. A set S

ev ✓ E is
an edge-vertex dominating set (referred to as ev -dominating set and in short as EVDS) of G
if every vertex of G is ev -dominated by at least one edge of Sev. The minimum cardinality of
an ev -dominating set is the ev -domination number. The edge-vertex dominating set problem



vii

is to find a minimum ev -domination number. We prove that the ev -dominating set problem is
NP-hard on unit disk graphs. We then prove that the EVDS problem admits a polynomial-time
approximation scheme on unit disk graphs. At last, we also give a simple 5-factor linear-time
approximation algorithm. Finally, we conclude the thesis and mention some open problems.
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Chapter 1

Introduction

The study of facility location problems, also known as location theory, is a sub-field of operations
research and computational geometry. An obnoxious facility can be defined as one that harms
surrounding communities; hence, it is preferred to have them dispersed as much as possible
while being farther from all kinds of social communities (called demand points in the literature).
Extensive research has been conducted within the field of computational geometry, driven by the
motivation to optimize the placement of obnoxious facilities like airports, industrial facilities,
landfills, prisons, and other establishments that have the potential to impact both one another
and the nearby residents.

The present thesis delves into the exploration of diverse geometric dispersion and obnoxious
facility location problems in the Euclidean plane. In order to tackle the above-mentioned issues,
we put forth a range of solution approaches, including exact, parameterized, and approximation
algorithms. Our aim is to provide algorithmic solutions that can effectively solve several variations
of these problems, ultimately contributing to advancing research in this field.

The obnoxious facility location (Ofl) is a well-known topic in the operations research community.
In most spatial location problems, the facilities are located as close as possible to clients such
that the clients will get service by traveling less distance. In the case of obnoxious facilities, these
facilities have to be placed as far as possible away from the other communities (such as residential
areas, hospitals, schools, etc.) to minimize the nuisance generated by these obnoxious facilities.
In this context, we address an obnoxious facility location problem, the continuous obnoxious
facility location on a line segment (Cofl) problem, motivated by the following application. We
wish to find locations for establishing k obnoxious or undesirable facilities (such as garbage dump
yards, industries generating pollution, etc.) along a straight highway road such that the pairwise
distance between these new facilities and the distance between each of the new facilities and other
existing non-obnoxious facilities (such as hospitals, schools, etc.) are maximized (see Figure 1.1
for k = 2). The need for placing these facilities on the sides of highway roads is due to their heavy

1



Chapter 1. Introduction 2

Figure 1.1: Solution to the Cofl on a line for k = 2

transportation requirements. Apart from this application, the following scenario in establishing
a sensor network used for security purposes can also be modeled as a Cofl problem. Suppose
we are given a line segment pq representing a continuous set of potential locations to place a
fixed number of sensors. These sensors have to monitor suspicious users originating from the
continuous region around pq. However, there are also fair users (point set P ) around pq. Now we
need to place these sensors on pq and assign a maximum possible uniform range to the sensors
without causing any interference between them, but at the same time, none of the fair users fall
within the range of any of the sensors. The formal definition of the problem is below:

Problem 1.1. The constrained obnoxious facility location (Cofl) problem: Given a set P =

{p1, p2, p3, . . . , pn} of n demand points in the plane, a line segment pq and a positive integer k,
pack k maximum-radius (non-overlapping) congruent disks d1, d2, d3, . . . , dk centered on pq such
that no point of P lies inside any of these disks, where p = (x(p), y(p)), q = (x(q), y(q)), and
y(p) = y(q).

The Problem 1.1 can be modified to a circular version, where the obnoxious facilities are centered
on the boundary of the given circle instead of the line segment as defined below:

Problem 1.2. The circular constrained obnoxious facility location (CCofl) problem: Given a set
P = {p1, p2, p3, . . . , pn} of n demand points and a predetermined circle C with radius rc in the
plane and a positive integer k, the problem is to locate k facility sites centered on C such that
the minimum of the smallest distance (in terms of Euclidean distance) between a demand point
in P and its nearest facility site, and the smallest distance between facility sites (in terms of arc
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length), is maximized. Note that the disks representing two consecutive facility sites centered on
C may overlap strictly inside C.

We also study a min-sum obnoxious facility location problem on a line segment where the
points are associated with weights. This model of Ofl is motivated by the situation where
we must place some obnoxious facilities near to a number of communities such as residential
neighborhoods, schools, hospitals, etc., and these facilities affect their close neighborhood area.
Now, we would like to place the facilities so that the total number of people affected across all
close-by communities by these facilities is minimized. The problem is formally defined below.

Problem 1.3. The min-sum obnoxious facility location (Mofl) problem: Given a horizontal line
segment pq and a set P of n weighted points {p1, p2, . . . , pn} (communities) whose weights (repre-
senting number of people in each such community) are given by w1, w2, . . . , wn respectively, in the
plane, a positive integer k and a distance � > 0, pack k (non-overlapping) disks d1, d2, d3, . . . , dk

of radius � centered on pq such that
kX

j=1

X

{i|pi2dj}

wi is minimized, i.e., the sum of weights of the

points covered by these non-overlapping disks is minimized.

Typically, facility location problems involve two types of facilities: desirable ones like hospitals, fire
stations, and post offices that should be located as close as possible to demand points (population
centers), and undesirable ones like chemical factories, nuclear plants, and dumping yards that
should be located as far away as possible from demand points to minimize their negative impact.
However, the semi-obnoxious facility location (Sofl) problems have the unified objective of
optimizing both negative and positive impacts on the repelling and attractive demand sites,
respectively. In Sofl problems, the aim is to locate facilities at an optimal distance from both
attractive and repulsive demand points. This creates a bi-objective problem where two objectives
must be balanced. For example, when building an airport, it should be located far enough
from the city to avoid noise pollution but close enough to customers to minimize transportation
costs. In this context, we formally define the following semi-obnoxious facility location problem
constrained to a line.

Problem 1.4. The constrained semi-obnoxious facility location (CSofl) problem: Given a set
B of blue points and a set R of red points, where each point pi 2 B has a weight wi > 0 and
each point pi 2 R has a weight wi < 0, and let |B [R| = n. Assume these points lie above a
given horizontal line `. The objective is to pack k non-overlapping congruent disks d1, d2, . . . , dk

of minimum radius, centered on `, such that the sum of the weights of the points covered by
S

k

j=1 dj is maximized, i.e.,
kP

j=1

P

i2[n]:9pi2R,pi2d0j

wi +
kP

j=1

P
i2[n]:9pi2B,pi2dj

wi is maximized.

In many variants of the clustering and facility location problems (viz. k-center, k-median, etc.)
that are studied in the literature [23, 24], we are given a set of n points, and among them, we need
to locate k facilities such that some objective function is minimized. In contrast, in the obnoxious
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facility location problems, we need to maximize an objective function. In the literature, this
wider class of facility location problems that aim to maximize some diversity measures are called
dispersion problems. In the case of the max-min k-dispersion problem, we need to maximize the
minimum distance between the selected k facilities. The applications of k-dispersion problems
arise in many areas. Consider a specific application where the k-dispersion problem can be used
in which the given points are in convex position, as discussed below. For example, consider a
convex island where some oil storage plants are to be established on the shore for transport using
ships. Moreover, these plants should be kept as far away as possible so that any accident in one
plant should not affect the other. We can model this problem as the k-dispersion problem, in
which the plants are placed on the island’s boundary to maximize the distance between any pair
of plants. We define the problem formally below.

Problem 1.5. Discrete k-dispersion on a convex polygon (DkConP): Given a set S of n points
placed in the plane in convex position (forming a convex polygon P) and an integer k (0 < k < n),
the objective is to compute a subset S0 ⇢ S such that |S0| = k and the minimum distance between
a pair of points in S

0 is maximized.

Observe that the k-dispersion problem (Problem 1.5) on the set S can be equally stated as
packing k congruent disks of maximum radius, with their centers lying at the vertices of the
convex polygon P.

To study facility location problems in wireless networks, a commonly used model in the literature
is a unit disk graph model. As well known, a given set D of n disks of unit diameter (hence called
unit disks) induces a graph G, where the graph G is called a unit disk graph (UDG) G = (V,E)

and is an undirected graph such that (i) each vertex v in whose vertex set V corresponds to a
disk dv 2 D of unit diameter in the plane, (ii) each edge (u, v) in whose edge set E corresponds
to a pair of mutually intersecting disks du and dv in the plane.

The problem of finding a minimum dominating set in UDG possesses applications within facility
location scenarios where the objective entails minimizing the number of facilities (e.g., gateways
or sink nodes) required to ensure coverage of all points of interest (e.g., network nodes). Consider,
for instance, a scenario where wireless access points need to be positioned in a specific region
to guarantee complete coverage. By solving the dominating set problem within the UDG that
represents the given area, the minimum number of access points necessary to cover all locations
can be determined. Many of the dominating set problems in UDG are NP-hard. Efficient
approximation algorithms have been developed to solve the dominating set problems in UDGs.
These algorithms are designed to identify an optimal or nearly optimal solution by selecting a
subset of nodes that form a minimum dominating set. Through the utilization of such algorithms,
both researchers and practitioners can make informed decisions regarding facility placement,
aiming to achieve maximum coverage or cost minimization across a range of real-world applications.
In this context, we studied a variant of the dominating set in UDG as discussed below.
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Given an undirected graph G = (V,E), the edge neighborhood of an edge e
0 2 E is the set of edges

in E which share a common vertex v 2 V with e
0, i.e., the set of all edges which are adjacent to

e
0. The set of these neighbors of e0 is represented as the set Ne(e0) = {f 2 E | e0 and f share a

common vertex v 2 V }. The closed edge neighborhood of e0 is defined as Ne[e0] = Ne(e0) [ {e0}.
The edge neighborhood of a set S ✓ E is Ne(S) =

S
e02S Ne(e0). Similarly, the closed edge

neighborhood of a set S ✓ E is Ne[S] =
S

e02S Ne[e0] [ S. The edge neighborhood of neighborhood

of e0 is N
2
e (e

0) = Ne(Ne(e0)). Similarly, the r-th edge neighborhood is N
r
e (e

0) = Ne(N r�1
e (e0)) for

an integer r > 1.

Given an undirected graph G = (V,E), a vertex v 2 V is ev (edge-vertex)-dominated by an edge
e 2 E if v is incident to e (i.e., an endpoint of e) or if v is incident to an adjacent edge of e. A set
S
ev ✓ E is an edge-vertex dominating set (EVDS) (referred to as ev-dominating set) of G if every

vertex of G is ev-dominated by at least one edge of Sev (at least two edges for double edge-vertex

dominating set). The minimum cardinality of an ev-dominating set is the ev-domination number,
denoted by �ev(G). A paired-dominating set (PDS) of a graph G(V,E) with no isolated vertices
is a dominating set S

pr ✓ V and a sub-graph induced by S
pr in G have a perfect matching. The

minimum cardinality of a PDS of G is denoted as �pr(G). Note that EVDS and PDS may be
completely different subsets of edges in the same graph, and their cardinalities may always be
equal (see Figure 1.2). In Figure 1.2, the blue colored edges represent an EVDS. However, it
should be noted that the set of these blue-colored edges does not fulfill the criteria to be classified
as a PDS; instead, the PDS could correspond to the set of green edges. Another similar model,
called total domination in a graph, is defined in terms of only vertices instead of edge-vertex. A
total dominating set (TDS) of a graph G = (V,E) is a dominating set S

d ✓ V such that every
vertex v 2 S

d is adjacent to some other vertex in S
d. The TDS problem is to find such a set S

d

of minimum cardinality. The minimum cardinality of TDS is denoted by �t. We can also view a
TDS in a graph as a minimum cardinality set of pairs of adjacent vertices (hence, as a set of
edges induced on these vertices), where these pairs may share a common vertex. Therefore, a
TDS is also an EVDS and vice versa. However, a minimum cardinality EVDS may not be a
minimum cardinality TDS, i.e., the set of all vertices incident to edges of a minimum cardinality
EVDS may not necessarily form a minimum cardinality TDS, and vice versa (see Figure 1.3).
In Figure 1.3, the blue edges represent the minimum cardinality EVDS, while the red vertices
represent the minimum cardinality TDS. Here we can observe that the cardinality of the vertices
incident to blue edges exceeds the minimum cardinality TDS and the cardinality of the edges
incident to the red vertices also exceeds the minimum cardinality EVDS.

It is important to note that in UDG also, a minimum cardinality EVDS may not be a minimum
cardinality TDS (see Figure 1.3). Therefore, the study of EVDS in UDG holds significant value.
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Figure 1.2: EVDS (blue edges) vs PDS (green edges) in UDG.

Figure 1.3: EVDS (blue edges) vs TDS (red vertices) in UDG.

The edge-vertex dominating set problem may have the following potential applications: In urban
areas, certain facilities, such as parks or street parking zones, that has a significant impact over a
wide area [48]. These facilities cannot be adequately represented or modeled by node centers
alone because they are not solely accessible from a single entry point. Node centers typically
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focus on capturing the accessibility of a location from a single point, which may not accurately
reflect the spatial distribution and accessibility patterns of these facilities. However, edge centers
offer a more faithful representation of such facilities as they consider the multiple entry points
and capture the spatial extent and accessibility dynamics more comprehensively. By utilizing
edge centers, we can better understand and model the true nature of these impactful urban
facilities and their influence on the surrounding area.

An EVDS plays an important role in identifying vulnerable edges in a network [52]. These critical
edges would give an attacker control over all connected nodes if compromised. EVDS helps
prioritize security efforts by identifying the most critical edges. Security measures, like encryption
or redundancy mechanisms, can then be directed toward securing these connections. Protecting
these vital communication links ensures network integrity and minimizes the potential for data
manipulation or interception by attackers.

A polynomial time algorithm A of an optimization problem is an ↵-approximation algorithm if it
generates a solution within a factor of ↵ of the optimal solution (OPT), i.e., for maximization
problems, it is 1

↵
·OPT, and for minimization problems, it is ↵·OPT. For an ↵-approximation, we

will call ↵ as the approximation ratio or approximation factor of the algorithm.

An optimization problem admits a polynomial time approximation scheme (PTAS), if there is an
algorithm A that takes an instance I of size n and for each ✏ > 0, that runs in a polynomial in n

and gives a solution SI which is either (1� ✏)-approximation or (1 + ✏)-approximation to the
optimal solution OI for maximization problems (SI � (1 � ✏)OI) and minimization problems
(SI  (1 + ✏)OI) , respectively.

If the running time of algorithm A is polynomial in the size of the problem and in 1
✏
, then it

is said that the optimization problem admits a fully polynomial time approximation scheme
(FPTAS).

If a problem has some parameter k (where k 2 N), which is fixed as an input apart from n, then
it is called parameterized problem. A parameterized problem is a fixed parameter tractable (FPT)
if it can be solved by the parameterized algorithm for fixed k and has the running time of the
form O(f(k) · nO(1)), where f(k) is an arbitrary function dependent only on k.

1.1 Objectives

The above-defined problems (Problem 1.1, Problem 1.2, Problem 1.3, Problem 1.4 and Problem
1.5) are formulated to attain the following objectives of this research.

1. To study the problem of locating k obnoxious facilities on a given line segment and its
variants.
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2. To study the problem of locating k semi-obnoxious facilities on a given line and its variants.

3. To study the algorithmic complexity of the problem of packing k congruent disks centered
at the vertices of a given convex polygon such that their common radius is maximized.

4. To check the hardness result of the edge-vertex dominating set problem on unit disk graphs.
If it is NP-hard, then check whether it admits a polynomial time approximation scheme
(PTAS) or not and design a better constant factor approximation algorithm.

1.2 Outline of the Thesis

Chapter 2: Literature Review. In this chapter, we will discuss the existing research on similar
problems and compare our work with previous studies.

Chapter 3: Constrained Obnoxious Facility Location on a Line Segment. In this chapter,
we first provide the formal definition of the decision version of the Cofl problem, denoted as
Dcofl(P, k, L), and present a linear time algorithm based on a greedy approach for solving the
decision version. Subsequently, we present an FPTAS (Fully Polynomial-Time Approximation
Scheme) for the Cofl problem, utilizing doubling search and bisection methods. This FPTAS

involves multiple invocations of Dcofl(P, k, L). Then, we discuss two exact algorithms for the
Cofl problem with polynomial time complexity. The first algorithm is based on the binary search
and runs in O((nk)2) time. The second algorithm is based on the parametric search and runs
in O((n log n+ k)2) time. Additionally, we introduce a faster algorithm based on the improved
parametric search for k = 2, which achieves a time complexity of O(n log2 n). Subsequently,
we proceed to examine an FPTAS for the circular variant of the Cofl problem, referred to as
CCofl. Finally, we present a dynamic programming-based polynomial time algorithm for solving
the Mofl problem, which is a weighted min-sum version of the Cofl. Then, we conclude the
chapter.

Chapter 4: Semi-Obnoxious Facility Location on a Line. In this chapter, we first
introduce and discuss various notations that will aid in comprehending the subsequent sections.
Subsequently, we explore multiple configurations considered for computing the set of candidate
radii, denoted as Lcan. Next, we delve into the transformation of the CSofl problem into a
minimum weight k-link path problem, given a candidate radius � 2 Lcan that helps in solving
the CSofl problem exactly in O(n4

k
2) time. Additionally, we present an improved dynamic

programming-based solution, which runs in O(n3
k ·max(n, k)) time. Subsequently, we examine

two special cases of the CSofl problem, namely the AllBlue-MinRed problem and the
MaxBlue-NoRed problem. These cases involve only two sets of weighted points. We show that
these problems can be solved in O(n3

k ·max(log n, k)) time, and we also discuss the MaxBlue-

NoRed problem for k = 1. Then, we extend the result of CSofl to t-lines instead of a single
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line. Finally, we discuss a discrete variant of Sofl when candidate facility sites are in convex
position, and we conclude the chapter by giving final remarks.

Chapter 5: Max-Min k-Dispersion for the Points in Convex Position. In this chapter,
first, we discuss various notations that will help in understanding subsequent sections in this
chapter. We discuss an exact fixed-parameterized algorithm for DkConP problem by defining
and solving its decision version, identifying the set of candidate radii, and invoking the decision
algorithm for candidate radii by doing a binary search on the set of candidate radii. Later, we
present an exact polynomial-time algorithm with a time complexity of O(n4

k
2). This algorithm

utilizes two well-known concepts in computational geometry called Voronoi diagrams and Delaunay
triangulation, which internally uses dynamic programming. Finally, we give a linear time 1

2
p
2
-

approximation for k = 3 by exploiting the elementary geometry properties, and then we conclude
the chapter.

Chapter 6: Edge-Vertex Domination in UDG. In this chapter, first, we show that the
decision version of the EVDS on UDG is NP-complete by describing a polynomial time reduction
from the vertex cover problem, which is known to be NP-complete in planar graphs with
maximum degree 3. Later, we show that the EVDS problem on UDG admits a PTAS, which
utilizes the concept of an p-separated collection of subsets. Finally, we give a linear time 5-factor
approximation algorithm, and then we conclude the chapter.

Chapter 7: Conclusion and Future Work. In this chapter, we present concluding remarks
summarizing the key findings and contributions discussed in the preceding sections. Additionally,
we identify several open problems that could serve as potential avenues for future research.
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Table 1.1: Summary of the proposed results

Problem Previous Results Our Results
Cofl The max-min OFL in rectilinear met-

ric, constrained within a bounded re-
gion: For any k > 0, a O(nk�2 log2 n)
time algorithm exists [43].
Euclidean metric: For k = 2, a
O(n log n) time algorithm is reported
in [43].

Euclidean metric constrained to a line
segment: For any k > 0, we propose a
(i) (1 � ✏)-approximation algorithm in
O((n log n+ k) log ||pq||

2(k�1)✏) time, for any
✏ > 0 (FPT). (ii) Exact algorithm in
O(n2

k
2) time. (iii) Also an improved ex-

act algorithm in O((n log n + k)2) time
and finally, (iv) (1 � ✏)-approximation
algorithm for circular variant of the prob-
lem (CCofl).

Mofl The min-sum OFL in rectilinear met-
ric, within a bounded region: For
k = 1, a O(n log n) time algorithm
is presented [43].
Euclidean metric: For k = 1, a O(n2)
time algorithm is reported in [25].

Mofl in Euclidean metric, constrained
to a line segment: For k = 1, a O(n log n)
time algorithm is proposed, which im-
proves the result in [25]. For any k > 1,
a O(n3

k) time algorithm is proposed.

CSofl Sofl constrained to a line: when
k = 1 there is a O(n2 log n) time
algorithm [10].

Sofl constrained to a line: We pro-
pose an algorithm for any k with time
O(n4

k
2), which is then improved to

O(n3
k ·max(n, k)). We presented a poly-

nomial time algorithm for the same prob-
lem constrained to t-lines (instead of a
single line) that run in O(n4

k
2
t
5) time.

We also proposed a polynomial time al-
gorithm for the discrete variant of the
problem, where a set of s candidate sites
are in convex position, and this algorithm
runs in O(n2

s
2 + ns

5
k
2) time.

DkConP The generalized variant of DkConP,
where points need not be in convex
position, is NP-complete [82], and it
can be solved exactly in n

O(
p
k) time

[5].
When points are in convex position
and k = 3, a O(n2) time algorithm
is presented [44], recently.

When points are in convex position, we
propose an O(2kn2 log2 n) fpt-time algo-
rithm and also proposed an exact algo-
rithm in O(n4

k
2) time.

EVDS The EVDS in bipartite graph [47] is
NP-complete. Other variants of the
EVDS, such as Roman dominating
set [68], Liar’s dominating set [41],
and vertex-edge dominating set [42]
in UDG are NP-complete.

We proved the EVDS in UDG is also
NP-complete and showed that it admits
a PTAS.



Chapter 2

Literature Review

In this chapter, we survey all the work related to the problems investigated in this thesis. In
Section 2.1, we discuss the related work of the constrained obnoxious facility location (Cofl)
problem and its variants. In Section 2.2, we survey the existing results of the semi-obnoxious
facility location (Sofl) problem. Finally, in Section 2.3 and Section 2.4, we discuss the previous
works on geometric dispersion problems and dominating set problems in UDG, respectively.

2.1 Constrained Obnoxious Facility Location (Cofl) problem and

its variants

The operations research and computational geometry communities have investigated several
variants of obnoxious facility location problems. The obnoxious facility location problems can
be modeled in many ways. Maximizing the cumulative minimum distance between obnoxious
facilities and other non-obnoxious facilities in a given location is the most common way. Church
and Garfinkel [15] introduced the obnoxious p-median problem of locating p facilities such that the
cumulative minimum distance from non-obnoxious facilities to p obnoxious facilities is maximized.
The obnoxious p-median problem is modeled as p-max-sum problem and is proved NP-hard [76].
Drezner and Wesolowsky [25] first studied this problem that positions only a single facility by
modeling this facility as a rectangle or a circle. Their algorithm runs in O(n2) time in both
the rectangular and circular cases. Later, Katz et al. [43] studied two variants of k-obnoxious
facility location problems (i) max-min k-facility location, in which the distance between any two
facilities is at least some fixed value and the minimum distance between a facility and a demand
point is to be maximized, and (ii) min-sum one-facility location problem in which the sum of
weights of demand points lying within a given distance to the facility is to be minimized. In the
rectilinear metric, they solved the first problem in O(n log2 n) time for k = 2 or 3, and for any
k � 4 they gave an algorithm in O(n(k�2) log2 n) time. We remark that the Cofl problem for

11
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k = 2, under the `1 norm, can be solved in O(n log n) by employing the optimization technique
of Frederickson and Johnson [31] instead of doubling search and bisection methods because the
problem will be a special case of the problem (i) in [43] where we need to place facilities on a
given line segment. In the same paper, Katz et al. [43] solved the problem (i) in the Euclidean
metric for k = 2 in O(n log n) time. For the second problem, their algorithm runs in O(n log n)

time (rectilinear case), which improves the previous results O(n2) [25]. Again, Drezner and
Wesolowsky [26] formulated another variant of the obnoxious facility location problem: locating
an obnoxious facility that is as far as possible from the arcs and nodes of a network. They gave a
(1� ✏)-approximation algorithm that runs in O(a3 log (1/✏)) time for the weighted version of the
problem, where a is the number of arcs in the network. Later, its running time was improved
by Michael [66] with a slight modification of the problem by considering a rectilinear (grid city)
network and reducing its running time to O(a2 log n log (1/✏)) time, where n is the number of
nodes in the network. Qin et al. [62] studied a variant of k-obnoxious facility location problem in
which the facilities are restricted to lie within a given convex polygonal domain. They proposed
a 2-factor approximation algorithm based on a Voronoi diagram for this problem, and its running
time is O(kN logN), where N = n+m+ k, n denotes the number of demand points, m denotes
the number of vertices of the polygonal domain, and k is the number of obnoxious facilities to be
placed. Díaz-Báñez et al. [20] modeled obnoxious facility as an empty circular annulus whose
width is to be maximized. This refers to a max-min facility location problem such that the
facility is a circular ring of maximum width, where the width is the absolute difference between
the radii of the two concentric circles. They solved the problem in O(n3 log n) time, and if the
inner circle contains a fixed number of points, then the problem can be solved in O(n log n) time.
Maximum width empty annulus problems for axis parallel squares and rectangles can be solved
in O(n3) and O(n2 log n) time, respectively [8]. Abravaya and Segal [2] studied the problem of
locating the maximum cardinality set of obnoxious facilities within a bounded rectangle in the
Euclidean plane such that their pairwise distance is at least a given threshold. They proposed a
2-approximation algorithm and also a PTAS based on shifting strategy [37]. Agarwal et al. [3]
showed the application of Megiddo’s parametric search [53] method to solve several geometric
optimization problems in the Euclidean plane, such as the big stick problem, the minimum width
annulus problem, and the problem of finding largest mutual visible spheres. Colmenar et al.
[17] gave an approximation algorithm for an obnoxious p-median problem on a general network
using a heuristic method known as a greedy randomized adaptive search procedure. Gokalp [34]
gave an iterative greedy algorithm that produces a high-quality solution within a short time.
Drezner et al. [21] developed an efficient global optimization method known as "Big Arc Small
Arc" to solve the Weber obnoxious facility location problem. They tested it with up to 10,000
demand points using Euclidean, Manhattan, and `1.78 norms. Most of these problems were solved
optimally within a few seconds. Drezner et al. [22] studied two problems related to placing a
facility within a planar network. In the first problem, they assumed that the network’s links
generate a nuisance. In the second problem, the facility itself generates a nuisance. The objective
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in both cases is to place the facility in a way that minimizes the nuisance. They proposed exact
and approximate methods to solve these problems and tested their methods on networks with up
to 40,000 links. A recent review of many variants of obnoxious facility location problems and
specialized heuristics to solve them is given in [14].

2.2 Semi-Obnoxious Facility Location (Sofl) problem

The semi-obnoxious facility location problem can be modeled as Weber’s problem [49], where
the repulsive points are assigned with negative weights. This problem is solved by designing a
branch and bound method with the help of rectangular subdivisions [49]. The problem of locating
multiple capacitated semi-obnoxious facilities is solved using a bi-objective evolutionary strategy
algorithm where the objective is to minimize both non-social and social costs [77]. The problem
of locating a single semi-obnoxious facility within a bounded region is investigated through the
construction of efficient sets, which are the endpoints of efficient segments (edges of the bounded
region or edges of the Voronoi diagram) formulated based on their mathematical properties
derived from the given set of points [54]. A bi-objective mixed integer linear programming
formulation was introduced and applied to this semi-obnoxious facility location problem [19].

Golpayegani et al. [35] introduced a semi-obnoxious median line problem in the plane using
Euclidean norm and proposed a particle swarm optimization algorithm. Later, Golpayegani et al.
[36] proposed a particle swarm optimization that solved the rectilinear case of the semi-obnoxious
median line problem. Recently, Gholami and Fathali [33] solved the circular semi-obnoxious
facility location problem in the Euclidean plane using a cuckoo optimization algorithm which
is known to be a meta-heuristic method. Wagner [81] gave duality results in his thesis for a
non-convex single semi-obnoxious facility location problem in the Euclidean space. In this thesis,
we studied the k obnoxious facility location problem restricted to a line segment [69, 71]. We
initially proposed a (1� ✏)-approximation algorithm [69], and then two exact algorithms based on
two different approaches. The algorithms run in O((nk)2) and O((n log n+k)2) time, respectively,
for any k > 0 and finally, we gave an O(n log2 n) time algorithm for k = 2 [71]. We also examined
the weighted variant of the problem (where the influencing range of obnoxious facilities is fixed
and demand points are weighted). We gave a dynamic programming-based solution that runs
in O(n3

k) time for this variant. Following the appearance of the above results in a conference
paper [71], Zhang [83] refined our result to O(nk↵(nk) log3 nk) by reducing the problem to the
k-link shortest path problem on a complete, weighted directed acyclic graph whose edge weights
satisfy the convex Monge property, where ↵(·) refers to the inverse Ackermann function. Section
4.3 of this thesis follows a similar strategy of reducing the weighted CSofl to the k-link path
problem, but the edge weights satisfy the concave Monge property.
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The Sofl problem is also closer to the class of geometric separability problems, where we need
to separate the given two sets of points with a linear or non-linear boundary or surface in a
high-dimensional space. Geometric separability is an important concept in machine learning and
pattern recognition. It is used to determine whether a set of data can be classified into distinct
categories (say, good and bad points type) using a specific algorithm or model. Then, given an
arbitrary data point, we can predict whether this point is good or bad depending on which side
of the separation boundary hyperplane it falls. O’Rourke et al. [59] gave a linear time algorithm
based on linear programming to check whether a circular separation exists. They also showed
that the smallest disk and the largest separating circle could be found in O(n) and O(n log n)

time, respectively. If a convex polygon with k sides separation exists, then for k = ⇥(n), the
lower bound for computing the minimum enclosing convex polygon with k sides is ⌦(n log n) [27]
and can be solved in O(nk) time. While the separability problem using a simple polygon [29] was
shown to be NP-hard, Mitchell [56] gave (log n)-approximation algorithm for an arbitrary simple
polygon. Recently, Abidha and Ashok [1] have explored the geometric separability problems
by examining rectangular annuli with fixed (the axis-aligned) and arbitrary orientation, square
annuli with a fixed orientation, and an orthogonal convex polygon. For rectangular annuli with a
fixed orientation, they gave O(n log n) time algorithm. They gave O(n2 log n) time algorithm for
cases with arbitrary orientation. For a fixed square case, the running time of their algorithm is
O(n log2 n), while for the orthogonal convex polygonal cases, it is O(n log n) time.

2.3 Dispersion problems

The discrete k-dispersion problem for k � 3 is known to be NP-complete even when the triangle
inequality is satisfied [28]. The Euclidean k-dispersion problem is proved NP-hard by Wang and
Kuo [82]. Akagi et al. [5] gave an algorithm to solve the k-dispersion problem in the Euclidean
plane exactly in n

O(
p
k) time. They also gave an O(n)-time algorithm to solve the special cases

of the problem in which the given points appear in order on a line or on the boundary of a circle.
Later, Araki and Nakano [6] improved the running time of [5] to O(log n) for the line case. Ravi
et al. [63] proved that for the max-min k-dispersion problem on an arbitrary weighted graph, we
cannot give any constant factor approximation algorithm within polynomial time unless P=NP. If
the triangle inequality is satisfied by the edge weights, then we cannot approximate the problem
with a better factor than 1

2 in polynomial time unless P=NP. They also gave a polynomial time
1
2 -approximation algorithm for the problem in graph metric.

Horiyama et al. [39] solved the max-min 3-dispersion problem in O(n) time in both L1 and L1

metrics when the given points are in a 2-dimensional plane. They also designed an O(n2 log n)

time algorithm for the 3-dispersion problem in L2 metric. The 1-dispersion problem is trivial
when the points are in a convex position, and we can solve the 2-dispersion problem in O(n log n)
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time by computing the diameter of the convex polygon formed by these points [67]. Recently,
Kobayashi et al. [44] gave O(n2)-time algorithm for the 3-dispersion problem on a convex
polygon. Recently, Mishra et al. [55] also studied the k-dispersion problem on convex polygon
and gave O(n3) time algorithm for k = 4. In the same paper [55], they also gave a 1.733-factor
approximation algorithm that runs in O(n4) time. In the literature, to the best of our knowledge,
the complexity of the k-dispersion problem on a convex polygon for any k has remained open; it
is resolved in our work here. When the points are arbitrarily placed in the Euclidean plane, the
current best approximation algorithm is still the 1

2 -approximation algorithm proposed by Ravi et
al. [63] for the metric case. Hence, also from the point of designing ⇢-approximation algorithm
for ⇢ >

1
2 , the problem is open. Other related results in the literature are the following. Baur and

Fekete [9] studied the problem of maximizing the rectilinear distance between a selected set of n
points within a polygon, and they showed that this problem could not be approximated within
the factor 13

14 unless P=NP. Fekete and Meijer [30] studied a variant of the discrete k-dispersion
problem with an objective of maximizing the average rectilinear distance between k facilities
in d-dimensional space. They solved the problem in linear time when k is fixed and gave a
polynomial-time approximation scheme when k is part of the input.

Table 2.1: Summary of related work on dispersion problems

Result Reference
Metric k-dispersion problem

NP-complete Erkut [28], 1990
1
2 -approximation algorithm Ravi et al. [63], 1994
No >

1
2 -factor approximation unless P=NP Ravi et al. [63], 1994

Euclidean k-dispersion problem
NP-complete Wang and Kuo [82], 1988
Exact algorithm in n

O(
p
k) time Akagi et al. [5], 2018

For k = 3, solved in O(n2 log n) time Horiyama et al. [39], 2021
O(n) time algorithm in both L1 and L1 metric Horiyama et al. [39], 2021

Euclidean k-dispersion problem when the points are in convex position
For k = 3, solved in O(n2) time Kobayashi et al. [44], 2021
For k = 4, solved in O(n3) time Mishra et al. [55], 2025
1.733-approximation algorithm in O(n4) time Mishra et al. [55], 2025
Exactly in FPT-time (O(2kn2 log2 n)) for any k This thesis
Exactly in poly-time (O(n4

k
2)) for any k This thesis
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2.4 Edge Vertex Dominating Set problem

The edge-vertex dominating set and vertex-edge dominating set in a graph were introduced
by Peters [61]. The edge-vertex dominating set and vertex-edge dominating set problems are
NP-complete, even when restricted to bipartite graphs [47]. For every nontrivial tree T , an
upper bound on �ev(T ) is (�t(T ) + s� 1)/2 where s is the number of support vertices (the vertex
adjacent to a leaf) [79]. The total domination number (�t) of a tree is equal to the ev-domination

number (�ev) plus one [45]. The vertex-edge dominating set problem in UDG is NP-complete

[42]. Also, in [42], a polynomial time approximation scheme (PTAS) is proposed. Finding �ve even
in cubic planar graphs is NP-hard [84]. The vertex-edge domination problem can be solved in
linear time on block graphs [60]. The same paper also shows that finding �ve in undirected path
graphs is NP-complete. Given a connected graph G with n vertices where n � 6, then we have
�ve(G)  bn3 c[85]. Boutrig et al. [12] gave an upper bound for the independent ve-domination
number in terms of the ve-domination number for connected K1,k-free graph with k � 3 and also
gave an upper bound on the ve-domination number for connected C5-free graph.

The double vertex-edge domination was introduced by Krishnakumari et al. [46]. They showed
that finding �dve in a bipartite graph is NP-complete and also proved that for every non-trivial
connected graph G, �dve(G) � �ve(G) + 1, and �dve(T ) = �ve(T ) + 1 or �dve(T ) = �ve(T ) + 2

for any tree T . Finding �dve in chordal graphs is NP-complete [80]. They gave a linear time
algorithm to find �dve in proper interval graphs and also showed that finding �dve in general graphs
with vertices having a degree at most five is APX-complete. The double version of edge-vertex
domination was studied by Sahin and Sahin [65]. They also gave the relationship between �dev and
�dve, �t, �ev for trees and graphs, and also gave formulas to determine the double ev-domination

number of paths and cycles. Sahin and Sahin [64] proved that the total ev-dominating set problem
is NP-hard for bipartite graphs. They also showed that (n� l+ 2s� 1)/2 is the upper bound for
�
t
ev for a tree T with order n, l leaves and s supporting vertices. To the best of our knowledge,

in the literature, the ev-dominating set problem is not yet studied in the context of geometric
intersection graphs.



Chapter 3

Constrained Obnoxious Facility

Location on a Line Segment

In this chapter, we consider three variants of the constrained obnoxious facility location (Cofl)
problem as follows:

The constrained obnoxious facility location (Cofl) problem is defined as follows: Given a set
P = {p1, p2, p3, . . . , pn} of n demand points in the plane, a line segment pq and a positive
integer k, pack k maximum-radius (non-overlapping) congruent disks d1, d2, d3, . . . , dk

centered on pq such that no point of P lies inside any of these disks, where p = (x(p), y(p)),
q = (x(q), y(q)), and y(p) = y(q).

The circular constrained obnoxious facility location (CCofl) problem is defined as follows:
Given a set P = {p1, p2, p3, . . . , pn} of n demand points and a predetermined circle C with
radius rc in the plane and a positive integer k, the problem is to locate k facility sites
centered on C such that the minimum of the smallest distance (in terms of Euclidean
distance) between a demand point in P and its nearest facility site, and the smallest
distance between facility sites (in terms of arc length), is maximized. Note that the disks
representing two consecutive facility sites centered on C may overlap strictly inside C.

The min-sum obnoxious facility location (Mofl) problem is defined as follows: Given a
horizontal line segment pq and a set P of n weighted points {p1, p2, . . . , pn} (communities)
whose weights (representing number of people in each such community) are given by
w1, w2, . . . , wn respectively, in the plane, a positive integer k and a distance � > 0, pack k

(non-overlapping) disks d1, d2, d3, . . . , dk of radius � centered on pq such that
kX

j=1

X

{i|pi2dj}

wi

is minimized, i.e., the sum of weights of the points covered by these non-overlapping disks
is minimized.

17
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In our approach to solve the first problem, we first solve the decision version of the Cofl

problem in O(n log n + k) time. Then, using this decision algorithm as a subroutine, we give
an (1 � ✏)-approximation algorithm (FPTAS) in O((n log n + k) log ||pq||

2(k�1)✏) time for the Cofl

problem, where ✏ > 0 and ||pq|| is the length of the segment pq. We subsequently show that
it is, in fact, possible to solve the Cofl problem exactly in polynomial time for a fixed k by
presenting two polynomial-time exact algorithms. The first algorithm is based on an exhaustive
search by explicitly computing all candidate radii L and runs in O((nk)2) time. The second
algorithm is based on Megiddo’s parametric search [53] and runs in O((n log n+ k)2) time. We
then discuss an O(n log n)-time algorithm to solve the Cofl problem for k = 2, which is faster
than the previous two algorithms. For the circular version (CCofl) of the problem, we give
a (1 � ✏)-approximation algorithm (FPTAS) by adapting the FPTAS of Cofl problem, with an
extra multiplicative factor of n in the running time. We also study another restricted version,
the Mofl problem. For k = 1, we show that the Mofl problem can be solved in O(n log n)

time, improving the previous best result of O(n2) [25], and for any k > 0 we give a dynamic
programming solution that runs in O(n3

k) time.

Consider the following notations, let rmax be the radius of disks in the optimal packing, and
||pq|| denotes the length of the line segment pq. Now, we first consider the following obvious
observation, then discuss how to solve the decision version of the Cofl problem.

Observation 3.1. If k is the number of disks that need to be packed on the segment pq and rmax

is the radius of the optimal packing, then rmax  ( ||pq||
2(k�1)).

The main challenge in the Cofl problem is to determine the optimal locations for the centers of
k-disks such that these disks are packed on a given line segment pq. This is due to the fact that
there are infinitely many possible centers for these disks on pq, and we must ensure that none of
the given demand points lie within the interior of any disks packed.

3.1 Decision version of the Cofl problem

Given a horizontal segment pq, without loss of generality, we can assume that all the points in P

lie in the upper half-plane defined by a line through pq. After fixing the segment pq, we define
the following decision version of the Cofl problem as follows:

Dcofl(P, k, L): Given a set P of n points lying above a line through pq, a real number L

(where 0 < L  ( ||pq||
2(k�1))) and an integer k, can we pack k non-overlapping disks of radius

L centered on pq such that none of these disks contains a point of P in their interior?

The solution to the Dcofl(P, k, L) problem is as follows. First, we identify the "infeasible"
intervals on the line segment pq for a given radius L with respect to each point pi 2 P . These
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intervals are termed infeasible because if a disk with radius L is centered anywhere within these
intervals, at least one point pi 2 P will lie strictly inside the disk. Next, we determine the feasible
intervals on pq based on the previously identified infeasible intervals. Finally, we check if we can
greedily pack k disks with radius L centered at the leftmost points on the feasible regions, as
described below.

Consider a region R whose boundary is at a distance L from the line segment pq (i.e., the
Minkowski sum of pq and a disk of radius L) (see Figure 3.1).

p q

R

↓

↑

↓

L

← →L ← L→
↑

L
↓

Figure 3.1: Region R of distance L from pq.

Observation 3.2. None of the points in P that lie outside the region R will influence the choice
of disk centers in the optimal solution to Dcofl(P, k, L).

Now, from every point inside or on the boundary of the region R, we can locate center-points on
pq which are at a distance L from this point, where a center-point is a candidate center point for
the disks in a packing.

Lemma 3.3. Each point in P that lies in the region R will have at least one center point and at

most two center points on pq at a distance of L.

Proof. Each of the points lying on the boundary of R has exactly one center-point on pq at
distance L, whereas the points lying strictly in the interior of R will have at most two center-points
on pq at distance L, (note that the coordinates of these center-points can be computed in O(1)

time using formulas from elementary geometry). Hence, there will be O(1) center-points on the
line segment pq for every point in P \R (see Figure 3.2).

Observation 3.4. Let pi 2 P be a point inside the region R, and ci,1 and ci,2 be the center-points
corresponding to pi, then none of the k disks in an optimal solution to Dcofl(P, k, L) will have
their center points lying within the open interval (ci,1, ci,2) on the segment pq.
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p q

R

↓

↑

↓

L

← →L ← L→
↑

L
↓

pi

ci,1 ci,2

Figure 3.2: Point pi in the region R has two points ci,1 and ci,2 on pq at distance L.

Now, consider another point pj 2 P (i 6= j) inside the region R, which has two center-points cj,1

and cj,2 on the segment pq (see Figure 3.3). In figure 3.3, we can also observe that the intervals
[ci,1, ci,2] and [cj,1, cj,2] formed by ci,1ci,2 and cj,1cj,2 are overlapping. Hence, from Observation
3.4 none of the k disks in the optimal solution will have their centers lying on the interval
([ci,1, ci,2] [ [cj,1, cj,2]) \ {ci,1, cj,2}, excluding the endpoints of the union of the two intervals.

p q

R

↓

↑

↓

L

← →L ← L→
↑

L
↓

pi

ci,1 ci,2

pj

cj,2cj,1

Figure 3.3: Another point pj in the region R has two points cj,1 and cj,2 on pq at distance L.

Without loss of generality, let {p1, p2, . . . , pm} be the points of P lying strictly inside R, above
the line y = y(p), and ordered from left to right, where m  n. We have seen that for every
point pi inside the region R there will be two center-points on the line segment pq which are at
distance L, i.e., there is an interval [li, ri] for every point pi inside the region R, where li = ci,1

and ri = ci,2. Merge all the overlapping intervals and then update the end points of the new
intervals on pq. Let I store these intervals after merging. Now, we will see how to compute I in
O(n log n) time. First, list all the intervals [li, ri] in the increasing order of the x-coordinates of
the left endpoint li. Consider the first interval in this ordered list and designate it as the current
interval. Then, compare the right endpoint of the current interval with the left endpoint of the
next interval in the ordered list. Merge them into a single interval if they overlap, e.g. [ci1, ci2]

and [cj1, cj2] are merged into [ci1, cj2] (see Figure 3.3). If they don’t overlap, add the current
interval (say, [ci1, ci2]) to I, and then make the next interval (i.e., [cj1, cj2]) as the current interval
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and continue as above. We will repeat the above steps until either the last interval in the ordered
list is merged into the current interval or the last interval is designated as the current interval and
is subsequently added to I. Finally, we will have the set of I = {[l1, r1], [l2, r2], . . . , [lm0 , rm0 ]} as
the resulting pairwise disjoint intervals, ordered by their left endpoints from left to right, where
m

0  m. This process will take O(n log n) time as we need to sort the original intervals.

Consider the complement of I with respect to pq, denoted as I
c = {[p, l1], [r1, l2], . . . , [rm0 , q]},

(here we assumed that none of the intervals in I contains the endpoints of pq). Clearly, computing
I
c will take O(n) time. We can now tightly pack disks centered from point p to q on the segment

pq by placing them on the complemented intervals from I
c. For convenience assume r0 = p, and

lm0+1 = q. The k disks of radius L are packed on pq by Algorithm 1.

Algorithm 1: Dcofl(P, k, L)

Compute I

Compute I
c where the intervals are ordered from p to q, and let m = |Ic|

if |Ic| = ; then
return (no, ;)

end
else

j  0
for each i 1 to m do

�  
⌅ length of ith interval of Ic

2L

⇧

if (j + � + 1)  k then
On the ith interval of Ic, pack the disks dj+1, dj+2, . . . , dj+�+1 of radius L.
update j  (j + � + 1)
update the intervals in I

c such that the distance between the left end point ri of
the left most interval [ri, li+1] in I

c and the right most point of @dj on pq is at
least L.

if j = k then
break

end
end
else

On the ith interval of Ic, pack the disks dj+1, dj+2, . . . , dk of radius L.
update j  k

break
end

end
if j = k then

return (yes, {d1, d2, . . . , dk})
end
else

return (no, ;)
end

end

Claim 3.5. Algorithm 1 (Dcofl(P, k, L)) correctly packs k disks of radius L if L  rmax.
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Proof. We prove the correctness of Algorithm 1 by induction on k, the number of disks to pack.
Base case (k=1): If |Ic| is empty, then the algorithm returns no and stops. If |Ic| is not empty,
this implies there is at least one interval in I

c on the line segment pq such that if we place a disk
d1 of radius L centered on it, then d1 does not contain any point from P in its interior.
Induction hypothesis: Assume for some integer k0, where 1 < k

0
< k, Algorithm 1 successfully

packed k
0 disks d1, d2, . . . , dk0 with radius L as tightly as possible (the x-coordinates of their

centers are as smallest as possible). We further assume that the first disk d1 is centered at the
left endpoint of the left-most interval in I

c.
Induction step: After packing k

0 disks with radius L:

• The first k
0 disks are placed as tightly as possible on the line segment pq (the centers have

the smallest possible x-coordinate).

• The leftmost disk is centered at the left endpoint of the left-most interval in I
c.

• If L  rmax and k
0 + 1  k, then there always exists a point p on an interval in I

c. The
point p is at a distance of at least 2L to the right of the center of dk0 since the centers of
d1, d2, . . . , dk0 , are lying at or to the left of the first k

0 disks respectively in any optimal
packing. Now, we can center the (k0 + 1)th at that point p.

Therefore, by induction, Algorithm 1 correctly packs k disks whenever L  rmax.

Theorem 3.6. Algorithm 1 solves the Dcofl(P, k, L) problem in O(n log n+ k) time.

Proof. We analyze the time complexity of Algorithm 1 for solving the Dcofl problem, n denotes
the number of points and k denotes the number of disks to pack.

• Given the segment pq and L, the region R can be computed in constant time.

• The points within the region R can be found in time linear in |P |.

• Sorting the given points in P based on their x-coordinate and determining their correspond-
ing intervals on pq takes O(n log n) time. Construction of the sets I and I

c can be done in
O(n log n) time.

• The packing of the k disks on the set I
c takes O(n+ k) time.

• Hence the total time is O(n) +O(n log n) +O(n+ k) = O(n log n+ k).
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3.2 FPTAS for the Cofl problem

Now, we propose a fully polynomial time approximation scheme (FPTAS) for the constrained

obnoxious facility location (Cofl) problem, i.e., an (1 � ✏)-approximation algorithm for any
1 > ✏ > 0.

In the Cofl problem, our goal is to pack maximum-radius k (non-overlapping) congruent disks
on the line segment pq such that none of the points of the set P lie inside of any of these disks.
As we discussed above, the answer to the Dcofl(P, k, L) problem is yes if we are able to pack
k congruent disks of radius L on pq such that none of the points of P lie inside any of the
disks, otherwise the answer is no. Hence, to find the maximum radius of k congruent disks,
we solve the Dcofl(P, k, L) problem repeatedly for L = 2i, where i = 0, 1, 2, . . . , as long as
Dcofl(P, k, L) problem returns yes. From Observation 3.1 the optimal radius rmax is at most
||pq||

2(k�1) . Let that small value of L be 2j when the answer to the Dcofl(P, k, L) problem is no.
However, when L = 2j�1 the answer to Dcofl(P, k, L) problem is yes. Hence, if 2j  ||pq||

2(k�1)

then rmax lies in the interval [2j�1
, 2j ], else rmax lies in the interval [2j�1

,
||pq||

2(k�1) ] for a given
set P of n points, a line segment pq and an integer k. Given a real number ✏, we bisect the
interval [2j�1

, 2j ] log 1
✏

time. Initially, |2j � 2j�1|  rmax, since we are able to pack k disks of
radius 2j�1. Let [↵,�] be the interval after bisecting the interval [2j�1

, 2j ] by log 1
✏

times. Then
|↵ � �|  |2j�2j�1|

2log
1
✏
 rmax

2log
1
✏
 ✏rmax. Hence, rmax lies in the interval [↵,�], which implies that

↵ � � � ✏rmax � (1� ✏)rmax. Therefore, the radius of the k congruent disks returned along with
a positive answer by the last invocation of Algorithm 1 with r = ↵ is at least (1� ✏)rmax, where
✏ is an input parameter. Hence, we have the following theorem.

Theorem 3.7. Given a line segment pq and a set P of n points in the plane, we can get a

(1� ✏)-factor approximation algorithm with ✏ > 0 for the Cofl problem, that runs in O((n log n+

k) log( ||pq||
2(k�1)✏)) time, by employing doubling search and bisection methods.

Proof. From Theorem 3.6, we know that each call to solve the Dcofl(P, k, L) problem will take
O(n log n+k) time. Doubling search guarantees that the optimal radius rmax of k congruent disks
lies either in the interval [2j�1

, 2j ] or [2j�1
,

||pq||
2(k�1) ]. We then divide this interval by log 1

✏
times. In

the worst case the number of invocations of the Dcofl(P, k, L) problem is O(log ||pq||
2(k�1) + log 1

✏
)

time, for an input parameter ✏. Hence, the total running time is O((n log n+ k) log( ||pq||
2(k�1)✏)).

Remark 3.8. The Cofl problem for k = 2, under the `1 norm, can be solved in O(n log n) by
employing the optimization technique of Frederickson and Johnson [31] instead of doubling search
and bisection methods because the problem will be a special case of the one in [43].
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3.3 Polynomial time exact algorithms for the Cofl problem

This section discusses two polynomial time exact algorithms for the Cofl problem. First, we
discuss a solution based on an exhaustive search1 followed by a solution based on Meggido’s
parametric search [53]. Here, we first define a few more notations required to present our exact
algorithms, as follows. Let I = {[xi,1, xi,2]|pi 2 P} be the set of maximal intervals on pq ordered
from p to q (ordered by the x-coordinates x(pi) of pi 2 P ), where every point in each interval
[xi,1, xi,2] is at distance at most L from pi 2 P (see Figure 3.4). The decision algorithm returns
yes if we can place k pairwise interior-disjoint disks of radius L, centered on pq such that none
of the disk centers lie in the interior of the intervals in I. Otherwise, the algorithm returns no.
Let I

c = {[xi,2, xj,1]|pi, pj 2 P, i < j} [ {[x0,2, x1,1], [xn,2, xn+1,1]} be the set of complemented
intervals of I, where every point in each interval [xi,2, xj,1] 2 I

c is at distance at least L from
every point in P and x0,2 = x(p), xn+1,1 = x(q). Note that for every interval [xi,2, xj,1] 2 I

c, no
other interval of I lie entirely or partially between xi,2 and xj,1. Let R be the Minkowski sum of
pq and a disk of radius L, i.e., the union of pq and the region swept by a disk of radius L when
its center moves along pq.

p q

L L

pi = (x(pi), y(pi))

ci,1 = (xi,1, yi,1) ci,2 = (xi,2, yi,2)
y = y(q)

Figure 3.4: A point pi is having two center points of pq which are at unknown distance L.

3.3.1 Algorithm based on exhaustive search

The approach here is that we first compute the set Lcan of all candidate radii L, based on some
observations of possible positions of all k disks in an optimal packing. We then repeatedly call
the selection algorithm (e.g., see [18]) to find the median of Lcan. Then, we invoke the decision
algorithm (Algorithm 1) each time we peek the median element by setting L to this element as
the candidate radius. We continue this search until we find the radius L

⇤ (maximum radius)
by repeatedly removing one-half of the elements of Lcan based on the result returned by the
decision algorithm until there is only one element in Lcan. Hence, L⇤ = rmax.

1
Here, exhaustive search involves considering all possible potential radii based on the positions of disks relative

to the given points and pq in an optimal packing and determining the one that results in maximum radius along

with valid packing.
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Consider an instance of the Cofl problem, i.e., a line segment pq, a set P of n points, and an
integer k. As already assumed, without loss of generality, let all the points of P be lying above
the line through the segment pq. Now, we need to place k non-overlapping congruent disks of
the maximum radius with centers lying on pq without violating the constraint that no point of P
lies inside any of these disks. The maximum radius of the disks depends on some “influencing

points” in P for the given position of the fixed horizontal line segment pq.

Definition 3.9. The influencing points P
inf ✓ P are those points which satisfy the following

criteria: given a point pi 2 P
inf (or a pair of points pi, pi0 2 P

inf ), we can place k pairwise
disjoint congruent disks centered on pq such that (i) pi lies on the boundary of one of these disks
(or pi and pi0 lie on the boundary of the same disk or on the boundaries of two different disks),
and (ii) if pi (or pi0 or both) is (are) removed from P , then the radius of these disks may be
increased while their centers are perturbed on pq to keep their pairwise disjointness intact, and
(iii) none of the other points of P lie in the interior of any of these disks before and after the
radius increases.

Lemma 3.10. Given that the position of pq is fixed, for an optimal solution to the Cofl problem

in `2 metric, there are at most two points in P
inf ✓ P that will determine the optimal radius

rmax of the disks in the corresponding packing, and also |Lcan| = O(n2
k
2).

Proof. The proof is based on case analysis. First, let rcan 2 Lcan be a candidate radius.

Case 1. The set P
inf is empty and then rcan = ||pq||

2(k�1) .

If this case is not satisfied, then there will be at least one point lying on the boundary of some
disk in the optimal packing, which will influence the value of rmax. Among these points in P

lying on the boundaries of the optimal disks, let pi be the leftmost, i.e., the point with the
smallest x-coordinate. Let d1, d2, . . . , dk be the disks ordered from left to right in the optimal
packing. Now we will examine all possible positions of these disks for every subset of at most two
influencing points in P

inf . We will also show how to compute the corresponding candidate radii
rcan 2 Lcan. To this end, consider a disk d centered on pq. Divide the part of the boundary arc
@d of d lying above pq into left and right arc segments (denoted as Larc and Rarc respectively)
by a vertical line through the center of d (see Figure 3.5). We then show that at most two points
pi, pi0 2 P

inf ✓ P determine the radius rmax of the disks in an optimal packing. Let dj and dj0

p qcj

dj

rcan

cj′

dj′

rcan

Lj
arc Lj′

arcRj
arc Rj′

arc

Figure 3.5: Left arc segment and right arc segment of disks dj and dj0 .
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(possibly j = j
0) be the two disks, on whose boundary arc segments L

j
arc or R

j
arc, and L

j
0
arc or

R
j
0
arc the two points pi and pi0 lie. Based on all possible positions of dj and dj0 for any pair pi

and pi0 , we have the following cases.

Case 2. Assume that pi lies on R
j
arc of dj such that its position determines the radius of the disk

(there is no point pi0 that influences the radius) (see Figure 3.6). For any j = 1, 2, . . . , k in the
optimal packing, pi can lie on R

j
arc of dj . For each such point pi 2 P

inf the candidate radius
rcan can be calculated and stored in Lcan. Hence the number of candidate radii in this case is
O(nk). The candidate radius rcan with respect to every point can be calculated using the below
equation:

2(j � 1)rcan = x(pi)�
p
r2can � (y(pi)� y(q))2 � x(p) (3.1)

The candidate radius rcan 2 Lcan is calculated from the above equation as we know the value
of every term of the equation except rcan. The mirror case of this where the point pi0 is the
rightmost point and lies on L

j
0
arc of dj0 can be handled similarly. In this case, rcan can be

calculated using the below equation.

(2(k � j
0) + 1)rcan = ||pq||� x(pi0) + x(p) + rcan �

p
r2can � (y(pi0)� y(q))2 (3.2)

p qcj

pi

c1

d1 dj

︷ ︸︸ ︷

(j − 1) disks

y(pi)− y(q)

x(pi)

rcan

Figure 3.6: Illustration of case 2.

Case 3. Let both the points pi, pi0 2 P be determining the radius of the disks in the optimal
packing. Then the point pi can lie on L

j
arc or R

j
arc of dj , where j = 1, 2, . . . , k (see Figure 3.7).

Similarly, the point pi0 can also lie on L
j
0
arc or Rj

0
arc of dj0 , where j0 = j, j+1, j+2, . . . , k. Here, the

disks centered between pi and pi0 are compactly packed and determine the optimal radius along
with the positions of pi and pi0 . It is easy to observe that there are a constant number c of possible
positions for the two disks dj and dj0 in an optimal solution such that the two points pi, pi0 lie on
their boundaries while the radius rcan can not be increased by repositioning the centers of some or

all k disks. Therefore, the number of all candidate radii rcan is
�
n

2

� kP
j=1

kP
j0=j

c = k
2
c
�
n

2

�
= O(cn2

k
2).
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The candidate radii values rcan 2 Lcan can be computed from the following equation:

x(pi0)� x(pi) =
⇥
2(j0 � j)rcan ±(1)

p
r2can � (y(pi)� y(q))2±(2)

p
r2can � (y(pi0)� y(q))2

⇤ (3.3)

wherein replacing ±(1) with + indicates that pi lies on L
j
arc of dj and with � indicates that pi

lies on R
j
arc of dj . Similarly, replacing ±(2) with + indicates pi0 lies on R

j
0
arc of dj0 and with �

indicates pi0 lies on L
j
0
arc of dj0 .

p qcj

pi

c1

d1 dj

︷ ︸︸ ︷

(j − 1) disks

x(pi)

rcan

pi′

x(pi′)cj′

dj′

rcan

Figure 3.7: Two points pi and pi0 determining the radius rcan.

Case 4. Assume the point pi 2 P lies on R
j
arc of some disk dj and there are also other points

pi0 , pi00 2 P (optional) lying on boundary arcs of disks on the right of dj . Based on all possible
positions of pi, pi0 and pi00 we can observe that at most two of these points will determine rcan,
i.e., each of these possible positions corresponds to one of the above cases, as follows.

(i) When pi0 2 P lies on L
j+1
arc of the disk dj+1 and there is empty space between dj and dj+1

(see Figure 3.8). This corresponds to Case 2 above as either j � 1 disks on the left of pi or
k � j � 1 disks on the right of pi0 are compactly packed with their radius increased to the
maximum possible value.

(ii) When pi0 2 P lies on L
j
0
arc of the disk dj0 and pi00 2 P lies on the disk dj00 , where j

0 � j > 1

and j
00 � j

0
> 1 (see Figure 3.9). Then, the disks in the optimal packing can be partitioned

into four subsequences of consecutive disks d1, d2, . . . , dj , dj , dj+1, . . . , dj0 , dj0 , dj0+1, . . . , dj00 ,
and dj00 , dj00+1, . . . , dk. In at least one of these, the disks must be compactly packed with
their radius increased to the maximum possible value; otherwise, it would contradict that
we have the optimal packing (since their radius can be increased). Hence, one of the above
cases applies, and at most two points among pi, pi0 , pi00 determine the value of rcan.

The constant c = 10 because of the following: (i) no point lies on the boundary of any disk in
optimal packing, (ii) pi lies on L

j
arc or R

j
arc, (iii) both pi, pi0 lie on L

j
arc or R

j
arc, (iv) pi lies on

L
j
arc and pi0 lies on R

j
arc, (v) pi lies on R

j
arc and pi0 lies on R

j
0
arc or pi lies on R

j
arc and pi0 lies on

L
j
0
arc or pi lies on L

j
arc and pi0 lies on R

j
0
arc or pi lies on L

j
arc and pi0 lies on L

j
0
arc. Observe that

(i) corresponds to Case 1 and contributes 1, (ii) corresponds to Case 2 and contributes 2, (iii)
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p qcj

pi

c1

d1 dj

︷ ︸︸ ︷

(j − 1) disks

x(pi)

rcan

pi′

x(pi′) cj+1

dj+1

rcan

︷ ︸︸ ︷

(k − (j + 1)) disks

Figure 3.8: Illustration of case 4(i).

p q

︷ ︸︸ ︷

(j − 1) disks

pi′

x(pi′) cj′

dj′

rcan

cj′′

pi′′

dj′′

x(pi′′)

rcan

cj

pi

dj

x(pi)

rcan

︷ ︸︸ ︷

(j′ − j − 1) disks
︷ ︸︸ ︷

(j′′ − j′ − 1) disks

Figure 3.9: Illustration of case 4(ii).

contributes 2, (iv) contributes 1, (v) contributes 4, hence c = 1 + 2 + 2 + 1 + 4 = 10. Therefore,
|Lcan| = O((nk)2). Thus the lemma follows.

Theorem 3.11. For a given line segment pq and a set P of n points in the Euclidean plane, we

can solve the Cofl problem optimally (Algorithm 2) in O((nk)2) time.

Proof. From Lemma 3.10, we know that the cardinality of the set Lcan of all candidate radii
is finite and is O((nk)2). Hence, we find rmax 2 Lcan by repeatedly applying the selection
algorithm for finding the median of Lcan and removing half of the elements in Lcan based on the
output of the decision algorithm each time. This will take O((nk)2) time and then invoking the
decision algorithm O(log(nk)) times results in overall time of O((nk)2 + (n log n+ k) log (nk)) =

O((nk)2).

3.3.2 Algorithm based on parametric search

A formally given FPTAS for the Cofl problem is weakly polynomial because the number of calls
to the decision algorithm is proportional to the number of bits of precision of accuracy for the
desired approximation. Whereas the latter exact algorithm (in the previous subsection) runs in
O(n4) time if k = O(n). Here, we discuss an algorithm based on (slower version of) Megiddo’s
parametric search [53] whose running time is independent of any numerical precision parameter
(1
✏
) and also becomes O(n2) when k = O(n), running faster than the latter. As we know, in a

solution based on parametric search, there is a test algorithm and a decision algorithm wherein
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Algorithm 2: Exhaustive_Search(P, k, pq)

Input: A set P = {p1, p2, p3, . . . , pn} of n points, a line segment pq in the plane and an
interger k.

Output: The radius rmax of k disks packed with centers lying on pq.
Initialize Lcan = ; [ { ||pq||

2(k�1)}
// Lcan is the set of candidate radii and Case 1 contributes one rcan

for j = 1, . . . , k do
for each pi 2 P do

compute rcan by evaluating the equation 3.1 (the equation 3.2 for mirror case) in
Case 2.

update Lcan = Lcan [ {rcan}

for j = 1, . . . , k do
for j

0 = j, . . . , k do
for each pair pi, pi0 2 P , where i 6= i

0 do
compute rcan by evaluating the equation 3.3 in Case 3.
update Lcan = Lcan [ {rcan}

while |Lcan| � 2 do
L median(Lcan) // invoke the linear-time median finding algorithm [18]
if Greedy_LPacking(P, k, L) then

// Algorithm 1 returns yes
Lcan  Lcan \ {x 2 Lcan | x < L}

else
Lcan  Lcan \ {x 2 Lcan | x � L}

rmax  element(Lcan)
// element(Lcan) returns the last element of Lcan when |Lcan| = 1
return rmax

the test algorithm is typically a step-by-step simulation of the decision algorithm. We now will
describe how to simulate the steps of Algorithm 1 at the unknown maximum L

⇤(= rmax).

Consider a point pi 2 P which is having two center points ci,1 and ci,2 on the segment pq (see
Figure 3.4). Let the coordinates of these points be pi = (x(pi), y(pi)), ci,1 = (xi,1, yi,1) and
ci,2 = (xi,2, yi,2). Clearly, these points and L satisfy the equations:

L
2 = (x(pi)� xi,1)

2 + (y(pi)� y(q))2 (3.4)

L
2 = (x(pi)� xi,2)

2 + (y(pi)� y(q))2 (3.5)

where yi,1 = yi,2 = y(p) = y(q) as both the points ci,1 and ci,2 are located on pq. Since we
know the coordinate values y(q), x(pi) and y(pi), the values of xi,1, xi,2 are given as follows:

xi,1 = x(pi)� (L2 � (y(pi)� y(q))2)
1
2 and

xi,2 = x(pi)� (L2 � (y(pi)� y(q))2)
1
2
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respectively, if
y(pi)  y(q) + L (3.6)

Now, consider the end points of the ith complemented interval as [ri�1li] (at line 5 of Algorithm
1). Let the coordinates ri�1 = (xi�1,2, yi�1,2), and li = (xi,1, yi,1), then

� = (||ri�1li||)/2L =((xi,1 � xi�1,2))/2L,

� = (x(pi)� (L2 � (y(pi)� y(q))2)
1
2�

(x(pi�1)� (L2 � (y(pi�1)� y(q))2)
1
2 ))/2L.

In the for-loop, at line 4 of Algorithm 1, we know the values of j and k. With these known
values, we need to perform the comparison j + � + 1� k  0. Note that this is a branching point
depending on a comparison that involves a polynomial in L, poly(L).

j + (x(pi)� (L2 � (y(pi)� y(q))2)
1
2 � (x(pi�1)�

(L2 � (y(pi�1)� y(q))2)
1
2 ))/2L+ 1� k  0,

2(j + 1� k)L+ (x(pi)� x(pi�1)) 

(L2 � (y(pi)� y(q))2)
1
2 � (L2 � (y(pi�1)� y(q))2)

1
2 .

On simplification, the above inequality becomes

2((j + 1� k)2�1)L2 + 4(j + 1� k)(x(pi)� x(pi�1))L+ (x(pi)� x(pi�1))
2

+ 2{(L2 � (y(pi)� y(q))2)(L2 � (y(pi�1)� y(q))2)}
1
2  0.

that involves a degree-two polynomial, poly(L): AL
2 + BL+ C + 2((L2 �D)(L2 � E))

1
2 = 0,

where the coefficients A, B, C, D and E depend on the values known at the point of execution
of the corresponding comparison step. To simulate comparison steps in the for loop at line 6,
we compute all the roots of the associated polynomial poly(L) and invoke Algorithm 1 with the
value of L equal to each of these roots. This yields an interval between two roots or a root and
0 or ||pq||/(2(k � 1)) that contains L

⇤. This enables us to determine the sign of poly(L⇤) and
proceed with the generic execution of the next step of the algorithm. Essentially, each time
Algorithm 1 returns yes for the guessed value of L, the region R (which depends on the right
end of the interval containing L

⇤) is shrinking, and hence the number of complemented intervals
in I

c on which we have to run Algorithm 1 is reducing, until the shrunken R corresponds to
L
⇤. Finally, after completing the simulation of the for loop, if j = k, then we return L

⇤. To
construct the set D = {d1, d2, . . . , dk}, we run Algorithm 1 with the computed L

⇤ one more time.
Therefore, we have the following theorem.

Theorem 3.12. We have an algorithm to solve the Cofl problem in O((n log n+ k)2) using the

parametric search technique.
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Proof. We know that Algorithm 1 runs in O(n log n+ k) time. In the worst case, for each step of
Algorithm 1, we obtain two different values of L and invoke Algorithm 1 on each of them as the
candidate radius. Let L1, L2, . . . , Lt be those different values of L across the entire simulation,
where t = O(n log n + k). Then, initially rmax 2 [0, ||pq||

2(k�1) ]. After the entire simulation is
completed, clearly rmax = L

⇤ = max{Lu | Dcofl(P, k, Lu) = yes, u = 1, 2, . . . , t}. Since the
degree of the polynomial poly(L) is at most two and the decision algorithm Dcofl(P, k, Lu)

is monotone for any Lu 2 IR+ [ {0}, the entire setup fits in the framework of parametric
search. Hence, the correctness of the algorithm follows, and the overall time for the simulation is
O((n log n+ k)2).

3.3.3 Improved algorithm for k = 2

Here, we show that the decision problem Dcofl(P, 2, L) can be solved in O(log n) parallel time
using n processors. Let Q(L,P ) be the complement of the union of n open disk of radius L

centered at the demand points in P . Let S(pq, L) be the intersection of Q(L,P ) and pq, which
is the collection I

c of O(n) disjoint feasible intervals [ri�1li] ⇢ pq, i = 1, 2, . . . ,m, where the
coordinates ri�1 = (xi�1,2, yi�1,2), and li = (xi,1, yi,1) and m = O(n). Let an infeasible interval
[xi,1, xi,2] be an interval on pq, which is not feasible for centering a facility in that (excluding its
endpoints). When we have the infeasible intervals computed implicitly, we also have computed
the feasible intervals in I

c. A parallel algorithm (see Algorithm 3) for computing these intervals
is as follows: (1) We assign one demand point from P to each of the n processors. (2) Let each
processor compute the corresponding infeasible interval [xi,1, xi,2] = di \ pq, where di is the open
disk of radius L centered at pi 2 P for i = 1, 2, . . . , n. (3) Then, the merging of consecutive
overlapping infeasible intervals into one bigger infeasible interval is performed by processors
as follows: If an interval is not overlapping with its adjacent intervals, then this interval is
maintained on the same processor and for each pair of consecutive overlapping intervals, the
processor of the first interval merges them into one and the second processor sits idle. In this
way, for a sequence of consecutive overlapping intervals, alternating processors will perform the
merging. This process will be repeated until there are only isolated intervals. Since in every step,
we merge a pair of consecutive overlapping intervals, there will be at most log n+1 steps in total,
and each step will take O(1) parallel time. Also, the serial time to construct S(pq, L) is only
O(n log n) (see Algorithm 1).

Now, choosing the two farthest points on the intervals in S(pq, L) is easy, just pick the left
endpoint of the leftmost interval and right endpoint of the rightmost interval in I

c, in O(1)

parallel time, and place the two facilities centered at these points.

Therefore, overall time of the parametric algorithm to solve Cofl for k = 2 is O(Tp · n ·
log n + Tp · Ts · log n) = O(log n · n · log n + log n · n log n · log n) = O(n log3 n) time, where Tp
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Algorithm 3: Parallel_Decision(P, 2, L)
Setup: Let P = {P1, P2, . . . , Pn} be the given n processors (in a shared memory
multiprocessing system) ordered according to the demand points p1, p2, . . . , pn such that the
points are assigned as P1  p1, P2  p2, . . . , Pn  pn. Let Bn be a bit string where each
bit corresponds to one processor. If the bit value Bn[i] is 1, then the corresponding
processor Pi will be active in the next step, and otherwise (Bn[i] = 0) Pi will not perform
any computation in the remaining steps of the algorithm.

for i 1 to n do
Bn[i] 1
// assume Bn is stored in memory such that it can be accessed by every

processor
end
Let the demand points be stored in the consecutive memory blocks B

1
, B

2
, . . . , B

n of same
size, respectively.

Each processor pi will compute an infeasible interval [li, ri] on pq and stores in respective
memory block B

i by replacing the demand point pi.
Each processor P2i+1 will test whether its interval [l2i+1, r2i+1] overlaps [l2(i+1), r2(i+1)].
if overlapping then

P2i+1 will access the bit Bn[2(i+ 1)] and set it to 0.
Each processor P2i+1 will merge the intervals if
([l2i+1, r2i+1] \ [l2(i+1), r2(i+1)] 6= ;) ^ (Bn[2(i+ 1)] = 0) and store the resulting interval
in B

2i+1, where i = 0, 1, . . . , bn�1
2 c.

end
j  1
while j  dlog ne do

Each processor P2i+1 will test whether its interval [l2i+1, r2i+1] overlaps
[l2(i+j)+1, r2(i+j)+1].

Each processor P2i+1 will merge the intervals if
([l2i+1, r2i+1] \ [l2(i+j)+1, r2(i+j)+1] 6= ;) ^ (Bn[2(i+ j) + 1] = 0) and store the resulting
interval in B

2i+1, where i = 2t  bn�1
2 c for t = 0, j, 2j, 3j, . . .

j  j + 1
end
Let [l⇤

l
, r

⇤
l
] and [l⇤r , r

⇤
r ] be the leftmost and rightmost infeasible intervals of the corresponding

active processors Pl and Pr, which will perform the following steps.
if (l⇤

l
� p) ^ (r⇤r  q) then l

⇤  p, r⇤  q.
if (l⇤

l
< p) ^ (r⇤r > q) then l

⇤  r
⇤
l
, r⇤  l

⇤
r .

if (l⇤
l
� p) ^ (r⇤r > q) then l

⇤  p, r⇤  l
⇤
r .

if (l⇤
l
< p) ^ (r⇤r  q) then l

⇤  r
⇤
l
, r⇤  q.

if ||l⇤r⇤|| � 2L then
return (yes, {d1, d2})
// where d1 and d2 with radius L are centered at l

⇤ and r
⇤, respectively

end
else

return (no, ;)
end
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denotes a parallel time and Ts denotes a serial time for solving Dcofl(P, 2, L) with n processors.
In essence, the problem solved by the parallel algorithm is the ordering of the endpoints of
the intervals of S(pq, L) from left to right so that a pair of endpoints apart by at least 2L

distance, if existing, can be found in O(1) parallel time. Since the problem essentially involves
sorting without knowing the optimal radius, using Cole’s parametric search technique [16] (which
trims a factor of O(log n)) results in an improvement in the running time for k = 2, that is
O(n · Tp + Ts(Tp + log n)) = O(n · log n+ n log n(log n+ log n)) = O(n log2 n).

Remark 3.13. The Cofl under the Euclidean norm for k = 2 can be solved in O(n log2 n) time
using Cole’s parametric search [16].

This is an improvement over the earlier FPTAS (proposed in subsection 3.2) as well as the two
exact algorithms (proposed in subsection 3.3) for k = 2.

3.4 Circular Cofl problem

Recall the definition of the CCofl problem in which the centers of the disks are restricted to lie
on the boundary arc (@C) of a predetermined circle C with radius rc.

The decision version of this problem Dccofl(P, k, L) can be solved by using a similar method
that was used to solve the Dcofl(P, k, L) problem under the assumption that rc >> L (rc is
much larger compared to L). When rc < L, it is trivial that only one disk with radius L will be
packed on @C as the center of C will lie inside that packed disk. Now, to solve the decision version
of CCofl problem, we consider two circles C1 and C2 which are concentric with C and whose
radii are rc � L and rc + L, where L is a real number (see Figure 3.10). We can observe that the
points lying inside C1 and outside of C2 will not influence the packing of the disks. Similar to
that of Dcofl(P, k, L) problem here, we can obtain at least one center point and at most two
center points on the boundary of C which are at a distance of L from each point lying outside of
C1 and inside of C2 (see pi, pj and pk in Figure 3.10).

Let ci,1 and ci,2 be the center points corresponding to pi, then none of the k disks in an optimal
solution to Dccofl(P, k, L) will have their center points lying on the open arc interval (ci,1, ci,2)
of the boundary of C.

Now, let (cj,1, cj,2) and (ck,1, ck,2) be the center points corresponding to pj and pk respectively. In
Figure 3.10, we can observe that the intervals [ci,1, ci,2], [cj,1, cj,2] and [ck,1, ck,2] formed by ci,1ci,2,
cj,1cj,2 and ck,1ck,2 are overlapping. Hence, none of the k disks in the optimal solution will have
their centers lying on the interval ([ci,1, ci,2] [ [cj,1, cj,2] [ [ck,1, ck,2]) \ {ci,1, ck,2}, excluding the
end-points of the union of the two intervals.
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C1

C2

C

L L

pi

pj

pk

Figure 3.10: C1 and C2 which are at distance L from C.

Without loss of generality, let {p1, p2, . . . , pm} be the points of P lying strictly outside of C1
and inside of C2, ordered along the boundary of C in clockwise angular fashion, where m  n.
We know that for every point pi lying strictly outside of C1 and inside of C2 there will be two
center-points on the boundary of C which are at distance L, i.e., there is an interval [li, ri] for
every point pi, where li = ci,1 and ri = ci,2. Merge all the overlapping intervals and then update
the end-points of the new intervals on the boundary of C. Let I = {[l1, r1], [l2, r2], . . . , [lm0 , rm0 ]}
be the set of resulting pairwise disjoint intervals ordered clockwise, where m

0  m. Consider the
complement of I with respect to boundary of the circle C, denoted as I

c = {[r1, l2], . . . , [rm0 , l1]}.

The arc length of the complemented intervals in I
c can be calculated using the law of cosines

formula as follows: The angle (✓) subtended by an arc at the center of C is ✓ = arccos (1� d
2

2r2c
)

where d is the Euclidean distance between the endpoints of the arc segment. Then, the length of
the arc interval [rili+1] is ||rili+1|| = rc✓, where ✓ = arccos (1� d

2

2r2c
) for i = 1, 2, . . . ,m0.

Observation 3.14. Without loss of generality, we can assume that the first disk d1 is centered at
one of the end-points of the arc segment in I

c.

Since we don’t know the position of the disks for given L in the optimal packing, we greedily
pack disks by placing centers on @C with the first disk d1 at every endpoint of the arc segments
in I

c. As there are O(n) end-points in I
c, we have the following theorem.

Lemma 3.15. Given the set I
c

of complemented intervals and an integer k > 0, Algorithm 1

solves the Dccofl(P, k, L) problem in O(n(n log n+ k)) time.
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Proof. Follows from Observation 3.14.

Theorem 3.16. We can get a (1� ✏)-factor approximation algorithm with ✏ > 0 (FPTAS) for the

CCofl problem, that runs in O(n(n log n+ k) log( ||pq||
2(k�1)✏)) time, by employing doubling search

and bisection methods.

3.5 Min-sum Obnoxious Facility Location (Mofl) problem

Recall that in the Mofl problem, we have a horizontal segment pq in the plane; without loss of
generality, we can assume that all the points in P are lying above the horizontal line through pq.
As in the previous section, we again compute the intervals [li, ri] on pq for every point pi 2 P ,
but now defined by the center-points li and ri on pq, each at a distance � from pi. We call these
intervals mega-intervals denoted by I

mega = {[l1, r1], [l2, r2], . . . , [ln, rn]}. We have already shown
(in subsection 3.1, page no. 20) that I

mega can be computed in O(n log n) time. Also, observe
that a disk of radius � centered anywhere on pq but only within [li, ri], covers the point pi.

To solve the Mofl problem for k = 1 we use the approach of Katz et al., [43], but here
the mega-intervals are defined differently as we are placing a disk instead of a rectangle in
[43]. Then, similar to their approach, we define the elementary intervals on pq, defined by
every consecutive pair of endpoints of the intervals of Imega starting with the left-end point
p of the segment pq. We call these elementary intervals mini-intervals, denoted by I

mini =

{[µ1, ⌧1], [µ2, ⌧2], . . . , [µ2n+1, ⌧2n+1]}. Observe that there can be at most 2n + 1 mini-intervals
defined by n points in P and ⌧j = µj+1 for j = 1, 2, . . . , 2n. We define the weight of each
mini-interval [µj , ⌧j ] to be j =

X

{i | [µj ,⌧j ]✓[li,ri]2Imega}

wi, where wi is the weight of the point

pi 2 P , i.e., the sum of weights of all the points whose corresponding mega-intervals contain
[µj , ⌧j ] entirely within them (see Figure 3.11 for an illustration of mega-interval, mini-interval, and
their weights). Observe that an optimal disk d, i.e., the disk d of radius � such that

X

{i | pi2d}

wi is

minimized, can be centered anywhere in the mini-interval [µj , ⌧j ] whose j is minimal. As in [43],
to efficiently find such a [µj , ⌧j ] we construct a segment tree data structure on the mini-intervals
[µj , ⌧j ] 2 I

mini.

The construction of the segment tree and finding of minimum j is briefly described as follows.
We first construct a balanced binary tree T whose leaves correspond to the mini-intervals that
are ordered from left to right. Since T is balanced and has n leaves, its depth must be O(log n).
Further, we associate each node v of T with two attributes: (1) an interval which is the union
of the mini-intervals of all the leaves of the subtree rooted at v, and (2) the weight which is
equal to the sum of the minimum of the weights of its two child nodes and the weights of the
mega-intervals that are stored in v. Initially, the weights of all the nodes of T , including the
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leaves, are zero. The intervals of the leaves are their mini-intervals. A mega-interval will be
stored at a node v if the interval of v is completely contained in it, and if so, then not at any of
its descendant nodes. We now insert all the mega-intervals of I into T one by one, and during
each insertion, we update the weight attributes of the nodes. The key feature of the segment tree
is that each insertion of a mega-interval and the corresponding updates in T takes O(log n) time.
At each insertion, the weight of the root of T is the smallest j . The corresponding mini-interval
[µj , ⌧j ] can be found by traversing down the tree in the direction of the child with a smaller
attribute weight, where ties can be broken arbitrarily. This traversal clearly takes O(log n) time.
The mini-interval (not necessarily unique) corresponding to the weight of the root of the segment
tree is the location for placing the disk d of radius � such that

X

{i | pi2d}

wi is minimized. The

construction of the segment tree takes O(n log n) time. Hence, we have the following theorem.

p1, w1 = 3

p2, w2 = 4

p3, w3 = 2

Mega-interval:
Mini-interval:

Weights: 0 3 7 9 6 2 0

p q

λ

λ

λ

Figure 3.11: An illustration of splitting of mega-intervals into mini-intervals and their weight

calculations.

Theorem 3.17. The Mofl problem for k = 1 can be solved in O(n log n) time.

Remark 3.18. A lower bound of ⌦(n log n) for the Mofl problem with k = 1 can be obtained
using the same reduction as Katz et al., [43] did for their version of the obnoxious facility location
problem.

3.5.1 Dynamic programming solution for any k > 0

Here, we first discuss a dynamic programming recurrence for computing the minimum weight
of the points covered by k non-overlapping disks of radius � centered on pq. Then, we discuss
how to actually reconstruct the solution, i.e., the mini-intervals on which the k disks of radius �

can be packed such that the sum of weights of the points covered by the union of these disks is
minimal.
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We now define the subproblem as follows: let C(i, j, h) denote the minimum weight of the points
covered by j non-overlapping disks of radius � centered on the sub-segment p⌧i =

S
i

s=1[µs, ⌧s],
where the j + 1th disk was centered on the mini-interval [µt, ⌧t] such that ||µi⌧t�1|| = h. Clearly,
i 2 {1, 2, . . . , 2n+ 1}, j 2 {1, 2, . . . , k}, and h 2 {||µ↵⌧� || | ↵ < �}.

To define the recurrence that relates between the subproblems (WLOG), we can assume that all
the disks in an optimal solution are centered close to the left-end points of their respective mini-
intervals (l 6= 0 for every mini-interval [µl, ⌧l]) and that C(i, j, h) =1 denotes the impossibility.
Now, for computing C(i, j, h), observe that the minimum-weighted packing of j( k) disks of
radius � either centers a disk on the mini-interval µi⌧i or not, but never centers a disk on µi⌧i if
h < 2�. Therefore, we have the recurrence below.

C(i, j, h) = min

8
<

:
i + C(i� 1, j � 1, ||µi�1⌧i�1||) if h � 2�

C(i� 1, j, h+ ||µi�1⌧i�1||) always

The base cases are the following:

• If i = 1, j = 1, and h � 2�, then C(i, j, h) = i.

• If i = 1, j = 1, and h < 2�, then C(i, j, h) =1.

• If i > 1, C(i, 1, h) can be computed in O(n log n) time using Theorem 3.17.

The minimum weight of the points covered by the optimal packing can be obtained from
C(2n + 1, k, 2� + 1). The number of possible values for h is

�2n+1
2

�
. We can reconstruct the

minimum-weighted packing (and their corresponding mini-intervals) by storing parent pointers
between the entries in the three-dimensional array C[2n+1, k,

�2n+1
2

�
]. From the above recurrence,

it is clear that a subproblem depends on subproblems with strictly smaller i, and hence there is
no cyclic dependency between the subproblems. We can fill the three-dimensional array by start
filling its lower indexed entries first. Since computing the value of an entry requires the values of
two lower indexed entries of the array, the work per subproblem is O(1). Therefore, we have the
following theorem.

Theorem 3.19. The Mofl problem for any k � 1 can be solved in O(n3
k) time using a dynamic

programming approach.
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3.6 Conclusion

In this chapter, we gave an FPTAS for the Cofl problem and presented two polynomial-time
algorithms. The first algorithm is based on the binary search that runs in O((nk)2) time. The
second algorithm is based on the parametric search that runs in O((n log n + k)2) time. For
k = 2 we gave O(n log2 n) time algorithm. Additionally, we explored the circular variant of the
problem and presented an FPTAS for it. Lastly, we presented O(n3

k) time algorithm for the
Mofl problem, which is based the dynamic programming.

The results in this chapter are published in [69], [70], and [71].



Chapter 4

Semi-Obnoxious Facility Location on a

Line

In this chapter, we investigate many variations of the semi-obnoxious facility location (Sofl)
problems defined based on whether the centers of the facilities are constrained to lie on a horizontal
line, t distinct horizontal lines, and given points in convex position in the plane. Let d0 denote the
interior of any geometric object d, i.e., d0 = d\@d where @d denotes the boundary of d. Firstly,
we examine the variant that is restricted to a line, which is defined as follows:

Given a set B of blue points and a set R of red points, where each point pi 2 B has a weight
wi > 0 and each point pi 2 R has a weight wi < 0, and let |B[R| = n. Assume these points
lie above a given horizontal line `. The objective is to pack k non-overlapping congruent
disks d1, d2, . . . , dk of minimum radius, centered on `, such that the sum of the weights of the

points covered by
S

k

j=1 dj is maximized, i.e.,
kP

j=1

P

i2[n]:9pi2R,pi2d0j

wi +
kP

j=1

P
i2[n]:9pi2B,pi2dj

wi

is maximized. We name this problem a Constrained Semi-Obnoxious Facility Location
(CSofl) problem on a Line.

We first show that the CSofl can be solved optimally in O(n4
k
2) time. Subsequently, we improve

the running time to O(n3
k · max (n, k)). Furthermore, we addressed two special cases of the

problem where points have only two types of weights, and we show that these two special cases
can be solved in O(n3

k ·max (log n, k)) time. For the first case, when k = 1, we also provide
an algorithm that solves the problem in O(n3) time, and subsequently, we improve this result
to O(n2 log n). Furthermore, we consider a generalization of the weighted problem where we
are given t horizontal lines instead of a single line `. We give an O(n4

k
2
t
5) time algorithm for

this problem. Finally, we consider a discrete variant where a set of s candidate sites (in convex
position) for placing k facilities is pre-given (k < s). We propose an algorithm that runs in
O(ns(ns+ s

4
k
2)) time for this discrete variant.

39
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These problems have a bi-chromatic objective, where we need to maximize the sum of weights
covered by the disks, but these weights come from two opposing sets (i.e., positive weights and
negative weights). The task is to locate centers for k disks on a given line such that the total
weight covered by these disks is maximized, where there are infinitely many candidate centers for
k disks. Here, the challenge lies in the fact that we need to pack k disks centered on the given
line, covering as many positively weighted (blue) points as possible while simultaneously avoiding
as many negatively weighted (red) points as possible.

4.1 Preliminaries

This section briefly introduces various notations and definitions that will be used in further
sections.

Let Lcan denote the set of candidate radii and rcan 2 Lcan a candidate radius. The optimal
radius is denoted as ropt. Let dist(u, v) denote the minimum Euclidean distance between two
points u and v. Given a graph G(V,E), the weight of an edge is denoted as w(i, j) where ij 2 E.
The path between any two vertices v, u 2 V is denoted as ⇧(v, u).

Definition 4.1. Configurations: Arrangement of k-disks in any feasible solution to the CSofl

problem with different placements of red and blue points on the boundaries of the disks (critical
regions). A configuration is said to be critical if it corresponds to some candidate radius
rcan 2 Lcan.

Definition 4.2. DAG: It stands for Directed Acyclic Graph. It is a directed graph that has no
directed cycles. In other words, it is a graph consisting of a set of nodes connected by directed
edges, where the edges have a specific direction. There is no way to start at any node and follow
a sequence of edges that eventually loops back to that node.

Definition 4.3. The minimum weight k-link path: Given a complete weighted DAG G(V,E),
and two vertices s (source) and t (target), the minimum weight k-link path problem seeks to find
a minimum weight path from s to t such that the path has exactly k edges (links) in it.

Definition 4.4. Concave Monge property: The weight function w for a given weighted,
complete DAG G(V,E) satisfies the concave Monge property if for all i, j 2 V we have the
inequality w(i, j) + w(i+ 1, j + 1)  w(i, j + 1) + w(i+ 1, j) satisfied, where 1 < i+ 1 < j < n.

The outline of the algorithm for the CSofl problem is as follows:

1. First, all possible configurations of the k disks and red and blue points in any feasible
solution to the CSofl problem are identified. We show that a finite number of distinct
configurations exist, and there are specifically O(1) distinct critical-configuration types.
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2. The next step entails computing all possible candidate radii, Lcan, where we have one rcan

corresponding to each of the configurations identified in the previous step.

3. After obtaining a candidate radius rcan, the given instance of the CSofl problem will be
transformed into an instance of the problem of computing a minimum weight k-link path
problem on a complete weighted DAG G.

4. The semi-obnoxious facilities (disks) should then be positioned (i.e., the centers of these
disks are to be positioned) at the points on ` corresponding to vertices of the aforementioned
minimum weight k-link path ⇧⇤

k
(s, t) in G. The total weight of the points covered by these

facilities can be computed using the ⇧⇤
k
(s, t) weight.

5. To determine the set of all radii Lcan = {�1,�2, . . . } for which the total weight of the
covered points is the largest, the above process must be repeated for every candidate radius
rcan.

6. Finally, the locations of the k semi-obnoxious facilities placed with the smallest � 2 Lcan

and covering the points with the largest total weight is returned as the output.

4.2 Computing the candidate radii

In this section, we find all the candidate radii by considering all configurations involving disks as
well as blue and red points.

Configuration-0: Suppose that all the red points lie closer to ` than the blue points and have
significantly more negative weights than the blue points (see Figure 4.1). In this scenario,
covering any blue points would also cover some red points since the disks must be centered
on `. This, in turn, would result in a negative total weight. As a result, we can opt to keep
zero-radius disks that do not cover any points rather than covering any of the blue points.
This way, the maximum weight will be zero. It also implies the following observation.

Observation 4.5. An optimal (feasible) solution always exists for any given problem instance.

ℓ

Figure 4.1: Configuration-0.
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Configuration-1: We consider a specific configuration in which the radius of the disks in the
optimal solution is determined by only one blue point. As shown in Figure 4.2, we can
observe that the disks di and di+1, which have one blue point on each of their boundaries,
will have a smaller (optimal) radius compared to the dotted disk d

0
i
, which also covers the

same blue points. This is because our problem is to find the minimum radius disks that
cover the maximum weight. Here, we consider at least one of the blue points lying on

ℓ

di+1di

d′i

Figure 4.2: Configuration-1.

the boundary of at least one of the k disks, which determines the radius of the disks in
the optimal solution for a radius greater than zero. Observe that the radius of the disk is
the y-coordinate value of the point that lies on the disk boundary. Hence, we add O(n)

candidate radii to Lcan and the radii are rcan = ypi , where ypi denotes the y-coordinate of
the point pi for each pi 2 B, i = 1, 2, . . . , n.

Configuration-2: In this scenario, we consider the case where the optimal solution is determined
by two points on the boundary of at least one of the k disks, which can either be two
blue points or one blue and one red point. We notice that no two red points on any disk’s
boundary will determine the disk’s radius, as we can further reduce the disk’s radius until
its boundary touches at least one of the blue points. To calculate the candidate radii for
the disks, we proceed as follows:

Consider a point pi 2 B and a point pj 2 R. If they determine the minimum radius of the
disks in a solution to CSofl problem, then the candidate radius rcan can be computed
by drawing a bisector line `i,j until `i,j cuts across ` where pi is in the counter-clockwise
direction from `i,j and pj in the clockwise direction from `i,j (see Figure 4.3).

Let (xpi,pj , ypi,pj ) be the center of the disk, (xpi , ypi) and (xpj , ypj ) are the coordinates of
the points pi and pj respectively. Then, we have

(xpi � xpi,pj )
2 + (ypi � ypi,pj )

2 = (xpj � xpi,pj )
2 + (ypj � ypi,pj )

2

After simplification, we have rcan =
q
(xpi � xpi,pj )

2 + y2pi for the two cases:

– pi 2 B and pj 2 R.
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pi

pj

ℓ on x-axis
(xpi,pj

, ypi,pj)

ℓi,j

Figure 4.3: Illustration of calculating rcan.

– pi, pj 2 B.

where xpi,pj =
(ypj�ypi )(ypj+ypi )

2(xpj�xpi )
+

(xpj+xpi )

2 , ypi,pj = 0. Here, as we consider a candidate
radius for every pair of points except the red-red pair, we add O(n2) candidate radii to
Lcan for this critical-configuration type.

Observation 4.6. There are only O(1) critical configuration types.

Proof. In any of the optimal placements of the disks, either one blue point or a pair of blue
points, or a pair of red and blue points will determine the disk’s radius. Even though there may
be more than two points lying on the boundary of the disks in any optimal packing, only two
points among them will determine the radius of the disk since there exists a unique disk that
passes through two points and is centered on `. Hence, any configurations of points lying on
the boundary of the disk can be transformed into any of the above-mentioned configurations by
perturbing the center or reducing the radius of the disks. Therefore, we have a constant number
of critical configuration types, namely, four types, including the configuration-0.

Lemma 4.7. |Lcan| = O(n2).

Proof. It follows from Observation 4.6 since a constant number of critical configuration types
(viz. no points, one blue point, a pair of blue points, and a pair of blue and red points) contribute
to the candidate radii. In any of the configurations, at most, two points will determine the radius
of the disks. Hence we have O(n2) candidate radii corresponding to that configuration. Thus,
the lemma follows.
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4.3 Transformation to the minimum weight k-link path problem

In this section, we demonstrate that the CSofl problem can be reduced to the problem of
computing a minimum weight k-link path between a pair of vertices in a weighted DAG G(V,E).
Each edge ij 2 E in G is assigned a weight w : (i, j)! R that is either a positive or negative
real number w(i, j) 2 R.

The minimum weight k-link path ⇧(s, t) is a path from the source s to the target vertex t,
consisting of exactly k edges, and has the minimum total weight among all k-link paths between
s and t, where the weight of a k-link path is the sum of weights of the edges in the path, i.e.,

w(⇧(s! i1 ! i2 ! · · ·! ik�1 ! t)) =
k�2X

j=1

w(ij , ij+1) + w(s, i1) + w(ik�1, t)

Let � = rcan. Next, we transform an instance of the CSofl problem to an instance of k-link
path problem on a DAG G(V,E) as follows:

Let us call the maximal interval f+
i

= [li, ri] on ` as the influence interval (within which a facility
or a disk with radius rcan centered will influence or cover the point pi) for the point pi 2 B if
the distance between any point on [li, ri] and pi is at most rcan. Similarly, f�

i
= [li, ri] is the

influence interval on ` for pi 2 R.

Let the set of all influence intervals be F = {f+
i

| i 2 [n], pi 2 B} [ {f�
i

| i 2 [n], pi 2 R}.
Let the vertex set V = {l1, r1, l2, r2, . . . , ln, rn} be the end points of the intervals in F . For
each li, i 2 [n], we also add 2(k � 1) extra vertices corresponding to points on ` at distance
li + 2�, li + 4�, . . . , li + 2(k � 1)�, li � 2�, li � 4�, . . . , li � 2(k � 1)�, to V . Similarly, we add
2(k � 1) vertices for every ri, i 2 [n], placed at points at distance ri � 2�, ri � 4�, . . . , ri � 2(k �
1)�, ri+2�, ri+4�, . . . , ri� 2(k� 1)�. The addition of these extra 2(k� 1) points on the sides of
both endpoints of each influence interval is because it is possible to have disks centered at points
on ` other than the endpoints of influence intervals in an optimal solution (see Figure 4.4 for an
illustration). However, at least one disk must be centered at an endpoint in any optimal solution.
In Figure 4.4, we can observe that the disks di�1 and di+1 are not centered at any endpoint of
the intervals in F since none of the points in B [R lie on their boundary.

Without loss of generality, the vertices may be relabeled as V = {v1, v2, . . . , vm} based on the
increasing order of x-coordinates of all li and ri for i 2 [n], and the extra added points, where
m = O(kn). Furthermore, we can update V so that all the corresponding points in V have
distinct x-coordinates. Let s and t be the points placed on ` at a distance of 2k� from the left
endpoint of the leftmost interval l1 and from the right endpoint of the rightmost interval rl,
respectively, where [ll, rl] denotes the rightmost influence interval (see Figure 4.5). Note that s

lies on the left of all the points in V , and t lies on the right of all the points in V .
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ℓ
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pjpipi′

Figure 4.4: An optimal packing of 3 disks for a candidate radius �, di is centered at an

endpoint of the influence interval due to pi.
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Figure 4.5: Adding of extra-points including s and t.

djdi

ci cj

w(ci, cj) = −(w(di) + w(dj))

di

ℓ

Figure 4.6: Calculation of the weight of an edge.

Let w(di) denote the total weight of the points covered by the disk with radius � centered at
ci 2 V . We calculate w(di) for the disks centered at each point ci 2 V .

Now, the weight of an edge ij 2 E is calculated as follows:

• w(i, j) = +1 if the dist(i, j) < 2�.

• w(i, j) = �(w(di) + w(dj)) if dist(i, j) � 2� for all i, j 2 V , i.e., we add a directed edge
between every pair of vertices i, j 2 V (i < j), if the distance between them is at least 2�

and we add the corresponding weights (see Figure 4.6) and negate it.

• Clearly observe that w(ds) and w(dt) is zero. It is also zero for the disks centered at first
(at most) k � 1 and last (at most) k � 1 points (since they are the points on ` which are
separated by a distance of at least 2� on the left of l1 and the right of rl), respectively for
every endpoint of the influence interval.

Without loss of generality, let G
0(V 0

, E
0) be the graph obtained by the above transformation.

There will be O(nk) vertices in V
0, and a directed edge from i to j for all i, j 2 V

0 such that i < j.
Then, G0 is a complete DAG with |V 0| = O(nk) vertices and |E0| = O(n2

k
2) edges, and every

edge (i, j) 2 E
0 is assigned a weight as discussed above. Hence, we have the following lemma.
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Lemma 4.8. The graph G
0
can be constructed in O(n2

k
2) time.

Proof. We start by considering the way we constructed G
0. Every demand point pi 2 B [R can

contribute at most two endpoints of an interval on ` at a distance of 2� from each other. If we
center a disk on that interval, the demand points will either lie on the boundary or the interior
of the disk. Next, we add 2(k � 1) points on both sides of each endpoint on ` with a separation
distance of 2� between any two consecutive of them. Thus, we have a total of O(nk) points on `,
which includes s and t and are added to V

0. Now, from every point in V
0, we add a weighted

directed edge to all the points of V 0 that lie on the right of that point on `. This will result
in a total of O(n2

k
2) edges, where each edge is assigned a corresponding weight, as discussed

earlier. Therefore, the resulting graph G
0(V 0

, E
0) has O(nk) vertices, O(n2

k
2) edges, and can be

constructed in O(n2
k
2) time.

The edge weights of G0 will satisfy the concave Monge property for any four vertices i, i+1, j, j+1

of G0 such that i < i+ 1 < j < j + 1, the weights of the directed edges from i to j and from i+ 1

to j + 1 are not greater than the weights of the directed edges from i to j + 1 and from i+ 1 to j.

Observation 4.9. The edge weights of G0 satisfy the concave Monge property.

ℓ

i

i+ 1

j

j + 1

w(i, j)

w(i+ 1, j)

w(i+ 1, j + 1)

w(i, j + 1)

Figure 4.7: Any four vertices of G
0
that satisfy the concave Monge property.

Proof. Recall the definition of the concave Monge property, i.e., w(i, j) + w(i + 1, j + 1) 
w(i, j + 1) + w(i+ 1, j) (see Figure 4.7). The weights assigned to the edges of G0 are assigned
based on the following two rules:

1. w(i, j) = +1 if the dist(i, j) < 2�.

2. w(i, j) = �(w(di) + w(dj)) if dist(i, j) � 2� for all i, j 2 V

Suppose we select any four vertices with their index labels satisfying i < i+ 1 < j < j + 1 in G
0

such that the distance between them is at least 2�. Then, according to rule 2, the corresponding
weights assigned to the edges satisfy w(i, j) + w(i+ 1, j + 1) = w(i, j + 1) + w(i+ 1, j). Now,
consider another set of four vertices i < i+ 1 < j < j + 1 in G

0 such that the distance between
the two closest points among them is less than 2�, i.e., dist(i+ 1, j) < 2�. According to rule 1,
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the corresponding weight assigned to the edges between these vertices is +1. Then, we have
w(i, j) + w(i+ 1, j + 1) < w(i, j + 1) + w(i+ 1, j), which satisfies the concave Monge property.
Finally, suppose all four selected vertices i < i+ 1 < j < j + 1 in G

0 have a distance between any
two consecutive of them less than 2�. In this case, according to rule 1, the weights assigned to
the corresponding edges satisfy w(i, j) + w(i+ 1, j + 1) = w(i, j + 1) + w(i+ 1, j).

Therefore, we have shown that if we select any four vertices i < i + 1 < j < j + 1 in G
0, the

weights of all these edges satisfy the concave Monge property. Thus, the observation follows.

Since the constructed graph G
0 is a weighted complete DAG and its edge weights satisfy the

concave Monge property, we have the following theorem for finding the minimum weight (k+1)-link
path between any pair of vertices of G0.

Theorem 4.10. [4] The minimum weight (k + 1)-link path ⇧⇤
(k+1)(s, t) in G

0
can be computed in

O(nk
p

k log (nk)) time.

Theorem 4.11. We can solve the CSofl problem in polynomial time.

Proof. It follows from Lemma 4.7, Lemma 4.8 and Theorem 4.10. The running time of the
algorithm is n

2 · (O(n2
k
2) + O(nk

p
k log (nk))) = O(n4

k
2). The algorithm will return the

minimum rcan = ropt, corresponding to which the computed (k + 1)-link path between s and
t has the minimum total weight w(⇧⇤

(k+1)(s, t)). The disks with radius ropt can be centered
at k internal vertices of the (k + 1)-link path (excluding the terminal vertices s and t). The
total weight is

P
i2Sol w(di) = �w(⇧⇤

(k+1)(s, t))/2, where di is a disk centered at i having radius
ropt and Sol = V (⇧⇤

(k+1)(s, t)) \ {s, t} is the set of vertices (the corresponding points on `) of
(k + 1)-link path except s and t.

Improvement: Recall that the points corresponding to the vertices in V
0 are labeled as

1, 2, . . . ,m, where m = O(nk). Here, we show that we can improve the runtime of Theorem 4.11
(by almost linear factor) by not explicitly constructing the complete graph G

0. As we have seen
in the proof of Lemma 4.8, this construction requires O(n2

k
2) time for each of O(n2) candidate

radius. However, for every candidate radius rcan, we need to precompute the two arrays w[] and
p[], each of size O(nk). Here, w[i] stores the sum of weights of the demand points covered by the
disk of radius rcan centered at a point labeled i 2 V

0 on `, for each i 2 [m]. The element p[i]

stores the index i
0 2 V

0 of the rightmost point at a distance of at least 2� from i such that i0 < i.
We now give a dynamic program algorithm to compute the maximum weight of a (k+1)-link path
from point 1 to point m (here, the points labeled 1 and m are the vertices s and t respectively,
in G

0). For a pair of points i, j (i < j) on `; we redefine the weight of the edge (i, j) to be equal
to w(j) as we need not negate the sum of weights and construct the whole directed graph .
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We define the subproblem �(i, j) as the problem of finding the maximum weight j-link path in
the subgraph G

0
i
induced by the vertices 1, 2, . . . , i. That is, �(i, j) = max

i0
{w(⇧j(1, i0))}, where

(j + 1)  i
0  i. Then we have the following recurrence:

�(i, j) = max{�(i� 1, j),�(p[i], j � 1) + w[i]} (4.1)

As i = 1, 2, . . . , O(nk), and j = 1, 2, . . . , k + 1, there are nk · k = O(nk2) entries in the DP table
table �(i, j), each requiring O(1) time to compute.

Hence, for a given rcan, the bottom-up implementation of the above dynamic programming
algorithm takes time O(nk2) provided that we have the entries w[i] and p[i] precomputed for
each i 2 [m].

Theorem 4.12. The above-improved algorithm for the CSofl problem has the time complexity

of O(n3
k ·max (n, k)).

Proof. The proof is as follows:

• There are O(n2) candidate radii in Lcan.

• For each candidate radius � 2 Lcan, we find O(nk) points on ` as discussed above.

• To compute the weight w[i] of each point i 2 V
0 on `, we answer a circular range reporting

query [13], which takes O(log n+) time for a query circle centered at each of O(nk) points
on `, where  is the number of points reported. It has a preprocessing time of O(n log n)

and requires O(n) space.

• For each � 2 Lcan, the above dynamic programming algorithm will take O(nk2) time.
However, the bottleneck in computing the optimal value �(m, k + 1) is in computing
the arrays w[] for each of O(n2) candidate radius. The total time for computing this

array is n log n +
|Lcan|P
j=1

(
mP
i=1

(log n + i)), where i is the number of points reported by

the query algorithm for a given query disk centered at i 2 [m], where m = O(nk). We

see that
|Lcan|P
j=1

(
mP
i=1

(log n+ i)) = n
3
k log n+

|Lcan|P
j=1

n�, where � = max{�1,�2, . . . ,�O(n2)},

and �j is the ply1 of the pointset B
S
R with respect to the set of all disks i 2 [m] for

a candidate radius �j 2 Lcan. Observe that the ply of B
S
R for a given set of O(nk)

disks is O(n) only since a point from B
S
R lying in a disk centered at an endpoint i

of influence interval can not be contained inside the 2(k � 1) disks centered at distances
1
The ply of a set P of points with respect to a set D of disks d1, d2, . . . , is the largest number of those disks inS

i=1,2.... di whose intersection contains a point p 2 P .
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li+2�, li+4�, . . . , li+2(k�1)�, li�2�, li�4�, . . . , li�2(k�1)�. Therefore,
|Lcan|P
j=1

(
mP
i=1

i) 

|Lcan|P
j=1

(nk�) = O(n4
k) as � = O(n).

• Hence the total running time is n2 · (O(nk2)+O(nk log n)+O(n2
k)) = O(n3

k ·max (n, k)).

Now, we prove the correctness of the dynamic programming recurrence relation 4.1 by inducting
on the number of disks placed.

Correctness: Fix a radius � 2 Lcan. By induction on i + j, we can prove the recurrence
relation 4.1 is correct, as follows. For the base case j = 1, i � 2, we have �(i, 1) = w(⇧1(1, i)) =

max
2qi

(w[q]), which is the maximum weight of a 1-link path originating at vertex 1 in the subgraph

G
0
i
induced by the vertices 1, 2, . . . , i. This is the optimal solution for the subproblem �(i, 1).

For the base case j � 2, i = 2, we have that �(i, j) = �(i, 2) as the weight contributed by the
remaining j � 2 disks centered on ` is zero.

Let p[s] = max{q | (dist(s, q) � 2�, 2  q < s} for 2  s  i. Assume that the recurrence
relation holds for all subproblems �(i0, j0), where (i0 + j

0) < (i+ j). Consider the subproblem
�(i, j), and for solving this subproblem, we consider two cases for the vertex i: either ⇧j(1, i)

uses vertex i or it doesn’t.

Case 1: ⇧j(1, i) does not use vertex i. In this case, ⇧j(1, i) is also an optimal j-link path in G
0
i�1

by induction hypothesis. Therefore, the optimal solution for the subproblem �(i, j) is the same
as for the subproblem �(i� 1, j).

Case 2: ⇧j(1, i) uses vertex i. Let i
0 = p[i], which is the predecessor of i on ⇧j(1, i). Then,

⇧j(1, i) can be decomposed into two parts: an optimal (j � 1)-link path in G
0
i0 (by induction

hypothesis), denoted by ⇧j�1(1, i0), and the edge (i0, i) with weight w[i]. Since ⇧j(1, i) is an
optimal path ending at i in the subgraph G

0
i
, the weight of ⇧j(1, i) is equal to the sum of the

weights of ⇧j�1(1, i0) and (i0, i), i.e., w(⇧j(1, i)) = w(⇧j�1(1, i0)) + w[i].

Therefore, the optimal solution for the subproblem �(i, j) is the maximum weight of all j-link
paths in G

0
i
. This is achieved by either taking the optimal solution for the subproblem �(i� 1, j)

or by taking the optimal solution for the subproblem �(i0, j � 1) and adding the weight of edge
(i0, i), i.e., �(i, j) = max (�(i� 1, j),�(p[i], j � 1) + w[i]).

By using the recurrence relation for �(i � 1, j) and �(p[i], j � 1), which can be computed by
solving the subproblems �(i� 1, j � 1) and �(p[i], j � 1). Therefore, we can use the recurrence
relation to obtain the optimal solution for �(i, j).

By the principle of mathematical induction, the recurrence relation holds for all subproblems
�(i, j), where 1  j  k. Given that we have precomputed all the values in the arrays w[] and
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p[], it takes constant time to compute the optimal solution to each subproblem by combining
optimal solutions to smaller subproblems. Further, we have O(nk2) distinct subproblems in total
for the recurrence. Hence, the overall time complexity of the algorithm is O(nk2).

4.4 Special cases of CSofl

In this section, we consider the following two special cases of the CSofl problem with some
specific application.

Problem 4.13. AllBlue-MinRed: The problem aims to cover all blue points while covering
the minimum number of red points. To solve this problem, we modify the weights of the demand
points as follows: for every point pi 2 R, let wi = � and for every point pi 2 B, the weight
wi > �|R|�, where � 2 R is an arbitrary real value and � < 0.

This problem has some specific applications in defense, as will be discussed: assuming a scenario
where there are two groups of points along a horizontal line, one represented by blue points
(enemy forces) and the other by red points (civilians), the goal is to determine the center locations
and blast radius required for a fixed number of explosives to target all enemy forces while isolating
the civilians as much as possible. Alternatively, suppose the scenario is such that the red points
represent enemy forces, and the objective is to establish wireless communication among our own
forces (represented by blue points). In that case, the goal is to place k base stations to cover all
blue forces while minimizing the transmissions intercepted by the red forces (enemy forces).

Problem 4.14. MaxBlue-NoRed: In this problem, we need to cover the maximum number
of blue points, and at the same time, none of the red points need to be covered. To solve this
problem, we modify the weights of the demand points as follows: for every point pi 2 B, let
wi = �, and for every point pi 2 R, the weight wi < �|B|�, where � 2 R is an arbitrary real value
and � > 0.

This problem has the following specific applications: place a set of k sensors on a horizontal line
to cover as many blue points as possible while avoiding red ones. This scenario can arise, for
example, in battlefield surveillance, where the red points represent friendly forces, and the blue
points represent enemy forces. The goal is to deploy sensors to monitor the enemy forces while
avoiding the friendly forces. Similarly, the problem can arise in wildlife conservation, where the
blue points represent areas of high animal activity, and the red points represent protected or
private residential areas. The goal is to deploy sensors to monitor animal activity while avoiding
private or protected areas.

Claim 4.15. The algorithm of Theorem 4.11 will eventually find an optimal solution (i.e., selects
at most k facility locations on ` to cover all the blue points) for the AllBlue-MinRed problem.
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Proof. Consider an instance of CSofl with wi = � for every pi 2 R and the weight wi > �|R|�
for every pi 2 B, where � 2 R is an arbitrary negative real value.

Feasibility: The weight assignment of wi (> �|R|�) guarantees that all blue points will be
covered. In the worst-case scenario, a single disk can cover all points, both blue and red points,
whose total weight is positive due to the weight assignment. The remaining k � 1 disks can be
centered on ` to cover none of the points. This ensures that a feasible solution exists for the
AllBlue-MinRed problem.

Optimality: Suppose there is a feasible solution for the CSofl problem that places at most k

facility centers on `. Let these facilities cover all points in B and some points in R, with total
weight equal to ⇢. Now observe that it is impossible to improve the weight ⇢ to ⇢

0 (> ⇢) by
relocating one of the center locations, which then uncovers m

0 red points and one blue point
(whose weight is, say, �|R|� + ✏ for some ✏ > 0). If we do so, then the updated weight would
be ⇢

0 = ⇢�m
0
� + |R|� � ✏. But, ⇢0 is no better than the earlier weight ⇢ since m

0  |R|, � < 0

and (�m0
� + |R|� � ✏) < 0. Further, the optimal solution with total weight ⇢ for the CSofl

(computed by using the algorithm of Theorem 4.11) is also optimal for this particular variant
since ⇢ can not be improved by uncovering only red points. Hence, the above-proposed algorithm
for the CSofl problem will also correctly solve the AllBlue-MinRed problem.

Claim 4.16. The algorithm of Theorem 4.11 solves the MaxBlue-NoRed problem optimally.

Proof. Consider an instance of the CSofl problem, in which every pi 2 B is associated with the
weight wi = �, and every pi 2 R is associated with the weight wi < �|B|�, where � 2 R and
� > 0.

Feasibility: Consider the following trivial feasible solution for the CSofl problem. Let us place
k facility center locations on ` so that they don’t cover any blue points. Further, we reduce their
radius so that no red points lie in the interior. Note that the total weight of the demand points
covered by these facilities is zero. Hence, these k center locations form a feasible solution for the
MaxBlue-NoRed problem since none of the red points are covered, and the total weight is zero.

Optimality: Suppose we have a feasible solution with a total weight ⇢ for the CSofl problem.
We will try to increase this weight by relocating one of the centers covering additional n0 blue
points and (at least) one red point. The update weight would be ⇢

0 = ⇢+ n
0
� � |B|� which is

smaller than ⇢ since n
0  |B| and � > 0. Hence, we cannot improve the total weight by perturbing

some centers to cover one more red point with the hope that it may allow us to cover some
more (or even all) blue points. When we have an optimal solution with the total weight ⇢ for
an instance of the CSofl problem, the weight the covered blue points contribute can not be
increased due to its optimality. On the other hand, this solution also can not cover any red point
because we can get a better weight ⇢

0 = ⇢� n
0
� + |B|� (by reducing the radius to uncover these
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red points. While doing so, we possibly uncover some blue points, say n
0.) This would contradict

that ⇢ is the optimum. Hence, the above-proposed algorithm (of Theorem 4.11) for the CSofl

problem will also correctly solve the MaxBlue-NoRed problem.

Corollary 4.17. The AllBlue-MinRed and MaxBlue-NoRed problems can be solved in

O(n3
k ·max (log n, k)) time.

Proof. Since there are only two types of weights (namely, � and |B|� or �|R|�), instead of
answering circular range reporting queries, we answer range counting queries [13], viz. blue count
and red count for each of O(nk) query circles of every candidate radius. Hence the total running
time is n

2 · (O(nk2) +O(nk log n)) = O(n3
k ·max (log n, k)). Hence, the theorem follows from

Theorem 4.11 and Claims 4.15 and 4.16.

4.4.1 The MaxBlue-NoRed problem for k = 1

In this section, we address the problem of determining the minimum enclosing disk with center
on `, which encloses the maximum number of blue points without enclosing any red points.
Recall that in the MaxBlue-NoRed problem, we are given two sets of points, blue points B
and red points R, lying above a horizontal line `, where |B|+ |R| = n, the goal is to compute a
minimum enclosing disk that maximizes the count of blue points (being enclosed in that disk)
while ensuring that no red point is enclosed.

Observation 4.18. If the perpendicular bisector of any two points pi and pj intersects ` at ci,
then there exists a disk centered at ci which has pi and pj on its boundary.

The method for solving the problem is as follows:

• For each pair of points in the set B [R, compute the perpendicular bisector of the line
segment connecting them. Store the intersection points of these perpendicular bisectors
with the line ` in a set I. Also, add to the set I all intersection points of ` with a vertical
line through each blue point since only one blue point may also lie on the boundary of a
disk in the optimal solution.

• For each pi 2 I, construct a disk centered at pi that passes through the pair of points for
which the perpendicular bisector was computed in the previous step.

• For each disk centered at pi 2 I, determine whether it contains any point from the set R.
If so, remove pi from the set I. Otherwise, compute the number of blue points contained in
the disk.

• If |I| = 0, then there exists no feasible solution. Otherwise, among the disks centered at
points in I, select the one that contains the maximum number of blue points.
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ℓ

ci

pi

pj

Figure 4.8: The optimal solution with only one blue point for k = 1.

Theorem 4.19. The MaxBlue-NoRed problem for k = 1 can be solved in O(n3) time.

Proof. In order to compute I, it requires O(n2) time. If all points in the set B [ R have
distinct x-coordinates, then |I| = O(n2). Next, for each point pi 2 I, the time required to
check the interiority of points is O(n). Therefore, the total time complexity of the algorithm is
O(n2) +O(n3) = O(n3).

Improved algorithm: Here, we improve the running time of the algorithm of Theorem 4.19 by
almost a linear factor. Let us recall the notations, for a point p, we denote its coordinates by
(xp, yp), and for a pair of points p, q, we let Cp,q denote the circle whose center lies on the line
y = 0 and whose boundary passes through p, q, and we let (xp,q, 0) denote the center of Cp,q. Let
Cp be a circle with its boundary passing through a point p, and its center lying on ` such that
its radius equals yp and its center at the coordinates (xp, 0).

Claim 4.20. Given three points p, q, r, the point r lies on or inside Cp,q if and only if one of the
following is true:

(i) xp < xr and xp,q � xp,r;

(OR)

(ii) xp > xr and xp,q  xp,r.

Proposition 4.21. There is an algorithm that accepts two sets B,R of n (|B|+ |R|) points on

the plane and finds for every pair p, q of points in B, the number of points of R that lie on or

inside the circle Cp,q. Further, this algorithm runs in time O(n2 log n).

Proof. We first describe the algorithm.

1. Sort the point sets B [R based on their x-coordinates from left to right.
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2. For each p 2 B, compute three lists: Cp,B = {xp,q|q 2 B \ {p}}, Cp,R,1 = {xp,r|r 2
R and xp < xr}, Cp,R,2 = {xp,r|r 2 R and xp > xr}.

3. For each p, sort the lists Lp,1 = Cp,B [ Cp,R,1 and Lp,2 = Cp,B [ Cp,R,2.

4. For each p, do the following: by making a single pass over Lp,1, compute for every q 2 B\{p},
the value Np,q,1, which is defined to be the number of elements of Cp,R,1 that appear before
xp,q in Lp,1.

5. For each p, compute for every q 2 B \ {p}, the value Np,q,2, which is defined to be the
number of elements of Cp,R,2 that appear after xp,q in Lp,2.

6. For each p, q, the desired count (i.e., the number of red points covered by the disk Cp,q) is
Np,q,1 +Np,q,2.

7. To examine the scenario where only a single blue point resides on the circle, we construct a
list in the following manner:

• For each p 2 B, we select an arbitrary point ptemp that lies on the circle Cp.

• Let CB = {(p, ptemp)| p 2 B and ptemp is an arbitrary point lying on Cp} be a list.

• Now, assign Cp,B = {xp,q|(p, q) 2 CB} in step 2 and compute the lists Cp,R,1 and
Cp,R,2, then repeat the remaining steps till step 6.

8. Lastly, we determine the circle that encloses the maximum number of blue points and none
of the red points by answering circular range counting queries for every circle Cp,q which
has the red count Np,q,1 +Np,q,2 = 0

Analysis: The correctness follows from Claim 4.20. The running time is dominated by steps 3, 4,
5, and 8. Step 3 takes time O(n log n) for a single point p and hence total time O(n2 log n); steps
4 and 5 take time O(n2) each. The time complexity of Step 8 is O(n2 log n) due to the repetition
of the algorithm to determine the maximum number of blue points (i.e., the value Np,q,1 +Np,q,2

is maximum for the blue points) enclosed by each circle Cp,q satisfying Np,q,1 +Np,q,2 = 0 for the
points in R.

Theorem 4.22. The MaxBlue-NoRed problem for k = 1 can be solved in O(n2 log n) time.

4.5 Sofl on t-lines

Let us consider a given set B of blue points and a set R of red points, which are positioned
around t parallel lines denoted as `1, `2, . . . , `t in the plane. These lines may have arbitrary
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vertical displacements. Each point pi 2 B [R is assigned a weight denoted as wi, where wi > 0

if pi 2 B and wi < 0 if pi 2 R. The cardinality of the set B [R is denoted as n, and the interior
of any geometric object d is represented as d

0 (excluding its boundary @d).

The objective is to pack k non-overlapping congruent disks, denoted as d1, d2, . . ., dk, with the
smallest possible radius. These disks must be centered on the parallel lines closest to the points
covered by each disk. The goal is to maximize the sum of the weights of the points covered by

the interior of the disks. This sum is represented as
kP

j=1

P

i:9pi2R,pi2d0j

wi +
kP

j=1

P
i:9pi2B,pi2dj

wi.

We may consider this as a generalization of the Sofl problem, where t horizontal lines are present,
and facilities can be centered on any of these lines. Following a similar approach as in Section
4.2, we obtain all the candidate radii Lcan independently for each of the t lines and let us denote
it as Ltcan. Note that the cardinality of Ltcan is O(tn2). Hence, we have the following lemma.

Lemma 4.23. |Ltcan| = O(tn2)

Next, we fix a radius rcan 2 Ltcan. We can transform the problem into finding the minimum
weight k-link path in a directed acyclic graph (DAG) G(V 0

, E
0), as discussed in Section 4.3.

However, the cardinality of the set V
0 is O(nkt2), since each point pi 2 B [R can create an

influence interval on each of the t lines, resulting in O(nt) endpoints of the influence intervals
and adding O(kt) additional points (see Figure 4.9). Figure 4.9 depicts the candidate locations
on `i+1 and `i�1, located at a distance of 2� to the right of p`i . Similarly, the mirror case can be
considered for the point situated at a distance of 2� to the left of p`i on `i+1 and `i�1.

2λ

2λ

2λ 2λ

2λ 2λ 2λ

2λ 2λ

2λ

ℓi−1

ℓi

ℓi+1

pℓi

≥ 2λ

≥ 2λ 2λ

≥ 2λ

≥ 2λ

Figure 4.9: Candidate locations corresponding to the endpoint of the infeasible region p`i and

candidate radius �.
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Without loss of generality, we assume that all the points in V
0 have distinct x-coordinates. We

can construct G
0 in O(n2

k
2
t
4) time by employing the sweeping technique, specifically sweeping

from left to right. Therefore, the following lemma holds.

Lemma 4.24. The DAG G
0
on t-lines can be constructed in O(n2

k
2
t
4) time.

Proof. Follows from the Lemma 4.8 as the cardinalities |V 0| = O(nkt2) and |E0| = O(n2
k
2
t
4).

Theorem 4.25. The Sofl problem of t-lines can be solved exactly in O(n4
k
2
t
5) time.

Proof. Follows from the Lemma 4.23 and Lemma 4.24 since there are O(n2
t) candidate radii and

the total time is O(n2
t)⇥O(n2

k
2
t
4) = O(n4

k
2
t
5).

4.6 Discrete Sofl with all facility sites in convex position

Suppose we are given a set B of blue points, a set R of red points, and a set F of s candidate
locations in convex position; all these three sets are in the plane. Let the weight of a given point
pi 2 B[R be wi > 0 if pi 2 B and wi < 0 if pi 2 R, |B[R| = n, and d

0(= d \@d) be the interior
of any geometric object d. We wish to pack k non-overlapping congruent disks d1, d2, . . . , dk of

minimum radius, centered at points in F such that
kP

j=1

P

{i:9pi2R,pi2d0j}
wi +

kP
j=1

P
{i:9pi2B,pi2dj}

wi is

maximized, i.e., the sum of the weights of the points covered by
kS

j=1
dj is maximized.

The above problem is a discrete variation of the Sofl problem (Dsofl) because a finite number
of candidate facility sites (in convex position) are pre-given. Even though it is the discrete
version of the Sofl problem, similar to the continuous line case, we know that there exists only
a constant number of critical configuration types for the points in R [ B and candidate facilities
in F . From the latter, we also have a finite number of candidate radii here. Let LDcan denote
the set of all candidate radii.

Lemma 4.26. |LDcan| = O(ns).

Proof. Since there will be only a constant number of critical configuration types concerning points
B [R and candidate facilities F , we can consider the following situation where the candidate
radius is determined based on a point in B [ R and a candidate facility location (on whose
boundary that point lies) in F . The cardinality of the set of radii from this situation is O(ns)

(see Figure 4.10).

The radius of the disks in the optimal packing cannot be determined solely by the distance
between the candidate sites (see Fig 4.11). In Figure 4.11, we can observe that the closest pair
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d1

d4

d3

d2

pi

Figure 4.10: The blue point pi lying on the boundary of d3 will determine the radius.

di−1

di

di+1

pi

Figure 4.11: Illustration of the candidate facilities will not determine the radius of disks in the

optimal packing.

of disks di�1 and di will never touch in any optimal packing (i.e., the distance between them
will not determine the radii of the disks in the optimal packing). Suppose they touch in any
optimal packing, then we can reduce the radii of the disks until one of the blue points lies on the
boundary of any of the disks (see Figure 4.11, pi lying on the boundary of the disk di�1).

4.6.1 Dynamic programming algorithm

In this section, first, we show a relationship between the Voronoi diagram of points in an optimal
solution and the cost of an optimal solution to the Dsofl problem. We then present a dynamic
programming-based solution for the discrete Sofl problem utilizing this property of the Voronoi
diagram (VD) of the k sites in an optimal solution. This process is repeated for each � 2 LDcan.
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The Voronoi diagram of points in convex position forms a tree-like structure except for its infinite
edges. If we overlay the diagram with a sufficiently big bounding rectangle, we have the following
observation.

Observation 4.27. The Voronoi diagram of points in convex position is a tree.

Since the points in F are in convex position, Observation 4.27 implies that the VD of any subset
of points in F is also a tree. Hence, VD of the optimal k facility sites is a tree. This VD tree
structure allows us to employ dynamic programming. To find this tree or a subtree of it from
its rightmost node, we define a subproblem that explores all possible edges from the rightmost
node and then further this exploration recursively. This leads to recursively constructing an
optimal solution once we guess the rightmost node of the tree. Furthermore, we show no circular
dependencies between subproblems.

Without loss of generality, let us consider that the points in F = {p1, p2, . . . , ps} are ordered
clockwise. It is known that the Delaunay triangulation is the dual of the Voronoi diagram. Denote
DT as the Delaunay triangulation formed by the points corresponding to the Voronoi centers in
the Voronoi diagram, VD. Observe that the smallest edge length of DT of points in an optimal
solution to Dsofl is at least twice the radius of disks in the optimal solution.

For a given � 2 LDcan, we precalculate the weight of points covered by a disk with radius
� centered at a facility site fi 2 F and denote this weight as w(fi). Then, our dynamic
program-based algorithm is as follows. First, we guess the Delaunay triangle corresponding to
the rightmost Voronoi node, the three rightmost facility centers, say, pi, p`, pj , (where pl is the
rightmost and pi is below pj) in the optimal solution. We make all possible

�
s

3

�
guesses to find

these three optimal centers. Then, define a subproblem �(pi, p`, pj ,F 0;K), which corresponds to
the maximum (optimal) weight of the points covered by K facilities located at some points in F
with a radius of �, and the points pi, p` and pj are the rightmost ordered points in the optimal
solution. Initially, we set K = k � 3 and F 0 = F \ {pi, . . . , p`, . . . , pj}, where the indices i, j, `, `

0

are to be read modulo s. Now, consider reconstructing VD with three pi, pj , p` fixed on the right.
We do this by determining the corresponding DT triangle with its corner points pi, pj and p`0 .
We extend the VD by choosing the next point p`0 that lies left of ��!pjpi such that it is at least 2�

from pi, pj and p`. Observe that p`0 is outside the circumcircle of pi, pj and p`. Then we have
the following recurrence,

�(pi, p`, pj ,F 0;K) =

max
K0K�1,
p`02F 0

and

p`0 :⇣(p`0 ,{pi,pj ,p`})�2�

8
<

:
w(p`0) + �(p`0 , pi, pj ,F 00;K0) + �(p`0 , pj , pi,F 000;K � 1�K0) if |F 0| � 1

0 otherwise
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where ⇣(p`0 , {pi, pj , p`}) = min{dist(p`0 , pi), dist(p`0 , pj), dist(p`0 , p`)}, w(p`0) denotes the total
weight of the points that are covered by a disk of radius � centered at p`0 , F 00 = F 0 \ {pj , . . . , p`0}
and F 000 = F 0 \ {p`0 , . . . , pi}. Base cases are �(pi, p`, pj ,F 0; 0) = w(pi) + w(p`) + w(pj),
�(pi, p`, pj , ;;K) = 0.

Proof of Correctness:

The correctness of the dynamic programming algorithm can be established based on the following
observations:

• The minimum edge length of DT formed by the k sites in the optimal solution is at least
2�. This ensures that the disks in the optimal solution do not overlap, as the distance
between any two points in the solution is greater than or equal to 2�.

• There always exists a solution for a given set of points B [R and F . If it is impossible
to place k disks with a radius of �, the algorithm returns a zero weight, indicating that a
solution does not exist for given �.

• By assuming that pi, p`, and pj are the rightmost points in the optimal solution, we
have O(s3) choices for these points. This assumption ensures that a DT with k vertices
corresponding to the optimal solution always exists if a solution exists for a given �.

Based on these observations, we can conclude that the dynamic programming algorithm is correct
in determining the optimal solution for the given set of points B [R and F , considering the
assumptions made and the properties of the DT formed by the candidate sites.

Theorem 4.28. Discrete Sofl with candidate facility sites in convex position can be solved in

polynomial time.

Proof. The running time of the algorithm is calculated as follows:

• From Lemma 4.26 we have |LDcan| = O(ns).

• For each � 2 Ltcan we call the dynamic programming algorithm.

• Dynamic programming algorithm for a given �:

– For each fi 2 F , calculating weight of points covered by a disk of radius � centered at
fi will take (ns) time.

– There are O(s3k) subproblems and each subproblem will take O(sk) time.
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• The total time complexity of the algorithm is O(n2
s
2 + ns

5
k
2). Additionally, we designate

the vertices of DT as the optimal solution that yields the maximum weight out of all the
invocations of the dynamic programming algorithm with three rightmost points pi, pj , p`.

4.7 Conclusion

In this chapter, we have studied the Sofl problem on a line and provided an exact algorithm that
runs in O(n4

k
2) time. Furthermore, we have presented an improved dynamic programming-based

solution with a time complexity of O(n3
k · max(n, k)). Moreover, we have investigated two

specific cases of the CSofl problem, which involve only two sets of weighted points. We showed
that these two problems can be solved in O(n3

k · max(log n, k)) time. Additionally, we have
devised faster algorithms for the MaxBlue-NoRed problem when k = 1. Finally, we extend
the result of Sofl to t-lines and for the points in convex position and showed that these can also
be solved in polynomial time.

The results in this chapter are submitted for publication [73].



Chapter 5

Max-Min k-Dispersion for Points in

Convex Position in the Plane

In this chapter, we consider the max-min k-dispersion problem for points in convex position as
follows:

Discrete k-dispersion on a Convex Polygon (DkConP): Given a set S of n points in convex
position, assume that the points in S are ordered in a clockwise order around the centroid
of S, forming a convex polygon P. Then, observe that the k-dispersion problem on the
set S can be equally stated as packing k congruent disks of maximum radius, with their
centers lying at the vertices of the convex polygon P.

For this problem, we propose two exact algorithms for the DkConP problem here. First, we
propose an FPT algorithm. The running time of this algorithm is O(2kn2 log2 n), which is an
improvement over the previous best exact algorithm (running in n

O(
p
k)) [5]. Here, the constant

hidden in O(
p
k), the exponent of n in the running time, is larger than 5.44 [51]. Secondly, we

give an exact polynomial time algorithm based on dynamic programming in O(n4
k
2) time for

any k > 0. For k = 3, the existing (exact) algorithm runs in O(n2) time [44]. For small values of
k the FPT algorithm is faster than the proposed polynomial time algorithm. Finally, we give a
linear time 1

2
p
2
-approximation algorithm for k = 3.

5.1 Preliminaries

This section introduces some terminologies and observations useful in discussing our solution for
the DkConP problem.

61
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Let us use vivj to denote the line segment connecting the points vi and vj . We use |.| (i) to
denote the length |vivj | of the line segment vivj , (ii) to denote the absolute value |x| of a real
number x 2 R, and also, (iii) to denote the cardinality |S| of any set S. The center of any disk d

is denoted by C(d), and the diameter of any convex polygon P is denoted by D(P). Let rmax be
the (maximum) radius of the disks in an optimal solution to the DkConP problem. Let vivj be
a chord of P corresponding to the pair (vi, vj) of vertices of P, where 1 < |i � j| < n� 1 and
i, j 2 {1, 2, . . . , n}. Let C = {vivj : 1 < |i�j| < n�1, i, j 2 {1, 2, . . . , n}}[{v1v2, v2v3, . . . , vnv1}
be the set of chords and edges of P , where vivi+1, for i = 1, 2, . . . , n� 1, are the edges of P and
vnvn+1 = vnv1. Clearly, |C| = n(n�1)

2 . Now, let C
0 = {|vivj | | i, j = 1, 2, . . . , n and vivj 2 C} be

the set of all distinct distances between pairs of vertices of P.

Observation 5.1. 2rmax 2 C
0 and |C 0| = O(n2).

Due to Observation 5.1, we can find rmax in at most d2log ne stages of the binary search, provided
that for any given r we can decide whether r > rmax or r  rmax. Based on a bounded search
tree technique, we propose a fixed-parameter algorithm to answer this decision question, where k

is the parameter.

5.2 An exact fixed-parameter algorithm

For the DkConP problem, here we aim to develop a fixed-parameter algorithm using the bounded
search tree method. First, we consider the decision version of the DkConP problem for a given
candidate radius r and then provide an algorithm to solve it. This algorithm is based on a 2-way
search tree, the depth of which is k. Therefore, the tree contains at most O(2k) nodes in total,
and at each of these nodes, we attempt to place a disk centered at some given point. Next, we
discuss the optimization scheme, where we need to find the maximum radius rmax for which this
decision algorithm returns yes. To this end, we first pre-compute all the candidate radii, as they
are finite in number and are half of all pairwise distances between given points. The optimal
value rmax will be one of these candidate radii. Using a linear time selection algorithm, we then
find the median of the set of candidate radii. If the decision algorithm returns yes for the median
radius, we discard all radii less than the median. If the decision algorithm returns no, we discard
all radii greater than the median. This process continues until only one element remains in the
set of candidate radii, for which the decision algorithm returns yes and it is the optimal radius.

The decision algorithm is defined as follows:

Decision(P, k, r): Given a convex polygon P with n vertices and a positive integer k < n

and a radius r, is it possible to pack k (non-overlapping) congruent disks of radius r, with
centers lying at the vertices of P?
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Observe that the answer to Decision(P, k, r) is yes if the radius r is less than or equal to the
radius rmax of the disks in an optimal solution of the DkConP problem. Now, we shall design
an algorithm that solves Decision(P, k, r) in O(f(k) · nO(1)) time and returns a set of k disks of
radius r packed on the boundary of P if the answer is yes, and returns no otherwise, where f(k)

is an arbitrary exponential function in k.

5.2.1 Decision algorithm

The outline of the algorithm is as follows. First, we align the polygon P such that its leftmost
vertex v1 is placed at the origin. Then, we place the disk d1 of radius r centered at v1. From the
vertex v1 in a clockwise (CW ) direction along the boundary of P, we find the first vertex u at
which we can center a r-radius disk d2 that does not overlap with any previously placed disks.
Now, we again have two ways to place the next disk d3, namely, moving in a clockwise direction
from the center of d2 or moving in a counter-clockwise (CCW ) direction from the center of d1.
Similarly, from the vertex v1 in a counter-clockwise direction along the boundary of P, we find
the first vertex u

0 at which we could center the disk d2. In this way, our search for finding all
k� 1 vertices of P (as the centers) to pack the disks proceeds like a 2-way search tree (see Figure
5.1 for k = 4). The depth of the search tree is k because we stop after placing k disks and return
the disks. At any point along a path of the 2-way search tree, if we can not place a disk, we
backtrack to placing a disk in the other direction. Thus, the branching factor of every node is at
most 2, resulting in O(2k) nodes in total. We repeat the above procedure by placing the disk d1

at each of the n vertices of P. Note that the disks corresponding to the vertices of any path of
length � k in the 2-way search tree together form a feasible solution for the DkConP problem.

d1

v1

v2

v3

v4
v5

d2
d4

d1
CW

d2

d3

CCW

x x

CW

d2

CCW

d3

CW

d4

CCW

d3

(a) (b)

Figure 5.1: (a) Disks placed by the decision algorithm for k = 4 (b) Corresponding 2-way

search tree.

Now, we shall describe how to pack the next disk dj+1 after having packed the disks d1, d2, . . . ,
dj . In the above 2-way search tree procedure, for the value of j = 1, 2, . . . , k � 1, after packing
the disk dj centered at some vertex of P, the candidate vertices u and u

0 for the center of the
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disk dj+1 can be computed as follows: let u be the first vertex at a distance of at least 2r from
the center of the most recently packed disk (dj or dj�1) clockwise from the center of d1. Similarly,
let u0 be the first vertex at a distance at least 2r from the center of the most recently packed disk
(dj or dj�1) counter-clockwise from the center of d1. Note that u and u

0 are the two candidate
vertices for packing the next disk dj+1, which will be centered at one of them. However, it is
required to ensure that the distance between the candidate center vertex u or u

0 and each of the
vertices at which the already-packed disks d1, d2, . . . , dj are centered is at least 2r. Observe that
for a convex polygon P, the distances between a fixed vertex and the remaining vertices of P
form a multi-modal function. Therefore, we can not directly employ binary search to find the
center vertices u and u

0 for packing the next disk dj+1, j = 1, 2, . . . , k � 1. For a vertex vi of P ,
there are � vertices that are the modes or local maxima [7], where �  n/2. We will exploit this
property to identify all the candidate center vertices and to quickly locate the one among them
for centering the disk dj+1. Hence, given a candidate radius r, we do some preprocessing before
we shall call the decision algorithm.

5.2.2 The optimization scheme

To solve the optimization problem, i.e., to find the maximum value rmax of r, we solve Deci-

sion(P, k, r) repeatedly while performing a binary search on C
0. In each stage of the binary

search, the radius r will be the median element of C 0 divided by 2. The median will be found
using a linear-time median finding algorithm [18]. We then perform the above 2-way search
tree-based procedure to find an answer to Decision(P, k, r). If the answer is yes, then we
update C

0 by removing all the elements of it that are smaller than 2r. Otherwise, we update by
removing all the elements that are at least 2r. In either case, the size of the updated C

0 will be
half of the previous C

0. The main routine of the algorithm is outlined in Algorithm 4.

Preprocessing:

Here we describe how to precompute all the candidate center vertices for the next disk dj+1

(j = 1, 2, . . . , k�1) once an element 2r 2 C
0 is fixed, where a candidate center vertex is a vertex of

P at which a disk is likely to be centered in the packing computed by Algorithm 4. We also see how
to use this precomputed information in every (j+1)th step of the decision algorithm given that the
disks {d1, d2, . . . , dj} are packed on @P with centers C(d1) = v↵1 , C(d2) = v↵2 , . . . , C(dj) = v↵j ,
where j = 1, 2, . . . , k � 1, and @P is the boundary of P.

In Algorithm 4, we initially set X1 = C
0, the set of all distances between the points in S. In the

ith stage of the binary search (while loop in Algorithm 4), we have that |Xi|  |Xi�1|
2 , where

the set Xi always contains the element 2rmax along with possibly some other candidate radii for
i = 2, 3, . . . , d2 log ne. Now, consider a straight line `s (with any orientation) through any vertex
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vs of P , that splits P into two parts, each with at least one vertex other than vs. Given a median
2r 2 Xi, for each vertex vs of P the candidate center vertices us1 , us2 , . . . , us� lying above any
straight line `s through vs (and us01

, us02
, . . . , us0

�0
lying below `s) are such that for 1  �  � we

have that |vsus��1| < 2r, |vsus�+1| > 2r and |vsus� | � 2r or |vsus��1| > 2r, |vsus�+1| < 2r and
|vsus� | � 2r, where max(�, �0)  n

2 . These candidate vertices can be pre-computed by doing the
distance checks while linearly scanning through @P both in clockwise and counter-clockwise from
every vertex vi. Hence, this pre-computation at the beginning of each stage (line 4) will take
O(n2) time. The overall time across all stages of the binary search for these pre-computations
will be O(n2 log n). These candidate center vertices are stored in the array Ai for each vertex vi

(see line 4 of Algorithm 4). Let v↵up be the vertex in clockwise order from v↵1 (= C(d1)), at which
the recently packed disk is centered (see Figure 5.2). Let v↵low be the vertex in counter-clockwise
from v↵1 , at which the recently packed disk is centered. Let ui1 , ui2 , . . . , ui� be the candidate
center vertices in clockwise order from v↵up for packing the next disk dj+1. Similarly, the vertices
ui01

, ui02
, . . . , ui0

�0
are the candidate center vertices in counter-clockwise order from v↵low .

Algorithm 4: Exact-fixed-parameter.
Input: A convex polygon P with V vertices and an integer k

Output: Radius rmax of k disks packed
X1  C

0, i 1
while |Xi| � 2 do

r  median(Xi)/2 // invoke the linear-time median finding algorithm [18]
Based on the value of 2r, precompute the candidate center vertices for each vs 2 V and
store in a global array As, s = 1, 2, . . . , n.

if Decision(P, k, r) then
Xi+1  Xi \ {e 2 Xi|e  2r}

else
Xi+1  Xi \ {e 2 Xi|e � 2r}

i i+ 1
r = min(Xi)/2
return r

Computation of a center vertex for dj+1 by the decision algorithm:

Now consider the (j + 1)th iteration in the ith stage of the binary search. Let us denote the
right most disks in the packing {d1, d2, . . . , dj} on both upper and lower boundaries of @P by
d↵up and d↵low centered respectively at v↵up and v↵low (see Figure 5.2). The candidate center
vertices from the center of d↵up in clockwise order are ui1 , ui2 , . . . , ui� and from the center of
d↵low in counter-clockwise order are ui01

, ui02
, . . . , ui0

�0
. Merge these two lists into one single list in

convex position order (i.e., respecting the initial given order in S) by discarding the candidate
centers lying to the left of the line `low,up through v↵low and v↵up (see Figure 5.2). This merging
will take � + �

0 � 1 = O(n) time (as we need to check at most n vertices in the order of S).
Observe that due to the convexity of P each of the vertices C(d1), C(d2), . . . , C(dj) lie either on
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`low,up or to the left of `low,up. Assume that the vertices (in clockwise order) between ui1 and
ui0

�0�1
all have distances at least 2r from both v↵low and v↵up , and that ui0

�0
appears before ui1

in clockwise order from v↵up . For each p = i1, i1 + 1, . . . , i0
�0�1 consider the line `p,up through

v↵up and vp, and the line `p,low through vp and v↵low , respectively. Note that the distances
from the line `p,up to the vertices C(d1), C(d2), . . . , C(dj) satisfy unimodality because P is in
convex position. Similarly the distances from `p,low to C(d1), C(d2), . . . , C(dj) satisfy unimodality
property. Hence, we can use binary search to discard a vertex vp if it is of distance strictly less
than 2r from one of C(d1), C(d2), . . . , C(dj), as follows: Let C(d1), C(d2), . . . , C(dj) be in convex
position order (in clockwise along @P), find contiguous subsequences (if exists) of these points
that have distance strictly less than 2r from the lines `p,up and `p,low, by doing a binary search
over the latter ordered list. Then check if there is a point in any of these sequences that is
of distance strictly less than 2r from vp, by using binary search again. Discard vp if so. Also
we linearly search the contiguous subsequence ui1 , ui1+1, . . . , ui0

�0�1
to find the first vertex vp

clockwise from v↵up such that C(dj+1) = vp. This process takes O(n+ n log j) amortized time,
where O(n) is for merging and O(n log j) for finding the center for the disk dj+1 by doing binary
search on C(d1), C(d2), . . . , C(dj). Similarly, we spend the same time if we are packing dj+1 in
the counter-clockwise direction from v↵low . Then we have the following claim.

ℓp,up ℓlow,up

dαup vαup

vαlowdαlow

d1

ui1

dj+1

u′iγ′−1

u′i1

vp

vα1

Figure 5.2: Preprocessing and computation of a center vertex for dj+1.
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Claim 5.2. If Decision(P, k, r) =yes then there exists a vertex v↵1 of P with v↵1 = C(d1) that
results in the following: there is a root-leaf path of a 2-way search tree with the root corresponding
to v↵1 such that at every node along the path we are able to pack the next disk dj+1 centered at
one of the candidate vertices.

Proof. Suppose the disk dj+1 in the optimal packing is not centered at one of the candidate
vertices in the (j + 1)th iteration. Also, consider that previous j disks in the optimal packing
are centered at the candidate vertices (let us call them optimal centers). Then it must be the
case that the optimal center vertex at which dj+1 is centered (in the optimal packing) appears
strictly between the first candidate vertices vp and vp0 (with distance at least 2r from each of
C(d1), C(d2), . . . , C(dj)) respectively from v↵up and v↵low . Otherwise, it should be one of the
candidate vertices as the first vertices vp and vp0 are at the distance 2r from the centers of
previously packed disks in clockwise and counter-clockwise directions, respectively. Now, we can
perturb C(dj+1) to center dj+1 at the nearest candidate center without violating the packing
property, and it also creates more space on @P (on the other side) for packing the following disks.
Therefore, the claim follows by induction on j due to the above discussion (See Figure 5.2).

Lemma 5.3. We can answer the decision question Decision(P, k, r) in O(2kn2 log n) time.

Proof. The correctness of our decision algorithm follows due to the following facts:

1. Fix some vertex v of P and a center of the disk d1 at v. In the search space corresponding
to the vertex v, along any (root-leaf) path (of the search tree) after the disk dj is centered,
by the claim above if r  rmax there is always a candidate center vertex u in at least one
direction along the boundary of P in order to pack the next disk dj+1, for j = 2, 3, . . . , k�1.
We argued that the amortized time for finding this candidate vertex is O(n+ n log j) (by
accessing the array As (for a vertex s) computed in step 4 of Algorithm 4). Hence, the
branching factor of every node of the search space is at most 2. Therefore, after the disk d1

is centered at some vertex v of P , the resulting search space for the remaining k � 1 disks
is a 2-way search tree, and its depth is O(k).

2. Consider an element 2r 2 C
0 such that r � rmax. Now, for this radius r let k

0 be the
maximum number of disks that can be packed in the optimal packing OPT and k � k

0.
We can determine a vertex that is the center for the disk d

OPT
1 in OPT, in O(n) time by

exploring the search space rooted corresponding to each vertex of the polygon P. Then,
by walking along @P from the point C(dOPT

1 ), we can charge each disk d
OPT

j0 with at least
one disk dj centered by Algorithm 4 if (dj \ d

OPT

j0 ) 6= ; for j
0 = 1, 2, . . . , k0. Therefore,

C(dOPT
1 ) = C(d1), i.e., dOPT

1 gets charged with d1 itself. Suppose there is some optimal



Chapter 5. Max-Min k-Dispersion for Points in Convex Position in the Plane 68

disk d
OPT

j0 that does not get charged with any disk dj centered by Algorithm 4. Then this
will contradict the termination of Algorithm 4. This implies that k = k

0.

3. In the 2-way search tree, there are at most 2j nodes at level j. Since we invest O(n+n log j)

time at every node of the level j, the total time will be
k�1P
j=1

(2j(n + n log j)) = O(2k(n +

n log k)).

If the radius r  rmax, then we can answer Decision(P, k, r) correctly in time n·(2k(n+n log k)) =

O(2k(n2 + n
2 log k)) = O(2kn2 log n) since we exhaustively search all n 2-way search trees and

k  n.

The other greedy strategies one can think of may not answer Decision(P, k, r) correctly, as
evident in the following discussion. This justifies that all possible (root-leaf) paths of the 2-way
search tree must be explored to answer the decision question correctly.

For instance, let’s take an example of a convex polygon with 18 vertices and k = 12, shown in
Figure 5.3. In Figure 5.3, disk d1 is the first disk placed at the leftmost point of the convex
polygon. If we use the 2-way search tree in the Decision(P, k, r), it returns the correct answer,
and the disks in this packing for the path in the 2-way search tree are starting from d1, d18 in
CCW , d3 in CW , d17 in CCW , d15 in CCW , d5 in CW , d14 in CCW , d6 in CW , d12 in CCW ,
d8 in CW , d10 in CCW , and d9 in CW (see Figure 5.3 (d)).

Now, let’s examine some alternative greedy strategies instead of the 2-way search tree and see
how they fail for the above instance:

• Greedy 1: Place the next disk greedily by always choosing the first feasible point in the
clockwise direction (see Figure 5.3 (a)). When the disk d4 is placed with this strategy, we
cannot place disks d14 and d15, which are part of the optimal packing for k = 12.

• Greedy 2: Place the next disk greedily by always choosing the first feasible point in the
counterclockwise direction (see Figure 5.3 (b)). Here, when the disk d13 is placed with this
strategy, we cannot place disks d5 and d6, which are part of the optimal packing for k = 12.

• Greedy 3: Place the next disk greedily by always choosing the first feasible point regardless
of the clockwise or counterclockwise direction (see Figure 5.3 (c)). When the disk d7 is
placed with this strategy, we cannot place disks d8 and d12, which are part of the optimal
packing for k = 12. Therefore, it’s necessary to search every branch of the 2-way search
tree to place the disks using the decision algorithm (see Figure 5.3 (d)).

Theorem 5.4. We have an exact fixed-parameter algorithm for the DkConP problem in

O(2kn2 log2 n) time.
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Figure 5.3: (a) Greedy 1 (b) Greedy 2 (c) Greedy 3 (d) 2-way search tree for k = 12.

Proof. Follows from Lemma 5.3 and by doing a binary search on the set C
0, since the total

size of the search tree is bounded by a function of the parameter k alone, and every step takes
polynomial time, and there are at most d2 log ne calls to Decision(P, k, r).

5.3 An exact polynomial time algorithm

In this section, we discuss an exact polynomial-time algorithm based on dynamic programming.
This dynamic programming algorithm exploits the connection of the Delaunay triangulation and
its dual, the Voronoi diagram, with a subset of k points in OPT out of n given points. Since the
given points are in convex position, the Voronoi diagram of the k points will form a tree. This will
allow us to use dynamic programming where we don’t have cyclic dependencies in subproblems.
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Initially, we choose three arbitrary points for S as the initial three optimal points, for which we
consider the Delaunay triangulation and its dual Voronoi diagram. We choose the next optimal
point by extending the Voronoi diagram so that this point satisfies the properties of Delaunay
triangulation. In order to find this optimal point, we make all possible choices available. We
repeat this until we have picked k points.

Formally, the algorithm is described as follows. Let S
0 ✓ S be a subset of k points that are the

center vertices of disks in OPT. Consider a Delaunay triangulation DT (S0) of these optimal k
centers. Obviously, all edges of DT (S0) must lie within the convex hull P of S and also within
the convex polygon � with S

0 as its vertices inscribed in P . Additionally, the triangles and edges
of a Delaunay triangulation of any set of points have some nice properties. As the Delaunay
triangulation maximizes the minimum angle and follows the empty circle property [50], we have
the following standard observation.

Observation 5.5. The shortest diagonal or edge of � is always a Delaunay edge of DT (S0).

By Observation 5.5, another alternative way of viewing the DkConP problem is to solve the
problem of computing a subset S

00(✓ S) with k points such that the shortest edge of DT (S00) is
as long as possible.

We know that the dual graph of a DT (S0) is a Voronoi diagram VD(S0). Since the k points that
are in S

0 are in a convex position, VD(S0) is a tree. For example, in Figure 5.4, the edges colored
blue represent the Delaunay triangulation, while the dashed green lines form its dual, the Voronoi
diagram, which is a tree. In this example, we considered a convex polygon with 11 vertices (see
Figure 5.4 (a)). Using the Delaunay triangulation for k = 6, the OPT is constructed by selecting
the rightmost three points i, j, and k, forming the initial Delaunay triangle along with its dual
Voronoi diagram (see Figure 5.4 (b)). For the subsequent Delaunay triangle, a point `

0 is chosen
as part of the OPT, situated to the left of ij and satisfying the empty circle property, with its
dual Voronoi extended to `

0 (see Figure 5.4 (c)). Similarly, the Delaunay and corresponding
Voronoi diagrams are extended to points `

00 and `
00 as illustrated in Figure 5.4 (d) and Figure

5.4 (e), respectively. Finally, the optimal radius is determined by the minimum length edge in
the Delaunay triangulation, represented by `0`00 (see Figure 5.4 (f)). This allows us to design a
dynamic programming algorithm to solve the above optimization problem as follows:

Let e1 be an edge in VD(S0) corresponding to the bisector of the pair pi, pj 2 S
0 (see Figure 5.5).

Now, assume that we know the three points pi, pj , p` are in the optimal solution S
0 such that the

triangle �(pi, pj , p`) formed by these points is a Delaunay triangle in DT (S0). Let the segment
(pi, pj) be oriented from pi to pj . Let K 2 Z+ be the budget (i.e., the number of facility centers
remaining to be selected) and Ec(pi, pj , p`) be a circle circumscribing the points pi, pj , p`. We
define a subproblem �(i, j, `;K), which returns the length of the smallest edge or diagonal of
the optimal solution S

00 (to DkConP with k = K + 3) in which the centers pi, pj , p` are already
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(c) (d)

(e) (f)

Figure 5.4: OPT using Delaunay triangulation when k = 6.

present, forming the Delaunay triangle in DT (S00) and K is the number of remaining centers to
be selected. To solve �(i, j, `;K), we need to find the best p`0 2 S that lies to the left of line
through ��!pipj (this region is the left half-plane of ��!pipj , denoted as L�

��!
pipj

), outside of Ec(i, j, `) such
that it partitions K into two sub-parts K0 and K�K0� 1 optimally, where K0 is a positive integer.
Now, recursively solve the subproblems �(pi, p`0 , pj ;K0) and �(p`0 , pj , pi;K � 1�K0) lying to the
left of ��!pip`0 and to the left of ��!p`0pj respectively (see Figure 5.5). These two subproblems are
invoked on only those points in S that lie to the left of the line through ��!pip`0 and to the left of
the line through ��!p`0pj , and that do not lie in the interior of Ec(p`0 , pi, pj). Hence we have the
following recurrence:

�(pi, pj , p`;K) = max
K0K�1,

p`0 :p`0 /2Ec(pi,pj ,p`),
p`02L

�
��!pipj

, p`02S

8
>>>><

>>>>:

min

8
>>>><

>>>>:

|pip`0 |, |p`0pj |,

�(pi, p`0 , pj ;K0),

�(p`0 , pj , pi;K � 1�K0)

9
>>>>=

>>>>;

9
>>>>=

>>>>;
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The base cases are the following:

• �(pi, pj , p`; 1) = max
p`0 :p`0 /2Ec(pi,pj ,p`),
p`02L

�
��!pipj

, p`02S

{min{|pip`0 |, |p`0pj |}}, when we have only one facility left

to select.

• �(pi, pj , ⇤; 1) = max
p`0 :p`0 /2Ec(pi,pj ,p`),
p`02L

�
��!pipj

, p`02S

{min{|pip`0 |, |p`0pj |}}, where ⇤ indicates that there is no

point p` on the right of ��!pipj (i.e., pipj may be an edge of convex hull of S0).

• �(pi, pj , p`; 0) = |pipj |, when all k facilities are already located.

pj

pℓ

pi

pℓ′

e3

e2

e1
v ∆v

v′∆v′

Figure 5.5: Extending Voronoi diagram to next Voronoi center v
0
by picking vertex p`0 .

In the above recurrence, there is no cyclic dependency between subproblems as the budget
is partitioned into sub-parts for subproblems (i.e., the budget gets smaller and smaller for
the subproblems). The optimal solution corresponds to a cell in the two-dimensional array of
�(pi, pj , ⇤; k � 2) of the four-dimensional DP table.

Correctness of the above dynamic programming algorithm:

The correctness follows from the fact that the dual to the Delaunay triangulation DT OPT of
an optimal solution is a tree VDOPT . Here, assume that we have one vertex v of VDOPT . Let
�v be the corresponding Delaunay triangle in DT OPT (see Figure 5.5). We know there are
three edges e1, e2 and e3 incident on v. We correctly determine the other endpoint v

0 of one
of these three edges e1, e2 and e3 by finding a �v0 that satisfies the empty circle property and
maximizes the minimum Delaunay edge length with the best partitioning of the budget. From
v
0, the Voronoi diagram will be extended recursively until the budget cannot be further divided.

Since we reached v
0 from v, at v

0 we have two possible ways to find the next vertex of the tree
VDOPT . The vertex v corresponds to any triple pi, pj , p`0 that forms a Delaunay triangle, where
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pi, pj forms an edge of the convex hull of any feasible solution S
00. As we are checking all possible

combinations of optimal Delaunay triangulations that maximize the minimum edge length of DT ,
the above dynamic programming will return the optimal solution, and the optimal value can be
obtained from one of the O(n2) cells �(pi, pj , ⇤; k � 2) in the DP table, where pi, pj corresponds
to an edge of the convex hull of S

0. Particularly, the optimal value is obtained from one of
the O(n2) cells �(pi, pj , ⇤; k � 2) in the DP table. To construct S

0, we will backtrack from the
cell �(pi, pj , ⇤; k � 2) that has the maximum value and the final optimal value is calculated as
max

1i<jn

{min{|pipj |,�[pi, pj , ⇤; k � 2]}}.

Theorem 5.6. We can solve the DkConP problem in O(n4
k
2) time using dynamic programming.

Proof. Note that there are O(n3
k) subproblems. In each subproblem, we have O(n) choices to

select p`0 and O(k) choices to partition K. So, we spend O(nk) time to combine optimal solutions
to subproblems into an optimal solution to the bigger subproblem. Hence, the total running time
of the dynamic programming algorithm for the DkConp problem for any k > 0 is O(n4

k
2).

5.4 A linear time 1/2
p
2-approximation for k = 3

In this section, we propose an approximation algorithm for the DkConP problem in O(n) time
for k = 3 if the points are given in convex position order in the first quadrant and stored in some
data structure in that order. Consider a set S of n points in a general convex position. Let a, b, c, d
be the four extreme points of the convex polygon P formed by the given n points. Without loss
of generality, let a be the extreme point with the minimum x-coordinate, b with the maximum
y-coordinate, c with the maximum x-coordinate, and d with the minimum y-coordinates. Based
on the position of the given n points, we have three possible situations for the positions of extreme
points of P : (i) all the four points a, b, c, d are distinct, (ii) two among four points coincide (i.e.,
a = b, c, d), and (iii) two pair of points coincide (i.e., a = b, c = d).

Let pq be the perpendicular bisector for the line segment joining u, v 2 {a, b, c, d}, where u 6= v.
Now consider the following cases:
case 1: Let e be a point of S farthest from the line through uv. Now, we place disks centered
at u, v and e such that the radius rl1 = min{|uv|, |ue|, |ev|}/2 (see Figure 5.6(a)). This is
repeated for every (u, v), where u, v 2 {a, b, c, d}, u 6= v and let the corresponding radii be rl1 for
l = 1, 2, . . . ,

�4
2

�
.

case 2: Let f 2 S be the nearest point to the perpendicular bisector pq. Now, we place disks
centered at u, v and f such that the radius rl2 = min{|uv|, |uf |, |fv|}/2 (see Figure 5.6(b)). This
is repeated for every (u, v), where u, v 2 {a, b, c, d}, u 6= v and rl2 is the corresponding radii for
l = 1, 2, . . . ,

�4
2

�
.
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Figure 5.6: (a) e is the farthest point from the line segment ac. (b) f is the nearest point to

the perpendicular bisector pq.
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Figure 5.7: The disks are centered at extreme points a, b and c.

case 3: We place disks centered at three of four extreme points such that their common radius
is maximized, i.e.,

r1 = max
u 6=v 6=w2{a,b,c,d}

{min{|uv|, |vw|, |uw|}}/2.

Let {rl1, rl2}6l=1 =
6S

l=1
{rl1, rl2}. In the remainder of this section, we argue that the max({r1} [

{rl1, rl2}6l=1) will be an 1/2
p
2-approximate value for the radius in the optimal packing when k = 3,

i.e., max({r1} [ {rl1, rl2}6l=1) � rmax/2
p
2.

The extreme points of a convex polygon can be found in O(log n) time when the vertices of
the polygon are given in a clockwise or counter-clockwise order [58]. This O(log n)-time search
algorithm is a minor variant of binary search, as described in Chapter 7 of [58]. It uses the notion
of directed edges of the polygon to determine how to halve the search interval based on the given
order (clockwise or counter-clockwise) of the points. Consequently, this approach enables us to
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do a binary search over the set S. Therefore, we can determine the extreme points a, b, c and d

of the set S in O(log n) time.

Now, let dl be a diagonal formed by any two of these extreme points. Now, we can observe that
the boundary @P can be split into two convex polygonal chains above and below dl, respectively.
Hence, due to the convexity of P, we can find the farthest point from the line through dl with
a similar adaption of the binary search [58] in O(log n) time. We can find a perpendicular
bisector of the line through dl in constant time and the points of the convex polygon closest to
the perpendicular bisector in O(log n) time with a similar approach (because here, unimodality
property holds for the distances between bisector line and the vertices). In total, there are at
most four such points. Therefore, the running time required is O(log n) in all the aforementioned
cases when the vertices of the convex polygon are stored in a data structure in clockwise/counter-
clockwise order. However, the overall running time of the approximation algorithm is O(n)

since we read the input array storing the set S, i.e., the vertices of the convex polygon in
clockwise/counter-clockwise order. As a result, we have the following theorem.

Theorem 5.7. We have a linear time 1/2
p
2-approximation algorithm for the DkConP problem

when k = 3.

Proof. The running time of the above algorithm is clearly O(log n), as every step of the al-
gorithm takes either O(1) or O(log n) time. Reading the input points S into the memory in
a clockwise/counter-clockwise order will take O(n) time. Hence, the total time taken by the
algorithm is O(O(n) + log n) = O(n). Now, we argue about its approximation factor. Let rmax

be the optimal radius of the disks in the optimal solution. Then rmax is at most half of the
diameter of P, i.e., rmax  D(P)

2 . Let the convex polygon P be enclosed inside an axis-parallel
rectangle R such that the extreme points of P lie on the boundary of R (see Figure 5.8).
case 1: When r1 > max({rl1, rl2}6l=1 \ {r1}). Without loss of generality assume that r1 � |ad|/2
and that |a0d|/2 = max({rl1, rl2}6l=1 \ {r1}) and thus |a0d|  |ad|
Let ↵1,↵2,↵3,↵4 be top-left, top-right, bottom-right, bottom-left corner vertices of R. If we
first assume that |ad| < |↵3↵4|

2 , then since |a0d|  |ad| we have r1 =
|ad|
2 = rmax. Otherwise we

can consider the case (see figure 5.8(a)) where we have |ad| � |↵3↵4|
2 . Let ✓1 be the angle at ↵3

defined by ↵1↵3 and ↵4↵3. Observe that ✓1  45�. Therefore,

cos(✓1) �
1p
2

=) |↵4↵3| �
1p
2
|↵1↵3| (5.1)

Since rmax  |↵1↵3|
2 and |ad| � |↵3↵4|

2 where r1 =
|ad|
2 , then we have,

r1 �
|↵3↵4|

4
� 1

4
p
2
|↵1↵3| �

1

2
p
2
rmax
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Figure 5.8: (a) When r1 > max({rl1, rl2}6l=1 \ {r1}). (b) When rlm⇤ = max {rl1, rl2}6l=1 and

rlm⇤ > r1.

case 2: When rl⇤m = max {rl1, rl2}6l=1 and rl⇤m > r1, where l
⇤ 2 {1, 2, . . . , 6}, and m = 1 or

m = 2.
Let e be the farthest point from the line through the segment ab. Without loss of generality
assume that rl⇤m corresponds to {a, b, e}. In figure 5.8(b) we can clearly observe that |ae| � |↵3↵4|

2 ,
because otherwise it would imply that any vertex f above ab along with c and e corresponds to
rl⇤m contradicting the choice of rl⇤m. Therefore, we have the same series of inequalities (6.1).
Since rmax  |↵1↵3|

2 and |ae| � |↵3↵4|
2 where rl⇤m = |ae|

2 , then we have,

rl⇤m �
|↵3↵4|

4
� 1

4
p
2
|↵1↵3| �

1

2
p
2
rmax

Hence, the algorithm chooses two disk centers at the endpoints of dl while the third disk is placed
based on the above-mentioned three cases, which gives the radius that is at least rmax

2
p
2
.

5.5 Conclusion

In this chapter, we studied the k-dispersion problem on convex set of points in the plane and
proposed: (i) an exact fixed-parameter algorithm with runtime O(2kn2 log2 n), (ii) an exact
polynomial time algorithm with runtime O(n4

k
2) for any k > 0. For practical purposes, one may

prefer (i) for small values of k and (ii) for large values of k as the polynomial dependency on n

is smaller for the fixed-parameter algorithm than the polynomial time algorithm. Finally, for
k = 3 we proposed a linear time 1

2
p
2
-approximation algorithm.

The results in this chapter are published in [75] and submitted for publication [74].



Chapter 6

Edge-Vertex Domination in UDG

Dominating set is a classical and popular combinatorial optimization problem in algorithmic
graph theory. A dominating set in an undirected graph G = (V,E) is a subset V

d ✓ V

such that every vertex v 2 V is either in V
d or adjacent to a vertex in V

d. A graph can have
many dominating sets. We refer to a dominating set (V d) with the minimum cardinality as the
minimum dominating set (MDS). The domination number is the cardinality of the MDS, and it
is denoted by �(G).

Finding a minimum dominating set in a UDG has applications in facility location, where the goal
is to minimize the number of facilities (e.g., gateways or sink nodes) required to cover all points of
interest (e.g., network nodes). For instance, determining the minimum number of wireless access
points needed to ensure complete coverage of all potential users can be solved by formulating it
as the minimum dominating set problem in a UDG representing the area in which the users are
located.

In this chapter, we consider a variant of the dominating set problem known as edge-vertex

dominating set (EVDS) problem on unit disk graphs.

Definition 6.1 (Edge-vertex dominating set (EVDS)). Given an undirected graph G = (V,E),
a vertex v 2 V is ev (edge-vertex)-dominated by an edge e 2 E if v is incident to e (i.e., an
endpoint of e) or if v is incident to an adjacent edge of e. A set S

ev ✓ E is an edge-vertex

dominating (EVD) set (referred to as ev-dominating set) of G, if for each vertex v 2 V , there
exists an edge e 2 S

ev that e ev-dominates v. The minimum cardinality of an ev-dominating set

is the ev-domination number, denoted by �ev(G). The EVDS problem is to find �ev(G).

Similar to other dominating set variants in UDG in the literature, the EVDS problem is also
a combinatorial optimization problem, hence selecting the minimum number of edges to ev-
dominate all the vertices is challenging due to the exponential number of possible subsets of E.
However, by exploiting some geometric properties of unit disk graphs connected to EVDS, we

77
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attempt to give efficient approximation algorithms for the problem. In this chapter, we first show
that the decision version of the EVDS problem is NP-complete in UDGs. We also prove that this
problem on UDG admits a polynomial time approximation scheme (PTAS). Finally, we present a
simple 5-factor linear-time approximation algorithm.

6.1 Hardness results

In this section, we show that the decision version of the EVDS is NP-complete, as stated below.
We describe a polynomial time reduction from the vertex cover problem, which is known to be
NP-complete in planar graphs with maximum degree 3 [32], to the EVDS problem on UDG. For
the reduction, we first consider a planar graph with a maximum degree of 3. We then embed
the planar graph onto a grid in the Euclidean plane, placing each vertex of the planar graph at
integer coordinates and embedding the edges as a series of line segments with at most two bends.
Next, we divide each edge into smaller edges based on specific distance constraints, as discussed
below, to ensure that there is a vertex cover of size at most k for the planar graph if and only if
there exists an EVDS of size at most k + l for the embedded graph, where k is a positive integer
and l is the number of line segments in the embedding.

The EVDS problem on UDGs (EVDS-UDG)
Instance: A UDG G = (V,E) and a positive integer k.
Question: Does there exist an edge-vertex dominating set S

ev of G such that |Sev|  k.

Lemma 6.2. ([78]) An embedding of a planar graph G = (V,E) with maximum degree 4 in the

plane is possible such that this embedding uses only O(|V |2) area and its vertices are at integer

coordinates, and its edges are drawn so that they are along the grid line segments of the form

x = i or y = j, for some i and j, where i, j 2 Z+
.

Biedl and Kant [11] gave a linear time algorithm that produces this kind of embedding (embedding
in Lemma 6.2) in which each edge contains at most two bends (see Figure 6.1, where each edge
of the planar graph G have at most two bends in its embedding and l = 15).

Corollary 6.3. ([42]) An embedding of a planar graph G = (V,E) with |V | � 3 and maximum

degree 3 in the plane can be constructed in polynomial time, where the embedding is such that

the vertices of G are at (4i, 4j) and the edges of G are drawn as a sequence of consecutive line

segments along the lines x = 4i or y = 4j, for some i and j.

Lemma 6.4. Let G = (V,E) be an instance of the vertex cover problem on a planar graph with

at least two edges and a maximum degree of three. An instance G
0 = (V 0

, E
0) of EVDS-UDG can

be constructed from G in polynomial time.
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Figure 6.1: (a) A planar graph G with max degree 3, and (b) The embedding of G on a grid.

Proof. The construction of G0 = (V 0
, E

0) from G = (V,E) is as follows: First, using one of the
algorithms discussed in [38, 40] we embed the graph G = (V,E) into a grid of size 4n⇥ 4n such
that each edge of E is composed of a sequence of horizontal or vertical line segment(s), each of
whose length is four units long. The points {p1, p2, . . . , pn} are referred to as the node points

in the embedding with respect to the vertex set of G (see Figure 6.1(a), Figure 6.1(b) and the
corresponding UDG G

0 in Figure 6.2). In the embedded graph, for each edge of length greater
than four units, we add a joint point to join two line segments in the embedding other than the
node points. Name these points as the joint points (see empty circles in Figure 6.2). Then for
each line segment with joint points as both of its endpoints in the embedding, we add three
extra points such that each of these extra points is at a distance of 1 unit from its neighbor
extra point(s) placed on the same segment, at least 1 unit from the corresponding joint points.
Similarly, for each line segment with a node point as its endpoint, we add four extra points each
at a distance of 0.8 unit from its neighbor extra point(s), also from the endpoints of the segment
on which we are placing the extra points. Name these extra points (from both the above cases)
as the added points (see filled square points in Figure 6.2).

Let A be the set of added points and J be the set of joint points. We construct a UDG
G

0 = (V 0
, E

0) where the vertex set V
0 = V [A [ J , and there is an edge between two vertices of

V
0 if and only if the distance between them is at most 1 unit (see Figure 6.2). If l is the total

number of line segments in the embedding, then |A|  4l and |J |  (l � |E|). It follows from
Lemma 6.2 that l is at most O(n2). Clearly, the graph defined by the intersection of unit disks
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Figure 6.2: A unit disk graph construction from embedding.

centered at points in V
0 is a unit disk graph. Since both the sets |V 0| and |E0| are bounded by

O(n2), we can construct G
0 from G in polynomial time.

Lemma 6.5. EVDS-UDG 2NP.

Proof. Given a subset S
ev ✓ E and a positive integer k, we can verify that S

ev is an edge-vertex
dominating set of size at most k in polynomial time by checking whether each vertex v 2 V is
ev-dominated by an edge e 2 S

ev all in O(|V 0||E0|) time.

We prove the NP-hardness of the EVDS-UDG problem by reducing the decision version of the
vertex cover problem on a planar graph with maximum degree 3 to the EVDS-UDG problem.
Let G = (V,E) be a planar graph with a maximum degree of 3. Then from Lemma 6.4, we can
construct an instance G

0 = (V 0
, E

0) of EVDS-UDG in polynomial time.

Lemma 6.6. G has a vertex cover of size at most k if and only if G
0
has an edge-vertex dominating

set of size at most k + l.

Proof. Let D ✓ V be a vertex cover of G of cardinality at most k. Let D
0 be the set of vertices

that are the node points of G0 corresponding to the vertices in D.

Necessary: Now, for every vertex v in D
0, choose any one edge of G0 that is incident to v where

the path does not lead to a pendant vertex (i.e., a vertex with degree one) in G. Represent these
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Figure 6.3: (a) Vertex cover of G. (b) EVDS of UDG.

chosen edges as the set N 0. Since |D0|  k, the cardinality of N 0 is at most k. We can see that for
any edge (pi, pj) 2 E of G, we have a simple path in G

0, consisting of at least one line segment
and only added points and joint points between pi and pj . Let us introduce the notation pi  pj

to denote this path for any pair of node points (pi, pj) 2 E, where the node point pi is a vertex
in D

0. Next, traverse every such path exactly once starting at a vertex v 2 D
0, and initially

choose the fourth edge from (v, u) 2 N
0 (not counting (v, u)) and then on every fourth edge until

reaching pj . We repeat this for every vertex v 2 D
0 except for the paths that will lead to pendant

vertices of G, which will ensure that every path pi  pj is traversed exactly once because D

is a vertex cover. Similarly, for every path pi  pj , where pi 2 D and pj is a pendent vertex,
choose the second edge of G0 from pj and continue selecting every fourth edge until reaching
pi. Let N

00 be the set of all these chosen edges. Observe that the edges in N
0 [N

00 are chosen
such that there is at least one edge and at most two edges contained in N

0 [N
00 for each of l

segments (see the darkened edges in Figure 6.3(b)). Moreover, the way edges in N
0 [N

00 are
chosen ensures that every two added or joint or node points between any two consecutive of these
edges are ev-dominated by them. The cardinality of N 00 is l since each line segment consists of at
most four added points in the embedding. Therefore, N 0 [N 00 is an ev-dominating set for G0 and
(|N 0|+ |N 00|)  k + l.

Sufficiency: To prove the sufficiency, consider any edge-vertex dominating set Sev ✓ E
0 for G0, of

size at most k+ l. We know that for any node point pi 2 V
0, the degree of pi is at most 3 in both

G and G
0. Let pi  pjt (t = 1, 2, 3) be the three paths in G

0 as defined above, i.e., all the other
vertices through which the path pi  pjt traverses are only the joint points and added points.
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Let ⇣(pi  pjt) be the subset of edges of E0 that appear in the path pi  pjt . For any node point
pi in G

0, let `t = |⇣(pi  pjt) \ S
ev| be the number of edges of that path contained in the EVDS

S
ev. Let |t be the number of line segments that constituted the path pi  pjt in the embedding.

Observe that `t is equal to |t or |t + 1 due to the construction of G0 from the embedding of G.
Now, identify a node point pi in G

0 such that the degree of pi is at least 2 and exactly one path
pi  pj1 has its `1 equal to |1 + 1 and the remaining paths pi  pj2 (and pi  pj3) have their
counts `2 = |2 (and `3 = |3). Pick this node point pi into a vertex cover D. Remove the part of
G

0 induced by these paths pi  pj1 , pi  pj2 , and pi  pj3 (however, retain the node points pj1 ,
pj2 , and pj3 in the remaining G

0). This will guarantee that the edges of G corresponding to these
paths are covered by the vertex pi 2 D. Repeat this procedure on the remaining G

0. To start
with, there must exist at least one such pi; otherwise, the sum

P
pi pjt

`t over all paths in G
0

would exceed k + l, a contradiction. Hence, D is a vertex cover for G and |D|  k.

The construction of Sev from D and vice versa both take polynomial time. Thus the lemma
follows.

Theorem 6.7. The EVDS-UDG problem is NP-complete.

Proof. Follows from Lemmas 6.5 and 6.6.

6.2 Polynomial time approximation scheme

In this section, we propose a PTAS for the EVDS set problem in a UDG. It is based on the
concept of p-separated collection of subsets, which was introduced by Nieberg and Hurink [57].
The subgraphs generated by these p-separated collections will divide the graph into smaller
parts such that these subgraphs will have pairwise disjoint edge vertex dominating sets. For the
EVDS problem, the value of p will be set to 4 in order to satisfy this condition. This division
makes it easier to find the local EVDS of the subgraphs by determining the maximal matching
of each subgraph. Here, we present various properties that allow us to bound the cardinalities
corresponding to the global optimal solution. Finally, we also show that the union of local EVDS
in the subgraphs can be extended to become an approximate EVDS to the original graph. Then,
in the following subsection, we discuss an efficient way of finding these subgraphs. This concept
of p-separated collection of subsets was used by many other authors to develop PTAS (for e.g.,
the Roman dominating set [68], minimum Liar’s dominating set [41], vertex-edge dominating set
[42]). However, we adopted the concept here quite differently from these as we have to select
edges to dominate vertices in the EVDS problem.

Let G = (V,E) be a UDG. Let h(e1, e2) denote the minimum number of edges in a simple path
between the farthest pair of endpoints among the four endpoints of the edges e1 and e2. Consider



Chapter 6. Edge-Vertex Domination in UDG 83

any two subsets E1 ✓ E and E2 ✓ E, h(E1, E2) is defined as the minimum number of edges
between any two edges e1 2 E1 and e2 2 E2. We use EVD(A) to denote an ev-dominating set and
EVDopt(A) to denote the optimal ev-dominating set of the edge-induced subgraph corresponding
to A(✓ E) (i.e., the subgraph induced by the set of edges A(✓ E) and the endpoints of edges in
A).

Definition 6.8. Let S be a set of k pairwise disjoint non-empty subsets of E, i.e., Si ⇢ E for
i = 1, 2, . . . , k. If h(Si, Sj) � m, for 1  i, j  k and i 6= j, then S is called as the p-separable

collection of subsets of E (see Figure 6.4 for m = 4).

Lemma 6.9. In a graph G = (V,E), if S = {S1, S2, . . . , Sk} is a 4-separated collection of k

subsets of E, then

kX

i=1

|EVDopt(Si)|  |EVDopt(E)|.

Proof. Let Ai be the set of edges that are adjacent to edges of Si for each i = 1, 2, . . . , k and Ri the
set of edges such that Ri = Si [Ai. The edges in sets R1, R2, . . . , Rk are pairwise disjoint, since
the set S is a 4-separated collection of subsets of edges i.e., (Ri\Rj) = ;, where i 6= j. Hence, the
edges of EVDopt(E)\Ri will ev-dominate every vertex in Si, since EVDopt(E) will ev-dominate
every vertex v 2 V . On the other hand, also EVDopt(Si) ⇢ Ri ev-dominates every vertex of Si,
with a minimum number of edges of G. This implies that |EVDopt(Si)|  |EVDopt(E) \ Ri|.
For all k subsets of edges in the 4-separated collection S, we get

kX

i=1

|EVDopt(Si)| 
kX

i=1

|(EVDopt(E) \Ri)|  |EVDopt(E)|.

The above Lemma 6.9 states that a 4-separated collection of subsets of edges S will give a lower
bound on the cardinality of an EVDS. Hence, we can get an approximation for the EVDS in
G, if we are able to enlarge Si to subsets Qi ⇢ E, in such a way that EVDS of expansions are
bounded locally and dominate every v 2 V globally.

Lemma 6.10. In a graph G = (V,E), let S = {S1, S2, . . . , Sk} be a 4-separated collection of

subsets of edges and Q = {Q1, Q2, . . . , Qk} be a collection of subsets of E with Si ✓ Qi for every

i = 1, 2, . . . , k. If there is a ⇢ � 1 such that

|EVDopt(Qi)|  ⇢|EVDopt(Si)|

holds for every i = 1, 2, . . . , k, and if
S

k

i=1EVDopt(Qi) is an edge-vertex dominating set of G,

then
P

k

i=1|EVDopt(Qi)| is a ⇢-approximation of minimum EVDS set of G.
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Figure 6.4: 4-Separable collection of edge sets S = {S1, S2, S3, S4, S5}.

Proof. From Lemma 6.9 we have,

kX

i=1

|EVDopt(Si)|  |EVDopt(E)|.

Hence,
P

k

i=1 |EVDopt(Qi)|  ⇢
P

k

i=1 |EVDopt(Si)|  ⇢|EVDopt(E)|.

In the following section, we discuss a procedure to construct the subsets Qi ⇢ E, that contains a
4-separated collection of edges Si ⇢ Qi, in such a way that a local (1 + ✏)-approximation can be
guaranteed. The union of the respective local EVDS will ev-dominate the entire vertex set of G,
which results in a global (1 + ✏)-approximation for the EVDS problem.

6.2.1 Subset Construction

Here, we discuss the construction of the 4-separated collection of subsets of edges, S =

{S1, S2, . . . , Sk} and the respective enlarged subsets Q = {Q1, Q2, . . . , Qk} of E such that
Si ✓ Qi for every i = 1, 2, . . . , k. The basic idea of the algorithm is as follows. We start with
an arbitrary edge e 2 E and consider the r-th edge neighborhood of e, for r = 0, 1, 2, . . . , with
N

0
e [e] = e. We compute the EVDS for these edge neighborhoods until the following condition

holds
|EVD(N r+4

e [e])| > ⇢|EVD(N r

e [e])| (6.1)
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Let r1 be the smallest r that violates the above inequality (6.1). Let S1 = N
r1
e [e], Q1 = N

r1+4
e [e].

Then iteratively, let Si = N
ri
e [e], Qi = N

ri+4
e [e], Ei+1 = Ei\(N ri+4

e (e)) for i = 1, 2, . . . , k,
where E1 = E and k is such that Ek+1 = ;. We follow this procedure iteratively for each
graph induced by Ei+1 and until Ei+1 = ;, finally returning the sets S = {S1, S2, . . . , Sk}
and Q = {Q1, Q2, . . . , Qk}, where r2, r3, . . . , rk are the smallest values of r violating inequality
(6.1), corresponding to the 2nd, 3rd, . . . , kth iteration of the above edge-neighborhood growing
procedure.

We find the edge-vertex dominating set of the r-edge neighborhood EVD(N r
e [e]) of an edge e,

with respect to the graph G as follows. Find a maximal matching M for the graph induced by
the edges of N r

e [e]. We can observe that the edges in M form an edge-vertex dominating set for
the graph induced by N

r
e [e]. Hence, as the following lemma says, EVD(N r

e [e]) = M .

Lemma 6.11. A maximal matching M of the graph G
0 = (V 0

, E
0) induced by the edges in N

r
e [e],

is an EVDS of N
r
e [e].

Proof. For the contradiction, assume that M is not an EVDS of the graph G
0 = (V 0

, E
0) induced

by the edges in N
r
e [e]. It means that there exists a vertex v 2 V

0 which is incident to an edge
e
0 2 E

0 such that Ne[e0] \M = ;. It contradicts that M is a maximal matching in G
0 as the set

M [ {e0} is a matching in G
0. Thus, the lemma follows.

Lemma 6.12. If G
0 = (V 0

, E
0) is a UDG induced by the edges in N

r
e [e] and M is the maximal

matching of G
0
then |EVD(N r

e [e])|  O(r2).

Proof. First, we find a maximal matching M , before finding the EVDS in G
0 = (V 0

, E
0) which

is induced by the edges of N r
e [e]. The number of edges in M of G0 is bounded by the number

of unit disks that are packed in a disk of radius r + 2 and centered at the middle of the edge e.
Hence, |M |  (r + 2)2 and the cardinality of EVD(N r

e [e]) is bounded by |M | (see Lemma 6.11).
Therefore, we have

|EVD(N r

e [e])|  |M |  (r + 2)2  O(r2).

Theorem 6.13. There exists an r1 which violates the following inequality.

|EVD(N r1+4
e [e])| > ⇢|EVD(N r1

e [e])|

where ⇢ = 1 + ✏ and r1 is bounded by O(1
✏
log 1

✏
).

Proof. On contrary, without loss of generality for r1, assume that there exists an edge e 2 E

such that
|EVD(N r+4

e [e])| > ⇢|EVD(N r

e [e])|



Chapter 6. Edge-Vertex Domination in UDG 86

for all r � r1. Then, from Lemma 6.12 , we have

(r + 6)2 � |EVD(N r+4
e [e])|.

Hence, when r is even we have,

(r + 6)2 � |EVD(N r+4
e [e])| > ⇢|EVD(N r

e [e])| > · · · > ⇢
r
2 |EVD(N2

e [e])| � ⇢
r
2 (6.2)

and when r is odd, we have,

(r + 6)2 � |EVD(N r+4
e [e])| > ⇢|EVD(N r

e [e])| > · · · > ⇢
r�1
2 |EVD(N1

e [e])| � ⇢
r�1
2 (6.3)

Now, we can observe that in both the inequalities (6.2), (6.3) on the left-hand side we have
a polynomial in r which is at least the right-hand side value which is exponential in r, it is a
contradiction. Therefore, for all r � r1 the inequality (6.2) cannot hold, hence there exists such
r1. Ultimately, r1 depends only on ⇢, not on the size of the edge-induced subgraph by N

r+4
e [e].

As in [57], we can argue that r1 is bounded by O(1
✏
log 1

✏
) where ⇢ = 1 + ✏.

Lemma 6.14. Given an ✏ > 0, for an edge e 2 E, EVDopt(Qi) can be computed in polynomial

time.

Proof. From the way of construction of Qi, we can see that Qi ✓ N
r+4
e [e]. The cardinality of

EVDS of N r+4
e [e] is bounded by O(r2) (see Lemma 6.12), where r is bounded by O(1

✏
log 1

✏
) (see

Theorem 6.13). Hence, we need at most O(nr
2
) possible combinations of O(r2)-tuples of vertex

points to check whether the selected tuple is an EVDS of Qi.

Lemma 6.15.
S

k

i=1EVD(Qi) is an edge-vertex dominating set in G = (V,E).

Proof. It follows from the construction of the collection of subsets of edges {Q1, Q2, . . . , Qk}
that each edge that is incident to a vertex v 2 V belongs to a specific subset Qi and EVD(Qi)

is an EVDS of the graph induced by the edges of Qi. Therefore, every vertex v 2 V is incident
to at least one edge e such that at least one edge of Ne[e] is in

S
k

i=1EVD(Qi).

Corollary 6.16.
S

k

i=1EVDopt(Qi) is an edge-vertex dominating set in G = (V,E), for the

collection of subsets of edges Q = {Q1, Q2, . . . , Qk}.

Theorem 6.17. For a given unit disk graph and an ✏ > 0, there exists a PTAS (an (1 + ✏)-

approximation) algorithm for the EVDS problem with running time n
O(c2)

, where c = (1
✏
log 1

✏
).

Proof. Follows from Corollary 6.16 and Lemma 6.14.
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6.3 5-Factor approximation algorithm

In this section, we present a 5-factor approximation algorithm for the EVDS problem on UDG.
Let S be a set of n points given in the Euclidean plane. We join two of these points with an
edge if the distance between those two points is less than or equal to 1 unit. Let E be the set of
such edges with cardinality m and V be the set of vertices corresponding to points in S. The
graph induced by V and E will form a UDG since the distance between any two end-points of
e 2 E is at most 1. Assume that such an UDG has no isolated vertex, otherwise, EVDS does not
exist. To present an approximation algorithm, we consider an axis-parallel rectangular region R
that contains UDG. We then partition the region R into grid cells by a tessellation with regular
hexagons, where each hexagonal cell is of side length 1

2 . Hence, the maximum distance between
any two points inside a cell is at most 1. Assume that no point in V lies on the boundary of any
hexagon in the partition.

Lemma 6.18. Any edge e with its two endpoints lying in adjacent hexagons can ev-dominate

every point in those two hexagons.

Proof. It follows from the fact that there will be an edge between any two points that lie within
the same hexagon since the distance between them is at most 1. Therefore, an edge e 2 EVDS

whose endpoint lies in that hexagon will ev-dominate every other point in that hexagon.

The outline of the algorithm is as follows. Initialize the set S
ev (which will hold the edges of

EVDS) initially as empty. Now, arbitrarily pick an edge e 2 E whose endpoints lie in different
cells. Add this edge to S

ev and set E = E\{e}. Mark all points that are ev-dominated by e.
If there are any unmarked vertices, now choose an edge e 2 E that is incident to any of the
unmarked vertices, with its other endpoint lying in a different cell. Add e to S

ev and mark all
the unmarked points that are ev-dominated by e. Repeat this process until every point in V is
marked (see Algorithm 5).

Theorem 6.19. Algorithm 5 gives a factor 5-approximation for EVDS problem on a UDG in

O(m+ n) time.

Proof. Algorithm 5 picks an edge e arbitrarily whose endpoints lie in different hexagons and
then repeatedly selects an edge between an unmarked vertex and another vertex in the different
hexagon until there are no unmarked vertices (see Figure 6.5). In Figure 6.5, we can observe that
Algorithm 5 selected EVDS as {e1, e2, e3, e4, e5} whose cardinality is five whereas the optimal
solution may have a single edge that will ev-dominate every given point (see the edge e in Figure
6.5). Next, one can see that the algorithm may select at most five times the optimal value,
since an edge between points in two adjacent hexagons may ev-dominate the points in all of its
adjacent eight hexagons. As we look at every edge between points to know whether its endpoints
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Algorithm 5: Edge-vertex domination.
Input: An UDG G = (V,E) placed over an hexagonal grid.
Output: An EVDS of G.
Initialize S

ev = ;, E0 = E, and let all vertices in V be unmarked initially.
while there is an edge e 2 E

0
with its both end-points unmarked do

Pick an edge e 2 E
0 such that e = (u, v), the unmarked vertices u 2 A and v 2 B, where

A and B are adjacent hexagonal cells
Set S

ev = S
ev [ {e} and E

0 = E
0\{e}

Mark all vertices which are incident to Ne[e]
end
while there is a hexagon containing unmarked vertices do

Pick any arbitrary edge e 2 E with at least one endpoint in that hexagon
S
ev = S

ev [ {e}
end
return S

ev

are the marked vertices and select an edge at lines 3 and 8 of Algorithm 5, the running time is
polynomial in m and n.

e5

e1

e2

e3

e4
e

Figure 6.5: EVDS = {e1, e2, e3, e4, e5}, and minimum EVDS={e}.

The approximation factor five of Algorithm 5 follows due to the following two facts:

1. If both the endpoints of an edge e selected by Algorithm 5 lie within the same hexagon,
then none of the vertices corresponding to these points are adjacent to a vertex of its
adjacent hexagons.

2. Otherwise, an edge e selected by Algorithm 5 ev-dominates all the points in both the
adjacent hexagons (Lemma 6.18).

All the cells (hexagons) in R can be grouped as a collection of mega-cells (as in Figure 6.6),
where each mega-cell consists of ten adjacent hexagonal cells (cells colored with the same color in
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Figure 6.6: Four adjacent Mega-cells.

Figure 6.6). Algorithm 5 picks at most five edges to ev-dominate all the points in each mega-cell,
whereas in the optimal solution, at least one edge is required.

6.4 Conclusion

In this chapter, we showed that the decision version of the EVDS on UDG is NP-complete. Later,
we showed that the EVDS problem on UDG admits a PTAS, which utilizes the concept of an
p-separated collection of subsets. Finally, we have provided a linear-time 5-factor approximation
algorithm.

The results in this chapter are submitted for publication [72].
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Conclusion and Future Work

In this thesis, we studied different variants of the obnoxious facility dispersion problems in the
Euclidean plane. These problems are called obnoxious facility location or geometric dispersion
problems in the literature. They are studied by researchers of both the operations research
domain and computer science domain (theoretical computer science). The researchers have
usually modeled the facilities as disks in the Euclidean plane while solving these problems. Many
authors have solved the different variants of the generalized versions of these problems and
proposed exponential time algorithms [2, 5, 43] or approximation algorithms [9, 62, 63] since these
generalized problems are notoriously hard and belong to the class of NP-hard problems. Hence,
these algorithms are practical only for small values of k, where k is the number of facilities to be
located. In this thesis, we studied several variants of these problems when restricted to line, circle,
and convex polygon. We showed that most of these restricted problems can be solved exactly
in polynomial time. Firstly, we studied the obnoxious facility location problem restricted to a
line segment such as constrained obnoxious facility location problem on a line segment (Cofl),
min-sum obnoxious facility location on a line-segment (Mofl) and also when it is restricted to a
circle named as circular constrained obnoxious facility location (CCofl). Then, we investigated
several variants of semi-obnoxious facility location (Sofl) problems such as constrained semi-

obnoxious facility location (CSofl) problem, Sofl on t-lines and discrete semi-obnoxious facility

location (DSofl) problem. We also studied another variant of the dispersion problem when
there are no demand points in the plane named as discrete k-dispersion on a convex polygon

(DkConP) problem. Finally, we studied a variant of the dominating set problem in unit disk

graphs known as edge-vertex dominating set (EVDS) problem, which can be modeled as an edge
facility location problem.

We have presented a (1� ✏)-approximation algorithm for the Cofl problem, with a runtime of
O((n log n+ k) log ||pq||

2(k�1)✏). Here, ✏ > 0 and ||pq|| denotes the length of pq. Additionally, we have
introduced two exact polynomial-time algorithms: one utilizing a binary search on all candidates

90
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and the other employing the parametric search technique of Megiddo [53]. These algorithms
require O((nk)2) and O((n log n + k)2) time, respectively. Notably, for the case of k = 2, an
improved parametric technique enables us to devise an algorithm with a runtime of O(n log2 n).
Furthermore, we have demonstrated that the (1 � ✏)-approximation algorithm presented for
the Cofl problem can be easily adapted to solve the circular variant of the problem with an
additional multiplicative factor of n in the running time. Lastly, we solved the weighted min-sum
variant of the problem in O(n3

k) time.

A few concluding remarks which would trigger further investigation in the context of the Cofl

problem:

• Parallel algorithm for Dcofl(P, k, L): Although we have provided a parallel algorithm for
Dcofl(P, 2, L), it remains unclear how to design a parallel algorithm for Dcofl(P, k, L)

for any k. Exploring the development of such parallel algorithms could potentially improve
the running time of the parametric search approach for the Cofl problem.

• Unconstrained continuous OFL problem: For k � 2, the unconstrained (where the facility
centers are not restricted to any particular domain such as line, circle, etc.) a continuous
OFL problem has remained an elusive open problem since its initial mention by Katz et al.
[43]. However, in the rectilinear variant of the problem, an O((N/4)k logN log logN)-time
algorithm is available [2], where N = O(n+k). Investigating this open problem and seeking
polynomial-time algorithms for k = 1, 2 would be valuable future endeavors.

For the problem of locating k semi-obnoxious facilities constrained to a line (CSofl) when the
given demand points have positive and negative weights. Specifically, we solved the problem
of locating k semi-obnoxious facilities on a line to locate facilities with the maximum weight
of the covered demand points in O(n4

k
2) time. Subsequently, we improved the running time

to O(n3
k · max (n, k)). Furthermore, we addressed two special cases of the problem where

points do not have arbitrary weights. We showed that these two special cases can be solved in
O(n3

k ·max (log n, k)) time. For the first case, when k = 1, we also provide an algorithm that
solves the problem in O(n3) time, and subsequently, we improve this result to O(n2 log n). We
also studied the Sofl for t-lines and showed that it can be solved in polynomial time but with a
high order degree in t. Further, we investigated the complexity of discrete semi-obnoxious facility
location (DSofl) for the given candidate locations in convex position, and we showed that this
problem can also be solved in polynomial time.

Following are some of the open problems that are worth considering in the context of the Sofl

problem as future work:

• The continuous unrestricted variant of the semi-obnoxious facility location problem: given
two sets (red and blue) of demand points with positive and negative weights (respectively)
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in the plane and an integer k. The objective is to maximize the sum of the weights of
the points covered by the union of k congruent non-overlapping disks of minimum radius
centered anywhere in the plane (i.e., disks (facilities) may be centered anywhere in the
plane).

• The discrete unrestricted variant of the semi-obnoxious facility location problem: given
two sets (red and blue) of points with positive and negative weights (respectively), a set of
candidate facility locations in the plane, and an integer k. The objective is to maximize
the sum of the weights of the points covered by the union of k congruent non-overlapping
disks of minimum radius centered at some of the candidate facility locations.

• To investigate the scenario when the disks are centered on the boundary of a convex polygon
instead of a horizontal line or at vertices of convex polygon.

• To investigate the scenario when the disks are restricted to be centered at the grid points
of a t⇥ t grid in the plane.

• Finding a better than O(n2 log n) time algorithm for the MaxBlue-NoRed problem for
k = 1.

For the DkConP problem, first, we gave an exact fixed-parameter algorithm with a runtime of
O(2kn2 log2 n). Second, is an exact polynomial time algorithm with a O(n4

k
2) runtime for any

k > 0. We note that the general Euclidean k-dispersion problem remains open in terms of both
polynomial-time approximation algorithms with better factors than 1

2 and the design of exact
fixed-parameter algorithms. No inapproximability bound for the Euclidean k-dispersion problem
is known, unlike the metric k-dispersion problem which is not approximable with a factor better
than 1

2 unless P = NP. Further research is required to make progress in these directions.

Lastly, we also studied the complexity and approximability of the edge-vertex dominating set

problem on unit disk graphs (EVDS-UDG). We first proved that the decision version of the
EVDS-UDG is NP-complete. We then showed that the EVDS-UDG admits a PTAS. We also gave
a simple 5-factor approximation algorithm in linear time. Although this 5-factor approximation
algorithm is significantly faster when compared to PTAS, it requires a geometric representation of
the input graph, whereas the proposed PTAS does not, hence is robust.



Chapter 8

Summary

Chapter 1: Introduction. introduces facility location problems and different variants of these
problems.

Chapter 2: Literature Review. This chapter discusses the existing research on similar problems
and compares our work with previous studies.

Chapter 3: Constrained Obnoxious Facility Location on a Line Segment. In this chapter,
we first provided the formal definition of the decision version of the Cofl problem, denoted as
Dcofl(P, k, L), and present a linear time algorithm based on a greedy approach for solving the
decision version. Subsequently, we present an FPTAS (Fully Polynomial-Time Approximation
Scheme) for the Cofl problem, utilizing doubling search and bisection methods. This FPTAS

involves multiple invocations of Dcofl(P, k, L). Then, we discuss two exact algorithms for the
Cofl problem with polynomial time complexity. The first algorithm is based on the binary search
and runs in O((nk)2) time. The second algorithm is based on the parametric search and runs in
O((n log n+ k)2) time. Additionally, we introduced a faster algorithm based on the improved
parametric search for k = 2, which achieves a time complexity of O(n log2 n). Subsequently, we
proceed to examine an FPTAS for the circular variant of the Cofl problem, referred to as CCofl.
Finally, we present a dynamic programming-based polynomial time algorithm for solving the
Mofl problem, which is a weighted min-sum version of the Cofl. Then, we concluded the
chapter.

Chapter 4: Semi-Obnoxious Facility Location on a Line. In this chapter, we first
introduced and discussed various notations that will aid in comprehending the subsequent
sections. Subsequently, we explored multiple configurations considered for computing the set of
candidate radii, denoted as Lcan. Next, we delved into the transformation of the CSofl problem
into a minimum weight k-link path problem, given a candidate radius � 2 Lcan that helps in
solving the CSofl problem exactly in O(n4

k
2) time. Additionally, we presented an improved
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dynamic programming-based solution, which runs in O(n3
k ·max(n, k)) time. Subsequently, we

examined two special cases of the CSofl problem, namely the AllBlue-MinRed problem
and the MaxBlue-NoRed problem. These cases involve only two sets of weighted points. We
show that these problems can be solved in O(n3

k ·max(log n, k)) time, and we also discussed the
MaxBlue-NoRed problem for k = 1. Then, we extended the result of CSofl to t-lines instead
of a single line. Finally, we discussed a discrete variant of Sofl when candidate facility sites are
in convex position, and we concluded the chapter by giving final remarks.

Chapter 5: Max-Min k-Dispersion for the Points in Convex Position. In this chapter,
first, we discussed various notations that will help in understanding subsequent sections in this
chapter. We discussed an exact fixed-parameterized algorithm for DkConP problem by defining
and solving its decision version, identifying the set of candidate radii, and invoking the decision
algorithm for candidate radii by doing a binary search on the set of candidate radii. Later,
we presented an exact polynomial-time algorithm with a time complexity of O(n4

k
2). This

algorithm utilizes two well-known concepts in computational geometry called Voronoi diagrams
and Delaunay triangulation, which internally uses dynamic programming. Finally, we gave a
linear time 1

2
p
2
-approximation for k = 3 by exploiting the elementary geometry properties, and

then we concluded the chapter.

Chapter 6: Edge-Vertex Domination in UDG. In this chapter, first, we showed that
the decision version of the EVDS on UDG is NP-complete by describing a polynomial time
reduction from the vertex cover problem, which is known to be NP-complete in planar graphs
with maximum degree 3. Later, we showed that the EVDS problem on UDG admits a PTAS,
which utilizes the concept of an p-separated collection of subsets. Finally, we gave a linear time
5-factor approximation algorithm, and then we concluded the chapter.

Chapter 7: Conclusion and Future Work. In this chapter, we presented concluding remarks
summarizing the key findings and contributions discussed in the preceding sections. Additionally,
we identify several open problems that could serve as potential avenues for future research.



Bibliography

[1] VP Abidha and Pradeesha Ashok. “Geometric separability using orthogonal objects”. In:
Information Processing Letters 176 (2022), p. 106245.

[2] Shimon Abravaya and Michael Segal. “Maximizing the number of obnoxious facilities to
locate within a bounded region”. In: Computers & operations research 37.1 (2010), pp. 163–
171.

[3] Pankaj K Agarwal, Micha Sharir, and Sivan Toledo. “Applications of parametric searching
in geometric optimization”. In: Journal of Algorithms 17.3 (1994), pp. 292–318.

[4] Alok Aggarwal, Baruch Schieber, and Takashi Tokuyama. “Finding a minimum weight
K-link path in graphs with Monge property and applications”. In: Proceedings of the ninth

annual symposium on Computational geometry. (1993), pp. 189–197.

[5] Toshihiro Akagi, Tetsuya Araki, Takashi Horiyama, Shin-ichi Nakano, Yoshio Okamoto, Yota
Otachi, Toshiki Saitoh, Ryuhei Uehara, Takeaki Uno, and Kunihiro Wasa. “Exact algorithms
for the max-min dispersion problem”. In: Frontiers in Algorithmics: 12th International

Workshop, FAW 2018, Guangzhou, China, May 8–10, 2018, Proceedings. Springer. (2018),
pp. 263–272.

[6] Tetsuya Araki and Shin-ichi Nakano. “Max–min dispersion on a line”. In: Journal of

Combinatorial Optimization 44.3 (2022), pp. 1824–1830.

[7] David Avis, Godfried T Toussaint, and Binay K Bhattacharya. “On the multimodality of
distances in convex polygons”. In: Computers & Mathematics with Applications 8.2 (1982),
pp. 153–156.

[8] Sang Won Bae, Arpita Baral, and Priya Ranjan Sinha Mahapatra. “Maximum-width empty
square and rectangular annulus”. In: Computational Geometry 96 (2021), p. 101747.

[9] Christoph Baur and Sándor P Fekete. “Approximation of geometric dispersion problems”.
In: Algorithmica 30 (2001), pp. 451–470.

[10] Sergey Bereg, Ovidiu Daescu, Marko Zivanic, and Timothy Rozario. “Smallest maximum-
weight circle for weighted points in the plane”. In: Computational Science and Its Applications–

ICCSA 2015: 15th International Conference, Banff, AB, Canada, June 22-25, 2015, Pro-

ceedings, Part II. Springer. (2015), pp. 244–253.

95



Bibliography 96

[11] Therese Biedl and Goos Kant. “A better heuristic for orthogonal graph drawings”. In:
Computational Geometry 9.3 (1998), pp. 159–180.

[12] Razika Boutrig, Mustapha Chellali, Teresa W Haynes, and Stephen T Hedetniemi. “Vertex-
edge domination in graphs”. In: Aequationes mathematicae 90.2 (2016), pp. 355–366.

[13] Timothy M Chan and Konstantinos Tsakalidis. “Optimal deterministic algorithms for 2-d
and 3-d shallow cuttings”. In: Discrete & Computational Geometry 56 (2016), pp. 866–881.

[14] Richard L Church and Zvi Drezner. “Review of obnoxious facilities location problems”. In:
Computers & Operations Research 138 (2022), p. 105468.

[15] Richard L Church and Robert S Garfinkel. “Locating an obnoxious facility on a network”.
In: Transportation science 12.2 (1978), pp. 107–118.

[16] Richard Cole. “Slowing down sorting networks to obtain faster sorting algorithms”. In:
Journal of the ACM (JACM) 34.1 (1987), pp. 200–208.

[17] J Manuel Colmenar, Peter Greistorfer, Rafael Martí, and Abraham Duarte. “Advanced
greedy randomized adaptive search procedure for the obnoxious p-median problem”. In:
European Journal of Operational Research 252.2 (2016), pp. 432–442.

[18] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction

to algorithms. MIT press, (2022).

[19] João Coutinho-Rodrigues, Lino Tralhão, and Luís Alçada-Almeida. “A bi-objective modeling
approach applied to an urban semi-desirable facility location problem”. In: European journal

of operational research 223.1 (2012), pp. 203–213.

[20] José Miguel Díaz-Báñez, Ferran Hurtado, Henk Meijer, David Rappaport, and Joan Antoni
Sellarès. “The largest empty annulus problem”. In: International Journal of Computational

Geometry & Applications 13.04 (2003), pp. 317–325.

[21] Tammy Drezner, Zvi Drezner, and Anita Schöbel. “The Weber obnoxious facility location
model: A big arc small arc approach”. In: Computers & Operations Research 98 (2018),
pp. 240–250.

[22] Tammy Drezner, Zvi Drezner, and Carlton H Scott. “Location of a facility minimizing
nuisance to or from a planar network”. In: Computers & Operations Research 36.1 (2009),
pp. 135–148.

[23] Zvi Drezner and Zvi Drezner. Facility location: a survey of applications and methods.
Springer, (1995).

[24] Zvi Drezner and Horst W Hamacher. Facility location: applications and theory. Springer
Science & Business Media, (2004).

[25] Zvi Drezner and George O Wesolowsky. “Finding the circle or rectangle containing the
minimum weight of points.” In: Computers & Operations Research (1994).



Bibliography 97

[26] Zvi Drezner and George O Wesolowsky. “Obnoxious facility location in the interior of a
planar network”. In: Journal of Regional Science 35.4 (1995), pp. 675–688.

[27] H. Edelsbrunner and F.P. Preparata. “Minimum polygonal separation”. In: Information

and Computation 77.3 (1988), pp. 218–232. issn: 0890-5401. doi: https://doi.org/10.
1016/0890-5401(88)90049-1.

[28] Erhan Erkut. “The discrete p-dispersion problem”. In: European Journal of Operational

Research 46.1 (1990), pp. 48–60.

[29] Sandor Fekete. “On the complexity of min-link red-blue separation”. In: Manuscript, de-

partment of applied mathematics, SUNY Stony Brook, NY (1992).

[30] Sándor P Fekete and Henk Meijer. “Maximum dispersion and geometric maximum weight
cliques”. In: Algorithmica 38 (2004), pp. 501–511.

[31] Greg N Frederickson and Donald B Johnson. “Generalized selection and ranking: sorted
matrices”. In: SIAM Journal on computing 13.1 (1984), pp. 14–30.

[32] Michael R Garey and David S Johnson. Computers and intractability. Vol. 174. freeman
San Francisco, (1979).

[33] Mehraneh Gholami and Jafar Fathali. “The semi-obnoxious minisum circle location problem
with Euclidean norm”. In: International Journal of Nonlinear Analysis and Applications

12.1 (2021), pp. 669–678.

[34] Osman Gokalp. “An iterated greedy algorithm for the obnoxious p-median problem”. In:
Engineering Applications of Artificial Intelligence 92 (2020), p. 103674.

[35] Mehdi Golpayegani, Jafar Fathali, and Eiman Khosravian. “Median line location problem
with positive and negative weights and Euclidean norm”. In: Neural Computing and

Applications 24 (2014), pp. 613–619.

[36] Mehdi Golpayegani, Jafar Fathali, and Haleh Moradi. “A particle swarm optimization
method for semi-obnoxious line location problem with rectilinear norm”. In: Computers &

Industrial Engineering 109 (2017), pp. 71–78.

[37] Dorit S Hochbaum and Wolfgang Maass. “Approximation schemes for covering and packing
problems in image processing and VLSI”. In: Journal of the ACM (JACM) 32.1 (1985),
pp. 130–136.

[38] John Hopcroft and Robert Tarjan. “Efficient planarity testing”. In: Journal of the ACM

(JACM) 21.4 (1974), pp. 549–568.

[39] Takashi Horiyama, Shin-ichi Nakano, Toshiki Saitoh, Koki Suetsugu, Akira Suzuki, Ryuhei
Uehara, Takeaki Uno, and Kunihiro Wasa. “Max-min 3-dispersion problems”. In: IEICE

Transactions on Fundamentals of Electronics, Communications and Computer Sciences

104.9 (2021), pp. 1101–1107.



Bibliography 98

[40] Alon Itai, Christos H Papadimitriou, and Jayme Luiz Szwarcfiter. “Hamilton paths in grid
graphs”. In: SIAM Journal on Computing 11.4 (1982), pp. 676–686.

[41] Ramesh K Jallu, Sangram K Jena, and Gautam K Das. “Liar’s domination in unit disk
graphs”. In: Theoretical Computer Science 845 (2020), pp. 38–49.

[42] Sangram K Jena and Gautam K Das. “Vertex-edge domination in unit disk graphs”. In:
Discrete Applied Mathematics (2021).

[43] Matthew J Katz, Klara Kedem, and Michael Segal. “Improved algorithms for placing
undesirable facilities”. In: Computers & Operations Research 29.13 (2002), pp. 1859–1872.

[44] Yasuaki Kobayashi, SI Nakano, Kei Uchizawa, Takeaki Uno, Yutaro Yamaguchi, and
Katsuhisa Yamanaka. “Max-min 3-dispersion on a convex polygon”. In: 37th European

Workshop on Computational Geometry. (2021).

[45] B Krishnakumari, YB Venkatakrishnan, and Marcin Krzywkowski. “On trees with total
domination number equal to edge-vertex domination number plus one”. In: Proceedings-

Mathematical Sciences 126.2 (2016), pp. 153–157.

[46] Balakrishna Krishnakumari, Mustapha Chellali, and Yanamandram B Venkatakrishnan.
“Double vertex-edge domination”. In: Discrete Mathematics, Algorithms and Applications

9.04 (2017), p. 1750045.

[47] Jason Robert Lewis. “Vertex-edge and edge-vertex domination in graphs”. PhD thesis.
Clemson University, Clemson, (2007).

[48] Ross D MacKinnon and GM Barber. “A New Approach to Network Generation and Map
Representation: The Linear Case of the Location-Allocation Problem”. In: Geographical

Analysis 4.2 (1972), pp. 156–168.

[49] Costas D Maranas and Christodoulos A Floudas. “A global optimization method for Weber’s
problem with attraction and repulsion”. In: Large scale optimization: State of the art (1994),
pp. 259–285.

[50] de Berg Mark, Cheong Otfried, van Kreveld Marc, and Overmars Mark. Computational

geometry algorithms and applications. Spinger, (2008).

[51] Dániel Marx and Michał Pilipczuk. “Optimal parameterized algorithms for planar facility
location problems using Voronoi diagrams”. In: Algorithms-ESA 2015: 23rd Annual European

Symposium, Patras, Greece, September 14-16, 2015, Proceedings. Springer. (2015), pp. 865–
877.

[52] Sourav Medya, Arlei Silva, Ambuj Singh, Prithwish Basu, and Ananthram Swami. “Group
centrality maximization via network design”. In: Proceedings of the 2018 SIAM International

Conference on Data Mining. (2018), pp. 126–134.

[53] Nimrod Megiddo. “Applying parallel computation algorithms in the design of serial algo-
rithms”. In: Journal of the ACM (JACM) 30.4 (1983), pp. 852–865.



Bibliography 99

[54] Emanuel Melachrinoudis and Zaharias Xanthopulos. “Semi-obnoxious single facility location
in Euclidean space”. In: Computers & Operations Research 30.14 (2003), pp. 2191–2209.

[55] Pawan K Mishra, SV Rao, and Gautam K Das. “Dispersion problem on a convex polygon”.
In: Information Processing Letters 187 (2025), p. 106498.

[56] Joseph SB Mitchell. Approximation algorithms for geometric separation problems. Tech. rep.
State University of New York at Stony Brook, (1993). url: http://www.ams.sunysb.edu/
~jsbm/papers/sep-2-10-94.pdf.

[57] Tim Nieberg and Johann Hurink. “A PTAS for the minimum dominating set problem in
unit disk graphs”. In: International Workshop on Approximation and Online Algorithms.
Springer. (2005), pp. 296–306.

[58] Joseph O’Rourke. Computational geometry in C. Cambridge university press, (1998).

[59] Joseph O’rourke, S Rao Kosaraju, and Nimrod Megiddo. “Computing circular separability”.
In: Discrete & Computational Geometry 1 (1986), pp. 105–113.

[60] Subhabrata Paul and Keshav Ranjan. “On vertex-edge and independent vertex-edge dom-
ination”. In: International Conference on Combinatorial Optimization and Applications.
Springer. (2019), pp. 437–448.

[61] Kenneth W Peters Jr. Theoretical and algorithmic results on domination and connectivity

(Nordhaus-Gaddum, Gallai type results, max-min relationships, linear time, series-parallel).
Clemson University, (1986).

[62] Zhongping Qin, Yinfeng Xu, and Binhai Zhu. “On some optimization problems in obnoxious
facility location”. In: Computing and Combinatorics: 6th Annual International Conference,

COCOON 2000 Sydney, Australia, July 26–28, 2000 Proceedings 6. Springer. (2000), pp. 320–
329.

[63] Sekharipuram S Ravi, Daniel J Rosenkrantz, and Giri Kumar Tayi. “Heuristic and special
case algorithms for dispersion problems”. In: Operations Research 42.2 (1994), pp. 299–310.

[64] Abdulgani Sahin and Bünyamin Sahin. “Total edge–vertex domination”. In: RAIRO-

Theoretical Informatics and Applications 54 (2020), p. 1.

[65] Bünyamin Şahin and Abdulgani Şahin. “Double Edge–Vertex Domination”. In: International

Conference on Intelligent and Fuzzy Systems. Springer. (2020), pp. 1564–1572.

[66] Michael Segal. “Placing an obnoxious facility in geometric networks”. In: Nord. J. Comput.

10.3 (2003), pp. 224–237.

[67] Michael Ian Shamos. Computational geometry. Yale University, (1978).

[68] Weiping Shang and Xiaodong Hu. “The roman domination problem in unit disk graphs”.
In: International conference on computational science. Springer. (2007), pp. 305–312.



Bibliography 100

[69] Vishwanath R Singireddy and Manjanna Basappa. “Constrained Obnoxious Facility Location
on a Line Segment.” In: 33rd Canadian Conference on Computational Geometry. (2021),
pp. 362–367.

[70] Vishwanath R. Singireddy and Manjanna Basappa. “Dispersing Facilities on Planar Segment
and Circle Amidst Repulsion”. In: Algorithmics of Wireless Networks. Ed. by Thomas
Erlebach and Michael Segal. Cham: Springer International Publishing, (2022), pp. 138–151.

[71] Vishwanath R Singireddy and Manjanna Basappa. “Dispersing facilities on planar segment
and circle amidst repulsion”. In: Journal of Global Optimization 88.1 (2024), pp. 233–252.

[72] Vishwanath R Singireddy and Manjanna Basappa. “Edge-Vertex Dominating Set in Unit
Disk Graphs”. In: arXiv preprint arXiv:2111.13552 and submitted to Theory of Computing

Systems, Springer (2024).

[73] Vishwanath R Singireddy, Manjanna Basappa, and NR Aravind. “Line-Constrained k-
Semi-Obnoxious Facility Location”. In: arXiv preprint arXiv:2307.03488 and submitted to

International Journal of Computational Geometry & Applications (IJCGA) (2024).

[74] Vishwanath R. Singireddy, Manjanna Basappa, and Joseph S. B. Mitchell. “Algorithms for
k-Dispersion for Points in Convex Position in the Plane”. In: Submitted to Discrete Applied

Mathematics (DAM), Elsevier. (2023).

[75] Vishwanath R Singireddy, Manjanna Basappa, and Joseph SB Mitchell. “Algorithms for
k-Dispersion for Points in Convex Position in the Plane”. In: Algorithms and Discrete

Applied Mathematics: 9th International Conference, CALDAM 2023, Gandhinagar, India,

February 9–11, 2023, Proceedings. Springer. (2023), pp. 59–70.

[76] Arie Tamir. “Obnoxious facility location on graphs”. In: SIAM Journal on Discrete Mathe-

matics 4.4 (1991), pp. 550–567.

[77] Alejandro Teran-Somohano and Alice E Smith. “Locating multiple capacitated semi-
obnoxious facilities using evolutionary strategies”. In: Computers & Industrial Engineering

133 (2019), pp. 303–316.

[78] Leslie G Valiant. “Universality considerations in VLSI circuits”. In: IEEE Transactions on

Computers 100.2 (1981), pp. 135–140.

[79] Yanamandram B Venkatakrishnan and Balakrishna Krishnakumari. “An improved upper
bound of edge–vertex domination number of a tree”. In: Information Processing Letters 134
(2018), pp. 14–17.

[80] Yanamandram B Venkatakrishnan and H Naresh Kumar. “On the algorithmic complexity
of double vertex-edge domination in graphs”. In: International Workshop on Algorithms

and Computation. Springer. (2019), pp. 188–198.

[81] Andrea Wagner. “A new duality based approach for the problem of locating a semi-obnoxious
facility”. In: (2015).



Bibliography 101

[82] Da-Wei Wang and Yue-Sun Kuo. “A study on two geometric location problems”. In:
Information processing letters 28.6 (1988), pp. 281–286.

[83] Bowei Zhang. “Efficient Algorithms for Obnoxious Facility Location on a Line Segment or
Circle”. In: arXiv preprint arXiv:2210.07146 (2022).

[84] Radosław Ziemann and Paweł Żyliński. “Vertex-edge domination in cubic graphs”. In:
Discrete Mathematics 343.11 (2020), p. 112075.

[85] Paweł Żyliński. “Vertex-edge domination in graphs”. In: Aequationes mathematicae 93.4
(2019), pp. 735–742.



List of Publications

Conferences

• Vishwanath R. Singireddy, Manjanna Basappa and Joseph S. B. Mitchell, “Algorithms for
k-Dispersion for Points in Convex Position in the Plane", in proceedings of the 9th Annual

International Conference on Algorithms and Discrete Applied Mathematics (CALDAM 2023),
Gandhinagar, India, Feb 9–11, LNCS 13947, pp. 59–70, 2023. https://doi.org/10.1007/978-
3-031-25211-2_5

• Vishwanath R. Singireddy and Manjanna Basappa, “Dispersing Facilities on Planar Segment
and Circle Amidst Repulsion", in proceedings of the 18th International Symposium on

Algorithmics of Wireless Networks (ALGOSENSORS 2022), Potsdam, Germany, Sep 8–9,
LNCS 13707, pp. 138–151, 2022. https://doi.org/10.1007/978-3-031-22050-0_10

• Vishwanath R. Singireddy and Manjanna Basappa, “Constrained Obnoxious Facility Loca-
tion on a Line Segment", in proceedings of the 33rd Canadian Conference on Computational

Geometry (CCCG 2021), Halifax, Nova Scotia, Canada, Aug 10–12, pp. 362–367, 2021.
https://projects.cs.dal.ca/cccg2021/wordpress/wp-content/uploads/2021/08/CCCG2021.pdf

Journals

• Vishwanath R. Singireddy and Manjanna Basappa, “Dispersing Facilities on Planar Segment
and Circle Amidst Repulsion", in Journal of Global Optimization, 88(1), pp. 233–252, 2024.
https://doi.org /10.1007/s10898-023-01303-x

• Vishwanath R. Singireddy, Manjanna Basappa and Joseph S. B. Mitchell, “Algorithms for
k-Dispersion for Points in Convex Position in the Plane", Discrete Applied Mathematics

(DAM), Elsevier, 2023 (Under Review)

• Vishwanath R. Singireddy and Manjanna Basappa, “Complexity and Approximability of
Edge-Vertex Domination in UDG", Theory of Computing Systems (TOCS), Springer, (2024)
(Submitted)

102



List of Publications 103

• Vishwanath R. Singireddy, Manjanna Basappa and N. R. Aravind, “Line-Constrained
k-Semi-Obnoxious Facility Location", International Journal of Computational Geometry &

Applications (IJCGA), 2024 (Submitted)



Biographical Sketch

Candidate’s Biography

S Vishwanath Reddy is currently a research scholar in the Department of Computer Science and
Information Systems at Birla Institute of Science and Technology, Pilani, Hyderabad Campus. He
has completed his Bachelor of Technology (B.Tech) in Computer Science Engineering from JNTUH
(MITS), Hyderabad and Master of Technology (M.Tech) in Computer Science Engineering from
JNTUH (SITS), Hyderabad. His main areas of research are computational geometry and exact
and approximation algorithms.

Supervisor’s Biography

Dr. Manjanna B. received his Ph.D. from the Indian Institute of Technology, Guwahati, India,
in 2016. He obtained his Master of Technology (M.Tech) degree from the National Institute
of Technology Karnataka (NITK), Surathkal, India, and his Bachelor of Engineering (B.E.)
degree from the University of Visvesvaraya College of Engineering, Bangalore, India. From
August 2019 to July 2023, he served as an Assistant Professor in the Department of Computer
Science and Information Systems at the Birla Institute of Technology and Science (BITS) Pilani,
Hyderabad Campus, Hyderabad, India. He is currently an Assistant Professor in the Department
of Computer Science and Engineering at the National Institute of Technology Karnataka (NITK),
Surathkal, Mangalore. His research interests include algorithms and computational geometry.

104


	Declaration of Authorship

