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ABSTRACT

The characteristics of non-integer-order derivatives and integrals are discovered using frac-

tional calculus. This topic has grown in popularity and relevance over the past few decades

because of its use in several engineering sectors, including bioscience, finance, signal pro-

cessing, viscoelasticity, and technology. The fundamental advantage of fractional derivatives

over typical integer-order derivatives is that they consider memory and heredity aspects of

different processes. On the other hand, such considerations are not taken into account. Thus,

the properties of fractional derivatives inspired us to investigate and solve time-fractional

partial differential equations. In most cases, an exact solution of the time-fractional partial

differential equation is difficult to obtain; hence, an approximation or numerical solution is

necessary to understand the behavior of such fractional equations.

In Chapter 1, we have given a basic overview of fractional calculus. Some fundamental

features and definitions related to fractional derivatives have also been presented. A literature

survey also includes the most recent findings and contributions in theory and methodology

about our current study activity. A brief introduction to the subsequent chapters is provided.

Chapter 2 presents a numerical approach for a class of time-fractional convection-reaction-

diffusion problems with a time lag. In the Caputo notion, time-fractional derivatives are

examined. The numerical strategy uses Crank and Nicolson’s discretization technique in the

temporal direction and spline functions with a tension factor in the spatial direction. The

scheme is conditionally stable, according to the Von-Neumann stability analysis. In addition,

the Fourier series is used to offer a thorough convergence analysis. Two numerical test

problems are addressed to validate the suggested numerical scheme’s efficacy.

The third chapter concerns constructing and analyzing a higher-order stable numerical

approximation for the time fractional Kuramoto-Sivashinsky (K-S) problem, a fourth-order

nonlinear equation. In the studied issue, the fractional derivative of order γ ∈ (0, 1) is

taken into Caputo meaning and approximated using the L1− 2 technique. To estimate the

derivatives and solve the problem in space, the discretization technique employs quintic

B-spline functions. We produced unconditional stability findings and rate of accuracy

convergence O(h2 + k2), where h and k represent the space and time step sizes, respectively.



We have also seen that the linearized form of the K-S equation leads to O(h2 + k3−γ)

accuracy. The current method is also quite successful for solving the time-fractional Burgers

equation. We demonstrated that the current strategy outperforms the L1 scheme with the

exact computing cost for many linear and nonlinear problems with classical and fractional

time derivatives.

The fourth chapter seeks a dependable numerical approach for solving the Allen-Cahn

equation using the Caputo time-fractional derivative. The technique of fractional derivative

semi-discretization utilizing second-order finite differences is presented first. The cubic

B-spline collocation approach is applied to obtain a complete discretization. The conditional

stability and convergence of the proposed technique are demonstrated. The method’s efficiency

is proven using numerical examples from two test issues. A numerical study validates the

effectiveness of the methodology and the method’s continuous accuracy.

Chapter 5 uses the generalized time-fractional Fisher’s equation to illustrate the system’s

dynamics. The study of appropriate numerical techniques for this problem has significant

scientific and practical significance. In that vein, this study offers a high-order numerical

approach for the generalized time-fractional Fisher’s equation and its design and analysis.

The time-fractional derivative is computed in the Caputo sense and approximated via Euler

backward discretization. To linearize the problem, the quasilinearization approach is em-

ployed, and then a compact finite difference scheme is proposed for discretizing the equation

in the space direction. Our numerical technique is O(k2−α + h4) convergent, where h and

k are stepped sizes in the spatial and temporal directions, respectively. Three issues are

quantitatively tested using the suggested strategy, and the results show that the proposed

method is appropriate for solving this problem.

The predictor-corrector method (PCM) is investigated in Chapter 6 to solve a nonlinear,

two-dimensional fractional-order predator-prey model. This model’s carrying capacity is

one. The fractional order derivative (MABC derivative) resides above the modified Atangana-

Baleanu fractional derivative in the Caputo sense. PCM has an edge over other approaches

because of its smoothness and speed of implementation. The computational results correspond

to two methods reported by Srivastava et al. . In [1], HPSTM, and HASTM, the computational

results are graphed for various derivative values to show the variance of carnivore and pursued

x



populations.

In Chapter 7, we have discussed the conclusion of the thesis work and future dimensions

in the numerical solutions of fractional partial differential equations and fractional order

systems.

xi
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Chapter 1

Introduction

1.1 Fractional Calculus

Fractional calculus was developed in the 18th century by mathematicians such as Joseph

Fourier and Augustin-Louis Cauchy. However, in the twentieth century, fractional calculus

achieved widespread acceptance and began to be studied methodically. Fractional calculus,

also known as fractional differentiation and integration or calculus of fractions, is a field of

mathematics that extends the principles of differentiation and integration to non-integer or

fractional orders. It is a sophisticated and adaptable mathematical instrument with applications

in physics, engineering, economics, biology, and signal processing. The conventional calculus

of Isaac Newton and Gottfried Wilhelm Leibniz concerns integer orders of differentiation and

integration. Fractional calculus extends these ideas by allowing non-integer orders like 1/2,

3/4, or any other real or complex number. This addition enables describing and evaluating

phenomena with complicated behavior, memory effects, and non-local interactions, which

integer-order calculus frequently needs to address. There are two basic procedures in fractional

calculus: fractional differentiation and fractional integration. Fractional differentiation extends

integration to fractional orders by generalizing the notion of obtaining the nth derivative of

a function. These processes have many applications, including long-term memory models,

fractals, viscoelastic materials, and power-law systems.

1



Chapter 1

Though fractional calculus has a long history and is as old as classical calculus, people

only applied it to the problems arising in science and engineering for a short time. However,

with its wide applications, fractional calculus began to attract the increasing attention of

researchers and scientists in the last few decades. In 1695, Leibnitz devised both the notations

dn

dxnf(x) and
∫
f(x)dx; then L’Hospital asked Leibnitz, “What is the meaning of the notation

dn

dxnf(x) for n = 1/2 ?” In a September 30, 1695 letter, Leibniz wrote to L’Hospital, “This

is an apparent paradox from which useful consequences will be drawn one day.” After this,

several prominent mathematicians, including Riemann and Liouville, were the first to lay the

foundation of fractional calculus. The first book published in 1974 by Oldham and Spanier

[2] is solely devoted to fractional calculus. They have observed that the derivatives and

integrals of fractional orders are more valuable than the integer derivatives and integrals. It

motivates them towards the fundamental mathematical properties of the fractional differential

and integral operators and the applications of arbitrary order operators. Later, several authors,

such as Kilbas et al. [3], Li and Zeng [4], Miller and Ross [5], and Podlubny [6], published

several books on the theory and applications of fractional integrals and derivatives. For

a good survey paper on applying fractional derivatives in modern mechanics, the readers

are referred to [7]. Fractional calculus has proven its efficiency and aptitude to simulate

anomalous behavior in several disciplines of science, engineering, and finance during the

previous two decades. Many fractional calculus applications have emerged in recent years,

some of which are listed below. Important phenomena in different areas like physics [8, 9],

control theory [10], fluid mechanics [11, 12], chemistry and biology [13–15], and quantum

mechanics [16] are modeled using the fractional order differential equations. For many more

applications, we refer to [17–28]. Without using fractional calculus, one cannot model these

problems appropriately. As a result, the theories and applications of the fractional differential

and integral operators are well established, and their applicability to the problems arising

in the areas mentioned above is being considered extensively. It has been shown that the

fractional-order models are better than the integer models for complex systems with memory

and genetic effects. The problems with fractional derivatives are mainly classified into two

categories, namely, space-fractional and time-fractional.

Fractional calculus has been used in a variety of domains, including:

2
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• Physics: It models anomalous diffusion, non-Newtonian fluids, and electrical circuits

with fractal geometries.

• Engineering: Fractional calculus is used in control systems, signal processing, and

investigating materials with memory qualities.

• Biology: It aids in simulating biological systems with long-term memory, such as

disease propagation and population dynamics.

• Economics: Its applications include financial market simulation, stochastic process

simulation, and time series analysis.

• Medicine: Fractional calculus is applied to describe physiological processes having

memory effects, such as blood flow and medication dispersion.

• Geophysics: It is employed in analyzing seismic signals and the fractal features of

geological formations.

To summarize, fractional calculus is a solid mathematical device that extends classical

calculus principles to non-integer orders, enabling us to better comprehend and describe

complicated events in various scientific and engineering areas. It has become an essential

aspect of mathematical analysis and has significantly influenced many fields of study and

technology.

1.2 Standard fractional models

• Fractional conservation of mass: A fractional conservation of mass equation is

required to simulate fluid flow when the control volume is not big enough in comparison

to the scale of heterogeneity and when the flux inside the control volume is nonlinear,

as detailed by Wheatcraft and Meerschaert [29]. The fractional conservation of mass

equation for fluid flow is given in the linked publication as follows:

−σ (∇γ · �u) = Γ(γ + 1)Δx1−γσ (δs + φδw)
∂p

∂t
,

3
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where γ is fractional-flux, φ is porosity, σ is fluid density, δs is the coefficient of

compressibility for the porous medium, and δw is the coefficient of compressibility of

the water.

• Electrochemical Analysis: A voltage is provided at an electrode surface to force

electron transport between the electrode and substrate while examining the redox

behavior of a substrate in solution. The current generated as a result of the electron

transfer is measured. The concentration of substrate at the electrode surface affects

the current. Fick’s law states that more substrate diffuses to the electrode when the

substrate is used. Taking the Laplace transform of Fick’s second law results in the

following ordinary second-order differential equation in dimensionless form:

d2

dx2
V (x, s) = sV (x, s).

Its solution V (x, s) has a half-power dependency on s. Considering the derivative

of V (x, s) and then applying the inverse Laplace transform provides the following

relationship:

∂

∂x
V (x, t) =

∂
1
2

∂t
1
2

V (x, t).

It connects the concentration of substrates at the outermost layer of the electrode to

the electrical current. In electrochemical kinetics, this relationship is used to deduce

mechanistic behavior. It has been used to investigate the dimerization rate of substrates

during electrochemical reduction[30].

• Groundwater flow problem: [31] discussed various groundwater flow issues utilizing

the notion of derivative with fractional order in 2013–2014. The traditional Darcy

law is generalized in these works by considering the water flow as a function of the

piezometric head’s non-integer-order derivative. This generalized law and the law of

conservation of mass are then utilized to develop a new groundwater flow equation.

• Fractional advection-dispersion equation: This equation has proved helpful in sim-

ulating contaminant transport in heterogeneous porous media [18]. Atangana and

Kilicman expanded the fractional advection-dispersion equation to a variable-order
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equation. The hydrodynamic dispersion equation was expanded in their work by em-

ploying the idea of a variational order derivative. The Crank-Nicolson technique was

used to solve the modified problem numerically. The modified equation’s stability

and convergence in numerical simulations show that it is more trustworthy than equa-

tions with constant fractional and integer derivatives in forecasting the movement of

pollutants in deformable aquifers [32].

• Time-space fractional diffusion equation models: Fractional-order diffusion equation

models may accurately describe anomalous diffusion processes in complicated media.

The time derivative represents long-term heavy tail decay, while the spatial derivative

represents diffusion nonlocality. The governing equation for time-space fractional

diffusion is as follows:
∂γu

∂tγ
= −K(−Δ)δu.

The variable-order fractional derivative is a simple modification of the fractional deriva-

tive in which γ and δ are converted into γ(x, t) and δ(x, t). References may be obtained

for its uses in anomalous diffusion modeling [32].

• PID controllers: The degrees of freedom of PID controllers can be increased by

generalizing them to employ fractional orders. The revised equation linking the control

variable v(t) to a measured error value e(t) is as follows:

v(t) = Pe(t) + ID−γ
t e(t) + CDδ

t e(t),

where γ and δ are positive fractional orders and P , I , and C are all non-negative, denote

the coefficients for the proportional, integral, and derivative terms, respectively [33].

• Acoustical wave equations for complex media: Acoustic wave propagation in com-

plex media, such as biological tissue, often indicates attenuation following a frequency

power law. See Holm & Näsholm (2011) [33] citeHolm and its sources. Such models

are connected to the widely accepted idea that numerous relaxation events cause atten-

uation in complex media. This connection is discussed further in Näsholm & Holm

(2011) [34] and the survey study [35], as well as the acoustic attenuation article. For a
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work comparing fractional wave equations that represent power-law attenuation, see

Holm & Näsholm (2013) [36].

• Fractional Schrödinger equation in quantum theory: The fractional Schrödinger

equation, a fundamental equation of fractional quantum mechanics, has the following

form[37]:

i�
∂ψ(r, t)

∂t
= Dγ

(
−�

2Δ
) γ

2 ψ(r, t) + V (r, t)ψ(r, t) ,

where, Δ = ∂2

∂r2
= ∂2

∂x2
1
+ ∂2

∂x2
2
+ . . . is the Laplace operator, Dγ is a scale constant,

and the operator (−�
2Δ)γ/2 is the 3-dimensional fractional quantum Riesz derivative

defined by

(−�
2Δ)

γ
2ψ(r, t) =

1

(2π�)3

∫
d3pe

i
�
p·r|p|γϕ(p, t).

The index γ in the fractional Schrödinger equation is the Levy index, 1 < γ ≤ 2.

• Variable-order fractional Schrödinger equation:

The variable-order fractional Schrödinger equation has been used to study fractional

quantum phenomena as a natural generalization of the fractional Schrödinger equation

[38].

i�
∂ψγ(r)(r, t)

∂tγ(r)
=
(
−�

2Δ
) δ(t)

2 ψ(r, t) + V (r, t)ψ(r, t),

where Δ = ∂2

∂r2
= ∂2

∂x2
1
+ ∂2

∂x2
2
+ . . . is the Laplace operator and the operator (−�

2Δ)δ(t)/2

is the variable-order fractional quantum Riesz derivative.

1.3 Preliminaries
Some of the critical mathematical definitions that will be utilized throughout this study

are briefly presented in this section. Calculus, as we all know, is widely renowned for its

integration and differentiation of ideas. Fractional integration and fractional differentiation

are utilized in fractional calculus. To explain fractional integration, the Riemann-Liouville

integral is utilized. However, many other forms of fractional derivatives may be used to

describe fractional differentiation. In most cases, these definitions are different. Every

formulation, however, is motivated by the need to retain the features of classical calculus.
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Definition 1.3.1 (Caputo fractional derivative). [3] The Caputo fractional derivative of order

γ (denoted by C
0D

γ
t ) of w(t) is defined as

C
0D

γ
t w(t) =

⎧⎪⎪⎨⎪⎪⎩
1

Γ(n− γ)

∫ t

0

w(n)(s)

(t− s)γ−n+1
ds, n− 1 ≤ γ < n, n ∈ N

w(n)(t), γ = n ∈ N.

Definition 1.3.2 (Riemann-Liouville derivative). [3] The Riemann-Liouville derivative (de-

noted by RL
0 Dγ

t ) of order γ of w(t) is defined as

RL
0 Dγ

t w(t) =

⎧⎪⎪⎨⎪⎪⎩
1

Γ(n− γ)

dn

dtn

∫ t

0

w(s)

(t− s)γ−n+1
ds, n− 1 < γ ≤ n, n ∈ N

w(n)(t), γ = n ∈ N,

where Γ represents the gamma function and defined for a complex number z with non-negative

real part as

Γ(z) =

∫ ∞

0

e−ttz−1 dt.

Definition 1.3.3 (Riemann-Liouville fractional integral). [3] The definition of the Riemann-

Liouville fractional integral of order γ ∈ (0, 1) is given by

RLIγ0ω(t) =
1

Γ(γ)

∫ t

0

(t− s)γ−1ω(s) ds,

where ω(t) is real-valued function on [0, 1].

Definition 1.3.4 (The Mittag-Leffler function). [39] The Mittag-Leffler function in two

parameters Ep,q(.) for x ∈ R and a matrix A ∈ R
m×m are defined respectively, by

Ep,q(x) =
∞∑
i=0

xi

Γ(pi+ q)
, p > 0, q > 0,

Ep,q(A) =
∞∑
i=0

Ai

Γ(pi+ q)
, p > 0, q > 0,

if q = 1, this function called one parameter Mittag-Leffler function Ep(.)
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Definition 1.3.5 (The Atangana-Baleanu fractional derivative). [39] The Atangana-Baleanu

fractional derivative of Caputo sense (ABC derivative) of fractional order γ ∈ (0, 1) is

described for ω(t) ∈ H1(0, T ).

ABCDγ
0ω(t) =

N(γ)

1− γ

∫ t

0

ω′(s)Eγ
(
− γ

1− γ
(t− s)γ

)
ds,

where H1(0, T ) is a space of square-integrable functions and is defined as

H1(0, T ) = {ω(t) ∈ L2(0, T )|ω′(t) ∈ L2(0, T )},

and N(γ) is a normalization function with N(0) = N(1) = 1.

Definition 1.3.6 (The modified Atangana-Baleanu fractional derivative). [39] The modified

Atangana-Baleanu fractional derivative of Caputo meaning (MABC derivative) of order

γ ∈ (0, 1) is determined for ω(t) ∈ L1(0, T ) and given by

MABCDγ
0ω(t) =

N(γ)

1− γ

[
ω(t)− Eγ

(
− γ

1− γ
tγ
)
ω(0)

− γ

1− γ

∫ t

0

(t− s)γ−1Eγ,γ
(
− γ

1− γ
(t− s)γ

)
ω(s) ds

]
.

Definition 1.3.7 (The generalization of the modified Atangana-Baleanu fractional derivative).

[39] The MABC derivative of order γ ∈ (n − 1, n), n ∈ N is defined for ω(t) ∈ L1(0, T )

and given by

MABCDγ
0ω(t) =

N(δ)

1− δ

[
ω(n−1)(t)− Eδ

(
− δ

1− δ
tδ
)
ω(n−1)(0)

− δ

1− δ

∫ t

0

(t− s)δ−1Eδ,δ
(
− δ

1− δ
(t− s)δ

)
ω(n−1)(s) ds

]
,

where γ = n+ δ − 1.

Definition 1.3.8 (The formula of pointwise error and the order of convergence). The double
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mesh principle to determine the errors in L∞ and L2−norms as follows:

ENx,Mt
∞ = max

1≤n≤Mt

(
max

1≤m≤Nx−1
|ỹji − ỹ2j2i |

)
,

ENx,Mt

2 = max
1≤n≤Mt

√√√√Δx
Nx−1∑
m=1

(ỹji − ỹ2j2i )
2,

where ỹji and ỹ2j2i are the numerical solutions obtained by using (Nx + 1,Mt + 1) and

(2Nx + 1,2Mt + 1) points, respectively. We can also compute the corresponding orders of

convergence using the formula

QNx,Mt
q = log2

(
ENx,Mt
q

E2Nx,2Mt
q

)
, q = 2, ∞.

1.4 Fractional partial differential equation

In mathematics, PDEs are generally used to quantitatively solve physical and other issues

involving the functions of numerous variables, such as heat or sound propagation, fluid

movement, and eddy currents. A FPDE is a PDE that incorporates fractional derivatives of

non-integer order. Its significant benefit is the nonlocality of a fractional derivative over an

integer-order derivative. The former offers a mechanism for the internalization of memory as

well as hereditary aspects of numerous events. FPDEs occur in diverse regions of science

and engineering, such as physics, rheology, biology, control theory, viscoelasticity, systems

identification, signal processing, and electrochemistry [2, 5, 6, 40–44]. Fractional partial

differential equations (FPDEs) are a kind of partial differential equation (PDE) that involves

fractional derivatives. While traditional PDEs use integer-order derivatives to explain the

behavior of functions, FPDEs use non-integer fractional-order derivatives. These equations

have acquired popularity in various scientific and technical domains due to their ability to

represent complicated behavior in systems with memory and anomalous diffusion. There are

several definitions of fractional derivatives, the most prominent being Riemann-Liouville and

Caputo derivatives. The chosen definition has a significant influence on the characteristics

and solutions of the resulting FPDEs. A general version of a fractional partial differential
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equation can be stated as:

L{u(x, t)} = f(x, t),

where L is a fractional differential operator, u(x, t) denotes the unknown function, and f(x, t)

denotes a forcing or source term. Under the suitable boundary and beginning conditions, the

solution u(x, t) is sought.

Some essential considerations while working with FPDEs:

• Non-local behavior: Non-local behavior is introduced by fractional derivatives, which

implies that the derivative at a location depends on the function throughout a range of

values rather than only at the point itself.

• Memory and Heredity effect: FPDEs may represent systems with memory effects, in

which a system’s current behavior is determined by its prior history over a continuous

time period.

• Anomalous diffusion: FPDEs are frequently used to represent anomalous diffusion

processes in which the diffusion is described by a power-law behavior rather than a

straightforward diffusion equation.

• Numerical methods: Numerical solutions to FPDEs can be complicated, and special-

ized numerical approaches are sometimes required. FPDEs can be solved using finite

difference, finite element, collocation methods, and spectral approaches.

• Applications: FPDEs are employed in various disciplines, including physics, engineer-

ing, biology, and finance. They are instrumental in characterizing occurrences where

traditional integer-order derivatives are insufficient.

FPDEs are mainly of two types: linear and nonlinear. The following FPDEs form the

foundation of this thesis and aid in investigating additional FPDEs.

• The fractional partial differential equation with a time delay.

• Time-fractional nonlinear Kuramoto-Sivashinsky.

• Fractional order Allen-Cahn equation.
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• Generalized time-fractional Fisher’s equation.

1.5 Fractional order system
A fractional-order system can be defined as a dynamical system that may be described by

a fractional differential equation, including non-integer-order derivatives in the domains of

dynamical systems and control theory. These types of systems are considered to exhibit

fractional dynamics. Derivatives and integrals of fractional orders are often employed to

explain things with power-law nonlocality, power-law long-range dependency, or fractal

features. Fractional-order systems are essential for understanding the abnormal behavior of

dynamical systems in physics, electrochemistry, biology, viscoelasticity, and chaotic systems.

A fractional-order system, commonly called a fractional-order control system, is a form

of dynamic system characterized by fractional-order differential equations. These systems

are distinguished by non-integer-order derivatives or integrals in their mathematical models,

frequently expressed by a fractional exponent. In contrast to traditional control systems,

which employ integer-order differential equations, fractional-order systems can capture more

complicated and non-integer behaviors commonly found in real-world systems. Engineering,

physics, biology, and finance are the domains where fractional-order systems are used. Some

of the significant traits and characteristics of fractional-order systems are:

• Fractional-order dynamics, Memory and heredity: Fractional derivatives, or in-

tegrals, formulate equations for fractional-order systems. Because they can model

memory effects and long-term dependencies, these non-integer orders enable more

flexible and diverse system behavior modeling. Memory in fractional-order systems

extends beyond that of standard integer-order systems. The system’s present behavior

is heavily impacted by its previous states.

• Complex dynamics: Complex phenomena like power-law interactions, fractal patterns,

and non-exponential decay or growth can be seen in fractional-order systems. These

characteristics are frequently used to define real-world situations more precisely.

• Control and optimization: Various systems are regulated and stabilized using fractional-

order controllers. They benefit from better transient responsiveness, resilience, and the

11



Chapter 1

capacity to deal with systems with unknown parameters.

• Challenges: Because non-integer derivatives and integrals are involved, fractional-order

systems can be more challenging to analyze and regulate than integer-order systems.

Unique approaches and tools, such as fractional calculus, are utilized to overcome these

issues.

Because of their capacity to more correctly describe and regulate complicated, nonlinear,

and memory-dependent systems, fractional-order systems have attracted interest and focus in

recent years. Researchers and engineers continue investigating their applications and creating

tools and methods for adequately understanding and regulating these systems.

Fractional differentiation and integration have been utilized in various burning fields of

mathematics, with a tremendous increase in developing further and modern models. In the

literature, different fractional order differential operators possess Caputo, Caputo-Fabrizio,

Riemann-Liouville, and Atangana-Baleanu, etc. [45–47]. Fractional-order differential equa-

tions exist as one of the additional favored instruments; they support complex dynamic

systems from various domains. These contain electrochemistry [48], electricity [49], me-

chanics [50], economy [51], biology [52], and epidemiology [53]. Since fractional order

derivatives have integer orders, fractional order differential equations are an abstraction of

ordinary differential equations (ODEs). Systems modeled with fractional-order differential

equations demonstrate real-life spectacles more accurately. Modeling with fractional-order

derivatives describes the real-life system’s behavior, and these are also helpful in analyzing

the dynamical approaches. In modeling biological and physical procedures with longer-range

interactivity, fractional differential equations are more appropriate than ordinary ones in

time and space. Using fractional derivatives highlights the inherent non-local characteristic

whereby the future state is contingent upon the current state and all previously recorded

states. The systems with fractional derivatives that are multiplied together eventually become

systems with integer-order derivatives. Thus, fractional calculus naturally results in various

attachments, including the non-local nature of fractional derivative operators, an improved

degree of freedom, a vast stability province, and maximal utilization of information. In

the case of fractional order models, the majority of these characteristics and consequences
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only manifest. The latter fractional order derivative is successfully utilized in nearly all

experimental models, with particular mention of various directions of computational biology.

In 2018, Evirgen and Yavuz [54] examined an alternative method for a nonlinear optimization

problem, and Yavuz [55] examined a unique recursive approximation for nonlinear problems

containing the Caputo-Fabrizio derivative. In their paper [56], Ghanbari and Cattani describe

mutualistic predation in Lotka-Volterra models. A novel variable-order fractional tumor

model is presented with an ideal control by Sweilam et al. [57]. In their study, Danane

et al. [58] investigated the fractional model that describes the dynamics of the hepatitis B

viral infection. Baleanu et al. [59] offered an unexplored fractional model of human life

utilizing the Caputo-Fabrizio fractional derivative established on the exponential kernel—a

novel fractional SIRS-SI malaria model transmission delivered by Kumar et al. [60]. In

2020, Singh et al. [61] conducted a study on the fractional fish farm system linked to the

Mittag-Leffler-type kernel. The readers can be directed to [62, 63] for additional practical

models concerning fractional order derivatives.

The following fractional order system forms the foundation of this thesis and aids in

investigating additional fractional order systems.

• A two-dimensional predator-prey model of fractional order with one carrying capacity

1.6 Finite difference schemes for Caputo fractional deriva-

tive
The fractional derivative is discretized in finite difference methods for numerical solutions

of fractional partial differential equations. Three fundamental discretizations of the Caputo

fractional derivative are used as follows:

• The central difference scheme for Caputo fractional derivative.

• L1 scheme for Caputo fractional derivative.

• L1− 2 scheme for Caputo fractional derivative.

Let 0 < γ < 1 be an order of fractional derivative, then the central difference scheme has

second-order accuracy, the L1 scheme has (2− γ) order accuracy, and the L1− 2 scheme
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has (3− γ) order accuracy. We will study these schemes in detail in the upcoming chapters.

The L1 formula is constructed through a sequentially linear interpolation estimate for the

integrand function for each very small interval. L1−2 scheme is a modification of L1 scheme

(see [64] for more details).

1.7 Quasilinearization

The quasilinearization approach is a generalized Newton-Raphson technique for functional

equations. If there is convergence at all, it converges quadratically to the exact solution, and it

has monotone convergence. Let us consider nonlinear second-order differential the equation

is as follows:

u′′(x) = f(x, u(x)), a ≤ x ≤ b (1.7.1)

with the boundary conditions

u(a) = α, u(b) = β.

Choose an initial approximation u0(x) of the function u(x), it may be u0(x) = α, for

a ≤ x ≤ b. Using the Taylor series, the function f can now be expanded around the function

u0(x). Consider

f(x, u(x)) ≈ f(x, u0(x)) + (u(x)− u0(x))fu(x, u0(x)), (1.7.2)

where second and higher-order terms are ignored. Using (1.7.2) in (1.7.1), we get

u′′(x) = f(x, u0(x)) + (u(x)− u0(x))fu(x, u0(x)). (1.7.3)

Solving (1.7.3) for u(x), call it u1(x) and expand (1.7.1) about u1(x)

u′′(x) = f(x, u1(x)) + (u(x)− u1(x))fu(x, u1(x)), (1.7.4)
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we obtain a third approximation for u(x), call it u2(x). Assume the problem converges and

continue the procedure to obtain the desired accuracy. The recurrence relationship is of the

form

u′′r+1(x) = f(x, ur(x)) + (ur+1(x)− ur(x))fu(x, ur(x)), (1.7.5)

where ur(x) is known and can be used for obtaining ur+1(x). Equation (1.7.5) is always a

linear differential equation and boundary conditions are

ur+1(a) = α, ur+1(b) = β. (1.7.6)

Now consider the nonlinear second-order differential equation of the form

u′′(x) = f(x, u(x), u′(x)). (1.7.7)

Here, the first derivative, u′(x) can be considered as another function and (1.7.7) can analo-

gously be expressed as

u′′r+1(x) =f(x, ur(x), u
′
r(x)) + (ur+1(x)− ur(x))fu(x, ur(x), u

′
r(x))

+ (u′r+1(x)− u′r(x))fu′(x, ur(x), u
′
r(x)

with the same boundary conditions

ur+1(a) = α, ur+1(b) = β,

where fu is differentiation of f with respect to u.

Similarly, one can follow the same procedure for higher-order nonlinear differential

equations to obtain the recurrence relation.

1.8 Numerical Methods to solve FPDEs
In several scientific and technical domains, numerical techniques for solving fractional

partial differential equations (FPDEs) are becoming increasingly significant. Because FPDEs
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incorporate non-integer-order derivatives, they are more challenging to solve than ordinary

PDEs. Here are some of the most common numerical approaches for solving FPDEs:

• Finite Difference Method (FDM): FDM is a simple and frequently used discretization

technique for FPDEs. It makes use of finite difference approximations to approximate

fractional derivatives. The fractional derivatives of Caputo or Riemann-Liouville can be

discretized and solved using the usual time-stepping methods. For Riemann-Liouville

derivatives, the Grünwald-Letnikov discretization is widely utilized.

• Fractional Finite Element Method (FEM): Another prominent approach for resolving

FPDEs is FEM. It entails breaking down the issue domain into elements and building an

algebraic equation system. Traditional FEM is adapted to handle fractional derivatives,

utilizing weak formulations and variational techniques in fractional FEM.

• Fractional Finite Volume Method (FVM): FVM is a method for discretizing FPDEs

that divides the domain into control volumes. Fractional FVM, like FEM, introduces

fractional derivatives into the balance equations.

• Method of Lines (MOL): MOL is a technique for discretizing spatial derivatives,

resulting in an ordinary differential equation (ODE) system. The temporal evolution of

the issue can then be handled using numerical ODE solvers.

• Spectral Methods: The solution is expanded regarding orthogonal basis functions,

such as Chebyshev or Legendre polynomials. In the spectrum domain, fractional

derivatives may be determined analytically, which may be more efficient for particular

tasks.

• Laplace Transform Method: This approach transforms the FPDE into a system of

ODE in the Laplace domain. After solving the issue in the Laplace domain, the answer

in the time domain is obtained using an inverse Laplace transform.

• Adomian Decomposition Method (ADM): ADM is a series-based, non-iterative

approach for solving FPDEs. It decomposes the issue into components and iteratively

finds approximations for each component.
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• Numerical Inversion of Laplace Transforms: Some approaches concentrate on

efficiently inverting Laplace transforms, a critical step in solving FPDEs. The Gaver-

Stehfest algorithm, as well as other numerical inversion methods, can be employed.

• Fractional Integral Equations: Some FPDEs may be turned into fractional integral

equations, which can then be solved using different integral equation numerical methods,

such as the method of moments.

• Meshless Methods: Meshless approaches like the Radial Basis Function (RBF) do not

need a set grid or mesh. By including fractional derivatives, they may be used to solve

FPDEs.

• Finite Difference Time-Domain (FDTD) Method: The FDTD approach in electro-

magnetic simulations may be expanded to accommodate fractional derivatives to tackle

fractional electromagnetic field issues.

The selection of the preferred approach is based on the specific characteristics of the FPDE,

the field of application, and the computational resources at hand. When deciding on the

best solution for a specific situation, examining various methods’ accuracy, stability, and

efficiency is critical. Additionally, software libraries and packages may be provided to aid in

implementing these approaches.

Approximate solutions to fractional partial differential equations have been presented

using numerical approaches. Many numerical methods have been established in the literature

to solve fractional partial differential equations. Fourier techniques, energy estimates, the

matrix eigenvalue approach, and mathematical induction are some of the conceptually analyt-

ical methods. The prominent numerical approaches for solving fractional partial differential

equations are finite difference methods and series approximation methods. In [65], Wang

devised a fourth-order compact finite difference approach for solving convection-diffusion

wave equations with variable coefficients. Using the explicit finite difference approach, Yuste

and Acedo [66] investigated the fractional diffusion equation. See also [67, 68]. The finite

element method is also useful for solving fractional partial differential equations. It has been

discovered that while finite element techniques allow for high-order precision, they have a

17



Chapter 1

higher computational cost and depend more on mesh quality. Here are several articles that

use the finite element approach. To obtain a solution to the fractional Bloch-Torrey equation,

Dehghan and Abbaszadeh [69] employed finite difference techniques concerning temporal

discretization and the Galerkin finite element approach for spatial discretization. To examine

the multi-term time-fractional diffusion problem, Jin et al. [70] devised a numerical technique

based on the Galerkin finite element method. Jiang and Ma [71] devised a finite element

approach of high order for solving time fractional partial differential equations. For more

study, readers can see [72, 73].

The numerical methods listed below form the basis of this thesis and help investigate

further fractional-order partial differential equations.

• Tension spline collocation method

• Quintic B-spline collocation method

• Cubic B-spline collocation method

• The compact finite difference scheme

To examine the fractional diffusion problem, Baseri et al. [74] developed a collocation

approach. For the collocation approach, they used a rational Chebyshev function in the

temporal direction and shifted Chebyshev polynomials in the spatial direction. The authors

of [75] solved the fractional diffusion and diffusion-wave equations using the collocation

method using a cubic B-spline basis function. Nagy considers the time fractional nonlinear

Klein-Gordon equation in [76] using the Sinc-Chebyshev collocation method. Zhou and

Xu [77] investigated the time fractional diffusion-wave equation using the second kind of

Chebyshev wavelet collocation technique. Pirkhedri and Javadi [78] used the Sinc-Haar

collocation method to solve the time-fractional diffusion problem. The suggested approach is

highly successful because of its high computing speed and exponential convergence rate.

1.9 The thesis Aims and Objectives
We only studied the solution in one spatial dimension in this thesis, but this study suggests

developing numerical approaches for solving time-fractional PDEs. It will aid in developing
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more efficient (less computationally intensive) ways for approximating the Caputo fractional

derivatives while preserving accuracy. These approximation approaches will be coupled with

the various spatial discretization methods outlined in the preceding section to help solve

time-fractional PDEs more effectively. The benefits of such an approach are:

• The numerical approaches are more beneficial when the analytical technique is either

unavailable or hard to assess.

• It will aid in the development of more computationally efficient approaches as well as

the reduction of computing effort.

The objectives of this thesis are presented below and are based on numerical analysis for

linear and nonlinear fractional partial differential equations.

• To provide innovative, precise numerical techniques for solving linear and nonlinear

fractional partial differential equations.

• To look for a more efficient method of approximating fractional derivatives while

maintaining accuracy.

• To determine various numerical systems’ accuracy, convergence, and stability.

1.10 Overview of the Thesis
This thesis has been organized as follows: Chapter 2 suggests a second-order numerical

scheme for the time-fractional partial differential equations with a time delay. Chapter

3 gives a higher-order stable numerical approximation for the time-fractional nonlinear

Kuramoto-Sivashinsky equation based on quintic B-spline. Chapter 4 offers a collocation-

based numerical simulation of the fractional-order Allen-Cahn equation. Chapter 5 delivers a

high-order numerical technique for generalized time-fractional Fisher’s equation. Chapter 6

offered a numerical method for solving the fractional-order predator-prey model.

Remark 1.10.1. Throughout all Chapters, we take C as a positive generic constant that takes

different values at different places.

19





Chapter 2

A second-order numerical scheme for the

time-fractional partial differential

equations with a time delay

This work proposes a numerical scheme for a class of time-fractional convection-reaction-

diffusion problems with a time lag. The time-fractional derivative is considered in the Caputo

sense. The numerical method comprises the discretization technique given by Crank and

Nicolson in the temporal direction, and spline functions with a tension factor are used in

the spatial direction. Through the Von-Neumann stability analysis, the scheme is shown to

be conditionally stable. Moreover, a rigorous convergence analysis is presented through the

Fourier series. Two test problems are solved numerically to verify the effectiveness of the

proposed numerical scheme.

2.1 Literature survey

In contrast to partial differential equations (PDEs), the physical problems for which the evolu-

tion depends not only on the present state of the system but also on the history are modeled

R. Choudhary, S. Singh, D. Kumar, A second-order numerical scheme for the time-fractional partial

differential equations with a time delay, Comput. Appl. Math., 41 (2022), 114.
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by delay partial differential equations (DPDEs) and time-fractional delay partial differential

equations (TF-DPDEs). Often, in systems with subdiffusive processes, the future state is

determined by their history, and delay terms must be addressed despite the whole history

being considered by the fractional differential equations (FDEs). These equations frequently

arise in many areas of science and engineering, such as time to maturity and incubation

time, delayed feedback, time to transport, and the time lag for getting information. The

three well-known derivatives of fractional order are widely used in the literature, namely, the

Caputo derivative, the Riemann-Liouville derivative, and the Grünwald-Letnikov derivative.

However, recently, two new fractional derivatives, namely, the Atangana-Baleanu-Caputo

derivative [79] and the Caputo-Fabrizio derivative [80], have been introduced. For reference,

we define the Caputo and Riemann-Liouville derivatives as follows:

Fractional partial differential equations (FPDEs) are those where a fractional derivative

replaces the classical derivative. Because of the precise and powerful descriptions of a large

variety of natural phenomena, many mathematicians and scientists are analyzing FPDEs with

delay analytically as well as numerically [81–88]. The models containing the time delay

can be seen in the automatic control systems [89, 90], random walk [91], and modeling HIV

infection of CD4+ T -cells [81, 92, 93]. An extensive study of delay differential equations

(DDEs) in the context of ordinary differential equations (ODEs) can be seen in [94–98] and

the references therein. Furthermore, the analytical solutions, including the spectral methods

and the integral transform methods such as Laplace transforms, and Mellin transforms for

FPDEs, can be seen in [3, 99–103]. On the other hand, the DPDEs and TF-DPDEs are less

explored than DDEs and FPDEs.

Because the evolution of a dependent variable of TF-DPDEs at any time t not only depends

on its value at t − τ (for some time delay τ ) but also depends on all previous solutions. It

is a difficult task to solve TF-PDEs with delay effectively and accurately. However, some

analytical methods have been investigated to solve these problems. For instance, to obtain

the actual solution to the TF-DPDEs, Prakash et al. [104] proposed the invariant subspace

approach. For a detailed discussion on the asymptotic properties of the solution to DDEs,

the readers are referred to [105, 106] whereas the existence of solutions is presented in [107].

Moreover, the stability bounds on the solution for the class of fractional delay difference
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equations (FDDEs) can be found in [108–110]. For the finite-time stability of robotic systems

where a time delay appears in PDγ fractional control system, the readers are referred to

[89, 111]. As a consequence, we look for numerical methods for TF-DPDEs. Some numerical

methods have also been developed for these problems; for instance, for a numerical scheme for

space-fractional diffusion equations with a delay in time, the readers are referred to Hao et al.

[93]. They have used the Taylor series expansion to linearize the nonlinear term and weighted

shifted Grünwald-Letnikov formula to approximate the space-fractional derivative. Rihan

[112] extended the θ method to solve the TF-DPDEs of parabolic type in the Caputo sense.

To test the BIBO stability of the system of TF-DDEs, Hwang, and Cheng [110] presented an

effective numerical algorithm based on Cauchy’s integral theorem. Mohebbi [87] constructed

an efficient numerical method to solve the TF-DPDEs of convection-reaction-diffusion type

with a nonlinear source term. The Chebyshev spectral collocation method and second-order

finite difference approximations are used in spatial and temporal directions. Sakara et al.

[85] presented a homotopy perturbation method for nonlinear TF-DPDEs. Zhang et al. [84]

proposed a linearized compact finite difference method (FDM) for the semilinear TF-DPDEs.

The compact finite difference approximation is used to discretize the spatial derivative, and

the temporal derivative is discretized using the L1 approximation. Through rigorous analysis,

the method is shown as fourth-order convergent in space and of order (2− γ) in time.

In this work, we consider the following TF-PDE with a time lag:

C
0D

γ
t y(x, t)−

∂2y(x, t)

∂x2
+ b(x, t)

∂y(x, t)

∂x
+ c(x, t)y(x, t) = −d(x, t)y(x, t− τ) + f(x, t),

(2.1.1a)

for all (x, t) ∈ D ≡ Ω × Λ = (0, 1) × (0,T], with the following interval and boundary

conditions

y(x, t) = ψb(x, t), (x, t) ∈ [0, 1]× [−τ, 0], (2.1.1b)

y(0, t) = ψl(t), y(1, t) = ψr(t), t ∈ [0,T], (2.1.1c)

where the fractional derivative of order γ ∈ (0, 1) is estimated in the Caputo sense. A

hybrid scheme and a compact FDM have been investigated in [113, 114] for the classical

integer order DPDEs that is the simplified form of the equation (2.1.1) for γ = 1. Several
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numerical schemes have been developed (for γ = 2) when (2.1.1) is equivalent to the wave

equation with delay, see e.g. [86, 88, 115]. Du et al. [116] developed a high-order difference

method for the fractional diffusion-wave equation associated with γ ∈ (1, 2) in (2.1.1) with

constant coefficients and without the convective term. Li et al. [117] investigates a linearized

FDM for the problem similar to (2.1.1) without the reaction term and non-linear source term.

First, the original problem is transformed into an equivalent semi-linear fractional delay

reaction-diffusion equation. Then, they used the central finite difference formula for the space

derivative and L1 approximation for the Caputo derivative. Finally, the inverse exponential

recovery method is used to obtain the numerical solution.

2.2 Discretization of the problem

2.2.1 The time semi-discretization

To discretize the time domain, we use an equidistant mesh. Let Λk
τ = {−τ = t−k < t−k+1 <

. . . < t−1 < t0 = 0} be the partition of [−τ, 0] divided into k sub-intervals using step size

Δt = τ/k. Then, using the mesh size Δt, we discretize [0,T] into Mt = T/Δt sub-intervals

and denote by ΛMt , the collection of all nodal points of the domain [0,T]. Then

ΛMt = {0 = t0 < t1 < . . . < tk = τ < . . . < tMt−1 < tMt = T}.

Now we semi-discretize the problem (2.1.1) on ΛMt as

−
∂2ỹ(x, tn+ 1

2
)

∂x2
+ b(x, tn+ 1

2
)
∂ỹ(x, tn+ 1

2
)

∂x
+ c(x, tn+ 1

2
)ỹ(x, tn+ 1

2
) = −d(x, tn+ 1

2
)ỹ(x, tn+ 1

2
−k)

+ f(x, tn+ 1
2
)−

∂γ ỹ(x, tn+ 1
2
)

∂tγ
,

(2.2.1a)

for n = 1, 2, . . . ,Mt − 1 with

ỹ(x, tn+1) = ψb(x, tn+1), for (x, tn+1) ∈ [0, 1]× Λk
τ , (2.2.1b)

ỹ(0, tn+1) = ψl(tn+1), ỹ(1, tn+1) = ψr(tn+1), tn+1 ∈ ΛMt , (2.2.1c)
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where ỹ represents the approximate solution to the problem (2.1.1). We approximate

∂γ ỹ(x,tn+1/2)

∂tγ
at (x, tn+1/2) using the following approach:

∂γ ỹ(x, tn+1/2)

∂tγ
=

1

Γ(1− γ)

∫ tn+1/2

0

ỹt(x, tn+1/2)(tn+1/2 − s)−γds

=
1

Γ(1− γ)

∫ tn

0

ỹt(x, tn+1/2)

((
n+

1

2

)
Δt− s

)−γ

ds

+
1

Γ(1− γ)

∫ tn+1/2

tn

[
ỹn+1 − ỹn

Δt
+O((Δt)2)

]((
n+

1

2

)
Δt− s

)−γ

ds

=
1

Γ(1− γ)

n∑
i=1

∫ iΔt

(i−1)Δt

[
ỹi − ỹi−1

Δt
+O((Δt)2)

]((
n+

1

2

)
Δt− s

)−γ

ds

+
1

Γ(1− γ)

∫ (n+1/2)Δt

nΔt

[
ỹn+1 − ỹn

Δt
+O((Δt)2)

]((
n+

1

2

)
Δt− s

)−γ

ds.

=
1

Γ(1− γ)

n∑
i=1

(
ỹi − ỹi−1

Δt

)∫ iΔt

(i−1)Δt

((
n+

1

2

)
Δt− s

)−γ

ds

+
O((Δt)2)

Γ(1− γ)

n∑
i=1

∫ iΔt

(i−1)Δt

((
n+

1

2

)
Δt− s

)−γ

ds

+
1

Γ(1− γ)

∫ (n+1/2)Δt

nΔt

[
ỹn+1 − ỹn

Δt
+O((Δt)2)

]((
n+

1

2

)
Δt− s

)−γ

ds

=
1

Γ(1− γ)

1

(Δt)γ(1− γ)

n∑
i=1

[
ỹi − ỹi−1

] [(
n− i+

3

2

)1−γ

−
(
n− i+

1

2

)1−γ
]

+
1

Γ(1− γ)

1

(1− γ)

n∑
i=1

[(
n− i+

3

2

)1−γ

−
(
n− i+

1

2

)1−γ
]
O((Δt)3−γ)

+
1

Γ(1− γ)

1

(Δt)γ(1− γ)
(ỹn+1 − ỹn)

1

21−γ
+

1

Γ(1− γ)

1

(1− γ)

1

21−γ
O((Δt)3−γ).

Thus, we get

∂γ ỹ(x, tn+1/2)

∂tγ
=

1

Γ(2− γ)

1

(Δt)γ
(ỹn+1 − ỹn)

1

21−γ

+
1

Γ(2− γ)

1

(Δt)γ

n∑
i=1

[
ỹi − ỹi−1

] [(
n− i+

3

2

)1−γ

−
(
n− i+

1

2

)1−γ
]

+
1

Γ(2− γ)

n∑
i=1

[(
n− i+

3

2

)1−γ

−
(
n− i+

1

2

)1−γ
]
O((Δt)3−γ)

+
1

Γ(2− γ)

1

21−γ
O((Δt)3−γ). (2.2.2)
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Let σ = 1
Γ(2−γ)

1
(Δt)γ

, and wj =
(
j + 1

2

)1−γ −
(
j − 1

2

)1−γ
, so that

∑n1

j=1wj =
(
n1 +

1
2

)1−γ −(
1
2

)1−γ
. Substituting σ and wj into (2.2.2), we get

∂γ ỹ(x, tn+1/2)

∂tγ
= σ

[
w1ỹ

n +
n−1∑
i=1

(wn−i+1 − wn−i)ỹ
i − wnỹ

0 +
ỹn+1 − ỹn

21−γ

]
+R1 +R2,

where

R1 +R2 =
1

Γ(2− γ)

n∑
i=1

wn−i+1O((Δt)3−γ) +
1

Γ(2− γ)

1

21−γ
O((Δt)3−γ).

Let j = n− i+ 1, then

R1 +R2 =
1

Γ(2− γ)

[
n∑

j=1

wjO((Δt)3−γ) +
1

21−γ
O((Δt)3−γ)

]

=
1

Γ(2− γ)

[(
n+

1

2

)1−γ

−
(
1

2

)1−γ

+
1

21−γ

]
O((Δt)3−γ)

=
1

Γ(2− γ)

(
n+

1

2

)1−γ

O((Δt)3−γ)

=
1

Γ(2− γ)

(
tn
Δt

+
1

2

)1−γ

O((Δt)3−γ)

≤ C(Δt)2.

Thus, we have the following approximation at (x, tn+ 1
2
)

∂γ ỹ(x, tn+1/2)

∂tγ
= σ

[
w1ỹ

n +
n−1∑
i=1

(wn−i+1 − wn−i)ỹ
i − wnỹ

0 +
ỹn+1 − ỹn

21−γ

]
+O((Δt)2).

(2.2.3)

2.2.2 The spatial discretization

Let ΩNx = {0 = x0 < x1 < . . . < xNx−1 < xNx = 1} be the partition of [0, 1] divided into

Nx sub-intervals each of width Δx = 1
Nx

. Let the function S(x, t, δ) belongs to the class

C2[0, 1], which gives interpolation of y(x, t) at the mesh point (xm, tn), where δ is termed

as tension factor. As δ → 0 the function S(x, t, δ) is turned to be parametric cubic spline in

[0, 1]. Let Sn
m be an approximation of ỹnm obtained by the segment of the functions passing
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through the points (xm,Sn
m) and (xm+1,Sn

m+1). For δ > 0, Sπ(x, tn, δ) satisfies the following

differential equation in the sub-interval [xm, xm+1]

S ′′
π(x, tn, δ)− δSπ(x, tn, δ) =[S ′′

π(xm, tn, δ)− δSπ(xm, tn, δ)](xm+1 − x)/Δx

+ [S ′′
π(xm+1, tn, δ)− δSπ(xm+1, tn, δ)](x− xm)/Δx,

(2.2.4)

with the following interpolation conditions

Sπ(xm, tn, δ) = ỹnm, Sπ(xm+1, tn, δ) = ỹnm+1. (2.2.5)

The function derivative y′′(xm, tn) has the spline derivative approximation given by

S ′′
π(xm, tn, δ) = M(xm, tn) , S ′′

π(xm+1, tn, δ) = M(xm+1, tn). (2.2.6)

The solution of (2.2.4) with the interpolatory conditions (2.2.5) can be written as

Sπ(x, tn, δ) =
(Δx)2

ν2 sinh(ν)

[
Mn

m+1 sinh
ν(x− xm)

Δx
+Mn

m sinh
ν(xm+1 − x)

Δx

]
− (Δx)2

ν2

[
(x− xm)

Δx

(
Mn

m+1 −
ν2

(Δx)2
ỹnm+1

)
+

(xm+1 − x)

Δx

(
Mn

m − ν2

(Δx)2
ỹnm

)]
.

(2.2.7)

Rewrite the equation (2.2.7) as follows

Sπ(x, tn, δ) = μỹnm+1 + μỹnm + (Δx)2[g(μ)Mn
m+1 + g(μ)Mn

m]/ν
2, (2.2.8)

where μ = (x−xm)/Δx, μ = 1−μ, ν = Δx
√
δ, g(μ) = sinh(νμ)

sinh(ν)
−μ. Differentiating (2.2.8)

and let x→ xm to get

S ′
π(x

+
m, tn, δ) =

1

Δx
(ỹnm+1−ỹnm)+

Δx

ν2

[(
ν

sinh(ν)
− 1

)
Mn

m+1 +

(
1− ν cosh(ν)

sinh(ν)

)
Mn

m

]
.

(2.2.9)
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Similarly, we proceed for the interval [xm−1, xm], to obtain

S ′
π(x

−
m, tn, δ) =

1

Δx
(ỹnm−ỹnm−1)+

Δx

ν2

[(
1− ν

sinh(ν)

)
Mn

m−1 +

(
ν cosh(ν)

sinh(ν)
− 1

)
Mn

m

]
.

(2.2.10)

The first derivative of Sπ(x, tn, δ) is continuous at x = xm, so S ′
π(x

−
m, tn, δ) = S ′

π(x
+
m, tn, δ)

for m = 1, 2, . . . , Nx − 1, n = 1, 2, . . . ,Mt, which gives

αMn
m−1 + βMn

m + αMn
m+1 =

1

(Δx)2
[
ỹnm−1 − 2ỹnm + ỹnm+1

]
, (2.2.11)

where α = 1
ν2

(
1− ν

sinh(ν)

)
, β = 2

ν2

(
ν cosh(ν)
sinh(ν)

− 1
)

. Using (2.2.3), the equation (2.2.1a) (at

(xm, tn)) can be written as

−
(
(ỹxx)

n
m + (ỹxx)

n+1
m

2

)
+ bn+1/2

m

(
(ỹx)

n
m + (ỹx)

n+1
m

2

)
+ cn+1/2

m

(
ỹnm + ỹn+1

m

2

)
=− dn+1/2

m

(
ỹn−k
m + ỹn+1−k

m

2

)
+ fn+1/2

m − σ

(
ỹn+1
m − ỹnm
21−γ

)
−σ

[
w1ỹ

n
m +

n−1∑
i=1

(wn−i+1 − wn−i)ỹ
i
m − wnỹ

0
m

]
. (2.2.12)

Now, on replacing the second order derivative in (2.2.12) by the tension spline function

defined as

(yxx)
n
m = S ′′(xm, tn) = Mn

m +O((Δx)2), (2.2.13)

we get

Mn
m +Mn+1

m

2
=σ

[
w1ỹ

n
m +

n−1∑
i=1

(wn−i+1 − wn−i)ỹ
i
m − wnỹ

0
m +

ỹn+1
m − ỹnm
21−γ

]

+ bn+1/2
m

(
(ỹx)

n
m + (ỹx)

n+1
m

2

)
+ cn+1/2

m

(
ỹnm + ỹn+1

m

2

)
+ dn+1/2

m

(
ỹn−k
m + ỹn+1−k

m

2

)
− fn+1/2

m +Rn+1/2
m . (2.2.14)

Rewriting (2.2.11) at (n+ 1)-th time-level as

αMn+1
m−1 + βMn+1

m + αMn+1
m+1 =

1

(Δx)2
[
ỹn+1
m−1 − 2ỹn+1

m + ỹn+1
m+1

]
,m = 1, 2, . . . , Nx − 1,
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n = 0, 1, . . . ,Mt − 1.

(2.2.15)

On adding (2.2.11) and (2.2.15), we get

α

(Mn
m−1 +Mn+1

m−1

2

)
+β

(Mn
m +Mn+1

m

2

)
+ α

(Mn
m+1 +Mn+1

m+1

2

)
=

1

(Δx)2

[
ỹnm−1 + ỹn+1

m−1

2
− ỹnm − ỹn+1

m +
ỹnm+1 + ỹn+1

m+1

2

]
.

(2.2.16)

A use of (2.2.14) in (2.2.16) yields[
α

(
σ

21−γ
− b

n+1/2
m−1

2Δx
+
c
n+1/2
m−1

2

)
− βb

n+1/2
m

4Δx
− 1

2(Δx)2

]
ỹn+1
m−1 +

[
αb

n+1/2
m−1

2(Δx)
+ β

(
σ

21−γ
+
c
n+1/2
m

2

)

− αb
n+1/2
m+1

2Δx
+

1

(Δx)2

]
ỹn+1
m +

[
α

(
σ

21−γ
+
b
n+1/2
m+1

2Δx
+
c
n+1/2
m+1

2

)
+
βb

n+1/2
m

4Δx
− 1

2(Δx)2

]
ỹn+1
m+1

=

[
α

(
σ

21−γ
+
b
n+1/2
m−1

2Δx
− c

n+1/2
m−1

2

)
+
βb

n+1/2
m

4Δx
+

1

2(Δx)2

]
ỹnm−1 +

[
− αb

n+1/2
m−1

2Δx

+ β

(
σ

21−γ
− c

n+1/2
m

2

)
+
αb

n+1/2
m+1

2Δx
− 1

(Δx)2

]
ỹnm +

[
α

(
σ

21−γ
− b

n+1/2
m+1

2Δx
− c

n+1/2
m+1

2

)

− βb
n+1/2
m

4Δx
+

1

2(Δx)2

]
ỹnm+1 − σw1

(
αỹnm−1 + βỹnm + αỹnm+1

)
+ σwn

(
αỹ0m−1 + βỹ0m + αỹ0m+1

)
− σ

n−1∑
q=1

(wn−q+1 − wn−q)
(
αỹqm−1 + βỹqm + αỹqm+1

)
− 1

2

[
αd

n+1/2
m−1 (ỹn+1−k

m−1 + ỹn−k
m−1)

+ βdn+1/2
m (ỹn+1−k

m + ỹn−k
m ) + αd

n+1/2
m+1 (ỹn+1−k

m+1 + ỹn−k
m+1)

]
+
(
αf

n+1/2
m−1 + βfn+1/2

m + αf
n+1/2
m+1

)
+ Tn+1/2

m , (2.2.17)

where T
n+1/2
m = αR

n+1/2
m−1 + βR

n+1/2
m + αR

n+1/2
m+1 . We assume that Y n

m is the approximate

solution of ỹnm and omitting the truncation error from (2.2.17), we find the following numerical

scheme for (2.1.1)[
α

(
σ

21−γ
− b

n+1/2
m−1

2Δx
+
c
n+1/2
m−1

2

)
− βb

n+1/2
m

4Δx
− 1

2(Δx)2

]
Y n+1
m−1 +

[
αb

n+1/2
m−1

2Δx
+ α

(
σ

21−γ
+
c
n+1/2
m

2

)
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− αb
n+1/2
m+1

2Δx
+

1

(Δx)2

]
Y n+1
m +

[
α

(
σ

21−γ
+
b
n+1/2
m+1

2Δx
+
c
n+1/2
m+1

2

)
+
βb

n+1/2
m

4Δx
− 1

2(Δx)2

]
Y n+1
m+1

=

[
α

(
σ

21−γ
+
b
n+1/2
m−1

2Δx
− c

n+1/2
m−1

2

)
+
βb

n+1/2
m

4Δx
+

1

2(Δx)2

]
Y n
m−1 +

[
− αb

n+1/2
m−1

2Δx

+ β

(
σ

21−γ
− c

n+1/2
m

2

)
+
αb

n+1/2
m+1

2Δx
− 1

(Δx)2

]
Y n
m +

[
α

(
σ

21−γ
− b

n+1/2
m+1

2Δx
− c

n+1/2
m+1

2

)

− βb
n+1/2
m

4Δx
+

1

2(Δx)2

]
Y n
m+1 − σw1

(
αY n

m−1 + βY n
m + αY n

m+1

)
+ σwn

(
αY 0

m−1 + βY 0
m + αY 0

m+1

)
− σ

n−1∑
q=1

(wn−q+1 − wn−q)
(
αY q

m−1 + βY q
m + αY q

m+1

)
− 1

2

[
αd

n+1/2
m−1 (Y n+1−k

m−1 + Y n−k
m−1) + βdn+1/2

m (Y n+1−k
m + Y n−k

m ) + αd
n+1/2
m+1 (Y n+1−k

m+1 + Y n−k
m+1)

]
+
(
αf

n+1/2
m−1 + βfn+1/2

m + αf
n+1/2
m+1

)
, m = 1, 2, . . . , Nx − 1, n = 0, 1, . . . ,Mt − 1,

(2.2.18a)

with the interval and boundary conditions

Y n
m = ψb(xm, tn), 0 ≤ m ≤ Nx, −k ≤ n ≤ 0, (2.2.18b)

Y n+1
0 = ψl(tn+1), Y n+1

Nx
= ψr(tn+1), 0 ≤ n ≤Mt − 1. (2.2.18c)

Let

E(m,n) = α

(
σ

21−γ
− b

n+1/2
m−1

2Δx
+
c
n+1/2
m−1

2

)
− βb

n+1/2
m

4Δx
− 1

2(Δx)2
,

F (m,n) =
αb

n+1/2
m−1

2Δx
+ β

(
σ

21−γ
+
c
n+1/2
m

2

)
− αb

n+1/2
m+1

2Δx
+

1

(Δx)2
,

G(m,n) = α

(
σ

21−γ
+
b
n+1/2
m+1

2Δx
+
c
n+1/2
m+1

2

)
+
βb

n+1/2
m

4Δx
− 1

2(Δx)2
, (2.2.19)

then we can write the system (2.2.18) in matrix form as

ACn+1 = Bn,
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with the coefficient matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F (1, n) G(1, n) 0

E(2, n) F (2, n) G(2, n)
. . .

. . .
. . .

. . .
. . .

. . .

E(Nx − 2, n) F (Nx − 2, n) G(Nx − 2, n)

0 E(Nx − 1, n) F (Nx − 1, n)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(Nx−1)×(Nx−1)

.

2.3 Local truncation error

To find the local truncation error T̂n
m of the proposed scheme, we replace Mn

m−1, Mn
m, and

Mn
m+1 by

∂2ỹnm−1

∂x2 ,
∂2ỹnm
∂x2 , and

∂2ỹnm+1

∂x2 , respectively in (2.2.11), to get

T̂n
m = α

∂2ỹnm−1

∂x2
+β

∂2ỹnm
∂x2

+α
∂2ỹnm+1

∂x2
− 1

(Δx)2
[
ỹnm−1 − 2ỹnm + ỹnm+1

]
+O((Δx)p), p ≥ 0.

Using Taylor series expansion for ỹnm−1 and ỹnm+1 in term of ỹnm and its derivatives, we get

T̂n
m = ((2α+β)−1)

∂2ỹnm
∂x2

+(Δx)2
(
α− 1

12

)
∂4ỹnm
∂x4

+(Δx)4
(

1

360
− α

12

)
∂6ỹnm
∂x6

+O((Δx)p).

(2.3.1)

It is clear from (2.3.1) that for suitable arbitrary values of α (α �= 1/12) and β such that

2α + β = 1, the value of p = 2 is 2. Now, from (2.2.12) the local truncation error R
n+1/2
m is

Rn+1/2
m =− σ

[
w1ỹ

n
m +

n−1∑
i=1

(wn−i+1 − wn−i)ỹ
i
m − wnỹ

0
m +

ỹn+1
m − ỹnm
21−γ

]

+ bn+1/2
m

(
(ỹx)

n
m + (ỹx)

n+1
m

2

)
+ cn+1/2

m

(
ỹnm + ỹn+1

m

2

)
− dn+1/2

m

(
ỹn−k
m + ỹn+1−k

m

2

)
+Mn+1/2

m + fn+1/2
m

= O((Δx)2 + (Δt)2).
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Thus, the local truncation error T
n+1/2
m in (2.2.17) is given by

Tn+1/2
m = αR

n+1/2
m−1 + βRn+1/2

m + αR
n+1/2
m+1

= −ασ
[
w1ỹ

n
m−1 +

n−1∑
i=1

(wn−i+1 − wn−i)ỹ
i
m−1 − wnỹ

0
m−1 +

ỹn+1
m−1 − ỹnm−1

21−γ

]

− βσ

[
w1ỹ

n
m +

n−1∑
i=1

(wn−i+1 − wn−i)ỹ
i
m − wnỹ

0
m +

ỹn+1
m − ỹnm
21−γ

]

− ασ

[
w1ỹ

n
m+1 +

n−1∑
i=1

(wn−i+1 − wn−i)ỹ
i
m+1 − wnỹ

0
m+1 +

ỹn+1
m+1 − ỹnm+1

21−γ

]

+ α

[
b
n+1/2
m−1

(
(ỹx)

n
m−1 + (ỹx)

n+1
m−1

2

)
+ c

n+1/2
m−1

(
ỹnm−1 + ỹn+1

m−1

2

)
− d

n+1/2
m−1

(
ỹn−k
m−1 + ỹn+1−k

m−1

2

)]
+ β

[
bn+1/2
m

(
(ỹx)

n
m + (ỹx)

n+1
m

2

)
+ cn+1/2

m

(
ỹnm + ỹn+1

m

2

)
− dn+1/2

m

(
ỹn−k
m + ỹn+1−k

m

2

)]
+ α

[
b
n+1/2
m+1

(
(ỹx)

n
m+1 + (ỹx)

n+1
m+1

2

)
+ c

n+1/2
m+1

(
ỹnm+1 + ỹn+1

m+1

2

)
− d

n+1/2
m+1

(
ỹn−k
m+1 + ỹn+1−k

m+1

2

)]
+
(
(αMn+1/2

m−1 + βMn+1/2
m + αMn+1/2

m+1

)
+
(
αf

n+1/2
m−1 + βfn+1/2

m + αf
n+1/2
m+1

)
= (2α + β)(O(Δx)2 +O(Δt)2)

≤ C((Δx)2 + (Δt)2). (2.3.2)

2.4 Stability analysis

In this section, we will discuss the stability of the numerical scheme (2.2.18) using the Von

Neumann stability method. We write the numerical scheme in the following form

E(m,n)Y n+1
m−1 + F (m,n)Y n+1

m +G(m,n)Y n+1
m+1 = E1(m,n)Y

n
m−1 + F1(m,n)Y

n
m

+G1(m,n)Y
n
m+1 − σw1

(
αY n

m−1 + βY n
m + αY n

m+1

)
+ σwn

(
αY 0

m−1 + βY 0
m + αY 0

m+1

)
− σ

n−1∑
q=1

(wn−q+1 − wn−q)
(
αY q

m−1 + βY q
m + αY q

m+1

)
− 1

2

[
αd

n+1/2
m−1 (Y n+1−k

m−1 + Y n−k
m−1)

+ βdn+1/2
m (Y n+1−k

m + Y n−k
m ) + αd

n+1/2
m+1 (Y n+1−k

m+1 + Y n−k
m+1)

]
+
(
αf

n+1/2
m−1 + βfn+1/2

m + αf
n+1/2
m+1

)
, m = 1, 2, . . . , Nx − 1, n = 0, 1, . . . ,Mt − 1,

(2.4.1)
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where

E1(m,n) = α

(
σ

21−γ
+
b
n+1/2
m−1

2Δx
− c

n+1/2
m−1

2

)
+
βb

n+1/2
m

4Δx
+

1

2(Δx)2
,

F1(m,n) = −αb
n+1/2
m−1

2Δx
+ β

(
σ

21−γ
− c

n+1/2
m

2

)
+
αb

n+1/2
m+1

2Δx
− 1

(Δx)2
,

G1(m,n) = α

(
σ

21−γ
− b

n+1/2
m+1

2Δx
− c

n+1/2
m+1

2

)
− βb

n+1/2
m

4Δx
+

1

2(Δx)2
.

Let Ŷ n
m be the approximate solution of the system (2.2.18) and ξnm = Y n

m − Ŷ n
m. The error

equation of (2.4.1) is

E(m,n)ξn+1
m−1 + F (m,n)ξn+1

m +G(m,n)ξn+1
m+1 = E1(m,n)ξ

n
m−1 + F1(m,n)ξ

n
m +G1(m,n)ξ

n
m+1

− σw1(αξ
n
m−1 + βξnm + αξnm+1) + σwn(αξ

0
m−1 + βξ0m + αξ0m+1)

− σ

n−1∑
q=1

(wn−q+1 − wn−q)
(
αξqm−1 + βξqm + αξqm+1

)
− 1

2

[
αd

n+1/2
m−1 (ξn+1−k

m−1 + ξn−k
m−1) + βdn+1/2

m (ξn+1−k
m + ξn−k

m ) + αd
n+1/2
m+1 (ξn+1−k

m+1 + ξn−k
m+1)

]
,

m = 1, 2, . . . , Nx − 1, n = 0, 1, . . . ,Mt − 1, (2.4.2)

along with the conditions

ξn0 = ξnNx
= 0, n = 0, 1, . . . ,Mt.

The grid functions

ξn(x) =

⎧⎪⎨⎪⎩
ξnm, xm − Δx

2
< x < xm + Δx

2
, m = 1, 2, . . . , Nx − 1,

0, 0 ≤ x ≤ Δx
2

or 1− Δx
2

≤ x ≤ 1,

have the following Fourier series expansion

ξn(x) =
∞∑

j=−∞
ζn(j)ei(2jπx), n = 0, 1, . . . ,Mt,
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where

ζn(j) =

∫ 1

0

ξn(x)e−i(2jπx)dx.

Using Parseval’s identity in L2−norm, we find

||ξn||22 =
Nx−1∑
m=1

Δx|ξnm|2 =
∫ 1

0

|ξn(x)|2dx =
∞∑

j=−∞
|ζn(j)|2.

According to the above analysis, we can assume that

ξnm = ζneiθmΔx,

where i =
√
−1 and θ is wave number, then from (2.4.2)

E(m,n)ζn+1eiθ(m−1)Δx + F (m,n)ζn+1eiθmΔx +G(m,n)ζn+1eiθ(m+1)Δx

= E1(m,n)ζ
neiθ(m−1)Δx + F1(m,n)ζ

neiθmΔx +G1(m,n)ζ
neiθ(m+1)Δx

− σw1

(
αζneiθ(m−1)Δx + βζneiθmΔx + αζneiθ(m+1)Δx

)
+ σwn

(
αζ0eiθ(m−1)Δx + βζ0eiθmΔx + αζ0eiθ(m+1)Δx

)
− σ

n−1∑
q=1

(wn−q+1 − wn−q)
(
αζqeiθ(m−1)Δx + βζqeiθmΔx + αζqeiθ(m+1)Δx

)
− 1

2

[
αd

n+1/2
m−1 (ζn+1−keiθ(m−1)Δx + ζn−keiθ(m−1)Δx) + βdn+1/2

m (ζn+1−keiθmΔx + ζn−keiθmΔx)
]

− 1

2
αd

n+1/2
m+1 (ζn+1−keiθ(m+1)Δx + ζn−keiθ(m+1)Δx). (2.4.3)

Dividing both sides by eiθmΔx, we obtain

ζn+1[E(m,n)e−iθΔx + F (m,n) +G(m,n)eiθΔx] = ζn
[
E1(m,n)e

−iθΔx + F1(m,n)

+G1(m,n)e
iθΔx

]
− σw1ζ

n
(
αe−iθΔx + β + αeiθΔx

)
+ σwnζ

0
(
αe−iθΔx + β + αeiθΔx

)
− σ

n−1∑
q=1

(wn−q+1 − wn−q)ζ
q
(
αe−iθΔx + β + αeiθΔx

)
− 1

2
(ζn+1−k + ζn−k)

(
αd

n+1/2
m−1 e−iθΔx + βdn+1/2

m − αd
n+1/2
m+1 eiθΔx

)
. (2.4.4)
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After simplification for n = 0, 1, . . . , k − 1, we get the following form

ζn+1 =

(
U1 − w1U

U2

)
ζn − U

U2

(
n−1∑
q=1

(wn−q+1 − wn−q)ζ
q + wnζ

0

)
, (2.4.5a)

and for n = k, k + 1, . . . ,Mt − 1, we have

ζn+1 =

(
U1 − w1U

U2

)
ζn − U

U2

(
n−1∑
q=1

(wn−q+1 − wn−q)ζ
q + wnζ

0

)

− 1

2U2

(ζn+1−k + ζn−k)
(
αd

n+1/2
m−1 e−iθΔx + βdn+1/2

m − αd
n+1/2
m+1 eiθΔx

)
, (2.4.5b)

where

U = σ(2α cos(θΔx) + β),

U1 = E1(m,n)e
−iθΔx + F1(m,n) +G1(m,n)e

iθΔx,

U2 = E(m,n)e−iθΔx + F (m,n) +G(m,n)eiθΔx.

For stability of numerical scheme (2.2.18), we prove that |ζn+1| ≤ |ζ0| by use of mathematical

induction. For n = 0, (2.4.5a) yields

|ζ1| =
∣∣∣∣(U1 − w1U

U2

)
ζ0
∣∣∣∣

=

∣∣∣∣∣(2α cos(θΔx) + β)
(

σ
21−γ − σw1

)
+ (1− cos(θΔx))(−X1)−X2 − iX3 sin(θΔx)

(2α cos(θΔx) + β)
(

σ
21−γ

)
+ (1− cos(θΔx))(X1) +X2 + iX3 sin(θΔx)

∣∣∣∣∣ |ζ0|
≤
∣∣(2α cos(θΔx) + β)

(
σ

21−γ − σw1

)
+ (1− cos(θΔx))(−X1)−X2

∣∣+X3 sin(θΔx)∣∣(2α cos(θΔx) + β)
(

σ
21−γ

)
+ (1− cos(θΔx))(X1) +X2 + iX3 sin(θΔx)

∣∣ |ζ0|

= R|ζ0|,

where

X1 =
1

(Δx)2
+

α

2Δx
b
1/2
m−1 −

α

2Δx
b
1/2
m+1,

X2 =
β

2
c1/2m +

α cos(θΔx)

2
(c

1/2
m−1 + c

1/2
m+1),
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X3 =
β

2Δx
b1/2m +

α

2Δx
b
1/2
m−1 +

α

2Δx
b
1/2
m+1 −

α

2
c
1/2
m−1 +

α

2
c
1/2
m+1,

R =

∣∣(2α cos(θΔx) + β)
(

σ
21−γ − σw1

)
− (1− cos(θΔx))X1 −X2

∣∣+X3 sin(θΔx)∣∣(2α cos(θΔx) + β)
(

σ
21−γ

)
+ (1− cos(θΔx))X1 +X2 + iX3 sin(θΔx)

∣∣ .

To show that R ≤ 1, we consider two cases.

Case 1. If (2α cos(θΔx)+β)
(

σ
21−γ − σw1

)
− (1−cos(θΔx))X1−X2 ≥ 0. Then R ≤ 1

gives,∣∣(2α cos(θΔx) + β)
(

σ
21−γ − σw1

)
− (1− cos(θΔx))X1 −X2

∣∣+X3 sin(θΔx)∣∣(2α cos(θΔx) + β)
(

σ
21−γ

)
+ (1− cos(θΔx))X1 +X2 + iX3 sin(θΔx)

∣∣ ≤ 1,

which gives

(2α cos(θΔx) + β)
( σ

21−γ
− σw1

)
− (1− cos(θΔx))X1 −X2

≤ (2α cos(θΔx) + β)
( σ

21−γ

)
+ (1− cos(θΔx))X1 +X2,

if and only if

(2α cos(θΔx) + β) (σw1) + 2(1− cos(θΔx))X1 + 2X2 ≥ 0,

which is true for all θ and Δx.

Case 2. If (2α cos(θΔx)+β)
(

σ
21−γ − σw1

)
− (1−cos(θΔx))X1−X2 ≤ 0. Then R ≤ 1

gives∣∣(2α cos(θΔx) + β)
(

σ
21−γ − σw1

)
− (1− cos(θΔx))X1 −X2

∣∣+X3 sin(θΔx)∣∣(2α cos(θΔx) + β)
(

σ
21−γ

)
+ (1− cos(θΔx))X1 +X2 + iX3 sin(θΔx)

∣∣ ≤ 1,

which gives

−(2α cos(θΔx) + β)
( σ

21−γ
− σw1

)
+ (1− cos(θΔx))X1 +X2

≤ (2α cos(θΔx) + β)
( σ

21−γ

)
+ (1− cos(θΔx))X1 +X2,
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which conclude that w1 ≤ 2
21−γ , true for all values of γ. Now we assume that

|ζj| ≤ |ζ0|, for j = 2, 3, . . . , n. (2.4.6)

We will prove that (2.4.6) holds for j = n+ 1. The equation (2.4.5a) yields

|ζn+1| ≤
( |U1 − w1U |+ w1|U |

|U2|

)
|ζ0|

=

∣∣∣∣∣(2α cos(θΔx) + β)
(

σ
21−γ − σw1

)
− (1− cos(θΔx))X1 −X2 − iX3 sin(θΔx)

(2α cos(θΔx) + β)
(

σ
21−γ

)
+ (1− cos(θΔx))X1 +X2 + iX3 sin(θΔx)

∣∣∣∣∣ |ζ0|
+

σw1(2α cos(θΔx) + β)∣∣(2α cos(θΔx) + β)
(

σ
21−γ

)
+ (1− cos(θΔx))X1 +X2 + iX3 sin(θΔx)

∣∣ |ζ0|
≤
∣∣(2α cos(θΔx) + β)

(
σ

21−γ − σw1

)
− (1− cos(θΔx))X1 −X2

∣∣+X3 sin(θΔx)∣∣(2α cos(θΔx) + β)
(

σ
21−γ

)
+ (1− cos(θΔx))X1 +X2 + iX3 sin(θΔx)

∣∣ |ζ0|

+
σw1(2α cos(θΔx) + β)∣∣(2α cos(θΔx) + β)

(
σ

21−γ

)
+ (1− cos(θΔx))X1 +X2 + iX3 sin(θΔx)

∣∣ |ζ0|.
Again, there arise two cases.

Case 1. If (2α cos(θΔx) + β)
(

σ
21−γ − σw1

)
− (1− cos(θΔx))X1 −X2 ≥ 0, then

|ζn+1| ≤ (2α cos(θΔx) + β)
(

σ
21−γ

)
− (1− cos(θΔx))X1 −X2 +X3 sin(θΔx)∣∣(2α cos(θΔx) + β)

(
σ

21−γ

)
+ (1− cos(θΔx))X1 +X2 + iX3 sin(θΔx)

∣∣ |ζ0|
≤ |ζ0|.

Case 2. If (2α cos(θΔx) + β)
(

σ
21−γ − σw1

)
− (1− cos(θΔx))X1 −X2 ≤ 0, then

|ζn+1| ≤ −(2α cos(θΔx) + β)
(

σ
21−γ − 2σw1

)
+ (1− cos(θΔx))X1 +X2 +X3 sin(θΔx)∣∣(2α cos(θΔx) + β)

(
σ

21−γ

)
+ (1− cos(θΔx))X1 +X2 + iX3 sin(θΔx)

∣∣ |ζ0|.

Now for |ζn+1| ≤ |ζ0|, we have

−(2α cos(θΔx) + β)
(

σ
21−γ − 2σw1

)
+ (1− cos(θΔx))X1 +X2 +X3 sin(θΔx)∣∣(2α cos(θΔx) + β)

(
σ

21−γ

)
+ (1− cos(θΔx))X1 +X2 + iX3 sin(θΔx)

∣∣ ≤ 1,
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that gives

−(2α cos(θΔx) + β)
( σ

21−γ
− 2σw1

)
+ (1− cos(θΔx))X1 +X2

≤ (2α cos(θΔx) + β)
( σ

21−γ

)
+ (1− cos(θΔx))X1 +X2.

Last inequality holds true when 1
21−γ ≥ w1 or 3γ ≥ 3

2
. Now for n = k, k+1, . . . ,Mt − 1, the

equation (2.4.5b) becomes

|ζn+1| ≤
(
|U1 − w1U |+ w1|U |+ |αdn+1/2

m−1 e−iθΔx + βd
n+1/2
m − αd

n+1/2
m+1 eiθΔx|

|U2|

)
|ζ0|

=

∣∣∣∣∣(2α cos(θΔx) + β)
(

σ
21−γ − σw1

)
− (1− cos(θΔx))X1 −X2 − iX3 sin(θΔx)

(2α cos(θΔx) + β)
(

σ
21−γ

)
+ (1− cos(θΔx))X1 +X2 + iX3 sin(θΔx)

∣∣∣∣∣ |ζ0|
+

σw1(2α cos(θΔx) + β) + |αdn+1/2
m−1 e−iθΔx + βd

n+1/2
m − αd

n+1/2
m+1 eiθΔx|∣∣(2α cos(θΔx) + β)

(
σ

21−γ

)
+ (1− cos(θΔx))X1 +X2 + iX3 sin(θΔx)

∣∣ |ζ0|.
It is clear from previous analysis and mathematical induction that as Δx,Δt→ 0, |ζn+1| ≤
|ζ0| for each n = 0, 1, . . . ,Mt − 1. Hence, the numerical scheme (2.2.18) is conditionally

stable with the condition 3γ ≥ 3
2
.

2.5 convergence analysis

To prove the convergence of the numerical scheme (2.2.18), we assume

En
m = ỹnm − Y n

m, m = 0, 1, . . . , Nx, n = 0, 1, . . . ,Mt. (2.5.1)

From (2.2.17) and (2.2.18), we obtain

E(m,n)En+1
m−1 + F (m,n)En+1

m +G(m,n)En+1
m+1 = E1(m,n)E

n
m−1 + F1(m,n)E

n
m

+G1(m,n)E
n
m+1 − σw1

(
αEn

m−1 + βEn
m + αEn

m+1

)
+ σwn

(
αE0

m−1 + βE0
m + αE0

m+1

)
− σ

n−1∑
q=1

(wn−q+1 − wn−q)
(
αEq

m−1 + βEq
m + αEq

m+1

)
− 1

2

[
αd

n+1/2
m−1 (En+1−k

m−1 + En−k
m−1) + βdn+1/2

m (En+1−k
m + En−k

m ) + αd
n+1/2
m+1 (En+1−k

m+1 + En−k
m+1)

]
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+
(
αR

n+1/2
m−1 + βRn+1/2

m + αR
n+1/2
m+1

)
, (2.5.2)

along with the conditions

En
0 = En

Nx
= 0, andE0

m = 0,

where

|Rn+1/2
m | ≤ CTn+1/2

m ≤ C((Δx)2 + (Δt)2). (2.5.3)

The grid functions

En(x) =

⎧⎪⎨⎪⎩
En

m, xm − Δx
2
< x < xm + Δx

2
, m = 1, 2, . . . , Nx − 1,

0, 0 ≤ x ≤ Δx
2

or 1− Δx
2

≤ x ≤ 1,

and

Rn+1/2(x) =

⎧⎪⎨⎪⎩
R

n+1/2
m , xm − Δx

2
< x < xm + Δx

2
, m = 1, 2, . . . , Nx − 1,

0, 0 ≤ x ≤ Δx
2

or 1− Δx
2

≤ x ≤ 1,

have the following Fourier series expansions

En(x) =
∞∑

j=−∞
χn(j)ei(2jπx), n = 0, 1, . . . ,Mt,

and

Rn+1/2(x) =
∞∑

j=−∞
rn+1/2(j)ei(2jπx), n = 0, 1, . . . ,Mt,

respectively, where

χn(j) =

∫ 1

0

En(x)e−i(2jπx)dx,

and

rn+1/2(j) =

∫ 1

0

Rn+1/2(x)e−i(2jπx)dx.
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Using Parseval’s identity in L2−norm, we find

||En||22 =
Nx−1∑
m=1

Δx|En
m|2 =

∫ 1

0

|En(x)|2dx =
∞∑

j=−∞
|χn(j)|2, (2.5.4)

and

||Rn+1/2||22 =
Nx−1∑
m=1

Δx|Rn+1/2
m |2 =

∫ 1

0

|Rn+1/2(x)|2dx =
∞∑

j=−∞
|rn+1/2(j)|2. (2.5.5)

Now, we assume that

En
m = χneiθmΔx, (2.5.6)

and

Rn+1/2
m = rn+1/2eiθmΔx, (2.5.7)

where θ = 2πj. Using equations (2.5.2) and (2.5.6) in (2.5.7) for n = 0, 1, . . . , k − 1, we

have

χn+1 =

(
U1 − w1U

U2

)
χn − U

U2

(
n−1∑
q=1

(wn−q+1 − wn−q)χ
q + wnχ

0

)
+
Urn+1/2

σU2

, (2.5.8a)

and for n = k, k + 1, . . . ,Mt − 1, we have

χn+1 =

(
U1 − w1U

U2

)
χn − U

U2

(
n−1∑
q=1

(wn−q+1 − wn−q)χ
q + wnχ

0

)

− 1

2U2

(χn+1−k + χn−k)
(
αd

n+1/2
m−1 e−iθΔx + βdn+1/2

m − αd
n+1/2
m+1 eiθΔx

)
+
Urn+1/2

σU2

.

(2.5.8b)

Proposition 2.5.1. There exist a positive constantC such that |χn+1| ≤ (1+CΔt)n+1|r1/2|, n =

0, 1, . . . ,Mt − 1.

Proof. Clearly χ0 = χ0(j) = 0 (as E0 = 0). From the convergence of the series on

the right-hand side of the equation (2.5.5), there exists a positive constant C such that
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|rn+1/2| ≤ CΔt|r1/2|, n = 0, 1, . . . ,Mt − 1. From (2.5.3) and (2.5.5), we get

||Rn+1/2||2 = C((Δx)2 + (Δt)2), n = 0, 1, . . . ,Mt − 1,

by the use of mathematical induction, for n = 0, we have

|χ1| =
∣∣∣∣∣ (2α cos(θ(Δx)) + β)r1/2

(2α cos(θ(Δx)) + β)
(

σ
2(1−γ)

)
+ (1− cos(θ(Δx)))X1 +X2 + iX3 sin(θ(Δx))

∣∣∣∣∣
≤ CΔt|r1/2| ≤ (1 + CΔt)|r1/2|.

Now assuming that

|χ℘| ≤ (1 + CΔt)℘|r1/2|, ℘ = 2, 3, . . . , n, (2.5.9)

we will prove that (2.5.9) is true for ℘ = n+ 1. Equation (2.5.8a) yields

|χn+1| ≤
( |U1 − w1U |+ w1|U |

|U2|

)
(1 + CΔt)n|r1/2|

+

∣∣∣∣∣ (2α cos(θΔx) + β)r1/2

(2α cos(θΔx) + β)
(

σ
21−γ

)
+ (1− cos(θΔx))X1 +X2 + iX3 sin(θΔx)

∣∣∣∣∣ ,
based on proof of stability, it can be easily proven that

|χn+1| ≤ (1 + CΔt)n+1|r1/2| forn = 0, 1, . . . , k − 1.

For n = k, k + 1, . . . ,Mt − 1, equation (2.5.8b) yields

|χn+1| ≤
(
|U1 − w1U |+ w1|U |+ |αdn+1/2

m−1 e−iθΔx + βd
n+1/2
m − αd

n+1/2
m+1 eiθΔx|

|U2|

)
(1 + CΔt)n|r1/2|

+

∣∣∣∣∣ (2α cos(θΔx) + β)r1/2

(2α cos(θΔx) + β)
(

σ
21−γ

)
+ (1− cos(θΔx))X1 +X2 + iX3 sin(θΔx)

∣∣∣∣∣ .
Similarly, as in the stability, we can prove that

|χn+1| ≤ (1 + CΔt)n+1|r1/2| forn = k, k − 1, . . . ,Mt − 1.
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Hence, by the mathematical induction we can say that |χn| ≤ (1 + CΔt)n|r1/2| forn =

1, 2, . . . ,Mt.

Theorem 2.5.1. The numerical scheme (2.2.18) is convergent and the solution satisfies

||ỹnm − Y n
m||2 ≤ C((Δx)2 + (Δt)2), m = 1, 2, . . . , Nx, n = 1, 2, . . . ,Mt,

where C is a positive constant independent of Δx and Δt.

Proof. From equations (2.5.4) and (2.5.5) and proposition (2.5.1), we obtain

||En||2 ≤ (1 + CΔt)n||R1/2||2 ≤ Ce(CnΔt)((Δx)2 + (Δt)2), n = 1, 2, . . . ,Mt,

then

||En||2 ≤ C((Δx)2 + (Δt)2), n = 1, 2, . . . ,Mt.

Thus, the numerical scheme (2.2.18) is second-order convergent.

2.6 Numerical Illustrations
In this section, the efficiency and effectiveness of the proposed technique are demonstrated

by implementing our numerical method on two test examples for the TF-DPDEs. The exact

solutions to these problems are not available, so we employ the double mesh principle to

determine the errors in L∞ and L2−norms. We also compute the corresponding orders of

convergence using definition 1.3.8. We consider the following TF-DPDEs with τ = 1 and

suitable interval and boundary conditions.

Example 2.6.1.

C
0D

γ
t y − yxx + (2− x2)yx + xy = y(x, t− τ) + 10t2e−t(x− x2), (x, t) ∈ (0, 1)× (0, 2],

ψb(x, t) = 0, ψl(t) = 0, ψr(t) = 0.

Example 2.6.2.

C
0D

γ
t y − yxx + exyx + (x+ 1)(t+ 1)y = y(x, t− τ) + 10t2e−t(2x− x2),
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(x, t) ∈ (0, 1)× (0, 2], ψb(x, t) = 0, ψl(t) = 0, ψr(t) = 0.

Replacing the γ order fractional derivative with the first-order integer derivative, we define

the following problem

yt − yxx + b(x, t)yx + c(x, t)y(x, t) = −d(x, t)y(x, t− τ) + f(x, t), (2.6.1)

where b(x, t), c(x, t), d(x, t), f(x, t), and the interval and boundary conditions are the same

as defined in Examples 2.6.1 and 2.6.2.

We have shown the errors in L2 and L∞ norms for different values of γ, in Tables 2.1 and

2.3, for Examples 2.6.1 and 2.6.2, respectively. From these tables, it can be observed that as

we increase Nx and Mt, the errors decrease and are in good agreement with the theoretical

results. It confirms our theoretical estimates that the suggested scheme is second-order

convergent. From Tables 2.2 and 2.4 one can observe that the errors in L2 and L∞ norms for

Examples 2.6.1 and 2.6.2 approach to the errors for the problem (2.6.1) as γ approaches 1.

In Figures 1 and 4, we portray the numerical solution profiles of Examples 2.6.1 and 2.6.2,

respectively, for different values of γ. Figures 2 and 5 exhibit the graphs of the numerical

solutions of Examples 2.6.1 and 2.6.2 at different time levels. Keeping γ fixed, Figures 3

(γ = 0.9) and 6 (γ = 0.8) show the decrease in the error when we increase the number of

points in both directions.

Remark 2.6.1. To draw the Figures 1, 2, 4, and 5, we have used Nx =Mt = 64.

2.7 Concluding Remarks
This chapter suggests a numerical method comprising a Crank-Nicolson scheme with tension

spline for TF-DPDEs. The Caputo fractional derivative is used to discretize the fractional-

order time derivative. Using the Fourier series analysis, the method is proved to be condi-

tionally stable. Moreover, through rigorous analysis, the method is shown as a second-order

convergent for arbitrary suitable choices of α (α �= 1/12) and β with 2α+β = 1. The method

is easy to apply to the problem (2.1.1) and can easily be manipulated in MATLAB software.

Numerical examples demonstrate the effectiveness and adaptability of the suggested method.
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Table 2.1: L2 and L∞ errors, and respective orders of convergence for Example 2.6.1

Number of grid points

γ Norms Nx=16
Mt=16

Nx=32
Mt=32

Nx=64
Mt=64

Nx=128
Mt=128

Nx=256
Mt=256

0.2 L2 1.3267e− 04 3.3053e− 05 8.2474e− 06 2.0583e− 06 5.1364e− 07
2.0050 2.0028 2.0025 2.0026

L∞ 1.8951e− 04 4.7303e− 05 1.1806e− 05 2.9472e− 06 7.3548e− 07
2.0023 2.0024 2.0021 2.0026

0.4 L2 1.3441e− 04 3.3361e− 05 8.2804e− 06 2.0516e− 06 5.0684e− 07
2.0104 2.0104 2.0130 2.0171

L∞ 1.9222e− 04 4.7819e− 05 1.1871e− 05 2.9427e− 06 7.2719e− 07
2.0071 2.0101 2.0122 2.0167

0.6 L2 1.3624e− 04 3.3525e− 05 8.2014e− 06 1.9837e− 06 4.7076e− 07
2.0228 2.0313 2.0477 2.0751

L∞ 1.9512e− 04 4.8151e− 05 1.1787e− 05 2.8537e− 06 6.7834e− 07
2.0187 2.0304 2.0463 2.0728

0.8 L2 1.3928e− 04 3.3929e− 05 8.1226e− 06 1.8761e− 06 5.2160e− 07
2.0374 2.0625 2.1142 1.8467

L∞ 1.9977e− 04 4.8835e− 05 1.1707e− 05 2.7112e− 06 7.4798e− 07
2.0324 2.0605 2.1104 1.8579

a γ = 0.6 b γ = 0.9

Figure 1: Numerical solution for Example 2.6.1 for different values of γ.
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Figure 2: Graph of numerical solution for Example 2.6.1 at different time levels.

a Nx = Mt = 64, γ = 0.9 b Nx = Mt = 128, γ = 0.9

Figure 3: Absolute error for Example 2.6.1.

Table 2.2: Comparison of L2 and L∞ errors between Example 2.6.1 and problem (2.6.1)

Number of grid points

γ Norms Nx=16
Mt=16

Nx=32
Mt=32

Nx=64
Mt=64

Nx=128
Mt=128

Nx=256
Mt=256

0.9 L2 1.4242e − 04 3.4795e − 05 8.3520e − 06 1.9282e − 06 5.2170e − 07
L∞ 2.0443e − 04 5.0111e − 05 1.2044e − 05 2.7879e − 06 7.4758e − 07

0.95 L2 1.4483e − 04 3.5645e − 05 8.6711e − 06 2.0539e − 06 4.5867e − 07
L∞ 2.0797e − 04 5.1331e − 05 1.2498e − 05 2.9655e − 06 6.6511e − 07

0.99 L2 1.4734e − 04 3.6640e − 05 9.0948e − 06 2.2434e − 06 5.4591e − 07
L∞ 2.1164e − 04 5.2747e − 05 1.3096e − 05 3.2325e − 06 7.8718e − 07

0.999 L2 1.4800e − 04 3.6912e − 05 9.2170e − 06 2.3008e − 06 5.7358e − 07
L∞ 2.1259e − 04 5.3133e − 05 1.3270e − 05 3.3134e − 06 8.2609e − 07

Error for (2.6.1) L2 1.4807e − 04 3.6944e − 05 9.2313e − 06 2.3075e − 06 5.7686e − 07
L∞ 2.1270e − 04 5.3178e − 05 1.3291e − 05 3.3230e − 06 8.3072e − 07
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a γ = 0.5 b γ = 0.75

Figure 4: Numerical solution for Example 2.6.2 for different values of γ.

Table 2.3: L2 and L∞ errors, and respective orders of convergence for Example 2.6.2

Number of grid points

γ Norms Nx=16
Mt=16

Nx=32
Mt=32

Nx=64
Mt=64

Nx=128
Mt=128

Nx=256
Mt=256

0.2 L2 2.9711e− 04 7.3928e− 05 1.8478e− 05 4.6247e− 06 1.1581e− 06
2.0068 2.0003 1.99984 1.9976

L∞ 5.0981e− 04 1.2674e− 04 3.1686e− 05 7.9297e− 06 1.9846e− 06
2.0081 2.0000 1.9985 1.9984

0.4 L2 3.0021e− 04 7.5004e− 05 1.8847e− 05 4.7512e− 06 1.2015e− 06
2.0009 1.9926 1.9880 1.9835

L∞ 5.1291e− 04 1.2785e− 04 3.2107e− 05 8.0725e− 06 2.0342e− 06
2.0043 1.9935 1.9918 1.9886

0.6 L2 3.0453e− 04 7.6757e− 05 1.9566e− 05 5.0474e− 06 1.3232e− 06
1.9882 1.9719 1.9547 1.9315

L∞ 5.1731e− 04 1.2970e− 04 3.2937e− 05 8.4153e− 06 2.1767e− 06
1.9959 1.9774 1.9686 1.9509

0.8 L2 3.0740e− 04 7.8291e− 05 2.0832e− 05 5.4693e− 06 1.6242e− 06
1.9732 1.9100 1.9294 1.7516

L∞ 5.1996e− 04 1.3144e− 04 3.3870e− 05 8.9166e− 06 2.4352e− 06
1.9840 1.9563 1.9254 1.8725
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Table 2.4: Comparison of L2 and L∞ errors between Example 2.6.2 and problem (2.6.1)

Number of grid points

γ Norms Nx=16
Mt=16

Nx=32
Mt=32

Nx=64
Mt=64

Nx=128
Mt=128

Nx=256
Mt=256

0.9 L2 3.0553e − 04 7.7633e − 05 2.0176e − 05 5.4251e − 06 1.5731e − 06
L∞ 5.1757e − 04 1.3058e − 04 3.3620e − 05 8.8625e − 06 2.4413e − 07

0.95 L2 3.0278e − 04 7.6379e − 05 1.9605e − 05 5.1654e − 06 1.4239e − 06
L∞ 5.1432e − 04 1.2904e − 04 3.2942e − 05 8.5509e − 06 2.2979e − 07

0.99 L2 2.9943e − 04 7.4708e − 05 1.8784e − 05 4.7614e − 06 1.2242e − 06
L∞ 5.1033e − 04 1.2713e − 04 3.1960e − 05 8.0674e − 06 2.0570e − 07

0.999 L2 2.9850e − 04 7.4230e − 05 1.8545e − 05 4.6416e − 06 1.1638e − 06
L∞ 5.0925e − 04 1.2658e − 04 3.1672e − 05 7.9235e − 06 1.9851e − 07

Error for (2.6.1) L2 2.9839e − 04 7.4175e − 05 1.8517e − 05 4.6276e − 06 1.1568e − 06
L∞ 5.0913e − 04 1.2651e − 04 3.1639e − 05 7.9067e − 06 1.9768e − 07

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Space

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

N
u

m
e

r
ic

a
l 

S
o

lu
ti

o
n

  t = 0.5

  t = 1.0

  t = 1.5

  t = 2.0

a γ = 0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Space

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

N
u

m
e

r
ic

a
l 

S
o

lu
ti

o
n

  t = 0.5

  t = 1.0

  t = 1.5

  t = 2.0

b γ = 0.8

Figure 5: Graph of numerical solution for Example 2.6.2 at different time levels.

a Nx = Mt = 64, γ = 0.8 b Nx = Mt = 128, γ = 0.8

Figure 6: Absolute error for Example 2.6.2.
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The proposed technique can be extended to the nonlinear TF-DPDEs and systems of FPDEs.
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A higher-order stable numerical

approximation for time-fractional

non-linear Kuramoto-Sivashinsky

equation based on quintic B-spline

This chapter deals with designing and analyzing a higher-order stable numerical approxi-

mation for the time fractional Kuramoto-Sivashinsky (K-S) equation, which is a fourth-order

non-linear equation. The fractional derivative of order γ ∈ (0, 1) present in the considered

problem is taken into Caputo sense and approximated using the L1 − 2 scheme. In the

space direction, the discretization process uses quintic B-spline functions to approximate the

derivatives and the problem’s solution. We have established unconditional stability results

and convergence of rate of accuracy O(h2 + k2), where h and k denote the space and time

step sizes, respectively. We have also noted that the linearized version of the K-S equation

leads the rate of accuracy to O(h2 + k3−γ). The present approach is also highly effective

for the time-fractional Burgers equation. We have shown that the current approach provides

R. Choudhary, D. Kumar, Numerical solution of linear time-fractional Kuramoto-Sivashinsky equation via

quintic B-splines, Int. J. Comput. Math. , (2023), 1–20.
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better accuracy than the L1 scheme with the same computational cost for several linear and

nonlinear problems with classical and fractional time derivatives.

3.1 Literature survey

Nonlinear fractional order problems with nonlocal structures are frequent in several fields

of engineering, physics, and applied mathematics. Analytical prospects of nonlinear prob-

lems like global wellposedness, local dynamics of periodic solutions, chaotic behavior, and

nonlinear stability require a strong hypothesis, which is necessary for qualitative analysis of

the problems. This is because highly accurate convergent approximations of the nonlocal

problems are only sometimes straightforward when the nonlinearity appears in space. One can

look into the complications involved in dealing with the existence and stability of symmetry-

breaking bifurcations of solitons of vortex-soliton solutions and fractional N soliton solutions

for nonlinear problems like fractional nonlinear Schrödinger equation, generalized time-

fractional Benjamin Bona Mohany Burgers’ equation, in the articles [118–121]. In the present

work, we deal with the approximations of a nonlinear evolutionary Kuramoto-Sivashinsky

(KS) equation which appears in the long waves from the interface between two viscous fluids,

in unstable drift waves inside plasmas [122], etc. This equation is closely linked with the

nonlinear KdV equation [123], which demonstrates the thin film dynamics down a wall,

moving from the vertical to the horizontal side [124].

KS equation is a fourth-order nonlinear time-dependent PDE involving a second-order

derivative that is accountable for instability at large scales, a fourth-order derivative in space

that leads to damping at small scales, and a nonlinear term that stabilizes the problem by

transferring energy from large to towards small scales. We consider the time derivative of

the KS equation to be nonlocal so that the global behavior of the solution can be detected

in practice. The present approach will also follow the standard KS equation where the time

derivative is not of fractional order.

In the present work, we consider the following nonlinear Kuramoto-Sivashinsky (KS)

equation with the Caputo type time fractional derivative of order γ ∈ (0, 1)

C
0D

γ
t u(s, t)+a1(s, t)u(s, t)us(s, t)+a2(s, t)uss(s, t)+a3(s, t)ussss(s, t) = g(s, t), (3.1.1a)
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defined on (0, 1)× (0, T ] with the set of boundary conditions (BCs)

⎧⎪⎨⎪⎩
u(0, t) = f0(t), u(1, t) = f1(t),

us(0, t) = 0, us(1, t) = 0,

(3.1.1b)

or ⎧⎪⎨⎪⎩
u(0, t) = f0(t), u(1, t) = f1(t),

uss(0, t) = 0, uss(1, t) = 0,

(3.1.1c)

for 0 < t ≤ T, and the initial condition (IC)

u(s, 0) = φ(s), 0 ≤ s ≤ 1. (3.1.1d)

a1(s, t), a2(s, t), and a3(s, t) are real-valued functions of s and t, a2(s, t) and a3(s, t) are

connected to the growth of linear stability and surface tension [125], respectively. We have

assumed that a1(s, t), a2(s, t), a3(s, t), f(s, t), φ0(s), f0(t), and f1(t) are sufficiently smooth

functions. When a3(s, t) is zero, the surface tension term is terminated, and the Equation

(3.1.1a) is reduced to the time-fractional Burger’s equation. For Burger’s equation involving

classical time derivative, solutions based on traveling waves are well defined. However, in the

absence of dispersive effects, complex dynamical behaviors like spatiotemporal chaos [126]

appear when the term a3(s, t) is present and is not large enough. The linear version of the

above time fractional problem will be of the following form

C
0D

γ
t u(s, t)+a1(s, t)us(s, t)+a2(s, t)uss(s, t)+a3(s, t)ussss(s, t) = g(s, t), (s, t) ∈ (0, 1)×(0, T ],

(3.1.2)

with the same set of BCs ((3.1.1b) or (3.1.1c)) and IC ((3.1.1d)).

Note from the definition (1.3.1), the problem (3.1.1a) is nonlocal as time evolves. The

approximation of this integral requires the storage of previous time information and hence

increases the computational cost. In addition, this problem will behave like the Navier Stokes

equation as the coefficient a3 becomes small. In this case, the solution will have a large

50



Chapter 3

front, varying in time (see, e.g., [127] for steady-state case). These time-varying solutions are

challenging to detect if one uses standard approaches—the time fractional KS equation has

all of these features in its dynamics. Correspondingly, the convergence of the approximations

of this problem requires stepwise mathematical analysis, and the numerical approximations

must detect those fronts, too.

In the present context, qualitative analysis, including the wellposedness of the KS equation,

is well established in the literature. One can look into [128] for the existence and uniqueness

of the modified versions of the KS equation. In the case of the ill-posed backward time KS

equation, a regularization approach is necessary [129] and can be adapted using the concepts

of control theory. The qualitative properties like the local dynamics of periodic traveling wave

solutions and nonlinear stabilities are analyzed in [123]. An asymptotic analysis of the KS

equation appearing in oscillatory core annular flow and the effect of background oscillations

on the steady-state version of the KS equation and its chaotic states, time-periodic states, and

nonlinear dispersive states are visible in [130]. Spectral and nonlinear modulational stabilities

for the periodic solutions of the KS equation based on small perturbations are established

in [131]. Spectral methods are also introduced for this equation in [132]. In the context of

the nonlinear stochastic KS equation, surface roughness due to the multiple time and length

scales can also be controlled periodically [133].

Numerical approximations of nonlinear problems are complicated and require linearization

techniques to transform them into a system of algebraic equations (see [134, 135]). One

can use low-order accurate upwind schemes when the time derivative is not of fractional

form. In this case, several numerical approximation methods are available in the context

of the KS equation. Spectral collocation methods based on Chebyshev approximations for

higher order derivatives can be seen in [136] where the lower order derivative terms are

approximated by integrating the higher order derivative approximations. Pseudo-spectral

methods [126] in space with implicit explicit backward difference formula in time can also

be used to obtain higher order accuracy for the KS equation. Collocation methods are also

used in space based on polynomial scaling functions in [137] where the authors have used

the Crank-Nicolson scheme [138] in time. Method of lines using radial basis functions are

also considered for computational experiments of generalized KS equation in [139]. Compact
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implicit schemes [140] on variable meshes are analyzed to deal with quasilinear biharmonic

equations and KS equations with the time derivative of nonfractional order. In the context of

linear problems, spline collocations are generally used to obtain higher-order approximations

in space. For several types of KS equations and reduced Burgers equations, it is observed

that the quintic B-spline [134] and exponential modified cubic B-spline [141], can detect

the original solution behavior experimentally. However, these methods deal with local time

behavior, and a rigorous mathematical convergence analysis behind the experiments is not

available here.

For fractional differential equations, the wellposedness properties and the smoothness of

the solution depend on the fractional derivative type and its order in the differential model.

This observation can be made from [142, 143] for Caputo-type fractional problems and in

[144] during approximations of variable order fractional systems. Fast numerical schemes for

stochastic differential equations with Riemann Liouville-type fractional derivatives are also

obtained in [145]. For time fractional problems, the reduced system of algebraic equations will

not be tridiagonal, leading to higher computational costs. This cost increases for the system of

problems, especially when the nonlinearity appears in space [127]. One can look into [146]

on how to reduce the computational cost for the system of problems. In this chapter, we aim

to obtain the space-time higher-order accurate approximations using a suitable linearization

approach that maintains the higher-order accuracy in space and time. We consider the quintic

B-spline approximation to obtain the higher order accuracy in space. Note that the definition

(1.3.1) involves a weakly singular kernel, in addition to a differential term, which can be

approximated by L1 discretization. This approximation leads to an order of accuracy between

(1, 2) if the fractional order γ lies in (0, 1). In this work, we have considered a L1 − 2

approximation of the time derivative, which leads to the order of accuracy between (2, 3) in

time when γ ∈ (0, 1).
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3.2 Construction of numerical approximation

3.2.1 Time semi-discretization

For this, we consider a partition ΩMt of the time interval [0, T ] satisfying ΩMt ≡ {0 = t0 <

t1 < · · · < tMt−1 < tMt = T} with equidistant points tj = jk, j = 0, 1, . . . ,Mt, where

k = T/Mt. For the rest of the numerical analysis, we consider the boundary condition (3.1.1b)

as the similar analysis follows for (3.1.1a), (3.1.1d) with the boundary condition (3.1.1c).

Notion of L1 − 2 scheme: We start the discussion by defining the widely used L1

discretization [2] on a non-uniform mesh to approximate the time-fractional derivative (1.3.1)

at t = tj :

C
0D

γ
t u(s, tj) =

1

Γ (1− γ)

j∑
z=1

u(x, tz)− u(x, tz−1)

tz − tz−1

∫ tz

tz−1

dζ

(tj − ζ)γ
+ rj,

where rj is the local truncation error (LTE). For the uniform mesh, the LTE is proved to be of

O(k2−γ) (see [147, 148] for details). Therefore, the L1 approximation for Equation (1.3.1) at

a nodal point tj on the time mesh ΩMt is

C
0D

γ
t u(s, tj) ≈

1

Γ (1− γ)

j∑
z=1

u(x, tz)− u(x, tz−1)

tz − tz−1

∫ tz

tz−1

dζ

(tj − ζ)γ
.

Now the sole idea of the L1 − 2 scheme consists of approximating the partial derivative
∂u(s, ζ)

∂ζ
in two different ways in different partitions. In the subinterval [t0, t1], the approx-

imation uses the theory of linear interpolation and, for [tz−1, tz], z ≥ 2, the derivatives are

approximated by quadratic interpolation. The process provides a modification in the L1

formula by adding a correction term with LTE of O(k3−γ) (see [64] for more details). By the

use of this L1− 2 scheme, the Caputo time-fractional derivative C
0D

γ
t u(s, t) is discretized as

C
0D

γ
t u(s, tj) =

k−γ

Γ (2− γ)

[
wγ

0u(s, tj)−
j−1∑
n=1

(wγ
j−n−1 − wγ

j−n)u(s, tn)− wγ
j−1u(s, t0)

]
+ rj1, j = 1, 2, . . . ,Mt, (3.2.1)
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where the truncation error rj1 is of O(k3−γ). The coefficients appear in the Equation (3.2.1)

are given by [64]

wγ
0 = 1, for j = 1, and for j ≥ 2, wγ

n =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
bγ0 + cγ0 , n = 0,

bγn + cγn − cγn−1, 1 ≤ n ≤ j − 2,

bγn − cγn−1, n = j − 1.

(3.2.2)

In Equation (3.2.2)

bγn = (n+ 1)1−γ − n1−γ, 0 ≤ n ≤ j − 1,

and

cγn =
1

2− γ
[(n+ 1)2−γ − n2−γ]− 1

2
[(n+ 1)1−γ + n1−γ], 0 ≤ n ≤ j − 2.

The following properties of the above constants will be used for stability analysis of the

discrete problem. For 0 < γ < 1, bγn and wγ
n (0 ≤ n ≤ j − 1, j ≥ 3) satisfy (see [64])

bγn > 0, n ≥ 0, bγn−1 > bγn, n ≥ 1,

wγ
0 > |wγ

1 |, wγ
n > 0, n �= 0,

wγ
2 ≥ wγ

3 ≥ · · · ≥ wγ
j−1, wγ

0 > wγ
2 , and

j−1∑
n=0

wγ
n = j1−γ.

Using Equation (3.2.1) and denoting u(s, tj) as uj(s), at t = tj for j = 1, 2, . . . ,Mt, the

semi-discrete form of given nonlinear KS equation (3.1.1a)-(3.1.1b) and (3.1.1d) can be

expressed as

k−γ

Γ (2− γ)

[
wγ

0u
j(s)−

j−1∑
n=1

(wγ
j−n−1 − wγ

j−n)u
n(s)− wγ

j−1u
0(s)

]
+ aj1(s)u

j(s)ujs(s)

+ aj2(s)u
j
ss(s) + aj3(s)u

j
ssss(s) = gj(s) +O(k3−γ), 0 < s < 1, (3.2.3a)

with the BCs

uj(0) = f j
0 , u

j(1) = f j
1 , (3.2.3b)
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and

ujs(0) = 0, ujs(1) = 0, (3.2.3c)

and the IC

u0(s) = φ(s), 0 ≤ s ≤ 1. (3.2.3d)

We consider linearization of the term uj(s)ujs(s) in Equation (3.2.3a) as follows [149]

(uj(s)ujs(s))
p+1 = (uj(s))p+1(uj−1

s (s))p + (uj−1(s))p(ujs(s))
p+1 − (uj−1(s)uj−1

s (s))p

p = 0, 1, 2, . . . , (3.2.4)

where p denotes the number of iterations. The truncation error of O(k2) will be obtained in

this process (see [149] for details). The initial guess (u)0 is chosen in such a manner that

the IC and BCs of (3.2.3) are satisfied. Putting this linearization from (3.2.4) in (3.2.3a) and

rearrangement of the terms, provides

[Λwγ
0 + aj1(s)(u

j−1
s (s))p](uj(s))p+1 + aj1(s)(u

j−1(s))p(ujs(s))
p+1 + aj2(s)(u

j
ss(s))

p+1

+ aj3(s)(u
j
ssss(s))

p+1 = gj(s) + Λ

[ j−1∑
n=1

(wγ
j−n−1 − wγ

j−n)(u
n(s))p+1 + wγ

j−1(u
0(s))p+1

]
+ aj1(s)(u

j−1(s)uj−1
s (s))p + Tk, 0 < s < 1, 0 < j ≤Mt. (3.2.5)

For simplicity, we denote (uj(s))p+1 and (uj(s))p by ũj(s) and u∗j(s), respectively. On

simplification of (3.2.5), we get

[Λwγ
0 + aj1(s)u

∗j−1
s (s)]ũj(s) + aj1(s)u

∗j−1(s)ũjs(s) + aj2(s)ũ
j
ss(s) + aj3(s)ũ

j
ssss(s)

= gj(s) + Λ

[ j−1∑
n=1

(wγ
j−n−1 − wγ

j−n)ũ
n(s) + wγ

j−1ũ
0(s)

]
+ aj1(s)u

∗j−1(s)u∗j−1
s (s) + Tk,

(3.2.6)

where Λ = k−γ

Γ (2−γ)
and Tk is truncation error given by

|Tk| ≤ Cũkmin{3−γ,2} = Cũk2, (3.2.7)
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where Cũ is a constant, which depends only on ũ. Equation (3.2.6) is the time semi-discretize

form of Equation (3.1.1a), which, at each time level, is an ordinary differential equation that

will be further discretized in a way so that higher order convergence is obtained in space for

the proposed spline collocation technique.

3.2.2 Spatial discretization

To discretize the Equation (3.2.6) with BCs (3.2.3b)-(3.2.3c) and IC (3.2.3d) in space, we use

a collocation approach by quintic B-spline basis functions. We create a uniform partition

ΠNs of space interval [0, 1] such that ΠNs = {0 = s0 < s1 < · · · < sNs−1 < sNs = 1} with

mesh points si = ih, i = 0, 1, . . . , Ns, and step size h = 1/Ns. First, we consider a space

S5,ΠNs = {r̂(s)|r̂(s) ∈ C4[0, 1]}. Using the results of [150], the basis for quintic B-spline

functions Bi(s) (−2 ≤ i ≤ Ns + 2) are given as

Bi(s) =
1

h5

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(s− si−3), s ∈ [si−3, si−2),

ϕ(s− si−3)− 6ϕ(s− si−2), s ∈ [si−2, si−1),

ϕ(s− si−3)− 6ϕ(s− si−2) + 15ϕ(s− si−1), s ∈ [si−1, si),

ϕ(si+3 − s)− 6ϕ(si+2 − s) + 15ϕ(si+1 − s), s ∈ [si, si+1),

ϕ(si+3 − s)− 6ϕ(si+2 − s), s ∈ [si+1, si+2),

ϕ(si+3 − s), s ∈ [si+2, si+3),

0, otherwise,

(3.2.8)

where ϕ(s) = s5. To describe the quintic B-spline functions, we suggest 5 points on each

side of the partition ΠNs as s−5 < s−4 < s−3 < s−2 < s−1 < s0 and sNs < sNs+1 < sNs+2 <

sNs+3 < sNs+4 < sNs+5. It is straightforward to check that {Bi(s)}Ns+2
i=−2 forms a basis on

ΠNs (see [151]). The values of each Bi(s) and its first four derivatives are provided in Table

3.1. We will employ these quintic B-spline functions to approximate ũssss, ũss, ũs and ũ at

the time level t = tj .

56



Chapter 3

Table 3.1: Values of Bi(s), B
′
i(s), B

′′
i (s), B

′′′
i (s) and B′′′′

i (s) at the node points

Nodal points

Functions si−2 si−1 si si+1 si+2 Otherwise

Bi(s) 1 26 66 26 1 0

B′
i(s)

5
h

50
h

0 −50
h

− 5
h

0

B′′
i (s)

20
h2

40
h2 −120

h2
40
h2

20
h2 0

B′′′
i (s)

60
h3 −120

h3 0 120
h3 − 60

h3 0

B′′′′
i (s) 120

h4 −480
h4

720
h4 −480

h4
120
h4 0

We desire an approximation of ũj(s) as

Ũ j(s) =
Ns+2∑
i=−2

CjiBi(s), (3.2.9)

where unknown scalars Cji ’s depend on time which will be evaluated from the BCs and the

collocation structure of the problem. Employing the quintic spline functions from (3.2.8) at

nodal points si, we find

Ũ j(si) = C
j
i+2 + 26Cji+1 + 66Cji + 26Cji−1 + C

j
i−2, (3.2.10a)

Ũ j
s (si) =

5

h
(Cji+2 + 10Cji+1 − 10Cji−1 − Cji−2), (3.2.10b)

Ũ j
ss(si) =

20

h2
(Cji+2 + 2Cji+1 − 6Cji + 2Cji−1 + C

j
i−2), (3.2.10c)

Ũ j
sss(si) =

60

h3
(Cji+2 − 2Cji+1 + 2Cji−1 − Cji−2), (3.2.10d)

Ũ j
ssss(si) =

120

h4
(Cji+2 − 4Cji+1 + 6Cji − 4Cji−1 + C

j
i−2). (3.2.10e)

Using the above expressions in the semi-discrete Equation (3.2.6), we get following system

of algebraic equations

(Pj
i −Qj

i +Rj
i + Sj

i )C
j
i−2 + (26Pj

i − 10Qj
i + 2Rj

i − 4Sj
i )C

j
i−1

+ (66Pj
i − 6Rj

i + 6Sj
i )C

j
i + (26Pj

i + 10Qj
i + 2Rj

i − 4Sj
i )C

j
i+1
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+ (Pj
i +Qj

i +Rj
i + Sj

i )C
j
i+2 = ℘j

i , i = 0, 1, . . . , Ns, j = 1, 2, . . . ,Mt, (3.2.11a)

where

Pj
i = Λwγ

0 + aj1(si)u
∗j−1
s (si), Qj

i =
5

h
aj1(si)u

∗j−1(si),

Rj
i =

20

h2
aj2(si), Sj

i =
120

h4
aj3(si),

℘j
i = gji + Λ

[ j−1∑
n=1

(wγ
j−n−1 − wγ

j−n)Ũn(si) + wγ
j−1Ũ0(si)

]
+ aj1(si)u

∗j−1(si)u
∗j−1
s (si).

The above notations are defined before (3.2.6). Now, in terms of quintic splines, the BCs

((3.2.3b) and (3.2.3c)) are expressed as

Ũ j(s0) = C
j
−2 + 26Cj−1 + 66Cj0 + 26Cj1 + C

j
2 = f j

0 , (3.2.11b)

Ũ j(sNs) = C
j
Ns−2 + 26CjNs−1 + 66CjNs

+ 26CjNs+1 + C
j
Ns+2 = f j

1 , (3.2.11c)

and

Ũ j
s (s0) = −Cj−2 − 10Cj−1 + 10Cj1 + C

j
2 = 0, (3.2.11d)

Ũ j
s (sNs) = −CjNs−2 − 10CjNs−1 + 10CjNs+1 + C

j
Ns+2 = 0. (3.2.11e)

On eliminating Cj−2, C
j
−1, C

j
Ns+2, and CjNs+1 from the system (3.2.11b)-(3.2.11e) and

substituting in (3.2.11a), we obtain an (Ns+1)× (Ns+1) penta-diagonal system of algebraic

equations

AX j = Zj, (3.2.12)
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where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 0 0 0

A21 A22 A23 A24 0 0

pj2 qj2 rj2 vj2 yj2 0
. . .

. . .
. . .

. . .
. . .

pji qji rji vji yji
. . .

. . .
. . .

. . .
. . .

0 pjNs−2 qjNs−2 rjNs−2 vjNs−2 yjNs−2

0 0 ANs,Ns−2 ANs,Ns−1 ANs,Ns ANs,Ns+1

0 0 0 ANs+1,Ns−1 ANs+1,Ns ANs+1,Ns+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(3.2.13)

X j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cj0

Cj1
...

Cji
...

CjNs−1

CjNs

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Zj =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8℘j
0 + (5pj0 − qj0/2)f

j
0

8℘j
1 − pj1f

j
0/2

...

℘j
i

...

8℘j
Ns−1 − yjNs−1f

j
1/2

8℘j
Ns

+ (5yjNs
− vjNs

/2)f j
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.2.14)

The elements of the matrix A are given by

A11 = 330pj0 − 33qj0 + 8rj0, A12 = 260pj0 − 18qj0 + 8vj0, A13 = 18pj0 − qj0 + 8yj0,

A21 = −33pj1 + 8qj1, A22 = −18pj1 + 8rj1, A23 = −pj1 + 8vj1, A24 = 8yj1,

ANs,Ns−2 = 8pjNs−1, ANs,Ns−1 = 8qjNs−1 − yjNs−1, ANs,Ns = 8rjNs−1 − 18yjNs−1,

ANs,Ns+1 = 8vjNs−1 − 33yjNs−1, ANs+1,Ns−1 = 8pjNs
− vjNs

+ 18yjNs
,

ANs+1,Ns = 8qjNs
− 18vjNs

+ 260yjNs
, ANs+1,Ns+1 = 8rjNs

− 33vjNs
+ 330yjNs

,

pji = Pj
i −Qj

i +Rj
i + Sj

i , q
j
i = 26Pj

i − 10Qj
i + 2Rj

i − 4Sj
i , r

j
i = 66Pj

i − 6Rj
i + 6Sj

i ,

vji = 26Pj
i + 10Qj

i + 2Rj
i − 4Sj

i , y
j
i = Pj

i +Qj
i +Rj

i + Sj
i .
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For initial time level j = 0, we determine (C00,C
0
1, . . . ,C

0
Ns−1,C

0
Ns
) from the IC Ũ0(si) =

φ(si). For this, we use BCs Ũ0
s (s0) = 0, Ũ0

s (sNs) = 0, Ũ0
ss(s0) = 0, and Ũ0

ss(sNs) = 0. After

all these implementations, we obtain the required system IX 0 = Z0 having unknowns X 0,

where

I =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

54 60 6 0 0 0

101
4

135
2

105
4

1 0 0

1 26 66 26 1 0
. . .

. . .
. . .

. . .
. . .

1 26 66 26 1
. . .

. . .
. . .

. . .
. . .

0 1 26 66 26 1

0 0 1 105
4

135
2

101
4

0 0 0 6 60 54

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, X 0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C00

C01
...

C0i
...

C0Ns−1

C0Ns

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Z0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ(s0)

φ(s1)
...

φ(si)
...

φ(sNs−1)

φ(sNs)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The corresponding numerical algorithm for the proposed approximation is given below:

Algorithm 1 Algorithm of Present Collocation Approach

Require: Fractional order (γ), Λ, Step sizes in Time and Space: (k and h, respectively), The

number of partitions in time and space (Mt and Ns, respectively)

Ensure: Approximate Solution: Ũ j
i

Define the matrix I at initial time level

Calculate unknown X 0 initially.

for j = 1 :Mt do
Consider the unknowns (Cji )

Ns+2
i=−2 from (3.2.9)

Calculate pji , q
j
i , rji , v

j
i , yji , ℘j

i from (3.2.13)

Calculate the matrix A and column vector Zj from (3.2.13) and (3.2.14)

Find X j from (3.2.12)

Find the approximate solution Ũ as defined in Equation (3.2.10a)

3.3 Stability Analysis

In this province, we utilize the Von-Neumann procedure to test the stability of the present

approach (3.2.11). To study this, we represent the discretized scheme in the subsequent
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formation

pjmC
j
m−2 + qjmC

j
m−1 + rjmC

j
m + vjmC

j
m+1 + yjmC

j
m+2 = gjm + Λ

[ j−1∑
n=1

(wγ
j−n−1 − wγ

j−n)(C
n
m−2

+ 26Cnm−1 + 66Cnm + 26Cnm+1 + C
n
m+2) + wγ

j−1(C
0
m−2 + 26C0m−1 + 66C0m + 26C0m+1 + C

0
m+2)

]
+ aj1(sm)u

∗j−1(sm)u
∗j−1
s (sm), m = 0, 1, . . . , Ns, j = 1, 2, . . . ,Mt. (3.3.1)

Suppose that C̃
j

m be the perturbed solution of (3.2.11a), then the perturbation λjm = Cjm − C̃jm
satisfies

pjmλ
j
m−2 + qjmλ

j
m−1 + rjmλ

j
m + vjmλ

j
m+1 + yjmλ

j
m+2 = Λ

[ j−1∑
n=1

(wγ
j−n−1 − wγ

j−n)(λ
n
m−2

+ 26λnm−1 + 66λnm + 26λnm+1 + λnm+2) + wγ
j−1(λ

0
m−2 + 26λ0m−1 + 66λ0m + 26λ0m+1 + λ0m+2)

]
,

m = 0, 1, . . . , Ns, j = 1, 2, . . . ,Mt, (3.3.2)

along with the requirements

λj0 = λjNs
= 0, j = 0, 1, . . . ,Mt.

For the primary investigation, let us suppose that

λjm = ζjeiθmh,

where i =
√
−1 and θ is a wave number. Then, after simplification, (3.3.2) leads to

ζj(pjme
−2iθh + qjme

−iθh + rjm + vjme
iθh + yjme

2iθh) = Λ

[ j−1∑
n=1

ζn(wγ
j−n−1 − wγ

j−n)(e
−2iθh

+ 26e−iθh + 66 + 26eiθh + e2iθh) + wγ
j−1ζ

0(e−2iθh + 26e−iθh + 66 + 26eiθh + e2iθh)

]
,

j = 1, 2, . . . ,Mt. (3.3.3)
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For stability investigation of the procedure presented in (3.2.11), we prove that |ζj| ≤ |ζ0| by

mathematical induction. For j = 1, Equation (3.3.3) yields

ζ1(p1me
−2iθh+q1me

−iθh+r1m+v
1
me

iθh+y1me
2iθh) = Λwγ

0ζ
0(e−2iθh+26e−iθh+66+26eiθh+e2iθh),

and as for j = 1, wγ
0 = 1, we have

ζ1
(
(P1

m −Q1
m +R1

m + S1
m)e

−2iθh + (26P1
m − 10Q1

m + 2R1
m − 4S1

m)e
−iθh

+ (66P1
m − 6R1

m + 6S1
m) + (26P1

m + 10Q1
m + 2R1

m − 4S1
m)e

iθh+

= (P1
m +Q1

m +R1
m + S1

m)e
2iθh

)
Λζ0(e−2iθh + 26e−iθh + 66 + 26eiθh + e2iθh). (3.3.4)

After simplification, Equation (3.3.4) gives

|ζ1| =
∣∣∣∣Λ(2 cos(2θh) + 52 cos(θh) + 66)ζ0

K1
m + iL1

m

∣∣∣∣ = |Λ(2 cos(2θh) + 52 cos(θh) + 66)|√
(K1

m)
2 + (L1

m)
2

|ζ0|,
(3.3.5)

where

K1
m = P1

m(2 cos(2θh) + 52 cos(θh) + 66) +R1
m(2 cos(2θh) + 4 cos(θh)− 6)

+ S1
m(2 cos(2θh)− 8 cos(θh) + 6),

L1
m = Q1

m(2 sin(2θh) + 20 sin(θh)).

After some simplifications, Replacing the values of P1
m, R1

m and S1
m as h → 0 in Equation

(3.3.5), we obtain

|ζ1| ≤ |ζ0|. (3.3.6)

Now let us assume the following before we proceed with mathematical induction

|ζn| ≤ |ζ0|, for n = 2, 3, . . . , j − 1. (3.3.7)
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To confirm, (3.3.7) holds true for n = j, let us take Equation (3.3.3) in the simplified form

|ζj| =
∣∣∣∣∣
Λ

[∑j−1
n=1 ζ

n(wγ
j−n−1 − wγ

j−n) + wγ
j−1ζ

0

]
(2 cos(2θh) + 52 cos(θh) + 66)

Kj
m + iLj

m

∣∣∣∣∣
≤Λwγ

0 (2 cos(2θh) + 52 cos(θh) + 66)√
(Kj

m)2 + (Lj
m)2

|ζ0|,

where

Kj
m = Pj

m(2 cos(2θh) + 52 cos(θh) + 66) +Rj
m(2 cos(2θh) + 4 cos(θh)− 6)

+ Sj
m(2 cos(2θh)− 8 cos(θh) + 6),

Lj
m = Qj

m(2 sin(2θh) + 20 sin(θh)).

Replacing the values of Pj
m, Rj

m and Sj
m and taking h→ 0 we acquire

|ζj| ≤ |ζ0|, j = 1, 2, . . . ,Mt.

Therefore, the numerical scheme (3.2.11) is shown to be unconditionally stable.

3.4 Convergence analysis

Lemma 3.4.1. The quinticB-spline functionsB−2(s),B−1(s),B0(s), . . . ,BNs+1(s),BNs+2(s)

satisfy the inequality
Ns+2∑
i=−2

|Bi(s)| ≤ 186, 0 ≤ s ≤ 1.

Proof. Note that
Ns+2∑
i=−2

|Bi(s)| ≤ 186, 0 ≤ s ≤ 1.

At a mesh point s = sn; Bn(sn) is nonzero at five mesh points sn−2, sn−1, sn, sn+1, and sn+2.

Therefore,

Ns+2∑
i=−2

|Bi(sn)| = |Bn−2(sn)|+ |Bn−1(sn)|+ |Bn(sn)|+ |Bn+1(sn)|+ |Bn+2(sn)|
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= 1 + 26 + 66 + 26 + 1 = 120.

If s is not a mesh point, then

Ns+2∑
i=−2

|Bi(s)| = |Bn−3(s)|+ |Bn−2(s)|+ |Bn−1(s)|+ |Bn(s)|+ |Bn+1(s)|+ |Bn+2(s)|

≤ 1 + 26 + 66 + 66 + 26 + 1 = 186.

Thus, the result is proved.

Lemma 3.4.2. If Vj(s) denote the unique quintic B-spline interpolant of ũj(s) ∈ C6[0, 1] at

time t = tj , then from [152, 153], we have

∥∥∥∥ ∂n∂sn
(
Vj(s)− ũj(s)

)∥∥∥∥
∞

≤ cnh
6−n, n = 0, 1, 2, 3, 4,

for positive constants cn.

Theorem 3.4.1. If Ũ j(s) be the quintic B-spline based approximation of ũj(s) ∈ C6[0, 1] at

time t = tj , then

‖Ũ j(s)− ũj(s)‖∞ ≤ Ch2,

holds for some positive constant C and sufficiently small h.

Proof. If Ũ j(s) =
Ns+2∑
i=−2

CjiBi(s) be the quintic B-spline approximation of ũj(s), which is

the exact solution of the semi-discrete problem (3.2.6) at the j th time level, and Vj(s) =
Ns+2∑
i=−2

Dj
iBi(s) exist for the unique quintic B-spline interpolant. Now we want an estimate of

‖Ũ j(s)− ũj(s)‖∞ as

‖Ũ j(s)− ũj(s)‖∞ ≤ ‖Ũ j(s)− Vj(s)‖∞ + ‖Vj(s)− ũj(s)‖∞.

We have

LŨ j(s) =[Λwγ
0 + aj1(s)u

∗j−1
s (s)]Ũ j(s) + aj1(s)u

∗j−1(s)Ũ j
s (s) + aj2(s)Ũ j

ss(s)
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+ aj3(s)Ũ j
ssss(s),

L(Ũ j(s)− Vj(s)) =
(
Λwγ

0 + a1(s, j)u
∗j−1(s)

)
(Ũ j(s)− Vj(s)) + aj1(s)u

∗j−1(s)(Ũ j
s (s)

− Vj
s (s)) + aj2(s)(Ũ j

ss(s)− Vj
ss(s)) + aj3(s))(Ũ j

ssss(s)− Vj
ssss(s)).

(3.4.1)

Using Lemma 3.4.2, we get

|L(Ũ j(s)− Vj(s))| ≤
∣∣Λwγ

0 + a1(s, j)u
∗j−1
s (s)

∣∣ c0h6 + |aj1(s)u∗j−1(s)|c1h5

+ |aj2(s)|c2h4 + |aj3(s)|c4h2

≤K1h
2, (3.4.2)

where

K1 =
∣∣Λwγ

0 + aj1(s)u
∗j−1
s (s)

∣∣ c0h4 + |aj1(s)u∗j−1(s)|c1h3 + |aj2(s)|c2h2 + |aj3(s)|c4.

We have

LŨ j(s) = AX j, j = 1, 2, . . . ,Mt,

and

LVj(s) = AYj, j = 1, 2, . . . ,Mt,

where

Yj = (Dj
0,Dj

1, . . . ,Dj
Ns−1,Dj

Ns
)′.

Note that the matrix A is strictly diagonally dominant, which implies the invertibility of A.

Now from Equation (3.4.2), we have

‖X j − Yj‖∞ ≤ ‖A−1‖∞K1h
2. (3.4.3)

Let ρ0, ρ1, . . . , ρNs are row sums of A at each time level and given by

ρ0 = 480Rj
0 + 840Qj

0,
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ρ1 = 900Pj
1 + 60Qj

1 − 60Rj
1 − 60Sj

1 ,

ρi = 120Pj
i , 2 ≤ i ≤ Ns − 2,

ρNs−1 = 900Pj
Ns−1 − 60Qj

Ns−1 − 60Rj
Ns−1 − 60Sj

Ns−1,

ρNs = 480Rj
Ns

+ 840Qj
Ns
.

Then, as a consequence

‖A−1‖∞ ≤ 1

ρ
≤ 1

|ρ| , (3.4.4)

where ρ = min{ρ0, ρ1, . . . , ρNs}. Now, we substitute Equation (3.4.4) into (3.4.3), to get

‖X j − Yj‖∞ ≤ K1h
2

|ρ| . (3.4.5)

Using Lemma 3.4.1 in Equation (3.4.5), it follows

‖Ũ j(s)− Vj(s)‖∞ =

∥∥∥∥∥
Ns+2∑
i=−2

(Cji −Dj
i )Bi(s)

∥∥∥∥∥
∞

≤
∣∣∣∣∣
Ns+2∑
i=−2

Bi(s)

∣∣∣∣∣ ‖X j − Yj‖∞ ≤ 186K1h
2

|ρ| ,

(3.4.6)

and application of Lemma 3.4.2 gives

‖Vj(s)− ũj(s)‖∞ ≤ c0h
6. (3.4.7)

With the use of triangle inequality

‖Ũ j(s)− ũj(s)‖∞ ≤ ‖Ũ j(s)− Vj(s)‖∞ + ‖Vj(s)− ũj(s)‖∞,

and on adding equation (3.4.6) and (3.4.7), we deduce that

‖Ũ j(s)− ũj(s)‖∞ ≤ Ch2,

where C = c0h
4 + 186K1

|ρ| . Hence, the theorem is proved.

Theorem 3.4.2. Let Ũ(s, t) and u(s, t) denote B-spline approximation and exact solution of
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(3.1.1), resp.. Then, the proposed approximation satisfies the following convergence result

‖u− Ũ‖∞ ≤ C(h2 + k2).

Following the approach for the nonlinear problems, the order of convergence for the linear

problems (using (3.2.3a)) is given by the following results.

Lemma 3.4.3. If U j(s) denote the unique quintic B-spline interpolant of ûj(s) ∈ C6[0, 1],

then from [152, 153], we have

∥∥∥∥ ∂n∂sn
(
U j(s)− ûj(s)

)∥∥∥∥
∞

≤ cnh
6−n, n = 0, 1, 2, 3, 4,

for positive constants cn.

Theorem 3.4.3. If Ũ j(s) be the quintic B-spline approximation of ûj(s) ∈ C6[0, 1], then

‖Ũ j(s)− ûj(s)‖∞ ≤ Ch2,

holds for positive constant C and sufficient small h.

Proof. The proof follows similar steps to the nonlinear KS equation.

Theorem 3.4.4. Let Ũ(s, t) and u(s, t) denote B-spline approximation and exact solution of

(3.1.2), resp. Then, the proposed approximation holds the following convergence result

‖u− Ũ‖∞ ≤ C(h2 + k3−γ).

Remark 3.4.1. For the Burgers’ equation (putting aj3(s) = 0 in Theorem 3.4.1) analysis

remains same and the estimate ‖Ũ j(s)− ũj(s)‖∞ ≤ Ch4 holds.

3.5 Experimental Evidences
Now, we consider several types of nonlinear and linear problems for experimental evidence

in favor of our theory. It will be easier to check the performance of our proposed approach

if the exact solution is known. In general, the exact solutions to fractional problems are
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more complex. Hence, for the problems with time-varying layers, we check the performance

based on the available works for problems with classical time derivatives, as a limiting

case of fractional order time derivatives. There are four types of problems considered here-

Linear time fractional problem, Time fractional KS equation, Burgers equation with fractional

derivative in time, and Classical KS equation with integer order derivative in time. The present

approach provides higher-order convergence in all of the above cases.

The error estimates are calculated using the double mesh principle in theL∞ andL2-norms.

The respective order of convergence is computed by using the definition 1.3.8

In all the tables, we provide CPU time to show the performance of the proposed technique.

All computational results are obtained using MATLAB R2021 on Intel Core i7 (9th Gen).

Example 3.5.1. Let us first check the effectiveness of the proposed approach for the linear

problem

C
0D

γ
t u(s, t) + 2us(s, t) + 4uss(s, t) + ussss(s, t) = g(s, t), (s, t) ∈ (0, 1)× (0, 1],

with the BCs ⎧⎪⎨⎪⎩
u(0, t) = 0, u(1, t) = 0, t ∈ [0, 1],

uss(0, t) = 0, uss(1, t) = 0, t ∈ [0, 1],

and the IC

u(s, 0) = 0, 0 ≤ s ≤ 1.

Source term g(s, t) is calculated using the exact solution u(s, t) = t4+γ sin(πs).

Example 3.5.2. Next, consider the Caputo-type time fractional KS equation with constant

coefficients-

C
0D

γ
t u(s, t) + 2u(s, t)us(s, t) + 4uss(s, t) + ussss(s, t) = g(s, t), (s, t) ∈ (0, 1)× (0, 1],
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with the BCs ⎧⎪⎨⎪⎩
u(0, t) = 0, u(1, t) = 0, t ∈ [0, 1],

us(0, t) = 0, us(1, t) = 0, t ∈ [0, 1],

and the IC

u(s, 0) = 0, 0 ≤ s ≤ 1.

Source term g(s, t) is calculated using the exact solution u(s, t) = s2(s3 − 5
2
s2 + 2s− 1

2
)t4.

Example 3.5.3. Now, we consider the following Caputo-type time fractional variable coeffi-

cient nonlinear KS equation

C
0D

γ
t u(s, t) + su(s, t)us(s, t) + suss(s, t) + ussss(s, t) = g(s, t), (s, t) ∈ (0, 1)× (0, 1],

with the BCs ⎧⎪⎨⎪⎩
u(0, t) = 0, u(1, t) = 0, t ∈ [0, 1],

uss(0, t) = 0, uss(1, t) = 0, t ∈ [0, 1],

and the IC

u(s, 0) = 0, 0 ≤ s ≤ 1.

Source term g(s, t) is calculated using the exact solution u(s, t) = t4 sin(πs).

Example 3.5.4. Now let us consider the effectiveness of the present approach for Burgers’

equation

C
0D

γ
t u(s, t)+exp(−20t)u(s, t)us(s, t)+(1+100s)uss(s, t) = g(s, t), (s, t) ∈ (0, 1)×(0, 1],

with the set of BCs

⎧⎪⎨⎪⎩
u(0, t) = 0, u(1, t) = 0, t ∈ [0, 1],

us(0, t) = 0, us(1, t) = 0, t ∈ [0, 1],
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and the IC

u(s, 0) = 0, 0 ≤ s ≤ 1.

Source term g(s, t) is calculated using the exact solution u(s, t) = s3(1− s)3t4.

In general, the exact solution of the time-fractional nonlinear KS model is challenging

to find out. Hence, motivated by the examples given in [134, 141] involving classical time

derivatives, we took the time fractional KS equation in Example 3.5.5, whose solution will

approach the time-varying layer originated to function as γ approaches 1.

Example 3.5.5. Consider the time fractional nonlinear KS equation

C
0D

γ
t u(s, t) + u(s, t)us(s, t) + uss(s, t) + ussss(s, t) = 0, (s, t) ∈ (−30, 30)× (0, 4],

with the BCs⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(−30, t) = b+ 15
19

√
11
19

[
− 9 tanh(k1(−30− btγ − x0)) + 11 tanh3(k1(−30− btγ − x0))

]
,

0 ≤ t ≤ 4,

u(30, t) = b+ 15
19

√
11
19

[
− 9 tanh(k1(30− btγ − x0)) + 11 tanh3(k1(30− btγ − x0))

]
,

0 ≤ t ≤ 4,

uss(−30, t) = 0, uss(30, t) = 0, 0 ≤ t ≤ 4,

and the IC

u(s, 0) = b+
15

19

√
11

19

[
− 9 tanh(k1(s− x0)) + 11 tanh3(k1(s− x0))

]
, −30 ≤ s ≤ 30,

where b = 5, k1 = 1
2

√
11
19

, x0 = −12.

The exact solution of Example 3.5.5 is unavailable. So, the double mesh principle [127]

is used to compute the errors. Note that the solution at the initial time level has a sharp layer

phenomenon that moves as time evolves. To compare the accurateness in terms of sharp layer
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phenomena at the j-th time level, we calculate the Global Relative Error (GRE) as follows

GRE =

∑
i

|Ũ(si, tj)− Ũ(s2i−1, tj)|∑
i

Ũ(si, tj)
.

The following problem (at which time fractional derivative is substituted by 1st-order

integer derivative) is considered to compare the results for the case when γ approaches 1 in

the problem (3.1.1):

ut(s, t) + a1(s, t)u(s, t)us(s, t) + a2(s, t)uss(s, t) + a3(s, t)ussss(s, t) = g(s, t), (3.5.1)

where a1(s, t), a2(s, t), a3(s, t), g(s, t), and the IC and BCs take the same values as de-

fined in Examples 3.5.2 and 3.5.3. Here, we use the Crank-Nicolson scheme for temporal

discretization to maintain the temporal accuracy to the second order.

Now, we explain the experimental evidence in favor of our theory. In Tables 3.3 and

3.7, we present the outcomes of ENs,Mt
∞ , ENs,Mt

2 , DNs,Mt

2 , DNs,Mt
∞ along with CPU time. It is

easy to observe from tabulated results that the proposed numerical scheme provides second-

order accuracy in space and time. The fractional order derivative increases the algorithm’s

complexity, but the proposed method handles this very well, and less computational time

supports this analogy. We wanted to note that the computational time increases for time

fractional problems compared to problems with classical time derivatives, as fractional

derivatives involve integral approximations involving past data. In both the norms, we obtain

good results matching theoretical claims. In addition, we produce the linear problem (3.5.1)

to give an experimental comparison with the Examples 3.5.2 and 3.5.3 when γ approaches 1.

It is evident from Tables 3.5 and 3.8 that the obtained results are close. The comparison of

CPU times for both the problems (Time fractional KS Equation (3.1.1) and KS equation with

classical time derivative (3.5.1)) justify the memory property of fractional derivatives, which

uses additional storage of the system. Note that the computational cost for problems with

classical time derivatives is lower than the cost for evaluating fractional time derivatives due

to their nonlocal nature since the solutions at previous time levels need to be used to compute
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the solution at present.

To show the better effectiveness of the present methodology based on the L1− 2 scheme,

we provide a comparison between L1 and L1 − 2 scheme in Table 3.6, which proves that

the proposed scheme has a better rate of accuracy than L1 scheme. In addition, it should

also be pointed out from this table that the higher order accuracy of the L1− 2 scheme than

the L1 scheme has been obtained with a similar computational cost. The present approach

also performs well for the second-order Burgers’ equation as given in Example 3.5.4 by

putting a3(s, t) = 0. For the second-order problems, quintic B-splines provide fourth-order

convergent results in space, and it is confirmed through Table 3.10 (see Remark 3.4.1). Tables

3.2, 3.4, and 3.9 confirm the quadratic accuracy in space and time separately by fixing the

space (or time) steps and varying time (or space) steps, respectively. These tables confirm the

accuracy of O(h2 + k2) in both directions for the nonlinear KS equation and O(h2 + k3−γ)

for the linear KS equation.

Graphically, one can observe that the approximate solutions of Examples 3.5.2 ( Fig. 1)

and 3.5.3 (Fig. 4) match with the exact one. The analytical and numerical solutions show

a good match and can be confirmed by comparing them in a single plot (see Figures 3.2a

and 3.5a). As the time step changes from the initial level to t = 1, the solution changes

accordingly, and in support of this argument, we plot Figs. 3.2b and 3.5b. Error plots (Fig. 3)

are provided to demonstrate the error distribution at the nodal points.

Table 3.11 shows that the relative error associated with Example 3.5.5, evaluated by the

double mesh principle, is negligible. In addition, the movement of layer behaviors is also

visible in time for fractional order KS equations (refer to Fig. 6). This points out that the

present approach can detect the sharpness of the layers. Furthermore, the boundary conditions

involving derivatives are also satisfied as the solution is locally constant in a neighborhood of

the boundaries. Note from Figure 6 that the present methodology works perfectly well when

the fractional order γ approaches 1, as it matches with the exact solution given in [134, 141]

for γ = 1.
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Table 3.2: Errors and order of convergence in spatial and time directions, for example, 3.5.1

in L∞ norm

Spatial direction (taking Mt = 1000) Time direction (taking Ns = 1000)

γ Ns Error Order Mt Error Order

0.5 4 7.8758e− 02 1.9400 4 2.3888e− 03 2.1215
8 2.0525e− 02 1.9848 8 5.4895e− 04 2.2906
16 5.1857e− 03 1.9961 16 1.1220e− 04 2.3508
32 1.2999e− 03 - 32 2.1996e− 05 -

0.8 4 7.7095e− 02 1.9420 4 6.4762e− 03 1.8989
8 2.0065e− 02 1.9854 8 1.7366e− 03 2.0257
16 5.0674e− 03 1.9963 16 4.2649e− 04 2.2350
32 1.2701e− 03 - 32 9.0598e− 05 -

Table 3.3: Errors, orders of convergence, and CPU time (in sec.) for Example 3.5.2 for

different time fractional orders γ

Norms Ns=10
Mt=20

Ns=20
Mt=40

Ns=40
Mt=80

Ns=80
Mt=160

Ns=160
Mt=320

γ = 0.3 L∞ 1.5603e− 09 3.5878e− 10 7.7052e− 11 1.7191e− 11 4.0055e− 12
2.1207 2.2192 2.1642 2.1016 -

L2 9.9903e− 10 2.0688e− 10 4.3001e− 11 9.3373e− 12 8.2604e− 13
2.2717 2.2664 2.2033 2.1564 -

CPU Time 0.05768 0.2037 0.3330 2.1311 16.0248

γ = 0.5 L∞ 4.2850e− 09 8.6035e− 10 1.7254e− 10 3.4642e− 11 7.3038e− 12
2.3163 2.3180 2.3163 2.2458 -

L2 2.7858e− 09 5.5512e− 10 1.0740e− 10 2.0904e− 11 9.0548e− 12
2.3272 2.3698 2.3611 2.3086 -

CPU Time 0.0559 0.0840 0.3420 2.1214 16.1246

γ = 0.8 L∞ 1.8388e− 08 4.2561e− 09 9.5043e− 10 2.0983e− 10 5.0390e− 11
2.1112 2.1629 2.1794 2.0580 -

L2 1.2157e− 08 2.8081e− 09 6.2613e− 10 1.3803e− 10 3.1675e− 11
2.1141 2.1651 2.1815 2.1236 -

CPU Time 0.0623 0.0906 0.3514 2.3903 17.0300
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Table 3.4: Errors and orders of convergence in spatial and temporal directions for Example

3.5.2 in L∞ norm

Spatial direction (taking Mt = 512) Time direction (taking Ns = 1024)

γ Ns Error Rate Mt Error Rate

0.5 4 3.2790e− 09 2.1121 4 5.4353e− 07 2.2211
8 7.5845e− 10 2.0303 8 1.3440e− 07 2.2349
16 1.8567e− 10 2.0253 16 3.1851e− 08 2.1038
32 4.5612e− 11 - 32 7.4516e− 09 -

0.8 4 2.7564e− 08 2.0878 4 1.8495e− 07 2.0158
8 6.4841e− 09 2.0145 8 3.9669e− 08 2.0771
16 1.6048e− 09 1.9693 16 8.4273e− 09 2.0957
32 4.0983e− 10 - 32 1.9606e− 09 -

Table 3.5: Comparison of errors, orders of convergence, and CPU time (in sec.) for Example

3.5.2 (as γ approaches 1) with Problem (3.5.1)

Ns=10
Mt=20

Ns=20
Mt=40

Ns=40
Mt=80

Ns=80
Mt=160

Ns=160
Mt=320

γ = 0.9 2.9339e− 08 7.2312e− 09 1.7215e− 09 4.0527e− 10 9.9665e− 11
2.0205 2.0706 2.0867 2.0237 -

CPU Time 0.0641 0.0981 0.3319 2.1556 16.3124

γ = 0.95 3.6933e− 08 9.4043e− 09 2.3143e− 09 5.6346e− 10 1.3772e− 10
1.9735 2.0227 2.0382 2.0326 -

CPU Time 0.0523 0.0837 0.3249 2.1110 16.0089

γ = 0.99 4.4329e− 08 1.1590e− 08 2.9297e− 09 7.3329e− 10 1.8407e− 10
1.9354 1.9841 1.9983 1.9941 -

CPU Time 0.0661 0.0959 0.3393 2.1030 16.1969

γ = 0.999 4.6179e− 08 1.2146e− 08 3.0890e− 09 7.7790e− 10 1.9558e− 10
1.9268 1.9753 1.9895 1.9918 -

CPU Time 0.0652 0.0943 0.3444 2.1421 16.2448

γ = 1 1.2166e− 08 3.1440e− 09 7.9259e− 10 1.9863e− 10 5.1888e− 11
1.9522 1.9880 1.9965 1.9366 -

CPU Time 0.0690 0.0863 0.0780 0.1192 0.7122
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Table 3.6: Comparison of errors, orders of convergence, and CPU time (in sec.) in L1 and

L1− 2 schemes for Example 3.5.2

Ns=10
Mt=20

Ns=20
Mt=40

Ns=40
Mt=80

Ns=80
Mt=160

Ns=160
Mt=320

γ = 0.5
L1 scheme 6.5708e− 08 2.5054e− 08 9.1877e− 09 3.3256e− 09 1.1936e− 09

1.3910 1.4473 1.4661 1.4783 -

CPU Time 0.0681 0.0989 0.3348 2.1385 16.0070

L1− 2 scheme 4.2850e− 09 8.6035e− 10 1.7254e− 10 3.4642e− 11 7.3038e− 12
2.3163 2.3180 2.3163 2.2458 -

CPU Time 0.0559 0.0840 0.3420 2.1214 16.1246

γ = 0.9
L1 scheme 4.4770e− 07 2.1955e− 07 1.0426e− 07 4.9126e− 08 2.2992e− 08

1.0280 1.0744 1.0856 1.0954 -

CPU Time 0.0619 0.0879 0.3228 2.0858 15.9919

L1− 2 scheme 2.9339e− 08 7.2312e− 09 1.7215e− 09 4.0527e− 10 9.9665e− 11
2.0205 2.0706 2.0867 2.0237 -

CPU Time 0.0641 0.0981 0.3319 2.1556 16.3124

a Numerical solution b Exact solution

Figure 1: Surface plots of exact and numerical solutions for Example 3.5.2 by taking Ns = 80,

Mt = 160, γ = 0.5.
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Figure 2: Plots of exact and numerical solutions at different time levels for Example 3.5.2 by

taking Ns =Mt = 80, γ = 0.75.

a Example 3.5.2 b Example 3.5.3

Figure 3: Error plots of numerical solution by taking Ns =Mt = 80, γ = 0.5.
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Table 3.7: Errors, orders of convergence, and CPU time (in sec.) for Example 3.5.3 for

different time fractional orders γ

Norms Ns=10
Mt=20

Ns=20
Mt=40

Ns=40
Mt=80

Ns=80
Mt=160

Ns=160
Mt=320

γ = 0.3 L∞ 8.6359e− 03 2.1680e− 03 5.4275e− 04 1.3576e− 04 3.3946e− 05
1.9940 1.9980 1.9992 1.9997 -

L2 6.1079e− 03 1.5334e− 03 3.8388e− 04 9.6022e− 05 2.4010e− 05
1.9939 1.9980 1.9992 1.9997 -

CPU Time 0.0568 0.0838 0.3207 2.1108 16.0575

γ = 0.5 L∞ 8.5769e− 03 2.1537e− 03 5.3932e− 04 1.3493e− 04 3.3743e− 05
1.9936 1.9976 1.9989 1.9996 -

L2 6.0661e− 03 1.5233e− 03 3.8146e− 04 9.5436e− 05 2.3867e− 05
1.9936 1.9976 1.9989 1.9996 -

CPU Time 0.0619 0.0846 0.3159 2.0585 15.8550

γ = 0.8 L∞ 8.4195e− 03 2.1149e− 03 5.2990e− 04 1.3266e− 04 3.3195e− 05
1.9931 1.9968 1.9980 1.9987 -

L2 5.9548e− 03 1.4959e− 03 3.7480e− 04 9.3827e− 05 2.3479e− 05
1.9930 1.9968 1.9980 1.9987 -

CPU Time 0.1197 0.0898 0.3266 2.1134 16.0571

a Numerical solution b Exact solution

Figure 4: Surface plots of exact and numerical solutions for Example 3.5.3 by taking Ns = 80,

Mt = 160, γ = 0.5.
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Table 3.8: Comparison of Errors, orders of convergence, and CPU time (in sec.) for Example

3.5.3 (γ approaches to 1) with the problem (3.5.1)

Ns=10
Mt=20

Ns=20
Mt=40

Ns=40
Mt=80

Ns=80
Mt=160

Ns=160
Mt=320

γ = 0.9 8.3315e− 03 2.0920e− 03 5.2406e− 04 1.3118e− 04 3.2827e− 05
1.9937 1.9971 1.9982 1.9986 -

CPU Time 0.0763 0.1074 0.3434 2.1038 16.5623

γ = 0.95 8.2765e− 03 2.0771e− 03 5.2013e− 04 1.3016e− 04 3.2562e− 05
1.9945 1.9976 1.9986 1.9990 -

CPU Time 0.0585 0.0862 0.3316 2.1320 16.035357

γ = 0.99 8.2258e− 03 2.0631e− 03 5.1633e− 04 1.2914e− 04 3.2292e− 05
1.9953 1.9984 1.9994 1.9997 -

CPU Time 0.0813 0.1090 0.3498 2.1222 16.1849

γ = 0.999 8.2135e− 03 2.0596e− 03 5.1537e− 04 1.2888e− 04 3.2222e− 05
1.9956 1.9987 1.9996 1.9999 -

CPU Time 0.0785 0.1062 0.3426 2.1352 16.1141

γ = 1 8.3218e− 03 2.0861e− 03 5.2188e− 04 1.3049e− 04 3.2622e− 05
1.9961 1.9990 1.9998 2.0000 -

CPU Time 0.1026 0.0688 0.0786 0.1435 0.7781

Table 3.9: Errors and orders of convergence in spatial and time directions for Example 3.5.3

in L∞ norm

Spatial direction (taking Mt = 1024) Time direction (taking Ns = 1024)

γ Ns Error Rate Mt Error Rate

0.5 4 5.2053e− 02 1.9746 4 7.5669e− 02 2.1896
8 1.3244e− 02 1.9937 8 1.6587e− 02 2.0581
16 3.3255e− 03 1.9984 16 3.9832e− 03 2.0915
32 8.3230e− 04 - 32 9.3463e− 04 -

0.8 4 5.1507e− 02 1.9753 4 7.4675e− 02 2.0384
8 1.3099e− 02 1.9939 8 1.8179e− 02 2.0836
16 3.2887e− 03 1.9984 16 4.2890e− 03 2.1010
32 8.2308e− 04 - 32 9.9976e− 04 -
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Figure 5: Plots of exact and numerical solutions for Example 3.5.3 by taking Ns =Mt = 80,

γ = 0.75.

Table 3.10: Spatial errors, orders of convergence, and CPU time (in sec.) in L∞ norm for

Example 3.5.4 by taking Mt = 64 and different values of γ

Ns = 8 Ns = 16 Ns = 32 Ns = 64 Ns = 128
γ = 0.6 2.5356e− 05 1.6903e− 06 1.0897e− 07 6.8933e− 09 4.2262e− 10

3.9070 3.9553 3.9826 4.0278 -

CPU Time 0.1997 0.3069 0.5336 0.9916 2.0981

γ = 0.8 2.5394e− 05 1.6928e− 06 1.0903e− 07 6.8430e− 09 3.9223e− 10
3.9070 3.9566 3.9940 4.1249 -

CPU Time 0.2065 0.3149 0.5380 1.0114 2.0787

γ = 0.95 2.5427e− 05 1.6948e− 06 1.0895e− 07 6.7295e− 09 3.3087e− 10
3.9072 3.9594 4.0170 4.3462 -

CPU Time 0.2081 0.3073 0.5256 0.9780 2.0861
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Table 3.11: Comparison of GRE at different time levels for Example 3.5.5 taking Mt = 100
and different fractional orders γ

γ Time Ns = 200 Ns = 300 Ns = 400
0.5 1 4.5169e− 06 1.9995e− 06 1.1224e− 06

2 3.7078e− 06 1.6410e− 06 9.2107e− 07
3 3.7047e− 06 1.6395e− 06 9.2035e− 07
4 4.2209e− 06 1.8690e− 06 1.0493e− 06

0.8 1 2.1890e− 05 9.7642e− 06 5.4943e− 06
2 6.3637e− 06 2.8375e− 06 1.5968e− 06
3 3.0069e− 06 1.3394e− 06 7.5383e− 07
4 2.2302e− 06 9.9078e− 07 5.5788e− 07

0.99 1 1.4469e− 04 6.4436e− 05 3.6411e− 05
2 1.9996e− 04 8.9104e− 05 5.0228e− 05
3 2.4510e− 04 1.0944e− 04 6.1629e− 05
4 2.9015e− 04 1.2948e− 04 7.2939e− 05

0.999 1 1.5276e− 04 6.8299e− 05 3.8451e− 05
2 2.2107e− 04 9.9406e− 05 5.5847e− 05
3 2.8232e− 04 1.2626e− 04 7.1144e− 05
4 3.4440e− 04 1.5373e− 04 8.6633e− 05

1 (Problem (3.5.1)) 1 1.6279e− 04 7.2669e− 05 4.0953e− 05
2 2.3549e− 04 1.0493e− 04 5.9247e− 05
3 3.0055e− 04 1.3399e− 04 7.5558e− 05
4 3.6829e− 04 1.6391e− 04 9.2450e− 05
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Figure 6: Layer movements in time for Example 3.5.5.

3.6 Conclusions
In the present work, we have proposed a highly accurate numerical approximation for Caputo-

type time-fractional fourth-order nonlinear KS equation with several experimental observa-

tions in favor of our theory. The current L1 − 2 approximation in the temporal direction

provides a better order of accuracy in time with the same computational cost as for the

L1 approximation in the time direction. The space derivatives are approximated based on

the quintic B-spline polynomials to maintain quadratic convergence in space. The present

approach can also be used for linear problems as well as for Burgers equations, on which it

leads to fourth-order accuracy in space. We have provided a concrete convergence analysis

favoring our theory and experimental evidence.
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Collocation-based numerical simulation of

fractional order Allen-Cahn equation

4.1 Introduction

This chapter looks for a reliable numerical technique to solve the Allen-Cahn equation using

the Caputo time-fractional derivative. The fractional derivative semi-discretization approach

using finite differences of the second order is shown first. The cubic B-spline collocation

method is used to get a full discretization. We prove the conditional stability and convergence

of the suggested approach. The technique’s effectiveness is demonstrated with numerical

examples using two test problems. Numerical analysis confirms the approach’s efficiency and

the method’s continued correctness.

4.2 Literature survey

In demand to represent nonlinear physical marvels, acquiring exact solutions for nonlinear

FPDEs is one of the numerous significant factors. Newly, several techniques have been

involved in getting precise solutions of nonlinear FPDEs in the literature, such as the fractional

R. Choudhary, D. Kumar, Collocation-based numerical simulation of fractional order Allen–Cahn equation,

J. Math. Chem. , (2023), https://doi.org/10.1007/s10910-023-01525-0.
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sub-equation, the exp-function, the G′/G-expansion, first integral and Lie symmetry approach

[154–159].

The phase-field models drew significant concentration in the domain of phase transitions

[160]. The Allen-Cahn and Cahn-Hilliard models are the essential phase-field PDEs models.

The Allen-Cahn equation (ACE) occurs in the motion of phase boundaries in crystalline

solids[161], a mixture of two incompressible fluids[162], nucleation of solids[163], and

vesicle membranes[164]. It also appears in numerous scientific applications such as mathe-

matical biology, quantum mechanics, and plasma physics. In the literature, many researchers

concentrated on analytical solutions of the time-fractional ACE. Esen et al. [165] presented

the homotopy analysis method (HAM) to obtain the approximate analytical solutions of time-

fractional damped Burger and ACE. Tariq and Akram [160] developed new exact analytical

solutions for time-fractional ACE and time-fractional Phi-4 equation using the Tanh approach.

Tascan and Bekir [166] employed the first integral method to assemble the ACE traveling

wave solutions. In [167] Wazwaz offered the tanh-coth approach to emanate solitons and kink

solutions for some of the famous nonlinear parabolic PDEs such as Newell-Whitehead equa-

tion, ACE, Fisher’s equation, Fitz-Hugh-Nagumo equation, and the Burgers-Fisher equation.

Jafari et al. [168] investigated the identical solution of space-time fractional order ACE by

employing a fractional subdiffusion approach. In [169], Zhai et al. used a robust explicit oper-

ator splitting spectral method to decode the nonlocal fractional order ACE. Akagi et al. [170]

examined the presence and essence of weak explanations for the fractional order ACE, Cahn-

Hilliard equation, and absorbent medium equations. Liu et al. [171] studied a space-time

fractional ACE and employed a fast Galerkin finite element technique to solve this equation.

Huang and Stynes [172] presented optimal H1 spatial convergence of a fully discrete finite

element method for the time-fractional ACE. Ji et al. [173] suggested time-stepping methods

for the time-fractional ACE with Caputo’s derivative. Liu et al. [174] presented two accurate

and efficient linear techniques for the time-fractional Cahn-Hilliard and ACE with known

nonlinear bulk potential. Some numerical methods have also been invented for this problem,

such as Hou et al. [175] found the numerical solution using the finite difference in temporal

direction and the Crank-Nicolson method in spatial direction for space-fractional ACEs. Sakar

et al. [176] suggested a numerical method established on the iterative reproducing kernel
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method (IRKM) to examine the approximate solution of time-fractional ACE. With the finite-

difference technique and the Fourier spectral method, Liu et al. [177] offered a numerical

approach to decode time-fractional ACEs in one and two space dimensions. In 2018, Inc

et al. [178] analyzed Lie symmetries and reduction for explicit resolutions, convergence

investigation to the time-fractional ACE and time-fractional Klein-Gordon (KG) equations,

and the fractional order derivative is taken Riemann-Liouville. Khalid et al. [179] proposed a

collocation technique established on redefined cubic B-spline processes and finite difference

method to examine the approximate explanation of time-fractional ACE.

In this work, we examine the following time-fractional ACE:

C
0D

γ
t v(y, t)−

∂2v(y, t)

∂y2
+ (v(y, t))3 − v(y, t) = g(y, t), y ∈ (0, 1), t ∈ (0, T ], (4.2.1a)

subject to the boundary conditions

v(0, t) = Φl(t), v(1, t) = Φr(t), t ∈ [0, T ], (4.2.1b)

and the initial condition

v(y, 0) = Φ0(y), y ∈ [0, 1], (4.2.1c)

where Φl(t), Φr(t), and Φ0(y) are presumed continuous functions with continuous first-order

derivative. For compatible conditions, we assume that Φl(0) = Φ0(0) and Φr(0) = Φ0(1).

The derivative of fractional order γ ∈ (0, 1) is accepted in the Caputo sence.

In this chapter, first, we employ the quasilinearization method to linearize the equation

(4.2.1a). Then, we operate a cubic B-spline (CBS) function on the linearized equation

for the numerical solution of time-fractional ACE. The Crank-Nicolson formula is used

for discretizing the Caputo time-fractional derivative, whereas CBS functions are used to

discretize spatial derivatives. Some nonlinear partial differential equations have also been

solved using the CBS function. For example, Jiwari [180] employed modified CBS differential

quadrature techniques in spatial direction for decoding hyperbolic partial differential equations.

Mittal and Dahiya [181] operated the CBS differential quadrature approach for the numerical

solution of the three-dimensional telegraphic equation. Mittal and Jain [182] employed the
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cubic B-splines collocation technique for cracking nonlinear parabolic partial differential

equations. Shukla and Tamsir [183] operated an extended, modified CBS algorithm for

nonlinear Fisher’s reaction-diffusion equation. Ramos et al. [184] used a CBS method to

solve nonlinear partial differential equations. Jiwari et al. [185] developed a numerical

technique established on trigonometric CBS functions for the numerical solution of nonlinear

parabolic problems.

Following is how we structured this chapter: The Crank-Nicolson approach is used in

Section 2 to semi-discretize the problem (4.2.1). To discretize spatial derivatives, CBS is

also adopted in this province. After enforcing the wholly discretized method, we are given

a system with Ny + 1 unknowns at a specific time level. The stability analysis described in

Section 3 ensures conditional stability. In Section 4, the suggested method is subjected to

a thorough convergence study. By using a tabular examination of the suggested numerical

examples, Section 5 validates the theoretical estimations. The study’s future dimensions are

discussed in Section 6, where we offer some concluding reflections.

4.3 Methodology

4.3.1 Temporal discretization

For a positive integer Mt, let ΥMt be the partition of the interval [0, T ] described by ΥMt =

{tm|tm = mk, 0 ≤ m ≤ Mt} where k = T
Mt

is temporal step size. The semi-discretized

form of equation (4.2.1) at the
(
m+ 1

2

)
-th time-level is given by

∂γ ṽ(y, tm+ 1
2
)

∂tγ
−
∂2ṽ(y, tm+ 1

2
)

∂y2
+ (ṽ(y, tm+ 1

2
))3 − ṽ(y, tm+ 1

2
) = g(y, tm+ 1

2
),

m = 0, 1, 2, . . .Mt − 1, (4.3.1a)

subject to the boundary conditions

ṽ(0, tm+1) = Φl(tm+1), ṽ(1, tm+1) = Φr(tm+1), m = 0, 1, . . .Mt − 1, (4.3.1b)

and the initial condition

ṽ(y, t0) = Φ0(y), y ∈ [0, 1]. (4.3.1c)
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To approximate
∂γ ṽ(y,t)

∂tγ
at (y, tm+ 1

2
), if ṽ ∈ C4([0, 1], [0, T ]) then we make use of the follow-

ing formula

∂γ ṽ(y, tm+1/2)

∂tγ
=

1

Γ(2− γ)

1

kγ
(ṽm+1 − ṽm)

1

21−γ

+
1

Γ(2− γ)

1

kγ

m∑
j=1

[
ṽj − ṽj−1

] [(
m− j +

3

2

)1−γ

−
(
j −m+

1

2

)1−γ
]

+
1

Γ(2− γ)

m∑
j=1

[(
m− j +

3

2

)1−γ

−
(
m− j +

1

2

)1−γ
]
O(k3−γ)

+
1

Γ(2− γ)

1

21−γ
O(k3−γ). (4.3.2)

Let ρ = 1
Γ(2−γ)

1
kγ

, and �ı = ρ((ı + 1/2)1−γ − (ı − 1/2)1−γ), so that
∑l1

ı=1�ı = ρ((l1 +

1
2
)1−γ − 1

2

1−γ
). On substituting ρ and �ı into (4.3.2), we get

∂γ ṽ(y, tm+1/2)

∂tγ
=

[
�1ṽ

m +
m−1∑
j=1

(�m−j+1 −�m−j)ṽ
j −�mṽ

0 + ρ
(ṽm+1 − ṽm)

21−γ

]
+R1+R2,

where

R1 +R2 =
1

ρΓ(2− γ)

m∑
j=1

�m−j+1O(k
3−γ) +

1

Γ(2− γ)

1

21−γ
O(k3−γ).

Let ı = m− j + 1, then

R1 +R2 =
1

Γ(2− γ)

[
1

ρ

m∑
ı=1

�ıO(k
3−γ) +

1

21−γ
O(k3−γ)

]

=
1

Γ(2− γ)

[((
m+

1

2

)1−γ

−
(
1

2

)1−γ)
+

1

21−γ

]
O(k3−γ)

=
1

Γ(2− γ)

(
m+

1

2

)1−γ

O(k3−γ)

=
1

Γ(2− γ)

(
tm+1/2

k

)1−γ

O(k3−γ)

≤ Ck2.
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Thus, we get the following approximation of
∂γ ṽ(y,t)

∂tγ
at (y, tm+ 1

2
)

∂γ ṽ(y, tm+1/2)

∂tγ
= �1ṽ

m +
m−1∑
j=1

(�m−j+1 −�m−j)ṽ
j −�mṽ

0 + ρ
(ṽm+1 − ṽm)

21−γ
+O(k2).

(4.3.3)

The resulting semi-discretized version of equation (4.3.1a) is obtained by using the approxi-

mation (4.3.3) in (4.3.1a) at the (m+ 1
2
)-th time level.

(
ρ

21−γ
− 1

2

)
ṽm+1 − 1

2
ṽm+1
yy + (ṽm+ 1

2 )3 =

(
ρ

21−γ
+

1

2

)
ṽm +

1

2
ṽmyy + gm+ 1

2

−
[
�1ṽ

m +
m−1∑
j=1

(�m−j+1 −�m−j)ṽ
j −�mṽ

0

]
.

(4.3.4)

The quasilinearization technique used in (4.3.4) for nonlinear term (ṽm+ 1
2 )3 is as follows

((ṽm+ 1
2 )i)3 =

1

2
[−((ṽm)i−1)3 + ((ṽm)i−1)2(ṽm+1)i], i = 1, 2, . . . ,

where i stands for the number of iterations and let (ṽ)0 is the initial guess that satisfies the

initial and boundary conditions of the problem (4.2.1). We write the equation (4.3.4) at the ith

iteration as

(
ρ

21−γ
− 1

2

)
(ṽm+1)i − 1

2
(ṽm+1

yy )i +
1

2
[−((ṽm)i−1)3 + ((ṽm)i−1)2(ṽm+1)i] =

(
ρ

21−γ
+

1

2

)
(ṽm)i

+
1

2
(ṽmyy)

i + gm+ 1
2 −

[
�1(ṽ

m)i +
m−1∑
j=1

(�m−j+1 −�m−j)(ṽ
j)i −�m(ṽ

0)i

]
.

(4.3.5)

Now, we replace (ṽm)i by ṽm and (ṽm)i−1 by V m

(
ρ

21−γ
− 1

2
+

3

2
(V m)2

)
ṽm+1 − 1

2
ṽm+1
yy =

(
ρ

21−γ
+

1

2

)
ṽm +

1

2
ṽmyy +

1

2
(V m)3

+ gm+ 1
2 −

[
�1ṽ

m +
m−1∑
j=1

(�m−j+1 −�m−j)ṽ
j −�mṽ

0

]
, (4.3.6)

87



Chapter 4

ṽ(0, tm+1) = Φl(tm+1), ṽ(1, tm+1) = Φr(tm+1), m = 0, 1, . . . ,Mt − 1. (4.3.7)

4.3.2 The spatial discretization: Cubic B-spline functions

For a positive integer Ny, let ΥNy be the partition of [0, 1] described by ΥNy = {yn|yn =

nh, 0 ≤ n ≤ Ny} where h = 1
Ny

is the spatial step size. Let Bn(y) are the cubic B-spline

functions defined on [0, 1], for forming cubic B-spline functions. We introduce four extra

nodal points y−1, y−2 on the left side of the partition ΥNy and yNy+1, yNy+2 on the right side

of the partition ΥNy . The functions Bn, n = −1, . . . ,Ny + 1 are describe as follows:

Bn(y) =
1

h3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(y − yn−2)
3, yn−2 ≤ y ≤ yn−1,

h3 + 3h2(y − yn−1) + 3h(y − yn−1)
2 − 3(y − yn−1)

3, yn−1 ≤ y ≤ yn,

h3 + 3h2(yn+1 − y) + 3h(yn+1 − y)2 − 3(yn+1 − y)3, yn ≤ y ≤ yn+1,

(yn+2 − y)3, yn+1 ≤ y ≤ yn+2,

0, otherwise.

(4.3.8)

The definition shows that each B-spline is always zero and non-zero at three nodal points

(Table 4.1). The following table displays the numerical value of each Bn(y) and its initial two

derivatives.

Table 4.1: Values of Bn, and its derivatives at nodal locations

j = n− 1 j = n j = n+ 1 Otherwise

Bn(yj) 1 4 1 0
B′
n(yj) 3/h 0 −3/h 0

B′′
n(yj) 6/h2 −12/h2 6/h2 0

The set {B−1,B0, . . . ,BNy ,BNy+1} spans a family of polynomials (B3(π)) of degree

less than or equal to three on each of the subintervals [yn, yn+1] (see [186]). We seek an

approximation v̂(y, tm) ∈ B3(π) to the solution ṽ(y, tm), which use these cubic B-spline

functions as follows

v̂(y, tm) =

Ny+1∑
n=−1

δmn Bn(y), (4.3.9)
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where δmn ’s are the unknown time-dependent scalars. Using cubic spline functions for the

approximated function v̂(yn, tm) = v̂(n,m) in equation (4.3.9) with its first two derivatives,

we get ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
v̂(n,m) = δmn−1 + 4δmn + δmn+1,

hv̂y(n,m) = −3δmn−1 + 3δmn+1,

h2v̂yy(n,m) = 6δmn−1 − 12δmn + 6δmn+1.

(4.3.10)

Using (4.3.10) in (4.3.6), we obtain following system of linear equations

Pm
n δ

m+1
n−1 +Qm

n δ
m+1
n + Pm

n δ
m+1
n+1 = ℘m

n , n = 0, 1, . . . ,Ny, m = 0, 1, . . . ,Mt − 1,

(4.3.11a)

with

δm+1
−1 + 4δm+1

0 + δm+1
1 = Φl(tm+1), m = 0, 1, . . . ,Mt − 1, (4.3.11b)

δm+1
Ny−1 + 4δm+1

Ny
+ δm+1

Ny+1 = Φr(tm+1), m = 0, 1, . . . ,Mt − 1, (4.3.11c)

where

Pm
n =

ρ

21−γ
− 1

2
+

3

2
(V (n,m))2 − 3

h2
,

Qm
n = 4

(
ρ

21−γ
− 1

2
+

3

2
(V (n,m))2

)
+

6

h2
,

℘m
n =

(
ρ

21−γ
+

1

2

)
v̂(n,m) +

1

2
v̂yy(n,m) +

1

2
(V (n,m))3 + g

m+ 1
2

n

−
[
�1v̂(n,m) +

m−1∑
j=1

(�m−j+1 −�m−j)v̂(n, j)−�mv̂(n, 0)

]
.

Now on eliminating δm+1
−1 and δm+1

Ny+1 from (4.3.11a)–(4.3.11c), we obtain following system

of linear equations

ACm+1 = Bm,
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where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Qm
0 − 4Pm

0 0 0

Pm
1 Qm

1 Pm
1

. . .
. . .

. . .

. . .
. . .

. . .

. . .
. . .

. . .

Pm
Ny−1 Qm

Ny−1 Pm
Ny−1

0 0 Qm
Ny

− 4Pm
Ny

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

is a matrix of size (Ny + 1)× (Ny + 1) and

Cm+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δm+1
0

δm+1
1

...

δm+1
n

...

δm+1
Ny−1

δm+1
Ny

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(Ny+1)×1

, Bm =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

℘m
0 − Φl(tm+1)P

m
0

℘m
1

...

℘m
n

...

℘m
Ny−1

℘m
Ny

− Φr(tm+1)P
m
Ny

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(Ny+1)×1

.

4.4 The stability analysis

The Von-Neumann procedure-based stability study of the numerical approach (4.3.11) is

presented in this section. We describe the discretized approach in the following structure to

examine the stability.

Pm
n δ

m+1
n−1 +Qm

n δ
m+1
n + Pm

n δ
m+1
n+1 = Rm

n δ
m
n−1 + Sm

n δ
m
n +Rm

n δ
m
n+1 +

1

2
(V m

n )3 + g
m+ 1

2
n

−�1

(
δmn−1 + 4δmn + δmn+1

)
−

m−1∑
j=1

(�m−j+1 −�m−j)
(
δjn−1 + 4δjn + δjn+1

)
+�m

(
δ0n−1 + 4δ0n + δ0n+1

)
, n = 0, 1, . . . ,Ny, m = 0, 1, . . . ,Mt − 1, (4.4.1)

where

Rm
n =

ρ

21−γ
+

1

2
+

3

h2
,
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Sm
n = 4

(
ρ

21−γ
+

1

2

)
− 6

h2
.

The round-off error is given by

Pm
n Ξm+1

n−1 +Qm
n Ξ

m+1
n + Pm

n Ξm+1
n+1 = Rm

n Ξ
m
n−1 + Sm

n Ξm
n +Rm

n Ξ
m
n+1 −�1

(
Ξm
n−1 + 4Ξm

n + Ξm
n+1

)
−

m−1∑
j=1

(�m−j+1 −�m−j)
(
Ξj
n−1 + 4Ξj

n + Ξj
n+1

)
+�m

(
Ξ0
n−1 + 4Ξ0

n + Ξ0
n+1

)
, n = 0, 1, . . . ,Ny, m = 0, 1, . . . ,Mt − 1, (4.4.2)

along with the constraints

Ξm
0 = Ξm

Ny
= 0, m = 0, 1, . . . ,Mt.

Using the Fourier series expansion, the grid functions

Ξm(y) =

⎧⎪⎨⎪⎩
Ξm
n , yn − h

2
< y < yn +

h
2
, n = 1, 2, . . . ,Ny − 1,

0, 0 ≤ y ≤ h
2

or 1− h
2
≤ y ≤ 1,

can be deduced into

Ξm(y) =
∞∑

j=−∞
ηm(j)ei(2jπy), m = 0, 1, . . . ,Mt,

where

ηm(j) =

∫ 1

0

Ξm(y)e−i(2jπy)dy.

Parseval’s identity in the L2-norm deduces

||Ξm||22 =
Ny−1∑
n=1

h|Ξm
n |2 =

∫ 1

0

|Ξm(y)|2dy =
∞∑

j=−∞
|ηm(j)|2.

From the preceding analysis, we can assume that

Ξm
n = ηmeiθnh,
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where i =
√
−1 and θ is a wave number. Then (4.4.2) gives

ηm+1 =

(
(U1)

m
n −�1U

(U2)mn

)
ηm − U

(U2)mn

(
m−1∑
q=1

(�m−q+1 −�m−q)η
q +�mη

0

)
, (4.4.3)

where

(U1)
m
n = 2Rm

n cos(θh) + Sm
n ,

(U2)
m
n = 2Pm

n cos(θh) +Qm
n ,

U = 2 cos(θh) + 4.

For stability of numerical method (4.3.11), we demonstrate that |ηm+1| ≤ |η0| using mathe-

matical induction. For m = 0, (4.4.3) yields

|η1| =
∣∣∣∣(((U1)

0
n −�1U

(U2)0n

)
η0
∣∣∣∣

=
|2R0

n cos(θh) + S0
n −�1(2 cos(θh) + 4)|

|2P 0
n cos(θh) +Q0

n|
|η0|.

Putting the values R0
n, S0

n, P 0
n , and Q0

n after some simplification, we get

|η1| =

∣∣∣∣( ρ
21−γ + 1

2
−�1

)
(cos(θh) + 2) + 3

h2 (cos(θh)− 1)

∣∣∣∣∣∣∣∣( ρ
21−γ − 1

2
+ 3

2
(V 0

n )
2

)
(cos(θh) + 2)− 3

h2 (cos(θh)− 1)

∣∣∣∣ |η
0|

=

∣∣∣∣( ρ
21−γ (2− 31−γ) + 1

2

)
(cos(θh) + 2) + 3

h2 (cos(θh)− 1)

∣∣∣∣∣∣∣∣( ρ
21−γ − 1

2
+ 3

2
(V 0

n )
2

)
(cos(θh) + 2)− 3

h2 (cos(θh)− 1)

∣∣∣∣ |η
0|.

To show

∣∣∣∣( ρ

21−γ (2−31−γ)+ 1
2

)
(cos(θh)+2)+ 3

h2
(cos(θh)−1)

∣∣∣∣∣∣∣∣( ρ

21−γ − 1
2
+ 3

2
(V 0

n )2

)
(cos(θh)+2)− 3

h2
(cos(θh)−1)

∣∣∣∣ ≤ 1, we look at two situations.
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Case 1. If

(
ρ

21−γ (2− 31−γ) + 1
2

)
(cos(θh) + 2) + 3

h2 (cos(θh)− 1) ≥ 0, then

∣∣∣∣( ρ
21−γ (2− 31−γ) + 1

2

)
(cos(θh) + 2) + 3

h2 (cos(θh)− 1)

∣∣∣∣∣∣∣∣( ρ
21−γ − 1

2
+ 3

2
(V 0

n )
2

)
(cos(θh) + 2)− 3

h2 (cos(θh)− 1)

∣∣∣∣ ≤ 1,

iff

(
ρ

21−γ
(2− 31−γ) +

1

2

)
(cos(θh) + 2) +

3

h2
(cos(θh)− 1) ≤

(
ρ

21−γ
− 1

2
+

3

2
(V 0

n )
2

)
(cos(θh) + 2)− 3

h2
(cos(θh)− 1),

iff (
ρ

21−γ
(1− 31−γ) + 1− 3

2
(V 0

n )
2

)
(cos(θh) + 2) +

3

h2
(cos(θh)− 1) ≤ 0.

It is valid for all values of θ and h.

Case 2. If

(
ρ

21−γ (2− 31−γ) + 1
2

)
(cos(θh) + 2) + 3

h2 (cos(θh)− 1) ≤ 0, then

∣∣∣∣( ρ
21−γ (2− 31−γ) + 1

2

)
(cos(θh) + 2) + 3

h2 (cos(θh)− 1)

∣∣∣∣∣∣∣∣( ρ
21−γ − 1

2
+ 3

2
(V 0

n )
2

)
(cos(θh) + 2)− 3

h2 (cos(θh)− 1)

∣∣∣∣ ≤ 1,

iff

−
(

ρ

21−γ
(2− 31−γ) +

1

2

)
(cos(θh) + 2)− 3

h2
(cos(θh)− 1)

≤
(

ρ

21−γ
− 1

2
+

3

2
(V 0

n )
2

)
(cos(θh) + 2)− 3

h2
(cos(θh)− 1),

iff (
− ρ

21−γ
(3− 31−γ)− 3

2
(V 0

n )
2

)
(cos(θh) + 2) ≤ 0.

It is valid for all values of θ and h. Now assuming

|ηj| ≤ |η0|, j = 2, 3, . . . ,m, (4.4.4)
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We shall demonstrate that it is true for j = m+ 1. The equation (4.4.3) yields

|ηm+1| ≤
( |(U1)

m
n −�1U |+�1|U |

|(U2)mn |

)
|η0|.

Again, there are two cases.

Case 1. If (U1)
m
n −�1U ≥ 0, then

|(U1)
m
n −�1U |+�1|U |

|(U2)mn |
≤ 1,

iff
(U1)

m
n

(U2)mn
≤ 1,

iff (
1− 3

2
(V m

n )2
)
(cos(θh) +

6

h2
(cos(θh)− 1) ≤ 0,

which stands accurate for all θ as h→ 0.

Case 2. If (U1)
m
n −�1U ≤ 0, then

|(U1)
m
n −�1U |+�1|U |

|(U2)mn |
≤ 1,

iff
−(U1)

m
n + 2�1U

(U2)mn
≤ 1,

iff

−
(

ρ

21−γ
+

1

2

)
(cos(θh) + 2)− 3

h2
(cos(θh)− 1) + 2�1(cos(θh) + 2)

≤
(

ρ

21−γ
− 1

2
+

3

2
(V m

n )2
)
(cos(θh) + 2)− 3

h2
(cos(θh)− 1),

iff

(
− 2ρ

21−γ
+ 2�1 −

3

2
(V m

n )2
)
(cos(θh) + 2) ≤ 0,(

− 2ρ

21−γ
+

2ρ

21−γ
(31−γ − 1)− 3

2
(V m

n )2
)
(cos(θh) + 2) ≤ 0,
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(
− 2ρ

21−γ
(2− 31−γ)− 3

2
(V m

n )2
)
(cos(θh) + 2) ≤ 0,

iff

2− 31−γ ≥ 0 ⇔ 3γ ≥ 3

2
.

On merging further outcomes, we have established that |ηm+1| ≤ |η0| form = 0, 1, 2, . . . ,Mt−
1 delivered 3

2
≤ 3γ . Therefore, the scheme is conditionally stable.

4.5 Convergence analysis

Lemma 4.5.1. The cubic B-spline will provide the following inequality functions

B−1(y),B0(y), . . . ,BNy+1(y).

Ny+1∑
n=−1

|Bn(y)| ≤ 10, y ∈ [0, 1].

Proof. If y is a grid location i.e., y = yr, then

Ny+1∑
n=−1

|Bn(yr)| = |Br−1(yr)|+ |Br(yr)|+ |Br+1(yr)| = 1 + 4 + 1 = 6.

Further, at any point y ∈ [yr−1, yr], we have

Ny+1∑
n=−1

|Bi(y)| = |Br−2(y)|+ |Br−1(y)|+ |Br(y)|+ |Br+1(y)| ≤ 1 + 4 + 4 + 1 = 10.

As a result, we have
∑Ny+1

n=−1 |Bi(y)| ≤ 10 for every y ∈ [0, 1].

Theorem 4.5.1. Suppose that v̂m+1(y) is the cubic B-spline approximation of the precise

solution vm+1(y) ∈ C4([0, 1]) of the problem (4.2.1) at the (m+ 1)-th time level. Then, there

is a constant C that corresponds to

‖v̂m+1(y)− vm+1(y)‖ ≤ Ch2.

Proof. Let v̂m+1(y) =
∑Ny+1

n=−1 δ
m+1
n Bn(y) be the cubic B-spline approximation to the exact

95



Chapter 4

solution vm+1(y) and V̂ m+1(y) =
∑Ny+1

n=−1 δ̂
m+1
n Bn(y) be the unique cubic B-spline interpola-

tion to the exact solution vm+1(y).

‖vm+1(y)− v̂m+1(y)‖ ≤ ‖vm+1(y)− V̂ m+1(y)‖+ ‖v̂m+1(y)− V̂ m+1(y)‖. (4.5.1)

With respect to v̂m+1(y) and V̂ m+1(y), a system of linear equations is

ACm+1 = Bm, m = 0, 1, . . . ,Mt − 1, (4.5.2)

AĈm+1 = B̂m, m = 0, 1, . . . ,Mt − 1, (4.5.3)

respectively, where

Ĉm+1 = (δ̂m+1
0 , δ̂m+1

1 , . . . , δ̂m+1
Ny−1, δ̂

m+1
Ny

)T ,

and

B̂m = (℘̂(0,m)−Φl(tm+1)P
m
0 , ℘̂(1,m), . . . , ℘̂(n,m), . . . , ℘̂(Ny−1,m), ℘̂(Ny,m)−Φr(tm+1)P

m
Ny
)T .

Subtracting (4.5.3) from (4.5.2), we find

A(Cm+1 − Ĉm+1) = Bm − B̂m, m = 0, 1, . . . ,Mt − 1, (4.5.4)

where

Bm − B̂m =(℘(0,m)− ℘̂(0,m), ℘(1,m)− ℘̂(1,m), . . . , ℘(Ny − 1,m)− ℘̂(Ny − 1,m),

℘(Ny,m)− ℘̂(Ny,m))T .

Now, we can see that

|℘(n,m)− ℘̂(n,m)| ≤
(

ρ

21−γ
+

1

2

)
|v̂(yn, tm)− V̂ (yn, tm)|+

1

2
|v̂yy(yn, tm)− V̂yy(yn, tm)|

+�1|v̂mn − V̂ m
n |+

m−1∑
j=1

|�m−j+1 −�m−j||v̂jn − V̂ j
n |+�m|v̂0n − V̂ 0

n |.

(4.5.5)
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Using the result ‖(vm(y)− v̂m(y))(ν)‖ ≤ cνh
4−ν , ν = 0, 1, 2, given in [153], we obtain

‖Bm − B̂m‖ ≤
(

ρ

21−γ
+

1

2

)
c0h

4 +
1

2
c2h

2 +

(
�1 +

m−1∑
j=1

|�m−j+1 −�m−j|+�m

)
c0h

4

≤M1h
2, (4.5.6)

where M1 =

(
ρ

21−γ + 1
2
+ 2�1

)
c0h

2 ++1
2
c2. The matrix A is invertible due to its rigorous

diagonal dominance; as a result, from (4.5.4), we derive

‖Cm+1 − Ĉm+1‖ ≤ ‖A−1‖‖Bm − B̂m‖. (4.5.7)

Let the matrix A’s row sums be σ0, σ1, . . . , σNy . Then

‖A−1‖ ≤ 1

|σ| , (4.5.8)

where σ = min{σ0, σ1, . . . , σNy}. Thus, from (4.5.6), (4.5.7), and (4.5.8), we get

‖Cm+1 − Ĉm+1‖ ≤ M1h
2

|σ| . (4.5.9)

Now, using Equation (4.5.9) and Lemma 4.5.1, we get

‖v̂m+1(y)−V̂ m+1(y)‖ =

∥∥∥∥∥
Ny+1∑
n=−1

(δmn − δ̂mn )Bn(y)

∥∥∥∥∥ ≤
∣∣∣∣∣
Ny+1∑
n=−1

Bn(y)

∣∣∣∣∣ ‖Cm+1−Ĉm+1‖ ≤ 10M1h
2

|σ| .

Also, we have

‖vm+1(y)− V̂ m+1(y)‖ ≤ c0h
4.

Therefore, (4.5.1) gives

‖vm+1(y)− v̂m+1(y)‖ ≤ Ch2,

where C = c0h
2 + 10M1

|σ| .

Theorem 4.5.2. The solution to the problem (4.2.1a)-(4.2.1c) using the numerical approach

(4.3.11) is second-order convergent.
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Proof. The relation (4.3.3) together with the theorem (4.5.1 gives the required result.

4.6 Numerical Simulation
This section tests the proposed method’s efficiency and accuracy (4.3.11) on two numerical

problems for time-fractional ACE. The orders of convergence and errors in distinct norms are

demonstrated in tables. As we deliver the exact solutions to both problems, we calculate the

error in the L2 and maximum norms by using the double mesh principle, and we calculate its

order of convergence employing the definition 1.3.8.

Example 4.6.1. We consider the time-fractional ACE

C
0D

γ
t v(y, t)−

∂2v(y, t)

∂y2
+ (v(y, t))3 − v(y, t) =

(
2ey

Γ(3− γ)
+ π2t2 − t2

)
cos(πy) + t6 cos3(πy),

y ∈ (0, 1), t ∈ (0, 1],

with the initial condition

v(y, 0) = 0, y ∈ [0, 1],

and the boundary conditions

v(0, t) = t2, v(1, t) = −t2, t ∈ [0, 1].

The exact solution to the problem is v(y, t) = t2 cos(πy).

Example 4.6.2. We consider the time-fractional ACE

C
0D

γ
t v(y, t)−

∂2v(y, t)

∂y2
+(v(y, t))3−v(y, t) = 2eyt2−γ

Γ(3− γ)
−2eyt2+(eyt2)3, y ∈ (0, 1), t ∈ (0, 1],

with the initial condition

v(y, 0) = 0, y ∈ [0, 1],

and the boundary conditions

v(0, t) = t2, v(1, t) = et2, t ∈ [0, 1].
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The exact solution of the problem is v(y, t) = eyt2.

In Tables 4.2–4.5 we displayed the pointwise errors in the L∞ and L2 norms over a range

of gamma values for Examples 4.6.1 and 4.6.2.These statistics show that the errors decrease

and are close to the theoretical results as the number of grid points increases in space and

time. It supports the second-order convergent nature of the suggested approach as predicted

by our theoretical study. Figures 1 and 4 depict the 3D numerical behavior of the solution to

the problem evaluated in Examples 4.6.1 and 4.6.2, respectively. The numerical solution at

different time levels (by taking different values of tm (m = Mt/4, Mt/2, 3Mt/4, Mt))

are displayed in Figures 2 and 5 for Examples 4.6.1 and 4.6.2, respectively. Figures 3 and

6 are drawn to study the error behavior of the present scheme for Examples 4.6.1 and 4.6.2,

respectively.

Table 4.2: Example 4.6.1: Pointwise errors and order of convergence for various values of the

γ norm in the L∞ norm

Quantity of nodal points overall

γ Mt = 16 Mt = 32 Mt = 64 Mt = 128 Mt = 256
Ny = 10 Ny = 20 Ny = 40 Ny = 80 Ny = 160

0.4 1.37E − 03 3.47E − 04 8.84E − 05 2.24E − 05 5.68E − 06
1.9812 1.9728 1.9805 1.9795

0.6 1.39E − 03 3.58E − 04 9.30E − 05 2.43E − 05 6.48E − 06
1.9571 1.9447 1.9363 1.9069

0.8 1.41E − 03 3.67E − 04 9.86E − 05 2.73E − 05 7.94E − 06
1.9418 1.8961 1.8527 1.7817
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Table 4.3: Example 4.6.1: Pointwise errors and order of convergence for various values of the

γ norm in the L2 norm

Quantity of nodal points overall

γ Mt = 16 Mt = 32 Mt = 64 Mt = 128 Mt = 256
Ny = 10 Ny = 20 Ny = 40 Ny = 80 Ny = 160

0.4 9.97E − 04 2.52E − 04 6.35E − 05 1.61E − 05 4.08E − 06
1.9842 1.9886 1.9797 1.9804

0.6 1.41E − 03 2.59E − 04 6.68E − 05 1.75E − 05 4.66E − 06
1.9633 1.9550 1.9325 1.9090

0.8 1.02E − 03 2.66E − 04 7.09E − 05 1.96E − 05 5.71E − 06
1.9391 1.9076 1.8549 1.7793

Table 4.4: Example 4.6.2: Pointwise errors and order of convergence for various values of the

γ norm in the L∞ norm

Quantity of nodal points overall

γ Mt = 16 Mt = 32 Mt = 64 Mt = 128 Mt = 256
Ny = 10 Ny = 20 Ny = 40 Ny = 80 Ny = 160

0.4 8.00E − 03 1.99E − 03 4.95E − 04 1.23E − 04 3.02E − 05
2.0072 2.0073 2.0088 2.0260

0.6 7.75E − 03 1.90E − 03 4.62E − 04 1.10E − 04 2.55E − 05
2.0282 2.0400 2.0704 2.1089

0.8 7.53E − 03 1.81E − 03 4.22E − 04 9.20E − 05 2.66E − 05
2.0567 2.1007 2.1975 1.7902
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a Ny = 10, Mt = 16 b Ny = 40, Mt = 64

Figure 1: Example 4.6.1: Numerical Solution for γ = 0.8

Table 4.5: Example 4.6.2: Pointwise errors and order of convergence for various values of the

γ norm in the L2 norm

Quantity of nodal points overall

γ Mt = 16 Mt = 32 Mt = 64 Mt = 128 Mt = 256
Ny = 10 Ny = 20 Ny = 40 Ny = 80 Ny = 160

0.4 5.83E − 03 1.44E − 03 3.58E − 04 8.86E − 05 2.18E − 05
2.0174 2.0080 2.0146 2.0230

0.6 5.62E − 03 1.37E − 03 3.32E − 04 7.87E − 05 1.80E − 05
2.0364 2.0449 2.0767 2.1284

0.8 5.44E − 03 1.30E − 03 2.99E − 04 6.39E − 05 1.94E − 05
2.0651 2.1203 2.2263 1.7198

4.7 Conclusion
This study presents a numerical technique for the time-fractional ACE, which combines the

Crank-Nicolson method with cubic B-splines. To discretize the issue, we use consistent

meshes in both directions. We have shown via thorough investigation that the offered strategy

is conditionally stable and delivers satisfactory results for γ ≥ log3(3/2) and second-order

convergent in every direction. Error estimates are given for the L2 and L∞ norms, despite the

L2−-norm being used for error computation. The cubic B-spline technique is straightforward
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Figure 2: Numerical solution for Example 4.6.1 at distinct time levels for γ = 0.8

a Ny = 10, Mt = 16 b Ny = 40, Mt = 64

Figure 3: Absolute errors for Example 4.6.1 for γ = 0.8
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a Ny = 10, Mt = 16 b Ny = 40, Mt = 64

Figure 4: Numerical solution for Example 4.6.2 for γ = 0.4
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Figure 5: Numerical simulation for Example 4.6.2 at distinct time levels for γ = 0.4
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a Ny = 10, Mt = 16 b Ny = 40, Mt = 64

Figure 6: Absolute error for γ = 0.4 for Example 4.6.2

based on computational findings. Higher-order fractional partial differential equations could

not be solved using the cubic B-spline approach.
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A high-order numerical technique for

generalized time-fractional Fisher’s

equation

5.1 Introduction

The generalized time-fractional Fisher’s equation is a substantial model for illustrating the

system’s dynamics. Studying effective numerical methods for this equation has considerable

scientific importance and application value. In that direction, this chapter presents the design

and analysis of a high-order numerical scheme for the generalized time-fractional Fisher’s

equation. The time-fractional derivative is taken in the Caputo sense and approximated

using Euler backward discretization. The quasilinearization technique is used to linearize

the problem, and then a compact finite difference scheme is considered for discretizing the

equation in the space direction. Our numerical method is convergent of O(k2−α + h4), where

h and k are stepped sizes in spatial and temporal directions, respectively. Three problems are

tested numerically by implementing the proposed technique, and the acquired results reveal

that the proposed method is suitable for solving this problem.

R. Choudhary, S. Singh, D. Kumar, A high-order numerical technique for generalized time-fractional

Fisher’s equation, Math. Methods Appl. Sci. , 46 (2023), 16050-–16071.
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5.2 Literature survey

In recent years, most practical situations appearing in distinct fields of science have earned

a great deal of curiosity and are modeled through nonlinear fractional order differential

equations (FDEs). In mathematical modeling of these situations, the non-local property of the

fractional derivative gives an extra edge over integer-order differential equations. Fractional

derivatives deliver a unique mechanism for describing some phenomena with genetic and

memory effects and redefine the flaws of integer-order derivatives. Again, this is the most

substantial benefit of fractional-order systems compared to integer-order ones. Fractional

calculus is a generalization of conventional calculus and deals with integrals and derivatives of

arbitrary orders. The classical operators suggested by Leibniz more than three centuries ago

have been developed for fractional systems in various formats. A special kernel characterizes

each fractional operator’s properties and can be employed in various individual problems (see

[187]). Nonlinear partial differential equations (PDEs) are confronted in diverse domains

of science. The generalized Fisher’s equation [188] is highly significant for explaining

various mechanisms. This chapter considers the following generalized time-fractional Fisher’s

Equation (GTFFE):

C
0D

α
t u(x, t)− μ1uxx(x, t)− μ2u(x, t) [1− uq(x, t)] = F (x, t), (x, t) ∈ (0,L)× (0, T ],

(5.2.1a)

subject to the initial condition

u(x, 0) = g0(x), x ∈ [0,L], (5.2.1b)

and the boundary conditions

u(0, t) = gl(t), u(L, t) = gr(t), t ∈ [0, T ], (5.2.1c)

where 0 < α ≤ 1, μ1 and μ2 are parameters, F (x, t) is the source term, q ∈ Z
+ (set of

positive integers), and g0(x), gl(t), and gr(t) are known functions. For compatible conditions,

we assume that gl(0) = g0(0) and gr(0) = g0(L). Taking α = 1 and q = 1 in Equation
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(5.2.1), we get an integer-order PDE considered by Fisher to study the propagation dynamics

in the time-space direction of a virile gene in an infinite domain [189]. How a population

grows between two competing processes can be defined through this equation. The proposed

equation and its modified versions have appeared in flame propagation [190], neurophysiology

[191], chemical kinetics [192], branching Brownian motion process [193], and many more

areas (see [189] for the reference). Fisher’s equation has become the center of interest for

many researchers because of its widespread applications. Finding the exact solutions to

a large class of time-fractional PDEs takes time and effort. Therefore, several numerical

techniques are employed for approximating the solutions of Fisher’s equation and similar

problems. Gupta and Ray [194] proposed two reliable schemes based on Haar wavelets

and homotopy asymptotic method for solving Burger’s equation and GTFFE. Veeresha et

al. [195] applied the q-homotopy analysis transform method (q-HATM) to the nonlinear

Fishers’s equation. Qurashi et al. [196] employed the residual power series technique by

using Maclaurin expansion to solve the TFFE of integer order. Some other methods like Haar

wavelets [197] and collocation using Jacobi wavelets [198], discontinuous local Galerkin

method [199], cubic B-spline collocation [189] are also used for numerical studies of TFFEs

of integer order. Recently, many articles came into existence for the numerical study of

GTFFEs, like Majeed et al. [200] used cubic B-spline collocation technique to extend the

previous study by adding source term and increasing the nonlinearity. They observed the

accuracy of O(τ 2−α+h2). Qin et al. [201] proposed their study based on explicit and implicit

difference schemes. They compared their results with the classical implicit difference scheme

and showed that calculation cost was reduced by 60% using the proposed technique. In

[202], Roul and Rohil presented a higher-order computational technique with an accuracy

of O(τ 2 + h4), using L1− 2 approximation for the time derivative and quintic B-splines for

spatial derivatives. From previously cited literature, it is evident that most work is proposed

for second-order accuracy in the spatial direction. In the proposed work, we intend to increase

the accuracy in spatial direction by implementing a compact finite difference scheme (CFDS)

(see [203, 204] for details).

The principal purpose of this work is to construct a higher-order (in space) effective

numerical technique for the numerical solution of GTFFE defined in (5.2.1). We have used
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the classical Euler backward technique to discretize the Caputo fractional derivative, while a

compact finite difference scheme makes the space derivative’s discretization. The nonlinearity

is managed by using the well-known quasilinearization technique. We also present the

computational time for the proposed method. To the author’s knowledge, the suggested

method has not been examined for the numerical study of the problem (5.2.1). This chapter is

summarized as follows: First, in Section 2, we discretize the time-fractional derivative and

apply quasilinearization to the considered problem. The time derivative shows the accuracy

of O(k2−α). Then, we derived the CFDS and some other estimates required for convergence

analysis. Section 3 deals with the convergence analysis, and we obtain the fourth-order

convergence in the spatial direction. In Section 4, we provide a stability analysis of the

proposed method. Three numerical experiments are executed in Section 5. We finish with a

brief conclusion of the outcomes in Section 6.

5.3 Discretization of the problem

5.3.1 Temporal discretization

We utilize the Euler backward method to discretize the time-fractional derivative C
0D

α
t u(x, t).

For this, we split the time interval [0, T ] employing the uniform step size k = T /Mt, where

Mt are the number of subintervals. Let tn = nk, n = 0, 1, 2, . . . ,Mt are the mesh points of

the interval [0, T ].

To discover the semidiscrete form of our problem, we rewrite the equation (5.2.1) at the

mesh point (x, tn+1) as

∂αũ(x, tn+1)

∂tα
− μ1ũxx(x, tn+1)− μ2ũ(x, tn+1) [1− ũq(x, tn+1)] = F (x, tn+1),

x ∈ (0,L), 0 ≤ n ≤Mt − 1, (5.3.1a)

with the initial condition

ũ(x, 0) = g0(x), x ∈ [0,L], (5.3.1b)
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and the boundary conditions

ũ(0, tn+1) = gl(tn+1), ũ(L, tn+1) = gr(tn+1), 0 ≤ n ≤Mt − 1, (5.3.1c)

where ũ denotes the approximated solution at the (n + 1)-th time level. The Caputo time-

fractional derivative in Equation (5.3.1) can be matched at the time point t = tn using the

Euler backward method. Considering that the function ũ is three times differentiable, the

Taylor expansion for
∂ũ(x,s)

∂t
for s ∈ (tn, tn+1) around tn is given as

∂ũ(x, s)

∂t
=
∂ũ(x, tn)

∂t
+ (s− tn)

∂2ũ(x, tn)

∂t2
+O((s− tn)

2)

=
ũ(x, tn+1)− ũ(x, tn)

k
− 1

2

∂2ũ(x, tn)

∂t2
(tn+1 + tn − 2s) +O((s− tn)

2). (5.3.2)

Since
∂ũ(x, tn)

∂t
=
ũ(x, tn+1)− ũ(x, tn)

k
− k

2!

∂2ũ(x, tn)

∂t2
+O(k2),

therefore

C
0D

α
t ũ(x, tn+1) =

1

Γ(1− α)

∫ tn+1

0

∂ũ(x, s)

∂t

ds

(tn+1 − s)α

=
1

Γ(1− α)

n∑
j=0

∫ tj+1

tj

∂ũ(x, s)

∂t

ds

(tn+1 − s)α

=
1

Γ(1− α)

n∑
j=0

ũ(x, tj+1)− ũ(x, tj)

k

∫ tj+1

tj

ds

(tn+1 − s)α
+Rn+1

=
1

Γ(1− α)

n∑
j=0

ũ(x, tj+1)− ũ(x, tj)

k

1

(1− α)
k1−α((n− j + 1)1−α

− (n− j)1−α) +Rn+1 (5.3.3)

=
1

Γ(2− α)

n∑
j=0

(ũ(x, tj+1)− ũ(x, tj))σn−j +Rn+1, (5.3.4)

where σi =
(i+ 1)1−α − i1−α

kα
and the truncation error Rn+1 is given as

Rn+1 =
1

Γ(1− α)

n∑
j=0

∫ tj+1

tj

(
−1

2

∂2ũ(x, tj)

∂t2
(tj+1 + tj − 2s)

)
ds

(tn+1 − s)α

109



Chapter 5

= Cũ
[

1

Γ(1− α)

n∑
j=0

∫ tj+1

tj

tj+1 + tj − 2s

(tn+1 − s)α
ds

]
, (5.3.5)

where Cũ is a constant that depends only on ũ.

Now, we have

1

Γ(1− α)

n∑
j=0

∫ tj+1

tj

tj+1 + tj − 2s

(tn+1 − s)α
ds

= − 1

Γ(1− α)

n∑
j=0

[
1

1− α
(2j + 1)k2−α[(n− j)1−α − (n− j + 1)1−α]

+
2

1− α
k2−α[(j + 1)(n− j)1−α − j(n+ 1− j)1−α]

+
2

(1− α)(2− α)
k2−α[(n− j)2−α − (n− j + 1)2−α]

]
=

k2−α

Γ(2− α)

[
(n+ 1)1−α + 2(n1−α + (n− 1)1−α + (n− 2)1−α + · · ·+ 11−α)

]
− 2k2−α

Γ(3− α)
(j + 1)2−α

=
k2−α

Γ(2− α)

[
(n+ 1)1−α + 2(n1−α + (n− 1)1−α + (n− 2)1−α + · · ·+ 11−α)

− 2

2− α
(n+ 1)2−α

]
. (5.3.6)

If we take S(n) = (n+1)1−α+2[n1−α+(n−1)1−α+(n−2)1−α+· · ·+11−α]− 2

2− α
(n+1)2−α,

then the following lemma shows that S(n) is bounded for all n.

Lemma 5.3.1. For all n ≥ 1 and α ∈ (0, 1),

|S(n)| ≤ C,

where C is a constant independent of α and n.

Proof. We can easily check that

S(n) = (n+ 1)1−α + 2[n1−α + (n− 1)1−α + (n− 2)1−α + · · ·+ 11−α]− 2

2− α
(n+ 1)2−α,

=
n∑

j=0

aj,
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where aj = (j + 1)1−α + j1−α − 2
2−α

[(j + 1)2−α − j2−α]. To prove the result, we will prove

that
∑n

j=0 aj is convergent, which can be demonstrated by offering that |aj| ≤ 1
j1+α for large

enough j. We have

|aj| = j1−α

∣∣∣∣∣
(
1 +

1

j

)1−α

+ 1− 2j

2− α

((
1 +

1

j

)2−α

− 1

)∣∣∣∣∣
= j1−α

∣∣∣∣1 + 1 + (1− α)
1

j
+

(1− α)(−α)
2!

1

j2
+

(1− α)(−α)(−α− 1)

3!

1

j3
+ · · ·

− 2j

2− α

(
− 1 + 1 + (2− α)

1

j
+

(2− α)(1− α)

2!

1

j2
+

(2− α)(1− α)(−α)
3!

1

j3
+ · · ·

)∣∣∣∣
= j1−α

∣∣∣∣( 1

2!
− 2

3!

)
(1− α)(−α) 1

j2
+

(
1

3!
− 2

4!

)
(1− α)(−α)(−α− 1)

1

j3
+ · · ·

∣∣∣∣
≤ j1−α 1

3!
(1− α)α

1

j2

(
1 +

2(α + 1)

4

1

j
+

3(α + 1)(α + 2)

20

1

j2
+ · · ·

)
≤ 1

3!
(1− α)α

1

j1+α

(
1 +

1

j
+

1

j2
+ · · ·

)
≤ 2

3!
(1− α)α

1

j1+α

≤ 1

j1+α
,

which implies that |S(n)| is bounded for all n ≥ 1 and α ∈ (0, 1).

Using Lemma 5.3.1 and Equation (5.3.6) in Equation (5.3.5), we can find that

|Rn+1| ≤ Cũ(C)k2−α

≤ Ck2−α, (5.3.7)

where C is a constant. Thus, the approximation of C
0D

α
t u(x, t) at (x, tn+1) is

C
0D

α
t u(x, tn+1) =

1

Γ(2− α)

n∑
j=0

(ũ(x, tj+1)− ũ(x, tj))σn−j +O(k2−α). (5.3.8)

From Equations (5.3.8) and (5.3.1a), we have the following semi-discretized form of GTFFE

1

Γ(2− γ)

[
σ0ũ(x, tn+1)− σnũ(x, t0)−

n∑
j=1

ũ(x, tj)(σn−j − σn−j+1)

]
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− μ1ũxx(x, tn+1)− μ2ũ(x, tn+1) [1− ũq(x, tn+1)] = F (x, tn+1) +Rn+1.

(5.3.9)

5.3.2 The derivation of the compact finite difference scheme

For full discretization of Equation (5.3.9), we operate a compact finite difference scheme; first,

we split the spatial domain [0,L] intoNx sub-intervals to get a partition of [0,L] of equidistant

mesh with the step size h = L/Nx. Let xm = mh, m = 0, 1, 2, . . . , Nx are the grid points of

the interval [0,L]. Let ũnm = ũ(xm, tn), m = 0, 1, 2, . . . , Nx, n = 0, 1, 2, . . . ,Mt, and here

we introduce some notations

δxũ
n
m =

1

2h
(ũnm+1 − ũnm−1), δ

2
xũ

n
m =

1

h2
(ũnm−1 − 2ũnm + ũnm+1),

Aũxx(xm, tn) =
1

12
[ũxx(xm−1, tn) + 10ũxx(xm, tn) + ũxx(xm+1, tn)] ,

Aũnm =
1

12
(ũnm−1 + 10ũnm + ũnm+1), m = 1, 2, . . . , Nx − 1, n = 0, 1, 2, . . . ,Mt.

The following lemmas are helpful in the derivation of the compact finite difference scheme

whose proofs can be seen in [205] and [206], respectively.

Lemma 5.3.2. For 0 < α < 1,

• σj ≥ 0, j = 0, 1, 2, . . . , n,

• σ0 ≥ σ1 ≥ σ2 ≥ · · · ≥ σn,

• σn +
n∑

j=1

(σn−j − σn−j+1) = σ0.

Lemma 5.3.3. Suppose v(x) ∈ C6[xm−1, xm+1] and xm+1 = xm+h, xm−1 = xm−h. Then

1

12
[v′′(xm−1) + 10v′′(xm) + v′′(xm+1)]−

1

h2
[v(xm−1)− 2v(xm) + v(xm+1)] =

h4

240
v(6)(κm),

for some κm ∈ (xm−1, xm+1).
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Now, the Equation (5.3.9) at the point (xm, tn+1) gives

1

Γ(2− γ)

[
(σ0 − Γ(2− γ)μ2)ũ

n+1
m − σnũ

0
m −

n∑
j=1

ũjm(σn−j − σn−j+1)

]
− μ1ũxx(xm, tn+1) + μ2(ũ

n+1
m )q+1 = F (xm, tn+1) +Rn+1

m .

(5.3.10)

Making use of quasilinearization technique in Equation (5.3.10) for nonlinear term (ũn+1
m )q+1,

we get

((ũn+1
m )q+1)i+1 = (q + 1)((ũnm)

q)i(ũn+1
m )i+1 − q((ũnm)

q+1)i, i = 1, 2, . . . (5.3.11)

where i stands for the number of iterations and let (ũ)1 is the initial guess that satisfies the

initial and boundary conditions. We write the Equation (5.3.10) at the (i+ 1)th iteration as

1

Γ(2− γ)

[
(σ0 − Γ(2− γ)μ2)ũ

n+1
m − σnũ

0
m −

n∑
j=1

ũjm(σn−j − σn−j+1)

]i+1

− μ1(ũxx(xm, tn+1))
i+1 + μ2((q + 1)((ũnm)

q)i(ũn+1
m )i+1)

= F (xm, tn+1) +Rn+1
m + μ2q((ũ

n
m)

q+1)i. (5.3.12)

Now, for simplicity we denote (ũnm)
i+1 by Ũn

m and (ũnm)
i by Un

m to get

1

Γ(2− γ)

[
(σ0 − Γ(2− γ)μ2)Ũ

n+1
m − σnŨ

0
m −

n∑
j=1

Ũ j
m(σn−j − σn−j+1)

]
− μ1Ũxx(xm, tn+1) + μ2(q + 1)(Un

m)
qŨn+1

m

= F (xm, tn+1) +Rn+1
m + μ2q(U

n
m)

q+1. (5.3.13)

From Lemma 5.3.3, we can conclude that

Aũxx(xm, tn+1) = δ2xŨ
n+1
m +

h4

240

∂6Ũ

∂x6
(κm, tn+1), κm ∈ (xm−1, xm+1).
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Operating A on the both sides of Equation (5.3.13), we find

1

Γ(2− γ)
A
[
(σ0 − Γ(2− γ)μ2)Ũ

n+1
m − σnŨ

0
m −

n∑
j=1

Ũ j
m(σn−j − σn−j+1)

]
− μ1δ

2
xŨ

n+1
m + μ2(q + 1)A(Un

m)
qAŨn+1

m

= AF (xm, tn+1) + μ2qA(Un
m)

q+1 +Rn+1
m , (5.3.14)

where

Rn+1
m = ARn+1

m + μ1
h4

240

∂6Ũ

∂x6
(κm, tn+1)

=
1

12
(Rn+1

m−1 + 10Rn+1
m +Rn+1

m+1) + μ1
h4

240

∂6Ũ

∂x6
(κm, tn+1). (5.3.15)

From (5.3.7), we can find that

|Rn+1
m | ≤ C(k2−α + h4), (5.3.16)

where

C = C + μ1
1

240

∂6Ũ

∂x6
(κm, tn+1),

is independent of k and h. thus, we get the following numerical scheme

[(
σ0

Γ(2− γ)
− μ2

)
+ μ2(q + 1)A(Un

m)
q

]
Aûn+1

m − μ1δ
2
xû

n+1
m = AF n+1

m + μ2qA(Un
m)

q+1

+
1

Γ(2− γ)
A
[
σnû

0
m +

n∑
j=1

ûjm(σn−j − σn−j+1)

]
, (5.3.17a)

with

û0m = g0(xm), m = 0, 1, 2, . . . , Nx, (5.3.17b)

and

ûn+1
0 = gl(tn+1), û

n+1
Nx

= gr(tn+1), n = 0, 1, . . . ,Mt − 1. (5.3.17c)
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In matrix form, this numerical scheme can be written as

BÛn+1 = V n,

where

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dn+1
1 en+1

1 0

fn+1
2 dn+1

2 en+1
2

. . .
. . .

. . .

. . .
. . .

. . .

. . .
. . .

. . .

fn+1
Nx−2 dn+1

Nx−2 en+1
Nx−2

0 fn+1
Nx−1 dn+1

Nx−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

is a matrix of size (Nx − 1)× (Nx − 1) and

Ûn+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ûn+1
1

ûn+1
2

...

ûn+1
m

...

ûn+1
Nx−2

ûn+1
Nx−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(Nx−1)×1

, V n =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zn+1
1 − gl(tn+1)f

n+1
1

zn+1
2

...

zn+1
m

...

zn+1
Nx−2

zn+1
Nx−1 − gr(tn+1)e

n+1
Nx−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(Nx−1)×1

,

where

dn+1
m =

5

6

(
σ0

Γ(2− γ)
− μ2

)
+

2μ1

h2
+

5μ2(q + 1)

6
A(Un

m)
q,

en+1
m =

1

12

(
σ0

Γ(2− γ)
− μ2

)
− μ1

h2
+
μ2(q + 1)

12
A(Un

m)
q,

fn+1
m =

1

12

(
σ0

Γ(2− γ)
− μ2

)
− μ1

h2
+
μ2(q + 1)

12
A(Un

m)
q,

zn+1
m = AF n+1

m + μ2qA(Un
m)

q+1 +
1

Γ(2− γ)
A
[
σnû

0
m +

n∑
j=1

ûjm(σn−j − σn−j+1)

]
.
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5.4 Convergence Analysis
Let W = {w | w = (w0, w1, . . . , wNx), w0 = 0, wNx = 0} be a grid function. For any

w,w′ ∈ W , we introduce the inner product and norms as follows

〈w,w′〉 = h

Nx−1∑
m=0

(
δxwm+ 1

2

)(
δxw

′
m+ 1

2

)
− h2

12
h

Nx−1∑
m=0

(
δ2xwm

) (
δ2xw

′
m

)
,

|w|1 =

√√√√h

Nx∑
m=0

(
δxwm− 1

2

)2

, ‖w‖ =

√√√√h

Nx−1∑
m=0

(wm)2, ‖w‖∞ = max
1≤m≤Nx−1

|wm|.

The following lemmas will be used for convergence analysis of the scheme (5.3.17).

Lemma 5.4.1. [207] For any w ∈ W , it holds that

2

3
|w|21 ≤ 〈w,w〉 ≤ |w|21,

‖w‖∞ ≤
√
L
2

|w|1,

‖w‖ ≤ L√
6
|w|1.

Lemma 5.4.2. For any w ∈ W , ‖w‖2 ≤ L2

4
〈w,w〉, and ‖w‖2∞ ≤ 3L

8
〈w,w〉.

Proof. This Lemma can easily be proved using Lemma 5.4.1.

Lemma 5.4.3. [208] For any w,w′ ∈ W , it holds that

−h
Nx−1∑
m=0

(
δ2xwm

)
w′

m = h

Nx∑
m=0

(
δxwm− 1

2

)(
δxw

′
m− 1

2

)
.

Lemma 5.4.4. [209] For any w ∈ W , it holds that ‖Aw‖2 ≤ ‖w‖2.

Lemma 5.4.5. Let {al} and {bl} are two non negative sequences and K is a non negative

constant. If al ≤ K +
l∑

i=0

biai, l ≥ 0, then al ≤ K exp

(
l∑

i=0

bi

)
.

Proof. We have

al ≤ K +
l∑

i=0

biai, l ≥ 0
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≤ K +
l∑

i=0

Kbi
l∏

i<j

(1 + bj), (using sharp Gronwall’s inequality [210])

= K +K
l∑

i=0

{ l∏
i≤j

(1 + bj)−
l∏

i+1≤j

(1 + bj)

}

= K +K
{ l∏

j≥0

(1 + bj)−
l∏

l+1≤j

(1 + bj)

}

= K
l∏

j≥0

(1 + bj) ≤ K exp

(
l∑

i=0

bi

)
, (since 1 + bi ≤ exp(bi)).

Theorem 5.4.1. Let u(x, t) ∈ C(6,2)([0,L] × [0, T ]) be the solution of the problem (5.2.1),

and ûnm be the solution of the difference scheme (5.3.17), and let En
m = u(xm, tn)− ûnm. Then,

we have

‖En‖ ≤ C(k2−α + h4), ‖En‖∞ ≤ C(k2−α + h4), 1 ≤ n ≤Mt.

Proof. Subtract Equation (5.3.17) from Equation (5.3.13) to get the following error equation

for the difference scheme (5.3.17)

[(
σ0

Γ(2− γ)
− μ2

)
+ μ2(q + 1)A(Un

m)
q

]
AEn+1

m = μ1δ
2
xE

n+1
m

+
1

Γ(2− γ)

n∑
j=1

(σn−j − σn−j+1)AEj
m +Rn+1

m ,

(5.4.1a)

with the errors at the initial time and boundaries

E0
m = 0, m = 0, 1, . . . , Nx, (5.4.1b)

and

En+1
0 = 0, En+1

Nx
= 0, n = 0, 1, . . . ,Mt − 1. (5.4.1c)

Multiplying Equation (5.4.1a) by −h(δ2xEn+1
m ) and summing up for m from 1 to Nx − 1, we
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get

− h

Nx−1∑
m=1

[(
σ0

Γ(2− γ)
− μ2

)
+ μ2(q + 1)A(Un

m)
q

]
(AEn+1

m )(δ2xE
n+1
m ) = −μ1||δ2xEn+1||2

− h
1

Γ(2− γ)

Nx−1∑
m=1

n∑
j=1

(σn−j − σn−j+1)(AEj
m)(δ

2
xE

n+1
m )− h

Nx−1∑
m=1

(Rn+1
m )(δ2xE

n+1
m ).

(5.4.2)

Let Un
m∗ = min{Un

m|m = 1, 2, . . . , Nx − 1}, then

− h

[(
σ0

Γ(2− γ)
− μ2

)
+ μ2(q + 1)A(Un

m∗)
q

]Nx−1∑
m=1

(AEn+1
m )(δ2xE

n+1
m ) ≤ −μ1||δ2xEn+1||2

− h
1

Γ(2− γ)

Nx−1∑
m=1

n∑
j=1

(σn−j − σn−j+1)(AEj
m)(δ

2
xE

n+1
m )− h

Nx−1∑
m=1

(Rn+1
m )(δ2xE

n+1
m ).

(5.4.3)

Now from Lemma 5.4.3

−h
Nx−1∑
m=1

(AEn+1
m )(δ2xE

n+1
m ) = −h

Nx−1∑
m=1

1

12
(En+1

m−1 + 10En+1
m + En+1

m+1)(δ
2
xE

n+1
m )

= h
10

12

Nx−1∑
m=0

(δxE
n+1
m+ 1

2

)(δxE
n+1
m+ 1

2

)− h

12

Nx−1∑
m=1

(δ2xE
n+1
m )(En+1

m−1 + En+1
m+1),

and we know that

En+1
m−1 + En+1

m+1 = h2δ2xE
n+1
m + 2En+1

m ,

thus

−h
Nx−1∑
m=1

(AEn+1
m )(δ2xE

n+1
m ) = h

Nx−1∑
m=0

(δxE
n+1
m+ 1

2

)(δxE
n+1
m+ 1

2

)− h2

12
h

Nx−1∑
m=1

(δ2xE
n+1
m )(δ2xE

n+1
m )

= 〈En+1, En+1〉. (5.4.4)
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Similarly,

−h
Nx−1∑
m=1

n∑
j=1

(σn−j − σn−j+1)(AEj
m)(δ

2
xE

n+1
m ) =

n∑
j=1

(σn−j − σn−j+1)〈En+1, Ej〉. (5.4.5)

The inequality
∑n

j=1(σn−j − σn−j+1)〈(En+1 − Ej), (En+1 − Ej)〉 ≥ 0 implies that

n∑
j=1

(σn−j − σn−j+1)〈En+1, Ej〉 ≤ 1

2
(σ0 − σn)〈En+1, En+1〉+ 1

2

n∑
j=1

(σn−j − σn−j+1)〈Ej, Ej〉

≤ 1

2
〈En+1, En+1〉+ 1

2

n∑
j=1

(σn−j − σn−j+1)〈Ej, Ej〉,

(5.4.6)

and the inequality h
∑Nx−1

m=1

(
1√
μ1
Rn+1

m −√
μ1δ

2
xE

n+1
m

)2

≥ 0 implies that

−h
Nx−1∑
m=1

(Rn+1
m )(δ2xE

n+1
m ) ≤ μ1

2
‖δ2xEn+1‖2 + 1

2μ1

‖Rn+1‖2

≤ μ1‖δ2xEn+1‖2 + 1

2μ1

‖Rn+1‖2. (5.4.7)

Substituting Equations (5.4.4), (5.4.5), (5.4.6), and (5.4.7) in Equation (5.4.3), we get

[(
1

2Γ(2− γ)
− μ2

)
+ μ2(q + 1)A(Un

m∗)
q

]
〈En+1, En+1〉 ≤ 1

2

n∑
j=1

(σn−j − σn−j+1)〈Ej, Ej〉

+
1

2μ1

‖Rn+1‖2,

now with the use of Equation (5.3.16) and λ = Γ(2− γ)

[
(1− 2λμ2) + 2λμ2(q + 1)A(Un

m∗)
q

]
〈En+1, En+1〉 ≤ λ

n∑
j=1

(σn−j − σn−j+1)〈Ej, Ej〉

+
λ

μ1

(C(k2−α + h4))2〈En+1, En+1〉 ≤ λ

(1− 2λμ2) + 2λμ2(q + 1)A(Un
m∗)

q
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[ n∑
j=1

(σn−j − σn−j+1)〈Ej, Ej〉+ C2

μ1

(k2−α + h4)2
]
,

here we use Lemma 5.4.5

〈En+1, En+1〉 ≤ λ

(1− 2λμ2) + 2λμ2(q + 1)A(Un
m∗)

q

C2

μ1

(k2−α + h4)2

exp
n∑

j=1

(σn−j − σn−j+1)〈Ej, Ej〉

≤ λ

(1− 2λμ2) + 2λμ2(q + 1)A(Un
m∗)

q

C2

μ1

(k2−α + h4)2(σ0 − σn)

≤ C2(k2−α + h4)2. (5.4.8)

Using Lemma 5.4.2, we obtain

‖En+1‖ ≤ C(k2−α + h4), ‖En+1‖∞ ≤ C(k2−α + h4).

5.5 Stability Analysis

The numerical scheme (5.3.17) is numerically stable if a small perturbation to the initial

solution gives a small perturbation in the numerical solution. Let {νn+1
m |0 ≤ m ≤ Nx, 0 ≤

n ≤Mt − 1} be the solution of

[(
σ0

Γ(2− γ)
− μ2

)
+ μ2(q + 1)A(Un

m)
q

]
Aνn+1

m − μ1δ
2
xν

n+1
m = AF n+1

m + μ2qA(Un
m)

q+1

+
1

Γ(2− γ)
A
[
σnν

0
m +

n∑
j=1

νjm(σn−j − σn−j+1)

]
, (5.5.1a)

with

ν0m = g0(xm) + ψ0
m, m = 0, 1, 2 . . . , Nx, (5.5.1b)

and

νn+1
0 = gl(tn+1), ν

n+1
Nx

= gr(tn+1), n = 0, 1, . . . ,Mt − 1, (5.5.1c)
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where ψ0
m is a small perturbation of g0(xm). Let

εnm = ûnm − νnm, m = 0, 1, 2 . . . , Nx, n = 0, 1, . . . ,Mt.

Theorem 5.5.1. The numerical scheme (5.3.17a)-(5.3.17c) is stable if the discrete numerical

solutions ûnm satisfying (5.3.17) and νnm satisfying (5.5.1) are such that ‖εn+1‖∞ ≤ C|ψ0|1.

Proof. To find error equation for compact difference scheme (5.3.17), we subtract (5.3.17)

from (5.5.1)

[(
σ0

Γ(2− γ)
− μ2

)
+ μ2(q + 1)A(Un

m)
q

]
Aεn+1

m = μ1δ
2
xε

n+1
m +

1

Γ(2− γ)

[
σnε

0
m

+
n∑

j=1

εjm(σn−j − σn−j+1)

]
,

(5.5.2a)

with

ε0m = ψ0
m, m = 0, 1, 2, . . . , Nx, (5.5.2b)

and

εn+1
0 = 0, εn+1

Nx
= 0, n = 0, 1, . . . ,Mt − 1. (5.5.2c)

Multiplying Equation (5.5.2a) by −h(δ2xεn+1
m ) and summing up for m from 1 to Nx− 1, to get

− h

Nx−1∑
m=1

[(
σ0

Γ(2− γ)
− μ2

)
+ μ2(q + 1)A(Un

m)
q

]
(Aεn+1

m )(δ2xε
n+1
m ) =

− hμ1

Nx−1∑
m=1

(δ2xε
n+1
m )(δ2xε

n+1
m )− h

1

Γ(2− γ)

Nx−1∑
m=1

A
[
σnε

0
m +

n∑
j=1

εjm(σn−j − σn−j+1)

]
(δ2xε

n+1
m ),

which gives

− h

[(
σ0

Γ(2− γ)
− μ2

)
+ μ2(q + 1)A(Un

m∗)
q

]Nx−1∑
m=1

(Aεn+1
m )(δ2xε

n+1
m ) ≤
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− hμ1

Nx−1∑
m=1

(δ2xε
n+1
m )(δ2xε

n+1
m )− h

1

Γ(2− γ)

Nx−1∑
m=1

A
[
σnε

0
m +

n∑
j=1

εjm(σn−j − σn−j+1)

]
(δ2xε

n+1
m ).

(5.5.3)

Use of Equations (5.4.4) and (5.4.5) in (5.5.3) yields

[(
σ0

Γ(2− γ)
− μ2

)
+ μ2(q + 1)A(Un

m∗)
q

]
〈εn+1, εn+1〉 ≤ 1

Γ(2− γ)

n∑
j=1

(σn−j − σn−j+1)〈εj, εn+1〉

+
σn

Γ(2− γ)
〈ε0, εn+1〉 − μ1‖δ2xεn+1‖2.

(5.5.4)

Now the inequality

n∑
j=1

(σn−j − σn−j+1)〈(εn+1 − εj), (εn+1 − εj)〉 ≥ 0 implies that

n∑
j=1

(σn−j − σn−j+1)〈εj, εn+1〉 ≤ 1

2
(1− σn)〈εn+1, εn+1〉+ 1

2

n∑
j=1

(σn−j − σn−j+1)〈εj, εj〉,

(5.5.5)

and the inequality 〈(εn+1 − ε0), (εn+1 − ε0)〉 ≥ 0 implies that

〈ε0, εn+1〉 ≤ 1

2
〈εn+1, εn+1〉+ 1

2
〈ε0, ε0〉. (5.5.6)

Substituting Equation (5.5.6) and (5.5.5) in Equation (5.5.4), and put λ = Γ(2− γ), we get

[
(1− λμ2) + λμ2(q + 1)A(Un

m∗)
q

]
〈εn+1, εn+1〉 ≤ 1

2
〈εn+1, εn+1〉+ 1

2

n∑
j=1

(σn−j − σn−j+1)〈εj, εj〉

+
σn
2
〈ε0, ε0〉 − λμ1‖δ2xεn+1‖2,

or

[
(1− 2λμ2)+2λμ2(q+1)A(Un

m∗)
q

]
〈εn+1, εn+1〉 ≤

n∑
j=1

(σn−j−σn−j+1)〈εj, εj〉+σn〈ε0, ε0〉,
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or

[
(1− 2λμ2)+2λμ2(q+1)A(Un

m∗)
q

]
〈εn+1, εn+1〉 ≤

n∑
j=1

(σn−j−σn−j+1)〈εj, εj〉+σ0〈ε0, ε0〉.

(5.5.7)

An application of Lemma 5.4.5 yields

[
(1− 2λμ2) + 2λμ2(q + 1)A(Un

m∗)
q

]
〈εn+1, εn+1〉 ≤ σ0〈ε0, ε0〉 exp(σ0 − σj)

≤ σ0〈ε0, ε0〉 exp(1),

or

〈εn+1, εn+1〉 ≤ σ0 exp(1)

(1− 2λμ2) + 2λμ2(q + 1)A(Un
m∗)

q
〈ε0, ε0〉. (5.5.8)

Again using Lemmas 5.4.1 and 5.4.2 in Equation (5.5.8), we get

‖εn+1‖2∞ ≤ 3L
8
〈εn+1, εn+1〉 ≤ 3L

8

σ0 exp(1)

(1− 2λμ2) + 2λμ2(q + 1)A(Un
m∗)

q
(|ψ0|1)2,

that is

‖εn+1‖∞ ≤ C|ψ0|1,

where C =

√
3L
8

σ0 exp(1)

(1− 2λμ2) + 2λμ2(q + 1)A(Un
m∗)

q
.

5.6 Numerical Illustrations and Applications

In this section, three test examples are taken to demonstrate the proposed method’s efficiency,

computational complexity, and accuracy. We calculate numerical solutions and tabulate for

various values of parameters μ1, μ2, and α. We also portray the numerical solution graphically

to compare with the exact solution to represent the solution’s nature for varying the parametric

values. Using the double mesh principle, we find error estimates in L∞-norm, the respective

order of convergence is calculated by using the definition 1.3.8.
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In a specific direction (space or time), the order of convergence is calculated by

dNx,Mt,x =

log

( ENx,Mt

E2Nx,Mt

)
log 2

, dNx,Mt,t =

log

( ENx,Mt

ENx,2Mt

)
log 2

.

The CPU time is also measured to further investigate the technique’s performance. All

examples are coded by MATLAB R2021b and performed on Intel Core i7 (9th Gen) with a

memory of 16GB.

Example 5.6.1. First, we consider the problem (5.2.1) defined on (0, 1)×(0, 1] with F (x, t) =

2x2
t2−α

Γ(3− α)
−2μ1(1+ t

2)−μ2x
2(1+ t2)

(
1− (x2(1+ t2))q

)
with the initial and boundary

conditions

u(x, 0) = x2, x ∈ [0, 1], u(0, t) = 0, u(1, t) = 1 + t2, t ∈ [0, 1].

The exact solution to this problem is u(x, t) = x2(1 + t2).

Example 5.6.2. Next, we consider the problem (5.2.1) defined on (0, 1)×(0, 1] with F (x, t) =

t
3
2
−α Γ(5/2)

Γ(5/2− α)
sin

(
3π

2
x

)
+μ1

9π2

4
t3/2 sin

(
3π

2
x

)
−μ2t

3/2 sin

(
3π

2
x

)(
1−
(
t3/2 sin

(
3π

2
x

))q)
with the initial and boundary conditions

u(x, 0) = 0, x ∈ [0, 1], u(0, t) = 0, u(1, t) = −t3/2, t ∈ [0, 1].

The exact solution to this problem is u(x, t) = t3/2 sin

(
3π

2
x

)
.

Example 5.6.3. Finally, we consider the problem (5.2.1) defined on (0, 1) × (0, 1] with

F (x, t) = tΓ(α+2)(1−x2) cos(3πx)−μ1t
1+α

(
12πx sin(3πx)+(9π2x2−9π2−2) cos(3πx)

)
−

μ2t
1+α(1 − x2) cos(3πx)

(
1 −

(
t1+α(1 − x2) cos(3πx)

)q)
with the initial and boundary

conditions

u(x, 0) = 0, x ∈ [0, 1], u(0, t) = t2α, u(1, t) = 0, t ∈ [0, 1].

The exact solution to this problem is u(x, t) = t1+α(1− x2) cos(3πx).
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In Table 5.1, we find ENx,Mt , dNx,Mt for different values of α and fixed q = 3. It confirms

the order of convergence 2 − α in the temporal direction. The CPU time is also given for

each α, which is quite reasonable as the number of points increases. The similar analogy

one can see in Tables 5.4 and 5.7 for Examples 5.6.2 and 5.6.3, respectively (for different

values of μ1 and μ2). In Tables 5.2, 5.5, and 5.8, we provide pointwise errors and orders of

convergence in spatial direction for the same set of α values as in Tables 5.1, 5.4, and 5.7,

keeping Mt = 160. The obtained numerical order of convergence agrees with the theoretical

one derived in convergence analysis. We also deliver the CPU time in the same tables, which

assures the computational efficiency of the proposed technique. Keeping α fixed and varying

the values of q, we get order of convergence 2− α in Tables 5.3, 5.6, and 5.9.

To bring a clear sight of the real-time nature of the solution, the surface plots of the

numerical and exact solutions are given in Figures 1, 4, 7 for the Examples 5.6.1, 5.6.2, and

5.6.3, respectively. One can easily see that the surface plots of these solutions are almost

identical. We confirm this analogy by plotting the exact and numerical solutions at a fixed

time level in Figures 5.2b, 5.5b, and 5.8b. The solution changes with each time level as we

approach from lower to higher time levels. For this, we have drawn the numerical solution

at different time levels (see Figures 5.2a, 5.5a, and 5.8a). Contour plots and 3D views of

numerical solutions are provided for Examples 5.6.1 and 5.6.2 in Figures 3 and 6, respectively.

For Example, 5.6.3, Figure 9 shows how the solution changes with respect to α?

5.7 Conclusions
This chapter suggests a higher-order numerical technique in spatial direction for the gen-

eralized time-fractional Fisher’s equation with significantly less computational time. The

discretization process for the time-fractional derivative uses the standard Euler Backward

technique, while in the spatial direction, we employed CFDS. The proposed numerical scheme

solves the GTFFE very efficiently and produces accurate solutions with less computational

error for both directions. The graphical results reveal that the present approach for finding the

numerical solution of GTFFE agrees well with the exact solution. The tabular results strongly

confirm the theoretical aspects of orders of convergence in the spatial and temporal directions.
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Table 5.1: ENx,Mt , dNx,Mt , and CPU time (in sec.) for Example 5.6.1 taking q = 3, μ1 =
μ2 = 0.5

α Nx=16
Mt=20

Nx=32
Mt=40

Nx=64
Mt=80

Nx=128
Mt=160

Nx=256
Mt=320

0.2 1.0983e− 03 3.1510e− 04 8.9685e− 05 2.5598e− 05 7.3675e− 06
1.2768 1.4886 1.8088 1.7968 -

CPU Time 0.0617 0.1031 0.4648 3.2660 25.1628

0.5 2.0294e− 03 6.8669e− 04 2.3369e− 04 8.0328e− 05 2.7829e− 05
1.5633 1.5551 1.5406 1.5293 -

CPU Time 0.0774 0.1069 0.4655 3.2648 25.1729

0.8 7.3508e− 03 3.1916e− 03 1.3826e− 03 6.0009e− 04 2.6073e− 04
1.2036 1.2069 1.2041 1.2026 -

CPU Time 0.0616 0.1022 0.4677 3.3133 25.0789

0.95 1.4228e− 02 6.9107e− 03 3.3369e− 03 1.6113e− 03 7.7815e− 04
1.0418 1.0503 1.0503 1.0501 -

CPU Time 0.0553 0.1045 0.4663 3.3770 25.3164

Table 5.2: Pointwise errors, CPU time (in sec.), and orders of convergence in space for

Example 5.6.1 taking q = 3, μ1 = μ2 = 0.5

Nx

α 16 32 64 128 256
0.2 1.0500e− 08 6.7182e− 10 4.2503e− 11 2.6643e− 12 1.6689e− 13

3.9662 3.9824 3.9957 3.9968 -

CPU Time 1.2870 2.5457 5.0066 9.6239 19.9678

0.5 1.8176e− 08 1.1752e− 09 7.4135e− 11 4.6405e− 12 3.3107e− 13
3.9511 3.9866 3.9978 3.8091 -

CPU Time 1.2690 2.5128 4.9514 9.8175 19.8542

0.8 2.7406e− 07 2.7319e− 08 1.7580e− 09 1.1088e− 10 6.9803e− 12
3.3265 3.9579 3.9869 3.9896 -

CPU Time 1.2972 2.5399 4.9081 9.7731 20.0414

0.95 2.0146e− 06 1.3063e− 07 9.4002e− 09 6.0389e− 10 3.8496e− 11
3.9469 3.7967 3.9603 3.9715 -

CPU Time 1.2667 2.4711 4.9423 9.8052 19.6993
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Table 5.3: ENx,Mt , dNx,Mt , and CPU time (in sec.) for Example 5.6.1 taking α = 0.7,

μ1 = μ2 = 1

q Nx=16
Mt=20

Nx=32
Mt=40

Nx=64
Mt=80

Nx=128
Mt=160

Nx=256
Mt=320

2 4.6149e− 03 1.8808e− 03 7.6294e− 04 3.0951e− 04 1.2559e− 04
1.2950 1.3017 1.3016 1.3013 -

CPU Time 0.0575 0.1075 0.4659 3.3237 25.2550

4 4.9565e− 03 1.9269e− 03 7.6275e− 04 3.0467e− 04 1.2249e− 04
1.3630 1.3370 1.3240 1.3146 -

CPU Time 0.0571 0.1021 0.4755 3.3456 25.1361

5 5.0677e− 03 1.9091e− 03 7.7161e− 04 3.0355e− 04 1.2199e− 04
1.4084 1.3069 1.3459 1.3152 -

CPU Time 0.0557 0.1044 0.4642 3.2964 25.2418

a Numerical solution b Exact solution

Figure 1: Surface plots of exact and numerical solutions for Example 5.6.1 by taking Nx =
Mt = 50, α = 0.8, q = 3, and μ1 = μ2 = 1.
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Figure 2: Plots of exact and numerical solutions for Example 5.6.1 by taking Nx =Mt = 64,

α = 0.75, q = 3, and μ1 = μ2 = 1.

a 3D view of numerical solution
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Figure 3: Plots of numerical solution for Example 5.6.1 by taking Nx =Mt = 32, α = 0.5,

q = 2, and μ1 = μ2 = 1.
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Table 5.4: ENx,Mt , dNx,Mt , and CPU time (in sec.) for Example 5.6.2 taking q = 3, μ1 =
μ2 = 1

α Nx=16
Mt=20

Nx=32
Mt=40

Nx=64
Mt=80

Nx=128
Mt=160

Nx=256
Mt=320

0.4 1.6392e− 03 5.9534e− 04 2.1451e− 04 7.7025e− 05 2.7556e− 05
1.46142 1.4727 1.4776 1.4830 -

CPU Time 0.0776 0.1144 0.4828 3.2591 25.1628

0.6 4.5193e− 03 1.7498e− 03 6.7151e− 04 2.5688e− 04 9.8051e− 05
1.3689 1.3817 1.3863 1.3895 -

CPU Time 0.06730 0.1142 0.4647 3.2404 24.9058

0.8 1.2096e− 02 5.4119e− 03 2.3959e− 03 1.0545e− 03 4.6247e− 04
1.1603 1.1756 1.1840 1.1891 -

CPU Time 0.0678 0.1132 0.4835 3.2275 24.8066

0.95 2.4003e− 02 1.1951e− 02 5.8852e− 03 2.8796e− 03 1.4033e− 03
1.0061 1.0220 1.0312 1.0370 -

CPU Time 0.0662 0.1114 0.4828 3.2591 24.9153

Table 5.5: Pointwise errors, CPU time (in sec.), and orders of convergence in space for

Example 5.6.2 taking q = 3, μ1 = μ2 = 1

Nx

α 16 32 64 128 256
0.4 1.3322e− 05 8.3713e− 07 5.2285e− 08 3.2673e− 09 2.0420e− 10

3.9922 4.0010 4.0002 4.0000 -

CPU Time 1.2757 2.4868 4.9491 9.6267 19.5583

0.6 1.2194e− 05 7.6523e− 07 4.7795e− 08 2.9872e− 09 1.8671e− 10
3.9941 4.0010 4.000 3.9999 -

CPU Time 1.2747 2.4904 4.9083 9.7121 19.5783

0.8 1.0996e− 05 6.8916e− 07 4.3044e− 08 2.6912e− 09 1.6818e− 10
3.9960 4.0010 3.9995 4.0002 -

CPU Time 1.3470 2.6052 5.2264 10.7367 21.7518

0.95 1.0070e− 05 8.2341e− 07 5.9205e− 08 3.8047e− 09 2.4250e− 10
3.6123 3.7978 3.9599 3.9717 -

CPU Time 1.2863 2.5494 5.2532 10.6452 21.4630
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Table 5.6: ENx,Mt , dNx,Mt , and CPU time (in sec.) for Example 5.6.2 taking α = 0.75, and

μ1 = μ2 = 1 and different values of q

q Nx=16
Mt=20

Nx=32
Mt=40

Nx=64
Mt=80

Nx=128
Mt=160

Nx=256
Mt=320

2 5.6723e− 03 2.4734e− 03 1.0628e− 03 4.5410e− 04 1.9305e− 04
1.1974 1.2186 1.2268 1.2340 -

CPU Time 0.1019 0.1159 0.5342 3.5703 28.4285

4 5.6717e− 03 2.4748e− 03 1.0636e− 03 4.5444e− 04 1.9319e− 04
1.1965 1.2184 1.2268 1.2341 -

CPU Time 0.0646 0.1186 0.5323 3.5737 27.6741

5 5.7242e− 03 2.4747e− 03 1.0636e− 03 4.5445e− 04 1.9319e− 04
1.2098 1.2183 1.2268 1.2341 -

CPU Time 0.0862 0.1169 0.4753 3.3195 27.1765

a Numerical solution b Exact solution

Figure 4: Surface plots of exact and numerical solutions for Example 5.6.2 by taking Nx =
Mt = 50, α = 0.8, q = 2, and μ1 = μ2 = 1.
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Figure 5: Plots of exact and numerical solutions for Example 5.6.2 by taking Nx =Mt = 64,

α = 0.75, q = 2, and μ1 = μ2 = 1.

a 3D view of numerical solution
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Figure 6: Plots of numerical solutions for Example 5.6.2 by taking Nx =Mt = 32, α = 0.5,

q = 2, and μ1 = μ2 = 1.
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Table 5.7: ENx,Mt , dNx,Mt , and CPU time (in sec.) for Example 5.6.3 taking q = 3, μ1 =
μ2 = 0.009

α Nx=16
Mt=20

Nx=32
Mt=40

Nx=64
Mt=80

Nx=128
Mt=160

Nx=256
Mt=320

0.45 1.4650e− 03 5.6737e− 04 2.2164e− 04 8.4698e− 05 3.2081e− 05
1.3685 1.3561 1.3878 1.4006 -

CPU Time 0.0650 0.1126 0.4852 3.3066 25.2482

0.65 4.3849e− 03 1.6841e− 03 6.7022e− 04 2.6451e− 04 1.0421e− 04
1.3806 1.3293 1.3413 1.3438 -

CPU Time 0.0699 0.1119 0.4833 3.2947 25.6117

0.85 1.3914e− 02 6.2904e− 03 2.8721e− 03 1.2982e− 03 5.8602e− 04
1.1453 1.1310 1.1456 1.1475 -

CPU Time 0.0672 0.1151 0.4752 3.3361 25.2517

0.99 2.8874e− 02 1.4412e− 02 7.2363e− 03 3.5986e− 03 1.7883e− 03
1.0025 0.9939 1.0078 1.0088 -

CPU Time 0.0653 0.1112 0.4876 3.3159 25.3494

Table 5.8: Pointwise errors, CPU time (in sec.), and orders of convergence in space for

Example 5.6.3 taking q = 3, and μ1 = μ2 = 0.009

Nx

α 16 32 64 128 256
0.45 2.1570e− 04 1.3307e− 05 8.3738e− 07 5.2292e− 08 3.2676e− 09

4.0188 3.9902 4.0012 4.0003 -

CPU Time 1.2697 2.4921 4.9558 9.8184 19.7032

0.65 1.8678e− 04 1.1524e− 05 7.2429e− 07 4.5230e− 08 2.8269e− 09
4.0186 3.9919 4.0012 4.0000 -

CPU Time 1.2981 2.5283 4.9520 9.7569 19.8107

0.85 1.5596e− 04 9.6220e− 06 6.0412e− 07 3.7726e− 08 2.3586e− 09
4.0187 3.9934 4.0012 3.9996 -

CPU Time 1.2946 2.5006 4.9340 9.7830 19.5258

0.99 1.3445e− 04 8.2950e− 06 5.2048e− 07 3.2503e− 08 2.0324e− 09
4.0187 3.9943 4.0012 3.9993 -

CPU Time 1.2833 2.5185 4.9685 9.6940 19.8018
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Table 5.9: ENx,Mt , dNx,Mt , and CPU time (in sec.) for Example 5.6.3 taking α = 0.75,

μ1 = μ2 = 0.009

q Nx=16
Mt=20

Nx=32
Mt=40

Nx=64
Mt=80

Nx=128
Mt=160

Nx=256
Mt=320

2 7.9444e− 03 3.3151e− 03 1.4104e− 03 5.9474e− 04 2.5052e− 04
1.2609 1.2329 1.2458 1.2473 -

CPU Time 0.0595 0.1011 0.4597 3.2133 25.0561

4 7.9663e− 03 3.3220e− 03 1.4127e− 03 5.9549e− 04 2.5078e− 04
1.2619 1.2336 1.2463 1.2477 -

CPU Time 0.0546 0.1043 0.4567 3.2333 24.9164

5 7.9299e− 03 3.3212e− 03 1.4166e− 03 5.9828e− 04 2.5226e− 04
1.2556 1.2293 1.2435 1.2459 -

CPU Time 0.0594 0.1066 0.4760 3.2565 24.9839

a Numerical solution b Exact solution

Figure 7: Surface plots of exact and numerical solutions for Example 5.6.3 by taking Nx =
Mt = 50, α = 0.8, q = 2, and μ1 = μ2 = 1.
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Figure 8: Plots of exact and numerical solutions for Example 5.6.3 by taking Nx =Mt = 64,

α = 0.75, q = 2, and μ1 = μ2 = 1.
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Figure 9: Plots of numerical solution of Example 5.6.3 for different values of α by taking

Nx =Mt = 50, q = 2, and μ1 = μ2 = 1.
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A numerical method for solving the

fractional-order predator-prey model

6.1 Introduction
This chapter explores the Predictor-Corrector Method (PCM) to solve a nonlinear two-

dimensional fractional-order predator-prey model with carrying capacity. The derivative of

fractional order abodes the modified Atangana-Baleanu fractional derivative of Caputo sense

(MABC derivative). Due to the smoothness and fast implementation, PCM is advantageous

over other methods. The computational outcomes match with two methods, the homotopy

perturbation Sumudu transform method (HPSTM) and the homotopy analysis Sumudu trans-

form method (HASTM), presented by Srivastava et al. in [1]. The computational results are

drawn graphically for different values of derivatives to illustrate the variations of carnivore

and chased populations.

6.2 Literature survey
In both ecology and biology, the dynamics of relationships between species are heavily

entwined. A predator is a species that consumes another species, and the species that is eaten

is referred to as prey. Bear and fish, tiger and cow, snake and mice, leopard and fox, fox and

rabbit, and more animals are examples of predator and prey species. The terms ”predator”
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and ”prey” are almost often used to refer to solely carnivorous animals. The same vision also

includes many plant species at the same time, such as a bear and a fruit, a grasshopper and

a leaf, a rabbit and a carrot, etc. Newly numerous mathematicians explain these relations

with the help of modeling, bringing into report the populations of species and ecosystem

situations that have evolved the increasing issue of analysis in diverse domains, particularly

biology. The Lotka-Volterra equation, developed in biological mathematics [211, 212], plays

a crucial part in creating a model for the population growth of biological organisms. It has

been determined that these equations, which include the interspecific rival, are necessary for

those involved in biology. These equations once more aid in understanding the effects of

competitive relationships between distinct species; see [213–216]. Freedman [217] studied

the famous classical model for predator-prey population and delivered it with the help of the

Gaussian system. Recent research by Raw et al. [218] examined the effects of movement

within the head predator species population and the defense mechanism of a prey species. In

recent years, numerous scholars have published theoretical studies in biology and numerical

studies in mathematics on these dynamics (refer to [15, 219–221]).

To solve time-fractional problems, several scholars have employed the ABC derivative.

Akgul and Modanli have studied a third-order fractional differential equation with ABC

derivative [222]. Later, using the Atangana-Baleanu derivative to solve the advection-diffusion

equation, Tajadodi [223] proposed an approximation method based on Bernstein polynomials.

Additionally, several real-world issues with the ABC derivative have been outlined by Bas

and Ozarslan [224] and Gao et al. [225], where the macroeconomic model integrating ABC

fractional derivatives was looked into before the viral infection models for AIDS and Zika

were researched. However, after reading these articles, we learned that the ABC derivative

has a nonsingular kernel that we initialize problems with. For more information, see [226].

Therefore, our research uses the MABC derivative mentioned in [39].

In this chapter, we suppose a system of equations of fractional order with carrying capacity

K1[1]

MABCDγ
0ω(t) = ω(t)

(
α1 −

α1

K1

ω(t)

)
− β1ω(t)φ(t), (6.2.1a)

MABCDγ
0φ(t) = φ(t)(−α2 + β2ω(t)), t > 0, (6.2.1b)
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with the initial-conditions

ω(0) = μ1, φ(0) = μ2. (6.2.1c)

Here MABCDγ
0 symbolizes the modified Atanagana-Baleanu fractional derivative of order γ

in the Caputo sense; 0 < γ ≤ 1, and α1, α2, K1, β1, β2, μ1, μ2 are positive constants. The

table provided in this document, namely Table 6.1, presents the physical interpretations of the

parameters and variables used in (6.2.1).

Table 6.1: The variables and parameters considered in the problem (6.2.1)

Variables/Parameter Description

ω(t) The density of the prey population

φ(t) The density of the predator population

α1 Prey’s intrinsic growth

α2 Predator’s growth rate

K1 Carrying capacity

β1 Positive competition coefficient

β2 Positive competition coefficient

Only a few numerical schemes are available for [1], and there is no study where this model

was examined by the Predictor-Corrector method (PCM). This approach has established

efficiency in numerous practical applications [227–230]. To the best of our knowledge, to

analyze a two-dimensional, fractional-order predator-prey system with carrying capacity K1,

we use the PCM for the first time in this wor. Fractional-order nonlinear differential equa-

tions characterize the model under consideration. The strengths of the predator-prey model

presented in this study may be apprehended during this examination. This chapter explores

the Predictor-Corrector Method (PCM) to solve a The primary objective of this study is to

provide the PCM solution for the mathematical model represented by equation (6.2.1). The

equation (6.2.1) was previously solved using the homotopy perturbation Sumudu transform

method (HPSTM) [1], which offers a semi-analytical solution. The reproducing kernel Hilbert

space method (RKHSM) [231] also was used. The authors of [232] have presented a novel

approach in their study, wherein they propose using a fractional Bernstein series solution

form to address the fractional-order biological population model that incorporates a carrying

capacity.
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6.3 Preliminaries

Definition 6.3.1. Let f1(t), f2(t) : R −→ R are integrable functions, then their Laplace

convolution is given by

(f1 ∗ f2)(t) =
∫ t

0

f1(t− s)f2(s)ds, t > 0.

Definition 6.3.2. The modified Atangana-Baleanu fractional integral of order γ ∈ (n −
1, n), n ∈ N is determined for ω(t) ∈ L1(0, T ) and given by

MABIγ0ω(t) =
1− δ

N(δ)

[
RLIn−1

0 ω(t)+
δ

1− δ
RLIδ+n−1

0 ω(t)−ω(0)
(
tn−1

Γ(n)
+

δ

1− δ

tn+δ−1

Γ(n+ δ)

)]

where γ = δ + n− 1.

When n = 1

MABIγ0ω(t) =
1− γ

N(γ)

[
ω(t) +

γ

1− γ
RLIγ0ω(t)− ω(0)

(
1 +

γ

1− γ

tγ

Γ(γ + 1)

)]

Lemma 6.3.1. [39] If ω(n)(t) ∈ L1(0,∞), and γ ∈ (n− 1, n), n ∈ N; γ = δ + n− 1. The

following equality holds

MABIγ0
MABCDγ

0ω(t) = ω(t)−
n−1∑
k=0

ω(k)(t)
tk

k!
,

MABCDγ
0
MABIγ0ω(t) = ω(t)− ω(0).

When n = 1

MABIγ0
MABCDγ

0ω(t) = ω(t)− ω(0),

MABCDγ
0
MABIγ0ω(t) = ω(t)− ω(0).
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6.4 Equilibrium Point Stability

To the stability of the system (6.2.1), it is sufficient to examine the stability of equilibrium

points of the system (6.2.1). To see the equilibrium points of the system of fractional order, let

ω(t)

(
α1 −

α1

K1

ω(t)

)
− β1ω(t)φ(t) = 0, (6.4.1)

φ(t)(−α2 + β2ω(t)) = 0. (6.4.2)

From (6.4.1) and (6.4.2) equilibrium points of system (6.2.1) are E∗
1 = (0, 0), E∗

2 = (K1, 0),

and E∗
3 =

(
α2

β2
, α1

β1

(
1− α2

K1β2

))
. Let us examine the stability of the system (6.2.1) at the

trivial equilibrium point E∗
1 = (0, 0). Thus, the variational matrix at trivial equilibrium point

E∗
1 = (0, 0) is

A1 =

⎡⎣α1 0

0 −α2

⎤⎦ ,
eigenvalues of A1 are λ1(E

∗
1) = α1 and λ2(E

∗
1) = −α2 here λ1(E

∗
1) is positive eigenvalue

of A1. Therefore, from Routh-Hurwitz conditions [233, 234] trivial equilibrium point E∗
1 =

(0, 0) is unstable.

Next, we examine the stability of the model (6.2.1) at the equilibrium point E∗
2 = (K1, 0).

Thus, the variational matrix at equilibrium point E∗
2 = (K1, 0) is

A2 =

⎡⎣−α1 −β1K1

0 K1β2 − α2

⎤⎦ ,
eigenvalues of A2 are λ1(E

∗
2) = −α1 and λ2(E

∗
2) = K1β2 − α2 here λ1(E

∗
2) is negative

eigenvalue of A1 and λ2(E
∗
2) = K1β2 − α2 is negative if K1β2 ≤ α2. Therefore, from

Routh-Hurwitz conditions [233, 234] equilibrium point E∗
1 = (0, 0) is stable for system

(6.2.1) if and only if K1β2 ≤ α2.

Successively, we analyze the stability of the model (6.2.1) at the equilibrium point
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E∗
3 =

(
α2

β2
, α1

β1

(
1− α2

K1β2

))
. Therefore, the variational matrix at equilibrium point E∗

3 is

A3 =

⎡⎣ −α1α2

K1β2

−β1α2

β2

β2α1

β1
− α1α2

K1β1
0

⎤⎦ ,
the eigenvalues of this matrix, delivered by the algebraic equation

det(A3 − λI) = λ2 + λ

(
α1α2

K1β2

)
+

(
α1α2 −

α1α
2
2

K1β2

)
= 0,

are

λ1,2(E
∗
3) =

− α1α2

K1β2
±
√(

α1α2

K1β2

)2

− 4
(
α1α2 − α1α2

2

K1β2

)
2

,

as α1, α2, K1 and β2 all are positive constants. When

(
α1α2

K1β2

)2

− 4

(
α1α2 −

α1α
2
2

K1β2

)
≥ 0,

then ∣∣∣∣α1α2

K1β2

∣∣∣∣2 > (
α1α2

K1β2

)2

− 4

(
α1α2 −

α1α
2
2

K1β2

)
≥ 0,

so the eigenvalues λ1,2(E
∗
3) are negative, which suggests that the solution ω(t) = 0, φ(t) = 0

corresponding to the equilibrium point E∗
3 is globally asymptotically stable.

When (
α1α2

K1β2

)2

− 4

(
α1α2 −

α1α
2
2

K1β2

)
≤ 0,

then, the eigenvalues λ1,2(E
∗
3) has a negative real part, which suggests that the solution

ω(t) = 0, φ(t) = 0 corresponding to the equilibrium point E∗
3 is globally asymptotically

stable.

6.5 An explanation of the technique

In this province, we suggest the Predictor-Corrector method to obtain the approximate solution

of the two-dimensional predator-prey system of fractional order (6.2.1). To apply the predictor-

corrector method, we first discretize the time interval [0, T ] into N subintervals with the use
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of equidistance mesh h = T
N

. Let Π = {tj|j = 0, 1, 2, . . . , N} be the partition of the interval

[0, T ] and xj be the approximation of x(tj) i.e., xj ≈ x(tj). Furthermore, let xij represent the

approximation x(tj) after i corrector actions, where x(tj) is the solution at tj of the general

initial value problem as pursued. Then

MABCDγ
0x(t) = F (t, x(t)), x(0) = x0, 0 < γ ≤ 1, 0 < t ≤ T,

gives

x(t) = x0 +
MABCIγ0F (t, x(t))

= x0 +
1− γ

N(γ)

[
F (t, x(t)) +

γ

1− γ
RLIγ0F (t, x(t))− F (0, x0)

(
1 +

γ

1− γ

tγ

Γ(γ + 1)

)]
= x0 +

1− γ

N(γ)

[
F (t, x(t)) +

γ

1− γ

1

Γ(γ)

∫ t

0

(t− s)γ−1F (s, x(s)) ds

− F (0, x0)

(
1 +

γ

1− γ

tγ

Γ(γ + 1)

)]
. (6.5.1)

Therefore, the execution of corrector iterations for Predictor-Corrector is explained as follows:

xij+1 = x0 +
1− γ

N(γ)

[
F (tj+1, x

i−1
j+1) +

γ

1− γ

hγ

Γ(γ + 2)

{ j∑
k=0

μk,j+1F (tk, x
i
k) + F

(
tj+1, x

i−1
j+1

)
− F (0, x0)

(
1 +

γ

1− γ

tγj+1

Γ(γ + 1)

)}]
, (i = 1, 2, . . . , Q), (6.5.2)

x0j+1 := xPj+1 = x0 +
1− γ

N(γ)

[
F (tj+1, xj) +

γ

1− γ

hγ

Γ(γ + 2)

{ j∑
k=0

νk,j+1F (tk, xk)

− F (0, x0)

(
1 +

γ

1− γ

tγj+1

Γ(γ + 1)

)}]
, (6.5.3)

where

μk,j+1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
jγ+1 − (j − γ)(j + 1)γ, if k = 0,

(j − k + 2)γ+1 + (j − k)γ+1 − 2(j − k + 1)γ+1, if 1 ≤ k ≤ j,

1, if k = j + 1,

(6.5.4)
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and

νk,j+1 = (j + 1− k)γ − (j − k)γ, 0 ≤ k ≤ j. (6.5.5)

Here, x0j+1 := xPj+1 is predictor approximation and xQj+1 is the final approximation.

Theorem 6.5.1. [235] If 0 < γ < 1 and x ∈ C2[0, T ]. Then the approximation calculated by

the method (6.5.2) and (6.5.3) pleasures

max
0≤j≤N

|x(tj)− xj| = O(hM),

where M = min{2, 1 +Qγ}.

Now, we execute this method for the fractional order system (6.2.1). We have

ωi
j+1 = μ1 +

1− γ

N(γ)

[
ωi−1
j+1

(
α1 −

α1

K1

ωi−1
j+1

)
− β1ω

i−1
j+1φ

i−1
j+1

+
γ

1− γ

hγ

Γ(γ + 2)

{ j∑
k=0

μk,j+1

(
ωi
k

(
α1 −

α1

K1

ωi
k

)
− β1ω

i
kφ

i
k

)
+ ωi−1

j+1

(
α1 −

α1

K1

ωi−1
j+1

)
− β1ω

i−1
j+1φ

i−1
j+1 −

(
μ1

(
α1 −

α1

K1

μ1

)
− β1μ1μ2

)(
1 +

γ

1− γ

tγj+1

Γ(γ + 1)

)}]
,

φi
j+1 = μ2 +

1− γ

N(γ)

[
φi−1
j+1(−α2 + β2ω

i−1
j+1)

+
γ

1− γ

hγ

Γ(γ + 2)

{ j∑
k=0

μk,j+1

(
φi
k(−α2 + β2ω

i
k)
)
+ φi−1

j+1(−α2 + β2ω
i−1
j+1)

− (μ2(−α2 + β2μ1))

(
1 +

γ

1− γ

tγj+1

Γ(γ + 1)

)}]
,

where

ω0
j+1 = μ1 +

1− γ

N(γ)

[
ω0
j−1

(
α1 −

α1

K1

ω0
j−1

)
− β1ω

0
j−1φ

0
j−1

+
γ

1− γ

hγ

Γ(γ + 1)

{ j∑
k=0

νk,j+1

(
ω0
k

(
α1 −

α1

K1

ω0
k

)
− β1ω

0
kφ

0
k

)
−
(
μ1

(
α1 −

α1

K1

μ1

)
− β1μ1μ2

)(
1 +

γ

1− γ

tγj+1

Γ(γ + 1)

)}]
,

φ0
j+1 = μ2 +

1− γ

N(γ)

[
φ0
j−1(−α2 + β2ω

0
j−1) +

γ

1− γ

hγ

Γ(γ + 2)

{ j∑
k=0

νk,j+1

(
φ0
k(−α2 + β2ω

0
k)
)
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− (μ2(−α2 + β2μ1))

(
1 +

γ

1− γ

tγj+1

Γ(γ + 1)

)}]
,

and the coefficients μk,j+1 and νk,j+1 are given by equations (6.5.4) and (6.5.5), respectively.

6.6 Numerical discussion and results

In this province, we propose the graphical analysis of the impact of the γ derivative on

densities of the prey population density (ω) and predator population density (φ) at various

times. The numerical investigation of a two-dimensional predator-prey system of fractional

order through PCM for different values of the fractional parameter γ = 0.25, 0.50, 0.75,

and one is carried into account. The numerical results of the population density of prey

(ω) and the population density of predator (φ) are given in Tables 6.2 and 6.3 at different

values of time t. In Figures 1 and 2, the effects of interpretations of parameter γ on predator

and prey population density, respectively, have been investigated. Figure 1 clarifies that the

prey’s population dashingly declines with growing t and decreasing γ. Figure 2 explains that

the predator’s population nattily grows with growing t and declining γ. Figure 3 illustrates

the relations of the predator and prey population for various values of γ concerning time t.

In this portion, we carry the dimensionless parameters as α1 = α2 = 5/100, β1 = 4/100,

β2 = 1/100, K1 = 20, μ1 = 20, and μ2 = 15. We can see that plots drowned with the help

of PCM match the plots given by HPSTM and HASTM, presented by Srivastava et al. in [1].
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Table 6.2: Numerical results of the population density of prey

t γ = 0.25 γ = 0.50 γ = 0.75 γ = 1
0 20 20 20 20

0.01 16.4234 18.7045 19.5916 19.8803
0.02 15.8669 18.2011 19.3183 19.7612
0.03 15.5120 17.8273 19.0820 19.6427
0.04 15.2470 17.5206 18.8678 19.5248
0.05 15.0340 17.2564 18.6691 19.4075
0.1 14.3318 16.2734 17.8172 18.8298
0.2 13.5720 15.0180 16.4808 17.7182
0.3 13.1037 14.1519 15.4035 16.6636
0.4 12.7622 13.4808 14.4868 15.6644
0.5 12.4925 12.9308 13.6858 14.7188
0.6 12.2695 12.4643 12.9744 13.8249
0.7 12.0792 12.0593 12.3354 12.9807
0.8 11.9132 11.7019 11.7567 12.1842
0.9 11.7660 11.3822 11.2292 11.4334
1.0 11.6338 11.0934 10.7458 10.7263

Table 6.3: Numerical results of the population density of predator

t γ = 0.25 γ = 0.50 γ = 0.75 γ = 1
0 15 15 15 15

0.01 15.6342 15.2395 15.0763 15.0224
0.02 15.7241 15.3306 15.1271 15.0447
0.03 15.7798 15.3973 15.1708 15.0668
0.04 15.8204 15.4515 15.2102 15.0888
0.05 15.8524 15.4977 15.2467 15.1107
0.1 15.9539 15.6656 15.4012 15.2177
0.2 16.0553 15.8690 15.6370 15.4210
0.3 16.1129 16.0004 15.8200 15.6101
0.4 16.1521 16.0960 15.9696 15.7852
0.5 16.1813 16.1697 16.0949 15.9469
0.6 16.2042 16.2285 16.2011 16.0953
0.7 16.2228 16.2763 16.2919 16.2311
0.8 16.2382 16.3159 16.3697 16.3546
0.9 16.2513 16.3489 16.4365 16.4663
1.0 16.2625 16.3767 16.4938 16.5666
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Figure 1: Graphs of Prey population density
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Figure 2: Graphs of Predator population density
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6.7 Conclusion
In this chapter, we used PCM to analyze the explanations of a nonlinear predator-prey model

of fractional order. The derivative of fractional order is taken in the MABC sense. Several

graphs are drawn to observe the effect of γ on the prey and predator population density. The

comparisons show that the results are aligned with HPSTM and HASTM.
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Conclusion and Future Scopes

This chapter summarizes the conclusions of the research work completed throughout the

thesis, emphasizing major points and innovations. Several concepts emerged throughout the

current examination that have the potential to expand the study further. We also noted the

possibility of subsequent research based on the outcomes of this investigation.

7.1 Description of the Submitted Research
A basic summary of fractional calculus and fraction-order partial differential equations is

presented first in this thesis. Then, we come to the numerical solutions of fractional partial

differential equations. This thesis aims to create numerical techniques for solving fractional

partial differential equations. The stability, convergence, and error estimation of proposed

schemes are presented in this work. There are numerical examples given to illustrate our

theoretical results.

We covered the fundamentals of fractional calculus in Chapter 1. Some essential charac-

teristics and definitions of fractional derivatives have also been provided. A literature review

also contains the most recent discoveries and theoretical and methodological contributions to

our research.

In Chapter 2, we propose a numerical technique for TF-DPDEs that combines the Crank-

Nicolson scheme and a tension spline. The Caputo fractional derivative is used to discretize
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the fractional-order time derivative. The approach is proven to be conditionally stable using

Fourier series analysis. Furthermore, careful analysis demonstrates that the approach is

second-order convergent for arbitrary acceptable selections of α (α �= 1/12), and β, with

2α + β = 1. Numerical examples illustrate the efficacy and applicability of the proposed

strategy. The proposed approach may be extended to nonlinear TF-DPDEs and systems of

FPDEs.

In Chapter 3, we suggested a highly accurate numerical approximation for the Caputo-type

time-fractional fourth-order nonlinear KS problem, supported by multiple experimental data.

The current L1 − 2 temporal approximation gives a higher precision in time at the exact

computing cost as the L1 temporal approximation. The space derivatives are approximated

using quintic B-spline polynomials to preserve quadratic convergence in space. The current

method may also be applied to linear problems and Burgers equations, resulting in fourth-

order precision in space. We have offered a concrete convergence analysis to support our

theory and experimental data.

Chapter 4 describes a numerical methodology for time-fractional ACE that combines

the Crank-Nicolson method with cubic B-splines. We employ consistent meshes in both

directions to discretize the problem. By extensive examination, we demonstrated that the

proposed technique is conditionally stable and produces good results for γ ≥ log3(3/2) and

second-order convergent in all directions. Even though the L2−-norm is employed for error

computation, error estimates are provided for the L2 and L∞ norms. The cubic B-spline

approach is based on computational results. The cubic B-spline technique could not solve

higher-order fractional partial differential equations.

Chapter 5 proposes a higher-order numerical approach in spatial direction for solving the

generalized time-fractional Fisher’s equation that requires much less computing time. The

usual Euler backward approach was used to discretize the time-fractional derivative, whereas

CFDS was used in the spatial direction. The numerical approach efficiently solves the GTFFE

and delivers correct solutions with low computational error. The graphical findings show that

the current method for determining the numerical solution of GTFFE is quite close to the

precise solution. The tabular data support the theoretical characteristics of the spatial and

temporal order of convergence.
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We utilized PCM to investigate the explanations of a nonlinear predator-prey model of

fractional order in Chapter 6. In the MABC meaning, the derivative of fractional order is

taken. Several graphs are generated to examine the influence of γ on the density of prey and

predator populations. The results are consistent with HPSTM and HASTM, according to the

comparisons.

7.2 Future scope
We only studied the solution in one spatial dimension in this thesis, but this work might be

expanded to two or three dimensions. We also examined the time-fractional partial differential

equations; one can also solve space-fractional partial differential equations and time-space

fractional partial differential equations using these numerical techniques. One can derive

numerical techniques for these problems that will be more accurate. With the PCM method’s

help, one can numerically solve more fractional derivative models. The PCM method is easy

to implement, and one can explore many other techniques for different models given in the

literature survey. The author thinks fractional partial differential equations will become more

prominent and used in more study domains. Then, by providing high-precision numerical

computing tools, this thesis will aid in using and comprehending fractional partial differential

equations.
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[36] S. P. Näsholm and S. Holm. Comparison of fractional wave equations for power law

attenuation in ultrasound and elastography. Ultrasound Med Biol., 40:695–703, 2013.

[37] N. Laskin. Fractional Schrodinger equation. Phys. Rev. E, 66:056108, 2002.

[38] M. A. Zaky A. H. Bhrawy. An improved collocation method for multi-dimensional

space–time variable-order fractional Schrodinger equations. Appl. Numer. Math., 111:

197–218, 2017.

[39] M. Al-Refai. Proper inverse operators of fractional derivatives with nonsingular kernels.

Rend. Circ. Mat. Palermo, 2, 2021. doi: 10.1007/s12215-021--00638-2.

[40] S. G. Samko, A. A. Kilbas, and O. I. Marichev. Fractional Integrals and Derivative:

Theory and Applications. Gordonn and Breach Science Publishers, Yverdon, 1993.

[41] V. Kiryakova. Generalised Fractional Calculus and Applications. Pitman Research

Notes in Mathematics 301, Longman, London, 1994.

[42] K. Shah, H. Khalil, and R. A. Khan. Investigation of positive solution to a coupled

system of impulsive boundary value problems for nonlinear fractional order differential

equations. Chaos Solit. Fractals, 77:240–246, 2015.



[43] T. A. Biala and S. N. Jator. Block implicit Adams methods for fractional differential

equations. Chaos Solit. Fractals, 81:365–377, 2015.

[44] S. K. Ntouyas B. Ahmad and A. Alsaedi. On a coupled system of fractional differen-

tial equations with coupled nonlocal and integral boundary conditions. Chaos Solit.

Fractals, 83:234–241, 2016.

[45] A. Atangana and D. Baleanu. New fractional derivatives with nonlocal and non-singular

kernel: theory and application to heat transfer model. Therm Sci., 20:763–769, 2016.

[46] M. Caputo and M. Fabrizio. A new definition of fractional derivative without singular

kernel. Progr. Fract. Differ. Appl., 1:73–85, 2015.

[47] A. Akgul. A novel method for a fractional derivative with non-local and non-singular

kernel. Chaos Solit. Fractals, 114:478–82, 2018.

[48] K. B. Oldham. Fractional differential equations in electrochemistry. Adv. Eng. Softw.,

41:9–12, 2010.

[49] K. Mathiyalagan and G. Sangeetha. Second-order sliding mode control for nonlinear

fractional-order systems. Appl. Math. Comput., 383(12526):4, 2020.

[50] S. Pilipovic, T. M. Atanackovic, B. Stankovic, and D. Zorica. Fractional Calculus

With Applications In Mechanics: Vibrations And Diffusion Processes. John Wiley Sons,

London, 2014.

[51] N. Laskin. Fractional market dynamics. Phys. A: Stat. Mech. Appl., 287:482–492,

2000.

[52] E. Ahmed and A. S. Elgazzar. On fractional order differential equations model for

nonlocal epidemics. Phys. A: Stat. Mech. Appl., 379:607–614, 2007.

[53] M. Z. Ullah, A. K. Alzahrani, and D. Baleanu. An efficient numerical technique for

a new fractional tuberculosis model with nonsingular derivative operator. J. Taibah.

Univ. Sci., 13:1147–1157, 2019.



[54] F. Evirgen and M. Yavuz. An alternative approach for nonlinear optimization problem

with Caputo-Fabrizio derivative. ITM Web Conf., 22:01009, 2018.

[55] M. Yavuz. Novel recursive approximation for fractional nonlinear equations within

Caputo-Fabrizio operator. ITM Web Conf., 22:01008, 2018.

[56] B. Ghanbari and C. Cattani. On fractional predator and prey models with mutualistic

predation including non-local and nonsingular kernels. Chaos Solit. Fractals, 136

(10982):3, 2020.

[57] N. H. Sweilam, S. M. AL-Mekhlafi, D. S. Alshomrani, and D. Baleanu. Comparative

study for optimal control nonlinear variable-order fractional tumor model. Chaos Solit.

Fractals, 136:10981, 2020.

[58] J. Danane, K. Allali, and Z. Hammouch. Mathematical analysis of a fractional differ-

ential model of HBV infection with antibody immune response. Chaos Solit. Fractals,

136(10978):7, 2020.

[59] D. Baleanu, A. Jajarmi, H. Mohammadi, and S. Rezapour. A new study on the

mathematical modeling of human liver with Caputo-Fabrizio fractional derivative.

Chaos Solit. Fractals, 134(10970):5, 2020.

[60] D. Kumar, J. Singh, M. Al Qurashi, and D. Baleanu. A new fractional SIRS-SI malaria

disease model with application of vaccines, antimalarial drugs, and spraying. Adv.

Differ. Equ., 278, 2019. doi: 10.1186/s13662-019-2199-9.

[61] J. Singh, D. Kumar, and D. Baleanu. A new analysis of fractional fish farm model

associated with Mittag-Leffler-type kernel. Int. J. Biomath., 13(20500):10, 2020.

[62] X. J. Yang, M. Abdel-Aty, and C. Cattani. A new general fractional-order derivative

with Rabotnov fractional-exponential kernel applied to model the anomalous heat

transfer. Therm Sci., 23:1677–1681, 2019.

[63] S. Kumar, R. Kumar, C. Cattani, and B. Samet. Chaotic behaviour of fractional

predator-prey dynamical system. Chaos Solit. Fractals, 135(10981):1, 2020.



[64] Z. Sun G. Gao and H. Zhang. A new fractional numerical differentiation formula to

approximate the Caputo fractional derivative and its applications. J. Comput. Phys.,

259:33–50, 2014.

[65] Y. M. Wang. A compact finite difference method for a class of time fractional

convection-diffusion-wave equations with variable coefficients. Numer. Algorithms, 70

(3):625–651, 2015.

[66] S. B. Yuste and L. Acedo. An explicit finite difference method and a new Von

Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer.

Anal., 42(5):1862–1874, 2005.

[67] G. H. Gao, Z. Z. Sun, and Y. N. Zhang. A finite difference scheme for fractional

sub-diffusion equations on an unbounded domain using artificial boundary conditions.

J. Comput. Phys., 231(7):2865–2879, 2012.

[68] N. H. Sweilam, M. M. Khader, and A. M. Mahdy. Crank-Nicolson finite difference

method for solving time-fractional diffusion equation. J. Fractional Calc. Appl., 2(2):

1–9, 2012.

[69] M. Dehghan and M. Abbaszadeh. An efficient technique based on finite difference/finite

element method for solution of two-dimensional space/multi-time fractional Bloch–

Torrey equations. Appl. Numer. Math., 131:190–206, 2018.

[70] B. Jin, R. Lazarov, Y. Liu, and Z. Zhou. The Galerkin finite element method for a

multi-term time-fractional diffusion equation. J. Comput. Phys., 281:825–843, 2015.

[71] Y. Jiang and J. Ma. High-order finite element methods for time-fractional partial

differential equations. J. Comput. Appl. Math., 235(11):3285–3290, 2011.

[72] D. Kumar, S. Chaudhary, and V. S. Kumar. Finite element analysis for coupled time-

fractional nonlinear diffusion system. Comput. Math. with Appl., 78(6):1919–1936,

2019.



[73] Y. Liu, Y. Du, H. Li, S. He, and W. Gao. Finite difference/finite element method for

a nonlinear time-fractional fourth-order reaction–diffusion problem. Comput. Math.

with Appl., 70(4):573–591, 2015.

[74] A. Baseri, S. Abbasbandy, and E. Babolian. A collocation method for fractional

diffusion equation in a long time with Chebyshev functions. Appl. Math. Comput., 322:

55–65, 2018.

[75] A. Esen, O. Tasbozan, Y. Ucar, and N. M. Yagmurlu. A b-spline collocation method

for solving fractional diffusion and fractional diffusion-wave equations. Tbil. Math. J.,

8:181–193, 2015.

[76] A. M. Nagy. Numerical solution of time fractional nonlinear Klein-Gordon equation

using Sinc-Chebyshev collocation method. Appl. Math. Comput., 310:139–148, 2017.

[77] F. Zhou and X. Xu. Numerical solution of time-fractional diffusion-wave equations

via Chebyshev wavelets collocation method. Adv. Math. Phys., 2017:17, 2017.

[78] A. Pirkhedri and H. H. Javadi. Solving the time-fractional diffusion equation via

Sinc-Haar collocation method. Appl. Math. Comput., 257:317–326, 2015.

[79] A. I. Aliyu, M. Inc, A. Yusuf, and D. Baleanu. A fractional model of vertical transmis-

sion and cure of vector-borne diseases pertaining to the Atangana-Baleanu fractional

derivatives. Chaos Solit. Fractals, 116:268–277, 2018.

[80] K. M. Owolabi and A. Atangana. Analysis and application of new fractional Adams-

Bashforth scheme with Caputo-Fabrizio derivative. Chaos Solit. Fractals, 105:111–119,

2017.

[81] Y. Yan and Ch. Kou. Stability analysis of a fractional differential model of HIV

infection of cd4+ t-cells with time delay. Math. Comput. Simul., 82:1572–1585, 2012.

[82] Z. Ouyang. Existence and uniqueness of the solutions for a class of nonlinear fractional

order partial differential equations with delay. Comput. Math. Appl., 61:860–870, 2011.



[83] Y. Zhou, F. Jiao, and J. Li. Existence and uniqueness for fractional neutral differential

equations with infinite delay. Nonlinear Anal., 71:3249–3256, 2009.

[84] Q. Zhang, M. Ran, and D. Xu. Analysis of the compact difference scheme for the

semilinear fractional partial differential equation with time delayl. Appl. Anal., 11:

1867–1884, 2017.

[85] M. Sakara, F. Uludag, and F. Erdogan. Numerical solution of time-fractional nonlinear

PDEs with proportional delays by homotopy perturbation method. Appl. Math. Model,

40:6639–6649, 2016.

[86] F. Rodriguez, M. Roales, and J. A. Martin. Exact solutions and numerical approxima-

tions of mixed problems for the wave equation with delay. Appl. Math. Comput., 219:

3178–3186, 2012.

[87] A. Mohebbi. Finite difference and spectral collocation methods for the solution of

semilinear time fractional convection-reaction-diffusion equations with time delay. J.

Appl. Math. Comput., 61:635–656, 2019.

[88] S. Nicaise and C. Pignotti. Stability and instability results of the wave equation with

a delay term in the boundary or internal feedbacks. SIAM J. Control Optim., 45:

1561–1585, 2006.
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