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ABSTRACT

This thesis primarily focuses on exploring the hybridizable discontinuous Galerkin

(HDG) method for parabolic and hyperbolic integro-differential equations of linear and

nonlinear type. Emphasis has been given to the semi-discrete and fully- discrete a priori

error analysis. In the existing literature, only sub-optimality was achieved for the flux and

trace variables, whereas, we have proved the optimal order of convergence for the scalar,

flux and trace variables. We have introduced a mixed type Ritz-Volterra projection for the

model problems, which is one of the most crucial components in achieving optimality.

Further, we have used the HDG projection, elliptic dual problem and Gronwall’s lemma

to derive the optimal convergence rates for the Ritz-Volterra projection. These estimates

then give us the a priori error estimates.

We have also proved the super-convergence results for the scalar variable by defin-

ing a new approximation to the semi-discrete HDG approximation, known as the post-

processed solution. To demonstrate the super-convergence, we have made use of the

duality argument and related regularity results.

We also have discretized the HDG scheme in the time direction. For parabolic prob-

lems, the backward Euler method and the left rectangle rule have been used to approx-

imate the derivative and integral terms, respectively, which help us to achieve the first

order of convergence. While, for hyperbolic problems, the central difference scheme

and mid-point rule have been used to approximate the derivative and integral terms, re-

spectively, which, in turn, help us in achieving the second order of convergence in the

temporal direction.

Subsequently, the theory has been validated through various examples on the two-

dimensional domain. It has been verified that the optimal order of convergence is achieved

for scalar and vector variables. In contrast, super-convergence is achieved for the post-

processed solution for different degrees of polynomials. Finally, possible extensions of

the work and scope for future investigations are discussed in the concluding Chapter.
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Chapter 1

Introduction

Partial Differential Equations (PDEs) hold significant importance in various scientific,

engineering, and mathematical fields due to their ability to describe complex phenomena

and systems. Understanding the importance of PDEs and the significance of solving them

can be explained in the following ways:

• Fundamental Laws of Physics: PDEs are integral in formulating and expressing

the fundamental laws of physics. Equations like heat equation, wave equation, and

the Schrödinger equation in quantum mechanics rely on PDEs to accurately model

physical systems’ behaviour.

• Engineering Applications: PDEs find extensive use in engineering disciplines for

modelling various processes like heat transfer, fluid dynamics, electromagnetism,

and structural mechanics. Solving PDEs allows engineers to analyze and design

systems effectively.

• Boundary Value Problems: PDEs are essential for handling boundary value prob-

lems, where the behaviour of a system is constrained by specific conditions at its

boundaries. These problems arise in many practical applications, such as electron-
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Chapter 1

ics, acoustics and geophysics.

• Image and Signal Processing: PDE-based techniques are used in image and signal

processing for tasks like denoising, inpainting, and segmentation. Solving PDEs

in these applications helps improve the quality of images and extract meaningful

information from signals.

• Finance and Economics: PDEs are employed in finance and economics to model

the behaviour of financial derivatives, option pricing, and risk management. Accu-

rate solutions to these equations are vital for making informed decisions in financial

markets.

• Medical Imaging: PDEs play a crucial role in medical imaging, such as MRI

and CT scans, which are used to reconstruct images from collected data, aiding in

accurate diagnoses and treatment plans.

• Quantum Mechanics: PDEs are fundamental to quantum mechanics, describing

the evolution of quantum systems over time. They are used to understand particle

behaviour and predict probabilities and states.

Hence, the importance of PDEs lies in their wide range of applications across sci-

entific and engineering domains. They provide essential tools for modelling complex

systems, gaining insights, making predictions, and optimizing designs, leading to ad-

vancements in technology and scientific knowledge.

An ”integro-differential equation” refers to an equation that encompasses both inte-

grals and derivatives of an unknown function. Few of its applications are as follows [84]:

• They are often used in scientific and technical domains, serving as effective models

for several phenomena, including circuit analysis.

• The behavior of interacting inhibitory and excitatory neurons can be elucidated

through a set of integro-differential equations.
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• The are widely used in the field of epidemiology, particularly in the mathematical

modelling of epidemics. These equations are particularly useful when the models

include age structure or geographical characteristics of the epidemics.

• Integro-differential equations are encountered as models in many fields, such as

population growth, one-dimensional visco-elasticity and reactor dynamics.

Kirchhoff-type elliptic and parabolic equations are mathematical models with appli-

cations in various scientific and engineering disciplines. These equations typically in-

volve differential operators that account for both Laplacian terms and non-linearities.

Kirchhoff-type equations frequently arise in numerous applications, such as in elastic-

ity and structural mechanics, image denoising and restoration and financial mathematics,

see, [9, 117].

1.1 Motivation
There are several significant methods for finding the solution of PDE, including sepa-

ration of variables, method of characteristic, integral transform, superposition principle,

change of variables, Lie group method, semi-analytical methods, etc. In general, it is not

easy to find the analytical solution for most of the PDEs. Hence, it becomes important to

find their numerical solution. While the analytical solution is often challenging or even

impossible to obtain for complex PDEs, numerical methods offer efficient and accurate

approaches to approximate the solution. There are various methods that are used to find

numerical solution of PDEs. Some of the commonly employed techniques include:

• Finite Difference Method (FDM): In FDM, the spatial and temporal derivatives

in the PDE are approximated using finite differences. The problem domain is dis-

cretized, and the PDE get transformed into a system of algebraic equations, which

are then solved using iterative or direct methods.

• Finite Element Method (FEM): FEM involves dividing the problem domain into

smaller finite elements, and the solution of PDE is approximated over each element

3
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using shape functions. The equations are then assembled, and boundary conditions

are applied to solve for the unknowns.

• Finite Volume Method (FVM): FVM focuses on dividing the domain into control

volumes, where the PDE is integrated over each control volume. This method is

prevalent for problems with strong conservation properties, such as fluid dynamics.

• Spectral Methods: Spectral methods approximate the solution using a series of

basis functions, such as Fourier series or Chebyshev polynomials. These methods

offer high accuracy and convergence rates, especially for smooth solutions.

• Boundary Element Method (BEM): BEM involves converting the PDEs into in-

tegral equations defined along the boundary of the domain. These integral equa-

tions are used to approximate the boundary values, ultimately leading to a solvable

system of equations.

• Meshless Methods: Meshless methods, like the Radial Basis Function (RBF)

method, use scattered data points to construct approximations of the solution. These

methods avoid the need for explicit meshes, simplifying the solution process for

complex domains.

The FEM is a potent numerical approach employed for approximating solutions to

PDEs and addressing various engineering problems effectively. It is widely employed in

various fields, including mechanical, civil, aerospace, and biomedical engineering. The

method involves dividing a complex problem domain into smaller, simpler subdomains

called finite elements. These elements are interconnected at specific points called nodes.

The main steps in the FEM are as follows:

• Discretization: The continuous problem domain is discretized into a finite number

of elements, where each element is characterized by a set of mathematical functions

known as shape functions.
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• Formulation of Element Equations: For each element, the governing PDE is

approximated using the shape functions. As a result, this process yields a set of

algebraic equations specific to each element.

• Assembly: In this step, the individual element equations are merged to create a

comprehensive global system of equations.

• Application of Boundary Conditions: Boundary conditions are applied to the

global system to account for constraints and external influences on the problem.

• Solution: During the solution phase, the system of equations is effectively solved

to determine the unknown values, such as displacements or temperatures, at each

node.

FEM analysis is widely adopted and appreciated. A few of the advantages of this

method are as follows:

• The process of representing complex geometries and irregular shapes in a mathe-

matical model is facilitated by the availability of various finite elements that can

discretize the domain.

• Boundary conditions can be readily integrated into the model.

• Different types of material properties can be easily incorporated into the model,

either on an element-by-element basis or even within a single element.

• It is also possible to implement higher order elements in the model.

• It is characterised by its simplicity, compactness, and focus on achieving desired

outcomes, which has contributed to its widespread adoption within the engineering

community.

• The versatility and power of the FEM is enhanced by the availability of wide range

of computer software packages.
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In the traditional FEM, the solution is approximated by continuous basis functions

over each element, and the element boundaries are shared smoothly with neighbouring

elements. This leads to a continuous representation of the solution across the entire

domain. However, in problems with discontinuities or sharp gradients, FEM may suf-

fer from numerical diffusion and lack of accuracy. Hence, the discontinuous Galerkin

method (DGM) was introduced to solve this issue. The DGM is a numerical technique

for solving PDEs. It is a variant of the traditional Galerkin FEM that allows for discon-

tinuities in the solution across element boundaries. This method is notably advantageous

for addressing problems characterized by shocks, material interfaces, and various forms

of discontinuities. In DGM, the key idea is to allow the solution to be discontinuous

across element interfaces. The domain is still discretized into smaller finite elements, but

the basis functions used within each element are constructed to be different on either side

of the element boundary. This allows the method to represent discontinuities accurately.

The DGM offers several advantages, making it a powerful and attractive numerical tech-

nique for solving PDEs, especially in problems with discontinuities and complex features.

Some of the key advantages of the DGM include:

• Handling Discontinuities: DGM is particularly well-suited for problems with

sharp gradients, shocks, and material interfaces. The method allows for discontin-

uous solutions across element boundaries, which enables accurate representation

and capturing of these features without introducing numerical diffusion.

• High Accuracy: DGM achieves high-order accuracy using polynomial basis func-

tions within each element. This allows for a better approximation of the solution

and reduces the requirement for a fine mesh, leading to more efficient simulations.

• Local Adaptivity: DGM allows for local refinement and mesh adaptation. This

means that elements can have varying sizes and degrees of basis functions in dif-

ferent regions of the domain, providing more flexibility in resolving localized phe-

nomena.
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• Conservation Properties: DGM maintains local conservation properties, making

it suitable for problems requiring accurate mass conservation, momentum, energy,

or other quantities.

Despite these advantages, it is worth noting that DGM also comes with challenges

and potential drawbacks. Some of the main drawbacks of DGM are:

• Global Coupling: In the standard DGM, the numerical fluxes are typically com-

puted element by element, leading to a global coupling of unknowns at element

interfaces. This can result in a dense and large global linear system, making the

method computationally expensive, especially for high-order approximations.

• High Memory Requirements: The global coupling in DGM can lead to increased

memory requirements, as the method stores additional degrees of freedom associ-

ated with the numerical fluxes at element interfaces.

• Stability and Time Stepping: DGMs can be more sensitive to time-step restric-

tions for time-dependent problems, especially in the presence of stiff terms. This

can impact the efficiency and stability of the simulations.

• Lack of Hybridization: Standard DGMs employ a single set of numerical fluxes

for enforcing continuity across element interfaces. While this approach permits the

handling of solution discontinuities, it may lead to reduced accuracy, particularly

in cases featuring strong gradients or shock phenomena.

To address these limitations of DGM and improve its performance, the Hybridizable

Discontinuous Galerkin (HDG) method was proposed. HDG method combines aspects

of both DGM and continuous Galerkin (CG) methods, resulting in a more efficient and

stable approach. Some of the key features of the HDG method that address the limitations

of DGM include:

• Hybridization: HDG method introduces additional hybrid variables at element

interfaces to enforce continuity more efficiently. This reduces global coupling and

results in a smaller, sparser global linear system.
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• Reduced Number of Globally Coupled Degrees of Freedom: In contrast to other

alternative DGMs, which yield a final system encompassing all degrees of freedom

associated with the approximate field variables, the HDG technique generates a

final system expressed in terms of degrees of freedom related to the approximate

traces of the field variables. This characteristic of the HDG technique leads to a

reduction in globally coupled unknowns compared to other DGMs, as the approxi-

mation traces are solely defined along the element boundary.

• Super-convergence: The HDG method is renowned for demonstrating optimal

convergence when approximating gradients in convection-diffusion problems. This

exceptional convergence property is a distinctive feature of HDG methods, partic-

ularly evident in diffusion problems. In contrast, both DGMs and the standard con-

tinuous Galerkin approach exhibit sub-optimal convergence when approximating

gradients. Within the realm of incompressible flows, research has showcased that

the HDG technique achieves higher-order convergence for approximating velocity,

pressure, velocity gradient, and vorticity compared to DGMs. To be precise, the

HDG method attains an optimal order of convergence, whereas DGMs only attain

a sub-optimal order of convergence. It is also noteworthy that the HDG approach

exhibits remarkable convergence characteristics concerning numerical traces and

the averaging of approximation variables.

• Local Post-processing: The HDG approach exhibits optimum convergence and

super-convergence qualities, which may be leveraged to construct a local post-

processing technique aimed at enhancing the spatial order of convergence for the

numerical solution. In the context of incompressible flows, it is possible to use

local post-processing techniques to derive an alternative approximation of the ve-

locity field. This new approximation has the desirable property of being exactly

divergence-free and exhibits a greater rate of convergence. In the context of time-

dependent issues, it is sufficient to do post-processing just at the time levels where

a higher degree of accuracy in the results is sought. Additionally, due to the fact
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that the post-processing is conducted at the individual element level, it incurs lower

costs compared to the solution approach.

• Geometric Flexibility and Mesh Adaptation: The HDG method is capable of

being implemented on unstructured meshes of a general nature. It is particularly

well-suited for accommodating hp-adaptivity due to its ability to refine or coarsen

the grid without being constrained by the continuity requirements commonly asso-

ciated with conforming methods. Additionally, the HDG method allows for the util-

isation of different orders of approximations on various elements or subdomains.

• Local Solvers: The HDG method utilizes local solvers to eliminate hybrid vari-

ables and directly represent the solution in terms of the primary unknowns. This

further reduces memory requirements and computational costs.

• Stabilization Techniques: The HDG method incorporates stabilization techniques

that enhance the stability and robustness of the method, particularly for problems

with strong gradients and shocks.

• Reduced Time-step Sensitivity: The HDG method can be less sensitive to time-

step restrictions, making it more efficient for time-dependent problems, even with

large time steps.

Overall, the HDG method addresses the limitations of the standard DGM, provid-

ing a more efficient, accurate, and stable numerical approach. It has gained popularity

in various scientific and engineering applications, particularly for problems that require

high-order accuracy and deal with complex phenomena such as shocks, interfaces, and

discontinuities. In the literature there are various higher-order methods which are used to

find the numerical solution of PDEs, a few of them are as follows:

• Weak Galerkin Method [136]: It aims to simplify the implementation of finite

element methods by weakening the continuity requirements on the solution across
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element boundaries. The method introduces weakly enforced continuity condi-

tions, which can be beneficial for problems with complex geometries and irregular

meshes. WG has been applied to a variety of PDEs, and its flexibility makes it

suitable for parabolic and hyperbolic integro-differential equations.

• Virtual Element Method [12]: This method generalizes the concept of finite ele-

ments to arbitrary polygonal or polyhedral meshes. It allows for the approximation

of the solution using functions defined locally on the mesh elements. It provides

flexibility in handling complex geometries and is applicable to a wide range of

PDEs, including parabolic and hyperbolic integro-differential equations.

• Hybrid High-Order Methods [49]: They combine the advantages of both finite

element and finite volume methods. These methods aim to achieve high-order ac-

curacy while maintaining stability and efficiency. They have been successfully

applied to various PDEs, including parabolic and hyperbolic problems.

While each method has its unique features, there are common principles and goals

that connect them. These methods share the objective of achieving high-order accuracy,

handling complex geometries, and providing efficient numerical solutions. The relation

between these methods can be explored through the study of their underlying mathemati-

cal principles, such as weak formulations, variational principles, and stability conditions.

While each method has its strengths and is suitable for specific types of problems, the

HDG method offers advantages in terms of reduced global unknowns, improved stability,

simplicity in implementation, and compatibility with existing tools. The choice between

methods depends on the specific requirements of the problem at hand, the computational

resources available, and the preferences of the researcher.

1.2 Literature Survey
FEMs were first introduced to solve complex elasticity and structural analysis problems

in civil and aeronautical engineering [69, 93]. Later on, it was developed and analyzed
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for the elliptic equations [5, 10, 14, 57, 67, 70, 83, 110], parabolic equations [1, 6, 28, 48,

54, 62, 75, 78, 131] and hyperbolic equations [7, 40, 45, 61, 72, 74, 77, 92, 97, 118, 132].

In [70], Hou et al. have investigated a multi scale FEM approach for solving a range

of elliptic problems stemming from composite materials and porous media flow. They

have developed adaptive multi scale finite element basis functions tailored to the local

properties of the differential operator. In [57], Farago et al. have developed a coupling

of the Sobolev space gradient method and the FEM. The Sobolev space gradient method

reduces the solution of a quasi-linear elliptic problem to a sequence of linear Poisson

equations which are further solved numerically by an appropriate FEM. In [14], Cai et

al. have proposed a new FEM to compute singular solutions of Poisson equations on a

polygonal domain subject to mixed boundary conditions. In [67], Guzman et al. have

discussed a higher order piece-wise continuous FEMs for solving a class of interface

problems which is based on correction terms added to the right hand side in the standard

variational formulation. Further, they have derived optimal error estimates for the method

in maximum norms. In [83, 110], the FEM is developed for elliptic equations on surfaces

and fully nonlinear elliptic equations, respectively.

In [6], Babuvska et al. have derived a posteriori error estimates of finite element so-

lutions for one-dimensional parabolic problems in an asymptotic form with the approach

similar to the residual method. In [78], Johnson et al. have developed a class of mixed

FEMs for parabolic problems which yield optimal order of convergence. They have also

obtained the results for stationary and evolutionary Stokes equation. In [75], Jin et al.

have studied the standard Galerkin FEM for a fractional-order parabolic equation with a

space fractional derivative of Riemann-Liouville type. They have derived the error esti-

mates for both semi and fully discrete schemes. In [62], Gao et al. have proposed a weak

Galerkin FEM with stabilization term for parabolic equations by weakly defined gradient

operators over discontinuous functions. They have further derived optimal order error

estimates in L2 norm.

In [45], Cowsat et al. have developed a mixed finite element scheme for second order

hyperbolic equation. The question of convergence of the method for the hyperbolic equa-

11
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tion is reduced to the associated elliptic equation. They have also discussed the stability

conditions for the scheme, along with numerical examples. In [72], Hulbert et al. have

developed a FEM to solve elasto-dynamics problems. They have used the FEM to ap-

proximate the solution in both spatial and temporal domains. Further, they have extended

the analysis to structural dynamics problems. In [132], S̈uli et al. have discussed the

recent developments in a posteriori error estimates of hyperbolic equations. They have

further done the global a posteriori error analysis in H−1 norm for the FEM, taking hy-

perbolic equation as the model problem. In [40], Cockburn et al. have developed a simple

post-processing scheme that enhances the accuracy of the finite element approximation to

transient hyperbolic equations. They have shown a significant improvement in the order

of convergence of the post-processed solution.

To address the limitations of the FEM, DGMs were devised. They were initially

developed for the hyperbolic equations [4, 8, 13, 30, 31, 51, 60, 71, 76, 82, 95, 122], and

then further extended to the elliptic [2, 3, 18, 20, 21, 39, 50, 59, 68, 137, 140, 141] and

the parabolic equations [15, 19, 29, 55, 56, 63, 108, 121, 126, 133, 138].

In [8], Bey et al. have developed an hp-version DGM for hyperbolic conservation

laws. They have derived a priori error estimates using a new mesh-dependent norm.

The results extend the previously known results for the mesh-dependent norm to the hp-

version DGM. They have also derived the a posteriori error estimates and given several

numerical examples. In [4], Atkins et al. have developed a DGM that does not require

discrete quadrature formula for hyperbolic equations. This approach requires fewer op-

erations and less storage but preserves the compactness and robustness of the classical

DGM. In [30], Cockburn has developed two DGMs for nonlinear hyperbolic conservation

laws. The first method developed is called shock-capturing DGM, an implicit method;

the second is the Runge–Kutta DGM, an explicit method. In [31], Cockburn has given an

overview of the DGM. He has shown that the DGMs can capture highly complex solu-

tions presenting discontinuities with high resolution for nonlinear hyperbolic problems.

In [21], Castillo et al. have developed the local DGM for an elliptic problem. They

have derived the error estimates for meshes with hanging nodes. Their analysis illus-
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trates that for the stabilization parameter of order one, the potential and flux variables

achieve convergence of order k + 1/2 and k, respectively, whereas, for the stabilization

parameter of order h−1, the potential variable achieves convergence of order k + 1. In

[39], Cockburn et al. have developed a DGM for second-order elliptic problems which

is super-convergent. They have shown that the flux variable achieves optimal order of

convergence, whereas the potential variables achieve super-convergence for the model

problem. Further, they have performed element-by-element post-processing to obtain

new approximations. Based on this analysis, Yadav et al. [140], have developed the

super-convergent DGM for non-selfadjoint linear elliptic problems and quasi-linear ellip-

tic problems. They have proved that for a polynomial of degree k ≥ 1, the flux variables

converge with order k+1. They have also performed element-by-element post-processing

of the potential variables and proved that the post-processed solution converges with order

k + 2.

In [121], Riviere et al. have developed a time locally conservative DGM to approxi-

mate nonlinear parabolic equations. Optimal error estimates are derived. In [63], Geor-

goulis et al. have developed a posteriori error estimates for linear parabolic problems.

They have used interior penalty DGM to spatially semi-discretize the problem and an

implicit Euler time stepping scheme to completely discretize the problem in the temporal

direction. In [19], Cao et al. have studied super-convergence properties of the local DGM

for linear parabolic equations when alternating fluxes are used. They have proved that for

any polynomial of degree k, the numerical fluxes converge at a rate of 2k+1 for all mesh

nodes and the domain average under some suitable initial discretization.

The HDG method was initially developed by Cockburn for elliptic equations [34, 35,

37]. Due to various theoretical and computational advantages of the HDG method it was

further developed for various types of problem, such as, the heat equation [23], the wave

equation [42, 58, 105, 130], steady-state and time dependent convection-diffusion prob-

lems [32, 33, 41, 101, 102], elasticity problems [129], the Navier Stoke’s equation [22,

96, 107, 116, 119, 120], equations in fluid mechanics [104], Stoke’s flow [36, 103], the

Maxwell’s equation [52, 106], equations in continuum mechanics [100], the Helmholtz’s
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equation [27, 66], among others [38, 43, 44, 53, 73, 109, 127, 128].

In [34], Cockburn et al. have developed LDG-hybridizable Galerkin method for sec-

ond order elliptic problems. In contrast to all the known DGMs, this method is proven to

have remarkable convergence properties. For a polynomial of degree k ≥ 0, the poten-

tial and flux variables achieve convergence of order k + 1. Further element-by-element

post-processing is also possible in this method, which leads to super-convergence results

for the potential variable. In [35], Cockburn et al. have introduced a novel characteriza-

tion of the approximate solution provided by hybridized mixed methods when addressing

second-order self-adjoint elliptic problems. They have applied this characterization to

obtain an explicit formula for the entries of the matrix equation for the Lagrange multi-

plier unknowns resulting from hybridization. In [37], Cockburn et al. have formulated a

comprehensive framework for hybridizing FEMs when dealing with second-order elliptic

problems. The methods considered in this framework are hybridized mixed, continuous

Galerkin, nonconforming, and HDG methods. The framework facilitates the use of var-

ious methods within different elements or subdomains of the computational domain in a

single implementation, with automatic coupling between them. In [38], Cockburn et al.

have developed a new technique for the error analysis of the HDG methods to a model

second-order elliptic problem. It employs a new projection whose design is inspired by

the numerical traces of the methods. This makes the analysis of the discretization error

projections straightforward and concise. They have demonstrated that these error pro-

jections are bounded by the distance between the solution and its projection. In [44],

Cockburn et al. have presented a unified a posteriori error analysis for HDG methods for

second order elliptic PDEs, which helped to derive new estimates for the methods.

Further, in [23], Chabaud et al. have developed the HDG method for the heat equa-

tion. They have demonstrated that if the solution is sufficiently smooth, the convergence

properties of the elliptic equation also hold for the heat equation. As a result, they have

demonstrated that for a polynomial of degree k ≥ 1, the post-processed approximation

of the scalar variable converges with an order of
√
log(T/h2)hk+2. In [105], Nguyen et

al. have introduced a category of HDG methods designed for the numerical simulation
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of wave phenomena in acoustics and elasto-dynamics. They have proved that all the un-

known variables achieve the convergence of order k + 1 when the polynomial of degree

k ≥ 0 is used to approximate the solution. Further, they have proved super-convergence

using local post-processing for displacement and velocity. In [42], Cockburn et al. have

developed the HDG method for the wave equation in continuous time. They have an-

alyzed the a priori error estimates for the method and proved that for a polynomial of

degree k ≥ 0, both velocity and gradient achieve the optimal rate of convergence. Addi-

tionally, they have proposed the local post-processing for the problem and proved that for

a polynomial of degree k ≥ 1, the post-processed solution achieves super-convergence.

In [130], Stanglmeier et al. have developed the HDG method for the acoustic wave equa-

tion. They have proved that the method achieves the optimal order of convergence for

all the unknown variables. They have also proved some super-convergence properties to

improve the order of convergence of the approximate solution. They have extended the

method to deal with the wave equation with perfectly matched layers.

In [101, 102], Nguyen et al. have developed the HDG method for steady and unsteady

linear and nonlinear convection diffusion equations, respectively. They have developed

the method by expressing the scalar and flux variables in terms of an approximate trace

of the scalar variable. They have used the backward difference scheme to approximate

the time derivative and Newton Raphson’s method to solve the nonlinear system of equa-

tions. They have proved the optimal rate of convergence for scalar and flux variables and

the super-convergence for the local post-processed solution of the scalar variable. In [33],

Cockburn et al. have developed the HDG method for the convection-diffusion-reaction

problem. They have focused on the computational aspect of the method and hence, have

performed various numerical experiments for the method and compared their results with

the other methods relevant to the diffusion-dominated regime. In [41], Cockburn et al.

have developed the HDG method for fractional diffusion equations of order −α where

−1 < α < 0. They have proven the optimal order of convergence for all the unknowns,

along with the super-convergence of the post-processed approximation, as expected by

the method. In [22], Casmelioglu et al. have developed the HDG method for the Navier-
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Stokes equation. They have proved that the velocity gradient, velocity and pressure con-

verge with order k + 1 for k ≥ 0. They have also proved the super-convergence results

for the velocity variable. Further, they have proved that these results depend only on the

inverse of the stabilization parameter of the jump of the normal component of the ve-

locity. In [106], Nguyen et al. have developed two HDG methods specifically designed

for addressing time-harmonic Maxwell’s equations. The first method actively enforces

the divergence-free condition, while the second variant does not explicitly impose this

condition. They have then proved that the vector variable achieves optimal order of con-

vergence in both cases. In [100], Nguyen et al. have developed the HDG method for

PDEs in continuum mechanics. They have taken into account both steady and time-

dependent problems. They used the local HDG projections to derive the error estimates

and achieved the expected outcomes. They have also illustrated the results computation-

ally and compared them with the results of the continuous Galerkin method.

1.3 Objectives
The literature survey suggests that the study of the HDG method is a very active area for

research. By keeping in mind the applications of integro-differential equations and the

advantages of the HDG method, we planned to propose and analyze the HDG method for

integro-differential equations. Although the DGM has been developed for linear parabolic

and hyperbolic integro-differential equations [79, 115], going through the literature sur-

vey, we expect improvement in the estimates. Hence, based on the literature survey, we

have set the following objectives for our thesis:

1. To develop HDG method for linear parabolic integro-differential equation with

smooth data.

2. To propose HDG method for nonlinear parabolic integro-differential equation with

smooth data.

3. To develop HDG method for linear hyperbolic integro-differential equation with

smooth data.
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4. To propose HDG method for nonlinear hyperbolic integro-differential equation

with smooth data.

1.4 Preliminaries
In this section, we have stated and discussed various preliminaries that will be used

throughout this thesis. For the sake of clarity, we have divided this section into various

subsections. The first subsection, that is, subsection 1.4.1, introduces the finite element

subdivision of the domain that is taken into consideration, along with its properties. It also

discusses various types of edges that will be used in the thesis along with their properties.

Subsection 1.4.2, consists of the types of finite element subspaces along with norms that

are used in the definitions of the subspaces. In subsection 1.4.3, we discuss one of the

most important projection used in this thesis, that is, the HDG projection. This projection

will be used throughout this thesis for the a priori error analysis of the HDG method. We

will also go through the properties of the projection followed by their estimates. Finally,

in subsection 1.4.4, we have stated a few well known definitions, results and theorem that

will be used further.

1.4.1 Finite Element Subdivision

Let Ω ⊂ R2 be the domain in which we will be working throughout this thesis. Ω is a

Lipschitz, convex, bounded domain with polygonal boundary ∂Ω [38]. Let Th be finite

element subdivision of Ω, that is, Th consists of finite number of simplex K, such that

Ω =
⋃

K∈Th

K. Simplex K can either be a triangle or a rectangle. Now, to measure the size

of the simplex K, we denote the diameter of the K by hK . Next, we define ρK as the

diameter of the inscribed circle in K. Next we will define the following terms:

Chunkiness Parameter: For a simplex K, the chunkiness parameter, denoted by αK is

defined as:

αK =
hK
ρK

.
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Shape Regular: A finite element subdivision Th is considered shape-regular if it pos-

sesses a positive constant α0, satisfying the condition that:

αK ≥ α0, ∀K ∈ Th.

Throughout this thesis, the subdivision Th is considered to be shape regular. This condi-

tion means that the shape of the simplex cannot be too bad in the sense that the angles

can neither be very wide nor very narrow, see, [85, pp. 46].

Lastly, we will end this subsection after defining the following notations:

• ∂T h : = {∂K : K ∈ Th}

• ΓI : set of interior edges of Th

• Γ∂ : set of boundary edges of Th

• Γ : = ΓI ∪ Γ∂

• h : = maxK∈Th hK

• ρ : = minK∈Th ρK .

1.4.2 Finite Element Subspace

This part presents an introduction to the broken Sobolev spaces that are necessary for our

analysis. We also describe the finite element spaces that are used in the HDG approxima-

tions. The broken Sobolev space of composite order s and exponent r, with 1 ≤ r ≤ ∞,

is defined on the subdivision Th, as follows:

W s
r (Th) = {v ∈ Lr(Ω) : v|K ∈ W s

r (K),∀K ∈ Th},

where, W s
r (K) is the standard Sobolev space of order s with exponent r for each K. The

associated norm and semi-norm for 1 ≤ r <∞ are defined respectively, as follows:

∥v∥W s
r (Th) =

(∑
K∈Th

∥v∥rW s
r (K)

)1/r

and |v|W s
r (Th) =

(∑
K∈Th

|v|rW s
r (K)

)1/r

,
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whereas, for r = ∞, it is defined as:

∥v∥W s
∞(Th) = max

K∈Th
∥v∥W s

∞(K) and |v|W s
∞(Th) = max

K∈Th
|v|W s

∞(K),

where, ∥v∥W s
r (K) and |v|W s

r (K) are standard norm and semi-norm on K. When r = 2, we

write W s
2 (Th) as Hs(Th) and similar changes are made for other notations.

Next, we introduce the following broken Sobolev spaces:

V = {v ∈ L2(Ω) : v|K ∈ H1(K) ∀K ∈ Th}

W = {w ∈ L2(Ω) : w|K ∈ H1(K) ∀K ∈ Th},

where, L2(Ω) = (L2(Ω))2 and H1(K) = (H1(K))2.

We now introduce the following finite element spaces :

Vh = {v ∈ L2(Ω) : v|K ∈ Pk(K),∀K ∈ Th},

Wh = {w ∈ L2(Ω) : w|K ∈ Pk(K),∀K ∈ Th},

Mh = {µ ∈ L2(Γ) : µ|F ∈ Pk(F ),∀F ∈ Γ}.

In this case, Pk(K) = [Pk(K)]2, whereas the space of polynomials defined on K with a

maximum degree k is denoted by Pk(K).

Next, let u, v ∈ L2(D), define (u, v)D =

∫
D

uv, when the domain D is a subset of

Rn. For the boundary ∂D of D, define ⟨u, v⟩∂D =

∫
∂D

uvds. Then, we introduce the

following notations:

(u, v) =
∑
K∈Th

(u, v)K with norm ∥v∥2 =
∑
K∈Th

∥v∥2L2(K),

⟨u, v⟩∂Th =
∑
K∈Th

⟨u, v⟩∂K with norm ∥µ∥2τ =
∑
K∈Th

τ∥µ∥2L2(∂K).

Finally, we define the following space:

Hdiv(Th) = {w ∈ L2(Ω) : ∇ ·w|K ∈ L2(K), ∀K ∈ Th},

with norm:

∥w∥Hdiv(Th) =

(∑
K∈Th

(
∥w∥2L2(K) + ∥∇ ·w∥2L2(K)

)) 1
2

.
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1.4.3 The HDG Projection

In this section, we will state the definition of the HDG projection along with its estimates.

This projection will be used further for the error estimates of the HDG method.

The HDG projection [38], Πh : H1(Th)×Hdiv(Th) → Vh×Wh, is denoted by Πh(u,σ) =

(ΠV u,ΠWσ) for any (u,σ) ∈ H1(Th) ×Hdiv(Th). For any simplex K ∈ Th, the pro-

jection is defined as follows:

(ΠV u, v)K = (u, v)K , ∀ v ∈ Pk−1(K) (1.1a)

(ΠWσ,w)K = (σ,w)K , ∀ w ∈ Pk−1(K) (1.1b)

⟨ΠWσ · ν + τΠV u, µ⟩F = ⟨σ · ν + τu, µ⟩F , ∀ µ ∈ Pk(F ), (1.1c)

for all faces F of the simplex K. When k is set to 0, equations (1.1a) and (1.1b) lose

their significance, making the projection defined solely by equation (1.1c). It’s important

to note that despite being denoted as ΠV u, the first component of the projection depends

on both variables, namely, u and σ. The same holds true for the second component of the

projection.

From [38], we have the following estimates: For k ≥ 0 and τ |∂K non-negative, τ =

max τ |∂K a positive constant and τ ∗ = max τ |∂K\F ∗ , where F ∗ is a face of K at which

τ |∂K is maximum, the systems (1.1) is uniquely solvable for ΠV u and ΠWσ. Addi-

tionally, there exists, C independent of K and τ such that, for all 1 ≤ α, β ≤ k + 1,

∥ΠWσ − σ∥K ≤ ChαK |σ|Hα(K) + Cτ ∗hβK |u|Hβ(K), (1.2a)

∥ΠV u− u∥K ≤ ChβK |u|Hβ(K) + ChαKτ
−1|∇ · σ|Hα−1(K). (1.2b)

1.4.4 Some Established Results

Lemma 1.4.1. (Estimates of L2-projection, [115]) Let Ik
h denote the L2-projection. If

w ∈ Hr+1(K) and Ik
hw ∈ Pk(K), the subsequent approximation property holds:

∥w − Ik
hw∥L2(K) + h

1
2∥w − Ik

hw∥L2(∂K) ≤ Chmin(r,k)+1∥w∥Hr+1(K).
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Lemma 1.4.2. (Cauchy–Schwarz inequality, [81]) For all vectors u and v in an inner-

product space, the following inequality holds true:

|(u,v)| ≤ ∥u∥∥v∥,

where, the inner-product and norm are associated with each other and to the inner-

product space.

Lemma 1.4.3. (Young’s inequality, [80]) If u ≥ 0 and v ≥ 0 are non-negative real

numbers, then for all ϵ > 0, we have the following inequality

uv ≤ u2

2ϵ
+
ϵv2

2
.

Lemma 1.4.4. (Poincare’s inequality, [80]) Consider a real number p such that 1 ≤ p <

∞. Let C denote a constant, which relies solely on the domain Ω and the exponent p. For

any function u that belongs to the Sobolev space W 1,p
0 (Ω) and possesses a zero trace, the

subsequent condition is valid:

∥u∥Lp(Ω) ≤ Ch∥∇u∥Lp(Ω).

Lemma 1.4.5. (Inverse estimates, [11]) Let w ∈ Wh, then there exists a constant C > 0,

such that

∥w∥∞ ≤ Ch−1∥w∥,

where ∥ · ∥∞ is the usual sup norm.

Lemma 1.4.6. (Weak commutative property, [38]) For any v in Vh and any (ψ,p) in the

domain of Πh, we have the following equality, ∀ K ∈ Th

(v,∇ · p)K = (v,∇ ·ΠWp)K + ⟨v, τ(ΠV ψ − ψ)⟩∂K .

Lemma 1.4.7. (Gronwall’s inequality, [28]) Let us consider the assumption that the func-

tion G(t) is more than or equal to zero and the function F (t) is absolutely integrable.
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Additionally, we have an integrable function y(t) that is greater than or equal to zero. We

will now assume the following inequality

y(t) ≤
∫ t

0

G(s)y(s)ds+ F (t),

then,

y(t) ≤ F (t) +

∫ t

0

G(γ)F (γ)e
∫ t
0 G(s)dsdγ.

Lemma 1.4.8. (Discrete Gronwall’s inequality, [28]) If yn, fn, and gn are assumed to be

non-negative sequences along with the following inequality

yn ≤ fn +
∑

0≤k<n

gkyk, n ≥ 0

then,

yn ≤ fn +
∑

0≤k<n

fkgk e
(
∑

k<j<n gj), n ≥ 0.

Definition 1.4.9. (Elliptic projection with memory, [17]) An elliptic projection is defined

by Rq ∈ Wh, that satisfies the following equation

(a(u)(q −Rq),w) = 0, ∀ w ∈ Wh,

where, a is a positive and bounded function.

Lemma 1.4.10. (Estimates for elliptic projection with memory, [17]) For the elliptic

projection of above type, the following estimates hold true:

∥q −Rq∥p ≤ C(u)hk+1−p∥q∥Hk+1(Th), p ≤ k + 1, p = 0, 1,

where C = C(u) is a positive constant dependent on u.

Definition 1.4.11. (Raviart-Thomas projection, [125]) Given a function σ ∈ H1(Th)

and an arbitrary simplex K ∈ Th, the restriction of ΠRT
k , k ≥ 1 to K is defined as the

element of Pk(K)
⊕

xPk(K) that satisfies

(ΠRT
k σ − σ,w)K = 0, ∀ w ∈ Pk−1(K), for k ≥ 1,
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⟨(ΠRT
k σ − σ⟩ · ν, µ)F = 0, ∀ µ ∈ Pk(F ),

for all faces F of K.

Lemma 1.4.12. (Estimates of the Raviart-Thomas projection, [125]) For the Raviart-

Thomas projection of above type, the following estimates hold true:

∥ΠRT
k σ − σ∥K ≤ Chk+1|σ|Hk+1(K).

Definition 1.4.13. (Lipschitz continuity, [81]) In the context of metric spaces (X, dX)

and (Y, dY ), where dX and dY represent the metrics on the sets X and Y a function

f : X → Y is considered Lipschitz continuous if there exists a non-negative real constant

C such that for every x1 and x2 in X , the following inequality holds:

dY (f(x1), f(x2)) ≤ CdX(x1, x2).

1.5 Organization of the Thesis
In Chapter 2, we develop the HDG method for linear parabolic integro-differential equa-

tion and derive uniform in time a priori error bounds. To handle the integral term, we

introduce an extended Ritz-Volterra projection, which helps in achieving optimal order

convergence ofO(hk+1) for the semi discrete problem when polynomials of degree k ≥ 0

are used to approximate both the solution and the flux variables. Further, we propose an

element-by-element post-processing and establish that it achieves convergence of the or-

der O(hk+2) for k ≥ 1. We derive a fully discrete scheme using the backward Euler

method and the left rectangular rule to discretize the derivative and integral term, re-

spectively. Finally, we conclude the chapter by demonstrating the numerical results in

two-dimensional domains to validate the theory.

Chapter 3 discusses the HDG method for a nonlinear parabolic integro-differential

equation. We consider the nonlinear functions as Lipschitz continuous to analyze uniform

in time a priori bounds. We introduce an extended type Ritz-Volterra projection and use

it, along with the HDG projection, as an intermediate projection to achieve optimal order
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convergence ofO(hk+1) when polynomials of degree k ≥ 0 are used to approximate both

the solution and the flux variables. By relaxing the assumptions in the nonlinear variable,

we achieve super-convergence by element-by-element post-processing. With the help of

the backward Euler method in temporal direction and quadrature rule to discretize the in-

tegral term, we derive a fully discrete scheme along with its error estimates. Finally, with

the help of numerical examples in two-dimensional domains, we obtain computational

results, which verify our theoretical findings.

Chapter 4 introduces the HDG approach for a linear hyperbolic integro-differential

equation. This chapter includes the development and thorough analysis of a priori error

estimates for both semi-discrete and fully discrete schemes. In our analysis, we employ

the Ritz-Volterra projection method and its associated estimates for error assessment in

the semi-discrete case. Notably, we demonstrate super-convergence for the scalar vari-

able by employing element-by-element post-processing techniques. For the fully discrete

error analysis, we employ the central difference scheme to approximate the derivative and

the mid-point rule to handle the integral term. As a result, we achieve a second-order con-

vergence rate in the temporal direction. To validate our theoretical findings, we conduct

a series of numerical experiments.

Chapter 5 applies the HDG method to a nonlinear hyperbolic integro-differential

equation. We consider the nonlinear functions as Lipschitz continuous to analyze uni-

form in time a priori bounds. By relaxing the assumptions in the nonlinear variable, we

achieve super-convergence by element-by-element post-processing. We use the central

difference scheme in temporal direction and the mid-point rule to discretize the integral

term to derive a fully discrete scheme and its error estimates. Finally, with the help of

numerical examples in two-dimensional domains, we obtain the computational results,

which verify the theory.

In Chapter 6, a comprehensive critical examination of the obtained results is pre-

sented, accompanied by a discussion on potential avenues for further exploration and the

potential scope for future research topics.
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HDG Method for Linear Parabolic

Integro-Differential Equations

2.1 Introduction
This chapter discusses the HDG method for the following problem: Find u(x, t) such that

ut(x, t)−∇ ·
(
a(x)∇u(x, t) +

∫ t

0

b(x, t, s)∇u(x, s)ds
)

= f(x, t) in Ω× (0, T ],

(2.1a)

u(x, t) = 0 on ∂Ω× (0, T ],

(2.1b)

u(x, 0) = u0(x) for x ∈ Ω,

(2.1c)

where u : Ω × (0, T ] → R. The coefficients a : Ω → R, b : Ω × (0, T ] × (0, T ] → R

and f : Ω× (0, T ] → R are smooth functions with bounded derivatives. Additionally, we

have α0,M ≥ 0 such that 0 < α0 ≤ a ≤M and |b| ≤M .

The utilization of parabolic integro-differential equations (PIDEs) is prevalent across

numerous practical contexts. These equations find application in scenarios such as mod-
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eling heat conduction within materials possessing memory characteristics, characterizing

non-local reactive flows within porous media, and describing non-Fickian fluid flow in

porous media. For an in-depth exploration of this subject and additional references, see

[90, 112, 135] and the associated sources.

In the academic literature, various researchers have made significant contributions to

the analysis and estimation of errors associated with PIDEs. Cannon et al. [16] have

undertaken a comprehensive examination of the Galerkin method for nonlinear integro-

differential equations of parabolic nature. They have achieved optimal L2 error estimates

by employing a non-classicalH1-projection technique. Lin et al. [91] have focused on in-

vestigating the stability of Ritz-Volterra projection and derived maximum norm estimates,

subsequently using them to establish L∞ error estimates for FEMs applied to PIDEs. Fur-

thermore, Lin et al. [90] have explored the convergence of finite element approximations

in the context of both parabolic and hyperbolic integro-differential equations, leveraging

the concept of Ritz-Volterra projection. Larson et al. [86] have described the numerical

solution of PIDEs with memory using the DGM in the temporal domain. Mustapha et al.

[99] have introduced an hp-version of DGM tailored for integro-differential equations of

parabolic nature, providing optimal hp-version error estimates. Additionally, Pani et al.

[115] have derived a priori error bounds for an hp-local Discontinuous Galerkin (LDG)

approximation applied to a PIDE. Their analysis revealed that error estimates in the L2

norm of the gradient and the potential exhibit optimality concerning the discretization

parameter h while remaining sub-optimal in the degree of the polynomial p. Mustapha

[98] has developed a super-convergent DGM designed for Volterra integro-differential

equations, considering both smooth and non-smooth kernels. Goswami et al. [64] have

obtained optimal error estimates for mixed FEMs employed in solving PIDEs, particu-

larly when dealing with non-smooth initial data. Their approach combined energy argu-

ments with repeated use of an integral operator. They have also proposed and analyzed an

alternative approach for a priori error estimates in the context of semi-discrete Galerkin

approximation to time-dependent PIDEs with non-smooth initial data [65], utilizing a

similar methodology. Recently, Chen et al. [26] have introduced a two-grid FEM tai-
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lored for nonlinear PIDEs. In their work, they achieved optimal error estimates in the H1

norm for spatially semi-discrete two-grid FEM, contributing to the field’s understanding

of error analysis for these complex equations.”

The major contributions of this chapter are as follows:

• The use of the extended mixed type Ritz-Volterra projection is employed in order

to get optimum estimates, owing to the inclusion of the integral component.

• Dual problem of the PIDE is used to perform element-by-element post-processing,

which plays a crucial role in achieving super-convergence result.

• Based on backward Euler’s method, a complete discrete scheme and corresponding

error estimates are derived.

• Numerical experiments have been conducted to evaluate the performance of the

HDG approach using various degrees of polynomial approximation. These experi-

ments establish that optimum order of convergence for both the unknown variable

and its associated flux is achieved. Additionally, it has been shown that the post-

processed solution exhibits super-convergence properties.

We note that for simple presentation, we have used the backward Euler’s method but

higher order methods can be easily applied to derive higher order convergence in temporal

direction. In this current chapter, the symbol C is employed to denote a positive constant,

the specific value of which remains unspecified. Importantly, this constant is independent

of both the discretization parameter h and the degree of the polynomial k. Also, argument

x of functions will not be written explicitly, whereas t and s will be written as and when

required.

The rest of the chapter is organized as follows: In section 2.2 the HDG method is

discussed. Section 2.3 is devoted to the Ritz-Volterra projection and its estimates. Sec-

tion 2.4 addresses the topic of a priori error estimations. In section 2.5, the element-by-

element post-processing of the scalar variable is discussed. Section 2.6 pertains to the

completely discrete scheme. Finally, numerical experiments are conducted in section 2.7
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to provide visual demonstrations of the theoretical findings. Section 82 is concluded by a

set of observations.

2.2 HDG Method
To define the method for PIDEs (2.1), we first introduce the following auxiliary variables:

q = −∇u, σ = aq +

∫ t

0

b(t, s)q(s)ds,

and then, rewrite it as the following system of equations:

q = −∇u in Ω, (2.2a)

σ = aq +

∫ t

0

b(t, s)q(s)ds in Ω, (2.2b)

ut +∇ · σ = f in Ω. (2.2c)

At each time t within the interval (0, T ], the method provides an approximation uh(t)

of the scalar function u(t), an approximation qh(t) and σh(t) of the vector function q(t)

and σ(t), respectively, and an approximation ûh(t) of the trace of u(t) on the boundaries

of the elements. These approximations are computed in the function spaces Vh, Wh,

Wh, and Mh, respectively. With these spaces, the HDG formulation seeks approximation

(uh, qh,σh, ûh)(t) ∈ (Vh×Wh×Wh×Mh), for t ∈ (0, T ], for any (vh,wh, τh, µh,mh) ∈

(Vh ×Wh ×Wh ×Mh ×Mh), satisfying

(qh,wh)− (uh,∇ ·wh) + ⟨ûh,wh · ν⟩∂Th = 0, (2.3a)

(aqh, τh)− (σh, τh) +

∫ t

0

(b(t, s)qh(s), τh)ds = 0, (2.3b)

(uht, vh)− (σh,∇vh) + ⟨σ̂h · ν, vh⟩∂Th = (f, vh), (2.3c)

⟨ûh, µh⟩∂Ω = 0, (2.3d)

⟨σ̂h · ν,mh⟩∂Th\∂Ω = 0, (2.3e)

uh(0) = ΠV u0, (2.3f)

where the numerical trace for flux is defined by

σ̂h · ν = σh · ν + τ(uh − ûh) on ∂Th,
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for some non-negative stabilization parameter τ defined on Γ, which is assumed to be

piecewise constant on the faces. We note that the exact solutions u, q and σ satisfy (2.3).

Hence we obtain the following error equations:

(q − qh,wh)− (u− uh,∇ ·wh) + ⟨u− ûh,wh · ν⟩∂Th = 0, (2.4a)

(a(q − qh), τh)− (σ − σh, τh) +

∫ t

0

(b(t, s)(q − qh)(s), τh)ds = 0, (2.4b)

(ut − uht , vh)− (σ − σh,∇vh) + ⟨(σ − σ̂h) · ν, vh⟩∂Th = 0, (2.4c)

⟨u− ûh, µh⟩∂Ω = 0, (2.4d)

⟨(σ − σ̂h) · ν,mh⟩∂Th\∂Ω = 0, (2.4e)

for all (vh,wh, τh, µh,mh) ∈ (Vh ×Wh ×Wh ×Mh ×Mh).

In our a priori error analysis, we introduce and thoroughly examine an extended mixed

Ritz-Volterra projection.

2.3 Extended Mixed Ritz-Volterra Projection and Related

Estimates
We define the following Ritz-Volterra projection: For each t, find (ũh, q̃h, σ̃h, ˆ̃uh) ∈ (Vh×

Wh ×Wh ×Mh) satisfying

(q − q̃h,wh)− (u− ũh,∇ ·wh) + ⟨u− ˆ̃uh,wh · ν⟩∂Th = 0, (2.5a)

(a(q − q̃h), τh)− (σ − σ̃h, τh) +

∫ t

0

(b(t, s)(q − q̃h)(s), τh)ds = 0, (2.5b)

−(σ − σ̃h,∇vh) + ⟨(σ − ˆ̃σh) · ν, vh⟩∂Th = 0, (2.5c)

⟨u− ˆ̃uh, µh⟩∂Ω = 0, (2.5d)

⟨(σ − ˆ̃σh) · ν,mh⟩∂Th\∂Ω = 0, (2.5e)

for all (vh,wh, τh, µh,mh) ∈ (Vh ×Wh ×Wh ×Mh ×Mh), where

ˆ̃σh · ν = σ̃h · ν + τ(ũh − ˆ̃uh) on ∂Th.
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We write the errors in terms of the projection Ik
h (L2-projection onto Wh) and PM (L2-

projection onto Mh) as

u− ũh = (u− ΠV u)− (ũh − ΠV u) = θu − ρu,

q − q̃h = (q − Ik
hq)− (q̃h − Ik

hq) = θq − ρq,

σ − σ̃h = (σ −ΠWσ)− (σ̃h −ΠWσ) = θσ − ρσ,

u− ˆ̃uh = (u− PMu)− (ˆ̃uh − PMu) = θ̂u − ρ̂u,

σ − ˆ̃σh = (σ − PMσ)− ( ˆ̃σh − PMσ) = θ̂σ − ρ̂σ.

Therefore, the system of equations become

(ρq,wh)− (ρu,∇ ·wh) + ⟨ρ̂u,wh · ν⟩∂Th = 0, (2.6a)

(aρq, τh)− (ρσ, τh) +

∫ t

0

(b(t, s)ρq(s), τh)ds = (aθq, τh)− (θσ, τh)

+

∫ t

0

(b(t, s)θq(s), τh)ds, (2.6b)

−(ρσ,∇vh) + ⟨ρ̂σ · ν, vh⟩∂Th = 0, (2.6c)

⟨ρ̂u, µh⟩∂Ω = 0, (2.6d)

⟨ρ̂σ · ν,mh⟩∂Th\∂Ω = 0, (2.6e)

for all (vh,wh, τh, µh,mh) ∈ (Vh ×Wh ×Wh ×Mh ×Mh).

Lemma 2.3.1. For all µh ∈ Pk(F ), we have the following equality:

⟨ρ̂σ · ν, µh⟩∂Th = ⟨ρσ · ν + τ(ρu − ρ̂u), µh⟩∂Th .

Proof. Consider,

⟨ρ̂σ · ν, µh⟩∂Th = ⟨( ˆ̃σh − PMσ + σ − σ) · ν, µh⟩∂Th .

Using the definition of ˆ̃σh, adding and subtracting the terms ΠWσ · ν and τ(ΠV u − u)

and using the definition of HDG projection, we obtain

⟨ρ̂σ · ν, µh⟩∂Th = ⟨(σ̃ −ΠWσ) · ν + τ(ũh − ˆ̃uh − ΠV u+ u), µh⟩∂Th .

Finally, adding and subtracting PMu, we arrive at the desired result.
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Below, we present the estimates for ∥ρσ∥ and ∥ρq∥.

Lemma 2.3.2. For t ∈ (0, T ], a positive constant C that is unaffected by the values of h

and k exists, such that it ensures the validity of the following inequality:

∥ρσ(t)∥+ ∥ρq(t)∥+ ∥ρ̂u − ρu∥τ ≤ C

[
∥θq(t)∥+ ∥θσ(t)∥+

∫ t

0

∥θq(s)∥ds
]
.

Proof. For the estimates of ∥ρσ∥, we will choose τh = ρσ in (2.6b) to get

(aρq,ρσ)− (ρσ,ρσ) +

∫ t

0

(b(t, s)ρq(s),ρσ)ds = (aθq,ρσ)− (θσ,ρσ)

+

∫ t

0

(b(t, s)θq(s),ρσ)ds.

Then, use of Lemma 1.4.2 and the fact that a and b are bounded, show

∥ρσ∥2 = (aρq,ρσ) +

∫ t

0

(b(t, s)ρq(s),ρσ)ds− (aθq,ρσ) + (θσ,ρσ)−
∫ t

0

(b(t, s)θq(s),ρσ)ds,

≤ C

[
∥ρq∥+ ∥θq∥+ ∥θσ∥+

∫ t

0

(∥ρq(s)∥+ ∥θq(s)∥)ds
]
∥ρσ∥,

and hence,

∥ρσ∥ ≤ C

[
∥ρq∥+ ∥θq∥+ ∥θσ∥+

∫ t

0

(∥ρq(s)∥+ ∥θq(s)∥) ds
]
. (2.7)

Next, for the estimates of ρq, we will take wh = ρσ, τh = ρq, vh = ρu, µh = −ρ̂σ · ν

and mh = −ρ̂u in (2.6a), (2.6b), (2.6c), (2.6d) and (2.6e), respectively. Then, add the

resulting equations, to get

(ρq,ρσ)− (ρu,∇ · ρσ) + ⟨ρ̂u,ρσ · ν⟩∂Th + (aρq,ρq)− (ρσ,ρq) +

∫ t

0

(b(t, s)ρq,ρq)ds

− (ρσ,∇ρu) + ⟨ρ̂σ · ν, ρu⟩∂Th − ⟨ρ̂u, ρ̂σ̂ · ν⟩∂Th = (aθq,ρq)− (θσ,ρq) +

∫ t

0

(b(t, s)θq,ρq)ds.

Now, combining the terms and using Lemma 2.3.1, we get

∥a1/2ρq∥2 + ∥ρ̂u − ρu∥2τ = (aθq,ρq)− (θσ,ρq) +

∫ t

0

[
(b(t, s)θq(s),ρq)− (b(t, s)ρq(s),ρq)

]
ds.

Further, using boundedness of a and Lemma 1.4.2, we arrive at

∥ρq∥ ≤ C

[
∥θq∥+ ∥θσ∥+

∫ t

0

(∥θq(s)∥+ ∥ρq(s)∥)ds
]
.

Finally, application of Gronwall’s lemma along with (2.7) conclude the rest of the proof.
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Below, we prove a lemma which provides the estimate for ∥ρu∥.

Lemma 2.3.3. For t ∈ (0, T ], a positive constant C that is unaffected by the values of h

and k exists, such that it ensures the validity of the following inequality:

∥ρu(t)∥ ≤ Chk+1

[
∥u(t)∥Hk+2(Ω) +

∫ t

0

∥u(s)∥Hk+2(Ω)ds

]
.

Proof. For this estimate, we make use of the following auxiliary problem:

−∇ · (a∇ψ) = ρu in Ω,

ψ = 0 on ∂Ω,

with the following elliptic regularity result

∥ψ∥H2(Ω) ≤ ∥ρu∥.

We will write the above problem in the following mixed form:

ϕ = −∇ψ in Ω, (2.8a)

p = aϕ in Ω, (2.8b)

∇ · p = ρu in Ω. (2.8c)

Then, using L2 inner product between (2.8c) and ρu, yields

∥ρu∥2 = (ρu, ρu) = (ρu,∇ · p),

using Lemma 1.4.6, we obtain

∥ρu∥2 = (ρu,∇ ·ΠWp) + ⟨ρu, τ(ΠV ψ − ψ)⟩∂Th

= (ρq,ΠWp) + ⟨ρ̂u,ΠWp · ν⟩∂Th + ⟨ρu, τ(ΠV ψ − ψ)⟩∂Th . by (2.6a)

By continuity of p · ν and (2.6d), we arrive at

∥ρu∥2 = (ρq,ΠWp) + ⟨ρ̂u, (ΠWp− p) · ν⟩∂Th + ⟨ρu, τ(ΠV ψ − ψ)⟩∂Th

= (ρq,ΠWp) + ⟨τ(ρu − ρ̂u),ΠV ψ⟩∂Th + ⟨ρσ · ν, PMψ⟩∂Th by (1.1c), (2.6e)
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= (ρq,ΠWp) + ⟨τ(ρu − ρ̂u)− ρσ · ν,ΠV ψ⟩∂Th + (ρσ,∇ΠV ψ)

+ ⟨ρσ · ν, ψ⟩∂Th by (2.6c)

= (ρq,ΠWp) + (ρσ,∇ψ) by (1.1a)

= (ρq,ΠWp− p) + (ρq,p)− (ρσ,ϕ) by (2.8a)

= (ρq,ΠWp− p) + (ρq,p)− (ρσ,ϕ− Ik
hϕ)− (ρσ, I

k
hϕ).

Finally, we get

∥ρu∥2 = (ρq,ΠWp− p) + (ρq,p)− (aρq, I
k
hϕ) +

∫ t

0

(b(t, s)(θq(s)− ρq(s)), I
k
hϕ)ds

+ (aθq, I
k
hϕ)− (θσ, I

k
hϕ) by (2.6b)

= (ρq,ΠWp− p) + (aρq,ϕ)− (aρq, I
k
hϕ) +

∫ t

0

(b(t, s)(θq(s)− ρq(s)), I
k
hϕ)ds

+ (aθq, I
k
hϕ)− (θσ, I

k
hϕ) by (2.8b)

= (ρq,ΠWp− p) + (aρq,ϕ− Ik
hϕ) + (aθq, I

k
hϕ)− (θσ, I

k
hϕ)

+

∫ t

0

(b(t, s)(θq(s)− ρq(s)), I
k
hϕ)ds. (2.9)

Next, using the Cauchy Schwarz inequality, we get the following inequality:

∥ρu∥2 ≤ ∥ρq∥∥ΠWp− p∥+ C∥ρq∥∥ϕ− Ik
hϕ∥+ C∥θq∥∥Ik

hϕ∥H1(Ω) + ∥θσ∥∥Ik
hϕ∥H1(Ω)

+ C

∫ t

0

(
∥θq(s)∥+ ∥ρq(s)∥

)
∥Ik

hϕ∥H1(Ω).

Now, a use of the estimates of HDG projection, estimate of ∥ρq∥, Lemma 1.4.1, elliptic

regularity and the fact that ∥ϕ∥H1(Ω) ≤M∥p∥H1(Ω) and ∥p∥H1(Ω) ≤ ∥ψ∥H2(Ω) will yield

the desired result.

Remark: The order of convergence of ∥ρu∥ can be further increased to k + 3/2, using

dual norm estimates. This additional result is stated in the form of the following lemma:

Lemma 2.3.4. For t ∈ (0, T ], a positive constant C that is unaffected by the values of h

and k exists, such that it ensures the validity of the following inequality:

∥ρu(t)∥ ≤ Chk+3/2

[
∥u(t)∥Hk+2(Ω) +

∫ t

0

∥u(s)∥Hk+2(Ω)ds

]
.
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Proof. We begin by defining the following dual norm:

∥v∥(H1(Ω))∗ = sup
w∈H1(Ω),w ̸=0

(v,w)

∥w∥H1(Ω)

.

Now, from (2.9), we have the following inequality:

∥ρu∥2 ≤ ∥ρq∥∥ΠWp− p∥+ C∥ρq∥∥ϕ− Ik
hϕ∥+ C∥θq∥H1(Ω)∗∥Ik

hϕ∥H1(Ω)

+ ∥θσ∥H1(Ω)∗∥Ik
hϕ∥H1(Ω) + C

∫ t

0

(
∥θq(s)∥H1(Ω)∗ + ∥ρq(s)∥H1(Ω)∗

)
∥Ik

hϕ∥H1(Ω).

(2.10)

Hence, we require the estimates of ∥θq∥H1(Ω)∗ , ∥θσ∥H1(Ω)∗ and ∥ρq∥H1(Ω)∗ . For the

estimates of ∥θq∥H1(Ω)∗ , we will proceed as follows:

(θq,w) = (θq,w − Ik
hw) + (θq, I

k
hw)

≤ ∥θq∥∥w − Ik
hw∥

≤ Ch∥θq∥∥w∥H1(Ω).

Therefore, we have

∥θq∥H1(Ω)∗ ≤ Ch∥θq∥. (2.11)

Now, for ∥θσ∥H1(Ω)∗ , we have for k ≥ 1

(θσ,w) = (θσ,w − Ik−1
h w) + (θσ, I

k−1
h w)

≤ ∥θσ∥∥w − Ik−1
h w∥

≤ Ch∥θσ∥∥w∥H1(Ω).

Therefore, we have

∥θσ∥H1(Ω)∗ ≤ Ch∥θσ∥. (2.12)

Finally, for the estimates of ∥ρq∥H1(Ω)∗ , we have

(ρq,w) = (ρq,w − Ik
hw) + (ρq, I

k
hw)
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= (ρu,∇ ·wh)− ⟨ρ̂u,wh · ν⟩ by (2.6a)

= (ρu,∇ ·w) + ⟨ρu − ρ̂u, (I
k
hw −w) · ν⟩

≤ C(∥ρu∥+ h1/2∥ρu − ρ̂u∥)∥w∥H1(Ω).

Therefore, we have

∥ρq∥H1(Ω)∗ ≤ C(∥ρu∥+ h1/2∥ρu − ρ̂u∥). (2.13)

Use of (2.11), (2.12) and (2.13) in (2.10), will give the desired improved estimates of

∥ρu∥, and hence, conclude the lemma.

Lemma 2.3.5. For t ∈ (0, T ], a positive constant C that is unaffected by the values of h

and k exists, such that it ensures the validity of the following inequality:

∥ρut(t)∥ ≤ Chk+1

[
∥u(t)∥Hk+2(Th) + ∥ut(t)∥Hk+2(Th) +

∫ t

0

(
∥u(s)∥Hk+2(Th)

+ ∥us(s)∥Hk+2(Th)
)
ds

]
.

Proof. We begin by differentiating (2.6a)-(2.6e) with respect to t, to obtain

(ρqt,wh)− (ρut ,∇ ·wh) + ⟨ρ̂ut ,wh · ν⟩∂Th = 0,

(aρqt , τh)− (ρσt , τh) + (b(t, t)ρq(t), τh) +

∫ t

0

(
∂

∂s
(b(t, s)ρq(s)), τh

)
ds

= (aθqt , τh)− (θσt , τh) + (b(t, t)θq(t), τh) +

∫ t

0

(
∂

∂s
(b(t, s)θq(s)), τh

)
ds,

−(ρσt ,∇vh) + ⟨ρσt · ν, vh⟩∂Th = 0,

⟨ρ̂ut , µh⟩∂Ω = 0,

⟨ρ̂σt · ν,mh⟩∂Th\∂Th = 0,

for all (vh,wh, τh, µh,mh) ∈ (Vh ×Wh ×Wh ×Mh). Then, following the similar steps

as we did in the proofs of Lemma 2.3.2 and 2.3.3, we can derive the estimates of ρut , ρqt

and ρσt .

35



Chapter 2

Theorem 2.3.6. When u, ut ∈ L∞(Hk+2(Th)), a positive constant C that is unaffected by

the values of h and k exists, such that it ensures the validity of the following inequality:

∥(u− ũh)(t)∥+∥(q − q̃h)(t)∥+ ∥(σ − σ̃h)(t)∥ ≤ Chk+1

[
∥u(t)∥Hk+2(Th)

+

∫ t

0

∥u(s)∥Hk+2(Th)ds

]
,

∥(ut − ũht)(t)∥ ≤ Chk+1

[
∥u(t)∥Hk+2(Th) + ∥ut(t)∥Hk+2(Th) +

∫ t

0

(
∥u(s)∥Hk+2(Th)

+ ∥us(s)∥Hk+2(Th)
)
ds

]
.

Proof. With the help of (1.2b), Lemmas 2.3.3 and 2.3.5 and application of the triangle

inequality, we get the desired result.

2.4 A Priori Error Estimates for Semidiscrete Scheme
This section deals with the following theorem:

Theorem 2.4.1. Let (u, q,σ) be the solution of (2.2) and (uh, qh,σh) ∈ Vh×Wh×Wh

be the solution of (2.3). If u, ut ∈ L∞(Hk+2(Th)), uh(0) = ΠV u0 and qh(0) = −Ik
h∇u0,

then, ∀ t ∈ (0, T ], we have the following estimates:

∥(u− uh)(t)∥+ ∥(q − qh)(t)∥+ ∥(σ − σh)(t)∥

≤ Chk+1

[
∥u(t)∥Hk+2(Th) +

∫ t

0

(
∥u(s)∥Hk+2(Th) + ∥us(s)∥Hk+2(Th)

)
ds

]
,

∥(ut − uht)(t)∥ ≤ Chk+1

[
∥u(t)∥Hk+2(Th) + ∥ut(t)∥Hk+2(Th) + ∥utt(t)∥Hk+2(Th)

+

∫ t

0

(
∥u(s)∥Hk+2(Th) + ∥us(s)∥Hk+2(Th) + ∥uss(s)∥Hk+2(Th)

)
ds

]
.

We now rewrite the errors in terms of η and ξ in the following manner

eu = u− uh = (u− ũh)− (uh − ũh) = ηu − ξu,

similarly, we will decompose eq, eσ, êu and êσ in terms of η’s and ξ’s. Since, from

Section 2.3, we can compute the estimates of ηu, ηq, ησ, η̂u and η̂σ, therefore, it remains
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to derive the estimates of ξu, ξq, ξσ, ξ̂u and ξ̂σ. For that, we proceed as follow:

(ξq,wh)− (ξu,∇ ·wh) + ⟨ξ̂u,wh · ν⟩∂Th = 0 ∀wh ∈ Wh, (2.14a)

(aξq, τh)− (ξσ, τh) +

∫ t

0

(b(t, s)ξq(s), τh)ds = 0 ∀τh ∈ Wh, (2.14b)

(ξut, vh)− (ξσ,∇vh) + ⟨ξ̂σ · ν, vh⟩∂Th = (ηut, vh) ∀vh ∈ Vh, (2.14c)

⟨ξ̂u, µh⟩∂Ω = 0 ∀µh ∈Mh, (2.14d)

⟨ξ̂σ · ν,mh⟩∂Th\∂Ω = 0 ∀mh ∈Mh. (2.14e)

Above system of equations is obtained using (2.4) and (2.5)

Lemma 2.4.2. A positive constant C that is unaffected by the values of h and k exists,

such that it ensures the validity of the following inequality:

∥ξu(t)∥2+
∫ t

0

(
∥ξq(s)∥2 + ∥ξ̂u − ξu∥2τ

)
ds ≤ C

(
∥ξu(0)∥2 +

∫ T

0

∥ηut(t)∥2dt
)
.

Proof. Choose wh = ξσ, τh = ξq, vh = ξu, µh = −ξ̂σ · ν and mh = −ξ̂u in (2.14a),

(2.14b), (2.14c), (2.14d) and (2.14e), respectively, and then, adding the resulting equa-

tions, we obtain

(aξq, ξq) +

∫ t

0

(b(t, s)ξq(s), ξq)ds+
1

2

d

dt
∥ξu∥2 + ∥ξ̂u − ξu∥2τ = (ηut , ξu),

and hence,

∥ξq∥2 +
d

dt
∥ξu∥2 ≤ ∥ηut∥2 + ∥ξu∥2 + C

∫ t

0

∥ξq(s)∥2ds.

On integrating the above inequality from 0 to t, it follows that∫ t

0

∥ξq(s)∥2ds+ ∥ξu∥2 ≤ ∥ξu(0)∥2 +
∫ t

0

[
∥ξu(s)∥2 + C

∫ s

0

∥ξq(γ)∥2dγ
]
ds

+

∫ t

0

∥ηus(s)∥2ds.

Finally, application of the Gronwall’s lemma gives the desired inequality.

Lemma 2.4.3. A positive constant C that is unaffected by the values of h and k exists,

such that it ensures the validity of the following inequality:

∥ξσ(t)∥2 + ∥ξq(t)∥2 + ∥ξ̂u − ξu∥2τ ≤ C

(
∥ξq(0)∥2 +

∫ T

0

∥ηut(t)∥2dt
)
.
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Proof. To begin with, we differentiate (2.14a) with respect to t and then choose wh = ξσ,

τh = ξqt , vh = ξut in (2.14a), (2.14b), (2.14c) respectively. Now, differentiate (2.14d)

with respect to t and choose µh = −ξ̂σ · ν and mh = −ξ̂ut in (2.14d) and (2.14e)

respectively. Then adding the resulting equations, we obtain

(aξq, ξqt) +
1

2

d

dt
∥ξ̂u − ξu∥2τ + ∥ξut∥2 +

∫ t

0

(b(t, s)ξq(s), ξqt)ds = (ηut , ξut).

Application of the Cauchy Schwarz inequality and Leibniz’s theorem show,

d

dt
∥a1/2ξq∥2 +

1

2
∥ξut∥2 ≤

1

2
∥ηut∥2 −

d

dt

∫ t

0

(b(t, s)ξq(s), ξq)ds+ (b(t, t)ξq, ξq)

+

∫ t

0

(bt(t, s)ξq(s), ξq)ds.

On integrating the above inequality from 0 to t, we obtain

∥a1/2ξq∥2 +
∫ t

0

∥ξus(s)∥2 ≤ ∥a1/2ξq(0)∥+
∫ t

0

∥ηus(s)∥2 −
∫ t

0

(b(t, s)ξq(s), ξq)ds

+

∫ t

0

(b(s, s)ξq(s), ξq(s))ds+

∫ t

0

∫ s

0

(bs(s, γ)ξq(γ), ξq(s))dγds.

Finally, a use of the Young’s inequality and Gronwall’s lemma along with the bounded-

ness of a and b, will give the following estimate

∥ξq∥2 ≤ C

(
∥ξq(0)∥2 +

∫ T

0

∥ηut(t)∥2dt
)
.

Now, choosing τh = ξσ in (2.14b) and then using Cauchy Schwarz inequality and bound-

edness of a will give

∥ξσ∥ ≤ C

(
∥ξq∥+

∫ t

0

∥ξq(s)∥ds
)
.

Combining last two inequalities will give the desired result.

Proof of Theorem 2.4.1: It simply follows by triangle’s inequality, Theorem 2.3.6,

Lemma 2.4.2 and Lemma 2.4.3.

□
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2.5 Post-processing
We begin by defining the new approximation u∗h ∈ Pk+1(K), on the element K, as

u∗h = uph +
1

|K|

∫
K

uh, u
p
h ∈ P 0

k+1,

where uph satisfies

(a∇uph,∇v) = −(aqh,∇v), ∀v ∈ P 0
k+1,

where P 0
k (K) has all the polynomials of Pk(K) whose average value is zero.

Then, we have the following inequality:

∥u− u∗h∥L2(K) ≤
∥∥∥∥u− uph −

1

|K|

∫
K

uhdx

∥∥∥∥
L2(K)

≤
∥∥∥∥up − uph +

1

|K|

∫
K

(u− uh)dx

∥∥∥∥
L2(K)

≤ ∥Ik−1
h eu∥L2(K) + ∥up − uph∥L2(K), (2.15)

where, up = u− 1

|K|

∫
K

udx.

Below, we present lemmas that give the estimates of the terms in (2.15).

Lemma 2.5.1. For the method of the form (2.3), a positive constant C that is unaffected

by the values of h and k exists, such that it ensures the validity of the following inequality:

∥Ik−1
h eu∥L2(K) ≤ C

√
log
(
T

ρ2

)
hk+2. (2.16)

Proof. We begin the proof with the help of the following dual problem [113]. For fixed

t ∈ (0, T ), let ψ(s) ∈ H2(Ω) ∩H1
0 (Ω) satisfy the following system of equations

ϕ(s) = ∇ψ(s) in Ω, s ≤ t,

p(s) = aϕ(s) +

∫ t

s

b(γ, s)ϕ(γ)dγ in Ω, s ≤ t,

ψs(s) +∇ · p(s) = 0 in Ω, s ≤ t,

ψ(s) = 0 on ∂Ω, s ≤ t,
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ψ(t) = λ in Ω,

with the regularity results [112, 113] :∫ t

0

∥ψ(s)∥22 ds ≤ C∥∇λ∥2, (2.17)

∫ t

0

(t− s)∥ψ(s)∥22 ds ≤ C∥λ∥2. (2.18)

We use the similar procedure as done in [139] to get the following equality

d

ds
(ψ(s), Ik−1

h eu(s)) = (eus(s), I
k−1
h ψ(s)− ψ(s))− (eus(s), I

k
hψ(s)− ψ(s))− (eq(s),

ΠRT
k−1p(s)− p(s))− (aeq(s),ϕ(s)− Ik

hϕ(s))− (eσ(s), I
k
hϕ(s)

− ϕ(s))− (eσ(s),∇(ψ − Ikhψ)(s))− ⟨êσ · ν, Ikhψ⟩

+

∫ s

0

(b(s, γ)eq(γ), I
k
hϕ(s))dγ −

∫ t

s

(b(γ, s)ϕ(γ), eq(s))dγ.

Integrating this equation from 0 to t and taking eu(0) = 0, we obtain

(λ, Ik−1
h eu(t)) =

∫ t

0

[
(eus(s), I

k−1
h ψ(s)− ψ(s))− (eus(s), I

k
hψ(s)− ψ(s))− (eq(s),

ΠRT
k−1p(s)− p(s))− (aeq(s),ϕ(s)− Ik

hϕ(s))− (eσ(s), I
k
hϕ(s)− ϕ(s))

− (eσ(s),∇(ψ − Ikhψ)(s))− ⟨êσ · ν, Ikhψ⟩
]
ds+

∫ t

0

∫ s

0

(b(s, γ)eq(γ),

Ik
hϕ(s))dγds−

∫ t

0

∫ t

s

(b(γ, s)ϕ(γ), eq(s))dγds.

Now, changing the order of integration in the last term, we obtain

(λ, Ik−1
h eu(t)) =

∫ t

0

[
(eus(s), I

k−1
h ψ(s)− ψ(s))− (eus(s), I

k
hψ(s)− ψ(s))− (eq(s),

ΠRT
k−1p(s)− p(s))− (aeq(s),ϕ(s)− Ik

hϕ(s))− (eσ(s), I
k
hϕ(s)− ϕ(s))

− (eσ(s),∇(ψ − Ikhψ)(s))− ⟨êσ · ν, Ikhψ⟩
]
ds+

∫ t

0

∫ s

0

(b(s, γ)eq(γ),

Ik
hϕ(s)− ϕ(s)dγds.

=

∫ t

0

[E1 + E2 + E3 + E4 + E5 + E6 + E7] ds+ E8. (2.19)
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Use of Cauchy Schwarz’s inequality along with the properties of Ik−1
h and Ik

h yield

|E1 + E2 + E3 + E4 + E5 + E6| ≤ Ch (∥eus(s)∥+ ∥eq(s)∥+ ∥eσ(s)∥) ∥ψ∥2.

Use of (2.4e) and properties of the projection Ikh gives

|E7| ≤ ∥êσ · ν∥∂K∥Ikhψ − ψ∥∂K ≤ Ch3/2∥êσ · ν∥∂K∥ψ∥2.

Finally, use of Cauchy Schwarz’s inequality with boundedness of b and approximation

property of Ik
h shows

|E8| ≤ Ch

∫ t

0

∫ s

0

∥eq(γ)∥∥ψ∥2dγds.

Now, on substitution in (2.19), we arrive at

(λ, Ik−1
h eu(t)) ≤ Chk+2

∫ t

0

∥ψ(s)∥2 ds.

Next, for any δ ∈ (0, t), we have∫ t

0

∥ψ(s)∥2 ds =
∫ t−δ

0

∥ψ(s)∥2 ds+
∫ t

t−δ

∥ψ(s)∥2 ds

=

∫ t−δ

0

√
t− s ∥ψ(s)∥2

1√
t− s

ds+

∫ t

t−δ

∥ψ(s)∥2 ds

≤
√

log
t

δ

(∫ t

0

(t− s)∥ψ(s)∥22 ds
) 1

2

+
√
δ

(∫ t

0

∥ψ(s)∥22 ds
) 1

2

Now, using the regularity result (2.17) and (2.18), we obtain the desired estimates. This

completes the rest of the proof.

Lemma 2.5.2. For the method of the form (2.3), a positive constant C that is unaffected

by the values of h and k exists, such that it ensures the validity of the following inequality:

∥up − uph∥ ≤ Chk+2. (2.20)

Proof. A use of the Poincare’s inequality 1.4.4 shows

∥up − uph∥ ≤ Ch∥∇(up − uph)∥. (2.21)
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Now, for any v ∈ P 0
k+1(K), there hold:

(a∇(uph − up),∇v) + (a∇up,∇v) = −(aqh,∇v),

and hence,

(a∇(uph − up),∇v) = (a(q − qh),∇v)

≤ C∥q − qh∥∥∇v∥. (2.22)

Now, we note that

α0∥∇(Ik+1
h up − uph)∥

2 ≤ (a∇(Ik+1
h up − up),∇(Ik+1

h up − uph)) + (a∇(up − uph),

∇(Ik+1
h up − uph)).

Using Cauchy Schwarz’s inequality and (2.22) with v = Ik+1
h up − uph, we arrive at

∥∇(Ik+1
h up − uph)∥ ≤ C(∥∇(Ik+1

h up − up)∥+ ∥q − qh∥).

Lastly, we apply traingle’s inequality to arrive at the following inequality

∥∇(up − uph)∥ ≤ ∥∇(Ik+1
h up − up)∥+ ∥∇(Ik+1

h up − uph)∥

≤ C(∥∇(Ik+1
h up − up)∥+ ∥q − qh∥). (2.23)

A substitution of (2.23) in (2.21) concludes the proof.

Theorem 2.5.3. For the method of the form (2.3), when u, ut ∈ L∞(Hk+2(Th)) a positive

constant C that is unaffected by the values of h and k ≥ 1 exists, such that it ensures the

validity of the following inequality:

∥u− u∗h∥ ≤ C

√
log

(
T

ρ2

)
hk+2.

Proof. Substitute (2.16) and (2.20) in (2.15) to prove the theorem.
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2.6 Fully Discrete Scheme
In this section, we will discretize equation (2.3) in time direction, based on backward

difference scheme, along with left rectangle rule to approximate the integral term. We

first divide the interval [0, T ] into M equally spaced sub-intervals by the following points

0 = t0 < t1 < ... < tM = T,

with tn = n∆t, ∆t = T/M , as the time step.

The fully discrete approximation to the problem (2.3) is defined as follows: For 1 ≤ n ≤

M , find (Un,Qn,Sn, Ûn) ∈ (Vh×Wh×Wh×Mh), such that, for any (vh,wh, τh, µh,mh) ∈

(Vh ×Wh ×Wh ×Mh ×Mh), we require

(Qn,wh)− (Un,∇ ·wh) + ⟨Ûn,wh · ν⟩∂Th = 0 ∀wh ∈ Wh, (2.24a)

(aQn, τh)− (Sn, τh) +
(
∆t

n−1∑
i=0

b(tn, ti)Q
i, τh

)
= 0 ∀τh ∈ Wh, (2.24b)(

Un − Un−1

∆t
, vh

)
− (Sn,∇vh) + ⟨Ŝn · ν, vh⟩∂Th = (f, vh) ∀vh ∈ Vh, (2.24c)

⟨Ûn, µh⟩∂Ω = 0 ∀µh ∈Mh, (2.24d)

⟨Ŝn · ν,mh⟩∂Th\∂Ω = 0 ∀mh ∈Mh, (2.24e)

where numerical trace for flux is defined by:

Ŝn · ν = Sn · ν + τ(Un − Ûn) on ∂Th.

Theorem 2.6.1. Let u be the solution of (2.1), such that u, ut ∈ L∞(Hk+2(Th)) and

uh(0) = U0 = ΠV u0, then for all 1 ≤ n ≤M ,

∥u(tn)− Un∥ ≤ O(hk+1 +∆t).

Proof. We begin by writing ∥u(tn) − Un∥ ≤ ∥u(tn) − uh(tn)∥ + ∥uh(tn) − Un∥. We

only need to derive the estimate of the second term in the right hand side. We will use ζnu

to denote uh(tn)− Un. Similarly, ζn
q , ζn

σ and ζ̂nu .
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Now, using (2.3) and (2.24), we have the following

(ζn
q ,wh)− (ζnu ,∇ ·wh) + ⟨ζ̂nu ,wh · ν⟩∂Th = 0, (2.25a)

(aζn
q , τh)− (ζn

σ, τh) +

∫ tn

0

(b(tn, s)qh(s), τh)ds =

(
∆t

n−1∑
i=0

b(tn, ti)Q
i, τh

)
,

(2.25b)(
uht(tn)−

Un − Un−1

∆t
, vh

)
− (ζn

σ,∇vh) + ⟨ζ̂n
σ · ν, vh⟩∂Th = 0, (2.25c)

⟨ζ̂nu , µh⟩∂Ω = 0, (2.25d)

⟨ζ̂n
σ · ν,mh⟩∂Th\∂Ω = 0, (2.25e)

for all (vh,wh, τh, µh,mh) ∈ (Vh ×Wh ×Wh ×Mh ×Mh). Where numerical trace for

flux is defined by:

ζ̂n
σ · ν = ζn

σ · ν + τ(ζnu − ζ̂nu ) on ∂Th.

Taking wh = ζn
σ, τh = ζn

q , vh = ζnu , µh = −ζ̂n
σ · ν and mh = −ζ̂nu in (2.25a), (2.25b),

(2.25c), (2.25d) and (2.25e), respectively, and then, adding the resulting equations to

obtain

∥a1/2ζn
q ∥2 +

(
ζnu − ζn−1

u

∆t
, ζnu

)
+ ∥ζ̂nu − ζnu∥2τ + (Jn, ζnu ) =

(
En

h (qh), ζ
n
q

)
−

(
∆t

n−1∑
i=0

b(tn, ti)ζ
i
q, ζ

n
q

)
,

=⇒ ∥a1/2ζn
q ∥2 +

1

2∆t

(
∥ζnu∥2 − ∥ζn−1

u ∥2
)
+

1

2

∥∥∥∥ζnu − ζn−1
u

∆t

∥∥∥∥2 + ∥ζ̂nu − ζnu∥2τ

+(Jn, ζnu ) =
(
En

h (qh), ζ
n
q

)
−

(
∆t

n−1∑
i=0

b(tn, ti)ζ
i
q, ζ

n
q

)
,

where

Jn = uht(tn)−
uh(tn)− uh(tn−1)

∆t
,

and

En
h (qh) = ∆t

n−1∑
i=0

b(tn, ti)qh(ti)−
∫ tn

0

b(tn, s)qh(s)ds.
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(a) Example 1 (b) Example 2

Figure 2.1: Convergence behaviour of ∥eu∥ at t = 1

Now, summing over n from n = 1 to n = m, where 1 ≤ m ≤M to obtain

∆t
m∑

n=1

∥ζn
q ∥2 +

1

2
∥ζmu ∥2 + ∆t

2

m∑
n=1

∥∥∥∥ζnu − ζn−1
u

∆t

∥∥∥∥2 ≤ 1

2
∥ζ0u∥2 +∆t

m∑
n=1

(In1 + In2 + In3 ),

(2.26)

where,

In1 = (Jn, ζnu ) , I
n
2 =

(
En

h (qh), ζ
n
q

)
, In3 =

(
∆t

n−1∑
i=0

b(tn, ti)ζ
i
q, ζ

n
q

)
.

Using Taylor’s series approximation, we note that

Jn =
1

∆t

∫ tn

tn−1

(s− tn−1)uhss(s)ds,

and, ∥Jn∥2 ≤ ∆t

3

∫ tn

tn−1

∥uhss(s)∥2ds.

Therefore,

|In1 | ≤
∆t

6

∫ tn

tn−1

∥uhss(s)∥2ds+
1

2
∥ζnu∥2. (2.27)

Next, a use of quadrature error yields

∥Eh(qh)∥ ≤ ∆t

∫ tn

0

∥qhs(s)∥ds.
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(a) Example 1 (b) Example 2

Figure 2.2: Convergence behaviour of ∥eq∥ at t = 1

Then, a use of Young’s inequality yields

|In2 | ≤ C

(
∆t2

∫ tn

0

∥qhs∥2ds+ ∥ζnq ∥2
)
. (2.28)

Using (2.27) and (2.28) in (2.26) and setting

C̃ =
1

2
∥ζ0u∥2 + C∆t

m∑
n=1

(
∆t

∫ tn

tn−1

∥uhss(s)∥2ds+∆t2
∫ tn

0

∥qhs∥2ds
)
,

we obtain

C∆t
m∑

n=1

∥ζn
q ∥2 + C∥ζmu ∥2 + ∆t

2

m∑
n=1

∥∥∥∥ζnu − ζn−1
u

∆t

∥∥∥∥2 ≤ C̃ + C∆t
m∑

n=1

n−1∑
i=1

∥ζi
q∥2.

Finally, use of discrete Gronwall’s lemma along with theorem 2.4.1 will give the desired

estimate. For more details, see [47].

2.7 Numerical Experiments
This section consists of two numerical examples which are used to verify the theoretical

results that are proved in the chapter. The examples consist of (2.1a)-(2.1c) with a = 1,

for Ω = (0, 1) × (0, 1) and T = 1. Figure 2.3 shows the domain discretization used for

different mesh sizes. We have used the backward Euler’s method to completely discretize
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(a) h =
1

2
(b) h =

1

4

(c) h =
1

8
(d) h =

1

16

Figure 2.3: domain discretization for different values of h

the problem, along with left rectangle rule to approximate the integral term. We observe

that the optimal order of convergence in case of u and q and the super-convergence in the

case of u∗h as predicted by our theory, is achieved.

Example 1: Choose u(x, y, t) = e−tx(1 − x)y(1 − y) and b(x, t, s) = et−s. We have

used MATLAB codes to compute L2 error estimates for the three unknowns, that is, u, q

and σ, for different mesh sizes, that is, for h =
1

2
, h =

1

4
, h =

1

8
and h =

1

16
. Next, we

have computed their orders of convergence and found that they match with the theoretical

findings. In Figures 2.1a, 2.2a and 2.4a, we plot the computed error with the mesh sizes
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(a) Example 1 (b) Example 2

Figure 2.4: Convergence behaviour of ∥e∗u∥ at t = 1

for different degrees of polynomials. Table 2.1 gives the time convergence for u for the

example for different time steps.

∆t (h = 1/4) Order (Ex. 1) Order (Ex. 2)

0.25 0.9845 0.8956

0.125 1.0076 0.9823

0.0625 1.3045 1.1263

0.03125 1.2134 1.1943

Table 2.1: Order of convergence for time

Example 2: Choose u(x, y, t) = (0.01) cos(πt)x(1−x)y(1−y) and b(x, t, s) = sin(πt) cos(πs).

We have used MATLAB codes to compute L2 error estimates for the three unknowns, that

is, u, q and σ, for different mesh sizes, that is, for h =
1

2
, h =

1

4
, h =

1

8
and h =

1

16
.

Next, we have computed their orders of convergence and found that they match with the

theoretical findings. In Figures 2.1b, 2.2b and 2.4b, we plot the computed error with the

mesh sizes for different degrees of polynomials. Table 2.1 gives the time convergence for

u for the example for different time steps.
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2.8 Conclusions
Due to various theoretical and computational benefits of the HDG method, in this chapter,

it has been proposed and analyzed for equation (2.1). Throughout this chapter, HDG and

Ritz-Volterra projections has been used to derive the error estimates. Further, element-

by-element post-processing has been proposed. It has been shown that the solution and

its gradient achieve optimal rate of convergence, that is, of order k + 1, k ≥ 0 in the

discretizing parameter h, whereas, super-convergence has been achieved, that is, of order

k + 2, k ≥ 1, for the post-processed solution. Finally, numerical results have been

discussed. This analysis can be extended to 3-dimensional domain, by incorporating the

changes accordingly. We can easily achieve higher order scheme for fully discrete case

by applying a higher order scheme to approximate the time derivative and the integral

term.
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HDG Method for Nonlinear Parabolic

Integro-Differential Equations

3.1 Introduction
This chapter discusses the HDG method for the following problem: Find u(x, t) such that

ut(x, t)−∇ ·
(
a(u)∇u(x, t) +

∫ t

0

b(u(s))∇u(x, s)ds
)

= f(u) in Ω× (0, T ],

(3.1a)

u(x, t) = 0 on ∂Ω× (0, T ],

(3.1b)

u(x, 0) = u0(x) for x ∈ Ω. (3.1c)

Here, u : Ω × (0, T ] → R. For the functions a : R → R and b : R → R, we consider

that 0 < a∗ ≤ a(u) ≤ M and |b(u)| ≤ M , where a∗ and M are positive constants.

Furthermore, the functions a(u), b(u), their derivatives and f(u) satisfy the Lipschitz

continuity condition near ‘u’. For the existence and uniqueness of the solution of (3.1),

we refer to [24].

PIDEs of the above type occur in numerous physical models and engineering prob-
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lems, for example, gas diffusion problems, heat transfer problems, and the non-local

reactive flows in porous media. For further details, we refer to [26, 64, 115] and refer-

ences therein. In literature, the FEM has been applied to the nonlinear parabolic integro-

differential equations, see, [16, 17, 87]. In [16, 17], Ritz-Volterra projection has been

introduced to deal with the integral term, whereas, in [89], Lin has derived the maximum

norm estimates for the same. In [88], he has analyzed the Galerkin method for (3.1a)

along with nonlinear boundary conditions. In [26], Chen et al. presented a two-grid FEM

for PIDEs of type (3.1) and derived the error estimates by solving the nonlinear problem

on a coarser grid and then a linearized problem on a finer grid.

In this chapter, the HDG method is implemented on (3.1). The major contributions of

this chapter are as follows:

• For the error analysis, only the first order derivative of the nonlinear variables a

and b, along with the Lipschitz continuity condition, has been considered, without

taking into consideration, their second order derivative.

• To deal with the integral term, Ritz-Volterra projection of extended type is intro-

duced and analyzed. This helps to achieve optimal estimates of order O(hk+1)

when polynomials of degree k ≥ 0 are used to approximate both ‘u’ and ‘∇u’.

• Dual problem is used for element-by-element post-processing to achieve super-

convergence results for the post-processed solution. Super-convergence is achieved

by considering the derivative of order only up to one of the nonlinear variables f ,

a, and b.

• Using backward Euler’s method for time derivative, a complete discrete scheme is

proposed, and corresponding error estimates are derived.

• With the help of different numerical examples, it has been verified that the un-

known variable and the flux achieve optimal order of convergence, whereas the

post-processed solution attains the super-convergence.
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We have used backward Euler’s method for the time derivative, but higher-order meth-

ods can also be applied to derive higher-order convergence in the temporal direction. For

the sake of simplicity, C is used to denote an inclusive, positive constant independent

of discretizing parameter h as well as the degree of polynomial k. Also, argument x

of functions will not be written explicitly, whereas t and s will be written as and when

required.

The chapter’s structure is as follows: Section 3.2 defines the HDG method for non-

linear PIDE (3.1). It also introduces an intermediate projection, along with its estimates.

Section 3.3 analyses the error for the semi-discrete problem. In Section 3.4, the post-

processed solution is introduced, along with its estimates. Section 3.5 deals with the

fully discrete scheme. Section 3.6 validates the theoretical results with the help of a few

numerical examples. Finally, Section 3.7 gives some concluding remarks.

3.2 HDG Method
To implement the HDG method on (3.1), we begin by introducing the following variables:

q = −∇u, σ = a(u)q +

∫ t

0

b(u(s))q(s)ds,

and then, using these variables, we write (3.1) as follows:

q = −∇u, in Ω × (0, T ], (3.2a)

σ = a(u)q +

∫ t

0

b(u(s))q(s)ds, in Ω × (0, T ], (3.2b)

ut +∇ · σ = f(u), in Ω × (0, T ]. (3.2c)

The HDG formulation seeks approximation (uh, qh,σh, ûh)(t) ∈ (Vh,Wh,Wh,Mh), for

t ∈ (0, T ], for any (vh,wh, τh, µh,mh) ∈ (Vh,Wh,Wh,Mh,Mh), such that the following

equations are satisfied

(qh,wh)− (uh,∇ ·wh) + ⟨ûh,wh · ν⟩∂Th = 0, (3.3a)

(a(uh)qh, τh)− (σh, τh) +

∫ t

0

(b(uh(s))qh(s), τh)ds = 0, (3.3b)
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(uht, vh)− (σh,∇vh) + ⟨σ̂h · ν, vh⟩∂Th = (f(uh), vh), (3.3c)

⟨ûh, µh⟩∂Ω = 0, (3.3d)

⟨σ̂h · ν,mh⟩∂Th\∂Ω = 0, (3.3e)

uh(0) = ΠV u0, (3.3f)

where the numerical trace for flux is defined by

σ̂h · ν = σh · ν + τ(uh − ûh) on ∂Th.

Here, τ ≥ 0 is defined on Γ and is known as the stabilization parameter, which is assumed

to be a piece-wise constant on the faces. We note that the exact solutions u, q and σ

satisfy (3.3). Hence, we obtain the following error equations:

(q − qh,wh)− (u− uh,∇ ·wh) + ⟨u− ûh,wh · ν⟩∂Th = 0, (3.4a)

(a(u)q − a(uh)qh, τh)− (σ − σh, τh) +

∫ t

0

((b(u(s))q − b(uh(s))qh)(s), τh)ds = 0,

(3.4b)

(ut − uht , vh)− (σ − σh,∇vh) + ⟨(σ − σ̂h) · ν, vh⟩∂Th = (f(u)− f(uh), vh), (3.4c)

⟨u− ûh, µh⟩∂Ω = 0, (3.4d)

⟨(σ − σ̂h) · ν,mh⟩∂Th\∂Ω = 0, (3.4e)

for all (vh,wh, τh, µh,mh) ∈ (Vh,Wh,Wh,Mh,Mh).

For the further analysis, we add and subtract a(u)qh +

∫ t

0

b(u(s))qh(s)ds in (3.4b), to

get the error equations in the following form:

(q − qh,wh)− (u− uh,∇ ·wh) + ⟨u− ûh,wh · ν⟩∂Th = 0, (3.5a)

(a(u)(q − qh), τh)− (σ − σh, τh) +

∫ t

0

(b(u(s))(q − qh)(s), τh) ds

= ((a(uh)− a(u))qh, τh) +

∫ t

0

((b(uh(s))− b(u(s)))qh(s), τh)ds, (3.5b)

(ut − uht , vh)− (σ − σh,∇vh) + ⟨(σ − σ̂h) · ν, vh⟩∂Th = (f(u)− f(uh), vh), (3.5c)

⟨u− ûh, µh⟩∂Ω = 0, (3.5d)
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⟨(σ − σ̂h) · ν,mh⟩∂Th\∂Ω = 0, (3.5e)

for all (vh,wh, τh, µh,mh) ∈ (Vh,Wh,Wh,Mh,Mh).

3.2.1 An Intermediate Projection and Related Estimates

We define the following Ritz-Volterra projection: For each t and given (u, q,σ), find

(ũh, q̃h, σ̃h, ˆ̃uh) ∈ (Vh ×Wh ×Wh ×Mh) satisfying

(q − q̃h,wh)− (u− ũh,∇ ·wh) + ⟨u− ˆ̃uh,wh · ν⟩∂Th = 0, (3.6a)

(a(u)(q − q̃h), τh)− (σ − σ̃h, τh) +

∫ t

0

(b(u(s))(q − q̃h)(s), τh)ds = 0, (3.6b)

−(σ − σ̃h,∇vh) + ⟨(σ − ˆ̃σh) · ν, vh⟩∂Th = 0, (3.6c)

⟨u− ˆ̃uh, µh⟩∂Ω = 0, (3.6d)

⟨(σ − ˆ̃σh) · ν,mh⟩∂Th\∂Ω = 0, (3.6e)

for all (vh,wh, τh, µh,mh) ∈ (Vh ×Wh ×Wh ×Mh ×Mh), where

ˆ̃σh · ν = σ̃h · ν + τ(ũh − ˆ̃uh) on ∂Th.

We decompose the errors using Ik
h (L2-projection onto Wh) and PM (L2-projection onto

Mh) into θ’s and ρ’s as done in Chapter 2. Now, the system of equations (3.6) become

(ρq,wh)− (ρu,∇ ·wh) + ⟨ρ̂u,wh · ν⟩∂Th = 0, (3.7a)

(a(u)ρq, τh)− (ρσ, τh) +

∫ t

0

(b(u(s))ρq(s), τh)ds = (a(u)θq, τh)− (θσ, τh)

+

∫ t

0

(b(u(s))θq(s), τh)ds,

(3.7b)

−(ρσ,∇vh) + ⟨ρ̂σ · ν, vh⟩∂Th = 0, (3.7c)

⟨ρ̂u, µh⟩∂Ω = 0, (3.7d)

⟨ρ̂σ · ν,mh⟩∂Th\∂Ω = 0, (3.7e)

for all (vh,wh, τh, µh,mh) ∈ (Vh ×Wh ×Wh ×Mh ×Mh).

Note that, ⟨ρ̂σ · ν, µh⟩∂Th = ⟨ρσ · ν + τ(ρu − ρ̂u), µ⟩∂Th , for all µh ∈ Pk(F ).
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Below, we present the estimates for ∥ρσ∥ and ∥ρq∥.

Lemma 3.2.1. For t ∈ (0, T ], a positive constant C that is unaffected by the values of h

and k exists, such that it ensures the validity of the following inequality:

∥ρ̂u − ρu∥τ + ∥ρσ(t)∥+ ∥ρq(t)∥ ≤ C

[
∥θq(t)∥+ ∥θσ(t)∥+

∫ t

0

∥θq(s)∥ds
]
.

Proof. Choose τh = ρσ in (3.7b). Use of Cauchy-Schwarz inequality along with 0 <

a∗ ≤ a ≤M , |b(u)| ≤M yield

∥ρσ∥2 = (a(u)ρq,ρσ) +

∫ t

0

(b(u(s))ρq(s),ρσ)ds− (a(u)θq,ρσ) + (θσ,ρσ)

−
∫ t

0

(b(u(s))θq(s),ρσ)ds,

≤ C

[
∥ρq∥+ ∥θq∥+ ∥θσ∥+

∫ t

0

(∥ρq(s)∥+ ∥θq(s)∥)ds
]
∥ρσ∥,

and hence,

∥ρσ∥ ≤ C

[
∥ρq∥+ ∥θq∥+ ∥θσ∥+

∫ t

0

(∥ρq(s)∥+ ∥θq(s)∥)ds
]
. (3.8)

Next, take wh = ρσ, τh = ρq, vh = ρu, µh = −ρ̂σ · ν and mh = −ρ̂u in (3.7a), (3.7b),

(3.7c), (3.7d) and (3.7e), respectively. Then, add the resulting equations to arrive at

(a(u)ρq,ρq) + ∥ρ̂u − ρu∥2τ = (a(u)θq,ρq)− (θσ,ρq) +

∫ t

0

[
(b(u(s))θq(s),ρq)

− (b(u(s))ρq(s),ρq)
]
ds.

Further, use of the boundedness of a and b yield

∥ρ̂u − ρu∥τ + ∥ρq∥ ≤ C

[
∥θq∥+ ∥θσ∥+

∫ t

0

(∥θq(s)∥+ ∥ρq(s)∥)ds
]
.

Finally, use of Gronwall’s lemma along with (3.8) will prove the Lemma.

Next, we state the lemma, which provides the estimate for ∥ρu∥.
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Lemma 3.2.2. For t ∈ (0, T ], a positive constant C that is unaffected by the values of h

and k exists, such that it ensures the validity of the following inequality:

∥ρu(t)∥ ≤ Chk+1

[
∥u(t)∥Hk+2(Ω) +

∫ t

0

∥u(s)∥Hk+2(Ω)ds

]
.

Proof. For this estimate, we use the duality argument. We make use of the following

problem:

−∇ · (a(u)∇ψ) = ρu in Ω,

ψ = 0 on ∂Ω,

with the following regularity

∥ψ∥H2(Ω) ≤ ∥ρu∥.

Mixed formulation for the dual problem is written as follows:

ϕ = −∇ψ in Ω, (3.9a)

p = a(u)ϕ in Ω, (3.9b)

∇ · p = ρu in Ω. (3.9c)

Then, using L2 inner product between (3.9c) and ρu, yields

∥ρu∥2 = (ρu, ρu) = (ρu,∇ · p),

and using Lemma 1.4.6, we obtain

∥ρu∥2 = (ρu,∇ ·ΠWp) + ⟨ρu, τ(ΠV ψ − ψ)⟩∂Th

= (ρq,ΠWp) + ⟨ρ̂u,ΠWp · ν⟩∂Th + ⟨ρu, τ(ΠV ψ − ψ)⟩∂Th . by(3.7a)

By continuity of p · ν and (3.7d), we arrive at

∥ρu∥2 = (ρq,ΠWp) + ⟨ρ̂u, (ΠWp− p) · ν⟩∂Th + ⟨ρu, τ(ΠV ψ − ψ)⟩∂Th

= (ρq,ΠWp) + ⟨τ(ρu − ρ̂u),ΠV ψ⟩∂Th + ⟨ρσ · ν, PMψ⟩∂Th by (1.1c), (3.7e)

= (ρq,ΠWp) + ⟨τ(ρu − ρ̂u)− ρσ · ν,ΠV ψ⟩∂Th + ⟨ρσ · ν, ψ⟩∂Th
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+ (ρσ,∇ΠV ψ) by (3.7c)

= (ρq,ΠWp) + (ρσ,∇ψ) by(1.1a)

= (ρq,ΠWp− p) + (ρq,p)− (ρσ,ϕ) by(3.9a)

= (ρq,ΠWp− p) + (ρq,p)− (ρσ,ϕ− Ik
hϕ)− (ρσ, I

k
hϕ).

Now, use (3.7b) with τh = Ik
hϕ, to obtain

∥ρu∥2 = (ρq,ΠWp− p) + (ρq,p)− (a(u)ρq, I
k
hϕ) +

∫ t

0

(b(u(s))(θq(s)− ρq(s)), I
k
hϕ)ds

+ (a(u)θq, I
k
hϕ)− (θσ, I

k
hϕ)

= (ρq,ΠWp− p) + (a(u)ρq,ϕ)− (a(u)ρq, I
k
hϕ) +

∫ t

0

(b(u(s))(θq(s)− ρq(s)), I
k
hϕ)ds

+ (a(u)θq, I
k
hϕ)− (θσ, I

k
hϕ) by(3.9b)

= (ρq,ΠWp− p) + (a(u)ρq,ϕ− Ik
hϕ) + (a(u)θq, I

k
hϕ)− (θσ, I

k
hϕ)

+

∫ t

0

(b(u(s))(θq(s)− ρq(s)), I
k
hϕ)ds.

Next, using the Cauchy Schwarz inequality, the following inequality is obtained.

∥ρu∥2 ≤ ∥ρq∥∥ΠWp− p∥+ C∥ρq∥∥ϕ− Ik
hϕ∥+ C∥θq∥∥Ik

hϕ∥H1(Ω) + ∥θσ∥∥Ik
hϕ∥H1(Ω)

+ C

∫ t

0

(
∥θq(s)∥+ ∥ρq(s)∥

)
∥Ik

hϕ∥H1(Ω).

Now, use of (1.2), Lemma 3.2.1, Lemma 1.4.1, elliptic regularity, ∥ϕ∥H1(Ω) ≤M∥p∥H1(Ω)

and ∥p∥H1(Ω) ≤ ∥ψ∥H2(Ω), yield the desired result.

Lemma 3.2.3. For t ∈ (0, T ], a positive constant C that is unaffected by the values of h

and k exists, such that it ensures the validity of the following inequality:

∥ρut(t)∥ ≤Chk+1

[
∥u(t)∥Hk+2(Ω) + ∥ut(t)∥Hk+2(Ω) +

∫ t

0

{
∥u(s)∥Hk+2(Ω) + ∥us(s)∥Hk+2(Ω)

}
ds

]
.

Proof. We will begin by differentiating (3.7a)-(3.7e) w.r.t. t, to obtain

(ρqt,wh)− (ρut ,∇ ·wh) + ⟨ρ̂ut ,wh · ν⟩∂Th = 0,

(au(u)utρq + a(u)ρqt , τh)− (ρσt , τh) + (b(u)ρq(t), τh) = (au(u)utθq + a(u)θqt , τh)
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− (θσt , τh) + (b(u)θq(t), τh),

−(ρσt ,∇vh) + ⟨ρσt · ν, vh⟩∂Th = 0,

⟨ρ̂ut , µh⟩∂Ω = 0,

⟨ρ̂σt · ν,mh⟩∂Th\∂Th = 0,

for all (vh,wh, τh, µh,mh) ∈ (Vh ×Wh ×Wh ×Mh).

Now, using a similar approach as above, desired estimates are obtained.

Theorem 3.2.4. When u, ut ∈ L∞(Hk+2(Th)), a positive constant C that is unaffected by

the values of h and k exists, such that it ensures the validity of the following inequality:

∥(u−ũh)(t)∥+∥(q−q̃h)(t)∥+∥(σ−σ̃h)(t)∥ ≤ Chk+1

[
∥u(t)∥Hk+2(Ω)+

∫ t

0

∥u(s)∥Hk+2(Ω)ds

]
,

∥(ut − ũht)(t)∥ ≤ Chk+1

[
∥u(t)∥Hk+2(Ω) + ∥ut(t)∥Hk+2(Ω) +

∫ t

0

{
∥u(s)∥Hk+2(Ω)

+ ∥us(s)∥Hk+2(Ω)

}
ds

]
.

Proof. With the help of (1.2b), Lemma 3.2.2 and Lemma 3.2.3 and application of triangle

inequality, we obtain the desired result.

3.3 A priori Error Estimates for Semi-discrete Scheme
In this section, we derive the error estimates for the approximate solution obtained by

(3.3). Below, we present the main theorem.

Theorem 3.3.1. If u, ut and q are bounded, u, ut ∈ L∞(Hk+2(Th)), uh(0) = ΠV u0 and

qh(0) = −Ih∇u0, then, the following estimates hold true:

∥(u− uh)(t)∥+ ∥(q − qh)(t)∥+ ∥(σ − σh)(t)∥

≤ Chk+1

[
∥u(t)∥Hk+2(Th) +

∫ t

0

{
∥u(s)∥Hk+2(Th) + ∥us(s)∥Hk+2(Th)

}
ds

]
,

∥(ut − uht)(t)∥ ≤ Chk+1

[
∥u(t)∥Hk+2(Th) + ∥ut(t)∥Hk+2(Th) +

∫ t

0

{
∥u(s)∥Hk+2(Th)

+ ∥us(s)∥Hk+2(Th)
}
ds

]
.
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To prove Theorem 3.3.1, we decompose the error terms into η’s and ξ’s as done in Chapter

2. With the help of this decomposition, (3.5) can be rewritten as

(ξq,wh)− (ξu,∇ ·wh) + ⟨ξ̂u,wh · ν⟩∂Th = 0, (3.10a)

(a(uh)ξq, τh)− (ξσ, τh) +

∫ t

0

(b(uh(s))ξq(s), τh)ds = −((a(u)− a(uh))q̃h, τh)

−
∫ t

0

((b(u(s))− b(uh(s)))q̃h, τh), (3.10b)

(ξut, vh)− (ξσ,∇vh) + ⟨ξ̂σ · ν, vh⟩∂Th = (f(u)− f(uh), vh)− (ηut, vh), (3.10c)

⟨ξ̂u, µh⟩∂Ω = 0, (3.10d)

⟨ξ̂σ · ν,mh⟩∂Th\∂Ω = 0, (3.10e)

for all (vh,wh, τh, µh,mh) ∈ (Vh ×Wh ×Wh ×Mh ×Mh). Now, we present a series

of lemmas that will help to prove Theorem 3.3.1.

Lemma 3.3.2. ([26]) If u ∈ L∞(H2) and q ∈ L∞(H1), then there exists C = C(q),

such that

∥q̃h∥∞ + ∥q̃ht∥∞ ≤ C(q).

Proof. From the elliptic projection with memory, Lemma 1.4.5 and Lemma 1.4.10, we

have the following

∥q̃h∥∞ ≤ ∥q̃h −Rq∥∞ + ∥Rq∥∞

≤ Ch−1∥q̃h −Rq∥+ ∥q∥∞

≤ Ch−1 (∥q̃h − q∥+ ∥q −Rq∥) + C

≤ Ch−1 (h+ h) + C

≤ C.

Similarly, the estimates of ∥q̃ht∥∞ can be derived.

Lemma 3.3.3. A positive constant C that is unaffected by the values of h and k exists,

such that it ensures the validity of the following inequality:

∥ξu(t)∥2 +
∫ t

0

∥ξq(s)∥2 ds ≤ C

(
∥ξu(0)∥2 +

∫ T

0

(
∥ηu(t)∥2 + ∥ηut(t)∥2

)
dt

)
.
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Proof. Take wh = ξσ, τh = ξq, vh = ξu, µh = −ξ̂σ · ν and mh = −ξ̂u in (3.10a),

(3.10b), (3.10c), (3.10d) and (3.10e), respectively and then, add the resulting equations to

obtain

(a(uh)ξq, ξq)+

∫ t

0

(b(uh(s))ξq(s), ξq)ds+
1

2

d

dt
∥ξu∥2 + ∥ξ̂u − ξu∥2τ = (f(u)− f(uh), ξu)

− (ηut , ξu)− ((a(u)− a(uh))q̃h, ξq)−
∫ t

0

((b(u(s))− b(uh(s)))q̃h, ξq).

Next, use of boundedness of a, b as well as Lipschitz continuity of f , a and b along with

Lemma 3.3.2, yield

∥ξq∥2 +
d

dt
∥ξu∥2 + ∥ξ̂u − ξu∥2τ ≤ C

[ ∫ t

0

∥ξq(s)∥ds+ ∥ξu + ηu∥+
∫ t

0

∥ξu(s) + ηu(s)∥ds
]

∥ξq∥+ C (∥ξu + ηu∥+ ∥ηut∥) ∥ξu∥.

Use of Young’s inequality yields

∥ξq∥2 +
d

dt
∥ξu∥2 + ∥ξ̂u − ξu∥2τ ≤ C

(
∥ηu∥2 +

∫ t

0

(∥ξu(s)∥2 + ∥ηu(s)∥2)ds+ ∥ηut∥2

+ ∥ξu∥2 +
∫ t

0

∥ξq(s)∥2ds
)
.

On integrating the above inequality from 0 to t, it follows that∫ t

0

(∥ξq(s)∥2 + ∥(ξ̂u − ξu)(s)∥2τ )ds+ ∥ξu(t)∥2 ≤C
(
∥ξu(0)∥2 +

∫ t

0

(
∥ξu(s)∥2 + ∥ηu(s)∥2

+ ∥ηus(s)∥2 +
∫ s

0

∥ξq(γ)∥2dγ
)
ds

)
.

Finally, use of the Gronwall’s lemma gives the desired inequality.

Lemma 3.3.4. A positive constant C that is unaffected by the values of h and k exists,

such that it ensures the validity of the following inequality:

∥ξσ(t)∥2+∥ξq(t)∥2+∥ξ̂u−ξu∥2τ ≤ C

(
∥ξq(0)∥2 + ∥ξu(0)∥2 +

∫ T

0

(
∥ηu(t)∥2 + ∥ηut(t)∥2

)
dt

)
.

Proof. To begin with, we differentiate (3.10a) with respect to t and then choose wh = ξσ,

τh = ξqt , vh = ξut in (3.10a), (3.10b), (3.10c) respectively. Now, differentiate (3.10d)
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with respect to t and choose µh = −ξ̂σ · ν and mh = −ξ̂ut in (3.10d) and (3.10e)

respectively. Then adding the resulting equations, we obtain

(a(uh)ξq, ξqt) +
1

2

d

dt
∥ξ̂u − ξu∥2τ + ∥ξut∥2 +

∫ t

0

(b(uh(s))ξq(s), ξqt)ds = −(ηut , ξut)

− ((a(u)− a(uh))q̃h, ξqt)−
∫ t

0

((b(u(s))− b(uh(s)))q̃h(s), ξqt)ds+ (f(u)− f(uh), ξut),

which further yields,

C
d

dt
(∥ξq∥2 + ∥ξ̂u − ξu∥2τ ) + ∥ξut∥2 ≤ − d

dt
((a(u)− a(uh))q̃h, ξq) + ((a(u)− a(uh))q̃ht , ξq)

+ ((au(u)ut − au(uh)uht)q̃h, ξq)−
∫ t

0

d

dt
((b(u(s))− b(uh(s)))q̃h(s), ξq)ds

−
∫ t

0

d

dt
(b(uh(s))ξq(s), ξq)ds+ (f(u)− f(uh), ξut)− (ηut , ξut).

Next, we will use the Cauchy Schwarz inequality, Leibniz’s theorem and Lemma 3.3.2

along with the fact that a, au, b, bu and f are Lipschitz continuous with respect to u. Then,

integrating the resulting equations from 0 to t, yields the following inequality

∥ξq∥2 + ∥ξ̂u − ξu∥2τ +
∫ t

0

∥ξus∥2ds ≤ C(∥ξq(0)∥2 + ∥ξu(0)∥2 + ∥ηu∥2 + ∥ξu∥2)

+ C

∫ t

0

(
∥ηu∥2 + ∥ξu∥2 + ∥ξq∥2 + ∥ηus∥2 + ∥ξus∥2

)
ds.

Finally, use of the Gronwall’s lemma yields the following result

∥ξq∥2 + ∥ξ̂u − ξu∥2τ ≤ C

(
∥ξq(0)∥2 + ∥ξu(0)∥2 +

∫ T

0

(
∥ηu(s)∥2 + ∥ηus(s)∥2

)
ds

)
.

Now, choosing τh = ξσ in (3.10b) and then proceeding as above will give

∥ξσ∥ ≤ C

(∫ T

0

(∥ηu(s)∥+ ∥ηus(s)∥) ds
)
.

Combining the last two inequalities completes the proof.

Proof of Theorem 3.3.1: To prove the theorem, we use triangle inequality, Theorem

3.2.4, Lemma 3.3.3 and Lemma 3.3.4.

□
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3.4 Post-processing
We begin by defining the new approximation u∗h ∈ Pk+1(K), on the element K, as

u∗h = uph +
1

|K|

∫
K

uh, u
p
h ∈ P 0

k+1,

where uph satisfies

(a(uh)∇uph,∇v) = −(a(uh)qh,∇v), ∀v ∈ P 0
k+1,

where P 0
k+1(K) ⊂ Pk+1(K), which has all the polynomials whose mean is zero.

By the definition of u∗h and adding and subtracting
1

|K|

∫
K

udx, on any K ∈ Th, we

obtain

∥u− u∗h∥L2(K) ≤ ∥Ik−1
h eu∥L2(K) + ∥up − uph∥L2(K), (3.11)

where, up = u− 1

|K|

∫
K

udx.

Remark: For the estimates of the post-processed solution, the function f is considered to

be differentiable and its derivative to be Lipschitz continuous along ‘u’, while for a priori

error estimates, the Lipschitz continuity of f was sufficient.

Below, we present two lemmas that help to obtain the estimates for the terms on the

right-hand side of (3.11).

Lemma 3.4.1. A positive constant C that is unaffected by the values of h and k exists,

such that it ensures the validity of the following inequality:

∥Ik−1
h eu∥ ≤ C

√
log

(
T

ρ2

)
hk+2. (3.12)

Proof. We start by recalling the following dual problem [113]. For ψ(s) ∈ H2(Ω) ∩

H1
0 (Ω), we have the following equations, when t ∈ (0, T ) is fixed,

ϕ(s) = ∇ψ(s) in Ω, s ≤ t,

p(s) = a(u)ϕ(s) +

∫ t

s

b(u(γ))ϕ(γ)dγ in Ω, s ≤ t,
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ψs(s) +∇ · p(s) = au(u)q · ϕ+

∫ t

s

bu(u(γ))q(γ) · ϕ(γ)dγ + fu(u)ψ in Ω, s ≤ t,

ψ(s) = 0 on ∂Ω, s ≤ t,

ψ(t) = λ in Ω,

ψ satisfies the following regularity results, see [112, 113]:∫ t

0

∥ψ(s)∥22 ds ≤ C∥∇λ∥2 (3.13)

∫ t

0

(t− s)∥ψ(s)∥22 ds ≤ C∥λ∥2. (3.14)

The following proposition can easily be proved with the help of the regularity results

(3.13) and (3.14). It is used to prove the super-convergence of ∥Ik−1
h eu∥ .

Proposition 3.4.2. [23] Let λ = Ph′θ, where θ ∈ Vh and Ph′ is defined as in [23], then∫ t

0

∥ψ(s)∥22 ds ≤ C∥∇θ∥2,∫ t

0

(t− s)∥ψ(s)∥22 ds ≤
C

ρ2
∥θ∥2.

Note, using properties of the projection Ik
h , Ik−1

h and ΠRT
k−1 , that

d

ds
(ψ(s), Ik−1

h eu(s)) = (eus(s), I
k−1
h ψ(s)− ψ(s))− (eus(s), I

k
hψ(s)− ψ(s))

− (eq(s),Π
RT
k−1p(s)− p(s))− (a(u)eq(s),ϕ(s)− Ik

hϕ(s))− (eσ(s), I
k
hϕ(s)− ϕ(s))

− (eσ(s),∇(ψ − Ikhψ)(s))− ⟨êσ(s) · ν, Ikhψ⟩ − ((a(uh)− a(u))qh, I
k
hϕ(s))

+ (au(u)q · ϕ, Ik−1
h eu(s))− (f(uh)− f(u), Ikhψ) + (fu(u)ψ, I

k−1
h eu)

−
∫ s

0

((b(uh(γ))− b(u(γ)))qh(γ), I
k
hϕ(s))dγ +

∫ t

s

(bu(u(γ))q(γ) · ϕ(γ), Ik−1
h eu(s))dγ

+

∫ s

0

(b(u(γ))eq(γ), I
k
hϕ(s))dγ −

∫ t

s

(b(u(γ))ϕ(γ), eq(s))dγ.

Integrating this equation from 0 to t, we obtain

(λ, Ik−1
h eu(t)) =

∫ t

0

[
[(eus(s), I

k−1
h ψ(s)− ψ(s))− (eus(s), I

k
hψ(s)− ψ(s))

− (eq(s),Π
RT
k−1p(s)− p(s))− (a(u)eq(s),ϕ(s)− Ik

hϕ(s))− (eσ(s), I
k
hϕ(s)− ϕ(s))

64



Chapter 3

− (eσ(s),∇(ψ − Ikhψ)(s))]− ⟨êσ(s) · ν, Ikhψ⟩+
[
− ((a(uh)− a(u))qh, I

k
hϕ(s))

+ (au(u)q · ϕ, Ik−1
h eu(s))

]
+
[
(fu(u)ψ, I

k−1
h eu)− (f(uh)− f(u), Ikhψ)

]]
ds

+

[ ∫ t

0

∫ t

s

(bu(u(γ))q(γ) · ϕ(γ), Ik−1
h eu(s))dγds−

∫ t

0

∫ s

0

((b(uh(γ))− b(u(γ)))qh(γ),

Ik
hϕ(s))dγds

]
+

[ ∫ t

0

∫ s

0

(b(u(γ))eq(γ), I
k
hϕ(s))dγds−

∫ t

0

∫ t

s

(b(u(γ))ϕ(γ), eq(s))dγds

]
.

=

∫ t

0

[E1 + E2 + E3 + E4] ds+ E5 + E6. (3.15)

Use of Cauchy Schwarz’s inequality and the properties of Ik−1
h , Ikh , ΠRT

k−1 and Ik
h show

|E1| ≤ Ch (∥eus(s)∥+ ∥eq(s)∥+ ∥eσ(s)∥) ∥ψ(s)∥2.

Use of (3.5e) with properties of Ikh yield

|E2| ≤ ∥êσ(s) · ν∥∂K∥Ikhψ − ψ∥∂K ≤ Ch3/2∥êσ(s) · ν∥∂K∥ψ(s)∥2.

Next, we have

E3 = −((a(uh)− a(u))qh, I
k
hϕ(s)) + (au(u)q · ϕ, Ik−1

h eu(s))

= −((a(uh)− a(u))(qh − q), Ik
hϕ(s))− ((a(uh)− a(u))q, Ik

hϕ(s)− ϕ(s))

+ (au(u)q · ϕ, Ik−1
h eu(s)− eu(s))− ((a(uh)− a(u)), q · ϕ(s)) + (au(u)q · ϕ, eu(s)).

Use of Taylor’s series expansion yields

E3 = −((a(uh)− a(u))(qh − q), Ik
hϕ(s))− ((a(uh)− a(u))q, Ik

hϕ(s)− ϕ(s))

+ (au(u)q · ϕ, Ik−1
h eu(s)− eu(s)) + (au(u)− au(uh + λ(uh − u))eu(s), q · ϕ).

Use of generalized Holder’s inequality yields

|E3| ≤ Chk+2∥ψ(s)∥2.

For E4, a similar procedure can be followed, whereas for E5 and E6, a change of order

of integration followed by a similar procedure as for E3 will give the estimates. Now, on

substitution in (3.15), we arrive at

(λ, Ik−1
h eu(t)) ≤ Chk+2

∫ t

0

∥ψ(s)∥2 ds.
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Next, for any δ ∈ (0, t), there holds∫ t

0

∥ψ(s)∥2 ds =
∫ t−δ

0

∥ψ(s)∥2 ds+
∫ t

t−δ

∥ψ(s)∥2 ds

=

∫ t−δ

0

√
t− s ∥ψ(s)∥2

1√
t− s

ds+

∫ t

t−δ

∥ψ(s)∥2 ds

≤
√

log
t

δ

(∫ t

0

(t− s)∥ψ(s)∥22 ds
) 1

2

+
√
δ

(∫ t

0

∥ψ(s)∥22 ds
) 1

2

.

Now, using Proposition 3.4.2 yields the required estimate.

Lemma 3.4.3. A positive constant C that is unaffected by the values of h and k exists,

such that it ensures the validity of the following inequality:

∥up − uph∥ ≤ Chk+2. (3.16)

Proof. Use of the Poincare’s inequality shows

∥up − uph∥ ≤ Ch∥∇(up − uph)∥. (3.17)

Now, for any v ∈ P k+1
0 (K), there holds

(a(uh)∇(uph − up),∇v) + (a(uh)∇up,∇v) = −(a(uh)qh,∇v),

and hence,

(a(uh)∇(uph − up),∇v) = (a(uh)(q − qh),∇v)

≤ C∥q − qh∥∥∇v∥. (3.18)

Now, we note that

a∗∥∇(Ik+1
h up − uph)∥

2 ≤ (a(uh)∇(Ik+1
h up − up),∇(Ik+1

h up − uph))

+ (a(uh)∇(up − uph),∇(Ik+1
h up − uph)).

Use of Cauchy Schwarz’s inequality and (3.18) and a replacement of v by Ik+1
h up − uph

yield

∥∇(Ik+1
h up − uph)∥ ≤ C(∥∇(Ik+1

h up − up)∥+ ∥q − qh∥).
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Now, by triangle inequality, we arrive at

∥∇(up − uph)∥ ≤ ∥∇(Ik+1
h up − up)∥+ ∥∇(Ik+1

h up − uph)∥

≤ C(∥∇(Ik+1
h up − up)∥+ ∥q − qh∥).

Use of Theorem 3.3.1 and projection property of Ik+1
h , yield

∥∇(up − uph)∥ ≤ Chk+1. (3.19)

A substitution of (3.19) in (3.17) will conclude the proof.

Theorem 3.4.4. If u, ut ∈ L∞(Hk+2(Th)), then, a positive constant C that is unaffected

by the values of h and k exists, such that it ensures the validity of the following inequality:

∥u− u∗h∥ ≤ C

√
log

(
T

ρ2

)
hk+2.

Proof. Substitute (3.12) and (3.16) in (3.11) to prove the theorem.

3.5 Fully Discrete Scheme
In this section, a completely discrete scheme is derived for the problem (3.3), based on

the backward difference method, along with the left rectangle rule to approximate the

integral term. We first divide the interval [0, T ] into M equally spaced sub-intervals by

the following points

0 = t0 < t1 < ... < tM = T,

with tn = n∆t, ∆t = T/M , be the time step.

The fully discrete approximation for the problem (3.3) is defined as follows: For

1 ≤ n ≤M , find (Un,Qn,Sn, Ûn) ∈ (Vh ×Wh ×Wh ×Mh), such that

(Qn,wh)− (Un,∇ ·wh) + ⟨Ûn,wh · ν⟩∂Th = 0, (3.20a)

(a(Un)Qn, τh)− (Sn, τh) +
(
∆t

n−1∑
i=0

b(U i)Qi, τh
)
= 0, (3.20b)(

Un − Un−1

∆t
, vh

)
− (Sn,∇vh) + ⟨Ŝn · ν, vh⟩∂Th = (f(Un), vh), (3.20c)
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⟨Ûn, µh⟩∂Ω = 0, (3.20d)

⟨Ŝn · ν,mh⟩∂Th\∂Ω = 0, (3.20e)

for all (vh,wh, τh, µh,mh) ∈ (Vh ×Wh ×Wh ×Mh ×Mh). Here, numerical trace for

flux is defined by:

Ŝn · ν = Sn · ν + τ(Un − Ûn) on ∂Th.

The nonlinear system of equation (3.20) has four unknowns; namely, Un, Qn, Sn and Ûn

for 1 ≤ n ≤ M . We will begin by using Newton’s iterative method to derive the first

iterative value of U , Q and S in terms of Û using (3.20a)-(3.20c). Next, Û is estimated

using (3.20d)-(3.20e). Finally, we can get the next iterative values of U , Q and S by

substituting the value of Û .

Theorem 3.5.1. Let u be the solution of (3.1), u, ut ∈ L∞(Hk+2(Th)), uh(0) = U0 =

ΠV u0 and qh(0) = Q0 = −Ih∇u0, then for all 1 ≤ n ≤M ,

∥u(tn)− Un∥+ ∥q(tn)−Qn∥+ ∥σ(tn)− Sn∥ ≤ O(hk+1 +∆t).

Proof. We begin by writing ∥u(tn)−Un∥ ≤ ∥u(tn)−uh(tn)∥+∥uh(tn)−Un∥. We only

need to derive the estimates of ∥uh(tn)−Un∥, which will be denoted by ∥ζnu∥. Similarly,

ζn
q , ζn

σ and ζ̂nu .

Now, using (3.3) and (3.20), we have the following system of equations

(ζn
q ,wh)− (ζnu ,∇ ·wh) + ⟨ζ̂nu ,wh · ν⟩∂Th = 0, (3.21a)

(a(Un)ζn
q , τh)− (ζn

σ, τh) +

∫ tn

0

(b(uh(s))qh(s), τh)ds+ ((a(uh(tn))− a(Un))qh, τh)

=

(
∆t

n−1∑
i=0

b(U i)Qi, τh

)
,

(3.21b)(
uht(tn)−

Un − Un−1

∆t
, vh

)
− (ζn

σ,∇vh) + ⟨ζ̂n
σ · ν, vh⟩∂Th = (f(uh(tn))− f(Un), vh),

(3.21c)

⟨ζ̂nu , µh⟩∂Ω = 0, (3.21d)
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⟨ζ̂n
σ · ν,mh⟩∂Th\∂Ω = 0, (3.21e)

for all (vh,wh, τh, µh,mh) ∈ (Vh ×Wh ×Wh ×Mh ×Mh). Here numerical trace for

flux is defined by:

ζ̂n
σ · ν = ζn

σ · ν + τ(ζnu − ζ̂nu ) on ∂Th.

Take wh = ζn
σ, τh = ζn

q , vh = ζnu , µh = −ζ̂n
σ · ν and mh = −ζ̂nu in (3.21a), (3.21b),

(3.21c), (3.21d) and (3.21e), respectively and then, add the resulting equations to obtain

(a(Un)ζn
q , ζ

n
q ) + ((a(uh(tn))− a(Un))qh, ζ

n
q ) +

(
ζnu − ζn−1

u

∆t
, ζnu

)
+ ∥ζ̂nu − ζnu∥2τ

+ (Jn, ζnu ) =
(
En

h (qh), ζ
n
q

)
+ (f(uh(tn))− f(Un), ζnu )−

(
∆t

n−1∑
i=0

b(U i)ζi
q, ζ

n
q

)
,

here,

Jn = uht(tn)−
uh(tn)− uh(tn−1)

∆t
,

En
h (qh) = ∆t

n−1∑
i=0

b(U i)qh(ti)−
∫ tn

0

b(uh(s))qh(s)ds.

Hence,

(a(Un)ζn
q , ζ

n
q ) + ((a(uh(tn))− a(Un))qh, ζ

n
q ) +

1

2∆t

(
∥ζnu∥2 − ∥ζn−1

u ∥2
)
+

1

2

∥∥∥∥ζnu − ζn−1
u

∆t

∥∥∥∥2
+ ∥ζ̂nu − ζnu∥2τ + (Jn, ζnu ) =

(
En

h (qh), ζ
n
q

)
+ (f(uh(tn))− f(Un), ζnu )−

(
∆t

n−1∑
i=0

b(U i)ζi
q, ζ

n
q

)
.

Now, summing over n from n = 1 to n = m, where 1 ≤ m ≤M to obtain

∆t
m∑

n=1

∥ζn
q ∥2 +

1

2
∥ζmu ∥2 + ∆t

2

m∑
n=1

∥∥∥∥ζnu − ζn−1
u

∆t

∥∥∥∥2 ≤ 1

2
∥ζ0u∥2 +∆t

m∑
n=1

(In1 + In2 + In3 + In4 + In5 ),

(3.22)

where,

In1 = (Jn, ζnu ) , I
n
2 =

(
En

h (qh), ζ
n
q

)
, In3 = (f(uh(tn))− f(Un), ζnu ),

In4 = ((a(uh(tn))− a(Un))qh, ζ
n
q ) and In5 =

(
∆t

n−1∑
i=0

b(U i)ζi
q, ζ

n
q

)
.
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Now,

Jn = −eut(tn) +
eu(tn)− eu(tn−1)

∆t
+ ut(tn)−

u(tn)− u(tn−1)

∆t
.

Using Taylor’s series approximation, we note that

Jn = −eut(tn) +
1

∆t

∫ tn

tn−1

eus(s)ds+
1

∆t

∫ tn

tn−1

(s− tn−1)uss(s)ds,

and, ∥Jn∥2 ≤ C

(
∥eut(tn)∥2 +

1

∆t

∫ tn

tn−1

∥eus(s)∥2ds+∆t

∫ tn

tn−1

∥uss(s)∥2ds
)
.

Therefore, use of Theorem 3.3.1, yields

∆t
m∑

n=1

|In1 | ≤C(∆t2 + h2(k+1)) +
1

2

m∑
n=1

∥ζmu ∥2. (3.23)

Now,

En
h (qh) = −∆t

n−1∑
i=0

b(U i)eq(ti) +

∫ tn

0

b(uh(s))eq(s)ds+∆t
n−1∑
i=0

b(U i)q(ti)

−
∫ tn

0

b(uh(s))q(s)ds.

Next, again use of Theorem 3.3.1 and rectangle rule yield

∥En
h (qh)∥ ≤ C(hk+1 +∆t).

Then, use of Young’s inequality along with the boundedness of b and Lipschitz continuity

of a and f show

∆t
m∑

n=1

|In2 | ≤ C(∆t2 + h2(k+1)) +
∆t

2

m∑
n=1

∥ζmq ∥2, (3.24)

∆t
m∑

n=1

|In3 | ≤ C
m∑

n=1

∥ζmu ∥2, (3.25)

∆t
m∑

n=1

|In4 | ≤ C
m∑

n=1

(
∥ζmu ∥2 + ∥ζmq ∥2

)
. (3.26)

Using (3.23), (3.24), (3.25) and (3.26) in (3.22), we obtain

C∆t
m∑

n=1

∥ζn
q ∥2 + C∥ζmu ∥2 + ∆t

2

m∑
n=1

∥∥∥∥ζnu − ζn−1
u

∆t

∥∥∥∥2 ≤ C(∆t2 + h2(k+1)) + C

( m∑
n=1

∥ζmu ∥2
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+∆t
m∑

n=1

n−1∑
i=1

∥ζi
q∥2
)
.

Finally, use of discrete Gronwall’s lemma yields

∥ζmu ∥2 ≤ C(∆t2 + h2(k+1)).

To derive the estimates of ∥ζmq ∥, we begin by subtracting (3.21a) by itself at (n − 1)th

time level and dividing it by ∆t, to arrive that the following equation(
ζn
q − ζn−1

q

∆t
,wh

)
−
(
ζnu − ζn−1

u

∆t
,∇ ·wh

)
+

〈
ζ̂nu − ζ̂n−1

u

∆t
,wh · ν

〉
∂Th

= 0. (3.27)

Similarly, from (3.21d), we get〈
ζ̂nu − ζ̂n−1

u

∆t
, µh

〉
∂Ω

= 0. (3.28)

Take wh = ζn
σ, τh =

ζn
q − ζn−1

q

∆t
, vh =

ζnu − ζn−1
u

∆t
, µh = −ζ̂n

σ ·ν and mh = − ζ̂
n
u − ζ̂n−1

u

∆t
in (3.27), (3.21b), (3.21c), (3.28) and (3.21e), respectively and then, add the resulting

equations. Finally, we take summation over n from n = 1 to n = m, where 1 ≤ m ≤M

to obtain

1

2
∥ζm

q ∥2 + ∆t

2

m∑
n=1

∥∥∥∥ζn
q − ζn−1

q

∆t

∥∥∥∥2 +∆t
m∑

n=1

∥∥∥∥ζnu − ζn−1
u

∆t

∥∥∥∥2 ≤ ∆t
m∑

n=1

[
−
(
∆t

n−1∑
i=0

b(U i)ζi
q,

ζn
q − ζn−1

q

∆t

)
−
(
uht(tn)−

uh(tn)− uh(tn−1)

∆t
,
ζnu − ζn−1

u

∆t

)
+

(
∆t

n−1∑
i=0

b(U i)qh(ti),

ζn
q − ζn−1

q

∆t

)
−
(∫ tn

0

b(uh(s))qh(s)ds,
ζn
q − ζn−1

q

∆t

)
+

(
f(uh(tn))− f(Un),

ζnu − ζn−1
u

∆t

)
−
(
(a(uh(tn))− a(Un))qn,

ζn
q − ζn−1

q

∆t

)]
.

Proceeding as above, will give the estimates for ∥ζn
q ∥. Finally, for the estimates of ∥ζn

σ∥,

we take τh = ζn
σ in (3.21b) and simplify, to get the desired result. This concludes the

proof.
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uh qh u∗h

k h Error Order Error Order Error Order

1

1
2

3.0168e-03 1.0547e-02 6.3117e-04
1
4

8.4684e-04 1.8370 2.8531e-03 1.8735 8.7584e-05 2.8493
1
8

2.2262e-04 1.9275 7.3254e-04 1.9615 1.1266e-05 2.9588
1
16

5.6846e-05 1.9694 1.8488e-04 1.9863 1.4222e-06 2.9857

2

1
2

1.2063e-03 3.5126e-03 2.0439e-04
1
4

1.6104e-04 2.9050 4.4836e-04 2.9698 1.2135e-05 4.0741
1
8

2.0576e-05 2.9684 5.6550e-05 2.9871 7.4159e-07 4.0324
1
16

2.5946e-06 2.9874 7.0953e-06 2.9946 4.1680e-08 4.1532

3

1
2

1.2034e-04 1.6065e-04 1.9335e-05
1
4

7.4686e-06 4.0102 9.6716e-06 4.0540 6.6795e-07 4.8554
1
8

4.6405e-07 4.0085 5.9810e-07 4.0153 2.2307e-08 4.9042
1
16

2.8911e-08 4.0046 3.7151e-08 4.0089 6.9700e-10 5.0002

Table 3.1: Computed convergence rates and L2 error estimates in the context of

Example 1

3.6 Numerical Results
This section comprises two numerical examples, aimed at validating the theoretical find-

ings presented in this chapter. Specifically, the examples involve equations (3.1a)-(3.1c),

where Ω = (0, 1)× (0, 1) and T = 1. To discretize the problem, we employed the back-

ward Euler’s method and approximated the integral term using the left rectangle rule. Our

observations confirm the attainment of the optimal order of convergence for u and q, as

well as the predicted super-convergence for u∗h as per our theoretical framework.

Example 1:. Choose u(x, y, t) = e−tx(1 − x)y(1 − y) and the coefficients be a(u) =

1 + u2, b(u) = u and f(u) = u− u3 + g(x, y, t), where g(x, y, t) is decided by the exact

solution u. We have used MATLAB codes to compute L2 error estimates for the three
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unknowns, that is, u, q and σ, for different mesh sizes, that is, for h =
1

2
, h =

1

4
, h =

1

8

and h =
1

16
. Next, we have computed their orders of convergence and found that they

match with the theoretical findings. Table 3.1 gives the computed order of convergence

along with L2 error estimates for u, q and u∗h at t = 1.Table 3.2 gives the time conver-

gence for u for the example for different time steps.

∆t (h = 1/2) Order (Ex. 1) Order (Ex. 2)

0.25 0.9167 0.8965

0.125 0.9813 0.9921

0.0625 1.0431 0.9976

0.03125 1.1452 1.0673

Table 3.2: Order of convergence for time

Example 2:. Let u(x, y, t) = et sin(x) sin(y)(1 − x)(1 − y) and the coefficients be

a(u) = 1 + u2, b(u) = u and f(u) = u − u3 + g(x, y, t), where g(x, y, t) is decided

by the exact solution u. We have used MATLAB codes to compute L2 error estimates

for the three unknowns, that is, u, q and σ, for different mesh sizes, that is, for h =
1

2
,

h =
1

4
, h =

1

8
and h =

1

16
. Next, we have computed their orders of convergence and

found that they match with the theoretical findings. Table 3.3 gives the computed order

of convergence along with L2 error estimates for u, q and u∗h at t = 1. Table 3.2 gives the

time convergence for u for the example for different time steps.

3.7 Conclusions
Due to various theoretical and computational benefits of the HDG method, it has been

proposed and analyzed for nonlinear parabolic integro-differential equation (3.1). The

nonlinear functions have been considered to be Lipschitz continuous to prove the a pri-

ori error estimates. Throughout this chapter, HDG and Ritz-Volterra projections have

been used to derive the error estimates. Further, element-by-element post-processing has

73



Chapter 3

uh qh u∗h

k h Error Order Error Order Error Order

1

1
2

1.2014e-02 4.3255e-02 2.6559e-03
1
4

3.5180e-03 1.7718 1.1598e-02 1.8990 3.8902e-04 2.7713
1
8

9.3814e-04 1.9069 2.9598e-03 1.9703 5.2593e-05 2.8869
1
16

2.4120e-04 1.9595 7.4533e-04 1.9895 7.2453e-06 2.8597

2

1
2

1.8172e-03 4.8681e-03 2.9255e-04
1
4

2.4448e-04 2.8939 6.1897e-04 2.9754 1.7182e-05 4.0897
1
8

3.2532e-05 2.9098 7.7882e-05 2.9905 1.0012e-06 4.1011
1
16

4.1104e-06 2.9845 9.7467e-06 2.9983 5.7465e-08 4.1229

3

1
2

1.6168e-04 3.3585e-04 2.6980e-05
1
4

1.0318e-05 3.9699 2.1050e-05 3.9959 9.3014e-07 4.8583
1
8

6.5356e-07 3.9807 1.3076e-06 4.0089 2.9204e-08 4.9932
1
16

4.1112e-08 3.9907 7.6083e-08 4.1032 9.1180e-10 5.0013

Table 3.3: Computed convergence rates and L2 error estimates in the context of

Example 2

been proposed. It has been shown that the solution and its gradient achieved the opti-

mal rate of convergence, that is, of order k + 1, k ≥ 0 in the discretizing parameter h,

whereas super-convergence has been achieved, that is, of order k + 2, k ≥ 1, for the

post-processed solution, when the function f was differentiable and its derivative was

Lipschitz continuous. A fully discrete scheme has also been discussed, which is of or-

der O(hk+1 + ∆t). Higher order fully discrete scheme can be easily achieved by using

higher order difference scheme for the derivative term and higher order quadrature rule

for the integral term. Finally, numerical results have been discussed. This analysis can be

extended to a 3-dimensional domain by incorporating the changes accordingly.
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HDG Method for Linear Hyperbolic

Integro-Differential Equations

4.1 Introduction
This chapter discusses the HDG method for the following linear hyperbolic integro-

differential equation: Find u(x, t) such that

utt(x, t)−∇ ·
(
a(x)∇u(x, t) +

∫ t

0

b(x, t, s)∇u(x, s)ds
)

= f(x, t) in Ω× (0, T ],

(4.1a)

u(x, t) = 0 on ∂Ω× (0, T ],

(4.1b)

u(x, 0) = u0(x) ∀ x ∈ Ω, (4.1c)

ut(x, 0) = u1(x) ∀ x ∈ Ω, (4.1d)

where u : Ω × (0, T ] → R, The functions f : Ω × (0, T ] → R, u0 : Ω → R and

u1 : Ω → R are known. The known functions a : Ω → R and b : Ω× (0, T ]× (0, T ] → R

satisfy the following properties: function a is positive and bounded. There exist α0 > 0,

M > 0 such that 0 < α0 ≤ a ≤ M , whereas, b is smooth and twice differentiable with
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bounded derivatives and |b| ≤M .

The type of hyperbolic integral-differential equation which is stated above occur in

many physical problems, such as visco-elasticity, fluid dynamics, epidemiology and pop-

ulation dynamics; see [79] and references therein.

In the literature, Pani et al. [114] have analyzed fully discrete schemes for time-

dependent partial integro-differential equations, using energy methods, paying attention

to the storage required during time-stepping. Further, errors are estimated in L2 and H1

norms. In [123], Saedpanah has formulated continuous space-time FEM of degree one

for an integro-differential equation of hyperbolic type with mixed boundary conditions.

Further, a posteriori error estimates are also established. Then, in [124], a first-order

continuous space–time FEM for a hyperbolic integro-differential equation has been for-

mulated. Moreover, the theory is illustrated with the help of an example. In [79], Karaa

et al. have applied DGM to (4.1). A priori error estimates are derived for both scalar

as well as for vector variables, and the optimal rate of convergence is derived for the

scalar variable and sub-optimal rate of convergence for vector variables. Later, in [94],

Merad et al. proposed a Galerkin method based on least squares for a two-dimensional

hyperbolic integro-differential equation with purely integral conditions. They have also

discussed the existence and uniqueness of the solution of the model problem under spe-

cific conditions. In [26], Chen et al. have proposed a two-grid finite element scheme for

a semi-linear hyperbolic integro-differential equation, which uses two grids to deal with

the semi-linearity of the problem and achieves the same order of accuracy as that of the

ordinary FEM. Recently, Tan et al. [134] have applied a fully discrete two-grid FEM on a

hyperbolic integro-differential equation and achieved optimal order of convergence. The

scheme has reduced the computational cost while maintaining numerical accuracy.

This chapter analyzes HDG method for the model problem (4.1) and discusses a priori

error estimates. The most significant points of this chapter are as follows:

• In contrast to DGMs, optimal convergence rates have been obtained for gradient

and trace.
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• For the scalar variable, a new post-processed approximation has been defined,

which achieves the super-convergence.

• Mid-point rule and central difference scheme are used to approximate the integral

and the derivative term, respectively, to achieve second order of convergence in the

temporal direction.

• The theoretical results are verified by implementing HDG method for problems in

the 2-dimensional domain.

The remainder of this chapter is structured as follows: Section 4.2 defines HDG for-

mulation for the model problem (4.1). Section 4.3 provides the highlights of the chapter

by stating all the essential results of the chapter. In Section 4.4, a priori error estimates are

derived using various crucial steps. In Section 4.5, the superconvergence results for the

scalar variable are analyzed. Section 4.6 is about discretizing the scheme in temporal di-

rection. Ultimately, numerical data are presented in Section 4.7 to validate the theoretical

conclusions. Several final observations are included in Section 4.8.

4.2 HDG Method
Throughout the chapter, we have used the following auxiliary variable in Ω× (0, T ]:

q = −∇u, σ = aq +

∫ t

0

b(t, s)q(s)ds.

Using these variables, (4.1) is rewritten as follows:

q = −∇u in Ω× (0, T ], (4.2a)

σ = aq +

∫ t

0

b(t, s)q(s)ds in Ω× (0, T ], (4.2b)

utt +∇ · σ = f in Ω× (0, T ]. (4.2c)

At each time t within the interval (0, T ], the method provides an approximation uh(t) of

the scalar function u(t), an approximation qh(t) and σh(t) of the vector function q(t)

and σ(t), respectively, and an approximation ûh(t) of the trace of u(t) on the boundaries
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of the elements. These approximations are computed in the function spaces Vh, Wh,

Wh, and Mh, respectively. With these spaces, HDG formulation seeks approximation

(uh, qh,σh, ûh)(t) ∈ (Vh × Wh × Wh ×Mh), for t ∈ (0, T ], that satisfy the following

equations:

(qh,wh)− (uh,∇ ·wh) + ⟨ûh,wh · ν⟩∂Th = 0, (4.3a)

(aqh, τh)− (σh, τh) +

∫ t

0

(b(t, s)qh(s), τh)ds = 0, (4.3b)

(uhtt , vh)− (σh,∇vh) + ⟨σ̂h · ν, vh⟩∂Th = (f, vh), (4.3c)

⟨ûh, µh⟩∂Ω = 0, (4.3d)

⟨σ̂h · ν,mh⟩∂Th\∂Ω = 0, (4.3e)

uh(0) = ΠV u0, (4.3f)

uht(0) = ΠV u1, (4.3g)

for any (vh,wh, τh, µh,mh) ∈ (Vh ×Wh ×Wh ×Mh ×Mh), along with the following

relation:

σ̂h · ν = σh · ν + τ(uh − ûh) on ∂Th,

where, τ ≥ 0 on Γ and piece-wise constant on the faces. Now, with the help of (4.2) and

(4.3), we have the following error equations:

(q − qh,wh)− (u− uh,∇ ·wh) + ⟨u− ûh,wh · ν⟩∂Th = 0, (4.4a)

(a(q − qh), τh)− (σ − σh, τh) +

∫ t

0

(b(t, s)(q − qh)(s), τh)ds = 0, (4.4b)

(utt − uhtt , vh)− (σ − σh,∇vh) + ⟨(σ − σ̂h) · ν, vh⟩∂Th = 0, (4.4c)

⟨u− ûh, µh⟩∂Ω = 0, (4.4d)

⟨(σ − σ̂h) · ν,mh⟩∂Th\∂Ω = 0, (4.4e)

for all (vh,wh, τh, µh,mh) ∈ (Vh ×Wh ×Wh ×Mh ×Mh).
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4.3 The Main Results
Within this part, we provide the primary outcomes of the chapter in the form of the

following theorems:

Theorem 4.3.1. Let (u, q,σ) be the solution of (4.2) with u ∈ L∞(Hk+2(Th)), ut, utt ∈

L2(Hk+2(Th)) and u0, u1 ∈ Hk+2(Th) for k ≥ 0. Additionally, let (uh, qh,σh, ûh) ∈

(Vh×Wh×Wh×Mh) be the solution of (4.3) along with uh(0) = ΠV u0 , uht(0) = ΠV u1,

qh(0) = −Ik
h∇u0 and σh(0) = ΠW (a∇u0). Consequently, the following estimations

hold:

∥(u− uh)(t)∥+ ∥(q − qh)(t)∥+ ∥(σ − σh)(t)∥+ ∥(u− ûh)(t)∥τ ≤ Chk+1,

∥(ut − uht)(t)∥ ≤ Chk+1.

For the next result, we define the post- processed solution u∗h ∈ Pk+1(K) on the element

K, as

u∗h = uph +
1

|K|

∫
K

uh, u
p
h ∈ P 0

k+1, (4.5)

where uph satisfies

(a∇uph,∇v) = −(aqh,∇v), ∀v ∈ P 0
k+1, (4.6)

where P 0
k+1(K) represents the collection of polynomials in Pk+1(K) whose average is

zero. The next theorem gives the L2 estimates of u∗h.

Theorem 4.3.2. Under the conditions of Theorem 4.3.1, there exists a positive constant

C independent of h and k such that

∥u− u∗h∥ ≤ Chk+2.

Theorem 4.3.3. Let ∆t =
T

M
, for some positive integer M , and tn = n∆t, for 1 ≤ n ≤

M . Let (Un,Qn,Sn) ∈ (Vh×Wh×Wh) be the fully discrete approximations of u, q and

σ and Ûn ∈Mh be the approximation of u on Γ. Then, we have the following estimates:

∥∂tΥζnu∥+ ∥Υζn
q ∥+ ∥Υζn

σ∥+ ∥Υζ̂nu∥τ ≤ O(hk+1 +∆t2), (4.7a)
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∥ζn+1
u ∥ ≤ O(hk+1 +∆t2), (4.7b)

where, ζ ′s are defined as: ζnu = uh(tn) − Un. Similarly, ζn
q , ζn

σ and ζ̂nu . Also, ΥUn =

Un+1 + Un

2
and ∂tΥUn =

Un+1 − Un

∆t
, see Section 4.6.

4.4 Semi-Discrete Error Analysis
In this part, we provide comprehensive demonstrations of the assertions made in Theorem

4.3.1.

STEP I: Extended type Ritz-Voterra projection. For each t ∈ (0, T ], we define

(ũh, q̃h, σ̃h, ˆ̃uh) ∈ (Vh × Wh × Wh × Mh) as the Ritz-Volterra projection, provided

it satisfy the following equations:

(q − q̃h,wh)− (u− ũh,∇ ·wh) + ⟨u− ˆ̃uh,wh · ν⟩∂Th = 0, (4.8a)

(a(q − q̃h), τh)− (σ − σ̃h, τh) +

∫ t

0

(b(t, s)(q − q̃h)(s), τh)ds = 0, (4.8b)

−(σ − σ̃h,∇vh) + ⟨(σ − ˆ̃σh) · ν, vh⟩∂Th = 0, (4.8c)

⟨u− ˆ̃uh, µh⟩∂Ω = 0, (4.8d)

⟨(σ − ˆ̃σh) · ν,mh⟩∂Th\∂Ω = 0, (4.8e)

for all (vh,wh, τh, µh,mh) ∈ Vh ×Wh ×Wh ×Mh, where

ˆ̃σh · ν = σ̃h · ν + τ(ũh − ˆ̃uh) on ∂Th.

In order to derive the estimates of the Ritz-Volterra projection, we disintegrate it in θ’s

and ρ’s as done in Chapter 2.

Therefore, the system of equations (4.8) can be rewritten as

(ρq,wh)− (ρu,∇ ·wh) + ⟨ρ̂u,wh · ν⟩∂Th = 0, (4.9a)

(aρq, τh)− (ρσ, τh) +

∫ t

0

(b(t, s)ρq(s), τh)ds = (aθq, τh)− (θσ, τh)

+

∫ t

0

(b(t, s)θq(s), τh)ds, (4.9b)
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−(ρσ,∇vh) + ⟨ρ̂σ · ν, vh⟩∂Th = 0, (4.9c)

⟨ρ̂u, µh⟩∂Ω = 0, (4.9d)

⟨ρ̂σ · ν,mh⟩∂Th\∂Ω = 0, (4.9e)

for all (vh,wh, τh, µh,mh) ∈ (Vh ×Wh ×Wh ×Mh).

STEP II: Estimates of
∥∥∥∥∂lρσ

∂tl

∥∥∥∥,
∥∥∥∥∂lρq

∂tl

∥∥∥∥ and
∥∥∥∥∂lρu∂tl

∥∥∥∥ for l = 0, 1, 2.

Lemma 4.4.1. There exists a positive constant C which does not rely on h and k such

that ∀t ∈ (0, T ], the inequality below is valid for l = 0, 1, 2∥∥∥∥∂lρu∂tl

∥∥∥∥+ ∥∥∥∥∂lρq

∂tl

∥∥∥∥+ ∥∥∥∥∂lρσ

∂tl

∥∥∥∥ ≤ Chk+1. (4.10)

Proof. For l = 0, 1, see Chapter 2. For l = 2, we begin by differentiating (4.9a)-(4.9e)

twice w.r.t. t, to obtain

(ρqtt,wh)− (ρutt ,∇ ·wh) + ⟨ρ̂utt ,wh · ν⟩∂Th = 0, (4.11a)

(aρqtt , τh)− (ρσtt , τh) +
∂2

∂t2

(∫ t

0

(b(t, s)ρq(s), τh)ds

)
= (aθqtt , τh)− (θσtt , τh)

+
∂2

∂t2

(∫ t

0

(b(t, s)θq(s), τh)ds

)
,

(4.11b)

−(ρσtt ,∇vh) + ⟨ρσtt · ν, vh⟩∂Th = 0, (4.11c)

⟨ρ̂utt , µh⟩∂Ω = 0, (4.11d)

⟨ρ̂σtt · ν,mh⟩∂Th\∂Th = 0, (4.11e)

for all (vh,wh, τh, µh,mh) ∈ (Vh ×Wh ×Wh ×Mh ×Mh).

Now, adding (4.11) after taking wh = ρσtt , τh = ρqtt , vh = ρutt , µh = −ρ̂σtt · ν

and mh = −ρ̂utt and simplifying using Cauchy Schwarz inequality and the Gronwall’s

lemma, will give the estimate of ∥ρqtt∥, whereas taking τh = ρσtt in (4.11b) gives the

estimate of ∥ρσtt∥.

For the estimate of ∥ρutt∥, we begin by taking into account the following dual problem:

ϕ = −∇ψ in Ω, (4.12a)
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p = aϕ in Ω, (4.12b)

∇ · p = ρutt in Ω, (4.12c)

ψ = 0 on ∂Ω, (4.12d)

along with:

∥ψ∥H2(Ω) ≤ ∥ρutt∥. (4.13)

Consider,

∥ρutt∥2 = (ρutt ,∇ · p).

Lastly, we make use of (4.11), (4.12), (1.2) and (4.13) along with the estimates of ∥ρqtt∥

and ∥ρσtt∥ to finish the proof.

Remark: The order of convergence of ∥ρu∥ can be further increased to k + 3/2, using

dual norm estimates.

STEP III: Estimates of Ritz-Volterra projection.

Theorem 4.4.2. For t ∈ (0, T ], if u ∈ L∞(Hk+2(Th)), ut, utt ∈ L2(Hk+2(Th)) and

l = 0, 1, 2, then there is a positive constant C which does not rely on h and k such that∥∥∥∥∂lηu∂tl

∥∥∥∥+ ∥∥∥∥∂lηq

∂tl

∥∥∥∥+ ∥∥∥∥∂lησ

∂tl

∥∥∥∥ ≤ Chk+1, (4.14)∥∥∥∥Ik−1
h

(
∂lηu
∂tl

)∥∥∥∥ ≤ Chk+2. (4.15)

Proof. The inequality (4.14) can be obtained with the help of (1.2), Lemma 4.4.1 and the

triangle inequality.

For the estimates of ∥Ik−1
h ηu∥, the following dual problem is considered in Ω× (0, T ]

ϕ = −∇ψ,

p = aϕ,

∇ · p = θ,
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which satisfies the elliptic regularity

∥ψ∥H2(Ω) ≤ ∥θ∥.

Now, using (4.8a) and proceeding as in [39], concludes the proof for k ≥ 1.

(Ik−1
h ηu, θ) = (Ik−1

h ηu,∇ · p)

= (ηu,∇ ·ΠRT
k−1p)

= (ηq,∇ · (ΠRT
k−1p− p))− (aηq,∇ψ)

≤ Chk+2∥θ∥.

Similar procedure can be followed for l = 1, 2.

STEP IV: Estimates of ∥ξu∥, ∥ξq∥ and ∥ξσ∥

In order to derive the error estimates, we disintegrate them in the following form

eu = u− uh = (u− ũh)− (uh − ũh) = ηu − ξu.

Similarly for eq, eσ, êu and êσ. Hence, (4.4) can be written as

(ξq,wh)− (ξu,∇ ·wh) + ⟨ξ̂u,wh · ν⟩∂Th = 0 ∀wh ∈ Wh, (4.16a)

(aξq, τh)− (ξσ, τh) +

∫ t

0

(b(t, s)ξq(s), τh)ds = 0 ∀τh ∈ Wh, (4.16b)

(ξutt , vh)− (ξσ,∇vh) + ⟨ξ̂σ · ν, vh⟩∂Th = (ηutt , vh) ∀vh ∈ Vh, (4.16c)

⟨ξ̂u, µh⟩∂Ω = 0 ∀µh ∈Mh, (4.16d)

⟨ξ̂σ · ν,mh⟩∂Th\∂Ω = 0 ∀mh ∈Mh. (4.16e)

For any function w in [0, t], let us define w̄ as:

w̄(t) =

∫ t

0

w(s)ds.

Clearly, w̄t = w and w̄(0) = 0.
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Lemma 4.4.3. There exists a positive constant C which does not rely on h and k such

that ∀t ∈ (0, T ], the inequality below is valid

∥ξu(t)∥2 + ∥ξ̄q(t)∥2 + ∥( ¯̂ξu − ξ̄u)(t)∥2τ ≤ C

(
∥ξu(0)∥2 + ∥a1/2ξ̄q(0)∥2 + ∥ ¯̂ξu(0)− ξ̄u(0)∥2τ

+

∫ T

0

∥ηut(t)∥2dt
)
.

Proof. We integrate (4.16b), (4.16c) and (4.16e) from 0 to t and then, choose wh = ξ̄σ,

τh = ξq, vh = ξu, µh = −¯̂
ξσ · ν and mh = −ξ̂u in (4.16) and add them, to obtain

1

2

d

dt

(
∥a1/2ξ̄q∥2 + ∥ξu∥2 + ∥ ¯̂ξu − ξ̄u∥2τ

)
= (ηut , ξu)−

∫ t

0

∫ s

0

(b(s, γ)ξq(γ), ξq(s))dγds.

It follows from integrating aforementioned inequality

∥a1/2ξ̄q∥2 + ∥ξu∥2 + ∥ ¯̂ξu − ξ̄u∥2τ ≤ ∥ξu(0)∥2 + ∥a1/2ξ̄q(0)∥2 + ∥ ¯̂ξu(0)− ξ̄u(0)∥2τ

+ 2

∫ t

0

(ηus , ξu)ds− 2

∫ t

0

∫ s

0

∫ γ

0

(b(γ, γ∗)ξq(γ
∗), ξq(γ))dγ

∗dγds.

Let the last term on the right-hand side of the above equation be denoted by I , then we

have

I = 2

∫ t

0

∫ s

0

(b(γ, γ)ξ̄q(γ), ξq(s))dγds−2

∫ t

0

∫ s

0

∫ γ

0

(bγ∗(γ, γ∗)ξ̄q(γ
∗), ξq(s))dγ

∗dγds.

Applying integration by parts again, on both the terms of the above equation and then,

using Cauchy Schwarz inequality we arrive at

I ≤ C

(
∥ξ̄q(t)∥

∫ t

0

∥ξ̄q(s)∥ds+
∫ t

0

∥ξ̄q(s)∥2ds
)
.

Lastly, we use Young’s inequality and Gronwall’s lemma to finish the proof.

Lemma 4.4.4. There exists a positive constant C which does not rely on h and k such

that ∀t ∈ (0, T ], the inequality below is valid

∥ξut∥2 + ∥ξσ(t)∥2 + ∥ξq(t)∥2 + ∥ξ̂u − ξu∥2τ ≤ C

(
∥ξq(0)∥2 + ∥ξut(0)∥2 + ∥ξ̂u(0)− ξu(0)∥2τ

+

∫ T

0

∥ηutt(t)∥2dt
)
.
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Proof. Firstly, we differentiate (4.16a) with respect to t and then select wh = ξσ, τh =

ξqt , vh = ξut in (4.16a), (4.16b), (4.16c), respectively. Then, we differentiate (4.16d) and

select µh = −ξ̂σ · ν and mh = −ξ̂ut in (4.16d) and (4.16e), respectively. Finally, by

combining the ensuing equations, we have

(aξq, ξqt) + (ξutt , ξut) +
1

2

d

dt
∥ξ̂u − ξu∥2τ +

∫ t

0

(b(t, s)ξq(s), ξqt(t))ds = (ηutt , ξut).

Application of Leibnitz’s theorem shows,

1

2

d

dt

(
∥a1/2ξq∥2 + ∥ξut∥2 + ∥ξ̂u − ξu∥2τ

)
= (ηutt , ξut) +

d

dt

∫ t

0

(b(t, s)ξq(s), ξq(t))ds

− (b(t, t)ξq(t), ξq(t))−
∫ t

0

(bt(t, s)ξq(s), ξq(t))ds.

Integrating the aforementioned inequality from 0 to t yields

∥a1/2ξq∥2 + ∥ξut∥2 ≤ ∥a1/2ξq(0)∥+ ∥ξut(0)∥2 + ∥ξut(0)∥2 + ∥ξ̂u(0)− ξu(0)∥2τ +
∫ t

0

(ηuss , ξus)ds

+

∫ t

0

(b(t, s)ξq(s), ξq(t))ds−
∫ t

0

(b(s, s)ξq(s), ξq(s))ds−
∫ t

0

∫ s

0

(bs(s, γ)ξq(γ), ξq(s))dγds.

The following estimate is obtained using Gronwall’s theorem and the assumptions on a

and b:

∥ξq∥2 + ∥ξut∥2 ≤ C

(
∥ξq(0)∥2 + ∥ξut(0)∥2 + ∥ξ̂u(0)− ξu(0)∥2τ +

∫ T

0

∥ηutt(t)∥2dt
)
.

(4.17)

Now, choosing τh = ξσ in (4.16b) yields

∥ξσ∥ ≤ C

(
∥ξq∥+

∫ t

0

∥ξq(s)∥ds
)
. (4.18)

Combining (4.17) and (4.18) will finish the proof.

Proof of Theorem 4.3.1: If we chose uh(0) = ũh(0) = Πvu0, qh(0) = q̃h(0) = −Ik
h∇u0

and σh(0) = σ̃h(0) = ΠW(a∇u0), then triangle inequality, Lemma 4.4.2, Lemma 4.4.3

along with Lemma 4.4.4 yield the desired result.
□
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4.5 Post-processing
To begin with, we define the function ψ(s) ∈ H2(Ω) ∩H1

0 (Ω), s ≤ t to be the solution

of the following problem:

ψss −∇ ·
(
a(x)∇ψ +

∫ t

s

b(γ, s)∇ψ(γ)dγ
)

= 0, (4.19)

with the following final and boundary conditions:

ψ(x, s) = 0 on ∂Ω, s ≤ t,

ψ(x, t) = 0 in x ∈ Ω,

ψs(x, t) = λ(x) in x ∈ Ω.

Lemma 4.5.1. (Regularity Results) There exists a constant C dependent on the data of

the above problem, such that it satisfies the following inequality:

∥ψ(s)∥L∞(H1) + ∥ψs(s)∥L∞(L2) ≤ C∥λ∥, (4.20a)

∥ψ
¯
(s)∥2 ≤ C∥λ∥, (4.20b)

where, ψ
¯
(s) =

∫ t

s
ψ(γ)dγ.

Proof. The first inequality can be proved using a simple kickback argument [42]. To

prove the second inequality, we begin by integrating (4.19) from s to t, noting that

−ψs(s) = ψ
¯ ss

(s) and using the boundary condition, to obtain

ψ
¯ ss

(s)−∇ ·
(
a(x)∇ψ

¯
+

∫ t

s

∫ t

γ

b(γ∗, γ)∇ψ(γ∗)dγ∗dγ
)

= −λ.

Next, we assume the following elliptic regularity on ψ
¯

[42], and use (4.20a) to get

∥ψ
¯
∥2 ≤ C

∥∥∇ ·
(
a(x)∇ψ

¯

)∥∥
≤ C

(
∥ψ

¯ ss
(s)∥+ ∥λ∥+

∥∥∥∥∫ t

s

∫ t

γ

b(γ∗, γ)∇ψ(γ∗)dγ∗dγ
∥∥∥∥)

≤ C

(
∥ψs(s)∥+ ∥λ∥+

∥∥∥∥∫ t

s

∫ t

γ

b(γ∗, γ)∇ψ(γ∗)dγ∗dγ
∥∥∥∥)

≤ C ∥λ∥ .
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Lemma 4.5.2. For the method represented by (4.3), there exists a positive constantC that

remains independent of both h and k, such that for all t ∈ (0, T ], the following inequality

holds:

∥Ik−1
h eu∥L2(K) ≤ Chk+2, (4.21)

where, Ik−1
h is L2-projection onto the space of polynomial for degree at most k − 1.

Proof. Since, eu = ηu − ξu, therefore, ∥Ik−1
h eu∥ ≤ ∥Ik−1

h ηu∥+ ∥Ik−1
h ξu∥.

For the estimates of ∥Ik−1
h ξu∥, we start by rewriting (4.19) in the following mixed form:

ϕ(s) = ∇ψ(s) in Ω, s ≤ t, (4.22a)

p(s) = aϕ(s) +

∫ t

s

b(γ, s)ϕ(γ)dγ in Ω, s ≤ t, (4.22b)

ψss(s)−∇ · p(s) = 0 in Ω, s ≤ t, (4.22c)

ψ(s) = 0 on ∂Ω, s ≤ t, (4.22d)

ψ(t) = 0 in Ω, (4.22e)

ψs(t) = Ik−1
h ξu(t) in Ω. (4.22f)

We begin by taking the inner product of (4.22c) with Ik−1
h ξu(s), to obtain

(ψss(s), I
k−1
h ξu(s))− (∇ · p(s), Ik−1

h ξu(s)) = 0.

Now,

d

ds

[
(ψs(s), I

k−1
h ξu(s))− (ψ(s), Ik−1

h ξus(s))
]
= (ψss(s), I

k−1
h ξu(s))− (ψ(s), Ik−1

h ξuss(s))

= −(ψ(s), Ik−1
h ξuss(s)) + (∇ · p(s), Ik−1

h ξu(s)).

Use of (4.16) and intermediate projections, see [139], yield the following equality

d

ds

[
(ψs(s), I

k−1
h ξu(s))− (ψ(s), Ik−1

h ξus(s))
]
= (ξuss(s), I

k
hψ(s)− ψ(s))

− (ξuss(s), I
k−1
h ψ(s)− ψ(s)) + (ξq(s),Π

RT
k−1p(s)− p(s)) + (aξq(s),ϕ(s)− Ik

hϕ(s))

+ (ξσ(s), I
k
hϕ(s)− ϕ(s)) + (ξσ(s),∇(ψ − Ikhψ)(s)) + ⟨ξ̂σ · ν, Ikhψ⟩ − (ηuss , I

k
hψ)

−
∫ s

0

(b(s, γ)ξq(γ), I
k
hϕ(s))dγ +

∫ t

s

(b(γ, s)ϕ(γ), ξq(s))dγ.
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Taking ξu(0) = ξus(0) = 0 and integrating the equation from 0 to t followed by a change

of order of integration of the last term, we obtain

∥Ik−1
h ξu∥2 =

∫ t

0

[
(ξuss(s), I

k
hψ(s)− ψ(s))− (ξuss(s), I

k−1
h ψ(s)− ψ(s)) + (ξq(s),

ΠRT
k−1p(s)− p(s)) + (aξq(s),ϕ(s)− Ik

hϕ(s)) + (ξσ(s), I
k
hϕ(s)− ϕ(s))

+ (ξσ(s),∇(ψ − Ikhψ)(s)) + ⟨ξ̂σ · ν, Ikhψ⟩ − (ηuss , I
k
hψ)

]
ds

−
∫ t

0

∫ t

s

(b(γ, s)ξq(s),ϕ(γ)− Ik
hϕ(γ))dγds

=

∫ t

0

[E1 + E2 + E3 + E4 + E5 + E6 + E7 + E8] ds+ E9. (4.23)

Cauchy Schwarz’s inequality and (4.20a) show

E1 + E2 ≤ Chk+2∥Ik−1
h ξu(s)∥.

Next, a use of identity
∫ t

0

f(z)g(z)dz = f(0)ḡ(0) +

∫ t

0

fz(z)ḡ(z)dz along with (4.20b),

yield

|E3 + E4 + E5 + E6| ≤ Chk+2∥Ik−1
h ξu∥.

Use of (4.4e), properties of the projection Ih and (4.20a) give

|E7| ≤ ∥ξ̂σ · ν∥∂K∥Ikhψ − ψ∥∂K ≤ Chk+2∥Ik−1
h ξu∥.

We rewrite E8 as follows

(ηuss , I
k
hψ) = (ηuss , I

k
hψ − Ik−1

h ψ) + (ηuss , I
k−1
h ψ)

= (ηuss , I
k
hψ − Ik−1

h ψ) + (Ik−1
h ηuss , I

k−1
h ψ)

≤ ∥ηuss∥∥Ikhψ − Ik−1
h ψ∥+ ∥Ik−1

h ηuss∥∥Ik−1
h ψ∥

≤ Chk+2∥Ik−1
h ξu∥.

Finally, use of boundedness of b shows

|E9| ≤M

∣∣∣∣∫ t

0

(∫ t

s

ϕ(γ)− Ik
hϕ(γ)

)
dγ, ξq(s)ds

∣∣∣∣
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=M

∣∣∣∣∫ t

0

ϕ̄(γ)− Ik
hϕ̄(γ), ξq(s)ds

∣∣∣∣
≤ Chk+2∥ψ̄(s)∥2

≤ Chk+2∥Ik−1
h ξu∥, (by(4.20b)).

Substituting in (4.23), we get

∥Ik−1
h ξu(t)∥2 ≤ Chk+2

∫ t

0

∥Ik−1
h ξu(s)∥ds.

Use of Young’s inequality and Gronwall’s Lemma yield the following estimate

∥Ik−1
h ξu(t)∥ ≤ Chk+2. (4.24)

Finally, (4.24) and (4.15) conclude the proof of the theorem.

Lemma 4.5.3. There exists a positive constant C which does not rely on h and k such

that ∀t ∈ (0, T ], the inequality below is valid for k ≥ 1

∥up − uph∥ ≤ Chk+2, (4.25)

where, up = u− 1

|K|

∫
K

udx.

Proof. See Chapter 2 (Lemma 5.2).

Proof of Theorem 4.3.2: By the definition of u∗h from (4.5), on any K ∈ Th, we obtain,

as in Chapter 2 that

∥u− u∗h∥L2(K) ≤ ∥Ik−1
h eu∥L2(K) + ∥up − uph∥L2(K), (4.26)

where I0h is L2-projection onto the space of polynomials of total degree 0. A substitution

of (4.21) and (4.25) in (4.26) finishes the proof.
□
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4.6 Fully Discrete Scheme
Here, we present a completely discrete method for approximating the solution to (4.1).

To accomplish this, we discretize equation (4.3) in the time direction using a central

difference scheme and the midpoint rule. First, we split the interval [0, T ] into M sub-

intervals with equal spacing using the following points:

0 = t0 < t1 < ... < tM = T,

with tn = n∆t where, ∆t = T/M .

We begin by defining the following notations,

ΥUn =
Un+1 + Un

2
, ΦUn =

Un+1 + 2Un + Un−1

4
=

ΥUn +ΥUn−1

2
,

∂tΥU
n =

Un+1 − Un

∆t
, ∂2tU

n =
Un+1 − 2Un + Un−1

∆t2
,

δtU
n =

∂tΥU
n + ∂tΥU

n−1

2
=
Un+1 − Un−1

2∆t
,

En
h (Q) = ∆t

n−1∑
j=0

b(tn, tj+1/2)ΥQj, ΥEn
h (Q) =

En+1
h (Q) + En

h (Q)

2
.

For 1 ≤ n ≤ M , find (Un,Qn,Sn, Ûn) ∈ (Vh × Wh × Wh ×Mh), such that, for any

(vh,wh, τh, µh,mh) ∈ (Vh ×Wh ×Wh ×Mh ×Mh), we require

2

∆t
(∂tΥU

0, vh)− (ΥS0,∇vh) + ⟨ΥŜ0 · ν, vh⟩∂Th = (Υf 0 +
2

∆t
u1, vh), (4.27a)

⟨ΥŜ0 · ν, µ⟩∂Th\∂Ω = 0, (4.27b)

(ΥQn,wh)− (ΥUn,∇ ·wh) + ⟨ΥÛn,wh · ν⟩∂Th = 0, n ≥ 0, (4.27c)

(aΥQn, τh)− (ΥSn, τh) + (ΥEn
h (Q), τh) = 0, n ≥ 0, (4.27d)

(∂2tU
n, vh)− (ΦSn,∇vh) + ⟨ΦŜn · ν, vh⟩∂Th = (Φfn, vh), n ≥ 1, (4.27e)

⟨ΥÛn, µh⟩∂Ω = 0, n ≥ 0, (4.27f)

⟨ΦŜn · ν,mh⟩∂Th\∂Ω = 0, n ≥ 1, (4.27g)
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Proof of Theorem 4.3.3: We begin by writing ∥u(tn)− Un∥ ≤ ∥u(tn)− uh(tn)∥ +

∥uh(tn) − Un∥. We only need to derive the estimate ∥uh(tn) − Un∥. We will use ζnu to

denote uh(tn)− Un. Similarly, ζn
q , ζn

σ and ζ̂nu .

Now, using (4.3) and (4.27), we have the following system of equations

2

∆t
(∂tΥζ

0
u, vh)− (Υζ0

σ,∇vh) + ⟨Υζ̂0
σ · ν, vh⟩∂Th =

(
2

∆t

(
∂tΥu

0
h − u1

)
−Υu0htt

, vh

)
,

(4.28a)

⟨Υζ̂0
σ · ν, µ⟩∂Th\∂Ω = 0, (4.28b)

(Υζn
q ,wh)− (Υζnu ,∇ ·wh) + ⟨Υζ̂nu ,wh · ν⟩∂Th = 0, (4.28c)

(aΥζn
q , τh)− (Υζn

σ, τh) + (ΥIn(qh), τh) = (ΥEn
h (Q), τh) , (4.28d)

(∂2t ζ
n
u , vh)− (Φζn

σ,∇vh) + ⟨Φζ̂n
σ · ν, vh⟩∂Th =

(
∂2t u

n
h − Φunhtt

, vh
)
, (4.28e)

⟨Υζ̂nu , µh⟩∂Ω = 0, (4.28f)

⟨Φζ̂n
σ · ν,mh⟩∂Th\∂Ω = 0, (4.28g)

for all (vh,wh, τh, µh,mh) ∈ (Vh ×Wh ×Wh ×Mh ×Mh). Here,

In(qh) =

∫ tn

0

b(tn, s)qh(s)ds.

We begin with the proof of (4.7a). Let n ≥ 1; then, we start by subtracting (4.28c)

from itself after replacing n by n − 1 and then, dividing the resulting equation by 2∆t.

Secondly, we will perform the same operations in (4.28f). Next, in (4.28d), we will

replace n by n − 1 and take the average of the resulting equation with itself. Now, take

wh = Φζn
σ, τh = δtζ

n
q , vh = δtζ

n
u , µh = −Φζ̂n

σ · ν and mh = −δtζ̂nu in (4.28c),

(4.28d), (4.28e), (4.28f) and (4.28g), respectively and then, add (4.28c)-(4.28e), (4.28f)

and (4.28g) to obtain(
aΦζn

q , δtζ
n
q

)
+
(
∂2t ζ

n
u , δtζ

n
u

)
+
〈
Φζ̂nu − Φζnu , τ(δtζ̂

n
u − δtζ

n
u )
〉
=
(
ΦEn

h (Q), δtζ
n
q

)
− (ΦIn(qh), δtζ

n
q ) +

(
Φunhtt

− ∂2t u
n
h, δtζ

n
q

)
.

Now, we can write
(
aΦζn

q , δtζ
n
q

)
as(

aΦζn
q , δtζ

n
q

)
=

(
a

(
Υζn

q +Υζn−1
q

2

)
,
Υζn

q −Υζn−1
q

∆t

)
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=
1

2∆t

[
(aΥζn

q ,Υζn
q )− (aΥζn−1

q ,Υζn−1
q )

]
.

Using similar approach for other terms, the equation can be further written as

1

2∆t

[
Υ∥∂tΥζnu∥2 − ∥∂tΥζn−1

u ∥2 + (aΥζn
q ,Υζn

q )− (aΥζn−1
q ,Υζn−1

q ) + ∥Υζ̂nu −Υζnu∥2τ

−∥Υζ̂n−1
u −Υζn−1

u ∥2τ
]
=
(
ΦEn

h (qh), δtζ
n
q

)
− (ΦIn(qh), δtζ

n
q ) +

(
ΦEn

h (ζq), δtζ
n
q

)
+
(
Φunhtt

− ∂2t u
n
h, δtζ

n
q

)
.

Now, multiplying the equation by 2∆t and adding from n = 1 to n = m, we obtain the

following inequality

∥∂tΥζmu ∥2 + ∥Υζm
q ∥2 + ∥Υζ̂mu −Υζmu ∥2τ ≤ ∥∂tΥζ0u∥2 + ∥Υζ0

q∥2 + ∥Υζ̂0u −Υζ0u∥2τ

+ 2∆t
m∑

n=1

(Jn
1 + Jn

2 + Jn
3 ), (4.29)

where

Jn
1 =

(
ΦEn

h (qh), δtζ
n
q

)
− (ΦIn(qh), δtζ

n
q ), J

n
2 =

(
ΦEn

h (ζq), δtζ
n
q

)
,

Jn
3 =

(
Φunhtt

− ∂2t u
n
h, δtζ

n
q

)
.

For the estimates of ∥∂tΥζ0u∥2 + ∥Υζ0
q∥2 + ∥Υζ̂0u − Υζ0u∥2τ , we consider the following

equations

2

∆t
(∂tΥζ

0
u, vh)− (Υζ0

σ,∇vh) + ⟨Υζ̂0
σ · ν, vh⟩∂Th =

(
2

∆t

(
∂tΥu

0
h − u1

)
−Υu0htt

, vh

)
,

(4.30a)

(Υζ0
q,wh)− (Υζ0u,∇ ·wh) + ⟨Υζ̂0u,wh · ν⟩∂Th = 0, (4.30b)

(aΥζ0
q, τh)− (Υζ0

σ, τh) +
(
I01 , τh

)
ds =

(
ΥE0

h(Q), τh
)
, (4.30c)

⟨Υζ̂0u, µh⟩∂Ω = 0, (4.30d)

⟨Υζ̂0
σ · ν,mh⟩∂Th\∂Ω = 0, (4.30e)

for all (vh,wh, τh, µh,mh) ∈ (Vh × Wh × Wh × Mh × Mh). We take vh = Υζ0u,

wh = Υσ0, τh = Υζ0
q , µh = −Υζ̂0

σ · ν and mh = −Υδtζ̂
0
u in (4.30a), (4.30b), (4.30c),
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(4.30d) and (4.30e), respectively and add the resulting equations, to get the following

inequality

∥∂tΥζ0u∥2 + ∥Υζ0
q∥2 + ∥Υζ̂0u −Υζ0u∥2τ ≤ 1

2

(
ΥE0

h(Q),Υζ0
q

)
− 1

2

∫ t1

0

(
b(t1, s)qh(s),Υζ0

q

)
ds

+

(
2

∆t

(
∂tΥu

0
h − u1

)
−Υu0htt

,Υζ0u

)
.

Now, proceeding in the similar way as to obtain (4.29) will prove that

∥∂tΥζ0u∥2 + ∥Υζ0
q∥2 + ∥Υζ̂0u −Υζ0u∥2τ ≤ C(h2(k+1) +∆t4).

Next, for Jn
1 , a use of Theorem 4.3.1 along with quadrature error yield

∥ΦEn
h (qh)− ΦIn(qh)∥ ≤ ∥ΦEn

h (q)− ΦIn(q)− ΦEn
h (eq) + ΦIn(eq)∥

≤ C(hk+1 +∆t2).

Further, use of Young’s inequality yields

∆t
m∑

n=1

|Jn
1 | ≤ C

(
h2(k+1) +∆t4

)
+

∆t

2

m∑
n=1

∥∥∥∥Υζn
q −Υζn−1

q

∆t

∥∥∥∥2 . (4.31)

Use of Taylor’s series expansion, along with Young’s inequality, yield

∆t
m∑

n=1

|Jn
3 | ≤ C

(
h2(k+1) +∆t4

)
+

1

2

m∑
n=1

∥∥∥∥∂tΥζnu + ∂tΥζ
n−1
u

2

∥∥∥∥2 . (4.32)

Use of (4.31) and (4.32) in (4.29) along with discrete Gronwall’s lemma yield

∥∂tΥζmu ∥2 + ∥Υζm
q ∥2 + ∥Υζ̂mu −Υζmu ∥2τ ≤ C

(
h2(k+1) +∆t4

)
.

Finally, use of triangle inequality and Theorem 4.3.1, finish the proof of (4.7a).

Now, for the proof of (4.7b), we introduce the following notations:

ϕ˜
0 = 0, ϕ˜

n = ∆t
n−1∑
j=0

Υϕj, ∂tΥϕ˜
n = Υϕn, ∆t

n∑
j=0

Φϕj = Υϕ˜
n − ∆t

2
Υϕ0.

Next, we multiply (4.28d), (4.28e) and (4.28g) by k, take summation over n and use

(4.28a) and (4.28b) to get the following system of equation

(Υζn
q ,wh)− (Υζnu ,∇ ·wh) + ⟨Υζ̂nu ,wh · ν⟩∂Th = 0, (4.33a)
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(aΥζq˜
n, τh)− (Υζσ˜

n, τh) +

(
ΥEh˜ n(ζn

q ), τh

)
=

(
ΥFh˜ n(qh), τh

)
, (4.33b)

(∂tΥζ
n
u , vh)− (Υζσ˜

n,∇vh) + ⟨Υζ̂σ˜
n
· ν, vh⟩∂Th =

(
∆t

n∑
j=0

(
∂2t u

n
h − Φunhtt

)
, vh

)
,

(4.33c)

⟨Υζ̂nu , µh⟩∂Ω = 0, (4.33d)

⟨Υζ̂σ˜
n
· ν,mh⟩∂Th\∂Ω = 0. (4.33e)

Choose wh = Υζ̂σ˜
n
, τh = Υζn

q , vh = Υζnu , µh = −Υζ̂σ˜
n
·ν andmh = −Υζ̂nu in (4.33a),

(4.33b), (4.33c), (4.33d) and (4.33e), respectively, and add the resulting equations. After

simplifying as above, we attain the desired estimate. For further details, see [79].

□

4.7 Numerical Experiments
The performance of the suggested HDG approach for equations (4.1a)-(4.1c) is discussed

in this section. The problem has been discretized using the central difference technique,

and the integral term has been approximated using the mid-point rule. For the sake of

simplicity, the function a is chosen to be 1 throughout, with the problem domain being

Ω = (0, 1) × (0, 1). We demonstrate the order of convergence for the L2 norm of the

error in u, the gradient q = −∇u, and post-processed solution u∗h. We see that the

super-convergence in the case of u∗h and the optimal order of convergence for u and q are

realized as anticipated by our derived results.

Example 1: Let u(x, y, t) = t2etx(1 − x)y(1 − y) represents the precise solution with

b(x, t, s) = et−s. Table 4.1 displays the computed order of convergence and L2 error

estimates for u and q and u∗h at t = 1 for k = 1, k = 2, and k = 3 for a variety of h

values. We observe that the convergence rates for ∥eu∥, ∥eq∥ and ∥e∗u∥ are of the order

O(hk+1), O(hk+1) and O(hk+2), respectively. Table 4.2 gives the time convergence for u

for the example for different time steps.
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uh qh u∗h

k h Error Order Error Order Error Order

1

1
2

3.1116e-02 1.1484e-01 9.0267e-03
1
4

6.9328e-03 2.1662 2.2498e-02 2.3518 8.3514e-04 3.4341
1
8

1.8259e-03 1.9248 5.5337e-03 2.0235 9.9647e-05 3.0671
1
16

4.7854e-04 1.9319 1.3897e-03 1.9934 1.2100e-05 3.0417

2

1
2

7.1740e-03 2.5155e-02 4.6657e-03
1
4

6.8389e-04 3.3909 1.9663e-03 3.6773 2.7192e-04 4.1009
1
8

8.3343e-05 3.0366 2.0802e-04 3.2407 1.6997e-05 3.9998
1
16

1.9478e-06 3.0635 3.6215e-06 3.3576 1.5014e-07 4.0361

3

1
2

2.2952e-03 1.0145e-02 2.2604e-03
1
4

7.1660e-05 5.0013 3.0543e-04 5.0538 6.7900e-05 5.0570
1
8

2.5553e-06 4.8096 9.6065e-06 4.9907 2.1192e-06 5.0018
1
16

1.3766e-08 4.5306 3.7858e-08 4.8432 7.1367e-09 5.0004

Table 4.1: Computed convergence rates and L2 error estimates in the context of

Example 1

∆t (h = 1/4) Order (Ex. 1) Order (Ex. 2)

0.25 1.8134 1.7895

0.125 1.9145 1.8967

0.0625 2.0846 1.9932

0.03125 2.1783 2.0814

Table 4.2: Order of convergence for time

Example 2: Let u(x, y, t) = t sin(πt) sin
(π
2
x
)
sin
(π
2
y
)

represents the precise solution

with b(x, t, s) = sin(πt) cos(πs). Table 4.3 displays the computed order of convergence

and L2 error estimates for u and q and u∗h at t = 1 for k = 1, k = 2, and k = 3 for

a variety of h values. We observe that the convergence rates for ∥eu∥, ∥eq∥ and ∥e∗u∥
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uh qh u∗h

k h Error Order Error Order Error Order

1

1
2

2.1155e-01 3.0941e-01 2.9528e-02
1
4

5.5961e-02 1.9185 7.0823e-02 2.1272 3.6281e-03 3.0248
1
8

1.4394e-02 1.9589 1.7400e-02 2.0251 4.4006e-04 3.0434
1
16

3.6385e-03 1.9841 4.3324e-03 2.0058 5.3611e-05 3.0371

2

1
2

2.4148e-02 4.6484e-02 7.1897e-03
1
4

4.2070e-03 2.5210 6.7201e-03 2.7902 3.7601e-04 4.2571
1
8

5.5692e-04 2.9173 8.6377e-04 2.9598 2.1278e-05 4.1433
1
16

7.0692e-05 2.9778 1.0849e-04 2.9931 1.2275e-06 4.1156

3

1
2

7.5423e-03 1.7558e-02 1.2973e-03
1
4

4.8000e-04 3.9739 1.0136e-03 4.1145 3.4910e-05 5.2158
1
8

3.0353e-05 3.9831 6.2655e-05 4.0160 1.0729e-06 5.0240
1
16

1.9087e-06 3.9912 3.9054e-06 4.0039 3.3399e-08 5.0056

Table 4.3: Computed convergence rates and L2 error estimates in the context of

Example 2

are of the order O(hk+1), O(hk+1) and O(hk+2), respectively. Table 4.2 gives the time

convergence for u for the example for different time steps.

4.8 Conclusions
This chapter have introduced and analyzed the HDG method applied to a hyperbolic

integro-differential equation. The derivation of error estimates employs both the HDG

and Ritz-Volterra projections. Additionally, element-by-element post-processing of the

numerical solution is achieved through the dual of the problem. The results clearly indi-

cate that all three variables, namely, u, q, and σ, exhibit convergence of order k + 1, for

non-negative k in terms of h, which represents the discretization parameter of the spatial

domain. In contrast, the post-processed solution has attained super-convergence; that is,
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it converges with order k + 2, for k ≥ 1. The analysis of this chapter have provided

better accuracy results compared to [79]. Finally, numerical results were reviewed. This

study may be carried over to the three-dimensional domain by making the appropriate

adjustments.
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Chapter 5

HDG Method for Nonlinear Hyperbolic

Integro-Differential Equations

5.1 Introduction
In this chapter, we have considered the following nonlinear hyperbolic integro-differential

equation with nonlinear kernel:

utt −∇ ·
(
a(u)∇u+

∫ t

0

b(u(s))∇u(s)ds
)

= f(u) in Ω× (0, T ], (5.1a)

u(x, t) = 0 on ∂Ω× (0, T ], (5.1b)

u(x, 0) = u0(x) for x ∈ Ω, (5.1c)

u(x, 0) = u1(x) for x ∈ Ω, (5.1d)

where u : Ω × (0, T ] → R. We assume that there are positive constants a∗ and M such

that 0 < a∗ ≤ a(u) ≤ M and |b(u)| ≤ M for the functions a : R → R and b : R → R.

We also assume that the functions a(u), b(u), their derivatives up to and including order 2,

and f(u) meet the Lipschitz continuity condition near u. For the existence and uniqueness

of the solution of (5.1), we refer to [24].

In literature, Pani et al. [114] have analyzed fully discrete schemes for time-dependent
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partial integro-differential equations, using energy methods, paying attention to the stor-

age required during time-stepping. Further, errors are estimated in L2 and H1 norms. In

the work by Saedpanah in [123], a continuous space-time Finite Element Method (FEM)

of degree one is formulated for a hyperbolic integro-differential equation featuring mixed

boundary conditions. The study has also established a set of a posteriori estimates. In a

separate study, presented in [26], Chen et al. have proposed and investigated a numerical

technique centered on a two-grid finite element discretization approach designed to solve

semi-linear hyperbolic integro-differential equations. This method utilizes piece-wise

continuous finite element approximation and strategically employs a two-grid strategy to

address the semi-linearity within the model. Importantly, it is proven that this approach

achieves a level of accuracy comparable to that of the traditional FEM. Similarly, in the

research outlined in [134], Tan et al. have introduced and analyzed a two-grid finite el-

ement discretization approach for (5.1). The study also includes numerical examples to

empirically support the theoretical findings.

In this chapter, the HDG method is implemented on (5.1). The major contributions of

this chapter are as follows:

• For the error analysis, only derivatives of order up to two of the nonlinear variables

a and b, along with their Lipschitz continuity condition, has been considered.

• To deal with the integral term, Ritz-Volterra projection of extended type is intro-

duced and analyzed. This helps to achieve optimal estimates of order O(hk+1)

when using functions from the space of polynomials of degree k ≥ 0 for approxi-

mating both the function ‘u’ and its gradient ‘∇u’.

• Dual problem is used for element-by-element post-processing to attain super-convergence

outcomes for the post-processed solution.

• Using central difference scheme for time derivative, a completely discrete method

is proposed, and corresponding estimations of error are calculated.
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• With the help of different numerical examples, it has been verified that the unknown

variable and its approximate gradient achieve convergence of optimum order and

the post-processed solution attains the super-convergence.

We have used central difference scheme for the time derivative, but higher-order methods

can also be applied to derive higher-order convergence in the temporal direction. For

the sake of simplicity, C is used to denote an inclusive, positive constant independent

of discretizing parameter h as well as the degree of polynomial k. Also, argument x

of functions will not be written explicitly, whereas t and s will be written as and when

required.

The chapter’s structure is as follows: Section 5.2 defines the HDG method for hy-

perbolic integro-differential equation (5.1). It also introduces an intermediate projection,

along with its estimates. Section 5.3 analyses the error for the semi-discrete problem.

In Section 5.4, the post-processed solution is introduced, along with its estimates. Sec-

tion 5.5 deals with the fully discrete scheme. Section 5.6 validates the theoretical results

with the help of a few numerical examples. Finally, Section 5.7 gives some concluding

remarks.

5.2 HDG Method
To define the technique for equation (5.1), we make use of the following auxiliary vari-

ables:

q = −∇u, σ = a(u)q +

∫ t

0

b(u(s))q(s)ds,

using these variables, equation (5.1) is rewritten as:

q = −∇u, in Ω, (5.2a)

σ = a(u)q +

∫ t

0

b(u(s))q(s)ds, in Ω, (5.2b)

utt +∇ · σ = f(u), in Ω. (5.2c)

At each time t within the interval (0, T ], the method provides an approximation uh(t) of

the scalar function u(t), an approximation qh(t) and σh(t) of the vector function q(t) and
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σ(t), respectively, and an approximation ûh(t) of the trace of u(t) on the boundaries of

the elements. These approximations are computed in the function spaces Vh, Wh, Wh,

and Mh, respectively.

With these spaces, the HDG formulation seeks approximation (uh, qh,σh, ûh)(t) ∈

(Vh×Wh×Wh×Mh), for t ∈ (0, T ], for any (vh,wh, τh, µh,mh) ∈ (Vh×Wh×Wh×

Mh ×Mh), satisfying

(qh,wh)− (uh,∇ ·wh) + ⟨ûh,wh · ν⟩∂Th = 0, (5.3a)

(a(uh)qh, τh)− (σh, τh) +

∫ t

0

(b(uh(s))qh(s), τh)ds = 0, (5.3b)

(uhtt , vh)− (σh,∇vh) + ⟨σ̂h · ν, vh⟩∂Th = (f(uh), vh), (5.3c)

⟨ûh, µh⟩∂Ω = 0, (5.3d)

⟨σ̂h · ν,mh⟩∂Th\∂Ω = 0, (5.3e)

uh(0) = ΠV u0, (5.3f)

uht(0) = ΠV u1, (5.3g)

where the numerical trace for flux is defined by

σ̂h · ν = σh · ν + τ(uh − ûh) on ∂Th,

for a non-negative stabilisation parameter τ specified on Γ, it is assumed that τ is piece-

wise constant on the faces. It is seen that the precise solution u, q, and σ adhere to

equation (5.3). Therefore, the error equations may be derived as follows, considering any

(vh,wh, τh, µh,mh) ∈ (Vh ×Wh ×Wh ×Mh ×Mh).

(q − qh,wh)− (u− uh,∇ ·wh) + ⟨u− ûh,wh · ν⟩∂Th = 0, (5.4a)

(a(u)q − a(uh)qh, τh)− (σ − σh, τh) +

∫ t

0

((b(u(s))q − b(uh(s))qh)(s), τh)ds = 0,

(5.4b)

(utt − uhtt , vh)− (σ − σh,∇vh) + ⟨(σ − σ̂h) · ν, vh⟩∂Th = (f(u)− f(uh), vh),

(5.4c)
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⟨u− ûh, µh⟩∂Ω = 0, (5.4d)

⟨(σ − σ̂h) · ν,mh⟩∂Th\∂Ω = 0. (5.4e)

For the further analysis, we add and subtract a(u)qh +

∫ t

0

b(u(s))qh(s)ds in (5.4b), to

get the error equation in the following form, for any (vh,wh, τh, µh,mh) ∈ (Vh ×Wh ×

Wh ×Mh ×Mh):

(q − qh,wh)− (u− uh,∇ ·wh) + ⟨u− ûh,wh · ν⟩∂Th = 0, (5.5a)

(a(u)(q − qh), τh)− (σ − σh, τh) +

∫ t

0

(b(u(s))(q − qh)(s), τh) ds

= ((a(uh)− a(u))qh, τh) +

∫ t

0

((b(uh(s))− b(u(s)))qh(s), τh)ds, (5.5b)

(utt − uhtt , vh)− (σ − σh,∇vh) + ⟨(σ − σ̂h) · ν, vh⟩∂Th = (f(u)− f(uh), vh),

(5.5c)

⟨u− ûh, µh⟩∂Ω = 0, (5.5d)

⟨(σ − σ̂h) · ν,mh⟩∂Th\∂Ω = 0. (5.5e)

The main outcome of this chapter is presented in the form of the following theorem:

Theorem 5.2.1. Let (u, q,σ) be the solution of (5.2) with u, ut, utt ∈ L∞(Hk+2(Th)) and

u0, u1 ∈ Hk+2(Th) for k ≥ 0. Additionally, let (uh, qh,σh, ûh) ∈ Vh ×Wh ×Wh ×Mh

be the solution of (5.3) along with uh(0) = ΠV u0 , uht(0) = ΠV u1, qh(0) = −Ik
h∇u0

and σh(0) = ΠW (a∇u0). Consequently, the following estimations hold true:

∥(ut − uht)(t)∥ ≤ Chk+1,

∥(u− uh)(t)∥+ ∥(q − qh)(t)∥+ ∥(σ − σh)(t)∥+ ∥(u− ûh)(t)∥τ ≤ Chk+1.

5.2.1 An Extended Mixed Ritz-Volterra Projection and Associated

Estimates

The subsequent Ritz-Volterra projection is now defined as follows: For each t and given

(u, q,σ), find (ũh, q̃h, σ̃h, ˆ̃uh) ∈ (Vh ×Wh ×Wh ×Mh) satisfying

(q − q̃h,wh)− (u− ũh,∇ ·wh) + ⟨u− ˆ̃uh,wh · ν⟩∂Th = 0, (5.6a)
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(a(u)(q − q̃h), τh)− (σ − σ̃h, τh) +

∫ t

0

(b(u(s))(q − q̃h)(s), τh)ds = 0, (5.6b)

−(σ − σ̃h,∇vh) + ⟨(σ − ˆ̃σh) · ν, vh⟩∂Th = 0, (5.6c)

⟨u− ˆ̃uh, µh⟩∂Ω = 0, (5.6d)

⟨(σ − ˆ̃σh) · ν,mh⟩∂Th\∂Ω = 0, (5.6e)

for all (vh,wh, τh, µh,mh) ∈ (Vh ×Wh ×Wh ×Mh ×Mh), where

ˆ̃σh · ν = σ̃h · ν + τ(ũh − ˆ̃uh) on ∂Th.

We decompose the errors in terms θ’s and ρ’s with the help of the projection Ik
h (L2-

projection onto Wh) and PM (L2-projection onto Mh) as done in Chapter 2.

Now, the system of equations (5.6) become

(ρq,wh)− (ρu,∇ ·wh) + ⟨ρ̂u,wh · ν⟩∂Th = 0, (5.7a)

(a(u)ρq, τh)− (ρσ, τh) +

∫ t

0

(b(u(s))ρq(s), τh)ds = (a(u)θq, τh)− (θσ, τh)

+

∫ t

0

(b(u(s))θq(s), τh)ds, (5.7b)

−(ρσ,∇vh) + ⟨ρ̂σ · ν, vh⟩∂Th = 0, (5.7c)

⟨ρ̂u, µh⟩∂Ω = 0, (5.7d)

⟨ρ̂σ · ν,mh⟩∂Th\∂Ω = 0, (5.7e)

for all (vh,wh, τh, µh,mh) ∈ (Vh ×Wh ×Wh ×Mh ×Mh).

Note that, ⟨ρ̂σ · ν, µ⟩∂Th = ⟨ρσ · ν + τ(ρu − ρ̂u), µ⟩∂Th for all µ ∈ Pk(F ).

We now present the estimates of ρ’s in accordance with the subsequent lemma:

Lemma 5.2.2. There is a positive constant C that does not rely on h and k such that

∀ t ∈ (0, T ], the inequality below is valid for l = 0, 1, 2∥∥∥∥∂lρu∂tl

∥∥∥∥+ ∥∥∥∥∂lρq

∂tl

∥∥∥∥+ ∥∥∥∥∂lρσ

∂tl

∥∥∥∥ ≤ Chk+1. (5.8)
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Proof. STEP I: Estimates of ∥ρσ(t)∥ and ∥ρq(t)∥.

Use τh = ρσ in (5.7b). Combining Cauchy-Schwarz inequality with 0 < a∗ ≤ a ≤ M

and |b(u)| ≤M yield

∥ρσ∥2 = (a(u)ρq,ρσ) +

∫ t

0

(b(u(s))ρq(s),ρσ)ds− (a(u)θq,ρσ) + (θσ,ρσ)

−
∫ t

0

(b(u(s))θq(s),ρσ)ds,

≤ C

[
∥ρq∥+ ∥θq∥+ ∥θσ∥+

∫ t

0

(∥ρq(s)∥+ ∥θq(s)∥)ds
]
∥ρσ∥,

and hence,

∥ρσ∥ ≤ C

[
∥ρq∥+ ∥θq∥+ ∥θσ∥+

∫ t

0

(∥ρq(s)∥+ ∥θq(s)∥)ds
]
. (5.9)

Next, take wh = ρσ, τh = ρq, vh = ρu, µh = −ρ̂σ · ν and mh = −ρ̂u in (5.7a), (5.7b),

(5.7c), (5.7d) and (5.7e), respectively. Then, by combining the resultant equations, we

get

(a(u)ρq,ρq) + ∥ρ̂u − ρu∥2τ = (a(u)θq,ρq)− (θσ,ρq) +

∫ t

0

[
(b(u(s))θq(s),ρq)

− (b(u(s))ρq(s),ρq)
]
ds.

Further, use of the boundedness of a and b yield

∥ρ̂u − ρu∥τ + ∥ρq∥ ≤ C

[
∥θq∥+ ∥θσ∥+

∫ t

0

(∥θq(s)∥+ ∥ρq(s)∥)ds
]
.

Finally, use of Gronwall’s lemma along with (5.9) give the following desired estimates:

∥ρ̂u − ρu∥τ + ∥ρσ(t)∥+ ∥ρq(t)∥ ≤ C

[
∥θq(t)∥+ ∥θσ(t)∥+

∫ t

0

∥θq(s)∥ds
]
.

STEP II: Estimates of ∥ρu(t)∥.

To derive this estimate, we use the following dual problem:

−∇ · (a(u)∇ψ) = Λ in Ω,

ψ = 0 on ∂Ω,
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with the following regularity

∥ψ∥H2(Ω) ≤ ∥Λ∥.

The following is a mixed form of the dual problem, which will be used ahead:

ϕ = −∇ψ in Ω, (5.10a)

p = a(u)ϕ in Ω, (5.10b)

∇ · p = Λ in Ω. (5.10c)

Then, taking Λ = ρu and using L2 inner product between (5.10c) and ρu, there holds

∥ρu∥2 = (ρu, ρu) = (ρu,∇ · p),

using Lemma 1.4.6, we obtain

∥ρu∥2 = (ρu,∇ ·ΠWp) + ⟨ρu, τ(ΠV ψ − ψ)⟩∂Th

= (ρq,ΠWp) + ⟨ρ̂u,ΠWp · ν⟩∂Th + ⟨ρu, τ(ΠV ψ − ψ)⟩∂Th . by(5.7a)

By continuity of p · ν and (5.7d), we arrive at

∥ρu∥2 = (ρq,ΠWp) + ⟨ρ̂u, (ΠWp− p) · ν⟩∂Th + ⟨ρu, τ(ΠV ψ − ψ)⟩∂Th

= (ρq,ΠWp) + ⟨τ(ρu − ρ̂u),ΠV ψ⟩∂Th + ⟨ρσ · ν, PMψ⟩∂Th by (1.1c), (5.7e)

= (ρq,ΠWp) + ⟨τ(ρu − ρ̂u)− ρσ · ν,ΠV ψ⟩∂Th + ⟨ρσ · ν, ψ⟩∂Th

+ (ρσ,∇ΠV ψ) by (5.7c)

= (ρq,ΠWp) + (ρσ,∇ψ) by (1.1a)

= (ρq,ΠWp− p) + (ρq,p)− (ρσ,ϕ) by (5.10a)

= (ρq,ΠWp− p) + (ρq,p)− (ρσ,ϕ− Ik
hϕ)− (ρσ, I

k
hϕ).

Now, use (5.7b) with τh = Ik
hϕ, to obtain

∥ρu∥2 = (ρq,ΠWp− p) + (ρq,p)− (a(u)ρq, I
k
hϕ) +

∫ t

0

(b(u(s))(θq(s)− ρq(s)), I
k
hϕ)ds

+ (a(u)θq, I
k
hϕ)− (θσ, I

k
hϕ)
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= (ρq,ΠWp− p) + (a(u)ρq,ϕ)− (a(u)ρq, I
k
hϕ) +

∫ t

0

(b(u(s))(θq(s)

− ρq(s)), I
k
hϕ)ds+ (a(u)θq, I

k
hϕ)− (θσ, I

k
hϕ) by (5.10b)

= (ρq,ΠWp− p) + (a(u)ρq,ϕ− Ik
hϕ) + (a(u)θq, I

k
hϕ)− (θσ, I

k
hϕ)

+

∫ t

0

(b(u(s))(θq(s)− ρq(s)), I
k
hϕ)ds.

The following inequality is then obtained by applying the Cauchy-Schwarz inequality.

∥ρu∥2 ≤ ∥ρq∥∥ΠWp− p∥+ C∥ρq∥∥ϕ− Ik
hϕ∥+ C∥θq∥∥Ik

hϕ∥H1(Ω) + ∥θσ∥∥Ik
hϕ∥H1(Ω)

+ C

∫ t

0

(
∥θq(s)∥+ ∥ρq(s)∥

)
∥Ik

hϕ∥H1(Ω).

Now, use of (1.2), estimates of ∥ρq∥, Lemma 1.4.1, elliptic regularity, ∥ϕ∥H1(Ω) ≤

M∥p∥H1(Ω) and ∥p∥H1(Ω) ≤ ∥ψ∥H2(Ω), yield the desired result.

STEP III:
∥∥∥∥∂ρu∂t

∥∥∥∥,
∥∥∥∥∂ρq

∂t

∥∥∥∥ and
∥∥∥∥∂ρσ

∂t

∥∥∥∥.

We will begin by differentiating (5.7a)-(5.7e) w.r.t. t, to obtain

(ρqt,wh)− (ρut ,∇ ·wh) + ⟨ρ̂ut ,wh · ν⟩∂Th = 0, (5.11a)

(au(u)utρq + a(u)ρqt , τh)− (ρσt , τh) + (b(u)ρq(t), τh) = (au(u)utθq + a(u)θqt , τh)

−(θσt , τh) + (b(u)θq(t), τh), (5.11b)

−(ρσt ,∇vh) + ⟨ρσt · ν, vh⟩∂Th = 0, (5.11c)

⟨ρ̂ut , µh⟩∂Ω = 0, (5.11d)

⟨ρ̂σt · ν,mh⟩∂Th\∂Th = 0, (5.11e)

for all (vh,wh, τh, µh,mh) ∈ Vh × Wh × Wh ×Mh ×Mh. Now, adding (5.11) after

taking wh = ρσt , τh = ρqt , vh = ρut , µh = −ρ̂σt · ν and mh = −ρ̂ut and simplifying

using Cauchy Schwarz inequality and the Gronwall’s lemma, will give the estimate of

∥ρqt∥, whereas taking τh = ρσt in (5.11b) gives the estimate of ∥ρσt∥.

For the estimate of ∥ρut∥, we begin by taking into account the dual problem (5.10) with

Λ = ρut along with:

∥ψ∥H2(Ω) ≤ ∥ρut∥. (5.12)
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Consider,

∥ρut∥2 = (ρut ,∇ · p).

Lastly, we make use of (5.11), (1.2) and (5.12) along with the estimates of ∥ρqt∥ and

∥ρσt∥ to yield the desired estimates.

STEP IV: Estimates of
∥∥∥∥∂2ρu∂t2

∥∥∥∥,
∥∥∥∥∂2ρq

∂t2

∥∥∥∥ and
∥∥∥∥∂2ρσ

∂t2

∥∥∥∥.

We will differentiate (5.11) again, w.r.t. t, and proceed in a similar fashion to obtain the

desired estimates.

Theorem 5.2.3. For t ∈ (0, T ], if u, ut, utt ∈ L∞(Hk+2(Th)) and l = 0, 1, 2 then irre-

spective of the values of h and k, there is a positive constant C such that∥∥∥∥∂lηu∂tl

∥∥∥∥+ ∥∥∥∥∂lηq

∂tl

∥∥∥∥+ ∥∥∥∥∂lησ

∂tl

∥∥∥∥ ≤ Chk+1 (5.13)∥∥∥∥Ik−1
h

(
∂lηu
∂tl

)∥∥∥∥ ≤ Chk+2. (5.14)

Proof. The inequality (5.13) can be obtained with the help of (1.2), Lemma 5.2.2 and the

triangle inequality.

For the estimates of ∥Ik−1
h ηu∥, the following dual problem is considered in Ω× (0, T ]

ϕ = −∇ψ,

p = aϕ,

∇ · p = θ,

which satisfies the elliptic regularity

∥ψ∥H2(Ω) ≤ ∥θ∥.

Now, using (5.6a) and proceeding as in [39], conclude the proof.

(Ik−1
h ηu, θ) = (Ik−1

h ηu,∇ · p)

= (ηu,∇ ·ΠRT
k−1p)
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= (ηq,∇ ·ΠRT
k−1p− p)− (aηq,∇ψ)

≤ Chk+2∥θ∥.

Similar procedure can be followed for l = 1, 2.

5.3 A Priori Error Estimates for Semidiscrete Scheme

To prove Theorem 5.2.1, we decompose the error in terms of ũh, q̃h, σ̃h, ˆ̃uhand ˆ̃σh as

below

eu = u− uh = (u− ũh)− (uh − ũh) = ηu − ξu,

similarly, we will decompose eq, eσ, êu and êσ in terms of η’s and ξ’s. With the help of

this decomposition, (5.5) can be rewritten as

(ξq,wh)− (ξu,∇ ·wh) + ⟨ξ̂u,wh · ν⟩∂Th = 0, (5.15a)

(a(uh)ξq, τh)− (ξσ, τh) +

∫ t

0

(b(uh(s))ξq(s), τh)ds = −((a(u)− a(uh))q̃h, τh)

−
∫ t

0

((b(u(s))− b(uh(s)))q̃h, τh), (5.15b)

(ξutt , vh)− (ξσ,∇vh) + ⟨ξ̂σ · ν, vh⟩∂Th = (f(u)−f(uh), vh)− (ηutt , vh), (5.15c)

⟨ξ̂u, µh⟩∂Ω = 0, (5.15d)

⟨ξ̂σ · ν,mh⟩∂Th\∂Ω = 0, (5.15e)

for all (vh,wh, τh, µh,mh) ∈ Vh ×Wh ×Wh ×Mh ×Mh.

For any w in [0, t], let us define w̄ as:

w̄(t) =

∫ t

0

w(s)ds.

Clearly, w̄t = w and w̄(0) = 0.

Now, we present a series of lemma’s which will help to prove Theorem 5.2.1.
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Lemma 5.3.1. ([134]) If u ∈ L∞(H2) and q ∈ L∞(H1), then there exists C = C(q),

such that

∥q̃h∥∞ + ∥q̃ht∥∞ + ∥q̃htt∥∞ ≤ C(q).

Proof. From the elliptic projection with memory, Lemma 1.4.5 and Lemma 1.4.10, we

have the following

∥q̃htt∥∞ ≤ ∥q̃htt −Rqtt∥∞ + ∥Rqtt∥∞

≤ Ch−1∥q̃htt −Rqtt∥+ ∥qtt∥∞

≤ Ch−1 (∥q̃htt − qtt∥+ ∥qtt −Rqtt∥) + C

≤ Ch−1 (h+ h) + C

≤ C.

Similarly, the estimates of ∥q̃h∥∞ and ∥q̃ht∥∞ can be derived, see Lemma 3.3.2.

Lemma 5.3.2. There is a positive constant C independent of h and k such that

∥ξu(t)∥2 + ∥ξ̄q(t)∥2 + ∥( ¯̂ξu − ξ̄u)(t)∥2τ ≤ C

(
∥ξu(0)∥2 + ∥a1/2ξ̄q(0)∥2 + ∥ ¯̂ξu(0)− ξ̄u(0)∥2τ

+

∫ T

0

(∥ηu(t)∥2 + ∥ηut(t)∥2)dt
)
.

Proof. We integrate (5.15b), (5.15c) and (5.15e) from 0 to t and then, choose wh = ξ̄σ,

τh = ξq, vh = ξu, µh = −¯̂
ξσ · ν and mh = −ξ̂u in (5.15) and add them, to obtain

1

2

d

dt

(
a∗∥ξ̄q∥2 + ∥ξu∥2 + ∥ ¯̂ξu − ξ̄u∥2τ

)
= (ηut , ξu)−

∫ t

0

((a(u(s))− a(uh(s))q̃h(s), ξq(s))ds

+

∫ t

0

(f(u(s))− f(uh(s)),ξu(s))ds−
∫ t

0

∫ s

0

(b(uh(γ))ξq(γ), ξq(s))dγds

+

∫ t

0

∫ s

0

((b(u(γ))− b(uh(γ)))q̃h(s), ξq(s))dγds.

It follows from integrating aforementioned inequality that

a∗∥ξ̄q∥2 + ∥ξu∥2 + ∥ ¯̂ξu − ξ̄u∥2τ ≤ ∥ξu(0)∥2 + ∥a1/2ξ̄q(0)∥2 + ∥ ¯̂ξu(0)− ξ̄u(0)∥2τ

+ 2

[ ∫ t

0

(ηus , ξu)ds+

∫ t

0

∫ s

0

(f(u(γ))− f(uh(γ)), ξu(γ))dγds
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−
∫ t

0

∫ s

0

∫ γ

0

(b(uh(γ
∗))ξq(γ

∗), ξq(γ))dγ
∗dγds−

∫ t

0

∫ s

0

(a(u(γ))− a(uh(γ))q̃h(γ),

ξq(γ))dγds+

∫ t

0

∫ s

0

∫ γ

0

(b(u(γ∗))− b(uh(γ
∗))q̃h(γ), ξq(γ))dγ

∗dγds

]
,

which can be written as

a∗∥ξ̄q∥2 + ∥ξu∥2 + ∥ ¯̂ξu − ξ̄u∥2τ ≤ ∥ξu(0)∥2 + ∥a1/2ξ̄q(0)∥2 + ∥ ¯̂ξu(0)− ξ̄u(0)∥2τ

+2

[ ∫ t

0

(ηus , ξu)ds+

∫ t

0

∫ s

0

(f(u(γ))− f(uh(γ)), ξu(γ))dγds− I1 − I2 + I3

]
,

where,

I2 =

∫ t

0

∫ s

0

(a(u(γ))− a(uh(γ))q̃h(γ), ξq(γ))dγds

=

∫ t

0

(a(u(s))− a(uh(s)))q̃h(s), ξ̄q(s))ds−
∫ t

0

∫ s

0

d

dγ
((a(u(γ))− a(uh(γ))q̃h(γ)) ξ̄q(γ)dγds

≤
∫ t

0

∥ηu(s) + ξu(s)∥∥ξ̄q(s)∥ds−
∫ t

0

∫ s

0

∥ηu(γ) + ξu(γ)∥∥ξ̄q(γ)∥dγds.

Simplifying the other terms in a similar fashion and applying the Gronwall’s lemma will

finish the proof.

Lemma 5.3.3. There is a positive constant C independent of h and k such that

∥ξut(t)∥2 + ∥ξσ(t)∥2 + ∥ξq(t)∥2 + ∥ξ̂u − ξu∥2τ ≤ C

(
∥ξut(0)∥2 + ∥ξq(0)∥2

+ ∥ξu(0)∥2 + ∥(ξ̂u − ξu)(0)∥2τ +
∫ T

0

(
∥ηu(t)∥2 + ∥ηutt(t)∥2

)
dt

)
.

Proof. To begin with, we differentiate (5.15a) with respect to t and then choose wh =

ξσ, τh = ξqt , vh = ξut in (5.15a), (5.15b), (5.15c) respectively. Now, differentiate

(5.15d) with respect to t and choose µ = −ξ̂σ · ν and µ = −ξ̂ut in (5.15d) and (5.15e),

respectively. Then adding the resulting equations, we obtain

(a(uh)ξq, ξqt) +
1

2

d

dt

(
∥ξ̂u − ξu∥2τ + ∥ξut∥2

)
+

∫ t

0

(b(uh(s))ξq(s), ξqt)ds = −(ηutt , ξut)

− ((a(u)− a(uh))q̃h, ξqt)−
∫ t

0

((b(u(s))− b(uh(s)))q̃h(s), ξqt)ds+ (f(u)− f(uh), ξut),
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which yields the following inequality

C
d

dt

(
∥ξq∥2 + ∥ξ̂u − ξu∥2τ + ∥ξut∥2

)
≤ − d

dt
((a(u)− a(uh))q̃h, ξq)− (ηutt , ξut)

+ ((au(u)ut − au(uh)uht)q̃h, ξq) + ((a(u)− a(uh))q̃ht , ξq)−
∫ t

0

d

dt
(b(uh(s))ξq(s), ξq)ds

−
∫ t

0

d

dt
((b(u(s))− b(uh(s)))q̃h(s), ξq)ds+ (f(u)− f(uh), ξut).

Next, we will use the Cauchy Schwarz inequality, Leibnitz’s Theorem and Lemma 5.3.1

along with the fact that a, au, b, bu and f are Lipschitz continuous with respect to u. Then,

integrating the resulting equations from 0 to t, yields the following inequality

∥ξq∥2 + ∥ξ̂u − ξu∥2τ + ∥ξut∥2 ≤ C(∥ξq(0)∥2 + ∥ξu(0)∥2 + ∥ηu∥2 + ∥ξu∥2)

+ C

∫ t

0

(
∥ηu∥2 + ∥ξu∥2 + ∥ξq∥2 + ∥ηutt∥2 + ∥ξut∥2

)
ds.

Finally, a use of the Gronwall’s lemma yields the following result

∥ξut∥2+∥ξq∥2+∥ξ̂u−ξu∥2τ ≤ C

(
∥ξq(0)∥2 + ∥ξu(0)∥2 +

∫ T

0

(
∥ηu(t)∥2 + ∥ηutt(t)∥2

)
dt

)
.

Now, choosing τh = ξσ in (5.15b) and then proceeding as above will give

∥ξσ∥ ≤ C (∥ηu∥+ ∥ξu∥) .

Combining the last two inequalities yields the desired result.

Proof of Theorem 5.2.1: To prove the theorem, we use triangle’s inequality, Theorem

5.2.3, Lemma 5.3.2 and Lemma 5.3.3.

□

5.4 Post-processing
To begin with, we define the function ψ(s) ∈ H2(Ω) ∩H1

0 (Ω), s ≤ t to be the solution

of the following problem:

ψss −∇ ·
(
a(u)∇ψ +

∫ t

s

b(u(γ))∇ψ(γ)dγ
)
+ au(u)q · ∇ψ +

∫ t

s

bu(u(γ))q(γ) · ∇ψ(γ)dγ
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+ fu(u)ψ = 0, (5.16)

with the following conditions:

ψ(x, s) = 0 on ∂Ω, s ≤ t,

ψ(x, t) = 0 in x ∈ Ω,

ψs(x, t) = λ(x) in x ∈ Ω.

Lemma 5.4.1. (Regularity Results) There exists a constant C dependent on the data of

the above problem, such that it satisfies the following inequality:

∥ψ(s)∥L∞(H1) + ∥ψs(s)∥L∞(L2) ≤ C∥λ∥, (5.17a)

∥ψ
¯
(s)∥2 ≤ C∥λ∥, (5.17b)

where, ψ
¯
(s) =

∫ t

s
ψ(γ)dγ.

Proof. The first inequality can be proved using a simple kickback argument [42]. To

prove the second inequality, we begin by integrating (5.16) from s to t, noting that

−ψs(s) = ψ
¯ ss

(s) and using the boundary condition, to obtain

ψ
¯ ss

(s)−∇ ·
(
a(u)∇ψ

¯
−
∫ t

s

au(u(γ))uγ(γ)∇ψ
¯
(γ)dγ +

∫ t

s

∫ t

γ

b(u(γ∗))∇ψ(γ∗)dγ∗dγ
)

=

∫ t

s

au(u(γ))q(γ) · ∇ψ(γ)dγ +

∫ t

s

∫ t

γ

bu(u(γ
∗))q(γ∗) · ∇ψ(γ∗)dγ∗dγ

+

∫ t

s

fu(u(γ))ψ(γ)dγ − λ.

Next, we assume the following elliptic regularity on ψ
¯

[42], and use (5.17a) to get

∥ψ
¯
∥2 ≤ C

∥∥∇ ·
(
a(u)∇ψ

¯

)∥∥
≤ C

(
∥ψs(s)∥+ ∥λ∥+

∥∥∥∥∫ t

s

au(u(γ))uγ(γ)∇ψ
¯
(γ)dγ

∥∥∥∥+ ∥∥∥∥∫ t

s

∫ t

γ

b(u(γ∗))∇ψ(γ∗)dγ∗dγ
∥∥∥∥

+

∥∥∥∥∫ t

s

au(u(γ))q(γ) · ∇ψ(γ)dγ
∥∥∥∥+ ∥∥∥∥∫ t

s

∫ t

γ

bu(u(γ
∗))q(γ∗) · ∇ψ(γ∗)dγ∗dγ

∥∥∥∥
+

∥∥∥∥∫ t

s

fu(u(γ))ψ(γ)dγ

∥∥∥∥)
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≤ C ∥λ∥ .

This concludes the proof.

Lemma 5.4.2. For the method of the form (5.3), there exists a positive constant C which

does not rely on h and k such that ∀t ∈ (0, T ], the inequality below is valid

∥Ik−1
h eu∥L2(K) ≤ Chk+2, (5.18)

where, Ik−1
h is L2-projection onto the space of polynomial for degree at most k − 1.

Proof. Since, eu = ηu − ξu, therefore, ∥Ik−1
h eu∥ ≤ ∥Ik−1

h ηu∥+ ∥Ik−1
h ξu∥.

For the estimates of ∥Ik−1
h ξu∥, we start by rewriting (5.16) in the following mixed form:

ϕ(s) = ∇ψ(s) in Ω, s ≤ t, (5.19a)

p(s) = a(u)ϕ(s) +

∫ t

s

b(u(γ))ϕ(γ)dγ in Ω, s ≤ t, (5.19b)

ψss(s) +∇ · p(s) = au(u)q · ϕ+

∫ t

s

bu(u(γ))q(γ) · ϕ(γ)dγ + fu(u)ψ in Ω, s ≤ t,

(5.19c)

ψ(s) = 0 on ∂Ω, s ≤ t, (5.19d)

ψ(t) = 0 in Ω, (5.19e)

ψs(t) = Ik−1
h ξu(t) in Ω. (5.19f)

We begin by taking the inner product of (5.19c) with Ik−1
h ξu(s), to obtain

(ψss(s), I
k−1
h ξu(s))− (∇ · p(s), Ik−1

h ξu(s)) = (au(u)q · ϕ, Ik−1
h ξu(s))

+ (fu(u)ψ, I
k−1
h ξu(s)) +

(∫ t

s

bu(u(γ))q(γ) · ϕ(γ)dγ, Ik−1
h ξu(s)

)
.

Now,

d

ds

[
(ψs(s), I

k−1
h ξu(s))− (ψ(s), Ik−1

h ξus(s))
]

= (ψss(s), I
k−1
h ξu(s))− (ψ(s), Ik−1

h ξuss(s))

= −(ψ(s), Ik−1
h ξuss(s)) + (∇ · p(s), Ik−1

h ξu(s)) + (au(u)q · ϕ, Ik−1
h ξu(s))
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+ (fu(u)ψ, I
k−1
h ξu(s)) +

(∫ t

s

bu(u(γ))q(γ) · ϕ(γ)dγ, Ik−1
h ξu(s)

)
.

Use of (5.15) and intermediate projections, see [139], yield the following equality

d

ds

[
(ψs(s), I

k−1
h ξu(s))− (ψ(s), Ik−1

h ξus(s))
]
= (ξuss(s), I

k
hψ(s)− ψ(s))

− (ξuss(s), I
k−1
h ψ(s)− ψ(s)) + (ξq(s),Π

RT
k−1p(s)− p(s)) + (a(u)ξq(s),ϕ(s)− Ik

hϕ(s))

+ (ξσ(s), I
k
hϕ(s)− ϕ(s)) + (ξσ(s),∇(ψ − Ikhψ)(s)) + ⟨ξ̂σ · ν, Ikhψ⟩ − (ηuss , I

k
hψ)

− ((a(uh)− a(u))qh, I
k
hϕ(s)) + (au(u)q · ϕ, Ik−1

h ξu(s))

− (f(uh)− f(u), Ikhψ) + (fu(u)ψ, I
k−1
h ξu)−

∫ s

0

((b(uh(γ))− b(u(γ)))qh(γ), I
k
hϕ(s))dγ

+

∫ t

s

(bu(u(γ))q(γ) · ϕ(γ), Ik−1
h ξu(s))dγ +

∫ s

0

(b(u(γ))ξq(γ), I
k
hϕ(s))dγ

−
∫ t

s

(b(u(γ))ϕ(γ), ξq(s))dγ.

Taking ξu(0) = ξus(0) = 0 and integrating the equation from 0 to t followed by a change

of order of integration of the last term, we obtain

∥Ik−1
h ξu∥2 =

∫ t

0

[
(ξuss(s), I

k
hψ(s)− ψ(s))− (ξuss(s), I

k−1
h ψ(s)− ψ(s))

+ (ξq(s),Π
RT
k−1p(s)− p(s)) + (a(u)ξq(s),ϕ(s)− Ik

hϕ(s)) + (ξσ(s), I
k
hϕ(s)− ϕ(s))

+ (ξσ(s),∇(ψ − Ikhψ)(s)) + ⟨ξ̂σ · ν, Ikhψ⟩ − (ηuss , I
k
hψ)

+
[
− ((a(uh)− a(u))qh, I

k
hϕ(s)) + (au(u)q · ϕ, Ik−1

h ξu(s))
]
+
[
− (f(uh)− f(u), Ikhψ)

+ (fu(u)ψ, I
k−1
h ξu)

]]
ds−

∫ t

0

∫ t

s

(b(u(γ))ξq(s),ϕ(γ)− Ik
hϕ(γ))dγds

+

[ ∫ t

0

∫ t

s

(bu(u(γ))q(γ) · ϕ(γ), P k−1eu(s))dγds

−
∫ t

0

∫ s

0

((b(uh(γ))− b(u(γ)))qh(γ),P
kϕ(s))dγds

]
=

∫ t

0

[E1 + E2 + E3 + E4 + E5 + E6 + E7 + E8 + E9 + E10]ds+ E11 + E12.

(5.20)

Cauchy Schwarz’s inequality and (5.17a) show

E1 + E2 ≤ Chk+2∥Ik−1
h ξu(s)∥.

115



Chapter 5

Next, a use of identity
∫ t

0

f(z)g(z)dz = f(0)ḡ(0) +

∫ t

0

fz(z)ḡ(z)dz along with (5.17b),

yield

|E3 + E4 + E5 + E6| ≤ Chk+2∥Ik−1
h ξu∥.

Use of (5.5e), properties of the projection Ih and (5.17a) give

|E7| ≤ ∥ξ̂σ · ν∥∂K∥Ikhψ − ψ∥∂K ≤ Chk+2∥Ik−1
h ξu∥.

We rewrite E8 as follows

(ηuss , I
k
hψ) = (ηuss , I

k
hψ − Ik−1

h ψ) + (ηuss , I
k−1
h ψ)

= (ηuss , I
k
hψ − Ik−1

h ψ) + (Ik−1
h ηuss , I

k−1
h ψ)

≤ ∥ηuss∥∥Ikhψ − Ik−1
h ψ∥+ ∥Ik−1

h ηuss∥∥Ik−1
h ψ∥

≤ Chk+2∥Ik−1
h ξu∥.

Next, we have

E9 = −((a(uh)− a(u))qh,P
kϕ(s)) + (au(u)q · ϕ, P k−1eu(s))

= −((a(uh)− a(u))(qh − q),P kϕ(s))− ((a(uh)− a(u))q,P kϕ(s)− ϕ(s))

+ (au(u)q · ϕ, P k−1eu(s)− eu(s))− ((a(uh)− a(u)), q · ϕ(s)) + (au(u)q · ϕ, eu(s)).

Use of Taylor’s series expansion yields

E9 = −((a(uh)− a(u))(qh − q),P kϕ(s))− ((a(uh)− a(u))q,P kϕ(s)− ϕ(s))

+ (au(u)q · ϕ, P k−1eu(s)− eu(s)) + (au(u)− au(uh + λ(uh − u))eu(s), q · ϕ).

Use of generalized Holder’s inequality yields

|E9| ≤ Chk+2∥Ik−1
h ξu∥.

For E10, a similar procedure can be followed, whereas for E11, a change of order of

integration followed by a similar procedure as for E9 will give the estimates. Finally, use

of boundedness of b shows

|E12| ≤M

∣∣∣∣∫ t

0

(∫ t

s

ϕ(γ)− Ik
hϕ(γ)

)
dγ, ξq(s)ds

∣∣∣∣
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=M

∣∣∣∣∫ t

0

ϕ̄(γ)− Ik
hϕ̄(γ), ξq(s)ds

∣∣∣∣
≤ Chk+2∥ψ̄(s)∥2

≤ Chk+2∥Ik−1
h ξu∥ (by(5.17b)).

Substituting in (5.20), we get

∥Ik−1
h ξu(t)∥2 ≤ Chk+2

∫ t

0

∥Ik−1
h ξu(s)∥ds.

Use of Young’s inequality and Gronwall’s lemma yield the following estimate

∥Ik−1
h ξu(t)∥ ≤ Chk+2. (5.21)

Finally, (5.21) and (5.14) conclude the proof of the theorem.

5.5 Fully Discrete Scheme
In this section, a completely discrete scheme is derived for the problem (5.3), based on the

central difference scheme, along with the mid-point rule to approximate the integral term.

We first divide the interval [0, T ] into M equally spaced sub-intervals by the following

points

0 = t0 < t1 < ... < tM = T,

with tn = n∆t, ∆t = T/M , be the time step. We begin by defining the following

notations,

ΥUn =
Un+1 + Un

2
, ΦUn =

Un+1 + 2Un + Un−1

4
=

ΥUn +ΥUn−1

2
,

∂tΥU
n =

Un+1 − Un

∆t
, ∂2tU

n =
Un+1 − 2Un + Un−1

∆t2
, δtU

n =
∂tΥU

n + ∂tΥU
n−1

2
,

En
h (Q) = ∆t

n−1∑
j=0

b(U j+1/2)ΥQj, ΥEn
h (Q) =

En+1
h (Q) + En

h (Q)

2
.

For 1 ≤ n ≤ M , find (Un,Qn,Sn, Ûn) ∈ (Vh × Wh × Wh ×Mh), such that, for any

(vh,wh, τh, µh,mh) ∈ (Vh ×Wh ×Wh ×Mh ×Mh), we require

2

∆t
(∂tΥU

0, vh)− (ΥS0,∇vh) + ⟨ΥŜ0 · ν, vh⟩∂Th = (Υf(U0) +
2

∆t
u1, vh), (5.22a)
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⟨ΥŜ0 · ν, µ⟩∂Th\∂Ω = 0, (5.22b)

(ΥQn,wh)− (ΥUn,∇ ·wh) + ⟨ΥÛn,wh · ν⟩∂Th = 0, (5.22c)

(a(ΥUn)ΥQn, τh)− (ΥSn, τh) + (ΥEn
h (Q), τh) = 0, (5.22d)

(∂2tU
n, vh)− (ΦSn,∇vh) + ⟨ΦŜn · ν, vh⟩∂Th = (Φf(Un), vh), (5.22e)

⟨ΥÛn, µh⟩∂Ω = 0, (5.22f)

⟨ΦŜn · ν,mh⟩∂Th\∂Ω = 0, (5.22g)

where, (5.22c), (5.22d), (5.22f) are defined for n ≥ 0, and (5.22e), (5.22g) are defined for

n ≥ 1.

Theorem 5.5.1. Let u be the solution of (5.1), u, ut, utt ∈ L∞(Hk+2(Th)), uh(0) = U0 =

ΠV u0 and qh(0) = Q0 = −Ih∇u0, then for all 1 ≤ n ≤M ,

∥∂tΥζnu∥+ ∥Υζn
q ∥+ ∥Υζn

σ∥+ ∥Υζ̂nu∥τ ≤ O(hk+1 +∆t2), (5.23a)

∥ζn+1
u ∥ ≤ O(hk+1 +∆t2). (5.23b)

Proof. We will write ∥u(tn)−Un∥ ≤ ∥u(tn)− uh(tn)∥+ ∥uh(tn)−Un∥. We only need

to derive the estimates of ∥uh(tn) − Un∥, which will be denoted by ∥ζnu∥. Similarly, ζn
q ,

ζn
σ and ζ̂nu .

Now, using (5.3) and (5.22), we have the following

2

∆t
(∂tΥζ

0
u, vh)− (Υζ0

σ,∇vh) + ⟨Υζ̂0
σ · ν, vh⟩∂Th =

(
2

∆t

(
∂tΥu

0
h − u1

)
−Υu0htt

+Υf(u0h)−Υf(U0), vh

)
, (5.24a)

⟨Υζ̂0
σ · ν, µ⟩∂Th\∂Ω = 0, (5.24b)

(Υζn
q ,wh)− (Υζnu ,∇ ·wh) + ⟨Υζ̂nu ,wh · ν⟩∂Th = 0, (5.24c)

(An, τh)− (Υζn
σ, τh) + (ΥIn(qh), τh) = (ΥEn

h (Q), τh) , (5.24d)

(∂2t ζ
n
u , vh)− (Φζn

σ,∇vh) + ⟨Φζ̂n
σ · ν, vh⟩∂Th =

(
∂2t u

n
h − Φunhtt

, vh
)

+ (Φf(unh)− Φf(Un), vh) , (5.24e)

⟨Υζ̂nu , µh⟩∂Ω = 0, (5.24f)
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⟨Φζ̂n
σ · ν,mh⟩∂Th\∂Ω = 0, (5.24g)

for all (vh,wh, τh, µh,mh) ∈ (Vh ×Wh ×Wh ×Mh ×Mh). Here,

In(qh) =

∫ tn

0

b(uh(s))qh(s)ds

and

An = (a(Υunh)Υqn
h − a(ΥUn)ΥQn).

We begin with the proof of (5.23a). Let n ≥ 1; then, we start by subtracting (5.24c)

from itself after replacing n by n − 1 and then, dividing the resulting equation by 2∆t.

Secondly, we will perform the same operations in (5.24f). Next, in (5.24d), we will

replace n by n − 1 and take the average of the resulting equation with itself. Now, take

wh = Φζn
σ, τh = δtζ

n
q , vh = δtζ

n
u , µh = −Φζ̂n

σ · ν and mh = −δtζ̂nu in (5.24c),

(5.24d), (5.24e), (5.24f) and (5.24g), respectively and then, add (5.24c)-(5.24e), (5.24f)

and (5.24g) to obtain

α∗
(
Φζn

q , δtζ
n
q

)
+
(
∂2t ζ

n
u , δtζ

n
u

)
+
〈
Φζ̂nu − Φζnu , τ(δtζ̂

n
u − δtζ

n
u )
〉
≤
(
ΦEn

h (Q), δtζ
n
q

)
− (ΦIn(qh), δtζ

n
q ) +

(
Φunhtt

− ∂2t u
n
h, δtζ

n
q

)
+ (Φf(unh)− Φf(Un), δtζ

n
u ) .

The equation can be further written as

1

2∆t

[
Υ∥∂tΥζnu∥2 − ∥∂tΥζn−1

u ∥2 + ∥Υζn
q ∥2 − ∥Υζn−1

q ∥2 + ∥Υζ̂nu −Υζnu∥2τ

− ∥Υζ̂n−1
u −Υζn−1

u ∥2τ
]
≤
(
ΦEn

h (qh), δtζ
n
q

)
− (ΦIn(qh), δtζ

n
q ) +

(
ΦEn

h (ζq), δtζ
n
q

)
+
(
Φunhtt

− ∂2t u
n
h, δtζ

n
q

)
+ (Φf(unh)− Φf(Un), δtζ

n
u ) .

Now, multiplying the equation by 2∆t and adding from n = 1 to n = m, we obtain the

following inequality

∥∂tΥζmu ∥2 + ∥Υζm
q ∥2 + ∥Υζ̂mu −Υζmu ∥2τ ≤ ∥∂tΥζ0u∥2 + ∥Υζ0

q∥2 + ∥Υζ̂0u −Υζ0u∥2τ

+ 2∆t
m∑

n=1

(Jn
1 + Jn

2 + Jn
3 + Jn

4 ), (5.25)
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where

Jn
1 =

(
ΦEn

h (qh), δtζ
n
q

)
− (ΦIn(qh), δtζ

n
q ), J

n
2 =

(
ΦEn

h (ζq), δtζ
n
q

)
,

Jn
3 =

(
Φunhtt

− ∂2t u
n
h, δtζ

n
q

)
Jn
4 = (Φf(unh)− Φf(Un), δtζ

n
u ) .

For the estimates of ∥∂tΥζ0u∥2 + ∥Υζ0
q∥2 + ∥Υζ̂0u − Υζ0u∥2τ , we consider the following

equations

2

∆t
(∂tΥζ

0
u, vh)− (Υζ0

σ,∇vh) + ⟨Υζ̂0
σ · ν, vh⟩∂Th =

(
2

∆t

(
∂tΥu

0
h − u1

)
−Υu0htt

, vh

)
,

(5.26a)

(Υζ0
q,wh)− (Υζ0u,∇ ·wh)+⟨Υζ̂0u,wh · ν⟩∂Th = 0, (5.26b)

(A0, τh)− (Υζ0
σ, τh) +

(
I01 , τh

)
ds =

(
ΥE0

h(Q), τh
)
, (5.26c)

⟨Υζ̂0u, µh⟩∂Ω = 0, (5.26d)

⟨Υζ̂0
σ · ν,mh⟩∂Th\∂Ω = 0, (5.26e)

for all (vh,wh, τh, µh,mh) ∈ (Vh × Wh × Wh × Mh × Mh). We take vh = Υζ0u,

wh = Υσ0, τh = Υζ0
q , µh = −Υζ̂0

σ · ν and mh = −Υδtζ̂
0
u in (5.26a), (5.26b), (5.26c),

(5.26d) and (5.26e), respectively and add the resulting equations, to get the following

inequality

∥∂tΥζ0u∥2 + ∥Υζ0
q∥2 + ∥Υζ̂0u −Υζ0u∥2τ ≤ 1

2

(
ΥE0

h(Q),Υζ0
q

)
− 1

2

∫ t1

0

(
b(t1, s)qh(s),Υζ0

q

)
ds

+

(
2

∆t

(
∂tΥu

0
h − u1

)
−Υu0htt

,Υζ0u

)
.

Now, proceeding in the similar way as to obtain (5.25) will prove that

∥∂tΥζ0u∥2 + ∥Υζ0
q∥2 + ∥Υζ̂0u −Υζ0u∥2τ ≤ C(h2(k+1) +∆t4).

Next, for Jn
1 , use of Theorem 5.2.1 along with quadrature error yield

∥ΦEn
h (qh)− ΦIn(qh)∥ ≤ ∥ΦEn

h (q)− ΦIn(q)− ΦEn
h (eq) + ΦIn(eq)∥

≤ C(hk+1 +∆t2).
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Further, use of Young’s inequality yields

∆t
m∑

n=1

|Jn
1 | ≤ C

(
h2(k+1) +∆t4

)
+

∆t

2

m∑
n=1

∥∥∥∥Υζn
q −Υζn−1

q

∆t

∥∥∥∥2 . (5.27)

Use of Taylor’s series expansion, along with Young’s inequality, yield

∆t
m∑

n=1

|Jn
3 | ≤ C

(
h2(k+1) +∆t4

)
+

1

2

m∑
n=1

∥∥∥∥∂tΥζnu + ∂tΥζ
n−1
u

2

∥∥∥∥2 . (5.28)

Use of (5.27) and (5.28) in (5.25) along with discrete Gronwall’s lemma yield

∥∂tΥζmu ∥2 + ∥Υζm
q ∥2 + ∥Υζ̂mu −Υζmu ∥2τ ≤ C

(
h2(k+1) +∆t4

)
.

Finally, use of triangle inequality and Theorem 5.2.1, finish the proof of (5.23a).

Now, for the proof of (5.23b), we introduce the following notations:

ϕ˜
0 = 0, ϕ˜

n = ∆t
n−1∑
j=0

Υϕj, ∂tΥϕ˜
n = Υϕn, ∆t

n∑
j=0

Φϕj = Υϕ˜
n − ∆t

2
Υϕ0.

Next, we multiply (5.24d), (5.24e) and (5.24g) by k, take summation over n and use

(5.24a) and (5.24b) to get the following system of equations

(Υζn
q ,wh)− (Υζnu ,∇ ·wh) + ⟨Υζ̂nu ,wh · ν⟩∂Th = 0, (5.29a)

(∆t
n∑

j=0

Aj, τh)− (Υζσ˜
n, τh) +

(
ΥEh˜ n(ζn

q ), τh

)
=

(
ΥFh˜ n(qh), τh

)
, (5.29b)

(∂tΥζ
n
u , vh)− (Υζσ˜

n,∇vh) + ⟨Υζ̂σ˜
n
· ν, vh⟩∂Th =

(
∆t

n∑
j=0

(
∂2t u

j
h − Φujhtt

)
, vh

)

+

(
∆t

n∑
j=0

(Φf(ujh)− Φf(U j)), vh

)
, (5.29c)

⟨Υζ̂nu , µh⟩∂Ω = 0, (5.29d)

⟨Υζ̂σ˜
n
· ν,mh⟩∂Th\∂Ω = 0. (5.29e)

Choose wh = Υζ̂σ˜
n
, τh = Υζn

q , vh = Υζnu , µh = −Υζ̂σ˜
n
·ν andmh = −Υζ̂nu in (5.29a),

(5.29b), (5.29c), (5.29d) and (5.29e), respectively, and add the resulting equations. After

simplifying as above, we attain the desired estimate.
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(a) Example 1 (b) Example 2

Figure 5.1: Convergence behaviour of ∥eu∥ at t = 1

5.6 Numerical Results
This section consists of two numerical examples which are used to verify the theoretical

results that are proved in the chapter. The examples consists of (5.1a)-(5.1c) for Ω =

(0, 1)×(0, 1) and T = 1. We have used central difference scheme to completely discretize

the problem, along with the mid-point rule to approximate the integral term. Newton’s

method is used for the implementation of nonlinear terms. We note that the optimal

order of convergence in the case of u and q and the super-convergence in the case of u∗h

predicted by our theory is achieved.

Example 1. Let u(x, y, t) = t2etx(1−x)y(1−y) and the coefficients be a(u) = 1+u2,

b(u) = u and f(u) = u−u3+ g(x, y, t), where g(x, y, t) is decided by the exact solution

u. We compute the order of convergence for eu = u− uh, eq = q − qh and e∗u = u− u∗h

for the cases k = 1, k = 2 and k = 3 with different choices of h. In Figures 5.1a, 5.2a and

5.3a, we plot the computed error with the mesh sizes for different degrees of polynomials.

We observe that the convergence rates for ∥eu∥, ∥eq∥ and ∥e∗u∥ at t = 1 are of the order

ofO(hk+1), O(hk+1) andO(hk+2), respectively. Table 5.1 gives the time convergence for

u for the example for different time steps.
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(a) Example 1 (b) Example 2

Figure 5.2: Convergence behaviour of ∥eq∥ at t = 1

∆t (h = 1/4) Order (Ex. 1) Order (Ex. 2)

0.25 1.7945 1.8743

0.125 1.9023 1.9986

0.0625 2.0567 2.1789

0.03125 2.1842 2.2014

Table 5.1: Order of convergence for time

Example 2. Let u(x, y, t) = t sin(πt) sin(πx) sin(πy) and the coefficients be a(u) =

1 + u2, b(u) = u and f(u) = u− u3 + g(x, y, t), where g(x, y, t) is decided by the exact

solution u. We compute the order of convergence for eu = u − uh, eq = q − qh and

e∗u = u− u∗h for the cases k = 1, k = 2 and k = 3 with different choices of h. In Figures

5.1b, 5.2b and 5.3b, we plot the computed error with the mesh sizes for different degrees

of polynomials. We observe that the convergence rates for ∥eu∥, ∥eq∥ and ∥e∗u∥ at t = 1

are of the order of O(hk+1), O(hk+1) and O(hk+2), respectively. Table 5.1 gives the time

convergence for u for the example for different time steps.
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(a) Example 1 (b) Example 2

Figure 5.3: Convergence behaviour of ∥e∗u∥ at t = 1

5.7 Conclusions
Due to various theoretical and computational benefits of the HDG method, it has been

proposed and analyzed for nonlinear hyperbolic integro-differential equation (5.1). The

nonlinear functions have been considered to be Lipschitz continuous to prove the a pri-

ori error estimates. Throughout this chapter, HDG and Ritz-Volterra projections have

been used to derive the error estimates. Further, element-by-element post-processing has

been proposed. It has been shown that the solution and its gradient achieved the opti-

mal rate of convergence, that is, of order k + 1, k ≥ 0 in the discretizing parameter h,

whereas super-convergence has been achieved, that is, of order k + 2, k ≥ 1, for the

post-processed solution, when the function f was differentiable and its derivative was

Lipschitz continuous. A fully discrete scheme has also been discussed, which is of order

O(hk+1+∆t2). Higher order fully discrete scheme can be achieved by using higher order

difference scheme for the derivative term and higher order quadrature rule for the integral

term. Finally, numerical results have been discussed. This analysis can be extended to a

3-dimensional domain by incorporating the changes accordingly.
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Conclusions and Future Directions

6.1 Concluding Remarks and Critical Analysis of the Re-

sults
This dissertation examines the HDG method for linear and nonlinear PIDEs and linear

and non-linear hyperbolic integro-differential equations. Significant attention has been

directed into the error analysis of the methodology used for the model problems. Opti-

mum rate of convergence has been achieved for the scalar variable and its approximate

gradient. A post-processing technique has been used on an element-by-element basis in

order to enhance the rate of convergence. The theoretical findings have also been verified

by performing numerical experiments for each model problem.

In Chapter 2, we have discussed the HDG method for approximating the solution of

linear PIDE. We have used the HDG projection and the Ritz-Volterra projection as inter-

mediate projection for the semi-discrete error analysis. The estimates of the Ritz-Volterra

projection were derived by taking particular values of the test functions in the discrete

formulation, whereas, the estimates of the scalar variable u, were derived by taking into

account an elliptic dual problem that satisfies the elliptic regularity condition. Then, for
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a priori error estimates, the estimates were derived by taking particular values of the

test functions. Finally, it was proved that all the unknown variables achieved the order

of convergenceO(hk+1). The convergence rates there, were improved compared to [115].

For the estimates of the post-processed solution, a dual of linear parabolic-integro differ-

ential equation was taken into account and required regularity results were derived. This

helped in achieving super-convergence. For the complete discretization of the scheme,

the backward Euler method and the left rectangle rule are used to approximate the deriva-

tive and integral term, respectively. This helped in achieving convergence of order 1 in

the temporal direction.

Finally, the theoretical findings were verified by a series of numerical examples in the

2-dimensional domain. It was verified that for the examples in consideration, the HDG

approximation of the scalar and flux variable exhibited optimum order of convergence.

Additionally, the post-processed approximation of the scalar variable demonstrated super-

convergence. It was noted that the results can be extended in 3-dimensional domain.

In Chapter 3, we have discussed the HDG method to approximate the solution for a

class of quasi-linear PIDE. In this case, for the semi-discrete error analysis, only the first

order derivative of the nonlinear variables a and b, along with the Lipschitz continuity

condition, has been considered, without taking their second order derivative. Then, to

deal with the integral term, Ritz-Volterra projection of extended type was introduced and

analyzed. This helped to achieve optimal estimates of order O(hk+1) when polynomials

of degree k ≥ 0 were used to approximate both ‘u’ and ‘∇u’. Dual problem was used for

element-by-element post-processing to achieve super-convergence results for the post-

processed solution. The super-convergence was achieved by considering the derivative

of order only up to one of the nonlinear variables f , a, and b. To derive a completely

discrete scheme and corresponding error estimates, we have used the backward Euler’s

method and left rectangle rule to approximate the time derivative and integral, respec-
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tively. Further, with the help of two different numerical examples, it has been verified

that the unknown variable and the flux achieved optimal order of convergence, whereas

the post-processed solution attained the super-convergence.

In Chapter 4, we have discussed the HDG method to approximate the solution of non-

linear hyperbolic integro-differential equation. Error estimates have been derived using

HDG and Ritz-Volterra projections. In addition, the element-by-element post-processing

of the numerical solution was accomplished by utilizing the dual of the problem. The

findings demonstrated that all the three variables, namely, u, q and σ attain convergence

of order k+1, for non-negative k in h, which was the discretizing parameter of the space

domain. In contrast, the post-processed solution attained super-convergence; that is, it

converged with order k + 2, for k ≥ 1. The analysis of the chapter provided better accu-

racy results compared to [79]. Finally, numerical results were reviewed.

In Chapter 5, we build upon the groundwork laid in Chapter 4 by extending our anal-

ysis to address nonlinear hyperbolic integro-differential equations. In this context, we in-

troduce and rigorously analyze the HDG method tailored specifically for handling these

nonlinear equations. To facilitate our analysis, we assume the nonlinear functions to

be Lipschitz continuous, a crucial assumption for establishing a priori error estimates.

Throughout this chapter, we leverage both HDG and Ritz-Volterra projections as analyt-

ical tools to derive error estimates. Additionally, we introduce an innovative element-

by-element post-processing technique. Our investigations reveal that both the solution

and its gradient achieve the optimal convergence rate of order k + 1, where k ≥ 0,

concerning the discretization parameter h. Of particular interest is the observation that

super-convergence, characterized by an order of k+2 (where k ≥ 1), is attainable for the

post-processed solution. This remarkable achievement is contingent upon the function f

being differentiable and its derivative being Lipschitz continuous. Furthermore, we delve

into a comprehensive discussion of a fully discrete scheme. This scheme exhibits a con-

vergence rate of O(hk+1 + ∆t2). Within this scheme, we employ the central difference
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rule to approximate derivatives and the mid-point rule to handle integral terms. In the

concluding section of this chapter, we present and scrutinize numerical results that serve

to validate the robustness of our theoretical findings and their practical applicability.

As stated in Chapter 1, the HDG method has various advantages over other finite

element methods. To conclude that, table 6.1 gives a comparison of convergence results

of continuous, discontinuous and mixed FEM with those derived for HDG method with

the relative advantages and complexities.

Method Order of Con-

vergence for q

Relative Advantages Complexities

Continuous

FEM [114]

k Simplicity in formula-

tion

Global assembly and

solution

DG Method

[115]

k Flexibility in handling

irregular meshes

Element-wise compu-

tations and numerical

fluxes

Mixed FEM

[111]

k Natural handling of

mixed formulations

Construction of suit-

able mixed spaces

HDG

Method

k + 1 Reduced global un-

knowns, Compatibil-

ity with existing tools

Implementation of hy-

brid variables and nu-

merical fluxes

Table 6.1: Comparison of Finite Element Methods and HDG

6.2 Possible Extensions and Future Problems
The findings of this dissertation may be extrapolated to the three-dimensional domain by

the implementation of suitable modifications. Similarly, for all the problems that has been

discussed, the order of convergence in the temporal direction, for the fully-discrete case

can be improved by approximating the derivative and the integral term by formulas with

higher rate of convergence.
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In Chapter 2, the HDG method had been discussed to a linear PIDE, with smooth kernel.

Hence, in future, it can be developed for the following equation with weakly singular

kernel:

ut −∇ ·
(
a(x)∇u+

∫ t

0

(t− s)−αb(t, s)∇u(s)ds
)

= f(x, t) in Ω× (0, T ], (6.1a)

u(x, t) = 0 on ∂Ω× (0, T ], (6.1b)

u(x, 0) = u0(x) for x ∈ Ω, (6.1c)

where 0 < α < 1 and u : Ω× (0, T ] → R. The coefficients a : Ω → R, b : Ω× (0, T ] →

R and f : Ω × (0, T ] → R are smooth with bounded derivatives and there exist positive

constants α0 and M such that 0 < α0 ≤ a ≤M and |b| ≤M .

PIDEs with weakly singular kernel are often encountered in various fields, for instance,

heat conduction, non-Fickian diffusion and image-processing, see, [25]. In the literature,

Chen et al. [25], have analyzed finite element approximation of a PIDE with weakly

singular kernel. They have shown that optimal order estimates are achieved for both spa-

tially semi-discrete and completely discrete schemes. Zhou et al. [142] have developed

a weak Galerkin FEM for the PIDE with a weakly singular kernel. They have derived

the scheme’s stability and optimal convergence order estimates in the L2 norm and estab-

lished numerical experiments to verify the theory. In [28], Chen et al. have developed

and analyzed the FEM for various types of integro-differential equations, along with the

problem of the above type. They have developed semi-discrete and fully discrete schemes

for the method, along with the error estimates. In [46], Da has considered backward Eu-

ler method for a PIDE with a memory term containing a weakly singular kernel. The

have treated the integral term through a convolution quadrature, whereas the stability and

convergence properties of the time discretizations were derived and applied to the semi-

discrete equations built by the Galerkin FEMs in the space variables.
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To define the method for equation (6.1), we make use of the following auxiliary vari-

ables:

q = −∇u, σ = aq +

∫ t

0

(t− s)−αb(s) q(s)ds,

and then, rewrite it as the following system of equations:

q = −∇u in Ω, (6.2a)

σ = aq +

∫ t

0

(t− s)−αb(s) q(s)ds in Ω, (6.2b)

ut +∇ · σ = f in Ω. (6.2c)

Defining the Ritz-Volterra projection as in Chapter 2, we can get the following relation:

(ρq,wh)− (ρu,∇ ·wh) + ⟨ρ̂u,wh · ν⟩∂Th = 0, (6.3a)

(aρq, zh)− (ρσ, zh) +

∫ t

0

((t− s)−αb(s) ρq, zh)ds = (aθq, zh)− (θσ, zh)

+

∫ t

0

((t− s)−αb(s) θq, zh)ds,

(6.3b)

−(ρσ,∇vh) + ⟨ρ̂σ · ν, vh⟩∂Th = 0, (6.3c)

⟨ρ̂u, µh⟩∂Ω = 0, (6.3d)

⟨ρ̂σ · ν,mh⟩∂Th\∂Ω = 0, (6.3e)

for all (vh,wh, zh, µh,mh) ∈ (Vh ×Wh ×Wh ×Mh ×Mh).

We expect to have the following results.

Theorem 6.2.1. There is a constant C that does not rely on h and k such that

∥(u− ũh)(t)∥+ ∥(σ − σ̃h)(t)∥+ ∥(q − q̃h)(t)∥ ≤ Chk+1 sup
t∈(0,T ]

∥u(t)∥Hk+2(Th).

And, with the similar meanings of ξ’s as in Chapter 2, we have the following estimates:

Lemma 6.2.2. For t ∈ (0, T ], there exists a positive constant C independent of h and k

such that

∥ξu∥2 +
∫ t

0

∥ξσ(s)∥2ds ≤ C

(
∥ξu(0)∥2 +

∫ T

0

∥ηut∥2dt
)
.
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So, with the help of Theorem 6.2.1 and Lemma 6.2.2, it can be proved that for the PIDE

with weakly singular kernel (6.1), the HDG approximation of the scalar variables achieves

optimal order of convergence, however, the analysis for the order of convergence of vari-

ables qh and σh is due as our future work.

Our future work entails an extension of the research conducted by Chen et al. [26] and

Tan et al. [134], focusing on nonlinear parabolic and hyperbolic integro-differential equa-

tions, respectively. Their pioneering work introduced a two-grid finite element method

to address these complex problems. Our objective is to expand upon their contributions

by advancing to a two-grid HDG method. Our research agenda also encompasses the

development and in-depth analysis of the HDG method applied to Kirchhoff’s equations,

which encompass both elliptic and parabolic types. Furthermore, we plan on deriving a

posteriori error estimates of linear and non-linear PIDEs. This extension forms a vital

component of our future endeavors in the field.
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[6] I. Babuška and W. C. Rheinboldt. A-posteriori error estimates for the finite el-

ement method. International Journal for Numerical Methods in Engineering,

12(10):1597–1615, 1978.

[7] G. A. Baker. Error estimates for finite element methods for second order hyperbolic

equations. SIAM Journal on Numerical Analysis, 13(4):564–576, 1976.

133



Bibliography

[8] K. S. Bey and J. T. Oden. hp-version discontinuous Galerkin methods for hyper-

bolic conservation laws. Computer Methods in Applied Mechanics and Engineer-

ing, 133(3-4):259–286, 1996.

[9] F. Black and M. Scholes. The pricing of options and corporate liabilities. Journal

of Political Economy, 81(3):637–654, 1973.

[10] P. Bochev and M. Gunzburger. On least-squares finite element methods for the

Poisson equation and their connection to the Dirichlet and Kelvin principles. SIAM

Journal on Numerical Analysis, 43(1):340–362, 2005.

[11] S. C. Brenner. The mathematical theory of finite element methods. Springer, 2008.

[12] F. Brezzi and L. D. Marini. Virtual element methods for plate bending problems.

Computer Methods in Applied Mechanics and Engineering, 253:455–462, 2013.
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