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Abstract

Prey-predator dynamics is an elementary notion in ecology that enables us to comprehend
population fluctuations and complex relationships between predators and their prey in ecosys-
tems. Modeling these prey-predator interactions helps us to assess the status and viability of
endangered species populations, facilitate sustainable management of natural resources, etc.
Mathematically, these interactions can be modeled using differential equations. Through math-
ematical analysis and simulation, these models offer valuable insights into the mechanisms
underlying predator-prey dynamics. Various ecological factors such as fear effect, hunting co-
operation, prey refuge, carry-over effects, time delay, and random movement of individuals can
significantly influence the prey-predator dynamics. Incorporating these factors into the models
enhances the realism and intricacy of the ecological systems.

This thesis attempts to study various ecological models that depict the interaction between
prey and predator species incorporating various environmental factors, which can significantly
affect the system dynamics. This thesis consists of six chapters. The introductory chapter pro-
vides essential background information to facilitate understanding of the remaining chapters.
The subsequent chapters formulate and analyze the various spatiotemporal models represented
using ordinary, partial, or delay differential equations. The well-posedness and feasibility of
multiple steady-states are investigated for all the proposed models. We analyzed the system
dynamics using the stability theories for non-delayed and delayed models, bifurcation theory,
chaos theory, and the theory for spatial models. Extensive numerical simulations are conducted
to corroborate the analytical findings. The abstracts for all chapters are provided below.

Chapter 1 begins with the basic introduction to the subsequent chapters. It contains the
background, objective, and motivation of the research work presented in the thesis. This chap-
ter briefly discusses some fundamental concepts and mathematical tools used throughout the
remaining chapters.

Cooperation among species is a ubiquitous behavior that helps us better understand the sys-
tem dynamics from an ecological perspective. Hunting cooperation among predators can im-
pose fear effects on the prey population, thereby decreasing the prey’s birth rate. Considering
this fact, in Chapter 2, we propose a model that incorporates hunting cooperation among preda-
tors and the fear induced birth reduction in the prey population. We have done the complete
dynamical analysis, including boundedness of solutions, persistence of the system, existence of
all equilibria and their local and global stability, existence of Hopf-bifurcation and its direction
and stability, existence of saddle-node bifurcation. We analyzed Hopf-bifurcation with respect
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to the hunting cooperation parameter and observed that system undergoes saddle-node bifur-
cation by varying the predation rate. Moreover, we analyzed the multi-stability of the system
and observe that bi-stability occur in two different scenarios. In the spatially extended system,
we provided detailed stability analysis and obtained the conditions for Turing instability. Vari-
ous Turing patterns such as spots, holes, and stripes are obtained and discussed the biological
significance of these patterns for the two-dimensional spatial model.

Recent studies indicate that the presence of prey refuge can help prolong the prey-predator
interactions by decreasing the risk of extinction for prey species caused by predation. Chap-
ter 3 presents a qualitative analysis of a modified Leslie-Gower prey-predator model with fear
effect and prey refuge in the presence of diffusion and time delay. For the non-delayed tem-
poral system, we examined the dissipativeness and persistence of the solutions. The existence
of equilibria and stability analysis are performed to comprehend the complex behavior of the
proposed model. Bifurcation of codimension-1 such as Hopf-bifurcation, saddle-node are in-
vestigated. In addition, it is observed that increasing the strength of fear may induce periodic
oscillations, and a higher value of fear may lead to the extinction of prey species. The system
shows a bistability attribute involving two stable equilibria. The impact of providing spatial
refuge to the prey population is also examined. We noticed that prey refuge benefits both the
species up to a specific threshold value beyond which it turns detrimental to predator species.
For the non-spatial delayed system, the direction and stability of Hopf-bifurcation are investi-
gated with the help of the center manifold theorem and normal form theory. We noticed that
increasing the delay parameter may destabilize the system by producing periodic oscillations.
For the spatiotemporal system, we derived the analytical conditions for Turing instability. We
investigated the pattern dynamics driven by self-diffusion. The biological significance of vari-
ous Turing patterns, such as cold spots, stripes, hot spots, and organic labyrinth, is examined.
We analyzed the criterion for Hopf-bifurcation for the delayed spatiotemporal system. The
impact of fear response delay on spatial patterns is investigated.

In ecology, carrying capacity is a crucial component that gives an idea about population size
and resource availability. The past activities of the species influence the carrying capacity, and
the impact is not immediate. Taking these facts in consideration, in Chapter 4, we attempt to
study the temporal and spatiotemporal dynamics of a delayed prey-predator system with vari-
able carrying capacity. Prey and predator interact via Holling Type-II functional response. A
detailed dynamical analysis, including well-posedness and the possibility of coexistence equi-
libria has been performed for the temporal system. Local and global stability behavior of the
co-existence equilibrium is discussed. Bistability behavior between two coexistence equilib-
ria is demonstrated. The system undergoes Hopf-bifurcation with respect to the crucial pa-
rameter which affects the carrying capacity of the prey species. The delayed system exhibits
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chaotic behavior. Maximal Lyapunov exponent and sensitivity analysis are done to confirm
the chaotic dynamics. In the spatiotemporal system, the conditions for Turing instability are
derived. Further, we analyzed the Turing pattern formation for different diffusivity coefficients
for a two-dimensional spatial domain. Moreover, we investigated the spatiotemporal dynamics
incorporating two discrete delays. The effect of the delay parameters in the transition of the
Turing patterns is depicted. Various Turing patterns, such as hot-spot, cold-spot, patchy and
labyrinth are obtained in the case of a two-dimensional spatial domain. This study shows that
the key parameters significantly instigate the intriguing system dynamics and provide new in-
sight into population dynamics. The findings in this chapter may help evaluate the biological
revelations obtained from research on interactions between the species.

Allee effects play a crucial role in the extinction of small populations, exerting significant
influence on population dynamics within ecosystems. In Chapter 5, we have investigated the
temporal and spatiotemporal behavior of a prey-predator model with weak Allee effect in prey
and the quality of being cannibalistic in a specialist predator. The parameters responsible for the
Allee effect and cannibalism impact both the existence and stability of coexistence steady states
of the temporal system. The temporal system exhibits various kinds of local bifurcations such
as saddle-node, Hopf, Generalized Hopf (Bautin), Bogdanov-Takens, and global bifurcation
like homoclinic, saddle-node bifurcation of limit cycles. For the model with self-diffusion,
we establish the non-negativity and prior bounds of the solution. Subsequently, we derive
the theoretical conditions in which self-diffusion leads to the destabilization of the interior
equilibrium. Additionally, we explore the conditions under which cross-diffusion induces the
Turing-instability where self-diffusion fails to do so. Further, we present different kinds of
stationary and dynamic patterns on varying the values of diffusion coefficients to depict the
spatiotemporal model’s rich dynamics. It has been found that the addition of self and cross-
diffusion in a prey-predator model with the Allee effect in prey and cannibalistic predator play
essential roles in comprehending the pattern formation of a distributed population model.

The past interactions and experiences between prey and predator species can subsequently
impact current behaviors, physiological states, or population dynamics. Chapter 6 aims to
investigate a diffusive predator-prey system incorporating additional food for predators, prey
refuge, fear effect, and its carry-over effects. For the temporal model, the well-posedness and
persistence of the system have been discussed. We investigated the existence and the stability
behavior of the various equilibria. Furthermore, we explored the bifurcations of co-dimension
one including transcritical, saddle-node, and Hopf, with respect to the crucial parameters. The
system also presents co-dimension two bifurcations such as Bogdanov-Takens and cusp bifur-
cation along with the global homoclinic bifurcation. We observed the bubbling phenomena,
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which illustrates the fluctuations in the amplitudes of the periodic oscillations. For the spa-
tiotemporal system, we established the non-negativity and boundedness of the solutions. We
derived the conditions for the diffusion-driven instabilities in a confined region with Neumann
boundary conditions. It is observed that incorporating cross-diffusion divides the bi-parametric
plane into various sub-regions and dynamic patterns are analyzed in these different regions.
The intricate spatiotemporal dynamics exhibited by prey-predator interactions are crucial for
unraveling the intricacies within ecological systems.
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Chapter 1

Introduction

1.1 Basic introduction and literature survey

Mathematical ecology constitutes a specialized field within ecology that employs mathematical
models to study the dynamics and interactions of populations within ecosystems. Fundamen-
tally, it aims to unravel the basic principles of ecological phenomena and forecast the responses
of ecosystems to perturbations, changes in the environment, and human interventions. Math-
ematical modeling serves as a powerful tool for ecologists to comprehend a diverse range of
ecological phenomena, such as population dynamics, prey-predator interactions, resource man-
agement, and ecosystem resilience. Prey-predator interaction is one of the most captivating
themes in ecology and evolutionary biology that has piqued ecologists’ interest for a good
cause. In the realm of population dynamics, Thomas Robert Malthus [94] introduced a seminal
concept in 1798. The well-known Malthusian growth model, which is derived from this idea
and describes the dynamics of a single species, is given by:

dx
dt

= rx,

where r is the per capita growth rate of population species. This model fails to reflect real-
world scenarios as it doesn’t account for the limited resources in nature, which may influence
the exponential growth of the population. To address these shortcomings, in 1838, Pierre F
Verhulst [174] proposed the logistic growth model incorporating a carrying capacity (K) to
consider the environmental constraints on population size. The mathematical representation of
the Verhulst model is given by:

dx
dt

= rx
(

1− x
K

)
,
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where r is the per capita growth rate of population and K is the carrying capacity of the envi-
ronment. This model acknowledges the self-limiting nature of population growth in response
to environmental constraints.

Although the Verhulst model offers a valuable framework for comprehending population
growth within single species, the growing recognition of interdependent species within eco-
logical communities underscores the necessity for a more intricate and responsive portrayal
of prey-predator interactions. The Lotka-Volterra model, introduced by Alfred J. Lotka [91]
and Vito Volterra [177], comprises a set of coupled differential equations that served as the
foundation for modeling the dynamic prey-predator interactions, given by:

dx
dt

= ax−bxy,

dy
dt

= cxy−dy,

where x and y denote the population density of prey and predator at any time t, respectively.
a is the per capita growth rate and b is the attack rate of predator on prey population. The
parameters c, d respectively describe the effect of the presence of prey on predator’s growth
rate and predator’s natural mortality rate. In the absence of predators, this model assumes that
prey grows exponentially, which may not hold true in all ecological contexts due to limited
food supply, and it can influence the model’s ability to represent real-world dynamics accu-
rately. Furthermore, the generalist behavior of predators is not taken into account by the Lotka-
Volterra model. This restriction may affect the model’s capacity to represent the intricacies of
prey-predator interactions in heterogeneous environments where several prey species coexist
and are pursued by the same predator species. Leslie [84, 85] introduced the prey-predator
model in which the predator’s carrying capacity is directly proportional to the prey density.
The generalist behavior of predators can be addressed by the modified Leslie-Gower model
by incorporating multiple food sources, allowing predators to adjust their feeding preferences
dynamically.

In nature, prey-predator interactions often exhibit non-linear dynamics, such as saturation
effects or functional responses, that can have varying consequences on population dynamics. A
functional response is a measure of successfully attacked prey by the predator. In recent years,
selecting an appropriate functional response has been a matter of subject in the ecological field.
In a series of influential articles that began in the late 1950s, Holling established three broad
categories of functional response [55, 56, 57]. Holling type I functional response assumes a
linear increase in the intake rate of predators with increasing prey density, beyond which it



1.1. Basic introduction and literature survey 3

attains its maximum handling capacity. It is mathematically represented as:

f1(x) = ax,

where a is the attack rate. This is the simplest and fundamental functional response used in the
Lotka-Volterra prey-predator model. Despite the valuable foundation offered by this functional
response, it has certain limitations. The assumption that predators can consume prey at a con-
stant rate may not hold true in all ecological scenarios, as predators can face satiation, which
influences their intake rate. To mitigate the drawbacks of type I functional response, Holling
type II functional response is proposed, given by:

f2(x) =
ax

1+ahx
,

where a is the attack rate and h is the handling time. This functional response represents a
predator’s average feeding rate when the predator spends some time searching for prey and
some time, apart from seeking, handling each captured prey.

Holling type III functional response is identical to Holling type II functional response at
high levels of prey density. But for low values of prey density, the graphical representation
between the number of prey consumed and prey density is a superlinearly increasing function
of prey consumed by predators. It may be represented as:

f3(x) =
ax2

1+ahx2 .

In nature, ecological factors can have a profound impact on population dynamics by influ-
encing the interaction between prey and predators. In most cases, social interactions among
conspecifics are beneficial to each other. In the context of hunting, cooperation refers to when
two or more individuals work together to achieve a common goal to increase their fitness, or
success and, consequently, their chances of survival and reproduction [6, 19]. There are nu-
merous advantages of incorporating hunting cooperation among predators, including increased
capture rate, a reduction in chasing distance, etc. [33]. In particular, many living organisms co-
operate during hunting; for example, wild chimpanzees [17], lions [110], birds [54], wild dogs
[33]. Cosner et al. [29], in 1999, initially derived a functional response depending on the spatial
distribution of predators when the predators aggregate for hunting prey herd to increase their
biomass. Berec [9] investigated a prey-predator system incorporating hunting cooperation and
analyzed that when the encounter rate between the species is affected by hunting cooperation, it
destabilizes the system dynamics. Alves and Hilker [2] examined a Lotka-Volterra model con-
sidering Berec’s encounter-driven functional response. They found that cooperative hunting
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produces oscillatory dynamics in the prey-predator model and improves the stability scenario
of the coexistence steady-state, both of which are impossible without cooperative hunting.

In the early studies of prey-predator interactions, researchers relied on the long-held be-
lief that predators can only impact prey populations by killing them directly. But later on, it
was discovered that the mere presence of predators is enough for prey to exhibit anti-predator
responses such as habitat relocation, reduced reproduction rate, foraging less, etc. In 2011,
Zanette et al. [187] carried out an experiment on song sparrows and highlighted that the preda-
tion fear alone reduced the number of song sparrow (Melospiza Melodia) offsprings by 40%. In
2016, Wang et al. [180] proposed the very first prey-predator model incorporating fear phenom-
ena and discovered that high levels of fear could stabilize the system dynamics by excluding
the existence of periodic oscillations. Panday et al. [117] proposed a three-species food chain
model considering the cost of fear and found that a sufficient value of fear might bring order to
a system that would otherwise be chaotic.

In the presence of predators, it becomes imperative to protect prey species as part of efforts
to manage and preserve biodiversity in ecosystems. Prey refuge serves as a buffer against
predation risk by reducing the possibility of prey extinction due to predation. Kar [63] observed
that spatial refugia, which conceal prey from predators and reduce the chance of extinction of
prey, is a common feature of mite predator-prey interactions. In 2015, Sharma and Samanta
[150] proposed an eco-epidemiological model and analyzed how the infected prey refuge can
affect the constituent population dynamics. They remarked that prey refuge plays a crucial role
in regulating the stability of populations.

The term “carry-over effect” was originally introduced from repeated clinical experiements.
In the realm of prey-predator interactions, carry-over effect results from lingering consequences
of species’ past interactions and experiences that might affect the current behaviors, physiolog-
ical states, or population dynamics [107]. Experimental evidences show that the carry-over
effect might occur within a single season and over a short time span in insects, amphibians,
marine invertebrates, and marine fish [98, 162]. In a study examining the impact of the per-
ceived risk of predation and its carry-over effects, Sasmal and Takeuchi [145] noted that chang-
ing the carry-over effect parameter can have a substantial impact on the stability of the co-
existence equilibrium. Furthermore, they concluded that the “paradox of enrichment" might
be completely eradicated with the appropriate choice of non-lethal effect parameters. There-
fore, incorporating carry-over effects into population dynamics can facilitate comprehending
the possible connection between the reproduction cost and trade-offs in life history strategies.

A correlation between population size or density and the mean individual fitness of a popu-
lation or species defines the Allee effect. This concept was first established by ecologist Warder
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Clyde Allee in 1931. Prey populations may expand at negative or positive rates at lower popula-
tion densities, depending on the intensity of the Allee effect. The Allee effect can be categorized
into two distinct types: strong and weak, depending on whether there is a negative or positive
growth rate at lower population densities. Empirical evidence substantiating the existence of
the Allee effect is observed in a diverse array of natural species, covering insects [80], plants
[43], marine invertebrates [43], birds and mammals [30]. Notably, when the Allee effect occurs,
populations may experience decreased growth rates at low densities, leaving individuals more
vulnerable to cannibalism or predation. Cannibalism is a phenomenon that involves the killing
and consumption of the whole or a part of an individual of the same species (conspecifics).
Experimental zoologists have documented cases of cannibalism in a wide range of animal taxa,
including fish, wolf spiders, house finches, bank voles, and zooplankton. With rates ranging
from 8% in Belding’s ground squirrels to 95% in dragonfly larvae, size-structured cannibal-
ism—in which more prominent individuals of the same species devour smaller ones—may
significantly contribute to overall mortality [128]. This indicates how it impacts community
interactions and population dynamics [27, 134].

In nature, most of the biological processes entail a time lag. Incorporating time delays into a
mathematical model can alter the system dynamics, rendering it more ecologically realistic [46,
74, 92]. Mathematically, delay differential equations can capture any past phenomena that can
influence the present state within the system. These equations help us better comprehend the
temporal dynamics of ecological systems and anticipate how the system behaves in response
to environmental perturbations. A wide variety of research has been devoted to investigate the
complex dynamics of a prey-predator model incorporating various discrete delays [8, 42, 118].
There are different types of delays that can ne introduced in a dynamical model to make it
more robust such as maturation delay, gestation delay, fear response delay. Jana et al. [62]
proposed and examined a dynamical model incorporating gestation delay and noticed that the
discrete delay preserves system’s stability. Panday et al. [119] analyzed a delayed prey-predator
system and concluded that the delay parameter has both stabilizing and destabilizing effects on
the system dynamics. Dubey et al. [42] investigated a multi-delayed prey-predator model
and highlighted that system exhibits chaotic dynamics for sufficiently high value of the fear
response delay.

The irregular movement of species across the space is ubiquitous. During prey-predator
interactions, predators tend to diffuse in search of prey, and prey migrate to avoid predators, re-
sulting in spatial variations [108]. As a result, because of the temporal and spatial interactions,
the population disperses according to the erratic movements of every individual in the popu-
lation. This irregular movement can result in a variety of intriguing spatial patterns. In 1952,
Alan Turing [165] first proposed the concept of Turing instability, which arises when a stable
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equilibrium point loses its stability in the presence of diffusion. Before recognizing this insta-
bility mechanism caused by the diffusion coefficients, it was usually presumed that diffusional
effects stabilize the system. In the early 1970s, Segel and Jackson [146] and Levin and Segel
[87] discovered Turing’s concept that differential diffusion may lead to spatial patterns when
acted upon a reacting system. In fact, spatial diffusion plays a significant role in population evo-
lution, and there has been a growing focus and engagement in studying Turing patterns in the
spatial population models [41, 99, 106, 121, 143, 168, 170, 171]. A broad range of spatiotem-
poral patterns, including stationary patterns like spots, labyrinthine patterns, and mixtures of
stripes and spots, as well as non-stationary patterns like periodic, quasi-periodic, chaotic, and
so on, can be produced by diffusive prey-predator systems. The study of Turing patterns in
ecology can help one better understand the processes that govern the spatial pattern formation
in natural systems as well as the variables affecting biodiversity and spatial heterogeneity. It is
crucial to comprehend the emergence and evolution of Turing patterns in ecological systems in
order to forecast ecosystem dynamics, manage natural resources, and preserve biodiversity.

1.2 Objectives of the thesis

This thesis aims to investigate certain ecological factors influencing the ecosystem’s stability
and addresses several issues related to biological population dynamics that may alter ecologi-
cal stability. We delineated several gaps based on the abovementioned review of the existing
literature, which we articulate as our thesis objectives.

1. To analyze the diffusive patterns in a predator-prey system with fear and hunting cooper-
ation.

2. To study the consequences of fear effect and prey refuge on pattern formation in a delayed
predator-prey system.

3. To investigate the spatiotemporal dynamics of a multi-delayed prey-predator system with
variable carrying capacity.

4. To study the cannibalistic prey-predator system with Allee effect in prey under the pres-
ence of diffusion.

5. To explore the spatiotemporal dynamics in a diffusive predator-prey system incorporating
a Holling type II functional response.
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1.3 Mathematical preliminaries

Mathematically, most of the physical or ecological phenomena can be modelled using differen-
tial equations. It may be expressed as:

dw
dt

= g(w), w(t0) = w0, (1.1)

where w(t) = (w1(t),w2(t), ...,wn(t))T , g(w(t)) = (g1,g2, ...,gn)
T and t0 denotes the initial

time. The enough smoothness of g ensures the existence and uniqueness of the solution to (1.1).

Definition 1.3.1. The solution w(t) of (1.1) is called a stable solution if, for each ε > 0, there

exists a δ = δ (ε) > 0 such that, for any solution w̄(t) = w(t, t0, w̄0) of (1.1), the inequality

||w̄0 −w0|| ≤ δ implies ||w̄(t)−w(t)||< ε as t → ∞.

Definition 1.3.2. The solution w(t) of (1.1) is said to be unstable if it is not stable.

Definition 1.3.3. The solution w(t) of (1.1) is said to be locally asymptotically stable if it is

stable and there exists a δ0 > 0 such that ||w̄0−w0|| ≤ δ0 implies ||w̄(t)−w(t)|| → 0 as t → ∞.

Definition 1.3.4. A point ŵ ∈ Rn is called a steady-state or an equilibrium point of (1.1) if

g(ŵ) = 0. This steady-state is said to be hyperbolic if Dg(ŵ) (Jacobian of g evaluated at ŵ)

has no eigenvalue with zero real part.

Definition 1.3.5. An equilibrium point ŵ of system (1.1) is called sink (stable) or source (un-

stable) if all the corresponding eigenvalues of Dg(ŵ) have negative or positive real parts, re-

spectively. If at least one eigenvalue has the real component of the opposite sign from the other

eigenvalues, the steady state is referred to as the saddle point.

Definition 1.3.6. A steady state ŵ of system (1.1) is said to be globally asymptotically stable if

every solution of the system, irrespective of the initial value, converges to ŵ.

Definition 1.3.7. A closed solution curve of (1.1) is said to be periodic orbit or cycle if the

system returns to the same state at regular intervals of time. The stability of this cycle can be

employed similar to the stability of an equilibrium point.

Definition 1.3.8. The orbit or trajectory ψ(w0) of (1.1) through w0 is defined by

ψ(w0) = {w ∈ Rn : w = w(t, t0,w0), t ∈ R},
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where w(t,w0) is any solution of (1.1) defined for every t ∈ R. Similary, the positive and

negative semiorbit of (1.1) through w0 are described as

ψ
+(w0) = {w ∈ Rn : w = w(t, t0,w0), t ∈ [0,∞)},

and

ψ
−(w0) = {w ∈ Rn : w = w(t, t0,w0), t ∈ (−∞,0]}.

Definition 1.3.9. The set of all limit points of ψ+(w0) (or ψ−(w0)) is said to be ω− limit set
L(ψ+) (or α− limit set L(ψ−)), respectively. More precisely, a point p ∈ L(ψ+) is known as

ω− limit point if ∃ a sequence {tn}, tn → ∞ as n → ∞ such that

lim
n→∞

ψ(tn,w0) = p.

In a similar way, a point q ∈ L(ψ−) is known as α− limit point if ∃ a sequence {tn}, tn →−∞

as n → ∞ such that

lim
n→∞

ψ(tn,w0) = q.

Definition 1.3.10. A set N ∈ Rn is called an invariant set of (1.1) if for every solution w(t),

w(t0) ∈ N implies w(t) ∈ N ∀ t > t0.

Definition 1.3.11. A periodic solution Γ of (1.1) is said to be a limit cycle if it is either a ω

or α− limit set of some other orbit. If a periodic orbit Γ is ω-limit set (or α-limit set) for

every solution contained in its interior as well as exterior, then it is called stable limit cycle (or

unstable limit cycle).

Definition 1.3.12. In the dynamical system, multi-stability refers to a situation wherein a sys-

tem inhibits multiple stable states or attractors.

Definition 1.3.13. Basin of attraction is the collection of all initial points w0 ∈ Rn for an

attractor Â of (1.1) if

lim
t→∞

w(t,wo) = Â.

Definition 1.3.14. (Sylvester’s criterion) Consider

V (y) = yT Ay =
n

∑
i, j=1

ai jyiy j
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be the quadratic form with the symmetric matrix A = (ai j). The necessary and sufficient con-

dition for V (y) to be positive definite is that the symmetric matrix A has all the successive

principal minors with the positive determinant.

Definition 1.3.15. Bifurcation is the qualitative change that occur in the dynamical system by

varying one or more parameters. Qualitative changes can encompass alterations in the number

of steady states or modifications in their stability characteristics.

Definition 1.3.16. The number of parameters that need to be varied for a bifurcation to occur

is known as its codimension.

Definition 1.3.17. In transcritical bifurcation, two steady states interchange their stability as

the bifurcation parameter is varied.

Definition 1.3.18. The saddle-node bifurcation occurs when two steady states collide and an-

nihilate each other with variation in the bifurcation parameter.

Definition 1.3.19. Pitchfork bifurcation occurs when a system transits from one steady state to

three steady states.

Definition 1.3.20. The Hopf-bifurcation refers to the emergence of a periodic solution from

a steady state or vice-versa as a parameter crosses a critical value. In supercritical Hopf-

bifurcation, the stable steady state switches its stability and a stable limit cycle appears. The

unstable steady state gains stability by creating unstable limit cycle in the case of subcritical
Hopf-bifurcation.

Definition 1.3.21. Homoclinic bifurcation occurs when a limit cycle expands and collides with

a saddle point, forming a homoclinic orbit. In the case of heteroclinic bifurcation, a limit cycle

connects with two or more saddle points.

Definition 1.3.22. In bifurcation theory, a Bogdanov–Takens bifurcation is a co-dimension two

bifurcation that involves the intersection of three co-dimension one bifurcation: saddle-node,

Hopf, and homoclinic.

Definition 1.3.23. The cusp bifurcation occurs when two branches of the saddle-node bifurca-

tion curve meet tangentially, forming a semicubic parabola.

Definition 1.3.24. The Bautin or generalized Hopf bifurcation is a bifurcation of codimension

two that separates branches of supercritical and subcritical Hopf-bifurcation in the parameteric

plane.
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Definition 1.3.25. Self-diffusion refers to the random movement of individuals of the same

species within the habitat. In contrast, cross-diffusion describes how the interaction between

species affects the migration of individuals of different species.

Definition 1.3.26. Homogenous Neumann or zero-flux boundary conditions ensure that no

member of the species can leave the domain of interaction nor can one enter it. It takes the

following form:

∂u(x, t)
∂η

= 0, (t > 0, x ∈ ∂Ω),

where ∂Ω is the smooth boundary of the bounded domain Ω in Rn and ∂u(x,t)
∂η

is the directional

derivative of u in the direction of η .

Definition 1.3.27. A delay differential equation (DDE) is a differential equation using delays

as the dependent variable. In other words, the rate of change of dependent variables at a given

time is determined by their current and previous states. The general form of DDE is given by

dw
dt

= f (t,w(t),wτ),

where wτ = {w(τ) : 0 ≤ τ ≤ t} represents the solution trajectories in the past.

Definition 1.3.28. Chaos may be described as the unpredictable, non-repeating behavior ob-

served in a deterministic system that exhibits sensitive dependence on initial conditions.

Definition 1.3.29. The solution is said to have sensitive dependence on initial conditions on

Γ if there exists ε > 0 such that, for any x ∈ Γ and any neighborhood Ω of x, there exist y ∈ Ω

and t > 0 such that |ψ(x, t)−ψ(y, t)|> ε .

1.4 Methodology

To investigate the properties such as persistence and permanence, stability, chaos, multi-stability,
Turing instability, and bifurcation associated with our objectives defined by ordinary differen-
tial equations, partial differential equations, and delay differential equations, we employ the
following distinct methodologies:

1. Persistence and permanence: Persistence and permanence are significant aspects of the
system, as they depict its behavior over the long term. In a dynamical system, uniform
persistence ensures the ultimate existence of all the species. The permanence of a system
means the survival of all populations of the system in future time.
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Assume that the ith component of the solution w = w(t) of the deterministic dynamical
system is wi(t), which represents the population density of the ith of a particular collec-
tion of species at time t, given by

ẇi = wi fi(w), i = 1,2,3. (1.2)

Uniform persistence of (1.2) implies there exists a positive number δ such that if, for
each i, wi(0)> 0, then

liminf
t→∞

wi(t)≥ δ . (1.3)

Moreover, if there exists a constant K such that, ∀ wi(t) ,

limsup
t→∞

wi(t)≤ K, (1.4)

then, system (1.2) is said to be dissipative or uniformly bounded. The system (1.2) is
called permanent if both (1.3) and (1.4) hold true.

2. Linearization of differential equations: Let us consider that our system can be repre-
sented as follows

dY (t)
dt

= G(Y (t)), (1.5)

where Y (t) = (y1(t),y2(t), ...,yn(t))T , G(Y (t)) = (g1,g2, ...,gn)
T and

E∗ = (y∗1,y
∗
2, ...,y

∗
n)

T is the steady state corresponding to (1.5). Let zi(t) = yi(t)− y∗i and
linearizing (1.5) about E∗, we obtain

dZ(t)
dt

= DZ(t), (1.6)

where D is Jacobian matrix corresponding to system (1.5) evaluated about E∗.

3. Local stability: The stability of an equilibrium point in its neighborhood is determined
by computing the characteristic equation associated with the Jacobian matrix evaluated
at the equilibrium point. Then, we assess the sign of the real parts of the eigenvalue of
this equation. To facilitate this, we use the following theorem:

Theorem 1.4.1. (Hurwitz’s theorem) A necessary and sufficient condition for the nega-

tivity of the real parts of all the roots of the polynomial

λ
n +A1λ

n−1 + ...+An = 0, (1.7)
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with real coefficients is the positivity of all principle diagonals of minors of the Hurwitz

matrix

Hn =



A1 1 0 0 0 0 0 . . . 0
A3 A2 A1 1 0 0 0 . . . 0
A5 A4 A3 A2 A1 1 0 . . . 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0 An


,

Here, it should be noted that the elements of the Hurwitz matrix Hn = (hik) are given by

hik = A2i−k, the missing coefficients are replaced by zero.

The Hurwitz conditions for negative real parts of the solutions of (1.7) for the second,
third and fourth degrees are applied as:

n = 2, A1 > 0, A2 > 0,

n = 3, A1 > 0, A2 > 0, A3 > 0, and A1A2 −A3 > 0,

n = 4, A1 > 0, A2 > 0, A3 > 0, A4 > 0, and A1A2A3 −A2
3 −A2

1A4 > 0.

This theorem becomes impractical for large n.
Remark: The characteristic polynomial (1.7) is said to be stable if all its roots have
negative real parts.

4. Non-linear Stability (Global Stability): If the solution trajectory starting from any-
where in the given domain coverges to the same steady state, then that steady state is said
to be globally stable. Here, we establish the sufficient conditions for the global Stability
of the system around the critical point by choosing a suitable Lyapunov’s function which
is a positive definite function.
Let us consider an autonomous system of differential equations:

dx
dt

= f (x), (1.8)

where f ∈C[Rn,Rn] and Sρ = {x ∈ Rn : ||x||< ρ} such that f is smooth enough to ensure
the existence and uniqueness of (1.8) and x∗ is the equilibrium point for it.
We have some important results to lay down the ample conditions ensuring the global
stability of the system and are stated below.
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Theorem 1.4.2. If there exists a scalar function V (x) which is positive definite about x∗

such that V ∗(x)< 0 (derivative of V (x) along (1.8) is negative definite) on Sρ , then x∗ is

asymptotically stable.

Theorem 1.4.3. If there exists a scalar function V (x) which is positive definite about x∗

such that V ∗(x)≤ 0 on Sρ , then x∗ is stable.

Theorem 1.4.4. If there exists a scalar function V (x);V (0) = 0 such that dV
dt > 0 on Sρ

and if in every neighbourhood N of the x∗, N ⊂ Sρ , there is a point x0 where V (x0) > 0
then then x∗ is unstable.

5. Bendixson–Dulac theorem: Consider the system (1.5) with n=2 and assume there exists
a continuously differentiable function φ(y1,y2) (called the Dulac function) such that the
expression

∂ (φg1)

∂y1
+

∂ (φg2)

∂y2

has the same sign (̸= 0) almost everywhere in a simply connected region of the plane,
then according to the Bendixson–Dulac theorem, system (1.5) (for n=2) has no noncon-
stant periodic solutions lying entirely within the region.

6. Bifurcation theory: If varying one or more parameters leads to a change in the qualita-
tive behavior of the equilibrium point, the dynamical system is said to undergo bifurca-
tion.
To demonstrate the occurrence of transcritical and saddle-node bifurcation, we illustrate
the Sotomayor’s theorem conditions by considering the following system:

dz
dt

= g(z,µ), (1.9)

where µ is the bifurcation parameter. Assuming z = z0 be the corresponding hyperbolic
equilibrium of the system (1.9) at the critical point µ = µ0 with p and q be the be the
eigenvectors corresponding to the zero eigenvalue of A=Dg(z0,µ0) and AT , respectively.
Now, we procced with the subsequent theorems for different bifurcations.

Theorem 1.4.5. Under the following conditions of the Sotomayor’s theorem, the system

(1.9) undergoes saddle-node bifurcation at the equilibrium point z0 as the parameter µ

passes through the bifurcation value µ = µ0.

• qT gµ(z0,µ0) ̸= 0, and

• qT [D2g(z0,µ0)(p, p)] ̸= 0.
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Theorem 1.4.6. The system (1.9) undergoes transcritical bifurcation at the equilibrium

point z0 as the parameter µ passes through the bifurcation value µ = µ0, if the following

conditions of the Sotomayor’s theorem hold:

• qT gµ(z0,µ0) = 0,

• qT [Dgµ(z0,µ0)p] ̸= 0, and

• qT [D2g(z0,µ0)(p, p)] ̸= 0.

Dg(z0,µ0) has a pair of complex eigenvalues in Hopf-bifurcation. The subcritical or
supercritical Hopf-bifurcation occurs when the complex eigenvalues cross the imaginary
axis as the bifurcation parameter varies. At the critical point, we get a pair of pure
imaginary eigenvalues.
Let us consider a two-dimensional system

dz1

dt
= g1(z1,z2,µ),

dz2

dt
= g2(z1,z2,µ), (1.10)

where µ is the bifurcation parameter. Now, let us assume that the jacobian matrix about
E∗(z∗1,z

∗
2) has eigenvalues λ1,2(µ) = α(µ)+ iβ (µ). Moreover, we consider that the fol-

lowing conditions hold at the critical point µ = µ0:

• non-hyperbolicity condition:

α(µ0) = 0, β (µ0) = ω > 0,

• tranversality condition:

dα(µ)

dµ

∣∣∣∣
µ=µ0

= d ̸= 0,

then the system undergoes Hopf-bifurcation at µ = µ0 about the equilibrium point E∗.
Next, we determine the direction of the Hopf-bifurcation by evaluating the following:

σ =
1

16
(g1z1z1z1

+g1z1z2z2
+g2z1z1z2

+g2z2z2z2
)+

1
16ω

(g1z1z2
(g1z1z1

+g1z2z2
)

−g2z1z2
(g2z1z1

+g2z2z2
)−g1z1z1

g2z1z1
+g1z2z2

g2z2z2
),

where g1z1z2
= ∂ 2g1

∂ z1∂ z2

∣∣∣∣
E∗,µ=µ0

, and in the similar manner other derivates may be defined.

Thus, the Hopf bifurcation obtained is considered subcritical (or supercritical) if σ is
positive (or negative), respectively.
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7. Chaotic dynamical systems: Some dynamical system shows the characteristic of chaos.
In this, the system is highly sensitive to initial conditions. A small perturbation in the
initial values causes a very significant change in the behavior of the system, which makes
it unpredictable in the future. However, every system is not chaotic. For confirmation of
chaos; we corresponding maximum Lyapunov exponent, λ , defined as

λ = lim
t→∞

lim
δZ0→0

1
t

ln
δZ(t)
δZ0

,

where δZ0 is the perturbation in the initial condition, and δZ(t) is the resulting change
in the solution.
Remark: For a system to be chaotic, the corresponding maximum Lyapunov exponent
must be positive.

8. Numerical simulation: Most of the existing literature’s mathematical models exhibit
nonlinear characteristics; therefore, they cannot be solved analytically. This is where
numerical methods and tools become indispensable for solving such equations. Every
forthcoming chapter of this thesis comprises extensive numerical simulations carried out
with the help of Mathematica/MATLAB to validate the theoretical results. In some sec-
tions, we have used the popular continuation toolbox MatCont, a MATLAB package. For
the phase plane analysis, we frequently used Pplane8, which is another toolbox pack-
age of MATLAB. Most simulation codes are written from scratch and mainly use a few
standard MATLAB solvers, ode45 and dde23, for the system of ODEs and DDEs. The
resulting plots enable us to better comprehend population dynamics concerning essential
ecological factors.
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Chapter 2

Diffusive patterns in a predator-prey system with
fear and hunting cooperation1

2.1 Introduction

Predator-prey interaction is a central topic in ecology and evolutionary biology that has piqued
ecologists’ interest for a good cause. Predation ultimately results in the eviction of prey in-
dividuals from biological systems, which can substantially impact prey population dynamics
and ecosystems as a whole. The long-held belief is that predators can only have an impact on
prey populations by killing them directly. On the other hand, theoretical biologists [89] contend
that a broad understanding of predator-prey interactions necessitates knowledge of predators’
behaviorally generated nonlethal consequences. When prey perceives predation risk, they ex-
hibit a variety of anti-predator responses. For example, they may decide to leave their original
high-risk environment and relocate to lower-risk areas, forage less, reducing the reproduction
rate and affecting their survival through starvation, etc. [32, 34]. Moreover, Zanette et al. [187]
experimented on song sparrows (Melospiza melodia) and discovered that the fear of predation
could itself reduce the number of offspring production by 40%. Based on such experimental
evidence, Wang et al. [180] proposed a model incorporating the fear effect and analysed that
significant levels of fear can stabilize the predator-prey system by excluding the possibility of
periodic solutions. Many researchers have now integrated the reduced prey growth rate due to
predation risk in their mathematical models [141, 144, 145, 181].

Cooperation is a crucial aspect of animal social behavior and a critical component in ecol-
ogy. There are numerous advantages of incorporating hunting cooperation among predators,
including increased capture rate, a reduction in chasing distance, etc. [33]. In particular, many
living organisms cooperate during hunting; for example, wild chimpanzees [17], lions [110],
birds [54], wild dogs [33]. It was observed [9] that when the encounter rate between prey and

1This chapter is based on our paper published in The European Physical Journal Plus, 137, 281, 2022.
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predator is affected by hunting cooperation, it destabilizes the system dynamics. Pribylova and
Peniaskova [132] studied a predator-prey system and analyzed that by introducing intra-specific
cooperation among predators, prey and predator can coexist for specific rates. Still, it can have
severe repercussions for the predators themselves in the majority of cases. Alves and Hilker
[2] showed that adding hunting cooperation increases the attack rate and allows the predator to
exist even when the prey population is insufficient to sustain them; however, it can also lead to
a sudden predator population collapse.

The irregular movement of species across space is ubiquitous. During prey-predator interac-
tions, predators tend to diffuse in search of prey, and prey migrate to avoid predators, resulting
in spatial variations [108]. This irregular movement can result in a variety of intriguing spa-
tial patterns. Alan Turing first proposed Turing instability in 1952 [165], which arises when a
stable steady-state loses its stability in the presence of diffusion. In the early 1970s, Segel and
Jackson [146] and Levin and Segel [87] discovered Turing’s concept that differential diffusion
may lead to spatial patterns when acted upon a reacting system. Dubey et al. [39] studied the
effect of time dependent cross diffusivity in a Gause-type predator-prey model.

Considerably, many recent studies investigated the reaction-diffusion system that can induce
stationary spatial patterns [41, 99, 106, 121, 143, 168, 170, 171]. Sasmal et al. [143] proposed
a prey-predator model and concluded that non-Turing patterns arise as a combined effect of
aposematic time and searching efficiency of prey. Recently, Kumar and Kumari [76] studied
the diffusion-induced chaos in a spatially extended model.

In recent years, the combined effect of hunting cooperation and fear effect on the dynamics
of the system has been studied extensively [90, 112, 113]. Very few researchers have inves-
tigated the combined effect of both the ecological factors in a diffusive predator-prey system
[38]. The aim of this study is to analyze the dynamics of a diffusive model system incorporating
both hunting cooperation and fear effect. In this paper, we consider the predator mortality rate
as:

M(y) =
γ +δy
1+ y

; 0 < γ < δ ,

i.e. M(y) is a predator density-dependent function [184]. The current model has a benefit over
more widely used models because the predator mortality rate is neither constant nor unbounded
here. However, it increases with predator density due to intra-species competition. Moreover,
we consider that increasing hunting cooperation among predators increases fear among prey, as
a result prey’s birth rate decreases.

The rest of the chapter is arranged in the following manner. In Section 2.2, we formulated
our mathematical model with fear and hunting cooperation. Fundamental mathematical analy-
sis like positivity, dissipativeness, and persistence of the system has been discussed in Section
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2.3. In Section 2.4, we analyzed the existence, local stability, and global stability of all equi-
libria. Bifurcation analysis is presented in Section 2.5. In Section 2.6, we analyzed the local
and global stability for the spatial model. We perform some extensive numerical simulations in
Section 2.7. The paper ends with a discussion in Section 2.8.

2.2 Formulation of mathematical model

First, we assume that prey grows logistically, which can be divided into three parts, namely, the
birth, natural death and death due to intra-species competition. Hence, in predators’ absence,
the prey dynamics can be governed by the following ODE:

dx
dt

= rx− r0x− r1x2, (2.1)

where x(t) is the prey population density at any given time t, r is the birth rate of prey, r0 is the
natural death rate of prey, r1 is the death rate due to intra-species competition among the preys.

Now, we explicitly include the predator dynamics in (2.1). This paper considers that the
predator-prey interaction follows a linear functional response. We also incorporated the hunting
cooperation among predators, which benefited the predator population [2, 54]. Moreover, we
consider that the prey’s growth rate decreases due to fear of predation, which depends on the
predator population density [180]. Hence, our prey-predator model becomes:

dx
dt

=

[
r

(1+ kα1y)
− r0 − r1x− (α0 +α1y)y

]
x,

dy
dt

=

[
c(α0 +α1y)x− γ +δy

1+ y

]
y,

x(0)≥ 0, y(0)≥ 0. (2.2)

Here, y(t) is the predator population density at any time t, α0 is the predation rate (without
hunting cooperation among predators), α1 is the predator hunting cooperation parameter, c is
the conversion coefficient from prey density to predator density, which should lie between 0 to
1. Here, the parameter k refers to the level of fear which reflects the reduction of prey growth
rate due to the anti-predator behavior. Moreover, we considered that the level of fear increases
due to hunting cooperation among predators i.e., prey’s growth rate decreases as the hunting
cooperation parameter α1 increases. Thus we modify the fear function as 1

1+kα1y . We consider

the predator mortality rate M(y) = γ+δy
1+y to be predator density dependent function with the

assumption γ < δ . The advantage of using this function as mortality rate, is that it is neither a
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constant nor an unbounded function, yet it is an increasing function with the predator density
[184].

Now, if we consider spatial effects in prey and predator population, then the spatial prey-
predator model can be written in the following reaction-diffusion equations:

∂x
∂ t

=

[
r

(1+ kα1y)
− r0 − r1x− (α0 +α1y)y

]
x+D1∇

2x,

∂y
∂ t

=

[
c(α0 +α1y)x− γ +δy

1+ y

]
y+D2∇

2y, (2.3)

where x ≡ x(u;v; t), y ≡ y(u;v; t) denotes the prey and predator population density at the spa-
tial coordinate (u;v) and time t, respectively. ∇2 = ∂ 2

∂u2 +
∂ 2

∂v2 is the Laplacian Operator in two
dimensional space. D1 and D2 are the self-diffusion coefficients of prey and predator species,
respectively, which describe that the individuals tend to migrate from higher to lower concen-
tration regions.

The spatiotemporal dynamics (2.3) are subjected to non-zero initial conditions and Neu-
mann boundary conditions (which means that no species can leave or enter through the bound-
ary):

x(u;v;0) = x0(u;v)> 0;y(u;v;0) = y0(u;v)> 0;(u,v) ∈ Ω = [0,L]× [0,M], and
∂x
∂ n̂

=
∂y
∂ n̂

= 0,

where n̂ is the outward unit normal vector.

2.3 Mathematical analysis of non-spatial model

First, we will analyze model (2.2) which is without diffusion. We assume that all the parameters
involved with the model (2.2) are positive.

2.3.1 Positivity and boundedness of the solutions

In particular, positivity of solutions implies that the species will exists. Model (2.2) can be
written as:

dx
dt = Ψ1(t)x,
dx
dt = Ψ2(t)y,
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where

Ψ1(t) =
r

(1+ kα1y)
− r0 − r1x− (α0 +α1y)y,

Ψ2(t) = c(α0 +α1y)x− γ +δy
1+ y

.

Thus,

x(t) = x(0)exp
[∫ t

0
ψ1(x(s),y(s))ds

]
≥ 0,

y(t) = y(0)exp
[∫ t

0
ψ2(x(s),y(s))ds

]
≥ 0,

which gives
x(t)≥ 0, and y(t)≥ 0,

and implies the positivity of all the solutions.

Theorem 2.3.1. System (2.2) is dissipative i.e. all the solutions are bounded above in R2
+ with

the following properties:

lim
t→∞

supx(t)≤ r− r0

r1
,

lim
t→∞

sup
(

x(t)+
1
c

y(t)
)
≤

{ r−r0
r1

when γ>r−r0

(r−r0+γ)2
4r1γ

when γ≤r−r0.

Proof. From the first equation of (2.2), we have

dx
dt

=
rx

(1+ kα1y)
− r0x− r1x2 − (α0 +α1y)xy,

≤ (r− r0)x− r1x2.

Considering r− r0 > 0 (for the survival of prey, otherwise x(t)→ 0 as t → ∞), we have

lim
t→∞

supx(t)≤ r− r0

r1
.
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Now, we define z(t) = x(t)+ 1
c y(t), then

dz
dt

=
rx

1+ kα1y
− r0x− r1x2 − (γ +δy)

c(1+ y)
y,

≤ rx− r0x− r1x2 − γy
c
, ( as δ > γ =⇒ γ +δy

1+ y
> γ)

= rx− r0x− r1x2 − γ(z− x),

= (r− r0 + γ)x− r1x2 − γz.

Then similar to the proof of the theorem (2.1) in [144], our results follow.

Theorem 2.3.2. System (2.2) is uniformly persistent under the following conditions:

(a) r > (1+ kα1ymax)(r0 +α0ymax +α1y2
max),

(b) xmin >
δ

cα0
.

Proof.

dx
dt

=
rx

(1+ kα1y)
− r0x− r1x2 − (α0 +α1y)xy

dx
dt

≥ x
[ r
(1+ kα1ymax)

− r0 − r1x− (α0 +α1ymax)ymax

]
= x
[( r

(1+ kα1ymax)
− r0 − (α0 +α1ymax)ymax

)
− r1x

]
,

limt→∞ infx(t)≥ 1
r1

(
r

1+kα1ymax
− r0 − (α0 +α1ymax)ymax

)
= m∗.

Now,

dy
dt

= y
[
c(α0 +α1y)x− γ +δy

1+ y

]
dy
dt

≥ y[cα0x+ cα1xy−δ ]

dy
dt

≥ y
[
(cα0xmin −δ )+ cα1xminy

]
.

Now, if (cα0xmin−δ )> 0, then dy
dt ≥ 0. This implies that y is strictly increasing function of

t, ∀t > 0. Thus, y(t)> y(0), ∀t > 0.
Choosing, ε = min

{
m∗,y(0)

}
we get
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For ε > 0,

limt→∞ infx(t)> ε,

limt→∞ infy(t)> ε.
(2.4)

Hence, this completes the proof.

2.4 Equilibrium analysis

Model (2.2) has three non-negative equilibria:

1. The trivial extinction equilibrium E0 = (0, 0), which always exists.

2. The axial equilibrium, where only prey population survive is given by E1 =
(

r−r0
r1

,0
)

,
which exists if r− r0 > 0.

3. Other non-negative interior steady states of (2.2) can be solved from the following equa-
tions

f (x,y) :=
r

1+ kα1y
− r0 − r1x− (α0 +α1y)y = 0,

g(x,y) := c(α0 +α1y)x− γ +δy
1+ y

= 0. (2.5)

From g(x,y) = 0, we can get the expression of x as follows:

x = (γ+δy)
c(α0+α1y)(1+y) , (2.6)

Now from f (x,y) = 0, we can get a 5th degree polynomial equation in y as follows:

β0y5 +β1y4 +β2y3 +β3y2 +β4y+β5 = 0, (2.7)

where

β0 = kcα
3
1 (> 0),

β1 = cα
2
1 (1+ kα1 +2kα0) (> 0),

β2 = cα1(r0kα1 +α1 +2α0 +2kα0α1 + kα
2
0 ) (> 0),

β3 = r0ckα
2
1 + r1kα1δ + r0ckα0α1 +2cα0α1 + cα

2
0 + kcα

2
0 α1 − cα1(r− r0),

β4 = r0ckα0α1 + r1kα1γ + r1δ + cα
2
0 − c(r− r0)(α0 +α1),

β5 = r1γ − cα0(r− r0).
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Depending on the values of the parameter β ′
i s for i = 3,4,5, our proposed system (2.2) would

have none, one, two or three interior equilibria.

We have the following theorem for the number of interior equilibria corresponding to system
(2.2).

Theorem 2.4.1. (a) System (2.2) has no interior equilibrium if the following condition

holds:

0 < r− r0 < min

{
γr1
cα0

, r1(δ+kγα1)+cα0(α0+r0kα1)
c(α0+α1)

,
c[α0α1(2+kα0+kr0)+α2

0+r0kα2
1 ]+r1kα1δ

cα1

}
.

(b) System (2.2) has unique interior equilibrium if any one of the following two conditions

holds:

(i) γr1
cα0

< r− r0 <
c[α0α1(2+kα0+kr0)+α2

0+r0kα2
1 ]+r1kα1δ

cα1
.

(ii) max

{
γr1
cα0

, r1(δ+kγα1)+cα0(α0+r0kα1)
c(α0+α1)

}
< r− r0.

(c) System (2.2) has at most two interior equilibria if any one of the following two condi-

tions holds:

(i) r1(δ+kγα1)+cα0(α0+r0kα1)
c(α0+α1)

< r− r0 <
γr1
cα0

.

(ii) c[α0α1(2+kα0+kr0)+α2
0+r0kα2

1 ]+r1kα1δ

cα1
< r− r0 <

γr1
cα0

.

(d) System (2.2) has at most three interior equilibria if the following condition holds:

max

{
γr1
cα0

,
c[α0α1(2+kα0+kr0)+α2

0+r0kα2
1 ]+r1kα1δ

cα1

}
< r− r0 <

r1(δ+kγα1)+cα0(α0+r0kα1)
c(α0+α1)

.

Proof. The number of interior equilibria depends on the number of positive real roots of the
equation (2.7), which depends on the sign of coefficients β3, β4 and β5. By using ’Descartes’
rule of signs’ we can easily verify that the equation (2.7) has no positive real root if β ′

i s > 0,
for i = 3,4,5, which gives

r− r0 < min

{
γr1
cα0

, r1(δ+kγα1)+cα0(α0+r0kα1)
c(α0+α1)

,
c[α0α1(2+kα0+kr0)+α2

0+r0kα2
1 ]+r1kα1δ

cα1

}
.

Similarly, the system has unique interior equilibrium in any of the three set of conditions (i)
β3 > 0, β4 > 0 and β5 < 0, (ii) β3 > 0, β4 < 0 and β5 < 0, (iii) β3 < 0, β4 < 0 and β5 < 0.
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Combining these three set of conditions we can easily simplify that the equation (2.7) has
unique real positive roots if β3 > 0 and β5 < 0 or β4 < 0 and β5 < 0, i.e., if γr1

cα0
< r − r0 <

c[α0α1(2+kα0+kr0)+α2
0+r0kα2

1 ]+r1kα1δ

cα1
or max

{
γr1
cα0

, r1(δ+kγα1)+cα0(α0+r0kα1)
c(α0+α1)

}
< r − r0. Similarly,

we can prove that when the system has at most two or three interior equilibria.

Note: From Theorem 2.4.1, we can conclude that system (2.2) has atleast one interior
equilibrium if any of the conditions (b) and (d) hold (the region above the black solid line in
Fig. 2.1).
In Fig. 2.2, we fixed the parameters as r = 2.7, r0 = 0.2, r1 = 0.1, k = 0.1, α1 = 0.006, c = 0.5,

Fig. 2.1: Here we fix the parameter values as r0 = 0.2, r1 = 0.1, k = 0.1, α0 = 0.05,
α1 = 0.006, c = 0.5, δ = 0.8 and vary the parameters γ and r from 0 to 0.8, and 0 to 3.5,
respectively. Here, (o) is for the existence of at most three interior equilibria (condition
(d) in Theorem 2.4.1), (×) is for the existence of at most two interior equilibria (con-
dition (c) in Theorem 2.4.1) and (∗) is for the existence of unique interior equilibrium
(condition (b) in Theorem 2.4.1). Thus, Model (2.2) has at least one interior equilibrium
in the region above black solid line.

γ = 0.5, δ = 0.8 and vary the parameter α0. For α0 = 0.03, we have no interior steady state.
We get a unique interior steady state for α0 = 0.05. For α0 = 0.04 and α0 = 0.045, we have
two and three interior steady states, respectively.
Next, we provide the following theorems regarding the stability of equilibria corresponding to

system (2.2).

Theorem 2.4.2. The extinction equilibrium E0 is locally asymptotically stable if r− r0 < 0. In

fact, E0 is globally asymptotically stable under this condition.
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(a) No interior steady state for α0 = 0.03.
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(b) Unique interior steady state for α0 = 0.05.
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(c) Two interior steady states for α0 = 0.04.
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(d) Three interior steady states for α0 = 0.045.

Fig. 2.2: Number of interior steady states for model (2.2) with varying α0. The other
parameter values are fixed as r = 2.7, r0 = 0.2, r1 = 0.1, k = 0.1, α1 = 0.006, c = 0.5,
γ = 0.5, and δ = 0.8.

Proof. The eigenvalues at the extinction equilibrium E0 are given by λ1 = r − r0 and λ2 =

−γ (< 0). Thus E0 is locally asymptotically stable if r− r0 < 0.

It is easy to show that the solution (x(t),y(t)) of (2.2) for any positive initial conditions in
R2
+ tends to E0 = (0,0) when r− r0 < 0.

Theorem 2.4.3. The axial equilibrium E1 exists and is locally asymptotically stable if 0 <

r− r0 <
γr1
cα0

. Moreover, E1 is globally asymptotically stable if

0 < r− r0 < min

{
γr1
cα0

, r1(δ+kγα1)+cα0(α0+r0kα1)
c(α0+α1)

,
c[α0α1(2+kα0+kr0)+α2

0+r0kα2
1 ]+r1kα1δ

cα1

}
.

Proof. The eigenvalues at the axial equilibrium E1 are given by λ1 = −(r − r0) and λ2 =

cα0
(r−r0)

r1
− γ . Thus, E1 is locally asymptotically stable if 0 < r− r0 <

γr1
cα0

.
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Moreover, under the condition

0 < r− r0 < min

{
γr1
cα0

, r1(δ+kγα1)+cα0(α0+r0kα1)
c(α0+α1)

,
c[α0α1(2+kα0+kr0)+α2

0+r0kα2
1 ]+r1kα1δ

cα1

}
,

the system does not have any interior equilibrium. The extinction equilibrium is always unstable
(saddle) and E1 is always locally stable under this condition. Also, all the solutions of system
(2.2) remains positive and bounded. So, every solution ultimately tends to E1.

Theorem 2.4.4. The interior equilibrium E∗ = (x∗,y∗) is locally asymptotically stable if

x∗ < min
(

y∗(δ−γ)
(1+y∗)2(cα1y∗−r1)

, δ−γ

cα1(1+y∗)2 +
α0+α1y

r1α1

[
rkα1

(1+kα1y∗)2 +(α0 +2α1y∗)
])

and y∗ > r1
cα1

.

Proof. The Jacobian matrix at the interior equilibrium is given by

JE∗ =

[
−r1x∗ −x∗( rkα1

(1+kα1y∗)2 +(α0 +2α1y∗))

c(α0 +α1y∗)y∗ cα1x∗y∗− y∗(δ−γ)
(1+y∗)2

]
.

The characteristic equation at the interior equilibrium is

λ
2 −Tr(JE∗)λ +det(JE∗) = 0,

=⇒ λ
2 +

[
r1x∗+

y∗(δ − γ)

(1+ y∗)2 − cα1x∗y∗
]

λ

+ r1x∗y∗
[
(δ − γ)

(1+ y∗)2 − cα1x∗
]
+ cx∗y∗(α0 +α1y∗)

[
rkα1

(1+ kα1y∗)2 +(α0 +2α1y∗)
]

=0.

Thus, the interior equilibrium E∗ = (x∗,y∗) is locally asymptotically stable if Tr(JE∗) < 0
and det(JE∗)> 0, i.e., if

r1x∗+
y∗(δ − γ)

(1+ y∗)2 − cα1x∗y∗ > 0

and r1

[
(δ − γ)

(1+ y∗)2 − cα1x∗
]
+ c(α0 +α1y∗)

[
rkα1

(1+ kα1y∗)2 +(α0 +2α1y∗)
]
> 0.

The above two inequalities satisfies if

x∗ < min
(

y∗(δ−γ)
(1+y∗)2(cα1y∗−r1)

, δ−γ

cα1(1+y∗)2 +
α0+α1y

r1α1

[
rkα1

(1+kα1y∗)2 +(α0 +2α1y∗)
])

and y∗ > r1
cα1

.
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Remark: From the expressions of Tr(JE∗) and det(JE∗), the sufficient condition for the
local stability of E∗(x∗,y∗) is

δ > γ + cα1x∗(1+ y∗)2.

Next, we assume that we have a unique interior equilibrium under conditions (b) of Theo-
rem 2.4.1. Now, we provide the following result for the global stability of the unique interior
equilibrium.

Theorem 2.4.5. The unique interior equilibrium E∗
1 is globally asymptotically stable if the

following condition holds:

x∗ <
δ − γ

cα1(1+ ymax)(1+ y∗)
− 1

4r1α1

(
rkα1

1+kα1
+α1y∗

)2 .

Proof. Let us consider a positive definite function:

V (x,y) =
(

x− x∗− x∗ln
x
x∗

)
+m

(
y− y∗− y∗ln

y
y∗

)
.

Differentiating V (x,y) with respect to t and simplifying the expression, we get:

V̇ =−r1(x− x∗)2 +(x− x∗)(y− y∗)
[

−rkα1

(1+ kα1y)(1+ kα1y∗)
−α0 −α1(y+ y∗)+mcα0 +mcα1y

]
− (y− y∗)2

[
−mcα1x∗− mγ

(1+ y)(1+ y∗)
+

mδ

(1+ y)(1+ y∗)

]
=−a11(x− x∗)2 +a12(x− x∗)(y− y∗)−a22(y− y∗)2.

Using Sylvester’s criteria, sufficient conditions for V̇ to be negative definite are

a22 > 0, and a2
12 < 4a11a22,

a22 > 0 gives
m(δ − γ)

(1+ y)(1+ y∗)
> mcα1x∗

i.e., x∗ <
δ − γ

cα1(1+ ymax)(1+ y∗)
.

Taking m = 1
c i.e., mc = 1, a2

12 < 4a11a22 gives(
rkα1

(1+ kα1)
+α1y∗

)2

< 4r1

(
δ − γ

c(1+ ymax)(1+ y∗)
−α1x∗

)
,
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i.e. x∗ <
δ − γ

cα1(1+ ymax)(1+ y∗)
− 1

4r1α1

(
rkα1

1+ kα1
+α1y∗

)2

.

Hence, E1(x∗,y∗) is globally asymptotically stable if

x∗ < min
{

δ − γ

cα1(1+ ymax)(1+ y∗)
,

δ − γ

cα1(1+ ymax)(1+ y∗)
− 1

4r1α1

(
rkα1

1+ kα1
+α1y∗

)2}
,

i.e., if x∗ <
δ − γ

cα1(1+ ymax)(1+ y∗)
− 1

4r1α1

(
rkα1

1+ kα1
+α1y∗

)2

.

In Fig. 2.3, we have shown the global stability region of the unique interior equilibrium
in γ − r parameter plane, by fixing the other parameter values as r0 = 0.2, r1 = 0.1, k = 0.1,
α0 = 0.05, α1 = 0.006, c = 0.5, δ = 0.8. In Fig. 2.4, we have shown the global stability of
unique interior E∗

1 by drawing the phase-portrait with different initial conditions by fixing the
remaining two parameters r = 1.5 and γ = 0.1 in Fig. 2.3.

Fig. 2.3: Here, we fix the parameter values as r0 = 0.2, r1 = 0.1, k = 0.1, α0 = 0.05,
α1 = 0.006, c = 0.5, δ = 0.8 and vary the parameters γ and r from 0 to 0.8, and 0 to
3.5, respectively. The interior is globally asymptotically stable in black region (Theorem
2.4.5).

We summarize the existence, local stability and global stability conditions of all the equi-
libria in the Table 2.1.
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Fig. 2.4: Here, we fix the parameter values as r = 1.5, r0 = 0.2, r1 = 0.1, k = 0.1, α0 =
0.05, α1 = 0.006, c = 0.5, δ = 0.8 and γ = 0.1. The unique interior equilibrium E∗

1 =
(12.72,0.51) is globally asymptotically stable.

2.5 Bifurcation analysis

Next, we investigate the possibility of Hopf-bifurcation at the interior equilibrium E∗
1 by varying

the hunting cooperation parameter α1, as bifurcation parameter.
The interior equilibrium E∗

1 loses its stability through Hopf-bifurcation when the eigenval-
ues are complex conjugate with zero real parts. We consider α1 as the bifurcation parameter.
Considering the characteristic equation evaluated from the Jacobian matrix at E∗

1 , we have

λ
2 +B1λ +B2 = 0, (2.8)

where
B1 =−Tr(JE∗

1
) and, B2 = det(JE∗

1
).

Let λ (α1) = λr(α1)+ iλi(α1) be an eigenvalue of above characteristic equation. Putting the
value of λ (α1) in Eq. (2.8) and comparing the real and imaginary parts, we get

λ
2
r −λ

2
i +B1λr +B2 = 0, (2.9)

2λrλi +λiB1 = 0. (2.10)
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Equilibrium Existence Local Stability Global Stability

E0 = (0,0) Always r− r0 < 0 r− r0 < 0

E1 =(
r−r0

r1
,0
) r− r0 > 0 r− r0 <

r1γ

cα0
r − r0 <

min

{
γr1
cα0

, r1(δ+kγα1)+cα0(α0+r0kα1)
c(α0+α1)

,

c[α0α1(2+kα0+kr0)+α2
0+r0kα2

1 ]+r1kα1δ

cα1

}

E∗ = (x∗,y∗) Conditions
(b)-(d) of
Theorem
2.4.1

x∗ <

min
(

y∗(δ−γ)
(1+y∗)2(cα1y∗−r1)

, δ−γ

cα1(1+y∗)2 +

α0+α1y
r1α1

[
rkα1

(1+kα1y∗)2 +(α0 +2α1y∗)
])

and y∗ > r1
cα1

x∗ < δ−γ

cα1(1+ymax)(1+y∗) −
1

4r1α1

(
rkα1

1+kα1
+α1y∗

)2

Table 2.1: Existence, local and global stability conditions of equilibria for model (2.2).

For the Hopf- bifurcation to occur, we need λr(α1) = 0 at the bifurcating value α1 = αh. Thus,

−λ 2
i +B2 = 0, λi ∈ R,

λiB1 = 0, λi ̸= 0.

Thus,

B2 > 0 and B1 = 0 at the bifurcating point αh.

Now, from B1 = 0, we have

α1 = αh =
r1

cy∗
+

(δ − γ)

cx∗(1+ y∗)2 .

Differentiating Eqs. (2.9) and (2.10) with respect to the bifurcating parameter α1 and substitut-
ing λr = 0, we get

−2λi
dλi

dα1
+B1

dλr

dα1
+

dB2

dα1
= 0, (2.11)

2λi
dλr

dα1
+λi

dB1

dα1
+B1

dλi

dα1
= 0. (2.12)
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Solving above two equations,

dλr

dα1

∣∣∣∣
α1=αh

=−
(B1

dB2
dα1

+2λ 2
i

dB1
dα1

)

B2
1 +4λ 2

i
̸= 0,

provided B1
dB2
dα1

+2λ 2
i

dB1
dα1

̸= 0.
Therefore, the system undergoes Hopf-bifurcation at E∗

1 if B2 > 0 and (B1
dB2
dα1

+2λ 2
i

dB1
dα1

) ̸= 0
at the bifurcating point α1 = αh.
In the next theorem we will discuss about the direction and stability of Hopf-bifurcation around
the interior equilibrium point E∗

1 .

Theorem 2.5.1. Let L be defined as

L := 1
16

[
∂ 3H1
∂ z3

1
+ ∂ 3H1

∂ z1∂ z2
2
+ ∂ 3H2

∂ z2
1∂ z2

+ ∂ 3H2
∂ z3

2

]
+ 1

16
√

fugv− fvgu

[
∂ 2H1

∂ z1∂ z2

(
∂ 2H1
∂ z1

1
+ ∂ 2H1

∂ z2
2

)
− ∂ 2H2

∂ z1∂ z2

(
∂ 2H2
∂ z2

1
+ ∂ 2H2

∂ z2
2

)
− ∂ 2H1

∂ z2
1

∂ 2H2
∂ z2

1
+ ∂ 2H1

∂ z2
2

∂ 2H2
∂ z2

2

]
.

Then the Hopf bifurcation is supercritical if L < 0 and it is subcritical if L > 0.

Proof. To find the stability and direction of Hopf bifurcation, we calculate the 1st Lyapunov
coefficient. Let u = x− x∗ and v = y− y∗, then system (2.2) becomes

du
dt = r(u+x∗)

1+kα1(v+y∗) − r0(u+ x∗)− r1(u+ x∗)2 − (α0 +α1(v+ y∗))(u+ x∗)(v+ y∗) := f (u,v).
dv
dt = c(α0 +α1(v+ y∗))(u+ x∗)(v+ y∗)− [ γ+δ (v+y∗)

1+(v+y∗) ](v+ y∗) := g(u,v).

Now, expanding the above system in Taylor’s series at (u,v) = (0,0) upto 3rd order, we get

du
dt = J11u+ J12v+ f1(u,v),
dv
dt = J21u+ J22v+g1(u,v),

(2.13)

f1(u,v) and g1(u,v) are the higher order terms of u and v, given by

f1(u,v) = fuuu2 + fuvuv+ fvvv2 + fuuuu3 + fuuvu2v+ fuvvuv2 + fvvvv3,

g1(u,v) = guuu2 +guvuv+gvvv2 +guuuu3 +guuvu2v+guvvuv2 +gvvvv3,
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where

fu =J11 =
r

1+ kα1y∗
− r0 −2r1x∗− (α0 +α1y∗)y∗,

fv =J12 =− rkα1x∗

(1+ kα1y∗)2 − x∗(α0 +2α1y∗),

fuu =−2r1,

fuv =[
−rkα1

(1+ kα1y∗)2 − (α0 +2α1y∗)],

fvv =2x∗α1(
rk2α1

(1+ kα1y∗)3 −1),

fuuu =0,

fuuv =0,

fuvv =2(
rk2α2

1
(1+ kα1y∗)3 −α1),

fvvv =−
6rk3α3

1 x∗

(1+ kα1y∗)4 ,

and

gu =J21 = c(α0 +α1y∗)y∗,

gv =J22 = cx∗(2α1y∗+α0)−
γ +δy∗

1+ y∗
− y∗

δ − γ

(1+ y∗)2 ,

guu =0,

guv =c(α0 +2α1y∗),

gvv =2(cα1x∗− δ − γ

(1+ y∗)3 ),

guuu =0,

guuv =0,

guvv =2cα1,

gvvv =
6(δ − γ)

(1+ y∗)4 .

System (2.13) can be written as:

U̇ = JE∗
1
U +H(U),
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where

U =
(

u,v
)T

,

H =
(

f1(u,v),g1(u,v)
)T

,

=
(

fuuu2 + fuvuv+ fvvv2 + fuvvuv2 + fvvvv3,guvuv+gvvu2 +guvvuv2 +gvvvv3
)T

.

Now, Hopf bifurcation occurs when Tr(JE∗
1
) = 0 and det(JE∗

1
)> 0, i.e., at the Hopf bifurca-

tion point, the eigenvalue will be purely imaginary, which is given by i
√

fugv − fvgu. Eigenvec-

tor corresponding to this eigenvalue i
√

fugv − fvgu is given by v =
(

fv, i
√

fugv − fvgu − fu

)T
.

Now, we define S =
(

Re(v),−Im(v)
)
=

[
fv 0

− fu −
√

fugv − fvgu

]
. Now, let U = SZ or Z =

S−1U , where Z =
(

z1,z2

)T
. Therefore, under this transformation, the system is reduced to

Ż =
(

S−1JE∗
1
S
)

Z +S−1H
(

SZ
)
.

This can be written as[
ż1

ż2

]
=

[
0 −

√
fugv − fvgu√

fugv − fvgu 0

][
z1

z2

]
+

[
H1(z1,z2)

H2(z1,z2)

]
,

where H1(z1,z2) and H2(z1,z2) are given by

H1(z1,z2) =
1
fv

[
fuu f 2

v z2
1 − fuv fvz1( fuz1 +

√
fugv − fvguz2)+ fvv( fuz1 +

√
fugv − fvguz2)

2

+ fuvv fvz1( fuz1 +
√

fugv − fvguz2)
2 − fvvv( fuz1 +

√
fugv − fvguz2)

3
]
,

H2(z1,z2) =− 1
fv
√

fugv − fvgu

[
fu( fuu f 2

v z2
1 − fuv fvz1( fuz1 +

√
fugv − fvguz2)

+ fvv( fuz1 +
√

fugv − fvguz2)
2

+ fuvv fvz1( fuz1 +
√

fugv − fvguz2)
2 − fvvv( fuz1 +

√
fugv − fvguz2)

3)

+ fv(−guv fvz1( fuz1 +
√

fugv − fvguz2)+gvv( fuz1 +
√

fugv − fvguz2)
2

+guvv fvz1( fuz1 +
√

fugv − fvguz2)
2 −gvvv( fuz1 +

√
fugv − fvguz2)

3)
]
.
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The direction of Hopf bifurcation is determined by the sign of the 1st Lyapunov coefficient,
which is given by

L := 1
16

[
∂ 3H1
∂ z3

1
+ ∂ 3H1

∂ z1∂ z2
2
+ ∂ 3H2

∂ z2
1∂ z2

+ ∂ 3H2
∂ z3

2

]
+ 1

16
√

fugv− fvgu

[
∂ 2H1

∂ z1∂ z2

(
∂ 2H1
∂ z1

1
+ ∂ 2H1

∂ z2
2

)
− ∂ 2H2

∂ z1∂ z2

(
∂ 2H2
∂ z2

1
+ ∂ 2H2

∂ z2
2

)
− ∂ 2H1

∂ z2
1

∂ 2H2
∂ z2

1
+ ∂ 2H1

∂ z2
2

∂ 2H2
∂ z2

2

]
.

Now, the following theorem gives an insight for the occurrence of saddle-node bifurcation.

Theorem 2.5.2. System (2.2) undergoes a saddle-node bifurcation around the steady state (x̄, ȳ)

as the predation rate parameter α0 passes through the bifurcation value α0 = α0s if and only

if

−
(

1+ c
fx

gx

)
̸=0,[(

fxx −
fx

fy
( fxy + fyx)+

f 2
x

f 2
y

fyy

)
− fx

gx

(
gxx −

fx

fy
(gxy +gyx)+

f 2
x

f 2
y

gyy

)]
̸=0.

Proof. Let α0 = α0s be the critical value for α0 and (x̄, ȳ) be the interior equilibrium point.

The Jacobian matrix at the equilibrium point E(x̄, ȳ) is:

JE(x̄,ȳ) =

 −r1x̄ −x̄
(

rkα1
(1+kα1ȳ)2 +(α0 +2α1ȳ)

)
c(α0 +α1ȳ)ȳ cα1x̄ȳ− ȳ(δ−γ)

(1+ȳ)2

 .
Now, the Jacobian matrix JE(x̄,ȳ) has a zero eigenvalue at α0 = α0s. Therefore, the equilib-

rium point E(x̄, ȳ) is non-hyperbolic.
Now, differentiating the given model w.r.t. α0, we get

Fα0(x̄ȳ) =

[
−x̄ȳ

cx̄ȳ

]
,

A = D f (E(x̄, ȳ),α0s) =

[
fx fy

gx gy

]
,
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where

fx =− r1x̄,

fy =− x̄
( rkα1

(1+ kα1ȳ)2 +(α0 +2α1ȳ)
)
,

gx =c(α0 +α1ȳ)ȳ,

gy =cα1x̄ȳ− ȳ(δ − γ)

(1+ ȳ)2

D2 f (E(x̄, ȳ),α0s) =

[
fxx fxy fyx fyy

gxx gxy gyx gyy

]
,

where

fxx =− r1,

fxy =0,

fyx =−
( rkα1

(1+ kα1ȳ)2 +(α0 +2α1ȳ)
)
,

fyy =− x̄
( −2rk2α2

1
(1+ kα1ȳ)3 +2α1

)
,

gxx =0,

gxy =c(α0 +2α1ȳ),

gyx =cα1ȳ,

gyy = cα1x̄− (1− ȳ)(δ − γ)

(1+ ȳ)3 .

Eigenvector corresponding to λ = 0 of matrix A = D f (E(x̄, ȳ),α0s) is v =
[

1 − fx
fy

]T
. Simi-

larly, we have the eigenvector corresponding to λ = 0 of matrix AT = [D f (E(x̄, ȳ),α0s)]
T as w

=
[

1 − fx
gx

]T
.

Using Sotomayor’s Theorem [126] for saddle-node bifurcation, we get

wT Fα0

(
E(x̄, ȳ),α0s

)
=−(x̄ȳ)

(
1+ c

fx

gx

)
̸= 0,
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and

wT
[(

D2 f (E(x̄, ȳ),α0s)
)
(v,v)

]
=

[(
fxx −

fx

fy
( fxy + fyx)+

f 2
x

f 2
y

fyy

)
− fx

gx

(
gxx −

fx

fy
(gxy +gyx)+

f 2
x

f 2
y

gyy

)]
̸= 0.

Therefore, the system undergoes saddle-node bifurcation iff

x̄ȳ
(

1+ c
fx

gx

)
̸= 0 i.e., if 1+ c

fx

gx
̸= 0,

and

wT
[(

D2 f (E(x̄, ȳ),α0s)
)
(v,v)

]
=

[(
fxx −

fx

fy
( fxy + fyx)+

f 2
x

f 2
y

fyy

)
− fx

gx

(
gxx −

fx

fy
(gxy +gyx)+

f 2
x

f 2
y

gyy

)]
̸= 0.

2.6 Stability analysis of spatial model

Now, we consider the complete model with diffusion (2.3) and linearize it by taking the trans-
formation

x = x∗+X ,

y = y∗+Y,

where (X ,Y ) is the small perturbation in (x,y), we get

∂X
∂ t = a11X +a12Y +D1

(
∂ 2X
∂u2 +

∂ 2X
∂v2

)
,

∂Y
∂ t = a21X +a22Y +D2

(
∂ 2Y
∂u2 +

∂ 2Y
∂v2

)
.
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where

a11 =−r1x∗,

a12 =−x∗
( rkα1

(1+ kα1y∗)2 +(α0 +2α1y∗)
)
,

a21 = c(α0 +α1y∗)y∗,

a22 = cα1x∗y∗− y∗(δ − γ)

(1+ y∗)2 .

We look for the solution of the form

X =Aeλ tsin
(nπ

L
u
)

cos
(mπ

M
v
)
,

Y =Beλ tsin
(nπ

L
u
)

cos
(mπ

M
v
)
.

From system (2.3), we get

∂X
∂ t

=a11X +a12Y +D1

((nπ

L

)2
+
(mπ

M

)2
)
,

∂Y
∂ t

=a21X +a22Y +D2

((nπ

L

)2
+
(mπ

M

)2
)
.

Now, the Jacobian matrix of the above linearized system is

ME∗ =

[
m11 m12

m21 m22

]
=

 a11 −D1

((
nπ

L

)2
+
(

mπ

M

)2
)

a12

a21 a22 −D2

((
nπ

L

)2
+
(

mπ

M

)2
)
 .

Now,

M1 =−Tr(M∗) =−(m11 +m22) = r1x∗− cα1x∗y∗+ y∗
δ − γ

(1+ y∗)2 +(D1 +D2)

[(
nπ

L

)2

+

(
mπ

M

)2]
,

M2 = det(M∗) = m11m22 −m12m21,

M2 = r1x∗
(
− cα1x∗y∗+ y∗

(δ − γ)

(1+ y∗)2

)
+ c(α0 +α1y∗)

( rkα1

(1+ kα1y∗)2 +(α0 +2α1y∗)
)

x∗y∗

+

((nπ

L

)2
+
(mπ

M

)2
)[

D1

(
− cα1x∗y∗+ y∗

(δ − γ)

(1+ y∗)2

)
+D2

(
r1x∗+D1

((nπ

L

)2
+
(mπ

M

)2))]
.
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The characteristic equation for the Jacobian matrix M∗ is

λ
2 +M1λ +M2 = 0. (2.14)

The positive equilibrium point E∗(x∗,y∗) of the system (2.3) is locally asymptotically stable if
and only if

M1 > 0, M2 > 0

i.e., if

r1x∗− cα1x∗y∗+ y∗
δ − γ

(1+ y∗)2 +(D1 +D2)

[(
nπ

L

)2

+

(
mπ

M

)2]
> 0,

and

r1x∗
(
− cα1x∗y∗+ y∗

(δ − γ)

(1+ y∗)2

)
+ c(α0 +α1y∗)

( rkα1

(1+ kα1y∗)2 +(α0 +2α1y∗)
)

x∗y∗+((nπ

L

)2
+
(mπ

M

)2
)[

D1

(
− cα1x∗y∗+ y∗

(δ − γ)

(1+ y∗)2

)
+D2

(
r1x∗+D1

((nπ

L

)2
+
(mπ

M

)2))]
> 0.

2.6.1 Conditions for Turing instability

In particular, from the characteristic equation (2.14) of the Jacobian matrix JE∗
1
, we have

M1 =−Tr(JE∗
1
)+(D1 +D2)

((nπ

L

)2
+
(mπ

M

)2
)
,

and

M2 = D1D2

[(nπ

L

)2
+
(mπ

M

)2
]2

− (a11D2 +a22D1)

[(nπ

L

)2
+
(mπ

M

)2
]
+det

(
JE∗

1

)
, (2.15)

where,

Tr(JE∗
1
) =−r1x∗− y∗(δ − γ)

(1+ y∗)2 + cα1x∗y∗,

det(JE∗
1
) = r1x∗y∗

[ (δ − γ)

(1+ y∗)2 − cα1x∗
]
+ cx∗y∗(α0 +α1y∗)

( rkα1

(1+ kα1y∗)2 +(α0 +2α1y∗)
)
.

The condition for Turing instability i.e., the diffusion driven instability can occur when M1 < 0
or M2 < 0.
As we can see from M1, if Tr(JE∗

1
)< 0, then M1 > 0.

The only possibility left for the occurrence of Turing instability is that M2 < 0 when det(JE∗
1
)>

0.



40 Chapter 2. Diffusive patterns in a predator-prey system with fear and hunting cooperation

Now, we define

H(ζ ) = D1D2ζ
2 − (a11D2 +a22D1)ζ +det(JE∗

1
), (2.16)

where ζ =
(

nπ

L

)2
+
(

mπ

M

)2
.

So, for Turing instability H(ζ )< 0

i.e., D1D2ζ
2 − (a11D2 +a22D1)ζ +det(JE∗

1
)< 0.

Above equation is a quadratic equation in ζ . Therefore, let at ζ = ζm, H(ζ ) attains its
minimum. Thus,

H ′(ζm) = 0 ⇒ 2D1D2ζm − (a11D2 +a22D1) = 0,

which gives ζm =
(a11D2 +a22D1)

2D1D2
> 0. (2.17)

At ζ = ζm, the condition for diffusive instability is

(a11D2 +a22D1)
2

4D1D2
− (a11D2 +a22D1)

2

2D1D2
+det(JE∗

1
)< 0,

i.e. (a11D2 +a22D1)
2 −4D1D2det(JE∗

1
)> 0.

Now, from equation (2.16), we get the roots of the quadratic equation

ζ1,2 =
(a11D2 +a22D1)±

√
(a11D2 +a22D1)2 −4D1D2det(JE∗

1
)

2D1D2
.

Thus,
H(ζ )< 0 for ζ1 < ζ < ζ2.

Also, we have
a11 +a22 < 0 ⇒−a22

a11
< 1.

From (2.17)
D2

D1
<

−a22

a11
< 1

⇒ D2 < D1 for Turing instability.



2.6. Stability analysis of spatial model 41

Now, the following result will give the global stability of the unique interior point in the pres-
ence of diffusion.

Theorem 2.6.1. If the interior equilibrium E∗ of model (2.2) is globally asymptotically stable,

then the corresponding uniform steady state of system (2.3) with the given boundary conditions

is also globally asymptotically stable.

Proof. We consider model system (2.3) and define Ω =
{
(u,v) : 0 ≤ u ≤ L,0 ≤ v ≤ M

}
. Con-

sidering
V (x,y) =

(
x− x∗− x∗ln

x
x∗

)
+m

(
y− y∗− y∗ln

y
y∗

)
as a Lyapnuov function, define

V2(t) =
∫∫

Ω

V (x,y)dxdy.

Then,

dV2

dt
=
∫∫

Ω

(
∂V
∂x

∂x
∂ t

+
∂V
∂y

∂y
∂ t

)
dxdy,

dV2

dt
=
∫∫

Ω

[
∂V
∂x

( rx
1+ kα1y

− r0x− r1x2 − (α0 +α1y)xy
)
+

∂V
∂y

(
c(α0 +α1y)xy− y

γ +δy
1+ y

)]
dxdy

+
∫∫

Ω

(
D1

∂V
∂x

∇
2x+D2

∂V
∂y

∇
2y
)

dA,

=
∫∫

Ω

dV
dt

dA+
∫∫

Ω

(
D1

∂V
∂x

∇
2x+D2

∂V
∂y

∇
2y
)

dA,

=I1 + I2.

Using Green’s Identity

∫∫
Ω

F∇
2GdA =

∫
dΩ

F
∂G
∂n

dS−
∫∫

Ω

(∇F.∇G)dA,
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in the above equation, we get

∫∫
Ω

∂V
∂x

∇
2xdA = 0−

∫∫
Ω

(
∇

(
∂V
∂x

)
.∇x
)

dA

∇

(
∂V
∂x

)
=

∂

∂u

(
∂V
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)
î+

∂
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(
∂V
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)
ĵ

=
∂ 2V
∂x2 .

∂x
∂u

î+
∂ 2V
∂x2 .

∂x
∂v

ĵ

∇x =
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∂u

î+
∂x
∂v

ĵ

∴ ∇

(
∂V
∂x

)
.∇x =

∂ 2V
∂x2

(
∂x
∂u

)2
+

∂ 2V
∂x2

(
∂x
∂v

)2

⇒ dV2

dt
=
∫∫

Ω

dV
dt

dA−
∫∫

Ω

D1

[
∂ 2V
∂x2

(
∂x
∂u

)2
+

∂ 2V
∂x2

(
∂x
∂v

)2
]

dA−
∫∫

Ω

D2

[
∂ 2V
∂y2

(
∂y
∂u

)2
+

∂ 2V
∂y2

(
∂y
∂v

)2
]

dA.

Therefore, if dV
dt ≤ 0, then dV2

dt ≤ 0.

2.7 Numerical simulations

2.7.1 Non-spatial model

In this section, first, we perform some extensive numerical simulations to understand the dy-
namics of system (2.2).

In Fig. 2.5, we fixed the parameters as r = 3, r0 = 2, r1 = 0.2, k = 0.25, α0 = 0.5, c = 0.5,
γ = 0.5, and δ = 0.8. For α1 = 0.5, system (2.2) has a stable unique interior equilibrium point
i.e. E∗

1 = (1.529,0.603) is a spiral sink (Fig. 2.5(a)) and for α1 = 1.2, system (2.2) has a stable
limit cycle around the interior equilibrium point E∗

1 = (1.168,0.424) i.e. E∗
1 is a spiral source

(Fig. 2.5(b)).
Next, when model (2.2) has two interior equilibrium points E∗

1 and E∗
2 , then the extinction

equilibrium E0 is always a saddle point and the axial equilibrium E1 is always locally asymptot-
ically stable. In Fig. 2.6, we fixed the parameters as r = 3, r0 = 2, r1 = 0.12, k = 0.5, α1 = 0.5,
c = 0.5, γ = 0.5,and δ = 0.8. For α0 = 0.025, system (2.2) has two interior equilibrium points
E∗

1 = (4.244,0.517) and E∗
2 = (5.657,0.359). Here, E∗

1 is a stable equilibrium and E∗
2 is a

saddle point (Fig. 2.6(a)). Now, by changing α0 = 0.05, we get a stable limit cycle around the
equilibrium point E∗

1 = (3.645,0.567) i.e. E∗
1 is a spiral source and E∗

2 = (6.589,0.238) is a
saddle point (Fig. 2.6(b)). In this case there is a bi-stability between interior equilibrium point
E∗

1 and the axial equilibrium E1.
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(a) α1 = 0.5, the unique interior equilibrium
E∗

1 = (1.529,0.603) is locally asymptotically
stable.

0 2 4 6

Prey Density

0

0.5

1

1.5

2

P
re

d
a
to

r 
D

e
n

s
it

y

E
1
*

(b) α1 = 1.2, there is a stable limit cycle
around the unique interior equilibrium E∗

1 =
(1.168,0.424).

Fig. 2.5: Here, all the parameters values are fixed as r = 3, r0 = 2, r1 = 0.2, k = 0.25,
α0 = 0.5, c = 0.5, γ = 0.5, and δ = 0.8. In this case, the other two equilibria E0 and E1
are always saddle.
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(a) α0 = 0.025, E∗
1 = (4.244,0.518) is locally

asymptotically stable and E∗
2 = (5.657,0.359) is a

saddle.
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(b) α0 = 0.05, there is a stable limit cycle around
E∗

1 = (3.645,0.567) and E∗
2 = (6.589,0.238) is a

saddle.

Fig. 2.6: Here, we fixed the parameter values as r = 3, r0 = 2, r1 = 0.12, k = 0.5, α1 =
0.5, c = 0.5, γ = 0.5,and δ = 0.8. In this case, axial equilibrium E1 is always locally
asymptotically stable, whereas the extinction equilibrium E0 is always saddle point.

Now, if we fix the parameter values as r = 2.7, r0 = 0.2, r1 = 0.1, k = 0.1, α0 = 0.045,
α1 = 0.006, c = 0.5, γ = 0.5 and δ = 0.8, system (2.2) has three interior equilibrium points
E∗

1 = (15.092,9.540), E∗
2 = (23.110,2.941), and E∗

3 = (24.791,0.424). In this case, the ex-
tinction equilibrium E0 = (0,0) and the axial equilibrium E1 = (25,0) is always a saddle
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point. In Fig. 2.7, the interior equilibrium E∗
1 = (15.092,9.540) is a spiral sink and E∗

3 =

(24.791,0.424) is a nodal sink, i.e. both are locally asymptotically stable whereas the equilib-
rium E∗

2 = (23.110,2.941) is a saddle point. Here, we notice bi-stability between two interior
equilibrium points.
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Fig. 2.7: E∗
1 = (15.0927,9.5400) and E∗

3 = (24.7914,0.4242) are locally asymptotically
stable and E∗

2 = (23.1100,2.9411) is a saddle point. Here, we fixed the parameter values
as r = 2.7, r0 = 0.2, r1 = 0.1, k = 0.1,α0 = 0.045, α1 = 0.006, c = 0.5, γ = 0.5,and
δ = 0.8. In this case, axial equilibrium E1 and the extinction equilibrium E0 is always a
saddle point.

In addition, we plot the existence of all the interior equilibria in Fig. 2.8. Here, we have
fixed all the parameters as r0 = 0.2; r1 = 0.1; k = 0.1; α1 = 0.006; c = 0.5; γ = 0.5; δ = 0.8
and varied the two parameters α0 and r with the range 0 to 0.1 and 2 to 3, respectively. In blue
region, no interior equilibrium exists. In green region, there is only one interior equilibrium
which can be either source or stable. In yellow region, two interior equilibria exists of which
one can be stable or source and other one is always saddle point. In red region, three interior
equilibria exists of which two are always stable and one is always saddle.

Next, in Fig. 2.9, we analyze the basin of attraction for various equilibria. Here, we basi-
cally discussed the convergence region of the trajectories for a given set of initial conditions. In
Fig. 2.9(a), we fixed the parameters as r = 3; r0 = 2; r1 = 0.12; k = 0.5; α0 = 0.025; α1 = 0.5;
c = 0.5; γ = 0.5; δ = 0.8. In this case, two interior equilibria exist and there is a bi-stability
between the equilibria E1 and E∗

1 . Blue and yellow represent the convergence region of E1 and
E∗

1 , respectively. In Fig. 2.9(b), we have fixed the parameters as r = 2.7; r0 = 0.2; r1 = 0.1;
k = 0.1; α0 = 0.045; α1 = 0.006; c = 0.5; γ = 0.5; δ = 0.8. Here, there are two attractors



2.7. Numerical simulations 45

Fig. 2.8: Existence of all the interior equilibria in α0 − r parameter plane. All the re-
maining parameters are fixed as r0 = 0.2; r1 = 0.1; k = 0.1; α1 = 0.006; c = 0.5; γ =
0.5; δ = 0.8. Blue: no interior equilibrium exists, green: only one interior equilib-
rium exists which can be either source or stable, yellow: two interior equilibria exists
of which one can be stable or source and other one is always saddle point, red: three
interior equilibria exists of which two are always stable and one is saddle.

E∗
1 and E∗

3 i.e., there is a bi-stability between E∗
1 and E∗

3 . Magenta and green represent the
convergence region of E∗

1 and E∗
3 , respectively.

(a) Basin of attraction for the axial equilibrium E1
and the interior equilibrium E∗

1 . Blue and yellow
represent the convergence region of E1 and E∗

1 ,
respectively.

(b) Basin of attraction for the interior equilibrium
E∗

1 and the interior equilibrium E∗
3 . Magenta and

green represent the convergence region of E∗
1 and

E∗
3 , respectively.

Fig. 2.9: Basin of attractions in the bistable region for the model (2.2).

In Fig. 2.10, we show the existence of all the interior equilibria and also discussed their
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stability behavior with varying α0. In Fig. 2.10(a), when there exists two interior equilibria,
one is always saddle point and other one can be locally asymptotically stable or a source. In
case of a unique interior equilibrium, it can be locally asymptotically stable or a source. Figure
2.10(b) shows that when there exists three interior equilibria, E∗

1 and E∗
3 are always locally

asymptotically stable, and E∗
2 is always a saddle point.

(a) α0 v.s. prey density x at different equilibria.
All the other parameters are fixed as r = 3, r0 = 2,
r1 = 0.12, k = 0.5, α1 = 0.5, c = 0.5, γ = 0.5,
δ = 0.8.

(b) α0 v.s. prey population x at different equilib-
ria. All the other parameters are fixed as r = 2.7,
r0 = 0.2, r1 = 0.1, k = 0.1, α1 = 0.006, c = 0.5,
γ = 0.5, δ = 0.8.

Fig. 2.10: The figure shows the stability of interior equilibria (E∗
1 , E∗

2 and E∗
3 ) and de-

scribes the number of interior equilibria and their stability when α0 changes from 0 to
0.5, where y−axis is the prey population at corresponding equilibria. Blue represents the
saddle; green represents the source; and red represents the sink (stable).

Moreover, in Fig. 2.11, we plot the stability and instability region for the interior equilibria
in the k-α1 parameter plane. In this figure, we observe that for a fixed value of hunting coopera-
tion parameter α1, increasing the fear effect parameter k can make the system stable. Therefore,
the value of k should be sufficiently large to rule out the existence of periodic solutions.

Next, we plot the bifurcation diagram of prey and predator with varying α1 in Fig. 2.12.
If the cooperation parameter α1 is small, there is stable coexistence of both prey and predator
species. As the cooperation parameter α1 increases, Hopf-bifurcation occurs and the stable
coexistence equilibrium loses its stability and a stable limit cycle emerges with increasing am-
plitude with α1.
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Fig. 2.11: Stablity and instability region of interior equilibria for the model (2.2) w.r.t.
parameters k and α1. Red indicates stablity region and green indicates instability region.
All the other parameters are fixed as r = 3; r0 = 2; r1 = 0.2; α0 = 0.5; c = 0.5; γ = 0.5;
and δ = 0.8.
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Fig. 2.12: Bifurcation plot of prey and predator for the model 2.2 with varying coopera-
tion parameter α1. Here, all the parameters are fixed as r = 3; r0 = 2; r1 = 0.2; k = 0.25;
α0 = 0.5; c = 0.5; γ = 0.5 and δ = 0.8.

2.7.2 Pattern formation

Next, we show that there is a possibility of existence of diffusion induced instability in system
(2.3). If an equilibrium is asymptotically stable without diffusion but unstable in the presence
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of diffusion, it is said to be diffusion driven instability. Turing instabilities may cause patterns
formation in a spatiotemporal model. Now, we check all the analytic conditions of Turing
instability numerically. In Fig. 2.13, we plot H(ζ ) vs ζ for different set of parameters for
which system (2.2) has unique, two or three interior equilibria, respectively. In Fig. 2.13(a),
we plot H(ζ ) vs ζ for different values of r0. Here, all the other parameters are fixed as r = 2.8,
r1 = 0.2, k = 0.25, α0 = 0.5, α1 = 0.5, c = 0.5, γ = 0.5, δ = 0.8. This figure illustrates that
as r0 increases, the range of values for which the polynomial H(ζ ) remains negative decreases
and as a result the possibility for the existence of Turing instabilities decreases.

Similarly in Fig. 2.13(b), we plot H(ζ ) vs ζ for different values of α0. Here, all the other
parameters are fixed as r = 2.9, r0 = 2, r1 = 0.2, k = 0.5, α1 = 0.6, c = 0.8, γ = 0.5, δ = 0.8.
From this figure, we observe that as the value α0 increases, the possibility for the existence of
Turing instability decreases. In Fig. 2.13(c), we plot H(ζ ) vs ζ for different values of k with
other parameters as r = 2.57, r0 = 0.2, r1 = 0.1, α0 = 0.045, α1 = 0.006, c = 0.5, γ = 0.5,
δ = 0.8. Here, we analyze that as the value of k increases, the range for which the polynomial
H(ζ ) remains negative increases. Hence, the possibility for the occurrence of diffusion induced
instabilities increases as the value of k increases.

Turing patterns in two-dimensional spatial model (2.3)

Now, we perform some numerical simulation to obtain the Turing patterns in two-dimensional
space. We will investigate Turing patterns obtained for different diffusive rates. The system
of equations in (2.3) is numerically solved using the finite difference method to obtain the spa-
tiotemporal dynamics in a two-dimensional spatial domain. For the reaction part, the forward
difference Euler scheme is used, and for the two-dimensional diffusion terms, the standard five
point explicit finite difference scheme is used with homogeneous Neumann boundary condi-
tions. We consider a square domain ω = [0,200]× [0,200] with the time step ∆t = 1/300 and
spatial grid sizes ∆x = ∆y = 1/3. For the numerical simulations, we introduce a small random
perturbation near the equilibrium point E∗(x∗,y∗) in the reaction-diffusion system. The initial
condition is considered as

x(u,v,0) = x∗+5εξi, j,

y(u,v,0) = y∗+5εθi, j,
(2.18)

where ε1 = 0.0001 and ξi, j and θi, j represents standard Gaussian white noise.
Next, we will investigate the effect of diffusion coefficients on the Turing patterns. We carry

out the simulations at time t = 1,00,000 so that patterns will become stationary and will not
change further with changing time. Figures 2.14, 2.15, and 2.16 depicts various Turing patterns
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Fig. 2.13: Plot of H(ζ ) with respect to ζ for different values of α0 and k, where black
dashed line represents H(ζ ) = 0.

obtained for different diffusive rates. In Fig. 2.14, we obtain Turing patterns for the spatial
model when the system has a unique interior equilibrium. Here, we observe that increase
in diffusion may lead to decrease in spatial heterogeneity in population density of prey and
predator. In this figure, the system dynamics shows holes patterns for the prey and spots pattern
for the predator population, i.e. the prey population exists at low density in the isolated region
and at high density in the remaining area, whereas the predator population resides at medium
density in the isolated spots and at low density in the remaining region.

Figure 2.15 presents Turing pattern for the spatial system when there exists two interior
equilibrium. Here, all the parameters are fixed as given in Table 2.2. The blue color signifies
low population density, while the red color signifies high population density. This figure depicts
the patterns of holes and spots for the prey and predator populations, respectively. Here, we
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Fig No. Number of Interior Equi-
librium

Parameter values

2.14 Unique r = 3, r0 = 2.5, r1 = 0.2, k = 0.25, α0 =
0.5, α1 = 0.5, c = 0.5, γ = 0.5, and
δ = 0.8

2.15 Two r = 2.9, r0 = 2, r1 = 0.2, k = 0.5, α0 =
0.08, α1 = 0.6, c = 0.8, γ = 0.5, and
δ = 0.8

2.16 Three r = 2.62, r0 = 0.2, r1 = 0.1, k = 0.7,
α0 = 0.045, α1 = 0.006, c = 0.5, γ = 0.5,
and δ = 0.8

Table 2.2: Parameters values for Turing patterns used in Figs. 2.14, 2.15, 2.16

analyzed that the prey population has a spatial distribution in which the average and high popu-
lation density occupy the majority of the domain. In contrast, the predator population occupies
a considerable portion of low population density area.

Similarly, Fig. 2.16 depicts snapshots of Turing patterns obtained for prey and predator
population in two dimensional spatial model. In this case, the system has three interior equi-
libria out of which one satisfies the analytic conditions of Turing instability. Figure 2.16 shows
a mixture of spots and stripes patterns. As we increase the value of diffusion coefficients, the
patterns start evolving.

2.8 Discussion and concluding remarks

In the present paper, we proposed a predator-prey model incorporating both hunting cooperation
among predators and fear induced birth reduction in prey. Moreover, we assume that due to
hunting cooperation. The fear induced in the prey is incorporated in the form of reduced birth
rate of prey. We assume that predators consume prey through Type-I functional response [55].
Further, the temporal and spatial model systems are proposed and examined.

For the temporal model system (2.2), we discussed the positivity and boundedness of the
solutions. We provided some sufficient conditions for the system to be persistent. Further, we
derived the conditions for the existence of the number of interior equilibrium points and their
local stability is analyzed. The global stability of the unique interior equilibrium point is inves-
tigated by choosing a suitable Lyapnuov function. We obtained the conditions for the existence
of saddle-node bifurcation around the equilibrium point E∗ for the bifurcation parameter α0.
Throughout this study, our primary concern is to analyze the effect of hunting cooperation on
the system dynamics. As a result, we conducted a Hopf-bifurcation study of the system with
respect to the hunting cooperation parameter α1 and obtained a critical value of the parameter
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(a) D1 = 0.1, D2 = 0.0001. (b) D1 = 0.1, D2 = 0.0001.

(c) D1 = 1, D2 = 0.001. (d) D1 = 1, D2 = 0.001.

Fig. 2.14: Snapshots of prey and predator obtained for different diffusive rates in 2D(xy-
plane). All the other parameters are fixed as mentioned in Table 2.2.
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(a) D1 = 0.1, D2 = 0.001. (b) D1 = 0.1, D2 = 0.001.

(c) D1 = 1, D2 = 0.01. (d) D1 = 1, D2 = 0.01.

(e) D1 = 2, D2 = 0.1. (f) D1 = 2, D2 = 0.1.

Fig. 2.15: Snapshots of prey and predator obtained for different diffusive rates in 2D(xy-
plane). All the other parameters are fixed as mentioned in Table 2.2.
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(a) D1 = 0.1, D2 = 0.001. (b) D1 = 0.1, D2 = 0.001.

(c) D1 = 1, D2 = 0.01. (d) D1 = 1, D2 = 0.01.

(e) D1 = 2, D2 = 0.1. (f) D1 = 2, D2 = 0.1.

Fig. 2.16: Snapshots of prey and predator obtained for different diffusive rates in 2D(xy-
plane). All the other parameters are fixed as mentioned in Table 2.2.
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α1 at which Hopf-bifurcation occurred and the system flips its stability behaviour. We analyze
that increasing the hunting cooperation parameter may destabilize the system. Here, we notice
that for a fixed value of hunting cooperation parameter, increasing the value of fear parameter
can make the system stable. For the spatiotemporal model (2.3), we analyze the linear stability
to determine the Turing instability conditions. Also, we provided the global stability analysis
in the case of spatiotemporal model system.

We performed some numerical simulations to validate our analytical findings. We discuss
about all the possible attractors of the system solutions in Figs. 2.5, 2.6, and 2.7. Moreover, we
also depicted bistability between various equilibrium points in Figs. 2.6 and 2.7. We have an-
alyzed and presented the basin of attractions in the bi-stable region for model (2.2) in Fig. 2.9.
The model show a variety of complex dynamics, including one-parameter bifurcations such as
saddle-node, and Hopf bifurcation which is illustrated in Figs. 2.10 and 2.12. Moreover, we
performed simulations to better understand the movement of species and their spatial distri-
bution across the domains. Turing instability conditions are satisfied for the set of parameters
as given in Table 2.2. We obtained Turing patterns for different diffusive rates in case of two
dimesional spatial model system. Spots, holes and stripes patterns are obtained as illustrated in
Figs. 2.14, 2.15, and 2.16.
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Chapter 3

Consequences of fear effect and prey refuge on the
Turing patterns in a delayed predator-prey system1

3.1 Introduction

In ecology and theoretical biology, the dynamic interaction between predators and their prey
is one of the most dominant themes due to its universal prevalence and significance [10]. Nu-
merous prey-predator models have been investigated to comprehend the impact of prey density
and predator feeding patterns on both species’ stable and oscillatory coexistence. Leslie [84,
85] introduced the prey-predator model in which the predator’s carrying capacity is directly
proportional to the prey density. Many ecologists have been studying the predator-prey model
based on the Leslie-Gower scheme in recent years [5, 65, 73, 105]. Aziz-Alaoui and Okiye [5]
studied the dynamics of a Leslie-Gower scheme-based predator-prey system with Holling-type
II functional response.

Prey refuge has been found useful in a predator-prey interaction by decreasing the risk
of extinction due to predation [28]. Kar [63] highlighted that mite predator-prey interactions
frequently exhibit spatial refugia, which provide refuge from predation and lower the risk of
extinction for the prey. Chen et al. [24] and Cai et al. [20] analyzed the pattern formation in a
Leslie-Gower prey-predator system with prey refuge. Kar et al. [66] proposed a model for two
predators and one prey and showed that incorporating constant prey refuge may prevent prey
extinction. In 2015, Sharma and Samanta [150] developed an eco-epidemiological model and
studied how the infected prey refuge can affect the constituent population density. They con-
cluded that prey refuge plays a vital role in controlling the stability of populations. Verma and
Misra [175] investigated that increasing the prey refuge greater than a certain Allee threshold
may prevent the situation of unconditional extinction.

1This chapter is based on our paper published in Chaos: An Interdisciplinary Journal of Nonlinear Science,
32, 123132, 2022.
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predator-prey system

It has long been assumed that predators can only alter prey populations by killing them
directly, as predatory incidents are relatively easy to detect [32, 34]. But recently, Zanette et al.

[187] highlighted that the predation fear alone reduced the number of song sparrow (Melospiza

Melodia) offsprings by 40%. Wang et al. [180] simulated a predator-prey interaction with fear
effect and observed that high levels of fear could stabilize the system dynamics by excluding
the existence of periodic oscillations. Wang et al. [179] examined a prey-predator system
equipped with both prey refuge and fear. They analyzed that the gradual increments in fear
might decrease the population density, and prey might become extinct.

In general, biological processes often involve delay factors. Incorporating time delays in a
mathematical model can alter the system dynamics and makes it more realistic from an ecologi-
cal perspective [74]. Few studies incorporated the fear response delay as far as the author is con-
cerned. The amount of time it takes for predation fear to alter the density of prey populations is
known as the fear response delay. Panday et al. [119] examined a delayed predator-prey model
and concluded that the system exhibits multi-stability switching and chaotic dynamics for a sig-
nificant increase in delay parameter. Dubey et al. [42] analyzed a multi-delayed predator-prey
system and noticed that system eventually enters a chaotic phase for a significantly high value
of the fear response delay. Therefore, motivated by the above works, in the present work, we
propose a predator-prey model based on a modified Leslie-Gower scheme in which the prey
population exhibits refuge. Here, we are interested in studying the complex dynamics of the
spatial predator-prey system in which the number of prey in the refuge is proportional to the
prey-predator interactions. Prey refuge proportional to both species can make the model more
realistic as prey and predator densities can affect the prey refuge [52, 95, 102, 161]. Also, we
assume the reduced birth rate of the prey population, which accounts for anti-predator behavior
due to predation risk. Since the effect of predation is not instantaneous, we consider the fear
response delay in the growth rate of the prey population. Hence, our model becomes

dx
dt

=

[
r

(1+ ky(t − τ))
− r0 − r1x− (α(1−βy)y)

a+(1−βy)x

]
x,

dy
dt

=

[
(µ − cy

a+(1−βy)x
)

]
y, (3.1)

subjected to the non-negative initial conditions

x(z) = ψ1(z)≥ 0, y(z) = ψ2(z)≥ 0, z ∈ [−τ,0],

where
ψ j(z) ∈ C([−τ,0]→ R+), j = 1,2.

Here, prey and predator densities are represented by x and y at any given time t, r and r0
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signifies birth rate and natural death rate of prey population, respectively. r1 is the magnitude
of intraspecies competitions among preys, α is the attack rate parameter, µ is the growth rate
of predator population, a is the half-saturation constant, c is the maximum value of per capita
reduction of x due to y, τ is the fear response delay. Here, we assume the number of prey
refugia to be xr = βxy, where β is the prey refuge coefficient. Thus, the available prey for
predation is x − βxy = x(1 − βy). Throughout this chapter, we consider (1 − βy) ≥ 0 i.e.,
y ≤ 1

β
. If (1−βy)< 0, then it would imply that no prey species ia available for predation. All

the parameters associated with the above model only assume positive values.
During prey-predator interaction, predators move to hunt prey, while prey migrates to avoid

predators, resulting in spatial variations in population density. This irregular movement of
species can be explained mathematically using Fick’s law of diffusion [108]. This spread of
species might lead to a variety of remarkable spatial patterns. The term Turing instability was
first introduced by Alan Turing [165], which means that adding diffusion to a certain type of
multispecies interaction can destabilize the system dynamics. Dubey et al. [39] examined the
impact of time-varying cross-diffusion and analyzed that increasing the time variation ampli-
tude might have a positive effect on the stabilizing tendency. Dubey et al. [41] investigated the
mathematical aspects of the mechanism for pattern formation in a spatial prey-predator model.
Many ecologists have intensively analyzed the spatiotemporal patterns induced by Turing in-
stability in recent years [71, 72, 77]. Tang et al. [159] studied the dynamical properties of a
diffusive prey-predator system with herd behavior. Chakraborty et al. [23] analyzed how the
combined effects of prey refuge and additional food affect the dynamical properties and prey
density in a diffusive prey-predator system. Upadhyay and Mishra [169] explored the dynamic
consequences of incorporating predation fear in a two-dimensional spatial system. Sasmal et

al. [143] examined the changes in Turing patterns as a result of aposematic time. Kumar and
Kumari [76] analyzed the spatial dynamics of a diffusive predator-prey system and obtained
various Turing and non-Turing patterns. Sasmal et al. [142] proposed and examined a dif-
fusive prey-predator model exhibiting hunting cooperation with fear effect. They observed
complex dynamical behaviors and obtained various Turing patterns for two-dimensional dif-
fusion. Manna and Banerjee [97] investigated that prey and predator species may experience
spatiotemporal chaos for a sufficiently large value of gestational delay. Tripathi et al. [164]
analyzed a prey-predator model with time delay and concluded that diffusion facilitates the
oscillatory coexistence of both species and may alter the bifurcation point. To understand the
impact of prey refuge and predation fear on the system dynamics in a more pragmatic way, we
spatially extend the proposed model system by adding two-dimensional diffusion. The follow-
ing reaction-diffusion equations represent the extended proposed model considering the spatial
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effects,

∂x
∂ t

=

[
r

(1+ ky(t − τ))
− r0 − r1x− (α(1−βy)y)

a+(1−βy)x

]
x+D1∇

2x,

∂y
∂ t

=

[
(µ − cy

a+(1−βy)x
)

]
y+D2∇

2y, (3.2)

subjected to the non-negative initial conditions

x(u,v,s) = ψ1(u,v,s)≥ 0, y(u,v,s) = ψ2(u,v,s)≥ 0,

s ∈ [−τ,0] and ρ = {(u,v) : 0 ≤ u ≤ M,0 ≤ v ≤ N},

and Neumann boundary conditions,

∂x
∂n

=
∂y
∂n

= 0.

Here, ρ is the bounded domain in R2
+ with smooth boundary ∂ρ and n is the outward normal

vector to ∂ρ . x(u,v, t) and y(u,v, t) signifies the prey and predator densities at the spatial co-
ordinates (u,v) and time t, respectively. All the other parameters have the same meaning as
in model (3.1). Here, ∇2 = ∂ 2

∂u2 +
∂ 2

∂v2 is the usual Laplacian operator in the two-dimensional
domain. D1 and D2 are the self-diffusion coefficients for prey and predator, respectively. Neu-
mann boundary conditions indicates that no species can enter or leave through the boundary.

The rest of this paper is structured as follows: In Section 3.2, we analyzed the complex
dynamics of the non-delayed temporal model. We investigated the local stability behavior for
the delayed system in Section 3.3. We have done the direction and stability analysis of Hopf-
bifurcation using normal form theory and center manifold theorem. In Section 3.4, we derived
the conditions for diffusion-driven instability and provided the global stability analysis for the
coexistence equilibrium point. We have done the Hopf-bifurcation analysis for the delayed
spatiotemporal system in Section 3.5. In Section 3.6, we performed extensive numerical simu-
lations to corroborate the analytical results. Finally, in Section 3.7, we concluded our analytical
findings and discussed the ecological significance of our obtained results.
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3.2 Dynamics of non-delayed temporal model

In this section, we shall analyze the temporal model (3.1) without considering delay which may
represented by the following system of ordinary differential equations:

dx
dt

=

[
r

(1+ ky)
− r0 − r1x− α(1−βy)y

a+(1−βy)x

]
x =: f (x,y),

dy
dt

=

[
(µ − cy

a+(1−βy)x
)

]
y =: g(x,y), (3.3)

x(0) = x0 ≥ 0, y(0) = y0 ≥ 0.

3.2.1 Mathematical preliminaries

First, we will prove that all the solutions are non-negative. We can write the model (3.3) as

dx
dt = Φ1(t)x,
dy
dt = Φ2(t)y,

where

Φ1(t) =
r

(1+ ky)
− r0 − r1x− α(1−βy)y

a+(1−βy)x
,

Φ2(t) = µ − cy
a+(1−βy)x

.

Hence

x(t) = x(0)exp
[∫ t

0 Φ1(x(s),y(s))ds
]
≥ 0,

y(t) = y(0)exp
[∫ t

0 Φ2(x(s),y(s))ds
]
≥ 0,

which yields
x(t)≥ 0, and y(t)≥ 0,

which indicates that all the solutions are non-negative.
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Theorem 3.2.1. The solutions of the system (3.3) are bounded above in R2
+ satisfying the given

properties:

lim
t→∞

supx(t)≤ r− r0

r1
=: xmax,

lim
t→∞

supy(t)≤ min{ 1
β
,

µ

c
(a+

r− r0

r1
)}=: ymax.

Proof. System (3.3) gives us

dx
dt = rx

(1+ky) − r0x− r1x2 − α(1−βy)xy
a+(1−βy)x ,

≤ (r− r0)x− r1x2 (as 1−βy ≥ 0).

Assuming r− r0 > 0, we get
lim
t→∞

supx(t)≤ r− r0

r1
.

Now,

dy
dt = y

(
µ − cy

a+(1−βy)x

)
,

≤ µy
(

1− cy
µ(a+xmax)

)
,

= µy
(

1− cy
µ(a+ r−r0

r1
)

)
.

Hence, the result follows.

Theorem 3.2.2. Under the following inequality:

r > (1+ kymax)(r0 +
αymax

a
),

system (3.3) is uniformly persistent.

Proof.

dx
dt

=
rx

(1+ ky)
− r0x− r1x2 − α(1−βy)xy

a+(1−βy)x
,

dx
dt

≥ x
[

r
(1+ kymax)

− r0 − r1x− α(1−βymax)ymax

a

]
,

≥ x
[

r
(1+ kymax)

− r0 − r1x− αymax

a

]
,

= x
[(

r
(1+ kymax)

− r0 −
αymax

a

)
− r1x

]
.
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=⇒ limt→∞ infx(t)≥ 1
r1

(
r

(1+kymax)
− r0 − (αymax

a )
)
=: m∗.

Now,

dy
dt

= y
[
µ − cy

a+(1−βy)x

]
,

dy
dt

≥ y[µ − c
a

y].

Therefore,

limt→∞ infy(t)≥ µa
c .

Using the results of Theorem 3.2.1, we note that

0 < m∗ ≤ lim
t→∞

infx(t)≤ lim
t→∞

supx(t)≤ xmax,

0 <
µa
c

≤ lim
t→∞

infy(t)≤ lim
t→∞

supy(t)≤ ymax.

This implies that system (3.3) is uniformly persistent.

3.2.2 Equilibrium analysis

System (3.3) has four non-negative equilibria:

1. The extinction equilibrium E0 = (0, 0), which is always feasible.

2. The predator-free equilibrium E1 =
(

r−r0
r1

,0
)

exists if r− r0 > 0.

3. The prey-free equilibrium is given by E2 =
(
0, µa

c

)
, which always exists.

4. We can get interior equilibrium of (3.3) as solutions of the following algebraic equations

ψ1(x,y) := r
1+ky − r0 − r1x− α(1−βy)y

a+(1−βy)x = 0,

ψ2(x,y) := µ − cy
a+(1−βy)x = 0.

(3.4)

Solving for x from the second equation of (3.4), we get:

x = cy−µa
µ(1−βy) , (3.5)
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Now, ψ1(x,y) = 0 yields the following cubic polynomial in y:

γ0y3 + γ1y2 + γ2y+ γ3 = 0, (3.6)

where

γ0 = αkµ
2
β

2 (> 0),

γ1 = r1kc2 +αµ
2
β (β −2k)− cr0µkβ ,

γ2 = crµβ + cr0µ(k−β )+ r1c(c−aµk)−αµ
2(2β − k),

γ3 = µ[cr0 +αµ − cr− cr1a].

Now, the sign of the coefficients γ ′i s for i= 1,2,3 will decide whether the proposed system (3.3)
will have no, unique, two or three positive equilibria.

The maximum number of coexistence equilibria is then determined using the Descartes’
rule of sign, as stated below.

Theorem 3.2.3. (a) Under the following condition:

rc+ r1ac−αµ

c
< r0 < min

{
1

cβ

(
r1kc2 +αµ2β 2

kµ
−2αµβ

)
,

1
cµ(β − k)

(
crµβ + r1c2 − r1acµk−2αµ

2
β +αkµ

2
)}

,

there exists no coexistence equilibrium.

(b) Under any of the following two conditions:

(i)r0 < min{rc+ r1ac−αµ

c
,

1
cβ

(
r1kc2 +αµ2β 2

kµ
−2αµβ

)
},

(ii)
1

cµ(β − k)

(
crµβ + r1c2 − r1acµk−2αµ

2
β +αkµ

2
)
< r0 <

rc+ r1ac−αµ

c
,

there exists a unique coexistence equilibrium.

(c) Under any of the following two conditions:

(i)r0 > max
{

1
cβ

(
r1kc2 +αµ2β 2

kµ
−2αµβ

)
,
rc+ r1ac−αµ

c

}
,

(ii)r0 > max
{

1
cµ(β − k)

(
crµβ + r1c2 − r1acµk−2αµ

2
β +αkµ

2
)
,
rc+ r1ac−αµ

c

}
,

there exists at most two coexistence equilibria.
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(d) Under the following condition:

1
cβ

(
r1kc2 +αµ2β 2

kµ
−2αµβ

)
< r0 < min

{
1

cµ(β − k)

×
(

crµβ + r1c2 − r1acµk−2αµ
2
β +αkµ

2
)
,
rc+ r1ac−αµ

c

}
,

there exists at most three interior equilibria.

The existence region plot for each interior equilibria is shown in Fig. 3.1. The blue colour
denotes the absence of an interior equilibrium. There is a unique interior equilibrium in the
green region, while there are two interior equilibria in the yellow region.

The number of interior equilibria for different values of parameter a is depicted in Fig. 3.2
by fixing other parameter values. For a = 0.23, there is no interior equilibrium, for a = 1, there
is a unique interior equilibrium, and the system has two interior equilibria for a = 0.53.

Fig. 3.1: Existence region for all the positive equilibria in a−α parameter plane. Blue
indicates that no interior equilibrium occurs, green indicates that a unique interior equi-
librium exists, and yellow indicates that two interior equilibria exist. Remaining parame-
ters are considered as r = 3, r0 = 0.5, r1 = 0.2, k = 0.5, β = 0.7, µ = 1, c = 0.9.

3.2.2.1 Local stability analysis

Next, the following results give us an insight into the system’s dynamics around the correspond-
ing equilibria.

Theorem 3.2.4. The extinction equilibrium E0 is a saddle point if r− r0 < 0 and a source if

r− r0 > 0.
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(a) No interior equilibrium for a = 0.23.
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(b) Unique interior equilibrium for a = 1.
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(c) Two interior equilibria for a = 0.53.

Fig. 3.2: Number of positive equilibria for system (3.3) with varying a. The remaining
parameters take the values as r = 3, r0 = 0.5, r1 = 0.2, k = 0.5, α = 3.5, β = 0.7, µ = 1,
c = 0.9.

Proof. At E0(0,0), eigenvalues are λ1 = r−r0 and λ2 = µ (> 0). The behavior of the extinction
equilibrium depends on the sign of r− r0. Thus E0 is saddle point if r− r0 < 0 and a source if
r− r0 > 0.

Theorem 3.2.5. The predator-free equilibrium E1 =
(

r−r0
r1

,0
)

is always a saddle point, when-

ever it exists.

Proof. At the equilibrium E1, the eigenvalues are λ1 =−(r− r0)(< 0) and λ2 = µ(> 0).

Theorem 3.2.6. The prey-free equilibrium E2 is locally asymptotically stable if
rc

c+kµa − r0 − αµ(c−β µa)
c2 < 0.

Proof. At the axial equilibrium E2, the eigenvalues are λ1 =
rc

c+kµa − r0 − αµ(c−β µa)
c2 and λ2 =

−µ(< 0). Thus, E2 is locally asymptotically stable if rc
c+kµa − r0 − αµ(c−β µa)

c2 < 0.
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Theorem 3.2.7. The interior equilibrium E∗(x∗,y∗), whenever it exists, is locally asymptoti-

cally stable if the following inequalities hold:(
r1x∗− α(1−βy∗)2x∗y∗

(a+(1−βy∗)x∗)2 +
cy∗(a+ x∗)

(a+(1−βy∗)x∗)2

)
> 0, and[(

r1x∗− α(1−βy∗)2x∗y∗

(a+(1−βy∗)x∗)2

)(
cy∗(a+ x∗)

(a+(1−βy∗)x∗)2

)
+

(
rkx∗

(1+ ky∗)2 +
αx∗[a(1−2βy∗)+ x∗(1−βy∗)2]

(a+(1−βy∗)x∗)2

)(
cy∗2(1−βy∗)

(a+(1−βy∗)x∗)2

)]
> 0.

Proof. The Jacobian matrix at E∗(x∗,y∗) is given by

JE∗ =

 −r1x∗+ α(1−βy∗)2x∗y∗

(a+(1−βy∗)x∗)2
−rkx∗

(1+ky∗)2 −
αx∗[a(1−2βy∗)+x∗(1−βy∗)2]

(a+(1−βy∗)x∗)2

cy∗2(1−βy∗)
(a+(1−βy∗)x∗)2

−cy∗(a+x∗)
(a+(1−βy∗)x∗)2

 .
The characteristic equation is

λ 2 − trace(JE∗)λ +det(JE∗) = 0,

where

trace(JE∗) =−
(

r1x∗− α(1−βy∗)2x∗y∗

(a+(1−βy∗)x∗)2 +
cy∗(a+ x∗)

(a+(1−βy∗)x∗)2

)
,

det(JE∗) =

(
r1x∗− α(1−βy∗)2x∗y∗

(a+(1−βy∗)x∗)2

)(
cy∗(a+ x∗)

(a+(1−βy∗)x∗)2

)
+

(
rkx∗

(1+ ky∗)2 +
αx∗[a(1−2βy∗)+ x∗(1−βy∗)2]

(a+(1−βy∗)x∗)2

)(
cy∗2(1−βy∗)

(a+(1−βy∗)x∗)2

)
.

Under the conditions stated in the theorem, we note that trace(JE∗) < 0 and det(JE∗) > 0.
Hence, all the eigenvalues of JE∗ will have negative real parts, and thus the theorem follows.

Remark: The following gives us the sufficient condition for the local asymptotic stability of
the interior equilibrium E∗:

r1 >
α(1−βy∗)2y∗

(a+(1−βy∗)x∗)2 .
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3.2.2.2 Global stability analysis

Theorem 3.2.8. Under the following inequality:[
−rk

(1+ kymax)(1+ ky∗)
+
(ay∗(1+αβ )+(x∗(y∗−α)(1−βy∗)−aα)

a(a+(1−βy∗)x∗)

]2

< 4
(

r1 −
αy∗(1−βy∗)

a(a+(1−βy∗)x∗

)(
a+ x∗

a+ xmax

)
,

the interior equilibrium point E∗ is globally asymptotically stable.

Proof. Consider a positive definite function about E∗(x∗,y∗) as

V1(x,y) =
(

x− x∗− x∗ln
x
x∗

)
+m

(
y− y∗− y∗ln

y
y∗

)
.

Choosing m = a+(1−βy∗)x∗
c , the time derivate of V1(x,y) along the solutions of the system (3.3)

is given by

V̇1 = −a11(x− x∗)2 +a12(x− x∗)(y− y∗)−a22(y− y∗)2,

where

a11 =

[
r1 −

αy∗(1−βy)(1−βy∗)
(a+(1−βy)x)(a+(1−βy∗)x∗)

]
,

a12 =

[
−rk

(1+ ky)(1+ ky∗)
+(

ay∗(1+β (α − y))+(x∗(y∗−α))(1−βy∗)−aα)(1−βy)
(a+(1−βy)x)(a+(1−βy∗)x∗)

)

]
,

a22 =

[
(a+ x∗)

(a+(1−βy)x)

]
.

Applying Sylvester’s criteria for V̇1 to be negative definite, we have

a11 > 0, a22 > 0, and a2
12 < 4a11a22.

The above conditions are satisfied under the condition stated in Theorem 3.2.8.

Figure 3.3 specifies the region (magenta) for the global asymptotic stability of the positive
equilibrium in the a−α parameter plane. The remaining parameter values take the values as
r = 3, r0 = 0.5, r1 = 0.2, k = 0.5, β = 0.7, µ = 1, c = 0.9.
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Fig. 3.3: Magenta colour signifies the global asymptotic stability region for the interior
equilibrium (Theorem 3.2.8). The remaining parameters take the values as r = 3, r0 =
0.5, r1 = 0.2, k = 0.5, β = 0.7, µ = 1, c = 0.9.

3.2.3 Bifurcation analysis

In this subsection, we shall explore the various bifurcations that system (3.3) exhibits. Bifur-
cation occurs when changing the value of a control parameter, causing a qualitative shift in the
dynamics. Here, we have demonstrated that system (3.3) experiences Hopf and saddle-node
bifurcation.

3.2.3.1 Hopf-bifurcation

Considering the fear parameter k as bifurcation parameter, we now examine the criteria for the
occurence of Hopf-bifurcation around the positive equilibrium E∗.

At the equilibrium E∗, the Jacobian matrix yields the following characteristic equation:

λ
2 +A1λ +A2 = 0, (3.7)

where
A1 =−trace(JE∗) and, A2 = det(JE∗).

Assuming the eigenvalue of the aforementioned equation to be of the form λb(k) = λr(k)+

iλim(k), we substitute λb(k) in Eq. (3.7). Then, we obtain

λ
2
r −λ

2
im +A1λr +A2 = 0, (3.8)
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2λrλim +A1λim = 0. (3.9)

For the system to experience Hopf-bifuraction, we need Re(λb(k)) = 0 at the critical value
k = k∗. Hence,

−λ 2
im +A2 = 0, λim ∈ R,

λimA1 = 0, λim ̸= 0.

Therefore,

A2 > 0 and A1 = 0 at the critical value k∗.

From trace(JE∗) = 0, we get

k∗ =
1
y∗

 r

r0 +2r1x∗−µ − y∗(a(α+2c)+2cx∗−βy∗(aα+cx∗)
(a+(1−βy∗)x∗)2

−1

 .

Differentiating Eqs. (3.8) and (3.9) with respect to k and substituting λr = 0, we obtain

−2λim
dλim

dk
+A1

dλr

dk
+

dA2

dk
= 0, (3.10)

2λim
dλr

dk
+λim

dA1

dk
+A1

dλim

dk
= 0. (3.11)

On solving the above equations, we have

dλr

dk

∣∣∣∣
k=k∗

=−
(A1

dA2
dk +2λ 2

im
dA1
dk )

A2
1 +4λ 2

im
̸= 0,

provided A1
dA2
dk +2λ 2

im
dA1
dk ̸= 0.

Therefore, the system experiences Hopf-bifurcation around the positive equilibrium E∗ if
A2 > 0 and (A1

dA2
dk +2λ 2

im
dA1
dk ) ̸= 0 at the critical value k = k∗. Thus, we can state the following

theorem.

Theorem 3.2.9. The necessary and sufficient condition for system (3.3) to experience Hopf-

bifurcation around the interior E∗ is that there exists k = k∗ such that

1. A1(k∗) = 0,

2. dλr
dk

∣∣
k=k∗

̸= 0.
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3.2.3.2 Saddle-node bifurcation

Theorem 3.2.10. If the following conditions hold true:(
α(1−βy∗)x∗− fx

gx
cy∗
)
̸= 0,

and [(
fxx −

fx

fy
( fxy + fyx)+

f 2
x

f 2
y

fyy

)
− fx

gx

(
gxx −

fx

fy
(gxy +gyx)+

f 2
x

f 2
y

gyy

)]
̸= 0,

system (3.3) experiences a saddle-node bifurcation around the positive equilibrium as the half-

saturation constant a crosses the critical value a = as.

Proof. At the positive equilibrium E∗(x∗,y∗), the Jacobian matrix is

JE∗(x∗,y∗) =

 −r1x∗+ α(1−βy∗)2x∗y∗

(a+(1−βy∗)x∗)2
−rkx∗

(1+ky∗)2 −
αx∗[a(1−2βy)+x∗(1−βy∗)2]

(a+(1−βy∗)x∗)2

cy∗2(1−βy∗)
(a+(1−βy∗)x∗)2

−cy∗(a+x∗)
(a+(1−βy∗)x∗)2

 .
At a = as, det(JE∗) = 0.

Now, we can easily show that the above Jacobian matrix has a zero eigenvalue at a = as.
Let F = ( f ,g)T . Taking derivative of the given system (3.3) with respect to a, we obtain

Fa(x∗,y∗) =

 α(1−βy∗)x∗y∗

(a+(1−βy∗)x∗)2

c(y∗)2

(a+(1−βy∗)x∗)2

 ,

A = DF(E∗(x∗,y∗),as) =

[
fx fy

gx gy

]
,

where

fx =− r1x∗+
α(1−βy∗)2x∗y∗

(as +(1−βy∗)x∗)2 ,

fy =
−rkx∗

(1+ ky∗)2 −
αx∗[as(1−2βy)+ x∗(1−βy∗)2]

(as +(1−βy∗)x∗)2 ,

gx =
cy∗2(1−βy∗)

(as +(1−βy∗)x∗)2 ,

gy =
−cy∗(aS + x∗)

(as +(1−βy∗)x∗)2 .

D2F(E(x̄, ȳ),as) =

[
fxx fxy fyx fyy

gxx gxy gyx gyy

]
,
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where

fxx =− r1 +
α(1−βy)2y(a− (1−βy)x)

(a+(1−βy∗)x∗)3 ,

fxy =
−xα(1−βy)[a(1−3βy)+ x(1−βy)2]

(a+(1−βy∗)x∗)3 ,

fyx =
−kr

(1+ ky)2 +
−a(a+ x)α +a

den
,

fyy =x
(

2k2r
(1+ ky)3 +

2a(a+ x)αβ

(a+(1−βy)x)3

)
,

gxx =
2cy2(1−βy)2

(a+(1−βy)x)3 ,

gxy =
cy[2(a+ x)−3(a+ x)βy+ xy2β 2]

(a+(1−βy)x)3 ,

gyx =
cy(a+ x− (2a+ x)βy)

(a+(1−βy)x)3 ,

gyy =
−c(a+ x)(a+ x+ xβy)

(a+(1−βy)x)3 .

Now, v =
[

1 − fx
fy

]T
and w =

[
1 − fx

gx

]T
are the eigenvectors corresponding to the zero

eigenvalue of the matrix A = DF(E∗(x∗,y∗),as) and AT = [DF(E∗(x∗,y∗),as)]
T , respectively.

Applying Sotomayor’s Theorem [126] gives us

wT Fa

(
E∗(x∗,y∗),as

)
=

y∗

(as +(1−βy∗)x∗)2

[
α(1−βy∗)x∗− fx

gx
cy∗
]
̸= 0,

and

wT
[(

D2F(E(x̄, ȳ),as)
)
(v,v)

]
=

[(
fxx−

fx

fy
( fxy+ fyx)+

f 2
x

f 2
y

fyy

)
− fx

gx

(
gxx−

fx

fy
(gxy+gyx)+

f 2
x

f 2
y

gyy

)]
̸= 0.

Hence, the system experiences saddle-node bifurcation under the following conditions:

α(1−βy∗)x∗− fx

gx
cy∗ ̸= 0,

and [(
fxx −

fx

fy
( fxy + fyx)+

f 2
x

f 2
y

fyy

)
− fx

gx

(
gxx −

fx

fy
(gxy +gyx)+

f 2
x

f 2
y

gyy

)]
̸= 0.



3.3. Dynamics of delayed temporal model 71

3.3 Dynamics of delayed temporal model

In this part, we shall look into the dynamics of the non-spatial delayed system (3.1).

3.3.1 Local stability and Hopf-bifurcation analysis

Considering x = x∗ +X , y = y∗ +Y , we linearize system (3.1) near the interior equilibrium
E∗(x∗,y∗). The corresponding linear system is given by

dV
dt

= Z1V (t)+Z2V (t − τ),

where

Z1 =

(
∂F

∂U(t)

)
E∗
, Z2 =

(
∂F

∂U(t − τ)

)
E∗
, and V (t) = (X(t),Y (t))T .

Now, calculating the Jacobian matrix for system (3.1), we get

JE∗ = Z1 +Z2e−λτ ,

JE∗ =

[
a1 a2 +a5e−λτ

a3 a4

]
,

where

a1 =
r

1+ ky∗
− r0 −2r1x∗− αa(1−βy∗)y∗

(a+(1−βy∗)x∗)2 ,

a2 =−αx∗[a(1−2βy∗)+ x∗(1−βy∗)2]

(a+(1−βy∗)x∗)2 ,

a3 =
cy∗2(1−βy∗)

(a+(1−βy∗)x∗)2 ,

a4 = µ − cy∗(2a+2x∗−βx∗y∗)
(a+(1−βy∗)x∗)2 ,

a5 =
−rkx∗

(1+ ky∗)2 .

Above Jacobian matrix yields the following characteristic equation:

λ
2 + p1λ +(p2 + p3e−λτ) = 0, (3.12)

where p1 =−(a1 +a4), p2 = (a1a4 −a2a3), p3 =−a3a5.
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Case (1): Characteristic equation for τ = 0 is

λ
2 + p1λ +(p2 + p3) = 0. (3.13)

Remark: The above characteristic equation is the same as for system (3.3).
The characteristic equation (3.13) will have all the roots with negative real parts if and only

if (H1): p1 > 0, p2 + p3 > 0.

Case (2): τ > 0. Assuming iω(ω > 0) to be a root of Eq. (3.12), we obtain

−ω
2 + p1iω +(p2 + p3e−iωτ) = 0,

−ω
2 + p1iω + p2 + p3(cos(ωτ)− isin(ωτ)) = 0.

Comparing real and imaginary parts,

p3cos(ωτ) = ω
2 − p2,

p3sin(ωτ) = p1ω, (3.14)

leading to

z2 + p′z+q′ = 0, (3.15)

where p′ = p2
1 −2p2, q′ = p2

2 − p2
3, z = ω

2.

Let φ(z) = z2 + p′z+q′.

(H2): p′ > 0, q′ > 0.
Remark:

• Equation (3.15) has no positive roots if (H2) holds. Therefore, all the roots of Eq. (3.12)
have negative real parts and thus, E∗ is asymptotically stable for τ > 0 if (H1) and (H2)
hold.

• E∗(x∗,y∗) is unstable for all τ > 0 if any one of (H1) or (H2) does not hold true.

(H3): q′ < 0.
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Equation (3.15) has a unique positive root ω2
0 if (H3) holds. Substituting in Eq. (3.14), we

get:

p3cos(ω0τ) = ω
2
0 − p2,

p3sin(ω0τ) = p1ω0,

which gives us

τi =
1

ω0

[
cos−1(

ω2
0 − p2

p3
)

]
+

2iπ
ω0

; i = 0,1,2, ...... (3.16)

(H4): p′ < 0, q′ > 0 and p′2 > 4q′.
If (H4) holds true, then Eq. (3.15) has two distinct positive roots ω2

1 and ω2
2 . From (3.14),

we get

τ
1,2
j =

1
ω1,2

[
cos−1

(
ω2

1,2 − p2

p3

)]
+

2 jπ
ω1,2

; j = 0,1,2, ...... (3.17)

Let us assume that Eq. (3.12) has a root λ (τ) such that Re(λ (τ))=0. Now from Eq. (3.12), we
have (

dλ

dτ

)−1

=
(2λ + p1)eλτ

p3λ
− τ

λ
,[

dλ

dτ

]−1

λ=iω0

=
(2iω0 + p1)(cos(ωoτ)+ isin(ωoτ))

p3iω0
− τ

iω0
,

Re
[

dλ

dτ

]−1

λ=iω0

=
2ω0cos(ωoτ)+ p1sin(ωoτ)

p3ω0
.

We know that

cos(ωoτ) =
ω2

0 − p2

p3
, sin(ωoτ) =

p1ω0

p3
.

Therefore, after simplifying it a little, we get

Re
[

dλ

dτ

]−1

λ=iω0

=
2(ω2

0 − p2)+ p2
1

p2
3

.

However,

sign
[

d
dτ

Re(λ )
]

λ=iω0

= sign
[

Re
(

dλ

dτ

)]
λ=iω0

.
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(H5): 2(ω2
0 − p2)+ p2

1 ̸= 0.

Hence, if (H5) holds true, then
[ d

dτ
Re(λ )

]
λ=iω0

̸= 0.
Now, we can state the following result.

Theorem 3.3.1. Assuming (H1), (H3) and (H5) hold true for system (3.1), then there exist a

positive number τ0 such that the interior equilibrium E∗(x∗,y∗) is locally asymptotically stable

for τ < τ0 and unstable for τ > τ0. Also, system (3.1) experiences Hopf-bifurcation at the

interior equilibrium E∗(x∗,y∗) for τ = τ0.

3.3.2 Direction and stability of Hopf-bifurcation

This subsection presents a complete analysis of the characteristics of bifurcated periodic solu-
tions using the center manifold theorem and normal form theory.

Let τ = τ0 + µ,µ ∈ R such that Hopf-bifurcation occurs at µ = 0 and C = C([−1,0],R2)

denotes the space of continuous real valued function. Using the transformation

x̄1(t) = x(t)− x∗, ȳ1(t) = y(t)− y∗

and still denoting x̄1(t), ȳ1(t) by x(t),y(t), our delayed system (3.1) is reduced to functional
differential equation in C as

dX
dt

= LµXt + f (µ,Xt), (3.18)

where

X(t) = [x(t),y(t)]T ∈ R2,

Lµ : C → R2, f : R×C → R2,

Xt(θ) = X(t +θ), θ ∈ [−1,0],

Lµ = (τ0 +µ)[Z1φ(0)+Z2φ(−1)], (3.19)

Lµ = (τ0 +µ)

[
a1 a2

a3 a4

][
φ1(0)
φ2(0)

]
+(τ0 +µ)

[
0 a5

0 0

][
φ1(−1)
φ2(−1)

]
, (3.20)

f (µ,φ) = (τ0 +µ)

 r1φ1(0)2 − α(1−βφ2(0))φ1(0)φ2(0)
a+(1−βφ2(0))φ1(0)

−cφ2(0)2

a+(1−βφ2(0))φ1(0)

 .
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By Reisz representation theorem, there exists a matrix whose components are bounded variation
function η(θ ,µ) in [-1,0] such that

Lµ =
∫ 0

−1
dη(θ ,µ)φ(θ), φ ∈C([−1,0],R2). (3.21)

In fact, we may choose

η(θ ,µ) = (τ0 +µ)[Z1δ (θ)−Z2δ (θ +1)], (3.22)

where δ represents Dirac-delta function defined by

δ (θ) =

{
0 : θ = 0,
1 : θ ̸= 0.

(3.23)

For φ ∈C1([−1,0],R2), we define

A(µ)φ(θ) =

{
dφ(θ)

dθ
: −1 ≤ θ < 0,∫ 0

−1 dη(ξ ,µ)φ(ξ ) : θ = 0.

and, R(µ)θ =

{
0 : θ ∈ [−1,0) ,

f (µ,φ) : θ = 0.

Then, system (3.1) is equivalent to the following operation differential equation of the form:

˙X(t) = A(µ)Xt +R(µ)Xt , (3.24)

where

X(t) = X(t +θ), θ ∈ [−1,0].

The adjoint operator A∗ of A is defined by

A∗
ψ(s) =

{
−dψ(s)

ds : s ∈ (0,1] ,∫ 0
−1 ψ(−ξ )dηT (ξ ,0) : s = 0,

associated with a bilinear form

< ψ(s),φ(s)>= ψ̄(0)φ(0)−
∫ 0

−1

∫
θ

ξ=0
ψ̄(ζ −θ)dη(θ)φ(ξ )dζ ,

where η(θ) = η(θ ,0), A = A(0) and A∗ are adjoint operators.
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Following the above discussion, we can easily get ±iω0τ0 as the eigenvalues of A(0) and
hence, the eigenvalues of A∗.

Moreover, it can be easily verified that A(0) and A∗ has following eigenvectors correspond-
ing to the eigenvalues iω0τ0 and −iω0τ0, respectively.

q(θ) = (1,σ1)
T eiω0τ0θ (θ ∈ [−1,0]),

q∗(s) = M(1,σ∗
1 )e

iω0τ0s (s ∈ [0,1]),

where

σ1 =
iω0 −a1

a2 +a5eiω0τ0

,

σ
∗
1 =

−(iω0 +a1)

a3
.

Now,

< q∗(θ),q(θ)>= 1, < q∗(s), q̄(θ)>= 1,

M̄ =
1

1+σσ∗− τ0a5σ1e−iω0τ0
.

Following the computational process explained in [155] for obtaining Hopf-bifurcation proper-
ties, we get the following:

g20 = 2
(
−ασ1

a
−

cMσ̄1
∗σ2

1 τ0

a
−Mr1τ0

)
,

g11 =

(
−ασ̄1

a
− ασ1

a
−2Mr1τ0 −

2cMσ̄1σ̄1
∗σ1τ0

a

)
,

g02 = 2
(
−ασ̄1

a
− cMσ̄1

2σ̄1
∗τ0

a
−Mr1τ0

)
,

g21 =
ασ̄1

a
+

2ασ1

a2 +
2αβσ̄1σ1

a
+

αβσ2
1

a
+

2cMσ̄1σ̄1
∗σ1τ0

a2 +
cMσ̄1

∗σ2
1 τ0

a2 −
ασ1W (0)

11 (0)
a

−2Mr1τ0W (1)
11 (0)−

αW (2)
11 (0)
a

−
2cMσ̄1

∗σ1τ0W (2)
11 (0)

a
−

α
¯

σ1W (1)
20 (0)

2a
−Mr1τ0W (2)

20 (0)

−
αW (2)

20 (0)
2a

−
cMσ̄1σ̄1

∗τ0W (2)
20 (0)

a
,
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where

W20(θ) =
ig20

ω0τ0
q(0)eiω0τ0θ +

i ¯g02

3ω0τ0

¯q(0)e−iω0τ0θ + Ê1e2iω0τ0θ ,

W11(θ) =
−ig11

ω0τ0
q(0)eiω0τ0θ +

i ¯g11

ω0τ0

¯q(0)e−iω0τ0θ + Ê2,

where Ê1 = (Ê1
(1)
, Ê1

(2)
) ∈R2 and Ê2 = (Ê2

(1)
, Ê2

(2)
) ∈R2 are constant vectors, calculated as

Ê1 =

[
2iω0 −a1 −a2 −a5e−2iω0τ0

−a3 2iω0τ0 −a4

]−1[
r1 +

α(1−βσ1)σ1
a

cσ2
1

a

]
,

Ê2 =

[
−a1 −a2 −a5

−a3 −a4

]−1[
r1 +

αRe(σ1)−αβ |σ1|2
a

c|σ1|2
a

]
.

Eventually, gi j can be written in terms of parameters and delay parameter τ0. Hence, stan-
dard results may be computed as

c1(0) =
i

2ω0τ0

(
g20g11 −2|g11|2 −

|g02|2

3

)
+

g21

2
,

µ2 =−Re(c1(0))
Re(λ (τ0))

,

β2 = 2Re(c1(0)),

T2 =−Im(c1(0))+µ2Im(λ (τ0))

ω0τ0
.

The preceding terms describe a bifurcating periodic solution in the center manifold theorem
for system (3.1) at τ = τ0, that is given in the next theorem.

Theorem 3.3.2. 1. The direction of Hopf-bifurcation depends on the sign of µ2. Hopf-

bifurcation is supercritical (subcritical) if µ2 > 0(< 0).

2. The bifurcated periodic solutions are unstable (stable) if β2 > 0(< 0).

3. If T2 > 0(< 0), then the period increases (decreases).
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3.4 Stability analysis of non-delayed spatiotemporal model

Here, we shall investigate the following model which is without delay:

∂x
∂ t

=

[
r

(1+ ky)
− r0 − r1x− (α(1−βy)y)

a+(1−βy)x

]
x+D1∇

2x,

∂y
∂ t

=

[
(µ − cy

a+(1−βy)x
)

]
y+D2∇

2y. (3.25)

Taking the transformation

X = x− x∗,

Y = y− y∗,

system (3.25) reduces to

∂X
∂ t = A11X +A12Y +D1

(
∂ 2X
∂u2 +

∂ 2X
∂v2

)
,

∂Y
∂ t = A21X +A22Y +D2

(
∂ 2Y
∂u2 +

∂ 2Y
∂v2

)
,

where

A11 =−r1x∗+
α(1−βy∗)2x∗y∗

(a+(1−βy∗)x∗)2 ,

A12 =
−rkx∗

(1+ ky∗)2 −
αx∗[a(1−2βy)+ x∗(1−βy∗)2]

(a+(1−βy∗)x∗)2 ,

A21 =
cy∗2(1−βy∗)

(a+(1−βy∗)x∗)2 ,

A22 =
−cy∗(a+ x∗)

(a+(1−βy∗)x∗)2 .

We take into account the solution of the form

X =Aeλ tsin
(nπ

M
u
)

cos
(mπ

N
v
)
,

Y =Beλ tsin
(nπ

M
u
)

cos
(mπ

N
v
)
.
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From system (3.25), we have

∂X
∂ t

=A11X +A12Y +D1

[(nπ

M

)2
+
(mπ

N

)2
]
,

∂Y
∂ t

=A21X +A22Y +D2

[(nπ

M

)2
+
(mπ

N

)2
]
.

The Jacobian matrix for the above system is

ME∗ =

 A11 −D1

((
nπ

M

)2
+
(

mπ

N

)2
)

A12

A21 A22 −D2

((
nπ

M

)2
+
(

mπ

N

)2
)
 ,

Now,

M′
1 =−trace(ME∗) = r1x∗− α(1−βy∗)2x∗y∗

(a+(1−βy∗)x∗)2 +
cy∗(a+ x∗)

(a+(1−βy∗)x∗)2

+(D1 +D2)

[(
nπ

M

)2

+

(
mπ

N

)2]
,

M′
2 =det(ME∗) =

(
r1x∗− α(1−βy∗)2x∗y∗

(a+(1−βy∗)x∗)2

)(
cy∗(a+ x∗)

(a+(1−βy∗)x∗)2

)
+

(
rkx∗

(1+ ky∗)2 +
αx∗[a(1−2βy)+ x∗(1−βy∗)2]

(a+(1−βy∗)x∗)2

)(
cy∗2(1−βy∗)

(a+(1−βy∗)x∗)2

)
+

((nπ

M

)2
+
(mπ

N

)2
)[

D1

( cy∗(a+ x∗)
(a+(1−βy∗)x∗)2

)
+D2

(
r1x∗− α(1−βy∗)2x∗y∗

(a+(1−βy∗)x∗)2 +D1

((nπ

M

)2
+
(mπ

N

)2))]
.

The characteristic equation of ME∗ evaluated at E∗ is

λ
2 +M′

1λ +M′
2 = 0. (3.26)

The equilibrium E∗ of model (3.25) is locally asymptotically stable if and only if

M′
1 > 0, M′

2 > 0,
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i.e., if

r1x∗− α(1−βy∗)2x∗y∗

(a+(1−βy∗)x∗)2 +
cy∗(a+ x∗)

(a+(1−βy∗)x∗)2 +(D1 +D2)

[(
nπ

M

)2

+

(
mπ

N

)2]
> 0,

and (
r1x∗− α(1−βy∗)2x∗y∗

(a+(1−βy∗)x∗)2

)(
−cy∗(a+ x∗)

(a+(1−βy∗)x∗)2

)
+

(
rkx∗

(1+ ky∗)2 +
αx∗[a(1−2βy)+ x∗(1−βy∗)2]

(a+(1−βy∗)x∗)2

)(
cy∗2(1−βy∗)

(a+(1−βy∗)x∗)2

)
+

((nπ

M

)2
+
(mπ

N

)2
)[

D1

( cy∗(a+ x∗)
(a+(1−βy∗)x∗)2

)
+D2

(
r1x∗− α(1−βy∗)2x∗y∗

(a+(1−βy∗)x∗)2 +D1

((nπ

M

)2
+
(mπ

N

)2))]
> 0.

Remark: In a temporal system, the interior equilibrium is unstable if either trace(JE∗)> 0 or
det(JE∗)< 0.

• Case-I: If trace(JE∗) > 0, then the corresponding equilibrium in spatiotemporal system
can be made stable by gradually increasing the value of D1 and D2 to a sufficiently large
value.

• Case-II: If det(JE∗) < 0, then the corresponding equilibrium in spatiotemporal system
can be made stable by gradually increasing the value of D1 to a sufficiently large value.

3.4.1 Conditions for diffusion-driven instability

The characteristic equation (3.26) yields

M′
1 =−trace(JE∗)+(D1 +D2)

[(nπ

M

)2
+
(mπ

N

)2
]
,

M′
2 = D1D2

[(nπ

M

)2
+
(mπ

N

)2
]2

− (A11D2 +A22D1)

[(nπ

M

)2
+
(mπ

N

)2
]
+det

(
JE∗
)
,

(3.27)
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where

trace(JE∗) =−r1x∗+
α(1−βy∗)2x∗y∗

(a+(1−βy∗)x∗)2 −
cy∗(a+ x∗)

(a+(1−βy∗)x∗)2 ,

det(JE∗) =

(
r1x∗− α(1−βy∗)2x∗y∗

(a+(1−βy∗)x∗)2

)(
−cy∗(a+ x∗)

(a+(1−βy∗)x∗)2

)
+

(
rkx∗

(1+ ky∗)2 +
αx∗[a(1−2βy)+ x∗(1−βy∗)2]

(a+(1−βy∗)x∗)2

)(
cy∗2(1−βy∗)

(a+(1−βy∗)x∗)2

)
.

Turing instability, i.e., diffusion driven instability occurs if either M′
1 < 0 or M′

2 < 0 holds.
Clearly M′

1 > 0 if trace(JE∗)< 0. Now the only condition left for Turing instability to occur is
M′

2 < 0 with det(JE∗)> 0.
Next, we define a function

H(ξ ) = D1D2ξ
2 − (A11D2 +A22D1)ξ +det(JE∗), (3.28)

where ξ =
(

nπ

M

)2
+
(

mπ

N

)2
.

Under the condition H(ξ )< 0, Turing instability occurs, i.e.,

D1D2ξ
2 − (A11D2 +A22D1)ξ +det(JE∗)< 0.

Assuming that H(ξ ) attains its minimum at ξ = ξm. Thus,

H ′(ξm) = 0 ⇒ 2D1D2ξm − (A11D2 +A22D1) = 0,

which gives us

ξm =
(A11D2 +A22D1)

2D1D2
> 0. (3.29)

Condition for diffusion driven instability at ξ = ξm is

(A11D2 +A22D1)
2

4D1D2
− (A11D2 +A22D1)

2

2D1D2
+det(JE∗)< 0,

i.e., (A11D2 +A22D1)
2 −4D1D2det(JE∗)> 0.

The roots of the quadratic equation (3.28) is given by

ξ1,2 =
(A11D2 +A22D1)±

√
(A11D2 +A22D1)2 −4D1D2Det(JE∗)

2D1D2
.
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Thus,
H(ξ )< 0 for ξ1 < ξ < ξ2.

Since trace(JE∗)< 0 and, hence,
A11 +A22 < 0.

Since A22 is always negative, therefore

−A11

A22
< 1.

Also, from Eq. (3.29), we have
A11D2 +A22D1 > 0,

⇒ A11D2 >−A22D1,

−A11

A22
>

D1

D2
. (3.30)

From Eqs. (3.29) and (3.30), we obtain

D1

D2
<

−A11

A22
< 1,

⇒ D1 < D2 for Turing instability.

Theorem 3.4.1. The unique interior equilibrium E∗ of the model system (3.25) is globally

asymptotically stable provided the corresponding equilibrium of model (3.3) is globally asymp-

totically stable.

Proof. Let us consider the model (3.25). We take the same Lyapnuov function as used in the
proof of Theorem (3.2.8):

V1(x,y) =
(

x− x∗− x∗ln
x
x∗

)
+m

(
y− y∗− y∗ln

y
y∗

)
.

Let
V2(t) =

∫∫
ρ

V1(x,y)dxdy,

⇒ dV2

dt
=
∫∫

ρ

(
∂V1

∂x
∂x
∂ t

+
∂V1

∂y
∂y
∂ t

)
dxdy,
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⇒ dV2

dt
=
∫∫

ρ

[
∂V1

∂x

( rx
1+ ky

− r0x− r1x2 − α(1−βy)xy
a+(1−βy)x

)
+

∂V1

∂y

(
µy− cy2

a+(1−βy)x

)]
dxdy

+
∫∫

ρ

(
D1

∂V1

∂x
∇

2x+D2
∂V1

∂y
∇

2y
)

dA,

=
∫∫

ρ

dV1

dt
dA+

∫∫
ρ

(
D1

∂V1

∂x
∇

2x+D2
∂V1

∂y
∇

2y
)

dA,

=J1 + J2,

where J1 =
∫∫

ρ

dV1

dt
dA, J2 =

∫∫
ρ

(
D1

∂V1

∂x
∇

2x+D2
∂V1

∂y
∇

2y
)

dA.

Applying Green’s identity, we obtain

∫∫
ρ

∂V1

∂x
∇

2xdA = 0−
∫∫

ρ

(
∇

(
∂V1

∂x

)
.∇x
)

dA.

∇

(
∂V1

∂x

)
=

∂

∂u

(
∂V1

∂x

)
î+

∂

∂v

(
∂V1

∂x

)
ĵ,

=
∂ 2V1

∂x2 .
∂x
∂u

î+
∂ 2V1

∂x2 .
∂x
∂v

ĵ.

∇x =
∂x
∂u

î+
∂x
∂v

ĵ.

∴ ∇

(
∂V1

∂x

)
.∇x =

∂ 2V1

∂x2

(
∂x
∂u

)2
+

∂ 2V1

∂x2

(
∂x
∂v

)2
.

⇒ dV2

dt
=
∫∫

ρ

dV1

dt
dA−

∫∫
ρ

D1
∂ 2V1

∂x2

[(
∂x
∂u

)2
+
(

∂x
∂v

)2
]

dA

−
∫∫

ρ

D2
∂ 2V1

∂y2

[(
∂y
∂u

)2
+
(

∂y
∂v

)2
]

dA.

Here,
∂ 2V1

∂x2 =
x∗

x2 > 0,
∂ 2V1

∂y2 =
my∗

y2 > 0

Hence, dV2
dt < 0 provided dV1

dt < 0.

Remark: If dV1
dt > 0 i.e. the interior equilibrium is unstable in temporal system, then the

corresponding equilibrium can be made globally asymptotiocally stable in spatiotemporal sys-
tem by increasing the value of D1 and D2 to a sufficiently large value.
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3.5 Dynamics of delayed spatiotemporal system

In this section, we analyze the delayed system with diffusion. We shall analyze the combined
effects of delay and diffusion on Hopf-bifurcation.

Consider system (3.2) and take the transformation x̄(u,v, t) = x(u,v, t)− x∗, ȳ(u,v, t) =

y(u,v, t)− y∗. By linearizing the above system (ignoring the bar from variables to simplify
the symbol marks), we have

∂x(u,v,t)
∂ t = J11x(u,v, t)+ J12y(u,v, t)+ J13y(u,v, t − τ)+D1∇2x(u,v, t),

∂y(u,v,t)
∂ t = J21x(u,v, t)+ J22y(u,v, t)+D2∇2y(u,v, t).

(3.31)

We take the solution of the form (perturbing the interior equilibrium in both time and space)

x =Aeλ tsin
(nπ

M
u
)

cos
(mπ

N
v
)
,

y =Beλ tsin
(nπ

M
u
)

cos
(mπ

N
v
)
.

Substituting the above solution in system (3.31) and simplifying, we obtain:

J =

 J11 −D1

((
nπ

M

)2
+
(

mπ

N

)2
)

J12

J21 J22 −D2

((
nπ

M

)2
+
(

mπ

N

)2
)
+

[
0 J13

0 0

]
e−λτ ,

⇒ J =

[
J11 −D1χ2 J12 + J13e−λτ

J21 J22 −D2χ2

]
,

where

χ =

√
(
nπ

M

)2
+
(mπ

N

)2
,

J11 =−r1x∗+
α(1−βy∗)2x∗y∗

(a+(1−βy∗)x∗)2 ,

J12 =
−rkx∗

(1+ ky∗)2 −
αx∗[a(1−2βy)+ x∗(1−βy∗)2]

(a+(1−βy∗)x∗)2 ,

J21 =
cy∗2(1−βy∗)

(a+(1−βy∗)x∗)2 ,

J22 =
−cy∗(a+ x∗)

(a+(1−βy∗)x∗)2 ,

J13 =
−rkx∗

(1+ ky∗)2 .
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Now, we have the following characteristic equation:

λ
2 +N1λ +N2 −N3e−λτ = 0, (3.32)

where

N1 = (D1 +D2)χ
2 − (J11 + J22),

N2 = (J11J22 − J21J12)− (J11D2 + J22D1)χ
2 +D1D2χ

4,

N3 = J21J13.

For λ = iω(ω > 0), we have

N2 −ω
2 = N3cos(ωτ),

N1ω = N3sin(ωτ). (3.33)

On squaring and adding the above two equations and simplifying, we get

ω
4 +Rω

2 +S = 0, (3.34)

where R = N2
1 −2N2, S = N2

2 −N2
3 .

We can divide the expression S into two parts

S = S1S2 = (N2 +N3)(N2 −N3),

where

S1 = (J11J22 − J21J12)− (J11D2 + J22D1)χ
2 +D1D2χ

4 + J21J13,

S2 = (J11J22 − J21J12)− (J11D2 + J22D1)χ
2 +D1D2χ

4 − J21J13.

From the local stability conditions of E∗(x∗,y∗) for the non-delayed model, S2 > 0 always holds
true.

Taking z = ω2, Eq. (3.34) gives

z2 +Rz+S = 0. (3.35)

z± =
−R±

√
R2 −4S

2
.

Next, we have the following cases:
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(H1′): Let R > 0, S1 > 0, R2 −4S > 0.
Then Eq. (3.35) has no positive root. Therefore, all the roots of Eq. (3.32) has negative real
parts for any χ when τ > 0.
(H2′): If ∃ a constant χ0 ∈ N such that

S1(χ0) = D1D2χ0
4 − (J11D2 + J22D1)χ0

2 +(J11J22 − J21J12)+ J21J13 < 0

holds, then ω+ =
√

z+ is a unique positive root of Eq. (3.35).
By substituting ω = ω+ in Eq. (3.33),

cos(ω+
τ) =

N2 −ω+2

N3
∼= H1(ω

+),

sin(ω+
τ) =

N1ω+

N3
∼= H2(ω

∗+), (3.36)

and the corresponding bifurcation parameter is calculated as

τ
j
χ0 =

1
ω+

[
cos−1(

N2 −ω+2

N3
)

]
+

2 jπ
ω0

; j = 0,1,2, ...

Let us assume that λ (τ) be a root of Eq. (3.32) such that Re(λ (τ)) = 0 and λ (τ) = iω+. From
Eq. (3.32), we have

(
dλ

dτ

)−1

=−

[
(2λ +N1)eλτ

N3λ
− τ

λ

]
,[

dλ

dτ

]−1

λ=iω+

=
(2iω++N1)(cos(ω+τ)+ isin(ω+τ))

N3iω+
− τ

iω+
,

Re
[

dλ

dτ

]−1

λ=iω+

=
2ω+cos(ω+τ)+N1sin(ω+τ)

N3ω+
.

Substituting the values of cos(ω+τ) and sin(ω+τ) from Eqs. (3.36), we get

Re
[

dλ

dτ

]−1

λ=iω0

=
2N2 −2ω+2

+N2
1

N2
3

.

Also,

sign
[

d
dτ

Re(λ )
]

λ=iω+

= sign
[

Re
(

dλ

dτ

)]
λ=iω+

.
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(H3′): 2N2 −2ω+2
+N2

1 ̸= 0.
Under (H3′), transversality condition holds.

From the preceding discussion, we can conclude the following result.

Theorem 3.5.1. For the delayed diffusive system, the following conclusions can be made:

1. If (H1′) holds, then E∗(x∗,y∗) is locally asymptotically stable for all τ > 0 and for any

value of χ .

2. If (H2′) holds:

(i) The positive equilibrium E∗(x∗,y∗) is locally asymptotically stable for τ ∈ (0,τ0
χ0
)

and unstable for τ > τ0
χ0

.

(ii) When τ = τ i
χ0
, i= 0,1,2,3, ..., system (3.2) experiences Hopf-bifurcation around

E∗ and we get a family of periodic solutions bifurcating from E∗.

3.6 Numerical simulations

This section carries out extensive numerical simulations to corroborate the analytical findings
obtained in the preceding sections. We use MATLAB R2019b to simulate the analytical find-
ings.

3.6.1 Non-delayed temporal model

In this part, numerical simulation has been performed to better understand the impact of refuge
parameter and the fear parameter on the dynamics of our proposed system (3.3).

In Fig. 3.4, we have shown the phase portrait when the system has unique interior equilib-
rium. For k=0.5, the interior equilibrium E∗

1(4.4352,1.0211) is locally asymptotically stable.
While for k=1, the interior equilibrium has a stable limit cycle i.e., E∗

1(0.6955,0.5257) is a
spiral source. In both the cases, the extinction equilibrium is a source while the axial equilibria
E1(12.5,0) and E2(0,0.2620) are saddle points. The remaining parameters take the values as
r = 3, r0 = 0.5, r1 = 0.2, α = 3.5, β = 0.7, µ = 0.3, c = 0.5, a = 0.4367.

Figure 3.5(a) depicts the phase portrait when the system has two interior equilibrium. Here
system (3.3) exhibits bistability attribute between the axial equilibrium E2(0,0.5556) and the
interior equilibrium E∗

1(3.8882,1.2116). In addition, the extinction equilibrium is a source
while the axial equilibrium E1(12.5,0) and the interior equilibrium E∗

2(0.9760,0.9323) are
saddle points. In Fig. 3.5(b), we have plotted basin of attractions which shows that solutions
starting anywhere from red region converge to E2 and from the green region converge to E∗

1 .
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Fig. 3.4: Phase portrait depicting the stability behavior when there exists a unique in-
terior equilibrium. Parameter values are taken as r = 3, r0 = 0.5, r1 = 0.2, α = 3.5,
β = 0.7, µ = 0.3, c = 0.5, a = 0.4367.

The remaining parameters take the values as r = 3, r0 = 0.5, r1 = 0.2, α = 3.5, β = 0.7, µ = 1,
c = 0.9, a = 0.5 and k = 0.5.
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(a) E2 = (0,0.556) and E∗
1 = (3.889,1.211) are lo-

cally asymptotically stable, whereas E0 = (0,0) is
nodal source, E1(12.5,0) and E∗

2 (0.9760,0.9323)
are saddle points.

(b) Basin of attraction for E2 = (0,0.556) and
E∗

1 = (3.889,1.211). Red: convergence region for
E2 while green for E∗

1 .

Fig. 3.5: Bistability attribute involving two equilibria E2 and E∗
1 . The remaining parame-

ters take the values as r = 3, r0 = 0.5, r1 = 0.2, α = 3.5, β = 0.7, µ = 1, c = 0.9, a = 0.5
and k = 0.5.

Moreover, Fig. 3.6 shows bifurcation of codimension one obtained by varying a as bi-
furcation parameter. The model system (3.3) exhibits saddle-node bifurcation at the interior
equilibrium (2.43,1.07) at a = 0.3627 , that is, coexistence equilibria vanish after colliding. In
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this figure, red colour represents stable node and blue signifies saddle point. The remaining
parameters take the values as r = 3, r0 = 0.5, r1 = 0.2, α = 3.5, β = 0.7, µ = 1, c = 0.5,
k = 0.5.

Fig. 3.6: Saddle-node bifurcation with respect to the parameter a. The remaining param-
eters take the values as r = 3, r0 = 0.5, r1 = 0.2, α = 3.5, β = 0.7, µ = 1, c = 0.5,
k = 0.5. Red colour represents stable node and blue signifies saddle point.

Next, we draw the bifurcation diagram for both prey and predator species in Fig. 3.7. This
figure depicts that for small values of fear parameter k, both prey and predator populations have
a stable coexistence. As we increase the value of k, the stable coexistence loses its stability,
and periodic oscillations arise, ensuring Hopf-bifurcation’s existence. On further increasing
the value of k, the limit cycle loses its stability and stable coexistence of both the species is
observed. If the value of fear parameter is high (k > 1.2), then prey population can not survive.

Figure 3.8 illustrates the stability and instability region in the k−α parameter plane. Here,
magenta colour represents stability region and cyan colour signifies instability region. In addi-
tion, white region depicts no interior equilibrium region. All the other parameters are fixed as
r = 3, r0 = 0.5, r1 = 0.2, β = 0.7, µ = 0.3, c = 0.5, a = 0.4367. We also observe that to rule
out periodic oscillations, a significant value of the fear parameter k is required.

Now, Fig. 3.9 indicates the effect of the refuge parameter β on the dynamics of the model
system (3.3) . The prey density grows with the refuge parameter, but the predator population
initially increases with β but then decreases after a threshold value. It can be observed that, up
to a certain value, the refuge parameter β has a positive impact on both species. Beyond this
threshold value, it can be destructive to the predator population.
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(a) Bifurcation diagram of prey.
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(b) Bifurcation diagram of predator.

Fig. 3.7: Bifurcation diagrams for prey and predator illustrating double Hopf-bifurcation
for the model (3.1) with respect to the fear parameter k. The remaining parameters take
the values as r = 3, r0 = 0.5, a = 0.4367, r1 = 0.2, α = 3.5, β = 0.7, µ = 0.3, c = 0.5

Fig. 3.8: Plot of stable and unstable region for the interior equilibrium with respect to
the parameters k and α . Remaining fixed parameters are r = 3, r0 = 0.5, r1 = 0.2,
β = 0.7, µ = 0.3, c = 0.5, a = 0.4367. Magenta colour represents stability and cyan
signifies instability regions. White depicts no interior equilibrium.

3.6.2 Non-spatial delayed model

In this section, the impact of the delay parameter τ on the dynamics of system (3.1) is in-
vestigated using numerical simulations. Incorporating fear response delay does not change
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Fig. 3.9: Impact of prey refuge β on the prey and predator species. The remaining pa-
rameters take the values as r = 3, r0 = 0.5, r1 = 0.2, α = 3.5, a = 0.05, µ = 0.3, c = 0.5,
and k = 0.5

the interior equilibrium. Hence, for the set of parameters as r = 4, r0 = 1, r1 = 0.2, α = 3.5,
β = 0.7, a = 0.4367, µ = 0.3, c = 0.5, and k = 1, system (3.1) has a unique interior equilibrium
E∗(1.40,0.69). Hypotheses stated in the analysis (H1) and (H3) hold for the given parameter
values. In addition, considering i = 0 in the Eq. (3.16), we obtain

ω0 = 0.5466, τ0 = 0.4680.

Figure 3.10 depicts the time series and phase portrait for the delay parameter τ = 0.4 < τ0.
Here, system shows stable dynamics around the interior equilibrium E∗. For τ = 0.5 > τ0, the
system exhibits a stable limit cycle around the interior equilibrium as shown in Fig. 3.11. As τ

exceeds τ0, the interior equilibrium E∗(1.40,0.69) becomes unstable.
Hopf-bifurcation plot for both prey and predator species with respect to the fear-response

delay parameter is illustrated in Fig. 3.12. Here, we observe that for τ < 0.4680, all the tra-
jectories are converging to the stable interior equilibrium E∗. The model system (3.1) exhibits
oscillating behavior around the interior equilibrium E∗ when the delay parameter τ increases.

3.6.3 Turing instabilities and pattern formation

Turing instability may lead to stationary pattern (also called Turing pattern) in a spatiotemporal
model. The model system (3.25) is solved numerically using the finite difference scheme to
get the patterns. The forward difference Euler scheme is used for the reaction part, and the
conventional five-point explicit finite difference scheme with homogeneous Neumann boundary
conditions is implemented for the 2D diffusion [142].
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Fig. 3.10: For τ = 0.4, system exhibits stable dynamics. Considered parameter values
are r = 4, r0 = 1, r1 = 0.2, α = 3.5, β = 0.7, a = 0.4367, µ = 0.3, c = 0.5, and k = 1
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Fig. 3.11: For τ = 0.5, system is unstable and have a stable limit cycle. Considered
parameter values are r = 4, r0 = 1, r1 = 0.2, α = 3.5, β = 0.7, a = 0.4367, µ = 0.3,
c = 0.5, and k = 1.

First, we investigate the possibility of diffusion-driven instabilities in the model system
(3.25). To ensure this, all analytical conditions for Turing instability are numerically veri-
fied. Figures 3.13(a) and 3.13(b) illustrate H(ξ ) (Eq. 3.28) vs. ξ plot for different values of
fear parameter k and prey refuge parameter β . We can see from these plots that initially, the
probability of Turing instability increases as k or β increases, but further increments in these
parameter values reduce the possibility of diffusion-driven instability. Figure (3.14) depicts the
region for different Turing patterns. Here, the blue region corresponds to Turing instability.

Next, we obtain the Turing patterns for the 2D-spatial domain. Figure 3.15 depicts the
effect of fear parameter k on the spatial distribution of prey species. Here, we observed that
the Turing patterns obtained for prey and predator species have a one-to-one correspondence;



3.6. Numerical simulations 93

Fig. 3.12: Hopf-bifurcation with respect to the delay parameter τ . Remaining parameter
values are r = 4, r0 = 1, r1 = 0.2, α = 3.5, a = 0.4367, β = 0.7, µ = 0.3, c = 0.5 and
k = 1.
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(a) H(ξ ) vs ξ for various k′s. Here, β = 0.2.
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Fig. 3.13: H(ξ ) plotted against ξ for various values of β and k, with the black dashed
line representing H(ξ ) = 0. All parameter values are fixed as r = 5, r0 = 1, r1 = 0.5,
α = 2.2, a = 0.3, µ = 1, c = 0.9 except k and β . Also, D1 and D2 takes the value as 0.1
and 4, respectively.

thus, we only show the patterns exhibited by the prey population. Blue indicates a low-density
region, while red signifies a high-density area. In Fig. 3.15(a), the system dynamics show
the cold-spots pattern for a small value of the fear parameter, i.e., the population is sparse in
isolated areas whereas high in the remaining region. From an ecological viewpoint, when the



94
Chapter 3. Consequences of fear effect and prey refuge on the Turing patterns in a delayed

predator-prey system

Fig. 3.14: Plot depicting Turing instability region. All other parameters take the same
values as in Fig. 3.13.

strength of fear is low, the predator population is outcompeted by the prey population resulting
in the formation of the cold spots pattern. Now, increasing the fear parameter k, the patterns
changes from “cold spots” to “a mixture of stripes and holes” through “stripes” and then further
increments in k leads to “stripes-spots” → “hot spots” patterns. As the fear induced by predator
population increases, there is a decline observed in prey density resulting in hot spots pattern.
The effect of prey refuge is illustrated in Fig. 3.16. In Fig. 3.16(a), the prey population is
at a higher density in the isolated area, whereas it resides at a low density in the remaining
region. On increasing the prey refuge parameter β , the prey population increases and occupies
the major portion of the spatial domain, which is justified from an ecological perspective (Fig.
3.16(b)).

Now, we analyze the effect of diffusive coefficients on the spatial distribution. Figure 3.17
shows the spatial pattern distribution for the prey species at the stationary state. It is observed
that the upper bound of the prey species changes with change in diffusion coefficients. Figure
3.17(a) depicts the hot spots pattern. From the ecological perspective, prey population lies in
an isolated region with high density, and the rest is occupied with low density. As we decrease
the diffusive rate in prey population, we observe that “hot spots” pattern changes to “organic
labyrinth” pattern. We discovered that low population density occupies a significant portion of
the domain; however, average and high population density occupies the remaining region.
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(a) k = 0.3 (b) k = 0.4

(c) k = 0.45 (d) k = 0.6

(e) k = 0.75 (f) k = 1

Fig. 3.15: Turing patterns obtained for prey population in 2D (xy-plane) to illustrate the
impact of fear parameter. The remaining parameters take the values same as in Fig. 3.13
except k.
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(a) β = 0.7 (b) β = 0.75

Fig. 3.16: Impact of prey refuge on Turing patterns exhibited by prey population in 2D
(xy-plane). The remaining parameters take the values as r = 3.5, r0 = 1, r1 = 0.5, α =
2.2, a = 0.3, µ = 1, c = 0.9, k = 0.6. Also, D1 and D2 are 0.1 and 4, respectively.

(a) D1 = 0.1, D2 = 4 (b) D1 = 0.01, D2 = 4

Fig. 3.17: Impact of diffusion coefficients on Turing patterns exhibited by prey popula-
tion in 2D (xy-plane). Considered parameter values are r = 3.5, r0 = 1, r1 = 0.5, α = 2,
β = 0.7, a = 0.3, µ = 1, c = 0.9 and k = 0.8.
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(a) τ = 0 (b) τ = 0.5

(c) τ = 1.6 (d) τ = 2

Fig. 3.18: Snapshots of prey species obtained over space for different values of fear
response delay τ . All the parameter take the same values as in Fig. 3.11 except for fear
parameter k (here k=1.5).

3.6.4 Spatiotemporal pattern with delay

In this part, we aim to provide numerical results of how the fear response delay affects the
Turing patterns (Fig. 3.18). The parameter values chosen here lie inside the Turing domain
satisfying all the analytical conditions for Turing instability. Figure 3.18(a) presents the “cold-
spots” pattern obtained for the delayed system (3.2). As we increase the value of delay param-
eter τ , the “cold-spots pattern” changes to “hot-spots pattern” (Fig. 3.18(b)). Further gradual
increments in τ leads to “loss of patterns” as illustrated in Figs. 3.18(c) and 3.18(d).
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3.7 Discussion and concluding remarks

In the present chapter, we considered a delayed spatial predator-prey model based on a modified
Leslie-Gower scheme incorporating fear induced by the predator population and non-constant
prey refuge. The main focus of this study is to analyze how the fear induced in the prey pop-
ulation and prey refuge can affect the dynamics of the model in the presence of both diffusion
and time delay. Thus, behaviors of temporal and spatiotemporal model systems are thoroughly
investigated with and without time delay. First, we discussed the well-posedness of the pro-
posed model by stating the positivity and boundedness of solutions and the prerequisites for
the system to survive. The conditions for the number and existence of ecologically relevant
equilibria are derived for the non-delayed temporal system, and their local stability behavior
is investigated. In addition, we also studied the global asymptotic stability of the unique in-
terior equilibrium. Taking a (the half-saturation constant) as the bifurcation parameter, we
determined the criterion for the occurence of saddle-node bifurcation around the positive equi-
librium E∗. We observed that the system exhibits bistability behavior between prey-free and
coexistence equilibrium. Following that, we are interested in analyzing how fear affects popu-
lation dynamics. So, we plotted the bifurcation diagram considering k (fear effect parameter) as
the bifurcation parameter. We noticed that the system experiences a Hopf-bifurcation, and the
stability flips from stable to periodic oscillations as the parameter k gradually increases. More-
over, on further increasing the fear parameter, the system experiences another Hopf-bifurcation
and becomes stable from periodic oscillations. As a result, the system exhibits double Hopf-
bifurcations with respect to the fear effect parameter k. A study done by Wang et al. [179]
reveals that increasing the strength of fear may decrease the population densities and lead to
prey extinction. They explored that incorporating the cost of fear may destabilize the system
and further increment in fear strength stabilizes the system dynamics by excluding the pos-
sibility of a limit cycle. In the absence of delay parameter, the results remarked by Wang et

al. [179] are in accordance with the findings of the present study. The effect of the refuge
parameter on the system’s dynamics is also explored, and it is discovered that preserving prey
individuals below a certain threshold benefits both species. However, if we continue to preserve
them, it will have a negative impact on predators. This result agrees with the recent findings
demonstrated by Gupta et al. [48]. They assumed the prey refuge proportional to only prey den-
sity and investigated that providing refugia to prey population up to a certain value is lucrative
for both species. On the other hand, we considered prey refuge proportional to prey-predator
interactions to make the system more realistic from the ecological point of view.

Next, we investigated the rich and complex dynamics of non-spatial delayed system ana-
lytically and numerically. We observed that introducing fear response delay in the system can
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induce a limit cycle via Hopf-bifurcation. We derived a critical value for the delay parameter
such that if τ < τ0, the positive equilibrium E∗ remains stable. If the delay parameter crosses
the value τ0, a stable limit cycle is generated via Hopf-bifurcation.

For the non-delayed spatiotemporal model, we analyzed the local stability and derived the
conditions for diffusion-driven instability. We investigated the global stability for the unique
interior equilibrium. Various Turing patterns are obtained, which can better explain the spatial
distribution of species with time. We explored that the fear effect and prey refuge have a
considerable impact on creating spatial patterns, similar to temporal dynamics. Turing patterns
show a transition from “cold-spots” to “a combination of holes and stripes" to “stripes” and
then back to “hot-spots” on increasing the fear parameter. We also noticed that an increase in
the refuge parameter might alter the density of prey population. Also, the impact of diffusive
coefficients on the distribution patterns is explored. Han et al. [52] studied the formation of
the Turing pattern in a diffusive predator-prey system incorporating prey refuge in proportion to
both species with Beddington–DeAngelis functional response. To take one step closer to reality,
we examined the consequences of fear response delay on pattern formation in the present study.
Moreover, the existence of Hopf-bifurcation is also investigated for the delayed spatiotemporal
system analytically.

The present study can help us better understand how the fear imposed on the prey population
and prey refuge can affect species’ extinction and coexistence from an ecological perspective.
It also explains how changing parameters can affect the constituent population’s distribution
pattern.
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Chapter 4

Spatiotemporal dynamics of a multi-delayed prey-
predator system with variable carrying capacity1

4.1 Introduction

The study of the dynamic relationship between prey and predator has become a hot issue in
both ecology and mathematical biology. Most biological phenomena involve a time delay to
provide a realistic perspective. The time needed for any biological process to manifest itself
is known as a time delay. Incorporating time delay in ecological models could provide more
intriguing dynamics than non-delayed models [46, 74, 92]. A wide variety of research has been
devoted to investigate the complex dynamics of a prey-predator model incorporating various
discrete delays [8, 42, 118]. Gestation delay is the time the predator species takes to digest
their prey completely and reproduce their progeny. Jana et al. [62] proposed and analyzed a
mathematical model with prey refuge and gestation delay and observed that the discrete delay
preserves stability. Zhang et al. [191] examined a Gause-type two prey and one predator system
and concluded that the gestation delay destabilizes the system dynamics. Dubey and Kumar
[40] studied a stage-structured dynamical system and found that incorporating multiple discrete
delays switches the system’s stability. Bhargava et al. [11] investigated a prey-predator model
system and observed that the system exhibits chaotic behavior with respect to the multiple
discrete delays. Pal et al. [115] explored a dynamical system with two discrete delays and
noticed that the system switches stability for the higher delay parameter values. Bhunia et

al. [13] explored the explicit impacts of delay parameter and harvesting on a fractional prey-
predator system.

A functional response is a measure of successfully attacked prey by the predator. In recent
years, selecting an appropriate functional response has been a matter of subject in the ecological
field. In a series of influential articles that began in the late 1950s, Holling established three

1This chapter is based on our paper published in Chaos: An Interdisciplinary Journal of Nonlinear Science,
33, 113116, 2023.



102
Chapter 4. Spatiotemporal dynamics of a multi-delayed prey-predator system with variable

carrying capacity

broad categories of functional response [55, 56, 57]. A lot of research has been done since
then using Holling functional response [37, 59, 81, 194]. Holling Type II functional response
represents a predator’s average feeding rate when the predator spends some time searching for
prey and some time, apart from seeking, handling each captured prey [11, 26, 147].

The distribution of species across the spatial domain is ubiquitous in ecology. The species
disperse in the pursuit of food, shelter, mates, etc., forming many fascinating spatial patterns
[103, 160]. Pattern formation can help predict biological incursions and promote conservation
efforts for endangered species [124]. Turing [165] first gave the concept of Turing Instability,
which can lead to the formation of time-independent spatial patterns in a homogenous envi-
ronment. Kumari [77] investigated a tri-trophic food chain model and examined Turing and
non-Turing patterns for the spatially extended system. Tripathi et al. [163] proposed a dif-
fusive predator-prey model with prey reserve and explored the stabilizing effects of diffusion
coefficients on the spatio-temporal dynamics. Manna and Banerjee [97] analyzed a delayed
prey-predator system with the Allee effect and concluded that a high value of gestation delay
might produce spatiotemporal chaos in the system. Song et al. [154] examined the stability and
diffusion-induced instability regions in a spatially extended prey-predator system with hunt-
ing cooperation. Zhang et al. [189] studied the spatiotemporal pattern formation induced by
the delay parameter in a dynamical system incorporating the fear effect. Sasmal et al. [142]
explored the spatiotemporal dynamics and analyzed the Turing patterns in a spatially extended
prey-predator system with hunting cooperation and fear effect. Anshu et al. [4] investigated the
combined effects of fear and prey refuge on the pattern formation in a delayed prey-predator
system. Also, they explored how the delay parameter affects the spatiotemporal dynamics.
Han et al. [50] examined all possible stationary patterns in a spatiotemporal system with the
Allee effect and hunting cooperation. They determined spatiotemporal chaos as time and space-
varying solutions. Souna et al. [156] studied the spatial patterns in a prey-predator system with
Holling III functional response and found that the predator-taxis coefficient gives rise to either
a supercritical or subcritical Turing bifurcation.

To the best of the authors’ knowledge, the dynamics of a prey-predator system in a diffusive
environment with variable carrying capacity and multiple delays have not been considered.
Thus, in the next section, we explain the formulation of the model.

4.2 Formulation of mathematical model

The complex prey-predator interactions in ecology are ubiquitous as well as inherently fascinat-
ing. Various mathematical models have been proposed and analyzed to understand ecological
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complexity. In the present study, we consider a dynamical model to study the complex interac-
tions of prey-predator environment given by the following pair of coupled non-linear equations:

dx
dt = rx

(
1− x

K0

)
− αxy

a+x ,

dy
dt =

cαxy
a+x −δ0y−δ1y2,

(4.1)

where x(t) and y(t) represent the prey and predator densities at any given time t, respectively.
The present work assumes that prey and predator interact via the Holling-II type functional
response. Considering Holling type-II functional response makes the system more ecologically
realistic as the resources are limited. Here, r is the intrinsic growth rate of the prey population,
α is the attack rate, K0 is the carrying capacity of prey, a is the half-saturation constant, c is the
conversion efficiency, δ0 is the natural mortality rate of predator population and δ1 is the death
rate of predator population due to intraspecies competition. All the aforementioned parameters
take only positive values.

The maximum density of the species that the ecosystem can sustain depending on the re-
sources available and changing environmental conditions is the carrying capacity of the particu-
lar species. Many ecological models have been framed, treating carrying capacity as a constant.
But if the basic needs, such as adequate food, water, shelter, etc., are not met due to limited
resources, then the population starts decreasing until resources rebound. Environmental factors
such as climate change can significantly affect the prey population and the carrying capacity
of the ecosystem. For example, the Dust Bowl during the 1930s significantly affected water
availability, natural vegetation, and habitat loss, resulting in the decline of the prey population
and, hence, the environmental carrying capacity in the affected areas [182]. Hence, changing
environmental conditions may vary the carrying capacity over time. It has also been observed
that the carrying capacity depends upon the past population size and their associated activities
[185, 186]. Many prey activities contribute towards resource conservation, which can posi-
tively affect the carrying capacity of the environment. For example, the phenomena of selective
grazing leads to the coexistence of a variety of plants, which promotes biodiversity. In such
cases, the carrying capacity can be considered as an increasing function of the prey population.
However, some activities of the prey population may cause a decrease in the carrying capac-
ity. For example, considering the case of the Kaibab Plateau and the Bison Population (early
1900s) [133], the increased population of mule deer led to overgrazing and habitat degradation,
which affected the environmental carrying capacity. In such situations, the carrying capacity
can be taken as a decreasing function of the prey population. Thus, it is ecologically justified to
consider varying carrying capacity. Several researchers have analyzed a prey-predator system
with varying carrying capacities [85, 86, 135, 151]. This work assumes that past activities of
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the species can significantly influence the intrinsic carrying capacity of an ecosystem. But the
effect of the past activities on the induced carrying capacity is not instantaneous. Therefore,
there is a time lag involved. Also, a time lag is involved in prey consumption and predators
reproducing their progeny, referred to as gestation delay. Ganguli et al.[44] proposed a prey-
predator model with a carrying capacity that varies with time. They concluded that no limit
cycle exists for the constant carrying capacity. Motivated by the abovementioned scenarios, the
prey-predator interaction is depicted with the following delay differential equations:

dx
dt = rx

(
1− x

K0+βx(t−τ1)

)
− αxy

a+x ,

dy
dt = cαx(t−τ2)y(t−τ2)

a+x(t−τ2)
−δ0y−δ1y2,

(4.2)

where β measures the effect of past activities on the current carrying capacity K0, it may assume
positive or negative values depending on whether the activities are constructive (β > 0) or
destructive (β < 0). The effect of the past activities is delayed by a time lag τ1, and τ2 is the
gestation delay.

To take into consideration the spatial variations in the population densities, the proposed
system is spatially extended. The following pair of parabolic partial differential equations gov-
ern the corresponding spatiotemporal model:

∂x
∂ t =

[
rx
(

1− x
K0+βx(t−τ1)

)
− αxy

a+x

]
+D1∇2x,

∂y
∂ t =

[
cαx(t−τ2)y(t−τ2)

a+x(t−τ2)
−δ0y−δ1y2

]
+D2∇2y,

(4.3)

subjected to the non-negative initial conditions,
x(u,v,s) = φ1(u,v,s)≥ 0, y(u,v,s) = φ2(u,v,s)≥ 0, s∈ [−τ,0] where τ =max{τ1,τ2}, φi ∈
C([−τ,0])→ R+(i = 1,2),

Ω = {(u,v) : 0 ≤ u ≤ M′,0 ≤ v ≤ N′}, ∂x
∂η

=
∂y
∂η

= 0.

Here, D1 and D2 represent the self-diffusion coefficients for prey and predator species, respec-
tively. The rectangular habitat Ω ⊆R2 is a bounded domain with the smooth boundary ∂Ω and
η is the unit outward normal to ∂Ω. The homogenous Neumann boundary conditions are used
which ensure that the boundary is impermeable.

We make the system non-dimensional by introducing the dimensionless variables as x̄ = x
K0

,
ȳ = y

K0
, t̄ = tr, τ̄1 = τ1r, τ̄2 = τ2r and the dimensionless model is given by the following pair of
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reaction-diffusion equations (after dropping bars):

∂x
∂ t =

[
x
(

1− x
1+βx(t−τ1)

)
− mxy

b+x

]
+Dx∇2x,

∂y
∂ t =

[
cmx(t−τ2)y(t−τ2)

b+x(t−τ2)
− γ0y− γ1y2

]
+Dy∇2y,

(4.4)

where m = α

r , b = a
K0

, Dx =
D1K0

r , Dy =
D2K0

r , γ0 =
δ0
r , and γ1 =

δ1K0
r .

In the present chapter, we extended the model proposed by Pati and Ghosh [122] in which
they analyzed a delayed prey-predator system with variable carrying capacity. They considered
that prey and predator interact via linear functional response. In this manuscript, we assumed a
Holling type II functional response, which is ecologically justified as it reflects the constraints
and complexities of prey-predator interaction in natural ecosystems, including limited resource
availability and predator satiation. Incorporating the gestation delay for predators enables us
to unveil the intriguing dynamics of species interactions where reproductive responses are not
instantaneous. Further, this study demonstrated how the local interactions between the species
and diffusive phenomena within a specified habitat give rise to self-organizing structures. Spa-
tial dynamics enhance the complexity of the findings, which are explained with the help of
numerical simulations.

4.3 Mathematical analysis of temporal model

4.3.1 Positivity and boundedness of the solutions

We consider the model (4.4) without delay without diffusion which can be written as

dx
dt =

[
x
(

1− x
1+βx

)
− mxy

b+x

]
,

dy
dt =

[cmxy
b+x − γ0y− γ1y2] . (4.5)

It is easy to see that all the solutions of the system (4.5) with non-negative initial conditions are
always non-negative. In the next theorem, we shall show that all the solutions are bounded.

Theorem 4.3.1. All the solutions of the system (4.5) are bounded above with the mentioned

properties:

1. If β > 0, then

lim
t→∞

sup
(

x(t)+
y(t)

c

)
≤

(2−β (1+ γ0))−2
√

1−β (1+ γ0)

γ0β 2 ,
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provided (1−β (1+ γ0))> 0.

2. If β < 0, then

lim
t→∞

supx(t)≤ min{1,
1

α∗}, where α
∗ =−β ,

lim
t→∞

supy(t)≤ 1
γ1

(cmxmax

b
− γ0

)
.

Proof. Case I. Let β > 0.
Let us assume z(t) = x(t)+ 1

c y(t). Now, from system (4.5), we have

dx
dt +

1
c

dy
dt = x

(
1− x

1+βx

)
− γ0

c y− γ1
c y2,

dx
dt +

1
c

dy
dt < (1+ γ0)x− x2

1+βx − γ0z.

Let h(x) = (1+ γ0)x− x2

1+βx .

We find the maxima for the function h(x); i.e., hmax= (2−β (1+γ0))−2
√

1−β (1+γ0)

β 2 . Then similar
to the proof of Theorem (2.1) in [144], our results follow.
Case II. If β < 0
From the first equation of the model (4.5), we have

dx
dt

=

[
x
(

1− x
1+βx

)
− mxy

b+ x

]
,

dx
dt

≤ x(1− x),

limt→∞ supx(t) ≤ 1. (4.6)

Also,

1−α∗x > 0, where α∗ =−β ,

x < 1
α∗ .

(4.7)

From (4.6) and (4.7), we obtain

lim
t→∞

supx(t)≤ min{1,
1

α∗}, where α
∗ =−β .
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Similarly, we obtain the upper bound for the predator population; i.e.,

lim
t→∞

supy(t)≤ 1
γ1

(cmxmax

b
− γ0

)
.

4.3.2 Existence of equilibria

We have the following possibilities for different equilibria of the system (4.5).

• The extinction equilibrium E0(0,0), which always exists.

• The prey-only equilibrium E1(
1

1−β
,0), which exists if 1−β > 0.

• We can find the coexistence equilibrium by solving the following pair of equations:(
1− x

1+βx

)
− my

b+x = 0,

cmx
b+x − γ0 − γ1y = 0.

(4.8)

Solving the above pair of equations leads to a cubic polynomial in x given by

F(x) = A0x3 +A1x2 +A2X +A3 = 0, (4.9)

where

A0 =γ1(β −1), (4.10)

A1 =(γ1 −2bγ1 +2bγ1β − cm2
β +mγ0β ), (4.11)

A2 =2bγ1 − γ1b2 + γ1βb2 − cm2 +mγ0 +mγ0βb, (4.12)

A3 =γ1b2 +mγ0b (> 0). (4.13)

Using Descarte’s rule of sign for the cubic polynomial in x, we state the following theo-
rem for the number of coexistence equilibria.

Theorem 4.3.2. (a) The system possess no coexistence equilibrium under the following

condition:

β > max
{

1,
γ1(2b−1)

2bγ1 +m(γ0 − cm)
,
γ1b(b−2)−m(γ0 − cm)

(γ1b+mγ0)b

}
.
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(b) The system possess unique coexistence equilibrium if any of the following two condi-

tions are satisfied:

(i)
γ1b(b−2)−m(γ0 − cm)

(γ1b+mγ0)b
< β < 1,

(ii)β < min
{

1,
γ1(2b−1)

2bγ1 +m(γ0 − cm)

}
.

(c) The system possess at most two coexistence equilibria if any of the following two

conditions are satisfied:

(i)1 < β <
γ1(2b−1)

2bγ1 +m(γ0 − cm)
,

(ii)1 < β <
γ1b(b−2)−m(γ0 − cm)

(γ1b+mγ0)b
.

(d) The system possess at most three coexistence equilibria under the following condi-

tion:

γ1(2b−1)
2bγ1 +m(γ0 − cm)

< β < min
{

1,
γ1b(b−2)−m(γ0 − cm)

(γ1b+mγ0)b

}
.

Fig. 4.1: Plot for the possible number of coexistence equilibria in the β − γ0 parame-
ter plane. This figure has m = 2; b = 0.3; c = 0.25; γ1 = 0.3 as fixed parameters and
remaining two parameters β and γ0 are varied.
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Figure 4.1 depicts the plot for the number of possible coexistence equilibria in the β − γ0 pa-
rameter plane for the system (4.5). Here, blue colour depicts no coexistence equilibrium, green
region depicts region for unique coexistence equilibrium, yellow for two coexistence equilibria
region, red gives the region for three coexistence equilibria.
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0

(a) No roots.
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F
(x
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0

(b) Unique root.

x*

F
(x

* )

0

(c) Three roots.

Fig. 4.2: Number of possible roots of F(x∗) given by (4.9) with varying γ0 and β . Here,
all the other parameters are fixed as m = 2, b = 0.3, c = 0.25, γ1 = 0.3. γ0 and β take the
values as (a) γ0 = 0.3, β = 2, (b) γ0 = 0.2, β =−1 and, (c) γ0 = 0.05, β =−2.5

.

In Fig. (4.2), we illustrated the possible roots of F(x∗) given by (4.9) for different values of
γ0 and β . The red dots indicate the roots of F(x∗) for the chosen set of parameters.

For the system to be dissipative, β < 1
1+γ0

(i f β > 0). Under this condition, the system (4.5)
can have either no, unique or three coexistence equlibria as depicted in Fig. (4.3). For γ0 = 0.4
and β = 0.1, the system has no coexistence equilibrium point. The system possesses a unique
coexistence equilibrium for γ0 = 0.2 and β = 0.7. Further, the system has three coexistence
equilibria γ0 = 0.05 and β =−2.5.
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(a) No coexistence equilibrium for γ0 = 0.4 and
β = 0.1.
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(b) Unique coexistence equilibrium for γ0 = 0.2
and β = 0.7.
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and β =−2.5.

Fig. 4.3: Number of possible coexistence equilibria with varying γ0 and β . Here, m = 2,
b = 0.3, c = 0.25 and γ1 = 0.3 are the fixed parameters.

4.3.3 Stability analysis of various equilibria

First, we shall analyze the behavior of the system in the neighborhood of a particular equilib-
rium point.

4.3.3.1 Local stability analysis

For the local stability behavior, we linearize the system near the desired equilibrium and then
determine the conditions for the negative real parts of the corresponding eigenvalues calculated
from the Jacobian matrix. Keeping this in view, we state the following resuts for the local
stability behavior of the concerned equilibria.
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Theorem 4.3.3. The extinction equilibrium E0(0,0) is always a saddle point.

Proof. The eigenvalues associated with the extinction equilibrium are λ1 = 1(> 0) and λ2 =

−γ0(< 0). Hence, the result follows.

Theorem 4.3.4. The prey-only equilibrium E1(
1

1−β
,0), whenever it exists, is locally asymptot-

ically stable if and only if cm < γ0(b(1−β )+1).

Proof. Eigenvalues associated with the equilibrium point E1(
1

1−β
,0) are

λ1 = (β − 1)(< 0 whenever E1 exists) and λ2 =
cm

b(1−β )+1 − γ0. The prey-only equilibrium is
locally asymptotically stable if and only if cm

b(1−β )+1 − γ0 < 0. Thus, our result follows.

Theorem 4.3.5. The coexistence equilibrium E∗(x∗,y∗) is locally asymptotically stable if the

following two conditions are satisfied:

1.
(

−bmy∗

(b+x∗)2 +
(1+x∗(β−1)(2+βx∗)

(1+βx∗)2 − γ1y∗
)
< 0,

2.
[(

−bmy∗

(b+x∗)2 +
(1+x∗(β−1)(2+βx∗)

(1+βx∗)2

)
(−γ1y∗)+

(
bcmy∗

(b+x∗)2

)(
mx∗

(b+x∗)

)]
> 0.

Proof. The variational matrix at the coexistence equilibrium is

JE∗ =

[ −bmy∗

(b+x∗)2 +
(1+x∗(β−1)(2+βx∗)

(1+βx∗)2
−mx∗
(b+x∗)

bcmy∗

(b+x∗)2 −γ1y∗

]
.

Characteristic equation of the above matrix is given by

λ 2 − trace(JE∗)λ +det(JE∗) = 0,

where

trace(JE∗) =

(
−bmy∗

(b+ x∗)2 +
(1+ x∗(β −1)(2+βx∗)

(1+βx∗)2 − γ1y∗
)
,

det(JE∗) =

(
−bmy∗

(b+ x∗)2 +
(1+ x∗(β −1)(2+βx∗)

(1+βx∗)2

)
(−γ1y∗)+

(
bcmy∗

(b+ x∗)2

)(
mx∗

(b+ x∗)

)
.

Using the Routh-Hurwitz criterion, the coexistence equilibrium E∗(x∗,y∗) is locally asymptot-
ically stable if and only if trace(JE∗)< 0 and det(JE∗)> 0, which proves the required result.

Remark: It is easy to see that if x∗ > 1
1−β

, then both conditions (i) and (ii) are satisfied.
This shows that E∗(x∗,y∗) is locally symptotically stable if x∗ > 1

1−β
.



112
Chapter 4. Spatiotemporal dynamics of a multi-delayed prey-predator system with variable

carrying capacity

4.3.3.2 Global stability analysis for coexistence equilibrium

Theorem 4.3.6. The coexistence equilibrium point E∗(x∗,y∗), whenever it exists uniquely, is

globally asymptotically stable under the following inequalities:

(i) b(b+ x∗)> mymax(1+βxmax)(1+βx∗) when β > 0,

(ii) b(b+ x∗)> mymax(1+βx∗) when β < 0.

Proof. Let us choose an appropriate Lyapunov function given by

W (x,y) =
(
x− x∗− x∗ln x

x∗
)
+δ

(
y− y∗− y∗ln y

y∗

)
.

Differentiating the above function w.r.t. time t and simplifying, we get

Ẇ = −A11(x− x∗)2 +A12(x− x∗)(y− y∗)−A22(y− y∗)2,

where

A11 =
1

(1+βx)(1+βx∗)
− my

(b+ x)(b+ x∗)
,

A12 =
m

(b+ x∗)

[
δcb

(b+ x)
−1
]
,

A22 = δγ1.

Using Sylvester’s criterion for dW
dt to be negative definite, we have A11 > 0, A22 > 0 and A2

12 <

4A11A22.
It may be noted that conditions (i) and (ii) implies A11 > 0 when β > 0 and β < 0, re-

spectively. Following A11 > 0 and maximizing A12, if we choose δ = 1
c , then A2

12 < 4A11A22

automatically holds true.
Hence, our result follows.

Figure 4.4(a) illustrates the region (magenta) for the global stability behavior of the unique
coexistence equilibria in the β −γ0 plane. Further, the global stability of the unique coexistence
equilibrium is depicted in phase portrait (Fig. 4.4(b)) for a chosen set of parameters.

4.3.4 Bifurcation analysis

4.3.4.1 Hopf-bifurcation analysis

The Jacobian matrix JE∗ at the coexistence equilibrium is calculated in the proof of Theorem
4.3.5.
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(a) Region for Global Stablility of unique coexis-
tence eqilibrium in β − γ0 parameter plane. Here,
m = 2, b = 0.3, c = 0.25 and γ1 = 0.3 are the fixed
parameters.
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(b) Phase portrait depicting the global stability
behavior of unique coexistence equilibrium. The
parameters are fixed as m = 2, b = 0.3, c = 0.25,
γ1 = 0.3, β =−2 and γ0 = 0.2.

Fig. 4.4: Global stability analysis of unique coexistence equilibrium.

The aforementioned matrix has the following characteristic equation:

λ 2 − trace(JE∗)λ +det(JE∗) = 0. (4.14)

We assume that the eigenvalues of the above equation takes the form as λ (β ) = λr(β )+

iλim(β ) and then, separating the real and imaginary parts, we get

λ
2
r −λ

2
im − trace(JE∗)λr +det(JE∗) = 0, (4.15)

2λrλim − trace(JE∗)λim = 0. (4.16)

Now, we have Re(λ (β )) = 0 for Hopf-bifurcation to occur reducing the above pair of equations
to

−λ 2
im +det(JE∗) = 0, λim ∈ R,

−λimtrace(JE∗) = 0, λim ̸= 0.

Thus,

det(JE∗)> 0 and trace(JE∗) = 0 at the critical value β = β
∗.
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From trace(JE∗) = 0, we obtain

β ∗ =
(−2+x∗)(b+x∗)2+2bmy∗+(b+x∗)(2(b+x∗)γ1y∗±

√
x
√

(4+x∗)(b+x∗)2−4bmy∗−4(b+x∗)2γ1y∗)
2x∗(−(b+x∗)2+bmy∗+(b+x∗)2y∗γ1)

.

Differentiating Eqs. (4.15) and (4.16) with regard to β and substituting λr(β ) = 0, we get

−2λim
dλim

dβ
− trace(JE∗)

dλr

dβ
+

d(det(JE∗))

dβ
= 0, (4.17)

2λim
dλr

dβ
−λim

d(trace(JE∗))

dβ
− trace(JE∗)

dλim

dβ
= 0. (4.18)

Solving the preceding equations at the critical value β = β ∗ gives us the following:

dλr

dβ

∣∣∣∣
β=β ∗

=
1
2

(
d(trace(JE∗))

dβ

)
̸= 0,

provided d(trace(JE∗))
dβ

̸= 0.

4.4 Dynamics of delayed temporal model

4.4.1 Local stability and Hopf-bifurcation analysis

In this section, we examined the dynamics of the following delayed non-spatial system:

dx
dt =

[
x
(

1− x
1+βx(t−τ1)

)
− mxy

b+x

]
,

dy
dt =

[
cmx(t−τ2)y(t−τ2)

b+x(t−τ2)
− γ0y− γ1y2

]
.

(4.19)

We can rewrite the above model as

dW (t)
dt

= F(W (t),W (t − τ1),W (t − τ2)),

where

W (t) = [x(t),y(t)]T ,

W (t − τi) = [x(t − τi),y(t − τi)]
T , i = 1,2.
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Let x(t) = x∗ + x′(t), y(t) = y∗ + y′(t). Now, we linearize the system (4.19) around the
coexistence equilibrium E∗(x∗,y∗), we obtain

dU
dt

= PU(t)+QU(t − τ1)+RU(t − τ2),

where

P =
∂F

∂U(t)E∗
,Q =

∂F
∂U(t − τ1)E∗

,R =
∂F

∂U(t − τ2)E∗
,U(t) = [x′(t),y′(t)]T .

The variational matrix of the model (4.19) is given as follows:

J = P+Qe−λτ1 +Re−λτ2.

Simplifying the aforementioned matrix, we get

JE∗ =

[
a1 +a5e−λτ1 a2

a3 +a6e−λτ2 a4 +a7e−λτ2

]
,

where

a1 = 1− 2x∗

1+βx∗
− mby∗

(b+ x∗)2 , a2 =
−mx∗

b+ x∗
, a3 = 0, a4 =−γ0 −2γ1y∗,

a5 =
βx∗2

(1+βx∗)2 , a6 =
cmby∗

(1+βx∗)2 , a7 =
cmx∗

(b+ x∗)
. (4.20)

The corresponding characteristic equation:

λ
2 − [(a1 +a5e−λτ1)+(a4 +a7e−λτ2)]λ +[(a1 +a5e−λτ1)(a4 +a7e−λτ2)−a2(a3 +a6e−λτ2)] = 0.

Simplifying the above equation leads to

λ
2 + p1λ + p2 +(p3 + p4λ )e−λτ1 +(p5 + p6λ )e−λτ2 + p7e−λ (τ1+τ2) = 0, (4.21)

where

p1 =−(a1 +a4), p2 = (a1a4 −a2a3), p3 = a4a5,

p4 =−a5, p5 = (a1a7 −a2a6), p6 =−a7, p7 = a5a7.
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Remark: If τ1 = 0, τ2 = 0, then the characteristic equation (4.21) becomes

λ
2 +(p1 + p4 + p6)λ +(p2 + p3 + p5 + p7) = 0,

which is same as characteristic equation in case of non-delayed system.
(H1): p1 + p4 + p6 > 0, p2 + p3 + p5 + p7 > 0.
All the roots of Eq. (4.21) have negative real parts if and only if (H1) holds.
Case (1): τ1 = 0, τ2 > 0.
Then Eq. (4.21) becomes

λ
2 +(p1 + p4)λ +(p2 + p3)+(p5 + p7 + p6λ )e−λτ2 = 0. (4.22)

Let us assume that above equation has a roots of the form iω(ω > 0) such that

−ω
2 +(p1 + p4)iω +(p2 + p3)+(p5 + p7 + iω p6)e−iωτ2) = 0,

−ω
2 +(p1 + p4)iω +(p2 + p3)+(p5 + p7 + iω p6)(cos(ωτ2)− isin(ωτ2)) = 0.

Simplifying and then separating real and imaginary parts,

(p5 + p7)cos(ωτ2)+ω p6sin(ωτ2) = ω
2 − (p2 + p3),

ω p6cos(ωτ2)− (p5 + p7)sin(ωτ2) =−ω(p1 + p4). (4.23)

The above-mentioned equations are squared and added to obtain

z2 +b1z+b2 = 0, (4.24)

where b1 = (p1+ p4)
2−2(p2+ p3)− p2

6, b2 = (p2+ p3)
2−(p5+ p7)

2, z = ω2. Assuming
h(z) = z2 +b1z+b2.

(H2): b1 > 0, b2 > 0.
If (H2) holds true, then (4.24) has no positive roots i. e., no such ω exists. Hence, E∗(x∗,y∗)

is asymptotically stable for all τ2 > 0 if (H1) and (H2) hold true.
(H3): b2 < 0.
If (H3) holds true, then Eq. (4.24) has a unique positive root ω2

0 . On substituting ω0 in Eq.
(4.23), we get

(p5 + p7)cos(ω0τ2)+ω0 p6sin(ω0τ2) = ω0
2 − (p2 + p3),

ω0 p6cos(ω0τ2)− (p5 + p7)sin(ω0τ2) =−ω0(p1 + p4),
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which leads to

τ2i =
1

ω0

[
cos−1

(
(p5 + p7)[ω0

2 − (p2 + p3)]−ω0
2 p6(p1 + p4)

[(p5 + p7)2 +ω02 p6
2]

)]
+

2πi
ω0

; i = 0,1,2, ......

(4.25)

(H4): b1 < 0, b2 > 0 and b1
2 > 4b2.

If (H1) and (H4) hold, then Eq. (4.24) has two distinct positive roots ω2
±. Substituting in

Eq. (4.23), we obtain

τ
±
2 j =

1
ω±

[
cos−1

(
(p5 + p7)(ω±

2 − (p2 + p3))−ω±
2 p6(p1 + p4)

((p5 + p7)2 +ω±2 p6
2)

)]
+

2 jπ
ω±

; j = 0,1,2, ......

(4.26)

Let λ (τ2i) = iω0 be a root of Eq. (4.22). Then, differentiating Eq. (4.22) w.r.t. τ2, we have(
dλ

dτ2

)−1

=
(2λ + p1 + p4)eλτ2 + p6

(p5 + p7 + p6λ )λ
− τ2

λ
,[

dλ

dτ2

]−1

λ=iω0

=
((p1 + p4)cos(ω0τ2)−2ω0sin(ω0τ2)+ p6)+ i(2ω0cos(ω0τ2)+(p1 + p4)sin(ω0τ2))

−p6
2 + ιω0(p5 + p7)

− τ2

iω0
,

Re
[

dλ

dτ2

]−1

λ=iω0

=
(p1 + p4)

2 − p6
2 +2ω0

2 −2(p2 + p3)

(p5 + p7)2 + p6
2ω02 ,

Re
[

dλ

dτ2

]−1

λ=iω0

=
h′(ω2

0 )

(p5 + p7)2 + p6
2ω02 .

(H5A): h′(ω0
2)> 0.

Then,
[

d
dτ2

Re(λ )
]

λ=iω0
> 0 holds under assumption (H5A).

Similarly, let us consider that Eq. (4.22) has roots λ = iω±.
(H5B): h′(ω+

2)> 0 (resp. h′(ω−
2)< 0) holds, then[

d
dτ2

Re(λ )
]

λ=iω+

> 0 (resp.
[

d
dτ2

Re(λ )
]

λ=iω−
< 0) hold under assumption (H5B).

Now, the following theorem can be stated to summarize the above analysis.

Theorem 4.4.1. If τ1 = 0 and τ2 > 0 for the model system (4.19), then we can conclude the

following:

• E∗(x∗,y∗) is locally asymptotically stable for all τ2 > 0 under (H1) and (H2).

• E∗(x∗,y∗) is unstable for all τ2 > 0 if (H1) fails to hold and (H2) holds true.
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• Under (H1), (H3) and (H5A), E∗(x∗,y∗) is asymptotically stable for all τ2 < τ20 and

unstable τ2 > τ20 and the system undergoes Hopf-bifurcation at τ2 = τ20.

• If (H1), (H4), and (H5B) hold then the coexistence equilibrium E∗(x∗,y∗) is locally

asymptotically stable in the intervals τ2 ∈ [0,τ+20)∪ (τ−20,τ
+
21)∪ ......∪ (τ−2(n−1),∞) and

for the interval range τ2 ∈ (τ+20,τ
−
20)∪ ......∪ (τ+2(n),∞), E∗(x∗,y∗) is unstable. The system

(4.19) experiences Hopf-bifurcation at τ2 = τ
±
2 j for j=1,2,3,...

Case (2): τ1 > 0, τ2 = 0. In this case, analysis is similar to case(1), and thus we state the
following theorem.

Theorem 4.4.2. For τ1 > 0, τ2 = 0, the system undergoes Hopf-bifurcation at τ1 = τ10. The

coexistence E∗ is locally asymptotically stable for τ1 < τ10 and unstable when τ1 > τ10, where

τ10 is given by

τ10 =
1

ω0

[
cos−1

(
(p3 + p7)[ω0

2 − (p2 + p5)]−ω0
2 p4(p1 + p6)

[(p3 + p7)2 +ω02 p42]

)]
. (4.27)

Case (3): τ1 > 0, τ2 > 0. Now, we can consider that τ1 lies in the stable interval (0,τ10)
and τ2 is treated as a parameter. Assuming that the Eq. (4.21) has a root iω(ω > 0), then
substituting back in Eq. (4.21) and comparing real and imaginary parts, we obtain

ω
2 − p2 − p3cos(ωτ1)− p4ωsin(ωτ1) =cos(ωτ2)[p5 + p7cos(ωτ1)]

+ sin(ωτ2)[p6ω − p7sin(ωτ1)], (4.28)

−p1ω − p4ωcos(ωτ1 + p3sin(ωτ1)) =cos(ωτ2)[p6ω − p7sin(ωτ1)]

+ sin(ωτ2)[−p5 − p7cos(ωτ1)]. (4.29)

Eliminating τ2 from above equations will give us

(ω2 − p2)
2 + p2

3 + p2
4ω

2 + p2
1ω

2 − p2
6ω

2 − p2
7 +[p1 p4ω

2 −2p3(ω
2 − p2)−2p5 p7]cos(ωτ1)−

[p4ω(ω2 − p2)+ p1 p3ω +2p6 p7ω]sin(ωτ1) = 0.
(4.30)

The above equation is a transcedental equation. Therefore, it is not easy to predict the nature of
its roots. Therefore, we assume that Eq. (4.30) has atleast one root (ω0). Equations (4.28) and
(4.29) can be re-written as:

A1 = B1cos(ω0τ2)+B2sin(ω0τ2), (4.31)

A2 = B2cos(ω0τ2)−B1sin(ω0τ2), (4.32)
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where

A1 = ω
2
0 − p2 − p3cos(ω0τ1)− p4ω0sin(ω0τ1),

B1 = p5 + p7cos(ω0τ1),

A2 =−p1ω0 − p4ω0cos(ω0τ1)+ p3sin(ω0τ1),

B2 = p6ω0 − p7sin(ω0τ1).

Solving above equations lead to

τ2i =
1

ω0

[
cos−1

(
A1B1 +A2B2

A2
1 +B2

1

)]
+

2πi
ω0

; i = 0,1,2,3, ...

Now, we verify the transversality condition by substituting λ = ξ + iω in Eq. (4.21) and then
differentiating it w.r.t. τ2, and putting τ2 = τ∗2 , ω = ω∗

0 , ξ = 0, we get

Q1

[
dξ

dτ2

]
τ2=τ20

+Q2

[
dω

dτ2

]
τ2=τ20

= R1,

−Q2

[
dξ

dτ2

]
τ2=τ20

+Q1

[
dω

dτ2

]
τ2=τ20

= R2, (4.33)

where

Q1 = p1 − p3τ1cos(ωτ1)+ p4cos(ωτ1)− p4ωτ1sin(ωτ1)− p5τ2cos(ωτ2)+ p6cos(ωτ2)

− p6ωτ2sin(ωτ2)− p7(τ1 + τ2)cos(ω(τ1 + τ2)),

Q2 =−2ω − p3τ1sin(ωτ1)+ p4ωcos(ωτ1)τ1 + p4sin(ωτ1)+ p5τ2sin(ωτ2)

+ p6sin(ωτ2)+ p6ωτ2cos(ωτ2)− p7(τ1 + τ2)sin(ω(τ1 + τ2)),

R1 =−p5ωsin(ωτ2)− p6ω
2cos(ωτ2)+ p7ωsin(ω(τ1 + τ2)),

R2 = p5ωcos(ωτ2)+ p6ω
2sin(ωτ2)+ p7ωcos(ω(τ1 + τ2)).

Solving Eq. (4.33) for
[

dξ

dτ2

]
τ2=τ20

, we get

[
dξ

dτ2

]
τ2=τ20,ω=ω∗

=
R1Q1 −R2Q2

Q2
1 +Q2

2
,

(H6): R1Q1 −R2Q2 ̸= 0.

Theorem 4.4.3. For system (4.19), let (H1) and (H6) hold true with τ1 being in the stable

interval (0,τ10). Then, E∗ is locally asymptotically stable when τ2 ∈ (0,τ20) and the system

undergoes Hopf-bifurcation at E∗ when τ2 = τ20.
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Case (4): τ1 > 0, τ2 > 0, and we assume that τ2 lies in the stable interval (0,τ20) and τ1 is
treated as a parameter. Assuming that the Eq. (4.21) has a root iω(ω > 0), then substituting
back in Eq. (4.21) and comparing real and imaginary parts, we obtain

−ω
2 + p2 + p5cos(ωτ2)+ p6ωsin(ωτ2) = cos(ωτ1)[−p3 − p7cos(ωτ2)]

+ sin(ωτ1)[−p4ω + p7sin(ωτ2)], (4.34)

p1ω + p6ωcos(ωτ2)− p5sin(ωτ2) = cos(ωτ1)[−p4ω + p7sin(ωτ2)]

+ sin(ωτ1[p3 + p7cos(ωτ2)]. (4.35)

The above pair of equations can be re-written as

Pcos(ωτ1)+Qsin(ωτ1) = R,

−Qcos(ωτ1)+Psin(ωτ1) = S, (4.36)

where

P =−p4ω + p7sin(ωτ2),

Q = p3 + p7cos(ωτ2),

R = p1ω + p6ωcos(ωτ2)− p5sin(ωτ2),

S =−ω
2 + p2 + p5cos(ωτ2)+ p6ωsin(ωτ2).

Solving Eq. (4.36) give us

τ
∗
1 j =

1
ω

[
cos−1

(
PR−QS
P2 +Q2

)]
+

2 jπ
ω

; j = 0,1,2,3, ...

Theorem 4.4.4. For system (4.19), considering that τ2 lies in the stable interval (0,τ20) and τ1

is treated as a parameter, the system undergoes Hopf-bifurcation at τ1 = τ∗10.

4.5 Dynamics of spatiotemporal model

In this section, we analyze the dynamics of spatio-temporal model given as

∂x
∂ t =

[
x
(

1− x
1+βx

)
− mxy

b+x

]
+Dx∇2x,

∂y
∂ t =

[cmxy
b+x − γ0y− γ1y2]+Dy∇2y.

(4.37)
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Considering the transformation

x = x∗+X ,

y = y∗+Y,

where (X ,Y ) are small perturbations in (x,y), the linearized system is given by

∂X
∂ t = A1X +A2Y +Dx

(
∂ 2X
∂u2 +

∂ 2X
∂v2

)
,

∂Y
∂ t = A3X +A4Y +Dy

(
∂ 2Y
∂u2 +

∂ 2Y
∂v2

)
,

where

A1 =
−bmy∗

(b+ x∗)2 +
(1+ x∗(β −1)(2+βx∗)

(1+βx∗)2 , A2 =
−mx∗

(b+ x∗)
, A3 =

bcmy∗

(b+ x∗)2 , A4 =−γ1y∗.

Looking for the solution of the form

X =A′eλ tsin
( jπ

M′u
)

cos
( iπ

N′ v
)
,

Y =B′eλ tsin
( jπ

M′u
)

cos
( iπ

N′ v
)
,

the system (4.37) leads to

∂X
∂ t

=A1X +A2Y +Dx

[( jπ
M′

)2
+
( iπ

N′

)2
]
,

∂Y
∂ t

=A3X +A4Y +Dy

[( jπ
M′

)2
+
( iπ

N′

)2
]
.

The variational matrix for the spatial system is as follows:

J∗s =

 A1 −Dx

((
jπ
M′

)2
+
(

iπ
N′

)2
)

A2

A3 A4 −Dy

((
jπ
M′

)2
+
(

iπ
N′

)2
)
 .

Now,

J′1 =−trace(J∗s ) =
bmy∗

(b+ x∗)2 −
(1+ x∗(β −1)(2+βx∗)

(1+βx∗)2 + γ1y∗+(Dx +Dy)

[( jπ
M′

)2
+
( iπ

N′

)2
]
,

J′2 = det(J∗s ) =
(

bmy∗

(b+ x∗)2 −
(1+ x∗(β −1)(2+βx∗)

(1+βx∗)2 +Dx

(( jπ
M′

)2
+
( iπ

N′

)2
))

×
(

γ1y∗+Dy

(( jπ
M′

)2
+
( iπ

N′

)2
))

+
bcm2x∗y∗

(b+ x∗)2 .
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Characteristic equation at the coexistence equilibrium E∗ is

λ
2 + J′1λ + J′2 = 0. (4.38)

The coexistence equilibrium is locally asymptotically stable under the following condition:

J′1 > 0, J′2 > 0.

Remark: E∗(x∗,y∗) is locally asymptotically stable if

bmy∗(1+βx∗)2 > (1+ x∗(β −1)(2+βx∗))(b+ x∗)2.

Remark: If trace(JE∗)> 0 or det(JE∗)< 0, then the corresponding coexistence equilibrium is
unstable for the temporal system.

• Case I: If trace(JE∗) > 0, then the sufficiently higher value of Dx and Dy can stabilize
the corresponding equilibrium in the spatiotemporal system.

• Case II: If det(JE∗)< 0, then the sufficiently higher value of Dx can stabilize the corre-
sponding equilibrium in the spatiotemporal system.

4.5.1 Conditions derived for Turing instability

From the Eq. (4.38), we have

J′1 =−trace(JE∗)+(Dx +Dy)

[( jπ
M′

)2
+
( iπ

N′

)2
]
,

J′2 = DxDy

[( jπ
M′

)2
+
( iπ

N′

)2
]2

− (A1Dy +A4Dx)

[( jπ
M′

)2
+
( iπ

N′

)2
]
+det

(
JE∗
)
, (4.39)

where

trace(JE∗) =
−bmy∗

(b+ x∗)2 +
(1+ x∗(β −1)(2+βx∗)

(1+βx∗)2 − γ1y∗,

det(JE∗) =

[(
−bmy∗

(b+ x∗)2 +
(1+ x∗(β −1)(2+βx∗)

(1+βx∗)2

)
(−γ1y∗)+

(
bcmy∗

(b+ x∗)2

)(
mx∗

(b+ x∗)

)]
.

The conditions for diffusion-driven instability is either J′1 < 0 or J′2 < 0 holds. As we can see
clearly, J′1 > 0 if trace(JE∗)< 0. The only possibility left for the occurence of Turing instability
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is J′2 < 0 with det(JE∗)> 0. Defining a function as

G(ζ ) = DxDyζ
2 − (A1Dy +A4Dx)ζ +det(JE∗), (4.40)

where ζ =
(

jπ
M′

)2
+
(

iπ
N′

)2
.

Turing instability occurs if G(ζ )< 0,

i.e., DxDyζ
2 − (A1Dy +A4Dx)ζ +det(JE∗)< 0.

Now, let us assume that G(ζ ) attains its minima at ζ = ζM. Hence,

G′(ζM) = 0 ⇒ 2DxDyζM − (A1Dy +A4Dx) = 0,

leading to

ζM =
(A1Dy +A4Dx)

2DxDy
> 0. (4.41)

At ζ = ζM, the condition for diffusion-driven instability is

(A1Dy +A4Dx)
2 > 4DxDydet(JE∗).

From Eq. (4.40), the roots of the quadratic equation are

ζ1,2 =
(A1Dy +A4Dx)±

√
(A1Dy +A4Dx)2 −4DxDydet(JE∗)

2DxDy
.

Therefore,
G(ζ )< 0 for ζ1 < ζ < ζ2.

Also, we have trace(JE∗)< 0 and hence,

A1 +A4 < 0.

We know A4 is always negative, thus,

−A1

A4
< 1. (4.42)

Equation (4.41) may lead to
A1Dy +A4Dx > 0,
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⇒ A1Dy >−A4Dx,

−A1

A4
>

Dx

Dy
. (4.43)

Combining Eqs. (4.42) and (4.43), we get

Dx

Dy
<

−A1

A4
< 1,

⇒ Dx < Dy for diffusion-driven instability.

4.5.2 Dynamics of delayed spatiotemporal system

This section investigates the combined consequences of delay and diffusion on Hopf-bifurcation.
Take the transformation x̄(u,v, t) = x(u,v, t)− x∗, ȳ(u,v, t) = y(u,v, t)− y∗ for the system

(4.4). The aforementioned system is linearized as (ignoring the variables’ bar for simplification
of symbols)

∂x(u,v,t)
∂ t = a1x(u,v, t)+a2y(u,v, t)+a5y(u,v, t − τ)+Dx∇2x(u,v, t),

∂y(u,v,t)
∂ t = a4x(u,v, t)+a6x(u,v, t − τ2)+a7y(u,v, t − τ2)+Dy∇2y(u,v, t).

(4.44)

By perturbing the coexistence equilibrium in both time and space, consider the solution of
the form

x =Aeλ tsin
(nπ

M′u
)

cos
(mπ

N′ v
)
,

y =Beλ tsin
(nπ

M′u
)

cos
(mπ

N′ v
)
.

The above-mentioned solutions are substituted in the system (4.44) and simplifying, we get

J =

 a1 −Dx

((
nπ

M′

)2
+
(

mπ

N′

)2
)

a2

0 a4 −Dy

((
nπ

M′

)2
+
(

mπ

N′

)2
)


+

[
a5 0
0 0

]
e−λτ1 +

[
0 0
a6 a7

]
e−λτ2,

⇒ J =

[
a1 −Dxκ2 +a5e−λτ1 a2

a6e−λτ2 a4 −Dyκ2 +a7e−λτ2

]
,
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where all ai’s have same expression as given in Eq. (4.20), and

κ =

√
(
nπ

M′

)2
+
(mπ

N′

)2
.

Now, we have the following characteristic equation:

λ
2 +N1λ +N2 +N3e−λτ1 +N4e−λτ2 +N5e−λ (τ1+τ2) = 0, (4.45)

where

N1 = (Dx +Dy)κ
2 − (a1 +a4),

N2 = a1a4 − (a1Dy +a4D1)κ
2 +DxDyκ

4,

N3 = a5λ +a5a4 −a5Dyκ
2,

N4 = a7λ +a1a7 −a7Dxκ
2 −a2a6,

N5 = a5a7.

Let us assume λ = iω(ω > 0) and substitute it into the above equation, we have

−ω
2 +N2 +N3cos(ωτ1) = cos(ωτ2)[−N4 −N5cos(ωτ1)]+ sin(ωτ2)[N5sin(ωτ1)],

−N1ω +N3sin(ωτ1) = cos(ωτ2)[−N5sin(ωτ1)]+ sin(ωτ2)[−N4 −N5cos(ωτ1)]. (4.46)

Considering τ1 is in the interval (0,τ∗10) and τ2 is treated as parameter. The two equations above
can be squared, added, and simplified to yield

ω
4 +Rω

2 +S = 0, (4.47)

where R = N2
1 −2N2 −2N3cos(ωτ1),

S = N2
3 −N2

4 −N2
5 +2N1N3ωsin(ωτ1)−2cos(ωτ1)(N2N3 +N4N5).

Taking z = ω2, Eq. (4.47) gives

z2 +Rz+S = 0, (4.48)

z± =
−R±

√
R2 −4S

2
.

Now, we have the following possible cases:
(H1′): Let R > 0, S > 0, R2 −4S > 0.
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Then, there is no positive root for the Eq. (4.48). Hence, all the roots of Eq. (4.45) has
negative real parts for any κ when τ2 > 0.
(H2′): If ∃ a constant κ0 ∈ N such that S < 0 holds, then Eq. (4.48) has a unique positive root
ω+ =

√
z+.

Then, simplifying Eq. (4.46), we can calculate the bifurcation parameter as

τ2 j =
1

ω+

[
cos−1

(
P′

1Q′
1 −P′

2R′
1

Q′
1

2 +R′
1

2

)]
+

2 jπ
ω+

; j = 0,1,2, ...

where

P′
1 =−ω

2 +N2 +N3cos(ωτ1), Q′
1 =−N4 −N5cos(ωτ1),

R′
1 = N5sin(ωτ1), P′

2 =−N1ω +N3sin(ωτ1).

From the above analysis, we can conclude the following theorem.

Theorem 4.5.1. The following results can be derived for the delayed diffusive system.

1. E∗(x∗,y∗) is locally asymptotically stable for all τ2 > 0 and for any value of κ under

(H1′).

2. Let (H2′) hold true:

(i) The coexistence equilibrium E∗(x∗,y∗) is locally asymptotically stable for τ2 ∈
(0,τ20) and unstable for τ2 > τ20 .

(ii) When τ2 = τ2 j , j = 0,1,2,3, ..., the model (4.4) undergoes Hopf-bifurcation

near E∗(x∗,y∗) and we obtain a family of periodic solutions bifurcating from E∗(x∗,y∗).

4.6 Numerical simulations

In this section, we perform a series of qualitative numerical simulations for the temporal and
spatially extended proposed system to get a better understanding of the dynamics of the system.

4.6.1 Temporal system

In this subsection, we analyze how the system (4.5) behaves on the variation of the parameters
β and γ0. The parameter values used for simulations are m = 2, b = 0.3, c = 0.25, γ1 = 0.3 and
the remaining parameters β and γ0 are varied. Figure 4.5 depicts the stability behavior when the
system (4.5) has a unique coexistence equilibrium. For γ0 = 0.2, the unique coexistence equi-
librium E∗

1(0.3463,0.2263) is a spiral source, i.e., there is a stable limit cycle around E∗
1 (see
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Fig. 4.5(a)). For this case, any trajectory that begins very close (or farther away) to the equilib-
rium point spirals outward (or inward) and finally converges to the stable limit cycle. Further,
an increase in the value of γ0 i.e., for γ0 = 0.4, the system is locally asymptotically stable about
E∗

1(1.5908,0.0689) (see Fig. 4.5(b)). From an ecological standpoint, a stable equilibrium in the
prey-predator dynamics denotes an ecosystem in balance. If a stable coexistence equilibrium
occurs, then both prey and predator species can survive without either species going extinct.
Here, the trivial equilibrium E0 and the axial equilibrium E1 are saddle points.
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1 is nodal sink for γ0 = 0.4.

Fig. 4.5: Stability behavior of unique coexistence equilibrium for the system (4.5) with
varying γ0. Here, β = 0.45.

Figure 4.6 refers to the case when the system has three coexistence equilibria. For γ0 = 0.05,
E∗

1(0.0758,0.1695) is a spiral source and E∗
2(0.4591,0.8413) is a nodal sink (see Fig. 4.6(a)).

In this case, the stable limit cycle around E∗
1 and the stable equilibrium E∗

2 are the two pos-
sible attractors for the system (4.5). Moreover for γ0 = 0.075, the system exhibits bi-stability
attribute between the two coexistence equilibria E∗

1(0.1015,0.1715) and E∗
2(0.5063,1.0759)

(see Fig. 4.6(b)). In a prey-predator dynamics, bistability between two coexistence equilib-
riums symbolizes two stable ecological states. In the above mentioned scenarios, the trivial
equilibrium E0, the axial equilibrium E1, and the coexistence equilibrium E∗

3 are saddle points.
Next, we perform a co-dimension one bifurcation analysis with respect to the parameter β

and analyze the system dynamics. From Fig. 4.7, we observe that prey and predator species
co-exist for lower values of β . As the value of β increases, the stable coexistence switches
the stability behavior, and the limit cycle emerges, i.e., for higher values of β , both the popu-
lations of prey and predator exhibit periodic fluctuations. Hence, the system (4.5) experiences
supercritical Hopf-bifurcation with respect to the parameter β .
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Fig. 4.6: Stability behavior of different equilibria when the system has three coexistence
equilibria with varying γ0. Here, β =−3.
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Fig. 4.7: Hopf-bifurcation plot with respect to the parameter β . Here, γ0 = 0.2.

4.6.2 Delayed temporal system

This part illustrates numerical results for the delayed system when τ1 is treated as a parameter,
and the gestation delay τ2 is fixed. The parametric values are considered as m = 2, b = 0.3,
c= 0.25, γ1 = 0.3, γ0 = 0.2 and β = 0.8. From Figs. 4.8(a) and 4.8(b), we observe a stable limit
cycle of period 1 and 2, respectively. Increasing the value of τ1 drifts the system’s dynamics
from stable to chaotic with a fixed value of gestation delay τ2 (see Fig. 4.8(c)). In a chaotic
system, a small change in the initial conditions can lead to drastically different dynamics. We
introduced a small amount of perturbation in initial conditions to confirm the chaotic behavior
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of the system. From Fig. 4.9, we observe a significant change in the time series plot with the
different initial conditions, ensuring that the system is sensitive towards initial conditions and,
hence, chaotic. Figure 4.10 depicts the plot for the Maximal Lyapunov exponent with varying
the delay parameter τ1. The positivity of the Maximal Lyapunov exponent confirms the chaotic
behavior of the delayed system.
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(c) Chaotic behavior for τ1 = 70.

Fig. 4.8: Limit cycles of various periods exhibited on changing the value of τ1. Here,
τ2 = 1.

4.6.3 Non-delayed spatial system

This subsection consists of the stationary Turing patterns obtained by perturbing the positive
non-trivial solutions. We used Forward Euler Method for the reaction equations, and the Finite
Difference scheme has been employed to solve the diffusion terms with Neumann boundary
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Fig. 4.9: Sensitivity Analysis with initial conditions for τ1 = 70.
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Fig. 4.10: Maximum Lyapnuov Exponent with repect to τ1.

conditions. To ensure that the scheme will converge, the space and time step sizes were care-
fully chosen. Prey and predator Turing patterns have a one-to-one correspondence, so we in-
cluded only Turing patterns for the prey population. The axes in the Turing patterns represent
the spatial coordinates within a rectangular two-dimensional domain. The initial condition is
considered with the random perturbation of following form:

x(u,v,0) = x∗+5εξi, j,

y(u,v,0) = y∗+5εθi, j,
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where ε = 0.0001, (x∗,y∗) is the positive equilibrium point, ξi, j and θi, j denotes standard Gaus-
sian white noise.

Numerical simulations are carried out with the following parameter values: m = 2, b = 0.3,
c = 0.25, γ1 = 0.3, and the remaining parameters are varied along with the diffusion coeffi-
cients. All the parameters are chosen from the Turing Instability region.

From Fig. 4.11, we observe that the system exhibits highly dense coldspot patterns for
lower values of prey diffusion coefficients. As the value of Dx increases, these patterns start
evolving, i.e., the number of spots decreases. Figure 4.12 depicts that the coldspots prevail
in the whole spatial domain for the lower value of predator diffusion coefficient. The prey
population becomes more dense as the value of the predator diffusion coefficient increases.
For a higher value of the predator diffusion coefficient, such as Dy = 5, the area containing a
moderate population of prey species nearly disappears (see Fig. 4.12(c)). It is observed that the
movement of both prey and predator species plays a significant role in pattern formation.

4.6.4 Delayed spatiotemporal system

In this subsection, we consider the effect of both the delay parameters τ1 and τ2 on spatial
pattern formation. We performed simulations to demonstrate the effect of the delay parameters
on the spatiotemporal dynamics. First, the value of gestation delay τ2 is taken as zero, and
the delay parameter τ1 is varied (see Fig. 4.13). From Fig. 4.13(a), we observe that the
prey species resides at high density in the isolated patch, whereas the prey density is sparse
in the remaining region. Gradual increase in the value of the delay parameter τ1 changes the
spatial distribution to Labyrinth pattern (see Figs. 4.13(b) and 4.13(c)). As the value of τ1

increases, high prey density occupies most of the region (see Figs. 4.13(d) and 4.13(e)). From
an ecological perspective, we observe that the density of the prey population increases with an
increase in the delay parameter τ1.

Next, we take the value of τ1 to be zero and observe the impact of gestation delay τ2 on
the pattern formation. The transition in the Turing patterns determined by the gestation delay
τ2 can be seen in Fig. 4.14. It is observed that the spatial distribution of prey species varies
significantly with respect to the delay parameter τ2. The time series plot with respect to τ2

depicts that the amplitude, as well as the period of the oscillations, increases as the value of τ2

is incremented (see Fig. 4.15).
Further, we analyze the spatial distribution of the species when both the delay parameters

are non-negative. For lower values of the delay parameter τ1, the system exhibits hot-spot
Turing patterns in the two-dimensional spatial domain, as can be seen in Fig. 4.16(a). As
the delay parameter τ1 is increased gradually, Turing patterns transit from hot-spot to patchy
patterns. Higher values of τ1 lead to increased density of the prey population (see Fig. 4.16).
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(a) Dx = 0.0001 (b) Dx = 0.005

(c) Dx = 0.01

Fig. 4.11: Stationary Turing patterns obtained for prey population with different prey
diffusion coefficient. Here, β = 0.19, γ0 = 0.2 and Dy = 1.

Increased value of the delay parameter τ1 can lead to higher amplitude and period of oscillations
as illustrated in Fig. 4.17.

4.7 Discussion and concluding remarks

We have proposed a prey-predator system where the past activities of prey species can alter the
present carrying capacity and, consequently, the system’s dynamics. Since the effect of past
actions is not immediate, we incorporated a delayed carrying capacity as a function of prey
density. Further, we included gestation delay τ2 for the model’s realism from an ecological per-
spective. The temporal and spatiotemporal models are analyzed with and without diffusion to
investigate the intriguing dynamics. Pati and Ghosh [122] investigated the temporal dynamics
of the proposed model with the linear functional response and without considering gestation
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(a) Dy = 0.5 (b) Dy = 1

(c) Dy = 5

Fig. 4.12: Stationary Turing patterns obtained for prey population with different preda-
tor diffusion coefficient. Here, β = 0.7, γ0 = 0.29 and Dx = 0.001.

delay. The present study assumes that prey and predator interact via Holling Type II functional
response, which is more realistic from an ecological perspective as the resources are limited in
nature. The positivity and boundedness of the temporal system are investigated. We examined
the conditions for the existence of the biologically feasible equilibrium points, and stability
analysis is performed. It is observed that the coexistence equilibrium is globally asymptoti-
cally stable under a certain condition. We analyzed that the system experiences co-dimension
one Hopf-bifurcation with respect to the parameter β . For the spatiotemporal system, Turing
instability conditions are derived by performing the linear stability analysis. Moreover, we
investigated the system’s dynamics by incorporating the discrete delays τ1 and τ2. The local
stability and Hopf-bifurcation analysis are performed considering the delay parameters. Fur-
ther, we analyzed Hopf-bifurcation for the delayed spatiotemporal system analytically.

We carried out numerical simulations to validate the analytical results for both the temporal
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(a) τ1 = 0.1 (b) τ1 = 0.5

(c) τ1 = 1 (d) τ1 = 5

(e) τ1 = 10

Fig. 4.13: Role of the delay parameter τ1 in the transition of the Turing Patterns ob-
tained in two-dimensional spatial domain. All the other parameters are fixed as τ2 = 0,
m = 3, b = 0.3, c = 0.25, γ1 = 0.3, γ0 = 0.3, β = 0.5, Dx = 0.005 and Dy = 1.
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(a) τ2 = 0.01 (b) τ2 = 0.5

(c) τ2 = 1 (d) τ2 = 10

(e) τ2 = 15 (f) τ2 = 20

Fig. 4.14: Role of the gestation delay τ2 in the transition of the Turing Patterns obtained
in two-dimensional spatial domain. All the other parameters are fixed as τ1 = 0, m = 3,
b = 0.3, c = 0.25, γ1 = 0.3, γ0 = 0.2, β = 0.5, Dx = 0.005 and Dy = 1.
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(b) τ2 = 0.5
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(c) τ2 = 10
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(d) τ2 = 20

Fig. 4.15: Time series plot obtained for prey population with varying gestation delay τ2.
All the parameters assume the same values as in Fig. 4.14.

and spatiotemporal system with and without delay. For the temporal system, the local stability
behavior of the unique coexistence equilibrium is investigated (see Fig. 4.5). We observed that
the system exhibits bi-stability behavior between two coexistence equilibria (see Fig. 4.6). The
analysis demonstrates that as the value of β increases, the system loses its stability, and limit
cycles are produced via supercritical Hopf-bifurcation (see Fig. 4.7). For the delayed system,
the sensitivity analysis is carried out for different initial conditions with regard to the delay
parameter τ1. It is concluded that the system is highly sensitive towards the initial conditions
with respect to the delay parameter τ1 (see Fig. 4.9). Our analysis illustrates that for a fixed
value of gestation delay τ2, the higher values of the delay parameter τ1 drift the system into a
chaotic region. Furthermore, we plotted the maximal Lyapunov exponent to confirm the chaotic
nature of the system as depicted in Fig. 4.10. These findings contrast with the work done by
Pati and Ghosh [122], as they investigated that the coexistence equilibrium remains stable in
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(a) τ1 = 0.01 (b) τ1 = 0.1

(c) τ1 = 1 (d) τ1 = 7

Fig. 4.16: Role of the delay parameters τ1 and τ2 in the transition of the Turing Patterns
obtained in two-dimensional spatial domain. All the other parameters are fixed as τ2 = 1,
m = 3, b = 0.3, c = 0.25, γ1 = 0.3, γ0 = 0.2, β = 0.6, Dx = 0.005 and Dy = 1.

the absence of a delay parameter and for the delayed system, their model experiences stability
switching. Therefore, our model is more complex and intriguing to explore. For the spatially
extended system, numerical simulations are done to comprehend the movement of species and
their spatial distribution across time. The derived Turing instability conditions are satisfied
numerically for a chosen set of parameters. Further, Turing patterns such as cold-spot and hot-
spot are obtained for different diffusive rates as illustrated in Figs. 4.11 and 4.12. The obtained
Turing patterns depict a significant change in the density of the prey species as the diffusivity
coefficient varies. Moreover, the combined effect of both delay parameters is investigated for
the delayed spatiotemporal system. Here, we observed that these findings are comparable to
the results given by Bhunia et al. [14], where they examined a spatiotemporal prey-predator
model with delayed carrying capacity and linear functional response. They analyzed that in
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(b) τ1 = 7

Fig. 4.17: Time series plot obtained for prey population with varying delay parameter
τ1. All the parameters assume the same values as in Fig. 4.16.

the absence of cross-diffusion, Turing patterns are not feasible for the delayed system when
the activities are constructive. A variety of Turing patterns such as stripes, a combination of
stripes and holes, patchy patterns, etc., are obtained for the two-dimensional habitat (Figs. 4.13,
4.14, 4.16). The amplitude of the periodic solutions changes as the value of delay parameters
is altered.

Throughout the study, we noticed that the past activities of prey species significantly affect
the population dynamics, which could provide valuable insights into strategies for sustainable
management. The present piece of research exhibits rich spatial patterns in the rectangular
habitat. These patterns provide useful information about species distribution across habitats
and can help ecologists implement effective strategies to protect and manage species and their
environments.
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Chapter 5

Study of a cannibalistic prey-predator model with
Allee effect in prey under the presence of diffusion1

5.1 Introduction and model formulation

A two dimensional predator-prey model with a generalist or specialist predator can presented
by the following system of two ODEs:

dU
dt

= F1(U)−F2(U,P)P,

dP
dt

= cF2(U,P)P+F3(P)P,
(5.1)

where, U and P signify the population densities of prey and predator, respectively. Functions
F1 and F3 depict the kinetics of each population in the absence of another. Function F1 can be
logistic or logistic with the Allee effect (for example), whereas function F3(P)< 0 for specialist
predator and F2(0,P)+F3(P)> 0 for generalist predator [148]. The concept of the Allee effect
was first established by ecologist Warder Clyde Allee in 1931. This concept pertains to the
distinct growth dynamics observed in prey populations at low population densities. At lower
population densities, prey populations can exhibit either negative or positive growth rates, con-
tingent upon the intensity of the Allee effect. Empirical evidence substantiating the existence
of the Allee effect is observed in a diverse array of natural species, covering insects [80], plants
[43], marine invertebrates [43], birds and mammals [30]. Based upon negative and positive
growth rate at lower population densities, the Allee effect can be classified into two distinct
categories: strong and weak, respectively. A critical threshold population density can be ob-
served in communities exhibiting the strong Allee effect. Once the population density falls
below this specific level, the per capita growth rate experiences a negative trend, leading to a
decrease in population size. On the other hand, within populations exhibiting a weak Allee

1This chapter is based on our paper published in Chaos, Solitons & Fractals, 182, 114797, 2024.
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effect, the absence of a distinct threshold density is observed, whereby the per capita growth
rate never turns negative. In contrast, it is seen that the growth rate maintains a positive when
population densities are low, exhibiting a growth pattern similar to that observed in logistic
growth models. The term A(U) = U

U+θ
portrays the weak Allee effect in prey population, and

it gives the probability of finding a male by the female during the reproduction period [18].
Here, θ ≥ 0, known as the Allee parameter, is the reciprocal of search efficacy for mating, and
gives the strength of the Allee effect. Thus the increment in θ decreases individual’s search
efficacy, which is also referred as strong-mate finding Allee effect [31]. Thus a predator-prey
model with logistic growth in prey who is suffering with weak Allee effect can be described as

dU
dt

=
rU2

U +θ

(
1− U

k

)
−F2(U,P)P,

dP
dt

= cF2(U,P)P+F3(P)P,

(5.2)

where r is the maximum intrinsic growth rate, k is habitat’s carrying capacity for prey-species
and c is the rate at which prey biomass is transformed to predator biomass. Sen et al. [148]
explored a generalist predator-prey model under the influence of weak Allee effect. They ex-
amined their model with and without the Allee effect. Both the models exhibited very rich
dynamics by showing different types of local and global bifurcations.

Cannibalism has been observed in a variety of animal species, including bank voles, house
finches, wolf spiders, fish, and zooplankton, according to experimental zoologists. Size-structured
cannibalism, in which larger individuals of the same species eat smaller ones, may contribute
substantially to the total mortality, with rates ranging from 8 percent in Belding’s ground squir-
rels to 95 percent in dragonfly larvae [128]. This demonstrates how greatly it affects population
dynamics and interactions within communities [27, 134] . Kohlmeier and Ebenhoh [70] studied
a two dimensional prey-predator model with cannibalistic predators. They included cannibal-
ism in their model by taking the total food available for predator equal to the weighted sum of
the biomass of prey and the biomass of predator. They investigated the existence and stability of
equilibrium points of their system. Following the above work, Chakraborty and Chattopadhyay
[22] resolved the paradox of enrichment with a high rate of cannibalism, i.e., they observed
that for the high value of the cannibalistic parameter, their system remained stable. Prasad
and Prasad [130] studied a predator-prey model with a cannibalistic predator who also has a
supply of additional food. They showed that their work could help in determining the suitable
additional food to supply in order to increase the effectiveness of cannibalistic predators as
biocontrol agents. Recently, Zhang et al. [190] worked on a cannibalistic prey-predator model
with incorporation of prey refuge in the presence of self-diffusion. According to their findings,
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predator cannibalism increases predator biomass density and stabilizes predator-prey ecosys-
tems. Cannibalism at high levels was observed to prevent the paradox of enrichment. They also
discussed the Turing-instability, and nonexistence and existence of nonconstant steady state
solutions.
Inspired from the above notions and existing studies, we formulate our model using the follow-
ing assumption:

1. In our predator-prey system, we consider that the prey follows the logistic growth and
this growth is also influenced by weak Allee effect. Thus, in the absence of predator, its
growth is represented by the following equation:

dU
dt

=
rU2

U +θ

(
1− U

k

)
, (5.3)

where r,θ and k have same meanings as defined for model (5.2).

2. We also consider that the predator species is a specialist thus, depends completely on the
prey for survival. The second quality of our predator is that it is cannibalistic, i.e., they
also eat their conspecifics. Therefore, we use the approach of cannibalism from [70] for
predator population to formulate its growth rate governing equation.
Using all above assumptions, we can set up the following system:

dU
dt = rU2

U+θ

(
1− U

k

)
− c1UP

h+U+βP =U f1(U,P) =: G1(U,P), t > 0,

dP
dt = c1c2UP−c1βαP2

h+U+βP −δP = P f2(U,P) =: G2(U,P), t > 0,

U(0) =U0 ≥ 0, P(0) = P0 ≥ 0.

(5.4)

Here, c1 is the maximum intake rate of predator over prey, h is predator’s coefficient of
half-saturation, β is predator’s net preference for feeding on members of the same species
(cannibalism rate), c2 is rate of conversion for consumed prey biomass into predator
biomass, α is uptake effect due to cannibalism, and δ is mortality rate of predator.

The study of reaction-diffusion systems has received much attention in recent years as an ef-
fective tool for exploring the concepts underlying pattern formation. Predators move to catch
their prey, and prey migrate to avoid the predators, causing fluctuations in population densities
throughout space. This interplay between space and time causes the population to expand un-
der each individual’s irregular motions. This irregular movement (dispersal or migration) can
be mathematically represented using the Fickian diffusion law [108]. Diffusion, in general, is
the process of moving something randomly from a location of higher concentration to one of
lower concentration [104]. The movement of individuals may be related to other factors, such



142
Chapter 5. Study of a cannibalistic prey-predator model with Allee effect in prey under the

presence of diffusion

as the need to find food, avoid predators to avoid being caught, flee from areas where there is
a severe danger of infection, and so forth. The diffusion of individuals in a system can leads
to instability, known as Turing-instability [166], and this diffusion driven instability can further
lead to formation of spatial patterns. In a model of interactions between algae and herbivores,
Bhattacharyya and Pal [12] found that the spatiotemporal system did not show diffusion-driven
instability. In fact, motional states of interaction also exist, which acknowledge potential biases,
such as the motion of a predator towards its prey and that of the prey away from the predator
[67]. According to theoretical and numerical analyses of ecological systems, phenomena of
cross-diffusion may be generating a wide range of diverse pattern [14, 45, 79, 100, 101, 156].

Form the previous studies, we observed that the Allee effect in prey, property of cannibal-
ism in predator, and the mechanism of diffusion play some vital roles in ecological interac-
tions, whereas the combination of all these biological factors have not been studied yet. Thus
motivated from it we intend to study a prey-predator model with weak Allee effect in prey,
cannibalism in predator under the presence of self and cross-diffusion. We investigate both
temporal and spatiotemporal models in great depth. We explore the separate and combined
roles of both the parameters responsible for the Allee effect and cannibalism in the occurrence
of different kinds of bifurcations. The importance of the diffusion coefficients is also studied
for the spatiotemporal model in fine detail. We did a comprehensive analytical study, thor-
oughly exploring various characteristics associated with the models, and have also presented
them through numerical examples in the corresponding sections of this paper. Now, the model
to be studied is given below.

∂U
∂ t = dU ∆U +d1∆P+ rU2

U+θ

(
1− U

k

)
− c1UP

h+U+βP , (x,y) ∈ Ω, t > 0,

∂P
∂ t = dP∆P+d2∆U + c1c2UP−c1βαP2

h+U+βP −δP, (x,y) ∈ Ω, t > 0,
∂U
∂ν

= ∂P
∂ν

= 0, (x,y) ∈ ∂Ω, t > 0,

U(x,y,0) =U0(x,y)≥ 0, P(x,y,0) = P0(x,y)≥ 0, (x,y) ∈ Ω, t > 0,

(5.5)

where U and P denotes U(x,y, t) and P(x,y, t), respectively, with Ω as a bounded subset of R2
+

having a smooth boundary. In (5.5), symbol ∆ represents the Laplacian operator; ∂ 2

∂x2 +
∂ 2

∂y2 , the
constants dU , dP are self-diffusion coefficients whereas d1, d2 are cross-diffusion coefficients,
and we take all these coefficients always positive [45, 125]. The condition ∂U

∂ν
= ∂P

∂ν
= 0 stands

for no flux boundary conditions (homogeneous Neumann boundary conditions) with ν as an
outward normal vector to boundary of Ω. We fix the parameters (unless mentioned in text) for
both systems (5.4) and (5.5) as given below:
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Parameters Default values References

r 2 [114]
k 14 [76]
c1 1.5 Assumed
c2 0.8 [183]
δ 0.06 [143, 190]
h 3 [96]
α 0.5 [70]
θ 14 Assumed
β 2 Assumed

Table 5.1: Biological signification and parameters’ values which are employed in sys-
tems (5.4) and (5.5).

We organized this paper as follows: Section 5.2 consists of a detailed analysis of non-
spatial model (5.4). This comprises analytical conditions for all feasible steady states’ existence
and stability. Bifurcations of codimension 1 and 2 are also discussed here analytically and
numerically. In Section 5.3, we firstly investigate the existence of non-negativity of solutions
for the self-diffusion model and its prior bounds. Next, we drive the conditions for Turing-
instability for models with self-diffusion and cross-diffusion. Using numerical simulation, we
also present different types of stationary and dynamic patterns. Lastly, concluding remarks of
present study are presented in Section 5.4.

5.2 Analysis for temporal model

5.2.1 Model’s well-posedness

Theorem 5.2.1. For system (5.4), its each solution initiating with a non-negative initial condi-

tion continue to be non-negative forever and uniformly bounded.

Proof. From (5.4), it is easy to observe that

U(t) =U0 exp
(∫ t

0
f1(U(s),P(s))ds

)
≥ 0,

P(t) = P0 exp
(∫ t

0
f2(U(s),P(s))ds

)
≥ 0, ∀t ≥ 0.

(5.6)

Now, to prove the boundedness of the solution of (5.4), we first prove the boundedness of
variable U and then we prove for P. For U , we take two cases: U0 ≤ k and U0 > k. For the first
case, we claim that U(t) ≤ k for all t > 0. On the contrary of this, we suppose that there exist
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t1, t2 > 0 such that t1 < t2 and U(t1) = k where U(t)> k for t ∈ (t1, t2). Using first eq. of (5.6)
for T1 ∈ (t1, t2)

U(T1) =U0 exp
(∫ t1

0
f1(U(s),P(s))ds

)
exp
(∫ T1

t1
f1(U(s),P(s))ds

)
,

=U(t1)exp
(∫ T1

t1
f1(U(s),P(s))ds

)
≤U(t1),

holds because f1(U(s),P(s)) < 0 for t ∈ (t1, t2). This leads to a contradiction to the fact that
U(t)> k for t ∈ (t1, t2). Thus, we have U(t)≤ k for t > 0 in this case.

In the case when U0 > k, there can be two sub-cases, either there exists T2 > 0 such that
U(t)> k for t ∈ [0,T2) with U(T2) = k or U(t)> k for t > 0. In the first sub-case, U(t)≤ k for
t > T2. For t ∈ (0,T2), we get

U(t) =U0 exp
(∫ t

0
f1(U(s),P(s))ds

)
≤U0.

With the same argument, we can show that U(t)<U0 in the second sub-case. Hence, combining
all the cases we get U(t)≤ max{k,U0}.

For the boundedness of P, we define W (t) =U(t)+ 1
c2

P(t), then we have

dW
dt

+δW ≤ rU
(

1− U
k

)
+δU,

= f (U),

where f (U) = (r+ δ )U − r
kU2. Now, max

U≥0
f (U) = f

(
(r+δ )k

2r

)
= (r+δ )2k

4r = B (say). Thus, we

have
dW
dt

+δW ≤ B,

and using the theory of differential inequalities, we get

W (t)≤ B
δ
+ e−δ t

(
W0 −

B
δ

)
≤ max

{
B
δ
,W0

}
.

Therefore, W (t) is bounded and hence P(t) is bounded and all the solutions of (5.4) are bounded.



5.2. Analysis for temporal model 145

5.2.2 Equilibrium analysis

Model (5.4) has at most three types of equilibrium points; extinction equilibrium E0(0,0),
predator-free equilibrium E1(k,0) and the coexistence steady state E∗(U∗,P∗). The equilibrium
E∗ is the positive solution of following algebraic equations:

rU∗

U∗+θ

(
1− U∗

k

)
− c1P∗

h+U∗+βP∗ = 0, (5.7)

c1c2U∗− c1βαP∗

h+U∗+βP∗ −δ = 0. (5.8)

From (5.8), we get

P∗ =
(c1c2 −δ )U∗−δh

β (δ + c1α)
> 0 if δ <

c1c2U∗

h+U∗ . (5.9)

Using P∗ from (5.9) together with (5.7), we have a cubic equation in U∗ given by

g(U) = A3U∗3 +A2U∗2 +A1U∗+A0 = 0, (5.10)

where

A3 =−rβc1(c2 +α) (< 0),

A2 = rβc1c2k− c2
1c2k+ c1δk− c1hrβα + c1rβαk,

A1 =−c2
1c2θk+ c1hδk+ c1δθk+ c1hrβαk,

A0 = c1hδθk (> 0),

and define ∆ = 18A3A2A1A0 −4A3
2A0 +A2

2A2
1 −4A3A3

1 −27A2
3A2

0.

Now, the number of coexistence steady states can vary depending upon the sign of A2, A1

and ∆. As the parameters θ and β are of most importance, so we study the existence of co-
existence steady state in the θβ -plane keeping other parameters fixed. We can divide the first
quadrant of the θβ -plane into following sub-regions (depicted in Fig. 5.1):

R1 = {(θ ,β ) ∈ R2
+|A2 > 0 and A1 > 0},

R2 = {(θ ,β ) ∈ R2
+|A2 < 0 and A1 > 0},

R3 = {(θ ,β ) ∈ R2
+|A2 < 0 and A1 < 0},

R4 = {(θ ,β ) ∈ R2
+|A2 > 0, A1 < 0 and ∆ < 0},

R5 = {(θ ,β ) ∈ R2
+|A2 > 0, A1 < 0 and ∆ > 0}.
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Using the above analysis, we can state the following theorem for existence of positive equilib-
rium.

Theorem 5.2.2. 1. System (5.4) has no coexistence steady state if δ > c1c2U∗

h+U∗ .

2. System (5.4) has an unique coexistence steady state E∗
1(U

∗
1 ,P

∗
1 ) if (θ ,β ) ∈ R1∪R2∪R3∪

R4 and δ <
c1c2U∗

1
h+U∗

1
.

3. System (5.4) has three coexistence steady states E∗
i (U

∗
i ,P

∗
i ), i = 1,2,3 if (θ ,β ) ∈ R5

and δ < c1c2 min
{

U∗
1

h+U∗
1
,

U∗
2

h+U∗
2
,

U∗
3

h+U∗
3

}
. In this case, an instantaneous equilibrium (Ez1 =

(Uz1,Pz1) or Ez2 = (Uz2 ,Pz2)) arises when g(Uz1) = 0 or g(Uz2) = 0, where z1 and z2 are

the roots of g′(U) = 0.

Proof. When condition δ > c1c2U∗

h+U∗ holds, then from (5.9), we can observe that under this con-
dition, the predator coordinate of E∗ becomes negative, which is biologically insignificant.
Thus δ < c1c2U∗

h+U∗ is a necessary condition for the existence of coexistence steady state, so from
here on next, when we will talk about coexistence steady state, it is preassumed that this con-
dition holds. When we talk about three positive equilibria, the necessary condition becomes
δ < c1c2 min

{
U∗

1
h+U∗

1
,

U∗
2

h+U∗
2
,

U∗
3

h+U∗
3

}
.

Now, we use the theory of cubic equation and Descartes’ rule of signs to prove the remaining
points. When (θ ,β ) ∈ R1 ∪R2 ∪R3, one can easily use the above rule of sign and note that
g(U) = 0 has exactly one positive root; U∗ for this choice of parameters. Similarly, when
{(θ ,β ) ∈ R2

+|A2 > 0 and A1 < 0} then g(U) = 0 has either one or three positive roots. The
discriminant ∆ < 0 guarantees the existence of exactly one real root of g(U) = 0, so taking it
with A2 > 0 and A1 < 0 ensures the existence of exactly one positive root of g(U) = 0. In this
way, system (5.4) has an unique positive equilibrium for (θ ,β ) ∈ R1 ∪R2 ∪R3 ∪R4. In a same
way, taking ∆ > 0 with A2 > 0 and A1 < 0 gives three positive roots, i.e., for (θ ,β )∈ R5 system
(5.4) has three coexistence steady states.

The case when there are three coexistence steady state i.e., g(U)= 0 has three positive roots,
say U∗

1 <U∗
2 <U∗

3 . Then there exist Uz1 and Uz2 such that U∗
1 <Uz1 <U∗

2 and U∗
2 <Uz2 <U∗

2

with g′(Uz1) = g′(Uz2) = 0, and an instantaneous equilibrium arises when g(Uz1) (or g(Uz2))
becomes zero because of the collision of U∗

1 and U∗
2 (or U∗

2 and U∗
3 ). Consequently, the collision

of E∗
1 and E∗

2 gives Ez1 = (Uz1 ,Pz1) (say) and collision of E∗
2 and E∗

3 gives Ez2 = (Uz2,Pz2).
Hence, this completes the proof.

Remark 5.2.1. In, Fig. 5.1, we can see all the regions defined in the above theorem. Here, we

may also note that the boundaries of the region R5 will correspond for saddle-node bifurcation,

and the point where these are meeting will be a cusp point. All these things are discussed in

detail in Fig. 5.5 in the next section of the bifurcation analysis.
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Fig. 5.1: In this figure,the θβ -plane is divided into different sub-regions such that R1 ∪
R2 ∪ R3 ∪ R4 has an unique coexistence steady state; R5 has three coexistence steady
states in accordance to conditions stated in Theorem 5.2.2.

5.2.3 Stability analysis for equilibrium points

Here, we execute the local (or global) stability analysis for the feasible equilibrium points.

Theorem 5.2.3. The extinction equilibrium E0(0,0) is a non-hyperbolic saddle node with a

parabolic sector and two hyperbolic sectors.

Proof. The eigenvalues of the Jacobian evaluated E0 are λ1 = 0 and λ2 =−δ < 0 which means
that E0 is non-hyperbolic equilibrium, so local stability analysis cannot provide any significant
information about its stability. For this, we use Theorem 1, page:151 in [127] and its notations.
Now, the system (5.4) can be put into the form

U̇ = p2(U,P),

Ṗ = P+q2(U,P),

where

p2(U,P) =
r
θ

U2 − c1

h
UP− r

(
1

θ 2 +
1

kθ

)
U3 +

c1

h2U2P− c1β

h2 UP2 +T1(U,P),

q2(U,P) =−c1c2

δh
UP+

c1βα

δh
P2 − c1β 2α

δh2 P3 +
c1c2

δh2 U2P+

(
c1c2β

δh2 − c1βα

δh2

)
UP2 +T2(U,P),

where, T1(U,P) and T2(U,P) are series having terms U iP j with i+ j ≥ 4.
Let P = φ(U) be a solution of P + q2(U,P) = 0 in the neighborhood of origin and write
p2(U,φ(U)) in the form as Ψ(U) = amUP + ... in the neighborhood of origin where m ≥
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2, am ̸= 0. As φ(U) is solution of P+q2(U,P) = 0, thus solving it we get:

φ
′(U)p2(U,φ(U))−φ(U)−q2(U,φ(U)) = 0. (5.11)

Now, let P = φ(U) = aU2 +bU3 +R1(U), where R1(U) is a series having terms U i with i ≥ 4.
After some mathematical calculation, we can see that the use of this value of P with (5.11), and
comparison of coefficients of U gives φ(U)≡ 0. Thus p2(U,φ(U)) becomes

p2(U,φ(U)) =
r
θ

U2 +R2(U),

where R2(U) is a series having terms U i with i ≥ 3. As m = 2 thus from the above men-
tioned theorem from [127], E0 is a non-hyperbolic saddle node with a parabolic sector and two
hyperbolic sectors whereas these sectors are evident from Fig. 5.2(a).

-0.1 -0.05 0 0.05 0.1

-0.08

-0.04

0

0.04

0.08

E
0

(a) E0(0,0) is non-hyperbolic saddle node with
parabolic sector on the left and hyperbolic sectors
on the right.

4 8 12 16 20 24

0

1

2

3

4

5

E
1

(b) E1(k,0) is globally asymptotically stable in
R2
+ under the condition c1c2k−δ (h+ k)< 0.

Fig. 5.2: In both figures, c1 = 0.5, c2 = 0.1 and h = 10 with all other parameters from
(5.1).

Theorem 5.2.4. The predator-free equilibrium E1(k,0) is locally asymptotically stable if c1c2k−
δ (h+ k)< 0. Further, E1 is globally asymptotically stable in R2

+ if c1c2k−δ (h+ k)< 0.

Proof. Firstly, from Theorem 5.2.3, we can easily see that no solution of (5.4) in R2
+ can

converge to E0(0,0). Next, the eigenvalues corresponding to E1 are λ1 = − rk
k+θ

< 0 and λ2 =
c1c2k
h+k −δ . So, the predator-free equilibrium is locally asymptotically stable if λ2 < 0 i.e., c1c2k−

δ (h+ k) < 0. Moreover, c1c2k − δ (h+ k) < 0 gives δ > c1c2k
h+k thus the local stability of E1
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establishes the non-existence of positive steady state. Now, from second equation of (5.4), we
have:

1
P

dP
dt

=
c1c2U − c1βαP

h+U +βP
−δ ,

≤ c1c2U
h+U

−δ .

Let ϒ(U) = c1c2U
h+U , and it is easy to observe that ϒ(U) attains its maximum value at U = k. Thus

1
P

dP
dt

≤ c1c2k
h+ k

−δ ,

=
c1c2k−δ (h+ k)

h+ k
.

Now, we can define ε = δ (h+ k)− c1c2k and as c1c2k−δ (h+ k)< 0, so we have

1
P

dP
dt

≤ −ε

h+ k
,

=⇒ P(t)≤C exp
( −εt

h+ k

)
, where C is some constant

=⇒ P(t)→ 0 as t → ∞,

as a result of which the possibility for existence if any periodic orbit get eliminated. In this
way, we have established the global stability of E0(k,0) (depicted in Fig. 5.2(b)).

The Jacobian matrix corresponding to a general interior equilibrium E∗(U∗,P∗) is given as

J|E(U∗,P∗) =

(
E11 E12

E21 E22

)
, (5.12)

where

E11 =
rU∗(k(U∗+2θ)−U∗(2U∗+3θ))

k(U∗+θ)2 − c1P∗(h+βP∗)

(h+U∗+βP∗)2 ,

E12 =− c1U∗(h+U∗)

(h+U∗+βP∗)2 (< 0),

E21 =
c1c2P∗(h+βP∗)+ c1βαP∗2

(h+U∗+βP∗)2 (> 0),

E22 =−c1P∗β (c2U∗+α(h+U∗))

(h+U∗+βP∗)2 (< 0).
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As we are not having the explicit expressions for coexistence steady states so we use graphical
method to discuss their stability when it is an unique or more than one (indeed three).

Theorem 5.2.5. 1. When system (5.4) has an unique coexistence steady state E∗
1(U

∗
1 ,P

∗
1 ),

then E∗
1 is stable (or unstable) if tr(J|E∗

1
) is negative (or positive).

2. When system (5.4) has three coexistence steady states E∗
i (U

∗
i ,P

∗
i ), i = 1,2,3 such that

U∗
1 < U∗

2 < U∗
3 , then E∗

1(U
∗
1 ,P

∗
1 ) and E∗

3(U
∗
3 ,P

∗
3 ) are stable (or unstable) if the corre-

sponding tr(J|E∗
1
) < 0 and tr(J|E∗

3
) < 0, respectively (or tr(J|E∗

1
) > 0 and tr(J|E∗

3
) > 0,

respectively). Moreover, E∗
2(U

∗
2 ,P

∗
2 ) is a saddle point.

Proof. The above Jacobian J|E∗(U∗,P∗) can also be written as

J|E∗(U∗,P∗) =

(
U ∂ f1

∂U U ∂ f1
∂P

P∂ f2
∂U P∂ f2

∂P

)
(U∗,P∗)

. (5.13)

Let dP( f1)

dU and dP( f2)

dU denote the slopes of tangents to prey and predator nullclines at E∗ , then
we have

det(J|E∗) =

(
UP

∂ f1

∂P
∂ f2

∂P

(
dP( f2)

dU
− dP( f1)

dU

))
(U∗,P∗)

.

1. When system (5.4) has an unique coexistence steady state E∗
1(U

∗
1 ,P

∗
1 ), then we draw the

possible types of graphical representations for nullclines for our system in Figs. 5.3(a)
and 5.3(b). In both the graphs, f1 = 0 (prey nullcline) and f2 = 0 (predator nullcline)
are presented by blue and red colors, respectively. The intersection of both these curves
gives the unique coexistence steady state E∗

1 . Now, for Fig. 5.3(a), we prove U∗
(

∂ f1
∂U

)
E∗

1
is positive. In this figure, if we take an ε-nbh. at E∗

1 in U− direction keeping P constant
then using the signs of f1, it easy to note that f1(U∗

1 − ε,y) < 0 and f1(U∗
1 + ε,y) > 0

which implies U∗
(

∂ f1
∂U

)
E∗

1

> 0. In the same manner, we are able to evaluate the signs of

remaining entries of J|E∗(U∗,P∗) at E∗
1 in (5.13) from Fig. 5.3(a), and can have

Sign(J|E∗
1
) =

(
+ −
+ −

)
.

Again from Fig. 5.3(a), it is easy to observe that at E∗
1 , dP( f2)

dU > dP( f1)

dU , i.e., det(J|E∗
1
)> 0.

Therefore, for this possibility of figure, E∗
1 is stable (or unstable) if tr(J|E∗

1
) is negative

(or positive).
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For the Fig. 5.3(b), again det(J|E∗
1
)> 0, and

Sign(J|E∗
1
) =

(
− −
+ −

)
.

Thus, for this possibility, E∗
1 is stable. Hence, in theorem, we have given the combined

statement of both possibilities.

2. The case when system (5.4) has three coexistence steady states E∗
i (U

∗
i ,P

∗
i ), i = 1,2,3,

again we draw the possible ways for intersection of these two nullclines in Figs. 5.3(c)
and 5.3(d). From both the figures, it is clear that for E∗

2 , dP( f2)

dU < dP( f1)

dU which implies that
in both the cases det(J|E∗

2
) < 0 i.e., E∗

2 is a saddle point. Now, for Fig. 5.3(c), the signs
of Jacobian for E∗

1 and E∗
3 are given by

Sign(J|E∗
1
) =

(
+ −
+ −

)
, Sign(J|E∗

2
) =

(
+ −
+ −

)
,

whereas det(J|E∗
1
) > 0 and det(J|E∗

3
) > 0. Therefore, E∗

1 and E∗
3 are stable (or unstable)

if tr(J|E∗
1
) < 0 and tr(J|E∗

3
) < 0, respectively (or tr(J|E∗

1
) > 0 and tr(J|E∗

3
) > 0, respec-

tively). Similarly for Fig. 5.3(d), we can conclude that E∗
3 is stable but E∗

1 is stable (or
unstable) if tr(J|E∗

1
)< 0 (or tr(J|E∗

1
)> 0).

The theorem’s proof is now completed.

5.2.4 Bifurcation investigation

In this subsection, we analyze different types of local bifurcations of co-dimension 1 and 2;
Hopf bifurcation, saddle node bifurcation, generalized Hopf bifurcation and Bogdanov-Takens
bifurcation under which our system (5.4) may go with certain parametric conditions.

5.2.4.1 Hopf bifurcation

In the last subsection, we have seen that E∗
2 is always a saddle point whenever it exist whereas

E∗
1 and E∗

3 are stable or unstable depending upon the signs of trace of their corresponding
Jacobians. We consider β as the bifurcation parameter and assess how E∗

1 changes its stability
when we vary β . A similar analysis can be carried out for E∗

3 .

Theorem 5.2.6. For occurrence of Hopf bifurcation, the following conditions must be satisfied:
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Fig. 5.3: This figure describes the graphical method to establish the stability of coexis-
tence steady states.
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H 1 tr(J|E∗
1
;β = βH) = E11 +E22 = 0,

H 2 det(J|E∗
1
;β = βH) = E11E22 −E12E21 > 0,

H 3 d
dβ

(Re(λ (β )))β=βH = 1
2

d
dβ

(tr(J|E∗
1
)β=βH ̸= 0,

where Ei j; i, j = 1,2 are the entries of Jacobian J (from (5.12)) evaluated at (E∗
1 ;β = βH) and

λ (β ) is eigenvalue of J|E∗
1
.

Proof. In Theorem 5.2.5, we have already proved that det(J|E∗
1
) > 0 whenever E∗

1 exists. The
next tasks are; to calculate the critical value βH which is a positive solution of tr(J|E∗

1
) = 0,

and to verify the the transversality condition given by H 3. The critical value βH of β for Hopf
bifurcation is the root of quadratic equation given below:

Λ2β
2 +Λ1β +Λ0 = 0, (5.14)

where

Λ2 = P∗
1

2rU∗
1 (k(U

∗
1 +2θ)−U∗

1 (2U∗
1 +3θ)),

Λ1 =−c1kP∗
1

2(U∗
1 +θ)2 +2hP∗

1 rU∗
1 (k(U

∗
1 +2θ)−U∗

1 (2U∗
1 +3θ))

+2P∗
1 rU∗

1
2(k(U∗

1 +2θ)−U∗
1 (2U∗

1 +3θ))− c1kP∗
1 (U

∗
1 +θ)2(c2U∗

1 +(h+U∗
1 )α),

Λ0 =−c1hkP∗
1 (U

∗
1 +θ)2 +h2rU∗

1 (k(U
∗
1 +2θ)−U∗

1 (2U∗
1 +3θ))

+2hrU∗
1

2(k(U∗
1 +2θ)−U∗

1 (2U∗
1 +3θ))+ rU∗

1
3(k(U∗

1 +2θ)−U∗
1 (2U∗

1 +3θ)).

We can observe that the coefficients Λ2,Λ1 and Λ0 contains, U∗
1 and P∗

1 which are further
implicit functions of β . Thus we evaluate the the value of βH and the corresponding U∗

1 and P∗
1

numerically, and the resultant triplet (βH ,U∗
1 ,P

∗
1 ) satisfy (5.14).

For transversality condition, firstly we need to calculate τ1 =U ′ and τ2 =P′ which are given
by

τ1 =U ′ =−
U(dA1

dβ
+U dA2

dβ
+U2 dA3

dβ
)

3A3U2 +2A2U +A1

∣∣∣∣
(U=U∗

1 ,P=P∗
1 )

,

=
−Uc1(hrαk+U(rc2α −hrα + rαk)+U2(−rc2 − rc2α))

3A3U2 +2A2U +A1

∣∣∣∣
(U=U∗

1 ,P=P∗
1 )

,

τ2 = P′ =
hδ +(c1c2 −δ )(τ1β −U)

β 2(δ + c1α)

∣∣∣∣
(U=U∗

1 ,P=P∗
1 )

,
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where ′ signifies the derivative with respect to β and A1,A2,A3 are taken from (5.10). Now,
doing the further calculations, we get that the transversality condition holds if

d
dβ

(tr(J|E∗
1
)β=βH =

[
− c1

(h+βP∗
1 +U∗

1 )
3

[
−βP∗

1
3 +(h+U∗

1 )(h+hβα +β (c2 +α)U∗
1 )τ2

−P∗
1

2[h+hβα +(−1+ c2β +βα)U∗
1 −β (−2+ c2β +βα)τ1]

+P∗
1 [(c2 +α)U∗

1
2 +U∗

1 (h(c2 +2α)−β (−2+ c2β +βα)τ2 −β (c2 +α)τ1)

+h(hα +(β −β
2
α)τ2 +(−2+ c2β −βα)τ1)]

]
+

2r(kθ 2 −3θ 2U∗
1 −3θU∗

1
2 −U∗

1
3)τ1

k(θ +U∗
1 )

3

]∣∣∣∣∣
β=βH

̸= 0.

This completes the proof this theorem.

5.2.4.2 Saddle-node bifurcation

Theorem 5.2.7. When System (5.4) has three interior coexistence steady states, then it under-

goes saddle-node bifurcation with respect to parameter θ when either g(Uz1) = 0 or g(Uz2) = 0
where Uz1 and Uz2 are the roots of g′(U) = 0.

Proof. We assume that the condition g(Uz1)= 0 holds, i.e. the coexistence equilibria E∗
1(U

∗
1 ,P

∗
1 )

and E∗
2(U

∗
2 ,P

∗
2 ) collides and Uz1 becomes the double root of g(U) at θ = θSN1 . Moreover, at

Ez1 = (Uz1,Pz1) for θ = θSN1 , both the nullclines f1 and f2 touch each other which implies
dP( f2)

dU − dP( f1)

dU = 0. Thereby, we have det(J|Ez1
) = 0, which implies one of the eigenvalues of

J|(Ez1 ,θSN1)
becomes zero. Let R and S be the eigenvectors of J|(Ez1 ,θSN1)

and JT |(Ez1 ,θSN1)
, re-

spectively, corresponding to zero eigenvalue; are given by R = (1,R21)
T , S = (1,S21)

T , where

R21 =
(h+Uz1 +βPz1)

2

c1Uz1(h+Uz1)

(
rUz1(k(Uz1 +2θSN1)−Uz1(2Uz1 +3θSN1))

k(Uz1 +θSN1)
2 − c1Pz1(h+βPz1)

(h+Uz1 +βPz1)
2

)
,

S21 =
(h+Uz1 +βPz1)

2

c1c2Pz1(h+βPz1)+ c1βαPz1
2

×

(
− rUz1(k(Uz1 +2θSN1)−Uz1(2Uz1 +3θSN1))

k(Uz1 +θSN1)
2 +

c1Pz1(h+βPz1)

(h+Uz1 +βPz1)
2

)
.
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Then the transversality conditions [127] for saddle-node bifurcation are given by

ST Gθ (Ez1,θSN1) =−
rU2

z1

(θSN1 +Uz1)
2

(
1− Uz1

k

)
̸= 0,

ST [D2Gθ (Ez1,θSN1)(R,R)] = (A11 +R21A12 +A13 +R21A14)+S21(A21 +R21A22 +A23 +R21A24),

where

A11 =
2c1(h+Pz1β )

(h+Uz1 +Pz1β )3 −
2r(U3

z1
+3U2

z1
θSN1 − kθ 2

SN1
+3Uz1θ 2

SN1
)

k(Uz1 +θSN1)
3 ,

A12 =−c1(h2 +2Pz1Uz1β +h(Uz1 +Pz1β ))

(h+Uz1 +Pz1β )3 ,

A13 =−c1(h2 +2Pz1Uz1β +h(Uz1 +Pz1β ))

(h+Uz1 +Pz1β )3 , A14 =
2c1Uz1(h+Uz1)β

(h+Uz1 +Pz1β )3 ,

A21 =−2c1Pz1(c2(h+Pz1β )+Pz1βα)

(h+Uz1 +Pz1β )3 ,

A22 =−c1Pz1β (c2(h−Uz1 +Pz1β )− (h+Uz1 −Pz1β )α)

(h+Uz1 +Pz1β )3 ,

A23 =
c1
(
c2
(
h2 +2Pz1Uz1β +h(Uz1 +Pz1β )

)
+2Pz1(h+Uz1)βα

)
(h+Uz1 +Pz1β )3 ,

A24 =−c1β (h+Uz1 −Pz1β )(c2Uz1 +(h+Uz1)α)

(h+Uz1 +Pz1β )3 .

Therefore, the transversality conditions for saddle-node bifurcation hold if

ST [D2Gθ (Ez1 ,θSN1)(R,R)] = (A11 +R21A12 +A13 +R21A14)

+S21(A21 +R21A22 +A23 +R21A24)

̸= 0.
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(a) (b)

Fig. 5.4: (a) and (b) illustrates the saddle-node bifurcations at θSN1 and θSN2 , respec-
tively, where green line, black line and red line represent stable E∗

3 , saddle point E∗
2 and

stable E∗
1 , respectively.

For the fixed parameters from (5.1), we get θSN1 = 9.660692, Ez1(Uz1,Pz1) =

(0.752202,0.418216). Thus, we can infer that system (5.4) undergo saddle-node bifurcation
for θ = θSN1. A similar analysis can be done when E∗

2(U
∗
1 ,P

∗
1 ) and E∗

3(U
∗
3 ,P

∗
3 ) collides at

Ez2(Uz2,Pz2) = (4.741278,3.225344) for θ = θSN2 = 13.654735. We have also presented the
saddle-node bifurcation diagrams for both the species U and P in Figs. 5.4(a) and 5.4(b),
respectively. From these figures, we can also observe that for these set of parameters with
θ ∈ (θSN1,θSN2) there is existence of three coexistence steady states out of which two are stable
and one saddle, and beyond this range there is only one coexistence steady state because of
saddle-node bifurcation of other two. In other words, we can say that for the coexistence of all
three interior equilibria, the strength of the Allee effect must belong a to a particular interval
and refraining this will cause the saddle-node bifurcation, resulting in annihilation of E∗

1 ,E
∗
2 or

E∗
3 ,E

∗
2 .

5.2.4.3 Generalized Hopf-bifurcation

Here, we discuss a co-dimension two bifurcation known as Bautin or generalized Hopf bifur-
cation. In this bifurcation, interior equilibrium has imaginary eigenvalues at the point of bifur-
cation, called as GH-point. The another attribute of this bifurcation is that the first Lyapunov
coefficient also vanishes at GH-point which implies that, at this point the direction of Hopf
bifurcation changes from supercritical to subcritical or vice versa. We analyze this bifurcation
in the θβ -plane with respect to E∗

1 .
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Theorem 5.2.8. System (5.4) undergoes generalized Hopf bifurcation about the coexistence

equilibrium E∗
1 at the critical point (βG,θG) in the θβ -plane under the following conditions:

G 1 tr(J|E∗
1
;θ = θG,β = βG) = 0,

G 2 det(J|E∗
1
;θ = θG,β = βG)> 0,

G 3 l1(E∗
1 ;θ = θG,β = βG) = 0.

Proof. The conditions G 1, G 2 are similar to H 1 and H 2 in Theorem 5.2.6, so omit them,
Now, we evaluate the first Lyapunov coefficient l1 at E∗

1 with θ = θG,β = βG. Firstly, we
translate E∗

1 to origin using the transformation x =U −U∗
1 and y = P−P∗

1 . Then, using Taylor’s
series expansion up to order three, system (5.4) in the neighborhood of origin can be written as

ẋ = a10x+a01y+a20x2 +a11xy+a02y2 +a30x3 +a21x2y+a12xy2 +a03y3 +H1(x,y),

ẏ = b10x+b01y+b20x2 +b11xy+b02y2 +b30x3 +b21x2y+b12xy2 +b03y3 +H2(x,y),

where H1 and H2 are C∞ functions with terms xiy j satisfying i+ j ≥ 4 and

a10 =
rU∗

1 (k (U
∗
1 +2θ)−U∗

1 (2U∗
1 +3θ))

k
(
U∗

1 +θ
)

2 −
c1P∗

1 (h+βP∗
1 )(

h+U∗
1 +βP∗

1
)

2 , a01 =−
c1U∗

1 (h+U∗
1 )(

h+U∗
1 +βP∗

1
)

2 ,

a20 =
r
(

kθ 2 −3θ 2U∗
1 −3θU∗

1
2 −U∗

1
3
)

k
(
θ +U∗

1
)

3 +
c1P∗

1 (h+βP∗
1 )(

h+U∗
1 +βP∗

1
)

3 ,

a11 =−
c1 (h(h+U∗

1 )+βP∗
1 (h+2U∗

1 ))(
h+U∗

1 +βP∗
1
)

3 , a02 =
βc1U∗

1 (h+U∗
1 )(

h+U∗
1 +βP∗

1
)

3 ,

a30 =−
c1P∗

1 (h+βP∗
1 )(

h+U∗
1 +βP∗

1
)

4 −
rθ 2(k+θ)

k
(
θ +U∗

1
)

4 , a21 =
c1

(
−β 2P∗

1
2 +2βP∗

1 U∗
1 +h(h+U∗

1 )
)

(
h+U∗

1 +βP∗
1
)

4 ,

a12 =
βc1

(
h2 −U∗

1
2 +βP∗

1 (h+2U∗
1 )
)

(
h+U∗

1 +βP∗
1
)

4 , a03 =−
β 2c1U∗

1 (h+U∗
1 )(

h+U∗
1 +βP∗

1
)

4 ,

b10 =
c1c2P∗

1 (h+βP∗
1 )+ c1βαP∗

1
2(

h+U∗
1 +βP∗

1
)

2 , b01 =
−c1P∗

1 β (c2U∗
1 +α (h+U∗

1 ))(
h+U∗

1 +βP∗
1
)

2 ,

b20 =−

(
βαc1P∗

1
2 + c1c2P∗

1 (h+βP∗
1 )
)

(
h+U∗

1 +βP∗
1
)

3 ,

b11 =
c1 (2βαP∗

1 (h+U∗
1 )+ c2 (h(h+U∗

1 )+βP∗
1 (h+2U∗

1 )))(
h+U∗

1 +βP∗
1
)

3 ,
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b02 =−
βc1 (h−βP∗

1 +U∗
1 )(hα +(α + c2)U∗

1 )

2
(
h+U∗

1 +βP∗
1
)

3 , b30 =

(
βαc1P∗

1
2 + c1c2P∗

1 (h+βP∗
1 )
)

(
h+U∗

1 +βP∗
1
)

4 ,

b21 =−
c1

(
βαP∗

1 (−βP∗
1 +2(h+U∗

1 ))+ c2

(
−β 2P∗

1
2 +2βP∗

1 U∗
1 +h(h+U∗

1 )
))

(
h+U∗

1 +βP∗
1
)

4 ,

b12 =
βc1

(
α (h+U∗

1 )(h−2βP∗
1 +U∗

1 )− c2

(
h2 −U∗

1
2 +βP∗

1 (h+2U∗
1 )
))

(
h+U∗

1 +βP∗
1
)

4 ,

b03 =−
β 2c1 (hα +(α + c2)U∗

1 )(βP∗
1 −2(h+U∗

1 ))(
h+U∗

1 +βP∗
1
)

4 .

Now, we calculate l1 to determine the direction (stability) of limit cycle by using the formula
[127] given as

l1 =− 3π

2a01Θ
3
2

{[
a10b10

(
a2

11 +a11b02 +a02b11

)
+a10a01

(
b2

11 +a20b11 +a11b02

)
+b2

10 (a11a02 +2a02b02)−2a10b10
(
b2

02 −a20a02
)
−2a10a01

(
a2

20 −b20b02
)

−a2
01 (2a20b20 +b11b20)+

(
a01b10 −2a2

10
)
(b11b02 −a11a20)

]
−
(
a10

2 +a01b10
)[

3(b10b03 −a01a30)+2a10 (a21 +b12)

+(b10a12 −a01b21)
]}∣∣∣∣

(E∗
1 ;θ=θG,β=βG)

,

(5.15)

with Θ = (a10b01 − a01b10)|(E∗
1 ;θ=θG,β=βG). Therefore, we infer that our system (5.4) admits

GH bifurcation at E∗
1 for θ = θG,β = βG if l1 = 0.

5.2.4.4 Bogdanov-Takens bifurcation

The second type of co-dimension 2 bifurcation under which our system (5.4) may go is Bog-
danov–Takens (BT) bifurcation. Varying two parameters, this bifurcation takes place at a point
in the bi-parametric plane where saddle-node curve meet with Hopf curve. Two eigenvalues as-
sociated with the equilibrium at this point of meet become zero which makes this equilibrium a
degenerate equilibrium [127]. As our system has encountered Hopf bifurcation with respect to
β and saddle-node bifurcation with respect to θ , thus we study BT-bifurcation in the θβ -plane.

Theorem 5.2.9. If θ and β are picked as the bifurcation parameters then system (5.4) under-

goes Bogdanov–Takens (BT) bifurcation of codimension 2 in the vicinity of EBT = (Ū , P̄) at

(θ ,β ) = (θBT ,βBT ) when the the following conditions holds:
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BT 1 tr(J|EBT ;θ = θBT ,β = βBT ) = 0,

BT 2 det(J|EBT ;θ = θBT ,β = βBT ) = 0.

Proof. The above two conditions BT 1 and BT 2 are equivalent to following:

rŪ(k(Ū +2θ)−Ū(2Ū +3θ))

k(Ū +θ)2 − c1P̄(h+β P̄)
(h+Ū +β P̄)2 −

c1P̄β (c2Ū +α(h+Ū))

(h+Ū +β P̄)2

∣∣∣∣
(θ=θBT ,β=βBT )

= 0,(
rŪ(k(Ū +2θ)−Ū(2Ū +3θ))

k(Ū +θ)2 − c1P̄(h+β P̄)
(h+Ū +β P̄)2

)(
−c1P̄β (c2Ū +α(h+Ū))

(h+Ū +β P̄)2

)
+

(
c1Ū(h+Ū)

(h+Ū +β P̄)2

)(
c1c2P̄(h+β P̄)+ c1βαP̄2

(h+Ū +β P̄)2

)∣∣∣∣
(θ=θBT ,β=βBT )

= 0,

respectively. Now, we use the techniques discussed in [25, 58] to deduce system (5.4) to its the
normal form for Bogdanov-Takens bifurcation. Consider the system

dU
dt = rU2

U+θBT1+ε1

(
1− U

k

)
− c1UP

h+U+(βBT1+ε2)P
,

dP
dt =

c1c2UP−c1(βBT1+ε2)αP2

h+U+(βBT1+ε2)P
−δP,

(5.16)

with θ = θBT1 + ε1 and β = βBT1 + ε2, where ε = (ε1,ε2) is very small vector in vicinity of
(0,0). We make (0,0) as the bifurcation point with use of transformation u =U −Ū , v = P− P̄

in (5.16), and then we obtainu̇ = m00 +m10u+m01v+m11uv+m20u2 +m02v2 +M1(u,v,ε),

v̇ = n00 +n10u+n01v+n11uv+n20u2 +n02v2 +M2(u,v,ε),
(5.17)

where

m00 =
rŪ2

Ū +θ + ε1

(
1− Ū

k

)
− c1ŪP̄

h+Ū +(β + ε2)P̄
,

m10 =− c1P̄(h+ P̄(β + ε2))

(h+Ū + P̄(β + ε2))2 +
rŪ(k(Ū +2(ε1 +θ))−Ū(2Ū +3(ε1 +θ)))

k(Ū + ε1 +θ)2 ,

m01 =− c1Ū(h+Ū)

(h+Ū + P̄(β + ε2))2 , m11 =−
c1
(
h2 +2P̄Ū(β + ε2)+h(Ū + P̄(β + ε2))

)
(h+Ū + P̄(β + ε2))3 ,

m20 =
c1P̄(h+ P̄(β + ε2))

(h+Ū + P̄(β + ε2))3 −
r
(
Ū3 +3Ū2(θ + ε1)− k(θ + ε1)

2 +3Ū(θ + ε1)
2)

k(Ū + ε1 +θ)3 ,
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m02 =
c1Ū(h+Ū)(β + ε2)

(h+Ū + P̄(β + ε2))3 , n00 =
c1c2ŪP̄− c1(β + ε2)αP̄2

h+Ū +(β + ε2)P̄
−δ P̄,

n10 =
c1P̄(c2(h+ P̄(β + ε2))+ P̄(β + ε2)α)

(h+Ū + P̄(β + ε2))2 ,

n01 =−δ +
c1(c2Ū −2P̄(β + ε2)α)

h+Ū + P̄(β + ε2)
+

c1P̄(β + ε2)(−c2Ū + P̄(β + ε2)α)

(h+Ū + P̄(β + ε2))2 ,

n11 =

(
c1(c2

(
h2 +2P̄Ū(β + ε2)+h(Ū + P̄(β + ε2))

)
+2P̄(h+Ū)(β + ε2)α

)
(h+Ū + P̄(β + ε2))3 ,

n20 =−c1P̄(c2(h+ P̄(β + ε2))+ P̄(β + ε2)α)

(h+Ū + P̄(β + ε2))3 , n02 =−c1(h+Ū)(β + ε2)(c2Ū +(h+Ū)α)

(h+Ū + P̄(β + ε2))3 ,

and M1(u,v,ε), M2(u,v,ε) are are C∞ functions with terms uiv j satisfying i+ j ≥ 3.

Next, we use the change of coordinatesp = u,

q = m00 +m10u+m01v+m11uv+m20u2 +m02v2 +M1(u,v,ε),
(5.18)

and write (5.17) asṗ = q,

q̇ = r00 + r10 p+ r01q+ r11 pq+ r20 p2 + r02q2 +M3(p,q,ε),
(5.19)

with

r00 =
m2

00m02m10

m2
01

−
m3

00m02m11

m3
01

+m01n00 −m00n01 +
m2

00n02

m01
,

r10 =
2m00m02m2

10

m2
01

−
5m2

00m02m10m11

m3
01

+
3m3

00m02m2
11

m4
01

+
2m2

00m02m20

m2
01

+m11n00 −m10n01

+
2m00m10n02

m01
−

m2
00m11n02

m2
01

+m01n10 −m00n11,

r01 = m10 −
2m00m02m10

m2
01

− m00m11

m01
+

3m2
00m02m11

m3
01

+n01 −
2m00n02

m01
,
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r20 =
m02m3

10

m2
01

−
7m00m02m2

10m11

m3
01

+
12m2

00m02m10m2
11

m4
01

−
6m3

00m02m3
11

m5
01

+
6m00m02m10m20

m2
01

−
7m2

00m02m11m20

m3
01

−m20n01 +
m2

10n02

m01
− 2m00m10m11n02

m2
01

+
m2

00m2
11n02

m3
01

+
2m00m20n02

m01

+m11n10 −m10n11 +m01n20,

r11 =−
2m02m2

10

m2
01

− m10m11

m01
+

10m00m02m10m11

m3
01

+
m00m2

11
m2

01
−

9m2
00m02m2

11

m4
01

+2m20

− 4m00m02m20

m2
01

− 2m10n02

m01
+

2m00m11n02

m2
01

+n11,

r02 =
m02m10

m2
01

+
m11

m01
− 3m00m02m11

m3
01

+
n02

m01
,

and M3(p,q,ε) is C∞ function with terms piq j satisfying i+ j ≥ 3.
Now, we introduce a time variable τ by dt = (1− r02 p)dτ . Rewriting τ as t, (5.19 ) can be
written asṗ = (1− r02 p)q,

q̇ = (1− r02 p)(r00 + r10 p+ r01q+ r11 pq+ r20 p2 + r02q2 +M3(p,q,ε)).
(5.20)

Let z1 = p, z2 = q(1− r02 p), then we can write (5.20) asż1 = z2,

ż2 = η00 +η10z1 +η01z2 +η11z1z2 +η20z2
1 +M4(z1,z2,ε),

(5.21)

where

η00 =r00, η10 =−2r00r02 + r10, η01 = r01, η11 =−r01r02 + r11,

η20 =r00r2
02 −2r02r10 + r20,

M4(z1,z2,ε) is C∞ function with terms wi
1w j

2 satisfying i+ j ≥ 3. It can be noted that the sign
of η20 is not known, thus we take the two cases while making following transformations.
Case 1. If η20 > 0, then we make the following transformations

w1 = z1, w2 =
z2√
η20

, τ =
√

η20t.
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Writing τ as t, (5.21) can be written asẇ1 = w2,

ẇ2 = θ00 +θ10w1 +θ01w2 +θ11w1w2 +w2
1 +M5(w1,w2,ε),

(5.22)

where

θ00 =
η00

η20
, θ10 =

η10

η20
, θ01 =

η01√
η20

, θ11 =
η11√
η20

,

and M5(w1,w2,ε) is C∞ function with terms wi
1w j

2 satisfying i+ j ≥ 3.
Let g1 = w1 +

θ10
2 , g2 = w2, then (5.22) can be written asġ1 = g2,

ġ2 = µ00 +µ01g2 +µ11g1g2 +g2
1 +M6(g1,g2,ε),

(5.23)

where

µ00 = θ00 −
1
4

θ10, µ01 = θ01 −
1
2

θ11θ10, µ11 = θ11,

and M6(g1,g2,ε) is C∞ function with terms wi
1w j

2 satisfying i+ j ≥ 3.
For next transformation, we suppose that η11 ̸= 0 which implies that µ11 = θ11 =

η11√
η20

̸= 0.
Now, let x = µ2

11g1, y = µ3
11g2, τ = 1

µ11
t and using this we getẋ = y,

ẏ = χ1 +χ2y+ x2 + xy+M7(x,y,ε),
(5.24)

which is versal unfolding of system (5.16), where

χ1 = µ00µ
4
11, χ2 = µ11µ01,

and M7(x,y,ε) is C∞ function with terms wi
1w j

2 satisfying i+ j ≥ 3.

Now, if the determinant
∣∣∣∣∂ (χ1,χ2)

∂ (ε1,ε2)

∣∣∣∣
ε=0

̸= 0 then it will imply that the parameter transforma-

tion (5.24) is homeomorphism in a small vicinity of (0,0), and ε1,ε2 are independent parame-
ters.
Case 2. When η20 < 0, a similar set of transformation can be applied to obtain similar kind
of versal unfolding of system (5.16). Thus we omit it whereas interested researchers can look
here [58] for more details.
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Using [127], we come to know that system (5.24) undergoes Bogdanov-Takens bifurcation
when ε is in a tiny vicinity of (0,0). The local representation of bifurcation curves are given as
(′+′ for η20 > 0 and ′−′ for η20 < 0):

1. The saddle node bifurcation curve is SN = {(ε1,ε2) : χ1(ε1,ε2) = 0,χ2(ε1,ε2) ̸= 0},

2. The Hopf bifurcation curve is H = {(ε1,ε2) : χ2(ε1,ε2) =±
√

−χ1(ε1,ε2),χ1(ε1,ε2)

< 0},

3. The Homoclinic bifurcation curve is HL = {(ε1,ε2) : χ2(ε1,ε2) =±5
7

√
−χ1(ε1,ε2),

χ1(ε1,ε2)< 0}.

Now, using the Matcont software, we try to illustrate all the bifurcations mentioned above
in a single bi-parametric bifurcation diagram shown in Fig. 5.5. In this figure, all the observed
singularities are marked with a black dot, whereas the meaning of the abbreviations used for
them, their type, and the corresponding pair of (θ ,β ) are provided in Table 5.2. In Fig. 5.5,
the blue curve stands for the subcritical Hopf bifurcation, and moving on this curve from right
to left, the point where the direction of Hopf bifurcation changes is marked as GH1. The curve
joining the points GH1 and BT1 is the curve for supercritical Hopf bifurcation. The curve
joining the two BT-bifurcation points, i.e., BT1 and BT2 corresponds to a neutral saddle; on
this curve, both eigenvalues of the saddle point E∗

2 have the same absolute values. Although
this curve is not responsible for any bifurcation, but it often connects the BT points, which
defines its significance [47]. The black colored lines, SN1 and SN2, represent the saddle-node
bifurcation curves which join each other tangentially at the cusp point (CP-point). Between
these SN1 and SN2 curves, all three coexistence equilibria exist, whereas, on SN1, E∗

1 and E∗
2

annihilates through saddle-node bifurcation and E∗
3 persists on the left of SN1. Similarly, E∗

3

and E∗
2 annihilate on SN2, and E∗

1 persists on the right of SN2. The curve from BT2 to GH2

causes the supercritical Hopf bifurcation whose direction changes at GH2-point, and the further
extension of this curve is not shown due to negative values of the parameters.

Abbreviation Singularity type (θ ,β )
GH1 Generalized Hopf bifurcation (10.116429,1.927051)
BT1 Bogdanov-Takens bifurcation (9.190538,1.909723)
BT2 Bogdanov-Takens bifurcation (5.887359,1.126037)
CP Cusp Point (3.071196,0.756838)
GH2 Generalized Hopf bifurcation (0.263186,0.355407)

Table 5.2: This table explains the abbreviation, corresponding type of singularity for a
particular pair of (θ ,β ), shown in Fig. 5.5.
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Fig. 5.5: This bi-parametric bifurcation diagram illustrates all the important local bifur-
cations of co-dimension 1 and 2 associated with system (5.4) for parameters fixed from
(5.1).

Now, we analyze the dynamics of our system (5.4) in the neighborhood of GH and BT

points for which we pick GH1 and BT1 points from Fig. 5.5.
Firstly, we investigate the kinetics of the system around the GH1-point by plotting a bi-

parametric bifurcation diagram in the θβ -plane with (θ ,β ) ∈ [9,11]× [1.922,1.932] in Fig.
5.6(a). To understand this bifurcation diagram, we divide this plane into three sub-regions:
GR-I, GR-II, and GR-III, and make a trip about the GH1-point counterclockwise, starting from
part GR-I. In GR-I, the equilibrium E∗

1 is locally stable, which is evident from the phase portrait
given in Fig. 5.6(b), E∗

2 is saddle whereas E∗
3 is also locally stable (not shown for better view).

Next, when we move from GR-I to GR-II via crossing the olive-colored curve by decreasing
rate of cannibalism, the system encounters supercritical Hopf bifurcation about E∗

1 , giving rise
to a stable limit cycle around it, making E∗

1 unstable, an example for this is portraited in Fig.
5.6(c). Further, from GR-II to GR-III by increasing both θ and β via blue colored curve, the
system experiences subcritical Hopf bifurcation, which creates an unstable limit cycle (blue
colored orbit in Fig. 5.6(d)) around E∗

1 and inside the previous stable limit cycle. Moreover,
crossing the red-colored curve by further increment in β leads to saddle-node bifurcation of
these limit cycles, which results in stable E∗

1 without any orbit around it (Fig. 5.6(e)). In this
last phase diagram, we also portraited the stability of E∗

3 , present in all three previous cases.
From this, we can also conclude that system (5.4) possess the attribute of focus-focus and
cycle-focus bi-stability with attractors having their corresponding basins of attraction.

Now, we explore the dynamics of system (5.4) in the neighborhood of BT1-point (from Fig.
5.5) with (θ ,β ) ∈ [9,10]× [1.9,1.935] as shown in Fig. 5.7(a). In this figure, we divide the
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Fig. 5.6: Fig. (a) shows the division of neighborhood of GH1-point (from Fig. 5.5)
into three sub-regions; GR − I,GR − II and GR − III; olive, blue and red colored
curves denotes supercritical Hopf curve, subcritical Hopf curve and saddle-node curve
for periodic orbits, respectively. Fig. (b) corresponds for local stability of E∗

1 with
(θ ,β ) ∈ GR− I, whereas Fig. (c) illustrates the arise of a stable limit cycle around E∗

1
(after passing through supercritical Hopf curve) for (θ ,β ) ∈ GR− II. Fig. (d) shows the
appearance of an unstable limit cycle about E∗

1 (after passing through subcritical Hopf
curve) for (θ ,β ) ∈ GR− III. Lastly, Fig. (e) depicts stable E∗

1 without any orbit around
it, saddle point E∗

2 and stable E∗
3 with (θ ,β ) ∈ GR− I.
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vicinity of BT1-point into four sub-regions; BR−I,BR−II,BR−III, and BR−IV . We use three
curves; saddle-node curve (blacked one), Hopf curve (olive one), and homoclinic curve (cyan
one) to develop the above sub-regions. We have a degenerate equilibrium EBT1 at the BT1-point
for (θBT ,βBT ) = (9.190538,1.909723), depicted in Fig. 5.7(b), and we move counterclockwise
around BT1-point starting from sub-region BR− I. Here, E∗

3 is the only coexistence equilibrium
that is stable as well, evident from Fig. 5.7(c). As we increase the Allee effect’s strength, we
enter into BR− II where stable E∗

1 and saddle E∗
2 comes into the picture (Fig. 5.7(d)) after

passing through the saddle-node curve. Ecologically, this portrays that the decrement in Allee
effect’s strength can cause the annihilation of two interior equilibria. Next, we move from
BR− II to BR− III by decreasing the rate of cannibalism, and a stable limit cycle is created
around E∗

1 through Hopf bifurcation (Fig. 5.7(e)). We further decrease β and choose a point
on the homoclinic curve, where the previously mentioned stable limit cycle collides with the
saddle E∗

2 to form a homoclinic loop (Fig. 5.7(f)). The additional decrement in β takes us to
BR− IV , leading to the disappearance of the above homoclinic loop and leaving behind E∗

1 as
a spiral source, E∗

2 as saddle and E∗
3 as a spiral sink (Fig. 5.7(g)).

5.3 Analysis for spatiotemporal model

5.3.1 Existence and boundedness of solution

Firstly, we derive the sufficient conditions for existence of non-negative solutions of model (5.5)
in absence of cross-diffusion i.e., of (5.25) Following this, we also determine the solution’s prior
bounds using the techniques discussed in [49, 178]. Here, we define D = Ω× (0,∞), H =

∂Ω× (0,∞).

∂U(x,y,t)
∂ t = dU ∆U + rU2

U+θ

(
1− U

k

)
− c1UP

h+U+βP , (x,y, t) ∈ D ,

∂P(x,y,t)
∂ t = dP∆P+ c1c2UP−c1βαP2

h+U+βP −δP, (x,y, t) ∈ D ,

∂U
∂ν

= ∂P
∂ν

= 0, (x,y, t) ∈ H ,

U(x,y,0) =U0(x,y)≥ 0, P(x,y,0) = P0(x,y)≥ 0, (x,y) ∈ Ω.

(5.25)

Theorem 5.3.1. For system (5.25), we have the following results:

1. If U0(x,y) ̸≡ 0, P0(x,y) ̸≡ 0 then reaction-diffusion system (5.25) has a unique solution

(U(x,y, t),P(x,y, t)) satisfying U(x,y, t)> 0 and P(x,y, t)> 0 for (x,y, t) ∈ D .
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Fig. 5.7: Fig. (a) shows the division of neighborhood of BT1-point (from Fig. 5.5) into
four sub-regions; BR− I,BR− II,BR− III and BR− IV ; blacked, olive and cyan colored
curves denotes saddle-node, Hopf and homoclinic curves, respectively. Fig. (b) shows
the degenerate equilibrium EBT1 and stable equilibrium E∗

3 . whereas Fig. (c) corresponds
for BR− I where E∗

3 is the only coexistence equilibrium. Fig. (d) shows the appearance
of stable E∗

1 and saddle E∗
2 through SN1 curve for (θ ,β ) ∈ BR− III. Fig. (e) depicts the

creation of a stable limit cycle around E∗
1 (after passing through Hopf curve) for (θ ,β ) ∈

BR− IV. In Fig. (f), (θ ,β ) is taken on the homoclinic curve which leads to formation of
a homoclinic loop around E∗

1 . Lastly, in Fig. (g), (θ ,β ) ∈ BR− IV where E∗
1 is unstable

focus, E∗
2 is a saddle and E∗

3 is stable focus.
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2. For a solution (U(x,y, t),P(x,y, t)) of system (5.25), we have

limsup
t→∞

U(x,y, t)≤ k, limsup
t→∞

∫∫
Ω

∂P(x,y, t)
dt

dxdy ≤ c2

(
rM+δ

δ

)
k|Ω|.

Moreover, for dU = dP = d and (x,y) ∈ Ω, we have

limsup
t→∞

P(x,y, t)≤ c2(rM+δ )k
δ

.

Proof. As, ∂G1(U,P)
∂P = − c1U(h+U)

(h+U+βP)2 ≤ 0, ∂G2(U,P)
∂U = c1c2(h+βP)+c1β (1−α)P2

(h+U+βP)2 ≥ 0 for (U,P) ∈

R2
+ = {(U,P)|U ≥ 0,P ≥ 0}. Thus, system (5.25) is composed of weakly coupled parabolic

equations with mixed quasimonotone terms [120]. Let (U(x,y),P(x,y))= (0,0) and (U(x,y),P(x,y))=

(U∗(t),P∗(t)) where (U∗(t),P∗(t)) is the unique solution to
dU
dt = rU2

U+θ

(
1− U

k

)
, t > 0,

dP
dt = c1c2UP−c1βαP2

h+U+βP −δP, t > 0,

U(0) =U∗ ≥ 0, P(0) = P∗ ≥ 0.

(5.26)

where U∗ = sup
Ω

U0(x,y), P∗ = sup
Ω

P0(x,y). Since

∂U(x,y, t)
∂ t

−dU ∆U(x,y, t)−G1(U(x,y, t),P(x,y, t)) = 0

≥ 0 =
∂U(x,y, t)

∂ t
−dU ∆U(x,y, t)−G1(U(x,y, t),P(x,y, t)),

∂P(x,y, t)
∂ t

−dP∆P(x,y, t)−G2(U(x,y, t),P(x,y, t)) = 0

≥ 0 =
∂P(x,y, t)

∂ t
−dP∆P(x,y, t)−G2(U(x,y, t),P(x,y, t)),

for (x,y, t) ∈ D . It is easy to note that the following boundary conditions

∂U(x,y, t)
∂ν

≥ 0 ≥ ∂U(x,y, t)
∂ν

,
∂P(x,y, t)

∂ν
≥ 0 ≥ ∂P(x,y, t)

∂ν
for (x,y, t) ∈ H ,

and initial conditions

U(x,y,0)≥U0(x,y)≥U(x,y,0), P(x,y,0)≥ P0(x,y)≥ P(x,y,0) for (x,y) ∈ Ω.

holds. Thus (U(x,y),P(x,y)) = (0,0) and (U(x,y),P(x,y)) = (U∗(t),P∗(t)) are lower and up-
per solutions, respectively, to system (5.25). Using Theorem 8.3.3 from [120], we conclude
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that system (5.25) possess a unique solution (U(x,y, t), P(x,y, t)) satisfying

0 ≤U(x,y, t)≤U∗(t), 0 ≤ P(x,y, t)≤ P∗(t).

Since, U0(x,y) ̸≡ 0, P0(x,y) ̸≡ 0 so using strong parabolic maximum principle from [153], it
follows that U(x,y, t)> 0, P(x,y, t)> 0 for (x,y, t) ∈ D .

Further, we estimate the prior bounds of solutions of system (5.25). Now, one can observe
that U(x,y, t) and k are ordered lower and upper solutions, respectively, of the system given
below. 

∂U(x,y,t)
∂ t = dU ∆U + rU2

U+θ

(
1− U

k

)
, (x,y, t) ∈ D ,

∂U
∂ν

= 0, (x,y, t) ∈ H ,

U(x,y,0) =U0(x,y)≥ 0, (x,y) ∈ Ω.

(5.27)

Then using comparison theorem for semilinear parabolic equations from Theorem 2.4.1 in
[120], we get

limsup
t→∞

U(x,y, t)≤ k. (5.28)

Now, we set u(t) =
∫∫

Ω
U(x,y, t)dxdy, p(t) =

∫∫
Ω

P(x,y, t)dxdy. Using Green’s Theorem and
Neumann boundary conditions, we obtain

du
dt

=
∫∫

Ω

∂U(x,y, t)
dt

dxdy =
∫∫

Ω

[
rU2

U +θ

(
1− U

k

)
− c1UP

h+U +βP

]
dxdy,

d p
dt

=
∫∫

Ω

∂P(x,y, t)
dt

dxdy =
∫∫

Ω

[
c1c2UP− c1βαP2

h+U +βP
−δP

]
dxdy.

(5.29)

Since, limsup
t→∞

U(x,y, t)≤ k, (x,y)∈ Ω which implies limsup
t→∞

u(t)≤ k|Ω|. Thus for ε > 0 ∃ t1 >

0 such that u(t)≤ k(|Ω|+ ε).

Using (5.29), we further get

d
dt

(
u(t)+

p(t)
c2

)
≤
∫∫

Ω

(
rU2

U +θ

(
1− U

k

)
− δP

c2

)
dxdy.

Now, define H(U) = U
U+θ

(
1− U

k

)
which has a global maximum; M = (k−UM)UM

k(UM+θ) at U =UM =

−θ +
√

θ 2 + kθ .
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Thus, we have

d
dt

(
u(t)+

p(t)
c2

)
≤−δ

(
u(t)+

p(t)
c2

)
+u(t)(rM+δ ),

≤−δ

(
u(t)+

p(t)
c2

)
+ k(|Ω|+ ε)(rM+δ ), t > t1.

This yields

limsup
t→∞

(
u(t)+

p(t)
c2

)
≤
(

rM+δ

δ

)
k|Ω|,

which implies

limsup
t→∞

p(t) = limsup
t→∞

∫∫
Ω

∂P(x,y, t)
dt

dxdy ≤ c2

(
rM+δ

δ

)
k|Ω|.

For the case dU = dP = d, it is obvious that ∃, t2 > 0 such that 0 ≤ U(x,y, t) ≤ k + ε, t >

t2, (x,y) ∈ Ω. On further setting Z(x,y, t) =U(x,y, t)+ P(x,y,t)
c2

, we get
∂Z(x,y,t)

∂ t = d∆Z + rU2

U+θ

(
1− U

k

)
− c1βαP2

c2(h+U+βP) −
δP
c2
, (x,y) ∈ Ω, t > t2

∂Z
∂ν

= 0, (x,y) ∈ Ω, t > t2,

Z(x,y, t2) =U(x,y, t2)+
P(x,y,t2)

c2
, (x,y) ∈ Ω.

(5.30)

As for t > t2

rU2

U +θ

(
1− U

k

)
− c1βαP2

c2(h+U +βP)
− δP

c2
≤ (rM+δ )(k+ ε)−δZ.

Thus for the system
∂Q(x,y,t)

∂ t ≤ d∆Q+(rM+δ )(k+ ε)−δQ, (x,y) ∈ Ω, t > t2
∂Q
∂ν

= 0, (x,y) ∈ Ω, t > t2,

Q(x,y, t2) =U(x,y, t2)+
P(x,y,t2)

c2
, (x,y) ∈ Ω.

(5.31)

Q(x,y, t) and Q′ = (rM+δ )(k+ε)
δ

are ordered lower and upper solutions. This implies

limsup
t→∞

Q(x,y, t)≤ (rM+δ )k
δ

,

which further implies

limsup
t→∞

P(x,y, t)≤ c2(rM+δ )k
δ

.
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5.3.2 Turing-instability

In this section, we investigate that how the mechanism of self-diffusion can destabilize the
interior equilibrium E∗ under certain conditions. Next, we analyse the Turing-instability caused
by cross-diffusion with those conditions under which self-diffusion is unable to induce it. The
linearized form of system (5.5) at E∗(U∗,P∗) can be presented as:(

∂U
∂ t
∂P
∂ t

)
=

(
dU d1

d2 dP

)(
∆U

∆P

)
+

(
E11 E12

E21 E22

)(
U

P

)
. (5.32)

For Turing-instability, E∗(U∗,P∗) is assumed to be stable, and thus we have

T0 =−(E11 +E22)> 0, D0 = E11E22 −E12E21 > 0. (5.33)

From stability analysis of interior equilibrium without diffusion, we also have E12 < 0, E21 > 0
and E22 < 0. Now, we consider the solution of (5.32) as(

U

P

)
=

(
U∗

P∗

)
+

(
U∗

P∗

)
exp(ξ t + i(ω.r)),

where ω =
√

ω2
x +ω2

y is known as wave number and r = (x,y) is two-dimensional row vector
with x, y as the spatial variables.
First of all, we investigate the behavior of the system in the presence of self-diffusion and in
the absence of cross-diffusion. In this case (d1 = d2 = 0), characteristic equation for (5.32) is
given by

λ
2 +T (ω2)λ +D(ω2) = 0, (5.34)

where

T (ω2) = T0 +ω
2(dU +dP)> 0, D(ω2) = ω

4(dU dP)−ω
2(E11dP +E22dU)+D0. (5.35)

As the sign of E11 is unknown, so we discuss the possibilities when E11 takes negative or
positive value. The case when E11 < 0, it can be easily observed that D(ω2) > 0 thus with
E11 < 0 there can be no diffusion driven instability. Now, taking E11 > 0, we have the following
cases:
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Case I When dU ≥ dP > 0,
then

−(E11dP +E22dU)≥−(E11 +E22)dU = T0dU > 0, (5.36)

so using (5.36) with D(ω2) in (5.35), we get D(ω2) > 0 under the condition dU ≥ dP > 0.
This shows that Turing-instability cannot occur when dU ≥ dP > 0. In other words, we can say
that for our model, the necessary condition for occurrence of Turing-instability in presence of
self-diffusion only is dU

dP
< 1.

Case II 0 < dU < dP,

Let
H11 =−(E11dP +E22dU), H12 = (E11dP +E22dU)

2 −4dU dPD0.

Then self-diffusion mechanism will induce the Turing-instability when H11 < 0 and H12 > 0.
The condition H11 < 0 with dU < dP corresponds to dP >max

{
1,−E22

E11

}
dU . In the dU dP-plane,

this represents an upper-half plane above the line a straight line C11 : dP = max
{

1,−E22
E11

}
dU

which have slope; max
{

1,−E22
E11

}
> 0 and passes through origin. The condition H12 = 0 is

equivalent to C12 : E2
11d2

P + E2
22d2

U + (2E11E22 − 4D0)dU dP = 0, which represents a pair of
straight lines in the dU dP-plane whose explicit equations are not easy to drive, thus we ana-
lyze H12 > 0 graphically. The Turing bifurcation threshold, denoted by dT

P , is determined by
D(ω2)min = 0, and is given by

dT
P =

dU

E2
22

[
(E11E22 −2E12E21)+

√
(E11E22 −2E12E21)

2 −E2
22E2

11

]
. (5.37)

For the set of parameters from (5.1), we have an unique stable coexistence steady state
E∗(0.287446,0.091166) with

E11 = 0.041057, E12 =−0.117734, E21 = 0.029952, E22 =−0.042564.

For above parameters, we have drawn the region of instability, R11 (cyan colored) whereas R12

(white colored) is the region of stability in Fig. 5.8(a). Thereby, for the above parameters, the
spatial model with only self-diffusion undergo Turing-instability in region R11 of the dU dP-
plane. Now from this analysis, we can also state the following theorem.

Theorem 5.3.2. Assume that E11 > 0 and condition (5.33) holds. Then self-diffusion induces

Turing-instability under the conditions:

dP > max
{

1,−E22

E11

}
dU , H12 > 0,
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and the system will be unstable for ω2
− ≤ ω2

± ≤ ω2
+, where ω2

± = −H11±
√

H12
2dU dP

.

Now, we shall study the behavior of the system in the presence of self as well as cross-
diffusion. Here, we discuss the case (E11 > 0, dU ≥ dP > 0) where self-diffusion is not able
to generate Turing-instability and observe how the incorporation of cross-diffusion make the
system unstable. In presence of cross-diffusion, the characteristic equation for system (5.32)
becomes

λ
2 +T (ω

′2
)λ +D(ω

′2
) = 0, (5.38)

where

T (ω
′2
) =T0 +ω

′2
(dU +dP)> 0,

D(ω
′2
) =ω

′4
(dU dP −d1d2)−ω

′2
(E11dP +E22dU −E21d1 −E12d2)+D0,

(5.39)

and let us define

H21 =−(E11dP +E22dU −E21d1 −E12d2), H22 = H2
21 −4(dU dP −d1d2)D0.

Using the theory of quadratic equation, it is easy to state the following theorem.

Theorem 5.3.3. Assume that E11 > 0, dU ≥ dP > 0 and (5.33) holds. Then the system can

undergo Turing-instability with the following possibilities.

1. If dU dP = d1d2 and H21 < 0, then D(ω
′2
) > 0 for 0 ≤ ω

′
<
√

D0
H21

and D(ω
′2
) < 0 for

ω
′
>
√

D0
H21

.

2. If dU dP−d1d2 < 0, then D(ω
′2
)< 0 for ω

′
> ω

′
2 and D(ω

′2
)> 0 for 0 ≤ ω

′ ≤ ω
′
2, where

ω
′
2 is the unique positive root of D(ω

′2
) = 0, under this condition.

3. If dU dP −d1d2 > 0, H21 < 0 and H22 > 0 then D(ω
′2
)> 0 for 0 ≤ ω

′2
< ω

′2
− or ω

′2
>

ω
′2
+ and D(ω

′2
)< 0 for ω

′2
− < ω

′2
< ω

′2
+ where ω

′2
± = −H21±

√
H22

2(dU dP−d1d2)
.
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(a) (b)

Fig. 5.8: In Fig. (a), cyan colored region stands for Turing-instability due to self-
diffusion only whereas the white region is the region of stability in dU dP-plane. Fig (b)
shows the regions of stability and instability in the presence of cross-diffusion in the
d1d2-plane with dU = 0.05 > dP = 0.01. In both the figures, parameters are from (5.1),
and the rest details of curves are given in the text.

Now, we shall discuss the regions of stability and instability of the system in presence of
cross-diffusion in the d1d2-plane (Fig. 5.8(b)). The condition dU dP = d1d2 corresponds to
curve C21 : d2 =

dU dP
d1

which is a hyperbola and d2 >
dU dP

d1
(equivalent of dU dP − d1d2 < 0) is

the region above this hyperbola whereas d2 <
dU dP

d1
(equivalent of dU dP−d1d2 > 0) is the region

below it.
The condition H21 = 0 corresponds to a straight line C22 : d2 =−E21

E12
d1 +

E11dP+E22dU
E12

in the
d1d2-plane, having slope −E21

E12
> 0 and intercept E11dP+E22dU

E12
> 0. Thus H21 < 0 is the region

above this line.
The condition H22 = 0 is equivalent to

C23 : E2
21d2

1 +E2
12d2

2 +2(E21E12 +2D0)d1d2

−2(E11dP +E22dU)(E21d1 +E12d2)+(E11dP +E22dU)
2 −4D0dU dP = 0

which represent an ellipse in the d1d2-plane whose center is given by (dC
1 ,d

C
2 ), where

dC
1 =

E12(E11dP +E22dU)

2E11E22
< 0, dC

2 =
E21(E11dP +E22dU)

2E11E22
> 0.

Using the above analysis, and the same set of parameters given in (5.1) with dU = 0.05 > dP =

0.01, we draw the regions for cases (ii) and (iii) given in Theorem 5.3.3 in first quadrant of
the d1d2-plane. For these fixed parameters H22 > 0 represent the region outside the ellipse. In
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Fig. 5.8(b), the unstable region R21 which is filled with olive color corresponds to case (ii) in
above theorem. The unstable region R22, marked with cyan color, corresponds for case (iii),
whereas the white region R23 in first quadrant stands for region of stability. As a result, with
conditions given in Theorem 5.3.3 under which the model with self-diffusion does not have
Turing-instability, cross-diffusion induces it in region R21 ∪R22 of the d1d2-plane.

The critical value of d2 can be determined from
D(ω

′2
)min = D0 − (E11dP+E22dU−E21d1−E12d2)

2

4(dU dP−d1d2)
, and it is given as

dT
2 =

1
E2

12
(E12E22dU −2E11E22d1 +E12E21d1 +E11E12dP)

+
2

E122

√
(E11E22 −E12E21)(E12dU −E11d1)(E12dP −E22d1).

(5.40)

In the last theorem, we assumed E11 > 0 but now we present a theorem for Turing-instability
in system (5.5) irrespective of the sign of E11.

Theorem 5.3.4. For system (5.5), the spatially homogeneous stable state becomes prone to

Turing-instability under the following conditions:

1. T0 =−(E11 +E22)> 0,

2. D0 = E11E22 −E12E21 > 0,

3. H21 =−(dPE11 +dU E22 −d1E21 −d2E12)< 0,

4. H22 = H2
21 −4(dU dP −d1d2)D0 > 0.

Proof. The analysis of this theorem is similar to Theorem 5.3.3 so we omit it whereas one can
look here [111] for more details.

5.3.3 Turing patterns

Here, we execute numerical simulations to obtain Turing patterns. In order to accomplish this,
we discretize the governing equations using the central difference formula for space and the
forward Euler method for time. We use space step size ∆x = ∆y = 1/3 and time step size
∆t = 1/125. Here, we found a one-to-one correlation between the Turing patterns produced for
prey and predator species; as a result, we only display the patterns appeared for the predator
population.

Firstly, we do a series of simulations taking d1 = d2 = 0 in (5.5), i.e., for the system
with only self-diffusion. With parameters from (5.1), we have the stable unique equilibrium
E∗(0.287446,0.091166), and we inject some random perturbation near this stable E∗. With
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dU = 0.01, we get dT
P = 0.056932, and now we study the formation of stationary patterns by

varying the value of dP which will be greater than dT
P . In Fig. 5.9(a), taking dP = 0.07 shows

the formation of hot spots where the predator population density is high. In Fig. 5.9(b), with
dP = 0.08, strip patterns are generated. Next, when we take dP = 0.1 (Fig. 5.9(c)), there is
a mixture of strips and hollow disks. One more thing can also be noted from this figure, on
increasing this diffusion coefficient, the region of low predator population is contracting. On
further increment of dP to 0.4, the stripes disappear, and there are only hollow disk type patterns
in Fig. 5.9(d) having only moderate and high predator density all over the space.

(a) (b)

(c) (d)

Fig. 5.9: With parameters from (5.1) and dU = 0.01, stationary patterns on increasing dP

away from dT
P = 0.056932. (a) dP = 0.07; (b) dP = 0.08; (c) dP = 0.1; (d) dP = 0.4.

Next, we study the evolution of patterns with variation of diffusion coefficient dU , keeping
dP = 0.1, and all other parameters fixed from (5.1). Taking dU = 0.001, we have isolated
hot spots in Fig. 5.10(a), and as we increase dU to 0.0046, the pattern evolves, and we get a
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mixture of spots and strips (Fig. 5.10(b)). The further raise of dU changes this previous pattern
to mixture of strips and hollow disks with high predator density, in Fig. 5.10(c). Now, taking
dU = 0.013, the disks disappears and only strips exists, as shown in Fig. 5.10(d).

Now, we talk about the pattern formation in the presence of self as well as cross-diffusion.
For this, we study the behavior of model (5.5) around the stable focus (6.090800,3.821193),
taking α = 0.55 and remaining parameters from (5.1). Here, we fix dU = 0.02 ,dP = 0.4, d1 =

0.01 and using (5.40), we get dT
2 = 0.0165. Now, we investigate the stationary patterns on the

variation of cross-diffusion coefficient d2 above dT
2 . With d2 = 0.02, we have low density of

predator population in isolated spots, i.e, we have cold spot pattern in Fig. 5.11(a). On further
increment of d2, we have a mixture of spots and stripes whereas the population density in
non-isolated spaces also changes significantly through this raise in d2 (Figs. 5.11(b), 5.11(c)).
Taking d2 = 0.155, we get a stationary pattern of hot spots and stripes (Fig. 5.11(d)). Thus
we can note that increasing the cross diffusivity of prey population (d2) can affect the spatial
distribution of predator population by converting the cold spots into hot spots. By now, we
have used small random perturbation in the initial condition but we here we want to explore the
change in the spatial distribution of populations by choosing unsymmetrical initial conditions
[50, 99]:

U(x,y,0) =U∗− ε1(x−0.1y−125)(x−0.1y−375),

P(x,y,0) = P∗− ε2(x−450)− ε3(y−150),
(5.41)

with ε1 = 2× 10−7, ε2 = 3× 10−5, ε3 = 1.2× 10−5. Here, we study the patterns formed at
different times, i.e., dynamical patterns, using the same parameters as of Fig. 5.11 with d2 =

0.15. For t = 224, from Fig. 5.12(a), we can observe that in the center of the space, there
is homogeneous distribution of population while due to cross-diffusion there is a formation of
aligned stripes pattern on going away from the center. As we increase the time to t = 280
(Fig. 5.12(b)), the region of homogeneous distribution diminishes, whereas the area in which
patterns are evolved increases. On t = 400 (Fig. 5.12(c)), patterns are formed all over the
space. Thus, we can see how magnificently cross-diffusion changes the spatial distribution of
population density as time passes with the initial conditions given in (5.41).

5.4 Discussion and concluding remarks

Prey-predator interactions primarily drive population dynamics in ecosystems. Their interac-
tion show an intricate relationship between two species, in which one’s capacity to capture and
eat the other is necessary for its survival and reproduction. In this study, our main objective
is to study a prey-predator model involving weak Allee effects in the prey with a specialized
cannibalistic predator in the presence of self and cross-diffusion. Allee effects can be classified
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(a) (b)

(c) (d)

Fig. 5.10: With parameters from (5.1) and dP = 0.1, stationary patterns on increasing
dU . (a) dU = 0.001; (b) dU = 0.0046; (c) dU = 0.01; (d) dU = 0.013.
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(a) (b)

(c) (d)

Fig. 5.11: With α = 0.55, dU = 0.02 ,dP = 0.4, d1 = 0.01 and remaining parameters
from (5.1), stationary patterns on increasing d2 > dT

2 = 0.0165. (a) d2 = 0.02; (b) d2 =
0.05; (c) d2 = 0.1; (d) d2 = 0.155.
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(a) (b)

(c)

Fig. 5.12: With α = 0.55, dU = 0.02 ,dP = 0.4, d1 = 0.01, d2 = 0.15 and remaining
parameters from (5.1), dynamics patterns at different time: (a) t = 224; (b) t = 280; (c)
t = 400.
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into two primary types: component Allee effects and demographic Allee effects. They both use
various kinds of parameterization and formulation [31]. The demographic Allee effect, typi-
cally observed by cats, foxes or rodents; wolves, bears, etc. The weak Allee effect is a further
sub-type of demographic Allee effect which has been considered in this research. Cannibal-
ism is an important phenomena in aquatic species. It has been observed that up to 90 percent
of species in aquatic ecosystems exhibit cannibalistic behavior at some point throughout their
life cycle, suggesting that cannibalism is particularly common in these environments. Adult
Dreissena mussels, for instance, eat a variety of minute zooplankton species, such as rotifers
like Keratella quadrata, Polyarthra vulgaris, and Euchlanis dilatata, as well as protozoans [152].
In addition, sexual cannibalism occurs often in a variety of spider and scorpion families, hav-
ing a substantial impact on traits like population size [193] , sex ratio [61]. The cannibalistic
character of predator is incorporated in the model using the approach given in [70].

In the analysis of the temporal model, we established the existence of various coexistence
steady states and divide the θβ -plane into five sub-regions; Ri, i = 1,2...5.. We obtained the
conditions under which system (5.4) has unique steady state in sub-region R1 ∪R2 ∪R3 ∪R4

and three coexistence steady states in sub-region R5 (Fig: 5.1). Thus, we can see that how the
number of equilibrium points changes on varying the Allee and cannibalism parameter. In the
stability analysis, we showed that the extinction equilibrium E0 is a non-hyperbolic saddle node
with a parabolic sector and two hyperbolic sectors. Further, we discussed the global stability
of predator-free equilibrium E1 in the absence of interior equilibrium. Next, for the interior
equilibria E∗

i , i = 1,2,3, we derived the conditions under which E∗
1 and E∗

3 are stable and also
proved that E∗

2 is always a saddle point. In bifurcation analysis, we did the theoretical analysis
for all local bifurcations such as saddle-node, Hopf, Generalized Hopf (Bautin), Bogdanov-
Takens. We also performed the extensive numerical simulations, presented in Figs. 5.4, 5.5,
5.6, 5.7, to depict the occurrence of all above bifurcations. From these bifurcations, we can
corroborate that the proposed type of Allee effect (given in (5.2)) and cannibalistic nature of
predator can impact the system’s dynamics in a significant manner.

For spatiotemporal model (5.25), we evaluated the sufficient conditions for the existence
of a non-negative solution, followed by the calculations of prior bounds of the solution. Next,
we analyzed Turing-instability for the self-diffusion model (5.25). Then, we demonstrated that
cross-diffusion can cause Turing-instability while self-diffusion cannot in the case of dU ≥
dP > 0. Doing some novel geometric and mathematical analysis, we also drew the region of
Turing-instability in the presence of self-diffusion and cross-diffusion in Fig. 5.8(a) and Fig.
5.8(b), respectively. Talking about the pattern formation, firstly, we presented different kinds
of stationary patterns in the absence of cross-diffusion on the variation of self-diffusion coef-
ficients dP and dU in Fig. 5.9 and Fig. 5.10, respectively. In Fig. 5.11, we demonstrated how
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the increment in cross-diffusion coefficient d2 changes the pattern of cold spots into a mixture
of hot spots and stripes. Next, to show the dependence of the patterns on initial conditions, we
used unsymmetrical initial conditions in the presence of cross-diffusion. We presented the dy-
namic patterns in Fig. 5.12 using this initial condition. From this figure, one can perceive how
cross-diffusion is changing the spatial distribution of the population from the center of space to
its boundaries as time passes. This illustrates the sensitivity of spatial patterns with respect to
initial conditions.

Motivated from the studies on predator cannibalism [22, 130, 190], we proposed to investi-
gate a cannibalistic prey-predator with incorporation of weak Allee effect in prey. The inclusion
of self and cross-diffusion was the second novelty in the formulation of the present model. The
addition of weak Allee effect made the trivial equilibrium E0 a hyperbolic saddle-node. The
property of E0 being a hyperbolic equilibrium point encouraged us to explore a meticulous
mathematical analysis (presented in Theorem 5.2.3) to study its behavior. We also showed that
the temporal model undergoes Hopf bifurcation with respect to cannibalism parameter which
illustrates the role of β in the stability change of the model. Temporal model also suffered
saddle-node bifurcation with respect to θ , and in the analysis of this bifurcation we also pro-
vided an interval (θSN1,θSN2) in which three coexistence steady states exist out of which two
are stable and one saddle (Fig. 5.4). This also depicts the phenomena of bistability. For the
combination of θ and β , we further presented codimension-2 bifurcations. The occurrence of
codimension-2 bifurcations also shows the impact of cannibalism in addition to Allee effect. In
the spatiotemporal model using rigorous mathematical analysis, we discussed about the regions
of stability and instability due to the presence of diffusion. The effect of variation of diffusion
coefficients is also well explained thorough the two dimensional spatial patterns which can as-
sist in examining spatial heterogeneity, spatial complexity, sensitivity to initial condition. All
the above-discussed attributes make the current study more credible and advanced in both math-
ematical and ecological directions than the previous ones, and we anticipate that this work will
assist researchers in investigating spatiotemporal prey-predator models with the Allee effect
and cannibalism in greater depth.

In nature, another form of cannibalism can also be found in a stage-structure prey-predator
model, having an adult and a juvenile predator [88, 188]. In this type of cannibalism, the adult
predator consumes over prey and the juvenile predator, leading to the formation of a three-
dimensional model. Thus, this type of stage-structure cannibalistic model can be chaotic too
[78], which is again an interesting phenomenon to study. Secondly, in biological systems,
the dynamics of different components are influenced by the diffusion coefficient’s periodic
fluctuations in addition to its constant value [14]. Therefore, in future work, we intend to
explore stage-structure cannibalism along with the periodic diffusion.
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Chapter 6

Bifurcation analysis and spatiotemporal dynamics
in a diffusive predator-prey system incorporating a
Holling type II functional response1

6.1 Introduction

Prey-predator modelling serves as the crucial component in comprehending the dynamics of
ecological systems, offering valuable insights into the interactions between species within an
ecosystem. The concept of prey and predator interactions have its roots from the innovative
work of Alfred [91] and Vito [177] in the early 20th century, whose equations served the foun-
dation for modelling these dynamic relationships. Leslie [84, 85] modified the simplest form
given by Lotka and Volterra and assumed a direct proportionality between the predator’s carry-
ing capacity and the density of the prey population. In their studies, they took into account the
idea that a predator relies only on prey for food and has no alternative food source. Later on,
this notion has been altered by the researchers who assumed that additional food can be pro-
vided as an alternative food source to the predators [129, 136, 149]. Many researchers studied
the consequent effects of supplying additional food to predators on the system’s dynamics [15,
172, 53, 157, 167]. Alves [1] analyzed a predator-prey system with additional food provided
to the predators. He concluded that providing additional food has negative impact on preda-
tors’ growth rate whereas it is beneficial for the prey population in the long term. Onana et

al. [109] analyzed the interacting species dynamics incorporating food preference rate for the
predators. He remarked that increasing the preference rate reduces the prey population initially
but subsequently it increases while the density of predators decreases.

In the realm of ecological dynamics, prey refuge emerges as a pivotal behavioral character-
istics that has a substantial impact on the dynamics and persistence of both prey and predator

1This chapter is based on our paper published in International Journal of Bifurcation and Chaos, 34,
2450105, 2024.
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populations. Several researchers incorporated prey refuge in a dynamical model and analyzed
that providing spatial refuge can stabilize the system dynamics [28, 64, 60, 24, 179]. In ecolog-
ical systems, functional response is essential in comprehending the intricate interplay between
prey and predator. It defines how predators feed and regulate their populations in response to
fluctuating densities of prey. Some investigations have been made using various functional re-
sponses such as Holling-type functional responses, Beddington–DeAngelis-type, and Monod-
Haldane-type and Crowley-Martin type response functions [55, 68, 69, 93, 137, 16]. Holling
type II functional response assumes that the predator’s feeding rate initially escalates linearly
with prey density until reaching a saturation point when additional increase in prey density
no longer boost the predator’s feeding rate [7]. In a study by Dash and Khajanchi [36], a
three-dimensional intraguild predation model employing a Holling type II functional response
between prey and predator was proposed and analyzed. They determined that this intraguild
predation model is prone to have coexistence of all the three populations.

In addition to the widespread direct killing witnessed in nature, many preys alter their char-
acteristics in reaction to the perceived risk of predation. These responses could take the form
of modified foraging techniques, altered habitat utilisation, increased cognition, decreased ex-
posure times, or modified reproductive practices. Several researchers speculated that these in-
direct effects might have an impact that is comparable to or greater than direct predation effects
[32, 131, 34]. Zanette et al. [187], in their study on song sparrows, conducted an experiment
illustrating the impact of predation fear. They noted a significant reduction, up to 40%, in the
reproduction rate of song sparrows attributable to the perceived risk of predation. Wang et al.

[180] first incorporated the cost of fear in the predator-prey system and investigated that the
fear factor stabilize the system dynamics by preventing the occurrence of periodic oscillations.
Kumar and Kumari [75] explored a prey-predator model incorporating predation fear and found
that a large degree of fear can stabilize the chaotic dynamics in the system. Sarkar and Kha-
janchi [139] took into account the minimum fear cost in prey-predator system and studied how
the fear effect allowed both species to coexist via stable oscillations. Zhao and Shao [192] pro-
posed a dynamical system with fear, additional food and prey refuge and noticed that creating
reserved areas and providing additional food for predators are two strategies that work well to
mitigate the effects of predation fear. Pal et al. [116] analyzed a multi-species food chain model
and examined the complex dynamics induced by the fear effect. Additionally, they observed
the deep cascading effects initiated by predation fear in the system.

Within the framework of predator-prey systems, the term carry-over effect refer to the lin-
gering consequences of past interactions between the species and experiences that subsequently
influence the current behaviors, physiological states, or population dynamics [107]. Several
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studies observed the experimental proof of carry-over effects in amphibians [162], marine in-
vertebrates [98], etc. The aforementioned factors have led to an increase in the investigation
of ecological carry-over effects in modeling area. Sasmal and Takeuchi [145], in their study,
analyzed the influence of perceived risk of predation and its carry-over effects in a dynamical
system and remarked that altering the carry-over effect parameter can significantly affect the
stability of the coexistence equilibrium. In addition, they concluded that suitable selection of
non-lethal effect parameters can eliminate the phenomenon of “paradox of enrichment". Sajan
et al. [138] investigated the impact of carry-over effect parameter on the system dynamics and
demonstrated that significantly low and high values of carry-over effect parameter eliminate
the chaos from the system’s dynamics and ultimately the system converges to a coexistence
equilibrium.

Furthermore, spatiotemporal pattern formation in biological and ecological communities is
a central theme in the population dynamics nowadays. These patterns are essential in compre-
hending the dynamic interactions, population dynamics, and spatial distributions of different
species within ecosystems. Predators have an inherent tendency to migrate as they pursue their
prey, and prey may possess the ability to detect the predator and escape in order to avoid be-
ing captured, resulting in spatial variations across the habitat. The pioneering work of Turing
[166] on chemical morphogenesis first introduced the concept of pattern-forming instabilities.
Several studies have been carried out to analyze the pattern formation due to diffusion-driven
instabilies in a reaction-diffusion system [51, 35, 142, 4]. Chakraborty et al. [21] investigated
how alterations in prey species’ behavior, induced by predation fear, can give rise to diverse
spatiotemporal patterns in population distribution. Pal et al. [111] qualitatively analyzed the
patterns induced due to cross-diffusion coefficients in a prey-predator reaction-diffusion model
incorporating fear effect. Anshu and Dubey [3] investigated a diffusive prey-predator system
and concluded that considering spatial variations can instigate intricate and complex population
dynamics in the system. Sarkar and Khajanchi[140] proposed and examined a mathematical
model that integrates fear-induced birth reduction in prey resulting from predation risk. They
obtained warm spots in the two-dimensional spatial model using three distinct initial datasets.

Motivated by the afore-mentioned aspects, we propose and analyze a spatiotemporal prey-
predator model to investigate the effects of additional food for predators, indirect predation
fear and its carry-over effects with Holling type II functional response. In the present study, our
main focus is to achieve the following objectives:

• To investigate the intricate and complex system dynamics associated with the additional
food for predators.

• To understand the impact of the parameters linked with the non-lethal effects on the
stability behavior of the coexistence equilibrium.
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• To analyze the diffusion-induced instability in the spatially extended system.

• To explore the stationary and dynamic pattern formation resulting in a diverse range of
Turing and non-Turing space.

This chapter is structured in the subsequent manner: Section 6.2 comprises of the model
formulation with and without diffusion. In Section 6.3, we explored the existence and stability
of the equilibria along with the bifurcation analysis for the temporal model. In the first subsec-
tion of Section 6.4, the existence and boundedness for the spatially extended system has been
explained in addition to the priori-bounds of the solutions and in second subsection, the con-
ditions for diffusion-driven intstability incorporating both self and cross-diffusion are derived.
Section 6.5 delves into the numerical experiments conducted to validate the analytical results
obtained for both temporal and spatiotemporal model. Finally, in Section 6.6, we summarized
the vital outcomes and discussion of our study.

6.2 Formulation of mathematical model

Motivated by the afore-mentioned notions and the studies done by Alves [1]; Onana et al.

[109]; Gupta et al. [48], we propose our model with the following assumptions:

• The perceived predation risk affects the prey’s growth rate due to change in habitat, in-
creased vigilance, etc. This fear effect also has an associated carry-over effect which
can have a significant impact on the birth rate of prey species. Hence, we assume the
subsequent function to incorporate the said effects given by:

ψ(c, f ,u,v) =
1+ cu

1+ cu+ f v
,

where f is the fear parameter and c is the carry-over effect parameter. The assumed
function satisfy all the properties associated with the parameters f and c as specified in
the study done by Sasmal and Takeuchi [145].
Thus, the temporal population growth model for the interacting species is:

du
dt = ru

( 1+cu
1+cu+ f v

)
− r0u− r1u2 − qα(1−m)uv

a+q(1−m)u ,

dv
dt = sv

(
1− βv

qα(1−m)u+(1−q)αAqA

)
,

(6.1)

where u and v denote the density of prey and predator species at any time t, respectively.
All the parameter associated are assumed to be positive and their meaning are described
in Table 6.1.



6.2. Formulation of mathematical model 187

• Taking into account the spatial variations across the space, the temporal model (6.1)
transforms over a two-dimensional bounded domain as follows:

∂u
∂ t = ru

( 1+cu
1+cu+ f v

)
− r0u− r1u2 − qα(1−m)uv

a+q(1−m)u +d11∇2u+d12∇2v,

∂v
∂ t = sv

(
1− βv

qα(1−m)u+(1−q)αAqA

)
+d21∇2u+d22∇2v.

(6.2)

The above model is subjected to non-negative initial conditions:

u(x,y,0)≥ 0,v(x,y,0)≥ 0,

and the zero-flux Neumann boundary conditions given by:

∂u
∂ν

=
∂v
∂ν

= 0,

where ν represents the outward unit normal vector to the smooth boundary ∂Ω.

Here, ∇2 = ∂ 2

∂x2 +
∂ 2

∂y2 depicts the Laplacian operator in two-dimensional space Ω =

[0,L]× [0,L]⊂R2. The self-diffusion coefficients d11 > 0 and d22 > 0 of prey and preda-
tor populations (respectively) represent the random movement of individuals across the
habitat. But, the migration of species within a given domain need not be random. The
movement of predator population can be affected by the mobility of prey population and
vice-versa. Such scenarios are modelled using cross-diffusion terms. The cross-diffusion
coefficients may assume positive as well as negative values. Here d12 and d21 depict the
prey’s and predator’s cross-diffusion coefficients, respectively. Generally, prey has a ten-
dency to avoid large group of predators and migrate to the lower dense region of predators
whereas predators in search of prey tend to migrate towards highly dense region of prey,
therefore d12 > 0 and d21 < 0. Furthermore, d21 > 0 takes into account the situations
in which prey organize into a group defense against predators, and predators prefer to
avoid areas where prey is densely concentrated in order to capture prey from smaller
groups. In this study, we assume that (d11d22−d12d21)> 0 based on the thermodynamic
implications of diffusion principles [176]. This condition implies that the movement of
each population density within the spatial domain is predominantly influenced by its own
density, rather than the densities of other populations.

The proposed ecological model encapsulates the intricacies of real-world ecosystems by
integrating various environmental factors. This model includes additional food sources to
represent alternative resources, impacting prey-predator interactions and population dy-
namics. For instance, supplementary feeding programs for carnivores exemplify provid-
ing extra food to predators in conservation efforts. Acknowledging the fear effect in prey
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Parameter Symbol Parameter Description Value References
r Prey’s intrinsic growth rate 3.5 [48]
r0 Prey’s natural death rate 0.5 [48]
s Intrinsic growth rate of predator species 0.2 [48]
f Fear parameter 0.05 Assumed
c Carry-over effect parameter 0.6 Assumed
r1 Prey’s death rate due to intraspecies competition 0.03 Assumed
q Food preference rate for predator 0.3 [48]
α Maximum value of prey’s per-capita removal due to predation 2 [48]
a Half-saturation constant 1 Assumed
β Maximum value of predator’s per-capita removal 1 [48]
αA Quantifies the amount of energy assimilated into predators’s energy 1 Assumed
qA Density of the additional food 1.7 [48]
m Refuge parameter 0.6 Assumed

Table 6.1: Biological significance of the parameters and their corresponding values.

considers their behavioral responses to predation risk, affecting movement, reproduction,
and survival rates. In Yellowstone National Park, elk alter behavior in response to per-
ceived wolf predation risk. The carry-over effect recognizes past interactions’ enduring
impacts on current population dynamics, influencing species persistence. Additionally,
prey refuge areas provide shelter from predation, impacting predator hunting rates and
prey persistence. Small fish in coral reef ecosystems seek refuge to evade larger preda-
tors. Integrating these factors enriches our understanding of population dynamics and
species coexistence in natural ecosystems.

6.3 Temporal model analysis

This part examines the properties of the solutions for the temporal model (6.1).

6.3.1 The well-posedness

Theorem 6.3.1. For system (6.1), all the solutions with the initial condition (u0,v0) satisfying

u0 ≥ 0 and v0 ≥ 0 will remain non-negative for all t ≥ 0.

Proof. From the system (6.1), we observe that both equations are continuous smooth functions
in R2. Hence,
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u(t) =u0 exp

[∫ t

0

(
r
(

1+ cu(s)
1+ cu(s)+ f v(s)

)
− r0 − r1u(s)− qα(1−m)v(s)

a+q(1−m)u(s)

)
ds

]
≥ 0,

v(t) =v0 exp

[∫ t

0

(
s
(

1− βv(s)
qα(1−m)u(s)+(1−q)αAqA

))
ds

]
≥ 0, ∀t ≥ 0.

This implies the positivity of all the solutions of system (6.1).

Theorem 6.3.2. The following conditions ensure the system (6.1) to be dissipative:

lim
t→∞

supu(t)≤ r− r0

r1
=: umax,

lim
t→∞

supv(t)≤ 1
β

(
qα(1−m)(r− r0)

r1
+(1−q)αAqA

)
=: vmax.

Proof. From the first equation of the system (6.1), we have

du
dt

≤ ru− r0u− r1u2.

The solution of the above equation satisfies:

lim
t→∞

supu(t)≤
(r− r0

r1

)
=: umax.

Next, we have the system (6.1)’s second equation, which yields

dv
dt

≤ sv
(

1− βv
qα(1−m)umax +(1−q)αAqA

)
,

⇒ lim
t→∞

supv(t)≤ 1
β

(
qα(1−m)umax +(1−q)αAqA

)
=: vmax.

The proof of the theorem is now concluded.

Theorem 6.3.3. System (6.1) is uniformly persistent if

r > (1+ f vmax)

[
r0 +

qα(1−m)vmax

a

]
.
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Proof. From system (6.1), we have

du
dt

= ru
( 1+ cu

1+ cu+ f v

)
− r0u− r1u2 − qα(1−m)uv

a+q(1−m)u
,

≥
(

r
(1+ f vmax)

− r0 −
qα(1−m)vmax

a

)
u− r1u2,

⇒ lim
t→∞

infu(t)≥ 1
r1

(
r

(1+ f vmax)
− r0 −

qα(1−m)vmax

a

)
=: umin.

Similarly,

dv
dt

≥ sv
(

1− βv
(1−q)αAqA

)
,

⇒ lim
t→∞

infv(t)≥ 1
β
(1−q)αAqA =: vmin.

From Theorem 6.3.2, it is evident that

0 < umin < lim
t→∞

infu(t)≤ lim
t→∞

supu(t)≤ umax, 0 < vmin < lim
t→∞

infv(t)≤ lim
t→∞

supv(t)≤ vmax.

This indicates that the species will persist in the future if they are present initially.

Hence, the theorem follows.

6.3.2 Equilibrium analysis

We have the following ecologically feasible equilibria:

1. The trivial equilibrium E0(0,0).

2. Predator-free equilibrium E1(
r−r0

r1
,0), which exists when r− r0 > 0.

3. Prey-free equilibrium E2(0,
(1−q)αAqA

β
).

4. The positive roots of the following algebraic equations give the coexistence equilibrium
points:

f1(u,v) = r
( 1+cu

1+cu+ f v

)
− r0 − r1u− qα(1−m)v

a+q(1−m)u = 0,

f2(u,v) = s
(

1− βv
qα(1−m)u+(1−q)αAqA

)
= 0.

(6.3)
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From the second equation of (6.3), we get v = 1
β
(qα(1−m)u+(1−q)αAqA. Substituting the

value back in the first equation of (6.3), a cubic polynomial is obtained, and it is given by

M3u3 +M2u2 +M1u+M0 = 0, (6.4)

where

M3 = qβ (1−m)r1(cβ + f qα(1−m)),

M2 = cβ
2(ar1 −q(1−m)(r− r0)+q(1−m)[αq(1−m)(cαβ + r0β f

+ f qα
2(1−m))+β r1(β +aα f + f (1−q)αAqA)],

M1 =−(r− r0)β
2(ac+q(1−m))+ar1β

2 +(1−m)αβq((1−m)αq+ar0 f )

+(1−m)(1−q)qαAqA(cαβ + r0β f +2 f qα
2(1−m))+ar1 f β (1−q)αAqA,

M0 =−aβ
2(r− r0)+αAqA(1−q)[a f β r0 +qα(1−m)(β + f (1−q)αAqA)].

The discriminant for the equation (6.4) is given as:

∆ = 18M3M2M1M0 −4M3
2M0 +M2

2M2
1 −4M3M3

1 −27M2
3M2

0 .

The number of the possible coexistence equilibrium depends upon the sign of M0, M1, M2 and
∆. The feasible scenarios are as follows:

1. No coexistence equilibrium

• If M0 > 0, M1 > 0 and M2 > 0, then the system (6.1) has no coexistence equilibrium.

• Additionaly, the system (6.1) lacks coexistence equilibrium if (M0 > 0, M2 < 0) or
(M0 > 0, M1 < 0) and ∆ = 0 hold.

2. Unique coexistence equilibrium

• If (M0 < 0, M1 > 0 ,M2 > 0) or (M0 < 0, M1 < 0 ,M2 > 0) or (M0 < 0, M1 < 0
,M2 < 0), then the system (6.1) has unique coexistence equilibrium.

• Also, the system (6.1) has unique coexistence equilibrium under the conditions
M0 < 0, M1 > 0, M2 < 0 and ∆ < 0.

3. Two coexistence equilibria

• The system (6.1) has two coexistence equilibrium if (M0 > 0, M2 < 0) or (M0 > 0,
M1 < 0) and ∆ ̸= 0.

4. Three coexistence equilibria
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• The system (6.1) has three coexistence equilibrium if M0 < 0, M1 > 0, M2 < 0 and
∆ > 0.

Remark: Using the above analysis, the number of possible coexistence equilibrium points is
depicted in Fig. 6.1. The conditions mentioned above divide the αA − c parameter plane into
three regions: blue for no coexistence equilibrium; green for unique coexistence equilibrium
and yellow for two coexistence equilibria.

Fig. 6.1: Region depicting the possible number of positive equilibria in the αA-c plane.
Blue: no positive equilibrium, green: unique positive equilibrium and yellow: two posi-
tive equilibria. All the remaining parameters are pre-defined in the Table 6.1.

6.3.3 Stability analysis of various equilibria

Now, we perform stability analysis (local or global) for various feasible equilibrium points. By
evaluating the variational matrix at the equilibrium points E0, E1 and E2, we get the following
results:

1. The trivial equilibrium E0(0,0) is consistently unstable.

2. The predator-free equilibrium E1(
r−r0

r1
,0) is always a saddle point.

3. The prey-free equilibrium E2(0,
(1−q)αAqA

β
) is locally asymptotically stable if

rβ <
(β + f (1−q)αAqA)

2

f (1−q)αAqA

(
r0 +

αq(1−m)(1−q)αAqA

aβ

)
.
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Theorem 6.3.4. For the system (6.1), we have the following qualitative results regarding the

stability behavior of the coexistence equilibrium:

1. The unique coexistence equilibrium E∗
1 is locally aysmptotically stable (or unstable) if

tr(J|E∗
1
)< 0 (or tr(J|E∗

1
)> 0).

2. When the system has two coexistence equilibrium points E∗
i (u

∗
i ,v

∗
i ), i = 1,2 in a way that

u∗1 < u∗2, then E∗
2 is always locally asymptotically stable. Additionally, E∗

1 is a saddle

point.

Proof. The variational matrix mentioned above can be rewritten as:

J|E∗(u∗,v∗) =

[
u∂ f1

∂u u∂ f1
∂v

v∂ f2
∂u v∂ f2

∂v

]
E∗(u∗,v∗)

.

Let us assume that the slope of tangents to prey and predator nullclines at E∗(u∗,v∗) is given
as dv( f1)

du and dv( f2)

du , respectively. Now, we have

det(J|E∗) =

(
uv

∂ f1

∂v
∂ f2

∂v

(
dv( f2)

du
− dv( f1)

du

))
.

Further, we have the following possible cases:
Case 1. For the system (6.1) to possess a unique coexistence equilibrium, we have two

possibilities for the graphical representation of prey and predator nullclines as depicted in Figs.
6.2(a) and 6.2(b). The prey ( f1 = 0)and predator ( f2 = 0) nullclines are represented with green
and blue color, respectively.

• For Fig. 6.2(a), we take a small ε-nbd near E∗
1 . Then, analyzing the sign of the nullclines

as we move in u and v direction, we get

sign(J|E∗
1 (u

∗,v∗)) =

[
− −
+ −

]
.

Also, we can easily observe that dv( f1)

du < 0 and dv( f2)

du > 0. Hence, tr(J|E∗
1
) < 0 and

det(J|E∗
1
)> 0). It follows that E∗

1 is locally asymptotically stable.

• Similarly, for Fig. 6.2(b), we have

sign(J|E∗
1 (u

∗,v∗)) =

[
+ −
+ −

]
.
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For this graphical possibility, dv( f2)

du > dv( f1)

du i.e., det(J|E∗
1
) > 0). Therefore, the coexis-

tence equilibrium in this case is stable (or unstable) if tr(J|E∗
1
)< 0 (or tr(J|E∗

1
)> 0).

Case 2. When the system (6.1) has two coexistence equilibria, we have only one possibility of
intersection of nullclines which is depicted in Fig. 6.2(c). Proceeding in the same manner as in
case 1, we have the sign of the variational matrix for E∗

1 and E∗
2 as follows:

sign(J|E∗
1 (u

∗,v∗)) =

[
+ −
+ −

]
,

and

sign(J|E∗
2 (u

∗,v∗)) =

[
− −
+ −

]
.

At E∗
1(u

∗
1,v

∗
1),

dv( f2)

du < dv( f1)

du i.e., (det(J|E∗
1
)< 0). Hence, E∗

1 is always unstable irrespective of

any condition. Further, at E∗
2 , dv( f2)

du > dv( f1)

du i.e., (det(J|E∗
1
) > 0). The trace of the variational

matrix is always negative at E∗
2 . Therefore, E∗

2 is always locally asymptotically stable.

Hence, the proof.

Remark: The system also exhibits bistability behavior in which the system’s solution con-
verges to different equilibrium points for the same parametric set depending on the initial
conditions. Fig. 6.3 presents that the trajectories initiating from different initial conditions
converges either to the prey-free equilibrium E2(0,17.85) or to the coexistence equilibrium
E∗

2(64.8809,33.4214). From ecological perspective, bistability can significantly affect the sys-
tem’s stability as well as survival of both the species.

Theorem 6.3.5. Let the following inequalities hold:

(i) r1 >
rc f v∗

(1+ f v∗)(1+cu∗+ f v∗) +
αq2(1−m)2v∗

a(a+q(1−m)u∗) ,

(ii) a2
12 < 4a11a22,

where

a12 =
sβqα(1−m)v∗

((1−q)αAqA)(qα(1−m)u∗+(1−q)αAqA)
− r f

(1+ cumax + f vmax)(1+ cumax + f v∗)

− qα(1−m)

(a+q(1−m)umax)
,

a11 =r1 −
rc f v∗

(1+ f v∗)(1+ cu∗+ f v∗)
− αq2(1−m)2v∗

a(a+q(1−m)u∗)
, a22 =

sβ

(qα(1−m)umax +(1−q)αAqA
,

umax and vmax are defined in Theorem 6.3.2.
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(a) Unique positive equilibrium for αA = 0.5.
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(b) Unique positive equilibrium for αA = 23.61.
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(c) Two positive equilibria for αA = 10.

Fig. 6.2: This figure illustrates the possible cases for the existence of positive equilib-
rium. All the other parameteric values are pre-defined in the Table 6.1.

Then the unique coexistence equilibrium E∗(u∗,v∗) is globally asymptotically stable.

Proof. We consider an appropriate Lyapunov function as follows:

V (u,v) =
(
u−u∗−u∗ln u

u∗
)
+
(
v− v∗− v∗ln v

v∗
)
.

Now differentiating the above defined function with respect to t, we have the following expres-
sion

V̇ = −Θ11(u−u∗)2 +Θ12(u−u∗)(v− v∗)−Θ22(v− v∗)2,
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Fig. 6.3: This figure depicts the bistability attribute between the prey-free equilibrium
E2(0,17.85) and the coexistence equilibrium E∗

2 (64.8809,33.4214). Here, αA = 15 and
all the other parameteric values are pre-defined in the Table 6.1.

where

Θ11 = r1 −
rc f v∗

(1+ cu+ f v∗)(1+ cu∗+ f v∗)
− αq2(1−m)2v∗

(a+q(1−m)u∗)(a+q(1−m)u)
,

Θ22 =
sβ

(qα(1−m)u+(1−q)αAqA
,

Θ12 =
sβqα(1−m)v∗

(qα(1−m)u+(1−q)αAqA)(qα(1−m)u∗+(1−q)αAqA)

− r f (1+ cu)
(1+ cu+ f v)(1+ cu+ f v∗)

− qα(1−m)

(a+q(1−m)u)
.

Following the Sylvester’s criterion, V̇ (u,v) is negative definite if and only if Θ11 > 0 and Θ12
2 <

4Θ11Θ22. It may be noted that these two conditions are satisfied under the two conditions
mentioned in the statement of the theorem.
Hence, the result follows.

Remark: The global stability behavior of unique coexistence equilibrium is illustrated
in Fig. 6.4. Fig. 6.4(a) depicts the region (blue region) in αA − r1 plane where the unique
coexistence equilibrium is globally asymptotically stable. The phase portrait presented in Fig.
6.4(b) demonstrates trajectories converging towards the coexistence equilibrium E∗

1 , originating
from any point within the phase space.
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(a) The blue region illustrates the global stability
behavior of unique coexistence equilibrium in αA-
r1 plane.
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(b) This phase portrait depicts the global asymp-
totic stability of E∗

1 . Here, αA = 1 and r1 = 0.101.

Fig. 6.4: All the other parameteric values are pre-defined in the Table 6.1.

6.3.4 Bifurcation analysis

The system experiences bifurcation when a slight modification in the parameter values (bifur-
cation parameters) leads to a qualitative or quantitative change in the system’s behavior. This
section comprises various kinds of local bifurcations of co-dimension one that help us compre-
hend how system change their behavior under varying conditions.

Theorem 6.3.6. The system (6.1) undergoes transcritical bifurcation near the prey-free equi-

librium E2(0,
(1−q)αAqA

β
) when the additional food parameter passes through a critical value

αA = α∗
A under the following properties:

(i) −αq(1−m)(1−q)qA
aβ

+
r f β (1−q)qA(β− f (1−q)α∗

AqA)

(β+ f (1−q)α∗
AqA)3 ̸= 0,

(ii) 2r f β

(β+ f (1−q)α∗
AqA)2 (c(1−q)α∗

AqA −qα(1−m))+ 2(1−m)2q2α

a2β
((1−q)α∗

AqA −aα)−2r1 ̸= 0.

Proof. The variational matrix at the prey-free equilibrium E2(0,
(1−q)αAqA

β
) is

DF(E2,αA) =

[
−r0 − αq(1−m)(1−q)αAqA

aβ
+ r f β (1−q)αAqA

(β+ f (1−q)αAqA)2 0
s(1−m)αq

β
−s

]
.

The eigenvalues of the above matrix are λ1 = −s(< 0) and λ2 = −r0 − αq(1−m)(1−q)αAqA
aβ

+
r f β (1−q)αAqA

(β+ f (1−q)αAqA)2 . E2 is a non-hyperbolic equilibrium at the critical point αA = α∗
A. Therefore,

−r0 −
αq(1−m)(1−q)α∗

AqA

aβ
+

r f β (1−q)α∗
AqA

(β + f (1−q)α∗
AqA)2 = 0.
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The variational matrix at αA = α∗
A becomes

A =

[
0 0

s(1−m)αq
β

−s

]
.

Further, EA = [1, qα(1−m)
β

]T and EAT = [1,0]T are the eigenvectors corresponding to the zero
eigenvalue of the matrix A and AT , respectively.

Assuming F = (g,h)T , we have

FαA =

[
0

sβv2(1−q)qA
(qα(1−m)u+(1−q)αAqA)2

]
.

Now, ET
AT FαA(E2,α

∗
A) = 0 ensures that the system doesn’t possess any saddle-node bifurcation

at E2.
Let us consider

ET
AT [DFαA(E2,α

∗
A)EA] =−αq(1−m)(1−q)qA

aβ
+

r f β (1−q)qA(β − f (1−q)α∗
AqA)

(β + f (1−q)α∗
AqA)3 ̸= 0.

(6.5)

Additionally,

ET
AT [D2FαA(E2,α

∗
A)(EA,EA)] =

2r f β

(β + f (1−q)α∗
AqA)2 (c(1−q)α∗

AqA −qα(1−m))

+
2(1−m)2q2α

a2β
((1−q)α∗

AqA −aα)−2r1 ̸= 0. (6.6)

Under conditions (6.5) and (6.6), the theorem follows.

Theorem 6.3.7. The system undergoes saddle-node bifurcation at the critical point c = cs

around the coexistence equilibrium E∗(u∗,v∗) if the following conditions hold:

(i) r f u∗2v∗

(1+csu∗+ f v∗)2 ̸= 0,

(ii) guu − gu
gv
(2guv +huu)+

g2
u

g2
v
(gvv +2huv)− g3

u
g3

v
hvv ̸= 0.

Proof. The variational matrix matrix at the coexistence equilibrium is

J
∣∣
E∗(u∗,v∗)=

 r((1+cu)2+ f (1+2cu)v
(1+cu+ f v)2 − a(1−m)αqv

(a+q(1−m)u)2 − r0 −2r1u −
(

ru(1+cu) f
(1+cu+ f v)2 +

αq(1−m)u
(a+q(1−m)u)

)
s(1−m)qαβv2

(qα(1−m)u+(1−q)αAqA)2 s− 2sβv
q(1−m)αu+(1−q)αAqA


E∗(u∗,v∗)

.
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Since, the variational matrix has a zero eigenvalue at the critical point c = cs, therefore,

det(J
∣∣E∗(u∗,v∗)) = 0.

Let us define

B = DF(E∗,cs) =

[
gu gv

hu hv

]
E∗(u∗,v∗)

.

Now, the eigenvectors corresponding to the zero eigenvalue of B and BT are wB = [1 −gu
gv

]T and
wBT = [1 −gu

hu
]T , respectively.

By proceeding the computations in the same way as in Theorem 10 done by Anshu et al.

[4], we can conclude that the system undergoes saddle-node bifurcation with respect to the
parameter c at c = cs near the coexistence equilibrium E∗ under the following conditions:

wT
BFc

(
E∗(u∗,v∗),cs

)
=

r f u∗2v∗

(1+ csu∗+ f v∗)2 ̸= 0,

and

wT
B

[(
D2F(E∗(u∗,v∗),as)

)
(wB,wB)

]
= guu −

gu

gv
(2guv +huu)+

g2
u

g2
v
(gvv +2huv)−

g3
u

g3
v

hvv ̸= 0,

where

guu = 2
(

c f rv∗(1+ f v∗)
(1+ cu∗+ f v∗)3 +

a(1−m)2q2αv∗

(a+q(1−m)u∗)3 − r1

)
,

guv = gvu =−
(

r f (1+ c(u∗+2 f u∗v∗)+ f v∗)
(1+ cu∗+ f v∗)3 +

a(1−m)qα

(a+q(1−m)u∗)2

)
,

gvv =
2r f 2u∗(1+ cu∗)
(1+ cu∗+ f v∗)3 ,

huu =
−2(1−m)2q2sα2βv∗2

(qα(1−m)u∗+(1−q)αAqA)3 ,

huv =
2(1−m)qαβv∗

(qα(1−m)u∗+(1−q)αAqA)2 ,

hvv =
−2sβ

(qα(1−m)u∗+(1−q)αAqA)
.

Hence, for saddle-node bifurcation to occur, the transversality conditions hold true.

Theorem 6.3.8. For the system to experience Hopf-bifurcation, the following properties must

be satisfied:
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1. tr(J|E∗
1
;αA = αH

A ) = 0,

2. det(J|E∗
1
;αA = αH

A )> 0,

3. ∂

∂αA
(tr(J|E∗

1
)|

αA=αH
A
̸= 0.

Proof. In Theorem (6.3.4), we have already established that det(JE∗
1
)> 0 whenever coexistence

equilibrium E∗
1 exists. Now, the stability of the coexistence equilibrium depends on the sign of

tr(J|E∗
1
). Assuming αA as the bifurcation parameter, E∗

1 alters the stability behavior as tr(J|E∗
1
)

switches its sign from positive to negative. Further, we get the critical value of the bifurcation
parameter by solving tr(J|E∗

1
) = 0 as

αA = α
H
A =

1
(1−q)qA

(
2sβv∗1
φ + s

−q(1−m)αu∗1

)
,

where

φ =
r((1+ cu∗1)

2 + f (1+2cu∗1)v
∗
1

(1+ cu∗1 + f v∗1)
2 −

a(1−m)αqv∗1
(a+q(1−m)u∗1)

2 − r0 −2r1u∗1.

The above expression of αA is an implicit expression because u∗1 and v∗1 depends on αA. Now,
for the system to undergo Hopf-bifurcation, we verify the tranversality condition given by

∂

∂αA
(tr(J|E∗

1
)|

αA=αH
A
=

2sβ (1−q)qAv∗1
(q(1−m)αu∗1 +(1−q)αAqA)2

∣∣∣∣
αA=αH

A

̸= 0.

This completes the proof.

6.4 Analysis of spatiotemporal model

This section investigates the spatiotemporal model (6.2) with Neumann boundary conditions.
First, we derive the conditions for the existence and boundedness of the solutions in the absence
of cross-diffusion. Then, we analyze the diffusion-induced instability and pattern formation that
provides deeper insights into the system’s dynamics.

6.4.1 Existence and boundedness

We consider the following system without cross-diffusion:
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∂u
∂ t

= d11∆u+ ru
( 1+ cu

1+ cu+ f v

)
− r0u− r1u2 − qα(1−m)uv

a+q(1−m)u
, (x,y, t) ∈ M,

∂v
∂ t

= d22∆v+ sv
(

1− βv
qα(1−m)u+(1−q)αAqA

)
, (x,y, t) ∈ M, (6.7)

∂u
∂ν

=
∂v
∂ν

= 0, (x,y, t) ∈ N,

u(x,y,0) = u0(x,y)≥ 0,v(x,y,0) = v0(x,y)≥ 0, (x,y) ∈ Ω,

where M = Ω× (0,∞) and N = ∂Ω× (0,∞).

For system (6.7), we are able to establish the following theorem.

Theorem 6.4.1. • For the non-zero initial conditions u0(x,y) and v0(x,y), system (6.7) pos-

sess a unique solution (u(x,y, t),v(x,y, t)) such that u(x,y, t)> 0 and v(x,y, t)> 0 for all

(x,y, t) ∈ M.

• The solution (u(x,y, t),v(x,y, t)) of system (6.7) satisfy the following inequalities:

limsup
t→∞

u(x,y, t)≤ r− r0

r1
,

limsup
t→∞

∫∫
Ω

∂v(x,y, t)
dt

dxdy ≤ 1
β

(
qα(1−m)(r− r0)(|Ω|+ ε)

r1
+(1−q)αAqA

)
.

Proof. Denote

G1(u,v) = ru
( 1+ cu

1+ cu+ f v

)
− r0u− r1u2 − qα(1−m)uv

a+q(1−m)u
,

G2(u,v) = sv
(

1− βv
qα(1−m)u+(1−q)αAqA

)
.

From the above expressions, we have

∂G1(u,v)
∂v

=−
[

r f u(1+ cu)
(1+ cu+ f v)2 +

qα(1−m)u
(a+q(1−m)u)

]
≤ 0,

∂G2(u,v)
∂u

=
sβqα(1−m)uv2

(qα(1−m)u+(1−q)αAqA)2 ≥ 0,

for (u,v) ∈ R2
+ = {(u,v)|u ≥ 0,v ≥ 0}. Thus, the system (6.7) consists of weakly coupled

parabolic equations with mixed quasimonotonic expressions [120]. Consider (u(x,y),v(x,y)) =
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(0,0) and (ū(x,y), v̄(x,y)) = (u∗(t),v∗(t)) where (u∗(t),v∗(t)) is the unique solution to

du
dt

= ru
( 1+ cu

1+ cu+ f v

)
− r0u− r1u2 − qα(1−m)uv

a+q(1−m)u
, t > 0

dv
dt

= sv
(

1− βv
qα(1−m)u+(1−q)αAqA

)
, t > 0,

u(0) = u∗,v(0) = v∗,

where u∗ = sup
Ω̄

u0(x,y) and v∗ = sup
Ω̄

v0(x,y). Since

∂ ū(x,y, t)
∂ t

−d11∆ū(x,y, t)−G1(ū(x,y, t),v(x,y, t)) = 0

≥ 0 =
∂u(x,y, t)

∂ t
−d11∆u(x,y, t)−G1(u(x,y, t), v̄(x,y, t)),

∂ v̄(x,y, t)
∂ t

−d22∆v̄(x,y, t)−G2(ū(x,y, t), v̄(x,y, t)) = 0

≥ 0 =
∂v(x,y, t)

∂ t
−d22∆v(x,y, t)−G2(u(x,y, t),v(x,y, t)),

for (x,y, t) ∈ M, we can easily observe the given boundary conditions

∂ ū(x,y, t)
∂ν

≥ 0 ≥ ∂u(x,y, t)
∂ν

,
∂ v̄(x,y, t)

∂ν
≥ 0 ≥ ∂v(x,y, t)

∂ν
f or (x,y, t) ∈ N,

and initial conditions

ū(x,y,0)≥ u0(x,y)≥ u(x,y,0), v̄(x,y,0)≥ v0(x,y)≥ v(x,y,0) f or (x,y) ∈ Ω,

hold. Therefore, for system (6.7), (u(x,y),v(x,y)) = (0,0) and (ū(x,y), v̄(x,y)) = (u∗(t),v∗(t)

constitute the lower and upper solutions, respectively. From Theorem 8.3.3 from [120], we may
conclude that the system (6.7) admits a unique solution (u(x,y, t),v(x,y, t)) satisfying

0 ≤ u(x,y, t)≤ u∗(t),0 ≤ v(x,y, t)≤ v∗(t).

As u0(x,y) ̸= 0 and v0(x,y) ̸= 0, so from strong parabolic maximum principle [[153], Lemma
2.1.8], it follows that u(x,y, t)> 0, v(x,y, t)> 0 for (x,y, t) ∈ M.
This completes the first part of the theorem.
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Next, we compute the priori bounds of solutions for the system (6.7). For the estimation of
u(x,y, t), we can observe that u(x,y, t) satisfies the system given below:

∂u
∂ t

= d11∆u+ ru
( 1+ cu

1+ cu+ f v

)
− r0u− r1u2, (x,y, t) ∈ M,

∂u
∂ν

= 0, (x,y, t) ∈ N,

u(x,y,0) = u0(x,y)≥ 0, (x,y) ∈ Ω.

From the standard comparison theorem for parabolic equations [[120],Theorem 2.4.1], it fol-
lows that

limsup
t→∞

u(x,y, t)≤ r− r0

r1
. (6.8)

To estimate the priori bound of v(x,y, t), we denote U(x,y, t) =
∫∫

Ω
u(x,y, t)dxdy and V (x,y, t) =∫∫

Ω
v(x,y, t)dxdy. Following the Neumann boundary conditions and Green’s theorem , we get

dU
dt

=
∫∫

Ω

∂u(x,y, t)
∂ t

dxdy =
∫∫

Ω

[
ru
( 1+ cu

1+ cu+ f v

)
− r0u− r1u2 − qα(1−m)uv

a+q(1−m)u

]
dxdy,

dV
dt

=
∫∫

Ω

∂v(x,y, t)
∂ t

dxdy =
∫∫

Ω

[
sv
(

1− βv
qα(1−m)u+(1−q)αAqA

)]
dxdy.

(6.9)

Since, limsupt→∞ u(x,y, t) ≤ r−r0
r1

implying limsupt→∞U(x,y, t) ≤ r−r0
r1

|Ω|. Hence, for ε > 0,
there exists t1 > 0 such that U(t)< r−r0

r1
(|Ω|+ ε). From (6.9), we have

dV
dt

=
∫∫

Ω

[
sv
(

1− βv
qα(1−m)u+(1−q)αAqA

)]
dxdy,

which implies

dV
dt

≤
[

sV
(

1− βV
qα(1−m)(r−r0)(|Ω|+ε)

r1
+(1−q)αAqA

)]
, t > t1.

Thus,

limsup
t→∞

V (t)≤ 1
β

(
qα(1−m)(r− r0)(|Ω|+ ε)

r1
+(1−q)αAqA

)
,



204
Chapter 6. Bifurcation analysis and spatiotemporal dynamics in a diffusive predator-prey

system incorporating a Holling type II functional response

which further yields

limsup
t→∞

V (t) = limsup
t→∞

∫∫
Ω

∂v(x,y, t)
∂ t

dxdy ≤ 1
β

(
qα(1−m)(r− r0)(|Ω|+ ε)

r1
+(1−q)αAqA

)
.

(6.10)

This completes the proof of the second part of the theorem.

6.4.2 Turing instability induced by self and cross-diffusion

In this subsection, we shall derive the conditions for diffusion induced instability in the pres-
ence of self and cross-diffusion. Consider the linearized form of the model (6.2) about the
coexistence equilibrium E∗(u∗,v∗):

∂u
∂ t

= ϒ11u+ϒ12v+d11∇
2u+d12∇

2v,

∂v
∂ t

= ϒ21u+ϒ22v+d21∇
2u+d22∇

2v, (6.11)

where

ϒ11 = u∗
[

rc f v∗

(1+ cu∗+ f v∗)2 − r1 +
q2α(1−m)v∗

(a+q(1−m)u∗)2

]
,

ϒ12 =−u∗
[

r f (1+ cu∗)
(1+ cu∗+ f v∗)2 −

qα(1−m)

(a+q(1−m)u∗)

]
,

ϒ21 =
s(1−m)qαβv∗2

(qα(1−m)u∗+(1−q)αAqA)2 ,

ϒ22 =
−sβv∗

(qα(1−m)u∗+(1−q)αAqA)
.

We are keen in examining the linear stability behavior of the system (6.2) near the coexistence
equilibrium E(u∗,v∗) by introducing a slight perturbations as follows

u = u∗+uκ exp(λ t + i(κ.r)),

v = v∗+ vκ exp(λ t + i(κ.r)),

where (uκ ,vκ) is a constant column vector, κ = (κx,κy) is a row vector, κ =
√

κ2
x +κ2

y is wave
number and (x,y) are spatial coordinates.
The linearized system (6.11) has the following characteristic equation:

ξ
2 +T (κ2)ξ +D(κ2) = 0, (6.12)
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where

T (κ2) =−(ϒ11 +ϒ22)+κ
2(d11 +d22) =−tr(J|E∗)+κ

2(d11 +d22),

D(κ2) = (d11d22 −d12d21)κ
4 − (ϒ11d22 +ϒ22d11 −ϒ12d21 −ϒ21d12)κ

2 +(ϒ11ϒ22 −ϒ12ϒ21),

= (d11d22 −d12d21)κ
4 − (ϒ11d22 +ϒ22d11 −ϒ12d21 −ϒ21d12)κ

2 +det(J|E∗).

For E∗(u∗,v∗) to be initially stable in the absence of diffusion, (ϒ11 +ϒ22)< 0 and (ϒ11ϒ22 −
ϒ12ϒ21)> 0. Therefore, T (κ2)> 0. Now, the required condition for diffusion driven instability
is Re[ξ (κ2)] > 0. Using Routh-Hurwitz criterion, D(κ2) < 0 (for some κ ̸= 0) provided that
det(J|E∗)> 0 is the only possibility for Turing instability.
Solution of Eq. (6.12) for ξ is given as:

ξ1,2(κ
2) =

−T (κ2)±
√

(T (κ2))2 −4D(κ2)

2
. (6.13)

Since D(κ2) is a quadratic in κ2, therefore, the extremum of D(κ2) is a minimum for some
κ2. So, D(κ2) is minimum at

κ
2
min =

(ϒ11d22 +ϒ22d11 −ϒ12d21 −ϒ21d12)

2(d11d22 −d12d21)
.

The corresponding minima is

D(κ2
min) = det(J|E∗)− (ϒ11d22 +ϒ22d11 −ϒ12d21 −ϒ21d12)

2

4(d11d22 −d12d21)
.

If D(κ)2 < 0 for some κ2, then D(κ2
min)< 0. Thus,

(ϒ11d22 +ϒ22d11 −ϒ12d21 −ϒ21d12)
2

4(d11d22 −d12d21)
> det(J|E∗).

The critical value of Turing bifurcation for system (6.2) can be determined when D(κ2) = 0,
i.e.,

(ϒ11d22 +ϒ22d11 −ϒ12d21 −ϒ21d12)
2 −4(d11d22 −d12d21)det(J|E∗) = 0. (6.14)

Further the critical wave number is given as

κc =

√
det(J|E∗(u∗,v∗))

d11d22 −d12d21
.
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Now from the above analysis, we have the following four conditions that must be satisfied for
Turing instability:

(i) (ϒ11 +ϒ22)< 0,

(ii) (ϒ11ϒ22 −ϒ12ϒ21)> 0,

(iii) (ϒ11d22 +ϒ22d11 −ϒ12d21 −ϒ21d12)> 0,

(iv) (ϒ11d22 +ϒ22d11 −ϒ12d21 −ϒ21d12)
2 −4(d11d22 −d12d21)det(J|E∗)> 0.

Remark: When d12 = d21 = 0, the above set of four parametric conditions represents the Turing
space for self-diffusion.

6.5 Numerical simulations

6.5.1 For temporal model

A series of extensive numerical simulations has been carried out using MATLAB R2019b and
MATCONT to validate the theoretical results. To better understand the dynamics of the system,
we investigate a number of local bifurcations in this section.

6.5.2 Bifurcation analysis

First, we explore the system’s dynamics with respect to the parameter αA that symbolizes
the additional food for the predators. Fig. (6.5) depicts the local bifurcation analysis of co-
dimension one in reference to the parameter αA. In this figure, all the parameters assume
values from Table 6.1. As presented in Figs. 6.5(a) and 6.5(b), the coexistence equilibrium
is initially stable (blue curve), which then loses its stability behavior through Hopf-bifurcation
H1 occurring at αA = 23.3256. Further, we observe that the system experiences transcritical
bifurcation BP at αA = 6.9273 near the prey-free equilibrium E∗

1 . Now, as the value of αA is
increased, we notice that the two coexistence equilibria E∗

1 and E∗
2 collide, and they annihilate

each other via saddle-node bifurcation LP at αA = 23.6163. From a biological point of view,
for small values of αA, the species coexist at a relatively constant density over time. But as
the value of αA is increased, the system becomes unstable, exhibiting a recurring pattern of
population dynamics between the prey and predator species. However, a significant rise in the
additional food might lead to the disapperance of the state where both species coexist.

Next, for deeper insights into the system’s dynamics, we presented the bifurcation analysis
in varying the fear parameter f (Fig. 6.6). This figure shows that for lower values of the
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(a) For Prey (b) For Predator

Fig. 6.5: One-dimension bifurcation analysis of the equilibrium point concerning the
bifurcation parameter αA. All other parameters remain consistent as outlined in Table
6.1.

fear parameter, there is a stable coexistence between both species. With a rise in the fear
among the prey population, the stable equilibrium becomes unstable via Hopf-bifurcation (H2)
at f = 1.8858. Moreover, the axial equilibrium undergoes a transcritical bifurcation (BP) at
f = 2.9035, which alters the stability behavior of the prey-free equilibrium. Increasing fear
level among prey population significantly might cease the coexistence of prey and predator
species. This means that as f increases, E∗

1 and E∗
2 collide via saddle-node bifurcation (LP)

at f = 4.1297. The blue curve signifies the stable equilibrium while green represents unstable
equilibrium point.

(a) For Prey (b) For Predator

Fig. 6.6: One-dimension bifurcation analysis of the equilibrium point concerning the
bifurcation parameter f . All other parameters remain consistent as outlined in Table 6.1.
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Further, Fig. 6.7 depicts the kinetics of the system as the value of carry-over effect pa-
rameter c is varied. Initially the system is stable near the coexistence equilibrium, which then
experiences a Hopf-bifurcation (H3) at c = 0.0873 and becomes unstable. The system now
exhibits a recurring pattern dynamics between the species. Again, at c = 0.4640, the sys-
tem experiences a second Hopf-bifurcation (H4) and the species coexist at a constant density
across time. Particularly, we can observe two Hopf-bifurcations for two different values of
c. The starting point of oscillation is c = 0.0873 with increasing amplitudes. Again, with in-
creasing carry-over effect parameters, the amplitudes decrease, and the oscillation stabilizes
at c = 0.4640. The oscillations emerging from critical points appear like a bubble, and this
effect is generally called a bubbling phenomenon (Fig. 6.8). This type of phenomenon results
from the appearance and disappearance of limit cycles due to forward and backward Hopf-
bifurcations, respectively. The bubbling loop formed due the occurrence of Hopf bifurcation is
different from the classical period bubbling phenomena [82]. Layek and Pati [83] and Pati et

al. [123] conducted a bi-parameter analysis in a discrete mathematical model and observed that
the system demonstrates chaos through period-bubbling routes. Several researchers have also
studied the bubbling effect in an ecological context [158, 173].

(a) For Prey (b) For Predator

Fig. 6.7: One-dimension bifurcation analysis of the equilibrium point concerning the
bifurcation parameter c. Here, f = 1.5 and all other parameters remain consistent as
outlined in Table 6.1.

Next, as seen in Fig. 6.9(a), we execute our simulation by varying [c, f ] about H3 Hopf-
bifurcation. A cusp-bifurcation point is observed at [c, f ] = [0.2892,2.9035] around the prey-
free equilibrium point E2 = (0,1.1900). In a two-parameter family of autonomous systems,
the tangential intersection of two saddle-node bifurcation curves is called the cusp-bifurcation
point. Additionally, Bogdanov-Takens bifurcation occurs around the coexistence equilibrium
(1.3112,1.5046) at [c, f ] = [0.3357,2.9776]. The specific conditions for Bogdanov-Takens
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Fig. 6.8: Hopf-bifurcation analysis of the equilibrium point concerning the bifurcation
parameter c. Here, f = 1.5 and all other parameters remain consistent as outlined in
Table 6.1.

bifurcation is that the linearized variational matrix should have two zero real eigenvalues. In
Fig. 6.9(a), the magenta curve signifies the saddle-node curve and the red curve denotes the
Hopf-bifurcation curve. The intersection of these two depicts the Bogdanov-Takens bifurcation
point. Fig. 6.9(b) presents the partition of neighbourhood of the BT point into four different
regions namely R1, R2, R3 and R4. The black, blue and red colored curves represents saddle-
node, Hopf and homoclinic curves, respectively.

Now, we investigate the dynamics of system (6.1) in the vicinity of the BT-point with
(c, f ) ∈ [0.3,0.35]× [2.91,2.98], as depicted in Fig. 6.9(b). This figure divides the vicinity
of the BT-point into four sub-regions: R1, R2, R3, and R4. Three curves, namely the saddle-
node curve (black), Hopf curve (blue), and homoclinic curve (red) are utilized to delineate these
subregions. A degenerate equilibrium Ed exists at the BT-point for (c, f ) = (0.3357,2.9776),
illustrated in Fig. 6.10(a). In region R1, E2 emerges as the only stable coexistence equilibrium,
as indicated in Fig. 6.10(b). Upon decreasing the fear parameter, the system transitions into R2,
where the saddle point E∗

1 and spiral sink E∗
2 become prominent (Fig. 6.10(c)) after traversing

the saddle-node curve. Ecologically, this signifies that an increase in the strength of the fear
effect can lead to the annihilation of two interior equilibria. Subsequently, progression from
R2 to R3 occurs by elevating the carry-over effect parameter, resulting in the generation of a
limit cycle around the spiral source E∗

2 through Hopf-bifurcation (Fig. 6.10(d)). Continuing,
we increase the carry-over effect parameter further and choose a point on the homoclinic curve,
where the previously noted stable limit cycle collides with the saddle E∗

2 , resulting in the for-
mation of a homoclinic loop (Fig. 6.10(e)). Subsequently, a further increment in c takes us
into region R4, causing the homoclinic loop mentioned earlier to vanish, while E∗

1 persists as a
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saddle point and E∗
2 remains a spiral source (Fig. 6.10(f)).

Remark: The influence of prey refuge on system dynamics aligns with the findings of
Gupta et al. [48]. We have excluded the figures illustrating the results related to prey refuge for
brevity.

0 0.2 0.4 0.6 0.8 1

c

0

1

2

3

4

5

f

BT

CP

Bogdanov-Takens, BT at c=0.3357,

f=2.9776, EP=(1.3112,1.5046)

Cusp-bifurcation, CP at c=0.2892,
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Fig. 6.9: Two-dimension bifurcation analysis of the equilibrium point concerning bi-
furcation parameters [c, f ]. All other parameters remain consistent as outlined in Table
6.1.
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Fig. 6.10: This plot depicts the system’s dynamics in a bi-parameteric plane [c, f ]. All
other parameters remain consistent as outlined in Table 6.1.
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6.5.3 Pattern formation

This section comprised the numerical simulations conducted to analyze the dynamics of the
proposed spatiotemporal model (6.2) in a two-dimensional habitat. In order to carry out the sim-
ulations, we took into account a 200×200 spatial grid with the Neumann (zero-flux) boundary
conditions, a time step of ∆t = 1/300, and a space step-size of ∆x = ∆y = 1/3. We employed
the forward Euler scheme for the reaction part and the conventional five-point explicit finite
difference scheme for the diffusion part. The following two types of initial conditions has been
considered to investigate the spatialtemporal patterns:

•

u(x,y,0) = u∗+ ε1Gi, j,

v(x,y,0) = v∗+ ε1Hi, j, (6.15)

where Gi, j and Hi, j are conventional Gaussian white noise, (u∗,v∗) is the coexistence
equilibrium and ε1 = 0.0001.

•

u(x,y,0) = u∗+ ε2 sin
(2π(x− x0)

50
)
+ ε2 sin

(2π(y− y0)

50
)
,

v(x,y,0) = v∗. (6.16)

where ε2 = 0.01, x0 = y0 = 0.1 and (u∗,v∗) is the coexistence equilibrium.

6.5.3.1 In the absence of cross-diffusion

First, we set d12 = d21 = 0 in model (6.2) and then explore the effect of diffusion coefficients
d11 and d22 on the Turing patterns. This section considers the coexistence equilibrium from
the Turing space, i.e., the coexistence equilibrium that satisfies the analytic Turing conditions.
Here, the numerical simulations are performed using the initial state (6.15). Figure 6.11 il-
lustrates the effect of the movement of prey species on the pattern formation. The predator
self-diffusion coefficient d22 is intentionally set to 1. In Fig. 6.11(a), we observe a patchy
pattern of low and high predator populations, whereas the moderate predator population occu-
pies most of the region. With an increase in the value of the prey self-diffusion coefficient, the
simulations reveal the emergence of the cold-spot pattern (Fig. 6.11(b)). Further increasing the
value of d11 results in the evolvement of the cold spots, which are well-connected within the
stripe structures (Fig. 6.11(c)).
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Next, we investigate the consequences of increased predator movement across the habitat
on the Turing patterns. In Fig. 6.12, we fix the prey-diffusion coefficient d11 = 0.01. Fig-
ure 6.12(a) reveals a Turing pattern consisting of spots and stripes that almost have the same
predator density as the rest of the habitat. Increasing the predator movement results in forming
connected cold-spot patterns illustrated in Fig. 6.12(b). A significant increase in d22 demon-
strates the emergence of patchy Turing patterns as a combination of low and high-density pop-
ulations. From an ecological perspective, increased random movement of prey species results
in decreased density of predator populations across the habitat.

(a) (b)

(c)

Fig. 6.11: Snapshots of contour pictures of predator species for different values of d11
i.e. at (a) d11 = 0.0001; (b) d11 = 0.001; and (c) d11 = 0.01. Here, c = 0.601, αA = 23,
d22 = 1 and all the other parameters are same as described in the Table 6.1.
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(a) (b)

(c)

Fig. 6.12: Snapshots of contour pictures of predator species for different values of d22
i.e. at (a) d22 = 0.6; (b) d22 = 1; and (c) d22 = 3. Here, c = 0.601, αA = 23, d11 = 0.01
and all the other parameters are same as described in the Table 6.1.

6.5.3.2 Stationary and dynamic pattern formation in the presence of both self and cross
diffusion

Now, we explore the evolution of patterns in the presence of both self and cross-diffusion. In
Fig. 6.13, we simulate the system (6.2) with the random initial conditions (6.15) and study the
impact of cross-diffusion coefficient d21 on the Turing patterns. For d21 = 0, as depicted in
Fig. 6.13(a), the pattern is composed of cold-spots scattered in high-density environment. As
the value of the predator’s cross-diffusion coefficient d21 increases, the predator density in the
majority of the region decreases as illustrated in Fig. 6.13(b). The cold-spots pattern switches
to hot-spots pattern with a significant increase in the value of d21 (Fig. 6.13(c)).

Till now, we obtained the distribution of population species using random initial conditions.
Now, we explore the intriguing pattern formation and spatial dynamics by choosing specific
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initial conditions 6.16 [76]. Fig. 6.14 depicts the spatiotemporal bifurcation diagram for the
parameter values f = 1.5, d11 = 0.01, d22 = 1 and d12 = 0.01 in the f − d21 parameter plane.
Here, red colour depicts Turing region (TR), blue for Turing-Hopf region (THR), green for sta-
ble region (SR) and yellow for non-Turing region (NTR). This figure illustrates that increasing
the value of fear parameter f may decrease the critical value for the predator’s cross-diffusion
coefficient.

Further, Fig. 6.15 demonstrates a graphical plot for D(κ2) vs. κ2, which helps us better
grasp the idea of the Turing instability regime and wave numbers. This figure presents different
curves for various fear parameters f values which causes Turing instability i.e. H(κ2)< 0. It is
noticeable that for a fixed value of predator’s cross-diffusion coefficient, fear parameter f less
than a critical value fails to touch the κ2 axis. This figure clearly shows that the range of wave
numbers responsible for causing Turing instability increases with increasing fear parameter f .

Next, we analyze the dynamic pattern formation in different regimes. Fig. 6.16 presents
the evolution of predators’ spatial distribution in the Turing region. Turing instability drives the
system towards a more organized state characterized by distinct Turing patterns. This figure
reveals that predators exhibit various spatial distributions and keep changing for different time
levels at t = 100, t = 900, and t = 1400. Similarly, Fig. 6.17 illustrates the time-varying spatial
density of the predator population in the Turing-Hopf region. Turing-Hopf region characterizes
the simultaneous occurrence of Hopf in temporal and instability resulting from the diffusion.
From here, we can observe how time changes the spatial distribution of the predator species
across the habitat, ultimately converging to organized hot-spot patterns.

Additionally, Fig. 6.18 depicts the predator’s evolution across the habitat over time in non-
Turing regions. Here, it is essential to emphasize that the patterns emerging in the non-Turing
area don’t adhere to the Turing instability conditions. This figure reveals that the predator
species is initially aggregated at the center of the habitat, forming a dense red patch. Over
time, the density of the predator species at the center decreases, creating a blue square area
in the middle surrounded by moderate-density predators. The concentric circles with different
predator densities are formed for a sufficiently higher time value.

6.6 Discussion and concluding remarks

This study analyzed a Leslie-Gower prey-predator model with additional food in the presence of
fear and its carry-over effects, with and without diffusion. Detailed analysis has been performed
for the proposed ODE model (6.1) to probe the intricate dynamics between the species. We
established the well-posedness of the system (6.1) and outlined the prerequisites under which
the system (6.1) has none, unique or two coexistence equilibrium points (Fig. 6.1). The local
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(a) (b)

(c)

Fig. 6.13: Snapshots of contour pictures of predator species for different values of d21
i.e. at (a) d21 = 0; (b) d21 = 0.025; and (c) d21 = 0.05. Here, c= 0.1, d11 = 0.01 , d22 = 1,
d12 = 0.1 and all the remaining parameters are consistent as outlined in the Table 6.1.

and global stability behavior of various coexistence equilibria are explored (Figs. 6.2 and (6.4)).
The bistability attribute is presented between the coexistence equilibrium and the prey-free
equilibrium via graphical representation (Fig. 6.3). Further, we studied the intriguing dynamics
of the system by varying crucial parameters via bifurcation analysis. We investigated that the
system experiences various co-dimension one bifurcations such as transcritical, saddle-node
and Hopf-bifurcation along with the co-dimension two bifurcations such as Bogdanov-Takens
and Cusp bifurcation. We noticed that when the density of the additional food is low, the species
co-exist in a stable state in ecosystem. However, further increasing the additional food density
may destabilize the coexistence of the species disrupting the balance in the ecosystem. Beyond
a certain threshold value of the additional food parameter, species cease to co-exist (Fig. 6.5).
It has been observed that lower level of fear in prey population maintains a stable coexistence of
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Fig. 6.14: Bifurcation region plot for system (6.2) in f -d21 parameteric plane. Here,
f = 1.5, d11 = 0.01, d22 = 1 and d12 = 0.01. All the other parameters are considered
from the Table 6.1.
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Fig. 6.15: D(κ2) vs. κ2 plot for different values of fear parameter f . Here, d21 = 0.5 and
all the other parameters are same as pre-defined in Fig. 6.14.

both the species in the ecosystem (Fig. 6.6). Our analysis demonstrates a bubbling phenomenon
with respect to the carry-over effect parameter i.e. the system undergoes Hopf-bifurcation
twice (Fig. 6.8). The occurrence of these bifurcations is crucial as they help predict how
changes in parameters or environmental conditions might impact the stability and behavior of
ecological populations. It may be pointed out here that the proposed model in this manuscript
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(a) (b)

(c)

Fig. 6.16: Evolution of predator species in Turing region at different time values (a)
t = 100, (b) t = 900 and (c) t = 1400. The parameters are taken from the Turing region
as described in Fig. 6.14. Here, f = 1.5 and d21 = 0.2.

is a two-dimensional autonomous model, and hence chaos will not appear. In the future, this
model could be extended to a three-dimensional framework, enabling the exploration of the
route to chaos and offering a more profound understanding of the intricate interactions and
bi-parametric dynamics within the system [82].

Further, we extend the temporal model to incorporate the diffusion terms due to the ran-
dom movement among the species in a pre-defined habitat. For the spatiotemporal model, we
outlined the sufficient criteria for the existence of non-negative solution and then, calculated
the priori-bounds of the solutions. Our primary focus is to analyze the Turing patterns induced
due to diffusion-driven instability by varying different self and cross-diffusion coefficients. For
this, we derived the conditions for Turing space in the presence of self and cross diffusion.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6.17: Evolution of predator species in Turing-Hopf region at different time values
(a) t = 100, (b) t = 2000 ,(c) t = 2500, (d) t = 3500, (e) t = 4500 and (f) t = 5500. The
parameters are taken from the Turing-Hopf region as described in Fig. 6.14. Here, f = 2
and d21 = 0.05.
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(a) (b)

(c)

Fig. 6.18: Evolution of predator species in Non-Turing region at different time values
(a) t = 50000, (b) t = 100000 , and (c) t = 150000. The parameters are taken from the
Non-Turing region as described in Fig. 6.14. Here, f = 2 and d21 =−1.

Moreover, we used two types of initial conditions to analyze the Turing pattern formation. Us-
ing the first initial condition (6.15), we investigated the Turing patterns induced in the absence
of cross-diffusion. Here, we noticed emergence of patchy and connected cold spots patterns
(Figs. 6.11, (6.12)). Next, we investigated the impact of cross-diffusion coefficients on pattern
formation using random initial conditions (6.15). The findings here illustrated the conversion
of cold-spots pattern to hot-spots patterns in the Turing domain (Fig. 6.13). Hence, our anal-
ysis explored that using the first initial condition, we obtained stationary patterns in Turing
space. Furthermore, we divided the f −d21 parameteric plane into four regions: Turing region,
Turing-Hopf region, stable region and non-Turing region (Fig. 6.14). Then, we investigated
the dynamic pattern formation in the three different regions using specific initial conditions
(6.16). Studying dynamic patterns reveals the sensitivity of the spatial patterns with respect to
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time. The formation of these spatial patterns help elucidate the distribution of species across
the habitat.

Motivated by the work done on additional food [1, 109, 48], we proposed the current model
to analyze a prey-predator model with fear and its carry-over effects. By considering the ran-
dom and directed movement among the species, we incorporated self and cross diffusion terms
in the proposed model. The findings in the present study demonstrated that when there is no
fear among the prey populations, both species co-exist in a stable state and incorporating fear
induced periodic oscillations which is in agreement with the results obtained by Gupta et al.

[48]. We found in our study that the density of the prey and predator populations at the co-
existence equilibrium increases as the value of the carry-over effect parameter grows which
is consistent with the findings illustrated by Sasmal and Takeuchi [145]. Song et al. [154]
investigated the pattern formation induced by cross-diffusion driven instability and concluded
that self-diffusion alone is not enough to induce Turing instability which is in contrast to the
findings of the present study. We illustrated the Turing patterns induced due to self-diffusion
driven instability.

In essence, understanding the intriguing dynamics and spatial patterns obtained in this study
is helpful for comprehending the complexities of the interacting species, managing natural re-
sources sustainably, and predicting and mitigating the impacts of environmental changes on the
ecosystem functioning.
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Conclusions

The interaction between species in the presence of one another is a crucial aspect of ecosystem
dynamics. Mathematical modeling serves as a tool to represent real-world scenarios, simpli-
fying and approximating the complexity of ecosystems for analysis and prediction. Through
these mathematical models, ecologists can gain insights into the interactions among different
species and the influence of environmental factors on them.

This thesis endeavors to investigate prey-predator interactions, modeled as a reaction diffu-
sion system, while incorporating various ecological factors. The study utilizes ordinary, delay,
and partial differential equations to analyze the dynamics of the ecosystem comprehensively.
Therefore, we analyzed each proposed model theoretically and numerically, focusing on critical
parameters. We investigated the well-posedness of the model by demonstrating the positivity
and boundedness of its solutions. Subsequently, we explored the existence of different feasible
equilibrium points and then assessed their local and global stability behavior. Following this,
we analyzed possible local and global bifurcations with respect to the significant parameters
occurring in the system. For the spatiotemporal model, conditions for Turing instability have
been obtained. Turing patterns are analyzed to understand the spatial distribution of the species
in the two-dimensional spatial domain. These Turing patterns suggest that the dynamics of
prey-predator interactions can lead to a spatially heterogeneous species distribution, with local-
ized areas of low and high densities. Extensive numerical simulations have been conducted for
each proposed model to validate the analytical findings. These simulations illustrate the sys-
tem’s dynamics by generating multiple time-series plots, phase portraits, bifurcation diagrams,
and Turing patterns.

In Chapter 2, we proposed a prey-predator model incorporating hunting cooperation among
predators and fear-induced birth reduction in prey. We presume that predators consume prey
through Type-I functional response. We provided some sufficient conditions for the system
to be persistent. Further, we derived the conditions for the persistence and existence of the
various equilibria. The system shows a variety of complex dynamics, including one-parameter
bifurcations such as saddle-node and Hopf bifurcation. We observed that increasing the hunting
cooperation parameter may destabilize the system. Moreover, we noticed that for a fixed value
of the hunting cooperation parameter, increasing the value of the fear parameter can make the
system stable. The system also exhibits the bi-stability attribute between various equilibria.
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Various Turing patterns, such as spots, holes, and stripes, are obtained for different diffusive
rates.

Chapter 3 investigated a delayed spatial prey-predator model based on a modified Leslie-
Gower scheme incorporating fear induced by predator population and non-constant prey refuge.
We observed that the low value of the half-saturation constant annihilates the coexistence of
both species. Moreover, we noted that the system demonstrates bistability behavior between
prey-free and coexistence equilibrium states. The system experiences double Hopf-bifurcation
with respect to the fear parameter. The impact of the refuge parameter on the system’s dy-
namics is also explored, revealing that preserving prey individuals below a certain threshold
benefits both species. However, prolonged preservation beyond this threshold negatively af-
fects predators. We observed that introducing fear response delay induces periodic oscillations
in the system via Hopf-bifurcation for the non-spatial delayed model. Various Turing patterns,
such as cold-spots, hot-spots, stripes, and a combination of holes and stripes are obtained for
the spatiotemporal model, which can better explain the spatial distribution of species over time.

Chapter 4 is dedicated to a delayed prey-predator system where the past activities of prey
species can alter the present carrying capacity and, hence, the system’s dynamics. We incor-
porated two discrete delays, one to assess a delayed carrying capacity as a function of prey
density and the other to account for a gestation delay. Holling type II functional response han-
dles the corresponding interactions. The system exhibits a bi-stability attribute between two
coexistence equilibria. Moreover, the system demonstrates stability switching by producing
periodic oscillations via supercritical Hopf-bifurcation. Notably, the delayed system exhibits
high sensitivity to initial conditions, indicating its transition into a chaotic regime. Turing insta-
bility conditions for the spatiotemporal system are derived, revealing a range of Turing patterns
illustrating significant shifts in species densities with variations in crucial parameters.

In Chapter 5, we considered a prey-predator model involving weak Allee effects in the prey
with a specialized cannibalistic predator in the presence of self and cross-diffusion. For the
temporal model, we established the existence of various coexistence equilibria determined by
varying the Allee and cannibalism parameters. The stability analysis showed that the extinction
equilibrium is a non-hyperbolic saddle-node with a parabolic sector and two hyperbolic sectors.
Thorough theoretical analysis and numerical simulations have been conducted to illustrate the
occurrence of local bifurcations, including saddle-node, Hopf, Generalized Hopf (Bautin), and
Bogdanov-Takens. For the spatiotemporal model, we derived the sufficient conditions for the
existence of a non-negative solution, followed by the calculations of the prior bounds of the
solution. Furthermore, we demonstrated that self-diffusion fails to induce Turing instability
under specific conditions. The effect of variation of diffusion coefficients is also well explained
through the two-dimensional spatial patterns that can assist in examining spatial heterogeneity,
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spatial complexity, and sensitivity to initial conditions.
In Chapter 6, a Leslie-Gower prey-predator model with additional food in the presence of

fear and its carry-over effects, with and without diffusion, has been proposed and analyzed. In-
cluding these ecological factors contributes to the system’s complexity, resulting in intricate dy-
namics. For the temporal system, the bistability attribute is presented between the coexistence
and prey-free equilibrium. We investigated that the system experiences various co-dimension
one bifurcation such as transcritical, saddle-node, and Hopf-bifurcation, along with the co-
dimension two bifurcations such as Bogdanov-Takens and Cusp bifurcation. We analyzed that
at low densities of additional food, the species coexist in a stable state within the ecosystem.
However, species cease to coexist beyond a particular threshold value of the additional food
parameter. Moreover, we observed that a lower level of fear in the prey population maintains
a stable coexistence of both species in the ecosystem. The system undergoes Hopf bifurcation
twice, resulting in bubbling phenomena with respect to the carry-over effect parameter. For
the spatiotemporal model, we outlined sufficient criteria for the existence of non-negative so-
lutions and then calculated the priori-bounds of the solutions. We illustrated the formation of
various Turing and non-Turing patterns induced by diffusion coefficients. Dynamic patterns are
explored that reveal sensitivity of the spatial patterns with respect to time.

Future directions

In this thesis, we worked on various spatial ecological models that depict interactions between
prey and predators, considering the incorporation of multiple environmental factors. The fol-
lowing are possible future goals that can be further explored for our work.

• In this thesis, we analyzed ecological models involving two species. However, exploring
models with three or more species would add further complexity, which could yield more
interesting insights.

• In this thesis, we worked on autonomous models. In the future, we would like to extend
our work to nonautonomous phenomena that often occur due to seasonal variations in
biological parameters.

• With technological advancements and the ease of data collection and sharing, it would
be beneficial to work with real-world data-driven models to predict the spread of invasive
species and monitor alterations in species distribution.
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