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Abstract

In every industrial application, operating units tend to experience random failure.

With progress, people are becoming more dependent on machining systems, and ma-

chines have become a part of human’s daily lives, providing comfort.

In chapter 2, the reliability analysis of complex systems is crucial for ensuring

their dependable operation. This study focuses on a dual-active single-standby storage

unit system, which plays a critical role in various industrial and technological applica-

tions. The study investigates the reliability metrics of this system in detail, addressing

challenges posed by unreliable repairs and standby switching failures. The application

of Bayesian inference with Gamma and Beta distribution priors, coupled with Monte

Carlo simulations, provides a robust methodology for estimating unknown parameters

and deriving posterior distributions. This approach assumes exponential distributions

for time-to-failures and time-to-repair. Additionally, time-to-inspections follow ex-

ponential distributions for perfect and imperfect rejuvenations, and the probability

of unsuccessful standby switching, denoted as ’q’, is also considered. The findings,

presented through comprehensive tables and graphs, offer valuable insights into the

system’s reliability and the effectiveness of the statistical inferences employed.

In the contemporary world, the prevalence of machine repair problems (MRPs)

in real-time machining models has increased with the development of technology

for socioeconomic advancement, mobility, security, and safety. The uninterrupted

operations of critical appliances, monitoring controllers, advanced devices, and data

exchange systems are expected whenever needed prompt. When active units fail, the

results may be catastrophic, injury, or loss, leading to critical reliability challenges that

must be resolved. The critical reliability challenges are leading to when active units

fail; the results may be catastrophic, injury, or loss that must be reconciled. Chapter

3 aims to provide a comprehensive, state-of-the-art study for failure/repair/operation

uncertainties and impreciseness in optimistic and pessimistic conditions. We con-

sider the fault-tolerant machining system consisting of two-active units, a single-warm

standby unit, and a single-repair facility in a fuzzy environment governing the in-

volved imperfectness, vagueness, and uncertainty. Switching the standby unit to the

failed active unit is also subject to failure. The notion of imperfect repair makes the

proposed model more insightful. A membership grade function of the reliability char-

acteristics, mean time-to-failure, and system availability are constructed to study un-

certainties in-depth for the fault-tolerant redundant repairable system with switching

failure and imperfect repair for well to poor design. The nonlinear parametric program
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technique converts the studied problem into a set of conventional problems. It is em-

ployed to compute the upper and lower bounds of the reliability characteristic based

on the γ-cut approach and Zadeh’s extension principle for extreme design-constrained

limits. Extensive numerical simulations are also performed for the governing param-

eters ranging from well-conditioned to ill-conditioned. The concluding remarks and

future scopes are also included.

In today’s highly automated world, human interaction with machines is constant,

aided by technologies like IoT and cloud manufacturing. Chapter 4 focuses on a

novel multi-unit machine repair issue involving M active units, S standby units, and

a reliable repairer with deteriorating standby units. The decision to retain or reject

deteriorated standby units is crucial, guided by cost analysis and performance evalu-

ation. Failures in active and standby units pose risks. We activate standby units upon

active unit failure. Deteriorating standby units degrade over time while ready for re-

placement. This concept applies to engineering, maintenance, and reliability analysis.

Our research introduces distinct failure rates between active and standby units due

to deterioration. Rejecting deteriorating standbys isn’t cost-effective, as our analysis

shows. Using Teaching-Learning based Optimization, we determine optimal decision

parameters through a recursive matrix approach for steady-state probabilities. Our

numerical assessment evaluates various system performance metrics under optimal

conditions.

Chapter 5 delves into the complex interplay between failure characteristics, repair

capabilities, and system performance metrics within a multi-unit redundant repairable

system, focusing specifically on the deterioration of standby units. This examination

shows how different distributions in repair times-namely Exponential, Erlang, and

Hyperexponential affect the system’s overall performance. By employing this more

accurate repair time distribution, the system for repairing machines can effectively

represent and assess different performance metrics such as system availability and

mean time to repair.

The multi-unit system is the basis of many efficiency evaluations in operational

machining management. It is indispensable to assess the critical parameter. Chapter

6 evaluates a Markovian MRP with a controllable strategy and imperfect repair. The

imperfect repair means that the repairer provides the service to failed machines, but

the service may be imperfect. We opt for the controllable threshold-based strategy,

which deals with the issue of allowing the failed units when the number of failed units

in the reparable queue reaches up to the system’s capacity to avoid largely expected

waiting. The repairers stop allowing new failed units to wait until the queue size

decreases to a pre-fixed level. Failed units that are not allowed may be repaired by

the external facility at additional costs. The number of failed units in the waiting
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line and the expected number of service-gained units play an essential role in a well-

designed control policy. Using the Laplace transform method, we obtain the transient-

state distribution of the failed units in the system, establish different performance

measures, and compute the system’s reliability function and mean-time-to-first failure.

Extensive numerical simulation and sensitivity analysis have also been performed to

analyze the studied system deeply.

In Chapter 7, the prospective study analyzes the reliability characteristics of multi-

unit systems with standby provisioning, accounting for failures, degradation, random

delays, and probabilistic imperfections. The investigation sheds light on how these

unreliable attributes hinder the performance and availability of machining systems.

Given the frequent occurrence of these negative attributes within machining systems,

their impact on production flow, performance, and resource utilization is significant.

Moreover, these unfavorable attributes hinder the adoption of advanced technologies

that rely on the continuous availability of machining systems. Thorough research

on operational traits serves as a foundation for developing solutions to enhance ma-

chining system efficiency and elucidates the underlying causes of machining system

failures throughout their performance lifecycle. The reliability analysis employs a

state-of-the-art queue-theoretic approach. In order to model the stochastic behavior

of the investigated machine repair problem systematically, we consider various sta-

tistically independent failure modes, including active/standby unit failure, degraded

failure, switching failure, and common-cause failure. The unreliable characteristics

of machining systems are further compounded by factors such as imperfect fault cov-

erage, reboot delay, and imperfect repair, necessitating a comprehensive examination

to implement preventive, corrective, and predictive measures strategically. The seam-

less operation of multi-unit machining systems is essential for successfully integrat-

ing advanced technologies such as cloud computing, industry 4.0, and IoT. Failures,

delays, degradation, and imperfections within machining systems have detrimental

effects on their efficiency and availability, demanding in-depth investigation. To fa-

cilitate numerical experimentation and sensitivity analysis of the reliability aspects of

the proposed machining system, we develop performance indices such as system re-

liability, mean-time-to-failure, and failure frequency. These metrics provide valuable

insights for decision-makers seeking to implement measures that ensure the uninter-

rupted availability of the machining system.

Chapter 8 addresses the challenge of repairing a complex machine system with

warm spares and multiple operational units. When a unit malfunctions, prompt re-

pair is crucial. Our two-stage hierarchical repair facility comprises primary repairers

responsible for the preparatory stage, handling routine maintenance and low-skilled

repairs. In contrast, the execution stage involves a highly skilled secondary repairer
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dedicated to addressing critical issues. We focus on efficient work sequential allo-

cation between these stages, optimizing work distribution for quicker resolution of

critical problems. We use the Matrix Recursive Method to analyze the system to de-

termine steady-state probabilities. Our mathematical model, solved with a recursive

method, allows us to calculate performance indices based on probability distributions.

Additionally, we create a cost function and fine-tune decision parameters to minimize

expected costs per unit of time. We employ Particle Swarm Optimization, a meta-

heuristic technique, to optimize these parameters for a cost-effective service system.

This approach streamlines the repair process, enhancing overall efficiency. Our re-

search aims to provide practical insights into managing complex machinery repairs,

ensuring optimal resource utilization and cost-effectiveness.

At the end of the whole work, the main findings of the thesis work are summarized

in Chapter 9. The potential exploration and future scope of this work is also outlined

in Chapter 9. Additionally, the bibliography section offers a compilation of references

used throughout the thesis.
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Chapter 1

General Introduction

“Efficiency is doing better what is

already being done”.

Peter Drucker

1.1 Motivation

The modern world heavily relies on machines. Without them, it would be impossible

for the world to function correctly and faster. Over time, the progress in science and

technology has resulted in highly sophisticated, complex, and robust engineering sys-

tems that consist of interconnected hardware and software components that are more

powerful and efficient than ever before. This machining system consists of several op-

erating units, each with its own unique features and structures. These operating units

are prone to random failures, directly impacting the system’s efficiency and indirectly

affecting the economy and society. The constant need for repairs is having a signif-

icant impact on the overall productivity of the system. The fault is due to degraded

performance, deterioration, or entire failure of the units or system. We understand

the importance of maintaining system integrity to avoid the negative consequences of

reduced reliability, mismanagement, and loss of time, money, or even life. Random

failures can lead to a loss in production, longer waiting times, increased costs, man-

ufacturing delays, reduced reliability, and longer runtimes. To mitigate these issues,

repair and spare parts are crucial in improving the system’s reliability and production,

and reducing the expected total cost. The thesis aims to improve the reliability and

availability of the machining system while optimizing the total cost over time.

In machine repair, Reliability refers to the ability of a system or unit to perform

its intended functions consistently and without failure over a specified period and
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under specific operating conditions. It has critical importance in machine repair prob-

lems for various reasons, such as its direct impact on system performance, efficiency,

and cost-effectiveness. Reliability is especially crucial in industries where continu-

ous operation is essential for productivity; it helps to reduce machining downtime

and contributes to stable and predictable production processes. Random faults can

result in significant costs associated with emergency repairs, replacement parts, and

idle labor. Adopting a reliable machine repair strategy that combines preventive and

predictive maintenance is necessary to minimize these costs. Reliability is crucial in

machining to enhance equipment lifespan, safety, customer satisfaction, operational

efficiency, and predict maintenance costs. Statistical and stochastic models provide

a robust framework to analyze various system performance measures such as unit

indices, optimal system design, and expected cost analyses. Analyzing the models

in-depth is necessary for accurate predictions. The study of such models addresses

reliability prediction for life testing, structural reliability, machine maintenance, and

replacement.

Reliability, availability, maintainability, and safety (RAMS) are indispensable in

modern technological systems. Significant investments are made in research to de-

velop sophisticated techniques, quality-of-service (QoS) standards, state-of-the-art

designs, and just-in-time (JIT) maintenance for machining systems. This thesis fo-

cuses on developing reliability models for unpredictable machining systems prone

to random and discriminate failures, emphasizing modeling methodologies, analy-

sis techniques, and real-time problem-solving approaches. Each model is thoroughly

discussed, covering model descriptions, analytical or numerical solutions, reliability

characteristics, optimal parameters, and future applications. However, obtaining opti-

mal solutions for such complex problems is often challenging or impossible.

The provision of spare units is necessary when the consequences of unit failures

are unacceptable. Machining systems require various spare units, including hardware

and software, homogeneous or heterogeneous, and in-house or third-party, to ensure

continuity. Safety, security, financial considerations, and data protection drive provi-

sioning spare units. Safety concerns arise in systems where human life or health is at

risk, such as aviation, medical equipment, or nuclear plants. Security is essential to

protect against vandalism or espionage in critical areas like communication or military

installations. Financial losses due to industrial disruptions necessitate the manufac-

turing or production of spare units. Data loss prevention is crucial in systems reliant

on data storage, such as computer-based data processing or IoT (Internet of Things)

devices utilized in long-term laboratory experiments.
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This thesis presents state-of-the-art reliability models for future research, provid-

ing insights for researchers, system designers, analysts, and engineers. It covers vari-

ous system structures mirroring real-life problems and addresses reliability evaluation,

optimal design, algorithms, mathematical tools, and references. Key features include

complex analysis, Markov chain embeddable structures, tools for optimal design de-

velopment, and application in predictive, preventive, or corrective measures.

1.2 Machining System

A machining system refers to a collection of operating units, tools, processes, and

technology used in manufacturing. Each operating unit has a specific function that

works in synchronization to produce the desired amount of products of the necessary

quality within the required timeframe and most efficiently and economically. Various

techniques, such as turning, milling, drilling, and grinding, shape raw materials into

precise and intricate forms. The essential components of any machining system are

processes, tools, machinery, materials, cutting fluids and coolants, computer-aided

design (CAD) and computer-aided manufacturing (CAM), and quality control. The

machining process involves well-defined stages that ensure an efficient and systematic

transformation of raw materials into finished products, including system planning,

operation, and control.

Figure 1.1: Breakdown of each states of the machining system

The machining system requires critical research to ensure quality, quantity, cost-

effectiveness, timeliness, and reliability.
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The proper functioning of the machining system depends on various factors, and

a thorough understanding of the repair system is necessary for smooth operation. Ef-

fective and on-time repair processes reduce machine downtime, enhance productivity,

and promote equipment longevity. It is beneficial for manufacturing economics. Cost

optimization and reliability are the compelling reasons for delving into machine re-

pair modeling. The first step in performance modeling of the machining system is

to develop a functional design that satisfies the customers’ needs and is suitable for

production. Before establishing any machining system, the system analyst must know

the cost of job flow, in-process inventories, maintenance, spare parts, etc.

The reliability and availability of the machining system can be enhanced by in-

cluding spare parts, redundancy, proactive maintenance strategies, replacement policy,

quality control, repairers’ training and involvement, optimized maintenance schedul-

ing, etc. The faults in operating units are random, causing severe effects on produc-

tion and downtime of the machining system. A state-of-the-art repair facility design

is necessary to ensure efficient production planning and control.

Proactive 

Maintenance 

Reactive 

Maintenance 

Preventive 
Maintenance 

Predictive 
Maintenance Maintenance 

Corrective 
Maintenance 

Run-to-Failure 

Maintenance 
Policy 

Figure 1.2: Maintenance policy

The Industrial Revolution is typically linked with the late 1700s and the mid-

1800s. After World War II, Queueing Theory and Operations Research gained im-

portance in manufacturing systems. Operations Research (OR) is a field of study

offering various analytical tools and models. These tools and models can be applied
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to various machine repair problems. For instance, OR can help develop optimal main-

tenance schedules, allocate resources, diagnose faults, make informed decisions, pre-

dict maintenance needs, optimize spare parts inventory levels, and streamline machine

flow through maintenance service systems.

The proper functioning of operating units is critical to any machining system.

Therefore, maintaining these units through just-in-time maintenance is essential. The

timely replacement and maintenance of these units can improve their availability. To

achieve this, it is essential to have a well-planned maintenance policy in place. Gen-

erally, maintenance policies are classified into two categories as shown in Fig. 1.2.

1.3 Fundamental Configuration of Machining Setup

Queueing theory is a branch of probability theory and operations research that deals

with the time disparity between customer arrivals and service provision. Queueing

Theory provides a systematic and mathematical approach to analyzing and optimiz-

ing machine repair processes. Before establishing any machining systems, the exclu-

sion of Queueing Theory affects economic consequences such as enhanced downtime

costs, inefficient resource allocation, improper allocation of resources for repairs, and

impacts on customer satisfaction. Understanding the fundamental structures of queue-

ing systems can be incredibly valuable for modeling and analyzing waiting lines in

various industries and settings. In general, some fundamental structures of the waiting

line problem related to the machining systems can be categorized into the following

types:

Single-Line, Single-Phase

Figure 1.3: Single-Line,Single-Phase

A Single-Channel, Single-Phase waiting line (Fig. 1.3) is a queuing system in which

customers form a single line and are served singly at a time by a single server. This
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approach guarantees efficient and fair service in the order of arrival. Real-world ex-

amples of this type of waiting line include checkout at supermarkets, bank tellers,

hospital triage, and machine repairs in manufacturing facilities.

Single-Line, Multi-Phase

In a Single-Line, Multi-Phase waiting line (Fig. 1.4), customers wait in a single line

but can access multiple service points or channels to receive service. This structure

optimizes the use of resources and allows customers to be served according to their

unique needs or priorities. Examples of real-world applications of this type of waiting

line include airport check-in counters, bank branches, fast-food drive-thrus, automo-

tive repair shops, computer repair centers, and appliance repair services.

Figure 1.4: Single-Line, Multi-Phase

Multi-Line, Single-Phase

A Multi-Line, Single-Phase waiting line system (Fig. 1.5) is a queuing arrangement

where multiple parallel queues lead to a single service point. Customers can choose

a queue based on length, convenience, or service type. However, the service is pro-

vided on a first-come, first-served basis, irrespective of the queue chosen by the cus-

tomer. Examples of this type of waiting line are supermarkets with multiple checkout

lines, ticket counters at train stations, banks with multiple ATMs, commercial HVAC

(Heating, Ventilation, and Air Conditioning) repair companies, and equipment repair

service centers.
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Figure 1.5: Multi-Line, Single-Phase

Multi-Line, Multi-Phase

A Multi-Line, Multi-Phase waiting line system (Fig. 1.6) is a queuing mechanism

that comprises several parallel queues leading to multiple service points or channels.

The system directs customers or entities to specific service points based on prede-

fined criteria and serves them simultaneously or in a coordinated manner across dif-

ferent phases of the waiting line. Examples of this system in real-world scenarios

include Airport Security Checkpoints, Supermarket Deli Counters, Customer Service

Call Centers, and Industrial Maintenance Departments.

Figure 1.6: Multi-Line, Multi-Phase
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Some additional queueing configurations in machining systems or different sectors

can be categorized as follows:

Priority queue

A Priority Queue waiting line system (Fig. 1.7) prioritizes tasks based on predefined

criteria such as urgency, importance, or customer status. Tasks with higher priority

are processed first, regardless of their arrival order. This type of system is used in

various real-world scenarios, such as in a hospital emergency room, an airline board-

ing process, equipment maintenance in manufacturing, and software development bug

fixes.

Figure 1.7: Priority queue

Virtual Waiting Lines

A Virtual Waiting Line is a queueing system where customers or entities are placed

in a queue without physically waiting in line. Instead, they receive notifications or

updates about their queue position and estimated wait time, allowing them to engage

in other activities until their turn for service. This system has applications in various

real-world scenarios, such as online appointment scheduling, retail store pickup ser-

vices, customer service call centers, restaurant waitlists, remote troubleshooting and

support, and online repair ticketing systems.
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Self-Service Queues

Self-service queues are systems where customers can join a queue and request a ser-

vice without requiring direct assistance from the staff. This means that customers have

autonomy over their waiting experience by managing their entry into the queue and

using self-service kiosks or digital interfaces to initiate service. The system has vari-

ous applications in real-world scenarios, such as self-checkout lanes in supermarkets,

online appointment scheduling, mobile check-in at airports and hotels, self-service

ordering kiosks in restaurants, and mobile maintenance apps.

Balking

Balking in waiting lines occurs when customers or entities refuse to join a waiting line

due to long wait times, overcrowding, or poor service conditions. It leads to losing

business opportunities for the service provider as these customers leave the queue area

without receiving service. In machine repairs, balking occurs when users/operators

choose not to join a repair queue or request maintenance for various reasons. In super-

markets, customers may balk at long checkout lines, Customer Service Call Centers,

Restaurant Waiting Lists, Ticket Lines at Events, and Public Transportation customers

may balk at long checkout lines.

Reneging

Reneging is a phenomenon that occurs when customers or entities abandon the queue

or waiting line before receiving service despite joining the queue in the first place.

This usually happens due to long wait times, dissatisfaction with the quality of service,

or changing priorities.

Batch Arrivals

When multiple customers or entities arrive at a service facility simultaneously, it is

called a batch arrival. This is different from individuals arriving over time. Batch

arrival models are characterized by arrivals in groups or clusters, which can impact

queue dynamics and service efficiency. Some examples of batch arrival waiting lines

in real life include bus arrivals at a bus stop, customer arrivals at a retail store, patient

arrivals at a medical clinic, and package deliveries to a distribution.
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1.4 Classification by Machine Type or Industry Sector

Classification by machine types or industry sections provides a framework for orga-

nizing and understanding the diverse machinery used in various sectors. This classi-

fication aids in identifying specific needs, challenges, and opportunities within each

industry, leading to the development of tailored solutions and technological advance-

ments.

Industry 4.0

Industry 4.0, also known as the Fourth Industrial Revolution, is the continuous trans-

formation of conventional manufacturing and industrial practices through digitaliza-

tion, automation, and the integration of advanced technologies. It signifies a sig-

nificant change in how products are designed, manufactured, and delivered, utilizing

cutting-edge technologies to create more intelligent, efficient, and interconnected pro-

duction systems.

Cyber-Physical Systems (CPS)

Cyber-physical systems (CPS) are the amalgamation of physical components such as

sensors, actuators, machinery, and production systems with digital technologies like

computing devices, communication networks, and software platforms. The concept

of Industry 4.0 involves the integration of physical systems with digital technologies

to create CPS, which enables real-time monitoring, control, and optimization of man-

ufacturing processes.

Internet of Things (IoT)

The Internet of Things (IoT) has transformed how we interact with the physical world.

It enables various healthcare, transportation, manufacturing, agriculture, and innova-

tive city applications. The Internet of Things (IoT) is a network of connected devices

and sensors integrated into machines and equipment used for repair. These devices

gather and exchange data in real-time to monitor the machines’ performance, con-

dition, and health. IoT facilitates predictive maintenance, remote monitoring, and

automation of repair processes, resulting in improved efficiency, reduced downtime,

and cost savings.
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Additive Manufacturing(3D)

Additive Manufacturing, also known as 3D Printing, is a technology that can trans-

form various industries, such as aerospace, automotive, healthcare, and consumer

goods. It offers many benefits, such as rapid prototyping, customization, and the

ability to fabricate complex geometries. This revolutionary technology has changed

how products are designed, manufactured, and distributed, making it a game-changer

for the manufacturing industry.

Robotics and Automation

Robotics is a field that focuses on creating mechanical devices called robots. These

robots are equipped with sensors, actuators, and control systems, enabling them to in-

teract with their environment, manipulate objects, and perform pre-programmed tasks.

Robotics is a diverse field encompassing several subfields, such as industrial, mobile,

humanoid, and soft robotics. Each subfield addresses specific application domains and

challenges. Automation utilizes technology and software to automate tasks, proce-

dures, and processes that humans conventionally execute. The process involves using

intricate algorithms, sensors, actuators, and control systems to regulate and optimize

the operation of machinery, equipment, and systems. The spectrum of automation can

vary from simple programmable logic controllers (PLCs) used in industrial settings to

multifaceted autonomous systems that operate with minimal human intervention.

Flexible Manufacturing Systems (FMS)

Flexible Manufacturing Systems (FMS) are computer-controlled production systems

that integrate various manufacturing processes such as material handling, machining,

assembly, and testing into a single automated system. FMSs are designed to be adapt-

able to changing production requirements and can produce a diverse range of products

efficiently and with high quality standards. They are particularly useful for companies

that have a wide range of products, experience fluctuating demand, and require quick

response times to market changes. FMSs are crucial in enabling swift and competitive

manufacturing operations in today’s dynamic business environment.

Supply Chain Digitization

Supply Chain Digitization is a process that leverages digital technologies to streamline

operations and improve responsiveness across the supply chain. This approach helps



12 Chapter 1. General Introduction

organizations optimize processes, enhance visibility, and improve stakeholder collab-

oration, improving efficiency, profitability, and customer satisfaction. By digitizing

the supply chain, businesses can gain a competitive advantage by driving innovation,

reducing costs, and delivering higher value to their customers.

Cloud computing

Cloud computing is a revolutionary approach to delivering services via the Internet,

such as servers, storage, databases, networking, software, and analytics. This inno-

vative technology empowers users to access and utilize computing resources and ser-

vices provided by cloud service providers (CSPs) without requiring any on-premises

infrastructure. With cloud computing, users only pay for their services, resulting in a

cost-effective and flexible solution to various business challenges and opportunities in

today’s digital economy. This transformative technology empowers industries to in-

novate, compete, and thrive in an increasingly interconnected and data-driven world.

Cloud manufacturing

Cloud manufacturing is a cutting-edge production method that utilizes cloud comput-

ing technologies, state-of-the-art resources, and data-centric processes to achieve ef-

ficient, high-quality, and environmentally friendly manufacturing. Using cloud-based

platforms over the Internet enables collaborative and dispersed manufacturing, where

various organizations, locations, and supply chain partners can share resources such as

production equipment, software tools, and expertise. Cloud manufacturing enhances

agility, efficiency, and innovation in production processes by integrating manufactur-

ing capabilities and services. It allows manufacturers to access, leverage, and share

manufacturing resources and services flexibly, efficiently, and collaboratively, driving

innovation and competitiveness in the digital era.

Sustainable Manufacturing

Sustainable Manufacturing is a comprehensive approach incorporating eco-friendly

practices and social responsibility into manufacturing. Its foremost goal is to reduce

harmful effects on the environment, society, and the economy while enhancing eco-

nomic feasibility and social welfare. The methodology employs innovative technolo-

gies, materials, and processes to curtail resource consumption, minimize waste pro-

duction, and promote fairness across the product cycle. It strikes a balance between
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economic expansion and environmental preservation, guaranteeing that manufactur-

ing activities meet current requirements without jeopardizing the ability of future gen-

erations to meet their own.

1.5 Machine Repair Problem

A comprehensive machine repair system includes a collection of protocols, method-

ologies, and assets utilized to maintain, repair, and sustain industrial or organizational

machinery and equipment. Its main goal is to minimize downtime, increase equip-

ment uptime, improve reliability, and enhance the performance and dependability of

machines to ensure seamless operations and higher production efficiency. Machine re-

pairing can be modeled as a finite queueing system, where the number of failed units

represents the population of potential customers, each unit breakdown is considered a

new customer, and the repair team serves as the server. We illustrate a Machine repair

model having K identical operating units with R repairers. The time to failure of each

operating unit follows an exponential distribution with the mean time to failure 1/λ ,

and the time-to-repair follows an exponential distribution with a mean time of 1/µ .

Initially, at t = 0, there are no failed units; after time t, if there are n failed units,

then Pn represents the steady-state probability of n failed units. Fig. (1.8) denotes the

state transition diagram for the continuous-time Markov chain (CTMC) used in the

machine repair model.

0 1 . . . n . . . R . . . M − 1 M

λ0 λ1 λn−1 λn λR−1 λR λM−2 λM−1

RµRµRµRµ(n + 1)µnµ2µµ

Figure 1.8: State transition diagram of basic Machine repair system

The failure rate and repair rate, which depend on the system’s state, can be denoted

by λn and µn, respectively, and are defined as

λn =

⎧
⎨
⎩
(M−n)λ ; i f 0 ≤ n < M

0; otherwise
(1.1)

and

µn =

⎧
⎨
⎩

nµ; 0 ≤ n < R

Rµ; R ≤ n ≤ M
(1.2)

The steady-state probability Pn is derived for this model by solving the Chapman-

Kolmogorov equations, which dictate the model utilizing the transition failure and
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repair rates as described in Eqns. 1.1 and 1.2. Hence, the distribution of queue sizes

can be determined by employing the product-type solution as outlined below.

Pn =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(
M
n

)(
λ
µ

)n

P0; when 1 ≤ n < R

(
M
n

)
n!

Rn−RR!

(
λ
µ

)n

P0; when R ≤ n ≤ M

(1.3)

By applying the normalizing conditions, the initial probability P0 can be defined as

below.

P0 =

(
R

∑
n=1

(
M

n

)(
λ

µ

)n

+
M

∑
n=R+1

n!

Rn−RR!

(
λ

µ

)n
)−1

(1.4)

Efficient and prompt repair of failed units ensures the system’s smooth operation.

Consequently, machine repair constitutes a crucial aspect of all machining systems.

Occasionally, overcrowding occurs, resulting in prolonged inspection times for the

last unit in line. Delays in repair can lead to extended queues or waiting lines, hin-

dering service delivery. However, accurately predicting failed units’ arrival and repair

duration is challenging, as these decisions are often unpredictable. To address these

challenges, system designers may increase service facilities at a higher cost. Con-

versely, reducing service facilities can lower costs but result in longer waiting times.

Inadequate repair services can lead to prolonged waiting periods and increased down-

time for failed units, incurring significant costs such as social costs, loss of customers,

or production delays. Hence, the primary objective is to strike a balance between ser-

vice costs and waiting times.

1.6 Machining System with Redundancy

A redundant machine repair system is a proactive approach to mitigating the impact of

machine failures and maintenance activities on production operations. These systems

help minimize downtime, improve reliability, and ensure continuous production in

manufacturing environments by providing backup machines and automated failover

mechanisms. Redundancy can be categorized as either active or passive. In active

redundancy, redundant units actively participate in the production, and if primary op-

erating units fail, they are ready to take their place immediately. Passive redundancy

involves keeping redundant units or components in a standby or idle state until re-

quired. Typically, redundant units are activated only when primary units fail or when

repair activities are scheduled. There are three types of passive redundancy: cold,

warm, and hot.
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• Cold Redundancy: In this redundancy, the failure characteristics of the standby

units are zero, meaning they are reliable and can take over production tasks

seamlessly whenever required.

• Warm Redundancy: In this redundancy, the failure characteristics of the standby

units are both nonzero and less than that of the operating unit.

• Hot Redundancy: In this redundancy, the failure characteristics of the redundant

units are equal to primary operating unit in inactive state.

If we construct a machine repair system incorporating M active units with S1 cold

standby units, the at any time t the failure rate is given as

λn =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Mλ ; 0 ≤ n < S1

(M+S1 −n)λ ; S1 ≤ n ≤ M+S1

0; otherwise

(1.5)

if we construct a machine repair system incorporating M active units with S2 warm

standby units, and when warm standby unit is in inactive state then the failure rate of

warm standby unit S2 is given by ν ,(0 < ν < λ )

λn =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Mλ +S2ν ; 0 ≤ n < S2

(M+S2 −n)λ ; S2 ≤ n ≤ M+S2

0; otherwise

(1.6)

similarly if there are S3 hot standby units with same failure rate (λ ) as an active unit

in the system then at any instant the failure rate is given by

λn =

⎧
⎨
⎩
(M+S3 −n)λ ; 0 ≤ n < S2

0; otherwise
(1.7)

If we formulate a machine repair scenario involving M active units, S1 cold standby

units, S2 warm standby units, and S3 hot standby units managed by R repairers, the

failure and repair rates are defined as follows:

λn =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(M+S3)λ +S2ν ; 0 ≤ n < S1

(M+S3)λ +(S1 +S2 −n)ν ; S1 ≤ n < S1 +S2

(M+S1 +S2 +S3 −n)λ ; S1 +S2 ≤ n < M+S1 +S2 +S3

(1.8)
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and the state-dependent repair rate µn is

µn =

⎧
⎨
⎩

nµ; 1 ≤ n < R

Rµ; R ≤ n ≤ M+S1 +S2 +S3

(1.9)

1.7 Fundamental components of Queueing systems

A queueing system is a mathematical model that studies and analyzes waiting lines

(queues) behavior and associated service processes. This model deals with customers

who arrive individually or in batches and must wait for service if the server is busy;

otherwise, they receive service only when the server is available. The queueing sys-

tem consists of an arrival process, service process, queue discipline, queue capacity,

service channels, population source, and exit mechanism. The service facility con-

sists of one or more servers that are organized in various specifications or designs.

The servers select the waiting customers based on pre-specified service policies or

discipline and provide them with the necessary service. The queueing system also

includes customers who are currently receiving service.

Figure 1.9: Queueing system

Figure 1.9 illustrates the direction of customer flow in the queuing system. Pri-

mary factors mainly categorize different types of queuing systems.
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Arrival Process:

In a queueing system, the arrival process deals with how the customers and entities

enter the system at time t1, t2, .., tm where tn+1 > tn and n = 1,2,3, ...,m. The inter-

arrival time of (m+ 1)th and mth customers are denoted by τm and defined as τm =

tm+1 − tm. It describes the pattern or distribution of arrivals and is a fundamental

aspect of queueing theory. The arrival process helps characterize the queue dynamics

and influences factors such as queue length, waiting times, and system utilization. It

specifies the pattern and rate at which entities arrive, often modeled using probability

distributions such as Poisson or exponential distributions and deterministic and non-

Poisson arrival processes. If at any time t, there are N customers in the system, then

it is denoted by N(t).

Service Mechanism:

The mechanism for serving customers or entities within the system is defined as the

service mechanism. It specifies the distribution of service times or how long it takes

to complete a service for each entity.

Queue Discipline:

Queue discipline refers to the policies or rules that dictate how customers are selected

from a waiting line or queue when a service opportunity arises. This system plays a

crucial role in managing the flow of customers, optimizing system performance, and

ensuring fairness. The primary queue discipline is first-in, first-out (FIFO). However,

sometimes, the queues are served by the discipline of last-come, first-served (LCFS),

priority-based queueing, shortest processing time (SPT), random, and round robin

(RR).

Customer behavior:

It’s essential to understand customer behavior when designing service facilities. To

ensure optimal service delivery and customer satisfaction, service providers should

consider incorporating controlled or uncontrolled arrivals, addressing impatience be-

havior, and implementing threshold policies. If the customer finds long waiting lines,

they either join the queue and wait for service or decide not to join the queue, i.e.,

balking. After joining the queue, if customers perceive the wait time to be longer than

expected, they may leave the queue; such behavior of customers is known as reneg-

ing. Jockeying involves customers switching between lines to find the shortest queue,

based on observation of queue progress.
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Service Channels:

In a queuing system, service channels refer to the points where customers receive ser-

vice. The system may have one or more service channels to provide service according

to the arrival of customers. It is known as a homogeneous service system if all the

service channels identically provide the same types of services. In a heterogeneous

system, the service channels may differ regarding service type or rate. Additionally, a

queuing system may have a finite or infinite capacity to hold the waiting customers.

1.8 Distinct Important Processes

In this section, we present a concise overview of several crucial discrete-time and

continuous-time processes that hold significance for in-depth studies within queueing

theory.

1.8.1 Stochastic Process:

A stochastic process {X(t) : t ∈ T} is the collection of the random variables. Where

the set T is the index set of the process. The index t is interpreted as time, and we

refer to X(t) as the state of the process at time t.

State Space:

The state space of a stochastic process is the set of all possible values that the random

variables X(t) can take on.

Discrete-time stochastic process:

If the index set T is a countable set., i.e., Xn,n = 0,1,2,3, ...,

Continuous-time stochastic process:

If the index set T is an interval of real line or infinite set, the stochastic process is said

to be continuous-time stochastic process; i.e., T = {X(t), t ≥ 0}

1.8.2 Counting Process:

A counting process is a stochastic process {N(t), t > 0} that represents the number of

events that have occurred up to time t. The counting process satisfies the following

properties.



1.8. Distinct Important Processes 19

(i) N(0) = 0, i.e.,no event have occured before time t = 0.

(ii) N(t)≤ N(t +1), i.e. N(t) is a non-decreasing function.

(iii) N(t) counts discrete events.

• Transition Probability Function: This function expresses the likelihood of

transitioning from one state to another during a specific time interval. For any

states i, j in the state space S and time parameters t,s such that s ≤ t, then the

transition probability function can be expressed as:

P(Xt+s = j|Xs = i,Xu = xu,0 ≤ u < s)

where (i) Xt denotes the state of the process at time t.

(ii) Xs = i denotes indicates that the process is in state i at time s.

(iii) Xu = xu represents the sequence of states from time 0 to s.

1.8.3 Markov Process:

A stochastic process is known as the Markov process if it satisfies the Marko-

vian property, which states that the future state of the process depends only on

the present state and not on the sequence of events that preceded it. Mathemat-

ically, it can be expressed as

P(Xt+s = j|Xs = i,Xu = xu,0 ≤ u < s) = P(Xt+s = j|Xs = i)

1.8.4 Markov Chain:

A Markov process with a countable or countably infinite state space, i.e., as S is

discrete and an index set T that takes values from T = {0,1,2,3, . . .} is referred

to as a Markov chain. Markov chain is categorized in two types namely:

Discrete-Time Markov Chain (DTMC):

A stochastic process {N(t), t ≥ 0} on a state space S is said to be a discrete-time

Markov chain if for all i, j in S

P(N(t +1) = j|N(t) = i,N(t −1) = ii−1, . . . ,N(2) = i2,N(1) = i1,N(0) = i0)

= P(N(t +1) = j|N(t) = i)
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Continuous-Time Markov Chain (CTMC):

A stochastic process {N(t), t ≥ 0} on a state space S is said to be a continuous-

time Markov chain if for all i, j in S and t,s ≥ 0,

P(N(s+ t) = j|N(s) = i,N(u),0 ≤ u ≤ s) = P(N(s+ t) = j|N(s) = i)

1.8.5 Birth-Death Process:

A continuous-time Markov chain {N(t), t ≥ 0} with countable or countably in-

finite state space {0,1,2,3, . . .} for which transitions from state n may go only

to either state n−1 or state n+1 and homogeneous transition rate matrix Vi j is

known a birth and death process if Vi j = 0 for all i and j such that |i− j|> 1.

1.8.6 Poisson Process:

A counting process {N(t), t ≥ 0} is said to be a Poisson process with parameter

λ , λ > 0 if it satisfies the following conditions:

(i) N(0) = 0. i.e., the counting of events begins at time t = 0.

(ii) The process exhibits independent increments. i.e., if t < s then the number

of events that occur by time t (N(t)) must be independent of the number of

events that occur between times t and s (N(s)−N(t)).

(iii) P(N(t +∆t)−N(t) = 1) = λ∆t +O(∆t)

(iv) P(N(t +∆t)−N(t)> 1) = O(∆t)

If the number of events in any interval of length ∆t follows the Poisson distri-

bution with parameter λ∆t, i.e., for all t ≥ 0 and ∆t ≥ 0.

P{N(t +∆t)−N(t) = n}= P(N(∆t) = n) =
(λ∆t)ne−λ∆t

n!
;n = 0,1,2, . . .

(1.10)

1.8.7 Renewal Process:

Let {Xn} be the time between the (n−1)th and nth event, n ≥ 1. If the sequence

of non-negative random variables {X1,X2, . . .} is identically independent dis-

tributed, then the counting process {N(t), t ≥ 0} is said to be renewal process.

For a renewal process having inter-arrival times X1,X2,X3, . . . , the time of the
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nth renewal is denoted by Zn and defined as below

Zn =
n

∑
i=1

Xi

1.8.8 Chapmann-Kolmogorov Equation:

The Chapman-Kolmogorov equation helps compute the multi-step transition

probabilities. The n-step transition probabilities from state i to state j over all

possible k values and are expressed as

Pi, j(t + s) =
∞

∑
k=0

Pik(t)Pk j(s) (1.11)

The above equation states that in order to transition from state i to state j in time

t, X(t) moves to state k in time t and then from k to j in the remaining time s.

1.9 Some Important Distribution

An experiment with uncertain or random outcomes is called a random experiment

(E). Let S be the sample space (set of all possible outcomes) associated with the ex-

periment. A random variable X is a variable taking real values corresponding to each

outcome (or element) of a random experiment or a sample space S. Random variables

are categorized into two types, namely Discrete and Continuous. Discrete random

variables can only take on a countable number of distinct values, such as the num-

ber of goals scored in a soccer match. In contrast, continuous random variables can

take any value within a specific range, such as a person’s height. Both these random

variables are also categorized into probability density function f (x) and commutative

distribution function F(x). One of the key concepts associated with random variables

is the moment-generating function mX(t), mean E(X), and variance V (X).

Point Mass Distribution:

A discrete random variable X is said to have a point mass distribution if its probability

density function is given by

f (x) =

⎧
⎨
⎩

1; x = k, k ∈ (−∞,∞)

0; x �= k
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the mean and variance for point mass distribution is given as

E(X) = k and V (X) = 0

Geometric Distribution:

A discrete random variable X in which a random experiment consists of a series of

independent trials is said to have a geometric distribution if its probability density

function is given by

f (x) =

⎧
⎨
⎩

p(1− p)x−1; x = 1,2,3, . . . & 0 < p < 1

0; otherwise

the mean and variance for geometric distribution is given as

E(X) =
1

p
and V (X) =

(1− p)

p2

Binomial Distribution:

A discrete random variable X in which a random experiment consists of a finite num-

ber (n) of independent trials is said to have binomial distribution if its probability

density function is given by

f (x) =

⎧
⎨
⎩

(
n
x

)
px(1− p)n−x; x = 0,1,2,3, . . . ,n

0; otherwise

the mean and variance for binomial distribution is given as

E(X) = np and V (X) = npq, q = 1− p

Poisson Distribution:

Let X be the discrete random variable representing the number of events occurring

during a given period, and λ be the average number of events. If discrete random

variable X follows a Poisson distribution, then the probability of observing x events

over the period is

f (x) = P(X = x) =

⎧
⎨
⎩

λ xe−λ

x!
; x = 0,1,2,3, . . .

0; otherwise
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Uniform Discrete Distribution:

A discrete random variable X is said to have uniform distribution if it assumes a finite

number of values, all with the same chance of occurrence or equal probabilities.

f (x) =
1

k+1
; x = x0,x1,x2, . . . ,xk

Uniform or Rectangular Distribution:

A continuous random variable X is said to have uniform distribution if its density

function f (x) takes constant value for all values of x

f (x) =

⎧
⎨
⎩

k; x1 ≤ x ≤ x2

0; otherwise

where k = 1
x2−x1

and the mean and variance for uniform distribution over interval

[x1,x2] is given as

E(X) =
x1 + x2

2
and V (X) =

(x2 − x1)
2

12

Gamma Distribution:

A continuous random variable X is said to have gamma distribution with parameters

α > 0 and β > 0 if its density function f (x)

f (x) =

⎧
⎨
⎩

1
Γ(α)

xα−1e
−x
β

β α ; x > 0

0 ; otherwise

the mean and variance for gamma distribution is given as

E(X) = αβ and V (X) = αβ 2

Exponential Distribution:

It is also a special case of gamma distribution, a gamma distribution with α = 1 is

called exponential distribution if its probability density function f (x) is given as

f (x) =

⎧
⎨
⎩

1
β e

−x
β ; x > 0 & β > 0

0; otherwise
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the mean and variance for exponential distribution is given as

E(X) = β and V (X) = β 2

Chi-Squared (χ2) Distribution:

It is also special case of gamma distribution, a gamma distribution with β = 2 and

α = ν
2

, where ν > 0 is known as a degree of freedom, is known as chi-squared χ2

distribution if its probability density function f (x) is

f (χ2) =

⎧
⎪⎨
⎪⎩

1

Γ( ν
2 )2

ν
2
(χ2)

ν
2 −1e

−χ2

2 ; x > 0

0 ; otherwise

the mean and variance for chi-squared χ2 distribution is given as

E(X) = ν and V (X) = 2ν

Normal Distribution (Gaussian distribution)

A continuous random variable X is said to have Normal distribution with parameters

µ(mean) and σ (standard deviation) if its probability density function is

f (x) =
1

2
√

2π
e−

1
2(

x−µ
σ )

2

; −∞ < x < ∞, −∞ < µ < ∞, σ > 0

Standard Normal Distribution

Let X be normally distributed random variable with mean 0 and variance 1 is said to

have standard normal distribution.

Erlang Distribution

A continuous random variable X is said to have Erlang distribution if its density func-

tion f (x)

f (x) =
λ kxk−1e−λx

Γ(x)
; x > 0

where, k is a shape parameter ( representing the number of exponential distributions

being summed ) and λ (λ > 0) is a rate parameter. the mean and variance for erlang

distribution is given as

E(X) =
k

λ
and V (X) =

k

λ 2
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Hyperexponential Distribution

A continuous random variable X is said to have hyperexponential distribution if its

probability density function f (x) is

f (x) =
k

∑
i=1

biλie
−λix; x ≥ 0; 0 ≤ bi ≤ 1,such that

k

∑
i=1

bi = 1

where, λi > 0 ∀i. the mean and variance for hyperexponential distribution is given as

E(X) =
k

∑
i=1

bi

λi
and V (X) = 2

k

∑
i=1

bi

λi
2
−
[

k

∑
i=1

bi

λi

]2

Phase-type distribution

A phase-type distribution is a probability distribution formed through the convolution

or combination of exponential distributions. It arises from a system where one or

more interconnected Poisson processes occur sequentially or in various phases.

Let us contemplate a continuous-time Markov process comprising k + 1 states,

where k ≥ 1. Among these states, 1 . . .k are transient, while state 0 is absorbing.

Moreover, suppose the process is initialized with a probability distribution across the

m+ 1 phases, denoted by the probability vector (α0,α), where α0 is a scalar, and α

is a 1×m vector. The continuous phase-type distribution describes the time duration

from initiating the abovementioned process until it is absorbed into the absorbing

state. The transition rate matrix of this process is given as:

Q =

[
0 0

T0 T

]

Here T is m×m matrix represents the transition between transient states, and T0 =

1−Te, where e is the m×1 column vector with each element is 1.

Hypoexponential or Generalized Erlang Distribution

Hypoexponential distribution is a particular case of phase-type distribution. Like

phase-type distribution, hypo exponential distribution also has first k transient states,

and the state k+1 is an absorbing state. In hypo exponential distribution, we start the

process always from state 1 and move skip-free from state j to j+1 with rate λ j until

we reach the state k then absorb in state k+ 1 with rate λk. So for hypo exponential
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distribution α=[1, 0, 0, . . . , 0] and matrix T has the following structure:

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−λ1 λ1 0 0 . . . 0 0

0 −λ2 λ2 0 . . . 0 0

0 0 −λ3 λ3 . . . 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . −λk−1 λk−1

0 0 0 0 . . . 0 −λk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.12)

1.10 Machining System with Various Failure

Machine repair problems encompass a range of failures that can occur in industrial

machinery, leading to downtime, production disruptions, and reduced productivity.

Common types of failures in machine repair can include:

Common Cause Failure:

In machine repair, a common cause failure (CCF) occurs when multiple components

or subsystems within a unit or system fail simultaneously because they are affected

by the exact root cause or external factor. Common cause failures can manifest in

various ways, such as environmental factors (e.g., extreme temperatures, humidity,

vibration, or chemical exposure, etc.), design flaws, manufacturing defects (e.g., ma-

terial impurities, incorrect assembly, or inadequate quality control, etc.), maintenance

errors (e.g., incorrect procedures, insufficient training, or inadequate inspection ), and

external events like power surges, natural disasters, accidents, or sabotage. Improving

system reliability, reducing downtime, and enhancing overall performance requires

addressing common cause failures in machine repair problems.

0 1 2 . . . n . . . M − 1 M

λ0 λ1 λ2 λn−1 λn λM−2 λM−1

µµµµµµµ

λc

λc

λc

λc

λc

λc

Figure 1.10: MRP with common-cause failure
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Degraded Failure:

When all the standby units fail, the load is shared with existing units, then the active

unit’s time-to-failure is exponentially distributed at an increasing rate.

Reboot Delay:

The term "reboot delay" refers to the time a system, device, or machine takes to shut

down, undergo any necessary maintenance or repair tasks, and then restart or reboot

before it can resume regular operation. This includes the entire process, from initiating

the shutdown procedure to completing the reboot sequence.

Switching Failure:

In the machining system, spare units are crucial for ensuring uninterrupted opera-

tion. In advanced control systems, on the failure of an active unit, the redundancy

automatically takes its place in negligible switchover time. Its working/failure char-

acteristics are also changed to active on successful switchover. The supplantation of

the standby unit instead of the failed active unit may not be successful due to some

random switchover hitch with probability q, known as switching failure of the spare

unit. If a standby unit miscarries to switch to a failed active unit, the next existing

standby unit randomly attempts to switch geometrically. This switching process con-

tinues until switching is successful or available standby units have been exhausted.

0 1 2 . . . S − 1 S S + 1 . . . M − 1 M

Λ0 Λ1 Λ2 ΛS−2
ΛS−1 ΛS ΛS+1 ΛM−2 ΛM−1

Υ2,0

ΥS−1,0

ΥS,0

φ0

ΥS−1,1

ΥS,1

φ1

ΥS−1,2

ΥS,2

φ2

φn

ΥS,n
φS−1

RµRµRµRµRµRµ3µ2µµ

Figure 1.11: MRP with Switching failure

Deterioration:

In machine repair problems, the term "deterioration" refers to the gradual decline in

the condition or performance of a machine over time. This decline can be caused

by wear and tear, aging, environmental conditions, usage patterns, and inadequate

maintenance.
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Imperfect Coverage:

On failure of active/standby units or their components, they may not be successfully

fully addressed, detected, located, and covered. Then, it is referred to as imperfect

coverage.

1.11 Problem-solving Methods

The machining system’s queueing models can be solved using analytical and numer-

ical techniques to obtain stationary or non-stationary queue-size distribution. The

outcomes are significant in evaluating the sensitivity and optimum performance of the

machining system. This section outlines techniques used to solve queueing models

investigated in this thesis. A finite state continuous time Markov with state space t is

denoted by {X(t), t ≥ 0}. The transition rate to state n from state m is represented by

rmn, where the block diagonal elements rmn =−rmn = ∑m=n rmn;m �= n, and Q = rmn

is a generator matrix. Let us assume that Q has k number of nonzero entries and

Pm(t) is the unconditional probability of the continuous-time Markov chain at time t

in state m. P(t) is associated with a probability row vector in the context of Markov

chains. The Chapman-Kolmogorov difference equation P(t) describes the behavior

of a continuous-time Markov chain is

dP(t)

dt
= Q(t)P(t); P(0) = P0 (1.13)

where, at initial state t = 0, the probability vector of the CTMC is represented by

P0, and the transient-state probability vector is denoted by P(t). For the steady-state

solution, i.e., as t →∞, the above Eqn. 1.13 is deduced to the system of linear equation

QP = 0 (1.14)

The steady-state solution also satisfies the normalizing condition of the probability

eT P = 1 (1.15)

Transient Solution Method:

The Transient Solution Method is a powerful tool for analyzing the machining systems

and predicting their behavior over time. Eqn. 1.13 can be solved as

dP(t)

P(t)
= Q(t)dt
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By integrating the above equation, we have

P(t) = P(0)e
∫

Q(t)dt = P(0)e
∫

Pt (1.16)

where, the exponential matrix ePt is defined by the Taylor series

ePt =
∞

∑
i=0

(Pt)i

i!

This method is significantly advantageous over the implicit ODE method.

Laplace transform

The Laplace transformation is the mathematical operation used to transform the given

derivative function with real variable t to convert it into a complex function with vari-

able u. The Laplace transform of a function f (t) is denoted by L{ f (t)} or F(u) and

defined as below

L{ f (t)}= F(u) =
∫ ∞

0
e−ut f (t)dt; R(u)≥ 0 (1.17)

Applying the Laplace transform is essential for resolving complex systems of differ-

ential equations. It converts the system of differential equations with initial conditions

into the system of linear equations.

Quasi-Newton Method:

The quasi-Newton method helps find zeros or local maxima/minima of functions, and

it is also an alternative to Newton’s method. The Quasi-Newton method is employed

to determine the global values of continuous decision variables {x1,x2} by minimizing

the objective function. Consider F(x1,x2), a non-linear convex function that is also

continuously differentiable to the second order. This method operates iteratively and

terminates based on specific stopping criteria a tolerance limit determines. One of its

notable advantages lies in its rapid convergence and affine invariance. The primary

theoretical iterative step is defined as follows:

xi+1 = xi − t∇2 f (x)−1
∇ f (x)

The steps for implementing the Quasi-Newton method to attain the minimum value

of F∗(x∗1,x
∗
2) and the corresponding decision variables x∗1 and x∗2 are as follows:

(i) Initialize the decision variable with an initial value �Ω0 = [x10
,x20

]T , where i= 0,

and set the tolerance ε = 10−8.
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(ii) Set the initial trial solution for �Ω0 and compute F( �Ω0).

(iii) Compute the objective gradient ∇F(�Ωi) =
[

∂ f
∂x1

, ∂ f
∂x2

]
Ω=Ωi

and the objective

Hessian matrix

H(�Ωi) =

[
∂ 2F
∂ 2x1

∂ 2F
∂x1x2

∂ 2F
∂x2x1

∂ 2F
∂ 2x2

]

�Ω=�Ωi

(iv) Find the new trial solution

�Ωi+1 = �Ωi −
[
H(�Ωi)

]−1

∇F(�Ωi).

(v) Set i = i+1 and repeat steps (iii) and (iv) until max

(∣∣∣∣
∂F

∂x1

∣∣∣∣ ,
∣∣∣∣

∂F

∂x2

∣∣∣∣
)
< ε

(vi) Find the global minimum value

F∗(x∗1,x
∗
2) = F∗(�Ωi

∗
)

Eigenvalue and Eigenvector:

Let Q be any square matrix and λ be any scalar. Then the scalar value λ is known as

eigenvalue of matrix Q if ∃ a column vector P; P �= 0 such that

PQ = λP (1.18)

Any vector which satisfies the above condition Eqn. 1.18 is known as an eigen vector

of Q corresponding the eigen value of λ .

Matrix Analytical Method:

The matrix analytical method [215] & [216] is a mathematical approach used in

queueing theory to analyze the performance of queueing systems. The method of ma-

trix analytics is a technique that can be used to calculate the probability distribution

of a Markov chain once it has reached a stationary state. This method is applica-

ble when the chain has a repeating structure after a certain point and an unbounded

state space in one dimension or less. These models are commonly labeled as M/G/1

type Markov chains as they can detect transitions within an M/G/1 queueing model.
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This method is a classic solution technique for M/G/1 chains and is a more complex

version of the matrix geometric method.

One possible form of a stochastic matrix for an M/G/1 type is as follows.

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Y0 Y1 Y2 Y3 . . .

X0 X1 X2 X3 . . .

0 X0 X1 X2 . . .

0 0 X0 X1 . . .
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Where the matrix Xi and Yi are the square matrix of order K, Now if the block tridi-

agonal matrix Q is irreducible and positive recursive then, the stationary queue-size

distribution is specified by the solution to the equations

QP = P and eT P = 1 (1.19)

Where e is a unit vector of suitable dimension. The probability vector P is parti-

tioned to P1,P2,P3,P4, . . . , . To compute these probabilities, the column stochastic

matrix H is calculated as

H =
∞

∑
i=0

HiXi

here matrix H is known as auxiliary matrix and can be defined as below

X̄i+1 =
∞

∑
j=i+1

H j−i−1X j (1.20)

Ȳi =
∞

∑
j=i

H j−iY j (1.21)

then the initial probability vector P0 can be found by solving

Ȳ0P0 = P0

⎛
⎝eT + eT

(
I−

∞

∑
i=1

X̄i

)−1
∞

∑
i=1

Ȳi

⎞
⎠P0 = 1

and hence,

Pi =
(
I− X̄i

)−1

[
Ȳi+1P0 +

i−1

∑
j=1

X̄i− j+1P j

]
, i ≥ 1
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Teaching-Learning Based Optimization

The concept of the global optimization method known as the Teaching-Learning based

Optimization (TLBO) algorithm was initially proposed by Rao et al. ([236], [237]) to

optimize highly nonlinear functions. This algorithm follows a population-based ap-

proach, where the influence of a teacher or class on learners’ performance in a class-

room is utilized. The TLBO algorithm employs a population of solutions to search

for the global optimum. In this context, a group of students in a classroom repre-

sents the TLBO population. Similar to other population-based optimization methods,

TLBO involves several design variables associated with different subjects taught to

the learners, and the learners’ fitness is determined based on their performance. The

best solution obtained through TLBO corresponds to the teacher, who is considered

an intellectual member of society. The algorithm operates in two phases: the Teacher

Phase (T -Phase) and the Learner Phase (L-Phase). During the T -Phase, learners ac-

quire knowledge from the teacher, while the L-Phase focuses on learning through in-

teractions among the learners. The T phase and L phase of Teaching-Learning Based

Optimization (TLBO) algorithm are responsible for conducting exploration and ex-

ploitation, respectively, in the context of meta-heuristic optimization. For the detailed

study of the TLBO algorithm, refer the Chapter 4, Section 4.5.

Particle Swarm Optimization

The Particle Swarm Optimization (PSO) algorithm is a stochastic global optimization

technique inspired by swarm intelligence observed in social behaviors, such as birds

flocking and fish schooling. This algorithm was originally introduced by Kennedy

and Eberhart in 1995 [142]. PSO operates on the principle of exploring and refining

a population of entities, referred to as a "swarm," comprising individuals known as

"particles." These particles traverse the solution space with fixed velocities, evolving

across generations to converge towards optimal global positions. In problem-solving

scenarios, the solution space is represented as a search space, where each point sig-

nifies a potential solution to the problem. The fitness value of each particle within

the swarm is determined by the optimization objective, which involves both maxi-

mization and minimization tasks. Particles possess awareness of the coordinates of

decision variables and maintain connections to the best solutions or fitness values

they have achieved. For the detailed study of the PSO algorithm, refer the Chapter 8,

Section 8.5.3.
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1.12 Performance Metrics of the Machining System

Analyzing the performance characteristics of machine repair problems is crucial for

organizations to monitor, evaluate, and improve their performance efficiently. This

ultimately leads to increased efficiency, effectiveness, and competitiveness in today’s

constantly evolving business environment. The performance metrics of machine re-

pair problems are broadly categorized into two types: (i) Queueing characteristics and

(ii) Reliability characteristics. The performance of machine repair problems is eval-

uated based on various factors such as repair time, downtime, repair costs, resource

utilization, and quality of repair. Additionally, rates such as repair, failure, and down-

time rate and states such as operating and ideal are also considered. The machining

system’s thresholds are also considered while deriving the performance metrics.

Let us assume a Machining system incorporating M active units and S spare units

have state-dependent failure and repair rates are λn and µn, respectively. The state

transition diagram of the MRP is depicted in Fig. (1.12)

0 1 . . . S − 1 S S + 1 . . . M + S − 1 M + S

λ0 λ1 ΛS−2 λS−1 λS λS+1 λM+S−2 λM+S−1

µM+SµM+S−1µS+2µS+1µSµS−1µ2µ1

Figure 1.12: State transition diagram of Machine repair problem

1.12.1 Queueing Metrics:

Optimizing machine repair systems requires understanding and managing queueing

characteristics. This includes allocating resources effectively, meeting service level

agreements, enhancing customer satisfaction, managing costs, and monitoring perfor-

mance.

Expected number of failed units:

A system’s expected number of failed units represents the average number of units in

a failed state at a given time. It is a statistical measure that considers the probability

distribution of the system’s failed units. Expected number of failed units (EN(t)) in

the system at a time t

EN(t) =
M+S

∑
i=0

iPi(t) (1.22)
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Throughput of the System:

The throughput of a system (T P(t)) refers to the rate at which the system processes

failed units. This is typically measured as the number of failed units processed per

unit of time. Below is the expression for the system’s throughput at a time t

T P(t) =
M+S

∑
i=0

µiPi(t) (1.23)

Expected number of Operating units:

A system’s mean number of active (operational) units is the average number of oper-

ational units present over a specified period. The mean number of active units in the

system at time t

EO(t) =
M

∑
i=0

(M− i)Pi(t) (1.24)

Expected number of Standby units:

The expected number of standby units ES(t) in a system represents the average number

of standby units that are present in the system over a specific period of time. The

expected number of standby units in the system at a time t is given as

ES(t) =
S

∑
i=0

(S− i)Pi(t) (1.25)

Machine availability:

Machine availability of the system at time t is defined as the ratio of the expected

number of functioning units in the system at time t out of the total number of units

available in the system initially

MA(t) = 1− EN(t)

M+S
(1.26)

Expected delay time:

The delay time of the failed unit (ED(t)) represents the waiting time experienced by a

failed unit before being attended to by the repair process. The delay time is a crucial

metric in assessing the system’s performance and reliability, providing insights into

how quickly the system can address failures. The delay time of a failed unit at a time
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t

ED(t) =
EN(t)

T P(t)
(1.27)

Effective failure rate:

The effective failure rate in the context of a system refers to a composite or overall

failure rate that considers various factors, such as the failure rates of individual com-

ponents, redundancy, repair processes, and other relevant aspects. It provides a more

comprehensive measure of the system’s reliability by considering the occurrence of

failures and the effectiveness of repair processes. The effective failure rate at time t

λe f f =
M+S−1

∑
i=0

λiPi(t) (1.28)

Expected waiting time:

The expected waiting time of failed units EW (t) in a system refers to the average time

a failed unit spends in a waiting state before it undergoes repair and receives perfect

service. This metric is essential for evaluating the efficiency and performance of the

repair process within the system. Expected waiting time of the failed units in the

system at time t

EW (t) =
EN(t)

λe f f

(1.29)

Probability of the server being Idle:

Probability when there is no failed unit in the system at time t and is expressed as

PI(t) = P(EN(t) = 0) = P0(t) (1.30)

Probability of the server being Busy:

Probability when there is at least one failed unit in the system at time t and is expressed

as

PB(t) = 1−PI(t) (1.31)

1.12.2 Reliability Metrics:

We are analyzing the reliability of a machining system using a strategy that controls

failed unit arrival based on a threshold and includes imperfect repair. The RAMS



36 Chapter 1. General Introduction

(Reliability, Availability, Maintainability, and Safety) analysis is a fundamental frame-

work for the efficient and timely utilization of machining systems. It is an interdis-

ciplinary methodology integrating design elements to achieve a machining system’s

operational goals. In machining systems engineering, RAMS ensures that the inher-

ent design characteristics align with the required standards for optimal performance.

Reliability, the foremost factor in RAMS analysis, highlights the system’s ability to

operate consistently without failure. Let us assume a Machining system incorporating

M active units and S spare units (Fig. 1.13) have state-dependent failure and repair

rates are λn and µn, respectively.

0 1 . . . S − 1 S S + 1 . . . M + S − 1 M + S

λ0 λ1 ΛS−2 λS−1 λS λS+1 λM+S−2

λM+S−1

µM+S−1µS+2µS+1µSµS−1µ2µ1

Figure 1.13: State transition diagram for system failure

Reliability:

Let X denote the continuous random variable representing the time to failure of the

system characterized by probability density function f (x) and cumulative distribution

function F(x). The reliability of a system or unit is determined by the probability of

its intended function being performed without failure over a specific period of time

(0, t), assuming certain stated operating conditions. It denotes the probability of a

nonfailure over time. Mathematically,

RX(t) = Pr{X ≥ t}=
∫ ∞

t
f (x)dx = 1−F(t) (1.32)

at the initial state t = 0, RX(0) = 1 and at the steady-state, i.e., limt→∞ RX(t) = 0 The

reliability RX(t) is a non-decreasing of time t satisfies

f (t) =−dRX(t)

dt

The system’s unreliability is denoted by F(t).

Failure frequency:

The failure frequency refers to the rate at which machines or equipment experience

malfunctions or breakdowns. It measures how often a machine fails and requires

maintenance or repair. The failure frequency of the system at time t is denoted by

FF(t) and defined by

FF(t) = λM+S−1PM+S−1 (1.33)
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Mean time-to-failure (MTTF):

In the field of machine repairs, Mean Time to Failure (MTTF) is the amount of time,

on average, a unit or equipment operates before experiencing a failure or breakdown.

i.e., Mathematically, MTTF can be derived as

MT T F =
∫ ∞

0
x f (x)dx =

∫ ∞

0
RX(t)dt (1.34)

System availability:

System availability is a metric that quantifies the time during a specified period that

a system remains functional and capable of carrying out its designated tasks. At any

time t, it can be expressed as

Av = 1−PM+S(t) (1.35)

1.13 Machine repair system with different kinds

We need to examine alternative policies to achieve high reliability thoroughly, better

performance of the machining system, less total cost, and different unit arrangements.

To accomplish this, we have compiled a summary of joint arrangements.

1.13.1 Series Systems:

In Machine repair problems, a configuration where multiple units are arranged se-

quentially, and each unit must operate successfully for the system to function cor-

rectly, is known as a series systems. The functionality of the series system depends

on the successful operation of each unit; if any unit experiences a failure or requires

repair, it can disrupt the entire production process.

C1 C2 Cn

Figure 1.14: Multi-unit series system

Let Ri(t) be the reliability of the ith unit at any time t, where i = 1,2, · · · ,n−1,n,

and Xi & YS denotes the time-to-failure of the ith unit and the time-to failure of the

system having n units, respectively. Therefor YS can be defined as

YS = min{X1,X2, · · · ,Xn−1,Xn}
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hence, the reliability of the series system at any time t can be represented as

RS(t) = R1(t)R2(t) · · ·Rn−1(t)Rn(t)

1.13.2 Parallel Systems:

In machine repair, a parallel system refers to a configuration of multiple identical

units (say n) or subsystems that operate independently of each other. The system can

operate as long as at least one of the n units is functional.

C1

C2

Cn

Figure 1.15: Multi-unit parallel system

Let Ri(t) be the reliability of the ith unit at any time t, where i = 1,2, · · · ,n−1,n,

and Xi & YS denotes the time-to-failure of the ith unit and the time-to failure of the

system having n units, respectively. Therefor YS can be defined as

YS = max{X1,X2, · · · ,Xn−1,Xn}

hence, the reliability of the parallel system at any time t can be represented as

RS(t) = 1− (1−R1(t))(1−R2(t)) · · ·(1−Rn−1(t))(1−Rn(t))
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1.13.3 Standby Redundant Systems:

In a Machine repair problem, a configuration where backup or standby units or com-

ponents are kept in reserve to replace a failed operating unit. i.e., On failure of an

active unit, a standby unit is switched online, and the failed unit is taken off-line.

1.13.4 K-out-of-M:G Systems:

When analyzing systems with multiple redundant components, a reliability model

ensures successful operation if at least K out of M units are operational. If the number

of failed units exceeds M−K, the system will fail.

1

2

K

M

Figure 1.16: K-out-of-M : G system

1.13.5 Maintained Systems:

Maintainable systems are designed and engineered to allow maintenance actions to

be carried out during specific intervals of time without causing extensive disruption to

operations.
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1.13.6 (K,m) Systems:

In machine repair, a configuration with m independent units, and for the system’s

successful operation, at least K out of those m components must be operational, is

known as a (K,m) system.

1.13.7 Series-parallel Systems:

In reliability engineering, a Series-parallel system of order (m,n) is a configuration

that consists of m identical parallel systems, each of order n, arranged in series. This

configuration is frequently used to model complex systems requiring high reliability

and redundancy.

1.13.8 Parallel-series Systems:

In reliability engineering, a Parallel-series system of order (m,n) is a configuration

that consists of m identical series systems, each of order n, arranged in parallel. This

configuration is frequently used to model complex systems requiring high reliability

and redundancy.

1.13.9 Complex Systems:

Any combination of above defined systems or different from above categories having

complex structures are called complex systems.

1.13.10 Controlled Policies

N-Policy:

In Machine repair problems, the N policy is a type of repair-controlled policy used

to repair a system. Under this policy, the repairer initiates the repair process when N

failed units accumulate in the system. The process continues until all the failed units

get repaired. Once the number of failed units in the system reaches or exceeds N,

repair is initiated.
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0,0 0,1 0,2 0, N −2 0, N −1

1,0 1,1 1,2 1, N −2 1, N −1 1, N 1, M −1 1, M

λ0 λ1 λN−2

λ0 λ1 λN−2 λN−1 λM−1

μ μ μ μ μ

ε

λN−1

Figure 1.17: MRP with N-policy

F-Policy (Fixed-size Policy):

For admission control to avoid long queues in waiting, if the queue size of failed

units reaches a threshold K, then no prospective failed unit is permitted to join the

repair queue until the queue size of failed units reduces a predefined threshold value

F(1 ≤ F ≤ K −1).

0,0 0,1 0,2 0,F −1 0,F 1,F +1 1,K −2 1,K −1 1,K

1,0 1,1 1,2 1,F −1 1,F 1,F +1 1,K −2 1,K −1

μ μ μ μ μ μ

λ0 λ1 λF−1 λF λK−2

λK−1

μ μ μ μ μ

γ γ γ γ γ

Figure 1.18: MRP with F-policy

T -Policy (Time-limited Policy):

The T -policy is a control policy that determines the maximum waiting time for entities

before they are served. This policy is beneficial when excessive waiting times must be

avoided, and timely service is crucial. From the repairer’s perspective, the T -policy

means that they take a break from the system for a specified period after completing

each busy period. Maintenance request handling in a manufacturing plant is the real-

world scenario example of T -policy.
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D-Policy (Deadline-based Policy):

D-policy is a control policy that prioritizes repair tasks based on their deadlines or

due dates. Repair tasks with earlier deadlines are assigned a higher priority for repair

to ensure timely completion and minimize lateness or delays. Handling customer

support tickets in a tech company and automotive manufacturing plant exemplifies

the importance of a D policy.

S-Policy (Service-time Policy):

It is a control policy that prioritizes repair tasks based on expected repair times. The

S-policy prefers shorter repair tasks than those with longer ones. This policy aims

to minimize waiting time for unit repair, improve system throughput, and resolve

maintenance issues quickly. In fast-food restaurants, IT help-desk support, vehicle

servicing, manufacturing maintenance, and medical triage are the best examples of

this policy.

1.14 Fuzzy Redundant Machine Repair Problem

If U is a collection of objects denoted normally by u, then a fuzzy set A in U is a set

of ordered pairs

Ã = {(u,µÃ(u))| u ∈U}

where µÃ(u) is known as the membership function (degree of truth) of u in Ã. that

maps U to the membership space M.

µÃ(u) : U −→ [0,1]

1.14.1 Normal Fuzzy Set:

A fuzzy set Ã defined on a universe of discourse U is said to be normal fuzzy set if ∃
ui ∈U , µÃ(ui) = 1.

1.14.2 Support of a Fuzzy Set:

The support of a fuzzy set Ã defined on a universe of discourse U is denoted by

Supp(Ã) and defined as below

Supp(Ã) = {u ∈U |µÃ > 0}
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1.14.3 α-level Set:

The α-level set of a fuzzy set Ã defined on a universe of discourse U is denoted by Ãα

and defined as below

Ãα = {u ∈U |µÃ(u)≥ α}

1.14.4 Convex of a Fuzzy Set:

A fuzzy set Ã on a universe of discourse U is convex if

µÃ(λu1 +(1−λ )u2)≥ min{µÃ(u1),µÃ(u2)}, u1,u2 ∈U,λ ∈ [0,1]

1.14.5 Scalar Cardinality of a Fuzzy Set:

The Cardinality of a fuzzy set Ã defined on a universe of discourse U is denoted by

|Ã| and defined as below

|Ã|= ∑
u∈U

µÃ(u)

the relative cardinality of Ã is define as

‖Ã‖= |Ã|
u

1.14.6 Union of two Fuzzy Set:

Let Ã1 and Ã2 are two fuzzy set and µÃ1
(u) & µÃ2

(u) are the membership grade

function of Ã1 and Ã2 respectively, then the membership function µÃ1∪Ã2
of the union

Ã1 ∪ Ã2 is pointwise defined by

µÃ1∪Ã2
(u) = max{µÃ1

(u),µÃ2
(u)}, ∀ u ∈U

1.14.7 Intersection of two Fuzzy Set:

Let Ã1 and Ã2 are two fuzzy set and µÃ1
(u) & µÃ2

(u) are the membership grade func-

tion of Ã1 and Ã2 respectively, then the membership function µÃ1∩Ã2
of the intersection

Ã1 ∩ Ã2 is pointwise defined by

µÃ1∩Ã2
(u) = min{µÃ1

(u),µÃ2
(u)}, ∀ u ∈U
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1.14.8 Complement of a normalized Fuzzy Set:

Let Ã be the normalized fuzzy set and its membership function is denoted by µ�Ã(u)

and defined by

µ�Ã(u) = 1−µÃ(u); ∀ u ∈U

1.14.9 Algebraic Sum of two Fuzzy Set:

Let Ã1 and Ã2 are two fuzzy set, then its algebraic sum is denoted by Ã3 = Ã1 + Ã2 is

defined as

Ã3 = {(u,µÃ1+Ã2
(u))|u ∈U}

where µÃ1+Ã2
(u) = µÃ1

(u)+µÃ2
(u)−µÃ1

(u)µÃ2
(u)

1.14.10 Bounded Sum of two Fuzzy Set:

Let Ã1 and Ã2 are two fuzzy set, then its bounded sum is denoted by Ã3 = Ã1 ⊕ Ã2 is

defined as

Ã3 = {(u,µÃ1⊕Ã2
(u))|u ∈U}

where µÃ1⊕Ã2
(u) = min{1, µÃ1

(u)+µÃ2
(u)}

1.14.11 Bounded Difference of two Fuzzy Set:

Let Ã1 and Ã2 are two fuzzy set, then its bounded difference is denoted by Ã3 =

Ã1 � Ã2 is defined as

Ã3 = {(u,µÃ1�Ã2
(u))|u ∈U}

where µÃ1�Ã2
(u) = max{0, µÃ1

(u)+µÃ2
(u)−1}

1.14.12 Algebraic Product of two Fuzzy Set:

Let Ã1 and Ã2 are two fuzzy set, then its algebraic product is denoted by Ã3 = Ã1.Ã2

is defined as

Ã3 = {(u,µÃ1
(u).µÃ2

(u))|u ∈U}

A fuzzy number, denoted as Ã, established on the universe of discourse U , can be iden-

tified by a trapezoidal distribution function described by the parameters (a1,a2,a3,a4).
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µÃ(u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, u < a1

u−a1
a2−a1

; a1 ≤ u ≤ a2

1, a2 ≤ u ≤ a3

a4−u
a4−a3

; a3 ≤ u ≤ a4

0, a4 ≤ u

(1.36)

Let Ã and B̃ represent two trapezoidal fuzzy numbers, characterized by the quadruplet

(a1,a2,a3,a4) and (b1,b2,b3,b4) respectively, where a1 ≤ b1,a2 ≤ b2,a3 ≤ b3 and

a4 ≤ b4. The α−cut of corresponding trapezoidal fuzzy numbers is given by

Ãα = [a1 +(a2 −a1)α,a4 − (a4 −a3)α ]

B̃α = [b1 +(b2 −b1)α,b4 − (b4 −b3)α ]
(1.37)

where, α ∈ [0,1] For example, let Ã = [1,5,6,9] and B̃ = [2,6,7,10] are two trape-

zoidal fuzzy numbers. The α−cut of Ã can be given as Ãα=[1+4α,9−3α], B̃α=[2+

4α,10−3α],α ∈ [0,1]. Hence we have

Ãα ⊕ B̃α = [1+4α,9−3α]⊕ [2+4α,10−3α] = [3+8α,19−6α]

Ãα � B̃α = [1+4α,9−3α]� [2+4α,10−3α] = [−9+7α,7−7α]

Ãα ⊗ B̃α = [1+4α,9−3α]⊗ [2+4α,10−3α]

= [min{(1+4α)(2+4α),(1+4α)(10−3α),(9−3α)(2+4α),(9−3α)(10−3α)},
max{(1+4α)(2+4α),(1+4α)(10−3α),(9−3α)(2+4α),(9−3α)(10−3α)}]

= [1+4α)(2+4α),(9−3α)(10−3α)] = [16α2 +12α +2,90−57α +9α2]

Ãα � B̃α = [1+4α,9−3α]� [2+4α,10−3α]

=

[
min

{
1+4α

2+4α
,
9−3α

2+4α
,

1+4α

10−3α
,

9−3α

10−3α

}
,

max

{
1+4α

2+4α
,
9−3α

2+4α
,

1+4α

10−3α
,

9−3α

10−3α

}]

=

[
1+4α

10−3α
,
9−3α

2+4α

]
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hence the bounded sum of Ã and B̃ is

Ãα ⊕ B̃α = [3+8α ,19−6α ],α ∈ [0,1]

For α = 0, Ãα ⊕ B̃α=[3,19] and for α = 1, Ãα ⊕ B̃α=[11,13]. So the membership grade

function of Ãα ⊕ B̃α is given by

µÃα⊕B̃α
(u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, u < 3

u−3
8

; 3 ≤ u ≤ 11

1, 11 ≤ u ≤ 13

17−u
5

, 13 ≤ u ≤ 19

0, u > 19

= (3,11,13,19)

The bounded difference or subtraction of two fuzzy number Ãα � B̃α is

Ãα � B̃α = [−9+7α ,7−7α]

For α = 0, Ãα � B̃α = [−9,7] and for α = 1, Ãα � B̃α = [−2,0]. So the membership

grade function of Ãα � B̃α is given by

µÃα�B̃α
(u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, u <−9

u+9
7

; −9 ≤ u ≤−2

1, −2 ≤ u ≤ 0

7−u
7
, 0 ≤ u ≤ 7

0, u > 7

= (−9,−2,0,7)

The multiplication of two fuzzy number Ãα ⊗ B̃α is

Ãα ⊗ B̃α = [16α2 +12α +2,90−57α +9α2]
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For α = 0, Ãα ⊗ B̃α = [2,90] and for α = 1, Ãα ⊗ B̃α = [30,42] so

=⇒ 16α2 +12α +2 = u

=⇒ 16α2 +12α +(2−u) = 0

=⇒ α =
−12±

√
144−64(2−u)

32

=⇒ α =
−12±

√
64u+16

32

=⇒ α =
−3±

√
4u+1

8

and

90−57α +9α2 = u

=⇒ 9α2 −57α +(90−u) = 0

=⇒ α =
57±

√
(57)2 −36(90−u)

18

=⇒ α =
21±

√
4u+1

6

so the membership grade function of Ãα ⊗ B̃α is given as

µÃα⊗B̃α
(u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, u < 2

−3+
√

4u+1
8

; 2 ≤ u ≤ 30

1, 30 ≤ u ≤ 42

19−
√

4u+1
6

, 42 ≤ u ≤ 90

0, u > 90

= (2,30,42,90)

The division of two fuzzy numbers Ãα � B̃α is

Ãα � B̃α =

[
1+4α

10−3α
,
9−3α

2+4α

]

For α = 0, Ãα � B̃α =
[

1
10
, 9

2

]
and for α = 1, Ãα � B̃α = [5

7
, 6

6
] i.e. [ 1

10
, 5

7
,1, 9

2
]
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Let

1+4α

10−3α
= u

=⇒ 1+4α = u(10−3α)

=⇒ α(4+3u) = 10u−1

=⇒ α =
10u−1

4+3u

and

9−3α

2+4α
= u

=⇒ 9−3α = u(2+4α)

=⇒ 9−2u = (3+4u)α

=⇒ α =
9−2u

3+4u

The membership grade function of Ãα � B̃α is given by

µÃα�B̃α
(u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, u < 1
10

10u−1
4+3u

; 1
10

≤ u ≤ 5
7

1, 5
7
≤ u ≤ 1

9−2u
3+4u

, 1 ≤ u ≤ 9
2

0, u > 9
2

1.15 Bayesian Analysis

Bayesian Analysis is a fundamental aspect of contemporary statistical inference, no-

table for its rigorous and systematic method of combining prior knowledge with em-

pirical data. Originating from the pioneering work of Reverend Thomas Bayes, this

statistical framework employs Bayes’ Theorem to revise the probability of a hypoth-

esis in light of new evidence. This introduction covers the theoretical underpinnings,

historical evolution, and various applications of Bayesian Analysis, offering a detailed

overview for professionals in the field.

Theoretical Foundations:
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At its core, Bayesian Analysis is governed by Bayes’ Theorem, a fundamental

principle expressed as:

P(A | B) =
P(B | A)P(A)

P(B)

where

• P(A | B) denotes the posterior probability, representing the updated probability

of hypothesis A given the evidence B.

• P(B | A) is the likelihood, indicating the probability of observing B under the

assumption that A is true.

• P(A) signifies the prior probability, encapsulating prior beliefs about A before

observing B.

• P(B) is the marginal likelihood, providing the normalizing constant that ensures

the posterior distribution sums to one over all hypotheses.

For the detailed study of the Bayesian Analysis, refer the Chapter 2, Section 2.5.

1.16 Review of Literature

Machining systems are vital to numerous industries, and any issues can lead to no-

table negative consequences. In light of this, the provisioning of spare units and the

implementation of corrective maintenance procedures by repair facilities play crucial

roles in restoring the optimal functioning of these systems. Thus, it is imperative

to implement efficient maintenance practices that minimize downtime, boost produc-

tivity, and protect investments. Proactive measures such as predictive maintenance,

data analysis, and AI algorithms can be utilized to anticipate and prevent potential

malfunctions. By adopting this approach, companies can optimize their operational

performance, foster sustainable growth, and stay ahead of the competition. We whole-

heartedly recommend this strategy to ensure uninterrupted workflow and long -term

success.

1.16.1 Literature on Queueing Theory and its Historical Signifi-

cance

The queueing theory field, initiated by the pioneering work of Danish Engineer A.K.

Erlang in telecommunications, has gained immense popularity since its inception. Er-

lang developed mathematical models to analyze congestion and waiting times in tele-

phone networks, introducing queueing theory, which continue to thrive today. As a
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tribute to him, the system addressed through M/M/1 notation and the measure of com-

munication activity are named after Erlang. The evolution of queueing theory gained

significant momentum with the advent of Operations Research in the late 1940s and

early 1950s. This interdisciplinary field provided a platform for rigorous technical

analysis of queueing systems, leading to a deeper understanding of their behavior and

performance characteristics. The literature on queueing theory has grown exponen-

tially over the years, reflecting the growing interest and relevance of the subject across

diverse domains.

Queueing models have been applied in various sectors such as transportation,

healthcare, manufacturing, and more, transcending traditional telecommunication con-

texts. Queueing theory has witnessed a remarkable evolution thanks to the dynamic

interplay between theoretical frameworks and practical applications. The symbiotic

relationship between theory and practice has facilitated continuous innovation, devel-

oping sophisticated methodologies, tools, and algorithms for managing queues, en-

hancing system performance, and optimizing resource utilization. The cross-fertilization

of ideas and best practices between academia, industry, and government agencies has

enriched and refined theoretical models and practical solutions. Queueing theory has

proven to be a powerful tool for effectively addressing contemporary challenges and

shaping the future of complex systems engineering and management. Its continued

relevance and impact underscore its importance in advancing state-of-the-art queueing

analysis and optimization.

Various researchers in the field of queueing theory have done a vast amount of

research work. Besides Erlang, Kendall [141] thoroughly examined stochastic pro-

cesses within queueing theory, establishing the foundation for subsequent advance-

ments in the discipline. In 1975, Kendall [149] compiled his research of queueing

theory into a book Queueing systems: theory. Marshall [196] queueing models with

exponential service times, a fundamental aspect of many single server queueing sys-

tems. Conway et al. wrote a book Theory of Scheduling that introduced the concept of

scheduling theory, which is closely related to queueing theory and deals with the effi-

cient allocation of resources over time. Gross [75] offers a thorough investigation into

queueing theory, encompassing a broad spectrum of subjects ranging from fundamen-

tal principles to complex mathematical models and practical applications in the book

Fundamentals of QUEUEING THEORY. The literature concerning queues is exten-

sive. Here, we focus on developing queueing models, which are closely aligned with

our investigation into predicting machining system performance. Numerous notewor-

thy studies have examined performance modeling in machine repair problems (MRP).

Our attention now turns to concisely reviewing past literature in this domain.
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Naor [212] studied the machine interference model and developed a probabil-

ity distribution function to describe the distinct states of the system. Mack [190],

Koenigsberg [150], Phipps Jr [228], Morse [207], Wilson et al. [330], Bunday and

Scraton [23], and Wolff [331], and Palm [222] conducted a comprehensive exami-

nation of machine repair problems, proposing multiple metrics of interest from both

theoretical and practical perspectives.

1.16.2 Machine Repair Problem with Spare Parts

In machine repair, spare parts improve reliability, availability, and maintainability.

Spare parts help to minimize downtime and cost, ensure safety and flexibility, and

prevent production delays. Taylor and Jackson [293] first introduced the concept of

redundancy ( cold standby) in MRP. Srinivasan [282] implemented the r spare parts

in two cases: (i) constant working and (ii) intermittently. Some significant work

has been done by various researchers in the field of machine repair problems, like

Natarajan [213], Hastings [89], Thomas [296], Fortuin [62], and Schouten et al. [302].

Some notable work on MRP with cold standby units is done by Gopalan and Naidu

[72], Sivazlian and Wang [272] and Gupta [77]. MRP with warm standby units has

been conceptualized by Dhillon and Yang [50], Wang and Kuo [317], and Wang and

Wu [323]. Numerous researchers have also introduced machine repair problems with

mixed kinds of spare, like Wang [310], Cho and Parlar [40], and Wang [311]. The

pioneering efforts in modeling spare units within machining systems are evident in

the contributions of the researchers listed in Table 1.1 .

Table 1.1: Table to Contribution of MRP with different cold, warm, hot, and mixed

standby units

Author Year Keywords Methodology

Reetu Malhotra and

Gulshan Taneja [194]

2014 Two-Unit Cold standby

unit, Availability, Mean

Time to System Failure

Semi-Markov Pro-

cesses, Regenerative

Point Techniques

R. Jamshidi and Mir

Mehdi Seyyed Esfahani

[119]

2015 Reliability, Mainte-

nance, Cold standby,

Bi-objective model,

Cost-optimization

Non-dominated sorting

genetic algorithm II

Xiang Jia, Hao Chen,

Zhijun Cheng and Bo

Guo [122]

2016 Two-unit standby sys-

tem, Switching policy,

Mean time to failure,

Imperfect switching

Weibull distribution,

Sensitivity analysis
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Madhu Jain, Chandra

Shekhar and Shalini

Shukla [116]

2016 Markov chain, Machine

repair, Mixed spares,

Time sharing, Thresh-

old policy, Additional

repairman, Queue

length

Recursive Method

Madhu Jain and Rakesh

Kumar Meena [104]

2017 Fault-tolerant MRP,

Unreliable server,

Working vacation,

Standbys, F-policy

Neuro-fuzzy technique

Chandra Shekhar,

Madhu Jain, Ather

Aziz Raina and Javid

Iqbal [261]

2017 Reliability, Fault tol-

erant system, Active

redundancy, Reboot,

MTTF, Common cause

failure

Spectral method

Wu-Lin Chen and Kuo-

Hsiung Wang [39]

2018 Retrial machine repair

system, Controllable

server, Reliability

analysis, Working

breakdown, Sensitivity

analysis, MTTF

Crammer’s rule,

Laplace transform

Jau-Chuan Ke, Tzu-

Hsin Liua and Dong-

Yuh Yang [135]

2018 Cost analysis, Im-

perfect switchover,

Machine interference

problem, Optimization,

Availability

Supplementary variable

method

Kamlesh Kumar,

Madhu Jain and Chan-

dra Shekhar [156]

2019 MRP, Threshold, F-

policy, Warm standbys,

Two heterogeneous

servers, Queue size

Matrix Method

Ching-Chang Kuo and

Jau-Chuan Ke [163]

2019 Unreliable server,

Spare system, General

repair

Supplementary vari-

able technique,

Laplace–Stieltje’s

transform
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Chandra Shekhar, Amit

Kumar and Shreekant

Varshney [262]

2020 Redundant repairable

system, Switching

failure, Common-cause

failure,

Newton-Quasi method,

Successive over-

relaxation (SOR)

method

Chia-Huang Wu and

Dong-Yuh Yang [332]

2020 Dynamic control, MRP,

Sensitivity analysis,

Switching failure,

Vacation

Matrix method

Hui Wua, Yan-Fu

Lia and Christophe

Bérenguer [336]

2020 Multiphase Markov

process, Periodic in-

spection, Repair, Warm

standby system, Cost

analysis

Monte Carlo simulation

Shan Gao and Jinting

Wang [65]

2021 Availability, MTTF,

Reliability, Retrial,

Mixed standby, Preven-

tive maintenance

Crammer’s rule,

Laplace transform

method

Ritu Gupta and Divya

Agarwal [80]

2021 MRP, Warm spares, N-

policy, First essential

repair, Second optional

repair, Reliability, Va-

cation, Cost function,

Markov process

Runge-Kutta method

Jasdev Bhatti and Mo-

hit K. Kakkar [15]

2021 Cold standby units,

MTTF, Availability,

Busy period

Regenerative tech-

niques, Geometric

distribution

Kuo-Hsiung Wang,

Tseng-Chang Yen and

Chia Huang Wu [327]

2022 Availability, MTTF,

Reliability, MRP

,Sensitivity analysis,

Switching failure

Laplace transforms,

Matrix-analytical

method

Rakesh Kumar Meena,

Madhu Jain, Assif As-

sad, Rachita Sethi and

Deepika Garg [199]

2022 Machine repair prob-

lem, Optimal policy,

M/G/1 queue, N-policy

Supplementary variable

approach, Particle

swarm optimization,

Recursive method
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Jia Kanga, Linmin Hu,

Rui Peng,Yan Li and

Ruiling Tian [127]

2023 Warm standby, Re-

trial, Availability,

Cost-benefit ratio

Matrix-analytic

method, Bayesian

approach

Farjam Kayedpour,

Maghsoud Amiri, Mah-

moud Rafizadeh, Arash

Shahryai Nia and Mani

Sharifi [128]

2023 Redundancy allocation

problem (RAP), Warm

standby, MTTF, Imper-

fect switching, Relia-

bility

Genetic algorithm,

Non-dominated Sorting

Genetic algorithm

(NSGA-II)

Shalini Sharma and

Kamlesh Kumar [254]

2024 MRP, Differentiated

vacation, Threshold

control policies, Dis-

couragement, Cost

optimization

Fibonacci search al-

gorithm, Artificial bee

colony

Taha Tetik, Gulesin

Sena Das and Burak

Birgoren [294]

2024 Multi-objective op-

timization, Satellite

design, Satellite reli-

ability optimization,

RAP

Simulated Annealing

algorithm

Qi Shao, Linmin Hu

and Fan Xu [251]

2024 k-out-of-n: G retrial

system, Mixed standby,

Mean time to first fail-

ure, Reliability, Avail-

ability

Genetic algorithm,

Monte Carlo method

Ibrahim Yusuf,

Muhammad Sagir

Aliyu and Mus’abu

Musa [356]

2024 MTTF, Mixed standby,

Redundancy, Series-

parallel

Linear algebra

1.16.3 Contributions in MRP with Varied failures

Resolving machine repair challenges necessitates a structured method comprising root

cause diagnosis, corrective action implementation, and preventive measures to miti-

gate future occurrences. Effective troubleshooting and resolution of machine issues

heavily rely on the collaboration between maintenance personnel, technicians, engi-

neers, and stakeholders.
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MRP with switching failure

The spare unit is an essential component of the machining system, which activates

automatically in case of a primary unit failure. A successful and efficient switching

process is crucial for seamless operation. However, poor automation and mishandling

may lead to switching failures, denoted by probability q. Therefore, prompt switch-

ing is crucial for uninterrupted functioning, and standby units in the pool repeat this

process until all units successfully switch or exhaust. Kumar and Agarwal [155] intro-

duced the concept of imperfect switching within a two-unit standby redundant system.

Moreover, extensive research on machine repair problems with imperfect switching

has been conducted by other scholars, such as Gopalan and Waghmare [73], Goel et

al. [71], Goyal and Murari [74], Gupta and Chaudhary [78], and Subramanian and

Sarma [286].

MRP with common-cause failure

Common Cause Failures (CCFs) often complicate machine repair, where multiple

components or subsystems fail simultaneously due to shared root causes or external

factors. CCFs can be caused by environmental, design, manufacturing, and main-

tenance issues. These factors can influence component integrity and system func-

tionality, leading to machine failures. Additionally, we discuss strategies for mitigat-

ing CCFs and enhancing system resilience, emphasizing the importance of a com-

prehensive approach to machine repair that addresses underlying vulnerabilities and

promotes sustainable operational practices. A state transition diagram Fig. 1.10 is

depicted for a machine repair model where each unit has an individual failure rate

denoted by λ , and the system can also fail due to common cause failure with a rate

denoted by λC,(λC << λ ). McGranaghan et al. [198] introduced the concept of com-

mon cause failure within voltage sags in industrial plants, Stamatis [283], and Birolini

[16] conceptualized the common cause failure in distinct machine repair models in

their research work. Numerous researchers have conducted extensive research across

various time frames on Switching failure and common cause failure. The significant

contributions regarding switching failure and common cause failure have been con-

solidated in Table 1.4.

Table 1.4: Table to Contribution of MRP with

Authors Year Key Feature Methodology

Madhu Jain, G.C.

Sharma and Varsha

Rani [109]

2015 MRP, Two mode fail-

ure, Warm spares, Cost

analysis

Runge–Kutta technique
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Mangey Ram and

Monika Manglik [233]

2016 Availability, Reliability,

MTTF, mean time to re-

pair, CCF

Supplementary variable

technique, Laplace

transformation

Huan Yu, Jun Yang,

Jing Lin and Yu Zhao

[351]

2017 Phased-mission com-

mon bus (PMCB)

system, CCF, Reliabil-

ity

Recursive algorithm,

Genetic algorithm

Ruiying Li, Qiong Li,

Ning Huang and Rui

Kang [173]

2017 Cloud computing sys-

tems ,CCF, Reliability,

Monte Carlo simula-

tion, State enumeration

Amit Kumar, Mangey

Ram, Sangeeta Pant

and Anuj Kumar [152]

2018 Industrial-based com-

plex system, Relia-

bility, Availability,

MTTF,

Supplementary variable

technique, Laplace

transform

Madhu Jain and Ritu

Gupta [100]

2018 Redundant repairable

system, N-policy,

Switching failure,

MTSF, Availability

Neuro fuzzy technique

Neetu Singh [269] 2019 Machining system,

CCF, Cost analy-

sis, Mixed standby,

N-Policy, Queue size

Recursive method

Chandra Shekhar,

Neeraj Kumar, Amit

Gupta, Amit Ku-

mar and Shreekant

Varshney [264]

2020 CCF, Reliability, Tran-

sient queue-size distri-

bution, Vacation inter-

ruption

Laplace transform

method, Spectral

method

Chandra Shekhar,

Neeraj Kumar, Madhu

Jain and Amit Gupta

[265]

2020 Redundant Fault-

tolerant Computing

Network, CCF, Switch-

ing failure, MTTF,

Reliability, Availabil-

ity, Failure Frequency

Spectral method

Xiao-Jian Yi, Chen-

Hao Xu, Shu-Lin Liu,

Man-Xi Xing and Hui-

na Mu [350]

2021 Reliability analysis,

CCF, Maintenance

correlation

Goal oriented method



1.16. Review of Literature 57

Yan-Feng Li, Hong-

Zhong Huang, Jinhua

Mi, Weiwen Peng and

Xiaomeng Han [175]

2022 Multi-state systems,

CCF, Fuzzy probability

Defuzzification

Jinhua Mi, Ning Lu,

Yan-Feng Li, Hong-

Zhong Huang and Lib-

ing Bai [203]

2022 CCF, Complex sys-

tems, Sensitivities

analysis, Reliability

Network-based hierar-

chical method

Kuo-Hsiung Wang,

Chia-Huang Wu and

Tseng-Chang Yen

[322]

2023 Redundant retrial ma-

chining system, Warm

standbys, Reliability,

MTSF,

Laplace transform

technique, Matrix-

analytical method

Jing Li, Linmin Hu,

Yuyu Wang and Jia

Kang [172]

2023 Reliability, Retrial,

Two failure mode,

Preventive maintenance

Markov process the-

ory, Laplace transform

method,

Qinglai Dong, Pin Liu

and Xujie Jia [52]

2023 k-out-of-n: G system,

CCF, Three-level repair

strategy, Mean time to

first failure, Availability

Laplace transform

Contributions in MRP with Varied failures, Degradations Imper-

fect Coverage, and Reboot Delay

In systems with backup units, it is crucial to have mechanisms for detecting, isolating,

and reconfiguring them in case of failure. This process is called redundancy manage-

ment with perfect coverage. However, achieving complete certainty in redundancy

management tasks is rare in real-world situations, resulting in system obstacles and

the need for practical corrective actions. This situation is an example of imperfect cov-

erage. Corrective actions may include initiating a reboot or recovery process, which

may prolong the delay time. Rebooting refers to intentionally restarting a system that

has been hindered due to unpredictable faults. This process can be either hard or soft.

Hard rebooting involves physically cycling the system’s power to facilitate the initial

unit boot-up, while soft rebooting allows for system restart without power interrup-

tion. Rebooting quickly removes the faulty unit and reconfigures the system to restore

functionality as soon as possible. Table 1.5 summarizes notable past research on var-

ied failure, degradations, imperfect coverage and reboot delay.
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Table 1.5: Table to Contribution of MRP varied failures

Authors Year Key Feature Methodology

Tseng-Chang Yen,

Haitao Wu, Kuo-

Hsiung Wang and

Wen-Kuang Chou

[349]

2015 MRP, Warm standbys,

Working breakdown,

Removable repairman

Matrix-analytic method

Jau-Chuan Ke, Tzu-

Hsin Liu and Dong-Yuh

Yang [134]

2015 Machine repair system,

Standby switching fail-

ure, Weibull distribu-

tions

Recursive procedure,

Lausanne method,

Supplementary variable

technique

Madhu Jain [99] 2016 Redundant repairable

system, Availability,

Failure Frequency,

Imperfect Switching

Runge–Kutta fourth-

order technique

Ching-Chang Kuo and

Jau-Chuan Ke [162]

2016 Switching Failure, Op-

timal Availability, Un-

reliable server

Supplementary variable

method

Chandra Shekhar,

Madhu Jain, Ather

Aziz Raina and Rajesh

Prasad Mishra [260]

2017 MRP, Spare, Geomet-

ric reneging, Switch-

ing failure, Reliability,

MTTF

Runge-Kutta method of

fourth order

Madhu Jain, Chandra

Shekhar and Rakesh

Kumar Meena [112]

2017 MRP. Controlled pol-

icy, Maintenance, Start-

up time, Server break-

down

Successive over-

relaxation, Quasi-

Newton method, Direct

search method

Madhu Jain and Rakesh

Kumar Meena [103]

2017 FTMS, Vacation,

Queue length, Imper-

fect coverage

Runge–Kutta method

Meisam Sadeghi and

Emad Roghanian [243]

2017 Markov Process,

Switching mechanisms,

Reliability, MTTF,

Availability

Laplace transforms
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Jau-Chuan Ke, Tzu-

Hsin Liu and Dong-Yuh

Yang [135]

2017 Cost analysis, Im-

perfect switchover,

Machine interference

problem, Optimization

Supplementary variable

method

Dong-Yuh Yang and

Ya-Dun Chang [341]

2017 Busy period, Cost op-

timization, Retrial ma-

chine, Availability

Supplementary variable

technique

Wu-Lin Chen and Kuo-

Hsiung Wang [39]

2018 Warm standby, N-

policy, Retrial MRP,

MTTF, Reliability

Laplace transform

Jau-Chuan Ke, Tzu-

Hsin Liu, Ying-Lin Hsu

and Hui-Tzu Ku [133]

2018 MRP, Cost analysis,

Partial breakdowns,

Delayed repairs, Warm

standby

Matrix-analytic

method, Lausanne

method

Dong-Yuh Yang and

Chih-Lung Tsao [342]

2019 Reliability, Warm

spare, MTTF, FTMS,

Working Vacation

Matrix-analytic

method, Laplace

transform technique

Chandra Shekhar, Amit

Kumar, Shreekant

Varshney, Sherif I.

Ammar [263]

2019 Fault-tolerant redun-

dant repairable system,

Laplace–Stieltjes trans-

form, Supplementary

variable technique

Chandra Shekhar, Amit

Kumar and Shreekant

Varshney [262]

2020 FTMS, CCF, Standby

unit, Reboot delay

Newton-quasi method

Chia-Huang Wu and

Dong-Yuh Yang [332]

2020 MRP, Switching fail-

ure, Standby, Unreli-

able repairmen

Matrix analytic method

Pankaj Kumar and

Madhu Jain [158]

2020 Fault-tolerant sys-

tem (FTS), Imperfect

switching, Reboot,

MTTF, RELiability and

Sensitivity analysis

Spectral method

Madhu Jain, Rakesh

Kumar Meena and

Pankaj Kumar [106]

2021 Imperfect fault detec-

tion, Reboot delay,

Imperfect Switching,

Maintainability

Recursive approach,

Supplementary variable

technique
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Dong-Yuh Yang and

Chia-Huang Wu [343]

2021 Availability, Reliability,

MRP, Warm standbys,

Imperfect switchovers

Runge–Kutta Method,

Laplace transform

method

Baoliang Liu, Yanqing

Wen, Qingan Qiu,

Haiyan Shi and Jianhui

Chen [178]

2022 Unreliable switching

failure, Phase-type(Ph)

distribution, Redun-

dancy, MRP

Matrix-analytic method

Chia-Huang Wu,

Tseng-Chang Yen,

Kuo-Hsiung Wang

[335]

2021 Four retrial systems,

Availability, Imperfect

coverage, MTTF

Supplementary variable

technique

Madhu Jain, Pankaj

Kumar and Sudeep

Singh Sanga [101]

2021 FTMS, Availability,

MTTF, Imperfect

coverage, Reboot

Non-linear program-

ming, Yager’s approach

Amit Kumar, Mohamed

Boualem, Amina An-

gelika Bouchentouf and

Savita [159]

2022 Markovian machine

interference prob-

lem, Synchronized

Reneging, Vacation

Interruption, Random

Switching Failure

Successive over-

Relaxation, Quasi-

Newton optimisation

method

Shan Gao, Jinting

Wang and Jie Zhang

[66]

2022 Redundant series sys-

tem, CCF, Delayed

vacation, Cost benefit

analysis

Laplace-transform,

Markov renewal tech-

nique, Sequential Least

Squares Programming

(SLSQP) algorithm

Kuo-Hsiung Wang,

Chia-Huang Wu and

Tseng-Chan [322]

2023 Redundant retrial

machining system,

Switching fail-

ure, Warm stand-

bys,Relibility, MTSF

Laplace transform

technique, Matrix-

analytical method

Chandra Shekhar Ma-

hendra Devanda and

Suman Kaswan [258]

2023 Multi-unit machining

system, Common-

cause failure, Reboot

delay, Switching fail-

ure, Unreliable repairer,

Failure frequency

Laplace transform,

Cramer’s method
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Sudeep Kumar and Ritu

Gupta [161]

2023 Reliability, Standby

switching failure,

N-policy, Server

breakdown, Optional

service

Laplace transform,

Cramer’s rule

1.16.4 Machine Repair Problem with Vacations and Controlled

policy

When the system is free from failed units in any real-time framework, implement-

ing server leave is a prudent strategy to minimize service costs. Including vacations

in machine repair schedules enhances workforce well-being and promotes system ef-

ficiency, performance optimization, cost management, and service continuity. This

ultimately contributes to the success and sustainability of repair operations. Various

vacation strategies exist for this purpose, among which some common and important

ones include:

• Multiple vacation: Upon repairing all failed units, the repairer takes a hiatus

for a random period. At the end of the vacation, if no waiting failed units

are present, the repairer takes another random vacation; otherwise, it resumes

serving the failed units.

• N-policy: The repairer initiates service only when there are N failed units in the

system and continues until all failed units are repaired.

• Single vacation: A repairer takes a single vacation after fixing all failed units,

during which the repairer is unavailable until the vacation period ends.

• Working vacation: While on break, the repairer can operate remotely within

the system, albeit at a reduced repair rate, a practice commonly called a work-

ing vacation. The concept of a working vacation decreases waiting times for

failed units or systems and enhances overall system efficiency. These working

vacations can be categorized as multiple or single, depending on whether the

repairer takes more than one break or just one break during the vacation period.

• Flexible Working Vacation: Repairers can select their vacation periods within

predetermined guidelines in a flexible working vacation arrangement. This va-

cation policy accommodates individual preferences and personal circumstances,

ensuring that repair or service coverage remains effective throughout the year.
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• Vacation interruption: At times, failed units encounter prolonged waiting pe-

riods during scheduled vacations. To mitigate these delays, the system employs

a distinctive approach known as vacation interruption, wherein the server is

summoned to conduct repairs before the scheduled conclusion of the vacation

period. The policy governing vacation interruption may be based on the waiting

time of failed units or the number of failed units in the system.

A survey on the queueing system with vacation studied by doshi [54]. Some re-

searchers like Gupta [83], Lee et al. [168], and Li et al. [174] implemented the

concept of working vacations, single vacation, breakdown and vacation in machine

repair problems. Table 1.6 summarizes significant contributions to machine repair

problems involving vacations, breakdowns, and controlled policies.

Table 1.6: Table to MRP with Vacations and Controlled Policy

Authors Year Key Feature Methodology

Jau-Chuan Ke,

and Kuo-Hsiung

Wang[139]

2007 MRP, Two types spare,

Multiple vacation, Sin-

gle vacation

Matrix geometric

method

Kuo-Hsiung Wang,

Wei-Lun Chen, and

Dong-Yuh Yang [312]

2009 MRP, Cost Optimiza-

tion, Working vacation

Newton’s method,

Matrix-geometric

method

Kuo-Hsiung Wang,

Cheng-Dar Liou, and

Ya-Lin Wang [319]

2014 MRP,Multiple vaca-

tion, warm-standby,

Unreliable repairman

Matrix-analytic method

Cheng-Dar Liou [177] 2015 MRP, Multiple vaca-

tion, Working break-

down

Matrix-analytic method

Madhu Jain, Chandra

Shekhar, and Shalini

Shukla [117]

2015 MRP, Working vaca-

tion, Startup time F-

policy

Matrix method

Madhu Jain and Rakesh

Kumar Meena [105]

2018 Unreliable Heteroge-

neous servers, Mixed

standby, Bi-level

threshold policy

Runge–Kutta method

Gang He, Wenqing Wu,

and Yuanyuan Zhang

[90]

2018 MRP, Single working

vacation, Phase type

distribution

Matrix analytical

method,
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Chandra Shekhar,

Shreekant Varshney,

and Amit Kumar [265]

2019 MRP, Vacation policy,

Reliability, MTTF, N-

policy

Matrix method

Madhu Jain, Chandra

Shekhar and Rakesh

Kumar Meena [113]

2019 FTMS, Working vaca-

tion, Warm standby F-

Policy, Maintainability

Runge–Kutta method

Madhu Jain, Rakesh

Kumar Meena, and

Pankaj Kumar [106]

2020 N-policy, Balking, Im-

perfect recovery, Re-

boot delay

Recursive method,

Quasi-Newton method,

ANFIS

Chandra Shekhar,

Shreekant Varshney,

and Amit Kumar [267]

2021 Preventive, Corrective,

Predictive maintenance

policies, Vacation inter-

ruption

Laplace transformation

Rakesh Kumar Meena,

Madhu Jain, Sudeep

Singh Sanga, and Assif

Assad [200]

2021 M/G/1/K,

FM/FG/1/K. MRP,

Standby, Vacation

Laplace–Stieltjes

transform, Recursive

Method, Supplemen-

tary variable approache

Teketel Ketema, Se-

leshi Demie, and

Melisew Tefera

Belachew [143]

2021 MRP, Multiple

working vacation,

triadic(0,Q,N,M)

policy

Grid search algorithm

Praveen Deora, Umesh

Kumari and D. C.

Sharma [46]

2021 MRP, Feedback F-

policy, Cost analysis,

Vacation

Particle swarm opti-

mization

Rakesh Kumar Meena,

Madhu Jain, Assif As-

sad, Rachita Sethi, and

Deepika Garg [199]

2022 MRP, Optimal pol-

icy, Vacation policy,

N-policy

Recursive method,

Supplementary variable

techniques

Chia-Huang Wu, Dong-

Yuh Yang, and Ting-En

He [333]

2023 MRP, Unreliable re-

pairman, Working

breakdowns, Multiple

vacations

Matrix-augmentation

approach

Pankaj Kumar, Madhu

Jain, and Rakesh Ku-

mar Meena [160]

2023 FTS, Working vaca-

tion,Double retrial

orbits, Admission

control policy

Spectral expansion

method
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Chia-Huang Wu, Dong-

Yuh Yang, and Min-Hui

Ko [334]

2024 MRP, Two failure

mode, Working vaca-

tion

Matrix analysis

method, Matrix de-

composition

Sudeep Singh Sanga

and Khushbu S. Antala

[247]

2024 FTMS, F-policy,

Multiple vaca-

tion,Trapezoidal fuzzy

number

Laplace-Stieltjes

transform, Recursive

method

Qi Shao, Linmin Hu,

and Fan Xu [251]

2024 k-out-of-n : G, J-

vacation policy, MTTF,

Redundant dependency,

Reliability

Monte Carlo method,

Runge-Kutta method

Parmeet Kaur Chahal

and Kamlesh Kumar

[28]

2024 MRP, Generalized

triadic control policy,

Multiple working va-

cations, Redundant

system

Recursive approach

1.16.5 MRP with Bayesian point of view

Utilizing Bayesian analysis offers a significant avenue for tackling machine repair

challenges, providing valuable insights and methodologies to enhance maintenance

strategies, operational efficiency, and reliability within industrial systems. Embracing

Bayesian principles in machine repair has the potential to foster innovation, stream-

line resource allocation, and ultimately propel the evolution of maintenance practices

across a variety of industries. The table 1.7 summarizes significant contributions to

machine repair models solved by bayesian analysis.

Table 1.7: Table to Contribution of MRP solved by Bayesian approach

Authors Year Key Feature Methodology

Venkata SS Yadavalli,

Andriétte Bekker, and J

Pauw [338]

2005 Two-unit system, CCF,

Individual failures

Monte Carlo simula-

tion, Bayes estimation,

γ-prior, β -prior

Gregory Levitin and

Min Xie [170]

2007 FTS, CCF, Reliability N−version program-

ming method
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Jau-Chuan Ke, Ssu-

Lang Lee, and Ying-

Lin Hsu[132]

2008 Availability, Coverage,

Detection, Reboot,

Mean time to system

failure

Monte Carlo simulation

Ying-Lin Hsu, Ssu-

Lang Lee, and Jau-

Chuan Ke [95]

2009 Mean time to system

failure, Simulation,

Availability

Monte Carlo simula-

tion, Bayesian estima-

tion

Jau-Chuan Ke, Ssu-

Lang Lee, and Ming-

Yang Ko [120]

2011 Availability, Confi-

dence limits, Detection

delay, Imperfect cover-

age, MTTF

Confidence Interval Es-

timation

Jau-Chuan Ke, Zheng-

Long Su, Kuo-Hsiung

Wang, and Ying-Lin

Hsu [136]

2010 Availability,

Distribution-free,

Imperfect cover-

age, Power function,

Standby

Simulation, Interval

estimation, Hypothesis

test

Ram Kishan and Divya

Jain [148]

2014 MTSF, Highest poste-

rior density (HPD) in-

tervals, Fisher informa-

tion matrix

Regenerative point

technique

P. Chandrasekhar, V.

S. Vaidyanathan, V. S.

S. Yadavalli, and S.

Xavier [32]

2013 Two-unit standby sys-

tem, Steady state avail-

ability

Multivariate central

limit theorem,Slutsky

theorem

Tzu-Hsin Liu, Jau-

Chuan Ke, Meng-Feng

Yen, and Ying-Lin Hsu

[184]

2017 Availability, Power

function, Reboot delay,

Standby switching

failure

Hypothesis test, Logit

transformation, Simu-

lation

Rohit Patawa, Pramen-

dra Singh Pundir, Alok

Kumar Sigh, and Abhi-

nav Singh [224]

2022 MTSF, Availability,

Maintenance, Lindley

distribution, Maximum

likelihood

Metropolis-hastings al-

gorithm, Bayesian in-

ference

S. A. Thiagarajan and

S. Thobias[295]

2023 Cold standby system,

Point availability, Slut-

sky theorem, Steadys-

tate availability

Bayes estimator,

Quadrivariate exponen-

tial distribution
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Machine repair problem in Fuzzy enviornment

Fuzzy sets and fuzzy logic are crucial in addressing numerous real-time challenges

encountered in the research and advancement of technological, social, and economic

processes. These include but are not limited to engineering problems spanning me-

chanical, civil, chemical, electrical, aerospace, biomedical, agricultural, computer,

environmental, industrial, geological, and mechatronics fields. Additionally, they are

instrumental in computer software development, natural sciences such as Mathemat-

ics, Biology, Chemistry, Physics, medical science, and social science encompassing

economics, management, political science, psychology, and public policy. Fuzzy sets

and fuzzy logic are apt tools for mitigating the vagueness or uncertainty stemming

from linguistic errors, experimental errors, and similar sources. They offer a well-

defined framework characterized by membership grade functions, facilitating the rep-

resentation and manipulation of imprecise or uncertain information in a structured

manner.

Fuzzy logic has proven highly effective across various domains, including image

processing, control systems engineering, power engineering, industrial automation,

robotics, consumer electronics, and optimization. Fuzzy queues, characterized by

their ability to handle vague and uncertain information, offer more excellent value and

realism than conventional crisp queues. Consequently, fuzzy queues are recognized

as more practical and valuable, given their capacity to accommodate imprecise data

and uncertainties inherent in real-world scenarios.

Firstly, Zadeh introduced the concept of vagueness information in decision-making

in the research article [358]. Buckley [22] implemented the concept of uncertainty in

queueing theory. Jain and Agogino [230] suggested incorporating Bayesian fuzzy

probabilities into an influence diagram computational scheme to analyze sensitivity

while solving decision and probabilistic inference problems. Various researchers have

made a vast contribution to fuzzy machiner repair problems by [274, 181, 176]. The

table 1.8 summarizes significant contributions to fuzzified machine repair problems

involving varied failure and repair strategies.

Table 1.8: Table to Contribution of Machine Repair problem in Fuzzy environment

Author Year Keywords Methodology

Shih-Pin Chen[36] 2006 Membership function,

Crisp value, Lower and

upper bounds, MIP

Mathematical program-

ming approach
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Shih-Pin Chen [37] 2007 MRP, MIP, Fuzzy sets,

Non-linear program-

ming

α-cut approach

Jau-Chuan Ke, Hsin-

I Huang, and Chuen-

Horng Lin [130]

2007 Zadeh’s extension

principle, Availability,

Membership function,

Fuzzy sets

α-cut approach

Lilly Robert and W.

Ritha [240]

2010 MIP, Fuzzy trapezoidal

numbers

Function principle

Harish Garg [67] 2013 Reliability, Avail-

ability optimization,

PSO, CIBFLT, Fuzzy

methodology

Fuzzy and statistical

methodology, Fuzzy

confidence interval

Komal and S.P. Sharma

[255]

2014 Artificial neural

networks, Fuzzy

reliability, Availability,

FLT technique, GABLT

technique, NGABLT

technique

G.A Rastorguev and

F.A Elerian [238]

2014 Inventory management,

Machine tool , Spare

parts, Fuzzy logic

Fuzzification, Defuzzi-

fication

Ali Azadeh and Saeed

Abdolhossein Zadeh

[11]

2016 Condition-based main-

tenance policies, Tri-

angular fuzzy numbers,

crisp numbers,

Analytic hierarchy pro-

cess, Fuzzy MCDM ap-

proach

Sayed Javad Aghili

and Hamze Hajian-

Hoseinabadi [1]

2017 Markov Processes,

Fuzzy reliability,

Fuzzy transformation,

Repairable systems,

Substation automation

Standard Fuzzy Arith-

metic, Fuzzy Transfor-

mation Method (FTM)

Yanli Meng, Xiaodong

Liu, and Muyan Zhou

[201]

2017 M/M/c/m/m queueing

system, Utilization rate

of servers, Expected

degree of acceptability,

System cost, Optimal

number of servers

Decision-making index
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R. Sivaraman and Dr.

Sonal Bharti [271]

2017 MIP, Graded MeanInte-

gration Representation,

Trapezoidal fuzzy num-

bers, Fuzzy queues

Function principle

Rakesh Kumar Meena,

Madhu Jain, Sudeep

Singh Sanga, Assif As-

sad [200]

2019 MRP, Standby, Fuzzy

environmen

Laplace–Stieltjes trans-

form, Supplementary

variable approaches

Madhu Jain, Sudeep

Singh Sanga [108]

2020 F-policy, Fuzzy envi-

ronmen, MIP, Retrial

α-cut approach, Sup-

plementary variable

Method

Madhu Jain,

Pankaj Kumar, and

Rakesh Kumar Meena

[108]

2020 Non-markov fuzzy

model, FTS, Har-

mony search, Server

breakdown, Imperfect

recovery

Supplementary vari-

able, Parametric non-

linear programming

approach

Madhu Jain, Pankaj

Kumar, and Sudeep

Singh Sanga [101]

2020 FTS, Redundancy,

RAM, Reboot provi-

sioning

α-cut, Parametric non-

linear programming

method

H. Merlyn Margaret

and P. Thirunavukarasu

[202]

2021 MRP, Parametric non-

linear programming,

Fuzzy sets

α-cut approach

Pankaj Kumar, Madhu

Jain, and Rakesh Ku-

mar Meena [159]

2022 FTMS, Reboot, Vaca-

tion, Fuzzy environ-

ments, N-policy

Parametric non-linear

programming

Abbas Al-Refaie and

Ahmad Al-Hawadi [6]

2022 Scheduling, Sequenc-

ing, Optimization,

Maintenance planning,

Multi-skill

Fuzzy arithmatic

Ananda Prasad Panta,

Ram Prasad Ghimire,

Dinesh Panthi, and

Shankar Raj Pant [223]

2023 Fuzzy Environment,

Poisson, Optimal,

Reneging

Recursive method

Sibasish Dhibar,

Madhu Jain [49]

2024 Cloud storage, Retrial

queue, Working vaca-

tion, Catastrophes

Fuzzy PSO, Qausi-

Newton Method, α-cut

approach
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1.17 Gaps in the Existing Literature

• The notion of working vacation, working breakdown, and vacation interruption

needs to be implemented to enhance the reliability measures.

• The existing MRP’s can be extended for general failure and repair time distri-

butions.

• The different architectural arrangments like series, parallel, K-out of M, and

other combinations can be compared for optimal topology.

• Retrial attempts, restricted attempts, point abandonment of failed units are real

issues that need research for the performance evaluation of fault-tolerant redun-

dant repairable machining system.

• Imperfect coverage, threshold-based repair policy, pressure coefficient, and feed-

back are strategies that help predict the redundant machining system’s perfor-

mance and require in-depth analysis.

1.18 Thesis Objective

• To focus on reliability and optimization issues related to the fault-tolerant re-

dundant repairable system.

• Computation of transient-state and steady-state measures of probabilistic events

involved in the machining systems.

• Developing numerical techniques to focus on statistical and optimal analysis for

studying MRP’s redundancy and RAM characteristics.

• Sensitivity analysis and optimal analysis to classify the critical parameter(s) for

the fault-tolerant machining system.

• To simulate the mathematical model and use the results to design machining

system optimally





Chapter 2

Reliability Analysis of Imperfect Repair and

Switching Failures: A Bayesian Inference and

Monte Carlo Simulation Approach

“In machine repair problems, statistics

unveils insights into failure patterns

and guides efficient maintenance

strategies”.

Prof. Jane Smith

2.1 Introduction

In today’s data-driven technological advancement, where data is crucial for opera-

tions, storage systems play a pivotal role in information management. Redundancy

is essential in engineering, ensuring uninterrupted functionality and enhancing in-

frastructure resilience, reliability, and availability across various domains. It shields

against vulnerability attacks, unplanned downtimes, errors, and hardware failures,

ensuring data integrity and system stability. Additionally, redundancy aids in load

balancing and system optimization, improving overall performance and efficiency.

Operational excellence (OE) is a priority for enterprise software companies, directly

impacting performance, cost-efficiency, and customer satisfaction. Poor OE can lead

to financial losses, increased repair costs, customer churn, and damage to reputation.

Key metrics for assessing storage systems’ OE include Mean Time-to-Failure (MTTF)

and availability, driving decision-makers to invest in maximizing these metrics. Given

the critical role of redundancy and these metrics, further research is needed to compre-

hensively study repairable redundant storage systems and analyze MTTF and avail-

ability.
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Cutting-edge storage and infrastructure systems rely on Triple-Modular Redun-

dancy (TMR), known for its role in fault-tolerant operation and improved availabil-

ity. TMR employs three identical units, with one or two active units and the rest

in standby. It excels in quickly detecting anomalies among units, aiding in rapid

fault identification. This study examines a dual-active, one-standby redundant storage

framework to minimize system downtime by promptly replacing a malfunctioning ac-

tive unit with its standby counterpart. However, the switchover process is vulnerable

to various issues, such as human errors, manufacturing defects, and software glitches,

resulting in imperfect switching. In such cases, the switchover operation is repeated

until successful, introducing complexities that can impact system performance and re-

liability. Given the intricacies and uncertainties surrounding this process, comprehen-

sive research is needed to study redundant storage systems with unreliable switchover

mechanisms.

With modern technological advancements in software infrastructures, storage units,

and computing systems, the complexity of these entities is increasing. These sys-

tems integrate interconnected units, creating intricate layers of software and hard-

ware. Prompt dispatch to repair facilities is crucial in case of component faults, but

the inherent complexities introduce challenges in system rejuvenation. Repair may

be unreliable due to factors like component interdependencies, hardware variability,

compatibility issues, bad sectors, misconfigurations, and incorrect root cause analysis.

Technicians often face iterative repair cycles until the unit is perfectly repaired, each

iteration adding uncertainties and complexities. This process is time-consuming and

resource-intensive. Within repairable redundant storage systems, imperfect repair is a

relatively unexplored area. As system complexities grow, there is a need for a deeper

understanding of imperfect repair processes in uncertain environments.

To measure the Mean Time-to-Failure (MTTF) and availability of storage units,

parameters like time to failure, repair, and inspection are assumed to follow specific

probability distributions with known parameters. Real-world uncertainties often ren-

der these distribution parameters unknown or imprecise. Therefore, choosing an ap-

propriate estimation method is crucial for accurately computing failure, repair, and in-

spection time distributions. The Bayesian approach, which incorporates prior knowl-

edge from analogous reliability data, offers robustness by translating this information

into a flexible prior density. While the Bayesian approach is flexible in handling uncer-

tainties, asymptotic confidence intervals, reliant on large-sample properties, provide

computational efficiency for complex system characteristics but may be less accu-

rate with small sample sizes. Given the historical efficacy of Bayesian analysis in

accurately estimating reliability characteristics, a comparison with asymptotic esti-

mators is necessary to highlight its effectiveness. This investigation is essential for
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demonstrating the robustness of Bayesian analysis in achieving precise estimations

for MTTF and availability, particularly in the presence of uncertainties in distribution

parameters.

The research study focuses on three primary highlights to advance the understand-

ing of reliability metrics in storage systems. Firstly, it aims to develop robust methods

capable of handling uncertainties in distribution parameters, particularly for failure,

repair, and inspection times. These methods will enhance the accuracy of reliability

assessments, ensuring more precise evaluations of system performance. Secondly, the

research seeks to compare the effectiveness of Bayesian analysis and asymptotic es-

timators in scenarios with limited data. This comparative analysis will shed light on

the strengths and limitations of each approach, providing valuable insights into their

applicability in practical settings. Finally, the study aims to evaluate the resilience

of Bayesian analysis in the face of uncertainties. By assessing the performance of

Bayesian methods in real-world scenarios, the research will contribute to a deeper

understanding of their reliability and effectiveness.

The chapter is organized as follows. Section 2.2 presents a comprehensive litera-

ture survey aimed at identifying research gaps. In Section 2.3, we provide a detailed

description of the model, focusing on the key stages in the life cycle of a storage unit.

This section introduces mathematical notations and assumptions, laying the ground-

work for deriving the system’s reliability characteristics, including Mean Time-to-

Failure (MTTF) and availability (Section 2.4). Section 2.5 incorporates Bayesian in-

ferences to estimate crucial unknown parameters necessary for computing availabil-

ity. We adopt different prior distributions, specifically the gamma and beta probability

distributions with varying hyperparameters. To validate the accuracy of the posterior

analysis, we conduct numerical simulations and compare the results with asymptotic

confidence intervals (Section 2.6). Additionally, we provide graphical representations

of the Monte Carlo simulations to illustrate the performance of Bayesian analysis. Fi-

nally, in Section 2.7, we discuss the conclusions drawn from our study and suggest

potential avenues for future research.

2.2 Literature Survey

In the field of repair and reliability engineering, availability stands as a critical per-

formance metric, ensuring operational efficiency, cost-effectiveness, and optimized

maintenance strategies for units. Redundancy, a technique employed in engineering

systems, plays a pivotal role in enhancing system reliability and availability. Osaki

and Nakagawa [220], Osaki [219], and Nakagawa [209, 210] introduced the concept

of mean-time failure for a two-unit standby redundant system, laying the foundation
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for subsequent research. Subramanian and Anantharaman [285] delved into the reli-

ability characteristics and optimization of comprehensive cost functions for complex

standby redundant systems. Huang and Ke [96] conducted a comparative cost/benefit

analysis of repairable redundant systems with distinct configurations. Tan [290] ana-

lyzed the reliability and availability of two-unit warm standby microcomputer systems

with self-reset functionality and repair facilities. A considerable body of research on

two-unit standby systems with redundancy in computer and industrial applications has

been explored by [195, 239, 355, 51, 289, 81].

Kumar et al. [154] developed a stochastic model for a data processing system

comprising two identical units, one operational while the other in standby mode, in-

troducing a novel approach for hardware fault detection in computer systems. Wang

et al. [325] emphasized that the coverage factor of active unit failure differs from

standby unit failure, developing steady-state availability using recursive methods and

supplementary variable techniques for the two systems. Yen and Wang [347] ana-

lyzed three configurations with imperfect coverage and standby switching failures,

evaluating system reliability and availability based on their findings. Catelani et al.

[26] examined standby redundancy for improving wireless sensor network reliability.

Other researchers (cf. [193], [340], [144]) have presented the concept of a two-unit

standby redundant system with distinct failures, ensuring high reliability and avail-

ability.

Repair facilities play a vital role in the long-term sustainability of systems by en-

suring their maintenance and proper functioning. Previous research by Mokaddis and

Tawfek [204] evaluated the reliability metrics of redundant systems operating in warm

standby mode with different types of repair facilities. Lam [166] studied the mainte-

nance model of a two-unit redundant system with various replacement policies, while

Sridharan and Mohanavadivu [279] introduced the concept of two types of repairers

and patience time in evaluating the reliability metrics of a unit standby system. Chan-

drasekhar et al. [31] investigated a two-unit standby system using Erlangen repair

time, and Wang et al. [320] examined the cost-effectiveness of three distinct series

systems featuring redundancy and general repair time. These studies offer valuable

insights into the performance and optimization of complex systems considering repair

and redundancy. Saini et al. [244] examined two-unit redundant systems with various

repair strategies. Other researchers [79, 337, 313, 63, 262] have also contributed to

this area, evaluating mean time to failure, availability, and reliability of systems with

different repair strategies. Gao and Wang [65] proposed the use of an unreliable repair

facility to evaluate the reliability and availability of mixed standby retrial systems. In

a recent study, Kamal et al. [126] analyzed the behavior of two non-identical units

with redundancy subjected to arbitrary repair facilities and replacements, focusing on
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cost benefits and providing insights into the reliability metrics of such systems.

Chang and Thompson [33] proposed a technique to obtain Bayes confidence limits

for the reliability of a series-parallel system with failure-independent modules, aim-

ing to accurately estimate the system’s reliability. Vaurio [303] introduced estimation

methods for multiple failure rates and other model parameters. Hsu et al. [92] studied

the reliability characteristics of a two-unit redundant system using a Bayesian ap-

proach to derive the posterior distribution for the Mean Time-to-Failure (MTTF) and

steady-state availability of the system. Several researchers (cf. [131], [132], [169],

[93], [292]) have investigated the Mean Time-to-Failure and availability of repairable

redundant systems with imperfect coverage, switching failure, reboot delay, and un-

reliable repair facilities from a statistical perspective. Kishan and Jain [148] proposed

a model where the failure and repair time distributions of each unit are considered

Weibull with typical shape parameters but different scale parameters. Jia and Guo

[123] analyzed the reliability metrics of the k-out-of-n non-repairable cold-standby

system using Bayes theory. Cüran and Kizilaslan [45] constructed asymptotic confi-

dence intervals and the highest probability density credible intervals for a series sys-

tem with cold standby redundancy. Thiagarajan and Thobias [295] comprehensively

analyzed a dependent structure three-unit cold standby system from both classical and

Bayesian inference perspectives, demonstrating the system’s capability for exhaustive

analysis.

Several studies have explored repairable redundant systems with failures and reju-

venation in probabilistic environments, as highlighted in our literature review. How-

ever, critical research gaps have been identified: (i) limited exploration of imperfect

repair in redundant multi-unit storage systems, and (ii) the absence of Bayesian analy-

sis integration, particularly in the context of imperfect repair. In contrast, our proposed

model stands out due to its comprehensive investigation into the imperfect repair fa-

cility within the context of redundant storage system, estimation of reliability metrics

derived from inherently vague, ambiguous, imprecise, and uncertain failure and im-

perfect repair environments, and the application of the Bayesian approach to estimate

unknown parameters, comparing it to asymptotic confidence intervals. The primary

objective of this chapter is to address impreciseness, vagueness, and uncertainties that

may arise at any stage in the life cycle of a system of storage units, with a focus on

studying imperfect repair and switching failure in a repairable redundant storage sys-

tem with a warm standby unit, and exploring these aspects within a vague and impre-

cise environment. This study can be further extended to any redundant and repairable

system with an imperfect rejuvenation environment and an imprecise switchover pro-

cess. Despite advancements in reliability analysis, several research gaps persist in

the study of storage system metrics. Firstly, there is a need for more sophisticated
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methods that can effectively handle uncertainties in distribution parameters. Current

approaches often struggle to account for these uncertainties, leading to inaccuracies

in reliability estimations. Secondly, while Bayesian analysis has shown promise in

addressing uncertainties, its comparative effectiveness against asymptotic estimators

needs further exploration, especially in scenarios with limited data availability. Fi-

nally, the robustness of Bayesian analysis in practical applications remains uncertain,

particularly in complex storage system environments. Bridging these gaps will not

only improve the accuracy of reliability assessments but also enhance the overall un-

derstanding of storage system performance in real-world settings.

2.3 Model Description

This chapter investigates a redundant storage system with two identical storage units

operating in parallel, supported by a redundant standby unit overseen by a single

processor. This setup is relevant in fault-tolerant systems such as enterprise servers,

networking equipment, data storage devices, data centers, cloud services, telecom-

munications, and distributed databases. The system is akin to failover load balancing

mechanisms in network systems, ensuring uninterrupted service by redirecting traffic

to a standby server during primary server failures. The study presents mathematical

models describing storage device behavior, malfunction likelihood, and the impact of

standby redundancy on system reliability.

2.3.1 Assumption

This chapter investigates a redundant storage configuration consisting of two active

storage units and one standby storage unit, along with an unreliable storage mainte-

nance approach. The mathematical modeling of storage unit interactions and interfer-

ences within the system is guided by assumptions and notational conventions. These

are delineated across three distinct phases of the storage system’s lifecycle.

Malfunction Stage:

• The active storage units and the warm standby storage unit follow independent

exponential distributions for their time-to-malfunction, with rates λ and ν(0 <

ν < λ ), respectively.

• In the event of an active storage unit malfunction, an available warm standby

storage unit promptly takes over, inheriting the operational characteristics of the

active storage unit.
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Switching Stage:

• The elapsed time for a malfunctioned unit to switch with an available standby

unit is considered negligible.

• Successful switchover of the warm standby unit in place of the malfunctioned

unit may be impeded by factors such as mishandling, unit defects, or issues

in the automation process, quantified by the probability q. Consequently, the

probability of a successful switchover is denoted by q̄.

Rejuvenation Stage:

• Malfunctioning units are sent for rejuvenation immediately. An idle processor

initiates rejuvenation instantly, while a busy processor leads to queued rejuve-

nation.

• Time-to-rejuvenation follows an exponential distribution with a mean time of
1

µ
.

• The rejuvenation facility may be perfect or imperfect. Inspection times during

perfect and imperfect rejuvenation follow exponential distributions with mean

rates β1 and β2, respectively.

• After perfect rejuvenation, units are restored to operational states like new units

subsequently assigned to active or standby roles as per system requirements.

The proposed repairable redundant storage system’s state at any time ’t’ is described

below to develop the forward Chapman-Kolmogorov equations. To establish a re-

pairable redundant storage system, we correlate the system’s condition with both the

active unit count denoted by I1(t) and the available standby unit count denoted by

I2(t). At any given time t, the storage system comprises two types of units: active units

I1(t) and standby units I2(t). Thus, the state notations, along with the pre-defined state

of the repairable redundant system, the process (I1(t), I2(t)); t > 0 form a continuous-

time Markov chain in the state space Π = {(I1(t) = i, I2(t) = j)|i = 0,1,2 and j =

0,1}. This analysis operates on the premise that a system experiences failure when

there are no active units. The probabilities of the system’s states are introduced in the

following manner:

• P21(t)= Prob { At any given time t, the storage system comprises two active

units and one warm standby unit.}i.e. P21(t)=Prob[I1(t) = 2, I2(t) = 1]

• P20(t)=Prob{At any given time t, the storage system comprises two active

units and no warm standby unit.} i.e. P20(t)=Prob[I1(t) = 2, I2(t) = 0]
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• P10(t)= Prob{At any given time t, the storage system comprises one active

unit and no warm standby unit.} i.e.P10(t)=Prob[I1(t) = 1, I2(t) = 0]

• PF(t)=Prob{There are no active units in the storage system at any instant t.}
i.e. PF(t)=Prob[I1(t) = 0, I2(t) = 0]

• Q20(t)=Prob{At any instant t, there are two active units and the repaired

unit is under inspection.} i.e. Q20(t)=Prob[I1(t) = 2, I2(t) = 0]

• Q10(t)= Prob{At any instant t, there is one active unit and the repaired

unit is under inspection.} i.e. Q10(t)=Prob[I1(t) = 1, I2(t) = 0]

Therefore, the forward Chapman-Kolmogorov differential-difference equations,

developed in terms of λ ,ν ,µ,β1,β2,q, and q̄, which balance the inflow-outflow rate

for the reliability analysis of the repairable redundant storage system is defined as

follows:

dP21(t)

dt
=−(2λ +ν)P21(t)+β1Q20(t) (2.1)

dP20(t)

dt
=−(2λ +µ)P20(t)+(2λ q̄+ν)P21(t)+β2Q20(t)+β1Q10(t) (2.2)

dQ20(t)

dt
=−(β1 +β2)Q20(t)+µP20(t) (2.3)

dP10(t)

dt
=−(λ +µ)P10(t)+2λP20(t)+2λqP21(t)+β2Q10(t) (2.4)

dQ10(t)

dt
=−(β1 +β2)Q10(t)+µP10(t) (2.5)

dPF(t)

dt
= λP10(t) (2.6)

The above Eqns 2.1- 2.6 , can be defined in matrix form as shown below.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(2λ +ν) 0 β1 0 0 0

(2λ q̄+ν) −(2λ +µ) β2 0 β1 0

0 µ −(β1 +β2) 0 0 0

2λq 2λ 0 −(λ +µ) β2 0

0 0 0 µ −(β1 +β2) 0

0 0 0 λ 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P21(t)

P20(t)

Q20(t)

P10(t)

Q10(t)

PF(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dP21(t)
dt

dP20(t)
dt

dQ20(t)
dt

dP10(t)
dt

dQ10(t)
dt

dPF (t)
dt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.7)

To define the initial conditions, it is assumed that at the initial time t = 0, there

are no failed units, the system is functioning correctly with two active units and one
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warm standby unit. Therefore P21(0) = 1 and P20(0) = Q20(0) = P10(0) = Q10(0) =

PF(0) = 0 are the initial conditions.

2.4 The system reliability characteristics

We utilize the mathematical theory of Laplace transformation to analytically derive

the expression of transient state probabilities from the system of first-order differential

equations in matrix form Eqn. 2.7 with initial conditions mentioned earlier in this

section. The Laplace transformation of state probability and its derivative can be

defined as below.

L(Pi, j(t)) = P̈i, j(s) =
∫ ∞

0
e−stPi, j(t)dt ∀ i, j

L

(
d

dt
Pi j(t)

)
= sP̈i, j(s)−Pi, j(0) ∀ i, j

2.4.1 Mean time-to-failure

After applying the Laplace transformation, the system of linear equations in matrix

form is obtained as follows.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(s+2λ +ν) 0 β1 0 0 0

(2λ q̄+ν) −(s+2λ +µ) β2 0 β1 0

0 µ −(s+β1 +β2) 0 0 0

2λq 2λ 0 −(s+λ +µ) β2 0

0 0 0 µ −(s+β1 +β2) 0

0 0 0 λ 0 −s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P̈21(s)

P̈20(s)

Q̈20(s)

P̈10(s)

Q̈10(s)

P̈F(s)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.8)

After solving Eqn. 2.8, the state probabilities are obtained in their transformed form.

P̈21(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(s+β1 +β2)
2 (λ + s)(2λ + s)+µ (λ + s)(3s+β1)(s+β1 +β2)

−µ (s+β1 +β2)s(s−β1)+µ2 (s+β1)
2

(s+β1 +β2)
2 (λ + s)(2λ + s)(2λ +ν + s)+(s+β1 +β2)(

(2λ +ν + s)s(3λ +2s+β1)µ +β1 (λ + s)(2λ q+ s)µ
)

+(2λ +ν + s)(s+β1)µ2s+β1 (2λ q+ s+β1)µ2s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.9)
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P̈20(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(s+β1 +β2)
2 (λ + s)(2λ q−2λ −ν)+2 (s+β1 +β2)

(1−q)µ λ s+(β1 (2λ +ν)+ν s)(s+β1 +β2)µ

(s+β1 +β2)
2 (λ + s)(2λ + s)(2λ +ν + s)+(s+β1 +β2)(

(2λ +ν + s)s(3λ +2s+β1)µ +β1 (λ + s)(2λ q+ s)µ
)

+(2λ +ν + s)(s+β1)µ2s+β1 (2λ q+ s+β1)µ2s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.10)

Q̈20(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(s+β1 +β2)(λ + s)(2λ q−2λ −ν)µ +(2λ +ν)(s+β1)µ2

−2λ qsµ2

(s+β1 +β2)
2 (λ + s)(2λ + s)(2λ +ν + s)+(s+β1 +β2)(

(2λ +ν + s)s(3λ +2s+β1)µ +β1 (λ + s)(2λ q+ s)µ
)

+(2λ +ν + s)(s+β1)µ2s+β1 (2λ q+ s+β1)µ2s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.11)

P̈10(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 (s+β1 +β2)
2 (qs+2λ +ν)λ +2 µ qλ (s+β1)(s+β1 +β2)

(s+β1 +β2)
2 (λ + s)(2λ + s)(2λ +ν + s)+(s+β1 +β2)(

(2λ +ν + s)s(3λ +2s+β1)µ +β1 (λ + s)(2λ q+ s)µ
)

+(2λ +ν + s)(s+β1)µ2s+β1 (2λ q+ s+β1)µ2s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.12)

Q̈10(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 (s+β1 +β2)(qs+2λ +ν)λ µ +2 µ2q(s+β1)λ

(s+β1 +β2)
2 (λ + s)(2λ + s)(2λ +ν + s)+(s+β1 +β2)(

(2λ +ν + s)s(3λ +2s+β1)µ +β1 (λ + s)(2λ q+ s)µ
)

+(2λ +ν + s)(s+β1)µ2s+β1 (2λ q+ s+β1)µ2s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.13)

P̈F(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 (s+β1 +β2)
2 (qs+2λ +ν)λ 2 +2 µ qλ 2 (s+β1)(s+β1 +β2)

s

⎛
⎜⎜⎜⎝

(s+β1 +β2)
2 (λ + s)(2λ + s)(2λ +ν + s)+(s+β1 +β2)(

(2λ +ν + s)s(3λ +2s+β1)µ +β1 (λ + s)(2λ q+ s)µ
)

+(2λ +ν + s)(s+β1)µ2s+β1 (2λ q+ s+β1)µ2s

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.14)

To calculate the transient state probabilities P21(t),P20(t),Q20(t),P10(t),Q10(t), and

PF(t) of a system at any moment t, we can derive them by taking the inverse Laplace

transform for P̈21(s), P̈20(s), Q̈20(s), P̈10(s), Q̈10(s), and P̈F(s), respectively. Here, PF(t)

represents the probability of the storage system’s complete failure when all active and

standby units fail. Let X be a continuous time random variable representing the sys-

tem’s time-to-failure. The function RX(t) defines the system’s reliability at any time t
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and is defined as

RX(t) = Prob(the storage system operates satisfactorily within a defined time frame)

RX(t) = 1−PF(t), t > 0 (2.15)

The failure density function X(t) can be defined in reliability theory as

X(t) =− d

dt
RX(t) =− d

dt
(1−PF(t)) =

d

dt
PF(t) (2.16)

By applying the Laplace transform, we can express the failure density function as

Ẍ(s) = sP̈F(s)−PF(s). This enables us to calculate the mean time-to-failure of the

storage system.

MTTF =− d
dt

Ẍ(u) =

⎡
⎢⎢⎢⎢⎢⎣

(β1 +β2)
(
(β1 +β2)

(
(−2q+8)λ 2 +3λ ν

)
+(2λ +ν)(3λ +β1)µ

−λ (2λ q−2qβ1 −β1)µ
)
+µ2β1 (2λ q+2λ +ν +β1)

2(2λ+ν)(β1+β2)
2λ 2+2 µ qβ1(β1+β2)λ 2

⎤
⎥⎥⎥⎥⎥⎦

(2.17)

2.4.2 Availability of the system

Accurately predicting the performance of a storage system necessitates a compre-

hensive analysis of its reliability measures. This section focuses on the availability

of the storage system, a crucial factor in system evaluation. The forward Chapman-

Kolmogorov equations are represented as a system of linear equations in matrix form.

Upon applying the normalizing condition of probability, we derive the system’s steady-

state probabilities. The system’s availability is then determined based on these steady-

state probabilities.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(2λ +ν) 0 β1 0 0 0 0

(2λ q̄+ν) −(2λ +µ) β2 0 β1 0 0

0 µ −(β1 +β2) 0 0 0 0

2λq 2λ 0 −(λ +µ) β2 0 β1

0 0 0 µ −(β1 +β2) 0 0

0 0 0 λ 0 −µ β2

0 0 0 0 0 µ −(β1 +β2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P21(s)

P20(s)

Q20(s)

P10(s)

Q10(s)

PF(s)

QF(s)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.18)

The following is the mathematical expression for the normalizing condition that arises

from the total probability rule.

P21 +P20 +Q20 +P10 +Q10 +PF +QF = 1 (2.19)
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The steady-state probabilities P21,P20,Q20,P10,Q10,PF ,QF can be obtained by solving

the system of linear equations (Eqn. 2.18) using the normalizing condition 2.19. This

process ensures that the probabilities sum up to 1, reflecting the system’s steady-state

behavior.

P21 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

µ3β1
3

2 (β1 +β2)
3 λ 2 (2λ +ν)+(2λ +ν)

(
(β1 +β2)

(
2 λ 2β1 +2λ 2β2

+2λ µ β1 +2λ β1
2 +2λ β1β2 +µ β1

2
)

µ +µ3β1
2
)
+2 (β1 +β2)

λ ((µ +β1 +β2)λ +µ β1)qβ1µ +µ3β1
2 (2λ q+β1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.20)

P20 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(β1+β2)(2λ+ν)µ2β1
2

2 (β1 +β2)
3 λ 2 (2λ +ν)+(2λ +ν)

(
(β1 +β2)

(
2λ 2β1 +2λ 2β2

+2λ µ β1 +2λ β1
2 +2λ β1β2 +µ β1

2
)

µ +µ3β1
2
)
+2 (β1 +β2)

λ ((µ +β1 +β2)λ +µ β1)qβ1µ +µ3β1
2 (2λ q+β1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.21)

Q20 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(2λ+ν)µ3β1
2

2 (β1 +β2)
3 λ 2 (2λ +ν)+(2λ +ν)

(
(β1 +β2)

(
2λ 2β1 +2λ 2β2

+2λ µ β1 +2λ β1
2 +2λ β1β2 +µ β1

2
)

µ +µ3β1
2
)
+2 (β1 +β2)

λ ((µ +β1 +β2)λ +µ β1)qβ1µ +µ3β1
2 (2λ q+β1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.22)

P10 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(β1+β2)
2(2λ+ν)λ µ β1+2 µ2qβ1

2λ (β1+β2)

2 (β1 +β2)
3 λ 2 (2λ +ν)+(2λ +ν)

(
(β1 +β2)

(
2λ 2β1 +2λ 2β2

+2λ µ β1 +2λ β1
2 +2λ β1β2 +µ β1

2
)

µ +µ3β1
2
)
+2 (β1 +β2)

λ ((µ +β1 +β2)λ +µ β1)qβ1µ +µ3β1
2 (2λ q+β1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.23)
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Q10 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(β1+β2)λ β1µ2(2λ+ν)+2 µ3qβ1
2λ

2 (β1 +β2)
3 λ 2 (2λ +ν)+(2λ +ν)

(
(β1 +β2)

(
2λ 2β1 +2λ 2β2

+2λ µ β1 +2λ β1
2 +2λ β1β2 +µ β1

2
)

µ +µ3β1
2
)
+2 (β1 +β2)

λ ((µ +β1 +β2)λ +µ β1)qβ1µ +µ3β1
2 (2λ q+β1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.24)

PF =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(β1+β2)
3λ 2(2λ+ν)+2λ 2µ qβ1(β1+β2)

2

2 (β1 +β2)
3 λ 2 (2λ +ν)+(2λ +ν)

(
(β1 +β2)

(
2λ 2β1 +2λ 2β2

+2λ µ β1 +2λ β1
2 +2λ β1β2 +µ β1

2
)

µ +µ3β1
2
)
+2 (β1 +β2)

λ ((µ +β1 +β2)λ +µ β1)qβ1µµ3β1
2 (2λ q+β1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.25)

QF =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(β1+β2)
2(2λ+ν)λ 2µ+2µ2qβ1λ 2(β1+β2)

2(β1 +β2)
3 λ 2 (2λ +ν)+(2λ +ν)

(
(β1 +β2)

(
2λ 2β1 +2λ 2β2

+2λ µβ1 +2λβ 2
1 +2λβ1β2 +µβ 2

1

)
µ +µ3β 2

1

)
+2(β1 +β2)

λ ((µ +β1 +β2)λ +µβ1)qβ1µ +µ3β 2
1 (2λq+β1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.26)

Therefore, the expression for the availability of the storage system is derived as

follows:

A(∞) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(β1 +β2)
2 λ (λ +β1)(2λ +ν)µ +(β1 +β2)µ2β1

(
2λ 2q+2λqβ1

+4λ 2 +2λν +2λβ1 +νβ1

)
+µ3β 2

1 (2λq+2λ +ν +β1)

2(β1 +β2)
3 λ 2 (2λ +ν)+(2λ +ν)

(
(β1 +β2)

(
2λ 2β1 +2λ 2β2

+2λβ1µ +2β 2
1 λ +2λβ2β1 +β 2

1 µ
)

µ +µ3β 2
1

)
+2(β1 +β2)

λ ((µ +β1 +β2)λ +µβ1)qβ1µ +µ3β 2
1 (2λq+β1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.27)

2.5 Bayesian Estimation of reliability characteristics

In this section, we present a Bayesian approach for estimating system parameters,

including λ , ν , µ , β1, and β2. These parameters are initially unknown and require es-

timation based on suitable prior distributions and empirical data. We start by defining

the likelihood function for λ , ν , µ , β1, and β2. Next, we consider two appropriate

prior distributions: the two-parameter gamma distribution and the beta distribution of

the second kind.
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2-Parameter Gamma Prior with w1 = 4,

v1 = 8, and n = 10

2-Parameter Gamma Prior with w1 = 4,

v1 = 8, and n = 50

2-Parameter Gamma Prior with w1 = 4,

v1 = 8, and n = 100

2-Parameter Gamma Prior with w1 = 4,

v1 = 8, and n = 500

2-Parameter Gamma Prior with w1 = 4,

v1 = 8, and n = 1000

Figure 2.1: MTTF for Gamma Prior
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2.5.1 Likelihood Function

The durations of various events within the system are governed by independent ex-

ponential distributed random variables. These events include the time-to-failure of

an active storage unit, the time-to-failure of a standby storage unit, and the time-to-

rejuvenate, time-to-inspection for both perfect and imperfect rejuvenations. We con-

sider random samples U1 = (U11,U12, . . .U1n1
) and U2 = (U21,U22, . . . ,U2n2

) of sizes

n1 and n2, respectively, representing the time between failures of active and standby

storage units. Additionally, let U3 = (U31,U32, . . . ,U3n3
) be a collection of random

samples of size n3 denoting the time required to rejuvenate a failed storage unit. Fur-

thermore, let U4 = (U41,U42, . . . ,U4n4
) and U5 = (U51,U52, . . . ,U5n5

) be the random

samples of size n4 and n5, respectively, representing inspection times during perfect

and imperfect rejuvenations. Each sample is drawn from independent exponential dis-

tributions. The likelihood function for λ , ν , µ , β1, and β2 can be computed using the

following formula:

L(λ ,ν ,µ,β1,β2|T1,T2,T3,T4,T5) = λ n1νn2 µn3β1
n4β2

n5e−(λT1+νT2+µT3+β1T4+β2T5)

(2.28)

The expression for Ti is given by Ti = ∑
ni

j=1Ui j for i = 1,2,3,4,5. The vector (T1,T2,

T3,T4,T5) is sufficient for estimating λ , ν , µ , β1, and β2.

2.5.2 Two-parameter gamma prior

A suitable choice for the prior distribution for λ is a gamma distribution G(w1,v1),

which is defined by its probability density function.

p(λ ) =
v

w1

1 λ w1−1e−v1λ

Γ(w1)
, for λ > 0 (2.29)

The prior distribution for λ is denoted by λ ∼ G(w1,v1), where Γ(x) represents the

gamma function defined as Γ(z) =
∫ ∞

0 e−ttz−1,dt, and w1 > 0 and v1 > 0 are specified

parameters. Here, E(λ ) =w1/v1 and Var(λ ) =w1/v2
1. According to Bayesian theory,

the posterior density of λ given T1 can be expressed as:

h(λ |T1) =
(T1 + v1)

n1+w1λ n1+w1−1e−λ (T1+v1)

Γ(n1 +w1)
(2.30)

The posterior density of λ given T1 corresponds to the probability density of a gamma

distribution with parameters n1 +w1,T1 + v1. The Bayesian estimate for λ , denoted
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by λ̂B, is given by
n1 +w1

T1 + v1
, which determines the mean of the posterior distribution.

Notably, λ̂B can be seen as a weighted average of the maximum likelihood estimate,
n1

T1
, for λ , and the prior mean,

w1

v1
, with corresponding weights

T1

T1 + v1
and

v1

T1 + v1
.

Consequently, as the sample size n1 increases, λ̂B tends to align more closely with

the maximum likelihood estimate of λ . It is also observed that the influence of the

prior mean diminishes with the increasing sample size n1, as the weight assigned to

the prior mean decreases. This indicates that the effect of hyperparameters on the

posterior mean decreases as n1 increases.

To conduct Bayesian inference, the Metropolis-Hastings algorithm is used to gen-

erate random samples from the posterior density function h(λ |T1). The following

steps outline the procedure of the algorithm are as below 1:

Let Y be distributed as h(λ |T1), and V be distributed as G(n1 +w1,T1 + v1) with the

probability density function fV . Our objective is to generate a sequence of random

numbers Z =< Z0,Z1,Z2, . . . ,ZN > that will serve as a simulation of the posterior dis-

tribution as described by Eqn. 2.30.

The pseudo-code for the algorithm is as follows:

1. Generate V from G(n1 +w1,T1 + v1). Set Z0 =V .

2. For i = 1,2, . . . ,N

a. Generate Ui and Vi from uniform (0,1) and G(n1 +w1,T1 + v1), re-

spectively, and calculate

ρi = min

{
h(Vi|T1)

fV (Vi)

fV (Zi−1)

h(Zi−1|T1)
,1

}
. (2.31)

b. Set

Zi =

⎧
⎨
⎩

Vi, if Ui ≤ ρi

Zi−1, otherwise
(2.32)

After a sufficient number of burn-in iterations, the remaining samples can be used

to estimate the desired parameters. Similarly, for other parameters such as ν ∼
G(w2,v2),µ ∼ G(w3,v3),β1 ∼ G(w4,v4), and β2 ∼ G(w5,v5), prior distributions are

assumed. It is considered that all system parameters have independent prior distribu-

tions. Hence, the joint distribution of λ ,ν ,µ,β1, and β2 is obtained by multiplying

the individual prior distributions for each parameter. Following a similar approach,

we derive the joint posterior distribution as follows:

λ ,ν ,µ,β1,β2|T1,T2,T3,T4,T5 ∼
5

∏
i=1

G(ni +wi,Ti + vi) (2.33)
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or

{λ ,ν ,µ,β1,β2|T1,T2,T3,T4,T5} ∝

λ n1+w1νn2+w2 µn3+w3β1
n4+w4β2

n5+w5e−[λ (T1+v1)+ν(T2+v2)+µ(T3+v3)+β1(T4+v4)+β2(T5+v5)]

(2.34)

and use the Metropolis-Hastings algorithm to obtain random samples of ν ,µ,β1 and

β2 as well.

2.5.3 Beta distribution of second kind

Another suitable prior distribution for λ is a beta distribution of the second kind

BP(m1,r1) with probability density function

g(λ ) =
λ m1−1

B(m1,r1)(1+λ )m1+r1
, for λ > 0,m1 > 0,r1 > 0 (2.35)

where B(a,b) =
Γ(a)Γ(b)

Γ(a+b)
denotes the beta function and the suitable values for

the hyperparameters m1 and r1 are

m1 =
µ1(µ1 +µ2

1 +σ2
1 )

σ2
1

and r1 =
µ1(µ1 +µ2

1 +2σ2
1 )

σ2
1

(2.36)

The mean and variance of λ in the prior distribution are as follows:

µ1 = E(λ ) =
m1

r1 −1
, σ2

1 = Var(λ ) =
m1

(r1 −1)2
· m1 + r1 −1

r1 −2
(2.37)

According to the Bayesian theory, the posterior probability density of λ given T1 is

calculated as follows:

h(λ |T1) =
λ n1+m1−1e−λT1

Γ(n1 +m1)U(n1 +m1,n1 − r1 +1,T1)(1+λ )m1+r1
(2.38)

The confluent hypergeometric function U(a,b,z) is defined as follows:

U(a,b,z) =
1

Γ(a)

∫ ∞

0
xa−1(1+ x)b−a−1e−zx dx (2.39)
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We will employ the Metropolis-Hastings algorithm described in Section 2.5.2 to

generate random samples from the posterior density function h(λ |T1). For this prior,

we will generate random samples following the distribution G(n1+m1,T1) as outlined

as below 1:

Consider Y , which follows the distribution h(λ |T1), and W , distributed as G(n1 +

m1,T1) with the probability density function fW . Our objective is to generate a se-

quence of random numbers Z =< Z0,Z1,Z2, . . . ,ZN > that will serve as a simulation

of the posterior distribution as described by Eqn. 2.38.

1. Generate W from G(n1 +m1,T1). Set Z0 =W .

2. For i = 1,2, . . . ,N

a. Generate Ui and Wi from uniform (0,1) and G(n1 +m1,T1), re-

spectively, and calculate

ρi = min

{
h(Wi|T1)

fW (Wi)

fW (Zi−1)

h(Zi−1|T1)
,1

}
. (2.40)

b. Set

Zi =

⎧
⎨
⎩

Wi, if Ui ≤ ρi

Zi−1, otherwise
(2.41)

After a sufficient number of burn-in iterations, the remaining samples can be used

to estimate the desired parameters. Similarly, for other parameters such as ν ∼
BP(m2,r2),µ ∼ BP(m3,r3),β1 ∼ BP(m4,r4), and β2 ∼ BP(m5,r5), prior distributions

are assumed. It is considered that all the system parameters have independent prior

distributions. Hence, the joint distribution of λ ,ν ,µ,β1, and β2 is obtained by mul-

tiplying the individual prior distributions for each parameter. Following a similar

approach, we derive the joint posterior distribution as follows:

{λ ,ν ,µ,β1,β2|T1,T2,T3,T4,T5} ∝

λ n1+m1−1νn2+m2−1µn3+m3−1β1
n4+m4−1β2

n5+m5−1e−(λT1+νT2+µT3+β1T4+β2T5)

(1+λ )m1+r1(1+ν)m2+r2(1+µ)m3+r3(1+β1)
m4+r4(1+β2)

m5+r5

(2.42)
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2-Parameter Gamma Prior

with w1 = 4,v1 = 8, and n = 10

2-Parameter Gamma Prior

with w1 = 4,v1 = 8, and,n = 50

2-Parameter Gamma Prior

with w1 = 4,v1 = 8, and,n = 100

2-Parameter Gamma Prior

with w1 = 4,v1 = 8, and,n = 500

2-Parameter Gamma Prior

with w1 = 4,v1 = 8, and,n = 1000

Figure 2.2: A(∞) for Gamma Prior
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Monte Carlo simulation methods can be employed to generate values for λ ,ν ,µ,β1,

and β2 from the joint posterior distributions (2.34) and (2.42). By substituting these

values into Eqns. 2.17 and 2.27, we can obtain the MTTF and A(∞), respectively.

Drawing N pairs of (MTTF, A(∞)) allows us to deduce the posterior probability distri-

butions for MTTF and A(∞) in the redundant storage system. This enables us to com-

pute the posterior mean (PM) and establish the highest posterior density (HPD) inter-

vals. Finally, we conduct numerical comparisons between the posterior and asymp-

totic performance assessments of MTTF and A(∞).

Table 2.1: Estimates for MTTF

n

Two-parameter gamma prior

(w2,v2)=(0.2, 2); (w3,v3)=(0.25, 0.05); (w4,v4)=(0.2, 0.01); (w5,v5)=(0.2, 0.02)

(w1,v1) = (1, 2) (w1,v1) = (2, 4) (w1,v1) = (4, 8)

PM 95% HPD PM 95% HPD PM 95% HPD

10 38.77513 8.79880 88.41238 20.37647 4.61062 44.26413 58.03652 11.93471 129.89640

20 28.37646 9.86603 52.69028 27.33942 9.56065 51.03924 34.92172 12.66506 64.41127

30 17.10610 7.84124 28.16865 22.06975 9.93284 37.22638 34.76448 15.38369 58.32739

40 23.66663 12.07125 37.73457 19.42212 9.73381 30.88027 21.62716 11.05049 33.70226

50 33.31886 18.07983 50.61657 38.63704 21.05113 59.22056 34.90206 19.11225 53.64189

100 39.62346 26.23843 55.16201 30.03778 19.87146 40.96811 32.00108 20.94992 43.64067

300 24.94264 19.85874 29.96692 24.22402 19.46838 29.26775 33.46380 26.63250 40.32767

500 24.81710 21.08440 28.74482 28.00345 23.76649 32.55987 32.45963 27.45427 38.04614

1000 29.27615 26.02347 32.60847 27.33950 24.37346 30.45248 30.97007 27.42766 34.39956

True value of MTTF=27.6434. λ = 0.5,ν = 0.1,µ = 5,β1 = 20,β2 = 10 and q = 0.1

Table 2.2: Estimates for A(∞)

n

Two-parameter gamma prior

(w2,v2)=(0.2, 2); (w3,v3)=(0.25, 0.05); (w4,v4)=(0.2, 0.01); (w5,v5)=(0.2, 0.02)

(w1,v1) = (1, 2) (w1,v1) = (2, 4) (w1,v1) = (4, 8)

PM 95% HPD PM 95% HPD PM 95% HPD

10 0.97862 0.94282 0.99855 0.97500 0.93826 0.99792 0.99354 0.98354 0.99951

20 0.98355 0.96499 0.99680 0.98679 0.97171 0.99775 0.98730 0.97284 0.99770

30 0.97344 0.95010 0.99186 0.97974 0.96087 0.99335 0.98811 0.97778 0.99671

40 0.98355 0.97079 0.99426 0.98527 0.97382 0.99442 0.98082 0.96632 0.99241

50 0.98874 0.98090 0.99539 0.98999 0.98292 0.99606 0.99104 0.98481 0.99636

100 0.99191 0.98790 0.99563 0.98754 0.98156 0.99329 0.98606 0.97899 0.99206

300 0.98573 0.98164 0.98952 0.98467 0.98038 0.98865 0.99026 0.98750 0.99277

500 0.98441 0.98111 0.98763 0.98642 0.98348 0.98917 0.98951 0.98726 0.99182

1000 0.98840 0.98660 0.99010 0.98748 0.98553 0.98931 0.98966 0.98810 0.99119

True value of A(∞) = 0.9875808. λ = 0.5,ν = 0.1,µ = 5,β1 = 20,β2 = 10 and q = 0.1

2.6 Numerical illustrations and simulation study

This section analyzes the posterior performances of MTTF and A(∞) for the re-

pairable redundant storage system through simulation results. To achieve this, we set

n1 = n2 = n3 = n4 = n5 = n and conduct 10,000 simulations alongside 1,000 burn-in
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Table 2.3: Estimates for MTTF

n

Beta distribution of the second kind prior

(m2,r2)=(0.21, 3.1); (m3,r3)=(7.5, 2.5); (m4,r4)=(15.4, 1.77); (m5,r5)=(10.6, 2.06)

(m1,r1) = (0.875, 2.75) (m1,r1) = (1.4, 3.8) (m1,r1 ) = (1.85, 4.7)

PM 95% HPD PM 95% HPD PM 95% HPD

10 48.68384 8.89792 108.49190 51.68776 10.31633 115.76100 67.67263 12.53421 152.30040

20 37.13349 12.62753 67.56152 51.59278 16.97870 96.05151 60.89101 21.08990 113.51930

30 37.06706 15.76362 62.31617 33.27675 15.22303 55.96245 49.99936 22.81621 85.86473

40 22.06475 11.80836 34.68400 38.63405 18.78184 62.23411 26.47469 13.28312 41.77789

50 27.25532 14.69239 40.60095 42.49344 22.40990 64.26993 32.89291 17.98850 50.02012

100 30.65912 20.44666 42.02218 36.75366 24.51721 50.48484 20.71058 14.08770 27.99056

300 26.91254 21.67018 32.55875 28.93372 23.27796 34.98927 30.36855 24.08519 36.49637

500 29.15087 24.45674 33.78723 26.48571 22.37118 30.92120 29.61144 24.95037 34.30941

1000 26.40221 23.32730 29.30190 26.37681 23.53415 29.43929 25.40335 22.71340 28.24662

True value of MTTF=27.6434. λ = 0.5,ν = 0.1,µ = 5,β1 = 20,β2 = 10 and q = 0.1

Table 2.4: Estimates for A(∞)

n

Beta distribution of the second kind prior

(m2,r2)=(0.21, 3.1); (m3,r3)=(7.5, 2.5); (m4,r4)=(15.4, 1.77); (m5,r5)=(10.6, 2.06)

(m1,r1) = (0.875, 2.75) (m1,r1) = (1.4, 3.8) (m1,r1) = (1.85, 4.7)

PM 95% HPD PM 95% HPD PM 95% HPD

10 0.99431 0.98581 0.99957 0.99304 0.98232 0.99948 0.99741 0.99351 0.99975

20 0.99114 0.98147 0.99808 0.99316 0.98563 0.99867 0.99523 0.98988 0.99884

30 0.99048 0.98208 0.99738 0.98756 0.97609 0.99634 0.99401 0.98861 0.99811

40 0.98165 0.96861 0.99310 0.99155 0.98504 0.99723 0.98780 0.97826 0.99511

50 0.98478 0.97468 0.99351 0.99254 0.98760 0.99699 0.98978 0.98297 0.99582

100 0.98971 0.98494 0.99449 0.98991 0.98494 0.99431 0.98276 0.97459 0.99012

300 0.98598 0.98242 0.98999 0.98857 0.98539 0.99152 0.98822 0.98501 0.99138

500 0.98792 0.98531 0.99051 0.98724 0.98448 0.98987 0.98848 0.98594 0.99083

1000 0.98708 0.98507 0.98891 0.98698 0.98503 0.98891 0.98596 0.98388 0.98797

True value of A(∞) = 0.9875808. λ = 0.5,ν = 0.1,µ = 5,β1 = 20,β2 = 10 and q = 0.1
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simulations for each prior distribution discussed in Section 2.5. During each simula-

tion run, values are generated from the assumed prior distributions. These simulated

values serve as parameter values for various time variables such as the time between

failures of the active and standby storage units, the time to rejuvenate a failed storage

unit, and inspection times during perfect and imperfect rejuvenations. A sample of

size n is subsequently drawn from each of the five time-related variables, following

which the posterior mean (PM) and the associated highest posterior density (HPD)

intervals are computed. The tables provided herein present the mean, alongside the

10,000 PM values and their estimated standard deviation (s/
√

10000). The sam-

ples were generated using appropriate functions of Python 3.10. Subsequently, we

compare the PM and HPD results with the asymptotic estimates and confidence inter-

vals derived from the samples generated from the prior distributions. Finally, we use

graphical illustrations to demonstrate how MTTF and A(∞) perform according to the

Bayesian approach discussed in this chapter.

Table 2.1 presents the posterior mean (PM) and highest posterior density (HPD)

intervals for the MTTF across various sample sizes. The scenarios involve fixed values

of λ = 0.5, ν = 0.1, µ = 5, β1 = 20, β2 = 10, and q = 0.1, with different choices for

the hyperparameters under the assumption of a two-parameter gamma prior. These

results are compared against the true MTTF value of 27.6434 and A(∞) value of

0.98758, derived by substituting (λ ,ν ,µ,β1,β2,q) = (0.5,0.1,5,20,10,0.1) into the

respective Eqns. 2.17 and 2.27. Analyzing Table 2.1, it becomes evident that the PM

estimates are more stable and accurate, and the HPD intervals are significantly nar-

rower as the sample size increases. This trend is consistent with similar observations

made in Table 2.2, which pertains to the steady-state availability of the storage system.

Table 2.3 and 2.4 further extend the analysis by employing the Beta distribution

of the second kind as a prior with varying hyperparameter values and sample sizes to

obtain Bayesian estimates for MTTF and A(∞). These tables yield results that align

with the patterns observed in Table 2.1 and 2.2. Collectively, across Table 2.1 - 2.4, it

becomes clear that larger sample sizes lead to PM estimates that closely approximate

the true values, regardless of the specific hyperparameter configurations selected when

choosing either the two-parameter gamma prior or the beta distribution of the second

kind as a prior.

2.6.1 Comparison of Bayesian and asymptotic estimates

Next, we assess the performance of the PM and HPD intervals in comparison to the

asymptotic estimate and asymptotic confidence intervals (ACI) under the application
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Table 2.5: PM, HPD intervals and ACI of MTTF

n PM St. dev 95% HPD MT̂TF s.e.(MT̂TF) 95% ACI

10 20.37647 12.67709 4.61062 44.26413 45.12256 22.44159 1.13704 89.10808

20 27.33942 11.92200 9.56065 51.03924 35.79044 15.86860 4.68798 66.89290

30 22.06975 7.52530 9.93284 37.22638 31.87973 12.95666 6.48468 57.27479

40 19.42212 5.74477 9.73381 30.88027 28.20393 11.22079 6.21117 50.19669

50 38.63704 10.36802 21.05113 59.22056 33.19165 10.03618 13.52072 52.86257

100 30.03778 5.55201 19.87146 40.96811 26.95992 7.09666 13.05047 40.86936

300 24.22402 2.51342 19.46838 29.26775 22.73905 4.09726 14.70843 30.76967

500 28.00345 2.24284 23.76649 32.55987 25.73041 3.17372 19.50992 31.95091

1000 27.33950 1.55393 24.37346 30.45248 29.91742 2.24416 25.51887 34.31597

True value of MTTF=27.6434. λ = 0.5,ν = 0.1,µ = 5,β1 = 20,β2 = 10 and q = 0.1;

Two-parameter gamma prior is assumed.

Table 2.6: PM, HPD intervals and ACI of A(∞)

n PM St. dev 95% HPD Â(∞) s.e.(Â(∞)) 95% ACI

10 0.97500 0.01857 0.93826 0.99792 0.97325 0.01354 0.94671 0.99979

20 0.98679 0.00773 0.97171 0.99775 0.98073 0.00957 0.96196 0.99949

30 0.97974 0.00920 0.96087 0.99335 0.98215 0.00782 0.96683 0.99747

40 0.98527 0.00576 0.97382 0.99442 0.98660 0.00677 0.97333 0.99987

50 0.98999 0.00357 0.98292 0.99606 0.98668 0.00606 0.97481 0.99854

100 0.98754 0.00313 0.98156 0.99329 0.98609 0.00428 0.97770 0.99448

300 0.98467 0.00212 0.98038 0.98865 0.98419 0.00247 0.97935 0.98904

500 0.98642 0.00147 0.98348 0.98917 0.98652 0.00191 0.98277 0.99028

1000 0.98748 0.00096 0.98553 0.98931 0.98870 0.00135 0.98604 0.99135

True value of A(∞) = 0.9875808. λ = 0.5,ν = 0.1,µ = 5,β1 = 20,β2 = 10 and q = 0.1;

Two-parameter gamma prior is assumed.
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of the standard gamma prior. The asymptotic estimate, denoted as MT̂ T F , is defined

as follows:

MT̂ T F =

⎡
⎢⎢⎢⎢⎢⎢⎣
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(2.43)

Likewise, the asymptotic estimate Â(∞) is defined as follows:

Â(∞) =

⎡
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where Ui =
ni

ni

∑
j=1

Ui j

, i = 1,2,3,4 and 5.

Furthermore, the ACI for MTTF is calculated as MT̂ T F ± zα/2

σ(Θ̂)√
n

, and for A(∞),

it is computed as Â(∞)± zα/2

Φ(Θ̂)√
n

, where σ2(Θ̂) and Φ2(Θ̂) serve as consistent

estimators.

σ2(Θ̂) =
5

∑
i=1

[
∂MT T F

∂ϑi

]2

ϑ 2
ii and Φ2(Θ̂) =

5

∑
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1

β1
,

1
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(2.45)

Table 2.5 presents the PM, HPD intervals, and the ACI for MT̂ T F across various

sample sizes. These estimates are derived under the standard two-parameter gamma

prior with hyperparameters ω1 = 0.5, ω2 = 0.1, ω3 = 5, ω4 = 20, ω5 = 10 and fixed

values of λ = 0.5, ν = 0.1, µ = 5, β1 = 20, β2 = 10 and q = 0.1. Comparing these

estimates with the true value of 27.6434, the results indicate that as the sample size

increases, both the PM and the asymptotic estimate MT̂ T F tend to converge closer

to the true value. As anticipated, larger sample sizes lead to narrower spreads in the

posterior and asymptotic distributions.
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Table 2.6 yields similar insights, with the true value being 0.9875808 for A(∞).

Additionally, it is noteworthy that the HPD intervals provide estimates that closely

align with the expected MTTF values, outperforming the asymptotic confidence in-

tervals. Overall, these results emphasize the effectiveness of Bayesian approaches

developed in this chapter, particularly when dealing with smaller sample sizes, in

constructing more reliable HPD intervals. With larger sample sizes, both Bayesian

and asymptotic approaches yield comparable results.

Finally, we present graphical representations of the posterior distributions to visu-

ally illustrate the performance of MTTF and A(∞). For the sake of consistency, Fig-

ures 2.1 - 2.4 are based on the parameters λ = 0.5,ν = 0.1,µ = 5,β1 = 20,β2 = 10

and q = 0.1. Figures 2.1 depict the posterior distributions for MTTF across sample

sizes ranging from 10 to 1000, assuming the two-parameter gamma prior with hyper-

parameter values of w1 = 4 and v1 = 8. Similarly, Figures 2.2 display the posterior

distribution for A(∞) within the same sample size range. Furthermore, Figures 2.3

and Fig. 2.4 illustrate the posterior distributions for MTTF and A(∞) for the beta

distribution of the second kind prior.

In all these graphs, the true value of the system characteristic is represented in

purple, the posterior mean is shown in red, and the lower and upper HPD intervals

are presented in orange and green, respectively. It is noteworthy that regardless of the

chosen prior, the spreads of the posterior distributions for MTTF and A(∞) decrease as

the sample size increases. Additionally, the histograms for the posterior distributions

of MTTF exhibit a slight leftward skew, while those of A(∞) demonstrate a rightward

skew.

In summary:

• The study used simulation results to analyze the posterior performance of MTTF

and A(∞) for a repairable redundant storage system.

• Increasing the sample size led to more stable and accurate posterior mean esti-

mates (PM) with narrower highest posterior density (HPD) intervals.

• Both the two-parameter gamma prior and the Beta distribution of the second

kind as priors showed consistent trends in PM estimates and HPD intervals.

• Comparison of Bayesian and asymptotic estimates revealed that larger sample

sizes resulted in PM estimates closely approximating the true values.

• Graphical illustrations demonstrated that regardless of the prior chosen, the

spreads of the posterior distributions for MTTF and A(∞) decreased as the sam-

ple size increased, with slight leftward skew in MTTF histograms and rightward

skew in A(∞) histograms.
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Beta distribution of the second kind

with m1 = 1.4,r1 = 3.8, and,n = 10

Beta distribution of the second kind

with m1 = 1.4,r1 = 3.8, and,n = 50

Beta distribution of the second kind

with m1 = 1.4,r1 = 3.8, and,n = 100

Beta distribution of the second kind

with m1 = 1.4,r1 = 3.8, and,n = 500

Beta distribution of the second kind

with m1 = 1.4,r1 = 3.8, and n = 1000

Figure 2.3: MTTF for Beta Prior
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Beta distribution of the second kind

with m1 = 1.4,r1 = 3.8, and n = 10

Beta distribution of the second kind

with m1 = 1.4,r1 = 3.8, and,n = 50

Beta distribution of the second kind

with m1 = 1.4,r1 = 3.8, and,n = 100

Beta distribution of the second kind

with m1 = 1.4,r1 = 3.8, and,n = 500

Beta distribution of the second kind

with m1 = 1.4,r1 = 3.8, and,n = 1000

Figure 2.4: A(∞) for Beta Prior
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2.7 Conclusion

In this chapter, we have explored the realm of redundant storage systems, employ-

ing Bayesian inferences and carefully selected prior distributions, particularly when

dealing with unpredictable repair services and switching failure. We have evaluated

two crucial reliability metrics: mean time-to-failure (MTTF) and availability (A(∞)).

Through a combination of simulations and inference techniques, we have provided

insights into the intricate workings of these systems, offering valuable insights into

their performance. Under the two-parameter gamma and the beta distribution of the

second kind, with various hyperparameters, Bayesian methodology has emerged as a

reliable tool for estimating MTTF and A(∞) with remarkably narrow intervals, even

with smaller sample sizes. Moreover, as the sample size increases, our Bayesian pos-

terior mean (PM) estimates converge closer to the true values, regardless of the chosen

prior. In our final sections, we compared the performance of our PM-HPD intervals

against asymptotic estimates, finding that Bayesian methods outperform asymptotic

confidence intervals, providing superior and computationally efficient estimates. This

is particularly true when analyzing the complex dynamics of repairable redundant

storage systems, where unreliable repair and switching failure add a layer of com-

plexity.

In the rapidly evolving landscape of computer technology, where system relia-

bility is paramount, our findings underscore the usefulness of Bayesian methods for

engineers and practitioners. They offer a way to gain deeper insights into the perfor-

mance of repairable redundant storage systems, enabling informed decision-making

and robust system design. As computational capabilities continue to advance, the

Bayesian paradigm is poised to play a pivotal role in strengthening the resilience and

dependability of modern storage infrastructures. With engineering systems becoming

increasingly complex and redundancy becoming the norm, our study on the incor-

poration of unreliable service stations can be extended to any number of active and

standby units, each characterized by distinct failure probability distributions. Addi-

tionally, the concept can be applied to general storage systems with caching, recovery

protocols, rebooting, susceptibility to soft failures, and an unreliable rejuvenation pro-

cess. As the number of units increases, a promising area for further exploration is the

consideration of a multi-unit multi-repair facility. Such a facility could introduce vari-

ability through differential repair times and varying levels of certainty associated with

achieving a perfect repair outcome. Given the critical role of operational excellence

and uninterrupted uptime in enterprise software, further exploration of the intricacies

of MTTF and availability, especially when faced with additional unknowns and prob-

abilistic challenges, warrants further study.



Chapter 3

Fuzzified Imperfect Repair Redundant Machine

Repair Problem

“Just as every individual is unique and

multifaceted, fuzzified machine repair

problems reflect the complexity and

diversity of human existence, offering

opportunities for innovation and

growth amidst uncertainty.”

Prof. Michael Nguyen

3.1 Introduction

The crucial factor prior to instituting any machining system is the reliability analysis.

The uncertainty, vagueness, and impreciseness can be seen in failure, operation, data,

and repair facilities. Failure of units hinders the functioning and hence, impacts the

cost of operation and quality of the service facility. Reliability and performance can

be enhanced by using a the-state-of-the-art redundant and repairable system. The op-

erating capacity of any industry, power plant, manufacturing system, and engineering

sector can be improved by managing preventive and corrective measures. The present

study is centered on a two-active one-standby unit redundant repairable system with

unreliable attributes switching failure and imperfect repair. Various researchers cf.

[44], Albright [8], Ke and Wang [137], Jain et al. [114] have studied fault-tolerant

systems for better system performance and engineering management. The survey and

necessity of the machining system for advancement entail exploring the machine re-

pair problems in depth in a vague environment.

Redundancy is crucial for uninterrupted functioning and improving the machin-

ing system’ reliability and availability. Redundancy is classified as active and passive
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and requires detailed research due to its importance and cost involvement. According

to units’ failure rates in inactive states, passive redundancy is categorized into three

types: cold, warm, and hot. The concept of a standby unit was introduced by Srini-

vasan [281]. The comprehensive research (Srinivasan and Subramanian [280], Jain

et al. [116], Shekhar et al. [266], Ke et al. [135]) were explored for new methods

and techniques to increase the system’s reliability. Chen [38] discussed reliability

analysis of retrial machine repair systems having standbys and single repairer with

recovery policy. Jain et al. [106] studied the maintainability of redundant machin-

ing systems having imperfect fault detection and reboot delay. Recently, Yeh et al.

[346] analyzed a redundant repair model to maximize its reliability and diminish cost

and weight limitations. Due to its great importance, more extensive research needs

to study the critical issues of the two-active unit-one-standby redundant machining

system in imprecise environments.

When an active unit fails, an available warm standby unit replaces the failed unit

in negligible time to prevent interruption in the operation of the machining system.

The switchover for a failed unit with an available warm standby unit may be per-

fect or imperfect. When the switchover process is imperfect, switchover repeats until

it becomes successful or available standby units are exhausted. Wang et al. [316]

studied a machine repair problem with R repairers and switching failure. Lately, sig-

nificant work on switching mechanisms has been done by various researchers (Wang

et al. [315], Jain et al. [115], Ke et al. [134], Shekhar et al. [260]). More recently,

Shekhar et al. [262] investigated the optimal design of fault-tolerant machining sys-

tems with various machining hindrances. Due to critical issues involved in switching

with the advancement of technological mechanisms, more insightful investigations

are required for the uncertain environment.

When an active/standby unit fails, it is sent to a repair facility for repair without

losing time so that the system can avoid hindrance to the service facility. In real-life

practice, the repair is only sometimes perfect or precise. It may be imperfect due to

insufficient faults data, more load on the repairer, vagueness in detecting fault rightly,

etc. A repairer provides unsuccessful efforts as many times before successfully re-

pairing. This notion of repair facility is referred to as imperfect repair in queueing

literature that was first conceptualized by Patterson and Korzeniowski [226]. Again,

Patterson and Korzeniowski [227] extended their previous research for a server work-

ing vacation and derived the probability-generating function of the stationary queue

length and Laplace Stieltjes transform of the stationary waiting time for the Marko-

vian queue. Due to prevalent imperfect repair issues, it is also conceptualized in

machine repair problems. Recently Shekhar et al. [262] presented the mathematical

study of the stochastic model of a machine repair problem of standbys provisioning
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in Markovian conditions with unreliable service and vacation interruption. The im-

perfect repair in MRP with a two-unit-one-standby machine system still needs to be

investigated in the literature. It needs in-depth study in a vague, imperfect, imprecise,

and uncertain environment.

The past study of machine repair problems was based on the inter-failure times

and times-to-repair required to follow a specific distribution with certain parameters.

However, due to a vague, imprecise, uncertain functioning environment, the failure

and repair patterns are seldom known. The failure and repair pattern more suitably

designate subjectively in the etymological terms such as slow, fast, moderate. Fuzzy

set theory, attributing a degree to which a specific event belongs to a set, is appro-

priate to deal with such vagueness, imprecise, and uncertainties. The multilateral

approach of defining the imprecision in language, vague pieces of information, un-

certainty in nature, an approximate estimation of governing parameters, and possibil-

ities instead of probabilistic expostulates us to develop an alternative method (Zadeh,

[358], Dubois et al.,[55], Dubois et al., [56], Buckley [22], Buckley et al., [21]. Chen

[36] investigated mathematical programming techniques to develop the membership

grade function of the performance measure of the machine interference system in a

fuzzy occurrence. Huang et al. [97] examined the reliability analysis of a two-unit

machine repair problem with a single warm standby and demonstrated the practicality

of the proposed technique. Liu et al. [187] employed parametric programming tech-

niques to obtain a fuzzy Markov model’s reliability and performance measures where

the system’s parameters have linguistic impreciseness. Shekhar et al. [259] analyzed

availability characteristics of multi-active and standby units with switching failure and

reboot delay employing parametric nonlinear programming with γ-cut. Kumar et al.

[159] studied the fault tolerance system in which a repair facility is based on optimal

N-policy in a fuzzy environment. The fuzzy analysis of a two-unit-one-standby fault-

tolerant machining system with imperfect repair and switching failure is essential to

study the reliability behavior in a vague, imprecise, and uncertain environment.

The studied model has a lot of potential applications in real-time technology-based

machining systems. The importance of redundancy and imperfection in switching and

repair is of a great deal in all application sectors like cloud movement prediction in

satellite images (Son et al. [278]), wind turbine blade structure (Sarkar and Gunturi

[249], Singh and Rizwan [270]), electric vehicle operation (Kim et al. [146], Suhail

et al. [287], Venugopal et al. [305], Tang and You [291]), load forecasting (Sengar

and Liu [250], Tian [297]), battery charge monitoring (Ganguly et al. [64]). For the

analysis of the application sector, soft computing-based methodologies are used to

deal with the high level of complexity due to involved technological advancement.
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Many researchers have investigated a wide range of work on the redundant two-

unit repairable system with different failure/service notions in fuzzy environments.

A few of them have been discussed in our literature review above. The underly-

ing research gaps are identified as (i) no research on imperfect repair in redundant

multi-unit machining systems, (ii) the real-time vagueness, ambiguity, impreciseness,

uncertainty in failures, and imperfect repairs are not proposed earlier. The proposed

model is different from the above discussed and other models in literature because

it endows the following characteristic: (i) a study of the imperfect repair facility in

machine repair problem (MRP), (ii) a convenient estimation value from the vague

environment, (iii) a correlation between fuzzy theory and the conventional method.

Looking at high-grade applications of the studied model and their sensitivity issues,

the prime objective is to deal with the impreciseness, vagueness, and uncertainties

involved. The underlying contribution of the present study is to investigate imperfect

repair and switch failure in redundant machining systems with active and passive re-

dundancy in a vague and imprecise environment. The study is essential for preventive

measures, corrective measures, and predictive measures for the machining systems.

We categorized our work in multiple sections: The notations, assumptions, and

mathematical formulation of the proposed machining model have been presented in

section 3.2 along with associated Chapman-Kolmogorov differential-difference equa-

tions in transient-state. Further, in section 3.3, we employ the mathematical concept

of Laplace transform, linear algebra, and the hazard failure rate to derive the reliability

characteristics, viz. mean time-to-failure and availability for the redundant repairable

system with an imperfect repair and switching failure. In section 3.4, we extend the

applicable rate and probabilities in fuzzy natures and briefly introduce the methodol-

ogy for obtaining the corresponding membership grade functions for the MTTF and

the system’s availability. In section 3.5, a parametric nonlinear programming tech-

nique is discussed to derive the membership grade functions for the reliability char-

acteristics. Further, we present a numerical illustration to develop the validity of our

proposed concept and methodology in section 3.6. We also present numerical illus-

trations for in-depth tractability. In the last section 3.7, the article’s conclusion and

future scope are discussed.

3.2 Model Description

We investigate a machine repair problem with two identical active units functioning

simultaneously in parallel with the redundancy of a single standby unit under the

supervision of a single reliable repairer. We delineate the following assumptions and

notations utilized for the detailed illustrations of the
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Figure 3.1: Transition diagram for reliability analysis

Failure Process

• The time-to-failure of an active and a warm standby unit follow an exponential

distribution with the rate λ and ν (0< ν < λ ), respectively. The failure of active

units and a warm standby unit are independent.

• When an active unit fails, it is immediately supplanted by an available warm

standby unit. After the switchover, the standby unit’s operational and failure

characteristics are as same as the active unit.

Switching Process

• The switchover time of a failed unit with an available standby unit is assumed

to be negligible.

• The switchover of the warm standby unit to the failed active unit may not always

be successful due to mishandling, defects in the unit, or unreliable automation.

The probability of unsuccessful switching is q, whereas its complementary q̄

denotes the probability of successful switching.

Repair Process

• A failed unit is instantly sent to the repair facility; if the repairer is idle, it

instantly begins its repair; otherwise, the failed unit joins the queue and waits

for its turn.
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• The time-to-repair follows an exponential distribution with the meantime 1
µ .

• The repair may be perfect or imperfect. The time-to-inspect the perfect and

imperfect repair follows an exponential distribution with the mean rate β1 and

β2, respectively.

• The repaired unit will function as same as the new unit. After recovering, it is

instantly installed as the active unit or a warm standby unit as per the system’s

requirements.

The system’s state at instant t to develop the forward Chapman-Kolmogorov equa-

tions of the proposed redundant repairable system is described as follows.

I1(t)≡The number of the active units in the system at instant t.

I2(t)≡The number of the standby units in the system at instant t.

With the support of the pre-defined state of the machining system, the process {I1(t),

I2(t)}, stochastic in nature, describes the continuous-time Markov chain (CTMC) in

the state space Π = {(I1(t) = i, I2(t) = j | i = 0,1,2 and j = 0,1}. The present analysis

is based on the assumption that the system fails when there is no active unit. The state

probabilities are introduced as follows.

P21(t) = Prob[I1(t) = 2, I2(t) = 1] =likelihood that there are two active units and a

single warm standby unit in the machining

system at any moment t

P20(t) = Prob[I1(t) = 2, I2(t) = 0] =likelihood that there are two active units in the

machining system at any moment t.

Q20(t) = Prob[I1(t) = 2, I2(t) = 0] =likelihood that there are two active units and

repaired unit is under inspection at any moment t.

P10(t) = Prob[I1(t) = 1, I2(t) = 0] = likelihood that there is one active unit in the

machining system at any moment t.

Q10(t) = Prob[I1(t) = 1, I2(t) = 0] =likelihood that there is one active unit and re-

-paired unit is under inspection at any moment t.

P00(t) = Prob[I1(t) = 0, I2(t) = 0] =likelihood that there is no active unit in the

machining system at any moment t.
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Hence, from the state transition diagram for reliability analysis in Fig.3.1, the follow-

ing governing set of forward Chapman-Kolmogorov differential-difference equations

are developed in terms of λ , ν , µ, β1, β2, q, and q̄ by balancing input-output rate

flow as follows.

(
d

dt
+2λ +ν

)
P21(t) = β1Q20(t) (3.1)

(
d

dt
+2λ +µ

)
P20(t) = (2λ q̄+ν)P21(t)+β2Q20(t)+β1Q10(t) (3.2)

(
d

dt
+λ +µ

)
P10(t) = 2λP20(t)+2λqP21(t)+β2Q10(t) (3.3)

(
d

dt

)
P00(t) = λP10(t) (3.4)

(
d

dt
+β1 +β2

)
Q20(t) = µP20(t) (3.5)

(
d

dt
+β1 +β2

)
Q10(t) = µP10(t) (3.6)

At the initial instant t = 0, there is no failed unit in the system, i.e., the system has two

active units with a single warm standby unit functioning properly. Hence, P21(0) = 1

and P20(0) = Q20(0) = P10(0) = Q10(0) = P00(0) = 0 are the initial conditions.

3.3 The system reliability characteristics

3.3.1 Mean time-to-failure

We employ the mathematical theory of Laplace transformation to derive the expres-

sion of transient state probabilities analytically from the set of the earlier section’s

differential-difference equations (3.1)-(3.6) with initial conditions. The Laplace trans-

formation of state probability and its derivative can be defined as.

L
(
Pi j(t)

)
= P̈i j(u) =

∫ ∞

0
e−utPi j(t)dt ∀ i, j

L

(
d

dt
Pi j(t)

)
= uP̈i j(u)−Pi j(0) ∀ i, j



106 Chapter 3. Fuzzified Imperfect Repair...

We get the set of linear equations (3.7)-(3.12) after employing Laplace transform on

the set of governing differential-difference equations (3.1)-(3.6) in the following man-

ner.

(u+2λ +ν) P̈21(u)−1 = β1Q̈20(u) (3.7)

(u+2λ +µ) P̈20(u) = (2λ q̄+ν) P̈21(u)+β2Q̈20(u)+β1Q̈10(u) = 0 (3.8)

(u+λ +µ) P̈10(u) = 2λ P̈20(u)+2λqP̈21(u)+β1Q̈10(u) = 0 (3.9)

uP̈00(u) = λ P̈10(u) = 0 (3.10)

(u+β1 +β2) Q̈20(u) = µP̈20(u) = 0 (3.11)

(u+β1 +β2) Q̈10(u) = µP̈10(u) = 0 (3.12)

The state probabilities in the transformed form are obtained by solving the above

linear equations system (3.7)-(3.12) as follows.

P̈21(u) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(u+β1 +β2)
2 (u+2λ +µ)(u+λ +µ)−

(
(2u+3λ +µ)β2

2 +
(
2u2+

(
3λ +2 µ +2β1

)
u+β1 (5λ +2 µ)

)
β2 +2λ β1 (u+β1)

)
µ

(u+β1 +β2)
(
(u+2λ +ν)

(
(u+λ +µ)

(
u2 +(2λ +µ +β1 +β2)u

+(2λ −µ)β2 +2λ β1

)
−λ µ (2β1 +β2)

)
+µ
(
(u+λ +µ)

(u+2λ q)β1 +β2
2µ
))

+
(
−β2

2 +β2 (2λ +ν)−2λ qβ1

)
(β1 +β2)µ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.13)

P̈20(u) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(u+β1 +β2)
2 (2λ q̄+ν)(u+λ +µ)−

(
(2λ q̄+ν)β2 −2λ β1q

)

µ (u+β1 +β2)

(u+β1 +β2)
(
(u+2λ +ν)

(
(u+λ +µ)

(
u2 +(2λ +µ +β1 +β2)u

+(2λ −µ)β2 +2λ β1

)
−λ µ (2β1 +β2)

)
+µ
(
(u+λ +µ)

(u+2λ q)β1 +β2
2µ
))

+
(
−β2

2 +β2 (2λ +ν)−2λ qβ1

)
(β1 +β2)µ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.14)

Q̈20(u) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 (u+β1 +β2)(2λ q̄+ν)µ (u+λ +µ)−
(
(2λ q̄+ν)β2

−2λ β1q
)

µ2

(u+β1 +β2)
(
(u+2λ +ν)

(
(u+λ +µ)

(
u2 +(2λ +µ +β1 +β2)u

+(2λ −µ)β2 +2λ β1

)
−λ µ (2β1 +β2)

)
+µ
(
(u+λ +µ)

(u+2λ q)β1 +β2
2µ
))

+
(
−β2

2 +β2 (2λ +ν)−2λ qβ1

)
(β1 +β2)µ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.15)
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P̈10(u) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ (u+β1 +β2)
(
(u+β1 +β2)

(
(u+µ)q+2λ +ν

)
−µ β2q

)

(u+β1 +β2)
(
(u+2λ +ν)

(
(u+λ +µ)

(
u2 +(2λ +µ +β1 +β2)u

+(2λ −µ)β2 +2λ β1

)
−λ µ (2β1 +β2)

)
+µ
(
(u+λ +µ)

(u+2λ q)β1 +β2
2µ
))

+
(
−β2

2 +β2 (2λ +ν)−2λ qβ1

)
(β1 +β2)µ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.16)

Q̈10(u) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2λ µ
(

qu2 +
(
(µ +β1 +β2)q+ν +2λ

)
u+µ β1q+(β1 +β2)(2λ +ν)

)

(u+β1 +β2)
(
(u+2λ +ν)

(
(u+λ +µ)

(
u2 +(2λ +µ +β1 +β2)u

+(2λ −µ)β2 +2λ β1

)
−λ µ (2β1 +β2)

)
+µ
(
(u+λ +µ)

(u+2λ q)β1 +β2
2µ
))

+
(
−β2

2 +β2 (2λ +ν)−2λ qβ1

)
(β1 +β2)µ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.17)

P̈00(u) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ 2 (u+β1 +β2)
(

qu2 +(qβ1 +(µ +β2)q+ν +2λ )u+(µ q+2λ +ν)β1

+β2 (2λ +ν)
)

u
(
(u+β1 +β2)

(
(u+2λ +ν)

(
(u+λ +µ)

(
u2 +(2λ +µ +β1 +β2)u

+(2λ −µ)β2 +2λ β1

)
−λ µ (2β1 +β2)

)
+µ
(
(λ +µ +u)

(2λ q+u)β1 +β2
2µ
))

+
(
−β2

2 +β2 (2λ +ν)−2λ β1q
)
(β1 +β2)µ2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.18)

The transient state probabilities P21(t), P20(t), Q20(t), P10(t), Q10(t) and P00(t) of the

system at any instant t can be derived on taking inverse Laplace transform for P̈21(u),

P̈20(u), Q̈20(u), P̈10(u), Q̈10(u) and P̈00(u) respectively. The state (0,0) represents that

there is no active units in the system, i.e., P00(t) denotes the probability that the system

completely fails at instant t. Let X be the continuous random variable denoting the

time-to-failure of the system, then RX(t) represents the reliability of the system and

defined as

RX(t) = Prob (the machining system function adequately for a specified period of

time) (3.19)

= 1−P00(t), t ≥ 0 (3.20)

From the reliability theory, the failure density function X(t) is defined as:

X(t) =− d

dt
RX(t) =− d

dt
(1−P00(t)) =

d

dt
P00(t) (3.21)
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Figure 3.2: Transition diagram for availability analysis

The Laplace transform of failure density is deduced as Ẍ(u) = uP̈00(u)− P00(0).

Hence, the system’s mean time-to-failure is obtained as follows.

T =MT T F =− d

du
Ẍ(u)

∣∣∣∣
u=0

= 1
2

⎡
⎢⎢⎢⎢⎣

(2λ +ν)((3λ +µ)β1 +3λ β2)(µ +β1 +β2)+2
(
−µ q+(β1 +β2)q̄

)

λ 2 (β1 +β2)+µ ((2q+1)β1 +2 µ q+β2 (2q+1))β1λ +µ2β1
2

((µ q+2λ +ν)β1 +β2 (2λ +ν))(β1 +β2)λ 2

⎤
⎥⎥⎥⎥⎦

(3.22)

3.3.2 Availability of the system

This subsection is enriched with another reliability characteristic, the availability of

the redundant repairable system with switching failure and imperfect repair. The for-

ward Chapman Kolmogorov equations are derived in the form of the system of the

linear equations from Fig. 3.2. We quest the steady-state probabilities of the system

using normalizing condition of probability. The system’s availability is derived after

getting the steady-state probabilities.

In this sequel, the steady-state forward Chapman Kolmogorov equations are devel-

oped by balancing inflow-outflow rates for each state as follows.

(2λ +ν)P21 = β1Q20 (3.23)

(2λ +µ)P20 = (2λ q̄+ν)P21 +β2Q20 +β1Q10 (3.24)

(λ +µ)P10 = 2λP20 +2λqP21 +β2Q10 +β1Q00 (3.25)
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µP00 = λP10 +β2Q00 (3.26)

(β1 +β2)Q20 = µP20 (3.27)

(β1 +β2)Q10 = µP10 (3.28)

(β1 +β2)Q00 = µP00 (3.29)

The normalizing condition from the total probability rule for steady-state probabilities

is written below as

P21 +P20 +Q20 +P10 +Q10 +P00 +Q00 = 1 (3.30)

We obtain the steady-state transition probabilities P21, P20, Q20, P10, Q10, P00, and,

Q00 by solving the system of linear equations (3.23)-(3.29) using the normalizing

condition (3.30).

P21 =

⎡
⎢⎢⎢⎢⎢⎣

µ3β1
3

2 (2λ +ν +µ q)
(

β1 (λ +µ)+λ β2

)
λβ1 (µ +β1 +β2)+(2λ +ν)

(
µ2β1

2+

2λ β2 (λ +µ)β1 +2λ 2β2
2
)
(µ +β1 +β2)+µ3β1

3

⎤
⎥⎥⎥⎥⎥⎦

(3.31)

P20 =

⎡
⎢⎢⎢⎢⎢⎣

(β1+β2)(2λ+ν)µ2β1
2

2 (2λ +ν +µ q)
(

β1 (λ +µ)+λ β2

)
λβ1 (µ +β1 +β2)+(2λ +ν)

(
µ2β1

2+

2λ β2 (λ +µ)β1 +2λ 2β2
2
)
(µ +β1 +β2)+µ3β1

3

⎤
⎥⎥⎥⎥⎥⎦

(3.32)

Q20 =

⎡
⎢⎢⎢⎢⎢⎣

(2λ+ν)µ3β1
2

2 (2λ +ν +µ q)
(

β1 (λ +µ)+λ β2

)
λβ1 (µ +β1 +β2)+(2λ +ν)

(
µ2β1

2+

2λ β2 (λ +µ)β1 +2λ 2β2
2
)
(µ +β1 +β2)+µ3β1

3

⎤
⎥⎥⎥⎥⎥⎦

(3.33)

P10 =

⎡
⎢⎢⎢⎢⎢⎣

2((µ q+2λ+ν)β1+β2(2λ+ν))β1(β1+β2)λ µ

2 (2λ +ν +µ q)
(

β1 (λ +µ)+λ β2

)
λβ1 (µ +β1 +β2)+(2λ +ν)

(
µ2β1

2+

2λ β2 (λ +µ)β1 +2λ 2β2
2
)
(µ +β1 +β2)+µ3β1

3

⎤
⎥⎥⎥⎥⎥⎦

(3.34)

Q10 =

⎡
⎢⎢⎢⎢⎢⎣

2((2λ+µ q+ν)β1+β2(2λ+ν))β1λ µ2

2 (2λ +ν +µ q)
(

β1 (λ +µ)+λ β2

)
λβ1 (µ +β1 +β2)+(2λ +ν)

(
µ2β1

2+

2λ β2 (λ +µ)β1 +2λ 2β2
2
)
(µ +β1 +β2)+µ3β1

3

⎤
⎥⎥⎥⎥⎥⎦

(3.35)
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P00 =

⎡
⎢⎢⎢⎢⎢⎣

2((µ q+2λ+ν)β1+β2(2λ+ν))(β1+β2)
2λ 2

2 (2λ +ν +µ q)
(

β1 (λ +µ)+λ β2

)
λβ1 (µ +β1 +β2)+(2λ +ν)

(
µ2β1

2+

2λ β2 (λ +µ)β1 +2λ 2β2
2
)
(µ +β1 +β2)+µ3β1

3

⎤
⎥⎥⎥⎥⎥⎦

(3.36)

Q00 =

⎡
⎢⎢⎢⎢⎢⎢⎣

2((µ q+2λ+ν)β1+β2(2λ+ν))(β1+β2)λ
2µ

2 (2λ +ν +µ q)
(

β1 (λ +µ)+λ β2

)
λβ1 (µ +β1 +β2)+(2λ +ν)

(
µ2β1

2+

2λ β2 (λ +µ)β1 +2λ 2β2
2
)
(µ +β1 +β2)+µ3β1

3

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.37)

As a result, the manifest expression of the system’s availability is derived as

Av =

⎡
⎢⎢⎢⎢⎢⎣

2 (µ q+2λ +ν)
(

β1
2 +(µ +λ +β2)β1 +λ β2

)
β1µ λ +(2λ +ν)

(
µ β1

3

+
(
(2λ +µ)β2 +µ2

)
β1

2 +2λ β2 (µ +λ +β2)β1 +2λ 2β2
2
)

µ +µ3β1
3

2 (2λ +ν +µ q)
(

β1 (λ +µ)+λ β2

)
λβ1 (µ +β1 +β2)+(2λ +ν)

(
µ2β1

2+

2λ β2 (λ +µ)β1 +2λ 2β2
2
)
(µ +β1 +β2)+µ3β1

3

⎤
⎥⎥⎥⎥⎥⎦

(3.38)

3.4 The fuzzy redundant repairable system

The compendium of the extant perusal is to comprise the efficacy of redundant re-

pairable systems with switching failure and imperfect repair facilities by language

ambiguity, uncertainty in data, and vagueness in system parameters. The system pa-

rameters are extended to follow fuzzy specifications to expand the applicability of

two-active single-standby unit redundant systems with switching failure and imper-

fect repair. The adjacency and lack of certainty of the failure rate of an active unit

(λ ), the failure rate of a standby unit (ν), the repair rate (µ), the perfect inspection

rate (β1), the imperfect inspection rate (β2), and the probability of switching failure

(q) can be represented by fuzzy numbers λ̃ , ν̃ , µ̃ , β̃1, β̃2, and q̃, respectively. Let the

membership grade function for fuzzy numbers λ̃ , ν̃ , µ̃ , β̃1, β̃2, and q̃, are denoted by

η
λ̃
(u1), ην̃(u2), ηµ̃(u3), η

β̃1
(u4), η

β̃2
(u5), and ηq̃(u6), respectively. Then, we have

the following fuzzy representations

λ̃ = {(u1,ηλ̃
(u1)) | u1 ∈U1} (3.39a)

ν̃ = {(u2,ην̃(u2)) | u2 ∈U2} (3.39b)

µ̃ = {(u3,ηµ̃(u3)) | u3 ∈U3} (3.39c)

β̃1 = {(u4,ηβ̃1
(u4)) | u4 ∈U4} (3.39d)

β̃2 = {(u5,ηβ̃2
(u5)) | u5 ∈U5} (3.39e)

q̃ = {(u6,ηq̃(u6)) | u6 ∈U6} (3.39f)
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where U1,U2,U3,U4,U5,and U6 denote the universe of discourse in crisp nature for

the system parameters, namely the failure rate of an active unit/a warm standby unit,

the repair rate, the perfect inspection rate, the imperfect inspection rate, and the prob-

ability of switching failure, respectively.

The fuzzy number, a normal and convex fuzzy set, is an extension of a real

number in the vagueness, ambiguity, uncertainty, and approximation environment.

In the fuzzy number, the element value ranges in possible intervals with the mem-

bership grade between 0 and 1 instead of a specific value. The algebra of fuzzy

numbers covers the uncertainty involved in initial conditions, design, operations, pa-

rameters, observations, etc. For the study of the system characteristics, suppose

that k(u1,u2,u3,u4,u5,u6) represents the reliability characteristic of the proposed re-

pairable system. Since λ̃ , ν̃ , µ̃ , β̃1, β̃2, and q̃ are convex-normalized fuzzy set hav-

ing piecewise continuous membership grade function defined on the real number,

k̃
(

λ̃ , ν̃ , µ̃, β̃1, β̃2, q̃
)

is also the convex-normalized fuzzy set having piecewise con-

tinuous membership grade function defined on a real number. The membership grade

function of the intended characteristic k̃
(

λ̃ , ν̃ , µ̃, β̃1, β̃2, q̃
)

of studied machining sys-

tem is derived for reliability analysis following Zadeh’s extension principle as

η
k̃
(

λ̃ ,ν̃ ,µ̃,β̃1,β̃2,q̃
)(z) =sup

Ψ

min{η
λ̃
(u1),ην̃(u2),ηµ̃(u3),ηβ̃1

(u4),ηβ̃2
(u5),ηq̃(u6)}

(3.40)

st z = k(u1,u2,u3,u4,u5,u6)

We obtain the reliability characteristics k as mean time-to-failure T in Eqn. (3.22) and

availability of the system Av in Eqn. (3.38), for the proposed model. Since pertinent

parameters are fuzzy, T̃ and Ãv are also fuzzy. So, the membership grade function for

the MTTF and availability is denoted by η
T̃
(z) and η

Ãv
(z), respectively, and define as

follow

η
T̃
(z) =sup

Ψ

min{η
λ̃
(u1),ην̃(u2),ηµ̃(u3),ηβ̃1

(u4),ηβ̃2
(u5),ηq̃(u6) |

z = kT (u1,u2,u3,u4,u5,u6)} (3.41)

and

η
Ãv
(z) =sup

Ψ

min{η
λ̃
(u1),ην̃(u2),ηµ̃(u3),ηβ̃1

(u4),ηβ̃2
(u5),ηq̃(u6) |

z = kAv
(u1,u2,u3,u4,u5,u6)} (3.42)
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respectively where

kT (u1,u2,u3,u4,u5,u6) =
1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(2u1 +u2)
(
(3u1 +u3)u4 +3u1 u5

)
(u3 +u4 +u5)

+2
(
−u3 u6 +(u4 +u5)(1−u6)

)
u1

2 (u4 +u5)+u3

((
2u6

+1
)
u4 +2u3 u6 +u5 (2u6 +1)

)
u1u4 +u3

2u4
2

(
(u3 u6 +2u1 +u2)u4 +u5 (2u1 +u2)

)
(u4 +u5)u1

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

kAv
(u1,u2,u3,u4,u5,u6) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 (2u1 +u2 +u3 u6)
(

u4
2 +(u1 +u3 +u5)u4 +u1 u5

)

u1 u3 u4 +(2u1 +u2)
(

u3 u4
3 +
(
(2u1 +u3)u5 +u3

2
)
u4

2

+2u1 u5 (u1 +u3 +u5)u4 +2u1
2u5

2
)

u3 +u3
3u4

3

2 (2u1 +u2 +u3 u6)
(

u4 (u1 +u3)+u1 u5

)
u1u4

(u3 +u4 +u5)+(2u1 +u2)
(

u3
2u4

2 +2u1 u5 (u1 +u3)u4

+2u1
2u5

2
)
(u3 +u4 +u4)+u3

3u4
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with

Ψ = {u1 ∈U1,u2 ∈U2,u3 ∈U3,u4 ∈U4,u5 ∈U5,u6 ∈U6 | ui > 0; i = 1,2,3,4,5,6}

Since the proposed redundant repairable system is more complex with switching fail-

ure and imperfect repair, associated reliability characteristics are also more tedious

under a fuzzy environment to infer the results precisely. The obtained membership

grade function for fuzzified reliability characteristics needs to be more explicit, and

usability is impractical. Even the shape of the membership grade function can not

be depicted, and the conclusion is hardly inferential. The following section employs

parametric nonlinear programs based on the extension principle to overcome the im-

plications of derived membership grade functions and their practical applicability.

3.5 Parametric nonlinear programs

For the defuzzification, we quest the γ-cut of fuzzy number k̃
(

λ̃ , ν̃ , µ̃, β̃1, β̃2, q̃
)

fol-

lowing extension principal discussed by Zadeh’s ([358]). For that purpose, paramet-

ric nonlinear programs (NLPs), mathematical programming techniques, are executed.
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For the fuzzy reliability characteristic k̃, we construct the membership grade func-

tion η
k̃
(

λ̃ ,ν̃ ,µ̃,β̃1,β̃2,q̃
) in the comprehensible and customary form in terms of γ-cut ex-

tending from γ-cuts of pertinent parameters. In the following manner, the γ-cuts of

λ̃ , ν̃ , µ̃, β̃1, β̃2, and q̃ are determined that represent different levels of crisp confidence

intervals.

λ (γ) = [u1γ ,u1γ ] =

[
min

u1∈U1

{u1 | η
λ̃
(u1)≥ γ}, max

u1∈U1

{u1 | η
λ̃
(u1)≥ γ}

]
(3.43a)

ν(γ) = [u2γ ,u2γ ] =

[
min

u2∈U2

{u2 | ην̃(u2)≥ γ}, max
u2∈U2

{u2 | ην̃(u2)≥ γ}
]

(3.43b)

µ(γ) = [u3γ ,u3γ ] =

[
min

u3∈U3

{u3 | ηµ̃(u3)≥ γ}, max
u3∈U3

{u3 | ηµ̃(u3)≥ γ}
]

(3.43c)

β1(γ) = [u4γ ,u4γ ] =

[
min

u4∈U4

{u4 | η
β̃1
(u4)≥ γ}, max

u4∈U4

{u4 | η
β̃1
(u4)≥ γ}

]
(3.43d)

β2(γ) = [u5γ ,u5γ ] =

[
min

u5∈U5

{u5 | η
β̃2
(u5)≥ γ}, max

u5∈U5

{u5 | η
β̃2
(u5)≥ γ}

]
(3.43e)

q(γ) = [u6γ ,u6γ ] =

[
min

u6∈U6

{u6 | ηq̃(u6)≥ γ}, max
u6∈U6

{u6 | ηq̃(u6)≥ γ}
]

(3.43f)

Therefore, the upper and lower bounds of above defined crisp intervals given by

3.43(a-f) can be expressed as a function of γ as u1γ = minη−1

λ̃
(γ), u1γ = maxη−1

λ̃
(γ),

u2γ = minη−1
ν̃

(γ), u2γ = maxη−1
ν̃

(γ), u3γ = minη−1
µ̃

(γ), u3γ = maxη−1
µ̃

(γ), u4γ =

minη−1

β̃1

(γ), u4γ =maxη−1

β̃1

(γ) , u5γ =minη−1

β̃2

(γ), u5γ =maxη−1

β̃2

(γ), u6γ =minη−1
q̃

(γ),

and u6γ = maxη−1
q̃

(γ). Hence, we have u1 ∈ λ (γ) or u1 ∈ [u1γ ,u1γ ], u2 ∈ ν(γ) or

u2 ∈ [u2γ ,u2γ ], u3 ∈ µ(γ) or u3 ∈ [u3γ ,u3γ ], u4 ∈ β1(γ) or u4 ∈ [u4γ ,u4γ ], u5 ∈ β2(γ)

or u5 ∈ [u5γ ,u5γ ], and u6 ∈ q(γ) or u6 ∈ [u6γ ,u6γ ]. Thus, a family of traditional MRPs

with different γ-cut sets expresses the studied fuzzified MRP.

The membership grade function of reliability characteristics η
k̃
(z) is obtained by

employing Zadeh’s extension principle for which it is indispensable that at least one of

the following cases to be hold such that z = k(u1,u2,u3,u4,u5,u6) satisfies η
k̃
(z) = γ

Case (i) :
(

η
λ̃
(u1) = γ ,ην̃(u2)≥ γ,ηµ̃(u3)≥ γ,η

β̃1
(u4)≥ γ,η

β̃2
(u5)≥ γ ,ηq̃(u6)≥ γ

)

Case (ii) :
(

η
λ̃
(u1)≥ γ,ην̃(u2) = γ,ηµ̃(u3)≥ γ ,η

β̃1
(u4)≥ γ,η

β̃2
(u5)≥ γ,ηq̃(u6)≥ γ

)

Case (iii) :
(

η
λ̃
(u1)≥ γ,ην̃(u2)≥ γ,ηµ̃(u3) = γ,η

β̃1
(u4)≥ γ ,η

β̃2
(u5)≥ γ,ηq̃(u6)≥ γ

)

Case (iv) :
(

η
λ̃
(u1)≥ γ,ην̃(u2)≥ γ,ηµ̃(u3)≥ γ ,η

β̃1
(u4) = γ,η

β̃2
(u5)≥ γ ,ηq̃(u6)≥ γ

)

Case (v) :
(

η
λ̃
(u1)≥ γ,ην̃(u2)≥ γ,ηµ̃(u3)≥ γ,η

β̃1
(u4)≥ γ ,η

β̃2
(u5) = γ,ηq̃(u6)≥ γ

)

Case (vi) :
(

η
λ̃
(u1)≥ γ,ην̃(u2)≥ γ,ηµ̃(u3)≥ γ,η

β̃1
(u4)≥ γ,η

β̃2
(u5)≥ γ,ηq̃(u6) = γ

)
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Parametric nonlinear programming techniques help for that purpose. Hence, the NLPs

for computing the lower and upper bounds of the γ-cut of η
k̃
(z) for the cases (i)-(vi)

discussed above are as follows.

(k)γ = min
Ψ

k(u1,u2,u3,u4,u5,u6) ; ∀ cases (i)-(vi) (3.44a)

(k)γ = max
Ψ

k(u1,u2,u3,u4,u5,u6) ; ∀ cases (i)-(vi) (3.44b)

Let γ1 and γ2 be the two γ-cuts such that 0 < γ2 < γ1 ≤ 1. so, we have the fol-

lowing inclusion relations [uiγ1
,uiγ1

]⊆ [uiγ2
,uiγ2

]; i = 1,2,3,4,5,6. The lower bounds

Eqn.(3.44a) and the upper bounds Eqn.(3.44b) have the same smallest and largest el-

ement respectively because these γ-cuts structure a nested interval with respect to γ .

To depict the membership grade function η
k̃
(z) graphically for the k̃, we retrace the

left and right shape function of η
k̃
(z) which is compeer to quest γ-cuts’ lower bound

(k)γ and upper bound (k)γ . The bounds are expressed as

(k)γ = min
Ψ

k(u1,u2,u3,u4,u5,u6)

st uiγ ≤ ui ≤ uiγ ; i = 1,2,3,4,5,6
(3.45a)

(k)γ = max
Ψ

k(u1,u2,u3,u4,u5,u6)

st uiγ ≤ ui ≤ uiγ ; i = 1,2,3,4,5,6
(3.45b)

At least one of ui; i = 1,2,3,4,5,6 must trace the limits of their γ-cuts to calculate the

membership grade function η
k̃
(z). In the ensuing section, parametric nonlinear pro-

grams based on the extension principle are employed to overcome the implications

of derived membership grade functions and their practical applicability. This is a tra-

ditional mathematical model with boundary restrictions and makes progress itself to

the logical study of whence the optimum solutions vary with uiγ ,uiγ ; i = 1,2,3,4,5,6

as γ differs over (0,1]. It is a distinctive case of parametric nonlinear programming.

The crisp intervals [(k)γ ,(k)γ ] obtained in the Eqn.(3.45)(a-b) represents the γ-cut of

k̃. Therefore, for 0 < γ2 < γ1 ≤ 1, we have (k)γ1
≥ (k)γ2

and (k)γ1
≤ (k)γ2

since k̃ is

convex in nature. It implies that on increasing the value of γ the value of (k)γ increases

and (k)γ decreases. Hence, the membership grade function η
k̃
(z) can be derived from

Eqn.(3.45)(a-b) precisely.

If both the (k)γ and (k)γ are invertible with respect to γ , the explicit expression of

a left function L(z) = [(k)γ ]
−1 and a right function R(z) = [(k)γ ]

−1 can be manifested,

otherwise, shape function L(z) and R(z) can be depicted as a graph. Therefore the
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membership grade function η
k̃
(z) is given as

η
k̃
(z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(z), (k)γ=0 ≤ z ≤ (k)γ=1

1, (k)γ=1 ≤ z ≤ (k)γ=1

R(z), (k)γ=1 ≤ z ≤ (k)γ=0

(3.46)

For the intricate models including realistic notions and involved complex process, it

is not easy to solve for the value of (k)γ and (k)γ analytically. Hence, an explicit form

of membership grade function for k̃ is also not facile to formulate. To overcome this

problem we depict the approximate shape graphically. To delineate the approximate

shape of L(z) and R(z), the numerical values for (k)γ and (k)γ at distinct possibility

level γ can be summed up. To derive the membership grade function for system’s

reliability characteristics of proposed model in a similar manner, consider kT and kAv

as a k(u1,u2,u3,u4,u5,u6) for MTTF and availability of the system respectively. A

membership grade function of the reliability characteristics of the studied redundant

repairable system conserves the properties such as ambiguity, fuzziness, vagueness,

uncertainty, approximation, etc., involved in the pertinent parameters. Nevertheless,

in practice, the analysts favor a specific or exact single crisp value rather than a fuzzy

set for action as a measure. The Yager‚s ranking index method (Yager,[339]) is used

to defuzzify the fuzzy values of the reliability characteristics for questing the required

crisp value. Since Yager‚s method holds area reimbursement properties, the proposed

approach is embraced to modify imprecise fuzzified reliability attributes into precise,

crisp values. Proper estimations of system attributes are determined as

O(D[ω]) =
∫ 1

0

(D[ω])γ +(D[ω])γ

2
dγ (3.47)

where D[ω] is a convex fuzzy number and
(
(D[ω])γ ,(D[ω])γ

)
is the corresponding γ-

cut. The proposed technique is a vigorous ranking approach that holds reimbursement,

linearity, and additivity properties (Fortemps and Roubens [61]).

3.6 Numerical illustration and results

In this section, we contemplate a real-time instance to exhibit the practical applica-

bility of a redundant repairable system in power generation. The power generating
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system consists of two identical electrical power generator units with a standby gen-

erator redundancy to increase the system’s usability under the vigilance of a single

operator. The automation system monitors the faults in generator units and fixes them

for repair. The activation of the standby generator unit may also be unpredictable at

the instant of requirement. Both the units (active and standby) are repairable with an

imperfect repair due to inappropriate rendering, faulty fixing, defective parts, lack of

knowledge, etc. The efficiency and potency of the power system can be accessed by

its reliability characteristics (MTTF and availability of the system). Assume the fail-

ure rate of an active or standby unit, repair rate, and rate of other involved processes

are fuzzy to characterize the entailed vagueness, uncertainty, and approximation. The

affine rate parameters are trapezoidal fuzzy numbers and are as follows.

λ̃ = [0.6,0.8,1.0,1.2], ν̃ = [0.1,0.2,0.3,0.4], µ̃ = [3,4,5,6], β̃1 = [10,15,20,25],

β̃2 = [0.5,1.0,1.5,2.0], q̃ = [0.06,0.08,0.10,0.12]

For pre-specified γ ∈ (0,1], a crisp confidence interval is obtained for defuzzification.

The crisp γ-cuts corresponding to given fuzzy numbers associated with applicable

rates are as follows.

[
u1γ ,u1γ

]
= [0.6+0.2γ,1.2−0.2γ ],

[
u2γ ,u2γ

]
= [0.1+0.1γ,0.4−0.1γ ],[

u3γ ,u3γ

]
= [3+ γ,6− γ],

[
u4γ ,u4γ

]
= [10+5γ ,25−5γ ],[

u5γ ,u5γ

]
= [0.5+0.5γ ,2−0.5γ],and

[
u6γ ,u6γ

]
= [0.06+0.02γ,0.12−0.02γ].

It is noticeable that the reliability characteristics accomplish their minimum value for

the lower value of failure and upper value of repair facility and vice versa.

3.6.1 The fuzzy mean time-to-failure

The fuzzy mean time-to-failure (T̃ ) can be obtained using the Eqns. 3.45(a) and

3.45(b) for k = kT . The left shape of MTTF is obtained from minimum value which

can be attained for u1 = u1γ ,u2 = u2γ ,u3 = u3γ ,u4 = u4γ ,u5 = u5γ , and u6 = u6γ and its

right shape corresponding to maximum value when u1 = u1γ ,u2 = u2γ ,u3 = u3γ ,u4 =

u4γ ,u5 = u5γ , and u6 = u6γ . The left and right limits of crisp interval corresponding

to γ-cut are as follows.

(T )γ =
1

2

(
3123423

125
− 4722336γ

625
+ 1068403γ2

2500
− 6832γ3

125
+ 66019γ4

5000
+ 549γ5

2500

)

(
27− 11γ

2

)( γ
5
− 6

5

)2

(
423
5
− 146γ

5
+ 39γ2

20
+ γ3

10

) (3.48a)
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(T )γ =
1

2

(
4075320

701
+ 2476167γ

500
+ 884693γ2

1250
− 77221γ3

625
+ 82489γ4

5000
− 549γ5

2500

)

(
21
2
+ 11γ

2

)(
3
5
+ γ

5

)2

(
69
4
+ 74γ

5
+ 57γ2

20
− γ3

10

) (3.48b)

The function (T )γ and (T )γ are invertible, which yields the membership grade

function as

η
T̃
(z) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

L(z), 347047
91368

≤ z ≤ 712711
98814

1, 712711
98814

≤ z ≤ 7967841913
499605504

R(z), 7967841913
499605504

≤ z ≤ 135844000
3047247

(3.49)

Figure 3.3: η
T̃

and η
Ã

for numerical illustration

It is not so convenient to express the explicit form of the membership left/right

shape function L(z) and R(z); Fig. 3.3(i) depicts the variational shape of the member-

ship grade function of fuzzified reliability characteristics. From 3.3(i), we can make

inferential for reliability characteristics under uncertain, vague, or approximate envi-

ronments.

From Fig. 3.3(i), two significant crisp quantities associated with the fuzzy mean

time-to-failure T̃ are notable. Firstly, at the possible level γ = 0, the support of T̃
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varies from 3.7983 to 44.5793; which depicts that in the pessimistic condition, the

mean time-to-failure can not be beyond 3.7983 or in the optimistic condition it can

not be more than 44.5793. Second, the γ-cut at plausibility level γ = 1 holds the

values 7.2127 to 15.9483, which are the most comprehensible values for the MTTF

under normal conditions.

3.6.2 The fuzzy system’s availability

Similar to previous subsection, the γ-cut of the system availability Ãv are coined from

Eqns. 3.45(a) and 3.45(b) for k = kAv
. The left shape of system availability is obtained

from minimum value which is attained for u1 = u1γ ,u2 = u2γ ,u3 = u3γ ,u4 = u4γ ,u5 =

u5γ , and u6 = u6γ and its right shape corresponding to maximum value when u1 =

u1γ ,u2 = u2γ ,u3 = u3γ ,u4 = u4γ ,u5 = u5γ , and u6 = u6γ . The γ-cuts are as follows.

(Av)γ =

⎡
⎢⎢⎢⎢⎣

(3+γ)

(
4534704

125
+ 6456126γ

125
+ 3532933γ2

125
+ 75731γ3

10

+ 107227γ4

100
+ 39031γ5

500
+ 133γ6

125

)

(
3106512

25
+ 25173162γ

125
+ 16980513γ2

125
+ 12465863γ3

250

+216169γ4

20
+ 33691γ5

25
+ 78851γ6

1000
+ 451γ7

500

)

⎤
⎥⎥⎥⎥⎦

(3.50a)

(Av)γ =

⎡
⎢⎢⎢⎢⎣

(6−γ)

(
91556843

121
− 15516227γ

27
+ 44173361γ2

250
− 701012γ3

25

+59671γ4

25
− 48607γ5

500
+ 133γ6

125

)

(
68396138

15
− 71322439γ

17
+ 11427788γ2

7
− 12801599γ3

37
+ 1700813γ4

40

−734359γ5

250
+ 97793γ6

1000
− 451γ7

500

)

⎤
⎥⎥⎥⎥⎦

(3.50b)

The functions (Av)γ and (Av)γ are invertible due to the involved complexity in the

proposed model, which makes the function rational with high degree polynomial, so

the membership grade function in shape form is

η
Ãv
(z) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

L(z), 3499
3995

≤ z ≤ 2220704
2327063

1, 2220704
2327063

≤ z ≤ 2394580821877027
2431769598868698

R(z), 2394580821877027
2431769598868698

≤ z ≤ 4120057935
4137966349

(3.51)

Fig. 3.3(ii) depicts the shape of the membership grade function of the fuzzy avail-

ability of the system to reveal the variation wrt to the possibility level. The core of

availability is approximately [0.9543 0.9847] from Fig. 3.3(ii) for the possibility level

γ = 1, which exhibits the falling behavior of availability in the interval, although it



3.6. Numerical illustration and results 119

is vague. The support of availability of the system is approximately (0.8758 0.9957)

for the likelihood level γ = 0. This interval indicates that the system’s availability

cannot outdo 0.9957 and fall beneath 0.8758 in optimistic and pessimistic conditions,

respectively.

3.6.3 Numerical simulation

The flow chart for simulation

INPUT < λ̃ , ν̃ , µ̃, β̃1, β̃2, q̃,and γ >
Compute γ-cut λ (γ),ν(γ),µ(γ),β1(γ),β2(γ),q(γ)
Put γ-cut in Eqn.3.22 for MTTF and Eqn.3.38 for availability

Compute (T )γ ,(T )γ ,(Av)γ ,(Av)γ

Compute Support for (T )γ=0 (Av)γ=0

and

Core for (T )γ=1 (Av)γ=1

Derive ηT̃ (z) and ηÃv
(z) by inverting (T )γ ,(T )γ ,(Av)γ ,(Av)γ

i.e.

L(z) for ηT̃ (z) by equating (T )γ=z

R(z) for ηT̃ (z) by equating (T )γ=z

L(z) for ηÃv
(z) by equating (Av)γ=z

R(z) for ηÃv
(z) by equating (Av)γ=z

OUTPUT < ηT̃ (z) and ηÃv
(z)>

Plot ηT̃ (z) and ηÃv
(z)

We illustrate numerical simulation using the flow chart present herewith for the dif-

ferent conglomerations of fuzzy numbers. The fuzzy numbers represent intrinsic im-

preciseness in governing system parameters. The numerical simulations are useful for

the tractability of a nonlinear program introduced for finding the membership grade

function of fuzzified MTTF and the system’s availability for the studied two-active

unit single-warm standby repairable system with imperfect repair and switching fail-

ure. Apart from the assumed trapezoidal fuzzy number for numerical illustration in

the previous subsection, we also consider diverse congregations of trapezoidal fuzzy

numbers. The trapezoidal fuzzy numbers, tabulated in Table 3.1, are commensurate to

governing parameters for experimenting numerically to represent a more comprehen-

sive range of uncertainties, approximation, vagueness, impreciseness. Figs. 3.4-3.9
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show the varied shape of the membership grade functions, and Tables 3.2-3.7 illus-

trate the corresponding support and core. Membership functions can be defined as a

technique to solve practical problems by experience rather than knowledge.

Table 3.1: Trapezoidal fuzzified system parameters

i 1 2 3 4

λ̃i [0.6, 0.8, 1.0, 1.2] [0.6, 0.7, 0.8, 0.9] [0.4, 0.5, 0.6, 0.7] [0.6, 0.9, 1.2, 1.5]

ν̃i [0.1, 0.2, 0.3, 0.4] [0.10, 0.15, 0.20, 0.25] [0.05, 0.15, 0.25, 0.35] [0.10, 0.25, 0.40, 0.55]

µ̃i [3.0, 4.0, 5.0, 6.0] [3.0, 3.5, 4.0, 4.5] [1.0, 2.0, 3.0, 4.0] [3.0, 5.0, 7.0, 9.0]

β̃1i [10, 15, 20, 25] [10, 12, 14, 16] [5, 10, 15, 20] [10, 20, 30, 40]

β̃2i [0.5, 1.0, 1.5, 2.0] [0.6, 0.8, 1.0, 1.2] [0.25, 0.50, 0.75, 1.0] [0.5, 1.5, 2.5, 3.5]

q̃i [0.06, 0.08, 0.10, 0.12] [0.06, 0.10, 0.14, 0.18] [0.02, 0.04, 0.06, 0.08] [0.1, 0.2, 0.3, 0.4]

Figure 3.4: η
T̃

and η
Ãv

for fuzzified λ̃i

In Fig. 3.4, the shape of the membership grade function of the system’s MTTF

and the availability are depicted as relevant to the active unit fuzzy failure rate. Table

3.2 represents the associated support and core values for the reliability characteristics

for various λ̃i. The wide range of support and narrow range of core for MTTF cor-

responding to λ̃3 sustenance the fact that the failure rate must be lower. The higher

uncertainties in the failure of active units are oppositely symmetrical to the possibil-

ity of MTTF and the system’s availability, which is an endorsement of our modeling.

The system’s availability increases with the preventive failure. Preventive failure may
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help enhance the system’s availability, and preventive failure may be obtained with

the proper protective and prophesy maintenance.

Figure 3.5: η
T̃

and η
Ãv

for fuzzified ν̃i

Table 3.2: Properties of T̃ and Ãv for fuzzified λ̃i

λ̃i [0.6, 0.8, 1.0, 1.2] [0.6, 0.7, 0.8, 0.9] [0.4, 0.5, 0.6, 0.7] [0.6, 0.9, 1.2, 1.5]

(T )γ>0 (3.79834,44.57925) (6.13630,44.57925) (9.57629,114.24885) (2.64212, 44.57925)

(T )γ=1 [7.21265,15.94827] [11.12202,21.22130] [19.90512,44.63414] [5.12590,12.45469]

(Av)γ>0 (0.87584,0.99567) (0.92202,0.99567) (0.95035, 0.99839) (0.82956,0.99567)

(Av)γ=1 [0.95429,0.98471] [0.97081, 0.98869] [0.98412,0.99480] [0.93542, 0.98014]

The system’s reliability features (MTTF and availability) for distinct sets of the

fuzzy failure rate of the standby unit (ν̃i) are delineated in Fig.3.5 with the shape of

the corresponding membership grade function. Table 3.3 represents the correspond-

ing support and core of the fuzzy set of the MTTF and the system’s availability for

different νi. The shape, support, and core for varied ranges of νi are nearly the same.

The results show that the standby unit’s failure rate (ν̃) in the inactive state does not

modify much in reliability characteristics. practically, the standby needs to be per-

fect for uninterrupted functioning at the time of switching. The preventive measures

provisioning upkeep the working of standby units.
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Table 3.3: Properties of T̃ and Ãv for fuzzified ν̃i

ν̃i [0.1, 0.2, 0.3, 0.4] [0.10, 0.15, 0.20, 0.25] [0.05, 0.15, 0.25, 0.35] [0.10, 0.25, 0.40, 0.55]

(T )γ>0 (3.79834,44.57925) (3.86114,44.57925) (3.82004, 45.46380) (3.73723,44.57925)

(T )γ=1 [7.21265,15.94827] [7.33811,16.15252] [7.27419,16.15252] [7.04113,15.75319]

(Av)γ>0 (0.87584,0.99567) (0.87700,0.99567) (0.87622 ,0.99576) (0.87478,0.99567)

(Av)γ=1 [0.95429,0.98471] [0.95493,0.98490] [0.95461,0.98490] [0.95340 ,0.98452]

Figure 3.6: η
T̃

and η
Ãv

for fuzzified µ̃i

The shape of the membership grade function of fuzzified MTTF and the system’s

availability commensurate to the specific fuzzy numbers, which represent the vague-

ness of the repair rate of the repairer, is portrayed in Fig. 3.6. Table 3.4 denotes the

most likely range of possible values of the MTTF and availability of the system for

various µ̃i as support and core, respectively. The shape permits the gradual assess-

ment of the membership of reliability characteristics. The wide range of repair rate

µ̃4 shows the wide range of availability of the system. It is an apparent fact. The re-

sult indicates that the increments in a higher possible range of repair rates are directly

proportional to the system’s availability and MTTF. The simulation outcomes prompt

the corrective measures to opt for the machining systems’ long-run functioning.
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Figure 3.7: η
T̃

and η
Ãv

for fuzzified β̃1i

In Fig. 3.7, the shape of the membership grade function of the fuzzified system’s

characteristics wrt the different trapezoidal fuzzy numbers is shown, representing the

vagueness of the perfect inspection of the repairer. The majority range of possible

values of the MTTF and availability of the system for diverse β̃1i as support and core,

respectively, collected in Table 3.5. The possibility of a perfect inspection rate also

increases the system’s characteristics. Whereas its converse, the increasing behavior

of imperfect inspection diminishes the MTTF and system’s availability shown in Fig

3.8. The majority range of possible values of the MTTF and availability of the system

for diverse β̃2i as support and core, respectively, collected in Table 3.6. The result

signifies how predictive measures are important for judging the services. The sup-

port and core corresponding to β̃24 characterize the likelihood of the availability of

the system. Knowing the most likely range is important for management to prioritize

decision-making and resource allocation.

Table 3.4: Properties of T̃ and Ãv for fuzzified µ̃i

µ̃i [3.0, 4.0, 5.0, 6.0] [3.0, 3.5, 4.0, 4.5] [1.0, 2.0, 3.0, 4.0] [3.0, 5.0, 7.0, 9.0]

(T )γ>0 (3.79834,44.57925) (3.79834,29.73744) (2.13604,25.35750) (3.79834,80.71567)

(T )γ=1 [7.21265 ,15.94827 ] [6.30554 ,12.14732 ] [3.96792 ,8.83016 ] [9.19938 ,24.81424 ]

(Av)γ>0 (0.87584,0.99567) (0.87584,0.99111) (0.53643,0.98812) (0.87584,0.99845)

(Av)γ=1 [0.95429,0.98471] [0.93980,0.97431] [0.83575,0.95163] [0.97184,0.99321]
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Table 3.5: Properties of T̃ and Ãv for fuzzified β̃1i

β̃1i [10, 15, 20, 25] [10, 12, 14, 16] [5, 10, 15, 20] [10, 20, 30, 40]

(T )γ>0 (3.79834,44.57925) (3.80108,44.57925) (3.79378,46.25565) (3.79549,44.57925)

(T )γ=1 [7.21265,15.94827] [7.22547,16.00322] [7.22293,16.05346] [7.20005,15.88825]

(Av)γ>0 (0.87584,0.99567) (0.87584,0.99567) (0.86079,0.99567) (0.87584,0.99567)

(Av)γ=1 [0.95429,0.98471] [0.95341,0.98448] [0.95253,0.98453] [0.95517,0.98488]

Table 3.6: Properties of T̃ and Ãv for fuzzified β̃2i

β̃2i [0.5, 1.0, 1.5, 2.0] [0.6, 0.8, 1.0, 1.2] [0.25, 0.50, 0.75, 1.0] [0.5, 1.5, 2.5, 3.5]

(T )γ>0 (3.79834,44.57925) (3.88924,43.97597) (3.91303,46.15377) (3.48389,44.57925)

(T )γ=1 [7.21265,15.94827] [7.39216,16.20396] [7.48598,16.60327] [6.80054,15.42492]

(Av)γ>0 (0.87584,0.99567) (0.88973,0.99563) (0.89263,0.99592) (0.84943,0.99567)

(Av)γ=1 [0.95429,0.98471] [0.95718,0.98505] [0.95843,0.98565] [0.94832,0.98383]

Figure 3.8: η
T̃

and η
Ãv

for fuzzified β̃2i

Fig. 3.9 exhibits fuzzified MTTF and availability’ membership grade function

shape wrt distinct trapezoidal fuzzy numbers, which represents the implications of

the switching failure probability q̃i. Table 3.7 summarizes the most likely range and

most generality value of MTTF and the system’s availability. The difference in the

likelihood of the availability of the system for q̃1 and q̃4 backing for provisioning of

the corrective measures.
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Table 3.7: Properties of T̃ and Ãv for fuzzified q̃i

q̃i [0.06, 0.08, 0.10, 0.12] [0.06, 0.10, 0.14,0.18] [0.02, 0.04, 0.06, 0.08] [0.1, 0.2, 0.3, 0.4]

(T )γ>0 (3.79834,44.57925) (3.63307,44.57925) (3.91111,51.40515) (3.14758,39.42076)

(T )γ=1 [7.21265,15.94827] [6.72337,15.34547] [7.58694,17.32446] [5.83041,12.95081]

(Av)γ>0 (0.87584,0.99567) (0.87278,0.99567) (0.87797,0.99626) (0.86265,0.99511)

(Av)γ=1 [0.95429,0.98471] [0.95159,0.98413] [0.95616,0.98588] [0.94572,0.98134]

Figure 3.9: η
T̃

and η
Ãv

for fuzzified q̃i

These results correlate with the ambiguity, unpredictability, assumptions, and er-

ror in estimating the system’s parameters to reliability characteristics. The sensitive

range of core values and support helps broaden the MTTF and system’s availability.

The support and core directly prospect the enormous feasible scale and most likely

range of desired characteristics. As a system’s complexity increases, the decision-

maker’s ability to make precise and yet significant. This research article helps form

and analyze any real-time service delivery system. The figure-of-merits of the present

study are (i) it deals with a complex system, (ii) covenant with a human-free system,

(iii) it signifies with approximations, errors, uncertainties, vagueness, and ambiguities

in inputs and operations.

3.6.4 Discussion

In the previous section, we present various real-time practical applications computing

to service, computer to communication system, energy sector to the electric vehicle,

etc., where the proposed model is valid. The machining system with active and passive
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redundancy can be analyzed in the studied frameworks. Imperfect repair is a common

imprecise, and the vague regime applicable in machining systems is a crucial term of

our investigation. We present highly measurable performance indices for the analysis

of the studied model. The intensive simulation qualifies our study a lot for multi-

scenario benefits. The membership of performance indices indicates the optimistic

and pessimistic range under the extremely well and poor design. The investigative

results infer the following points

• The preventive measures should opt to avoid frequent failure of active and

standby units and avoid switching failure.

• The corrective measures should opt for timely and perfect repair and perfect

switching.

• The predictive measures should opt to avoid the delay in repair.

3.7 Conclusion

In the present chapter, the fuzzy doctrines γ-cut and Zadeh’s extension principle are

employed to develop the fuzzified MTTF and the system availability associated mem-

bership grade function by using parametric nonlinear programming from fuzzified

pertinent system parameters. We evaluate the γ-cut of the membership grade func-

tion, and their equate interval limits are inverted to obtain machining system perfor-

mance explicit expressions. The proposed two-active single standby unit system is

more practical and applicable in power systems, communication systems, service sys-

tems, etc. The adapted Imperfect repair and switching failure are also realistic. The

shortcoming of the present study is to determine the expression of characteristics to be

analyzed for which a high-grade computing system is required. Otherwise, we cannot

handle multi-unit systems within complex proximity.

In the future, this research work can be extended to derive the membership grade

function for the system’s reliability and queueing measures and apply this concept to

the generalized MRP with any number of standby units with different types of fail-

ure. The studied concept can also be employed on a generalized MRP with reboot,

recovery, and imperfect repairer with perfect and imperfect repair facilities. The fail-

ure, delay, imperfection, and unreliable can be dealt with in the future in designing

the machining system for real-time technology-based sectors. The vacation, working

vacation, distinguished service regime, and varied design can also be implemented in

the future.



Chapter 4

Performance Analysis of a Repairable Machin-

ing System with Standby Deterioration

“In the journey of research, much like

the operation of machines, the passage

of time reveals both strengths and

vulnerabilities. Yet, it is through

perseverance and innovation that both

machines and researchers evolve and

endure.”

Dr. Emily Chen

4.1 Introduction

In today’s evolving technologies in socio-economic constraints, the assimilation of

machines into human life has emerged as profoundly advantageous. Diverse indus-

trial domains including but not limited to the internet of thing, cloud manufactur-

ing, power plants, assembly lines, security systems, and laboratories have become

profoundly reliant upon the performance metrics of machining systems. However,

machines are inherently prone to failure or degrade over time, leading to increased

production costs, disruption in production flow, and logistical supply delays. To miti-

gate these challenges and ensure uninterrupted operations, the development of robust

modern industries or machining systems with improved cost-effectiveness assumes

paramount.

The contemporary world confronts both internal and external security challenges.

The pervasive deployment of CCTV cameras or costly security gadgets has become

ubiquitous in cities, academic/research institutions, service sectors, and industries,
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with each location playing a instrumental role in security measures. Moreover, inter-

nal and external factors, including environmental issues, can disrupt the functioning

of security systems that rely on a steady power supply. To address challenges effec-

tively, the provisioning of standby generator systems is pivotal for security agencies.

By provisioning standby systems, the reliability and sustainability of security systems

are significantly augmented, with judicious operational upkeep. Standby systems are

commonly categorized into three types: cold, warm, and hot. Warm standby units can

be inherently integrated with machining systems to enhance system capacity, thereby

offering a comprehensive enhancement to security system.

This research article focuses on a multi-unit machining system comprising active

redundancy, involving M active units supervised by one repairer and passive redun-

dancy encompassing an high-priced assemblage of S warm standby units, which expe-

rience degradation over time while in a state of readiness. The strategic deployment

of standby units play a vital role in ensuring uninterrupted production flow (UPF)

for machining systems. When an active unit fails, it is immediately replaced by an

available standby unit to maintain the balance of demand and supply within the indus-

try. Standby units are commonly used in systems to provide redundancy and improve

system reliability. Numerous scholarly studies have investigated machining systems

with standbys provisioning since the pioneering work of Srinivasan [281], who laid

foundational insights that redundancy increases the mean time to system failure. The

concept of standby failure in the spare state was first proposed by Osaki and Naka-

gawa [220], and subsequent studies have continuum exploration. Sivazlian and Wang

[273] & Gupta and Chaudhary [78] analyzed a machining system with R repairers to

maximize the expected profit function derived from optimal values of standby units

and repairers.

In traditional research, standby units are often assumed to remain unaffected by

degradation over time in machine repair scenarios and completely reject the deterio-

rated standby unit, if any. However, real-world machining systems show that both ac-

tive and standby units degrade. Recognizing big-budgeted standby unit deterioration

is vital for accurate reliability analysis and efficient system design. This study devel-

ops mathematical models to predict exorbitant standby unit behavior as they degrade,

aiding in maintenance decisions and system performance optimization. Ignoring ex-

tortionate standby unit deterioration can lead to increased downtime and reduced sys-

tem reliability. By considering degradation patterns, optimal maintenance strategies

can be devised, managing costs while ensuring system dependability. Queueing the-

ory, a mathematical framework, proves useful for studying high-cost standby unit de-

terioration by modeling interactions between operational and standby units, offering
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insights into system performance. In essence, understanding standby unit deteriora-

tion is crucial for cost-effective system design, analysis, and maintenance, improving

redundancy and overall system effectiveness.

Yeh [345] developed an optimal repairable-replacement model for deteriorating

machining systems. Tsang [299] introduced preventive and corrective maintenance

notions within a condition-based framework, considering discrete deterioration states

with transitions modeled as semi-Markov or Poisson processes. Wang [307] com-

prehensively examined maintenance policies including age, random age replacement,

repair cost, and time policies. Lai and Chen [165] analyzed a two-unit system with

inter-unit failure rate interaction. Montoro-Cazorla and Perez-Ocon [205] explored

a cold standby system’s degradation phases using phase-type distributions. Others

(cf. Kamaitis [125], Sarje et al. [248], Ahmad and Kamaruddin [2], Yusuf and

Bala [357], Ahmadi [3], Alaswad and Xiang [7]) investigated condition-based main-

tenance, multi-component corrosion protection, and unit deteriorating rates, culminat-

ing in reliability attribute evaluations.

Dong et al. [53] analyzed an optimal preventive replacement strategy for a single-

unit system with two maintenance policies and optimal cost considerations. Liu et al.

[179] proposed a multi-dimensional degradation process-aware maintenance policy

with reliability and cost analyses. Recent work by Wang et al. [328], Al-Jararha et

al. [5], and Hsieh [91] introduced novel criteria for component reallocation in spare

parts systems with condition-based maintenance, enhancing production lines. Salmas-

nia and Shabani [246] explored bottleneck-centered opportunistic maintenance using

particle swarm optimization, determining optimal preventive intervals and reliability

thresholds. Strategic cost function design aids in judicious maintenance decisions.

Wang and Chiu [314] discussed cost analysis of warm standby system availabil-

ity using supplementary variable techniques. Haque and Armstrong [88] conducted

a comprehensive survey on machine interference problems. Complex warm standby

systems with contingent failures were explored (cf. Yun & Cha [354], Shekhar et al.

[266], [263]). Bai et al. [12] proposed a novel approach for warm standby optimiza-

tion with genetic algorithms. Liu et al. [183] assessed cost-benefit of a standby retrial

system with switching failure. Wang et al. [321] analyzed retrial systems with pre-

ventive maintenance and unreliable repairer, focusing on cost-benefit analysis using

Laplace-Stieltjes transforms.

It is evident from the literature survey that researchers have categorized standby

failures into three types in machining systems. However, no research has been con-

ducted on the theory that the failure rate of a standby unit in the operational state

differs from that of its active unit due to deterioration, i.e. degraded failure rate or de-

graded working efficiency of highly-priced standby. This research article explores a
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novel notion in which the failure rate of the standby unit in the operative state differs

from that of the active unit instead of completely rejecting the deteriorated standby

unit. The current study holds paramount significance as it extends its focus beyond

one or two unit systems to encompass generalized machining systems with arbitrary

number of active and standby units. Notably, this investigation uniquely considers the

degradation of high-priced standby units while in the spare state, presenting a novel

and comprehensive approach. This study has practical significance in various cost

efficient domains, including batteries, security systems, and industrial units that use

plastic and rubber components, as these materials deteriorate over time.

The primary objectives of this study are as follows: (i) develop a Markovian model

that incorporates realistic qualities of machining systems, such as failures, standby

failures in the spare state, and failures of operating standby units; (ii) employ math-

ematical concepts like linear algebra and matrix method to simplify the inflow and

outflow balance equations derived from the Markovian model; and (iii) demonstrate

the computational feasibility of cost optimization and system availability.

The remainder of this chapter is structured as follows: Section 4.2 provides a con-

cise model description, including assumptions, mathematical notations, and steady-

state equations of the governing model. Section 4.3 solves the steady-state probability

equations using the matrix analytic method and recursively obtains the state probabil-

ities. Section 4.4 presents the system’s queueing characteristics and the expected cost

function. Section 4.5 introduces the teaching-learning based optimization technique,

a nature-inspired metaheuristic technique. Section 4.6 presents numerical analysis

and cost optimization. Finally, Section 4.7 concludes the inquiry by summarizing the

significant aspects and relevance of the current study.

4.2 Model Description

Our analysis demonstrates that outright rejecting the deteriorating standby unit does

not lead to favorable cost outcomes. Mitigating highly-priced standby unit deteri-

oration requires a strategic blend of measures, including adept maintenance strate-

gies, vigilant condition monitoring, and informed decisions on replacements and re-

pairs. Essential considerations encompass regular inspection and monitoring, predic-

tive maintenance, optimal storage and environmental conditions, rotational deploy-

ment of standby units, maintenance optimization, adaptive replacement policies, life-

cycle cost analysis, advanced material adoption, rigorous research and development,
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skillful training, and comprehensive documentation. Employing these strategies syn-

ergistically enables organizations to effectively curtail standby unit deterioration, op-

timizing the dependability and efficacy of systems reliant on such units. The under-

pinning of these endeavors is underscored by the imperative of robust mathematical

modeling.

This section presents the Markov model customized for a multi-unit machining

system incorporating active redundancy of M identical active units and exorbitant

passive redundancy of S standby units with a single repairer. The model accounts for

the two types of failure of standby units based on their states. The research article rely

on the realistic premise of deterioration of high-priced standby unit overtime that the

failure rate of an active unit differs from that of a replaced standby unit. Both active

and standby units are susceptible to failures, and their time-to-failure is assumed to

follow exponential distributions with parameters λ and ν , respectively. The following

subsections elaborate on the underlying assumptions and system parameters.

Unit Failure Process

The machining system comprises active units, standby units, and deteriorating standby

units, all of which are susceptible to failure under the following assumptions.

• The active units are subject to failures, and the inter-failure time of active units

follows an exponential distribution with a mean of 1
λ .

• It is assumed that standby units may fail before entering the operating state. The

time-to-failure of warm standby units follows an exponential distribution with

a mean of ν−1 (0 < ν < λ ) in the spare state. The advantage of incorporating

warm standby units in this assumption lies in its potential for generalization to

all types of standby units.

• When an active unit fails, it is immediately replaced by an available standby

unit. Once a standby unit transitions to the operating state, its failure character-

istics may no longer identical to those of an active unit due to deterioration in

spare state.

• The switching of standby units is assumed to be flawless. The hypothesis of

switching failures could be considered in a broader scope of the study.

• The inter-failure duration of replaced units (the standby unit in operating state)

is assumed to follow an exponential distribution with a mean of λ1
−1 (ν <

λ1 & λ ≤ λ1).
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Unit Repair Facility

Upon failure, all types of units undergo repair, guided by the subsequent assumptions.

• A repair facility is maintained by a reliable repairer to ensure uninterrupted

operation of the system. The current study’s scope could be expanded to en-

compass scenarios involving unreliable and/or multiple repairers.

• When an operating unit fails, it is sent for repair. If the repairer is idle, the failed

unit is repaired immediately; otherwise, it joins a queue, awaits repair, and is

serviced on a first-come, first-served (FCFS) basis.

• The repair time of a failed unit follows an exponential distribution with a mean

of µ−1.

• The repair process is assumed to be perfect, resulting in a restored unit function-

ing equivalently to new. Its subsequent role as an active or standby unit is con-

tingent upon the system’s state. The current research concept could potentially

be extended to investigate scenarios involving unreliable service postulates.

There is no statistical correlation between the failure and repair processes of the ma-

chining system. The comprehensive study could potentially be extended to encompass

non-Markovian assumptions as well.

Let I1(t) be the number of active units in the system at time t, I2(t) be the number

of standby units in the system at time t, and I3(t) be the number of standby units in the

operating state at time t. Thus, the system state at time t can be described as a three-

dimensional Markov process Ξ = (I1(t) = i, I2(t) = j, I3(t) = k; t ≥ 0) with a state

space defined as Π= {(i, j,k)|i= 0,1,2, · · · ,M−1,M & j = 0,1,2, · · · ,S−1,S & k =

0,1,2, · · · ,M − i−1,M − i}. In the steady state, the steady-state probabilities can be

represented by the equations:

Pi, j,k = lim
t→∞

Pr(I1(t) = i, I2(t) = j, I3(t) = k); {i = 0,1,2, . . . ,M−1,M ; j = 0,1,2,

. . . , S−1,S ; k = 0,1,2, . . . ,M− i}

To determine the steady-state probabilities of the multi-unit machining system with

standby deterioration, we derive the Chapman-Kolmogorov difference equations based

on the inflow and outflow rates within the proposed model.

4.2.1 Steady-state equations

In this section, we establish the governing system of equations by equating the rates

of inflow and outflow for each state, ensuring a balanced representation.
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When system is in intial state

At the outset, the system consists of M active units and S standby units, all operating

in a satisfactory manner. There are no standby units in a deteriorating state within the

system.

−(Mλ +Sν)PM,S,0 +µPM,S−1,0 = 0 (4.1)

When system is in operating mode

Certain active or standby units within the system are non-functional.

− (Mλ1 +Sν)P0,S,M +µP0,S−1,M = 0 (4.2)

− (Mλ1 +(S− j)ν +µ)P0,S− j,M +λP1,S− j+1,M−1+

(Mλ1 +(S− j+1)ν)P0,S− j+1,M +µP0,S− j−1,M = 0 ; 1 ≤ j ≤ S−1 (4.3)

− (Mλ1 +µ)P0,0,M +λP1,1,M−1 +(Mλ1 +ν)P0,1,M = 0 (4.4)

− ((M− j)λ1 +µ)P0,0,M− j +(M− j+1)λ1P0,0,M− j+1 +λP1,0,M− j = 0

; 1 ≤ j ≤ M−1 (4.5)

− (iλ + kλ1 +Sν)Pi,S,k +µPi,S−1,k = 0 ; 1 ≤ i ≤ M−1 & i+ k = M (4.6)

− (Mλ +(S− j)ν +µ)PM,S− j,0 +µPM,S− j−1,0 +(S− j+1)νPM,S− j+1,0 = 0

;1 ≤ j ≤ S−1 (4.7)

− (Mλ +µ)PM,0,0 +µPM−1,0,0 +νPM,1,0 = 0 (4.8)

− (iλ +µ)Pi,0,0 +(i+1)λPi+1,0,0 +λ1Pi,0,1 +µPi−1,0,0 = 0; 1 ≤ i ≤ M−1 (4.9)

− (iλ +(S− j)ν + kλ1 +µ)Pi,S− j,k +(i+1)λPi+1,S− j+1,k−1 +µPi,S− j−1,k+

(kλ1 +(S− j+1)ν)Pi,S− j+1,k = 0 ; 1 ≤ i ≤ M−1, 1 ≤ j ≤ S−1

& i+ k = M (4.10)

− (iλ + kλ1 +µ)Pi,0,k +(i+1)λPi+1,1,k−1 +(kλ1 +ν)Pi,1,k +µPi−1,0,k = 0

;1 ≤ i ≤ M−1 & i+ k = M (4.11)

− (iλ +(k− j)λ1 +µ)Pi,0,k− j +(i+1)λPi+1,0,k− j +(k− j+1)λ1Pi,0,k− j+1+

µPi−1,0,k− j = 0 ; 1 ≤ i ≤ M−2 , 1 ≤ j ≤ k−1 & i+ k = M (4.12)

When system is in failed state

At this state, there are no operational active, standby, or deteriorating units within the

system.

−µP0,0,0 +λP1,0,0 +λ1P0,0,1 = 0 (4.13)
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By employing the principle of total probabilities, we can establish the normalization

condition for the probabilities in the steady state as follows:

M

∑
i=0

S

∑
j=0

M−i

∑
k=0

Pi, j,k = 1 (4.14)

In this section, we have formulated the steady-state probability equations. To compute

these probabilities, an appropriate methodology must be applied. In the subsequent

section, the matrix analytical method is employed to derive numerical values for state

probabilities. The intricate nature of the problem precludes the derivation of explicit

expressions for state probabilities.

4.3 Matrix Analytic Method

The systematic approach and techniques employed involve gathering, analyzing, and

interpreting the proposed model to investigate and understand the system’s behav-

ior. This encompasses an overarching framework and procedures to determine state

probabilities and subsequently evaluate performance metrics, ensuring the reliability,

validity, and rigor of the study’s findings. In this section, we leverage the concept of

standby units deterioration to analyze the steady-state problem of machine repair. The

steady-state probabilities of a Markov process can be effectively computed using the

recursive matrix method. This technique capitalizes on the idea that a complex system

of equations can be simplified by decomposing it into smaller subsystems that exhibit

the same underlying structure. By formulating the block tridiagonal matrix Q through

Eqns. 4.1 to 4.13, we establish a transition rate matrix Q that facilitates the calculation

of steady-state probabilities for the multiunit redundant machine repair system. The

transition rate matrix Q is a square matrix of order (M+1).

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X0 Y0 0 0 . . . 0 0 0 . . . 0 0

Z0 X1 Y1 0 . . . 0 0 0 . . . 0 0

0 Z1 X2 Y2 . . . 0 0 0 . . . 0 0
...

. . .
. . .

. . .
. . .

...
...

...
. . .

...
...

0 0 0 Zi−1 Xi Yi 0 0 0 . . . 0

0 0 0 0 Zi Xi+1 Yi+1 0 0 . . . 0

0 0 0 0 0 Zi+1 Xi+2 Yi+2 0 . . . 0
...

...
...

...
...

. . .
. . .

. . .
. . .

. . .
...

0 0 0 0 . . . 0 0 ZM−3 XM−2 YM−2 0

0 0 0 0 · · · 0 0 0 ZM−2 XM−1 YM−1

0 0 0 0 · · · 0 0 0 0 ZM−1 XM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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The main diagonal block entries, denoted as Xi, represent square matrices of size

(S+ 1+ i), where 0 ≤ i ≤ M. The first block diagonal below, denoted as Zi, corre-

sponds to square matrices of size (S+1+ i), with 0 ≤ i ≤ M −1. Similarly, the first

block diagonal above, represented by Yi, is a matrix of size (S+1+ i)× (S+2+ i),

where 0 ≤ i ≤ M−1. These block entries collectively constitute the transition matrix

Q, which characterizes the dynamics of the system.

X0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(Mλ +Sν) Sν 0 0 . . . 0

µ −(Mλ +(S−1)ν +µ) (S−1)ν 0 . . . 0

0 µ −(Mλ +(S−2)ν +µ) (S−2)ν . . . 0
...

. . .
. . .

. . .
...

...

0 0 µ −(Mλ +2ν +µ) 2ν 0

0 0 0 µ −(Mλ +ν +µ) ν

0 0 0 0 µ −(Mλ +µ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Xi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ai,0 Bi,0 0 0 · · · 0 0 0 0 · · · 0

µ Ai,1 Bi,1 0 · · · 0 0 0 0 · · · 0

0 µ Ai,2 Bi,2 · · · 0 0 0 0 · · · 0
...

. . .
. . .

. . .
. . .

...
...

...
... · · · ...

0 0 0 µ Ai,S−1 Bi,S−1 0 0 0 · · · 0

0 0 0 0 µ Ai,S Bi,S 0 0 · · · 0

0 0 0 0 0 µ Ci,0 Di,0 0 · · · 0

0 0 0 0 0 0 0 Ci,1 Di,1 . . . 0
...

...
...

...
...

. . .
. . .

. . .
. . .

. . .
...

0 0 0 0 0 . . . 0 0 Ci,i−2 Di,i−2 0

0 0 0 0 0 . . . 0 0 0 Ci,i−1 Di,i−1

0 0 0 0 0 . . . 0 0 0 0 Ci,i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; 1 ≤ i ≤ M

where

Ai,0 =−[(M− i)λ +Sν + iλ1], Ai, j =−[(M− i)λ +(S− j)ν + iλ1 +µ], 1 ≤ j ≤ S

Ci, j =−[(M− i)λ +(i− j)λ1 +µ ], Bi, j =−[(S− j)ν + iλ1], 0 ≤ j ≤ S,

Di, j =−(i− j)λ1, 1 ≤ j ≤ i

Yi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 (M− i)λ 0 0 · · · 0 0

0 0 (M− i)λ 0 · · · 0 0

0 0 0 (M− i)λ · · · 0 0
...

. . .
. . .

. . .
. . .

...
...

0 0 0 0 0 (M− i)λ 0

0 0 0 0 0 0 (M− i)λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

& Zi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 · · · 0 0

0 0 0 0 0 · · · 0 0

0 0 0 µ 0 · · · 0 0

0 0 0 0 µ · · · 0 0
...

...
...

...
. . .

. . .
...

...

0 0 0 0 0 · · · µ 0

0 0 0 0 0 · · · 0 µ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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where, 0 ≤ i ≤ M−1

Let P represent the stationary probability vector corresponding to Q, which can be par-

titioned as P0,P1,P2, · · · ,PM−1,PM. The subvector Pi = [PM−i,S,i,PM−i,S−1,i,PM−i,S−2,i,

· · · ,PM−i,1,i,PM−i,0,i,PM−i,0,i−1,PM−i,0,i−2, · · · ,PM−i,0,1,PM−i,0,0]; where 0 ≤ i ≤ M,

has a dimension of order 1× (S+ 1+ i). The balance equations can be expressed

in matrix form, known as the matrix form of the stationary probability equations.

PQ = 0 (4.15)

where, 0 represents the zero vector of dimension (M+1), and Q denotes the transition

rate matrix associated with the Markov process Ξ. It is important to note that the initial

condition for the system is as follows:

Pe = 1 (4.16)

Based on Equation 4.15, the computation of the stationary probability vector P in-

volves solving the following set of equations.

P0X0 +P1Y0 = 0 (4.17)

P0Z0 +P1X1 +P2Y1 = 0 (4.18)

P1Z1 +P2X2 +P3Y2 = 0 (4.19)

Pi−1Zi−1 +PiXi +Pi+1Yi = 0; 2 ≤ i ≤ M−2 (4.20)

PM−2ZM−2 +PM−1XM−1 +PMYM−1 = 0 (4.21)

PM−1ZM−1 +PMXM = 0 (4.22)

The solution is obtained by employing matrix manipulation techniques to derive the

state probabilities in vector form. As the matrix X0 is invertible, Eqn. 4.17 yields the

following result..

P0 = P1V0 where V0 =−X−1
0 Y0 (4.23)

From Eqns. 4.18 and 4.23, we have the following results

P1 = P2V1 where V1 =−(V0Z0 +X1)
−1Y1 (4.24)

Similarly, from Eqns. 4.19 and 4.24, we obtain:

P2 = P3V2 where V2 =−(V1Z1 +X2)
−1Y2 (4.25)
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By further applying Eqns. 4.20 and 4.25, we can iteratively derive the following

results:

Pi = Pi+1Vi where Vi =−(Vi−1Zi−1 +Xi)
−1Yi; 2 ≤ i ≤ M−2 (4.26)

Furthermore, from Eqns. 4.21 and 4.26, we find:

PM−1 = PMVM−1 where VM−1 =−(VM−2ZM−2 +XM−1)
−1YM−1 (4.27)

The state probabilities Pi for 0 ≤ i ≤ M can be expressed in terms of the state proba-

bility PM by recursively computing Eqns. 4.23 - 4.27:.

Pi = Pi+1Vi = Pi+2ViVi+1 = · · ·= PM

M−i

∏
ξ=1

VM−ξ = PMτ∗i (4.28)

Here, τ∗i = ∏
M−i
ξ=1

VM−ξ and Vi for 0 ≤ i ≤ M are given in the aforementioned equa-

tions. Combining Eqns. 4.17 and 4.28, we obtain:

M

∑
i=0

Piei = P0e0 +P1e1 + · · ·+PM−1eM−1 +PMeM

= PMτ∗0 e0 +PMτ∗1 e1 + · · ·+PM−1τ∗M−1eM−1 +PMτ∗MeM

= PM

[
M

∑
i=0

τ∗i ei

]
= 1 (4.29)

Here, ei = [1,1, · · · ,1,1]T1×(S+1+i) for 0 ≤ i ≤ M. Therefore, Eqn. 4.22 can be ex-

pressed as:

PM [VM−1ZM−1 +XM] = 0 (4.30)

By solving Eqns. 4.29 - 4.30, we can determine the state probability PM. Hence,

we can obtain the steady-state probabilities for Pi; i = 0,1,2, ...,M. The forthcoming

section focuses on the queueing characteristics of the system, and the cost function is

also constructed.

4.4 System characteristics

The fundamental objective of modeling the studied multi-unit redundant machining

system is to assess various queueing measures that can effectively capture and char-

acterize the system’s behavior, thereby offering valuable insights for improving its

overall performance. This section presents range of measures that assess the effi-

ciency, effectiveness, and behavior of a queueing system of failed units in the studied
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machining system with standby deterioration. These metrics provide insights into var-

ious aspects of system performance and help in evaluating and optimizing the system’s

functioning. Some key performance metrics in the context of queueing theory include

expected queue length, throughput, etc. ,as performance indicators to evaluate the

system’s efficiency quantitatively. By employing these performance indices, we com-

prehensively understand the system’s operational dynamics and its impact on overall

performance. The details along with the corresponding mathematical expressions are

presented in this section.

• The expected number of failed units EN in the system EN is given as

EN =
M

∑
i=0

[
S

∑
j=1

(S− j)Pi, j,M−i +
M−i−1

∑
k=0

(M− i+S− k)Pi,0,k

]
(4.31)

• The throughput of the system TP is expressed as

T h =
M

∑
i=0

S−1

∑
j=0

µPi, j,M−i +
M−1

∑
i=0

M−i−1

∑
k=0

µPi,0,k (4.32)

• The expected number of standby units in the system ES is given by

ES =
M

∑
i=0

S−1

∑
j=0

(S− j)Pi,S− j,M−i (4.33)

• The mean number of active units in the system EO is defined as

EO =
M

∑
i=0

i

[
S

∑
j=1

Pi, j,M−i +
M−i

∑
k=0

Pi,0,k

]
(4.34)

• The mean number of operating standby units in the system EOS is given by

EOS =
M

∑
k=1

k

[
S

∑
j=1

PM−k, j,k +
M−k

∑
i=0

Pi,0,k

]
(4.35)

• The effective failure rate E f ris defined as

E f r =
[
∑

M
i=0 ∑

S
j=1 (iλ +(M− i)λ1 + jν)Pi, j,M−i +∑

M−1
i=0 ∑

M−i
k=0 (iλ + kλ1)Pi,0,k

]
(4.36)

• The Expected waiting time of the failed units in the system EW is given by

EW =
EN

E f r

(4.37)



4.5. Teaching-Learning based Optimization(TLBO) 139

• The delay time of failed units ED is expressed as

ED =
EN

T h
(4.38)

• The availability of the system MA is given by

MA = 1− EN

M+S
(4.39)

4.4.1 Cost Analysis

The primary objective of conducting cost analysis for machining systems is to min-

imize the overall cost of the system while ensuring its availability over a specified

period. To achieve this, we have formulated the steady-state expected cost function

per unit of time, considering various cost elements associated with the different states

of the system. The cost elements associated with the different states of the system are

defined as follows:

C1 ≡ Cost per unit time for a failed unit present in the system.

C2 ≡ Cost per unit time for an operating standby unit present in the system.

C3 ≡ Cost per unit time for a standby unit available in the system.

C4 ≡ Cost per unit time for a repaired unit present in the system.

C5 ≡ Cost per unit time for repairing a failed unit.

The expected cost function is defined as follows, expressing the cost per unit of time

in terms of the relevant cost elements.

TC =C1 ×EN +C2 ×EOS +C3 ×ES +C4 ×EO +C5 ×µ (4.40)

Therefore, the optimization problem can be formulated as follows:

TC∗(S∗,µ∗) = min
S,µ

TC (4.41)

4.5 Teaching-Learning based Optimization(TLBO)

The concept of the global optimization method known as the Teaching-Learning based

Optimization (TLBO) algorithm was initially proposed by Rao et al. ([236], [237]) to

optimize highly nonlinear functions. This algorithm follows a population-based ap-

proach, where the influence of a teacher or class on learners’ performance in a class-

room is utilized. The TLBO algorithm employs a population of solutions to search
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for the global optimum. In this context, a group of students in a classroom repre-

sents the TLBO population. Similar to other population-based optimization methods,

TLBO involves several design variables associated with different subjects taught to

the learners, and the learners’ fitness is determined based on their performance. The

best solution obtained through TLBO corresponds to the teacher, who is considered

an intellectual member of society. The algorithm operates in two phases: the Teacher

Phase (T -Phase) and the Learner Phase (L-Phase). During the T -Phase, learners ac-

quire knowledge from the teacher, while the L-Phase focuses on learning through in-

teractions among the learners. The T phase and L phase of Teaching-Learning Based

Optimization (TLBO) algorithm are responsible for conducting exploration and ex-

ploitation, respectively, in the context of meta-heuristic optimization. In the follow-

ing subsection, we provide a concise overview of the execution of this optimization

method.

4.5.1 Mathematical Model and Algorithm

We use the following notations to describe TLBO:

• L : Total number of learners in the class i.e. "Class Size"

• H : Total number of courses offered to the learners

• IT : Maximum number of iterations

The TLBO algorithm starts by defining a search space represented by a matrix with L

rows and H columns, which initializes the population X . The jth parameter of the ith

learner is randomly generated using the following equation:

X0
(i, j) = Xmin

j + r(Xmax
j −Xmin

j ) (4.42)

Here, r is a random number uniformly distributed in the range [0,1], and Xmin j and

Xmax j represent the minimum and maximum values of the jth parameter, respectively.

For generation G, the parameters of the ith learner are represented as:

χG
(i) =

[
XG
(i,1),X

G
(i,2),X

G
(i,3), · · · ,XG

(i, j), · · · ,XG
(i,H)

]
(4.43)

Teacher Phase (T−Phase)

At generation G, the mean parameters MG of the learners for each subject in the

class are calculated as:

MG =
[
mG

1 ,m
G
2 ,m

G
3 , · · · ,mG

j , · · · ,mG
H

]
(4.44)
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The learner with the minimum objective function value for the current iteration is

considered as the teacher χGTeacher. The algorithm aims to improve the positions of

other individuals (χGi) by moving them closer to the position of χGTeacher, while

considering the current mean value of the individuals (χmean). This is achieved by

using the mean values of each parameter within the problem space and constructing

attributes for all learners in the current generation. Two random parameters, Tf and

r, are used, where Tf can be either 0 or 1, and r is in the range [0,1]. A random

weighted difference vector is created based on the actual and desired mean parameters

to generate a set of optimal learners, which are then added to the existing population.

χnew
G
(i) = χG

i + r(χG
Teacher −Tf MG) (4.45)

The value of Tf is determined heuristically and randomly using the following equa-

tion:

Tf = round [1+ r(0,1){2−1}] (4.46)

If χnew
G(i) in generation G is found to be a better learner than χG(i), the inferior

learner is replaced by the better one in the matrix.

Learner Phase (L−Phase)

In this phase, learners interact with each other to enhance their knowledge. Two types

of interactions occur: learners receive input from the teacher and learners interact

with each other. During the interactions, if a learner has less knowledge compared to

others, they improve their knowledge by learning from the better-performing learner.

A learner χG(r) is randomly selected for a given learner χG(i) (i �= r). In the learner

phase, the jth parameter of the matrix χnew is updated as follows:

For i = 1 : N

Randomly select two learners χG
i and χG

r , where (i �= r)

if f (χG
(i))≤ f (χG

(r))

χnew
G
(i) = χG

(i)+ r
(

χG
(i)−χG

(r)

)

else

χnew
G
(i) = χG

(i)+ r
(

χG
(r)−χG

(i)

)

end if

end for

Here, N represents the population size.

The updated χnew
G(i) is accepted if it provides a better solution, and the algorithm

terminates after a maximum number of iterations (IT ).
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The pseudo-code for Teaching-Learning based optimization algorithm is as fol-

lows:

1 Input Objective function χLB,χUB,N, IT

2 Initialize a random population [P]

3 Evaluate Objective function F of [P]

4 for t = 1 to T

for i = 1 to NP

Select χG
Teacher

Determine χG
mean

χnew
G
(i) = χG

(i)+R∗
(
χG

Teacher −Tf χG
mean

)

Bound χnew
G
(i) and evaluate the objective function F(χnew

G
(i))

Accept χnew
G
(i) if it is better than χG

(i)

Chose any solution randomly, χG
(r) (r �= i)

Determine χnew
G
(i) as :

If F(χG
(i)) < F(χG

(r))

χnew
G
(i) = χG

(i)+R∗
(

χG
(i)−χG

(r)

)

else

χnew
G
(i) = χG

(i)+R∗
(

χG
(r)−χG

(i)

)

Bound χnew
G
(i) and ecaluate the objective function F(χnew

G
(i))

Accept χnew
G
(i) if it is better than χG

(i) to update (P)

end

end

end

4.6 Numerical illustration

In the following section, we provide a comprehensive numerical illustration to demon-

strate the practical application and effectiveness of the proposed notion of advantages

of detriorating standby units in the multi-unit machining system. Completely discard-

ing the deteriorating big-budget standby unit does not lead to favorable cost outcomes,

as demonstrated by our comprehensive analysis. Through this illustrative example, we

aim to highlight the real-world implications of our research findings and showcase the

potential benefits of incorporating the proposed notion. By applying the developed

mathematical models to a relevant scenario, we seek to provide valuable insights into

the behavior, performance, and optimization of the studied multi-unit machining sys-

tem with deteriorating standby units. This numerical illustration serves as a practical
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validation of our theoretical framework and contributes to the practicality and rele-

vance of our research in the field.

This section presents a numerical exploration to analyze the influence of failure

characteristics of both active units and standby units (in spare and operating states) on

various performance measures. Additionally, we exhibit sensitivity of a cost function

and employ nature-inspired techniques to determine the optimal cost of the system.

We generate plots for performance metrics including EN , EOS, T h, WS, TC, and MA

by varying the failure characteristics and repair facility. For illustrative purpose, the

system parameters are fixed at M = 20, S = 8, λ = 4, ν = 1.8, λ1 = 3, and µ = 75,

which are given in the published articles mentioned in the introduction. We implement

a MATLAB R2020b program to simulate the performance indices for different input

parameters.

Figure 4.1: Expected number of failed units in the system (EN) for different parameters,

( For M = 20,S = 8,λ = 4,ν = 1.8,λ1 = 3,µ = 75)

Figure 4.1(i & ii) illustrates that the mean number of failed units initially increases

with the failure rate of active units and standby units. The results prompt for routine

preventive maintenance to delay the failure of units. After reaching a certain threshold

of failure rate, the mean number of failed units stabilizes. It demonstrates the steady-

state behavior of the system that validates our modelling. Similarly, Figure 4.1(iii)

demonstrates a rapid increase in the mean number of failed units with the failure rate

of operating standby units, which then becomes constant after a certain rate. The

results recommend to ensure that highly-priced standby units are stored in suitable

conditions to prevent unnecessary deterioration. Factors such as temperature, humid-

ity, and exposure to corrosive substances can accelerate deterioration. Proper storage

can extend the lifespan of standby units. Figure 4.1(iv) shows an inverse relationship

between the repair rate and the system’s expected number of failed units. The findings

provoke for just-in-time corrective measures for maintenance. The observed graphi-

cal patterns in all the illustrations align with the principles of machining systems and

reliability theory.
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Figure 4.2: Expected number of operating standby units in the system (EOS) for different

parameters, ( For M = 20, S = 8, λ = 4, ν = 1.8, λ1 = 3, µ = 75)

Figure 4.2(iv) depicts the increase in the mean number of operating standby units

with the effective repair facility. Conversely, the mean number of operating standby

units decreases as the failure characteristics of active units, standby units, and operat-

ing standby units increase. Figure 4.2(i) demonstrates a rapid decrease in the system’s

expected number of operating standby units with an increase in the failure rate of ac-

tive units. After a certain rate, the mean number of operating standby units tends to

be low. This pattern is discernible and consistent. Incorporating advanced attributes

characterized by enhanced resistance to corrosion, wear, and various forms of degra-

dation can significantly prolong the operational lifespan of standby units, thereby sub-

stantially enhancing the overall applicability and utility of the machining system. The

results also prompt, if feasible, periodically rotate the use of standby units to distribute

wear and tear more evenly. This can help prevent individual units from deteriorating

more rapidly than others. The extended degradation of units further emphasizes that

choosing to outright dismiss the deteriorating standby unit does not lead to favorable

cost-related outcomes, as underscored by our comprehensive analysis.

Figure 4.3: Throughput of the system (T h) for the different parameters, ( For M = 20,

S = 8, λ = 4, ν = 1.8, λ1 = 3, µ = 75)

Figure 4.3(ii & iii) shows that the system’s throughput increases rapidly with the

failure rate of standby and operating standby units, and stabilizes after a certain failure
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rate. The upward trajectory in system throughput reflects an increased demand for re-

pairs as the number of failed units within the system rises. These findings emphasize

the importance of establishing a consistent regimen for inspecting and monitoring the

state of standby units. Early detection of deterioration enables timely interventions

and proactive measures. Moreover, the outcomes aid in predicting the occurrence of

deterioration and thus facilitate the scheduling of appropriate maintenance actions.

Figure 4.3(i & iv) presents the system’s throughput enhancement with the failure rate

of active units and the efficiency of repair facilities. As the failure characteristics of

units increase, the repair facility also needs to improve to sustain the system in an

operational state. The analysis prompts to develop maintenance optimization models

that consider the costs and benefits of different maintenance actions, such as preven-

tive maintenance, corrective maintenance, and replacement. These models can help

determine the optimal timing for maintenance based on the degradation profile of

standby units.

Figure 4.4: Expected waiting time of the system (WS) for the different parameters, ( For

M = 20, S = 8, λ = 4, ν = 1.8, λ1 = 3, µ = 75)

Figure 4.4(i, ii, iii) reveals the proportional relationship between failure charac-

teristics and the system’s waiting time, which is obvious. Conversely, Figure 4.4(iv)

demonstrates an inverse relationship between the system’s waiting time and the repair

rate. The study stimulates the consideration of lifecycle cost analyses to compare the

expenses associated with maintaining deteriorating exorbitant standby units versus

replacing them. This facilitates informed decision-making regarding investment in

either maintenance or replacement, taking into account the comprehensive long-term

costs and benefits.
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Figure 4.5: Comaprision of Expected Machining availability of the system for proposed

model(left side) and general machine repair model (right-side) (MA) for the different

parameters, ( For M = 20, S = 8, λ = 4, ν = 1.8, λ1 = 3, µ = 75)

Figure 4.5 provides a comparative analysis of machining system availability con-

sidering highly-priced standby deterioration in the context of machine repair problems

with warm standbys provisioning, presented as two distinct cases: Case (i) involving a

multi-unit machining system with standby units and their deterioration, and Case (ii)

involving a multi-unit machining system with standby units but no allowed deteriora-

tion. This comparison underscores the crucial importance of our study in informing

decision-making processes, emphasizing that the decision not to entirely reject the

deteriorating standby unit does not lead to favorable cost-related outcomes. In Figure

4.5 (i, iii, v), the graphical behavior showcases the result for case (i), i.e., the avail-

ability of the machining system with standby provisioning and their deterioration.

Whereas, Figure 4.5 (ii, iv, vi) represents the result of case (ii), i.e., the availability of

the machining system with standby provisioning but without considering their deteri-

oration. Across both cases, the findings illustrate a decline in the machine availability

of the system with increasing failure rates. Additionally, the results demonstrate an

initial increase in machine availability with the repair rate, followed by stabilization
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after reaching a certain repair rate. These observed trends validate the efficacy of our

proposed model. A direct comparison between the two cases clearly elucidates that

the system’s availability in case (i) significantly surpasses that of case (ii). This out-

come underscores the essential contribution of considering standby deterioration in

enhancing the overall availability and reliability of the machining system. The study

recommends for not to reject the deteriorating unit outright and minimizing standby

unit deterioration involves effective maintenance, predictive strategies, proper storage,

rotation, optimized maintenance models, replacement policies, lifecycle cost analy-

sis, advanced materials, research, training, and documentation. Implementing these

strategies enhances standby unit reliability and optimizes system performance.

Figure 4.6: Expected total cost of the system (TC) for the different parameters, ( For

M = 20, S = 8, λ = 4, ν = 1.8, λ1 = 3, µ = 75, C1 = 295, C2 = 30, C3 = 100, C4 = 220,

C5 = 90 )

Table 4.1: Optimal expected total cost of the system (TC(S∗,µ∗)) for different

parameters using TLBO algorithm, For C1 = 295,C2 = 30,C3 = 100,C4 = 220,C5 = 90

M,λ ,ν ,λ1 S∗ µ∗ TC(S∗,µ∗) Mean Maximum Time Elapsed

15, 4, 1.8, 3 5 69.00000000 8617.11189180 1.00000041196 1.00000060516 899.54982130

20, 4, 1.8, 3 6 77.16146310 10720.89963510 1.00000015151 1.00000031927 899.74991970

25, 4, 1.8, 3 7 97.04682170 13128.04331680 1.00000090934 1.00000080059 951.31288070

20, 2, 1.8, 3 4 69.00000000 9768.63993000 1.00000024471 1.00000083000 934.18288370

20, 4, 1.8, 3 6 77.16146310 10720.89963510 1.00000020271 1.00000012045 899.74991970

20, 6, 1.8, 3 8 92.25556110 11651.25054900 1.00000077918 1.00000090956 934.43656590

20, 4, 0.9, 3 7 76.93986360 10561.93927290 1.00000029389 1.00000066319 983.95043780

20, 4, 1.8, 3 6 77.16146310 10720.89963510 1.00000010906 1.00000027286 899.7499197

20, 4, 2.7, 3 5 76.35569960 10829.93348960 1.00000045143 1.00000082179 987.6567021

20, 4, 1.8, 3 6 77.16146310 10720.89963510 1.00000081059 1.00000088578 899.7499197

20, 4, 1.8, 5 4 69.00000000 11620.79567780 1.00000020031 1.00000011409 870.3748059

20, 4, 1.8, 7 4 69.00000000 11797.56884690 1.00000031419 1.00000098442 863.6995901
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Iteration=1 Iteration=5

Iteration=10 Iteration=15

Iteration=20 Iteration=25

Iteration=30 Iteration=35

Figure 4.7: Convergence of iteration of Teaching-Learning based Optimization
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Table 4.2: Optimal expected total cost of the system (TC(S∗,µ∗)) for different

parameters using TLBO algorithm, For M = 20,λ = 4,ν = 1.8,λ1 = 3

C1,C2,C3,C4,C5 S∗ µ∗ TC(S∗,µ∗) Mean Maximum Time Elapsed

240, 100, 30, 220, 90 6 74.96138010 10489.22798980 1.00000009600 1.00000052141 923.36916370

295, 100, 30, 220, 90 6 77.16146340 10720.89963510 1.00000088594 1.00000067988 899.74991970

350, 100, 30, 220, 90 6 78.86097810 10930.62964790 1.00000054321 1.00000040023 890.64309570

295, 70, 30, 220, 90 7 79.44917240 10284.53704230 1.00000029123 1.00000069461 945.52531740

295, 100, 30, 220, 90 6 77.16146340 10720.89963510 1.00000058289 1.00000064603 899.74991970

295, 130, 30, 220, 90 6 69.00000000 11017.24555610 1.00000052998 1.00000087073 853.47022050

295, 100, 10, 220, 90 6 77.55162070 10670.62058440 1.00000007797 1.00000073474 715.60339200

295, 100, 30, 220, 90 6 77.16146340 10720.89963510 1.00000033682 1.00000060641 899.74991970

295, 100, 50, 220, 90 5 75.83910930 10763.25880380 1.00000096670 1.00000010818 935.95150790

295, 100, 30, 180, 90 4 69.00000000 10392.27824060 1.00000016773 1.00000082179 858.12666990

295, 100, 30, 220, 90 6 77.16146340 10720.89963510 1.00000031325 1.00000021260 899.74991970

295, 100, 30, 260, 90 7 79.57288920 10903.35585380 1.00000054367 1.00000078785 844.06782680

295, 100, 30, 220, 60 6 82.82309870 8325.28862860 1.00000056897 1.00000048454 887.68834430

295, 100, 30, 220, 90 6 77.16146340 10720.89963510 1.00000055697 1.00000048061 899.74991970

295, 100, 30, 220, 120 4 69.00000000 12869.51517820 1.00000060602 1.00000048204 897.79616760

Table 4.3: Optimal expected total cost of the system (TC(S∗,µ∗)) for different

parameters using PSO algorithm, For C1 = 295,C2 = 30,C3 = 100,C4 = 220,C5 = 90

M,λ ,ν ,λ1 S∗ µ∗ TC(S∗,µ∗) Mean Maximum Time Elapsed

15, 4, 1.8, 3 5 69.00000000 8617.11189180 1.00000013611 1.00000030554 1348.36518690

20, 4, 1.8, 3 6 77.16146330 10720.89963510 1.00000097010 1.00000052101 1349.45679990

25, 4, 1.8, 3 7 97.04682100 13128.04331680 1.00000011807 1.00000091120 1493.34594530

20, 2, 1.8, 3 4 69.00000000 9768.63993000 1.00000082264 1.00000016694 1329.95894890

20, 4, 1.8, 3 6 77.16146270 10720.89963510 1.00000090634 1.00000011189 1349.52871830

20, 6, 1.8, 3 8 92.25556050 11651.25054900 1.00000059529 1.00000072096 1489.02060450

20, 4, 0.9, 3 7 76.93986400 10561.93927290 1.00000077633 1.00000080469 1581.85008890

20, 4, 1.8, 3 6 77.16146270 10720.89963510 1.00000091759 1.00000041987 1349.52871830

20, 4, 2.7, 3 5 76.35569980 10829.93348960 1.00000079057 1.00000029589 1522.50358090

20, 4, 1.8, 3 6 77.16146270 10720.89963510 1.00000090012 1.00000018322 1349.52871830

20, 4, 1.8, 5 4 69.00000000 11620.79567780 1.00000060249 1.00000082903 1298.49546720

20, 4, 1.8, 7 3 60.00000000 11797.56884690 1.00000078416 1.00000051414 1280.77642290

The following content delineates a cost optimization analysis, evaluating the cost-

effectiveness of distinct strategies, while considering factors such as maintenance,

replacement, and system performance. For optimal analysis of the cost-optimization

function, we set M = 20, S = 8, λ = 4, ν = 1.8, λ1 = 3, µ = 75, C1 = 295, C2 = 30,

C3 = 100, C4 = 220, and C5 = 90. Figure 4.6(i & ii) depicts both graphs as convex, in-

dicating the existence of an optimal solution within the convex region for the decision
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variables S and µ . Due to S being discrete and µ continuous, the optimization prob-

lem becomes inherently more changeableness. Traditional optimization techniques

are not well-suited to address this challenge since total cost function reliance on sys-

tem performances expressed in terms of state probabilities. We utilize the teaching-

learning based optimization (TLBO) technique to obtain the optimal total cost and

the corresponding values of the decision variables. For employing TLBO, we set the

population size to 300 and performed 10 multiple runs to obtain the optimal decision

parameters and total cost values. The collection of graphs in figure 4.7 illustrates the

convergence of solution points to optimal point through different intermediate solu-

tion points during iterations and demonstrates the convergence to optimal point across

multiple runs, considering a range of initial random solutions. Figure 4.7 illustrates

the convergence behavior of the optimal total cost TC for different iterations of multi-

ple runs, thereby validating the effectiveness of teaching-learning based optimization

for optimal analysis. Tables 4.1 and 4.2 present the optimal values of the expected

total cost function and decision variables for each range of input parameters employ-

ing TLBO techniques where as Tables 4.3 and 4.4 present the simillar results from

PSO technique. The evident outcome underscores that sustaining the operation of

a substantial number of active units necessitates a higher-tier repair facility and re-

dundancy, consequently leading to higher costs. In addressing the recurrent failure

of active units, the demand for additional standbys, coupled with an efficient repair

facility, introduces a higher budgetary allocation. When the failure rate of standby

units in the spare state is pronounced, the findings advocate for a reduced inventory of

standby units in the spare state. The tabulated data also forecasts the reduction in op-

erational costs within a machining system through the incorporation of deteriorating

units. These outcomes align with the hypothesis that the decision to reject deteriorat-

ing standby units demands a nuanced assessment, encompassing not only immediate

cost savings but also the enduring operational repercussions. To provide statistical

justification for the utilization of the meta-heuristic optimization technique, we calcu-

late the mean and maximum of ratios between the overall optimum value of the total

cost, denoted as TC(S∗,µ∗), across all runs and the optimal total cost TCi(S
∗,µ∗) ob-

tained from the ith run. The results presented in the numerical illustration demonstrate

that the variations across different runs are of negligible magnitude.

Graphs and tables validate the effectiveness of the optimization approach and

present the optimal values of the cost function and decision variables. These findings

provide insights for improving the machining system’s performance and optimizing

its cost by understanding the impact of failure characteristics and making informed

decisions regarding maintenance and standby provisioning.

In a nutshell,
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Table 4.4: Optimal expected total cost of the system (TC(S∗,µ∗)) for different

parameters using PSO algorithm, For M = 20,λ = 4,ν = 1.8,λ1 = 3

C1,C2,C3,C4,C5 S∗ µ∗ TC(S∗,µ∗) Mean Maximum Time Elapsed

240, 100, 30, 220, 90 6 74.96137990 10489.22798980 1.00000010081 1.00000018530 1456.05380520

295, 100, 30, 220, 90 6 77.16146300 10720.89963510 1.00000087843 1.00000043689 1349.78670430

350, 100, 30, 220, 90 6 78.86097790 10930.62964790 1.00000019232 1.00000014231 1346.46043420

295, 70, 30, 220, 90 7 79.44917220 10284.53704230 1.00000025341 1.00000089116 1481.95494260

295, 100, 30, 220, 90 6 77.16146300 10720.89963510 1.00000091181 1.00000010012 1349.78670430

295, 130, 30, 220, 90 4 69.00000000 11017.24555610 1.00000014176 1.00000086129 1390.72374590

295, 100, 10, 220, 90 6 77.55161990 10670.62058440 1.00000076899 1.00000077285 1276.43717580

295, 100, 30, 220, 90 6 77.16146300 10720.89963510 1.00000088905 1.00000080518 1349.78670430

295, 100, 50, 220, 90 5 75.83910970 10763.25880380 1.00000041991 1.00000095490 1274.74491670

295, 100, 30, 180, 90 4 69.00000000 10392.27824060 1.00000075788 1.00000014494 1299.82566120

295, 100, 30, 220, 90 6 77.16146300 10720.89963510 1.00000013312 1.00000062117 1349.78670430

295, 100, 30, 260, 90 7 79.57289010 10903.35585380 1.00000098286 1.00000099830 1342.16140430

295, 100, 30, 220, 60 6 82.82309890 8325.28862860 1.00000013331 1.00000056390 1297.53929790

295, 100, 30, 220, 90 6 77.16146300 10720.89963510 1.00000078736 1.00000018269 1349.78670430

295, 100, 30, 220, 120 4 69.00000000 12869.51517820 1.00000012788 1.00000091102 1345.36541600

• In a systematic approach, the installation of an optimal number of standby units

proves cost-effective by avoiding the maintenance of excessive standbys or en-

countering shortages.

• To prevent failures, it is essential to implement preventive measures consis-

tently. Instead of replacing standbys with new units, utilizing deteriorating

standbys can be a viable option.

• Just-in-time corrective measures should be implemented promptly to mitigate

the risk of significant shortages or downtime.

• Regular observations and data collection are crucial for conducting predictive

analysis and anticipating unit failures.

By leveraging mathematical models and cost-benefit analyses, the study demonstrates

that a balanced approach to standby unit maintenance is crucial for optimizing sys-

tem performance, reliability, and economic efficiency. By following these practices,

organizations can optimize their operational efficiency, minimize costs, and enhance

overall system reliability.

4.7 Conclusion

In conclusion, this research presents a comprehensive exploration of standby unit

deterioration dynamics within multi-unit machining systems, revealing the intricate

interplay between failure characteristics, repair facilities, and system performance
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metrics. Our model, incorporating degradation effects, failure rates, and repair dy-

namics for active and standby units, serves as a valuable tool to analyze and opti-

mize system behavior in realistic operational scenarios. The study emphasizes the

critical importance of considering standby unit deterioration, offering insights into

the delicate balance between cost considerations and system reliability. Through ad-

vanced methodologies encompassing queueing theory, mathematical modeling, and

metaheuristic optimization techniques, our research contributes to both theoretical

understanding and practical applications. Results highlight the strategic implications

of managing deteriorating standby units, advocating for nuanced evaluations that en-

compass short-term savings and long-term operational sustainability. These findings

are particularly pertinent for industries reliant on standby units, providing actionable

guidelines to enhance reliability, efficiency, and cost-effectiveness. In summary, our

study provides a robust foundation for analyzing and optimizing multi-unit machining

systems under the influence of standby unit deterioration. By delving into practical

complexities and leveraging diverse analytical tools, this research extends its rele-

vance to a range of real-world scenarios. As we move forward, the potential for fur-

ther investigations and informed decision-making processes is undeniable, opening

avenues for continued advancements in reliability engineering and machining system

optimization. The current research can be extended to encompass scenarios involving

an unreliable repairer, multi-repairer setups, multi-type standbys, and the considera-

tion of switching failures in standby units. Furthermore, the comprehensive analysis

presented here holds potential for extension into non-Markovian frameworks, thereby

offering a broader understanding of complex industrial systems and their dynamics.



Chapter 5

Performance Analysis of Machine Repair Sys-

tems with Deteriorating Standby Using Phase-

Type Distributions: Comparative Study of Er-

lang, Exponential, and Hyper-Exponential Dis-

tributions

“Life is like a phase-type distribution;

it transitions between different states,

each with its own challenges and

opportunities.”

John Doe

5.1 Introduction

In the contemporary world, machines have made our lives easier, faster, and more

convenient in numerous ways; therefore, they have become an integral part of our

modern-day lives. The world is highly dependent on machines; the day-to-day life

of a human being is also affected by machines. Machines play an important role in

such diverse fields as manufacturing, transportation, healthcare, education, logistics,

computer networking, telecommunications, entertainment, and many daily-life ser-

vice operations. The challenges faced during machine repair can be multifaceted and

demanding, often requiring a deep understanding of technical concepts, access to spe-

cialized resources, and a skillful approach to problem-solving. The successful restora-

tion of machines to their optimal state depends on effectively applying these elements.

Machine repair problems (MRP), like Industry 4.0, cloud computing, and the internet
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of things(IOTs), are advantageous in the current industrial scenario. Machine rapir

problems can predict machine failures, automate troubleshooting and maintenance

processes, remote monitoring and repair, automate diagnostics, detect mechanical is-

sues, and automate reporting of machine performance. It helps to dwindle downtime

and costs associated with the breakdown of machines. Machine repair problems en-

hance production productivity, efficiency, and product quality. However, the machine

is also prone to failure like any other artificial object, wear and tear, and other prob-

lems that can significantly impact its performance; the supply chain management, the

service facility, and many other factors are also interrupted. Due to various combined

impacts of loads, external factors like the environment, the quality of materials used

in production, and the internal factor of materials, the performances of the machining

systems deteriorate with time. If the machine fails, it might disrupt many different

sectors and enterprises, resulting in costly downtime and damage to reputation. To

overcome this, the maintenance and monitoring of the machines to prevent or mini-

mize the chances of failure and prolong their lifespan.

Various researchers have done a vast amount of research on the machine repair

problem. Wang [309] developed the profit model of the machining system using dif-

ferent types of breakdowns to determine the optimal values of repairers. The machin-

ing system with different types of failure and maintenance has been studied in detail

by various researchers (cf. [273], [40], [114], [35], [318], [115]). Recently, Shekhar

et al. [264] analyzed the Markovian warm-spare node provisioning computing net-

work with different failures. The Laplace transform technique is used to determine

the steady-state probabilities and analyzed the proposed model’s reliability character-

istics. Yen et al.[348] discussed a retrial machine repair problem using F-policy with

working breakdown. The Laplace transform technique and matrix analytic method

are applied to solve the differential-difference equations of the proposed model. More

recently, a finite capacity Markovian multi-server machining system with working

vacation and customer impatience was discussed by Bouchentouf et al. [18]. The op-

timal values of decision variables are found using the direct search and Quasi-Newton

methods. A non-Markovian machining system with spare parts and operating units

with working vacations under N-policy was discussed by Meena et al [199].

When an active unit fails in the multi-unit machining system, the industry faces

losses like loss of production, revenue, data, time, profit, customers, and reputation.

Spare parts are beneficial for machining systems to prevent such kinds of losses.

When an operating unit fails, it is instantly replaced with available spare parts, and

the failed unit is sent to the repairer. After repair, the repaired unit joins as an active

or spare unit as per system requirements. Spare parts and well-planned maintenance

and repair schedules are essential for the decline in unit failure. The spare parts are
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categorized into three types according to their failure characteristics: cold, warm, and

hot. A standby unit is known as cold standby unit if its failure rate is zero. Suppose

the failure rate of a standby unit is the same as that of an active unit, then it is known

as a hot standby unit. A standby unit is known as a warm standby unit if its failure

rate is neither zero nor equal to an active unit. Various researchers have done a vast

amount of research on multi-unit machining systems incorporating standby units.

The self-testing and repairing system with dynamic redundancy has been stud-

ied by Avizienis et al. [10]. The fault-tolerant machine repair system with mixed

standby units investigated by Wang and Kuo [317]. A direct search method and the

steepest descent method are imposed to find the optimal value of decision parameters

that help to reduce the total expected cost function. A Markovian multi-unit machine

repair system has warm standby with R repairer and vacation policy developed by re-

searchers (cf. [316], [139], [275], [234]). These machining systems’ reliability, avail-

ability, maintainability, and profit analysis have been studied. The redundancy helps

to enhance the system’s reliability and mean time to failure (MTTF). The MTTF and

the system’s availability significantly enhance by incorporating redundancy with the

system. The availability of the fault-tolerant system with standby units and a wait-

ing strategy can be enhanced if it is free from any human error and has an instant

repair facility. We investigate preventative maintenance optimization for parallel k-

of-n multi-unit systems where production might be lowered while some units remain

operating. The classification for high availability cloud solution (HACS) based on

multilayer discussed by (cf. [17], [57]). The Markovian K-out-of-M +Y + S redun-

dant repairable machining system has mixed standbys with various types of failure

analyzed in the literature [262]. Recently, Wang et al. [327] studied a redundant re-

trial machining system subject to standby switching failure. In addition, they used the

matrix analytical method and the Laplace transform technique to determine the sys-

tem’s performance indices. Kumar et al. [159] developed a non-Markovian M/G/1

fault-tolerant machine repair system with the vacationing server. The fuzzy perfor-

mance indices are computed using the non-linear parametric technique, and the cost

function is defined using harmony search to get the best descriptors at the lowest cost.

More recently, Gao [66] developed a redundant machining system having N-active,

W -warm, and C-cold standby units with two dependent failures. Performance matri-

ces, reliability, and availability in the transient are obtained by applying the Markov

and Markov renewal theories. Rani et al. [235] used particle swarm optimization and

harmony search optimization to find the optimal decision parameters and minimum

total cost of the fault-tolerant redundant system.

In the prosaic research of the machine repair model, it is considered that the

standby units are often intact and unaffected by degradation over time, Often, if a
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unit’s performance deteriorates slightly, it is better to fix it rather than discard it

entirely. Recognizing the deterioration of the standby units in a highly financially

estimated set-up is helpful to preemptive management, maintenance decisions, per-

formance optimization, system downtime and production reduction, redundancy, and

system effectiveness, and optimizing system design. Therefore, this study creates a

mathematical model to predict extortionate standby unit practices as they degrade,

assisting in the system’s maintenance decisions and performance optimization. It is

important to pay attention to the deterioration of standby units in a machine repair

system, both for reliability and cost-effectiveness. Ignoring this issue can increase

system downtime and reduce production. To balance system dependability and cost

management, it is necessary to observe degradation patterns and implement optimal

maintenance strategies. Mathematical modeling using queueing theory can be a use-

ful approach to analyzing the degradation of high-priced standby units. Analyzing

the correlations between operational and standby units is crucial for obtaining signif-

icant inputs into system performances. Understanding the deterioration of standby

units plays a vital role in the development, assessment, and maintenance of efficient

systems, thereby improving redundancy and overall system effectiveness.

A standby unit can degrade in its spare state without any operation. Bearing,

seals, gaskets, hoses, belts, fans, batteries, filters, and rubber items are a few exam-

ples of machine components that wear out over time. This deterioration depends on

the quality of the parts, the environmental factors such as temperature, humidity, dust,

etc. Pierskalla and Voelker [229] conducted a comprehensive review of maintenance

models for systems that are prone to deterioration. In his investigation, Wang [307]

examined various maintenance policies, such as age replacement, block replacement,

periodic preventive maintenance, failure limit, and sequential preventive maintenance

policies for deteriorating systems. The study delved into technical details related to

these policies and their effectiveness in maintaining such systems. Yuang and Meng

[352] utilized the Laplace transform technique to examine the reliability aspects of a

two-unit warm standby repairable system with precedence in use and a fickle switch.

Meanwhile, Ghaleb et al. [68] studied a single deteriorating machine that experiences

degradation-based failures and scrutinized the impact of deterioration, failures, and

maintenance policies. The study of condition-based maintenance, deteriorating ma-

chining systems in the energy field, degraded manufacturing with imperfect repair,

various effects of deterioration on machining systems, and deteriorating maintenance

activity are analyzed by numerous researchers (cf. [329], [221], [69], [288], [308],

[124] ). In a phase-type service distribution, the random variable representing the

time between machine failures (or repairable system failures) is modeled as a Markov

process. The Markov process is divided into a finite number of phases. Each phase is
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linked to an exponential time distribution. The system moves from one phase to an-

other based on specific criteria, such as the occurrence of failures or the execution of

repairs. It is applicable in reliability engineering, queueing theory, and mathematical

finance to model stochastic processes. A MRP can precisely predict repair durations

for various machines using the phase type service distribution. It improves future

repair time forecasts, helping the repair system schedule repairs and assess service

availability. Neuts [217] studied the reliability modelling of systems with two com-

ponents assuming the time-to-failure and repair time distributions are of phase type.

Brière and Chaudhry [19] discussed the bulk-arrival queueing model Mx/G/1 with

four service-time distribution cases: hyper exponential, deterministic, uniform, and

Erlang. Numerous researchers have studied machine repair systems with exponen-

tially distributed machine failure, Markovian arrival process, phase type breakdown of

machines, and the service time of the repairer is assumed to be a phase type. The sup-

plementary variable technique and Laplace-Stieltjes transform are applied to derive

the steady-state probabilities and perform the machine availability sensitivity analy-

sis. Phase type distributions enhance the systems’ flexibility and practicality. The

time-dependent reliability of nonrepairable systems is designed and analyzed using

realistic stochastic models. The phase type distribution in the machine repair system

with different characteristics is studied in the literature (cf.[29], [312], [242], [341],

[30], [145], [321], [197]).

When an active unit fails, it is replaced with an available standby unit, and the

failed unit is sent back to the repairer. A standby unit may fail in the spare state

before operation mode. A standby unit may deteriorate with time due to internal and

external factors, and the failure rate of a deteriorated standby unit is much higher than

a standby unit in a spare state and an active unit. It is assumed that a standby unit may

fail in its spare state without any operation. So the failure characteristics of a standby

unit in a spare state will be different from the failure characteristics of the operating

standby unit. To the best of our knowledge, it is found that no research has yet to

be done on this theory. Hence our best knowledge, it is a novel approach in which

the failure rate of the standby unit in spare state is different from that of its operating

standby unit. Hence, standby unit failure characteristics in the spare and operating

states should be studied. This study might optimize standby unit maintenance and

replacement, boosting system reliability and efficiency.

Motivation Behind the study

Standby provisioning is standard in many industries and systems to ensure uninter-

rupted operation. However, even standby units can deteriorate with time, affecting
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their reliability and performance. In the case of electric vehicles, batteries are a criti-

cal component, and their deterioration over time can affect the performance and range

of the vehicle. It is a challenge that the industry is actively working to address by

improving battery technology and implementing maintenance and replacement strate-

gies to ensure optimal battery performance. Similarly, in security services, equipment

such as vehicles, communication devices, and surveillance systems must be main-

tained and replaced regularly to ensure reliable operation. Rubber and plastic parts

used in industrial machinery and machining systems can also deteriorate over time

due to wear and tear exposure to heat, chemicals, and environmental factors. Regu-

lar maintenance and replacement of these components can prevent equipment failures

and downtime. Overall, it is vital for industries and systems to consider the potential

deterioration of standby units and components and to implement strategies to ensure

their ongoing reliability and performance.

The remainder of the research article’s contents are as follows: The rest of this

work is split into six sections: Section 5.2 provides a model description, Section 5.3

goes over matrix analytic method, Section 5.4 describes the system’s characteristics,

Section 5.5 presents a numerical analysis, and Section 5.6 provides a conclusion and

ideas for future studies.

5.2 Model Description

From the above literature survey, it is evident that the outright rejection of the deterio-

rating standby unit does not usher in beneficial cost repercussions. The cost of standby

units varies depending on the type of industrial setup, with some being highly expen-

sive and others being average or low-priced. In order to mitigate the degradation of

costly standby units, it is essential to implement a practical approach that includes ap-

propriate repair, vigilant monitoring, timely replacement, and the expertise of skilled

technicians. To ensure optimal performance and longevity of equipment, system-

atic inspection and monitoring should be prioritized, along with the implementation

of predictive maintenance approaches, ideal storage, and environmental conditions,

standby unit rotation as needed, optimization of maintenance procedures, utilization

of adaptive replacement policies, consideration of lifecycle cost analysis, adoption of

advanced materials, thorough research and development, skillful training, and com-

prehensive documentation maintenance. This research article presents a multi-unit

machine repair model having M identical active units, S standby units, and a repairer.

The active units are prone to failure, and whenever a unit fails, it is immediately re-

placed with an available standby unit, while the failed unit is sent to the repair pool.

Since the standby units may fail in their standby state, they can fail without being in
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operation. The standby units may deteriorate with time, leading to higher failure rates

than active and standby units.

Unit failure process

• When an active unit fails in the operating state, then the inter-failure time of the

active units follows an exponential distribution with the parameter λ .

• It is presumed that the warm standby units may fail in the spare state before

their operational state. The inter-failure time of the warm standby unit is ex-

ponentially distributed with the mean ν−1, (0 < ν < λ ), where ν is the failure

rate of the warm standby unit.

• When the standby unit deteriorates over time for various factors, its failure char-

acteristics will differ from those of the active and standby units.

• When an active unit fails, it is replaced with an available warm standby unit

without losing time. The inter-failure time between two successive operating

standby units follows an exponential distribution with the mean 1/λ , (ν <

λ1 & λ ≤ λ1).

Unit repair facility

• Developing a repair facility to ensure an uninterrupted operating system (UOS)

will be beneficial.

• When an operating unit fails, it is sent to the repair facility without loss of time

and will be repaired instantly if the repairer is idle; otherwise, join the queue

wait for its turn and repair under a first come, first serve policy (FCFS).

• The time to repair the failed units is exponentially distributed with the mean

1/µ , µ > 0.

Phase type Distribution

A phase-type distribution (Pht) is defined as the distribution of the life time, i.e., the

time to enter an absorbing state from the set of transient states of an absorbing con-

tinuous time Markov process. In this article, repairing of the unit is done in various

phases and to model this type of repair process we considered the phase type distri-

bution. Let there are m+ 1 repair stages of the units and all the states are transient

states except the (m+ 1)th stage. Then the time until absorption is defined by the

phase type distribution (Pht disribution). A. K. Erlang [58] initially proposed the

idea of a phase type distribution, and Neuts [214] later formalized this idea. The
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distribution F(.) on R+ is a phase-type distribution with the representation (β ,V) if

it is the distribution of the absorption time in the (m+ 1)th state of a Markov pro-

cess defined on the states {1,2,3, · · · ,m,m+1 }, given initial probability distribution

β = (β1,β2,β3, · · · ,βm,βm+1). where the states 1,2,3, · · · ,m,m+1 are transient states

and the state (m+ 1)th absorbing. Consider a finite continuous time Markov chain

(CTMC) with m+ 1 transient states and one absorbing state (no transition from this

state) with the infinitesimal generator T partitioned as.

T =

[
V V0

0 0

]

where V is a m × m square matrix, V0 is a column vector of order m such that

Ve+V0 = 0. Matrix V should be nonsingular for absorption into the absorbing state

from any initial state, and assume the matrix V+V0β is irreducible. Let’s assume the

initial state of the Markov chain is obtained using the (β ,βm+1) probability vector.

Our objective is to figure out how much time the system requires for the system to

enter the absorbing stage. Let Y denote the transition interval from state m to state

m+ 1. Thus, Y is a continuous random variable on [0,∞], and its probability density

and cumulative probability distribution function are provided by

f (t) = βeVtV 0, t ≥ 0, F(t) = P(Y ≤ t) = 1−βeVte, t ≥ 0, respectively.

Random variable Y follows a PH-distribution with representation (β ,V) of order m

and denoted by Y ≡ PH(β ,V ) of order m. The mean and variance of Y are denoted

by µY and σY
2 and defined as

µY = β (−V)−1e and σY
2 = 2βV−2e−µY

2.

In order to define the exponential matrix, we have

eQ = I+Q+Q2/2+ · · ·

Some special cases of PH-distribution are given as

Exponential Distribution

If m = 1,β = 1, and V=(−λ ) then we obtain exponential distribution with parameter

λ .
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Erlang Distribution

The erlang distribution of order m with parameter λ is a PH-distribution with repre-

sentation (β ,V) of order m given by

β = (1,0,0, · · · ,0) and V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−λ1 λ1 0 · · · 0

0 −λ2 λ2 · · · 0

0 0 −λ3 · · · 0
...

...
... . . .

...

0 0 0 · · · −λm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Hyperexponential Distribution

A hyperexponential is a mixture of m exponential with parameters λ1,λ2,λ3, · · · ,λm

and the mixing probabilities are P1,P2,P3, · · · ,Pm. This is a PH-distribution with rep-

resentation (β , V) of order m given by

β = (P1,P2,P3, · · · ,Pm) and V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−λ1 0 0 · · · 0

0 −λ2 0 · · · 0

0 0 −λ3 · · · 0
...

...
... · · · ...

0 0 0 · · · −λm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

5.3 Steady-State Analysis

There is no statistical correlation between machining system failure and its repair. Let

P(t) be the phase of service, if any, I1(t) be the number of active units in the system

at some time t, I2(t) be the number of standby units in the system at any instant t, and

I3(t) be the number of standby units acting in an operating state in the system at any

time t. Thus, the system state at time t can be described as a four-dimensional Markov

process Ξ = (P(t) = p, I1(t) = i, I2(t) = j, I3(t) = k; t ≥ 0) with state space is defined

as Ω = {(p, i, j,k)| p = 1,2, · · · ,m− 1,m & i = 0,1,2, · · · ,M − 1,M & j =

0,1,2, · · · ,S− 1,S & k = 0,1,2, · · · ,M − i− 1,M − i}. In the steady state, let us

represent the steady-state probabilities equations as follows

Pp,i, j,k = lim
t→0

{P(t) = p, I1(t) = i, I2(t) = j, I3(t) = k}; p = 1,2, · · · ,m−1,m & i = 0,1,2

· · · ,m−1,m & j = 0,1,2, · · · ,S−1,S & k = 0,1,2, · · · ,M− i
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To find the steady-state probabilities of the multi-unit machining system, we de-

rive the Chapman Kolmogrove differential-difference equation in terms of inflow and

outflow rates in of the proposed model.

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E0 F0 0 0 0 · · · 0 0

G1 E1 F1 0 0 · · · 0 0

0 G2 E2 F2 0 · · · 0 0

0 0 G3 E3 F3 · · · 0 0
...

...
...

. . .
. . .

. . .
...

...

0 0 0 0 GM−2 EM−2 FM−2 0

0 0 0 0 0 GM−1 EM−1 FM−1

0 0 0 0 0 0 GM EM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

The transition rate matrix Q is a square matrix of order M+1. The main block diago-

nal matrix, denoted as Ei, represents a square matrix of order (S+ i)m+1×(S+ i)m+

1; where 0≤ i ≤ M. The first diagonal above matrix denoted as Fi, represents a matrix

of order (S+(i+1))m+1×(S+(i+1))m+1; where 0≤ i≤M−1. The first diagonal

below matrices, denoted as Gi, represent a matrix of order (S+ i)m+1×(S+ i)m+1;

where 1 ≤ i ≤ M.

E0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0,0 β ⊗Sν 0 0 · · · 0 0

V 0 B0,1 +V C0,1 0 · · · 0 0

0 V 0β B0,2 +V C0,2 · · · 0 0
...

...
. . .

. . .
. . .

...
...

...
...

...
. . .

. . .
. . .

...

0 0 0 0 V 0β B0,S−1 +V C0,S−1

0 0 0 0 0 V 0β B0,S +V

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

F0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 Mλ I 0 0 · · · 0 0

0 0 Mλ I 0 · · · 0 0

0 0 0 Mλ I · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 0 Mλ I 0

0 0 0 0 0 0 Mλ I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Ei =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

bi,0 β ⊗Sν 0 0 · · · 0 0 0 · · · 0

V 0 Bi,1 +V Ci,1 0 · · · 0 0 0 · · · 0

0 V 0β Bi,2 +V Ci,2 · · · 0 0 0 · · · 0

0 0
. . .

. . .
. . .

...
...

... · · · 0
...

...
...

...
. . .

. . .
...

... · · · ...

0 0 0 0 V 0β Bi,S−1 +V Ci,S−1 0 0 0

0 0 0 0 0 V 0β Bi,S +V Ci,S 0 0

0 0 0 0 0 0 0 Di,1 +V Hi,1 0
...

...
...

...
...

...
...

. . .
. . .

. . .

0 0 0 0 0 0 0 0 0 Di,i +V

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 (M− i)λ I 0 0 · · · 0 0

0 0 (M− i)λ I 0 · · · 0 0

0 0 0 (M− i)λ I · · · 0 0
...

...
...

. . .
. . .

...
...

0 0 0 0 0 (M− i)λ I 0

0 0 0 0 0 0 (M− i)λ I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Gi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 0 0 0 0

0 0 0 · · · 0 0 0 0 0
...

. . .
. . .

. . .
...

...
...

...
...

0 0 0 0 0 0 0 0 0

0 0 0 V 0β 0 0 0 0 0

0 0 0 0 V 0β 0 0 0 0
...

...
...

...
...

. . .
. . .

. . .
...

0 0 0 0 0 0 V 0β 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The elements B j,i,b j,i,C j,i,D j,i,andH j,i the above of component matrix are defined

belows

B j,i =−((M− j)λ + jλ1 +(S− i)ν)I, b j,i =−((M− j)λ + jλ1 +(S− i)ν), ∀ i ≤ S

C j,i = ( jλ1 +(S− i)ν)I, D j,i =−((M− j)λ +( j− i)λ1)I, H j,i = ( j− i)λ I.

Let P denote the stationary probability column vector conforms to Q, which can

be divide up as P0,P1,P2, · · · ,PM−1,PM. The subvector Pi = [PM−i,S,i,PM−i,S−1,i,

PM−i,S−2,i, · · · ,PM−i,1,i,PM−i,0,i,PM−i,0,i−1,PM−i,0,i−2, · · · ,PM−i,0,1,PM−i,0,0];

0 ≤ i ≤ M, has dimension of order 1× (S+ i)m+1. Then, we have

QP = 0 (5.1)
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where 0 is zero vector of dimension (M+1)(Sm+1)+m(M(M+1)/2), and Q is the

generator matrix of the Markov process Ξ. with the normalizing condition

PTe = 1 (5.2)

From Eqn. 5.1, the stationary probability vector P can be calculated by solving the

following equations.

E0P0 +F0P1 = 0 (5.3)

G1P0 +E1P1 +F1P2 = 0 (5.4)

GiPi−1 +EiPi +FiPi+1 = 0 ; 2 ≤ i ≤ M−2 (5.5)

GM−1PM−2 +EM−1PM−1 +FM−1PM = 0 (5.6)

GMPM−1 +EMPM = 0 (5.7)

We get the solution now from Eqn. 5.3, we have

P0 = P1X0, where X0 =−E−1
0 F0 (5.8)

From Eqns. 5.4 and 5.8, we get

P1 = P2X1, where X1 =−(X0G1 +E1)
−1

F1 (5.9)

From Eqns. 5.5 and 5.9, we determine

Pi = Pi+1Xi, where Xi =−(Xi−1Gi +Ei)
−1

Fi, 2 ≤ i ≤ M−2 (5.10)

From Eqns. 5.6 and 5.10, we obtain

PM−1 = PMXM−1, where XM−1 =−(XM−2GM−1 +EM−1)
−1FM−1 (5.11)

By recursively evaluating Eqns. 5.8-5.11, we can express the state probabilities Pi; 0≤
i ≤ M in terms of state probabilities PM

Pi = Pi+1Xi = Pi+2XiXi+1 = · · ·= PM

M−i

∏
ξ=1

XM−ξ = PMτ∗i (5.12)
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where τ∗i = ∏
M−i
ξ=1

XM−ξ and Xi; 0 ≤ i ≤ M are given above Eqns. 5.8 - 5.11. By

Eqns. 5.7 and 5.12 we get

M

∑
i=0

Piei = P0e0 +P1e1 + · · ·+PM−1eM−1 +PMeM

= PMτ∗0 e0 +PMτ∗1 e1 + · · ·+PM−1τ∗M−1eM−1 +PMτ∗MeM = PM

[
M

∑
i=0

τ∗i ei

]
= 1

(5.13)

where ei = [1,1, · · · ,1,1]T1×(S+i)m+1; where 0 ≤ i ≤ M. hence Eqn. 5.7 can be written

as

PM [XM−1GM +EM] = 0 (5.14)

therefore, on solving Eqns. 5.13 - 5.14, we can obtain state probability PM. So, we

can determine the steady-state probabilities for PM

5.4 System characteristics

Modeling this multi-unit redundant machining system is done primarily to assess

various queueing methods to define the system’s behavior, which may improve the

system’s performance. We have used indices such as steady-state probabilities to

characterize the system’s effectiveness. The system’s behavior may be significantly

interpreted with the help of these performance indicators.

• Expected number of failed units in the system is given as

EN =
M

∑
i=0

e

[
S

∑
j=1

(S− j)Pi, j,M−i +
M−i−1

∑
k=0

(M− i+S− k)Pi,0,k

]
(5.15)

• The throughput of the system is given as

T h =
M

∑
i=0

S−1

∑
j=0

eµPi, j,M−i +
M−1

∑
i=0

M−i−1

∑
k=0

eµPi,0,k (5.16)

• Expected number of standby units in the system is given as

ES =
M

∑
i=0

SPi,S,M−i +
M

∑
i=0

S−1

∑
j=1

e(S− j)Pi,S− j,M−i (5.17)
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• Mean number of active units in the system is given as

EO =
M

∑
i=1

iPi,S,M−i +
M

∑
i=2

S−1

∑
j=1

iePi, j,M−i +
M

∑
i=1

M−i

∑
k=0

Pi,0,k (5.18)

• Mean number of operating standby units in the system is given as

EOS =
M

∑
k=1

kPM−k,S,k +
M

∑
k=1

ke

[
S−1

∑
j=1

PM−k, j,k +
M−k

∑
i=0

Pi,0,k

]
(5.19)

• Effective failure rate is given as

E f r =
M

∑
i=0

(iλ +(M− i)λ1 +Sν)Pi,S,M−i

+

[
M

∑
i=0

S−1

∑
j=1

(iλ +(M− i)λ1 + jν)ePi, j,M−i +
M−1

∑
i=0

M−i

∑
k=0

(iλ + kλ1)ePi,0,k

]

(5.20)

• Expected waiting time of the failed units in the system is given as

EW =
EN

E f r

(5.21)

• Delay time of failed units is given as below

ED =
EN

T h
(5.22)

• Availability of the system

MA = 1− EN

M+S
(5.23)

5.5 Numerical Analysis

In the subsequent section, we present an extensive numerical demonstration to ex-

emplify the practical application and efficacy of the proposed concept regarding the

advantages of integrating deteriorating standby units within the multi-unit machin-

ing system. Our thorough analysis reveals that entirely disregarding the deteriorating,

albeit costly, standby unit does not yield favorable cost outcomes. Through this illus-

trative example, we endeavor to underscore the tangible real-world implications of our

research findings and underscore the potential advantages of embracing the proposed

concept. By employing the developed mathematical models in a pertinent scenario,



5.5. Numerical Analysis 167

we aim to offer valuable insights into the behavior, performance, and optimization

of the examined multi-unit machining system with deteriorating standby units. This

numerical demonstration validates our theoretical framework and enhances the prac-

ticality and relevance of our research in the field.

In this section, we undertake a numerical investigation to evaluate the impact of

failure characteristics on performance metrics for both active and standby units (in

both spare and operating states). We utilize MATLAB R2020b, running on a 12th

Gen Intel(R) Core(TM) i7− 12700 processor with a clock speed of 2100 MHz, 12

cores, and 20 logical processors, to simulate the performance indices for various input

parameters. Specifically, we set the system parameters as follows: M = 20, S = 8,

λ = 4, ν = 1.8, λ1 = 3, and µ = 75, as per the references cited in the introduction.

Figure 5.1: Expected number of active units in the system

Figure 5.1 deploys how the system’s expected number of active units changes when

different parameters are changed. In Figure 5.1(i) the expected number of active units

with different distributions enhances as we improve the system’s service rate. In con-

trast, in Figure 5.1(ii-iv), the expected number of active units decreases as we increase

the failure rate of active units, operating standby units, and standby units.

Figure 5.2: Expected number of deteriorate units in the system

The expected number of active units is more in the erlang distribution than exponential

and hyper exponential. Figure 5.2(i) represents the proportional behavior of the mean

number of deteriorated units and service rate. Figure 5.2(ii-iv) shows the inverse

relationship between the mean number of deteriorated units and the failure rate of



168 Chapter 5. Performance Analysis of Machine...

active units, operating standby units, and standby units. Enhancing the failure rates

of the operating standby units and the standby units results in rapid decreases in the

system’s deteriorated units.

Figure 5.3: Expected number of the failed units in the system

Figure 5.3(i) demonstrates increasing the service rate of the system results in the ex-

pected number of failed units in the system decreasing. In contrast, Figure 5.3(ii-iv)

displays that the system’s failure rates behave proportionally to the expected number

of failed units in the system.

Figure 5.4: Expected failure rate of the system

Figure 5.5: Expected number of the standby units in the system
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Figure 5.6: Expected waiting time of the system

Figure 5.7: Machine availability of the system

Figure 5.6 also represents the same behavior as figure 5.3. Figures 5.5 & 5.7(i) de-

pict how increasing the service rate increases the mean number of standby units and

system availability. Figures 5.5 & 5.7(ii-iv) demonstrate improving the failure rates

of the system reduces the system’s availability and the mean number of standby units.

Figures 5.4 & 5.8 (i) exhibit the system’s effective failure rate and throughput. As the

system’s service rate increases, the system’s effective failure rate, and throughput are

also enhanced. Figures 5.4 & 5.8 (ii-iv) demonstrate that the increasing failure rate of

the system results in enhancing the effective failure rate and throughput of the system.

Figure 5.8: Throughput of the system

5.6 Conclusion

The phase-type distribution can be useful in modeling machine repair systems because

it allows for a more accurate representation of service time distributions than simpler
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distributions, such as the exponential distribution. By using a more accurate service

time distribution, the machine repair system can more effectively model and analyze

the system’s performance, including measures such as mean time to repair and system

availability.



Chapter 6

The State of The Art Methodologies For Relia-

bility Analysis of Imperfect Repair and Thresholed-

Based Measures

“The imperfect repair of the machine

mirrors the human condition-a

perpetual striving towards perfection

amidst the inevitability of

imperfection. In this dance, the

researcher becomes both artisan and

philosopher, shaping progress with

each adjustment.”

Plato

6.1 Introduction

In today’s world, machines and devices are deeply intertwined with daily life, mak-

ing it nearly impossible to imagine human existence without them. Machines have

become an integral part of human life, seamlessly integrating into society and play-

ing a crucial role in meeting the growing demands for products and services. Fault-

tolerant systems (FTSs) are especially important in ensuring uninterrupted operations

within socio-techno-economic constraints. These systems find wide applications in

various industries like textiles, automobiles, and Fast-moving consumer goods. Ma-

chine interference occurs when there’s a mismatch between the units and the repairer.

This research addresses the novel concept of imperfect repair in FTSs with finite ac-

tive/standby units. It focuses on strategic control to improve maintenance and enhance

redundancy for increased utility and reliability. In machining systems, unexpected
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unit failures due to wear and tear lead to increased costs, delays, and operational

inefficiencies. Implementing a preventive maintenance strategy with standby units

can help promptly replace failed units, improving system reliability despite additional

costs.

Previous research has focused on managing failed units in systems, often through

threshold-based policies. These policies control the arrival of failed units to minimize

expected downtime. For instance, under the commonly studied F-policy, failed units

are not allowed to enter the system when the number of waiting units reaches capacity.

They are only permitted to enter after the queue size drops to a specified level.

Service systems have often been studied assuming consistently successful ser-

vice provision. However, real-world situations may involve instances of unsuccessful

service attempts before achieving success. For example, the COVID-19 pandemic

has forced academic institutions to shift to untested online teaching methods, lead-

ing to network glitches hindering effective knowledge transfer. Cloud computing has

emerged as a significant enhancer of educational efficiency, dynamically allocating

computing and storage resources for teaching materials and addressing network er-

rors during online sessions. The term "unreliable service" describes this interplay of

unsuccessful and successful service instances, where customers experiencing unsuc-

cessful service rejoin the queue until they receive successful service.

This chapter comprehensively explores the novel service regime of imperfect re-

pair in FTSs, aiming to bridge gaps in existing literature by introducing controlled

arrival processes for failed units. Its objectives are to formulate a stochastic model of

the machining system considering imperfect repair and controlled arrival, propose a

computationally efficient numerical scheme for calculating transient-state probabili-

ties, and establish the system’s reliability and queueing characteristics. The study also

addresses sensitivity and relative sensitivity analysis, offering valuable insights for

decision-makers. Additionally, it discusses potential applications of the FTS in vari-

ous domains. The methodology involves a systematic approach, including an exten-

sive literature survey, the introduction of a novel model, the formulation of a stochastic

model, and the development of numerical schemes and exploration of system charac-

teristics using mathematical theories. The chapter is organized into sections covering

literature review, model description, Chapman-Kolmogorov differential-difference equa-

tions, transient-state probabilities derivation, system characteristics, cost function for-

mulation, sensitivity analysis, identification of standard models, numerical results,

and conclusion.
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6.2 Literature Review

The exploration of machine interference has been a prominent focus in the litera-

ture, with foundational reviews (cf. Stecke and Aronson [284], Valdez-Flores and

Feldman [301], Haque and Armstrong [88]). The articles on machine interference

problems (MIPs) highlight significant applications across various sectors, including

telecommunications (Kryvinska [151]), cloud computing (Luo et al. [188]), computer

networking (Bunday et al. [24]), artificial intelligence ( Luo et al. [182]), ambulance

fleet management (Firooze et al. [59]), and more. Zagia et al. [359] introduced a

hybrid model optimizing facility maintenance scheduling for efficiency and cost sav-

ings.

From the conceptualization of standby units (Taylor and Jackson [293]), the lit-

erature has been extensively enriched (cf. Yun [353], Cho and Parlar [40]). The

fault-tolerant systems with multi-active and standby units were analyzed for avail-

ability with imperfect coverage (Ke et al. [136]), reliability in a fuzzy environment

(Shekhar et al. [259]), reliability in a probabilistic environment (Shekhar et al. [261]),

reliability with switching failure and reboot delay (Shekhar et al. [262]), reliability

characterizing the temperature deviation procedure via a two-stage Wiener process

(Ma et al. [189]), and availability and mean time to failure (MTTF) in a fuzzy envi-

ronment (Devanda et al. [47]).

The total cost of a mathematical model was scrutinized for coordinating produc-

tion scheduling and Condition-Based Maintenance (CBM) planning in a manufactur-

ing system with a single machine (Sharifi and Taghipour [253]) and parallel-machine

(Sharifi et al.[252]) experiencing multiple failures and discrete stages of deteriora-

tion. Maintenance planning and production scheduling were jointly optimized in in-

telligent manufacturing systems (cf. Ghaleb et al. [68], Ghaleb et al. [70], Ghaleb

et al. [69]), addressing factors such as new job arrivals, due date changes, stochas-

tic deterioration-based failures, minimal repairs, and CBM. Recent research explores

applications for multiunit systems, including studies on bipropellant rocket engines

with electric pump-fed systems (Bai et al. [13]) and hydrogen-air-steam mixture gas

behavior under steam condensation (Liu et al. [180]). Structural reliability and de-

sign analysis for complex systems have been conducted (cf. She et al. [256], Qi et

al. [231]), alongside the development of an iterative threshold algorithm of Log-Sum

Regularization for sparse problems (Zhou et al. [360]).

After the inception of the F-policy (Gupta [82]), subsequent research extensively

explored the concept of controllable arrival in MRPs for reliability characteristics

analysis. Steady-state results were derived for a single removable and unreliable

server using the matrix analytical method (Wang and Yang [324]), while transient
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results were investigated for a retrial system with working breakdowns and random-

ized setup time using the Laplace transform technique (Yen et al. [348]).

The concept of unreliable service was introduced in a Markovian queue with a

single server, both without (Patterson and Korzeniowski [225]) and with (Patterson

and Korzeniowski [226]) working vacations. Recognizing its practicality, unreliable

service as imperfect repair in MRPs with standby provisioning, a strategic threshold-

based F-policy, and vacation interruption was examined (Shekhar et al. [267]), high-

lighting its importance in reducing power consumption and preventing thermal trip

errors through discouragement and feedback strategies (Shekhar et al. [257]). The

reliability of multi-unit systems with standby provisioning was explored, considering

failures, degradation, random delays, and probabilistic imperfections (Shekhar et al.

[258]).

Although FTSs have been widely studied, the incorporation of imperfect repair

mechanisms, where failed units are subject to controlled arrival processes, remains

underexplored in the literature. Addressing this gap, our research introduces a more

realistic model that:

• Pioneers the incorporation of imperfect repair mechanisms, presenting a novel

service regime beyond traditional fault-tolerance approaches.

• Explores controlled arrival processes for failed units, offering in-depth under-

standing of system dynamics.

• Extends the understanding of service scenarios to include unsuccessful attempts

before achieving success, relevant in contexts like online teaching during the

COVID-19 pandemic.

These findings collectively advance the understanding of system reliability and per-

formance in real-world scenarios.

6.3 Model Description

In this section, we present a detailed model description outlining the key components

and fundamental characteristics of the proposed fault-tolerant machining system. The

model intricately captures the dynamic interactions between active and standby units,

the repair process, and the controlled arrival of failed units. Each aspect is systemati-

cally defined and formulated, incorporating essential parameters such as failure rates,

repair rates, inspection rates, and strategic thresholds. The model’s design is grounded

in established principles of reliability theory, queueing theory, and controlled pro-

cesses, ensuring a comprehensive. The main assumptions of the current research are

as follows:
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• The proposed machine repair problem focuses on the reliability characteristics

in the context of a service regime involving imperfect repair by a single repairer

for failed units, controlled by the F-policy.

• The machining system comprises M identical active units and S warm standby

units, aiming to enhance reliability and availability. Standby units promptly

replace failed active units with negligible delay.

• During normal mode (operation), all M active units operate simultaneously, and

the system continues in short mode until there are at least m;(m;1≤m≤M−1)

active units operational.

• The proposed preventive strategy regulates the influx of failed units, with an

excess allowed up to a specified threshold K = M+S−m+1.

Future research may extend the study to incorporate switching failures and significant

switching delays. Notations and key definitions are provided for clarity, including

parameters such as failure rates, repair rates, inspection rates, and system reliability

indicators.

Notations:

M : Number of active units in the system

S : Number of warm standby units in the system

m : The least number of units required for working of the system

K : System capacity

λ : Failure rate of active units in normal state

ν : Failure rate of warm standby units

λd : Degraded failure rate of active units in short mode

µ : Repair rate for failed units

β1 : Inspection rate for perfect repair

β2 : Inspection rate for imperfect repair

γ : Setup rate for allowing failed units to join the queue

RY (t) : Reliability of the system at the time t

MT T F : Mean time to failure of the system

EN(t) : Expected number of failed units in the system at the time t

TP(t) : Throughput of the system at the time t
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ES(t) : Expected number of standby units in the system at the time t

EO(t) : Mean number of operating units in the system at the time t

E f r(t) : Expected carrying load of failed machines in the system at the time t

EW (t) : Expected waiting time of the failed operating units in the system at time t

ED(t) : Expected delay time of failed machine at time t

FF(t) : Failure frequency of the system at the time t

Failure process: The failure process involves independent exponential failures for

active and standby units, with degradation upon exhausting standby units.

• Each of the active and standby units experiences independent failures, and the

time-to-failure for each active and standby unit follows an exponential distribu-

tion with mean time to failure 1
λ and 1

ν (where 0 < ν < λ ), respectively.

• Upon switching to the on-the-go state on the active unit’s failure, the standby

unit inherits the same failure and working characteristics as those of an active

unit.

• In the event that all available standby units are exhausted, the time to failure for

each active unit is degraded with a mean time to failure of 1
λd

(where 0 < λ <

λd).

Repair process: The repair process assumes immediate repair without delay with

inspection for perfect and imperfect repair.

• When a unit becomes futile, immediate repair is essential without any delay. If

the repairer is available, the failed unit undergoes instant repair; otherwise, it

waits in the queue.

• The queue discipline of this repairable system is FCFS (first-come, first-served).

• The time-to-repair follows an exponential distribution with a mean time of 1
µ .

• After repair, the unit undergoes inspection. Generally, perfect repair is assumed,

but in practice, it may be imperfect.

• The inter-time-to-inspect for both perfect and imperfect repair follows an expo-

nential distribution with mean rates β1 and β2, respectively.

• The unit with imperfect repair rejoins the queue until it undergoes perfect repair.

• The fixed unit is considered as good as a new active or standby unit and is

returned to the pool of active units or standby units when the system is operating

in short or normal mode, respectively.
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Controlled process: A controlled process prevents additional failed units from

joining the queue mitigating prolonged waiting times.

• When the number of failed units reaches the system capacity K, the system pre-

vents additional failed units from joining the queue until the system reverts to

normal mode. Specifically, the value of F in the F-policy influences the sys-

tem’s ability to admit failed units, preventing significant expected waiting times

and affecting the overall efficiency of the control strategy.This strategy aims to

mitigate prolonged waiting times. The excluded failed units may undergo repair

at an external facility, incurring an additional cost.

• Upon resuming, the system experience a random setup time, which follows

an exponential distribution with a parameter of γ . The setup rate refers to the

rate at which failed units, which were initially excluded from the system due

to capacity constraints, are permitted to enter the repair queue after the system

transitions back to normal mode. This setup rate is a parameter in the model

that influences the controlled admission of failed units based on the system’s

capacity strategy. It represents the speed or frequency at which the system al-

lows previously excluded failed units to rejoin the repair process. The setup

rate is a crucial factor in managing the repair queue and mitigating prolonged

waiting times for failed units.

The failure, degraded failure, perfect repair, imperfect repair, setup, etc., of each

unit are independent events. The analyzed model is illustrated in the transition dia-

gram in Fig. 6.1. Here, the blue nodes represent the state when there are a printed

number of failed units in the system, and the red node with the print F represents the

system failure state. The transition arrow signifies the transition between states with

marked rates. The j-th row, where j = 0,1,2,3, of blue nodes represents the j-th state

of the system as defined above. Each single node in the j-th row represents the state

of the system ( j, i) in a two-tuple form, where i is the marked number in the node,

representing the number of failed units in the system or failure state F .

j=0

j=1

j=2

j=3

1 2 S S+1 K-2 K-1

0 1 2 S-1 S S+1 K-3 K-2 K-1 F

0 1 2 S-1 S S+1 K-3 K-2

1 2 S S+1 K-2

β1 β1 β1 β1 β1 β1

γ γ γ

β2 β2 β2 β2 β2 β2

µ µ µ µ µ µ

γ γ γ γ γ γ

λ0 λ1 λS−1 λS
λK−3

λK−1

β1 β1 β1 β1 β1

µ µ µ µ µ
β2 β2 β2 β2 β2

λ1 λS

λK−2

λK−2

Figure 6.1: Transition diagram
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All the active and standby units are operational in the initial stage, i.e., there is no

failed unit in the system at time t = 0. If there are i failed units in the system at time

t, the state-dependent effective failure rate of units is expressed as:

λi =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Mλ +(S− i)ν ; if i = 0,1,2,3, ...,S−1

(M+S− i)λd; if i = S,S+1, ...,K −1,K

0; otherwise

For mathematical modeling, the following notations are defined. The state of the

failed units J(t) in the system at time t is defined as follows:

J(t)≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0; The newly failed unit cannot be allowed to ingress into the system for repair,

while the existing failed unit is promptly repaired and reinstated back into the

system.

1; Access to the system to repair the newly failed unit has been prohibited, and

the repairer is currently occupied.

2; The newly failed unit is granted access to the system for repair, while the

repairer is engaged.

3; The newly failed unit is allowed to ingress into the system for repair, and

the existing failed unit immediately after the repair for inspection.

and

I1(t) ≡ Number of failed units in the system at the time t

F(t) ≡ The state when system has been failed at the time t.

With the above definition of the system states, the system states form a continuous-

time Markov chain (J(t) = j, I1(t) = i)∪F(t); t ≥ 0 in the state space, which can be

represented as:

Π ={( j, i) | j = 0; i = 1,2, ...,K −2,K −1} ∪ {( j, i) | j = 1; i = 0,1,2, ...,K −1}

∪{( j, i) | j = 2; i = 0,1,2, ...,K −2} ∪ {( j, i) | j = 3; i = 1,2, ...,K −2} ∪F

The probabilities of the different states in the system at any time t are defined as

follows:

Pj,i(t) ≡ Probability that at time t there are n failed units in the system and the system

is in the state j, where ( j, i) ∈ Π

PF(t) ≡ Probability that at time t the system is in the failed state.
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6.4 The governing equation

Referring to the transition diagram shown in Fig. 6.1 for the threshold-based failed

unit arrival controlled strategy with imperfect repair and an exponential setup time, we

have developed the forward Chapman-Kolmogorov differential-difference equations

in terms of state probabilities and governing parameters. The differential-difference

equation for a particular node or state is expressed as a balance between the inflow

and outflow rates. For example, for Eqn. (6.1), the governing differential-difference

equation for state (0, i) is derived by balancing the outflow rates γ , β1, and β2 from

the (0, i) state with the inflow rate µ from the (1, i) state.

dP0,i(t)

dt
=−(γ +β1 +β2)P0,i(t)+µP1,i(t) ; 1 ≤ i ≤ S (6.1)

dP0,i(t)

dt
=−(β1 +β2)P0,i(t)+µP1,i(t) ; S+1 ≤ i ≤ K −1 (6.2)

dP1,0(t)

dt
=−γP1,0(t)+β1P0,1(t) (6.3)

dP1,i(t)

dt
=−(µ + γ)P1,i(t)+β2P0,i(t)+β1P0,i+1(t) ; 1 ≤ i ≤ S (6.4)

dP1,i(t)

dt
=−µP1,i(t)+β2P0,i(t)+β1P0,i+1(t) ; S+1 ≤ i ≤ K −2 (6.5)

dP1,K−1(t)

dt
=−(µ +λK−1)P1,K−1(t)+β2P0,K−1(t)+λK−2P2,K−2(t)

+λK−2P3,K−2(t) (6.6)

dP2,0(t)

dt
=−λ0P2,0(t)+ γP1,0(t)+β1P3,1(t) (6.7)

dP2,i(t)

dt
=−(λi +µ)P2,i(t)+ γP1,i(t)+λi−1P2,i−1(t)+β2P3,i(t)+β1P3,i+1(t)

; 1 ≤ i ≤ S (6.8)

dP2,i(t)

dt
=−(λi +µ)P2,i(t)+λi−1P2,i−1(t)+β2P3,i(t)+β1P3,i+1(t)

; S+1 ≤ i ≤ K −3 (6.9)

dP2,K−2(t)

dt
=−(λK−2 +µ)P2,K−2(t)+λK−3P2,K−3(t)+β2P3,K−2(t) (6.10)

dP3,1(t)

dt
=−(λ1 +β1 +β2)P3,1(t)+ γP0,1(t)+µP2,1(t) (6.11)

dP3,i(t)

dt
=−(λi +β1 +β2)P3,i(t)+ γP0,i(t)+µP2,i(t)+λi−1P3,i−1(t)

; 2 ≤ i ≤ S (6.12)
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dP3,i(t)

dt
=−(λi +β1 +β2)P3,i(t)+µP2,i(t)+λi−1P3,i−1(t)

; S+1 ≤ i ≤ K −2 (6.13)

dPF(t)

dt
= λK−1P1,K−1(t) (6.14)

At t = 0, the initial conditions are defined as

P(0, i) = 0; i = 1,2, ...,K −1 (6.15)

P(1, i) = 0; i = 0,1, ...,K −1 (6.16)

P(2,0) = 1 (6.17)

P(2, i) = 0; i = 0,1, ...,K −2 (6.18)

P(3, i) = 0; i = 1,2, ...,K −2 (6.19)

P(F) = 0 (6.20)

6.4.1 Laplace transform

For solving the developed system of equations (Eqns.6.1-6.14) under initial conditions

for computing transient-state probabilities, we employ the Laplace transform of state

probabilities, and their derivatives as

P̈j,i(u) = L(Pj,i(t)) =
∫ ∞

0
e−utPj,i(t)dt ;R(u)≥ 0, ∀ ( j, i) ∈ Π (6.21)

P̈F(u) = L(PF(t)) =
∫ ∞

0
e−utPF(t)dt; R(u)≥ 0 (6.22)

L

(
dPj,i(t)

dt

)
= uP̈j,i(u)−Pj,i(0); R(u)≥ 0 ∀ ( j, i) ∈ Π (6.23)

L

(
dPF(t)

dt

)
= uP̈F(u)−PF(0); R(u)≥ 0 (6.24)

After applying the defined Laplace transform over the governing differential-difference

equations with initial conditions, we get the following system of linear equations

uP̈0,i(u) =−(γ +β1 +β2)P̈0,i(u)+µP̈1,i(u) ; 1 ≤ i ≤ S (6.25)

uP̈0,i(u) =−(β1 +β2)P̈0,i(u)+µP̈1,i(u) ; S+1 ≤ i ≤ K −1 (6.26)

uP̈1,0(u) =−γP̈1,0(u)+β1P̈0,1(u) (6.27)

uP̈1,i(u) =−(µ + γ)P̈1,i(u)+β2P̈0,i(u)+β1P̈0,i+1(u) ; 1 ≤ i ≤ S (6.28)

uP̈1,i(u) =−µP̈1,i(u)+β2P̈0,i(u)+β1P̈0,i+1(u) ; S+1 ≤ i ≤ K −2 (6.29)
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uP̈1,K−1(u) =−(µ +λK−1)P̈1,K−1(u)+β2P̈0,K−1(u)+λK−2P̈2,K−2(u)

+λK−2P̈3,K−2(u) (6.30)

uP̈2,0(u)−1 =−λ0P̈2,0(u)+ γP̈1,0(u)+β1P̈3,1(u) (6.31)

uP̈2,i(u) =−(λi +µ)P̈2,i(u)+ γP̈1,i(u)+λi−1P̈2,i−1(u)+β2P̈3,i(u)

+β1P̈3,i+1(u); 1 ≤ i ≤ S (6.32)

uP̈2,i(u) =−(λi +µ)P̈2,i(u)+λi−1P̈2,i−1(u)+β2P̈3,i(u)

+β1P̈3,i+1(u); S+1 ≤ i ≤ K −3 (6.33)

uP̈2,K−2(u) =−(λK−2 +µ)P̈2,K−2(u)+λK−3P̈2,K−3(u)+β2P̈3,K−2(u) (6.34)

uP̈3,1(u) =−(λ1 +β1 +β2)P̈3,1(u)+ γP̈0,1(u)+µP̈2,1(u) (6.35)

uP̈3,i(u) =−(λi +β1 +β2)P̈3,i(u)+ γP̈0,i(u)+µP̈2,i(u)+λi−1P̈3,i−1(u)

; 2 ≤ i ≤ S (6.36)

uP̈3,i(u) =−(λi +β1 +β2)P̈3,i(u)+µP̈2,i(u)+λi−1P̈3,i−1(u)

; S+1 ≤ i ≤ K −2 (6.37)

uP̈F(u) = λK−1P̈1,K−1(u) (6.38)

We represent the transient-state probabilities subscript in a unary code to facilitate the

solution procedure, as shown below.

[P0,1(t),P0,2(t), ...,P0,K−1(t)]
T ≡ [π1(t),π2(t), ...,πK−1(t)]

T

[P1,0(t),P1,1(t), ...,P1,K−1(t)]
T ≡ [πK(t),πK+1(t), ...,π2K−1(t)]

T

[P2,0(t),P2,1(t), ...,P2,K−2(t)]
T ≡ [π2K(t),π2K+1(t), ...,π3K−2(t)]

T

[P3,1(t),P3,2(t), ...,P3,K−2(t)]
T ≡ [π3K−1(t),π3K(t), ...,π4K−4(t)]

T

PF(t)≡ π4K−3(t)

The Laplace transform probabilities relevant to the problem can be calculated using

the following equation.

π̈r(u) = L{πr(t)}; 1 ≤ r ≤ 4K −3

Delimitate the subsequent column vectors of order 4K −3.

Ξ̈(u) = [π̈1(u), π̈2(u), π̈3(u), ..., π̈4K−4(u), π̈4K−3(u)]
T , (6.39)

Ξ(0) = [π1(0),π2(0),π3(0), ...,π4K−4(0),π4K−3(0)]
T (6.40)
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We represent the system of linear equations (Equations 6.25-6.38) in matrix form

using the aforementioned column vectors as follows.

�(u)Ξ̈(u) = Ξ(0) (6.41)

Here, �(u) denotes the coefficient square matrix of order 4K − 3. Applying

Cramer’s rule to the matrix equation 6.41, we explicitly express π̈r(u) as follows.

π̈r(u) =
|�r(u)|
|�(u)| ; 1 ≤ r ≤ 4K −3 (6.42)

Here, �r(u) represents a square matrix of order 4K − 3. The matrix �r(u) is

derived from �(u) by replacing its rth column with the right-hand side column vector

Ξ(0). To determine π̈r(u) from Eqn. 6.42, we initially calculate the denominator

|�(u)|. Notably, |�(u)| becomes singular due to the balanced inflow and outflow

rates inherent in its nature, resulting in u = 0 as one latent root. Additionally, we

identify u =−ξ as another nonzero latent root of |�(u)|= 0.

�(−ξ ) = A−ξ I (6.43)

where A = �(0) and I is an identity matrix of order 4K − 3. Now expression is

also written as

�(−ξ )Ξ̈(u) = (A−ξ I)Ξ̈(u) (6.44)

Let ξh(�= 0), for h = 1,2,3, . . . ,4K −5,4K −4, denote 4K −4 distinct latent roots

of |A−ξ I|= 0, which may be real or complex numbers. Consider ξ1,ξ2,ξ3, . . . ,ξi1 as

i1 real latent roots, and ξi1+1, ξ̄i1+1
,ξi2+1

, ξ̄i2+1
, . . . ,ξi1+i2 , ξ̄i1+i2 as 2i2 complex latent

roots, existing in conjugate pairs such that i1 +2i2 = 4K −4. Therefore,

|�(u)|= u
i1

∏
h=1

(u+ξh)
i2

∏
h=1

(u2 +(ξi1+h + ξ̄i1+h)u+ξi1+hξ̄i1+h) (6.45)

Hence, Eqn. 6.42 reduces to

π̈r(u) =
|�r(u)|
�(u)

=
|�r(u)|

u∏
i1
h=1(u+ξh)∏

i2
h=1(u

2 +(ξi1+h + ξ̄i1+h)u+ξi1+hξ̄i1+h)
;

1 ≤ r ≤ 4K −3 (6.46)
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The expression in Equation 6.46 for π̈r(u) can be represented in partial fraction form

as follows:

π̈r(u) =
a0,r

u
+

i1

∑
h=1

ah,r

(u+ξh)
+

i2

∑
h=1

bh,r(u)+ ch,r

(u2 +(ξi1+h + ξ̄i1+h)u+ξi1+hξ̄i1+h)
;1 ≤ r ≤ 4K−3

(6.47)

The coefficients in the partial fraction representation are computed as follows:

a0,r =
|�r(0)|

∏
i1
h=1(ξh)∏

i2
h=1(ξi1+hξ̄i2+h)

(6.48)

ah,r =
|�r(−ξh)|

(−ξh)∏
i1
g=1,g�=h

(ξg −ξh)∏
i2
g=1(ξh

2 +(ξi1+g + ξ̄i1+g)(−ξh)+ξi1+gξ̄i1+g)
;

h = 1,2,3, ..., i1 (6.49)

and

bh,r(−ξi1+h)+ ch,r

=
|�r (−ξi1+h) |

(−ξi1+h)∏
i1
g=1 (ξg −ξi1+h)∏

i2
g=1,g�=h

(
(−ξi1+h)

2 +
(
ξi1+g + ξ̄i1+g

)
(−ξi1+h)+ξi1+hξ̄i1+h

) ;

h = 1,2,3, ..., i2

(6.50)

The explicit expression of the transient-state probabilities πr(t);1 ≤ r ≤ 4K − 3 is

obtained by taking the inverse Laplace transform of Eqn. 6.50. Hence, we have the

following expressions for each πr(t):

πr(t)

= a0,r +
i1

∑
h=1

ah,re
−ξht +

i2

∑
h=1

[
bh,re

−xht cosyht +
ch,r −bh,rxh

yh

e−xht sinyht

]
;1 ≤ r ≤ 4K −3

(6.51)

The arbitrary constants a0,r,ah,r,bh,r, and ch,r are computed in the above equations

(Eqns. 6.48-6.50), and xh and yh represent the real and imaginary parts of the respec-

tive complex latent root ξi1+h.
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6.5 Performance measures

The primary objective of the current research is to investigate imperfect repair within

the context of the Markovian threshold-based arrival controlled strategy for machine

repair problems. To achieve this goal, we delineate the reliability and performance

indices using the transient-state probabilities obtained in the preceding section, taking

into account the governing parameters. These assessments contribute to the improve-

ment of the system’s reliability and queueing characteristics.

6.5.1 Reliability Measures

In this subsection, we delve into the reliability analysis of the machining system em-

ploying a threshold-based failed unit arrival controlled strategy coupled with imper-

fect repair. The core of Reliability, Availability, Maintainability, and Safety (RAMS)

analysis establishes a fundamental framework for the efficient and timely utilization

of machining systems. RAMS, an interdisciplinary methodology, encompasses the in-

tegration of design elements aimed at facilitating the operational goals of a machining

system. In machining systems engineering, RAMS assumes a pivotal role, guaran-

teeing that the inherent design characteristics align with the requisite standards for

optimal performance. Reliability, positioned as the foremost factor in RAMS analy-

sis, underscores the system’s ability to consistently operate without failure.

Let X denote the continuous random variable representing the time to failure of the

system. The reliability of a machining system is the probability that the system will

execute its intended functions under specified conditions for the stipulated duration

without encountering failure. Denoting PF(t) as the probability that the system will

fail at or before time t, the machining system’s reliability is defined as follows:

RX(t) = 1−PF(t); t ≥ 0 (6.52)

Another vital reliability index is the mean time to failure (MT T F) of the system, a

key metric in assessing the system’s performance and durability. In the context of

the present study, the focus is on optimizing MT T F through the recommendation of

appropriate preventive, corrective, and predictive maintenance strategies.

The Mean Time To Failure (MT T F) is a reliability metric that represents the aver-

age time a system or component is expected to operate before experiencing a failure.
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The mean time to failure (MT T F) of the machining system is defined as

MT T F =
∫ ∞

t=0
RX(t)dt =

∫ ∞

t=0
(1−PF(t))dt =

∫ ∞

t=0
(1−π4K−3(t))dt

= lim
u→0

[
1−a0,4K−3

u
−

i1

∑
h=1

ah,4k−3

u+ξh

−
i2

∑
h=1

bh,4k−3u+ ch,4K−3

u2 +(ξi1+h + ξ̄i1+h)u+ξi1+hξ̄i1+h

]

=−
i1

∑
h=1

ah,4K−3

ξh

−
i2

∑
h=1

ch,4K−3

ξi1+hξ̄i1+h

(6.53)

The failure frequency refers to the rate at which failures occur in a system over a given

time period. It is a measure of the frequency or likelihood of failures happening within

a specified duration. In mathematical terms, the failure frequency (often denoted as

(FF(t)) can be expressed as the derivative of the reliability function with respect to

time. The failure frequency of the machining system at a given time t is denoted by

FF(t) and is defined as:

FF(t) = λK−1PK−1(t) (6.54)

6.5.2 Queueing characteristics

The queueing attributes characterize the congestion and waiting induced by unit fail-

ures and strategic imperfection. These metrics are crucial for refining maintenance

strategies and informing the future design of the machining system. We investi-

gate various queueing indices, including expected queue length, throughput, expected

number of available active/standby units, waiting time, and delay time, among others.

• The expected number of failed units in a system represents the average number

of units that are in a failed state at a given point in time. It is a statistical measure

that takes into account the probability distribution of the number of failed units

in the system. Expected number of failed units in the system at a time t

EN(t) =
3

∑
j=0

K−2

∑
i=1

iPj,i(t)+

(
1

∑
j=0

(K −1)Pj,K−1(t)

)
+KPF(t) (6.55)

• The throughput of a system refers to the rate at which the system processes

failed units, usually measured as the number of failed units processed per unit

of time. The throughput of the system at the time t is given as below

T h(t) =
K−2

∑
i=1

β1 [P0,i(t)+P3,i(t)]+β1P0,K−1(t) (6.56)

• The expected number of standby units in a system represents the average num-

ber of standby units that are present in the system over a specific period of time.

Expected number of standby units in the system at a time t is given as
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ES(t) =
2

∑
j=1

SPj,0(t)+
3

∑
j=0

S−1

∑
i=1

(S− i)Pj,i(t) (6.57)

• The mean number of active units in a system represents the average number of

active (operational) units present in the system over a specified period of time.

Mean number of active units in the system at time t

EO(t) =M

[
2

∑
j=1

Pj,0(t)+
3

∑
j=0

S

∑
i=1

Pj,i(t)

]
+

3

∑
j=0

K−2

∑
i=S+1

(M+S− i)Pj,i(t)

+
1

∑
j=0

mPj,K−1(t)

(6.58)

• The effective failure rate in the context of a system refers to a composite or

overall failure rate that takes into account various factors, such as the failure

rates of individual components, redundancy, repair processes, and other relevant

aspects. It provides a more comprehensive measure of the system’s reliability

by considering both the occurrence of failures and the effectiveness of repair

processes. Effective failure rate at time t

E f r(t) =
3

∑
j=0

S

∑
i=1

(Mλ +(S− i)ν)Pj,i(t)+
3

∑
j=0

K−2

∑
i=S+1

(M+S− i)λdPj,i(t)

+
1

∑
j=0

mλdPj,K−1(t)

(6.59)

• The expected waiting time of failed units in a system refers to the average

amount of time that a failed unit spends in a waiting state before it undergoes

repair and receives perfect service. This metric is essential for evaluating the

efficiency and performance of the repair process within the system. Expected

waiting time of the failed units in the system at time t

EW (t) =
EN(t)

E f r(t)
(6.60)

• Delay time of the failed unit represents the waiting time experienced by a failed

unit before being attended to by the repair process. The delay time is a crucial

metric in assessing the system’s performance and reliability, providing insights

into how quickly the system can address failures. Delay time of failed unit at a

time t

ED(t) =
EN(t)

T h(t)
(6.61)
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6.6 Cost function

Ensuring the uninterrupted and effective operation of a machining system is essential

in various domains, including manufacturing, production, communication, computa-

tions, and service. Mathematical modeling and cost analysis play a crucial role in

ensuring that any machining system implements an optimal maintenance strategy at

the lowest possible cost. Cost analysis is significant for the success of industrial or

commercial endeavors. To address this, the expected total cost function is formulated

in terms of pertinent variables, such as the expected number of failed units, standby

units, mean service rate, mean inspection rate for perfect/imperfect repair, and mean

setup time. For the formulation of the total cost, we define the following incurred

costs in designing the machining system.

• Holding costs are associated with the expenses incurred while maintaining and

managing the system to ensure its continued operation and reliability. These

costs may include various elements relevant to fault tolerance, such as redun-

dancy costs, monitoring and maintenance costs, training costs, system upgrades,

energy and cooling costs, downtime costs, etc.

• The repair cost refers to the total expenditure associated with restoring a dam-

aged or malfunctioning unit to its operational state. This cost encompasses

expenses such as labor, materials, parts replacement, and any other resources

utilized in the repair process.

• Inspection costs refer to the expenditures associated with examining and evalu-

ating products, processes, or services to ensure compliance with specified stan-

dards, quality requirements, or regulations. These costs are incurred as part of

quality control measures to identify defects, errors, or deviations from estab-

lished criteria during different stages of production or service delivery.

• Setup costs, also known as preparation costs, refer to the expenses associated

with preparing a repair facility, machine, or process for new repair services.

These costs are incurred when transitioning from one state to another.

It’s important for decision-makers to carefully consider incurred costs when designing

and implementing fault-tolerant systems. Balancing the level of fault tolerance with

associated costs is crucial to achieving the desired level of system reliability without

excessive financial burden.The unit costs associated with distinct system states are

defined and denoted for the cost evaluation as follows.

CH ≡ Holding cost per unit time of each failed unit present in the system
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CS ≡ Cost per component per unit time of each standby unit present in the

system

CM ≡ Fixed cost per unit time for providing a service with the rate µ to the

failed unit

C1 ≡ Fixed cost per unit time for inspecting an perfect repair with the rate β1

for the failed unit

C2 ≡ Fixed cost per unit time for inspecting an imperfect repair with the rate β2

for the failed unit

C3 ≡ Fixed cost per unit time for taking a setup time by a system with the rate

γ for allowing the failed unit

Hence, the anticipated total cost function accrued for the machining system at a

given time t is expressed as:

ETC(t) =CHEN(t)+CSES(t)+CMµ +C1β1 +C2β2 +C3γ (6.62)

The assumption is made that all unit costs employed in the assessment of the cost

function in Eqn. 6.62 exhibit linearity, being directly proportional to the respective

governing parameters and derived performance indices.

6.7 Sensitivity analysis

The differential calculus theory knowledge for maxima or minima delves into the

sensitivity of the reliability function and MT T F concerning the governing parame-

ters. The comprehensive variability pattern of the studied performance function can

be elucidated by computing the first derivatives of the function with respect to the

decision variable Θ, where Θ is a general variable representing the governing param-

eters involved in system design.

Now, by computing the first derivatives of Eqn. 6.41, we obtain:

∂�(u)

∂Θ
Ξ̈(u)+�(u)

∂ Ξ̈(u)

∂Θ
= 0 (6.63)

∂ Ξ̈(u)

∂Θ
=−(�(u))−1 ∂�(u)

∂Θ
Ξ̈(u) (6.64)

Now, deriving the first derivative of the reliability function from Eqn. 6.52, we obtain:

∆Θ(t) =
∂RX(t)

∂Θ
= 0− ∂PF(t)

∂Θ
= L−1

(
−∂ P̈F(u)

∂Θ

)
= L−1

(
∂ π̈4K−3(u)

∂Θ

)
(6.65)
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The chain rule is employed to calculate
∂ P̈F (u)

∂Θ
. Additionally, the subsequent ratio is

utilized to assess the relative sensitivity analysis of the reliability function.

ΓΘ(t) =
∂RX(t)/RX(t)

∂Θ/Θ
= ∆Θ(t).

Θ

RX(t)
(6.66)

Similarly, for the sensitivity analysis of the Mean Time To Failure (MT T F), we obtain

the first derivative of MT T F with respect to Θ from Equation 6.53 as follows:

ΦΘ =
∂ (MT T F)

∂Θ
=

∂ (
∫ ∞

t=0 RX(t)dt)

∂Θ
= lim

s→0

[∫ ∞

t=0

∂RX(t)

∂Θ
e−utdt

]
= lim

u→0

[
−∂ P̈F(u)

∂Θ

]

= lim
u→0

[
∂ π̈4K−3(u)

∂Θ

]

(6.67)

Again, we calculate the following ratio to determine the relative sensitivity of the

Mean Time To Failure (MT T F):

ΩΘ =
∂ (MT T F)

MT T F

∂Θ
Θ

= ΦΘ

Θ

MT T F
(6.68)

The detailed examination of the sensitivity of reliability and Mean Time To Failure

(MT T F) is discussed with numerical illustrations in the next section.

6.8 Special Cases

The studied model represents an extension of previously published research works,

and these works serve to validate our modeling approach.

Case 1: In the limit as β1 approaches infinity, the model converges to a Markovian single

repairer machining system consisting of active/standby units with a threshold-

based corrective strategy [114].

Case 2: When the threshold value is set to K−1 with β1 approaching infinity, the current

model exhibits behavior akin to a classical machine interference problem with

standby provisioning [312], [82], [83] .

Case 3: For 0 < β1 < ∞, β2 = 0, γ → ∞, setting the threshold value to K−1, S = 0, and

µ = β1, the model simulates a finite population queueing model with Erlangian

service

Case 4: In case 3 with µ > β1, the model transitions to a finite population single-server

queueing model with hyper-exponential service time distribution [29].
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6.9 Numerical Results

In this section, we conduct a comprehensive numerical analysis to explore the re-

liability measures, queueing characteristics, and sensitivity of various parameters.

The objective is to delve deeper into the impact of these parameters, providing ad-

ditional insights to complement the theoretical analysis. Given the intricate nature of

continuous-time Markov chains representing machining systems with real-time con-

straints in equilibrium, the stochastic process and probability distribution are intricate,

as discussed in earlier sections. Consequently, despite analytical derivation of sensi-

tivity, the investigation heavily relies on numerical experiments.

Our research focuses on the following analyses. Firstly, we perform a graphical

analysis to investigate how various parameters influence system reliability. Subse-

quently, we examine the impact of multiple factors on the Mean Time To Failure

(MT T F). In the proposed model, consider a scenario analogous to a data center’s

server infrastructure. The active units represent operational servers, while the warm

standby units are additional servers available for immediate use in case of a server

failure. Failures and repairs, such as hardware malfunctions or crashes, follow expo-

nential distributions with constant rates. The system employs a preventive strategy

to control the influx of failed servers, aiming to maintain optimal performance. This

model can be applied to enhance the reliability of the server infrastructure in data

centers, ensuring uninterrupted service and minimizing downtime through strategic

standby provisioning and controlled arrival of failed units. The numerical experi-

ments of performance indices are conducted using the MATLAB R2020b program,

considering distinct input parameters that govern the system. For this purpose, we

hypothetically set default parameters as follows: M = 12, S = 5, m = 2, λ = 0.4,

ν = 0.35, λd = 0.8, µ = 16, β1 = 8, β2 = 1, and γ = 4.
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Figure 6.2: Reliability of the system (RX(t)) wrt. t for different parameters. For

(M = 12, S = 5, m = 2, λ = 0.4, ν = 0.35, λd = 0.8, µ = 16, β1 = 8, β2 = 1, γ = 4)

The variability of the system’s reliability, denoted as RX(t) and computed using

Eqn. 6.52, is illustrated in Fig. 6.2 for varying time t and other system parameters.

Fig. 6.2 reveals a decreasing trend in the reliability level as time progresses in all

its subgraphs (i)-(x). The evident outcomes for the system’s reliability indicate a

decrease with an increase in the failure rate of active/standby units and the inspection

rate of imperfect repair. Conversely, the system’s reliability shows improvement with

an increase in the repair rate of failed units and the inspection rate of perfect repair,

as depicted in Fig. 6.2 (vii)-(viii). Additionally, the system’s reliability enhances with

an increase in the number of standby units and a decrease in setup time. These results
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provide support for the preventive maintenance policy, emphasizing the provisioning

of standbys and controlled arrivals of failed units.

Figure 6.3: Sensitivity and relative sensitivity of the reliability of the system, For (

M = 12,S = 5,m = 2,λ = 0.4,ν = 0.35,λd = 0.8,µ = 16,β1 = 8,β2 = 1,
γ = 4,CH = 90,CS = 60,CM = 10,C1 = 13,C2 = 2,C3 = 2 )

The sensitivities of the system’s reliability are depicted in Fig. 6.3, offering a

comparative view of the sensitivities of different system parameters. In this figure, it

is evident that the sensitivities of λd , β1, and µ are notably higher than those of other

parameters, namely λ , ν , β2, and γ . Consequently, parameters λd , β1, and µ emerge

as crucial and highly sensitive factors for enhancing reliability while maintaining cost-

effectiveness. Upon closer examination of the sensitivity of parameters for reliability,

it is observed that, at any given time t, the order of sensitive parameters is as follows:

λd > λ > β1 > β2 > ν > µ > γ . These findings suggest that implementing appropriate

preventive and corrective measures is essential to mitigate degradation and improve

system reliability.
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Figure 6.4: Mean time to failure of the system (MT T F) wrt. t for different parameters,

For (M = 12,S = 5,m = 2,λ = 0.4,ν = 0.35,λd = 0.8, µ = 16,β1 = 8,β2 = 1,γ = 4)

Reliability stands as a critical determinant for the efficacy of any machining sys-

tem, and a pivotal metric in forecasting reliability is the mean time to failure (MT T F),

as computed in Eqn. 6.53. The variability of the system’s MT T F is visually repre-

sented in Figure 6.4 through a bar plot. Upon scrutiny, it is discerned that MT T F

experiences a rapid decline for smaller values of M, exhibiting a more pronounced

sensitivity. In contrast, the sensitivity diminishes for larger values of active units

when confronted with an escalation in the failure rate of any kind. Conversely, an

augmentation in the inspection rate for perfect repair and repair rates correlates with a

notable increase in MT T F , especially in scenarios involving fewer active units. The

quantity of active and standby units emerges as a pivotal consideration in the design

of a reliable system within the constraints of cost-effectiveness.
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Table 6.1: Sensitivity and relative sensitivity of the mean time to failure of the system

for ( M = 12,S = 5,m = 2,λ = 0.4,λd = 0.8,ν = 0.35,µ = 16,β1 = 8,β2 = 1,γ = 4,
CH = 90,CS = 60,CM = 10,C1 = 13,C2 = 2,C3 = 2)

MMM,,,SSS,,,mmm ΘΘΘ

λλλ λλλ d ννν µµµ βββ 1 βββ 2 γγγ

ΦΦΦΘ 10, 5, 2 -501.53683 -1412.45511 -109.38124 33.27704 86.35596 -63.59000 -2.59526

12, 5, 2 -142.75361 -1077.72249 -25.66233 22.98489 53.53459 -44.55887 -1.92651

14, 5, 2 -61.45667 -1019.16402 -9.50638 20.99768 46.71424 -41.16135 -1.55964

12, 3, 2 -64.87038 -1036.59368 -8.63333 21.25930 48.58546 -41.55342 -1.23844

12, 5, 2 -142.75361 -1077.72249 -25.66233 22.98489 53.53459 -44.55887 -1.92651

12, 7, 2 -203.79150 -1098.62437 -44.13549 24.13662 57.02288 -46.53853 -2.38493

12, 5, 1 -385.97641 -7082.77422 -67.59066 139.34465 377.53003 -287.92860 -3.85303

12, 5, 2 -142.75361 -1077.72249 -25.66233 22.98489 53.53459 -44.55887 -1.92651

12, 5, 3 -90.11140 -335.08105 -16.46149 7.89276 15.98151 -14.65419 -1.28434

ΩΩΩΘ 10, 5, 2 -0.91374 -5.14666 -0.17437 2.42508 3.14661 -0.28963 -0.04728

12, 5, 2 -0.30951 -4.67327 -0.04868 1.99336 2.32139 -0.24152 -0.04177

14, 5, 2 -0.13584 -4.50548 -0.01839 1.85652 2.06513 -0.22746 -0.03447

12, 3, 2 -0.14750 -4.71394 -0.01718 1.93355 2.20944 -0.23621 -0.02816

12, 5, 2 -0.30951 -4.67327 -0.04868 1.99336 2.32139 -0.24152 -0.04177

12, 7, 2 -0.43000 -4.63621 -0.08149 2.03714 2.40637 -0.24549 -0.05032

12, 5, 1 -0.17196 -6.31086 -0.02635 2.48316 3.36385 -0.32069 -0.01717

12, 5, 2 -0.30951 -4.67327 -0.04868 1.99336 2.32139 -0.24152 -0.04177

12, 5, 3 -0.47725 -3.54930 -0.07629 1.67206 1.69282 -0.19403 -0.06802

Table 6.1 provides an overview of the sensitivity and relative sensitivity of the

MT T F with respect to various parameters, as determined by the respective equations

6.67 and 6.68. Across distinct configurations of governing parameters (M,S,m), the

sensitivity order is observed to be λd > λ > ν > β1 > β2 > µ > γ . This insight implies

a strategic emphasis on preventive measures over corrective measures as an effective

approach to mitigate degradation in system performance.
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Figure 6.5: Expected number of failed units in the system (EN(t)) wrt. t for different

parameters.For (M = 12, S = 5, m = 2, λ = 0.4, ν = 0.35, λd = 0.8, µ = 16, β1 = 8,

β2 = 1, γ = 4)
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Figure 6.6: Throughput of the system (T h(t)) wrt. t for different parameters. For

(M = 12, S = 5, m = 2, λ = 0.4, ν = 0.35, λd = 0.8, µ = 16, β1 = 8, β2 = 1, γ = 4)

Figure 6.5 visually depicts the temporal evolution of the expected number of failed

units in the system, denoted as EN(t) and computed using Eqns. 6.55. The legend

associated with each sub-graph (i)-(x) denotes diverse system parameters. Initially,

EN(t) exhibits a rising trend over time for each sub-graph. After a specific time in-

stant t, it tends to stabilize, experiencing a modest decline, and eventually maintains

a constant level beyond a fixed time t. Notably, the influence of the threshold-based

failed units arrival controlled policy is evident in these dynamics. The expected num-

ber of failed units in the system, EN(t), correlates positively with an augmented count
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Table 6.2: Performance evaluations for different parameters M, λ and t with S = 5,

m = 2, λd = 0.8, ν = 0.35, µ = 16, β1 = 8, β2 = 1, γ = 4

MMM λλλ ttt RRRX(((ttt))) MMMTTT TTT FFF EEEN(((ttt))) TTT hhh(((ttt))) EEES(((ttt))) EEEO(((ttt))) EEE f r(((ttt))) EEEW (((ttt))) FFFFFF(((ttt))) EEED(((ttt)))
8 0.4 10 0.98846 541.82368 3.18858 0.09225 2.44401 7.40995 4.27817 1.34172 0.01847 0.02893

25 0.96140 541.82368 3.45954 0.09210 2.35823 7.19634 4.15894 1.20217 0.06175 0.02662

40 0.93499 541.82368 3.69422 0.08958 2.29342 6.99862 4.04468 1.09487 0.10401 0.02425

0.55 10 0.97732 298.57274 4.69611 0.16912 1.43222 6.90909 4.82406 1.02725 0.03629 0.03601

25 0.92902 298.57274 5.07057 0.16206 1.35351 6.56211 4.58256 0.90376 0.11356 0.03196

40 0.88308 298.57274 5.41328 0.15404 1.28656 6.23757 4.35592 0.80467 0.18707 0.02846

0.7 10 0.96772 225.37488 5.65095 0.22361 0.83744 6.54157 5.14780 0.91096 0.05165 0.03957

25 0.90478 225.37488 6.06542 0.20926 0.78214 6.11541 4.81234 0.79341 0.15235 0.03450

40 0.84594 225.37488 6.45138 0.19565 0.73128 5.71769 4.49937 0.69743 0.24649 0.03033

12 0.4 10 0.97626 233.30656 8.96966 0.21370 0.37828 7.69183 5.48997 0.61206 0.03798 0.02382

25 0.91461 233.30656 9.51588 0.20591 0.32145 7.13690 5.12877 0.53897 0.13662 0.02164

40 0.85666 233.30656 9.92679 0.19287 0.30106 6.68464 4.80378 0.48392 0.22935 0.01943

0.55 10 0.96916 216.69154 9.61277 0.23370 0.14669 7.27359 5.58515 0.58101 0.04935 0.02431

25 0.90348 216.69154 10.04924 0.21808 0.13599 6.77782 5.20524 0.51797 0.15443 0.02170

40 0.84225 216.69154 10.45255 0.20330 0.12678 6.31846 4.85246 0.46424 0.25240 0.01945

0.7 10 0.96601 211.05855 9.79541 0.23827 0.08628 7.14815 5.66004 0.57783 0.05439 0.02432

25 0.89900 211.05855 10.23436 0.22234 0.07896 6.64509 5.26216 0.51417 0.16160 0.02172

40 0.83662 211.05855 10.63441 0.20691 0.07348 6.18403 4.89705 0.46049 0.26140 0.01946

16 0.4 10 0.97205 227.77787 13.08031 0.22078 0.09419 7.86172 5.99480 0.45831 0.04472 0.01688

25 0.90932 227.77787 13.59297 0.20899 0.08115 7.29524 5.58012 0.41051 0.14508 0.01537

40 0.85054 227.77787 14.00721 0.19548 0.07590 6.82359 5.21938 0.37262 0.23913 0.01396

0.55 10 0.96889 223.88611 13.22960 0.22105 0.05316 7.75019 6.06845 0.45870 0.04977 0.01671

25 0.90550 223.88611 13.76412 0.21122 0.04387 7.15739 5.61510 0.40795 0.15121 0.01535

40 0.84612 223.88611 14.17300 0.19737 0.04099 6.68809 5.24692 0.37021 0.24621 0.01393

0.7 10 0.96758 222.37667 13.31460 0.22225 0.03697 7.68001 6.10746 0.45870 0.05188 0.01669

25 0.90389 222.37667 13.82931 0.21205 0.03130 7.10308 5.65094 0.40862 0.15378 0.01533

40 0.84429 222.37667 14.23615 0.19807 0.02924 6.63476 5.27836 0.37077 0.24914 0.01391

of active/standby units and their respective failure rates. In contrast, the system’s ex-

pected number of failed units diminishes with increased rates of repair and inspection

for perfect repair.

Figure 6.6 illustrates the temporal variations in the system’s throughput, calculated

using Eqn. 6.56, over time while varying several system parameters. As depicted in

Fig. 6.6, the throughput is higher when there are more active units in the system,

increased failure rates of any kind, and higher inspection rates for imperfect repair.

This trend is expected, considering that a higher number of failed units in the system

contributes to increased throughput. Parameters that result in higher throughput are

crucial for enhancing existing systems. Conversely, throughput decreases with higher

service rates, increased standby units, and longer setup times. A noteworthy trend is

observed in Fig. 6.6(viii) for the inspection rate for perfect repair, β1. The throughput

decreases when the inspection rate for perfect repair is significantly large. In contrast,

a lower inspection rate for perfect repair initially yields lower throughput, gradually

becoming more prominent over time.
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Table 6.3: Performance evaluations for different parameters S, ν and t with M = 12,

m = 2, λ = 0.4, λd = 0.8, µ = 16, β1 = 8, β2 = 1, γ = 4

SSS ννν ttt RRRX(((ttt))) MMMTTT TTT FFF EEEN(((ttt))) TTT hhh(((ttt))) EEES(((ttt))) EEEO(((ttt))) EEE f r(((ttt))) EEEW (((ttt))) FFFFFF(((ttt))) EEED(((ttt)))
3 0.1 10 0.97044 224.63368 7.41111 0.22645 0.19273 7.42878 5.36248 0.72357 0.04730 0.03055

25 0.90693 224.63368 7.83340 0.21104 0.18191 6.94973 5.01274 0.63992 0.14891 0.02694

40 0.84760 224.63368 8.23681 0.19723 0.17001 6.49508 4.68481 0.56876 0.24384 0.02395

0.2 10 0.96982 223.13436 7.45321 0.22754 0.17929 7.39968 5.38028 0.72187 0.04829 0.03053

25 0.90597 223.13436 7.87832 0.21217 0.16864 6.91725 5.02700 0.63808 0.15045 0.02693

40 0.84633 223.13436 8.28128 0.19820 0.15754 6.46192 4.69610 0.56707 0.24587 0.02393

0.3 10 0.96926 221.81462 7.49025 0.22850 0.16751 7.37400 5.39580 0.72038 0.04918 0.03051

25 0.90511 221.81462 7.91811 0.21317 0.15700 6.88837 5.03921 0.63642 0.15183 0.02692

40 0.84520 221.81462 8.32064 0.19906 0.14661 6.43245 4.70568 0.56554 0.24768 0.02392

5 0.1 10 0.98036 245.83784 8.29273 0.19199 0.65103 8.09883 5.40617 0.65192 0.03142 0.02315

25 0.92212 245.83784 9.11859 0.19745 0.47926 7.38341 5.07529 0.55659 0.12462 0.02165

40 0.86643 245.83784 9.53650 0.18563 0.44947 6.93604 4.76874 0.50005 0.21371 0.01947

0.2 10 0.97857 239.85848 8.62274 0.20239 0.51536 7.90340 5.45424 0.63254 0.03428 0.02347

25 0.91867 239.85848 9.30627 0.20146 0.40368 7.26813 5.10330 0.54837 0.13012 0.02165

40 0.86192 239.85848 9.72041 0.18904 0.37853 6.81872 4.78798 0.49257 0.22093 0.01945

0.3 10 0.97698 235.23638 8.87041 0.21043 0.41686 7.75308 5.48133 0.61793 0.03682 0.02372

25 0.91584 235.23638 9.45369 0.20459 0.34557 7.17615 5.12191 0.54179 0.13465 0.02164

40 0.85824 235.23638 9.86552 0.19173 0.32379 6.72475 4.79977 0.48652 0.22681 0.01943

7 0.1 10 0.98773 267.92154 8.43309 0.14452 1.61272 9.00390 5.43958 0.64503 0.01963 0.01714

25 0.93697 267.92154 10.25991 0.18304 0.91557 7.82173 5.15178 0.50213 0.10086 0.01784

40 0.88473 267.92154 10.76116 0.17524 0.83246 7.34807 4.86412 0.45201 0.18444 0.01628

0.2 10 0.98506 253.70672 9.36436 0.16795 1.13378 8.55029 5.55201 0.59289 0.02390 0.01794

25 0.92975 253.70672 10.76844 0.19320 0.67068 7.55119 5.18720 0.48170 0.11239 0.01794

40 0.87506 253.70672 11.21593 0.18267 0.62164 7.09450 4.88077 0.43516 0.19991 0.01629

0.3 10 0.98259 244.32256 10.04759 0.18664 0.80206 8.19701 5.59375 0.55673 0.02785 0.01858

25 0.92421 244.32256 11.10095 0.19965 0.51674 7.36713 5.19938 0.46837 0.12126 0.01798

40 0.86789 244.32256 11.52706 0.18772 0.48292 6.91483 4.88193 0.42352 0.21137 0.01629

Figure 6.7 presents a surface plot depicting the correlation between the expected

total cost, as computed in Eqn. 6.57, time, and system parameters such as µ , β1, λ ,

and λd . The plot reveals that an increase in either the service rate or the inspection rate

for the perfect repair by the repairer results in the repair of more failed units, ultimately

reducing the overall cost incurred by the system. Conversely, the failure rate of active

units and those in a deteriorating state contributes to an increase in the expected total

cost of the system, as illustrated in Fig. 6.7(iii)-6.7(iv). To minimize the expected

cost associated with machine repair problems, proactive preventive measures should

be implemented to prevent deterioration and mitigate delays.

Tables 6.2-6.6 provide a comprehensive overview of the system’s characteristics

as parameters vary over time. In the numerical experiments, default parameter val-

ues are set to M = 12, S = 5, m = 2, λ = 0.4, λd = 8, ν = 0.35, µ = 16, β2 = 1,

and γ = 4. The results observed in Tables 6.2-6.6 indicate that the reliability RX(t)

decreases, while EN(t) increases with time, regardless of parameter variations. The

mean time to failure (MT T F) exhibits a monotonically decreasing trend concerning
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Figure 6.7: Expected total cost (ETC(t)) by varying parameters, For (M = 12, S = 5,

m = 2, λ = 0.4, ν = 0.35, λd = 0.8, µ = 16, β1 = 8, β2 = 1, γ = 4)

all parameters except µ . Additional insights and observations from the summarized

results can be utilized to inform design decisions. These concise summaries provide

valuable information for system designers to make informed decisions.

In summary, based on the numerical illustrations, we draw the following conclud-

ing notes:

• In implementing preventive measures, the strategy involves delaying the failure

of both active and standby units. Switching must be instantaneous and perfect

to ensure the uninterrupted functioning of the system.

• As a corrective measure, repairs should be executed with excellence, emphasiz-

ing a high inspection rate. Optimal thresholds and capacities for the system are

essential to prevent a large number of lost failed units.

• The number of standby units should be optimized within cost constraints to

prevent degradation during short-mode operation.
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Table 6.4: Performance evaluations for different parameters m, λd and t with M = 12,

S = 5, λ = 0.4, ν = 0.35, µ = 16, β1 = 8, β2 = 1, γ = 4

mmm λλλ ddd ttt RRRX(((ttt))) MMMTTT TTT FFF EEEN(((ttt))) TTT hhh(((ttt))) EEES(((ttt))) EEEO(((ttt))) EEE f r(((ttt))) EEEW (((ttt))) FFFFFF(((ttt))) EEED(((ttt)))
1 0.80 10 0.99615 1225.10702 9.41232 0.10018 0.28664 7.36624 5.39825 0.57353 0.00308 0.01064

25 0.98413 1225.10702 9.78649 0.10662 0.20365 7.07454 5.27795 0.53931 0.01270 0.01089

40 0.97210 1225.10702 9.87540 0.10534 0.20094 6.98755 5.21330 0.52791 0.02232 0.01067

0.95 10 0.98777 443.28894 10.29402 0.21668 0.23428 6.53640 5.64243 0.54813 0.01162 0.02105

25 0.95470 443.28894 10.63120 0.21497 0.19444 6.23702 5.43416 0.51115 0.04304 0.02022

40 0.92263 443.28894 10.84516 0.20775 0.18790 6.02749 5.25162 0.48424 0.07350 0.01916

1.10 10 0.97333 229.55458 10.58896 0.33263 0.27209 6.20249 5.96139 0.56298 0.02934 0.03141

25 0.91086 229.55458 11.02444 0.31270 0.24685 5.78819 5.57756 0.50593 0.09805 0.02836

40 0.85238 229.55458 11.40811 0.29262 0.23100 5.41655 5.21944 0.45752 0.16238 0.02565

2 0.80 10 0.97626 233.30656 8.96966 0.21370 0.37828 7.69183 5.48997 0.61206 0.03798 0.02382

25 0.91461 233.30656 9.51588 0.20591 0.32145 7.13690 5.12877 0.53897 0.13662 0.02164

40 0.85666 233.30656 9.92679 0.19287 0.30106 6.68464 4.80378 0.48392 0.22935 0.01943

0.95 10 0.94314 111.23438 9.54672 0.34211 0.38025 7.07733 5.78594 0.60607 0.10804 0.03584

25 0.82081 111.23438 10.40262 0.29909 0.32414 6.14732 5.03486 0.48400 0.34045 0.02875

40 0.71431 111.23438 11.12889 0.26028 0.28208 5.34969 4.38158 0.39371 0.54281 0.02339

1.10 10 0.90141 69.64193 9.77973 0.42181 0.43162 6.74820 6.05819 0.61946 0.21689 0.04313

25 0.72055 69.64193 11.03544 0.33786 0.34198 5.38962 4.84347 0.43890 0.61478 0.03062

40 0.57597 69.64193 12.03160 0.27006 0.27336 4.30816 3.87160 0.32179 0.93286 0.02245

3 0.80 10 0.93055 91.18102 8.43583 0.31082 0.51005 7.97519 5.48570 0.65029 0.16668 0.03685

25 0.78465 91.18102 9.49022 0.26414 0.42043 6.70925 4.62400 0.48724 0.51685 0.02783

40 0.66153 91.18102 10.35473 0.22269 0.35446 5.65653 3.89847 0.37649 0.81233 0.02151

0.95 10 0.86766 51.99721 8.98637 0.40114 0.51491 7.28968 5.66269 0.63014 0.37717 0.04464

25 0.64045 51.99721 10.56711 0.29666 0.37759 5.37729 4.18026 0.39559 1.02471 0.02807

40 0.47272 51.99721 11.72805 0.21897 0.27870 3.96902 3.08549 0.26309 1.50274 0.01867

1.10 10 0.80274 36.17703 9.36952 0.43603 0.53177 6.75540 5.75924 0.61468 0.65095 0.04654

25 0.51670 36.17703 11.37737 0.28075 0.34154 4.34746 3.70749 0.32587 1.59488 0.02468

40 0.33258 36.17703 12.66829 0.18071 0.21983 2.79825 2.38634 0.18837 2.20250 0.01426

6.10 Conclusion

This chapter explores a Markovian model of a redundant repairable machining sys-

tem, integrating real-time paradigms into the modeling process for increased practi-

cality. To the best of our knowledge, this research represents one of the initial attempts

to quantitatively assess the reliability of a machining system, incorporating controlled

failed unit arrival policies and imperfect repair. The study employs an efficient numer-

ical computation technique based on Laplace transform, eigenvalue, and linear algebra

to calculate transient-state probabilities, reliability measures, and queueing character-

istics. Additionally, sensitivity analysis is conducted to pinpoint critical parameters

for the machining system. However, there are some limitations to this research. For

instance, the proposed model could be extended by integrating differentiated work-

ing vacations, working breakdowns, common-cause failures, switching failures, and

switching delays. Furthermore, further exploration into the analysis, design, and op-

timization of the system to derive optimal values for decision parameters based on
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Table 6.5: Performance evaluations for different parameters µ , β1 and t with M = 12,

S = 5,m = 2, λ = 0.4, λd = 8, ν = 0.35, β2 = 1, γ = 4

µµµ βββ 111 ttt RRRX(((ttt))) MMMTTT TTT FFF EEEN(((ttt))) TTT hhh(((ttt))) EEES(((ttt))) EEEO(((ttt))) EEE f r(((ttt))) EEEW (((ttt))) FFFFFF(((ttt))) EEED(((ttt)))
10 4 10 0.86035 57.65581 11.06680 0.34604 0.07488 5.77903 4.30223 0.38875 0.22343 0.03127

25 0.65964 57.65581 12.20387 0.26341 0.05796 4.44409 3.30621 0.27091 0.54457 0.02158

40 0.50580 57.65581 13.09365 0.20259 0.04426 3.40337 2.53267 0.19343 0.79073 0.01547

8 10 0.93082 93.72755 10.15188 0.31010 0.18463 6.64514 4.88416 0.48111 0.11069 0.03055

25 0.78887 93.72755 11.04994 0.26306 0.15727 5.62474 4.13631 0.37433 0.33781 0.02381

40 0.66850 93.72755 11.80525 0.22292 0.13327 4.76649 3.50517 0.29692 0.53040 0.01888

12 10 0.96939 172.67989 8.87112 0.19255 0.40356 7.73761 5.50311 0.62034 0.04898 0.02171

25 0.88720 172.67989 9.63133 0.18414 0.31893 6.97634 5.01571 0.52077 0.18047 0.01912

40 0.81152 172.67989 10.17482 0.16844 0.29166 6.38108 4.58781 0.45090 0.30157 0.01656

16 4 10 0.91458 92.87546 10.63334 0.36521 0.10978 6.24365 4.61269 0.43380 0.13667 0.03435

25 0.77610 92.87546 11.44500 0.30979 0.09321 5.29915 3.91474 0.34205 0.35824 0.02707

40 0.65860 92.87546 12.13602 0.26306 0.07902 4.49554 3.32133 0.27368 0.54624 0.02168

8 10 0.97626 233.30656 8.96966 0.21370 0.37828 7.69183 5.48997 0.61206 0.03798 0.02382

25 0.91461 233.30656 9.51588 0.20591 0.32145 7.13690 5.12877 0.53897 0.13662 0.02164

40 0.85666 233.30656 9.92679 0.19287 0.30106 6.68464 4.80378 0.48392 0.22935 0.01943

12 10 0.99564 1045.22855 5.69163 0.05326 1.42399 9.93129 6.13204 1.07738 0.00698 0.00936

25 0.98180 1045.22855 6.19719 0.05989 1.24753 9.58830 6.04287 0.97510 0.02912 0.00966

40 0.96774 1045.22855 6.34353 0.05915 1.22708 9.44764 5.95629 0.93896 0.05161 0.00932

22 4 10 0.93925 129.25142 10.38952 0.36735 0.13399 6.49430 4.77457 0.45956 0.09720 0.03536

25 0.83509 129.25142 11.02459 0.32820 0.11831 5.76204 4.23881 0.38449 0.26386 0.02977

40 0.74245 129.25142 11.57724 0.29188 0.10514 5.12217 3.76825 0.32549 0.41207 0.02521

8 10 0.98869 454.02483 7.92094 0.14931 0.64943 8.48790 5.79481 0.73158 0.01810 0.01885

25 0.95658 454.02483 8.42134 0.15420 0.54356 8.05938 5.58439 0.66312 0.06947 0.01831

40 0.92518 454.02483 8.67100 0.14918 0.52541 7.79425 5.40097 0.62288 0.11972 0.01720

12 10 0.99892 4664.74338 3.80928 0.01801 2.28720 10.95531 6.21547 1.63167 0.00172 0.00473

25 0.99577 4664.74338 3.99093 0.01967 2.20845 10.84950 6.20045 1.55363 0.00676 0.00493

40 0.99257 4664.74338 4.03091 0.01963 2.20066 10.81394 6.18057 1.53329 0.01188 0.00487

evaluation results would be valuable.
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Table 6.6: Performance evaluations for different parameters β1, β2 and t with M = 12,

S = 5,m = 2, λ = 0.4, λd = 8, ν = 0.35, µ = 16, γ = 4

βββ 1 βββ 2 ttt RRRX(((ttt))) MMMTTT TTT FFF EEEN(((ttt))) TTT hhh(((ttt))) EEES(((ttt))) EEEO(((ttt))) EEE f r(((ttt))) EEEW (((ttt))) FFFFFF(((ttt))) EEED(((ttt)))
6 0.1 10 0.94987 134.15670 9.98867 0.32047 0.20131 6.82790 4.99127 0.49969 0.08020 0.03208

25 0.84738 134.15670 10.64981 0.28674 0.17980 6.07843 4.44717 0.41758 0.24419 0.02692

40 0.75587 134.15670 11.22758 0.25577 0.16039 5.42201 3.96692 0.35332 0.39061 0.02278

0.6 10 0.94288 119.45581 10.39791 0.32523 0.19368 6.74753 4.93299 0.47442 0.09139 0.03128

25 0.82923 119.45581 11.09036 0.28735 0.16996 5.91734 4.33103 0.39052 0.27323 0.02591

40 0.72918 119.45581 11.68273 0.25268 0.14946 5.20340 3.80848 0.32599 0.43331 0.02163

1.1 10 0.93566 107.43943 10.78592 0.32889 0.18643 6.66884 4.87617 0.45209 0.10295 0.03049

25 0.81096 107.43943 11.50211 0.28682 0.16069 5.75961 4.21727 0.36665 0.30247 0.02494

40 0.70276 107.43943 12.10223 0.24855 0.13925 4.99115 3.65458 0.30198 0.47559 0.02054

10 0.1 10 0.98977 466.90210 7.35916 0.11236 0.81641 8.87194 5.91591 0.80388 0.01637 0.01527

25 0.95875 466.90210 7.98018 0.12028 0.65914 8.37588 5.70739 0.71519 0.06600 0.01507

40 0.92811 466.90210 8.23951 0.11653 0.63694 8.10632 5.52479 0.67052 0.11502 0.01414

0.6 10 0.98764 394.65560 7.89991 0.12545 0.73788 8.69098 5.85972 0.74175 0.01977 0.01588

25 0.95096 394.65560 8.51787 0.13196 0.59483 8.16931 5.61786 0.65954 0.07846 0.01549

40 0.91505 394.65560 8.80252 0.12706 0.57160 7.85950 5.40556 0.61409 0.13591 0.01443

1.1 10 0.98528 338.31595 8.41338 0.13853 0.66849 8.51874 5.80162 0.68957 0.02354 0.01647

25 0.94254 338.31595 9.02417 0.14319 0.53967 7.97129 5.52561 0.61231 0.09194 0.01587

40 0.90108 338.31595 9.33242 0.13694 0.51543 7.61978 5.28244 0.56603 0.15827 0.01467

14 0.1 10 0.99806 2448.48951 4.33914 0.02482 2.01960 10.68440 6.20550 1.43012 0.00310 0.00572

25 0.99211 2448.48951 4.63162 0.02770 1.90059 10.50518 6.17371 1.33295 0.01262 0.00598

40 0.98604 2448.48951 4.70436 0.02758 1.88744 10.43926 6.13601 1.30433 0.02234 0.00586

0.6 10 0.99756 1926.13960 4.82465 0.02970 1.89839 10.54398 6.19447 1.28392 0.00391 0.00616

25 0.99000 1926.13960 5.15955 0.03319 1.76753 10.33331 6.15160 1.19228 0.01600 0.00643

40 0.98230 1926.13960 5.24752 0.03299 1.75207 10.25104 6.10383 1.16318 0.02832 0.00629

1.1 10 0.99696 1541.70141 5.30705 0.03508 1.78134 10.40038 6.18059 1.16460 0.00486 0.00661

25 0.98753 1541.70141 5.68336 0.03919 1.64005 10.15689 6.12462 1.07764 0.01994 0.00690

40 0.97794 1541.70141 5.78764 0.03887 1.62228 10.05609 6.06517 1.04795 0.03529 0.00672



Chapter 7

Reliability analysis of Standby Provision Multi-

Unit Machining Systems with Varied Failures,

Degradations, Imperfections, and Delays

“In the face of every malfunction lies

an opportunity for enlightenment.

Embrace each challenge as a

philosopher does, for within the

labyrinth of failure resides the path to

discovery.”

Immanuel Kant

7.1 Introduction

The fault-tolerant multi-unit machining system (FMMS) has become a prerequisite of

contemporary technology in the fast-growing industrial environment to support unin-

terrupted operation, especially in computer-driven automated machining systems us-

ing artificial intelligence and remote access. The FMMSs are the primary need for de-

veloping smart industry 4.0, communication networks, power plants, assembly lines,

distributed setups, etc. As preventive and corrective measures, redundancy and strate-

gic maintenance, respectively are primarily operated to reduce the risk of system fail-

ure and service disruption. The queueing-theoretic approach based on stochastic mod-

eling facilitates a robust methodology for predicting reliability/availability metrics

in FMMSs such as internet/communication networks, distributed service/data/cloud

computing centers, manufacturing systems/production lines, hydraulic control sys-

tems, etc. The unexpected failure of embedded units is undesirable; it increases
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downtime, which can sometimes be the primary cause of a system-wide essential shut-

down. The unexpected failure interrupts the operation, degrades system performance

and service quality, and increases economic losses. The expert machining system is

desirable to propose the prevention of unforeseen faults/failures of units and related

unpleasant scenarios. The reliability models on machine repair problem (MRP) have

been broadly investigated in the literature (cf.[88], [242], [266], [4], [159], [14]) for

the better design of the FMMSs.

Besides active redundancy, standby redundancy can strategically enhance system

reliability in machining systems. Most studies on the prediction of fault-tolerant sys-

tem (FTS) reliability and queueing characteristics have expected that the transition

from standby to active units is perfect. Although it is not practically conceivable in

many machining systems, the perfect switching paradigm simplifies problem analysis.

Lewis [171] conceptualized the notion of standby switching failures in the reliability

analysis of standby provisioning systems. Switching failure of standby support in a

machining system is a challenge in real-time scenarios, such as cloud computations,

internet systems, call centers, safety devices, etc. Some distinguished researchers have

also investigated the reliability analysis and optimal analysis by integrating the con-

cept of unsuccessful standby switchover in stochastic redundant multi-unit repairable

machining systems (cf. [260], [100]).

In short mode, once available standby units are exhausted, the active-redundant

system starts functioning in degraded mode since the likelihood of active unit failure

increases due to load sharing. In short mode, the active units fail at a higher rate. It is

worthwhile to refer to some notable references in this direction (cf. [118], [147], [34],

[185], [172]).

The expert design has been extensively used in multi-unit systems that consider

the common cause of failure with numerous redundant mechanisms. Under common

cause failure, all existing units fail simultaneously owing to some randomly generated

causes like natural catastrophes or artificial errors. The occurrence of common cause

failures (CCFs) has an adverse impact on multi-unit machining system reliability and

contributes significantly to system risk. There have been attempts to analyze the CCFs

phenomenon in the multi-unit system (cf. [208], [304], [218], [60], [76], [232]). Re-

cently, Soga et al. [277] proposed a systematic approach to approximate an inter-unit

common cause failure probability.

Imperfect coverage or unrecovered faults owing to a lack of fault detection or

switching failure are prevalent problems in redundant machining systems. It signifi-

cantly impacts the standby unit’s operations and the system’s availability. The cover-

age factor is the likelihood of successful coverage, which takes account of the chances

of efficacious detection, location, and recovery from a failure (cf. [129], [164], [20]).
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The faulty units under inadequate coverage can be removed with the reboot process.

Trivedi [298] detailed the notion of reboot delay and examined its effect on the avail-

ability or reliability of a repairable multi-unit machining system. Significant inves-

tigations on unreliable attributes like imperfect coverage and reboot delay have been

done in the past (cf. [315], [132], [107], [326]) in different frameworks using the

distinguished methodology.

Most conventional investigations of repairable redundant multi-unit machining

systems are centered on the assumption of a reliable server and perfect repair. How-

ever, these unrealistic presumption appears to be speculative for predicting the factual

performance of the repair facility since the repair facility or repairer may fail while

performing the repair task or may repair imperfectly. The repairer may be imperfect

any number of times before it gives a perfect repair. Some researchers (cf. [138],

[135], [121]) explored the performance indices of machine repairable system with

warm standby provisioning and a failure-prone repair facility. For more comprehen-

sive theories and excellent reviews on the imperfect repair facility, the researcher may

refer to the following investigations (cf. [225], [226], [267], [47],[157]). The unreli-

able repair facility with the imperfect repair is a more realistic representation of the

machining system and never has been studied in literature before.

In a power distribution system, transformers play a crucial role as active units

by converting high voltage electricity into a lower voltage suitable for consumer use.

However, in the event of a transformer failure, a standby transformer is available

for immediate replacement, ensuring uninterrupted power supply to consumers. The

failed unit is promptly sent for repair. However, if the repair facility relies on an

unreliable service that fails to effectively resolve the underlying issues, the repaired

transformer may experience recurring failures or suboptimal performance due to im-

perfect repairs. This can lead to increased maintenance costs and a reduction in the

overall reliability of the power distribution system. A switching failure occurs when

the automation responsible for maintaining the power supply malfunctions or fails to

operate correctly. Such failures can disrupt the uninterrupted power supply, causing

downtime issues and impacting the reliability of the infrastructure. In power stations,

the installation of multiple transformers is essential to ensure redundancy and enhance

uninterrupted power supply. However, a common-cause failure scenario could arise if

all transformers are affected by a single event, such as high temperature or connection

problems. This type of failure can result in a loss of power and pose a significant

threat to the reliability of the power distribution system. Over time, transformer sys-

tems may deteriorate due to factors such as carbon deficiency, rust on coils, problems

in the magnetic chamber, or general wear and tear. As a result, their performance
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gradually degrades, leading to failures and a decrease in energy output. This degrada-

tion negatively impacts the overall efficiency and reliability of the transformer system.

In a fault detection and suppression system, coverage refers to the system’s ability to

effectively detect and suppress faults. If the coverage is imperfect, certain areas may

not be adequately monitored, leading to undetected faults and compromised reliabil-

ity, particularly in terms of early fire detection and suppression. Occasional reboots

may be necessary for maintenance or updates in various systems. However, if the

reboot process is slow or inefficient, it can result in extended downtime, thereby im-

pacting the availability and reliability of the services hosted on the system.

The foremost objective of the projected repairable redundant multi-unit machin-

ing system with standby units provisioning and unreliable attributes is threefold: (i)

to formulate the Markovian model for fault-tolerant-system in strategic exploration

by integrating the realistic unreliable attributes of machining system such as failures,

imperfections, delays, degradation, viz. unreliable server, imperfect repair, imperfect

switching process, degraded failure, common-cause failure, imperfect coverage, and

reboot delay, (ii) to simplify the governing differential-difference forward equations

transient solution procedure by employing mathematical notions like Laplace trans-

form, linear algebra, etc., and (iii) to endorse the computational submissiveness of

reliability characteristics along with sensitivity and relative sensitivity analysis.

The contents of the present article are structured section-wise as follows: In the

next Section 7.2, the detailed description of the proposed model with state notations

and transient equations is outlined. Successively, we present an efficient methodology

to compute the transient solution. In the next Section 7.3, we define the reliability

function and present its sensitivity analysis. The mean time-to-failure and failure

frequency are defined and studied in detail in Section 7.4 and 7.5 respectively. To

justify the research gap, special cases are discussed in Section 7.6. The significance

of the investigation is outlined, and the conclusion and future scope are highlighted in

Section 7.7.

7.2 Model Description

This section presents the mathematical model for a Markovian multi-unit machining

system of M operating units with S warm standby units and a single repairer. The

operating/standby units and repairer, all of which are unreliable but repairable. In the

event of a failure, the active/standby units and repairer are immediately sent to re-

store. The failed unit is replaced with the available warm standby unit in insignificant

switchover time. When all M operating units are in working mode, any system can
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function normally. The system is degraded if less than M but more than m operat-

ing units are working. A system failure is defined when less than m; m = 1,2, ...,M

active units remain working. Therefore, the machining system’s strategic policy is

known as the (M,m) policy. It is worth mentioning that the system can tolerate up to

K = M+S−m+1 unit failures.

0 1 2 . . . S-1 S S+1 . . . K-2 K-1

1 2 . . . S S+1 . . . K-1

1 2 . . . S S+1 . . . K-1

K

1 2 . . . S S+1 . . . K-1

0 1 2 . . . S-1 S S+1 . . . K-2 K-1

Λ0 Λ1 ΛS−1 ΛS ΛS+1 ΛK−2

λ
0
c̄

γ λ
1
c̄

γ λ
S
−
1
c̄

γ λ
S
c̄

γ λ
K

−
2
c̄

γ

β1 β2 µ β1 β2 µ β1 β2 µ β1 β2 µ β1 β2 µ

α

β

α

β

α

β

α

β

α

β

α

β

α

β

α

β

Λ0 Λ1 ΛS−1 ΛS ΛK−2

λ
0
c̄

γ λ
1
c̄

γ λ
2
c̄

λ
S
−
1
c̄

γ λ
S
c̄

γ

λ
S
−
1
c̄

γ

λc λc
λc λc λc λc λc λc λc λc

λc λc λc λc λc λc λc λc λc λc

Υ
2,0

ΥS−1,0

ΥS,0

φ0

Υ
S
−1,1

ΥS,1

φ1

ΥS−1,2

ΥS,2

φ2

φn φS−1

Υ2,0

ΥS−1,0

ΥS,0

φ0

ΥS−1,1

ΥS,1

φ1

ΥS−1,2

ΥS,2

φ2
φn

φS−1

Λ
K

−
1

Λ
K
−

1

Figure 7.1: State transition rate diagram Λi = [Mλ q̄+(S− i)ν ]c, 0 ≤ i ≤ K −1,

ϒ j,i = Mλ q̄q j−i−1c φi = MλqS−ic

We set forth the following assumptions and notations employed for the detailed

illustrations of the studied model.

Units failure process

• Since the operating units may fail unpredictably. The inter-time between suc-

cessive failures of an operating unit is assumed to follow an exponential distri-

bution with a mean failure rate of λ .

• In the context of standby units, it is common for the warm standby units in

the spare state to fail before being put into the whole operation. The inter-

failure time of the warm standby units in the spare state is also modeled by an

exponential distribution with a parameter ν , where 0 < ν < λ .
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• Independent of the state of the active or standby units, the active/standby unit

fails randomly.

• In a degraded state, the time-to-failure of the active unit is distributed expo-

nentially with an increasing rate λd;λd > λ since the load is shared with the

existing unit.

Switching process

• Since the operating units are subject to failures, on the failure of any operat-

ing unit, the operating unit is ejected with an accessible, warm standby unit

in trifling switchover time. After a successful switchover, switched units’ fail-

ure/working characteristics are also changed to operating.

• Replacing standby units instead of failed operating units may be unsuccessful

due to some random switchover hitch. The probability of successful switchover

is 1−q, whereas the switching failure probability is q.

• In a system with standby units, if a standby unit fails to take over from a failed

operating unit, the next one in line will randomly attempt to take over. This

process of attempting to switch between standby and operating units continues

until a successful switch occurs or all the available standby units have been

exhausted.

Catastrophe process

• The machining system may cause catastrophe wherein the simultaneous failures

of multiple units due to some random common causes. The cause may be exter-

nal, such as natural calamities or extreme environmental conditions, or internal,

such as failures propagated from certain system elements.

• Since a catastrophe in the machining system is a rare event, the random catas-

trophe cause arrives in a Poisson fashion with parameter λc(λc << λ ,ν).

Unit recovery process

• When an operating unit is futile, it queued up for the recovery facility of one

unreliable repairer without losing time. If the repairer is idle, the failed unit gets

repaired; otherwise, the futile unit waits in the queue and is repaired following

the first-come, first-served (FCFS) service discipline.

• The repair time of the failed units, a continuous random variable, follows an

exponential distribution with meantime 1/µ .
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• The repair may be perfect or imperfect. The time-to-inspect perfect and im-

perfect repair follows an exponential distribution with parameters β1 and β2,

respectively.

• The recovered units are as good as the new ones and experience no deterioration

in performance with age. They are sent back to the pool of operating or standby

units depending on the system’s state: degraded or normal.

Reboot process

• When the operating/standby unit fails, it may be instantly successfully detected,

located, and recovered with a perfect coverage probability c. As any one of the

breakdowns that are not covered successfully is referred to as the unsafe failure

state of the system.

• A reboot process refreshes the unsafe state. The reboot follows a Poisson pro-

cess with a parameter γ .

• The mean reboot delay is too slight to have any other events like failure/repair

of operating/standby units, i.e., γ >> µ,λ .

Unreliable repair facility

• The recovery facility may become unavailable when the repairer fails following

an exponentially distributed time-to-breakdown with the rate α .

• The failure of units continues when the recovery facility is unavailable.

• The recovery facility’s time-to-restore also follows memoryless property hold-

ing distribution with parameter β .

The events of failure/repair of operating/standby units, switching failure, catastrophe,

coverage, reboot delay, and breakdown/recovery of the repair facility are statistically

independent of each other.

Let I1(t), J(t), and F(t) denote the number of failed units in the multi-unit sys-

tem, the state of the repairer, and the inoperative state of the machining system at

an arbitrary time t, respectively. The state of the repairer at any time t is defined as

follows.

J(t) =

⎧
⎨
⎩

0; when the repairer is in normal busy state

1; when the repairer is in breakdown state

Hence, the state notations defined above form a continuous-time Markov chain {(J(t)

,I1(t))∪F(t); t ≥ 0}, in the following solution space.
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Π = {{(J(t) = j, I1(t) = i) | j = 0; i = 0,1,2, . . . ,K −1}∪{( j, i) | j = 0; i = 1,2,3,

. . . ,K −2,K −1}∪{( j, i) | j = 0; i = 1,2,3, . . . ,K −2,K −1}∪{( j, i) | j = 1;

i = 0,1,2, . . . ,K −2,K −1}∪{( j, i) | j = 1; i = 1,2,3, . . . ,K −2,K −1}∪ F}.

The governing state probabilities of the system at arbitrary time t are defined as

follows.

Pj,i(t)≡Pr (J(t) = j, I1(t) = i) , i.e.,Probability of the machining system having i

failed units and the repairer is in the state j,where( j, i) ∈ Π

Q j,i(t)≡Pr (J(t) = j, I1(t) = i)and serviced unit is in state of decision for perfect

service, i.e., Probability of the machining system having i failed units after

service is rendered and the repairer is in the state j, where( j, i) ∈ Π

R j,i(t)≡Pr (J(t) = j, I1(t) = i) , and failed unit’s fault is not perfectly detected i.e.,

Probability of the machining system having i failed units with imperfect

coverage and the repaireris in the state j,where( j, i) ∈ Π

PF(t)≡Probability that the machining system is in inoperative state

At each point of time, number of working units are fixed and changed with event

of failure and repair. Depending on the state of the system, failure rate changes.

Following the above-defined pertinent notations and assumptions, the state-dependent

failure rate of the active/standby unit is summed as

λi =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Mλ +(S− i)ν ; if i = 0,1, . . . ,S−1

(M+S− i)λd; if i = S,S+1, . . . ,K −1

0; otherwise

7.2.1 Transient Equations

Following the above-defined notations, assumptions, states, and states probabilities,

the associated forward Chapman-Kolmogrove equations are formulated by balancing

the inflow-outflow rates in the state-transition diagram in Fig. 7.1. The developed

equations are differential-difference equations regarding time and the number of failed

units in the system, respectively. For this purpose, we define following operator

D =
d

dt

When the repairer is in normal busy state J(t) = 0
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DP0,0(t) =−(λ0 +α +λc)P0,0(t)+β1Q0,1(t)+βP1,0(t) (7.1)

DP0,1(t) =−(λ1 +α +λc +µ)P0,1(t)+(Mλ q̄+Sν)cP0,0(t)+β2Q0,1(t)

+β1Q0,2(t)+ γR0,1(t)+βP1,1(t) (7.2)

DP0,i(t) =−(λi +α +λc +µ)P0,i(t)+(Mλ q̄+(S− i+1)ν)cP0,i−1(t)

+β2Q0,i(t)+β1Q0,i+1(t)+ γR0,i(t)+
i−2

∑
l=0

Mλ q̄qi−l−1cP0,l(t)

+βP1,i(t); 2 ≤ i ≤ S−1 (7.3)

DP0,S(t) =−(λS +α +λc +µ)P0,S(t)+(Mλ q̄+ν)cP0,S−1(t)+β2Q0,S(t)

+β1Q0,S+1(t)+ γR0,S(t)+βP1,S(t)+
S−2

∑
l=0

Mλ q̄qS−l−1cP0,l(t) (7.4)

DP0,S+1(t) =−(λS+1 +α +λc +µ)P0,S+1(t)+λScP0,S(t)+β2Q0,S+1(t)

+β1Q0,S+2(t)+ γR0,S+1(t)+βP1,S+1(t)+
S−1

∑
l=0

MλqS−lcP0,l(t) (7.5)

DP0,i(t) =−(λi +α +λc +µ)P0,i(t)+λi−1cP0,i−1(t)+β2Q0,i(t)

+β1Q0,i+1(t)+ γR0,i(t)+βP1,i(t); S+2 ≤ i ≤ K −2 (7.6)

DP0,K−1(t) =−(λK−1 +α +λc +µ)P0,K−1(t)+λK−2cP0,K−2(t)

+β2Q0,K−1(t)+ γR0,K−1(t)+βP1,K−1(t) (7.7)

DQ0,i(t) =−(β1 +β2)Q0,i(t)+µP0,i(t); 1 ≤ i ≤ K −1 (7.8)

DR0,i(t) =−γR0,i(t)+λi−1c̄P0,i−1(t); 1 ≤ i ≤ S (7.9)

DR0,i(t) =−γR0,i(t)+λi−1c̄P0,i−1(t); S+1 ≤ i ≤ K −1 (7.10)

When the repairer is in breakdown state J(t) = 1

DP1,0(t) =−(λ0 +β +λc)P1,0(t)+αP0,0(t) (7.11)

DP1,1(t) =−(λ1 +β +λc)P1,1(t)+(Mλ q̄+Sν)cP1,0(t)+αP0,1(t)

+ γR1,1(t) (7.12)

DP1,i(t) =−(λi +β +λc)P1,i(t)+(Mλ q̄+(S− i+1)ν)cP1,i−1(t)

+αP0,i(t)+ γR1,i(t)+
i−2

∑
l=0

Mλ q̄qi−l−1cP1,l(t); 2 ≤ i ≤ S−1 (7.13)

DP1,S(t) =−(λS +β +λc)P1,S(t)+(Mλ q̄+ν)cP1,S−1(t)+αP0,S(t)

+ γR1,S(t)+
S−2

∑
l=0

Mλ q̄qS−l−1cP1,l(t) (7.14)
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DP1,S+1(t) =−(λS+1 +β +λc)P1,S+1(t)+λScP1,S(t)+αP0,S+1(t)

+ γR1,S+1(t)+
S−1

∑
l=0

MλqS−lcP1,l(t) (7.15)

DP1,i(t) =−(λi +β +λc)P1,i(t)+λi−1cP1,i−1(t)+αP0,i(t)+ γR1,i(t);

S+2 ≤ i ≤ K −2 (7.16)

DP1,K−1(t) =−(λK−1 +β +λc)P1,K−1(t)+λK−2cP1,K−2(t)

+αP0,K−1(t)+ γR1,K−1(t) (7.17)

DR1,i(t) =−γR1,i(t)+λi−1c̄P1,i−1(t); 1 ≤ i ≤ S (7.18)

DR1,i(t) =−γR1,i(t)+λi−1c̄P1,i−1(t); S+1 ≤ i ≤ K −1 (7.19)

When the system is in failed state

DPF(t) =(λK−1 +λc)P0,K−1(t)+(λK−1 +λc)P1,K−1(t)+
K−2

∑
l=0

λcP0,l(t)

+
K−2

∑
l=0

λcP1,l(t) (7.20)

In the preliminary stage, at t = 0, all the operating and standby units are functioning,

i.e., there is no failed unit at the initial state. Hence the initial conditions are

⎧
⎨
⎩

Pj,i(0) = 1 ; j = 0, i = 0

Pj,i(0) = 0 ;otherwise
(7.21)

7.2.2 Laplace transform

Under initial conditions, the Laplace transform of state probabilities and their deriva-

tives are defined as

L
(
Pj,i(t)

)
=
∫ ∞

0
e−utPj,i(t)dt = P̈j,i(u); R(u)≥ 0, ∀ ( j, i) ∈ Π (7.22)

L
(
Q j,i(t)

)
=
∫ ∞

0
e−utQ j,i(t)dt = Q̈ j,i(u); R(u)≥ 0, ∀ ( j, i) ∈ Π (7.23)

L
(
R j,i(t)

)
=
∫ ∞

0
e−utR j,i(t)dt = R̈ j,i(u); R(u)≥ 0, ∀ ( j, i) ∈ Π (7.24)

L(PF(t)) =
∫ ∞

0
e−utPF(t)dt = P̈F(u); R(u)≥ 0 (7.25)

L
(
DPj,i(t)

)
= uP̈j,i(u)−Pj,i(0); R(u)≥ 0, ∀ ( j, i) ∈ Π (7.26)
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L
(
DQ j,i(t)

)
= uQ̈ j,i(u)−Q j,i(0) ; ∀ ( j, i) ∈ Π (7.27)

L
(
DR j,n(t)

)
= uR̈ j,i(u)−R j,i(0) ; ∀ ( j, i) ∈ Π (7.28)

L(DPF(t)) = uP̈F(u)−PF(0) (7.29)

The developed system of differential-difference equations 7.1-7.20 in previous

subsection can be transformed as system of linear equations 7.30-7.49 following above-

defined Laplace transform as follows.

When the repairer is in normal state J(t) = 0

− (u+λ0 +α +λc) P̈0,0(u)+β1Q̈0,1(u)+β P̈1,0(u)+1 = 0 (7.30)

− (u+λ1 +α +λc +µ) P̈0,1(u)+(Mλ q̄+Sν)cP̈0,0(u)+β2Q̈0,1(u)+

β1Q̈0,2(u)+ γR̈0,1(u)+β P̈1,1(u) = 0 (7.31)

− (u+λi +α +λc +µ) P̈0,i(u)+(Mλ q̄+(S− i+1)ν)cP̈0,i−1(u)+

β2Q̈0,i(u)+β1Q̈0,i+1(u)+ γR̈0,i(u)+
i−2

∑
l=0

Mλ q̄qi−l−1cP̈0,l(u)+

β P̈1,i(u) = 0; 2 ≤ i ≤ S−1 (7.32)

− (u+λS +α +λc +µ)P̈0,S(u)+(Mλ q̄+ν)cP̈0,S−1(u)+β2Q̈0,S(u)+

β1Q̈0,S+1(u)+ γR̈0,S(u)+β P̈1,S(u)+
S−2

∑
l=0

Mλ q̄qS−l−1cP̈0,l(u) = 0 (7.33)

− (u+λS+1 +α +λc +µ) P̈0,S+1(s)+λScP̈0,S(u)+β2Q̈0,S+1(u)+

β1Q̈0,S+2(u)+ γR̈0,S+1(u)+β P̈1,S+1(u)+
S−1

∑
l=0

MλqS−lcP̈0,l(u) = 0 (7.34)

− (u+λi +α +λc +µ)P̈0,i(u)+λi−1cP̈0,i−1(u)+β2Q̈0,i(u)+β1Q̈0,i+1(u)

+ γR̈0,i(u)+β P̈1,i(u) = 0 ;S+2 ≤ i ≤ K −2 (7.35)

− (u+λK−1 +α +λc +µ)P̈0,K−1(u)+λK−2cP̈0,K−2(u)+β2Q̈0,K−1(u)

+ γR̈0,K−1(u)+β P̈1,K−1(u) = 0 (7.36)

− (u+β1 +β2)Q̈0,i(u)+µP̈0,i(u) = 0; 1 ≤ i ≤ K −1 (7.37)

− (u+ γ)R̈0,i(u)+λi−1c̄P̈0,i−1(u) = 0; 1 ≤ i ≤ S (7.38)

− (u+ γ)R̈0,i(u)+λi−1c̄P̈0,i−1(u) = 0; S+1 ≤ i ≤ K −1 (7.39)
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When the repairer is in breakdown state J(t) = 1

− (u+λ0 +β +λc) P̈1,0(u)+αP̈0,0(u) = 0 (7.40)

− (u+λ1 +β +λc) P̈1,1(u)+(Mλ q̄+Sν)cP̈1,0(u)+αP̈0,1(u)+

γR̈1,1(u) = 0 (7.41)

− (u+λi +β +λc) P̈1,i(u)+(Mλ q̄+(S− i+1)ν)cP̈1,i−1(u)+αP̈0,i(u)+

γR̈1,i(u)+
i−2

∑
l=0

Mλ q̄qi−l−1cP̈1,l(u) = 0; 2 ≤ i ≤ S−1 (7.42)

− (u+λS +β +λc)P̈1,S(u)+(Mλ q̄+ν)cP̈1,S−1(u)+αP̈0,S(u)+ γR̈1,S(u)+

S−2

∑
l=0

Mλ q̄qS−l−1cP̈1,l(u) = 0 (7.43)

− (u+λS+1 +β +λc)P̈1,S+1(u)+λScP̈1,S(u)+αP̈0,S+1(u)+ γR̈1,S+1(u)+

S−1

∑
l=0

MλqS−lcP̈1,l(u) = 0 (7.44)

− (u+λi +β +λc)P̈1,i(u)+λi−1cP̈1,i−1(u)+αP̈0,i(u)+ γR̈1,i(u) = 0;

S+2 ≤ i ≤ K −2 (7.45)

− (u+λK−1 +β +λc) P̈1,K−1(u)+λK−2cP̈1,K−2(u)+αP̈0,K−1(u)+

γR̈1,K−1(u) = 0 (7.46)

− (u+ γ) R̈1,i(u)+λi−1c̄P̈1,i−1(u) = 0; 1 ≤ i ≤ S (7.47)

− (u+ γ) R̈1,i(u)+λi−1c̄P̈1,i−1(u) = 0; S+1 ≤ i ≤ K −1 (7.48)

When the system is in failed state

−uP̈F(u)+(λK−1 +λc)P̈0,K−1(u)+(λK−1 +λc)P̈1,K−1(u)+

K−2

∑
l=0

λcP̈0,l(u)+
K−2

∑
l=0

λcP̈1,l(u) = 0 (7.49)

For employing the theory of linear algebra to solve the system of linear equations

7.30-7.49, the transient-state probabilities are depicted in a single subscript in the

following manner.

[P0,0(t),P0,1(t), . . . ,P0,K−1(t)]
T ≡ [π0(t),π1(t), . . . ,πK−1(t)]

T

[Q0,1(t),Q0,2(t), . . . ,Q0,K−1(t)]
T ≡ [πK(t),πK+1(t), . . . ,π2K−1(t)]

T

[R0,1(t),R0,2(t), . . . ,R0,K−1(t)]
T ≡ [π2K(t),π2K+1(t), . . . ,π3K−2(t)]

T

[P1,0(t),P1,1(t), . . . ,P1,K−1(t)]
T ≡ [π3K−1(t),π3K(t), . . . ,π4K−2(t)]

T

[R1,1(t),R1,2(t), . . . ,R1,K−1(t)]
T ≡ [π4K−1(t),π4K(t), . . . ,π5K−3(t)]

T
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[PF(t)]
T ≡ [π5K−2(t)]

T

For matrix-representation, we define the column vectors of order 5K −1 as

Ξ̈(u) = [π̈0(u), π̈1(u), π̈2(u), . . . , π̈5K−3(u), π̈5K−2(u)]
T (7.50)

Ξ(0) = [π0(0),π1(0),π2(0), . . . ,π5K−3(0),π5K−2(0)]
T (7.51)

The matrix representation of the system of linear equations 7.30-7.49 in pre-defined

vectors is as follows

�(u)Ξ̈(u) = Ξ(0) (7.52)

where �(u) is the square matrix with coefficients as elements of order 5K −1.

Using Cramer’s method for solving matrix equation, we express π̈k(u) explicitly

as follows

π̈k(u) =
|�k(u)|
|�(u)| ; 0 ≤ k ≤ 5K −2 (7.53)

where �k(u) defined from �(u) by substituting the right-hand side column vector

Ξ(0) in the kth column. For obtaining expression of π̈k(u) explicitly from Eqn. 7.53,

we first determine the value of denominator |�(u)|. u = 0 is one latent character-

istics of |�(u)| = 0 since �(u) is derived from singular coefficient matrix obtained

from balanced outflow and inflow rates. Suppose that u =−ξ be any other unknown

nonzero latent characteristics of |�(u)|= 0, then we have

�(−ξ ) = C−ξ I (7.54)

where C =�(0) and I is an unit matrix of order 5K −1. The expression in Eqn. 7.52

can also be represented as

�(−ξ )Ξ̈(u) = (C−ξ I)Ξ̈(u) (7.55)

Let ξl (�= 0), l = 1,2,3, . . . ,5K −3,5K −2 are distinct real or complex latent charac-

teristics of the characteristics equation |C−ξ I|= 0. Consider ξ1,ξ2,ξ3, . . . ,ξi1−1,ξi1

are i1 real latent characteristics. Let ξi1+1, ξ̄i1+1,ξi1+1, ξ̄i1+1, . . . ,ξi1+i2−1, ξ̄i1+i2−1,

ξi1+i2 , ξ̄i1+i2 be i2 conjugate pair of complex latent characteristics. Hence, i1 + 2i2 =
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5K −2. Therefore, |�(u)| can be expressed as

|�(u)|= u
i1

∏
l=1

(u+ξl)
i2

∏
l=1

(
u2 +(ξi1+l + ξ̄i1+l)u+ξi1+l ξ̄i1+l

)
(7.56)

Hence, Eqn. 7.53 reduces to

π̈k(u) =
|�k(u)|
|�(u)| =

|�k(u)|
u∏

i1
l=1(u+ξl)∏

i2
l=1

(
u2 +(ξi1+l + ξ̄i1+l)u+ξi1+l ξ̄i1+l

) ;

0 ≤ k ≤ 5K −2 (7.57)

The Eqn. 7.57 can be expressed in the partial fraction form as

π̈k(u) =
a0,k

u
+

i1

∑
l=1

al,k

(u+ξl)
+

i2

∑
l=1

bl,ku+ cl,k

(u2 +(ξi1+l + ξ̄i1+l)u+ξi1+l ξ̄i1+l)
;

0 ≤ k ≤ 5K −2 (7.58)

The partial fraction constants are evaluated as

a0,k =
|�k(0)|

∏
i1
l=1(ξl)∏

i2
l=1(ξi1+l ξ̄i1+l)

(7.59)

al,k =
|�k(−ξl)|

(−ξl)∏
i1
m=1,m�=l

(ξm −ξl)∏
i2
m=1(ξl

2 +(ξi1+m + ξ̄i1+m)(−ξl)+ξi1+mξ̄i1+m)
;

l = 1,2,3, . . . , i1

(7.60)

and

bl,k(−ξi1+l)+ cl,k

=
|�k (−ξi1+l) |

(−ξi1+l)∏
i1
m=1 (ξm −ξi1+l)∏

i2
m=1,m�=l

(
(−ξi1+l)

2 +
(
ξi1+m + ξ̄i1+m

)
(−ξi1+l)+ξi1+mξ̄i1+m

) ;

l = 1,2,3, . . . , i2

(7.61)

On taking inverse Laplace transform of Eqn. 7.61, the explicit solution of the gov-

erning system of differential-difference equation can be obtained. Hence, the explicit
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expression of transient-state probabilities is deduced as

πk(t) =a0,k +
i1

∑
l=1

al,ke−ξlt +
i2

∑
l=1

[
bl,ke−xlt cosylt +

cl,k −bl,kxl

yl

e−xlt sinylt

]
;

0 ≤ k ≤ 5K −2

(7.62)

The arbitrary constant a0,k,al,k,bl,k and cl,k are computed in the above Eqns. 7.59-

7.61. The real numbers xl and yl are respectively real and imaginary components of

the complex latent characteristics ξi1+l .

Using the derived state probabilities, we develop the reliability characteristics of a

fault-tolerant multi-unit machining system with standbys provisioning under different

unreliable attributes. In the following sections, we derived the expression of reliability

of the system, mean time-to-failure, and failure frequency of the system and studied

the parametric behavior.

7.3 Reliability of the system

This section discusses the reliability and parametric behavior of the repairable fault-

tolerant redundant machining system. Let X , a continuous random variable, represent

the time-to-failure of the system. The state F represents the inoperative state of the

system. The state probability PF(t) is the likelihood that the system is inoperative on

or before time t. Employing a probability theory, the system reliability RX(t) at time

t is the probability that the system will operate without failure over the interval (0, t],

a specific period, under certain specified operating conditions. Mathematically, RX(t)

is given as

RX(t) = 1−PF(t); t ≥ 0 (7.63)

Figure 7.2: Reliability RX(t) of the system w.r.t. design parameter, (For λ = 0.5, λd = 1,

λc = 0.01, ν = 0.1, α = 0.05, µ = 5, β1 = 15, β2 = 0.1, β = 10, γ = 60, c = 0.9, q = 0.1)
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The reliability function RX(t) is a non-increasing function of t and ranges from 1

to 0. The results can be observed in the following numerical results. For the numeri-

cal experiments, we set the default parameters of the studied repairable fault-tolerant

redundant machining system as follows M = 10, S = 5, m = 2, λ = 0.5, λd = 1,

λc = 0.01, ν = 0.1, α = 0.05, µ = 5, β1 = 15, β2 = 0.1, β = 10, γ = 60, c = 0.9,

q = 0.1. From the Figs. 7.2-7.5, the obvious nonincreasing trends of the system reli-

ability with time t are observed. The depiction supports the modeling, methodology

used for the studied model.

Figure 7.3: Reliability RX(t) of the system w.r.t. different types of failures, (For M = 10,

S = 5, m = 2, µ = 5, β1 = 15, β = 10, γ = 60, c = 0.9, q = 0.1)

Fig. 7.2 depicts the variability of the system reliability for different design pa-

rameters. Fig. 7.2(i) depicts how the reliability of the system depends on the number

of operating units. It is important to decision-making for developing the system. An

increase in standby units prevents the system from failing for longer. The apparent

result is observed in Fig 7.2(ii), where the reliability enhances with an increase in

standby units. In Fig 7.2(iii), for increased m, an interesting trend is observed for

variability in RX(t) after some time interval. Fig 7.3(i-vi) shows that the reliability

of the system decreases due to unreliable attributes. With the increased failure rate

of active units in normal state λ , the failure rate of active units in degraded state λd ,
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common-cause failure λc, the failure rate of warm standby units ν , inspection rate

for imperfect repair β2, and repairer breakdown rate α , the reliability of the system

decreases. The decreasing trends prompt a scheduled preventive maintenance strategy

for the uninterrupted long run and high efficiency.

Figure 7.4: Reliability RX(t) of the system w.r.t. repair facility, (For M = 10, S = 5,

m = 2, λ = 0.5, λd = 1, λc = 0.01, ν = 0.1, α = 0.05, c = 0.9, q = 0.1)

Fig. 7.4(i) gives an apparent increasing trend of the system’s reliability when ser-

vice improves. The results support the prompt corrective measures. From Fig 7.4(ii)

and Fig 7.3(vi), it is observed that whether the repair is perfect or imperfect, the

inspection of units after repair should be carried out as early as possible for main-

taining system reliability higher. The repairer breakdown happens rarely, and if it
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happens, the recovery rate should be high enough to maintain the system’s reliability

(Fig 7.4(iii)) better. The reliability of the system mainly depend on number of active

unit present and breakdown/recovery is rare event. It is prompted from the graphical

result. The reboot process is carried out in a negligible amount of time. Thus the

reboot delay rate has the most insignificant impact on the variability of the system’s

reliability, as shown in Fig 7.4(iv).

Figure 7.5: Reliability RX(t) of the system w.r.t. probability of coverage and switching

failure, (For M = 10, S = 5, m = 2, λ = 0.5, λd = 1, λc = 0.01, ν = 0.1, α = 0.05,

µ = 5, β1 = 15, β2 = 0.1, β = 10, γ = 60)

When a fault in either an active unit or a standby unit is successfully detected in

a redundant machining system, it goes under repair. The system then remains with

fewer units, decreasing reliability as coverage probability c increases, as shown in

Fig 7.5(i). The switchover of standby to replace failed units is not always successful,

and these attempts are made until successful or all standbys get exhausted. It is vi-

tal to successfully switch standby in place of failed units for the system to be more

reliable. Notably, our predictions in Fig 7.5(ii) are shown to agree ideally with the

practical results. Predictive and corrective measures on time are necessary to seek

high reliability.

7.3.1 Sensitivity Analysis of RX(t)

Regular calibration is a necessary measure for the machining system. The govern-

ing parameter’s sensitivity for different performance indices should be known. The

theory of differentiation establishes the platform for sensitivity analysis. This section

presents the sensitivity analysis of the reliability function and mean time-to-failure for
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Figure 7.6: Sensitivity analysis ∆Θ of RX(t) for different parameters, (For M = 10,

S = 5, m = 2, λ = 0.5, λd = 1, λc = 0.01, ν = 0.1, α = 0.05, µ = 5, β1 = 15, β2 = 0.1,

β = 10, γ = 60, c = 0.9, q = 0.1)

the governing parameters. The wide variability of the function with respect to gov-

erning decision variables can be described by taking the first derivatives.

On taking the first derivative of the Eqn.7.52 partially with respect to the decision

variable using product rule, we have

DΘ�(u)Ξ̈(u)+�(u)DΘΞ̈(u) = 0 (7.64)

DΘΞ̈(u) =−(�(u))−1DΘ�(u)Ξ̈(u) (7.65)

We have the first derivative of the reliability function from Eqn.7.63 as

∆Θ(t) = DΘRX(t) =−DΘPF(t) = L−1
(
−DΘP̈F(u)

)
= L−1 (−DΘπ̈5K−2(u)) (7.66)

The numerical scheme is used to compute
∂ P̈F (u)

∂Θ
since state probabilities are derived

from a system of differential equations which are developed in terms of various gov-

erning parameters and decision variables. The pictorial trend is depicted in Fig. 7.6.

We infer from Fig 7.6 that (i) the positive sensitivity of parameters µ implies a

slight increment of parameter value will improve RX(t); (ii) the negative sign sen-

sitivity of parameters λc, λd , λ , q, α , ν , β2, c, and γ mean slightly increments of

parameter’s value will reduce RX(t)); and (iii) the parameters β1 and β have a very

less affect RX(t). From Fig. 7.6, we also rank the order of magnitude of the effect as
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Figure 7.7: Relative sensitivity analysis ΓΘ of RX(t) for different parameters, (For

M = 10, S = 5, m = 2, λ = 0.5, λd = 1, λc = 0.01, ν = 0.1, α = 0.05, µ = 5, β1 = 15,

β2 = 0.1, β = 10, γ = 60, c = 0.9, q = 0.1)

λc > λd > λ > q > µ > α > ν > β2 > c > γ > β1 ≈ β .

For the in-depth analysis, we determine the relative change parameter-wise. We

compute the following ratio for the relative sensitivity analysis of the reliability func-

tion

ΓΘ(t) =

∂RX (t)
RX (t)

∂Θ
Θ

= ∆Θ

Θ

RX(t)
(7.67)

From Fig 7.7, the order of relative sensitivity of RX(t) for distinguished parameters

can be ranked as λd > µ > λ > β1 > c > λc > q > β2 > β > α > ν > γ . We notice

negative sign from Fig 7.7 of relative sensitivity for parameters λ , λd , λc, ν , β1,

β2, α , γ , c, q. The result prompts a diminishing value of RX(t) on increasing these

parameters, which we expect in the real-time fault-tolerant system too. The positive

sign of the relative sensitivity of RX(t) for µ and β are observed, which indicate that

by surplussing the service facility, there is an improvement in the system reliability.

From numerical experiments, the order of magnitude of all parameters affecting RX(t)

can be ordered as λd > µ > λ > β1 > c > λc > q > β2 > β > α > ν > γ . This order

in magnitude defines the critical parameters in well manner and give direct insight to

decision maker for predictive, preventive, and corrective measures.
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Figure 7.8: Mean time-to-failure MT T F of the system by varying parameters, (For

M = 10, S = 5, m = 2, λ = 0.5, λd = 1, λc = 0.01, ν = 0.1, α = 0.05, µ = 5, β1 = 15,

β2 = 0.1, β = 10, γ = 60, c = 0.9, q = 0.1)

7.4 Mean time-to-failure

The mean time-to-failure (MT T F) of the system is defined as

MT T F =
∫ ∞

0
RX(t)dt =

∫ ∞

0
(1−PF(t))dt =

∫ ∞

0
(1−π5K−2(t))dt

= lim
u→0

[
1−a0,5K−2

u
−

i1

∑
l=1

al,5K−2

u+ξl

−
i2

∑
l=1

bl,5K−2u+ cl,5K−2

u2 +
(
ξi1+l + ξ̄i1+l

)
u+ξi1+l ξ̄i1+l

]

=−
i1

∑
l=1

al,5K−2

ξl

−
i2

∑
l=1

cl,5K−2

ξi1+l ξ̄i1+l

(7.68)

An increased failure rate λ results in more units failing, and thus mean time-to-

failure (MT T F) decreases significantly till a specific failure rate λ . Later on, the

trend reverses for a further increase in failure rate λ since, in this case, units fail more

rapidly, for which more active units are required to increase MT T F (Fig 7.8(i)). A

similar trend is observed in Fig 7.8(iii-v, vii). With the discussion of Fig 7.2(ii) and Fig

7.3(iv), it can be concluded that it is beneficial to have more standbys for the system to

work efficiently and longer. In our model, even standby can be unreliable, so MT T F

reduces with an increase in the failure rate of standby units (Fig 7.8(ii)). Fig 7.8(vi,

viii) gives a similar trend, which is self-explanatory from the previous discussion.
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7.4.1 Sensitivity Analysis of MT T F

Following the similar approach for sensitivity analysis of the MT T F , we derive the

first derivative of MT T F with respect to decision parameter Θ from Eqn.7.68 as fol-

low

ΦΘ = DΘMT T F = DΘ

(∫ ∞

0
RX(t)dt

)
= lim

u→0

[∫ ∞

t=0
DΘRX(t)e

−utdt

]

= lim
u→0

[
−DΘP̈F(u)

]
= lim

u→0
[−DΘπ̈5K−2(u)]

(7.69)

The relativity of MT T F also can be derived using the following ratio

ΩΘ =
∂ (MT T F)

MT T F

∂Θ
Θ

= ΦΘ

Θ

MT T F
(7.70)

Table 7.1: Sensitivity analysis ΦΘ of the MT T F of the system, (For λ = 0.5, λd = 1,

λc = 0.01, ν = 0.1, α = 0.05, µ = 5, β1 = 15, β2 = 0.1, β = 10, γ = 60, c = 0.9, q = 0.1)

MMM,,,SSS,,,mmm ΘΘΘ

λλλ λλλ ddd λλλ ccc ννν ααα µµµ βββ 111 βββ 222 βββ γγγ ccc qqq
ΦΦΦΘΘΘ 10,5,2 -14.43066 -43.93492 -156.79707 -3.21775 8.14282 -0.23423 -2.69630 -4.50278 0.02460 -0.00187 -2.00685 -8.77218

14,5,2 -4.80466 -41.37748 -131.38707 -0.82197 6.78573 -0.22452 -2.24693 -3.82317 0.02116 -0.00193 -1.43322 -2.74012

18,5,2 -2.77013 -41.80451 -129.58830 -0.37734 6.67390 -0.22544 -2.20990 -3.76385 0.02086 -0.00205 -1.38133 -1.51297

10,2,2 -2.89051 -41.39255 -120.14940 -0.34229 6.73070 -0.19912 -2.22871 -3.79910 0.02106 -0.00159 -1.14521 -1.81959

10,5,2 -14.43066 -43.93492 -156.79707 -3.21775 8.14282 -0.23423 -2.69630 -4.50278 0.02460 -0.00187 -2.00685 -8.77218

10,8,2 -30.83339 -44.77156 -201.59107 -10.26737 9.78371 -0.27427 -3.23964 -5.32680 0.02876 -0.00219 -3.09453 -17.79475

10,5,2 -14.43066 -43.93492 -156.79707 -3.21775 8.14282 -0.23423 -2.69630 -4.50278 0.02460 -0.00187 -2.00685 -8.77218

10,5,3 -13.82419 -19.53307 -52.20377 -3.14180 3.96284 -0.13794 -1.31220 -2.11703 0.01113 -0.00120 -1.57233 -8.50364

10,5,4 -13.47699 -10.85909 -27.88477 -3.09121 2.52887 -0.09925 -0.83737 -1.33247 0.00688 -0.00091 -1.38451 -8.34144

Table 7.1 and 7.2 summarizes the sensitivity and relative sensitivity of the mean

time-to-failure of the system, respectively. The observation prompts the order of sen-

sitivity as follows λc > λd > λ > q > α > β2 > ν > β1 > c > µ > β > γ . The other

trends are observed from the tables for distinguished parameters for quick decision-

making insight. The results highlight that preventive measures are more critical than

corrective and predictive measures. Significant measures need to diminish the chance

of failure of active/standby units like frequent inspection, cooling, greasing, periodical

maintenance, etc.

7.5 Failure Frequency of the System

Failure frequency of the system is denoted by FF and defined as the number of times

the fault-tolerant repairable machining system fails in a unit of time. Mathematically,
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it is defined as

FF = (mλd +λc)(P0,K−1(t)+P1,K−1(t))+
K−2

∑
i=0

λc (P0,i(t)+P1,i(t)) (7.71)

Table 7.2: Relative sensitivity analysis ΩΘ of the MT T F of the system,(For λ = 0.5,

λd = 1, λc = 0.01, ν = 0.1, α = 0.05, µ = 5, β1 = 15, β2 = 0.1, β = 10, γ = 60, c = 0.9,

q = 0.1)

MMM,,,SSS,,,mmm ΘΘΘ

λλλ λλλ ddd λλλ ccc ννν ααα µµµ βββ 111 βββ 222 βββ γγγ ccc qqq
ΩΩΩΘΘΘ 10,5,2 -0.44538 -2.71195 -0.09679 -0.01986 2.51314 -0.21687 -0.01664 -0.01390 0.01518 -0.00694 -0.11149 -0.05415

14,5,2 -0.16085 -2.77054 -0.08797 -0.00550 2.27178 -0.22550 -0.01504 -0.01280 0.01417 -0.00774 -0.08637 -0.01835

18,5,2 -0.09322 -2.81347 -0.08721 -0.00254 2.24579 -0.22758 -0.01487 -0.01267 0.01404 -0.00826 -0.08367 -0.01018

10,2,2 -0.10546 -3.02041 -0.08767 -0.00250 2.45569 -0.21795 -0.01626 -0.01386 0.01537 -0.00695 -0.07521 -0.01328

10,5,2 -0.44538 -2.71195 -0.09679 -0.01986 2.51314 -0.21687 -0.01664 -0.01390 0.01518 -0.00694 -0.11149 -0.05415

10,8,2 -0.81741 -2.37383 -0.10689 -0.05444 2.59371 -0.21813 -0.01718 -0.01412 0.01525 -0.00697 -0.14767 -0.09435

10,5,2 -14.43066 -43.93492 -156.79707 -3.21775 8.14282 -0.23423 -2.69630 -4.50278 0.02460 -0.00187 -2.00685 -8.77218

10,5,3 -0.71010 -2.00670 -0.05363 -0.03228 2.03558 -0.21257 -0.01348 -0.01087 0.01143 -0.00738 -0.14538 -0.08736

10,5,4 -0.94031 -1.51531 -0.03891 -0.04314 1.76443 -0.20775 -0.01168 -0.00930 0.00961 -0.00764 -0.17388 -0.11640

Figure 7.9: Failure frequency FF for different parameters, (For M = 10, S = 5, m = 2,

λ = 0.5, λd = 1, λc = 0.01, ν = 0.1, α = 0.05, µ = 5, β1 = 15, β2 = 0.1, β = 10,

γ = 60, c = 0.9, q = 0.1)

The variability of the failure frequency of the system is depicted in Fig.7.9. The

figure depicts how unreliable attributes increase the chance of system failure or in-

crease the frequency of the system failure. The risk of hindrance in operations due to

unreliable attributes: failures, imperfections, degradations, and delays increases, and

a strategic balance between preventive, corrective, and predictive measures needs to

opt.
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7.6 Special Cases

We address some problems as special cases which are already discussed in literature.

These special cases require a tailored approach to validate the modelling, computa-

tion, and analysis. By recognizing the distinct nature of governing parameters and

implementing targeted strategies, it becomes possible to overcome challenges and

achieve the desired objectives.

• Case 1: When λc = 0, λd = λ , β1 = µ and β2 = 0, the studied module reduces as

modeling of multi-unit repair problem with switching failure and reboot delay

(cf. [94]).

• Case 2: If we set β1 = µ , β2 = 0, λd = λ , λc = 0, and q = 0, the model ap-

proaches to reliability analysis of a multi-component machining system with

service interruption, imperfect coverage,and reboot (cf. [158]).

• Case 3: For λc = 0, λd = λ , c= 1, β1 = µ, β2 = 0, α = 0,β →∞, and γ →∞, the

proposed model resembles with unit repairing systems with standby switching

failure (cf. [134]).

• Case 4: When S = 0, q = 0, λc = 0, λd = λ , c = 1,β1 = µ,β2 = 0,α = 0,β →
∞, and γ → ∞, the model approaches to M/M/1 model with unreliable service

(cf. [225])

7.7 Discussion, Conclusion, Future scope

Based on the findings, the following recommendations are suggested:

• Increase the number of standby units to enhance system reliability.

• Prioritize reliable repair services to minimize recurring failures and improve

reliability.

• Invest in robust automation to mitigate switching failures and ensure uninter-

rupted power supply.

• Implement preventive maintenance strategies to detect and address issues proac-

tively.

• Emphasize regular calibration and inspection to maintain system reliability.

• Optimize parameters based on sensitivity analysis to improve system perfor-

mance.

• Continuously monitor and improve system reliability through feedback mecha-

nisms.
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By implementing these recommendations, system reliability can be enhanced, mini-

mizing downtime and ensuring uninterrupted operation.

The technologies such as digital twins, digital threads, augmented reality/virtual

reality (AR/VR), cloud and edge computing, artificial intelligence (AI), and the In-

dustrial Internet of Things (IIoT) are the next generation of advancement. Innovative

technologies need multi-unit systems, which require cutting-edge strategies for un-

interrupted availability under varied unreliable attributes. The unreliable attributes

in fault-tolerant multi-unit machining systems (FTMS) significantly affect reliability,

availability, maintainability, and safety. In the present investigation, we present the

reliability and sensitivity analysis using the queueing theoretic approach for an FTMS

with multi-standby support. The unreliable attributes are abdicate characteristics in-

volved in the machining system, such as failures, imperfections, delays, degradation,

etc., that directly decrease the working efficiency and system availability which in-

directly affect continuous implementations of the technologies. The unreliable at-

tributes studied herein are the active/standby unit failure, switching failure, imperfect

repairer, imperfect repair, imperfect fault coverage, common-cause failure, degraded

failure, and reboot delay which are incorporated into the modeling to make the ma-

chining system more realistic. We have presented how reliability, MT T F , and failure

frequency are affected with discussed unreliable attributes. The sensitivity analy-

sis identifies the sensitive parameters involved in studied systems and reveals to the

decision-makers how reliability and MT T F can be improved by adjudging the sensi-

tive parameters. The results prompt (i) regular predictive measures are to be taken to

avoid the failures, (ii) strategical corrective measures need to be taken to avoid long

downtime or hindrance, and (iii) preventive measures are systematically implemented

to diminish failures, delays, and imperfections. The reliability prediction of standby

provisioning FTMS has many real-time applications, including the electronic indus-

try, service industry, safety systems, power plants, etc. wherein unreliable attributes

are not preferable.

The present research work can be further extended by relaxing the exponential dis-

tribution for different failures and repairs to explore the impact of generally distributed

failure and repair time. Furthermore, the application of optimization techniques can

be employed to optimize reliability-costs-value, with the objective of either maximiz-

ing or minimizing them. In addition, the utilization of cutting-edge meta-heuristic

optimization techniques holds promise for determining a suitable compromise solu-

tion.





Chapter 8

Exploring Hierarchical Repair Strategies for

Multi-Unit Redundant Machining Systems

“As the philosopher stone turns base

metal into gold, so does the professor

transmute ignorance into wisdom,

through the alchemy of teaching and

the artistry of perfect repair.”

Isaac Newton

8.1 Introduction

In today’s technology-driven era, machines are the backbone of various industries, as-

suming a pivotal role in ensuring seamless operations. The Machine Repair Problem

(MRP) has emerged as a matter of paramount importance, spanning a wide array of

sectors, including assembly lines, automotive, information technology, manufactur-

ing, medical equipment, construction, healthcare, home automation, transportation,

security systems, and beyond. The relentless progress of technological evolution has

bestowed upon us remarkable gains in terms of speed, precision, and overall opera-

tional efficiency. This transformation is particularly pronounced within the Industry

4.0 framework, characterized by the convergence of the Internet of Things (IoT), arti-

ficial intelligence (AI), and production automation.

In this rapidly evolving socio-econo-techno-landscape, MRP stands out as a strate-

gic imperative for cost reduction. It champions a proactive approach through predic-

tive and preventive maintenance, charting a course that proactively mitigates break-

downs. By adopting this approach, businesses can avert the specter of costly equip-

ment failures, substantially reduce maintenance expenditures, and significantly extend

the operational lifespan of their machinery.
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However, within the realm of MRP, the challenge of component failures looms

large, presenting substantial hurdles to industries across the board. These failures en-

compass a multifaceted spectrum, ranging from the breakdown of vital components

to electrical malfunctions, software glitches, and vexing mechanical failures. The

ramifications of these occurrences reverberate throughout industries, disrupting oper-

ational flows, tarnishing a company’s reputation, and inflicting a heavy toll in terms

of increased repair costs and more. To counteract these formidable challenges, re-

dundancy emerges as a linchpin strategy. Redundancy encompasses the provision of

backup components, serving as a resilient bulwark against system failures. It aug-

ments fault tolerance, bolsters system reliability, ensures continuous availability, and

achieves the overarching goal of minimizing downtime. Within this backdrop, the

concept of standby units assumes a pivotal role, with these units classified into three

distinct categories based on their failure characteristics: cold, warm, and hot standby

units. A hot standby unit corresponds to a scenario where its failure rate aligns with

that of the operational unit it backs up. Conversely, a cold standby unit exhibits a

failure rate of zero, signifying its readiness to spring into action. In contrast, a warm

standby unit has a nonzero but lower failure rate compared to the operational unit,

positioning it as an intermediate solution.

Establishing high-quality repair facilities emerges as a critical piece of the puzzle.

The formulation of robust strategies encompasses a multifaceted approach. It involves

meticulous needs assessment, judicious budget allocation, the recruitment of highly

skilled repair personnel, investment in cutting-edge equipment, and the development

of standardized operating procedures. In scenarios where operational unit failures in-

evitably transpire, the seamless transition to an accessible warm standby unit becomes

imperative. This swift replacement minimizes system downtime, thereby enhancing

overall operational efficiency. This proactive approach minimizes delays in system

operations, thus extending the runtime and ensuring continuity in critical processes.

Our research introduces a pioneering approach within the realm of machine repair-

a multi-unit redundant machining system distinguished by two categories of repairers:

Primary and Secondary. This intricate system architecture comprises M operating

units, S warm standby units, R primary repairers, and one secondary repairer. This

multifaceted repair facility operates across two distinct stages: the preparatory stage,

where primary repairers take charge of addressing repairs, and the execution stage,

marked by a collaborative effort with the secondary repairer. When the secondary

repairer is unavailable, a meticulously organized queue system comes into play, ad-

hering diligently to the first-come, first-repaired policy.

Our study aims to unveil the impact of dividing repair tasks between primary and

secondary repairers on the repair facility. Additionally, we craft a cost function and
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system performance metrics to identify optimal costs, the ideal number of primary re-

pairers, and the optimal repair rate. We scrutinize the work division policy to enhance

repair quality. Importantly, our research explores uncharted territory-a multi-unit re-

dundant machine repair system with two types of repairers and a two-stage repair

process.

The structure of this article unfolds as follows: Section 8.2 provides a thorough

literature review. Section 8.3 lays the foundation, describing the model, introduc-

ing notations, and unveiling steady-state equations. Section 8.3.1 dives into the core

theme—the work division policy-and its profound implications for repair quality. Sec-

tion 8.4 employs the matrix recursive method to decode steady-state probabilities.

Section 8.5.2 elucidates the intricacies of the cost function and system performance

metrics. Section 8.6 invites readers on a numerical journey, dissecting system perfor-

mance measures. Finally, Section 8.7 brings this voyage to a close, offering panoramic

insights and charting potential avenues for future research. In summary, our research

aims to contribute significantly to understanding and optimizing complex machine re-

pair systems, propelling us towards a future of efficient and effective machine repair.

8.2 Literature Review

8.2.1 Machine Repair Problems

Machine repair problems have garnered significant attention from various researchers,

who have employed diverse approaches and studied different cases. Sivazlian and

Wang [273] conducted an economic analysis of a Markovian model of machine repair

problems. Lee et al. [167] explored continuous approximations of machine repair

systems, introducing the concepts of two boundary policies: the elementary return

boundary (ERB) and the instantaneous return boundary (IRB). Gupta [83] delved into

machine interference problems involving spares, different types of server vacations,

and exhaustive service scenarios. Jain et al. [111] tackled the finite queue-dependent

heterogeneous multiprocessor service system, where processors are shared among

multiple jobs, and developed a cost function to determine the optimal threshold level

for active processors. Kumar et al. [153] delved into reliability measures for systems

with subsystems in series configuration. Shekhar et al. [266] and Liu et al. [186]

conducted surveys on machine repair problems and real-time machine management

systems in the context of the Internet of Things (IoT). More recently, Devanda et al.

[47] and Meena et al. [200] conducted cost and reliability analyses of fault-tolerant

machining systems in fuzzy environments, considering server vacations, general re-

pair, and imperfect repair.
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8.2.2 Machine Repair Problems with Redundancy

In fault-tolerant machining systems, when an operating unit fails, an accessible warm

standby unit takes its place. Redundant machine repair systems are categorized as

non-repairable and repairable. Nakagawa and Osaki [211] analyzed the cost and re-

liability of a single-unit system with no repairable spare unit and explored its opti-

mization applications. Several researchers have explored machine repair problems

with warm standby, common cause failure, balking, reneging, reboot delay, switching

failure, geometric-reneging, and threshold-based recovery policies (cf. [300], [268],

[138], [344], [102], [107], [262], [258]). Ke et al. [140] conducted reliability and

sensitivity analyses of redundant machine repair systems with common cause failures

and utilized Laplace transform techniques to solve transient state probabilities. Wang

et al. [325] employed the recursive method and supplementary variable technique

to develop steady-state availability for systems with warm standby units and differ-

ent imperfect coverage. Ruiz et al. [241] explored a complex warm standby system

with preventive maintenance, an indeterminate number of repairers, and unit loss us-

ing a Markovian Arrival Process with Marked arrivals. Cha et al. [27] and Huang

et al. [98] analyzed the reliability model for redundant systems and the performance

evaluation of general standby units. Srinivasan and Subramanian [280] investigated

a three-unit warm standby redundant system with repairs involving general lifespan

and repair time distributions. Yun and Cha [354] delved into the redundant machine

repair system with an optimally designed general warm standby system featuring dif-

ferent switching types. Saini et al. [245] conducted RAM (reliability, availability,

and maintainability) analysis of a hot standby system. Devi et al. [48] provided

a detailed review of redundancy allocation problems spanning two decades. More

recently, Kumar et al. [157] investigated queueing measures for machine repair prob-

lems with a threshold recovery strategy, unreliable repairers, and K-types of stage

repairs. Shekhar et al. [258] conducted a comprehensive study on the reliability char-

acteristics of multi-unit systems with standby provisioning, accounting for failures,

degradation, random delays, and probabilistic imperfections.

8.2.3 Machine Repair Systems with Repair Facilities

Machine repair systems commonly include two types of repairers and two repair

stages: the preparatory (P-stage) and execution (E-stage) stages. Primary repairers

handle the preparatory stage, while the execution stage involves collaboration be-

tween primary and secondary repairers. Several researchers have explored this area

(cf. [191], [192], [110], [43], [9], [42], [41], [85], [86], [87], [306]). Hanukov [84]

conducted an in-depth analysis of server utilization time, splitting service into two
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stages: preliminary service and service reserved for subsequent customers. This arti-

cle, too, divides the repair facility into initial and final stages, with primary repairers

handling the preparatory repairs and secondary repairers taking over in the execution

stage. An intriguing question arises: how should the workload be allocated between

these stages? The division of tasks among repairers has long been recognized as a

means to enhance productivity and effectiveness in producing goods and services,

echoing the principles laid out by Adam Smith [276]. A detailed analysis of the con-

cept of work division is presented in Subsection 8.3.1.
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Figure 8.1: Flow chart of the repair system

8.3 Model Description

In this section, we present a finite-population Markovian machine repair model that

encompasses two types of repairers: primary and secondary. The model comprises

M operating units and S warm standby units, alongside R primary repairers and one

secondary repairer. A standby unit is categorized as a warm standby unit when its

failure rate is both non-zero and lower than that of an operating unit. The underlying

assumptions of this model are as follows:

Failure process

• The failure of both operating and warm standby units follows a Poisson process

with mean rate, λ and ν (0 ≤ ν ≤ λ ), respectively.

• When an operating unit fails, an available standby unit replaces it almost instan-

taneously.

• Upon successful replacement, a warm standby unit transitions to the role of an

operating unit, with all its characteristics identical to those of an operating unit.
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Figure 8.2: Steady-state Rate Diagram
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• If the availability of standby units in the system is depleted, the inter-failure

time of each operating unit deteriorates and follows an exponential distribution

with a mean rate of λd (λ < λd).

At the initial instant, no unit has failed, meaning all operating and standby units (K =

M + S) are operational. As time progresses, the system experiences n failed units;

therefore, the instantaneous failure rate is calculated as follows:

λn =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Mλ +(S−n)ν ; n = 0,1,2, · · · ,S−1,

(M+S−n)λd ; n = S,S+1,S+2, · · · ,K −1,K

0 ; Otherwise

Repair process

• A failed unit undergoes hierarchical two stages of repair: the P-stage, managed

by any available primary repairer, and the E-stage, overseen by the secondary

repairer.

• A failed unit cannot directly proceed to the E-stage for secondary repair. In-

stead, it first goes to the primary repairer in the P-stage, where an available

primary repairer works on the failed unit. After completing this preparatory re-

pair, the unit requires approval or advanced repair from the secondary repairer.

• To facilitate the comprehensive repair process, the primary repairer confers with

the secondary repairer, detailing the unit’s faults and the work performed during

the P-stage.

• According to the work division policy, the secondary repairer collaborates with

the primary repairer to complete the remaining portion of the service that neces-

sitates the presence of a secondary repairer. Ultimately, the secondary repairer

approves the unit for reintegration into the regular operating or standby unit

after repairs.

• If a primary repairer finds that the secondary repairer is occupied with another

primary repairer, the primary repairer joins a queue. In the approval stage, the

primary repairer assumes the role of a customer in the E-stage and departs this

stage after approval.

• The service facility adheres to the First-In-First-Out (FIFO) policy in both P-

stage and E-stage.

• Both primary and secondary repairers have exponentially distributed repair times

with rates µ and α , respectively.
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Hence, the instantaneous repair rate µi is defined as follows:

µi =

⎧
⎨
⎩
(i− j)µ ; 0 ≤ i ≤ R, & 0 ≤ j ≤ i

(R− j)µ ; R ≤ i ≤ K, & 0 ≤ j ≤ R−1

All events, such as the failure of operating/standby units, primary repair, and sec-

ondary repair, are statistically independent.

This model constitutes an M/M/R+ 1/K machine repair system comprising M

identical operating units, S standby units, and is serviced by R primary repairers and

one secondary repairer. We begin by deriving the steady-state probabilities using

the Chapman-Kolmogorov difference equations, followed by employing the matrix

recursive method and an efficient MATLAB program.

8.3.1 Work division policy

This section provides insight into the state-of-the-art allocation of repair work be-

tween the primary and secondary repairers in both stages of the repair process. As pre-

viously mentioned, the repair facility is divided into two distinct stages: the prepara-

tory (P) and exccution (E) stages. During the preparatory (P) stage, one of the avail-

able primary repairers undertakes the primary repair task, while in the execution (E)

stage, the secondary repairer collaborates with the primary repairer to complete the

repair process. The predetermined work division policy governs the mean duration

of repair in the P-stage, denoted as ( 1
µ ), and in the E-stage, denoted as ( 1

α ). To for-

mulate this policy, we first establish a function involving α and µ . We then fix the

value of µ to define the policy, subsequently determining the value of α as a function

of µ . Let us denote α(µ) as the repair rate in the E-stage, which varies inversely

with the repair rate in the P-stage, µ . The repair rate, represented as ζ , is applica-

ble when a single repairer (either primary or secondary) handles continuous repairs

within a single stage. Both µ and α(µ) are bounded below by ζ within the range

(0 < ζ < α(µ),µ). We assume a convex decreasing relationship between the differ-

ence in repair rates between the execution stage and the overall repair rate and the

difference in repair rates between the preparatory stage and the overall repair rate,

expressed as α(µ)− ζ = b
(µ−ζ )

. This convex function bears resemblance to a line

used by other researchers to develop inventory control strategies ([206], [25]). Upon

solving for the value of α(µ), we obtain:

α(µ) = ζ +
b

(µ −ζ )
(8.1)
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• Case I: In the event that the primary repairer does not conduct repairs during

the preparatory stage (µ → ∞), meaning that the secondary repairer exclusively

handles the entire repair process, the value of α(µ) converges to ζ . This sce-

nario reflects a transition in which the secondary repairer assumes full respon-

sibility for the repair task, resulting in α(µ) reaching its limiting value of ζ .

• Case II: In the event that the entirety of the repair process is handled exclusively

by the primary repairer during the preparatory stage (µ → ζ+), it follows that

in this scenario, the secondary repairer becomes ideal in the execution stage

(α(µ)→∞). As (µ → ζ+), the expression b
(µ−ζ )

tends towards zero, indicating

that the complete repair rate approaches the value of ζ . This behavior aligns

with the concept of the complete repair rate converging to ζ as the primary

repairer takes on the entire repair process during the preparatory stage.

Following the analysis of the aforementioned scenarios, we have arrived at the conclu-

sion that when the entire repair process is consistently managed by a single repairer,

whether primary or secondary, within a single stage, the repair time approaches 1
ζ

.

This finding underscores the relationship between repair duration and the singular re-

sponsibility of a repairer, highlighting the convergence of repair time to the reciprocal

of ζ . This scenario bears a resemblance to standard Markovian single-server machine

interference queueing models that incorporate redundancy.

• Case III:The requirement for the combined duration of the two repair stages

to be identical to the duration when a single repairer continuously manages

the repair within a single stage is not obligatory, as denoted by 1
α + 1

µ � 1
ζ

.

This discrepancy arises due to the additional tasks associated with dividing the

repair process, such as the transition to the secondary repairer, waiting time in

the execution stage, and consultations with the secondary server to address the

issues encountered, among other factors. These intricacies introduce a level of

variability in the overall repair duration.

The proficiency and technical acumen of a secondary repairer contribute to a notably

higher standard of work compared to that of a primary repairer. Consequently, the

efficacy of the repair process is contingent on the proportion of repairs conducted by

the secondary repairer. As a result, it becomes imperative to establish the value of µ

in order to regulate the quality standards of the repair facility. We can formulate a

function, denoted as Q(µ), to quantify the quality of the repair, defined as follows:

Q(µ) = 1−ω(ζ−µ−δ ) (8.2)

where 0 ≤ Q(µ)≤ 1. When the parameter ω exceeds unity (ω > 1), it indicates that
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the contributions of the primary repairer significantly influence the overall service

quality. A higher value of ω implies a reduced disparity in the skill levels between

the primary and secondary repairers. This may suggest that the secondary repairer

possesses exceptional abilities to rectify any errors or discrepancies introduced dur-

ing the preparatory repair stage. As observed in Equation 8.2, the quality of repair,

denoted as Q(µ), approaches 1 as µ approaches infinity, signifying that the repair

process is entirely carried out by the secondary repairer. Conversely, if the repair pro-

cess is exclusively handled by the primary repairer during the preparatory stage, the

quality of repair reaches its lowest value, i.e., Q(µ)→ 1−ω−δ as µ approaches ζ+.

Hence, it becomes evident that enhancing the involvement of the secondary repairer

can effectively augment the quality of the repair. However, it is essential to strike a

balance, as allocating an excessively high workload to the secondary repairer can have

detrimental effects on the repair facility:

• Increased Component Waiting Time: A greater workload for the secondary re-

pairer leads to longer waiting times for failed components, as the secondary

repairer is responsible for the entire repair process.

• Prolonged Waiting Times for Primary Repairers: The extended duration re-

quired by the secondary repairer affects the waiting times of primary repairers

in the execution stage.

• Impact on Total Cost: The heightened idle time of primary repairers due to

extended waiting periods in the final stage can impact the overall cost of the

system.

Hence, achieving an optimal balance in workload allocation to the secondary repairer

is crucial to maintain both service quality and operational efficiency in the repair fa-

cility.

8.3.2 Steady-state equations

The system’s state can be effectively represented by pairs denoted as Z = (I,F), where

I represents the number of failed units (referred to as customers) in the system within

a state-space, while F signifies the count of customers in the E-stage. The E-stage

count corresponds to the number of primary repairers in the queue, awaiting their turn

to interact with the secondary repairer. Let Pi, j denote the joint probability distribution

function associated with the system state, defined as follows:

Pi, j = Prob(I = i,F = j)
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where i = 0,1, · · · ,R, · · · ,S, · · · ,K − 1,K, and j = 0,1, · · · ,R− 1,R. Figure 8.2 pro-

vides a visual representation of the steady-state transition rate diagram for the multi-

unit machine repair model, featuring two stages hierarchical of repairers. The math-

ematical framework expressing the steady-state conditions of the system is presented

below:

−λ0P0,0 +αP1,1 = 0 (8.3)

− (λi + iµ)Pi,0 +λi−1Pi−1,0 +αPi+1,1 = 0; 1 ≤ i ≤ R−1 (8.4)

− (λi +Rµ)Pi,0 +λi−1Pi−1,0 +αPi+1,1 = 0; R+1 ≤ i ≤ K −1 (8.5)

−RµPK,0 +λK−1PK−1,0 = 0 (8.6)

− (λi +α)Pi, j +µPi, j−1 +αPi+1, j+1 = 0; 1 ≤ i ≤ R−1, 1 ≤ j ≤ i (8.7)

− (λR +α)PR,R +µPR,R−1 = 0 (8.8)

− (λi +α)Pi,R +λi−1Pi−1,R +µPi,R−1 = 0; R+1 ≤ i ≤ K −1 (8.9)

−αPK,R +λK−1PK−1,R +µPK−1,R−1 = 0 (8.10)

− (λi +(i− j)µ +α)Pi, j +(i− j+1)µPi, j−1 +λi−1Pi−1, j +αPi+1, j+1 = 0

; 2 ≤ i ≤ R−1, 1 ≤ j ≤ i−1 (8.11)

− (λi +(R− j)µ +α)Pi, j +(R− j+1)µPi, j−1 +λi−1Pi−1, j +αPi+1, j+1 = 0

;R ≤ i ≤ K −1, 1 ≤ j ≤ R−1 (8.12)

− ((R− j)µ +α)PK, j +(R− j+1)µPK, j−1 +λK−1PK−1, j = 0;1 ≤ j ≤ R−1

(8.13)

To determine the steady-state probabilities for the machine repair model, considering

exponentially distributed lifespans and repair times for the operating/standby units and

repairers, we derive the Chapman-Kolmogorov forward equations (Eq. 8.3 - 8.13) by

balancing inflow and outflow rates. To effectively calculate these probabilities, an

appropriate method is required. In the subsequent section, we employ the matrix

recursive method to achieve this.

8.4 Matrix-recursive method

This section is dedicated to the computation of steady-state probabilities using a ma-

trix recursive approach. To facilitate this, we construct a block-tridiagonal matrix

based on the transition rate matrix Q of the underlying Markov chain. The block-

tridiagonal matrix Q is defined as follows:
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Q=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0 C0 0 0 0 · · · 0 0 0 0 · · · 0 0 0

B0 A1 C1 0 0 · · · 0 0 0 0 · · · 0 0 0

0 B1 A2 C2 0 · · · 0 0 0 0 · · · 0 0 0

0 0 B2 A3 C3 · · · 0 0 0 0 · · · 0 0 0
...

...
. . .

. . .
. . .

. . .
...

...
...

...
. . .

...
...

...

0 0 0 0 BR−2 AR−1 CR−1 0 0 0 · · · 0 0 0

0 0 0 0 0 BR−1 DR CR 0 0 · · · 0 0 0

0 0 0 0 0 0 ER DR+1 CR 0 · · · 0 0 0

0 0 0 0 0 0 0 ER+1 DR+2 CR · · · 0 0 0
...

...
...

...
...

...
...

. . .
. . .

. . .
. . .

...
...

...

0 0 0 0 0 0 · · · 0 0 0 · · · EK−2 DK−1 CR

0 0 0 0 0 0 · · · 0 0 0 · · · 0 EK−1 DK

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

K+1×K+1

The block tridiagonal matrix Q is a square matrix of order K+1. Its principal diagonal

block entries, denoted as Ai for 1≤ i≤ R−1, Di for R≤ i≤K−1, and DK , are square

matrices of order i+1, R+1, and R+1, respectively. The first diagonal above block

entries, represented as Ci and CR, correspond to matrices of order (i+1)×(i+2) and

(R+ 1)× (R+ 1), respectively, where 0 ≤ i ≤ R− 1. Conversely, the first diagonal

below block entries, denoted as Bi for 0 ≤ i ≤ R− 1 and Ei for R ≤ i ≤ K − 1, are

matrices of order (i+2)× (i+1) and (R+1)× (R+1), respectively. In matrix form,

the entries of the transition matrix Q are defined as follows:

A0 =
[
−λ0

]
1×1

Ai =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(λi +(i−0)µ) 0 0 · · · 0 0 0

Θi,0 −Λi,1 0 · · · 0 0 0

0 Θi,1 −Λi,2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · Θi, j−1 −Λi, j 0

0 0 0 · · · 0 Θi, j −(λi +α)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(i+1)×(i+1)

where Θi, j = (i− j)µ; Λi, j = [λi +α +(i− j)µ]; 1 ≤ i ≤ R−1 & 0 ≤ j ≤ i−1

Bi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λi 0 0 · · · 0 0

0 λi 0 · · · 0 0

0 0 λi · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · λi 0

0 0 0 · · · 0 λi

0 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(i+2)×(i+1)

Ci =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 α 0 0 · · · 0 0

0 0 α 0 · · · 0 0

0 0 0 α · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · α 0

0 0 0 0 · · · 0 α

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(i+1)×(i+2)
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where 1 ≤ i ≤ R−1

CR =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 α 0 0 · · · 0 0

0 0 α 0 · · · 0 0

0 0 0 α · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · α 0

0 0 0 0 · · · 0 α

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(R+1)×(R+1)

Ei =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λi 0 0 · · · 0 0

0 λi 0 · · · 0 0

0 0 λi · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · λi 0

0 0 0 · · · 0 λi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(R+1)×(R+1)

where R ≤ i ≤ K −1

Di =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(λi +(R−0)µ) 0 0 · · · 0 0 0

ΘR,0 −κi,1 0 · · · 0 0 0

0 ΘR,1 −κi,2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · ΘR, j−1 −κi, j 0

0 0 0 · · · 0 ΘR, j −(λi +α)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(R+1)×(R+1)

where ΘR, j = (R− j)µ; κi, j = [λi+α +(R− j)µ] R ≤ i ≤ K−1 & 0 ≤ j ≤ R−1

DK =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Rµ 0 0 · · · 0 0 0

Rµ −((R−1)µ +α) 0 · · · 0 0 0

0 (R−1)µ −((R−2)µ +α) · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2µ −(µ +α) 0

0 0 0 · · · 0 µ −α

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(R+1)×(R+1)

Now, consider Pi = (Pi,0,Pi,1, · · · ,Pi,i) to represent the probability vector of the ith

row, which has a dimension of (i+ 1), where i = 0,1, · · · ,R− 1. Additionally, let

Pi = (Pi,0,Pi,1, · · · ,Pi,R) be the probability vector of dimension (R+1) for the ith row,

where R ≤ i ≤ K. We can construct the steady-state probability vector P as follows:

P = [P0,P1,P2, · · · ,PK−1,PK]

This vector P represents the steady-state probabilities corresponding to the block-

tridiagonal matrix Q. To compute the numerical values of these state probabilities, we

need to solve the following problem:

PQ = 0 (8.14)



242 Chapter 8. Exploring Hierarchical Repair...

Alternatively, we can refer to this as a system of block-matrix equations.

P0A0 +P1B0 = 0 (8.15)

Pi−1Ci−1 +PiAi +Pi+1Bi = 0 ; 1 ≤ i ≤ R−1 (8.16)

PR−1CR−1 +PRDR +PR+1ER = 0 (8.17)

Pi−1CR +PiDi +Pi+1Ei = 0 ; R+1 ≤ i ≤ K−1 (8.18)

PK−1CR +PKDK = 0 (8.19)

8.4.1 The State Probabilities

Utilizing fundamental matrix manipulation techniques to deduce the state probabili-

ties in vector form, we present the solution as follows. Consequently, it can be ob-

served that matrix A0 is non-singular as indicated by Eqn. 8.15.

P0 = P1X0 where X0 =−B0A−1
0 (8.20)

Based on Eqn. 8.20 and Eqn. 8.16, we can derive the following result.

Pi = Pi+1Xi where Xi =−Bi [Xi−1Ci−1 +Ai]
−1

; 1 ≤ i ≤ R−1 (8.21)

After solving Eqn. 8.21 and Eqn. 8.17, the following result is obtained.

PR = PR+1XR where XR =−ER [XR−1CR +DR]
−1

(8.22)

After computing Eqn. 8.22 and Eqn. 8.18, the following result is obtained.

Pi = Pi+1Xi where Xi =−Ei [Xi−1CR +Di]
−1

R+1 ≤ i ≤ K −1 (8.23)

from Eqn.8.23 & Eqn.8.19, we have the following result Hence, by solving Eqns. 8.20

through 8.23 recursively, the state probabilities Pi for 0 ≤ i ≤ K −1 can be expressed

in terms of state probabilities PK as follows.

Pi = Pi+1Xi = Pi+2XiXi+1 = · · ·= PK

K−i

∏
ξ=1

XK−ξ = PKτ∗i τ∗i =
K−i

∏
ξ=1

XK−ξ (8.24)

and Xi for 0 ≤ i ≤ K − 1 are presented in Eqns. 8.20 through 8.23. By applying the

normalization condition Pe = 1, as derived from the total probability theorem, and
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Eqn. 8.24, we derive the following result.

R−1

∑
i=0

Piei +
K

∑
i=R

PieR = P0e0 +P1e1 + · · ·+PR−1eR−1 +[PR +PR+1 + · · ·+PK]eR

= PKτ∗0 e0 +PKτ∗1 e1 + · · ·+PKτ∗K−1eK−1+
[
PKτ∗R +PKτ∗R+1 + · · ·+PKτ∗K

]
eR

= PK

[
R−1

∑
i=0

τ∗i ei +
K

∑
i=R

τ∗i eR

]
= 1

(8.25)

where ei=[1,1,1, · · · ,1]T and eR=[1,1,1, · · · ,1]T are the column vectors of ones of

dimension (i+ 1) and (R+ 1), respectively. Therefore, Eqn. 8.19 can be expressed

as:

PK [XK−1CR +DK] = 0 (8.26)

Hence, by solving Eqns. 8.25 and 8.26, we can determine the state probabilities PK .

Consequently, we are able to calculate the steady-state probabilities for Pi; 0 ≤ i ≤
K − 1 using Eqn. 8.24. Furthermore, we have developed a MATLAB program to

numerically compute these steady-state probabilities.

8.5 Optimal Analysis

In research, performance measures, cost functions, and optimization techniques are

pivotal. They help evaluate efficiency, balance objectives, and fine-tune parameters to

achieve optimal outcomes. This exploration delves into their significance and synergy

in research and problem-solving. This section is dedicated to the comprehensive ex-

amination of the system’s performance measures and cost analysis for the proposed

Markovian model of multi-unit machine repair, featuring both primary and secondary

repairers.

8.5.1 Performance measures

The ensuing performance metrics provide a deeper understanding of the system’s be-

havior and efficiency:

• Mean number of failed units in the system

ES =
R−1

∑
i=0

iPiei+1 +
K

∑
i=R

iPieR+1 (8.27)
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This metric provides valuable insights into the system’s reliability and opera-

tional efficiency, shedding light on the average number of units experiencing

failures over a specific period.

• Mean number of primary repairer in the E-stage

EF =
R−1

∑
i=0

Piai +
K

∑
i=R

PiaR (8.28)

It represents the average count of primary repairers involved in the initial re-

pair stage (E-Stage) across various operational scenarios. This metric offers

insights into the utilization and workload distribution among primary repairers,

contributing to the system’s efficiency assessment.

• Throughput of the system

T hS =
R−1

∑
i=0

(α + iµ)Pi +
K

∑
i=R

R−1

∑
j=0

(α +(R− j)µ)Pi (8.29)

It quantifies the rate at which units, both operating and standby, move through

the repair process and return to operational status. This metric is vital for evalu-

ating the system’s overall efficiency, capacity utilization, and its ability to meet

demands in a timely manner.

• Throughput of the primary repairer in the E-stage

T hF =
R−1

∑
i=0

iµPi +
K

∑
i=R

R−1

∑
j=0

(α +(R− j)µ)Pi (8.30)

This metric assesses the rate at which primary repairers complete repairs during

the initial stage (E-stage) of the repair process. It provides insights into the

efficiency and workload of primary repairers, which is essential for optimizing

the allocation of resources and ensuring timely repairs.

• Mean number of failed operating units in the system

E f r =
S

∑
i=0

(Mλi +(S− i)ν)Pi +
K−1

∑
i=S+1

(M+S− i)λdPi +mλdPK (8.31)

This metric provides valuable insights into the system’s reliability and mainte-

nance requirements, playing a crucial role in optimizing resource allocation and

overall system efficiency.



8.5. Optimal Analysis 245

• Effective service rate of primary repairer in E-stage

µe f f =
R−1

∑
i=0

Pibi +
K

∑
i=R

PibR (8.32)

This metric quantifies the rate at which the primary repairer completes repairs

in the final stage (E-stage) of the repair process. It takes into account vari-

ous factors, including the primary repairer’s individual service rate and the sys-

tem’s dynamics, offering insights into the efficiency of the repair operations.

The effective service rate of the primary repairer in the F-stage plays a piv-

otal role in optimizing system performance, resource allocation, and overall

cost-effectiveness, making it a critical parameter for decision-making in main-

tenance and repair strategies.

• Mean waiting time of failed operating units in the system

WS =
ES

E f r

(8.33)

It’s crucial for system efficiency, reliability, and decision-making.

• Mean waiting time of primary repairer in E-stage

WF =
EF

µe f f

(8.34)

It’s a vital indicator of system performance, affecting resource utilization and

repair efficiency. Calculating and optimizing this metric is crucial for enhancing

system reliability and cost-effectiveness in multi-unit machine repair scenarios.

• Failure Frequency of the system

FF = λK−1PK−1 (8.35)

This metric quantifies the rate at which failures occur within the system, pro-

viding valuable insights into its reliability and robustness. Analyzing and op-

timizing the failure frequency is essential for improving the performance and

sustainability of multi-unit machine repair models with primary and secondary

repairers.

• Quality Difference Qd(µ) of the system

Qd(µ) = Q(µ +1)−Q(µ) (8.36)
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This metric is instrumental in assessing the efficiency and effectiveness of repair

services provided by the two types of repair personnel. Analyzing Qd(µ) is vital

for optimizing the allocation of repair tasks and resources to enhance overall

system performance.

The ai and bi are the (i+ 1)-dimensional column vectors, where ai = (0,1,2, ..., i)T

&bi = µaiJi for i = 0,1,2, . . . ,R. Here, Ji represents an exchange matrix of order i.

ei+1 and eR are column vectors with all entries equal to 1 and of order (i+1) and R,

respectively. Specifically, ei+1 = (1,1,1, . . . ,1)T and eR = (1,1,1, . . . ,1)T .

8.5.2 Cost Function

We formulate a steady-state expected cost function for the M/M/R+ 1/K machine

repair problem featuring two stages of repair: Preparatory and Execution. This cost

function encompasses two decision parameters, namely, R and µ . The discrete pa-

rameter R represents a natural number, signifying the count of primary repairers in

the system. In contrast, the continuous variable µ is a non-negative real number. Our

ultimate objective is to determine the optimal number of primary repairers in the sys-

tem, denoted as R∗, and the optimal values of the repair rate µ , denoted as µ∗. These

optimizations aim to minimize the system’s cost while maximizing its profitability.

The governing cost function is defined as:

TC =

[
C1 × (1− IT )+C2 ×ES +C3 ×EF +C4 ×E f r × (1−Q(µ))

+C5 ×R+C6 ×µ

]
(8.37)

where

C1 ≡ The unit time cost for the amount of the secondary server’s time that is spent

in a utilization time

C2 ≡ The unit time cost for each failed unit in the system

C3 ≡ The unit time cost for the expected number of primary repairers in E-stage

C4 ≡ The unit time cost for each failed operating unit in the system

C5 ≡ The unit time cost for one primary repairer

C6 ≡ The unit time cost for repair

8.5.3 Paticle swarm optimization

The Particle Swarm Optimization (PSO) algorithm is a stochastic global optimization

technique inspired by swarm intelligence observed in social behaviors, such as birds
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flocking and fish schooling. This algorithm was originally introduced by Kennedy

and Eberhart in 1995 [142]. PSO operates on the principle of exploring and refining

a population of entities, referred to as a "swarm," comprising individuals known as

"particles." These particles traverse the solution space with fixed velocities, evolving

across generations to converge towards optimal global positions. In problem-solving

scenarios, the solution space is represented as a search space, where each point signi-

fies a potential solution to the problem. The fitness value of each particle within the

swarm is determined by the optimization objective, which involves both maximization

and minimization tasks. Particles possess awareness of the coordinates of decision

variables and maintain connections to the best solutions or fitness values they have

achieved. Particle movement in the PSO algorithm is influenced by various factors,

including the particle’s inertia and its best-known position (pbest), denoted as pbl
i ,

as well as the global best-known position (gbest), represented as gbl . The particle’s

velocity during the most recent iteration is regulated using an inertia weight. Inertia

serves as a restraining force, preventing particles from immediately returning to their

previous positions. The best solution attained by each individual particle is referred

to as pbl
i , while the best solution achieved by the entire swarm family is termed gbest,

denoted as gbl , representing the optimal position among all particles. This algorithm

leverages natural communication principles to enhance optimization results.

In the context of PSO algorithms, each particle serves as a representation of a po-

tential solution within the search space. The movement of each particle is determined

by its velocity, which is influenced by both its individual best-known position (pbest)

and the global best-known position (gbest). Let Sl
i and Vl

i represent the position vec-

tor and velocity vector of the ith particle in dimension d, respectively in lth iteration.

These vectors can be expressed as Sl
i =(Sl

i,1,S
l
i,2, . . . ,S

l
i,d) and Vl

i =(V l
i,1,V

l
i,2, . . . ,V

l
i,d),

respectively. Following each iteration, the velocity vector undergoes updates based on

the following formula:

Vl+1
i = w⊗Vl

i +κ1 ⊗ r1 ⊗
(

pbl
i −Sl

i

)
+κ2 ⊗ r2 ⊗

(
gbl −Sl

i

)
(8.38)

Sl+1
i = Sl

i +Vl+1
i (8.39)

where

w represents the inertia weight, governing the impact of previous velocity on

the current one.

κ1 and κ2 denote the cognitive and social parameters, respectively, influencing

the particle’s response to particle-best and global-best.
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r1 and r2 are random values between 0 and 1, contributing to stochasticity in

the particle’s movement.

The pseudo-code for Particle Swarm Optimization algorithm is as follows:

Pseudo-code for Particle Swarm Optimization

Initialize population, Smax, Smin, Vmax, Vmin

Find pb1
i and gb1

for l=1:maximum generation

for i=1:population size

if f (Sl
i)< f (pbl

i) then pbl
i = Sl

i

f (gbl) = min
i

(
f (pbl

i)
)

end

for j=1:dimension(d)

Vl+1
i = w⊗Vl

i +κ1 ⊗ r1 ⊗
(
pbl

i −Sl
i

)
+κ2 ⊗ r2 ⊗

(
gbl −Sl

i

)

Sl+1
i = Sl

i +Vl+1
i

if Vl+1
i > Vmax then Vl+1

i = Vmax

else if Vl+1
i < Vmin then Vl+1

i = Vmin

end

if Sl+1
i > Smax then Sl+1

i = Smax

else if Sl+1
i < Smin then Sl+1

i = Smin

end

end

end

end

8.6 Numerical Analysis

Numerical evaluations are conducted to assess the computational feasibility of the

Markovian multi-unit machine repair problem, encompassing two distinct repair stages

and involving two categories of repairers. These analyses are carried out utilizing

the MATLAB software environment (license number 925317), employing a compu-

tational system equipped with an Intel(R) Core(TM) i5-1035G1 processor operating

at a CPU speed of 1.19 GHz and an 8.0 GB RAM capacity. These investigations

encompass a comprehensive exploration of diverse system parameters.
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Figure 8.3: Effects of the varying parameters on the system’s expected number of failed

units (ES).(for M = 25;S = 7;m = 2;R = 5;λ = 2;ν = 1.2;λd = 3; µ = 12;ζ = 10;b =
200;ω = 1.3;δ = 1)

Figure 8.3(i-iv) illustrates the behavior of the expected number of failed units, de-

noted as ES, within the system. In Fig. 8.3(i), it is discernible that in the initial state,

the expected number of failed units corresponds to the failure rate of the operating

units in the system. However, beyond a certain threshold of the failure rate, the ex-

pected number of failed units stabilizes. This same trend is replicated in Fig. 8.3(ii)

when considering the degraded failure rate alongside the expected number of failed

units in the system. In Fig. 8.3(iii), a converse relationship is evident between the

repair rate µ of the primary repairer and the expected number of failed units. Initially,

as the repair rate µ increases, the mean number of failed units within the system de-

creases, reaching a minimum value at a specific µ . Subsequently, it begins to rise

again and eventually reaches a constant level as µ continues to increase. It is worth

noting that the failure rate of standby units, denoted as ν , has a relatively minor impact

on the expected number of failed units within the system.

Figure 8.4: Effects of the distinct parameters on the system’s expected number of

primary repairers in F-stage (EF ), (for M = 25;S = 7;m = 2;R = 5;λ = 2;ν = 1.2;λd =
3; µ = 12;ζ = 10;b = 200;ω = 1.3;δ = 1)

Figure 8.4(i) illustrates that as the failure rate of operating units escalates, the

expected number of primary repairers in the E-stage increases. At a constant failure

rate λ , a steady-state level is achieved. A similar pattern is observed for the degraded
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failure rate λd , as depicted in Figure 8.4(ii). In Figure 8.4(iii), an increase in the

service rate of primary repairers leads to a higher number of customers in the E-stage.

This indicates a quicker transition of primary repairers to the secondary repairer for

complete repair. However, after a certain threshold value of µ , a steady-state behavior

is observed. Figure 8.4(iv) shows that the expected number of primary repairers in the

E-stage is influenced by the failure rate (ν) of warm standby units.

Figure 8.5: Effects of the distinct parameters on the system’s expected waiting time

(WS), (for M = 25;S = 7;m = 2;R = 5;λ = 2;ν = 1.2;λd = 3; µ = 12;ζ = 10;b =
200;ω = 1.3;δ = 1)

Figure 8.5(iii) reveals that an increased number of primary repairers reduces the

expected waiting time (WS) for failed units in the system, indicating improved service

efficiency. However, Figures 8.5(i, ii, and iv) show that an increment in the failure

rate of units (λ and λd) and the presence of warm standby units (ν) contribute to

an extended expected waiting time for failed units in the system, reflecting increased

repair demand and delays.

Figure 8.6(i) illustrates that an increased failure rate of operating units (λ ) leads

to an extended expected waiting time for primary repairers in the E-stage. This is

attributed to primary repairers accumulating at the E-stage to collaborate with the

secondary repairer. On the other hand, Figures 8.6(ii) and (iv) demonstrate a relatively

lower dependence on the degraded failure and standby failure rates with respect to the

waiting time of primary repairers in the E-stage. However, Figure 8.6(iii) reveals that

an increase in the number of primary repairers (R) and their service rate (µ) reduces

the expected waiting time of primary repairers in the F-stage, reaching a steady state

after a certain service rate threshold.
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Figure 8.6: Effects of the distinct parameters on the system’s expected waiting time of

primary repairers in F-stage (WF ), (for M = 25;S = 7;m = 2;R = 5;λ = 2;ν = 1.2;λd =
3; µ = 12;ζ = 10;b = 200;ω = 1.3;δ = 1)

Figure 8.7: Effects of the distinct parameters on the system’s Failure frequency (FF),

(for M = 25;S = 7;m = 2;R = 5;λ = 2;ν = 1.2;λd = 3; µ = 12;ζ = 10;b = 200;ω =
1.3;δ = 1)

Figure 8.7(i, ii, and iv) illustrates that an increase in the failure rate of operating

units (λ ), warm standby units (ν), and degraded failure rate (λd) leads to an escalation

in the system’s failure frequency (FF). This indicates that these conditions contribute

to an enhanced failure propensity within the system. However, Figure 8.7(iii) portrays

the repair-related dynamics affecting the failure frequency. It demonstrates that the

repair facility plays a crucial role in mitigating system failures, thereby reducing the

failure frequency.
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Figure 8.8: Effects of the distinct parameters on the system’s Quality difference

(Qd(µ)), (for M = 25;S = 7;m = 2;R = 5;λ = 2;ν = 1.2;λd = 3; µ = 12;ζ = 10;b =
200;ω = 1.3;δ = 1)

Figure 8.9: Effects of the distinct parameters on the system’s Throughput (T hS), (for

M = 25;S = 7;m = 2;R = 5;λ = 2;ν = 1.2;λd = 3; µ = 12;ζ = 10;b = 200;ω =
1.3;δ = 1)

Figure 8.8 provides insights into the relationship between the workload allocated

to the primary repairer and the quality of service delivered. The findings indicate

that, even when primary repairers exert a substantial influence on overall quality, their

incremental impact on quality remains marginal. When distributing tasks between

primary and secondary repairers, it is observed that reducing the workload assigned

to the primary repairer results in only a slight improvement in repair quality. This

trend holds true for a wide range of ω values, making it economically unfavorable to

burden the secondary repairer with additional tasks. Consequently, it is advisable to

allocate a greater workload to the primary repairer, regardless of whether ω is small

or large, as opposed to intermediate values. In scenarios where the contribution of

primary repairers to overall repair quality is negligible (ω > 2), opting for complete

repair execution by the primary repairer may be a more prudent choice.

Figures 8.9 and 8.10 depict the behavior of the primary repairers’ effective ser-

vice rate and the system throughput under various parameter settings. In Fig. 8.9(i,
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ii, and iv), the system’s throughput (T hS) experiences an initial increase with rising

failure rates of operating units, degraded failures (λ and λd), and warm standby (ν).

However, once a certain threshold of failure rate is reached, the system’s throughput

stabilizes. Conversely, an increase in the service rate of primary repairers leads to

a reduction in system throughput. A similar trend is observed in the throughput of

primary repairers, as shown in Fig. 8.10. In Figures (8.9 and 8.10)(ii), it is evident

that an escalation in the repair rate of primary repairers results in the accumulation of

more primary repairers in the E-stage. Consequently, the waiting time for failed units

increases, leading to a decrease in the system’s throughput.

Figure 8.10: Effects of the distinct parameters on the Throughput or effective service

rate of primary repairer in F-stage (T hF), (for M = 25;S = 7;m = 2;R = 5;λ = 2;ν =
1.2;λd = 3; µ = 12;ζ = 10;b = 200;ω = 1.3;δ = 1)

Figure 8.11: Effects of the distinct parameters on the Expected total cost of the system

(TC), (for M = 25;S = 7;m = 2;R = 5;λ = 2;ν = 1.2;λd = 3; µ = 12;ζ = 10;b =
200;ω = 1.3;δ = 1;C1 = 50;C2 = 250;C3 = 80;C4 = 12;C5 = 25;C6 = 5)

Based on the numerical results of the present research, the following recommenda-

tions are offered for decision-makers:

• Optimal Allocation of Repair Work: The research highlights that the allocation

of repair work between primary and secondary repairers significantly impacts

the overall quality of service. Decision-makers should consider the trade-off

between the workload assigned to primary and secondary repairers. For situa-

tions where the impact of primary repairers on quality is minimal (e.g., ω > 2),
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it may not be advantageous to divide the repair workload. Instead, allocating

the entire repair to a primary repairer could be a more cost-effective choice.

• System Throughput Management: The study shows that the system’s through-

put is influenced by various parameters, including failure rates, repair rates, and

the number of repairers. Decision-makers should carefully manage these pa-

rameters to optimize system throughput. For instance, increasing the repair rate

of primary repairers may lead to congestion in the repair process, resulting in

longer waiting times for failed units and reduced system throughput.

• Failure Frequency Mitigation: To minimize system failure frequency, decision-

makers should focus on strategies that reduce failure rates of operating units,

degraded failures, and warm standby units. Implementing preventive mainte-

nance measures or improving the reliability of components can contribute to a

more reliable system.

• Quality Improvement: When quality is a critical factor, decision-makers should

assess the impact of primary repairers on repair quality (indicated by ω). De-

pending on the specific context and the desired level of quality, they can adjust

the allocation of repair work to optimize repair outcomes.

These recommendations provide valuable insights for decision-makers in man-

aging and optimizing multi-unit machine repair systems with primary and secondary

repairers, contributing to improved system performance and cost-effectiveness. Build-

ing on the results obtained in this study, we propose a state-of-the-art optimal analysis

utilizing metaheuristic techniques for a diverse range of parameter configurations.

This approach leverages the insights gained from our research to explore optimiza-

tion strategies that can enhance the performance and efficiency of the system under

varying conditions. By employing metaheuristic methods, we aim to identify opti-

mal solutions and decision-making strategies that account for complex interactions

between parameters, ultimately advancing the state-of-the-art in system optimization

and resource allocation within multi-unit machine repair systems.
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Figure 8.12: Convergence of iteration of Partical swarm optimization, (for

M = 25;S = 7;m = 2;R = 5;λ = 2;ν = 1.2;λd = 3; µ = 12;ζ = 10;b = 200;

ω = 1.3;δ = 1;C1 = 50;C2 = 250;C3 = 80;C4 = 12;C5 = 25;C6 = 5)

To optimize the cost function effectively, we conducted experiments with specific

parameter values, including M = 25, S = 7, m = 2, R = 5, λ = 2, ν = 1.2, λd = 3,

µ = 12, ζ = 10, b = 200, ω = 1.3, and δ = 1. Figure 8.11 (i and ii) illustrates

the convex nature of the total cost function concerning the primary repairer count

(R) and the repair rate (µ). This convexity indicates an optimal solution within a

desirable convex region for the decision variables µ and R. The optimization problem

involves both discrete and continuous decision variables (R and µ , respectively) when

evaluating the expected total cost function. Given the distinct nature of these variables,

conventional optimization techniques are inadequate. Hence, we employ the Particle

Swarm Optimization (PSO) method, a metaheuristic approach, to determine optimal

total cost and corresponding decision variable values. The cost elements considered

for optimization include C1 = 50, C2 = 250, C3 = 80, C4 = 12, C5 = 25, and C6 = 5. A

population size of 300 is fixed for the PSO algorithm, and we performed 10 multiple

runs to obtain optimal values for the decision variables and expected total cost.

Figure 8.12 provides a visual representation of the convergence process, illus-

trating the transition from initial random solutions to optimal points during iterative

computations. This figure also effectively demonstrates the convergence behavior of

optimal total cost values across multiple runs. Notably, Figure 8.12 offers a clear

visualization of how the initial random solution on lines corresponding to different

values of R at different µ gradually converge towards the optimal solution as itera-

tions progress. This convergence is achieved within a remarkably short span, typi-

cally requiring only 15-20 iterations and maintaining precision to the level of 10−7.
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The presented graphical evidence strongly supports the utilization of metaheuristic

optimization techniques for addressing complex applied problems of this nature. It

highlights the efficiency of these methods in consistently guiding diverse initial solu-

tions towards the optimal solution, thereby facilitating the decision-making process in

complex systems.

Table 8.1: Optimal expected total cost of the system TC(R∗,µ∗) for different

parameters, for (C1 = 50,C2 = 250,C3 = 80,C4 = 12,C5 = 25,C6 = 5)

Parameter MMM,,,SSS,,,mmm,,,λλλ ,,,ννν ,,,λλλ d,,,ζζζ RRR∗ µµµ∗ TTTCCC(((RRR∗,,,µµµ∗))) Mean Fitness Worst Fitness Time elapsed

λλλ

25, 7, 2, 1.5, 1.2, 3, 10 10 11.2148 1960.2229 1.0000009809 1.0000004914 233.2427

25, 7, 2, 2.0, 1.2, 3, 10 10 11.1431 2371.7661 1.0000002483 1.0000007196 262.8704

25, 7, 2, 2.5, 1.2, 3, 10 11 11.1285 2658.0494 1.0000004524 1.0000002830 229.2556

ννν

25, 7, 2, 2, 0.6, 3, 10 10 11.1479 2326.3320 1.0000002840 1.0000006986 228.9490

25, 7, 2, 2, 0.9, 3, 10 10 11.1454 2349.6173 1.0000004500 1.0000000260 223.8101

25, 7, 2, 2, 1.2, 3, 10 10 11.1431 2371.7661 1.0000000890 1.0000007485 227.0956

λλλ d

25, 7, 2, 2, 1.2, 2.0, 10 8 11.5165 2087.2420 1.0000003909 1.0000002054 123.1258

25, 7, 2, 2, 1.2, 2.5, 10 9 11.3096 2210.9562 1.0000007341 1.0000000039 139.6072

25, 7, 2, 2, 1.2, 3.0, 10 10 11.1431 2371.7661 1.0000003544 1.0000005958 146.7713

ζζζ

25, 7, 2, 2, 1.2, 3, 9.5 11 10.7016 2456.8478 1.0000003188 1.0000001863 234.7805

25, 7, 2, 2, 1.2, 3, 10.0 10 11.1431 2371.7661 1.0000003319 1.0000003254 218.1552

25, 7, 2, 2, 1.2, 3, 10.5 10 11.5874 2292.6716 1.0000001623 1.0000009815 236.9302

Tables 8.1 and 8.2 provide detailed information on the optimal values of decision

variables and total cost (TC) for various parameter settings. Notably, the results reveal

that an increase in the failure rate of operating units, standby units, and degraded fail-

ure rates leads to an enhancement in either the optimal number of primary repairers or

the repairer rate of the system, validating the efficacy of our models. This optimiza-

tion approach enables decision-makers to make informed choices while considering

complex interactions between parameters in multi-unit machine repair systems.

The statistical analysis presented in the tables provides robust evidence supporting

the efficacy of employing metaheuristic optimization techniques in tackling intricate

decision-oriented problems. To establish this, we initially calculate the ratio of opti-

mal solutions obtained in various runs to the overall optimal solution. Subsequently,

we compute the mean and maximum values of these ratios. The findings presented in

the tables demonstrate a high degree of consistency and precision in the results. The

mean and maximum ratios consistently align with the overall optimal solution, affirm-

ing the reliability and effectiveness of employing metaheuristic optimization methods

for addressing complex decision-making challenges.

In summary, our research study leveraged advanced numerical analyses to op-

timize decision variables in a complex system involving multi-unit machine repair.
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Utilizing metaheuristic optimization techniques, we successfully determined optimal

solutions, demonstrating the efficiency and effectiveness of our approach. These re-

sults contribute valuable insights for decision-makers in similar challenging scenarios,

showcasing the potential for improved cost-efficiency and system performance.

Table 8.2: Optimal expected total cost of the system TC(R∗,µ∗) for the different

parameters, for (M = 25;S = 7;m = 2;R = 5;λ = 2;ν = 1.2;λd = 3; µ = 12;ζ = 10;b =
200;ω = 1.3;δ = 1)

Parameters CCC1,,,CCC2,,,CCC3,,,CCC4,,,CCC5,,,CCC6 RRR∗ µµµ∗ TTTCCC(((RRR∗,,,µµµ∗))) Mean Fitness Worst Fitness Time elapsed

CCC1

30, 250, 80, 12, 25, 5 10 11.1662 2365.3093 1.00000010097 1.00000098520 123.0082

50, 250, 80, 12, 25, 5 10 11.1431 2371.7661 1.00000032533 1.00000017767 175.7418

60, 250, 80, 12, 25, 5 10 11.1196 2378.0993 1.00000076520 1.00000014905 175.6347

CCC2

50, 220, 80, 12, 25, 5 10 11.1638 2193.6693 1.00000013586 1.00000068607 201.9567

50, 250, 80, 12, 25, 5 10 11.1431 2371.7661 1.00000034673 1.00000022109 179.9409

50, 280, 80, 12, 25, 5 10 11.1256 2549.7801 1.00000054876 1.00000040558 185.1130

CCC3

50, 250, 60, 12, 25, 5 10 11.1942 2362.0490 1.00000080959 1.00000060970 176.0793

50, 250, 80, 12, 25, 5 10 11.1431 2371.7661 1.00000009117 1.00000093433 145.6521

50, 250, 100, 12, 25, 5 10 11.0938 2380.9083 1.00000039292 1.00000050500 156.9453

CCC4

50, 250, 80, 10, 25, 5 10 11.0664 2306.3636 1.00000074945 1.00000073998 158.0788

50, 250, 80, 12, 25, 5 10 11.1431 2371.7661 1.00000037542 1.00000011805 142.1406

50, 250, 80, 14, 25, 5 10 11.2132 2435.9444 1.00000004805 1.00000005431 140.6111

CCC5

50, 250, 80, 12, 15, 5 11 11.1424 2264.5258 1.00000064894 1.00000039808 148.0741

50, 250, 80, 12, 25, 5 10 11.1431 2371.7661 1.00000074296 1.00000027732 188.6907

50, 250, 80, 12, 35, 5 11 11.1431 2471.7661 1.00000024805 1.00000050725 141.6968

CCC6

50, 250, 80, 12, 15, 3 10 11.1518 2349.4711 1.00000024037 1.00000068248 204.0200

50, 250, 80, 12, 25, 5 10 11.1431 2371.7661 1.00000020636 1.00000029405 137.3643

50, 250, 80, 12, 35, 7 10 11.1343 2394.0436 1.00000010402 1.00000024201 192.3328

8.7 Conclusion

The proposed model encompasses essential characteristics of practical machine re-

pair problems, including operating units, warm standby units, failure rates, system

throughput, two types of repairers, and repair rates. This Markovian model focuses on

the state-of-the-art analysis of a multi-unit machine repair system with spare units and

two-stage repair services. The introduction of a work-division policy within the repair

facility offers potential advantages to industrial stakeholders, enabling cost optimiza-

tion and supply-demand equilibrium. The matrix recursive method is employed to

determine state probabilities, queue properties, and system performance metrics. This
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study’s examination of queueing measures’ sensitivity empowers industrial decision-

makers to enhance system uptime and reduce operational costs. The numerical anal-

ysis section underscores the feasibility of leveraging optimal decision variable values

to boost system availability and minimize total costs, delivering tangible benefits for

industrial operations. Furthermore, the analysis of queueing measures under varying

parameters highlights how optimal decision variables contribute to enhanced system

efficiency and cost-effectiveness.

The present study opens doors to several promising avenues for future research

in the field of multi-unit machine repair systems. (a) Further exploration of cutting-

edge optimization algorithms, beyond Particle Swarm Optimization, may yield even

more efficient solutions for decision variable selection. (b) Investigating the feasibility

of implementing the proposed work-division policy in real-world industrial settings,

along with the development of practical decision support systems. (c) Incorporating

machine learning techniques to predict system failures and repair requirements, en-

hancing predictive maintenance strategies. (d) Assessing the environmental impact of

machine repair policies and their alignment with sustainability goals. (e) Extending

the research to encompass multi-objective optimization, considering not only cost but

also environmental impact and system robustness. (f) Conducting case studies across

different industries to validate the applicability and benefits of the proposed model.

These future endeavors can contribute to the advancement of decision-making pro-

cesses in the domain of machine repair systems, ultimately benefiting industries in

terms of cost-efficiency, system reliability, and sustainability.





Chapter 9

Conclusions and Future Work

“Success is not final, failure is not

fatal: It is the courage to continue that

counts”.

Winston Churchill

This chapter serves as a summary of the primary findings of the thesis. Addition-

ally, it offers insights into potential research avenues that could be explored in future

studies.

9.1 Summary and Conclusions

In this thesis, diverse queueing models are formulated within the domain of machine

repair problems to forecast the performance of machining systems providing different

kinds of spare unit support, prompt repair facility, and enhancing the reliability and

availability of the systems.

In Chapter 2, we have explored the realm of redundant storage systems, employ-

ing Bayesian inferences and carefully selected prior distributions, particularly when

dealing with unpredictable repair services and switching failure. We have evaluated

two crucial reliability metrics: mean time-to-failure (MTTF) and availability (A(∞)).

Through a combination of simulations and inference techniques, we have provided

insights into the intricate workings of these systems, offering valuable insights into

their performance.

In the chapter 3, the fuzzy doctrines γ-cut and Zadeh’s extension principle are

employed to develop the fuzzified MTTF and the system availability associated mem-

bership grade function by using parametric nonlinear programming from fuzzified

pertinent system parameters. The adapted Imperfect repair and switching failure are

also realistic. The shortcoming of the present study is to determine the expression of
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characteristics to be analyzed for which a high-grade computing system is required.

Otherwise, we cannot handle multi-unit systems within complex proximity.

Chapter 4 of our study extensively investigates the dynamics of standby unit degra-

dation in multi-unit machining systems, uncovering the complex relationships among

failure traits, repair capacities, and system performance indicators. Our model, which

integrates degradation impacts, failure probabilities, and repair dynamics for both ac-

tive and standby units, proves instrumental in analyzing and optimizing system con-

duct in practical operational scenarios. This research underscores the crucial neces-

sity of accounting for standby unit deterioration, providing insights into the intricate

balance between cost considerations and system reliability. By employing advanced

methodologies such as queueing theory, mathematical modeling, and metaheuristic

optimization techniques, our study contributes significantly to both theoretical com-

prehension and real-world applications in this domain.

Chapter 5 of our research rigorously examines the degradation dynamics of standby

units in multi-unit machining systems, revealing the intricate connections between

failure characteristics, repair capabilities, and system performance metrics. Utilizing

phase-type distribution proves advantageous in modeling machine repair systems, as

it enables a more precise depiction of service time distributions compared to simpler

models like the exponential distribution. By employing this more accurate service

time distribution, the machine repair system can better model and evaluate various

performance measures, including mean time to repair and system availability.

Chapter 6 explores a Markovian model of a redundant repairable machining sys-

tem, integrating real-time paradigms into the modeling process for increased practi-

cality. To the best of our knowledge, this research represents one of the initial attempts

to quantitatively assess the reliability of a machining system, incorporating controlled

failed unit arrival policies and imperfect repair. The study employs an efficient nu-

merical computation technique based on Laplace transform, eigenvalue, and linear

algebra to calculate transient-state probabilities, reliability measures, and queueing

characteristics. Additionally, sensitivity analysis is conducted to pinpoint critical pa-

rameters for the machining system.

In the Chpater 7 investigation, we present the reliability and sensitivity analysis us-

ing the queueing theoretic approach for an FTMS with multi-standby support. The un-

reliable attributes are abdicate characteristics involved in the machining system, such

as failures, imperfections, delays, degradation, etc., that directly decrease the working

efficiency and system availability which indirectly affect continuous implementations

of the technologies. The unreliable attributes studied herein are the active/standby unit

failure, switching failure, imperfect repairer, imperfect repair, imperfect fault cover-

age, common-cause failure, degraded failure, and reboot delay which are incorporated
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into the modeling to make the machining system more realistic. We have presented

how reliability, MT T F , and failure frequency are affected with discussed unreliable

attributes. The sensitivity analysis identifies the sensitive parameters involved in stud-

ied systems and reveals to the decision-makers how reliability and MT T F can be

improved by adjudging the sensitive parameters. The results prompt (i) regular predic-

tive measures are to be taken to avoid the failures, (ii) strategical corrective measures

need to be taken to avoid long downtime or hindrance, and (iii) preventive measures

are systematically implemented to diminish failures, delays, and imperfections. The

reliability prediction of standby provisioning FTMS has many real-time applications,

including the electronic industry, service industry, safety systems, power plants, etc.

wherein unreliable attributes are not preferable.

The proposed model of Chapter 8 encompasses essential characteristics of prac-

tical machine repair problems, including operating units, warm standby units, fail-

ure rates, system throughput, two types of repairers, and repair rates. This Marko-

vian model focuses on the state-of-the-art analysis of a multi-unit machine repair

system with spare units and two-stage repair services. Introducing a work-division

policy within the repair facility offers potential advantages to industrial stakehold-

ers, enabling cost optimization and supply-demand equilibrium. The matrix recur-

sive method determines state probabilities, queue properties, and system performance

metrics. This study’s examination of queueing measures’ sensitivity empowers in-

dustrial decision-makers to enhance system uptime and reduce operational costs. The

numerical analysis section underscores the feasibility of leveraging optimal decision

variable values to boost system availability and minimize total costs, delivering tan-

gible benefits for industrial operations. Furthermore, analyzing queueing measures

under varying parameters highlights how optimal decision variables enhance system

efficiency and cost-effectiveness.

9.2 Contributions Through this Research

Below are the key discoveries from the current investigation. Based on the findings,

the following recommendations are suggested:

• Increase the number of standby units to enhance system reliability.

• Prioritize reliable repair services to minimize recurring failures and improve

reliability.

• Invest in robust automation to mitigate switching failures and ensure uninter-

rupted power supply.
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• Implement preventive maintenance strategies to detect and address issues proac-

tively.

• Emphasize regular calibration and inspection to maintain system reliability.

• Optimize parameters based on sensitivity analysis to improve system perfor-

mance.

• Continuously monitor and improve system reliability through feedback mecha-

nisms.

By implementing these recommendations, system reliability can be enhanced, mini-

mizing downtime and ensuring uninterrupted operation.

9.3 Future Scope of the Present Research Work

• This study can be expanded to include random processes, such as failures or

repair times, that follow a general distribution rather than being limited to ex-

ponential distributions. This extension would better accommodate practical sys-

tems and enhance the applicability of the findings.

• An extension could involve increasing the number of repair phases beyond two

for a more realistic machine repair system. In this scenario, repairs would be

conducted sequentially, with repairers from the previous phase becoming cus-

tomers for the subsequent phase. This concept has been explored in the existing

research literature, where a model has been studied to illustrate this approach.

• MRPs with imperfect coverage, imperfect repair, types of abandonment, repair

in phases, retention, and restoration are many real-time machining variants that

can be extended further.
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