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ABSTRACT

This thesis develops and analyzes the virtual element method (VEM) and mixed VEM for

parabolic integro-differential equations (PIDEs), focusing on both the semi-discrete and

fully discrete cases. The fully discrete scheme employs the left rectangular rule for integral

term discretization and the backward Euler method for time derivative approximation.

To handle the integral term within the VEM framework, the Ritz-Volterra (R.V.)

projection is introduced, and its estimates are derived. With the help of R.V. projection,

optimal error estimates are derived for both the semi-discrete and fully-discrete cases.

Numerical experiments are conducted to confirm the convergence rates for both singular

and weakly singular kernels. Additionally, experiments are performed with local mesh

refinements to demonstrate the practical utility of VEMs. These refinements are essential

for reducing the overall computational cost, a capability often limited in conforming finite

element methods (FEMs). Furthermore, the results illustrate VEM’s ability to handle

hanging nodes, which eventually helps in the local refining of the mesh, i.e., one can have

finer mesh around the singular point and coarser mesh in the rest of the domain.

As far as mixed VEM for PIDE is concerned, there are two formulations, each offering

unique advantages. One formulation includes a resolvent kernel, while the other does

not. A new mixed projection is introduced for each formulation to handle integral terms

effectively. This approach results in optimal a priori error estimates of order O(hk+1) for

the velocity and pressure, where h is the mesh size and k is the degree of the polynomial.

Furthermore, a step-by-step analysis is proposed for the super convergence of the discrete

solution of order O(hk+2). The fully discrete case is also analyzed to achieve O(τ) in

time. Several computational experiments are discussed to validate the computational

efficiency of the proposed schemes and to support the theoretical conclusions. Using

various numerical experiments, we demonstrate the advantages of each formulation.

An analysis is presented for VEM with non-smooth initial data. Through the repeated

application of integration by parts and using regularity results, we establish estimates of

the intermediate projection solely in terms of the initial data in L2. Moreover, with the help



of the estimates of the intermediate projection, optimal error estimates were established

for the semi-discreet case.

For the mixed VEM with non-smooth initial data, analysis has been presented for

the two formulations. By using a new projection that includes a memory component,

applying energy arguments, and employing an integral operator iteratively, this research

establishes optimal L2-error estimates for both pressure and velocity. These findings

provide a thorough analysis of the VEM, covering both formulations.

Finally, the possible extensions with scope for future investigations are discussed in

the concluding Chapter.
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Chapter 1

Introduction

”Solving partial differential equations is like navigating the intricate paths of reality”

- Vladimir Arnold

We see partial differential equations (PDEs) everywhere; more or less, every physical,

chemical, or even biological phenomenon can be represented in terms of PDEs. They

are the core topics in multi-variable calculus and are used to describe the evolution

of gases in fluid dynamics [1], the formation of galaxies [2], the nature of quantum

mechanics (Schrodinger’s Equations) [3], gravitation [4], heat transfer [5] etc. Unlike

traditional PDEs, which solely involve derivatives of a function with respect to time and

space, parabolic integro-differential equations (PIDEs) extend the framework by including

integral operators. These integral terms account for memory effects or history-dependent

behavior in the system. They generally occur in demonstrating specific physical processes

in which memory effects are considered. For instance, these equations appeared in solving

the electrical circuit problems that govern the Kirchhoff voltage laws [6], for a disease

spread by the dispersal of infectious individuals [7], heat flow in material with memory [8]

and many more. There are several significant methods for finding the solution of PDE;

some of the analytical techniques include separation of variables, method of characteristic,

variation of parameters, etc., whereas some numerical methods are: finite element method
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Chapter 1

(FEM), finite volume method (FVM), finite difference method (FDM), boundary element

method (BEM), discontinuous Galerkin (DG) method, hybridized discontinuous Galerkin

(HDG) method, virtual element method (VEM), etc.

1.1 Model Problem

The focus of this thesis is on developing VEMs for the linear PIDE (1.1.1) [9] defined on

a bounded polygon domain D ⊂ R2, having ∂D as the boundary; furthermore, the interval

(0, T ] represents a finite time span. Find u(x, t) such that

ut(x, t) + Au(x, t)−
∫ t

0

B(t, s)u(x, s)ds = f(x, t) (x, t) ∈ D × (0, T ], (1.1.1)

subjects to the homogenous boundary conditions:

u(x, t) = 0 (x, t) ∈ ∂D × [0, T ],

and initial data:

u(x, 0) = u0(x) x ∈ D,

where ut = ∂u
∂t

; A and B(t, s) are second-order elliptic operators of the form:

A = −
2∑

i,j=1

∂

∂xj

(
aij(x)

∂

∂xi

)
+ a0(x)I,

and

B(t, s) = −
2∑

i,j=1

∂

∂xj

(
bij(x; t, s)

∂

∂xi

)
+

2∑
j=1

bj(x; t, s)
∂

∂xj
+ b0(x; t, s)I.

For our analysis, we require the following assumptions on the operators A, B(t, s) and the

function f :

• the operator A is positive-definite,

2
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• all the coefficients of A are real-valued, bounded, and smooth, along with a(x) ≥

α0 > 0 and a0(x) ≥ 0 for all x ∈ D,

• the coefficients of B(t, s) and their derivative with respect to t and s are real-valued,

bounded and smooth,

• The function f is real-valued and smooth enough.

Under these assumptions, the well-posedness of (1.1.1) and the continuous solution u

regularity is reported in [10].

1.2 Background and Motivation
Addressing widespread PDEs across various disciplines enables us to analyze and un-

derstand a diverse array of physical and mathematical phenomena. Discovering exact or

analytical solutions to PDEs poses a significant challenge in many real-world scenarios,

which is why pursuing solutions on a consistent discretized mesh remains a highly active

field of study. FEM is highly favored as one of the widely adopted numerical methods

for addressing PDE-related challenges due to its manifold benefits. The core idea behind

FEM is to approximate the behavior of a continuous system by discretizing it into a finite

number of elements, typically triangles or quadrilaterals in two dimensions and tetrahedra

or hexahedra in three dimensions. It comes out to be a system of linear or non-linear

equations. After applying the boundary conditions, the resulting system of equations is

solved numerically, often using iterative techniques. Some of the advantages of FEM are:

• FEM can provide highly accurate solutions when the mesh is refined. By increasing

the mesh density, the accuracy of the solution can be improved, making it suitable

for high-precision simulations.

• Localized approximations in discretized problems result in sparse equation systems,

leading to efficient storage and faster computation.

• It is also possible to implement higher-order elements in the model.

3
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• As various finite elements are available for the discretizing domain, it becomes

easier to model complex geometries and irregular shapes.

• Boundary conditions can be easily incorporated in FEM.

• FEM allows for adaptive mesh refinement, meaning that more elements can be

concentrated in areas of interest while reducing the mesh density in less critical

regions. This adaptability enhances the efficiency and accuracy of the analysis.

• Availability of a large number of computer software packages and literature makes

FEM a versatile and powerful numerical method.

In recent years, there has been an increasing demand for the use of meshes containing

general polygonal elements. Employing polygonal meshes provides several advantages

over relying solely on triangular or quadrilateral meshes. These advantages include simpli-

fying the partitioning of domains with complex geometries and reducing the complexity

of adaptive mesh refinement. Various methods have been proposed over the years to

form polygonal/polyhedral finite elements, such as the Voronoi cell finite element method

(VCFEM), polygonal finite element method (PFEM), hybrid polygonal element method

(HPEM), n-sided polygonal smoothed finite element method (nSFEM), polygonal scaled

boundary FEM (PSBFEM), etc., for more details see [11] and reference within.

One of the challenges encountered when constructing polygonal finite elements lies in

creating interpolation functions, which extend into the element’s interior. In the article [12],

the mimetic finite difference (MFD) method for polygonal meshes is introduced, which

demonstrates the efficiency of MFD in solving problems involving polygonal meshes

as it relies solely on the surface representation of discrete unknowns. Notably, this

approach was effective even for meshes containing degenerate and non-convex polygonal

elements. Since no extension of basis functions inside the mesh elements is required,

practical implementation of the MFD method is simple for polygonal meshes. It has been

established that incorporating degrees of freedom (dof) into trial/test functions located

within the elements would significantly enhance the simplicity of the method, even if the

4
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functions are not always polynomials. Considering this, the MFD method was extended

and reintroduced under the name ‘virtual element method’ (VEM) [13]. The finite element

spaces considered in this work are virtual in the sense that basis functions are not explicitly

required to implement the method. The scientific community’s interest in VEMs has grown

due to the fact that the convergence analysis of these methods can be incorporated into the

well-established framework of finite element methods documented in the literature. Other

interesting features of these methods are admitting hanging nodes in the mesh generation,

avoiding explicit constructions of nodal basis functions, handling complicated domains,

and allowing higher-order polynomials, which in turn improve the accuracy and suitability

to work with convex and non-convex polygonal meshes. The local virtual element spaces

are defined over an element or polygon consisting of polynomial and non-polynomial

functions. One of the most appealing characteristics of these methods is that the discrete

bilinear forms that appeared in the discrete formulations can be computed directly with the

help of the degrees of freedom only (without using the basis functions as done in the case

of finite element methods). In contrast with finite element formulation, virtual element

discretization requires two projection operators: One is L2- projection (Π0
k), and the other

is energy projection (Π∇
k ), which is defined in the next section. The involvement of these

operators makes the convergence analysis more challenging. The advantages of the virtual

element method can be summarized as follows:

• VEM can be interpreted as a generalization of the FEM that allows the use of general

polygonal and polyhedral meshes.

• By carefully choosing dof and introducing a novel formulation corresponding to

the stiffness and mass matrices, VEM avoids the need for explicit integration of the

basis function.

• The trial and test functions on each element contain the polynomials plus other

functions that generally are not polynomials.

• VEM provides more freedom in local refinement (hanging nodes are manageable).

5
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We stress that the applications of VEMs have not yet been explored in terms of the

numerical solution of PIDEs. In view of the computational advantages mentioned herein,

we intend to employ VEM for a class of PIDEs and rigorously study their convergence

behavior. The mathematical ideas developed here to obtain the optimal convergence

analysis results can be used while dealing with the virtual discretization of more applicable

problems, such as to solve the electrical circuit problems that govern the Kirchhoff voltage

laws [6], for a disease spread by the dispersal of infectious individuals [7], heat flow in

material with memory [8]. Furthermore, for the two formulations of mixed FEM [14, 15],

only the semi-discrete case is discussed, but the fully-discrete case has not been explored

yet to the best of our knowledge. So, we attempt to develop and analyze the mixed VEM

scheme for these formulations and verify the theoretical results with the help of several

numerical experiments. When dealing with non-smooth initial data, the analysis takes a

different and more intricate path compared to the one for smooth initial data; here, we

attempt to develop and analyze VEM for PIDE with the non-smooth initial data. We believe

the present study can be considered a Bridgestone for studying mathematical/physical

models governed by integral-differential equations.

1.3 Literature Review
VEM was first introduced for elliptic problems to explain the essential features of this

method and show it as the ultimate evolution of MFD [13]. The challenge of formulating

MFD arising from the absence of trial functions within the element’s interior has led to

its generalization and subsequent reintroduction as the VEM. The method is designed in

such a way that it enables the construction of high-order approximation spaces, which may

include an arbitrary degree of global regularity [16] on meshes consisting of very general

polygonal (or polyhedral) elements.

Since its beginning, the VEM has been applied to a variety of problems, such as elliptic

problem [17–19], Stokes equation [20, 21], plate bending problems [22], linear parabolic

and hyperbolic problems [5,23], convection dominated diffusion equation [24,25], Navier-

Stokes equation [26] and so on. A posteriori error estimates are derived and employed for
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adaptive analysis [27, 28]. The VEM has also been extended to semilinear and non-linear

problems; see [26, 29–31].

In the context of the mixed VEM, its first introduction can be traced back to the

work presented in [32]. The primary objective of this article was to provide a straight-

forward and introductory presentation of extending the VEM framework to discretize

H(div)-conforming vector fields. The mixed VEM has been developed for many prob-

lems; for example, for elliptic problem [32, 33], for the pseudo-stress-velocity formulation

of the Stokes problem [34], for quasi-Newtonian Stokes flows [35]. The mixed VEMs

for Brinkman and non-linear Brinkman problems were studied in [36, 37], respectively.

Moreover, the mixed VEMs for the buckling problem of Kirchhoff plate [38], the Lapla-

cian eigenvalue problem [39], and for the wormhole propagation, arising in petroleum

engineering [40] were proposed.

As far as PIDEs are concerned, a range of methods has been developed to acquire

numerical solutions for (1.1.1), such as FEM [14, 15, 41–45], FDM [46, 47], mixed

FEM [14, 15, 48], FVM [49], least-square Galerkin method [50], hp-local discontinuous

Galerkin method [51], and He’s variational iteration method [52]. Further, by extending

these ideas in [9, 45, 53–55], fully-discrete schemes were proposed in which discretization

of time is implemented via implicit finite difference schemes. To simplify the problems

with integral terms, R.V. projection was introduced in [45, 56]. The maximum norm

estimates for R.V. projections to some time-dependent problems were presented in [57]. To

establish connections with existing literature on PIDEs, we initially review the conventional

FEM [58] to provide a meaningful context for our results:

Classical Finite Element Method:

Consider the following PIDE (1.3.1):

ut(x, t)−∇·
(
a(x)∇u(x, t)−

∫ t

0

b(x; t, s)∇u(x, s)ds
)

= f(x, t) (x, t) ∈ D × (0, T ], (1.3.1)

7
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with the boundary condition:

u(x, t) = 0 (x, t) ∈ ∂D × (0, T ],

and initial condition:

u(x, 0) = u0(x) x ∈ D.

To derive a variational formulation of (1.3.1) we multiply(1.3.1) by a test function χ,

which is assumed to vanish on the boundary ∂D, see [59] and by integrate using Green’s

formula (i.e., integration by parts) to arrive at:

(ut, χ) + (a(x)∇u(x, t),∇χ)−
∫ t

0

(b(x; t, s)∇u(x, s),∇χ)ds

= (f, χ) ∀χ ∈ H1
0 (D), (1.3.2a)

along with the initial condition u(x, 0) = u0(x). For numerical solution purposes, let’s

assume that we are provided with a family Sh of finite-dimensional subspaces of H1
0 (D).

We require that the following inequality holds for all v in H1
0 ∩ Hs, where 1 ≤ s ≤ r

(r ≥ 2 is a predetermined integer):

min
χ∈Sh

{∥v − χ∥+ h∥∇v −∇χ∥} ≤ Chs∥v∥s.

The semi-discrete FEM that we shall study is: Find uh : (0, T ] → Sh such that:

(uh,t, χh) + (a(x)∇uh(x, t),∇χh)−
∫ t

0

(b(x; t, s)∇uh(x, s),∇χh)ds

= (f, χh) ∀χh ∈ Sh, (1.3.3)

with initial condition uh(0) = uh,0. Now, (1.3.3) gives a system of initial value problem,

and by solving that, we can find the numerical solution. For the mixed FEM applied to

PIDE, see [14, 15, 42, 43, 48]. The mixed formulation described in [14] is as follows:

8



Chapter 1

Introduce σ(x, t) as:

σ(x, t) = a(x)∇u(x, t)−
∫ t

0

b(x; t, s)∇u(x, s)ds, (1.3.4)

and rewrite (1.3.1) as:

ut(x, t)−∇ · σ(x, t) = f(x, t). (1.3.5)

Consider the space V = H(div;D) and Q = L2(D) and the corresponding discrete spaces

Vh and Qh having property ∇ · Vh ⊂ Qh. Since a(x) > 0, assuming µ(x) = a−1(x),

(1.3.4) becomes:

∇u(x, t) = µ(x)σ(x, t) +

∫ t

0

R(x; t, s)µ(x)σ(x, s)ds, (1.3.6)

where R(x; t, s) is the resolvent kernel of µ(x)b(x; t, s), see [14, 60, 61] and satisfy the

following:

R(x; t, s) = µ(x)b(x; t, s) +

∫ t

s

µ(x)b(x; t, z)R(x; z, s)dz t > s ≥ 0. (1.3.7)

By denoting K(x; t, s) = R(x; t, s)µ(x), define variational formulation as: Find (u,σ) ∈

Q× V such that:

(ut, ϕ)− (∇ · σ, ϕ) = (f, ϕ) ∀ϕ ∈ Q,

(µσ,χ) +

∫ t

0

(K(t, s)σ(s),χ)ds+ (∇ · χ, u) = 0 ∀χ ∈ V .
(1.3.8)

Now, the mixed discrete formulation reads as: Find (uh,σh) ∈ Qh × Vh such that:

(uh,t, ϕh)− (∇ · σh, ϕh) = (f, ϕh) ∀ϕh ∈ Qh,

(µσh,χh) +

∫ t

0

(Kh(t, s)σh(s),χh)ds+ (∇ · χh, uh) = 0 ∀χh ∈ Vh.
(1.3.9)

The other formulation corresponding to mixed FEM for PIDE as defined in [15], which

avoided the use of the resolvent kernel and is characterized by:

9
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Assuming µ(x) = a−1(x), (1.3.4) becomes:

∇u(x, t) = µ(x)σ(x, t) +

∫ t

0

b0(x; t, s)∇u(x, s)ds,

where µ(x)b(x; t, s) = b0(x; t, s), then the variational formulation reads: Find (u,σ) ∈

Q× V such that:

(ut, ϕ)− (∇ · σ, ϕ) = (f, ϕ) ∀ϕ ∈ Q, (1.3.10a)

(µσ,χ) + (u,∇ · χ)−
∫ t

0

((b0(x; t, s)u(s),∇ · χ) + (∇b0(x; t, s)u(s),χ))ds

= 0 ∀χ ∈ V . (1.3.10b)

The discrete formulation corresponding to (1.3.10a) is: Find (uh,σh) ∈ Qh × Vh such

that:

(uh,t, ϕh)− (∇ · σh, ϕh) = (f, ϕh) ∀ϕh ∈ Qh,

(µσh,χh) + (uh,∇ · χh)

−
∫ t

0

((b0(x; t, s)uh(s),∇ · χh) + (∇b0(x; t, s)uh(s),χh))ds = 0 ∀χh ∈ Vh.

For the PIDEs with non-smooth initial data, there have been very few articles: Semi-

discrete FEM for PIDEs has been discussed in [62] for the case of a homogenous equation

with non-smooth initial data. An alternate approach to a priori error estimates for the semi-

discrete Galerkin approximation to a PIDE with non-smooth initial data was proposed and

analyzed [63]. Energy type arguments and the duality technique were used to obtain an L2

error estimate of order O(h
2

t
) when the given initial data is only in L2 [64]. Fully-discrete

FEM scheme with a backward Euler method for discretization in time has been proposed

and analyzed when the initial data is in H1
0 [65] and in L2 [66]. A new mixed FEM for

PIDE with non-smooth initial data has been discussed in [67] with three field formulations.

Using the resolvent kernel, the semi-discrete case has been discussed in [14, 15] for the

smooth and non-smooth initial data. As we can see from the literature, VEM and mixed

10
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VEM in the context of PIDE are still unexplored. Here, we’re trying to develop VEM and

mixed VEM approaches that can handle PIDEs, whether the initial data is smooth or not.

1.4 Objectives of the Thesis
Based on the existing literature and the gap in the research direction, the following

objectives are proposed and accomplished:

• To develop and analyze the semi-discrete scheme of the VEM and mixed VEM for

PIDE with smooth initial data.

• To develop and analyze the fully-discrete scheme of the VEM and mixed VEM for

PIDE with smooth initial data.

• To analyze the super convergence behavior of the discrete solution in mixed VEM

for the smooth initial data.

• To validate the theoretical findings of the above-mentioned objective with the nu-

merical experiments.

• To develop and analyze VEM for PIDE with non-smooth initial data.

• To develop and analyze mixed VEM for PIDE with non-smooth initial data.

1.5 Preliminaries
This section introduces preliminaries that will be frequently used throughout the thesis.

1.5.1 Function Spaces

We shall make use of the following spaces frequently, see [68, 69]:

1. Polynomial Spaces: Pk(D) is the set consisting of polynomials of degree ≤ k in D.

2. Lp Spaces: Lp spaces, also known as Lebesgue spaces, are mathematical function

spaces used to assess the behavior and characteristics of functions in terms of their
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integrability. For 1 ≤ p < ∞; Lp(D) contains measurable functions φ : D → R

such that
∫
D
|φ(x)|pdx <∞, whereas the Lp-norm is given by:

∥φ∥Lp(D) =

(∫
D
|φ(x)|pdx

) 1
p

.

The following inclusion is valid for a bounded domain D and 1 ≤ p < q ≤ ∞:

Lq(D) ⊂ Lp(D).

For 1
q
= 1

p
+ 1

r
, where r > 0, we have:

∥ϕ∥Lp(D) ≤ meas (D)
1
r ∥ϕ∥Lq(D).

The proof follows from Hölder inequality.

3. C1
c (D) consists of continuous functions having compact support and possesses

continuous first-order derivatives.

4. C0(D) consists of continuous functions.

5. Sobolev Spaces: Sobolev spaces are function spaces that contain functions with

certain degrees of weak derivatives. For natural number m ≥ 1 and a real number n;

1 ≤ n ≤ ∞, we establish the space Wm,n(D) using an iterative approach as:

• The space Wm,n(D) is defined as:

Wm,n(D) = {ϕ ∈ Ln(D), Dαϕ ∈ Ln(D) for all |α| ≤ m}

A multi-index α is anN -tuple of non-negative integers. Thus, α = (α1, ···, αN)

where the αi are all non-negative integers. We define

|α| =
N∑
i=1

αi

12
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xα = xα1
1 · · · xαN

N for x = (x1, x2, · · ·, xN) ∈ RN

Dα =
∂|α|

∂xα1
1 · · · ∂xαN

N

• The space W 1,n
0 referred as the space which contains all the functions of W 1,n,

with homogenous boundary condition.

• Moreover, when n = 2, we denote Wm,2(D) = Hm(D).

We write commonly (·, ·) and ∥ · ∥ to indicate the L2 inner product and norm. As

usual, | · |s,D and ∥ · ∥s,D denote the Hs(D) semi-norm and norm respectively.

6. H(div;D) = {χ ∈ (L2(D))2 : div χ ∈ L2(D)}.

7. H(rot;D) = {χ ∈ (L2(D))2 : rot χ ∈ L2(D)}, where rot χ for χ = (χ1,χ2) is

defined as:

rot χ =
∂χ2

∂x
− ∂χ1

∂y
.

8. Ln(0, T,Hs(D)) for n ≥ 1 and s ≥ 1 with the standard modification for n = ∞ is

defined as:

Ln(0, T,Hs(D)) = {u(x, t) ∈ Hs(D) for a.e. t ∈ (0, T ] and(∫ T

0

∥u(·, t)∥ns,Ddt
)1/n

<∞},

Ln(0, T, L2(D)) = {u(x, t) ∈ L2(D) for a.e. t ∈ (0, T ] and(∫ T

0

∥u(·, t)∥nL2(D)dt

)1/n

<∞},

with the norms

∥u∥Ln(0,T,Hs(D)) =

(∫ T

0

∥u(·, t)∥ns,Ddt
)1/n

,
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∥u∥L∞(0,T,Hs(D)) = sup
0≤t≤T

∥u(·, t)∥s,D,

∥u∥Ln(0,T,L2(D)) =

(∫ T

0

∥u(·, t)∥nL2(D)dt

)1/n

, ∥u∥L∞(0,T,L2(D)) = sup
0≤t≤T

∥u(·, t)∥L2(D).

Moreover, V = H(div;D) and Q = L2(D). When no confusion can occur, the

indication of the domain D will be omitted.

1.5.2 Standard Inequalities

Throughout this study, we shall make use of the following inequalities frequently: [70]

1. Cauchy–Schwarz inequality:

For ν and µ as the two real-valued functions within an inner product space, then:

|⟨ν, µ⟩| ≤ ∥ν∥∥µ∥.

2. Young’s inequality:

For a, b ≥ 0 and ϵ > 0, we have:

ab ≤ a2

2ϵ
+
ϵb2

2
.

3. Hölder’s inequality:

For i, j ≥ 1, such that 1
i
+ 1

j
= 1 then for all measurable real valued functions ω

and ψ, we have:

∥ωψ∥L1(D) ≤ ∥ω∥Li(D)∥ψ∥Lj(D).

4. Poincaré inequality:

For p ≥ 1, and φ ∈ W 1,p
0 (D), it holds:

∥φ∥Lp(D) ≤ C∥∇φ∥Lp(D).
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1.5.3 Grönwall’s Lemma

Now, we present Grönwall’s lemmas, which will be used frequently in the analysis:

Lemma 1.5.1. Let g(t), f(t) be continuous function and h(t) be non-negative continuous

function on t0 ≤ t ≤ T and satisfy:

f(t) ≤ g(t) +

∫ t

t0

f(s)h(s)ds for t ∈ [t0, T ].

Then, we have:

f(t) ≤ g(t) +

∫ t

t0

g(s)h(s)exp
(∫ t

s

h(τ)dτ

)
ds for t ∈ [t0, T ].

For more details, see [71].

Lemma 1.5.2. (Discrete version of Grönwall’s lemma): If {ζn}, {γn} and {δn} are

nonnegative sequences and satisfy:

ζn ≤ γn +
n−1∑
j=0

δjζj, for n ≥ 0.

Then, we have:

ζn ≤ γn +
n−1∑
j=0

γjδjexp

(
n−1∑

k=j+1

δk

)
for n ≥ 0.

For more details about discrete Grönwall’s lemma, see [72].

1.5.4 Virtual Element Subdivision

We assume {Ih}h to be the sequence of decomposition of D into star-shaped sub-polygons

K, whereas Kh is the set of edges e of Ih. The vertices of each polygon K are designated

by vi(i = 1, · · ·, NK) with NK as the number of vertices in polygon K. Along with this, we

postulate that for each elementK, there exists a δK > 0 such thatK is star-shaped from

every point of the disc DδK with radius δKhK (hK represents the elementK’s diameter),
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while he represents the edge e’s length, of the elementK and fulfills he ≥ δKhK. While

considering this decomposition {Ih}h, we assume δK ≥ δ0 > 0 for some δ0 independent

ofK and Ih. The largest diameter of Ih’s elements is h, as is customary.

Degrees of Freedom:

Here, we introduce dof, which we shall use in our subsequent Chapters.

1. Degrees of Freedom for Confirming Virtual Element Method

We present the well-defined collection of operators (Di)
3
i=1 from Ṽk|K (1.5.1) into

R, ∀ v ∈ Ṽk|K:

D1 : the value of v at the NK vertices of K;

D2 : for k > 1, value of v at the k-1 distinct internal points on each of the edges e

of ∂K;

D3 : for k > 1, all internal moments
1

|K|

∫
K
v(x)mk−2(x) dx, ∀mk−2(x), where

mk−2(x) are scaled monomials upto degree k − 2.

The first two sets of dof are the ones that define the boundary. They determine the

unique value of v on the boundary of polygon K, and the third one is the internal

dof.

2. Degrees of Freedom for Mixed Virtual Element Method The discrete bilinear

forms in spaces V k
h (K)(1.5.4) and Qk

h(K) can be computed via dof. For the space

Qk
h, we are considering the scaled monomials on each elementK as dof:

(
1,

(
x− xcK
hK

)
,

(
y − ycK
hK

))
for k = 1;

(
1,

(
x− xcK
hK

)
,

(
y − ycK
hK

)
,

(
x− xcK
hK

)2

,

(
x− xcK
hK

)(
y − ycK
hK

)
,

(
y − ycK
hK

)2
)

for k = 2 and in a similar way for the higher value of k. For the local space V k
h (K),

we present the well-defined collection of operators as dof, see [17]:
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•
∫
e

χ · nqkdγ for each edge e of the elementK, ∀qk ∈ Pk(e),

•
∫
K

χ · gk−1dx, ∀gk−1 ∈ ∇Pk(K),

•
∫
K

χ · g⊥k dx, ∀g⊥k ∈ L2(K) orthogonal of ∇Pk+1(K) in (Pk(K))2.

Scaled Monomials:

We denote Mk(K) as the set of scaled monomials of degree less than or equal to k such

that:

Mk(K) := {mβ : 0 ≤ |β| ≤ k},

where β indicates a multi-index in two dimensions; β = (β1, β2) with the usual notation

|β| = β1 + β2. If x = (x1, x2), then xβ = xβ1

1 x
β2

2 ,

mβ =

(
x− xcK

hK

)β

.

where xcK = (xcK , ycK) is the centroid and hK be the diameter of K. For more details,

see [19].

1.5.5 Virtual Element Spaces and Local Projection

Here, we introduce discrete spaces and local projections that we shall use in our subsequent

Chapters.

1. Virtual Element Space and Projections:

We describe the augmented local space Ṽk|K [17], for all K as:

Ṽk|K = {v ∈ H1(K) : ∆v ∈ Pk(K), v ∈ C0(∂K) : v|e ∈ Pk(e) ∀e ⊂ ∂K},

(1.5.1)

where, {e}e∈∂K represents the collection of polygon K′s edges.

Now, consider the operator Π∇
k : Ṽk|K → Pk(K), as defined by Da Veiga [19], for
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every v ∈ Ṽk|K (1.5.1):

(
∇pk,∇

(
Π∇

k v − v
))

0,K = 0 ∀pk ∈ Pk(K). (1.5.2)

To deal with constant, we need to add one more term, i.e. P0 : Ṽk|K → P0(K)

defined for v ∈ Ṽk|K:

P0

(
Π∇

k v − v
)
= 0.

Here, we are choosing

P0v :=


1
NK

NK∑
i=1

v(vi) k = 1,

1
|K|

∫
K

vdx k > 1.

Define L2-operators Π0
k and Π0

k, for every v ∈ Ṽk|K and v ∈ (Ṽk|K)
2 respectively,

with the following orthogonality condition:

(pk,Π
0
kv − v)0,K = 0, ∀pk ∈ Pk(K), (1.5.3a)

(pk,Π
0
kv − v)0,K = 0, ∀pk ∈ (Pk(K))2. (1.5.3b)

On Ṽk|K, the polynomial Π∇
k v can be calculated solely by utilizing the values of the

operators (Di)
3
i=1 calculated on v, see 1.5.4. Now, we are all set to create our virtual

local space:

Wk,K = {w ∈ Ṽk|K :

∫
K
(Π∇

k w)qdx =

∫
K
wqdx ∀q ∈ Pk(K)/Pk−2(K)},

where Pk(K)/Pk−2(K) denotes the polynomials of degree k living on K that are

L2-orthogonal to all polynomials of degree k-2 on K. Moreover, the space Wk,K

satisfies following properties:

(i) Pk(K) ⊂ Wk,K.

(ii) The function Π∇
k v can be simply calculated with the help of dof (D1-D3) of

v, ∀ v ∈ Wk,K.
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(iii) The function Π0
kv can be simply calculated from the dof (D1-D3) of v, ∀

v ∈ Wk,K.

(iv) The function Π0
k−1v can be simply calculated from the dof (D1-D3) of v, ∀

v ∈ Wk,K.

It is now possible to create the global discrete space as in traditional finite element

methods:

Wh = {w ∈ H1
0 (D) : w|K ∈ Wk,K ∀K ∈ Ih}.

2. Mixed Virtual Element Spaces and Projections:

We define the local space [33]:

V k
h (K) = {χ ∈ H(div;K) ∩H(rot;K) : χ · n|e ∈ Pk(e)∀e ∈ ∂K,

∇ · χ ∈ Pk(K) and, rot χ ∈ Pk−1(K) for k ≥ 0},
(1.5.4)

where P−1(K) = {0}. For our analysis, we define the global discrete spaces as:

V k
h := {χ ∈ V : χ|K ∈ V k

h (K) ∀K in Ih}, (1.5.5)

Qk
h := {q ∈ L2(D) : q|K ∈ Pk(K) ∀K in Ih}. (1.5.6)

To define discrete variational formulation, we make use of the L2-projection operators

denoted by Π0
k : Q → Qk

h(1.5.6) and Π0
k : V → V k

h (1.5.5), and defined for q ∈ Q and

χ ∈ V as: ∫
K

(q − Π0
kq)pkdx = 0 ∀pk ∈ Pk(K), ∀K ∈ Ih,∫

K

(χ−Π0
kχ)pkdx = 0 ∀pk ∈ (Pk(K))2, ∀K ∈ Ih.

Π0
k and Π0

k satisfies the following estimates, see [17]:

||q − Π0
kq||0 ≤ Chr|q|r, ||χ−Π0

kχ||0 ≤ Chr|χ|r 0 ≤ r ≤ k + 1. (1.5.7)
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Now, define “Fortin” operator ΠF
h : (H1(D))2 → V k

h through the dof of the space V k
h as:

•
∫
e

(χ−ΠF
hχ) · nqkdγ = 0 for each edge e, ∀qk ∈ Pk(K),

•
∫
K

(χ−ΠF
hχ) · gk−1dx = 0 for each elementK, ∀gk−1 ∈ ∇Pk(K),

•
∫
K

(χ−ΠF
hχ) · g⊥k dx = 0 for each element K, ∀g⊥k ∈ L2(K) orthogonal of

∇Pk+1(K) in (Pk(K))2.

ΠF
h satisfy the following properties and estimates:

∇ ·ΠF
hχ = Π0

k∇ · χ, (1.5.8)

||χ−ΠF
hχ||0 ≤ Chr|χ|r, ∥∇ · (χ−ΠF

hχ)∥0 ≤ Chr|∇ · χ|r

0 ≤ r ≤ k + 1. (1.5.9)

For more details about ΠF
h , we refer to [73].

1.6 Organization of the Thesis
Following the clarification of the main objective and contributions of the thesis, this

section provides a brief summary of the chapter-wise roadmap. The thesis comprises a

total of seven chapters. Chapter 1 includes the motivation behind our work, important

preliminaries, a literature survey, and objectives of the thesis.

Chapter 2 develops and analyzes a virtual element scheme for the spatial discretization

of PIDEs combined with backward Euler’s scheme for temporal discretization. We derive

optimal a priori error estimates for both the semi-discrete and fully-discrete cases using

R.V. and L2 projection operators. Several numerical experiments are being presented to

confirm the computational efficiency of the proposed scheme and validate the theoretical

findings. To demonstrate the real application of VEMs, we conduct numerical experiments

with local mesh refinements and show that errors can be reduced efficiently by using

hanging nodes. The results of this chapter have been published in [74].
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Chapter 3 presents mixed VEM for semi-discrete and fully-discrete cases. The formu-

lation in this chapter uses the concept of a resolvent kernel. By defining the mixed R.V.

projection, optimal error estimates are established for the two unknowns. Along with that,

the super convergence of the discrete solution is analyzed. Several numerical experiments

are presented to support the theoretical findings. Along with that, we also show that if

we don’t know the explicit formulation of the resolvent kernel, we can get the optimal

convergence by truncating the resolvent kernel series after a few steps.

Chapter 4 develops and analyzes the new mixed VEM for the semi-discrete and fully-

discrete cases without using a resolvent kernel. We define the new mixed intermediate

projection and establish the optimal convergence for the two unknowns. Super convergence

of the discrete solution is also proposed. With the help of numerical experiments, we show

that this formulation is more generalized in the sense that it can be applied to a wider range

of applications.

Chapter 5 deals with the confirming VEM applied to PIDEs for the semi-discrete case

when the initial data is non-smooth. We define the intermediate projection and find out the

intermediate projection’s estimates in terms of non-smooth initial data. By the repetitive

use of the integral operator, error estimates are established in the case when the initial data

is non-smooth.

Chapter 6 presents and analyzes two distinctive approaches to the mixed VEM applied

to PIDEs with non-smooth initial data. In the first part of the chapter, we introduce and

analyze a mixed virtual element scheme for PIDE that eliminates the need for the resolvent

operator. Through the introduction of a novel projection involving a memory term, coupled

with the application of energy arguments and the repeated use of an integral operator, this

study establishes optimal L2-error estimates for the two unknowns p and σ. Furthermore,

optimal error estimates are derived for the standard mixed formulation with a resolvent

kernel. The chapter offers a comprehensive analysis of the VEM, encompassing both

formulations.

Finally, in Chapter 7, we present some critical assessments of our results and discuss

possible extensions and also scope for future problems.
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Virtual Element Method for Parabolic

Integro-Differential Equations1

In this chapter, we develop and analyze a conforming virtual element scheme for the

spatial discretization of PIDEs combined with backward Euler’s scheme for temporal

discretization. For deriving optimal error estimates, we introduce a projection operator (in

literature, known as R.V. projection) that contains the memory term. In contrast with finite

element formulation, virtual element discretization requires two projection operators: One

is L2− projection (Π0
k) and energy projection (Π∇

k ), defined in (1.5.2) and (1.5.3a). The

involvement of these operators makes the convergence analysis more challenging. In this

chapter, a sophisticated analysis is carried out to establish the optimal convergence rates for

the proposed fully and semi-discrete schemes in the L2 and H1 norms. The mathematical

ideas developed here to obtain the optimal convergence analysis results can be used while

dealing with the virtual discretization of more applicable problems. Moreover, in order to

show the real application of VEMs, numerical experiments are conducted with local mesh

refinements, which are necessary to reduce the overall computational cost but may not be

1The substantial part of this chapter has been published in the following publication:
S Yadav, M Suthar, and S Kumar “A Conforming Virtual Element Method for Parabolic Integro-Differential
Equations”, Computational Methods in Applied Mathematics https://doi.org/10.1515/cmam-2023-0061
(2023).
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possible in the context of conforming FEMs. In this chapter, we focus on the following

linear PIDE (1.1.1) defined on D ⊂ R2. Find u(x, t) such that:

ut(x, t) + Au(x, t)−
∫ t

0

B(t, s)u(x, s)ds = f(x, t) (x, t) ∈ D × (0, T ], (2.0.1)

along with the homogenous boundary condition and initial data u(x, 0) = u0(x), where

B(t, s)u(x, t) := −∇ · (b(x; t, s)∇u(x, t)) + b1(x; t, s) · ∇u(x, t) + b0(x; t, s)u(x, t),

Au(x, t) := −∇ · (a(x)∇u(x, t)) + a0(x)u(x, t).

Now, by multiplying the suitable test function, the variational form corresponds to (2.0.1)

read as follows. Find u ∈ L2(0, T ;H1
0 (D)) such that,

⟨ut, v⟩+A(u, v)−
∫ t

0

B(t, s;u(s), v)ds = ⟨f, v⟩ t ∈ (0, T ], ∀v ∈ H1
0 (D), (2.0.2)

with u(x, 0) = u0(x) and

A(u, v) :=

∫
D
[a(x)∇u(x, t) · ∇v(x) + a0(x)u(x, t)v(x)] dx, (2.0.3a)

B(t, s;u, v) :=
∫
D
[b(x; t, s)∇u(x, s) · ∇v(x) + b1(x; t, s) · ∇u(x, s)v(x)

+b0(x; t, s)u(x, s)v(x)] dx. (2.0.3b)

2.1 VEM Semi-discrete Formulation

Defining local counterparts of bilinear forms in (2.0.3a)-(2.0.3b) as:

A(u, v) :=
∑
K∈Th

AK(u, v) for all u, v ∈ V,

B(t, s;u, v) :=
∑
K∈Th

BK(t, s;u, v) for all u, v ∈ V,
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where

AK(u, v) :=

∫
K
(a(x)∇u(x, t) · ∇v(x) + a0(x)u(x, t)v(x))dx,

BK(t, s;u, v) :=

∫
K
(b(x; t, s)∇u(x, s) · ∇v(x) + b1(x; t, s) · ∇u(x, s)v(x)

+ b0(x; t, s)u(x, s)v(x))dx.

The semi-discrete approximation to the problem (2.0.1) can be constructed as:

mh(uh,t, vh) +Ah(uh, vh)−
∫ t

0

Bh(t, s;uh(s), vh)ds = ⟨fh(t), vh⟩ ∀vh ∈ Wh, (2.1.1)

along with the initial data uh(0) = uh,0, where uh,0 will be defined later in the proof of

Theorem-2.2.3. The above discrete bilinear forms are computable and defined for all

ph, qh ∈ Wh as:

mh(ph, qh) :=
∑
K∈Th

mK
h (ph, qh), Ah(ph, qh) :=

∑
K∈Th

AK
h (ph, qh),

Bh(t, s; ph, qh) :=
∑
K∈Th

BK
h (t, s; ph, qh).

The local discrete bilinear forms on every element K ∈ Th are defined for any vh, wh ∈

Wk,K (see [17]) as below:

AK
h (·, ·) : Wk,K ×Wk,K → R, BK

h (·, ·) : Wk,K ×Wk,K → R,

mK
h (·, ·) : Wk,K ×Wk,K → R,

mK
h (vh, wh) := (Π0

kvh,Π
0
kwh)0,K + SK

1 ((I − Π0
k)vh, (I − Π0

k)wh),

AK
h (vh, wh) :=

∫
K
(a(x)Π0

k−1∇vh ·Π0
k−1∇whdx+ a0(x)Π

0
k−1vhΠ

0
k−1wh)dx

+ SK
0 ((I − Π∇

k )vh, (I − Π∇
k )wh, ),

BK
h (t, s; vh, wh) :=

∫
K
(b(x; t, s)Π0

k−1∇vh ·Π0
k−1∇wh + b1(x; t, s) ·Π0

k−1∇vhΠ0
kwh

+ b0(x; t, s)Π
0
k−1vhΠ

0
k−1wh)dx.

25



Chapter 2

The stability term SK
0 : Wk,K ×Wk,K → R should be build in such a way that, ∃ α∗, α

∗,

independent of h with 0 < α∗ ≤ α∗ and satisfy the following:

α∗a
K(vh, vh) ≤ SK

0 (vh, vh) ≤ α∗aK(vh, vh) ∀vh ∈ ker Π∇
k . (2.1.2)

where

aK(vh, wh) =

∫
K
(a(x)Π0

k−1∇vh ·Π0
k−1∇whdx

One of the possible choices of SK
0 (·, ·) and SK

1 (·, ·) are:

SK
1 (vh, wh) :=h

2
K

Ndof∑
i=1

dofi(vh)dofi(wh), (2.1.3)

SK
0 (vh, wh) :=ā

Ndof∑
i=1

dofi(vh)dofi(wh), (2.1.4)

or more precisely

SK
0 ((I − Π∇

k )vh, (I − Π∇
k )wh) := ā((I − Π∇

k )vh, (I − Π∇
k )wh).

where Ndof is the number of degrees of freedom (dof), dofi is the operator that selects the

ith dof, and ā is some positive constant approximation of the coefficients a(x) (e.g., local

averages), for more details, we refer to [24, 27].

First, we note that ∀wh ∈ Wk,K, we have:

∥∇(vh − Π∇
k vh)∥20,K ≥ ∥∇vh −Π0

k−1∇vh∥20,K. (2.1.5)

Now, we proceed to establish the coercivity AK
h (·, ·). Under the assumption that a0(x) ≥ 0

∀x ∈ D and in view of (2.1.2) and (2.1.5), the following holds

AK
h (vh, vh) ≥ (a(x)Π0

k−1∇vh,Π0
k−1∇vh)0,K + α∗a

K((I − Π∇
k )vh, (I − Π∇

k )vh)

+ (a0(x)Π
0
k−1vh,Π

0
k−1vh)
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≥ min(1, α∗)c0(∥Π0
k−1∇vh∥20,K + ∥∇vh −∇Π∇

k vh∥20,K)

= cα∗∥∇vh∥20,K. (2.1.6)

With the help of discrete inner product mh(vh, wh), we define the following induced L2

norm on Wh.

∥ph∥2h = mh(ph, ph) ∀ph ∈ Wh.

For the right-hand side, we assume f ∈ L2(0, T ;L2(D)) and define: fh(·, t) = Π0
kf(·, t)

for a.e. t ∈ (0, T ). The discrete forms mK
h (·, ·) and AK

h (·, ·) satisfy the following two

conditions:

• k-consistency

∀ pk ∈ Pk(K) and ∀ wh ∈ Wk,K

mK
h (pk, wh) = (pk, wh)0,K;

• stability

there exist positive constants m∗,m
∗ independent of h, such that ∀ vh ∈ Wk,K

m∗(vh, vh)0,K ≤ mK
h (vh, vh) ≤ m∗(vh, vh)0,K.

Lemma 2.1.1. Let K ∈ Th, for smooth vector-valued function b1 and smooth scalar-

valued functions p and q, the following holds true:

(b1 · ∇p, q)0,K − (b1 ·Π0
k−1∇p,Π0

k−1q)0,K ≤ Ch|p|1,K|q|1,K

with C to be a constant depending on b1.

Proof. By the definition of Π0
k−1 and Π0

k−1, we observe

(b1 · ∇p, q)0,K − (b1 ·Π0
k−1∇p,Π0

k−1q)0,K
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= (b1 · ∇p− Π0
k−1(b1 · ∇p), q − Π0

k−1q)0,K + (∇p−Π0
k−1∇p,b1(q − Π0

k−1q))0,K

− (∇p−Π0
k−1∇p,b1q −Π0

k−1(b1q))0,K

≤ Ch∥b1 · ∇p∥0,K|q|1,K + Ch∥∇p∥0,K|q|1,K + Ch∥∇p∥0,K|qb1|1,K

≤ Ch|p|1,K|q|1,K.

Below, we state two lemmas, proof of which follows from [17].

Lemma 2.1.2. For K ∈ Th, let all the coefficients and p, q be smooth scalar or vector-

valued functions on K. Then,

AK
h (p, q)−AK(p, q) ≤ Ca0,a|p|1,K|q|1,K,

BK
h (t, s; p, q)− BK(t, s; p, q) ≤ Cb,b0,b1|p|1,K|q|1,K.

Lemma 2.1.3. (Consistency) For K ∈ Th, p to be sufficiently regular and for all qh ∈ Wh,

it holds

AK
h (Π

0
kp, qh)−AK(Π0

kp, qh) ≤ Ca,a0h
k∥p∥k+1,K|qh|1,K,

BK
h (t, s; Π

0
kp, qh)− BK(t, s; Π0

kp, qh) ≤ Cb,b0,b1h
k∥p∥k+1,K|qh|1,K.

Lemma 2.1.4. For K ∈ Th, let pI be the interpolant of p ∈ H2(K) then for all qh ∈ Wh,

it holds

AK
h (qh, pI)−AK(qh, pI) ≤ Ca,a0h|qh|1,K∥p∥2,K.

Proof. By using the properties of Π0
k projection, we can write:

(aΠ0
k−1∇qh,Π0

k−1∇pI)0,K − (a∇qh,∇pI)0,K

= (a∇qh − Π0
k−1(a∇qh),∇pI − Π0

k−1∇pI)0,K − (∇qh − Π0
k−1∇qh, a(∇pI − Π0

k−1∇pI))0,K

+ (∇qh − Π0
k−1∇qh, a∇pI − Π0

k−1(a∇pI))0,K
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≤ C∥∇qh∥0,K(∥∇pI − Π0
k−1∇pI∥0,K + ∥a∇pI − Π0

k−1(a∇pI)∥0,K)

≤ C|qh|1,K(∥∇pI − Π0
k−1∇p∥0,K + ∥a∇pI − Π0

k−1(a∇p)∥0,K)

≤ C|qh|1,K(∥∇pI −∇p+∇p− Π0
k−1∇p∥0,K + ∥a∇pI − a∇p+ a∇p− Π0

k−1(a∇p)∥0,K)

≤ Ch|qh|1,K∥p∥2,K. (2.1.7)

Similarly, we can write

(a0Π
0
k−1qh,Π

0
k−1pI)− (a0qh, pI) ≤ Ch|qh|1,K∥p∥2,K. (2.1.8)

Using (2.1.7) and (2.1.8) we arrive at:

AK
h (qh, pI)−AK(qh, pI) ≤ Ch|qh|1,K∥p∥2,K + SK

0 ((I − Π∇
k )qh, (I − Π∇

k )pI)

≤ Ch|qh|1,K∥p∥2,K.
(2.1.9)

2.2 Ritz-Volterra Projection
For the optimal error analysis, we need to define a new projection with a memory term

called the R.V. projection, Rh : H1
0 (D) → Wh, for t ∈ J̄ , where J = (0, T ] as the solution

∀vh ∈ Wh:

Ah(R
hu, vh)−

∫ t

0

Bh(t, s;R
hu(s), vh)ds = A(u, vh)−

∫ t

0

B(t, s;u(s), vh)ds. (2.2.1)

Below, we present the estimates for the R.V. projection.

Theorem 2.2.1. If for each t, u(t) ∈ Hk+1(D) ∩L1(0, T,Hk+1(D)),then there is a unique

function Rhu(t) ∈ Wh, for t ∈ J̄ satisfying (2.2.1) and the following estimate:

∥Rhu(t)−u(t)∥+h|Rhu(t)−u(t)|1 ≤ Chk+1

(
∥u(t)∥k+1 +

∫ t

0

∥u(s)∥k+1ds

)
, (2.2.2)

where C depends on the coefficients.
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Proof. We use the result explained in [75] for the existence and uniqueness of Rhu.

Considering a function uI in Wh which is interpolant of u, and satisfies

dofn(uI) = dofn(u) n = 1, · · ·, Ndof ,

where dofn(·) indicates the operator which relate the nth degree of freedom to each smooth

enough function. Ndof stands for the number of degrees of freedom. The following

approximation is satisfied by the interpolant function uI :

∥u− uI∥0,K + h|u− uI |1,K ≤ Chk+1|u|k+1 ∀K ∈ Th, for details see [13].

Let Dh = Rhu− uI . By using coercivity of Ah(·, ·), we arrive at:

cα∗|Dh|21 ≤ Ah(Dh,Dh)

= Ah(R
hu,Dh)−Ah(uI ,Dh).

Using the definition of R.V. Projection (2.2.1):

cα∗|Dh|21 ≤ [A(u,Dh)−Ah(uI ,Dh)]

−
[∫ t

0

B(t, s;u(s),Dh)ds−
∫ t

0

Bh(t, s;R
hu(s),Dh)ds

]
. (2.2.3)

Let’s take a closer look at the first term on the right-hand side of (2.2.3):

A(u,Dh)−Ah(uI ,Dh) = A(u− uI ,Dh) +A(uI − Π0
ku,Dh)−Ah(uI − Π0

ku,Dh)

+A(Π0
ku,Dh)−Ah(Π

0
ku,Dh). (2.2.4)

Using Lemma 2.1.2 and Lemma 2.1.3, we can bound right-hand side of (2.2.4) as below:

A(u,Dh)−Ah(uI ,Dh) ≤ C(|u− uI |1 + |u− Π0
ku|1 + hk∥u∥k+1)|Dh|1

≤ Chk∥u∥k+1|Dh|1.
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For the second term in the sum on the right-hand side of (2.2.3), we proceed as:

∫ t

0

Bh(t, s;R
hu(s),Dh)ds−

∫ t

0

B(t, s;u(s),Dh)ds

=

∫ t

0

[Bh(t, s;R
hu(s)− uI ,Dh)− B(t, s; (u− uI)(s),Dh) + Bh(t, s; (uI − Π0

ku)(s),Dh)

− B(t, s; (uI − Π0
ku)(s),Dh) + Bh(t, s; Π

0
ku(s),Dh)− B(t, s; Π0

ku(s),Dh)]ds.

Again, using Lemma 2.1.2 and Lemma 2.1.3

∫ t

0

Bh(t, s;R
hu(s),Dh)ds−

∫ t

0

B(t, s;u(s),Dh)ds

≤ C

∫ t

0

(
|(Rhu− uI)(s)|1|Dh|1 + |(u− uI)(s)|1|Dh|1 + |(uI − Π0

k−1u)(s)|1|Dh|1

+hk∥u(s)∥k+1|Dh|1
)
ds

≤ C

∫ t

0

(|Dh(s)|1 + hk∥u(s)∥k+1)|Dh|1ds.

Combining all these terms, we obtain:

|Dh|1 ≤ C

(
hk∥u∥k+1 +

∫ t

0

(hk∥u(s)∥k+1 + |Dh(s)|1)ds
)
.

Use of Grönwall’s lemma, followed by a triangle inequality, yields:

|Rhu− u|1 ≤ Chk
(
∥u∥k+1 +

∫ t

0

∥u(s)∥k+1ds

)
.

The duality approach will be used to demonstrate the L2 error estimate. Let ϕ ∈ H2(D) ∩

H1
0 (D), with D to be convex and bounded, be the solution of

−∇ · (a∇ϕ) + a0ϕ = ρ; in D ϕ = 0 on ∂D, (2.2.5)
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where ρ = Rhu− u and it satisfies the following estimate:

∥ϕ∥2 ≤ C∥ρ∥.

Using (2.2.5), we obtain:

∥ρ∥2 = A(ρ, ϕ− ϕI) +A(ρ, ϕI). (2.2.6)

The first term in the right-hand side of (2.2.6) can be simplified as:

A(ρ, ϕ− ϕI) = A(Rhu− u, ϕ− ϕI)

≤ |Rhu− u|1h|ϕ|2

≤ Chk+1

(
∥u∥k+1 +

∫ t

0

∥u(s)∥k+1ds

)
∥ρ∥.

The second term on the right-hand side of (2.2.6) can be simplified as:

A(ρ, ϕI) = A(Rhu− u, ϕI) = A(Rhu, ϕI)−A(u, ϕI).

Using the definition of R.V. projection (2.2.1):

A(ρ, ϕI) =
(
A(Rhu, ϕI)−Ah(R

hu, ϕI)
)

+

(∫ t

0

(Bh(t, s;R
hu(s), ϕI)− B(t, s;u(s), ϕI))ds

)
. (2.2.7)

The first term on the right-hand side of (2.2.7) can be rewritten as:

A(Rhu, ϕI)−Ah(R
hu, ϕI)

= A(Rhu− uI , ϕI)−Ah(R
hu− uI , ϕI) +A(uI − Π0

ku, ϕI)−Ah(uI − Π0
ku, ϕI)

+A(Π0
ku, ϕI)−Ah(Π

0
ku, ϕI), (2.2.8)

where all the terms on the right-hand side of (2.2.8) can be simplified with the help of
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Lemma 2.1.4. So,

A(Rhu, ϕI)−Ah(R
hu, ϕI) ≤ Ch|Dh|1∥ρ∥+ Ch|uI − Π0

ku|1∥ρ∥+ Chk+1∥u∥k+1∥ρ∥

≤ Chk+1

(
∥u∥k+1 +

∫ t

0

∥u(s)∥k+1ds

)
∥ρ∥.

The second term on the right-hand side of (2.2.7) can be estimated as:∫ t

0

(Bh(t, s;R
hu(s), ϕI)− B(t, s;u(s), ϕI))ds

=

∫ t

0

[Bh(t, s;R
hu(s), ϕI)− B(t, s;Rhu(s), ϕI)− B(t, s; (u−Rhu)(s), ϕI)]ds

=

∫ t

0

[Bh(t, s;R
hu(s), ϕI)− (B(t, s;Rhu(s), ϕI)− B(t, s; (u−Rhu)(s), ϕI − ϕ)

− B(t, s; (u−Rhu)(s), ϕ)]ds

≤ C

(
hk+1

∫ t

0

∥u(s)∥k+1ds+

∫ t

0

(h|ρ(s)|1 + ∥ρ(s)∥)ds
)
∥ρ∥.

Combining all these terms, applying Grönwall’s inequality, and using s ≤ t, we obtain:

∥ρ(t)∥ ≤ Chk+1

(
∥u∥k+1 +

∫ t

0

∥u(s)∥k+1ds

)
.

Theorem 2.2.2. Under all the assumptions of Theorem 2.2.1 and ut ∈ Hk+1(D), where

ut and (Rhu)t be the time derivative of u and Rhu, we have the following estimates:

∥(Rhu(t))t − ut(t)∥+ h|(Rhu(t))t − ut(t)|1

≤ Chk+1

(
∥ut(t)∥k+1 + ∥u(t)∥k+1 +

∫ t

0

∥u(s)∥k+1ds

)
.

where the constant C depends on coefficients.
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Proof. Differentiating (2.2.1) with respect to t we get:

Ah((R
hu)t, vh)−Bh(t, t;R

hu, vh) +

∫ t

0

Bh,t(t, s;R
hu, vh)ds

= A(ut, vh)− B(t, t;u, vh) +
∫ t

0

Bt(t, s;u, vh)ds,

whereas we define the bilinear form Bt(t, s; v, w) as:

Bt(t, s; v, w) :=
∑
K∈Th

BK
t (t, s; v, w),

BK
t (t, s; v, w) :=

(
∂b(x, t, s)

∂t
∇v,∇w

)
0,K

+

(
∂b1(x, t, s)

∂t
· ∇v, w

)
0,K

+

(
∂b0(x, t, s)

∂t
v, w

)
0,K

.

The bilinear form Bh,t(t, s; ph, qh) is defined as:

Bh,t(t, s; ph, qh) =
∑
K∈Th

BK
h,t(t, s; ph, qh) ∀ph, qh ∈ Wh, (2.2.9)

where,

BK
h,t(t, s; vh, wh) :=

∫
K

(
∂b(x, t, s)

∂t
Π0

k−1∇vh ·Π0
k−1∇wh +

∂b1(x, t, s)

∂t
·Π0

k−1∇vhΠ0
kwh

+
∂b0(x, t, s)

∂t
Π0

k−1vhΠ
0
k−1wh

)
dx ∀vh, wh ∈ Wk,K.

The proof is similar to the proof of the previous theorem.

Theorem 2.2.3. Let u and uh be the solution of continuous problem (2.0.2) and semi-

discrete formulation (2.1.1), respectively. Assuming f, u, ut ∈ L∞(0, T,Hk+1(D)) ∩

L2(0, T,Hk+1(D)), u0 ∈ Hk+1(D) with uh,0 = uI0, then:

∥u(·, t)− uh(·, t)∥2 ≤ Ch2(k+1)

(
∥u0∥2k+1 + ∥u(·, t)∥2k+1 +

∫ T

0

ψ(s)ds

)
,

where ψ(s) = |f(·, s)|2k+1 + ∥u(·, s)∥2k+1 + ∥us(·, s)∥2k+1.

Proof. Let us set
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uh(·, t)− u(·, t) = (uh(·, t)−Rhu(·, t)) + (Rhu(·, t)− u(·, t)) =: θ(·, t) + ρ(·, t).

We set uh,0 = uI0, as an interpolate of the beginning data u0, we get:

∥θ(·, 0)∥ ≤ ∥uh(·, 0)− u0∥+ ∥Rhu(·, 0)− u0∥

≤ ∥uI0 − u0∥+ ∥Rhu0 − u0∥

≤ Chk+1∥u0∥k+1. (2.2.10)

We already have the estimates for ρ(·, t). Now to deal with θ(·, t), we use (2.1.1) and
(2.2.1) as:

mh(θt(·, t), vh) +Ah(θ(·, t), vh)−
∫ t

0

Bh(t, s; θ(·, s), vh)ds

= ⟨fh(·, t), vh⟩ −
(
A(u(·, t), vh)−

∫ t

0

B(t, s;u(·, s), vh)ds
)
−mh((R

hu)t(·, t), vh).

= ⟨fh(·, t), vh⟩ −mh((R
hu)t(·, t), vh)− (⟨f(·, t), vh⟩ − (ut(·, t), vh))

= ⟨fh(·, t), vh⟩ − ⟨f(·, t), vh⟩ − (mh((R
hu)t(·, t), vh)− (ut(·, t), vh))

≤ Chk+1|f(·, t)|k+1∥vh∥+
∑
K∈Th

(
(ut(·, t), vh)0,K −mK

h ((R
hu)t(·, t), vh)

)
= Chk+1|f(·, t)|k+1∥vh∥

+
∑
K∈Th

((ut(·, t)− Π0
kut(·, t), vh)0,K −mK

h ((R
hu)t(·, t)− Π0

kut(·, t), vh))

≤ Chk+1(|f(·, t)|k+1∥vh∥+ ∥ut(·, t)∥k+1∥vh∥) + ∥Π0
kut(·, t)− (Rhu)t(·, t)∥∥vh∥

≤ Chk+1

(
|f(·, t)|k+1 + ∥ut(·, t)∥k+1 + ∥u(·, t)∥k+1 +

∫ t

0

∥u(·, s)∥k+1ds

)
∥vh∥.

So, we have:

mh(θt(·, t), vh) +Ah(θ(·, t), vh)−
∫ t

0

Bh(t, s; θ(·, s), vh)ds

≤ Chk+1

(
|f(·, t)|k+1 + ∥ut(·, t)∥k+1 + ∥u(·, t)∥k+1 +

∫ t

0

∥u(·, s)∥k+1ds

)
∥vh∥.

(2.2.11)
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Since, θ(·, t) ∈ Wh. Put vh = θ(·, t) in (2.2.11), we get:

mh(θt(·, t), θ(·, t)) +Ah(θ(·, t), θ(·, t))−
∫ t

0

Bh(t, s; θ(·, s), θ(·, t))ds

≤ Chk+1

(
|f(·, t)|k+1 + ∥ut(·, t)∥k+1 + ∥u(·, t)∥k+1 +

∫ t

0

∥u(·, s)∥k+1ds

)
∥θ(·, t)∥

= I(·, t)∥θ∥,

where

I(·, t) = Chk+1

(
|f(·, t)|k+1 + ∥ut(·, t)∥k+1 + ∥u(·, t)∥k+1 +

∫ t

0

∥u(·, s)∥k+1ds

)
.

We can write

mh(θt(·, t), θ(·, t)) =
1

2

d

dt
mh(θ(·, t), θ(·, t)) =

1

2

d

dt
∥θ(·, t)∥2h.

From the coercivity of Ah(·, ·), we get:

∥θ(·, t)∥h
d

dt
∥θ(·, t)∥h + cα∗|θ(·, t)|21 ≤ I(·, t)∥θ(·, t)∥+

∫ t

0

Bh(t, s; θ(·, s), θ(·, t))ds.

From the L2 norm ∥ · ∥ equivalence with the norm ∥ · ∥h, we apply Young’s inequality for

suitable ϵ, ϵ1 > 0, and then integrate the above equation to get:

∥θ(·, t)∥2 + cϵ′1

∫ t

0

|θ(·, s)|21ds

≤ ∥θ(·, 0)∥2 + ϵ

2

∫ t

0

(I(·, s))2ds+
∫ t

0

∥θ(·, s)∥2

2ϵ
ds+ cϵ1

∫ t

0

∫ z

0

∥θ(·, s)∥21dsdz.

Now,

min(1, cϵ′1)
(
∥θ(·, t)∥2 +

∫ t

0

|θ(·, s)|21ds
)

≤ ∥θ(·, 0)∥2 + ϵ

2

∫ t

0

(I(·, s))2ds+max

(
1

2ϵ
, cϵ1

)(∫ t

0

∥θ(·, s)∥2ds+
∫ t

0

∫ z

0

∥θ(·, s)∥21dsdz
)
.
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Applying Grönwall’s lemma, we obtain:

∥θ(·, t)∥2 +
∫ t

0

|θ(·, s)|21 ≤ C

(
∥θ(·, 0)∥2 +

∫ t

0

(I(·, s))2ds
)
,

∥θ(·, t)∥2 ≤ C
(
∥θ(·, 0)∥2

+h2(k+1)

∫ t

0

(
|f(·, s)|2k+1 + ∥us(·, s)∥2k+1 + ∥u(·, s)∥2k+1 + T∥u(·, s)∥2k+1

)
ds

)
.

Using a triangle inequality, (2.2.10) and t ≤ T we arrive at:

∥u(·, t)− uh(·, t)∥2 ≤ Ch2(k+1)

(
∥u0∥2k+1 + ∥u(·, t)∥2k+1 +

∫ T

0

ψ(s)ds

)
,

where ψ(s) = |f(·, s)|2k+1 + ∥u(·, s)∥2k+1 + ∥us(·, s)∥2k+1.

Theorem 2.2.4. Under the assumption of the previous theorem, the following estimates

hold true:

|uh(·, t)− u(·, t)|21 ≤ Ch2k
(
∥u0∥2k+1 + ∥u(·, t)∥2k+1 +

∫ T

0

ψ(s)ds

)
.

Proof. Put vh = θt in (2.2.11), and use Young’s inequality to arrive at:

mh(θt(·, t),θt(·, t)) +Ah(θ(·, t), θt(·, t))−
∫ t

0

Bh(t, s; θ(·, s), θt(·, t))ds = I(·, t)∥θt(·, t)∥,

m∗∥θt(·, t)∥2+
cα∗

2

d|θ(·, t)|21
dt

≤
∫ t

0

Bh(t, s; θ(·, s), θt(·, t))ds+I(·, t)∥θt(·, t)∥. (2.2.12)

Use Young’s inequality in (2.2.12) and then integrate from 0 to ‘t’,

∫ t

0

m∗

2
∥θs(·, s)∥2 +

cα∗|θ(·, t)|21
2

≤ cα∗|θ(·, 0)|21
2

+

∫ t

0

(I(·, s))2

2m∗
ds+

∫ t

0

∫ s

0

Bh(s, z; θ(·, z), θs(·, s))dzds. (2.2.13)

37



Chapter 2

Now, by changing the order of integration in (2.2.13), we get:

∫ t

0

m∗

2
∥θs(·, s)∥2 +

cα∗|θ(·, t)|21
2

≤ cα∗ |θ(·, 0)|21
2

+

∫ t

0

(I(·, s))2

2m∗
ds−

∫ t

0

∫ t

z

Bh,s(s, z; θ(·, z), θ(·, s))dsdz

+

∫ t

0

(Bh(t, z; θ(·, z), θ(·, t))− Bh(z, z; θ(·, z), θ(·, z)))dz,

where Bh,s is defined as in (2.2.9). Since we have assumed the coefficients of B and Bs are

smooth and bounded, the terms on the right-hand side of the above equation are bounded.

Now, by using Young’s inequality, we arrive at:

∫ t

0

m∗

2
∥θs(·, s)∥2 +

cα∗|θ(·, t)|21
2

≤ cα∗ |θ(·, 0)|21
2

+

∫ t

0

(I(·, s))2

2m∗
ds+ Cϵ∥θ(·, t)∥21 + Cϵ′

∫ t

0

∥θ(·, s)∥21ds,

C ′
ϵ|θ(·, t)|21 ≤

cα∗|θ(·, 0)|21
2

+

∫ t

0

(I(·, s))2

2m∗
ds+ Cϵ′

∫ t

0

∥θ(·, s)∥21ds.

Applying Grönwall’s lemma, followed by a triangle inequality, t ≤ T and the fact that

|θ(·, 0)|1 ≤ Chk∥u0∥k+1, it follows:

|uh(·, t)− u(·, t)|21 ≤ Ch2k
(
∥u0∥2k+1 + ∥u(·, t)∥2k+1 +

∫ T

0

ψ(s)ds

)
.

2.3 Fully-discrete Scheme
The error produced by a fully-discrete scheme has two ingredients in theory: the error

caused by spatial discretization, which is dependent on h, and the error caused by time

discretization, which is dependent on time phase size τ .

Now, we discretize our problem in time. To discretize in time, we use the Euler
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backward process. We divide our time interval into N distinct points that are evenly

spaced, let tn = nτ and the sequence {Un} be generated as:

Un ≈ uh(·, tn), n = 0, 1, 2, ..., N,

τ = T/N.

We use the left rectangular rule for the partitioning of the integral term and any function

g(t), this rule is defined as:

∫ tn

0

g(s)ds ≈ τ
n−1∑
j=0

g(tj).

Therefore, the fully-discrete scheme is defined as:

mh

(
Un − Un−1

τ
, vh

)
+Ah(Un, vh)−

n−1∑
j=0

τBh(tn, tj;Uj, vh) = ⟨fh(tn), vh⟩. (2.3.1)

Theorem 2.3.1. Let u(·, tn) and Un be the solution of continuous problem (2.0.2) and fully-

discrete formulation (2.3.1) at time t = tn respectively. Assuming f ∈ L∞(0, T,Hk+1(D)),

utt ∈ L∞(0, T, L2(D))∩L1(0, T, L2(D)), u, ut ∈ L∞(0, T,Hk+1(D))∩L1(0, T,Hk+1(D))

and u0 ∈ Hk+1(D) with U0 = uI0, then ∀n = 1, 2, · · ·, N , we have:

∥Un − u(·, tn)∥ ≤ O(hk+1 + τ).

Proof. As in the previous theorem:

Un − u(·, tn) = (Un −Rhu(·, tn)) + (Rhu(·, tn)− u(·, tn)) =: θn + ρn.

The term ρn can be restricted by earlier arguments. By using eq. (2.0.2), (2.2.1) and
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(2.3.1), we get for all vh ∈ Wh:

mh

(
θn − θn−1

τ
, vh

)
+Ah(θ

n, vh)− τ

n−1∑
j=0

Bh(tn, tj; θ
j, vh)

= [⟨fh(·, tn), vh⟩ − ⟨f(·, tn), vh⟩] +
[
(ut(·, tn), vh)−mh

(
Rhu(·, tn)−Rhu(·, tn−1)

τ
, vh

)]
+

[∫ tn

0

Bh(tn, s;R
hu(·, s), vh)ds− τ

n−1∑
j=0

Bh(tn, tj;R
hu(·, jτ), vh)

]
, (2.3.2)

where the first term in right-hand side of (2.3.2) can be simplified as:

⟨fh(·, tn), vh⟩ − ⟨f(·, tn), vh⟩ ≤ Chk+1|f(·, tn)|k+1∥vh∥,

= In1 ∥vh∥,

where In1 = Chk+1|f(·, tn)|k+1. The second term in the right-hand side of (2.3.2) can be
simplified as:

(ut(·, tn), vh)−mh

(
Rhu(·, tn)−Rhu(·, tn−1)

τ
, vh

)
=
∑
K∈Th

(
(ut(·, tn), vh)0,K −mK

h

(
Rhu(·, tn)−Rhu(·, tn−1)

τ
, vh

))

=
∑
K∈Th

((
ut(·, tn)−

u(·, tn)− u(·, tn−1)

τ
, vh

)
0,K

+

(
u(·, tn)− u(·, tn−1)

τ
− Π0

k(u(·, tn)− u(·, tn−1))

τ
, vh

)
0,K

+mK
h

(
Π0

k(u(·, tn)− u(·, tn−1))

τ
− Rhu(·, tn)−Rhu(·, tn−1)

τ
, vh

))
≤ C

(∥∥∥∥ut(·, tn)− (u(·, tn)− u(·, tn−1)

τ

)∥∥∥∥
+

1

τ
∥u(·, tn)− u(·, tn−1))− Π0

k(u(·, tn)− u(·, tn−1))∥

+
1

τ
∥Π0

k(u(·, tn)− u(·, tn−1))− (Rhu(·, tn)−Rhu(·, tn−1))∥
)
∥vh∥

= In2 ∥vh∥,
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where

|In2 | ≤
C1

τ
(∥τut(·, tn)− (u(·, tn)− u(·, tn−1))∥

+hk+1

∫ tn

tn−1

(
∥us(·, s)∥k+1 + ∥u(·, s)∥k+1 +

∫ s

0

∥u(·, z)∥k+1dz

)
ds

)
.

We can deal with the third term in the right-hand side of (2.3.2) as see [76]:∫ tn

0

Bh(tn, s;R
hu(·, s), vh)ds− τ

n−1∑
j=0

Bh(tn, tj;R
hu(·, jτ), vh) ≤ In3 |vh|1,

where In3 = C2τ

(∫ tn

0

(|ρ(·, s)|1 + |ρs(·, s)|1 + |u(·, s)|1 + |us(·, s)|1)ds
)

.
Now, put vh = θn in (2.3.2) to arrive at:

1

2

(
∥θn∥2 − ∥θn−1∥2

τ
+

∥θn − θn−1∥2

τ

)
+ cα∗|θn|21

≤ C3

(
τ

n−1∑
j=0

|θj|1|θn|1 + (In1 + In2 )∥θn∥+ In3 |θn|1

)
.

Using Young’s inequality on the first term in the right-hand side of the above equation,
followed by the kickback argument, gives us the following:

(
∥θn∥2 − ∥θn−1∥2

τ

)
+ |θn|21 ≤ C

(
τ

n−1∑
j=0

|θj|21 + (In1 + In2 )∥θn∥+ In3 |θn|1

)
.

Multiplying by τ and summing over n from 1 to m, with 1 ≤ m ≤ N yields:

∥θm∥2 + τ
m∑

n=1

|θn|21

≤ ∥θ(·, 0)∥2 + C

[
τ

m∑
n=1

(In1 + In2 )∥θn∥+ τ

m∑
n=1

In3 |θn|1 + τ

m∑
n=1

τ

n−1∑
j=0

|θj|21

]
. (2.3.3)

Define the left-hand side as Em and δM = max0≤i≤MEi for M ≤ N , and using the
Holder’s inequality for the third term on the right-hand side of the above equation, then:

δM ≤ C ′

∥θ(·, 0)∥δ 1
2
M + τ

M∑
n=1

(In1 + In2 )δ
1
2
M +

(
τ

M∑
n=1

(In3 )
2

) 1
2

δ
1
2
M + τ

M∑
n=1

δ
1
2
i−1δ

1
2
M

 .
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Dividing both sides by δ
1
2
M, we may replace M by m, and then using discrete Grönwall’s

inequality, gives us the required result. All these terms τ
m∑
i=1

I i1, τ
m∑
i=1

I i2, τ
m∑
i=1

(I i3)
2 can

be simplified as:∣∣∣∣∣τ
m∑
i=1

I i1

∣∣∣∣∣ ≤Chk+1∥f∥X∞ ,∣∣∣∣∣τ
m∑
i=1

I i2

∣∣∣∣∣ ≤C
(
τ∥utt∥L1(0,T,L2(D)) + hk+1

∫ T

0

(∥us(·, s)∥k+1 + ∥u(·, s)∥k+1)ds

)
,∣∣∣∣∣∣

(
τ

m∑
i=1

(I i3)
2

) 1
2

∣∣∣∣∣∣ ≤Cτ
(∫ T

0

(h2(k+1)(∥ut(·, s)∥2k+1 + ∥u(·, s)∥2k+1) + |u(·, s)|21 + |us(·, s)|21)ds
) 1

2

.

Applying a triangle inequality along with Theorem 2.2.1 completes the rest of the proof.

Below, we state the theorem which provides the optimal estimates for |Un−u(·, tn)|1. The

proof is similar to the proof of Theorem 2.3.1.

Theorem 2.3.2. Under the assumption of the previous theorem, the following estimates

hold true:

|Un − u(·, tn)|1 ≤ O(hk + τ). (2.3.4)

2.4 Numerical Experiments
In this section, we carry out different numerical examples to justify the performance of

the proposed virtual element scheme for the linear integro-differential problem (2.0.1).

For simplicity, in all experiments, we consider the domain D to be the unit square in R2.

To support our theoretical findings, we verified the convergence rates for both singular

and weakly singular kernels. It is well known that hanging nodes can be easily managed

in the context of VEM. Hence, this particular feature would allow us local refinement,

i.e., one can have finer mesh around the singular point and coarser mesh in the rest of the

domain. Considering this point, we present our numerical experiments with adaptive mesh

refinement and obtain accurate numerical solutions for problems that have sharp changes
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at some particular points. We have also compared numerical solutions for uniform and

adaptive mesh refinement. We stress that local refinement would not be an easy task while

working with classical finite element schemes. Therefore, VEMs are more suitable when

local mesh refinement is mandatory, for instance, at singular points. We use the backward

Figure 2.1: The representation of mesh employed in this study.

Euler approach for time discretization coupled with VEM discretization to tackle the

fully-discrete problem for the polygonal mesh sequences introduced in Figure.2.1.

2.4.1 Uniform Mesh Refinement

Example 2.4.1. Consider the linear parabolic integro-differential equation (2.0.1), with

variable coefficients a(x), a0(x), b(x; t, s), b1(x; t, s), b0(x; t, s), in which the load term

f , the boundary data, and the beginning data u0 are all determined based on the exact

solution.

u(x, t) = t(x− x2)(y − y2). (2.4.1)

Example 2.4.2. (Weakly-Singular Kernel) Consider the linear parabolic integro-differential

equation (2.0.1),with coefficients a(x) = a0(x) = 1 and b(x; t, s) = (t − s)−0.01es and

b1(x; t, s) = b0(x; t, s) = 0; in which the load term f , the boundary data, and the

beginning data u0 are all determined based on the exact solution.

u(x, t) = e−t(x− x2)(y − y2). (2.4.2)
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Figure 2.2: The left panel shows the initial domain with only five elements; the right panel
shows the approximate solution at this domain.

2.4.2 Adaptive Mesh Refinement

Here, we show that for some problems that have sharp changes at some particular point, it

is advisable to use an adaptive mesh rather than a uniform mesh; it gives better accuracy

and saves run time for code. Here we have considered the solution as

u(x, t) = te−100((x−1/2)2+(y−1/2)2), (2.4.3)

and this solution has a sharp peak at (1
2
, 1
2
). So, rather than doing the uniform refinement,

we take advantage of the fact that hanging nodes can be dealt with easily in VEM, so we

go for non-uniform refinement around (1
2
, 1
2
), and by comparing the results in uniform and

adaptive mesh, we can see that adaptive mesh refinement has less H1-error as compared

to the uniform refinement for a particular τ and h. Figure2.2 shows the approximate

solution at the initial mesh with 5 elements, whereas Figure2.3 shows the solution after 25

iterations. Figure2.4 depicts the solution for uniform refinement and the comparison of

H1-error for adaptive and uniform mesh refinement. Convergence Curves

Figure 2.5 and Figure 2.6 depict the errors for Example 2.4.1 and Example 2.4.2, respec-

tively. It is evident that our theoretical estimates are well according to our numerical
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Figure 2.3: The left panel shows the adaptive domain (finer mesh at (1
2
, 1
2
)); the right panel

shows the approximate solution at this domain.

Figure 2.4: The left panel shows the approximate solution at uniform mesh; the right panel
shows the comparison of the error in adaptive and uniform mesh

results.

2.5 Conclusion

In this Chapter, we develop and analyze the confirming VEM for PIDE on polygonal

meshes. We establish the L2 and H1-error estimates of order O(hk+1) and O(hk) re-

spectively, for the semi-discrete case. Using the left-rectangular rule for partitioning the

integral term and the backward Euler’s method for the time derivative approximation, the
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Figure 2.5: The left panel shows the order of convergence for k = 1 and k = 2; the right
panel shows the L2-error and H1-error for k = 1, in case of Example 2.4.1.

Figure 2.6: The left panel shows the order of convergence for k = 1 and k = 2; the right
panel shows the L2-error and H1-error for k = 1, in case of Example 2.4.2.

error of order O(hk+1 + τ) and O(hk + τ) are established. Furthermore, to demonstrate

the practical application of VEMs, numerical experiments are carried out involving local

mesh refinements with hanging nodes, a technique essential for minimizing computational

expenses but one that may not be feasible within the framework of conforming FEMs.
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Mixed Virtual Element Method for

Linear Parabolic Integro-Differential

Equations 1

In this chapter, we develop and analyze a mixed virtual element scheme for the spatial

discretization of parabolic integro-differential equations combined with backward Euler’s

scheme for temporal discretization. Our focus lies in the exploration of PIDEs of the form

given by (1.3.1).

One of our concerns in (1.3.1) is to determine the flux or velocity in addition to the

pressure; the typical Galerkin method yields a loss of precision because it is estimated from

the approximated solution via post-processing. The mixed methods, on the other hand,

provide a direct estimate of this physical quantity and lead to locally conservative solutions.

Another advantage of using a mixed technique here is the ability to introduce one more

unknown of physical importance, which may be computed directly without adding any

new sources of error. Here, we introduce σ(x, t), defined by (1.3.4) then, (1.3.1) can be

1The substantial part of this chapter has been communicated as follows: M Suthar, and S Yadav,
“Mixed Virtual Element Method for Linear Parabolic Integro-Differential Equations”, International Journal
of Numerical Analysis and Modeling (Accepted).
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written as in the form of (1.3.5). The meaning of this independent variable ‘σ’ is velocity

field while discussing flow in porous media, whereas (1.3.5) expresses a mass balance in

any subdomain of D, see [14]. So, the mixed formulation for this setting simultaneously

approximates the pressure and the velocity field while maintaining the underlying local

mass conservation. Since there is an integral term in (1.3.4) which involves ∇u, we

introduce a new kernel known as the resolvent kernel to deal with this integral term.

Although determining the resolvent kernel for a given kernel may be challenging, but

computationally, this approach proves significantly more efficient. This is evident when

comparing it to the formulation outlined in [15], which involves two terms under the

integral sign and hence requires N ×N times more computation of a matrix. Additionally,

in the 3-field formulation discussed in [48], the system of equations is considerably larger

than the system arising from this formulation. Hence, whenever the resolvent kernel is

available, utilizing this formulation yields computational cost cutting. Furthermore, if the

resolvent kernel turns out to be a series, we can truncate the series and get the desired

result. This chapter implements the mixed VEM method on (1.3.1) and presents several

significant contributions, which are outlined as follows:

• To tackle the integral term, an approach involving a novel projection with a memory

term (referred to as mixed R.V. projection) is introduced, which helps in achieving

the optimal convergence of order O(hk+1) for both the unknowns.

• A fully discretized scheme is put forth, utilizing the backward Euler’s method for

temporal derivative and the left rectangular rule for the discretization of the integral

term.

• The analysis is performed to show the super convergence of the discrete solution,

which has been verified with the different numerical experiments.

• Theoretical results have been validated through the implementation of numerical

experiments.
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3.1 The Continuous and Mixed VEM Semi-discrete For-

mulation

One of the possible ways of finding a resolvent kernel R(t, s) defined by (1.3.6) and

(1.3.7), for any kernel K(t, s) is:

R(t, s) =
∞∑

m=1

Km(t, s),

where Km(t, s) is given by:

K1(t, s) = K(t, s); Km(t, s) =

∫ t

s

K(t, z)Km−1(z, s)dz. (3.1.1)

The smoothness and boundedness of the resolvent kernel are derived from the smoothness

and boundedness of a−1(x)b(x; t, s). For further details, please see [61]. The mixed VEM

formulation corresponding to (1.3.8) reads as: Find (uh,σh) ∈ Qk
h × V k

h such that:

(uh,t, ϕh)− (∇ · σh, ϕh) = (f, ϕh) ∀ϕh ∈ Qk
h,

ah(σh,χh) +

∫ t

0

Kh(t, s;σh(s),χh)ds+ (∇ · χh, uh) = 0 ∀χh ∈ V k
h ,

(3.1.2)

The discrete bilinear forms in (3.1.2) are defined ∀zh,χh ∈ V k
h as:

ah(zh,χh) :=
∑
K∈Ih

aKh (zh,χh), Kh(t, s; zh,χh) :=
∑
K∈Ih

KKh (t, s; zh,χh),

whereas the bilinear forms aKh (·, ·) : V k
h (K) × V k

h (K) → R and KKh (·, ·) : V k
h (K) ×

V k
h (K) → R, on every elementK ∈ Ih are defined as:

aKh (lh, qh) := (µΠ0
klh,Π

0
kqh)0,K + SK0 ((I −Π0

k)lh, (I −Π0
k)qh) ∀lh, qh ∈ V k

h (K),

KKh (t, s; lh, qh) := (K(t, s)Π0
klh,Π

0
kqh)0,K ∀lh, qh ∈ V k

h (K).
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The stability term SK0 : V k
h (K)× V k

h (K) → R should be constructed in such a way that,

∃ µ∗, µ
∗ independent of h with 0 < µ∗ ≤ µ∗ and satisfies the following:

µ∗a
K(lh, lh) ≤ SK0 (lh, lh) ≤ µ∗aK(lh, lh) ∀lh ∈ V k

h (K).

One of the possible choices of SK0 (·, ·) is:

SK
0 ((I − Π0

k)lh, (I − Π0
k)mh) := µ̄|E|

Ndof∑
i=1

dofi(lh −Π0
klh)dofi(mh −Π0

kmh),

where µ̄ is some positive constant approximation of the coefficients µ(x) [77]. Moreover,

∃ µ1, µ2 > 0, such that:

ah(χh,χh) ≥ µ1∥χh∥2 and |ah(zh,χh)| ≤ µ2∥zh∥∥χh∥ ∀χh ∈ V k
h . (3.1.3)

For more details about SK
0 and its properties, see [13, 77].

3.2 Error Analysis for the Semi-discrete Case

Lemma 3.2.1. ForK ∈ Ih, let the coefficients µ(x) and K(x; t, s) be smooth scaler-valued

functions in D and p be smooth vector-valued function and χh ∈ V k
h (K). Then,

aKh (Π
0
kp,χh)− (µΠ0

kp,χh)0,K ≤ Cµh
k+1|p|k+1,K|χh|0,K,

Kh(t, s;Π
0
kp,χh)− (K(t, s)Π0

kp,χh)0,K ≤ CKh
k+1|p|k+1,K|χh|0,K. (3.2.1)

Proof. Let lh,χh be vector-valued functions in V k
h (K). Then, by using the properties of

Π0
k, we arrive at:

aKh (lh,χh)− (µlh,χh)0,K

= (µlh −Π0
k(µlh),χh −Π0

kχh)0,K + (lh −Π0
klh, µχh −Π0

k(µχh))0,K

− (lh −Π0
klh, µ(χh −Π0

kχh))0,K + SK0 ((I −Π0
k)lh, (I −Π0

k)χh). (3.2.2)
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Now, put lh = Π0
kp in (3.2.2) and using the properties of Π0

k, last three terms becomes

zero and we arrive at:

aKh (Π
0
kp,χh)− (µΠ0

kp,χh)0,K ≤Cµh
k+1|p|k+1,K|χh|0,K.

Using the similar arguments, we can also prove (3.2.1).

3.2.1 Mixed Ritz Volterra Projection

For the formulation described in (1.3.8) and (3.1.2), we can now derive the optimal error

estimates for both the semi-discrete and fully-discrete cases, and for that, we need to deal

with the memory term. Therefore, we introduce a new projection here with the memory

term known as mixed R.V. projection. Given (p(t),σ(t)) ∈ Q× V for t ∈ (0, T ], define

mixed R.V. projection (p̃(t), σ̃(t)) ∈ Qk
h × V k

h , as:

ah(σ̃,χh) +

∫ t

0

Kh(t, s; σ̃(s),χh)ds+ (∇ · χh, ũ)

= (µσ,χh) +

∫ t

0

(K(t, s)σ(s),χh)ds+ (∇ · χh, u) ∀χh ∈ V k
h ,

(∇ · (σ − σ̃), ϕh) = 0 ∀ϕh ∈ Qk
h.

(3.2.3)

Since (3.2.3) is a linear system. To prove the existence and uniqueness of the mixed R.V.

projection, it is sufficient to prove that the associated homogenous system (3.2.4a)-(3.2.4b)

has only a trivial solution.

ah(σ̃,χh) +

∫ t

0

Kh(t, s; σ̃(s),χh)ds+ (∇ · χh, p̃) = 0 ∀χh ∈ V k
h , (3.2.4a)

(∇ · σ̃, ϕh) = 0 ∀ϕh ∈ Qk
h. (3.2.4b)

Put ϕh = ∇ · σ̃ in (3.2.4b) to arrive at ∇ · σ̃ = 0. Substitute χh = σ̃ in (3.2.4a) and by

using (3.1.3), we arrive at the following:

µ1∥σ̃∥2 ≤ −
∫ t

0

Kh(t, s; σ̃(s), σ̃)ds,
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∥σ̃∥ ≤ C

∫ t

0

∥σ̃(s)∥ds.

Using Grönwall’s lemma, we have ∥σ̃∥ = 0. Now, we use the inf -sup condition men-

tioned in [33], [32], which is:

∃ β > 0 such that inf
q∈Qk

h

sup
v∈V k

h

(∇ · v, q)
∥q∥Q∥v∥V

≥ β > 0.

So,

∥p̃∥ ≤ c sup
v∈V k

h

(∇ · χh, p̃)

∥χh∥V
≤ C

(
∥σ̃∥+

∫ t

0

∥σ̃(s)∥ds
)
.

We arrive at ∥p̃∥ = 0. Hence, p̃ = 0 and σ̃ = 0. Below, we present the estimates for R.V.

projection.

Theorem 3.2.1. Under the assumptions H.1-H.3, σ and u ∈ L∞(0, T,Hk+1(D)), ∃ a

unique solution (ũ, σ̃) ∈ Qk
h × V k

h , which satisfies (3.2.3). Furthermore, the following

estimates hold true:

∥σ − σ̃∥ ≤ Chk+1

(
|σ|k+1 +

∫ t

0

|σ(s)|k+1ds

)
, (3.2.5)

∥u− ũ∥ ≤ Chk+1

(
|u|k+1 + |σ|k+1 +

∫ t

0

|σ(s)|k+1ds

)
. (3.2.6)

Proof. In order to prove (3.2.5) and (3.2.6), we proceed by considering ϑ = σ − σ̃,

ψh = ΠF
hσ − σ̃, ϱ = u − ũ, and τh = Π0

ku − ũ ∈ Qk
h . Now, By the definition of the

mixed R.V. projection (3.2.3):

ah(ψh,χh) +

∫ t

0

Kh(t, s;ψh(s),χh)ds

= (∇ · χh, ũ− u) +

(∫ t

0

Kh(t, s;Π
F
hσ(s),χh)ds−

∫ t

0

(K(t, s)σ(s),χh)ds

)
+
(
ah(Π

F
hσ,χh)− (µσ,χh)

)
. (3.2.7)
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For solving the third term in the right-hand side of (3.2.7), we use Lemma 3.2.1, (3.1.3)

and Cauchy-Schwarz inequality as:

ah(Π
F
hσ,χh)− (µσ,χh)

= ah(Π
F
hσ −Π0

kσ,χh) + ah(Π
0
kσ,χh)− (µ(σ −Π0

kσ),χh)− (µΠ0
kσ,χh)

≤ C(∥σ −Π0
kσ∥+ ∥ΠF

hσ −Π0
kσ∥+ hk+1|σ|k+1)∥χh∥

[ By using (1.5.7) and (1.5.9) ]

≤ Chk+1|σ|k+1∥χh∥. (3.2.8)

In a similar manner, one can address the solution of the second term on the right-hand
side of equation (3.2.7) as:∫ t

0

Kh(t, s;Π
F
hσ(s),χh)ds−

∫ t

0

(K(t, s)σ(s),χh)ds ≤ Chk+1∥χh∥
∫ t

0

|σ(s)|k+1ds.

(3.2.9)

By using (3.2.3), (3.2.8), (3.2.9), ΠF
h , ∥∇ · ψh∥ = 0 and by considering χh = ψh in

(3.2.7), we arrive at the following:

ah(ψh,ψh) ≤ Chk+1

(
|σ|k+1 +

∫ t

0

|σ(s)|k+1ds

)
∥ψh∥ −

∫ t

0

Kh(t, s;ψh(s),ψh)ds.

Use of boundedness of Kh(t, s; ·, ·) see [61], coercivity of ah(ψh,ψh) and (3.1.3), followed

by Grönwall’s lemma, yields:

∥ψh∥ ≤ Chk+1

(
|σ|k+1 +

∫ t

0

|σ(s)|k+1ds

)
.

Now, the use of triangle inequality completes the proof of (3.2.5):

∥ϑ∥ ≤ Chk+1

(
|σ|k+1 +

∫ t

0

|σ(s)|k+1ds

)
. (3.2.10)

To prove (3.2.6), we proceed by using the definition of mixed R.V. projection (3.2.3) as:

(µϑ,χh) + (∇ · χh, τh) = F(χh) ∀χh ∈ V k
h ,

(∇ · ϑ, ϕh) = 0 ∀ϕh ∈ Qk
h,

(3.2.11)
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where

F(χh) = ah(σ̃,χh)− (µσ̃,χh) +

∫ t

0

Kh(t, s; σ̃(s),χh)ds−
∫ t

0

(K(t, s)σ(s),χh)ds.

(3.2.12)

Let ξ ∈ H2(D) ∩H1
0 (D), with D to be convex and bounded, be the solution of the dual

problem:
−∇ · (a∇ξ) = τh, ξ = 0 on ∂D. (3.2.13)

and satisfy the following regularity condition:

∥ξ∥2 ≤ ∥τh∥. (3.2.14)

Consider Φ = a∇ξ, then (3.2.13) satisfies:

(µΦ,χ) + (∇ · χ, ξ) = 0 ∀χ ∈ V

−(∇ ·Φ, ϕ) = (τh, ϕ) ∀ϕ ∈ Q.
(3.2.15)

Now, put ϕ = τh in (3.2.15) to get:

∥τh∥2 = (τh,−∇ · (ΠF
h a∇ξ))

= (µϑ,ΠF
h (a∇ξ))−F(ΠF

h (a∇ξ)) [ By using (3.2.11) ]. (3.2.16)

Now, from (3.2.12), we can rewrite F(ΠF
h (a∇ξ)) as:

F(ΠF
h (a∇ξ))

= (ah(σ̃ −Π0
kσ,Π

F
h (a∇ξ))− (µ(σ̃ −Π0

kσ),Π
F
h (a∇ξ)))

+ (ah(Π
0
kσ,Π

F
h (a∇ξ))− (µΠ0

kσ,Π
F
h (a∇ξ)))−

(∫ t

0

(K(t, s)(ϑ)(s),ΠF
h (a∇ξ))

)
+

(∫ t

0

Kh(t, s; (σ̃ −Π0
kσ)(s),Π

F
h (a∇ξ))ds−

∫ t

0

(K(t, s)(σ̃ −Π0
kσ)(s),Π

F
h (a∇ξ))

)
+

(∫ t

0

Kh(t, s;Π
0
kσ(s),Π

F
h (a∇ξ))ds−

∫ t

0

(K(t, s)Π0
kσ(s),Π

F
h (a∇ξ))ds

)
.

(3.2.17)
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The first and fourth terms on the right-hand side of (3.2.17) can be simplified in a similar

way as (3.2.2). We apply Lemma 3.2.1 to deal with the second and last terms, whereas we

use Cauchy-Schwarz inequality and (3.2.10) for the third term. Therefore, we arrive at the

following:

F(ΠF
h (a∇ξ)) ≤ Chk+1

(
|σ|k+1 +

∫ t

0

|σ(s)|k+1ds

)
∥ξ∥1, (3.2.18)

whereas
(µϑ,ΠF

h (a∇ξ)) ≤ C∥ϑ∥∥ξ∥1. (3.2.19)

Using (3.2.18), (3.2.19), (3.2.10) and (3.2.14) in (3.2.16), we arrive at:

∥τh∥ ≤ Chk+1

(
|σ|k+1 +

∫ t

0

|σ(s)|k+1ds

)
. (3.2.20)

We get our desired estimates using a triangle inequality and (1.5.7).

3.2.2 Super Convergence Property of Mixed Ritz Volterra Projection

As evident from the equation (3.2.20), it is clear that τh exhibits convergence of order

O(hk+1). We can enhance the convergence order of τh by utilizing the dual norm approach,

resulting in an order of O(hk+2). This can be shown by rewriting (3.2.16) as:

∥τh∥2 = (µϑ,ΠF
h (a∇ξ)− a∇ξ) + (∇ · ϑ,Π0

kξ − ξ)−F(ΠF
h (a∇ξ)). (3.2.21)

Now, by using (1.5.7) and (1.5.9) , we arrive at:

(µϑ,ΠF
h (a∇ξ)− a∇ξ) ≤ Ch∥ϑ∥∥ξ∥2, , (3.2.22)

(∇ · ϑ,Π0
kξ − ξ) ≤ Ch2∥∇ · ϑ∥∥ξ∥2. (3.2.23)

Now, (3.2.17), can be rewritten as:

F(ΠF
h (a∇ξ))

= (ah(σ̃ −Π0
kσ,Π

F
h (a∇ξ))− (µ(σ̃ −Π0

kσ),Π
F
h (a∇ξ)))

+ (ah(Π
0
kσ,Π

F
h (a∇ξ))− (µΠ0

kσ,Π
F
h (a∇ξ)))
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+

(∫ t

0

Kh(t, s; (σ̃ −Π0
kσ)(s),Π

F
h (a∇ξ))ds−

∫ t

0

(K(t, s)(σ̃ −Π0
kσ)(s),Π

F
h (a∇ξ))

)
+

(∫ t

0

Kh(t, s;Π
0
kσ(s),Π

F
h (a∇ξ))ds−

∫ t

0

(K(t, s)Π0
kσ(s),Π

F
h (a∇ξ))ds

)
−
∫ t

0

(K(t, s)(ϑ)(s),ΠF
h (a∇ξ)− a∇ξ)−

∫ t

0

(K(t, s)(ϑ)(s), a∇ξ).

For the last term in the right-hand side of (3.2.24), we use the dual norm approach,
whereas all the remaining terms can be solved similarly to (3.2.17) by considering the

higher regularity of ξ, i.e., ∥ξ∥2 as:

F((ΠF
h (a∇ξ))

≤ Chk+2

(
|σ|k+1 +

∫ t

0

|σ(s)|k+1ds

)
∥ξ∥2 +

∫ t

0

∥ϑ(s)∥−1∥a∇ξ∥1. (3.2.24)

The term in the (3.2.22) can be bounded by using (3.2.10) and for (3.2.23), we proceed
as:

∥∇ · ϑ∥2 = (∇ · ϑ,∇ · (σ−ΠF
hσ))

≤ ∥∇ · ϑ∥∥∇ · (σ−ΠF
hσ).

Now,

∥∇ · ϑ∥ ≤ Chk|∇ · σ|k. (3.2.25)

For the estimate of ∥ϑ∥−1 in (3.2.24), let κκκ ∈ (H1(D))2, then:

(µϑ,κκκ) = ah(σ̃,Π
0
kκκκ)− (µσ̃,Π0

kκκκ) +
∫ t

0

Kh(σ̃(s),Π
0
kκκκ)ds−

∫ t

0

(Kσ̃(s),Π0
kκκκ)ds

+ (µϑ,κκκ −Π0
kκκκ)−

∫ t

0

(Kϑ(s),Π0
kκκκ)ds− (∇ ·Π0

kκκκ, τh).

Solving all these terms and using Grönwall’s lemma, we get the following:

∥ϑ∥−1 ≤ Chk+2

(
|σ|k+1 +

∫ t

0

|σ(s)|k+1ds

)
+ ∥τh∥. (3.2.26)
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Using (3.2.26), (3.2.24), (3.2.23) and (3.2.25) in (3.2.21) followed by Grönwall’s lemma:

∥Π0
ku− ũ∥ ≤ Chk+2

(
|σ|k+1 + |∇ · σ|k +

∫ t

0

|σ(s)|k+1ds

)
.

To prove the super convergence of Π0
ku − uh, we must estimate Π0

kut − ũt. First, we

differentiate (3.2.3) and then follow the similar steps as above; we get the following:

∥τh,t∥ ≤ Chk+2

(
|σt|k+1 + |∇ · σt|k + |σ|k+1 +

∫ t

0

(|σ(s)|k+1 + |∇ · σ(s)|k)ds
)
.

Lemma 3.2.2. Under all the assumptions of Theorem 3.2.1andσt, ut ∈ L∞(0, T,Hk+1(D)),

where ut, σt and ũt, σ̃t be the time derivative of u, σ and ũ, σ̃ respectively, the following

estimates hold true:

∥σt − σ̃t∥ ≤ Chk+1

(
|σt|k+1 + |σ|k+1 +

∫ t

0

|σ(s)|k+1ds

)
, (3.2.27)

∥ut − ũt∥ ≤ Chk+1

(
|ut|k+1 + |σt|k+1 + |σ|k+1 +

∫ t

0

|σ(s)|k+1ds

)
. (3.2.28)

Theorem 3.2.2. Let u, σ and uh, σh be the solution of continuous problem (1.3.8) and

semi-discrete formulation (3.1.2), respectively. Under all the assumptions of Lemma 3.2.2,

the following estimates hold true:

∥u− uh∥2 ≤ C

(
∥ϱh(·, 0)∥2 + h2(k+1)

(
|u|2k+1 + |σ|2k+1 +

∫ T

0

g(s)ds

))
, (3.2.29)

∥σ − σh∥2 ≤ C

(
∥ϑh(·, 0)∥2 + Ch2(k+1)

(
|σ|2k+1 +

∫ T

0

g(s)ds

))
, (3.2.30)

where g(s) = |ut(s)|2k+1 + |σt(s)|2k+1 + |σ(s)|2k+1.

Proof. Writing u − uh = ϱ + ϱh and σ − σh = ϑ + ϑh where ϱh = (ũ − uh) and

ϑh = (σ̃ − σh). Since, we already have the estimates of ∥ϱ∥ and ∥ϑ∥, we need to find

∥ϱh∥ and ∥ϑh∥. Use (1.3.8) and (3.1.2) to have the error equation as:

(ut, ϕh)− (uh,t, ϕh)− (∇ · (σ − σh), ϕh) = 0 ∀ϕh ∈ Qk
h, (3.2.31a)
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(µσ,χh)− ah(σh,χh) +

∫ t

0

[(K(t, s)σ(s),χh)−Kh(t, s;σh(s),χh)]ds

= (∇ · χh, uh − u) ∀χh ∈ V k
h . (3.2.31b)

Again rewrite (3.2.31a) and (3.2.31b) as:

(ϱh,t, ϕh)− (∇ · ϑh, ϕh) = −(ϱt, ϕh), (3.2.32a)

ah(ϑh,χh) +

∫ t

0

Kh(t, s;ϑh(s),χh)ds+ (∇ · χh, ϱh) = 0. (3.2.32b)

Putting ϕh = ϱh in (3.2.32a) and χh = ϑh in (3.2.32b), then adding these equations, we

get:

(ϱh,t, ϱh) + ah(ϑh,ϑh) = −(ϱt, ϱh)−
∫ t

0

Kh(t, s;ϑh(s),ϑh)ds.

By utilizing (3.1.3), along with the Cauchy-Schwarz inequality, Young’s inequality, and

employing the Kickback argument, we reach at the following result:

1

2

d

dt
∥ϱh∥2 + Cµ1,K′∥ϑh∥2 ≤ Cϵ∥ϱt∥2 + Cϵ′∥ϱh∥2 + CK

∫ t

0

∥ϑh(s)∥2ds. (3.2.33)

Integrating (3.2.33) from 0 to t, and then using Grönwall’s lemma, we get:

∥ϱh∥2 +
∫ t

0

∥ϑh(s)∥2ds ≤ C

(
∥ϱh(·, 0∥2 +

∫ t

0

∥ϱt(s)∥2ds
)
,

∥ϱh∥2 ≤ C

(
∥ϱh(·, 0)∥2 + h2(k+1)

∫ t

0

g(s)ds

)
.

Now, using a triangle inequality and (3.2.6):

∥u− uh∥2 ≤ C

(
∥ϱh(·, 0)∥2 + h2(k+1)

(
|u|2k+1 + |σ|2k+1 +

∫ t

0

g(s)ds

))
.

For the proof of (3.2.30), differentiate (3.2.32b), and then put χh = ϑh and, ϕh = ϱh,t in
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(3.2.32a) to get:

(ϱh,t, ϱh,t) + ah(ϑh,t,ϑh) +Kh(t, t;ϑh,ϑh)−
∫ t

0

kh,t(t, s;ϑh(s),ϑh)ds = −(ϱt, ϱh,t)

∥ϱh,t∥2 +
µ1

2

d

dt
∥ϑh∥2 ≤ CK∥ϑh∥2 + CKt∥ϑh∥

∫ t

0

∥ϑh(s)∥ds+ Cϵ∥ϱt∥2 + Cϵ′∥ϱh,t∥2.

Using the Kickback argument followed by the integration from 0 to t, we arrive at the

following:

∫ t

0

∥ϱh,s(s)∥2ds+ ∥ϑh∥2 ≤ C1

(
∥ϑh(·, 0)∥2 +

∫ t

0

(
∥ϑh(s)∥2 + ∥ϱt(s)∥2

)
ds

)
.

Now, using Grönwall’s lemma:

∥ϑh∥2 ≤ C

(
∥ϑh(·, 0)∥2 +

∫ t

0

∥ϱt(s)∥2ds
)
.

Using a triangle inequality and (3.2.5), we arrive at:

∥σ − σh∥2 ≤ C

(
∥ϑh(·, 0)∥2 + Ch2(k+1)

(
|σ|2k+1 +

∫ t

0

g(s)ds

))
.

Remark 3.2.1. The estimate (3.2.29) and (3.2.30) involve the term ϱh(·, 0) and ϑh(·, 0)

respectively. We need to choose uh(·, 0) and σh(·, 0) in such a way that ϱh(·, 0) and

ϑh(·, 0) is of O(hk+1).

3.2.3 Super Convergence Analysis of the Discrete Solution

Theorem 3.2.3. Let u and uh be the solution of continuous problem (1.3.8) and semi-

discrete formulation (3.1.2), respectively. In accordance with all the presumptions outlined

in Theorem 3.2.2, the following assertion remains valid:

∥Π0
ku− uh∥ ≤ O(hk+2).
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Proof. As shown in Section 3.2.2, the convergence of τh can be extended to O(hk+2).

Here, we analyze the super convergence properties of Π0
ku− uh by considering

Π0
ku− uh = Π0

ku− ũ+ ũ− uh =: τh + ϱh.

Since we know the estimate of τh (3.2.21) so, our aim is to find the estimate for ϱh and for

that, we proceed by using the fact that ϕh ∈ Qk
h and ∇·χh ∈ Pk(K) and use the definition

of Π0
k projection, we write (1.3.8) and (3.1.2)as:

(Π0
kut, ϕh)− (uh,t, ϕh)− (∇ · (σ − σh), ϕh) = 0 ∀ϕh ∈ Qk

h, (3.2.34)

(µσ,χh)− ah(σh,χh) +

∫ t

0

[(K(t, s)σ(s),χh)−Kh(t, s;σh(s),χh)]ds

= (uh − Π0
ku,∇ · χh) ∀χh ∈ V k

h . (3.2.35)

Rewriting (3.2.34) and (3.2.35) as:

(δh,t, ϕh)− (∇ · ϑh, ϕh) = −(Ψh,t, ϕh), (3.2.36a)

ah(ϑh,χh) +

∫ t

0

Kh(ϑh(s),χh)ds+ (∇ · χh, ϱh) = 0. (3.2.36b)

Put ϕh = ϱh in (3.2.36a) and χh = ϑh in (3.2.36b), followed by the similar steps as in

Theorem 3.2.2, we get:

∥ϱh∥2 ≤C∥ϱh(·, 0)∥2

+ Ch2(k+2)

∫ t

0

(|σt(s)|2k+1 + |∇ · σt(s)|2k + |∇ · σ(s)|2k + |σ(s)|2k+1)ds.

3.3 Fully-discrete Scheme
The error produced by a fully-discrete scheme has two ingredients in theory: the error

caused by spatial discretization, which is dependent on h, and the error caused by the time

discretization, which is dependent on time step size τ .
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Now, we discretize our problem in time. To discretize in time, we use the Euler

backward process. Divide the time interval into N distinct points that are evenly spaced,

let tn = nτ and the sequence {Un} and {σn} be generated as:

Un ≈ uh(·, tn), σn ≈ σh(·, tn), n = 0, 1, 2, ..., N,

τ = T/N.

Define ∂̄tΦn = Φ(tn)−Φ(tn−1)
τ

and the left rectangular rule for the partitioning of the integral

term for any function Φ(t) as:

∫ tn

0

Φ(s)ds ≈ τ
n−1∑
j=0

Φ(tj).

Therefore, the fully-discrete scheme is defined as:(
Un − Un−1

τ
, ϕh

)
− (∇ · σn, ϕh) = (f(tn), ϕh),

ah(σn,χh) + τ
n−1∑
j=0

Kh(tn, tj;σj,χh) + (∇ · χh, Un) = 0.

(3.3.1)

Theorem 3.3.1. Let u(·, tn) and Un be the solution of continuous problem (1.3.8) and

fully-discrete formulation (3.3.1) at time t = tn respectively. In accordance with all

the presumptions outlined in Theorem 3.2.2 and utt ∈ L2(0, T, L2(D)), the following

assertion remains valid:

∥Un − u(·, tn)∥ ≤ O(hk+1 + τ), ∀n = 1, 2, · · ·, N,

∥σn − σ(·, tn)∥ ≤ O(hk+1 + τ) ∀n = 1, 2, · · ·, N.

Proof. Let us write,

Un − u(·, tn) = Un − ũ(·, tn) + ũ(·, tn)− u(·, tn) =: ϱnh + ϱn,
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σn − σ(·, tn) = σn − σ̃(·, tn) + σ̃(·, tn)− σ(·, tn) =: ϑn
h + ϑ

n.

Since, we know the estimates for ϱn and ϑn, we need to find ∥ϱnh∥ and ∥ϑn
h∥ and for that,

we proceed by rewriting (3.3.1) and using (1.3.8) as:

(
∂̄tϱ

n
h, ϕh

)
− (∇ · ϑn

h, ϕh) =
(
ut(·, tn)− ∂̄tũ

n, ϕh

)
, (3.3.2a)

ah(ϑ
n
h,χh) + τ

n−1∑
j=0

Kh(tn, tj;ϑ
j
h,χh) + (∇ · χh, ϱ

n
h)

= (∇ · χh, u(·, tn)− ũ(·, tn)) +
∫ tn

0

(K(t, s)σ(s),χh)ds− τ

n−1∑
j=0

Kh(tn, tj; σ̃(·, tj),χh)

+ (µσ(·, tn),χh)− ah(σ̃(·, tn),χh). (3.3.2b)

Add (3.3.2a) and (3.3.2b), after putting ϕh = ϱnh and χh = ϑn
h, and then use the definition

of mixed R.V. projection to obtain:

(
∂̄tϱ

n
h, ϱ

n
h

)
+ ah(ϑ

n
h,ϑ

n
h) + τ

n−1∑
j=0

Kh(tn, tj;ϑ
j
h,ϑ

n
h)

=

∫ tn

0

Kh(tn, s; σ̃(s),ϑ
n
h)ds− τ

n−1∑
j=0

Kh(tn, tj; σ̃(·, tj),ϑn
h) +

(
ut(·, tn)− ∂̄tũ

n, ϱnh
)
.

Using (3.1.3) and boundedness of Kh(tn, tj; ·, ·), we arrive at:

1

2

(
∥ϱnh∥2 − ∥ϱn−1

h ∥2

τ
+

∥ϱnh − ϱn−1
h ∥2

τ

)
+ µ1∥ϑn

h∥2

≤ (In1 , ϱ
n
h) + (In2 ,ϑ

n
h) + Cτ

n−1∑
j=0

∥ϑj
h∥ϑ

n
h∥, (3.3.3)

where

(In1 , ϱ
n
h) =

(
ut(·, tn)− ∂̄tũ

n, ϱnh
)

≤(
∥∥ut(·, tn)− ∂̄tu

n
∥∥+ ∥∥∂̄tun − ∂̄tũ

n
∥∥)∥ϱnh∥.
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So,

(In1 , ϱ
n
h) ≤C

(∫ tn

tn−1

∥utt(s)∥ds+
hk+1

τ

∫ tn

tn−1

(|ut(s)|k+1 + |σt(s)|k+1 + |σ(s)|k+1

+

∫ s

0

|σ(z)|k+1dz)ds

)
∥ϱnh∥, (3.3.4)

where the term (In2 ,ϑ
n
h) can be solved as:

(In2 ,ϑ
n
h) =

∫ tn

0

Kh(tn, s; σ̃(s),ϑ
n
h)ds− τ

n−1∑
j=0

Kh(tn, tj; σ̃(·, tj),ϑn
h)

≤ Cτ

∫ tn

0

∣∣∣∣ ∂∂s(Kh(tn, s; σ̃(s),ϑ
n
h)ds

∣∣∣∣
≤ Cτ

∫ tn

0

(∥σ̃(s)− σ(s)∥+ ∥σ(s)∥+ ∥σ̃t(s)− σt(s)∥+ ∥σt(s)∥)ds∥ϑn
h∥,

≤ Cτ

∫ tn

0

(∥σ(s)∥+ ∥σt(s)∥+ hk+1(|σ(s)|k+1 + |σt(s)|k+1

+

∫ s

0

|σ(z)|k+1dz))ds∥ϑn
h∥. (3.3.5)

Using (3.3.4) and (3.3.5) in (3.3.3), we get the following:

1

2

(
∥ϱnh∥2 − ∥ϱn−1

h ∥2

τ

)
+ µ1∥ϑn

h∥2

≤ C

((
τ

n−1∑
j=0

∥ϑj
h∥+ τ

∫ tn

0

(∥σ(s)∥+ ∥σt(s)∥+ hk+1(|σ(s)|k+1 + |σt(s)|k+1))ds

)
∥ϑn

h∥

+

(∫ tn

tn−1

∥utt(s)∥ds+
hk+1

τ

∫ tn

tn−1

(|ut(s)|k+1 + |σt(s)|k+1 + |σ(s)|k+1

+

∫ s

0

|σ(z)|k+1dz)ds

)
∥ϱnh∥

)
.

Applying Young’s inequality and subsequently employing the Kickback argument leads us

to the following:

1

2

(
∥ϱnh∥2 − ∥ϱn−1

h ∥2

τ

)
+ C1∥ϑn

h∥2
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≤ C2

(
τ

n−1∑
j=0

∥ϑj
h∥

2 + ∥ϱnh∥2 + τ

∫ tn

tn−1

∥utt(s)∥2ds. +
h2(k+1)

τ

∫ tn

tn−1

(
g(s) +

∫ s

0

|σ(z)|2k+1dz

)
ds

+τ 2
∫ tn

0

(∥σ(s)∥2 + ∥σt(s)∥2 + h2(k+1)(|σ(s)|2k+1 + |σt(s)|2k+1))ds

)
. (3.3.6)

Multiplying (3.3.6) by 2τ and summing from 1 to m, with 1 ≤ m ≤ N gives:

∥ϱmh ∥2 + 2τC1

m∑
n=1

∥ϑn
h∥2

≤ ∥ϱ(·, 0)∥2 + 2C2

(
τ 2

m∑
n=1

n−1∑
j=0

∥ϑj
h∥

2 + τ
m∑

n=1

∥ϱnh∥2 + τ 2
∫ T

0

(∥σ(s)∥2 + ∥σt(s)∥2)ds

+τ 2
∫ T

0

∥utt(s)∥2ds+ h2(k+1)

∫ T

0

g(s)ds+ τ 2h2(k+1)

∫ T

0

(|σ(s)|2k+1 + |σt(s)|2k+1)ds

)
.

Using Grönwall’s lemma and replacing m by n, we get our desired result:

∥ϱnh∥ ≤ O(hk+1 + τ).

For the estimate of ϑn
h, we proceed by rewriting (3.3.2b) as:

ah(ϑ
n
h,χh) + τ

n−1∑
j=0

Kh(tn, tj;ϑ
j
h,χh) + (∇ · χh, ϱ

n
h)

=

∫ tn

0

Kh(tn, s; σ̃(s),χh)ds− τ
n−1∑
j=0

Kh(tn, tj; σ̃(tj),χh). (3.3.7)

Again considering (3.3.7) at time step t = tn−1, we obtain:

ah(ϑ
n−1
h ,χh) + τ

n−2∑
j=0

Kh(tn−1, tj;ϑ
j
h,χh) + (∇ · χh, ϱ

n−1
h )

=

∫ tn−1

0

Kh(tn−1, s; σ̃(s),χh)ds− τ

n−2∑
j=0

Kh(tn−1, tj; σ̃(tj),χh). (3.3.8)
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Now, subtracting (3.3.8) from(3.3.7), and then dividing by τ , we arrive at:

ah
(
∂̄tϑ

n
h,χh

)
+

n−1∑
j=0

Kh(tn, tj;ϑ
j
h,χh)−

n−2∑
j=0

Kh(tn−1, tj;ϑ
j
h,χh) +

(
∇ · χh, ∂̄tϱ

n
h

)
=

1

τ

(∫ tn

0

Kh(tn, s; σ̃(s),χh)ds− τ

n−1∑
j=0

Kh(tn, tj; σ̃(tj),χh)

)

− 1

τ

(∫ tn−1

0

Kh(tn−1, s; σ̃(s),χh)ds− τ

n−2∑
j=0

Kh(tn−1, tj; σ̃(tj),χh)

)
. (3.3.9)

Put ϕh = ∂̄tϱ
n
h in (3.3.2a) and χh = ϑn

h in (3.3.9) and then add, we obtain:

∥∂̄tϱnh∥2 + ah
(
∂̄tϑ

n
h,ϑ

n
h

)
+

n−1∑
j=0

Kh(tn, tj;ϑ
j
h,ϑ

n
h)−

n−2∑
j=0

Kh(tn−1, tj;ϑ
j
h,ϑ

n
h)

=
(
In1 , ∂̄tϱ

n
h

)
+

1

τ

(∫ tn

0

Kh(tn, s; σ̃(s),ϑ
n
h)ds− τ

n−1∑
j=0

Kh(tn, tj; σ̃(tj),ϑ
n
h)

)

− 1

τ

(∫ tn−1

0

Kh(tn−1, s; σ̃(s),ϑ
n
h)ds− τ

n−2∑
j=0

Kh(tn−1, tj; σ̃(tj),ϑ
n
h)

)

= (In1 , ∂̄tϱ
n
h) +

1

τ
(In3 ,ϑ

n
h), (3.3.10)

where

(In1 , ∂̄tϱ
n
h) ≤ Cϵ

(
τ

∫ tn

tn−1

∥utt(s)∥2ds+
h2k+2

τ

∫ tn

tn−1

(
g(s) +

∫ s

0

|σ(z)|2k+1dz

)
ds

)
+ Cϵ′∥∂̄tϱnh∥2. (3.3.11)

and

(In3 ,ϑ
n
h) =

(∫ tn

0

Kh(tn, s; σ̃(s),ϑ
n
h)ds− τ

n−1∑
j=0

Kh(tn, tj; σ̃(tj),ϑ
n
h)

)

−

(∫ tn−1

0

Kh(tn−1, s; σ̃(s),ϑ
n
h)ds− τ

n−2∑
j=0

Kh(tn−1, tj; σ̃(tj),ϑ
n
h)

)
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=

∫ tn−1

0

(Kh(tn, s; σ̃(s),ϑ
n
h)−Kh(tn−1, s; σ̃(s),ϑ

n
h)) ds

− τ
n−2∑
j=0

(Kh(tn, tj; σ̃(tj),ϑ
n
h)−Kh(tn−1, tj; σ̃(tj),ϑ

n
h))

+

∫ tn

tn−1

Kh(tn, s; σ̃(s),ϑ
n
h)ds− τKh(tn, tn−1, σ̃(tn−1),ϑ

n
h),

≤ τ 2
∫ tn−1

0

∣∣∣∣ ∂∂s(Kh,t(tn∗ , s; σ̃(s),ϑn
h))

∣∣∣∣ ds+ τ

∫ tn

tn−1

∣∣∣∣ ∂∂s(Kh(t, s; σ̃(s),ϑ
n
h))

∣∣∣∣ ds,
where tn∗ ∈ (tn−1, tn).

1

τ
(In3 ,ϑ

n
h)

≤ τ

∫ tn−1

0

∣∣∣∣ ∂ds(Kh,t(tn∗ , s; σ̃(s),ϑn
h))

∣∣∣∣ ds+ ∫ tn

tn−1

∣∣∣∣ ∂ds(Kh(t, s; σ̃(s),ϑ
n
h))

∣∣∣∣ ds
≤ C

(
τ 2
∫ tn−1

0

(∥σ(s)∥2 + ∥σt(s)∥2)ds+ τ

∫ tn

tn−1

(∥σ(s)∥2 + ∥σt(s)∥2)ds

+ τ 2h2(k+1)

∫ tn−1

0

(
|σ(s)|2k+1 + |σt(s)|2k+1 +

∫ s

0

|σ(z)|2k+1dz

)
ds

+τh2(k+1)

∫ tn

tn−1

(
|σ(s)|2k+1 + |σt(s)|2k+1 +

∫ s

0

|σ(z)|2k+1dz

)
ds+ ∥ϑn

h∥2
)
.

(3.3.12)

Put (3.3.11) and (3.3.12) in (3.3.10), to arrive at:

∥∂̄tϱnh∥2 + µ1

(
∥ϑn

h∥2 − ∥ϑn−1
h ∥2

2τ

)
≤ −τ

n−2∑
j=0

Kh,t(tn∗ , tj;ϑ
j
h,ϑ

n
h)−Kh(tn, tn−1;ϑ

n−1
h ,ϑn

h) + C
(
∥∂̄tϱnh∥2 + ∥ϑn

h∥2

+
h2k+2

τ

∫ tn

tn−1

(
g(s) +

∫ s

0

∥σ(z)∥2k+1dz

)
ds

+ τ 2
∫ tn−1

0

(∥σ(s)∥2 + ∥σt(s)∥2)ds+ τ

∫ tn

tn−1

(∥σ(s)∥2 + ∥σt(s)∥2)ds

+ τ 2h2(k+1)

∫ tn−1

0

(
|σ(s)|2k+1 + |σt(s)|2k+1 +

∫ s

0

|σ(z)|2k+1dz

)
ds
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+τ

∫ tn

tn−1

(
∥utt(s)∥2 + h2(k+1)

(
|σ(s)|2k+1 + |σt(s)|2k+1 +

∫ s

0

|σ(z)|2k+1dz

))
ds

)
.

(3.3.13)

Multiplying (3.3.13) by 2τ , using kickback argument and then summing from n = 1 to m,

we obtain:

∥ϑm
h ∥2 ≤C1τ

m∑
n=1

∥ϑn
h∥2 + C2

(
∥ϑh(·, 0)∥2 + τ 2

∫ T

0

(∥utt(s)∥2 + ∥σ(s)∥2 + ∥σt(s)∥2)ds

+h2k+2

∫ T

0

g(s)ds

)
.

By using Grönwall’s lemma, we may replace m by n to get our desired estimate:

∥ϑn
h∥ ≤ O(hk+1 + τ).

3.4 Numerical Results

Within this section, we are set to conduct numerical experiments aimed at validating the

effectiveness of the introduced mixed virtual element scheme for the PIDE (1.3.1). Our

investigation encompasses two distinct mesh types: a quadrilateral mesh and a hexagonal

mesh, as illustrated in Figure 3.1. Here, we consider the domain D the unit square in R2.

Before presenting the numerical results, it is important for us to have a better understanding

of both the spaces, dofs, and how bilinear forms can be computed on these spaces. All the

discrete forms are already explained in Section-3.1. In (3.3.1), the bilinear forms (Un, ϕh)

and (f(tn), ϕh) involves multiplication with polynomials so, can be done by using any

quadrature rule of appropriate order, whereas for the discrete forms aEh (·, ·), KE
h (·, ·) and

(∇ · σn, ϕh)E , dofs of V k
h (E) will be needed (as defined in section-3.1). For more details

about the implementation, we refer to [77]. We use the backward Euler approach for time

discretization coupled with mixed VEM discretization to tackle the fully-discrete problem
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for the polygonal mesh sequences.

Remark 3.4.1. From Remark 6.3 of [32], we can see that the lowest order Raviart Thomas

element can be constructed for k = 0 with the usual convention P−1(E) = 0.

Example 3.4.1. Consider the linear PIDE (1.3.1) , with coefficients a(x) = 1 + x,

b(x; t, s) = (1+x)e(t−s), exact solution u(x, t) = t sin(2πx) sin(2πy) whereas K(x; t, s) =

e2(t−s)

1+x
. Notably, the load term f , boundary data, and initial data u0 are all determined

using the exact solution as a reference point.

Example 3.4.2. Consider the linear PIDE (1.3.1) , with cofficients a(x) = 1 + x,

b(x; t, s) = (1 + x)
(

2+cos(s)
2+cos(t)

)
, exact solution u(x, t) = tex+t(x− x2) sin(2πy) whereas

K(x; t, s) =
(

2+cos(s)
(1+x)(2+cos(t))

)
e(t−s). Notably, the load term f , boundary data, and initial

data u0 are all determined using the exact solution as a reference point.

Now, we present a numerical example showing that even if we don’t know the explicit

form of a resolvent kernel, our formulation still works by truncating the series of resolvent

kernel after a few steps. In Example 3.4.3, the resolvent kernel comes out to be in a series,

so here, we have considered the first five terms of the resolvent kernel and find out that

numerical results are still in accordance with the theoretical results.

Example 3.4.3. Consider the linear PIDE (1.3.1) , with coefficients a(x) = 1, b(x; t, s) =

ts, exact solution u(x, t) = t(x− x2)(y− y2). Here K(x; t, s) is approximated by the first

five terms of the series generated using (3.1.1). Notably, the load term f , boundary data,

and initial data u0 are all determined using the exact solution as a reference point.

Fig. 3.3 and 3.4 depicts the order of convergence for both uh and σh for Example 3.4.1 in

case of k = 1, 2 and 3 on quadrilateral and hexagonal mesh respectively. Both the figures

show that these orders of convergence are accomplished in perfect accordance with theory,

while Fig. 3.5 shows the super convergence results for both Example 3.4.1 and Example

3.4.2 in the case of k= 1, 2, and 3 on the quadrilateral mesh whereas in Fig 3.6 shows

the order of convergence for Example 3.4.2 on the quadrilateral mesh. Fig 3.7 shows the
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convergence corresponding to Example 3.4.3. From all the figures, we can see that our

theory is well according to our numerical results.

Remark 3.4.2. Whenever we are unable to find the explicit form of the resolvent kernel,

we can use the first few terms of the series to achieve the optimal order of convergence, as

shown in Example 3.4.3.
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Figure 3.1: An illustration of polygonal meshes: on the left Q1/12, and on the right, H1/12.
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Figure 3.2: An illustration of Voronoi mesh V1/6.
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Figure 3.3: Order of convergence for Example 3.4.1 on the quadrilateral mesh.
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Figure 3.4: Order of convergence for Example 3.4.1 on the hexagonal mesh.
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Figure 3.5: Order of convergence for Π0
ku− uh on the quadrilateral mesh. The left-hand

panel pertains to Example 3.4.1, while the right-hand panel pertains to Example 3.4.2.
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Figure 3.6: Order of convergence for Example 3.4.2 on the quadrilateral mesh.
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Figure 3.7: Order of convergence for Example 3.4.3 on the quadrilateral mesh in case of
k=1, 2 and 3.

3.5 Conclusions

Considering the advantages of VEM and mixed methods, we applied a mixed VEM

approach to address both the semi-discrete and fully-discrete schemes to solve the PIDE

(1.3.1). In this chapter, we have introduced a novel projection known as mixed R.V.

projection, which helps in handling the integral term. The semi-discrete scheme and error

estimates presented in this work align with those obtained in the previous study [78].

This research marks a significant contribution to the literature [14, 61, 78] only with semi-

discrete formulation, while here, we represent the first comprehensive examination of

the fully-discrete scheme within this formulation. Furthermore, a step-by-step analysis
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Figure 3.8: Order of convergence for Example 1 and Example 2 on the Voronoi mesh in
case of k=0.

is proposed for the super convergence of the discrete solution of order O(hk+2). Several

computational experiments on different polygonal meshes are discussed to validate the

proposed scheme’s computational efficiency and support the theoretical conclusions.
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Mixed Virtual Element Method for

Integro-Differential Equations of

Parabolic type without Resolvent

Kernel1

This chapter presents and analyzes a new mixed virtual element approach for discretizing

PIDEs (1.3.1) in a bounded domain of R2, complemented by the backward Euler scheme

for temporal discretization. It focuses on the variational formulation that avoids the use

of a resolvent kernel. As discussed in the previous chapter, the integral term in equation

(1.3.4) relies on ∇u; we adopt an approach in our formulation that prevents the necessity

of having u in H1. One possible strategy involves the introduction of a resolvent kernel,

although it should be noted that deriving a resolvent kernel for a specific problem may

not be an easy task. Since this is the case, we use the formulation described by [15].

Ziwen Jiang [15] introduced this formulation (1.3.10a) so that we can avoid the use of a
1The substantial part of this chapter has been published as follows:

M Suthar, S Yadav, and S Kumar, “Mixed Virtual Element Method for Integro-Differential Equations of
Parabolic Type.” Journal of Applied Mathematics and Computing, https://doi.org/10.1007/s12190-024-
02066-8.
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resolvent kernel. This article explains the existence and uniqueness of the semi-discrete

solution corresponding to the (4.1.1) and mixed intermediate projection. By finding out

the estimates of mixed intermediate projection, it establishes optimal error estimates for

not only the variables u and σ but also with the temporal derivative ut and ∇ · σ.

While it’s worth noting that, because of the one extra term under the integral sign, this

formulation may have a longer computation time compared to the one described in [14],

but this is more generalized in the sense that it has a wide range of applications, even when

it is tough to find the resolvent kernel, we can go with this formulation and can achieve the

required convergence (demonstrated with the help of numerical experiment). This work

presents several significant contributions, which are outlined as follows:

• To tackle the integral term, an approach involving a novel projection with a memory

term referred to as mixed intermediate projection is introduced, which helps in

achieving the optimal convergence of order O(hk+1) for both the unknowns.

• A fully discretized scheme is put forth, utilizing the backward Euler’s method for

temporal derivative and the left rectangular rule for the discretization of the integral

term.

• The analysis is performed to show the super convergence of the discrete solution,

which has been verified with the different numerical experiments.

• Several different numerical experiments on different meshes have been conducted

to validate our theoretical findings.

4.1 The Continuous and Semi-discrete Formulation
The mixed VEM discrete formulation corresponding to (1.3.10a) reads as: Find (σh, uh) ∈

V k
h ×Qk

h such that:

(uh,t, ϕh)− (∇ · σh, ϕh) = (f, ϕh) ∀ϕh ∈ Qk
h,

ah(σh,χh) + (uh,∇ · χh)−
∫ t

0

(b0(x; t, s)uh(s),∇ · χh)ds
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−
∫ t

0

(∇b0(x; t, s)uh(s),Π0
kχh)ds = 0 ∀χh ∈ V k

h . (4.1.1)

The bilinear form ah(·, ·) and its properties are discussed in Section 3.1. Now, we provide

a lemma regarding the consistency of the bilinear form aKh (·, ·).

Lemma 4.1.1. ForK ∈ Ih, let the coefficients µ(x) be smooth scaler-valued function in

D and p be any smooth vector-valued function and χh ∈ V k
h (K). Then,

aKh (Π
0
kp,χh)− (µΠ0

kp,χh)0,K ≤ Cµh
k+1|p|k+1,K∥χh∥0,K.

Proof. Let lh,χh be vector valued functions in V k
h (K). By the definition of aKh (·, ·) and

Π0
k projection, it is easy to note that:

aKh (lh,χh)− (µlh,χh)0,K

= (µlh −Π0
k(µlh),χh −Π0

kχh)0,K + (lh −Π0
klh, µχh −Π0

k(µχh))0,K

− (lh −Π0
klh, µ(χh −Π0

kχh))0,K + SK0 ((I −Π0
k)lh, (I −Π0

k)χh). (4.1.2)

Now, put lh = Π0
kp in (4.1.2) and using the properties of Π0

k, last three terms becomes

zero, then by using (1.5.7), we get:

aKh (Π
0
kp,χh)− (µΠ0

kp,χh)0,K ≤ Cµh
k+1|p|k+1,K∥χh∥0,K.

4.2 Error Analysis for the Semi-discrete Case

For the formulation described in (1.3.10a) and (4.1.1), we now derive the optimal error

estimates for both the semi-discrete and fully-discrete cases. So, to deal with the memory

term, we define a new projection here with the memory term known as mixed intermediate

projection.
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4.2.1 Mixed Intermediate Projection

Mixed intermediate projection is defined as: (I Vσ,I Qu) : (0, T ] → V k
h ×Qk

h such that:

ah(I
Vσ,χh)− (µσ,χh) + (I Qu− u,∇ · χh)

−
∫ t

0

((b0(x; t, s)I
Qu(s),∇ · χh) + (∇b0(x; t, s)I Qu(s),Π0

kχh))ds

+

∫ t

0

((b0(x; t, s)u(s),∇ · χh) + (∇b0(x; t, s)u(s),χh))ds = 0 ∀χh ∈ V k
h , (4.2.1a)

(∇ · (σ − I Vσ), ϕh) = 0 ∀ϕh ∈ Qk
h, (4.2.1b)

along with the suitable choice of (I Vσ(0),I Qu(0)) ∈ V k
h ×Qk

h.

Theorem 4.2.1. If σ and u ∈ L∞(0, T,Hk+1(D)), then ∃ a unique pair (I Vσ,I Qu) ∈

V k
h ×Qk

h satisfying (4.2.1b). Also, the following estimates hold true:

∥σ − I Vσ∥ ≤ Chk+1

(
|σ(t)|k+1 +

∫ t

0

(|u(s)|k+1 + |σ(s)|k+1)ds

)
, (4.2.2)

∥u− I Qu∥ ≤ Chk+1

(
|u(t)|k+1 + |σ|k+1 +

∫ t

0

|u(s)|k+1ds

)
. (4.2.3)

Proof. To establish the proofs of (4.2.2) and (4.2.3), we utilize the definition of the mixed

intermediate projection given by (4.2.1b). By considering Ψh = ΠF
hσ − I Vσ ∈ V k

h ,

η = u− I Qu and νh = Π0
ku− I Qu ∈ Qk

h, we proceed as:

Θ = σ − I Vσ = σ −ΠF
hσ +Ψh.

From the definition of mixed intermediate projection (4.2.1b), we observe:

ah(Ψh,χh)

= [ah(Π
F
hσ,χh)− (µσ,χh)] + (I Qu− u,∇ · χh)

+

∫ t

0

((b0(x; t, s)(u− I Qu)(s),∇ · χh)ds
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−
∫ t

0

((∇b0(x; t, s)I Qu(s),Π0
kχh)− (∇b0(x; t, s)u(s),χh))ds. (4.2.4)

To deal with the first expression on the right-hand side of (4.2.4), we proceed as follows:

ah(Π
F
hσ,χh)− (µσ,χh)

= ah(Π
F
hσ −Π0

kσ,χh) + ah(Π
0
kσ,χh)− (µ(σ −Π0

kσ),χh)− (µΠ0
kσ,χh)

≤ C(∥σ −Π0
kσ∥+ ∥ΠF

hσ −Π0
kσ∥+ hk+1|σ|k+1)∥χh∥

≤ Chk+1|σ|k+1∥χh∥.

While the last term on the right-hand side of equation (4.2.4) can be resolved as follows:

∫ t

0

((∇b0(x; t, s)I Qu(s),Π0
kχh)− (∇b0(x; t, s)u(s),χh))ds

≤
∫ t

0

(∇b0(x; t, s)(I Qu− u)(s),Π0
kχh)ds+

∫ t

0

(∇b0(x; t, s)u(s),Π0
kχh − χh)ds

≤
∫ t

0

(∇b0(x; t, s)(I Qu− u)(s),Π0
kχh)ds

+

∫ t

0

(∇b0(x; t, s)u(s)−Π0
k(∇b0(x; t, s)u(s)),Π0

kχh − χh)ds

≤ C∇b0

∫ t

0

(∥νh(s)∥+ hk+1|u(s)|k+1)ds∥χh∥. (4.2.5)

Put χh = Ψh in (4.2.4) and using (3.1.3), boundedness of b0(x; t, s) and the fact that

∥∇ ·Ψh∥ = 0, to arrive at the following:

µ1∥Ψh∥2 ≤
(
Chk+1

(
|σ|k+1 +

∫ t

0

|u(s)|k+1ds

)
+

∫ t

0

∥νh(s)∥ds
)
∥Ψh∥. (4.2.6)

By using the triangle inequality, we obtain the following:

∥Θ∥ ≤ Chk+1

(
|σ|k+1 +

∫ t

0

|u(s)|k+1ds

)
+

∫ t

0

∥νh(s)∥ds. (4.2.7)

Now, for the proof of (4.2.3), we use the duality argument along with the definition of
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mixed intermediate projection (4.2.1b) as:

(µΘ,χh) + (∇ · χh, νh) = F(χh) ∀χh ∈ V k
h ,

(∇ ·Θ, ϕh) = 0 ∀qh ∈ Qk
h,

where

F(χh) = ah(I
Vσ,χh)− (µI Vσ,χh)−

∫ t

0

(b0(x; t, s)(I
Qu− u)(s),∇ · χh)ds

−
∫ t

0

((∇b0(x; t, s)I Qu(s),Π0
kχh)− (∇b0(x; t, s)u(s),χh))ds.

Let ω ∈ H2(D) ∩ H1
0 (D), with D to be convex and bounded, be the solution of the

following dual problem:

−∇ · (a∇ω) = νh in D; ω = 0 on ∂D. (4.2.8)

and satisfy the following regularity condition ∥ω∥2 ≤ ∥νh∥. Consider Φ = a∇ω, then the

mixed variational formulation corresponding to (4.2.8) is; Find (Φ, ω) ∈ V ×Q such that:

(µΦ,χ) + (ω,∇ · χ) = 0 ∀χ ∈ V ,

−(∇ ·Φ, ϕ) = (νh, ϕ) ∀ϕ ∈ Q.
(4.2.9)

Now, put ϕ = νh in (4.2.9), to arrive at:

∥νh∥2 = (νh,−∇ · (ΠF
h a∇ω))

= (µΘ,ΠF
h (a∇ω))−F(ΠF

h (a∇ω)). (4.2.10)

Now, we rewrite F(ΠF
h (a∇ω)) as:

F(ΠF
h (a∇ω))

= ah(I
Vσ −Π0

kσ,Π
F
h (a∇ω))− (µ(I Vσ −Π0

kσ),Π
F
h (a∇ω)) + ah(Π

0
kσ,Π

F
h (a∇ω))
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− (µΠ0
kσ,Π

F
h (a∇ω))−

∫ t

0

(b0(x; t, s)(I
Qu− Π0

ku+Π0
ku− u)(s),∇ ·ΠF

h (a∇ω))ds

−
∫ t

0

(∇b0(x; t, s)(I Qu− u)(s),Π0
k(Π

F
h (a∇ω)))ds

−
∫ t

0

(∇b0(x; t, s)u(s)−Π0
k(∇b0(x; t, s)u(s)),Π0

k(Π
F
h (a∇ω))−ΠF

h (a∇ω))ds.

Using Lemma 4.1.1, the estimates of Π0
k (1.5.7), and boundedness of b0(x; t, s), we arrive

at the following:

|F(ΠF
h (a∇ω))|

≤ C

(
∥Ψh∥+ hk+1

(
|σ|k+1 +

∫ t

0

|u(s)|k+1ds

)
+

∫ t

0

∥νh(s)∥)ds
)
∥νh∥. (4.2.11)

Now, using (4.2.6) and (4.2.11) in (4.2.10) followed by Grönwall’s lemma, we have:

∥νh∥ ≤ Chk+1

(
|σ|k+1 +

∫ t

0

|u(s)|ds
)
. (4.2.12)

Using (4.2.12), the estimates of Π0
k (1.5.7) and the triangle inequality, we achieve (4.2.3).

Now, substitute (4.2.12) in (4.2.7) to achieve (4.2.2).

Theorem 4.2.2. Under all the assumptions of Theorem 4.2.1 andσt, ut ∈ L∞(0, T,Hk+1(D)),

where ut, σt and I Qut, I Vσt be the time derivative of u, σ and I Qu, I Vσ respectively,

the following estimates hold true:

∥σt − I Vσt∥ ≤ Chk+1 (|σt|k+1 + g(t)) ,

∥ut − I Qut∥ ≤ Chk+1 (|σt|k+1 + |ut|k+1 + g(t)) , (4.2.13)

where g(t) = |σ|k+1 + |u(t)|k+1 +

∫ t

0

(|σ(s)|k+1 + |u(s)|k+1)ds.

Theorem 4.2.3. Let u, σ and uh, σh be the solution of continuous problem (1.3.10a) and

semi-discrete formulation (4.1.1) , respectively. Under all the assumptions of Theorem

4.2.2, we have the following:
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∥u− uh∥2 ≤ C(∥ηh(·, 0)∥2

+ h2(k+1)

∫ t

0

(|ut(s)|2k+1 + |σt(s)|2k+1 + |u(s)|2k+1 + |σ(s)|2k+1)ds),

(4.2.14)

∥σ − σh∥2 ≤ C(∥Θh(·, 0)∥2 + T∥ηh(·, 0)∥2

+ h2(k+1)

∫ t

0

(|ut(s)|2k+1 + |σt(s)|2k+1 + |u(s)|2k+1 + |σ(s)|2k+1)ds).

(4.2.15)

Proof. Writing u− uh = u− I Qu+ I Qu− uh = η + ηh and σ − σh = σ − I Vσ +

I Vσ − σh = Θ+Θh. Since, we already have the estimates for ∥η∥ and ∥Θ∥, our goal

is to determine ∥ηh∥ and ∥Θh∥. To proceed, we use (1.3.10a) and (4.1.1) to obtain:

(ut − uh,t, ϕh)− (∇ · (σ − σh), ϕh) = 0 ∀ϕh ∈ Qk
h, (4.2.16)

(µσ,χh)− ah(σh,χh) + (u− uh,∇ · χh)−
∫ t

0

(b0(x; t, s)(u− uh)(s),∇ · χh)ds

−
∫ t

0

((∇b0(x; t, s)u(s),χh)− (∇b0(x; t, s)uh(s),Π0
kχh))ds = 0 ∀χh ∈ V k

h .

(4.2.17)

Rewriting (4.2.16) and (4.2.17) as:

(ηh,t, ϕh)− (∇ ·Θh, ϕh) = −(ηt, ϕh), (4.2.18)

ah(Θh,χh) + (ηh,∇ · χh)−
∫ t

0

(b0(x; t, s)ηh(s),∇ · χh)ds

−
∫ t

0

(∇b0(x; t, s)ηh(s),Π0
kχh)ds = 0. (4.2.19)

Putting ϕh = ηh −
∫ t

0

Π0
k(b0(x; t, s)ηh(s))ds in (4.2.18) and χh = Θh in (4.2.19), then

adding the equations, we get:

ah(Θh,Θh) + (ηh,t, ηh)−
∫ t

0

(∇b0(x; t, s)ηh(s),Π0
kΘh)ds

= −
(
ηt, ηh −

∫ t

0

Π0
k(b(b(x; t, s)ηh(s))h(s))ds

)
+

(
ηh,t,

∫ t

0

Π0
k(bΠ

0
k(x; t, s)ηh(s))ds

)
.
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Using (1.5.7) and differentiation by parts, we arrive at:

α1∥Θh∥2 +
1

2

d∥ηh∥2

dt

= −
[
ηh,Π

0
k(b0(x; t, t)ηh) +

∫ t

0

Π0
k(b0,t(x; t, s)ηh(s))ds

]
+

∫ t

0

(∇b0(x; t, s)ηh(s),Π0
kΘh)ds

+
d

dt

(
ηh,

∫ t

0

Π0
k(b0(x; t, s)ηh(s))ds

)
−
(
ηt, ηh −

∫ t

0

Π0
k(b0(x; t, s)ηh(s))ds

)
.

Using Young’s inequality followed by a kickback argument, we arrive at the following:

cα1,ϵ∥Θh∥2 +
1

2

d∥ηh∥2

dt

= C

(
∥ηh∥2 +

∫ t

0

∥ηh(s)∥2ds+ ∥ηt∥2
)
+
d

dt

(
ηh,

∫ t

0

Π0
k(b(x; t, s)ηh(s))ds

)
.

By integrating from 0 to t coupled with Young’s inequality and kickback argument:

∥ηh(·, t)∥2 ≤ C

(
∥ηh(·, 0)∥2 +

∫ t

0

(∥ηh(s)∥2 + ∥ηt(s)∥2)ds
)
.

Applying Grönwall’s lemma, the resulting expression obtained is as follows:

∥ηh(·, t)∥2 ≤ C(∥ηh(·, 0)∥2

+ h2(k+1)

∫ t

0

(|ut(s)|2k+1 + |σt(s)|2k+1 + |u(s)|2k+1 + |σ(s)|2k+1)ds).

Using the triangle inequality, we complete the proof of (4.2.14). For the proof of (4.2.15),

differentiate (4.2.19), and then put χh = Θh and, ϕh = ηh,t − Π0
k(b0(x; t, t)ηh) −∫ t

0

Π0
k(b0,t(x; t, s)ηh(s))ds in (4.2.18) and then add, to achieve:

(ηh,t, ηh,t)− (∇b0(x; t, t)ηh(t),Π0
kΘh) + ah(Θh,t,Θh)

=

(
ηh,t,Π

0
k(b0(x; t, t)ηh(t)) +

∫ t

0

Π0
k(b0,t(x; t, s)ηh(s))ds

)
+

∫ t

0

(∇b0t(x; t, s)ηh(s),Π0
kΘh)ds
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−
(
ηt, ηh,t − Π0

k(b0(x; t, t)ηh)−
∫ t

0

Π0
k(b0,t(x; t, s)ρh)ds

)
.

Using Young’s inequality followed by a Kickback argument, we arrive at:

cϵ∥ηh,t∥2 +
α1

2

d

dt
∥Θh∥2 ≤ C

(
∥ηh∥2 +

∫ t

0

∥ηh(s)∥2ds+ ∥Θh∥2 + ∥ηt∥2
)
.

By integration form 0 to t and using Grönwall’s lemma:

∥Θh(·, t)∥2 ≤ C

(
∥Θh(·, 0)∥2 +

∫ t

0

(∥ηt(s)∥2 + ∥ηh(s)∥2)ds
)
.

Using a triangle inequality and (1.5.7), we arrive at the following:

∥σ − σh∥2 ≤ C(∥Θh(·, 0)∥2 + T∥ηh(·, 0)∥2

+ h2(k+1)

∫ t

0

(|ut(s)|2k+1 + |σt(s)|2k+1 + |u(s)|2k+1 + |σ(s)|2k+1)ds).

Hence, it completes the proof.

Remark 4.2.1. The estimate (4.2.14) and (4.2.15) involve the term ηh(·, 0) and Θh(·, 0)

respectively. To achieve the optimal convergence, we need to choose uh(·, 0) and σh(·, 0)

in such a way that ηh(·, 0) and Θh(·, 0) is of O(hk+1).

4.2.2 Super Convergence Analysis of the Discrete Solution

As evident from the equation (4.2.12), it is clear that νh exhibits convergence of order

O(hk+1). We can potentially enhance the convergence order of νh by utilizing the dual

norm approach, resulting in an order of O(hk+2).

Theorem 4.2.4. Let u and uh be the solution of continuous problem (1.3.10a) and semi-

discrete formulation (4.1.1) , respectively. Under all the assumptions of Theorem 4.2.3,

the following holds:

∥Π0
ku− uh∥ ≤ O(hk+2). (4.2.20)
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Proof. Rewriting (4.2.10) as:

∥νh∥2 =(µΘ,ΠF
h (a∇ω))−F(ΠF

h (a∇ω))

=(µΘ,ΠF
h (a∇ω)− a∇ω)−F(ΠF

h (a∇ω)) + (∇ ·Θ,Π0
kω − ω)

≤C(h∥Θ∥∥ω∥2 + h2∥∇ ·Θ∥∥ω∥2 + F(ΠF
h (a∇ω))), (4.2.21)

where F(ΠF
h (a∇ω)) can be solved as:

F(ΠF
h (a∇ω))

= (ah(I
Vσ −Π0

kσ,Π
F
h (a∇ω))− (µ(I Vσ −Π0

kσ),Π
F
h (a∇ω))

+ ah(Π
0
kσ,Π

F
h (a∇ω))− (µΠ0

kσ,Π
F
h (a∇ω)))

−
(∫ t

0

(b0(x; t, s)(I
Qu− u)(s),∇ ·ΠF

h (a∇ω))ds
)

−
(∫ t

0

((∇b0(x; t, s)I Qu(s),Π0
k(Π

F
h (a∇ω))− (∇b0(x; t, s)u(s),ΠF

h (a∇ω)))ds
)

= I + II + III. (4.2.22)

The initial expression on the right-hand side of equation (4.2.22) can be addressed by

using (4.1.2) in the following manner:

|I| ≤ C(∥I Vσ −Π0
kσ∥+ hk+1|σ|k+1)∥Π0

k(Π
F
h (a∇ω))−ΠF

h (a∇ω)∥

≤ Chk+2

(
|σ|k+1 +

∫ t

0

(|u(s)|k+1 + |σ(s)|k+1)ds

)
∥ω∥2. (4.2.23)

The second term on the right-hand side of (4.2.22) can be solved by using Π0 projection

of b0(x; t, s) onto space of piecewise constant functions; for more details, see [79]:

|II| ≤
∫ t

0

(b0(x; t, s)− Π0b(x; t, s)(I Qu− u)(s),∇ ·ΠF
h (a∇ω))

+ (Π0b(x; t, s)(I Qu− Π0
ku)(s),∇ ·ΠF

h (a∇ω)))ds

≤ C

∫ t

0

(h|b0(s)|1,∞∥I Qu− u∥+ ∥νh∥)ds∥ω∥2. (4.2.24)
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The third expression on the right-hand side of equation (4.2.22) can be solved in a similar

way as (4.2.5) as:

|III| =
∫ t

0

((∇b0(x; t, s)I Qu(s),ΠF
h (a∇ω))− (∇b0(x; t, s)u(s),ΠF

h (a∇ω)))ds

≤ C

∫ t

0

(hk+2|u(s)|k+1 + ∥νh∥)∥ω∥2. (4.2.25)

Putting (4.2.23), (4.2.24), (4.2.25) in (4.2.22), we arrive at:

F(ΠF
h (a∇ω)) ≤ C(hk+2|σ|k+1 + hk+2

∫ t

0

(|u(s)|k+1 + |σ(s)|k+1)ds

+

∫ t

0

∥νh(s)∥ds)∥ω∥2. (4.2.26)

To derive an estimate for ∇ ·Θ, we follow the following procedure:

∥∇ ·Θ∥2 = (∇ ·Θ,∇ · (σ−ΠF
hσ))

≤ ∥∇ ·Θ∥∥∇ · (σ−ΠF
hσ)∥

∥∇ ·Θ∥ ≤ Chk|∇ · σ|k. (4.2.27)

Now, using (4.2.2), (4.2.26) and (4.2.27) in (4.2.21) followed by Grönwall’s lemma, we

arrive at:

∥νh∥ ≤ Chk+2

(
|σ|k+1 + |∇ · σ|k +

∫ t

0

(|u(s)|k+1 + |σ(s)|k+1)ds

)
. (4.2.28)

To prove the super convergence, we must estimate Π0
kut−I Qut. By following the similar

steps as above, we get the following:

∥νh,t∥ ≤ Chk+2(|σt|k+1 + |∇ · σt|k + |σ|k+1 + |u|k+1

+

∫ t

0

(|σ(s)|k+1 + |u(s)|k+1 + |∇ · σ(s)|k)ds). (4.2.29)

Now, we need to estimate Π0
ku− uh = Π0

ku− I Qu+ I Qu− uh = νh + ηh. Since, we
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have the estimate of νh from(4.2.28), we need to estimate ηh in terms of νh. For that, we

use the properties of Π0
k operator to rewrite (4.2.18) and (4.2.19) as:

(ηh,t, ϕh)− (∇ ·Θh, ϕh) = −(νh,t, ϕh), (4.2.30)

ah(Θh,χh) + (ηh,∇ · χh)−
∫ t

0

(b0(x; t, s)ηh(s),∇ · χh)ds

−
∫ t

0

(∇b0(x; t, s)ηh(s),Π0
kχh)ds = 0. (4.2.31)

Put ϕh = ηh −
∫ t

0

Π0
k(b0(x; t, s)ηh(s))ds in (4.2.30) and χh = Θh in (4.2.31) and then

adding the two equations to arrive at:

ah(Θh,Θh) + (ηh,t, ηh)−
∫ t

0

(∇b0(x; t, s)ηh(s),Π0
kΘh)ds

= −
(
νh,t, ηh −

∫ t

0

Π0
k(b(x; t, s)ηh(s))ds

)
+

(
ηh,t,

∫ t

0

Π0
k(b(x; t, s)ηh(s))ds

)
.

Now, using the similar steps as in Theorem 4.2.3, we arrive at:

∥ηh(·, t)∥2 ≤ C

(
∥ηh(·, 0)∥2 +

∫ t

0

(∥ηh(s)∥2 + ∥νh,t(s)∥2)ds
)
.

Applying Grönwall’s lemma and using (4.2.29), the resulting expression obtained is as

follows:

∥ηh(·, t)∥2 ≤ C(∥ηh(·, 0)∥2 + h2(k+1)

∫ t

0

(|σ(s)|2k+1 + |u(s)|2k+1 + |σt(s)|2k+1

+ |∇ · σ(s)|2k+1 + |∇ · σt(s)|2k+1)ds).

Hence, we get our desired estimate.

4.3 Fully-discrete Scheme
The error produced by a fully-discrete scheme has two ingredients in theory: the error

caused by spatial discretization, which is dependent on h, and the error caused by the time

discretization, which is dependent on time phase size τ .

Now, we discretize our problem in time. To discretize in time, we use the Euler
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backward process. Divide the time interval into N distinct points that are evenly spaced,

let tn = nτ and the sequence {Un} and {σn} be generated as:

Un ≈ uh(·, tn), σn ≈ σh(·, tn), n = 0, 1, 2, ..., N,

τ = T/N.

The fully-discrete scheme is defined as:

(∂tU
n, ϕh)− (∇ · σn, ϕh) = (f(·, tn), ϕh),

ah(σn,χh) + (Un,∇ · χh)− τ
n−1∑
j=0

((b0(tn, tj)Uj,∇ · χh) + (∇b0(tn, tj)Uj,Π
0
kχh)) = 0.

(4.3.1)

Define Ξ(γ(tn, s), φ(s)), for any function γ(t, s)φ(s) as:

Ξ(γ(tn, s), φ(s)) =

(∫ tn

0

γ(tn, s)φ(s)ds− τ
n−1∑
j=0

γ(tn, tj)φ(tj)

)

−

(∫ tn−1

0

γ(tn−1, s)φ(s)ds− τ
n−2∑
j=0

γ(tn−, tj)φ(tj)

)
.

Now, by using Taylor’s remainder theorem, we arrive at the following:

Ξ(γ(tn, s), φ(s))

=

(
τ

∫ tn−1

0

γt(tn∗ , s)φ(s)ds− τ 2
n−2∑
j=0

γt(tn∗ , tj)φ(tj)

)

+

(∫ tn

tn−1

γ(tn, s)φ(s)ds− τγ(tn, tn−1)φ(tn−1)

)
for some tn∗ ∈ (tn−1, tn)

≤
(
τ 2
∫ tn−1

0

∣∣∣∣ ∂∂s(γt(tn∗ , s)φ(s))

∣∣∣∣ ds)+

(
τ

∫ tn

tn−1

∣∣∣∣ ∂∂s(γ(tn, s)φ(s))
∣∣∣∣ ds) . (4.3.2)

Theorem 4.3.1. Let u(·, tn) and Un be the solution of continuous problem (1.3.10a) and

fully-discrete formulation (4.3.1) at time t = tn, respectively. In accordance with all the
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presumptions outlined in Theorem 4.2.3 and utt ∈ L2(0, T ;L2(D)), the following remains

valid:

∥Un − u(·, tn)∥ ≤ O(hk+1 + τ), ∀n = 1, 2, · · ·, N,

∥σn − σ(·, tn)∥ ≤ O(hk+1 + τ) ∀n = 1, 2, · · ·, N.

Proof. For the proof,

Un − u(·, tn) = Un − I Qu(·, tn) + I Qu(·, tn)− u(·, tn) =: ηnh + ηn,

σn − σ(·, tn) = σn − I Vσ(·, tn) + I Vσ(·, tn)− σ(·, tn) =: Θn
h +Θn.

Since we know the estimates for ηn and Θn, we need to find ∥ηnh∥ and ∥Θn
h∥ and for that,

we proceed by rewriting (4.3.1) and using the definition of mixed intermediate projection,

to obtain:

(∂tη
n
h , ϕh)− (∇ ·Θn

h, ϕh) =
(
ut(·, tn)− ∂tI

Qu
n
, ϕh

)
, (4.3.3)

ah(Θ
n
h,χh) + (∇b0(tn, tj)ηjh,Π

0
kχh))

+

(
ηnh +

∫ tn

0

(b0(tn, s)I
Qu(s))ds− τ

n−1∑
j=0

(b0(tn, tj)η
j
h + b0(tn, tj)I

Qu(tj)),∇ · χh

)

= τ

n−1∑
j=0

((∇b0(tn, tj)I Qu,Π0
kχh))−

∫ t

0

(∇b0(tn, s)I Qu(s),Π0
kχh)ds. (4.3.4)

Put χh = Θn
h and ϕh = ηnh +

∫ tn

0

Π0
k(b0(tn, s)I

Qu(s))ds − τ

n−1∑
j=0

(Π0
k(b0(tn, tj)η

j
h) +

Π0
k(b0(tn, tj)I

Qu(tj))) in (4.3.4) and (4.3.3) respectively and then add, to arrive at:

(∂tη
n
h , η

n
h) + ah(Θ

n
h,Θ

n
h)− τ

n−1∑
j=0

(∇b0(tn, tj)ηjh,Π
0
kΘ

n
h)

=

(
ut(·, tn)− ∂tI

Qu
n
, ηnh − τ

n−1∑
j=0

Π0
k(b0(tn, tj)η

j
h) +

∫ tn

0

Π0
k(b0(tn, s)I

Qu(s))ds

)
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−

(
ut(·, tn)− ∂tI

Qu
n
, τ

n−1∑
j=0

Π0
k(b0(tn, tj)I

Qu(tj))

)

−
∫ tn

0

(∇b0(tn, s)I Qu(s),Π0
kΘ

n
h)− τ

n−1∑
j=0

(∇b0(tn, tj)I Qu,Π0
kΘ

n
h)

+

(
∂tη

n
h , τ

n−1∑
j=0

Π0
k(b0(tn, tj)η

j
h)−

∫ tn

0

Π0
k(b0(tn, s)I

Qu(s))ds

)

+

(
∂tη

n
h , τ

n−1∑
j=0

Π0
k(b0(tn, tj)I

Qu(tj))

)
. (4.3.5)

The last term in the right-hand side of (4.3.5) can be solved by writingRn
1 = τ

n−1∑
j=0

Π0
k(b0(tn, tj)η

j
h)−∫ tn

0

Π0
k(b0(tn, s)I

Qu(s))ds+ τ
n−1∑
j=0

Π0
k(b0(tn, tj)I

Qu(tj)), as:

(∂tη
n
h , R

n
1 ) =

(
(Rn

1 , η
n
h)− (Rn−1

1 , ηn−1
h )

τ

)
−
(
∂tR

n
1 , η

n−1
h

)
, (4.3.6)

where the term (∂tR
n
1 , η

n−1
h ) can be solved by using (4.3.2) and Taylor remainder theorem

as:

(∂tR
n
1 , η

n−1
h )

=

(
τ

n−2∑
j=0

Π0
k(b0,t(tn∗

1
, tj)η

j
h) + Π0

k(b0(tn, tn−1)η
n−1
h ), ηn−1

h

)

+ (Ξ(Π0
k(b0(tn, s)I

Qu(s))), ηn−1
h )

≤ C

(
τ

n−2∑
j=0

Π0
k(b0,t(tn∗

1
, tj)η

j
h, η

n−1
h ) + τ

∫ tn

0

∣∣∣∣ ∂∂s(Π0
k(b0,t(tn∗ , s)I Qu(s)))

∣∣∣∣ ds∥ηn−1
h ∥

+∥ηn−1
h ∥2 +

∫ tn

tn−1

∣∣∣∣ ∂∂s(Π0
k(b0(tn, s)I

Qu(s)))

∣∣∣∣ ds∥ηn−1
h ∥

)
for tn∗ , tn∗

1
∈ (tn−1, tn).

So, (4.3.6) can be written as:

(∂tη
n
h , R

n
1 )
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≤
(
(Rn

1 , η
n
h)− (Rn−1

1 , ηn−1
h )

τ

)
+ C

(
τ

n−2∑
j=0

(Π0
k(b0,t(tn∗

1
, tj)η

j
h), η

n−1
h ) + ∥ηn−1

h ∥2

+ τ

∫ tn

0

∣∣∣∣ ∂∂s(Π0
k(b0,t(tn∗ , s)I Qu(s)))

∣∣∣∣ ds∥ηn−1
h ∥

+

∫ tn

tn−1

∣∣∣∣ ∂∂s(Π0
k(b0(tn, s)I

Qu(s)))

∣∣∣∣ ds∥ηn−1
h ∥

)
. (4.3.7)

Using (4.3.7), (3.1.3) in (4.3.5) and boundedness of ∇b0, we arrive at:

1

2

(
∥ηnh∥2 − ∥ηn−1

h ∥2

τ

)
+ α1∥Θn

h∥2

≤ C

(
∥In1 ∥

(
∥ηnh∥+ τ

n−1∑
j=0

∥ηjh∥+ τ

∫ tn

0

∣∣∣∣ ∂∂s(Π0
k(b0(tn, s)I

Qu(s)))

∣∣∣∣ ds
)

+ τ

∫ tn

0

∣∣∣∣ ∂∂s(∇b0(tn, s)I Qu(s))

∣∣∣∣ ∥Θn
h∥ds+

(
(Rn

1 , η
n
h)− (Rn−1

1 , ηn−1
h )

τ

)
+ τ

n−1∑
j=0

∥ηjh∥∥Θ
n
h∥+ τ

n−2∑
j=0

(Π0
k(b0,t(tn∗

1
, tj)η

j
h), η

n−1
h ) + ∥ηn−1

h ∥2

+

(
τ

∫ tn

0

∣∣∣∣ ∂∂s(Π0
k(b0,t(tn∗ , s)I Qu(s)))

∣∣∣∣ ds
+

∫ tn

tn−1

∣∣∣∣ ∂∂s(Π0
k(b0(tn, s)I

Qu(s)))

∣∣∣∣ ds, ηn−1
h

))
,

where In1 =
(
ut − ∂tI Qu

n)
.

Using Young’s inequality followed by the kickback argument, we arrive at:

1

2

(
∥ηnh∥2 − ∥ηn−1

h ∥2

τ

)
+ cα1∥Θn

h∥2

≤ C

(
τ

n−1∑
j=0

∥ηjh∥
2 + ∥ηnh∥2 + ∥ηn−1

h ∥2 + ∥In1 ∥2 + τ 2
∫ tn

0

∣∣∣∣ ∂∂s(Π0
k(b0(tn, s)I

Qu(s)))

∣∣∣∣2 ds
+

(
(Rn

1 , η
n
h)− (Rn−1

1 , ηn−1
h )

τ

)
+ τ 2

∫ tn

0

∣∣∣∣ ∂∂s(Π0
k(b0,t(tn∗ , s)I Qu(s)))

∣∣∣∣2 ds
+ τ

∫ tn

tn−1

∣∣∣∣ ∂∂s(Π0
k(b0(tn, s)I

Qu(s)))

∣∣∣∣2 ds+ τ 2
∫ tn

0

∣∣∣∣ ∂∂s(∇b0(tn, s)I Qu(s))

∣∣∣∣2 ds
)
.
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Multiplying the above equation by 2τ and sum from n = 1 · · ·N , we arrive at the following:

∥ηNh ∥2 + 2τcα1

N∑
n=1

∥Θn
h∥

≤ C

(
∥ηh(·, 0)∥2 + τ

N∑
n=1

∥ηnh∥2 + τ

N∑
n=1

∥In1 ∥2 + Cϵ1∥RN
1 ∥2 + Cϵ′1

∥ηNh ∥2

+ τ 3
N∑

n=1

∫ tn

0

(∣∣∣∣ ∂∂s(Π0
k(b0(tn, s)I

Qu(s)))

∣∣∣∣2 + ∣∣∣∣ ∂∂s(∇b0(tn, s)I Qu(s))

∣∣∣∣2
)
ds

+ τ 3
N∑

n=1

∫ tn

0

(∣∣∣∣ ∂∂sΠ0
k((b0,t(tn∗ , s)I Qu(s)))

∣∣∣∣2
)
ds

+ τ 2
N∑

n=1

∫ tn

tn−1

∣∣∣∣ ∂∂s(Π0
k(b0(tn, s)I

Qu(s)))

∣∣∣∣2 ds
)
.

Using the kickback argument followed by Grönwall’s lemma, we have:

∥ηNh ∥2 ≤ C

(
∥ηh(·, 0)∥2 + τ

N∑
n=1

∥In1 ∥2 + τ 2
∫ T

0

∣∣∣∣ ∂∂s(Π0
k(b0(tn, s)I

Qu(s)))

∣∣∣∣2 ds
+τ 2

∫ T

0

∣∣∣∣ ∂∂s(Π0
k(b0,t(tn∗ , s)I Qu(s)))

∣∣∣∣2 ds+ τ 2
∫ T

0

∣∣∣∣ ∂∂s(∇b0(tn, s)I Qu(s))

∣∣∣∣2 ds
)
,

(4.3.8)

where

τ
N∑

n=1

|In1 |2 ≤ Cτ
N∑

n=1

(∥ut(·, tn)− ∂tu
n∥2 + ∥∂tun − ∂tI

Qu
n∥2)

=
C

τ

N∑
n=1

((∫ tn

tn−1

(s− tn−1)uttds

)2

+

(∫ tn

tn−1

(ut − I Qut)(s)ds)

)2
)

≤ C

∫ tN

0

(τ 2∥utt(s)∥2ds+O(h2(k+1)) ( by using (4.2.13)), (4.3.9)

and

τ 2
∫ T

0

∣∣∣∣ ∂∂s(b0(tn, s)I Qu(s))

∣∣∣∣2 ds
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≤ Cτ 2
∫ T

0

(∥I Qu(s)∥+ ∥I Qus(s)∥)ds

≤ Cτ 2
∫ T

0

(∥(I Qu− u)(s)∥+ ∥u(s)∥+ ∥(I Qus − u(s))(s)∥+ ∥ps(s)∥)ds.

Similarly, we can bound the remaining terms τ 2
∫ T

0

∣∣∣∣ ∂∂s(b0,t(tn∗ , s)I Qu(s))

∣∣∣∣2 ds and

τ 2
∫ T

0

∣∣∣∣ ∂∂s(∇b0(tn, s)I Qu(s))

∣∣∣∣2 ds of (4.3.8), and then using (4.2.3), we arrive at:

∥ηNh ∥2 ≤ (h2(k+1) + τ 2).

Now, the use of triangle inequality completes the proof of ∥ηNh ∥.

To obtain the estimate of Θn
h, we begin by examining equation (4.3.4) at the time step

t = tn−1. Then, by subtracting and dividing by τ , we arrive at the following expression:

ah(∂̄tΘ
n
h,χh)

+

(
∂̄tη

n
h −

n−1∑
j=0

b0(tn, tj)η
j
h +

n−2∑
j=0

b0(tn−1, tj)η
j
h +

1

τ
Ξ(b0(tn, s)I

Qu(s)),∇ · χh

)

=
n−1∑
j=0

(∇b0(tn, tj)ηjh,Π
0
kχh)−

n−2∑
j=0

(∇b0(tn−1, tj)η
j
h,Π

0
kχh)

+
1

τ
(Ξ(∇b0(tn, s)I Qu(s)),Π0

kχh). (4.3.10)

Put χh = Θn
h and ϕh = ∂tη

n
h −

n−1∑
j=0

Π0
k(b0(tn, tj)η

j
h) +

n−2∑
j=0

Π0
k(b0(tn−1, tj)η

j
h)

+
1

τ
Ξ(Π0

k(b0(tn, s)I
Qu(s))) in (4.3.10) and (4.3.3) respectively and then add to arrive at

the following:

ah
(
∂̄tΘ

n
h,Θ

n
h

)
+
(
∂̄tη

n
h , ∂̄tη

n
h

)
≤ C

((
∇b0(tn, tn−1)η

n−1
h ,Π0

kΘ
n
h

)
+ τ

n−2∑
j=0

(
∇b0(tn∗

1
, s)ηjh,Π

0
kΘ

n
h

)
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+

(
∂̄tη

n
h ,

n−1∑
j=0

Π0
k(b0(tn, tj)η

j
h)

)

+ τ

∫ tn−1

0

∣∣∣∣ ∂∂s(∇b0,t(tn∗ , s)I Qu(s))

∣∣∣∣ ds∥Π0
kΘ

n
h∥ −

(
∂̄tη

n
h ,

n−2∑
j=0

Π0
k(b0(tn−1, tj)η

j
h)

)

+

∫ tn

tn−1

∣∣∣∣ ∂∂s(∇b0(tn, s)I Qu(s))

∣∣∣∣ ds∥Π0
kΘ

n
h∥+

(
∂̄tη

n
h ,

1

τ
Ξ(Π0

k(b0(tn, s)I
Qu(s)))

)
+

(
In1 , ∂tη

n
h −

n−1∑
j=0

(Π0
k(b0(tn, tj)η

j
h)) +

n−2∑
j=0

(Π0
k(b0(tn−1, tj)η

j
h))−

1

τ
Ξ(Π0

k(b0(tn, s)I
Qu(s))

))

for some tn∗ , tn∗
1
∈ (tn−1, tn).

Now, using Young’s inequality followed by the kickback argument, we have:

Cα1,ϵ

(
∥Θn

h∥2 − ∥Θn−1
h ∥2

2τ

)
+ Cϵ′1

∥∂tηnh∥2

≤ C

(
τ

n−2∑
j=0

∥ηjh∥
2 + ∥ηn−1

h ∥2 + ∥Θn
h∥2 + ∥In1 ∥2 + τ 2

∫ tn−1

0

∣∣∣∣ ∂∂s(∇b0t(tn∗ , s)I Qu(s)

∣∣∣∣2 ds
+ τ 2

∫ tn−1

0

∣∣∣∣ ∂∂s(Π0
k(b0t(tn∗

1
, s)I Qu(s))

∣∣∣∣2 ds
+τ

∫ tn

tn−1

∣∣∣∣ ∂∂s(∇b0(tn, s)I Qu(s)

∣∣∣∣2 ds+ τ

∫ tn

tn−1

∣∣∣∣ ∂∂s(Π0
k(b0(tn, s)I

Qu(s)))

∣∣∣∣2 ds
)
.

Multiplying the above equation by 2τ and sum from n = 1 to N , we get:

∥ΘN
h ∥2 ≤ C

(
τ 2

N∑
n=1

n−2∑
j=0

∥ηjh∥
2 + τ

N∑
n=1

∥Θn
h∥2 + τ

N∑
n=1

∥In1 ∥2

+ τ 3
N∑

n=1

∫ tn

0

(∣∣∣∣ ∂∂s(∇b0t(tn∗ , s)I Qu(s)

∣∣∣∣2 + ∣∣∣∣ ∂∂s(Π0
k(b0t(tn∗

1
, s)I Qu(s)))

∣∣∣∣2
)
ds

+τ 2
N∑

n=1

∫ tn

tn−1

(∣∣∣∣ ∂∂s(∇b0(tn, s)I Qu(s))

∣∣∣∣2 + ∣∣∣∣ ∂∂s(Π0
k(b0(tn, s)I

Qu(s)))

∣∣∣∣2
)
ds

)
.

Use of (4.3.9) and (4.3.8) followed by Grönwall’s lemma completes the proof of ∥θNh ∥.
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4.4 Numerical Results
In this section, we carry out a numerical example to justify the performance of the proposed

mixed virtual element scheme for the linear parabolic integro-differential problem (1.1.1)

on the square mesh in Figure 3.1. Here, we consider the domain D the unit square in R2.

We use the backward Euler approach for time discretization coupled with Mixed VEM

discretization to tackle the fully-discrete problem for the mesh sequences introduced in

Figure 3.1.

Example 4.4.1. Consider the linear PIDE (1.1.1), with coefficients a(x) = 1 + x,

b(x; t, s) = (1 + x)et−s. Notably, the load term f , boundary data, and initial data

u0 are all determined using the exact solution as a reference point:

u(x, t) = tet sin 2πx sin 2πy.

Example 4.4.2. Consider the linear PIDE (1.1.1), with coefficients a(x) = 1 + x,

b(x; t, s) = (1 − x2)ts. Notably, the load term f , boundary data, and initial data

u0 are all determined using the exact solution as a reference point:

u(x, t) = t(x− x2)(y − y2).

Example 4.4.3. Consider the linear PIDE (1.1.1), with coefficients a(x) = 1, b(x; t, s) =

10e−1000t2s2 . Notably, the load term f , boundary data, and initial data u0 are all deter-

mined using the exact solution as a reference point:

u(x, t) = t(x− x2)(y − y2).

With the help of this example, we can show that this formulation is more generalized in

the sense that it is applicable to a wider range of problems satisfying the assumptions

outlined in the Introduction. Here, in this example, the challenge lies in determining a

resolvent kernel because manual integration of each function is not possible due to the
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unavailability of anti-derivatives. In this example, we can compute the first two terms

of the series of the resolvent kernel, and if we terminate the series at this point, even

after further discretization, the error comes out to be constant without further reduction,

as shown in Figure 4.5. But comparatively, if we go with the formulation (1.3.10a), we

are getting an appropriate order of convergence. Although this formulation takes more

computation time but it is more effective for a vast range of examples. Fig. 4.1 and 4.2

depict the order of convergence for both uh and σh for Example 4.4.1 in case of k = 1, 2

and 3 on quadrilateral and hexagonal mesh respectively. Both the figures show that these

orders of convergence are accomplished in perfect accordance with theory, while Fig. 4.3

shows the superconvergence results for both Example 4.4.1 and Example 2 in the case of

k= 1, 2, and 3 on the quadrilateral mesh whereas in Fig 4.4 shows the order of convergence

for Example 4.4.2 on the quadrilateral mesh. From all the figures, we can see that our

theory matches our numerical results well.
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Figure 4.1: Order of convergence for Example 4.4.1 on the quadrilateral mesh in case of
k=1, 2 and 3 with τ = 1.1e− 04.
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Figure 4.2: Order of convergence for Example 4.4.1 on the hexagonal mesh in case of
k = 1, 2 and 3 with τ = 1.6e− 04.
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mesh with τ = 1.1e − 04.. The left panel corresponds to Example 4.4.1 , and the right
panel corresponds to Example 4.4.2 .

4.5 Conclusions

Considering the advantages of VEM and mixed methods, we applied a mixed VEM ap-

proach to address both the semi-discrete and fully-discrete cases of the PIDE (1.1.1). In

this chapter, we have introduced a novel projection, the mixed intermediate projection,

which helps in handling the integral term. Significantly, this work represents the first

instance in the literature [15] where the fully-discrete case has been thoroughly examined

for this formulation. Furthermore, a step-by-step analysis is proposed for the supercon-
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Figure 4.4: Order of convergence for Example 4.4.2 on the quadrilateral mesh in case of
k=1, 2 and 3 with τ = 1.1e− 04..
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Figure 4.5: Order of convergence for Example 4.4.2 on the quadrilateral mesh in case of
k=1, 2 and 3 with τ = 1.1e− 04..

vergence of the discrete solution of order O(hk+2). Several computational experiments

are discussed to validate the proposed scheme’s computational efficiency and support the

theoretical conclusions.
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Virtual Element Method for Parabolic

Integro-Differential Equations with

Non-smooth Initial Data

In Chapter 2, we analyzed the PIDE with smooth initial data, specifically when u0 ∈

Hk+1(D). The focus of the current chapter is to extend this analysis to cases where

the initial data is less smooth, specifically when u0 ∈ L2(D) but not in H1(D). In this

Chapter, we focus on developing virtual element methods for the following linear parabolic

integro-differential equation defined on Ω ⊂ R2. Find u(x, t) such that

ut(x, t)−∇ ·
(
a(x)∇u(x, t))−

∫ t

0

(b(x; t, s)∇u(x, s)
)
ds = 0 (x, t) ∈ Ω× (0, T ],

u(x, t) = 0 (x, t) ∈ ∂Ω× (0, T ],

u(x, 0) = u0(x) x ∈ Ω.

(5.0.1)
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Now, by multiplying the suitable test function, the variational form corresponds to (5.0.1)

read as follows. Find u ∈ L2(0, T ;H1
0 (Ω)) such that:

⟨ut, v⟩+ A (u, v)−
∫ t

0

B(t, s;u(s), v)ds = 0 t ∈ (0, T ], ∀v ∈ H1
0 (Ω), (5.0.2)

u(·, 0) = u0,

where

A (u, v) = (a(x)∇u(x, t),∇v(x)), B(t, s;u, v) = (b(x; t, s)∇u(x, t),∇v(x)).

Defining local counterparts of bilinear forms in (5.0.2):

A (u, v):=
∑
K∈Ih

A K(u, v) ∀u, v ∈ V,

B(t, s;u, v) :=
∑
K∈Ih

BK(t, s;u, v) ∀u, v ∈ V,

where

A K(u, v) :=

∫
K
a(x)∇u(x, t)·∇v(x)dx, BK(t, s;u, v) :=

∫
K
b(x; t, s)∇u(x, s)·∇v(x)dx.

For deriving optimal error estimates, we introduce a new projection known as intermediate
projection (Ihu) that contains the memory term. We employ an iterative process wherein

we repeatedly apply the integral operator to obtain estimations for the integration of

the intermediate projection denoted as Îhu. Using these estimations of Îhu, we further

derive estimations for Ihu. By combining regularity outcomes and intermediate projection

estimations, we establish precise error estimates at an optimal order of O(h2t−1).

5.1 The Discrete Formulation
After introducing the global virtual space Wh, the semi-discrete approximation to the

problem (5.0.1) can be constructed as:

mh(uh,t, vh) + Ah(uh, vh)−
∫ t

0

Bh(t, s;uh(s), vh)ds = 0 ∀vh ∈ Wh, (5.1.1)
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uh(0) = uh,0,

where uh,0 will be defined later in the proof of Theorem 2.2.3 and the above discrete
bilinear forms are computable and defined for all ph, qh ∈ Wh as

mh(ph, qh) :=
∑
K∈Ih

mK
h (ph, qh), Ah(ph, qh) :=

∑
K∈Ih

A K
h (ph, qh),

Bh(t, s; ph, qh) :=
∑
K∈Ih

BK
h (t, s; ph, qh).

The bilinear forms on every element K ∈ Ih are defined for any vh, wh ∈ Wk,K (see [17])

as below:

A K
h (·, ·) : Wk,K×Wk,K → R, BK

h (·, ·) : Wk,K×Wk,K → R, mK
h (·, ·) : Wk,K×Wk,K → R

mK
h (vh, wh) := (Π0

kvh,Π
0
kwh)0,K + SK

1 ((I − Π0
k)vh, (I − Π0

k)wh),

A K
h (vh, wh) :=

∫
K

(a(x)Π0
k−1∇vh ·Π0

k−1∇wh)dx+ SK
0 ((I − Π∇

k )vh, (I − Π∇
k )wh, ),

BK
h (t, s; vh, wh) :=

∫
K

(b(x; t, s)Π0
k−1∇vh ·Π0

k−1∇whdx.

The stability term SK
0 : Wk,K ×Wk,K → R should be build in such a way that, ∃ α∗∗, α

∗,

independent of h with 0 < α∗∗ ≤ α∗ and satisfy the following:

α∗∗a
K(vh, vh) ≤ SK

0 (vh, vh) ≤ α∗aK(vh, vh) ∀vh ∈ ker Π∇
k .

where SK
0 (·, ·) and SK

1 (·, ·) is defined in (2.1.3) and (2.1.4). Now, we proceed to establish

the coercivity A K
h (·, ·):

A K
h (vh, vh) ≥ (a(x)Π0

k−1∇vh,Π0
k−1∇vh)0,K + α∗∗a

K((I − Π∇
k )vh, (I − Π∇

k )vh)

≥ min(1, α∗∗)c0(∥Π0
k−1∇vh∥20,K + ∥∇vh −∇Π∇

k vh∥20,K)

= cα∗∗∥∇vh∥20,K. (5.1.2)
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Below, we state two lemmas, proof of which follows from [17].

Lemma 5.1.1. Let u be a solution of the PIDE (5.0.1) and u0 ∈ L2. Then the following

estimates hold for t ∈ (0, T ] and j ∈ {1, 2}:

(i) t∥u(t)∥21 +
∫ t

0

s∥us(s)∥2ds ≤ C∥u0∥2,

(ii) t2∥ut(t)∥2 +
∫ t

0

s2∥us(s)∥21ds ≤ C∥u0∥2,

(iii) ∥û(t)∥2 + t∥u(t)∥2 ≤ C∥u0∥,

(iv) t∥u(t)∥2 ≤ C∥u0∥,

(v) ∥ut(t)∥j ≤ Ct−(1+ j
2
)∥u0∥.

Lemma 5.1.2. For K ∈ Ih, let all the coefficients and p, q be smooth scalar or vector-

valued functions on K. Then,

A K
h (p, q)− A K(p, q) ≤ Ca0,a|p|1,K|q|1,K,

BK
h (t, s; p, q)− BK(t, s; p, q) ≤ Cb,b0,b1|p|1,K|q|1,K.

Proof. Proof of this lemma follows from [74].

Lemma 5.1.3. ForK ∈ Ih, let the coefficients a(x) and b(x; t, s) be smooth scalar-valued

function in D and p be any smooth scaler-valued function. Then,

A K
h (Π0

kp, qh)− A K(Π0
kp, qh) ≤ Cah

k∥p∥k+1|qh|1,K,

BK
h (t, s; Π

0
kp, qh)− BK(t, s; Π0

kp, qh) ≤ Cbh
k∥p∥k+1|qh|1,K.

Proof. Proof of this lemma follows from [74].

Our approach relies on an energy-based argument coupled with the repeated application of

a time-integral operator defined for any function g(t):

ĝ(t) =

∫ t

0

g(s)ds.
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To derive the optimal error estimates, first, we need to define a projection new projection

with a memory term called the intermediate projection (5.2.1). Since we need the estimates

of intermediate projection for u0 ∈ L2. For that, we first find out the estimates for the ρ̂,

where ρ̂ = Îhu− û

5.2 Intermediate Projection
Define intermediate projection Ih : H1

0 (Ω) → Wh, for t ∈ J̄ , where J = (0, T ], as the

solution:

Ah(I
hu, vh)−

∫ t

0

Bh(t, s; I
hu(s), vh)ds

= A (u, vh)−
∫ t

0

B(t, s;u(s), vh)ds ∀vh ∈ Wh. (5.2.1)

By employing integration by parts, we rewrite (5.2.1) as:

A (u, vh)−
(

B(t, t; û(t), vh)−
∫ t

0

Bs(t, s; û(s), vh)ds

)
= Ah(I

hu, vh)−
(

Bh(t, t; Îhu(t), vh)−
∫ t

0

Bh,s(t, s; Îhu(s), vh)ds

)
. (5.2.2)

The bilinear form Bs(t, s; v, w) is defined as:

Bs(t, s; v, w) :=

(
∂b(x, t, s)

∂s
∇v,∇w

)
∀v, w ∈ H1

0 (Ω),

and the discrete bilinear form Bh,t(t, s; ph, qh) is defined as:

Bh,s(t, s; ph, qh) :=
∑
K∈Ih

BK
h,s(t, s; ph, qh) ∀ph, qh ∈ Wh,

where,

BK
h,s(t, s; vh, wh) :=

∫
K

(
∂b(x; t, s)

∂s
Π0

k−1∇vh ·Π0
k−1∇wh

)
dx ∀vh, wh ∈ Wk,K.

Theorem 5.2.1. For u(t) ∈ H1
0 ∩H2, t > 0, with an initial condition u0 ∈ L2, then there
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exists a positive constant C that is not dependent on the parameter h, and under these

conditions, the following estimates are valid:

∥Îhu(t)− û(t)∥+ h|Îhu(t)− û(t)|1 ≤ Ch2∥u0∥. (5.2.3)

Proof. Write ρ̂ = Îhu− Π0
kû+Π0

kû− û = δ̂h +Π0
kû− û, where Π0

k is defined by using

(1.5.3a) and satisfies (1.5.7). By integrating (5.2.2) from 0 to t, we arrive at:

A (û, vh)−
∫ t

0

(
B(s, s; û(s), vh)−

∫ s

0

Bz(s, z; û(z), vh)dz

)
ds

= Ah(Îhu, vh)−
∫ t

0

(
Bh(s, s; Îhu(s), vh)−

∫ s

0

Bh,z(s, z; Îhu(z), vh)dz

)
ds.

(5.2.4)

Now, we proceed by using coricivty of Ah(·, ·) (5.1.2) as:

cα∗∗|δ̂h|21

≤ Ah(δ̂h, δ̂h) = Ah(Îhu, δ̂h)− Ah(Π
0
kû, δ̂h)

=
[
A (û, δ̂h)− Ah(Π

0
kû, δ̂h)

]
−
[∫ t

0

(
B(s, s; û(s), δ̂h)− Bh(s, s; Îhu(s), δ̂h)

)
ds

]
+

∫ t

0

∫ s

0

(
Bz(s, z; û(z), δ̂h)− Bh,z(s, z; Îhu(z), δ̂h)

)
dzds. (5.2.5)

The first term on the right-hand side of (5.2.5) can be solved as:

A (û, δ̂h)− Ah(Π
0
kû, δ̂h) = A (û− Π0

kû, δ̂h) + A (Π0
kû, δ̂h)− Ah(Π

0
kû, δ̂h)

≤ C(|û− Π0
kû|1 + h2∥û∥2)|δ̂h|1 (By using Lemma 5.1.3)

≤ Ch∥u0∥|δ̂h|1 (By using Lemma 5.1.1). (5.2.6)

The second term on the right-hand side of (5.2.5) can be solved as:∫ t

0

(
B(s, s; û(s), δ̂h)− Bh(s, s; Îhu(s), δ̂h)

)
ds

=

∫ t

0

(
B(s, s; (û− Π0

kû)(s), δ̂h)− Bh(s, s; (Îhu− Π0
kû)(s), δ̂h)
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+B(s, s; Π0
kû(s), δ̂h)− Bh(s, s; Π

0
kû(s), δ̂h)

)
ds

≤ C

∫ t

0

(
|(û− Π0

kû)(s)|1 + |δ̂h(s)|1 + h2∥û(s)∥2
)
ds|δ̂h|1

(By using the boundedness of b(x; t, s) and Lemma 5.1.3)

≤ C

∫ t

0

(
h∥u0∥+ |δ̂h(s)|1

)
ds|δ̂h|1 (By using Lemma 5.1.1). (5.2.7)

The third term on the right-hand side of (5.2.5) can be solved by considering the bounded-

ness of bs(x; t, s) and by following similar arguments as above:∫ t

0

∫ s

0

(
Bz(s, z; û(z), δ̂h)− Bh,z(s, z; Îhu(z), δ̂h)

)
dzds

≤ C

∫ t

0

∫ s

0

(
h∥u0∥+ |δ̂h(z)|1

)
dzds|δ̂h|1. (5.2.8)

By using (5.2.6),(5.2.7),(5.2.8) in (5.2.5) and the fact that t ≤ T , we arrive at:

cα∗∗|δ̂h|21 ≤ Ch

(
∥u0∥+

∫ t

0

∥u0∥ds+
∫ t

0

∫ s

0

∥u0∥dzds+
∫ t

0

|δ̂(s)|1
)
|δ̂h|1.

Now, by using the boundedness of t and applying Grönwall’s inequality, we arrive at:

cα∗∗|δ̂h|1 ≤ C1h∥u0∥.

The application of the triangle’s inequality completes the proof:

|Îhu− û|1 ≤ Ch∥u0∥. (5.2.9)

For the L2 estimate, we follow the duality argument. Let ϕ ∈ H2(Ω) ∩ H1
0 (Ω) be the

solution of

−∇ · (a∇ϕ) = ρ̂; in Ω ϕ = 0 on ∂Ω, (5.2.10)

where ρ̂ = Îhu− û and, satisfies the estimate: ∥ϕ∥2 ≤ C∥ρ̂∥. Using (5.2.10), we arrive at:

∥ρ̂∥2 = A (ρ̂, ϕ− ϕI) + A (ρ̂, ϕI). (5.2.11)
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The first term in the right-hand side of (5.2.11) can be solved as:

A (ρ̂, ϕ− ϕI) = A (Îhu− û, ϕ− ϕI)

≤ Ch|Îhu− û|1∥ϕ∥2

≤ Ch2∥u0∥∥ρ̂∥.

The second term in the right-hand side of (5.2.11) can be solved by using (5.2.4), as:

A (ρ̂, ϕI)

=
[
A (Îhu, ϕI)− Ah(Îhu, ϕI)

]
+

[
Bh(s, s; Îhu(s), ϕI)−

∫ t

0

[B(s, s; û(s), ϕI)] ds

]
+

∫ t

0

∫ s

0

(
Bz(s, z; û(z), ϕI)− Bh,z(s, z; Îhu(z), ϕI)dz

)
dzds. (5.2.12)

Now, to solve the first term on the right-hand side of the (5.2.12), we proceed as:

A (Îhu, ϕI)− Ah(Îhu, ϕI) = A (Îhu− Π0
kû, ϕI)− Ah(Îhu− Π0

kû, ϕI)

+ A (Π0
kû, ϕI)− Ah(Π

0
kû, ϕI)

≤C(h|δ̂h|1∥ρ∥+ h2∥u0∥∥ρ̂∥) (By using Lemma 5.1.3)

≤Ch2∥u0∥∥ρ̂∥ (By using (5.2.9)). (5.2.13)

The second term on the right-hand side of (5.2.12) can be estimated as:

∫ t

0

(
Bh(s, s; Îhu(s), ϕI)− B(s, s; û(s), ϕI)

)
ds

=

∫ t

0

[Bh(s, s; Îhu(s), ϕI)− B(s, s; Îhu(s), ϕI)− B(s, s; (û− Îhu)(s), ϕI)]ds

=

∫ t

0

[Bh(s, s; Îhu(s), ϕI)− (B(s, s; Îhu(s), ϕI)− B(s, s; (û− Îhu)(s), ϕI − ϕ)

− B(s, s; (û− Îhu)(s), ϕ)]ds

≤ C

∫ t

0

(
h2∥u0∥+ h|ρ̂(s)|1 + ∥ρ̂(s)∥

)
ds∥ρ̂∥. (5.2.14)
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By similar arguments, we can solve the third term on the right-hand side of (5.2.12) and

arrive at:

∫ t

0

∫ s

0

(
Bz(s, z; û(z), ϕI)− Bh,z(s, z; Îhu(z), ϕI)

)
dzds

≤ C

∫ t

0

∫ s

0

(
h2∥u0∥+ h|ρ̂(z)|1 + ∥ρ̂(z)∥

)
dzds∥ρ̂∥. (5.2.15)

Using (5.2.13), (5.2.14), (5.2.15), in (5.2.12), and then put (5.2.12) in (5.2.11), followed
by the use of Grönwall’s lemma, we arrive at:

∥ρ̂∥ ≤ Ch2
(
∥u0∥+

∫ t

0

∥u0∥ds+
∫ t

0

∫ s

0

∥u0∥dzds
)
.

Now, by using the fact that t ≤ T , we arrive at:

∥ρ̂∥ ≤ Ch2∥u0∥.

Theorem 5.2.2. For u(t) ∈ H1
0 ∩H2, t > 0, with an initial condition u0 ∈ L2, then there

exists a positive constant C that is not dependent on the parameter h, and under these

conditions, the following estimates are valid:

∥Ihu(t)− u(t)∥+ h|Ihu(t)− u(t)|1 ≤ Ch2t−1∥u0∥. (5.2.16)

Proof. We write ρ = Ihu− u = δh +Π0
ku− u, where δh = Ihu−Π0

ku. and now proceed

by using the coercivity of A (·, ·) as:

cα∗∗|δh|21 ≤ Ah(δh, δh)

= Ah(I
hu, δh)− Ah(Π

0
ku, δh).

Now, by using (5.2.2), we arrive at:

cα∗∗|δh|21 ≤
[
A (u, δh)− Ah(Π

0
ku, δh)

]
−
[
B(t, t; û, δh)− Bh(t, t; Îhu, δh)

]
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+

∫ t

0

(
Bs(t, s; û(s), δh)− Bh,s(t, s; Îhu(s), δh)

)
ds. (5.2.17)

The first term on the right-hand side of (5.2.17) can be solved as:

A (u, δh)− Ah(Π
0
ku, δh) = A (u− Π0

ku, δh) + A (Π0
ku, δh)− Ah(Π

0
ku, δh)

≤ C(|u− Π0
ku|1 + h2∥u∥2)|δh|1 (By using Lemma 5.1.3)

≤ Cht−1∥u0∥|δ̂h|1 (By using Lemma 5.1.1), (5.2.18)

whereas the second and third terms on the right-hand side of (5.2.17) can be solved by

following the similar arguments as in (5.2.7):

Bh(t, t; Îhu, δh)− B(t, t; û, δh) ≤ Ch∥u0∥|δh|1, (5.2.19)∫ t

0

(
Bs(t, s; û(s), δh)− Bh,s(t, s; Îhu(s), δh)

)
ds ≤ Ch∥u0∥|δh|1. (5.2.20)

Putting (5.2.18), (5.2.19) and (5.2.20) in (5.2.17) followed by the triangle inequality, we
get our required estimate:

|ρ|1 ≤ Cht−1∥u0∥.

The duality approach will be used to demonstrate the L2 error estimate. Let ϕ ∈ H2(Ω) ∩

H1
0 (Ω) be the solution of

−∇ · (a∇ϕ) = ρ; in Ω ϕ = 0 on ∂Ω, (5.2.21)

and it satisfies the estimate: ∥ϕ∥2 ≤ C∥ρ∥. Using (5.2.21), we arrive at:

∥ρ∥2 = A (ρ, ϕ− ϕI) + A (ρ, ϕI). (5.2.22)

The first term in the right-hand side of (5.2.22) can be solved as:

A (ρ, ϕ− ϕI) = A (Ihu− u, ϕ− ϕI)

≤ Ch∥Ihu− u∥1∥ϕ∥2

≤ Ch2t−1∥u0∥∥ρ∥. (5.2.23)
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The second term on the right-hand side of (5.2.22) can be solved by using (5.2.2) as:

A (ρ, ϕI) = A (Ihu, ϕI)− A (u, ϕI)

=
(
A (Ihu, ϕI)− Ah(I

hu, ϕI)
)
−
[
B(t, t; û, ϕI)− Bh(t, t; Îhu, ϕI)

]
+

∫ t

0

(
Bs(t, s; û(s), ϕI)− Bh,s(t, s; Îhu(s), ϕI)

)
ds, (5.2.24)

where the first term on the right-hand side of (5.2.24) can be solved as:

A (Ihu, ϕI)− Ah(I
hu, ϕI)

= A (Ihu− Π0
ku, ϕI)− Ah(I

hu− Π0
ku, ϕI) + A (Π0

ku, ϕI)− Ah(Π
0
ku, ϕI)

≤ Ch2t−1∥u0∥∥ρ∥ ( By using Lemma 5.1.1). (5.2.25)

The second and third terms on the right-hand side of (5.2.24) can be solved by following

the similar arguments as in (5.2.19) and (5.2.20):

B(t, t; û, ϕI)− Bh(t, t; Îhu, ϕI) ≤ Ch2∥u0∥∥ρ∥, (5.2.26)∫ t

0

(
Bs(t, s; û(s), ϕI)− Bh,s(t, s; Îhu(s), ϕI)

)
ds ≤ Ch2∥u0∥∥ρ∥. (5.2.27)

Now, using (5.2.23) , (5.2.24), (5.2.25) , (5.2.26), (5.2.27) in (5.2.22), we get our desired

estimate:

∥ρ∥ ≤ Ch2t−1∥u0∥.

Theorem 5.2.3. For u(t) ∈ H1
0 ∩H2, t > 0, with an initial condition u0 ∈ L2, and ut be

the time derivative of u, then there exists a positive constant C that is not dependent on

the parameter h, and under these conditions, the following estimates are valid:

∥(Ihu)t(t)− ut(t)∥+ h|(Ihu)t(t)− ut(t)|1 ≤ Ch2t−2∥u0∥. (5.2.28)
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Proof. Differentiating (5.2.1) with respect to t we get:

Ah((I
hu)t, vh)− Bh(t, t; I

hu, vh) +

∫ t

0

Bh,t(t, s; I
hu(s), vh)ds

= A (ut, vh)− B(t, t;u, vh) +

∫ t

0

Bt(t, s;u(s), vh)ds,

where B(t, t; vh, wh) and Bt(t, s; vh, wh) are defined as:

B(t, t; vh, wh) = (b(x, t, t)∇vh,∇wh), Bt(t, s; vh, wh) =

(
∂b(x, t, s)

∂t
∇vh,∇wh

)
.

Bh,t(t, s;uh, vh) and Bh(t, t;uh, vh) are the discrete bilinear forms corresponding to

Bt(t, s;uh, vh) and B(t, t;uh, vh) respectively defined using Π0
k−1 projection. The proof

is similar to the previous theorem arguments.

5.3 Error Estimates

Now, we prove some lemmas, and for that, we proceed by integrating (5.3.15) as:

mh(θ(·, t), vh) + Ah(θ̂(·, t), vh)

= ((u(·, t), vh)−mh((I
hu)(·, t), vh)) +

∫ t

0

Bh(s, s; θ̂(s), vh)ds

−
∫ t

0

∫ s

0

Bh,z(s, z; θ̂(z), vh)dzds. (5.3.1)

Again integrating (5.3.1) form 0 to t, we get:

mh(θ̂(·, t), vh) + Ah(
ˆ̂
θ(·, t), vh)

= ((û(·, t), vh)−mh(Îhu(·, t), vh)) +
∫ t

0

Bh(s, s;
ˆ̂
θ(s), vh)ds

− 2

∫ t

0

∫ s

0

Bh,z(z, z;
ˆ̂
θ(z), vh)dzds+

∫ t

0

∫ s

0

∫ z

0

Bh,zτ ′(z, τ
′;
ˆ̂
θ(z), vh)dτ

′dzds.

(5.3.2)
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Lemma 5.3.1. Let θ̂ and ˆ̂
θ satisfies (5.3.1) and (5.3.2) respectively, then ∃ a positive

constant C, such that the following estimates hold true:

∥ ˆ̂θ∥2 +
∫ t

0

| ˆ̂θ(s)|21ds ≤ Ch4t∥u0∥2, (5.3.3)∫ t

0

∥θ̂(s)∥2ds+ | ˆ̂θ(t)|21 ≤ Ch4t∥u0∥2. (5.3.4)

Proof. By putting vh =
ˆ̂
θ(t) in (5.3.2), we arrive at:

1

2

d

dt
∥ ˆ̂θ(t)∥2 + cα∗∗|

ˆ̂
θ(t)|21

≤
((
û(·, t), ˆ̂θ(t)

)
−mh

(
Îhu(·, t), ˆ̂θ(t)

))
+

∫ t

0

Bh(s, s;
ˆ̂
θ(s),

ˆ̂
θ(t))ds

− 2

∫ t

0

∫ s

0

Bh,z(z, z;
ˆ̂
θ(z),

ˆ̂
θ(t))dzds+

∫ t

0

∫ s

0

∫ z

0

Bh,zτ ′(z, τ
′;
ˆ̂
θ(z),

ˆ̂
θ(t))dτ ′dzds.

(5.3.5)

The first term on the right-hand side of the (5.3.5) can be solved as:

((
û(·, t), ˆ̂θ(t)

)
−mh

(
Îhu(·, t), ˆ̂θ(t)

))
=
∑
K∈Ih

((
û(·, t), ˆ̂θ

)
0,K

−mK
h

(
Îhu(·, t), ˆ̂θ

))
=
∑
K∈Ih

((
û(·, t)− Π0

kû(·, t),
ˆ̂
θ
)
0,K

−mK
h

(
Îhu(·, t)− Π0

kû(·, t),
ˆ̂
θ
))

≤ Ch2 (∥û∥2 + ∥u0∥) ∥ ˆ̂θ∥ By using (5.2.3)

≤ Ch2∥u0∥∥ ˆ̂θ∥. (5.3.6)

By the use of (5.3.6), Cauchy Schwarz inequality in (5.3.5) followed by the use of kickback

argument, we can rewrite (5.3.5) as:

1

2

d

dt
∥ ˆ̂θ(t)∥2 + | ˆ̂θ(t)|21 ≤ C

(
h4∥u0∥2ds+ ∥ ˆ̂θ(t)∥2 +

∫ t

0

| ˆ̂θ(s)|21ds
)
. (5.3.7)

109



Chapter 5

Now, integrating (5.3.7) from 0 to t, we arrive at:

∥ ˆ̂θ(t)∥2 +
∫ t

0

| ˆ̂θ(s)|21ds ≤ C

(
h4
∫ t

0

∥u0∥2ds+
∫ t

0

∥ ˆ̂θ(s)∥2 +
∫ t

0

∫ s

0

| ˆ̂θ(z)|21dzds
)
.

The use of Grönwall’s inequality completes the proof:

∥ ˆ̂θ(t)∥2 +
∫ t

0

| ˆ̂θ(s)|21ds ≤ Ch4t∥u0∥2.

For the proof of (5.3.4), we proceed by putting vh = θ̂(t) in (5.3.2) as:

∥θ̂(·, t)∥2 + cα∗∗

2

d

dt
| ˆ̂θ(·, t)|2

=
((
û(·, t), θ̂(t)

)
−mh

(
Îhu(·, t), θ̂(t)

))
+ Bh(t, t;

ˆ̂
θ(t),

ˆ̂
θ(t))

+
d

dt

(
−
∫ t

0

Bh(s, s;
ˆ̂
θ(s),

ˆ̂
θ(t)ds+ 2

∫ t

0

∫ s

0

Bh,z(z, z;
ˆ̂
θ(z),

ˆ̂
θ(t))dzds

+

∫ t

0

∫ s

0

∫ z

0

Bh,zτ ′(z, τ
′;
ˆ̂
θ(τ ′),

ˆ̂
θ(t))dτ ′dzds

)
− 2

∫ t

0

Bh,s(s, s;
ˆ̂
θ(s),

ˆ̂
θ(t)(t))ds−

∫ t

0

∫ s

0

Bh,sz(s, z;
ˆ̂
θ(z),

ˆ̂
θ(t))dzds. (5.3.8)

Following the similar step as in (5.3.6) for the first term on the right-hand side of (5.3.8)

and then integrating (5.3.8) from 0 to t, followed by an application of Cauchy-Schwarz

inequality, we arrive at:

∫ t

0

∥θ̂(s)∥2ds+ | ˆ̂θ(t)|21 ≤ C

(
h4
∫ t

0

∥u0∥2ds+
∫ t

0

| ˆ̂θ(s)|21
)
.

Use of (5.3.3) completes the proof:

∫ t

0

∥θ̂(s)∥2ds+ | ˆ̂θ(t)|21 ≤ Ch4t∥u0∥2.

Lemma 5.3.2. Let θ̂ and ˆ̂
θ satisfies (5.3.1) and (5.3.2) respectively, then ∃ a positive
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constant C, such that the following estimates hold true:

t∥θ̂∥2 +
∫ t

0

s|θ̂(s)|21ds ≤ Ch4t∥u0∥2, (5.3.9)∫ t

0

s2∥θ(s)∥2ds+ t2|θ̂(t)|21 ≤ Ch4t∥u0∥2. (5.3.10)

Proof. Put vh = tθ̂(t) in (5.3.1), we arrive at:

tmh(θ(·, t), θ̂(t)) + tAh(θ̂(·, t), θ̂(t))

= t
(
(u(·, t), θ̂(t))−mh((I

hu)(·, t), θ̂(t))
)
+ t

∫ t

0

Bh(s, s; θ̂(s), θ̂(t))ds

− t

∫ t

0

∫ s

0

Bh,z(s, z; θ̂(z), θ̂(t))dzds. (5.3.11)

Now, rewriting (5.3.11) as:

1

2

d

dt
(t∥θ̂∥2) + cα∗∗|θ̂|21

= t
(
(u(·, t), θ̂(t))−mh((I

hu)(·, t), θ̂(t))
)
+

1

2
∥θ̂∥2 + tBh(t, t;

ˆ̂
θ(t), θ̂)

− 2t

∫ t

0

Bh,s(s, s;
ˆ̂
θ(s), θ̂)ds+ t

∫ t

0

∫ s

0

Bh,zz(s, z;
ˆ̂
θ(z), θ̂)dzds. (5.3.12)

The first term on the right-hand side of the above equation follows as:

t((u(·, t), θ̂)−mh((I
hu)(·, t), θ̂))

=
∑
K∈Ih

t
(
(u(·, t), θ̂)0,K −mK

h (I
hu(·, t), θ̂)

)
=
∑
K∈Ih

t((u(·, t)− Π0
ku(·, t), θ̂)0,K −mK

h (I
hu(·, t)− Π0

ku(·, t), θ̂))

≤ Ch2t(∥u∥2 + t−1∥u0∥)∥θ̂∥ By using (5.2.16)

≤ Ch2∥u0∥∥θ̂∥ By using (5.1.1). (5.3.13)

Now, integrating (5.3.12) from 0 to t, and then the using (5.3.13) and Cauchy Schwarz
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inequality completes the proof:

t∥θ̂∥2 +
∫ t

0

s|θ̂(s)|21ds ≤ Ch4t∥u0∥2.

Proof of the other follows from [63].

Theorem 5.3.1. Let u and uh be the solution of (5.0.2) and (5.1.1) respectively, Then

there exists a positive constant C, independent of h such that the following estimate holds

true:

∥u− uh∥ ≤ Ch2t−1∥u0∥. (5.3.14)

Proof. Write u−uh = u−Ihu+Ihu−uh =: ρ+θ. We already have the ρ(·, t) estimates.

Now to deal with θ(·, t), we use (5.0.2) and (5.1.1), along with the intermediate projection

(5.2.1) to arrive at:

mh(θt(·, t), vh) + Ah(θ(·, t), vh)−
∫ t

0

Bh(t, s; θ(·, s), vh)ds

= ((ut(·, t), vh)−mh((I
hu)t(·, t), vh)). (5.3.15)

Put vh = t3θ in (5.3.15), we get:

1

2

d

dt
(t3∥θ∥2) + cα∗∗t

3|θ|21

≤ 3

2
t2∥θ∥2 + t3((ut(·, t), θ)−mh((I

hu)t(·, t), θ)) + t3
∫ t

0

Bh(t, s; θ(·, s), θ)ds.

Integrating the above equation with respect to time form 0 to t, we have:

t3∥θ∥2 + 2cα∗∗

∫ t

0

s3|θ(·, s)|21ds

≤
∫ t

0

3s2∥θ(·, s)∥2ds+
∫ t

0

∫ s

0

s3Bh(s, z; θ(·, z), θ(·, s))dzds

+

(∫ t

0

s3((us(·, s), θ(·, s))−mh((I
hu)s(·, s), θ(·, s)))ds

)
. (5.3.16)
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To solve
(∫ t

0

s3((us(·, s), θ(·, s))−mh((I
hu)s(·, s), θ(·, s)))ds

)
, we proceed as:

(ut(·, t), θ(·, t))−mh((I
hu)t(·, t), θ(·, t))

=
∑
K∈Ih

(
(ut(·, t), θ(·, t))0,K −mK

h ((I
hu)t(·, t), θ(·, t))

)
=
∑
K∈Ih

(
(ut(·, t)− Π0

kut(·, t), θ(t))0,K −mK
h ((I

hu)t(·, t)− Π0
kut(·, t), θ(·, t))

)
≤ C(h2∥ut(·, t)∥2 + ∥Π0

kut(·, t)− (Ihu)t(·, t)∥)∥θ(·, t)∥

≤ Ch2t−2∥u0∥∥θ(·, t)∥ (By using Lemma 5.1.1).

Now,

∫ t

0

s3((ut(·, s), θ(·, ·, s))−mh((I
hu)t(·, s), θ(·, s)))ds

≤ Ch2
∫ t

0

s∥u0∥∥θ(·, s)∥ds

≤ C

(
h4t∥u0∥2 +

∫ t

0

s2∥θ(·, s)∥2ds
)

(By using Young’s inequality). (5.3.17)

So, (5.3.16) can be rewritten by using (5.3.17) as:

t3∥θ∥2 + 2cα∗∗

∫ t

0

s3|θ(·, s)|21ds

≤ C

(
h4t∥u0∥2 +

∫ t

0

s2∥θ(·, s)∥2ds+
∫ t

0

∫ s

0

s3Bh(s, z; θ(·, z), θ(·, s))dzds
)

≤ C

(
h4t∥u0∥2 +

∫ t

0

s2∥θ(·, s)∥2ds+
∫ t

0

s3Bh(s, s; θ̂(·, s), θ(·, s))ds

−
∫ t

0

s3Bh,s(s, s;
ˆ̂
θ(·, s), θ(·, s))ds+

∫ t

0

∫ s

0

s3Bh,zz(s, z;
ˆ̂
θ(·, z), θ(·, s))dzds.

Now, using Young’s inequality and kickback argument:

t3∥θ∥2 +
∫ t

0

s3|θ(·, s)|21ds ≤ C

(
h4t∥u0∥2 +

∫ t

0

(s2∥θ(·, s)∥2 + s|θ̂(s)|21 + | ˆ̂
θ(s)|21ds

)
.
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By using (5.3.3), (5.3.9) and (5.3.10), we arrive at:

t3∥θ∥2 +
∫ t

0

s3|θ(·, s)|21ds ≤ Ch4t∥u0∥2.

So,

∥θ(·, t)∥ ≤ Ch2t−1∥u0∥.

Use of the triangle inequality and (5.2.16) completes the proof of (5.3.14):

∥u− uh∥ ≤ Ch2t−1∥u0∥.

5.4 Conclusion
In this Chapter, we develop and analyze the confirming VEM for PIDE with non-smooth

initial data. Our approach involves iteratively applying the integral operator to derive

estimates for the integration of the intermediate projection denoted as Îhu. With the help

of estimates of Îhu, we derived the estimates of Ihu. Through a combination of regularity

results and intermediate projection estimates, we establish optimal error estimates on the

order of O(h2t−1).
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Two Mixed Virtual Element

Formulations for Parabolic

Integro-Differential Equations with

Nonsmooth Initial Data1

6.1 Introduction
This chapter presents and analyzes the two mixed virtual element formulations applied

to linear PIDEs (1.1.1) with f = 0, with non-smooth initial data i.e. u0 ∈ L2(D) and not

in H1(D). Along with the assumptions defined in Chapter 1, we consider the coefficient

b(x; t, s) and its higher-order derivatives up to the second order, with respect to the

variables t and s, are real-valued, bounded and, and smooth. In cases where the initial data

exhibits sufficient smoothness, the corresponding solution possesses certain regularities.

However, when dealing with non-smooth initial data, such as u0 ∈ L2(D), the solution to

1The substantial part of this chapter has been communicated as follows:
M Suthar, and S Yadav, “Two Mixed Virtual Element Formulations for Parabolic Integro-Differential
Equations with Nonsmooth Initial Data” (Communicated).
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(1.1.1) will no longer have the regularity observed in its parabolic counterpart, as detailed

in [62], because of this higher value of k will not help us in higher convergence, so we

consider k=1 only for the non-smooth initial data. This means that the memory term

plays a dominant role in these systems since it memorizes the singularities developed at t

= 0. Consequently, in such instances, the smoothness results presented in [74] become

inapplicable. Hence, we require a different approach for the non-smooth analysis. As we

know, we can proceed with two different formulations, one without a resolvent kernel

(6.1.1a)-(6.1.1b) and one with a resolvent kernel (6.1.2) given by Find (σ, p) : (0, T ] →

V ×Q such that:

(ut, ϕ)− (∇ · σ, ϕ) = 0 ∀ϕ ∈ Q, (6.1.1a)

(µσ,χ) + (u,∇ · χ)−
∫ t

0

((b0(x; t, s)u(s),∇ · χ) + (∇b0(x; t, s)u(s),χ))ds

= 0 ∀χ ∈ V , (6.1.1b)

and

(ut, ϕ)− (∇ · σ, ϕ) = 0 ∀ϕ ∈ Q,

(µσ,χ) +

∫ t

0

(K(t, s)σ(s),χ)ds+ (∇ · χ, u) = 0 ∀χ ∈ V .
(6.1.2)

The discrete formulation corresponding to (6.1.1a)-(6.1.1b) and (6.1.2) is given by Find

(uh,σh) ∈ Qk
h × V k

h such that:

(uh,t, ϕh)− (∇ · σh, ϕh) = 0 ∀ϕh ∈ Qk
h,

ah(σh,χh) + (uh,∇ · χh)−
∫ t

0

(b0(x; t, s)uh(s),∇ · χh)ds∫ t

0

(∇b0(x; t, s)uh(s),Π0
kχh)ds = 0 ∀χh ∈ V k

h .

(6.1.3)
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and

(uh,t, ϕh)− (∇ · σh, ϕh) = 0 ∀ϕh ∈ Qk
h,

ah(σh,χh) +

∫ t

0

Kh(t, s;σh(s),χh)ds+ (∇ · χh, uh) = 0 ∀χh ∈ V k
h ,

(6.1.4)

The treatment of PIDEs with non-smooth initial data remains unexplored within the context

of the VEM. While the literature has addressed the non-smooth analysis of the formulation

(6.1.2) for the FEM [14], the discussion on non-smooth analysis for the formulation

(6.1.1a)-(6.1.1b) is absent, even in the context of FEM.

1. For the formulation (6.1.1a)-(6.1.1b), our contributions are as follows:

• To tackle the integral term, a projection with the memory term (referred to

as mixed intermediate projection) is introduced, which helps in achieving the

optimal convergence of order O(h2t−1) for the unknown u.

• By the repeated use of the integral operator and the properties of L2- projection

and Fortin operator, optimal error estimate is obtained for the unknown σ of

order O(ht−1).

• Our primary contribution in this paper is to provide a comprehensive analysis

of the VEM, and that holds true for FEM also, for the formulation presented in

(6.1.1a). Significantly, this analysis addresses a void in the current literature, as

there is a notable absence of any chapter, including those related to the FEM.

2. For the formulation (6.1.2), our contributions are as follows:

• To tackle the integral term, a projection with the memory term (referred to as

mixed Ritz-Volterra projection) is introduced, which helps in achieving the

optimal convergence of order O(h2t−1) for the unknown u.

• By the repeated use of the integral operator and the properties of L2- projection

and Fortin operator, the optimal error estimate is obtained for the unknown σ

of order O(ht−1).
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3. Moreover, we aim to provide a comprehensive VEM analysis for both formulations.

Due to the presence of the term (b0(x; t, s)u(s),∇ · χ) within the integral, the

analysis of this formulation becomes complicated.

6.2 Mixed Virtual Element Formulation without Resol-

vent Kernel
Lemma 6.2.1. Let (u,σ) be the solution of (6.1.1a)-(6.1.1b)and u0 ∈ L2(D); Then the

following estimates hold for t ∈ (0, T ] and j ∈ {1, 2}:

1. t∥σ(t)∥2 +
∫ t

0

s∥us(s)∥2ds ≤ C∥u0∥2,

2. t2∥ut(t)∥2 +
∫ t

0

s2∥σs(s)∥2ds ≤ C∥u0∥2,

3. ∥û(t)∥2 + t∥u(t)∥2 ≤ C∥u0∥,

4. ∥ut(t)∥j ≤ Ct−(1+ j
2
)∥u0∥,

5. ∥∇ · σ̂∥ ≤ C∥u0∥.

Proof. Differentiate both (6.1.1a) and (6.1.1b) with respect to the variable t to obtain the

following:

(ptt, ϕ)− (∇ · σt, ϕ) = 0 ∀ϕ ∈ Q,(6.2.1a)

(µσt,χ) + (ut,∇ · χ)− d

dt

(∫ t

0

(b0(x; t, s)u(s),∇ · χ)ds
)

− d

dt

(∫ t

0

(∇b0(x; t, s)u(s),χ)ds
)

= 0 ∀χ ∈ V .(6.2.1b)

Substitute ϕ = t

(
ut −

d

dt

(∫ t

0

(b0(x; t, s)u(s))ds

))
in (6.1.1a) and χ = tσ in (6.2.1b).

Combine the resulting expressions and apply Young’s inequality to complete the proof of

1. Substitute ϕ = t2
(
ut −

d

dt

(∫ t

0

b0(x; t, s)u(s)ds

))
and χ = t2σt into (6.2.1a) and

(6.2.1b), respectively. Combine the resulting expressions and apply Young’s inequality to

complete the proof of 2. For the proofs of 3, 4 and 5 please refer to [14].

118



Chapter 6

Now, we proceed to establish optimal error estimates. This necessitates addressing the

memory term, for which we introduce a novel projection known as the mixed intermediate

projection.

6.2.1 Mixed Intermediate Projection

Define I Qu as in (4.2.1a) and (4.2.1b). To estimate ∥ut − I Qut∥ and ∥u− I Qu∥, our

primary emphasis will be on deriving the estimate for ∥û− Î Qu∥.

Theorem 6.2.1. For u(t) ∈ H1
0 (D) ∩H2(D), where t > 0, and with an initial condition

u0 ∈ L2(D), there exists a positive constant C independent of the parameter h, under

which the following estimate holds true:

∥û(t)− Î Qu(t)∥+ h∥σ̂(t)− Î Vσ(t)∥ ≤ Ch2∥u0∥. (6.2.2)

Proof. Consider

Θ := σ − I Vσ = σ −ΠF
hσ +Ψh where Ψh := ΠF

hσ − I Vσ ∈ V k
h ,

η := u− I Qu = u− Π0
ku+ νh where νh := Π0

ku− I Qu ∈ Qk
h.

First we prove that ∇ ·Ψh = 0,

∥∇ ·Ψh∥2 = (∇ · (ΠF
hσ − I Vσ),∇ ·Ψh)

= (∇ · (ΠF
hσ − σ),∇ ·Ψh) + (∇ · (σ − I Vσ),∇ ·Ψh)

= (Π0
k(∇ · σ)−∇ · σ,∇ ·Ψh) Using (1.5.8) and (4.2.1b)

= 0.

In a similar way, we can prove that ∇ · Ψ̂h = 0. Now, we define the dual problem:

−∇ · (a∇ξ) = Λ in D; ξ = 0 on ∂D, (6.2.3)

which satisfy the following regularity condition ∥ξ∥2 ≤ ∥Λ∥. Consider Φ = a∇ξ, then
the mixed variational formulation corresponding to (6.2.3) is; Find (Φ, ξ) ∈ V ×Q such

that:
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(µΦ,χ) + (ξ,∇ · χ) = 0 ∀χ ∈ V ,

−(∇ ·Φ, ϕ) = (Λ, ϕ) ∀ϕ ∈ Q.
(6.2.4)

Our aim is to determine ∥ν̂h∥. To achieve this, we integrate and rewrite (4.2.1a) and
(4.2.1b) as follows:

(µΘ̂,χh) + (∇ · χh, ν̂h) = F̂(χh) ∀χh ∈ V k
h ,

(∇ · Θ̂, ϕh) = 0 ∀qh ∈ Qk
h, (6.2.5)

where

F̂(χh) = ah(Î Vσ,χh)− (µÎ Vσ,χh)−
∫ t

0

∫ s

0

(
b0(x; s, z)(I

Qu− u)(z),∇ · χh

)
dzds

−
∫ t

0

∫ s

0

(
(∇b0(x; s, z)I Qu(z),Π0

kχh)− (∇b0(x; s, z)u(z),χh)
)
dzds.

Consider the dual problem (6.2.4) along with Λ = ν̂h. Substitute ϕ = ν̂h into (6.2.4), leads

to the following:

∥ν̂h∥2 =
(
ν̂h,−∇ · (ΠF

h a∇ξ)
)

= (µΘ̂,ΠF
h (a∇ξ))− F̂

(
ΠF

h (a∇ξ)
)

= (µΘ̂,ΠF
h (a∇ξ)− a∇ξ)− F̂

(
ΠF

h (a∇ξ)
)
+ (∇ · Θ̂,Π0

kξ − ξ)

≤ C
(
h∥Θ̂∥∥ξ∥2 + h2∥∇ · Θ̂∥∥ξ∥2 + F̂

(
ΠF

h (a∇ξ)
))
, (6.2.6)

where F̂
(
ΠF

h (a∇ξ)
)

can be solved as:

F̂(ΠF
h (a∇ξ))

=
(
ah(Î Vσ −Π0

kσ̂,Π
F
h (a∇ξ))− (µ(Î Vσ −Π0

kσ̂),Π
F
h (a∇ξ))

+ah(Π
0
kσ̂,Π

F
h (a∇ξ))− (µΠ0

kσ̂,Π
F
h (a∇ξ))

)
−
(∫ t

0

∫ s

0

(
b0(x; s, z)(I

Qu− u)(z),∇ ·ΠF
h (a∇ξ)

)
dzds

)
−
(∫ t

0

∫ s

0

(
(∇b0(x; s, z)I Qu(z),Π0

k(Π
F
h (a∇ξ))− (∇b0(x; s, z)u(z),ΠF

h (a∇ξ))
)
dzds

)
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= I + II + III, (6.2.7)

where

I =
(
ah(Î Vσ −Π0

kσ̂,Π
F
h (a∇ξ))− (µ(Î Vσ −Π0

kσ̂),Π
F
h (a∇ξ))

+ah(Π
0
kσ̂,Π

F
h (a∇ξ))− (µΠ0

kσ̂,Π
F
h (a∇ξ))

)
,

II =

(∫ t

0

∫ s

0

(
b0(x; s, z)(I

Qu− u)(z),∇ ·ΠF
h (a∇ξ)

)
dzds

)
,

III =

(∫ t

0

∫ s

0

(
(∇b0(x; s, z)I Qu(z),Π0

k(Π
F
h (a∇ξ))− (∇b0(x; s, z)u(z),ΠF

h (a∇ξ))
)
dzds

)
.

The initial expression I on the right-hand side of equation (6.2.7) can be addressed by

using (4.1.2) in the following manner:

|I| ≤ C(∥Î Vσ −Π0
kσ̂∥+ h|σ̂|1)∥Π0

k(Π
F
h (a∇ξ))−ΠF

h (a∇ξ)∥

≤ C
(
h∥Ψ̂h∥+ h2∥u0∥

)
∥ξ∥2 [Using Lemma 6.2.1]. (6.2.8)

For the second term on the right-hand side of equation (6.2.7), we proceed as follows:

|II| =
∫ t

0

((
b0(x; s, s)(Î Qu− û)(s),∇ ·ΠF

h (a∇ξ)
)

−
∫ s

0

(
b0z(x; s, z)(Î Qu− û)(z),∇ ·ΠF

h (a∇ξ)
)
dz

)
ds

≤ C

∫ t

0

(
h2∥û(s)∥2 + ∥ν̂h(s)∥+

∫ s

0

(
h2∥û(z)∥2 + ∥ν̂h(z)∥

)
dz

)
ds∥ξ∥2 [Using (1.5.7)]

≤ C

(
h2t∥u0∥+

∫ t

0

∥ν̂h(s)∥ds
)
∥ξ∥2. (6.2.9)

The third term on the right-hand side of equation (6.2.7) can be resolved through integration

by parts as follows:

|III|

=

∫ t

0

(
(∇b0(x; s, s)Î Qu(s),Π0

k(Π
F
h (a∇ξ)))− (∇b0(x; s, s)û(s),ΠF

h (a∇ξ))
)
ds
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−
∫ t

0

∫ s

0

(
(∇b0z(x; s, z)Î Qu(z),Π0

k(Π
F
h (a∇ξ)))− (∇b0z(x; s, z)û(z),ΠF

h (a∇ξ))
)
dzds

=

∫ t

0

(∇b0(x; s, s)(Î Qu− û)(s),Π0
k(Π

F
h (a∇ξ)))ds

−
∫ t

0

∫ s

0

(
∇b0z(x; s, z)(Î Qu− û)(z),Π0

k(Π
F
h (a∇ξ))

)
dzds

+

∫ t

0

(∇b0(x; s, s)û(s)−Π0
k(∇b0(x; s, s)û(s)),Π0

k(Π
F
h (a∇ξ))−ΠF

h (a∇ξ))ds

−
∫ t

0

∫ s

0

(
∇b0z(x; s, z)û(z)−Π0

k(∇b0z(x; s, z)û(z)),Π0
k(Π

F
h (a∇ξ))−ΠF

h (a∇ξ)
)
dzds

≤ C∇b0,∇b0s

∫ t

0

(
∥ν̂h(s)∥+ h2|û(s)|2

)
ds∥ξ∥2

≤ C

(
h2t∥u0∥+

∫ t

0

∥ν̂h(s)∥ds
)
∥ξ∥2 [Using Lemma 6.2.1]. (6.2.10)

Using (6.2.8)-(6.2.10) in (6.2.7), we arrive at the following:

F̂(ΠF
h (a∇ξ)) ≤ C

(
h∥Ψ̂h∥+ h2∥u0∥+

∫ t

0

∥ν̂h(s)∥ds
)
∥ξ∥2. (6.2.11)

To derive an estimate for ∥∇ · Θ̂∥, we proceed as follows:

∥∇ · Θ̂∥2 = (∇ · Θ̂,∇ · (σ̂ −ΠF
h σ̂) +∇ · (ΠF

h σ̂ − Î Vσ))

≤ ∥∇ · Θ̂∥∥∇ · (σ̂ −ΠF
h σ̂)∥ [Using (6.2.5)]

∥∇ · Θ̂∥ ≤ C∥∇ · σ̂∥

≤ C∥u0∥ [Using Lemma 6.2.1]. (6.2.12)

Now, substitute (6.2.11), (6.2.12) in (6.2.6) , and use Grönwall’s lemma to arrive at the
following:

∥ν̂h∥ ≤ C
(
h2∥u0∥+ h∥Θ̂∥

)
. (6.2.13)

From the definition of mixed intermediate projection (4.2.1a), we observe:

ah(Ψh,χh) = [ah(Π
F
hσ,χh)− (µσ,χh)] + (I Qu− u,∇ · χh)
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+

∫ t

0

(
b0(x; t, s)(u− I Qu)(s),∇ · χh

)
ds

−
∫ t

0

[
(∇b0(x; t, s)I Qu(s),Π0

kχh)− (∇b0(x; t, s)u(s),χh)
]
ds.

(6.2.14)

To estimate ∥Ψ̂h∥, we proceed by integrating (6.2.14) as:

ah(Ψ̂h,χh) = [ah(Π
F
h σ̂,χh)− (µσ̂,χh)] + (Î Qu− û,∇ · χh)

+

(∫ t

0

∫ s

0

(
b0(x; s, z)(u− I Qu)(z),∇ · χh

)
dzds

)
−
(∫ t

0

∫ s

0

[
(∇b0(x; s, z)I Qu(z),Π0

kχh)− (∇b0(x; s, z)u(z),χh)
]
dzds

)
.

(6.2.15)

To deal with the first expression on the right-hand side of (6.2.15), we use Lemma 6.2.1
to arrive at the following:

ah(Π
F
h σ̂,χh)− (µσ̂,χh)

= ah(Π
F
h σ̂ −Π0

kσ̂,χh)− (µ(σ̂ −Π0
kσ̂),χh) + ah(Π

0
kσ̂,χh)− (µΠ0

kσ̂,χh)

≤ C(∥σ̂ −Π0
kσ̂∥+ ∥ΠF

h σ̂ −Π0
kσ̂∥+ h|σ̂|1)∥χh∥ [Using (3.1.3) and Lemma 4.1.1]

≤ Ch∥u0∥∥χh∥ [Using (1.5.7) and Lemma 6.2.1]. (6.2.16)

The last term on the right-hand side of equation (6.2.15) can be resolved in a similar
manner as in equation (6.2.10), resulting in:∫ t

0

∫ s

0

(
(∇b0(x; s, z)I Qu(z),Π0

kχh)− (∇b0(x; s, z)u(z),χh)
)
dzds

≤ C

(
h2t∥u0∥+

∫ t

0

∥ν̂h(s)∥ds
)
∥χh∥. (6.2.17)

Substitute χh = Ψ̂h into (6.2.15), then utilize (3.1.3), (6.2.16), (6.2.17), and ∇ · Ψ̂h = 0

to obtain:

α1∥Ψ̂h∥2 ≤ C

(
h∥u0∥+ h2t∥u0∥+

∫ t

0

∥ν̂h(s)∥ds
)
∥Ψ̂h∥.
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Use of the triangle inequality along with (1.5.9) in the above equation gives us the
following:

∥Θ̂∥ ≤ C

(
h∥u0∥+

∫ t

0

∥ν̂h(s)∥ds
)
. (6.2.18)

Put (6.2.13) in (6.2.18) followed by the use of Grönwall’s lemma gives us the following:

∥Θ̂∥ ≤ Ch∥u0∥. (6.2.19)

Use of (6.2.19) in (6.2.13) yields:

∥ν̂h∥ ≤ Ch2∥u0∥. (6.2.20)

Theorem 6.2.2. For u(t) ∈ H1
0 (D) ∩H2(D), where t > 0, and with an initial condition

u0 ∈ L2(D), there exists a positive constant C independent of the parameter h, under

which the following estimates hold:

∥u(t)− I Qu(t)∥+ h∥σ(t)− I Vσ(t)∥ ≤ Ch2t−1∥u0∥. (6.2.21)

Proof. For the proof of ∥Ψh∥, we proceed by using (6.2.14). For the first and last expres-

sion on the right-hand side of (6.2.14), we follow a similar approach as in (6.2.16) and

(6.2.10) and arrive at the following:

ah(Π
F
hσ,χh)− (µσ,χh) ≤ Cht−1∥u0∥∥χh∥, (6.2.22)∫ t

0

[(∇b0(x; t, s)I Qu(s),Π0
kχh)− (∇b0(x; t, s)u(s),χh)]ds

≤ C

(
h2∥u0∥+ ∥ν̂h∥+

∫ t

0

∥ν̂h(s)∥ds
)
∥χh∥. (6.2.23)

Substitute χh = Ψh into (6.2.14), then utilize (3.1.3), (6.2.22), (6.2.23), the boundedness

of b0(x; t, s), and the fact that ∇ ·Ψh = 0, to obtain the following:

∥Ψh∥ ≤ C

(
ht−1∥u0∥+ h2∥u0∥+ ∥ν̂h∥+

∫ t

0

∥ν̂h(s)∥ds
)
. (6.2.24)
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Use of the triangle inequality, (6.2.20) and (1.5.9) in the above equation to arrive at the

following:

∥Θ∥ ≤ Cht−1∥u0∥. (6.2.25)

For the estimate of ∥νh∥, we rewrite (4.2.1a) and (4.2.1b) as:

(µΘ,χh) + (∇ · χh, νh) = F(χh) ∀χh ∈ V k
h ,

(∇ ·Θ, ϕh) = 0 ∀qh ∈ Qk
h,

where

F(χh) = ah(I
Vσ,χh)− (µI Vσ,χh)−

∫ t

0

(b0(x; t, s)(I
Qu− u)(s),∇ · χh)ds

−
∫ t

0

((∇b0(x; t, s)I Qu(s),Π0
kχh)− (∇b0(x; t, s)u(s),χh))ds.

Now, consider the dual problem (6.2.3) with Λ = νh and then put ϕ = νh in (6.2.4), to

arrive at the following:

∥νh∥2 = (µΘ,ΠF
h (a∇ξ))−F(ΠF

h (a∇ξ))

≤ C
(
h∥Θ∥∥ξ∥2 + h2∥∇ ·Θ∥∥ξ∥2 + F(ΠF

h (a∇ξ))
)
. (6.2.26)

The term F(ΠF
h (a∇ξ)) can be solved as:

F(ΠF
h (a∇ξ))

=
(
ah(I

Vσ −Π0
kσ,Π

F
h (a∇ξ))− (µ(I Vσ −Π0

kσ),Π
F
h (a∇ξ))

+ah(Π
0
kσ,Π

F
h (a∇ξ))− (µΠ0

kσ,Π
F
h (a∇ξ))

)
−
(∫ t

0

(b0(x; t, s)(I
Qu− u)(s),∇ ·ΠF

h (a∇ξ))ds
)

−
(∫ t

0

(
(∇b0(x; t, s)I Qu(s),Π0

k(Π
F
h (a∇ξ))− (∇b0(x; t, s)u(s),ΠF

h (a∇ξ))
)
ds

)
= IV + V + V I, (6.2.27)
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where

IV =
(
ah(I

Vσ −Π0
kσ,Π

F
h (a∇ξ))− (µ(I Vσ −Π0

kσ),Π
F
h (a∇ξ))

+ah(Π
0
kσ,Π

F
h (a∇ξ))− (µΠ0

kσ,Π
F
h (a∇ξ))

)
,

V =

(∫ t

0

(b0(x; t, s)(I
Qu− u)(s),∇ ·ΠF

h (a∇ξ))ds
)
,

V I =

(∫ t

0

(
(∇b0(x; t, s)I Qu(s),Π0

k(Π
F
h (a∇ξ))− (∇b0(x; t, s)u(s),ΠF

h (a∇ξ))
)
ds

)
.

The initial expression on the right-hand side of equation (6.2.27) can be addressed by

using (4.1.2) in the following manner:

|IV | ≤ C
(
∥I Vσ −Π0

kσ∥+ h|σ|1
)
∥Π0

k(Π
F
h (a∇ξ))−ΠF

h (a∇ξ)∥

≤ Ch2t−1∥u0∥∥ξ∥2 [Using (6.2.24) and Lemma 6.2.1]. (6.2.28)

The second and the third term on the right-hand side of the (6.2.27) can be solved by
using integration by parts and proceed in a similar manner as (6.2.9) and (6.2.10):

|V | ≤ Ch2∥u0∥∥ξ∥2, (6.2.29)

|V I| ≤ Ch2∥u0∥∥ξ∥2. (6.2.30)

For the estimate of ∇ ·Θ, we proceed in a similar way as (6.2.12) and use Lemma 6.2.1
to arrive at the following:

∥∇ ·Θ∥ ≤ Ct−1∥u0∥. (6.2.31)

Now, using (6.2.27)-(6.2.31) in (6.2.26) to achieve:

∥νh∥ ≤ Ch2t−1∥u0∥.

Use of the triangle inequality and (1.5.7) completes the proof:

∥η∥ ≤ Ch2t−1∥u0∥.
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Theorem 6.2.3. For u(t) ∈ H1
0 (D)∩H2(D), t > 0, with an initial condition u0 ∈ L2(D),

then there exists a positive constant C that is not dependent on the parameter h, and under

these conditions, the following estimates are valid:

∥ut(t)− I Qut(t)∥+ h∥σt(t)− I Vσt(t)∥ ≤ Ch2t−2∥u0∥. (6.2.32)

Proof. For the proof of (6.2.32), we differentiate (6.2.14) to achieve:

ah(Ψht,χh) =
(
ah(Π

F
hσt,χh)− (µσt,χh)

)
+ (b0(x; t, t)(u− I Qu)(t),∇ · χh)

+ (I Qut − ut,∇ · χh)−
∫ t

0

((b0t(x; t, s)(u− I Qu)(s),∇ · χh)ds

−
(
(∇b0(x; t, t)I Qu(t),Π0

kχh)− (∇b0(x; t, t)u(t),χh)
)

+

∫ t

0

(
(∇b0t(x; t, s)I Qu(s),Π0

kχh)− (∇b0t(x; t, s)u(s),χh)
)
ds.

Now, we follow the similar arguments as in Theorem 6.2.2 to achieve:

∥Θ∥ ≤ Cht−2∥u0∥.

For the estimate of νh,t, differentiate (4.2.1a)-(4.2.1b) to obtain:

(µΘt,χh) + (∇ · χh, νht) = Ft(χh) ∀χh ∈ V k
h ,

(∇ ·Θt, ϕh) = 0 ∀qh ∈ Qk
h,

where

Ft(χh) = ah(I
Vσt,χh)− (µI Vσt,χh)− (b0(x; t, t)(I

Qu− u)(t),∇ · χh)

+

∫ t

0

(b0t(x; t, s)(I
Qu− u)(s),∇ · χh)ds

−
(
(∇b0(x; t, t)I Qu(t),Π0

kχh)− (∇b0(x; t, t)u(t),χh)
)
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+

∫ t

0

(
(∇b0t(x; t, s)I Qu(s),Π0

kχh)− (∇b0t(x; t, s)u(s),χh)
)
ds.

Consider the dual problem (6.2.3) with Λ = νh,t and proceed as in Theorem 6.2.2 to

complete the proof of (6.2.32).

6.2.2 A prior Error Estimates

Writing u− uh =
(
u− I Qu

)
+
(
I Qu− uh

)
=: η + ηh and σ − σh =

(
σ − I Vσ

)
+(

I Vσ − σh

)
=: Θ +Θh. Since, we already have the estimates for ∥η∥ and ∥Θ∥, our

goal is to determine ∥ηh∥ and ∥Θh∥. To proceed, we use (6.1.1a)-(6.1.1b)and (6.1.3) to

obtain:

(ηh,t, ϕh)− (∇ ·Θh, ϕh) = −(ηt, ϕh), (6.2.33a)

ah(Θh,χh) + (ηh,∇ · χh) =

∫ t

0

(b0(x; t, s)ηh(s),∇ · χh)ds

+

∫ t

0

(∇b0(x; t, s)ηh(s),Π0
kχh)ds. (6.2.33b)

Integrate (6.2.33a) and (6.2.33b) from 0 to t to obtain:

(ηh, ϕh)− (∇ · Θ̂h, ϕh) = −(η, ϕh), (6.2.34a)

ah(Θ̂h,χh) + (η̂h,∇ · χh)−
(
(b0(x; t, t)̂̂ηh,∇ · χh) + (∇b0(x; t, t)̂̂ηh,Π0

kχh)
)

+ 2

∫ t

0

(
(b0s(x; s, s)̂̂ηh(s),∇ · χh) + (∇b0s(x; s, s)̂̂ηh(s),Π0

kχh)
)
ds

−
∫ t

0

∫ s

0

(
(b0zz(x; s, z)̂̂ηh(z),∇ · χh) + (∇b0zz(x; s, z)̂̂ηh(z),Π0

kχh)
)
dzds = 0.

(6.2.34b)

Again integrating (6.2.34a) and (6.2.34b) to obtain:

(η̂h, ϕh)− (∇ · ̂̂Θh, ϕh) = −(η̂, ϕh), (6.2.35a)

ah(
̂̂
Θh,χh) + (̂̂ηh,∇ · χh)−

∫ t

0

(
(b0(x; s, s)̂̂ηh(s),∇ · χh) + (∇b0(x; s, s)̂̂ηh(s),Π0

kχh)
)
ds
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+ 2

∫ t

0

∫ s

0

(
(b0z(x; z, z)̂̂ηh(z),∇ · χh) + (∇b0z(x; z, z)̂̂ηh(z),Π0

kχh)
)
dzds

−
∫ t

0

∫ s

0

∫ z

0

(
(b0z′z′(x; z, z

′)̂̂ηh(z′),∇ · χh) + (∇b0z′z′(x; z, z′)̂̂ηh(z′),Π0
kχh)

)
dz′dzds = 0.

(6.2.35b)

6.2.3 Error Estimates for u− uh

First, we prove some lemmas that will be used subsequently to prove ∥u− uh∥:

Lemma 6.2.2. Let η̂h and ̂̂ηh satisfy (6.2.34b) and (6.2.35b), then there exists a positive

constant C, such that the following estimates hold true:

∥̂̂ηh(t)∥2 + ∫ t

0

∥ ̂̂Θh(s)∥2ds ≤ Ch4t∥u0∥2, (6.2.36)∫ t

0

∥η̂h(s)∥2ds+ ∥ ̂̂Θh(t)∥2 ≤ Ch4t∥u0∥2. (6.2.37)

Proof. Put χh =
̂̂
Θh and ϕh = ̂̂ηh − ∫ t

0

Π0
k(b0(x; s, s)

̂̂ηh(s))ds
+2

∫ t

0

∫ s

0

Π0
k(b0z(x; z, z)

̂̂ηh(z))dzds− ∫ t

0

∫ s

0

∫ z

0

Π0
k(b0z′z′(x; z, z

′)̂̂ηh(z′))dz′dzds in (6.2.35b)

and (6.2.35a) and to arrive at the following:

(η̂h, ̂̂ηh) + ah(
̂̂
Θh,

̂̂
Θh)

= −
(
η̂, ̂̂ηh − ∫ t

0

Π0
k(b0(x; s, s)

̂̂ηh(s))ds+ 2

∫ t

0

∫ s

0

Π0
k(b0z(x; z, z)

̂̂ηh(z))dzds)
+

(
η̂,

∫ t

0

∫ s

0

∫ z

0

Π0
k(b0z′z′(x; z, z

′)̂̂ηh(z′))dz′dzds)
+

(
η̂h,

∫ t

0

Π0
k(b0(x; s, s)

̂̂ηh(s))ds− 2

∫ t

0

∫ s

0

Π0
k(b0z(x; z, z)

̂̂ηh(z))dzds)
+

(
η̂h,

∫ t

0

∫ s

0

∫ z

0

Π0
k(b0,z′,z′(x; z, z

′)̂̂ηh(z′))dz′dzds)
+

∫ t

0

∫ s

0

∫ z

0

(∇b0z′z′(x; z, z′)̂̂ηh(z′),Π0
k
̂̂
Θh)dz

′dzds

+

∫ t

0

(∇b0(x; s, s)̂̂ηh(s),Π0
k
̂̂
Θh)ds− 2

∫ t

0

∫ s

0

(∇b0z(x; z, z)̂̂ηh(z),Π0
k
̂̂
Θh)dzds.
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Employ (3.1.3), apply Young’s inequality, consider the boundedness of t, and subsequently

utilize the kickback argument to rewrite the above equation as:

d

dt
∥̂̂ηh∥2 + ∥ ̂̂Θh∥2 ≤ C

(
∥η̂∥2 + ∥η̂h∥2 + ∥̂̂ηh∥2 + ∫ t

0

∥̂̂ηh(s)∥2ds) .
By integrating the above equation from 0 to t and then applying Grönwall’s lemma, we

obtain the following:

∥̂̂ηh∥2 + ∫ t

0

∥ ̂̂Θh(s)∥2ds ≤ C

∫ t

0

(
∥η̂(s)∥2 + ∥η̂h(s)∥2

)
ds.

Use of (6.2.2) gives us the following:

∥̂̂ηh∥2 + ∫ t

0

∥ ̂̂Θh(s)∥2ds ≤ C

(
h4t∥u0∥2 +

∫ t

0

∥η̂h(s)∥2
)
ds. (6.2.38)

Put ϕh = η̂h − Π0
k(b0(x; t, t)

̂̂ηh) + 2

∫ t

0

Π0
k(b0s(x; s, s)

̂̂ηh(s))ds
−
∫ t

0

∫ s

0

Π0
k(b0zz(x; s, z)

̂̂ηh(z))dzds and χh =
̂̂
Θh in (6.2.35a) and (6.2.34b) to arrive at

the following:

∥η̂h∥2 + ah(Θ̂h,
̂̂
Θh)

= (η̂h,Π
0
k(b0(x; t, t)

̂̂ηh)− 2

∫ t

0

Π0
k(b0s(x; s, s)

̂̂ηh(s))ds+ ∫ t

0

∫ s

0

Π0
k(b0zz(x; s, z)

̂̂ηh(z))dzds)
− (η̂, η̂h − Π0

k(b0(x; t, t)
̂̂ηh) + 2

∫ t

0

Π0
k(b0s(x; s, s)

̂̂ηh(s))ds
−
∫ t

0

∫ s

0

Π0
k(b0zz(x; s, z)

̂̂ηh(z))dzds) + (∇b0(x; t, t)̂̂ηh,Π0
k
̂̂
Θh)

− 2

∫ t

0

(∇b0s(x; s, s)̂̂ηh(s),Π0
k
̂̂
Θh)ds+

∫ t

0

∫ s

0

(∇b0zz(x; s, z)̂̂ηh(z),Π0
k
̂̂
Θh)dzds.

Employ (3.1.3), apply Young’s inequality, consider the boundedness of t, and subsequently

utilize the kickback argument to rewrite the above equation as:

∥η̂h∥2 +
α1

2

d

dt
∥ ̂̂Θh∥2 ≤ C

(
∥η̂∥2 + ∥̂̂ηh∥2 + ∥ ̂̂Θh∥2 +

∫ t

0

∥̂̂ηh(s)∥2ds) .
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By integrating the above equation from 0 to t and then applying Grönwall’s lemma, we

obtain the following:

∫ t

0

∥η̂h(s)∥2ds+ ∥ ̂̂Θh(s)∥2 ≤ C

∫ t

0

(
∥η̂(s)∥2 + ∥̂̂ηh(s)∥2) ds.

Use of (6.2.2) and (6.2.38) followed by Grönwall’s lemma completes the proof of (6.2.37).

Use of (6.2.37) in (6.2.38) completes the proof of (6.2.36).

Lemma 6.2.3. Let ηh and Θ̂h satisfy (6.2.33b) and (6.2.34a), then there exists a positive

constant C, such that the following estimates hold true:

t2∥Θ̂h(t)∥2 + t∥η̂h(t)∥2 +
∫ t

0

s2∥ηh(s)∥2ds ≤ Ch4t∥u0∥2.

Proof. Put ϕh = t2
(
ηh −

∫ t

0

Π0
k(b0(x; t, s)ηh(s))ds

)
and χh = t2Θ̂h in (6.2.34a) and

(6.2.33b) to arrive at the following:

t2∥ηh∥2 +
α1

2

d

dt
t2∥Θ̂h∥2

≤ −t2
(
η, ηh −

∫ t

0

Π0
k(b0(x; t, s)ηh(s))ds

)
+ t2

(
ηh,

∫ t

0

Π0
k(b0(x; t, s)ηh(s))ds

)
+ tah(Θ̂h, Θ̂h) + t2

∫ t

0

(∇b0(x; t, s)ηh(s),Π0
kΘ̂h)ds.

Using (3.1.3), Young’s inequality and integration by parts gives us the following:

t2∥ηh∥2 +
α1

2

d

dt
t2∥Θ̂h∥2

≤ tah(Θ̂h, Θ̂h)− t2
(
η, ηh − Π0

k(b0(x; t, t)η̂h(t)) +

∫ t

0

Π0
k(b0s(x; t, s)η̂h(s))ds

)
+ t2

(
ηh,Π

0
k(b0(x; t, t)η̂h(t))−

∫ t

0

Π0
k(b0s(x; t, s)η̂h(s))ds

)
+ t2

(
∇b0(x; t, t)η̂h(t)−

∫ t

0

∇b0s(x; t, s)η̂h(s)ds,Π0
kΘ̂h

)
. (6.2.39)
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Now, put ϕh = t

(
η̂h − Π0

k(b0(x; t, t)
̂̂ηh) + 2

∫ t

0

Π0
k(b0s(x; s, s)

̂̂ηh(s))ds
−
∫ t

0

∫ s

0

Π0
k(b0zz(x; s, z)

̂̂ηh(z))dzds) and χh = tΘ̂h in (6.2.34a) and (6.2.34b) and use

the fact
d

dt
t(η̂h, η̂h) = (η̂h, η̂h) + 2t(ηh, η̂h) to arrive at the following:

1

2

d

dt
t∥η̂h∥2 −

1

2
∥η̂h∥2 + tah(Θ̂h, Θ̂h)

≤ t(∇b0(x; t, t)̂̂ηh,Π0
kΘ̂h)− 2t

∫ t

0

(∇b0s(x; s, s)̂̂ηh(s),Π0
kΘ̂h)ds

+ t

∫ t

0

∫ s

0

(∇b0zz(x; s, z)̂̂ηh(z),Π0
kΘ̂h)dzds+ t

(
ηh,

∫ t

0

∫ s

0

Π0
k(b0zz(x; s, z)

̂̂ηh(z))dzds)
+ t

(
ηh,Π

0
k(b0(x; t, t)

̂̂ηh)− 2

∫ t

0

Π0
k(b0s(x; s, s)

̂̂ηh(s))ds)
− t

(
η, η̂h − Π0

k(b0(x; t, t)
̂̂ηh) + 2

∫ t

0

Π0
k(b0s(x; s, s)

̂̂ηh(s))ds)
+ t

(
η,

∫ t

0

∫ s

0

Π0
k(b0zz(x; s, z)

̂̂ηh(z))dzds) . (6.2.40)

Add (6.2.39) and (6.2.40) to arrive at:

α1

2

d

dt
t2∥Θ̂h∥2 +

1

2

d

dt
t∥η̂h∥2 + t2∥ηh∥2

≤ 1

2
∥η̂h∥2 + tα2∥Θ̂h∥2 − t2

(
η, ηh − Π0

k(b0(x; t, t)η̂h(t)) +

∫ t

0

Π0
k(b0s(x; t, s)η̂h(s))ds

)
+ t2

(
ηh,Π

0
k(b0(x; t, t)η̂h(t))−

∫ t

0

Π0
k(b0s(x; t, s)η̂h(s))ds

)
+ t2

(
∇b0(x; t, t)η̂h(t)−

∫ t

0

∇b0s(x; t, s)η̂h(s)ds,Π0
kΘ̂h

)
+ t(∇b0(x; t, t)̂̂ηh,Π0

kΘ̂h)− 2t

∫ t

0

(∇b0s(x; s, s)̂̂ηh(s),Π0
kΘ̂h)ds

+ t

∫ t

0

∫ s

0

(∇b0zz(x; s, z)̂̂ηh(z),Π0
kΘ̂h)dzds

+ t

(
ηh,

∫ t

0

∫ s

0

Π0
k(b0zz(x; s, z)

̂̂ηh(z))dzds)
+ t

(
ηh,Π

0
k(b0(x; t, t)

̂̂ηh)− 2

∫ t

0

Π0
k(b0s(x; s, s)

̂̂ηh(s))ds)
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− t

(
η, η̂h − Π0

k(b0(x; t, t)
̂̂ηh) + 2

∫ t

0

Π0
k(b0s(x; s, s)

̂̂ηh(s))ds)
+ t

(
η,

∫ t

0

∫ s

0

Π0
k(b0zz(x; s, z)

̂̂ηh(z))dzds) .
Employ (3.1.3), apply Young’s inequality, consider the boundedness of t, and subsequently

utilize the kickback argument to rewrite the above equation as:

d

dt
t2∥Θ̂h∥2 +

d

dt
t∥η̂h∥2 + t2∥ηh∥2

≤ C

(
t2∥η∥2 + ∥η̂h∥2 + ∥̂̂ηh∥2 + t2∥Θ̂h∥2 +

∫ t

0

∥η̂h(s)∥2ds+
∫ t

0

∥̂̂ηh(s)∥2ds
+

∫ t

0

∫ s

0

∥̂̂ηh(z)∥2dzds) .
By integrating the above equation from 0 to t and then applying Grönwall’s lemma, we

obtain the following:

t2∥Θ̂h∥2 + t∥η̂h∥2 +
∫ t

0

s2∥ηh(s)∥2ds

≤ C

∫ t

0

(
∥η̂h(s)∥2 + s2∥η(s)∥2 + ∥η̂h(s)∥2 + ∥̂̂ηh(s∥2) ds.

Using Lemma 6.2.2 and (6.2.21), we obtain:

t2∥Θ̂h∥2 + t∥η̂h∥2 +
∫ t

0

s2∥ηh(s)∥2ds ≤ Ch4t∥u0∥2.

Theorem 6.2.4. Let (u,σ) and (uh,σh) satisfy (6.1.1a)-(6.1.1b) and (6.1.3), respectively.

Then, there exists a positive constant C independent of the h such that for t ∈ (0, T ], the

following estimate holds true:

∥u(t)− uh(t)∥ ≤ Ch2t−1∥u0∥.

Proof. By substituting ϕh = t3
(
ηh −

∫ t

0

Π0
k (b0(x; t, s)ηh(s)) ds

)
into (6.2.33a) and
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χh = t3Θh into (6.2.33b), and then adding them together, gives us:

t3(ηh,t, ηh) + t3ah(Θh,Θh)

= −t3
(
ηt, ηh −

∫ t

0

Π0
k (b0(x; t, s)ηh(s)) ds

)
+ t3

∫ t

0

(∇b0(x; t, s)ηh(s),Π0
kΘh)ds

+ t3
(
ηh,t,

∫ t

0

Π0
k (b0(x; t, s)ηh(s)) ds

)
.

Using (3.1.3), we rewrite the above equation as:

1

2

d

dt
t3∥ηh∥2 + α1t

3∥Θh∥2

≤ 3

2
t2∥ηh∥2 − t3

(
ηt, ηh −

∫ t

0

Π0
k (b0(x; t, s)ηh(s)) ds

)
+ t3

∫ t

0

(∇b0(x; t, s)ηh(s),Π0
kΘh)ds+ t3

(
ηh,t,

∫ t

0

Π0
k (b0(x; t, s)ηh(s)) ds

)
.

(6.2.41)

As we know

d

dt

(
t3
(
ηh,

∫ t

0

Π0
k (b0(x; t, s)ηh(s)) ds

))
= t3

(
ηh,t

∫ t

0

Π0
k(b0(x; t, s)ηh(s)ds)

)
+ 3t2

(
ηh,Π

0
k(b0(x; t, t)η̂h(t))−

∫ t

0

Π0
k(b0s(x; t, s)η̂h(s))ds

)
+ t3

(
ηh,Π

0
k(b0(x; t, t)ηh(t)) + Π0

k(b0t(x; t, t)η̂h(t))−
∫ t

0

Π0
k(b0,ts(x; t, s)η̂h(s))ds

)
.

(6.2.42)

Using (6.2.42) in (6.2.41), we arrive at the following:

1

2

d

dt
(t3∥ηh∥2) + α1t

3∥Θh∥2

≤ 3

2
t2∥ηh∥2 − t3

(
ηt, ηh − Π0

k(b0(x; t, t)η̂h)(t) +

∫ t

0

Π0
k(b0s(x; t, s)η̂h(s))ds

)
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+ t3
(
∇b0(x; t, t)η̂h(t),Π0

kΘh)−
∫ t

0

(∇b0s(x; t, s)η̂h(s),Π0
kΘh)ds

)
+
d

dt

(
t3
(
ηh,Π

0
k(b0(x; t, t)η̂h(t))−

∫ t

0

Π0
k(b0s(x; t, s)η̂h(s))ds

))
− 3t2

(
ηh,Π

0
k(b0(x; t, t)η̂h(t))−

∫ t

0

Π0
k(b0s(x; t, s)η̂h(s))ds

)
− t3

(
ηh,Π

0
k(b0(x; t, t)ηh(t)) + Π0

k(b0t(x; t, t)η̂h(t))−
∫ t

0

Π0
k(b0,ts(x; t, s)η̂h(s))ds

)
.

Using Young’s inequality followed by the kickback argument and integration from 0 to t,

we arrive at the following:

t3∥ηh∥2 +
∫ t

0

s3∥Θh(s)∥2ds

≤ C

(∫ t

0

(s2∥ηh(s)∥2 + s4∥ηs(s)∥2 + ∥η̂h(s)∥2 + s2
∫ s

0

∥η̂h(z)∥2dz)ds+ t3
∫ t

0

∥η̂h(s)∥2ds
)
.

Using (6.2.32), Lemma 6.2.2 and Lemma 6.2.3, we arrive at the following:

t3∥ηh∥2 +
∫ t

0

s3∥Θh(s)∥2ds ≤ Ch4t∥u0∥2.

Now, using the triangle inequality, (6.2.21) in the above equation completes the proof.

6.2.4 Estimates for σ(t)− σh(t)

In this subsection, we present the analysis to obtain the L2- error estimate for the approxi-

mation of σ.

σ − σh =
(
σ −ΠF

hσ
)
+
(
ΠF

hσ − σh

)
=:ϖ +ϖh,

u− uh =
(
u− Π0

ku
)
+
(
Π0

ku− uh
)
=: ζ + ζh.

Using (6.1.1a), (6.1.1b)and (6.1.3) along with the properties of Π0
k and ΠF

h in the follow-
ing manner:

(ζh,t, ϕh)− (∇ ·ϖh, ϕh) = 0 ∀ϕh ∈ Qk
h, (6.2.43a)
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(µσ,χh)− ah(Π
F
hσ,χh) + (ζh,∇ · χh)−

∫ t

0

(b0(x; t, s)(u− uh)(s),∇ · χh)ds

+ ah(ϖh,χh)−
∫ t

0

(
(∇b0(x; t, s)u(s),χh)− (∇b0(x; t, s)uh(s),Π0

kχh)
)
ds

= 0 ∀χh ∈ V k
h . (6.2.43b)

Integrating (6.2.43a) and (6.2.43b) from 0 to t to arrive at the following:

(ζh, ϕh)− (∇ · ϖ̂h, ϕh) = 0 ∀ϕh ∈ Qk
h, (6.2.44a)

(µσ̂,χh)− ah(Π
F
h σ̂,χh) + (ζ̂h,∇ · χh)−

∫ t

0

(b0(x; s, s)(û− ûh)(s),∇ · χh)ds

+

∫ t

0

∫ s

0

(b0z(x; s, z)(û− ûh)(z),∇ · χh)dzds

−
∫ t

0

(
(∇b0(x; s, s)û(s),χh)− (∇b0(x; s, s)ûh(s),Π0

kχh)
)
d+ ah(ϖ̂h,χh)s

+

∫ t

0

∫ s

0

(
(∇b0z(x; s, z)û(z),χh)− (∇b0z(x; s, z)ûh(z),Π0

kχh)
)
dzds = 0 ∀χh ∈ V k

h .

(6.2.44b)

Differentiate (6.2.43b) with respect to t to arrive at the following:

(µσt,χh)− ah(Π
F
hσt,χh) + (ζh,t,∇ · χh)− (b0(x; t, t)(u− uh)(t),∇ · χh)

−
∫ t

0

(b0t(x; t, s)(u− uh)(s),∇ · χh)ds

+ ah(ϖh,t,χh)−
(
(∇b0(x; t, t)u(t),χh)− (∇b0(x; t, t)uh(t),Π0

kχh)
)

−
∫ t

0

(
(∇b0t(x; t, s)u(s),χh)− (∇b0t(x; t, s)uh(s),Π0

kχh)
)
ds = 0 ∀χh ∈ V k

h .

(6.2.45)

First, we establish several lemmas that will be utilized later in the proof of ∥σ(t)−σh(t)∥:

Lemma 6.2.4. Let ϖ̂h and ζ̂h satisfies (6.2.44a) and (6.2.44b), then there exists a positive

constant C, such that the following estimates hold true:

∥ζ̂h(t)∥2 +
∫ t

0

∥ϖ̂h(s)∥2ds ≤ Ch2t∥u0∥2.
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Proof. Put ϕh = ζ̂h −
∫ t

0

Π0
k(b0(x; s, s)(û − ûh)(s))ds +

∫ t

0

∫ s

0

Π0
k(b0z(x; s, z)(û −

ûh)(z))dzds and χh = ϖ̂h into (6.2.44a) and (6.2.44b), and then add to arrive at the

following:

1

2

d

dt
∥ζ̂h∥2 + α1∥ϖ̂h∥2

≤
(
ah(Π

F
h σ̂, ϖ̂h)− (µσ̂, ϖ̂h)

)
+

(
ζh,

∫ t

0

Π0
k(b0(x; s, s)(û− ûh)(s))ds−

∫ t

0

∫ s

0

Π0
k(b0z(x; s, z)(û− ûh)(z))dzds

)
+

∫ t

0

(
(∇b0(x; s, s)û(s), ϖ̂h)− (∇b0(x; s, s)ûh(s),Π0

k(ϖ̂h)
)
ds

−
∫ t

0

∫ s

0

(
(∇b0z(x; s, z)û(z), ϖ̂h)− (∇b0z(x; s, z)ûh(z),Π0

k(ϖ̂h)
)
dzds.

By using (3.1.3), (1.5.9), (1.5.7), Lemma 4.1.1, Young’s inequality, and then applying the

kickback argument, we arrive at the following:

d

dt
∥ζ̂h∥2 + ∥ϖ̂h∥2

≤ C

((
∥Π0

kσ̂ − σ̂∥2 + ∥ΠF
h σ̂ −Π0

kσ̂∥2 + h|σ̂|21 +
∫ t

0

(
h4∥û(s)∥22 + ∥ζ̂h(s)∥2

)
ds

)
+

(
ζh,

∫ t

0

Π0
k(b0(x; s, s)(û− ûh)(s))ds−

∫ t

0

∫ s

0

Π0
k(b0z(x; s, z)(û− ûh)(z))dzds

))
.

Integrating form 0 to t to arrive at the following:

∥ζ̂h∥2 +
∫ t

0

∥ϖ̂h(s)∥2ds

≤ C

(
h2t∥u0∥2 +

∫ s

0

∥ζ̂h(s)∥2ds+
∫ t

0

(
ζh(s),

∫ s

0

Π0
k(b0(x; z, z)(û− ûh)(z))dz

−
∫ s

0

∫ z

0

Π0
k(b0,z′(x; z, z

′)(û− ûh)(z
′))dz′dz

)
ds

)
≤ C

(
h2t∥u0∥2 +

(
ζ̂h(t),

∫ t

0

Π0
k(b0(x; s, s)(û− ûh)(s))ds

−
∫ t

0

∫ s

0

Π0
k(b0z(x; s, z)(û− ûh)(z))dzds

)
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−
∫ t

0

(
ζ̂h(s),Π

0
k(b0(x; s, s)(û− ûh)(s))−

∫ s

0

Π0
k(b0z(x; s, z)(û− ûh)(z))dz

)
ds

)
.

By applying Young’s inequality, followed by the kickback argument, and then utilizing

Grönwall’s lemma, we arrive at the following:

∥ζ̂h∥2 +
∫ t

0

∥ϖ̂h(s)∥2ds ≤ Ch2t∥u0∥2.

Lemma 6.2.5. Let ϖ̂h and ζh satisfies (6.2.44a) and (6.2.43b), then there exists a positive

constant C, such that the following estimates hold true:

t∥ϖ̂h(t)∥2 +
∫ t

0

s∥ζh(s)∥2ds ≤ Ch2t∥u0∥2.

Proof. Put ϕh = t

(
ζh −

∫ t

0

Π0
k (b0(x; t, s)(u− uh)(s)) ds

)
and χh = tϖ̂h in (6.2.44a)

and (6.2.43b) and add to arrive at the following:

t∥ζh∥2 +
1

2

d

dt
(t∥ϖ̂h∥2)

≤ 1

2
∥ϖ̂h∥2 + t

(
ζh,Π

0
k(b0(x; t, t)(û− ûh)(t))−

∫ t

0

Π0
k(b0s(x; t, s)(û− ûh)(s))ds

)
+ t
(
ah(Π

F
hσ, ϖ̂h)− (µσ, ϖ̂h)

)
− t

(
∇b0(x; t, t)û(t)−

∫ t

0

(∇b0s(x; t, s)û(s)ds, ϖ̂h) ds

)
+ t

(
∇b0(x; t, t)ûh(t)−

∫ t

0

(
∇b0s(x; t, s)ûh(s)ds,Π0

k(ϖ̂h)
)
ds

)
.

Using Young’s inequality, Lemma 4.1.1, Lemma 6.2.1 followed by the kickback argument,

we arrive at the following:

t∥ζh∥2 +
d

dt
(t∥ϖ̂h∥2)

≤ C

(
∥ϖ̂h∥2 + t∥ζ̂∥2 + t∥ζ̂h∥2 + t2h2∥û∥22 + t

∫ t

0

(
∥ζ̂(s)∥2 + ∥ζ̂h(s)∥2 + h4∥û(s)∥22

)
ds

+t2
(
∥Π0

kσ − σ∥2 + ∥ΠF
hσ −Π0

kσ∥2 + h2|σ|21
))
.
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By integrating from 0 to t and applying Lemma 6.2.4 along with the boundedness of t,

and subsequently employing Grönwall’s lemma, we obtain the following:

t∥ϖ̂h∥2 +
∫ t

0

s∥ζh(s)∥2ds ≤ Ch2t∥u0∥2.

Lemma 6.2.6. Letϖh and ζh satisfies (6.2.43a) and (6.2.43b), then there exists a positive

constant C, such that the following estimates hold true:

t2∥ζh∥2 +
∫ t

0

s2∥ϖh(s)∥2ds ≤ Ch2t∥u0∥2.

Proof. Substitute ϕh = t2
(
ζh −

∫ t

0

Π0
k(b0(x; t, s)(u− uh)(s))ds

)
and χh = t2ϖh into

(6.2.43a) and (6.2.43b) and then add. By applying Young’s inequality and then utilizing

the kickback argument, we arrive at the following:

d

dt
(t2∥ζh∥2) + t2∥ϖh∥2

≤ C
(
t∥ζh∥2 + t2

(
∥Π0

kσ − σ∥2 + ∥ΠF
hσ −Π0

kσ∥2 + h2|σ|21 + ∥ζ̂∥2 + ∥ζ̂h∥2 + h2∥û∥2
)

+t2
∫ t

0

(
∥ζ̂(s)∥2 + ∥ζ̂h(s)∥2 + h2∥û(s)∥22

)
ds+ t2

(
ζh,t,

∫ t

0

Π0
k(b0(x; t, s)(u− uh)(s))ds

))
.

(6.2.46)

As we know

d

dt

(
t2
(
ζh,

∫ t

0

Π0
k(b0(x; t, s)(u− uh)(s))ds

))
= t2

(
ζh,t,

∫ t

0

Π0
k(b0(x; t, s)(u− uh)(s))ds

)
+ 2t

(
ζh,Π

0
k(b0(x; t, t)(û− ûh)(t))−

∫ t

0

Π0
k(b0s(x; t, s)(û− ûh)(s))ds

)
+ t2

(
ζh,Π

0
k(b0(x; t, t)(u− uh)(t)) + Π0

k(b0t(x; t, t)(û− ûh)(t))
)

− t2
(
ζh,

∫ t

0

Π0
k(b0,ts(x; t, s)(û− ûh)(s))ds

)
. (6.2.47)
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Using (6.2.47) in (6.2.46) along with the Lemma 6.2.4, Lemma 6.2.5, Young’s inequality,

and the kickback argument, we arrive at the following:

d

dt
(t2∥ζh∥2) + t2∥ϖh∥2

≤ C
(
t∥ζh∥2 + h2∥u0∥2

+
d

dt

(
t2
(
ζh,Π

0
k(b0(x; t, t)(û− ûh)(t))−

∫ t

0

Π0
k(b0s(x; t, s)(û− ûh)(s))ds

)))
.

Integrating the above equation from 0 to t. Then, apply Lemma 6.2.4 and Lemma 6.2.5,

followed by the utilization of Grönwall’s lemma, yields the following:

t2∥ζh∥2 +
∫ t

0

s2∥ϖh(s)∥2ds ≤ Ch2t∥u0∥2.

Theorem 6.2.5. Let (u,σ) and (uh,σh) satisfy (6.1.1a)-(6.1.1b)and (6.1.3), respectively.

Then, there exists a positive constant C independent of the h such that for t ∈ (0, T ], the

following estimate holds true:

∥σ(t)− σh(t)∥ ≤ Cht−1∥u0∥.

Proof. Put ϕh = t3ζh,t − Π0
k (b0(x; t, t)(u− uh)(t))−

∫ t

0

Π0
k (b0t(x; t, s)(u− uh)(s)) ds

and χh = t3ϖh into (6.2.43a) and (6.2.45), and then add to arrive at the following:

t3∥ζh,t∥2 +
1

2

d

dt
(t3∥ϖh∥2)

≤ t3
(
ζh,t,Π

0
k(b0(x; t, t)(u− uh)(t)) +

∫ t

0

Π0
k(b0t(x; t, s)(u− uh)(s))ds

)
+

3

2
(t2∥ϖh∥2)

+ t3
(
ah(Π

F
hσt,ϖh)− (µσt,ϖh) + (∇b0(x; t, t)u(t),ϖh)− (∇b0(x; t, t)uh(t),Π0

k(ϖh))
)

+ t3
∫ t

0

(
(∇b0t(x; t, s)u(s),ϖh)− (∇b0t(x; t, s)uh(s),Π0

k(ϖh)
)
ds.

By employing integration by parts, Lemma 4.1.1, Lemma 6.2.1, Young’s inequality
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followed by the kickback argument, we arrive at the following:

t3∥ζh,t∥2 +
1

2

d

dt
(t3∥ϖh∥2) ≤ C

(
t3
(
∥ζ∥2 + ∥ζh∥2 + ∥ζ̂∥2 + ∥ζ̂h∥2

)
+ t2∥ϖh∥2 + t3

∫ t

0

(
∥ζ̂(s)∥2 + ∥ζ̂h(s)∥2

)
ds

+ t4(∥Π0
kσt − σt∥2 + ∥ΠF

hσt −Π0
kσt∥2 + h2|σt|21)

+ t4(∥ζ∥2 + ∥ζh∥2 + h4t−2∥u0∥2)

+ t4
∫ t

0

(
∥ζ̂(s)∥2 + ∥ζ̂h(s)∥2 + h4∥û(s)∥22

)
ds

+ t4
(
∥ζ̂∥2 + ∥ζ̂h∥2 + h4∥û∥22

))
.

Integrating from 0 to t, and then using Lemma 6.2.4, Lemma 6.2.5, and Lemma 6.2.6, we
arrive at the following:∫ t

0

s3∥(Π0
kpt − uh,t)(s)∥2ds+ t3∥ΠF

hσ − σh∥2 ≤ Ch2t∥u0∥2. (6.2.48)

Now, applying the triangle inequality along with (1.5.9), Lemma 6.2.1, and (6.2.48), we
arrive at the following:

∥σ(t)− σh(t)∥ ≤ Cht−1∥u0∥.

This completes the proof of the theorem.

Remark 6.2.1. Utilizing the triangle inequality along with Lemma 6.2.6 and (1.5.7), we

achieve an estimate of ∥u− uh∥ ≤ Cht−
1
2 which is not optimal. That’s why introducing

the mixed intermediate projection is important, which helps to enhance the optimal

convergence order of ∥u− uh∥ to h2t−1.

Due to the non-smooth initial data imposing regularity constraints on the solution u,

the exact solution u can only be in H2(D), see [62]. And to achieve an order O(h2t−3/2)

for ∥σ − σh∥, we require u ∈ H3(D) which is not possible. Instead, sticking with the

mixed intermediate projection allowed us to attain an approximation of O(ht−3/2). But

for optimal convergence, we use the Fortin operator to achieve O(ht−1).
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6.3 Mixed Virtual Element Formulation Using Resolvent

Kernel
Lemma 6.3.1. Let (u,σ) be the solution of (6.1.2) and u0 ∈ L2(D); Then the following

estimates hold for t ∈ (0, T ] and j ∈ {1, 2}:

1. t∥u(t)∥21 +
∫ t

0

s∥us(s)∥2ds ≤ C∥u0∥2,

2. t2∥ut(t)∥2 +
∫ t

0

s2∥us(s)∥21ds ≤ C∥u0∥2,

3. ∥û(t)∥2 + t∥u(t)∥2 ≤ C∥u0∥,

4. ∥ut(t)∥j ≤ Ct−(1+ j
2
)∥u0∥,

5. ∥∇ · σ̂∥ ≤ C∥u0∥.

Proof. Proof of this follows from [14, 63, 67].

6.3.1 Mixed Ritz Volterra Projection

Below, we present the estimates for the mixed R.V. projection when the initial data is not

smooth.

Theorem 6.3.1. For u(t) ∈ H1
0 (D) ∩H2(D), where t > 0, and with an initial condition

u0 ∈ L2(D), there exists a positive constant C independent of the parameter h, under

which the following estimates hold:

∥u− ũ∥+ h∥σ − σ̃∥ ≤ Ch2t−1∥u0∥. (6.3.1)

Proof. Consider

θ := σ − σ̃ = σ −ΠF
hσ +ψh where ψh := ΠF

hσ − σ̃ ∈ V k
h ,

ρ := u− ũ = u− Π0
ku+ τh where τh := Π0

ku− ũ ∈ Qk
h.
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By the definition of the mixed R.V. projection (3.2.3), we have:

ah(ψh,χh) +

∫ t

0

Kh(t, s;ψh(s),χh)ds+ (∇ · χh, τh)

= (∇ · χh,Π
0
ku− u) +

(∫ t

0

Kh(t, s;Π
F
hσ(s),χh)ds−

∫ t

0

(K(t, s)σ(s),χh)ds

)
+
(
ah(Π

F
hσ,χh)− (µσ,χh)

)
, (6.3.2)

(∇ ·ψh, ϕh) = 0. (6.3.3)

Put χh = ψh in (6.3.2) and ϕh = τh in (6.3.3), then subtract and use (3.1.3) to arrive at

the following:

α1∥ψh∥2

≤
(
ah(Π

F
hσ,ψh)− (µσ,ψh)

)
+

(∫ t

0

Kh(t, s;Π
F
hσ(s),ψh)ds−

∫ t

0

(K(t, s)σ(s),ψh)ds

)
+ (∇ ·ψh,Π

0
ku− u)−

∫ t

0

Kh(t, s;ψh(s),ψh)ds. (6.3.4)

The bound for the first term on the right-hand side of (6.3.4) follows from (6.2.22) whereas

the second term can be solved by using integration by parts and then proceed similarly to

(6.2.16):

∫ t

0

Kh(t, s;Π
F
hσ(s),ψh)ds−

∫ t

0

(K(t, s)σ(s),ψh)ds

=
(
Kh(t, t; Π̂F

hσ(t),ψh)− (K(t, t)σ̂(t),ψh)
)

−
∫ t

0

(
Khs(t, s; Π̂F

hσ(s),ψh)− (Ks(t, s)σ̂(s),ψh)
)
ds

≤ Ch

(
|σ̂|1 +

∫ t

0

|σ̂(s)|1ds
)
∥ψh∥

≤ Ch∥u0∥∥ψh∥ [Using Lemma 6.3.1]. (6.3.5)

The fourth term on the right-hand side of (6.3.4) can be dealt with by using integration by

143



Chapter 6

parts as:

∫ t

0

Kh(t, s;ψh(s),ψh)ds = Kh(t, t; ψ̂h(t),ψh)−
∫ t

0

Khs(t, s; ψ̂h(s),ψh)ds. (6.3.6)

Using the fact ∇ ·ψh = 0 along with (6.2.22), (6.3.5) and (6.3.6), we rewrite (6.3.4) as:

∥ψh∥ ≤ C

(
ht−1∥u0∥+ ∥ψ̂h∥+

∫ t

0

∥ψ̂h(s)∥ds
)
. (6.3.7)

Substitute (6.3.19) in (6.3.7) followed by the use of the triangle inequality gives us the

following:

∥ϑ∥ ≤ Cht−1∥u0∥. (6.3.8)

Now, to achieve ∥u− ũ∥, we proceed by using the definition of mixed R.V. projection
(3.2.3) as:

(µϑ,χh) + (∇ · χh, τh) = F(χh) ∀χh ∈ V k
h ,

(∇ · ϑ, ϕh) = 0 ∀qh ∈ Qk
h,

where

F(χh) = ah(σ̃,χh)− (µσ̃,χh) +

∫ t

0

Kh(t, s; σ̃(s),χh)ds−
∫ t

0

(K(t, s)σ(s),χh)ds.

(6.3.9)

Consider the dual problem (6.2.3) with Λ = τh and put ϕ = τh in (6.2.4) to achieve:

∥τh∥2 = (τh,−∇ · (ΠF
h a∇ξ))

= (µϑ,ΠF
h (a∇ξ)− a∇ξ) + (∇ · ϑ,Π0

kξ − ξ)−F(ΠF
h (a∇ξ)). (6.3.10)

Now, by using (1.5.7) and (1.5.9) , we arrive at:

(µϑ,ΠF
h (a∇ξ)− a∇ξ) ≤ Ch∥ϑ∥∥ξ∥2, (6.3.11)

(∇ · ϑ,Π0
kξ − ξ) ≤ Ch2∥∇ · ϑ∥∥ξ∥2, (6.3.12)
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where ∇ · ϑ can be estimated in a similar way as (6.2.31). Now, (6.3.9), can be rewritten

as:

F(ΠF
h (a∇ξ))

=
(
ah(σ̃ −Π0

kσ,Π
F
h (a∇ξ))− (µ(σ̃ −Π0

kσ),Π
F
h (a∇ξ))

)
+
(
ah(Π

0
kσ,Π

F
h (a∇ξ))− (µΠ0

kσ,Π
F
h (a∇ξ))

)
+
(
Kh(t, t; (̂̃σ −Π0

kσ̂)(t),Π
F
h (a∇ξ))ds− (K(t, t)( ̂̃σ −Π0

kσ̂)(t),Π
F
h (a∇ξ))

)
−
(∫ t

0

Khs(t, s; (̂̃σ −Π0
kσ̂)(s),Π

F
h (a∇ξ))ds−

∫ t

0

(Ks(t, s)( ̂̃σ −Π0
kσ̂)(s),Π

F
h (a∇ξ))ds

)
+
(
Kh(t, t;Π

0
kσ̂(t),Π

F
h (a∇ξ))ds− (K(t, t)Π0

kσ̂(t),Π
F
h (a∇ξ))ds

)
−
(∫ t

0

Khs(t, s;Π
0
kσ̂(s),Π

F
h (a∇ξ))ds−

∫ t

0

(Ks(t, s)Π
0
kσ̂(s),Π

F
h (a∇ξ))ds

)
−
∫ t

0

(K(t, s)ϑ(s),ΠF
h (a∇ξ)− a∇ξ)ds− (K(t, t)ϑ̂(t), a∇ξ)

+

∫ t

0

(Ks(t, s)ϑ̂(s), a∇ξ)ds.

By using the dual norm approach for the last term of the above equation and for all the

remaining terms, we use integration by parts and follow similar steps as in (6.2.27) to

arrive at the following:

F(ΠF
h (a∇ξ)) ≤ C

(
h2t−1∥u0∥+

∫ t

0

∥ϑ̂(s)∥−1

)
.

Now, using (6.3.26) and (6.3.27), we arrive at the following:

F(ΠF
h (a∇ξ)) ≤ Ch2t−1∥u0∥. (6.3.13)

Using (6.3.11)- (6.3.13) in (6.3.10) we arrive at the following:

∥τh∥ ≤ Ch2t−1∥u0∥.

Use of the above equation along with the triangle inequality and (6.3.8) completes the

proof of the (6.3.1).
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Theorem 6.3.2. For u(t) ∈ H1
0 (D) ∩H2(D), where t > 0, and with an initial condition

u0 ∈ L2(D), there exists a positive constant C independent of the parameter h, under

which the following estimates hold:

∥û(t)− ̂̃u(t)∥+ h∥σ̂(t)− ̂̃σ(t)∥ ≤ Ch2t∥u0∥, (6.3.14)

∥ut(t)− ũt(t)∥+ h∥σt(t)− σ̃t(t)∥ ≤ Ch2t−2∥u0∥. (6.3.15)

Proof. To estimate ∥ψ̂h∥2, we integrate (6.3.2) and (6.3.3), and arrive at the following:

ah(ψ̂h,χh) +

∫ t

0

Kh(s, s; ψ̂h(s),χh)ds−
∫ t

0

∫ s

0

Khz(s, z; ψ̂h(z),χh)dzds+ (∇ · χh, τ̂h)

= (∇ · χh,Π
0
kû− û) +

(∫ t

0

Kh(s, s; Π̂F
hσ(s),χh)ds−

∫ t

0

(K(s, s)̂σ(s),χh)ds

)
−
(∫ t

0

∫ s

0

Khz(s, z; Π̂F
hσ(z),χh)dzds−

∫ t

0

∫ s

0

(Kz(s, z)̂σ(z),χh)dzds

)
+
(
ah(Π̂F

hσ,χh)− (µσ̂,χh)
)
, (6.3.16)

(∇ · ψ̂h, ϕh) = 0. (6.3.17)

Put χh = ψ̂h and ϕh = τ̂h in (6.3.16) and (6.3.17) and subtract to arrive at the following:

α1∥ψ̂h∥2 =
(
ah(Π̂F

hσ,̂ψh)− (µσ̂, ψ̂h)
)
+ (∇ · ψ̂h,Π

0
kû− û)

+

(∫ t

0

Kh(s, s; Π̂F
hσ(s),̂ψh)ds−

∫ t

0

(K(s, s)σ̂(s), ψ̂h)ds

)
−
(∫ t

0

∫ s

0

Khz(s, z; Π̂F
hσ(z),̂ψh)dzds−

∫ t

0

∫ s

0

(Kz(s, z)σ̂(z), ψ̂h)dzds

)
−
∫ t

0

Kh(s, s; ψ̂h(s), ψ̂h)ds+

∫ t

0

∫ s

0

Khz(s, z; ψ̂h(z), ψ̂h)dzds. (6.3.18)

Using the similar arguments as in (6.2.22), (6.3.5), (6.3.6), boundedness of t ≤ T and the
fact that ∇ · ψ̂h, (6.3.18) can be written as:

∥ψ̂h∥ ≤ C

(
h∥u0∥+

∫ t

0

∥ψ̂h∥ds
)
.
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The use of Grönwall’s lemma gives us the following:

∥ψ̂h∥ ≤ Ch∥u0∥. (6.3.19)

Use of the triangle inequality, (6.3.19) and (1.5.9) gives us the following:

∥ϑ̂∥ ≤ Ch∥u0∥.

Now, we proceed by using the definition of mixed R.V. projection (3.2.3) as:

(µϑ̂,χh) + (∇ · χh, τ̂h) = F̂(χh) ∀χh ∈ V k
h ,

(∇ · ϑ̂, ϕh) = 0 ∀qh ∈ Qk
h,

where

F̂(χh) = ah( ̂̃σ,χh)− (µ ̂̃σ,χh) +

∫ t

0

Kh(s, s; ̂̃σ(s),χh)ds−
∫ t

0

(K(s, s)σ̂(s),χh)ds

−
∫ t

0

∫ s

0

Khz(s, z; ̂̃σ(z),χh)dzds−
∫ t

0

∫ s

0

(Kz(s, z)σ̂(z),χh)dzds.

(6.3.20)

Consider (6.2.3) with Λ = τ̂h, then put ϕ = τ̂h in (6.2.4) to arrive at the following:

∥τ̂h∥2 = (τ̂h,−∇ · (ΠF
h a∇ξ))

= (µϑ̂,ΠF
h (a∇ξ)− a∇ξ) + (∇ · ϑ̂,Π0

kξ − ξ)− F̂(ΠF
h (a∇ξ)). (6.3.21)

Now, by using (1.5.7) and (1.5.9) , we arrive at:

(µϑ̂,ΠF
h (a∇ξ)− a∇ξ) ≤ Ch∥ϑ̂∥∥ξ∥2, (6.3.22)

(∇ · ϑ̂,Π0
kξ − ξ) ≤ Ch2∥∇ · ϑ̂∥∥ξ∥2. (6.3.23)

where, ∥∇ · ϑ̂∥ can be estimated in a similar way to (6.2.12) as below:

∥∇ · ϑ̂∥ ≤ C∥u0∥. (6.3.24)
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Now, (6.3.20), can be rewritten as:

F̂(ΠF
h (a∇ξ))

=
(
ah( ̂̃σ −Π0

kσ̂,Π
F
h (a∇ξ))− (µ( ̂̃σ −Π0

kσ̂),Π
F
h (a∇ξ))

)
+
(
ah(Π

0
kσ̂,Π

F
h (a∇ξ))− (µΠ0

kσ̂,Π
F
h (a∇ξ))

)
+

(∫ t

0

Kh(s, s; (̂̃σ −Π0
kσ̂)(s),Π

F
h (a∇ξ))ds−

∫ t

0

(K(s, s)( ̂̃σ −Π0
kσ̂)(s),Π

F
h (a∇ξ))ds

)
−
∫ t

0

∫ s

0

Khz(s, z; (̂̃σ −Π0
kσ̂)(z),Π

F
h (a∇ξ))dzds

+

∫ t

0

∫ s

0

(Kz(s, z)( ̂̃σ −Π0
kσ̂)(z),Π

F
h (a∇ξ))dzds

+

(∫ t

0

Kh(s, s;Π
0
kσ̂(s),Π

F
h (a∇ξ))ds−

∫ t

0

(K(s, s)Π0
kσ̂(s),Π

F
h (a∇ξ))ds

)
−
∫ t

0

∫ s

0

Khz(s, z;Π
0
kσ̂(z),Π

F
h (a∇ξ))dzds

+

∫ t

0

∫ s

0

(Kz(s, z)Π
0
kσ̂(z),Π

F
h (a∇ξ))dzds−

∫ t

0

(K(s, s)(ϑ̂)(s),ΠF
h (a∇ξ)− a∇ξ)ds

+

∫ t

0

∫ s

0

(Kz(s, z)(ϑ̂)(z),Π
F
h (a∇ξ)− a∇ξ)dzds

−
∫ t

0

(K(s, s)(ϑ̂)(s), a∇ξ)ds−
∫ t

0

∫ s

0

(Kz(s, z)(ϑ̂)(z), a∇ξ)dzds. (6.3.25)

For the last two terms in the right-hand side of (6.3.25), we use the dual norm approach,

whereas all the remaining terms can be solved in a similar way to (6.2.27) as:

F̂(ΠF
h (a∇ξ)) ≤ Ch2

(
|σ̂(t)|1 +

∫ t

0

|σ̂(s)|1ds
)
∥ξ∥2 +

∫ t

0

∥ϑ̂∥−1ds∥a∇ξ∥1

+

∫ t

0

∫ s

0

∥ϑ̂(z)∥−1dzds∥a∇ξ∥1

≤ Ch2∥u0∥∥ξ∥2 +
∫ t

0

∥ϑ̂∥−1ds∥a∇ξ∥1.

Now, we need to find the ∥ϑ̂∥−1, and for that, we proceed as by considering κκκ ∈
(H1(D))2:

(µϑ̂,κκκ)
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= ah( ̂̃σ,Π0
kκκκ)− (µ ̂̃σ,Π0

kκκκ) +
∫ t

0

Kh(s, s; ̂̃σ(s),Π0
kκκκ)ds

−
∫ t

0

(K(s, s) ̂̃σ(s),Π0
kκκκ)ds− (∇ ·Π0

kκκκ, τ̂h)−
∫ t

0

∫ s

0

Khz(s, z; ̂̃σ(z),Π0
kκκκ)dzds

−
∫ t

0

∫ s

0

(Kz(s, z) ̂̃σ(z),Π0
kκκκ)dzds+ (µϑ̂,κκκ −Π0

kκκκ)−
∫ t

0

(Kϑ̂(s),Π0
kκκκ)ds

≤ C

(
h2∥u0∥+ ∥τ̂h∥+

∫ t

0

∥ϑ(s)∥−1ds

)
∥κκκ∥1.

Using Grönwall’s lemma, we arrive at:

∥ϑ̂∥−1 ≤ C(h2∥u0∥+ ∥τ̂h∥). (6.3.26)

Using (6.3.22)-(6.3.26) in (6.3.21), we have:

∥τ̂h∥ ≤ C

(
h2∥u0∥+

∫ t

0

(
h2∥u0∥+ ∥τ̂h(s)∥ds

))
.

An application of Grönwall’s lemma yields:

∥τ̂h∥ ≤ Ch2∥u0∥. (6.3.27)

Now, using the triangle inequality, (1.5.7) and Lemma 6.3.1, we arrive at the following:

∥ρ̂∥ ≤ Ch2∥u0∥.

The proof of (6.3.15) follows a similar argument to that of (6.3.14).

6.3.2 A prior Error-Estimates

Use (6.1.2) and (6.1.4) to have the error equation as:

(ρh,t, ϕh)− (∇ · ϑh, ϕh) = −(ρt, ϕh), (6.3.28)

ah(ϑh,χh) +

∫ t

0

Kh(t, s;ϑh(s),χh)ds+ (∇ · χh, ρh) = 0. (6.3.29)
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Integrate (6.3.28) and (6.3.29) and arrive at:

(ρh, ϕh)− (∇ · ϑ̂h, ϕh) = −(ρ, ϕh), (6.3.30)

ah(ϑ̂h,χh) +Kh(t, t;
̂̂
ϑh(t),χh)− 2

∫ t

0

Khs(s, s;
̂̂
ϑh(s),χh)ds

+

∫ t

0

∫ s

0

Khzz(s, z;
̂̂
ϑh(z),χh)dzds+ (∇ · χh, ρ̂h) = 0. (6.3.31)

Again integrating (6.3.30) and (6.3.31) to get:

(ρ̂h, ϕh)− (∇ · ̂̂ϑh, ϕh) = −(ρ̂, ϕh), (6.3.32)

ah(
̂̂
ϑh,χh) +

∫ t

0

Kh(s, s;
̂̂
ϑh(s),χh)ds− 2

∫ t

0

∫ s

0

Khz(z, z;
̂̂
ϑh(z),χh)dzds

+

∫ t

0

∫ s

0

∫ z

0

Khz′z′(z, z
′;
̂̂
ϑh(z

′),χh)dz
′dzds+ (∇ · χh, ̂̂ρh) = 0. (6.3.33)

Now, we present some lemmas, which will be used in the proof of ∥u− uh∥.

Lemma 6.3.2. Let ̂̂ρh and ̂̂ϑh satisfies (6.3.32) and (6.3.33), then there exists a positive

constant C, such that the following estimates hold true:

∥̂̂ρh∥2 + ∫ t

0

∥̂̂ϑh(s)∥2ds ≤ Ch4t∥u0∥2, (6.3.34)

∥̂̂ϑh(s)∥2 +
∫ t

0

∥ρ̂h(s)∥2ds ≤ Ch4t∥u0∥2. (6.3.35)

Proof. Put ϕh = ̂̂ρh and χh =
̂̂
ϑh in (6.3.32) and (6.3.33) respectively, and add to achieve:

(ρ̂h, ̂̂ρh) + α1∥
̂̂
ϑh∥2

≤ −(ρ̂, ̂̂ρh)− ∫ t

0

Kh(s, s;
̂̂
ϑh(s),

̂̂
ϑh)ds+ 2

∫ t

0

∫ s

0

Khz(z, z;
̂̂
ϑh(z),

̂̂
ϑh)dzds

−
∫ t

0

∫ s

0

∫ z

0

Khz′z′(z, z
′;
̂̂
ϑh(z

′),
̂̂
ϑh)dz

′dzds.
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Using Young’s inequality, followed by the kickback argument, we arrive at the following:

d

dt
∥̂̂ρh∥2 + ∥̂̂ϑh∥2 ≤ C

(
∥ρ̂∥2 + ∥̂̂ρh∥2 + ∫ t

0

∥̂̂ϑh(s)∥2ds +
∫ t

0

∫ s

0

∥̂̂ϑh(z)∥2dzds

+

∫ t

0

∫ s

0

∫ z

0

∥̂̂ϑh(z
′)∥2dz′dzds

)
.

Integrate the above equation from 0 to t, followed by the use of Grönwall’s lemma and

(6.3.14) completes the proof of (6.3.34).

Now, for the proof of (6.3.35), put ϕh = ρ̂h in (6.3.32) and χh =
̂̂
ϑh in (6.3.31) and add

to obtain:

∥ρ̂h∥2 +
α1

2

d

dt
∥̂̂ϑh∥2 ≤ −(ρ̂, ρ̂h) +Kh(t, t;

̂̂
ϑh(t),

̂̂
ϑh)− 2

∫ t

0

Khs(s, s;
̂̂
ϑh(s),

̂̂
ϑh)ds

+

∫ t

0

∫ s

0

Khzz(s, z;
̂̂
ϑh(z),

̂̂
ϑh)dzds.

Using Young’s inequality and the kickback argument, we arrive at the following:

∥ρ̂h∥2 +
d

dt
∥̂̂ϑh∥2 ≤ C

(
∥ρ̂∥2 + ∥̂̂ϑh∥2 +

∫ t

0

∥̂̂ϑh(s)∥2ds
)
.

Integrating the above equation form 0 to t gives us the following:

∫ t

0

∥ρ̂h(s)∥2ds+ ∥̂̂ϑh(s)∥2ds ≤ C

(∫ t

0

(
∥ρ̂(s)∥2ds+ ∥̂̂ϑh(s)∥2

)
ds

)
.

Use of Grönwall’s lemma and (6.3.14) completes the proof of (6.3.35).

Lemma 6.3.3. Let ρh, ρ̂h and ϑ̂h satisfies (6.3.30), (6.3.32) and (6.3.31), then there exists

a positive constant C, such that the following estimates hold true:

t∥ρ̂h∥2 +
∫ t

0

s∥ϑ̂h(s)∥2ds ≤ Ch4t∥u0∥2, (6.3.36)

t2∥ϑ̂h∥2 +
∫ t

0

s2∥ρh(s)∥2ds ≤ Ch4t∥u0∥2. (6.3.37)

Proof. Put ϕh = tρ̂h and χh = tϑ̂h in (6.3.30) and (6.3.31) and add to arrive at the
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following:

1

2

d

dt
t∥ρ̂h∥2 + α1t∥ϑ̂h∥2

= −t(ρ, ρ̂h) +
1

2
∥ρ̂h∥2 − tKh(t, t;

̂̂
ϑh(t), ϑ̂h) + 2t

∫ t

0

Khs(s, s;
̂̂
ϑh(s), ϑ̂h)ds

− t

∫ t

0

∫ s

0

Khzz(s, z;
̂̂
ϑh(z), ϑ̂h)dzds.

Using the Young’s inequality, kickback argument and then integrating from 0 to t to arrive
at the following:

t∥ρ̂h∥2 +
∫ t

0

s∥ϑ̂h(s)∥2ds

≤ C

∫ t

0

(
∥ρ̂h∥2 + s2∥ρ(s)∥2ds+ ∥̂̂ϑh(s)∥2ds+ s

∫ s

0

∥̂̂ϑh(z)∥2dz
)
ds.

Using (6.3.34) and (6.3.35), we arrive at the following:

t∥ρ̂h∥2 +
∫ t

0

s∥ϑ̂h(s)∥2ds ≤ Ch4t∥u0∥2.

Now, put ϕh = t2ρh and χh = t2ϑ̂h in (6.3.30) and (6.3.29) to arrive at:

t2∥ρh∥2 + t2ah(ϑh, ϑ̂h) + t2
∫ t

0

Kh(t, s;ϑh(s), ϑ̂h)ds = −t2(ρ, ρh).

Note that
d

dt
(t2ah(ϑ̂h, ϑ̂h)) = 2tah(ϑ̂h, ϑ̂h) + t22ah(ϑh, ϑ̂h), hence:

t2∥ρh∥2 +
α1

2

d

dt
(t2∥ϑ̂h∥2)

≤ C
(
t∥ϑ̂h∥2 − t2(ρ, ρh) + t2Kh(t, t; ϑ̂h(t), ϑ̂h)− t2Kh,t(t, t; ϑ̂h(t), ϑ̂h)

+ t2
∫ t

0

Khss(t, s;
̂̂
ϑh(s), ϑ̂h)ds

)
.

Using Young’s inequality, kickback argument and integrating from 0 to t to arrive at the
following:

t3∥ϑ̂h∥2 +
∫ t

0

s2∥ρh(s)∥2ds ≤ C

∫ t

0

(
s∥ϑ̂h(s)∥2ds+ s2∥ρ(s)∥2 + s2

∫ s

0

∥̂̂ϑ(z)∥2dz) ds.
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Use of Grönwall’s lemma, (6.3.1), (6.3.36) and (6.3.34) completes the proof of (6.3.37).

Theorem 6.3.3. Let (u,σ) and (uh,σh) satisfy (6.1.2) and (6.1.4), respectively. Then,

there exists a positive constant C independent of the h such that for t ∈ (0, T ], the

following estimates are valid:

∥u(t)− uh(t)∥ ≤ Ch2t−1∥u0∥.

Proof. Consider

u− uh = ρ+ ρh where ρh = ũ− uh,

σ − σh = ϑ+ ϑh where ϑh = σ̃ − σh.

Since, we already have the estimates of ∥ρ∥ and ∥ϑ∥, we need to find ∥ρh∥ and ∥ϑh∥. Put
ϕh = t3ρh and χh = t3ϑh in (6.3.28) and (6.3.29) respectively, and then add to arrive at

the following:

t3(ρh,t, ρh) + t3ah(ϑh,ϑh) + t3
∫ t

0

Kh(t, s;ϑh(s),ϑh)ds = −t3(ρt, ρh),

1

2

d

dt
(t3∥ρh∥2) + α1t

3∥ϑh∥2

≤ 3

2
t2∥ρh∥2 − t3(ρt, ρh) + t3Kh(t, t; ϑ̂h(t),ϑh)− t3Kh,t(t, t;

̂̂
ϑh(s),ϑh)

+ t3
∫ t

0

Khss(t, s;
̂̂
ϑh(s),ϑh)ds.

Using Young’s inequality and then kickback arguments, we obtain:

d

dt
(t3∥ρh∥2) + t3∥ϑh∥2 = C

(
t2∥ρh∥2 + t4∥ρt∥2 + t3∥ϑ̂h∥2 + t3∥̂̂ϑh∥2 + t3

∫ t

0

∥̂̂ϑh(s)∥2ds
)
.

Now, integrate the above equation from 0 to t to arrive at:

t3∥ρh∥2 +
∫ t

0

s3∥ϑh(s)∥2ds
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≤ C

∫ t

0

(
s2∥ρh(s)∥2 + s4∥ρs(s)∥2 + s3∥ϑ̂h(s)∥2 + s3∥̂̂ϑh(s)∥2 + s3

∫ s

0

∥̂̂ϑh(z)∥2dz
)
ds.

(6.3.38)

Use of (6.3.15), (6.3.34) and (6.3.37), yields:

∥ρh∥ ≤ Ch2t−1∥u0∥. (6.3.39)

Now, we use the triangle inequality, (6.3.1) and (6.3.39) to arrive at the following:

∥u− uh∥ ≤ Ch2t−1∥u0∥.

Theorem 6.3.4. Let (u,σ) and (uh,σh) satisfy (6.1.2) and (6.1.4), respectively. Then,

there exists a positive constant C independent of the h such that for t ∈ (0, T ],

∥σ(t)− σh(t)∥ ≤ Cht−1∥u0∥.

To prove this result, use similar arguments as in [14].

6.4 Conclusions
Given the advantages of both VEM and mixed methods, we used a mixed VEM approach to

tackle a linear PIDE with non-smooth initial data. This chapter explored two formulations

of the mixed VEM approach for the PIDE. We introduced two new projections, mixed

intermediate projection and mixed Ritz Volterra projection, which includes a memory term

and derived estimates for the same. By the repeated use of the integral operator, the Fortin

operator, and the properties of L2 projection, we established the error estimates for the

two unknowns in both formulations.
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Conclusions

This chapter highlights the critical assessment of the outcomes, emphasizing the contribu-

tions made by this research and the methodologies employed to achieve them. Further, we

discuss the possible extensions and the scope for further investigations in this direction.

7.1 Crtical Review of the Results

In this thesis, we studied VEM and mixed VEM for PIDE. In contrast to the conventional

FEM, the suggested approach permits the presence of hanging nodes during mesh gener-

ation, eliminates the need for explicit construction of nodal basis functions, effectively

manages complicated domains, and allows higher-order polynomials. Consequently, these

features enhance accuracy and adaptability when dealing with convex and non-convex

polygonal meshes. Since this is the case where we don’t require the basis functions

explicitly, we need suitable projectors from the local VEM spaces to some polynomial

spaces to construct the element-by-element necessary local matrices.

In Chapter 2, we developed and analyzed the confirming VEM for linear PIDE with

smooth initial data. For the discrete formulation, we defined the local bilinear forms with

the help of Π0
k projection and discussed their consistency and stability. The analysis for the

semi-discrete and fully-discrete cases required the introduction of a new R.V. projection
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(2.2.1) to deal with the integral term. For the H1 estimates (2.2.2) of R.V. projection,

we first split u− Rhu into two parts, u− uI and uI − Rhu, where the function uI is an

interpolant of u, in Wh and satisfies

dofn(uI) = dofn(u) n = 1, ..., Ndof,

where dofn(·) indicates the operator which relates the nth degree of freedom to each

smooth enough function, and Ndof stands for the number of degrees of freedom. Whereas

to find out the L2 estimate (2.2.2) of R.V. projection, we used the dual problem: Let

ϕ ∈ H2(D) ∩H1
0 (D), with D to be convex and bounded, be the solution of

−∇ · (a∇ϕ) + a0ϕ = ρ in D ϕ = 0 on ∂D,

where ρ = Rhu− u. We also estimated the time derivative of R.V. projection, and then by

using the (2.0.2) and (2.1.1) along with the R.V. estimates, we proved the optimal order of

convergence.

Then, we also studied the fully-discrete case(2.3.1), where the time derivative is

approximated by the backward Euler method and the integral term is dealt with the left

rectangular rule. Several numerical experiments (Section 2.4) are presented to confirm

the computational efficiency of the proposed scheme and validate the theoretical findings.

Moreover, in order to show the real application of VEMs, numerical experiments are

conducted with local mesh refinements (Fig.2.3), which are necessary to reduce the overall

computational cost but may not be possible in the context of conforming FEMs.

Chapter 3 developed and analyzed the mixed VEM for PIDE by using a resolvent

kernel. An aspect of our focus in (1.3.1) involves the determination of the flux or velocity

in conjunction with the pressure. The conventional Galerkin method tends to suffer

from reduced accuracy because it calculates this quantity through post-processing from

the approximated solution. In contrast, mixed methods offer a direct estimation of this

physical parameter, resulting in solutions that are locally conservative. Another benefit of
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employing a mixed approach in this context is the capability to introduce an additional

physically significant variable, which can be computed directly without introducing new

sources of error. We introduced σ(x, t), defined by (1.3.4) and and rewrite (1.3.1) as:

ut(x, t)−∇ · σ(x, t) = f(x, t).

Considering the computational advantages of the formulation described in [14], we ana-

lyzed this formulation for the semi-discrete (3.1.2) and fully-discrete case (3.3.1). To deal

with the integral term, mixed R.V. projection (3.2.3) is introduced. The time derivative

of mixed R.V. projection (3.2.27), (3.2.28) is also estimated along with the estimates of

mixed R.V. projection (3.2.5), (3.2.6). Semi-discrete error estimates are established by

using (1.3.8) and (3.1.2). Furthermore a step-by-step superconvergence of Π0
ku − uh is

proved (Section 3.2.2).

A fully-discrete case has also been developed (3.3.1) and analyzed (Theorem 3.3.1)

for this formulation. We also conduct numerical experiments (Section 3.4) to validate the

effectiveness of the introduced mixed virtual element scheme for the PIDE.

In Chapter 4, we analyzed the mixed VEM for PIDE. This chapter focused on the

variational formulation that eliminates the need for a resolvent kernel. We adopt the

formulation outlined by [15]. It’s important to note that due to the additional term beneath

the integral, this formulation may take a longer computational time when compared to

the approach presented in [14]. Nevertheless, this formulation offers a broader scope

of applicability, even in cases where finding a resolvent kernel proves challenging. By

using this formulation, we can attain the necessary convergence, as illustrated through

numerical experiments. To deal with the integral term, we define a mixed Intermediate

projection (4.2.1b) and find out the estimates (Theorem 3.2.1) for the same. Then, semi-

discrete error estimates are derived by using (1.3.10a) and (4.1.1). Furthermore, the fully-

discrete case (4.3.1) has also been examined, and the error estimates have been derived.

We presented a systematic analysis that outlines the step-by-step process for achieving

super convergence (4.2.20) of the discrete solution, with an order of O(hk+2). Several

157



Chapter 7

computational experiments are discussed to validate the proposed scheme’s computational

efficiency and support the theoretical conclusions.

In Chapter 5, we analyzed the VEM for the linear PIDE with the non-smooth initial

data. Chapter 2 focuses on establishing optimal error estimates for smooth initial data,

but for less regular initial data, a different analysis is required. For this, we first define an

Intermediate projection (5.2.1) with an integral term accordingly. By the repetitive use

of the integration by parts and some regularity results, we first derive the estimates for

û − Îhu (5.2.3), and then by using this estimate, we derive the estimates (5.2.2) of the

Intermediate projection in terms of the initial data is in L2(D). Finally, we proved some

lemmas, which helped us to establish the optimal error estimates.

Chapter 6 explored two formulations of the mixed VEM approach for the PIDE. We

introduced two new projections, mixed Intermediate projection and mixed Ritz Volterra

projection, which includes a memory term and derived estimates for the same. By the

repeated use of the integral operator, the Fortin operator, and the properties ofL2 projection,

we established the error estimates for the two unknowns in both formulations.

7.2 Possible Extensions and Future Problems
• VEM for hyperbolic integro-differential equations: In Chapter 2, we developed and

analyzed the confirming VEM for linear PIDE. The results of this can be easily

extended to the hyperbolic integro-differential equations: Find u(x, t) such that

utt(x, t)−∇ · (a(x)∇u(x, t)−
∫ t

0
b(x; t, s)∇ u(x, s)ds)

= f(x, t) (x, t) ∈ D × (0, T ],

u(x, t) = 0 (x, t) ∈ ∂D × [0, T ],

u(x, 0) = u0(x) x ∈ D,
(7.2.1)

• Mixed VEM for hyperbolic integro-differential equations: In Chapter 3 and Chapter

4, we developed and analyzed the mixed VEM for linear PIDE. The results of this

can be easily extended to the hyperbolic integro-differential equations (7.2.1). By
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introducing σ(x, t), defined by (1.3.4) and rewrite (7.2.1) as:

utt(x, t)−∇ · σ(x, t) = f(x, t).

• Fully-discrete case for the non-smooth data: In Chapter 5 and Chapter 6, we study

the VEM and mixed VEM for the linear PIDE with non-smooth initial data. Our

future work includes the extension of this for the fully-discrete case.

• Mixed VEM for strongly damped wave equation: We plan to introduce and analyze

mixed VEM for strongly damped wave equation defined on a domain D ⊂ R2 such

that:

utt − α∇ · (a(x)∇ut)−∇ · (a(x)∇u) = f(x, t) (x, t) ∈ D × (0,∞, )

u(x, t) = 0 (x, t) ∈ ∂D × [0,∞),

u(x, 0) = u0(x) x ∈ D,

ut(x, 0) = u1(x) x ∈ D.

• Mixed VEM for weakly damped wave equation: We plan to introduce and analyze

mixed VEM for strongly damped wave equation defined on a domain D ⊂ R2 such

that:

utt − αut −∇ · (a(x)∇u) = f(x, t) (x, t) ∈ D × (0,∞, )

u(x, t) = 0 (x, t) ∈ ∂D × [0,∞),

u(x, 0) = u0(x) x ∈ D,

ut(x, 0) = u1(x) x ∈ D.
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