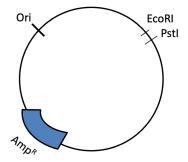
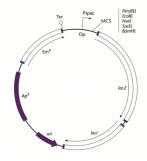

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE PILANI, HYDERABAD CAMPUS rDNA Technology (BIO F311) 2022-23 I SEM; Quiz2 (Closed_book) Total Marks: 20 Time 2:00 PM AM to 2:30 PM Duration: 30mins

Student Name:

Student ID:


Write your answers legibly in the space given below. No overwriting is allowed.


- 1. At the enzyme level how Golden Gate differs from Gibson assembly reactions? 1M
- 2. Mention any two major limitations of TOPO TA cloning. 1M
- 3. Below are the two plasmids

- a. Sarthak wants to do cloning of a gene of interest(GOI). Which one can be used? Answer with one line justification. **1M**
- b. Akshat wants to check the expression of the same gene used by Sarthak. Which one is the plasmid of choice for Akshat ? Justify. **1M**
- 4. Why DpnI enzyme is important during Site-Directed Mutagenesis? 1M
- 5. Only diagrammatically show the cDNA cloning steps in phage λ vectors. **1.5M**
- 6. RACHITT is an important gene shuffling technique. Which enzyme is not involved in this method a. DNA ligase b. DNase c. DNA polymerase d. endonuclease. **0.5M**
- 7. What does it mean "DIN 8.0"? 1M
- 8. We use phosphatase during Restriction enzyme mediated cloning of gene of interest. Why? 1M
- 9. Function of PilQ and PilN with respect to cloning. 1M
- 10. Utilizing the following plasmid Aahan wants to express protein X in the human embryonic kidney (HEK) cells. Can Aahan able to express his protein? To express protein X what alternative Aahan can do? Give one or two line justification. 2M
- 11. For Lenti viral mediated transfection(1st generation) what are the three plasmids are important and why? **1M**
- 12. What is polyplexes and why it is used during cloning? 1M
- 13. What is the difference between transduction vs transformation? 1M
- 14. What is phage display? 1M
- 15. In the lab you want to clone the following cDNA in the given plasmid (see below) which has two restriction enzyme site (*EcoRI* and *PstI*). Can you diagrammatically show how will you clone the cDNA. 4M

cDNA sequence "ATGCCCGAATTCGCCAATTCGGATCCAAA"

(A

Table 4.1.Recognition sequences and cutting sites for some restriction endonucleases			
Enzyme	Recognition sequence	Cutting sites	Ends
BamHl	5'-GGATCC-3'	G [†] GATCC CCTAG _↓ G	5′
EcoRI	5'-GAATTC-3'	G [†] A ATTC CTTAA _t G	5′
Haelll	5'-GGCC-3'	GG ^t CC CC _t GG	Blunt
Hpal	5'-GTTAAC-3'	G T T [†] A A C C A A _↑ T T G	Blunt
Pstl	5'-CTGCAG-3'	CTGCA [↓] G G _↓ ACGTC	3′
Sau3A	5'-GATC-3'	GATC CTAG,	5′
Smal	5'-CCCGGG-3'	ccctocc cccccc	Blunt
Sstl	5'-GAGCTC-3'	G A G C T C C T C G A G	3′
Xmal	5'-CCCGGG-3'	c⁺ccggg gggcc _t c	5′

Note: The recognition sequences are given in single-strand form, written $5' \rightarrow 3'$. Cutting sites are given in double-stranded form to illustrate the type of ends produced by a particular enzyme; 5' and 3' refer to 5'- and 3'- protruding termini, respectively. The point at which the phosphodiester bonds are broken is shown by the arrow on each strand of the recognition sequence.