BITS F218: GENERAL MATHEMATICS III BITS Pilani Hyderabad Campus First Semester, 2022- 2023 Mid-semester Examination (Closed Book)

Date: November 1, 2022	Duration: Total Marks:	11.00 am - 12.30 pm 30
This question paper contains 6 questions. Answer all questions.		

All notations have their usual meaning as per the Text book. Any standard results can be used without proof. Only provide the precise statement of the result.

1. State **TRUE** or **FALSE** with proper justification for each of the following statements: $[3 \times 2]$

- (a) The sum of the diagonal entries of a skew-symmetric matrix is zero.
- (b) There exists a linear system with exactly 199 distinct solutions.
- (c) Let A be an 3×3 matrix. If B is the matrix obtained from A by replacing the 1st column a_1 of A by $3a_1$ then the systems Ax = 0 and Bx = 0 are equivalent.
- 2. Use the Gauss Jordan method to find the solution of the following linear system:

$$2x + y = 2, \quad x + y + z = 4, \quad x + z = 8.$$

Hence show that Span $\{(2, 1, 0), (1, 1, 1), (1, 0, 1)\} = \mathbb{R}^3$.

3. Consider the matrix $A = \begin{bmatrix} 1 & -2 & 2 \\ -5 & 10 & -9 \\ -3 & 6 & c \end{bmatrix}$. Can you choose the parameter c so that the Rank(A) = 3?

[3]

[3 + 2]

- 4. Let P be any $n \times n$ invertible matrix. If u, v, w are linearly independent vectors in \mathbb{R}^n , then show that Pu, P(u-v), P(v+w) are linearly independent. [3]
- 5. Consider

$$W = \left\{ (x_1, x_2, x_3, x_4) \in \mathbf{R}^4 : x_4 = 2x_2 - x_1 + x_3 \right\}.$$

Show that W is a subspace of \mathbb{R}^4 . Find a basis for W. Also, determine the dimension of W.

[3+3+1]

6. Find the linear transformation $T : \mathbf{R}^3 \to \mathbf{R}^2$ such that T(1,1,0) = (2,5), T(1,-1,0) = (1,-2) and T(1,0,1) = (3,7). Also, find the matrix of the linear transformation T with respect to the ordered basis $\mathcal{B} = \{(1,1,0), (1,-1,0), (1,0,1)\}$ and $\mathcal{C} = \{(1,0), (0,1)\}$, respectively. [3 + 3]

_____ END _____