

First Semester 2022–2023 Mid Semester Examination (Open Book)

Course No: CE F323 **Course Name:** Introduction to Environmental Engineering **Max. Marks:** 60 Date: 31-10-2022 FN Weightage: 30 % Duration: 90 Minutes

Instructions: Assume any data judiciously only if needed with reasoning.

Polyvinyl chloride (PVC), a common form of plastic found in construction and many household goods. It
is almost always get to the municipal solid waste and some time is burned in landfills. PVC is a
polymeric chain repeating the monomer C₂H₃Cl. The following reaction describes the high-temperature
combustion of the typical PVC monomer:

$C_2H_3CI + a O_2 \rightarrow b CO_2 + c H_2O + d CIO_2$

- 1.1. Determine the values of the stoichiometric coefficients for this reaction (Balance the equation). (1M)
- 1.2. Calculate the volume of oxygen at T = 20°C and P = 1 atm required to incinerate one mole of the monomer. Express your answer in liters. (2M)
- 1.3. Calculate the volume of air at T = 20°C and P = 1 atm required to incinerate 2 kg of PVC. Express your answer in liters. Assume Oxygen is 21% of volume of air (3M)
- **1.4.** If the fumes exit the stack at 240°C and 1 atm, how many m³ of CO₂, H₂O(vapor), ClO₂ and total are being released for every 10 kg of PVC burned? (4M)
- A wastewater is to be treated in a complete-mix reactor. Assuming that the reaction is irreversible and first-order (r = -kC) with a reaction rate coefficient equal to 0.15/day, determine the flowrate that can be treated if the reactor has a volume of 20 m³ and 98 percent treatment efficiency is required. What volume would be required to treat the flowrate determined above if the required treatment efficiency is 92 percent?
- 3. The following test results were obtained for a wastewater sample taken at the headworks to a wastewater treatment plant. All of the tests were performed using a sample size of 50 mL. Determine the concentration of total solids, total volatile solids, total suspended solids, volatile suspended solids, and dissolved solids for sample # 2 (5 M)

	Weight, g	
	Sample number	
Item	2	
Tare mass of evaporating dish	53.5434	
Mass of evaporating dish plus residue after evaporation at 105°C	53.5693	
Mass of evaporating dish plus residue after ignition at 550°C	53.5489	
Tare mass of Whatman GF/C filter	1.5435	
Mass of Whatman GF/C filter plus residue after drying at 105°C	1.5521	
Mass of Whatman GF/C filter plus res- idue after ignition at 550°C	1.5455	

- Determine the UBOD and BOD₅ (in mg/L) of a mixture of 150 mg/L glucose (C₆H₁₂O₆) and 150 mg/L glutamic acid (C₅H₁₀N₂O₃). Assume the value of the BOD₅ first-order reaction rate constant is 0.23 d⁻¹ (base e), at 20°C. *Hint:* The moles of oxygen required to convert each compound into CO₂, H₂O (former) and also NH₃ (latter) is the theoretical UBOD (same as COD since molecular composition as organic waste is known).
- If the BOD value at 20°C of a wastewater measured at 3 and 10 days was found to be 125 and 225 mg/L, respectively, determine the 5-d value using the first-order rate model. (3M)
- As part of an evaluation, you have been asked to determine the effect of the wastewater discharge on the dissolved oxygen of a river for only summer conditions as shown below. Calculate the DO at the critical point and time at which DO will be critical. (15M)

Parameter		Riv	River	
	wastewater	Winter	Summer	
Flow, m ³ /s	0.200	0.483	0.241	
BOD ₅ , mg/L	100	N/A	N/A	
k at 20°C, d ⁻¹	0.3685	N/A	N/A	
BOD _U , mg/L	N/A	7.66	7.66	
Temperature, °C	28	4	28	
DO, mg/L	0.0	8.0	8.0	
Speed, m/s	N/A	0.150	0.150	
Depth, m	N/A	2.0	1.0	
Bed Activity Coefficient	N/A	0.3	0.3	

7. Write short notes:

(5 x 3 =15M)

- 7.1. Estimation of presence of pathogens in a water sample using any method.
- 7.2. Stressors and Pollutants in GW.
- 7.3. Write a summary of your topic chosen for term paper.

<u>X_</u>