

FIRST SEMESTER 2022 - 2023 <u>MIDSEM TEST (Regular)</u> (Open Book)

Course No: CE F411	Date: 03-11-2022
Course Name: Operations Research for Engineers	Weightage: 30 %
Max. Marks: 30	Time: 01.30 pm – 03.00 pm

 Use Kung et al.'s efficient method to identify the different pareto fronts from the following points (all objectives are to be maximized): (6 M)

Solution ID	\mathbf{f}_1	\mathbf{f}_2	f ₃
1	2.2	3.6	1.1
2	5.2	1.8	9.9
3	3.4	4.2	9.9
4	2.7	2.9	2.7
5	3.5	3.3	2.3
6	4.1	4.5	5.2
7	7.5	2.2	1.7
8	0.7	6.4	4.9
9	6.5	5.1	6.5
10	9.2	2.8	3.2
11	1.4	3.3	7.5
12	5.7	6.5	2.2

Determine the optimal solution of the following LPP without using artificial variables.
 (6 M)

 $\begin{array}{l} \mbox{Minimize } z = 4x_1 + 6x_2 + 3x_3 - x_4 \\ \mbox{subject to} \\ x_1 + x_3 - x_4 \geq 2 \\ x_2 + x_3 + x_4 \geq -3 \\ x_1, x_2, x_3, x_4 \geq 0 \end{array}$

3) IKEA furniture company assembles two types of kitchen cabinets: Type A and Type B. Type A cabinets are painted white and the Type B are varnished. Both painting & varnishing are carried out in one department. The assembly department can produce a maximum of 200 Type A cabinets and 150 Type B cabinets per day. Varnishing a Type B cabinet takes twice as much as painting a Type B one. If the painting/ varnishing department is dedicated to the Type B only, it can complete 180 units daily. The company estimates that the profits per unit for Type A and Type B cabinets are Rs.1000/- & Rs.1500/- respectively. Formulate an LPP & find the optimal production schedule per day. Suppose due to competition, the profits per unit of Type A and Type B units must be reduced to Rs.800/- and Rs.1200/- respectively, determine the revised optimal production schedule per day. **(6 M)**

4) Maximize
$$f(x) = 3x_1 + 4x_2$$

subject to


$$3x_1 - x_2 \le 12$$

$$3x_1 + 11x_2 \le 66$$

$$x_1 \ge 0, x_2 \text{ is an integer.}$$

Solve the ILP using Gomory's cutting plane method. (6 M)

5) The objective function of a problem is Maximize $z=3x_1+6x_2$. The twodimensional search space of the problem is shown below. Determine the optimum solution of the given problem using simplex method. (6 M)

ALL THE BEST