

First Semester 2022-2023

CE F431 Principles of Geographical Information Systems

Comprehensive Examination

Weightage: 40%

Maximum Marks: 40 Duration: 3 Hours

Date: 31.12.2022 Nature of Exam: Closed Book

Answer All Questions

Section:1

1. Complete the grid given below.

[3M]

Along

- 1) A geo-statistical method of spatial interpolation [7]
- 2) The orientation of slope [6]

Down

- 3) Type of SAR resolution [7]
- 4) Unsupervised classification method [7]
- 5) Law of physics related to spatial resolution [6]
- 6) The value of pixel in DTM [9]

Note: The number in the bracket shows the number of letters. No need to redraw the grid for answer. Just write the answer against its corresponding number.

2. Differentiate between the following.

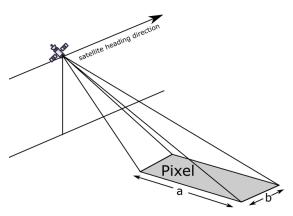
[1*5= 5M]

- a) Depth First Search vs Breadth First Search
- b) WGS 1984 vs UTM
- c) Kriging vs IDW
- d) Constrained Delaunay triangulation vs Unconstrained Delaunay triangulation
- e) Route vs Event

3. State true or false and justify your answer.

[0.5*6=3M]

- a) Vegetation can be identified by extracting pixels with NDVI <0
- b) The spatial interpolation technique based on IDW computes the error of interpolation.
- c) TIN is a 2D model representing the irregular tessellation of the terrain
- d) For UTM projection, scale factor between the two standard meridian is less than one.
- e) The strength of the signal recorded by satellite sensor system corresponds to its spectral resolution
- f) The time series images of Sentinel-2 data were limited during monsoon season


- 4. Explain how you are going to apply the geo-spatial technology in the domain of intelligent transportation system. Include the following in your answer. [3M]
 - The specific domain
 - How Geospatial technology is important in that domain?
 - Types of datasets required for the analysis
 - List the algorithm required for executing the problem.

Section: II.

- 1. What is XML? How is it useful in Map service operations? Explain the role of XML in client-server connectivity using a neat diagram. [4M]
- 2. Write at least two differences between WFS and WCS? [2M]
- 3. Explain why we cannot make a Nadir-looking SAR system? Explain with a diagram. [2M]
- 4. Which are the range and azimuth resolutions (shown as a and b in the figure given below)?

 Why are these resolutions different in a SAR remote sensing system?

 [2M]

Section: III

1. a) Explain Dijkstra's algorithm.

[2+3=5M]

b) Adjacency matrix corresponding to a network is given below.

	a	b	c	d	e	f	g	h
\overline{a}	0	20	0	0	0	0	15	0
b	20	0	8	9	0	0	0	0
c	0	8	0	6	15	0	0	10
d	0	9	6	0	7	0	0	0
e	0	0	15	7	0	22	18	0
f	0	0	0	0	22	0	0	0
g	15	0	0	0	18	0	0	0
h	0	0	10	0	0	0	0	0

Identify the shortest route and corresponding distance from node b to node g using Dijkstra's algorithm. Write steps for each iteration either in the same table or in a different table. Draw the corresponding network.

- 2) a) Draw a semi-variogram with-reference to Kriging and mark all the semi-variogram parameters. Also. explain the parameters. [1.5M]
 - b) The details of elevation datasets of certain locations are given below. Determine the elevation of the point 'O' using ordinary Kriging method. [4.5M]

Details of datasets for Kriging

Point	Point x (m)		Elevation (m)		
1	2	2	3		
2	3	7	4		
3	9	9	2		
4	6	5	4		
5	5	3	6		
0	5	5	?		

The semi-variogram is fitted with the spherical model and is given by

$$\gamma(h)=2.5+7.5\left(\frac{3}{2}.\frac{h}{10}-0.5.\left(\frac{h}{10}\right)^3\right)$$
, where h is the distance in m.

3) The 3x3 window of an elevation raster is given below. Calculate the slope and aspect of the centre pixel of the following raster data considering 8 connectivity. The resolution of each cell is 10 m. [2M]

Elevation raster

1006	1012	1017
1010	1015	1019
1012	1017	1020

4) Calculate the least cost path from the top leftmost pixel to bottom rightmost pixel using Dijkstra's algorithm (source raster). The cost raster is given below. [3M]

Cost raster

1	2	2
1	4	5
2	3	7

Source raster

-----All the Best-----