BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI - HYDERABAD CAMPUS						
FIRST SEMESTER 2022-2023						
	CHEMICAL ENGINEERING THERMODYNAMICS (CHEF213)					
Date: 28 Dec 2022 Comprehensive Exam (Closed Book) Duration: 30 min Maximum Marks: 15 M						
	tructions: All the questions are mandatory.					
*	State and take suitable assumptions, if required.					
*	Each question carries 1 M.					
	PART A					
	Which of the following is an extensive property?					
(a)	Pressure (b) Density (c) Heat capacity (d) Specific heat capacity					
2.	2. For an ideal solution, the value of activity coefficient is					
3	Which of the following is not a common refrigerant?					
2.	(a) Freon-12 (b) Ethylene (c) Ammonia (d) Carbon dioxide					
4.	Coefficient of performance of a refrigerator operating between 35°C to -50°C is					
5	Measurement of thermodynamic property of temperature is facilitated by law of thermodynamics					
5.	(a) zeroth (b) First (c) Second (d) Third					
6.	In the reaction, $N_2 + O_2 \rightleftharpoons 2NO$, increasing pressure will result in					
	(a) Shifting equilibrium towards right					
	(b) Shifting equilibrium towards left					
	(c) No change in equilibrium condition					
	(d) Shifting equilibrium towards right and then continue to shift towards left					
7.	A gaseous compound is expanded from 5 bar to 1 bar in a closed system. Under which mode (isothermal,					
	adiabatic, isobaric) maximum amount of the ideal work obtains? Explain the reason.					
8	In any combustion reactions, what is the standard heat content of O ₂ ?					
0.	In any compustion reactions, what is the standard near content of O_2 .					
9.	The freezing point of a liquid decreases when the pressure is increased, if the liquid while freezing.					
	(a) contracts (b) expands (c) does not change in volume (d) becomes supercritical fluid					
10. Gibbs phase rule find application, when heat transfer occurs by						
(a) conduction (b) convection (c) radiation (d) condensation						
11. Air enters an adiabatic compressor at 300 K. The exit temperature for a compression ratio of 3, assuming air to						
be an ideal gas ($\gamma = \frac{c_p}{c_v} = 7/5$) and the process to be reversible, is						
	$c \sim c_v$					

Name:

ID No:

Name:

ID No:

- 13. A gas obeys P(v-b) = RT. The work obtained from reversible isothermal expansion of one mole of this gas from initial molar volume (v_i) to a final molar volume (v_f) is _____

14.	Match	the	fol	lowing:
-----	-------	-----	-----	---------

Thermodynamic property	Canonical form variables		
(1) U	(i) T, P		
(2) H	(ii) V, S		
(3) A	(iii) P, S		
(4) G	(iv) T, V		

15. Write the mathematical form of first law of thermodynamics for open systems. Explain the terms.