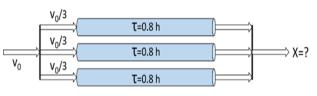
BIRLA INSTITUTE OF TH	ECHNOLOGY & SCIE	NCE, PILANI - HYDERABAD CAMPUS			
	First Semester 20	22-2023			
Kir	netics and Reactor Des	sign (CHE F311)			
Comprehensive examination	on Part-A (Closed Book) & Part B (Open Book)				
Date: 19/12/2022	Total marks: 80	Duration: 180 min. Weightage: 40%			
PART-A	Marks: 40	Max. duration: 105 min.			

Name

1. Write the <u>final answer</u> by pen below each question. Use extra sheet for rough work.

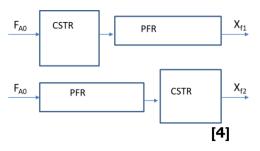

[2×8 =16]

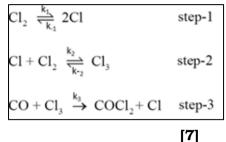
ID No

- A. For a gas-solid catalytic reaction, the bulk phase diffusivity (D_A) of reactant A is 0.5 cm²/s. The porosity and tortuosity of the catalyst is 0.5 and 5, respectively. Find the effective diffusivity of A (in cm²/s) inside the catalyst. (assume pores are cylindrical in shape).
- B. Activation energy of the ethane pyrolysis reaction is 300 kJ/mol. How much faster is decomposition at 600 °C than at 500 °C if other operating conditions are the same?
- C. In a recycling reactor, the overall conversion of 'A' in an isothermal liquid phase reaction $(A \rightarrow B)$ is 80%. Find the per pass percentage conversion of 'A' if the recycling ratio is 3.
- D. Liquid phase reaction $2A \rightarrow R$ follows elementary rate law with k = 0.05 L/(mol.h). The reaction is carried out in a CSTR with C_{A0}=10 mol/L and space-time 2 hours. Find the Damkohler number of the system.
- E. For a constant density system, on doubling the concentration of a reactant, the rate of reaction triples. Find the reaction order.
- F. A first-order gas-phase reaction $A(g) \rightarrow R(g)$ is carried out isothermally in a packed-bed reactor (PBR) containing 35 kg catalyst. Pure A enters the PBR at 20 atm. The pressure drop parameter (a) is = 0.02 per kg of catalyst. What is the total pressure (P) at the exit of the PBR?
- G. A liquid phase, isothermal reaction with $k = 0.1 \text{ min}^{-1}$ is being carried out in a batch reactor. What will be the time required to reach 75% conversion?
- H. The Thiele Modulus for a zero-order irreversible gas-solid (slab type catalyst) catalyzed reaction is 10. Find the effectiveness factor for the reaction.

2. Write the <u>final answer</u> by pen below each question. Use extra sheet for rough work.

- i. An isothermal irreversible gas-phase elementary reaction $A+2B \rightarrow 4R$ occurring in a steady flow reactor. The inlet concentration of A, B and an inert (I) are 100, 200, and 100 mol/L respectively. If the concentration of 'A' at the exit of the reactor is 50 mol/L, find the exit conversion of 'B'.
- ii. For a steady flow in a tubular reactor, the dispersion number is 0.05. Find the number of tanks for the tanks-in-series model equivalent to the dispersion number.
- iii. A liquid phase, autocatalytic reaction $(A + R \rightarrow R + R)$ is being carried out in a CSTR operating at a steady state. The feed contains 99% A, and 1% R. The rate constant is k = 1 L/(mol.min). The total concentration of the two species is constant throughout the reaction at 1 mol/L. Determine the space-time required to obtain a product consisting of 10% A and 90% R.
- iv. Liquid reactant 'A' passes in steady flow through 3 equal size of isothermal CSTRs connected in series. The total residence time (from the entry of the first reactor to the exit of the third reactor) is 3 min. The concentration of 'A' at the inlet of the first reactor is 8 mol/m³ and at the exit of the third reactor is 1 mol/m³. Find the reaction rate constant value for a first-order reaction.
- v. The liquid-phase reaction $A + B \rightarrow C$ follows elementary rate law (k = 0.1 L/(mol.min)) and is carried out isothermally in a 200 L CSTR. A stream with a volumetric flow rate of 5 L/min and containing 2 M of reactant A is mixed with another stream of same volumetric flow rate and containing 2 M of reactant B before entering the reactor. Find the conversion percentage of A.
- vi. Gas phase reaction $A \rightarrow B$ with k = 1 h⁻¹ is carried out in 3 PFRs with a parallel arrangement as shown below. All the reactors are operating at the same temperature, and the space-time for each PFR is 0.8 hours. Find the percentage


conversion in the final stream that combines the exit streams from all the 3 PFRs.


- vii. A first-order gas-solid irreversible isothermal reaction $(A \rightarrow P)$ is carried out using a spherical porous catalyst. The reactant concentration at the external surface of the catalyst is 1 mol/m³. The Thiele modulus for the system is 6. Find the concentration (in mol/m³) of the reactant at halfway between the external surface and the center of the catalyst.
- viii. The reversible gas-phase decomposition of nitrogen tetroxide (N_2O_4) to nitrogen dioxide (NO_2), is carried out isothermally in a constant-volume batch reactor. The feed consists of pure N_2O_4 at 340 K and 2 atm. The value of equilibrium constant (K_C) at 340 K is 0.1. Calculate the equilibrium conversion of N_2O_4 .

Part-B (Open book)

Marks: 40

- 1. A liquid-phase irreversible reaction is carried out using two equal-volume of ideal reactors (one CSTR and one PFR) in series under identical conditions as shown in the figure. Do you think that the final conversion of A (i.e, X_{f1} and X_{f2}) will be the same in both cases? Give reasons for your answer.
- 2. Suppose the following mechanism is proposed for the production of phosgene as per the reaction $CO + Cl_2 \rightarrow COCl_2$. Assuming step-3 is the slowest step, find the kinetic rate expression for the formation of $COCl_2$ and find the reaction order with respect to CO for a very low and very high concentration of CO.

- 3. A first-order heterogeneous irreversible isothermal reaction (A \rightarrow product) was carried out using a catalyst pellet of slab geometry. The reactant concentration (C_A) at a distance of 0.04 mm inside from the external surface is equal to 77% of the external surface concentration. The concentration of the reactant at the external surface of the catalyst is 4 mol/cm³. The length (2L) of the pellet is 0.4 mm and effective diffusivity within the catalyst is 0.1 cm²/s.
 - i) Find the concentration of the reactant at a distance of 0.1 mm from the external surface of the pellet. (show the calculation steps)
 - ii) Find the effectiveness factor for the reaction
 - iii) Find the value of the kinetic rate constant
 - iv) Is the reaction a diffusion control or a kinetic control reaction for the given experimental conditions? Give reasons for your answer.
 - v) Instead of the first-order kinetics, if it follows zero-order kinetics, find the value of Thiele modulus for the same external concentration of the reactant.

[5+2+2+2+3=14]

- 4. A tracer was injected as an impulse input to an isothermal mixed-flow reactor. At the exit of the reactor, the tracer concentration was measured as a function of time and the results are given in the table.
 - i) Find E(t) values and fill the table.
 - ii) Find F(t) values and fill the table.
 - iii) Find the mean residence time (t_m) .
 - iv) Find the variance of the distribution
 - v) If the same reactor (volume 0.2 m³) is used for an irreversible first-order liquid phase reaction (A \rightarrow B) under the identical operating condition as that of the tracer experiment with a volumetric flow rate of 0.1 m³/min, then find the actual conversion of A. (Assume the reaction rate constant is 0.1 min⁻¹). **[3x5=15]**

t, min.	0	2	4	6	8	10
C(t), g/m ³	0	4	8	6	2	0
E(t)						
F(t)						